CAMxUsersGuide_v6.30x CAMx Users Guide V6 30
User Manual:
Open the PDF directly: View PDF .
Page Count: 286 [warning: Documents this large are best viewed by clicking the View PDF Link!]
March20
1
1
6
C
O
O
MPRE
H
H
ENSIVE
A
77
3
CAMxUser’
Us
e
A
IRQUA
WITH
R
a
3
SanMarin
Novato,
www.ram
sGuideVersi
o
e
r’sGu
LITYM
O
EXTENSI
O
Versio
n
a
mbollEn
v
Drive,Suite
California,
9
boll‐enviro
n
www.cam
x
P‐415‐899
‐
F‐415‐899
‐
o
n6.3
ide
O
DEL
O
NS
n
6.3
v
iron
2115
9
4998
n
.com
x
.com
‐
0700
‐
0707
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS www.camx.com
Copyright:RambollEnviron
1997–2016
Thispublicationmaybereproducedfor
non‐commercialpurposeswithappropriateattribution.
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS iwww.camx.com
ACKNOWLEDGMENTS
RambollEnvironacknowledgesthefollowinggroupsfortheircontributionstothedevelopment
ofCAMx:
TheTexasCommissiononEnvironmentalQuality(TCEQ),forsponsoringthedevelopment,
testing,andreviewofnumerouscomponentsofthemodel;
TheLakeMichiganAirDirectorsConsortium(LADCo),forsponsoringthedevelopment,
testingandreviewofnumerouscomponentsofthemodel;
TheU.S.EnvironmentalProtectionAgency(EPA),forsponsoringthedevelopment,testing,
andreviewofnumerouscomponentsofthemodel,andforco‐sponsoringthe
developmentandtestingoftheMPIparallelprocessingcapability.SpecialthankstoDr.
JonPleimforassistancewithimplementationofACM2;
TheCoordinatingResearchCouncil(CRC),forsponsoringthedevelopment,testing,and
reviewofnumerouscomponentsofthemodel;
TheTexasAirQualityResearchProgram(AQRP),forsponsoringthedevelopment,testing,
andreviewofnumerouscomponentsofthemodel;
Dr.SashaMadronich(NCAR)fordevelopmentoftheTUVradiativetransfermodeland
assistancewithincorporatingthein‐lineTUVtreatmentintoCAMx;
TheCarnegie‐MellonUniversity,DepartmentofChemicalEngineering,forprovidingfull‐
sciencePMalgorithms,assistanceinincorporatingthemintoCAMx,andtestingthe
implementation;
TheElectricPowerResearchInstitute(EPRI),forsponsoringthedevelopmentandtesting
oftheVolatilityBasisSet(VBS)organicaerosolalgorithm.
TheAmericanPetroleumInstitute(API),forsponsoringthedevelopmentandtestingof
improvementstotheverticaladvectionalgorithm;
TheUtahDepartmentofEnvironmentalQuality(UDEQ),forsponsoringupdatestothe
CB6chemistrymechanism,snow‐covertreatment,andsurfacechemistrymodel;
TheUniversityofTexas,CenterforEnergyandEnvironmentalResources,forassistancein
developingandtestingtheOpen‐MPmulti‐processorcapability;
Atmospheric,Meteorological,andEnvironmentalTechnologies(ATMET),forproviding
librariesandimplementationsupportfortheMPIparallelprocessingcapability;
TheMidwestOzoneGroup(MOG),forco‐sponsoringthedevelopmentandtestingofthe
MPIparallelprocessingcapability;
AtmosphericandEnvironmentalResearch(AER),fordevelopingthemercurychemistry
algorithm;
TheSanFranciscoBayAreaAirQualityManagementDistrict(BAAQMD),forsupporting
andtestingthecouplingofSAPRCgas‐phasechemistrytothePMchemistryalgorithm.
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS iiwww.camx.com
CONTENTS
ACKNOWLEDGMENTS............................................................................................................I
1.OVERVIEW........................................................................................................................1
1.1CAMXFEATURES........................................................................................................2
1.2CAMXEXTENSIONSANDPROBINGTOOLS.................................................................4
1.3NEWFEATURESANDMAJORUPDATESINCAMXVERSION6.3..................................5
2.THECAMXMODELINGSYSTEM.........................................................................................6
2.1CAMXPROGRAMSTRUCTURE...................................................................................7
2.1.1MemoryManagement..........................................................................................8
2.1.2ParallelProcessing.................................................................................................9
2.2COMPILINGCAMX...................................................................................................10
2.2.1ANoteonFortranBinaryInput/OutputFiles......................................................11
2.3RUNNINGCAMX......................................................................................................12
2.3.1ControlFileNamelistInput..................................................................................12
2.3.2UsingScriptstoRunCAMx..................................................................................20
2.4BENCHMARKINGMODELRUNTIMES.......................................................................24
2.5CAMXPRE‐ANDPOST‐PROCESSORS........................................................................24
2.5.1Emissions.............................................................................................................24
2.5.2Meteorology........................................................................................................25
2.5.3PhotolysisRates...................................................................................................26
2.5.4InitialandBoundaryConditions..........................................................................27
2.5.5Landuse................................................................................................................27
2.5.6Post‐processors...................................................................................................28
3.COREMODELINPUT/OUTPUTSTRUCTURES....................................................................29
3.1CAMXCHEMISTRYPARAMETERSFILE......................................................................30
3.2PHOTOLYSISRATESFILE...........................................................................................38
3.3OZONECOLUMNFILE...............................................................................................40
3.4FORTRANBINARYINPUT/OUTPUTFILES..................................................................43
3.4.1WhatisaFortranBinaryFile?.............................................................................43
3.4.2CAMxBinaryFileHeaders...................................................................................44
3.4.3InputFiles............................................................................................................45
3.4.4OutputFiles.........................................................................................................58
4.COREMODELFORMULATION.........................................................................................63
4.1NUMERICALAPPROACH...........................................................................................63
4.2CAMXGRIDCONFIGURATION..................................................................................65
4.2.1GridCellArrangement.........................................................................................65
4.2.2GridNesting.........................................................................................................66
4.2.3Flexi‐Nesting........................................................................................................68
4.3TREATMENTOFEMISSIONS.....................................................................................68
4.3.1GriddedEmissions...............................................................................................69
4.3.2ElevatedPointEmissions.....................................................................................69
4.4THREE‐DIMENSIONALTRANSPORT..........................................................................72
4.4.1ResolvedTransport:Advection............................................................................72
4.4.2Sub‐GridTurbulentTransport:Diffusion.............................................................75
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS iiiwww.camx.com
4.5WETDEPOSITION.....................................................................................................77
4.5.1PrecipitationParameters.....................................................................................78
4.5.2GasScavenging....................................................................................................79
4.5.3AerosolScavenging..............................................................................................82
4.6DRYDEPOSITION.....................................................................................................84
4.6.1TheWesely/SlinnModel.....................................................................................85
4.6.2TheZhangModel.................................................................................................88
4.7SNOWCOVERANDSURFACEALBEDO......................................................................91
4.8SURFACEMODELFORCHEMISTRYANDRE‐EMISSION.............................................93
4.8.1SurfaceModelAlgorithms...................................................................................94
4.8.2RunningCAMxWiththeSurfaceModel..............................................................98
5.CHEMISTRYMECHANISMS............................................................................................101
5.1GAS‐PHASECHEMISTRY.........................................................................................102
5.1.1CarbonBond......................................................................................................102
5.1.2SAPRC2007........................................................................................................109
5.1.3ImplicitGas‐PhaseSpecies................................................................................109
5.1.4PhotolysisRates.................................................................................................109
5.1.5Gas‐PhaseChemistrySolvers............................................................................112
5.2AEROSOLCHEMISTRY............................................................................................114
5.2.1AdditionalGas‐PhaseSpecies............................................................................114
5.2.2AerosolProcesses..............................................................................................114
5.2.3AerosolSectionalApproach..............................................................................122
5.3MERCURYCHEMISTRY...........................................................................................123
5.3.1Gas‐PhaseChemistry.........................................................................................124
5.3.2AdsorptionofHg(II)onPM................................................................................124
5.3.3Aqueous‐PhaseChemistry.................................................................................125
5.3.4ImplementationApproach................................................................................127
5.3.5ChemistryParametersforMercury...................................................................128
5.4SIMPLECHEMISTRYVIAMECHANISM10...............................................................128
6.PLUME‐IN‐GRIDSUBMODEL.........................................................................................130
6.1CAMXPIGFORMULATION.....................................................................................130
6.1.1BasicPuffStructureandDiffusiveGrowth........................................................130
6.1.2PuffTransport....................................................................................................134
6.2GREASDPIG...........................................................................................................136
6.3PARTICULATEMATTERINPIG................................................................................138
6.4IRONPIG................................................................................................................138
6.5PIGFEATURES........................................................................................................139
6.5.1PuffLayerSpanning(IRONandGREASD)..........................................................139
6.5.2PuffOverlapandtheIdeaofVirtualDumping(IRONonly)..............................139
6.5.3MultiplePuffReactors(IRONonly)...................................................................140
6.5.4PuffDumping(IRONandGREASD)....................................................................141
6.5.5PiGRendering(IRONandGREASD)...................................................................141
6.5.6HighResolutionPuffSampling(IRONandGREASD).........................................142
6.6DEPOSITION...........................................................................................................142
6.6.1DryDeposition...................................................................................................142
6.6.2WetDeposition..................................................................................................144
6.7PIGCONFIGURATION.............................................................................................144
6.7.1GuidanceontheUseofCAMxPiG....................................................................145
7.SOURCEAPPORTIONMENT...........................................................................................149
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS ivwww.camx.com
7.1OZONESOURCEAPPORTIONMENT.........................................................................150
7.1.1OSATFormulation..............................................................................................151
7.1.2OSAT2Formulation...........................................................................................152
7.1.3OSAT3Formulation...........................................................................................153
7.1.4AlternativeOzoneApportionmentUsingAPCA................................................155
7.2PARTICULATESOURCEAPPORTIONMENT...............................................................156
7.3RUNNINGCAMXWITHSA......................................................................................160
7.3.1CAMxControlFile..............................................................................................160
7.3.2SpecifyingEmissionGroups...............................................................................162
7.3.3SourceAreaMapping........................................................................................166
7.3.4ReceptorDefinition...........................................................................................170
7.3.5OutputFileFormats...........................................................................................170
7.3.6Postprocessing....................................................................................................172
7.4STEPSINDEVELOPINGINPUTSANDRUNNINGSA..................................................172
8.DECOUPLEDDIRECTMETHODFORSENSITIVITYANALYSIS............................................176
8.1IMPLEMENTATION.................................................................................................177
8.1.1TrackingSensitivityCoefficientsWithinCAMx..................................................179
8.1.2Flexi‐DDM..........................................................................................................180
8.2RUNNINGCAMXWITHDDMANDHDDM..............................................................180
8.3DDMOUTPUTFILES...............................................................................................185
8.4DDMSENSITIVITYCOEFFICIENTNAMES.................................................................185
8.4.1InitialConditionSensitivityNames....................................................................186
8.5STEPSINDEVELOPINGINPUTSANDRUNNINGDDM..............................................189
9.PROCESSANALYSIS.......................................................................................................191
9.1PROCESSANALYSISINCAMX.................................................................................191
9.1.1IntegratedProcessRateAnalysis......................................................................192
9.1.2IntegratedReactionRateAnalysis.....................................................................193
9.1.3ChemicalProcessAnalysis.................................................................................193
9.2RUNNINGPROCESSANALYSIS................................................................................196
9.2.1SettingCAMxParameters..................................................................................198
9.2.2OutputFileFormats...........................................................................................199
9.3POSTPROCESSING..................................................................................................199
9.3.1IPROutputFiles.................................................................................................199
9.3.2IRROutputFiles.................................................................................................200
9.3.3CPAOutputFiles................................................................................................201
10.REACTIVETRACERS.....................................................................................................202
10.1DESCRIPTIONOFRTRAC.......................................................................................202
10.1.1RTRACGas‐PhaseChemistry...........................................................................204
10.2DESCRIPTIONOFRTCMC......................................................................................206
10.2.1RTCMCGas‐PhaseChemistry..........................................................................206
10.3REACTIVETRACERSINIRONPIG...........................................................................214
10.4RUNNINGCAMXWITHREACTIVETRACERS..........................................................215
10.4.1CAMxControlFile............................................................................................215
10.4.2UserAdjustableParameters............................................................................217
11.REFERENCES................................................................................................................219
APPENDIXA.......................................................................................................................232
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS vwww.camx.com
CAMXMECHANISM2:CB6R2GAS‐PHASECHEMISTRY.................................................232
APPENDIXB.......................................................................................................................241
CAMXMECHANISM3:CB6R2WITHHALOGENCHEMISTRY..........................................241
APPENDIXC.......................................................................................................................245
CAMXMECHANISM6:CB05GAS‐PHASECHEMISTRY...................................................245
APPENDIXD.......................................................................................................................251
CAMXMECHANISM5:SAPRC07TCGAS‐PHASECHEMISTRY.........................................251
TABLES
Table2‐1.ParametersandtheirdefaultsinIncludes/camx.prmusedtostatically
dimensionlocalarraysinlow‐levelsubroutines................................................................8
Table2‐2.CAMxoutputfilesuffixesandtheircorrespondingfiletypes................................................20
Table2‐3.CAMxv6.20speedperformancewithMPIandOMPparallelizationfromthe
LADCotestsdescribedabove.............................................................................................24
Table3‐1.DatarequirementsofCAMx...................................................................................................29
Table3‐2.DescriptionoftheCAMxchemistryparametersfile.Therecordlabelsexistin
columns1‐20,andwheregiven,theinputdataforthatrecordstartin
column21.Theformatdenoted“list”indicatesafree‐formatlistof
numbers(commaorspace‐delimited)...............................................................................31
Table3‐3a.RateconstantexpressiontypessupportedinCAMxandorderofexpression
parametersforthechemistryparametersfile..................................................................39
Table3‐3b.ListofparametersthatmustbeprovidedintheCAMxchemistryparameter
fileforeachoftheseventypesofrateconstantexpressions.Use
ppm/minuteunitsforAandKelvinforEaandTR.ThevariableOisthe
orderofthereaction(1to3).............................................................................................40
Table3‐4.The11WESELY89landusecategories,theirdefaultUVsurfacealbedos,and
theirsurfaceroughnessvalues(m)byseason.Winterisdefinedfor
conditionswherethereissnowpresent;wintermonthswithnosnoware
assignedtotheFallcategory.Roughnessforwateriscalculatedfromthe
function5.26
0102 wz
,wherewissurfacewindspeed(m/s)...................................46
Table3‐5.The26ZHANG03landusecategories,theirUValbedos,defaultannual
minimumandmaximumLAIandsurfaceroughness(m)ranges,and
mappingtotheWeselyscheme(Table3‐4).Roughnessforwateris
calculatedfromthefunction5.26
0102 wz
,wherewissurfacewind
speed(m/s)........................................................................................................................47
Table4‐1.SummaryoftheCAMxmodelsandmethodsforkeyphysicalprocesses..............................63
Table4‐2.Relationshipsbetweenseasonandmonth/latitudeusedintheCAMx
Wesely/Slinndrydepositionmodel.Exception:seasonsforthearea
within50N‐75Nand15W‐15Eareinternallysettothoseoflatitudeband
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS viwww.camx.com
35‐50toaccountforregionsofEuropeinwhichtheclimateisinfluenced
bytheGulfStream.............................................................................................................88
Table4‐3.DescriptionofCAMxsurfacemodelvariablesshowninFigure4‐7.......................................95
Table4‐4(a).Weselylandusecategoriesandassociatedannual‐averagedsoil/vegetation
splitfactors,UValbedo,andSWEWc................................................................................96
Table4‐4(b).Zhanglandusecategoriesandassociatedannual‐averagedsoil/vegetation
splitfactors,UValbedo,andSWEWc................................................................................96
Table5‐1.Gas‐phasechemicalmechanismscurrentlyimplementedinCAMxv6.3...............................101
Table5‐2.SpeciesnamesanddescriptionscommontoallCarbonBondMechanismsin
CAMx..................................................................................................................................103
Table5‐3.Defaultdryextinctionefficiencyandsingle‐scatteringalbedoat350nm
(Takemuraetal.,2002)inthedistributedCAMxchemistryparametersfile....................111
Table5‐4.ListofinorganicPMspeciesfortheCAMxCFaerosoloption................................................116
Table5‐5.SOAprecursorreactionsincludedintheCAMxSOAPmodule...............................................117
Table5‐6.PropertiesofCG/SOApairsintheCAMxSOAPmodule.........................................................117
Table5‐7.Molecularpropertiesofthe1.5‐DVBSspecies......................................................................120
Table5‐8.Inputspeciesfor1.5‐DVBSscheme........................................................................................121
Table5‐9.VolatilitydistributionfactorsusedtoallocatePOAemissionsfromfive
differentsourcetypestothefivePAP,PCP,andPFPvolatilitybins..................................121
Table7‐1.Numbersofemissionfilesets(i.e.,griddedfilesandpointsourcefile)needed
fordifferentmodelconfigurations.APCArequiresatleasttwoemission
groups,andthefirstgroupmustbebiogenicemissions...................................................166
Table7‐2.Formatforthereceptordefinitionfile....................................................................................171
Table8‐1.DDMoutputfilesuffixnames.................................................................................................185
Table9‐1.ProcessinformationreportedbytheIPRoption....................................................................193
Table9‐2.ChemicalProcessAnalysis(CPA)variablescalculatedinCAMxfortheCB05
andCB6r2mechanisms.Concentrationsareppb;productionand
destructionareppb/hr;photolysisratesarehr‐1,ratiosareunitless................................194
Table9‐3.ProcessanalysiskeywordsandassociatedCAMxoutputfiles...............................................196
Table10‐1.Keywords,optionsanddefaultvaluesfortheControlsectionoftheIMCfile.....................208
Table10‐2a.RecommendedSCICHEMrateconstantexpressiontypesforuseinCAMx.......................213
Table10‐2b.ParametersrequiredbySCICHEMrateconstantexpressiontypes....................................214
Table10‐3.Determiningthereactionorderandconsequentunitdimensionsforrate
constants............................................................................................................................214
Table10‐4.RTCMCparametersdefaultsettingsintheIncludes/rtcmcchm.inc
includefile..........................................................................................................................218
TableA‐1.ReactionsandrateconstantexpressionsfortheCB6r2mechanism.k298isthe
rateconstantat298Kand1atmosphereusingunitsinmolecules/cm3and
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS viiwww.camx.com
1/s.Forphotolysisreactionsk298showsthephotolysisrateatasolar
zenithangleof60°andheightof600mMSL/AGL.SeeTable5‐2for
speciesnames.SeeSection3.1ontemperatureandpressure
dependencies.....................................................................................................................232
TableB‐1.ListingoftheCB6r2halogenmechanism(seeTableA‐1foracompletelisting
ofCB6r2).k298istherateconstantat298Kand1atmosphereusingunits
inmolecules/cm3and1/s.Forphotolysisreactionsk298showsthe
photolysisrateatasolarzenithangleof60°andheightof600m
MSL/AGL.SeeTableB‐2forspeciesnames.SeeSection3.1on
temperatureandpressuredependencies.........................................................................241
TableB‐2.ChemicalspeciesincludedinCB6r2h......................................................................................244
TableC‐1.ReactionsandrateconstantexpressionsfortheCB05mechanism.k298isthe
rateconstantat298Kand1atmosphereusingunitsinmolecules/cm3and
1/s.SeeTable5‐2forspeciesnames.SeeSection3.1ontemperature
andpressuredependencies...............................................................................................245
TableD‐1.ReactionsandrateconstantsfortheSAPRC07TCmechanism.k300istherate
constantat300Kand1atmosphereusingunitsinmolecules/cm‐3and
1/s.SeeTableD‐2forspeciesnames.SeeSection3.1ontemperature
andpressuredependencies...............................................................................................251
TableD‐2.ExplicitspeciesintheSAPRC07TCmechanism.......................................................................270
FIGURES
Figure2‐1.SchematicdiagramoftheCAMxmodelingsystem.SeeTable3‐1foradetailed
listofspecificmodelinputrequirementsforthefivemajordataclassesshown
atthetopofthefigure.Certainpre‐andpost‐processorprogramsshownin
thefigurearedescribedinthissection.Third‐partymodels,processors,and
visualizationsoftwarearenotdescribedinthisUser’sGuideandarenot
distributedwithCAMx..........................................................................................................6
Figure2‐2.AsampleCAMxjobscriptthatgeneratesa“CAMx.in”fileandrunsthemodel
withOMPparallelization....................................................................................................21
Figure2‐3.AnexampleofglobalozonecolumnfromtheOzoneMonitoringInstrument
(OMI)platform.Whiteareasdenotemissingdata.From
ftp://toms.gsfc.nasa.gov/pub/omi/data/..........................................................................26
Figure3‐1a.ExampleCAMxchemistryparametersfileforMechanism6(CB05)withCFPM
schemethatincludesthemercuryspeciesHG0,HG2,andHGP.......................................33
Figure3‐1b.Exampleinertchemistryparametersfile(requireschemistryflagtobesetfalse
–seethedescriptionoftheCAMxcontrolfile).................................................................37
Figure3‐2.Exampleofthefirstseveralpanelsoflookupdatainthephotolysisratesinput
file.......................................................................................................................................41
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS viiiwww.camx.com
Figure3‐3.Examplestructureofasingle‐gridozonecolumninputfileshowingpanelsfor
theoptionaltime‐invariantland‐oceanmaskandtime‐varyingozonecolumn
field....................................................................................................................................43
Figure4‐1.AhorizontalrepresentationoftheArakawaCvariableconfigurationusedin
CAMx..................................................................................................................................66
Figure4‐2.Anexampleofhorizontalgridnesting,showingtwotelescopingnestedgrids
withina10×10cellmastergrid.Theouternestcontains10×12cells(including
buffercellstoholdinternallateralboundaryconditions),andtheinnernest
contains6×10cells(includingbuffercells)........................................................................67
Figure4‐3.Schematicrepresentationoftheturbulentexchangeamonglayerswithina
verticalgridcolumnduringconvectiveadjustmentintheACM2(takenfrom
Pleim[2007])......................................................................................................................76
Figure4‐4.ComparisonofmonthlyLAIdataembeddedintheZhangdrydepositionscheme
againstepisode‐specificLAIforJune2005........................................................................90
Figure4‐5.Comparisonofparticledrydepositionvelocitiesasafunctionofsizeandwind
speeds(m/s)forthreemodels:black–Zhangetal.(2001);blue–Slinnand
Slinn(1980);orange–AERMOD(EPA,1998).Resultsareshownforaforest
landusecategoryduringdaytimeneutralstability.Particledensitywassetat
1.5g/cm3............................................................................................................................92
Figure4‐6.Exampleofgrid‐cellalbedoevolutionforahypothetical20‐dayspringtimesnow
event(assumingablationconditions)forlowandtallvegetationgridcellswith
aterrestrial(non‐snow)albedoof0.05.............................................................................93
Figure4‐7.SchematicoftheCAMxsurfacemodel..................................................................................94
Figure4‐8.TheportionsoftheCAMxchemistryparametersfile(highlighted)tosupportthe
surfacemodel.Inthisexample,3gasesaretreated,wherenitricacid(HNO3)
andperoxynitricacid(PNA)reacttoformnitrousacid(HONO).Allthreeare
subjecttodecaybysoilleaching,plantpenetration,andsnowmeltloss.The
valuesshownhereareforillustrativepurposesonlyanddonotrepresentany
knownsurfacechemistrymechanism..............................................................................100
Figure5‐1.Relativehumidityadjustmentfactorappliedtothedryextinctionefficiencyfor
hygroscopicaerosols(FLAG,2000)..................................................................................112
Figure5‐2.SchematicdiagramoftheCAMxVBSmodule.ThemodelVBSspeciesname
consistsof4charactersthatindicatethephase(P–particle;V–vapor),the
source(A–anthropogenic;B–biogenic;C–cooking;F–fire),theformation
(P–primary;S–secondary),andthevolatilitybinnumber.Thesolidand
dashedarrowsrepresentgas‐aerosolpartitioningandchemicalaging,
respectively.ThethickcoloredarrowsrepresentPOAemissionsoroxidation
ofSOAprecursors............................................................................................................119
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS ixwww.camx.com
Figure6‐1.SchematicrepresentationofCAMxPiGpuffshapeinthehorizontalplane.
Directionalorientationofthepuffisarbitrary,andevolvesaccordingtowind
direction,shearsanddiffusivegrowthalongitstrajectory.............................................131
Figure6‐2.Plan‐viewschematicrepresentationofachainofPiGpuffsemittedfromapoint
sourceintoanevolvinggriddedwindfield.Theredlineconnectedbydots
representspuffcenterlines,withdotsrepresentingleadingandtrailingpoints
ofeachpuff.TheCAMxcomputationalgridisdenotedbythebluelines......................135
Figure6‐3.ExampleofasinglepointsourcePiGplumeasdepictedbyasamplinggridwith
200mresolution(shownbytheextentoftheplot;40kmby32kmtotal
extent).ThissamplinggridwassetwithinaCAMxcomputationalgridwith4‐
kmresolution.Thesourcelocationisarbitraryandisemittinganinerttracer.............143
Figure7‐1.Exampleofthesub‐divisionofaCAMxdomainintoseparateareasfor
geographicsourceapportionment..................................................................................150
Figure7‐2.TheoriginalOSATschemeforozoneapportionment.Informationflowsalong
arrows.Changesincoremodelspeciesareshowninblue,OSATtracersarein
black,thediamondrepresentstheOSATalgorithmthatdeterminesozone
tracerchanges.H2O2/HNO3istheindicatorratiousedtodetermineNOx‐
orVOC‐limitedozoneproduction....................................................................................151
Figure7‐3.DaytimereactionsofozonewithHOx(OHandHO2)showingpotentialfor
reformationofozoneorozonedestructionviaperoxideformation..............................153
Figure7‐4.TheOSAT2schemeforozoneapportionment.Informationflowsalongarrows.
Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,
thediamondrepresentstheOSATalgorithmthatdeterminesozonetracer
producton.H2O2/HNO3istheindicatorratiousedtodetermineNOx‐or
VOC‐limitedozoneproduction........................................................................................153
Figure7‐5.CorrespondencebetweenNOyspeciesinCB6andtracerfamiliesinOSAT3with
conversionsbetweenspecies/tracersshownbyarrows.................................................154
Figure7‐6.TheOSAT3schemeforozoneapportionment.Informationflowsalongarrows.
Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,
thediamondrepresenttheOSATalgorithmsthatdetermineozonetracer
production.H2O2/HNO3istheindicatorratiousedtodetermineNOx‐or
VOC‐limitedozoneproduction.RGNapportionsthenitrogeninNO2whereas
OONandOOVapportiontheodd‐oxygeninNO2............................................................156
Figure7‐7a.AnexampleofSAinputrecordsintheCAMxruncontrolfile.Theoptionsfor
thisOSATrunareasfollows:thisisatwo‐gridrun,masterandnestedgrid
surfaceconcentrationsarewrittentofile,asingletracertypeistobeusedfor
allboundaries,19sourceregions,andoneemissiongroup(i.e.,zero
additionalemissionfilesandnoleftovergroup).Thisisthefirstdayofthe
simulation(i.e.,restartisfalse),sonoOSATrestartfilesaresupplied...........................163
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS xwww.camx.com
Figure7‐7b.AsinFigure7‐7a,butinthiscasetherunisacontinuationdayofarunwith
threeemissiongroups.Thethreeemissiongroupsaredefinedbysupplying
extraemissionfilesforpointandareasourcesforeachgrid(emissiongroups1
and2),andsettingthe“Use_Leftover_Group”flagtoTRUEsothatthemodel
calculatesthethirdgroupinternally.Thepointsourcegroup1filenameis
blankbecausegroup1isacategorywithnopointsourceemissions(e.g.,
biogenics).........................................................................................................................164
Figure7‐7c.ThisfigurefollowsfromFigure7‐7b:itisacontinuationdayofa2‐gridrunwith
threeemissiongroups,andallthreeemissiongroupsaredefinedexplicitlyby
supplyingextraemissionfiles;therefore,the“Use_Leftover_Group”flagisset
toFALSE.Thepointsourcegroup1filenameisblankbecausegroup1isa
categorywithnopointsourceemissions(e.g.,biogenics).APCAisusedto
attributeozonesources,sobiogenicemissionsMUSTbepresentasgroup1.
PSATwilltracePMsulfateandnitratespecies................................................................165
Figure7‐8.Exampleoftheoriginalsourceareamapfileforthedomainandsourceareas
showninFigure7‐1.
.........................................................................................................167
Figure7‐9.Examplefractionalareamapfileforasmall(10x10)grid.Thisfileisforsource
category/group#3andincludes2mappanels.Thegridcoverssourceregion
#5and#6andtheseregionsoverlapinthemiddleofthedomain.Panel2
showsjusttheremainingoverlapinformationforregion#6..........................................169
Figure7‐10.Examplereceptorconcentrationfile.Linesendingwith“…”aretruncatedtofit
thepage,andthefilewouldcontinuewithdataforadditionalreceptorsand
hoursinthesameformat.................................................................................................173
Figure8‐1.ExampleofDDMinputsintheCAMxcontrolfile.CAMxisrunwithtwogrids,
andDDMisconfiguredtotrackemissionsfromfoursourceregionsandtwo
sourcegroups.Sensitivitytoozoneinitialandboundaryconditionsare
tracked,whilesensitivitiestoNOxandVOCemissionsaretracked.Sensitivity
forasinglerateconstantgroupwillbecalculatedinvolvingmechanism
reactionnumbers120,121,and122.Threegroupsofsecond‐order
sensitivitiestoanthropogenicNOxandVOCemissions(fromemissionsgroup
2,sourceregion1)willbecomputed(d2/dNOx2,d2/dVOC2andd2/dNOxdVOC).
Nosourceregionmapisprovidedforthenestedgrid(theregionassignments
onthenestaredefinedbythemastergrid).Onlythegroup2pointsources
aretracked(nobiogenicpointsourcesareavailable).....................................................184
Figure8‐2.Exampleconcordanceoflongandshortsensitivitycoefficientnamesfromthe
CAMxdiagnosticoutputfile.............................................................................................186
Figure9‐1.ExamplesectionofaCAMxcontrolfilespecifyingoptionsforProcessAnalysis................198
Figure9‐2.ExampleIPRtimeseriesanalysisforPSO4;lateralboundaryandchemistryterms
arenotaggregated...........................................................................................................200
Figure10‐1.ExampleRTRACchemistryinputfileformodelingspecifictoxicspecies..........................203
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS xiwww.camx.com
Figure10‐2.ExampleRTRACreceptorinputfileidentifyingthegridcellswithlocations
wherehourlydecayrateswillbeoutputforsubgrid‐scalepointsource
modeling(seeformatforSAreceptorfileinTable7‐2)..................................................206
Figure10‐3.Examplefree‐formatRTCMCIMCchemistryinputfile.....................................................207
Figure10‐4.ExampleinputofRTRACoptionsandfilenameswithintheCAMxcontrolfile.................216
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 1www.camx.com
1.OVERVIEW
TheComprehensiveAirqualityModelwithextensions(CAMx)isanEulerianregional
photochemicaldispersionmodelthatallowsforintegrated“one‐atmosphere”assessmentsof
troposphericairpollution(ozone,particulates,airtoxics)overspatialscalesrangingfrom
neighborhoodstocontinents.Itisa“state‐of‐the‐science”open‐sourcesystemthatis
computationallyefficient,flexible,andpubliclyavailable.Themodel’sFortransourcecodeis
modularandwell‐documented.TheFortranbinaryinput/outputfileformatsarebasedonthe
UrbanAirshedModel(UAM)conventionandarecompatiblewithmanyexistingpre‐andpost‐
processingtools.MeteorologicalfieldsaresuppliedtoCAMxfromseparateweatherprediction
models.Allemissioninputsaresuppliedfromexternalpre‐processingsystems.
CAMxsimulatestheemission,dispersion,chemicalreaction,andremovalofpollutantsby
marchingtheEuleriancontinuityequationforwardintime(t)foreachchemicalspecies(l)ona
systemofnestedthree‐dimensionalgrids.Thecontinuityequationspecificallydescribesthe
timedependencyofvolume‐averagespeciesconcentrationwithineachgridcellasasumofall
physicalandchemicalprocessesoperatingonthatvolume.Thisequationisexpressed
mathematicallyinterrain‐followingheight(z)coordinatesasfollows:
whereclisspeciesconcentration(mass/volume),VHisthehorizontalwindvector,
isthenet
verticaltransportrate,histhelayerinterfaceheight,
isatmosphericdensity,andKisthe
turbulentexchange(diffusion)coefficient.Thefirsttermontheright‐handsiderepresents
horizontaladvection,thesecondtermrepresentsnetresolvedverticaltransportacrossan
arbitraryspace‐andtime‐varyingheightgrid,andthethirdtermrepresentssub‐gridscale
turbulentdiffusion.Chemistryistreatedbysimultaneouslysolvingasetofreactionequations
definedbyspecificchemicalmechanisms.Pollutantremovalincludesbothdrysurfaceuptake
(deposition)andwetscavengingbyprecipitation.
CAMxcanperformsimulationsonfourtypesofCartesianmapprojections:LambertConic
Conformal,PolarStereographic,Mercator,andUniversalTransverseMercator.CAMxalso
offerstheoptionofoperatingonageodeticlatitude/longitudegridsystem.Theverticalgrid
structureisdefinedexternally,solayerinterfaceheightsmaybespecifiedasanyarbitrary
functionofspaceand/ortime.Thisflexibilityindefiningthehorizontalandverticalgrid
structuresallowsCAMxtobeconfiguredtomatchthegridofanymeteorologicalmodelthatis
usedtoprovideenvironmentalinputfields.
Removal
l
Chemistry
l
Emission
l
ll
l
lHH
l
t
c
t
c
t
c
cK
tz
h
c
z
c
cV
t
c
/
2
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 2www.camx.com
1.1CAMxFeatures
Two‐WayNestedGridStructure:CAMxcanberunwithvariablegridspacing.Useacoarsegrid
forregionaldomainswherehighspatialresolutionisnotparticularlyneeded,whileinthesame
run,nestfinergridsinspecificareasofinterest.Two‐waynestingpropagatesinformationboth
up‐anddown‐scaleacrossallgrids.Nestsmaypossessdifferentmeshingfactorsfromtheir
parentgrids,aslongastheyarecommondenominatorsofparentresolution.A“Flexi‐Nesting”
featureallowsyoutointroduceand/orremovenestedgridsatanypointduringasimulation.
Youcansupplycompleteinformationfornewgrids(emissions,meteorology,surface
characteristics)orallowCAMxtointerpolateanyoralloftheseinputsfromparentgrids.
MultiplePhotochemicalGasPhaseChemistryMechanisms:CAMxoffersseveralversionsof
CarbonBondchemistry(CB05andCB6variants)andthe2007versionofStatewideAirPollution
ResearchCenterchemistry(SAPRC07TC).ThesemechanismsaresolvedusingtheEuler‐
BackwardIterative(EBI)method,whichisfastandaccurate.CAMxalsoincludesthefully
explicitGear‐typeLivermoreSolverforOrdinaryDifferentialEquations(LSODE),whichweuse
to"benchmark"newmechanismsandevaluatetheperformanceofEBI.Wedonot
recommendLSODEfortypicalapplicationsasthemodelwillrunmuchmoreslowly.
ParticulateMatter(PM)Chemistry:CAMxincludesalgorithmsforinorganicaqueouschemistry
(RADM‐AQ),inorganicgas‐aerosolpartitioning(ISORROPIA),andtwoapproachesfororganic
gas‐aerosolpartitioningandoxidation(VBSorSOAP).Thesealgorithmsuseproductsfromthe
gas‐phasemechanismsfortheproductionofsulfate,nitrate,andcondensableorganicgases.
CAMxprovidestwooptionstorepresenttheparticlesizedistribution:astatictwo‐mode
coarse/fine(CF)scheme,andanevolvingmulti‐section(CMU)scheme.Thehybrid1.5‐
dimensional(1.5‐D)VolatilityBasisSet(VBS)describestheevolutionoforganicsaccordingto
oxidationstateandvolatility,andisimplementedtoprovideaunifiedframeworkforgas‐
aerosolpartitioningandchemicalagingofbothprimaryandsecondaryatmosphericorganic
aerosols.VBSiscompatibleonlywiththeCB05andCB6r2gas‐phasechemistryandthe2‐mode
CFaerosoloption;itisnotcurrentlyenabledforSourceApportionmentorDecoupledDirect
MethodProbingTools.Theoriginalone‐dimensional(overvolatility)SecondaryOrganic
AerosolPartitioning(SOAP)treatmentremainsanoption.SOAPiscompatiblewithCFandCMU
aerosoloptionsandworkswithallProbingTools.
MercuryChemistry:CAMxoptionallytreatsthechemistryoffivemercuryspecies(twogases
andthreeparticulates)viagas‐phaseandaqueouspathways,includingHg(II)adsorptiontoPM.
ThemercurychemistrymodulerequiresPMconcentrations,somercurymustbemodeledwith
the“CF”two‐modePMmechanismbyincludingmercuryspeciesamongthelistofmodeled
species.Alloftherateandequilibriumconstantsforthemercurymechanismarehard‐coded
withinthechemistrymodule.
User‐DefinedChemistryMechanism:“Mechanism10”providesasimplewaytodefineyour
ownchemistrymechanism.Thisoptionisintendedtodefinesimplechemicaldecayor
transformationsbetweengasand/oraerosolspecies.YoumustdevelopyourownMechanism
10subroutineandchemistryparametersfile.
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 3www.camx.com
Plume‐in‐Grid(PiG)Module:PiGtreatsthechemistryanddispersionofpointsourceemission
plumesatsub‐gridscalesusingaLagrangianpuffmodel,untilsuchtimeasthepollutantmass
canbeadequatelyrepresentedwithinthegridmodelframework.Bothgas‐phaseandPM
chemistrycanbetreated.PiGincludesa“samplinggrid”capabilitytopassivelysampleplume
concentrationsatanyresolution,whichisparticularlyusefultovisualizenear‐sourcesub‐grid
scaleimpacts.
HorizontalAdvectionSolverOptions:CAMxoffersthePiecewiseParabolicMethod(PPM)of
ColellaandWoodward(1984),andthearea‐preservingadvectionsolverofBott(1989).Both
possesshigh‐orderaccuracy,littlenumericaldiffusion,andaresufficientlyquickforapplications
onverylargegrids.
VerticalDiffusion(Mixing)Options:Bydefault,CAMxemploysastandard“K‐theory”approach
forverticaldiffusiontoaccountforsub‐gridscalemixinglayer‐to‐layer.Version2ofthe
AsymmetricConvectiveModel(ACM2;Pleim,2007)isavailableasanalternativetotheK‐
theoryapproach.ACM2isahybridoflocalK‐theoryandnon‐localconvectivetransport
betweenthesurfaceandlayersaloft.ACM2canincreaseCAMxruntimeconsiderablyrelative
tothedefaultK‐theory.ACM2doesnotworkwiththeIntegratedProcessRate(IPR)
componentoftheProcessAnalysis(PA)tool.
DryDepositionOptions:CAMxofferstwodrydepositionoptions:anolderapproachbasedon
themodelsofWesely(1989)andSlinnandSlinn(1980);andanupdatedapproachbasedonthe
algorithmsofZhangetal.(2001;2003).TheWesely/Slinnmodelisformulatedfor11landuse
categories,whiletheZhangmodeluses26landusecategories.
SurfaceChemistry/Re‐emissionModel:CAMxincludesasimplesurfacesub‐modelthattreats
sorptionandpenetrationofdepositedpollutantmassintosoilsandvegetation,chemical
degradationandtransformation,andvolatilizationbackintotheair(re‐emission).Thesurface
modeltreatsanysubsetofspecieslistedinthecoremodel’schemicalmechanism.Thesurface
modelcanonlybeusedwiththeWesely(1989)drydepositionoption;itcannotbeusedwith
thePlume‐in‐Gridtreatment.
AdvancedPhotolysisModel:TheTUVradiativetransferandphotolysismodel,developedand
distributedbytheNationalCenterofAtmosphericResearch(NCAR,2011),isusedasaCAMx
preprocessortoprovidetheairqualitymodelwithamulti‐dimensionallookuptableofclear‐sky
photolysisrates.CAMxinternallyadjustsclear‐skyratesforthepresenceofcloudsandaerosols
usingafastin‐lineversionofTUV.
LateralandTopBoundaryConditions:Time‐andspace‐variableboundaryconditionsforthe
mastergridmaybedevelopedfromdown‐scalingthree‐dimensionaloutputfromglobal
chemistrymodelslikeGEOS‐ChemandMOZART.Topboundaryconditionsimprovethe
characterizationofchemicalsenteringverticallyacrossthemodeltop,whichisparticularly
importantforcommonstratosphericconstituentssuchasozoneandnitrogenoxides.Asimpler
topboundarytreatmentremainsavailable,whichisnotreliantonaninputfileandinternally
assumesa“zerogradient”volumemixingratioconditionbetweenthetopmodellayerandthe
environmentabovethemodel.
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 4www.camx.com
ParallelProcessing:CAMxsupportstwotypesofparallelization:(1)OpenMP(OMP),which
allowsparallelprocessingonshared‐memory(e.g.,multi‐core)computers;and(2)Message
PassingInterface(MPI),whichallowsparallelprocessingacrossdistributedmemory
(networked)computerclusterenvironments.BothOMPandMPIcanbeusedincombination
tomaximizespeedperformance.TouseOMP,yourFortrancompilermustincludelibrariesto
enablein‐codedirectives.TouseMPI,youmusthaveexternalMPIlibrariesinstalledonyour
system.
1.2CAMxExtensionsandProbingTools
OzoneandParticulateSourceApportionmentTechnology(OSAT/PSAT):Sourceapportionment
technologytracksemissioncontributionstopredictedozoneand/orPMspeciesconcentrations
bysourceregionand/orcategory.OSATalsoreportsinformationtodeterminewhethereach
ozonecomponentformedinNOxorVOCsensitiveconditions.OSAT/PSATprovidesozone/PM
attributiontosourceregionsandcategoriesforagivenemissionsmatrix,butdoesnotprovide
quantitativeinformationastohowozone/PMcontributionswouldchangeasemissionsare
alteredbecausechemicalinteractionsarenon‐linear.Sourceapportionmentisavailableonly
forCB05,CB6r2andCB6r3chemicalmechanisms,theCFaerosolschemeandtheSOAPorganic
partitioningalgorithm.
DecoupledDirectMethod(DDM)andHigh‐OrderDDM(HDDM)SourceSensitivity:Thistool
calculatesfirst‐order(DDM)andsecond‐order(HDDM)gasconcentrationsensitivitytochanges
inemissions,initialconditionsandboundaryconditions.PMconcentrationsensitivityislimited
tofirst‐orderDDM.(H)DDMestimateshowpollutantconcentrationsrespondtoregion‐and
category‐specificemissionchanges,butdoesnotprovideinformationonsourceattribution.
(H)DDMcanberunwithanyCBorSAPRCchemicalmechanism,theCFaerosolschemeandthe
SOAPorganicpartitioningalgorithm.
ProcessAnalysis(PA):Thisprobingtoolprovidesin‐depthinformationonthephysicaland
chemicalprocessesoccurringduringaCAMxrun.ThroughPA,onecanmorefullyunderstand
thecomplexinteractionsofthedifferentprocesses,explainsimulationresultswithinthe
contextofmodelformulation,andimprovethedesignofcontrolstrategies.Theintegrated
processrates(IPR)optioncanberunwithanyCBorSAPRCchemicalmechanismandanyPM
aerosoltreatment.Chemicalprocessanalysis(IRRandCPA)isfullyavailableonlyforCB05;a
limitedsetofchemicalprocessratesareavailableforCB6r2.PMratesarenottrackedbyPA.
ReactiveTracers(RTRAC):RTRACprovidesaflexibleadd‐ontosimulatetheemission,
dispersion,chemistry,anddepositionofmultiplegasandparticletracers(suchasspecific
toxics)thatarenotincludedinthemodel’scoregas/PMchemistrymechanisms.Gas‐phase
chemistrymayinvolveuser‐definedlineardecay(photolysisand/oroxidation)byspecies,or
complexnon‐linearsystemssolvedwiththeRTRACChemicalMechanismCompiler(RTCMC).
RTRACcanberunincombinationwithanyCBorSAPRCchemicalmechanismandis
independentfromallaerosoltreatments.
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 5www.camx.com
1.3NewFeaturesandMajorUpdatesInCAMxVersion6.3
SpeedImprovements:Severalmodificationswereimplementedtoimprovemodelspeed.Our
testswithoutProbingToolsindicatespeedincreasesby15‐50%,dependingoncompiler,
chipsetandmodelconfiguration(gridnumberandsize,PiG,chemistrymechanism,
parallelization).Thesechangeshaveminimalimpactsonconcentrationresults(e.g.,ozone
differences<1ppb).
SourceApportionmentUpdates:OSAThasbeenexpandedtotrackoddoxygenandnitrogen
throughNOychemistrytoaccountforNOxrecyclingofozoneandtoimproveconsistencywith
PSATnitratechemistry.ManymoreOSATtracersarenecessary,andthisaffectsmemory
requirementsandmodelspeed.Expecttoseeslightlymoreozonecontributionsfromlong
rangetransport,andcommensuratelylesscontributionsfromlocalemissions.BothOSATand
PSATcannowuseanewsourceregionmapformatthatsupportsfractional(partial)area
assignmentsforeachgridcell.TheGeographicOzoneAssessmentTechnology(GOAT)option
hasbeenremovedfromOSATasitisconsideredobsolete.
AdditionalMapProjections:CAMxcannowrunonMercatorandPolarprojectionsusingthe
projectionparameters/definitionsfromtheWeatherResearchandForecasting(WRF)model.
SnowandSurfaceChemistryModelUpdates:Surfacealbedoforsnow‐coveredgridcellsisnow
calculatedaccordingtolandcovertypeandnewadditionalinputvariablesforsnowcoverand
age,followingtheapproachusedintheWRF/NOAHlandsurfacemodel.Netsurfacealbedoin
snow‐coveredgridcellscanbesubstantiallydifferentfromtheoriginalconstantvalueof50%,
andthiscanhavealargeimpactonphotochemicalactivity.Thesurfacechemistrymodelhas
beenextendedtoworkwiththeZhangdrydepositionoptionandtoaddsnowcovertothe
originalsoilandvegetationcompartments.Athirdsetofsurfacechemicalsorption,reaction
andlossrateshavebeenimplementedtorepresenttheseprocessesonandwithinthe
snowpack.
UpdatedCB6ChemistryMechanism:CB6“revision3”(CB6r3)isnowavailableaschemistry
mechanism4.CB6r3includesatemperature‐andpressure‐dependentorganicnitrate
branchingratio.Thisupdatewasfoundtobeimportantforphotochemistryincoldand/or
elevatedconditions,suchaswintertimeintheUSinter‐mountainwest.Generally,theeffectof
thischangeistoreduceozoneproductionslightlyrelativetoCB6r2incoldconditions.There
arenoeffectsinwarmconditionsthataremoretypicaloftheozoneseason.
SAPRC07TC:SAPRC07isamorerecentgas‐phasechemistrymechanismthathasreplacedthe
datedSAPRC99mechanism.SAPRC07TCisavariantofSAPRC07thatincludesextramodel
speciesfortoxicsandusesnumericalexpressionsofrateconstantsthatarecompatiblewiththe
currentchemistrymechanismsolver.
Implicit‐ExplicitHybrid(IEH)ChemistrySolver:Thisrarelyusedgas‐phasechemistrysolverwas
removedasitpossessesequivalentaccuracyastheEBIsolver,butrunsmuchmoreslowly.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 6www.camx.com
2.THECAMXMODELINGSYSTEM
CAMxcomprisesthecorecomponentofanoverallairqualitymodelingsystem,asillustratedin
Figure2‐1.CAMxinputsaredevelopedusingindependentthird‐partymodelsandprocessing
toolsthatcharacterizemeteorology,emissions,andvariousotherenvironmentalconditions
(landcover,radiative/photolysisproperties,andinitial/boundaryconditions).Interface
programsareneededtotranslatetheproductsofeachofthesemodels/processorsintothe
specificinputfieldsandformatsrequiredbyCAMx.Aftertheairqualitysimulationis
completed,additionalprogramsareusedtopost‐processtheconcentrationfields,develop
modelperformancestatisticsandmeasures,manipulateProbingTooloutputintovarious
reportableformats,andfurthertranslaterawresultsintoformsnecessaryforregulatory
purposes.CommonlyavailablegraphicalsoftwarecanbeusedtoviewCAMxoutputfiles;some
likePAVEandVERDIcanreadCAMxfilesdirectly,othersrequirereformattingCAMxfilesto
commondataformatslikeNetCDF.Whilethird‐partyvisualizationsoftware,meteorological
models,andemissionprocessorsarenotdistributedwithCAMx,RambollEnvirondoes
distributemanyofthenecessaryinterfaceprogramsandpost‐processorsontheCAMxwebsite
(www.camx.com).Abriefdescriptionofeachoftheseisprovidedattheendofthissection.
Figure2‐1.SchematicdiagramoftheCAMxmodelingsystem.SeeTable3‐1foradetailedlist
ofspecificmodelinputrequirementsforthefivemajordataclassesshownatthetopofthe
figure.Certainpre‐andpost‐processorprogramsshowninthefigurearedescribedinthis
section.Third‐partymodels,processors,andvisualizationsoftwarearenotdescribedinthis
User’sGuideandarenotdistributedwithCAMx.
SMOKE,
CONCEPT,
EPS3
WRF,
MM5,
RAMS TUV
CAMx
PiGSET,
WINDOW,
MRGUAM
WRFCAMx,
MM5CAMx,
RAMSCAMx,
KVPATCH
Total
Atmospheric
Ozone Column
Landcover
Emission Inventory,
Fire Activity
Analyses,
Observations,
Topography,
Landcover
ICBCPREP
BNDEX
T
O3MAP
CAMxTRCT,
CAMx2IOAPI,
BIN2ASC
AVGDIF,
CAMxPOST,
EPASTAT
MATS PA Tools,
User-Developed Post-Processors
Land/Ocean Mask
Global Models
(GEOS-CHEM,
MOZART, AM3)
GEOS2CAMx,
MOZART2CAMx
Leaf Area Index
Data
Models &
Pre-Processors
Interfac e
Programs
Core Model
Post-Processors
File Formatting Performance Regulatory Probing Tools
Emissions Meteorology Photolysis Geographic Air Quality
MERGE LULAI
GIS Processin
g
Bio
g
enic Models
SEASAL
T
Vegetative
Cover
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 7www.camx.com
2.1CAMxProgramStructure
ThecoreCAMxmodeliswritteninFortran,butincludessomeutilitieswritteninCtointerface
withMPI.Theprogramishighlymodularandwelldocumentedtoeasecodereview,
modificationsandsubstitutionofalternateroutines.Thesourcecodeisarrangedinseveral
directories,groupedaccordingtofunction.Themainsourcedirectorycontainsversionrelease
notes,theGNUuserlicense,the“Makefile”compileutility,andacontrolfilenamelisttemplate.
Sub‐directoriescontainsourcecodeforthecoremodelandancillaryroutinesaccordingtothe
following:
CAMx/SourcecodeforthemaindriverroutineCAMx.fandcoremodel
routines.
CF_AERO/Sourcecodeforinorganicaerosolchemistry(aqueousand
thermodynamicpartitioning)forthe2‐modeCFscheme.
CMC/ Sourcecodeforthegas‐phasechemicalmechanismroutines.
CMU_AERO/Sourcecodeforinorganicaerosolchemistry(aqueousand
thermodynamicpartitioning)forthemulti‐sectionCMUscheme.
DDM/ Sourcecodeforthe(H)DDMProbingTool,consistingofI/Oandcore
routinesthatareuniqueto(H)DDM.
HG/ Sourcecodeforthemercurychemistryroutines.
Includes/Fortran“include”files,consistingofprogramparametersandmemory
managementcode.
IO_bin/SourcecodeforFortranbinary(unformatted)I/O.
Mod_src/SourcecodeforF90memorymanagementmodules.
MPI/ SourcecodeforroutinesspecifictoMPIparallelization.
OSAT/SourcecodefortheOSAT/PSATProbingTools,consistingofI/Oandcore
routinesthatareuniquetoOSAT/PSAT.
PA/ SourcecodefortheProcessAnalysisProbingTool,consistingofI/Oand
coreroutinesthatareuniquetoPA.
PiG/ SourcecodeforthePlume‐in‐Gridsub‐model,consistingofI/Oandcore
routinesthatareuniquetoPiG.
RTRAC/SourcecodefortheReactiveTracerProbingTool,consistingofI/Oand
coreroutinesthatareuniquetoRTRAC/RTCMC.
SOAP/ Sourcecodeforsecondaryorganicaerosolthermodynamicpartitioning.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 8www.camx.com
2.1.1MemoryManagement
Allofthemodel’sglobaldatastructuresaredynamicallyallocatedwhenthemodelstarts.The
datanecessarytoallocatememoryspaceforagivenmodelrunarereadfromtheCAMxcontrol
filedevelopedbytheuser(seeSection2.3).However,toalleviatecompilerdependencyon
speedperformance,CAMxutilizessomehard‐codedFortranparameterstostaticallyallocate
localarraysinlow‐levelsubroutines.Alloftheseparametersaredefinedinthe
Includes/camx.prmfile.Thedistributionversionofthis“include”filesetskeyarray
parameterstodefaultvaluesthatshouldbesufficientlylargetoaccommodatemost
applications:seeTable2‐1foradescriptionofparametersandtheirdefaultvalues.However,
youmaywanttocustomizethesevaluestoensurethattheyarelargeenoughtoaccommodate
allofyourmodelconfigurations,ortoexactlymatchyourspecificapplication,thuspreventing
wastedmemory.
Ifanyparameterissettoavaluethatistoosmalltosupportyourapplicationthemodelwill
stop,displayinganinformativeerrormessage.Toconservememory,defaultvaluesof1are
setforProbingTooltracers,PiGsamplinggrids,andsamplinggriddimensions.Thesemustbe
increasedaccordinglyifProbingToolsorsamplinggridsaretobeused.
Table2‐1.ParametersandtheirdefaultsinIncludes/camx.prmusedtostatically
dimensionlocalarraysinlow‐levelsubroutines.
ParameterNameDescription
Default
Value
MXCELLS NumberofcellsinX/Ydirectionforanygrid 200
MXLAYER Numberoflayers 30
MXSPEC Numberofspecies(couldbenumberofradicals,numberofinput
species,ortotalnumberofmodelspecies)133
MXREACT Numberofreactions(dependsonthemechanism;seetheuser's
guideforthevalueforeachmechanism)565
MXGRID Numberofgrids 10
MXPTSRC Numberofpointsources 100000
MXTRSP NumberofProbing Tooltracerspecies 1
MXPIG NumberofPiGpuffs 50000
MXSAMPLE NumberofPiGsamplinggrids 1
MXCOLSMP NumberofPiGsamplinggridcolumns 1
MXROWSMP NumberofPiGsamplinggridrows 1
Alloftheparametersinthetableabovecanbedeterminedbeforestartingasimulationexcept
forMXPIG.Avalueof50,000isusuallysufficientformostapplicationsinwhichPiGisused;set
thisparameterto1ifPiGisnotusedtoconservememory.Ifthisparameterisexceededduring
asimulation,themodelwillstopwithaninformativeerrormessage.Ifthishappens,simply
increaseMXPIG,recompilethemodelexecutable,andrestartthesimulation.Theother
parametersincamx.prmbeyondthoselistedinTable2‐1willnotnormallyneedtobe
changedandarenotdiscussedfurther.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 9www.camx.com
2.1.2ParallelProcessing
Parallelprocessingreferstodistributingamodelapplicationtomultipleprocessors(CPUs)that
sharethecomputationalload.CAMxsupportstwotypesofparallelization:(1)OpenMP(OMP),
whichallowsparallelprocessingonshared‐memory(e.g.,multi‐core)computers;and(2)
MessagePassingInterface(MPI),whichallowsparallelprocessingacrossdistributedmemory
(networked)computerclusterenvironments.BothOMPandMPIcanbeusedincombination
tomaximizespeedperformance.
TouseOMP,yourFortrancompilermustincludelibrariestoenablethein‐codeparallelization
directives.OMPdistributescalculationsforindividualprocesses,suchaschemistrywithina
singlegridcelloradvection/diffusionalongasinglerowofcells,toanumberofCPUsdefined
bytheuser.OnceeachCPUhascompleteditscalculations,itworksonthenextindividual
processuntilallprocessesovertheentiregridarecompleted.
TouseMPI,youmusthaveanexternalMPIlibraryinstalledonyoursystem.MPICHisaspecific
opensourceMPIlibrarywidelyusedinthenumericalmodelingcommunity;CAMxhasbeen
specificallydevelopedandtestedusingMPICH.WithMPI,eachCAMxgridisdividedintosub‐
domains(“slices”)andeachsliceisassignedtoaCPUontheuser‐definednetwork.EachCPU
operatestheentiremodelonitsassignedsliceandpassescommoninformationneededby
otherCPUsviadata“messages”.
MPIinCAMxisdesignedusinga“master/slave”parallelprocessingapproach.TheCPUon
whichtheprogramislaunchedservesasthemasternodeandwillnotconductanymodel
computationsonanypartofthemodelingdomain.Thisprocesswillperformallofthemodel
setup,thevastmajorityofI/O,andmanagethecommunicationbetweentheslaveorcompute
nodes,whichintegratethemodelforwardforeachgridslice.Sincethemasternodehandles
theimportantI/OitistheonlyCPUthatneedsaccesstothediskvolumecontainingtheinput
filesandthelocationoftheoutputdirectory.Thisapproachallowsforaminimalamountof
networktrafficto/amongthecomputenodesbyeliminatingtheneedforthemtomanageNFS
mounts.ThemasternodemayneedaccesstotheLANfordataaccess,butthecomputenodes
onlyneedaccesstotheinternalclusternetwork.However,thecomputenodeswillneedaccess
toacopyoftheexecutableprogram.Thiscanbeaccomplishedinanumberofways:(1)have
anNFSmountonthemasternodeaccessibletotheinternalclusternetworkandlaunchthe
modelfromthatlocation;or(2)portacopyoftheexecutableprogram,usingrcporscp,to
theuser’shomedirectoryoneachcomputenodeandlaunchthemodelfromtheuser’shome
directoryonthemasternode.
Duringeachmodeltimestep,whengridslicecomputationsareperformedbythecompute
nodes,someinformationiswrittentothediagnosticandmessageoutputfiles.Ratherthanjust
eliminatethisinformationaltogether,wedecidedtocreatenode‐specificversionsofeachof
thesetwofilesandhaveeachcomputenodewritetheinformationtoitsownversion.
However,inordertopreventtheneedtohavetheoutputdirectoryavailabletothecompute
nodeacrossthenetwork,wehavedesignedthemodelsothatthenode‐specificfilesare
createdinthecurrentworkingdirectory.ThismeansthatifthemodelislaunchedfromanNFS‐
mounteddirectory,allofthenode‐specificfileswillallbecreatedinthatlocation.Ontheother
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 10www.camx.com
hand,ifthemodelislaunchedfromauser'shomedirectoryonthecomputenodes,youwill
havetologintothespecificcomputenodetoviewthefiles.
WhenusingahybridMPI/OMPapproach,thegridswillbedividedintoslicesintheusualwayas
partofMPI,butwhenoperatingonaparticularslice,thehostwillspawnmultipleOMPthreads
toparallelizetheportionsofthecodewhereOMPdirectiveshavebeenincluded.
2.2CompilingCAMx
A“Makefile”scriptisprovidedinthemainsourcedirectory.TheMakefilewillcompileallCAMx
sourcecode,linkwithnecessarylibraries,andbuildanexecutableprogram.Itsupports
platformsrunningLinux(PortlandGroupandIntelcompilers)andMacintoshOSX(Absoft
compiler);itdoesnotcurrentlysupportcompilersonplatformsrunningWindows.
ThechoiceforOMPandMPIparallelization,andthememoryconfigurationforprobingtools,
aresetduringmodelcompilation.AllotherCAMxchoicesforchemicalmechanism,model
algorithms,ProbingTools,andotheroptionsareselectedatruntime.
CAMxiscompiledbyissuingthefollowingcommandatashellpromptwithinthemainsource
directory:
make COMPILER=my_compiler <CONFIG=my_app> <MPI=mpi_option>
wherethetextwithinthebrackets“<>”isoptional.Todisplayaninteractivehelpmessage,
youmaytype
make help
ThemandatoryCOMPILERargumentshouldbesettooneofthefollowing:
pgf orpgfomp(PortlandGroupcompilerforLinux)
ifort orifortomp(IntelcompilerforLinux)
gfortranorgfortranomp(GnucompilerforLinux)
absoftorabsoftomp(AbsoftcompilerforMacintoshOSX)
ThesekeywordsinformtheMakefileofthecompilerbeingusedtocompileandrunthemodel,
sothattheMakefilecaninvokethepropercompiler‐specificcommandsandflags.IfOMPisnot
specifiedaspartofthekeywordthenCAMxwillnotbeabletorunwithOMPparallelization.
TheoptionalCONFIGargumentallowstheCAMxexecutableprogramtobelabeledfora
specificmemoryconfigurationasdefinedwithintheCAMxparametersfile
(Includes/camx.prm)describedabove.Youmaywanttocustomizesomeapplications,for
exampletoconfiguretheProbingToolextensions,anditisconvenienttobeabletodistinguish
betweentheseexecutables.TheMakefilewillsearchforaCAMxparametersfilecalled:
Includes/camx.prm.my_app
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 11www.camx.com
IfCONFIGisnotsetonthemakecommandline,theMakefilewillcompileCAMxusingthe
defaultparametersfile,Includes/camx.prm.v6.30.
TheoptionalMPIargumentwillenableMPIparallelprocessing.Thisrequiresthatthird‐party
MPIlibrarieshavebeenbuiltandinstalledonthemachinethatisrunningthisMakefilescript
andcompilingCAMx.IfMPIisnotsetonthecommandline,theMakefilescriptwillignorethe
MPIlibrariesandCAMxwillnotbeabletorunwithMPIparallelization.TheoptionalMPI
argumentshouldbesettooneofthefollowing:
mpich(MPICHversions1or2)
mpich3(MPICHversion3)
mvapch
openmpi (PGFandIFORTcompilersonly)
Youshouldcheckthatthevariable“MPI_INST”intheCAMxMakefile,andintheMPI
utilitiesMakefile(locatedintheMPI/utilsub‐directory),arecorrectlysettoyoursystem's
MPIinstallationpath.
CAMxsupportstheuseofbothOMPandMPIparallelizationinasinglerunusingPGFandIFORT
compilers.ToutilizeOMPinyourMPIapplication,besuretospecifytheappropriateOMP
compilerkeyword.
TheMakefilewillgenerateaCAMxexecutableprogramnamed
CAMx.my_app.MPI_option.my_compiler
whichwillresideinthemainsourcedirectory.Forexample,adefaultcompilationusingthe
PortlandGroupcompilerwillresultinanexecutablenamed
CAMx.v6.30.noMPI.pgf.
IfyouneedtorebuildCAMxusingdifferentMakefileargumentswerecommendtyping“make
clean”betweenbuilds.Makecleanwilldeleteallexistingobjectfilesandforceacomplete
re‐build.
2.2.1ANoteonFortranBinaryInput/OutputFiles
LargeCAMxinputandoutputdatafieldsarecontainedwithinFortran“unformatted”(binary)
files.Thismeansthatthedataarereadandwrittenasrepresentedinmemory,without
translationbetweenbinaryandASCIIcharactersetsasisperformedfor“text”files.Binaryfiles
reducefilevolumeandimproveprogramread/writespeed,buttheusercannotdirectlyviewor
manuallyeditthem.Therearetwowaystorepresentbinaryinformationinmemory:“big
endian”and“littleendian.”Thedifferencebetweentheseisessentiallytheorderofbitsina
word,andwhichorderisuseddependsonthecomputerchipset.Historically,bigendianhas
beenusedinmanyUnixworkstations(Sun,SGI,HP,andIBM).Thex86processorsonpersonal
computerplatforms(e.g.,IntelandAMD)uselittleendian,whilePowerPCchipsarebigendian.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 12www.camx.com
CAMxcanbecompiledandrunonmachinesthatuseeitherbigorlittleendianbinary
representations,aslongasthemodelandallofitspre‐andpost‐processorsareconsistently
compiledandrunonthesametypeofplatform.Ifanycomponentofthemodelingsystemis
compiledonadifferentplatformusingtheoppositebinaryrepresentation,I/Ofileswillnotbe
properlyreadandwilllikelyleadtoaprogramcrash.
Atypicalrun‐timeerrormessagefromtryingtoreadthewrongbinaryformatis“inputrecord
toolong,”soifyougetthiserrormessage,checkforbigendian/littleendianconsistency
betweenyourbinaryfilesandFortrancompileroptions.
Compilersforlittleendianmachines(e.g.,x86PCchipsets)providecompile‐timeswitchesthat
allowbinaryfilestobereadandwrittenasbigendian.ThePortlandGroupcompileroptionis
“-byteswapio”,whereastheIntelcompileroptionis“-convert big_endian.”The
CAMxMakefilesetscompilerflagstoconsistentlyusebigendiantomaximizeplatform
portability.Therefore,useoftheCAMxMakefilewillbydefaultresultinthemodelreadingand
writingbigendianbinaryfiles.Inpractice,usersshouldusethedefaultbinaryformatthatis
builtintotheCAMxMakefileandthatisusedfortheCAMxdistributiontestcase.
2.3RunningCAMx
2.3.1ControlFileNamelistInput
CAMxreadsatextruncontrolfilenamed“CAMx.in”thatmustexistlocallyinthedirectory
fromwhichthemodelisrun.ThisfilemustbeintheFortran“namelist”format,andcontains
alluser‐specifiedcontrolparametersforagivensimulation,includingmodelconfiguration,
option‐specificinputs,andI/Ofilenames.Theruncontrolfilemustcontaintheprimary
namelistmodulelabeled“&CAMx_Control”,whichprovidesalloftheinformationto
configurethecoremodel.Additionalnamelistmodulesmaybeprovidedintheruncontrolfile
toconfigurethevariousCAMxProbingToolextensions.Theseoptionalnamelistmodulesare
ignoredifnoProbingToolsareselectedintheprimarynamelist.
EachrecordintheCAMxcontrolfilecontainsavariablenamethatisexplicitlysettoa
numerical,logical,orcharactervalue.Thevariablenamesareusedbytheprogramdirectly,
andthereforecannotbechangedwithoutsourcecodemodifications.Characterstringsmust
beenclosedbysinglequotes,andallvariableassignmentsmustbedelimitedwithcommas.
Theorderoftherecordsmaybearrangedinanyfashionthattheuserprefers.Anynumberof
commentstatementsmaybeincludedanywherewithinthenamelists,providedthattheydo
notinterruptvariableassignments(variable_name = value,).The“!”characteristhe
Fortrannamelistcommentdelimiter.
Certainvariablesaremulti‐dimensionarrays;theusermayprovideacomma‐delimitedlistof
valuestofillthearrayorassignvaluestospecificarrayelements.Certainothervariablesare
optionalorassociatedwithoptionflags;thesedonotneedtoappearinthenamelistiftheir
associatedoptionsarenotinvoked,andtheywillbeignorediftheyremaininthefile.
Iftheuserdoesnotprovidenecessaryinputs,themodelwillstopwithadescriptiveerror
message.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 13www.camx.com
2.3.1.1CommonErrorsWhenCreatingaNamelist
FortranprogramsingesttheentirecontentsofnamelistmodulesusingasingleREAD
statement.Iftheprogramexperiencesanerrorreadingthenamelist,itechoesasimpleerror
messagelike“errorreadingnamelist”andtheprogramstops.Itisthereforedifficultto
determinethecauseofthereaderror,especiallyifthenamelistislengthyandcontainsa
varietyofdatatypes.WhenexperiencinganerrorreadingtheCAMxcontrolfilenamelist,you
mustcarefullyinspectthefileforanysyntaxerrors.Theseerrorscanbesubtleanddifficultto
spot.Hereareafewofthecommonreasonsanerroroccurswhenreadinganamelist:
Mistypedvariablename:
Allvariablestobeassignedwithinanamelistmustberecognizedasadeclarednamelist
variablewithinthereadingprogram.Ifavariableismisspelledoranunknownvariable
isassignedavalue,areaderrorwilloccur.
Incorrectdatatypefortheassignedvariable:
Ifthedatatypeofthevalueassignedtoanamelistvariabledoesnotmatchthe
variable’sdeclareddatatypewithinthereadingprogram,anerrorwilloccur.Some
compilerswillallowrealtypevariablestobeassignedtointegervalues,butnotthe
converse.
Missingperiodaroundalogicalvalue:
Thelogicalvalues.true.and.false.mustbesurroundedbyaperiod.
Missingquotesaroundacharactervariable:
Anycharacterdatatypemustbesurroundedbyquotes.
Overflowwhenassigningvaluestoanarray:
Thevaluesinanarraycanbeassignedusingarrayindexnotation.Iftheindexusedto
assignanarrayvalueexceedsthedeclareddimensionofthearray,areaderroroccurs.
Checkthe“MXNAM”parameterintheIncludes/namelist.incincludefiletosee
ifthisvalueneedstobeincreased.Alternatively,checkyournamelistfiletobesureall
ofyourarrayindicesarecorrect.
Wrongnumberofdimensionswhenassigningvaluestoamulti‐dimensionalarray:
Whenassigningvaluestoanarrayusingarrayindexnotation,thenumberofsubscripts
intheassignmentmustmatchthedeclareddimensionsofthearray(e.g.,assignments
toanarraydimensionedvar(i,j)mustbereferencedusingtwoindices).
Missingcommafollowingavariabledefinition:
Acommamustbethelastcharacterinavariableassignment(variable = value,).
Acommentmaybeplacedafterthecomma(delimitedusingthe“!”symbol,seebelow)
onthesamefilerecord.Thisrestrictionontheuseofcommasisignoredonsome
compilers.
Toomanycommasfollowingascalarvariabledefinition:
Morethanonecommafollowingascalarvariableassignmentwillresultinareaderror.
Toomanycommasfollowingthevariableassignmentlistforanarray:
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 14www.camx.com
Theentirecontentsofanarraycanbeassignedusingasinglestatementbylistingthe
valuesofeachelementseparatedbycommas.Thereadwillfailiftherearemore
commasthanthedimensionofthearray.
Commentdoesnotbeginwith!:
Thecharacterthatdelimitsacommentinanamelististheexclamationpoint.
Commentscanappearanywherewithinthenamelist.However,alltextinthenamelist
musteitherbepartofanamelistvariableassignmentorpartofanidentifiedcomment.
WesuggestthatnewCAMxusersstartwiththe“CAMx.namelist.template”thatis
providedwiththesourcecode.
2.3.1.2ThePrimaryNamelistModule
Thissectiondescribestheprimarynamelistmodule;detaileddescriptionsofeachofthe
ProbingToolmodulesareprovidedintheirrespectivesections(Sections7through10).Alisting
ofallnamelistvariablesnecessarytorunthecoremodelispresentedonthefollowingpages.
DescriptionofCAMxRunControlFileVariables
&CAMx_Control Labelfortheprimarynamelistmodulethatconfiguresthecore
model;itmustbeginincolumn2
&Flagendinganamelistmodule;itmustbeincolumn2
Run_Message60‐charactersimulationmessage,writtentooutputfilestolabel
therun
Theshortsimulation“runmessage”iswrittentoalloutputfilestodescribeandlabeltherun.
ModelClockControl
Time_ZoneIntegertimezone(0=UTC,5=EST,6=CST,7=MST,8=PST)
Restart Logicalmodelrestartflag(TRUE=readrestartfile,FALSE=read
initialconditionsfile)
Start_Date_Hour Integerarraystarttime(YYYY,MM,DD,HHmm)
End_Date_Hour Integerarrayendtime(YYYY,MM,DD,HHmm)
Maximum_Timestep Realmaximumallowabletimestep(minutes)
Met_Input_Frequency Realinputfrequencyofenvironmentalfields(minutes)
Ems_Input_Frequency Realinputfrequencyofemissions(minutes)
Output_Frequency Realoutputfrequency(minutes)
Theuserspecifiesthesimulationstart/endyear,month,day,andhour;themodelusesJulian
datesinternally.Alltimesmustbegiveninmilitaryformat(e.g.,1:30PMmustbegivenas
1330).Thesimulationtimezonemustmatchthetimezoneinwhichtheemissionand
environmentalinputsaredeveloped.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 15www.camx.com
MapProjectionParameters
Map_Projection Charactermapprojectionkeyword(LAMBERT,POLAR,RPOLAR,
MERCATOR,UTM,LATLON)
UTM_ZoneIntegerUTMzone
Longitude_Pole Reallongitudeofprojectionpoleororigin(degrees,west<0)
Latitude_Pole Reallatitudeofprojectionpoleororigin(degrees,south<0)
True_Latitude1 Realfirsttruelatitudeofprojection(degrees,south<0)
True_Latitude2 Realsecondtruelatitudeofprojection(degrees,south<0)
ThegridprojectionmaybeselectedasCartesian(fixedphysicaldistancecoordinatesonaflat
plane)orcurvi‐lineargeodetic(followingthecurvedsurfaceoftheEarth).TheCartesian
optionsincludeLambertConicConformal(LAMBERT),PolarStereographic(POLAR),Rotated
PolarStereographic(RPOLAR),Mercator(MERCATOR),andUniversalTransverseMercator
(UTM).Thegeodeticoptionperformsthesimulationonalatitude/longitudegrid(LATLON).All
griddedinputfilesmustbedefinedonthegridprojectionspecifiedfortheCAMxsimulation.
TheLAMBERT,POLAR,andMERCATORprojectionsareallequivalenttothedefinitionsusedin
theWRFmeteorologicalmodel,whichassumesasphericalEarthwithradiusof6370km.The
RPOLARprojectionisequivalenttothedefinitionusedintheRAMSmeteorologicalmodel.
WhilethePOLARprojectionofWRFisdefinedtobetangentat(orsecantaround)theNorth
andSouthPoles,theRPOLARprojectionofRAMSisdefinedtobeonlytangenttotheEarth’s
surfaceatanyuser‐definedlatitude/longitude.
IftheLAMBERTprojectionisspecified,theLongitude_PoleandLatitude_Polemust
bespecifiedtodefinetheprojectionorigin(whereLAMBERTcoordinatesaredefinedtobe0,0
km),andTrue_Latitude1andTrue_Latitude2mustbespecifiedtodefinethe
projectiontruelatitudes(theymaybeequal,whichisaprojectiontangetatthatlatitude).
IftheMERCATORprojectionisspecified,theLongitude_PoleandLatitude_Polemust
bespecifiedtodefinetheprojectionorigin(whereMERCATORcoordinatesaredefinedtobe
0,0km),andTrue_Latitude1mustbespecifiedtodefinetheprojectiontruelatitude(it
maybezero,whichisaprojectiontangentattheEquator).
IfthePOLARprojectionisspecified,theLongitude_PoleandLatitude_Polemustbe
specifiedtodefinetheprojectionorigin(wherecoordinatesaredefinedtobe0,0km),and
True_Latitude1mustbespecifiedtodefinetheprojectiontruelatitudeorsecant(itmay
be±90degrees,whichisaprojectiontangentattheNorthorSouthPoles).
IftheRPOLARprojectionisspecified,theLongitude_PoleandLatitude_Polemustbe
specifiedtodefinetheprojectionpole(wherecoordinatesaredefinedtobe0,0km).True
latitudesarenotspecifiedasRPOLARisalwaystangentatthepolepoint.
IftheUTMprojectionisspecified,aUTMzonemustbespecified(1through60).Poleandtrue
latitudevaluesareignoredforUTMandLATLONprojections.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 16www.camx.com
ParametersForTheMaster(First)Grid
Number_of_Grids Integernumberofgridsinsimulation
Master_SW_XCoord Realx‐coordinateofdomainsouthwestcorner(km,ordegrees
forLATLON)
Master_SW_YCoord Realy‐coordinateofdomainsouthwestcorner(km,ordegrees
forLATLON)
Master_Cell_XSize Realcellsizeinx(km,ordegreesforLATLON)
Master_Cell_Ysize Realcellsizeiny(km,ordegreesforLATLON)
Master_Grid_Columns Integernumberofmastergridcolumns(E‐Wgridcells)
Master_Grid_Rows Integernumberofmastergridrows(N‐Sgridcells)
Number_of_Layers Integernumberofgridlayers(appliestoallgrids)
Themastergridisdefinedbyitslocation(southwestcornerofcell[1,1]inthecoordinatesof
thechosenprojectionspace),numberofgridcells(east‐west,north‐south,vertically),and
horizontalresolution.Verticalresolutionisdefinedbythelayerstructurespecifiedintheinput
3Dmeteorologicalfile.
ParametersForTheNestedGrids
Nest_Meshing_Factor Integerarray(bygrid)nestedgridcellsizerelativetomaster
grid
Nest_Beg_I_Index Integerarray(bygrid)mastergridcolumncontainingwestern
edgeofnest
Nest_End_I_Index Integerarray(bygrid)mastergridcolumncontainingeastern
edgeofnest
Nest_Beg_J_Index Integerarray(bygrid)mastergridrowcontainingsouthernedge
ofnest
Nest_End_J_Index Integerarray(bygrid)mastergridrowcontainingnorthernedge
ofnest
ThedefinitionofnestedgridsisspecifiedintheCAMx.infileintermsoftherangeofmaster
gridcellsthateachnestedgridspans(seeSection4).The“meshingfactor”setstheresolution
orcellsizeofthenestedgridsrelativetothemastergrid.TheCAMxdiagnosticoutputfile
providesinformationonthelocationandsizeofeachnestedgridtohelpensurepropersetup.
ModelOptions
Diagnostic_Error_CheckLogicalmodelstartupdiagnosticflag(TRUE=stopsbeforefirst
timestepindicatingsuccessfulmodelinitialization,
FALSE=continueswithsimulationaftermodelinitialization)
Flexi_NestLogicalflexi‐nestingflag(TRUE=allowsome/allnestedinput
fieldstobeinterpolatedfromtheparentgrid,FALSE=alldata
mustbeprovidedforallnests)
Advection_Solver Characterhorizontaladvectionsolverkeyword(PPM,BOTT)
Chemistry_Solver Characterchemistrysolverkeyword(EBI,LSODE)
PiG_Submodel CharacterPiGsubmodelkeyword(NONE,GREASD,IRON)
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 17www.camx.com
Probing_Tool CharacterProbingToolkeyword(NONE,SA,DDM,HDDM,PA,
IPR,IRR,RTRAC,RTCMC)
ChemistryLogicalchemistryflag(TRUE=chemistryon,FALSE=chemistry
off)
Drydep_Model Characterdrydepositionmodelkeyword(NONE,WESELY89,
ZHANG03)
Wet_Deposition Logicalwetdepositionflag(TRUE=depositionon,
FALSE=depositionoff)
ACM2_Diffusion LogicalACM2verticaldiffusionflag(TRUE=ACM2on,
FALSE=standardK‐theorydiffusion)
Surface_Model Logicalsurfacemodelflag(TRUE=surfacemodelon,
FALSE=surfacemodeloff)
Super_Stepping Logicalsuper‐steppingflag(TRUE=usesuper‐steppingfor
horizontaladvectiontomaximizemodelspeed,FALSE=donot
usesuper‐stepping).
Gridded_Emissions Logicalgriddedemissionsflag(TRUE=griddedemissionswillbe
used,FALSE=griddedemissionswillbeignored)
Point_Emissions Logicalelevatedpointsourceflag(TRUE=pointemissionswillbe
used,FALSE=pointemissionswillbeignored)
Ignore_Emission_Dates Logicaldate‐insensitiveemissionflag(TRUE=datesonemission
fileswillbeignored,FALSE=datesonemissionfileswillbe
checkedagainstsimulationdate)
TheuserhastheoptionofselectingamongtheBottorPiecewiseParabolicMethodhorizontal
advectionsolversbyspecifying“BOTT”or“PPM”askeywordsintheruncontrolfile.Theuser
alsohastheoptiontousetheEBIorLSODEchemistrysolversforgas‐phasechemistryby
specifyingtheserespectivekeywords.ProbingToolsareselectedbyspecifyingoneofthe
allowedkeywords;noProbingToolwillberunifthiskeywordissetto“None”.Thedescription
ofthePiGsubmodelisprovidedinSection6.
Supersteppingmaximizesthemodel’sspeedperformancebysettingthelargestgrid‐specific
drivingtimestepspossible.Thisresultsintheneedforpotentiallymanysub‐stepstobe
appliedinhorizontaladvectiononalayer‐by‐layerbasistomaintainastablesolution.While
supersteppinghaslittleimpactonsurfaceconcentrationsinnon‐MPImode,largerdifferences
areseenusingMPI.A“super‐stepping”flagwasaddedtothecontrolnamelistthatallows
userstospecificallyturnoffsupersteppingwhentheywishtocompareconcentrations
betweenMPIandnon‐MPIrunsinthemostconsistentmannerpossible.Supersteppingcan
reducetheaccuracyoftheverticaltransportsolution,especiallyinhighwindconditionsover
complexterrain.Turningsupersteppingoffwillcausethemodeltorunmuchmoreslowly.
OutputSpecifications
Root_Output_Name Characterrootoutputpath/filename(seeTable2‐2for
descriptionoffilesuffixes)
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 18www.camx.com
Average_Output_3D Logical3‐Daverageoutputfileflag(TRUE=outputfull3‐D
concentrationfields,FALSE=outputsurfacelayerconcentration
fields)
Output_3D_Grid Logicalarray(bygrid)3‐Daverageoutputfileflag(TRUE=output
full3‐Dconcentrationfieldsforspecifiedgrid,FALSE=output
surfacelayerconcentrationfields)
Output_Species_Names Characterarray(byoutputspecies)speciesnamestobewritten
toaverageanddepositionoutputfiles,orthesinglename“ALL”
tooutputallstategasandPMspecies(excludingradicals),or
thesinlgename“ALLR”toincluderadicals
PiG_Sampling_GridLogicalsamplinggridflagforIRONPiGoutput(TRUE=sampling
gridsarespecified,FALSE=samplinggridswillnotbegenerated)
Sample_BackgroundLogicalflagtoincludebackgroundconcentrations
(TRUE=backgroundconcentrationsfromthehostcomputational
gridwillbeaddedtopuffincrements,FALSE=onlypuff
incrementswillbeshown)
Number_of_Sampling_GridsIntegernumberofsamplinggrids
SG_Beg_I_IndexIntegerarray(bysamplinggrid)mastergridcolumncontaining
westernedgeofsamplinggrid
SG_End_I_IndexIntegerarray(bysamplinggrid)mastergridcolumncontaining
easternedgeofsamplinggrid
SG_Beg_J_IndexIntegerarray(bysamplinggrid)mastergridrowcontaining
southernedgeofsamplinggrid
SG_End_J_IndexIntegerarray(bysamplinggrid)mastergridrowcontaining
northernedgeofsamplinggrid
SG_Mesh_FactorIntegerarray(bysamplinggrid)cellsizerelativetomastergrid
Theuserspecifiesa“root”pathandfilenamethatwillbeusedforallstandardCAMxcore
modeloutputfiles.Themodelappendssuffixestotheserootnamesaccordingtothefiletype
generated.
ThetypesofCAMxoutputfilesarelistedinTable2‐2.Asubsetofstate(gasorPM)andradical
speciesmaybeoutputtotheaverageconcentrationoutputfiles;seethedescriptionofoutput
fileformatsinSection3.Byspecifyingasingleoutputname“ALL”,themodelwillautomatically
outputfieldsforallstategasandPMspecieslistedintheinputchemistryparametersfile,
excludingradicals(use“ALLR”toincluderadicals).If“ALL”or“ALLR”arespecified,itmustbe
theonlynamelisted;nospeciesnamesmaybelistedbeforeorafter“ALL”.Therearetwoflags
thatcontrolwhether3‐Daverageoutputfilesaregenerated.Thefirst(original)flagwilltoggle
3‐Doutputforallgridsintherun.Thesecondisthe“Output_3D_Grid”flagarray,which
allows3‐Daverageoutputtobesetforspecificgrids.Theoriginalflagsupersedesthegrid‐
specificflag.
PiGsamplinggridsaresetidenticallytothewaynestedgridsarespecifiedforthehostmodel,
withoneexception:therearenoverticallevelstodefine(samplinggridsarecurrentlyonly2‐D
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 19www.camx.com
layer1fields).Thesamerulesthatapplyforthespecificationofnestedgridsholdsforthe
specificationofallsamplinggrids(seeSection4).
InputFiles
Chemistry_Parameters Characterinputchemistryparameterspath/filename
Photolysis_Rates Characterinputphotolysisratespath/filename(optional
accordingtoChemistryflagandChemistry_Parametersfile)
Ozone_Column Characterinputozonecolumnpath/filename(ignoredif
Chemistry=FALSE)
Initial_Conditions Characterinputmastergridinitialconditionspath/filename
(ignoredifRestart=TRUE)
Boundary_Conditions Characterinputmastergridlateralboundaryconditions
path/filename
Top_Concentrations Characterinputmastergridtopboundaryconditions
path/filename
Point_Sources Characterinputelevatedpointsourceemissionspath/filename
(ignoredifPoint_Emissions=FALSE)
Master_Grid_Restart Characterinputmastergridrestartpath/filename(ignoredif
Restart=FALSE)
Nested_Grid_Restart Characterinputnestedgridrestartpath/filename(ignoredif
Restart=FALSEorNumber_of_Grids=1)
PiG_RestartCharacterinputPiGrestartpath/filename(ignoredif
Restart=FALSEorPiG_Submodel=FALSE)
Srfmod_GridCharacterarray(bygrid)inputsurfacemodelrestart
path/filename(ignoredifRestart=FALSEor
Surface_Model=FALSE)
Surface_Grid Characterarray(bygrid)inputstatic2Dsurfacepath/filename
(optionalfornestedgrids)
Met2D_GridCharacterarray(bygrid)inputtime‐variant2Dsurface
meteorologypath/filename(optionalfornestedgrids)
Met3D_GridCharacterarray(bygrid)inputtime‐variant3Dmeteorology
path/filename(optionalfornestedgrids)
Vdiff_GridCharacterarray(bygrid)inputtime‐variant3Dvertical
diffusivitypath/filename(optionalfornestedgrids)
Cloud_GridCharacterarray(bygrid)inputtime‐variant3Dcloud/rain
path/filename(optionalbutrequiredifWet_Deposition=TRUE,
optionalfornestedgrids)
Emiss_GridCharacterarray(bygrid)inputgriddedemissionspath/filename
(ignoredifGridded_Emissions=FALSE,optionalfornestedgrids)
IfCAMxcannotfindoropenanon‐blankinputfilenameprovidedintheruncontrolfile,the
modelwillstopwithanerror.CAMxwillacceptblankinputfilenamesforonlythosefilesthat
areoptional.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 20www.camx.com
Table2‐2.CAMxoutputfilesuffixesandtheircorrespondingfiletypes.
SuffixCAMxFileType
.out Textsimulationtrackingfile(CPU,inputfilesread,error/warningmessages)
.diag Textsimulationdiagnosticfile(repeatofruncontrolinputs,PiGdiagnostics,
miscellaneousdiagnosticoutput)
.mass Textmassbudgetfileforsubsequentpostprocessing
.inst Fortranbinarymastergrid3‐Dinstantaneousconcentrationfileattheend
ofthesimulation(usedforrestarts)
.finst Fortranbinarynestedgrid3‐Dinstantaneousconcentrationfileattheend
ofthesimulation(usedforrestarts)
.pig FortranbinaryPiGsub‐modelfile(usedforrestarts)
StandardCAMxOutputOption
.avrg.grdnn Fortranbinaryaverageconcentrationfileforgridnn;optionallycontains2‐D
layer1concentrationfieldorfull3‐Dconcentrationfield
.depn.grdnn Fortranbinary2‐Dsurfacedepositionfileforgridnn
.srf.grdnn Fortranbinary2‐Dsurfacemodelmassfileforgridnn(optional)
.smpnn Fortranbinary2‐Dlayer1averageconcentrationfileforPiGsamplinggrid
nn(optional)
2.3.2UsingScriptstoRunCAMx
Thegenerationoftheruncontrolfileismosteasilyaccomplishedinthejobscriptthatactually
runsthemodel;Figure2‐2showsanexampleofaCAMxjobscriptthatbuildsa“CAMx.in”file
andrunsthemodelforeachdaytobesimulated.Alternatively,theruncontrolfilecouldbe
writtenseparatelywithanamespecifictoagivensimulation,thenlinkedorcopiedtothe
standard“CAMx.in”filenamebeforethemodelisexecutedatacommandlineorinajob
script.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 21www.camx.com
#!/bin/csh
#
# CAMx 6.30
#
setenv OMP_NUM_THREADS 4
setenv MPSTKZ 128M
limit stacksize unlimited
#
set EXEC = "../../src/CAMx.v6.30.noMPI.pg_linuxomp"
#
set RUN = "v6.30.midwest.36.12.noMPI"
set INPUT = "../inputs"
set MET = "../inputs/met"
set EMIS = "../emiss"
set PTSRCE = "../ptsrce"
set OUTPUT = "../outputs"
#
mkdir -p $OUTPUT
#
# --- set the dates and times ----
#
set RESTART = "NO"
foreach today (03.154 04.155)
set JUL = $today:e
set CAL = $today:r
set YESTERDAY = `echo ${CAL} | awk '{printf("%2.2d",$1-1)}'`
#
if( ${RESTART} == "NO" ) then
set RESTART = "false"
else
set RESTART = "true"
endif
#
# --- Create the input file (always called CAMx.in)
#
cat << ieof > CAMx.in
&CAMx_Control
Run_Message = 'CAMx 6.30 Test Problem -- Mech6 CF CB05 $RUN',
!--- Model clock control ---
Time_Zone = 0, ! (0=UTC,5=EST,6=CST,7=MST,8=PST)
Restart = .${RESTART}.,
Start_Date_Hour = 2002,06,${CAL},0000, ! (YYYY,MM,DD,HHmm)
End_Date_Hour = 2002,06,${CAL},2400, ! (YYYY,MM,DD,HHmm)
Maximum_Timestep = 15., ! minutes
Met_Input_Frequency = 60., ! minutes
Ems_Input_Frequency = 60., ! minutes
Output_Frequency = 60., ! minutes
Figure2‐2.AsampleCAMxjobscriptthatgeneratesa“CAMx.in”fileandrunsthemodel
withOMPparallelization.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 22www.camx.com
!--- Map projection parameters ---
Map_Projection = 'LAMBERT', ! (LAMBERT,POLAR,UTM,LATLON)
Longitude_Pole = -97., ! deg (west<0,south<0)
Latitude_Pole = 40., ! deg (west<0,south<0)
True_Latitude1 = 45., ! deg (west<0,south<0)
True_Latitude2 = 33., ! deg (west<0,south<0)
!--- Parameters for the master (first) grid ---
Number_of_Grids = 2,
Master_SW_XCoord = -792., ! km or deg, SW corner of cell(1,1)
Master_SW_YCoord = -1656., ! km or deg, SW corner of cell (1,1)
Master_Cell_XSize = 36., ! km or deg
Master_Cell_YSize = 36., ! km or deg
Master_Grid_Columns = 68,
Master_Grid_Rows = 68,
Number_of_Layers = 16,
!--- Parameters for the second grid ---
Nest_Meshing_Factor(2) = 3, ! Cell size relative to master grid
Nest_Beg_I_Index(2) = 22, ! Relative to master grid
Nest_End_I_Index(2) = 51, ! Relative to master grid
Nest_Beg_J_Index(2) = 22, ! Relative to master grid
Nest_End_J_Index(2) = 58, ! Relative to master grid
!--- Model options ---
Diagnostic_Error_Check = .false., ! True = will stop after 1st timestep
Advection_Solver = 'PPM', ! (PPM,BOTT)
Chemistry_Solver = 'EBI', ! (EBI,LSODE)
PiG_Submodel = 'None', ! (None,GREASD,IRON)
Probing_Tool = 'None', ! (None,SA,DDM,HDDM,PA,IPR,IRR,RTRAC,RTCMC)
Chemistry = .true.,
Drydep_Model = ‘WESELY89’, ! (None, WESELY89, ZHANG03)
Wet_Deposition = .true.,
ACM2_Diffusion = .false.,
Surface_Model = .false.,
Super_Stepping = .true.,
Gridded_Emissions = .true.,
Point_Emissions = .true.,
Ignore_Emission_Dates = .true.,
!--- Output specifications ---
Root_Output_Name = '$OUTPUT/CAMx.$RUN.200206${CAL}',
Average_Output_3D = .false.,
Output_Species_Names(1) = 'NO',
Output_Species_Names(2) = 'NO2',
Output_Species_Names(3) = 'O3',
Output_Species_Names(4) = 'SO2',
Output_Species_Names(5) = 'H2O2',
Output_Species_Names(6) = 'HNO3',
Output_Species_Names(7) = 'NH3',
Output_Species_Names(8) = 'PNO3',
Output_Species_Names(9) = 'PSO4',
Output_Species_Names(10) = 'PNH4',
Output_Species_Names(11) = 'POA',
Figure2‐2(continued).
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 23www.camx.com
Output_Species_Names(12) = 'PEC',
Output_Species_Names(13) = 'FPRM',
Output_Species_Names(14) = 'CPRM',
Output_Species_Names(15) = 'CCRS',
Output_Species_Names(16) = 'FCRS',
Output_Species_Names(17) = 'SOA1',
Output_Species_Names(18) = 'SOA2',
Output_Species_Names(19) = 'SOA3',
Output_Species_Names(20) = 'SOA4',
Output_Species_Names(21) = 'SOA5',
!--- Input files ---
Chemistry_Parameters = '$INPUT/CAMx6.3.chemparam.6_CF',
Photolysis_Rates = '$INPUT/tuv.200206.STL.txt',
Ozone_Column = '$INPUT/o3col.200206.STL_36_68X68_12_92X113.txt',
Initial_Conditions = '$INPUT/IC.vistas_2002gt2a_STL_36_68X68_16L.2002081',
Boundary_Conditions = '$INPUT/BC.vistas_2002gt2a_STL_36_68X68_16L.2002${JUL}',
Top_Concentrations = ' ',
Point_Sources = '$PTSRCE/ptsrce.stl.36km.2002${JUL}.a0.bin',
Master_Grid_Restart = '$OUTPUT/CAMx.$RUN.200206${YESTERDAY}.inst',
Nested_Grid_Restart = '$OUTPUT/CAMx.$RUN.200206${YESTERDAY}.finst',
PiG_Restart = ' ',
Srfmod_Grid(1) = ' ',
Srfmod_Grid(2) = ' ',
Flexi_Nest = .false.
Emiss_Grid(1) = '$EMIS/emiss.stl.36km.200206${CAL}.a1.bin',
Surface_Grid(1) = '$INPUT/met/camx.lu.36k.bin',
Met2D_Grid(1) = '$INPUT/met/camx.2d.200206${CAL}.36k.bin',
Met3D_Grid(1) = '$INPUT/met/camx.3d.200206${CAL}.36k.bin',
Vdiff_Grid(1) = '$INPUT/met/camx.kv.200206${CAL}.36k.bin',
Cloud_Grid(1) = '$INPUT/met/camx.cr.200206${CAL}.36k.bin',
Emiss_Grid(2) = '$EMIS/emiss.stl.12kmsmall.200206${CAL}.a1.bin',
Surface_Grid(2) = '$INPUT/met/camx.lu.12ksmall.bin',
Met2D_Grid(2) = '$INPUT/met/camx.2d.200206${CAL}.12ksmall.bin',
Met3D_Grid(2) = '$INPUT/met/camx.3d.200206${CAL}.12ksmall.bin',
Vdiff_Grid(2) = '$INPUT/met/camx.kv.200206${CAL}.12ksmall.bin',
Cloud_Grid(2) = '$INPUT/met/camx.cr.200206${CAL}.12ksmall.bin',
/
!-------------------------------------------------------------------------------
ieof
#
# --- Execute the model ---
#
if( ! { $EXEC } ) then
exit
endif
end
Figure2‐2(concluded).
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 24www.camx.com
2.4BenchmarkingModelRunTimes
OverallmodelspeedandOMP/MPIscalabilitydependsonseveralfactors,includingthenumber
andsizesofgrids;thechoiceofchemistrymechanism;thenumberofpointsourcestobe
treatedwithPiGandtotalPiGpuffsthataccumulateduringarun;andtheuseofProbingTools.
Parallelizationismostadvantageousforlargerapplicationsinwhichoverheadprocesses(e.g.,
modelsetup,I/O,etc.)areamuchsmallerfractionoftotalmodelruntime.Inotherwords,
CAMxapplicationsonmultipleexpansivegrids,employingPiG,and/orincludingProbingTools
wouldscalemosteffectivelyandthusbenefitmostfromparallelization.
AsetofsystematicruntimetestswererecentlyconductedbytheLakeMichiganAirDirectors
Consortium(LADCo)usingCAMxv6.20withvariouscombinationsofOMPandMPI
parallelization.Notethatmodelspeedhasbeenimprovedsomewhatsincev6.20;however,
resultsfromLADCo’stestareinformative.LADCo’sCAMxconfigurationwasrelativelysimple,
employingasinglelargegridcoveringtheentireUSwith12kmgridspacing(396246,25
layers),andusingCB6r2photochemistrywiththeCFPMtreatment.PiGandProbingTools
werenotactive.CAMxwascompiledusingPortlandGroupv15.7‐0withOMPandMPICH
v3.1.4.CAMxwasrunona2.60GhzIntelXeonchipsetswith12physicalcores(24coreshyper‐
threaded).RuntimeresultsareshowninTable2‐3.
Table2‐3.CAMxv6.20speedperformancewithMPIandOMPparallelizationfromtheLADCo
testsdescribedabove.
OMPThreadsMPISlices TotalCores Hours/SimDay
12 012 4:05:12
12 224 3:30:47
8 324 2:59:08
6 424 2:36:10
4 624 2:35:17
3 824 2:27:34
2 12 24 2:25:25
1 24 24 3:06:57
2.5CAMxPre‐AndPost‐Processors
ThissectiondescribesseveralimportantCAMxpre‐andpost‐processorsthatwemakeavailable
totheusercommunity.LikeCAMxitself,theseprogramsarewritteninFortrananddistributed
asfreesoftwareunderthetermsoftheGNUGeneralPublicLicense.EachcomewithREADME
files,makefiles,andsamplejobscriptsthatdocumenttheirpurposeandusage.Ramboll
Environoccasionallypostsupdatesforcertainwidely‐usedprogramswhennecessary,butdoes
notactivelysupportormaintaineveryone.Userscane‐mailquestions,comments,suggestions
orimprovementstoask‐camx@environ.org.
2.5.1Emissions
Certainemissionmodels(thoseshowninFigure2‐1)canprovidespeciated,temporally‐
allocated,griddedandpointsourceemissioninputfilesintheCAMx‐readyformat.Further
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 25www.camx.com
processingmayberequired,however,toselectpointsourcesforthePiGtreatment,translate
thepointsourcefilesfromacommontextformattoCAMx‐readybinaryfiles,ortorefinethe
domainsize/resolutionforgriddedemissions.
PIGSET:ThisprogramallowstheusertoselectandsetcertainpointsourcesforthePlume‐in‐
Grid(PiG)treatmentinaCAMxsimulation.Italsoconvertstextpointsourcefiles
commonlygeneratedbyemissionmodelssuchasSMOKE,CONCEPT,andEPS3to
CAMx‐readybinaryformat.Seethesourcecodeformoreinformation,andthesample
jobforusage.AlsoseeSection6forguidanceinselectingPiGpointsourcesand
manipulatingday‐specificpointsourcefiles.
WINDOW:Thisprogramisusedto“window”outasub‐sectionofthesurfaceemissionsgridfor
useonasmallerCAMxgrid.Itcanalsobeusedtoaggregateordistributesurface
emissionstocoarserorfinerresolution,respectively.Seethesamplejobforusage.
SEASALT:Thisprogramgeneratesaerosolemissionsofsodiumandchloride,andgaseous
emissionsofchlorineandhalo‐methanecompounds,usingCAMx‐readymeteorological
andlandusefiles.Aseparatemergingprogramisincludedthatallowsseasalt
emissionstobemergedinwithpre‐existingCAMx‐readygriddedemissionfiles.
