CAMxUsersGuide_v6.30x CAMx Users Guide V6 30

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 286 [warning: Documents this large are best viewed by clicking the View PDF Link!]

March20
1
1
6
C
O
O
MPRE
H
H
ENSIVE
A
77
3
CAMxUser’
Us
e
IRQUA
WITH
R
a
3
SanMarin
Novato,
www.ram
sGuideVersi
o
e
r’sGu
LITYM
O
EXTENSI
O
Versio
n
a
mbollEn
v
Drive,Suite
California,
9
bollenviro
n
www.cam
x
P415899
F415899
o
n6.3
ide
O
DEL
O
NS
n
6.3
v
iron
2115
9
4998
n
.com
x
.com
0700
0707
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS www.camx.com
Copyright:RambollEnviron
19972016
Thispublicationmaybereproducedfor
noncommercialpurposeswithappropriateattribution.
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS iwww.camx.com
ACKNOWLEDGMENTS
RambollEnvironacknowledgesthefollowinggroupsfortheircontributionstothedevelopment
ofCAMx:
TheTexasCommissiononEnvironmentalQuality(TCEQ),forsponsoringthedevelopment,
testing,andreviewofnumerouscomponentsofthemodel;
TheLakeMichiganAirDirectorsConsortium(LADCo),forsponsoringthedevelopment,
testingandreviewofnumerouscomponentsofthemodel;
TheU.S.EnvironmentalProtectionAgency(EPA),forsponsoringthedevelopment,testing,
andreviewofnumerouscomponentsofthemodel,andforcosponsoringthe
developmentandtestingoftheMPIparallelprocessingcapability.SpecialthankstoDr.
JonPleimforassistancewithimplementationofACM2;
TheCoordinatingResearchCouncil(CRC),forsponsoringthedevelopment,testing,and
reviewofnumerouscomponentsofthemodel;
TheTexasAirQualityResearchProgram(AQRP),forsponsoringthedevelopment,testing,
andreviewofnumerouscomponentsofthemodel;
Dr.SashaMadronich(NCAR)fordevelopmentoftheTUVradiativetransfermodeland
assistancewithincorporatingtheinlineTUVtreatmentintoCAMx;
TheCarnegieMellonUniversity,DepartmentofChemicalEngineering,forprovidingfull
sciencePMalgorithms,assistanceinincorporatingthemintoCAMx,andtestingthe
implementation;
TheElectricPowerResearchInstitute(EPRI),forsponsoringthedevelopmentandtesting
oftheVolatilityBasisSet(VBS)organicaerosolalgorithm.
TheAmericanPetroleumInstitute(API),forsponsoringthedevelopmentandtestingof
improvementstotheverticaladvectionalgorithm;
TheUtahDepartmentofEnvironmentalQuality(UDEQ),forsponsoringupdatestothe
CB6chemistrymechanism,snowcovertreatment,andsurfacechemistrymodel;
TheUniversityofTexas,CenterforEnergyandEnvironmentalResources,forassistancein
developingandtestingtheOpenMPmultiprocessorcapability;
Atmospheric,Meteorological,andEnvironmentalTechnologies(ATMET),forproviding
librariesandimplementationsupportfortheMPIparallelprocessingcapability;
TheMidwestOzoneGroup(MOG),forcosponsoringthedevelopmentandtestingofthe
MPIparallelprocessingcapability;
AtmosphericandEnvironmentalResearch(AER),fordevelopingthemercurychemistry
algorithm;
TheSanFranciscoBayAreaAirQualityManagementDistrict(BAAQMD),forsupporting
andtestingthecouplingofSAPRCgasphasechemistrytothePMchemistryalgorithm.
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS iiwww.camx.com
CONTENTS
ACKNOWLEDGMENTS............................................................................................................I
1.OVERVIEW........................................................................................................................1
1.1CAMXFEATURES........................................................................................................2
1.2CAMXEXTENSIONSANDPROBINGTOOLS.................................................................4
1.3NEWFEATURESANDMAJORUPDATESINCAMXVERSION6.3..................................5
2.THECAMXMODELINGSYSTEM.........................................................................................6
2.1CAMXPROGRAMSTRUCTURE...................................................................................7
2.1.1MemoryManagement..........................................................................................8
2.1.2ParallelProcessing.................................................................................................9
2.2COMPILINGCAMX...................................................................................................10
2.2.1ANoteonFortranBinaryInput/OutputFiles......................................................11
2.3RUNNINGCAMX......................................................................................................12
2.3.1ControlFileNamelistInput..................................................................................12
2.3.2UsingScriptstoRunCAMx..................................................................................20
2.4BENCHMARKINGMODELRUNTIMES.......................................................................24
2.5CAMXPRE‐ANDPOSTPROCESSORS........................................................................24
2.5.1Emissions.............................................................................................................24
2.5.2Meteorology........................................................................................................25
2.5.3PhotolysisRates...................................................................................................26
2.5.4InitialandBoundaryConditions..........................................................................27
2.5.5Landuse................................................................................................................27
2.5.6Postprocessors...................................................................................................28
3.COREMODELINPUT/OUTPUTSTRUCTURES....................................................................29
3.1CAMXCHEMISTRYPARAMETERSFILE......................................................................30
3.2PHOTOLYSISRATESFILE...........................................................................................38
3.3OZONECOLUMNFILE...............................................................................................40
3.4FORTRANBINARYINPUT/OUTPUTFILES..................................................................43
3.4.1WhatisaFortranBinaryFile?.............................................................................43
3.4.2CAMxBinaryFileHeaders...................................................................................44
3.4.3InputFiles............................................................................................................45
3.4.4OutputFiles.........................................................................................................58
4.COREMODELFORMULATION.........................................................................................63
4.1NUMERICALAPPROACH...........................................................................................63
4.2CAMXGRIDCONFIGURATION..................................................................................65
4.2.1GridCellArrangement.........................................................................................65
4.2.2GridNesting.........................................................................................................66
4.2.3FlexiNesting........................................................................................................68
4.3TREATMENTOFEMISSIONS.....................................................................................68
4.3.1GriddedEmissions...............................................................................................69
4.3.2ElevatedPointEmissions.....................................................................................69
4.4THREEDIMENSIONALTRANSPORT..........................................................................72
4.4.1ResolvedTransport:Advection............................................................................72
4.4.2SubGridTurbulentTransport:Diffusion.............................................................75
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS iiiwww.camx.com
4.5WETDEPOSITION.....................................................................................................77
4.5.1PrecipitationParameters.....................................................................................78
4.5.2GasScavenging....................................................................................................79
4.5.3AerosolScavenging..............................................................................................82
4.6DRYDEPOSITION.....................................................................................................84
4.6.1TheWesely/SlinnModel.....................................................................................85
4.6.2TheZhangModel.................................................................................................88
4.7SNOWCOVERANDSURFACEALBEDO......................................................................91
4.8SURFACEMODELFORCHEMISTRYANDREEMISSION.............................................93
4.8.1SurfaceModelAlgorithms...................................................................................94
4.8.2RunningCAMxWiththeSurfaceModel..............................................................98
5.CHEMISTRYMECHANISMS............................................................................................101
5.1GASPHASECHEMISTRY.........................................................................................102
5.1.1CarbonBond......................................................................................................102
5.1.2SAPRC2007........................................................................................................109
5.1.3ImplicitGasPhaseSpecies................................................................................109
5.1.4PhotolysisRates.................................................................................................109
5.1.5GasPhaseChemistrySolvers............................................................................112
5.2AEROSOLCHEMISTRY............................................................................................114
5.2.1AdditionalGasPhaseSpecies............................................................................114
5.2.2AerosolProcesses..............................................................................................114
5.2.3AerosolSectionalApproach..............................................................................122
5.3MERCURYCHEMISTRY...........................................................................................123
5.3.1GasPhaseChemistry.........................................................................................124
5.3.2AdsorptionofHg(II)onPM................................................................................124
5.3.3AqueousPhaseChemistry.................................................................................125
5.3.4ImplementationApproach................................................................................127
5.3.5ChemistryParametersforMercury...................................................................128
5.4SIMPLECHEMISTRYVIAMECHANISM10...............................................................128
6.PLUMEINGRIDSUBMODEL.........................................................................................130
6.1CAMXPIGFORMULATION.....................................................................................130
6.1.1BasicPuffStructureandDiffusiveGrowth........................................................130
6.1.2PuffTransport....................................................................................................134
6.2GREASDPIG...........................................................................................................136
6.3PARTICULATEMATTERINPIG................................................................................138
6.4IRONPIG................................................................................................................138
6.5PIGFEATURES........................................................................................................139
6.5.1PuffLayerSpanning(IRONandGREASD)..........................................................139
6.5.2PuffOverlapandtheIdeaofVirtualDumping(IRONonly)..............................139
6.5.3MultiplePuffReactors(IRONonly)...................................................................140
6.5.4PuffDumping(IRONandGREASD)....................................................................141
6.5.5PiGRendering(IRONandGREASD)...................................................................141
6.5.6HighResolutionPuffSampling(IRONandGREASD).........................................142
6.6DEPOSITION...........................................................................................................142
6.6.1DryDeposition...................................................................................................142
6.6.2WetDeposition..................................................................................................144
6.7PIGCONFIGURATION.............................................................................................144
6.7.1GuidanceontheUseofCAMxPiG....................................................................145
7.SOURCEAPPORTIONMENT...........................................................................................149
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS ivwww.camx.com
7.1OZONESOURCEAPPORTIONMENT.........................................................................150
7.1.1OSATFormulation..............................................................................................151
7.1.2OSAT2Formulation...........................................................................................152
7.1.3OSAT3Formulation...........................................................................................153
7.1.4AlternativeOzoneApportionmentUsingAPCA................................................155
7.2PARTICULATESOURCEAPPORTIONMENT...............................................................156
7.3RUNNINGCAMXWITHSA......................................................................................160
7.3.1CAMxControlFile..............................................................................................160
7.3.2SpecifyingEmissionGroups...............................................................................162
7.3.3SourceAreaMapping........................................................................................166
7.3.4ReceptorDefinition...........................................................................................170
7.3.5OutputFileFormats...........................................................................................170
7.3.6Postprocessing....................................................................................................172
7.4STEPSINDEVELOPINGINPUTSANDRUNNINGSA..................................................172
8.DECOUPLEDDIRECTMETHODFORSENSITIVITYANALYSIS............................................176
8.1IMPLEMENTATION.................................................................................................177
8.1.1TrackingSensitivityCoefficientsWithinCAMx..................................................179
8.1.2FlexiDDM..........................................................................................................180
8.2RUNNINGCAMXWITHDDMANDHDDM..............................................................180
8.3DDMOUTPUTFILES...............................................................................................185
8.4DDMSENSITIVITYCOEFFICIENTNAMES.................................................................185
8.4.1InitialConditionSensitivityNames....................................................................186
8.5STEPSINDEVELOPINGINPUTSANDRUNNINGDDM..............................................189
9.PROCESSANALYSIS.......................................................................................................191
9.1PROCESSANALYSISINCAMX.................................................................................191
9.1.1IntegratedProcessRateAnalysis......................................................................192
9.1.2IntegratedReactionRateAnalysis.....................................................................193
9.1.3ChemicalProcessAnalysis.................................................................................193
9.2RUNNINGPROCESSANALYSIS................................................................................196
9.2.1SettingCAMxParameters..................................................................................198
9.2.2OutputFileFormats...........................................................................................199
9.3POSTPROCESSING..................................................................................................199
9.3.1IPROutputFiles.................................................................................................199
9.3.2IRROutputFiles.................................................................................................200
9.3.3CPAOutputFiles................................................................................................201
10.REACTIVETRACERS.....................................................................................................202
10.1DESCRIPTIONOFRTRAC.......................................................................................202
10.1.1RTRACGasPhaseChemistry...........................................................................204
10.2DESCRIPTIONOFRTCMC......................................................................................206
10.2.1RTCMCGasPhaseChemistry..........................................................................206
10.3REACTIVETRACERSINIRONPIG...........................................................................214
10.4RUNNINGCAMXWITHREACTIVETRACERS..........................................................215
10.4.1CAMxControlFile............................................................................................215
10.4.2UserAdjustableParameters............................................................................217
11.REFERENCES................................................................................................................219
APPENDIXA.......................................................................................................................232
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS vwww.camx.com
CAMXMECHANISM2:CB6R2GASPHASECHEMISTRY.................................................232
APPENDIXB.......................................................................................................................241
CAMXMECHANISM3:CB6R2WITHHALOGENCHEMISTRY..........................................241
APPENDIXC.......................................................................................................................245
CAMXMECHANISM6:CB05GASPHASECHEMISTRY...................................................245
APPENDIXD.......................................................................................................................251
CAMXMECHANISM5:SAPRC07TCGASPHASECHEMISTRY.........................................251
TABLES
Table21.ParametersandtheirdefaultsinIncludes/camx.prmusedtostatically
dimensionlocalarraysinlowlevelsubroutines................................................................8
Table22.CAMxoutputfilesuffixesandtheircorrespondingfiletypes................................................20
Table23.CAMxv6.20speedperformancewithMPIandOMPparallelizationfromthe
LADCotestsdescribedabove.............................................................................................24
Table31.DatarequirementsofCAMx...................................................................................................29
Table32.DescriptionoftheCAMxchemistryparametersfile.Therecordlabelsexistin
columns120,andwheregiven,theinputdataforthatrecordstartin
column21.Theformatdenoted“list”indicatesafreeformatlistof
numbers(commaorspacedelimited)...............................................................................31
Table33a.RateconstantexpressiontypessupportedinCAMxandorderofexpression
parametersforthechemistryparametersfile..................................................................39
Table33b.ListofparametersthatmustbeprovidedintheCAMxchemistryparameter
fileforeachoftheseventypesofrateconstantexpressions.Use
ppm/minuteunitsforAandKelvinforEaandTR.ThevariableOisthe
orderofthereaction(1to3).............................................................................................40
Table34.The11WESELY89landusecategories,theirdefaultUVsurfacealbedos,and
theirsurfaceroughnessvalues(m)byseason.Winterisdefinedfor
conditionswherethereissnowpresent;wintermonthswithnosnoware
assignedtotheFallcategory.Roughnessforwateriscalculatedfromthe
function5.26
0102 wz
,wherewissurfacewindspeed(m/s)...................................46
Table35.The26ZHANG03landusecategories,theirUValbedos,defaultannual
minimumandmaximumLAIandsurfaceroughness(m)ranges,and
mappingtotheWeselyscheme(Table34).Roughnessforwateris
calculatedfromthefunction5.26
0102 wz
,wherewissurfacewind
speed(m/s)........................................................................................................................47
Table41.SummaryoftheCAMxmodelsandmethodsforkeyphysicalprocesses..............................63
Table42.Relationshipsbetweenseasonandmonth/latitudeusedintheCAMx
Wesely/Slinndrydepositionmodel.Exception:seasonsforthearea
within50N75Nand15W15Eareinternallysettothoseoflatitudeband
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS viwww.camx.com
3550toaccountforregionsofEuropeinwhichtheclimateisinfluenced
bytheGulfStream.............................................................................................................88
Table43.DescriptionofCAMxsurfacemodelvariablesshowninFigure47.......................................95
Table44(a).Weselylandusecategoriesandassociatedannualaveragedsoil/vegetation
splitfactors,UValbedo,andSWEWc................................................................................96
Table44(b).Zhanglandusecategoriesandassociatedannualaveragedsoil/vegetation
splitfactors,UValbedo,andSWEWc................................................................................96
Table51.GasphasechemicalmechanismscurrentlyimplementedinCAMxv6.3...............................101
Table52.SpeciesnamesanddescriptionscommontoallCarbonBondMechanismsin
CAMx..................................................................................................................................103
Table53.Defaultdryextinctionefficiencyandsinglescatteringalbedoat350nm
(Takemuraetal.,2002)inthedistributedCAMxchemistryparametersfile....................111
Table54.ListofinorganicPMspeciesfortheCAMxCFaerosoloption................................................116
Table55.SOAprecursorreactionsincludedintheCAMxSOAPmodule...............................................117
Table56.PropertiesofCG/SOApairsintheCAMxSOAPmodule.........................................................117
Table57.Molecularpropertiesofthe1.5DVBSspecies......................................................................120
Table58.Inputspeciesfor1.5DVBSscheme........................................................................................121
Table59.VolatilitydistributionfactorsusedtoallocatePOAemissionsfromfive
differentsourcetypestothefivePAP,PCP,andPFPvolatilitybins..................................121
Table71.Numbersofemissionfilesets(i.e.,griddedfilesandpointsourcefile)needed
fordifferentmodelconfigurations.APCArequiresatleasttwoemission
groups,andthefirstgroupmustbebiogenicemissions...................................................166
Table72.Formatforthereceptordefinitionfile....................................................................................171
Table81.DDMoutputfilesuffixnames.................................................................................................185
Table91.ProcessinformationreportedbytheIPRoption....................................................................193
Table92.ChemicalProcessAnalysis(CPA)variablescalculatedinCAMxfortheCB05
andCB6r2mechanisms.Concentrationsareppb;productionand
destructionareppb/hr;photolysisratesarehr1,ratiosareunitless................................194
Table93.ProcessanalysiskeywordsandassociatedCAMxoutputfiles...............................................196
Table101.Keywords,optionsanddefaultvaluesfortheControlsectionoftheIMCfile.....................208
Table102a.RecommendedSCICHEMrateconstantexpressiontypesforuseinCAMx.......................213
Table102b.ParametersrequiredbySCICHEMrateconstantexpressiontypes....................................214
Table103.Determiningthereactionorderandconsequentunitdimensionsforrate
constants............................................................................................................................214
Table104.RTCMCparametersdefaultsettingsintheIncludes/rtcmcchm.inc
includefile..........................................................................................................................218
TableA1.ReactionsandrateconstantexpressionsfortheCB6r2mechanism.k298isthe
rateconstantat298Kand1atmosphereusingunitsinmolecules/cm3and
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS viiwww.camx.com
1/s.Forphotolysisreactionsk298showsthephotolysisrateatasolar
zenithangleof60°andheightof600mMSL/AGL.SeeTable52for
speciesnames.SeeSection3.1ontemperatureandpressure
dependencies.....................................................................................................................232
TableB1.ListingoftheCB6r2halogenmechanism(seeTableA1foracompletelisting
ofCB6r2).k298istherateconstantat298Kand1atmosphereusingunits
inmolecules/cm3and1/s.Forphotolysisreactionsk298showsthe
photolysisrateatasolarzenithangleof60°andheightof600m
MSL/AGL.SeeTableB2forspeciesnames.SeeSection3.1on
temperatureandpressuredependencies.........................................................................241
TableB2.ChemicalspeciesincludedinCB6r2h......................................................................................244
TableC1.ReactionsandrateconstantexpressionsfortheCB05mechanism.k298isthe
rateconstantat298Kand1atmosphereusingunitsinmolecules/cm3and
1/s.SeeTable52forspeciesnames.SeeSection3.1ontemperature
andpressuredependencies...............................................................................................245
TableD1.ReactionsandrateconstantsfortheSAPRC07TCmechanism.k300istherate
constantat300Kand1atmosphereusingunitsinmolecules/cm3and
1/s.SeeTableD2forspeciesnames.SeeSection3.1ontemperature
andpressuredependencies...............................................................................................251
TableD2.ExplicitspeciesintheSAPRC07TCmechanism.......................................................................270
FIGURES
Figure21.SchematicdiagramoftheCAMxmodelingsystem.SeeTable31foradetailed
listofspecificmodelinputrequirementsforthefivemajordataclassesshown
atthetopofthefigure.Certainpre‐andpostprocessorprogramsshownin
thefigurearedescribedinthissection.Thirdpartymodels,processors,and
visualizationsoftwarearenotdescribedinthisUser’sGuideandarenot
distributedwithCAMx..........................................................................................................6
Figure22.AsampleCAMxjobscriptthatgeneratesa“CAMx.in”fileandrunsthemodel
withOMPparallelization....................................................................................................21
Figure23.AnexampleofglobalozonecolumnfromtheOzoneMonitoringInstrument
(OMI)platform.Whiteareasdenotemissingdata.From
ftp://toms.gsfc.nasa.gov/pub/omi/data/..........................................................................26
Figure31a.ExampleCAMxchemistryparametersfileforMechanism6(CB05)withCFPM
schemethatincludesthemercuryspeciesHG0,HG2,andHGP.......................................33
Figure31b.Exampleinertchemistryparametersfile(requireschemistryflagtobesetfalse
seethedescriptionoftheCAMxcontrolfile).................................................................37
Figure32.Exampleofthefirstseveralpanelsoflookupdatainthephotolysisratesinput
file.......................................................................................................................................41
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS viiiwww.camx.com
Figure33.Examplestructureofasinglegridozonecolumninputfileshowingpanelsfor
theoptionaltimeinvariantlandoceanmaskandtimevaryingozonecolumn
field....................................................................................................................................43
Figure41.AhorizontalrepresentationoftheArakawaCvariableconfigurationusedin
CAMx..................................................................................................................................66
Figure42.Anexampleofhorizontalgridnesting,showingtwotelescopingnestedgrids
withina10×10cellmastergrid.Theouternestcontains10×12cells(including
buffercellstoholdinternallateralboundaryconditions),andtheinnernest
contains6×10cells(includingbuffercells)........................................................................67
Figure43.Schematicrepresentationoftheturbulentexchangeamonglayerswithina
verticalgridcolumnduringconvectiveadjustmentintheACM2(takenfrom
Pleim[2007])......................................................................................................................76
Figure44.ComparisonofmonthlyLAIdataembeddedintheZhangdrydepositionscheme
againstepisodespecificLAIforJune2005........................................................................90
Figure45.Comparisonofparticledrydepositionvelocitiesasafunctionofsizeandwind
speeds(m/s)forthreemodels:blackZhangetal.(2001);blueSlinnand
Slinn(1980);orangeAERMOD(EPA,1998).Resultsareshownforaforest
landusecategoryduringdaytimeneutralstability.Particledensitywassetat
1.5g/cm3............................................................................................................................92
Figure46.Exampleofgridcellalbedoevolutionforahypothetical20dayspringtimesnow
event(assumingablationconditions)forlowandtallvegetationgridcellswith
aterrestrial(nonsnow)albedoof0.05.............................................................................93
Figure47.SchematicoftheCAMxsurfacemodel..................................................................................94
Figure48.TheportionsoftheCAMxchemistryparametersfile(highlighted)tosupportthe
surfacemodel.Inthisexample,3gasesaretreated,wherenitricacid(HNO3)
andperoxynitricacid(PNA)reacttoformnitrousacid(HONO).Allthreeare
subjecttodecaybysoilleaching,plantpenetration,andsnowmeltloss.The
valuesshownhereareforillustrativepurposesonlyanddonotrepresentany
knownsurfacechemistrymechanism..............................................................................100
Figure51.Relativehumidityadjustmentfactorappliedtothedryextinctionefficiencyfor
hygroscopicaerosols(FLAG,2000)..................................................................................112
Figure52.SchematicdiagramoftheCAMxVBSmodule.ThemodelVBSspeciesname
consistsof4charactersthatindicatethephase(Pparticle;Vvapor),the
source(Aanthropogenic;Bbiogenic;Ccooking;Ffire),theformation
(Pprimary;Ssecondary),andthevolatilitybinnumber.Thesolidand
dashedarrowsrepresentgasaerosolpartitioningandchemicalaging,
respectively.ThethickcoloredarrowsrepresentPOAemissionsoroxidation
ofSOAprecursors............................................................................................................119
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS ixwww.camx.com
Figure61.SchematicrepresentationofCAMxPiGpuffshapeinthehorizontalplane.
Directionalorientationofthepuffisarbitrary,andevolvesaccordingtowind
direction,shearsanddiffusivegrowthalongitstrajectory.............................................131
Figure62.PlanviewschematicrepresentationofachainofPiGpuffsemittedfromapoint
sourceintoanevolvinggriddedwindfield.Theredlineconnectedbydots
representspuffcenterlines,withdotsrepresentingleadingandtrailingpoints
ofeachpuff.TheCAMxcomputationalgridisdenotedbythebluelines......................135
Figure63.ExampleofasinglepointsourcePiGplumeasdepictedbyasamplinggridwith
200mresolution(shownbytheextentoftheplot;40kmby32kmtotal
extent).ThissamplinggridwassetwithinaCAMxcomputationalgridwith4
kmresolution.Thesourcelocationisarbitraryandisemittinganinerttracer.............143
Figure71.ExampleofthesubdivisionofaCAMxdomainintoseparateareasfor
geographicsourceapportionment..................................................................................150
Figure72.TheoriginalOSATschemeforozoneapportionment.Informationflowsalong
arrows.Changesincoremodelspeciesareshowninblue,OSATtracersarein
black,thediamondrepresentstheOSATalgorithmthatdeterminesozone
tracerchanges.H2O2/HNO3istheindicatorratiousedtodetermineNOx‐
orVOClimitedozoneproduction....................................................................................151
Figure73.DaytimereactionsofozonewithHOx(OHandHO2)showingpotentialfor
reformationofozoneorozonedestructionviaperoxideformation..............................153
Figure74.TheOSAT2schemeforozoneapportionment.Informationflowsalongarrows.
Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,
thediamondrepresentstheOSATalgorithmthatdeterminesozonetracer
producton.H2O2/HNO3istheindicatorratiousedtodetermineNOx‐or
VOClimitedozoneproduction........................................................................................153
Figure75.CorrespondencebetweenNOyspeciesinCB6andtracerfamiliesinOSAT3with
conversionsbetweenspecies/tracersshownbyarrows.................................................154
Figure76.TheOSAT3schemeforozoneapportionment.Informationflowsalongarrows.
Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,
thediamondrepresenttheOSATalgorithmsthatdetermineozonetracer
production.H2O2/HNO3istheindicatorratiousedtodetermineNOx‐or
VOClimitedozoneproduction.RGNapportionsthenitrogeninNO2whereas
OONandOOVapportiontheoddoxygeninNO2............................................................156
Figure77a.AnexampleofSAinputrecordsintheCAMxruncontrolfile.Theoptionsfor
thisOSATrunareasfollows:thisisatwogridrun,masterandnestedgrid
surfaceconcentrationsarewrittentofile,asingletracertypeistobeusedfor
allboundaries,19sourceregions,andoneemissiongroup(i.e.,zero
additionalemissionfilesandnoleftovergroup).Thisisthefirstdayofthe
simulation(i.e.,restartisfalse),sonoOSATrestartfilesaresupplied...........................163
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS xwww.camx.com
Figure77b.AsinFigure77a,butinthiscasetherunisacontinuationdayofarunwith
threeemissiongroups.Thethreeemissiongroupsaredefinedbysupplying
extraemissionfilesforpointandareasourcesforeachgrid(emissiongroups1
and2),andsettingthe“Use_Leftover_Group”flagtoTRUEsothatthemodel
calculatesthethirdgroupinternally.Thepointsourcegroup1filenameis
blankbecausegroup1isacategorywithnopointsourceemissions(e.g.,
biogenics).........................................................................................................................164
Figure77c.ThisfigurefollowsfromFigure77b:itisacontinuationdayofa2gridrunwith
threeemissiongroups,andallthreeemissiongroupsaredefinedexplicitlyby
supplyingextraemissionfiles;therefore,the“Use_Leftover_Group”flagisset
toFALSE.Thepointsourcegroup1filenameisblankbecausegroup1isa
categorywithnopointsourceemissions(e.g.,biogenics).APCAisusedto
attributeozonesources,sobiogenicemissionsMUSTbepresentasgroup1.
PSATwilltracePMsulfateandnitratespecies................................................................165
Figure78.Exampleoftheoriginalsourceareamapfileforthedomainandsourceareas
showninFigure71.
.........................................................................................................167
Figure79.Examplefractionalareamapfileforasmall(10x10)grid.Thisfileisforsource
category/group#3andincludes2mappanels.Thegridcoverssourceregion
#5and#6andtheseregionsoverlapinthemiddleofthedomain.Panel2
showsjusttheremainingoverlapinformationforregion#6..........................................169
Figure710.Examplereceptorconcentrationfile.Linesendingwith“…”aretruncatedtofit
thepage,andthefilewouldcontinuewithdataforadditionalreceptorsand
hoursinthesameformat.................................................................................................173
Figure81.ExampleofDDMinputsintheCAMxcontrolfile.CAMxisrunwithtwogrids,
andDDMisconfiguredtotrackemissionsfromfoursourceregionsandtwo
sourcegroups.Sensitivitytoozoneinitialandboundaryconditionsare
tracked,whilesensitivitiestoNOxandVOCemissionsaretracked.Sensitivity
forasinglerateconstantgroupwillbecalculatedinvolvingmechanism
reactionnumbers120,121,and122.Threegroupsofsecondorder
sensitivitiestoanthropogenicNOxandVOCemissions(fromemissionsgroup
2,sourceregion1)willbecomputed(d2/dNOx2,d2/dVOC2andd2/dNOxdVOC).
Nosourceregionmapisprovidedforthenestedgrid(theregionassignments
onthenestaredefinedbythemastergrid).Onlythegroup2pointsources
aretracked(nobiogenicpointsourcesareavailable).....................................................184
Figure82.Exampleconcordanceoflongandshortsensitivitycoefficientnamesfromthe
CAMxdiagnosticoutputfile.............................................................................................186
Figure91.ExamplesectionofaCAMxcontrolfilespecifyingoptionsforProcessAnalysis................198
Figure92.ExampleIPRtimeseriesanalysisforPSO4;lateralboundaryandchemistryterms
arenotaggregated...........................................................................................................200
Figure101.ExampleRTRACchemistryinputfileformodelingspecifictoxicspecies..........................203
March2016CAMxUser’sGuideVersion6.3
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS xiwww.camx.com
Figure102.ExampleRTRACreceptorinputfileidentifyingthegridcellswithlocations
wherehourlydecayrateswillbeoutputforsubgridscalepointsource
modeling(seeformatforSAreceptorfileinTable72)..................................................206
Figure103.ExamplefreeformatRTCMCIMCchemistryinputfile.....................................................207
Figure104.ExampleinputofRTRACoptionsandfilenameswithintheCAMxcontrolfile.................216
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 1www.camx.com
1.OVERVIEW
TheComprehensiveAirqualityModelwithextensions(CAMx)isanEulerianregional
photochemicaldispersionmodelthatallowsforintegrated“oneatmosphere”assessmentsof
troposphericairpollution(ozone,particulates,airtoxics)overspatialscalesrangingfrom
neighborhoodstocontinents.Itisa“stateofthescience”opensourcesystemthatis
computationallyefficient,flexible,andpubliclyavailable.Themodel’sFortransourcecodeis
modularandwelldocumented.TheFortranbinaryinput/outputfileformatsarebasedonthe
UrbanAirshedModel(UAM)conventionandarecompatiblewithmanyexistingpre‐andpost
processingtools.MeteorologicalfieldsaresuppliedtoCAMxfromseparateweatherprediction
models.Allemissioninputsaresuppliedfromexternalpreprocessingsystems.
CAMxsimulatestheemission,dispersion,chemicalreaction,andremovalofpollutantsby
marchingtheEuleriancontinuityequationforwardintime(t)foreachchemicalspecies(l)ona
systemofnestedthreedimensionalgrids.Thecontinuityequationspecificallydescribesthe
timedependencyofvolumeaveragespeciesconcentrationwithineachgridcellasasumofall
physicalandchemicalprocessesoperatingonthatvolume.Thisequationisexpressed
mathematicallyinterrainfollowingheight(z)coordinatesasfollows:
whereclisspeciesconcentration(mass/volume),VHisthehorizontalwindvector,
isthenet
verticaltransportrate,histhelayerinterfaceheight,
isatmosphericdensity,andKisthe
turbulentexchange(diffusion)coefficient.Thefirsttermontherighthandsiderepresents
horizontaladvection,thesecondtermrepresentsnetresolvedverticaltransportacrossan
arbitraryspace‐andtimevaryingheightgrid,andthethirdtermrepresentssubgridscale
turbulentdiffusion.Chemistryistreatedbysimultaneouslysolvingasetofreactionequations
definedbyspecificchemicalmechanisms.Pollutantremovalincludesbothdrysurfaceuptake
(deposition)andwetscavengingbyprecipitation.
CAMxcanperformsimulationsonfourtypesofCartesianmapprojections:LambertConic
Conformal,PolarStereographic,Mercator,andUniversalTransverseMercator.CAMxalso
offerstheoptionofoperatingonageodeticlatitude/longitudegridsystem.Theverticalgrid
structureisdefinedexternally,solayerinterfaceheightsmaybespecifiedasanyarbitrary
functionofspaceand/ortime.Thisflexibilityindefiningthehorizontalandverticalgrid
structuresallowsCAMxtobeconfiguredtomatchthegridofanymeteorologicalmodelthatis
usedtoprovideenvironmentalinputfields.
 