PREPVBS:Thisprogramconvertstheorganiccompoundemissions(VOCprecursorsandPOA)
preparedfortheCAMxCFaerosolschemetothosecompatiblewiththeVBSschemeso
thattheusercanemploytheVBSschemewithouthavingtodevelopemissioninputsfor
theschemefromscratch.However,thisapproachshouldbeusedwithcautionbecause
significantuncertaintiesexistintheVBSemissionsestimatedbythis.Seethesamplejob
forusage.
REGNMAP:Thisprogramsupportsthedevelopmentofsourceapportionmentfractional
(partial)regionmapswithwhichtoallocategriddedemissionstosourceregions.It
readsSMOKEspatialallocationreportsforaspecificmodelinggridandsourcecategory
(orgroupofcategories),extractsemissionsdatabygridcellandstate/countyFIPScode,
andgeneratesanewCAMxinputfilethatdefinesafractionalregionmapforthatgrid
andsourcecategory/group.
2.5.2Meteorology
TherecommendedapproachtodevelopmeteorologicalinputsforCAMxisthroughtheuseof
prognosticmeteorologicalmodels.RambollEnvirondistributesinterfaceprogramsforthree
specificmodels:WRF,MM5,andRAMS;Thisdoesnotnecessarilyprecludeother
meteorologicalmodelstobeused,butuserswillneedtodevelopinterfaceprogramsontheir
own.
WRFCAMx:ThisprogramgeneratesCAMxv6meteorologicalinputfilesfromWRF(ARWcore)
v3outputfiles.SeetheREADMEinthearchiveforadescriptionoftheprogramand
howitisapplied.YouwillneedNetCDFlibrariestocompileandrunthisprogram.
MM5CAMx:ThisprogramgeneratesCAMxv6meteorologicalinputfilesfromMM5v3output
files.SeetheREADMEinthearchiveforadescriptionoftheprogramandhowitis
applied.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 26www.camx.com
RAMSCAMx:ThisprogramgeneratesCAMxv6meteorologicalinputfilesfromRAMSv4/5/6
outputfiles.SeetheREADMEinthearchiveforadescriptionoftheprogramandhowit
isapplied.YouwillneedHDF5libariestocompileandrunthisprogram.
METCONVERT:ThisprogramconvertsoldermeteorologicalfilesfromCAMxv4andv5tothe
CAMxformatintroducedwithCAMxv6.
KVPATCH:Thisprogramappliesminimumlimitsonverticaldiffusivity(Kv)withinauser‐defined
surfacelayerdepthbasedonaninputlandusegrid.ItoptionallyallowsKvprofilestobe
extendedintodaytimeboundary‐layercappingconvectionasdefinedbyinput
cloud/rainfiles.Seethesourcecodeformoreinformation.Useofthisprogramto
adjustKvinputsisentirelyoptional.
2.5.3PhotolysisRates
ThedevelopmentofphotolysisrateinputsforCAMxiscrucialforthephotochemical
mechanisms,butisnotneededforinertorsimplechemistry(e.g.,Mechanism10)applications.
Twoprogramsareavailabletoassisttheuserindevelopingphotolysisandozonecolumninput
files.
O3MAP:ThisprogrampreparesozonecolumninputfilesforCAMx,andmustberunpriorto
runningtheTUVmodelasitdefinestheatmosphericozonecolumnintervalsbasedon
inputdata.Ozonecolumndatafiles(http://ozoneaq.gsfc.nasa.gov/data/ozoneor
ftp://toms.gsfc.nasa.gov/pub/omi/data/)inlatitude/longitudetextformatmustbe
suppliedasinput.O3MAPattemptstofilldatagapsinday‐specificozonecolumnfiles
(Figure2‐3)withanaveragedeterminedfromvaliddataprocessedfortheextraction
domain.Alternatively,youmayusemonthly‐averageozonecolumnfiles(nodata
gaps).SeetheReadmefileandjobscriptinthearchiveforusage.
Figure2‐3.AnexampleofglobalozonecolumnfromtheOzoneMonitoringInstrument(OMI)
platform.Whiteareasdenotemissingdata.Fromftp://toms.gsfc.nasa.gov/pub/omi/data/.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 27www.camx.com
TUV:Thisisaradiativetransfermodelthatdevelopsclear‐skyphotolysisrateinputsforall
CAMxphotochemicalmechanisms.TUVisdevelopedanddistributedbyNCAR(2011).
Theprogramspecifiesdefaultintervalsfor5surfaceUValbedos,3terrainheights,11
altitudesaboveground,10solarzenithangles,and5atmosphericozonecolumn
intervals(fromO3MAP).Seethesamplejobinthearchiveforusage.
2.5.4InitialandBoundaryConditions
RambollEnvironprovidesafewprogramstodevelopinitialandboundaryconditions,butthere
aremanywaystogeneratetheseimportantinputs.Themostcommonapproachinvolves
“down‐scaling”(orextracting)theoutputfromlarger‐scale(e.g.,global)modelstotheCAMx
domain.Userswillneedtodeveloptheirownprogramsiftheychooseanalternative
methodologyorsourceofdatatogenerateinitial/boundaryconditions.
ICBCPREP:ThisprogrampreparessimpleCAMxinitialandlateralboundaryconditionfiles.
Valuesareconstantinspaceandtime,butuniquevaluesmaybespecifiedforeach
chemicalspeciestobemodeled;theyaredefinedinatextfile.Seethesamplejobin
thearchiveforusage.
GEOS2CAMx:ThisprogramgeneratesCAMxinitial,lateralboundary,and(optionally)top
boundaryconditioninputfilesfromGEOS‐Chemglobalmodeloutput.SeetheRelease
Notesandjobscriptsinthearchiveforadescriptionoftheprogramandhowitis
applied.
MOZART2CAMx:ThisprogramgeneratesCAMxandCMAQinitialandlateralboundary
conditioninputfilesfromMOZART4output.ThisprogramwillalsoprocessAM3
datasetsifoutputisfirsttranslatedtoageodetic(latitude/longitude)grid,
concentrationsareprovidedasvolumemixingratio,andallneededstatevariablesare
available.SeetheREADMEinthearchiveforadescriptionoftheprogramandhowitis
applied.YouwillneedI/O‐APIandNetCDFlibrariestocompileandrunthisprogram.
2.5.5Landuse
Approachesfordevelopinglanduse/landcoverinputsforCAMxinclude:(1)translatinggridded
spatialallocationsurrogatesdevelopedduringemissionsprocessingintotheCAMxcategories
describedinSection3;(2)translatingthegriddedlanduse/landcoverfieldsfromthe
meteorologicalmodel;or(3)separatelydevelopinglanduseinputfieldsfromrawdata(suchas
fromUSGS,MODISorNLCD)usingGISorotherprograms.RambollEnvirondistributes
meteorologicalinterfaceprograms(describedabove)thattranslatethemeteorologicalmodel
landuse/landcoverfieldstotheCAMxdefinitionsandgridconfiguration.
MERGE_LULAI:Thisprogrammergesindependently‐developedlanduseand/orLAIfields(for
exampleviaGISprocessingofcommonterrestrialdatasets)withanexistingCAMx2D
surfacefilegeneratedbythemeteorologicalinterfaceprograms.Seethesamplejob
andsourcecodeforadescriptionoftheprogramandhowitisapplied.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 28www.camx.com
2.5.6Post‐processors
MostoftheCAMxpost‐processorsdistributedbyRambollEnvironprovidesomemannerof
concentrationfilemanipulation,eithertoextractcertaininformationfromtherawoutputfiles,
tore‐formatforuseinotherprogramsandapplications,toconcatenatefiles,etc.Afewothers
aredistributedtoassistinevaluatingProbingTooloutput.RambollEnvirondoesnotadvocate
orsupportanyparticularvisualizationorgraphicssoftware.
AVGDIF:ThisprogramisusedtocomparetwoCAMxformatoutputaveragefilesandprinta
tableofdifferences.ThisisusefulforcheckingdifferencesbetweenCAMxrunson
differentmachinesordifferentcompileoptionsforthetestcase.Seethesamplejobin
thearchiveforusage.
BNDEXTR:Usethisprogramtoextractboundaryconditionsforanestedgridwhenyouapply
CAMxinone‐waynestingmode.One‐waynestingmeansthatCAMxisrunsuccessively
foreachgrid,withBNDEXTRastheinterfacebetweeneachrun.Thisprogramisnot
neededwhenCAMxisruninthemorestandardtwo‐waynestingmode,whereallgrids
areruninasinglesimulation.Seetheexamplejobforusage.
CAMxPOST:Thisisasuiteofpost‐processingutilitiesdesignedtofacilitatetheevaluationof
modelperformance.Itisusedtocombineobservationsandpredictions,calculate
statistics,andplottimeseries.SeetheREADMEfileinthearchiveforusage.
CAMxTRCT:Thisprogramextractsasinglechemicalspeciesforspecifiedgridsfromtheoutput
averageconcentrationanddepositionfiles,andfrominputemissionfiles.Outputfrom
thisprogramcanbewritteninthestandardCAMxformat,oralternativelytoatext
formatinSurfer®“GRD”formatforsubsequentplotting.Italsohasthecapabilityto
convertunitsandcombinespeciestoyieldcertainhard‐codedbulkcompoundslike
NOxandVOC.Seethesamplejobinthearchiveforusage.
CAMx2IOAPI:ThisprogramconvertsCAMxoutputaverageconcentrationanddepositionfiles
toI/O‐APIformat.YouwillneedI/O‐APIandNetCDFlibrariestocompileandrunthis
program.Thisprogramallowsyoutousevariousthird‐partymanipulationand
visualizationsoftwarethathandleI/O‐APIandNetCDFformats.
PA_Tools:Thisisasuiteofpost‐processingutilitiesdesignedtoextractIPR,IRR,andCPAdata
fromCAMxProcessAnalysisoutputfilesandreformatthedatasuitableforsubsequent
analysis(e.g.usingspreadsheets).
XSPCMAP:SimilartoCAMxTRCTyetmoreflexible,thisprogramextractsanynumberofspecific
chemicalspeciesoruser‐definedcombinationsofspeciesforspecifiedgridsfromthe
outputaverageconcentrationanddepositionfiles,andwritesresultstoanewfilein
CAMxformat.Seethesamplejobandspeciesmappingtableinthearchiveforusage.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 29www.camx.com
3.COREMODELINPUT/OUTPUTSTRUCTURES
MostCAMxinput/output(I/O)filesareFortranbinaryandbasedontheUrbanAirshedModel
(UAM)convention.Thisallowstheusertoemploywidelyavailablesoftwaredesigned
specificallyfortheseformatstodeveloptheinputfilesortopost‐processandvisualizethe
outputfiles.
CAMxrequiresinputfilesthatdefinethechemicalmechanismanddescribethephotochemical
conditions,surfacecharacteristics,initial/boundaryconditions,emissionrates,andvarious
meteorologicalfieldsovertheentiremodelingdomain.Table3‐1summarizestheinputdata
requirementsofCAMx.Preparingthisinformationrequiresseveralpreprocessingstepsto
translate“raw”emissions,meteorological,airqualityandotherdataintofinalinputfilesfor
CAMx.Prognosticmeteorologicalmodelsareusedtogeneratealloftherequiredtimevarying
three‐dimensionalmeteorologicalfields.
Table3‐1.DatarequirementsofCAMx.
DataTypesDataFields
Meteorology
SuppliedbyPrognosticMeteorologicalModels
3‐DimensionalGriddedFields:
‐VerticalGridStructure
‐HorizontalWindComponents
‐Temperature
‐Pressure
‐WaterVapor
‐VerticalDiffusivity
‐Clouds/Precipitation(optional)
‐SnowCover(optional)
AirQuality
DevelopedfromOtherModelsorMeasurementData
GriddedInitialConcentrations
GriddedLateralBoundaryConcentrations
GriddedTopBoundaryConcentrations(optional)
Emissions
SuppliedbyEmissionsModelsandProcessors
ElevatedPointSources(optional),e.g.:
‐IndustrialFacilities
‐Prescribed,Agricultural,WildFires
‐LightningNOx
CombinedGriddedSources(optional),e.g.:
‐Low‐LevelPoint
‐On‐RoadandNon‐RoadMobile
‐Area
‐Biogenic
‐Oceanic
Geographic
DevelopedfromTerrain,Landuse/Landcover,and
VegetationDensityDatasets
GriddedSurfaceCharacteristics
‐Landuse/LandCover
‐TerrainElevation(optional)
‐LeafAreaIndex(LAI;optional)
‐Land/OceanMask(optional)
Photolysis
DerivedfromSatelliteMeasurementsandRadiative
TransferModels
AtmosphericRadiativeProperties
‐GriddedOzoneColumnCodes
‐PhotolysisRatesLookupTable
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 30www.camx.com
CAMxproducesgriddedtime‐averagedconcentrationoutputfiles;theuserselectsthetime
interval(usuallyhourly),thespeciestobeoutput,andwhethertheoutputcontainsjusttwo‐
dimensionalsurfacelayerfieldsorentirethree‐dimensionalfields.Aseparateaverageoutput
fileiswrittenforeachgridemployedinthesimulation.Two‐dimensionalsurfacedeposition
fieldsforthesameuser‐selectedspeciesarealsowrittentooutputfileswiththesamestructure
astheaverageconcentrationfiles.Griddedthree‐dimensionalinstantaneousconcentrationsof
allspeciesonallgridsarewrittenattheendofthesimulationtoallowforamodelrestart.The
CAMxProbingTooloptionsprovidetheirowninformationinseparateoutputfilesinthesame
CAMxoutputformat.Diagnosticoutputfilesincludethreefilesthattrackcomputerresources,
echoinputselections,providemassbudgetanddiagnosticsummaries,andprovide
error/warningmessages.
3.1CAMxChemistryParametersFile
Chemistryparametersareprovidedinatextfilethatspecifiesthechemicalmechanismbeused
andassociateddetailsonspeciespropertiesandreactiontypesandrates.Thechemistry
parametersfileformatisdefinedinTable3‐2,andsamplesaregiveninFigure3‐1.Some
recordsinthisfilearelabeled(columns1‐20)toindicatethetypeofinformationtosupplyon
thatline(startingincolumn21).Forrecordsthatarenotlabeled,datastartincolumn1.Some
chemistryparameterrecordsareoptional,dependinguponthelogicalflagsindicatedforsuch
records,andareshowninTable3‐2byacheckinthethirdcolumn;iftheindicatedoptionisnot
invokedtheserecordsshouldnotappearinthefile.Thefirstrecordofthechemistry
parametersfilemustcontainthestring“VERSION6.3”,whichindicatesthatthefileisspecific
tothisversionofCAMx.
Ifthechemistryflagisset“true”ontheCAMx.infile,CAMxchecksthatcertainpropertiesof
theselectedmechanismareconsistentwithparameterssuppliedontheinputfile(e.g.,number
ofreactions,photolysisreactionsandspecies).Ifanydiscrepanciesarefound,theyare
reportedintheoutputmessagefileandthesimulationishalted.Theusermayalsospecifyan
inertsimulationbysettingthechemistryflagto“false”.Inthiscase,anynumberofarbitrarily
namedspeciesmaybelisted,andchemistryreactionparametersareignored.
Gas‐phasechemistryisselectedbyaMechanismIDassignedtoeachphotochemical
mechanism(seeSection5).Aerosolchemistryisselectedbythekeywords“NONE”,“INERT”,
“CF”or“CMU”.Inthe“INERT”case,theusercandefineanynumberofarbitraryparticulate
namesandsizes.The“CF”and“CMU”optionsinvokeaerosolchemistryandtreataerosolsize
usingeitherstaticcoarseandfinemodes(CF)oranevolvingsizesectionmodel(CMU).BothCF
andCMUoptionsrequireaminimumsetofspecificaerosolnameswithassociatedchemistry.
ThechemistryparametersfilecontrolshowphotolysisratesarecalculatedinCAMx.So‐called
“primary”photolysisratesareinputtoCAMxviathephotolysisratesfile.Theprimary
photolysisreactionsareidentifiedbynumberinthechemistryparametersfileandthe
photolysisratesfilemustmatchthisdeclaration.So‐called“secondary”photolysisratesareset
byscalingfactorstooneoftheprimaryreactions.Useofsecondaryratesrequiresatleastone
primaryphotolysisreaction.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 31www.camx.com
Table3‐2.DescriptionoftheCAMxchemistryparametersfile.Therecordlabelsexistincolumns1‐20,andwheregiven,the
inputdataforthatrecordstartincolumn21.Theformatdenoted“list”indicatesafree‐formatlistofnumbers(commaorspace‐
delimited).
RecordLabel
(columns1‐20)
Record
OptionalFormatDescription
CAMx version AModelversionkeyword(VERSION6.3)
Mechanism ID list IDnumberofchemicalmechanism(seeTable5‐1)
Aerosol Option AKeywordforaerosolscheme(NONE,INERT,CF,orCMU)1
Description AMessagerecordtodescribethisfile
No of gas species list Numberofradicalandstategasspecies(NGAS≥1)
No of aero species list
Numberofaerosolspecies(NAERO≥0)
Aerosolchemistrytimestep(min)(ifNAERO>0)
Numberofsizebins(NBIN≥1)(ifNAERO>0)2
Aerosoldiameter(m)forNBIN+1cutpoints(ifNAERO>0)
No of reactions list Numberofreactions(NREACT≥0)
Prim photo rxns listNumberofprimaryphotolysisreactions(NPHOT1≥0)
ListofprimaryphotolysisreactionIDnumbers(mustmatchthephotolysisratesinputfile)
No of sec photo rxn list Numberofsecondaryphotolysisreactions(NPHOT2≥0)
ID, prim ID, scale
list
IfNPHOT2>0,repeatthisrecordforeachsecondaryphotolysisreaction
IDnumberofthesecondaryphotolysisreaction
IDnumberoftheprimaryphotolysisreactionusedforscaling
Secondaryreactionscalefactor
SrfMod #spc, #rxns listNumberofSurfaceModelspeciesandreactions(seeSection4.8)
Setto0,0ifnotusingtheSurfaceModel
Species Records Heading
Gas Spec ... Heading
5X,
A10,
E10.0,
E10.0,
F10.0,
F10.0,
F10.0
F10.0
Repeatthisrecordforeachgasspecies(startincolumn1)
Gasspeciesname(radicalsfirst,followedbystatespecies)
Lowerboundconcentration(ppm)
Henry’slawconstant(M/atm)
Henry’slawtemperaturedependence(K)
Molecularweight(g/mol)
Wesley’sreactivityparameter
Surfaceresistancescalingfactorforstrongacids(0‐1)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 32www.camx.com
Table3‐2(continued).DescriptionoftheCAMxchemistryparametersfile.Therecordlabelsexistincolumns1‐20,andwhere
given,theinputdataforthatrecordstartincolumn21.Theformatdenoted“list”indicatesafree‐formatlistofnumbers(comma
orspace‐delimited).
RecordLabel
(columns1‐20)
Record
OptionalFormatDescription
Aero Spec ... Heading(ifNAERO>
0
)
5X,
A10,
E10.0,
F10.0
F10.0
I10
F10.0
I10
IfNAERO>0,repeatthisrecordforeachaerosolspecies(startincolumn1)
Aerosolspeciesname
Lowerboundconcentration(g/m3)
Speciesdensity(g/cm3)
Dryextinctionefficiency(m2/m)
Hygroscopicextinctionadjustment(0=noadjustment,1=RH‐dependent)
Single‐scatteringalbedo
Assignedsizebin(INERTandCFaerosolsonly
–
referencescutpointsinrecord6)
Reaction Records Heading(ifNREACT>
0
)
Rxn Typ Param ... Heading(ifNREACT>
0
)
list
IfNREACT>0,repeatthisrecordforeachgas‐phasereaction(startincolumn1)
ReactionIDnumber
RateconstantexpressionIDnumber(1‐7,asshowninTable3‐3)
Rateconstantparameters(dependingonexpressiontypeinTable3‐3).Forreactionsidentifiedas
photolysisreactionsabove,therate constantisnotusedandiscustomarilysettozero.
1NONE=gas‐phasechemistryonly;INERT=user‐definedinertPMspecies;CF=Coarse/Fineaerosolchemistryscheme;CMU=multi‐sectionalaerosolchemistryscheme;.
2FortheCFscheme,NBINmustbesetto2,andtheuserspecifiesthecoarse/finesizeranges.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 33www.camx.com
CAMx Version |VERSION6.3
Mechanism ID |6
Aerosol Option |CF
Description |CB05 plus PM (CF) with Hg: PNA rates set to 0; molecular units
No of gas species |68
#aero, dt, bins |25 15.0 2 0.039 2.5 10.0
No of reactions |156
Prim photo rxns |19 1 8 9 14 15 25 36 51 52 53 62 65 75 76 87 91 102 143 152
No of sec photo rxn|4
ID, prim ID, scale |72 65 1.0
|97 65 0.0
|106 91 1.0
|138 75 9.0
SrfMod #spc, #rxns |0 0
Species Records
Gas Spec lower bnd H-law T-fact Molwt Reactvty Rscale
1 O1D 1.00E-15 1.00E+00 0. 0.0 0.0 0.
2 O 1.00E-15 1.00E+00 0. 0.0 0.0 0.
3 OH 1.00E-15 1.00E+00 0. 0.0 0.0 0.
4 HO2 1.00E-15 1.00E+00 0. 0.0 0.0 0.
5 C2O3 1.00E-15 1.00E+00 0. 0.0 0.0 0.
6 XO2 1.00E-15 1.00E+00 0. 0.0 0.0 0.
7 XO2N 1.00E-15 1.00E+00 0. 0.0 0.0 0.
8 CXO3 1.00E-15 1.00E+00 0. 0.0 0.0 0.
9 MEO2 1.00E-15 1.00E+00 0. 0.0 0.0 0.
10 TO2 1.00E-15 1.00E+00 0. 0.0 0.0 0.
11 ROR 1.00E-15 1.00E+00 0. 0.0 0.0 0.
12 HCO3 1.00E-15 1.00E+00 0. 0.0 0.0 0.
13 CRO 1.00E-15 1.00E+00 0. 0.0 0.0 0.
14 AACD 1.00E-12 5.00E+03 -4000. 60.0 1.0 1.
15 ALD2 1.00E-12 6.30E+03 -6492. 44.0 1.0 1.
16 ALDX 1.00E-12 6.30E+03 -6492. 58.1 1.0 1.
17 CO 1.00E-04 1.00E-10 0. 28.0 0.0 1.
18 CRES 1.00E-12 2.70E+03 -6492. 108.1 1.0 1.
19 ETH 1.00E-12 1.00E-02 -4000. 28.0 0.0 1.
20 ETHA 1.00E-04 1.73E-03 -4000. 30.1 0.0 1.
21 ETOH 1.00E-12 2.20E+02 -4932. 46.1 1.0 1.
22 FACD 1.00E-12 5.68E+03 -6060. 46.0 1.0 1.
23 FORM 1.00E-12 6.30E+03 -6492. 30.0 1.0 1.
24 H2O2 1.00E-12 7.40E+04 -6643. 34.0 1.0 0.
25 HNO3 1.00E-12 2.10E+05 -8707. 63.0 0.0 0.
26 HONO 1.00E-12 5.90E+01 -4781. 47.0 1.0 1.
27 IOLE 1.00E-12 5.00E-03 -4000. 56.1 0.0 1.
28 ISOP 1.00E-12 1.00E-02 -4000. 68.1 0.0 1.
29 ISPD 1.00E-12 6.30E+03 -6492. 70.1 1.0 1.
30 MEOH 1.00E-12 2.20E+02 -4932. 32.0 1.0 1.
31 MEPX 1.00E-12 3.05E+02 -5250. 48.0 0.8 0.
32 MGLY 1.00E-12 2.70E+03 -6492. 72.0 1.0 1.
33 N2O5 1.00E-12 1.00E+05 -4000. 108.0 0.1 0.
34 NO 1.00E-09 1.90E-03 -1480. 30.0 0.0 1.
35 NO2 1.00E-12 1.00E-02 -2516. 46.0 0.8 1.
36 NO3 1.00E-15 1.00E+05 -4000. 62.0 0.1 0.
37 NTR 1.00E-12 9.40E+03 -8706. 119.1 0.0 1.
38 O3 1.00E-12 1.10E-02 -2415. 48.0 1.0 1.
39 OLE 1.00E-12 5.00E-03 -4000. 42.1 0.0 1.
40 OPEN 1.00E-12 2.70E+03 -6492. 84.0 1.0 1.
41 PACD 1.00E-12 5.00E+03 -4000. 76.0 1.0 1.
42 PAN 1.00E-12 3.60E+00 -5910. 121.0 0.6 1.
43 PANX 1.00E-12 3.60E+00 -5910. 135.0 0.6 1.
44 PAR 1.00E-04 1.00E-03 -4000. 72.1 0.0 1.
45 PNA 1.00E-12 2.00E+04 -5910. 79.0 1.0 1.
Figure3‐1a.ExampleCAMxchemistryparametersfileforMechanism6(CB05)withCFPM
schemethatincludesthemercuryspeciesHG0,HG2,andHGP.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 34www.camx.com
46 ROOH 1.00E-12 1.00E+02 -4000. 90.1 0.8 0.
47 SO2 1.00E-09 1.22E+00 -3156. 64.0 0.0 1.
48 SULF 1.00E-12 1.00E+10 0. 98.0 0.0 0.
49 TERP 1.00E-12 4.90E-02 -4000. 136.2 0.0 1.
50 TOL 1.00E-12 1.20E+00 -4000. 92.1 0.0 1.
51 XYL 1.00E-12 1.40E+00 -4000. 106.2 0.0 1.
52 NH3 1.00E-09 5.76E+01 -4100. 17.0 0.0 0.
53 HCL 1.00E-12 1.00E+05 -4000. 36.5 0.0 0.
54 TOLA 1.00E-12 1.20E+00 -4000. 92.0 0.0 1.
55 XYLA 1.00E-12 1.40E+00 -4000. 106.0 0.0 1.
56 BNZA 1.00E-12 1.80E-01 -4000. 78.0 0.0 1.
57 ISP 1.00E-12 1.00E-02 -4000. 68.0 0.0 1.
58 TRP 1.00E-12 4.90E-02 -4000. 136.0 0.0 1.
59 SQT 1.00E-12 4.90E-02 -4000. 204.0 0.0 1.
60 CG1 1.00E-12 1.00E+05 -4000. 150.0 0.0 1.
61 CG2 1.00E-12 1.00E+05 -4000. 150.0 0.0 1.
62 CG3 1.00E-12 1.00E+05 -4000. 130.0 0.0 1.
63 CG4 1.00E-12 1.00E+05 -4000. 130.0 0.0 1.
64 CG5 1.00E-12 1.00E+05 -4000. 180.0 0.0 1.
65 CG6 1.00E-12 1.00E+05 -4000. 180.0 0.0 1.
66 CG7 1.00E-12 1.00E+05 -4000. 210.0 0.0 1.
67 HG0 1.00E-12 1.11E-01 -4970. 200.6 0.0 1.
68 HG2 1.00E-12 2.00E+05 -4000. 253.1 0.0 0.
Aero Spec lower bnd Density Dry Bext RH Adjust SSA SizeBin
1 PNO3 1.00E-09 1.5 7.0 1 0.99 1
2 PSO4 1.00E-09 1.5 7.0 1 0.99 1
3 PNH4 1.00E-09 1.5 7.0 1 0.99 1
4 POA 1.00E-09 1.0 7.0 0 0.80 1
5 SOA1 1.00E-09 1.0 7.0 0 0.80 1
6 SOA2 1.00E-09 1.0 7.0 0 0.80 1
7 SOA3 1.00E-09 1.0 7.0 0 0.80 1
8 SOA4 1.00E-09 1.0 7.0 0 0.80 1
9 SOA5 1.00E-09 1.0 7.0 0 0.80 1
10 SOA6 1.00E-09 1.0 7.0 0 0.80 1
11 SOA7 1.00E-09 1.0 7.0 0 0.80 1
12 SOAH 1.00E-09 1.0 7.0 0 0.80 1
13 SOPA 1.00E-09 1.0 7.0 0 0.80 1
14 SOPB 1.00E-09 1.0 7.0 0 0.80 1
15 PEC 1.00E-09 2.0 18.0 0 0.25 1
16 FPRM 1.00E-09 3.0 0.4 0 0.70 1
17 FCRS 1.00E-09 3.0 0.4 0 0.70 1
18 CPRM 1.00E-09 3.0 0.4 0 0.70 2
19 CCRS 1.00E-09 3.0 0.4 0 0.70 2
20 NA 1.00E-09 2.0 1.5 1 0.99 1
21 PCL 1.00E-09 2.0 1.5 1 0.99 1
22 PH2O 1.00E-09 1.0 0.0 0 0.99 1
23 HGP 1.00E-15 8.0 0.0 0 0.99 1
24 HGIIP 1.00E-20 8.0 0.0 0 0.99 1
25 HGIIPC 1.00E-20 8.0 0.0 0 0.99 2
Reaction Records
Rxn Typ Order Parameters (1 to 12, depending upon Typ)
1 1 1 0.000E+00
2 3 3 6.000E-34 0.0 -2.40 300.0
3 3 2 3.000E-12 1500.0 0.00 300.0
4 3 2 5.600E-12 -180.0 0.00 300.0
5 4 2 2.500E-31 0.0 -1.80 300.0 2.200E-11 0.0 -
0.70 300.0 0.60 1.00
6 4 2 9.000E-32 0.0 -1.50 300.0 3.000E-11 0.0 0.00
300.0 0.60 1.00
7 3 2 1.200E-13 2450.0 0.00 300.0
8 1 1 0.000E+00
Figure3‐1a(continued).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 35www.camx.com
9 1 1 0.000E+00
10 3 2 2.100E-11 -102.0 0.00 300.0
11 1 2 2.200E-10
12 3 2 1.700E-12 940.0 0.00 300.0
13 3 2 1.000E-14 490.0 0.00 300.0
14 1 1 0.000E+00
15 1 1 0.000E+00
16 3 2 1.500E-11 -170.0 0.00 300.0
17 3 2 4.500E-14 1260.0 0.00 300.0
18 4 2 2.000E-30 0.0 -4.40 300.0 1.400E-12 0.0 -
0.70 300.0 0.60 1.00
19 1 2 2.500E-22
20 1 3 1.800E-39
21 4 1 1.000E-03 11000.0 -3.50 300.0 9.700E+14 11080.0 0.10
300.0 0.45 1.00
22 3 3 3.300E-39 -530.0 0.00 300.0
23 1 3 5.000E-40
24 4 2 7.000E-31 0.0 -2.60 300.0 3.600E-11 0.0 -
0.10 300.0 0.60 1.00
25 1 1 0.000E+00
26 3 2 1.800E-11 390.0 0.00 300.0
27 1 2 1.000E-20
28 4 2 2.000E-30 0.0 -3.00 300.0 2.500E-11 0.0 0.00
300.0 0.60 1.00
29 6 2 2.400E-14 -460.0 0.00 300.0 2.700E-17 -2199.0 0.00
300.0 6.500E-34 -1335.0 0.00 300.0
30 3 2 3.500E-12 -250.0 0.00 300.0
31 1 2 0.000E+00
32 1 1 0.000E+00
33 1 2 0.000E+00
34 7 2 2.300E-13 -600.0 0.00 300.0 1.700E-33 -1000.0 0.00
300.0
35 7 3 3.220E-34 -2800.0 0.00 300.0 2.380E-54 -3200.0 0.00
300.0
36 1 1 0.000E+00
37 3 2 2.900E-12 160.0 0.00 300.0
38 1 2 1.100E-10
39 3 2 5.500E-12 2000.0 0.00 300.0
40 3 2 2.200E-11 -120.0 0.00 300.0
41 3 2 4.200E-12 240.0 0.00 300.0
42 4 2 6.900E-31 0.0 -1.00 300.0 2.600E-11 0.0 0.00
300.0 0.60 1.00
43 3 2 4.800E-11 -250.0 0.00 300.0
44 3 2 3.000E-11 -200.0 0.00 300.0
45 3 2 1.400E-12 2000.0 0.00 300.0
46 1 2 1.000E-11
47 1 2 2.200E-11
48 1 2 3.500E-12
49 1 2 1.000E-17
50 3 2 8.500E-13 2450.0 0.00 300.0
51 1 1 0.000E+00
52 1 1 0.000E+00
53 1 1 0.000E+00
54 3 2 2.600E-12 -365.0 0.00 300.0
55 3 2 2.600E-12 -365.0 0.00 300.0
56 3 2 7.500E-13 -700.0 0.00 300.0
57 3 2 7.500E-13 -700.0 0.00 300.0
58 1 2 6.800E-14
59 1 2 6.800E-14
60 1 2 6.800E-14
61 3 2 5.900E-13 360.0 0.00 300.0
Figure3‐1a(continued).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 36www.camx.com
62 1 1 0.000E+00
63 4 2 3.000E-31 0.0 -3.30 300.0 1.500E-12 0.0 0.00
300.0 0.60 1.00
64 3 2 3.010E-12 -190.0 0.00 300.0
65 1 1 0.000E+00
66 7 2 1.440E-13 0.0 0.00 300.0 3.430E-33 0.0 0.00
300.0
67 3 2 2.450E-12 1775.0 0.00 300.0
68 3 2 2.800E-12 -300.0 0.00 300.0
69 3 2 4.100E-13 -750.0 0.00 300.0
70 3 2 9.500E-14 -390.0 0.00 300.0
71 3 2 3.800E-12 -200.0 0.00 300.0
72 1 1 0.000E+00
73 3 2 7.300E-12 620.0 0.00 300.0
74 1 2 9.000E-12
75 1 1 0.000E+00
76 1 1 0.000E+00
77 3 2 3.400E-11 1600.0 0.00 300.0
78 1 2 5.800E-16
79 3 2 9.700E-15 -625.0 0.00 300.0
80 3 1 2.400E+12 7000.0 0.00 300.0
81 1 2 5.600E-12
82 3 2 5.600E-15 -2300.0 0.00 300.0
83 1 2 4.000E-13
84 3 2 1.800E-11 1100.0 0.00 300.0
85 3 2 5.600E-12 -270.0 0.00 300.0
86 3 2 1.400E-12 1900.0 0.00 300.0
87 1 1 0.000E+00
88 3 2 8.100E-12 -270.0 0.00 300.0
89 4 2 2.700E-28 0.0 -7.10 300.0 1.200E-11 0.0 -
0.90 300.0 0.30 1.00
90 4 1 4.900E-03 12100.0 0.00 300.0 5.400E+16 13830.0 0.00
300.0 0.30 1.00
91 1 1 0.000E+00
92 3 2 4.300E-13 -1040.0 0.00 300.0
93 3 2 2.000E-12 -500.0 0.00 300.0
94 3 2 4.400E-13 -1070.0 0.00 300.0
95 3 2 2.900E-12 -500.0 0.00 300.0
96 3 2 4.000E-13 -200.0 0.00 300.0
97 1 1 0.000E+00
98 3 2 4.000E-13 -200.0 0.00 300.0
99 3 2 1.300E-11 870.0 0.00 300.0
100 3 2 5.100E-12 -405.0 0.00 300.0
101 1 2 6.500E-15
102 1 1 0.000E+00
103 3 2 6.700E-12 -340.0 0.00 300.0
104 4 2 2.700E-28 0.0 -7.10 300.0 1.200E-11 0.0 -
0.90 300.0 0.30 1.00
105 4 1 4.900E-03 12100.0 0.00 300.0 5.400E+16 13830.0 0.00
300.0 0.30 1.00
106 1 1 0.000E+00
107 1 2 3.000E-13
108 3 2 4.300E-13 -1040.0 0.00 300.0
109 3 2 2.000E-12 -500.0 0.00 300.0
110 3 2 4.400E-13 -1070.0 0.00 300.0
111 3 2 2.900E-12 -500.0 0.00 300.0
112 3 2 2.900E-12 -500.0 0.00 300.0
113 3 2 8.700E-12 1070.0 0.00 300.0
114 3 2 6.900E-12 230.0 0.00 300.0
115 1 2 8.100E-13
116 3 1 1.000E+15 8000.0 0.00 300.0
Figure3‐1a(continued).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 37www.camx.com
117 1 1 1.600E+03
118 1 2 1.500E-11
119 3 2 1.000E-11 280.0 0.00 300.0
120 1 2 3.200E-11
121 3 2 6.500E-15 1900.0 0.00 300.0
122 3 2 7.000E-13 2160.0 0.00 300.0
123 3 2 1.040E-11 792.0 0.00 300.0
124 4 2 1.000E-28 0.0 -0.80 300.0 8.800E-12 0.0 0.00
300.0 0.60 1.00
125 3 2 1.200E-14 2630.0 0.00 300.0
126 3 2 3.300E-12 2880.0 0.00 300.0
127 1 2 2.300E-11
128 3 2 1.000E-11 -550.0 0.00 300.0
129 3 2 8.400E-15 1100.0 0.00 300.0
130 3 2 9.600E-13 270.0 0.00 300.0
131 3 2 1.800E-12 -355.0 0.00 300.0
132 1 2 8.100E-12
133 1 1 4.200E+00
134 1 2 4.100E-11
135 1 2 2.200E-11
136 1 2 1.400E-11
137 1 2 5.500E-12
138 1 1 0.000E+00
139 1 2 3.000E-11
140 3 2 5.400E-17 500.0 0.00 300.0
141 3 2 1.700E-11 -116.0 0.00 300.0
142 1 2 1.700E-11
143 1 1 0.000E+00
144 1 2 3.600E-11
145 3 2 2.540E-11 -407.6 0.00 300.0
146 3 2 7.860E-15 1912.0 0.00 300.0
147 3 2 3.030E-12 448.0 0.00 300.0
148 1 2 1.500E-19
149 1 2 3.360E-11
150 1 2 7.100E-18
151 1 2 1.000E-15
152 1 1 0.000E+00
153 1 2 3.600E-11
154 3 2 1.500E-11 -449.0 0.00 300.0
155 3 2 1.200E-15 821.0 0.00 300.0
156 3 2 3.700E-12 -175.0 0.00 300.0
Figure3‐1a(concluded).
CAMx Version |VERSION6.3
Mechanism ID |0
Aerosol Option |NONE
Description |inert test
No of gas species |1
No of aero species |0
No of reactions |0
Prim photo rxns |0
No of sec photo rxn|0
SrfMod #spc, #rxns |0 0
Species Records
Gas Spec lower bnd H-law T-fact Molwt Reactvty Rscale
1 TRACER 1.00E-09 1.00e-10 0. 1.00 0.0 1.
Figure3‐1b.Exampleinertchemistryparametersfile(requireschemistryflagtobesetfalse–
seethedescriptionoftheCAMxcontrolfile).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 38www.camx.com
Thesectionofthefilethatlistsgasspeciesmustincludethenamesofradicalandstatespecies,
accordingtotheselectedchemicalmechanism,alongwitheachspecies’lowerboundvalue,
Henry’sLawsolubilityparameters,molecularweight,andsurfacereactivityandresistance
scalingparametersforuseinthedrydepositioncalculations.Thelowerboundvaluessetthe
minimumconcentration“floor”foranychemicalorphysicalprocessthatreduces
concentrationsto“zero”.Thelowerboundisalsousedtosetinitialand/orboundary
conditionsforspeciesthatareomittedfromtheinitialand/orboundaryconditionfiles.
Thesectionofthefilethatlistsaerosolspeciesnamesmustincludealower‐boundvalue,
particledensity,dryextinctionefficiency,ahygroscopicflag,andsingle‐scatteringalbedo.In
thecaseofINERTorCFoptions,theusermustalsospecifythesizebinassignedtoeachspecies
attheendofeachparticulatespeciesrecord(CMUautomaticallyapplieseachspeciestoallsize
bins).Sincetheeffectofaerosolwateronopticalparametersistakenintoaccountthroughan
internalrelativehumidityadjustment,thedryextinctionefficiencyforparticlespeciesPH2O
mustbesettozero.
CAMxsupportsseveralequationsforspecifyinggas‐phaserateconstants,asshowninTable3‐
3a.Thetypeofequationusedforeachreactionisidentifiedbythesecondparameterspecified
foreachreaction–anumberbetween1and7(Table3‐3a).Thenumberofadditional
parametersrequireddependsupontheexpressiontypeandvariesbetween2and13,asshown
inTable3‐3b.Expressiontype4(Troeexpression)allowsforacompletedescriptionof
dependenciesontemperatureandpressure;backgroundinformationonTroeexpressionsmay
befoundintheNASAandIUPACrateconstantcompilations(NASA,1997;IUPAC,1992).
Rateconstantscanbespecifiedinmolecularunits(e.g.,cm3molecule‐1s‐1)orppmunits(e.g.,
ppm‐1min‐1).Alltherateconstantsmustbeinasingleunitssystem;CAMxwilldetermine
whichunitssystemisbeingusedfromthemagnitudeoftherateconstants.Diagnostic
informationontherateconstantsandunitssystemisoutputbyCAMxatrun‐time.
3.2PhotolysisRatesFile
Theratesfortheprimaryphotolysisreactionsaresuppliedviathephotolysisratesfileinunits
ofminute‐1.Thisfilemustbesuppliedifchemistryisinvoked.Thephotolysisratesfile
comprisesalargelook‐uptableofclear‐skyphotolysisratesspecifictothegas‐phasechemistry
mechanismtorun.Ratesarearrangedinamatrixoffivedimensions,includingvariationsover
10solarzenithangles,5ultraviolet(UV)surfacealbedos,3terrainheights,11altitudesabove
ground,and5totalozonecolumnvalues.Thelook‐uptableisgeneratedusingtheTUV
preprocessor,whichinternallyspecifiestherangesofsolarzenith(0,10,20,30,40,50,60,70,
78,86),surfaceUValbedo(0.04,0.1,0.2,0.5,0.9.),andterrainheights(0,1,3km).Theranges
ofaltitudeabovegroundarecontrolledbytheuser,whiletherangesofozonecolumnare
takenfromtheozonecolumnfile(Section3.3).TUVisrunwithatypicalaerosolprofiledefined
byElterman(1968).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 39www.camx.com
Table3‐3a.RateconstantexpressiontypessupportedinCAMxandorderofexpression
parametersforthechemistryparametersfile.
Expression
TypeDescriptionExpression
1Constant298
kk
2UAM(Arrheniusexpression)
T
Ekk a
1
298
1
exp
298
3Generaltemperaturedependence
T
E
T
T
Ak a
B
R
exp
4Troe‐typetemperatureandpressure
dependence
G
F
kMk
Mk
k
/1 0
0
T
E
T
T
Ak a
B
R
exp
0
T
E
T
T
Ak a
B
R
exp
1
2
0/][log
1
n
kMk
G
5Equilibriumwithapreviouslydefined
reaction(kref)
1
exp
T
E
T
T
Akk a
B
R
ref
6Lindemann‐HinshelwoodasusedforOH+
HNO323
3
0
/][1
][
kMk
Mk
kk
7SimplepressuredependenceusedforOH+
CO][
21 Mkkk
Notes:
Tistemperature(K)
TRisreferencetemperatureof300K
EaisanArrheniusactivationenergy(K)
k0isthelowpressurelimitoftherateconstant
kisthehighpressurelimitoftherateconstant
[M]istheconcentrationofair
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 40www.camx.com
Table3‐3b.ListofparametersthatmustbeprovidedintheCAMxchemistryparameterfile
foreachoftheseventypesofrateconstantexpressions.Useppm/minuteunitsforAand
KelvinforEaandTR.ThevariableOistheorderofthereaction(1to3).
Expression
Type
Parameters
1234 5 6 7 8 9 101112 13
1Ok298
2Ok298Ea
3OAEaB TR
4OAEaB TRA’ Ea’B’ TR’ F n
5Okre
f
AEaB TR
6OAoEa
oBoTR
oA2Ea
2B2TR
2A3Ea
3B3TR
3
7OA1Ea
1B1TR
1A2Ea
2B2TR
2
Thephotolysisratesfileisareadabletextformatandithasthefollowingstructure:
wherethefirstrecordlabelstheversionofTUVusedtogeneratethefile,andwherevariables
havethefollowingdefinitions:
ozcl Ozonecolumnvalueforthecurrentinterval(Dobsonunits)
albclUValbedovalueforthecurrentinterval(unitless)
trnclTerrainheightvalueforthecurrentinterval(kmMSL)
height Altitude(kmAGL)
pkPhotolysisrates(min‐1)fornsolsolarzenithangles
Figure3‐2presentsanexampleofaphotolysisratesfileforthefirstseveralpanelsofdata.
3.3OzoneColumnFile
ThisfiledefinestheintervalsoftotalatmosphericozonecolumntobeusedbyTUV,aswellas
itsspatialandtemporaldistributionsforaspecificCAMxdomainandepisode.Thisparameter
isessentialforphotochemicalsimulationsasitdeterminesthespatialandtemporalvariationof
photolysisrates.Therefore,thisfilemustbesuppliedifchemistryisinvoked.Additionally,the
ozonecolumnfilemayalsoprovideanoptionalfielddefiningaland/oceanmask(formercury
chemistry).
TUV4.8CAMx6
Loopfrom1tonoznozonecolumnintervals:
Loopfrom1tonalbUValbedointervals:
Loopfrom1tonthtterrainheightintervals:
ozcl,albcl,trncl (12X,f7.3,8X,f7.3,11X,f7.3)
Loopfrom1tonaltaltitudesaboveground:
height (*)
Loopfrom1tonphotphotolysisreactions:
(pk(n),n=1,nsol) (1X,10F12.0)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 41www.camx.com
TUV4.8CAMx6
O3 Column = 0.290 Albedo= 0.040 Terrain = 0.000
0.000 km above surface
4.562E-01 4.526E-01 4.416E-01 4.224E-01 3.934E-01 3.516E-01 2.921E-01 2.065E-01 1.148E-01 3.074E-02
1.670E-03 1.643E-03 1.563E-03 1.427E-03 1.236E-03 9.889E-04 6.936E-04 3.747E-04 1.502E-04 2.570E-05
2.211E-03 2.186E-03 2.107E-03 1.973E-03 1.776E-03 1.506E-03 1.152E-03 7.108E-04 3.352E-04 7.560E-05
2.078E-03 2.007E-03 1.801E-03 1.485E-03 1.097E-03 6.925E-04 3.382E-04 1.034E-04 2.201E-05 2.056E-06
3.131E-04 3.058E-04 2.841E-04 2.491E-04 2.027E-04 1.482E-04 9.100E-05 4.015E-05 1.264E-05 1.517E-06
8.728E-05 8.638E-05 8.364E-05 7.891E-05 7.189E-05 6.212E-05 4.892E-05 3.166E-05 1.580E-05 3.934E-06
0.150 km above surface
4.866E-01 4.830E-01 4.717E-01 4.521E-01 4.223E-01 3.794E-01 3.179E-01 2.284E-01 1.308E-01 3.760E-02
1.855E-03 1.827E-03 1.742E-03 1.598E-03 1.394E-03 1.130E-03 8.102E-04 4.566E-04 1.956E-04 3.701E-05
2.443E-03 2.416E-03 2.334E-03 2.193E-03 1.986E-03 1.701E-03 1.322E-03 8.415E-04 4.159E-04 1.000E-04
2.327E-03 2.249E-03 2.024E-03 1.677E-03 1.250E-03 8.008E-04 4.035E-04 1.337E-04 3.383E-05 4.166E-06
3.489E-04 3.410E-04 3.177E-04 2.799E-04 2.297E-04 1.704E-04 1.075E-04 5.024E-05 1.755E-05 2.556E-06
9.553E-05 9.460E-05 9.176E-05 8.684E-05 7.952E-05 6.928E-05 5.530E-05 3.672E-05 1.910E-05 5.068E-06
0.360 km above surface
5.050E-01 5.013E-01 4.900E-01 4.702E-01 4.402E-01 3.968E-01 3.343E-01 2.426E-01 1.412E-01 4.171E-02
1.974E-03 1.945E-03 1.857E-03 1.708E-03 1.497E-03 1.222E-03 8.862E-04 5.096E-04 2.245E-04 4.415E-05
2.587E-03 2.560E-03 2.477E-03 2.333E-03 2.120E-03 1.826E-03 1.432E-03 9.258E-04 4.673E-04 1.152E-04
2.494E-03 2.411E-03 2.174E-03 1.806E-03 1.353E-03 8.740E-04 4.474E-04 1.536E-04 4.129E-05 5.492E-06
3.722E-04 3.640E-04 3.396E-04 3.002E-04 2.475E-04 1.851E-04 1.183E-04 5.679E-05 2.067E-05 3.210E-06
1.006E-04 9.970E-05 9.681E-05 9.180E-05 8.433E-05 7.382E-05 5.940E-05 3.999E-05 2.122E-05 5.763E-06
0.640 km above surface
5.230E-01 5.193E-01 5.080E-01 4.882E-01 4.581E-01 4.143E-01 3.510E-01 2.574E-01 1.520E-01 4.577E-02
2.092E-03 2.062E-03 1.972E-03 1.819E-03 1.601E-03 1.315E-03 9.632E-04 5.633E-04 2.535E-04 5.126E-05
2.731E-03 2.703E-03 2.618E-03 2.471E-03 2.254E-03 1.951E-03 1.544E-03 1.011E-03 5.191E-04 1.304E-04
2.664E-03 2.577E-03 2.327E-03 1.939E-03 1.459E-03 9.497E-04 4.928E-04 1.738E-04 4.872E-05 6.809E-06
3.958E-04 3.872E-04 3.618E-04 3.207E-04 2.656E-04 2.000E-04 1.294E-04 6.343E-05 2.378E-05 3.860E-06
1.057E-04 1.047E-04 1.018E-04 9.672E-05 8.912E-05 7.839E-05 6.354E-05 4.331E-05 2.336E-05 6.448E-06
0.980 km above surface
5.409E-01 5.373E-01 5.260E-01 5.062E-01 4.760E-01 4.321E-01 3.682E-01 2.727E-01 1.635E-01 4.989E-02
2.210E-03 2.179E-03 2.087E-03 1.930E-03 1.705E-03 1.409E-03 1.041E-03 6.178E-04 2.827E-04 5.837E-05
2.873E-03 2.845E-03 2.758E-03 2.609E-03 2.387E-03 2.077E-03 1.656E-03 1.099E-03 5.718E-04 1.454E-04
2.837E-03 2.746E-03 2.483E-03 2.074E-03 1.567E-03 1.028E-03 5.396E-04 1.944E-04 5.611E-05 8.121E-06
4.195E-04 4.106E-04 3.842E-04 3.414E-04 2.840E-04 2.152E-04 1.407E-04 7.017E-05 2.689E-05 4.509E-06
1.107E-04 1.097E-04 1.068E-04 1.016E-04 9.392E-05 8.299E-05 6.775E-05 4.673E-05 2.556E-05 7.133E-06
1.380 km above surface
5.593E-01 5.556E-01 5.444E-01 5.247E-01 4.947E-01 4.507E-01 3.863E-01 2.892E-01 1.760E-01 5.427E-02
2.329E-03 2.298E-03 2.203E-03 2.042E-03 1.811E-03 1.505E-03 1.122E-03 6.743E-04 3.128E-04 6.563E-05
3.016E-03 2.988E-03 2.900E-03 2.749E-03 2.524E-03 2.207E-03 1.773E-03 1.190E-03 6.270E-04 1.609E-04
3.015E-03 2.920E-03 2.644E-03 2.215E-03 1.681E-03 1.109E-03 5.887E-04 2.158E-04 6.364E-05 9.454E-06
4.437E-04 4.345E-04 4.071E-04 3.627E-04 3.029E-04 2.310E-04 1.524E-04 7.716E-05 3.009E-05 5.169E-06
1.157E-04 1.148E-04 1.118E-04 1.066E-04 9.883E-05 8.772E-05 7.213E-05 5.031E-05 2.789E-05 7.835E-06
1.840 km above surface
5.782E-01 5.746E-01 5.635E-01 5.440E-01 5.141E-01 4.702E-01 4.056E-01 3.069E-01 1.897E-01 5.904E-02
2.451E-03 2.419E-03 2.322E-03 2.157E-03 1.920E-03 1.605E-03 1.206E-03 7.338E-04 3.445E-04 7.312E-05
3.162E-03 3.133E-03 3.045E-03 2.892E-03 2.664E-03 2.341E-03 1.894E-03 1.286E-03 6.856E-04 1.769E-04
3.200E-03 3.101E-03 2.811E-03 2.361E-03 1.799E-03 1.196E-03 6.407E-04 2.385E-04 7.141E-05 1.082E-05
4.685E-04 4.589E-04 4.307E-04 3.846E-04 3.224E-04 2.473E-04 1.647E-04 8.451E-05 3.341E-05 5.848E-06
1.209E-04 1.199E-04 1.169E-04 1.117E-04 1.039E-04 9.263E-05 7.671E-05 5.412E-05 3.039E-05 8.570E-06
2.350 km above surface
5.974E-01 5.939E-01 5.829E-01 5.636E-01 5.340E-01 4.904E-01 4.257E-01 3.258E-01 2.046E-01 6.425E-02
2.572E-03 2.540E-03 2.441E-03 2.273E-03 2.031E-03 1.706E-03 1.292E-03 7.955E-04 3.775E-04 8.077E-05
3.307E-03 3.278E-03 3.190E-03 3.036E-03 2.805E-03 2.477E-03 2.019E-03 1.386E-03 7.476E-04 1.934E-04
3.389E-03 3.285E-03 2.983E-03 2.512E-03 1.922E-03 1.285E-03 6.952E-04 2.622E-04 7.936E-05 1.221E-05
4.934E-04 4.836E-04 4.544E-04 4.068E-04 3.424E-04 2.641E-04 1.774E-04 9.214E-05 3.685E-05 6.538E-06
1.261E-04 1.251E-04 1.221E-04 1.169E-04 1.090E-04 9.763E-05 8.142E-05 5.811E-05 3.305E-05 9.333E-06
2.910 km above surface
6.169E-01 6.134E-01 6.026E-01 5.836E-01 5.543E-01 5.111E-01 4.466E-01 3.458E-01 2.209E-01 7.003E-02
2.694E-03 2.661E-03 2.561E-03 2.390E-03 2.143E-03 1.810E-03 1.382E-03 8.602E-04 4.124E-04 8.867E-05
3.452E-03 3.423E-03 3.335E-03 3.180E-03 2.948E-03 2.615E-03 2.148E-03 1.492E-03 8.140E-04 2.106E-04
3.582E-03 3.474E-03 3.159E-03 2.667E-03 2.049E-03 1.379E-03 7.528E-04 2.874E-04 8.761E-05 1.363E-05
5.187E-04 5.086E-04 4.786E-04 4.294E-04 3.628E-04 2.814E-04 1.906E-04 1.002E-04 4.045E-05 7.246E-06
1.312E-04 1.303E-04 1.273E-04 1.221E-04 1.142E-04 1.027E-04 8.630E-05 6.231E-05 3.593E-05 1.014E-05
3.530 km above surface
6.368E-01 6.334E-01 6.228E-01 6.041E-01 5.754E-01 5.328E-01 4.687E-01 3.673E-01 2.389E-01 7.670E-02
2.818E-03 2.784E-03 2.683E-03 2.510E-03 2.258E-03 1.917E-03 1.476E-03 9.296E-04 4.505E-04 9.704E-05
3.599E-03 3.571E-03 3.482E-03 3.328E-03 3.094E-03 2.759E-03 2.283E-03 1.605E-03 8.871E-04 2.291E-04
3.783E-03 3.670E-03 3.343E-03 2.830E-03 2.184E-03 1.478E-03 8.148E-04 3.147E-04 9.644E-05 1.512E-05
5.446E-04 5.343E-04 5.034E-04 4.528E-04 3.840E-04 2.996E-04 2.046E-04 1.088E-04 4.434E-05 7.989E-06
1.365E-04 1.355E-04 1.326E-04 1.274E-04 1.195E-04 1.080E-04 9.142E-05 6.681E-05 3.911E-05 1.103E-05
4.210 km above surface
6.569E-01 6.536E-01 6.433E-01 6.250E-01 5.969E-01 5.550E-01 4.917E-01 3.902E-01 2.588E-01 8.447E-02
2.943E-03 2.909E-03 2.807E-03 2.632E-03 2.376E-03 2.029E-03 1.574E-03 1.004E-03 4.925E-04 1.060E-04
3.747E-03 3.719E-03 3.631E-03 3.477E-03 3.243E-03 2.906E-03 2.424E-03 1.725E-03 9.679E-04 2.493E-04
3.992E-03 3.875E-03 3.534E-03 3.000E-03 2.325E-03 1.585E-03 8.818E-04 3.447E-04 1.060E-04 1.668E-05
5.711E-04 5.605E-04 5.289E-04 4.769E-04 4.060E-04 3.186E-04 2.195E-04 1.181E-04 4.859E-05 8.775E-06
1.417E-04 1.408E-04 1.379E-04 1.327E-04 1.249E-04 1.135E-04 9.674E-05 7.161E-05 4.262E-05 1.202E-05
O3 Column = 0.290 Albedo= 0.040 Terrain = 1.000
0.000 km above surface
4.655E-01 4.615E-01 4.493E-01 4.279E-01 3.958E-01 3.499E-01 2.855E-01 1.957E-01 1.048E-01 2.871E-02
1.688E-03 1.660E-03 1.576E-03 1.435E-03 1.237E-03 9.833E-04 6.824E-04 3.626E-04 1.414E-04 2.142E-05
2.240E-03 2.212E-03 2.129E-03 1.987E-03 1.780E-03 1.498E-03 1.132E-03 6.858E-04 3.159E-04 6.495E-05
2.098E-03 2.025E-03 1.815E-03 1.492E-03 1.098E-03 6.883E-04 3.334E-04 1.009E-04 2.101E-05 1.716E-06
3.162E-04 3.086E-04 2.863E-04 2.503E-04 2.029E-04 1.473E-04 8.961E-05 3.896E-05 1.193E-05 1.254E-06
8.857E-05 8.761E-05 8.467E-05 7.961E-05 7.213E-05 6.180E-05 4.802E-05 3.042E-05 1.483E-05 3.488E-06
0.150 km above surface
5.004E-01 4.963E-01 4.839E-01 4.623E-01 4.296E-01 3.828E-01 3.163E-01 2.220E-01 1.237E-01 3.1E-02
1.870E-03 1.841E-03 1.752E-03 1.604E-03 1.394E-03 1.123E-03 7.976E-04 4.424E-04 1.847E-04 3.188E-05
2.473E-03 2.445E-03 2.359E-03 2.211E-03 1.994E-03 1.697E-03 1.306E-03 8.179E-04 3.956E-04 8.840E-05
2.338E-03 2.259E-03 2.030E-03 1.677E-03 1.245E-03 7.929E-04 3.960E-04 1.294E-04 3.180E-05 3.572E-06
3.509E-04 3.428E-04 3.189E-04 2.803E-04 2.292E-04 1.690E-04 1.056E-04 4.859E-05 1.651E-05 2.187E-06
9.713E-05 9.614E-05 9.312E-05 8.789E-05 8.013E-05 6.934E-05 5.476E-05 3.574E-05 1.823E-05 4.615E-06
Figure3‐2.Exampleofthefirstseveralpanelsoflookupdatainthephotolysisratesinputfile.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 42www.camx.com
Therearetwomandatoryandoneoptionalheaderrecordsintheozonecolumnfile.Thefirst
recordcontainsanarbitraryfilelabel.Thesecondrecorddefinestheintervalsfor5ozone
columnvaluesforthedomainandtemporalperiodtobesimulated.Theseintervalsmust
exactlymatchthosedefinedinpreparingthephotolysisratesfile,sotheozonecolumnfileis
alsoreadbytheTUVpreprocessortodefinethephotolysisrateslookuptable(Section3.2).
Iftheoptionalland/oceanmaskisincluded,thenathirdheaderrecordmustbeaddedto
informCAMxthatthisfieldistoberead.Thetime‐invariantland/oceanmaskisusedfor
mercurychemistrytodefineprofilesofambienthalogens;itissimplyamapof0(landandfresh
waterbodies)and1(ocean)thatmustbelocateddirectlyunderitsheaderrecord.Avalue
mustbesuppliedforeachcellofthemastergridandoptionallyanynestedgrids.
Griddedfieldsoftime‐varyingozonecolumnfollowtheheaderrecordsandoptionalland/ocean
maskdata.Thegriddedfieldsaremapsoftherespective“codes”foreachinterval,asdefined
intheheader.Forexample,5ozonecolumnintervalsarespecifiedinTUVandintheozone
columnheaderrecord,sothemapmustconsistofadistributionofintegersrangingfrom1to5.
Ozonecolumnissuppliedforthemastergridonly;CAMxinternallyassignsmastercellvaluesto
allnestedgridscells.Multiplemapsofthesecodesmaybeprovidedforarbitrarytimeintervals
thatspantheentiresimulationperiod.
Theozonecolumnfileisareadabletextformatandithasthefollowingstructure:
wherethevariablesintheozonecolumnfilehavethefollowingdefinitions:
text Textidentifyingfileandanymessages
ozname Textstring“OZONECOL”
oznclOzonecolumn(Dobsonunits)foreachofnoznozonevalues
loname Textstring“OCEAN”
igrd Gridindex(1=mastergrid,2+=nestedgrid,0=endofdata)
nxNumberofgridcolumnsforthisgridindex
ny Numberofgridrowsforthisgridindex
jocn Gridigrd,rowjland/oceancodesfornxgridcolumns
idt1 Beginningdate(YYJJJ)oftimespan
tim1 Beginninghour(HHMM)oftimespan
idt2 Endingdateoftimespan
text (A)
ozname,(ozncl(n),n=1,nozn) (A10,5F10.0)
loname,igrd,nx,ny (A10,3I10) ‐‐Optional
Loopfromj=nygridrowsto1‐‐Optional
(jocn(i,j),i=1,nx) (999I1) ‐‐Optional
loname,igrd,nx,ny (A10,3I10) ‐‐Optional
ozname,idt1,tim1,idt2,tim2 (A10,I10,F10.0,I10,F10.0)
Loopfromj=nymastergridrowsto1
(jozn(i,j),i=1,nx) (9999I1)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 43www.camx.com
tim2 Endinghouroftimespan
jozn Mastergridrowjozonecolumncodesfornxmastergridcolumns
AnexampleofasmallozonecolumnfileisgiveninFigure3‐3.
Sample ozone column file with optional land ocean mask
OZONE COL 0.285 0.315 0.345 0.375 0.405
OCEAN 1 64 10
0000000000000000000011111111100000000000000000000000000000000000
0000000000000000000000000001111111110000000000000000000000000000
0000000000000000000000001111111111111100000000000000000000000000
0000000000000000000000000001111111111110000000000000000000000000
0000000000000000000000011111111111111100000000000000000000000000
0000000000000000000000111111111111111110000000000000000000000000
0000000000000000000000111111111111111111000000000000000000000000
0000000000000000000001111111000000000111111110000000000000000000
0000000000000000000011111111100000000011111111100000000000000000
0000000000000000000000111111111100000000011111111110000000000000
OCEAN 0 0 0
OZONE COL 05213 0.00 05213 2400.00
3333333333333333333333333333333333333333333333333333333333333333
3333333333333333333333333333333333333333333333333333333333333333
2222222222222333333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222222222222333333333333333333333333333333333333333333
Figure3‐3.Examplestructureofasingle‐gridozonecolumninputfileshowingpanelsforthe
optionaltime‐invariantland‐oceanmaskandtime‐varyingozonecolumnfield.
3.4FortranBinaryInput/OutputFiles
3.4.1WhatisaFortranBinaryFile?
LargeCAMxinputandoutputdatafieldsarecontainedwithinFortran“unformatted”(binary)
files.Thismeansthatthedataarereadandwrittenasrepresentedinmemory,without
translationbetweenbinaryandASCIIcharactersetsasdonefor“text”files.Binaryfilesreduce
filevolumeandimproveprogramread/writespeed,buttheusercannotdirectlyviewor
manuallyeditthem.Therearetwowaystorepresentbinaryinformationinmemory:“big
endian”and“littleendian.”Thedifferencebetweentheseisessentiallytheorderofbitsina
word,andwhichorderisuseddependsonthecomputerchipset.Historically,bigendianhas
beenusedinmanyUnixworkstations(Sun,SGI,HP,andIBM).Thex86processorsonpersonal
computerplatforms(e.g.,IntelandAMD)uselittleendian,whilePowerPCchipsarebigendian.
CAMxcanbecompiledandrunonmachinesusingtheirnativebigorlittleendianbinary
representations,aslongasthemodelandallofitspre‐andpost‐processorsareconsistently
compiledandrunonthesametypeofplatform.Ifanycomponentofthemodelingsystemis
compiledforadifferentplatformusingtheoppositebinaryrepresentation,I/Ofileswillnotbe
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 44www.camx.com
properlyreadandwilllikelyleadtoaprogramcrash.Atypicalrun‐timeerrormessagefrom
tryingtoreadthewrongbinaryformatis“inputrecordtoolong,”soifyougetthiserror
message,checkforconsistencybetweenyourbinaryfilesandFortrancompileroptions.
Compilersforlittleendianmachinesprovidecompile‐timeswitchesthatallowbinaryfilestobe
readandwrittenasbigendian.The“makefile”compilerscriptthatisdistributedwithCAMx
setscompilerflagstoconsistentlyusebigendiantomaximizeplatformportability.Therefore,
useoftheCAMxMakefilewillbydefaultresultinthemodelreadingandwritingbigendian
binaryfiles.AdditionalinformationonthistopicisprovidedinSection2.
3.4.2CAMxBinaryFileHeaders
TheformatofallbinaryCAMxI/OfilesfollowstheconventionestablishedbytheUrbanAirshed
Model(EPA,1990).CAMxbinaryfilescontainasetoftime‐invariantheaderrecords,followed
byasetofdatarecordsthatcontaintime‐andvariable‐specificfields.Allinputgridded
emissions,initialandtopboundaryconditions,meteorology1,andoutputconcentrationand
depositionfilessharethesamebasicformat.Theinputlateralboundaryconditionandpoint
sourceemissionsfilesaresimilarbutincludeadditionalrecordsspecifictotheirdatastructures.
Theinput3Dmeteorologicalfilemayprovidewindfieldsinastaggeredorun‐staggeredgrid
arrangement.Aflagtoindicatethewindstaggeringisincludedinthesecondheaderrecord
andischeckedonlywhenthe3Dmeteorologicalfileisread.
ThefourheaderrecordswithinallCAMxbinaryfileshavethefollowingstructure:
Theheadervariableshavethefollowingdefinitions:
Record1
name Textstringdescribingfilecontents(character*4(10)array):
AIRQUALITYInitialandtopboundaryconditions
BOUNDARY Boundaryconditions
EMISSIONS Griddedemissions
PTSOURCE Pointsourceemissions
AVERAGE Averageoutputconcentrations/depositionand
inputmeteorology/surfacevariables
INSTANT Instantaneousoutputconcentrations
note Textstringcontainingusernote(character*4(60)array)
itzonIntegertimezone(0=UTC,5=EST,etc.)
nvar Integernumberofvariablesonfile
1NOTE:StartingwithCAMxv6.00,allbinarymeteorologicalfileshavebeenconvertedtotheUAMconvention.
name,note,itzon,nvar,ibdate,btime,iedate,etime
plon,plat,iutm,xorg,yorg,delx,dely,nx,ny,nz,iproj,istag,tlat1,tlat2,rdum
ione,ione,nx,ny
(namvar(l),l=1,nvar)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 45www.camx.com
ibdateIntegerbeginningdatespanonfile(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdatespanonfile(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2
plon Realprojectionpole/originlongitude(degrees;westisnegative)
plat Realprojectionpole/originlatitude(degrees;southisnegative)
iutm IntegerUTMzone(ignoredforotherprojections)
xorg Realx‐coordinateatsouthwestcornerofgrid(mordegreeslongitude)
yorg Realy‐coordinateatsouthwestcornerofgrid(mordegreeslatitude)
delx Realcellsizeinx‐direction(mordegreeslongitude)
dely Realcellsizeiny‐direction(mordegreeslatitude)
nx Integernumberofgridcolumns(east‐west)
ny Integernumberofgridrows(north‐south)
nz Integernumberofverticallayers
iprojIntegerprojectionindex:
0=geodetic(LATLON)
1=UniversalTransverseMercator(UTM)
2=LambertConicConformal(LAMBERT)
3=RotatedPolarStereographic(RPOLAR)
4=PolarStereographic(POLAR)
5=Mercator(MERCATOR)
istagIntegerflagtoindicatewindstaggering(1=staggered,0=notstaggered)
tlat1RealLCPfirsttruelatitude(degrees;southisnegative)
tlat2RealLCPsecondtruelatitude(degrees;southisnegative)
rdum Realdummyvariable
Record3
ione Integerdummyvariable(=1)
ione Integerdummyvariable(=1)
nx Integernumberofgridcolumns(east‐west)
ny Integernumberofgridrows(north‐south)
Record4
namvarTextnamesfornvarvariables(character*4(10,nvar)array)
3.4.3InputFiles
TheFortranbinaryinputfilesincludeinitial/boundaryconditions,griddedandelevatedpoint
sourceemissions,andseveralmeteorologicalfiles.Alltimesoninputfilesmustmatchthetime
zonespecifiedintheCAMxcontrolfile(CAMx.in).
Initial/boundaryconditionfilesmayincludeasingletimeintervalcoveringtheentiresimulation
period,ormoredetailedhour‐by‐hour(orotherinterval)variations.Thetimeintervalsare
allowedtobeentirelyarbitrarytomaximizeflexibilityindefiningtheseinputs.Asubsetofthe
pollutantspeciestobesimulatedmaybedefinedintheinitial/boundaryconditionfiles;any
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 46www.camx.com
speciesthataremissingwillbesetto“lowerbound”valuesasdefinedinthechemistry
parametersfile.
Emissioninputsareusuallydevelopedatonehourintervals,butthefilestructuresallowforany
otherintervalaslongasaconsistentintervalisusedthroughoutthefile(allonehour,orall
threehour,butnomixingofthese).Thetimeintervalonallemissionfilesmustmatchthe
emissionupdatefrequencydefinedintheCAMxcontrolfile.Asubsetofspeciestobe
simulatedmaybeincludedintheemissionfiles;zeroemissionrateswillbeappliedforany
speciesthataremissing.
Meteorologicalfieldsareseparatedintotwo‐dimensionalandthree‐dimensionalfields.The
coremeteorologicalfilecontainsthebasicparametersneededformostmodelprocesses,and
includeswindsandbasicthermodynamicproperties.Separateverticaldiffusivityandcloudfiles
allowforeasysubstitutionofalternativeinputswithouttheneedtore‐generateallofthecore
fields.Thetimeintervalonallmeteorologicalfilesmustmatchthemeteorologicalupdate
frequencydefinedintheCAMxcontrolfile.
3.4.3.1InputStatic2‐DSurfaceFile
Thestatic2‐Dsurfacefilecontainstime‐invariantgriddedfieldsoflanduseandtopographic
elevation,andoptionallyleafareaindex(LAI).Thisfilemustbedevelopedforthemastergrid,
andoptionallyanyofthenestedfinegrids.Thefractionaldistributionof26landusecategories,
consistentwiththe“ZHANG03”drydepositionscheme,issuppliedforeachgridcell.Ifthe
“WESELY89”drydepositionoptionisinvoked,CAMxinternallymapsthe26categoriestothe11
Weselycategories.ThelandusecategoriesaredescribedinTables3‐4and3‐5.Landuseisused
todefinesurfaceUValbedo,surfaceresistancesfordrydepositioncalculations,andtoset
seasonaldefaultsurfaceroughnesslengthsandLAIvalues(ifLAIisnotspecifiedinthefile).
Topographicelevationisusedtodefineterrainheightsforphotolysiscalculations.
Table3‐4.The11WESELY89landusecategories,theirdefaultUVsurfacealbedos,andtheir
surfaceroughnessvalues(m)byseason.Winterisdefinedforconditionswherethereissnow
present;wintermonthswithnosnowareassignedtotheFallcategory.Roughnessforwater
iscalculatedfromthefunction5.26
0102 wz
,wherewissurfacewindspeed(m/s).
LandCoverCategorySurfaceRoughness(meters)UV
Albedo
SpringSummerFallWinter
1Urban1.0 1.0 1.0 1.00.08
2Agricultural0.03 0.2 0.05 0.010.05
3Rangeland0.05 0.1 0.01 0.0010.05
4Deciduousforest1.0 1.3 0.8 0.50.05
5Coniferousforest,wetland1.3 1.3 1.3 1.30.05
6Mixedforest*1.15 1.3 1.05 0.90.05
7Waterf(w) f(w) f(w) f(w)0.04
8Barrenland0.002 0.002 0.002 0.0020.08
9Non‐forestedwetlands0.2 0.2 0.2 0.050.05
10Mixedagricultural/range**0.04 0.15 0.03 0.0060.05
11Rocky(withlowshrubs)0.3 0.3 0.3 0.150.05
*Roughnessformixedforestistheaverageofdeciduousandconiferousforest.
*Roughnessformixedag/rangeistheaverageofagriculturalandrangeland.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 47www.camx.com
Table3‐5.The26ZHANG03landusecategories,theirUValbedos,defaultannualminimum
andmaximumLAIandsurfaceroughness(m)ranges,andmappingtotheWeselyscheme
(Table3‐4).Roughnessforwateriscalculatedfromthefunction5.26
0102 wz
,wherewis
surfacewindspeed(m/s).
LandCoverCategoryWesely
Mapping
Roughness(meters) LAIUV
Albedo
Min Max Min Max
1Water7f(w)f(w)0.0 0.00.04
2Ice80.01 0.01 0.0 0.00.5
3Inlandlake7f(w)f(w)0.0 0.00.04
4Evergreenneedleleaftrees50.9 0.9 5.0 5.00.05
5Evergreenbroadleaftrees52.0 2.0 6.0 6.00.05
6Deciduousneedleleaftrees40.4 0.9 0.1 5.00.05
7Deciduousbroadleaftrees40.4 1.0 0.1 5.00.05
8Tropicalbroadleaftrees52.5 2.5 6.0 6.00.05
9Droughtdeciduoustrees40.6 0.6 4.0 4.00.05
10Evergreenbroadleafshrubs30.2 0.2 3.0 3.00.05
11Deciduousshrubs30.05 0.2 0.5 3.00.05
12Thornshrubs30.2 0.2 3.0 3.00.05
13Shortgrassandforbs30.04 0.04 1.0 1.00.05
14Longgrass10 0.02 0.1 0.5 2.00.05
15Crops20.02 0.1 0.1 4.00.05
16Rice20.02 0.1 0.1 6.00.05
17Sugar20.02 0.1 0.1 5.00.05
18Maize20.02 0.1 0.1 4.00.05
19Cotton20.02 0.2 0.1 5.00.05
20Irrigatedcrops20.05 0.05 1.0 1.00.05
21Urban11.0 1.0 0.1 1.00.08
22Tundra11 0.03 0.03 0.1 2.00.05
23Swamp90.1 0.1 4.0 4.00.05
24Desert80.04 0.04 0.0 0.00.08
25Mixedwoodforest60.9 0.9 3.0 5.00.05
26Transitionalforest60.9 0.9 3.0 5.00.05
Thedatarecordsforthestatic2‐Dsurfacefilehavethefollowingstructure:
Thevariableshavethefollowingdefinitions:
Record1
ibdate Integerbeginningdatespanonfile(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedate Integerendingdatespanonfile(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
ione,namvar(l),((var(i,j),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 48www.camx.com
Record2throughnvar+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
WATERWaterfraction(Zhang1)
ICE Icefraction(Zhang2)
LAKE Lakefraction(Zhang3)
ENEEDL Evergreenneedleleafforestfraction(Zhang4)
EBROAD Evergreenbroadleafforestfraction(Zhang5)
DNEEDL Deciduousneedleleafforestfraction(Zhang6)
DBROAD Deciduousbroadleafforestfraction(Zhang7)
TBROAD Tropicalbroadleafforestfraction(Zhang8)
DDECID Droughtdeciduoustreefraction(Zhang9)
ESHRUB Evergreenshrubfraction(Zhang10)
DSHRUB Deciduousshrubfraction(Zhang11)
TSHRUB Thornshrubfraction(Zhang12)
SGRASS Shortgrassfraction(Zhang13)
LGRASS Longgrassfraction(Zhang14)
CROPSCroplandfraction(Zhang15)
RICE Ricecropfraction(Zhang16)
SUGARSugarcropfraction(Zhang17)
MAIZECorncropfraction(Zhang18)
COTTON Cottoncropfraction(Zhang19)
ICROPS Irrigatedcroplandfraction(Zhang20)
URBANUrbanfraction(Zhang21)
TUNDRA Tundrafraction(Zhang22)
SWAMPSwampfraction(Zhang23)
DESERT Desertfraction(Zhang24)
MWOODMixedwoodlandfraction(Zhang25)
TFOREST Transitionalforestfraction(Zhang26)
TOPO_M Topographicelevationabovesealevel(m)
LAI OptionalLeafAreaIndex
var Realvariablefieldvaluesfornxgridcolumnsandnygridrows
3.4.3.2InputTime‐Variant2‐DSurfaceFile
Thetime‐variant2‐Dsurfacefilecontainsgriddedfieldsofsurfacetemperatureandsnow
cover.Thisfilemustbedevelopedforthemastergrid,andoptionallyanyofthenestedfine
grids.Thesurfacetemperatureisusedfordrydepositioncalculationsandtoestablishsurface‐
layeratmosphericstability.Snowcoverincludessnowdepthandage,whichareusedto
calculatesurfacealbedoforphotochemistry,adjustsurfaceresistancesfordrydeposition,and
definethesnowcompartmentforthesurfacechemistrymodel.
Thedatarecordsforthetime‐variant2‐Dsurfacefilehavethefollowingstructureandare
repeatedforeachtimeintervalonfile:
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 49www.camx.com
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnvar+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
TSURF_K Surfacetemperature(K)
SNOWEW_M Snowwaterequivalentdepth(m)
SNOWAGE_HR Snowagesincelastsnowfall(hr)
var Realvariablefieldvaluesfornxgridcolumnsandnygridrows
CAMxtime‐interpolatessurfacetemperaturetoeachmodeltimestepforeachgrid(butholds
snowcoverconstant),andsothemodelrequiresthatdatabeavailableonfileforanadditional
updatetimeattheendofthesimulation.Forexample,inthecaseofhourlyfields,a24‐hour
simulationrequires25inputfieldsonfile.Thetimeintervalofthedatarecordsmustmatchthe
timezoneandinputfrequencyofthemeteorologyasspecifiedintheCAMx.infile.
CAMxisbackward‐compatiblewitholder2‐Dmeteorologicalfilesthatmaycontainthesnow
covervariable(SNOWCOVER),whichisasimplemapof0or1toindicatethepresenceofsnow
ineachgridcell.IftheSNOWCOVERvariableisfound,CAMxarbitrarilyassumesasnowwater
equivalentdepthof0.025m(~25cmsnowdepth)andsnowageof5days.
3.4.3.3InputTime‐Variant3‐DMeteorologicalFile
Thetime‐variant3‐Dmeteorologicalfilecontainsgriddedfieldsofstatemeteorological
parameters.Thisfilemustbedevelopedforthemastergridandoptionallyanyfinegridnest
specifiedforagivensimulation.Thelayerinterfaceheightsdefinetheverticalgridstructurefor
eachgrid.Thenumberofverticallayersandtheverticalgriddefinitionmustbeconsistent
amongallgridsinasimulation;otherwiseCAMxwillstopwithanerrormessageifthis
conditionisnotmet.Thelayerinterfaceheightsmaybespecifiedtovaryinspaceand/ortime
(e.g.,tofollowthelayerstructureofmeteorologicalmodels),ortheymaybesettoaconstant
field.CAMxallowstheusertooptionallysupplywindcomponentsatcellcenter,inwhichcase
themodelwillinterpolatethecomponentstotheirrespectivepositionsoncellinterfaces,or
theusermaysupplythesecomponentsdirectlyonthestaggeredArakawaCconfiguration
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
ione,namvar(l),((var(i,j),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 50www.camx.com
(recommended).Inanycase,theusermustsupplyafullnx×ny×nzarrayofwindvaluesforeach
component(eventhoughtheCAMxArakawaCconfigurationusesonly(nx‐1)×(ny‐1)valuesin
thehorizontal).Thewindstaggeringflagissetinthesecondheaderrecord.Thepressure,
wind,temperature,andhumidityfieldsareusedfortransport,plumerise,PiG,dryandwet
deposition,andchemistrycalculations.
Thedatarecordsforthetime‐variant3‐Dmeteorologicalfilehavethefollowingstructureand
arerepeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnvar
nz+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
ZGRID_M Layerinterfaceheights(mAGL)
PRESS_MB Pressure(mb)
TEMP_K Temperature(K)
HUMID_PPM Humidityasmixingratio(ppm)
UWIND_MpS U‐component(east‐west)wind(m/s)
VWIND_MpS V‐component(north‐south)wind(m/s)
var Reallayerkvariablefieldvaluesfornxgridcolumnsandnygridrows
CAMxtime‐interpolatesthesemeteorologicalvariablestoeachmodeltimestepforeachgrid,
andsothemodelrequiresthatdatabeavailableonfileforanadditionalupdatetimeattheend
ofthesimulation.Forexample,inthecaseofhourlyfields,a24‐hoursimulationrequires25
inputfieldsonfile.Thetimeintervalofthedatarecordsmustmatchthetimezoneandinput
frequencyofthemeteorologyasspecifiedintheCAMx.infile.
3.4.3.4InputTime‐Variant3‐DVerticalDiffusivityFile
Thetime‐variant3‐Dverticaldiffusivityfilecontainsgriddedfieldsoflayer‐interfacediffusivity
(i.e.,turbulentexchangeordiffusioncoefficients).Thisfilemustbedevelopedforthemaster
grid,andoptionallyanyfinegridnests.Thisfileiskeptseparatefromthemainmeteorological
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
Loopfromk=1tonzlayers:
ione,namvar(l),((var(i,j,k),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 51www.camx.com
datafiletofacilitatethesubstitutionofalternativeverticalmixingrates.Diffusivityisusedfor
verticaldiffusionandPiGpuffgrowthcalculations.
Thedatarecordsforthetime‐variant3‐Dmeteorologicalfilehavethefollowingstructureand
arerepeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etime Realendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnvar
nz+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
KV_M2pS Verticaldiffusivity(m2/s)
var Reallayerkvariablefieldvaluesfornxgridcolumnsandnygridrows
CAMxtime‐interpolatesthediffusivitytoeachmodeltimestepforeachgrid,andsothemodel
requiresthatdatabeavailableonfileforanadditionalupdatetimeattheendofthe
simulation.Forexample,inthecaseofhourlyfields,a24‐hoursimulationrequires25input
fieldsonfile.Thetimeintervalofthedatarecordsmustmatchthetimezoneandinput
frequencyofthemeteorologyasspecifiedintheCAMx.infile.
3.4.3.5InputTime‐Variant3‐DCloud/PrecipitationFile
Thetime‐variant3‐Dcloud/precipitationfilecontainsgriddedfieldsofcloudandprecipitation
parameterstobeusedforphotochemistry,aqueouschemistry,andwet/drydeposition
calculations.Notethatprecipitationrateisnotexplicitlyprovidedtothemodel;instead,itis
internallycalculatedfromthethreeprecipitationwatercontentformsprovidedonthe
cloud/rainfile.Thisfilealsocontainslayer‐specificcloudopticaldepthtoscaledownphotolysis
ratesforlayerswithinorbelowcloudstoaccountforUVattenuation,ortoscaleuptherates
forlayersabovecloudstoaccountforUVreflection.Thisfilemustbedevelopedforthemaster
grid,andoptionallyanyfinegridnests,ifchemistry,dry,and/orwetdepositionareinvoked.
Thedatarecordsforthetime‐variant3‐Dcloud/precipitationfilehavethefollowingstructure
andarerepeatedforeachtimeintervalonfile:
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
Loopfromk=1tonzlayers:
ione,namvar(l),((var(i,j,k),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 52www.camx.com
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnvar
nz+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
CLODW_GpM3Cloudwatercontent(g/m3)
RAINW_GpM3Rainwatercontent(g/m3)
SNOWW_GpM3Snowwatercontent(g/m3)
GRPLW_GpM3Graupelwatercontent(g/m3)
CLOUDOD Layer‐specificcloudopticaldepth
var Reallayerkvariablefieldvaluesfornxgridcolumnsandnygridrows
TheCAMxcloudfieldsareassumedtobetime‐averaged,sothemodeldoesnotrequirean
additionalupdatetimeattheendofthesimulation.Forexample,inthecaseofhourlyfields,a
24‐hoursimulationrequiresonly24cloudinputfieldsonfile.Thetimeintervalofthedata
recordsmustmatchthetimezoneandinputfrequencyofthemeteorologyasspecifiedinthe
CAMx.infile.
3.4.3.6Input3‐DInitialConditionsFile
Theinput3‐Dinitialconditionsfilecontainsgriddedconcentrationfieldsonthemastergrid.
Initialconcentrationfieldsmaybespecifiedforasub‐setofthetotalnumberofmodeled
species.Aninitialconditionfilemustbedevelopedforthemastergrid,andcontain
concentrationfieldsforatleastonespecies.Forthosespeciesnotontheinitialconditionfile,
CAMxsetsupuniformfieldsusingthe“lowerbound”valuesspecifiedinthechemistry
parametersfile.CAMxtheninterpolatesallmastergridinitialconditionstoeachfinegridnest
atthestartofthesimulation.
Thedatarecordsfortheinitialconditionsfilehavethefollowingstructureandarerepeatedfor
eachtimeintervalonfile:
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
Loopfromk=1tonzlayers:
ione,namvar(l),((var(i,j,k),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 53www.camx.com
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnspec
nz+1
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
conc Reallayerkconcentrationfieldvalues(ppmforgases,µg/m3foraerosols)
fornxgridcolumnsandnygridrows
ThetimeintervalofthedatarecordsmustmatchthetimezoneasspecifiedintheCAMx.infile.
3.4.3.7Input3‐DLateralBoundaryConditionsFile
Theinput3‐Dlateralboundaryconditionsfilecontainsgriddedconcentrationfieldsonthe
lateralfacesofthemastergridboundary.Boundaryconcentrationfieldsmaybespecifiedfora
sub‐setofthetotalnumberofmodeledspecies.However,ifaboundaryconcentrationis
specifiedforagivenspecies,itmustbesuppliedforallfourboundaries.Aboundary
concentrationfilemustbedevelopedforthemastergrid,andcontainconcentrationfieldsfor
atleastonespecies.Forthosespeciesnotontheboundaryconditionsfile,CAMxsetsup
uniformfieldsusingthe“lowerbound”valuesspecifiedinthechemistryparametersfile.The
timespanofeachsetofboundarydatarecordsmaybesetarbitrarily;e.g.,asetofboundary
conditionsmaybespecifiedforasixhourspan,followedbyasetspanningjustanhour.
Theboundaryconditionsfileaddsanadditionalsetoffourheaderrecords,resultinginatotal
ofeightheaderrecordsaltogether(notethatfirstfourrecordsareidenticaltotheheader
recordsdescribedabove):
ibdate,btime,iedate,etime
Loopfroml=1tonspecspecies:
Loopfromk=1tonzlayers:
ione,namspec(l),((conc(i,j,k,l),i=1,nx),j=1,ny)
name,note,ione,nspec,ibdate,btime,iedate,etime
plon,plat,iutm,xorg,yorg,delx,dely,nx,ny,nz,iproj,istag,tlat1,tlat2,rdum
ione,ione,nx,ny
(namspec(l),l=1,nspec)
Loopfrom1to4boundaries:
ione,iedge,ncell,(icell(n),idum,idum,idum,n=1,ncell)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 54www.camx.com
Theadditionalheadervariableshavethefollowingdefinitions:
Records5‐8
ione Integerdummyvariable(=1)
iedgeIntegerboundaryedgenumber(1=west,2=east,3=south,4=north)
ncellIntegernumberofrowsorcolumnsonthisedge
icellIntegerindexoffirstcellmodeled(edges1,3),orlastcellmodeled(edges
2,4):if“0”,thisrow/columnisomittedfromthesimulation
idum Integerdummyvariable
Thedatarecordsfortheboundaryconditionsfilehavethefollowingstructure,andare
repeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnspec
4+1
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
bc Realedgeiedgeboundaryconcentrations(ppmforgases,µg/m3for
aerosols)forncellgridrows/columns,andnzlayers
ThetimeintervalofthedatarecordsmustmatchthetimezoneasspecifiedintheCAMx.infile.
3.4.3.8Input2‐DTopBoundaryConditionsFile
Theinput2‐Dtopboundaryconditionsfilecontainsgriddedconcentrationfieldsabovethetop
ofthemastergridboundary.Boundaryconcentrationfieldsmaybespecifiedforasub‐setof
thetotalnumberofmodeledspecies;thesub‐setofspeciesmaydifferfromthelateral
boundaryconditions.Thetopboundaryconcentrationfileisoptional,butifsupplieditmust
containconcentrationfieldsforatleastonespecies.Forthosespeciesnotontheboundary
conditionsfile,CAMxsetsupuniformfieldsusingthe“lowerbound”valuesspecifiedinthe
chemistryparametersfile.Thetimespanofeachsetoftopboundarydatarecordsmaybeset
arbitrarily;e.g.,asetofboundaryconditionsmaybespecifiedforasixhourspan,followedbya
ibdate,btime,iedate,etime
Loopfroml=1tonspecspecies:
Loopfromiedge=1to4boundaries:
ione,namspec(l),iedge,((bc(i,k,iedge,l),k=1,nz),i=1,ncell)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 55www.camx.com
setspanningjustanhour.Thetimespanofthetopboundaryconditionsmaydifferfromthe
lateralboundaryconditions.
Ifthetopboundaryconditionfileisnotsupplied,CAMxwilldefaulttointernallyemployingthe
original“zero‐gradient”mixingratioassumption,wherebytheconcentrationsofeachspeciesin
thetopmodellayer(asmolepollutantpermoleair)isassumedtoalsoexistabovethemodel
top.
Thedatarecordsforthetopboundaryconditionsfilehavethefollowingstructureandare
repeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnspec
nz+1
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
tc Realconcentrationfieldvalues(ppmforgases,µg/m3foraerosols)
fornxgridcolumnsandnygridrows
ThetimeintervalofthedatarecordsmustmatchthetimezoneasspecifiedintheCAMx.infile.
3.4.3.9InputElevatedPointSourceFile
Theinputelevatedpointsourceemissionsfilecontainsstackparametersandemissionratesfor
allelevatedpointsources,andforallemittedspecies,tobemodeled.Ifelevatedpointsources
aretobemodeled,onlyonepointsourceemissionsfilemustbedevelopedfortheentire
modelingdomain.Thepointsourcefilealsoflagstheindividualstackstobetreatedbythe
CAMxPiGsub‐modelbysettingthestackdiameterasanegativevalue.Thefileoffersthe
abilitytooptionallyspecifytheeffectiveplumeheightortheverticalplumedistributionfor
eachpointsourceandtobypasstheinternalplumerisecalculation.
Theelevatedpointsourcefileaddstwoadditionalsetofheaderrecordsthatspecifytime‐
invariantstackparameters,resultinginatotalofsixheaderrecordsaltogether(notethatfirst
fourrecordsareidenticaltotheheaderrecordsdescribedabove):
ibdate,btime,iedate,etime
Loopfroml=1tonspecspecies:
ione,namspec(l),((tc(i,j,l),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 56www.camx.com
Theadditionalheadervariableshavethefollowingdefinitions:
Record5
ione Integerdummyvariable(=1)
nstk Integernumberofelevatedpointsourcestacks
Record6
xstk Realstackx‐coordinate(mordegreeslongitude)
ystk Realstacky‐coordinate(mordegreeslatitude)
hstk Realstackheight(m)
dstk Realstackdiameter(m);negativevalueflagssourceforPiG
tstk Realstackexittemperature(K)
vstk Realstackexitvelocity(m/hr)
Thetime‐variantdatarecordsfortheelevatedpointsourcefilehavethefollowingstructure,
andarerepeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedate Integerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2
ione Integerdummyvariable(=1)
nstk Integernumberofelevatedpointsourcestacks
name,note,ione,nspec,ibdate,btime,iedate,etime
plon,plat,iutm,xorg,yorg,delx,dely,nx,ny,nz,iproj,istag,tlat1,tlat2,rdum
ione,ione,nx,ny
(namspec(l),l=1,nspec)
ione,nstk
(xstk(n),ystk(n),hstk(n),dstk(n),tstk(n),vstk(n),n=1,nstk)
ibdate,btime,iedate,etime
ione,nstk
(idum,idum,kcell(n),flow(n),plmht(n),n=1,nstk)
Loopfroml=1tonspecspecies:
ione,namspec(l),(ptems(n,l),n=1,nstk)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 57www.camx.com
Record3
idum Integerdummyvariable
kcellZeroorpositive:Ignored
Negative:integerflagforOSAT/PSATsourceregionoverride
flow Zero:ignored(plumerisecalculationusestime‐invariantexitvelocity)
Positive:realstackflowrate(m3/hr)forplumerisecalculations
Negative:realplumebottom(m)forverticalplumedistributionoverride
plmhtZeroorpositive:ignored(plumerisecalculationisperformed)
Negative(flow ≥0):realeffectiveplumeriseoverride(m)
Negative(flow <0):realplumetop(m)forverticalplumedistribution
override
Record4throughnspec+4
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
ptemsRealpointemissionrate(mol/timeperiodforgases,g/timeperiodfor
aerosols)fornstkpointsources
Notethattheemissiontimeinterval(thedenominatorfortheemissionsrate)isnormally,but
notnecessarily,1hour.Thetimeintervaloftheemissionrecordsmustmatchthetimezone
andinputfrequencyoftheemissionsasspecifiedintheCAMx.infile.
3.4.3.10InputGriddedEmissionsFile
Theinputgriddedemissionsfilecontainsgriddedfieldsoflow‐level(i.e.,surface)emissionrates
forallemittedspeciestobemodeled.Ifgriddedemissionsaretobemodeled,agridded
emissionsfilemustbedevelopedforthemastergridandoptionallyanynestedfinegrids.
Thedatarecordsofthegriddedemissionsfilehavethefollowingstructure,andarerepeated
foreachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedate Integerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnspec
nz+1
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
ibdate,btime,iedate,etime
Loopfroml=1tonspecspecies:
ione,namspec(l),((emiss(i,j,l),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 58www.camx.com
emiss Realgriddedemissionfieldvalues(mol/timeperiodforgases,g/time
periodforaerosols)fornxgridcolumnsandnygridrows
Notethattheemissiontimeinterval(thedenominatorfortheemissionsrate)isnormally,but
notnecessarily,1hour.Thetimeintervaloftheemissionsrecordmustmatchthetimezone
andinputfrequencyoftheemissionsasspecifiedintheCAMx.infile.
3.4.4OutputFiles
Masterandnestedgridinstantaneousfilescontainfullthree‐dimensionalfieldsofallspecies
modeled,whilethegriddedaverageanddepositionfilescontainonlythosespeciesspecifiedin
theruncontrolfile.Forflexibility,CAMxofferstheoptiontowritefullthree‐dimensional
averageconcentrationfields,orjustsurfacelayertwo‐dimensionalfields(seethe“3‐Daverage
file”optionintheCAMxcontrolfile).Itispermissibletochangethenumberofspeciesonthe
averagefile,orchangebetween2‐Dand3‐Daveragefiles,fromoneCAMxsimulationperiodto
thenext(providedtheperiodsareconfiguredasseparateCAMxruns).Astheinstantaneous
concentrationfilesareusedforCAMxrestarts,themodelonlywritesinstantaneousfieldsat
theendofthesimulation.PiGoutputfilespossessauniqueformat,andareusedprimarilyfor
modelrestarts.
3.4.4.1OutputConcentrationFiles
Theoutputaveragefilesforallgrids,andthecoarse(master)gridinstantaneousfile,areall
writtenintheCAMxFortranbinaryformatasdescribedearlier.Therearethreedifferences
betweentheoutputconcentrationfilesandtheinputinitialconcentrationfiles.First,thefile
namegiveninthefiledescriptionheaderrecord(headerrecord#1)is“AVERAGE”forthe
averageoutputfile,“INSTANT”fortheinstantaneousoutputfile,and“AIRQUALITY”forthe
inputinitialconcentrationfile.Second,the“note”inthefiledescriptionheaderrecordofthe
outputconcentrationfilesisthemessagesuppliedinthefirstlineoftheCAMxruncontrolfile,
whereasthe“note”intheairqualityfileissetaspartoftheinputfilepreparation.Third,the
specieslistscanbedifferentamongthefiles:theoutputinstantaneousfilecontainsallspecies
modeled(asspecifiedinthechemistryparametersfile),theaverageoutputfilecontainsonly
thespeciesspecifiedintheruncontrolfile,andtheinputinitialconcentrationfilemaycontain
anysubsetofmodeledspeciesasdeterminedwhenthatfileisprepared.
Twootherdifferencesexistbetweentheaverageandinstantaneousoutputfiles.Asnoted
above,theaveragefilemaycontainonlysurface‐levelfieldsortheentirethree‐dimensional
fields,asselectedbytheuser.Also,gasconcentrationfieldsareoutputasppminaveragefiles,
butasµmol/m3ininstantaneousfiles(aerosolsareinµg/m3inbothfiles).Becauseofthese
differences,andbecauseaveragefilesusuallydonotcontainallmodeledspecies,CAMxdoes
notallowtheaverageoutputconcentrationfiletobeusedforsimulationrestarts.
3.4.4.2OutputDepositionFiles
Theoutputdepositionfileisidenticalinformattothetwo‐dimensionalsurface‐leveloutput
averageconcentrationfile.Thefilenamegivenonthefirstrecordofthedepositionfileis
“AVERAGE”sothatexistingpost‐processingsoftwarewillrecognizetheformat.However,the
outputdepositionfilediffersfromtheoutputaverageconcentrationfileinoneimportantway.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 59www.camx.com
Thespecieslistisidenticaltothelistontheaverageconcentrationoutputfiles,exceptthatfour
parametersareoutputforeachspecies:
species_DV Real2‐Ddrydepositionvelocityfieldforspecies(m/s)
species_DD Real2‐Ddrydepositedmassfieldforspecies(mol/hafor
gases,g/haforaerosols)
species_WD Real2‐Dwetdepositedmassfieldforspecies(mol/hafor
gases,g/haforaerosols)
species_LC Real2‐Dprecipitationliquidconcentrationforspecies(mol/lfor
gases,g/lforaerosols)
3.4.4.3OutputSurfaceMassFiles
Theoutputsurfacemodelmassfileisidenticalinformattothetwo‐dimensionalsurface‐level
outputaverageconcentrationanddepositionfiles.Thefilenamegivenonthefirstrecordof
thedepositionfileis“AVERAGE”sothatexistingpost‐processingsoftwarewillrecognizethe
format.However,thecontentsofthesurfacemassfiledifferfromtheotherfilesintwoways.
First,thespecieslistisdefinedfromthesectionofthechemistryparametersfilethatexplicitly
liststhespeciestobetrackedbythesurfacemodel(seeSection4.8).Second,twoparameters
areoutputforeachsurfacemodelspecies:
Sspecies Real2‐Ddrymassonsoilorsnowforspecies(mol/ha)
Vspecies Real2‐Ddrymassonvegetationforspecies(mol/ha)
Thisfileisalsousedforrestartstore‐initializethesurfacemodelwithaccumulatedspecies
massonsoil/snowandvegetativesurfacesfromapreviousrun.
3.4.4.4Nested(Fine)GridInstantaneousOutputFile
Thenested(or“fine”)gridFortranbinaryoutputinstantaneousfileisuniqueandcontainsthe
three‐dimensionalconcentrationfieldsforallnestedgridstogether,asopposedtoseparate
filesforeachgrid.Allgriddefinitionparametersgiveninthesefilesarereferencedrelativeto
themastergrid,sospecificabsoluteinformationaboutgridcellsizeorprojectioncoordinates
foreachnestedgridmustbedeterminedfrommastergridparameters.Iftheuserutilizesthe
Flexi‐nestingcapabilityofCAMx,thenthegriddedfieldsoutputtothenestedfinegridfileswill
changeaccordingtohownestsarealtered,added,and/orremovedduringthecourseofa
simulation.
Theheaderportionofthenestedgridoutputfilescontain3+nnestrecordswiththefollowing
structure:
message
nnest,nspec
(mspec(l),l=1,nspec)
Loopfrom1tonnestgridnests
ibeg,jbeg,iend,jend,mesh,ione,nx,ny,nz,iparnt,ilevel
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 60www.camx.com
Thetime‐variantportionofthenestedgridoutputfileshavethefollowingstructure,wherethe
followingrecordsarerepeatedforeachoutputtime:
Thevariablesonthenestedgridoutputconcentrationfileshavethefollowingdefinitions:
message Textstringcontainingfiledescription(character*60)
nnest Numberoffinegridnestsonfile
nspec Numberofspeciesonfile
mspec Speciesnamesfornspecspecies
ibeg Gridnx‐directionstartingindexofgrid(mastergridcell)
jbeg Gridny‐directionstartingindexofgrid(mastergridcell)
iend Gridnx‐directionendingindexofgrid(mastergridcell)
jend Gridny‐directionendingindexofgrid(mastergridcell)
mesh Gridnmeshingfactor(numberofnestedcellspermaster)
ione Dummyinteger=1
nx Gridnnumberofgridrows
ny Gridnnumberofgridcolumns
nz Gridnnumberoflayers
iparnt Gridn’sparentgrid(gridindexwithinwhichthisfinegridisnested;0=
mastergrid)
ilevel Gridn’sgridlevel(depthatwhichthisgridisnested;1=mastergridis
parent)
time Timeofoutput(HHMM);endinghourforaverageoutput
idateDateofoutput(YYJJJ)
conc Gridn,speciesl,layerkconcentrations(ppmforaveragegases,µg/m3
foraverageaerosols,µmol/m3forinstantaneousgasspecies)fornxgrid
columns,andnygridrows
3.4.4.5PiGRestartFile
WhenthePiGoptionisinvoked,CAMxoutputsallpuffparameterseachhourformodelrestart
capabilities.ThisfileisFortranbinaryandisanalogoustotheinstantaneousgridded
concentrationoutputfilesinthatitrepresentsa“snapshot”ofdataatthetopofeachhour.
Thefileformatisuniqueandcontainsinformationforeachpuff,includingcoordinates,grid
location,sizespecifications,age,andmassofeachofthechemicalspeciescarried.Whilethis
filecontainsPiGinformationfortheentiresimulation,itwouldbeoflimiteduseforcertain
analysessuchasplottingpufftrajectories.Thisisbecausetheinstantaneousnatureofthedata,
time,idate
Loopfrom1tonnestgridnests
Loopfroml=1tonspecspecies:
Loopfromk=1tonzlayers:
((conc(i,j,k,l),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 61www.camx.com
andthedynamicmemoryallocationutilizedinthePiGsubmodel,leadstoinsufficient
informationtoidentifyandtrackindividualpuffshourtohour.
ThePiGrestartfilecontainstworecordswiththefollowingstructure,andthesearerepeated
foreachoutputtime:
ThevariablesonthePiGrestartfilehavethefollowingdefinitions:
idatpig Dateofoutput(YYJJJ)
timpig Timeofoutput(HHMM)
npig NumberofPiGpuffsactiveatthisoutputtime
nreactr Numberofchemicalreactorsineachpuff
ingrd Gridindexfornpigpuffs
idpig Pointsourceindexfornpigpuffs
xpigf x‐coordinateofpufffront(kmfrommastergridSWcorner)fornpigpuffs
xpigb x‐coordinateofpuffback(kmfrommastergridSWcorner)fornpigpuffs
ypigf y‐coordinateofpufffront(kmfrommastergridSWcorner)fornpigpuffs
ypigb y‐coordinateofpuffback(kmfrommastergridSWcorner)fornpigpuffs
zpig Puffheight(mAGL)fornpigpuffs
axisy Pufflateralwidth(m)fornpigpuffs
axisz Puffverticaldepth(m)fornpigpuffs
sigy PuffGaussianlateraldimension(m)fornpigpuffs
sigx PuffGaussianlongitudinaldimension(m)fornpigpuffs
sigz PuffGaussianverticaldimension(m)fornpigpuffs
pufftop Pufftopheight(mAGL)fornpigpuffs
puffbot Puffbottomheight(mAGL)fornpigpuffs
htfms Puffhorizontalturbulentfluxmoment,shear(m2/s)
htfmb Puffhorizontalturbulentfluxmoment,buoyancy(m2/s)
vtfms Puffverticalturbulentfluxmoment,shear(m2/s)
vtfmb Puffverticalturbulentfluxmoment,buoyancy(m2/s)
agepigf Pufffrontagesincerelease(s)fornpigpuffs
agepigb Puffbackagesincerelease(s)fornpigpuffs
fmspig Puffvolumeparameter(unitless)fornpigpuffs
ipufmap PuffOSAT/PSATregionmappointer(unitless)fornpigpuffs
ipufgrp PuffOSAT/PSATgrouppointer(unitless)fornpigpuffs
idatpig,timpig,npig,nreactr
(ingrd(n),idpig(n),xpigf(n),xpigb(n),ypigf(n),ypigb(n),zpig(n),
& axisy(n),axisz(n),sigy(n),sigx(n),sigz(n),pufftop(n),puffbot(n),
& htfms(n),htfmb(n),vtfms(n),vtfmb(n),agepigf(n),agepigb(n),fmspig(n),
& ipufmap(n),ipufgrp(n),
& ((puffrad(i,nr,n),i=1,nrad),nr=1,nreactr),
& ((puffmass(i,nr,n),i=1,nspec),nr=1,nreactr),n=1,npig
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 62www.camx.com
puffrad Puffradicalconcentrations(ppm)fornradspecies,nreactrreactors,and
npigpuffs
puffmassPuffpollutantmass(µmol)fornspecspecies,nreactrreactors,andnpig
puffs
3.4.4.6PiGSampleGridFiles
TheoptionalPiGsamplinggridconcentrationsaretime‐averagedinthesamemannerasthe
outputaverageconcentrationsprovidedonthecomputationalgrids.Thesameuser‐defined
setofoutputspeciesarewrittentothesamplinggridfiles,butonlytwo‐dimensionalsurface
layerconcentrationsarereported.ThesamplinggridfileformatisidenticaltotheCAMx
averageanddepositionfiles,withonefilegeneratedpersamplinggrid,sothattheymaybe
readilyviewedandmanipulatedwithCAMxpost‐processingsoftware.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 63www.camx.com
4.COREMODELFORMULATION
ThissectionoutlinesthenumericalapproachemployedinthecoreCAMxmodel,anddescribes
thetechnicalformulationoftheemissions,transportandremovalalgorithms.Thespecific
chemicalmechanismsandtheirnumericalsolversarediscussedindetailinSection5.
DescriptionsofPlume‐in‐GridandeachProbingToolareprovidedinSections6through10.
4.1NumericalApproach
Thephysicalrepresentationsandthenumericalmethodsusedforeachtermofthepollutant
continuityequation(describedinSection1)aresummarizedinTable4‐1.CAMxincludespeer‐
acceptedalgorithmsandcomponentformulations,anditsmodularframeworkeasesthe
additionand/orsubstitutionofalternativealgorithmsinthefuture.
Table4‐1.SummaryoftheCAMxmodelsandmethodsforkeyphysicalprocesses.
ProcessPhysicalModels NumericalMethods
HorizontaladvectionEuleriancontinuityequation
Bott(1989)
PPM(ColellaandWoodward,1984)
HorizontaldiffusionK‐theory1storderclosure Explicitsimultaneous2‐Dsolver
VerticaladvectionEuleriancontinuityequationImplicitbackward‐Euler(time)hybrid
centered/upstream(space)solver
Verticaldiffusion K‐theory1storderclosure
Non‐localmixing
Implicitbackwards‐Euler(time)
centered(space)solver
ExplicitACM2non‐local
convection/diffusion(Pleim,2007)
Gas‐PhaseChemistry
CarbonBond2005(Yarwoodetal.,2005b)
CarbonBond6(Yarwoodetal.,2010,
2012a,2014;HildebrandtRuizand
Yarwood,2013;Emeryetal.,2015)
SAPRC07TC(Carter,2010;Hutzelletal.,
2012)
Inorganic/organicaerosolprecursors
EBI(Herteletal.,1993)
LSODE(Hindmarsh,1983)
AerosolChemistry
Aqueousinorganicchemistry
Inorganicthermodynamics/partitioning
Organicthermodynamics/partitioning
Static2‐modeormulti‐sectionsizemodels
RADM‐AQ(Changetal.,1987)
ISORROPIA(Nenesetal.,1998)
SOAP(Straderetal.,1999)or
VBS(Kooetal.,2014)
Coarse/Fine(CF)2‐modemodel
CMUsectionalmodel(Pandisetal.,
1993)
Drydeposition
Resistancemodelforgases(Wesely,1989)
andaerosols(SlinnandSlinn,1980)
Resistancemodelforgases(Zhangetal.,
2003)andaerosols(Zhangetal.,2001)
Depositionvelocityassurface
boundaryconditioninvertical
diffusionsolver
WetdepositionScavengingmodelforgasesandaerosols
(SeinfeldandPandis,1998)
Exponentialdecayasafunctionof
scavengingcoefficient
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 64www.camx.com
Thecontinuityequationisnumericallymarchedforwardintimeoveraseriesoftimesteps.At
eachstep,thecontinuityequationisintegratedbywayofanoperator‐splittingapproachthat
calculatestheseparatecontributionofeachmajorprocess(emission,advection,diffusion,
chemistry,andremoval)toconcentrationchangewithineachgridcell.Thespecificequations
thataresolvedindividuallyintheoperator‐splittingprocessareshowninorderbelow:
whereclisspeciesconcentration(mol/m3forgasses,g/m3foraerosols),Elisthelocalspecies
emissionrate(mol/sforgasses,g/sforaerosols),tistimesteplength(s),uandvarethe
respectiveeast‐west(x)andnorth‐south(y)horizontalwindcomponents(m/s),AyzandAxzare
cellcross‐sectionalareas(m2)inthey‐zandx‐zplanes,respectively,mistheratioofthe
transformeddistanceonthevariousmapprojectionstotruedistance(m=1forcurvi‐linear
latitude/longitudecoordinates),andΛlisthewetscavengingcoefficient(s‐1).
Amasterdrivingtimestepforthemodelisdynamicallydeterminedduringthesimulationfor
thelargestandcoarsest(master)grid.Timestepstypicallyrangefrom5‐15minutesforgrid
cellsizesof10‐50km,toaminuteorlessforsmallcellsizesof1‐2km.Asaresult,nestedgrids
requiremultipledrivingtimestepspermasterstepdependingontheirgridsizesrelativetothe
mastergridspacing.Furthermore,multipletransportandchemistrytimestepsperdrivingstep
areusedasnecessarytoensureaccuratesolutionsfortheseprocessesonallgrids.
equationsreaction specificMechanism
η
Z
2
2
2
2
Chemistry
l
ll
ScavengingWet
l
l
Y
l
X
diffusionXY
l
l
v
diffusion
l
l
l
transportZ
l
lxz
xz
advectionY
l
lyz
yz
advectionX
l
l
Emission
l
t
c
c
t
c
y
ρ/c
Km
yx
ρ/c
Km
x
m
t
c
z
ρ/c
ρK
zt
c
tz
h
c
z
c
t
c
m
cvA
yA
m
t
c
m
cuA
xA
m
t
c
zyx
E
m
t
c
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 65www.camx.com
Thefirstprocessineachtimestepforagivengridistheinjectionofemissionsfromallsources.
CAMxthenperformshorizontalandverticaladvection,verticaldiffusioncoupledtodry
deposition,horizontaldiffusion,chemistry,andfinallywetscavenging.
Althoughadvectionisperformedseparatelyinthex(east‐west),y(north‐south),andz(vertical)
directions,thenumericallinkagebetweenthesecomponentshasbeendevelopedinamass
consistentfashiontopreservethedensityfieldateachtimestep.Thismaintainstheflexibility
toallowmanytypesofmeteorologicalmodels,andmodelinggridresolutions,projections,and
layerstructures,tocharacterizetransportinCAMx.
Tracegasesandparticlesareremovedfromtheatmosphereviadepositiontotheground.Dry
depositionreferstothedirectsedimentationand/ordiffusionofmaterialtovariousterrestrial
surfacesanduptakeintobiota.Drydepositionvelocitiesforeachspeciesareusedasthe
surfaceboundaryconditionforverticaldiffusion,whichappropriatelycouplessurfaceremoval
ofpollutantsthrougheachcolumnofcellsviatheverticalmixingprocess.Wetdeposition
referstotheuptakeofmaterialintocloudwaterandprecipitation,anditssubsequenttransfer
tothesurface.Theefficiencywithwhichwetanddrydepositionprocessescanremove
pollutantsfromtheairdependsuponthephysicalandchemicalpropertiesofthepollutants,
localmeteorologicalconditions,thetypeofsurfaceonwhichtheyarebeingdeposited,andon
thefrequency,duration,andintensityofprecipitationevents.
4.2CAMXGridConfiguration
4.2.1GridCellArrangement
CAMxcarriespollutantconcentrationsatthecenterofeachgridcellvolume,representingthe
averageconcentrationovertheentirecell.Meteorologicalfieldsaresuppliedtothemodelto
quantifythestateoftheatmosphereineachgridcellforthepurposesofcalculatingtransport,
chemistry,andremoval.CAMxinternallycarriesthesevariablesinanarrangementknownas
an“ArakawaC”gridconfiguration(Figure4‐1).Statevariablessuchastemperature,pressure,
watervapor,andcloudwaterarelocatedatcellcenteralongwithpollutantconcentration,and
representgridcellaverageconditions.Windcomponentsanddiffusioncoefficientsarecarried
atcellinterfacestodescribethetransferofmassinandoutofeachcellface.NoteinFigure4‐
1,forexample,thathorizontalwindcomponentsuandvarestaggeredfromeachother.This
facilitatesthesolvingofthetransportequationsin“fluxform”.
Dependinguponthesourceofmeteorologicaldata,itisrecommendedthattheuserdirectly
providethegriddedhorizontalwindfieldsinthestaggeredArakawaCconfiguration.However,
thisisnotalwaysfeasible,andsoCAMxofferstheoptionfortheusertosupplyall
meteorologicalvariables,includinghorizontalwindcomponents,atcellcenter;inthiscase
CAMxinternallyinterpolatesthewindstocellinterfaces.Notethatthisleadstoaslight
smoothingeffectonthehorizontalwindfields.
Figure4‐1alsodescribesthehorizontalcellindexingconventionusedinCAMx.Eachcellis
definedbytheindexpair(i,j),whereirangesfrom1tonx(thenumberofcellsintheeast‐west
direction),andjrangesfrom1tony(thenumberofcellsinthenorth‐southdirection).The
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 66www.camx.com
Figure4‐1.AhorizontalrepresentationoftheArakawaCvariableconfigurationusedin
CAMx.
easternandnorthernfacesofthecellareindexed(i,j),whilethewesternandsouthernfaces
areindexed(i‐1,j)and(i,j‐1),respectively.
Inthevertical,mostvariablesarecarriedateachlayermidpoint(definedasexactlyhalfway
betweenlayerinterfaces)torepresentlayeraverages.Againtheexceptionsarethosevariables
thatdescribetherateofmasstransportacrossthelayerinterfaces,whichincludethevertical
diffusioncoefficientKVandtheverticaltransportrate
.Thesevariablesarecarriedinthe
centerofeachcellhorizontally,butarelocatedatthetopofthelayer(i.e.,theinterface)
vertically.
4.2.2GridNesting
CAMxincorporatestwo‐waygridnesting,whichmeansthatpollutantconcentration
informationpropagatesintoandoutofallgridnestsduringmodelintegration.Anynumberof
gridnestscanbespecifiedinasinglerun,wherehorizontalgridspacingcanvaryfromonegrid
nesttoanother(notethatverticalgridstructuresmustbeconsistentamongallgrids).The
nestedgridcapabilityofCAMxallowscost‐effectiveapplicationtolargeregionsinwhich
regionaltransportoccurs,yetatthesametimeprovidingfineresolutiontoaddresssmall‐scale
impactsinselectedareas.
Eachgridnestisdefinedoverasubsetofmaster(coarsest)gridcells.Therangeofmastergrid
rowandcolumnindicesthatdefinethecoverageofeachnestedgridmustbespecifiedinthe
runcontrolfile.Anintegernumberofnestedgridcellsmustspanonemastergridcell;this
numberisreferredtoasa“meshingfactor”.“Buffer”cellsareaddedaroundtheperimeterof
eachnestedgridtoholdlateralboundaryconditions.Buffercellsareaddedautomatically
withinCAMxandshouldnotbespecifiedbytheuserintheruncontrolfile.Allnestedgrid
outputfilescontaindatafortheentirearrayofcomputationalandbuffercells;however,buffer
cellconcentrationsareconsideredinvalidandshouldbeignored.Additionally,allnestedgrid
(i, j)
T, p, q, Kv
(i, j)
(i, j)
(i, j-1)
(i-1, j) u, Kx
u, Kx
v, Ky
v, Ky
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 67www.camx.com
Figure4‐2.Anexampleofhorizontalgridnesting,showingtwotelescopingnestedgrids
withina10×10cellmastergrid.Theouternestcontains10×12cells(includingbuffercellsto
holdinternallateralboundaryconditions),andtheinnernestcontains6×10cells(including
buffercells).
inputfilesmustcontaindatafortheentirearrayofcomputationalandbuffercells.Anexample
ofahorizontalnestingarrangementisshowninFigure4‐2.Here,twotelescopingfinegrid
nestsaredefined:onewithameshingfactorof2spanningmastergridcells(5,4)to(8,8),and
onewithameshingfactorof4spanningmastergridcells(6,6)to(6,7).
Restrictionsonspecifyingthesizeandresolutionofallgridnestsincludethefollowing:
1) Theratioofmastergridcellsizetonestedgridcellsizemustbeaninteger(e.g.,a
“meshingfactor”of3meansthat3nestedcellsspanthedistanceof1mastercell,
resultinginanareaof9nestedcellspermastercell);
2) Fortelescopinggrids(anestedgridcontaininganevenfinergrid),thecellsizeofthefinest
gridmustbeacommondenominatorforallparentgridsaboveit(e.g.,a36‐12‐4kmor
36‐12‐2kmarrangementisallowed,buta36‐12‐9kmisnot);
3) Therestrictionin(2)abovedoesnotapplytoparallelnestedgridsofthesamegeneration
(e.g.,4kmand5kmgridscanbelocatedindifferentareasofamastergridprovidedthat
themastercellsizeissomemultipleof20km);
4) Nestedgridscannotoverlap,althoughtheymayshareacommonlateralboundaryor
edge;
Coarse Grid Boundary Cells
Coarse Grid Boundary Cells
Coarse Grid Boundary Cells
Coarse Grid Boundary Cells
Fine Buffer Cells
Fine Buffer Cells
Fine Buffer Cells
Fine Buffer Cells
Boundary of Fine Grid 1
Boundary of Fine Grid 2
1 2 3 4 5 6 7 8 9 10
10
9
8
7
6
5
4
3
2
1
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 68www.camx.com
5) Nestedgridscannotextendintoalateralboundary,ornon‐modeled,areaofthemaster
grid;
6) CAMxiscurrentlyconfiguredtoallowfour“generations”ofnests(e.g.,fourlevelsof
telescopinggrids);thiscanbeextendedinthecodeifmorethanfourlevelsofnestsare
required;
7) Thetotalverticaldepthofeachnestedgridmustexactlymatchthedepthofthemaster
grid,andnestedgridverticallayerstructuresmustbeconsistentwiththemastergridin
termsofthenumberoflayersandtheirthicknesses;
4.2.3Flexi‐Nesting
ThefollowingFortranbinaryI/Ofilesmustbeprovidedforthemastergrid,andoptionally
providedforeachnestedgrid:
2‐Dsurfaceemissions;
2‐Dtime‐invariantsurfacecharacteristics(landuseandLAIdistribution);
2‐Dtime‐variantsurfacemeteorology(surfacetemperature,snowcover);
3‐Dtime‐variantstatemeteorology(wind,temperature,pressure,moisture,verticalgrid);
3‐Dtime‐variantcloudandprecipitationvariables;
3‐Dtime‐variantverticaldiffusivities
Anyoftheseinputfilesmaybesuppliedforeachnestedgrid,ornoneatall.Ifanyofthesefiles
arenotsuppliedforaparticularnestedgrid,theFlexi‐NestalgorithmwithinCAMxinterpolates
themissingfieldsfromtheparentgrid.Clearlyitisdesirabletoprovidenestedgriddata
wheneverpossible.However,theabilitytointerpolatedataisusefulfortestingsensitivityto
gridconfigurationsorforsituationswhenitisnotpossibletorunameteorologicalmodelforall
gridnests.
TheFlexi‐Nestoptionalsoallowsuserstoredefinethenestedgridconfigurationatanypointin
asimulation.Nestedgridscanbeintroducedorremovedonlyatthetimeofamodelrestart
sinceanewCAMxusercontrolfilemustbeusedtoredefinethegridconfiguration.For
example,theusermaywishto“spin‐up”themodeloverthefirsttwodaysusingjustthemaster
grid.Onthethirdday,theusermightintroduceoneormorenestsformoredetailedanalysis.
Thiswouldrequirethatthemodelberestartedonthethirddaywithanewcontrolfilethat
definesthepositionofthenewnestsand(optionally)providesanyadditionalinputfieldsfor
thesegrids.CAMxwillinternallyreconcilethedifferencesingridstructurebetweentherestart
filesandthenewusercontrolfile,andtheninterpolateanydatafieldsnotsuppliedtoCAMxfor
thenewnestsfromtheparentgrid(s).
4.3TreatmentofEmissions
PollutantemissionsaretreatedintwobasicwayswithinCAMx:low‐level(gridded)emissions
thatarereleasedintothelowest(surface)layerofthemodel;andelevatedstack‐specific
(point)emissionswithbuoyantplumerisethatcanbeemittedintoanymodellayer.Emission
ratesareheldconstant(nottimeinterpolated)betweenreadingintervals(usually1hour)but
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 69www.camx.com
areinjectedateverygrid‐specifictimestepduringthesimulation.Griddedandpointemissions
areprovidedtoCAMxinseparateinputfiles.Externalemissionprocessingsystemsareusedto
developgriddedandpoint,time‐andspace‐resolved,chemically‐speciatedinputfilesforCAMx.
TheseexternalprogramsarenotdiscussedinthisUser’sGuide;seeSection2formore
informationonemissionsystemsthatareusedtosupportCAMxapplications.
4.3.1GriddedEmissions
Two‐dimensionalgriddedlow‐levelemissionsaredefinedbyspace‐andtime‐varyingratesfor
eachindividualgasandPMspeciestobemodeled.Griddedemissionsrepresentsourcesthat
emitnearthesurfaceandthatarenotsufficientlybuoyanttoreachintotheuppermodel
layers.Suchemissioncategoriesinclude:
Low‐levelstack(point)emissionsthataretoosmalltoresultinplumeriseabovethe
modelsurfacelayer;
Othernon‐pointindustrialsources(fugitiveleaks,tanks,etc.);
Mobilesources(cars,trucks,non‐roadvehicles,railroad,marine,aircraft,etc.);
Residentialsources(heating,cooking,consumerproducts);
Commercialsources(bakeries,refuelingstations,drycleaners);
Biogenicsources;
Naturalsources(smallfires,wind‐blowndust).
Thespatialdistributionofeachindividualsourcewithinthesecategoriesisdefinedbythe
modelinggrid.Informationsuchaspopulationdistribution,housingdensity,roadway
networks,vegetativecover,etc.istypicallyusedasasurrogatetodistributeregionalemission
estimatesforeachsourcetothegridsystem.Processingtoolsareusedtocombineemissions
fromallsourcesintoasingleinputfileforeachgrid(seeSections2and3).
4.3.2ElevatedPointEmissions
Similarlytogriddedemissions,elevatedpointemissionsaredefinedbyspace‐andtime‐varying
ratesforeachindividualgasandPMspeciestobemodeled.Theonlydifferenceisthatthese
sourcesemitfromindividualstackswithbuoyantrisethatmaytakethemintouppermodel
layers.Thesetypesofsourcesarealmostalwaysassociatedwithlargeindustrialprocesses,
suchaselectricgenerators,smelters,refineries,largefactories,etc.butcanalsorepresent
naturalelevatedsourcessuchaswildfiresandlightningNOx.Thespatialdistributionofthese
pointsisspecificallygivenbythecoordinatesofthestacksthemselves(gridlocationsare
determinedwithinCAMx).PlumeriseisdeterminedwithinCAMxasafunctionofstack
parameters(height,diameter,exitvelocityandtemperature)andambientmeteorological
conditions,sothepointsourcefileprovidesspeciatedtime‐resolvedemissionratesandstack
parametersforeachindividualsource.Asinglepointsourcefileprovidesthedefinitionofall
stacksandtheiremissionsovertheentiremodelingdomain(seeSections2and3).
Plumeriseiscalculatedusingthemulti‐layerstability‐dependentalgorithmofTurneretal.
(1986).Thisapproachcalculatesthemomentumandbuoyantplumeriseenergyfromthe
stack,takesthelargerofthesetwovalues,anddeterminesthedissipationofthatenergyvia
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 70www.camx.com
mixingwithambientairaccordingtothemeteorologicalconditionsthroughthehostmodel
layer.Ifsufficientenergyremainstoreachintothenextmodellayer,thecalculationfor
buoyantriserepeatsforthemeteorologicalconditionsofthatlayer,andsoon,untilalayeris
foundwheretheplumecannotriseanyfarther.Allemissionsfromthissourcearethen
injectedintothegridcelldirectlyabovethestackatthislayerheight.Thisalgorithmwas
adoptedforCAMxbecauseitprovidesamorerealistichandlingofstablelayersaloftthatcan
trapplumerise,whereasthiseffectwouldnotberealizedbasedonmeteorologicalconditions
atstacktopalone.
Underneutral/unstableconditions,momentumriseatthestacktopiscalculatedfrom
whilebuoyancyriseisthelesserof
and
Intheseexpressionsdsisstackdiameter(m),vsisstackexitvelocity(m/s),hsisstackheight(m),
wisambientwindspeed(m/s),andzbisthedistancebetweenthestacktopandthebaseofthe
currentmodellayer.Aminimumwindspeedof1m/sisspecifiedtoavoidunrealisticallylarge
plumerise.Buoyancyfluxfisinitiallycalculatedfromstackparameters,butissettoresidual
fluxenteringthebottomofanyhigherlayer.Theinitialbuoyancyfluxatstacktopisgivenby
wheregisgravitationalacceleration(9.8m2/s),Tsisstackexittemperature(K),andTis
ambienttemperature(K).Theresidualfluxcalculationintothenexthigherlayerdependson
whichneutral/unstablebuoyancyriseequationwasoriginallyusedinthecurrentlayer:
or
whereztisthedistancebetweenstacktopandthetopofthecurrentmodellayer.
Understableconditions,momentumriseatthestacktopiscalculatedfromthelesserofHmu
and
w
vd
Hss
mu
3
bbu zwfH 5/3
/30
bsbu zwfhwfH 5/2
3
5/3
3/200/24
s
s
ss T
TT
dvgf 4
2
0
3/5
30
tbu zH
wf
3/2
33 1105.5
tbu
s
tbu zH
h
zHwf
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 71www.camx.com
whilebuoyancyriseisthelesserof
and
Intheseexpressions,
/
zisthepotentialtemperaturegradient(ameasureofatmospheric
stability).Herealso,buoyancyfluxisinitiallycalculatedfromstackparameters,butissetto
residualfluxiftheplumeextendsintothenexthigherlayer.Theresidualfluxcalculation
dependsonwhichstablebuoyancyriseequationwasoriginallyused:
or
Whenfinalplumeriseisreachedusingstablebuoyancyrise,itisadjusteddownwardtotwo‐
thirdsoftherisethroughthestabledepth.Afterfinalplumeriseisdetermined,theriseis
furtheradjusteddownwardbystacktipdownwashaccordingtoacriticalFroudenumberand
ambientwindspeed.ThestackFroudenumberisgivenby
ForF<3,nodownwashadjustmentismadetofinalplumerise.Abovethatvalue,thefollowing
downwashfactors(D)areapplieddependingupontheambientwindspeedatstacktop:
CAMxinjectspointsourceemissionsintoallmodellayersspannedbytheplumedepthatfinal
(adjusted)rise.Plumedepthisdeterminedasafunctionofstackdiameter,plume
6/1
3/1
22
2/1
646.0
zwT
dv
TH
s
ss
ms
3/1
3
1
8.1
bbs z
zw
Tf
H
33
56.0 bt zz
T
w
z
ff
3/83/8
3/1
0
24.0 bt zz
T
f
z
ff
TTdg
vT
F
ss
s
2
s
ss
s
s
s
vwD
vwv
v
wv
D
riseplumenowvD
3
2
,1
3
2
,3
,0
8/3
3/8
1
3/1
0
1.4
bbs z
zf
Tf
H
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 72www.camx.com
temperature,plumevelocity,timeofplumerise,andambientwindandtemperature
conditions.Auniformmassdistributionthroughplumedepthisassumed.Ifthisdepthis
whollycontainedwithinasinglelayer,thatlayerreceivesallemissionmass.Ifthisdepthspans
severallayers,thenfractionsoftheemissionsareinjectedintotheselayersaccordingtothe
fractionofplumedepthspanningthoselayers.Weapplythe“rule‐of‐thumb”thatplumedepth
equalsplumerise(TurnerandSchulze,2007)asamaximumlimitforplumedepth.
Thefollowingequationsareusedtodefinetheplumedepthafterreachingfinalrise.Theseare
basedontheapproachusedintheSCIPUFFmodel(EPRI,2000)andweredevelopedforusein
theCAMxplume‐in‐grid(PiG)submodel.TheplumedepthDpatfinalriseisgivenby
2/1
2223 tKDD sp
whereDsisstackdiameter,Kisplumediffusivityduringrise,andtisthetimeofrise.Thetime
ofriseisdeterminedbydividingfinalplumerisebythemeanplumerisespeedVp;thelatteris
settohalfthestackexitvelocity.Alowerlimitof1m/sisappliedtotheexitvelocity,sothe
minimumvalueofVpis0.5m/s.Theplumediffusivityisdeterminedbyscalinginitialplume
width(accordingtostackdiameter)bytheturbulentfluxmomentqp2:
2
215.0 ps qDK
where
22
2
22 3
4.0
p
ppp Vv
v
Vfq
TheturbulentfluxmomentisafunctionofthemeanplumerisespeedVp,theambientwind
speedvtakenattheleveloffinalrise,andaplumeentrainmentcoefficientfp:
2
241
p
p
sp VT
TT
gDf
wheregisthegravitationalconstant(9.8m2/s),Tisambienttemperatureattheleveloffinal
rise,andTpisthemeanplumetemperature,takenasthemeanofthestackexittemperature
andtheambienttemperatureatfinalrise.
4.4Three‐DimensionalTransport
4.4.1ResolvedTransport:Advection
TheCAMxadvectionalgorithmisbothmassconservativeandmassconsistent.Mass
conservationreferstotheabilitytoaccuratelyaccountforallsourcesandsinksofmassinthe
model,withnospuriouslossorgainofmassduringmodelintegration.Tobemass
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 73www.camx.com
conservative,CAMxinternallycarriesconcentrationsofeachspeciesasadensity(µmol/m3for
gases,µg/m3foraerosols),andsolvestheadvectionanddiffusionequationsinfluxform.This
alsoservestosimplifymassbudgetaccounting,whichisusedbythevarioussource
apportionmentandprocessanalysisoptions.Gasconcentrationsareinternallyconvertedto
volumetricmixingratio(partspermillion,orppm)forthechemistrystep,andwhentheyare
writtentotheaverageoutputfiles.
Massconsistencyreferstothemodel’sabilitytotransportpollutantmassexactlyequivalentto
theinputatmosphericmomentumfield.Forexample,amodelthatisperfectlymassconsistent
willpreserveaunitypollutantmixingratiofieldinadivergentmomentumfieldgivenconstant
unityboundaryandinitialconditionsandzerosourcesandsinks.Sourcesofpoormass
consistencyinairqualitymodelsaretypicallyrelatedto(1)supplyingmeteorologythatis
inherentlyinconsistent(e.g.,fromaninterpolativeobjectiveanalysisordiagnosticmodel);(2)
spatiallyinterpolatingoraveragingmeteorologicalmodelfieldstoadifferentairqualitymap
projectionorgridresolution;and(3)employingdifferentnumericaland/orphysicalmethodsin
theairqualityandmeteorologicalmodels.
ItisexpectedthatCAMxuserswillpreparehighquality,massconsistentmeteorologicalfields
usingadvancedprognosticmodelssoastominimizeinconsistenciesintheinputsthemselves.
Thepracticeofdevelopingmeteorologicalinputfieldsusingobjectiveanalysisor“diagnostic”
approachesishighlydiscouraged.
CAMxoperatesonthemapprojectionsandgridsystemsemployedinseveralwidelyused
prognosticmeteorologicalmodels(e.g.,WRF,MM5,andRAMS)sothattranslationof
meteorologicaldatatoCAMxrequiresaslittlemanipulationaspossible.However,CAMx
providesaveryimportantflexibilitythatallowstheairqualitygridtodifferinprojectionand
resolutionfromthesourceofmeteorologicaldata.This,ofcourse,leadstoapotentiallylarge
externalsourceofmassconsistencyerror.TheabilitytodriveCAMxwiththeoutputfromany
prognosticmeteorologicmodelguaranteesadifferenceinnumericalmethodsbetweenthetwo
models,leadingtoaninternalsourceofmassconsistencyerror.Thethreediminensional
advectionalgorithminCAMxisdesignedtocompensateforbothexternalandinternalsources
ofconsistencyerror.
Horizontaladvectionusesinputhorizontalwindsfieldsandissolvedusingtheareapreserving
flux‐formadvectionsolverofBott(1989)orthePiecewiseParabolicMethod(PPM)ofColella
andWoodward(1984)asimplementedbyOdmanandIngram(1993).Thesetwofinite
differenceschemeswereincorporatedintoCAMxbecausetheyprovidehigherorderaccuracy
withminimalnumericaldiffusion,yetareequivalentinexecutionspeedcomparedtoother
simpleradvectionalgorithmswhenoperatingonequivalenttimesteps.InCAMx,theBott
schemeisallowedtotakelargertimestepsthanPPMbecauseBottremainsstableforCourant‐
Friedrichs‐Levy(CFL)numbersupto1(i.e.,theratioofwindspeedtogridspacing).Timesteps
aredeterminedforBottusingaCFLnumberof0.9,whiletimestepsforPPMarerestrainedbya
CFLnumberof0.5.Therefore,theBottoptionresultsinafastersimulationthanthePPM
option,perhapsatthepriceofsomeaccuracy.Werecommendtestingbothforyourspecific
application.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 74www.camx.com
CAMxinternallycalculatesaninstantaneousverticalvelocityfieldfromgrid‐andtimestep‐
specifichorizontalmomentumfieldsasawaytobalancethelocalatmosphericcontinuity
equation.Tocalculateaverticalvelocityprofileforagivengridcolumn,thedivergent
atmosphericcontinuityequation
islocallyintegratedthroughthedepthofthecolumnbyimposingzeroverticalvelocityatthe
ground:
wherethelocaltime‐ratechangeofatmosphericdensity
/tineachgridcellisknownfrom
theinputmeteorologicalfields.Thehorizontalfluxdivergenceofatmosphericdensityis
calculatedinamannerthatisnumericallyconsistentwiththeprocedureusedtohorizontally
advectpollutants:
andthisequationissolvedusingeithertheBottorPPMadvectionsolvers,asdescribedabove.
Inthisapproach,averticalvelocityprofilew(z)isconstructedthatprovidesabalancebetween
theimposeddensitytendencyandtheresolvedhorizontalmomentumdivergenceineachgrid
cellateachtimestep.Totalthree‐dimensionaladvectionthusincludesresolvedmomentum
convergence/divergenceratesaswellasanyartificialdivergencescausedbythehorizontaland
verticalgridspecifications(e.g.,spatiallyvaryingverticalgridstructure,orsystematic
distortionsassociatedwiththemapprojections).
Thetotalverticaltransportrate
ataparticularlayerinterfaceisdefinedasthecombinationof
resolvedverticalvelocityandthelocaltime‐rateofchangeofthelayerinterfaceheight:
Thetotalverticaltransportrateisusedforsubsequentverticaladvectioncalculationsforall
pollutants.Insimpletestsinwhichauniformpollutantfieldofunitymixingratioistransported
throughoutasingleregionalgridoverseveraldaysusingactualepisodicmeteorologicalinputs,
thisapproachhasbeenshowntoprovidenearlyexact(towithin10‐3‐10‐4%)consistency
betweenthedensityandpollutantfields.
Verticaladvectionissolvedusingaspecificimplicitbackward‐Eulerintegrationscheme
designedspecificallyforCAMx(Emeryetal,2011).Sinceimplicitschemesareabsolutelystable,
onlyonesolutionstepisnecessaryperdrivingtimestep.Explicitapproachesrequire
dzρV
t
ρ
zρw
z
HH
0
w
t
h
ρV
t
ρ
m
vA
yA
m
m
uA
xA
m
ρVxz
xz
yz
yz
HH
22
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 75www.camx.com
potentiallymanysub‐steps(ontheorderof10‐100)tomaintainastablesolution,which
introducesthepotentialforexcessivenumericaldiffusion.
4.4.2Sub‐GridTurbulentTransport:Diffusion
CAMxemploysafirst‐ordereddyviscosity(or“K‐theory”)approachbydefaulttorepresentsub‐
gridturbulentdiffusion(ormixing).Asa“local”closuretechnique,K‐theoryonlytreatsmass
transfercell‐by‐cell(horizontal)orlayer‐by‐layer(vertical),analogouslytothediffusionofheat
throughasolidmedium.WhereasK‐theoryadequatelycharacterizeshorizontaldiffusionand
weakverticalmixingduringneutralandstableconditions,theshortcomingsofK‐theoryare
relatedtoitsinadequatetreatmentofdeepverticalconvectiveboundarylayermixing.In
convectivesituations,buoyantplumesderivingenergyinthesurfacelayerarequicklyand
efficientlymixeddeepintotheatmospherewithineddiesthatareusuallymuchlargerthanthe
individualmodellayers.Therefore,K‐theorymaymixtheconvectiveboundarylayermuchless
efficientlythancommonlyobserved.Thishasbeenshowntohaveveryimportantramifications
forchemistry,especiallyduringtransitionperiodsbetweenstable/neutralandconvective
conditions.CAMxincludestheoptiontouseK‐theoryverticalmixing(default)orthenon‐local
AsymmetricConvectiveModel(ACM2)fromPleim(2007).
4.4.2.1HorizontalDiffusion
AsdiscussedbyYamartino(2000)advectionsolverssuchasBottandPPMreducenumerical
diffusiontothepointwheremodelersneedtobeconcernedaboutincludingappropriatelevels
ofexplicithorizontaldiffusion.Currently,thereisverylittleinformationontheappropriate
levelofhorizontaldiffusionforEuleriangridmodels.ThisissueisnotlimitedtoCAMx.
ExplicithorizontaldiffusioncoefficientsaredeterminedwithinCAMxusingadeformation
approachbasedonthemethodsofSmagorinsky(1963):
Separatediffusivitycomponentsaregeneratedforfluxesinthex‐andy‐directionssinceKXand
KYarecalculatedforseparatecellfacesintheArakawaCgridarrangement.ThevalueofK0is
specifiedaccordingtotheapproachinMM5(AnthesandWarner,1978):
AmaximumvalueofKX/Yissettomaintainnumericalstabilityforthegivengrid‐specific
timestep.Aminimumvalueissetto1m2/s.Horizontaldiffusionisappliedusinganexplicit
simultaneoustwo‐dimensionalflux‐divergencecalculation.
4.4.2.2K‐theoryVerticalDiffusion
Thedefaultverticaldiffusionsolver(K‐theory)usesastandardimplicitbackward‐Euler
integrationscheme.Griddedverticaldiffusioncoefficients(Kv)mustbesuppliedtothemodel
2/1
22
/24
y
v
x
u
x
v
y
uyx
KK oYX
t
yx
K
3
0103
March20
1
C
OMPREHE
N
forthe
m
forany
o
theoryv
e
magnitu
d
ofthecu
coupling
coarser
g
singlest
e
4.4.2.3
A
Pleim(2
0
meteoro
includes
:
fromthe
slowerc
o
thesurf
a
non‐con
v
includes
exchang
e
Figure4
‐
vertical
g
TheAC
M
variable
s
already
c
thatAC
M
usingAC
layerch
a
include
a
withint
h
ACM2di
f
onHostl
a
shearsi
m
1
6
N
SIVE
A
IRQUALIT
Y
m
astergrid
v
o
rallnested
e
rticaldiffu
s
d
eoftheve
r
rrentgridti
amongalll
a
g
ridsthatw
o
e
p.
A
CM2Verti
c
0
07)hasde
v
logicalmod
e
:
(1)mixing
a
surfacelay
e
o
mpensatin
g
a
ce(theasy
m
v
ectivecon
d
thebasicfe
a
e
.
‐
3.Schema
t
g
ridcolumn
M
2paramet
e
s
neededto
c
c
alculated
w
M
2berunw
i
M2inboth
m
a
racterizatio
a
noptionto
h
eCMAQA
C
f
fusivitycal
c
a
gandBovil
m
ilartoLiua
Y
M
ODELWITHE
X
iainputfile
;
grids.Whe
r
s
ionissolve
d
r
ticaldiffusi
v
mestepor
a
a
yersthate
x
o
uldotherw
alDiffusion
v
elopedthe
e
landtheC
o
a
mongadja
c
e
rtoalllay
e
g
downwar
d
m
metricasp
d
itions,ACM
a
turesofb
o
t
icrepresen
t
duringcon
v
e
rizationisa
c
alculateth
e
ithinCAMx
f
i
thinthem
e
m
eteorolog
i
n.Certain
m
generatev
e
C
M2algorith
c
ulationisa
le(1993);a
n
ndCarroll(
1
X
TENSIONS
;
theuserm
a
r
easthever
t
d
overpote
n
v
ityrelative
a
maximum
x
hibithighd
iseonlyexp
e
ACM2fort
h
o
mmunity
M
c
entlayers
u
e
rsthrough
t
d
mixinglay
e
ect).Figure
2revertsb
a
o
thlocaland
t
ationofth
e
v
ectiveadju
nalternativ
e
e
transferr
a
f
orotherp
u
e
teorologica
l
i
calandche
m
m
eteorologi
c
e
rticaldiffus
i
m,whichp
e
hybridoft
w
n
d(2)local
s
1
996).The
f
76
a
yoptionall
y
t
icaladvecti
n
tiallysever
a
totheverti
c
5minutesu
iffusivity,e
s
e
riencemix
i
h
eWeather
M
ultiscaleAi
u
singK‐theo
t
heboundar
e
r‐by‐layerf
r
4‐3shows
t
a
cktothelo
c
themosti
m
e
turbulent
stmentint
h
e
optionto
t
a
tesareavai
u
rposes.Th
e
l
modeluse
d
m
istrymod
e
c
alinterfac
e
i
vitiesinth
e
e
rformsitsd
w
omethodo
l
s
calingacco
r
f
ormerisus
e
y
supplyve
r
onstepiss
o
a
lsub‐steps
,
c
allayerde
p
b‐step).Th
i
s
peciallyfor
i
ngbetwee
n
Researcha
n
i
rQuality(C
M
ry;(2)rapid
r
ylayer(the
romtheto
p
t
hisapproa
c
c
alK‐theor
y
m
portantco
m
exchangea
m
h
eACM2(t
a
t
hedefault
K
lablefromt
e
CAMxAC
M
d
toderivei
n
e
lsdoeslea
d
e
programs(
e
sameman
n
d
iffusivityca
l
logies:(1)b
o
r
dingtoRic
h
e
dwithinth
CAMxUser’
4.Core
r
ticaldiffusi
o
o
lvedinasi
n
,
depending
p
ths(CAMx
i
sensuresn
o
longdrivin
g
n
adjacentl
a
n
dForecasti
n
M
AQ)mod
e
upwardno
n
convective
a
p
ofthebou
n
c
hschemati
c
y
componen
t
m
ponentof
m
onglayer
s
a
kenfromP
K
‐theoryap
p
heexistingi
M
2optiond
o
nputsforC
A
d
toconsist
e
e.g.,WRFC
A
n
erasthea
p
lculationsin
o
undarylay
e
h
ardsonnu
m
establebo
u
sGuideVersi
o
ModelFormul
www.cam
o
ncoefficie
n
n
glestep,K‐
uponthe
usesthesm
o
n‐localdiff
g
timesteps
a
yersduring
n
g(WRF)
e
l.TheACM
n
‐localmixi
n
a
spect);an
d
n
darylayer
t
c
ally.Durin
g
t
.Thus,AC
M
non‐local
s
withina
leim[2007]
)
p
roach.All
nputfiles,
o
o
esnotreq
u
A
Mx.Howe
v
e
ntboundar
y
A
Mx,MM5C
A
p
proachuse
ternally.T
h
e
rscalingb
a
m
berandve
r
u
ndarylaye
r
o
n6.3
ation
x.com
n
ts
‐
aller
usive
on
a
2
n
g
d
(3)
t
o
g
M
2
)
.
o
rare
u
ire
v
er,
y
A
Mx)
d
h
e
a
sed
r
tical
r
orif
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 77www.camx.com
itislargerthanthelatter.TheCAMximplementationofACM2supportsOMPandMPIparallel
processing.
NotethatACM2increasesCAMxruntimeconsiderably.WhereastheoriginalCAMxK‐theory
solverisimplicitanddoesnotneedtousesmalltimesteps,ACM2anditsK‐theorycounterpart
bothuseexplicitsolvers,whichmustdividethemodeltimestepintomanyverysmallsub‐steps
togenerateastablesolution.Theslow‐downcanbeexacerbatedbyusingthemuchlarger
ACM2verticaldiffusivityvaluesinsteadofthestandarddiffusivityoptionsavailableintheCAMx
meteorologicalpreprocessors.
NOTE:ACM2doesnotworkwiththeDecoupledDirectMethod(DDM)ortheIntegrated
ProcessRate(IPR)componentoftheProcessAnalysis(PA)tool.
4.5WetDeposition
Wetdepositionisthepredominantremovalprocessforfineparticles.Particlesactascloud
condensationnucleiandresultingclouddropletseffiecientlygrowandaccreteinto
precipitation.Particlescanalsobedirectlyscavengedbyprecipitationviaimpaction.Therates
ofnucleationandimpactiondependuponcloudtype(e.g.,prolongedwidespredstratiformvs.
brieflocalizedconvection),precipitationrate,andparticleandcloudwatersizedistribution.
Wetdepositioncanalsobeanimportantremovalprocessforrelativelysolublegasesthrough
thefollowingseriesofsteps:
Diffusion/absorptionofgasmoleculesintoclouddroplets;
Scavengingofclouddropletsbyprecipitation;
Diffusionofambientgasesintofallingprecipitation;
Possibleaqueous‐phasereactionswithincloudandrainwater.
Eachofthestepsabovemaybereversible,sothattheoverallnetremovalofgasesdependson
theresultsofforwardandbackwardprocessesateachstep.Therateatwhichtheseprocesses
occurdependsoncloudtypeandtheextenttowhicheachpollutantdissolvesinwaterandits
overallreactionrateonceinsolution.Cloudwaterdropletscanabsorbgasesfromtheairup
thelimitoftheirsolubilityinwater.Formanypollutantsthissolubilityfarexceedstheamount
ofpollutantpresentintheairasdeterminedbytheHenry’sLawconstant,whichisdefinedas
theequilibriumratioofpollutantconcentrationsintheliquid‐phasetothegas‐phase.High
valuesfortheHenry’slawconstant(>10,000M/atm)indicateastrongtendencytodissolveinto
waterdroplets,whereaslowvalues(<100M/atm)indicateatendencytoremainintheair
(SeinfeldandPandis,1998).Equilibriumbetweenairandwaterconcentrationisusually
establishedontimescalesofminutes,soequilibriumconditionscangenerallybeassumedto
existintheatmosphere.
ThebasicmodelimplementedinCAMxisascavengingapproachinwhichthelocalrateof
concentrationchangec/
twithinorbelowaprecipitatingclouddependsonascavenging
coefficient
:
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 78www.camx.com
Thescavengingcoefficientisdetermineddifferentlyforgasesandparticles,basedupon
relationshipsdescribedbySeinfeldandPandis(1998).Twocomponentsarecalculatedfor
gases:(1)accretionofclouddropletsthatcontaindissolvedgases,and(2)directdiffusive
uptakeofambientgasesintofallingprecipitation.Twocomponentsarealsodeterminedfor
particles:(1)accretionofclouddropletsthatcontainparticlemassfromthenucleationprocess,
and(2)impactionofambientparticlesintofallingprecipitationwithanefficiencythatis
dependentuponparticleandraindropsize.Eachoftheseprocessesisdescribedbelow.
TheexternalenvironmentalinputstotheCAMxwetdepositionalgorithmincludethethree‐
dimensionalgriddeddistributionofcloudandprecipitationwatercontents,withthe
precipitationcontentsbrokendownintoliquid,snow,andice(“graupel”).Scavengingrate
equationswerederivedintermsofequivalentliquidprecipitationrates,sotheinput
precipitationwatercontentsareinternallytranslatedintothismetric.
ThefollowinggeneralassumptionsaremadeintheCAMxscavengingmodel:
1) Raindrops,snowflakes,andgraupelparticlesareeachseparatelyrepresentedbyasingle
meansize,mass,andfallspeed,whicharedeterminedfromequivalentliquid
precipitationrate;
2) Thereisnomixed‐phasedprecipitationwithinagivengridcell–thedividinglinebetween
liquidrainfallandthetwofrozenformsis273K;
3) Snowisonlyassociatedwithstratiformprecipitation,andgraupelonlywithconvective
precipitation;
4) Liquidcloudwaterisallowedtoexistbelow273K–alinearrampfunctionisappliedto
apportiontotalcloudwaterintoliquidformbetween233‐273K(allcloudwateris
assumedtobeinicecrystalformbelow233K);
5) Allgassescandirectlydiffuseintoorfromliquidrainfall(onlystrongacidscandiffuseinto
frozenprecipitation)atarateaccordingtotheprecipitation’sstateofsaturation,
pollutantdiffusivity,andaerodynamicconsiderations;
6) Allgasescandissolveintoliquidcloudwater,whichcanbescavengedbyallprecipitation
forms–dissolvedgassesareinequilibriumwithambientconcentrationsaccordingto
Henry’sLaw;
7) PMisirreversiblyscavengeddirectlybyallprecipitationformsviaimpaction,andby
uptakeintocloudwater(liquidandice)ascondensationnucleithatisitselfscavengedby
allprecipitationforms;
8) Allin‐cloudPMmassexistsincloudwater(i.e.,no“dry”aerosolsexistintheinterstitialair
betweenclouddroplets)–allPMspeciesandsizesarehygroscopicandinternallymixed.
4.5.1PrecipitationParameters
Themeanraindropdiameterdd(m)andfallspeedvd(m/s)aretakenfromtheempirical
estimatesofScott(1978).ThedropdiameterisrelatedtorainfallrateP(mm/hr),andthefall
cΛ
t
c
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 79www.camx.com
speedrelationshiphasbeenmodifiedtobetteragreewithdataprovidedbySeinfeldandPandis
(1998):
TheprecipitationwatercontentLp(g/m3)isrelatedtorainfallrateby
where
wisliquidwaterdensity(g/m3).Thisequationcanbesimplifiedtoadependencyon
justrainfallratewhentheaboverelationsfordropvelocityandsizearesubstituted.The
resultingexpressionforrainfallrateasafunctionofprecipitationwatercontentis
LocatelliandHobbs(1974)developedpowerlawequationsrelatingaveragediameters,fall
speeds,andmassesfor15precipitatingice“habits”.Weconsolidatedtheserelationshipsinto
twoforms,termed“snow”and“graupel”,byfittingnewpowerlawcurvestotheLocatelliand
Hobbsdata.Forsnow,
Andforgraupel,
Notethatintheseequationsforice,ddisinmmandcrystalmassmdisinmg.Byassumingthat
thenumberdensityandmassofsnow/graupelcrystalsareequaltothoseforraindropsgiven
equalprecipitationwatercontents,wecanrelatethemagnitudesoficesizeandfallspeedto
equivalentliquidprecipitationrate.
4.5.2GasScavenging
Wetscavengingofgasesbyprecipitationoccurswithinandbelowprecipitatingclouds.Below
thecloud,thetotalgasconcentrationinagivengridcellisavailableforscavenging.Withina
cloudycellthetotalgasconcentrationmustfirstbepartitionedintoanaqueousfractioncaq
withincloudwaterandtheremaininggaseousfractioncgwithintheinterstitialair.Both
aqueousandinterstitialgasseswithinacloudycellareavailableforscavenging,butare
removedatdifferentratesasdescribedbelow.
21.04
100.9 Pdd
dd dv 3100
6.2
61.0
059.0
1.1
dd
dd
dm
dv
8.1
20.0
035.0
83.0
dd
dd
dm
dv
d
w
pv
P
L6
106.3
27.1
7
101
w
p
L
P
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 80www.camx.com
4.5.2.1ScavengingofGasesinCloudWater
Theaqueousconcentrationinliquidcloudwater(orcloudiceinthecaseofstrongacids)is
determinedbyHenry’sLawtherebyassumingthesolutionexistsinsteady‐stateequilibrium.
TheHenry’sLawconstantforagivengasspeciesk0(M/atm)specifiestheratioofpollutant
massinaqueoussolution(Mormol/lh2o)toitsequilibriumpartialpressure(atm)atstandard
pressureandtemperature.ThisconstantisadjustedfortemperatureTandconvertedtoa
dimensionlessmolarratio:
whereRistheidealgasconstant(8.20610‐2latm/molK),andAisthetemperature
dependencefactor.Dissociationofammonia,nitricacid,andsulfurdioxideasafunctionof
cloudandrainwaterpHisalsoconsideredinthesolubilitycalculation.TheeffectiveHenry’s
LawconstantHthusexpressestheequilibriumratiooftheaqueousconcentrationcaq(massper
volumeofwater)tothegasconcentrationcg(masspervolumeofair),
whicharerelatedtototalconcentrationcby
whereLciscloudliquidwatercontent(g/m3).
Thefractionofgasespresentincloudwatercanberemovedbyprecipitationviaaccretionof
cloudwaterontothefallinghydrometeor(liquidorice).Asthehydrometeorfalls,itsweepsa
cylindricalvolumeperunittimeequalto
wheredcisthesizeofclouddroplets.Thisimpliesthattheambientmotionofclouddropletsis
insignificantcomparedtothehydrometeorfallspeed.Duetoaerodynamicperturbationsofair
flowaroundthefallinghydrometeor,acollectionefficiencyisapplied,i.e.,thefractionofcloud
dropletswithinthecollectionvolumethatarescavengedbyprecipitation.Forlarge
hydrometeorswithsizesgreaterthan0.5mmanddroplets10‐20µm,wetakethisefficiencyto
be0.9(SeinfeldandPandis,1998).Also,wefurtherassertthat(dd+dc)2~dd2.Assumingthen
thatamono‐dispersedistributionofhydrometeorsarefallingthroughamono‐disperse
distributionofcloudwaterdroplets,thescavengingcoefficientforprecipitationcollectingcloud
wateris
dcd vddV 2
4
dddc NEvdΛ2
4
T
ATRkH 1
298
1
exp
0
g
aq
c
c
H
w
c
aqg
L
ccc
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 81www.camx.com
whereEisthecollectionefficiency(0.9)andNdisthehydrometeornumberdensity.The
numberdensitycanbeexpressedintermsofequivalentrainfallrate,fallvelocity,anddropsize:
SubstitutingtherelationshipbetweenNdandrainfallparameters,then
Thecloudwaterscavengingcoefficientisscaledbytheratioofaqueouspollutantconcentration
tototalgridcellconcentrationtoachievetheaqueous‐phasescavengingcoefficient:
4.5.2.2ScavengingofAmbientGases
Giventherelativelyshortresidencetimesoffallingprecipitationthroughagivengridcell,
aqueousequilibriumbetweenambientgasandprecipitationcannotbeassumedandsothe
transferofambientgasintoliquidrainfall(oriceinthecaseofstrongacids)isexplicitly
calculated.ThemaximumrateoftransferWofagastoafallinghydrometeorcontainingno
pre‐existingpollutantmassis
ThemasstransfercoefficientKccanbedeterminedforafallinghydrometeorwithspeedvdand
diameterddby
whereDgand
arethemoleculardiffusivityofthegasspeciesandair,respectively.
FollowingthemethodologyofSeinfeldandPandis(1998),therateofcaqincreasecanbe
representedbyamassbalancewiththerateoftransporttothehydrometeor:
TheexpressionforWissubstitutedintotheequationabove,rearranged,andexpressedin
termsofrainfallvelocity.Wethenassumethatthroughagivenmodellayertheambientgas
concentrationandhydrometeorpHandsizeisconstant.Multiplyingbythenumberdensityof
fallinghydrometeorsNddescribedaboveyieldsthegas‐phaseconcentrationscavengedbyall
dropsfallingthroughthelayer:
gc cHKW
3/1
2/1
6.02
g
dd
d
g
cD
dv
d
D
K
Wd
dt
dc
dd
aq
d
23
6
1
d
cd
PE
Λ7
102.4
w
caq
ca c
Lc
ΛΛ
6/
108.2
3
7
dd
dvd
P
N
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 82www.camx.com
Withincloudylayers,thegas‐phaseandaqueous‐phasescavengingcoefficientsareaddedto
providethetotalin‐cloudscavengingrateforgases,
=
g+
a.Forbelow‐cloudscavenging,
=
g.
4.5.2.3SolubilityLimitsonGasScavenging
Thereisachanceforrainfalltobecomesuper‐saturatedforsparinglysolublegassesasitfalls
throughagridcolumn.Thenetscavengingcoefficientforgasesdescribedaboveprovidesfor
themaximumpotentialuptakerateintocleanrainwater,socarefulconsiderationmustbe
giventoappropriatelydeterminethesignandmagnitudeofambientgridcellconcentration
changeaccordingtothedegreeofrainfallsaturation.Thechangeingasconcentrationis
relaxedtowardthedifferencebetweenthemaximumpossiblegasinsolutionforthegiven
conditionsceq,andtheamountofpre‐existinggasinsolutionfromlayersabovec0,
Hereceqisdeterminedfromthetotalliquidwaterinthecell(rainpluscloudwater)andfrom
Henry’slawequilibriumaccordingtothetotalgasconcentrationinthecell(ambientgrid
concentrationsplustotalgasinpre‐existingsolution).Iftheconcentrationchangeispositive,
massisaddedtotherainwater(c0isaugmented)andremovedfromthegridcell;ifnegative,
massisremovedfromrainwater(c0isdecremented)andaddedtothegridcell.
4.5.3AerosolScavenging
4.5.3.1ScavengingofAqueousAerosols
Allaerosolswithincloudylayersareassumedtoexistwithincloudwater.Therefore,the
scavengingcoefficientforaqueousaerosolsisexactlythesameasforthescavengingofcloud
droplets:
=
c.
4.5.3.2ScavengingofDryParticles
Wetscavengingofdryparticlesonlyoccursbelowprecipitatingclouds.Weusethesame
scavengingcoefficientasderivedforthecollectionofclouddroplets:
Forrainorgraupel,thecollectionefficiencyEisafunctionofparticlesizedp,andisgivenby
SeinfeldandPandis(1998)as:
d
cd
PE
Λ7
102.4
tccc eq
exp1)( 0
dd
c
gvd
KP
Λ6
1067.1
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 83www.camx.com
whereµandµwarethekinematicviscosityofair(1.8×10‐5kg/m/s)andwater(10‐3kg/m/s),
respectively,
=dp/ddistheratioofparticlesizetohydrometeorsize,ReistheReynolds
numberforthehydrometeor,ScistheSchmidtnumberforthecollectedparticle,andStisthe
Stokesnumberofthecollectedparticle.TheReynoldsnumberisgivenby
whiletheSchmidtnumberis
whereDpistheparticleBrowniandiffusivity:
Here,kistheBoltzmanconstant(1.38×10‐23J/K)andCistheCunninghamcorrectionfactorfor
smallparticles:
andwhere-isthemeanfreepathofair(6.5×10‐8m).TheStokesnumberisgivenby
where
pistheparticledensity.TheS*parameterisgivenby
2/3
*
*
2/1
2/12/13/12/1
3/2
214
16.04.01
4
SS
SS
R
SRSR
SR
dE
t
t
e
w
cece
ce
p
2
dd
e
vD
R
p
cD
S
p
pd
CTk
D
3
-
-
p
p
d
d
C55.0
exp4.0257.1
2
1
d
ppd
td
Cdv
S
9
2
e
e
R
R
S
1ln1
12/1ln2.1
*
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 84www.camx.com
Notethatparticlesizedpanddensity
pareaffectedbyaerosolwatercontent,whichis
determinedfromlocalhumidityandPMdeliquescencepropertiesaccordingtotheISORROPIA
model(seeSection5).
Snowpresentsacomplicationfortheefficiencycalculation,sinceitisnotasinglesolidmassbut
ratheracollectionofcrystalsarrangedinamyriadofpossibleshapesthatcanleadtosignificant
aerodynamicdrag.Thisdragaffectsparticlecollectionefficiency.Tosimplifythecalculation,
weusethevalueforEdeterminedforrainandgraupel,butsetalowerlimitforEof110‐3
basedontheworkofSauterandWang(1989).
4.6DryDeposition
Drydepositioncanbeanimportantremovalprocessformanycompounds.Duetothedifficulty
ofmakingdirectmeasurementsofdrydepositionandtheneedforasuitablemodel
parameterization,drydepositionisoftentreatedasafirst‐orderremovalmechanism,where
thefluxofapollutanttothesurfaceistheproductofacharacteristicdepositionvelocityandits
concentrationinthe“surfacelayer”(i.e.,thelowestmodellayer).Depositionvelocitiesare
derivedfrommodelsthataccountforthereactivity,solubility,anddiffusivityofgases,thesizes
ofparticles,localmeteorologicalconditions,andseason‐dependentsurfacecharacteristics.The
factorsaffectingdepositionarediscussedinmoredetailbelow.
Foragivenspecies,particlesize,andgridcell,CAMxdeterminesadepositionvelocityforeach
landusetypepresentinthatcellandthenlinearlycombinesthemaccordingtothefractional
distributionoflanduse.Thedepositionfluxisusedasthelowerboundaryconditioninthe
verticaldiffusionalgorithm.Aerosolsizespectraandspecies‐dependentpropertiesneededfor
thedepositionvelocitycalculationsareexternallysuppliedtoCAMxforallpollutantspeciesvia
thechemistryparametersfile;griddedlanduseissuppliedtothemastergridandoptionallyany
nestedfinegrids;theseasonisdeterminedbythesimulationdateandlocationontheglobe.
Movementofmaterialalongapathfromtheatmosphere,throughanyplantcanopy,andonto
thevariousplantandgroundsurfaceswithinandbelowthecanopyistypicallymodeledby
analogytoanelectricalcircuit.Resistancesinserialandparallelarrangementsareusedto
representtherelativeeasewithwhichmaterialmovesthroughdifferentportionsofthe
depositionpathway.Eachbranchofthecircuitrepresentsadifferentpathbywhichmaterial
maybedeposited.Forexample,gaseouspollutantsmaytransferthroughthelowestlayersof
theatmospherepartiallyintoaplantcanopy,throughthestomatalopeningsonplantleaves
andintotheplantmesophylltissue.Alternatively,thematerialmaytravelallthewaythrough
theplantcanopyanddepositonthegroundsurface.
CAMxofferstwodrydepositionoptions:theoriginalapproachbasedontheworkofWesely
(1989)andSlinnandSlinn(1980);andanupdatedapproachbasedontheworkofZhangetal.
(2001;2003).Bothoftheseoptionsarebrieflydescribedbelow.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 85www.camx.com
4.6.1TheWesely/SlinnModel
4.6.1.1DryDepositionofGases
Wesely(1989)developedaresistancemodelthatincorporatesthemajorelementsdescribed
above.Depositionvelocityvdiscalculatedfromthreeprimaryresistancesr(s/m)inseries:
sba
drrr
V
1
Theaerodynamicresistancerarepresentsbulktransportthroughthelowestmodellayerby
turbulentdiffusion,andoperatesequivalentlyforallgasesandsmallparticles.Themagnitude
ofthisresistancedependsontheintensityofturbulentmotion,whichinturndependsonsolar
insolation,windspeed,surfaceroughness,andnear‐surfacetemperaturelapserate.InCAMxit
iscalculatedfrom
whereu*isfrictionvelocity(m/s),kisvonKarman’sconstant,zisthelowestmodellayer
midpointheight(m),z0isthesurfaceroughnesslength(m),and
hisastabilitycorrectionterm.
ThesurfacelayerparameterizationofLouis(1979)isusedtosupplyfrictionvelocityand
stabilitycorrectionasafunctionofinputsurfacemeteorologyandroughnesslength.
Roughnesslengthisinternallyassignedaccordingtoseasonandtheinputgriddeddistribution
of11landusetypesasdescribedinSection3.Ingeneral,aerodynamicresistanceisata
minimumonwarm,sunnydayswithstrongmixingduetosurfaceheatingandmechanical
turbulence,andatamaximumoncool,calmnightswhenturbulentmixingissuppressed.
Thequasi‐laminarsublayer(orboundary)resistancerbrepresentsmoleculardiffusionthrough
thethinlayerofairdirectlyincontactwiththeparticularsurfacetowhichmaterialisbeing
deposited.Itisusuallyassumedtodependonlyonthemoleculardiffusivityofeachpollutant
species,andisgivenby
whereScistheSchmidtnumber,ortheratioofairviscositytospeciesmoleculardiffusivity.
Overland,surfaceresistancersisexpressedasseveralmoreserialandparallelresistancesthat
dependuponthephysicalandchemicalpropertiesofthesurfaceinquestion:
wherethefirstsetofparallelresistancesrepresentsthepathwayintothestomatal(rst)and
mesophyll(rm)portionsofactiveplants,thesecondisthepathwayintotheuppercanopy(ruc),
*
3/2
2
uk
S
rc
b
gsaccldcucmst
s
rrrrrrr
r
1111
1
h
o
azuk
r
1
ln
1
*
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 86www.camx.com
thethirdisthepathwayintothelowercanopy(rdcandrcl),andthefourthisthepathwaytothe
groundsurface(racandrgs).Manyoftheseresistancesareseason‐andlanduse‐dependent,and
arebuiltintoWesely’smodel;someinturnareadjustedwithinCAMxforsolarinsolationand
surfacewetness(vegetationisassumedtobeunstressed).Afewotherresistanceshavebeen
developedbyWeselyforSO2andozone,andsoarescaledforeachgaseousspeciesbasedon
thefollowingpollutantproperties:
Moleculardiffusivity(determinedfrommolecularweight,OHg MM 2
/);
Henry’slawsolubility(H);
Chemicalreactivitytowardoxidationofbiologicalsubstances(f).
Thisallowstheresistanceapproachtobeusedtoestimatedepositionvelocitiesforawide
rangeofgaseouspollutants.
Thesurfaceresistancesforstrongacids(e.g.,nitric,sulfuric,andhydrochloricacid,peroxides)
aresettozerogiventheirstrongratesofupdatebybiotaandothersurfaces(Huebertand
Robert,1985;WeselyandHicks,2000).Thespeciesforwhichsurfaceresistanceissettozero
aredefinedintheCAMxchemistryparametersfile.
Overwater,thesurfaceresistanceforallgasspeciesotherthanozoneisbasedonsome
improvementsadoptedbyKumaretal.(1996)followingSehmel(1980):
whereTsissurfacetemperature(K).Forozone,thisequationhasbeenupdatedto
parametricallymatchthetendenciesofmeasuredozonefluxesreportedbyHelmigetal.(2012)
fromship‐bornemeasurements:
*
364
3
105101
1
uTH
r
s
O
s
whereTsisinCratherthanK.Thecubictemperaturedependencefitsthedepositionvelocity
responsetotherangeofseasurfacetemperaturesreportedintheHelmigetal.data.The
additional1×10‐4termsetsanupperlimitonrsandalowerlimitondepositionvelocitysothat
thelatterdoesnotfallmuchbelow0.01cm/s.Alowerlimitof1500s/misplacedonrssuch
thatozonedepositionoverwaterdoesnotexceed6.5cm/s,whichistheupperlimitinthe
measureddata.
4.6.1.2DryDepositionofAerosols
Surfacedepositionofparticlesoccursviadiffusion,impaction,and/orgravitationalsettling.
Particlesizeisthedominantvariablecontrollingtheseprocesses.Theresistanceapproachof
SlinnandSlinn(1980),asimplementedbyKumaretal.(1996),hasbeenadoptedinCAMx.
Particledepositionvelocityforagivenaerosolsizeiscalculatedusingthefollowingresistance
equation:
*s
suTH
r5
103.9
1
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 87www.camx.com
wherevsedisthegravitationalsettling(orsedimentation)velocity.Thisvelocityisdependenton
aerosolsizeanddensity:
whereDisthelog‐meanparticlediameter(m)ofagivensizesection,ρpisparticledensity
(g/m3),gisgravitationalacceleration,and
istheviscosityofair.ThefactorCisthe
Cunninghamcorrectionforsmallparticles,asdescribedearlierforwetscavengingofparticles.
Notethatparticlesizeanddensityareaffectedbyaerosolwatercontent,whichisdetermined
fromlocalhumidityandPMdeliquescencepropertiesaccordingtotheISORROPIAmodel(see
Section5).
Aerodynamicresistanceraisidenticaltothevalueusedforgaseousdrydeposition.Resistance
todiffusionthroughthequasi‐laminarsub‐layerlayerdependsonaerosolBrowniandiffusion
andinertialimpaction.Particlesareassumedtoremainonasurfaceoncetheyimpact,so
resuspensioneffectsareignored.Boundaryresistancerbisgivenby
ThestokesnumberStiscalculatedfrom
4.6.1.3SpecificationofSeason
TheWesely(1989)depositionalgorithmspecifiesthevarioussurfaceresistancesbylandcover
typeforfiveseasons:Spring,Summer,Fall,Winter,andWinterwithsnowcover.CAMx
internallydefinesaseasonmaptodeterminefourofthesefiveseasonsbymonthandlatitude
(Table4‐2).Fivelatitudebandsexistineachhemisphere:
Tropical <20
Sub‐tropical 20to35
Temperate35to50
Cool 50to75
Polar >75
TheseasonsintheNorthernandSouthernhemispheresareoffsetbysixmonths.Thisoffset
doesnotcauseanydiscontinuityattheequatorbecauseall12monthsaredefinedassummer
inthetropicalbandattheequator.Thisseasonmapisgeneralizedandmaynotbeidealforall
sedbaba
sedd vrrrr
vv
1
18
2p
sed
CgD
v
t
S
c
bSu
r/3
3/2
*10
1
g
uv
Ssed
t
2
*
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 88www.camx.com
locations.Theseasonmapiscodedintodatastatementsinthe“CAMx/chmdat.f”
subroutineandcouldbechangedtobettersuitaspecificregion.
TheseasonmapshowninTable4‐2doesnotconsidersnowcoverbecauseitisquitevariablein
spaceandtime.Griddedsnowcoverdataarespecifiedinthetime‐variant2Dsurfaceinputfile
(seeSection3andSection4.7below).SnowcoveredgridcellsareassignedtheWesely(1989)
surfaceresistancesforthecategory“winterwithsnowcover”,regardlessoftheseason.
Table4‐2.Relationshipsbetweenseasonandmonth/latitudeusedintheCAMxWesely/Slinn
drydepositionmodel.Exception:seasonsfortheareawithin50N‐75Nand15W‐15Eare
internallysettothoseoflatitudeband35‐50toaccountforregionsofEuropeinwhichthe
climateisinfluencedbytheGulfStream.
MonthLatitudeBand
Northern
Hemisphere
Southern
Hemisphere
<2020‐3535‐5050‐75>75
Tropical Sub‐tropical Temperate CoolPolar
JanJulSummer Winter Winter WinterWinter
FebAugSummer Spring Winter WinterWinter
MarSepSummer Spring Spring WinterWinter
AprOctSummer Spring Spring SpringWinter
MayNovSummer Summer Spring SpringWinter
JunDecSummer Summer Summer SummerSpring
JulJanSummer Summer Summer SummerSummer
AugFebSummer Summer Summer SummerFall
SepMarSummer Summer Fall FallWinter
OctAprSummer Fall Fall FallWinter
NovMaySummer Fall Fall WinterWinter
DecJunSummer Fall Winter WinterWinter
4.6.2TheZhangModel
EnvironmentCanada’sAURAMSairqualitymodelusesastate‐of‐the‐sciencedeposition
schemethatpossessesanupdatedrepresentationofnon‐stomataldepositionpathways(Zhang
etal.2003;Zhangetal.2008).Theapproachincorporatesthe“leafareaindex”(LAI),whichis
animportantaspectofnewerdrydepositionschemesthatallowsforscalingofpollutant
uptakeintobiotaofvaryingdensities.LAIisdefinedastheratiooftheone‐sidedgreenleaf
areatoaunitareaoftheground.Itismeasuredbysatelliteinstrumentsatfairlyhighspatial
resolution.TheZhangmodelhasbeentestedextensivelythroughitsuseindailyairquality
forecastinginCanada,andhasbeenshowntoreproduceobservedfluxesofozoneandSO2with
reasonableaccuracy.InCAMx,theZhangmodelhastendedtogeneratelowerozone
depositionratesrelativetotheWeselymodel,whichleadstohigherozonepredictionsoverall.
ThiseffectisseasonallydependentandwillvarywiththedefinitionofLAI.Ozoneisless
sensitivetothesourceofLAI(whetherZhangdefaultsorsatellite‐enhanced)thantothechoice
ofdepositionmodel.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 89www.camx.com
4.6.2.1DryDepositionofGases
ThegasresistancemodelofZhangetal.(2003)invokesthesame3‐resistanceequationfor
depositionvelocityastheWesely(1989)model.Theequationsforaerodynamicresistance(ra)
andboundaryresistance(rb)areverysimilartotheWesely(1989)formulations.However,
Zhangetal.(2003)replacethesurfaceresistance(rs)equationwithanewrelationshipforthe
overallcanopyresistance:
gsaccutmst
st
c
rrrrr
W
r
11
1
1
whereWstisthefractionofstomatalblockingunderwetconditions,rcutisthecuticleresistance,
andallotherresistanceshavesimilarmeaningtotheWeselymodel.Stomatalresistance(rst)is
calculatedusingasunlit/shade(so‐called“two‐big‐leaf”)stomatalresistancesub‐model.
FollowingWesely(1989),valuesforrgandrcutarecalculatedforSO2andO3andthenscaledfor
othergaseousspecies.Cuticleresistanceisslightlydifferentfromthatdefinedintraditional
big‐leafmodelsinthatitalsoconsiderstheaerodynamicandquasi‐laminarresistancesof
individualleaves.Thisisdonebyparameterizingrcutasafunctionoffrictionvelocity,similarto
theconceptofoverallcuticleuptakeconsideredinamulti‐layermodelframework.
LAIisusedinfunctionsforrac,andrcut,wheretheLAIforanygivendayislinearlyinterpolated
frommonthlydefaultLAIasafunctionoflandusetype.ToaccountforLAIeffectsonsurface
roughness(z0),asimilardailyLAIinterpolationisappliedtothatparameter.Hence,theZhang
modeldoesnotrequirethespecificationofseason,asallresistanceequationsarecontinuous
overeachmonth(notethatCAMxautomaticallyappliesthe6‐monthoffsetforapplicationsin
thesouthernhemisphere).
Forsnowonthegroundandleaves,bothrgsandrcutareadjustedbyasnowcoverfraction,
whichiscalculatedfromsnowdepth,snowage,andlandusetypeasdescribedinSection4.7.
Snowcoverisdefinedthroughtheinput2Dsurfacefile,asdescribedinSection3.Forsurfaces
withoutcanopies,rgsisdefinedastheresistancetoanysurface(e.g.soil,ice,snowandwater),
racissettozero,andverylargevaluesareusedforrst,rmandrcut.
Overwater,theupdatedtemperature‐dependentozonesurfaceresistanceequationdescribed
abovefortheWeselyschemeisalsousedfortheZhangscheme.
TheZhangmodelincludesasetofembeddedannualsurfaceroughnessrangesandmonthlyLAI
specifictoeachofthe26landusecategories.Thecapabilitiesoftheschemewereextendedby
addingtheoptiontouseepisode‐specific(i.e.,satellite‐derived)LAIdata.Satellite‐basedLAI
datafromMODIS(MODerate‐resolutionImagingSpectroradiometer)2canbeprocessedinto
griddedLAIfieldsthatarepassedtoCAMxasanoptionalrecordinthetime‐invariant2D
surfaceinputfile(seeSection3).TheoptionalgriddedLAIfieldsareusedtoscalethedefault
landuse‐specificLAIvalues.Foreachgridcell,alanduse‐weighteddefaultLAIisdetermined
2MODISprovidesLAIat250meterspatialresolutionand16daytemporalresolution.
March20
1
C
OMPREHE
N
accordin
g
ofthein
p
default
L
minimu
m
satellite
Figure4
‐
against
e
4.6.2.2
D
Theoreti
c
cm/s,bu
Zhanget
sub‐mic
r
havebe
e
velocity
v
consiste
n
paramet
e
predicts
surfaces
.
1
6
N
SIVE
A
IRQUALIT
Y
g
tothelan
d
p
utLAItot
h
L
AIvaluesfo
m
rangeam
o
LAIdataint
r
‐
4.Compar
i
e
pisode‐spe
c
D
ryDepositi
o
c
ally,particl
tsuchvalu
e
al.(2001),
m
r
onsulfatei
n
e
nmeasure
d
v
alues,typi
c
n
tacrossth
e
e
rizationof
higherdep
o
.
Y
M
ODELWITHE
X
d
usefractio
n
h
elanduse‐
w
r
eachland
u
o
ngthemon
r
oducesadd
sonofmon
t
c
ificLAIfor
J
o
nofAeros
o
esinthesiz
e
e
sarecomp
a
m
uchhighe
r
n
whichdep
o
d
.Forexam
p
c
ally1cm/s
o
e
aerosolsiz
e
particledry
o
sitionveloc
i
X
TENSIONS
n
spresent.
w
eightedde
f
u
setypeint
h
thlydefault
itionalepis
o
t
hlyLAIdat
a
J
une2005.
o
ls
e
range0.1‐
a
rableonly
t
r
valueshav
e
o
sitionvelo
c
p
le,Gallagh
e
o
rmorefor
e
spectrum.
deposition
a
i
tiesforsub
‐
90
AnLAIscali
n
f
aultLAI.T
h
h
egridcell,
values.Fig
u
o
de‐specific
v
a
embedde
d
1.0mm
d
t
olaborator
y
e
beenobta
i
c
itiesofone
e
retal.(19
9
sub‐micron
TheZhang
a
safunctio
n
‐
micronaer
o
n
gfactoris
t
h
isfactoris
u
subjecttot
h
u
re4‐4illus
t
variationin
t
d
intheZha
depositatr
a
y
(windtun
n
i
nedinman
y
totwoord
e
9
7)stateth
a
aerosolde
p
etal.(2001
n
ofaerosol
o
sols,espec
CAMxUser’
4.Core
t
hendeter
m
u
sedtoscal
e
h
eannual
m
t
rateshow
t
t
otheLAIfi
e
ngdrydep
o
a
tesmuchl
e
n
el)studies.
y
fieldstudi
e
e
rsofmagn
i
a
tmuchhig
h
p
ositiontoa
)studydev
e
sizeandlan
iallyoverro
sGuideVersi
o
ModelFormul
www.cam
m
inedasthe
e
theindivid
m
aximumto
t
heuseof
e
ld.
o
sitionsche
m
e
ssthan0.0
1
According
t
e
s,includin
g
i
tudehighe
r
h
erdepositi
o
forest,are
e
lopedasim
dusethat
ughvegeta
t
o
n6.3
ation
x.com
ratio
ual
m
e
1
t
o
g
for
r
o
n
ple
t
ed
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 91www.camx.com
ThedepositionofaerosolsisbasedonthemodelofSlinn(1982),butusingsimplifiedempirical
parameterizationstoreplacedetailedcanopyinformation.Theaerosoldepositionvelocityis
definedas:
ba
sedd rr
vv
1
wherevsedandrahaveidenticalmeaningsastheSlinnandSlinn(1980)definitiondescribed
earlierfortheWesely/Slinndepositionmodel.Notethatinthiscase,thevirtualserial
resistancera
rb
vsedhasbeenremoved,whichresultsinhighervaluesofdepositionvelocity.The
quasi‐laminarboundaryresistanceisgivenby
1*0
1
REEEu
r
INIMB
b
wherethevariableEincludesthecollectionefficienciesforBrowniandiffusion,impaction,and
interception,respectively,R1isafactorrepresentingthefractionofparticlesthatsticktothe
surface,and
0isanempiricalconstantthatissettoavalueof3.TheBrowniancollection
efficiencydependsontheSchmidtnumber,whiletheimpactionefficiencyandR1dependon
theStokesnumber.
Thecollectionefficiencybyinterceptionalsoexistsiftheparticlepassesanobstacleata
distanceshorterthanitsphysicaldimensions(e.g.,largeparticlespassingnearhairyleaves).
Zhangetal.(2001)adoptedasimpleequationforthistermthatisafunctionofparticle
diameterandacharacteristicradius,forwhichdefaultvaluesaregivenfordifferentlanduse
andseasonalcategories.
Figure4‐5comparesestimatedparticledepositionvelocitiesfromtheZhangmodel,theSlinn
andSlinn(1980)model,andtheAERMODmodel(EPA,1998).Calculationsweremadefor
daytime,neutrallystableconditionsforarangeofwindspeedsandlandusecategories.Figure
4‐5showsthattheZhangmodelincreasesdepositionvelocitiesoverforestbyroughlyanorder
ofmagnitudeforthe0.1‐1mrange,yetreducesdepositionvelocitiesabove1m.
4.7SnowCoverandSurfaceAlbedo
Surfacealbedoforsnow‐coveredgridcellsiscalculatedaccordingtosnowcover,snowage,and
landcovertype.Theapproachisbasedonliteraturedescribingtheevolutionofsnowalbedoin
theWRF/NOAHlandsurfacemodel(LSM)overthepastdecade(Eketal.,2003;WangandZeng,
2010;Livnehetal.,2010;andBarlageetal.,2010).Fractionalsnowcover(fs)isaccountsforthe
effectsofsurfaceroughnesselements(shrubs,trees,rocksandotherstructures)extending
abovethin/patchysnow:
1exp
exp
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 92www.camx.com
Figure4‐5.Comparisonofparticledrydepositionvelocitiesasafunctionofsizeandwind
speeds(m/s)forthreemodels:black–Zhangetal.(2001);blue–SlinnandSlinn(1980);
orange–AERMOD(EPA,1998).Resultsareshownforaforestlandusecategoryduring
daytimeneutralstability.Particledensitywassetat1.5g/cm3.
where
=2.6,Wissnowwaterequivalentdepth(SWE),andWcisthethresholdSWEabove
whichfs=100%.FollowingWangandZeng(2010)andLinvehetal.(2010),Wcissetto0.01m
forbarrenorlowvegetation(grasslands)andto0.2mfortallvegetation(forest),exceptan
intermediatevalueof0.02misassignedtorange,mixedagriculture/range,andshrublands
wherevegetationistypicallyhigherthangrasses(Table4‐4).ThroughoutCAMxweapplya
commonapproximationthatactualsnowdepthis10SWE.
Snowalbedo(as)isallowedtoevolvetoaccountfortheopticaleffectsofmeltingand
accumulationofdirt/soot,followingtheapproachofLinvehetal.(2010):
whereamaxisthemaximumfreshsnowalbedo(0.85;Barlageetal.,2010),tisthenumberof
dayssincethelastsnowfall,A=0.94(0.82)andB=0.58(0.46)duringtheaccumulation
(ablation)phase.Accumulationoccursduringcoldperiodswhensurfacetemperatureisbelow
273K,whereasablationoccursduringmeltingperiodswhensurfacetemperatureisat273K.
Snowalbedoisconstrainedtoalowerboundof0.4.Snowageisrefreshedtozero(andsnow
albedoto0.85)whenSWEaccumulatesbymorethan0.001m/hr(accumulatingsnowdepth>1
cm/hr).
Theresultantgrid‐cellaveragesurfacealbedo(a)isalinearcombinationofsnowalbedo(as)
andterrestrial(non‐snow)albedo(at):
1
Forest
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10 100
Particle diameter (m)
V
d
(cm s
-1
)
wind = 2
wind = 5
wind = 10
wind = 15
wind = 2
wind = 5
wind = 10
wind = 15
wind = 2
wind = 5
wind = 10
wind = 15
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 93www.camx.com
whereatisdefinedaccordingtolandusetype(Tables3‐4,3‐5).Incaseadistributionof
multiplelandusetypesexistswithinagivengridcell,alinearweightingschemeisemployedto
accountforvariablesnowcoverfractionsforeachindividuallandusetype:
1
wherethesumisoveralllandusetypes,fnisthefractionalcoverageoflandusen,at(n)isthe
defaultterrestrialalbedoforlandusen,fs(n)isthefractionalsnowcoverforlandusen,andas(n)
isthecalculatedsnowalbedoforlandusen.Figure4‐6showsanexampleofgrid‐cellalbedo
evolutionforahypothetical20‐dayspringtimesnowevent(assumingablationconditions)for
lowandtallvegetationgridcellswithaterrestrial(non‐snow)albedoof0.05.Severalsnow
accumulationeventsarespecifiedtooccuroverthefirst12days,followedbyrapidmeltingto
zerodepthbyday20.Whiletotalalbedoincreasestopeakvaluesof0.85quiterapidlyforlow‐
vegetation,thevaluefortallvegetationlagsandpeaksjustabove0.5atmaximumsnowdepth.
Bothcasesindicateeffectsfromsnowdepth(fractionalsnowcover)andsnowage.
Figure4‐6.Exampleofgrid‐cellalbedoevolutionforahypothetical20‐dayspringtimesnow
event(assumingablationconditions)forlowandtallvegetationgridcellswithaterrestrial
(non‐snow)albedoof0.05.
4.8SurfaceModelforChemistryandRe‐Emission
TheCAMxsurfacemodelisanoptionalcapabilitythattreats:(1)chemicaldegradationand/or
transformationofdepositedpollutantmassonsoil,vegetationandanoverlyingsnowpack;(2)
volatilizationofchemicalproductsbackintotheair(re‐emission);and(3)lossfromleaching
intosoil,penetrationintoplanttissue,anduptakeintosnowmeltwater.Thesurfacemodel
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
01234567891011121314151617181920
Depth(m)
Albedo
DaysofExampleEvent
SnowDepthandAlbedowithAge
LowVegetation
TallVegetation
Depth
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 94www.camx.com
treatsanysubsetofspecieslistedinthecoremodel’schemicalmechanism.Limitationsofthe
currentimplementationinclude:
ThesurfacemodelcannotbeusedwiththePlume‐in‐Gridtreatment;
Depositiontowatersurfacesisassumedtobeirreversibleandthusisnottrackedbythe
surfacemodel;
Wetdepositiondoesnotcontributetosurfacemass,ascompoundsinaqueoussolution
areassumedtobeimmediatelylosttosurfacewaterprocesses(absorption,runoff,etc.).
4.8.1SurfaceModelAlgorithms
Figure4‐7displaysthesurfacemodelprocessesschematicallyandTable4‐3definesparameters
thatarereferredtoinFigure4‐7.Whilecoremodelalgorithmsareusedtodepositcompounds
tothesurfaceandre‐emitthemtotheatmosphere,thesurfacemodeltrackstheaccumulation
ofmassonterrestrialsurfacemedia(soil,vegetationandsnow),subsequentchemical
transformation(bothheterogeneousandphotolysis),re‐emissiontotheatmosphere,and
physicalremoval.
Figure4‐7.SchematicoftheCAMxsurfacemodel.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 95www.camx.com
Table4‐3.DescriptionofCAMxsurfacemodelvariablesshowninFigure4‐7.
VariableDefinitionUnits
AsAreicmassofcompoundonsoilorsnowmolha‐1
ApAreicmassofcompoundonvegetationmolha‐1
SsoilSoil‐airpartitioningcoefficientunitless
SsnowSnow‐airpartitioningcoefficientunitless
SvegVegetation‐airpartitioningcoefficientunitless
kleachSoilleachingratecoefficientmin‐1
KmeltSnowmeltlossratecoefficientmin‐1
kpenLeafpenetrationratecoefficientmin‐1
JPhotolysischemistryratecoefficientmin‐1
KHeterogeneouschemistryratecoefficientmin‐1
RleachLeachingorsnowmeltlossratemolha‐1min‐1
RpenLeafpenetrationratemolha‐1min‐1
RchemChemistryratemolha‐1min‐1
Afterdepositiontoasnow‐freesurfacegridcelliscalculatedeachtimestep,thenewly
depositedmassincrementsaredividedamongsoilandvegetationcompartmentsandaddedto
totalsurfacemassineachcompartmentaccumulatedduringtherun.Thenetsoil/vegetation
splitforagivengridcellisdeterminedbythecombinationofthefractionalcoverageofeach
landusetypeinthatcellandlanduse‐specificsplitfactors.Thefractionalcoverageof11
(Wesely)or26(Zhang)landusecategoriesineachgridcellisanexternalinputtoCAMx(Section
3).Thesoil/vegetationsplitsassignedtoeachlandusecategoryareinternallydefinedwithin
CAMxandassumedtobeseasonallyconstant.Valuesforsoil/vegetationsplitsareestimated
basedonsimpleconceptualconsiderationsoftheamountofannual‐averagedvegetation(i.e.,
leafareaindex)typicalofeachcategory(Table4‐4).
Snowisactivatedinthesurfacemodelwhensnowdepthissufficientlydeeptocoverexposed
soil.Thelowerlimitonsnowdepthis10cmtobeconsistentwiththeapproachdescribedin
Section4.7inwhicha10cmdepthcompletelycoverslow‐vegetationlanduse.Insuchcases,
thesoil/vegetationsplitisreplacedbythesnowcoverfractionsuchthatthesoilfractionis
entirelysnow‐coveredandthevegetationfractionisprogressivelycoveredwithdeepersnow
depth.Thesoilcompartmenttransitionstoasnowcompartment;sorptioncoefficientsand
ratesforchemistryandlosscoverttothevaluessetforsnow(asdescribedbelow).Withvery
deepsnowexceeding200cm,highvegetationiscompletelycoveredandthesurfacemodel
reducestoasinglecompartmentforsnow.
Thesurfacemodelusespartitioning(equilibrium)coefficientstocalculatetheamountof
accumulatedmaterialsorbedtosoil/snowandvegetation.Thesorbedfractionissubjectto
chemicalreactionsandphysicalremovalassociatedwithsoilleaching,plantpenetration,and
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 96www.camx.com
Table4‐4(a).Weselylandusecategoriesandassociatedannual‐averagedsoil/vegetationsplit
factors,UValbedo,andSWEWc.
Category
NumberLandCoverCategory
SurfaceParameters
Soil
Fraction
UV
Albedo
Snow
W
c
(mSWE)
1Urban0.70.080.2
2Agricultural0.20.050.01
3Rangeland0.50.050.02
4Deciduousforest0.10.050.2
5Coniferousforest,wetland0.10.050.2
6Mixedforest0.10.050.2
7Watern/a0.04n/a
8Barrenland1.00.080.01
9Non‐forestedwetlands0.20.050.01
10Mixedagricultural/range0.30.050.02
11Rocky(withlowshrubs)0.50.050.01
Table4‐4(b).Zhanglandusecategoriesandassociatedannual‐averagedsoil/vegetationsplit
factors,UValbedo,andSWEWc.
Category
NumberLandCoverCategory
SurfaceParameters
Soil
Fraction
UV
Albedo
Snow
W
c
(mSWE)
1Watern/a0.04n/a
2Icen/a0.50.01
3Inlandlaken/a0.04n/a
4Evergreenneedleleaftrees0.10.050.2
5Evergreenbroadleaftrees0.10.050.2
6Deciduousneedleleaftrees0.10.050.2
7Deciduousbroadleaftrees0.10.050.2
8Tropicalbroadleaftrees0.10.050.2
9Droughtdeciduoustrees0.10.050.2
10Evergreenbroadleafshrubs0.50.050.03
11Deciduousshrubs0.50.050.02
12Thornshrubs0.50.050.03
13Shortgrassandforbs0.50.050.01
14Longgrass0.30.050.02
15Crops0.20.050.01
16Rice0.20.050.01
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 97www.camx.com
17Sugar0.20.050.01
18Maize0.20.050.01
19Cotton0.20.050.01
20Irrigatedcrops0.20.050.01
21Urban0.70.080.2
22Tundra0.20.050.01
23Swamp0.20.050.01
24Desert1.00.080.01
25Mixedwoodforest0.10.050.2
26Transitionalforest0.10.050.2
snowmelt.Theun‐sorbedfractionisavailableforre‐emission.Separatechemical‐specificsoil‐
air,vegetation‐air,andsnow‐airpartitioningcoefficientsaresetintheCAMxchemistry
parametersfile.Theyrepresenttheequilibriumratioofchemicalonasurfacetochemicalinair
attheair‐surfaceinterface.Forexample,acompoundwithapartitioningcoefficientof10,000
(unitless)hasanequilibriumconcentrationonthesurfacethatis10,000timesmorethanthat
inair.
Chemistrycansimplydecaydepositedmaterialasaremovalprocess,oritcangenerate
productsthatcansubsequentlyre‐emitdependingontheproducts’partitioningcoefficient.All
surfaceremovalprocessesareassumedtobeirreversibleandresultinapermanentremovalof
mass.Chemistry,soilleaching,plantpenetration,andsnowmeltlossaredependenton
chemicalpropertiesofthecompoundsandalsoonnumeroussite‐specificfactorssuchassoil,
vegetation,andsnowproperties,highlytransientmeteorologicalconditions,etc.Oftenthese
factorsareunknownorfallwithinarange.Theratesoftheseprocessesaredefinedasthe
processratecoefficient(k)timesthemassonthesurfacearea,orareicmass(A):
Rprocess=kprocess
Asurface
Whentheactualratecoefficients(orinversely,thehalf‐lives,t½)areunknownforthe
substance,theycanbegeneralizedby5classes:
1.Veryfast:t½=0.04dk=17d‐1=1.2×10‐2min‐1
2.Fast: t½=0.21dk=3.3d‐1=2.3×10‐3min‐1
3.Moderate:t½=1.0dk=0.69d‐1=4.8×10‐4min‐1
4.Slow: t½=5.0dk=0.14d‐1=9.7×10‐5min‐1
5.Veryslow:t½=25dk=0.03d‐1=2.1×10‐5min‐1
A6thclasscanbeaddedbysettingthek‐valuetozeroorademinimisvaluetoeffectively
removetheprocessfromconsideration.Inthismannerchemicalscanbemodeledwithan
estimatedhalf‐lifethatisuniqueforeachprocess.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 98www.camx.com
Notethatallpartitioningcoefficientsandratesotherthanphotolysisarefixedandignore
dependenceonvariousenvironmentalconditions(e.g.,temperature,pressure,surfacetype,
surfacemoisture,etc.).Photolysisratesarespecifiedbytheusertorepresentpeakdirect‐
exposureclear‐skyvaluesatzerozenith(solarnoon)andareinternallyadjustedforsolarangle,
cloudattenuation(ascalculatedforatmosphericphotolysis),andshadeeffectsusing
multiplicativefactors.Amultiplicative“shadefactor”isdefinedtoreducephotolysisrates
within/belowvegetation.Snowcoverreducesshadingeffectstoaccountforenhanced
reflectionandinternalUVscatteringwithinthesnowpack.
Lossesbysoilleaching,plantpenetration,andsnowmeltarearbitrarilyacceleratedduringrain
events,suchthata1mm/hrrainfallrateresultsinane‐foldinglossofsurfacemassin1hour.
Masslosswithinthesnowpackbymeltingaloneoccursonlywhensurfacetemperatureisat
273K.Snowpacklossalsooccursduringsnowfallsuchthata1cm/hraccumulationresultsin
ane‐foldinglossofsurfacemassin24hoursbysuccessivelyburyingpollutantmassandlimiting
itsabilitytodiffusethroughthesnowpack.Themodelassumesthatnosurfacemassisre‐
introducedassnowdepth/fractiondecreaseduringsublimationormelting(i.e.,irreversibleloss
ofsurfacemassasimplementedforsoilandvegetation).
Theapproachforre‐emissionofvolatilized(un‐sorbed)massisconsistentwiththeCAMxdry
depositionalgorithm.Sincewatersurfacesarenotconsideredbythesurfacemodel,re‐
emissionfluxesfromwaterareignoredinthisimplementation.Drydepositionofmaterialfrom
thelowestmodellayertothesurfaceistreatedasanirreversible(fullysorbed)first‐orderflux
throughtheuseofadrydepositionvelocity.Re‐emissionofvolatilized(un‐sorbed)massisalso
treatedasafirst‐order1‐wayfluxusingan“effective”velocitythatissimilarinformto
deposition:
ba
err
v
1
whereraistheaerodynamicresistancetoturbulenttransferthroughthelowestmodellayer,
andrbistheresistancetomoleculardiffusionthroughthelaminarsub‐layerincontactwith
surfaceelements.Thedepositionsurfaceresistancetermrsismissingsinceonlythepre‐
determinedun‐sorbedfractionofsurfacemassisconsideredforsurface‐to‐airtransfer.Thera
andrbtermsarecalculatedbythesurfacemodelinexactlythesamemannerasthevaluesused
fordrydepositiontoensureconsistency.
4.8.2RunningCAMxWiththeSurfaceModel
TheCAMxsurfacemodelparametersthatneedtobespecifiedforeachcompoundorsurface
reactiontobetrackedareasfollows:
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 99www.camx.com
SsoilSoil‐airpartitioningcoefficientunitless
SvegVegetation‐airpartitioningcoefficientunitless
SsnowSnow‐airpartitioningcoefficientunitless
kleachSoilleachingratecoefficientmin‐1
kpenLeafpenetrationratecoefficientmin‐1
kmeltSnowmeltlossratecoefficientmin‐1
JsoilSoilphotolysisratecoefficientmin‐1
KsoilSoilheterogeneouschemistryratecoefficientmin‐1
JvegVegetationphotolysisratecoefficientmin‐1
KvegVegetationheterogeneouschemistryratecoefficientmin‐1
JsnowSnowphotolysisratecoefficientmin‐1
KsnowSnowheterogeneouschemistryratecoefficientmin‐1
ThesevaluesaresetattheendoftheCAMxchemistryparametersfile;anexampleofthe
chemistryparametersfileformatisshowninFigure4‐8.Acontrolrecordisalsoneededatthe
topofthechemistryparametersfiletodefinethenumberofspeciesandreactionstotrack.
ACAMxnamelistcontrolfilevariablecalled“SURFACE_MODEL”mustbesetto“true”inorder
toinvokethesurfacemodel.Whenthesurfacemodelisinvoked,thesurfacemodelsectionof
thechemistryparametersfileisreadandtherespectiveequilibriumandratevariablesareset
accordingly.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 100www.camx.com
Figure4‐8.TheportionsoftheCAMxchemistryparametersfile(highlighted)tosupportthe
surfacemodel.Inthisexample,3gasesaretreated,wherenitricacid(HNO3)and
peroxynitricacid(PNA)reacttoformnitrousacid(HONO).Allthreearesubjecttodecayby
soilleaching,plantpenetration,andsnowmeltloss.Thevaluesshownherearefor
illustrativepurposesonlyanddonotrepresentanyknownsurfacechemistrymechanism.
CAMx Version |VERSION6.3
Mechanism ID |2
Aerosol Option |NONE
Description |CB6r2 (r98/30/13 version) + ECH4
No of gas species |75
No of aero species |0
No of reactions |216
Prim photo rxns |23 1 8 9 21 27 28 38 43 47 50 56 88 92 97 98 108 112 114 117
119 128 129 161
No of sec photo rxn|6
ID, prim ID, scale |64 56 1.0
|90 88 1.0
|163 1 0.07
|196 1 0.015
|197 1 0.08
|201 1 0.08
SrfMod #spc, #rxns |3 2
.