Removal
l
Chemistry
l
Emission
l
ll
l
lHH
l
t
c
t
c
t
c
cK
tz
h
c
z
c
cV
t
c
/
2
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 2www.camx.com
1.1CAMxFeatures
TwoWayNestedGridStructure:CAMxcanberunwithvariablegridspacing.Useacoarsegrid
forregionaldomainswherehighspatialresolutionisnotparticularlyneeded,whileinthesame
run,nestfinergridsinspecificareasofinterest.Twowaynestingpropagatesinformationboth
up‐anddownscaleacrossallgrids.Nestsmaypossessdifferentmeshingfactorsfromtheir
parentgrids,aslongastheyarecommondenominatorsofparentresolution.A“FlexiNesting”
featureallowsyoutointroduceand/orremovenestedgridsatanypointduringasimulation.
Youcansupplycompleteinformationfornewgrids(emissions,meteorology,surface
characteristics)orallowCAMxtointerpolateanyoralloftheseinputsfromparentgrids.
MultiplePhotochemicalGasPhaseChemistryMechanisms:CAMxoffersseveralversionsof
CarbonBondchemistry(CB05andCB6variants)andthe2007versionofStatewideAirPollution
ResearchCenterchemistry(SAPRC07TC).ThesemechanismsaresolvedusingtheEuler
BackwardIterative(EBI)method,whichisfastandaccurate.CAMxalsoincludesthefully
explicitGeartypeLivermoreSolverforOrdinaryDifferentialEquations(LSODE),whichweuse
to"benchmark"newmechanismsandevaluatetheperformanceofEBI.Wedonot
recommendLSODEfortypicalapplicationsasthemodelwillrunmuchmoreslowly.
ParticulateMatter(PM)Chemistry:CAMxincludesalgorithmsforinorganicaqueouschemistry
(RADMAQ),inorganicgasaerosolpartitioning(ISORROPIA),andtwoapproachesfororganic
gasaerosolpartitioningandoxidation(VBSorSOAP).Thesealgorithmsuseproductsfromthe
gasphasemechanismsfortheproductionofsulfate,nitrate,andcondensableorganicgases.
CAMxprovidestwooptionstorepresenttheparticlesizedistribution:astatictwomode
coarse/fine(CF)scheme,andanevolvingmultisection(CMU)scheme.Thehybrid1.5
dimensional(1.5D)VolatilityBasisSet(VBS)describestheevolutionoforganicsaccordingto
oxidationstateandvolatility,andisimplementedtoprovideaunifiedframeworkforgas
aerosolpartitioningandchemicalagingofbothprimaryandsecondaryatmosphericorganic
aerosols.VBSiscompatibleonlywiththeCB05andCB6r2gasphasechemistryandthe2mode
CFaerosoloption;itisnotcurrentlyenabledforSourceApportionmentorDecoupledDirect
MethodProbingTools.Theoriginalonedimensional(overvolatility)SecondaryOrganic
AerosolPartitioning(SOAP)treatmentremainsanoption.SOAPiscompatiblewithCFandCMU
aerosoloptionsandworkswithallProbingTools.
MercuryChemistry:CAMxoptionallytreatsthechemistryoffivemercuryspecies(twogases
andthreeparticulates)viagasphaseandaqueouspathways,includingHg(II)adsorptiontoPM.
ThemercurychemistrymodulerequiresPMconcentrations,somercurymustbemodeledwith
the“CF”twomodePMmechanismbyincludingmercuryspeciesamongthelistofmodeled
species.Alloftherateandequilibriumconstantsforthemercurymechanismarehardcoded
withinthechemistrymodule.
UserDefinedChemistryMechanism:“Mechanism10”providesasimplewaytodefineyour
ownchemistrymechanism.Thisoptionisintendedtodefinesimplechemicaldecayor
transformationsbetweengasand/oraerosolspecies.YoumustdevelopyourownMechanism
10subroutineandchemistryparametersfile.
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 3www.camx.com
PlumeinGrid(PiG)Module:PiGtreatsthechemistryanddispersionofpointsourceemission
plumesatsubgridscalesusingaLagrangianpuffmodel,untilsuchtimeasthepollutantmass
canbeadequatelyrepresentedwithinthegridmodelframework.BothgasphaseandPM
chemistrycanbetreated.PiGincludesa“samplinggrid”capabilitytopassivelysampleplume
concentrationsatanyresolution,whichisparticularlyusefultovisualizenearsourcesubgrid
scaleimpacts.
HorizontalAdvectionSolverOptions:CAMxoffersthePiecewiseParabolicMethod(PPM)of
ColellaandWoodward(1984),andtheareapreservingadvectionsolverofBott(1989).Both
possesshighorderaccuracy,littlenumericaldiffusion,andaresufficientlyquickforapplications
onverylargegrids.
VerticalDiffusion(Mixing)Options:Bydefault,CAMxemploysastandard“Ktheory”approach
forverticaldiffusiontoaccountforsubgridscalemixinglayertolayer.Version2ofthe
AsymmetricConvectiveModel(ACM2;Pleim,2007)isavailableasanalternativetotheK
theoryapproach.ACM2isahybridoflocalKtheoryandnonlocalconvectivetransport
betweenthesurfaceandlayersaloft.ACM2canincreaseCAMxruntimeconsiderablyrelative
tothedefaultKtheory.ACM2doesnotworkwiththeIntegratedProcessRate(IPR)
componentoftheProcessAnalysis(PA)tool.
DryDepositionOptions:CAMxofferstwodrydepositionoptions:anolderapproachbasedon
themodelsofWesely(1989)andSlinnandSlinn(1980);andanupdatedapproachbasedonthe
algorithmsofZhangetal.(2001;2003).TheWesely/Slinnmodelisformulatedfor11landuse
categories,whiletheZhangmodeluses26landusecategories.
SurfaceChemistry/ReemissionModel:CAMxincludesasimplesurfacesubmodelthattreats
sorptionandpenetrationofdepositedpollutantmassintosoilsandvegetation,chemical
degradationandtransformation,andvolatilizationbackintotheair(reemission).Thesurface
modeltreatsanysubsetofspecieslistedinthecoremodel’schemicalmechanism.Thesurface
modelcanonlybeusedwiththeWesely(1989)drydepositionoption;itcannotbeusedwith
thePlumeinGridtreatment.
AdvancedPhotolysisModel:TheTUVradiativetransferandphotolysismodel,developedand
distributedbytheNationalCenterofAtmosphericResearch(NCAR,2011),isusedasaCAMx
preprocessortoprovidetheairqualitymodelwithamultidimensionallookuptableofclearsky
photolysisrates.CAMxinternallyadjustsclearskyratesforthepresenceofcloudsandaerosols
usingafastinlineversionofTUV.
LateralandTopBoundaryConditions:Time‐andspacevariableboundaryconditionsforthe
mastergridmaybedevelopedfromdownscalingthreedimensionaloutputfromglobal
chemistrymodelslikeGEOSChemandMOZART.Topboundaryconditionsimprovethe
characterizationofchemicalsenteringverticallyacrossthemodeltop,whichisparticularly
importantforcommonstratosphericconstituentssuchasozoneandnitrogenoxides.Asimpler
topboundarytreatmentremainsavailable,whichisnotreliantonaninputfileandinternally
assumesa“zerogradient”volumemixingratioconditionbetweenthetopmodellayerandthe
environmentabovethemodel.
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 4www.camx.com
ParallelProcessing:CAMxsupportstwotypesofparallelization:(1)OpenMP(OMP),which
allowsparallelprocessingonsharedmemory(e.g.,multicore)computers;and(2)Message
PassingInterface(MPI),whichallowsparallelprocessingacrossdistributedmemory
(networked)computerclusterenvironments.BothOMPandMPIcanbeusedincombination
tomaximizespeedperformance.TouseOMP,yourFortrancompilermustincludelibrariesto
enableincodedirectives.TouseMPI,youmusthaveexternalMPIlibrariesinstalledonyour
system.
1.2CAMxExtensionsandProbingTools
OzoneandParticulateSourceApportionmentTechnology(OSAT/PSAT):Sourceapportionment
technologytracksemissioncontributionstopredictedozoneand/orPMspeciesconcentrations
bysourceregionand/orcategory.OSATalsoreportsinformationtodeterminewhethereach
ozonecomponentformedinNOxorVOCsensitiveconditions.OSAT/PSATprovidesozone/PM
attributiontosourceregionsandcategoriesforagivenemissionsmatrix,butdoesnotprovide
quantitativeinformationastohowozone/PMcontributionswouldchangeasemissionsare
alteredbecausechemicalinteractionsarenonlinear.Sourceapportionmentisavailableonly
forCB05,CB6r2andCB6r3chemicalmechanisms,theCFaerosolschemeandtheSOAPorganic
partitioningalgorithm.
DecoupledDirectMethod(DDM)andHighOrderDDM(HDDM)SourceSensitivity:Thistool
calculatesfirstorder(DDM)andsecondorder(HDDM)gasconcentrationsensitivitytochanges
inemissions,initialconditionsandboundaryconditions.PMconcentrationsensitivityislimited
tofirstorderDDM.(H)DDMestimateshowpollutantconcentrationsrespondtoregion‐and
categoryspecificemissionchanges,butdoesnotprovideinformationonsourceattribution.
(H)DDMcanberunwithanyCBorSAPRCchemicalmechanism,theCFaerosolschemeandthe
SOAPorganicpartitioningalgorithm.
ProcessAnalysis(PA):Thisprobingtoolprovidesindepthinformationonthephysicaland
chemicalprocessesoccurringduringaCAMxrun.ThroughPA,onecanmorefullyunderstand
thecomplexinteractionsofthedifferentprocesses,explainsimulationresultswithinthe
contextofmodelformulation,andimprovethedesignofcontrolstrategies.Theintegrated
processrates(IPR)optioncanberunwithanyCBorSAPRCchemicalmechanismandanyPM
aerosoltreatment.Chemicalprocessanalysis(IRRandCPA)isfullyavailableonlyforCB05;a
limitedsetofchemicalprocessratesareavailableforCB6r2.PMratesarenottrackedbyPA.
ReactiveTracers(RTRAC):RTRACprovidesaflexibleaddontosimulatetheemission,
dispersion,chemistry,anddepositionofmultiplegasandparticletracers(suchasspecific
toxics)thatarenotincludedinthemodel’scoregas/PMchemistrymechanisms.Gasphase
chemistrymayinvolveuserdefinedlineardecay(photolysisand/oroxidation)byspecies,or
complexnonlinearsystemssolvedwiththeRTRACChemicalMechanismCompiler(RTCMC).
RTRACcanberunincombinationwithanyCBorSAPRCchemicalmechanismandis
independentfromallaerosoltreatments.
March2016CAMxUser’sGuideVersion6.3
1.Overview
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 5www.camx.com
1.3NewFeaturesandMajorUpdatesInCAMxVersion6.3
SpeedImprovements:Severalmodificationswereimplementedtoimprovemodelspeed.Our
testswithoutProbingToolsindicatespeedincreasesby1550%,dependingoncompiler,
chipsetandmodelconfiguration(gridnumberandsize,PiG,chemistrymechanism,
parallelization).Thesechangeshaveminimalimpactsonconcentrationresults(e.g.,ozone
differences<1ppb).
SourceApportionmentUpdates:OSAThasbeenexpandedtotrackoddoxygenandnitrogen
throughNOychemistrytoaccountforNOxrecyclingofozoneandtoimproveconsistencywith
PSATnitratechemistry.ManymoreOSATtracersarenecessary,andthisaffectsmemory
requirementsandmodelspeed.Expecttoseeslightlymoreozonecontributionsfromlong
rangetransport,andcommensuratelylesscontributionsfromlocalemissions.BothOSATand
PSATcannowuseanewsourceregionmapformatthatsupportsfractional(partial)area
assignmentsforeachgridcell.TheGeographicOzoneAssessmentTechnology(GOAT)option
hasbeenremovedfromOSATasitisconsideredobsolete.
AdditionalMapProjections:CAMxcannowrunonMercatorandPolarprojectionsusingthe
projectionparameters/definitionsfromtheWeatherResearchandForecasting(WRF)model.
SnowandSurfaceChemistryModelUpdates:Surfacealbedoforsnowcoveredgridcellsisnow
calculatedaccordingtolandcovertypeandnewadditionalinputvariablesforsnowcoverand
age,followingtheapproachusedintheWRF/NOAHlandsurfacemodel.Netsurfacealbedoin
snowcoveredgridcellscanbesubstantiallydifferentfromtheoriginalconstantvalueof50%,
andthiscanhavealargeimpactonphotochemicalactivity.Thesurfacechemistrymodelhas
beenextendedtoworkwiththeZhangdrydepositionoptionandtoaddsnowcovertothe
originalsoilandvegetationcompartments.Athirdsetofsurfacechemicalsorption,reaction
andlossrateshavebeenimplementedtorepresenttheseprocessesonandwithinthe
snowpack.
UpdatedCB6ChemistryMechanism:CB6“revision3”(CB6r3)isnowavailableaschemistry
mechanism4.CB6r3includesatemperature‐andpressuredependentorganicnitrate
branchingratio.Thisupdatewasfoundtobeimportantforphotochemistryincoldand/or
elevatedconditions,suchaswintertimeintheUSintermountainwest.Generally,theeffectof
thischangeistoreduceozoneproductionslightlyrelativetoCB6r2incoldconditions.There
arenoeffectsinwarmconditionsthataremoretypicaloftheozoneseason.
SAPRC07TC:SAPRC07isamorerecentgasphasechemistrymechanismthathasreplacedthe
datedSAPRC99mechanism.SAPRC07TCisavariantofSAPRC07thatincludesextramodel
speciesfortoxicsandusesnumericalexpressionsofrateconstantsthatarecompatiblewiththe
currentchemistrymechanismsolver.
ImplicitExplicitHybrid(IEH)ChemistrySolver:Thisrarelyusedgasphasechemistrysolverwas
removedasitpossessesequivalentaccuracyastheEBIsolver,butrunsmuchmoreslowly.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 6www.camx.com
2.THECAMXMODELINGSYSTEM
CAMxcomprisesthecorecomponentofanoverallairqualitymodelingsystem,asillustratedin
Figure21.CAMxinputsaredevelopedusingindependentthirdpartymodelsandprocessing
toolsthatcharacterizemeteorology,emissions,andvariousotherenvironmentalconditions
(landcover,radiative/photolysisproperties,andinitial/boundaryconditions).Interface
programsareneededtotranslatetheproductsofeachofthesemodels/processorsintothe
specificinputfieldsandformatsrequiredbyCAMx.Aftertheairqualitysimulationis
completed,additionalprogramsareusedtopostprocesstheconcentrationfields,develop
modelperformancestatisticsandmeasures,manipulateProbingTooloutputintovarious
reportableformats,andfurthertranslaterawresultsintoformsnecessaryforregulatory
purposes.CommonlyavailablegraphicalsoftwarecanbeusedtoviewCAMxoutputfiles;some
likePAVEandVERDIcanreadCAMxfilesdirectly,othersrequirereformattingCAMxfilesto
commondataformatslikeNetCDF.Whilethirdpartyvisualizationsoftware,meteorological
models,andemissionprocessorsarenotdistributedwithCAMx,RambollEnvirondoes
distributemanyofthenecessaryinterfaceprogramsandpostprocessorsontheCAMxwebsite
(www.camx.com).Abriefdescriptionofeachoftheseisprovidedattheendofthissection.
Figure21.SchematicdiagramoftheCAMxmodelingsystem.SeeTable31foradetailedlist
ofspecificmodelinputrequirementsforthefivemajordataclassesshownatthetopofthe
figure.Certainpre‐andpostprocessorprogramsshowninthefigurearedescribedinthis
section.Thirdpartymodels,processors,andvisualizationsoftwarearenotdescribedinthis
User’sGuideandarenotdistributedwithCAMx.
SMOKE,
CONCEPT,
EPS3
WRF,
MM5,
RAMS TUV
CAMx
PiGSET,
WINDOW,
MRGUAM
WRFCAMx,
MM5CAMx,
RAMSCAMx,
KVPATCH
Total
Atmospheric
Ozone Column
Landcover
Emission Inventory,
Fire Activity
Analyses,
Observations,
Topography,
Landcover
ICBCPREP
BNDEX
T
O3MAP
CAMxTRCT,
CAMx2IOAPI,
BIN2ASC
AVGDIF,
CAMxPOST,
EPASTAT
MATS PA Tools,
User-Developed Post-Processors
Land/Ocean Mask
Global Models
(GEOS-CHEM,
MOZART, AM3)
GEOS2CAMx,
MOZART2CAMx
Leaf Area Index
Data
Models &
Pre-Processors
Interfac e
Programs
Core Model
Post-Processors
File Formatting Performance Regulatory Probing Tools
Emissions Meteorology Photolysis Geographic Air Quality
MERGE LULAI
GIS Processin
g
Bio
g
enic Models
SEASAL
T
Vegetative
Cover
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 7www.camx.com
2.1CAMxProgramStructure
ThecoreCAMxmodeliswritteninFortran,butincludessomeutilitieswritteninCtointerface
withMPI.Theprogramishighlymodularandwelldocumentedtoeasecodereview,
modificationsandsubstitutionofalternateroutines.Thesourcecodeisarrangedinseveral
directories,groupedaccordingtofunction.Themainsourcedirectorycontainsversionrelease
notes,theGNUuserlicense,the“Makefile”compileutility,andacontrolfilenamelisttemplate.
Subdirectoriescontainsourcecodeforthecoremodelandancillaryroutinesaccordingtothe
following:
CAMx/SourcecodeforthemaindriverroutineCAMx.fandcoremodel
routines.
CF_AERO/Sourcecodeforinorganicaerosolchemistry(aqueousand
thermodynamicpartitioning)forthe2modeCFscheme.
CMC/ Sourcecodeforthegasphasechemicalmechanismroutines.
CMU_AERO/Sourcecodeforinorganicaerosolchemistry(aqueousand
thermodynamicpartitioning)forthemultisectionCMUscheme.
DDM/ Sourcecodeforthe(H)DDMProbingTool,consistingofI/Oandcore
routinesthatareuniqueto(H)DDM.
HG/ Sourcecodeforthemercurychemistryroutines.
Includes/Fortran“include”files,consistingofprogramparametersandmemory
managementcode.
IO_bin/SourcecodeforFortranbinary(unformatted)I/O.
Mod_src/SourcecodeforF90memorymanagementmodules.
MPI/ SourcecodeforroutinesspecifictoMPIparallelization.
OSAT/SourcecodefortheOSAT/PSATProbingTools,consistingofI/Oandcore
routinesthatareuniquetoOSAT/PSAT.
PA/ SourcecodefortheProcessAnalysisProbingTool,consistingofI/Oand
coreroutinesthatareuniquetoPA.
PiG/ SourcecodeforthePlumeinGridsubmodel,consistingofI/Oandcore
routinesthatareuniquetoPiG.
RTRAC/SourcecodefortheReactiveTracerProbingTool,consistingofI/Oand
coreroutinesthatareuniquetoRTRAC/RTCMC.
SOAP/ Sourcecodeforsecondaryorganicaerosolthermodynamicpartitioning.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 8www.camx.com
2.1.1MemoryManagement
Allofthemodel’sglobaldatastructuresaredynamicallyallocatedwhenthemodelstarts.The
datanecessarytoallocatememoryspaceforagivenmodelrunarereadfromtheCAMxcontrol
filedevelopedbytheuser(seeSection2.3).However,toalleviatecompilerdependencyon
speedperformance,CAMxutilizessomehardcodedFortranparameterstostaticallyallocate
localarraysinlowlevelsubroutines.Alloftheseparametersaredefinedinthe
Includes/camx.prmfile.Thedistributionversionofthis“include”filesetskeyarray
parameterstodefaultvaluesthatshouldbesufficientlylargetoaccommodatemost
applications:seeTable21foradescriptionofparametersandtheirdefaultvalues.However,
youmaywanttocustomizethesevaluestoensurethattheyarelargeenoughtoaccommodate
allofyourmodelconfigurations,ortoexactlymatchyourspecificapplication,thuspreventing
wastedmemory.
Ifanyparameterissettoavaluethatistoosmalltosupportyourapplicationthemodelwill
stop,displayinganinformativeerrormessage.Toconservememory,defaultvaluesof1are
setforProbingTooltracers,PiGsamplinggrids,andsamplinggriddimensions.Thesemustbe
increasedaccordinglyifProbingToolsorsamplinggridsaretobeused.
Table21.ParametersandtheirdefaultsinIncludes/camx.prmusedtostatically
dimensionlocalarraysinlowlevelsubroutines.
ParameterNameDescription
Default
Value
MXCELLS NumberofcellsinX/Ydirectionforanygrid 200
MXLAYER Numberoflayers 30
MXSPEC Numberofspecies(couldbenumberofradicals,numberofinput
species,ortotalnumberofmodelspecies)133
MXREACT Numberofreactions(dependsonthemechanism;seetheuser's
guideforthevalueforeachmechanism)565
MXGRID Numberofgrids 10
MXPTSRC Numberofpointsources 100000
MXTRSP NumberofProbing Tooltracerspecies 1
MXPIG NumberofPiGpuffs 50000
MXSAMPLE NumberofPiGsamplinggrids 1
MXCOLSMP NumberofPiGsamplinggridcolumns 1
MXROWSMP NumberofPiGsamplinggridrows 1
Alloftheparametersinthetableabovecanbedeterminedbeforestartingasimulationexcept
forMXPIG.Avalueof50,000isusuallysufficientformostapplicationsinwhichPiGisused;set
thisparameterto1ifPiGisnotusedtoconservememory.Ifthisparameterisexceededduring
asimulation,themodelwillstopwithaninformativeerrormessage.Ifthishappens,simply
increaseMXPIG,recompilethemodelexecutable,andrestartthesimulation.Theother
parametersincamx.prmbeyondthoselistedinTable21willnotnormallyneedtobe
changedandarenotdiscussedfurther.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 9www.camx.com
2.1.2ParallelProcessing
Parallelprocessingreferstodistributingamodelapplicationtomultipleprocessors(CPUs)that
sharethecomputationalload.CAMxsupportstwotypesofparallelization:(1)OpenMP(OMP),
whichallowsparallelprocessingonsharedmemory(e.g.,multicore)computers;and(2)
MessagePassingInterface(MPI),whichallowsparallelprocessingacrossdistributedmemory
(networked)computerclusterenvironments.BothOMPandMPIcanbeusedincombination
tomaximizespeedperformance.
TouseOMP,yourFortrancompilermustincludelibrariestoenabletheincodeparallelization
directives.OMPdistributescalculationsforindividualprocesses,suchaschemistrywithina
singlegridcelloradvection/diffusionalongasinglerowofcells,toanumberofCPUsdefined
bytheuser.OnceeachCPUhascompleteditscalculations,itworksonthenextindividual
processuntilallprocessesovertheentiregridarecompleted.
TouseMPI,youmusthaveanexternalMPIlibraryinstalledonyoursystem.MPICHisaspecific
opensourceMPIlibrarywidelyusedinthenumericalmodelingcommunity;CAMxhasbeen
specificallydevelopedandtestedusingMPICH.WithMPI,eachCAMxgridisdividedintosub
domains(“slices”)andeachsliceisassignedtoaCPUontheuserdefinednetwork.EachCPU
operatestheentiremodelonitsassignedsliceandpassescommoninformationneededby
otherCPUsviadata“messages”.
MPIinCAMxisdesignedusinga“master/slave”parallelprocessingapproach.TheCPUon
whichtheprogramislaunchedservesasthemasternodeandwillnotconductanymodel
computationsonanypartofthemodelingdomain.Thisprocesswillperformallofthemodel
setup,thevastmajorityofI/O,andmanagethecommunicationbetweentheslaveorcompute
nodes,whichintegratethemodelforwardforeachgridslice.Sincethemasternodehandles
theimportantI/OitistheonlyCPUthatneedsaccesstothediskvolumecontainingtheinput
filesandthelocationoftheoutputdirectory.Thisapproachallowsforaminimalamountof
networktrafficto/amongthecomputenodesbyeliminatingtheneedforthemtomanageNFS
mounts.ThemasternodemayneedaccesstotheLANfordataaccess,butthecomputenodes
onlyneedaccesstotheinternalclusternetwork.However,thecomputenodeswillneedaccess
toacopyoftheexecutableprogram.Thiscanbeaccomplishedinanumberofways:(1)have
anNFSmountonthemasternodeaccessibletotheinternalclusternetworkandlaunchthe
modelfromthatlocation;or(2)portacopyoftheexecutableprogram,usingrcporscp,to
theuser’shomedirectoryoneachcomputenodeandlaunchthemodelfromtheuser’shome
directoryonthemasternode.
Duringeachmodeltimestep,whengridslicecomputationsareperformedbythecompute
nodes,someinformationiswrittentothediagnosticandmessageoutputfiles.Ratherthanjust
eliminatethisinformationaltogether,wedecidedtocreatenodespecificversionsofeachof
thesetwofilesandhaveeachcomputenodewritetheinformationtoitsownversion.
However,inordertopreventtheneedtohavetheoutputdirectoryavailabletothecompute
nodeacrossthenetwork,wehavedesignedthemodelsothatthenodespecificfilesare
createdinthecurrentworkingdirectory.ThismeansthatifthemodelislaunchedfromanNFS
mounteddirectory,allofthenodespecificfileswillallbecreatedinthatlocation.Ontheother
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 10www.camx.com
hand,ifthemodelislaunchedfromauser'shomedirectoryonthecomputenodes,youwill
havetologintothespecificcomputenodetoviewthefiles.
WhenusingahybridMPI/OMPapproach,thegridswillbedividedintoslicesintheusualwayas
partofMPI,butwhenoperatingonaparticularslice,thehostwillspawnmultipleOMPthreads
toparallelizetheportionsofthecodewhereOMPdirectiveshavebeenincluded.
2.2CompilingCAMx
A“Makefile”scriptisprovidedinthemainsourcedirectory.TheMakefilewillcompileallCAMx
sourcecode,linkwithnecessarylibraries,andbuildanexecutableprogram.Itsupports
platformsrunningLinux(PortlandGroupandIntelcompilers)andMacintoshOSX(Absoft
compiler);itdoesnotcurrentlysupportcompilersonplatformsrunningWindows.
ThechoiceforOMPandMPIparallelization,andthememoryconfigurationforprobingtools,
aresetduringmodelcompilation.AllotherCAMxchoicesforchemicalmechanism,model
algorithms,ProbingTools,andotheroptionsareselectedatruntime.
CAMxiscompiledbyissuingthefollowingcommandatashellpromptwithinthemainsource
directory:
make COMPILER=my_compiler <CONFIG=my_app> <MPI=mpi_option>
wherethetextwithinthebrackets<>isoptional.Todisplayaninteractivehelpmessage,
youmaytype
make help
ThemandatoryCOMPILERargumentshouldbesettooneofthefollowing:
pgf orpgfomp(PortlandGroupcompilerforLinux)
ifort orifortomp(IntelcompilerforLinux)
gfortranorgfortranomp(GnucompilerforLinux)
absoftorabsoftomp(AbsoftcompilerforMacintoshOSX)
ThesekeywordsinformtheMakefileofthecompilerbeingusedtocompileandrunthemodel,
sothattheMakefilecaninvokethepropercompilerspecificcommandsandflags.IfOMPisnot
specifiedaspartofthekeywordthenCAMxwillnotbeabletorunwithOMPparallelization.
TheoptionalCONFIGargumentallowstheCAMxexecutableprogramtobelabeledfora
specificmemoryconfigurationasdefinedwithintheCAMxparametersfile
(Includes/camx.prm)describedabove.Youmaywanttocustomizesomeapplications,for
exampletoconfiguretheProbingToolextensions,anditisconvenienttobeabletodistinguish
betweentheseexecutables.TheMakefilewillsearchforaCAMxparametersfilecalled:
Includes/camx.prm.my_app
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 11www.camx.com
IfCONFIGisnotsetonthemakecommandline,theMakefilewillcompileCAMxusingthe
defaultparametersfile,Includes/camx.prm.v6.30.
TheoptionalMPIargumentwillenableMPIparallelprocessing.Thisrequiresthatthirdparty
MPIlibrarieshavebeenbuiltandinstalledonthemachinethatisrunningthisMakefilescript
andcompilingCAMx.IfMPIisnotsetonthecommandline,theMakefilescriptwillignorethe
MPIlibrariesandCAMxwillnotbeabletorunwithMPIparallelization.TheoptionalMPI
argumentshouldbesettooneofthefollowing:
mpich(MPICHversions1or2)
mpich3(MPICHversion3)
mvapch
openmpi (PGFandIFORTcompilersonly)
YoushouldcheckthatthevariableMPI_INSTintheCAMxMakefile,andintheMPI
utilitiesMakefile(locatedintheMPI/utilsubdirectory),arecorrectlysettoyoursystem's
MPIinstallationpath.
CAMxsupportstheuseofbothOMPandMPIparallelizationinasinglerunusingPGFandIFORT
compilers.ToutilizeOMPinyourMPIapplication,besuretospecifytheappropriateOMP
compilerkeyword.
TheMakefilewillgenerateaCAMxexecutableprogramnamed
CAMx.my_app.MPI_option.my_compiler
whichwillresideinthemainsourcedirectory.Forexample,adefaultcompilationusingthe
PortlandGroupcompilerwillresultinanexecutablenamed
CAMx.v6.30.noMPI.pgf.
IfyouneedtorebuildCAMxusingdifferentMakefileargumentswerecommendtypingmake
cleanbetweenbuilds.Makecleanwilldeleteallexistingobjectfilesandforceacomplete
rebuild.
2.2.1ANoteonFortranBinaryInput/OutputFiles
LargeCAMxinputandoutputdatafieldsarecontainedwithinFortran“unformatted”(binary)
files.Thismeansthatthedataarereadandwrittenasrepresentedinmemory,without
translationbetweenbinaryandASCIIcharactersetsasisperformedfor“text”files.Binaryfiles
reducefilevolumeandimproveprogramread/writespeed,buttheusercannotdirectlyviewor
manuallyeditthem.Therearetwowaystorepresentbinaryinformationinmemory:“big
endian”and“littleendian.”Thedifferencebetweentheseisessentiallytheorderofbitsina
word,andwhichorderisuseddependsonthecomputerchipset.Historically,bigendianhas
beenusedinmanyUnixworkstations(Sun,SGI,HP,andIBM).Thex86processorsonpersonal
computerplatforms(e.g.,IntelandAMD)uselittleendian,whilePowerPCchipsarebigendian.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 12www.camx.com
CAMxcanbecompiledandrunonmachinesthatuseeitherbigorlittleendianbinary
representations,aslongasthemodelandallofitspre‐andpostprocessorsareconsistently
compiledandrunonthesametypeofplatform.Ifanycomponentofthemodelingsystemis
compiledonadifferentplatformusingtheoppositebinaryrepresentation,I/Ofileswillnotbe
properlyreadandwilllikelyleadtoaprogramcrash.
Atypicalruntimeerrormessagefromtryingtoreadthewrongbinaryformatis“inputrecord
toolong,”soifyougetthiserrormessage,checkforbigendian/littleendianconsistency
betweenyourbinaryfilesandFortrancompileroptions.
Compilersforlittleendianmachines(e.g.,x86PCchipsets)providecompiletimeswitchesthat
allowbinaryfilestobereadandwrittenasbigendian.ThePortlandGroupcompileroptionis
-byteswapio”,whereastheIntelcompileroptionis-convert big_endian.”The
CAMxMakefilesetscompilerflagstoconsistentlyusebigendiantomaximizeplatform
portability.Therefore,useoftheCAMxMakefilewillbydefaultresultinthemodelreadingand
writingbigendianbinaryfiles.Inpractice,usersshouldusethedefaultbinaryformatthatis
builtintotheCAMxMakefileandthatisusedfortheCAMxdistributiontestcase.
2.3RunningCAMx
2.3.1ControlFileNamelistInput
CAMxreadsatextruncontrolfilenamedCAMx.inthatmustexistlocallyinthedirectory
fromwhichthemodelisrun.ThisfilemustbeintheFortran“namelist”format,andcontains
alluserspecifiedcontrolparametersforagivensimulation,includingmodelconfiguration,
optionspecificinputs,andI/Ofilenames.Theruncontrolfilemustcontaintheprimary
namelistmodulelabeled&CAMx_Control”,whichprovidesalloftheinformationto
configurethecoremodel.Additionalnamelistmodulesmaybeprovidedintheruncontrolfile
toconfigurethevariousCAMxProbingToolextensions.Theseoptionalnamelistmodulesare
ignoredifnoProbingToolsareselectedintheprimarynamelist.
EachrecordintheCAMxcontrolfilecontainsavariablenamethatisexplicitlysettoa
numerical,logical,orcharactervalue.Thevariablenamesareusedbytheprogramdirectly,
andthereforecannotbechangedwithoutsourcecodemodifications.Characterstringsmust
beenclosedbysinglequotes,andallvariableassignmentsmustbedelimitedwithcommas.
Theorderoftherecordsmaybearrangedinanyfashionthattheuserprefers.Anynumberof
commentstatementsmaybeincludedanywherewithinthenamelists,providedthattheydo
notinterruptvariableassignments(variable_name = value,).The!characteristhe
Fortrannamelistcommentdelimiter.
Certainvariablesaremultidimensionarrays;theusermayprovideacommadelimitedlistof
valuestofillthearrayorassignvaluestospecificarrayelements.Certainothervariablesare
optionalorassociatedwithoptionflags;thesedonotneedtoappearinthenamelistiftheir
associatedoptionsarenotinvoked,andtheywillbeignorediftheyremaininthefile.
Iftheuserdoesnotprovidenecessaryinputs,themodelwillstopwithadescriptiveerror
message.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 13www.camx.com
2.3.1.1CommonErrorsWhenCreatingaNamelist
FortranprogramsingesttheentirecontentsofnamelistmodulesusingasingleREAD
statement.Iftheprogramexperiencesanerrorreadingthenamelist,itechoesasimpleerror
messagelike“errorreadingnamelist”andtheprogramstops.Itisthereforedifficultto
determinethecauseofthereaderror,especiallyifthenamelistislengthyandcontainsa
varietyofdatatypes.WhenexperiencinganerrorreadingtheCAMxcontrolfilenamelist,you
mustcarefullyinspectthefileforanysyntaxerrors.Theseerrorscanbesubtleanddifficultto
spot.Hereareafewofthecommonreasonsanerroroccurswhenreadinganamelist:
Mistypedvariablename:
Allvariablestobeassignedwithinanamelistmustberecognizedasadeclarednamelist
variablewithinthereadingprogram.Ifavariableismisspelledoranunknownvariable
isassignedavalue,areaderrorwilloccur.
Incorrectdatatypefortheassignedvariable:
Ifthedatatypeofthevalueassignedtoanamelistvariabledoesnotmatchthe
variable’sdeclareddatatypewithinthereadingprogram,anerrorwilloccur.Some
compilerswillallowrealtypevariablestobeassignedtointegervalues,butnotthe
converse.
Missingperiodaroundalogicalvalue:
Thelogicalvalues.true.and.false.mustbesurroundedbyaperiod.
Missingquotesaroundacharactervariable:
Anycharacterdatatypemustbesurroundedbyquotes.
Overflowwhenassigningvaluestoanarray:
Thevaluesinanarraycanbeassignedusingarrayindexnotation.Iftheindexusedto
assignanarrayvalueexceedsthedeclareddimensionofthearray,areaderroroccurs.
ChecktheMXNAMparameterintheIncludes/namelist.incincludefiletosee
ifthisvalueneedstobeincreased.Alternatively,checkyournamelistfiletobesureall
ofyourarrayindicesarecorrect.
Wrongnumberofdimensionswhenassigningvaluestoamultidimensionalarray:
Whenassigningvaluestoanarrayusingarrayindexnotation,thenumberofsubscripts
intheassignmentmustmatchthedeclareddimensionsofthearray(e.g.,assignments
toanarraydimensionedvar(i,j)mustbereferencedusingtwoindices).
Missingcommafollowingavariabledefinition:
Acommamustbethelastcharacterinavariableassignment(variable = value,).
Acommentmaybeplacedafterthecomma(delimitedusingthe!symbol,seebelow)
onthesamefilerecord.Thisrestrictionontheuseofcommasisignoredonsome
compilers.
Toomanycommasfollowingascalarvariabledefinition:
Morethanonecommafollowingascalarvariableassignmentwillresultinareaderror.
Toomanycommasfollowingthevariableassignmentlistforanarray:
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 14www.camx.com
Theentirecontentsofanarraycanbeassignedusingasinglestatementbylistingthe
valuesofeachelementseparatedbycommas.Thereadwillfailiftherearemore
commasthanthedimensionofthearray.
Commentdoesnotbeginwith!:
Thecharacterthatdelimitsacommentinanamelististheexclamationpoint.
Commentscanappearanywherewithinthenamelist.However,alltextinthenamelist
musteitherbepartofanamelistvariableassignmentorpartofanidentifiedcomment.
WesuggestthatnewCAMxusersstartwiththeCAMx.namelist.templatethatis
providedwiththesourcecode.
2.3.1.2ThePrimaryNamelistModule
Thissectiondescribestheprimarynamelistmodule;detaileddescriptionsofeachofthe
ProbingToolmodulesareprovidedintheirrespectivesections(Sections7through10).Alisting
ofallnamelistvariablesnecessarytorunthecoremodelispresentedonthefollowingpages.
DescriptionofCAMxRunControlFileVariables
&CAMx_Control  Labelfortheprimarynamelistmodulethatconfiguresthecore
model;itmustbeginincolumn2
&Flagendinganamelistmodule;itmustbeincolumn2
Run_Message60charactersimulationmessage,writtentooutputfilestolabel
therun
Theshortsimulation“runmessage”iswrittentoalloutputfilestodescribeandlabeltherun.
ModelClockControl
Time_ZoneIntegertimezone(0=UTC,5=EST,6=CST,7=MST,8=PST)
Restart Logicalmodelrestartflag(TRUE=readrestartfile,FALSE=read
initialconditionsfile)
Start_Date_Hour  Integerarraystarttime(YYYY,MM,DD,HHmm)
End_Date_Hour Integerarrayendtime(YYYY,MM,DD,HHmm)
Maximum_Timestep  Realmaximumallowabletimestep(minutes)
Met_Input_Frequency Realinputfrequencyofenvironmentalfields(minutes)
Ems_Input_Frequency Realinputfrequencyofemissions(minutes)
Output_Frequency  Realoutputfrequency(minutes)
Theuserspecifiesthesimulationstart/endyear,month,day,andhour;themodelusesJulian
datesinternally.Alltimesmustbegiveninmilitaryformat(e.g.,1:30PMmustbegivenas
1330).Thesimulationtimezonemustmatchthetimezoneinwhichtheemissionand
environmentalinputsaredeveloped.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 15www.camx.com
MapProjectionParameters
Map_Projection  Charactermapprojectionkeyword(LAMBERT,POLAR,RPOLAR,
MERCATOR,UTM,LATLON)
UTM_ZoneIntegerUTMzone
Longitude_Pole  Reallongitudeofprojectionpoleororigin(degrees,west<0)
Latitude_Pole  Reallatitudeofprojectionpoleororigin(degrees,south<0)
True_Latitude1  Realfirsttruelatitudeofprojection(degrees,south<0)
True_Latitude2  Realsecondtruelatitudeofprojection(degrees,south<0)
ThegridprojectionmaybeselectedasCartesian(fixedphysicaldistancecoordinatesonaflat
plane)orcurvilineargeodetic(followingthecurvedsurfaceoftheEarth).TheCartesian
optionsincludeLambertConicConformal(LAMBERT),PolarStereographic(POLAR),Rotated
PolarStereographic(RPOLAR),Mercator(MERCATOR),andUniversalTransverseMercator
(UTM).Thegeodeticoptionperformsthesimulationonalatitude/longitudegrid(LATLON).All
griddedinputfilesmustbedefinedonthegridprojectionspecifiedfortheCAMxsimulation.
TheLAMBERT,POLAR,andMERCATORprojectionsareallequivalenttothedefinitionsusedin
theWRFmeteorologicalmodel,whichassumesasphericalEarthwithradiusof6370km.The
RPOLARprojectionisequivalenttothedefinitionusedintheRAMSmeteorologicalmodel.
WhilethePOLARprojectionofWRFisdefinedtobetangentat(orsecantaround)theNorth
andSouthPoles,theRPOLARprojectionofRAMSisdefinedtobeonlytangenttotheEarth’s
surfaceatanyuserdefinedlatitude/longitude.
IftheLAMBERTprojectionisspecified,theLongitude_PoleandLatitude_Polemust
bespecifiedtodefinetheprojectionorigin(whereLAMBERTcoordinatesaredefinedtobe0,0
km),andTrue_Latitude1andTrue_Latitude2mustbespecifiedtodefinethe
projectiontruelatitudes(theymaybeequal,whichisaprojectiontangetatthatlatitude).
IftheMERCATORprojectionisspecified,theLongitude_PoleandLatitude_Polemust
bespecifiedtodefinetheprojectionorigin(whereMERCATORcoordinatesaredefinedtobe
0,0km),andTrue_Latitude1mustbespecifiedtodefinetheprojectiontruelatitude(it
maybezero,whichisaprojectiontangentattheEquator).
IfthePOLARprojectionisspecified,theLongitude_PoleandLatitude_Polemustbe
specifiedtodefinetheprojectionorigin(wherecoordinatesaredefinedtobe0,0km),and
True_Latitude1mustbespecifiedtodefinetheprojectiontruelatitudeorsecant(itmay
be±90degrees,whichisaprojectiontangentattheNorthorSouthPoles).
IftheRPOLARprojectionisspecified,theLongitude_PoleandLatitude_Polemustbe
specifiedtodefinetheprojectionpole(wherecoordinatesaredefinedtobe0,0km).True
latitudesarenotspecifiedasRPOLARisalwaystangentatthepolepoint.
IftheUTMprojectionisspecified,aUTMzonemustbespecified(1through60).Poleandtrue
latitudevaluesareignoredforUTMandLATLONprojections.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 16www.camx.com
ParametersForTheMaster(First)Grid
Number_of_Grids  Integernumberofgridsinsimulation
Master_SW_XCoord  Realxcoordinateofdomainsouthwestcorner(km,ordegrees
forLATLON)
Master_SW_YCoord  Realycoordinateofdomainsouthwestcorner(km,ordegrees
forLATLON)
Master_Cell_XSize Realcellsizeinx(km,ordegreesforLATLON)
Master_Cell_Ysize Realcellsizeiny(km,ordegreesforLATLON)
Master_Grid_Columns Integernumberofmastergridcolumns(EWgridcells)
Master_Grid_Rows  Integernumberofmastergridrows(NSgridcells)
Number_of_Layers  Integernumberofgridlayers(appliestoallgrids)
Themastergridisdefinedbyitslocation(southwestcornerofcell[1,1]inthecoordinatesof
thechosenprojectionspace),numberofgridcells(eastwest,northsouth,vertically),and
horizontalresolution.Verticalresolutionisdefinedbythelayerstructurespecifiedintheinput
3Dmeteorologicalfile.
ParametersForTheNestedGrids
Nest_Meshing_Factor Integerarray(bygrid)nestedgridcellsizerelativetomaster
grid
Nest_Beg_I_Index  Integerarray(bygrid)mastergridcolumncontainingwestern
edgeofnest
Nest_End_I_Index  Integerarray(bygrid)mastergridcolumncontainingeastern
edgeofnest
Nest_Beg_J_Index  Integerarray(bygrid)mastergridrowcontainingsouthernedge
ofnest
Nest_End_J_Index  Integerarray(bygrid)mastergridrowcontainingnorthernedge
ofnest
ThedefinitionofnestedgridsisspecifiedintheCAMx.infileintermsoftherangeofmaster
gridcellsthateachnestedgridspans(seeSection4).The“meshingfactor”setstheresolution
orcellsizeofthenestedgridsrelativetothemastergrid.TheCAMxdiagnosticoutputfile
providesinformationonthelocationandsizeofeachnestedgridtohelpensurepropersetup.
ModelOptions
Diagnostic_Error_CheckLogicalmodelstartupdiagnosticflag(TRUE=stopsbeforefirst
timestepindicatingsuccessfulmodelinitialization,
FALSE=continueswithsimulationaftermodelinitialization)
Flexi_NestLogicalflexinestingflag(TRUE=allowsome/allnestedinput
fieldstobeinterpolatedfromtheparentgrid,FALSE=alldata
mustbeprovidedforallnests)
Advection_Solver  Characterhorizontaladvectionsolverkeyword(PPM,BOTT)
Chemistry_Solver  Characterchemistrysolverkeyword(EBI,LSODE)
PiG_Submodel  CharacterPiGsubmodelkeyword(NONE,GREASD,IRON)
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 17www.camx.com
Probing_Tool  CharacterProbingToolkeyword(NONE,SA,DDM,HDDM,PA,
IPR,IRR,RTRAC,RTCMC)
ChemistryLogicalchemistryflag(TRUE=chemistryon,FALSE=chemistry
off)
Drydep_Model Characterdrydepositionmodelkeyword(NONE,WESELY89,
ZHANG03)
Wet_Deposition  Logicalwetdepositionflag(TRUE=depositionon,
FALSE=depositionoff)
ACM2_Diffusion  LogicalACM2verticaldiffusionflag(TRUE=ACM2on,
FALSE=standardKtheorydiffusion)
Surface_Model  Logicalsurfacemodelflag(TRUE=surfacemodelon,
FALSE=surfacemodeloff)
Super_Stepping  Logicalsupersteppingflag(TRUE=usesupersteppingfor
horizontaladvectiontomaximizemodelspeed,FALSE=donot
usesuperstepping).
Gridded_Emissions Logicalgriddedemissionsflag(TRUE=griddedemissionswillbe
used,FALSE=griddedemissionswillbeignored)
Point_Emissions  Logicalelevatedpointsourceflag(TRUE=pointemissionswillbe
used,FALSE=pointemissionswillbeignored)
Ignore_Emission_Dates Logicaldateinsensitiveemissionflag(TRUE=datesonemission
fileswillbeignored,FALSE=datesonemissionfileswillbe
checkedagainstsimulationdate)
TheuserhastheoptionofselectingamongtheBottorPiecewiseParabolicMethodhorizontal
advectionsolversbyspecifying“BOTT”or“PPM”askeywordsintheruncontrolfile.Theuser
alsohastheoptiontousetheEBIorLSODEchemistrysolversforgasphasechemistryby
specifyingtheserespectivekeywords.ProbingToolsareselectedbyspecifyingoneofthe
allowedkeywords;noProbingToolwillberunifthiskeywordissetto“None”.Thedescription
ofthePiGsubmodelisprovidedinSection6.
Supersteppingmaximizesthemodel’sspeedperformancebysettingthelargestgridspecific
drivingtimestepspossible.Thisresultsintheneedforpotentiallymanysubstepstobe
appliedinhorizontaladvectiononalayerbylayerbasistomaintainastablesolution.While
supersteppinghaslittleimpactonsurfaceconcentrationsinnonMPImode,largerdifferences
areseenusingMPI.A“superstepping”flagwasaddedtothecontrolnamelistthatallows
userstospecificallyturnoffsupersteppingwhentheywishtocompareconcentrations
betweenMPIandnonMPIrunsinthemostconsistentmannerpossible.Supersteppingcan
reducetheaccuracyoftheverticaltransportsolution,especiallyinhighwindconditionsover
complexterrain.Turningsupersteppingoffwillcausethemodeltorunmuchmoreslowly.
OutputSpecifications
Root_Output_Name  Characterrootoutputpath/filename(seeTable22for
descriptionoffilesuffixes)
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 18www.camx.com
Average_Output_3D Logical3Daverageoutputfileflag(TRUE=outputfull3D
concentrationfields,FALSE=outputsurfacelayerconcentration
fields)
Output_3D_Grid  Logicalarray(bygrid)3Daverageoutputfileflag(TRUE=output
full3Dconcentrationfieldsforspecifiedgrid,FALSE=output
surfacelayerconcentrationfields)
Output_Species_Names Characterarray(byoutputspecies)speciesnamestobewritten
toaverageanddepositionoutputfiles,orthesinglename“ALL”
tooutputallstategasandPMspecies(excludingradicals),or
thesinlgename“ALLR”toincluderadicals
PiG_Sampling_GridLogicalsamplinggridflagforIRONPiGoutput(TRUE=sampling
gridsarespecified,FALSE=samplinggridswillnotbegenerated)
Sample_BackgroundLogicalflagtoincludebackgroundconcentrations
(TRUE=backgroundconcentrationsfromthehostcomputational
gridwillbeaddedtopuffincrements,FALSE=onlypuff
incrementswillbeshown)
Number_of_Sampling_GridsIntegernumberofsamplinggrids
SG_Beg_I_IndexIntegerarray(bysamplinggrid)mastergridcolumncontaining
westernedgeofsamplinggrid
SG_End_I_IndexIntegerarray(bysamplinggrid)mastergridcolumncontaining
easternedgeofsamplinggrid
SG_Beg_J_IndexIntegerarray(bysamplinggrid)mastergridrowcontaining
southernedgeofsamplinggrid
SG_End_J_IndexIntegerarray(bysamplinggrid)mastergridrowcontaining
northernedgeofsamplinggrid
SG_Mesh_FactorIntegerarray(bysamplinggrid)cellsizerelativetomastergrid
Theuserspecifiesa“root”pathandfilenamethatwillbeusedforallstandardCAMxcore
modeloutputfiles.Themodelappendssuffixestotheserootnamesaccordingtothefiletype
generated.
ThetypesofCAMxoutputfilesarelistedinTable22.Asubsetofstate(gasorPM)andradical
speciesmaybeoutputtotheaverageconcentrationoutputfiles;seethedescriptionofoutput
fileformatsinSection3.Byspecifyingasingleoutputname“ALL”,themodelwillautomatically
outputfieldsforallstategasandPMspecieslistedintheinputchemistryparametersfile,
excludingradicals(use“ALLR”toincluderadicals).If“ALL”or“ALLR”arespecified,itmustbe
theonlynamelisted;nospeciesnamesmaybelistedbeforeorafter“ALL”.Therearetwoflags
thatcontrolwhether3Daverageoutputfilesaregenerated.Thefirst(original)flagwilltoggle
3Doutputforallgridsintherun.ThesecondistheOutput_3D_Gridflagarray,which
allows3Daverageoutputtobesetforspecificgrids.Theoriginalflagsupersedesthegrid
specificflag.
PiGsamplinggridsaresetidenticallytothewaynestedgridsarespecifiedforthehostmodel,
withoneexception:therearenoverticallevelstodefine(samplinggridsarecurrentlyonly2D
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 19www.camx.com
layer1fields).Thesamerulesthatapplyforthespecificationofnestedgridsholdsforthe
specificationofallsamplinggrids(seeSection4).
InputFiles
Chemistry_Parameters Characterinputchemistryparameterspath/filename
Photolysis_Rates  Characterinputphotolysisratespath/filename(optional
accordingtoChemistryflagandChemistry_Parametersfile)
Ozone_Column  Characterinputozonecolumnpath/filename(ignoredif
Chemistry=FALSE)
Initial_Conditions Characterinputmastergridinitialconditionspath/filename
(ignoredifRestart=TRUE)
Boundary_Conditions Characterinputmastergridlateralboundaryconditions
path/filename
Top_Concentrations Characterinputmastergridtopboundaryconditions
path/filename
Point_Sources  Characterinputelevatedpointsourceemissionspath/filename
(ignoredifPoint_Emissions=FALSE)
Master_Grid_Restart Characterinputmastergridrestartpath/filename(ignoredif
Restart=FALSE)
Nested_Grid_Restart Characterinputnestedgridrestartpath/filename(ignoredif
Restart=FALSEorNumber_of_Grids=1)
PiG_RestartCharacterinputPiGrestartpath/filename(ignoredif
Restart=FALSEorPiG_Submodel=FALSE)
Srfmod_GridCharacterarray(bygrid)inputsurfacemodelrestart
path/filename(ignoredifRestart=FALSEor
Surface_Model=FALSE)
Surface_Grid  Characterarray(bygrid)inputstatic2Dsurfacepath/filename
(optionalfornestedgrids)
Met2D_GridCharacterarray(bygrid)inputtimevariant2Dsurface
meteorologypath/filename(optionalfornestedgrids)
Met3D_GridCharacterarray(bygrid)inputtimevariant3Dmeteorology
path/filename(optionalfornestedgrids)
Vdiff_GridCharacterarray(bygrid)inputtimevariant3Dvertical
diffusivitypath/filename(optionalfornestedgrids)
Cloud_GridCharacterarray(bygrid)inputtimevariant3Dcloud/rain
path/filename(optionalbutrequiredifWet_Deposition=TRUE,
optionalfornestedgrids)
Emiss_GridCharacterarray(bygrid)inputgriddedemissionspath/filename
(ignoredifGridded_Emissions=FALSE,optionalfornestedgrids)
IfCAMxcannotfindoropenanonblankinputfilenameprovidedintheruncontrolfile,the
modelwillstopwithanerror.CAMxwillacceptblankinputfilenamesforonlythosefilesthat
areoptional.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 20www.camx.com
Table22.CAMxoutputfilesuffixesandtheircorrespondingfiletypes.
SuffixCAMxFileType
.out Textsimulationtrackingfile(CPU,inputfilesread,error/warningmessages)
.diag Textsimulationdiagnosticfile(repeatofruncontrolinputs,PiGdiagnostics,
miscellaneousdiagnosticoutput)
.mass Textmassbudgetfileforsubsequentpostprocessing
.inst Fortranbinarymastergrid3Dinstantaneousconcentrationfileattheend
ofthesimulation(usedforrestarts)
.finst Fortranbinarynestedgrid3Dinstantaneousconcentrationfileattheend
ofthesimulation(usedforrestarts)
.pig FortranbinaryPiGsubmodelfile(usedforrestarts)
StandardCAMxOutputOption
.avrg.grdnn Fortranbinaryaverageconcentrationfileforgridnn;optionallycontains2D
layer1concentrationfieldorfull3Dconcentrationfield
.depn.grdnn Fortranbinary2Dsurfacedepositionfileforgridnn
.srf.grdnn Fortranbinary2Dsurfacemodelmassfileforgridnn(optional)
.smpnn Fortranbinary2Dlayer1averageconcentrationfileforPiGsamplinggrid
nn(optional)
2.3.2UsingScriptstoRunCAMx
Thegenerationoftheruncontrolfileismosteasilyaccomplishedinthejobscriptthatactually
runsthemodel;Figure22showsanexampleofaCAMxjobscriptthatbuildsaCAMx.infile
andrunsthemodelforeachdaytobesimulated.Alternatively,theruncontrolfilecouldbe
writtenseparatelywithanamespecifictoagivensimulation,thenlinkedorcopiedtothe
standardCAMx.infilenamebeforethemodelisexecutedatacommandlineorinajob
script.