.
.
Surface Model
Species SoilSorb SoilLeach VegSorb VegPen SnoSorb SnoMlt
1 HNO3 1.00E+10 1.00E-10 1.00E+10 1.00E-10 1.00E+10 9.70E-05
2 PNA 1.00E+10 1.00E-10 1.00E+10 1.00E-10 1.00E+10 9.70E-05
3 HONO 1.00E+00 1.00E-10 1.00E+00 1.00E-10 1.00E+00 9.70E-05
Rxn Precursor Product Soil K Soil J Veg K Veg J Snow K Snow J
1 HNO3 HONO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E-03
2 PNA HONO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E
-
01 0.00E+00
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 101www.camx.com
5.CHEMISTRYMECHANISMS
ThephotochemicalmechanismscurrentlysupportedinCAMxarelistedinTable5‐1.Allare
balancedfornitrogenconservationsothatpredictedNOycanbecalculatedasthesumof
nitrogencontainingspecies.Mechanisms2through6canbelinkedtooptionalmodal(CF)and
size‐segregated(CMU)primaryandsecondaryparticulatematter(PM)treatments.CAMx
includesalgorithmsforinorganicaqueouschemistry(RADM‐AQ),inorganicgas‐aerosol
partitioning(ISORROPIA),andorganicgas‐aerosolpartitioningandoxidation(VBSorSOAP).
ThePMtreatmentsrequireadditionalgasspeciesasPMprecursorsanduseproductsfromthe
gas‐phasephotochemistryfortheproductionofsulfate,nitrate,andcondensableorganic
gases.TheCFPMtreatmentalsosupportsseveraloptionalmercuryspecies.Additionally,
thereisaninterfacethatallowsasimpleruser‐definedchemicalmechanismtobeemployedin
themodel(Mechanism10).Alistingofallreactionsandrateexpressionsforsupported
photochemicalmechanismsareprovidedintheappendices.
Table5‐1.Gas‐phasechemicalmechanismscurrentlyimplementedinCAMxv6.3.
MechanismIDDescription
6CB05(Yarwoodetal.,2005b).156reactionsamong 51 species(38 stategases,13radicals).
2CB6“Revision2”(CB6r2;Yarwoodetal.,2010;Yarwoodetal.,2012a;HildebrandtRuizand
Yarwood,2013).216reactionsamong75species(55stategases,20radicals).
3CB6r2withupdatestoincludereactionsinvolvingoceanichalogencompounds(CB6r2h;
Yarwoodetal.,2014).304reactionsamong115species(88stategases,27radicals).
4
CB6“Revision3”(CB6r3) thatincludesupdatestoimproveNO2‐organicnitratebranching
underwinterconditions(Emeryetal.,2015).220reactionsamong77species(55state
gases,22radicals).
5
AversionofSAPRC07thatincludes updatestosupporttoxicsandnumericalexpressionsof
rateconstantstosupportthecurrentchemistrymechanismcompiler(SAPRC07TC;Carter,
2010;Hutzelletal.,2012).565reactionsamong117species(72stategases,45radicals).
10
Auser‐definedsimplechemistrymechanismcanbedevelopedforanygasand/or
particulatespecies,whichisdefinedbya“Mechanism10”parametersfileandsolvedwithin
auser‐suppliedsubroutinecalled“chem10.f.”
TheselectionofwhichmechanismtoemployinagivenCAMxapplicationisdeterminedbythe
“chemistryparameter”inputfile.Thisfiledefinesthemechanismnumber,thenumberofgas
andaerosolspecies,andthenumberofreactionsforthemechanism,liststhespeciesbyname
withassociatedphysical‐chemicalproperties,liststhereactionrateconstantsandtemperature
dependenciesforeachreaction,anddefineswhichreactionsarephotolytic.Chemistry
parameterinputfilesfortheavailablemechanismsareprovidedwithCAMxandshouldnotbe
modifiedbyusers.SeeSection3foradditionalinformationontheformatandusageofthese
files.ChemistryparametersfilesarespecifictoversionsofCAMx.Alwaysusechemistry
parametersfileswiththerightCAMxversionnumber,donotattempttousefilesforanother
CAMxversion.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 102www.camx.com
5.1Gas‐PhaseChemistry
5.1.1CarbonBond
TheCarbonBondIV(CB4)mechanismwasfirstdevelopedbyGeryetal.(1989),andwas
subsequentlyupdatedinthe1990’stoincluderevisedPANchemistry,additionalradical‐radical
terminationreactionsandupdatedisoprenechemistry(Carter1996;Whittenetal.,1996).
AdditionalCB4updateswerethenmadetoexpandozonemodelingfromurbanto
regional/ruralenvironmentsandtosupportsecondaryaerosolchemistry,mercuryandtoxics
(Yarwoodetal.,2005a).
SeveralnewerCarbonBondversionsareavailableinCAMxasdescribedbelow.Table5‐2lists
chemicalspeciesnamesandpropertiescommontoallCAMxCarbonBondmechanisms.
5.1.1.1CarbonBond2005
Mechanism6isthe2005versionofCarbonBond(CB05)developedforEPAatmospheric
modelingstudies(Yarwoodetal.,2005b).UpdatesinCB05include:
Updatedrateconstantsbasedon2003–2005IUPACandNASAevaluations.
Anextendedinorganicreactionsetforurbantoremotetroposphericconditions.
NOxrecyclingreactionstorepresentthefateofNOxovermultipledays.
Explicitorganicchemistryformethaneandethane.
Explicitmethylperoxyradical,methylhydroperoxideandformicacid.
Lumpedhigherorganicperoxides,organicacidsandperacids.
Internalolefin(R‐HC=CH‐R)speciescalledIOLE.
HigheraldehydespeciesALDXmakingALD2explicitlyacetaldehyde.
HigherperoxyacylnitratespeciesfromALDXcalledPANX.
LumpedterpenespeciescalledTERP.
CB05wasevaluatedagainstsmogchamberdatafromtheUniversitiesofNorthCarolinaand
CaliforniaatRiverside.Thenewhigheraldehydeandinternalolefinspeciesimprove
mechanismperformanceforthesespeciesandproduceoxidantsmorerapidlyatlowVOC/NOx
ratios.ThenewterpenespeciesimprovessimulationofoxidantsandPMfrombiogenic
emissions.Severalneworganicperoxidespeciesimprovethesimulationofoxidantsthatare
involvedinPMsulfateformation.Theadditionofexplicitmethylperoxyradicalimprovesthe
simulationofhydrogenperoxideunderlowNOxconditions.
5.1.1.2CarbonBondVersion6
CarbonBondversion6(CB6)wasdevelopedbyYarwoodetal.(2010).Sincethen,CB6has
undergone2majorupdates,asdescribedbelow.Mechanism2isCB6revision2(CB6r2;
HildebrandtRuizandYarwood,2013).
Severalorganiccompoundsthatarelong‐livedandrelativelyabundant,namelypropane,
acetone,benzeneandethyne(acetylene),wereaddedexplicitlyinCB6toimproveoxidant
formationfromthesecompoundsastheyareoxidizedslowlyattheregionalscale.Alpha‐
dicarbonylcompounds(glyoxalandanalogs),whichcanfromsecondaryorganicaerosol(SOA)
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 103www.camx.com
Table5‐2.SpeciesnamesanddescriptionscommontoallCarbonBondMechanismsinCAMx.
Species DescriptionCarbon#CHOMol.Wt.
BZO2PeroxyradicalfromOHadditiontobenzene6 675159.1
C2O3Acetylperoxyradical2 23375.0
CROAlkoxyradicalfromcresol7 771107.1
CXO3C3andhigheracylperoxyradicals3 35389.0
EPX2PeroxyradicalfromEPOXreactionwithOH 5 595149.1
HCO3AdductfromHO2plusformaldehyde 1 13363.0
HO2Hydroperoxyradical1 1128.0
ISO2PeroxyradicalfromOHadditiontoisoprene5 593117.1
MEO2Methylperoxyradical1 13247.0
NO3Nitrateradical362.0
OOxygenatomintheO3(P)electronicstate 116.0
O1DOxygenatomintheO1(D)electronicstate 116.0
OHHydroxylradical1117.0
OPO3PeroxyacylradicalfromOPEN4 434115.0
RO2Operatortoapproximatetotalperoxyradicalconcentration 47287.1
RORSecondaryalkoxyradical1 47171.1
TO2PeroxyradicalfromOHadditiontoTOL7 795173.1
XLO2PeroxyradicalfromOHadditiontoXYL8 8115187.1
XO2NOtoNO2conversionfromalkylperoxy(RO2)radical 47287.1
XO2HNOtoNO2conversion(XO2)accompaniedbyHO2production 47287.1
XO2NNOtoorganicnitrateconversionfromalkylperoxy(RO2)radical 47287.1
AACDAceticacid2 24260.0
ACE
T
Acetone3 36158.1
ALD2Acetaldehyde2 24144.0
ALDXPropionaldehydeandhigheraldehydes 3 36158.1
BENZBenzene6 6678.1
CAT1Methyl‐catechols7 782124.1
COCarbonmonoxide1 1128.0
CH4Methane1 1416.0
CRESCresols7 781108.1
CRONNitro‐cresols7 773153.1
EPOXEpoxideformedfromISPXreactionwithOH 5 5103118.1
ETHEthene2 2428.0
ETHAEthane2 2630.1
ETHYEthyne2 2226.0
ETOHEthanol2 26146.1
FACDFormicacid1 12246.0
FORMFormaldehyde1 12130.0
GLYGlyoxal2 22258.0
GLYDGlycolaldehyde2 24260.0
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 104www.camx.com
Species DescriptionCarbon#CHOMol.Wt.
H2O2Hydrogenperoxide2234.0
HNO3Nitricacid1363.0
HONONitrousacid1247.0
HPLDhydroperoxyaldehyde5 583116.1
INTROrganicnitratesfromISO2reactionwithNO 5 594147.1
IOLEInternalolefincarbonbond(R‐C=C‐R) 4 4856.1
ISOPIsoprene5 5868.1
ISPD
Isopreneproduct(lumpedmethacrolein,methylvinylketone,
etc.)4 46170.1
ISPXHydroperoxidesfromISO2reactionwithHO2 5 5103118.1
KE
T
Ketonecarbonbond(C=O)4 48172.1
MEOHMethanol1 14132.0
MEPXMethylhydroperoxide1 14248.0
MGLYMethylglyoxal3 34272.0
N2O5Dinitrogenpentoxide5108.0
NONitricoxide130.0
NO2Nitrogendioxide246.0
NTROrganicnitrates4 493119.1
O3Ozone348.0
OLETerminalolefincarbonbond(R‐C=C) 3 3642.1
OPANPeroxyacylnitrate(PANcompound)fromOPO3 4 436161.0
OPENAromaticringopeningproduct(unsaturateddicarbonyl) 4 44284.0
PACDPeroxyaceticandhigherperoxycarboxylicacids 2 24376.0
PANPeroxyacetylNitrate2 235121.0
PANXC3andhigherperoxyacylnitrate 3 355135.0
PARParaffincarbonbond(C‐C)1 51272.1
PNAPeroxynitricacid1479.0
PRPAPropane3 3844.1
ROOHHigherorganicperoxide410290.1
SO2Sulfurdioxide264.0
SULFSulfuricacid(gaseous)2498.0
TERPMonoterpenes 10 1016136.2
TOLTolueneandothermonoalkylaromatics 7 7892.1
XOPNAromaticringopeningproduct(unsaturateddicarbonyl) 5 56298.1
XYLXyleneandotherpolyalkylaromatics 8 810106.2
NTR1Simpleorganicnitrates493119.1
NTR2Multi‐functionalorganicnitrates 494135.1
ECH4Emittedmethane(toenabletrackingseperatefromCH4) 1 1416.0
XPRPOperatorfororganicnitratesfromPRPA 3 37289.1
XPAROperatorfororganicnitratesfromPAR 1 5112117.1
CRNONitro‐cresoloxyradical7 763152.1
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 105www.camx.com
Species DescriptionCarbon#CHOMol.Wt.
CRN2Nitro‐cresolperoxyradical7 764168.1
CRPXNitro‐cresolhydroperoxide7 774169.1
CAO2Ring‐openingproductfrommethylcatechol 7 795173.1
viaaqueous‐phasereactions(Carltonetal.,2007),wereaddedinCB6toimprovesupportfor
SOAmodeling.Precursorstoalpha‐dicarbonylsinCB6arearomatics,alkenesandethyne.CB6
includedseveralupdatestoperoxyradicalchemistrythatimprovedformationofhydrogen
peroxide(H2O2)andthereforesulfateaerosolformation.Thegas‐phasereactionofdinitrogen
pentoxide(N2O5)withwatervaporisslowerinCB6thanCB05,whichreducednighttime
formationofnitricacid,althoughheterogeneousreactionsonaerosolsurfacesmaydominate
nitricacidformationatnight(Brownetal,2006).CB6includedthecalculationofthe
heterogeneousN2O5hydrolysisrateasafunctionofnitrate,chloride,andwaterconcentrations
inparticles(BertramandThornton,2009)whenPMisexplicitlysimulated;ifnoPMchemistryis
included,CAMxsetstheheterogeneousratetotheIUPAC(2015)N2O5hydrolysisrate.
ThecoreinorganicchemistrymechanismforCB6wasbasedonevaluateddatafromtheIUPAC
troposphericchemistrypanelasofJanuary,2010(Atkinsonetal.,2010).IUPACalsowasthe
primarysourceforphotolysisdatainCB6withsomedatafromthe2006NASA/JPLdata
evaluation(Sanderetal.,2006)orothersourcesforphotolysisofsomeorganiccompounds.
Therewerechangestotheorganicchemistryforalkanes,alkenes,aromaticsandoxygenates.
Themostextensivechangeswereforaromaticsandisoprene.Chemistryupdatesforaromatics
werebasedontheupdatedtoluenemechanism(CB05‐TU)developedbyWhittenetal.(2010)
extendedtobenzeneandxylenes.Theisoprenemechanismwasrevisedbasedonseveral
recentlypublishedstudies(Paulotetal.,2009a,b;Peetersetal.,2009).
CB6wasevaluatedusing339experimentsfromseveralchambersattheUniversityofCalifornia
atRiversideandtheTennesseeValleyAuthority.TheperformanceofCB6andCB05insimulating
chamberstudieswascomparableforalkanes,alkenes,alcoholsandaldehydeswithbothCB6and
CB05performingwellandexhibiting20%orlessbiasformaximumozone.Forspeciesthatwere
explicitlyaddedinCB6(ethyne,benzeneandketones),CB6performedmuchbetterthanCB05.For
aromatics,CB6improveduponCB05byreducingunderpredictionbiasinmaximumozonetoabout
10%forbenzene,tolueneandxylene.Forisoprene,bothCB05andCB6showlittlebiasfor
maximumozone(lessthan5%)butCB6tendedtoformozonetooslowly.CB6improvedupon
CB05forsimulatingmixturesofVOCs.Formixtureswithoutaromatics,bothCB05andCB6showed
minimalbiasformaximumozone.Formixturesincludingaromatics,bothCB05andCB6under
predictedmaximumozonebutbiaswasreducedfromabout30%forCB05toabout20%forCB6.
CB6revision1(CB6r1)includedrevisedchemistryforisopreneandaromatichydrocarbonsand
moreNOx‐recyclingfromthedegradationoforganicnitrates(Yarwoodetal.,2012a).Revision
2(CB6r2)increaseddetailintheformationandfateoforganicnitrates(ON),includingorganic
nitratedestructionbyreactionsinaerosols(HildebrandtRuizandYarwood,2013).ONsare
formedwhenVOCsdegradeinthepresenceofNOxandareimportantintheatmosphere
becausetheysequesterNOxandcancontributetoorganicaerosol(OA).NO2isreleasedwhen
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 106www.camx.com
ONsdegradebyphotolysisinthegas‐phase,returningNOxtotheatmospherewhereitmay
contributetoozoneproduction.CB6r2differentiatesorganicnitratesbetweensimplealkyl
nitratesthatremaininthegas‐phaseandmulti‐functionalONsthatcanpartitionintoOA
(HildebrandtRuizandYarwood,2013).ONspresentinaerosolsarethenassumedtoundergo
hydrolysistonitricacidwithalifetimeofapproximately6hoursbasedonlaboratory
experimentsandambientdata.Thesechangestendtoreduceregionalconcentrationsofozone
andONs,andincreasenitricacid.RegionalmodelingsimulationsusingCAMxwithCB6r2show
thataccountingforONhydrolysisinaerosolsimproveperformanceforozoneandinsimulating
thepartitioningofNOybetweenONsandnitricacid.
5.1.1.3CarbonBondVersion6withHalogenChemistry
Mechanism3isanextensionofCB6r2chemistrythataddsreactionsinvolvingocean‐bornehalogen
compounds(CB6r2h;Yarwoodetal.,2014).Brominereactionswereintegratedwithpreviously
developedreactionsforiodine(Yarwoodetal.,2012b)andchlorine(Tanakaetal.,2003;Kooetal.,
2012)withrateconstantsupdatedtocurrentlyacceptedvalues(IUPAC,2014aandb)and
mechanismrevisionstopromoteconsistency.Theadditoinalhalogencompoundsandreactions
addedtoCB6r2arelistedinAppendixB.
Thechlorine(Cl)reactionmechanismisbasedonKooetal.(2012)withthefollowingupdates:
ReactionrateconstantsupdatedtoIUPAC(2014aandb)asnecessary;
Cl‐atomswithorganiccompoundsarelimitedtoalkanesandisoprene
AddedClOradicalreactionswithBrOandIO
AddedClNO3hydrolysistoHOClonaerosols
Cl‐atomreactionswithorganiccompoundslimitedtoalkanesandisoprene
ReactionsofCl‐atomswithorganiccompoundsarelimitedtoalkanesandisoprene.Cl‐atom
productionfromthephotolysisofchloromethanesisincludedonlyforthosehalomethanesthat
areincludedassourcesofBrfromseawater.Degradationofanthropogenicchlorocarbons(e.g.,
HCFCs)isnotincludedinthemechanism.ThedominantsourceofatmosphericClisexpected
tobeseasaltemissions.Hydrochloricacid(HCl)isdisplacedintothegasphasewhenseasalt
aerosolsareacidifiedbynitricandsulfuricacids.TheHClformedfromseasaltcanreactwith
dinitrogenpentoxide(N2O5)onaerosolsurfacestoproducenitrylchloride(ClNO2)which
photolyzestoproducesCl‐atoms.WhenPMisexplicitlymodeled,theheterogeneousreaction
rateforN2O5+HCliscalculatedusingtheparameterizationdevelopedbyBertramand
Thornton(2009).
Thebromine(Br)reactionmechanismissimilartothemechanismsofYangetal.(2005),
SmoydzinandvonGlasow(2009)andParrellaetal.(2012)andismorecompactthanthe
mechanismsofVogtetal.(1999),WhittenandYarwood(2008)andOrdóñezetal.(2012).
ReactionrateconstantsfortheBrmechanismarefromIUPAC(2014aandb).Hydrolysisof
BrNO3isincludedaspseudogas‐phasereactionwitharateconstantcomparabletohydrolysis
ofN2O5.ThelargestsourceofatmosphericBrisseasaltaerosol(Yangetal.,2005)althoughthe
mechanismbywhichseasaltBrentersthegas‐phasediffersfromthatforCldepletionunder
acidconditions(discussedabove)andthiscanalsooccuratneutralpH.Othersourcesof
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 107www.camx.com
atmosphericBrincludedinthemechanismaredecompositionofthehalomethanesCHBr3,
CH2Br2,CH2BrCl,CHBr2ClandCHBrCl2.
Theiodine(I)reactionmechanismisbasedonYarwoodetal.(2012b)withthefollowing
updates:
ReactionrateconstantsupdatedtoIUPAC(2014aandb)asnecessary
AddedIOradicalreactionswithClOandBrO
AddedINO3hydrolysistoHOIonaerosols
RemovedINOandrelatedreactions
ReactionsofINOwereremovedbecauseINOconcentrationswerefoundtobesmall(Yarwood
etal.,2012b).HydrolysisofINO3isincludedaspseudogas‐phasereactionwitharateconstant
comparabletohydrolysisofN2O5.
Emissionsfromoceansarethemajorsourceofatmosphericiodine(Carpenter,2003),including
methyliodide(CH3I),otheriodo‐methanes(CH2I2,CH2ICl,CH2IBr),largeralkyiodides,andmolecular
iodine(I2).Iodineemissionsresultbothfrombiologicalandphotochemicalprocessesinocean
water(MooreandTokarczyk,1993;MooreandZafirou,1994).Photochemicalprocessesthatcause
iodineemissionsarelinkedtoreactionsofdissolvedozoneandtherebytoenhancedozone
depositiontooceanicwaters(Ganzeveldetal.,2009;Helmigetal.,2012).
ReactionsamongtheradicalsClO,BrO,andIOareincludedtointerconnectthemechanismsfor
differenthalogens.AtmosphericreactionsofCl‐atoms,Br‐atomsandI‐atomscanproduceor
destroytroposphericozonethroughaseriesofcatalyticcycles,whereeachhalogenatomis
regeneratedinthereactionsandthereforeoneatomcanpotentiallydestroymanyO3
molecules.CatalyticdestructionofO3byClandBristerminatedonlywhendepositionremoves
reservoirspecies,e.g.,bydryorwetdepositionofHClandHBr.TheatmosphericreactionsofI‐
atomsdifferfromBrandClinseveralways:
I‐atomsdonotabstractHfromorganiccompoundsincontrasttoBrandCl‐atoms;
FormationofoxidesismoreextensiveforI(IO,OIO,I2O2,IxOy)thanforBr(BrO)orCl
(ClO);
Largeriodineoxides(IxOy)formaerosolswhereasClandBroxidesremaininthegas
phase.
AerosolformationbylargeriodineoxidesisasinkforreactiveIthatcanterminateO3
destructionbyreactiveI.
5.1.1.4CarbonBondVersion6,Revision3
Mechanism4isCB6revision3(CB6r3),whichincludesupdatestoimproveNO2‐alkylnitrate
branchingincoldconditions(Emeryetal.,2015).Alkylnitrateformationcaninfluenceozone
productionbecausebothNOandradicalsareterminatedbyalkylnitrateformation.However,
temperaturedependenceofNO2‐alkylnitratebranchingisomittedfromcurrentphotochemical
modelmechanisms,i.e.,CB05‐TU(Whittenetal.,2010),CB6(HildebrandtRuizandYarwood,
2013),SAPRC11(CarterandHeo,2013)andRACM2(Goliffetal.,2013)andalsofromthe
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 108www.camx.com
explicitMasterChemicalMechanism(http://mcm.leeds.ac.uk/MCM/).Leeetal.(2014)
consideredhowcoldwinterconditionsaffectalkylnitratebranchingandconcludedthat
omittingthetemperaturedependencemaycausea15%highbiasinozoneformation.
WehavedevelopedtheCB6r3chemicalmechanismfromCB6r2toextendapplicabilityto
winterandsummerconditions.Thetemperatureandpressuredependentformationofalkyl
nitratesincludesreactionsinvolvingpropane(CB6species“PRPA”)andotheralkanes(CB6
species“PAR”).CB6r3wasdesignedtoproducethesamealkylnitrateyieldsasCB6r2atroom
temperatureandpressure(298Kand1atm).SeeAppendixDforacompletelistingof
reactions,rateexpressions,andVOCproperties.
Alkylnitrates(RONO2)areformedwhenalkanesareoxidizedintheatmosphereinthepresence
ofnitricoxide(NO).Alkanesarecompoundsofhydrogenandcarbonwithonlysinglebonds
connectingtheatoms,e.g.,methane(CH4),ethane(C2H6),propane(C4H8),etc.Analysesofair
samplescollectedinwesternUSoilandgasdevelopmentbasinsduringwintertimeozone
eventsshowthatalkanesdominatetheorganicgasespresentintheair.Theformationofalkyl
nitratesfromalkanescanbedescribedbythefollowingreactionsinwhichanalkane(RH)reacts
withhydroxylradical(HO•)3andoxygen(O2)toformanalkylperoxyradical(RO2•)thathastwo
potentialreactionpathwayswithNO•:
1)HO•+RH R•+H2O
2)R•+O2 RO2•
3a)RO2•+NO• RONO2
3b) RO•+NO2•
Perringetal.(2013)havereviewedtheatmosphericimpactsofalkylnitrateformation.The
yieldofalkylnitrateisdeterminedbythebranchingratioamongreactions3aand3b,which
dependsonbothtemperatureandpressure(Atkinsonetal.,1983).Theassociationreactionof
RO2withNOinreaction3aisfavoredoverreaction3batlowertemperaturesandhigher
pressures.
Emeryetal.(2015)confirmedthedirectionalityoftheozoneeffecthypothesizedbyLeeetal.
(2014)whenthemostrecenttemperature/pressureequationsofAreyetal.(2001)foralkyl
nitratebranchingwereincorporatedintoCB6r3,representingthealkanemixofahighwinter
ozoneepisodeintheUintahBasinofUtah.RecentexperimentaldataofYehandZiemann
(2014)confirmtheexpressionofAreyetal.(2001)forn‐alkanescontaining3to14carbon
atoms.WeightingmeasuredorganicgasconcentrationsbytheirOHreactivityindicateswhich
speciesaremostlikelytoparticipateinozoneformation.Consideringthealkanesrepresented
byCBspecies“PAR”measuredintheUintahBasin,thosewith4to7carbonatomsdominate
OHreactivityandindicatethatthetemperature/pressuredependenceforpentane(with5
carbons)maybeconsideredrepresentativeforalkanesintheUintaBasin.WhileCB6r3is
suitableforrepresentingthealkanemixturereactingintheUintaBasin,thederivationofCB6r3
doesnotrelyuponthisparticularmixtureofalkanes.
3Thedotsignifiesthathydroxyl(HO)isaradical,i.e.,hasoneunpairedelectron.NotethatNOandNO2alsoare
radicals.O2isadi‐radical.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 109www.camx.com
5.1.2SAPRC2007
The2007updatetotheSAPRCchemistrymechanism,calledSAPRC07(Carter,2010),replaced
thedatedSAPRC99mechanism.TheversionimplementedinCAMxisSAPRC07TC,which
includesadditionalmodelspeciestoexplicitlyrepresentselectedtoxicsandreactiveorganic
compoundsandusesnumericalexpressionsofrateconstantsthatarecompatiblewiththe
currentchemistrymechanismsolver(Hutzelletal.,2012).Chlorinechemistryisnotincludedin
theCAMximplementation.SeeAppendixEforacompletelistingofreactions,rateexpressions,
speciesdefinitions,andVOCproperties.
5.1.3ImplicitGas‐PhaseSpecies
AllphotochemicalmechanismsinCAMxemployfixedconcentrationsformolecularoxygen(O2),
molecularhydrogen(H2),andmethane(CH4).Concentrationsforthesecompoundsaresetto
thefollowingconstantmixingratios(i.e.,theyarenotimpactedbythechemicalsolution):
[O2] =2.095×105ppm
[H2]=0.60ppm
[CH4]=1.75ppm
Mechanisms2and3(CB6r2)includesaspeciesnamedECH4torepresentemittedmethane
overandabovetheglobalbackgroundof1.75ppm.
5.1.4PhotolysisRates
Theratesofatmosphericphotolysisreactionsdependuponsolarirradianceandthereforeare
sensitivetotheamountofsolarradiationtransmittedthroughtheatmosphereaswellas
reflectedfromtheearth’ssurface(albedo).Photolysisratesareexternallyderivedassuming
clear‐skyconditionsasafunctionoffiveparameters:solarzenithangle,altitudeaboveground,
totalozonecolumn,surfacealbedo,andterrainheight.TheratesareprovidedtoCAMxasa
largelookuptablethatspanstherangeofconditionsforeachofthefivedimensions.The
lookuptableisdevelopedusingaCAMxpre‐processorthatincorporatestheTropospheric
UltravioletandVisible(TUV)radiativetransfermodel(NCAR,2011).TUVemploysastandard
atmospheredensityprofileforRayleighscatteringandotherabsorberssuchasoxygen.User‐
specifiedozonecolumnvaluesareusedtoscaleatypicalverticalozoneprofilewithinTUV.A
defaultaerosolprofilefromElterman(1968)iscombinedwithtypicalaerosolopticalproperties
withinTUVtoaccountforhaze.
TheCAMxversionofTUVismodifiedtooutputphotolysisrateinformationinaformatdirectly
compatiblewithallCAMxphotochemicalmechanisms.SeeSections2and3formore
informationondevelopingphotolysisinputs.
AsCAMxruns,thelookupratesareinterpolatedtothespecificconditionsineachgridcell.
Theyarethenadjustedforanylocalcloudcoverandlocalaerosolattenuation(ifPMis
simulated).Additionally,solarangle‐dependenttemperatureandpressureadjustmentsare
appliedtofivekeyphotolysisreactions(NO2,O3,acetaldehyde,andtwoformaldehyde
reactions).
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 110www.camx.com
5.1.4.1CloudandAerosolAdjustments
Photochemistryisstronglyinfluencedbythepresenceofclouds,whichcanbothattenuateand
enhancetheactinicfluxofultraviolet(UV)andvisibleradiationresponsibleforphotolysis.
Theirspecificradiativeimpactsdependonmanyfactors,includingheight,depthandfractional
skycover;watercontent;andwaterphase(i.e.,liquiddropletsoricecrystals).Aerosolsalso
influencephotochemistryaccordingtotheiropticalpropertiesandmassloadingasafunction
ofaltitudeanddepth.CAMxincludesafastin‐lineversionofTUV(Emeryetal.,2010)to
calculatephotolysisadjustmentprofilesthrougheachcloudy,aerosol‐ladengridcolumn.
Thein‐lineTUVisruntwiceforeachgridcolumn:firstfornon‐cloudyconditionswiththesame
Elterman(1968)aerosolprofileusedinthefull‐scienceTUVpre‐processor,andsecondwith
cloudsandsimulatedaerosolstoderiveaverticalprofileofthecloudy:clearactinicfluxratio(in
thecasethataerosolsarenotruninCAMx,theEltermanprofileisusedconsistently).Thisratio
isthenappliedasamultiplicativefactortotheclear‐skyvalueineachgridcell.Thisapproach
maintainsaccuracyinthecalculationofclear‐skyphotolysisrates,whileallowingcloudsand
aerosolstobedirectlyinvolvedinradiativetransfercalculationsthrougheachgridcolumn.
TUVincludesacalculationofintegratedatmosphericdensityabovetheCAMxdomain,based
ontheU.S.standardatmosphere,sothatatmosphericattenuationoftheUVstreamisproperly
calculatedenteringthemodeltop.Otheraspectsofthein‐lineTUVmodelweresubstantially
streamlinedtominimizeruntimes.First,radiativecalculationsareperformedforonlyasingle
representativewavelength(350nm).Second,sinceabsorptionbygasesoccursinrather
narrowUVbandsrelativetothebroad‐bandinfluenceofclouds,theabsorptionfromoxygen,
ozone,nitrogendioxideandsulfurdioxidewereremoved.Third,theextraterrestrialfluxwas
notneededasitcancelsoutinthecalculationofthecloudy:clearratio.Finally,theplane‐
parallelversionofthedelta‐Eddingtonapproachwasusedinlieuofthemorecomplexand
expensivepseudo‐sphericalgeometry.Preliminarytestsagainstthefull‐scienceTUVshowed
thatthestreamlinedversionresultedinlessthan1%differencesinactinicfluxratioforarange
ofcloudyconditions(Emeryetal.,2010).
Opticaldepth
expressesthereductionofincidentlightI0throughalightattenuatingmedium
ofdepth
zaccordingto
eII 0
Thein‐lineTUVadjustmentschemeutilizescloudopticaldepthfieldsprovidedbytheCAMx
cloud/rainfile,andaerosolopticaldepthscalculatedfromthePMmassconcentrations
simulatedbyCAMx.
TheCAMxmeteorologicalinterfacepre‐processorsgeneratecloudwaterandopticaldepth
fieldsfromthevariablefieldspresentintherawmeteorologicaloutputfiles.Cloudoptical
depthiscalculatedineachmodelgridcellaccordingtotheapproachofDelGenioetal.(1996)
andVoulgarakisetal.(2009),whichsatisfactorilyapproximatestheeffectsofrandomcloud
overlapaccordingto
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 111www.camx.com
2/3
2
3
c
dw
F
r
zL
whereLiscloudliquidwatercontent(g/m3),
zisthecelldepthcontainingcloudwater,
wis
thedensityofliquidwater(106g/m3),andFcisfractionalcloudcover.Themeanclouddroplet
radiusrdisnotdependentonwaterphase,andisassumedtobeatypicaltroposphericvalueof
1.510‐5mforliquidcloudwater.TUVassumesconstantMiescatteringparametersforclouds:
asinglescatteringalbedoof0.99,andanasymmetryfactorof0.85.
WhenCAMxisrunwithPM,verticalhazeopacityprofilesarecalculatedfromsimulatedaerosol
concentrationfields.WhenCAMxisrunwithonlygas‐phasechemistrywithoutaerosols,
photolysisratesareonlyadjustedforclouds.Aerosolopticalparametersarebestdetermined
fromMietheory,butintheinterestofminimizingimpactstomodelspeedandconsideringthe
degreeofuncertaintyinthesimulatedaerosolconcentrationsthemselves,asimplermethod
wasadopted.Aerosolsareassumedtoexistasanexternalmixtureoftheircomponent
chemicalspecies.Aerosollightextinction(scatteringandabsorption)isafunctionofeach
species’concentration,extinctionefficiency,andaffinityforhygroscopicgrowth.Totalaerosol
opticaldepthisdeterminedbysummingextinctionoverallspeciesandmultiplyingbylayer
depth.
Dryextinctionefficienciesandsingle‐scatteringalbedosforeachaerosolspecies,validat350
nm,areexternallydefinedintheCAMxchemistryparametersfile.Whilethesecanbealtered
bytheuser,thechemistryparametersfilesthatareprovidedwiththeCAMxdistribution
includedefaultvaluesaccordingtoTakemuraetal.(2002),asshowninTable5‐3.
Table5‐3.Defaultdryextinctionefficiencyandsingle‐scatteringalbedoat350nm(Takemura
etal.,2002)inthedistributedCAMxchemistryparametersfile.
Species
DryExtinctionEfficiency
(m2/g)
Single‐Scattering
Albedo
Sulfate7
10‐60.99
Nitrate7
10‐60.99
Ammonium7
10‐60.99
Organics7
10‐60.80
ElementalCarbon18
10‐60.25
Crustal(Fine+Coarse)0.4
10‐60.70
Seasalt(Na+Cl)1.5
10‐60.99
Takemuraetal.(2002)provideextinctionefficienciesandsingle‐scatteringalbedosforsulfate,
organics,soot,totaldust,andseasalt;wehaveextendedthesulfatevaluestonitrateand
ammonium.Theasymmetryfactorisinternallysettoadefaultvalueof0.61regardlessofthe
compositionoftheaerosols.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 112www.camx.com
Hygroscopicaerosolsarealsoflaggedinthechemistryparametersfile.Foreachflagged
species,aninternalgrowthfactorisappliedtothedryextinctionefficienciesaccordingtothe
relativehumidityconditionsineachgridcell.ThegrowthcurveistakenfromthePhaseIreport
oftheFederalLandManagers’AirQualityRelatedValuesWorkgroup(FLAG,2000).Bydefault,
therelativehumiditygrowthfactorisflaggedforsulfate,nitrate,ammoniumandseasalt;a
singlegrowthfactorisappliedforallhygroscopicspecies(Figure5‐1).Minimumandmaximum
limitsonrelativehumidityaresetat1%and95%,respectively.
Figure5‐1.Relativehumidityadjustmentfactorappliedtothedryextinctionefficiencyfor
hygroscopicaerosols(FLAG,2000).
5.1.4.2EffectsofSurfaceAlbedoandSnowCover
PhotolysisratesdependontheamountofsolarradiationreflectedfromtheEarth’ssurface
(albedo).UValbedoisassignedwithinCAMxaccordingtothedistributionofgriddedlanduse
providedbythetime‐invariant2Dsurfacefile(Tables3‐4and3‐5).Snow‐freeUValbedosfallin
therange0.04to0.08andareconstantintime.AnalysesofreflectedUVradiationrecordedin
satellitedata(HermanandCelarier,1997)reportsimilarUValbedovaluesintherange0.02‐
0.08fortypicalterrestrialandwatersurfaces.Snowismuchmorereflectivethanothertypes
ofsurfacesandsoitisimportanttocharacterizetheeffectofsnowcoveronphotolysisrates.
TheCAMxphotolysisrateinputfileisgeneratedforfivesurfacealbedos,twoofwhich
representthenon‐snowrange(0.04–0.10)andfourthatrepresentthesnowrange(0.1–0.2–
0.5–0.9).CAMxdeterminesthelanduse‐andsnow‐weightedaveragesurfacealbedoineach
gridcell(Section4.7)andinterpolatesphotolysisratesbetweenthefivealbedos.
5.1.5Gas‐PhaseChemistrySolvers
Solvingthetimeevolutionofgas‐phasechemistryrequiresnumericallyintegratingasetof
ordinarydifferentialequations(ODEs)andisamongthemostcomputationallyexpensive
0
5
10
15
20
25
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
F(RH)
RelativeHumidity(%)
ExtinctionAdjustment,f(RH)
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 113www.camx.com
operationsperformedinaphotochemicalgridmodel.OnereasonforthisisthattheODEs
describingtroposphericchemistryare“stiff”–meaningthatthechemicalspeciesinvolvedhave
widelyvaryingproductionand/ordecaytimes.Thecomputationalefficiencyofthegas‐phase
chemistrysolverstronglyinfluencestheoverallefficiencyofagridmodel.CAMxincludestwo
chemistrysolversthatoffertrade‐offsbetweenaccuracyandefficiency.
ThemostaccuratesolutionmethodsavailableforstiffODEsare“Gear”typeimplicitsolvers
(Gear,1971)suchasLSODE(Hindmarsh,1983).Gearsolversarestablewhenappliedto“stiff”
problems,suchasgas‐phasechemistry,butaregenerallytooslowforroutineuseingridmodel
applications.Herteletal.(1993)developedanimplementationoftheEulerBackwardIterative
(EBI)methodthatisveryefficientandalsoaccuratebecauseitutilizesexplicitalgebraic
formulaetosolveseveralimportantgroupsofspecies(HOx,NOx,etc.).
5.1.5.1LSODE
CAMxincludesthedoubleprecisionversionoftheLivermoreSolverforOrdinaryDifferential
Equations(LSODE;Hindmarsh,1983)distributedbytheNetlibrepositoryofnumerical
algorithms(http://www.netlib.org/).LSODEistooslowforeverydayusebutvaluableasa
referencemethodwithinCAMx.LSODEisbasedonGear’smethodwithnumericalrefinements
toimproveefficiencyandeaseofuse(RadhakrishnanandHindmarsh,1993).Gearmethods
(Gear,1971)areimplicitandemploybackwards‐differentiationformulaetostepforwardin
timebytakingmultiplesteps.Theconvergedsolutionsateachsteparesavedinahistory
matrixandusedtopredictthenextsolution.Thus,LSODEmustinitiallytakeshorttimestepsto
buildthehistorymatrixandmaythentakeprogressivelylongersteps.LSODEismostefficient
forlongintegrationtimes(andinefficientforshortintegrationtimes)andthereforeleast
burdensomeforcoarsegridmodelapplicationsthathaverelativelylongcouplingtimes
betweengas‐phasechemistryandotherprocesses,e.g.,advection.
User‐suppliedinformationrequiredbyLSODEisessentiallytheerrorcontrolparametersand
thefunctionsdefiningthesystemofODEs,f(y,t),whereyisthevectorofspeciesconcentrations
andtistime.Supplyingasubroutinetoevaluatethetimederivativesofspeciesconcentrations
(f=dy/dt)ismandatory.SupplyingafunctiontoevaluatetheJacobianmatrix(J=df/dy)is
optionalsince,ifnotsupplied,LSODEcanderiveanumericalJacobianbyfinitedifference
betweenrepeatedevaluationsoff.SupplyinganalgebraicJacobianensuresaccuracy,although
anumericalJacobianmaybeequallyaccurateifadequateprecision(e.g.,doubleprecision)is
employed.SupplyinganalgebraicJacobianismoreefficientwhenJissparse,butfor
condensedmechanismssuchasCB05JisnotsparseandthenumericalJacobianmethodis
faster.CAMxusesthenumericalJacobianmethodwitharelativeerrortoleranceof10‐7andan
absoluteerrortoleranceof10‐10.
5.1.5.2EBISolver
ThebackwardEulermethodsolvesconcentrations(y)asy(t+h)=y(t)+hf,wherefisthetime
derivativeofspeciesconcentrations(f=dy/dt)evaluatedatt+h.Themethodmustbeiterated
toconvergenceiny(t+h)becausespeciesconcentrationsareinterdependent.ThebasicEBI
methodisnotefficientforstiffproblemssuchastroposphericchemistrybecauseconvergence
isslowandthestepsize(h)mustbeshort.Herteletal.(1993)greatlyimprovedtheefficiency
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 114www.camx.com
andaccuracyofthemethodbydevelopinganalyticalsolutionstotheEBIequationforgroupsof
speciesthatarestronglycoupled(e.g.HOxandNOx/O3).Timestepsofupto3minutesare
takenbytheHertelEBIsolverinCAMx.
5.2AerosolChemistry
Thegas‐phasechemistryisrunalone(noaerosols)bysupplyingCAMxwithachemistry
parametersfilewiththeaerosoloptionkeywordsetto“NONE”,thenumberofaerosolspecies
settozero,andtheentirelistofaerosolspeciesparametersomitted(seeSection3).Aerosols
aretreatedbysupplyingCAMxwithachemistryparametersfilewiththeaerosolkeywordset
to“INERT”,“CF”,“CF_VBS”or“CMU”.Inallsuchcases,thenumberofaerosolspecies,the
numberofsizesectionsandtheirsizeranges,andvariousaerosolparametersarespecified.
Theaerosolkeyword“INERT”allowstheusertodefineanynumberofarbitrarily‐namedinert
particulatespeciestobecarriedbythemodelduringaphotochemicalsimulation(e.g.,
modelingthedispersionofonlywind‐blowndust).
Aerosolchemistryprocessescanberuntogetherwithgas‐phasechemistryusingtwooptions
fortreatingaerosolsizedistributions:theCFschemeandCMUscheme.TheCFschemedivides
thesizedistributionintotwostaticmodes(coarseandfine).Primaryspeciescanbemodeled
asfineand/orcoarseparticles,whileallsecondary(chemically‐formed)speciesaremodeledas
fineparticlesonly.TheCMUschemeemploysasectionalapproachthatdynamicallymodels
thesizeevolutionofeachprimaryandsecondaryaerosolconstituentacrossanumberoffixed
sizesections.TheCFandCMUoptionsrequireaminimumsetofspecificaerosolspecieswith
associatedchemistry.AerosolwaterisexplicitlytreatedinbothCFandCMUoptions,which
affectsaerosolsizeanddensity.
5.2.1AdditionalGas‐PhaseSpecies
WheneithertheCForCMUaerosoloptionisselected,thefollowinggas‐phasespeciesare
addedtomodelgas‐aerosolinteractions:
1) Ammonia(NH3)asaprecursorforinorganicaerosol.
2) Gaseoussulfuricacid(SULF)asaprecursortosulfateaerosol.
3) Sodium(Na)andhydrogenchloride(HCL)asproductsofacidifiedseasaltaerosol.
4) Separately‐trackedemitted(“primary”)VOCsthatformintermediateorganiccondensable
gas(CG)speciesviaoxidationreactions:toluene,xylene,monoterpenes,sesquiterpenes,
andisoprene.
5) SeveralintermediateCGspeciesthatmaycondensetosecondaryorganicaerosol(SOA)or
areproductsofSOAvolatilization.
5.2.2AerosolProcesses
Aerosolchemicalandthermodynamicprocessesincludethefollowing:
1) AqueoussulfateandnitrateformationinresolvedcloudwaterusingtheRADMaqueous
chemistryalgorithm(Changetal.,1987).
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 115www.camx.com
2) Partitioningofinorganicaerosolconstituents(sulfate,nitrate,ammonium,andnatural
minerals)betweenthegasandaerosolphasesusingtheISORROPIAthermodynamic
module(Nenesetal.,1998,1999);uptakeofnitricacidbycalciuminsoildustparticlesis
calculatedexternaltoISORROPIA.
3) Organicaerosol‐gaspartitioningandoxidationchemistryusingtwooptions:
a. Asemi‐volatileequilibriumschemecalledSOAP(Straderetal.,1999)thatformsa
condensed“organicsolutionphase”;
b. Ahybrid1.5‐dimensionvolatilitybasisset(1.5‐DVBS)approach(Kooetal.,2014)
providingaunifiedframeworkforgas‐aerosolpartitioningandchemicalagingofboth
primaryandsecondaryorganicaerosols.
Organicaerosoltreatmentsaredescribedinmoredetailinseparatesub‐sectionsbelow.
Aqueouschemistryisnotexplicitlyappliedtosub‐gridclouds;cloudsareassumedtoeither
occupytheentiretyofagridcellvolume,orbecompletelyabsentfromit.Thecell‐averaged
effectofsub‐gridcloudsistreatedintheCAMxmeteorologicalpreprocessorsthatgenerate
three‐dimensionalgriddedcloudinputfields.Cloudygridcellsaredeterminedbycloudliquid
watercontentsaboveathresholdof0.05g/m3.Aqueouschemistryiscalculatedforeachcloud
gridcellateachmodeltimestep.
Incloudygridcellsundergoingaqueouschemistry,theISORROPIAequilibriumalgorithmis
calledeverytimesteptoensurethatrapidlyevolvingsulfate,nitrateandneutralizingcations
areinbalancewiththelocalenvironment.Incloud‐freegridcells,ISORROPIAiscalledona
uniqueaerosol“coupling”timestepthatisdefinedwithinthechemistryparametersfile.By
default,theaerosolcouplingtimestepis15minutes,andthisisusedforallmasterandnested
gridsinasimulationregardlessofthegrid‐specificdrivingtimestep.
Uptakeofnitricacidonmineraldustparticlesisoneofthepathwaysofparticlenitrate
formation.Forexample,calciuminsoildustparticlesreactswithnitricacidtoformcalcium
nitrate.BasedonSaharanduststudy(Astithaetal.,2009),weestimateabout6%massfraction
ofcalciumcarbonate(CaCO3)infinedustparticles(FCRS),andhalfofitisassumedtobe
replacedbycalciumnitrate.SincethecurrentISORROPIAimplementationinCAMxdoesnot
considermineralcationsotherthansodium,nitrateuptakebycalciuminsoildustiscalculated
externaltoISORROPIA.CAMxoutputstotalparticulatenitrate,i.e.,thesumofparticlenitrate
determinedbyISORROPIAandcalciumnitrate.
Table5‐4showstheinorganicaerosolspeciesthatcanbeincludedwiththeCFscheme.Some
speciesmustbepresentforthisscheme(“MandatorySpecies”)toestablishlinkagesbetween
gasandaerosolphasechemistry.Otherspeciesareoptional(meaningthattheycanbe
removedfromthechemistryparametersinputfile),exceptthatsodiumandchloridemust
alwaysbepresentorabsenttogether(i.e.,onecannotbepresentwithouttheother).Ifsodium
andchloridearenotmodeledthendefaultbackgroundvaluesareusedwithinCAMx.
IntheCMUscheme,CRSTisusedtoidentifyallprimaryinertmaterial,whichreplacestheCF
speciesofFPRM,FCRS,CPRM,andCCRSinTable5‐4.Individualaerosolspeciesnamesspecify
boththeconstituentandthesizesectionusingasetnamingconvention,e.g.,PSO4_1refersto
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 116www.camx.com
Table5‐4.ListofinorganicPMspeciesfortheCAMxCFaerosoloption.
InternalLabelName MandatorySpecies
PSO4SulfateX
PNO3ParticulateNitrate X
PNH4ParticulateAmmonium X
PH2OAerosolWaterContent X
NASodium
PCLParticulateChloride
PECPrimaryElementalCarbon
FPRMFineOtherPrimary(diameter
2.5µm)
FCRSFineCrustal(diameter
2.5µm)
CPRMCoarseOtherPrimary
CCRSCoarseCrustal
particlesulfateinsizesection1.TheCMUschemerequiresthatthecompletelistofallaerosol
speciesbepresentinthechemistryparametersfile(i.e.,noaerosolspeciesareoptional).
5.2.2.1SOAP
SOAPisthedefaultSOAchemistry/partitioningmodulewhentheaerosolkeywordissetto“CF”
or“CMU”inthechemistryparametersinputfile.Directlyemitted(primary)organicaerosolis
treatedbySOAPasasinglenon‐volatilespeciescalledPOAthatdoesnotchemicalevolve.
However,POAdoesinfluencetheevolutionofSOA.SOAspeciesexistinequilibriumwith
condensablegasses(CG)thatcanbeproducedbyVOCoxidation:
VOC+oxidant→CG↔SOA
CGformationfromVOCoxidationreactions(Table5‐5)ishandledwithintheSOAPmodule
ratherthanthemaingas‐phasechemistry,asdescribedbelow.Thisapproachhasthefollowing
advantages:(1)separatestheVOCprecursorsandlumpingschemesforoxidantchemistryand
SOAformation(e.g.,foraromatics,differentlumpingschemesmaybeappropriateforoxidant
andSOAformation);(2)allowsthesameSOAmechanismtobeusedwithdifferentoxidant
mechanisms;(3)allowsinclusionofSOAprecursorswithoutexplicitlydefiningoxidantreactions
(e.g.,sesquiterpenesareexplicitintheSOAmodulebuttheiroxidantformationmaybe
representedbysurrogatespecies).
EmissionsofSOAprecursorsmustbeprovidedseparatelyfromtheemissionsofoxidant
precursors,e.g.,isopreneemissionsmustbespeciatedbothasISOPforoxidantchemistryand
ISPforSOAchemistry.This“doublecounting”ofemissionsiscorrectbecausethespecies(e.g.,
ISOPandISP)servedifferentpurposes.Ideally,emissionsprocessorswilldevelopVOC
speciationschemesthatsuitbothoxidantandSOAmodeling.Intheabsenceofmorerefined
information,emissionsofSOAprecursorsmaybesetequaltoemissionsofoxidantprecursors
asfollows:ISP=ISOP;TRP=TERP;BNZA=BENZ;TOLA=TOLorARO1;XYLA=XYLorARO2.
SomeemittedVOCsaresemi‐volatile(SVOCs)andcancondensedirectlytoSOA,e.g.,biogenic
emissionsofoxygenatedVOCs.SOAformationfromSVOCemissionsmaybeaccountedforby
includingtheSVOCintheCAMxemissionsasoneoftheCGslistedinTable5‐6.ChooseaCG
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 117www.camx.com
Table5‐5.SOAprecursorreactionsincludedintheCAMxSOAPmodule.
PrecursorReactionCGProducts1k298
2
Anthropogenic
ToluenesTOLA+OHTO2 5.63E‐12
TO2+NO0.036CG1+0.069CG2 9.04E‐12
TO2+HO20.22SOAH31.49E‐11
XylenesXYLA+OHXLO2 1.85E‐11
XLO2+NO0.022CG1+0.064CG2 9.04E‐12
XLO2+HO20.21SOAH31.49E‐11
BenzeneBNZA+OHBZO2 1.22E‐12
BZO2+NO0.037CG1+0.46CG2 9.04E‐12
BZO2+HO20.19SOAH31.49E‐11
Biogenic
IsopreneISP+OH0.015CG3+0.12CG4 9.99E‐11
ISP+O3none 1.27E‐17
ISP+NO3none 6.74E‐13
TerpenesTRP+O0.065CG5+0.29CG6 3.60E‐11
TRP+OH0.065CG5+0.29CG6 6.77E‐11
TRP+O30.065CG5+0.29CG6 7.63E‐17
TRP+NO30.065CG5+0.29CG6 6.66E‐12
SesquiterpenesSQT+OH0.85CG7 1.97E‐10
SQT+O30.85CG7 1.16E‐14
SQT+NO30.85CG7 1.90E‐11
Notes:
1Yieldvaluesareinppm/ppm.
2Rateconstantsareshownfor298Kand1atmosphereinmolecules/cm‐3and1/s.
3SOAHrepresentsnon‐volatileoxidationproducts.
Table5‐6.PropertiesofCG/SOApairsintheCAMxSOAPmodule.
Species
Molecular
Weight
(gmole‐1)
Saturation
Concentration
(µgm‐3at298K)
Heatof
vaporization
(kJmole‐1)
CG1/SOA1150 1.15 19.9
CG2/SOA2150 81.6 18.0
CG3/SOA3130 0.726 42.0
CG4/SOA4130 136 42.0
CG5/SOA5180 3.92 75.5
CG6/SOA6180 55.8 75.5
CG7/SOA7210 0
–
SOAH150 0
–
SOPA220 0
–
SOPB220 0
–
thathasappropriatevolatilityproperties,andaccountforanymolecularweightdifference
betweentheSVOCandsurrogateCG(molesCGemitted=molesSVOCxMWSVOC/MWCG).
TheSOAPmoduleconsistsoftwoparts:gas‐phaseoxidationchemistrythatformsCG,and
equilibriumpartitioningbetweengasandaerosolphasesforeachCG/SOApair.Thephysical
propertiesofCG/SOApairsareshowninTable5‐6.TheCGyieldsareexpressedasppmofCG
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 118www.camx.com
formedperppmofVOCreactedsothatCGconcentrationsfollowtheCAMxconventionfor
gasesandareinppm.TheSOAsformedfromtheCGsareinunitsofµg/m3asareallother
aerosolspecies.
Polymerizationreactionsinorganicaerosolphaseswillincreasethemolecularweightofthe
condensedaerosolandreducethevolatility.Detaileddescriptionsofpolymerizationdepend
uponthechemicalcompositionoftheorganicandinorganicaerosolphases(e.g.,aerosol
acidity).SOAPassumesthatSOAispolymerizedtoanon‐volatileform(i.e.,moved
permanentlytotheaerosolphase)withalifetimeofabout1day(Kalbereretal.,2004).
PolymerizationslowlyformsorganicaerosolpolymerscalledSOPA(anthropogenic)andSOPB
(biogenic).
TotalSOAisthesumofSOA1‐7plusSOAH,SOPAandSOPB.Totalorganicaerosolisthesumof
totalSOAandthesinglePOAspecies.
5.2.2.21.5‐DVBS
TheVBSorganicaerosol(OA)chemistry/partitioningmoduleisselectedwhentheaerosol
keywordissetto“CF_VBS”inthechemistryparametersinputfile.VBSworkswiththe2‐mode
CFsizeoptionbutisnotcurrentlycompatiblewiththeCMUsectionalsizeoption.
TheVBSapproach(Donahueetal.,2006;Robinsonetal.,2007)providesaunifiedframework
forgas‐aerosolpartitioningandchemicalagingofbothPOAandSOA.Itusesasetofsemi‐
volatileOAspecieswithvolatilityequallyspacedinalogarithmicscale(thebasisset).VBS
memberspeciesareallowedtoreactfurtherintheatmosphere(chemicalaging)todescribe
volatilitychanges(i.e.,shiftingbetweenvolatilitybins).FirstgenerationVBSmodelsuseone‐
dimensionalbasissets(1‐DVBS)whereinorganiccompoundsaregroupedonlybyvolatilityand
thusareunabletodescribevaryingdegreesofoxidationobservedinatmosphericOAofsimilar
volatility.Toovercomethisshortcoming,atwodimensionalVBS(2‐DVBS)wasdeveloped
whereorganiccompoundsaregroupedbyoxidationstateaswellasvolatility(Donahueetal.,
2011,2012).However,useof2‐DVBSina3‐DPGMhasbeenlimitedduetohigh
computationalcost.
AhybridVBSapproachisimplementedinCAMx,called1.5‐DVBS,whichcombinesthe
simplicityofthe1‐DVBSwiththeabilitytodescribeevolutionofOAinthe2‐Dspaceof
oxidationstateandvolatility(Kooetal.,2014).Figure5‐2showsaschematicdiagramofthe
1.5‐DVBSschemecurrentlyimplementedinCAMx.Thisschemeusesfivebasissetstodescribe
varyingdegreesofoxidationinambientOA:twobasissetsforchemicallyagedoxygenatedOA
(OOA;anthropogenicandbiogenic)andthreeforfreshlyemittedOA(hydrocarbon‐likeOA
[HOA]frommeat‐cookingandotheranthropogenicsourcesandbiomassburningOA[BBOA]).
Eachbasissethasfivevolatilitybinsrangingfrom10‐1to103µgm‐3insaturationconcentration
(C*),whichroughlycoversthevolatilityrangeofsemi‐volatileorganiccompounds(SVOCs).An
effectiveheatofvaporization(H)valueof35kJmole‐1isusedforallSOAspecies.ForPOA,H
isestimatedusingthefollowingempiricalformulas:
March20
1
C
OMPREHE
N
Figure5
‐
consists
anthrop
o
andthe
v
partitio
n
emissio
n
1
6
N
SIVE
A
IRQUALIT
Y
‐
2.Schema
t
of4charac
t
o
genic;B–
b
v
olatilitybi
n
n
ingandch
e
n
soroxidati
Y
M
ODELWITHE
X
t
icdiagram
o
t
ersthatin
d
b
iogenic;C
–
n
number.
T
e
micalaging
,
onofSOA
p
X
TENSIONS
o
ftheCAM
x
icatethep
h
–
cooking;F
T
hesolidan
,
respective
p
recursors.
119
x
VBSmodu
h
ase(P–pa
r
–fire),the
f
ddasheda
r
ly.Thethic
le.Themo
d
r
ticle;V–v
a
f
ormation(
P
r
rowsrepre
s
kcoloreda
r
CAMxUser’
5.Che
d
elVBSspe
c
a
por),thes
o
P
–primary
;
s
entgas‐ae
r
r
rowsrepre
s
sGuide
Versi
o
mistryMecha
n
www.cam
c
iesname
o
urce(A–
;
S–second
r
osol
s
entPOA
o
n6.3
n
isms
x.com
ary),
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 120www.camx.com
∆H4
C298K
*85kJmole‐1 (Forbiomassburning;Mayetal.,2013c)
∆H 11C298K
*85kJmole‐1(Forotherprimary;Ranjanetal.,2012)
Table5‐7liststhemodelOAcompoundsassignedtothevolatilitybins.Theirmolecular
structuresweredeterminedbyplacingthemonthe2‐DvolatilityspacedefinedbyDonahueet
al.(2011,2012).The1.5‐DVBSschemeadjustsoxidationstateaswellasvolatilityinresponse
tochemicalagingbysimplifyingthe2‐DVBSmodel.ChemicalagingofSOAandoxygenated
POAismodeledbyshiftingOAmassalongapre‐definedpathwayoftheOOAbasisset,which
reducesvolatilitywhileincreasingoxidationstate.POAaging,whichwouldrequiredifferent
pathwaysfromtheHOA(orBBOA)basissettotheOOAbasisset,issimplifiedinthis1.5‐DVBS
schemewhereoxidationproductsofPOAarerepresentedasamixtureofPOAandOPOAinthe
nextlowervolatilitybins.Thegas‐phaseOHreactionratesforPOAandanthropogenicSOAare
assumedtobe4x10‐11and2x10‐11cm3molecule‐1s‐1,respectively.AgingofbiogenicSOAis
disabledinourimplementationbasedonpreviousmodelingstudiesthatfoundagingbiogenic
SOAledtoasignificantover‐predictionofOAinruralareas(Laneetal.,2008;Murphyand
Pandis,2009).Additionaldetailsonthe1.5‐DVBSmodelcanbefoundelsewhere(Kooetal.,
2014;HildebrandtRuizetal.,2015).TotalOAisthesumofallOAinthefivevolatilitybinsfrom
primaryformation(PAP+PCP+PFP)andfromsecondaryformation(PAS+PBS).
Table5‐7.Molecularpropertiesofthe1.5‐DVBSspecies.
BasisSetModelSpecies
Namea
C*b
(µgm‐3)
OSC
cC#O#MW
(gmole‐1)
OA/OC
OOA
PAS0&PBS00d0.102 74.90 1722.05
PAS1&PBS11‐0.188 7.25 4.38 1671.92
PAS2&PBS210‐0.463 7.5 3.84 1631.81
PAS3&PBS3100‐0.724 7.75 3.30 1581.70
PAS4&PBS41000‐0.973 82.74 1531.59
HOA
PAP0&PCP00d‐1.52 17 2.69 2781.36
PAP1&PCP11‐1.65 17.5 2.02 2751.31
PAP2&PCP210‐1.78 18 1.34 2721.26
PAP3&PCP3100‐1.90 18.5 0.632 2681.21
PAP4&PCP41000‐2.00 19 0.0 2661.17
BBOA
PFP00d‐0.704 10 4.32 2051.71
PFP11‐1.02 11 3.60 2081.58
PFP210‐1.29 12 2.85 2111.47
PFP3100‐1.52 13 2.08 2131.37
PFP41000‐1.73 14 1.27 2151.28
a:SeeFigure5‐2forthemodelspeciesnamingconvention.
b:Effectivesaturationconcentration.
c:Averageoxidationstateofcarbon.
d:PropertiesofthelowestvolatilitybinswereestimatedassumingC*=0.1µgm‐3,buttheyactuallyrepresentallOAwithC*≤
0.1µgm‐3,andaretreatedasnon‐volatileinthemodel.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 121www.camx.com
Table5‐8listsinputemissionspeciesusersneedtoprepareforthe1.5‐DVBSOAscheme.
AnthropogenicandbiogenicVOCprecursorsaresimplycopiedfromtherespectiveemissions
fortheCBgas‐phasemechanisms(TOL,XYL,BENZ,ISOP,TERP)totheir“A”and“B”
counterparts.Sesquiterene(SQT)isentirelybiogenicandidenticaltothatusedbySOAP.The
CAMxVBSschemeallocatesPOAemissionsfromfivesourcetypestothePAP,PCP,andPFP
speciesbasedonemissionfactors(Table5‐9)determinedfromlaboratoryexperiments.VBS
usessource‐specificvolatilitydistributionfactorsforgasolinevehicles(POA_GV),dieselvehicles
(POA_DV),meatcooking(POA_MC),andbiomassburning(POA_BB)basedonrecentchamber
studies(Mayetal.,2013a,b,c;Woodyetal.,2015).ForotherPOAemissions(POA_OP),VBS
appliesdistributionfactorsestimatedbyRobinsonetal.(2007).
Table5‐8.Inputspeciesfor1.5‐DVBSscheme.
SpeciesDescriptionNotes
TOLAToluene(anthropogenic)
AnthropogenicVOCprecursors
XYLAXylene(anthropogenic)
BNZABenzene(anthropogenic)
ISPAIsoprene(anthropogenic)
TRPAMonoterpenes(anthropogenic)
TOLBToluene(biogenic)
BiogenicVOCprecursors
XYLBXylene(biogenic)
BNZBBenzene(biogenic)
ISPBIsoprene(biogenic)
TRPBMonoterpenes(biogenic)
SQTSesquiterpenes(biogenic)
IVOGIVOCfromgasolineengines
IVOCprecursors
IVODIVOCfromdieselengines
IVOAIVOCfromotheranthropogenic sources
IVOBIVOCfrombiomassburning
POA_GVPOAfromgasolinevehicles
POAprecursoremissionsassignedtoPAPand
PFPmodeledspecies
POA_DVPOAfromdieselvehicles
POA_MCPOAfrommeatcooking
POA_OPPOAfromotheranthropogenicsources
POA_BBPOAfrombiomassburning
Table5‐9.VolatilitydistributionfactorsusedtoallocatePOAemissionsfromfivedifferent
sourcetypestothefivePAP,PCP,andPFPvolatilitybins.
POAspecies
EmissionFractionforvolatilitybinwithC*of
01101001000
POA_GV0.270.15 0.26 0.150.17
POA_DV0.030.25 0.37 0.240.11
POA_MC0.350.35 0.1 0.10.1
POA_OP0.090.09 0.14 0.180.5
POA_BB0.20.1 0.1 0.20.4
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 122www.camx.com
Emissionsofintermediate‐volatilityorganiccompounds(IVOCs;104≤C*≤106)makeimportant
contributionstoOAintheatmospherebutgenerallyaremissingfromemissioninventories
becauseneitherVOCnorPOAemissionfactorsaccountforIVOCs.Apre‐processor(PREPVBS)
canbeusedtomapsource‐specificPOAemissionstothefivedistinctPOAemissionspeciesfor
VBS,andtoscaleIVOCemissionsfromtotalnon‐methaneorganiccompound(NMOC)
emissionsbasedonsmogchamberdata(Jatharetal.,2014).
5.2.3AerosolSectionalApproach
UnliketheCFscheme,whereeachspeciesisrepresentedbyasingleparticlesize,theCMU
schemeinstitutesanadditionalsteptodistributethebulkaerosolconcentrationsfromthe
aqueous/aerosolchemistrymodulesintoeachsizebin.Forinorganicaerosolspecies,
ISORROPIAyieldsthebulkaerosolcompositionatequilibrium.Theaerosolsizedistributionis
thendeterminedbydistributingthechangeinaerosolmassduringthetimestepintoeachsize
binusingaweightingfactor(Pandisetal.,1993).Thefractionfi,koftotalfluxofspeciesi
betweengasandaerosolphasesthatcondensesontoorevaporatesfromanaerosolsize
sectionkisgivenby,
k
k
eq
iiikk
k
eq
iiikk
ki ccDdN
ccDdN
f12
12
,
,
whereNkanddkarethenumberandmeandiameterofparticlesinthesectionk,respectively,
Di,ci,andcieqarethediffusivity,bulkgas‐phaseconcentration,andequilibriumconcentrationat
theparticlesurfaceofspeciesi,respectively,
k=2
-
/adk,
-
isthemeanfreepathofair,andais
theaccommodationcoefficient(Pandisetal.,1993).Assumingthatcieqisindependentof
particlesize,thefractionisreducedto,
k
k
kkk
kkk
ki f
dN
dN
f
1
1
,
.
Theaboveweightingfactorthendependsonthesurfaceareaonly.
Fororganicaerosols,SOAPcalculatesthebulkequilibriumcomposition.Usingthepseudo‐ideal
solutionassumption(Straderetal.,1999),theeffectofchemicalcompositionoftheparticlecan
beincorporatedintotheweightingfactor:
k
kikiikk
kikiikk
ki cxcdN
cxcdN
f1
1
*
,
*
,
,
.
wherexi,kisthemolefractionofspeciesiinthesectionkandci*istheeffectivesaturation
concentrationofspeciesi.Sincethefractiondeterminesthecompositionofeachsizesection,
theaboveequationshouldbesolvediterativelyateachtimestep.Assumingthatthechemical
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 123www.camx.com
compositionchangesslowlyduringatimestep,however,themolefractionscanbe
approximatedwiththosefromtheprevioustimestep(Kooetal.,2003).
Forcloud/fogdroplets,RADMisusedtocalculatesulfateandnitrateformationinthebulk
aqueousphase.Theaddedmassisthendistributedintoeachsizebinbyaweightingfactor
whichisbasedonthesize‐resolvedaqueouschemistrymodelsimulationresults(Faheyand
Pandis,2001).
Inaddition,mathematicaldescriptionsofnucleationandcoagulationhavebeenaddedtothe
CMUscheme.Thenucleationmodelemploysthenucleationrateparameterizationproposed
byRusselletal.(1994).Themodelassumesalinearsulfuricacidvaporconcentrationvariation
forthegiventimestepoftheaerosolmodulebasedontheinitiallyavailablesulfuricacidand
assignsallthenucleatedmasstothefirstsectionofthedistribution.Thecoagulationrateof
theaerosolparticlesismodeledaccordingtoSeinfeldandPandis(1998).Ahigh‐resolution
distributionisusedforthecoagulationcalculationsbysubdividingeachsectionoftheoriginal
distributioninto3additionalsections.
5.3MercuryChemistry
Mercuryexistsintheatmosphereaselementalmercury,Hg(0),andoxidizedmercury,Hg(II)
(SchroederandMunthe,1998).Hg(II)canbeinorganic(e.g.,mercuricchloride,HgCl2)or
organic(e.g.,methylmercury,MeHg).Itcanalsobepresentasparticulatemercury(e.g.,
mercuricoxide,HgO,ormercurysulfide,HgS).Intheglobalatmosphere,Hg(0)isthedominant
form.Hg(II)typicallyconstitutesafewpercentoftotalmercuryandispredominantlyinthegas
phase.MeHgconcentrationsintheatmospherearenegligible,aboutafactorof10to30lower
thanHg(II)concentrations,basedonanalysisofprecipitationsamplesconductedbyFrontier
Geosciences,Inc.(e.g.,Seigneuretal.,1998).However,Hg(II)becomesmethylatedinwater
bodies,whereitcanbioaccumulateinthefoodchain.Hg(0)issparinglysolubleandisnot
removedsignificantlybywetdeposition;itsdrydepositionvelocityisalsobelievedtobelow.
Asaresult,Hg(0)hasalongatmosphericlifetime,ontheorderofseveralmonths,thatis
governedbyitsoxidationtoHg(II).Ontheotherhand,Hg(II)isquitesoluble;itisconsequently
removedrapidlybywetanddrydepositionprocesses.Particulatemercury,Hg(p),ismostly
presentinthefinefractionofparticulatematter(PM2.5),althoughsomeHg(p)maybepresent
incoarsePM(e.g.,LandisandKeeler,2002).
Knowntransformationsamonginorganicmercuryspeciesincludethegas‐phaseoxidationof
Hg(0)toHg(II),theaqueous‐phaseoxidationofHg(0)toHg(II),theaqueous‐phasereductionof
Hg(II)toHg(0),variousaqueous‐phaseequilibriaofHg(II)species,andtheadsorptionofHg(II)
toPMinboththegas‐phaseandaqueous‐phase.Theinorganicmercurychemistrymodules
implementedinCAMxarebasedonourcurrentknowledgeofthesetransformations.However,
itshouldbenotedthatourknowledgeofmercurychemistrycontinuestoevolveasnew
laboratorydatabecomeavailable,andtheHgchemicalkineticmechanismsinCAMxandother
modelsthattreattheatmosphericfateofmercurywillneedtoberevisedaccordingly.
Below,weprovideadditionaldetailsonthegas‐andaqueous‐phasemercurychemistry
mechanismsimplementedinCAMx,andtheimplementationapproach.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 124www.camx.com
5.3.1Gas‐PhaseChemistry
Thegas‐phasetransformationsincludetheoxidationofHg(0)toHg(II)byozone(O3)(Hall,
1995),hydrogenperoxide(H2O2)(Tokosetal.,1998)hydroxylradicals(OH)(Sommaretal.,
2001;PalandAriya,2003;2004),bromine(Br)(Ariyaetal.,2002),andhypobromite(BrO)
(RaofieandAriya,2003).TheoxidationofHg(0)byO3,H2O2,andOHaregivenbythefollowing
threereactions:
-1-13-20
3smolec cm 103 = (g), Hg(II)(g) O + (g) Hg(0) k
-1-13-19
222 smolec cm 108.5 = (g), Hg(OH)(g) OH + (g) Hg(0) k
-1-13-14
2smolec cm 108 = (g), Hg(OH)(g) OH + (g) Hg(0) k,
whileoxidationbyBromineisbasedonasequenceof5reactions(SeigneurandLohman,2008):
1-1-3
-1.86
13-
1smolec cm
298
103.6 = (g),HgBr (g)Br + (g) Hg(0)
T
Pk
1-9
2s
8537
exp 103.9 = (g), Hg(0)(g)HgBr
T
k
1-1-3
-0.57
10-
32 smolec cm
298
102.5 = (g), HgBr(g)Br + (g)HgBr
T
k
1-1-3
-0.57
10-
4smolec cm
298
102.5 = (g), HgBrOH(g) OH + (g)HgBr
T
k
-1-13-15
5smolec cm 101 = (g), Hg(II)(g) BrO + (g) Hg(0) k
Thereactionrateconstantsprovidedabovearefortemperaturesintherangeof20to25oC;no
temperaturedependenceinformationisavailable.Forthebrominereactions,Tisthe
temperatureindegreesKelvin,andPisthepressureinatmospheres.Thefivereactionsare
treatedasasinglereaction,withaneffectiveHg(0)first‐orderrateconstantthatisafunctionof
theindividualreactionratesandtheconcentrationsofBr,BrOandOHbasedontheassumption
thatBr,BrOandOHconcentrationsdon’tchangebytheirreactionswithmercury.This
treatmentissimilartothatofHolmesetal.(2006),whoconsideredtheoxidationofHg(0)by
bromineatomswithasetofthreereactions.Theeffectivefirst‐orderrateconstantiscalculated
bythefollowingexpression:
1-
5
432
431 s BrOk
OHkBrkk
OHkBrkBrk
keff
5.3.2AdsorptionofHg(II)onPM
InthefirstimplementationofmercuryinCAMx,Hg(II)adsorptiononPMwasconsideredonlyin
theaqueousphase(seebelow),usinganadsorptioncoefficientderivedfromavailable
experimentaldata(Seigneuretal.,1998;Ryaboshapkoetal.,2002).Itisessentialtoalso
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 125www.camx.com
considertheadsorptionofgaseousHgspeciestoPMbecausegas/particleconversionalso
affectsHgdeposition(Lindbergetal.,2007).RutterandSchauer(2007a)reportedresultsof
laboratoryworkmeasuringtheadsorptionofreactivegaseousmercury(RGM)toatmospheric
andsyntheticparticlesasafunctionoftemperature.Theirexperimentalresultssuggestthat
surfacearearatherthanPMmasscontrolsthepartitioningprocess.Theyreportedthree
surface‐areaadsorptioncoefficientsforurbanPM(collectedinMilwaukee,WI,andRiverside,
CA),ammoniumsulfateandadipicacid,respectively.Theyexpressedthesurface‐area
adsorptioncoefficient(Ksa)asfollows:
PMARGMHgK spadspsa
,
whereKsaisinm3m‐2,Hgp,adsandRGMareinpgm‐3,Aspisthespecificsurfaceareaofambient
PMinm2μg‐1andPMistheambienturbanPMconcentrationinμgm‐3.Here,Hgp,adsrefersonly
totheadsorbedRGM,i.e.,itdoesnotincludenon‐volatileprimaryparticulatemercury.Rutter
andSchauer(2007a)alsofoundthattheKsaobtainedforurbanPMfallsbetweenthatof
ammoniumsulfate(moreRGMadsorption)andadipicacid(lessRGMadsorption).Their
laboratoryexperimentsleadtothefollowingvalueforKsaasafunctionoftemperature(inK)for
adsorptiontourbanPM:
10/4250
10
T
sa
K (1)
RutterandSchauer’s(2007b)experimentalresultsalsoshowaten‐foldincreaseinadsorption
ofRGMtosodiumchloridecomparedtoammoniumsulfateandorganicparticulatecompounds
(alargerincreasewasobservedforsodiumnitrate).Thus,theadsorptioncoefficientforRGM
adsorptiontosea‐saltisabout10timesthatforurbanPM:
9/4250
10
T
sa
K (2)
FollowingtheapproachusedinVijayaraghavanetal.(2008),wetreatallnon‐sea‐saltPMas
urbanPMforsimplicityanduseEquation(1)tosimulateRGMadsorptiontoallnon‐sea‐salt
PM.Theadsorptiontosea‐saltPMiscalculatedusingEquation(2).Thus,theeffective
adsorptioncoefficientforeachaerosolsizesectioniscalculatedas:
ss
T
ss
T
effsa FFK 11010 10/42509/4250
,
whereFssisthefractionofsea‐saltinthatsizesection.IntheCAMximplementation,we
assumethatRGMisadsorbedonprimaryfineandcoarsePM.
5.3.3Aqueous‐PhaseChemistry
Theaqueous‐phasechemistryincludesthereductionofHg(II)toHg(0)viareactionwith
hydroperoxyradicals(HO2)andbytheformationofthesulfitecomplexes(atlowHCl
concentrations),HgSO3andHg(SO3)22‐,aswellastheoxidationofHg(0)toHg(II)bydissolved
O3,OH,andCl2.AdsorptionofHg(II)speciesonatmosphericparticulatematter(PM)is
simulatedusinganadsorptioncoefficient(K=34Lg‐1)recommendedbySeigneuretal.(1998).
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 126www.camx.com
Therelevantreactionsarelistedbelow.Notethatthegas‐liquidequilibriaandionicequilibria
ofthenon‐mercuryspecies(e.g.,SO2,O3)involvedinthemercuryaqueous‐phasechemistryare
notshownhere,sincetheyareidenticaltothoseintheotherCAMxmechanisms.
5.3.2.1Gas‐liquidEquilibria
-1
atm M0.11 = (aq), Hg(0) (g) Hg(0) K(Sanemasa,1975;Cleveretal.,1985)
-16
22 atm M 101.4 = (aq),HgCl (g)HgCl K(LindqvistandRodhe,1985)
-14
22 atm M 101.2 = (aq),Hg(OH) (g)Hg(OH) K(LindqvistandRodhe,1985)
TheHenry'sLawconstantslistedabovearefortemperaturesintherangeof20to25oC.
TemperaturedependenceinformationisavailablefortheHg(0)Henry'sLawconstantbutthe
validityofthisinformationfortemperaturesbelow0oCisnotestablished.
5.3.2.2Aqueous‐phaseEquilibria
2-14-+2
2M 10 = ,2Cl + Hg (aq) HgCl K(SillenandMartel,1964)
2-22-+2
2M 10 = ,2OH + Hg (aq) Hg(OH) K(SillenandMartel,1964)
-113
3
-2
3
+2 M 102.1 = ,HgSO SO + Hg K(vanLoonetal.,2001)
-110-2
23
-2
33 M 101 = ,)Hg(SO SO + HgSO K(vanLoonetal.,2001)
5.3.2.3AdsorptionofHg(II)onPMintheAqueousPhase
-1
g L 34 = (p), H(II) (aq) Hg(II) K(Seigneuretal.,1998)
5.3.2.4Aqueous‐phaseKinetics
-1-17+2
3sM 104.7 =,Hg(aq) O + (aq) Hg(0) k(Munthe,1992)
-1-19+2 sM 102 =,Hg(aq) OH + (aq) Hg(0) k(LinandPehkonen,1997)
-1
3s 0.0106 =(aq), Hg(0)(aq) HgSO k(vanLoonetal.,2000)
-1-14
2sM 101.7 =(aq), Hg(0)(aq) HO + (aq) Hg(II) k(PehkonenandLin,1998)
-1-16+2 sM 102.09 =,Hg(aq) HOCl + (aq) Hg(0) k(LinandPehkonen,1998)
-1-16+2- sM 101.99 =,HgOCl + (aq) Hg(0) k(LinandPehkonen,1998)
Inthelasttworeactionslistedabove,HOClandOCl‐comefromthedissolutionandsubsequent
dissociationofmolecularchlorine(Cl2).NotethatHg(II)(aq)referstoalldivalentHgspeciesin
solution(i.e.,Hg2++HgCl2(aq)+Hg(OH)2(aq)+HgSO3+Hg(SO3)22‐).Therateconstantslistedfor
theaqueous‐phasekineticsarefortemperaturesintherangeof20to25oC.Temperature
dependenceinformationisavailablefortheHgSO3reductionreaction.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 127www.camx.com
Asmentionedpreviously,thegas‐andaqueous‐phaseHgtransformationspresentedabove
representthestateofthesciencefromadecadeago(Ryaboshapkoetal.,2002;Seigneuretal.,
2001a,2004)andourknowledgeofmercurychemistrycontinuestoevolve.Forexample,
GardfeldtandJohnson(2003)challengedtheaqueous‐phasereductionofHg(II)toHg(0)by
dissolvedHO2,suggestingthatthispathwayisunimportant.Therealsoseemstobesome
circumstantialevidenceofreductionofHg(II)toHg(0)inpowerplantplumesfromvarious
experimentalstudiesthatisnotaccountedforincurrenttreatmentsofHgchemistry(e.g.,
Edgertonetal.,2001;Seigneuretal.,2001b).Additionaldetailsareprovidedinascopingstudy
formercurydepositionconductedfortheMidwestRegionalPlanningOrganizationbySeigneur
etal.(2003).
5.3.4ImplementationApproach
Theapproachusedtoimplementthemercurytransformationpathways,discussedabove,into
CAMxisbasedontheassumptionthatthemercuryspeciesconcentrationsaremuchsmaller
thanthoseofthespecieswithwhichtheyreact.Thus,theconcentrationsofthenon‐mercury
speciescanbeassumedtobeconstantduringthemercurychemistrycalculationsandanalytical
solutionsareavailableforboththegas‐phaseandaqueous‐phaseconversions.
Themercurychemistrydiscussedintheprevioussectionsrequirestheconcentrationsofthe
followingnon‐mercuryspecies:O3,H2O2,OH,SO2,HO2,Cl2,HCl,Br,BrOandatmospheric
particulatematter(PM).TheconcentrationsofmostofthesespeciesareavailablefromCAMx.
However,thehalogencompoundsCl2,Br,andBrOareonlyincludedforonespecificgas‐phase
mechanism(CB6r2h,Mechanism3)andotherwisenotexplicitlysimulated.Sincethemercury
chemistryiscurrentlynotlinkedtoanyhalogensthatmightbeavailablefromthegas‐phase
chemistry,wespecifytypicalverticalprofilesofCl2,Br,andBrOconcentrations.TheCl2
concentrationsareprescribedtobenon‐zerooveroceansandzeroelsewhere.Also,daytime
Cl2concentrationsarelowerthannighttimevaluestoaccountforthefactthatCl2isphotolyzed
duringtheday.Thezenithangleisusedforthedeterminationofnight/day.A2‐Darrayof
integervalues(1ifocean,0ifnot)isusedtodetermineifthegridcolumnispredominantlyover
ocean.Thisarrayisinitializedatthebeginningofthesimulationfromaninputfileandis
specificforthemodelingdomainandgrid.ForBrandBrO,verticalprofilesoverlandandocean
areprescribed,withhighervaluesoveroceanthanoverland.Duringthenight,the
concentrationsofthesespeciesareassumedtobezero,sincethephotolysisofBr2isthe
primarysourcefortheseradicals.
Themercuryaqueous‐phasechemistrymodulealsorequiresthespecificationofcloudliquid
watercontent(LWC)andcloudwaterpH.BoththesevariablesareavailablefromCAMx–the
mercuryaqueous‐phasechemistrymoduleisinvokedaftertheCAMxPMaqueous‐phase
chemistrycalculationsareperformed,sothecloudwaterpHhasalreadybeencalculated.Note
thatthePMaqueous‐phasemodule(basedontheRADMaqueous‐phasechemistrymodule
thatisalsousedinModels‐3/CMAQ)doesnotexplicitlysimulatethecloudchemistryofOHand
HO2radicals.Theconcentrationsoftheseradicalscanbereducedbytheirheterogeneous
chemistrywithinclouds(e.g.,Jacob,2000;Jaegleetal.,2001).IntheCAMximplementation,
weaccountforthisbyreducingtheconcentrationsofOHandHO2radicalsbyfactorsof2and
10,respectively.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 128www.camx.com
5.3.5ChemistryParametersforMercury
ThemercurychemistrymodulerequirestotalPMconcentrations,somercurycanonlybe
modeledinconjunctionwithPMchemistry.Mercurychemistryisselectedbyincluding
mercuryspeciesamongthelistofmodeledspecies.TheCAMxmercuryspeciesnamesare:
HG0–elementalgaseousmercury,orHg(0)
HG2–reactivegaseousmercury,orHg(II)
HGP–primaryparticulatemercury,orHg(P)
HGIIP–reactivegaseousmercury,orHg(II)adsorbedontofinePM
HGIIPC–reactivegaseousmercury,orHg(II)adsorbedontocoarsePM
CAMxrequiresthatallfiveornoneofthesespeciesbeincludedinasimulation.Therefore,
mercurychemistryisnotrequiredforPMmodeling,butifmercurychemistryisselectedthen
allfivemercuryspeciesmustbemodeled.Alloftherateconstantsandequilibriumconstants
forthemercurychemistrymodulearehard‐codedandsonomercuryreactionratedataare
includedinthechemistryparametersinputfile(seeSection3).ThisissimilartotheRADM
aqueouschemistryandISORROPIAinorganicaerosolequilibriummodules.
Severalphysicalpropertiesofthemercuryspeciesmustbespecifiedonthechemistry
parametersfile(seeFigure3‐3a).Thephysicalpropertiesspecifiedforthegasspecies(Henry’s
Law,molecularweight,surfacereactivity)influencethedepositioncharacteristics.TheHenry
constantforHG2isassumedtobesimilartothatofHNO3becausethesetwogaseshavesimilar
solubility.TheHG2speciesrepresentsHgCl2andHg(OH)2;theHenryconstantfortheformeris
1.4106Matm‐1andforthelatteritis1.2104Matm‐1.Thesurfaceresistancefactorissetto
zeroforstrongacids,suchasHNO3,thathaveastrongtendencytosticktosurfaces–this
forcesthesurfaceresistancecalculatedinthedrydepositionalgorithmstozero.Thereactivity
parameterforHG2issetto0,asforHNO3.
ThedrydepositionofHG0issettozerobychoosingaverylowHenryconstant(similartoCO).
ThisisbasedontheassumptionthatnaturalemissionsanddrydepositionofHG0balanceeach
otheroverthemodelingdomain.Thisassumptionisjustifiedbythefactthattheatmospheric
lifetimeofHG0(about1year)greatlyexceedsitsresidencetime(daystoweeks)withina
regionalmodelingdomain.IfnaturalemissionsofHG0arenotincludedinthemercury
emissionsinventory,thedryandwetdepositionofHG0shouldbezerobysettingaHenry
constantofsmallerthan110‐8Matm‐1.However,ifnaturalemissionsofHg(0)areusedinthe
CAMxsimulation,theHenryconstantshouldbesetto0.111withatemperaturefactorof‐4970
K(Cleveretal.,1985).
5.4SimpleChemistryViaMechanism10
ThechemicalmechanismsinCAMxrequiresignificantefforttoprepareemissionsdataandcan
resultinextensiveruntimes.Therearemanycaseswhenairpollutionproblemscouldbe
investigatedwithamuchsimplerchemistryscheme.Anexampleofthiswouldinclude
modelingSO2fromafewspecificsourcesoverarelativelysmallregion,andtreatingconversion
tosulfatebyassumingarepresentativedecayrate.CAMxprovidesanoptiontoconfigurea
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 129www.camx.com
simpleandflexibleschemethatcanbeusedformodelingchemicalreactionsotherthanthe
ozoneorsecondaryPMreactionstreatedbythefull‐sciencemechanisms.
Thesimplechemistryschemeisselectedbyspecifying10forthemechanismIDinthechemistry
parametersinputfile.Theusermustdevelopspecificchemicalreactionsandcodetheminto
thesubroutineCAMx/chem10.f;anexamplesubroutineisavailableinthesourcecode
directory.Followtheguidelinesinthatsubroutinetoimplementyourspecificsetofreactions.
Thisapproachrequiressomeknowledgefromtheuser,butalsoprovidescompleteflexibility.
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 130www.camx.com
6.PLUME‐IN‐GRIDSUBMODEL
Photochemistryisahighlynon‐linearproblembecausechemicalreactionratesamongmost
compoundsdependupontheirambientconcentrations.InEulerianairqualitymodels,ambient
concentrationsdependonhowwellthemodelinggridresolvesemissions,transport,and
chemicalhistory.Thus,gridresolutionplaysavitalroleintheabilityofthemodeltoproperly
characterizephotochemicalconditions.Increasingresolutionshouldintheoryleadtoabetter
modelasthetime/spacediscretizationtendstowardacontinuum.However,practicaland
theoreticalconsiderationssuggestthatthelowerlimitonhorizontalgridspacingisabout1000
metersforEulerianairqualitymodelssuchasCAMx.Nevertheless,evenhigherresolutionis
oftennecessarytoadequatelysimulatechemistrywithinconcentratedpointsourceplumes.
Plume‐in‐gridtreatmentshavebeendevelopedtotrackindividualplumesegments(orpuffs)in
aLagrangiansense,accountingforplume‐scaledispersionandchemicalevolutionuntilsuch
timeaspuffmasscanbeadequatelyrepresentedwithinthelargergridmodelframework.
Thenthepuffmassisaddedtothegridsystemasavirtualsource,andthatmassis
subsequentlycarriedbythegridmodelprocesses.Itisimportanttounderstandthatthe
inclusionofaLagrangianpuffmodelwithinanEuleriangridmodelisaforcedconstruct.The
formulationsamongthevariousmodelingapproachesarefundamentallydifferentandthereis
notheoretically“correct”methodology.
TheCAMxPlume‐in‐Grid(PiG)sub‐modeladdressesthesizeandchemicalevolutionofpoint
sourceplumes.TwoPiGoptionsareavailablethatvaryintheirchemicalcomplexity.Both
approachessharecommondesignfeaturesforpuffinitialization,puffstructure,transport,and
growth.Theydeviateinhowtheytreatchemistryandwhentheytransfermassfrompuffsto
gridcells.Thissectiondetailsthestructureandfunctionalityofbothoptions.
1) GREASDPiG:TheGreatlyReducedExecutionandSimplifiedDynamicsPiGoptionis
aimedattreatingtheearlychemicalevolutionoflargeNOxplumeswhenmostly
inorganicgas‐phasereactionsareoperative.GREASDPiGworkswithOSAT/PSAT
becauseofthesimplifiedapproachemployedandbecausecompatibilitywithsource
apportionmentwasanexplicitdesignobjective.
2) IRONPiG:ThetheIncrementalReactionsforOrganicsandNOxPiGoptiontreatsthe
fullsuiteofgas‐phasephotochemistryforalltypesofpointsources.Gas‐phase
chemistryissimulatedwithineachplumesegmentusingan“incrementalchemistry”
approach(EPRI,2000),wherebypuffscarrytheincrementalcontributionsofthepuff
relativetothegridconcentrations.IRONPiGsupportstheReactiveTracer(RTRAC)
ProbingTool,butitdoesnotworkwithotherProbingToolsanditdoesnottreatPM.
6.1CAMxPiGFormulation
6.1.1BasicPuffStructureandDiffusiveGrowth
BothGREASDandIRONPiGsub‐modelsshareacommonphysicalstructureandgrowth
algorithm.Astreamofplumesegments(puffs)isreleasedfromadesignatedpointsource.
Eachpuffpossessesalongitudinallengthanddirectionalorientationdefinedbytheseparation
ofaleadingandatrailingpoint.Initialseparationofthesepointsisdeterminedbythewind
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 131www.camx.com
vectoratfinalplumerise.Eachpointisthensubsequentlyandindependentlytransported
throughthegriddedwindfields,whichdirectlyaccountsforpuffstretchingandchangesto
centerlineorientationduetodeformingshears.The"position"ofeachpuffisdefinedatthe
centerpointofeachpuffbetweentheendpoints,andisusedtoidentifythegridcellinwhich
thepuffresidesforthecalculationofdiffusivegrowthandchemistry.
Likeotherpuffmodels,theshapeofeachpuffischaracterizedbyaspreadtensor,whichis
definedfromasetofGaussianstandarddeviations()alongthethreespatialaxes(
x,
y,
z).
Diffusivegrowthisdescribedbytheevolutionofthesevalues.Thetotalcross‐sectionalwidth
extends±1.5
yfrompuffcenterline.Similarly,thetotalcross‐sectionaldepthextends±1.5
z
frompuffcenterline(withlimitsplacedondepthbythegroundandbycappingstablelayers
aloft).Thetotallongitudinallengthisthedistancebetweenthepuffendpointswithan
additional±1.5
xaddedineachdirection.Horizontalareaandtotalvolumearecalculated
usingtheformulaeforanellipse.Figure6‐1presentsaschematicrepresentationofeachpuff
inhorizontalcross‐section.
Figure6‐1.SchematicrepresentationofCAMxPiGpuffshapeinthehorizontalplane.
Directionalorientationofthepuffisarbitrary,andevolvesaccordingtowinddirection,
shearsanddiffusivegrowthalongitstrajectory.
PiGpuffgrowthisbasedonSCICHEMtheoryandconcepts(EPRI,2000),butincludessome
simplifications.SCICHEMsolvespredictivespatialmomentequationswithsecond‐order
closurethatrelatetheevolutionofthepuffspreadtensor(
ij=
i
j)toresolvedmeanshears
andturbulentvelocitystatistics.TheReynolds‐averagedsecond‐momenttransportequationis
givenas
P (lead)
P (trail)
y
1.5
x
1.5
Q
cux
Q
cux
x
u
x
u
dt
dijji
k
i
jk
k
j
ik
ij
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 132www.camx.com
whereuisthemeanwindvectorcomponent,theprimedvaluesrepresentturbulent
fluctuationsfromthemean,andtheanglebracketsdenoteintegralsoverspace.TheReynolds
averagingprocessalwaysintroduceshigher‐orderfluctuationcorrelations,andthisisgivenby
theturbulentfluxmomentscux ,wherecu representstheturbulentfluxof
concentration.ItistheselasttwodiffusiontermsthatSCICHEMsolvesinitssecond‐order
closurescheme.
Forsub‐puffscaleturbulence,SCICHEMemploystherestrictionthattheonlyactiveoff‐diagonal
componentofcux isthesymmetrichorizontalterm(i=x,j=y),butitisappliedonlyforthe
large‐scale(mesotosynoptic)contributiontopuffdeformationwhenpuffscalesreachsuch
dimensions.InCAMx,weignorethisoff‐diagonalfluxmomenttermaltogethersincepuffsare
ultimatelyterminatedwhenpuffscalesapproachmuchsmallergridscales(typically<50km).
SCICHEMalsomakestheassumptionthatthehorizontalturbulenceisisotropic,
cvycux
.Thisresultsinasinglediffusivityequationforbothxandydirections,anda
singlediffusivityforthezdirection:
Q
cvy
KK yx
Q
cwz
Kz
TheSCICHEMsecond‐ordertendencyequationsareusedtomodelthetime‐evolutionofPiG
puffturbulentfluxmoments(representedbydiffusivitiesKx=KyandKz)andtheircontributionto
theevolutionofpuffspread(representedbythediagonalcomponentsofthepuffspread
tensor,
x2,
y2and
z2).Puffspreadisdefinedforpuffdepth(
z),puffwidth(
y),andpuff
length(
x).Weaccountfortheeffectsofgrid‐resolvedshearsofhorizontalwindinthe
evolutionoflateralandlongitudinalspread.Butweassumethattheevolutionofvertical
spreadissolelytheresultofturbulentfluxes,whichareordersofmagnitudelargerthangrid‐
resolvedshearsofverticalwind.
TheresultingReynolds‐averagedsecond‐momenttransportequationsforCAMxPiGare:
xyzyy
yKSD
dt
d222 2
2
z
zK
dt
d2
2
xxzxx
xKSD
dt
d222 2
2
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 133www.camx.com
whereDistotalexplicit(grid‐resolved)horizontalshearofhorizontalwind(i.e.,“deformation”,
seeSection4.4).Sistheexplicitverticalshearofhorizontalwind,whichisbrokendowninto
puff‐relativelateral(y)andlongitudinal(x)components:
Thedifferencebetween
and
representstherelativeanglebetweenthepuff’slongitudinal
orientationandthedirectionofverticalshear,respectively;across‐puffshearresultsinmore
lateralspreadwhilealong‐puffshearresultsinmorelongitudinalspread.Theexplicitshear
termscontainingDandSmaybetoggledbytheuser:(1)sheareffectsarealwaysappliedto
puffgrowthrates;(2)sheareffectsareappliedonlywithintheboundarylayerbutneverabove;
or(3)sheareffectsareneverapplied.
TheSCICHEMtendencyequationforthehorizontalturbulentfluxmomentis
whereA=0.75,q2=vv ,andisthehorizontalturbulentlengthscale.Separateequations
aregivenfortwodifferentboundarylayerturbulencescales(shear‐andbuoyancy‐produced),
suchthat
Withinthesurface‐basedboundarylayer,thehorizontalvelocityvarianceisgivenby
whereu*isthefrictionvelocity,w*istheconvectivevelocityscale,zisheightabovethe
surface,andziistheheightofthesurface‐basedboundarylayer.Thehorizontalturbulent
lengthscaleisgivenby
cvy
q
AQqcvy
dt
d
2
buoyancyshear cvycvycvy
ishear zzuq /15.2 2
*
2
ibuoyancy zzwq /exp5.1113.0 2
*
2
222 65.0
1
3.0
11
zzi
shear
ibuoyancy z3.0
2/1
22
cos
dz
dv
dz
du
Sx
2/1
22
sin
dz
dv
dz
du
Sy
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 134www.camx.com
Inthestableboundarylayer,onlytheshearcomponentsofq2andareapplied.Abovethe
boundarylayer,SCICHEMappliesroughapproximationsforthevelocityvarianceandturbulent
lengthscale.InCAMxwehavesetthesevaluestoq2=0.1m2/s2,and=300m.
TheSCICHEMtendencyequationfortheverticalturbulentfluxmomentis
whereqv2=ww ,vistheverticalturbulentlengthscale,andKzeqistheequilibriumdiffusivity.
WhereasaspecificequationforKzeqisformulatedforSCICHEM,wehavechosentospecifythe
valueofthisparameterfromthegriddedfieldsofverticaldiffusivityinCAMx.AgainSCICHEM
givesseparateequationsforshear‐andbuoyancy‐producedturbulencescales.
Withinthesurface‐basedboundarylayer,theverticalvelocityvarianceisgivenby
Theverticalturbulentlengthscaleforbothshearandbuoyancyisequaltosheargivenabove
forhorizontallengthscale.Abovetheboundarylayer,SCICHEMappliesroughapproximations
forthevelocityvarianceandturbulentlengthscaleandwehaveadoptedtheseforCAMx:qv2=
0.01m2/s2,andv=10m.
TheexternalvariablesneededbyPiGtocompletethedispersioncalculationsincludezi,u*and
w*.AlloftheseareavailablefromaninternalmoduleinCAMxthatcalculatestheseboundary
layersimilaritytheoryparameters.Thus,noadditionalparametersareneededtobeinputto
themodel.
6.1.2PuffTransport
AfreshsetofnewpuffsarereleasedfromallPiGpointsourceswithinthemodelingdomainfor
thedurationofthesmallesttimestepamongthemasterandallnestedgrids.Thelengthof
eachpuffisdeterminedbythecombinationofthemeantotalwindspeedattheheightoffinal
plumeriseandtimestep.Limitsareplacedonmaximumextrudedlengthbasedonhalfthe
finestresolutioninthegivensimulation.Ifwindsandtime‐stepsaresuchthatthemaximum
allowedlengthisviolated,thenseveralpuffsareautomaticallyemittedfromagivenstackper
timestep.Theusercanalsosetamaximumtimeintervalofreleaseifmorepuffs(betterplume
resolution)aredesiredoverthedefaultautomatedreleaseinterval.Theorientationofthepuff
lengthisalongthetotalwindvector.Totalpuffvolumeisdeterminedbystackvolumetricflow
rateinconjunctionwithgrowthduetoturbulententrainmentfollowingtheSCICHEMapproach.
Initially,
x=
yand
zvaluesareexplicitlycalculatedfromthisentrainmentcalculation.
cwzQK
q
Acwz
dt
deq
z
v
v
i
shear
vzzuq /15.1 2
*
2
ii
buoyancy
vzzzzwq /05.1/1.1 3/2
2
*
2
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 135www.camx.com
Theeffectsofresolvedwindshearonplumedeformation(i.e.,atplumescaleslargerthan
individualpuffscales)aretreatedusinga“chainedpuff”approach(Figure6‐2).Pointsatthe
leadingandtrailingedgesofthepuffcenterlineareindividuallytransportedthroughthe
griddedwindfields,whichdirectlyaccountsforpuffstretchingandchangestocenterline
orientationduetodeformingshears.Sincepuffscanextendovermultiplelayers,layerdensity‐
weightedaveragewindcomponentsaredeterminedforeachendpointbasedonthevertical
coverageofthepuff.The“chain”aspectmeansthatatleastinitially(aspuffsareemittedfrom
thestack)thetrailingpointofapuffemittedattimetwillbetheleadingpointofapuffemitted
attimet+dt.However,asthepuffsareadvecteddownstream,theleadingpointofonepuffwill
deviatefromthetrailingpointthepuffbehinditduetoevolvingpuffdepthandwindfields.
The“position”ofeachpuffisdefinedbyitscenterpointbetweentheendpoints.Thisposition
definesthegriddomainandgridcellinwhichthepuffresidesforthecalculationofdiffusive
growthandchemistry.Thisdefinitionholdsevenifthepuffissufficientlylongthatthe
endpointsareindifferentgridcells(orevendifferentnestedgridsifnearanestboundary).
Withourdefinitionforterminationwhenhorizontalareaapproachesgridcellarea,thepuff
lengthshouldnotextendacrossmorethantwogridcells.
Figure6‐2.Plan‐viewschematicrepresentationofachainofPiGpuffsemittedfromapoint
sourceintoanevolvinggriddedwindfield.Theredlineconnectedbydotsrepresentspuff
centerlines,withdotsrepresentingleadingandtrailingpointsofeachpuff.TheCAMx
computationalgridisdenotedbythebluelines.
Stack
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 136www.camx.com
6.2GREASDPiG
TheGREASDPiGisdesignedforlargeNOxpointsources,whereonlyinorganicchemistryis
operativeduringearlyplumeevolution.TheintentionofGREASDPiGistomoreproperlyage
emittedNOxwithintheconfinedplumevolumetomitigatetheartificiallyrapidchemical
processingoffreshNOtoNO2toozonethatwouldotherwiseoccurifimmediatelyreleasedinto
alargegridvolume.AcondensedinorganicchemicalmechanismisemployedinGREASDPiG
thatincludes23reactionsinvolvingoxidationofNOxandSOx.Therefore,GREASDPiGshould
notbeusedforVOCsources.ChemicallimitationsappliedwithinGREASDPiGcausepuffsto
transfertheirmasstothegridbeforeoxidantproductionfromVOCsisnolongersuppressed;
thiscanoccurbeforepuffsreachasizethresholddeterminedbythegridspacing.
ThechemicalevolutionoflargeNOxpointsourceplumescanbecharacterizedinthreestages
(EPRI,2000),asdescribedbelow:
Stage1:EarlyplumeconditionswhereNOxconcentrationsareveryhighandradical
concentrationsarenegligible–simpleNO/NO2/O3photostationarystateappliesalong
withtheNO‐NOselfreaction;
Stage2:Mid‐rangeplumeconditionswhereradicalconcentrationsaresufficientlylarge
togeneratesecondaryinorganicacidslikenitrateandsulfate;
Stage3:Long‐rangeplumeconditionswheresufficientmixingwiththeambientairleads
tothefullrangeofgas‐phasereactionsinvolvingVOCoxidationandozoneformation.
TheobjectiveforGREASDPiGistotransfermasstothegridataboutthetimewhenradical
productionviaorganicchemistrystartstobecomeimportant,soGREASDPiGtreatsplume
chemistryduringStages1and2.WedefinetheonsetofStage3chemistrywhenthefollowing
criterionismet:
AtthispointGREASDpuffstransferalloftheirmasstothegridbeforetheonsetofStage3.
Thisspecificdesignconstraintisalsocompatiblewiththerequirementsofthesource
apportionmentProbingTools.
KumarandRussell(1996)andKaramchandanietal.(1998)foundthatPiGmodelswith
simplifiedinorganicchemistryproducedresultsthatwereverysimilartofullchemistry.The
chemicalmechanismforGREASDPiGincludes23reactionslistedinTable6‐1thatwere
selectedasfollows:
ReactionsfortheNO‐NO2‐O3photo‐stationarystateestablishedinsunlight(1‐3)
Self‐reactionofNOimportantonlyatveryhighNOconcentrations(4)
ProductionofOHbyphotolysisofO3andHONOinsunlight(5‐9)
Productionofnitricacidinsunlight(10)
FormationofNO3andN2O5atnight(11‐17)
1
2
2
NOk
SOkCOk
OH
OHOH
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 137www.camx.com
Table6‐1.Listof23reactionsforGREASDPiGincludingcorrespondencetoCAMxreaction
numbersintheCB05,CB6andSAPRC07TCmechanisms.
ChemicalMechanismforGREASDPIG
CorrespondingReaction
NumberforGridChemistry
Number ReactionCB05CB6S07
1NO2=NO+O111
2O+O2+M=O3+M222
3O3+NO=NO2337
4NO+NO+O2=2NO2222410
51NO+NO2+H2O=2HONO2341N/A
6O3=O1D9918
7O1D+M=O+M101021
8O1D+H2O=2OH111120
9HONO=NO+OH254323
10NO2+OH=HNO3284525
11NO2+O3=NO37268
12NO3=NO2+O142717
13NO3=NO152816
14NO3+NO=2NO216299
15NO3+NO2=NO+NO2173015
16NO3+NO2=N2O5183611
17N2O5=NO3+NO2213712
182N2O5+H2O=2HNO3193913
19SO2+OH=SULF+HO2635244
20OH+CO=HO26612329
21FORM=2HO2+CO7597204
22FORM=CO7698205
23HO2+NO=OH+NO2302531
1. RateforGREASDPiGreaction5issettozerowhenusedwithSAPRC07TC.
2. RateforGREASDPiGreaction18maybeenhancedbyreactiononaerosol.
Productionofnitricacidatnight(18)
Productionofsulfuricacidinsunlight(19)
RemovalofOHbyCO(20)
ProductionofOHbyphotolysisofformaldehyde(21‐22)
ConversiontoOHofanyHO2formedin20‐22(23)
Thesereactionsdominategas‐phasechemistryinplumesfrommajorNOxemittersduring
stages1and2.Table6‐1alsoshowsthecorrespondencebetweenGREASDPiGreactionsand
thecompletegas‐phasechemicalmechanismsimplementedinCAMx.Thismappingisusedin
CAMxtosettherateconstantsandphotolysisratesforGREASDPiGreactionsfrom
correspondingreactionsinthegridchemicalmechanisms.Thisimplementationensures
consistencywiththesechemicalmechanisms.TheGREASDPiGperformsgas‐phasechemistry
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 138www.camx.com
foronlythosechemicalspeciesemitteddirectlyintotheplume,anddoesnotincludethe
influencefromanybackgroundcompoundsonthegridexceptforozone,carbonmonoxide,and
formaldehyde.Assumingzerobackgroundforgasspeciesisreasonablefortheearlystagesof
NOxplumesbecausepuffconcentrationsareordersofmagnitudelargerthanambient
concentrations.Ontheotherhand,backgroundozone,carbonmonoxide,andformaldehyde
aretheprimarysourcesofoxidantsinthecondensedmechanismthatdriveinorganic
processingofplumeNOxtootherformsofoxidizednitrogen(NOz),sothesearehandledas
“incremental”speciesasdescribedbelowforIRONPiG.TheLivermoreSolverforOrdinary
DifferentialEquations(LSODE)isusedtosolvethecondensedmechanismindouble‐precision.
6.3ParticulateMatterInPiG
Non‐lineareffectsanderrorsingas‐phasechemistryaretransmittedto(andpotentially
amplifiedby)thePMaqueouschemistryandpartitioningalgorithms.Theimplementationof
PMandPSATinPiGpromptedtheneedtolimittheimpactofsuchissuessimilarlytothe
constraintsimposedbyOSATforgas‐phasechemistry.Therefore,PMandPSATcanonlyberun
usingtheGREASDPiGoption.Asforgas‐phasechemistry,onlyinorganicPMchemistryis
treatedbyGREASDPiG.NotealsothatthePiGPMtreatmentwasdesignedspecificallyforthe
static2‐modePMchemistryonly(CF),andwillnotoperateforthemulti‐sectionPMchemistry
(CMU).
TheGREASDPiGgas‐phasechemistryoxidizesNOxandSOxemissionstonitricandsulfuric
acids,whicharePMprecursors.Tomaintainconsistencywiththegridchemistry,aqueousPM
chemistry(RADM‐AQ)isthenperformedateverytimestepifthepuffresidesinacloudygrid
cell.However,inorganicgas/PMpartitioning(performedbyISORROPIA)amongsulfate,nitrate
andammoniaisnotperformedbyGREASDPiG,butisdelayeduntilthemassesofthese
compoundsaredumpedtothegrid.Additionally,chemistryandpartitioningforsecondary
organicaerosolsisnotperformed.
6.4IRONPiG
TheIRONPiGmodelincorporatesacompletetreatmentofgas‐phasechemistryinpointsource
pollutantplumes,whilesecondarilyaddingadditionalfeaturescentralfortreatingtoxic
pollutantsnotnormallycarriedbythestandardCAMxchemicalmechanisms.Thereforethe
IRONPiGcantreatawidevarietyofpointsourceemissions,includingVOCsources.
IRONPiGadoptsthe“incrementalchemistry”conceptfromtheSCICHEMmodel(EPRI,2000),
wherebyeachpuffcarriesconcentrationsrelativetoambientbackground.Thisresultsinthe
possibilityofbothpositiveandnegativepuffconcentrationsdependingonhowthechemistry
evolves.Thefullgas‐phasechemistrymechanismchosenforagivenrunissolvedtwicefor
eachpuffateachtimestep:firstforthevertically‐averagedbackgroundconcentrationsfrom
thegridcellsverticallyspannedbythepuff;andsecondforthesumofpuffandbackground
concentrations.TheLSODEsolverisusedtosolvebothchemistrysteps.Afterbothstepsare
completed,theupdatedbackgroundconcentrationsaresubtractedfromtheupdated
puff+backgroundconcentrations,yieldingthenewpuffincrementalconcentrations.Notethat
theupdatedbackgroundconcentrationsareusedforreferenceonlyinthepuffincremental
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 139www.camx.com
chemistryalgorithm;theactualgridconcentrationsarenotaffectedandareseparatelysolved
bythegridchemistryroutine.
6.5PiGFeatures
ThissectiondescribesspecificfeaturesofthePiGsubmodel;certainfeaturesarealwaysactive
whileotherscanbeoptionallyinvokedforaparticularCAMxrun.TheIRONPiGsub‐model
includestwoconstructsdesignedspecificallytofacilitatetheincrementalchemistryapproach:
Theconceptof“virtualdumping”tohandlethechemicalimpactsoflargepuffsthatcan
overlapotherpuffswithinagivengridcolumn;
Theconceptofmultiplepuff“reactor”cellstoaccountforthechemicaleffectsof
concentrationdistributionswithineachpuff.
Eachoftheseisdescribedbelow.
6.5.1PuffLayerSpanning(IRONandGREASD)
ThePiGisdesignedtochemicallyprocesspointsourceplumemasswithinstreamsofpuffsuntil
suchtimethateachpuffcanbeadequatelyresolvedonthehorizontalgrid.Puffsareallowed
toverticallyspanmultiplegridmodellayersbeforetheyreachhorizontalgridscales.This
introducestechnicalimplicationsfordefining“background”concentrationsandambient
conditionsforpuffchemistry,aswellasfortransferringplumeincrementalmasstothegrid.
Thesolutionemployedisto:
1) Assumethattheverticaldistributionofpuffconcentrationisalwaysuniform;
2) Distributepuffmasstransfer(via“leaking”and“dumping”)tothegridaccordingtothe
pufffractionalcoverageacrosseachmodellayerandbydensity‐weighting;and
3) Determinemeanbackgroundconcentrationsandotherambientconditions(e.g.,
temperature,humidity,etc.)overthepuffverticalspanviasimilarfractionallayer‐density
weighting.
Horizontally,themeanbackgroundconcentrationandambientconditionsaretakenfromthe
singlehostgridcolumncontainingeachpuffcenterpoint,evenifthepuffislargeand/orspans
ahorizontalcellinterface.Asdescribedearlier,puffsareconsideredtobeellipticalinthe
horizontal,withtheminoraxisspanningthecross‐windpuffwidth(definedas1.5
y),andthe
majoraxisspanningthealong‐windpufflength(definedaslength1.5
yoneachend).
However,giventhecomplicationsassociatedwithmultiplelayersspanningandmass‐weighting
ofambientinputsanddumpedmass,puffsarerectangularanduniforminthevertical,with
totalpuffdepthdefinedas1.5z.
6.5.2PuffOverlapandtheIdeaofVirtualDumping(IRONonly)
ThechemicaleffectsofpuffoverlapwereconsideredtobeanimportantattributeofIRONPiG.
However,wewishedtomaintainarelativelysimpleapproach,whileappropriatelyaccounting
forthelargestprobableeffects.Weassumethatthelargesteffectistheconditioninwhich
olderexpansivepuffsspansignificantfractionsoftheirhostgridcell,therebypotentially
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 140www.camx.com
overlappingallotherpuffscontainedwithinthesamecell.Insteadofgeometrically
determiningfractionaloverlappuff‐by‐puff,weinsteadintroduceaprocessthatwerefertoas
“virtualdumping.”
Foragivengridcolumn,themassfromallpuffsdeterminedtobe“sufficiently”largeare
temporarilydumpedtothecolumn,distributedaccordingtoeachpuff’sverticallayerspan,and
addedtogetheralongwiththepre‐existinggridconcentrations.Thisprocessisreferredtoasa
“virtualdump”ofpuffmasstothegridcolumn.Thecriteriatodeterminea“sufficiently”large
puffisthesamethatinitiatespuffmassleakingtothegrid(asdescribedbelow).Inthis
approach,alllargepuffscontributetothebackgroundchemistrystepforotherpuffsoccupying
thesamegridcolumn.Double‐countingisavoidedbynotincludingapuff’scontributiontothe
backgroundwhileitsspecificbackgroundandincrementalchemicalcalculationsareperformed.
6.5.3MultiplePuffReactors(IRONonly)
Accountingforfullchemistrypotentiallyintroducessignificantnon‐lineareffectsthatarehighly
dependentuponthedistributionofpollutantmasswithineachpuff.Especiallyforozone,
aircraftflightsthroughpowerplantplumeshaveoftenrecordedwideconcentrationvariations
relativetoambientconditions:withintheplumecorewhereNOxremainsconcentrated,ozone
isoftendepressedandfollowsNO‐NO2‐ozoneequilibrium,whereasonplumefringeswhere
NOxisdiluteandmixeswithambientVOC,ozoneconcentrationscanexhibitconcentration
maxima.Pastmodelshaveaccountedforcross‐plumechemistryvariationsthroughtheuseof
reactors,withapproachesrangingfrommultiplerectangularslabstoconcentricshells.
Theusermayselectmultiplereactorsaswelltosub‐dividethepuff.Anynumberofreactors
maybechosen(thedefaultis1).Multiplereactorssimplydividethetotalpuffvolumeevenly,
andtheinitialmassassignmentsfornewlyemittedpuffsaremadeusingthestandarderror
functionthatresultsinaninitialGaussian‐likemass/concentrationdistributionamongthe
reactors.Thisprovidesamechanismforsimulatingthedifferingchemicalprocessingthattakes
placeinvariousconcentrationregimes.Asthepurposeofthereactorsismerelytorepresent
therangeofphotochemicalconditionsthatarelikelytooccuratvariouslocationswithinthe
puffasitundergoesdifferentialshearingandmixing,thereisnoparticularphysicalorientation
assignedtothesereactorswithrespecttoeachotherortothepuffasawhole.Thus,thereis
nocommunication(i.e.,diffusionalmassexchange)betweenthereactors.Thesame
backgroundconcentrationchemistryappliestoallreactorsofagivenpuff.Whenpuffmassis
leakedordumped,allreactorsshedthesamerelativefractionofmass.
Insummary,chemistryissolvedforeachpuff“reactor”inthreesteps:
1) Thelayer‐meanbackground(grid+overlappingpuff)concentrationsandenvironmental
conditionsoverthevolumeoccupiedbythepuffarestoredandthenchemicallyupdated
viatheLSODEgas‐phasechemistrymechanism;
2) Thepre‐updatedmeanbackgroundconcentrationsareaddedtothepuffincrementsand
thetotalconcentrationsarechemicallyupdated;and
3) Theupdatedresultsfromstep1aresubtractedfromtheupdatedresultsofstep2to
providetheupdatedincrementalconcentrations.
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 141www.camx.com
6.5.4PuffDumping(IRONandGREASD)
Masstransferfrompufftogridcanhappenintwoways:slowly,termed“leaking”,orsuddenly,
termed“dumping.”Asdescribedearlier,allmassistransferredtotheverticalgridstructurein
adensity‐weightedfashionaccordingtoeachpuff’sfractionallayercoverage.Theprocessof
leakingensuresthatpuffmassistransferredtothegridcontinuously,ratherthanindiscrete
lumpsofpollutantswithverydifferentconcentrationsthanthoseinthegrid.Suddendumping
cancauseunphysicalnumericalshocksinthegridandcanleadtounrealisticgridded
concentrationpatternsthatappearas“bulls‐eyes”.Theideabehindpuffleakageistoaccount
forturbulentshearingofmassfromthemainplumeanditssubsequentdispersiontothegrid
scale.Thisrateoftransfershouldbedirectlyproportionaltothepuffsizerelativetothegrid
scale.
Puffleakageiscontrolledbycomparingthehorizontalareaofapufftoaspecifiedleakage
parameter,definedasafractionofhorizontalgridcellarea.Whenapuffisfirstemittedthere
isnoleakage.Asthepuffgrowsinvolumetheconcentrationswithinthereactorsarereduced
accordinglybydilution.Whenthepuffareaexceedstheleakageonsetparameter,afractionof
themassineachpuffreactoristransferredtothegrid.Thisfractionisdeterminedbythe
relativeexceedanceoftheleakageparameter;initialleakageisslowastheexceedanceis
relativelysmall,butleakageratesgrowasthepuffcontinuestogrowbeyondtheleakage
parameter.
Thereducedmassfromleakageiscompensatedbyareducedeffectivevolume,sothat
concentrationsarenotartificiallydilutedbyleakage(anessentialchemicalimperative).Thus,
twodistinctvolumesaretracked:theactualvolume(definedbythepuffspread)andthe
effectivevolume.Whiletheseareidenticalbeforeleakage,theydeviateafterleakageis
initiated,andthereaftertherelativedeformationoftheactualpuffvolume(viadiffusion,
shearing,etc.)isusedtoscalethedeformationofeffectivepuffvolume.
Eventuallythehorizontalspanofthepuffwillexceedthegridcellarea,andtheremainingmass
isthendumpedallatoncetothegrid.However,becauseofthecombinationofphotochemical
processingandleakage,bythetimeapuffdumpsthepotentialforproducingnumericalshocks
ismuchreduced.Furthermore,ifthepuffexceedsauser‐definedmaximumage,puffmassis
transferredtothegridattherateof10%pertimestep.
6.5.5PiGRendering(IRONandGREASD)
Whilethemassconfinedtothepuffsatanygiventimehasnotyetaffectedthegrid
concentrations,itwilleventually,soitcanbesomewhatmisleadingtosequesterthismassfrom
visualizationsofamodelsimulation.Thepuffmasscanbeoptionallyincorporatedintothe
modelaverageoutputfilesforvisualizationpurposes(referredtoas“PiGrendering”).
Renderingemploysa“virtualdump”ofthepuffmassesintotheaverageoutputconcentration
arrayeachtimestep.Asdescribedforchemistry,virtualpuffmassisaddedasanincrement
overtheentiregridcolumnaccordingtofractionallayer‐densityweightingoverpuffdepth,
thusdilutingit’sconcentrationsrelativetothatwithinthepuff.Theactualpuffmassremains
withineachpuffoverthecourseofitslifetime,andtheactualgridmassinunaffecteduntil
puffsarekilledandtheirmassestrulydumpedintothegrid.Thisvisualizationisavailablefor
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 142www.camx.com
either2‐Dsurfaceor3‐Daverageoutputfiles,andcanproducesomeratherstartlingeffectsin
outputdisplays,includingverynarrowvirtualplumes,orstreaks,representingmassmoving
throughthegridinsub‐gridpuffs,butnotsubjecttogrid‐scaleeddydiffusion.
6.5.6HighResolutionPuffSampling(IRONandGREASD)
PiGoptionallyemployssurface‐layerpuffsamplingonauser‐definedgridofarbitraryhorizontal
resolution,similarlytothewaynestedgridsaredefined.Samplinggridsareentirelypassive,
andintendedtoprovideadisplayoftheplumeconcentrationsatscalesmuchsmallerthan
typicallyusedforthefinestcomputationalgrids(i.e.,<1km),primarilyaroundanddownwind
ofasourcecomplex.SampledPiGconcentrationsaretime‐averagedliketheoutput
concentrationsprovidedonthecomputationalgrids,andarewrittentofileswithsimilarformat
sothattheymaybereadilyviewedandmanipulatedwithCAMxpost‐processingsoftware.
AdditionalinformationonconfiguringandusingPiGsamplinggridsisprovidedinSections2and
4.
Giventhatthepuffsconstantlyevolveviadiffusivegrowthandreshapingduetodeforming
shears,thesamplingprocedureincludestrigonometriccalculationstodefinewhichsampling
pointsareinfluencedbyeachpuff.Thisinfluenceisdeterminedaccordingtothepuffs’two‐
dimensionalhorizontalGaussianshapeshowninFigure6‐1.Toincludeasufficientlylarge
percentageofmassacrosseachpuffforsampling,limitsof±3
x/yinbothhorizontaldimensions
areusedtodefinethepuffs’totalellipticalareacoverage.Puffsareonlysamplediftheyextend
verticallywithin10moftheground.
SamplinggridsaredefinedintheCAMxcontrolfile(seeSection2),andarraydimensionsmust
besetsufficientlylargeintheCAMxFortranparametersfilein./Includes/camx.prm(see
Section2).Anexampleofthetypeofplumedetailthatcanbevisualizedusingasamplinggrid
isprovidedinFigure6‐3.Inthiscase,averyfine200msamplinggridissetwithina4‐km
computationalgrid.
6.6Deposition
TheCAMxPiGtreatstheremovalofgasandPMspeciesfromeachpuffviadeposition
processes.Bothdryandwetdepositioncalculationspresenteduniqueimplementationissues
forpuffs.Themostdifficultissueforbothformsofdepositionwashowtomanagedeposition
exchangebetweenpuffsandthegroundinthecaseofnegativepuffconcentrationincrements.
6.6.1DryDeposition
Drydepositionneedstoconsiderthefollowing:(1)thepointatwhichpuffsbegintodepositto
thesurface;(2)howtohandledepositionthroughpotentiallydeeppuffsthatmaystraddle
severallayersofvaryingstabilitysincethepuffsdonotthemselvesresolvethesestratifications
orverticalconcentrationdistributions;(3)managingdepositionfluxesofnegative
concentrationincrements.Oursolutiontoissue(1)wastoignoredrydepositionwithinpuffs
untiltheydiffusivelygrowtotheground,althoughinrealitydepositionoccursonroughness
elementsthatextendsomedistanceabovetheground(trees,buildings,etc.).We
implementedacriterionthatthebottomofthepuffmustextendtoorbelowthemidpointof
thesurfacelayer,orbelow10m(whicheverislarger),inorderfordrydepositiontobeactive.
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 143www.camx.com
Figure6‐3.ExampleofasinglepointsourcePiGplumeasdepictedbyasamplinggridwith
200mresolution(shownbytheextentoftheplot;40kmby32kmtotalextent).This
samplinggridwassetwithinaCAMxcomputationalgridwith4‐kmresolution.Thesource
locationisarbitraryandisemittinganinerttracer.
Issue(2)canbehandledinavarietyofwaysandcomplexity.Thecurrentimplementation
institutesasimplersolutionandwewillconsidermorecomplicatedimprovementsforfuture
developmentsifevidencesuggeststhattheywouldbenecessary.PiGutilizespre‐computed
species‐dependentdepositionvelocitiesderivedforthegrids.Eachpuffinaparticulargridcell
isprovidedthehostcell’sdepositionvelocitiesforeachspecies,andtheseareusedto
determinethefluxofmassthroughthefractionofpuffdepthoccupyingthemodel’ssurface
layer.
Issue(3)isuniquetotheincrementalchemistryconceptintroducedwithIRONPiG.Thefluxof
materialdepositingtothegroundisgivenby d
vcF
,wherebythenormaldefinitiona
positivedepositionvelocityvdleadstoapositivedepositionfluxtotheground.Ifthepuff
incrementcisnegative,thenanegativefluxiscalculated(fluxfromgroundtopuff).Thisis
appropriateifweconsiderthefollowingargument.Drydepositionappliedtoagridcell
removessomepollutantmassfromtheentirevolume.Ifthereisapuffexistinginthatcellwith
anegativeconcentrationincrement,thentheamountofmassremovedfromthecellwasover
estimatedifweconsiderthepuff’scontributiontototalcellmass.Thenegativedepositionflux
calculatedforthispuffleadstotheadditionofmasstothepuffincrement.Addingmasstoa
negativeincrementreducesthemagnitudeoftheincrement,asexpectedforadeposition
process.Thismassistakenfromthegridcell’saccumulateddepositedmasstomaintain
accuratemassaccountingwithinthemodel.
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 144www.camx.com
6.6.2WetDeposition
Wetdepositionneedstoconsiderthefollowing:(1)howtohandlescavengingofpollutants
throughpotentiallydeeppuffsthatmaystraddleseverallayersofvaryingcloudandrainwater
contentsbutthatdonotthemselvesresolveverticalconcentrationdistributions;(2)managing
depositionfluxesofnegativeconcentrationincrementsincombinationwiththepotentialfor
masstomoveinandoutofrainwaterasitfalls(e.g.,forslightlysolublegasses);(3)accounting
fortheinitialpollutantconcentrationsinrainwaterastheyenterthetopofeachpuff.
Itwasimportanttomaintainconsistencybetweenthetreatmentofwetdepositionandthe
approachforpuffchemistry.Thechemistryreliesontheassumptionofverticallywell‐mixed
puffreactorsthatcanspanmultiplelayers,andthisiswhylayer‐densityweightedaverage
ambientconditionsarepassedtothechemistryroutines.Tomaintainthisassumptionforwet
deposition,asinglescavengingrateisappliedthroughtheentirepuffdepthaseffectivelya
singlelayerofpollutant.Thiswasfoundtobethesimplestimplementationapproach.This
singlescavengingrateiscalculatedaccordingtolayer‐densityweightedaverageambientcloud
andrainwatercontents.
Wetscavengingisperformedthroughouttheentiredepthofthepufftodeterminetheamount
offluxinoroutofrainwater.Totalconcentrations(puff+background)areusedtodetermine
species‐dependentscavengingratesusingtheidenticalalgorithmasforgridremoval.Therates
areusedtoderiveremovalfractions,andthesefractionsarethenapplieddirectlytothepuff
incrementalmassforeachspecies.Removalfractionsareconsideredpositiveforthestandard
caseofmassmovingfrompufftorain.
Wefurtherassumethatthetopboundaryconditionforrainwaterenteringthetopofeachpuff
iszero.Thismeansthattheremovalfractionisalwayspositive(frompufftorain)inthesingle‐
layerpuff.Incontrast,forgriddedconcentrationsthelayer‐by‐layerbuildupofslightlysoluble
speciescanleadtoareversaloffluxes(fromraintogrid)ifsupersaturationisdiagnosedina
particularlayer.
Notethatnegativepuffmassincrementsincombinationwithapositiveremovalfractionlead
toareversalofthefluxdirection(raintopuff),butthatisnotallowedandinsuchcaseswet
scavengingissettozero.Weaccountforimpactsonthemassbudgetappropriatelybyadding
tothewetdepositionmassarrayaccordingtothenetfluxesintorainwater.
6.7PiGConfiguration
SelectingtheindividualelevatedpointsourcestoreceivethePiGtreatmentisaccomplishedby
settingtheirstackdiametersnegativewithintheheader(time‐invariantpointlist)sectionofthe
CAMxinputpointsourcefile.CAMxwillruncorrectlywiththesenegativediametersevenifthe
PiGalgorithmisnotinvoked.CAMxpreprocessorsexisttoeasetheprocedureofranking
elevatedpointsourcesbyemissionrateandflaggingthesourcesthattheuserwishestotreat.
InvokingtheCAMxPiGsub‐modeliscontrolledbykeywordsintheCAMxcontrolfile
(CAMx.in),asdescribedinSection2.Thechoicesare:
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 145www.camx.com
PiG_Submodel = 'NONE',
PiG_Submodel = 'GREASD',
PiG_Submodel = 'IRON',
NotethatthesinglechoicebetweenGREASDandIRONappliestoallflaggedpointsources.Itis
notpossibletomakeasingleCAMxrunwithIRONPiGappliedtoacertaingroupofsources,
andGREASDPiGappliedtoanothergroup.AlsonotethatGREASDmustbeselectedtorunPiG
withOSAT,PMandPSAT;IRONmustbeselectedtorunPiGwiththeRTRACProbingTool.
SeveraladditionalparametersareusedtoconfigurethePiG.ItisimportanttonotethatallPiG
configurationparametersexistintheCAMxFortranparametersfile
(./Includes/camx.prm),asdescribedinSection2.PiGparametersaregroupedtogether
andbrieflydescribedattheendofthatfile.ByconfiguringthePiGsubmodelinthecode,the
defaultPiGconfiguration(asrecommendedbythemodeldevelopers)ispresetwithinthe
modeldistributionandalleviatestheneedforuserstoselectsettingsontheirown.
Thedefaultvaluesareshownbelow:
parameter ( MXPIG = 50000 )
parameter ( MXRECTR = 1 )
parameter ( FLEAK = .25 )
parameter ( LEAKON = .FALSE. )
parameter ( LVISPIG = .FALSE. )
parameter ( OVERLAP = .FALSE. )
parameter ( DXYMAX = -10000. )
parameter ( AGEMAX = 18.*3600. )
parameter ( PIGMXDT = 300. )
parameter ( SHRFLG = 1 )
Usersshouldexercisethoughtfulconsiderationwhenalteringthesedefaultvalues.A
descriptionofeachoftheremainingparametersisprovidedbelow,alongwithguidancein
settingvalues.
6.7.1GuidanceontheUseofCAMxPiG
6.7.1.1PiGKeyword
ThePiGkeywordcontrolswhetherthePiGoptionistobeinvokedinaCAMxsimulation,and
whethertheemissionsaretreatedwiththeGREASDorIRONoptions.Thiskeywordcanbe
switchedfromNONEtoGREASDorIRONonamodelrestarttoinvokethePiGtreatmentatany
pointduringamulti‐daysimulation.Toallowforthis,itisnotmandatorytoprovideCAMxwith
apre‐existingPiGoutputfileuponamodelrestart–CAMxwillnotstopifthisfileismissing.It
isrecommendedthatthisfilebeprovidedonallsubsequentrestartssincethePiGoutputfileis
neededtoreinitializethePiGmodule,otherwiseallmasscontainedinpuffsattheendofthe
previousrunwillbelost.IfthePiGkeywordisswitchedtoNONEonamodelrestart,CAMxwill
continuethesimulationwithoutPiG,butallmasscontainedinpuffsattheendoftheprevious
runwillbelost.
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 146www.camx.com
Guidance:
- InvokeGREASDorIRONPiGatanypointduringamulti‐daysimulation,ornoneatall.
OncePiGisstarted,provideCAMxwiththePiGoutputfilefromthepreviousrunfor
allsubsequentmodelrestartssothatnopointsourcemassislost.
- GREASDPiGshouldbeinvokedforlargeNOxpointsourcesonly,sinceitdoesnot
provideanyorganicchemistry.GREASDPiGsupportsPMchemistry(CFbutnotCMU).
ItcanberuninconjunctionwiththeOSAT/PSAT.ItdoesnotsupportDDM,PA,or
RTRAC.
- IRONPiGcanbeinvokedforanypointsourcetotreatgas‐phasechemicalevolution
usinganyoftheCAMxphotochemicalmechanisms.IRONPiGdoesnottreat
particulatechemistry.ItcanberuninconjunctionwiththeRTRACProbingTool.It
doesnotsupportOSAT/PSAT,DDM,orPA.
BothGREASDandIRONoptionsusetheLSODEchemistrysolverexclusively,souserswillnotice
animpactonruntime,particularlyifmany(thousands)puffsaretobetracked,andIRONPiGis
invoked(2solutionsoffullphotochemistryforeachpuff),andIRONpuffsareconfiguredwith
manypuffreactorcells(fullphotochemistrysolutionseach).SinceGREASDchemistryissimpler
andthelifetimeofGREASDpuffsaremuchshorterthantheirIRONcounterparts,GREASDPiG
willrunfasterthanIRONPiGforthesamenumberofflaggedsources.PiGchemistryis
internallyparallelizedusingOMPtomaximizePiGspeedperformance.
6.7.1.2NumberofPiGPuffs
MXPIGsetsthemaximumnumberofPiGpuffstobeexpectedduringasimulation.Itisusedto
staticallyallocatememoryarraysforthePiGsub‐model.Avalueof10,000isusuallysufficient
formostapplicationsinwhichPiGisused;setthisparameterto1ifPiGisnotusedtoconserve
memory.Ifthisparameterisexceededduringasimulation,themodelwillhalt.Ifthishappens,
simplyincreaseMXPIG,recompilethemodelexecutable,andrestartthesimulation.
Guidance:Usethedefaultvalueformostsimulations,orsetto1ifPiGisnottobeused.
IfthemodelstopsbecauseMXPIGisexceeded,increaseitsvalue,recompile,andrestart
themodel.
6.7.1.3NumberofPiGReactors(IRONonly)
MXRECTRsetsthenumberofpuffreactors;whengreaterthan1,eachpuffisseparatedinto
thatnumberofreactorcellsandprimaryemissionsareapportionedamongthemusinga
Gaussiandistribution.Sincechemistryisperformedforeachindividualreactorcell(both
backgroundandpuff+background),thisparametercanaffectthespeedofchemical
computationsinthePiG.Wehavenotseenasignificantsensitivitytovaluesgreaterthan1,but
testingforeachapplicationiswarranted.
Guidance:Usethedefaultof1forinitialsimulations,buttestthesensitivitytothis
parameterforeachuniqueapplication.
Reactorsgreaterthan1arenotallowedforGREASDPiG.
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 147www.camx.com
6.7.1.4LeakageParameters
FLEAK,LEAKON,andDXYMAXtogethercontrolpuffleakagetothecomputationalgridand
ultimatelypufftermination.WhenLEAKONistrue,FLEAKandDXYMAXcontrolwhenpuffs
begintoleakportionsofreactormasstothegridalongtheirtrajectory.WhenLEAKONisfalse,
noleakingisperformedandpuffsmaintainalloftheirmassuntiltheyreachsizesfor
termination,atwhichpointallmassisdirectlyintroducedtothegridatthatpoint.DXYMAX
setsthemaximumdimensionthatpuffsizewillbecomparedtoforleakingandtermination:
whenitiszero,puffsizewillbecomparedtogridareaonly;whenitispositive,puffsizewillbe
comparedtothevalueofDXYMAXregardlessofgridresolution;whenitisnegative,puffsize
willbecomparedtoDXYMAXorgridresolution,whicheverissmaller.FLEAKistherelative
fractionofhorizontalpuffareatocellarea(orDXYMAX)abovewhichleakingwillbeginand
continueuntilsufficientmassisshedandthepuffisterminated.Intheexampleabove,puffs
willbegintoleakmasswhentheyreach25%ofthehostgridcell’sarea.
Guidance:IfLEAKONissettotrue,maintainFLEAKatthedefaultvalueof0.25.Thentest
modelsensitivitytodifferentvaluesofFLEAKand/orDXYMAX.
Guidance:WesuggestleavingDXYMAX=‐10000,meaningpuffswillbeterminatedwhen
theyreachthegridscaleor10km,whicheverissmaller.Puffsexceedingthissizeare
usuallywell‐agedandgobeyondreasonableassumptionsofpuffcoherence(alsosee
AGEMAXparameterbelow).
LeakingisnotallowedwhenPiGisrunwithPM.
6.7.1.5OverlapFlag(IRONonly)
OVERLAPcontrolswhetherpuffoverlapistobetreatedinthebackgroundchemistrystep.As
statedearlier,puffsonlyoverlapiftheymeetthesizecriteriaforleaking;allpuffssmallerthan
thissizedonotoverlapanyotherpuffsinthesamegridcell.
Guidance:WerecommendthattheOVERLAPflagremainsettothedefaultvalueof
“false”.
OverlapisnotallowedforGREASDPiG.
6.7.1.6VirtualPuffRendering
LVISPIGisaflagthatturnsonpuff“rendering”tothecomputationalgridaverage
concentrations.Whenitisfalse,thechemicaleffectsofpuffmassarenotseenontheoutput
averagefilesuntiltheyeitherbegintoleakmasstothegridand/ortheyareterminatedand
theirmassisentirelyintroducedtothecomputationgrid.However,whentheflagistrue,all
puffmassthatresidesineachgridcolumnissummed,apportionedverticallytoeachgridcell
accordingtopuffverticalextent(viadensityandlayer‐depthweighting),convertedto
concentrations,andaddedtotheaveragegriddedconcentrationsforoutput.Thisprocessis
referredtoasrenderingsincetheeffectsofallpuffmasscanbereadilyvisualizedintheCAMx
output.
March2016CAMxUser’sGuideVersion6.3
6.Plume‐in‐GridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 148www.camx.com
Guidance:ThisoptionhasnoimpactontheactualCAMxchemicalsolution.However,
outputaverageconcentrationfileswillbeaffectedbypuffrendering,andthereforecould
impactgraphicsofCAMxresultsandmodelperformancemeasures.
VirtualdumpsarenotallowedwhenPiGisrunwithPM.
6.7.1.7MaximumPuffAge
AGEMAXistheagelimitforallPiGpuffs(IRONandGREASD).Whenpuffsreachthisagelimit,
theyareterminatedandalloftheirmassistransferredtothehostgrid.Theassumptionofa
streamofcoherentpuffsbecomeslessvalidwithtimeashorizontalandverticalwindshears
increaseplumespread.Atsomepointtheplumemassisbetterresolvedonthegridthan
withinpuffs.Themaximumpuffageprovidesasafetychecktoensurethatpuffsdonotpersist
forunrealistictimesinstableenvironments.Themaximumpuffageshouldbesetlongenough
toallowpuffstopersistovernight,butalifetimeoflongerthanadayisprobablynotrealistic.
Guidance:limitpuffageto12‐24hours–wefindthat18hoursworksbestsinceitwill
allowpuffsemittedinthelateafternoontolastthroughthenightandintothefollowing
morning.Twelvehoursisseentobetooshortinthisregard;puffsusuallydonotreach24
hoursofagebeforebeingterminatedbygridconstraints.
6.7.1.8MaximumPuffReleaseInterval
PIGMXDTsetsthemaximumfrequencyofreleaseandbydefaultissetto300seconds(5
minutes).Thisvalueshouldbeadequateformostapplications.However,iftheuserwishesto
improveplumeresolutionbyincreasingthenumberofpuffs,thefrequencyofreleasecanbe
increasedbyreducingthevalueofPIGMXDT.Thisvaluesupersedestheautomatedpuffrelease
ratethatisdeterminedbywindspeedandgridsize.
Guidance:Maintainthedefaultvalueof300sandallowPiGtousetheautomatedPiG
releasefrequency.Settoalowervalueifbetterplumeresolutionisdesired;notethat
morepuffswillbereleasedandthiscouldslowthemodelmarkedly.
6.7.1.9EffectsofWindShearonPuffGrowthRates
SHRFLGsetstheapproachbywhichtoapplytheeffectsofexplicitlyresolved(gridscale)wind
shearonpuffgrowthrates.Therearethreeoptionsavailabletotheuser:
0=shearisneverapplied;
1=shearisappliedonlywithintheboundarylayer;
2=shearisalwaysapplied.
Guidance:Theapplicationofwindshearcanleadtolargegrowthrates,especiallyabove
theboundarylayerwherestabilitysquelchesturbulentgrowth,andthismayover‐dilute
puffconcentrations,leadtoearlytransferofpuffmasstothegrid,andhavemarkedly
reducedimpactsdownwind.Shearhaslessrelativeimpactongrowthratesinneutral/
unstableconditionsbecauseturbulentgrowthonitsownleadstorapidplumedilution.
Forthesereasons,thedefaultistoignoretheeffectsofshearwhenpuffsareabovethe
boundarylayer.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 149www.camx.com
7.SOURCEAPPORTIONMENT
Photochemicalgridmodelsareoftenusedtodevelopemissionreductionstrategiestoattainair
qualityobjectives.Traditionalmethodsinvolverunningnumerousiterativereductionor“zero‐
out”simulations(i.e.,“bruteforce”methods)toidentifythecontributionsfromspecific
pollutants,sourcecategoriesandsourceregions.Thisprocessquicklybecomesimpractical,but
thelackofsuchinformationmightleadtoimplicatingsourcesthatcontributelittletohigh
pollutantlevelsor,conversely,notproperlyidentifyingsourcesthatdocontribute.
CAMxincludesasourceapportionment(SA)orattributioncapabilitythatestimatesthe
contributionsfrommultiplesourceareas,categories,andpollutanttypestothespatialand
temporaldistributionofozoneandPMinasinglemodelrun.Themainchallengesin
implementingamethodologytotracktherelationshipsbetweenseparategroupsofprecursor
emissionsandsubsequentnon‐linearformationoftargetpollutantsinclude:
Accountingnotonlyforthepresenceofprecursorsfromagivensourceregionatagiven
receptorlocation,butalsoaccuratelyestimatingtheircumulativecontributiontotarget
pollutantswhiletheywereen‐routetothereceptor;
Ensuringcompatibilitywiththeunderlyingairqualitymodelformulationsothatderived
source‐receptorrelationshipsareconsistentwithmodelresultsfortotalconcentrations;
Providingsufficientspatialandtemporalresolutionwhilemanaging,withinpractical
constraints,thecomputerresourcesrequiredtorunthesourceapportionmenttool.
SAusessetsoftracerspeciestotrackthefateofprecursoremissionsandtheozoneandPM
compoundsformedfromtheseemissions.Thetracersoperateas“spectators”tothenormal
CAMxcalculationssothattheunderlyingrelationshipsbetweentotalemissionsand
concentrationsarenotperturbed.SAtracersarenot“passive”:rathertheytracktheeffectsof
chemicalreaction,transport,diffusion,emissionsanddepositionwithinaCAMxsimulationand
arethusreferredtoas“reactiontracers.”Asourcecanbedefinedintermsofgeographical
area(orregion)and/oremissioncategory(orgroup).Figure7‐1providesanexampleofthe
wayaCAMxdomaincanbesub‐dividedintomultiplesourceareas–40inthisexample.Also,
theemissioninventorycouldbesub‐dividedintoseveralsourcecategories;forexample,three
emissioncategories(mobile,industrial,biogenic)over40sourceregionswouldproduce120
separatesetsoftracers.Allsourcesofprecursors,ozone,PMmustbeaccountedfor,soCAMx
intialandboundaryconditionsarealsotrackedasseparatesourcegroups.Themethodologyis
designedsuchthatallozone,PMandprecursorconcentrationsareattributedamongthe
selectedsourceregions/groupsatalltimesandthroughoutallgrids.Themethodologyalso
estimatesthefractionsofozoneformeden‐routeunderVOC‐orNOX‐limitedconditions,
indicatingwhetherozoneataparticulartimeandlocationswillrespondtoreductionsinVOCor
NOXprecursoremissions.
AnimportantfeatureofthereactiontracerapproachisthatthenormalCAMxcalculationsare
notperturbed;thus,SAestimatesthesametotalozone,PMandprecursorconcentrationsas
CAMx.Further,sincethesameinputsareusedformeteorology,emissionsetc.,andthesame
numericalmethodsareemployedthroughoutthemodel,thesource‐receptorrelationships
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 150www.camx.com
Figure7‐1.Exampleofthesub‐divisionofaCAMxdomainintoseparateareasforgeographic
sourceapportionment.
developedbySAinherentlyhaveahighdegreeofconsistencywiththosegeneratedbyCAMx.
Thebiggestlimitationofthis(oranyother)sourceapportionmentapproachrelatestonon‐
linearchemicalinteractionsbetweenemissionsfromdifferentsources,whichbyextension
meansthatanyperturbationtotheemissioninventorychangessource‐receptorrelationships
andattributioninanon‐linearway.Thus,forpollutantslikeozoneandsomePM,SAresults
onlyapplytoaparticularemissionsscenario,andcannotbeusedtoextrapolateeffects
resultingfromemissionchangesamongthetrackedsourceregions/groups.
7.1OzoneSourceApportionment
Yarwoodetal(1996a,b)developedanozonesourceattributionapproachthathasbecome
knownasthe“OzoneSourceApportionmentTechnology”(OSAT).Thismethodwasoriginally
implementedintheUrbanAirshedModel(UAM)andwasbuiltintothefirstversionofCAMx.
Thesecondversion(OSAT2–althoughthistermwasnotwidelyused)wasreleasedwithCAMx
v4.20in2005alongwiththeadditionofParticulateSourceApportionmentTechnology(PSAT).
TheOSAT2updateaccountedforsimultaneousproductionanddestructionofozoneby
photochemistryandtendedtoallocatelessozonetolong‐rangetransport(becauseof
destructionduringtransport)andmoretolocalproduction.Thethirdversion(OSAT3)was
releasedwithCAMxv6.30in2016,andincludesanimprovedapproachtohandleNOxrecycling
(YarwoodandKoo,2015).TheOSAT3updatetendstoallocatemoreozonetolong‐range
transport(duetocontributionsfromNOxduringdownwindtransport)andlesstolocal
production.
-95-90-85-80-75-70
30
35
40
45
1
2
3
4
6
7
89
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 151www.camx.com
7.1.1OSATFormulation
TheoriginalOSATusesfourtracerspersourceregion/grouptoaccountforcontributionsto
ozoneformation.OzoneformationinvolvesbothNOxandVOC,andOSATusestwotracer
families(NiandVi)toapportionNOxandVOCbysourceregion/groupi.Theozoneformation
processiscontrolledbytherelativeavailabilityofNOxandVOC,andsoozoneformationis
describedeitherasNOx‐limitedorVOC‐limited,respectively.Theratiooftheproductionrates
ofhydrogenperoxide(H2O2)andnitricacid(HNO3)istheindicatorusedtoclassifyozone
formationasbeinginstantaneouslylimitedbyNOxorVOC.Ozoneformationisclassifiedas
beingNOx‐limitedwhenP(H2O2)/P(HNO3)<0.35(Sillman,1995).Whenozoneproductionata
givenlocationandtimeisNOx‐limited,itmakessensetoattributethatproductiontosource
region/groupsbasedontheircontributionstothelocalNOx,andsimilarlytoattribute
productionbasedonVOCcontributionswhenozoneformationisVOC‐limited.Consequently,
separateozonetracerfamilies(O3NiandO3Vi)areusedtotrackozoneformedunderNOxand
VOC‐limitedconditions.
TheOSATtracersbysourceregion/groupiare:
NiNitricoxide(NO)andnitrogendioxide(NO2)emissions
ViVOCemissions
O3NiOzoneformedunderNOx‐limitedconditionsfromNi
O3ViOzoneformedunderVOC‐limitedconditionsfromVi
TheoriginalOSATtracerschemeisillustratedinFigure7‐2.Netozonechangeduetochemistry
(ΔO3)istrackedbythetracerfamiliesO3NandO3V.Ozonedestruction(ΔO3<0)reducesall
O3NandO3Vproportionately.Ozoneproduction(ΔO3>0)isclassifiedeitherasNOx‐limitedor
VOC‐limitedusingtheindicatorH2O2/HNO3andassignedeithertoO3NorO3V,respectively,
inproportiontotheprecursortracerspresent,respectivelyNorV.TheprecursortracersNand
Vareremovedbychemicaldecay.
Figure7‐2.TheoriginalOSATschemeforozoneapportionment.Informationflowsalong
arrows.Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,the
diamondrepresentstheOSATalgorithmthatdeterminesozonetracerchanges.
H2O2/HNO3istheindicatorratiousedtodetermineNOx‐orVOC‐limitedozoneproduction.
ΔO
3
V
O3V O3N
ΔH2O2/ΔHNO3
N
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 152www.camx.com
7.1.2OSAT2Formulation
TheoriginalOSATalgorithmallocatedthenetozonechange(ΔO3)totracersO3Nand/orO3V.
However,ozoneproductionanddestructionreactionsoperatesimultaneouslyandsothenet
ozonechangeisthebalanceofproductionanddestruction.Forexample,VOCoxidationcan
causephotochemicalozoneproductionatthesametimethatO3+VOCreactionsdirectly
consumeozone,andtheseprocessesmayleadtoanetozoneincreaseordecreasedepending
mainlyuponavailabilityofNOxandsunlight.
OSAT2accountsforthefollowingozonedestructionmechanisms:
1) O3+VOCreactionssincetheseremoveozone;
2) O(3P)+VOCreactionssincetheseeffectivelyremoveozone;
3) O(1D)+H2Oreactionsincethiseffectivelyremovesozone;
4) HOx+O3reactionsthatdonotre‐formozone.
Ozonedestructioniscalculatedasthesmaller(i.e.,morenegative)ofthesumofthesefour
mechanismsorΔO3.OzoneproductionisthencalculatedasthedifferencebetweenΔO3and
theozonedestruction.TheO3VandO3Ntracersareadjustedfirstforozonedestruction
(appliedtoalltracers)andsecondforozoneproduction(appliedusingtheOSATrules).
Theamountofozonedestructioniscalculatedfromthetime‐integratedratesofthefour
chemicalprocesseslistedabove.Itiseasytoaccountforprocesses1‐3sincetheozone
destroyedissimplythetime‐integralofthereactionsinvolved.Process4islesseasyto
quantifybecauseozonecanbere‐formed.Forexample:
O3+OH→HO2
HO2+NO→OH+NO2
NO2+hν→NO+O
O+O2→O3
However,process4isanimportantozonedestructionmechanisminlowNOx(e.g.,rural)
environments.Therefore,accountingforprocess4isimportanttounderstandinglong‐range
ozonetransport.ThemainreactionpathwaysbetweenozoneandHOx(OHandHO2)are
showninFigure7‐3.
TheozonedestructionrateduetoO3+HOxreactionsiscomputedfrom:
TheOSAT2tracersarethesameastheoriginalOSAT.TheOSAT2schemeforozone
apportionmentisillustratedinFigure7‐4.Ozoneproductionanddestructionaretreated
separatelyandcanoccursimultaneously.Ozonedestruction(−ΔO3)reducesallO3NandO3V
proportionately.Ozoneproduction(+ΔO3)isclassifiedeitherasNOx‐limitedorVOC‐limited
termHONOHO
termHO
HOxO
22
2
3RateRate
Rate
RatenDestructioO3
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 153www.camx.com
Figure7‐3.DaytimereactionsofozonewithHOx(OHandHO2)showingpotentialfor
reformationofozoneorozonedestructionviaperoxideformation.
Figure7‐4.TheOSAT2schemeforozoneapportionment.Informationflowsalongarrows.
Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,thediamond
representstheOSATalgorithmthatdeterminesozonetracerproducton.H2O2/HNO3isthe
indicatorratiousedtodetermineNOx‐orVOC‐limitedozoneproduction.
usingtheindicatorH2O2/HNO3andassignedeithertoO3NorO3V,respectively,in
proportiontotheprecursortracerspresent,respectivelyNorV.TheprecursortracersVandN
areremovedbychemicaldecay.
7.1.3OSAT3Formulation
OSAT3improvestheaccuracyoftheOSATmethodsbykeepingtrackofthesource(s)ofozone
removedbyreactionwithNOtoformNO2andsubsequentlyreturnedasozonewhenNO2is
destroyedbyphotolysis.Accomplishingthisobjectiverequiresmaintainingsourceattribution
ofodd‐oxygenthroughthechemicalreactionsthatlinkozone,NOandNO2.Thisisillustratedin
thefollowingchemicalreactionswhereozoneiswrittenasOOO,NO2iswrittenasONO,and
thesourceattributedodd‐oxygenisshowninred:
OH
HO2
O3
OH HO2
hV
NO Peroxides
NO2
HOx
Radical
Pool
HO2,
RO2
+ΔO
3
V
O3V O3N
ΔH
2
O
2
/ΔHNO
3
−ΔO
3
N
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 154www.camx.com
NO+OOO→ONO
ONO+hv→NO+O
O+OO→OOO
Sourceattributionoftheodd‐oxygencontentofNO2isperformedbytracerfamiliesOONand
OOVthatareintroducedinOSAT3.Twotracerfamiliesareneededinordertokeeptrackofthe
sourceprofileofozoneconsumed,whichwasrepresentedbyO3VandO3N.
SourceattributionofthenitrogeninNOandNO2mustalsobeperformedinordertoapplythe
apportionmentalgorithmsthattrackozoneproductionusingO3NandO3V.Accordingly,
OSAT3simultaneouslyattributesboththeNandodd‐oxygeninNO2tosources,andthesource
signaturesofthesetwoapportionmentswillalmostalwaysdiffer.Thisisillustratedbelow,
wherechemicalsourceattributionisshowninbluefornitrogenandredforodd‐oxygen:
NO+OOO→ONO
ONO+hν→NO+O
O+OO→OOO
Thechemicalconversionpathwaysbetweenoxidizednitrogenspecies(NOy)inCB6are
summarizedinFigure7‐5.Arrowsshowthedirectionofconversion,whichisbi‐directionalin
somecases.OtherchemicalmechanismshavesimilarNOyconversionpathwaystoCB6.Also
showninFigure7‐5aretheOSAT3tracerfamilies.Colorcodingshowsthecorrespondence
betweenOSAT3tracerfamiliesandtheNOyspeciesthattheyrepresent(notethatthepurpose
forcolorcodinginFigure7‐5isdifferentfromcolorsusedinthechemicalreactionsabove).
Figure7‐5.CorrespondencebetweenNOyspeciesinCB6andtracerfamiliesinOSAT3with
conversionsbetweenspecies/tracersshownbyarrows.
NO
NO
2
HONO
NO
3
N
2
O
5
HNO
3
RNO
3
PAN
PNA
NIT
RGN
HN3
NTR
TPN
CB6 OSAT3
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 155www.camx.com
TrackingsourceattributionofnitrogenthroughallformsofNOyenablesOSAT3toaccountfor
NOxrecyclingwhenNOxisconvertedtoanotherformofNOy(e.g.,PANorHNO3)andlater
convertedbacktoNOx.OSAT3usesthefollowing10tracersbysourceregion/groupi:
ViVOCemissions
NITiNitricoxide(NO)andnitrousacid(HONO)emissions
RGNiNitrogendioxide(NO2),nitrateradical(NO3)anddinitrogenpentoxide(N2O5)
TPNiPeroxylacetylnitrate(PAN),analoguesofPANandperoxynitricacid(PNA)
NTRiOrganicnitrates(RNO3)
HN3iGaseousnitricacid(HNO3)
O3NiOzoneformedunderNOx‐limitedconditionsfromNi
O3ViOzoneformedunderVOC‐limitedconditionsfromVi
OONiOdd‐oxygeninNO2formedfromO3Ni
OOViOdd‐oxygeninNO2formedfromO3Vi
TheOSAT3schemeforozoneapportionmentisillustratedinFigure7‐6.TheVOCprecursor
tracerfamilyVisunchangedinOSAT3andremovedbychemicaldecay,whilethetracerNis
replacedwithNIT.ThefateofNOxemissionsistrackedbythenitrogentracerfamiliesNIT,
RGN,TPN,NTRandHN3.Ozoneproductionanddestructionaretreatedseparatelyandcan
occursimultaneously(asinOSAT2).Ozoneproduction(+ΔO3)isclassifiedeitherasNOx‐limited
orVOC‐limitedusingtheindicatorH2O2/HNO3andassignedeithertoO3NorO3V,
respectively,inproportiontotheprecursortracerspresent,respectivelyNITorV.Ozone
destruction(−ΔO3)reducesallO3NandO3Vproportionately.Whenozonedestructionresults
fromreactionwithNOtoformNO2,theamountsofO3NandO3Vremovedaretransferredto
therespectiveodd‐oxygentracersOONandOOV.WhenNO2isremovedbyphotolysistoform
ozone,theamountsofOONandOOVremovedaretransferredtotherespectivetracersO3N
andO3V.
7.1.4AlternativeOzoneApportionmentUsingAPCA
AnalternativeozoneapportionmenttechniquecalledAnthropogenicPrecursorCulpability
Assessment(APCA)differsfromOSATinrecognizingthatcertainemissioncategoriesarenot
controllable(e.g.,biogenicemissions)andthatapportioningozoneproductiontothese
categoriesdoesnotprovideinformationthatisrelevanttodevelopmentofcontrolstrategies.
Toaddressthis,insituationswhereOSATwouldattributeozoneproductiontonon‐controllable
emissions,APCAre‐allocatesthatozoneproductiontothecontrollableprecursorsthat
participatedinozoneformationwiththenon‐controllableprecursor.Forexample,whenozone
formationisduetobiogenicVOCandanthropogenicNOxunderVOC‐limitedconditions(a
situationwhereOSATwouldattributeozoneproductiontobiogenicVOC),APCAattributes
ozoneproductiontotheanthropogenicNOxpresent.UsingAPCAinsteadofOSATresultsin
moreozoneformationattributedtoanthropogenicNOxsourcesandlessozoneformation
attributedtobiogenicVOCsources.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 156www.camx.com
Figure7‐6.TheOSAT3schemeforozoneapportionment.Informationflowsalongarrows.
Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,thediamond
representtheOSATalgorithmsthatdetermineozonetracerproduction.H2O2/HNO3isthe
indicatorratiousedtodetermineNOx‐orVOC‐limitedozoneproduction.RGNapportions
thenitrogeninNO2whereasOONandOOVapportiontheodd‐oxygeninNO2.
TheonlydifferencebetweenAPCAandOSATisthealgorithmusedtoallocateozoneproduction
underVOCorNOx‐limitedconditions.TheOSAT3updatedoesnotrevisetheallocationof
ozoneproductionunderVOCorNOx‐limitedconditionsandthereforetheAPCAalgorithm
workswiththeOSAT3update.
7.2ParticulateSourceApportionment
ParticulateSourceApportionment(PSAT)usesmultipletracerfamiliestotrackthefateof
primaryandsecondaryPM(Yarwoodetal.,2004).PSATisdesignedtoapportionthefollowing
classesofCAMxPMspecies(CFmodeonly):
Sulfate(PSO4)
Particulatenitrate(PNO3)
Ammonium(PNH4)
Secondaryorganicaerosol(SOA)
Particulatemercury(HgP)
SixcategoriesofprimaryPM:
- Elementalcarbon(PEC)
- Primaryorganicaerosol(POA)
- Crustalfine(FCRS)
+ΔO
3
V
O3V O3N
ΔH
2
O
2
/ΔHNO
3
−ΔO
3
NIT
OOV−OON−RGN
NTR
TPNHN3
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 157www.camx.com
- Otherfine(FPRM)
- Crustalcoarse(CCRS)
- Othercoarse(CPRM)
AsingletracerfamilycanapportionprimaryPMspecieswhereassecondaryPMspeciesrequire
severaltracerfamiliestotracktherelationshipbetweengaseousprecursorsandtheresulting
PM.PNO3andSOAarethemostcomplexPMcategoriestoapportionbecausetheemitted
precursorgases(NO,VOC)areseveralstepsremovedfromtheresultingPMspecies(PNO3,
SOA).
ThePSAT“reactivetracers”foreachtypeofPMbysourceregion/groupiaredescribedbelow.
PSATtracernamesforparticulatespeciesbeginwiththeletter“P.”
Sulfur
SO2iPrimarySO2emissions
PS4iParticulatesulfatefromprimaryemissionsplussecondarilyformedsulfate
Nitrogen
NITiNitricoxide(NO)andnitrousacid(HONO)
RGNiNitrogendioxide(NO2),nitrateradical(NO3),anddinitrogenpentoxide(N2O5)
TPNiPeroxylacetylnitrate(PAN),analoguesofPANandperoxynitricacid(PNA)
NTRiOrganicnitrates(RNO3)
HN3iNitricacid(HNO3)
PN3iParticulatenitratefromprimaryemissionsplussecondarilyformednitrate
NH3iAmmonia(NH3)
PN4iParticulateammonium(NH4)
SecondaryOrganics
AROiAromatic(benzene,tolueneandxylene)secondaryorganicaerosolprecursors
ISPiIsoprenesecondaryorganicaerosolprecursors
TRPiTerpenesecondaryorganicaerosolprecursors
SQTSesquiterpenesecondaryorganicaerosolprecursors
CG1iCondensablegasesfromaromatics(lowvolatilityproducts)
CG2iCondensablegasesfromaromatics(highvolatilityproducts)
CG3iCondensablegasesfromisoprene(lowvolatilityproducts)
CG4iCondensablegasesfromisoprene(highvolatilityproducts)
CG5iCondensablegasesfromterpenes(lowvolatilityproducts)
CG6iCondensablegasesfromterpenes(highvolatilityproducts)
CG7iCondensablegasesfromsesqiterpenes
PO1iParticulateorganicaerosolassociatedwithCG1
PO2iParticulateorganicaerosolassociatedwithCG2
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 158www.camx.com
PO3iParticulateorganicaerosolassociatedwithCG3
PO4iParticulateorganicaerosolassociatedwithCG4
PO5iParticulateorganicaerosolassociatedwithCG5
PO6iParticulateorganicaerosolassociatedwithCG6
PO7iParticulateorganicaerosolassociatedwithCG7
POHiParticulatenon‐volatileorganicaerosolfromaromaticprecursors
PPAiAnthropogenicorganicaerosolpolymers(SOPA)
PPBiBiogenicorganicaerosolpolymers(SOPB)
Mercury
HG0iElementalMercuryvapor
HG2iReactivegaseousMercuryvapor
PHGiParticulateMercury
PrimaryParticulates
PECiPrimaryElementalCarbon
POAiPrimaryOrganicAerosol
PFCiFineCrustalPM
PFNiOtherFineParticulate
PCCiCoarseCrustalPM
PCSiOtherCoarseParticulate
BothozoneandPNO3areassociatedwithNOxemissions.Theoxidizednitrogentracerfamilies
forOSAT3andPSATareequivalentwiththeonlydifferencebeingtheadditionaltracerfor
particulatespeciesinPSAT.Therefore,PSATusesthesameOSAT3tracerfamilyforoxidized
nitrogen.
PSATincludesatotalof40tracersforeachsourceregion/groupifappliedtoallPMtypes.
Sincesourceapportionmentmaynotalwaysbeneededforallspecies,thePSAT
implementationisflexibleandallowssourceapportionmentforanyorallofthechemical
classesineachCAMxsimulation(i.e.thePSO4,PNO3,PNH4,SOA,HgPandprimaryPMclasses
listedabove).Forexample,sourceapportionmentforsulfate,nitrateandammoniumrequires
just10tracerspersourceregion/group.
AfundamentalassumptioninPSATisthatPMshouldbeapportionedtotheprimaryprecursor
foreachtypeofPM.Forexample,PSO4isapportionedtoSOxemissions,PNO3isapportioned
toNOxemissions,PNH4isapportionedtoNH3emissions,etc.Asasourceapportionment
method,PSATmustaccountforallmodeledsourcesofaPMspecies.Considertwomodel
speciesAandBthatareapportionedbyreactivetracersaiandbi,respectively.Reactivetracers
mustbeincludedforallsourcesofAandBincludingemissions,initialandboundaryconditions
sothatcompletesourceapportionmentisobtained,i.e.,A=aiandB=bi.
InPSAT,thegeneralapproachtomodelingchangeoveramodeltimestep
tisillustratedfora
chemicalreactionA
B.Thegeneralequationforspeciesdestructionis:
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 159www.camx.com
Here,therelativeapportionmentofAispreservedasthetotalamountchanges.Thisequation
appliestochemicalremovalofAandalsotophysicalremovalofAbyprocessessuchas
depositionortransportoutofaspecificgridcell.
Thegeneralequationforspeciesproduction(e.g.,chemicalproductionbythechemicalreaction
A
B)is:
Here,productionofBinheritstheapportionmentoftheprecursorA.Thesameequation
appliesfor“production”ofBinaspecificgridcellduetoemissionsortransport.Forthecase
whereBincreasesduetoemissions,aiistheapportionmentoftheemissionsinventory.For
thecasewhereBincreasesduetotransport,aiistheapportionmentoftheupwindgridcell.
Insomecases,sourcecategoryspecificweightingfactors(wi)mustbeaddedtotheequation
forspeciesdestruction:
AnexampleischemicaldecayofthearomaticVOCtracers(ARO),whichmustbeweightedby
theaverageOHrateconstantofeachAROi.AROtracersfordifferentsourcegroupshave
differentaverageVOCreactivitiesbecausetherelativeamountsofbenzene,toluenesand
xylenesdifferbetweensourcecategories.
Insomecases,sourcecategoryspecificweightingfactors(wi)mustbeaddedtotheequation
forspeciesproduction:
Anexampleischemicalproductionofcondensablegases(CG1orCG2)fromaromaticVOC
tracers,whichmustbeweightedbyaerosolyieldweightingfactors.Theaerosolyieldweighting
factorsdependupontherelativeamountsofbenzene,toluenesandxylenesineachsource
group.
Severalaerosolreactionsaretreatedasequilibria,A
B.IfAandBreachequilibriumateach
timestep,itfollowsthattheirsourceapportionmentsalsoreachequilibrium:
i
i
ii a
a
Atatta
i
i
ii a
a
Btbttb
ii
ii
ii aw
aw
Atatta
ii
ii
ii aw
aw
Btbttb
BA
B
tbtattb
BA
A
tbtatta
iii
iii
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 160www.camx.com
Examplesaretheequilibriumbetweengasphasenitricacidandaerosolnitrate,gasphase
ammoniumandaerosolammonium,andcondensableorganicgases(CG)andsecondary
organicaerosols(SOA).
7.3RunningCAMxWithSA
7.3.1CAMxControlFile
SourceapportionmentisinvokedsimilarlytotheotherProbingToolswithintheCAMxcontrol
file.Inthe&CAMx_Controlnamelistmodule,thevariableProbing_Toolmustbesetto
“SA”ifOSAT,APCAorPSATaretoberun.Anadditionalnamelistmodulecalled
&SA_Control mustthenbeprovidedinthecontrolfiletoconfiguretheSAportionofthe
model.Theadditionalnamelistmoduleisdescribedbelow.Theorderofthevariablesfollows
thetemplateavailablewiththesourcecode.SeveralexamplesoftheSAportionoftheCAMx
runcontrolfileareshowninFigures7‐7a‐c.
DescriptionofSAControlintheCAMxRunControlFile
&SA_Control LabelfortheProbingToolnamelistmodulethatconfiguresthe
SAoption;itmustbeginincolumn2
&Flagendinganamelistmodule;itmustbeincolumn2
SA_Summary_Output Logicalflagusedtolimitthespecieswrittentothetracer
concentrationfiletoasubsetoftheSAtracers.Ifsettotrue,
theoutputwillberestrictedtoO3NandO3VforOSAT/APCA,
andthefollowingspeciesforPSAT:PS4,PN3,PN4,PO1,PO2,
PO3,PO4,PO5,PO6,PO7,POH,PPA,PPB,PEC,POA,PFC,PFN,
PCC,PCS,HG0,HG2,PHG
SA_Treat_SULFATE_Class Logicalflagtoturnonthesulfateclassoftracerspecies
SA_Treat_NITRATE_Class Logicalflagtoturnonthenitrateclassoftracerspecies
SA_Treat_SOA_Class LogicalflagtoturnontheSOAclassoftracerspecies
SA_Treat_PRIMARY_Class LogicalflagtoturnontheprimaryPMclassoftracerspecies
SA_Treat_MERCURY_Class Logicalflagtoturnonthemercuryclassoftracerspecies
SA_Treat_OZONE_Class Logicalflagtoturnontheozoneclassoftracerspecies(uses
OSATattributionbydefault)
SA_Use_APCA LogicalflagtouseAPCAattributionratherthanOSAT
(SA_Treat_OZONE_ClassmustbesettoTRUE)
SA_File_Root Characterrootoutputpath/filename
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 161www.camx.com
SA_Master_Sfc_OutputLogicalflagformastergridsurfaceoutput(TRUE=SA
concentrationfilewillbeoutput,FALSE=SAconcentrationfile
willnotbeoutput)
SA_Nested_Sfc_OutputLogicalflagfornestedgridsurfaceoutput(TRUE=SA
concentrationfilewillbeoutput,FALSE=SAconcentrationfile
willnotbeoutput)
SA_Stratify_BoundaryLogicalflagtostratifyboundarytypes(TRUE=separatetracer
typeswillbeusedfortheNorth,South,East,WestandTop
boundaries,FALSE=asingletracertypewillbeusedforall5
boundaries)
SA_Deposition_OutputLogicalflagtooutputdepositedtracermasstoafile
(TRUE=outputdepositedtracermass,FALSE=donotgeneratea
tracerdepositionoutputfile)
SA_Number_of_Source_Regions Integernumberofsourceregionsforthisrun.Thismustbe
thesameasthenumberofsourceareasdefinedinthe
SA_Source_Area_Mapfile
SA_Number_of_Source_GroupsIntegernumberofemissiongroups(categories)forthisrun.
TogetherwiththeUse_Leftover_Groupflag,this
determinesthenumberofpairedgriddedandpointemission
filesthatmustbesupplied(additionaldetailsbelow)
Use_Leftover_GroupLogicalflagtodefinea“leftover”emissionsgroup(TRUE=
calculatea“leftover”emissionsgroupfromthedifference
betweenthesumoftheemissiongroupfilesandtheregular
CAMxemissionfiles,FALSE=donotcalculatea“leftover”
emissionsgroup)
SA_Receptor_DefinitionsCharacterinputSAreceptordefinitionpath/filename.(Thisisan
optionalfile)
SA_Source_Area_MapCharacterarray(byCAMxgrid)inputSAoriginalsourcearea
definitionpath/filenameuniquelyassigningeachgridcelltoa
singlesourceregion(requiredformastergrid,optionalfor
nestedgrids)
SA_Use_Partial_SourceMapLogicalflagforfractional(orpartial)sourceregion(orarea)
maps(TRUE=usefractionalmaps,FALSE=useoriginalsource
areadefinitiononly)
Partial_Source_Area_MapCharacterarray(bySAemissionsgroupandCAMxgrid)inputSA
fractionalsourceareadefinitionpath/filenameassigningeach
gridcelltomultiplesourceregionsbyemissiongroup(optional)
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 162www.camx.com
SA_PT_OverrideLogicalflagtoallowpointsourceoverride(TRUE=lookforand
usethepointsourceoverrideflagsinsector‐specificpoint
sourcefiles,FALSE=ignorepointsourceoverrideflags)
SA_Master_RestartCharacterinputmastergridSArestartpath/filename(ignoredif
Restart=FALSE)
SA_Nested_RestartCharacterinputnestedgridSArestartpath/filename(ignoredif
Restart=FALSEorNumber_of_Grids=1)
SA_Points_GroupCharacterarray(bysourcegroup)inputSAelevatedpoint
sourceemissionspath/filename(optional,ignoredif
Point_Emissions=FALSE)
SA_Emiss_Group_GridCharacterarray(bysourcegroup,byCAMxgrid)inputSA
griddedemissionspath/filename(optional,ignoredif
Gridded_Emissions=FALSE)
Eachpartialsourceareamaptobeusedintherunmustbelistedbysourcegroupandgrid:e.g.,
Partial_Source_Area_Map(3,2)referstoSAemissionsgroup3andgrid2.Thesemapfilesmust
belistedinthesameorderasthegroupemissioninputfiles(i.e.,themapassignedtocategory
1mustbeconsistentwiththeemissionsassignedtocategory1).
7.3.2SpecifyingEmissionGroups
SAcanapportionozone,PMandprecursorconcentrationsamongseveralemissioncategories
(or“groups”).Toachievethis,theemissionsforeachgroupmustbesuppliedinseparate
emissionfiles,bothforlowlevel(gridded)emissionsforthemasterandeachnestedgrid,and
forelevatedpointsources.TheadditionalemissionfilesmustbeintheCAMxgriddedand
pointemissionfileformats,asdescribedinSection3.Ifacategorydoesnotincludepoint
sources(e.g.biogenics),thepointsourcefilenameforthegroupcanbeleftblank.Ifacategory
hasnogriddedemissions,thegriddedfilenameforthegroupcanbeleftblankforallgrids.
APCArequiresatleasttwoemissiongroups,andthefirstgroupmustbebiogenicemissions.
Forexample,inthecasewhereemissionsaretrackedbythreegroups,threesetsofemission
filesshouldbesuppliedthatwhensummedequalthetotalemissionsintheregularCAMx
emissionfilessuppliedtothecoremodel.CAMxalsoallowsforanalternativeoption:twosets
offilescouldbesuppliedandthethirdgroupcanbecalculatedfromthe“leftover”emissions
(i.e.,thedifferencebetweentheregularCAMxemissionsandthetwospecifiedemission
groups).Theleftoveroptionissetaccordingtotheinputflag“Use_Leftover_Group”.If
theleftoveroptionisselected,themodelverifiesthattheleftovergroupisnottoosmallto
calculatewithinthenumericalprecisionofthecomputer(thisalsotrapscaseswheretheflag
wassetinerror).Iftheleftoveroptionisnotselected,themodelverifiesthatthetotal
emissionsforthegroupssuppliedareequaltotheregularmodelemissions,i.e.,thataleftover
groupisnotneeded.Inbothcases,ifappropriateconditionsarenotmet,themodelstopswith
adescriptiveerrormessage.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 163www.camx.com
&SA_Control
SA_File_Root = './OSAT_output/CAMx.OSAT.020603',
SA_Master_Sfc_Output = .true.,
SA_Nested_Sfc_Output = .true.,
SA_Summary_Output = .true.,
SA_Stratify_Boundary = .false.,
SA_Deposition_Output = .false.,
SA_Number_of_Source_Regions = 19,
SA_Number_of_Source_Groups = 1,
Use_Leftover_Group = .false.,
SA_Treat_SULFATE_Class = .false.,
SA_Treat_NITRATE_Class = .false.,
SA_Treat_SOA_Class = .false.,
SA_Treat_PRIMARY_Class = .false.,
SA_Treat_MERCURY_Class = .false.,
SA_Treat_OZONE_Class = .true.,
SA_Use_APCA = .false.,
SA_Receptor_Definitions = './OSAT_input/receptor.cities ',
SA_Source_Area_Map(1) = './OSAT_input/OSAT.source.area.map',
SA_Source_Area_Map(2) = ' ',
SA_Use_Partial_SourceMap = .false.,
Partial_Source_Area_Map(1,1) = ' ', ! Map for SA group 1, grid 1
Partial_Source_Area_Map(1,2) = ' ', ! Map for SA group 1, grid 2
SA_PT_Override = .false.,
SA_Master_Restart = ' ',
SA_Nested_Restart = ' ',
SA_Points_Group(1) = ' ',
SA_Emiss_Group_Grid(1,1) = ' ',
SA_Emiss_Group_Grid(1,2) = ' ',
&
Figure7‐7a.AnexampleofSAinputrecordsintheCAMxruncontrolfile.Theoptionsforthis
OSATrunareasfollows:thisisatwo‐gridrun,masterandnestedgridsurfaceconcentrations
arewrittentofile,asingletracertypeistobeusedforallboundaries,19sourceregions,and
oneemissiongroup(i.e.,zeroadditionalemissionfilesandnoleftovergroup).Thisisthefirst
dayofthesimulation(i.e.,restartisfalse),sonoOSATrestartfilesaresupplied.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 164www.camx.com
&SA_Control
SA_File_Root = './OSAT_output/CAMx.OSAT.020604',
SA_Master_Sfc_Output = .true.,
SA_Nested_Sfc_Output = .true.,
SA_Summary_Output = .true.,
SA_Stratify_Boundary = .false.,
SA_Deposition_Output = .false.,
SA_Number_of_Source_Regions = 19,
SA_Number_of_Source_Groups = 3,
Use_Leftover_Group = .true.,
SA_Treat_SULFATE_Class = .false.,
SA_Treat_NITRATE_Class = .false.,
SA_Treat_SOA_Class = .false.,
SA_Treat_PRIMARY_Class = .false.,
SA_Treat_MERCURY_Class = .false.,
SA_Treat_OZONE_Class = .true.,
SA_Use_APCA = .false.,
SA_Receptor_Definitions = './OSAT_input/receptor.cities ',
SA_Source_Area_Map(1) = './OSAT_input/OSAT.source.area.map',
SA_Source_Area_Map(2) = ' ',
SA_Use_Partial_SourceMap = .false.,
Partial_Source_Area_Map(1,1) = ' ', ! Map for SA group 1, grid 1
Partial_Source_Area_Map(1,2) = ' ', ! Map for SA group 1, grid 2
SA_PT_Override = .false.,
SA_Master_Restart = './OSAT_output/CAMx.OSAT.020603.sa.inst',
SA_Nested_Restart = './OSAT_output/CAMx.OSAT.020603.sa.finst',
SA_Points_Group(1) = ' ',
SA_Points_Group(2) = './OSAT_input/utils.020604',
SA_Emiss_Group_Grid(1,1) = './OSAT_input/bio.grd1.020604',
SA_Emiss_Group_Grid(1,2) = './OSAT_input/bio.grd2.020604',
SA_Emiss_Group_Grid(2,1) = './OSAT_input/util.grd1.020604',
SA_Emiss_Group_Grid(2,2) = './OSAT_input/util.grd2.020604',
&
Figure7‐7b.AsinFigure7‐7a,butinthiscasetherunisacontinuationdayofarunwith
threeemissiongroups.Thethreeemissiongroupsaredefinedbysupplyingextraemission
filesforpointandareasourcesforeachgrid(emissiongroups1and2),andsettingthe
“Use_Leftover_Group”flagtoTRUEsothatthemodelcalculatesthethirdgroupinternally.
Thepointsourcegroup1filenameisblankbecausegroup1isacategorywithnopointsource
emissions(e.g.,biogenics).
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 165www.camx.com
&SA_Control
SA_File_Root = './OSAT_output/CAMx.APCA.020604',
SA_Master_Sfc_Output = .true.,
SA_Nested_Sfc_Output = .true.,
SA_Summary_Output = .true.,
SA_Stratify_Boundary = .false.,
SA_Deposition_Output = .false.,
SA_Number_of_Source_Regions = 19,
SA_Number_of_Source_Groups = 3,
Use_Leftover_Group = .false.,
SA_Treat_SULFATE_Class = .true.,
SA_Treat_NITRATE_Class = .true.,
SA_Treat_SOA_Class = .false.,
SA_Treat_PRIMARY_Class = .false.,
SA_Treat_MERCURY_Class = .false.,
SA_Treat_OZONE_Class = .true.,
SA_Use_APCA = .true.,
SA_Receptor_Definitions = './OSAT_input/receptor.cities ',
SA_Source_Area_Map(1) = './OSAT_input/OSAT.source.area.map',
SA_Source_Area_Map(2) = ' ',
SA_Use_Partial_SourceMap = .false.,
Partial_Source_Area_Map(1,1) = ' ', ! Map for SA group 1, grid 1
Partial_Source_Area_Map(1,2) = ' ', ! Map for SA group 1, grid 2
SA_PT_Override = .false.,
SA_Master_Restart = './OSAT_output/CAMx.APCA.020603.sa.inst',
SA_Nested_Restart = './OSAT_output/CAMx.APCA.020603.sa.finst',
SA_Points_Group(1) = ' ',
SA_Points_Group(2) = './OSAT_input/utils.020604',
SA_Points_Group(2) = './OSAT_input/other.020604',
SA_Emiss_Group_Grid(1,1) = './OSAT_input/bio.grd1.020604',
SA_Emiss_Group_Grid(1,2) = './OSAT_input/bio.grd2.020604',
SA_Emiss_Group_Grid(2,1) = './OSAT_input/util.grd1.020604',
SA_Emiss_Group_Grid(2,2) = './OSAT_input/util.grd2.020604',
SA_Emiss_Group_Grid(3,1) = './OSAT_input/othr.grd1.020604',
SA_Emiss_Group_Grid(3,2) = './OSAT_input/othr.grd2.020604',
&
Figure7‐7c.ThisfigurefollowsfromFigure7‐7b:itisacontinuationdayofa2‐gridrunwith
threeemissiongroups,andallthreeemissiongroupsaredefinedexplicitlybysupplyingextra
emissionfiles;therefore,the“Use_Leftover_Group”flagissettoFALSE.Thepointsource
group1filenameisblankbecausegroup1isacategorywithnopointsourceemissions(e.g.,
biogenics).APCAisusedtoattributeozonesources,sobiogenicemissionsMUSTbepresent
asgroup1.PSATwilltracePMsulfateandnitratespecies.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 166www.camx.com
Thenumberofemissionfilesthatneedtobesuppliedfordifferentmodelconfigurationsis
summarizedinTable7‐1;thetablealsoshowshowtheemissionsgroupsarenumbered,which
isreflectedinthetracerspeciesnames(definedbelow).
Table7‐1.Numbersofemissionfilesets(i.e.,griddedfilesandpointsourcefile)neededfor
differentmodelconfigurations.APCArequiresatleasttwoemissiongroups,andthefirst
groupmustbebiogenicemissions.
Numberof
EmissionGroups
Use
LeftoverGroup
NumberofEmission
FileSetsNeeded
NumberingofEmissionGroups
andTracerSpecies
n=1NotApplicable 0 0
n>1Falsen1,2,3,...n
n>1Truen‐11,2,3,...n
Whenspecifyingpointsourcefilestoresolvesourcecategories,thelistofpointsourcesoneach
filemustbeidentical(i.e.,samenumberofsources,sameorder)totheregularmodelpoint
sourcefile.Thisformalrestrictionisnecessarytoensurethatpointsourcesarecorrectlycross‐
referencedwithinCAMx.Thus,apointsourcefileforaspecificsourcegroupmayneedto
containrecordsforsourcesthatarenotinthegroup:theserecordsshouldhavezero
emissions.
7.3.3SourceAreaMapping
SAcanapportionozone,PMandprecursorconcentrationsamongseveralgeographicregions
withinthemodelingdomain,asshowninFigure7‐1.SArequiresadigitalmapofthemodeling
gridthatdefineshowtracersareallocatedspatially–this“sourceareamap”fileassignseach
gridcelltooneormoregeographicsourceregions.Asourceareamapmustbedefinedforthe
mastergridandoptionallyanynestedgrids.Thesourceareamapformatsareidenticalamong
allgrids,butmapsfornestedgridsmustincludetheboundary(“buffer”)rowsandcolumns.
Thesourceregionsdefinedoneachnesttakeprecedenceoverthosedefinedforthemaster
grid.Ifasourceareamapisnotprovidedforaspecificnestthenthesourceregiondefinition
willbedefinedbythesourceareamapfortheparentgrid.
Therearetwowaystodefinesourceareamaps.Thefirst(original)approachistouniquely
assigntheentiretyofeachgridcelltoasinglegeographicregionwithwhichtoapportionall
sourcecategoriespresentinthatgridcell.Thesecondoptionallowsforthefractional
allocationofeachgridcelltomultipleregions,forexample,incaseswhereseveralgeopolitical
boundariesintersectwithinasinglecell.Furthermore,separatefractionalareamapsmaybe
developedthatuniquelydefinesourceregiondistributionsforeachemissioncategorytobe
trackedbySA.TheoriginalsourceareamapsarerequiredtorunSA,butcanbesupercededby
theoptionalfractionalsourceareamaps.TheoriginalmapsprovidethedefaultSAregion
definitionincaseafractionalregionmapfileisnotprovidedforoneormoresourcecategories.
IfnofractionalareamapsareprovidedtoCAMx,thentheentireSAtreatmentdefaultsbackto
theoriginalareamapdefinition.CAMxincludesreportsintheoutputdiagnosticfiletoallow
theusertoreviewtheSAregionconfiguration.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 167www.camx.com
31 31 31 31 18 18 18 18 18 18 18 18 18 18 37 37 37 37 17 17 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 17 17 17 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 22 14 14 14 14 14 14 14 14
31 31 31 31 31 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 24 24 24 24 34 34 34 34 22 14 14 14 14 14 14 14 14
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 24 24 24 24 24 34 34 34 34 22 14 14 14 14 14 14 14 14
31 31 31 31 31 18 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 24 24 24 24 24 24 34 34 34 22 22 14 14 14 14 14 14 38 38
31 31 31 31 31 18 18 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 24 24 24 24 24 24 34 34 34 22 22 14 14 14 14 14 38 38 38
31 31 31 31 31 10 10 10 10 10 10 10 10 10 10 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 24 24 24 24 24 24 24 24 24 24 24 34 34 22 22 22 14 14 38 38 38 38 38 38
31 31 31 31 31 10 10 10 10 10 10 10 10 10 10 10 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 24 24 24 24 24 24 24 24 24 24 24 34 34 22 22 22 14 14 38 38 38 38 38 38
21 21 21 31 31 10 10 10 10 10 10 10 10 10 10 10 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 24 24 24 24 24 24 24 24 24 24 24 24 34 22 22 22 16 16 38 38 38 38 38 38
21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 10 10 8 8 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 24 24 24 24 24 24 24 24 24 24 24 24 24 16 16 16 16 16 16 16 38 38 38 38 38 38
21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 8 17 17 17 17 17 17 17 17 17 40 26 26 26 28 24 24 24 24 24 24 24 24 24 24 24 24 24 16 16 16 16 16 16 16 38 38 38 38 38 38
21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 9 9 17 17 17 17 17 17 17 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 24 24 24 3 3 3 29 29 16 16 16 38 38 38 38 38
21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 24 24 24 3 3 3 29 29 16 16 16 38 38 38 38 38
21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 23 24 24 3 3 24 24 29 16 16 16 38 38 38 38 38
21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 23 23 24 24 24 24 24 38 38 38 38 38 38 38 38 38
21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 8 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 23 23 24 24 38 38 38 38 38 38 38 38 38 38 38 38
21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 8 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 23 23 23 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 8 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 36 28 28 28 28 28 28 28 28 28 4 28 23 23 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 36 36 36 15 36 36 15 15 15 15 4 23 23 23 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 36 36 36 36 36 36 35 35 15 15 15 4 23 23 23 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 8 8 8 8 8 9 9 9 9 9 12 12 26 26 26 26 36 36 36 36 36 36 35 35 35 15 15 15 15 4 23 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 8 8 8 8 8 9 9 9 9 12 12 12 12 12 12 36 36 36 36 36 36 35 35 35 35 15 15 15 15 4 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 8 8 8 8 9 9 9 9 12 12 12 12 12 12 12 36 36 36 36 36 35 35 35 35 35 35 15 15 15 15 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 8 8 8 8 12 12 12 12 12 12 12 12 12 12 12 36 36 36 36 36 35 35 35 35 35 35 35 35 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 20 8 8 8 12 12 12 12 12 12 12 12 12 12 12 12 36 36 36 35 35 35 35 35 35 35 35 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 20 8 8 12 12 12 12 12 12 12 12 12 12 12 12 35 35 35 35 35 35 35 35 35 35 35 35 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 20 20 20 20 20 20 20 20 20 20 20 12 12 12 12 12 12 12 12 12 12 12 12 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 20 20 20 20 20 20 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 2 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 2 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 2 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 32 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 30 30 25 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 19 19 19 19 19 1 1 1 1 1 7 7 7 7 30 30 30 30 30 30 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 19 19 19 19 19 1 1 1 1 1 7 7 7 7 7 30 30 30 30 30 30 30 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 19 19 19 19 19 19 1 1 1 1 1 7 7 7 7 7 7 30 30 30 30 30 30 30 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 27 33 33 27 2 2 2 2 2 2 2 19 19 19 19 19 19 1 1 1 1 1 7 7 7 7 7 7 30 30 30 30 30 30 30 30 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 2 2 2 2 2 2 19 19 19 19 19 1 1 1 1 1 1 7 7 7 7 7 7 7 30 30 30 30 30 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 2 2 2 2 2 2 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 30 30 30 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 30 30 30 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 30 30 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 19 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 19 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 33 13 13 13 13 19 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 13 19 19 19 1 1 6 6 6 6 6 7 7 7 7 7 7 7 7 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 13 13 19 19 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 13 13 19 19 1 1 6 39 6 6 6 6 6 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 13 13 13 13 39 39 39 39 39 39 6 6 6 6 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 39 13 13 13 13 13 13 13 13 39 39 39 39 39 39 39 6 6 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 39 39 39 39 39 39 13 13 13 13 13 13 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 13 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
Figure7‐8.ExampleoftheoriginalsourceareamapfileforthedomainandsourceareasshowninFigure7‐1.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 168www.camx.com
TheoriginalSAmapformatissimple:anarrayof3‐digitintegers(i3)spanningtheentiretyofa
particularCAMxgrid.Figure7‐8showsthesourceareamappingfileforthesinglegrid
correspondingtoFigure7‐1.SincetheCAMxdomaininFigure7‐1has63rowsand64columns
ofcells,thefileshowninFigure7‐8has63lineswith64numbersoneachline.Thefirst
numberinthetopleftcorneralwayscorrespondstothenorthwestcornerofthedomain.This
fileistypicallygeneratedusingGISsoftwarebyoverlayingthemodelinggridontogeopolitical
mapsandusingthedominantcoverageineachgridcellasitssourceregionassignment.
Tofacilitatemultipleintersectingregionswithineachgridcell,afractionalareamapforasingle
gridmayincludemultiple“panels”,wherethetotalnumberofpanelsisdeterminedbythe
maximumnumberofregionoverlapsfoundamongallgridcells.Forexample,ifaparticular
gridcellcontainsagrid‐widemaximumoffouroverlappingregions,thenthefractionalmap
containsfourpanels,eachlistingoneofthefourregionsanditsfractionalcoverageinthatcell.
ThefractionalSAmapfilehasthefollowingformat:
Loopovernumberofpanels
/SRCMAPnn-mm/Headerkeyword,wherennissource
category/groupID,mmispanelID
Loopfromnygridrowsto1
(regn(i,j),frc(i,j),i=1,nx)Loopovernxgridcolumns,
500(i3,1x,f5.1)
Endloopoverrows
Endloopoverpanels
/END/Endoffilekeyword
Theintegervariablearrayregnistheregionindexthatexistsincell(i,j)andtherealvariable
arrayfrcisthefraction(percent)ofcell(i,j)coveredbythatregion.Fornon‐zerocell
fractions,bothregnandfrcmustbelisted,otherwiseregnisshownas0andfrcisblank
tomaximizevisualclarityofthefile.Thetotalcoverageamongallregionsineachgridcell
equals100.0%whensummedoverallpanels.AnexampleisshowninFigure7‐9forasmall
gridof10x10cells.
Theoriginalsourceareamap,andpossiblyeventhefractionalmap,maynotadequatelyresolve
theregiontowhichcertainpointsourcesshouldbeassigned.Toprovidefinercontrolofpoint
sourceassignmentstogeographicareas,theregionindexcanbespecifiedforanypointsource
usingthekcellvariableinthepointsourcefile(seefiledescriptioninSection3).Thisfeature
isreferredtoas“pointsourceoverride.”
7.3.3.1GeneratingFractionalAreaMapsFromSMOKEReports
AFortrantoolcalledREGNMAPhasbeendevelopedtosupportthedevelopmentoffractional
areamapsusinginformationderivedfromtheSparseMatrixOperatorKernelEmissions
(SMOKE)processingsystem.SMOKEcanbeconfiguredtooutputinformationto“reportfiles”
thatlistthespatialallocationofcounty‐levelemissionstoaparticularmodelinggridbycriteria
pollutant(NOx,VOC,SOx,andPM).Aseparatefractionalareamapcanbedevelopedforeach
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 169www.camx.com
Figure7‐9.Examplefractionalareamapfileforasmall(10x10)grid.Thisfileisforsource
category/group#3andincludes2mappanels.Thegridcoverssourceregion#5and#6and
theseregionsoverlapinthemiddleofthedomain.Panel2showsjusttheremainingoverlap
informationforregion#6.
sourcesectororgroupofsectorsdependingonhowtheuserrunsSMOKEandconfiguresthe
listofsectorstobetrackedforSA(e.g.,considerspatialdifferencesbetweenurbanarea
sourcesandagriculturalnon‐roadsources).SMOKEspatialallocationreportsmustbeinvoked
inordertoutilizetheREGNMAPprogramtodevelopfractionalareamapsforCAMx.
Mobileemissionsarenotspatiallyallocatedinthesamewayasnon‐roadandstationary
sources,soSMOKEreportsarenotavailablefortheon‐roadsectorifSMOKE‐MOVESisused.
Therefore,theon‐roadsectormustcontinuetobetrackedinSAusingtheoriginalsourcearea
map.Additionally,SMOKEdoesnotallocateelevatedpointsourcestothemodelinggridlike
surfacecounty‐levelsources,andsoSMOKEspatialallocationreportsarenotavailableforpoint
sources.Allcategory‐specificpointsourcefilestobetrackedbySAareassignedtotheoriginal
regionmapdefinitionbydefault,exceptforthoseindividualpointsourcesflaggedforsource
regionoverride(seeSection3).
REGNMAPreadsSMOKEspatialallocationreportsforaspecificmodelinggridandsource
category(orgroupofcategories),extractsemissionsdatabygridcellandstate/countyFederal
InformationProcessingStandards(FIPS)code,andgeneratesafractionalareamapfileforthat
gridandsourcecategory/group.ThelistofSAregionstoprocessareexternallydefinedasa
countyorgroupofcounties,astateorgroupofstates,orallotherundefinedareas.REGNMAP
providesanoptiontoselectamongthecriteriapollutantsNOx,VOC,SOx,orPM2.5asthebasis
todefinethefractionalgridcellareasincasethespecificsourcecategory/grouptobe
processedisuniquelycharacterizedbyoneofthesespecies(e.g.,NOxformobilesources,SOx
forpowerplants).Alternatively,theusermayselect“All”criteriapollutants,inwhichcasethe
/SRCMAP03-01/
5 100.0 5 100.0 5 100.0 5 100.0 5 25.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 25.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 30.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 35.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 50.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 60.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 80.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 100.0 5 20.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 100.0 5 50.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 100.0 5 60.0 6 100.0 6 100.0 6 100.0 6 100.0
/SRCMAP03-02/
0 0 0 0 6 75.0 0 0 0 0 0
0 0 0 0 6 75.0 0 0 0 0 0
0 0 0 0 6 60.0 0 0 0 0 0
0 0 0 0 6 65.0 0 0 0 0 0
0 0 0 0 6 50.0 0 0 0 0 0
0 0 0 0 6 40.0 0 0 0 0 0
0 0 0 0 6 20.0 0 0 0 0 0
0 0 0 0 0 6 80.0 0 0 0 0
0 0 0 0 0 6 50.0 0 0 0 0
0 0 0 0 0 6 40.0 0 0 0 0
/END/
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 170www.camx.com
fractionalallocationisbasedonthesumofallemissionsreportedpergridcellforthatsource
category/group.AdditionalinformationonhowtorunREGNMAPisprovidedwiththe
program.
7.3.4ReceptorDefinition
Tracerconcentrationscanbeoptionallyoutputtoatextfileforselectedreceptorlocationsat
themodel’soutputfrequency(usually1hour).Thereceptorsforeachmodelrunaredefinedin
the“receptordefinition”inputfile.Threetypesofreceptorsaresupported:
POINT apointspecifiedintheCAMxprojectioncoordinatesystem.
Concentrationsatthepointaredeterminedbybi‐linear
interpolationofthesurroundingfoursurfacegridcells.
SINGLECELLasinglesurfacegridcellidentifiedbygridcellindex.
CELLAVERAGEagroupofsurfacegridcellsidentifiedbyarangeofgridindices
thatareaveragedtogethertoprovidemulti‐cellaveragetracer
concentrations.
WALLOFCELLSagroupofgridcellsidentifiedbyarangeofgridandlayerindices
thatdefineawall(i.e.,afluxplane).
Forthereceptortypesthataredefinedbygridcellitisnecessarytospecifythegridcontaining
thereceptoronthereceptordefinitionrecord.Gridnumbersaredefinedusingtheinternal
CAMxgridordering.ThegridnumberingasdefinedbyCAMxisshowninatableinthe.diag
file.Eachreceptorcanbeidentifiedbya10charactername.Theformatsforspecifyingeach
receptortypearegiveninTable7‐2.Anexamplereceptorfileisshownbelow:
POINT City 1 1024.0 -272.0
SINGLE CELL Cell 1 1 45 18
CELL AVERAGE Region 10 2 8
31 19
32 19
33 19
34 19
31 18
32 18
33 18
34 18
WALL OF CELLS Boundary1 2 10 20
18 18
1 5
7.3.5OutputFileFormats
SAwritesseveraloutputfilesthatareintheCAMxFortranbinaryformat,asdescribedin
Section3.Theseincludethemasterandnestedgridtracerinstantaneousconcentrationfiles
(.sa.instand.sa.finst),thegrid‐specificsurfacetraceraverageconcentrationfile
(.sa.grdnn),andthegrid‐specificsurfacedepositedmassfile(.sa.depn.grdnn).In
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 171www.camx.com
Table7‐2.Formatforthereceptordefinitionfile.
ReceptorType Line Columns Data
POIN
T
1 1‐15 Theword“POINT”
121‐30 Receptorname
131‐40 Xco‐ordinate
141‐50 Yco‐ordinate
SINGLECELL1 1‐15 Theword“SINGLECELL”
121‐30 Receptorname
131‐40 GridNumber
141‐50 Xcellnumber
151‐60 Ycellnumber
CELLAVERAGE1 1‐15 Thewords“CELLAVERAGE”
121‐30 Receptorname
131‐40 Gridnumber
141‐50 Thenumberofcellstoaverage(M)
2‐M 1‐10 Xcellnumber
2‐M11‐20 Ycellnumber
WALLOFCELLS1 1‐15 Thewords“WALLOFCELLS”
121‐30 Receptorname
131‐40 Gridnumber
141‐50 X‐cellbegin
151‐60 X‐cellend
241‐50 Y‐cellbegin
251‐60 Y‐cellend
341‐50 Z‐cellbegin
351‐60 Z‐cellend
addition,SAwritesouttracerconcentrationsforselectedreceptorlocationstoantextfile
(.sa.receptor).Thenamingconventionsfortracerspeciesandtheformatofthereceptor
concentrationfilearediscussedbelow.
7.3.5.1TracerSpeciesNames
Thenamesoftracerspeciesuniquelyidentifytheinformationcarriedbyeachspeciesand
togetheridentifytheSAconfiguration.Speciesnameshavelessthantencharacters,consistent
withtheCAMxconvention.Thenamingconventionsareasfollows:
EmissionSourcesSSSeeerrr
where:
SSSSpeciestype,e.g.,NOX,VOC,O3V,O3N,PSO4,etc.
eeeEmissionsgroup:
Singlegroup,always000
Multiplegroups,001,002,etc.
rrrRegiontracerreleasedfrom,001,002,003,etc.
Initial/Boundary SSSeeerrr
where:
SSSSpeciestype,e.g.,NOX,VOC,O3V,O3N,PSO4,etc.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 172www.camx.com
eeeInitialConcentrations:always000
BoundaryConcentrationsnotstratifiedbyboundary:always000
BoundaryConcentrationsstratifiedbyboundary:WST,EST,STH,NTH,
TOPindicatingboundaryoforigin
rrrICforInitialConcentrations,BCforBoundaryConcentrations
Examples:NOX000015,VOC002015,O3V000IC,O3NTOPBC
7.3.5.2ReceptorConcentrationFile
Tracerconcentrationsatuser‐specifiedreceptorlocationsareoutputtothe“receptor
concentration”file.Thefileisincommadelimitedtextformatsuitableforimportingintoa
spreadsheet.AnexampleoutputfileisshowninFigure7‐10.Twoheaderlinesatthetopof
thefileidentifythemodelversionandthedatetherunwasperformed.Next,twolinesidentify
thetimeperiodcoveredbythefileandtheaveraginginterval(generallyonehour,determined
bytheCAMxsimulationcontrolfile).Next,threelinesdefinetheSAconfiguration,followedby
thenumbersoftracerspeciesthatresultfromthisconfiguration.Thenamesofeachtracer
speciesarelistedbytracertype:theorderinwhichspeciesarelistedhereisthesameasthe
orderinwhichtracerconcentrationsaregivenlaterinthefile.
Thetracerspeciesnamesarefollowedbythenumberofreceptorsandreceptornamesas
specifiedinthe“receptordefinition”file.Thetracerconcentrationsarereportedinblockswith
adateandtimestampattheheadofeachblock.Withineachblock,receptorsarereportedin
numericalorder.Foreachreceptor,therearedataforthetracerspeciesidentifiedatthe
heading“TracerNames”.AllvaluesareinCAMxunitsofppmforgasesandg/m3forPM.