March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 21www.camx.com
#!/bin/csh
#
# CAMx 6.30
#
setenv OMP_NUM_THREADS 4
setenv MPSTKZ 128M
limit stacksize unlimited
#
set EXEC = "../../src/CAMx.v6.30.noMPI.pg_linuxomp"
#
set RUN = "v6.30.midwest.36.12.noMPI"
set INPUT = "../inputs"
set MET = "../inputs/met"
set EMIS = "../emiss"
set PTSRCE = "../ptsrce"
set OUTPUT = "../outputs"
#
mkdir -p $OUTPUT
#
# --- set the dates and times ----
#
set RESTART = "NO"
foreach today (03.154 04.155)
set JUL = $today:e
set CAL = $today:r
set YESTERDAY = `echo ${CAL} | awk '{printf("%2.2d",$1-1)}'`
#
if( ${RESTART} == "NO" ) then
set RESTART = "false"
else
set RESTART = "true"
endif
#
# --- Create the input file (always called CAMx.in)
#
cat << ieof > CAMx.in
&CAMx_Control
Run_Message = 'CAMx 6.30 Test Problem -- Mech6 CF CB05 $RUN',
!--- Model clock control ---
Time_Zone = 0, ! (0=UTC,5=EST,6=CST,7=MST,8=PST)
Restart = .${RESTART}.,
Start_Date_Hour = 2002,06,${CAL},0000, ! (YYYY,MM,DD,HHmm)
End_Date_Hour = 2002,06,${CAL},2400, ! (YYYY,MM,DD,HHmm)
Maximum_Timestep = 15., ! minutes
Met_Input_Frequency = 60., ! minutes
Ems_Input_Frequency = 60., ! minutes
Output_Frequency = 60., ! minutes
Figure22.AsampleCAMxjobscriptthatgeneratesa“CAMx.in”fileandrunsthemodel
withOMPparallelization.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 22www.camx.com
!--- Map projection parameters ---
Map_Projection = 'LAMBERT', ! (LAMBERT,POLAR,UTM,LATLON)
Longitude_Pole = -97., ! deg (west<0,south<0)
Latitude_Pole = 40., ! deg (west<0,south<0)
True_Latitude1 = 45., ! deg (west<0,south<0)
True_Latitude2 = 33., ! deg (west<0,south<0)
!--- Parameters for the master (first) grid ---
Number_of_Grids = 2,
Master_SW_XCoord = -792., ! km or deg, SW corner of cell(1,1)
Master_SW_YCoord = -1656., ! km or deg, SW corner of cell (1,1)
Master_Cell_XSize = 36., ! km or deg
Master_Cell_YSize = 36., ! km or deg
Master_Grid_Columns = 68,
Master_Grid_Rows = 68,
Number_of_Layers = 16,
!--- Parameters for the second grid ---
Nest_Meshing_Factor(2) = 3, ! Cell size relative to master grid
Nest_Beg_I_Index(2) = 22, ! Relative to master grid
Nest_End_I_Index(2) = 51, ! Relative to master grid
Nest_Beg_J_Index(2) = 22, ! Relative to master grid
Nest_End_J_Index(2) = 58, ! Relative to master grid
!--- Model options ---
Diagnostic_Error_Check = .false., ! True = will stop after 1st timestep
Advection_Solver = 'PPM', ! (PPM,BOTT)
Chemistry_Solver = 'EBI', ! (EBI,LSODE)
PiG_Submodel = 'None', ! (None,GREASD,IRON)
Probing_Tool = 'None', ! (None,SA,DDM,HDDM,PA,IPR,IRR,RTRAC,RTCMC)
Chemistry = .true.,
Drydep_Model = ‘WESELY89’, ! (None, WESELY89, ZHANG03)
Wet_Deposition = .true.,
ACM2_Diffusion = .false.,
Surface_Model = .false.,
Super_Stepping = .true.,
Gridded_Emissions = .true.,
Point_Emissions = .true.,
Ignore_Emission_Dates = .true.,
!--- Output specifications ---
Root_Output_Name = '$OUTPUT/CAMx.$RUN.200206${CAL}',
Average_Output_3D = .false.,
Output_Species_Names(1) = 'NO',
Output_Species_Names(2) = 'NO2',
Output_Species_Names(3) = 'O3',
Output_Species_Names(4) = 'SO2',
Output_Species_Names(5) = 'H2O2',
Output_Species_Names(6) = 'HNO3',
Output_Species_Names(7) = 'NH3',
Output_Species_Names(8) = 'PNO3',
Output_Species_Names(9) = 'PSO4',
Output_Species_Names(10) = 'PNH4',
Output_Species_Names(11) = 'POA',
Figure22(continued).
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 23www.camx.com
Output_Species_Names(12) = 'PEC',
Output_Species_Names(13) = 'FPRM',
Output_Species_Names(14) = 'CPRM',
Output_Species_Names(15) = 'CCRS',
Output_Species_Names(16) = 'FCRS',
Output_Species_Names(17) = 'SOA1',
Output_Species_Names(18) = 'SOA2',
Output_Species_Names(19) = 'SOA3',
Output_Species_Names(20) = 'SOA4',
Output_Species_Names(21) = 'SOA5',
!--- Input files ---
Chemistry_Parameters = '$INPUT/CAMx6.3.chemparam.6_CF',
Photolysis_Rates = '$INPUT/tuv.200206.STL.txt',
Ozone_Column = '$INPUT/o3col.200206.STL_36_68X68_12_92X113.txt',
Initial_Conditions = '$INPUT/IC.vistas_2002gt2a_STL_36_68X68_16L.2002081',
Boundary_Conditions = '$INPUT/BC.vistas_2002gt2a_STL_36_68X68_16L.2002${JUL}',
Top_Concentrations = ' ',
Point_Sources = '$PTSRCE/ptsrce.stl.36km.2002${JUL}.a0.bin',
Master_Grid_Restart = '$OUTPUT/CAMx.$RUN.200206${YESTERDAY}.inst',
Nested_Grid_Restart = '$OUTPUT/CAMx.$RUN.200206${YESTERDAY}.finst',
PiG_Restart = ' ',
Srfmod_Grid(1) = ' ',
Srfmod_Grid(2) = ' ',
Flexi_Nest = .false.
Emiss_Grid(1) = '$EMIS/emiss.stl.36km.200206${CAL}.a1.bin',
Surface_Grid(1) = '$INPUT/met/camx.lu.36k.bin',
Met2D_Grid(1) = '$INPUT/met/camx.2d.200206${CAL}.36k.bin',
Met3D_Grid(1) = '$INPUT/met/camx.3d.200206${CAL}.36k.bin',
Vdiff_Grid(1) = '$INPUT/met/camx.kv.200206${CAL}.36k.bin',
Cloud_Grid(1) = '$INPUT/met/camx.cr.200206${CAL}.36k.bin',
Emiss_Grid(2) = '$EMIS/emiss.stl.12kmsmall.200206${CAL}.a1.bin',
Surface_Grid(2) = '$INPUT/met/camx.lu.12ksmall.bin',
Met2D_Grid(2) = '$INPUT/met/camx.2d.200206${CAL}.12ksmall.bin',
Met3D_Grid(2) = '$INPUT/met/camx.3d.200206${CAL}.12ksmall.bin',
Vdiff_Grid(2) = '$INPUT/met/camx.kv.200206${CAL}.12ksmall.bin',
Cloud_Grid(2) = '$INPUT/met/camx.cr.200206${CAL}.12ksmall.bin',
/
!-------------------------------------------------------------------------------
ieof
#
# --- Execute the model ---
#
if( ! { $EXEC } ) then
exit
endif
end
Figure22(concluded).
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 24www.camx.com
2.4BenchmarkingModelRunTimes
OverallmodelspeedandOMP/MPIscalabilitydependsonseveralfactors,includingthenumber
andsizesofgrids;thechoiceofchemistrymechanism;thenumberofpointsourcestobe
treatedwithPiGandtotalPiGpuffsthataccumulateduringarun;andtheuseofProbingTools.
Parallelizationismostadvantageousforlargerapplicationsinwhichoverheadprocesses(e.g.,
modelsetup,I/O,etc.)areamuchsmallerfractionoftotalmodelruntime.Inotherwords,
CAMxapplicationsonmultipleexpansivegrids,employingPiG,and/orincludingProbingTools
wouldscalemosteffectivelyandthusbenefitmostfromparallelization.
AsetofsystematicruntimetestswererecentlyconductedbytheLakeMichiganAirDirectors
Consortium(LADCo)usingCAMxv6.20withvariouscombinationsofOMPandMPI
parallelization.Notethatmodelspeedhasbeenimprovedsomewhatsincev6.20;however,
resultsfromLADCo’stestareinformative.LADCo’sCAMxconfigurationwasrelativelysimple,
employingasinglelargegridcoveringtheentireUSwith12kmgridspacing(396246,25
layers),andusingCB6r2photochemistrywiththeCFPMtreatment.PiGandProbingTools
werenotactive.CAMxwascompiledusingPortlandGroupv15.70withOMPandMPICH
v3.1.4.CAMxwasrunona2.60GhzIntelXeonchipsetswith12physicalcores(24coreshyper
threaded).RuntimeresultsareshowninTable23.
Table23.CAMxv6.20speedperformancewithMPIandOMPparallelizationfromtheLADCo
testsdescribedabove.
OMPThreadsMPISlices TotalCores Hours/SimDay
12 012 4:05:12
12 224 3:30:47
8 324 2:59:08
6 424 2:36:10
4 624 2:35:17
3 824 2:27:34
2 12 24 2:25:25
1 24 24 3:06:57
2.5CAMxPre‐AndPostProcessors
ThissectiondescribesseveralimportantCAMxpre‐andpostprocessorsthatwemakeavailable
totheusercommunity.LikeCAMxitself,theseprogramsarewritteninFortrananddistributed
asfreesoftwareunderthetermsoftheGNUGeneralPublicLicense.EachcomewithREADME
files,makefiles,andsamplejobscriptsthatdocumenttheirpurposeandusage.Ramboll
Environoccasionallypostsupdatesforcertainwidelyusedprogramswhennecessary,butdoes
notactivelysupportormaintaineveryone.Userscanemailquestions,comments,suggestions
orimprovementstoaskcamx@environ.org.
2.5.1Emissions
Certainemissionmodels(thoseshowninFigure21)canprovidespeciated,temporally
allocated,griddedandpointsourceemissioninputfilesintheCAMxreadyformat.Further
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 25www.camx.com
processingmayberequired,however,toselectpointsourcesforthePiGtreatment,translate
thepointsourcefilesfromacommontextformattoCAMxreadybinaryfiles,ortorefinethe
domainsize/resolutionforgriddedemissions.
PIGSET:ThisprogramallowstheusertoselectandsetcertainpointsourcesforthePlumein
Grid(PiG)treatmentinaCAMxsimulation.Italsoconvertstextpointsourcefiles
commonlygeneratedbyemissionmodelssuchasSMOKE,CONCEPT,andEPS3to
CAMxreadybinaryformat.Seethesourcecodeformoreinformation,andthesample
jobforusage.AlsoseeSection6forguidanceinselectingPiGpointsourcesand
manipulatingdayspecificpointsourcefiles.
WINDOW:Thisprogramisusedto“window”outasubsectionofthesurfaceemissionsgridfor
useonasmallerCAMxgrid.Itcanalsobeusedtoaggregateordistributesurface
emissionstocoarserorfinerresolution,respectively.Seethesamplejobforusage.
SEASALT:Thisprogramgeneratesaerosolemissionsofsodiumandchloride,andgaseous
emissionsofchlorineandhalomethanecompounds,usingCAMxreadymeteorological
andlandusefiles.Aseparatemergingprogramisincludedthatallowsseasalt
emissionstobemergedinwithpreexistingCAMxreadygriddedemissionfiles.
PREPVBS:Thisprogramconvertstheorganiccompoundemissions(VOCprecursorsandPOA)
preparedfortheCAMxCFaerosolschemetothosecompatiblewiththeVBSschemeso
thattheusercanemploytheVBSschemewithouthavingtodevelopemissioninputsfor
theschemefromscratch.However,thisapproachshouldbeusedwithcautionbecause
significantuncertaintiesexistintheVBSemissionsestimatedbythis.Seethesamplejob
forusage.
REGNMAP:Thisprogramsupportsthedevelopmentofsourceapportionmentfractional
(partial)regionmapswithwhichtoallocategriddedemissionstosourceregions.It
readsSMOKEspatialallocationreportsforaspecificmodelinggridandsourcecategory
(orgroupofcategories),extractsemissionsdatabygridcellandstate/countyFIPScode,
andgeneratesanewCAMxinputfilethatdefinesafractionalregionmapforthatgrid
andsourcecategory/group.
2.5.2Meteorology
TherecommendedapproachtodevelopmeteorologicalinputsforCAMxisthroughtheuseof
prognosticmeteorologicalmodels.RambollEnvirondistributesinterfaceprogramsforthree
specificmodels:WRF,MM5,andRAMS;Thisdoesnotnecessarilyprecludeother
meteorologicalmodelstobeused,butuserswillneedtodevelopinterfaceprogramsontheir
own.
WRFCAMx:ThisprogramgeneratesCAMxv6meteorologicalinputfilesfromWRF(ARWcore)
v3outputfiles.SeetheREADMEinthearchiveforadescriptionoftheprogramand
howitisapplied.YouwillneedNetCDFlibrariestocompileandrunthisprogram.
MM5CAMx:ThisprogramgeneratesCAMxv6meteorologicalinputfilesfromMM5v3output
files.SeetheREADMEinthearchiveforadescriptionoftheprogramandhowitis
applied.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 26www.camx.com
RAMSCAMx:ThisprogramgeneratesCAMxv6meteorologicalinputfilesfromRAMSv4/5/6
outputfiles.SeetheREADMEinthearchiveforadescriptionoftheprogramandhowit
isapplied.YouwillneedHDF5libariestocompileandrunthisprogram.
METCONVERT:ThisprogramconvertsoldermeteorologicalfilesfromCAMxv4andv5tothe
CAMxformatintroducedwithCAMxv6.
KVPATCH:Thisprogramappliesminimumlimitsonverticaldiffusivity(Kv)withinauserdefined
surfacelayerdepthbasedonaninputlandusegrid.ItoptionallyallowsKvprofilestobe
extendedintodaytimeboundarylayercappingconvectionasdefinedbyinput
cloud/rainfiles.Seethesourcecodeformoreinformation.Useofthisprogramto
adjustKvinputsisentirelyoptional.
2.5.3PhotolysisRates
ThedevelopmentofphotolysisrateinputsforCAMxiscrucialforthephotochemical
mechanisms,butisnotneededforinertorsimplechemistry(e.g.,Mechanism10)applications.
Twoprogramsareavailabletoassisttheuserindevelopingphotolysisandozonecolumninput
files.
O3MAP:ThisprogrampreparesozonecolumninputfilesforCAMx,andmustberunpriorto
runningtheTUVmodelasitdefinestheatmosphericozonecolumnintervalsbasedon
inputdata.Ozonecolumndatafiles(http://ozoneaq.gsfc.nasa.gov/data/ozoneor
ftp://toms.gsfc.nasa.gov/pub/omi/data/)inlatitude/longitudetextformatmustbe
suppliedasinput.O3MAPattemptstofilldatagapsindayspecificozonecolumnfiles
(Figure23)withanaveragedeterminedfromvaliddataprocessedfortheextraction
domain.Alternatively,youmayusemonthlyaverageozonecolumnfiles(nodata
gaps).SeetheReadmefileandjobscriptinthearchiveforusage.
Figure23.AnexampleofglobalozonecolumnfromtheOzoneMonitoringInstrument(OMI)
platform.Whiteareasdenotemissingdata.Fromftp://toms.gsfc.nasa.gov/pub/omi/data/.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 27www.camx.com
TUV:Thisisaradiativetransfermodelthatdevelopsclearskyphotolysisrateinputsforall
CAMxphotochemicalmechanisms.TUVisdevelopedanddistributedbyNCAR(2011).
Theprogramspecifiesdefaultintervalsfor5surfaceUValbedos,3terrainheights,11
altitudesaboveground,10solarzenithangles,and5atmosphericozonecolumn
intervals(fromO3MAP).Seethesamplejobinthearchiveforusage.
2.5.4InitialandBoundaryConditions
RambollEnvironprovidesafewprogramstodevelopinitialandboundaryconditions,butthere
aremanywaystogeneratetheseimportantinputs.Themostcommonapproachinvolves
“downscaling”(orextracting)theoutputfromlargerscale(e.g.,global)modelstotheCAMx
domain.Userswillneedtodeveloptheirownprogramsiftheychooseanalternative
methodologyorsourceofdatatogenerateinitial/boundaryconditions.
ICBCPREP:ThisprogrampreparessimpleCAMxinitialandlateralboundaryconditionfiles.
Valuesareconstantinspaceandtime,butuniquevaluesmaybespecifiedforeach
chemicalspeciestobemodeled;theyaredefinedinatextfile.Seethesamplejobin
thearchiveforusage.
GEOS2CAMx:ThisprogramgeneratesCAMxinitial,lateralboundary,and(optionally)top
boundaryconditioninputfilesfromGEOSChemglobalmodeloutput.SeetheRelease
Notesandjobscriptsinthearchiveforadescriptionoftheprogramandhowitis
applied.
MOZART2CAMx:ThisprogramgeneratesCAMxandCMAQinitialandlateralboundary
conditioninputfilesfromMOZART4output.ThisprogramwillalsoprocessAM3
datasetsifoutputisfirsttranslatedtoageodetic(latitude/longitude)grid,
concentrationsareprovidedasvolumemixingratio,andallneededstatevariablesare
available.SeetheREADMEinthearchiveforadescriptionoftheprogramandhowitis
applied.YouwillneedI/OAPIandNetCDFlibrariestocompileandrunthisprogram.
2.5.5Landuse
Approachesfordevelopinglanduse/landcoverinputsforCAMxinclude:(1)translatinggridded
spatialallocationsurrogatesdevelopedduringemissionsprocessingintotheCAMxcategories
describedinSection3;(2)translatingthegriddedlanduse/landcoverfieldsfromthe
meteorologicalmodel;or(3)separatelydevelopinglanduseinputfieldsfromrawdata(suchas
fromUSGS,MODISorNLCD)usingGISorotherprograms.RambollEnvirondistributes
meteorologicalinterfaceprograms(describedabove)thattranslatethemeteorologicalmodel
landuse/landcoverfieldstotheCAMxdefinitionsandgridconfiguration.
MERGE_LULAI:Thisprogrammergesindependentlydevelopedlanduseand/orLAIfields(for
exampleviaGISprocessingofcommonterrestrialdatasets)withanexistingCAMx2D
surfacefilegeneratedbythemeteorologicalinterfaceprograms.Seethesamplejob
andsourcecodeforadescriptionoftheprogramandhowitisapplied.
March2016CAMxUser’sGuideVersion6.3
2.TheCAMxModelingSystem
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 28www.camx.com
2.5.6Postprocessors
MostoftheCAMxpostprocessorsdistributedbyRambollEnvironprovidesomemannerof
concentrationfilemanipulation,eithertoextractcertaininformationfromtherawoutputfiles,
toreformatforuseinotherprogramsandapplications,toconcatenatefiles,etc.Afewothers
aredistributedtoassistinevaluatingProbingTooloutput.RambollEnvirondoesnotadvocate
orsupportanyparticularvisualizationorgraphicssoftware.
AVGDIF:ThisprogramisusedtocomparetwoCAMxformatoutputaveragefilesandprinta
tableofdifferences.ThisisusefulforcheckingdifferencesbetweenCAMxrunson
differentmachinesordifferentcompileoptionsforthetestcase.Seethesamplejobin
thearchiveforusage.
BNDEXTR:Usethisprogramtoextractboundaryconditionsforanestedgridwhenyouapply
CAMxinonewaynestingmode.OnewaynestingmeansthatCAMxisrunsuccessively
foreachgrid,withBNDEXTRastheinterfacebetweeneachrun.Thisprogramisnot
neededwhenCAMxisruninthemorestandardtwowaynestingmode,whereallgrids
areruninasinglesimulation.Seetheexamplejobforusage.
CAMxPOST:Thisisasuiteofpostprocessingutilitiesdesignedtofacilitatetheevaluationof
modelperformance.Itisusedtocombineobservationsandpredictions,calculate
statistics,andplottimeseries.SeetheREADMEfileinthearchiveforusage.
CAMxTRCT:Thisprogramextractsasinglechemicalspeciesforspecifiedgridsfromtheoutput
averageconcentrationanddepositionfiles,andfrominputemissionfiles.Outputfrom
thisprogramcanbewritteninthestandardCAMxformat,oralternativelytoatext
formatinSurfer®“GRD”formatforsubsequentplotting.Italsohasthecapabilityto
convertunitsandcombinespeciestoyieldcertainhardcodedbulkcompoundslike
NOxandVOC.Seethesamplejobinthearchiveforusage.
CAMx2IOAPI:ThisprogramconvertsCAMxoutputaverageconcentrationanddepositionfiles
toI/OAPIformat.YouwillneedI/OAPIandNetCDFlibrariestocompileandrunthis
program.Thisprogramallowsyoutousevariousthirdpartymanipulationand
visualizationsoftwarethathandleI/OAPIandNetCDFformats.
PA_Tools:ThisisasuiteofpostprocessingutilitiesdesignedtoextractIPR,IRR,andCPAdata
fromCAMxProcessAnalysisoutputfilesandreformatthedatasuitableforsubsequent
analysis(e.g.usingspreadsheets).
XSPCMAP:SimilartoCAMxTRCTyetmoreflexible,thisprogramextractsanynumberofspecific
chemicalspeciesoruserdefinedcombinationsofspeciesforspecifiedgridsfromthe
outputaverageconcentrationanddepositionfiles,andwritesresultstoanewfilein
CAMxformat.Seethesamplejobandspeciesmappingtableinthearchiveforusage.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 29www.camx.com
3.COREMODELINPUT/OUTPUTSTRUCTURES
MostCAMxinput/output(I/O)filesareFortranbinaryandbasedontheUrbanAirshedModel
(UAM)convention.Thisallowstheusertoemploywidelyavailablesoftwaredesigned
specificallyfortheseformatstodeveloptheinputfilesortopostprocessandvisualizethe
outputfiles.
CAMxrequiresinputfilesthatdefinethechemicalmechanismanddescribethephotochemical
conditions,surfacecharacteristics,initial/boundaryconditions,emissionrates,andvarious
meteorologicalfieldsovertheentiremodelingdomain.Table31summarizestheinputdata
requirementsofCAMx.Preparingthisinformationrequiresseveralpreprocessingstepsto
translate“raw”emissions,meteorological,airqualityandotherdataintofinalinputfilesfor
CAMx.Prognosticmeteorologicalmodelsareusedtogeneratealloftherequiredtimevarying
threedimensionalmeteorologicalfields.
Table31.DatarequirementsofCAMx.
DataTypesDataFields
Meteorology
SuppliedbyPrognosticMeteorologicalModels
3DimensionalGriddedFields:
‐VerticalGridStructure
‐HorizontalWindComponents
‐Temperature
‐Pressure
‐WaterVapor
‐VerticalDiffusivity
‐Clouds/Precipitation(optional)
‐SnowCover(optional)
AirQuality
DevelopedfromOtherModelsorMeasurementData
GriddedInitialConcentrations
GriddedLateralBoundaryConcentrations
GriddedTopBoundaryConcentrations(optional)
Emissions
SuppliedbyEmissionsModelsandProcessors
ElevatedPointSources(optional),e.g.:
‐IndustrialFacilities
‐Prescribed,Agricultural,WildFires
‐LightningNOx
CombinedGriddedSources(optional),e.g.:
‐LowLevelPoint
‐OnRoadandNonRoadMobile
‐Area
‐Biogenic
‐Oceanic
Geographic
DevelopedfromTerrain,Landuse/Landcover,and
VegetationDensityDatasets
GriddedSurfaceCharacteristics
‐Landuse/LandCover
‐TerrainElevation(optional)
‐LeafAreaIndex(LAI;optional)
‐Land/OceanMask(optional)
Photolysis
DerivedfromSatelliteMeasurementsandRadiative
TransferModels
AtmosphericRadiativeProperties
‐GriddedOzoneColumnCodes
‐PhotolysisRatesLookupTable
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 30www.camx.com
CAMxproducesgriddedtimeaveragedconcentrationoutputfiles;theuserselectsthetime
interval(usuallyhourly),thespeciestobeoutput,andwhethertheoutputcontainsjusttwo
dimensionalsurfacelayerfieldsorentirethreedimensionalfields.Aseparateaverageoutput
fileiswrittenforeachgridemployedinthesimulation.Twodimensionalsurfacedeposition
fieldsforthesameuserselectedspeciesarealsowrittentooutputfileswiththesamestructure
astheaverageconcentrationfiles.Griddedthreedimensionalinstantaneousconcentrationsof
allspeciesonallgridsarewrittenattheendofthesimulationtoallowforamodelrestart.The
CAMxProbingTooloptionsprovidetheirowninformationinseparateoutputfilesinthesame
CAMxoutputformat.Diagnosticoutputfilesincludethreefilesthattrackcomputerresources,
echoinputselections,providemassbudgetanddiagnosticsummaries,andprovide
error/warningmessages.
3.1CAMxChemistryParametersFile
Chemistryparametersareprovidedinatextfilethatspecifiesthechemicalmechanismbeused
andassociateddetailsonspeciespropertiesandreactiontypesandrates.Thechemistry
parametersfileformatisdefinedinTable32,andsamplesaregiveninFigure31.Some
recordsinthisfilearelabeled(columns120)toindicatethetypeofinformationtosupplyon
thatline(startingincolumn21).Forrecordsthatarenotlabeled,datastartincolumn1.Some
chemistryparameterrecordsareoptional,dependinguponthelogicalflagsindicatedforsuch
records,andareshowninTable32byacheckinthethirdcolumn;iftheindicatedoptionisnot
invokedtheserecordsshouldnotappearinthefile.Thefirstrecordofthechemistry
parametersfilemustcontainthestringVERSION6.3”,whichindicatesthatthefileisspecific
tothisversionofCAMx.
Ifthechemistryflagisset“true”ontheCAMx.infile,CAMxchecksthatcertainpropertiesof
theselectedmechanismareconsistentwithparameterssuppliedontheinputfile(e.g.,number
ofreactions,photolysisreactionsandspecies).Ifanydiscrepanciesarefound,theyare
reportedintheoutputmessagefileandthesimulationishalted.Theusermayalsospecifyan
inertsimulationbysettingthechemistryflagto“false”.Inthiscase,anynumberofarbitrarily
namedspeciesmaybelisted,andchemistryreactionparametersareignored.
GasphasechemistryisselectedbyaMechanismIDassignedtoeachphotochemical
mechanism(seeSection5).Aerosolchemistryisselectedbythekeywords“NONE”,“INERT”,
“CF”or“CMU”.Inthe“INERT”case,theusercandefineanynumberofarbitraryparticulate
namesandsizes.The“CF”and“CMU”optionsinvokeaerosolchemistryandtreataerosolsize
usingeitherstaticcoarseandfinemodes(CF)oranevolvingsizesectionmodel(CMU).BothCF
andCMUoptionsrequireaminimumsetofspecificaerosolnameswithassociatedchemistry.
ThechemistryparametersfilecontrolshowphotolysisratesarecalculatedinCAMx.Socalled
“primary”photolysisratesareinputtoCAMxviathephotolysisratesfile.Theprimary
photolysisreactionsareidentifiedbynumberinthechemistryparametersfileandthe
photolysisratesfilemustmatchthisdeclaration.Socalled“secondary”photolysisratesareset
byscalingfactorstooneoftheprimaryreactions.Useofsecondaryratesrequiresatleastone
primaryphotolysisreaction.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 31www.camx.com
Table32.DescriptionoftheCAMxchemistryparametersfile.Therecordlabelsexistincolumns120,andwheregiven,the
inputdataforthatrecordstartincolumn21.Theformatdenoted“list”indicatesafreeformatlistofnumbers(commaorspace
delimited).
RecordLabel
(columns120)
Record
OptionalFormatDescription
CAMx version AModelversionkeyword(VERSION6.3)
Mechanism ID list IDnumberofchemicalmechanism(seeTable51)
Aerosol Option AKeywordforaerosolscheme(NONE,INERT,CF,orCMU)1
Description AMessagerecordtodescribethisfile
No of gas species list Numberofradicalandstategasspecies(NGAS≥1)
No of aero species list
Numberofaerosolspecies(NAERO≥0)
Aerosolchemistrytimestep(min)(ifNAERO>0)
Numberofsizebins(NBIN≥1)(ifNAERO>0)2
Aerosoldiameter(m)forNBIN+1cutpoints(ifNAERO>0)
No of reactions list Numberofreactions(NREACT≥0)
Prim photo rxns listNumberofprimaryphotolysisreactions(NPHOT1≥0)
ListofprimaryphotolysisreactionIDnumbers(mustmatchthephotolysisratesinputfile)
No of sec photo rxn list Numberofsecondaryphotolysisreactions(NPHOT2≥0)
ID, prim ID, scale
list
IfNPHOT2>0,repeatthisrecordforeachsecondaryphotolysisreaction
IDnumberofthesecondaryphotolysisreaction
IDnumberoftheprimaryphotolysisreactionusedforscaling
Secondaryreactionscalefactor
SrfMod #spc, #rxns listNumberofSurfaceModelspeciesandreactions(seeSection4.8)
Setto0,0ifnotusingtheSurfaceModel
Species Records Heading
Gas Spec ... Heading
5X,
A10,
E10.0,
E10.0,
F10.0,
F10.0,
F10.0
F10.0
Repeatthisrecordforeachgasspecies(startincolumn1)
Gasspeciesname(radicalsfirst,followedbystatespecies)
Lowerboundconcentration(ppm)
Henry’slawconstant(M/atm)
Henry’slawtemperaturedependence(K)
Molecularweight(g/mol)
Wesley’sreactivityparameter
Surfaceresistancescalingfactorforstrongacids(01)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 32www.camx.com
Table32(continued).DescriptionoftheCAMxchemistryparametersfile.Therecordlabelsexistincolumns120,andwhere
given,theinputdataforthatrecordstartincolumn21.Theformatdenoted“list”indicatesafreeformatlistofnumbers(comma
orspacedelimited).
RecordLabel
(columns120)
Record
OptionalFormatDescription
Aero Spec ... Heading(ifNAERO>
0
)
5X,
A10,
E10.0,
F10.0
F10.0
I10
F10.0
I10
IfNAERO>0,repeatthisrecordforeachaerosolspecies(startincolumn1)
Aerosolspeciesname
Lowerboundconcentration(g/m3)
Speciesdensity(g/cm3)
Dryextinctionefficiency(m2/m)
Hygroscopicextinctionadjustment(0=noadjustment,1=RHdependent)
Singlescatteringalbedo
Assignedsizebin(INERTandCFaerosolsonly
referencescutpointsinrecord6)
Reaction Records Heading(ifNREACT>
0
)
Rxn Typ Param ... Heading(ifNREACT>
0
)
list
IfNREACT>0,repeatthisrecordforeachgasphasereaction(startincolumn1)
ReactionIDnumber
RateconstantexpressionIDnumber(17,asshowninTable33)
Rateconstantparameters(dependingonexpressiontypeinTable33).Forreactionsidentifiedas
photolysisreactionsabove,therate constantisnotusedandiscustomarilysettozero.
1NONE=gasphasechemistryonly;INERT=userdefinedinertPMspecies;CF=Coarse/Fineaerosolchemistryscheme;CMU=multisectionalaerosolchemistryscheme;.
2FortheCFscheme,NBINmustbesetto2,andtheuserspecifiesthecoarse/finesizeranges.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 33www.camx.com
CAMx Version |VERSION6.3
Mechanism ID |6
Aerosol Option |CF
Description |CB05 plus PM (CF) with Hg: PNA rates set to 0; molecular units
No of gas species |68
#aero, dt, bins |25 15.0 2 0.039 2.5 10.0
No of reactions |156
Prim photo rxns |19 1 8 9 14 15 25 36 51 52 53 62 65 75 76 87 91 102 143 152
No of sec photo rxn|4
ID, prim ID, scale |72 65 1.0
|97 65 0.0
|106 91 1.0
|138 75 9.0
SrfMod #spc, #rxns |0 0
Species Records
Gas Spec lower bnd H-law T-fact Molwt Reactvty Rscale
1 O1D 1.00E-15 1.00E+00 0. 0.0 0.0 0.
2 O 1.00E-15 1.00E+00 0. 0.0 0.0 0.
3 OH 1.00E-15 1.00E+00 0. 0.0 0.0 0.
4 HO2 1.00E-15 1.00E+00 0. 0.0 0.0 0.
5 C2O3 1.00E-15 1.00E+00 0. 0.0 0.0 0.
6 XO2 1.00E-15 1.00E+00 0. 0.0 0.0 0.
7 XO2N 1.00E-15 1.00E+00 0. 0.0 0.0 0.
8 CXO3 1.00E-15 1.00E+00 0. 0.0 0.0 0.
9 MEO2 1.00E-15 1.00E+00 0. 0.0 0.0 0.
10 TO2 1.00E-15 1.00E+00 0. 0.0 0.0 0.
11 ROR 1.00E-15 1.00E+00 0. 0.0 0.0 0.
12 HCO3 1.00E-15 1.00E+00 0. 0.0 0.0 0.
13 CRO 1.00E-15 1.00E+00 0. 0.0 0.0 0.
14 AACD 1.00E-12 5.00E+03 -4000. 60.0 1.0 1.
15 ALD2 1.00E-12 6.30E+03 -6492. 44.0 1.0 1.
16 ALDX 1.00E-12 6.30E+03 -6492. 58.1 1.0 1.
17 CO 1.00E-04 1.00E-10 0. 28.0 0.0 1.
18 CRES 1.00E-12 2.70E+03 -6492. 108.1 1.0 1.
19 ETH 1.00E-12 1.00E-02 -4000. 28.0 0.0 1.
20 ETHA 1.00E-04 1.73E-03 -4000. 30.1 0.0 1.
21 ETOH 1.00E-12 2.20E+02 -4932. 46.1 1.0 1.
22 FACD 1.00E-12 5.68E+03 -6060. 46.0 1.0 1.
23 FORM 1.00E-12 6.30E+03 -6492. 30.0 1.0 1.
24 H2O2 1.00E-12 7.40E+04 -6643. 34.0 1.0 0.
25 HNO3 1.00E-12 2.10E+05 -8707. 63.0 0.0 0.
26 HONO 1.00E-12 5.90E+01 -4781. 47.0 1.0 1.
27 IOLE 1.00E-12 5.00E-03 -4000. 56.1 0.0 1.
28 ISOP 1.00E-12 1.00E-02 -4000. 68.1 0.0 1.
29 ISPD 1.00E-12 6.30E+03 -6492. 70.1 1.0 1.
30 MEOH 1.00E-12 2.20E+02 -4932. 32.0 1.0 1.
31 MEPX 1.00E-12 3.05E+02 -5250. 48.0 0.8 0.
32 MGLY 1.00E-12 2.70E+03 -6492. 72.0 1.0 1.
33 N2O5 1.00E-12 1.00E+05 -4000. 108.0 0.1 0.
34 NO 1.00E-09 1.90E-03 -1480. 30.0 0.0 1.
35 NO2 1.00E-12 1.00E-02 -2516. 46.0 0.8 1.
36 NO3 1.00E-15 1.00E+05 -4000. 62.0 0.1 0.
37 NTR 1.00E-12 9.40E+03 -8706. 119.1 0.0 1.
38 O3 1.00E-12 1.10E-02 -2415. 48.0 1.0 1.
39 OLE 1.00E-12 5.00E-03 -4000. 42.1 0.0 1.
40 OPEN 1.00E-12 2.70E+03 -6492. 84.0 1.0 1.
41 PACD 1.00E-12 5.00E+03 -4000. 76.0 1.0 1.
42 PAN 1.00E-12 3.60E+00 -5910. 121.0 0.6 1.
43 PANX 1.00E-12 3.60E+00 -5910. 135.0 0.6 1.
44 PAR 1.00E-04 1.00E-03 -4000. 72.1 0.0 1.
45 PNA 1.00E-12 2.00E+04 -5910. 79.0 1.0 1.
Figure31a.ExampleCAMxchemistryparametersfileforMechanism6(CB05)withCFPM
schemethatincludesthemercuryspeciesHG0,HG2,andHGP.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 34www.camx.com
46 ROOH 1.00E-12 1.00E+02 -4000. 90.1 0.8 0.
47 SO2 1.00E-09 1.22E+00 -3156. 64.0 0.0 1.
48 SULF 1.00E-12 1.00E+10 0. 98.0 0.0 0.
49 TERP 1.00E-12 4.90E-02 -4000. 136.2 0.0 1.
50 TOL 1.00E-12 1.20E+00 -4000. 92.1 0.0 1.
51 XYL 1.00E-12 1.40E+00 -4000. 106.2 0.0 1.
52 NH3 1.00E-09 5.76E+01 -4100. 17.0 0.0 0.
53 HCL 1.00E-12 1.00E+05 -4000. 36.5 0.0 0.
54 TOLA 1.00E-12 1.20E+00 -4000. 92.0 0.0 1.
55 XYLA 1.00E-12 1.40E+00 -4000. 106.0 0.0 1.
56 BNZA 1.00E-12 1.80E-01 -4000. 78.0 0.0 1.
57 ISP 1.00E-12 1.00E-02 -4000. 68.0 0.0 1.
58 TRP 1.00E-12 4.90E-02 -4000. 136.0 0.0 1.
59 SQT 1.00E-12 4.90E-02 -4000. 204.0 0.0 1.
60 CG1 1.00E-12 1.00E+05 -4000. 150.0 0.0 1.
61 CG2 1.00E-12 1.00E+05 -4000. 150.0 0.0 1.
62 CG3 1.00E-12 1.00E+05 -4000. 130.0 0.0 1.
63 CG4 1.00E-12 1.00E+05 -4000. 130.0 0.0 1.
64 CG5 1.00E-12 1.00E+05 -4000. 180.0 0.0 1.
65 CG6 1.00E-12 1.00E+05 -4000. 180.0 0.0 1.
66 CG7 1.00E-12 1.00E+05 -4000. 210.0 0.0 1.
67 HG0 1.00E-12 1.11E-01 -4970. 200.6 0.0 1.
68 HG2 1.00E-12 2.00E+05 -4000. 253.1 0.0 0.
Aero Spec lower bnd Density Dry Bext RH Adjust SSA SizeBin
1 PNO3 1.00E-09 1.5 7.0 1 0.99 1
2 PSO4 1.00E-09 1.5 7.0 1 0.99 1
3 PNH4 1.00E-09 1.5 7.0 1 0.99 1
4 POA 1.00E-09 1.0 7.0 0 0.80 1
5 SOA1 1.00E-09 1.0 7.0 0 0.80 1
6 SOA2 1.00E-09 1.0 7.0 0 0.80 1
7 SOA3 1.00E-09 1.0 7.0 0 0.80 1
8 SOA4 1.00E-09 1.0 7.0 0 0.80 1
9 SOA5 1.00E-09 1.0 7.0 0 0.80 1
10 SOA6 1.00E-09 1.0 7.0 0 0.80 1
11 SOA7 1.00E-09 1.0 7.0 0 0.80 1
12 SOAH 1.00E-09 1.0 7.0 0 0.80 1
13 SOPA 1.00E-09 1.0 7.0 0 0.80 1
14 SOPB 1.00E-09 1.0 7.0 0 0.80 1
15 PEC 1.00E-09 2.0 18.0 0 0.25 1
16 FPRM 1.00E-09 3.0 0.4 0 0.70 1
17 FCRS 1.00E-09 3.0 0.4 0 0.70 1
18 CPRM 1.00E-09 3.0 0.4 0 0.70 2
19 CCRS 1.00E-09 3.0 0.4 0 0.70 2
20 NA 1.00E-09 2.0 1.5 1 0.99 1
21 PCL 1.00E-09 2.0 1.5 1 0.99 1
22 PH2O 1.00E-09 1.0 0.0 0 0.99 1
23 HGP 1.00E-15 8.0 0.0 0 0.99 1
24 HGIIP 1.00E-20 8.0 0.0 0 0.99 1
25 HGIIPC 1.00E-20 8.0 0.0 0 0.99 2
Reaction Records
Rxn Typ Order Parameters (1 to 12, depending upon Typ)
1 1 1 0.000E+00
2 3 3 6.000E-34 0.0 -2.40 300.0
3 3 2 3.000E-12 1500.0 0.00 300.0
4 3 2 5.600E-12 -180.0 0.00 300.0
5 4 2 2.500E-31 0.0 -1.80 300.0 2.200E-11 0.0 -
0.70 300.0 0.60 1.00
6 4 2 9.000E-32 0.0 -1.50 300.0 3.000E-11 0.0 0.00
300.0 0.60 1.00
7 3 2 1.200E-13 2450.0 0.00 300.0
8 1 1 0.000E+00
Figure31a(continued).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 35www.camx.com
9 1 1 0.000E+00
10 3 2 2.100E-11 -102.0 0.00 300.0
11 1 2 2.200E-10
12 3 2 1.700E-12 940.0 0.00 300.0
13 3 2 1.000E-14 490.0 0.00 300.0
14 1 1 0.000E+00
15 1 1 0.000E+00
16 3 2 1.500E-11 -170.0 0.00 300.0
17 3 2 4.500E-14 1260.0 0.00 300.0
18 4 2 2.000E-30 0.0 -4.40 300.0 1.400E-12 0.0 -
0.70 300.0 0.60 1.00
19 1 2 2.500E-22
20 1 3 1.800E-39
21 4 1 1.000E-03 11000.0 -3.50 300.0 9.700E+14 11080.0 0.10
300.0 0.45 1.00
22 3 3 3.300E-39 -530.0 0.00 300.0
23 1 3 5.000E-40
24 4 2 7.000E-31 0.0 -2.60 300.0 3.600E-11 0.0 -
0.10 300.0 0.60 1.00
25 1 1 0.000E+00
26 3 2 1.800E-11 390.0 0.00 300.0
27 1 2 1.000E-20
28 4 2 2.000E-30 0.0 -3.00 300.0 2.500E-11 0.0 0.00
300.0 0.60 1.00
29 6 2 2.400E-14 -460.0 0.00 300.0 2.700E-17 -2199.0 0.00
300.0 6.500E-34 -1335.0 0.00 300.0
30 3 2 3.500E-12 -250.0 0.00 300.0
31 1 2 0.000E+00
32 1 1 0.000E+00
33 1 2 0.000E+00
34 7 2 2.300E-13 -600.0 0.00 300.0 1.700E-33 -1000.0 0.00
300.0
35 7 3 3.220E-34 -2800.0 0.00 300.0 2.380E-54 -3200.0 0.00
300.0
36 1 1 0.000E+00
37 3 2 2.900E-12 160.0 0.00 300.0
38 1 2 1.100E-10
39 3 2 5.500E-12 2000.0 0.00 300.0
40 3 2 2.200E-11 -120.0 0.00 300.0
41 3 2 4.200E-12 240.0 0.00 300.0
42 4 2 6.900E-31 0.0 -1.00 300.0 2.600E-11 0.0 0.00
300.0 0.60 1.00
43 3 2 4.800E-11 -250.0 0.00 300.0
44 3 2 3.000E-11 -200.0 0.00 300.0
45 3 2 1.400E-12 2000.0 0.00 300.0
46 1 2 1.000E-11
47 1 2 2.200E-11
48 1 2 3.500E-12
49 1 2 1.000E-17
50 3 2 8.500E-13 2450.0 0.00 300.0
51 1 1 0.000E+00
52 1 1 0.000E+00
53 1 1 0.000E+00
54 3 2 2.600E-12 -365.0 0.00 300.0
55 3 2 2.600E-12 -365.0 0.00 300.0
56 3 2 7.500E-13 -700.0 0.00 300.0
57 3 2 7.500E-13 -700.0 0.00 300.0
58 1 2 6.800E-14
59 1 2 6.800E-14
60 1 2 6.800E-14
61 3 2 5.900E-13 360.0 0.00 300.0
Figure31a(continued).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 36www.camx.com
62 1 1 0.000E+00
63 4 2 3.000E-31 0.0 -3.30 300.0 1.500E-12 0.0 0.00
300.0 0.60 1.00
64 3 2 3.010E-12 -190.0 0.00 300.0
65 1 1 0.000E+00
66 7 2 1.440E-13 0.0 0.00 300.0 3.430E-33 0.0 0.00
300.0
67 3 2 2.450E-12 1775.0 0.00 300.0
68 3 2 2.800E-12 -300.0 0.00 300.0
69 3 2 4.100E-13 -750.0 0.00 300.0
70 3 2 9.500E-14 -390.0 0.00 300.0
71 3 2 3.800E-12 -200.0 0.00 300.0
72 1 1 0.000E+00
73 3 2 7.300E-12 620.0 0.00 300.0
74 1 2 9.000E-12
75 1 1 0.000E+00
76 1 1 0.000E+00
77 3 2 3.400E-11 1600.0 0.00 300.0
78 1 2 5.800E-16
79 3 2 9.700E-15 -625.0 0.00 300.0
80 3 1 2.400E+12 7000.0 0.00 300.0
81 1 2 5.600E-12
82 3 2 5.600E-15 -2300.0 0.00 300.0
83 1 2 4.000E-13
84 3 2 1.800E-11 1100.0 0.00 300.0
85 3 2 5.600E-12 -270.0 0.00 300.0
86 3 2 1.400E-12 1900.0 0.00 300.0
87 1 1 0.000E+00
88 3 2 8.100E-12 -270.0 0.00 300.0
89 4 2 2.700E-28 0.0 -7.10 300.0 1.200E-11 0.0 -
0.90 300.0 0.30 1.00
90 4 1 4.900E-03 12100.0 0.00 300.0 5.400E+16 13830.0 0.00
300.0 0.30 1.00
91 1 1 0.000E+00
92 3 2 4.300E-13 -1040.0 0.00 300.0
93 3 2 2.000E-12 -500.0 0.00 300.0
94 3 2 4.400E-13 -1070.0 0.00 300.0
95 3 2 2.900E-12 -500.0 0.00 300.0
96 3 2 4.000E-13 -200.0 0.00 300.0
97 1 1 0.000E+00
98 3 2 4.000E-13 -200.0 0.00 300.0
99 3 2 1.300E-11 870.0 0.00 300.0
100 3 2 5.100E-12 -405.0 0.00 300.0
101 1 2 6.500E-15
102 1 1 0.000E+00
103 3 2 6.700E-12 -340.0 0.00 300.0
104 4 2 2.700E-28 0.0 -7.10 300.0 1.200E-11 0.0 -
0.90 300.0 0.30 1.00
105 4 1 4.900E-03 12100.0 0.00 300.0 5.400E+16 13830.0 0.00
300.0 0.30 1.00
106 1 1 0.000E+00
107 1 2 3.000E-13
108 3 2 4.300E-13 -1040.0 0.00 300.0
109 3 2 2.000E-12 -500.0 0.00 300.0
110 3 2 4.400E-13 -1070.0 0.00 300.0
111 3 2 2.900E-12 -500.0 0.00 300.0
112 3 2 2.900E-12 -500.0 0.00 300.0
113 3 2 8.700E-12 1070.0 0.00 300.0
114 3 2 6.900E-12 230.0 0.00 300.0
115 1 2 8.100E-13
116 3 1 1.000E+15 8000.0 0.00 300.0
Figure31a(continued).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 37www.camx.com
117 1 1 1.600E+03
118 1 2 1.500E-11
119 3 2 1.000E-11 280.0 0.00 300.0
120 1 2 3.200E-11
121 3 2 6.500E-15 1900.0 0.00 300.0
122 3 2 7.000E-13 2160.0 0.00 300.0
123 3 2 1.040E-11 792.0 0.00 300.0
124 4 2 1.000E-28 0.0 -0.80 300.0 8.800E-12 0.0 0.00
300.0 0.60 1.00
125 3 2 1.200E-14 2630.0 0.00 300.0
126 3 2 3.300E-12 2880.0 0.00 300.0
127 1 2 2.300E-11
128 3 2 1.000E-11 -550.0 0.00 300.0
129 3 2 8.400E-15 1100.0 0.00 300.0
130 3 2 9.600E-13 270.0 0.00 300.0
131 3 2 1.800E-12 -355.0 0.00 300.0
132 1 2 8.100E-12
133 1 1 4.200E+00
134 1 2 4.100E-11
135 1 2 2.200E-11
136 1 2 1.400E-11
137 1 2 5.500E-12
138 1 1 0.000E+00
139 1 2 3.000E-11
140 3 2 5.400E-17 500.0 0.00 300.0
141 3 2 1.700E-11 -116.0 0.00 300.0
142 1 2 1.700E-11
143 1 1 0.000E+00
144 1 2 3.600E-11
145 3 2 2.540E-11 -407.6 0.00 300.0
146 3 2 7.860E-15 1912.0 0.00 300.0
147 3 2 3.030E-12 448.0 0.00 300.0
148 1 2 1.500E-19
149 1 2 3.360E-11
150 1 2 7.100E-18
151 1 2 1.000E-15
152 1 1 0.000E+00
153 1 2 3.600E-11
154 3 2 1.500E-11 -449.0 0.00 300.0
155 3 2 1.200E-15 821.0 0.00 300.0
156 3 2 3.700E-12 -175.0 0.00 300.0
Figure31a(concluded).
CAMx Version |VERSION6.3
Mechanism ID |0
Aerosol Option |NONE
Description |inert test
No of gas species |1
No of aero species |0
No of reactions |0
Prim photo rxns |0
No of sec photo rxn|0
SrfMod #spc, #rxns |0 0
Species Records
Gas Spec lower bnd H-law T-fact Molwt Reactvty Rscale
1 TRACER 1.00E-09 1.00e-10 0. 1.00 0.0 1.
Figure31b.Exampleinertchemistryparametersfile(requireschemistryflagtobesetfalse
seethedescriptionoftheCAMxcontrolfile).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 38www.camx.com
Thesectionofthefilethatlistsgasspeciesmustincludethenamesofradicalandstatespecies,
accordingtotheselectedchemicalmechanism,alongwitheachspecies’lowerboundvalue,
Henry’sLawsolubilityparameters,molecularweight,andsurfacereactivityandresistance
scalingparametersforuseinthedrydepositioncalculations.Thelowerboundvaluessetthe
minimumconcentration“floor”foranychemicalorphysicalprocessthatreduces
concentrationsto“zero”.Thelowerboundisalsousedtosetinitialand/orboundary
conditionsforspeciesthatareomittedfromtheinitialand/orboundaryconditionfiles.
Thesectionofthefilethatlistsaerosolspeciesnamesmustincludealowerboundvalue,
particledensity,dryextinctionefficiency,ahygroscopicflag,andsinglescatteringalbedo.In
thecaseofINERTorCFoptions,theusermustalsospecifythesizebinassignedtoeachspecies
attheendofeachparticulatespeciesrecord(CMUautomaticallyapplieseachspeciestoallsize
bins).Sincetheeffectofaerosolwateronopticalparametersistakenintoaccountthroughan
internalrelativehumidityadjustment,thedryextinctionefficiencyforparticlespeciesPH2O
mustbesettozero.
CAMxsupportsseveralequationsforspecifyinggasphaserateconstants,asshowninTable3
3a.Thetypeofequationusedforeachreactionisidentifiedbythesecondparameterspecified
foreachreactionanumberbetween1and7(Table33a).Thenumberofadditional
parametersrequireddependsupontheexpressiontypeandvariesbetween2and13,asshown
inTable33b.Expressiontype4(Troeexpression)allowsforacompletedescriptionof
dependenciesontemperatureandpressure;backgroundinformationonTroeexpressionsmay
befoundintheNASAandIUPACrateconstantcompilations(NASA,1997;IUPAC,1992).
Rateconstantscanbespecifiedinmolecularunits(e.g.,cm3molecule1s1)orppmunits(e.g.,
ppm1min1).Alltherateconstantsmustbeinasingleunitssystem;CAMxwilldetermine
whichunitssystemisbeingusedfromthemagnitudeoftherateconstants.Diagnostic
informationontherateconstantsandunitssystemisoutputbyCAMxatruntime.
3.2PhotolysisRatesFile
Theratesfortheprimaryphotolysisreactionsaresuppliedviathephotolysisratesfileinunits
ofminute1.Thisfilemustbesuppliedifchemistryisinvoked.Thephotolysisratesfile
comprisesalargelookuptableofclearskyphotolysisratesspecifictothegasphasechemistry
mechanismtorun.Ratesarearrangedinamatrixoffivedimensions,includingvariationsover
10solarzenithangles,5ultraviolet(UV)surfacealbedos,3terrainheights,11altitudesabove
ground,and5totalozonecolumnvalues.ThelookuptableisgeneratedusingtheTUV
preprocessor,whichinternallyspecifiestherangesofsolarzenith(0,10,20,30,40,50,60,70,
78,86),surfaceUValbedo(0.04,0.1,0.2,0.5,0.9.),andterrainheights(0,1,3km).Theranges
ofaltitudeabovegroundarecontrolledbytheuser,whiletherangesofozonecolumnare
takenfromtheozonecolumnfile(Section3.3).TUVisrunwithatypicalaerosolprofiledefined
byElterman(1968).
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 39www.camx.com
Table33a.RateconstantexpressiontypessupportedinCAMxandorderofexpression
parametersforthechemistryparametersfile.
Expression
TypeDescriptionExpression
1Constant298
kk
2UAM(Arrheniusexpression)
T
Ekk a
1
298
1
exp
298
3Generaltemperaturedependence
T
E
T
T
Ak a
B
R
exp
4Troetypetemperatureandpressure
dependence


G
F
kMk
Mk
k
/1 0
0
T
E
T
T
Ak a
B
R
exp
0
T
E
T
T
Ak a
B
R
exp

1
2
0/][log
1
n
kMk
G
5Equilibriumwithapreviouslydefined
reaction(kref)
1
exp
T
E
T
T
Akk a
B
R
ref
6Lindemann‐HinshelwoodasusedforOH+
HNO323
3
0
/][1
][
kMk
Mk
kk
7SimplepressuredependenceusedforOH+
CO][
21 Mkkk
Notes:
Tistemperature(K)
TRisreferencetemperatureof300K
EaisanArrheniusactivationenergy(K)
k0isthelowpressurelimitoftherateconstant
kisthehighpressurelimitoftherateconstant
[M]istheconcentrationofair
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 40www.camx.com
Table33b.ListofparametersthatmustbeprovidedintheCAMxchemistryparameterfile
foreachoftheseventypesofrateconstantexpressions.Useppm/minuteunitsforAand
KelvinforEaandTR.ThevariableOistheorderofthereaction(1to3).
Expression
Type
Parameters
1234 5 6 7 8 9 101112 13
1Ok298  
2Ok298Ea
3OAEaB TR
4OAEaB TRA’ EaB’ TR’ F n
5Okre
f
AEaB TR
6OAoEa
oBoTR
oA2Ea
2B2TR
2A3Ea
3B3TR
3
7OA1Ea
1B1TR
1A2Ea
2B2TR
2
Thephotolysisratesfileisareadabletextformatandithasthefollowingstructure:
wherethefirstrecordlabelstheversionofTUVusedtogeneratethefile,andwherevariables
havethefollowingdefinitions:
ozcl  Ozonecolumnvalueforthecurrentinterval(Dobsonunits)
albclUValbedovalueforthecurrentinterval(unitless)
trnclTerrainheightvalueforthecurrentinterval(kmMSL)
height Altitude(kmAGL)
pkPhotolysisrates(min1)fornsolsolarzenithangles
Figure32presentsanexampleofaphotolysisratesfileforthefirstseveralpanelsofdata.
3.3OzoneColumnFile
ThisfiledefinestheintervalsoftotalatmosphericozonecolumntobeusedbyTUV,aswellas
itsspatialandtemporaldistributionsforaspecificCAMxdomainandepisode.Thisparameter
isessentialforphotochemicalsimulationsasitdeterminesthespatialandtemporalvariationof
photolysisrates.Therefore,thisfilemustbesuppliedifchemistryisinvoked.Additionally,the
ozonecolumnfilemayalsoprovideanoptionalfielddefiningaland/oceanmask(formercury
chemistry).

TUV4.8CAMx6
Loopfrom1tonoznozonecolumnintervals:
Loopfrom1tonalbUValbedointervals:
Loopfrom1tonthtterrainheightintervals:
ozcl,albcl,trncl (12X,f7.3,8X,f7.3,11X,f7.3)
Loopfrom1tonaltaltitudesaboveground:
height (*)
Loopfrom1tonphotphotolysisreactions:
(pk(n),n=1,nsol) (1X,10F12.0)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 41www.camx.com
TUV4.8CAMx6
O3 Column = 0.290 Albedo= 0.040 Terrain = 0.000
0.000 km above surface
4.562E-01 4.526E-01 4.416E-01 4.224E-01 3.934E-01 3.516E-01 2.921E-01 2.065E-01 1.148E-01 3.074E-02
1.670E-03 1.643E-03 1.563E-03 1.427E-03 1.236E-03 9.889E-04 6.936E-04 3.747E-04 1.502E-04 2.570E-05
2.211E-03 2.186E-03 2.107E-03 1.973E-03 1.776E-03 1.506E-03 1.152E-03 7.108E-04 3.352E-04 7.560E-05
2.078E-03 2.007E-03 1.801E-03 1.485E-03 1.097E-03 6.925E-04 3.382E-04 1.034E-04 2.201E-05 2.056E-06
3.131E-04 3.058E-04 2.841E-04 2.491E-04 2.027E-04 1.482E-04 9.100E-05 4.015E-05 1.264E-05 1.517E-06
8.728E-05 8.638E-05 8.364E-05 7.891E-05 7.189E-05 6.212E-05 4.892E-05 3.166E-05 1.580E-05 3.934E-06
0.150 km above surface
4.866E-01 4.830E-01 4.717E-01 4.521E-01 4.223E-01 3.794E-01 3.179E-01 2.284E-01 1.308E-01 3.760E-02
1.855E-03 1.827E-03 1.742E-03 1.598E-03 1.394E-03 1.130E-03 8.102E-04 4.566E-04 1.956E-04 3.701E-05
2.443E-03 2.416E-03 2.334E-03 2.193E-03 1.986E-03 1.701E-03 1.322E-03 8.415E-04 4.159E-04 1.000E-04
2.327E-03 2.249E-03 2.024E-03 1.677E-03 1.250E-03 8.008E-04 4.035E-04 1.337E-04 3.383E-05 4.166E-06
3.489E-04 3.410E-04 3.177E-04 2.799E-04 2.297E-04 1.704E-04 1.075E-04 5.024E-05 1.755E-05 2.556E-06
9.553E-05 9.460E-05 9.176E-05 8.684E-05 7.952E-05 6.928E-05 5.530E-05 3.672E-05 1.910E-05 5.068E-06
0.360 km above surface
5.050E-01 5.013E-01 4.900E-01 4.702E-01 4.402E-01 3.968E-01 3.343E-01 2.426E-01 1.412E-01 4.171E-02
1.974E-03 1.945E-03 1.857E-03 1.708E-03 1.497E-03 1.222E-03 8.862E-04 5.096E-04 2.245E-04 4.415E-05
2.587E-03 2.560E-03 2.477E-03 2.333E-03 2.120E-03 1.826E-03 1.432E-03 9.258E-04 4.673E-04 1.152E-04
2.494E-03 2.411E-03 2.174E-03 1.806E-03 1.353E-03 8.740E-04 4.474E-04 1.536E-04 4.129E-05 5.492E-06
3.722E-04 3.640E-04 3.396E-04 3.002E-04 2.475E-04 1.851E-04 1.183E-04 5.679E-05 2.067E-05 3.210E-06
1.006E-04 9.970E-05 9.681E-05 9.180E-05 8.433E-05 7.382E-05 5.940E-05 3.999E-05 2.122E-05 5.763E-06
0.640 km above surface
5.230E-01 5.193E-01 5.080E-01 4.882E-01 4.581E-01 4.143E-01 3.510E-01 2.574E-01 1.520E-01 4.577E-02
2.092E-03 2.062E-03 1.972E-03 1.819E-03 1.601E-03 1.315E-03 9.632E-04 5.633E-04 2.535E-04 5.126E-05
2.731E-03 2.703E-03 2.618E-03 2.471E-03 2.254E-03 1.951E-03 1.544E-03 1.011E-03 5.191E-04 1.304E-04
2.664E-03 2.577E-03 2.327E-03 1.939E-03 1.459E-03 9.497E-04 4.928E-04 1.738E-04 4.872E-05 6.809E-06
3.958E-04 3.872E-04 3.618E-04 3.207E-04 2.656E-04 2.000E-04 1.294E-04 6.343E-05 2.378E-05 3.860E-06
1.057E-04 1.047E-04 1.018E-04 9.672E-05 8.912E-05 7.839E-05 6.354E-05 4.331E-05 2.336E-05 6.448E-06
0.980 km above surface
5.409E-01 5.373E-01 5.260E-01 5.062E-01 4.760E-01 4.321E-01 3.682E-01 2.727E-01 1.635E-01 4.989E-02
2.210E-03 2.179E-03 2.087E-03 1.930E-03 1.705E-03 1.409E-03 1.041E-03 6.178E-04 2.827E-04 5.837E-05
2.873E-03 2.845E-03 2.758E-03 2.609E-03 2.387E-03 2.077E-03 1.656E-03 1.099E-03 5.718E-04 1.454E-04
2.837E-03 2.746E-03 2.483E-03 2.074E-03 1.567E-03 1.028E-03 5.396E-04 1.944E-04 5.611E-05 8.121E-06
4.195E-04 4.106E-04 3.842E-04 3.414E-04 2.840E-04 2.152E-04 1.407E-04 7.017E-05 2.689E-05 4.509E-06
1.107E-04 1.097E-04 1.068E-04 1.016E-04 9.392E-05 8.299E-05 6.775E-05 4.673E-05 2.556E-05 7.133E-06
1.380 km above surface
5.593E-01 5.556E-01 5.444E-01 5.247E-01 4.947E-01 4.507E-01 3.863E-01 2.892E-01 1.760E-01 5.427E-02
2.329E-03 2.298E-03 2.203E-03 2.042E-03 1.811E-03 1.505E-03 1.122E-03 6.743E-04 3.128E-04 6.563E-05
3.016E-03 2.988E-03 2.900E-03 2.749E-03 2.524E-03 2.207E-03 1.773E-03 1.190E-03 6.270E-04 1.609E-04
3.015E-03 2.920E-03 2.644E-03 2.215E-03 1.681E-03 1.109E-03 5.887E-04 2.158E-04 6.364E-05 9.454E-06
4.437E-04 4.345E-04 4.071E-04 3.627E-04 3.029E-04 2.310E-04 1.524E-04 7.716E-05 3.009E-05 5.169E-06
1.157E-04 1.148E-04 1.118E-04 1.066E-04 9.883E-05 8.772E-05 7.213E-05 5.031E-05 2.789E-05 7.835E-06
1.840 km above surface
5.782E-01 5.746E-01 5.635E-01 5.440E-01 5.141E-01 4.702E-01 4.056E-01 3.069E-01 1.897E-01 5.904E-02
2.451E-03 2.419E-03 2.322E-03 2.157E-03 1.920E-03 1.605E-03 1.206E-03 7.338E-04 3.445E-04 7.312E-05
3.162E-03 3.133E-03 3.045E-03 2.892E-03 2.664E-03 2.341E-03 1.894E-03 1.286E-03 6.856E-04 1.769E-04
3.200E-03 3.101E-03 2.811E-03 2.361E-03 1.799E-03 1.196E-03 6.407E-04 2.385E-04 7.141E-05 1.082E-05
4.685E-04 4.589E-04 4.307E-04 3.846E-04 3.224E-04 2.473E-04 1.647E-04 8.451E-05 3.341E-05 5.848E-06
1.209E-04 1.199E-04 1.169E-04 1.117E-04 1.039E-04 9.263E-05 7.671E-05 5.412E-05 3.039E-05 8.570E-06
2.350 km above surface
5.974E-01 5.939E-01 5.829E-01 5.636E-01 5.340E-01 4.904E-01 4.257E-01 3.258E-01 2.046E-01 6.425E-02
2.572E-03 2.540E-03 2.441E-03 2.273E-03 2.031E-03 1.706E-03 1.292E-03 7.955E-04 3.775E-04 8.077E-05
3.307E-03 3.278E-03 3.190E-03 3.036E-03 2.805E-03 2.477E-03 2.019E-03 1.386E-03 7.476E-04 1.934E-04
3.389E-03 3.285E-03 2.983E-03 2.512E-03 1.922E-03 1.285E-03 6.952E-04 2.622E-04 7.936E-05 1.221E-05
4.934E-04 4.836E-04 4.544E-04 4.068E-04 3.424E-04 2.641E-04 1.774E-04 9.214E-05 3.685E-05 6.538E-06
1.261E-04 1.251E-04 1.221E-04 1.169E-04 1.090E-04 9.763E-05 8.142E-05 5.811E-05 3.305E-05 9.333E-06
2.910 km above surface
6.169E-01 6.134E-01 6.026E-01 5.836E-01 5.543E-01 5.111E-01 4.466E-01 3.458E-01 2.209E-01 7.003E-02
2.694E-03 2.661E-03 2.561E-03 2.390E-03 2.143E-03 1.810E-03 1.382E-03 8.602E-04 4.124E-04 8.867E-05
3.452E-03 3.423E-03 3.335E-03 3.180E-03 2.948E-03 2.615E-03 2.148E-03 1.492E-03 8.140E-04 2.106E-04
3.582E-03 3.474E-03 3.159E-03 2.667E-03 2.049E-03 1.379E-03 7.528E-04 2.874E-04 8.761E-05 1.363E-05
5.187E-04 5.086E-04 4.786E-04 4.294E-04 3.628E-04 2.814E-04 1.906E-04 1.002E-04 4.045E-05 7.246E-06
1.312E-04 1.303E-04 1.273E-04 1.221E-04 1.142E-04 1.027E-04 8.630E-05 6.231E-05 3.593E-05 1.014E-05
3.530 km above surface
6.368E-01 6.334E-01 6.228E-01 6.041E-01 5.754E-01 5.328E-01 4.687E-01 3.673E-01 2.389E-01 7.670E-02
2.818E-03 2.784E-03 2.683E-03 2.510E-03 2.258E-03 1.917E-03 1.476E-03 9.296E-04 4.505E-04 9.704E-05
3.599E-03 3.571E-03 3.482E-03 3.328E-03 3.094E-03 2.759E-03 2.283E-03 1.605E-03 8.871E-04 2.291E-04
3.783E-03 3.670E-03 3.343E-03 2.830E-03 2.184E-03 1.478E-03 8.148E-04 3.147E-04 9.644E-05 1.512E-05
5.446E-04 5.343E-04 5.034E-04 4.528E-04 3.840E-04 2.996E-04 2.046E-04 1.088E-04 4.434E-05 7.989E-06
1.365E-04 1.355E-04 1.326E-04 1.274E-04 1.195E-04 1.080E-04 9.142E-05 6.681E-05 3.911E-05 1.103E-05
4.210 km above surface
6.569E-01 6.536E-01 6.433E-01 6.250E-01 5.969E-01 5.550E-01 4.917E-01 3.902E-01 2.588E-01 8.447E-02
2.943E-03 2.909E-03 2.807E-03 2.632E-03 2.376E-03 2.029E-03 1.574E-03 1.004E-03 4.925E-04 1.060E-04
3.747E-03 3.719E-03 3.631E-03 3.477E-03 3.243E-03 2.906E-03 2.424E-03 1.725E-03 9.679E-04 2.493E-04
3.992E-03 3.875E-03 3.534E-03 3.000E-03 2.325E-03 1.585E-03 8.818E-04 3.447E-04 1.060E-04 1.668E-05
5.711E-04 5.605E-04 5.289E-04 4.769E-04 4.060E-04 3.186E-04 2.195E-04 1.181E-04 4.859E-05 8.775E-06
1.417E-04 1.408E-04 1.379E-04 1.327E-04 1.249E-04 1.135E-04 9.674E-05 7.161E-05 4.262E-05 1.202E-05
O3 Column = 0.290 Albedo= 0.040 Terrain = 1.000
0.000 km above surface
4.655E-01 4.615E-01 4.493E-01 4.279E-01 3.958E-01 3.499E-01 2.855E-01 1.957E-01 1.048E-01 2.871E-02
1.688E-03 1.660E-03 1.576E-03 1.435E-03 1.237E-03 9.833E-04 6.824E-04 3.626E-04 1.414E-04 2.142E-05
2.240E-03 2.212E-03 2.129E-03 1.987E-03 1.780E-03 1.498E-03 1.132E-03 6.858E-04 3.159E-04 6.495E-05
2.098E-03 2.025E-03 1.815E-03 1.492E-03 1.098E-03 6.883E-04 3.334E-04 1.009E-04 2.101E-05 1.716E-06
3.162E-04 3.086E-04 2.863E-04 2.503E-04 2.029E-04 1.473E-04 8.961E-05 3.896E-05 1.193E-05 1.254E-06
8.857E-05 8.761E-05 8.467E-05 7.961E-05 7.213E-05 6.180E-05 4.802E-05 3.042E-05 1.483E-05 3.488E-06
0.150 km above surface
5.004E-01 4.963E-01 4.839E-01 4.623E-01 4.296E-01 3.828E-01 3.163E-01 2.220E-01 1.237E-01 3.1E-02
1.870E-03 1.841E-03 1.752E-03 1.604E-03 1.394E-03 1.123E-03 7.976E-04 4.424E-04 1.847E-04 3.188E-05
2.473E-03 2.445E-03 2.359E-03 2.211E-03 1.994E-03 1.697E-03 1.306E-03 8.179E-04 3.956E-04 8.840E-05
2.338E-03 2.259E-03 2.030E-03 1.677E-03 1.245E-03 7.929E-04 3.960E-04 1.294E-04 3.180E-05 3.572E-06
3.509E-04 3.428E-04 3.189E-04 2.803E-04 2.292E-04 1.690E-04 1.056E-04 4.859E-05 1.651E-05 2.187E-06
9.713E-05 9.614E-05 9.312E-05 8.789E-05 8.013E-05 6.934E-05 5.476E-05 3.574E-05 1.823E-05 4.615E-06
Figure32.Exampleofthefirstseveralpanelsoflookupdatainthephotolysisratesinputfile.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 42www.camx.com
Therearetwomandatoryandoneoptionalheaderrecordsintheozonecolumnfile.Thefirst
recordcontainsanarbitraryfilelabel.Thesecondrecorddefinestheintervalsfor5ozone
columnvaluesforthedomainandtemporalperiodtobesimulated.Theseintervalsmust
exactlymatchthosedefinedinpreparingthephotolysisratesfile,sotheozonecolumnfileis
alsoreadbytheTUVpreprocessortodefinethephotolysisrateslookuptable(Section3.2).
Iftheoptionalland/oceanmaskisincluded,thenathirdheaderrecordmustbeaddedto
informCAMxthatthisfieldistoberead.Thetimeinvariantland/oceanmaskisusedfor
mercurychemistrytodefineprofilesofambienthalogens;itissimplyamapof0(landandfresh
waterbodies)and1(ocean)thatmustbelocateddirectlyunderitsheaderrecord.Avalue
mustbesuppliedforeachcellofthemastergridandoptionallyanynestedgrids.
Griddedfieldsoftimevaryingozonecolumnfollowtheheaderrecordsandoptionalland/ocean
maskdata.Thegriddedfieldsaremapsoftherespective“codes”foreachinterval,asdefined
intheheader.Forexample,5ozonecolumnintervalsarespecifiedinTUVandintheozone
columnheaderrecord,sothemapmustconsistofadistributionofintegersrangingfrom1to5.
Ozonecolumnissuppliedforthemastergridonly;CAMxinternallyassignsmastercellvaluesto
allnestedgridscells.Multiplemapsofthesecodesmaybeprovidedforarbitrarytimeintervals
thatspantheentiresimulationperiod.
Theozonecolumnfileisareadabletextformatandithasthefollowingstructure:
wherethevariablesintheozonecolumnfilehavethefollowingdefinitions:
text  Textidentifyingfileandanymessages
ozname Textstring“OZONECOL”
oznclOzonecolumn(Dobsonunits)foreachofnoznozonevalues
loname Textstring“OCEAN”
igrd  Gridindex(1=mastergrid,2+=nestedgrid,0=endofdata)
nxNumberofgridcolumnsforthisgridindex
ny Numberofgridrowsforthisgridindex
jocn  Gridigrd,rowjland/oceancodesfornxgridcolumns
idt1  Beginningdate(YYJJJ)oftimespan
tim1  Beginninghour(HHMM)oftimespan
idt2  Endingdateoftimespan
text (A)
ozname,(ozncl(n),n=1,nozn) (A10,5F10.0)
loname,igrd,nx,ny (A10,3I10) ‐‐Optional
Loopfromj=nygridrowsto1‐Optional
(jocn(i,j),i=1,nx) (999I1) ‐‐Optional
loname,igrd,nx,ny (A10,3I10) ‐‐Optional
ozname,idt1,tim1,idt2,tim2 (A10,I10,F10.0,I10,F10.0)
Loopfromj=nymastergridrowsto1
(jozn(i,j),i=1,nx) (9999I1)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 43www.camx.com
tim2  Endinghouroftimespan
jozn  Mastergridrowjozonecolumncodesfornxmastergridcolumns
AnexampleofasmallozonecolumnfileisgiveninFigure33.
Sample ozone column file with optional land ocean mask
OZONE COL 0.285 0.315 0.345 0.375 0.405
OCEAN 1 64 10
0000000000000000000011111111100000000000000000000000000000000000
0000000000000000000000000001111111110000000000000000000000000000
0000000000000000000000001111111111111100000000000000000000000000
0000000000000000000000000001111111111110000000000000000000000000
0000000000000000000000011111111111111100000000000000000000000000
0000000000000000000000111111111111111110000000000000000000000000
0000000000000000000000111111111111111111000000000000000000000000
0000000000000000000001111111000000000111111110000000000000000000
0000000000000000000011111111100000000011111111100000000000000000
0000000000000000000000111111111100000000011111111110000000000000
OCEAN 0 0 0
OZONE COL 05213 0.00 05213 2400.00
3333333333333333333333333333333333333333333333333333333333333333
3333333333333333333333333333333333333333333333333333333333333333
2222222222222333333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222223333333333333333333333333333333333333333333333333
2222222222222222222222333333333333333333333333333333333333333333
Figure33.Examplestructureofasinglegridozonecolumninputfileshowingpanelsforthe
optionaltimeinvariantlandoceanmaskandtimevaryingozonecolumnfield.
3.4FortranBinaryInput/OutputFiles
3.4.1WhatisaFortranBinaryFile?
LargeCAMxinputandoutputdatafieldsarecontainedwithinFortran“unformatted”(binary)
files.Thismeansthatthedataarereadandwrittenasrepresentedinmemory,without
translationbetweenbinaryandASCIIcharactersetsasdonefor“text”files.Binaryfilesreduce
filevolumeandimproveprogramread/writespeed,buttheusercannotdirectlyviewor
manuallyeditthem.Therearetwowaystorepresentbinaryinformationinmemory:“big
endian”and“littleendian.”Thedifferencebetweentheseisessentiallytheorderofbitsina
word,andwhichorderisuseddependsonthecomputerchipset.Historically,bigendianhas
beenusedinmanyUnixworkstations(Sun,SGI,HP,andIBM).Thex86processorsonpersonal
computerplatforms(e.g.,IntelandAMD)uselittleendian,whilePowerPCchipsarebigendian.
CAMxcanbecompiledandrunonmachinesusingtheirnativebigorlittleendianbinary
representations,aslongasthemodelandallofitspre‐andpostprocessorsareconsistently
compiledandrunonthesametypeofplatform.Ifanycomponentofthemodelingsystemis
compiledforadifferentplatformusingtheoppositebinaryrepresentation,I/Ofileswillnotbe
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 44www.camx.com
properlyreadandwilllikelyleadtoaprogramcrash.Atypicalruntimeerrormessagefrom
tryingtoreadthewrongbinaryformatis“inputrecordtoolong,”soifyougetthiserror
message,checkforconsistencybetweenyourbinaryfilesandFortrancompileroptions.
Compilersforlittleendianmachinesprovidecompiletimeswitchesthatallowbinaryfilestobe
readandwrittenasbigendian.The“makefile”compilerscriptthatisdistributedwithCAMx
setscompilerflagstoconsistentlyusebigendiantomaximizeplatformportability.Therefore,
useoftheCAMxMakefilewillbydefaultresultinthemodelreadingandwritingbigendian
binaryfiles.AdditionalinformationonthistopicisprovidedinSection2.
3.4.2CAMxBinaryFileHeaders
TheformatofallbinaryCAMxI/OfilesfollowstheconventionestablishedbytheUrbanAirshed
Model(EPA,1990).CAMxbinaryfilescontainasetoftimeinvariantheaderrecords,followed
byasetofdatarecordsthatcontaintime‐andvariablespecificfields.Allinputgridded
emissions,initialandtopboundaryconditions,meteorology1,andoutputconcentrationand
depositionfilessharethesamebasicformat.Theinputlateralboundaryconditionandpoint
sourceemissionsfilesaresimilarbutincludeadditionalrecordsspecifictotheirdatastructures.
Theinput3Dmeteorologicalfilemayprovidewindfieldsinastaggeredorunstaggeredgrid
arrangement.Aflagtoindicatethewindstaggeringisincludedinthesecondheaderrecord
andischeckedonlywhenthe3Dmeteorologicalfileisread.
ThefourheaderrecordswithinallCAMxbinaryfileshavethefollowingstructure:
Theheadervariableshavethefollowingdefinitions:
Record1
name Textstringdescribingfilecontents(character*4(10)array):
AIRQUALITYInitialandtopboundaryconditions
BOUNDARY Boundaryconditions
EMISSIONS Griddedemissions
PTSOURCE Pointsourceemissions
AVERAGE Averageoutputconcentrations/depositionand
inputmeteorology/surfacevariables
INSTANT Instantaneousoutputconcentrations
note Textstringcontainingusernote(character*4(60)array)
itzonIntegertimezone(0=UTC,5=EST,etc.)
nvar Integernumberofvariablesonfile