7.3.6Postprocessing
Thetracerconcentrationsinthegriddedsurfaceconcentrationfilescanbedisplayedusingany
post‐processingsoftwarenormallyusedfordisplayingCAMxaveragefileoutputformats.
Thereceptorconcentrationfilecontainsinformationforallreceptorsandallhourswithinthe
modelrunthatcreatedthefile.Itislefttotheusertodeveloppost‐processingtoolstoanalyze
theinformationcontainedinthisfile.
7.4StepsInDevelopingInputsAndRunningSA
BelowisasimplemethodologicallistofstepstofollowinsettingupandrunningSA.The
processissimilaramongtheOSAT/APCA,PSAT,andDDMProbingTools.
1) Definethesourcegroupsandregionsthatyouwishtotrack.Keepinmindthatmemory
resourcesincreasedramaticallyasthenumberoftracersgrows.ProbingTool
applicationswithlargenumbersoftracers,tracerclasses,nestedgridsorgridcellsmay
exceedavailablememory.
2) Buildasourceregionmap(Figure7‐8)thatdefinesthespatialallocationoftracer
emissions.Forsmalldomainsorsmallnumberofregions,thiscanbedonebyhand.We
suggestusingGISsoftwaretodevelopcomplexsourceregionmapsonlargegrids.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 173www.camx.com
CAMx,CAMx 6.30 Test Problem -- Mech6 CF CB05 SA.OMP,Source Apportionment, SA 160408,
Thu Mar 31 13:18:53 2016
File Duration , 02154, 0.00, 02154, 24.00,
Average Interval , 1.0000
Number of timing periods , 0
Number of source areas , 4
Number of emission groupings , 4
Number of tracer species , 180
Number of VOC species , 18
Number of O3N species , 18
Number of O3V species , 18
Number of OON species , 18
Number of OOV species , 18
Number of NIT species , 18
Number of RGN species , 18
Number of TPN species , 18
Number of NTR species , 18
Number of HN3 species , 18
Number of INERT TIME species , 0
Number of DECAY TIME species , 0
Tracer Names,
VOC000IC ,VOC000BC,VOC001001,VOC001002,VOC001003,VOC001004,VOC002001,…
O3N000IC ,O3N000BC,O3N001001,O3N001002,O3N001003,O3N001004,O3N002001,…
O3V000IC ,O3V000BC,O3V001001,O3V001002,O3V001003,O3V001004,O3V002001,…
(List continues for remaining tracer species names)
Number of receptors , 4
No, Name, Type, Grid#, Xloc, Yloc,
1, City 1 , 0, , 1024.0, -272.0,
2, Cell 1 , 1, 1, 45, 18,
3, Region 10, 8, 2, 31, 19,
32, 19,
33, 19,
34, 19,
31, 18,
32, 18,
33, 18,
34, 18,
4, Boundary1, 3, 2, 10, 20,
18, 18,
1, 5,
Time Varying Tracer Data,
Data for Period, 02154, 0.00, 02154, 1.00,
Receptor, 1,
1.3265E-02, 1.3544E-09, 1.0000E-16, 1.0974E-15, 1.0000E-16, 1.0000E-16,…
1.2237E-01, 3.3869E-08, 1.0000E-16, 1.6165E-14, 1.0000E-16, 1.0000E-16,…
8.7304E-02, 1.1926E-08, 1.0000E-16, 1.0000E-16, 1.0000E-16, 1.0000E-16,…
9.0300E-02, 1.5269E-08, 1.0188E-16, 2.6997E-15, 1.0213E-16, 1.0162E-16,…
1.0036E-16, 4.0640E-15, 1.0036E-16, 1.0036E-16, 1.0036E-16, 1.0029E-16,…
1.0000E-16, 3.7563E-15, 1.0000E-16, 1.0000E-16, 1.0000E-16, 1.0000E-16,…
Receptor, 2,
(File continues with data for remaining receptors and hours)
Figure7‐10.Examplereceptorconcentrationfile.Linesendingwith“…”aretruncatedtofit
thepage,andthefilewouldcontinuewithdataforadditionalreceptorsandhoursinthe
sameformat.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 174www.camx.com
3) Processtheemissionsinventoryintotheseparatesourcegroupfilesthatyouwantto
track(e.g.,mobile,area,point,biogenic,etc.).
a) Considerationofpotentialsourceapportionmentorsensitivityapplicationspriorto
anyemissionsprocessingcanbeverybeneficialsothatfilesbygroupareavailable
forlateruse.
b) Elevatedpointsourceswillautomaticallybeassignedtothesourceregioninwhich
theyreside.However,youmayoverridetheregiontowhicheachindividualpoint
sourceisassigned(seethedefinitionofkcellinSection3,ElevatedPointSource
File).Apointsourceregiondoesnotneedtobedefinedinthesourceregionmap,
e.g.,youcouldhaveamapwithtworegionsthatsplitthedomaininhalf,witha
thirdregionassignedarbitrarilytorepresentelevatedpointsourcesonly.
4) EdittheCAMxcontrolnamelistfile(Section2).
a) SettheProbing_Toolvariableto“SA”;thiswillactivatethe&SA_Control
namelistmodule.
b) Editoraddthe&SA_Controlnamelistmodule(describedearlier).Providethe
requiredinformation,including:
outputpaths
whethertostratifyboundaryconditions
flagstoturnonspecificozoneorPMclasses
numberofsourceregions
numberofsourcegroups
whethertousetheleftovergroupoption
receptordefinitions
listofinputemissionfilesbygroup.
c) NotethatAPCArequiresthatthebiogenicemissionfilesforeachgridarelistedfirst.
SeveralexamplesareshowninFigure7‐7.
5) ConfiguretheCAMxsourcecodetodefinethenumberoftracers,andbuildan
executable.ThiswillensurethatyouhavesufficientmemoryfortheProbingTool
application.
a) EditthefileIncludes/camx.prm
b) ChangetheparameterMXTRSP,followingtheinstructionsprovidedinthefile.
CAMxisdistributedwithMXTRSP=1tominimizememoryrequirementsfor
standardapplicationsofthemodel.IfyourunSAwithaninsufficientvalue,the
modelwillstopandtellyoutherequiredvalueofMXTRSPforyourapplication.
c) ExecutetheCAMxMakefiletobuildanexecutableprogram(Section2).
6) RunCAMxandreviewthediagnosticoutputfilestoensurethatthemodeliscorrectly
interpretingandrunningtheProbingToolconfigurationthatyouhavespecified.Ensure
thatCAMxisgeneratingtheproperoutputfilesthatyouareexpecting.Reviewthe
tableofemissionsbysourcegroupandregion.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 175www.camx.com
7) Reviewgriddedtracerfieldsusingcommonlyavailableplottingprograms.Utilitiessuch
asPAVEorVerdiwillreadProbingToolfilesdirectly.Useofanyothersoftwaremay
requirespecializedre‐formattingprocedures.
8) Youmaypost‐processandanalyzeSAreceptorfilesusingyourownspreadsheetor
databasesoftware.
9) ProbingToolgriddedtraceroutputfilesarewritteninthesameFortranbinaryformatas
theregularCAMxconcentrationoutputfiles.Youcanpost‐processgriddedoutputfields
usinganysoftwarethatreadsCAMxfiles,oryoucanadaptthoseprogramsorbuildyour
ownsoftwaretogeneratespecializedanalysisandgraphicalproducts.
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 176www.camx.com
8.DECOUPLEDDIRECTMETHODFORSENSITIVITYANALYSIS
Photochemicalmodelershavetraditionallyusedsensitivityanalysisbothformodel
performanceevaluationandemissioncontrolstrategydesign.Thesimplestapproachto
sensitivityanalysis,oftenreferredtoasthe“brute‐force”approach,involveschangingamodel
inputparameter,rerunningthemodel,andthenevaluatingthechangeinmodeloutputfor
eachparametertobeinvestigated.Forexample,amodelperformanceevaluationmayuse
sensitivitysimulationstoevaluatetheimpactofchanginginitialorboundaryconditions(ICsand
BCs),biogenicemissions,anthropogenicemissions,etc.Controlstrategyevaluationmay
reduceVOCandNOxemissionstodeterminewhetherVOCand/orNOxreductionstrategiesare
themosteffectivepathtoreduceozone.
Theadvantagesofthe“bruteforce”methodforsensitivityanalysisare:
Applicabletoanymodelinputparameter;
Resultsareconceptuallyeasytoexplainandinterpret.
Thelimitationsofthe“bruteforce”methodare:
Computationallyinefficient;
Sensitivitydependsuponthemagnitudeoftheperturbationifthemodelresponseisnon‐
linear;
Sensitivityderivedfromsmallperturbationsmaycontainsignificantlevelsofuncertainty
(numericalnoise).
Thelasttwopointsbearfurtherexplanation.Ifthemodelresponsetoaninputparameter
dependsuponnon‐linearcomponentswithinthemodel(e.g.,chemistry),thentherelative
magnitudeorevensignoftheoutputresponsemaychangeforperturbationsofdifferentsizes.
AnexampleistheozoneresponsetoNOxreductionsinaVOC‐limitedenvironment:smaller
reductionsinNOxemissionsincreaseozonelevelswhereaslargerNOxreductionsdecrease
ozone.
Thissituationcanbeillustratedmathematically.Wedefinea“sensitivitycoefficient”(s)which
representsthechangeinconcentration(c)withrespecttosomeinputparameter(
-
),evaluated
relativetothebasestate(
-
=
-
0),
Ingeneral,
-
canbeavector(denotedas
-
),whichcontainsmultipleparametersrelatedto
processesinthemodel(e.g.,rateconstants)orinputstothemodel(e.g.,emissions).The
concentrationresponsetoachangein
-
canberepresentedbyaTaylorseriesofsensitivity
coefficients:
o
c
s
-
-
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 177www.camx.com
wherenisthenumberof
-
vectorelements,xisthespatialdimensionvector,andtistime.In
theozonesensitivityexampleabove,thenon‐linearozoneresponsetolargeNOxemission
reductionsindicatesthathigh‐ordersensitivitycoefficients(curvaturesandinflections)are
significantrelativetothefirstordersensitivity(linearresponse).Asthemagnitudeoftheinput
perturbationtendstozero,theoutputresponsewillbecomedominatedbythefirst‐order
sensitivity.Therefore,verysmallchangesintheinputparametermayberequiredtousethe
“bruteforce”methodtoestimatethefirst‐order(local)sensitivity.Thepracticallimitationto
thisapproachisthatsincethechangeinoutputmustbedeterminedfromthedifference
betweentwosimulations,smalllevelsofnumericaluncertainty(noise)intwoverysimilar
outputswillcontaminatethesensitivitycalculation.
AnalternativemethodologyforevaluatingmodelsensitivitywasdevelopedbyDunker(1980,
1981)calledthedecoupleddirectmethod(DDM).TheDDMcanbeusedtocalculatethesame
typeofsensitivitycoefficientasthe“bruteforce”method.ThedifferenceisthatwithDDM,
sensitivitycoefficientsarecalculatedexplicitlybyspecializedalgorithmsimplementedinthe
hostmodel.Thus,theDDMoffersseveraladvantagesoverthebruteforcemethod:
Improvedcomputationalefficiency,especiallyasmultiplesensitivitiescanbecalculated
simultaneously;
Improvedaccuracysincesensitivitiesarenotcontaminatedbynumericalnoise.
8.1Implementation
TheoriginalCAMximplementationoftheDDMconsideredonlyfirst‐ordersensitivityforgas‐
phasespecies.Dunkeretal.(2002)performedarigorousanalysisofDDManddemonstrated
excellentagreementagainstbruteforcetests.High‐orderDDM(HDDM;Hakamietal.,2003;
Cohanetal.,2005)hassincebeenimplementedinCAMx.HDDMenablesCAMxtocalculate
second‐ordersensitivitiesalongwithfirst‐ordervaluesforgas‐phasespecies(Kooetal.,
2007a,2008).Thefirst‐orderDDMsensitivityhasbeenextendedtoPMspecies(Kooetal.,
2007b,2009).InthefollowingdiscussionweusethetermDDMgenericallytomeanfirstand/or
higherordersensitivity.
TheCAMxDDMcalculatesconcentrationsensitivitytoseveralsources(i.e.,emissions,ICsand
BCs)andtochemicalrateconstants.Thesensitivitytobeevaluatedmaybearasimple
relationshiptoamodelinputparameter,suchasscalingozoneBCsbyafactor(BCnew=
-
×BC0),
oradditivelyincreasingtheozoneBC’sbyaconstantamounteverywhere(BCnew=
-
+BC0).To
allowcompleteflexibility,thesensitivityperturbationsarespecifiedbyprovidingadditionalIC,
BC,and/oremissioninputfileswiththesameformatastheregularmodelinputfiles.
...
2
1
;,;,
1
0
1
0
2
1
0
0
termsorderhigherandthird
c
c
txctxc
n
i
jj
n
j
ii
ji
n
i
ii
i
o
o
----
--
--
-
--
-
-
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 178www.camx.com
Asaresult,theusercanperformmanydifferentsensitivitycalculationsinasinglerunaccording
tothecontentoftheDDMinputfiles.Forexample,ifthesameBCfileisspecifiedforboth
CAMxandDDM,theoutputsensitivityfieldsrepresentthesensitivityofthepredicted
concentrationstothoseparticularBCs.Simplyscalingtheoutputsensitivitycoefficientsfields
providestheincrementalconcentrationsresultingfromscalingtheBCs.IfaDDMBCfile
containsconstantconcentrationseverywhere,thesensitivitywillcorrespondtoauniform
absoluteincreaseintheBCsratherthanapercentageincreaseasdescribedabove.Another
possibilityincludesaDDMBCfilewithadifferentspatialpatternthantheCAMxinputfile.The
sensitivitycoefficientwouldthencorrespondtochangingboththegeographicdistributionand
magnitudeofBCs.Inshort,theDDMinputfilescanbearbitrary–differentfromtheCAMx
inputfileintheoverallmagnitudeofconcentrationsoremissions,differentinthegeographic
andtemporaldistribution,anddifferentintherelativeproportionsofthechemicalspecies.
However,theusermustunderstandwhatperturbationsarebeingconsideredinorderto
properlyinterprettheresultingoutputsensitivitycoefficientfields.
Inmathematicalterms,aregularmodelinputfile,forexampletheBCinputfile,represents
somesetoffunctionsofspaceandtimefi(x,t),whereeachchemicalspeciesicanbedefinedby
auniquefunction.AnadditionalinputfileprovidedtotheDDMrepresentsanothersetof
functionsofspace,time,andchemicalspeciesgi(x,t)thatcanbedifferentfromtheregular
inputfile.Thescalarparameter
-
iisthendefinedby
Here,
-
i×gi(x,t)istheperturbation,andtheuserdesiresinformationonhowthemodelwould
respondiftheinputfi(x,t)isreplacedbytheinputFi(x,t).Inthecaseofsensitivitytorate
constants,nouser‐definedinputfileisprovidedandtheperturbationisalwaysdefinedas
-
i×k
wherekisavectorofselectedrateconstants.TheDDMcalculatesthefirst‐ordersensitivity
si(1)(x,t)andsecond‐ordersensitivitysi(2)(x,t)withrespecttothescalarparameter
-
i.TheTaylor
seriestosecondorderthengivestheestimate:
wherecl(x;t;
-
i)istheestimatedmodelresultforspecieslwhenFi(x,t)isusedasinput,and
cl(x,t;
-
i=0)isthebasecasemodelresultwhenfi(x,t)isusedasinput.
Forexample,tocalculatethesensitivityofthepredictedozoneconcentrationtoscaling
boundaryozonebyafactor,CAMxwouldbeprovidedwithaDDMBCfilethathasthesame
ozonevaluesastheregularmodelBCfile.ThesensitivitycoefficientfieldsoutputbyCAMx
couldthenbeusedtoestimatetheresultingozoneconcentrationiftheozoneBCswere
increasedby20%,asfollows(forsimplicityhereafter,thedependenceonspace,time,and
chemicalspecieswillbeomitted):
.,,, txgtxftxF iiii
-
txstxstxctxc iiiiilil ,
2
1
,0;,;, )2(2)1(
----
)2(2)1(
02.0 2.0
2
1
2.0 sscc
--
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 179www.camx.com
Tocalculatethesensitivityofthepredictedozoneconcentrationtoincreasingboundaryozone
by10ppb,CAMxwouldbeprovidedwithaDDMBCfilethathasaconstantozonevalueof10
ppb.Thesensitivitycoefficientfieldscouldbeusedtoestimatetheozoneconcentrationifthe
ozoneBCswereincreasedby10ppbasfollows:
whereeachsensitivityiscalculatedaccordingtothe10ppbadditioncarriedintheDDMBCfile
(thussensitivitiesarescaledbyunity).AnalternativeapproachwouldbetoprovideCAMxwith
aDDMBCfilethathasaconstantozonevalueof1ppb,andtoestimateozoneresponseifthe
ozoneBCswereincreasedby10ppbwouldrequirethateachsensitivityabovebescaledby10.
Theseareexamplesofrelativelysimplesensitivities.Amorecomplexexamplewouldbeto
calculateozonesensitivitytoscalingmorning(6‐9AM)NOxemissionsinaspecificgroupofgrid
cells.InthiscaseyouwouldprovideCAMxwithaDDMemissionsfilewhereallvaluesarezero
exceptfortheNOxemissionsintheselectedgridcellsbetween6AMand9AM,whichwould
havethesamevalueastheregularemissionsfile.Thesensitivitycoefficientcouldbeusedto
predicttheconcentrationafterascalarchange(
-
)inthemorningNOxemissionsusingthe
samegeneralequationasgivenabove:
Anytypeofsensitivityperturbationcanbedescribedviaaninputfile.However,theCAMxuser
interfacealsoprovideseasywaystodefinesomesensitivitiesthatarelikelytobeused
frequently.Inthefirstexampleabove,theDDMBCfilewasdescribedashavingthe“same
ozonevaluesastheregularmodelBCfile.”Toavoidtheeffortofpreparinganinputfilethatis
triviallydifferentfromtheregularmodelfile,theuserinterfaceallowsyoutoselectspecific
speciesfromaninputfiletotrack‐inthiscaseozone.Itispossibletoseparatelytrackthe
sensitivitytomorethanonespeciesfromthesamefile(e.g.ozoneandNO).Itisalsopossible
totrackthecombinedsensitivitytoagroupofspecies,suchasNOx,VOC,HRVOC,orALL.The
userinterfacealsoprovidesasimplewaytotracksensitivitiestoemissionsfromspecificgrid
cellsorgroupsofcells(sub‐regions).
8.1.1TrackingSensitivityCoefficientsWithinCAMx
DDMsensitivitycoefficientsarecalculatedinparalleltothecoreCAMxprocesses(emissions,
advection,diffusion,chemistry,deposition,etc.)thatstepthethree‐dimensionalconcentration
fieldsforwardintime.Forsomeprocesses(e.g.,chemistryandhorizontaladvection),the
sensitivityroutinesmakeuseofinformationsavedfromthecorrespondingcoremodelroutines
incaseswheretheresultsdependnon‐linearlyuponspeciesconcentrations.Inothercases,the
sensitivityalgorithmisidenticaltotheCAMxalgorithm(e.g.,horizontaldiffusion)andboth
concentrationsandsensitivitycoefficientscanbeprocessedbythesingleroiutine.Finally,
therearecaseswhereaspecializedmodulehasbeenwrittenforthesensitivitycoefficientsto
improvethecomputationalefficiency(e.g.,verticaladvection).
)2(2)1(
00.1 1
2
1
1sscc
--
)2(2)1(
02
1sscc
--
--
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 180www.camx.com
PrioritiesintheDDMcodingimplementationwere:
Ensuringaccuracybyusingconsistentnumericalmethodsfortheconcentrationsand
sensitivities;
Ensuringaccuracybycalculatingtheconcentrationsandsensitivitieswithinthechemistry
solversoverthesamechemistrysub‐steps(fororiginalDDM);
Optimizingtheefficiencyofthesensitivitycoefficientcalculationswithoutcompromising
accuracy;
ProvidingaflexibleUserInterfacethatallowscalculationofsensitivitiestoallsourcesand
precursors;
EnsuringthattheDDMalgorithmshaveminimalimpactoncomputerresource
requirements(memoryandCPUtime)whentheDDMisnotbeingused.
DDMandHDDMcanbeusedwitheitherofthetwohorizontaladvectionsolversavailablein
CAMx.Theoriginalfirst‐orderDDMimplementationwasdevelopedonlyfortheEBIchemistry
solver;itcannotbeusedwithLSODE.However,HDDMcanbeusedwithEBIorLSODE.
DDMandHDDMalgorithmsarenotcurrentlyimplementedfortheCAMxPlume‐in‐Grid(PiG)
submodelortheACM2verticaldiffusionschemes.
8.1.2Flexi‐DDM
AlthoughDDMiscomputationallymuchmoreefficientthantheBrute‐Forcemethod,itdoes
requiremuchmoreadditionalCPUtimeandmemoryspaceoverandaboveastandardCAMx
run,whichcanbesignificantespeciallywhenmanyfirstandsecond‐ordersensitivitiesare
requestedforanestedgridrunwithmultiplesourcecategoriesandmultiplesourceregions.
Theincreasedcomputationalcostmaynotalwaysbeworthwhileifonlypartofthemodeling
domainisofinterest.Onewaytoenhancecomputationalefficiencyinsuchcasesistouseone‐
waynesting,whereBCsforanestedgridareextractedfromtheparentgrid,andsosubsequent
runswithsensitivitiesareperformedwithoutoutergrids.However,differencesbetweenthe
twonestingschemes(i.e.1‐wayvs.2‐way)sometimescausediscrepanciesinthemodelresults.
Analternativeapproachistorunthefull2‐waynestedmodelwhile“turningoff”sensitivity
calculationsoutsidenestedgridsofinterest.
CAMxprovidesafeaturecalled“Flexi‐DDM”,whichallowstheusertoturnoffsensitivity
calculationsforselectedgrids(normallygridsfaroutsidetheareaofinterest)toimprove
computationalefficiencyofDDMruns(attheexpenseofaccuracy).ThisreducesCPUtimesbut
willnotreducememoryrequirements.Also,notethatturningoffsensitivitycalculationsfor
outergridsisonlyappropriateforcertaintypesofsensitivitycalculations:e.g.,sensitivityto
mastergridBCscannotbecalculatedwithFlexi‐DDM.
8.2RunningCAMxWithDDMandHDDM
TheDDMuserinterfacewasdesignedalongsimilarlinestotheSourceApportionment(SA)user
interface.Thismakesiteasiertolearnhowtousebothoptionsandpromotesconsistencyin
analysesperformedusingSAandDDM.DDMisinvokedsimilarlytotheotherProbingTools
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 181www.camx.com
withintheCAMxcontrolfile.Inthe&CAMx_Controlnamelistmodule,thevariable
Probing_Toolmustbesettoeither“DDM”toutilizetheoriginalfirst‐order
implementation,or“HDDM”toutilizethehigh‐orderimplementation.Anadditionalnamelist
modulecalled&DDM_ControlmustthenbeprovidedinthecontrolfiletoconfiguretheDDM
portionofthemodel.Theadditionalnamelistmoduleisdescribedbelow.Theorderofthe
variablesfollowthetemplateavailablewiththesourcecode.AnexampleoftheDDMportion
oftheCAMxruncontrolfileisshowninFigure8‐1.
DescriptionofDDMControlintheCAMxRunControlFile
&DDM_Control LabelfortheProbingToolnamelistmodulethatconfiguresthe
DDMoption;itmustbeginincolumn2
&Flagendinganamelist;itmustbeincolumn2
DDM_File_Root Characterrootoutputpath/filename
DDM_Master_Sfc_OutputLogicalflagformastergridsurfaceoutput(TRUE=DDMfilewill
beoutputforallsensitivities,FALSE=DDMfilewillnotbe
output)
DDM_Nested_Sfc_OutputLogicalflagfornestedgridsurfaceoutput(TRUE=DDMfilewill
beoutputforallsensitivities,FALSE=DDMfilewillnotbe
output)
DDM_Stratify_BoundaryLogicalflagtostratifyboundarytypes(TRUE=separate
sensitivitytypeswillbeusedfortheN,S,E,W,andTop
boundaries,FALSE=asinglesensitivitytypewillbeusedforall5
boundaries)
DDM_Number_of_Source_RegionsIntegernumberofsourceregionstobetracked.This
mustbethesameasthenumberofsourceareasdefinedinthe
DDM_Source_Area_Mapfile.Thisvaluemustbegreater
thanzerowhensensitivitytoemissionsisrequested.
DDM_Number_of_Source_Groups Integernumberofemissiongroupstobetracked.This
determinesthenumberofemissionfilesthatmustbesupplied
(additionaldetailsbelow).Thisvaluemustbegreaterthanzero
whensensitivitytoemissionsisrequested.
Number_of_IC_Species_Groups Integernumberofspeciesorspeciesgroupsinthe
initialconditionstobetracked.Thisnumbermaybebetween
zeroandthenumberofspeciesbeingsimulatedplusfour
(allowingforthefourspeciesgroupsVOC,HRVOC,NOX,ALL).
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 182www.camx.com
IC_Species_GroupsCharacterarray(byICgroup)namesofthespeciesorspecies
groupsintheinitialconditionstobetracked.Allowednames
areanyspeciesbeingsimulatedbythemechanisminuse(e.g.,
O3,PAR,NO,etc.)plusthespeciesgroupsNOX,VOC,HRVOC,
andALL.Itispermissibletospecifybothaspeciesandagroup
containingthatspecies,e.g.,bothNOandNOX.Eachname
mayhaveupto10characters.Notethatifyouselectaspecies
thatisnotpresentontheICfileprovided,theinitialsensitivities
forthatspecieswillbesettozero.Thisvariablemaybeleft
blankifthenumberofinitialconditionspeciesgroupsiszero.
Number_of_BC_Species_Groups Integernumberofspeciesorspeciesgroupsinthe
boundaryconditionstobetracked.Thisnumbermaybe
betweenzeroandthenumberofspeciesbeingsimulatedplus
four(allowingforthefourspeciesgroupsVOC,HRVOC,NOX,
ALL).
BC_species_GroupsCharacterarray(byBCgroup)namesofthespeciesorspecies
groupsintheboundaryconditionstobetracked.See
descriptionforIC_Species_Groupabove.
Number_of_EM_Species_Groups Integernumberofspeciesorspeciesgroupsinthe
emissionstobetracked.Thisnumbermaybebetweenzero
andthenumberofspeciesbeingsimulatedplusfour(allowing
forthefourspeciesgroupsVOC,HRVOC,NOX,ALL).
Emis_Species_GroupsCharacterarray(byemissionsgroup)namesofthespeciesor
speciesgroupsintheemissionstobetracked.Seedescription
forIC_Species_Groupabove.
Number_of_Rate_Const_Groups Integernumberofreactionratesensitivitygroupstobe
tracked.Thisnumbermaybezero.
Rate_Const_Groups Characterstringcontainingeachreactionratesensitivitygroup
nameandreactionnumbersthatbelongtothegroup.Group
nameandreactionnumbersareseparatedbycolon(:)andeach
reactionnumberisseparatedbycomma(,).
Number_of_HDDM_Sens_GroupsIntegernumberofsecond‐ordersensitivitygroupstobetracked
(additionaldetailsbelow).Thisnumbermaybezero.
HDDM_parametersCharacterarraynamesofthefirst‐ordersensitivityparameters
towhichsecond‐ordersensitivityiscomputed.Thenamingof
thefirst‐orderparametersisthesameasthelongnameof
sensitivitieswiththefirst4charactersomitted(seeDDM
sensitivitynamingconventions/formatsbelow).Foreach
HDDMsensitivitygroup,twofirst‐orderparametersare
required(thesamecanbeusedtwice).Allthefirst‐order
parametersmustbeincludedinthemodeling.
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 183www.camx.com
DDM_Receptor_DefinitionsCharacterinputDDMreceptordefinitionpath/filename.(Thisis
anoptionalfile).
DDM_Source_Area_MapCharacterarray(byCAMxgrid)inputDDMsourcearea
definitionpath/filename(requiredformastergrid,optionalfor
nestedgrids).Sourceregionsaredefinedusingamapinthe
sameformatastheintegerSAsourceareamap(Section7);
fractionalsourceareamapsarenotsupportedbyDDM.Unlike
SA,DDMdoesnotrequirethatallpartsofthemodelingdomain
betracked,thereforeitispermissibletodefineanarea
numberedzerointhesourceareamap(emissionsfromthose
areaswillnotbetracked).Thenon‐zerosourceregionnumbers
mustbebetween1andthenumberofregions.
DDM_PT_OverrideLogicalflagtoallowpointsourceoverride(TRUE=lookforand
usethepointsourceoverrideflagsinsector‐specificpoint
sourcefiles,FALSE=ignorepointsourceoverrideflags)
DDM_Calc_Grid LogicalarraycontainingFlexi‐DDMflagforeachgrid(.TRUE.=
calculatesensitivitiesinthegrid;.FALSE.=donotcalculate
sensitivitiesinthegrid).
DDM_Initial_ConditionsThenameofthesensitivityinitialconditionfile.Leavethefile
nameblankforrestartdaysorifsensitivitytoinitialconditions
isnotbeingcalculated.
DDM_Boundary_ConditionsThenameofthesensitivitylateralboundaryconditionfile.
Leavethefilenameblankifsensitivitytoboundaryconditionsis
notbeingcalculated.
DDM_Master_RestartCharacterinputmastergridDDMrestartpath/filename
(ignoredifRestart=FALSE)
DDM_Nested_RestartCharacterinputnestedgridDDMrestartpath/filename
(ignoredifRestart=FALSEorNumber_of_Grids=1)
DDM_Points_GroupCharacterarray(bysourcegroup)inputDDMelevatedpoint
sourceemissionspath/filename(optional,ignoredif
Point_Emissions=FALSE)
DDM_Emiss_Group_GridCharacterarray(bysourcegroup,byCAMxgrid)inputDDM
griddedemissionspath/filename(optional,ignoredif
Gridded_Emissions=FALSE)
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 184www.camx.com
&DDM_Control
DDM_File_Root = './DDM_output/CAMx.020604’,
DDM_Master_Sfc_Output = .true.,
DDM_Nested_Sfc_Output = .true.,
DDM_Stratify_Boundary = .false.,
DDM_Number_of_Source_Regions = 4,
DDM_Number_of_Source_Groups = 2,
Number_of_IC_Species_Groups = 1,
IC_Species_Groups(1) = 'O3',
Number_of_BC_Species_Groups = 1,
BC_species_Groups(1) = 'O3',
Number_of_EM_Species_Groups = 2,
Emis_Species_Groups(1) = 'NOX',
Emis_Species_Groups(2) = 'VOC',
Number_of_Rate_Const_Groups = 1,
Rate_Const_Groups(1) = 'RXN1: 120,121,122',
Number_of_HDDM_Sens_Groups = 3,
HDDM_parameters(1,1) = 'EM0201NOX_',
HDDM_parameters(1,2) = 'EM0201NOX_',
HDDM_parameters(2,1) = 'EM0201VOC_',
HDDM_parameters(2,2) = 'EM0201VOC_',
HDDM_parameters(3,1) = 'EM0201NOX_',
HDDM_parameters(3,2) = 'EM0201VOC_',
DDM_Receptor_Definitions = './DDM_input/receptor.cities',
DDM_Source_Area_Map(1) = './DDM_input/source_map.DDM.4areas',
DDM_Source_Area_Map(2) = ' ',
DDM_PT_Override = .false.,
DDM_Calc_Grid(1) = .true.,
DDM_Calc_Grid(2) = .true.,
DDM_Initial_Conditions = './DDM_input/IC.020603',
DDM_Boundary_Conditions = './DDM_input/BC.020604',
DDM_Master_Restart = './DDM_output/CAMx.020603.ddm.inst',
DDM_Nested_Restart = './DDM_output/CAMx.020603.ddm.finst',
DDM_Points_Group(1) = ' ',
DDM_Points_Group(2) = './DDM_input/utils.020604',
DDM_Emiss_Group_Grid(1,1) = './OSAT_input/bio.grd1.020604',
DDM_Emiss_Group_Grid(1,2) = './OSAT_input/bio.grd2.020604',
DDM_Emiss_Group_Grid(2,1) = './OSAT_input/util.grd1.020604',
DDM_Emiss_Group_Grid(2,2) = './OSAT_input/util.grd2.020604',
&
Figure8‐1.ExampleofDDMinputsintheCAMxcontrolfile.CAMxisrunwithtwogrids,andDDMis
configuredtotrackemissionsfromfoursourceregionsandtwosourcegroups.Sensitivitytoozone
initialandboundaryconditionsaretracked,whilesensitivitiestoNOxandVOCemissionsaretracked.
Sensitivityforasinglerateconstantgroupwillbecalculatedinvolvingmechanismreactionnumbers
120,121,and122.Threegroupsofsecond‐ordersensitivitiestoanthropogenicNOxandVOC
emissions(fromemissionsgroup2,sourceregion1)willbecomputed(d2/dNOx2,d2/dVOC2and
d2/dNOxdVOC).Nosourceregionmapisprovidedforthenestedgrid(theregionassignmentsonthe
nestaredefinedbythemastergrid).Onlythegroup2pointsourcesaretracked(nobiogenicpoint
sourcesareavailable).
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 185www.camx.com
8.3DDMOutputFiles
TheoutputfiletypesforaDDMsimulationaredescribedinTable8‐1.Thesefileshavethe
sameformatascorrespondingconcentrationoutputfiles,describedinSection3.
Table8‐1.DDMoutputfilesuffixnames.
FileNameSuffixDDMFileType
.ddm.inst Binarymastergridinstantaneoussensitivityfileatendofsimulation(usedforrestart),3‐
D,allsensitivities,inµmolm‐3forgasesandµgm‐3forPM.
.ddm.finst Binarynestedgridinstantaneoussensitivityfileatendofsimulation(usedforrestart),3‐
D,allsensitivities,inµmolm‐3forgasesandµgm‐3forPM.
.ddm.grdnn Binaryaveragesensitivityfileforgridnn,2‐D,surfacelayersensitivitiesonlyforaffected
speciesrequestedintheCAMxaveragefile,inppmforgasesandµgm‐3forPM.
.ddm.receptor Texthourlyaveragesensitivitiesatuserspecificreceptorlocations.Thisfileisincomma
delimitedtextformatsuitableforimportingintoaspreadsheet.
8.4DDMSensitivityCoefficientNames
EachDDMsensitivitycoefficienttrackstheinfluenceofaspeciesfromaspecificsource(the
influencingspecies)onapredictedconcentration(theaffectedspecies).Thesensitivity
coefficientnamesareconstructedtoshowthisrelationship,asfollows:
{AffectedSpecies}{PollutantSource}{InfluencingSpecies}
Thisisalotofinformationtoencodeinanamethatmustconformtothetencharacterlimit
imposedbythebinaryI/Ofileformats.Becauseofthis,twonamingsystemsareusedinCAMx:
LongNames‐thesenamesareeasytoread,butsincetheyaremorethantencharacters
inlengththeycannotbeusedinsensitivitycoefficientbinaryoutputfiles.Ifanalternate
I/Oformatisimplementedinthefutureitmaybepossibletousethelongnameson
sensitivityoutputfiles.
ShortNames‐theseconveythesameinformationasthelongnamesbutrequiremore
practicetolearn.Theyareusedinthesensitivitycoefficientbinaryoutputfiles.
AtthestartofeachCAMxrunaconcordanceofLongandShortsensitivitycoefficientnamesis
writtentothediagnosticoutputfile(.diagfile).AnexampleconcordanceisshowninFigure8‐
2,andadetailedexplanationofthenamingconventionfollows.
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 186www.camx.com
Affected Influencing Source Long Short
Species Species Type Group Region Name Name
-------------------------------------------------------------------------------
NO ALL EM 1 2 NO__EM0102ALL_ 0160102ALL
NO2 ALL EM 1 2 NO2_EM0102ALL_ 0170102ALL
O3 ALL EM 1 2 O3__EM0102ALL_ 0180102ALL
PAN ALL EM 1 2 PAN_EM0102ALL_ 0190102ALL
PANX ALL EM 1 2 PANXEM0102ALL_ 0200102ALL
PNA ALL EM 1 2 PNA_EM0102ALL_ 0210102ALL
FACD ALL EM 1 2 FACDEM0102ALL_ 0220102ALL
FORM ALL EM 1 2 FORMEM0102ALL_ 0230102ALL
H2O2 ALL EM 1 2 H2O2EM0102ALL_ 0240102ALL
HNO3 ALL EM 1 2 HNO3EM0102ALL_ 0250102ALL
HONO ALL EM 1 2 HONOEM0102ALL_ 0260102ALL
IOLE ALL EM 1 2 IOLEEM0102ALL_ 0270102ALL
ISOP ALL EM 1 2 ISOPEM0102ALL_ 0280102ALL
ISPD ALL EM 1 2 ISPDEM0102ALL_ 0290102ALL
MEOH ALL EM 1 2 MEOHEM0102ALL_ 0300102ALL
MEPX ALL EM 1 2 MEPXEM0102ALL_ 0310102ALL
MGLY ALL EM 1 2 MGLYEM0102ALL_ 0320102ALL
AACD ALL EM 1 2 AACDEM0102ALL_ 0330102ALL
ALDX ALL EM 1 2 ALDXEM0102ALL_ 0340102ALL
CO ALL EM 1 2 CO__EM0102ALL_ 0350102ALL
ALD2 ALL EM 1 2 ALD2EM0102ALL_ 0360102ALL
NTR ALL EM 1 2 NTR_EM0102ALL_ 0370102ALL
Figure8‐2.Exampleconcordanceoflongandshortsensitivitycoefficientnamesfromthe
CAMxdiagnosticoutputfile.
8.4.1InitialConditionSensitivityNames
LongName NNNNIC____MMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
IC Indicatesthesensitivitycoefficientisforinitialconditions
____ Fourunderscorestopadthenameto14characters
MMMM Influencingspeciesnamewithtrailingunderscoretopadblanks
Examples: O3__IC____O3__
HNO3IC____NOX_
ETH_IC____HRVO
ShortName nnnI___mmm
where:
nnn Affectedspeciesnumber
I Indicatesthesensitivitycoefficientisforinitialconditions
___ Threeunderscorestopadthenameto10characters
mmm Influencingspeciesnumberornameofaspeciesgroup(NOX,
VOC,HRVOCorALL).
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 187www.camx.com
Examples: 018I___018 (whereO3isspeciesnumber18)
025I___NOX (whereHNO3isspeciesnumber25)
042I___HRV (whereETHisspeciesnumber42)
8.4.2BoundaryConditionSensitivityNames
LongName NNNNBCRRR_MMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
BC Indicatesthesensitivitycoefficientisforboundaryconditions
RRR NTH,STH,EST,WSTorTOPifstratifiedbyboundary;ALLifnot
stratifiedbyboundary
_Underscoretopadthenameto14characters
MMMM Influencingspeciesnamewithtrailingunderscoretopadblanks
Examples: O3__BCTOP_O3__
HNO3BCEST_NOX_
ETH_BCALL_HRVO
ShortName nnnBRRRmmm
where:
nnn Affectedspeciesnumber
B Indicatesthesensitivitycoefficientisforinitialconditions
RRR NTH,STH,EST,WSTorTOPifstratifiedbyboundary;ALLifnot
stratifiedbyboundary
mmm Influencingspeciesnumberornameofaspeciesgroup(NOX,
VOC,HRVOCorALL)
Examples:018BTOP018 (whereO3isspeciesnumber18)
025BESTNOX (whereHNO3isspeciesnumber25)
042BALLHRV (whereETHisspeciesnumber42)
8.4.3EmissionsSensitivityNames
LongName NNNNEMGGRRMMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
EM Indicatesthesensitivitycoefficientisforemissions
GG Emissionsgroupnumber
RR Emissionsregionnumber
MMMM Influencingspeciesnamewithtrailingunderscoretopadblanks
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 188www.camx.com
Examples: O3__EM0101O3__
HNO3EM0201NOX_
ETH_EM0103HRVO
ShortName nnnGGRRmmm
where:
nnn Affectedspeciesnumber
GG Emissionsgroupnumber
RR Emissionsregionnumber
mmm Influencingspeciesnumberornameofaspeciesgroup(NOX,
VOC,HRVOCorALL)
Examples: 0180101018 (whereO3isspeciesnumber18)
0250201NOX (whereHNO3isspeciesnumber25)
0420103HRV (whereETHisspeciesnumber42)
8.4.4ReactionRateSensitivityNames
LongName NNNNRATE__MMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
RATE Indicatesthesensitivitycoefficientisforrateconstants
__ Twounderscorestopadthenameto14characters
MMMM Reactionratesensitivitygroupnamewithtrailingunderscoreto
padblanks
Examples: NO__RATE__RXN1
O3__RATE__R28_
ShortName nnnRATEmmm
where:
nnn Affectedspeciesnumber
RATE Indicatesthesensitivitycoefficientisforrateconstants
mmm Reactionratesensitivitygroupnumber
Examples: 016RATE001 (whereNOisspeciesnumber16)
018RATE002 (whereO3isspeciesnumber18)
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 189www.camx.com
8.4.5HDDMSensitivityNames
LongName NNNNHDDMLLLMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
HDDM Indicatesthesensitivitycoefficientissecond‐order
LLL Theindexofthefirst1st‐ordersensitivityparameterintheinternal
listofthe1st‐orderparameters
MMM Theindexofthesecond1st‐ordersensitivityparameterinthe
internallistofthe1st‐orderparameters
Examples: NO__HDDM001001
O3__HDDM001002
ShortName nnnHlllmmm
where:
nnn Affectedspeciesnumber
H Indicatesthesensitivitycoefficientissecond‐order
lll Theindexofthefirst1st‐ordersensitivityparameterintheinternal
listofthe1st‐orderparameters
mmm Theindexofthesecond1st‐ordersensitivityparameterinthe
internallistofthe1st‐orderparameters
Examples: 016H001001 (whereNOisspeciesnumber16)
018H001002 (whereO3isspeciesnumber18)
8.5StepsInDevelopingInputsAndRunningDDM
BelowisasimplemethodologicallistofstepstofollowinsettingupandrunningDDM.The
processissimilaramongtheSAandDDMProbingTools.
1) Definethesourcegroupsandregionsthatyouwishtotrack.Keepinmindthatmemory
resourcesincreasedramaticallyasthenumberofsensitivitiesgrows.ProbingTool
applicationswithlargenumbersofsensitivities,nestedgridsorgridcellsmayexceed
availablememory.
2) Buildanintegersourceregionmap(seeSection7)thatdefinesthespatialallocationof
emissionsensitivities.Forsmalldomainsorsmallnumberofregions,thiscanbedoneby
hand.WesuggestusingGISsoftwaretodevelopcomplexsourceregionmapsonlarge
grids.
3) Processtheemissionsinventoryintotheseparatesourcegroupfilesthatyouwantto
track(e.g.,mobile,area,point,biogenic,etc.).
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 190www.camx.com
a) Considerationofpotentialsourceapportionmentorsensitivityapplicationspriorto
anyemissionsprocessingcanbeverybeneficialsothatfilesbygroupareavailable
forlateruse.
b) Elevatedpointsourceswillautomaticallybeassignedtothesourceregioninwhich
theyreside.However,youmayoverridetheregiontowhicheachindividualpoint
sourceisassigned(seethedefinitionofkcellinSection3,ElevatedPointSource
File).Apointsourceregiondoesnotneedtobedefinedinthesourceregionmap,
e.g.,youcouldhaveamapwithtworegionsthatsplitthedomaininhalf,witha
thirdregionassignedarbitrarilytorepresentelevatedpointsourcesonly.
4) EdittheCAMxcontrolnamelistfile(Section2).
a) SettheProbing_Toolvariabletothetechnologyyouwishtouse(DDM,HDDM).
Thiswillactivatethe&DDM_Controlnamelistmodule.
b) Editoraddthe&DDM_Controlnamelistmodule(describedearlier).Providethe
requiredinformation,including:
outputpaths
whethertostratifyboundaryconditions
numberofsourceregions
numberofsourcegroups
numbersandnamesofIC,BC,emissions,rateconstant,andHDDMgroups
receptordefinitions
IC/BCinputfiles
listofinputemissionfilesbygroup.
5) ConfiguretheCAMxsourcecodetodefinethenumberoftracers,andbuildan
executable.ThiswillensurethatyouhavesufficientmemoryfortheProbingTool
application.
a) EditthefileIncludes/camx.prm
b) ChangetheparametersMXTRSPandMXFDDM,followingtheinstructionsprovided
inthefile.CAMxisdistributedwithMXTRSP = 1andMXFDDM = 1tominimize
memoryrequirementsforstandardapplicationsofthemodel.IfyourunDDMwith
aninsufficientvalue,themodelwillstopandtellyoutherequiredvalueofMXTRSP
andMXFDDMforyourapplication.
c) ExecutetheCAMxMakefiletobuildanexecutableprogram(Section2).
6) RunCAMxandreviewthediagnosticoutputfilestoensurethatthemodeliscorrectly
interpretingandrunningtheProbingToolconfigurationthatyouhavespecified.Ensure
thatCAMxisgeneratingtheproperoutputfilesthatyouareexpecting.Reviewthetable
ofconcordanceoflongandshortsensitivitycoefficientnames.
7) Reviewgriddedtracerfieldsusingcommonlyavailableplottingprograms.Utilitiessuchas
PAVEorVerdiwillreadProbingToolfilesdirectly.Useofanyothersoftwaremayrequire
specializedre‐formattingprocedures.
8) ProbingToolgriddedtraceroutputfilesarewritteninthesameFortranbinaryformatas
theregularCAMxconcentrationoutputfiles.Youcanpost‐processgriddedoutputfields
usinganysoftwarethatreadsCAMxfiles,oryoucanadaptthoseprogramsorbuildyour
ownsoftwaretogeneratespecializedanalysisandgraphicalproducts.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 191www.camx.com
9.PROCESSANALYSIS
ProcessAnalysis(PA)allowsforin‐depthanalysisofphotochemicalmodelperformanceby
revealingthecontributionsfromindividualphysicalandchemicalprocessesoperatingwithin
themodel(JeffriesandTonnesen,1994).UsingPA,onecanmorefullyunderstandthecomplex
interactionsbetweenthedifferentprocesses,explainsimulationresultswithinthecontextof
themodelformulation,andimprovethedesignofcontrolstrategies.
Aconventionalmodelperformanceevaluationemploysstatisticalandgraphicalmethodsto
analyzepredictedconcentrationsagainstobservedconcentrations.Thisanswersthebasic
question:“Howwellisthemodelreplicatingmeasurements?”Whilesuchcomparisonsare
necessarytosummarizeperformance,theyarefarfromsufficienttodeterminewhetherthe
modelisadequatelyrepresentingtherealsituation.Thisisbecausecompensatingerrors
amongvariousmodelprocessescanresultinpredictionsthatserendipitouslyagreewithlimited
observationsbutforthewrongreasons.IncontrastPAprovidesinformationonhowthe
specificmodelpredictionswereobtained,whichcanbeinterpretedtoimprovemodel
performanceand/orinformcontrolstrategydecisions.
9.1ProcessAnalysisInCAMx
ThreecomponentsofPAareimplementedinCAMx:
1) IntegratedProcessesRate(IPR)analysis.TheIPRmethodprovidesdetailedprocessrate
informationforeachphysicalprocessinCAMx(i.e.,advection,diffusion,deposition,
emissions,andchemistry)forselectedgridcellsandselectedspecies(Wang,Langstaff,
andJeffries,1995).TheIPRoutputscanbeanalyzedtodeterminewhatprocesses
governedthemodel‐predictedconcentrationsatanytimeandplace.IPRinformationhas
oftenbeenplottedasatimeseriesofprocesscontributionsforspecificcellsorgroupsof
cells.IPRoutputshavealsobeenusedtocheckthemassbalanceinthehostmodel,i.e.,
todeterminewhethermodelconcentrationsarefullyexplainedbythediagnosedprocess
informationorwhetherunexpectedartifactsareoccurring.TheIPRdataarerelatively
easytointerpretandcanbeanalyzedusingsimpletoolssuchasspreadsheets.IPRworks
forallgasandPMmechanismsandwithPiG.IPRdoesnotworkwiththeACM2vertical
diffusionoption.
2) IntegratedReactionRate(IRR)analysis.TheIRRmethodprovidesdetailedreactionrate
informationforallreactionsinthechemicalmechanismforselectedgridcells(Jeffriesand
Tonnesen,1994).TheIRRdatacanbeanalyzedtodeterminehowthechemicalchanges
occurringinthemodelarerelatedtothechemicalmechanism.Forexample,byanalyzing
rateinformationovergroupsofreactionsitispossibletoquantifychemicallymeaningful
attributessuchasradicalinitiationrates,radicalpropagationefficiencies,chainlengths,
etc.Sincetheseanalysestendtobecomplex,IRRdatagenerallyrequirepost‐processing
tobeuseful.IRRisimplementedfortheCB05chemicalmechanism,andpartiallyfor
CB6r2;itisnotimplementedforotherCB6variantsorforSAPRC07(seeChapter5,Table
5‐1).
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 192www.camx.com
3) ChemicalProcessAnalysis(CPA).CPAisrelatedtotheIRRmethodbutisdesignedtobe
moreuserfriendlyandaccessible.WithCPA,aselectionofusefulparametersis
calculatedfromIRRdatawithinCAMxandthenoutputtogriddedfilesforentiregrids
(TonnesenandDennis,2000).ThegriddedCPAfilesusethesameformatasthegridded
concentrationoutputsandcanbevisualizedandprocessedusingstandardpost‐
processingtools.CPAisimplementedfortheCB05chemicalmechanism,andpartiallyfor
CB6r2;itisnotimplementedforotherCB6variantsorforSAPRC07(seeChapter5,Table
5‐1).
9.1.1IntegratedProcessRateAnalysis
ThespecificprocessesthatarereportedbyIPRarelistedinTable9‐1.Thisinformationis
outputforeachchemicalspeciesselectedforinclusionintheaverageconcentrationoutputfile,
andforeachgridcellselectedforanalysis.Theprocessratesareintegratedacrosseachmodel
outputtimeinterval(normallyhourly).Takentogether,thisinformationprovidesacomplete
descriptionofhowthespeciesconcentrationchangedacrosstheoutputtimeintervalandthe
magnitudeofalloftheprocessesthatcausedthischange.Informationisoutputinthe
concentrationunitsusedinternallywithinCAMx(µmole/m3forgases,µg/m3forPMspecies).A
gasconversionfactor(ppm/µmole/m3)specifictothegridcell/timeperiodisalsooutputto
allowconversiontomixingratio(ppm)forcomparisonofgasspecieswithCAMxaverage
concentrationoutputs.ForPMspecies,theconversionfactorisalways1.Gridcellvolumeis
alsooutputtoallowaggregationacrossgridcells.
FormostoftheprocessrateslistedinTable9‐1theinterpretationisstraightforward,therateis
simplytheconcentrationchangecausedbythenamedprocessacrosstheoutputtimeinterval.
Thesignconventionissuchthatapositivefluxalwaystendstoincreasethecellconcentration.
Furtherexplanationisprovidedforseveralprocessesbelow:
Plume‐in‐Gridchange:ThegridcellconcentrationchangecausedbyPlume‐in‐Gridpuffs
thattransferredmasstothegridcellduringtheoutputtimeinterval.
Pointsourceemissions:DoesnotincludepointsourcesselectedforPiGtreatmentas
thesearereportedinPlume‐in‐GridChange.
Dilutioninthevertical:CAMxallowsforlayerinterfaceheightstochangeovertime
whichcanleadtoa“dilution”termforaffectedgridcells.
Boundarydiffusion:Insomecasesthistermwillbezerobydefinition,namely:the
bottomboundaryofsurfacelayergridcells;thetopboundaryoftoplayergridcells;any
lateralboundarythatcoincideswithanestboundary.
Drydeposition:Thistermiszerobydefinitionforallgridcellsabovethesurfacelayer.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 193www.camx.com
Table9‐1.ProcessinformationreportedbytheIPRoption.
IPRParameterProcessInformation Unitsa
1Initialconcentration µmole/m3(µg/m3)
2Gasphasechemistry µmole/m3(µg/m3)
3Griddedemissions µmole/m3(µg/m3)
4Pointsourceemissions µmole/m3(µg/m3)
5Plume‐in‐Gridchange µmole/m3(µg/m3)
6Westboundaryadvection µmole/m3(µg/m3)
7Eastboundaryadvection µmole/m3(µg/m3)
8Southboundaryadvection µmole/m3(µg/m3)
9Northboundaryadvection µmole/m3(µg/m3)
10Bottomboundaryadvection µmole/m3(µg/m3)
11Topboundaryadvection µmole/m3(µg/m3)
12Dilutioninthevertical µmole/m3(µg/m3)
13Westboundarydiffusion µmole/m3(µg/m3)
14Eastboundarydiffusion µmole/m3(µg/m3)
15Southboundarydiffusion µmole/m3(µg/m3)
16Northboundarydiffusion µmole/m3(µg/m3)
17Bottomboundarydiffusion µmole/m3(µg/m3)
18Topboundarydiffusion µmole/m3(µg/m3)
19Drydeposition µmole/m3(µg/m3)
20Wetdeposition µmole/m3(µg/m3)
21Inorganicaerosolchemistry µmole/m3(µg/m3)
22Organicaerosolchemistry µmole/m3(µg/m3)
23Aqueousaerosolchemistry µmole/m3(µg/m3)
24Finalconcentration µmole/m3(µg/m3)
25Unitsconversion ppm/(µmole/m3)(N/A)b
26Averagecellvolume m3
aUnitsintheparenthesesareforPMspecies.
bUnitconversionfactorforPMspeciesisalways1.
9.1.2IntegratedReactionRateAnalysis
IRRprovidestheintegratedrateofeachgas‐phasechemicalreactioninunitsofppmhr‐1for
eachgridcellselectedforprocessanalysis.Reactionratesareaccumulated(integrated)within
thechemistrysolveratthetimestepsbeingusedtosolvethechemicalequations,andoutput
attheCAMxoutputtimeinterval(usually1hour).
9.1.3ChemicalProcessAnalysis
TheCPAmethodcalculatesapre‐determinedsetofparametersaslistedinTable9‐2.TheCPA
parametersarecalculatedforallgridcellsineitherthesurfacelayeroralllayers.Theselection
betweensurfacelayeroralllayerCPAoutputsisdeterminedbythe“3‐Daveragefile”flag
specifiedintheCAMxControlFile(seeSection2).Thisisbasedonthepremisethat3‐DCPA
informationwillbeinterpretedinconjunctionwith3‐Dconcentrationfields.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 194www.camx.com
Table9‐2.ChemicalProcessAnalysis(CPA)variablescalculatedinCAMxfortheCB05and
CB6r2mechanisms.Concentrationsareppb;productionanddestructionareppb/hr;
photolysisratesarehr‐1,ratiosareunitless.
CB05CB6r2Description
OzoneandOxidantProductionandLoss
OxProdOxProdProductionofOx=Ozone+NOy‐NO
OxLossOxLossDestructionofOx
PO3_netPO3_netNetozoneproduced
PO3_VOCsnsPO3_VOCsnsNetozoneproducedunderVOCsensitiveconditions
PO3_NOxsnsPO3_NOxsnsNetozoneproducedunderNOxsensitiveconditions
PH2O2_PHN3PH2O2_PNH3RatioofH2O2produced/HNO3produced.Greaterthan0.35meansNOx
sensitiveozoneproduction
O3_destO3_destOzonedestructionbychemicalreactions
RadicalInitiation
OH_newNewOHproduced(initiated)
HO2_newNewHO2produced
HOx_newNewHOx(HOx=OH+HO2)produced
newOH_O1DProductionofOHfromozonephotolysis
newOH_HONOProductionofOHfromHONOphotolysis
nOH_O3_OLEProductionofOHfromozone‐alkenereactions
nwHO2_HCHOProductionofHO2fromformaldehydephotolysis
RO2_newNewRO2produced
RadicalPropagation
OHw_COOHw_COOHreactedwithcarbonmonoxide
OHw_CH4OHw_CH4OHreactedwithmethane
OHw_ECH4OHreactedwithlocallyemittedmethane
OHw_ETHAOHw_ETHAOHreactedwithalkanes
OHw_PAROHw_PAR
OHw_PRPAOHreactedwithpropane
OHw_BENZOHreactedwithbenzene
OHw_TOLOHw_TOLOHreactedwithtolueneandmono‐substitutedaromatics
OHw_XYLOHw_XYLOHreactedwithxylenesandpoly‐substitutedaromatics
OHw_ETHOHw_ETHOHreactedwithethene
OHw_ETHYOHreactedwithethylene
OHw_OLEOHw_OLEOHreactedwithterminalalkenes(R
–
HC=CH2,e.g.propene)
OHw_IOLEOHw_IOLEOHreactedwithinternalalkenes(R
–
HC=CH
–
R,e.g.2‐butene)
OHw_ISOPOHw_ISOPOHreactedwithisoprene
OHw_TERPOHw_TERPOHreactedwithterpenes
OHw_all_HCOHw_all_HCOHreactedwithallorganiccompounds(includingCO)
ISOPwOxIsoprenereactedwithO3,NO3andO(3P)
TERPwOxTerpenesreactedwithO3,NO3andO(3P)
OH_rctdOH_rctdTotalOHreacted
HO2_rctdTotalHO2reacted
HOx_rctdTotalHOxreacted
RO2_rctdTotalRO2reacted
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 195www.camx.com
CB05CB6r2Description
OHfromHO2OHproducedfromreactionsofHO2
Y_OHperHO2YieldofOHperHO2reacted(=OHfromHO2/HO2_rctd)
RadicalTerminationandHOxChainLength
OH_termOHterminated
HO2_termHO2terminated
HOx_termHOxterminated
RO2_termRO2terminated
HOx_CLHOxchainlength(=HOx_rctd/{2xHOx_new})
FormaldehydeProduction
HCHOp_ethFormaldehydeproducedfromethene
HCHOp_ole
Formaldehydefromterminalalkenes(R
–
HC=CH2,e.g.propene)inthefirst
generationofproducts
HCHOp_iole
Formaldehydefrominternalalkenes(R
–
HC=CH
–
R,e.g.2‐butene)inthefirst
generationofproducts
HCHOp_terpFormaldehydefromterpenesinthefirstgenerationofproducts
HCHOp_isopFormaldehydefromisopreneinthefirstgenerationofproducts
HCHOp_ispd
Formaldehydefromisoprenedaughterproducts(isoprod,methacroleinand
methylvinylketone)
HCHOp_TotTotalformaldehydeproduced
NOyReactions
HNO3_OHNO2HNO3_OHNO2NitricacidproducedfromOHreactingwithNO2
HNO3_NO3HCHNO3_NO3HCNitricacidproducedfromNO3reactingwithorganics
HNO3_N2O5HNO3_N2O5NitricacidproducedfromN2O5reactingwithwater
PANprodNetNetPANproduced
PANlossNetNetPANdestroyed
NTR1_prodOrganicnitrateproduction
NTR2_prodOrganicnitrateproduction
INTR_prodOrganicnitrateproduction
NTR1toNTR2Organicnitrateconversion
INTRtoNTR2Organicnitrateconversion
RNO3_prodOrganicnitrates(RNO3)produced
NOxrecyclNOxrecyclNitrates(HNO3andRNO3)recycledtoNOx
NOw_HO2NOreactedwithHO2(formingNO2)
NOw_RO2sNOreactedwithRO2(formingNO2)
NOw_RCO3sNOreactedwithRCO3(formingNO2)
Photolysis
J_NO2J_NO2NO2photolysisrate
J_O3O1DJ_O3O1DO3photolysisratetoO(1D)atoms
J_CLDADJCloud/hazeadjustmentfactor
RadicalConcentrations
OHOHradicalconcentration
HO2HO2radicalconcentration
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 196www.camx.com
9.2RunningProcessAnalysis
PAcanbeusedwithmostofthephysicaloptionsavailableforthe“core”CAMxmodel,e.g.,the
variousadvectionandchemistrymechanisms/solvers.However,PAcannotbeusedatthe
sametimeastheotherCAMx“ProbingTool”options(e.g.,SA,DDM,orRTRAC)becausethe
ProbingToolsshareinternaldatastructurestominimizethetotalmemoryresourcesrequired
byCAMx.IPRcannotbeusedwiththeACM2diffusionoption.
PAisinvokedsimilarlytotheotherProbingToolswithintheCAMxcontrolfile.Inthe
&CAMx_Controlnamelistmodule,thevariableProbing_Toolmustbesettoeither“PA”
(generatesallPAoutput),“IPR”,or“IRR”.Table9‐3summarizesthetypesofprocessanalysis
performedforeachkeywordandtheoutputfilesthatareproduced.
Table9‐3.ProcessanalysiskeywordsandassociatedCAMxoutputfiles.
ProcessAnalysisKeyWordOutput
Filename
File
Contains
IPRIRRPA
Yes No Yes *.ipr Integrated process rate (IPR)
information for all selected cells
No Yes Yes *.irr Integrated reaction rate (IRR)
information for all selected cells
No Yes Yes *.cpa.grdnn Chemical process analysis
(CPA) parameters for grid nn
Anadditionalnamelistmodulecalled&PA_Controlmustthenbeprovidedinthecontrolfile
toconfigurethePAportionofthemodel.Theadditionalnamelistmoduleisdescribedbelow.
Theorderofthevariablesfollowthetemplateavailablewiththesourcecode.Anexampleof
thePAportionoftheCAMxruncontrolfileisshowninFigure9‐1.
TherulesfordefiningPAsub‐domainsareasfollows:
1) TheymustbecontainedwithinasingleCAMxgrid;
2) Theymaynotincludecellsthatcontainanestedgrid;
3) Theymaycontainasfewas1gridcells;
4) TheymaycontainuptoallofthegridcellsinaCAMxgridprovidedthatthisdoesnot
violatethesecondrule;
5) Theymayintersectoroverlap–thesamegridcellmaybeinseveralprocessanalysis
domains.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 197www.camx.com
DescriptionofPAControlintheCAMxRunControlFile
&PA_Control LabelfortheProbingToolnamelistmodulethatconfiguresthe
PAoption;itmustbeginincolumn2
& Flagendinganamelist;itmustbeincolumn2
PA_File_Root Characterrootoutputpath/filename
Number_of_PA_Domains IntegernumberofPAanalysisdomainstobeevaluatedduring
thesimulation.
Within_CAMx_Grid Integerarray(byPAdomain)pointerintotheCAMxgridwithin
whichthePAdomainexists(1=mastergrid,etc.).UsetheCAMx
internalgridnumberreportedinthe*.diagfile.Notethatthis
maydifferfromthenestorderprovidedbytheuserinthe
CAMxcontrolfile.
PA_Beg_I_Index Integerarray(byPAdomain)gridcolumncontainingwestern
edgeofPAdomain.
PA_End_I_Index Integerarray(byPAdomain)gridcolumncontainingeastern
edgeofPAdomain.
PA_Beg_J_Index Integerarray(byPAdomain)gridrowcontainingsouthernedge
ofPAdomain.
PA_End_J_Index Integerarray(byPAdomain)gridrowcontainingnorthernedge
ofPAdomain.
PA_Beg_K_Index Integerarray(byPAdomain)gridlayercontainingbottomofPA
domain.
PA_End_K_Index Integerarray(byPAdomain)gridlayercontainingtopofPA
domain.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 198www.camx.com
Figure9‐1.ExamplesectionofaCAMxcontrolfilespecifyingoptionsforProcessAnalysis.
9.2.1SettingCAMxParameters
PAstoresinformationindatastructuresthataredimensionedusingFortranparameter
statements.TheseparametersmustbelargeenoughtoaccommodatethePAconfiguration
specifiedintheCAMxcontrolfile.IfoneoftheseparametersisexceededCAMxwillstopwith
anerrormessagestatingthataparametermustbechangedandthemodelrecompiled.Itis
alwaysagoodideatodoacompleterebuild(usetheUnixcommand“makeclean”)whena
parameterischanged.Theparametersthatmayneedtobechangedareintwoincludefiles,
“procan.inc”and“camx.prm”.
procan.inc
MXPADOM – ThemaximumnumberofProcessAnalysisdomains.
MXPACEL – ThemaximumnumberofProcessAnalysiscellsoveralldomains
camx.prm
MXTRSP – Thisparameterdefinesgriddeddatastructuresthatareusedbyseveral
probingtools.ForPAthedatastructuresstorechemicalprocessanalysis(CPA)
variables,soMXTRSPmustbesettoatleastthevalueofMXCPA(setinprocan.inc)
whichis99.
&PA_Control
PA_File_Root = 'CAMx.OTAG.950707.PA',
Number_of_PA_Domains = 2,
Within_CAMx_Grid(1) = 1,
PA_Beg_I_Index(1) = 8,
PA_End_I_Index(1) = 12,
PA_Beg_J_Index(1) = 9,
PA_End_J_Index(1) = 13,
PA_Beg_K_Index(1) = 1,
PA_End_K_Index(1) = 5,
Within_CAMx_Grid(2) = 2,
PA_Beg_I_Index(2) = 107,
PA_End_I_Index(2) = 110,
PA_Beg_J_Index(2) = 78,
PA_End_J_Index(2) = 82,
PA_Beg_K_Index(2) = 1,
PA_End_K_Index(2) = 7,
&
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 199www.camx.com
9.2.2OutputFileFormats
CAMxmayoutputuptofourfilescontainingPAinformationaccordingtothePAoption
selected(seeTable9‐3).AllofthesefilesareinFortranbinaryformattoconservediskspace.
Twofiles(the*.iprand*.irrfiles)containinformationforjustthegridcellsselectedfor
PA.TheformatsforthesefilesarenotdescribedheresincetwoFortranpost‐processor
programsareprovidedtoextractdatafromthesefilesinacomma‐delimitedtextformat.The
filescontainingCPAinformation(the*.cpa.grdnn)aregriddedfilescoveringthesamearea
astheregularmodelaveragefiles(*.avrg.grdnn).ThegriddedCPAfileshavethesame
formatasaregularmodelaveragefileasdescribedinSection3.
9.3Postprocessing
Twopost‐processorsareprovidedtoreadthebinary*.iprand*.irroutputfilesand
extractPAdataforfurtheranalysis.TheCPAoutputfilescanbevisualizeddirectly.
9.3.1IPROutputFiles
TheFortranprogram“ext_ipr”extractsIPRdatafromoneormoreCAMx*.iprbinaryfiles
andreformatsthedatatocommadelimitedtextformat(.csv)suitableforsubsequent
analysis(e.g.,usingspreadsheets).The“ext_ipr”programperformsthefollowingtasks:
Readsandoutputsthedescriptiveheaderofthe*.iprfile;
Optionallycombinesdatafromseveralconsecutive*.iprfilestoprovidemulti‐day
output;
SelectsdataforanindividualcellwithinaPAsub‐domainoraggregatesdataovermultiple
cellswithinaPAsub‐domain;
OutputstheselectedIPRdatain.csvformatineitherppbormolarunitsforgasspecies;
PMspeciesareineitherg/m3ormassunits.
Asamplescripttorunthe“ext_ipr”programisprovidedwithitssourcecode,andthescript
includesadescriptionofhowtousetheprogram.
The“ext_ipr”programcancombineIPRinformationacrossseveralcells.Thisisusefulfor
analyzingthecontributionsofmodelprocessestoageographicareathatspansmultiplecells
andlayers(e.g.,anurbanarea).Forsimplicity,themulti‐cellareamustbedefinedasa
rectangularbox.ThecapabilityofaggregatingIPRinformationacrossverticallayersis
particularlyimportantduringthedaybecauseverticalcolumnsofcellswithinthemixedlayer
becomestronglycoupledontimescalesshorterthanonehour.Thus,iftheprocess
contributionsforasurfacegridcellareanalyzedduringthedayverticaldiffusionwilloften
completelydominateallotherprocesses.Inthissituation,itismoreinformativetoanalyzea
columnofcellsextendingfromthesurfacetotheapproximateheightofthemixedlayer.When
the“ext_ipr”programaggregatesinformationacrossgridcellsitaccountsfordifferencesin
cellvolume.Iftheoutputforaggregatecellsisrequestedinppbunits,theoutputfromCAMx
inmicromole/volumeunitsisconvertedtoppbusingthevolume‐weightedaverageunits
conversionfactorforthecellsbeingaggregated.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 200www.camx.com
OneusefulapproachtoanalyzingIPRdataistoplotthecontributionsofseveralprocessesasa
timeseries.Figure9‐2presentsanexampleasanillustrationofhowPAcanbeused.
Figure9‐2.ExampleIPRtimeseriesanalysisforPSO4;lateralboundaryandchemistryterms
arenotaggregated.
9.3.2IRROutputFiles
TheFortranprogram“ext_irr”extractsIRRdatafromoneormoreCAMx*.irrbinaryfiles
andreformatsthedataforsubsequentanalysis.The“ext_irr”programperformsthe
followingtasks:
Readsandoutputsthedescriptiveheaderofthe*.irrfile;
Optionallycombinesdatafromseveralconsecutive*.irrfilestoprovidemulti‐day
output;
SelectsdataforanindividualcellormultiplecellswithinaPAsub‐domain;
Optionally,outputstheselectedIRRdatatoa.csvformattextfile;
Optionally,outputstheselectedIRRdatatoaUAMaverageformatbinaryfile.
Hourly PSO4 Change from Different Processes in Chicago Area.
Run = postproc_test
Grid cells used from grid number 1: (43, 47) to (52, 56) using layers 1 to 5
-1.5
-1
-0.5
0
0.5
1
Jun 13, 2002 Jun 14, 2002
Change in PSO4 (ug/m3)
Top Boundary Deposition Emissions
Gas-Phase Chemistry Heterogeneous Chemistry West Boundary
East Boundary South Boundary North Boundary
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 201www.camx.com
ThetextIRRdataaresuitableforsubsequentanalysis(e.g.,usingspreadsheets).ThebinaryIRR
outputfrom“ext_irr”canbedisplayedusinganypost‐processingsoftwarethatcandisplay
CAMxaverageconcentrationoutputs.
9.3.3CPAOutputFiles
CPAresultsareoutputfromCAMxasgriddedfilesinthesameformatastheaverage
concentrationfiles,andthereforecanbevisualizedusinganypost‐processingsoftwarethatcan
displayCAMxconcentrationoutputs.Thesefilesmayoptionallyincludejustthesurfacelayer
oralllayersaccordingtohowthe“3‐Doutput”flagissetintheCAMxcontrolfile.Surfacelayer
speciesconcentrationsreflectthebalancebetweenseveralmodelprocessesincludingsurface
emissions/deposition,verticalmixing,andchemicalreactionsinsurface(andpossiblyaloft)grid
cells.Incontrast,theCPAoutputdataaregridcellspecificandreflectchemicalchangeinsingle
gridcells.Thefactthatverticalmixingtendstoaveragespeciesconcentrationsovermultiple
layerswhereasCPAvariablesarelayerspecificmaycomplicateandbiastheinterpretationof
CPAresults.AsolutionistoplaceboththeconcentrationsandCPAvariablesonacomparable
basisbyaveragingthemoveralllayerswithintheplanetaryboundarylayer.
Apost‐processor(VERTAVG)wasdevelopedtoaverageCPAvariablesandconcentrationsover
multiplelayerscontainedwithinthedepthoftheplanetaryboundarylayer(PBL).ThePBL
depthvariesinspaceandtimeaccordingtothestrengthandverticalextentofturbulent
mixing.VerticalturbulentmixingisspecifiedforCAMxbytheinputdiffusivity(Kv)fields.The
VERTAVGprocessorreadsCAMxKv,height,temperature,andpressureinputfiles,andthen
calculatesthePBLdepthforeachgridcolumnateachhour.VERTAVGalsoreadsaCAMx3‐D
outputfileofCPAvariables(orspeciesconcentrations)andcalculatesair‐massweightedPBL
valuesforeachgridcolumnateachhour.TheoutputfromVERTAVGisa2‐Dfileinaveragefile
formatwherethesinglelayerrepresentsthePBLaveragevaluesratherthansurfacelayer
values.
VERTAVGappendstwoextravariablestothefilebeingprocessedtoaidwithinterpretationand
tomakeclearthatthedatahavebeenverticallyaveraged.Theaddedvariablesare:
PBL_ZisthediagnosedheightofthePBLforeachgridcolumn.
PBL_IisthelayerindexofthetoplayerwithinthediagnosedPBLforeachgridcolumn.
CAMxmustberunusingtheoptiontocreate3‐Dspeciesconcentration(andthereforeCPA)
outputfilesinordertouseVERTAVG.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 202www.camx.com
10.REACTIVETRACERS
TheCAMxreactivetraceralgorithmprovidesaflexibleapproachforsimulatingtheemission,
dispersion,chemistry,anddepositionofmultipletracegasandparticulatetracersonthe
computationalgrid(s)andwithintheIRONPiGtreatment.Originallydevelopedtomodelair
toxics,itwasextendedandgeneralizedtobeabletotrackavarietyofuser‐definedorganicand
inorganicspecies.
Reactivetracersarecarriedseparatelyfromthecoremodelphotochemical/PMchemistry
mechanisms,andthuscanbeusedtoaddressavarietyofissues,separatelyorincombination:
Reactiveandinertgaseousandparticleairtoxiccompounds;
ChemicaldecayofindividualVOCcompoundsintomultiplegenerationsofdaughter
products;
Sourcetaggingofprimaryemittedinertandreactivecompoundsfromspecificsource
types/classes,orfromindividualstacks,facilitiesand/orcomplexes.
ThereactivetraceralgorithmisimplementedasaCAMx“ProbingTool”andthussharesmodel
datastructureswithotherProbingToolssuchastheSA,DDMandPA.Thisstreamlinesthe
CAMxcode,improvesefficiency,andmaximizesconsistencywiththecoremodelsinceitallows
reactivetracercalculationsforemissions,transport,anddepositiontousetheexistingCAMx
algorithms.However,thismeansthatreactivetracerscannotbeusedsimultaneouslywith
otherProbingTools.
Thereactivetracerimplementationemploystwoapproachestodefinetracerchemistry.The
originalapproach,referredtoasRTRAC,allowstracerstodecayandformmultiplegenerations
ofdaughterproductsthroughphotolysisanduser‐specifiedthermalreactionswithozoneand
radicals(OH,NO3)thatareextractedfromthecoremodel’sgas‐phasechemistry(CBorSAPRC).
Asecondapproach,referredtoastheRTRACChemicalMechanismCompiler(RTCMC),allows
theusertoexternallydefineafullchemistrymechanismwithnolimitsoncomplexity(within
availablecomputerresources).RTCMCcanalsoaccessanygas‐phaseconcentrationsfromthe
coregas‐phasemechanismaswell.Neitheroptionallowschemistryforparticulatetracers.
10.1DescriptionofRTRAC
ReactivetracersaredefinedforeachCAMxrunbyprovidinganRTRACchemistryparameters
filesimilartothatusedforthecoremodel.TheexampleinFigure10‐1illustratesanexample
RTRACairtoxicsapplication(ENVIRON,2002;Morrisetal.,2003).Thenumberandnamesof
thetracersarearbitrary;i.e.informationonthetracerspecies’chemicalidentities,structure,
reactionpathways,andkineticsarekeptseparatefromthecoremodel.Consistentwiththe
chemistryparametersfilesusedforthecoremodel’sphotochemistry,thephysical
characteristicsforeachreactivetracermustbespecifiedfordepositioncalculations,andtheir
reactionpathwaysandratesmustbedefined.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 203www.camx.com
Figure10‐1.ExampleRTRACchemistryinputfileformodelingspecifictoxicspecies.
ThestructureoftheRTRACtracerdefinitionprovidescompleteflexibilityintheselectionofthe
compoundsandtracerstobeincludedineachanalysis.Theuserisabletoeasilyalteror
expandthecompoundsasneeded.
Forgasspecies,therequireddepositionparametersaretheHenry’sLawconstantand
molecularweightMg,thelatterofwhichdefinesadiffusivityparameteraccordingto
OHg MM 2
/.Thedepositioncalculationforgasesthatreactinplanttissuealsoneedsa
reactivityparameterthatdescribeswhetheraspeciesreactswhendissolvedinsideleaftissues
(Wesely,1989).Thisparameterisintendedformodelingthedepositionofreactivespecies,
suchasozone,andshouldbesettozeroforairtoxics.Thedepositioncalculationforgasses
CAMx Version |VERSION6.3
Description |Example RTRAC Chemsitry for Toxics
No of gas tracers |6
No of aero tracers |8
No photolysis rxns |4
No thermal rxns |12
Gas Tracers
No. Name P/S SNAM lower bnd H-law T-fact Molwt Reactvty Rscale
1 PACET PRIM 1.00E-12 6.30e+03 -6492. 44.00 0.0 1.0
2 HCHO PRIM 1.00E-12 6.30e+03 -6492. 30.00 0.0 1.0
3 BENZ PRIM 1.00E-12 1.80e-01 0. 78.00 0.0 1.0
4 BUTA PRIM 1.00E-12 1.00e-02 0. 54.00 0.0 1.0
5 SACET SEC ALD2 1.00E-12 6.30e+03 -6492. 44.00 0.0 1.0
6 SFORM SEC FORM 1.00E-12 6.30e+03 -6492. 30.00 0.0 1.0
Aero Tracers
No. Name lower bnd Density Low cut Upper cut
7 DSLF 1.00E-09 1.5 0.10 2.50
8 ECF 1.00E-09 1.5 0.10 2.50
9 CRF 1.00E-09 1.5 0.10 2.50
10 CR6F 1.00E-09 1.5 0.10 2.50
11 DSLC 1.00E-09 1.5 2.50 10.00
12 ECC 1.00E-09 1.5 2.50 10.00
13 CRC 1.00E-09 1.5 2.50 10.00
14 CR6C 1.00E-09 1.5 2.50 10.00
Photolysis reactions
Toxic Rxn # Factor
PACET 108 1.0
SACET 108 1.0
HCHO 98 1.6
SFORM 98 1.6
Thermal reactions and rates
Toxic React A(ppm-1min-1) Ea(K) B Tref
PACET OH 8.2015E+03 -3.1099E+02 0.0 300.0
PACET NO3 2.0689E+03 1.8599E+03 0.0 300.0
HCHO OH 1.6699E+03 -6.4815E+02 2.0 300.0
HCHO NO3 4.1377E+03 2.5161E+03 0.0 300.0
BENZ OH 3.6944E+03 1.9978E+02 0.0 300.0
BUTA OH 2.1871E+04 -4.4787E+02 0.0 300.0
BUTA O3 4.8766E+01 2.5000E+03 0.0 300.0
BUTA NO3 2.1871E+04 1.4890E+03 0.0 300.0
SACET OH 8.2015E+03 -3.1099E+02 0.0 300.0
SACET NO3 2.0689E+03 1.8599E+03 0.0 300.0
SFORM OH 1.6699E+03 -6.4815E+02 2.0 300.0
SFORM NO3 4.1377E+03 2.5161E+03 0.0 300.0
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 204www.camx.com
alsousesan“Rscale”factortoadjustthesurfaceresistance.Thisisusedtosetthesurface
resistancetozeroforstrongacids(e.g.,HNO3)andshouldbesetto1.0formodelingairtoxics.
Thedepositioncalculationforparticlesrequirestheparticledensityandsizeassociatedwith
eachspecies.Theparticlesizeiscalculatedasthegeometricmeanoftheloweranduppercut
points(seeFigure10‐1).Ifpossible,theparticlesizeanddensityshouldbebasedonthe
measuredsizeofparticlesassociatedwitheachRTRACspecies(e.g.,foracompoundassociated
withsootparticles,useadensityandsizerepresentingthesoot).
TheemissionratesfortheRTRACspeciesareprovidedbyanextrasetofemissionfiles(surface
and/orpointsource).Emissionsofgasesareinmolespertimeperiod(normallymoles/hour),
whereasparticlesareingramspertimeperiod.Theemissionsfileformatisthesameasfora
regularCAMxemissionsfile,asdescribedinSection3.
10.1.1RTRACGas‐PhaseChemistry
TheRTRACchemistrycalculationsuseaspecialchemistrymodule.Chemistrymaybemodeled
forprimaryandsecondarygasspecies,meaningthattracerscanbeformedfromthedecayof
primarytracersorfromthedecayofhostmodelspecies(e.g.,secondaryformaldehyde).The
chemicaldecayofgaseoustracerscanaccountforthermalreactionswithozone(O3),hydroxyl
radical(OH)andnitrateradical(NO3),aswellasphotolysis.Thealgorithmsarecodedsothatall
chemicaldecaypathwaysarezerobydefaultandonlybecomenon‐zeroifdecayratesare
explicitlyspecifiedintheinputfile(seeFigure10‐1).TheexampleRTRACchemistryinputfilein
Figure10‐1showshowthermalreactionsarespecifiedbynamingthetracerandoxidant,and
providingreactionrateparameters.NotethattheRTRACchemicalreactionratesdependon
theratesandparametersprovidedintheRTRACinputfile,andnottheratesinthehostmodel
chemicalmechanism;howeverthehostmodeldoesprovidetheoxidizingspecies
concentrations(i.e.,O3,OH,andNO3).
10.1.1.1ThermalReactions
Thermalreactionswithoxidantsaremodeledassecondorderreactions:
whereRisthedecayrateandtherateconstantkisdefinedusingthegeneralizedtemperature
dependentrateexpression:
TheArrheniusfactor(A)mustbeinunits(ppm‐1min‐1),theactivationenergy(Ea)mustbeKelvin
andBisdimensionless.Thisisthesameasexpression3inTable3‐3a.Oxidantconcentrations
forthedecaycalculationareobtainedfromtheCAMxphotochemicalsimulationforeachgrid
cellateachtimestep.RTRACcanbeusedwithanyofthephotochemicalmechanismsthatare
availableinthecurrentversionofCAMx(seeSection5).Choosingbetweenthecore
oxidanttracerkR
T
ET
Ak a
B
exp
300
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 205www.camx.com
mechanismswillinfluencetheRTRACchemicaldecayratesbychangingtheoxidant
concentrationsinthehostmodel.
10.1.1.2Photolysis
Photolysisreactionsarespecifiedbynamingthetracerundergoingphotolysisandprovidinga
ratioofthetracerphotolysisratetooneofthephotolysisreactionsinthehostphotochemical
mechanism.Forexample,Figure10‐1showsthattherearebothprimaryandsecondary
acetaldehydereactivetracers(PACETandSACET)andthephotolysisrateforbothspeciesisset
equaltoCB6r2reaction108(photolysisofALD2),whichisbasedonacetaldehyde.Figure10‐1
alsoshowsthattherearetwotypesofformaldehyde(PFORMandSFORM).Modelingthe
photolysisofformaldehydewithRTRACiscomplicatedbythefactthattheCB6r2mechanism
includestwophotolysisreactionsforformaldehyde(reactions97and98).Thesolutionshown
inFigure10‐1istomodelformaldehydephotolysisas1.6timestherateofreaction98.The
CAMxhostmechanismsarediscussedinSection5andaredefinedbythetextchemistry
parametersfiles(Section3)andmechanismlistingsdistributedwithCAMxandavailablefrom
theCAMxwebpage(www.camx.com).
10.1.1.3SecondarySpecies
RTRACallowsforformationofsecondary/daughterproductsrelatedtothechemicaldecayof
oneoftheprimarytracers.Secondaryspeciescanalsobesubjecttochemicaldecay,justlike
primaryspecies,iftheuserdesires.Therefore,theRTRACchemistrymoduleallowsdecay
reactions(thermalandphotolysis)tobespecifiedforsecondaryspeciesusingthesamemethod
asforprimaryspecies.Inthismanner,concentrationsofsecondaryspeciesaredeterminedby
thebalancebetweenchemicalproductionanddestruction.RTRACrequiresthatanysecondary
daughtertracersmustbespecifiedaftertheirparenttracerinthechemistryparametersinput
file.
RTRACalsoallowstracersthattrackthesecondaryformationofanyspeciesthatisincludedin
thehostchemicalmechanism.Forexample,inFigure10‐1thespeciesSFORMisusedtotrack
secondaryformaldehyde,andsoSFORMisdefinedasasecondaryspeciesandidentifiedwith
thehostspeciesFORM.ThismeansthattheRTRACchemistrymodulewillidentifythechemical
productionofFORMineachgridcellateachtimestep,andaddthischemicalproductiontothe
SFORMtracer.SinceSFORMisintendedtotrackonlysecondaryformaldehyde,noprimary
emissionsshouldbeincludedforSFORM.
10.1.1.4ChemicalDecayRatesforNear‐SourceModeling
TheRTRACalgorithmcanoutputhourlychemicaldecayratesatuser‐specifiedlocationsto
supportexternalanalyses,forexample,asinputtoaGaussianplume/puffmodel.Theuser
providesthelocationsofeachreceptorusingtheCAMxProbingToolsreceptorfileinput
format.Figure10‐2displaysanexampleRTRACreceptorinputfileforthefivelocations.At
eachgridcell,hourlydecayratesforeachRTRACcompoundandeveryverticallayerareoutput
andcanthenbeinterfacedwithauser‐selectedplumemodel.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 206www.camx.com
Figure10‐2.ExampleRTRACreceptorinputfileidentifyingthegridcellswithlocationswhere
hourlydecayrateswillbeoutputforsubgrid‐scalepointsourcemodeling(seeformatforSA
receptorfileinTable7‐2).
Separatefamiliesofreactivetracercompoundscanbesimulatedbyprovidingseparate
emissioninputssimilarlytoSA(seeSection7).TrackingseparatefamiliesofRTRACtracers
allowsforsourceapportionmentandcanbeusedtoavoiddoublecountingwhenanexternal
plumemodelisusedtoobtainnear‐sourceimpacts.Forexample,separatefamiliesofairtoxic
tracerscanbespecifiedforeachpointsourcecomplextobemodeledbytheexternalplume
model,sothattotalconcentrationscouldincludethelocalpointsourceimpacts(plumemodel)
plustheregionalcontributionsfromallothersources(CAMxRTRAC).
10.2DescriptionofRTCMC
LikeRTRAC,thepurposeofRTCMCistoaddtracerspeciestoaCAMx“coremodel”simulation
andhavethetracersundergochemicalchangesthatdepend,inpart,upontheevolutionof
CAMxcoremodelspecies.TheRTCMCapproachdiffersfromtheoriginalRTRACapproachby
allowingarbitrarilycomplexchemicalreactionschemes,butitisexactlylikeRTRACinevery
otherrespect.ThecurrentimplementationofRTCMCisforgas‐phasereactions,i.e.,gas‐phase
tracersreactingwitheachotherand/orgas‐phasehostmodelspecies.Thecoremodel’s
photochemicalmechanismsremainintactandseparatefromthereactivetracerchemistry.
10.2.1RTCMCGas‐PhaseChemistry
TheRTCMCallowsuserstoinput,inatext‐basedformat,asetofchemicalreactions
(mechanism)forcertaintargetspeciestobetreatedbytheCAMxReactiveTracerProbingTool.
RTCMCisanextensionoftheoriginalRTRACalgorithmthatreads(andsolves)acompletely
independent,user‐definedchemicalmechanismforreactivetracersthatcanutilize
concentrationsofanyphotochemicalspeciesfromthecoremodelmechanism.Uponstartup,
RTCMCcompilesinformationonthechemicalmechanismandconfiguresthereactivetracer
chemistrysolver.Duringthemodelsimulation,theRTCMCchemistrysolverreceivesambient
pollutantinformationfromthecorephotochemicalmechanismandusesthistocalculatethe
evolutionofRTRACspecies.
TheformatoftheRTCMCinputfileisessentiallythesameasthe“IMC”inputfileformatofthe
SCICHEMLagrangianpuffmodel(EPRI,2000).AnexampleIMCformatfileisshowninFigure
10‐3.TherearefoursectionsinanIMCfilethatareidentifiedbyakeywordatthestartofeach
section,asfollows:
SINGLE CELL Test Cell 1 42 44
SINGLE CELL Test Cell 1 41 36
SINGLE CELL Test Cell 1 39 36
SINGLE CELL Test Cell 1 50 43
SINGLE CELL Test Cell 1 34 48
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 207www.camx.com
Figure10‐3.Examplefree‐formatRTCMCIMCchemistryinputfile.
#Control Configurationinformationidentifiedbykeywords
#Species Namesofchemicalspeciesandassociateddata
#Table Photolysisratedataforanyphotolyticreactions
#EquationsChemicalreactionsandthermalrateconstants
TheIMCfileusesspace‐delimitedfree‐formtextformat.Leadingwhitespaceatthestartof
anylinewillbeignored.CAMxreadstheIMCfileascaseinsensitive.
Thehashsymbol(#)beforeeachsectionkeywordmarksthestartofasectionandshouldbe
reservedforthispurpose.Thefoursectionsshouldappearintheordershownabove.Theonly
sectionthatmaybeunnecessaryinsomecases(i.e.,iftherearenophotolyticreactions)isthe
#Tablesectionandguidanceonhandlingthiscaseisprovidedbelow.
10.2.1.1TheControlSection
AccordingtotheSCICHEMdocumentation,the#ControlsectionoftheIMCfilemustalways
haveatleastthreelines,asfollows:
#CONTROL
&CONTROL
&END
#Control
rate_species_units = 'ppm'
rate_time_units = 'min'
solver = 'dlsode'
Jacobian = 'numeric'
#Name, Type, Ambient, ATol, Dep, Wet Scav, MW, Spec Map
O3 A 1.0 1.0E-12 0.0 0.0 0.0
OH A 1.0 1.0E-12 0.0 0.0 0.0
ATRAC F 1.0 1.0E-12 0.010 0.0 0.0
BTRAC F 1.0 1.0E-12 0.001 0.0 0.0
CTRAC F 1.0 1.0E-12 0.020 0.0 0.0
DTRAC F 1.0 1.0E-12 0.001 0.0 0.0
ETRAC F 1.0 1.0E-12 0.030 0.0 0.0
FTRAC F 1.0 1.0E-12 -0.001 0.0 0.0 NO2
#Table
0 0. 15. 30. 45. 60. 75.
80. 86. 87. 88.
1 4.1590E-04 4.0600E-04 3.7540E-04 3.27E-04 2.6040E-04 9.4990E-05
2.9930E-05 4.8590E-06 8.3030E-08 1.0000E-09
#Equations
1 [ATRAC] -> (2.0)[BTRAC] ; 0 0.000E-00
2 (1.5)[CTRAC] + [OH] -> (0.5)[DTRAC] ; 1 4.2000E+04
3 [ETRAC] + [O3] -> [FTRAC] ; 1 1.8000E-02
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 208www.camx.com
Thefirstlineisthekeywordidentifyingthecontrolsection.Thesecondandthirdlinesare
additionalkeywordsdenotingthestartandendofthecontrolsection.Note,however,that
CAMxignoresthe&CONTROLand&ENDlines.
Oneormorecontroloptionsmaybespecifiedusingkeywords,insertedoneperline,aheadof
theclosing&ENDline,likethis:
#CONTROL
&CONTROL
Keyword = ‘option’
Keyword = ‘option’
&END
ThekeywordsusedbyCAMxandSCICHEMarelistedinTable10‐1andarecaseinsensitive.Not
allkeywordsareusedbybothmodels,andCAMxwillignoreanynon‐recognizedkeyword.A
“=”symbolmustseparateeachkeywordandoption.Theoptionmustbeenclosedwithin
singlequotes.Inpractice,onlythefirstsixlettersofeachkeywordandthefirstthreelettersof
eachoptionareconsideredandyoumayabbreviateaccordingly(i.e.,keyword = ‘opt’).
Table10‐1.Keywords,optionsanddefaultvaluesfortheControlsectionoftheIMCfile.
Keyword
Usedby
SCICHEM
Usedby
CAMxOptionsAllowedbyCAMx
Ambient file ●
n/a
Species_units ●
n/a
Emission_units ●
n/a
Rate_species_units ● ● molecules/cm3(default)
ppm
Rate_time_units ● ●
seconds(default)
minutes
hours
Solver ●
DLSODE(default)
SLSODE
Rosenbrock
Rtol ● ● Realnumber(default=1.0E‐5)
Atol ● Realnumber(default=1.0E‐18)
Jacobian ● Numeric(default)
Algebraic
AllCAMxrecognizedkeywordshaveadefaultoptionthatwillbeusedifthekeywordisomitted,
meaningthattheCAMxRTCMCmayberunwithoutspecifyinganykeywordsprovidedthatthat
allotherinputdata(e.g.,rateconstants)areconsistentwiththedefaults.Theallowedkeyword
optionsinTable10‐1arediscussedbelow:
Rate_species_units
Theconcentrationunitsforthermalrateconstantexpressions.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 209www.camx.com
Rate_time_units
Thetimeunitsforphotolysisandthermalrateconstantexpressions.
Solver
Thenameofthenumericalintegratortobeusedasthechemistrysolver.SLSODEand
DLSODEare,respectively,thesingleanddoubleprecisionversionsoftheLivermore
SolverforOrdinaryDifferentialEquations(Hindmarsh1983).TheRosenbrocksolveris
thedoubleprecisionRODASsolver(HairerandWanner,1991).
Rtol
Therelativeerrortolerance(convergencecriterion)employedforallchemicalspeciesby
thechemistrysolver.
Atol
Theabsoluteerrortolerance(convergencecriterion)employedforallchemicalspecies
bythechemistrysolver.CAMxdoesnotusespecies‐specificAtolvaluesthatmay
appearinthespeciessection,asdiscussedbelow.
Jacobian
ThechemistrysolversemployaJacobianmatrixoffirst‐orderderivativesofeach
chemicalspecieswithrespecttoallspecies.TheJacobianmatrixisconstructed
automaticallybytheRTCMC.ThisoptioncontrolswhethertheJacobianisconstructed
algebraicallyornumerically.Bothoptionsmaybeusedwiththedoubleprecision
solversandnumericmaybemoreefficient.Thealgebraicoptionisstrongly
recommendedforthesingleprecisionSLSODEsolver(becausesingleprecisionmaybe
inadequateforconstructinganumericJacobianbyfinitedifference).
10.2.1.1.1ConcentrationUnits
CAMxdoesnotusetheSpecies_unitsorEmission_unitskeywordsandwillignore
themiftheyarepresent.CAMxwilloutputRTCMCspeciesaverageconcentrationsinppm
units.EmissionsofRTCMCspeciesmustbeprovidedinmoles/hour.
10.2.1.1.2SettingErrorTolerances
AllthreeRTCMCchemistrysolversusetheRtolandAtolparametersspecifiedinthecontrol
sectiontomanageerrorsinpredictedconcentrations.CAMxdoesnotusethespecies‐specific
Atolvaluesthatmayappearinthespeciessectionbecauseitisdifficulttoselectreliable
Atolvaluesforeachspecies.Theerror(err)inthepredictedconcentration(con)forspeciesi
shouldberoughlylessthan:
err(i) = rtol
con(i) + atol
ThecombinedRtolandAtoldetermineaccuracy.SettingAtoltozerowillresultinpure
relativeerrorcontrol.Relativeerrorcontrolhastheadvantageofbeingeasilyunderstood(the
errorsshouldbesmallerthanXpercent)butsuffersthedisadvantageofexcessive
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 210www.camx.com
computationalresourcesthatmaybeexpendedtomanageerrorsinspeciesconcentrations
thatareessentiallyzero.NotethatRTCMCsetsaconcentrationfloorof1.0E‐16ppm.
ThedefaultsettingsforRtolandAtollistedinTable10‐1shouldbegenerallyapplicable
becausetheyareconservativeandeffectivelyresultinpurerelativeerrorcontrol.We
recommendagainstsettingRtolgreaterthan0.001.AppropriatesettingsforAtoldepend
uponthemagnitudeofconcentrationpredictionsandtheneedforaccuratepredictionsinhigh
vs.lowconcentrationareas(e.g.,plumecenterlinevs.outofplume).
DonotrequestinfeasibleaccuracyfromsingleprecisionSLSODEbysettingRtolandAtol
smallerthanabout1.0E‐7.
10.2.1.2TheSpeciesSection
ThespeciessectionoftheIMCfilelistschemicalspeciesandassociateddata.Allchemical
speciesreferredtointheequationsectionmustappearinthespeciessection.Extraspecies
mayappearinthespeciessection,butincludingnumerousextraspeciesmaycausearun‐time
errorbyexceedingthememoryavailableforstoringspeciesinformation(ifthishappens,delete
someoftheunusedspeciesfromthespeciessection).
Thefirstlineisthekeywordidentifyingthespeciessection.Thefollowinginformationmustbe
providedforeachlistedspecies:
Name
Speciesnamesmaybeupto8charactersandmuststartwithaletter.Theyarecase
insensitive.AccuratenamesareimportantbecauseotherCAMxinputdata(e.g.,
emissions,boundaryconditions)willbematchedtoRTRACspeciesbyname.
Type
Therearefourpermissiblespeciestypesidentifiedbyfirstletter:Ambient(A),Fast(F),
Slow(S),andEquilibrium(E).Settingthespeciestypeisdiscussedinmoredetailbelow.
Ambient
TheambientvalueisnotusedbyCAMx,butisusedbySCICHEM.Providearealnumber
(e.g.,0.0).
Atol
SpeciesspecificerrortolerancesarenotusedbyCAMx,butareusedbySCICHEM.
Providearealnumber(e.g.,0.0).
Dep
Thespeciesdepositionvelocityinm/s.Thisdepositionvelocitywillbeusedforallland
surfacetypes,whichisasimplificationcomparedtotheCAMxdrydepositionscheme.
Providearealnumber(e.g.,0.0).
Wet Scav
ThewetscavengingcoefficientisnotusedbyCAMx.ForSCICHEM,thisisawashout
ratio.CAMxdoesnotusethewashoutratiobecausethisapproachisincompatiblewith
theCAMxwetdepositionalgorithms.Providearealnumber(e.g.,0.0).
MW
ThemolecularweightisnotneededbyCAMx.Providearealnumber(e.g.,1.0).
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 211www.camx.com
Spec Map
Thecoremodelspeciesnamefromwhichtouseinternally‐calculateddrydeposition
velocityfortheRTCMCspecies.Thisistriggeredbyanegative“Dep”valueinthesame
record.Providea10‐characterstring.Intheexamplebelow,RTCMCtracerO3Awilluse
depositionvelocitiescalculatedbyCAMxforthecoremodelspeciesO3:
#Name, Type, Ambient, ATol, Dep, Wet Scav, MW, Spec Map
O3A F 1.0 1.000E-08 -3.00E-03 0.0 48.0 O3
10.2.1.2.1ChoosingtheSpeciesType
TheTypeforeachRTCMCspeciesshouldbesetaccordingto:(a)whetherthespecies
concentrationshouldbeobtainedfromthecoremodelormodeledusingtheRTCMC;and(b)
themostaccurateandefficientnumericalmethodforperformingchemistrywithinRTCMC.
Allspeciestobeobtainedfromthecoremodel(e.g.,O3,OH,NO,NO2,H2O,M,O2)mustbeset
totypeAmbient.ThisrulewillbeenforcedbyCAMxand,forexample,thespeciesO3must
besettotypeA,becauseitispartofallthecorechemicalmechanisms.
SpeciesthataresolvedbytheRTCMCmaybetypeF,SorE.Therecommendeddefaulttype
isF(fast)inwhichcasechemistrywillbeperformedusingtheselectedchemistrysolver(e.g.,
DLSODE).Speciesthatundergoslowchemicalchange(lifetimeofhoursorlonger)maybeset
totypeS(slow)withpotentialgaininefficiencybutsomelossinaccuracy.Speciesthat
undergoextremelyrapidchemicalchange(lifetimesmallerthanasecond)maybesettotypeE
(equilibrium)andsolvedusingasteady‐stateapproximationwithsomegaininefficiencybut
somelossinaccuracy.TheRosenbrocksolverdoesnotworkwellwithspeciestypesSorE.
EquilibriumspeciesmaybeusedeffectivelywiththesingleprecisionSLSODEsolvertoavoidthe
needfordoubleprecision.YoushouldusetypesSorEwithcautionandevaluateboth
computationalspeedandconcentrationaccuracybycomparingagainstresultswithusing
typeF.