1NOTE:StartingwithCAMxv6.00,allbinarymeteorologicalfileshavebeenconvertedtotheUAMconvention.
name,note,itzon,nvar,ibdate,btime,iedate,etime
plon,plat,iutm,xorg,yorg,delx,dely,nx,ny,nz,iproj,istag,tlat1,tlat2,rdum
ione,ione,nx,ny
(namvar(l),l=1,nvar)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 45www.camx.com
ibdateIntegerbeginningdatespanonfile(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdatespanonfile(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2
plon Realprojectionpole/originlongitude(degrees;westisnegative)
plat Realprojectionpole/originlatitude(degrees;southisnegative)
iutm IntegerUTMzone(ignoredforotherprojections)
xorg Realxcoordinateatsouthwestcornerofgrid(mordegreeslongitude)
yorg Realycoordinateatsouthwestcornerofgrid(mordegreeslatitude)
delx Realcellsizeinxdirection(mordegreeslongitude)
dely Realcellsizeinydirection(mordegreeslatitude)
nx Integernumberofgridcolumns(eastwest)
ny Integernumberofgridrows(northsouth)
nz Integernumberofverticallayers
iprojIntegerprojectionindex:
0=geodetic(LATLON)
1=UniversalTransverseMercator(UTM)
2=LambertConicConformal(LAMBERT)
3=RotatedPolarStereographic(RPOLAR)
4=PolarStereographic(POLAR)
5=Mercator(MERCATOR)
istagIntegerflagtoindicatewindstaggering(1=staggered,0=notstaggered)
tlat1RealLCPfirsttruelatitude(degrees;southisnegative)
tlat2RealLCPsecondtruelatitude(degrees;southisnegative)
rdum Realdummyvariable
Record3
ione Integerdummyvariable(=1)
ione Integerdummyvariable(=1)
nx Integernumberofgridcolumns(eastwest)
ny Integernumberofgridrows(northsouth)
Record4
namvarTextnamesfornvarvariables(character*4(10,nvar)array)
3.4.3InputFiles
TheFortranbinaryinputfilesincludeinitial/boundaryconditions,griddedandelevatedpoint
sourceemissions,andseveralmeteorologicalfiles.Alltimesoninputfilesmustmatchthetime
zonespecifiedintheCAMxcontrolfile(CAMx.in).
Initial/boundaryconditionfilesmayincludeasingletimeintervalcoveringtheentiresimulation
period,ormoredetailedhourbyhour(orotherinterval)variations.Thetimeintervalsare
allowedtobeentirelyarbitrarytomaximizeflexibilityindefiningtheseinputs.Asubsetofthe
pollutantspeciestobesimulatedmaybedefinedintheinitial/boundaryconditionfiles;any
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 46www.camx.com
speciesthataremissingwillbesetto“lowerbound”valuesasdefinedinthechemistry
parametersfile.
Emissioninputsareusuallydevelopedatonehourintervals,butthefilestructuresallowforany
otherintervalaslongasaconsistentintervalisusedthroughoutthefile(allonehour,orall
threehour,butnomixingofthese).Thetimeintervalonallemissionfilesmustmatchthe
emissionupdatefrequencydefinedintheCAMxcontrolfile.Asubsetofspeciestobe
simulatedmaybeincludedintheemissionfiles;zeroemissionrateswillbeappliedforany
speciesthataremissing.
Meteorologicalfieldsareseparatedintotwodimensionalandthreedimensionalfields.The
coremeteorologicalfilecontainsthebasicparametersneededformostmodelprocesses,and
includeswindsandbasicthermodynamicproperties.Separateverticaldiffusivityandcloudfiles
allowforeasysubstitutionofalternativeinputswithouttheneedtoregenerateallofthecore
fields.Thetimeintervalonallmeteorologicalfilesmustmatchthemeteorologicalupdate
frequencydefinedintheCAMxcontrolfile.
3.4.3.1InputStatic2DSurfaceFile
Thestatic2Dsurfacefilecontainstimeinvariantgriddedfieldsoflanduseandtopographic
elevation,andoptionallyleafareaindex(LAI).Thisfilemustbedevelopedforthemastergrid,
andoptionallyanyofthenestedfinegrids.Thefractionaldistributionof26landusecategories,
consistentwiththe“ZHANG03”drydepositionscheme,issuppliedforeachgridcell.Ifthe
“WESELY89”drydepositionoptionisinvoked,CAMxinternallymapsthe26categoriestothe11
Weselycategories.ThelandusecategoriesaredescribedinTables34and35.Landuseisused
todefinesurfaceUValbedo,surfaceresistancesfordrydepositioncalculations,andtoset
seasonaldefaultsurfaceroughnesslengthsandLAIvalues(ifLAIisnotspecifiedinthefile).
Topographicelevationisusedtodefineterrainheightsforphotolysiscalculations.
Table34.The11WESELY89landusecategories,theirdefaultUVsurfacealbedos,andtheir
surfaceroughnessvalues(m)byseason.Winterisdefinedforconditionswherethereissnow
present;wintermonthswithnosnowareassignedtotheFallcategory.Roughnessforwater
iscalculatedfromthefunction5.26
0102 wz
,wherewissurfacewindspeed(m/s).
LandCoverCategorySurfaceRoughness(meters)UV
Albedo
SpringSummerFallWinter
1Urban1.0 1.0 1.0 1.00.08
2Agricultural0.03 0.2 0.05 0.010.05
3Rangeland0.05 0.1 0.01 0.0010.05
4Deciduousforest1.0 1.3 0.8 0.50.05
5Coniferousforest,wetland1.3 1.3 1.3 1.30.05
6Mixedforest*1.15 1.3 1.05 0.90.05
7Waterf(w) f(w) f(w) f(w)0.04
8Barrenland0.002 0.002 0.002 0.0020.08
9Nonforestedwetlands0.2 0.2 0.2 0.050.05
10Mixedagricultural/range**0.04 0.15 0.03 0.0060.05
11Rocky(withlowshrubs)0.3 0.3 0.3 0.150.05
*Roughnessformixedforestistheaverageofdeciduousandconiferousforest.
*Roughnessformixedag/rangeistheaverageofagriculturalandrangeland.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 47www.camx.com
Table35.The26ZHANG03landusecategories,theirUValbedos,defaultannualminimum
andmaximumLAIandsurfaceroughness(m)ranges,andmappingtotheWeselyscheme
(Table34).Roughnessforwateriscalculatedfromthefunction5.26
0102 wz
,wherewis
surfacewindspeed(m/s).
LandCoverCategoryWesely
Mapping
Roughness(meters) LAIUV
Albedo
Min Max Min Max
1Water7f(w)f(w)0.0 0.00.04
2Ice80.01 0.01 0.0 0.00.5
3Inlandlake7f(w)f(w)0.0 0.00.04
4Evergreenneedleleaftrees50.9 0.9 5.0 5.00.05
5Evergreenbroadleaftrees52.0 2.0 6.0 6.00.05
6Deciduousneedleleaftrees40.4 0.9 0.1 5.00.05
7Deciduousbroadleaftrees40.4 1.0 0.1 5.00.05
8Tropicalbroadleaftrees52.5 2.5 6.0 6.00.05
9Droughtdeciduoustrees40.6 0.6 4.0 4.00.05
10Evergreenbroadleafshrubs30.2 0.2 3.0 3.00.05
11Deciduousshrubs30.05 0.2 0.5 3.00.05
12Thornshrubs30.2 0.2 3.0 3.00.05
13Shortgrassandforbs30.04 0.04 1.0 1.00.05
14Longgrass10 0.02 0.1 0.5 2.00.05
15Crops20.02 0.1 0.1 4.00.05
16Rice20.02 0.1 0.1 6.00.05
17Sugar20.02 0.1 0.1 5.00.05
18Maize20.02 0.1 0.1 4.00.05
19Cotton20.02 0.2 0.1 5.00.05
20Irrigatedcrops20.05 0.05 1.0 1.00.05
21Urban11.0 1.0 0.1 1.00.08
22Tundra11 0.03 0.03 0.1 2.00.05
23Swamp90.1 0.1 4.0 4.00.05
24Desert80.04 0.04 0.0 0.00.08
25Mixedwoodforest60.9 0.9 3.0 5.00.05
26Transitionalforest60.9 0.9 3.0 5.00.05
Thedatarecordsforthestatic2Dsurfacefilehavethefollowingstructure:
Thevariableshavethefollowingdefinitions:
Record1
ibdate Integerbeginningdatespanonfile(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedate Integerendingdatespanonfile(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
ione,namvar(l),((var(i,j),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 48www.camx.com
Record2throughnvar+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
WATERWaterfraction(Zhang1)
ICE  Icefraction(Zhang2)
LAKE Lakefraction(Zhang3)
ENEEDL Evergreenneedleleafforestfraction(Zhang4)
EBROAD Evergreenbroadleafforestfraction(Zhang5)
DNEEDL Deciduousneedleleafforestfraction(Zhang6)
DBROAD Deciduousbroadleafforestfraction(Zhang7)
TBROAD Tropicalbroadleafforestfraction(Zhang8)
DDECID Droughtdeciduoustreefraction(Zhang9)
ESHRUB Evergreenshrubfraction(Zhang10)
DSHRUB Deciduousshrubfraction(Zhang11)
TSHRUB Thornshrubfraction(Zhang12)
SGRASS Shortgrassfraction(Zhang13)
LGRASS Longgrassfraction(Zhang14)
CROPSCroplandfraction(Zhang15)
RICE Ricecropfraction(Zhang16)
SUGARSugarcropfraction(Zhang17)
MAIZECorncropfraction(Zhang18)
COTTON Cottoncropfraction(Zhang19)
ICROPS Irrigatedcroplandfraction(Zhang20)
URBANUrbanfraction(Zhang21)
TUNDRA Tundrafraction(Zhang22)
SWAMPSwampfraction(Zhang23)
DESERT Desertfraction(Zhang24)
MWOODMixedwoodlandfraction(Zhang25)
TFOREST Transitionalforestfraction(Zhang26)
TOPO_M Topographicelevationabovesealevel(m)
LAI  OptionalLeafAreaIndex
var Realvariablefieldvaluesfornxgridcolumnsandnygridrows
3.4.3.2InputTimeVariant2DSurfaceFile
Thetimevariant2Dsurfacefilecontainsgriddedfieldsofsurfacetemperatureandsnow
cover.Thisfilemustbedevelopedforthemastergrid,andoptionallyanyofthenestedfine
grids.Thesurfacetemperatureisusedfordrydepositioncalculationsandtoestablishsurface
layeratmosphericstability.Snowcoverincludessnowdepthandage,whichareusedto
calculatesurfacealbedoforphotochemistry,adjustsurfaceresistancesfordrydeposition,and
definethesnowcompartmentforthesurfacechemistrymodel.
Thedatarecordsforthetimevariant2Dsurfacefilehavethefollowingstructureandare
repeatedforeachtimeintervalonfile:
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 49www.camx.com
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnvar+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
TSURF_K Surfacetemperature(K)
SNOWEW_M Snowwaterequivalentdepth(m)
SNOWAGE_HR Snowagesincelastsnowfall(hr)
var Realvariablefieldvaluesfornxgridcolumnsandnygridrows
CAMxtimeinterpolatessurfacetemperaturetoeachmodeltimestepforeachgrid(butholds
snowcoverconstant),andsothemodelrequiresthatdatabeavailableonfileforanadditional
updatetimeattheendofthesimulation.Forexample,inthecaseofhourlyfields,a24hour
simulationrequires25inputfieldsonfile.Thetimeintervalofthedatarecordsmustmatchthe
timezoneandinputfrequencyofthemeteorologyasspecifiedintheCAMx.infile.
CAMxisbackwardcompatiblewitholder2Dmeteorologicalfilesthatmaycontainthesnow
covervariable(SNOWCOVER),whichisasimplemapof0or1toindicatethepresenceofsnow
ineachgridcell.IftheSNOWCOVERvariableisfound,CAMxarbitrarilyassumesasnowwater
equivalentdepthof0.025m(~25cmsnowdepth)andsnowageof5days.
3.4.3.3InputTimeVariant3DMeteorologicalFile
Thetimevariant3Dmeteorologicalfilecontainsgriddedfieldsofstatemeteorological
parameters.Thisfilemustbedevelopedforthemastergridandoptionallyanyfinegridnest
specifiedforagivensimulation.Thelayerinterfaceheightsdefinetheverticalgridstructurefor
eachgrid.Thenumberofverticallayersandtheverticalgriddefinitionmustbeconsistent
amongallgridsinasimulation;otherwiseCAMxwillstopwithanerrormessageifthis
conditionisnotmet.Thelayerinterfaceheightsmaybespecifiedtovaryinspaceand/ortime
(e.g.,tofollowthelayerstructureofmeteorologicalmodels),ortheymaybesettoaconstant
field.CAMxallowstheusertooptionallysupplywindcomponentsatcellcenter,inwhichcase
themodelwillinterpolatethecomponentstotheirrespectivepositionsoncellinterfaces,or
theusermaysupplythesecomponentsdirectlyonthestaggeredArakawaCconfiguration
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
ione,namvar(l),((var(i,j),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 50www.camx.com
(recommended).Inanycase,theusermustsupplyafullnx×ny×nzarrayofwindvaluesforeach
component(eventhoughtheCAMxArakawaCconfigurationusesonly(nx1)×(ny1)valuesin
thehorizontal).Thewindstaggeringflagissetinthesecondheaderrecord.Thepressure,
wind,temperature,andhumidityfieldsareusedfortransport,plumerise,PiG,dryandwet
deposition,andchemistrycalculations.
Thedatarecordsforthetimevariant3Dmeteorologicalfilehavethefollowingstructureand
arerepeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnvar
nz+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
ZGRID_M Layerinterfaceheights(mAGL)
PRESS_MB Pressure(mb)
TEMP_K Temperature(K)
HUMID_PPM Humidityasmixingratio(ppm)
UWIND_MpS Ucomponent(eastwest)wind(m/s)
VWIND_MpS Vcomponent(northsouth)wind(m/s)
var Reallayerkvariablefieldvaluesfornxgridcolumnsandnygridrows
CAMxtimeinterpolatesthesemeteorologicalvariablestoeachmodeltimestepforeachgrid,
andsothemodelrequiresthatdatabeavailableonfileforanadditionalupdatetimeattheend
ofthesimulation.Forexample,inthecaseofhourlyfields,a24hoursimulationrequires25
inputfieldsonfile.Thetimeintervalofthedatarecordsmustmatchthetimezoneandinput
frequencyofthemeteorologyasspecifiedintheCAMx.infile.
3.4.3.4InputTimeVariant3DVerticalDiffusivityFile
Thetimevariant3Dverticaldiffusivityfilecontainsgriddedfieldsoflayerinterfacediffusivity
(i.e.,turbulentexchangeordiffusioncoefficients).Thisfilemustbedevelopedforthemaster
grid,andoptionallyanyfinegridnests.Thisfileiskeptseparatefromthemainmeteorological
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
Loopfromk=1tonzlayers:
ione,namvar(l),((var(i,j,k),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 51www.camx.com
datafiletofacilitatethesubstitutionofalternativeverticalmixingrates.Diffusivityisusedfor
verticaldiffusionandPiGpuffgrowthcalculations.
Thedatarecordsforthetimevariant3Dmeteorologicalfilehavethefollowingstructureand
arerepeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etime Realendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnvar
nz+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
KV_M2pS Verticaldiffusivity(m2/s)
var Reallayerkvariablefieldvaluesfornxgridcolumnsandnygridrows
CAMxtimeinterpolatesthediffusivitytoeachmodeltimestepforeachgrid,andsothemodel
requiresthatdatabeavailableonfileforanadditionalupdatetimeattheendofthe
simulation.Forexample,inthecaseofhourlyfields,a24hoursimulationrequires25input
fieldsonfile.Thetimeintervalofthedatarecordsmustmatchthetimezoneandinput
frequencyofthemeteorologyasspecifiedintheCAMx.infile.
3.4.3.5InputTimeVariant3DCloud/PrecipitationFile
Thetimevariant3Dcloud/precipitationfilecontainsgriddedfieldsofcloudandprecipitation
parameterstobeusedforphotochemistry,aqueouschemistry,andwet/drydeposition
calculations.Notethatprecipitationrateisnotexplicitlyprovidedtothemodel;instead,itis
internallycalculatedfromthethreeprecipitationwatercontentformsprovidedonthe
cloud/rainfile.Thisfilealsocontainslayerspecificcloudopticaldepthtoscaledownphotolysis
ratesforlayerswithinorbelowcloudstoaccountforUVattenuation,ortoscaleuptherates
forlayersabovecloudstoaccountforUVreflection.Thisfilemustbedevelopedforthemaster
grid,andoptionallyanyfinegridnests,ifchemistry,dry,and/orwetdepositionareinvoked.
Thedatarecordsforthetimevariant3Dcloud/precipitationfilehavethefollowingstructure
andarerepeatedforeachtimeintervalonfile:
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
Loopfromk=1tonzlayers:
ione,namvar(l),((var(i,j,k),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 52www.camx.com
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnvar
nz+1
ione Integerdummyvariable(=1)
namvarTextnamesfornvarvariables(character*4(10,nvar)array):
CLODW_GpM3Cloudwatercontent(g/m3)
RAINW_GpM3Rainwatercontent(g/m3)
SNOWW_GpM3Snowwatercontent(g/m3)
GRPLW_GpM3Graupelwatercontent(g/m3)
CLOUDOD Layerspecificcloudopticaldepth
var Reallayerkvariablefieldvaluesfornxgridcolumnsandnygridrows
TheCAMxcloudfieldsareassumedtobetimeaveraged,sothemodeldoesnotrequirean
additionalupdatetimeattheendofthesimulation.Forexample,inthecaseofhourlyfields,a
24hoursimulationrequiresonly24cloudinputfieldsonfile.Thetimeintervalofthedata
recordsmustmatchthetimezoneandinputfrequencyofthemeteorologyasspecifiedinthe
CAMx.infile.
3.4.3.6Input3DInitialConditionsFile
Theinput3Dinitialconditionsfilecontainsgriddedconcentrationfieldsonthemastergrid.
Initialconcentrationfieldsmaybespecifiedforasubsetofthetotalnumberofmodeled
species.Aninitialconditionfilemustbedevelopedforthemastergrid,andcontain
concentrationfieldsforatleastonespecies.Forthosespeciesnotontheinitialconditionfile,
CAMxsetsupuniformfieldsusingthe“lowerbound”valuesspecifiedinthechemistry
parametersfile.CAMxtheninterpolatesallmastergridinitialconditionstoeachfinegridnest
atthestartofthesimulation.
Thedatarecordsfortheinitialconditionsfilehavethefollowingstructureandarerepeatedfor
eachtimeintervalonfile:
ibdate,btime,iedate,etime
Loopfroml=1tonvarvariables:
Loopfromk=1tonzlayers:
ione,namvar(l),((var(i,j,k),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 53www.camx.com
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnspec
nz+1
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
conc Reallayerkconcentrationfieldvalues(ppmforgases,µg/m3foraerosols)
fornxgridcolumnsandnygridrows
ThetimeintervalofthedatarecordsmustmatchthetimezoneasspecifiedintheCAMx.infile.
3.4.3.7Input3DLateralBoundaryConditionsFile
Theinput3Dlateralboundaryconditionsfilecontainsgriddedconcentrationfieldsonthe
lateralfacesofthemastergridboundary.Boundaryconcentrationfieldsmaybespecifiedfora
subsetofthetotalnumberofmodeledspecies.However,ifaboundaryconcentrationis
specifiedforagivenspecies,itmustbesuppliedforallfourboundaries.Aboundary
concentrationfilemustbedevelopedforthemastergrid,andcontainconcentrationfieldsfor
atleastonespecies.Forthosespeciesnotontheboundaryconditionsfile,CAMxsetsup
uniformfieldsusingthe“lowerbound”valuesspecifiedinthechemistryparametersfile.The
timespanofeachsetofboundarydatarecordsmaybesetarbitrarily;e.g.,asetofboundary
conditionsmaybespecifiedforasixhourspan,followedbyasetspanningjustanhour.
Theboundaryconditionsfileaddsanadditionalsetoffourheaderrecords,resultinginatotal
ofeightheaderrecordsaltogether(notethatfirstfourrecordsareidenticaltotheheader
recordsdescribedabove):
ibdate,btime,iedate,etime
Loopfroml=1tonspecspecies:
Loopfromk=1tonzlayers:
ione,namspec(l),((conc(i,j,k,l),i=1,nx),j=1,ny)
name,note,ione,nspec,ibdate,btime,iedate,etime
plon,plat,iutm,xorg,yorg,delx,dely,nx,ny,nz,iproj,istag,tlat1,tlat2,rdum
ione,ione,nx,ny
(namspec(l),l=1,nspec)
Loopfrom1to4boundaries:
ione,iedge,ncell,(icell(n),idum,idum,idum,n=1,ncell)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 54www.camx.com
Theadditionalheadervariableshavethefollowingdefinitions:
Records58
ione Integerdummyvariable(=1)
iedgeIntegerboundaryedgenumber(1=west,2=east,3=south,4=north)
ncellIntegernumberofrowsorcolumnsonthisedge

icellIntegerindexoffirstcellmodeled(edges1,3),orlastcellmodeled(edges
2,4):if“0”,thisrow/columnisomittedfromthesimulation
idum Integerdummyvariable
Thedatarecordsfortheboundaryconditionsfilehavethefollowingstructure,andare
repeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnspec
4+1
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
bc Realedgeiedgeboundaryconcentrations(ppmforgases,µg/m3for
aerosols)forncellgridrows/columns,andnzlayers
ThetimeintervalofthedatarecordsmustmatchthetimezoneasspecifiedintheCAMx.infile.
3.4.3.8Input2DTopBoundaryConditionsFile
Theinput2Dtopboundaryconditionsfilecontainsgriddedconcentrationfieldsabovethetop
ofthemastergridboundary.Boundaryconcentrationfieldsmaybespecifiedforasubsetof
thetotalnumberofmodeledspecies;thesubsetofspeciesmaydifferfromthelateral
boundaryconditions.Thetopboundaryconcentrationfileisoptional,butifsupplieditmust
containconcentrationfieldsforatleastonespecies.Forthosespeciesnotontheboundary
conditionsfile,CAMxsetsupuniformfieldsusingthe“lowerbound”valuesspecifiedinthe
chemistryparametersfile.Thetimespanofeachsetoftopboundarydatarecordsmaybeset
arbitrarily;e.g.,asetofboundaryconditionsmaybespecifiedforasixhourspan,followedbya
ibdate,btime,iedate,etime
Loopfroml=1tonspecspecies:
Loopfromiedge=1to4boundaries:
ione,namspec(l),iedge,((bc(i,k,iedge,l),k=1,nz),i=1,ncell)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 55www.camx.com
setspanningjustanhour.Thetimespanofthetopboundaryconditionsmaydifferfromthe
lateralboundaryconditions.
Ifthetopboundaryconditionfileisnotsupplied,CAMxwilldefaulttointernallyemployingthe
original“zerogradient”mixingratioassumption,wherebytheconcentrationsofeachspeciesin
thetopmodellayer(asmolepollutantpermoleair)isassumedtoalsoexistabovethemodel
top.
Thedatarecordsforthetopboundaryconditionsfilehavethefollowingstructureandare
repeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedateIntegerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnspec
nz+1
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
tc Realconcentrationfieldvalues(ppmforgases,µg/m3foraerosols)
fornxgridcolumnsandnygridrows
ThetimeintervalofthedatarecordsmustmatchthetimezoneasspecifiedintheCAMx.infile.
3.4.3.9InputElevatedPointSourceFile
Theinputelevatedpointsourceemissionsfilecontainsstackparametersandemissionratesfor
allelevatedpointsources,andforallemittedspecies,tobemodeled.Ifelevatedpointsources
aretobemodeled,onlyonepointsourceemissionsfilemustbedevelopedfortheentire
modelingdomain.Thepointsourcefilealsoflagstheindividualstackstobetreatedbythe
CAMxPiGsubmodelbysettingthestackdiameterasanegativevalue.Thefileoffersthe
abilitytooptionallyspecifytheeffectiveplumeheightortheverticalplumedistributionfor
eachpointsourceandtobypasstheinternalplumerisecalculation.
Theelevatedpointsourcefileaddstwoadditionalsetofheaderrecordsthatspecifytime
invariantstackparameters,resultinginatotalofsixheaderrecordsaltogether(notethatfirst
fourrecordsareidenticaltotheheaderrecordsdescribedabove):
ibdate,btime,iedate,etime
Loopfroml=1tonspecspecies:
ione,namspec(l),((tc(i,j,l),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 56www.camx.com
Theadditionalheadervariableshavethefollowingdefinitions:
Record5
ione Integerdummyvariable(=1)
nstk Integernumberofelevatedpointsourcestacks
Record6
xstk Realstackxcoordinate(mordegreeslongitude)
ystk Realstackycoordinate(mordegreeslatitude)
hstk Realstackheight(m)
dstk Realstackdiameter(m);negativevalueflagssourceforPiG
tstk Realstackexittemperature(K)
vstk Realstackexitvelocity(m/hr)
Thetimevariantdatarecordsfortheelevatedpointsourcefilehavethefollowingstructure,
andarerepeatedforeachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedate Integerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2
ione Integerdummyvariable(=1)
nstk Integernumberofelevatedpointsourcestacks
name,note,ione,nspec,ibdate,btime,iedate,etime
plon,plat,iutm,xorg,yorg,delx,dely,nx,ny,nz,iproj,istag,tlat1,tlat2,rdum
ione,ione,nx,ny
(namspec(l),l=1,nspec)
ione,nstk
(xstk(n),ystk(n),hstk(n),dstk(n),tstk(n),vstk(n),n=1,nstk)
ibdate,btime,iedate,etime
ione,nstk
(idum,idum,kcell(n),flow(n),plmht(n),n=1,nstk)
Loopfroml=1tonspecspecies:
ione,namspec(l),(ptems(n,l),n=1,nstk)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 57www.camx.com
Record3
idum Integerdummyvariable
kcellZeroorpositive:Ignored
Negative:integerflagforOSAT/PSATsourceregionoverride
flow Zero:ignored(plumerisecalculationusestimeinvariantexitvelocity)
Positive:realstackflowrate(m3/hr)forplumerisecalculations
Negative:realplumebottom(m)forverticalplumedistributionoverride
plmhtZeroorpositive:ignored(plumerisecalculationisperformed)
Negative(flow ≥0):realeffectiveplumeriseoverride(m)
Negative(flow <0):realplumetop(m)forverticalplumedistribution
override
Record4throughnspec+4
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
ptemsRealpointemissionrate(mol/timeperiodforgases,g/timeperiodfor
aerosols)fornstkpointsources
Notethattheemissiontimeinterval(thedenominatorfortheemissionsrate)isnormally,but
notnecessarily,1hour.Thetimeintervaloftheemissionrecordsmustmatchthetimezone
andinputfrequencyoftheemissionsasspecifiedintheCAMx.infile.
3.4.3.10InputGriddedEmissionsFile
Theinputgriddedemissionsfilecontainsgriddedfieldsoflowlevel(i.e.,surface)emissionrates
forallemittedspeciestobemodeled.Ifgriddedemissionsaretobemodeled,agridded
emissionsfilemustbedevelopedforthemastergridandoptionallyanynestedfinegrids.
Thedatarecordsofthegriddedemissionsfilehavethefollowingstructure,andarerepeated
foreachtimeintervalonfile:
Thevariableshavethefollowingdefinitions:
Record1
ibdateIntegerbeginningdateoftimeinterval(YYJJJ)
btimeRealbeginningdecimalhour(e.g.,1:30PM=13.5)
iedate Integerendingdateoftimeinterval(YYJJJ)
etimeRealendingdecimalhour(e.g.,1:30PM=13.5)
Record2throughnspec
nz+1
ione Integerdummyvariable(=1)
namspecTextnamesfornspecspecies(character*4(10,nvar)array):
ibdate,btime,iedate,etime
Loopfroml=1tonspecspecies:
ione,namspec(l),((emiss(i,j,l),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 58www.camx.com
emiss Realgriddedemissionfieldvalues(mol/timeperiodforgases,g/time
periodforaerosols)fornxgridcolumnsandnygridrows
Notethattheemissiontimeinterval(thedenominatorfortheemissionsrate)isnormally,but
notnecessarily,1hour.Thetimeintervaloftheemissionsrecordmustmatchthetimezone
andinputfrequencyoftheemissionsasspecifiedintheCAMx.infile.
3.4.4OutputFiles
Masterandnestedgridinstantaneousfilescontainfullthreedimensionalfieldsofallspecies
modeled,whilethegriddedaverageanddepositionfilescontainonlythosespeciesspecifiedin
theruncontrolfile.Forflexibility,CAMxofferstheoptiontowritefullthreedimensional
averageconcentrationfields,orjustsurfacelayertwodimensionalfields(seethe“3Daverage
file”optionintheCAMxcontrolfile).Itispermissibletochangethenumberofspeciesonthe
averagefile,orchangebetween2Dand3Daveragefiles,fromoneCAMxsimulationperiodto
thenext(providedtheperiodsareconfiguredasseparateCAMxruns).Astheinstantaneous
concentrationfilesareusedforCAMxrestarts,themodelonlywritesinstantaneousfieldsat
theendofthesimulation.PiGoutputfilespossessauniqueformat,andareusedprimarilyfor
modelrestarts.
3.4.4.1OutputConcentrationFiles
Theoutputaveragefilesforallgrids,andthecoarse(master)gridinstantaneousfile,areall
writtenintheCAMxFortranbinaryformatasdescribedearlier.Therearethreedifferences
betweentheoutputconcentrationfilesandtheinputinitialconcentrationfiles.First,thefile
namegiveninthefiledescriptionheaderrecord(headerrecord#1)is“AVERAGE”forthe
averageoutputfile,“INSTANT”fortheinstantaneousoutputfile,and“AIRQUALITY”forthe
inputinitialconcentrationfile.Second,the“note”inthefiledescriptionheaderrecordofthe
outputconcentrationfilesisthemessagesuppliedinthefirstlineoftheCAMxruncontrolfile,
whereasthe“note”intheairqualityfileissetaspartoftheinputfilepreparation.Third,the
specieslistscanbedifferentamongthefiles:theoutputinstantaneousfilecontainsallspecies
modeled(asspecifiedinthechemistryparametersfile),theaverageoutputfilecontainsonly
thespeciesspecifiedintheruncontrolfile,andtheinputinitialconcentrationfilemaycontain
anysubsetofmodeledspeciesasdeterminedwhenthatfileisprepared.
Twootherdifferencesexistbetweentheaverageandinstantaneousoutputfiles.Asnoted
above,theaveragefilemaycontainonlysurfacelevelfieldsortheentirethreedimensional
fields,asselectedbytheuser.Also,gasconcentrationfieldsareoutputasppminaveragefiles,
butasµmol/m3ininstantaneousfiles(aerosolsareinµg/m3inbothfiles).Becauseofthese
differences,andbecauseaveragefilesusuallydonotcontainallmodeledspecies,CAMxdoes
notallowtheaverageoutputconcentrationfiletobeusedforsimulationrestarts.
3.4.4.2OutputDepositionFiles
Theoutputdepositionfileisidenticalinformattothetwodimensionalsurfaceleveloutput
averageconcentrationfile.Thefilenamegivenonthefirstrecordofthedepositionfileis
“AVERAGE”sothatexistingpostprocessingsoftwarewillrecognizetheformat.However,the
outputdepositionfilediffersfromtheoutputaverageconcentrationfileinoneimportantway.
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 59www.camx.com
Thespecieslistisidenticaltothelistontheaverageconcentrationoutputfiles,exceptthatfour
parametersareoutputforeachspecies:
species_DV Real2Ddrydepositionvelocityfieldforspecies(m/s)
species_DD Real2Ddrydepositedmassfieldforspecies(mol/hafor
gases,g/haforaerosols)
species_WD Real2Dwetdepositedmassfieldforspecies(mol/hafor
gases,g/haforaerosols)
species_LC Real2Dprecipitationliquidconcentrationforspecies(mol/lfor
gases,g/lforaerosols)
3.4.4.3OutputSurfaceMassFiles
Theoutputsurfacemodelmassfileisidenticalinformattothetwodimensionalsurfacelevel
outputaverageconcentrationanddepositionfiles.Thefilenamegivenonthefirstrecordof
thedepositionfileis“AVERAGE”sothatexistingpostprocessingsoftwarewillrecognizethe
format.However,thecontentsofthesurfacemassfiledifferfromtheotherfilesintwoways.
First,thespecieslistisdefinedfromthesectionofthechemistryparametersfilethatexplicitly
liststhespeciestobetrackedbythesurfacemodel(seeSection4.8).Second,twoparameters
areoutputforeachsurfacemodelspecies:
Sspecies Real2Ddrymassonsoilorsnowforspecies(mol/ha)
Vspecies Real2Ddrymassonvegetationforspecies(mol/ha)
Thisfileisalsousedforrestartstoreinitializethesurfacemodelwithaccumulatedspecies
massonsoil/snowandvegetativesurfacesfromapreviousrun.
3.4.4.4Nested(Fine)GridInstantaneousOutputFile
Thenested(or“fine”)gridFortranbinaryoutputinstantaneousfileisuniqueandcontainsthe
threedimensionalconcentrationfieldsforallnestedgridstogether,asopposedtoseparate
filesforeachgrid.Allgriddefinitionparametersgiveninthesefilesarereferencedrelativeto
themastergrid,sospecificabsoluteinformationaboutgridcellsizeorprojectioncoordinates
foreachnestedgridmustbedeterminedfrommastergridparameters.Iftheuserutilizesthe
FlexinestingcapabilityofCAMx,thenthegriddedfieldsoutputtothenestedfinegridfileswill
changeaccordingtohownestsarealtered,added,and/orremovedduringthecourseofa
simulation.
Theheaderportionofthenestedgridoutputfilescontain3+nnestrecordswiththefollowing
structure:
message
nnest,nspec
(mspec(l),l=1,nspec)
Loopfrom1tonnestgridnests
ibeg,jbeg,iend,jend,mesh,ione,nx,ny,nz,iparnt,ilevel
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 60www.camx.com
Thetimevariantportionofthenestedgridoutputfileshavethefollowingstructure,wherethe
followingrecordsarerepeatedforeachoutputtime:
Thevariablesonthenestedgridoutputconcentrationfileshavethefollowingdefinitions:
message Textstringcontainingfiledescription(character*60)
nnest Numberoffinegridnestsonfile
nspec Numberofspeciesonfile
mspec Speciesnamesfornspecspecies
ibeg Gridnxdirectionstartingindexofgrid(mastergridcell)
jbeg  Gridnydirectionstartingindexofgrid(mastergridcell)
iend Gridnxdirectionendingindexofgrid(mastergridcell)
jend Gridnydirectionendingindexofgrid(mastergridcell)
mesh  Gridnmeshingfactor(numberofnestedcellspermaster)
ione  Dummyinteger=1
nx Gridnnumberofgridrows
ny Gridnnumberofgridcolumns
nz Gridnnumberoflayers
iparnt Gridn’sparentgrid(gridindexwithinwhichthisfinegridisnested;0=
mastergrid)
ilevel Gridn’sgridlevel(depthatwhichthisgridisnested;1=mastergridis
parent)
time  Timeofoutput(HHMM);endinghourforaverageoutput
idateDateofoutput(YYJJJ)
conc  Gridn,speciesl,layerkconcentrations(ppmforaveragegases,µg/m3
foraverageaerosols,µmol/m3forinstantaneousgasspecies)fornxgrid
columns,andnygridrows
3.4.4.5PiGRestartFile
WhenthePiGoptionisinvoked,CAMxoutputsallpuffparameterseachhourformodelrestart
capabilities.ThisfileisFortranbinaryandisanalogoustotheinstantaneousgridded
concentrationoutputfilesinthatitrepresentsa“snapshot”ofdataatthetopofeachhour.
Thefileformatisuniqueandcontainsinformationforeachpuff,includingcoordinates,grid
location,sizespecifications,age,andmassofeachofthechemicalspeciescarried.Whilethis
filecontainsPiGinformationfortheentiresimulation,itwouldbeoflimiteduseforcertain
analysessuchasplottingpufftrajectories.Thisisbecausetheinstantaneousnatureofthedata,
time,idate
Loopfrom1tonnestgridnests
Loopfroml=1tonspecspecies:
Loopfromk=1tonzlayers:
((conc(i,j,k,l),i=1,nx),j=1,ny)
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 61www.camx.com
andthedynamicmemoryallocationutilizedinthePiGsubmodel,leadstoinsufficient
informationtoidentifyandtrackindividualpuffshourtohour.
ThePiGrestartfilecontainstworecordswiththefollowingstructure,andthesearerepeated
foreachoutputtime:
ThevariablesonthePiGrestartfilehavethefollowingdefinitions:
idatpig Dateofoutput(YYJJJ)
timpig Timeofoutput(HHMM)
npig NumberofPiGpuffsactiveatthisoutputtime
nreactr Numberofchemicalreactorsineachpuff
ingrd Gridindexfornpigpuffs
idpig Pointsourceindexfornpigpuffs
xpigf xcoordinateofpufffront(kmfrommastergridSWcorner)fornpigpuffs
xpigb xcoordinateofpuffback(kmfrommastergridSWcorner)fornpigpuffs
ypigf ycoordinateofpufffront(kmfrommastergridSWcorner)fornpigpuffs
ypigb ycoordinateofpuffback(kmfrommastergridSWcorner)fornpigpuffs
zpig Puffheight(mAGL)fornpigpuffs
axisy Pufflateralwidth(m)fornpigpuffs
axisz Puffverticaldepth(m)fornpigpuffs
sigy PuffGaussianlateraldimension(m)fornpigpuffs
sigx PuffGaussianlongitudinaldimension(m)fornpigpuffs
sigz PuffGaussianverticaldimension(m)fornpigpuffs
pufftop Pufftopheight(mAGL)fornpigpuffs
puffbot Puffbottomheight(mAGL)fornpigpuffs
htfms Puffhorizontalturbulentfluxmoment,shear(m2/s)
htfmb Puffhorizontalturbulentfluxmoment,buoyancy(m2/s)
vtfms Puffverticalturbulentfluxmoment,shear(m2/s)
vtfmb Puffverticalturbulentfluxmoment,buoyancy(m2/s)
agepigf Pufffrontagesincerelease(s)fornpigpuffs
agepigb Puffbackagesincerelease(s)fornpigpuffs
fmspig Puffvolumeparameter(unitless)fornpigpuffs
ipufmap PuffOSAT/PSATregionmappointer(unitless)fornpigpuffs
ipufgrp PuffOSAT/PSATgrouppointer(unitless)fornpigpuffs
idatpig,timpig,npig,nreactr
(ingrd(n),idpig(n),xpigf(n),xpigb(n),ypigf(n),ypigb(n),zpig(n),
& axisy(n),axisz(n),sigy(n),sigx(n),sigz(n),pufftop(n),puffbot(n),
& htfms(n),htfmb(n),vtfms(n),vtfmb(n),agepigf(n),agepigb(n),fmspig(n),
& ipufmap(n),ipufgrp(n),
& ((puffrad(i,nr,n),i=1,nrad),nr=1,nreactr),
& ((puffmass(i,nr,n),i=1,nspec),nr=1,nreactr),n=1,npig
March2016CAMxUser’sGuideVersion6.3
3.CoreModelInput/OutputStructures
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 62www.camx.com
puffrad Puffradicalconcentrations(ppm)fornradspecies,nreactrreactors,and
npigpuffs
puffmassPuffpollutantmass(µmol)fornspecspecies,nreactrreactors,andnpig
puffs
3.4.4.6PiGSampleGridFiles
TheoptionalPiGsamplinggridconcentrationsaretimeaveragedinthesamemannerasthe
outputaverageconcentrationsprovidedonthecomputationalgrids.Thesameuserdefined
setofoutputspeciesarewrittentothesamplinggridfiles,butonlytwodimensionalsurface
layerconcentrationsarereported.ThesamplinggridfileformatisidenticaltotheCAMx
averageanddepositionfiles,withonefilegeneratedpersamplinggrid,sothattheymaybe
readilyviewedandmanipulatedwithCAMxpostprocessingsoftware.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 63www.camx.com
4.COREMODELFORMULATION
ThissectionoutlinesthenumericalapproachemployedinthecoreCAMxmodel,anddescribes
thetechnicalformulationoftheemissions,transportandremovalalgorithms.Thespecific
chemicalmechanismsandtheirnumericalsolversarediscussedindetailinSection5.
DescriptionsofPlumeinGridandeachProbingToolareprovidedinSections6through10.
4.1NumericalApproach
Thephysicalrepresentationsandthenumericalmethodsusedforeachtermofthepollutant
continuityequation(describedinSection1)aresummarizedinTable41.CAMxincludespeer
acceptedalgorithmsandcomponentformulations,anditsmodularframeworkeasesthe
additionand/orsubstitutionofalternativealgorithmsinthefuture.
Table41.SummaryoftheCAMxmodelsandmethodsforkeyphysicalprocesses.
ProcessPhysicalModels NumericalMethods
HorizontaladvectionEuleriancontinuityequation
Bott(1989)
PPM(ColellaandWoodward,1984)
HorizontaldiffusionKtheory1storderclosure Explicitsimultaneous2Dsolver
VerticaladvectionEuleriancontinuityequationImplicitbackwardEuler(time)hybrid
centered/upstream(space)solver
Verticaldiffusion Ktheory1storderclosure
Nonlocalmixing
ImplicitbackwardsEuler(time)
centered(space)solver
ExplicitACM2nonlocal
convection/diffusion(Pleim,2007)
GasPhaseChemistry
CarbonBond2005(Yarwoodetal.,2005b)
CarbonBond6(Yarwoodetal.,2010,
2012a,2014;HildebrandtRuizand
Yarwood,2013;Emeryetal.,2015)
SAPRC07TC(Carter,2010;Hutzelletal.,
2012)
Inorganic/organicaerosolprecursors
EBI(Herteletal.,1993)
LSODE(Hindmarsh,1983)
AerosolChemistry
Aqueousinorganicchemistry
Inorganicthermodynamics/partitioning
Organicthermodynamics/partitioning
Static2modeormultisectionsizemodels
RADMAQ(Changetal.,1987)
ISORROPIA(Nenesetal.,1998)
SOAP(Straderetal.,1999)or
VBS(Kooetal.,2014)
Coarse/Fine(CF)2modemodel
CMUsectionalmodel(Pandisetal.,
1993)
Drydeposition
Resistancemodelforgases(Wesely,1989)
andaerosols(SlinnandSlinn,1980)
Resistancemodelforgases(Zhangetal.,
2003)andaerosols(Zhangetal.,2001)
Depositionvelocityassurface
boundaryconditioninvertical
diffusionsolver
WetdepositionScavengingmodelforgasesandaerosols
(SeinfeldandPandis,1998)
Exponentialdecayasafunctionof
scavengingcoefficient
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 64www.camx.com
Thecontinuityequationisnumericallymarchedforwardintimeoveraseriesoftimesteps.At
eachstep,thecontinuityequationisintegratedbywayofanoperatorsplittingapproachthat
calculatestheseparatecontributionofeachmajorprocess(emission,advection,diffusion,
chemistry,andremoval)toconcentrationchangewithineachgridcell.Thespecificequations
thataresolvedindividuallyintheoperatorsplittingprocessareshowninorderbelow:
whereclisspeciesconcentration(mol/m3forgasses,g/m3foraerosols),Elisthelocalspecies
emissionrate(mol/sforgasses,g/sforaerosols),tistimesteplength(s),uandvarethe
respectiveeastwest(x)andnorthsouth(y)horizontalwindcomponents(m/s),AyzandAxzare
cellcrosssectionalareas(m2)intheyzandxzplanes,respectively,mistheratioofthe
transformeddistanceonthevariousmapprojectionstotruedistance(m=1forcurvilinear
latitude/longitudecoordinates),andΛlisthewetscavengingcoefficient(s1).
Amasterdrivingtimestepforthemodelisdynamicallydeterminedduringthesimulationfor
thelargestandcoarsest(master)grid.Timestepstypicallyrangefrom515minutesforgrid
cellsizesof1050km,toaminuteorlessforsmallcellsizesof12km.Asaresult,nestedgrids
requiremultipledrivingtimestepspermasterstepdependingontheirgridsizesrelativetothe
mastergridspacing.Furthermore,multipletransportandchemistrytimestepsperdrivingstep
areusedasnecessarytoensureaccuratesolutionsfortheseprocessesonallgrids.


 
equationsreaction specificMechanism
η
Z
2
2
2
2
Chemistry
l
ll
ScavengingWet
l
l
Y
l
X
diffusionXY
l
l
v
diffusion
l
l
l
transportZ
l
lxz
xz
advectionY
l
lyz
yz
advectionX
l
l
Emission
l
t
c
c
t
c
y
ρ/c
Km
yx
ρ/c
Km
x
m
t
c
z
ρ/c
ρK
zt
c
tz
h
c
z
c
t
c
m
cvA
yA
m
t
c
m
cuA
xA
m
t
c
zyx
E
m
t
c
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 65www.camx.com
Thefirstprocessineachtimestepforagivengridistheinjectionofemissionsfromallsources.
CAMxthenperformshorizontalandverticaladvection,verticaldiffusioncoupledtodry
deposition,horizontaldiffusion,chemistry,andfinallywetscavenging.
Althoughadvectionisperformedseparatelyinthex(eastwest),y(northsouth),andz(vertical)
directions,thenumericallinkagebetweenthesecomponentshasbeendevelopedinamass
consistentfashiontopreservethedensityfieldateachtimestep.Thismaintainstheflexibility
toallowmanytypesofmeteorologicalmodels,andmodelinggridresolutions,projections,and
layerstructures,tocharacterizetransportinCAMx.
Tracegasesandparticlesareremovedfromtheatmosphereviadepositiontotheground.Dry
depositionreferstothedirectsedimentationand/ordiffusionofmaterialtovariousterrestrial
surfacesanduptakeintobiota.Drydepositionvelocitiesforeachspeciesareusedasthe
surfaceboundaryconditionforverticaldiffusion,whichappropriatelycouplessurfaceremoval
ofpollutantsthrougheachcolumnofcellsviatheverticalmixingprocess.Wetdeposition
referstotheuptakeofmaterialintocloudwaterandprecipitation,anditssubsequenttransfer
tothesurface.Theefficiencywithwhichwetanddrydepositionprocessescanremove
pollutantsfromtheairdependsuponthephysicalandchemicalpropertiesofthepollutants,
localmeteorologicalconditions,thetypeofsurfaceonwhichtheyarebeingdeposited,andon
thefrequency,duration,andintensityofprecipitationevents.
4.2CAMXGridConfiguration
4.2.1GridCellArrangement
CAMxcarriespollutantconcentrationsatthecenterofeachgridcellvolume,representingthe
averageconcentrationovertheentirecell.Meteorologicalfieldsaresuppliedtothemodelto
quantifythestateoftheatmosphereineachgridcellforthepurposesofcalculatingtransport,
chemistry,andremoval.CAMxinternallycarriesthesevariablesinanarrangementknownas
an“ArakawaC”gridconfiguration(Figure41).Statevariablessuchastemperature,pressure,
watervapor,andcloudwaterarelocatedatcellcenteralongwithpollutantconcentration,and
representgridcellaverageconditions.Windcomponentsanddiffusioncoefficientsarecarried
atcellinterfacestodescribethetransferofmassinandoutofeachcellface.NoteinFigure4
1,forexample,thathorizontalwindcomponentsuandvarestaggeredfromeachother.This
facilitatesthesolvingofthetransportequationsin“fluxform”.
Dependinguponthesourceofmeteorologicaldata,itisrecommendedthattheuserdirectly
providethegriddedhorizontalwindfieldsinthestaggeredArakawaCconfiguration.However,
thisisnotalwaysfeasible,andsoCAMxofferstheoptionfortheusertosupplyall
meteorologicalvariables,includinghorizontalwindcomponents,atcellcenter;inthiscase
CAMxinternallyinterpolatesthewindstocellinterfaces.Notethatthisleadstoaslight
smoothingeffectonthehorizontalwindfields.
Figure41alsodescribesthehorizontalcellindexingconventionusedinCAMx.Eachcellis
definedbytheindexpair(i,j),whereirangesfrom1tonx(thenumberofcellsintheeastwest
direction),andjrangesfrom1tony(thenumberofcellsinthenorthsouthdirection).The
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 66www.camx.com
Figure41.AhorizontalrepresentationoftheArakawaCvariableconfigurationusedin
CAMx.
easternandnorthernfacesofthecellareindexed(i,j),whilethewesternandsouthernfaces
areindexed(i1,j)and(i,j1),respectively.
Inthevertical,mostvariablesarecarriedateachlayermidpoint(definedasexactlyhalfway
betweenlayerinterfaces)torepresentlayeraverages.Againtheexceptionsarethosevariables
thatdescribetherateofmasstransportacrossthelayerinterfaces,whichincludethevertical
diffusioncoefficientKVandtheverticaltransportrate
.Thesevariablesarecarriedinthe
centerofeachcellhorizontally,butarelocatedatthetopofthelayer(i.e.,theinterface)
vertically.
4.2.2GridNesting
CAMxincorporatestwowaygridnesting,whichmeansthatpollutantconcentration
informationpropagatesintoandoutofallgridnestsduringmodelintegration.Anynumberof
gridnestscanbespecifiedinasinglerun,wherehorizontalgridspacingcanvaryfromonegrid
nesttoanother(notethatverticalgridstructuresmustbeconsistentamongallgrids).The
nestedgridcapabilityofCAMxallowscosteffectiveapplicationtolargeregionsinwhich
regionaltransportoccurs,yetatthesametimeprovidingfineresolutiontoaddresssmallscale
impactsinselectedareas.
Eachgridnestisdefinedoverasubsetofmaster(coarsest)gridcells.Therangeofmastergrid
rowandcolumnindicesthatdefinethecoverageofeachnestedgridmustbespecifiedinthe
runcontrolfile.Anintegernumberofnestedgridcellsmustspanonemastergridcell;this
numberisreferredtoasa“meshingfactor”.“Buffer”cellsareaddedaroundtheperimeterof
eachnestedgridtoholdlateralboundaryconditions.Buffercellsareaddedautomatically
withinCAMxandshouldnotbespecifiedbytheuserintheruncontrolfile.Allnestedgrid
outputfilescontaindatafortheentirearrayofcomputationalandbuffercells;however,buffer
cellconcentrationsareconsideredinvalidandshouldbeignored.Additionally,allnestedgrid
(i, j)
T, p, q, Kv
(i, j)
(i, j)
(i, j-1)
(i-1, j) u, Kx
u, Kx
v, Ky
v, Ky
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 67www.camx.com
Figure42.Anexampleofhorizontalgridnesting,showingtwotelescopingnestedgrids
withina10×10cellmastergrid.Theouternestcontains10×12cells(includingbuffercellsto
holdinternallateralboundaryconditions),andtheinnernestcontains6×10cells(including
buffercells).
inputfilesmustcontaindatafortheentirearrayofcomputationalandbuffercells.Anexample
ofahorizontalnestingarrangementisshowninFigure42.Here,twotelescopingfinegrid
nestsaredefined:onewithameshingfactorof2spanningmastergridcells(5,4)to(8,8),and
onewithameshingfactorof4spanningmastergridcells(6,6)to(6,7).
Restrictionsonspecifyingthesizeandresolutionofallgridnestsincludethefollowing:
1) Theratioofmastergridcellsizetonestedgridcellsizemustbeaninteger(e.g.,a
“meshingfactor”of3meansthat3nestedcellsspanthedistanceof1mastercell,
resultinginanareaof9nestedcellspermastercell);
2) Fortelescopinggrids(anestedgridcontaininganevenfinergrid),thecellsizeofthefinest
gridmustbeacommondenominatorforallparentgridsaboveit(e.g.,a36124kmor
36122kmarrangementisallowed,buta36129kmisnot);
3) Therestrictionin(2)abovedoesnotapplytoparallelnestedgridsofthesamegeneration
(e.g.,4kmand5kmgridscanbelocatedindifferentareasofamastergridprovidedthat
themastercellsizeissomemultipleof20km);
4) Nestedgridscannotoverlap,althoughtheymayshareacommonlateralboundaryor
edge;
Coarse Grid Boundary Cells
Coarse Grid Boundary Cells
Coarse Grid Boundary Cells
Coarse Grid Boundary Cells
Fine Buffer Cells
Fine Buffer Cells
Fine Buffer Cells
Fine Buffer Cells
Boundary of Fine Grid 1
Boundary of Fine Grid 2
1 2 3 4 5 6 7 8 9 10
10
9
8
7
6
5
4
3
2
1
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 68www.camx.com
5) Nestedgridscannotextendintoalateralboundary,ornonmodeled,areaofthemaster
grid;
6) CAMxiscurrentlyconfiguredtoallowfour“generations”ofnests(e.g.,fourlevelsof
telescopinggrids);thiscanbeextendedinthecodeifmorethanfourlevelsofnestsare
required;
7) Thetotalverticaldepthofeachnestedgridmustexactlymatchthedepthofthemaster
grid,andnestedgridverticallayerstructuresmustbeconsistentwiththemastergridin
termsofthenumberoflayersandtheirthicknesses;
4.2.3FlexiNesting
ThefollowingFortranbinaryI/Ofilesmustbeprovidedforthemastergrid,andoptionally
providedforeachnestedgrid:
2Dsurfaceemissions;
2Dtimeinvariantsurfacecharacteristics(landuseandLAIdistribution);
2Dtimevariantsurfacemeteorology(surfacetemperature,snowcover);
3Dtimevariantstatemeteorology(wind,temperature,pressure,moisture,verticalgrid);
3Dtimevariantcloudandprecipitationvariables;
3Dtimevariantverticaldiffusivities
Anyoftheseinputfilesmaybesuppliedforeachnestedgrid,ornoneatall.Ifanyofthesefiles
arenotsuppliedforaparticularnestedgrid,theFlexiNestalgorithmwithinCAMxinterpolates
themissingfieldsfromtheparentgrid.Clearlyitisdesirabletoprovidenestedgriddata
wheneverpossible.However,theabilitytointerpolatedataisusefulfortestingsensitivityto
gridconfigurationsorforsituationswhenitisnotpossibletorunameteorologicalmodelforall
gridnests.
TheFlexiNestoptionalsoallowsuserstoredefinethenestedgridconfigurationatanypointin
asimulation.Nestedgridscanbeintroducedorremovedonlyatthetimeofamodelrestart
sinceanewCAMxusercontrolfilemustbeusedtoredefinethegridconfiguration.For
example,theusermaywishto“spinup”themodeloverthefirsttwodaysusingjustthemaster
grid.Onthethirdday,theusermightintroduceoneormorenestsformoredetailedanalysis.
Thiswouldrequirethatthemodelberestartedonthethirddaywithanewcontrolfilethat
definesthepositionofthenewnestsand(optionally)providesanyadditionalinputfieldsfor
thesegrids.CAMxwillinternallyreconcilethedifferencesingridstructurebetweentherestart
filesandthenewusercontrolfile,andtheninterpolateanydatafieldsnotsuppliedtoCAMxfor
thenewnestsfromtheparentgrid(s).
4.3TreatmentofEmissions
PollutantemissionsaretreatedintwobasicwayswithinCAMx:lowlevel(gridded)emissions
thatarereleasedintothelowest(surface)layerofthemodel;andelevatedstackspecific
(point)emissionswithbuoyantplumerisethatcanbeemittedintoanymodellayer.Emission
ratesareheldconstant(nottimeinterpolated)betweenreadingintervals(usually1hour)but
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 69www.camx.com
areinjectedateverygridspecifictimestepduringthesimulation.Griddedandpointemissions
areprovidedtoCAMxinseparateinputfiles.Externalemissionprocessingsystemsareusedto
developgriddedandpoint,time‐andspaceresolved,chemicallyspeciatedinputfilesforCAMx.
TheseexternalprogramsarenotdiscussedinthisUser’sGuide;seeSection2formore
informationonemissionsystemsthatareusedtosupportCAMxapplications.
4.3.1GriddedEmissions
Twodimensionalgriddedlowlevelemissionsaredefinedbyspace‐andtimevaryingratesfor
eachindividualgasandPMspeciestobemodeled.Griddedemissionsrepresentsourcesthat
emitnearthesurfaceandthatarenotsufficientlybuoyanttoreachintotheuppermodel
layers.Suchemissioncategoriesinclude:
Lowlevelstack(point)emissionsthataretoosmalltoresultinplumeriseabovethe
modelsurfacelayer;
Othernonpointindustrialsources(fugitiveleaks,tanks,etc.);
Mobilesources(cars,trucks,nonroadvehicles,railroad,marine,aircraft,etc.);
Residentialsources(heating,cooking,consumerproducts);
Commercialsources(bakeries,refuelingstations,drycleaners);
Biogenicsources;
Naturalsources(smallfires,windblowndust).
Thespatialdistributionofeachindividualsourcewithinthesecategoriesisdefinedbythe
modelinggrid.Informationsuchaspopulationdistribution,housingdensity,roadway
networks,vegetativecover,etc.istypicallyusedasasurrogatetodistributeregionalemission
estimatesforeachsourcetothegridsystem.Processingtoolsareusedtocombineemissions
fromallsourcesintoasingleinputfileforeachgrid(seeSections2and3).
4.3.2ElevatedPointEmissions
Similarlytogriddedemissions,elevatedpointemissionsaredefinedbyspace‐andtimevarying
ratesforeachindividualgasandPMspeciestobemodeled.Theonlydifferenceisthatthese
sourcesemitfromindividualstackswithbuoyantrisethatmaytakethemintouppermodel
layers.Thesetypesofsourcesarealmostalwaysassociatedwithlargeindustrialprocesses,
suchaselectricgenerators,smelters,refineries,largefactories,etc.butcanalsorepresent
naturalelevatedsourcessuchaswildfiresandlightningNOx.Thespatialdistributionofthese
pointsisspecificallygivenbythecoordinatesofthestacksthemselves(gridlocationsare
determinedwithinCAMx).PlumeriseisdeterminedwithinCAMxasafunctionofstack
parameters(height,diameter,exitvelocityandtemperature)andambientmeteorological
conditions,sothepointsourcefileprovidesspeciatedtimeresolvedemissionratesandstack
parametersforeachindividualsource.Asinglepointsourcefileprovidesthedefinitionofall
stacksandtheiremissionsovertheentiremodelingdomain(seeSections2and3).
PlumeriseiscalculatedusingthemultilayerstabilitydependentalgorithmofTurneretal.
(1986).Thisapproachcalculatesthemomentumandbuoyantplumeriseenergyfromthe
stack,takesthelargerofthesetwovalues,anddeterminesthedissipationofthatenergyvia
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 70www.camx.com
mixingwithambientairaccordingtothemeteorologicalconditionsthroughthehostmodel
layer.Ifsufficientenergyremainstoreachintothenextmodellayer,thecalculationfor
buoyantriserepeatsforthemeteorologicalconditionsofthatlayer,andsoon,untilalayeris
foundwheretheplumecannotriseanyfarther.Allemissionsfromthissourcearethen
injectedintothegridcelldirectlyabovethestackatthislayerheight.Thisalgorithmwas
adoptedforCAMxbecauseitprovidesamorerealistichandlingofstablelayersaloftthatcan
trapplumerise,whereasthiseffectwouldnotberealizedbasedonmeteorologicalconditions
atstacktopalone.
Underneutral/unstableconditions,momentumriseatthestacktopiscalculatedfrom
whilebuoyancyriseisthelesserof
and
Intheseexpressionsdsisstackdiameter(m),vsisstackexitvelocity(m/s),hsisstackheight(m),
wisambientwindspeed(m/s),andzbisthedistancebetweenthestacktopandthebaseofthe
currentmodellayer.Aminimumwindspeedof1m/sisspecifiedtoavoidunrealisticallylarge
plumerise.Buoyancyfluxfisinitiallycalculatedfromstackparameters,butissettoresidual
fluxenteringthebottomofanyhigherlayer.Theinitialbuoyancyfluxatstacktopisgivenby
wheregisgravitationalacceleration(9.8m2/s),Tsisstackexittemperature(K),andTis
ambienttemperature(K).Theresidualfluxcalculationintothenexthigherlayerdependson
whichneutral/unstablebuoyancyriseequationwasoriginallyusedinthecurrentlayer:
or
whereztisthedistancebetweenstacktopandthetopofthecurrentmodellayer.
Understableconditions,momentumriseatthestacktopiscalculatedfromthelesserofHmu
and
w
vd
Hss
mu
3
bbu zwfH 5/3
/30
bsbu zwfhwfH 5/2
3
5/3
3/200/24
s
s
ss T
TT
dvgf 4
2
0
3/5
30
tbu zH
wf

3/2
33 1105.5
tbu
s
tbu zH
h
zHwf
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 71www.camx.com
whilebuoyancyriseisthelesserof
and
Intheseexpressions,

/
zisthepotentialtemperaturegradient(ameasureofatmospheric
stability).Herealso,buoyancyfluxisinitiallycalculatedfromstackparameters,butissetto
residualfluxiftheplumeextendsintothenexthigherlayer.Theresidualfluxcalculation
dependsonwhichstablebuoyancyriseequationwasoriginallyused:
or
Whenfinalplumeriseisreachedusingstablebuoyancyrise,itisadjusteddownwardtotwo
thirdsoftherisethroughthestabledepth.Afterfinalplumeriseisdetermined,theriseis
furtheradjusteddownwardbystacktipdownwashaccordingtoacriticalFroudenumberand
ambientwindspeed.ThestackFroudenumberisgivenby
ForF<3,nodownwashadjustmentismadetofinalplumerise.Abovethatvalue,thefollowing
downwashfactors(D)areapplieddependingupontheambientwindspeedatstacktop:
CAMxinjectspointsourceemissionsintoallmodellayersspannedbytheplumedepthatfinal
(adjusted)rise.Plumedepthisdeterminedasafunctionofstackdiameter,plume
6/1
3/1
22
2/1
646.0
zwT
dv
TH
s
ss
ms
3/1
3
1
8.1
bbs z
zw
Tf
H
33
56.0 bt zz
T
w
z
ff

3/83/8
3/1
0
24.0 bt zz
T
f
z
ff

TTdg
vT
F
ss
s
2
s
ss
s
s
s
vwD
vwv
v
wv
D
riseplumenowvD
3
2
,1
3
2
,3
,0
8/3
3/8
1
3/1
0
1.4
bbs z
zf
Tf
H
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 72www.camx.com
temperature,plumevelocity,timeofplumerise,andambientwindandtemperature
conditions.Auniformmassdistributionthroughplumedepthisassumed.Ifthisdepthis
whollycontainedwithinasinglelayer,thatlayerreceivesallemissionmass.Ifthisdepthspans
severallayers,thenfractionsoftheemissionsareinjectedintotheselayersaccordingtothe
fractionofplumedepthspanningthoselayers.Weapplythe“ruleofthumb”thatplumedepth
equalsplumerise(TurnerandSchulze,2007)asamaximumlimitforplumedepth.
Thefollowingequationsareusedtodefinetheplumedepthafterreachingfinalrise.Theseare
basedontheapproachusedintheSCIPUFFmodel(EPRI,2000)andweredevelopedforusein
theCAMxplumeingrid(PiG)submodel.TheplumedepthDpatfinalriseisgivenby
2/1
2223 tKDD sp
whereDsisstackdiameter,Kisplumediffusivityduringrise,andtisthetimeofrise.Thetime
ofriseisdeterminedbydividingfinalplumerisebythemeanplumerisespeedVp;thelatteris
settohalfthestackexitvelocity.Alowerlimitof1m/sisappliedtotheexitvelocity,sothe
minimumvalueofVpis0.5m/s.Theplumediffusivityisdeterminedbyscalinginitialplume
width(accordingtostackdiameter)bytheturbulentfluxmomentqp2:
2
215.0 ps qDK
where
22
2
22 3
4.0
p
ppp Vv
v
Vfq
TheturbulentfluxmomentisafunctionofthemeanplumerisespeedVp,theambientwind
speedvtakenattheleveloffinalrise,andaplumeentrainmentcoefficientfp:

2
241
p
p
sp VT
TT
gDf
wheregisthegravitationalconstant(9.8m2/s),Tisambienttemperatureattheleveloffinal
rise,andTpisthemeanplumetemperature,takenasthemeanofthestackexittemperature
andtheambienttemperatureatfinalrise.
4.4ThreeDimensionalTransport
4.4.1ResolvedTransport:Advection
TheCAMxadvectionalgorithmisbothmassconservativeandmassconsistent.Mass
conservationreferstotheabilitytoaccuratelyaccountforallsourcesandsinksofmassinthe
model,withnospuriouslossorgainofmassduringmodelintegration.Tobemass
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 73www.camx.com
conservative,CAMxinternallycarriesconcentrationsofeachspeciesasadensity(µmol/m3for
gases,µg/m3foraerosols),andsolvestheadvectionanddiffusionequationsinfluxform.This
alsoservestosimplifymassbudgetaccounting,whichisusedbythevarioussource
apportionmentandprocessanalysisoptions.Gasconcentrationsareinternallyconvertedto
volumetricmixingratio(partspermillion,orppm)forthechemistrystep,andwhentheyare
writtentotheaverageoutputfiles.
Massconsistencyreferstothemodel’sabilitytotransportpollutantmassexactlyequivalentto
theinputatmosphericmomentumfield.Forexample,amodelthatisperfectlymassconsistent
willpreserveaunitypollutantmixingratiofieldinadivergentmomentumfieldgivenconstant
unityboundaryandinitialconditionsandzerosourcesandsinks.Sourcesofpoormass
consistencyinairqualitymodelsaretypicallyrelatedto(1)supplyingmeteorologythatis
inherentlyinconsistent(e.g.,fromaninterpolativeobjectiveanalysisordiagnosticmodel);(2)
spatiallyinterpolatingoraveragingmeteorologicalmodelfieldstoadifferentairqualitymap
projectionorgridresolution;and(3)employingdifferentnumericaland/orphysicalmethodsin
theairqualityandmeteorologicalmodels.
ItisexpectedthatCAMxuserswillpreparehighquality,massconsistentmeteorologicalfields
usingadvancedprognosticmodelssoastominimizeinconsistenciesintheinputsthemselves.
Thepracticeofdevelopingmeteorologicalinputfieldsusingobjectiveanalysisor“diagnostic”
approachesishighlydiscouraged.
CAMxoperatesonthemapprojectionsandgridsystemsemployedinseveralwidelyused
prognosticmeteorologicalmodels(e.g.,WRF,MM5,andRAMS)sothattranslationof
meteorologicaldatatoCAMxrequiresaslittlemanipulationaspossible.However,CAMx
providesaveryimportantflexibilitythatallowstheairqualitygridtodifferinprojectionand
resolutionfromthesourceofmeteorologicaldata.This,ofcourse,leadstoapotentiallylarge
externalsourceofmassconsistencyerror.TheabilitytodriveCAMxwiththeoutputfromany
prognosticmeteorologicmodelguaranteesadifferenceinnumericalmethodsbetweenthetwo
models,leadingtoaninternalsourceofmassconsistencyerror.Thethreediminensional
advectionalgorithminCAMxisdesignedtocompensateforbothexternalandinternalsources
ofconsistencyerror.
Horizontaladvectionusesinputhorizontalwindsfieldsandissolvedusingtheareapreserving
fluxformadvectionsolverofBott(1989)orthePiecewiseParabolicMethod(PPM)ofColella
andWoodward(1984)asimplementedbyOdmanandIngram(1993).Thesetwofinite
differenceschemeswereincorporatedintoCAMxbecausetheyprovidehigherorderaccuracy
withminimalnumericaldiffusion,yetareequivalentinexecutionspeedcomparedtoother
simpleradvectionalgorithmswhenoperatingonequivalenttimesteps.InCAMx,theBott
schemeisallowedtotakelargertimestepsthanPPMbecauseBottremainsstableforCourant
FriedrichsLevy(CFL)numbersupto1(i.e.,theratioofwindspeedtogridspacing).Timesteps
aredeterminedforBottusingaCFLnumberof0.9,whiletimestepsforPPMarerestrainedbya
CFLnumberof0.5.Therefore,theBottoptionresultsinafastersimulationthanthePPM
option,perhapsatthepriceofsomeaccuracy.Werecommendtestingbothforyourspecific
application.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 74www.camx.com
CAMxinternallycalculatesaninstantaneousverticalvelocityfieldfromgrid‐andtimestep
specifichorizontalmomentumfieldsasawaytobalancethelocalatmosphericcontinuity
equation.Tocalculateaverticalvelocityprofileforagivengridcolumn,thedivergent
atmosphericcontinuityequation
islocallyintegratedthroughthedepthofthecolumnbyimposingzeroverticalvelocityatthe
ground:
wherethelocaltimeratechangeofatmosphericdensity
/tineachgridcellisknownfrom
theinputmeteorologicalfields.Thehorizontalfluxdivergenceofatmosphericdensityis
calculatedinamannerthatisnumericallyconsistentwiththeprocedureusedtohorizontally
advectpollutants:
andthisequationissolvedusingeithertheBottorPPMadvectionsolvers,asdescribedabove.
Inthisapproach,averticalvelocityprofilew(z)isconstructedthatprovidesabalancebetween
theimposeddensitytendencyandtheresolvedhorizontalmomentumdivergenceineachgrid
cellateachtimestep.Totalthreedimensionaladvectionthusincludesresolvedmomentum
convergence/divergenceratesaswellasanyartificialdivergencescausedbythehorizontaland
verticalgridspecifications(e.g.,spatiallyvaryingverticalgridstructure,orsystematic
distortionsassociatedwiththemapprojections).
Thetotalverticaltransportrate
ataparticularlayerinterfaceisdefinedasthecombinationof
resolvedverticalvelocityandthelocaltimerateofchangeofthelayerinterfaceheight:
Thetotalverticaltransportrateisusedforsubsequentverticaladvectioncalculationsforall
pollutants.Insimpletestsinwhichauniformpollutantfieldofunitymixingratioistransported
throughoutasingleregionalgridoverseveraldaysusingactualepisodicmeteorologicalinputs,
thisapproachhasbeenshowntoprovidenearlyexact(towithin103104%)consistency
betweenthedensityandpollutantfields.
VerticaladvectionissolvedusingaspecificimplicitbackwardEulerintegrationscheme
designedspecificallyforCAMx(Emeryetal,2011).Sinceimplicitschemesareabsolutelystable,
onlyonesolutionstepisnecessaryperdrivingtimestep.Explicitapproachesrequire

dzρV
t
ρ
zρw
z
HH
0
w
t
h
ρV
t
ρ
m
vA
yA
m
m
uA
xA
m
ρVxz
xz
yz
yz
HH
22
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 75www.camx.com
potentiallymanysubsteps(ontheorderof10100)tomaintainastablesolution,which
introducesthepotentialforexcessivenumericaldiffusion.
4.4.2SubGridTurbulentTransport:Diffusion
CAMxemploysafirstordereddyviscosity(or“Ktheory”)approachbydefaulttorepresentsub
gridturbulentdiffusion(ormixing).Asa“local”closuretechnique,Ktheoryonlytreatsmass
transfercellbycell(horizontal)orlayerbylayer(vertical),analogouslytothediffusionofheat
throughasolidmedium.WhereasKtheoryadequatelycharacterizeshorizontaldiffusionand
weakverticalmixingduringneutralandstableconditions,theshortcomingsofKtheoryare
relatedtoitsinadequatetreatmentofdeepverticalconvectiveboundarylayermixing.In
convectivesituations,buoyantplumesderivingenergyinthesurfacelayerarequicklyand
efficientlymixeddeepintotheatmospherewithineddiesthatareusuallymuchlargerthanthe
individualmodellayers.Therefore,Ktheorymaymixtheconvectiveboundarylayermuchless
efficientlythancommonlyobserved.Thishasbeenshowntohaveveryimportantramifications
forchemistry,especiallyduringtransitionperiodsbetweenstable/neutralandconvective
conditions.CAMxincludestheoptiontouseKtheoryverticalmixing(default)orthenonlocal
AsymmetricConvectiveModel(ACM2)fromPleim(2007).
4.4.2.1HorizontalDiffusion
AsdiscussedbyYamartino(2000)advectionsolverssuchasBottandPPMreducenumerical
diffusiontothepointwheremodelersneedtobeconcernedaboutincludingappropriatelevels
ofexplicithorizontaldiffusion.Currently,thereisverylittleinformationontheappropriate
levelofhorizontaldiffusionforEuleriangridmodels.ThisissueisnotlimitedtoCAMx.
ExplicithorizontaldiffusioncoefficientsaredeterminedwithinCAMxusingadeformation
approachbasedonthemethodsofSmagorinsky(1963):
Separatediffusivitycomponentsaregeneratedforfluxesinthex‐andydirectionssinceKXand
KYarecalculatedforseparatecellfacesintheArakawaCgridarrangement.ThevalueofK0is
specifiedaccordingtotheapproachinMM5(AnthesandWarner,1978):
AmaximumvalueofKX/Yissettomaintainnumericalstabilityforthegivengridspecific
timestep.Aminimumvalueissetto1m2/s.Horizontaldiffusionisappliedusinganexplicit
simultaneoustwodimensionalfluxdivergencecalculation.
4.4.2.2KtheoryVerticalDiffusion
Thedefaultverticaldiffusionsolver(Ktheory)usesastandardimplicitbackwardEuler
integrationscheme.Griddedverticaldiffusioncoefficients(Kv)mustbesuppliedtothemodel
2/1
22
/24
y
v
x
u
x
v
y
uyx
KK oYX
t
yx
K
3
0103
March20
1
C
OMPREHE
N
forthe
m
forany
o
theoryv
e
magnitu
d
ofthecu
coupling
coarser
g
singlest
e
4.4.2.3
A
Pleim(2
0
meteoro
includes
:
fromthe
slowerc
o
thesurf
a
noncon
v
includes
exchang
e
Figure4
vertical
g
TheAC
M
variable
s
already
c
thatAC
M
usingAC
layerch
a
include
a
withint
h
ACM2di
f
onHostl
a
shearsi
m
1
6
N
SIVE
A
IRQUALIT
Y
m
astergrid
v
o
rallnested
e
rticaldiffu
s
d
eoftheve
r
rrentgridti
amongalll
a
g
ridsthatw
o
e
p.
A
CM2Verti
c
0
07)hasde
v
logicalmod
e
:
(1)mixing
a
surfacelay
e
o
mpensatin
g
a
ce(theasy
m
v
ectivecon
d
thebasicfe
a
e
.
3.Schema
t
g
ridcolumn
M
2paramet
e
s
neededto
c
c
alculated
w
M
2berunw
i
M2inboth
m
a
racterizatio
a
noptionto
h
eCMAQA
C
f
fusivitycal
c
a
gandBovil
m
ilartoLiua
Y
M
ODELWITHE
X
iainputfile
;
grids.Whe
r
s
ionissolve
d
r
ticaldiffusi
v
mestepor
a
a
yersthate
x
o
uldotherw
alDiffusion
v
elopedthe
e
landtheC
o
a
mongadja
c
e
rtoalllay
e
g
downwar
d
m
metricasp
d
itions,ACM
a
turesofb
o
t
icrepresen
t
duringcon
v
e
rizationisa
c
alculateth
e
ithinCAMx
f
i
thinthem
e
m
eteorolog
i
n.Certain
m
generatev
e
C
M2algorith
c
ulationisa
le(1993);a
n
ndCarroll(
1
X
TENSIONS
;
theuserm
a
r
easthever
t
d
overpote
n
v
ityrelative
a
maximum
x
hibithighd
iseonlyexp
e
ACM2fort
h
o
mmunity
M
c
entlayers
u
e
rsthrough
t
d
mixinglay
e
ect).Figure
2revertsb
a
o
thlocaland
t
ationofth
e
v
ectiveadju
nalternativ
e
e
transferr
a
f
orotherp
u
e
teorologica
l
i
calandche
m
m
eteorologi
c
e
rticaldiffus
i
m,whichp
e
hybridoft
w
n
d(2)local
s
1
996).The
f
76
a
yoptionall
y
t
icaladvecti
n
tiallysever
a
totheverti
c
5minutesu
iffusivity,e
s
e
riencemix
i
h
eWeather
M
ultiscaleAi
u
singKtheo
t
heboundar
e
rbylayerf
r
43shows
t
a
cktothelo
c
themosti
m
e
turbulent
stmentint
h
e
optionto
t
a
tesareavai
u
rposes.Th
e
l
modeluse
d
m
istrymod
e
c
alinterfac
e
i
vitiesinth
e
e
rformsitsd
w
omethodo
l
s
calingacco
r
f
ormerisus
e
y
supplyve
r
onstepiss
o
a
lsubsteps
,
c
allayerde
p
bstep).Th
i
s
peciallyfor
i
ngbetwee
n
Researcha
n
i
rQuality(C
M
ry;(2)rapid
r
ylayer(the
romtheto
p
t
hisapproa
c
c
alKtheor
y
m
portantco
m
exchangea
m
h
eACM2(t
a
t
hedefault
K
lablefromt
e
CAMxAC
M
d
toderivei
n
e
lsdoeslea
d
e
programs(
e
sameman
n
d
iffusivityca
l
logies:(1)b
o
r
dingtoRic
h
e
dwithinth
CAMxUser’
4.Core
r
ticaldiffusi
o
o
lvedinasi
n
,
depending
p
ths(CAMx
i
sensuresn
o
longdrivin
g
n
adjacentl
a
n
dForecasti
n
M
AQ)mod
e
upwardno
n
convective
a
p
ofthebou
n
c
hschemati
c
y
componen
t
m
ponentof
m
onglayer
s
a
kenfromP
K
theoryap
p
heexistingi
M
2optiond
o
nputsforC
A
d
toconsist
e
e.g.,WRFC
A
n
erasthea
p
lculationsin
o
undarylay
e
h
ardsonnu
m
establebo
u
sGuideVersi
o
ModelFormul
www.cam
o
ncoefficie
n
n
glestep,K
uponthe
usesthesm
o
nlocaldiff
g
timesteps
a
yersduring
n
g(WRF)
e
l.TheACM
n
localmixi
n
a
spect);an
d
n
darylayer
t
c
ally.Durin
g
t
.Thus,AC
M
nonlocal
s
withina
leim[2007]
)
p
roach.All
nputfiles,
o
o
esnotreq
u
A
Mx.Howe
v
e
ntboundar
y
A
Mx,MM5C
A
p
proachuse
ternally.T
h
e
rscalingb
a
m
berandve
r
u
ndarylaye
r
o
n6.3
ation
x.com
n
ts
aller
usive
on
a
2
n
g
d
(3)
t
o
g
M
2
)
.
o
rare
u
ire
v
er,
y
A
Mx)
d
h
e
a
sed
r
tical
r
orif
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 77www.camx.com
itislargerthanthelatter.TheCAMximplementationofACM2supportsOMPandMPIparallel
processing.
NotethatACM2increasesCAMxruntimeconsiderably.WhereastheoriginalCAMxKtheory
solverisimplicitanddoesnotneedtousesmalltimesteps,ACM2anditsKtheorycounterpart
bothuseexplicitsolvers,whichmustdividethemodeltimestepintomanyverysmallsubsteps
togenerateastablesolution.Theslowdowncanbeexacerbatedbyusingthemuchlarger
ACM2verticaldiffusivityvaluesinsteadofthestandarddiffusivityoptionsavailableintheCAMx
meteorologicalpreprocessors.
NOTE:ACM2doesnotworkwiththeDecoupledDirectMethod(DDM)ortheIntegrated
ProcessRate(IPR)componentoftheProcessAnalysis(PA)tool.
4.5WetDeposition
Wetdepositionisthepredominantremovalprocessforfineparticles.Particlesactascloud
condensationnucleiandresultingclouddropletseffiecientlygrowandaccreteinto
precipitation.Particlescanalsobedirectlyscavengedbyprecipitationviaimpaction.Therates
ofnucleationandimpactiondependuponcloudtype(e.g.,prolongedwidespredstratiformvs.
brieflocalizedconvection),precipitationrate,andparticleandcloudwatersizedistribution.
Wetdepositioncanalsobeanimportantremovalprocessforrelativelysolublegasesthrough
thefollowingseriesofsteps:
Diffusion/absorptionofgasmoleculesintoclouddroplets;
Scavengingofclouddropletsbyprecipitation;
Diffusionofambientgasesintofallingprecipitation;
Possibleaqueousphasereactionswithincloudandrainwater.
Eachofthestepsabovemaybereversible,sothattheoverallnetremovalofgasesdependson
theresultsofforwardandbackwardprocessesateachstep.Therateatwhichtheseprocesses
occurdependsoncloudtypeandtheextenttowhicheachpollutantdissolvesinwaterandits
overallreactionrateonceinsolution.Cloudwaterdropletscanabsorbgasesfromtheairup
thelimitoftheirsolubilityinwater.Formanypollutantsthissolubilityfarexceedstheamount
ofpollutantpresentintheairasdeterminedbytheHenry’sLawconstant,whichisdefinedas
theequilibriumratioofpollutantconcentrationsintheliquidphasetothegasphase.High
valuesfortheHenry’slawconstant(>10,000M/atm)indicateastrongtendencytodissolveinto
waterdroplets,whereaslowvalues(<100M/atm)indicateatendencytoremainintheair
(SeinfeldandPandis,1998).Equilibriumbetweenairandwaterconcentrationisusually
establishedontimescalesofminutes,soequilibriumconditionscangenerallybeassumedto
existintheatmosphere.
ThebasicmodelimplementedinCAMxisascavengingapproachinwhichthelocalrateof
concentrationchangec/
twithinorbelowaprecipitatingclouddependsonascavenging
coefficient
:
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 78www.camx.com
Thescavengingcoefficientisdetermineddifferentlyforgasesandparticles,basedupon
relationshipsdescribedbySeinfeldandPandis(1998).Twocomponentsarecalculatedfor
gases:(1)accretionofclouddropletsthatcontaindissolvedgases,and(2)directdiffusive
uptakeofambientgasesintofallingprecipitation.Twocomponentsarealsodeterminedfor
particles:(1)accretionofclouddropletsthatcontainparticlemassfromthenucleationprocess,
and(2)impactionofambientparticlesintofallingprecipitationwithanefficiencythatis
dependentuponparticleandraindropsize.Eachoftheseprocessesisdescribedbelow.
TheexternalenvironmentalinputstotheCAMxwetdepositionalgorithmincludethethree
dimensionalgriddeddistributionofcloudandprecipitationwatercontents,withthe
precipitationcontentsbrokendownintoliquid,snow,andice(“graupel”).Scavengingrate
equationswerederivedintermsofequivalentliquidprecipitationrates,sotheinput
precipitationwatercontentsareinternallytranslatedintothismetric.
ThefollowinggeneralassumptionsaremadeintheCAMxscavengingmodel:
1) Raindrops,snowflakes,andgraupelparticlesareeachseparatelyrepresentedbyasingle
meansize,mass,andfallspeed,whicharedeterminedfromequivalentliquid
precipitationrate;
2) Thereisnomixedphasedprecipitationwithinagivengridcellthedividinglinebetween
liquidrainfallandthetwofrozenformsis273K;
3) Snowisonlyassociatedwithstratiformprecipitation,andgraupelonlywithconvective
precipitation;
4) Liquidcloudwaterisallowedtoexistbelow273Kalinearrampfunctionisappliedto
apportiontotalcloudwaterintoliquidformbetween233273K(allcloudwateris
assumedtobeinicecrystalformbelow233K);
5) Allgassescandirectlydiffuseintoorfromliquidrainfall(onlystrongacidscandiffuseinto
frozenprecipitation)atarateaccordingtotheprecipitation’sstateofsaturation,
pollutantdiffusivity,andaerodynamicconsiderations;
6) Allgasescandissolveintoliquidcloudwater,whichcanbescavengedbyallprecipitation
formsdissolvedgassesareinequilibriumwithambientconcentrationsaccordingto
Henry’sLaw;
7) PMisirreversiblyscavengeddirectlybyallprecipitationformsviaimpaction,andby
uptakeintocloudwater(liquidandice)ascondensationnucleithatisitselfscavengedby
allprecipitationforms;
8) AllincloudPMmassexistsincloudwater(i.e.,no“dry”aerosolsexistintheinterstitialair
betweenclouddroplets)allPMspeciesandsizesarehygroscopicandinternallymixed.
4.5.1PrecipitationParameters
Themeanraindropdiameterdd(m)andfallspeedvd(m/s)aretakenfromtheempirical
estimatesofScott(1978).ThedropdiameterisrelatedtorainfallrateP(mm/hr),andthefall
cΛ
t
c
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 79www.camx.com
speedrelationshiphasbeenmodifiedtobetteragreewithdataprovidedbySeinfeldandPandis
(1998):
TheprecipitationwatercontentLp(g/m3)isrelatedtorainfallrateby
where
wisliquidwaterdensity(g/m3).Thisequationcanbesimplifiedtoadependencyon
justrainfallratewhentheaboverelationsfordropvelocityandsizearesubstituted.The
resultingexpressionforrainfallrateasafunctionofprecipitationwatercontentis
LocatelliandHobbs(1974)developedpowerlawequationsrelatingaveragediameters,fall
speeds,andmassesfor15precipitatingice“habits”.Weconsolidatedtheserelationshipsinto
twoforms,termed“snow”and“graupel”,byfittingnewpowerlawcurvestotheLocatelliand
Hobbsdata.Forsnow,
Andforgraupel,
Notethatintheseequationsforice,ddisinmmandcrystalmassmdisinmg.Byassumingthat
thenumberdensityandmassofsnow/graupelcrystalsareequaltothoseforraindropsgiven
equalprecipitationwatercontents,wecanrelatethemagnitudesoficesizeandfallspeedto
equivalentliquidprecipitationrate.
4.5.2GasScavenging
Wetscavengingofgasesbyprecipitationoccurswithinandbelowprecipitatingclouds.Below
thecloud,thetotalgasconcentrationinagivengridcellisavailableforscavenging.Withina
cloudycellthetotalgasconcentrationmustfirstbepartitionedintoanaqueousfractioncaq
withincloudwaterandtheremaininggaseousfractioncgwithintheinterstitialair.Both
aqueousandinterstitialgasseswithinacloudycellareavailableforscavenging,butare
removedatdifferentratesasdescribedbelow.
21.04
100.9 Pdd
dd dv 3100
6.2
61.0
059.0
1.1
dd
dd
dm
dv
8.1
20.0
035.0
83.0
dd
dd
dm
dv
d
w
pv
P
L6
106.3
27.1
7
101
w
p
L
P
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 80www.camx.com
4.5.2.1ScavengingofGasesinCloudWater
Theaqueousconcentrationinliquidcloudwater(orcloudiceinthecaseofstrongacids)is
determinedbyHenry’sLawtherebyassumingthesolutionexistsinsteadystateequilibrium.
TheHenry’sLawconstantforagivengasspeciesk0(M/atm)specifiestheratioofpollutant
massinaqueoussolution(Mormol/lh2o)toitsequilibriumpartialpressure(atm)atstandard
pressureandtemperature.ThisconstantisadjustedfortemperatureTandconvertedtoa
dimensionlessmolarratio:
whereRistheidealgasconstant(8.206102latm/molK),andAisthetemperature
dependencefactor.Dissociationofammonia,nitricacid,andsulfurdioxideasafunctionof
cloudandrainwaterpHisalsoconsideredinthesolubilitycalculation.TheeffectiveHenry’s
LawconstantHthusexpressestheequilibriumratiooftheaqueousconcentrationcaq(massper
volumeofwater)tothegasconcentrationcg(masspervolumeofair),
whicharerelatedtototalconcentrationcby
whereLciscloudliquidwatercontent(g/m3).
Thefractionofgasespresentincloudwatercanberemovedbyprecipitationviaaccretionof
cloudwaterontothefallinghydrometeor(liquidorice).Asthehydrometeorfalls,itsweepsa
cylindricalvolumeperunittimeequalto
wheredcisthesizeofclouddroplets.Thisimpliesthattheambientmotionofclouddropletsis
insignificantcomparedtothehydrometeorfallspeed.Duetoaerodynamicperturbationsofair
flowaroundthefallinghydrometeor,acollectionefficiencyisapplied,i.e.,thefractionofcloud
dropletswithinthecollectionvolumethatarescavengedbyprecipitation.Forlarge
hydrometeorswithsizesgreaterthan0.5mmanddroplets1020µm,wetakethisefficiencyto
be0.9(SeinfeldandPandis,1998).Also,wefurtherassertthat(dd+dc)2~dd2.Assumingthen
thatamonodispersedistributionofhydrometeorsarefallingthroughamonodisperse
distributionofcloudwaterdroplets,thescavengingcoefficientforprecipitationcollectingcloud
wateris

dcd vddV 2
4
dddc NEvdΛ2
4
T
ATRkH 1
298
1
exp
0
g
aq
c
c
H
w
c
aqg
L
ccc
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 81www.camx.com
whereEisthecollectionefficiency(0.9)andNdisthehydrometeornumberdensity.The
numberdensitycanbeexpressedintermsofequivalentrainfallrate,fallvelocity,anddropsize:

SubstitutingtherelationshipbetweenNdandrainfallparameters,then
Thecloudwaterscavengingcoefficientisscaledbytheratioofaqueouspollutantconcentration
tototalgridcellconcentrationtoachievetheaqueousphasescavengingcoefficient:
4.5.2.2ScavengingofAmbientGases
Giventherelativelyshortresidencetimesoffallingprecipitationthroughagivengridcell,
aqueousequilibriumbetweenambientgasandprecipitationcannotbeassumedandsothe
transferofambientgasintoliquidrainfall(oriceinthecaseofstrongacids)isexplicitly
calculated.ThemaximumrateoftransferWofagastoafallinghydrometeorcontainingno
preexistingpollutantmassis
ThemasstransfercoefficientKccanbedeterminedforafallinghydrometeorwithspeedvdand
diameterddby
whereDgand
arethemoleculardiffusivityofthegasspeciesandair,respectively.
FollowingthemethodologyofSeinfeldandPandis(1998),therateofcaqincreasecanbe
representedbyamassbalancewiththerateoftransporttothehydrometeor:
TheexpressionforWissubstitutedintotheequationabove,rearranged,andexpressedin
termsofrainfallvelocity.Wethenassumethatthroughagivenmodellayertheambientgas
concentrationandhydrometeorpHandsizeisconstant.Multiplyingbythenumberdensityof
fallinghydrometeorsNddescribedaboveyieldsthegasphaseconcentrationscavengedbyall
dropsfallingthroughthelayer:
gc cHKW
3/1
2/1
6.02
g
dd
d
g
cD
dv
d
D
K
Wd
dt
dc
dd
aq
d
23
6
1
d
cd
PE
Λ7
102.4
w
caq
ca c
Lc
ΛΛ
6/
108.2
3
7
dd
dvd
P
N
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 82www.camx.com
Withincloudylayers,thegasphaseandaqueousphasescavengingcoefficientsareaddedto
providethetotalincloudscavengingrateforgases,
=
g+
a.Forbelowcloudscavenging,
=
g.
4.5.2.3SolubilityLimitsonGasScavenging
Thereisachanceforrainfalltobecomesupersaturatedforsparinglysolublegassesasitfalls
throughagridcolumn.Thenetscavengingcoefficientforgasesdescribedaboveprovidesfor
themaximumpotentialuptakerateintocleanrainwater,socarefulconsiderationmustbe
giventoappropriatelydeterminethesignandmagnitudeofambientgridcellconcentration
changeaccordingtothedegreeofrainfallsaturation.Thechangeingasconcentrationis
relaxedtowardthedifferencebetweenthemaximumpossiblegasinsolutionforthegiven
conditionsceq,andtheamountofpreexistinggasinsolutionfromlayersabovec0,
Hereceqisdeterminedfromthetotalliquidwaterinthecell(rainpluscloudwater)andfrom
Henry’slawequilibriumaccordingtothetotalgasconcentrationinthecell(ambientgrid
concentrationsplustotalgasinpreexistingsolution).Iftheconcentrationchangeispositive,
massisaddedtotherainwater(c0isaugmented)andremovedfromthegridcell;ifnegative,
massisremovedfromrainwater(c0isdecremented)andaddedtothegridcell.
4.5.3AerosolScavenging
4.5.3.1ScavengingofAqueousAerosols
Allaerosolswithincloudylayersareassumedtoexistwithincloudwater.Therefore,the
scavengingcoefficientforaqueousaerosolsisexactlythesameasforthescavengingofcloud
droplets:
=
c.
4.5.3.2ScavengingofDryParticles
Wetscavengingofdryparticlesonlyoccursbelowprecipitatingclouds.Weusethesame
scavengingcoefficientasderivedforthecollectionofclouddroplets:
Forrainorgraupel,thecollectionefficiencyEisafunctionofparticlesizedp,andisgivenby
SeinfeldandPandis(1998)as:
d
cd
PE
Λ7
102.4
tccc eq
exp1)( 0
dd
c
gvd
KP
Λ6
1067.1
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 83www.camx.com
whereµandµwarethekinematicviscosityofair(1.8×105kg/m/s)andwater(103kg/m/s),
respectively,
=dp/ddistheratioofparticlesizetohydrometeorsize,ReistheReynolds
numberforthehydrometeor,ScistheSchmidtnumberforthecollectedparticle,andStisthe
Stokesnumberofthecollectedparticle.TheReynoldsnumberisgivenby
whiletheSchmidtnumberis
whereDpistheparticleBrowniandiffusivity:
Here,kistheBoltzmanconstant(1.38×1023J/K)andCistheCunninghamcorrectionfactorfor
smallparticles:
andwhere-isthemeanfreepathofair(6.5×108m).TheStokesnumberisgivenby
where
pistheparticledensity.TheS*parameterisgivenby


2/3
*
*
2/1
2/12/13/12/1
3/2
214
16.04.01
4
SS
SS
R
SRSR
SR
dE
t
t
e
w
cece
ce
p
2
dd
e
vD
R
p
cD
S
p
pd
CTk
D