10.2.1.3TheTableSection
ThetablesectionoftheIMCfileprovidesphotolysisratesforanyphotolyticreactionsinthe
RTCMCmechanism.Itmustcontainatleasttwolines:
#Table
0 zenith1, zenith2, zenith3, …
Thefirstlineisthekeywordidentifyingthetablesection.Thesecondlinemustbeginwith0
(zero)followedbyalistofspace‐delimitedzenithangles(indegrees)startingwithzerodegrees
andascendingtothelargestangle.Ifthelargestzenithanglespecifiedislessthan90degreesa
valueof90degreesisimplicitlyaddedtothelist.Bydefault,upto15zenithanglesareallowed
(thismaybechangedasdescribedunderadjustableparameters,below).Ifthefinalzenith
angleisnot90degrees,nomorethan14anglesshouldbelistedtoallowthe15thangletobe
implicitlysetto90degrees.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 212www.camx.com
Ifthereactionmechanismhasnophotolyticreactions,includejustthefirsttwolines(keyword
followedbyzenithangles)inthetablesection.Ifthereactionmechanismincludesphotolytic
reactions,listthemonereactionperspace‐delimitedlineafterthezenithangles:
reaction_ID, rate1, rate2, rate3, …
Thereaction_IDmustbetheintegeridentificationnumberofthephotolyticreaction
followedbythephotolysisrateateachzenithangle,fromzerotothelargestangle.Photolysis
reactionsarefirstorderandhaverateunitsofreciprocaltimetobeprovidedinthe
Rate_time_unitsspecifiedinthecontrolsectionoftheIMCfile.Aphotolysisrateofzero
isimplicitlyassumedat90degreesunlessyouspecifyotherwise.
Anegative“reaction_ID”inthetablesectioncausesthephotolysisratetobesettoacore
modelreactionnumber,whichissetinthepositionof“rate1”.Intheexamplebelow,
RTCMCreaction#1isphotolyticandrateswillbesetaccordingtotheCAMxcorephotolysis
reactionnumber9:
#Table
0 0. 10. 20. 30. 40. 50. 60. 70. 78. 86.
-001 9
10.2.1.4TheEquationsSection
TheequationssectionoftheIMCfileliststhechemicalreactionsandrateconstantsforthe
RTCMCreactionmechanismandmustcontainatleasttwolines:
#Equations
reaction_ID [Reactants] > (Stoichiometry) [Products] ; Rate_Constant
Thefirstlineisthekeywordidentifyingtheequationssectionandmustbefollowedbyatleast
onereactionline.Reactionlineslistreactionsandrateconstantsandaredelimitedbywhite
spaceandseparators.Thereaction_IDandtheReactantsmustbeseparatedbywhite
space.TheReactantsandProductsmustbeseparatedbyarightarrowsymbol(theright
arrowmaybeprecededbycharacters,e.g.,=>or−>).TheProductsandthe
Rate_Constantmustbeseparatedbyasemi‐colon.
Thereaction_IDmustbeanintegervaluethatuniquelyidentifieseachreaction.Reactions
identifiersneednotbeinorderorcontinuous.
ThenameofReactantsandProductsmustbeenclosedwithinsquarebrackets,begin
withaletter,andnotexceed8charactersinlength.Allspeciesnamesusedintheequations
sectionmustalsoappearinthespeciessection.Zerotothreereactantsareallowed.Zeroto20
productsareallowed(themaximumisauseradjustableparameter).Reactantandproduct
namesmaybeprecededbyastoichiometriccoefficientenclosedwithinroundbrackets.Ifthe
stoichiometriccoefficientisomitteditisassumedtobeunity.
RateconstantsarespecifiedusingSCICHEMconventionsandmustbeintheunitsspecifiedby
thekeywordsRate_species_unitsandRate_time_unitsinthecontrolsection(the
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 213www.camx.com
defaultsaremoleculescm‐3andseconds,respectively).SCICHEMsupportsnumerousrate
constantexpressiontypesandCAMxshouldinterpretallofthemcorrectly,althoughnotall
havebeenthoroughlytested.Table10‐2definesasub‐setoftheSCICHEMrateconstant
expressiontypesthatarerecommendedforusewithCAMx.Theformatforspecifyingrate
expressionsistheintegerexpressiontypefollowedbyalistofthenumericalvaluesrequiredby
thatexpressiontype.Itisimportantthatrateexpressionsaredefinedinunitsthatare
consistentwiththereactionorder,andTable10‐3defineshowthereactionorderandrate
constantunitdimensionsmaybedetermined.
Table10‐2a.RecommendedSCICHEMrateconstantexpressiontypesforuseinCAMx.
ExpressionTypeDescriptionExpression
0 Photolysis k=0
1 Constant 0
kk
2 General temperature
dependence
TBc eTAk /
3 Troe-type temperature and
pressure dependence
G
F
kMk
Mk
k
/][1
][
0
0
B
TAk
0
D
TCk
6.0
F
1
2
0/][log1
kMkG
8 Equilibrium with a previously
defined reaction (kref)
TB
ref eAkk /
13 Lindemann - Hinshelwood
as used for OH + HNO3
23
3
0/}[1
][
kMk
Mk
kk
TB
eAk /
0
TD
eCk /
2
TF
eEk /
3
7
Simple pressure
dependence used for OH +
CO
Pkk 6.01
0
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 214www.camx.com
Table10‐2b.ParametersrequiredbySCICHEMrateconstantexpressiontypes.
Expression
TypeParameters
12 3 4 56
0
0
1
k
o
2AB
C
3AB
C
D
8
k
re
f
A B
13AB
C
D E
F
7
k
o
Table10‐3.Determiningthereactionorderandconsequentunitdimensionsforrate
constants.
NumberofReactantsReactionOrder
ConcentrationUnit
DimensionTimeUnitDimension
0ZeroNone Time‐1
1FirstNone Time‐1
2SecondConcentration‐1Time‐1
3ThirdConcentration‐2Time‐1
TheCAMxoutput“diag”filelistsdiagnosticinformationonthemechanismandrateconstant
expressionsreadbyfromtheIMCfile.Youshouldreviewthisdiagnosticoutputtoensurethat
CAMxcorrectlyreadandconfiguredtheRTCMCchemistrymechanism.
10.3ReactiveTracersInIRONPiG
RTRAC/RTCMCcalculationsforemissionsandchemistryhavebeenintegratedintotheIRONPiG
algorithms.TherearetwowaysinwhichRTRACtracersmayenteraPiGplume:asprimary
emissionsfromspecificallyflaggedsourceswithintheRTRACpointsourcefile,orbyformation
ofsecondaryspeciesfromdecayofprimaryplumeemissions.Thereisnoentrainmentof
tracersfromthegridtotheplumeasthisislikelytoresultinnegativetracerconcentrations,
especiallyiftheentrainedtracerisasecondaryproductofahostmodelspecies(e.g.,secondary
formaldehyde).TracersareassumedtohavenegligibleimpactonPiGpuffchemistryoroxidant
levels.Ifthetracerconcentrationintheplumeishighenoughtoenhanceorsuppressthe
plumeoxidantlevels,thenthephotochemicalimpactsofthetracercanbeaccountedforby
separatelyaddingthetraceremissionsintothehostmodellumpedemissions;e.g.,fortracing
highconcentrationsofpropeneandbuteneinaplume,onewouldtrackthepropene/butene
concentrationsusingRTRACtracersbutalsoaddCB‐OLEorSAPRC‐OLE1emissionstotheplume
toaccountfortheoxidantimpacts.RTRACcheckstoensurethatitisreadingitsowninput
pointsourcefile.RTRACandhostmodelpointsourcefilesmusthavethesamenumberof
sourcesinthesameorder;however,thelistofspeciesoneachfilemaybedifferent,andthe
sourcesflaggedtoreceivethePiGtreatmentmayvary.Apre‐processorprogramwascodedto
helpprepareconsistentRTRACandhostmodelpointsourcefiles.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 215www.camx.com
TracersreleasedfromPiGsourcesdecayaccordingtotheoxidantandphotolyticenvironment
oftheplumeusinguser‐suppliedchemicalrateparameters(asdescribedearlier).Oxidant
concentrationsforthedecaycalculationareobtainedfromtheCAMxPiGincremental
photochemicalsimulationforeachpuffateachtimestep.RTRACtracersineachpuffreactor
areupdatedbasedonthetotaloxidantconcentrationsforthereactor,i.e.,puffincrementplus
puffambient/background.RTRACenforcesarulethatnosecondarytracerformationfromthe
decayofhostmodelspeciesareallowedifIRONPiGisactive(e.g.,nosecondaryformaldehyde
tracerformationisallowedwithIRONPiG).Secondarytracerproductionfromprimarytracer
decayisallowed.
TracersaretransferredfromthePiGtothegridusingthesameapproachasforanyotherhost
modelspecies(seeSection6).Tracerconcentrationsatanypointarethesuperpositionofthe
gridconcentrationplusanycollocatedPiGpuffs.
RTRACoptionallyemployssurface‐layerIRONpuffsamplingoftracersonauser‐defined
samplinggrid(seeSection6).Samplinggridsareentirelypassive,andintendedtoprovidea
displayofthereactivetracerplumeconcentrationsatscalesmuchsmallerthantypicallyused
forthefinestcomputationalgrids(i.e.,<1km).
10.4RunningCAMxWithReactiveTracers
10.4.1CAMxControlFile
RTRACisinvokedsimilarlytotheotherProbingToolswithintheCAMxcontrolfile.Inthe
&CAMx_Controlnamelistmodule,thevariableProbing_Toolmustbesetto“RTRAC”or
“RTCMC”.Anadditionalnamelistmodulecalled&RT_Controlmustthenbeprovidedinthe
controlfiletoconfiguretheRTRACportionofthemodel.Theadditionalnamelistmoduleis
describedbelow.Theorderofthevariablesfollowsthetemplateavailablewiththesource
code.Figure10‐5providesanexampleoftheRTRACcontrolmodule.
DescriptionofRTRACControlintheCAMxRunControlFile
&RT_Control LabelfortheProbingToolnamelistmodulethatconfiguresthe
RTRACoption;itmustbeginincolumn2
& Flagendinganamelist;itmustbeincolumn2
RT_File_Root Characterrootoutputpath/filename
RT_Initial_Conditions CharacterinputmastergridRTRACinitialconditions
path/filename(optional,ignoredif Restart=TRUE)
RT_Boundary_Conditions CharacterinputmastergridRTRACboundaryconditions
path/filename(optional)
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 216www.camx.com
RT_Master_Restart CharacterinputmastergridRTRACrestartpath/filename
(ignoredif Restart=FALSE)
RT_Nested_Restart CharacterinputnestedgridRTRACrestartpath/filename
(ignoredif Restart=FALSE or Number_of_Grids=1)
RT_Chemistry_Parameters CharacterinputRTRACchemistryparameterspath/filename,or
RTCMCIMCchemistrydefinitionpath/filename
RT_Receptor_Definitions CharacterinputRTRACreceptordefinitionpath/filename
(optional)
RT_Point_Sources CharacterinputRTRACelevatedpointsourceemissions
path/filename(optional,ignoredif
Point_Emissions=FALSE)
RT_Emiss_Grid Characterarray(byCAMxgrid)inputRTRACgriddedemissions
path/filename(optional,ignoredif
Gridded_Emissions=FALSE)
RT_PiG_Sample LogicalsamplinggridflagforRTRACIRONPiGoutput;sampling
gridsaredefinedinthemain &CAMx_Controlnamelist
(TRUE=samplinggridoutputwillbegenerated,FALSE=sampling
gridoutputwillnotbegenerated)
Figure10‐4.ExampleinputofRTRACoptionsandfilenameswithintheCAMxcontrolfile.
&RT_Control
RT_File_Root = 'CAMx6.test.020614',
RT_Initial_Conditions = ' ',
RT_Boundary_Conditions = ' ',
RT_Master_Restart = 'CAMx6.test.020613.rt.inst',
RT_Nested_Restart = 'CAMx6.test.020613.rt.finst',
RT_Chemistry_Parameters = 'CAMx6.chemparam.rtrac_test',
RT_Receptor_Definitions = 'receptor.rtrac.test',
RT_Point_Sources = 'pt.rtrac.test',
RT_Emiss_Grid(1) = 'emiss.rtrac.36km',
RT_Emiss_Grid(2) = 'emiss.rtrac.12km',
RT_Emiss_Grid(3) = 'emiss.rtrac.04km',
RT_PiG_Sample = .true.,
&
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 217www.camx.com
AswiththeoutputforthehostmodelandotherProbingTools,a“root”filenameisspecified
andsuffixesareaddeddependinguponthetypeofoutputproduced.Aseparaterootnamefor
RTRAC(andotherProbingTools)allowstheusertodirecttheoutputtoacompletelydifferent
path.RTRACwritesseveraloutputfilesthatareinFortranbinaryformat,asdescribedin
Section3.Theseincludethemasterandnestedgridtracerinstantaneousconcentrationfiles
(.rt.instand.rt.finst),thegrid‐specificsurfacetraceraverageconcentrationfile
(.rt.grdnn).Thesefilesarewritteninthesameformatasfortheregularmodelspecies
describedinSection3.
The“RT_Chemistry_Parameter”namelistvariablespecifiesthepath/filenameofeither
theRTRACchemistryparametersfileortheRTCMCIMCchemistrydefinitionfile.Thechoiceof
whichtypeoffileformatisreadissetaccordingthemain“Probing_Tool”variable(i.e.,
RTRACorRTCMC).
RTRAC/IRONPiGsamplinggridsareinvokedintheRTRACnamelistbysettingalogicalflag.If
settoTRUE,theusermustprovidethenumberofsamplinggridsandthegridparametersof
eachinthemain&CAMx_Controlnamelist.Samplinggridsaresetidenticallytotheway
nestedgridsarespecifiedforthehostmodel,withoneexception:therearenoverticallevelsto
define(samplinggridsarecurrentlyonly2‐Dsurfacefields).Thesamerulesthatapplyforthe
specificationofnestedgridsholdsforthespecificationofallsamplinggrids(seeSections2,4,
and6).The“meshfactor”setstheresolutionorcellsizeofthesamplinggridrelativetothe
mastergrid.TheCAMxdiagnosticoutputfileprovidesinformationonthelocationandsizeof
eachsamplinggridtohelpensurepropersetup.
10.4.2UserAdjustableParameters
OncetheRTRAC/RTCMCchemistryparameters/definitionfileisestablished,theusershouldbe
surethatasufficientallocationofmemoryisprovidedforthisProbingTool.Thisisdoneby
examiningthemainProbingToolparameterandcommonblockfilein
Includes/camx.prm.TheparameterMXTRSPshouldbesettothetotalnumberofspecies
definedinthechemistryparametersfile.Ifsamplinggridsaretobeused,theusershould
ensurethatsufficientmemoryisavailabletodefinethesizeofsamplinggridarrays.Thisisalso
setinIncludes/camx.prm.
UseradjustableparametersforRTCMCaresetintheCAMxincludefile
Includes/rtcmcchm.inc.Ifanerrorisencounteredatmodelstartupbecauseoneof
theseRTCMCparameterhasbeenexceeded,consultthelistofparametersinTable10‐4and
thenchangetheparameterappropriatelyinthertcmcchm.incincludefile.Rebuildthe
CAMxexecutable(werecommendperforminga“make clean”beforemakinganewCAMx
executable)afterchanginganyRTCMCparameter.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 218www.camx.com
Table10‐4.RTCMCparametersdefaultsettingsintheIncludes/rtcmcchm.incinclude
file.
NameDescriptionDefault
MXRX maximumnumberofRTCMCreactions 20
MXPHOT maximumnumberofphotolysisreactions 10
MXZEN maximumnumberofphotolysisreactionzenithangles 15
MXRCTMaximumnumberofreactantsineachreaction 3
MXPRD maximumnumberofproductsineachreaction 20
MXEQM maximumnumberofequilibriumspecies 5
MXSLOmaximumnumberofslowspecies 25
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 219www.camx.com
11.REFERENCES
Anthes,R.A.andT.T.Warner.1978.DevelopmentofHydrodynamicModelsSuitableforAir
PollutionandOtherMesometeorologicalStudies.Mon.Wea.Rev.,106,1045‐1078.
Arey,J.,S.M.Aschmann,E.S.C.Kwok,R.Atkinson.2001.Alkylnitrate,hydroxyalkylnitrate,and
hydroxycarbonylformationfromtheNOx‐airphotooxidationsofC5‐C8n‐alkanes.J.
Phys.Chem.,A105,1020‐1027.
Ariya,P.A.,A.KhalizovandA.Gidas.2002.Reactionsofgaseousmercurywithatomicand
molecularhalogens:kinetics,productstudies,andatmosphericimplications.J.Phys.
Chem.,106,7310‐7320.
AstithaM.,C.Spyrou,G.Kallos,H.DenierVanderGon,A.VisschedijkandJ.Lelieveld.2009.
Chemicalcompositionchangeofaerosolsalonglong‐rangetransportpaths.30th
NATO/SPSITMonAirPollutionModellinganditsApplications,May2009,SanFrancisco,
CA.
Atkinson,R.,W.P.Carter,A.M.Winer.1983.Effectsoftemperatureandpressureonalkyl
nitrateyieldsinthenitrogenoxide(NOx)photooxidationsofn‐pentaneandn‐heptane.
J.Phys.Chem.,87(11),2012‐2018.
Atkinson,R.A.,D.L.Baulch,R.A.Cox,J.N.Crowley,R.F.Hampson,R.G.Hynes,M.E.Jenkin,J.A.
Kerr,M.J.Rossi,J.Troe.2010.“Evaluatedkineticandphotochemicaldatafor
atmosphericchemistry‐IUPACsubcommitteeongaskineticdataevaluationfor
atmosphericchemistry.”January3,2010webversionavailableathttp://www.iupac‐
kinetic.ch.cam.ac.uk/index.html.
Barlage,M.,F.Chen,M.Tewari,K.Ikeda,D.Gochis,J.Dudhia,R.Rasmussen,B.Livneh,M.Ek,
K.Mitchell.2010.Noahlandsurfacemodelmodificationstoimprovesnowpack
predictionintheColoradoRockyMountains.J.Geophys.Res.,115,D22101,
doi:10.1029/2009JD013470.
Bertram,T.H.,Thornton,J.A.2009.TowardageneralparameterizationofN2O5reactivityon
aqueousparticles:thecompetingeffectsofparticleliquidwater,nitrateandchloride.
Atmos.Chem.Phys.,9,8351‐8363.
Bott,A.1989.APositiveDefiniteAdvectionSchemeObtainedbyNonlinearRenormalizationof
theAdvectiveFluxes.Mon.Wea.Rev.,117,1006‐1015.
Brown,S.S.,Ryerson,T.B.,Wollny,A.G.,Brock,C.A.,Peltier,R.,Sullivan,A.P.,Weber,R.J.,Dube,
W.P.,Trainer,M.,Meagher,J.F.,Fehsenfeld,F.C.,Ravishankara,A.R.2006.Variabilityin
nocturnalnitrogenoxideprocessinganditsroleinregionalairquality.Science,311,67‐
70.
Carlton,A.G.,B.J.Turpin,K.E.Altieri,S.Seitzinger,A.Reff,H.‐J.Lim,B.Ervens.2007.
AtmosphericoxalicacidandSOAproductionfromglyoxal:Resultsofaqueous
photooxidationexperiments.Atmos.Environ.,41,7588‐7602.
Carpenter,L.J.2003.Iodineinthemarineboundarylayer.ChemicalReviews,103,4953‐4962.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 220www.camx.com
Carter,W.P.L.1996.CondensedAtmosphericPhotooxidationMechanismsforIsoprene.
Atmos.Environ.,30,4275‐4290.
Carter,W.P.L.2010.DevelopmentoftheSAPRC‐07chemicalmechanism.Atmos.Environ.,44,
5324‐5335.
Carter,W.P.andG.Heo.2013.DevelopmentofrevisedSAPRCaromaticsmechanisms.Atmos.
Environ.,77,404‐414.
Chang,J.S.,R.A.Brost,I.S.A.Isaksen,S.Madronich,P.Middleton,W.R.Stockwell,andC.J,
Walcek.1987.AThree‐dimensionalEulerianAcidDepositionModel:PhysicalConcepts
andFormulation.J.Geophys.Res.,92,14,681‐14,700.
Clever,H.,S.A.JohnsonandE.M.Derrick.1985.Thesolubilityofmercuryandsomesparingly
solublemercurysaltsinwaterandaqueoussolutions.J.Phys.Chem.Ref.Data,14,631‐
680.
Cohan,D.S.,A.Hakami,Y.Hu,andA.G.Russell.2005.NonlinearResponseofOzoneto
Emissions:SourceApportionmentandSensitivityAnalysis.Environ.Sci.Technol.,39,
6739‐6748.
Colella,P.,andP.R.Woodward.1984.ThePiecewiseParabolicMethod(PPM)forGas‐
dynamicalSimulations.J.Comp.Phys.,54,174‐201.
DelGenio,A.D.,M.S.Yao,W.Kovari,K.K.W.Lo.1996.Aprognosticcloudwater
parameterizationforglobalclimatemodels.J.Climate,9,270‐304.
Donahue,N.M.,A.L.Robinson,C.O.Stanier,S.N.Pandis.2006.Coupledpartitioning,dilution,
andchemicalagingofsemivolatileorganics.Environ.Sci.Technol.,40,2635‐2643.
Donahue,N.M.,S.A.Epstein,S.N.Pandis,A.L.Robinson.2011.Atwo‐dimensionalvolatility
basisset:1.organic‐aerosolmixingthermodynamics.Atmos.Chem.Phys.,11,3303‐
3318.
Donahue,N.M.,J.H.Kroll,S.N.Pandis,A.L.Robinson.2012.Atwo‐dimensionalvolatilitybasis
set–Part2:Diagnosticsoforganic‐aerosolevolution.Atmos.Chem.Phys.,12,615‐634.
Dunker,A.M.1980.Theresponseofanatmosphericreaction‐transportmodeltochangesin
inputfunctions.Atmos.Environ.,14,671‐679.
Dunker,A.M.1981.Efficientcalculationsofsensitivitycoefficientsforcomplexatmospheric
models.Atmos.Environ.15,1155‐1161.
DunkerA.M.,G.Yarwood,J.P.Ortmann,G.M.Wilson.2002.Thedecoupleddirectmethodfor
sensitivityanalysisinathree‐dimensionalairqualitymodel–implementation,accuracy
andefficiency.Environ.Sci.Technol.,36,2965‐2976.
Edgerton,E.S.,B.E.HartsellandJ.J.Jansen.2001.Atmosphericmercurymeasurementsata
ruralandurbansitenearAtlanta,GA,USA.6thInternationalConferenceonMercuryasa
GlobalPollutant,15‐19October2001,Minamata,Japan.
Ek,M.B.,K.E.Mitchell,Y.Lin,E.Rogers,P.Grunmann,V.Koren,G.Gayno,J.D.Tarpley.2003.
ImplementationofNoahlandsurfacemodeladvancesintheNationalCentersfor
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 221www.camx.com
EnvironmentalPredictionoperationalmesoscaleEtamodel.J.Geophys.Res.,108(D22),
8851,doi:10.1029/2002JD003296.
Elterman,L.1968.“UV,Visible,andIRAttenuationforAltitudesto50km,1968.”USAirForce
CambridgeResearchLaboratoryReport,AFCRL68‐0153.
Emery,C.,J.Jung,J.Johnson,G.Yarwood,S.Madronich,G.Grell.2010.Improvingthe
CharacterizationofCloudsandtheirImpactonPhotolysisRateswithintheCAMx
PhotochemicalGridModel.PreparedfortheTexasCommissiononEnvironmental
Quality,Austin,TX.PreparedbyENVIRONInternationalCorporation,Novato,CAand
theNationalCenterforAtmosphericResearch,Boulder,CO(August27,2010).
Emery,C.,E.Tai,G.Yarwood,R.Morris.2011.Investigationintoapproachestoreduce
excessiveverticaltransportovercomplexterraininaregionalphotochemicalgrid
model.Atmos.Environ.,45,7341‐7351,doi:10.1016/j.atmosenv.2011.07.052.
Emery,C.,J.Jung,B.Koo,G.Yarwood.2015.ImprovementstoCAMxSnowCoverTreatments
andCarbonBondChemicalMechanismforWinterOzone.PreparedfortheUtah
DepartmentofEnvironmentalQuality,DivisionofAirQuality,SaltLakeCity,UT.
PreparedbyRambollEnviron,Novato,CA(August2015).
ENVIRON.2002.Development,Application,andEvaluationofanAdvancedPhotochemicalAir
ToxicsModelingSystem.PreparedfortheCoordinatingResearchCouncil,Alpharetta,
GA,andtheU.S.DepartmentofEnergy,OfficeofHeavyVehicleTechnologies
(September27,2002).Availablefromwww.crcao.com.
EPA.1990.User’sGuidefortheUrbanAirshedModel‐VolumeI;User’sManualforUAM(CB‐
IV).U.S.EnvironmentalProtectionAgency,ResearchTrianglePark,NC,EPA‐450/4‐90‐
007a.
EPA.1998.User’sGuidefortheAERMODMeteorologicalPreprocessor(RevisedDraft).
PreparedbytheU.S.EnvironmentalProtectionAgency,ResearchTrianglePark,NC
(November,1998).
EPRI.2000.SCICHEMVersion1.2:TechnicalDocumentation.FinalReportpreparedby
ARAP/TitanCorporation,Princeton,NJ,forEPRI,PaloAlto,CA.December2000
(1000713).
Fahey,K.M.andS.N.Pandis.2001.Optimizingmodelperformance:variablesizeresolutionin
cloudchemistrymodeling.Atmos.Environ.35,4471‐4478.
FLAG.2000.“FederalLandManagers’AirQualityRelatedValuesWorkgroup(FLAG),PhaseI
Report.”PreparedbytheUSForestService,AirQualityProgram;NationalParkService,
AirResourcesDivision;andUSFishandWildlifeService,AirQualityBranch(December
2000).
Gallagher,W.M.,K.M.Beswick,J.Duyzer,H.Westrate,T.W.Choularton,J.P.Hummelsho.1997.
MeasurementsofaerosolfluxestoSpeulderforestusingamicrometeorological
technique.Atmos.Environ.,31,359–373.
Ganzeveld,L.,D.Helmig,C.W.Fairall,J.Hare,andA.Pozzer.2009.Atmosphere‐oceanozone
exchange:Aglobalmodelingstudyofbiogeochemical,atmospheric,andwaterside
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 222www.camx.com
turbulencedependencies.GlobalBiogeochem.Cycles,23,GB4021,
doi:10.1029/2008GB003301.
Gardfeldt,K.andM.Johnson.2003.IsbimolecularreductionofHg(II)complexespossiblein
aqueoussystemsofenvironmentalimportance?J.Phys.Chem.,107,4478‐4482.
Gear,C.W.1971.NumericalInitialValueProblemsinOrdinaryDifferentialEquations.Prentice‐
Hall,EnglewoodCliffs,NJ.
Gery,M.W.,G.Z.Whitten,J.P.Killus,andM.C.Dodge.1989.APhotochemicalKinetics
MechanismforUrbanandRegionalScaleComputerModeling.J.Geophys.Res.,94,
925‐956.
Goliff,W.S.,W.R.Stockwell,C.V.Lawson.2013.Theregionalatmosphericchemistry
mechanism,version2.Atmos.Environ.,68,174‐185.
Hairer,E.,andG.Wanner.1991.SolvingordinarydifferentialequationsIIStiffanddifferential‐
algebraicproblems.Springer‐Verlag,Berlin.
Hakami,A.,M.T.Odman,andA.G.Russell.2003.High‐order,directsensitivityanalysisof
multidimensionalairqualitymodels.Environ.Sci.Technol.,37,2442‐2452.
Hall,B.1995.Thegas‐phaseoxidationofelementalmercurybyozone.WaterAirSoilPollut.,
80,301‐315.
Helmig,D.,E.K.Lang,L.Bariteau,P.Boylan,C.W.Fairall,L.Ganzeveld,J.E.Hare,J.Hueber,M.
Pallandt.2012.Atmospherie‐oceanozonefluxesduringtheTexAQS2006,STRATUS
2006,GOMECC2007,GasEx2008andAMMA2008Cruises.J.Geophys.Res.,117,
D04305,doi:10.1029/2011JD015955.
Herman,J.R.andE.A.Celarier.1997.Earthsurfacereflectivityclimatologyat340‐380nmfrom
TOMSdata.J.Geophys.Res.,102,No.23.
HertelO.,R.Berkowics,J.ChristensenandO.Hov.1993.Testoftwonumericalschemesfor
useinatmospherictransport‐chemistrymodels.Atmos.Env.,27,2591‐2611.
HildebrandtRuiz,L.H,andG.Yarwood.2013.InteractionsbetweenorganicaerosolandNOy:
Influenceonoxidantproduction.PreparedfortheTexasAQRP(Project12‐012),bythe
UniversityofTexasatAustin,andENVIRONInternationalCorporation,Novato,CA
(http://aqrp.ceer.utexas.edu/projectinfoFY12_13/12‐012/12‐
012%20Final%20Report.pdf).
HildebrandtRuiz,L.,Koo,B.,Yarwood,G.2015.SourcesofOrganicParticulateMatterin
Houston:EvidencefromDISCOVER‐AQdata‐ModelingandExperiments.FinalReport
preparedfortheTexasAQRP(Project14‐024),bytheUniversityofTexasatAustin,and
RambollEnviron,Novato,CA(http://aqrp.ceer.utexas.edu/projectinfoFY14_15/14‐
024/14‐024%20Final%20Report.pdf).
Hindmarsh,A.C.1983.ODEPACK,aSystematizedCollectionofODESolvers.InNumerical
MethodsforScientificComputation,55,R.S.Stepleman,Ed.,North‐Holland,NewYork.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 223www.camx.com
Holmes,C.D.,D.J.Jacob,andX.Yang.2006.Globallifetimeofelementalmercuryagainst
oxidationbyatomicbromineinthefreetroposphere.Geophys.Res.Lett.,33,L20808,
doi:10.1029/2006GL027176.
Holtslag,A.A.M.andB.A.Boville.1993.Localversusnonlocalboundary‐layerdiffusionina
globalclimatemodel.J.Climate,6,1825–1842.
Huebert,B.J.,andC.H.Robert.1985.TheDryDepositionofNitricAcidtoGrass.J.Geophys.
Res.,90(D1),2085‐2090(doi:10.1029/JD090iD01p02085).
Hutzell,W.T.,Luecken,D.J.,Appel,K.W.,Carter,W.P.L.2012.Interpretingpredictionsfromthe
SAPRC07mechanismbasedonregionalandcontinentalsimulations.Atmos.Environ.,
46,417‐429.
IUPAC.1992.EvaluatedKineticandPhotochemicalDataforAtmosphericChemistry.
SupplementIV.IUPACSubcommitteeonGasKineticDataEvaluationforAtmospheric
Chemistry(R.Atkinson,D.L.Baulch,R.A.Cox,R.F.Hampson,Jr.,J.A.Kerr,andJ.Troe).
JournalofPhysicalandChemicalReferenceData,21,No.6,1125‐1568.
IUPAC.2014a.“SummaryofReactionsandPreferredRateData,Volume3‐InorganicHalogen
Species.”Availableathttp://iupac.pole‐
ether.fr/datasheets/summary/vol3_summary.xml.
IUPAC.2014b.“SummaryofReactionsandPreferredRateData,Volume‐OrganicHalogen
Species.”Availableathttp://iupac.pole‐
ether.fr/datasheets/summary/vol4_summary.xml.
IUPAC.2015.“TaskGrouponAtmosphericChemicalKineticDataEvaluation–DataSheet
NOx33.”Availableathttp://iupac.pole‐
ether.fr/htdocs/datasheets/pdf/NOx33_N2O5_H2O.pdf.
Jacob,D.J.2000.Heterogeneouschemistryandtroposphericozone.Atmos.Environ.,34,
2131‐2159.
Jaegle,L.,D.J.Jacob,W.H.BruneandP.O.Wennberg.2001.ChemistryofHOxradicalsinthe
uppertroposphere.Atmos.Environ.,35,469‐489.
Jathar,S.H.,Gordon,T.D.,Hennigan,C.J.,Pye,H.O.T.,Pouliot,G.,Adams,P.J.,Donahue,N.M.,
Robinson,A.L.2014.Unspeciatedorganicemissionsfromcombustionsourcesandtheir
influenceonthesecondaryorganicaerosolbudgetintheUnitedStates.Proc.Natl.
Acad.Sci.,111,10473‐10478.
Jeffries,H.E.,andG.S.Tonnesen.1994.Comparisonoftwophotochemicalreaction
mechanismsusingamassbalanceandprocessanalysis.Atmos.Environ.,28,2991‐3003.
Kalberer,M.,D.Paulson,M.Sax,M.Steinbacher,J.Dommen,A.S.H.Prevot,R.Fisseha,E.
Weingartner,V.Franhevich,R.Zenob,andU.Balternsperger.2004.Identificationof
polymersasmajorcomponentsofatmosphericorganicaerosols.Science,303,1659‐
1662.
Karamchandani,P.,A.Koo,C.Seigneur.1998.Reducedgas‐phasekineticmechanismfor
atmosphericplumechemistry.Environ.Sci.Technol.,32,1709‐1720.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 224www.camx.com
Koo,B.,A.S.Ansari,andS.N.Pandis.2003.IntegratedApproachestoModelingtheOrganic
andInorganicAtmosphericAerosolComponents.Atmos.Environ.,37,4757‐4768.
Koo,B.,G.Yarwood,D.S.Cohan.2007a.IncorporationofHigh‐orderDecoupledDirectMethod
(HDDM)SensitivityAnalysisCapabilityintoCAMx.PreparedfortheTexasCommission
onEnvironmentalQuality,Austin,TX.PreparedbyENVIRONInternationalCorporation,
Novato,CAandRiceUniversity,Houston,TX.
Koo,B.,A.M.Dunker,G.Yarwood.2007b.ImplementingtheDecoupledDirectMethodfor
SensitivityAnalysisinaParticulateMatterAirQualityModel.Environ.Sci.Technol.,41,
2847‐2854.
Koo,B.,G.Yarwood,D.S.Cohan.2008.Higher‐orderDecoupledDirectMethod(HDDM)for
OzoneModelingSensitivityAnalysesandCodeRefinements.PreparedfortheTexas
CommissiononEnvironmentalQuality,Austin,TX.PreparedbyENVIRONInternational
Corporation,Novato,CAandRiceUniversity,Houston,TX.
Koo,B.,G.M.Wilson,R.E.Morris,A.M.Dunker,G.Yarwood.2009.ComparisonofSource
ApportionmentandSensitivityAnalysisinaParticulateMatterAirQualityModel.
Environ.Sci.Technol.,43,6669‐6675.
Koo,B.,G.YarwoodandJ.Roberts.2012.AnAssessmentofNitrylChlorideFormation
ChemistryanditsImportanceinOzoneNon‐AttainmentAreasinTexas.Finalreportfor
TexasAirQualityResearchProgramproject10‐015.PreparedbyENVIRONInternational
Corporation,Novato,CAandNOAA/ESRL,Boulder,CO.Availableat
http://aqrp.ceer.utexas.edu/projectinfo%5C10‐015%5C10‐015%20Final%20Report.pdf.
Koo,B.,E.Knipping,G.Yarwood.2014.1.5‐Dimensionalvolatilitybasissetapproachfor
modelingorganicaerosolinCAMxandCMAQ.Atmos.Environ.,95,158‐164.
Kumar,N.,F.W.Lurmann,A.S.Wexler,S.Pandis,andJ.H.Seinfeld.1996.Developmentand
ApplicationofaThreeDimensionalAerosolModel.PresentedattheA&WMASpecialty
ConferenceonComputinginEnvironmentalResourceManagement,ResearchTriangle
Park,NC,December2‐4,1996.
Kumar,N.andA.G.Russell.1996.DevelopmentofaComputationallyefficient,ReactiveSub‐
Grid‐ScalePlumeModelandtheImpactintheNortheasternUnitedStatesUsing
IncreasingLevelsofChemicalDetail.J.Geophys.Res.,101,16,737‐16,744.
Landis,M.S.andG.Keeler.2002.AtmosphericmercurydepositiontoLakeMichiganduringthe
LakeMichiganMassBalanceStudy.Environ.Sci.Technol.,36,4518‐4524.
Lane,T.E.,N.M.Donahue,S.N.Pandis.2008.Simulatingsecondaryorganicaerosolformation
usingthevolatilitybasis‐setapproachinachemicaltransportmodel.Atmos.Environ.,
42,7439‐7451.
Lee,L.,P.J.Wooldridge,J.B.Gilman,C.Warneke,J.deGouw,R.C.Cohen.2014.Low
temperaturesenhanceorganicnitrateformation:evidencefromobservationsinthe
2012UintahBasinWinterOzoneStudy.Atmos.Chem.Phys.Disc.,14(11),17401‐17438.
Lin,C.J.andS.O.Pehkonen.1997.Aqueous‐freeradicalchemistryofmercuryinthepresence
ofironoxidesandambientaerosol.Atmos.Environ.,31,4125‐4137.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 225www.camx.com
Lin,C.J.andS.O.Pehkonen.1998.Oxidationofelementalmercurybyaqueouschlorine
(HOCl/OCl‐):Implicationsfortroposphericmercurychemistry.J.Geophys.Res.,103,
28093‐28102.
Lindberg,S.,O.R.Bullock,R.Ebinghaus,D.Engstrom,X.Feng,W.Fitzgerald,N.Pirrone,E.
Prestbo,andC.Seigneur.2007.Asynthesisofprogressanduncertaintiesinattributing
thesourcesofmercuryindeposition.Ambio,36,19‐33.
Lindqvist,O.andH.Rodhe.1985.Atmosphericmercury‐areview.Tellus,37B,136‐159.
Liu,M.andJ.Carroll.1996.Ahighresolutionairpollutionmodelsuitablefordispersionstudies
incomplexterrain.Mon.Wea.Rev.,124,10,2396‐2409.
Livneh,B.,Y.Xia,K.E.Mitchell,M.B.Ek.2010.NoahLSMsnowmodeldiagnosticsand
enhancements.J.Hydromet.,11,doi:10.1175/2009JHM1174.1.
Locatelli,J.D.andP.V.Hobbs.1974.Fallspeedsandmassesofsolidprecipitationparticles.J.
Geophys.Res.,79(15),2185‐2197.
Louis,J.F.1979.AParametricModelofVerticalEddyFluxesintheAtmosphere.Bound.Lay.
Meteor.17,187‐202.
May,A.A.,A.A.Presto,C.J.Hennigan,N.T.Nguyen,T.D.Gordon,A.L.Robinson.2013a.Gas‐
particlepartitioningofprimaryorganicaerosolemissions:(1)Gasolinevehicleexhaust.
Atmos.Environ.,77,128‐139.
May,A.A.,A.A.Presto,C.J.Hennigan,N.T.Nguyen,T.D.Gordon,A.L.Robinson.2013b.Gas‐
ParticlePartitioningofPrimaryOrganicAerosolEmissions:(2)DieselVehicles.Environ.
Sci.Technol.,47,8288‐8296.
May,A.A.,E.J.T.Levin,C.J.Hennigan,I.Riipinen,T.Lee,J.L.CollettJr.,J.L.Jimenez,S.M.
Kreidenweis,A.L.Robinson.2013c.Gas‐particlepartitioningofprimaryorganicaerosol
emissions:3.Biomassburning.J.Geophys.Res.,118,11327‐11338.
Moore,R.andTokarczyk,R.1993.VolatileBiogenicHalocarbonsintheNorthwestAtlantic.
GlobalBiogeochem.Cy.,7,195–210,
Moore,R.andZafiriou,O.1994.Photochemicalproductionofmethyliodideinseawater.J.
Geophys.Res.,99,16415–16420,doi:10.1029/94JD00786.
Morris,R.E.,S.Lau,andG.Yarwood.2003.DevelopmentandApplicationofanAdvancedAir
ToxicsHybridPhotochemicalGridModelingSystem.Presentedat96thAnnual
ConferenceandExhibitionoftheA&WMA,SanDiego,California(June2003).
Munthe,J.1992.Theaqueousoxidationofelementalmercurybyozone.Atmos.Environ.,Part
A,26,1461‐1468.
Murphy,B.N.,S.N.Pandis.2009.SimulatingtheFormationofSemivolatilePrimaryand
SecondaryOrganicAerosolinaRegionalChemicalTransportModel.Environ.Sci.
Technol.,43,4722‐4728.
NASA.1997.ChemicalKineticsandPhotochemicalDataforUseinStratosphericModeling,JPL
Publication97‐4.JetPropulsionLaboratory,CaliforniaInstituteofTechnology,
Pasadena,California.January15.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 226www.camx.com
NCAR.2011.TheTroposphericVisibleandUltraviolet(TUV)RadiationModelwebpage.
NationalCenterforAtmosphericResearch,AtmosphericChemistryDivision,Boulder,
Colorado,http://cprm.acd.ucar.edu/Models/TUV/index.shtml.
Nenes,A,C.Pilinis,andS.N.Pandis.1998.ISORROPIA:ANewThermodynamicModelfor
MultiphaseMulticomponentInorganicAerosols.AquaticGeochemistry,4,123‐152.
Nenes,A.,C.Pilinis,andS.N.Pandis.1999.ContinuedDevelopmentandTestingofaNew
ThermodynamicAerosolModuleforUrbanandRegionalAirQualityModels.Atmos.
Environ.33,1553‐1560.
Odman,M.T.andIngram,C.L.1993.MultiscaleAirQualitySimulationPlatform(MAQSIP):
SourceCodeDocumentationandValidation.Technicalreport,83pp.,ENV‐96TR002,
MCNC–NorthCarolinaSupercomputingCenter,ResearchTrianglePark,NorthCarolina,
1996.
Ordóñez,C.,J.‐F.Lamarque,S.Tilmes,D.E.Kinnison,E.L.Atlas,D.R.Blake,G.SousaSantos,G.
Brasseur,andA.Saiz‐Lopez.2012.Bromineandiodinechemistryinaglobalchemistry‐
climatemodel:descriptionandevaluationofveryshort‐livedoceanicsources.Atmos.
Chem.Phys.,12,1423‐1447,doi:10.5194/acp‐12‐1423‐2012.
Pal,B.,andP.A.Ariya.2003.Atmosphericreactionsofgaseousmercurywithozoneand
hydroxylradical:kineticsandproductstudies.J.Phys.,107,189–192.
Pal,B.andP.A.Ariya.2004.Gas‐phaseHO‐initiatedreactionsofelementalmercury:Kinetics,
productstudiesandatmosphericimplications.Environ.Sci.Technol.,38,5555‐5566.
Pandis,S.N.,A.S.Wexler,andJ.H.Seinfeld.1993.Secondaryorganicaerosolformationand
transport,II,Predictingtheambientsecondaryorganicaerosolsizedistribution.Atmos.
Environ.,27A,2403‐2416.
Parrella,J.P.,D.J.Jacob,Q.Liang,Y.Zhang,L.J.Mickley,B.Miller,M.J.Evansetal.2012.
Troposphericbrominechemistry:implicationsforpresentandpre‐industrialozoneand
mercury.Atmos.Chem.Phys.,12,no.15:6723‐6740.
Paulot,F.,J.D.Crounse,H.G.Kjaergaard,J.H.Kroll,J.H.Seinfeld,P.O.Wennberg.2009a.
Isoprenephotooxidation:newinsightsintotheproductionofacidsandorganicnitrates.
Atmos.Chem.Phys.,9,1479‐1501.
Paulot,F,J.D.Crounse,H.G.Kjaergaard,A.Kurten,J.M.St.Clair,J.H.Seinfeld,P.O.Wennberg.
2009b.UnexpectedEpoxideFormationintheGas‐PhasePhotooxidationofIsoprene.
Science,325,730‐733.
Peeters,J.,Nguyen,T.L.,Vereecken,L.2009.HOxradicalregenerationintheoxidationof
isoprene.Phys.Chem.andChem.Phys.,11,5935‐5939
Pehkonen,S.O.andC.J.Lin.1998.Aqueousphotochemistryofdivalentmercurywithorganic
acids.J.AirWasteManage.Assoc.,48,144‐150.
Perring,A.E.,S.E.Pusede,R.C.Cohen.2013.Anobservationalperspectiveontheatmospheric
impactsofalkylandmultifunctionalnitratesonozoneandsecondaryorganicaerosol.
ChemicalReviews,113(8),5848‐5870.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 227www.camx.com
Pleim,J.2007.Acombinedlocalandnonlocalclosuremodelfortheatmosphericboundary
layer.PartI:Modeldescriptionandtesting.J.Appl.Met.andClim.,46,1383‐1395.
Radhakrishnan,K.andA.C.Hindmarsh.1993.DescriptionandUseofLSODE,theLivermore
SolverforOrdinaryDifferentialEquations.NASAreferencePublication1327.Lawrence
LivermoreNationalLaboratory,Livermore,CA.
Ranjan,M.,A.A.Presto,A.A.May,A.L.Robinson.2012.TemperatureDependenceofGas–
ParticlePartitioningofPrimaryOrganicAerosolEmissionsfromaSmallDieselEngine.
AerosolSci.Technol.,46,13‐21.
Raofie,F.andP.A.Ariya.2003.ReactionsofBrOwithmercury:kineticstudies.J.Phys.IV,107,
1119–1121.
Robinson,A.L.,N.M.Donahue,M.K.Shrivastava,E.A.Weitkamp,A.M.Sage,A.P.Grieshop,T.E.
Lane,J.R.Pierce,S.N.Pandis.2007.Rethinkingorganicaerosols:semivolatileemissions
andphotochemicalaging.Science,315,1259‐1262.
Russell,L.M.,S.N.Pandis,andJ.H.Seinfeld.1994.Aerosolproductionandgrowthinthe
marineboundarylayer.J.Geophys.Res.,99,20989‐21003.
Rutter,A.P.,andJ.J.Schauer.2007a.Theeffectoftemperatureonthegas‐particlepartitioning
ofreactivemercuryinatmosphericaerosols.Atmos.Environ.,41,8647‐8657.
Rutter,A.P.;Schauer,J.J.2007b.Theimpactofaerosolcompositionontheparticletogas
partitioningofreactivemercury.Environ.Sci.Technol.,41,3934‐3939.
Ryaboshapko,A.,R.Bullock,R.Ebinghaus,I.Ilyin,K.Lohman,J.Munthe,G.Petersen,C.
SeigneurandI.Wängberg.2002.Comparisonofmercurychemistrymodels.Atmos.
Environ.,36,3881‐3898.
Sander,S.P.,R.R.Friedl,D.M.Golden,M.J.Kurylo,R.E.Huie,V.L.Orkin,G.K.Moortgat,P.H.
Wine,A.R.Ravishankara,C.E.Kolb,M.J.Molina,B.J.Finlayson‐Pitts.2006.Evaluation
number15:Chemicalkineticsandphotochemicaldataforuseinatmosphericstudies.
NASAPanelforDataEvaluation,JPLPublication06‐2,JetPropulsionLaboratory,
CaliforniaInsituteofTechnology,Pasadena,California.
Sanemasa,I.1975.Thesolubilityofelementalmercuryvaporinwater.Bull.Chem.Soc.Jpn.,
48,1795‐1798.
Sauter,D.P.andP.K.Wang.1989.Anexperimentalstudyofthescavengingofaerosolparticles
bynaturalsnowcrystals.J.Atmos.Sci.,46,1650‐1655.
Schroeder,W.H.andJ.Munthe.1998.Atmosphericmercury–Anoverview.Atmos.Environ.,
32,809‐822.
Scott,B.C.1978.Parameterizationofsulfateremovalbyprecipitation.J.Appl.Meteor.,17,
1375‐1389.
Sehmel,G.A.1980.ParticleandGasDeposition,aReview.Atmos.Environ.,14,983‐1011.
Seigneur,C.,H.Abeck,G.Chia,M.Reinhard,N.S.Bloom,E.PrestboandP.Saxena.1998.
Mercuryadsorptiontoelementalcarbon(soot)particlesandatmosphericparticulate
matter.Atmos.Environ.,32,2649‐2657.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 228www.camx.com
Seigneur,C.,P.Karamchandani,K.Lohman,K.VijayaraghavanandR.‐L.Shia.2001a.Multiscale
modelingoftheatmosphericfateandtransportofmercury.J.Geophys.Res.,106,
27795‐27809.
Seigneur,C.,P.Karamchandani,K.LohmanandJ.Jansen.2001b.Modelingofmercuryin
powerplantplumes.6thInternationalConferenceonMercuryasaGlobalPollutant,15‐
19October2001,Minamata,Japan.
Seigneur,C.,P.Karamchandani,K.Vijayaraghavan,K.LohmanandG.Yelluru.2003.Scoping
StudyforMercuryDepositionintheUpperMidwest.AERReportCP149‐03‐01a,
preparedfortheMidwestRegionalPlanningOrganization,DesPlaines,IL.
Seigneur,C.,K.Vijayaraghavan,K.LohmanandP.Karamchandani.2004.Modelingthe
atmosphericfateandtransportofmercuryoverNorthAmerica.FuelProcessing
Technol.,85,441‐450.
Seigneur,C.andK.Lohman.2008.Effectofbrominechemistryontheatmosphericmercury
cycle.J.Geophys.Res.,113,D23309,doi:10.1029/2008JD010262.
Seinfeld,J.H.,andS.N.Pandis.1998.AtmosphericChemistryandPhysics,FromAirPollutionto
ClimateChange.JohnWileyandSons,Inc.,NY.
Sillen,G.L.andA.E.Martell,(Eds.).1964.Stabilityconstantsofmetalioncomplexes,Spec.
Publ.Chem.Soc.,17,754.
Sillman,S.1995.TheUseofNOy,H2O2,andHNO3asIndicatorsforOzone‐NOX‐Hydrocarbon
SensitivityinUrbanLocations.J.Geophys.Res.,100,14,175‐14,188.
Slinn,S.A.andW.G.N.Slinn.1980.Predictionsforparticledepositiononnaturalwaters.
Atmos.Environ.,24,1013‐1016.
Slinn,W.G.N.1982.Predictionsforparticledepositiontovegetativesurfaces.Atmos.Environ.,
16,1785‐1794.
Smagorinsky,J.1963.GeneralCirculationExperimentswiththePrimitiveEquations:I.The
BasicExperiment.Mon.Wea.Rev.,91,99‐164.
Smoydzin,L.,andR.vonGlasow.2009.ModellingchemistryovertheDeadSea:bromineand
ozonechemistry.AtmosphericChemistryandPhysics,9(14),5057‐5072.
Sommar,J.,K.Gårdfeldt,D.StrömbergandX.Feng.2001.Akineticstudyofthegas‐phase
reactionbetweenthehydroxylradicalandatomicmercury.Atmos.Environ.,35,3049‐
3054.
Strader,R.,F.Lurmann,andS.N.Pandis.1999.Evaluationofsecondaryorganicaerosol
formationinwinter.Atmos.Environ.,33,4849‐4863.
Takemura,T.,T.Nakajima,O.Dubovik,B.N.Holben,S.Kinne.2002.Single‐scatteringalbedo
andradiativeforcingofvariousaerosolspecieswithaglobalthree‐dimensionalmodel.
J.Climate,15(4),333‐352.
Tanaka,P.L.,D.T.Allen,E.C.McDonald‐Buller,S.Chang,Y.Kimura,C.B.Mullins,G.Yarwood,
andJ.D.Neece.2003.Developmentofachlorinemechanismforuseinthecarbon
bondIVchemistrymodel.J.Geophys.Res.:Atmos.,108(D4),1984–2012.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 229www.camx.com
Tokos,J.J.S.,B.Hall,J.A.Calhoun,andE.M.Prestbo.1998.Homogeneousgas‐phasereactionof
Hg0withH2O2,O3,CH3I,and(CH3)2S:ImplicationsforatmosphericHgcycling.Atmos.
Environ.,32,823‐827.
Tonnesen,G.S.andR.L.Dennis.2000.Analysisofradicalpropagationefficiencytoassess
ozonesensitivitytohydrocarbonsandNOx.Part1:Localindicatorsofoddoxygen
productionsensitivity.J.Geophys.Res.,105,9213‐9225.
Turner,D.B.,T.Chico,andA.Catalano.1986.TUPOS:AMultipleSourceGaussianDispersion
AlgorithmUsingOn‐SiteTurbulenceData.U.SEnvironmentalProtectionAgency,
ResearchTrianglePark,NorthCarolina(EPA‐600/8‐86/010).
Turner,D.B.andR.H.Schulze.2007.PracticalGuidetoAtmosphericDispersionModeling.Air
andWasteManagementAssociation.
vanLoon,L.,E.Mader,andS.L.Scott.2000.Reductionoftheaqueousmercuricionbysulfite:
UVspectrumofHgSO3anditsintramolecularredoxreactions.J.Phys.Chem.,104,
1621‐1626.
vanLoon,L.L.,E.A.Mader,andS.L.Scott.2001.Sulfitestabilizationandreductionofthe
aqueousmercuricion:kineticdeterminationofsequentialformationconstants.J.Phys.
Chem.,105,3190‐3195.
Vijayaraghavan,K.,P.Karamchandani,C.Seigneur,R.Balmori,andS.‐Y.Chen.2008.Plume‐in‐
gridmodelingofatmosphericmercury.J.Geophys.Res.,113,D24305,
doi:10.1029/2008JD010580.
Vogt,R.,R.Sander,R.vonGlasow,andP.J.Crutzen.1999.Iodinechemistryanditsrolein
halogenactivationandozonelossinthemarineboundarylayer:Amodelstudy.J.
Atmos.Chem.,32(3),375‐395.
Voulgarakis,A.,N.H.Savage,O.Wild,G.D.Carver,K.C.Clemitshaw,J.A.Pyle.2009.Upgrading
photolysisinthep‐TOMCATCTM:modelevaluationandassessmentoftheroleof
clouds.Geo.Mod.Devel.,2,59‐72.
Wang,Z.,J.E.Langstaff,andH.E.Jeffries.1995.TheApplicationoftheIntegratedProcessRate
AnalysisMethodforInvestigationofUrbanAirshedModel(UAM)Sensitivityto
SpeciationinVOCEmissionsData.Air&WasteManagementAssociationannual
meeting,SanAntonio,TX.
Wang,Z.,andX.Zeng.2010.Evaluationofsnowalbedoinlandmodelsforweatherand
climatestudies.J.Appl.MetClim.,49,doi:10.1175/2009JAMC2134.1.
Wesely,M.L.1989.ParameterizationofSurfaceResistancestoGaseousDryDepositionin
Regional‐ScaleNumericalModels.Atmos.Environ.,23,1293‐1304.
Wesely,M.L.,andB.B.Hicks.2000.Areviewofthecurrentstatusofknowledgeondry
deposition.Atmos.Environ.,34,2261.
Whitten,G.,H.P.Deuel,C.S.Burton,andJ.L.Haney.1996.“OverviewoftheImplementationof
anUpdatedIsopreneChemistryMechanisminCB4/UAM‐V.”(RevisedMemorandumto
OTAGParticipants,July22).
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 230www.camx.com
Whitten,G.Z.,andG.Yarwood.2008.TheOzoneProductivityofn‐PropylBromide:Part2—An
ExceptiontotheMaximumIncrementalReactivityScale.J.AirWasteManag.Assoc.,
58(7),891‐901.
Whitten,G.Z.,G.Heo,Y.Kimura,E.McDonald‐Buller,D.T.Allen,W.P.I.Carter,G.Yarwood.
2010.ANewCondensedTolueneMechanismforCarbonBond:CB05‐TU.Atmos.
Environ.,44(40),doi:10.1016/j.atmosenv.2009.12.029.
Woody,M.C.,Baker,K.R.,Hayes,P.L.,Jimenez,J.L.,Koo,B.,Pye,H.O.T.2016.Understanding
sourcesoforganicaerosolduringCalNex‐2010usingtheCMAQ‐VBS.Atmos.Chem.
Phys.,16,4081‐4100(doi:10.5194/acp‐16‐4081‐2016).
Yamartino,R.2000.RefinementofHorizontalDiffusioninPhotochemicalGridModels.
PresentedattheAmericanMeteorologicalSociety11thJointConferenceonthe
ApplicationsofAirPollutionMeteorologywiththeAirandWasteManagement
Association,LongBeach,CA,January9‐13.
Yang,X.,R.A.Cox,N.J.Warwick,J.A.Pyle,G.D.Carver,F.M.O'Connor,andN.H.Savage.2005.
Troposphericbrominechemistryanditsimpactsonozone:Amodelstudy.J.Geophys.
Res.:Atmos.,110(D23),DOI:10.1029/2005JD006244.
Yarwood,G.,R.E.Morris,M.A.Yocke,H.HogoandT.Chico.1996a.Developmentofa
MethodologyforSourceApportionmentofOzoneConcentrationEstimatesfroma
PhotochemicalGridModel.Presentedatthe89thAWMAAnnualMeeting,Nashville
TN,June23‐28.
Yarwood,G.,T.E.Stoeckenius,G.Wilson,R.E.Morris,andM.A.Yocke.1996b.Developmentof
aMethodologytoAssessGeographicandTemporalOzoneControlStrategiesforthe
SouthCoastAirBasin.PreparedforSouthCoastAirQualityManagementDistrict,
DiamondBar,CA.
Yarwood,G.,R.E.Morris,G.M.Wilson.2004.ParticulateMatterSourceApportionment
Technology(PSAT)intheCAMxPhotochemicalGridModel.Proceedingsofthe27th
NATO/CCMSInternationalTechnicalMeetingonAirPollutionModelingand
Application.SpringerVerlag(Availablefrom
http://camx.com/publ/pdfs/yarwood_itm_paper.pdf).
Yarwood.G.,G.Z.Whitten,andS.Rao.2005a.UpdatestotheCarbonBond4Photochemical
Mechanism.PreparedfortheLakeMichiganAirDirectorsConsortium,DesPlains,
Illinois.
Yarwood.G.,S.Rao,M.Yocke,andG.Z.Whitten.2005b.UpdatestotheCarbonBondchemical
mechanism:CB05.FinalReportpreparedforUSEPA.Availableat
http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf.
Yarwood,G.,J.Jung,G.Z.Whitten,G.Heo,J.MellbergandE.Estes.2010.Updatestothe
CarbonBondMechanismforVersion6(CB6).Presentedatthe9thAnnualCMAS
Conference,ChapelHill,October.
Yarwood,G.,H.Gookyoung,W.P.L.Carter,G.Z.Whitten.2012a.EnvironmentalChamber
ExperimentstoEvaluateNOxSinksandRecyclinginAtmosphericChemicalMechanisms.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 231www.camx.com
FinalReportpreparedfortheTexasAirQualityResearchProgram,UniversityofTexas,
Austin,Texas(AQRPProject10‐042,February2012).
Yarwood,G.,J.Jung,U.Nopmongcol,C.Emery.2012b.ImprovingCAMxPerformancein
SimulatingOzoneTransportfromtheGulfofMexico.FinalReportpreparedforthe
TexasCommissiononEnvironmentalQuality,Austin,Texas(September2012).Prepared
byENVIRONInternationalCorporation,Novato,CA.
Yarwood,G.,T.Sakulyanontvittaya,U.Nopmongcol,B.Koo.2014.OzoneDepletionby
BromineandIodineovertheGulfofMexico.FinalReportpreparedfortheTexas
CommisisiononEnvironmentalQuality,Austin,Texas(November2014).Preparedby
ENVIRONInternationalCorporation,Novato,CA.
Yarwood,G.andB.Koo.2015.ImprovedOSAT,APCAandPSATAlgorithmsforCAMx.Final
reportpreparedfortheTexasCommissiononEnvironmentalQuality,Austin,Texas
(August,2015).PreparedbyRambollEnviron,Novato,CA.
Yeh,G.K.andP.J.Ziemann.2014.AlkylNitrateFormationfromtheReactionsofC8–C14n‐
AlkaneswithOHRadicalsinthePresenceofNOx:MeasuredYieldswithEssential
CorrectionsforGas–WallPartitioning.J.Phys.Chem.,118(38),8797‐8806.
Zhang,L.,S.Gong,J.Padro,L.Barrie.2001.Asize‐segregatedparticledrydepositionscheme
foranatmosphericaerosolmodule.Atmos.Environ.,35,549‐560.
Zhang,L.,J.R.Brook,andR.Vet.2003.Arevisedparameterizationforgaseousdrydeposition
inair‐qualitymodels.Atmos.Chem.Phys.,3,2067–2082.
Zhang,X.,S.Kondragunta,C.Schmidt,andF.Kogan.2008.Nearrealtimemonitoringof
biomassburningparticulateemissions(PM2.5)acrosscontiguousUnitedStatesusing
multiplesatelliteinstruments.AtmosphericEnvironment,42,6959‐6972.
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2–CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 232www.camx.com
AppendixA
CAMxMechanism2:CB6r2Gas‐PhaseChemistry
TableA‐1.ReactionsandrateconstantexpressionsfortheCB6r2mechanism.k298istherate
constantat298Kand1atmosphereusingunitsinmolecules/cm3and1/s.Forphotolysis
reactionsk298showsthephotolysisrateatasolarzenithangleof60°andheightof600m
MSL/AGL.SeeTable5‐2forspeciesnames.SeeSection3.1ontemperatureandpressure
dependencies.
NumberReactantsandProductsRateConstantExpressionk298
1NO2=NO+OPhotolysis6.30E‐3
2O+O2+M=O3+Mk=5.68E‐34(T/300)^‐2.65.78E‐34
3O3+NO=NO2k=1.40E‐12exp(‐1310/T)1.73E‐14
4O+NO+M=NO2+Mk=1.00E‐31(T/300)^‐1.61.01E‐31
5O+NO2=NOk=5.50E‐12exp(188/T)1.03E‐11
6O+NO2=NO3Falloff:F=0.6;n=1
k(0)=1.30E‐31(T/300)^‐1.5
k(inf)=2.30E‐11(T/300)^0.24
2.11E‐12
7O+O3=k=8.00E‐12exp(‐2060/T)7.96E‐15
8O3=OPhotolysis3.33E‐4
9O3=O1DPhotolysis8.78E‐6
10O1D+M=O+Mk=2.23E‐11exp(115/T)3.28E‐11
11O1D+H2O=2OHk=2.14E‐102.14E‐10
12O3+OH=HO2k=1.70E‐12exp(‐940/T)7.25E‐14
13O3+HO2=OHk=2.03E‐16(T/300)^4.57exp(693/T)2.01E‐15
14OH+O=HO2k=2.40E‐11exp(110/T)3.47E‐11
15HO2+O=OHk=2.70E‐11exp(224/T)5.73E‐11
16OH+OH=Ok=6.20E‐14(T/298)^2.6exp(945/T)1.48E‐12
17OH+OH=H2O2Falloff:F=0.5;n=1.13
k(0)=6.90E‐31(T/300)^‐0.8
k(inf)=2.60E‐11
5.25E‐12
18OH+HO2=k=4.80E‐11exp(250/T)1.11E‐10
19HO2+HO2=H2O2k=k1+k2[M]
k1=2.20E‐13exp(600/T)
k2=1.90E‐33exp(980/T)
2.90E‐12
20HO2+HO2+H2O=H2O2k=k1+k2[M]
k1=3.08E‐34exp(2800/T)
k2=2.66E‐54exp(3180/T)
6.53E‐30
21H2O2=2OHPhotolysis3.78E‐6
22H2O2+OH=HO2k=2.90E‐12exp(‐160/T)1.70E‐12
23H2O2+O=OH+HO2k=1.40E‐12exp(‐2000/T)1.70E‐15
24NO+NO+O2=2NO2k=3.30E‐39exp(530/T)1.95E‐38
25HO2+NO=OH+NO2k=3.45E‐12exp(270/T)8.54E‐12
26NO2+O3=NO3k=1.40E‐13exp(‐2470/T)3.52E‐17
27NO3=NO2+OPhotolysis1.56E‐1
28NO3=NOPhotolysis1.98E‐2
29NO3+NO=2NO2k=1.80E‐11exp(110/T)2.60E‐11
30NO3+NO2=NO+NO2k=4.50E‐14exp(‐1260/T)6.56E‐16
31NO3+O=NO2k=1.70E‐111.70E‐11
32NO3+OH=HO2+NO2k=2.00E‐112.00E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2–CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 233www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
33NO3+HO2=OH+NO2k=4.00E‐124.00E‐12
34NO3+O3=NO2k=1.00E‐171.00E‐17
35NO3+NO3=2NO2k=8.50E‐13exp(‐2450/T)2.28E‐16
36NO3+NO2=N2O5Falloff:F=0.35;n=1.33
k(0)=3.60E‐30(T/300)^‐4.1
k(inf)=1.90E‐12(T/300)^0.2
1.24E‐12
37N2O5=NO3+NO2Falloff:F=0.35;n=1.33
k(0)=1.30E‐3(T/300)^‐3.5exp(‐11000/T)
k(inf)=9.70E+14(T/300)^0.1exp(‐
11080/T)
4.46E‐2
38N2O5=NO2+NO3Photolysis2.52E‐5
39N2O5+H2O=2HNO3k=1.00E‐221.00E‐22
40NO+OH=HONOFalloff:F=0.81;n=0.87
k(0)=7.40E‐31(T/300)^‐2.4
k(inf)=3.30E‐11(T/300)^‐0.3
9.77E‐12
41NO+NO2+H2O=2HONOk=5.00E‐405.00E‐40
42HONO+HONO=NO+NO2k=1.00E‐201.00E‐20
43HONO=NO+OHPhotolysis1.04E‐3
44HONO+OH=NO2k=2.50E‐12exp(260/T)5.98E‐12
45NO2+OH=HNO3Falloff:F=0.6;n=1
k(0)=1.80E‐30(T/300)^‐3
k(inf)=2.80E‐11
1.06E‐11
46HNO3+OH=NO3k=k1+k3[M]/(1+k3[M]/k2)
k1=2.40E‐14exp(460/T)
k2=2.70E‐17exp(2199/T)
k3=6.50E‐34exp(1335/T)
1.54E‐13
47HNO3=OH+NO2Photolysis2.54E‐7
48HO2+NO2=PNAFalloff:F=0.6;n=1
k(0)=1.80E‐31(T/300)^‐3.2
k(inf)=4.70E‐12
1.38E‐12
49PNA=HO2+NO2Falloff:F=0.6;n=1
k(0)=4.10E‐5exp(‐10650/T)
k(inf)=4.80E+15exp(‐11170/T)
8.31E‐2
50PNA=0.59HO2+0.59NO2+0.41OH+
0.41NO3
Photolysis2.36E‐6
51PNA+OH=NO2k=3.20E‐13exp(690/T)3.24E‐12
52SO2+OH=SULF+HO2Falloff:F=0.53;n=1.1
k(0)=4.50E‐31(T/300)^‐3.9
k(inf)=1.30E‐12(T/300)^‐0.7
8.12E‐13
53C2O3+NO=NO2+MEO2+RO2k=7.50E‐12exp(290/T)1.98E‐11
54C2O3+NO2=PANFalloff:F=0.3;n=1.41
k(0)=2.70E‐28(T/300)^‐7.1
k(inf)=1.20E‐11(T/300)^‐0.9
9.40E‐12
55PAN=NO2+C2O3Falloff:F=0.3;n=1.41
k(0)=4.90E‐3exp(‐12100/T)
k(inf)=5.40E+16exp(‐13830/T)
2.98E‐4
56PAN=0.6NO2+0.6C2O3+0.4NO3+0.4
MEO2+0.4RO2
Photolysis3.47E‐7
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2–CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 234www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
57C2O3+HO2=0.41PACD+0.15AACD+
0.15O3+0.44MEO2+0.44RO2+0.44OH
k=5.20E‐13exp(980/T)1.39E‐11
58C2O3+RO2=C2O3k=8.90E‐13exp(800/T)1.30E‐11
59C2O3+C2O3=2MEO2+2RO2k=2.90E‐12exp(500/T)1.55E‐11
60C2O3+CXO3=MEO2+ALD2+XO2H+2
RO2
k=2.90E‐12exp(500/T)1.55E‐11
61CXO3+NO=NO2+ALD2+XO2H+RO2k=6.70E‐12exp(340/T)2.10E‐11
62CXO3+NO2=PANXk=k(ref)K
k(ref)=k(54)
K=1.00E+0
9.40E‐12
63PANX=NO2+CXO3k=k(ref)K
k(ref)=k(55)
K=1.00E+0
2.98E‐4
64PANX=0.6NO2+0.6CXO3+0.4NO3+0.4
ALD2+0.4XO2H+0.4RO2
Photolysis3.47E‐7
65CXO3+HO2=0.41PACD+0.15AACD+
0.15O3+0.44ALD2+0.44XO2H+0.44
RO2+0.44OH
k=5.20E‐13exp(980/T)1.39E‐11
66CXO3+RO2=0.8ALD2+0.8XO2H+0.8
RO2
k=8.90E‐13exp(800/T)1.30E‐11
67CXO3+CXO3=2ALD2+2XO2H+2RO2k=3.20E‐12exp(500/T)1.71E‐11
68RO2+NO=NOk=2.40E‐12exp(360/T)8.03E‐12
69RO2+HO2=HO2k=4.80E‐13exp(800/T)7.03E‐12
70RO2+RO2=k=6.50E‐14exp(500/T)3.48E‐13
71MEO2+NO=FORM+HO2+NO2k=2.30E‐12exp(360/T)7.70E‐12
72MEO2+HO2=0.9MEPX+0.1FORMk=3.80E‐13exp(780/T)5.21E‐12
73MEO2+C2O3=FORM+0.9HO2+0.9
MEO2+0.1AACD+0.9RO2
k=2.00E‐12exp(500/T)1.07E‐11
74MEO2+RO2=0.685FORM+0.315MEOH
+0.37HO2+RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E‐13
75XO2H+NO=NO2+HO2k=2.70E‐12exp(360/T)9.04E‐12
76XO2H+HO2=ROOHk=6.80E‐13exp(800/T)9.96E‐12
77XO2H+C2O3=0.8HO2+0.8MEO2+0.2
AACD+0.8RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E‐11
78XO2H+RO2=0.6HO2+RO2k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E‐13
79XO2+NO=NO2k=k(ref)K
k(ref)=k(75)
K=1.00E+0
9.04E‐12
80XO2+HO2=ROOHk=k(ref)K
k(ref)=k(76)
K=1.00E+0
9.96E‐12
81XO2+C2O3=0.8MEO2+0.2AACD+0.8
RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2–CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 235www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
82XO2+RO2=RO2k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E‐13
83XO2N+NO=0.5NTR1+0.5NTR2k=k(ref)K
k(ref)=k(75)
K=1.00E+0
9.04E‐12
84XO2N+HO2=ROOHk=k(ref)K
k(ref)=k(76)
K=1.00E+0
9.96E‐12
85XO2N+C2O3=0.8HO2+0.8MEO2+0.2
AACD+0.8RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E‐11
86XO2N+RO2=RO2k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E‐13
87MEPX+OH=0.6MEO2+0.6RO2+0.4
FORM+0.4OH
k=5.30E‐12exp(190/T)1.00E‐11
88MEPX=MEO2+RO2+OHPhotolysis2.68E‐6
89ROOH+OH=0.54XO2H+0.06XO2N+0.6
RO2+0.4OH
k=5.30E‐12exp(190/T)1.00E‐11
90ROOH=HO2+OHPhotolysis2.68E‐6
91NTR1+OH=NTR2k=2.00E‐122.00E‐12
92NTR1=NO2Photolysis1.06E‐6
93FACD+OH=HO2k=4.50E‐134.50E‐13
94AACD+OH=MEO2+RO2k=4.00E‐14exp(850/T)6.93E‐13
95PACD+OH=C2O3k=5.30E‐12exp(190/T)1.00E‐11
96FORM+OH=HO2+COk=5.40E‐12exp(135/T)8.49E‐12
97FORM=2HO2+COPhotolysis1.78E‐5
98FORM=CO+H2Photolysis2.38E‐5
99FORM+O=OH+HO2+COk=3.40E‐11exp(‐1600/T)1.58E‐13
100FORM+NO3=HNO3+HO2+COk=5.50E‐165.50E‐16
101FORM+HO2=HCO3k=9.70E‐15exp(625/T)7.90E‐14
102HCO3=FORM+HO2k=2.40E+12exp(‐7000/T)1.51E+2
103HCO3+NO=FACD+NO2+HO2k=5.60E‐125.60E‐12
104HCO3+HO2=0.5MEPX+0.5FACD+0.2
OH+0.2HO2
k=5.60E‐15exp(2300/T)1.26E‐11
105ALD2+O=C2O3+OHk=1.80E‐11exp(‐1100/T)4.49E‐13
106ALD2+OH=C2O3k=4.70E‐12exp(345/T)1.50E‐11
107ALD2+NO3=C2O3+HNO3k=1.40E‐12exp(‐1860/T)2.73E‐15
108ALD2=MEO2+RO2+CO+HO2Photolysis1.76E‐6
109ALDX+O=CXO3+OHk=1.30E‐11exp(‐870/T)7.02E‐13
110ALDX+OH=CXO3k=4.90E‐12exp(405/T)1.91E‐11
111ALDX+NO3=CXO3+HNO3k=6.30E‐156.30E‐15
112ALDX=ALD2+XO2H+RO2+CO+HO2Photolysis6.96E‐6
113GLYD+OH=0.2GLY+0.2HO2+0.8C2O3k=8.00E‐128.00E‐12
114GLYD=0.74FORM+0.89CO+1.4HO2+
0.15MEOH+0.19OH+0.11GLY+0.11
XO2H+0.11RO2
Photolysis1.56E‐6
115GLYD+NO3=HNO3+C2O3k=1.40E‐12exp(‐1860/T)2.73E‐15
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2–CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 236www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
116GLY+OH=1.8CO+0.2XO2+0.2RO2+
HO2
k=3.10E‐12exp(340/T)9.70E‐12
117GLY=2HO2+2COPhotolysis5.50E‐5
118GLY+NO3=HNO3+1.5CO+0.5XO2+0.5
RO2+HO2
k=1.40E‐12exp(‐1860/T)2.73E‐15
119MGLY=C2O3+HO2+COPhotolysis1.46E‐4
120MGLY+NO3=HNO3+C2O3+XO2+RO2k=1.40E‐12exp(‐1860/T)2.73E‐15
121MGLY+OH=C2O3+COk=1.90E‐12exp(575/T)1.31E‐11
122H2+OH=HO2k=7.70E‐12exp(‐2100/T)6.70E‐15
123CO+OH=HO2k=k1+k2[M]
k1=1.44E‐13
k2=3.43E‐33
2.28E‐13
124CH4+OH=MEO2+RO2k=1.85E‐12exp(‐1690/T)6.37E‐15
125ETHA+OH=0.991ALD2+0.991XO2H+
0.009XO2N+RO2
k=6.90E‐12exp(‐1000/T)2.41E‐13
126MEOH+OH=FORM+HO2k=2.85E‐12exp(‐345/T)8.95E‐13
127ETOH+OH=0.95ALD2+0.9HO2+0.1
XO2H+0.1RO2+0.078FORM+0.011
GLYD
k=3.00E‐12exp(20/T)3.21E‐12
128KET=0.5ALD2+0.5C2O3+0.5XO2H+0.5
CXO3+0.5MEO2+RO2‐2.5PAR
Photolysis2.27E‐7
129ACET=0.38CO+1.38MEO2+1.38RO2+
0.62C2O3
Photolysis2.08E‐7
130ACET+OH=FORM+C2O3+XO2+RO2k=1.41E‐12exp(‐620.6/T)1.76E‐13
131PRPA+OH=0.71ACET+0.26ALDX+0.26
PAR+0.97XO2H+0.03XO2N+RO2
k=7.60E‐12exp(‐585/T)1.07E‐12
132PAR+OH=0.11ALDX+0.76ROR+0.13
XO2N+0.11XO2H+0.76XO2+RO2‐0.11
PAR
k=8.10E‐138.10E‐13
133ROR=0.2KET+0.42ACET+0.74ALD2+
0.37ALDX+0.04XO2N+0.94XO2H+0.98
RO2+0.02ROR‐2.7PAR
k=5.70E+12exp(‐5780/T)2.15E+4
134ROR+O2=KET+HO2k=1.50E‐14exp(‐200/T)7.67E‐15
135ROR+NO2=NTR1k=8.60E‐12exp(400/T)3.29E‐11
136ETHY+OH=0.7GLY+0.7OH+0.3FACD+
0.3CO+0.3HO2
Falloff:F=0.37;n=1.3
k(0)=5.00E‐30(T/300)^‐1.5
k(inf)=1.00E‐12
7.52E‐13
137ETH+O=FORM+HO2+CO+0.7XO2H+
0.7RO2+0.3OH
k=1.04E‐11exp(‐792/T)7.29E‐13
138ETH+OH=XO2H+RO2+1.56FORM+
0.22GLYD
Falloff:F=0.48;n=1.15
k(0)=8.60E‐29(T/300)^‐3.1
k(inf)=9.00E‐12(T/300)^‐0.85
7.84E‐12
139ETH+O3=FORM+0.51CO+0.16HO2+
0.16OH+0.37FACD
k=9.10E‐15exp(‐2580/T)1.58E‐18
140ETH+NO3=0.5NO2+0.5NTR1+0.5
XO2H+0.5XO2+RO2+1.125FORM
k=3.30E‐12exp(‐2880/T)2.10E‐16
141OLE+O=0.2ALD2+0.3ALDX+0.1HO2+
0.2XO2H+0.2CO+0.2FORM+0.01XO2N
+0.21RO2+0.2PAR+0.1OH
k=1.00E‐11exp(‐280/T)3.91E‐12
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2–CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 237www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
142OLE+OH=0.781FORM+0.488ALD2+
0.488ALDX+0.976XO2H+0.195XO2+
0.024XO2N+1.195RO2‐0.73PAR
Falloff:F=0.5;n=1.13
k(0)=8.00E‐27(T/300)^‐3.5
k(inf)=3.00E‐11(T/300)^‐1
2.86E‐11
143OLE+O3=0.295ALD2+0.555FORM+
0.27ALDX+0.15XO2H+0.15RO2+0.334
OH+0.08HO2+0.378CO+0.075GLY+
0.075MGLY+0.09FACD+0.13AACD+
0.04H2O2‐0.79PAR
k=5.50E‐15exp(‐1880/T)1.00E‐17
144OLE+NO3=0.5NO2+0.5NTR1+0.48
XO2+0.48XO2H+0.04XO2N+RO2+0.5
FORM+0.25ALD2+0.375ALDX‐1PAR
k=4.60E‐13exp(‐1155/T)9.54E‐15
145IOLE+O=1.24ALD2+0.66ALDX+0.1
XO2H+0.1RO2+0.1CO+0.1PAR
k=2.30E‐112.30E‐11
146IOLE+OH=1.3ALD2+0.7ALDX+XO2H+
RO2
k=1.05E‐11exp(519/T)5.99E‐11
147IOLE+O3=0.732ALD2+0.442ALDX+
0.128FORM+0.245CO+0.5OH+0.3
XO2H+0.3RO2+0.24GLY+0.06MGLY+
0.29PAR+0.08AACD+0.08H2O2
k=4.70E‐15exp(‐1013/T)1.57E‐16
148IOLE+NO3=0.5NO2+0.5NTR1+0.48
XO2+0.48XO2H+0.04XO2N+RO2+0.5
ALD2+0.625ALDX+PAR
k=3.70E‐133.70E‐13
149ISOP+OH=ISO2+RO2k=2.70E‐11exp(390/T)9.99E‐11
150ISOP+O=0.75ISPD+0.5FORM+0.25
XO2+0.25RO2+0.25HO2+0.25CXO3+
0.25PAR
k=3.00E‐113.00E‐11
151ISO2+NO=0.1INTR+0.9NO2+0.673
FORM+0.9ISPD+0.818HO2+0.082
XO2H+0.082RO2
k=2.39E‐12exp(365/T)8.13E‐12
152ISO2+HO2=0.88ISPX+0.12OH+0.12
HO2+0.12FORM+0.12ISPD
k=7.43E‐13exp(700/T)7.78E‐12
153ISO2+C2O3=0.598FORM+1ISPD+
0.728HO2+0.072XO2H+0.8MEO2+0.2
AACD+0.872RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E‐11
154ISO2+RO2=0.598FORM+1ISPD+0.728
HO2+0.072XO2H+0.072RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E‐13
155ISO2=HO2+HPLDk=3.30E+9exp(‐8300/T)2.64E‐3
156ISOP+O3=0.6FORM+0.65ISPD+0.15
ALDX+0.2CXO3+0.35PAR+0.266OH+
0.2XO2+0.2RO2+0.066HO2+0.066CO
k=1.03E‐14exp(‐1995/T)1.27E‐17
157ISOP+NO3=0.35NO2+0.65NTR2+0.64
XO2H+0.33XO2+0.03XO2N+RO2+0.35
FORM+0.35ISPD
k=3.03E‐12exp(‐448/T)6.74E‐13
158ISPD+OH=0.022XO2N+0.521XO2+
0.115MGLY+0.115MEO2+0.269GLYD+
0.269C2O3+0.457OPO3+0.117PAR+
0.137ACET+0.137CO+0.137HO2+0.658
RO2
k=5.58E‐12exp(511/T)3.10E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2–CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 238www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
159ISPD+O3=0.04ALD2+0.231FORM+
0.531MGLY+0.17GLY+0.17ACET+0.543
CO+0.461OH+0.15FACD+0.398HO2+
0.143C2O3
k=3.88E‐15exp(‐1770/T)1.02E‐17
160ISPD+NO3=0.717HNO3+0.142NTR2+
0.142NO2+0.142XO2+0.142XO2H+
0.113GLYD+0.113MGLY+0.717PAR+
0.717CXO3+0.284RO2
k=4.10E‐12exp(‐1860/T)7.98E‐15
161ISPD=0.76HO2+0.34XO2H+0.16XO2+
0.34MEO2+0.208C2O3+0.26FORM+
0.24OLE+0.24PAR+0.17ACET+0.128
GLYD+0.84RO2
Photolysis1.60E‐5
162ISPX+OH=0.904EPOX+0.933OH+0.067
ISO2+0.067RO2+0.029IOLE+0.029
ALDX
k=2.23E‐11exp(372/T)7.77E‐11
163HPLD=OH+ISPDPhotolysis4.41E‐4
164HPLD+NO3=HNO3+ISPDk=6.00E‐12exp(‐1860/T)1.17E‐14
165EPOX+OH=EPX2+RO2k=5.78E‐11exp(‐400/T)1.51E‐11
166EPX2+HO2=0.275GLYD+0.275GLY+
0.275MGLY+1.125OH+0.825HO2+
0.375FORM+0.074FACD+0.251CO+
2.175PAR
k=7.43E‐13exp(700/T)7.78E‐12
167EPX2+NO=0.275GLYD+0.275GLY+
0.275MGLY+0.125OH+0.825HO2+
0.375FORM+NO2+0.251CO+2.175PAR
k=2.39E‐12exp(365/T)8.13E‐12
168EPX2+C2O3=0.22GLYD+0.22GLY+0.22
MGLY+0.1OH+0.66HO2+0.3FORM+
0.2CO+1.74PAR+0.8MEO2+0.2AACD+
0.8RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E‐11
169EPX2+RO2=0.275GLYD+0.275GLY+
0.275MGLY+0.125OH+0.825HO2+
0.375FORM+0.251CO+2.175PAR+RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E‐13
170INTR+OH=0.63XO2+0.37XO2H+RO2+
0.444NO2+0.185NO3+0.104INTR+
0.592FORM+0.331GLYD+0.185FACD+
2.7PAR+0.098OLE+0.078ALDX+0.266
NTR2
k=3.10E‐113.10E‐11
171TERP+O=0.15ALDX+5.12PARk=3.60E‐113.60E‐11
172TERP+OH=0.75XO2H+0.5XO2+0.25
XO2N+1.5RO2+0.28FORM+1.66PAR+
0.47ALDX
k=1.50E‐11exp(449/T)6.77E‐11
173TERP+O3=0.57OH+0.07XO2H+0.69
XO2+0.18XO2N+0.94RO2+0.24FORM
+0.001CO+7PAR+0.21ALDX+0.39
CXO3
k=1.20E‐15exp(‐821/T)7.63E‐17
174TERP+NO3=0.47NO2+0.28XO2H+0.75
XO2+0.25XO2N+1.28RO2+0.47ALDX+
0.53NTR2
k=3.70E‐12exp(175/T)6.66E‐12
175BENZ+OH=0.53CRES+0.352BZO2+
0.352RO2+0.118OPEN+0.118OH+0.53
HO2
k=2.30E‐12exp(‐190/T)1.22E‐12
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2–CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 239www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
176BZO2+NO=0.918NO2+0.082NTR2+
0.918GLY+0.918OPEN+0.918HO2
k=2.70E‐12exp(360/T)9.04E‐12
177BZO2+C2O3=GLY+OPEN+HO2+MEO2
+RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E‐11
178BZO2+HO2=k=1.90E‐13exp(1300/T)1.49E‐11
179BZO2+RO2=GLY+OPEN+HO2+RO2k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E‐13
180TOL+OH=0.18CRES+0.65TO2+0.72
RO2+0.1OPEN+0.1OH+0.07XO2H+
0.18HO2
k=1.80E‐12exp(340/T)5.63E‐12
181TO2+NO=0.86NO2+0.14NTR2+0.417
GLY+0.443MGLY+0.66OPEN+0.2XOPN
+0.86HO2
k=2.70E‐12exp(360/T)9.04E‐12
182TO2+C2O3=0.48GLY+0.52MGLY+0.77
OPEN+0.23XOPN+HO2+MEO2+RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E‐11
183TO2+HO2=k=1.90E‐13exp(1300/T)1.49E‐11
184TO2+RO2=0.48GLY+0.52MGLY+0.77
OPEN+0.23XOPN+HO2+RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E‐13
185XYL+OH=0.155CRES+0.544XLO2+
0.602RO2+0.244XOPN+0.244OH+
0.058XO2H+0.155HO2
k=1.85E‐111.85E‐11
186XLO2+NO=0.86NO2+0.14NTR2+0.221
GLY+0.675MGLY+0.3OPEN+0.56XOPN
+0.86HO2
k=2.70E‐12exp(360/T)9.04E‐12
187XLO2+HO2=k=1.90E‐13exp(1300/T)1.49E‐11
188XLO2+C2O3=0.26GLY+0.77MGLY+
0.35OPEN+0.65XOPN+HO2+MEO2+
RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E‐11
189XLO2+RO2=0.26GLY+0.77MGLY+0.35
OPEN+0.65XOPN+HO2+RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E‐13
190CRES+OH=0.025GLY+0.025OPEN+
HO2+0.2CRO+0.732CAT1+0.02XO2N+
0.02RO2
k=1.70E‐12exp(950/T)4.12E‐11
191CRES+NO3=0.3CRO+HNO3+0.48XO2+
0.12XO2H+0.24GLY+0.24MGLY+0.48
OPO3+0.1XO2N+0.7RO2
k=1.40E‐111.40E‐11
192CRO+NO2=CRONk=2.10E‐122.10E‐12
193CRO+HO2=CRESk=5.50E‐125.50E‐12
194CRON+OH=NTR2+0.5CROk=1.53E‐121.53E‐12
195CRON+NO3=NTR2+0.5CRO+HNO3k=3.80E‐123.80E‐12
196CRON=HONO+HO2+FORM+OPENPhotolysis9.45E‐5
197XOPN=0.4GLY+XO2H+0.7HO2+0.7CO
+0.3C2O3
Photolysis5.04E‐4
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2–CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 240www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
198XOPN+OH=MGLY+0.4GLY+2XO2H+2
RO2
k=9.00E‐119.00E‐11
199XOPN+O3=1.2MGLY+0.5OH+0.6C2O3
+0.1ALD2+0.5CO+0.3XO2H+0.3RO2
k=1.08E‐16exp(‐500/T)2.02E‐17
200XOPN+NO3=0.5NO2+0.5NTR2+0.45
XO2H+0.45XO2+0.1XO2N+RO2+0.25
OPEN+0.25MGLY
k=3.00E‐123.00E‐12
201OPEN=OPO3+HO2+COPhotolysis5.04E‐4
202OPEN+OH=0.6OPO3+0.4XO2H+0.4
RO2+0.4GLY
k=4.40E‐114.40E‐11
203OPEN+O3=1.4GLY+0.24MGLY+0.5OH
+0.12C2O3+0.08FORM+0.02ALD2+
1.98CO+0.56HO2
k=5.40E‐17exp(‐500/T)1.01E‐17
204OPEN+NO3=OPO3+HNO3k=3.80E‐123.80E‐12
205CAT1+OH=0.14FORM+0.2HO2+0.5
CRO
k=5.00E‐115.00E‐11
206CAT1+NO3=CRO+HNO3k=1.70E‐101.70E‐10
207OPO3+NO=NO2+0.5GLY+0.5CO+0.8
HO2+0.2CXO3
k=1.00E‐111.00E‐11
208OPO3+NO2=OPANk=k(ref)K
k(ref)=k(54)
K=1.00E+0
9.40E‐12
209OPAN=OPO3+NO2k=k(ref)K
k(ref)=k(55)
K=1.00E+0
2.98E‐4
210OPO3+HO2=0.41PACD+0.15AACD+
0.15O3+0.44ALDX+0.44XO2H+0.44
RO2+0.44OH
k=k(ref)K
k(ref)=k(57)
K=1.00E+0
1.39E‐11
211OPO3+C2O3=MEO2+XO2+ALDX+2
RO2
k=k(ref)K
k(ref)=k(59)
K=1.00E+0
1.55E‐11
212OPO3+RO2=0.8XO2H+0.8ALDX+1.8
RO2+0.2AACD
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E‐11
213OPAN+OH=0.5NO2+0.5GLY+CO+0.5
NTR2
k=3.60E‐113.60E‐11
214PANX+OH=ALD2+NO2k=3.00E‐123.00E‐12
215NTR2=HNO3k=2.30E‐52.30E‐5
216ECH4+OH=MEO2+RO2k=1.85E‐12exp(‐1690/T)6.37E‐15
March2016CAMxUser’sGuideVersion6.3
AppendixB:Mechanism3–CB6r2withHalogenChemistry
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 241www.camx.com
AppendixB
CAMxMechanism3:CB6r2withHalogenChemistry
TableB‐1.ListingoftheCB6r2halogenmechanism(seeTableA‐1foracompletelistingof
CB6r2).k298istherateconstantat298Kand1atmosphereusingunitsinmolecules/cm3and
1/s.Forphotolysisreactionsk298showsthephotolysisrateatasolarzenithangleof60°and
heightof600mMSL/AGL.SeeTableB‐2forspeciesnames.SeeSection3.1ontemperature
andpressuredependencies.
NumberReactantsandProductsRateConstantExpression k298
1CL2=2CL Photolysis 1.56E‐3
2HOCL=CL+OH Photolysis 1.34E‐4
3CL+O3=CLO k=2.30E‐11exp(‐200/T) 1.18E‐11
4CLO+CLO=0.3CL2+1.4CL k=1.63E‐14 1.63E‐14
5CLO+NO=CL+NO2 k=6.40E‐12exp(290/T) 1.69E‐11
6CLO+HO2=HOCL k=2.70E‐12exp(220/T) 5.65E‐12
7CLO+NO2=CLN3 Falloff:F=0.6;n=1
k(0)=1.80E‐31(T/300)^‐3.4
k(inf)=1.50E‐11(T/300)^‐1.9
2.34E‐12
8CLN3=CLO+NO2 Falloff:F=0.6;n=1
k(0)=4.48E‐5(T/300)^‐1exp(‐12530/T)
k(inf)=3.71E+15(T/300)^3.5exp(‐
12530/T)
3.11E‐4
9CLN3=CLO+NO2 Photolysis 4.97E‐6
10CLN3=CL+NO3 Photolysis 4.67E‐4
11CLN3+H2O=HOCL+HNO3 k=2.50E‐22 2.50E‐22
12OH+HCL=CL k=6.58E‐13(T/300)^1.2exp(58/T)7.93E‐13
13OH+FMCL=CL+CO k=3.67E‐11exp(‐1419/T) 3.14E‐13
14FMCL=CL+CO+HO2 Photolysis 6.10E‐8
15CLO+MEO2=CL+FORM+HO2 k=4.10E‐13exp(‐800/T) 2.80E‐14
16CL+CH4=HCL+MEO2 k=6.60E‐12exp(‐1240/T) 1.03E‐13
17CL+PAR=HCL k=5.00E‐11 5.00E‐11
18CL+ETHA=HCL+0.991ALD2+0.991
XO2H+0.009XO2N+RO2
k=8.30E‐11exp(‐100/T) 5.93E‐11
19CL+PRPA=HCL+ACET+0.97XO2H+
0.03XO2N+RO2
k=1.40E‐10 1.40E‐10
20CL+ISOP=FMCL+ISPD+0.96XO2H+
0.04XO2N+RO2
k=4.30E‐10 4.30E‐10
21HCL+N2O5=CLN2+HNO3 k=6.00E‐13 6.00E‐13
22CLN2=CL+NO2 Photolysis 2.86E‐4
23BR2=2BR Photolysis 2.79E‐2
24HOBR=BR+OH Photolysis 1.51E‐3
25BR2+OH=HOBR+BR k=5.40E‐11exp(180/T) 9.88E‐11
26HBR+OH=BR k=5.50E‐12exp(‐200/T) 2.81E‐12
27BR+O3=BRO k=1.60E‐11exp(780/T) 2.19E‐10
28BR+HO2=HBR k=4.80E‐12exp(310/T) 1.36E‐11
29BR+NO2=BRN2 Falloff:F=0.6;n=1
k(0)=4.20E‐31(T/300)^‐2.4
k(inf)=2.70E‐11
4.89E‐12
30BR+NO3=BRO+NO2 k=1.60E‐11 1.60E‐11
31BRO=BR+O Photolysis 2.05E‐2
32BRO+HO2=HOBR k=4.50E‐12exp(460/T) 2.11E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixB:Mechanism3–CB6r2withHalogenChemistry
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 242www.camx.com
NumberReactantsandProductsRateConstantExpression k298
33BRO+OH=BR+HO2 k=1.70E‐11exp(250/T) 3.93E‐11
34BRO+BRO=2BR k=2.40E‐12exp(40/T) 2.74E‐12
35BRO+BRO=BR2 k=2.80E‐14exp(860/T) 5.02E‐13
36BRO+NO=BR+NO2 k=8.80E‐12exp(260/T) 2.11E‐11
37BRO+NO2=BRN3 Falloff:F=0.6;n=1
k(0)=5.20E‐31(T/300)^‐3.2
k(inf)=6.90E‐12
2.81E‐12
38BRN2=BR+NO2 Photolysis 3.21E‐3
39BRN3=BR+NO3 Photolysis 9.76E‐4
40BRN3+H2O=HOBR+HNO3 k=2.50E‐22 2.50E‐22
41FMBR+OH=BR+CO k=5.00E‐12 5.00E‐12
42FMBR=BR+CO+HO2 Photolysis 4.15E‐6
43BRO+MEO2=0.75HOBR+0.25BR+
FORM
k=4.10E‐13exp(‐800/T) 2.80E‐14
44BR+FORM=HBR+CO+HO2 k=7.70E‐11exp(‐580/T) 1.10E‐11
45BR+ALD2=HBR+C2O3 k=1.80E‐11exp(‐460/T) 3.84E‐12
46BR+OLE=FMBR+ALD2+XO2H‐ 1PAR
+RO2
k=3.60E‐12 3.60E‐12
47BR+ISOP=FMBR+ISPD+0.96XO2H+
0.04XO2N+RO2
k=5.00E‐12 5.00E‐12
48I2=2I Photolysis 1.30E‐1
49HOI=I+OH Photolysis 6.36E‐2
50I2+OH=I+HOI k=2.10E‐10 2.10E‐10
51I2+NO3=I+INO3 k=1.50E‐12 1.50E‐12
52HI+OH=I k=1.60E‐11exp(440/T) 7.00E‐11
53I+O3=IO k=2.10E‐11exp(‐830/T) 1.30E‐12
54I+HO2=HI k=1.50E‐11exp(‐1090/T) 3.87E‐13
55I+NO2=INO2 Falloff:F=0.63;n=1
k(0)=3.00E‐31(T/300)^‐1
k(inf)=6.60E‐11
5.24E‐12
56IO=I+O Photolysis 1.18E‐1
57IO+IO=0.4I+0.4OIO+0.6I2O2 k=5.40E‐11exp(180/T) 9.88E‐11
58IO+HO2=HOI k=1.40E‐11exp(540/T) 8.57E‐11
59IO+NO=I+NO2 k=7.15E‐12exp(300/T) 1.96E‐11
60IO+NO2=INO3 Falloff:F=0.4;n=1
k(0)=7.70E‐31(T/300)^‐5
k(inf)=1.60E‐11
3.55E‐12
61HOI+OH=IO k=5.00E‐12 5.00E‐12
62OIO=I Photolysis 1.28E‐1
63OIO+OH=HIO3 Falloff:F=0.3;n=1
k(0)=1.50E‐27(T/300)^‐3.93
k(inf)=5.50E‐10exp(46/T)
4.72E‐10
64OIO+IO=IXOY k=1.00E‐10 1.00E‐10
65OIO+OIO=IXOY k=1.50E‐10 1.50E‐10
66OIO+NO=IO+NO2 k=1.10E‐12exp(542/T) 6.78E‐12
67I2O2=I+OIO k=1.00E+1 1.00E+1
68I2O2+O3=IXOY k=1.00E‐12 1.00E‐12
69INO2=I+NO2 Photolysis 3.21E‐3
70INO2+INO2=I2+2NO2 k=4.70E‐13exp(‐1670/T) 1.73E‐15
71INO3=I+NO3 Photolysis 1.25E‐2
72INO3+H2O=HOI+HNO3 k=2.50E‐22 2.50E‐22
March2016CAMxUser’sGuideVersion6.3
AppendixB:Mechanism3–CB6r2withHalogenChemistry
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 243www.camx.com
NumberReactantsandProductsRateConstantExpression k298
73CLO+BRO=CL+BR k=4.70E‐12exp(320/T) 1.38E‐11
74CLO+IO=CL+I k=4.70E‐12exp(280/T) 1.20E‐11
75BRO+IO=BR+I k=1.50E‐11exp(510/T) 8.31E‐11
76CH3I=I+MEO2 Photolysis 3.19E‐6
77MI2=2I+FORM Photolysis 4.69E‐3
78MIB=I+BR+FORM Photolysis 2.53E‐4
79MIC=I+CL+FORM Photolysis 7.48E‐5
80MB3=3BR+HO2+CO Photolysis 4.64E‐7
81MB3+OH=3BR+CO k=1.35E‐12exp(‐600/T) 1.80E‐13
82MB2+OH=2BR+HO2+CO k=2.00E‐12exp(‐840/T) 1.19E‐13
83MBC+OH=BR+MEO2 k=2.35E‐12exp(‐1300/T) 3.00E‐14
84MBC2+OH=BR+MEO2 k=9.00E‐13exp(‐600/T) 1.20E‐13
85MB2C+OH=BR+MEO2 k=9.00E‐13exp(‐600/T) 1.20E‐13
86IALK=I+ALDX+XO2H+RO2Photolysis 5.88E‐7
87SSCL+HNO3=HCL+SSN3 k=1.00E‐12 1.00E‐12
88SSBR+HOBR=BR2 k=1.00E‐12 1.00E‐12
March2016CAMxUser’sGuideVersion6.3
AppendixB:Mechanism3–CB6r2withHalogenChemistry
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 244www.camx.com
TableB‐2.ChemicalspeciesincludedinCB6r2h.
SpeciesDescription
Constituents
Mol.Wt.C H O N ClBrI
CL2Molecularchlorine270.9
CLChlorineatom135.5
CLOChlorinemonoxide1 151.4
HCLHydrogenchloride1 136.5
HOCLHypochlorousacid1 1 152.4
CLN2Nitrylchloride:ClNO22 181.4
CLN3Chlorinenitrate:ClONO23 197.4
FMCLFormylchloride:HC(O)Cl1 1 1 164.5
BR2Molecularbromine2 159.8
BRBromineatom179.9
BROBrominemonoxide1 195.9
HBRHydrogenbromide1 180.9
HOBRHypobromousacid1 1 196.9
BRN2Nitrylbroride:BrNO22 1125.9
BRN3Brominenitrate:BrONO23 1141.9
FMBRFormylbromide:HC(O)Br1 1 1 1108.9
I2Moleculariodine2253.8
IIodineatom1126.9
IOIodinemonoxide1 1142.9
OIOIodinedioxide2 1158.9
I2O2Diiodinedioxide2 2285.8
IXOYCondensableiodineoxides(>I2O2) 3 2301.8
HIHydrogeniodide1 1127.9
HOIHypoiodousacid1 1 1143.9
HIO3Iodicacid:HONO21 3 1175.9
INO2Nitryliodide:INO22 1172.9
INO3Iodinenitrate:IONO23 1188.9
CH3IIodomethane1 3 1141.9
MI2Diiodomethane:CH2I21 2 2267.8
MIBBromoiodomethane:CH2BrI1 2 11220.8
MICChloroiodomethane:CH2ClI1 2 11176.4
MBCChlorobromomethane:CH2ClBr 1 2 11129.4
MB2Dibromomethane:CH2Br21 2 2173.8
MBC2Dichlorobromomethane:CHCl2Br 1 3 21165.8
MB2CChlorodibromomethane:CHClBr21 3 12210.3
MB3BromoformCHBr31 1 3252.7
IALKAlkyliodides3 7 1170.0
SSCLPseudogas‐phasespeciesforseasaltchloride 0 1 35.5
SSBRPseudogas‐phasespeciesforseasaltbromide 0 179.9
SSN3Pseudogas‐phasespeciesforseasaltnitrate 0 3 1 62.0
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6–CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 245www.camx.com
AppendixC
CAMxMechanism6:CB05Gas‐PhaseChemistry
TableC‐1.ReactionsandrateconstantexpressionsfortheCB05mechanism.k298istherate
constantat298Kand1atmosphereusingunitsinmolecules/cm3and1/s.SeeTable5‐2for
speciesnames.SeeSection3.1ontemperatureandpressuredependencies.