3
-
-
p
p
d
d
C55.0
exp4.0257.1
2
1
d
ppd
td
Cdv
S
9
2

e
e
R
R
S
1ln1
12/1ln2.1
*
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 84www.camx.com
Notethatparticlesizedpanddensity
pareaffectedbyaerosolwatercontent,whichis
determinedfromlocalhumidityandPMdeliquescencepropertiesaccordingtotheISORROPIA
model(seeSection5).
Snowpresentsacomplicationfortheefficiencycalculation,sinceitisnotasinglesolidmassbut
ratheracollectionofcrystalsarrangedinamyriadofpossibleshapesthatcanleadtosignificant
aerodynamicdrag.Thisdragaffectsparticlecollectionefficiency.Tosimplifythecalculation,
weusethevalueforEdeterminedforrainandgraupel,butsetalowerlimitforEof1103
basedontheworkofSauterandWang(1989).
4.6DryDeposition
Drydepositioncanbeanimportantremovalprocessformanycompounds.Duetothedifficulty
ofmakingdirectmeasurementsofdrydepositionandtheneedforasuitablemodel
parameterization,drydepositionisoftentreatedasafirstorderremovalmechanism,where
thefluxofapollutanttothesurfaceistheproductofacharacteristicdepositionvelocityandits
concentrationinthe“surfacelayer”(i.e.,thelowestmodellayer).Depositionvelocitiesare
derivedfrommodelsthataccountforthereactivity,solubility,anddiffusivityofgases,thesizes
ofparticles,localmeteorologicalconditions,andseasondependentsurfacecharacteristics.The
factorsaffectingdepositionarediscussedinmoredetailbelow.
Foragivenspecies,particlesize,andgridcell,CAMxdeterminesadepositionvelocityforeach
landusetypepresentinthatcellandthenlinearlycombinesthemaccordingtothefractional
distributionoflanduse.Thedepositionfluxisusedasthelowerboundaryconditioninthe
verticaldiffusionalgorithm.Aerosolsizespectraandspeciesdependentpropertiesneededfor
thedepositionvelocitycalculationsareexternallysuppliedtoCAMxforallpollutantspeciesvia
thechemistryparametersfile;griddedlanduseissuppliedtothemastergridandoptionallyany
nestedfinegrids;theseasonisdeterminedbythesimulationdateandlocationontheglobe.
Movementofmaterialalongapathfromtheatmosphere,throughanyplantcanopy,andonto
thevariousplantandgroundsurfaceswithinandbelowthecanopyistypicallymodeledby
analogytoanelectricalcircuit.Resistancesinserialandparallelarrangementsareusedto
representtherelativeeasewithwhichmaterialmovesthroughdifferentportionsofthe
depositionpathway.Eachbranchofthecircuitrepresentsadifferentpathbywhichmaterial
maybedeposited.Forexample,gaseouspollutantsmaytransferthroughthelowestlayersof
theatmospherepartiallyintoaplantcanopy,throughthestomatalopeningsonplantleaves
andintotheplantmesophylltissue.Alternatively,thematerialmaytravelallthewaythrough
theplantcanopyanddepositonthegroundsurface.
CAMxofferstwodrydepositionoptions:theoriginalapproachbasedontheworkofWesely
(1989)andSlinnandSlinn(1980);andanupdatedapproachbasedontheworkofZhangetal.
(2001;2003).Bothoftheseoptionsarebrieflydescribedbelow.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 85www.camx.com
4.6.1TheWesely/SlinnModel
4.6.1.1DryDepositionofGases
Wesely(1989)developedaresistancemodelthatincorporatesthemajorelementsdescribed
above.Depositionvelocityvdiscalculatedfromthreeprimaryresistancesr(s/m)inseries:
sba
drrr
V
1
Theaerodynamicresistancerarepresentsbulktransportthroughthelowestmodellayerby
turbulentdiffusion,andoperatesequivalentlyforallgasesandsmallparticles.Themagnitude
ofthisresistancedependsontheintensityofturbulentmotion,whichinturndependsonsolar
insolation,windspeed,surfaceroughness,andnearsurfacetemperaturelapserate.InCAMxit
iscalculatedfrom
whereu*isfrictionvelocity(m/s),kisvonKarman’sconstant,zisthelowestmodellayer
midpointheight(m),z0isthesurfaceroughnesslength(m),and
hisastabilitycorrectionterm.
ThesurfacelayerparameterizationofLouis(1979)isusedtosupplyfrictionvelocityand
stabilitycorrectionasafunctionofinputsurfacemeteorologyandroughnesslength.
Roughnesslengthisinternallyassignedaccordingtoseasonandtheinputgriddeddistribution
of11landusetypesasdescribedinSection3.Ingeneral,aerodynamicresistanceisata
minimumonwarm,sunnydayswithstrongmixingduetosurfaceheatingandmechanical
turbulence,andatamaximumoncool,calmnightswhenturbulentmixingissuppressed.
Thequasilaminarsublayer(orboundary)resistancerbrepresentsmoleculardiffusionthrough
thethinlayerofairdirectlyincontactwiththeparticularsurfacetowhichmaterialisbeing
deposited.Itisusuallyassumedtodependonlyonthemoleculardiffusivityofeachpollutant
species,andisgivenby
whereScistheSchmidtnumber,ortheratioofairviscositytospeciesmoleculardiffusivity.
Overland,surfaceresistancersisexpressedasseveralmoreserialandparallelresistancesthat
dependuponthephysicalandchemicalpropertiesofthesurfaceinquestion:
wherethefirstsetofparallelresistancesrepresentsthepathwayintothestomatal(rst)and
mesophyll(rm)portionsofactiveplants,thesecondisthepathwayintotheuppercanopy(ruc),
*
3/2
2
uk
S
rc
b
gsaccldcucmst
s
rrrrrrr
r
1111
1
h
o
azuk
r
1
ln
1
*
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 86www.camx.com
thethirdisthepathwayintothelowercanopy(rdcandrcl),andthefourthisthepathwaytothe
groundsurface(racandrgs).Manyoftheseresistancesareseason‐andlandusedependent,and
arebuiltintoWesely’smodel;someinturnareadjustedwithinCAMxforsolarinsolationand
surfacewetness(vegetationisassumedtobeunstressed).Afewotherresistanceshavebeen
developedbyWeselyforSO2andozone,andsoarescaledforeachgaseousspeciesbasedon
thefollowingpollutantproperties:
Moleculardiffusivity(determinedfrommolecularweight,OHg MM 2
/);
Henry’slawsolubility(H);
Chemicalreactivitytowardoxidationofbiologicalsubstances(f).
Thisallowstheresistanceapproachtobeusedtoestimatedepositionvelocitiesforawide
rangeofgaseouspollutants.
Thesurfaceresistancesforstrongacids(e.g.,nitric,sulfuric,andhydrochloricacid,peroxides)
aresettozerogiventheirstrongratesofupdatebybiotaandothersurfaces(Huebertand
Robert,1985;WeselyandHicks,2000).Thespeciesforwhichsurfaceresistanceissettozero
aredefinedintheCAMxchemistryparametersfile.
Overwater,thesurfaceresistanceforallgasspeciesotherthanozoneisbasedonsome
improvementsadoptedbyKumaretal.(1996)followingSehmel(1980):
whereTsissurfacetemperature(K).Forozone,thisequationhasbeenupdatedto
parametricallymatchthetendenciesofmeasuredozonefluxesreportedbyHelmigetal.(2012)
fromshipbornemeasurements:
*
364
3
105101
1
uTH
r
s
O
s
whereTsisinCratherthanK.Thecubictemperaturedependencefitsthedepositionvelocity
responsetotherangeofseasurfacetemperaturesreportedintheHelmigetal.data.The
additional1×104termsetsanupperlimitonrsandalowerlimitondepositionvelocitysothat
thelatterdoesnotfallmuchbelow0.01cm/s.Alowerlimitof1500s/misplacedonrssuch
thatozonedepositionoverwaterdoesnotexceed6.5cm/s,whichistheupperlimitinthe
measureddata.
4.6.1.2DryDepositionofAerosols
Surfacedepositionofparticlesoccursviadiffusion,impaction,and/orgravitationalsettling.
Particlesizeisthedominantvariablecontrollingtheseprocesses.Theresistanceapproachof
SlinnandSlinn(1980),asimplementedbyKumaretal.(1996),hasbeenadoptedinCAMx.
Particledepositionvelocityforagivenaerosolsizeiscalculatedusingthefollowingresistance
equation:
*s
suTH
r5
103.9
1
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 87www.camx.com
wherevsedisthegravitationalsettling(orsedimentation)velocity.Thisvelocityisdependenton
aerosolsizeanddensity:
whereDisthelogmeanparticlediameter(m)ofagivensizesection,ρpisparticledensity
(g/m3),gisgravitationalacceleration,and
istheviscosityofair.ThefactorCisthe
Cunninghamcorrectionforsmallparticles,asdescribedearlierforwetscavengingofparticles.
Notethatparticlesizeanddensityareaffectedbyaerosolwatercontent,whichisdetermined
fromlocalhumidityandPMdeliquescencepropertiesaccordingtotheISORROPIAmodel(see
Section5).
Aerodynamicresistanceraisidenticaltothevalueusedforgaseousdrydeposition.Resistance
todiffusionthroughthequasilaminarsublayerlayerdependsonaerosolBrowniandiffusion
andinertialimpaction.Particlesareassumedtoremainonasurfaceoncetheyimpact,so
resuspensioneffectsareignored.Boundaryresistancerbisgivenby
ThestokesnumberStiscalculatedfrom
4.6.1.3SpecificationofSeason
TheWesely(1989)depositionalgorithmspecifiesthevarioussurfaceresistancesbylandcover
typeforfiveseasons:Spring,Summer,Fall,Winter,andWinterwithsnowcover.CAMx
internallydefinesaseasonmaptodeterminefourofthesefiveseasonsbymonthandlatitude
(Table42).Fivelatitudebandsexistineachhemisphere:
Tropical <20
Subtropical 20to35
Temperate35to50
Cool 50to75
Polar >75
TheseasonsintheNorthernandSouthernhemispheresareoffsetbysixmonths.Thisoffset
doesnotcauseanydiscontinuityattheequatorbecauseall12monthsaredefinedassummer
inthetropicalbandattheequator.Thisseasonmapisgeneralizedandmaynotbeidealforall
sedbaba
sedd vrrrr
vv
1
18
2p
sed
CgD
v

t
S
c
bSu
r/3
3/2
*10
1
g
uv
Ssed
t
2
*
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 88www.camx.com
locations.TheseasonmapiscodedintodatastatementsintheCAMx/chmdat.f
subroutineandcouldbechangedtobettersuitaspecificregion.
TheseasonmapshowninTable42doesnotconsidersnowcoverbecauseitisquitevariablein
spaceandtime.Griddedsnowcoverdataarespecifiedinthetimevariant2Dsurfaceinputfile
(seeSection3andSection4.7below).SnowcoveredgridcellsareassignedtheWesely(1989)
surfaceresistancesforthecategory“winterwithsnowcover”,regardlessoftheseason.
Table42.Relationshipsbetweenseasonandmonth/latitudeusedintheCAMxWesely/Slinn
drydepositionmodel.Exception:seasonsfortheareawithin50N75Nand15W15Eare
internallysettothoseoflatitudeband3550toaccountforregionsofEuropeinwhichthe
climateisinfluencedbytheGulfStream.
MonthLatitudeBand
Northern
Hemisphere
Southern
Hemisphere
<2020‐3535‐5050‐75>75
Tropical Subtropical Temperate CoolPolar
JanJulSummer Winter Winter WinterWinter
FebAugSummer Spring Winter WinterWinter
MarSepSummer Spring Spring WinterWinter
AprOctSummer Spring Spring SpringWinter
MayNovSummer Summer Spring SpringWinter
JunDecSummer Summer Summer SummerSpring
JulJanSummer Summer Summer SummerSummer
AugFebSummer Summer Summer SummerFall
SepMarSummer Summer Fall FallWinter
OctAprSummer Fall Fall FallWinter
NovMaySummer Fall Fall WinterWinter
DecJunSummer Fall Winter WinterWinter
4.6.2TheZhangModel
EnvironmentCanada’sAURAMSairqualitymodelusesastateofthesciencedeposition
schemethatpossessesanupdatedrepresentationofnonstomataldepositionpathways(Zhang
etal.2003;Zhangetal.2008).Theapproachincorporatesthe“leafareaindex”(LAI),whichis
animportantaspectofnewerdrydepositionschemesthatallowsforscalingofpollutant
uptakeintobiotaofvaryingdensities.LAIisdefinedastheratiooftheonesidedgreenleaf
areatoaunitareaoftheground.Itismeasuredbysatelliteinstrumentsatfairlyhighspatial
resolution.TheZhangmodelhasbeentestedextensivelythroughitsuseindailyairquality
forecastinginCanada,andhasbeenshowntoreproduceobservedfluxesofozoneandSO2with
reasonableaccuracy.InCAMx,theZhangmodelhastendedtogeneratelowerozone
depositionratesrelativetotheWeselymodel,whichleadstohigherozonepredictionsoverall.
ThiseffectisseasonallydependentandwillvarywiththedefinitionofLAI.Ozoneisless
sensitivetothesourceofLAI(whetherZhangdefaultsorsatelliteenhanced)thantothechoice
ofdepositionmodel.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 89www.camx.com
4.6.2.1DryDepositionofGases
ThegasresistancemodelofZhangetal.(2003)invokesthesame3resistanceequationfor
depositionvelocityastheWesely(1989)model.Theequationsforaerodynamicresistance(ra)
andboundaryresistance(rb)areverysimilartotheWesely(1989)formulations.However,
Zhangetal.(2003)replacethesurfaceresistance(rs)equationwithanewrelationshipforthe
overallcanopyresistance:
gsaccutmst
st
c
rrrrr
W
r
11
1
1
whereWstisthefractionofstomatalblockingunderwetconditions,rcutisthecuticleresistance,
andallotherresistanceshavesimilarmeaningtotheWeselymodel.Stomatalresistance(rst)is
calculatedusingasunlit/shade(socalled“twobigleaf”)stomatalresistancesubmodel.
FollowingWesely(1989),valuesforrgandrcutarecalculatedforSO2andO3andthenscaledfor
othergaseousspecies.Cuticleresistanceisslightlydifferentfromthatdefinedintraditional
bigleafmodelsinthatitalsoconsiderstheaerodynamicandquasilaminarresistancesof
individualleaves.Thisisdonebyparameterizingrcutasafunctionoffrictionvelocity,similarto
theconceptofoverallcuticleuptakeconsideredinamultilayermodelframework.
LAIisusedinfunctionsforrac,andrcut,wheretheLAIforanygivendayislinearlyinterpolated
frommonthlydefaultLAIasafunctionoflandusetype.ToaccountforLAIeffectsonsurface
roughness(z0),asimilardailyLAIinterpolationisappliedtothatparameter.Hence,theZhang
modeldoesnotrequirethespecificationofseason,asallresistanceequationsarecontinuous
overeachmonth(notethatCAMxautomaticallyappliesthe6monthoffsetforapplicationsin
thesouthernhemisphere).
Forsnowonthegroundandleaves,bothrgsandrcutareadjustedbyasnowcoverfraction,
whichiscalculatedfromsnowdepth,snowage,andlandusetypeasdescribedinSection4.7.
Snowcoverisdefinedthroughtheinput2Dsurfacefile,asdescribedinSection3.Forsurfaces
withoutcanopies,rgsisdefinedastheresistancetoanysurface(e.g.soil,ice,snowandwater),
racissettozero,andverylargevaluesareusedforrst,rmandrcut.
Overwater,theupdatedtemperaturedependentozonesurfaceresistanceequationdescribed
abovefortheWeselyschemeisalsousedfortheZhangscheme.
TheZhangmodelincludesasetofembeddedannualsurfaceroughnessrangesandmonthlyLAI
specifictoeachofthe26landusecategories.Thecapabilitiesoftheschemewereextendedby
addingtheoptiontouseepisodespecific(i.e.,satellitederived)LAIdata.SatellitebasedLAI
datafromMODIS(MODerateresolutionImagingSpectroradiometer)2canbeprocessedinto
griddedLAIfieldsthatarepassedtoCAMxasanoptionalrecordinthetimeinvariant2D
surfaceinputfile(seeSection3).TheoptionalgriddedLAIfieldsareusedtoscalethedefault
landusespecificLAIvalues.Foreachgridcell,alanduseweighteddefaultLAIisdetermined

2MODISprovidesLAIat250meterspatialresolutionand16daytemporalresolution.
March20
1
C
OMPREHE
N
accordin
g
ofthein
p
default
L
minimu
m
satellite
Figure4
against
e
4.6.2.2
D
Theoreti
c
cm/s,bu
Zhanget
submic
r
havebe
e
velocity
v
consiste
n
paramet
e
predicts
surfaces
.
1
6
N
SIVE
A
IRQUALIT
Y
g
tothelan
d
p
utLAItot
h
L
AIvaluesfo
m
rangeam
o
LAIdataint
r
4.Compar
i
e
pisodespe
c
D
ryDepositi
o
c
ally,particl
tsuchvalu
e
al.(2001),
m
r
onsulfatei
n
e
nmeasure
d
v
alues,typi
c
n
tacrossth
e
e
rizationof
higherdep
o
.
Y
M
ODELWITHE
X
d
usefractio
n
h
elanduse
w
r
eachland
u
o
ngthemon
r
oducesadd
sonofmon
t
c
ificLAIfor
J
o
nofAeros
o
esinthesiz
e
e
sarecomp
a
m
uchhighe
r
n
whichdep
o
d
.Forexam
p
c
ally1cm/s
o
e
aerosolsiz
e
particledry
o
sitionveloc
i
X
TENSIONS
n
spresent.
w
eightedde
f
u
setypeint
h
thlydefault
itionalepis
o
t
hlyLAIdat
a
J
une2005.
o
ls
e
range0.1
a
rableonly
t
r
valueshav
e
o
sitionvelo
c
p
le,Gallagh
e
o
rmorefor
e
spectrum.
deposition
a
i
tiesforsub
90
AnLAIscali
n
f
aultLAI.T
h
h
egridcell,
values.Fig
u
o
despecific
v
a
embedde
d
1.0mm
d
t
olaborator
y
e
beenobta
i
c
itiesofone
e
retal.(19
9
submicron
TheZhang
a
safunctio
n
micronaer
o
n
gfactoris
t
h
isfactoris
u
subjecttot
h
u
re44illus
t
variationin
t
d
intheZha
depositatr
a
y
(windtun
n
i
nedinman
y
totwoord
e
9
7)stateth
a
aerosolde
p
etal.(2001
n
ofaerosol
o
sols,espec
CAMxUser’
4.Core
t
hendeter
m
u
sedtoscal
e
h
eannual
m
t
rateshow
t
t
otheLAIfi
e
ngdrydep
o
a
tesmuchl
e
n
el)studies.
y
fieldstudi
e
e
rsofmagn
i
a
tmuchhig
h
p
ositiontoa
)studydev
e
sizeandlan
iallyoverro
sGuideVersi
o
ModelFormul
www.cam
m
inedasthe
e
theindivid
m
aximumto
t
heuseof
e
ld.
o
sitionsche
m
e
ssthan0.0
1
According
t
e
s,includin
g
i
tudehighe
r
h
erdepositi
o
forest,are
e
lopedasim
dusethat
ughvegeta
t
o
n6.3
ation
x.com
ratio
ual
m
e
1
t
o
g
for
r
o
n
ple
t
ed
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 91www.camx.com
ThedepositionofaerosolsisbasedonthemodelofSlinn(1982),butusingsimplifiedempirical
parameterizationstoreplacedetailedcanopyinformation.Theaerosoldepositionvelocityis
definedas:
ba
sedd rr
vv
1
wherevsedandrahaveidenticalmeaningsastheSlinnandSlinn(1980)definitiondescribed
earlierfortheWesely/Slinndepositionmodel.Notethatinthiscase,thevirtualserial
resistancera
rb
vsedhasbeenremoved,whichresultsinhighervaluesofdepositionvelocity.The
quasilaminarboundaryresistanceisgivenby

1*0
1
REEEu
r
INIMB
b
wherethevariableEincludesthecollectionefficienciesforBrowniandiffusion,impaction,and
interception,respectively,R1isafactorrepresentingthefractionofparticlesthatsticktothe
surface,and
0isanempiricalconstantthatissettoavalueof3.TheBrowniancollection
efficiencydependsontheSchmidtnumber,whiletheimpactionefficiencyandR1dependon
theStokesnumber.
Thecollectionefficiencybyinterceptionalsoexistsiftheparticlepassesanobstacleata
distanceshorterthanitsphysicaldimensions(e.g.,largeparticlespassingnearhairyleaves).
Zhangetal.(2001)adoptedasimpleequationforthistermthatisafunctionofparticle
diameterandacharacteristicradius,forwhichdefaultvaluesaregivenfordifferentlanduse
andseasonalcategories.
Figure45comparesestimatedparticledepositionvelocitiesfromtheZhangmodel,theSlinn
andSlinn(1980)model,andtheAERMODmodel(EPA,1998).Calculationsweremadefor
daytime,neutrallystableconditionsforarangeofwindspeedsandlandusecategories.Figure
45showsthattheZhangmodelincreasesdepositionvelocitiesoverforestbyroughlyanorder
ofmagnitudeforthe0.11mrange,yetreducesdepositionvelocitiesabove1m.
4.7SnowCoverandSurfaceAlbedo
Surfacealbedoforsnowcoveredgridcellsiscalculatedaccordingtosnowcover,snowage,and
landcovertype.Theapproachisbasedonliteraturedescribingtheevolutionofsnowalbedoin
theWRF/NOAHlandsurfacemodel(LSM)overthepastdecade(Eketal.,2003;WangandZeng,
2010;Livnehetal.,2010;andBarlageetal.,2010).Fractionalsnowcover(fs)isaccountsforthe
effectsofsurfaceroughnesselements(shrubs,trees,rocksandotherstructures)extending
abovethin/patchysnow:
1exp
exp
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 92www.camx.com
Figure45.Comparisonofparticledrydepositionvelocitiesasafunctionofsizeandwind
speeds(m/s)forthreemodels:blackZhangetal.(2001);blueSlinnandSlinn(1980);
orangeAERMOD(EPA,1998).Resultsareshownforaforestlandusecategoryduring
daytimeneutralstability.Particledensitywassetat1.5g/cm3.
where
=2.6,Wissnowwaterequivalentdepth(SWE),andWcisthethresholdSWEabove
whichfs=100%.FollowingWangandZeng(2010)andLinvehetal.(2010),Wcissetto0.01m
forbarrenorlowvegetation(grasslands)andto0.2mfortallvegetation(forest),exceptan
intermediatevalueof0.02misassignedtorange,mixedagriculture/range,andshrublands
wherevegetationistypicallyhigherthangrasses(Table44).ThroughoutCAMxweapplya
commonapproximationthatactualsnowdepthis10SWE.
Snowalbedo(as)isallowedtoevolvetoaccountfortheopticaleffectsofmeltingand
accumulationofdirt/soot,followingtheapproachofLinvehetal.(2010):


whereamaxisthemaximumfreshsnowalbedo(0.85;Barlageetal.,2010),tisthenumberof
dayssincethelastsnowfall,A=0.94(0.82)andB=0.58(0.46)duringtheaccumulation
(ablation)phase.Accumulationoccursduringcoldperiodswhensurfacetemperatureisbelow
273K,whereasablationoccursduringmeltingperiodswhensurfacetemperatureisat273K.
Snowalbedoisconstrainedtoalowerboundof0.4.Snowageisrefreshedtozero(andsnow
albedoto0.85)whenSWEaccumulatesbymorethan0.001m/hr(accumulatingsnowdepth>1
cm/hr).
Theresultantgridcellaveragesurfacealbedo(a)isalinearcombinationofsnowalbedo(as)
andterrestrial(nonsnow)albedo(at):

1
Forest
0.01
0.1
1
10
100
0.001 0.01 0.1 1 10 100
Particle diameter (m)
V
d
(cm s
-1
)
wind = 2
wind = 5
wind = 10
wind = 15
wind = 2
wind = 5
wind = 10
wind = 15
wind = 2
wind = 5
wind = 10
wind = 15
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 93www.camx.com
whereatisdefinedaccordingtolandusetype(Tables34,35).Incaseadistributionof
multiplelandusetypesexistswithinagivengridcell,alinearweightingschemeisemployedto
accountforvariablesnowcoverfractionsforeachindividuallandusetype:

1

wherethesumisoveralllandusetypes,fnisthefractionalcoverageoflandusen,at(n)isthe
defaultterrestrialalbedoforlandusen,fs(n)isthefractionalsnowcoverforlandusen,andas(n)
isthecalculatedsnowalbedoforlandusen.Figure46showsanexampleofgridcellalbedo
evolutionforahypothetical20dayspringtimesnowevent(assumingablationconditions)for
lowandtallvegetationgridcellswithaterrestrial(nonsnow)albedoof0.05.Severalsnow
accumulationeventsarespecifiedtooccuroverthefirst12days,followedbyrapidmeltingto
zerodepthbyday20.Whiletotalalbedoincreasestopeakvaluesof0.85quiterapidlyforlow
vegetation,thevaluefortallvegetationlagsandpeaksjustabove0.5atmaximumsnowdepth.
Bothcasesindicateeffectsfromsnowdepth(fractionalsnowcover)andsnowage.
Figure46.Exampleofgridcellalbedoevolutionforahypothetical20dayspringtimesnow
event(assumingablationconditions)forlowandtallvegetationgridcellswithaterrestrial
(nonsnow)albedoof0.05.
4.8SurfaceModelforChemistryandReEmission
TheCAMxsurfacemodelisanoptionalcapabilitythattreats:(1)chemicaldegradationand/or
transformationofdepositedpollutantmassonsoil,vegetationandanoverlyingsnowpack;(2)
volatilizationofchemicalproductsbackintotheair(reemission);and(3)lossfromleaching
intosoil,penetrationintoplanttissue,anduptakeintosnowmeltwater.Thesurfacemodel
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
01234567891011121314151617181920
Depth(m)
Albedo
DaysofExampleEvent
SnowDepthandAlbedowithAge
LowVegetation
TallVegetation
Depth
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 94www.camx.com
treatsanysubsetofspecieslistedinthecoremodel’schemicalmechanism.Limitationsofthe
currentimplementationinclude:
ThesurfacemodelcannotbeusedwiththePlumeinGridtreatment;
Depositiontowatersurfacesisassumedtobeirreversibleandthusisnottrackedbythe
surfacemodel;
Wetdepositiondoesnotcontributetosurfacemass,ascompoundsinaqueoussolution
areassumedtobeimmediatelylosttosurfacewaterprocesses(absorption,runoff,etc.).
4.8.1SurfaceModelAlgorithms
Figure47displaysthesurfacemodelprocessesschematicallyandTable43definesparameters
thatarereferredtoinFigure47.Whilecoremodelalgorithmsareusedtodepositcompounds
tothesurfaceandreemitthemtotheatmosphere,thesurfacemodeltrackstheaccumulation
ofmassonterrestrialsurfacemedia(soil,vegetationandsnow),subsequentchemical
transformation(bothheterogeneousandphotolysis),reemissiontotheatmosphere,and
physicalremoval.
Figure47.SchematicoftheCAMxsurfacemodel.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 95www.camx.com
Table43.DescriptionofCAMxsurfacemodelvariablesshowninFigure47.
VariableDefinitionUnits
AsAreicmassofcompoundonsoilorsnowmolha1
ApAreicmassofcompoundonvegetationmolha1
SsoilSoilairpartitioningcoefficientunitless
SsnowSnowairpartitioningcoefficientunitless
SvegVegetationairpartitioningcoefficientunitless
kleachSoilleachingratecoefficientmin1
KmeltSnowmeltlossratecoefficientmin1
kpenLeafpenetrationratecoefficientmin1
JPhotolysischemistryratecoefficientmin1
KHeterogeneouschemistryratecoefficientmin1
RleachLeachingorsnowmeltlossratemolha1min1
RpenLeafpenetrationratemolha1min1
RchemChemistryratemolha1min1
Afterdepositiontoasnowfreesurfacegridcelliscalculatedeachtimestep,thenewly
depositedmassincrementsaredividedamongsoilandvegetationcompartmentsandaddedto
totalsurfacemassineachcompartmentaccumulatedduringtherun.Thenetsoil/vegetation
splitforagivengridcellisdeterminedbythecombinationofthefractionalcoverageofeach
landusetypeinthatcellandlandusespecificsplitfactors.Thefractionalcoverageof11
(Wesely)or26(Zhang)landusecategoriesineachgridcellisanexternalinputtoCAMx(Section
3).Thesoil/vegetationsplitsassignedtoeachlandusecategoryareinternallydefinedwithin
CAMxandassumedtobeseasonallyconstant.Valuesforsoil/vegetationsplitsareestimated
basedonsimpleconceptualconsiderationsoftheamountofannualaveragedvegetation(i.e.,
leafareaindex)typicalofeachcategory(Table44).
Snowisactivatedinthesurfacemodelwhensnowdepthissufficientlydeeptocoverexposed
soil.Thelowerlimitonsnowdepthis10cmtobeconsistentwiththeapproachdescribedin
Section4.7inwhicha10cmdepthcompletelycoverslowvegetationlanduse.Insuchcases,
thesoil/vegetationsplitisreplacedbythesnowcoverfractionsuchthatthesoilfractionis
entirelysnowcoveredandthevegetationfractionisprogressivelycoveredwithdeepersnow
depth.Thesoilcompartmenttransitionstoasnowcompartment;sorptioncoefficientsand
ratesforchemistryandlosscoverttothevaluessetforsnow(asdescribedbelow).Withvery
deepsnowexceeding200cm,highvegetationiscompletelycoveredandthesurfacemodel
reducestoasinglecompartmentforsnow.
Thesurfacemodelusespartitioning(equilibrium)coefficientstocalculatetheamountof
accumulatedmaterialsorbedtosoil/snowandvegetation.Thesorbedfractionissubjectto
chemicalreactionsandphysicalremovalassociatedwithsoilleaching,plantpenetration,and
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 96www.camx.com
Table44(a).Weselylandusecategoriesandassociatedannualaveragedsoil/vegetationsplit
factors,UValbedo,andSWEWc.
Category
NumberLandCoverCategory
SurfaceParameters
Soil
Fraction
UV
Albedo
Snow
W
c
(mSWE)
1Urban0.70.080.2
2Agricultural0.20.050.01
3Rangeland0.50.050.02
4Deciduousforest0.10.050.2
5Coniferousforest,wetland0.10.050.2
6Mixedforest0.10.050.2
7Watern/a0.04n/a
8Barrenland1.00.080.01
9Nonforestedwetlands0.20.050.01
10Mixedagricultural/range0.30.050.02
11Rocky(withlowshrubs)0.50.050.01
Table44(b).Zhanglandusecategoriesandassociatedannualaveragedsoil/vegetationsplit
factors,UValbedo,andSWEWc.
Category
NumberLandCoverCategory
SurfaceParameters
Soil
Fraction
UV
Albedo
Snow
W
c
(mSWE)
1Watern/a0.04n/a
2Icen/a0.50.01
3Inlandlaken/a0.04n/a
4Evergreenneedleleaftrees0.10.050.2
5Evergreenbroadleaftrees0.10.050.2
6Deciduousneedleleaftrees0.10.050.2
7Deciduousbroadleaftrees0.10.050.2
8Tropicalbroadleaftrees0.10.050.2
9Droughtdeciduoustrees0.10.050.2
10Evergreenbroadleafshrubs0.50.050.03
11Deciduousshrubs0.50.050.02
12Thornshrubs0.50.050.03
13Shortgrassandforbs0.50.050.01
14Longgrass0.30.050.02
15Crops0.20.050.01
16Rice0.20.050.01
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 97www.camx.com
17Sugar0.20.050.01
18Maize0.20.050.01
19Cotton0.20.050.01
20Irrigatedcrops0.20.050.01
21Urban0.70.080.2
22Tundra0.20.050.01
23Swamp0.20.050.01
24Desert1.00.080.01
25Mixedwoodforest0.10.050.2
26Transitionalforest0.10.050.2
snowmelt.Theunsorbedfractionisavailableforreemission.Separatechemicalspecificsoil
air,vegetationair,andsnowairpartitioningcoefficientsaresetintheCAMxchemistry
parametersfile.Theyrepresenttheequilibriumratioofchemicalonasurfacetochemicalinair
attheairsurfaceinterface.Forexample,acompoundwithapartitioningcoefficientof10,000
(unitless)hasanequilibriumconcentrationonthesurfacethatis10,000timesmorethanthat
inair.
Chemistrycansimplydecaydepositedmaterialasaremovalprocess,oritcangenerate
productsthatcansubsequentlyreemitdependingontheproducts’partitioningcoefficient.All
surfaceremovalprocessesareassumedtobeirreversibleandresultinapermanentremovalof
mass.Chemistry,soilleaching,plantpenetration,andsnowmeltlossaredependenton
chemicalpropertiesofthecompoundsandalsoonnumeroussitespecificfactorssuchassoil,
vegetation,andsnowproperties,highlytransientmeteorologicalconditions,etc.Oftenthese
factorsareunknownorfallwithinarange.Theratesoftheseprocessesaredefinedasthe
processratecoefficient(k)timesthemassonthesurfacearea,orareicmass(A):
Rprocess=kprocess
Asurface
Whentheactualratecoefficients(orinversely,thehalflives,t½)areunknownforthe
substance,theycanbegeneralizedby5classes:
1.Veryfast:t½=0.04dk=17d1=1.2×102min1
2.Fast: t½=0.21dk=3.3d1=2.3×103min1
3.Moderate:t½=1.0dk=0.69d1=4.8×104min1
4.Slow: t½=5.0dk=0.14d1=9.7×105min1
5.Veryslow:t½=25dk=0.03d1=2.1×105min1
A6thclasscanbeaddedbysettingthekvaluetozeroorademinimisvaluetoeffectively
removetheprocessfromconsideration.Inthismannerchemicalscanbemodeledwithan
estimatedhalflifethatisuniqueforeachprocess.
March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 98www.camx.com
Notethatallpartitioningcoefficientsandratesotherthanphotolysisarefixedandignore
dependenceonvariousenvironmentalconditions(e.g.,temperature,pressure,surfacetype,
surfacemoisture,etc.).Photolysisratesarespecifiedbytheusertorepresentpeakdirect
exposureclearskyvaluesatzerozenith(solarnoon)andareinternallyadjustedforsolarangle,
cloudattenuation(ascalculatedforatmosphericphotolysis),andshadeeffectsusing
multiplicativefactors.Amultiplicative“shadefactor”isdefinedtoreducephotolysisrates
within/belowvegetation.Snowcoverreducesshadingeffectstoaccountforenhanced
reflectionandinternalUVscatteringwithinthesnowpack.
Lossesbysoilleaching,plantpenetration,andsnowmeltarearbitrarilyacceleratedduringrain
events,suchthata1mm/hrrainfallrateresultsinanefoldinglossofsurfacemassin1hour.
Masslosswithinthesnowpackbymeltingaloneoccursonlywhensurfacetemperatureisat
273K.Snowpacklossalsooccursduringsnowfallsuchthata1cm/hraccumulationresultsin
anefoldinglossofsurfacemassin24hoursbysuccessivelyburyingpollutantmassandlimiting
itsabilitytodiffusethroughthesnowpack.Themodelassumesthatnosurfacemassisre
introducedassnowdepth/fractiondecreaseduringsublimationormelting(i.e.,irreversibleloss
ofsurfacemassasimplementedforsoilandvegetation).
Theapproachforreemissionofvolatilized(unsorbed)massisconsistentwiththeCAMxdry
depositionalgorithm.Sincewatersurfacesarenotconsideredbythesurfacemodel,re
emissionfluxesfromwaterareignoredinthisimplementation.Drydepositionofmaterialfrom
thelowestmodellayertothesurfaceistreatedasanirreversible(fullysorbed)firstorderflux
throughtheuseofadrydepositionvelocity.Reemissionofvolatilized(unsorbed)massisalso
treatedasafirstorder1wayfluxusingan“effective”velocitythatissimilarinformto
deposition:
ba
err
v
1
whereraistheaerodynamicresistancetoturbulenttransferthroughthelowestmodellayer,
andrbistheresistancetomoleculardiffusionthroughthelaminarsublayerincontactwith
surfaceelements.Thedepositionsurfaceresistancetermrsismissingsinceonlythepre
determinedunsorbedfractionofsurfacemassisconsideredforsurfacetoairtransfer.Thera
andrbtermsarecalculatedbythesurfacemodelinexactlythesamemannerasthevaluesused
fordrydepositiontoensureconsistency.
4.8.2RunningCAMxWiththeSurfaceModel
TheCAMxsurfacemodelparametersthatneedtobespecifiedforeachcompoundorsurface
reactiontobetrackedareasfollows:

March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 99www.camx.com
SsoilSoilairpartitioningcoefficientunitless
SvegVegetationairpartitioningcoefficientunitless
SsnowSnowairpartitioningcoefficientunitless
kleachSoilleachingratecoefficientmin1
kpenLeafpenetrationratecoefficientmin1
kmeltSnowmeltlossratecoefficientmin1
JsoilSoilphotolysisratecoefficientmin1
KsoilSoilheterogeneouschemistryratecoefficientmin1
JvegVegetationphotolysisratecoefficientmin1
KvegVegetationheterogeneouschemistryratecoefficientmin1
JsnowSnowphotolysisratecoefficientmin1
KsnowSnowheterogeneouschemistryratecoefficientmin1
ThesevaluesaresetattheendoftheCAMxchemistryparametersfile;anexampleofthe
chemistryparametersfileformatisshowninFigure48.Acontrolrecordisalsoneededatthe
topofthechemistryparametersfiletodefinethenumberofspeciesandreactionstotrack.
ACAMxnamelistcontrolfilevariablecalledSURFACE_MODELmustbesetto“true”inorder
toinvokethesurfacemodel.Whenthesurfacemodelisinvoked,thesurfacemodelsectionof
thechemistryparametersfileisreadandtherespectiveequilibriumandratevariablesareset
accordingly.

March2016CAMxUser’sGuideVersion6.3
4.CoreModelFormulation
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 100www.camx.com
Figure48.TheportionsoftheCAMxchemistryparametersfile(highlighted)tosupportthe
surfacemodel.Inthisexample,3gasesaretreated,wherenitricacid(HNO3)and
peroxynitricacid(PNA)reacttoformnitrousacid(HONO).Allthreearesubjecttodecayby
soilleaching,plantpenetration,andsnowmeltloss.Thevaluesshownherearefor
illustrativepurposesonlyanddonotrepresentanyknownsurfacechemistrymechanism.
CAMx Version |VERSION6.3
Mechanism ID |2
Aerosol Option |NONE
Description |CB6r2 (r98/30/13 version) + ECH4
No of gas species |75
No of aero species |0
No of reactions |216
Prim photo rxns |23 1 8 9 21 27 28 38 43 47 50 56 88 92 97 98 108 112 114 117
119 128 129 161
No of sec photo rxn|6
ID, prim ID, scale |64 56 1.0
|90 88 1.0
|163 1 0.07
|196 1 0.015
|197 1 0.08
|201 1 0.08
SrfMod #spc, #rxns |3 2
.
.
.
Surface Model
Species SoilSorb SoilLeach VegSorb VegPen SnoSorb SnoMlt
1 HNO3 1.00E+10 1.00E-10 1.00E+10 1.00E-10 1.00E+10 9.70E-05
2 PNA 1.00E+10 1.00E-10 1.00E+10 1.00E-10 1.00E+10 9.70E-05
3 HONO 1.00E+00 1.00E-10 1.00E+00 1.00E-10 1.00E+00 9.70E-05
Rxn Precursor Product Soil K Soil J Veg K Veg J Snow K Snow J
1 HNO3 HONO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E-03
2 PNA HONO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E
-
01 0.00E+00
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 101www.camx.com
5.CHEMISTRYMECHANISMS
ThephotochemicalmechanismscurrentlysupportedinCAMxarelistedinTable51.Allare
balancedfornitrogenconservationsothatpredictedNOycanbecalculatedasthesumof
nitrogencontainingspecies.Mechanisms2through6canbelinkedtooptionalmodal(CF)and
sizesegregated(CMU)primaryandsecondaryparticulatematter(PM)treatments.CAMx
includesalgorithmsforinorganicaqueouschemistry(RADMAQ),inorganicgasaerosol
partitioning(ISORROPIA),andorganicgasaerosolpartitioningandoxidation(VBSorSOAP).
ThePMtreatmentsrequireadditionalgasspeciesasPMprecursorsanduseproductsfromthe
gasphasephotochemistryfortheproductionofsulfate,nitrate,andcondensableorganic
gases.TheCFPMtreatmentalsosupportsseveraloptionalmercuryspecies.Additionally,
thereisaninterfacethatallowsasimpleruserdefinedchemicalmechanismtobeemployedin
themodel(Mechanism10).Alistingofallreactionsandrateexpressionsforsupported
photochemicalmechanismsareprovidedintheappendices.
Table51.GasphasechemicalmechanismscurrentlyimplementedinCAMxv6.3.
MechanismIDDescription
6CB05(Yarwoodetal.,2005b).156reactionsamong 51 species(38 stategases,13radicals).
2CB6“Revision2”(CB6r2;Yarwoodetal.,2010;Yarwoodetal.,2012a;HildebrandtRuizand
Yarwood,2013).216reactionsamong75species(55stategases,20radicals).
3CB6r2withupdatestoincludereactionsinvolvingoceanichalogencompounds(CB6r2h;
Yarwoodetal.,2014).304reactionsamong115species(88stategases,27radicals).
4
CB6“Revision3”(CB6r3) thatincludesupdatestoimproveNO2organicnitratebranching
underwinterconditions(Emeryetal.,2015).220reactionsamong77species(55state
gases,22radicals).
5
AversionofSAPRC07thatincludes updatestosupporttoxicsandnumericalexpressionsof
rateconstantstosupportthecurrentchemistrymechanismcompiler(SAPRC07TC;Carter,
2010;Hutzelletal.,2012).565reactionsamong117species(72stategases,45radicals).
10
Auserdefinedsimplechemistrymechanismcanbedevelopedforanygasand/or
particulatespecies,whichisdefinedbya“Mechanism10parametersfileandsolvedwithin
ausersuppliedsubroutinecalled“chem10.f.”