NumberReactantsandProductsRateConstantExpressionk298
1NO2=NO+OPhotolysis5.89E‐3
2O+O2+M=O3+Mk=6.00E‐34(T/300)^‐2.46.10E‐34
3O3+NO=NO2k=3.00E‐12exp(‐1500/T)1.95E‐14
4O+NO2=NOk=5.60E‐12exp(180/T)1.02E‐11
5O+NO2=NO3Falloff:F=0.6;n=1
k(0)=2.50E‐31(T/300)^‐1.8exp(‐2/T)
k(inf)=2.20E‐11(T/300)^‐0.7exp(‐3/T)
3.26E‐12
6O+NO=NO2Falloff:F=0.6;n=1
k(0)=9.00E‐32(T/300)^‐1.5
k(inf)=3.00E‐11
1.66E‐12
7NO2+O3=NO3k=1.20E‐13exp(‐2450/T)3.23E‐17
8O3=OPhotolysis3.34E‐4
9O3=O1DPhotolysis8.95E‐6
10O1D+M=O+Mk=2.10E‐11exp(102/T)2.96E‐11
11O1D+H2O=2OHk=2.20E‐102.20E‐10
12O3+OH=HO2k=1.70E‐12exp(‐940/T)7.25E‐14
13O3+HO2=OHk=1.00E‐14exp(‐490/T)1.93E‐15
14NO3=NO2+OPhotolysis1.51E‐1
15NO3=NOPhotolysis1.64E‐2
16NO3+NO=2NO2k=1.50E‐11exp(170/T)2.65E‐11
17NO3+NO2=NO+NO2k=4.50E‐14exp(‐1260/T)6.56E‐16
18NO3+NO2=N2O5Falloff:F=0.6;n=1
k(0)=2.00E‐30(T/300)^‐4.4
k(inf)=1.40E‐12(T/300)^‐0.7
1.18E‐12
19N2O5+H2O=2HNO3k=2.50E‐222.50E‐22
20N2O5+H2O+H2O=2HNO3k=1.80E‐391.80E‐39
21N2O5=NO3+NO2Falloff:F=0.45;n=1
k(0)=1.00E‐3(T/300)^‐3.5exp(‐11000/T)
k(inf)=9.70E+14(T/300)^0.1exp(‐
11080/T)
5.28E‐2
22NO+NO+O2=2NO2k=3.30E‐39exp(530/T)1.95E‐38
23NO+NO2+H2O=2HONOk=5.00E‐405.00E‐40
24NO+OH=HONOFalloff:F=0.6;n=1
k(0)=7.00E‐31(T/300)^‐2.6
k(inf)=3.60E‐11(T/300)^‐0.1
7.41E‐12
25HONO=NO+OHPhotolysis1.05E‐3
26OH+HONO=NO2k=1.80E‐11exp(‐390/T)4.86E‐12
27HONO+HONO=NO+NO2k=1.00E‐201.00E‐20
28NO2+OH=HNO3Falloff:F=0.6;n=1
k(0)=2.00E‐30(T/300)^‐3
k(inf)=2.50E‐11
1.05E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6–CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 246www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
29OH+HNO3=NO3k=k1+k3[M]/(1+k3[M]/k2)
k1=2.40E‐14exp(460/T)
k2=2.70E‐17exp(2199/T)
k3=6.50E‐34exp(1335/T)
1.54E‐13
30HO2+NO=OH+NO2k=3.50E‐12exp(250/T)8.10E‐12
31HO2+NO2=PNAFalloff:F=0.6;n=1
k(0)=3.00E‐31(T/300)^‐3.2
k(inf)=4.70E‐12
1.77E‐12
32PNA=HO2+NO2Falloff:F=0.6;n=1
k(0)=4.10E‐5exp(‐10650/T)
k(inf)=4.80E+15exp(‐11170/T)
8.31E‐2
33OH+PNA=NO2k=1.30E‐12exp(380/T)4.65E‐12
34HO2+HO2=H2O2k=k1+k2[M]
k1=2.30E‐13exp(600/T)
k2=1.70E‐33exp(1000/T)
2.92E‐12
35HO2+HO2+H2O=H2O2k=k1+k2[M]
k1=3.22E‐34exp(2800/T)
k2=2.38E‐54exp(3200/T)
6.58E‐30
36H2O2=2OHPhotolysis3.78E‐6
37OH+H2O2=HO2k=2.90E‐12exp(‐160/T)1.70E‐12
38O1D+H2=OH+HO2k=1.10E‐101.10E‐10
39OH+H2=HO2k=5.50E‐12exp(‐2000/T)6.69E‐15
40OH+O=HO2k=2.20E‐11exp(120/T)3.29E‐11
41OH+OH=Ok=4.20E‐12exp(‐240/T)1.88E‐12
42OH+OH=H2O2Falloff:F=0.6;n=1
k(0)=6.90E‐31(T/300)^‐1
k(inf)=2.60E‐11
6.29E‐12
43OH+HO2=k=4.80E‐11exp(250/T)1.11E‐10
44HO2+O=OHk=3.00E‐11exp(200/T)5.87E‐11
45H2O2+O=OH+HO2k=1.40E‐12exp(‐2000/T)1.70E‐15
46NO3+O=NO2k=1.00E‐111.00E‐11
47NO3+OH=HO2+NO2k=2.20E‐112.20E‐11
48NO3+HO2=HNO3k=3.50E‐123.50E‐12
49NO3+O3=NO2k=1.00E‐171.00E‐17
50NO3+NO3=2NO2k=8.50E‐13exp(‐2450/T)2.28E‐16
51PNA=0.61HO2+0.61NO2+0.39OH+
0.39NO3
Photolysis2.53E‐6
52HNO3=OH+NO2Photolysis2.55E‐7
53N2O5=NO2+NO3Photolysis2.52E‐5
54XO2+NO=NO2k=2.60E‐12exp(365/T)8.85E‐12
55XO2N+NO=NTRk=2.60E‐12exp(365/T)8.85E‐12
56XO2+HO2=ROOHk=7.50E‐13exp(700/T)7.86E‐12
57XO2N+HO2=ROOHk=7.50E‐13exp(700/T)7.86E‐12
58XO2+XO2=k=6.80E‐146.80E‐14
59XO2N+XO2N=k=6.80E‐146.80E‐14
60XO2+XO2N=k=6.80E‐146.80E‐14
61NTR+OH=HNO3+HO2+0.33FORM+
0.33ALD2+0.33ALDX‐0.66PAR
k=5.90E‐13exp(‐360/T)1.76E‐13
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6–CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 247www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
62NTR=NO2+HO2+0.33FORM+0.33ALD2
+0.33ALDX‐0.66PAR
Photolysis1.06E‐6
63SO2+OH=SULF+HO2Falloff:F=0.6;n=1
k(0)=3.00E‐31(T/300)^‐3.3
k(inf)=1.50E‐12
8.89E‐13
64ROOH+OH=XO2+0.5ALD2+0.5ALDXk=3.01E‐12exp(190/T)5.69E‐12
65ROOH=OH+HO2+0.5ALD2+0.5ALDXPhotolysis2.72E‐6
66OH+CO=HO2k=k1+k2[M]
k1=1.44E‐13
k2=3.43E‐33
2.28E‐13
67OH+CH4=MEO2k=2.45E‐12exp(‐1775/T)6.34E‐15
68MEO2+NO=FORM+HO2+NO2k=2.80E‐12exp(300/T)7.66E‐12
69MEO2+HO2=MEPXk=4.10E‐13exp(750/T)5.08E‐12
70MEO2+MEO2=1.37FORM+0.74HO2+
0.63MEOH
k=9.50E‐14exp(390/T)3.52E‐13
71MEPX+OH=0.7MEO2+0.3XO2+0.3
HO2
k=3.80E‐12exp(200/T)7.43E‐12
72MEPX=FORM+HO2+OHPhotolysis2.72E‐6
73MEOH+OH=FORM+HO2k=7.30E‐12exp(‐620/T)9.12E‐13
74FORM+OH=HO2+COk=9.00E‐129.00E‐12
75FORM=2HO2+COPhotolysis1.40E‐5
76FORM=COPhotolysis2.43E‐5
77FORM+O=OH+HO2+COk=3.40E‐11exp(‐1600/T)1.58E‐13
78FORM+NO3=HNO3+HO2+COk=5.80E‐165.80E‐16
79FORM+HO2=HCO3k=9.70E‐15exp(625/T)7.90E‐14
80HCO3=FORM+HO2k=2.40E+12exp(‐7000/T)1.51E+2
81HCO3+NO=FACD+NO2+HO2k=5.60E‐125.60E‐12
82HCO3+HO2=MEPXk=5.60E‐15exp(2300/T)1.26E‐11
83FACD+OH=HO2k=4.00E‐134.00E‐13
84ALD2+O=C2O3+OHk=1.80E‐11exp(‐1100/T)4.49E‐13
85ALD2+OH=C2O3k=5.60E‐12exp(270/T)1.39E‐11
86ALD2+NO3=C2O3+HNO3k=1.40E‐12exp(‐1900/T)2.38E‐15
87ALD2=MEO2+CO+HO2Photolysis1.76E‐6
88C2O3+NO=MEO2+NO2k=8.10E‐12exp(270/T)2.00E‐11
89C2O3+NO2=PANFalloff:F=0.3;n=1
k(0)=2.70E‐28(T/300)^‐7.1
k(inf)=1.20E‐11(T/300)^‐0.9
1.05E‐11
90PAN=C2O3+NO2Falloff:F=0.3;n=1
k(0)=4.90E‐3exp(‐12100/T)
k(inf)=5.40E+16exp(‐13830/T)
3.31E‐4
91PAN=C2O3+NO2Photolysis3.47E‐7
92C2O3+HO2=0.8PACD+0.2AACD+0.2
O3
k=4.30E‐13exp(1040/T)1.41E‐11
93C2O3+MEO2=0.9MEO2+0.9HO2+
FORM+0.1AACD
k=2.00E‐12exp(500/T)1.07E‐11
94C2O3+XO2=0.9MEO2+0.1AACDk=4.40E‐13exp(1070/T)1.60E‐11
95C2O3+C2O3=2MEO2k=2.90E‐12exp(500/T)1.55E‐11
96PACD+OH=C2O3k=4.00E‐13exp(200/T)7.83E‐13
97PACD=MEO2+OHPhotolysis0.00E+0
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6–CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 248www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
98AACD+OH=MEO2k=4.00E‐13exp(200/T)7.83E‐13
99ALDX+O=CXO3+OHk=1.30E‐11exp(‐870/T)7.02E‐13
100ALDX+OH=CXO3k=5.10E‐12exp(405/T)1.99E‐11
101ALDX+NO3=CXO3+HNO3k=6.50E‐156.50E‐15
102ALDX=MEO2+CO+HO2Photolysis6.96E‐6
103CXO3+NO=ALD2+NO2+HO2+XO2k=6.70E‐12exp(340/T)2.10E‐11
104CXO3+NO2=PANXFalloff:F=0.3;n=1
k(0)=2.70E‐28(T/300)^‐7.1
k(inf)=1.20E‐11(T/300)^‐0.9
1.05E‐11
105PANX=CXO3+NO2Falloff:F=0.3;n=1
k(0)=4.90E‐3exp(‐12100/T)
k(inf)=5.40E+16exp(‐13830/T)
3.31E‐4
106PANX=CXO3+NO2Photolysis3.47E‐7
107PANX+OH=ALD2+NO2k=3.00E‐133.00E‐13
108CXO3+HO2=0.8PACD+0.2AACD+0.2
O3
k=4.30E‐13exp(1040/T)1.41E‐11
109CXO3+MEO2=0.9ALD2+0.9XO2+HO2
+0.1AACD+0.1FORM
k=2.00E‐12exp(500/T)1.07E‐11
110CXO3+XO2=0.9ALD2+0.1AACDk=4.40E‐13exp(1070/T)1.60E‐11
111CXO3+CXO3=2ALD2+2XO2+2HO2k=2.90E‐12exp(500/T)1.55E‐11
112CXO3+C2O3=MEO2+XO2+HO2+ALD2k=2.90E‐12exp(500/T)1.55E‐11
113OH+ETHA=0.991ALD2+0.991XO2+
0.009XO2N+HO2
k=8.70E‐12exp(‐1070/T)2.40E‐13
114OH+ETOH=HO2+0.9ALD2+0.05ALDX+
0.1FORM+0.1XO2
k=6.90E‐12exp(‐230/T)3.19E‐12
115PAR+OH=0.87XO2+0.13XO2N+0.11
HO2+0.06ALD2‐0.11PAR+0.76ROR+
0.05ALDX
k=8.10E‐138.10E‐13
116ROR=0.96XO2+0.6ALD2+0.94HO2‐2.1
PAR+0.04XO2N+0.02ROR+0.5ALDX
k=1.00E+15exp(‐8000/T)2.19E+3
117ROR=HO2k=1.60E+31.60E+3
118ROR+NO2=NTRk=1.50E‐111.50E‐11
119O+OLE=0.2ALD2+0.3ALDX+0.3HO2+
0.2XO2+0.2CO+0.2FORM+0.01XO2N
+0.2PAR+0.1OH
k=1.00E‐11exp(‐280/T)3.91E‐12
120OH+OLE=0.8FORM+0.33ALD2+0.62
ALDX+0.8XO2+0.95HO2‐0.7PAR
k=3.20E‐113.20E‐11
121O3+OLE=0.18ALD2+0.74FORM+0.32
ALDX+0.22XO2+0.1OH+0.33CO+0.44
HO2‐1PAR
k=6.50E‐15exp(‐1900/T)1.11E‐17
122NO3+OLE=NO2+FORM+0.91XO2+
0.09XO2N+0.56ALDX+0.35ALD2‐1PAR
k=7.00E‐13exp(‐2160/T)4.98E‐16
123O+ETH=FORM+1.7HO2+CO+0.7XO2
+0.3OH
k=1.04E‐11exp(‐792/T)7.29E‐13
124OH+ETH=XO2+1.56FORM+0.22ALDX
+HO2
Falloff:F=0.6;n=1
k(0)=1.00E‐28(T/300)^‐0.8
k(inf)=8.80E‐12
8.15E‐12
125O3+ETH=FORM+0.63CO+0.13HO2+
0.13OH+0.37FACD
k=1.20E‐14exp(‐2630/T)1.76E‐18
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6–CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 249www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
126NO3+ETH=NO2+XO2+2FORMk=3.30E‐12exp(‐2880/T)2.10E‐16
127IOLE+O=1.24ALD2+0.66ALDX+0.1
HO2+0.1XO2+0.1CO+0.1PAR
k=2.30E‐112.30E‐11
128IOLE+OH=1.3ALD2+0.7ALDX+HO2+
XO2
k=1.00E‐11exp(550/T)6.33E‐11
129IOLE+O3=0.65ALD2+0.35ALDX+0.25
FORM+0.25CO+0.5O+0.5OH+0.5HO2
k=8.40E‐15exp(‐1100/T)2.09E‐16
130IOLE+NO3=1.18ALD2+0.64ALDX+HO2
+NO2
k=9.60E‐13exp(‐270/T)3.88E‐13
131TOL+OH=0.44HO2+0.08XO2+0.36
CRES+0.56TO2
k=1.80E‐12exp(355/T)5.92E‐12
132TO2+NO=0.9NO2+0.9HO2+0.9OPEN
+0.1NTR
k=8.10E‐128.10E‐12
133TO2=CRES+HO2k=4.20E+04.20E+0
134OH+CRES=0.4CRO+0.6XO2+0.6HO2+
0.3OPEN
k=4.10E‐114.10E‐11
135CRES+NO3=CRO+HNO3k=2.20E‐112.20E‐11
136CRO+NO2=NTRk=1.40E‐111.40E‐11
137CRO+HO2=CRESk=5.50E‐125.50E‐12
138OPEN=C2O3+HO2+COPhotolysis1.26E‐4
139OPEN+OH=XO2+2CO+2HO2+C2O3+
FORM
k=3.00E‐113.00E‐11
140OPEN+O3=0.03ALDX+0.62C2O3+0.7
FORM+0.03XO2+0.69CO+0.08OH+
0.76HO2+0.2MGLY
k=5.40E‐17exp(‐500/T)1.01E‐17
141OH+XYL=0.7HO2+0.5XO2+0.2CRES+
0.8MGLY+1.1PAR+0.3TO2
k=1.70E‐11exp(116/T)2.51E‐11
142OH+MGLY=XO2+C2O3k=1.70E‐111.70E‐11
143MGLY=C2O3+HO2+COPhotolysis1.54E‐4
144O+ISOP=0.75ISPD+0.5FORM+0.25
XO2+0.25HO2+0.25CXO3+0.25PAR
k=3.60E‐113.60E‐11
145OH+ISOP=0.912ISPD+0.629FORM+
0.991XO2+0.912HO2+0.088XO2N
k=2.54E‐11exp(407.6/T)9.97E‐11
146O3+ISOP=0.65ISPD+0.6FORM+0.2
XO2+0.066HO2+0.266OH+0.2CXO3+
0.15ALDX+0.35PAR+0.066CO
k=7.86E‐15exp(‐1912/T)1.29E‐17
147NO3+ISOP=0.2ISPD+0.8NTR+XO2+
0.8HO2+0.2NO2+0.8ALDX+2.4PAR
k=3.03E‐12exp(‐448/T)6.74E‐13
148NO2+ISOP=0.2ISPD+0.8NTR+XO2+
0.8HO2+0.2NO+0.8ALDX+2.4PAR
k=1.50E‐191.50E‐19
149OH+ISPD=1.565PAR+0.167FORM+
0.713XO2+0.503HO2+0.334CO+0.168
MGLY+0.252ALD2+0.21C2O3+0.25
CXO3+0.12ALDX
k=3.36E‐113.36E‐11
150O3+ISPD=0.114C2O3+0.15FORM+
0.85MGLY+0.154HO2+0.268OH+0.064
XO2+0.02ALD2+0.36PAR+0.225CO
k=7.10E‐187.10E‐18
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6–CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 250www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
151NO3+ISPD=0.357ALDX+0.282FORM+
1.282PAR+0.925HO2+0.643CO+0.85
NTR+0.075CXO3+0.075XO2+0.15
HNO3
k=1.00E‐151.00E‐15
152ISPD=0.333CO+0.067ALD2+0.9FORM
+0.832PAR+1.033HO2+0.7XO2+0.967
C2O3
Photolysis1.11E‐6
153TERP+O=0.15ALDX+5.12PARk=3.60E‐113.60E‐11
154TERP+OH=0.75HO2+1.25XO2+0.25
XO2N+0.28FORM+1.66PAR+0.47ALDX
k=1.50E‐11exp(449/T)6.77E‐11
155TERP+O3=0.57OH+0.07HO2+0.76
XO2+0.18XO2N+0.24FORM+0.001CO
+7PAR+0.21ALDX+0.39CXO3
k=1.20E‐15exp(‐821/T)7.63E‐17
156TERP+NO3=0.47NO2+0.28HO2+1.03
XO2+0.25XO2N+0.47ALDX+0.53NTR
k=3.70E‐12exp(175/T)6.66E‐12
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 251www.camx.com
AppendixD
CAMxMechanism5:SAPRC07TCGas‐PhaseChemistry
TableD‐1.ReactionsandrateconstantsfortheSAPRC07TCmechanism.k300istherate
constantat300Kand1atmosphereusingunitsinmolecules/cm‐3and1/s.SeeTableD‐2for
speciesnames.SeeSection3.1ontemperatureandpressuredependencies.
NumberReactantsandProductsRateConstantExpression k300
1NO2=NO+O3PPhotolysis 6.37E‐3
2O3P+O2+M=O3k=5.68E‐34(T/300)^‐2.6 5.68E‐34
3O3P+O3= k=8.00E‐12exp(‐2060/T) 8.34E‐15
4O3P+NO=NO2Falloff:F=0.6;n=1
k(0)=9.00E‐32(T/300)^‐1.5
k(inf)=3.00E‐11
1.64E‐12
5O3P+NO2=NOk=5.50E‐12exp(188/T) 1.03E‐11
6O3P+NO2=NO3Falloff:F=0.6;n=1
k(0)=2.50E‐31(T/300)^‐1.8
k(inf)=2.20E‐11(T/300)^‐0.7
3.24E‐12
7O3+NO=NO2k=3.00E‐12exp(‐1500/T) 2.02E‐14
8O3+NO2=NO3k=1.40E‐13exp(‐2470/T) 3.72E‐17
9NO+NO3=2.NO2k=1.80E‐11exp(110/T) 2.60E‐11
10NO+NO+O2=2.NO2k=3.30E‐39exp(530/T) 1.93E‐38
11NO2+NO3=N2O5Falloff:F=0.35;n=1.33
k(0)=3.60E‐30(T/300)^‐4.1
k(inf)=1.90E‐12(T/300)^0.2
1.24E‐12
12N2O5=NO2+NO3Falloff:F=0.35;n=1.33
k(0)=1.30E‐3(T/300)^‐3.5exp(‐11000/T)
k(inf)=9.70E+14(T/300)^0.1exp(‐11080/T)
5.69E‐2
13N2O5+H2O=2.HNO3k=1.00E‐22 1.00E‐22
14N2O5+H2O+H2O=2.HNO3k=0.00E+0 0.00E+0
15NO2+NO3=NO+NO2k=4.50E‐14exp(‐1260/T) 6.75E‐16
16NO3=NOPhotolysis 1.98E‐2
17NO3=NO2+O3PPhotolysis 1.56E‐1
18O3=O1DPhotolysis 9.47E‐6
19O3=O3PPhotolysis 3.40E‐4
20O1D+H2O=2.OHk=1.63E‐10exp(60/T) 1.99E‐10
21O1D+M=O3Pk=2.38E‐11exp(96/T) 3.28E‐11
22OH+NO=HONOFalloff:F=0.6;n=1
k(0)=7.00E‐31(T/300)^‐2.6
k(inf)=3.60E‐11(T/300)^‐0.1
7.31E‐12
23HONO=OH+NOPhotolysis 9.88E‐4
24OH+HONO=NO2k=2.50E‐12exp(260/T) 5.95E‐12
25OH+NO2=HNO3Falloff:F=0.6;n=1
k(0)=1.80E‐30(T/300)^‐3
k(inf)=2.80E‐11
1.05E‐11
26OH+NO3=HO2+NO2k=2.00E‐11 2.00E‐11
27OH+HNO3=NO3k=k1+k3[M]/(1+k3[M]/k2)
k1=2.40E‐14exp(460/T)
k2=2.70E‐17exp(2199/T)
k3=6.50E‐34exp(1335/T)
1.51E‐13
28HNO3=OH+NO2Photolysis 2.55E‐7
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 252www.camx.com
NumberReactantsandProductsRateConstantExpression k300
29OH+CO=HO2+CO2k=k1+k2[M]
k1=1.44E‐13
k2=3.43E‐33
2.28E‐13
30OH+O3=HO2k=1.70E‐12exp(‐940/T) 7.41E‐14
31HO2+NO=OH+NO2k=3.60E‐12exp(270/T) 8.85E‐12
32HO2+NO2=PNAFalloff:F=0.6;n=1
k(0)=2.00E‐31(T/300)^‐3.4
k(inf)=2.90E‐12(T/300)^‐1.1
1.12E‐12
33PNA=HO2+NO2Falloff:F=0.6;n=1
k(0)=3.72E‐5(T/300)^‐2.4exp(‐10650/T)
k(inf)=5.42E+15(T/300)^‐2.3exp(‐11170/T)
1.07E‐1
34PNA=0.61HO2+0.61NO2+0.39OH+0.39
NO3
Photolysis 3.17E‐6
35PNA+OH=NO2 k=1.30E‐12exp(380/T) 4.61E‐12
36HO2+O3=OHk=2.03E‐16(
T
/300)^4.57exp(693/T)2.05E‐15
37HO2+HO2=H2O2k=k1+k2[M]
k1=2.20E‐13exp(600/T)
k2=1.90E‐33exp(980/T)
2.84E‐12
38HO2+HO2+H2O=H2O2k=k1+k2[M]
k1=3.08E‐34exp(2800/T)
k2=2.66E‐54exp(3180/T)
6.09E‐30
39NO3+HO2=0.8OH+0.8NO2+0.2HNO3 k=4.00E‐12 4.00E‐12
40NO3+NO3=2.NO2k=8.50E‐13exp(‐2450/T) 2.41E‐16
41H2O2=2.OHPhotolysis 3.78E‐6
42H2O2+OH=HO2k=1.80E‐12 1.80E‐12
43OH+HO2= k=4.80E‐11exp(250/T) 1.10E‐10
44OH+SO2=HO2+SULFFalloff:F=0.6;n=1
k(0)=3.30E‐31(T/300)^‐4.3
k(inf)=1.60E‐12
9.49E‐13
45OH+H2=HO2k=7.70E‐12exp(‐2100/T) 7.02E‐15
46MEO2+NO=NO2+HCHO+HO2 k=2.30E‐12exp(360/T) 7.64E‐12
47MEO2+HO2=COOHk=3.46E‐13(T/300)^0.36exp(780/T)4.66E‐12
48MEO2+HO2=HCHOk=3.34E‐14(T/300)^‐3.53exp(780/T)4.50E‐13
49MEO2+NO3=HCHO+HO2+NO2 k=1.30E‐12 1.30E‐12
50MEO2+MEO2=MEOH+HCHOk=6.39E‐14(T/300)^‐1.8exp(365/T)2.16E‐13
51MEO2+MEO2=2.HCHO+2.HO2 k=7.40E‐13exp(‐520/T) 1.31E‐13
52RO2C+NO=NO2k=2.60E‐12exp(380/T) 9.23E‐12
53RO2C+HO2= k=3.80E‐13exp(900/T) 7.63E‐12
54RO2C+NO3=NO2k=2.30E‐12 2.30E‐12
55RO2C+MEO2=0.5HO2+0.75HCHO+0.25
MEOH
k=2.00E‐13 2.00E‐13
56RO2C+RO2C= k=3.50E‐14 3.50E‐14
57RO2X+NO=XNk=k(52) 9.23E‐12
58RO2X+HO2= k=k(53) 7.63E‐12
59RO2X+NO3=NO2k=k(54) 2.30E‐12
60RO2X+MEO2=0.5HO2+0.75HCHO+0.25
MEOH
k=k(55) 2.00E‐13
61RO2X+RO2C= k=k(56) 3.50E‐14
62RO2X+RO2X= k=k(56) 3.50E‐14
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 253www.camx.com
NumberReactantsandProductsRateConstantExpression k300
63MCO3+NO2=PANFalloff:F=0.3;n=1.41
k(0)=2.70E‐28(T/300)^‐7.1
k(inf)=1.21E‐11(T/300)^‐0.9
9.38E‐12
64PAN=MCO3+NO2Falloff:F=0.3;n=1.41
k(0)=4.90E‐3exp(‐12100/T)
k(inf)=4.00E+16exp(‐13600/T)
6.27E‐4
65PAN=0.6MCO3+0.6NO2+0.4MEO2+0.4
CO2+0.4NO3
Photolysis 3.50E‐7
66MCO3+NO=MEO2+CO2+NO2 k=7.50E‐12exp(290/T) 1.97E‐11
67MCO3+HO2=0.7CO3H+0.3AACD+0.3O3 k=5.20E‐13exp(980/T) 1.36E‐11
68MCO3+NO3=MEO2+CO2+NO2 k=k(54) 2.30E‐12
69MCO3+MEO2=0.1AACD+HCHO+0.9HO2
+0.9MEO2+0.9CO2
k=2.00E‐12exp(500/T) 1.06E‐11
70MCO3+RO2C=MEO2+CO2k=4.40E‐13exp(1070/T) 1.56E‐11
71MCO3+RO2X=MEO2+CO2k=k(70) 1.56E‐11
72MCO3+MCO3=2.MEO2+2.CO2 k=2.90E‐12exp(500/T) 1.54E‐11
73RCO3+NO2=PAN2k=1.21E‐11(T/300)^‐1.07 1.21E‐11
74PAN2=RCO3+NO2k=8.30E+16exp(‐13940/T) 5.48E‐4
75PAN2=0.6RCO3+0.6NO2+0.4RO2C+0.4
XHO2+0.4YRPX+0.4XCCH+0.4CO2+0.4
NO3
Photolysis 3.50E‐7
76RCO3+NO=NO2+RO2C+XHO2+YRPX+
XCCH+CO2
k=6.70E‐12exp(340/T) 2.08E‐11
77RCO3+HO2=0.75RO3H+0.25PACD+0.25
O3
k=k(67) 1.36E‐11
78RCO3+NO3=NO2+RO2C+XHO2+YRPX+
XCCH+CO2
k=k(54) 2.30E‐12
79RCO3+MEO2=HCHO+HO2+RO2C+XHO2
+XCCH+YRPX+CO2
k=k(69) 1.06E‐11
80RCO3+RO2C=RO2C+XHO2+XCCH+YRPX+
CO2
k=k(70) 1.56E‐11
81RCO3+RO2X=RO2C+XHO2+XCCH+YRPX+
CO2
k=k(70) 1.56E‐11
82RCO3+MCO3=2.CO2+MEO2+RO2C+
XHO2+YRPX+XCCH
k=k(72) 1.54E‐11
83RCO3+RCO3=2.RO2C+2.XHO2+2.XCCH+
2.YRPX+2.CO2
k=k(72) 1.54E‐11
84BZC3+NO2=PBZNk=1.37E‐11 1.37E‐11
85PBZN=BZC3+NO2k=7.90E+16exp(‐14000/T) 4.27E‐4
86PBZN=0.6BZC3+0.6NO2+0.4CO2+0.4
BZO+0.4RO2C+0.4NO3
Photolysis 3.50E‐7
87BZC3+NO=NO2+CO2+BZO+RO2C k=k(76) 2.08E‐11
88BZC3+HO2=0.75RO3H+0.25PACD+0.25
O3+4.XC
k=k(67) 1.36E‐11
89BZC3+NO3=NO2+CO2+BZO+RO2C k =k(54) 2.30E‐12
90BZC3+MEO2=HCHO+HO2+RO2C+BZO+
CO2
k=k(69) 1.06E‐11
91BZC3+RO2C=RO2C+BZO+CO2 k=k(70) 1.56E‐11
92BZC3+RO2X=RO2C+BZO+CO2 k=k(70) 1.56E‐11
93BZC3+MCO3=2.CO2+MEO2+BZO+RO2C k=k(72) 1.54E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 254www.camx.com
NumberReactantsandProductsRateConstantExpression k300
94BZC3+RCO3=2.CO2+2.RO2C+XHO2+
YRPX+XCCH+BZO
k=k(72) 1.54E‐11
95BZC3+BZC3=2.BZO+2.RO2C+2.CO2 k=k(72) 1.54E‐11
96MAC3+NO2=MPANk=k(73) 1.21E‐11
97MPAN=MAC3+NO2k=1.60E+16exp(‐13486/T) 4.80E‐4
98MPAN=0.6MAC3+0.6NO2+0.4CO2+0.4
HCHO+0.4MCO3+0.4NO3
Photolysis 3.50E‐7
99MAC3+NO=NO2+CO2+HCHO+MCO3 k=k(76) 2.08E‐11
100MAC3+HO2=0.75RO3H+0.25PACD+0.25
O3+XC
k=k(67) 1.36E‐11
101MAC3+NO3=NO2+CO2+HCHO+MCO3 k=k(54) 2.30E‐12
102MAC3+MEO2=2.HCHO+HO2+CO2+
MCO3
k=k(69) 1.06E‐11
103MAC3+RO2C=CO2+HCHO+MCO3 k=k(70) 1.56E‐11
104MAC3+RO2X=CO2+HCHO+MCO3 k=k(70) 1.56E‐11
105MAC3+MCO3=2.CO2+MEO2+HCHO+
MCO3
k=k(72) 1.54E‐11
106MAC3+RCO3=HCHO+MCO3+RO2C+
XHO2+YRPX+XCCH+2.CO2
k=k(72) 1.54E‐11
107MAC3+BZC3=HCHO+MCO3+BZO+RO2C
+2.CO2
k=k(72) 1.54E‐11
108MAC3+MAC3=2.HCHO+2.MCO3+2.CO2 k=k(72) 1.54E‐11
109TBUO+NO2=RNO3‐2.XCk=2.40E‐11 2.40E‐11
110TBUO=ACET+MEO2k=7.50E+14exp(‐8152/T) 1.19E+3
111BZO+NO2=NPHEk=2.30E‐11exp(150/T) 3.79E‐11
112BZO+HO2=CRES‐1.XCk=k(53) 7.63E‐12
113BZO=CRES+RO2C+XHO2‐1.XC k=1.00E‐31.00E‐3
114XHO2+NO=NO+HO2k=k(52) 9.23E‐12
115XHO2+HO2=HO2k=k(53) 7.63E‐12
116XHO2+NO3=NO3+HO2k=k(54) 2.30E‐12
117XHO2+MEO2=MEO2+0.5HO2 k=k(55) 2.00E‐13
118XHO2+RO2C=RO2C+0.5HO2k=k(56) 3.50E‐14
119XHO2+RO2X=RO2X+0.5HO2k=k(56) 3.50E‐14
120XHO2+MCO3=MCO3+HO2k=k(70) 1.56E‐11
121XHO2+RCO3=RCO3+HO2k=k(70) 1.56E‐11
122XHO2+BZC3=BZC3+HO2k=k(70) 1.56E‐11
123XHO2+MAC3=MAC3+HO2k=k(70) 1.56E‐11
124XOH+NO=NO+OHk=k(52) 9.23E‐12
125XOH+HO2=HO2k=k(53) 7.63E‐12
126XOH+NO3=NO3+OHk=k(54) 2.30E‐12
127XOH+MEO2=MEO2+0.5OHk=k(55) 2.00E‐13
128XOH+RO2C=RO2C+0.5OHk=k(56) 3.50E‐14
129XOH+RO2X=RO2X+0.5OHk=k(56) 3.50E‐14
130XOH+MCO3=MCO3+OHk=k(70) 1.56E‐11
131XOH+RCO3=RCO3+OHk=k(70) 1.56E‐11
132XOH+BZC3=BZC3+OHk=k(70) 1.56E‐11
133XOH+MAC3=MAC3+OHk=k(70) 1.56E‐11
134XNO2+NO=NO+NO2k=k(52) 9.23E‐12
135XNO2+HO2=HO2+XNk=k(53) 7.63E‐12
136XNO2+NO3=NO3+NO2k=k(54) 2.30E‐12
137XNO2+MEO2=MEO2+0.5NO2+0.5XN k=k(55) 2.00E‐13
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 255www.camx.com
NumberReactantsandProductsRateConstantExpression k300
138XNO2+RO2C=RO2C+0.5NO2+0.5XN k=k(56) 3.50E‐14
139XNO2+RO2X=RO2X+0.5NO2+0.5XN k=k(56) 3.50E‐14
140XNO2+MCO3=MCO3+NO2k=k(70) 1.56E‐11
141XNO2+RCO3=RCO3+NO2k=k(70) 1.56E‐11
142XNO2+BZC3=BZC3+NO2k=k(70) 1.56E‐11
143XNO2+MAC3=MAC3+NO2k=k(70) 1.56E‐11
144XMEO+NO=NO+MEO2k=k(52) 9.23E‐12
145XMEO+HO2=HO2+XCk=k(53) 7.63E‐12
146XMEO+NO3=NO3+MEO2k=k(54) 2.30E‐12
147XMEO+MEO2=1.5MEO2+0.5XC k=k(55) 2.00E‐13
148XMEO+RO2C=RO2C+0.5MEO2+0.5XC k=k(56) 3.50E‐14
149XMEO+RO2X=RO2X+0.5MEO2+0.5XC k=k(56) 3.50E‐14
150XMEO+MCO3=MCO3+MEO2k=k(70) 1.56E‐11
151XMEO+RCO3=RCO3+MEO2k=k(70) 1.56E‐11
152XMEO+BZC3=BZC3+MEO2k=k(70) 1.56E‐11
153XMEO+MAC3=MAC3+MEO2k=k(70) 1.56E‐11
154XMC3+NO=NO+MCO3k=k(52) 9.23E‐12
155XMC3+HO2=HO2+2.XCk=k(53) 7.63E‐12
156XMC3+NO3=NO3+MCO3k=k(54) 2.30E‐12
157XMC3+MEO2=MEO2+0.5MCO3+XC k=k(55) 2.00E‐13
158XMC3+RO2C=RO2C+0.5MCO3+XC k=k(56) 3.50E‐14
159XMC3+RO2X=RO2X+0.5MCO3+XC k=k(56) 3.50E‐14
160XMC3+MCO3=2.MCO3k=k(70) 1.56E‐11
161XMC3+RCO3=RCO3+MCO3k=k(70) 1.56E‐11
162XMC3+BZC3=BZC3+MCO3k=k(70) 1.56E‐11
163XMC3+MAC3=MAC3+MCO3k=k(70) 1.56E‐11
164XRC3+NO=NO+RCO3k=k(52) 9.23E‐12
165XRC3+HO2=HO2+3.XCk=k(53) 7.63E‐12
166XRC3+NO3=NO3+RCO3k=k(54) 2.30E‐12
167XRC3+MEO2=MEO2+0.5RCO3+1.5XC k=k(55) 2.00E‐13
168XRC3+RO2C=RO2C+0.5RCO3 +1.5XC k=k(56) 3.50E‐14
169XRC3+RO2X=RO2X+0.5RCO3+1.5XC k=k(56) 3.50E‐14
170XRC3+MCO3=MCO3+RCO3k=k(70) 1.56E‐11
171XRC3+RCO3=2.RCO3k=k(70) 1.56E‐11
172XRC3+BZC3=BZC3+RCO3k=k(70) 1.56E‐11
173XRC3+MAC3=MAC3+RCO3k=k(70) 1.56E‐11
174XMA3+NO=NO+MAC3k=k(52) 9.23E‐12
175XMA3+HO2=HO2+4.XCk=k(53) 7.63E‐12
176XMA3+NO3=NO3+MAC3k=k(54) 2.30E‐12
177XMA3+MEO2=MEO2+0.5MAC3+2.XC k=k(55) 2.00E‐13
178XMA3+RO2C=RO2C+0.5MAC3+2.XC k=k(56) 3.50E‐14
179XMA3+RO2X=RO2X+0.5MAC3+2.XC k=k(56) 3.50E‐14
180XMA3+MCO3=MCO3+MAC3k=k(70) 1.56E‐11
181XMA3+RCO3=RCO3+MAC3k=k(70) 1.56E‐11
182XMA3+BZC3=BZC3+MAC3k=k(70) 1.56E‐11
183XMA3+MAC3=2.MAC3k=k(70) 1.56E‐11
184XTBU+NO=NO+TBUOk=k(52) 9.23E‐12
185XTBU+HO2=HO2+4.XCk=k(53) 7.63E‐12
186XTBU+NO3=NO3+TBUOk=k(54) 2.30E‐12
187XTBU+MEO2=MEO2+0.5TBUO+2.XC k=k(55) 2.00E‐13
188XTBU+RO2C=RO2C+0.5TBUO+2.XC k=k(56) 3.50E‐14
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 256www.camx.com
NumberReactantsandProductsRateConstantExpression k300
189XTBU+RO2X=RO2X+0.5TBUO+2.XC k=k(56) 3.50E‐14
190XTBU+MCO3=MCO3+TBUOk=k(70) 1.56E‐11
191XTBU+RCO3=RCO3+TBUOk=k(70) 1.56E‐11
192XTBU+BZC3=BZC3+TBUOk=k(70) 1.56E‐11
193XTBU+MAC3=MAC3+TBUOk=k(70) 1.56E‐11
194XCO+NO=NO+COk=k(52) 9.23E‐12
195XCO+HO2=HO2+XCk=k(53) 7.63E‐12
196XCO+NO3=NO3+COk=k(54) 2.30E‐12
197XCO+MEO2=MEO2+0.5CO+0.5XC k=k(55) 2.00E‐13
198XCO+RO2C=RO2C+0.5CO+0.5XC k=k(56) 3.50E‐14
199XCO+RO2X=RO2X+0.5CO+0.5XC k=k(56) 3.50E‐14
200XCO+MCO3=MCO3+COk=k(70) 1.56E‐11
201XCO+RCO3=RCO3+COk=k(70) 1.56E‐11
202XCO+BZC3=BZC3+COk=k(70) 1.56E‐11
203XCO+MAC3=MAC3+COk=k(70) 1.56E‐11
204HCHO=2.HO2+COPhotolysis 1.78E‐5
205HCHO=COPhotolysis 2.38E‐5
206HCHO+OH=HO2+COk=5.40E‐12exp(135/T) 8.47E‐12
207HCHO+NO3=HNO3+HO2+CO k=2.00E‐12exp(‐2431/T) 6.05E‐16
208CCHO+OH=MCO3k=4.40E‐12exp(365/T) 1.49E‐11
209CCHO=CO+HO2+MEO2Photolysis 1.77E‐6
210CCHO+NO3=HNO3+MCO3k=1.40E‐12exp(‐1860/T) 2.84E‐15
211RCHO+OH=0.965RCO3+0.035RO2C+
0.035XHO2+0.035XCO+0.035XCCH+
0.035YRPX
k=5.10E‐12exp(405/T) 1.97E‐11
212RCHO=RO2C+XHO2+YRPX+XCCH+CO+
HO2
Photolysis 6.95E‐6
213RCHO+NO3=HNO3+RCO3k=1.40E‐12exp(‐1601/T) 6.74E‐15
214ACET+OH=RO2C+XMC3+XHCH+YRPX k=4.56E‐14(T/300)^3.65exp(429/T)1.91E‐13
215ACET=0.62MCO3+1.38MEO2+0.38CO Photolysis 1.04E‐7
216MEK+OH=0.967RO2C+0.039RO2X+0.039
ZRN3+0.376XHO2+0.51XMC3+0.074
XRC3+0.088XHCH+0.504XCCH+0.376
XRCH+YRPX+0.3XC
k=1.30E‐12(T/300)^2exp(‐25/T)1.20E‐12
217MEK=MCO3+RO2C+XHO2+XCCH+YRPX Photolysis 8.13E‐7
218MEOH+OH=HCHO+HO2k=2.85E‐12exp(‐345/T) 9.02E‐13
219FACD+OH=HO2+CO2k=4.50E‐13 4.50E‐13
220AACD+OH=0.509MEO2+0.491RO2C+
0.509CO2+0.491XHO2+0.491XMGL+
0.491YRPX‐0.491XC
k=4.20E‐14exp(855/T) 7.26E‐13
221PACD+OH=RO2C+XHO2+0.143CO2+
0.142XCCH+0.4XRCH+0.457XBAC+YRPX‐
0.455XC
k=1.20E‐12 1.20E‐12
222COOH+OH=0.3HCHO+0.3OH+0.7MEO2 k=3.80E‐12exp(200/T) 7.40E‐12
223COOH=HCHO+HO2+OHPhotolysis 2.72E‐6
224ROOH+OH=0.744OH+0.251RO2C+0.004
RO2X+0.004ZRN3+0.744RCHO+0.239
XHO2+0.012XOH+0.012XHCH+0.012
XCCH+0.205XRCH+0.034XPD2+0.256
YRPX‐0.115XC
k =2.50E‐11 2.50E‐11
225ROOH=RCHO+HO2+OHPhotolysis 2.72E‐6
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 257www.camx.com
NumberReactantsandProductsRateConstantExpression k300
226R6PX+OH=0.84OH+0.222RO2C+0.029
RO2X+0.029ZRN3+0.84PRD2+0.09XHO2
+0.041XOH+0.02XCCH+0.075XRCH+
0.084XPD2+0.16YRPX+0.02XC
k=5.60E‐11 5.60E‐11
227R6PX=OH+0.142HO2+0.782RO2C+0.077
RO2X+0.077ZRN3+0.085RCHO+0.142
PRD2+0.782XHO2+0.026XCCH+0.058
XRCH+0.698XPD2+0.858Y6PX+0.017XC
Photolysis 2.72E‐6
228RAPX+OH=0.139OH+0.148HO2+0.589
RO2C+0.124RO2X+0.124ZRN3+0.074
PRD2+0.147MGLY+0.139IPRD+0.565
XHO2+0.024XOH+0.448XRCH+0.026XGLY
+0.03XMEK+0.252XMGL+0.073XAF1+
0.073XAF2+0.713Y6PX+2.674XC
k=1.41E‐10 1.41E‐10
229RAPX=OH+HO2+0.5GLY+0.5MGLY+0.5
AFG1+0.5AFG2+0.5XC
Photolysis 2.72E‐6
230GLY=2.CO+2.HO2Photolysis 7.88E‐5
231GLY=HCHO+COPhotolysis 2.23E‐5
232GLY+OH=0.63HO2+1.26CO+0.37RCO3‐
0.37XC
k=1.10E‐11 1.10E‐11
233GLY+NO3=HNO3+0.63HO2+1.26CO+
0.37RCO3‐0.37XC
k=2.80E‐12exp(‐2376/T) 1.02E‐15
234MGLY=HO2+CO+MCO3Photolysis 1.39E‐4
235MGLY+OH=CO+MCO3k=1.50E‐11 1.50E‐11
236MGLY+NO3=HNO3+CO+MCO3 k=1.40E‐12exp(‐1895/T) 2.53E‐15
237BACL=2.MCO3Photolysis 2.45E‐4
238CRES+OH=0.2BZO+0.8RO2C+0.8XHO2+
0.8Y6PX+0.25XMGL+5.05XC
k=1.70E‐12exp(950/T) 4.03E‐11
239CRES+NO3=HNO3+BZO+XCk=1.40E‐11 1.40E‐11
240NPHE+OH=BZO+XNk=3.50E‐12 3.50E‐12
241NPHE=HONO+6.XCPhotolysis 9.55E‐6
242NPHE=6.XC+XNPhotolysis 9.55E‐5
243BALD+OH=BZC3k=1.20E‐11 1.20E‐11
244BALD=7.XCPhotolysis 2.48E‐5
245BALD+NO3=HNO3+BZC3k=1.34E‐12exp(‐1860/T) 2.72E‐15
246AFG1+OH=0.217MAC3+0.723RO2C+0.06
RO2X+0.06ZRN3+0.521XHO2+0.201
XMC3+0.334XCO+0.407XRCH+0.129
XMEK+0.107XGLY+0.267XMGL+0.783
Y6PX+0.284XC
k=7.40E‐11 7.40E‐11
247AFG1+O3=0.826OH+0.522HO2+0.652
RO2C+0.522CO+0.174CO2+0.432GLY+
0.568MGLY+0.652XRC3+0.652XHCH+
0.652Y6PX‐0.872XC
k=9.66E‐18 9.66E‐18
248AFG1=1.023HO2+0.173MEO2+0.305
MCO3+0.5MAC3+0.695CO+0.195GLY+
0.305MGLY+0.217XC
Photolysis 3.07E‐3
249AFG2+OH=0.217MAC3+0.723RO2C+0.06
RO2X+0.06ZRN3+0.521XHO2+0.201
XMC3+0.334XCO+0.407XRCH+0.129
XMEK+0.107XGLY+0.267XMGL+0.783
Y6PX+0.284XC
k=7.40E‐11 7.40E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 258www.camx.com
NumberReactantsandProductsRateConstantExpression k300
250AFG2+O3=0.826OH+0.522HO2+0.652
RO2C+0.522CO+0.174CO2+0.432GLY+
0.568MGLY+0.652XRC3+0.652XHCH+
0.652Y6PX‐0.872XC
k=9.66E‐18 9.66E‐18
251AFG2=PRD2‐1.XCPhotolysis 3.07E‐3
252AFG3+OH=0.206MAC3+0.733RO2C+
0.117RO2X+0.117ZRN3+0.561XHO2+
0.117XMC3+0.114XCO+0.274XGLY+0.153
XMGL+0.019XBAC+0.195XAF1+0.195
XAF2+0.231XIPR+0.794Y6PX+0.938XC
k=9.35E‐11 9.35E‐11
253AFG3+O3=0.471OH+0.554HO2+0.013
MCO3+0.258RO2C+0.007RO2X+0.007
ZRN3+0.58CO+0.19CO2+0.366GLY+
0.184MGLY+0.35AFG1+0.35AFG2+0.139
AFG3+0.003MACR+0.004MVK+0.003
IPRD+0.095XHO2+0.163XRC3+0.163
XHCH+0.095XMGL+0.264Y6PX‐0.575XC
k=1.43E‐17 1.43E‐17
254MACR+OH=0.5MAC3+0.5RO2C+0.5
XHO2+0.416XCO+0.084XHCH+0.416
XMEK+0.084XMGL+0.5YRPX‐0.416XC
k=8.00E‐12exp(380/T) 2.84E‐11
255MACR+O3=0.208OH+0.108HO2+0.1
RO2C+0.45CO+0.117CO2+0.1HCHO+0.9
MGLY+0.333FACD+0.1XRC3+0.1XHCH+
0.1YRPX‐0.1XC
k=1.40E‐15exp(‐2100/T) 1.28E‐18
256MACR+NO3=0.5MAC3+0.5RO2C+0.5
HNO3+0.5XHO2+0.5XCO+0.5YRPX+1.5
XC+0.5XN
k=1.50E‐12exp(‐1815/T) 3.54E‐15
257MACR+O3P=RCHO+XCk=6.34E‐12 6.34E‐12
258MACR=0.33OH+0.67HO2+0.34MCO3+
0.33MAC3+0.33RO2C+0.67CO+0.34
HCHO+0.33XMC3+0.33XHCH+0.33YRPX
Photolysis 1.39E‐6
259MVK+OH=0.975RO2C+0.025RO2X+0.025
ZRN3+0.3XHO2+0.675XMC3+0.3XHCH+
0.675XGLD+0.3XMGL+YRPX‐0.05XC
k=2.60E‐12exp(610/T) 1.99E‐11
260MVK+O3=0.164OH+0.064HO2+0.05
RO2C+0.05XHO2+0.475CO+0.124CO2+
0.05HCHO+0.95MGLY+0.351FACD+0.05
XRC3+0.05XHCH+0.05YRPX‐0.05XC
k=8.50E‐16exp(‐1520/T) 5.36E‐18
261MVK+O3P=0.45RCHO+0.55MEK+0.45XC k=4.32E‐12 4.32E‐12
262MVK=0.4MEO2+0.6CO+0.6PRD2+0.4
MAC3‐2.2XC
Photolysis 5.25E‐7
263IPRD+OH=0.289MAC3+0.67RO2C+0.67
XHO2+0.041RO2X+0.041ZRN3+0.336XCO
+0.055XHCH+0.129XGLD+0.013XRCH+
0.15XMEK+0.332XPD2+0.15XGLY+0.174
XMGL‐0.504XC+0.711Y6PX
k=6.19E‐11 6.19E‐11
264IPRD+O3=0.285OH+0.4HO2+0.048 RO2C
+0.048XRC3+0.498CO+0.14CO2+0.124
HCHO+0.21MEK+0.023GLY+0.742MGLY+
0.1FACD+0.372PACD+0.047XGLD+0.001
XHCH+0.048Y6PX‐0.329XC
k=4.18E‐18 4.18E‐18
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 259www.camx.com
NumberReactantsandProductsRateConstantExpression k300
265IPRD+NO3=0.15MAC3+0.15HNO3+0.799
RO2C+0.799XHO2+0.051RO2X+0.051
ZRN3+0.572XCO+0.227XHCH+0.218XRCH
+0.008XMGL+0.572XRN3+0.85Y6PX+
0.278XN‐0.815XC
k=1.00E‐13 1.00E‐13
266IPRD=1.233HO2+0.467MCO3+0.3RCO3+
1.233CO+0.3HCHO+0.467GLYD+0.233
MEK‐0.233XC
Photolysis 1.39E‐6
267PRD2+OH=0.472HO2+0.379XHO2+0.029
XMC3+0.049XRC3+0.473RO2C+0.071
RO2X+0.071ZRN3+0.002HCHO+0.211
XHCH+0.001CCHO+0.083XCCH+0.143
RCHO+0.402XRCH+0.115XMEK+0.329
PRD2+0.007XPD2+0.528Y6PX+0.877XC
k =1.55E‐11 1.55E‐11
268PRD2=0.913XHO2+0.4MCO3+0.6RCO3+
1.59RO2C+0.087RO2X+0.087ZRN3+0.303
XHCH+0.163XCCH+0.78XRCH+Y6PX‐
0.091XC
Photolysis 2.26E‐8
269RNO3+OH=0.189HO2+0.305XHO2+0.019
NO2+0.313XNO2+0.976RO2C+0.175
RO2X+0.175ZRN3+0.011XHCH+0.429
XCCH+0.001RCHO+0.036XRCH+0.004
XACE+0.01MEK+0.17XMEK+0.008PRD2+
0.031XPD2+0.189RNO3+0.305XRN3+
0.157YRPX+0.636Y6PX+0.174XN+0.04XC
k=7.20E‐12 7.20E‐12
270RNO3=0.344HO2+0.554XHO2+NO2+
0.721RO2C+0.102RO2X+0.102ZRN3+
0.074HCHO+0.061XHCH+0.214CCHO+
0.23XCCH+0.074RCHO+0.063XRCH+
0.008XACE+0.124MEK+0.083XMEK+0.19
PRD2+0.261XPD2+0.066YRPX+0.591Y6PX
+0.396XC
Photolysis 1.20E‐6
271GLYD+OH=MCO3k=k(208) 1.49E‐11
272GLYD=CO+2.HO2+HCHOPhotolysis 2.75E‐6
273GLYD+NO3=HNO3+MCO3k=k(210) 2.84E‐15
274ACRO+OH=0.25XHO2+0.75MAC3+0.25
RO2C+0.167XCO+0.083XHCH+0.167XCCH
+0.083XGLY+0.25YRPX‐0.75XC
k=1.99E‐11 1.99E‐11
275ACRO+O3=0.83HO2+0.33OH+1.005CO+
0.31CO2+0.5HCHO+0.185FACD+0.5GLY
k=1.40E‐15exp(‐2528/T) 3.07E‐19
276ACRO+NO3=0.031XHO2+0.967MAC3+
0.031RO2C+0.002RO2X+0.002ZRN3+
0.967HNO3+0.031XCO+0.031XRN3+
0.033YRPX+0.002XN‐1.097XC
k=1.18E‐15 1.18E‐15
277ACRO+O3P=RCHOk=2.37E‐12 2.37E‐12
278ACRO=1.066HO2+0.178OH+0.234MEO2
+0.33MAC3+1.188CO+0.102CO2+0.34
HCHO+0.05AACD‐0.284XC
Photolysis 1.28E‐6
279CO3H+OH=0.98MCO3+0.02RO2C+0.02
CO2+0.02XOH+0.02XHCH+0.02YRPX
k=5.28E‐12 5.28E‐12
280CO3H=MEO2+CO2+OHPhotolysis 3.60E‐7
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 260www.camx.com
NumberReactantsandProductsRateConstantExpression k300
281RO3H+OH=0.806RCO3+0.194RO2C+
0.194YRPX+0.11CO2+0.11XOH+0.11
XCCH+0.084XHO2+0.084XRCH
k=6.42E‐12 6.42E‐12
282RO3H=XHO2+XCCH+YRPX+CO2+OH Photolysis 3.60E‐7
283XHCH+NO=NO+HCHOk=k(52) 9.23E‐12
284XHCH+HO2=HO2+XCk=k(53) 7.63E‐12
285XHCH+NO3=NO3+HCHOk=k(54) 2.30E‐12
286XHCH+MEO2=MEO2+0.5HCHO+0.5XC k=k(55) 2.00E‐13
287XHCH+RO2C=RO2C+0.5HCHO+0.5XC k=k(56) 3.50E‐14
288XHCH+RO2X=RO2X+0.5HCHO+0.5XC k=k(56) 3.50E‐14
289XHCH+MCO3=MCO3+HCHOk=k(70) 1.56E‐11
290XHCH+RCO3=RCO3+HCHOk=k(70) 1.56E‐11
291XHCH+BZC3=BZC3+HCHOk=k(70) 1.56E‐11
292XHCH+MAC3=MAC3+HCHOk=k(70) 1.56E‐11
293XCCH+NO=NO+CCHOk=k(52) 9.23E‐12
294XCCH+HO2=HO2+2.XCk=k(53) 7.63E‐12
295XCCH+NO3=NO3+CCHOk=k(54) 2.30E‐12
296XCCH+MEO2=MEO2+0.5CCHO+XC k=k(55) 2.00E‐13
297XCCH+RO2C=RO2C+0.5CCHO+XC k=k(56) 3.50E‐14
298XCCH+RO2X=RO2X+0.5CCHO+XC k=k(56) 3.50E‐14
299XCCH+MCO3=MCO3+CCHOk=k(70) 1.56E‐11
300XCCH+RCO3=RCO3+CCHOk=k(70) 1.56E‐11
301XCCH+BZC3=BZC3+CCHOk=k(70) 1.56E‐11
302XCCH+MAC3=MAC3+CCHOk=k(70) 1.56E‐11
303XRCH+NO=NO+RCHOk=k(52) 9.23E‐12
304XRCH+HO2=HO2+3.XCk=k(53) 7.63E‐12
305XRCH+NO3=NO3+RCHOk=k(54) 2.30E‐12
306XRCH+MEO2=MEO2+0.5RCHO+1.5XC k=k(55) 2.00E‐13
307XRCH+RO2C=RO2C+0.5RCHO+1.5XC k=k(56) 3.50E‐14
308XRCH+RO2X=RO2X+0.5RCHO+1.5XC k=k(56) 3.50E‐14
309XRCH+MCO3=MCO3+RCHOk=k(70) 1.56E‐11
310XRCH+RCO3=RCO3+RCHOk=k(70) 1.56E‐11
311XRCH+BZC3=BZC3+RCHOk=k(70) 1.56E‐11
312XRCH+MAC3=MAC3+RCHOk=k(70) 1.56E‐11
313XACE+NO=NO+ACETk=k(52) 9.23E‐12
314XACE+HO2=HO2+3.XCk=k(53) 7.63E‐12
315XACE+NO3=NO3+ACETk=k(54) 2.30E‐12
316XACE+MEO2=MEO2+0.5ACET+1.5XC k=k(55) 2.00E‐13
317XACE+RO2C=RO2C+0.5ACET+1.5XC k=k(56) 3.50E‐14
318XACE+RO2X=RO2X+0.5ACET+1.5XC k=k(56) 3.50E‐14
319XACE+MCO3=MCO3+ACETk=k(70) 1.56E‐11
320XACE+RCO3=RCO3+ACE
T
k=k(70) 1.56E‐11
321XACE+BZC3=BZC3+ACE
T
k=k(70) 1.56E‐11
322XACE+MAC3=MAC3+ACETk=k(70) 1.56E‐11
323XMEK+NO=NO+MEKk=k(52) 9.23E‐12
324XMEK+HO2=HO2+4.XCk=k(53) 7.63E‐12
325XMEK+NO3=NO3+MEKk=k(54) 2.30E‐12
326XMEK+MEO2=MEO2+0.5MEK+2.XC k=k(55) 2.00E‐13
327XMEK+RO2C=RO2C+0.5MEK+2.XC k=k(56) 3.50E‐14
328XMEK+RO2X=RO2X+0.5MEK+2.XC k=k(56) 3.50E‐14
329XMEK+MCO3=MCO3+MEKk=k(70) 1.56E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 261www.camx.com
NumberReactantsandProductsRateConstantExpression k300
330XMEK+RCO3=RCO3+MEKk=k(70) 1.56E‐11
331XMEK+BZC3=BZC3+MEKk=k(70) 1.56E‐11
332XMEK+MAC3=MAC3+MEKk=k(70) 1.56E‐11
333XPD2+NO=NO+PRD2k=k(52) 9.23E‐12
334XPD2+HO2=HO2+6.XCk=k(53) 7.63E‐12
335XPD2+NO3=NO3+PRD2k=k(54) 2.30E‐12
336XPD2+MEO2=MEO2+0.5PRD2+3.XC k=k(55) 2.00E‐13
337XPD2+RO2C=RO2C+0.5PRD2+3.XC k=k(56) 3.50E‐14
338XPD2+RO2X=RO2X+0.5PRD2+3.XC k=k(56) 3.50E‐14
339XPD2+MCO3=MCO3+PRD2k=k(70) 1.56E‐11
340XPD2+RCO3=RCO3+PRD2k=k(70) 1.56E‐11
341XPD2+BZC3=BZC3+PRD2k=k(70) 1.56E‐11
342XPD2+MAC3=MAC3+PRD2k=k(70) 1.56E‐11
343XGLY+NO=NO+GLYk=k(52) 9.23E‐12
344XGLY+HO2=HO2+2.XCk=k(53) 7.63E‐12
345XGLY+NO3=NO3+GLYk=k(54) 2.30E‐12
346XGLY+MEO2=MEO2+0.5GLY+XC k=k(55) 2.00E‐13
347XGLY+RO2C=RO2C+0.5GLY+XC k=k(56) 3.50E‐14
348XGLY+RO2X=RO2X+0.5GLY+XC k=k(56) 3.50E‐14
349XGLY+MCO3=MCO3+GLYk=k(70) 1.56E‐11
350XGLY+RCO3=RCO3+GLYk=k(70) 1.56E‐11
351XGLY+BZC3=BZC3+GLYk=k(70) 1.56E‐11
352XGLY+MAC3=MAC3+GLYk=k(70) 1.56E‐11
353XMGL+NO=NO+MGLYk=k(52) 9.23E‐12
354XMGL+HO2=HO2+3.XCk=k(53) 7.63E‐12
355XMGL+NO3=NO3+MGLYk=k(54) 2.30E‐12
356XMGL+MEO2=MEO2+0.5MGLY+1.5XC k=k(55) 2.00E‐13
357XMGL+RO2C=RO2C+0.5MGLY+1.5XC k=k(56) 3.50E‐14
358XMGL+RO2X=RO2X+0.5MGLY+1.5XC k=k(56) 3.50E‐14
359XMGL+MCO3=MCO3+MGLYk=k(70) 1.56E‐11
360XMGL+RCO3=RCO3+MGLYk=k(70) 1.56E‐11
361XMGL+BZC3=BZC3+MGLYk=k(70) 1.56E‐11
362XMGL+MAC3=MAC3+MGLYk=k(70) 1.56E‐11
363XBAC+NO=NO+BACLk=k(52) 9.23E‐12
364XBAC+HO2=HO2+4.XCk=k(53) 7.63E‐12
365XBAC+NO3=NO3+BACLk=k(54) 2.30E‐12
366XBAC+MEO2=MEO2+0.5BACL+2.XC k=k(55) 2.00E‐13
367XBAC+RO2C=RO2C+0.5BACL+2.XC k=k(56) 3.50E‐14
368XBAC+RO2X=RO2X+0.5BACL+2.XC k=k(56) 3.50E‐14
369XBAC+MCO3=MCO3+BACLk=k(70) 1.56E‐11
370XBAC+RCO3=RCO3+BACLk=k(70) 1.56E‐11
371XBAC+BZC3=BZC3+BACLk=k(70) 1.56E‐11
372XBAC+MAC3=MAC3+BACLk=k(70) 1.56E‐11
373XBAL+NO=NO+BALDk=k(52) 9.23E‐12
374XBAL+HO2=HO2+7.XCk=k(53) 7.63E‐12
375XBAL+NO3=NO3+BALDk=k(54) 2.30E‐12
376XBAL+MEO2=MEO2+0.5BALD+3.5XC k=k(55) 2.00E‐13
377XBAL+RO2C=RO2C+0.5BALD+3.5XC k=k(56) 3.50E‐14
378XBAL+RO2X=RO2X+0.5BALD+3.5XC k=k(56) 3.50E‐14
379XBAL+MCO3=MCO3+BALDk=k(70) 1.56E‐11
380XBAL+RCO3=RCO3+BALDk=k(70) 1.56E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 262www.camx.com
NumberReactantsandProductsRateConstantExpression k300
381XBAL+BZC3=BZC3+BALDk=k(70) 1.56E‐11
382XBAL+MAC3=MAC3+BALDk=k(70) 1.56E‐11
383XAF1+NO=NO+AFG1k=k(52) 9.23E‐12
384XAF1+HO2=HO2+5.XCk=k(53) 7.63E‐12
385XAF1+NO3=NO3+AFG1k=k(54) 2.30E‐12
386XAF1+MEO2=MEO2+0.5AFG1+2.5XC k=k(55) 2.00E‐13
387XAF1+RO2C=RO2C+0.5AFG1+2.5XC k=k(56) 3.50E‐14
388XAF1+RO2X=RO2X+0.5AFG1+2.5XC k=k(56) 3.50E‐14
389XAF1+MCO3=MCO3+AFG1k=k(70) 1.56E‐11
390XAF1+RCO3=RCO3+AFG1k=k(70) 1.56E‐11
391XAF1+BZC3=BZC3+AFG1k=k(70) 1.56E‐11
392XAF1+MAC3=MAC3+AFG1k=k(70) 1.56E‐11
393XAF2+NO=NO+AFG2k=k(52) 9.23E‐12
394XAF2+HO2=HO2+5.XCk=k(53) 7.63E‐12
395XAF2+NO3=NO3+AFG2k=k(54) 2.30E‐12
396XAF2+MEO2=MEO2+0.5AFG2+2.5XC k=k(55) 2.00E‐13
397XAF2+RO2C=RO2C+0.5AFG2+2.5XC k=k(56) 3.50E‐14
398XAF2+RO2X=RO2X+0.5AFG2+2.5XC k=k(56) 3.50E‐14
399XAF2+MCO3=MCO3+AFG2k=k(70) 1.56E‐11
400XAF2+RCO3=RCO3+AFG2k=k(70) 1.56E‐11
401XAF2+BZC3=BZC3+AFG2k=k(70) 1.56E‐11
402XAF2+MAC3=MAC3+AFG2k=k(70) 1.56E‐11
403XAF3+NO=NO+AFG3k=k(52) 9.23E‐12
404XAF3+HO2=HO2+7.XCk=k(53) 7.63E‐12
405XAF3+NO3=NO3+AFG3k=k(54) 2.30E‐12
406XAF3+MEO2=MEO2+0.5AFG3+3.5XC k=k(55) 2.00E‐13
407XAF3+RO2C=RO2C+0.5AFG3+3.5XC k=k(56) 3.50E‐14
408XAF3+RO2X=RO2X+0.5AFG3+3.5XC k=k(56) 3.50E‐14
409XAF3+MCO3=MCO3+AFG3k=k(70) 1.56E‐11
410XAF3+RCO3=RCO3+AFG3k=k(70) 1.56E‐11
411XAF3+BZC3=BZC3+AFG3k=k(70) 1.56E‐11
412XAF3+MAC3=MAC3+AFG3k=k(70) 1.56E‐11
413XMAC+NO=NO+MACRk=k(52) 9.23E‐12
414XMAC+HO2=HO2+4.XCk=k(53) 7.63E‐12
415XMAC+NO3=NO3+MACRk=k(54) 2.30E‐12
416XMAC+MEO2=MEO2+0.5MACR+2.XC k=k(55) 2.00E‐13
417XMAC+RO2C=RO2C+0.5MACR+2.XC k=k(56) 3.50E‐14
418XMAC+RO2X=RO2X+0.5MACR+2.XC k=k(56) 3.50E‐14
419XMAC+MCO3=MCO3+MACRk=k(70) 1.56E‐11
420XMAC+RCO3=RCO3+MACRk=k(70) 1.56E‐11
421XMAC+BZC3=BZC3+MACRk=k(70) 1.56E‐11
422XMAC+MAC3=MAC3+MACRk=k(70) 1.56E‐11
423XMVK+NO=NO+MVKk=k(52) 9.23E‐12
424XMVK+HO2=HO2+4.XCk=k(53) 7.63E‐12
425XMVK+NO3=NO3+MVKk=k(54) 2.30E‐12
426XMVK+MEO2=MEO2+0.5MVK+2.XC k=k(55) 2.00E‐13
427XMVK+RO2C=RO2C+0.5MVK+2.XC k=k(56) 3.50E‐14
428XMVK+RO2X=RO2X+0.5MVK+2.XC k=k(56) 3.50E‐14
429XMVK+MCO3=MCO3+MVKk=k(70) 1.56E‐11
430XMVK+RCO3=RCO3+MVKk=k(70) 1.56E‐11
431XMVK+BZC3=BZC3+MVKk=k(70) 1.56E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 263www.camx.com
NumberReactantsandProductsRateConstantExpression k300
432XMVK+MAC3=MAC3+MVKk=k(70) 1.56E‐11
433XIPR+NO=NO+IPRDk=k(52) 9.23E‐12
434XIPR+HO2=HO2+5.XCk=k(53) 7.63E‐12
435XIPR+NO3=NO3+IPRDk=k(54) 2.30E‐12
436XIPR+MEO2=MEO2+0.5IPRD+2.5XC k=k(55) 2.00E‐13
437XIPR+RO2C=RO2C+0.5IPRD+2.5XC k=k(56) 3.50E‐14
438XIPR+RO2X=RO2X+0.5IPRD+2.5XC k=k(56) 3.50E‐14
439XIPR+MCO3=MCO3+IPRDk=k(70) 1.56E‐11
440XIPR+RCO3=RCO3+IPRDk=k(70) 1.56E‐11
441XIPR+BZC3=BZC3+IPRDk=k(70) 1.56E‐11
442XIPR+MAC3=MAC3+IPRDk=k(70) 1.56E‐11
443XRN3+NO=NO+RNO3k=k(52) 9.23E‐12
444XRN3+HO2=HO2+6.XC+XNk=k(53) 7.63E‐12
445XRN3+NO3=NO3+RNO3k=k(54) 2.30E‐12
446XRN3+MEO2=MEO2+0.5RNO3+0.5XN+
3.XC
k=k(55) 2.00E‐13
447XRN3+RO2C=RO2C+0.5RNO3 +0.5XN+3.
XC
k=k(56) 3.50E‐14
448XRN3+RO2X=RO2X+0.5RNO3+0.5XN+3.
XC
k=k(56) 3.50E‐14
449XRN3+MCO3=MCO3+RNO3k=k(70) 1.56E‐11
450XRN3+RCO3=RCO3+RNO3k=k(70) 1.56E‐11
451XRN3+BZC3=BZC3+RNO3k=k(70) 1.56E‐11
452XRN3+MAC3=MAC3+RNO3k=k(70) 1.56E‐11
453YRPX+NO=NOk=k(52) 9.23E‐12
454YRPX+HO2=HO2+ROOH‐3.XC k=k(53) 7.63E‐12
455YRPX+NO3=NO3k=k(54) 2.30E‐12
456YRPX+MEO2=MEO2+0.5MEK‐ 2.XC k=k(55) 2.00E‐13
457YRPX+RO2C=RO2C+0.5MEK‐ 2.XC k=k(56) 3.50E‐14
458YRPX+RO2X=RO2X+0.5MEK‐ 2.XC k=k(56) 3.50E‐14
459YRPX+MCO3=MCO3k=k(70) 1.56E‐11
460YRPX+RCO3=RCO3k=k(70) 1.56E‐11
461YRPX+BZC3=BZC3k=k(70) 1.56E‐11
462YRPX+MAC3=MAC3k=k(70) 1.56E‐11
463Y6PX+NO=NOk=k(52) 9.23E‐12
464Y6PX+HO2=HO2+R6PX‐6.XC k=k(53) 7.63E‐12
465Y6PX+NO3=NO3k=k(54) 2.30E‐12
466Y6PX+MEO2=MEO2+0.5PRD2‐ 3.XC k=k(55) 2.00E‐13
467Y6PX+RO2C=RO2C+0.5PRD2‐ 3.XC k=k(56) 3.50E‐14
468Y6PX+RO2X=RO2X+0.5PRD2‐ 3.XC k=k(56) 3.50E‐14
469Y6PX+MCO3=MCO3k=k(70) 1.56E‐11
470Y6PX+RCO3=RCO3k=k(70) 1.56E‐11
471Y6PX+BZC3=BZC3k=k(70) 1.56E‐11
472Y6PX+MAC3=MAC3k=k(70) 1.56E‐11
473YAPX+NO=NOk=k(52) 9.23E‐12
474YAPX+HO2=HO2+RAPX‐8.XC k=k(53) 7.63E‐12
475YAPX+NO3=NO3k=k(54) 2.30E‐12
476YAPX+MEO2=MEO2+0.5PRD2‐ 3.XC k=k(55) 2.00E‐13
477YAPX+RO2C=RO2C+0.5PRD2‐ 3.XC k=k(56) 3.50E‐14
478YAPX+RO2X=RO2X+0.5PRD2‐ 3.XC k=k(56) 3.50E‐14
479YAPX+MCO3=MCO3k=k(70) 1.56E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 264www.camx.com
NumberReactantsandProductsRateConstantExpression k300
480YAPX+RCO3=RCO3k=k(70) 1.56E‐11
481YAPX+BZC3=BZC3k=k(70) 1.56E‐11
482YAPX+MAC3=MAC3k=k(70) 1.56E‐11
483ZRN3+NO=NO+RNO3‐1.XNk=k(52) 9.23E‐12
484ZRN3+HO2=HO2+6.XCk=k(53) 7.63E‐12
485ZRN3+NO3=NO3+PRD2+HO2 k=k(54) 2.30E‐12
486ZRN3+MEO2=MEO2+0.5PRD2+0.5HO2+
3.XC
k=k(55) 2.00E‐13
487ZRN3+RO2C=RO2C+0.5PRD2+0.5HO2+
3.XC
k=k(56) 3.50E‐14
488ZRN3+RO2X=RO2X+0.5PRD2+0.5HO2+
3.XC
k=k(56) 3.50E‐14
489ZRN3+MCO3=MCO3+PRD2+HO2 k=k(70) 1.56E‐11
490ZRN3+RCO3=RCO3+PRD2+HO2 k=k(70) 1.56E‐11
491ZRN3+BZC3=BZC3+PRD2+HO2 k=k(70) 1.56E‐11
492ZRN3+MAC3=MAC3+PRD2+HO2 k=k(70) 1.56E‐11
493XGLD+NO=NO+GLYDk=k(52) 9.23E‐12
494XGLD+HO2=HO2+2.XCk=k(53) 7.63E‐12
495XGLD+NO3=NO3+GLYDk=k(54) 2.30E‐12
496XGLD+MEO2=MEO2+0.5GLYD+XC k=k(55) 2.00E‐13
497XGLD+RO2C=RO2C+0.5GLYD+XC k=k(56) 3.50E‐14
498XGLD+RO2X=RO2X+0.5GLYD+XC k=k(56) 3.50E‐14
499XGLD+MCO3=MCO3+GLYDk=k(70) 1.56E‐11
500XGLD+RCO3=RCO3+GLYDk=k(70) 1.56E‐11
501XGLD+BZC3=BZC3+GLYDk=k(70) 1.56E‐11
502XGLD+MAC3=MAC3+GLYDk=k(70) 1.56E‐11
503XACR+NO=NO+ACROk=k(52) 9.23E‐12
504XACR+HO2=HO2+3.XCk=k(53) 7.63E‐12
505XACR+NO3=NO3+ACROk=k(54) 2.30E‐12
506XACR+MEO2=MEO2+0.5ACRO+1.5XC k=k(55) 2.00E‐13
507XACR+RO2C=RO2C+0.5ACRO+1.5XC k=k(56) 3.50E‐14
508XACR+RO2X=RO2X+0.5ACRO+1.5XC k=k(56) 3.50E‐14
509XACR+MCO3=MCO3+ACROk=k(70) 1.56E‐11
510XACR+RCO3=RCO3+ACROk=k(70) 1.56E‐11
511XACR+BZC3=BZC3+ACROk=k(70) 1.56E‐11
512XACR+MAC3=MAC3+ACROk=k(70) 1.56E‐11
513CH4+OH=MEO2k=1.85E‐12exp(‐1690/T) 6.62E‐15
514ETHE+OH=XHO2+RO2C+1.61XHCH+
0.195XGLD+YRPX
Falloff:F=0.6;n=1
k(0)=1.00E‐28(T/300)^‐4.5
k(inf)=8.80E‐12(T/300)^‐0.85
8.15E‐12
515ETHE+O3=0.16HO2+0.16OH+0.51CO+
0.12CO2+HCHO+0.37FACD
k=9.14E‐15exp(‐2580/T) 1.68E‐18
516ETHE+NO3=XHO2+RO2C+XRCH+YRPX+
XN‐1.XC
k=3.30E‐12(T/300)^2exp(‐2880/T)2.24E‐16
517ETHE+O3P=0.8HO2+0.29XHO2+0.51
MEO2+0.29RO2C+0.51CO+0.278XCO+
0.278XHCH+0.1CCHO+0.012XGLY+0.29
YRPX+0.2XC
k=1.07E‐11exp(‐800/T) 7.43E‐13
518PRPE+OH=0.984XHO2+0.984RO2C+
0.016RO2X+0.016ZRN3+0.984XHCH+
0.984XCCH+YRPX‐0.048XC
k=4.85E‐12exp(504/T) 2.60E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 265www.camx.com
NumberReactantsandProductsRateConstantExpression k300
519PRPE+O3=0.165HO2+0.35OH+0.355
MEO2+0.525CO+0.215CO2+0.5HCHO+
0.5CCHO+0.185FACD+0.075AACD+0.07
XC
k=5.51E‐15exp(‐1878/T) 1.05E‐17
520PRPE+NO3=0.949XHO2+0.949RO2C+
0.051RO2X+0.051ZRN3+YRPX+XN+2.694
XC
k=4.59E‐13exp(‐1156/T) 9.73E‐15
521PRPE+O3P=0.45RCHO+0.55MEK‐ 0.55XC k=1.02E‐11exp(‐280/T) 4.01E‐12
522BD13+OH=0.951XHO2+1.189RO2C+
0.049RO2X+0.049ZRN3+0.708XHCH+0.48
XACR+0.471XIPR+YRPX‐0.797XC
k=1.48E‐11exp(448/T) 6.59E‐11
523BD13+O3=0.08HO2+0.08OH+0.255CO+
0.185CO2+0.5HCHO+0.185FACD+0.5
ACRO+0.375MVK+0.125PRD2‐0.875XC
k=1.34E‐14exp(‐2283/T) 6.64E‐18
524BD13+NO3=0.815XHO2+0.12XNO2+
1.055RO2C+0.065RO2X+0.065ZRN3+
0.115XHCH+0.46XMVK+0.12XIPR+0.355
XRN3+YRPX+0.525XN‐1.075XC
k=1.00E‐13 1.00E‐13
525BD13+O3P=0.25HO2+0.117XHO2+0.118
XMA3+0.235RO2C+0.015RO2X+0.015
ZRN3+0.115XCO+0.115XACR+0.001XAF1
+0.001XAF2+0.75PRD2+0.25YRPX‐1.532
XC
k=2.26E‐11exp(‐40/T) 1.98E‐11
526ISOP+OH=0.907XHO2+0.986RO2C+0.093
RO2X+0.093ZRN3+0.624XHCH+0.23
XMAC+0.32XMVK+0.357XIPR+Y6PX‐
0.167XC
k=2.54E‐11exp(410/T) 9.96E‐11
527ISOP+O3=0.066HO2+0.266OH+0.192
XMA3+0.192RO2C+0.008RO2X+0.008
ZRN3+0.275CO+0.122CO2+0.4HCHO+
0.192XHCH+0.204FACD+0.39MACR+0.16
MVK+0.15IPRD+0.1PRD2+0.2Y6PX‐
0.559XC
k=7.86E‐15exp(‐1912/T) 1.34E‐17
528ISOP+NO3=0.749XHO2+0.187XNO2+
0.936RO2C+0.064RO2X+0.064ZRN3+
0.936XIPR+Y6PX+0.813XN‐0.064XC
k=3.03E‐12exp(‐448/T) 6.81E‐13
529ISOP+O3P=0.25MEO2+0.24XMA3+0.24
RO2C+0.01RO2X+0.01ZRN3+0.24XHCH+
0.75PRD2+0.25Y6PX‐1.01XC
k=3.50E‐11 3.50E‐11
530APIN+OH=0.799XHO2+0.004XRC3+1.042
RO2C+0.197RO2X+0.197ZRN3+0.002XCO
+0.022XHCH+0.776XRCH+0.034XACE+
0.02XMGL+0.023XBAC+Y6PX+6.2XC
k=1.21E‐11exp(436/T) 5.18E‐11
531APIN+O3=0.009HO2+0.102XHO2+0.728
OH+0.001XMC3+0.297XRC3+1.511RO2C
+0.337RO2X+0.337ZRN3+0.029CO+
0.051XCO+0.017CO2+0.344XHCH+0.24
XRCH+0.345XACE+0.008MEK+0.002XGLY
+0.081XBAC+0.255PRD2+0.737Y6PX+
2.999XC
k=5.00E‐16exp(‐530/T) 8.55E‐17
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 266www.camx.com
NumberReactantsandProductsRateConstantExpression k300
532APIN+NO3=0.056XHO2+0.643XNO2+
0.007XRC3+1.05RO2C+0.293RO2X+0.293
ZRN3+0.005XCO+0.007XHCH+0.684XRCH
+0.069XACE+0.002XMGL+0.056XRN3+
Y6PX+0.301XN+5.608XC
k=1.19E‐12exp(490/T) 6.09E‐12
533APIN+O3P=PRD2+4.XCk=3.20E‐11 3.20E‐11
534ACYE+OH=0.3HO2+0.7OH+0.3CO+0.3
FACD+0.7GLY
Falloff:F=0.6;n=1
k(0)=5.50E‐30(T/300)^‐2
k(inf)=8.30E‐13
7.56E‐13
535ACYE+O3=1.5HO2+0.5OH+1.5CO+0.5
CO2
k=1.00E‐14exp(‐4100/T) 1.16E‐20
536BENZ+OH=0.57HO2+0.29XHO2+0.116
OH+0.29RO2C+0.024RO2X+0.024ZRN3+
0.29XGLY+0.57CRES+0.029XAF1+0.261
XAF2+0.116AFG3+0.314YAPX‐0.976XC
k=2.33E‐12exp(‐193/T) 1.22E‐12
537TOLU+OH=0.181HO2+0.454XHO2+0.312
OH+0.454RO2C+0.054RO2X+0.054ZRN3
+0.238XGLY+0.151XMGL+0.181CRES+
0.065XBAL+0.195XAF1+0.195XAF2+0.312
AFG3+0.073Y6PX+0.435YAPX‐0.109XC
k=1.81E‐12exp(338/T) 5.58E‐12
538MXYL+OH=0.159HO2+0.52XHO2+0.239
OH+0.52RO2C+0.082RO2X+0.082ZRN3+
0.1XGLY+0.38XMGL+0.159CRES+0.041
XBAL+0.336XAF1+0.144XAF2+0.239AFG3
+0.047Y6PX+0.555YAPX+0.695XC
k=2.31E‐11 2.31E‐11
539OXYL+OH=0.161HO2+0.554XHO2+0.198
OH+0.554RO2C+0.087RO2X+0.087ZRN3
+0.084XGLY+0.238XMGL+0.185XBAC+
0.161CRES+0.047XBAL+0.253XAF1+0.253
XAF2+0.198AFG3+0.055Y6PX+0.586YAPX
+0.484XC
k=1.36E‐11 1.36E‐11
540PXYL+OH=0.159HO2+0.487XHO2+0.278
OH+0.487RO2C+0.076RO2X+0.076ZRN3
+0.286XGLY+0.112XMGL+0.159CRES+
0.088XBAL+0.045XAF1+0.067XAF2+0.278
AFG3+0.286XAF3+0.102Y6PX+0.461YAPX
+0.399XC
k=1.43E‐11 1.43E‐11
541B124+OH=0.022HO2+0.627XHO2+0.23
OH+0.627RO2C+0.121RO2X+0.121ZRN3
+0.074XGLY+0.405XMGL+0.112XBAC+
0.022CRES+0.036XBAL+0.088XAF1+0.352
XAF2+0.23AFG3+0.151XAF3+0.043Y6PX
+0.705YAPX+1.19XC
k=3.25E‐11 3.25E‐11
542ETOH+OH=0.95HO2+0.05XHO2+0.05
RO2C+0.081XHCH+0.95CCHO+0.01XGLD
+0.05YRPX‐0.001XC
k=5.49E‐13(T/300)^2exp(530/T)3.21E‐12
543ALK1+OH=XHO2+RO2C+XCCH+YRPX k=1.34E‐12(T/300)^2exp(‐499/T)2.54E‐13
544ALK2+OH=0.965XHO2+0.965RO2C+
0.035RO2X+0.035ZRN3+0.261XRCH+
0.704XACE+YRPX‐0.105XC
k=1.49E‐12(T/300)^2exp(‐87/T)1.11E‐12
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 267www.camx.com
NumberReactantsandProductsRateConstantExpression k300
545ALK3+OH=0.695XHO2+0.236XTBU+
1.253RO2C+0.07RO2X+0.07ZRN3+0.026
XHCH+0.445XCCH+0.122XRCH+0.024
XACE+0.332XMEK+0.983YRPX+0.017
Y6PX‐0.046XC
k=1.51E‐12exp(126/T) 2.30E‐12
546ALK4+OH=0.83XHO2+0.01XMEO+0.011
XMC3+1.763RO2C+0.149RO2X+0.149
ZRN3+0.002XCO+0.029XHCH+0.438XCCH
+0.236XRCH+0.426XACE+0.106XMEK+
0.146XPD2+Y6PX‐0.119XC
k=3.75E‐12exp(44/T) 4.34E‐12
547ALK5+OH=0.647XHO2+1.605RO2C+
0.353RO2X+0.353ZRN3+0.04XHCH+0.106
XCCH+0.209XRCH+0.071XACE+0.086
XMEK+0.407XPD2+Y6PX+2.004XC
k=2.70E‐12exp(374/T) 9.39E‐12
548OLE1+OH=0.871XHO2+0.001XMEO+
1.202RO2C+0.128RO2X+0.128ZRN3+
0.582XHCH+0.01XCCH+0.007XGLD+0.666
XRCH+0.007XACE+0.036XACR+0.001
XMAC+0.012XMVK+0.009XIPR+0.168
XPD2+0.169YRPX+0.831Y6PX+0.383XC
k=6.72E‐12exp(501/T) 3.57E‐11
549OLE1+O3=0.095HO2+0.057XHO2+0.128
OH+0.09RO2C+0.005RO2X+0.005ZRN3+
0.303CO+0.088CO2+0.5HCHO+0.011
XCCH+0.5RCHO+0.044XRCH+0.003XACE
+0.009MEK+0.185FACD+0.159PACD+
0.268PRD2+0.011YRPX+0.052Y6PX+0.11
XC
k=3.19E‐15exp(‐1701/T) 1.10E‐17
550OLE1+NO3=0.772XHO2+1.463RO2C+
0.228RO2X+0.228ZRN3+0.013XCCH+
0.003XRCH+0.034XACE+0.774XRN3+
0.169YRPX+0.831Y6PX+0.226XN‐1.149
XC
k=5.37E‐13exp(‐1047/T) 1.64E‐14
551OLE1+O3P=0.45RCHO+0.39MEK+0.16
PRD2+1.13XC
k=1.61E‐11exp(‐326/T) 5.43E‐12
552OLE2+OH=0.912XHO2+0.953RO2C+
0.088RO2X+0.088ZRN3+0.179XHCH+
0.835XCCH+0.51XRCH+0.144XACE+0.08
XMEK+0.002XMVK+0.012XIPR+0.023
XPD2+0.319YRPX+0.681Y6PX+0.135XC
k=1.26E‐11exp(488/T) 6.41E‐11
553OLE2+O3=0.094HO2+0.041XHO2+0.443
OH+0.307MEO2+0.156XMC3+0.008XRC3
+0.212RO2C+0.003RO2X+0.003ZRN3+
0.299CO+0.161CO2+0.131HCHO+0.114
XHCH+0.453CCHO+0.071XCCH+0.333
RCHO+0.019XRCH+0.051ACET+0.033
MEK+0.001XMEK+0.024FACD+0.065
AACD+0.235PACD+0.037PRD2+0.073
YRPX+0.136Y6PX+0.16XC
k=8.59E‐15exp(‐1255/T) 1.31E‐16
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 268www.camx.com
NumberReactantsandProductsRateConstantExpression k300
554OLE2+NO3=0.4XHO2+0.426XNO2+0.035
XMEO+1.193RO2C+0.14RO2X+0.14ZRN3
+0.072XHCH+0.579XCCH+0.163XRCH+
0.116XACE+0.002XMEK+0.32XRN3+
0.319YRPX+0.681Y6PX+0.254XN+0.13XC
k=2.31E‐13exp(382/T) 8.25E‐13
555OLE2+O3P=0.079RCHO+0.751MEK+0.17
PRD2+0.739XC
k=1.43E‐11exp(111/T) 2.07E‐11
556ARO1+OH=0.123HO2+0.566XHO2+0.202
OH+0.566RO2C+0.11RO2X+0.11ZRN3+
0.158XGLY+0.1XMGL+0.123CRES+0.072
XAF1+0.185XAF2+0.202AFG3+0.309XPD2
+0.369Y6PX+0.31XC
k=7.84E‐12 7.84E‐12
557ARO2+OH=0.077HO2+0.617XHO2+0.178
OH+0.617RO2C+0.128RO2X+0.128ZRN3
+0.088XGLY+0.312XMGL+0.134XBAC+
0.077CRES+0.026XBAL+0.221XAF1+0.247
XAF2+0.178AFG3+0.068XAF3+0.057XPD2
+0.101Y6PX+1.459XC
k=3.09E‐11 3.09E‐11
558TERP+OH=0.734XHO2+0.064XRC3+1.211
RO2C+0.201RO2X+0.201ZRN3+0.001XCO
+0.411XHCH+0.385XRCH+0.037XACE+
0.007XMEK+0.003XMGL+0.009XBAC+
0.003XMVK+0.002XIPR+0.409XPD2+Y6PX
+4.375XC
k=2.27E‐11exp(435/T) 9.68E‐11
559TERP+O3=0.078HO2+0.046XHO2+0.499
OH+0.202XMC3+0.059XRC3+0.49RO2C+
0.121RO2X+0.121ZRN3+0.249CO+0.063
CO2+0.127HCHO+0.033XHCH+0.208
XRCH+0.057XACE+0.002MEK+0.172FACD
+0.068PACD+0.003XMGL+0.039XBAC+
0.002XMAC+0.001XIPR+0.502PRD2+
0.428Y6PX+3.852XC
k=8.28E‐16exp(‐785/T) 6.05E‐17
560TERP+NO3=0.227XHO2+0.287XNO2+
0.026XRC3+1.786RO2C+0.46RO2X+0.46
ZRN3+0.012XCO+0.023XHCH+0.002XGLD
+0.403XRCH+0.239XACE+0.005XMAC+
0.001XMVK+0.004XIPR+0.228XRN3+
Y6PX+0.485XN+3.785XC
k=1.33E‐12exp(490/T) 6.81E‐12
561TERP+O3P=0.237RCHO+0.763PRD2+
4.711XC
k=4.02E‐11 4.02E‐11
562SESQ+OH=0.734XHO2+0.064XRC3+
1.211RO2C+0.201RO2X+0.201ZRN3+
0.001XCO+0.411XHCH+0.385XRCH+
0.037XACE+0.007XMEK+0.003XMGL+
0.009XBAC+0.003XMVK+0.002XIPR+
0.409XPD2+Y6PX+9.375XC
k=k(558) 9.68E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 269www.camx.com
NumberReactantsandProductsRateConstantExpression k300
563SESQ+O3=0.078HO2+0.046XHO2+0.499
OH+0.202XMC3+0.059XRC3+0.49RO2C+
0.121RO2X+0.121ZRN3+0.249CO+0.063
CO2+0.127HCHO+0.033XHCH+0.208
XRCH+0.057XACE+0.002MEK+0.172FACD
+0.068PACD+0.003XMGL+0.039XBAC+
0.002XMAC+0.001XIPR+0.502PRD2+
0.428Y6PX+8.852XC
k=k(559) 6.05E‐17
564SESQ+NO3=0.227XHO2+0.287XNO2+
0.026XRC3+1.786RO2C+0.46RO2X+0.46
ZRN3+0.012XCO+0.023XHCH+0.002XCCH
+0.403XRCH+0.239XACE+0.005XMAC+
0.001XMVK+0.004XIPR+0.228XRN3+
Y6PX+0.485XN+8.785XC
k=k(560) 6.81E‐12
565SESQ+O3P=0.237RCHO+0.763PRD2+
9.711XC
k=k(561) 4.02E‐11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 270www.camx.com
TableD‐2.ExplicitspeciesintheSAPRC07TCmechanism.
SpeciesNameDescription
BD131,3‐butadiene
AACDAceticacid
ACE
T
Acetone
ACROAcrolein
ACYEAcetylene
AFG1Lumpedphotoreactivemonounsaturateddicarbonyl
aromaticfragmentationproductsthatphotolyzetoform
radicals
AFG2Lumped photoreactivemonounsaturateddicarbonyl
aromaticfragmentationproductsthatphotolyzetoform
non‐radicalproducts
AFG3Lumpeddiunsaturatreddicarbonylaromaticfragmentation
product.
ALK1Alkanesandothernon‐aromaticcompoundsthatreactonly
withOH,andhavekOHbetween2and5E2ppm‐1min‐1.
(Primarilyethane)
ALK2Alkanesandothernon‐aromaticcompoundsthatreactonly
withOH,andhavekOHbetween5E2and2.5E3ppm‐1min‐1.
(Primarilypropaneandacetylene)
ALK3Alkanesandothernon‐aromaticcompoundsthatreactonly
withOH,andhavekOHbetween2.5E3and5E3ppm‐1min‐1.
ALK4Alkanesandothernon‐aromaticcompoundsthatreactonly
withOH,andhavekOHbetween5E3and1E4ppm‐1min‐1.
ALK5Alkanesandothernon‐aromaticcompoundsthatreactonly
withOH,andhavekOHgreaterthan1E4ppm‐1min‐1.
APIN‐pinene
ARO1AromaticswithkOH <2E4ppm‐1min‐1.
ARO2AromaticswithkOH >2E4ppm‐1min‐1.
B1241,2,4‐trimethylbenzene
BACLBiacetyl
BALDAromaticaldehydes(e.g.,benzaldehyde)
BENZBenzene
BZC3PeroxyacylradicalformedfromAromaticAldehydes
BZOPhenoxyRadicals
CCHOAcetaldehyde
CO3HPeroxyaceticacid
CH4Methane
COCarbonMonoxide
CO2CarbonDioxide
COOHMethylHydroperoxide
CRESPhenolsandCresols
ETHEEthene
ETOHEthanol
FACDFormicAcid
GLYGlyoxal
H2Hydrogen
H2OWater
HCHOFormaldehyde
HNO3NitricAcid
PNAPeroxynitricAcid
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 271www.camx.com
SpeciesNameDescription
HO2HydroperoxideRadicals
H2O2HydrogenPeroxide
GLYDGlycolaldehyde
HONONitrousAcid
IPRDLumpedisopreneproductspecies
ISOPIsoprene
MAtmosphericpressure
MAC3Peroxyacylradicalsformedfrommethacroleinandother
acroleins.
MACRMethacrolein
MPANPANanalogueformedfromMethacrolein
MCO3AcetylPeroxyRadicals
MEKKetonesandothernon‐aldehydeoxygenatedproducts
whichreactwithOHradicalsfasterthan5E‐13butslower
than5E‐12cm3molec‐2sec‐1.(Basedonmechanismfor
methylethylketone).
MEO2MethylPeroxyRadicals
MEOHMethanol
MGLYMethylGlyoxal
MVKMethylVinylKetone
MXYLm‐xylene
N2O5NitrogenPentoxide
NONitricOxide
NO2NitrogenDioxide
NO3NitrateRadical
NPHENitrophenols
O1DExcitedOxygenAtoms
O2Oxygen
O3Ozone
O3PGroundStateOxygenAtoms
OHHydroxylRadicals
OLE1Alkenes(otherthanethene)withkOH <7E4ppm‐1min‐1.
OLE2AlkeneswithkOH >7E4ppm‐1min‐1.
OXYLo‐xylene
PACDPropanoicacid
PANPeroxyAcetylNitrate
PAN2PPNandotherhigheralkylPANanalogues
PBZNPANanaloguesformedfromAromaticAldehydes
PRD2Ketonesandothernon‐aldehydeoxygenatedproducts
whichreactwithOHradicalsfasterthan5E‐12cm3molec‐2
sec‐1
PRPEPropene
PXYLp‐xylene
R6PXLumpedorganichydroperoxideswith5ormorecarbons
(otherthanthoseformedfollowingOHadditiontoaromatic
rings,whichisreprsentedseparately).Mechanismbasedon
thatestimatedfor3‐hexylhydroperoxide.
RAPXOrganichydroperoxidesformedfollowingOHadditionto
aromaticrings,whichisreprsentedseparatelybecauseof
theirprobableroleinSOAformation.Mechanismbasedon
twoisomersexpectedtobeformedinthem‐xylenesystem.
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 272www.camx.com
SpeciesNameDescription
RCHOLumpedC3+Aldehydes(mechanismbasedon
propionaldehyde)
RCO3PeroxyPropionylandhigherperoxyacylRadicals
RO3HHigherorganicperoxyacids(mechanismbasedon
peroxypropionicacid).
RNO3LumpedOrganicNitrates
RO2CPeroxyRadicalOperatorrepresentingNOtoNO2andNO3
toNO2conversions,andtheeffectsofperoxyradical
reactionsonacylperoxyandotherperoxyradicals.
RO2XPeroxyRadicalOperatorrepresentingNOconsumption
(usedinconjunctionwithorganicnitrateformation),and
theeffectsofperoxyradicalreactionsonNO3,acylperoxy
radicals,andotherperoxyradicals.
ROOHLumpedorganichydroperoxideswith2‐4carbons.
Mechanismbasedonthatestimatedforn‐propyl
hydroperoxide.
SES
Q
Sesquiterpenes
SO2SulfurDioxide
SULFSulfates(SO3orH2SO4)
TBUOt‐ButoxyRadicals
TERPTerpenes
TOLUToluene
XACEAsforxHO2
XACRAsforxHO2
XAF1AsforxHO2
XAF2AsforxHO2
XAF3AsforxHO2
XBACAsforxHO2
XBALAsforxHO2
XCLostCarbonorcarboninunreactiveproducts
XCCHAsforxHO2
XCOAsforxHO2
XGLYAsforxHO2
XHCHAsforxHO2
XHO2FormationofHO2fromalkoxyradicalsformedinperoxy
radicalreactionswithNOandNO3(100%yields)andRO2
(50%yields)
XGLDAsforxHO2
XIPRAsforxHO2
XMA3AsforxHO2
XMACAsforxHO2
XMC3AsforxHO2
XMEKAsforxHO2
XMEOAsforxHO2
XMGLAsforxHO2
XMVKAsforxHO2
XNLostNitrogenornitrogeninunreactiveproducts
XNO2AsforxHO2
XOHAsforxHO2
XPD2AsforxHO2
XRCHAsforxHO2
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5–SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 273www.camx.com
SpeciesNameDescription
XRC3AsforxHO2
XRN3AsforxHO2
XTBUAsforxHO2
Y6PXAsforROOH,butforR6PX
YAPXAsforROOH,butforRAPX
YRPXFormationofROOHfollowingRO2+HO2reactions
ZRN3FormationofRNO3intheRO2+NO,reaction.