TheselectionofwhichmechanismtoemployinagivenCAMxapplicationisdeterminedbythe
“chemistryparameter”inputfile.Thisfiledefinesthemechanismnumber,thenumberofgas
andaerosolspecies,andthenumberofreactionsforthemechanism,liststhespeciesbyname
withassociatedphysicalchemicalproperties,liststhereactionrateconstantsandtemperature
dependenciesforeachreaction,anddefineswhichreactionsarephotolytic.Chemistry
parameterinputfilesfortheavailablemechanismsareprovidedwithCAMxandshouldnotbe
modifiedbyusers.SeeSection3foradditionalinformationontheformatandusageofthese
files.ChemistryparametersfilesarespecifictoversionsofCAMx.Alwaysusechemistry
parametersfileswiththerightCAMxversionnumber,donotattempttousefilesforanother
CAMxversion.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 102www.camx.com
5.1GasPhaseChemistry
5.1.1CarbonBond
TheCarbonBondIV(CB4)mechanismwasfirstdevelopedbyGeryetal.(1989),andwas
subsequentlyupdatedinthe1990’stoincluderevisedPANchemistry,additionalradicalradical
terminationreactionsandupdatedisoprenechemistry(Carter1996;Whittenetal.,1996).
AdditionalCB4updateswerethenmadetoexpandozonemodelingfromurbanto
regional/ruralenvironmentsandtosupportsecondaryaerosolchemistry,mercuryandtoxics
(Yarwoodetal.,2005a).
SeveralnewerCarbonBondversionsareavailableinCAMxasdescribedbelow.Table52lists
chemicalspeciesnamesandpropertiescommontoallCAMxCarbonBondmechanisms.
5.1.1.1CarbonBond2005
Mechanism6isthe2005versionofCarbonBond(CB05)developedforEPAatmospheric
modelingstudies(Yarwoodetal.,2005b).UpdatesinCB05include:
Updatedrateconstantsbasedon20032005IUPACandNASAevaluations.
Anextendedinorganicreactionsetforurbantoremotetroposphericconditions.
NOxrecyclingreactionstorepresentthefateofNOxovermultipledays.
Explicitorganicchemistryformethaneandethane.
Explicitmethylperoxyradical,methylhydroperoxideandformicacid.
Lumpedhigherorganicperoxides,organicacidsandperacids.
Internalolefin(RHC=CHR)speciescalledIOLE.
HigheraldehydespeciesALDXmakingALD2explicitlyacetaldehyde.
HigherperoxyacylnitratespeciesfromALDXcalledPANX.
LumpedterpenespeciescalledTERP.
CB05wasevaluatedagainstsmogchamberdatafromtheUniversitiesofNorthCarolinaand
CaliforniaatRiverside.Thenewhigheraldehydeandinternalolefinspeciesimprove
mechanismperformanceforthesespeciesandproduceoxidantsmorerapidlyatlowVOC/NOx
ratios.ThenewterpenespeciesimprovessimulationofoxidantsandPMfrombiogenic
emissions.Severalneworganicperoxidespeciesimprovethesimulationofoxidantsthatare
involvedinPMsulfateformation.Theadditionofexplicitmethylperoxyradicalimprovesthe
simulationofhydrogenperoxideunderlowNOxconditions.
5.1.1.2CarbonBondVersion6
CarbonBondversion6(CB6)wasdevelopedbyYarwoodetal.(2010).Sincethen,CB6has
undergone2majorupdates,asdescribedbelow.Mechanism2isCB6revision2(CB6r2;
HildebrandtRuizandYarwood,2013).
Severalorganiccompoundsthatarelonglivedandrelativelyabundant,namelypropane,
acetone,benzeneandethyne(acetylene),wereaddedexplicitlyinCB6toimproveoxidant
formationfromthesecompoundsastheyareoxidizedslowlyattheregionalscale.Alpha
dicarbonylcompounds(glyoxalandanalogs),whichcanfromsecondaryorganicaerosol(SOA)
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 103www.camx.com
Table52.SpeciesnamesanddescriptionscommontoallCarbonBondMechanismsinCAMx.
Species DescriptionCarbon#CHOMol.Wt.
BZO2PeroxyradicalfromOHadditiontobenzene6 675159.1
C2O3Acetylperoxyradical2 23375.0
CROAlkoxyradicalfromcresol7 771107.1
CXO3C3andhigheracylperoxyradicals3 35389.0
EPX2PeroxyradicalfromEPOXreactionwithOH 5 595149.1
HCO3AdductfromHO2plusformaldehyde 1 13363.0
HO2Hydroperoxyradical1 1128.0
ISO2PeroxyradicalfromOHadditiontoisoprene5 593117.1
MEO2Methylperoxyradical1 13247.0
NO3Nitrateradical362.0
OOxygenatomintheO3(P)electronicstate 116.0
O1DOxygenatomintheO1(D)electronicstate 116.0
OHHydroxylradical1117.0
OPO3PeroxyacylradicalfromOPEN4 434115.0
RO2Operatortoapproximatetotalperoxyradicalconcentration 47287.1
RORSecondaryalkoxyradical1 47171.1
TO2PeroxyradicalfromOHadditiontoTOL7 795173.1
XLO2PeroxyradicalfromOHadditiontoXYL8 8115187.1
XO2NOtoNO2conversionfromalkylperoxy(RO2)radical 47287.1
XO2HNOtoNO2conversion(XO2)accompaniedbyHO2production 47287.1
XO2NNOtoorganicnitrateconversionfromalkylperoxy(RO2)radical 47287.1
AACDAceticacid2 24260.0
ACE
T
Acetone3 36158.1
ALD2Acetaldehyde2 24144.0
ALDXPropionaldehydeandhigheraldehydes 3 36158.1
BENZBenzene6 6678.1
CAT1Methylcatechols7 782124.1
COCarbonmonoxide1 1128.0
CH4Methane1 1416.0
CRESCresols7 781108.1
CRONNitrocresols7 773153.1
EPOXEpoxideformedfromISPXreactionwithOH 5 5103118.1
ETHEthene2 2428.0
ETHAEthane2 2630.1
ETHYEthyne2 2226.0
ETOHEthanol2 26146.1
FACDFormicacid1 12246.0
FORMFormaldehyde1 12130.0
GLYGlyoxal2 22258.0
GLYDGlycolaldehyde2 24260.0
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 104www.camx.com
Species DescriptionCarbon#CHOMol.Wt.
H2O2Hydrogenperoxide2234.0
HNO3Nitricacid1363.0
HONONitrousacid1247.0
HPLDhydroperoxyaldehyde5 583116.1
INTROrganicnitratesfromISO2reactionwithNO 5 594147.1
IOLEInternalolefincarbonbond(RC=CR) 4 4856.1
ISOPIsoprene5 5868.1
ISPD
Isopreneproduct(lumpedmethacrolein,methylvinylketone,
etc.)4 46170.1
ISPXHydroperoxidesfromISO2reactionwithHO2 5 5103118.1
KE
T
Ketonecarbonbond(C=O)4 48172.1
MEOHMethanol1 14132.0
MEPXMethylhydroperoxide1 14248.0
MGLYMethylglyoxal3 34272.0
N2O5Dinitrogenpentoxide5108.0
NONitricoxide130.0
NO2Nitrogendioxide246.0
NTROrganicnitrates4 493119.1
O3Ozone348.0
OLETerminalolefincarbonbond(RC=C) 3 3642.1
OPANPeroxyacylnitrate(PANcompound)fromOPO3 4 436161.0
OPENAromaticringopeningproduct(unsaturateddicarbonyl) 4 44284.0
PACDPeroxyaceticandhigherperoxycarboxylicacids 2 24376.0
PANPeroxyacetylNitrate2 235121.0
PANXC3andhigherperoxyacylnitrate 3 355135.0
PARParaffincarbonbond(CC)1 51272.1
PNAPeroxynitricacid1479.0
PRPAPropane3 3844.1
ROOHHigherorganicperoxide410290.1
SO2Sulfurdioxide264.0
SULFSulfuricacid(gaseous)2498.0
TERPMonoterpenes 10 1016136.2
TOLTolueneandothermonoalkylaromatics 7 7892.1
XOPNAromaticringopeningproduct(unsaturateddicarbonyl) 5 56298.1
XYLXyleneandotherpolyalkylaromatics 8 810106.2
NTR1Simpleorganicnitrates493119.1
NTR2Multifunctionalorganicnitrates 494135.1
ECH4Emittedmethane(toenabletrackingseperatefromCH4) 1 1416.0
XPRPOperatorfororganicnitratesfromPRPA 3 37289.1
XPAROperatorfororganicnitratesfromPAR 1 5112117.1
CRNONitrocresoloxyradical7 763152.1
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 105www.camx.com
Species DescriptionCarbon#CHOMol.Wt.
CRN2Nitrocresolperoxyradical7 764168.1
CRPXNitrocresolhydroperoxide7 774169.1
CAO2Ringopeningproductfrommethylcatechol 7 795173.1
viaaqueousphasereactions(Carltonetal.,2007),wereaddedinCB6toimprovesupportfor
SOAmodeling.PrecursorstoalphadicarbonylsinCB6arearomatics,alkenesandethyne.CB6
includedseveralupdatestoperoxyradicalchemistrythatimprovedformationofhydrogen
peroxide(H2O2)andthereforesulfateaerosolformation.Thegasphasereactionofdinitrogen
pentoxide(N2O5)withwatervaporisslowerinCB6thanCB05,whichreducednighttime
formationofnitricacid,althoughheterogeneousreactionsonaerosolsurfacesmaydominate
nitricacidformationatnight(Brownetal,2006).CB6includedthecalculationofthe
heterogeneousN2O5hydrolysisrateasafunctionofnitrate,chloride,andwaterconcentrations
inparticles(BertramandThornton,2009)whenPMisexplicitlysimulated;ifnoPMchemistryis
included,CAMxsetstheheterogeneousratetotheIUPAC(2015)N2O5hydrolysisrate.
ThecoreinorganicchemistrymechanismforCB6wasbasedonevaluateddatafromtheIUPAC
troposphericchemistrypanelasofJanuary,2010(Atkinsonetal.,2010).IUPACalsowasthe
primarysourceforphotolysisdatainCB6withsomedatafromthe2006NASA/JPLdata
evaluation(Sanderetal.,2006)orothersourcesforphotolysisofsomeorganiccompounds.
Therewerechangestotheorganicchemistryforalkanes,alkenes,aromaticsandoxygenates.
Themostextensivechangeswereforaromaticsandisoprene.Chemistryupdatesforaromatics
werebasedontheupdatedtoluenemechanism(CB05TU)developedbyWhittenetal.(2010)
extendedtobenzeneandxylenes.Theisoprenemechanismwasrevisedbasedonseveral
recentlypublishedstudies(Paulotetal.,2009a,b;Peetersetal.,2009).
CB6wasevaluatedusing339experimentsfromseveralchambersattheUniversityofCalifornia
atRiversideandtheTennesseeValleyAuthority.TheperformanceofCB6andCB05insimulating
chamberstudieswascomparableforalkanes,alkenes,alcoholsandaldehydeswithbothCB6and
CB05performingwellandexhibiting20%orlessbiasformaximumozone.Forspeciesthatwere
explicitlyaddedinCB6(ethyne,benzeneandketones),CB6performedmuchbetterthanCB05.For
aromatics,CB6improveduponCB05byreducingunderpredictionbiasinmaximumozonetoabout
10%forbenzene,tolueneandxylene.Forisoprene,bothCB05andCB6showlittlebiasfor
maximumozone(lessthan5%)butCB6tendedtoformozonetooslowly.CB6improvedupon
CB05forsimulatingmixturesofVOCs.Formixtureswithoutaromatics,bothCB05andCB6showed
minimalbiasformaximumozone.Formixturesincludingaromatics,bothCB05andCB6under
predictedmaximumozonebutbiaswasreducedfromabout30%forCB05toabout20%forCB6.
CB6revision1(CB6r1)includedrevisedchemistryforisopreneandaromatichydrocarbonsand
moreNOxrecyclingfromthedegradationoforganicnitrates(Yarwoodetal.,2012a).Revision
2(CB6r2)increaseddetailintheformationandfateoforganicnitrates(ON),includingorganic
nitratedestructionbyreactionsinaerosols(HildebrandtRuizandYarwood,2013).ONsare
formedwhenVOCsdegradeinthepresenceofNOxandareimportantintheatmosphere
becausetheysequesterNOxandcancontributetoorganicaerosol(OA).NO2isreleasedwhen
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 106www.camx.com
ONsdegradebyphotolysisinthegasphase,returningNOxtotheatmospherewhereitmay
contributetoozoneproduction.CB6r2differentiatesorganicnitratesbetweensimplealkyl
nitratesthatremaininthegasphaseandmultifunctionalONsthatcanpartitionintoOA
(HildebrandtRuizandYarwood,2013).ONspresentinaerosolsarethenassumedtoundergo
hydrolysistonitricacidwithalifetimeofapproximately6hoursbasedonlaboratory
experimentsandambientdata.Thesechangestendtoreduceregionalconcentrationsofozone
andONs,andincreasenitricacid.RegionalmodelingsimulationsusingCAMxwithCB6r2show
thataccountingforONhydrolysisinaerosolsimproveperformanceforozoneandinsimulating
thepartitioningofNOybetweenONsandnitricacid.
5.1.1.3CarbonBondVersion6withHalogenChemistry
Mechanism3isanextensionofCB6r2chemistrythataddsreactionsinvolvingoceanbornehalogen
compounds(CB6r2h;Yarwoodetal.,2014).Brominereactionswereintegratedwithpreviously
developedreactionsforiodine(Yarwoodetal.,2012b)andchlorine(Tanakaetal.,2003;Kooetal.,
2012)withrateconstantsupdatedtocurrentlyacceptedvalues(IUPAC,2014aandb)and
mechanismrevisionstopromoteconsistency.Theadditoinalhalogencompoundsandreactions
addedtoCB6r2arelistedinAppendixB.
Thechlorine(Cl)reactionmechanismisbasedonKooetal.(2012)withthefollowingupdates:
ReactionrateconstantsupdatedtoIUPAC(2014aandb)asnecessary;
Clatomswithorganiccompoundsarelimitedtoalkanesandisoprene
AddedClOradicalreactionswithBrOandIO
AddedClNO3hydrolysistoHOClonaerosols
Clatomreactionswithorganiccompoundslimitedtoalkanesandisoprene
ReactionsofClatomswithorganiccompoundsarelimitedtoalkanesandisoprene.Clatom
productionfromthephotolysisofchloromethanesisincludedonlyforthosehalomethanesthat
areincludedassourcesofBrfromseawater.Degradationofanthropogenicchlorocarbons(e.g.,
HCFCs)isnotincludedinthemechanism.ThedominantsourceofatmosphericClisexpected
tobeseasaltemissions.Hydrochloricacid(HCl)isdisplacedintothegasphasewhenseasalt
aerosolsareacidifiedbynitricandsulfuricacids.TheHClformedfromseasaltcanreactwith
dinitrogenpentoxide(N2O5)onaerosolsurfacestoproducenitrylchloride(ClNO2)which
photolyzestoproducesClatoms.WhenPMisexplicitlymodeled,theheterogeneousreaction
rateforN2O5+HCliscalculatedusingtheparameterizationdevelopedbyBertramand
Thornton(2009).
Thebromine(Br)reactionmechanismissimilartothemechanismsofYangetal.(2005),
SmoydzinandvonGlasow(2009)andParrellaetal.(2012)andismorecompactthanthe
mechanismsofVogtetal.(1999),WhittenandYarwood(2008)andOrdóñezetal.(2012).
ReactionrateconstantsfortheBrmechanismarefromIUPAC(2014aandb).Hydrolysisof
BrNO3isincludedaspseudogasphasereactionwitharateconstantcomparabletohydrolysis
ofN2O5.ThelargestsourceofatmosphericBrisseasaltaerosol(Yangetal.,2005)althoughthe
mechanismbywhichseasaltBrentersthegasphasediffersfromthatforCldepletionunder
acidconditions(discussedabove)andthiscanalsooccuratneutralpH.Othersourcesof
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 107www.camx.com
atmosphericBrincludedinthemechanismaredecompositionofthehalomethanesCHBr3,
CH2Br2,CH2BrCl,CHBr2ClandCHBrCl2.
Theiodine(I)reactionmechanismisbasedonYarwoodetal.(2012b)withthefollowing
updates:
ReactionrateconstantsupdatedtoIUPAC(2014aandb)asnecessary
AddedIOradicalreactionswithClOandBrO
AddedINO3hydrolysistoHOIonaerosols
RemovedINOandrelatedreactions
ReactionsofINOwereremovedbecauseINOconcentrationswerefoundtobesmall(Yarwood
etal.,2012b).HydrolysisofINO3isincludedaspseudogasphasereactionwitharateconstant
comparabletohydrolysisofN2O5.
Emissionsfromoceansarethemajorsourceofatmosphericiodine(Carpenter,2003),including
methyliodide(CH3I),otheriodomethanes(CH2I2,CH2ICl,CH2IBr),largeralkyiodides,andmolecular
iodine(I2).Iodineemissionsresultbothfrombiologicalandphotochemicalprocessesinocean
water(MooreandTokarczyk,1993;MooreandZafirou,1994).Photochemicalprocessesthatcause
iodineemissionsarelinkedtoreactionsofdissolvedozoneandtherebytoenhancedozone
depositiontooceanicwaters(Ganzeveldetal.,2009;Helmigetal.,2012).
ReactionsamongtheradicalsClO,BrO,andIOareincludedtointerconnectthemechanismsfor
differenthalogens.AtmosphericreactionsofClatoms,BratomsandIatomscanproduceor
destroytroposphericozonethroughaseriesofcatalyticcycles,whereeachhalogenatomis
regeneratedinthereactionsandthereforeoneatomcanpotentiallydestroymanyO3
molecules.CatalyticdestructionofO3byClandBristerminatedonlywhendepositionremoves
reservoirspecies,e.g.,bydryorwetdepositionofHClandHBr.TheatmosphericreactionsofI
atomsdifferfromBrandClinseveralways:
IatomsdonotabstractHfromorganiccompoundsincontrasttoBrandClatoms;
FormationofoxidesismoreextensiveforI(IO,OIO,I2O2,IxOy)thanforBr(BrO)orCl
(ClO);
Largeriodineoxides(IxOy)formaerosolswhereasClandBroxidesremaininthegas
phase.
AerosolformationbylargeriodineoxidesisasinkforreactiveIthatcanterminateO3
destructionbyreactiveI.
5.1.1.4CarbonBondVersion6,Revision3
Mechanism4isCB6revision3(CB6r3),whichincludesupdatestoimproveNO2alkylnitrate
branchingincoldconditions(Emeryetal.,2015).Alkylnitrateformationcaninfluenceozone
productionbecausebothNOandradicalsareterminatedbyalkylnitrateformation.However,
temperaturedependenceofNO2alkylnitratebranchingisomittedfromcurrentphotochemical
modelmechanisms,i.e.,CB05TU(Whittenetal.,2010),CB6(HildebrandtRuizandYarwood,
2013),SAPRC11(CarterandHeo,2013)andRACM2(Goliffetal.,2013)andalsofromthe
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 108www.camx.com
explicitMasterChemicalMechanism(http://mcm.leeds.ac.uk/MCM/).Leeetal.(2014)
consideredhowcoldwinterconditionsaffectalkylnitratebranchingandconcludedthat
omittingthetemperaturedependencemaycausea15%highbiasinozoneformation.
WehavedevelopedtheCB6r3chemicalmechanismfromCB6r2toextendapplicabilityto
winterandsummerconditions.Thetemperatureandpressuredependentformationofalkyl
nitratesincludesreactionsinvolvingpropane(CB6species“PRPA”)andotheralkanes(CB6
species“PAR”).CB6r3wasdesignedtoproducethesamealkylnitrateyieldsasCB6r2atroom
temperatureandpressure(298Kand1atm).SeeAppendixDforacompletelistingof
reactions,rateexpressions,andVOCproperties.
Alkylnitrates(RONO2)areformedwhenalkanesareoxidizedintheatmosphereinthepresence
ofnitricoxide(NO).Alkanesarecompoundsofhydrogenandcarbonwithonlysinglebonds
connectingtheatoms,e.g.,methane(CH4),ethane(C2H6),propane(C4H8),etc.Analysesofair
samplescollectedinwesternUSoilandgasdevelopmentbasinsduringwintertimeozone
eventsshowthatalkanesdominatetheorganicgasespresentintheair.Theformationofalkyl
nitratesfromalkanescanbedescribedbythefollowingreactionsinwhichanalkane(RH)reacts
withhydroxylradical(HO)3andoxygen(O2)toformanalkylperoxyradical(RO2)thathastwo
potentialreactionpathwayswithNO:
1)HO+RH R+H2O
2)R+O2 RO2
3a)RO2+NO RONO2
3b)  RO+NO2
Perringetal.(2013)havereviewedtheatmosphericimpactsofalkylnitrateformation.The
yieldofalkylnitrateisdeterminedbythebranchingratioamongreactions3aand3b,which
dependsonbothtemperatureandpressure(Atkinsonetal.,1983).Theassociationreactionof
RO2withNOinreaction3aisfavoredoverreaction3batlowertemperaturesandhigher
pressures.
Emeryetal.(2015)confirmedthedirectionalityoftheozoneeffecthypothesizedbyLeeetal.
(2014)whenthemostrecenttemperature/pressureequationsofAreyetal.(2001)foralkyl
nitratebranchingwereincorporatedintoCB6r3,representingthealkanemixofahighwinter
ozoneepisodeintheUintahBasinofUtah.RecentexperimentaldataofYehandZiemann
(2014)confirmtheexpressionofAreyetal.(2001)fornalkanescontaining3to14carbon
atoms.WeightingmeasuredorganicgasconcentrationsbytheirOHreactivityindicateswhich
speciesaremostlikelytoparticipateinozoneformation.Consideringthealkanesrepresented
byCBspecies“PAR”measuredintheUintahBasin,thosewith4to7carbonatomsdominate
OHreactivityandindicatethatthetemperature/pressuredependenceforpentane(with5
carbons)maybeconsideredrepresentativeforalkanesintheUintaBasin.WhileCB6r3is
suitableforrepresentingthealkanemixturereactingintheUintaBasin,thederivationofCB6r3
doesnotrelyuponthisparticularmixtureofalkanes.

3Thedotsignifiesthathydroxyl(HO)isaradical,i.e.,hasoneunpairedelectron.NotethatNOandNO2alsoare
radicals.O2isadiradical.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 109www.camx.com
5.1.2SAPRC2007
The2007updatetotheSAPRCchemistrymechanism,calledSAPRC07(Carter,2010),replaced
thedatedSAPRC99mechanism.TheversionimplementedinCAMxisSAPRC07TC,which
includesadditionalmodelspeciestoexplicitlyrepresentselectedtoxicsandreactiveorganic
compoundsandusesnumericalexpressionsofrateconstantsthatarecompatiblewiththe
currentchemistrymechanismsolver(Hutzelletal.,2012).Chlorinechemistryisnotincludedin
theCAMximplementation.SeeAppendixEforacompletelistingofreactions,rateexpressions,
speciesdefinitions,andVOCproperties.
5.1.3ImplicitGasPhaseSpecies
AllphotochemicalmechanismsinCAMxemployfixedconcentrationsformolecularoxygen(O2),
molecularhydrogen(H2),andmethane(CH4).Concentrationsforthesecompoundsaresetto
thefollowingconstantmixingratios(i.e.,theyarenotimpactedbythechemicalsolution):
[O2] =2.095×105ppm
[H2]=0.60ppm
[CH4]=1.75ppm
Mechanisms2and3(CB6r2)includesaspeciesnamedECH4torepresentemittedmethane
overandabovetheglobalbackgroundof1.75ppm.
5.1.4PhotolysisRates
Theratesofatmosphericphotolysisreactionsdependuponsolarirradianceandthereforeare
sensitivetotheamountofsolarradiationtransmittedthroughtheatmosphereaswellas
reflectedfromtheearth’ssurface(albedo).Photolysisratesareexternallyderivedassuming
clearskyconditionsasafunctionoffiveparameters:solarzenithangle,altitudeaboveground,
totalozonecolumn,surfacealbedo,andterrainheight.TheratesareprovidedtoCAMxasa
largelookuptablethatspanstherangeofconditionsforeachofthefivedimensions.The
lookuptableisdevelopedusingaCAMxpreprocessorthatincorporatestheTropospheric
UltravioletandVisible(TUV)radiativetransfermodel(NCAR,2011).TUVemploysastandard
atmospheredensityprofileforRayleighscatteringandotherabsorberssuchasoxygen.User
specifiedozonecolumnvaluesareusedtoscaleatypicalverticalozoneprofilewithinTUV.A
defaultaerosolprofilefromElterman(1968)iscombinedwithtypicalaerosolopticalproperties
withinTUVtoaccountforhaze.
TheCAMxversionofTUVismodifiedtooutputphotolysisrateinformationinaformatdirectly
compatiblewithallCAMxphotochemicalmechanisms.SeeSections2and3formore
informationondevelopingphotolysisinputs.
AsCAMxruns,thelookupratesareinterpolatedtothespecificconditionsineachgridcell.
Theyarethenadjustedforanylocalcloudcoverandlocalaerosolattenuation(ifPMis
simulated).Additionally,solarangledependenttemperatureandpressureadjustmentsare
appliedtofivekeyphotolysisreactions(NO2,O3,acetaldehyde,andtwoformaldehyde
reactions).
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 110www.camx.com
5.1.4.1CloudandAerosolAdjustments
Photochemistryisstronglyinfluencedbythepresenceofclouds,whichcanbothattenuateand
enhancetheactinicfluxofultraviolet(UV)andvisibleradiationresponsibleforphotolysis.
Theirspecificradiativeimpactsdependonmanyfactors,includingheight,depthandfractional
skycover;watercontent;andwaterphase(i.e.,liquiddropletsoricecrystals).Aerosolsalso
influencephotochemistryaccordingtotheiropticalpropertiesandmassloadingasafunction
ofaltitudeanddepth.CAMxincludesafastinlineversionofTUV(Emeryetal.,2010)to
calculatephotolysisadjustmentprofilesthrougheachcloudy,aerosolladengridcolumn.
TheinlineTUVisruntwiceforeachgridcolumn:firstfornoncloudyconditionswiththesame
Elterman(1968)aerosolprofileusedinthefullscienceTUVpreprocessor,andsecondwith
cloudsandsimulatedaerosolstoderiveaverticalprofileofthecloudy:clearactinicfluxratio(in
thecasethataerosolsarenotruninCAMx,theEltermanprofileisusedconsistently).Thisratio
isthenappliedasamultiplicativefactortotheclearskyvalueineachgridcell.Thisapproach
maintainsaccuracyinthecalculationofclearskyphotolysisrates,whileallowingcloudsand
aerosolstobedirectlyinvolvedinradiativetransfercalculationsthrougheachgridcolumn.
TUVincludesacalculationofintegratedatmosphericdensityabovetheCAMxdomain,based
ontheU.S.standardatmosphere,sothatatmosphericattenuationoftheUVstreamisproperly
calculatedenteringthemodeltop.OtheraspectsoftheinlineTUVmodelweresubstantially
streamlinedtominimizeruntimes.First,radiativecalculationsareperformedforonlyasingle
representativewavelength(350nm).Second,sinceabsorptionbygasesoccursinrather
narrowUVbandsrelativetothebroadbandinfluenceofclouds,theabsorptionfromoxygen,
ozone,nitrogendioxideandsulfurdioxidewereremoved.Third,theextraterrestrialfluxwas
notneededasitcancelsoutinthecalculationofthecloudy:clearratio.Finally,theplane
parallelversionofthedeltaEddingtonapproachwasusedinlieuofthemorecomplexand
expensivepseudosphericalgeometry.PreliminarytestsagainstthefullscienceTUVshowed
thatthestreamlinedversionresultedinlessthan1%differencesinactinicfluxratioforarange
ofcloudyconditions(Emeryetal.,2010).
Opticaldepth
expressesthereductionofincidentlightI0throughalightattenuatingmedium
ofdepth
zaccordingto
eII 0
TheinlineTUVadjustmentschemeutilizescloudopticaldepthfieldsprovidedbytheCAMx
cloud/rainfile,andaerosolopticaldepthscalculatedfromthePMmassconcentrations
simulatedbyCAMx.
TheCAMxmeteorologicalinterfacepreprocessorsgeneratecloudwaterandopticaldepth
fieldsfromthevariablefieldspresentintherawmeteorologicaloutputfiles.Cloudoptical
depthiscalculatedineachmodelgridcellaccordingtotheapproachofDelGenioetal.(1996)
andVoulgarakisetal.(2009),whichsatisfactorilyapproximatestheeffectsofrandomcloud
overlapaccordingto
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 111www.camx.com

2/3
2
3
c
dw
F
r
zL
whereLiscloudliquidwatercontent(g/m3),
zisthecelldepthcontainingcloudwater,
wis
thedensityofliquidwater(106g/m3),andFcisfractionalcloudcover.Themeanclouddroplet
radiusrdisnotdependentonwaterphase,andisassumedtobeatypicaltroposphericvalueof
1.5105mforliquidcloudwater.TUVassumesconstantMiescatteringparametersforclouds:
asinglescatteringalbedoof0.99,andanasymmetryfactorof0.85.
WhenCAMxisrunwithPM,verticalhazeopacityprofilesarecalculatedfromsimulatedaerosol
concentrationfields.WhenCAMxisrunwithonlygasphasechemistrywithoutaerosols,
photolysisratesareonlyadjustedforclouds.Aerosolopticalparametersarebestdetermined
fromMietheory,butintheinterestofminimizingimpactstomodelspeedandconsideringthe
degreeofuncertaintyinthesimulatedaerosolconcentrationsthemselves,asimplermethod
wasadopted.Aerosolsareassumedtoexistasanexternalmixtureoftheircomponent
chemicalspecies.Aerosollightextinction(scatteringandabsorption)isafunctionofeach
species’concentration,extinctionefficiency,andaffinityforhygroscopicgrowth.Totalaerosol
opticaldepthisdeterminedbysummingextinctionoverallspeciesandmultiplyingbylayer
depth.
Dryextinctionefficienciesandsinglescatteringalbedosforeachaerosolspecies,validat350
nm,areexternallydefinedintheCAMxchemistryparametersfile.Whilethesecanbealtered
bytheuser,thechemistryparametersfilesthatareprovidedwiththeCAMxdistribution
includedefaultvaluesaccordingtoTakemuraetal.(2002),asshowninTable53.
Table53.Defaultdryextinctionefficiencyandsinglescatteringalbedoat350nm(Takemura
etal.,2002)inthedistributedCAMxchemistryparametersfile.
Species
DryExtinctionEfficiency
(m2/g)
SingleScattering
Albedo
Sulfate7
1060.99
Nitrate7
1060.99
Ammonium7
1060.99
Organics7
1060.80
ElementalCarbon18
1060.25
Crustal(Fine+Coarse)0.4
1060.70
Seasalt(Na+Cl)1.5
1060.99
Takemuraetal.(2002)provideextinctionefficienciesandsinglescatteringalbedosforsulfate,
organics,soot,totaldust,andseasalt;wehaveextendedthesulfatevaluestonitrateand
ammonium.Theasymmetryfactorisinternallysettoadefaultvalueof0.61regardlessofthe
compositionoftheaerosols.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 112www.camx.com
Hygroscopicaerosolsarealsoflaggedinthechemistryparametersfile.Foreachflagged
species,aninternalgrowthfactorisappliedtothedryextinctionefficienciesaccordingtothe
relativehumidityconditionsineachgridcell.ThegrowthcurveistakenfromthePhaseIreport
oftheFederalLandManagers’AirQualityRelatedValuesWorkgroup(FLAG,2000).Bydefault,
therelativehumiditygrowthfactorisflaggedforsulfate,nitrate,ammoniumandseasalt;a
singlegrowthfactorisappliedforallhygroscopicspecies(Figure51).Minimumandmaximum
limitsonrelativehumidityaresetat1%and95%,respectively.
Figure51.Relativehumidityadjustmentfactorappliedtothedryextinctionefficiencyfor
hygroscopicaerosols(FLAG,2000).
5.1.4.2EffectsofSurfaceAlbedoandSnowCover
PhotolysisratesdependontheamountofsolarradiationreflectedfromtheEarth’ssurface
(albedo).UValbedoisassignedwithinCAMxaccordingtothedistributionofgriddedlanduse
providedbythetimeinvariant2Dsurfacefile(Tables34and35).SnowfreeUValbedosfallin
therange0.04to0.08andareconstantintime.AnalysesofreflectedUVradiationrecordedin
satellitedata(HermanandCelarier,1997)reportsimilarUValbedovaluesintherange0.02
0.08fortypicalterrestrialandwatersurfaces.Snowismuchmorereflectivethanothertypes
ofsurfacesandsoitisimportanttocharacterizetheeffectofsnowcoveronphotolysisrates.
TheCAMxphotolysisrateinputfileisgeneratedforfivesurfacealbedos,twoofwhich
representthenonsnowrange(0.040.10)andfourthatrepresentthesnowrange(0.10.2
0.50.9).CAMxdeterminesthelanduse‐andsnowweightedaveragesurfacealbedoineach
gridcell(Section4.7)andinterpolatesphotolysisratesbetweenthefivealbedos.
5.1.5GasPhaseChemistrySolvers
Solvingthetimeevolutionofgasphasechemistryrequiresnumericallyintegratingasetof
ordinarydifferentialequations(ODEs)andisamongthemostcomputationallyexpensive
0
5
10
15
20
25
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
F(RH)
RelativeHumidity(%)
ExtinctionAdjustment,f(RH)
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 113www.camx.com
operationsperformedinaphotochemicalgridmodel.OnereasonforthisisthattheODEs
describingtroposphericchemistryare“stiff”meaningthatthechemicalspeciesinvolvedhave
widelyvaryingproductionand/ordecaytimes.Thecomputationalefficiencyofthegasphase
chemistrysolverstronglyinfluencestheoverallefficiencyofagridmodel.CAMxincludestwo
chemistrysolversthatoffertradeoffsbetweenaccuracyandefficiency.
ThemostaccuratesolutionmethodsavailableforstiffODEsare“Gear”typeimplicitsolvers
(Gear,1971)suchasLSODE(Hindmarsh,1983).Gearsolversarestablewhenappliedto“stiff”
problems,suchasgasphasechemistry,butaregenerallytooslowforroutineuseingridmodel
applications.Herteletal.(1993)developedanimplementationoftheEulerBackwardIterative
(EBI)methodthatisveryefficientandalsoaccuratebecauseitutilizesexplicitalgebraic
formulaetosolveseveralimportantgroupsofspecies(HOx,NOx,etc.).
5.1.5.1LSODE
CAMxincludesthedoubleprecisionversionoftheLivermoreSolverforOrdinaryDifferential
Equations(LSODE;Hindmarsh,1983)distributedbytheNetlibrepositoryofnumerical
algorithms(http://www.netlib.org/).LSODEistooslowforeverydayusebutvaluableasa
referencemethodwithinCAMx.LSODEisbasedonGear’smethodwithnumericalrefinements
toimproveefficiencyandeaseofuse(RadhakrishnanandHindmarsh,1993).Gearmethods
(Gear,1971)areimplicitandemploybackwardsdifferentiationformulaetostepforwardin
timebytakingmultiplesteps.Theconvergedsolutionsateachsteparesavedinahistory
matrixandusedtopredictthenextsolution.Thus,LSODEmustinitiallytakeshorttimestepsto
buildthehistorymatrixandmaythentakeprogressivelylongersteps.LSODEismostefficient
forlongintegrationtimes(andinefficientforshortintegrationtimes)andthereforeleast
burdensomeforcoarsegridmodelapplicationsthathaverelativelylongcouplingtimes
betweengasphasechemistryandotherprocesses,e.g.,advection.
UsersuppliedinformationrequiredbyLSODEisessentiallytheerrorcontrolparametersand
thefunctionsdefiningthesystemofODEs,f(y,t),whereyisthevectorofspeciesconcentrations
andtistime.Supplyingasubroutinetoevaluatethetimederivativesofspeciesconcentrations
(f=dy/dt)ismandatory.SupplyingafunctiontoevaluatetheJacobianmatrix(J=df/dy)is
optionalsince,ifnotsupplied,LSODEcanderiveanumericalJacobianbyfinitedifference
betweenrepeatedevaluationsoff.SupplyinganalgebraicJacobianensuresaccuracy,although
anumericalJacobianmaybeequallyaccurateifadequateprecision(e.g.,doubleprecision)is
employed.SupplyinganalgebraicJacobianismoreefficientwhenJissparse,butfor
condensedmechanismssuchasCB05JisnotsparseandthenumericalJacobianmethodis
faster.CAMxusesthenumericalJacobianmethodwitharelativeerrortoleranceof107andan
absoluteerrortoleranceof1010.
5.1.5.2EBISolver
ThebackwardEulermethodsolvesconcentrations(y)asy(t+h)=y(t)+hf,wherefisthetime
derivativeofspeciesconcentrations(f=dy/dt)evaluatedatt+h.Themethodmustbeiterated
toconvergenceiny(t+h)becausespeciesconcentrationsareinterdependent.ThebasicEBI
methodisnotefficientforstiffproblemssuchastroposphericchemistrybecauseconvergence
isslowandthestepsize(h)mustbeshort.Herteletal.(1993)greatlyimprovedtheefficiency
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 114www.camx.com
andaccuracyofthemethodbydevelopinganalyticalsolutionstotheEBIequationforgroupsof
speciesthatarestronglycoupled(e.g.HOxandNOx/O3).Timestepsofupto3minutesare
takenbytheHertelEBIsolverinCAMx.
5.2AerosolChemistry
Thegasphasechemistryisrunalone(noaerosols)bysupplyingCAMxwithachemistry
parametersfilewiththeaerosoloptionkeywordsetto“NONE”,thenumberofaerosolspecies
settozero,andtheentirelistofaerosolspeciesparametersomitted(seeSection3).Aerosols
aretreatedbysupplyingCAMxwithachemistryparametersfilewiththeaerosolkeywordset
to“INERT”,“CF”,“CF_VBS”or“CMU”.Inallsuchcases,thenumberofaerosolspecies,the
numberofsizesectionsandtheirsizeranges,andvariousaerosolparametersarespecified.
Theaerosolkeyword“INERT”allowstheusertodefineanynumberofarbitrarilynamedinert
particulatespeciestobecarriedbythemodelduringaphotochemicalsimulation(e.g.,
modelingthedispersionofonlywindblowndust).
Aerosolchemistryprocessescanberuntogetherwithgasphasechemistryusingtwooptions
fortreatingaerosolsizedistributions:theCFschemeandCMUscheme.TheCFschemedivides
thesizedistributionintotwostaticmodes(coarseandfine).Primaryspeciescanbemodeled
asfineand/orcoarseparticles,whileallsecondary(chemicallyformed)speciesaremodeledas
fineparticlesonly.TheCMUschemeemploysasectionalapproachthatdynamicallymodels
thesizeevolutionofeachprimaryandsecondaryaerosolconstituentacrossanumberoffixed
sizesections.TheCFandCMUoptionsrequireaminimumsetofspecificaerosolspecieswith
associatedchemistry.AerosolwaterisexplicitlytreatedinbothCFandCMUoptions,which
affectsaerosolsizeanddensity.
5.2.1AdditionalGasPhaseSpecies
WheneithertheCForCMUaerosoloptionisselected,thefollowinggasphasespeciesare
addedtomodelgasaerosolinteractions:
1) Ammonia(NH3)asaprecursorforinorganicaerosol.
2) Gaseoussulfuricacid(SULF)asaprecursortosulfateaerosol.
3) Sodium(Na)andhydrogenchloride(HCL)asproductsofacidifiedseasaltaerosol.
4) Separatelytrackedemitted(“primary”)VOCsthatformintermediateorganiccondensable
gas(CG)speciesviaoxidationreactions:toluene,xylene,monoterpenes,sesquiterpenes,
andisoprene.
5) SeveralintermediateCGspeciesthatmaycondensetosecondaryorganicaerosol(SOA)or
areproductsofSOAvolatilization.
5.2.2AerosolProcesses
Aerosolchemicalandthermodynamicprocessesincludethefollowing:
1) AqueoussulfateandnitrateformationinresolvedcloudwaterusingtheRADMaqueous
chemistryalgorithm(Changetal.,1987).
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 115www.camx.com
2) Partitioningofinorganicaerosolconstituents(sulfate,nitrate,ammonium,andnatural
minerals)betweenthegasandaerosolphasesusingtheISORROPIAthermodynamic
module(Nenesetal.,1998,1999);uptakeofnitricacidbycalciuminsoildustparticlesis
calculatedexternaltoISORROPIA.
3) Organicaerosolgaspartitioningandoxidationchemistryusingtwooptions:
a. AsemivolatileequilibriumschemecalledSOAP(Straderetal.,1999)thatformsa
condensed“organicsolutionphase”;
b. Ahybrid1.5dimensionvolatilitybasisset(1.5DVBS)approach(Kooetal.,2014)
providingaunifiedframeworkforgasaerosolpartitioningandchemicalagingofboth
primaryandsecondaryorganicaerosols.
Organicaerosoltreatmentsaredescribedinmoredetailinseparatesubsectionsbelow.
Aqueouschemistryisnotexplicitlyappliedtosubgridclouds;cloudsareassumedtoeither
occupytheentiretyofagridcellvolume,orbecompletelyabsentfromit.Thecellaveraged
effectofsubgridcloudsistreatedintheCAMxmeteorologicalpreprocessorsthatgenerate
threedimensionalgriddedcloudinputfields.Cloudygridcellsaredeterminedbycloudliquid
watercontentsaboveathresholdof0.05g/m3.Aqueouschemistryiscalculatedforeachcloud
gridcellateachmodeltimestep.
Incloudygridcellsundergoingaqueouschemistry,theISORROPIAequilibriumalgorithmis
calledeverytimesteptoensurethatrapidlyevolvingsulfate,nitrateandneutralizingcations
areinbalancewiththelocalenvironment.Incloudfreegridcells,ISORROPIAiscalledona
uniqueaerosol“coupling”timestepthatisdefinedwithinthechemistryparametersfile.By
default,theaerosolcouplingtimestepis15minutes,andthisisusedforallmasterandnested
gridsinasimulationregardlessofthegridspecificdrivingtimestep.
Uptakeofnitricacidonmineraldustparticlesisoneofthepathwaysofparticlenitrate
formation.Forexample,calciuminsoildustparticlesreactswithnitricacidtoformcalcium
nitrate.BasedonSaharanduststudy(Astithaetal.,2009),weestimateabout6%massfraction
ofcalciumcarbonate(CaCO3)infinedustparticles(FCRS),andhalfofitisassumedtobe
replacedbycalciumnitrate.SincethecurrentISORROPIAimplementationinCAMxdoesnot
considermineralcationsotherthansodium,nitrateuptakebycalciuminsoildustiscalculated
externaltoISORROPIA.CAMxoutputstotalparticulatenitrate,i.e.,thesumofparticlenitrate
determinedbyISORROPIAandcalciumnitrate.
Table54showstheinorganicaerosolspeciesthatcanbeincludedwiththeCFscheme.Some
speciesmustbepresentforthisscheme(“MandatorySpecies”)toestablishlinkagesbetween
gasandaerosolphasechemistry.Otherspeciesareoptional(meaningthattheycanbe
removedfromthechemistryparametersinputfile),exceptthatsodiumandchloridemust
alwaysbepresentorabsenttogether(i.e.,onecannotbepresentwithouttheother).Ifsodium
andchloridearenotmodeledthendefaultbackgroundvaluesareusedwithinCAMx.
IntheCMUscheme,CRSTisusedtoidentifyallprimaryinertmaterial,whichreplacestheCF
speciesofFPRM,FCRS,CPRM,andCCRSinTable54.Individualaerosolspeciesnamesspecify
boththeconstituentandthesizesectionusingasetnamingconvention,e.g.,PSO4_1refersto
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 116www.camx.com
Table54.ListofinorganicPMspeciesfortheCAMxCFaerosoloption.
InternalLabelName MandatorySpecies
PSO4SulfateX
PNO3ParticulateNitrate X
PNH4ParticulateAmmonium X
PH2OAerosolWaterContent X
NASodium
PCLParticulateChloride
PECPrimaryElementalCarbon
FPRMFineOtherPrimary(diameter
2.5µm)
FCRSFineCrustal(diameter
2.5µm)
CPRMCoarseOtherPrimary
CCRSCoarseCrustal
particlesulfateinsizesection1.TheCMUschemerequiresthatthecompletelistofallaerosol
speciesbepresentinthechemistryparametersfile(i.e.,noaerosolspeciesareoptional).
5.2.2.1SOAP
SOAPisthedefaultSOAchemistry/partitioningmodulewhentheaerosolkeywordissetto“CF”
or“CMU”inthechemistryparametersinputfile.Directlyemitted(primary)organicaerosolis
treatedbySOAPasasinglenonvolatilespeciescalledPOAthatdoesnotchemicalevolve.
However,POAdoesinfluencetheevolutionofSOA.SOAspeciesexistinequilibriumwith
condensablegasses(CG)thatcanbeproducedbyVOCoxidation:
VOC+oxidant→CG↔SOA
CGformationfromVOCoxidationreactions(Table55)ishandledwithintheSOAPmodule
ratherthanthemaingasphasechemistry,asdescribedbelow.Thisapproachhasthefollowing
advantages:(1)separatestheVOCprecursorsandlumpingschemesforoxidantchemistryand
SOAformation(e.g.,foraromatics,differentlumpingschemesmaybeappropriateforoxidant
andSOAformation);(2)allowsthesameSOAmechanismtobeusedwithdifferentoxidant
mechanisms;(3)allowsinclusionofSOAprecursorswithoutexplicitlydefiningoxidantreactions
(e.g.,sesquiterpenesareexplicitintheSOAmodulebuttheiroxidantformationmaybe
representedbysurrogatespecies).
EmissionsofSOAprecursorsmustbeprovidedseparatelyfromtheemissionsofoxidant
precursors,e.g.,isopreneemissionsmustbespeciatedbothasISOPforoxidantchemistryand
ISPforSOAchemistry.This“doublecounting”ofemissionsiscorrectbecausethespecies(e.g.,
ISOPandISP)servedifferentpurposes.Ideally,emissionsprocessorswilldevelopVOC
speciationschemesthatsuitbothoxidantandSOAmodeling.Intheabsenceofmorerefined
information,emissionsofSOAprecursorsmaybesetequaltoemissionsofoxidantprecursors
asfollows:ISP=ISOP;TRP=TERP;BNZA=BENZ;TOLA=TOLorARO1;XYLA=XYLorARO2.
SomeemittedVOCsaresemivolatile(SVOCs)andcancondensedirectlytoSOA,e.g.,biogenic
emissionsofoxygenatedVOCs.SOAformationfromSVOCemissionsmaybeaccountedforby
includingtheSVOCintheCAMxemissionsasoneoftheCGslistedinTable56.ChooseaCG
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 117www.camx.com
Table55.SOAprecursorreactionsincludedintheCAMxSOAPmodule.
PrecursorReactionCGProducts1k298
2
Anthropogenic
ToluenesTOLA+OHTO2 5.63E12
TO2+NO0.036CG1+0.069CG2 9.04E12
TO2+HO20.22SOAH31.49E11
XylenesXYLA+OHXLO2 1.85E11
XLO2+NO0.022CG1+0.064CG2 9.04E12
XLO2+HO20.21SOAH31.49E11
BenzeneBNZA+OHBZO2 1.22E12
BZO2+NO0.037CG1+0.46CG2 9.04E12
BZO2+HO20.19SOAH31.49E11
Biogenic
IsopreneISP+OH0.015CG3+0.12CG4 9.99E11
ISP+O3none 1.27E17
ISP+NO3none 6.74E13
TerpenesTRP+O0.065CG5+0.29CG6 3.60E11
TRP+OH0.065CG5+0.29CG6 6.77E11
TRP+O30.065CG5+0.29CG6 7.63E17
TRP+NO30.065CG5+0.29CG6 6.66E12
SesquiterpenesSQT+OH0.85CG7 1.97E10
SQT+O30.85CG7 1.16E14
SQT+NO30.85CG7 1.90E11
Notes:
1Yieldvaluesareinppm/ppm.
2Rateconstantsareshownfor298Kand1atmosphereinmolecules/cm3and1/s.
3SOAHrepresentsnonvolatileoxidationproducts.
Table56.PropertiesofCG/SOApairsintheCAMxSOAPmodule.
Species
Molecular
Weight
(gmole1)
Saturation
Concentration
(µgm3at298K)
Heatof
vaporization
(kJmole1)
CG1/SOA1150 1.15 19.9
CG2/SOA2150 81.6 18.0
CG3/SOA3130 0.726 42.0
CG4/SOA4130 136 42.0
CG5/SOA5180 3.92 75.5
CG6/SOA6180 55.8 75.5
CG7/SOA7210 0
SOAH150 0
SOPA220 0
SOPB220 0
thathasappropriatevolatilityproperties,andaccountforanymolecularweightdifference
betweentheSVOCandsurrogateCG(molesCGemitted=molesSVOCxMWSVOC/MWCG).
TheSOAPmoduleconsistsoftwoparts:gasphaseoxidationchemistrythatformsCG,and
equilibriumpartitioningbetweengasandaerosolphasesforeachCG/SOApair.Thephysical
propertiesofCG/SOApairsareshowninTable56.TheCGyieldsareexpressedasppmofCG
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 118www.camx.com
formedperppmofVOCreactedsothatCGconcentrationsfollowtheCAMxconventionfor
gasesandareinppm.TheSOAsformedfromtheCGsareinunitsofµg/m3asareallother
aerosolspecies.
Polymerizationreactionsinorganicaerosolphaseswillincreasethemolecularweightofthe
condensedaerosolandreducethevolatility.Detaileddescriptionsofpolymerizationdepend
uponthechemicalcompositionoftheorganicandinorganicaerosolphases(e.g.,aerosol
acidity).SOAPassumesthatSOAispolymerizedtoanonvolatileform(i.e.,moved
permanentlytotheaerosolphase)withalifetimeofabout1day(Kalbereretal.,2004).
PolymerizationslowlyformsorganicaerosolpolymerscalledSOPA(anthropogenic)andSOPB
(biogenic).
TotalSOAisthesumofSOA17plusSOAH,SOPAandSOPB.Totalorganicaerosolisthesumof
totalSOAandthesinglePOAspecies.
5.2.2.21.5DVBS
TheVBSorganicaerosol(OA)chemistry/partitioningmoduleisselectedwhentheaerosol
keywordissetto“CF_VBS”inthechemistryparametersinputfile.VBSworkswiththe2mode
CFsizeoptionbutisnotcurrentlycompatiblewiththeCMUsectionalsizeoption.
TheVBSapproach(Donahueetal.,2006;Robinsonetal.,2007)providesaunifiedframework
forgasaerosolpartitioningandchemicalagingofbothPOAandSOA.Itusesasetofsemi
volatileOAspecieswithvolatilityequallyspacedinalogarithmicscale(thebasisset).VBS
memberspeciesareallowedtoreactfurtherintheatmosphere(chemicalaging)todescribe
volatilitychanges(i.e.,shiftingbetweenvolatilitybins).FirstgenerationVBSmodelsuseone
dimensionalbasissets(1DVBS)whereinorganiccompoundsaregroupedonlybyvolatilityand
thusareunabletodescribevaryingdegreesofoxidationobservedinatmosphericOAofsimilar
volatility.Toovercomethisshortcoming,atwodimensionalVBS(2DVBS)wasdeveloped
whereorganiccompoundsaregroupedbyoxidationstateaswellasvolatility(Donahueetal.,
2011,2012).However,useof2DVBSina3DPGMhasbeenlimitedduetohigh
computationalcost.
AhybridVBSapproachisimplementedinCAMx,called1.5DVBS,whichcombinesthe
simplicityofthe1DVBSwiththeabilitytodescribeevolutionofOAinthe2Dspaceof
oxidationstateandvolatility(Kooetal.,2014).Figure52showsaschematicdiagramofthe
1.5DVBSschemecurrentlyimplementedinCAMx.Thisschemeusesfivebasissetstodescribe
varyingdegreesofoxidationinambientOA:twobasissetsforchemicallyagedoxygenatedOA
(OOA;anthropogenicandbiogenic)andthreeforfreshlyemittedOA(hydrocarbonlikeOA
[HOA]frommeatcookingandotheranthropogenicsourcesandbiomassburningOA[BBOA]).
Eachbasissethasfivevolatilitybinsrangingfrom101to103µgm3insaturationconcentration
(C*),whichroughlycoversthevolatilityrangeofsemivolatileorganiccompounds(SVOCs).An
effectiveheatofvaporization(H)valueof35kJmole1isusedforallSOAspecies.ForPOA,H
isestimatedusingthefollowingempiricalformulas:
March20
1
C
OMPREHE
N
Figure5
consists
anthrop
o
andthe
v
partitio
n
emissio
n
1
6
N
SIVE
A
IRQUALIT
Y
2.Schema
t
of4charac
t
o
genic;B
b
v
olatilitybi
n
n
ingandch
e
n
soroxidati
Y
M
ODELWITHE
X
t
icdiagram
o
t
ersthatin
d
b
iogenic;C
n
number.
T
e
micalaging
,
onofSOA
p
X
TENSIONS
o
ftheCAM
x
icatethep
h
cooking;F
T
hesolidan
,
respective
p
recursors.
119
x
VBSmodu
h
ase(Ppa
r
fire),the
f
ddasheda
r
ly.Thethic
le.Themo
d
r
ticle;Vv
a
f
ormation(
P
r
rowsrepre
s
kcoloreda
r
CAMxUser’
5.Che
d
elVBSspe
c
a
por),thes
o
P
primary
;
s
entgasae
r
r
rowsrepre
s
sGuide
Versi
o
mistryMecha
n
www.cam
c
iesname
o
urce(A
;
Ssecond
r
osol
s
entPOA
o
n6.3
n
isms
x.com
ary),
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 120www.camx.com
H4
C298K
*85kJmole1 (Forbiomassburning;Mayetal.,2013c)
H 11C298K
*85kJmole1(Forotherprimary;Ranjanetal.,2012)
Table57liststhemodelOAcompoundsassignedtothevolatilitybins.Theirmolecular
structuresweredeterminedbyplacingthemonthe2DvolatilityspacedefinedbyDonahueet
al.(2011,2012).The1.5DVBSschemeadjustsoxidationstateaswellasvolatilityinresponse
tochemicalagingbysimplifyingthe2DVBSmodel.ChemicalagingofSOAandoxygenated
POAismodeledbyshiftingOAmassalongapredefinedpathwayoftheOOAbasisset,which
reducesvolatilitywhileincreasingoxidationstate.POAaging,whichwouldrequiredifferent
pathwaysfromtheHOA(orBBOA)basissettotheOOAbasisset,issimplifiedinthis1.5DVBS
schemewhereoxidationproductsofPOAarerepresentedasamixtureofPOAandOPOAinthe
nextlowervolatilitybins.ThegasphaseOHreactionratesforPOAandanthropogenicSOAare
assumedtobe4x1011and2x1011cm3molecule1s1,respectively.AgingofbiogenicSOAis
disabledinourimplementationbasedonpreviousmodelingstudiesthatfoundagingbiogenic
SOAledtoasignificantoverpredictionofOAinruralareas(Laneetal.,2008;Murphyand
Pandis,2009).Additionaldetailsonthe1.5DVBSmodelcanbefoundelsewhere(Kooetal.,
2014;HildebrandtRuizetal.,2015).TotalOAisthesumofallOAinthefivevolatilitybinsfrom
primaryformation(PAP+PCP+PFP)andfromsecondaryformation(PAS+PBS).
Table57.Molecularpropertiesofthe1.5DVBSspecies.
BasisSetModelSpecies
Namea
C*b
(µgm3)
OSC
cC#O#MW
(gmole1)
OA/OC
OOA
PAS0&PBS00d0.102 74.90 1722.05
PAS1&PBS11‐0.188 7.25 4.38 1671.92
PAS2&PBS210‐0.463 7.5 3.84 1631.81
PAS3&PBS3100‐0.724 7.75 3.30 1581.70
PAS4&PBS41000‐0.973 82.74 1531.59
HOA
PAP0&PCP00d‐1.52 17 2.69 2781.36
PAP1&PCP11‐1.65 17.5 2.02 2751.31
PAP2&PCP210‐1.78 18 1.34 2721.26
PAP3&PCP3100‐1.90 18.5 0.632 2681.21
PAP4&PCP41000‐2.00 19 0.0 2661.17
BBOA
PFP00d‐0.704 10 4.32 2051.71
PFP11‐1.02 11 3.60 2081.58
PFP210‐1.29 12 2.85 2111.47
PFP3100‐1.52 13 2.08 2131.37
PFP41000‐1.73 14 1.27 2151.28
a:SeeFigure52forthemodelspeciesnamingconvention.
b:Effectivesaturationconcentration.
c:Averageoxidationstateofcarbon.
d:PropertiesofthelowestvolatilitybinswereestimatedassumingC*=0.1µgm3,buttheyactuallyrepresentallOAwithC*≤
0.1µgm3,andaretreatedasnonvolatileinthemodel.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 121www.camx.com
Table58listsinputemissionspeciesusersneedtoprepareforthe1.5DVBSOAscheme.
AnthropogenicandbiogenicVOCprecursorsaresimplycopiedfromtherespectiveemissions
fortheCBgasphasemechanisms(TOL,XYL,BENZ,ISOP,TERP)totheir“A”and“B”
counterparts.Sesquiterene(SQT)isentirelybiogenicandidenticaltothatusedbySOAP.The
CAMxVBSschemeallocatesPOAemissionsfromfivesourcetypestothePAP,PCP,andPFP
speciesbasedonemissionfactors(Table59)determinedfromlaboratoryexperiments.VBS
usessourcespecificvolatilitydistributionfactorsforgasolinevehicles(POA_GV),dieselvehicles
(POA_DV),meatcooking(POA_MC),andbiomassburning(POA_BB)basedonrecentchamber
studies(Mayetal.,2013a,b,c;Woodyetal.,2015).ForotherPOAemissions(POA_OP),VBS
appliesdistributionfactorsestimatedbyRobinsonetal.(2007).
Table58.Inputspeciesfor1.5DVBSscheme.
SpeciesDescriptionNotes
TOLAToluene(anthropogenic)
AnthropogenicVOCprecursors
XYLAXylene(anthropogenic)
BNZABenzene(anthropogenic)
ISPAIsoprene(anthropogenic)
TRPAMonoterpenes(anthropogenic)
TOLBToluene(biogenic)
BiogenicVOCprecursors
XYLBXylene(biogenic)
BNZBBenzene(biogenic)
ISPBIsoprene(biogenic)
TRPBMonoterpenes(biogenic)
SQTSesquiterpenes(biogenic)
IVOGIVOCfromgasolineengines
IVOCprecursors
IVODIVOCfromdieselengines
IVOAIVOCfromotheranthropogenic sources
IVOBIVOCfrombiomassburning
POA_GVPOAfromgasolinevehicles
POAprecursoremissionsassignedtoPAPand
PFPmodeledspecies
POA_DVPOAfromdieselvehicles
POA_MCPOAfrommeatcooking
POA_OPPOAfromotheranthropogenicsources
POA_BBPOAfrombiomassburning
Table59.VolatilitydistributionfactorsusedtoallocatePOAemissionsfromfivedifferent
sourcetypestothefivePAP,PCP,andPFPvolatilitybins.
POAspecies
EmissionFractionforvolatilitybinwithC*of
01101001000
POA_GV0.270.15 0.26 0.150.17
POA_DV0.030.25 0.37 0.240.11
POA_MC0.350.35 0.1 0.10.1
POA_OP0.090.09 0.14 0.180.5
POA_BB0.20.1 0.1 0.20.4
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 122www.camx.com
Emissionsofintermediatevolatilityorganiccompounds(IVOCs;104≤C*≤106)makeimportant
contributionstoOAintheatmospherebutgenerallyaremissingfromemissioninventories
becauseneitherVOCnorPOAemissionfactorsaccountforIVOCs.Apreprocessor(PREPVBS)
canbeusedtomapsourcespecificPOAemissionstothefivedistinctPOAemissionspeciesfor
VBS,andtoscaleIVOCemissionsfromtotalnonmethaneorganiccompound(NMOC)
emissionsbasedonsmogchamberdata(Jatharetal.,2014).
5.2.3AerosolSectionalApproach
UnliketheCFscheme,whereeachspeciesisrepresentedbyasingleparticlesize,theCMU
schemeinstitutesanadditionalsteptodistributethebulkaerosolconcentrationsfromthe
aqueous/aerosolchemistrymodulesintoeachsizebin.Forinorganicaerosolspecies,
ISORROPIAyieldsthebulkaerosolcompositionatequilibrium.Theaerosolsizedistributionis
thendeterminedbydistributingthechangeinaerosolmassduringthetimestepintoeachsize
binusingaweightingfactor(Pandisetal.,1993).Thefractionfi,koftotalfluxofspeciesi
betweengasandaerosolphasesthatcondensesontoorevaporatesfromanaerosolsize
sectionkisgivenby,


k
k
eq
iiikk
k
eq
iiikk
ki ccDdN
ccDdN
f12
12
,
,
whereNkanddkarethenumberandmeandiameterofparticlesinthesectionk,respectively,
Di,ci,andcieqarethediffusivity,bulkgasphaseconcentration,andequilibriumconcentrationat
theparticlesurfaceofspeciesi,respectively,
k=2
-
/adk,
-
isthemeanfreepathofair,andais
theaccommodationcoefficient(Pandisetal.,1993).Assumingthatcieqisindependentof
particlesize,thefractionisreducedto,

k
k
kkk
kkk
ki f
dN
dN
f
1
1
,
.
Theaboveweightingfactorthendependsonthesurfaceareaonly.
Fororganicaerosols,SOAPcalculatesthebulkequilibriumcomposition.Usingthepseudoideal
solutionassumption(Straderetal.,1999),theeffectofchemicalcompositionoftheparticlecan
beincorporatedintotheweightingfactor:


k
kikiikk
kikiikk
ki cxcdN
cxcdN
f1
1
*
,
*
,
,
.
wherexi,kisthemolefractionofspeciesiinthesectionkandci*istheeffectivesaturation
concentrationofspeciesi.Sincethefractiondeterminesthecompositionofeachsizesection,
theaboveequationshouldbesolvediterativelyateachtimestep.Assumingthatthechemical
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 123www.camx.com
compositionchangesslowlyduringatimestep,however,themolefractionscanbe
approximatedwiththosefromtheprevioustimestep(Kooetal.,2003).
Forcloud/fogdroplets,RADMisusedtocalculatesulfateandnitrateformationinthebulk
aqueousphase.Theaddedmassisthendistributedintoeachsizebinbyaweightingfactor
whichisbasedonthesizeresolvedaqueouschemistrymodelsimulationresults(Faheyand
Pandis,2001).
Inaddition,mathematicaldescriptionsofnucleationandcoagulationhavebeenaddedtothe
CMUscheme.Thenucleationmodelemploysthenucleationrateparameterizationproposed
byRusselletal.(1994).Themodelassumesalinearsulfuricacidvaporconcentrationvariation
forthegiventimestepoftheaerosolmodulebasedontheinitiallyavailablesulfuricacidand
assignsallthenucleatedmasstothefirstsectionofthedistribution.Thecoagulationrateof
theaerosolparticlesismodeledaccordingtoSeinfeldandPandis(1998).Ahighresolution
distributionisusedforthecoagulationcalculationsbysubdividingeachsectionoftheoriginal
distributioninto3additionalsections.
5.3MercuryChemistry
Mercuryexistsintheatmosphereaselementalmercury,Hg(0),andoxidizedmercury,Hg(II)
(SchroederandMunthe,1998).Hg(II)canbeinorganic(e.g.,mercuricchloride,HgCl2)or
organic(e.g.,methylmercury,MeHg).Itcanalsobepresentasparticulatemercury(e.g.,
mercuricoxide,HgO,ormercurysulfide,HgS).Intheglobalatmosphere,Hg(0)isthedominant
form.Hg(II)typicallyconstitutesafewpercentoftotalmercuryandispredominantlyinthegas
phase.MeHgconcentrationsintheatmospherearenegligible,aboutafactorof10to30lower
thanHg(II)concentrations,basedonanalysisofprecipitationsamplesconductedbyFrontier
Geosciences,Inc.(e.g.,Seigneuretal.,1998).However,Hg(II)becomesmethylatedinwater
bodies,whereitcanbioaccumulateinthefoodchain.Hg(0)issparinglysolubleandisnot
removedsignificantlybywetdeposition;itsdrydepositionvelocityisalsobelievedtobelow.
Asaresult,Hg(0)hasalongatmosphericlifetime,ontheorderofseveralmonths,thatis
governedbyitsoxidationtoHg(II).Ontheotherhand,Hg(II)isquitesoluble;itisconsequently
removedrapidlybywetanddrydepositionprocesses.Particulatemercury,Hg(p),ismostly
presentinthefinefractionofparticulatematter(PM2.5),althoughsomeHg(p)maybepresent
incoarsePM(e.g.,LandisandKeeler,2002).
Knowntransformationsamonginorganicmercuryspeciesincludethegasphaseoxidationof
Hg(0)toHg(II),theaqueousphaseoxidationofHg(0)toHg(II),theaqueousphasereductionof
Hg(II)toHg(0),variousaqueousphaseequilibriaofHg(II)species,andtheadsorptionofHg(II)
toPMinboththegasphaseandaqueousphase.Theinorganicmercurychemistrymodules
implementedinCAMxarebasedonourcurrentknowledgeofthesetransformations.However,
itshouldbenotedthatourknowledgeofmercurychemistrycontinuestoevolveasnew
laboratorydatabecomeavailable,andtheHgchemicalkineticmechanismsinCAMxandother
modelsthattreattheatmosphericfateofmercurywillneedtoberevisedaccordingly.
Below,weprovideadditionaldetailsonthegas‐andaqueousphasemercurychemistry
mechanismsimplementedinCAMx,andtheimplementationapproach.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 124www.camx.com
5.3.1GasPhaseChemistry
ThegasphasetransformationsincludetheoxidationofHg(0)toHg(II)byozone(O3)(Hall,
1995),hydrogenperoxide(H2O2)(Tokosetal.,1998)hydroxylradicals(OH)(Sommaretal.,
2001;PalandAriya,2003;2004),bromine(Br)(Ariyaetal.,2002),andhypobromite(BrO)
(RaofieandAriya,2003).TheoxidationofHg(0)byO3,H2O2,andOHaregivenbythefollowing
threereactions:
-1-13-20
3smolec cm 103 = (g), Hg(II)(g) O + (g) Hg(0) k
-1-13-19
222 smolec cm 108.5 = (g), Hg(OH)(g) OH + (g) Hg(0) k
-1-13-14
2smolec cm 108 = (g), Hg(OH)(g) OH + (g) Hg(0) k,
whileoxidationbyBromineisbasedonasequenceof5reactions(SeigneurandLohman,2008):
1-1-3
-1.86
13-
1smolec cm
298
103.6 = (g),HgBr (g)Br + (g) Hg(0)
T
Pk
1-9
2s
8537
exp 103.9 = (g), Hg(0)(g)HgBr
T
k
1-1-3
-0.57
10-
32 smolec cm
298
102.5 = (g), HgBr(g)Br + (g)HgBr
T
k
1-1-3
-0.57
10-
4smolec cm
298
102.5 = (g), HgBrOH(g) OH + (g)HgBr
T
k
-1-13-15
5smolec cm 101 = (g), Hg(II)(g) BrO + (g) Hg(0) k
Thereactionrateconstantsprovidedabovearefortemperaturesintherangeof20to25oC;no
temperaturedependenceinformationisavailable.Forthebrominereactions,Tisthe
temperatureindegreesKelvin,andPisthepressureinatmospheres.Thefivereactionsare
treatedasasinglereaction,withaneffectiveHg(0)firstorderrateconstantthatisafunctionof
theindividualreactionratesandtheconcentrationsofBr,BrOandOHbasedontheassumption
thatBr,BrOandOHconcentrationsdon’tchangebytheirreactionswithmercury.This
treatmentissimilartothatofHolmesetal.(2006),whoconsideredtheoxidationofHg(0)by
bromineatomswithasetofthreereactions.Theeffectivefirstorderrateconstantiscalculated
bythefollowingexpression:

   
1-
5
432
431 s BrOk
OHkBrkk
OHkBrkBrk
keff
5.3.2AdsorptionofHg(II)onPM
InthefirstimplementationofmercuryinCAMx,Hg(II)adsorptiononPMwasconsideredonlyin
theaqueousphase(seebelow),usinganadsorptioncoefficientderivedfromavailable
experimentaldata(Seigneuretal.,1998;Ryaboshapkoetal.,2002).Itisessentialtoalso
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 125www.camx.com
considertheadsorptionofgaseousHgspeciestoPMbecausegas/particleconversionalso
affectsHgdeposition(Lindbergetal.,2007).RutterandSchauer(2007a)reportedresultsof
laboratoryworkmeasuringtheadsorptionofreactivegaseousmercury(RGM)toatmospheric
andsyntheticparticlesasafunctionoftemperature.Theirexperimentalresultssuggestthat
surfacearearatherthanPMmasscontrolsthepartitioningprocess.Theyreportedthree
surfaceareaadsorptioncoefficientsforurbanPM(collectedinMilwaukee,WI,andRiverside,
CA),ammoniumsulfateandadipicacid,respectively.Theyexpressedthesurfacearea
adsorptioncoefficient(Ksa)asfollows:
PMARGMHgK spadspsa
,
whereKsaisinm3m2,Hgp,adsandRGMareinpgm3,Aspisthespecificsurfaceareaofambient
PMinm2μg1andPMistheambienturbanPMconcentrationinμgm3.Here,Hgp,adsrefersonly
totheadsorbedRGM,i.e.,itdoesnotincludenonvolatileprimaryparticulatemercury.Rutter
andSchauer(2007a)alsofoundthattheKsaobtainedforurbanPMfallsbetweenthatof
ammoniumsulfate(moreRGMadsorption)andadipicacid(lessRGMadsorption).Their
laboratoryexperimentsleadtothefollowingvalueforKsaasafunctionoftemperature(inK)for
adsorptiontourbanPM:
10/4250
10
T
sa
K (1)
RutterandSchauer’s(2007b)experimentalresultsalsoshowatenfoldincreaseinadsorption
ofRGMtosodiumchloridecomparedtoammoniumsulfateandorganicparticulatecompounds
(alargerincreasewasobservedforsodiumnitrate).Thus,theadsorptioncoefficientforRGM
adsorptiontoseasaltisabout10timesthatforurbanPM:
9/4250
10
T
sa
K (2)
FollowingtheapproachusedinVijayaraghavanetal.(2008),wetreatallnonseasaltPMas
urbanPMforsimplicityanduseEquation(1)tosimulateRGMadsorptiontoallnonseasalt
PM.TheadsorptiontoseasaltPMiscalculatedusingEquation(2).Thus,theeffective
adsorptioncoefficientforeachaerosolsizesectioniscalculatedas:

ss
T
ss
T
effsa FFK 11010 10/42509/4250
,
whereFssisthefractionofseasaltinthatsizesection.IntheCAMximplementation,we
assumethatRGMisadsorbedonprimaryfineandcoarsePM.
5.3.3AqueousPhaseChemistry
TheaqueousphasechemistryincludesthereductionofHg(II)toHg(0)viareactionwith
hydroperoxyradicals(HO2)andbytheformationofthesulfitecomplexes(atlowHCl
concentrations),HgSO3andHg(SO3)22,aswellastheoxidationofHg(0)toHg(II)bydissolved
O3,OH,andCl2.AdsorptionofHg(II)speciesonatmosphericparticulatematter(PM)is
simulatedusinganadsorptioncoefficient(K=34Lg1)recommendedbySeigneuretal.(1998).
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 126www.camx.com
Therelevantreactionsarelistedbelow.Notethatthegasliquidequilibriaandionicequilibria
ofthenonmercuryspecies(e.g.,SO2,O3)involvedinthemercuryaqueousphasechemistryare
notshownhere,sincetheyareidenticaltothoseintheotherCAMxmechanisms.
5.3.2.1GasliquidEquilibria
-1
atm M0.11 = (aq), Hg(0) (g) Hg(0) K(Sanemasa,1975;Cleveretal.,1985)
-16
22 atm M 101.4 = (aq),HgCl (g)HgCl K(LindqvistandRodhe,1985)
-14
22 atm M 101.2 = (aq),Hg(OH) (g)Hg(OH) K(LindqvistandRodhe,1985)
TheHenry'sLawconstantslistedabovearefortemperaturesintherangeof20to25oC.
TemperaturedependenceinformationisavailablefortheHg(0)Henry'sLawconstantbutthe
validityofthisinformationfortemperaturesbelow0oCisnotestablished.
5.3.2.2AqueousphaseEquilibria
2-14-+2
2M 10 = ,2Cl + Hg (aq) HgCl K(SillenandMartel,1964)
2-22-+2
2M 10 = ,2OH + Hg (aq) Hg(OH) K(SillenandMartel,1964)
-113
3
-2
3
+2 M 102.1 = ,HgSO SO + Hg K(vanLoonetal.,2001)
-110-2
23
-2
33 M 101 = ,)Hg(SO SO + HgSO K(vanLoonetal.,2001)
5.3.2.3AdsorptionofHg(II)onPMintheAqueousPhase
-1
g L 34 = (p), H(II) (aq) Hg(II) K(Seigneuretal.,1998)
5.3.2.4AqueousphaseKinetics
-1-17+2
3sM 104.7 =,Hg(aq) O + (aq) Hg(0) k(Munthe,1992)
-1-19+2 sM 102 =,Hg(aq) OH + (aq) Hg(0) k(LinandPehkonen,1997)
-1
3s 0.0106 =(aq), Hg(0)(aq) HgSO k(vanLoonetal.,2000)
-1-14
2sM 101.7 =(aq), Hg(0)(aq) HO + (aq) Hg(II) k(PehkonenandLin,1998)
-1-16+2 sM 102.09 =,Hg(aq) HOCl + (aq) Hg(0) k(LinandPehkonen,1998)
-1-16+2- sM 101.99 =,HgOCl + (aq) Hg(0) k(LinandPehkonen,1998)
Inthelasttworeactionslistedabove,HOClandOClcomefromthedissolutionandsubsequent
dissociationofmolecularchlorine(Cl2).NotethatHg(II)(aq)referstoalldivalentHgspeciesin
solution(i.e.,Hg2++HgCl2(aq)+Hg(OH)2(aq)+HgSO3+Hg(SO3)22).Therateconstantslistedfor
theaqueousphasekineticsarefortemperaturesintherangeof20to25oC.Temperature
dependenceinformationisavailablefortheHgSO3reductionreaction.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 127www.camx.com
Asmentionedpreviously,thegas‐andaqueousphaseHgtransformationspresentedabove
representthestateofthesciencefromadecadeago(Ryaboshapkoetal.,2002;Seigneuretal.,
2001a,2004)andourknowledgeofmercurychemistrycontinuestoevolve.Forexample,
GardfeldtandJohnson(2003)challengedtheaqueousphasereductionofHg(II)toHg(0)by
dissolvedHO2,suggestingthatthispathwayisunimportant.Therealsoseemstobesome
circumstantialevidenceofreductionofHg(II)toHg(0)inpowerplantplumesfromvarious
experimentalstudiesthatisnotaccountedforincurrenttreatmentsofHgchemistry(e.g.,
Edgertonetal.,2001;Seigneuretal.,2001b).Additionaldetailsareprovidedinascopingstudy
formercurydepositionconductedfortheMidwestRegionalPlanningOrganizationbySeigneur
etal.(2003).
5.3.4ImplementationApproach
Theapproachusedtoimplementthemercurytransformationpathways,discussedabove,into
CAMxisbasedontheassumptionthatthemercuryspeciesconcentrationsaremuchsmaller
thanthoseofthespecieswithwhichtheyreact.Thus,theconcentrationsofthenonmercury
speciescanbeassumedtobeconstantduringthemercurychemistrycalculationsandanalytical
solutionsareavailableforboththegasphaseandaqueousphaseconversions.
Themercurychemistrydiscussedintheprevioussectionsrequirestheconcentrationsofthe
followingnonmercuryspecies:O3,H2O2,OH,SO2,HO2,Cl2,HCl,Br,BrOandatmospheric
particulatematter(PM).TheconcentrationsofmostofthesespeciesareavailablefromCAMx.
However,thehalogencompoundsCl2,Br,andBrOareonlyincludedforonespecificgasphase
mechanism(CB6r2h,Mechanism3)andotherwisenotexplicitlysimulated.Sincethemercury
chemistryiscurrentlynotlinkedtoanyhalogensthatmightbeavailablefromthegasphase
chemistry,wespecifytypicalverticalprofilesofCl2,Br,andBrOconcentrations.TheCl2
concentrationsareprescribedtobenonzerooveroceansandzeroelsewhere.Also,daytime
Cl2concentrationsarelowerthannighttimevaluestoaccountforthefactthatCl2isphotolyzed
duringtheday.Thezenithangleisusedforthedeterminationofnight/day.A2Darrayof
integervalues(1ifocean,0ifnot)isusedtodetermineifthegridcolumnispredominantlyover
ocean.Thisarrayisinitializedatthebeginningofthesimulationfromaninputfileandis
specificforthemodelingdomainandgrid.ForBrandBrO,verticalprofilesoverlandandocean
areprescribed,withhighervaluesoveroceanthanoverland.Duringthenight,the
concentrationsofthesespeciesareassumedtobezero,sincethephotolysisofBr2isthe
primarysourcefortheseradicals.
Themercuryaqueousphasechemistrymodulealsorequiresthespecificationofcloudliquid
watercontent(LWC)andcloudwaterpH.BoththesevariablesareavailablefromCAMxthe
mercuryaqueousphasechemistrymoduleisinvokedaftertheCAMxPMaqueousphase
chemistrycalculationsareperformed,sothecloudwaterpHhasalreadybeencalculated.Note
thatthePMaqueousphasemodule(basedontheRADMaqueousphasechemistrymodule
thatisalsousedinModels3/CMAQ)doesnotexplicitlysimulatethecloudchemistryofOHand
HO2radicals.Theconcentrationsoftheseradicalscanbereducedbytheirheterogeneous
chemistrywithinclouds(e.g.,Jacob,2000;Jaegleetal.,2001).IntheCAMximplementation,
weaccountforthisbyreducingtheconcentrationsofOHandHO2radicalsbyfactorsof2and
10,respectively.
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 128www.camx.com
5.3.5ChemistryParametersforMercury
ThemercurychemistrymodulerequirestotalPMconcentrations,somercurycanonlybe
modeledinconjunctionwithPMchemistry.Mercurychemistryisselectedbyincluding
mercuryspeciesamongthelistofmodeledspecies.TheCAMxmercuryspeciesnamesare:
HG0elementalgaseousmercury,orHg(0)
HG2reactivegaseousmercury,orHg(II)
HGPprimaryparticulatemercury,orHg(P)
HGIIPreactivegaseousmercury,orHg(II)adsorbedontofinePM
HGIIPCreactivegaseousmercury,orHg(II)adsorbedontocoarsePM
CAMxrequiresthatallfiveornoneofthesespeciesbeincludedinasimulation.Therefore,
mercurychemistryisnotrequiredforPMmodeling,butifmercurychemistryisselectedthen
allfivemercuryspeciesmustbemodeled.Alloftherateconstantsandequilibriumconstants
forthemercurychemistrymodulearehardcodedandsonomercuryreactionratedataare
includedinthechemistryparametersinputfile(seeSection3).ThisissimilartotheRADM
aqueouschemistryandISORROPIAinorganicaerosolequilibriummodules.
Severalphysicalpropertiesofthemercuryspeciesmustbespecifiedonthechemistry
parametersfile(seeFigure33a).Thephysicalpropertiesspecifiedforthegasspecies(Henry’s
Law,molecularweight,surfacereactivity)influencethedepositioncharacteristics.TheHenry
constantforHG2isassumedtobesimilartothatofHNO3becausethesetwogaseshavesimilar
solubility.TheHG2speciesrepresentsHgCl2andHg(OH)2;theHenryconstantfortheformeris
1.4106Matm1andforthelatteritis1.2104Matm1.Thesurfaceresistancefactorissetto
zeroforstrongacids,suchasHNO3,thathaveastrongtendencytosticktosurfacesthis
forcesthesurfaceresistancecalculatedinthedrydepositionalgorithmstozero.Thereactivity
parameterforHG2issetto0,asforHNO3.
ThedrydepositionofHG0issettozerobychoosingaverylowHenryconstant(similartoCO).
ThisisbasedontheassumptionthatnaturalemissionsanddrydepositionofHG0balanceeach
otheroverthemodelingdomain.Thisassumptionisjustifiedbythefactthattheatmospheric
lifetimeofHG0(about1year)greatlyexceedsitsresidencetime(daystoweeks)withina
regionalmodelingdomain.IfnaturalemissionsofHG0arenotincludedinthemercury
emissionsinventory,thedryandwetdepositionofHG0shouldbezerobysettingaHenry
constantofsmallerthan1108Matm1.However,ifnaturalemissionsofHg(0)areusedinthe
CAMxsimulation,theHenryconstantshouldbesetto0.111withatemperaturefactorof‐4970
K(Cleveretal.,1985).
5.4SimpleChemistryViaMechanism10
ThechemicalmechanismsinCAMxrequiresignificantefforttoprepareemissionsdataandcan
resultinextensiveruntimes.Therearemanycaseswhenairpollutionproblemscouldbe
investigatedwithamuchsimplerchemistryscheme.Anexampleofthiswouldinclude
modelingSO2fromafewspecificsourcesoverarelativelysmallregion,andtreatingconversion
tosulfatebyassumingarepresentativedecayrate.CAMxprovidesanoptiontoconfigurea
March2016CAMxUser’sGuideVersion6.3
5.ChemistryMechanisms
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 129www.camx.com
simpleandflexibleschemethatcanbeusedformodelingchemicalreactionsotherthanthe
ozoneorsecondaryPMreactionstreatedbythefullsciencemechanisms.
Thesimplechemistryschemeisselectedbyspecifying10forthemechanismIDinthechemistry
parametersinputfile.Theusermustdevelopspecificchemicalreactionsandcodetheminto
thesubroutineCAMx/chem10.f;anexamplesubroutineisavailableinthesourcecode
directory.Followtheguidelinesinthatsubroutinetoimplementyourspecificsetofreactions.
Thisapproachrequiressomeknowledgefromtheuser,butalsoprovidescompleteflexibility.
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 130www.camx.com
6.PLUMEINGRIDSUBMODEL
Photochemistryisahighlynonlinearproblembecausechemicalreactionratesamongmost
compoundsdependupontheirambientconcentrations.InEulerianairqualitymodels,ambient
concentrationsdependonhowwellthemodelinggridresolvesemissions,transport,and
chemicalhistory.Thus,gridresolutionplaysavitalroleintheabilityofthemodeltoproperly
characterizephotochemicalconditions.Increasingresolutionshouldintheoryleadtoabetter
modelasthetime/spacediscretizationtendstowardacontinuum.However,practicaland
theoreticalconsiderationssuggestthatthelowerlimitonhorizontalgridspacingisabout1000
metersforEulerianairqualitymodelssuchasCAMx.Nevertheless,evenhigherresolutionis
oftennecessarytoadequatelysimulatechemistrywithinconcentratedpointsourceplumes.
Plumeingridtreatmentshavebeendevelopedtotrackindividualplumesegments(orpuffs)in
aLagrangiansense,accountingforplumescaledispersionandchemicalevolutionuntilsuch
timeaspuffmasscanbeadequatelyrepresentedwithinthelargergridmodelframework.
Thenthepuffmassisaddedtothegridsystemasavirtualsource,andthatmassis
subsequentlycarriedbythegridmodelprocesses.Itisimportanttounderstandthatthe
inclusionofaLagrangianpuffmodelwithinanEuleriangridmodelisaforcedconstruct.The
formulationsamongthevariousmodelingapproachesarefundamentallydifferentandthereis
notheoretically“correct”methodology.
TheCAMxPlumeinGrid(PiG)submodeladdressesthesizeandchemicalevolutionofpoint
sourceplumes.TwoPiGoptionsareavailablethatvaryintheirchemicalcomplexity.Both
approachessharecommondesignfeaturesforpuffinitialization,puffstructure,transport,and
growth.Theydeviateinhowtheytreatchemistryandwhentheytransfermassfrompuffsto
gridcells.Thissectiondetailsthestructureandfunctionalityofbothoptions.
1) GREASDPiG:TheGreatlyReducedExecutionandSimplifiedDynamicsPiGoptionis
aimedattreatingtheearlychemicalevolutionoflargeNOxplumeswhenmostly
inorganicgasphasereactionsareoperative.GREASDPiGworkswithOSAT/PSAT
becauseofthesimplifiedapproachemployedandbecausecompatibilitywithsource
apportionmentwasanexplicitdesignobjective.
2) IRONPiG:ThetheIncrementalReactionsforOrganicsandNOxPiGoptiontreatsthe
fullsuiteofgasphasephotochemistryforalltypesofpointsources.Gasphase
chemistryissimulatedwithineachplumesegmentusingan“incrementalchemistry”
approach(EPRI,2000),wherebypuffscarrytheincrementalcontributionsofthepuff
relativetothegridconcentrations.IRONPiGsupportstheReactiveTracer(RTRAC)
ProbingTool,butitdoesnotworkwithotherProbingToolsanditdoesnottreatPM.
6.1CAMxPiGFormulation
6.1.1BasicPuffStructureandDiffusiveGrowth
BothGREASDandIRONPiGsubmodelsshareacommonphysicalstructureandgrowth
algorithm.Astreamofplumesegments(puffs)isreleasedfromadesignatedpointsource.
Eachpuffpossessesalongitudinallengthanddirectionalorientationdefinedbytheseparation
ofaleadingandatrailingpoint.Initialseparationofthesepointsisdeterminedbythewind
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 131www.camx.com
vectoratfinalplumerise.Eachpointisthensubsequentlyandindependentlytransported
throughthegriddedwindfields,whichdirectlyaccountsforpuffstretchingandchangesto
centerlineorientationduetodeformingshears.The"position"ofeachpuffisdefinedatthe
centerpointofeachpuffbetweentheendpoints,andisusedtoidentifythegridcellinwhich
thepuffresidesforthecalculationofdiffusivegrowthandchemistry.
Likeotherpuffmodels,theshapeofeachpuffischaracterizedbyaspreadtensor,whichis
definedfromasetofGaussianstandarddeviations()alongthethreespatialaxes(
x,
y,
z).
Diffusivegrowthisdescribedbytheevolutionofthesevalues.Thetotalcrosssectionalwidth
extends±1.5
yfrompuffcenterline.Similarly,thetotalcrosssectionaldepthextends±1.5
z
frompuffcenterline(withlimitsplacedondepthbythegroundandbycappingstablelayers
aloft).Thetotallongitudinallengthisthedistancebetweenthepuffendpointswithan
additional±1.5
xaddedineachdirection.Horizontalareaandtotalvolumearecalculated
usingtheformulaeforanellipse.Figure61presentsaschematicrepresentationofeachpuff
inhorizontalcrosssection.
Figure61.SchematicrepresentationofCAMxPiGpuffshapeinthehorizontalplane.
Directionalorientationofthepuffisarbitrary,andevolvesaccordingtowinddirection,
shearsanddiffusivegrowthalongitstrajectory.
PiGpuffgrowthisbasedonSCICHEMtheoryandconcepts(EPRI,2000),butincludessome
simplifications.SCICHEMsolvespredictivespatialmomentequationswithsecondorder
closurethatrelatetheevolutionofthepuffspreadtensor(
ij=
i

j)toresolvedmeanshears
andturbulentvelocitystatistics.TheReynoldsaveragedsecondmomenttransportequationis
givenas
P (lead)
P (trail)
y
1.5
x
1.5
Q
cux
Q
cux
x
u
x
u
dt
dijji
k
i
jk
k
j
ik
ij
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 132www.camx.com
whereuisthemeanwindvectorcomponent,theprimedvaluesrepresentturbulent
fluctuationsfromthemean,andtheanglebracketsdenoteintegralsoverspace.TheReynolds
averagingprocessalwaysintroduceshigherorderfluctuationcorrelations,andthisisgivenby
theturbulentfluxmomentscux ,wherecu representstheturbulentfluxof
concentration.ItistheselasttwodiffusiontermsthatSCICHEMsolvesinitssecondorder
closurescheme.
Forsubpuffscaleturbulence,SCICHEMemploystherestrictionthattheonlyactiveoffdiagonal
componentofcux isthesymmetrichorizontalterm(i=x,j=y),butitisappliedonlyforthe
largescale(mesotosynoptic)contributiontopuffdeformationwhenpuffscalesreachsuch
dimensions.InCAMx,weignorethisoffdiagonalfluxmomenttermaltogethersincepuffsare
ultimatelyterminatedwhenpuffscalesapproachmuchsmallergridscales(typically<50km).
SCICHEMalsomakestheassumptionthatthehorizontalturbulenceisisotropic,
cvycux
.Thisresultsinasinglediffusivityequationforbothxandydirections,anda
singlediffusivityforthezdirection:
Q
cvy
KK yx
Q
cwz
Kz
TheSCICHEMsecondordertendencyequationsareusedtomodelthetimeevolutionofPiG
puffturbulentfluxmoments(representedbydiffusivitiesKx=KyandKz)andtheircontributionto
theevolutionofpuffspread(representedbythediagonalcomponentsofthepuffspread
tensor,
x2,
y2and
z2).Puffspreadisdefinedforpuffdepth(
z),puffwidth(
y),andpuff
length(
x).Weaccountfortheeffectsofgridresolvedshearsofhorizontalwindinthe
evolutionoflateralandlongitudinalspread.Butweassumethattheevolutionofvertical
spreadissolelytheresultofturbulentfluxes,whichareordersofmagnitudelargerthangrid
resolvedshearsofverticalwind.
TheresultingReynoldsaveragedsecondmomenttransportequationsforCAMxPiGare:
xyzyy
yKSD
dt
d222 2
2
z
zK
dt
d2
2
xxzxx
xKSD
dt
d222 2
2
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 133www.camx.com
whereDistotalexplicit(gridresolved)horizontalshearofhorizontalwind(i.e.,“deformation”,
seeSection4.4).Sistheexplicitverticalshearofhorizontalwind,whichisbrokendowninto
puffrelativelateral(y)andlongitudinal(x)components:
Thedifferencebetween
and
representstherelativeanglebetweenthepuff’slongitudinal
orientationandthedirectionofverticalshear,respectively;acrosspuffshearresultsinmore
lateralspreadwhilealongpuffshearresultsinmorelongitudinalspread.Theexplicitshear
termscontainingDandSmaybetoggledbytheuser:(1)sheareffectsarealwaysappliedto
puffgrowthrates;(2)sheareffectsareappliedonlywithintheboundarylayerbutneverabove;
or(3)sheareffectsareneverapplied.
TheSCICHEMtendencyequationforthehorizontalturbulentfluxmomentis
whereA=0.75,q2=vv ,andisthehorizontalturbulentlengthscale.Separateequations
aregivenfortwodifferentboundarylayerturbulencescales(shear‐andbuoyancyproduced),
suchthat
Withinthesurfacebasedboundarylayer,thehorizontalvelocityvarianceisgivenby
whereu*isthefrictionvelocity,w*istheconvectivevelocityscale,zisheightabovethe
surface,andziistheheightofthesurfacebasedboundarylayer.Thehorizontalturbulent
lengthscaleisgivenby
cvy
q
AQqcvy
dt
d
2
buoyancyshear cvycvycvy
ishear zzuq /15.2 2
*
2
ibuoyancy zzwq /exp5.1113.0 2
*
2

222 65.0
1
3.0
11
zzi
shear
ibuoyancy z3.0

2/1
22
cos
dz
dv
dz
du
Sx

2/1
22
sin
dz
dv
dz
du
Sy
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 134www.camx.com
Inthestableboundarylayer,onlytheshearcomponentsofq2andareapplied.Abovethe
boundarylayer,SCICHEMappliesroughapproximationsforthevelocityvarianceandturbulent
lengthscale.InCAMxwehavesetthesevaluestoq2=0.1m2/s2,and=300m.
TheSCICHEMtendencyequationfortheverticalturbulentfluxmomentis
whereqv2=ww ,vistheverticalturbulentlengthscale,andKzeqistheequilibriumdiffusivity.
WhereasaspecificequationforKzeqisformulatedforSCICHEM,wehavechosentospecifythe
valueofthisparameterfromthegriddedfieldsofverticaldiffusivityinCAMx.AgainSCICHEM
givesseparateequationsforshear‐andbuoyancyproducedturbulencescales.
Withinthesurfacebasedboundarylayer,theverticalvelocityvarianceisgivenby
Theverticalturbulentlengthscaleforbothshearandbuoyancyisequaltosheargivenabove
forhorizontallengthscale.Abovetheboundarylayer,SCICHEMappliesroughapproximations
forthevelocityvarianceandturbulentlengthscaleandwehaveadoptedtheseforCAMx:qv2=
0.01m2/s2,andv=10m.
TheexternalvariablesneededbyPiGtocompletethedispersioncalculationsincludezi,u*and
w*.AlloftheseareavailablefromaninternalmoduleinCAMxthatcalculatestheseboundary
layersimilaritytheoryparameters.Thus,noadditionalparametersareneededtobeinputto
themodel.
6.1.2PuffTransport
AfreshsetofnewpuffsarereleasedfromallPiGpointsourceswithinthemodelingdomainfor
thedurationofthesmallesttimestepamongthemasterandallnestedgrids.Thelengthof
eachpuffisdeterminedbythecombinationofthemeantotalwindspeedattheheightoffinal
plumeriseandtimestep.Limitsareplacedonmaximumextrudedlengthbasedonhalfthe
finestresolutioninthegivensimulation.Ifwindsandtimestepsaresuchthatthemaximum
allowedlengthisviolated,thenseveralpuffsareautomaticallyemittedfromagivenstackper
timestep.Theusercanalsosetamaximumtimeintervalofreleaseifmorepuffs(betterplume
resolution)aredesiredoverthedefaultautomatedreleaseinterval.Theorientationofthepuff
lengthisalongthetotalwindvector.Totalpuffvolumeisdeterminedbystackvolumetricflow
rateinconjunctionwithgrowthduetoturbulententrainmentfollowingtheSCICHEMapproach.
Initially,
x=
yand
zvaluesareexplicitlycalculatedfromthisentrainmentcalculation.
cwzQK
q
Acwz
dt
deq
z
v
v
i
shear
vzzuq /15.1 2
*
2
ii
buoyancy
vzzzzwq /05.1/1.1 3/2
2
*
2
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 135www.camx.com
Theeffectsofresolvedwindshearonplumedeformation(i.e.,atplumescaleslargerthan
individualpuffscales)aretreatedusinga“chainedpuff”approach(Figure62).Pointsatthe
leadingandtrailingedgesofthepuffcenterlineareindividuallytransportedthroughthe
griddedwindfields,whichdirectlyaccountsforpuffstretchingandchangestocenterline
orientationduetodeformingshears.Sincepuffscanextendovermultiplelayers,layerdensity
weightedaveragewindcomponentsaredeterminedforeachendpointbasedonthevertical
coverageofthepuff.The“chain”aspectmeansthatatleastinitially(aspuffsareemittedfrom
thestack)thetrailingpointofapuffemittedattimetwillbetheleadingpointofapuffemitted
attimet+dt.However,asthepuffsareadvecteddownstream,theleadingpointofonepuffwill
deviatefromthetrailingpointthepuffbehinditduetoevolvingpuffdepthandwindfields.
The“position”ofeachpuffisdefinedbyitscenterpointbetweentheendpoints.Thisposition
definesthegriddomainandgridcellinwhichthepuffresidesforthecalculationofdiffusive
growthandchemistry.Thisdefinitionholdsevenifthepuffissufficientlylongthatthe
endpointsareindifferentgridcells(orevendifferentnestedgridsifnearanestboundary).
Withourdefinitionforterminationwhenhorizontalareaapproachesgridcellarea,thepuff
lengthshouldnotextendacrossmorethantwogridcells.
Figure62.PlanviewschematicrepresentationofachainofPiGpuffsemittedfromapoint
sourceintoanevolvinggriddedwindfield.Theredlineconnectedbydotsrepresentspuff
centerlines,withdotsrepresentingleadingandtrailingpointsofeachpuff.TheCAMx
computationalgridisdenotedbythebluelines.
Stack
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 136www.camx.com
6.2GREASDPiG
TheGREASDPiGisdesignedforlargeNOxpointsources,whereonlyinorganicchemistryis
operativeduringearlyplumeevolution.TheintentionofGREASDPiGistomoreproperlyage
emittedNOxwithintheconfinedplumevolumetomitigatetheartificiallyrapidchemical
processingoffreshNOtoNO2toozonethatwouldotherwiseoccurifimmediatelyreleasedinto
alargegridvolume.AcondensedinorganicchemicalmechanismisemployedinGREASDPiG
thatincludes23reactionsinvolvingoxidationofNOxandSOx.Therefore,GREASDPiGshould
notbeusedforVOCsources.ChemicallimitationsappliedwithinGREASDPiGcausepuffsto
transfertheirmasstothegridbeforeoxidantproductionfromVOCsisnolongersuppressed;
thiscanoccurbeforepuffsreachasizethresholddeterminedbythegridspacing.
ThechemicalevolutionoflargeNOxpointsourceplumescanbecharacterizedinthreestages
(EPRI,2000),asdescribedbelow:
Stage1:EarlyplumeconditionswhereNOxconcentrationsareveryhighandradical
concentrationsarenegligiblesimpleNO/NO2/O3photostationarystateappliesalong
withtheNONOselfreaction;
Stage2:Midrangeplumeconditionswhereradicalconcentrationsaresufficientlylarge
togeneratesecondaryinorganicacidslikenitrateandsulfate;
Stage3:Longrangeplumeconditionswheresufficientmixingwiththeambientairleads
tothefullrangeofgasphasereactionsinvolvingVOCoxidationandozoneformation.
TheobjectiveforGREASDPiGistotransfermasstothegridataboutthetimewhenradical
productionviaorganicchemistrystartstobecomeimportant,soGREASDPiGtreatsplume
chemistryduringStages1and2.WedefinetheonsetofStage3chemistrywhenthefollowing
criterionismet:
AtthispointGREASDpuffstransferalloftheirmasstothegridbeforetheonsetofStage3.
Thisspecificdesignconstraintisalsocompatiblewiththerequirementsofthesource
apportionmentProbingTools.
KumarandRussell(1996)andKaramchandanietal.(1998)foundthatPiGmodelswith
simplifiedinorganicchemistryproducedresultsthatwereverysimilartofullchemistry.The
chemicalmechanismforGREASDPiGincludes23reactionslistedinTable61thatwere
selectedasfollows:
ReactionsfortheNONO2O3photostationarystateestablishedinsunlight(13)
SelfreactionofNOimportantonlyatveryhighNOconcentrations(4)
ProductionofOHbyphotolysisofO3andHONOinsunlight(59)
Productionofnitricacidinsunlight(10)
FormationofNO3andN2O5atnight(1117)


1
2
2
NOk
SOkCOk
OH
OHOH
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 137www.camx.com
Table61.Listof23reactionsforGREASDPiGincludingcorrespondencetoCAMxreaction
numbersintheCB05,CB6andSAPRC07TCmechanisms.

ChemicalMechanismforGREASDPIG
CorrespondingReaction
NumberforGridChemistry
Number ReactionCB05CB6S07
1NO2=NO+O111
2O+O2+M=O3+M222
3O3+NO=NO2337
4NO+NO+O2=2NO2222410
51NO+NO2+H2O=2HONO2341N/A
6O3=O1D9918
7O1D+M=O+M101021
8O1D+H2O=2OH111120
9HONO=NO+OH254323
10NO2+OH=HNO3284525
11NO2+O3=NO37268
12NO3=NO2+O142717
13NO3=NO152816
14NO3+NO=2NO216299
15NO3+NO2=NO+NO2173015
16NO3+NO2=N2O5183611
17N2O5=NO3+NO2213712
182N2O5+H2O=2HNO3193913
19SO2+OH=SULF+HO2635244
20OH+CO=HO26612329
21FORM=2HO2+CO7597204
22FORM=CO7698205
23HO2+NO=OH+NO2302531
1. RateforGREASDPiGreaction5issettozerowhenusedwithSAPRC07TC.
2. RateforGREASDPiGreaction18maybeenhancedbyreactiononaerosol.
Productionofnitricacidatnight(18)
Productionofsulfuricacidinsunlight(19)
RemovalofOHbyCO(20)
ProductionofOHbyphotolysisofformaldehyde(2122)
ConversiontoOHofanyHO2formedin2022(23)
ThesereactionsdominategasphasechemistryinplumesfrommajorNOxemittersduring
stages1and2.Table61alsoshowsthecorrespondencebetweenGREASDPiGreactionsand
thecompletegasphasechemicalmechanismsimplementedinCAMx.Thismappingisusedin
CAMxtosettherateconstantsandphotolysisratesforGREASDPiGreactionsfrom
correspondingreactionsinthegridchemicalmechanisms.Thisimplementationensures
consistencywiththesechemicalmechanisms.TheGREASDPiGperformsgasphasechemistry
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 138www.camx.com
foronlythosechemicalspeciesemitteddirectlyintotheplume,anddoesnotincludethe
influencefromanybackgroundcompoundsonthegridexceptforozone,carbonmonoxide,and
formaldehyde.Assumingzerobackgroundforgasspeciesisreasonablefortheearlystagesof
NOxplumesbecausepuffconcentrationsareordersofmagnitudelargerthanambient
concentrations.Ontheotherhand,backgroundozone,carbonmonoxide,andformaldehyde
aretheprimarysourcesofoxidantsinthecondensedmechanismthatdriveinorganic
processingofplumeNOxtootherformsofoxidizednitrogen(NOz),sothesearehandledas
“incremental”speciesasdescribedbelowforIRONPiG.TheLivermoreSolverforOrdinary
DifferentialEquations(LSODE)isusedtosolvethecondensedmechanismindoubleprecision.
6.3ParticulateMatterInPiG
Nonlineareffectsanderrorsingasphasechemistryaretransmittedto(andpotentially
amplifiedby)thePMaqueouschemistryandpartitioningalgorithms.Theimplementationof
PMandPSATinPiGpromptedtheneedtolimittheimpactofsuchissuessimilarlytothe
constraintsimposedbyOSATforgasphasechemistry.Therefore,PMandPSATcanonlyberun
usingtheGREASDPiGoption.Asforgasphasechemistry,onlyinorganicPMchemistryis
treatedbyGREASDPiG.NotealsothatthePiGPMtreatmentwasdesignedspecificallyforthe
static2modePMchemistryonly(CF),andwillnotoperateforthemultisectionPMchemistry
(CMU).
TheGREASDPiGgasphasechemistryoxidizesNOxandSOxemissionstonitricandsulfuric
acids,whicharePMprecursors.Tomaintainconsistencywiththegridchemistry,aqueousPM
chemistry(RADMAQ)isthenperformedateverytimestepifthepuffresidesinacloudygrid
cell.However,inorganicgas/PMpartitioning(performedbyISORROPIA)amongsulfate,nitrate
andammoniaisnotperformedbyGREASDPiG,butisdelayeduntilthemassesofthese
compoundsaredumpedtothegrid.Additionally,chemistryandpartitioningforsecondary
organicaerosolsisnotperformed.
6.4IRONPiG
TheIRONPiGmodelincorporatesacompletetreatmentofgasphasechemistryinpointsource
pollutantplumes,whilesecondarilyaddingadditionalfeaturescentralfortreatingtoxic
pollutantsnotnormallycarriedbythestandardCAMxchemicalmechanisms.Thereforethe
IRONPiGcantreatawidevarietyofpointsourceemissions,includingVOCsources.
IRONPiGadoptsthe“incrementalchemistry”conceptfromtheSCICHEMmodel(EPRI,2000),
wherebyeachpuffcarriesconcentrationsrelativetoambientbackground.Thisresultsinthe
possibilityofbothpositiveandnegativepuffconcentrationsdependingonhowthechemistry
evolves.Thefullgasphasechemistrymechanismchosenforagivenrunissolvedtwicefor
eachpuffateachtimestep:firstfortheverticallyaveragedbackgroundconcentrationsfrom
thegridcellsverticallyspannedbythepuff;andsecondforthesumofpuffandbackground
concentrations.TheLSODEsolverisusedtosolvebothchemistrysteps.Afterbothstepsare
completed,theupdatedbackgroundconcentrationsaresubtractedfromtheupdated
puff+backgroundconcentrations,yieldingthenewpuffincrementalconcentrations.Notethat
theupdatedbackgroundconcentrationsareusedforreferenceonlyinthepuffincremental
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 139www.camx.com
chemistryalgorithm;theactualgridconcentrationsarenotaffectedandareseparatelysolved
bythegridchemistryroutine.
6.5PiGFeatures
ThissectiondescribesspecificfeaturesofthePiGsubmodel;certainfeaturesarealwaysactive
whileotherscanbeoptionallyinvokedforaparticularCAMxrun.TheIRONPiGsubmodel
includestwoconstructsdesignedspecificallytofacilitatetheincrementalchemistryapproach:
Theconceptof“virtualdumping”tohandlethechemicalimpactsoflargepuffsthatcan
overlapotherpuffswithinagivengridcolumn;
Theconceptofmultiplepuff“reactor”cellstoaccountforthechemicaleffectsof
concentrationdistributionswithineachpuff.
Eachoftheseisdescribedbelow.
6.5.1PuffLayerSpanning(IRONandGREASD)
ThePiGisdesignedtochemicallyprocesspointsourceplumemasswithinstreamsofpuffsuntil
suchtimethateachpuffcanbeadequatelyresolvedonthehorizontalgrid.Puffsareallowed
toverticallyspanmultiplegridmodellayersbeforetheyreachhorizontalgridscales.This
introducestechnicalimplicationsfordefining“background”concentrationsandambient
conditionsforpuffchemistry,aswellasfortransferringplumeincrementalmasstothegrid.
Thesolutionemployedisto:
1) Assumethattheverticaldistributionofpuffconcentrationisalwaysuniform;
2) Distributepuffmasstransfer(via“leaking”and“dumping”)tothegridaccordingtothe
pufffractionalcoverageacrosseachmodellayerandbydensityweighting;and
3) Determinemeanbackgroundconcentrationsandotherambientconditions(e.g.,
temperature,humidity,etc.)overthepuffverticalspanviasimilarfractionallayerdensity
weighting.
Horizontally,themeanbackgroundconcentrationandambientconditionsaretakenfromthe
singlehostgridcolumncontainingeachpuffcenterpoint,evenifthepuffislargeand/orspans
ahorizontalcellinterface.Asdescribedearlier,puffsareconsideredtobeellipticalinthe
horizontal,withtheminoraxisspanningthecrosswindpuffwidth(definedas1.5
y),andthe
majoraxisspanningthealongwindpufflength(definedaslength1.5
yoneachend).
However,giventhecomplicationsassociatedwithmultiplelayersspanningandmassweighting
ofambientinputsanddumpedmass,puffsarerectangularanduniforminthevertical,with
totalpuffdepthdefinedas1.5z.
6.5.2PuffOverlapandtheIdeaofVirtualDumping(IRONonly)
ThechemicaleffectsofpuffoverlapwereconsideredtobeanimportantattributeofIRONPiG.
However,wewishedtomaintainarelativelysimpleapproach,whileappropriatelyaccounting
forthelargestprobableeffects.Weassumethatthelargesteffectistheconditioninwhich
olderexpansivepuffsspansignificantfractionsoftheirhostgridcell,therebypotentially
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 140www.camx.com
overlappingallotherpuffscontainedwithinthesamecell.Insteadofgeometrically
determiningfractionaloverlappuffbypuff,weinsteadintroduceaprocessthatwerefertoas
“virtualdumping.”
Foragivengridcolumn,themassfromallpuffsdeterminedtobe“sufficiently”largeare
temporarilydumpedtothecolumn,distributedaccordingtoeachpuff’sverticallayerspan,and
addedtogetheralongwiththepreexistinggridconcentrations.Thisprocessisreferredtoasa
“virtualdump”ofpuffmasstothegridcolumn.Thecriteriatodeterminea“sufficiently”large
puffisthesamethatinitiatespuffmassleakingtothegrid(asdescribedbelow).Inthis
approach,alllargepuffscontributetothebackgroundchemistrystepforotherpuffsoccupying
thesamegridcolumn.Doublecountingisavoidedbynotincludingapuff’scontributiontothe
backgroundwhileitsspecificbackgroundandincrementalchemicalcalculationsareperformed.
6.5.3MultiplePuffReactors(IRONonly)
Accountingforfullchemistrypotentiallyintroducessignificantnonlineareffectsthatarehighly
dependentuponthedistributionofpollutantmasswithineachpuff.Especiallyforozone,
aircraftflightsthroughpowerplantplumeshaveoftenrecordedwideconcentrationvariations
relativetoambientconditions:withintheplumecorewhereNOxremainsconcentrated,ozone
isoftendepressedandfollowsNONO2ozoneequilibrium,whereasonplumefringeswhere
NOxisdiluteandmixeswithambientVOC,ozoneconcentrationscanexhibitconcentration
maxima.Pastmodelshaveaccountedforcrossplumechemistryvariationsthroughtheuseof
reactors,withapproachesrangingfrommultiplerectangularslabstoconcentricshells.
Theusermayselectmultiplereactorsaswelltosubdividethepuff.Anynumberofreactors
maybechosen(thedefaultis1).Multiplereactorssimplydividethetotalpuffvolumeevenly,
andtheinitialmassassignmentsfornewlyemittedpuffsaremadeusingthestandarderror
functionthatresultsinaninitialGaussianlikemass/concentrationdistributionamongthe
reactors.Thisprovidesamechanismforsimulatingthedifferingchemicalprocessingthattakes
placeinvariousconcentrationregimes.Asthepurposeofthereactorsismerelytorepresent
therangeofphotochemicalconditionsthatarelikelytooccuratvariouslocationswithinthe
puffasitundergoesdifferentialshearingandmixing,thereisnoparticularphysicalorientation
assignedtothesereactorswithrespecttoeachotherortothepuffasawhole.Thus,thereis
nocommunication(i.e.,diffusionalmassexchange)betweenthereactors.Thesame
backgroundconcentrationchemistryappliestoallreactorsofagivenpuff.Whenpuffmassis
leakedordumped,allreactorsshedthesamerelativefractionofmass.
Insummary,chemistryissolvedforeachpuff“reactor”inthreesteps:
1) Thelayermeanbackground(grid+overlappingpuff)concentrationsandenvironmental
conditionsoverthevolumeoccupiedbythepuffarestoredandthenchemicallyupdated
viatheLSODEgasphasechemistrymechanism;
2) Thepreupdatedmeanbackgroundconcentrationsareaddedtothepuffincrementsand
thetotalconcentrationsarechemicallyupdated;and
3) Theupdatedresultsfromstep1aresubtractedfromtheupdatedresultsofstep2to
providetheupdatedincrementalconcentrations.
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 141www.camx.com
6.5.4PuffDumping(IRONandGREASD)
Masstransferfrompufftogridcanhappenintwoways:slowly,termed“leaking”,orsuddenly,
termed“dumping.”Asdescribedearlier,allmassistransferredtotheverticalgridstructurein
adensityweightedfashionaccordingtoeachpuff’sfractionallayercoverage.Theprocessof
leakingensuresthatpuffmassistransferredtothegridcontinuously,ratherthanindiscrete
lumpsofpollutantswithverydifferentconcentrationsthanthoseinthegrid.Suddendumping
cancauseunphysicalnumericalshocksinthegridandcanleadtounrealisticgridded
concentrationpatternsthatappearas“bullseyes”.Theideabehindpuffleakageistoaccount
forturbulentshearingofmassfromthemainplumeanditssubsequentdispersiontothegrid
scale.Thisrateoftransfershouldbedirectlyproportionaltothepuffsizerelativetothegrid
scale.
Puffleakageiscontrolledbycomparingthehorizontalareaofapufftoaspecifiedleakage
parameter,definedasafractionofhorizontalgridcellarea.Whenapuffisfirstemittedthere
isnoleakage.Asthepuffgrowsinvolumetheconcentrationswithinthereactorsarereduced
accordinglybydilution.Whenthepuffareaexceedstheleakageonsetparameter,afractionof
themassineachpuffreactoristransferredtothegrid.Thisfractionisdeterminedbythe
relativeexceedanceoftheleakageparameter;initialleakageisslowastheexceedanceis
relativelysmall,butleakageratesgrowasthepuffcontinuestogrowbeyondtheleakage
parameter.
Thereducedmassfromleakageiscompensatedbyareducedeffectivevolume,sothat
concentrationsarenotartificiallydilutedbyleakage(anessentialchemicalimperative).Thus,
twodistinctvolumesaretracked:theactualvolume(definedbythepuffspread)andthe
effectivevolume.Whiletheseareidenticalbeforeleakage,theydeviateafterleakageis
initiated,andthereaftertherelativedeformationoftheactualpuffvolume(viadiffusion,
shearing,etc.)isusedtoscalethedeformationofeffectivepuffvolume.
Eventuallythehorizontalspanofthepuffwillexceedthegridcellarea,andtheremainingmass
isthendumpedallatoncetothegrid.However,becauseofthecombinationofphotochemical
processingandleakage,bythetimeapuffdumpsthepotentialforproducingnumericalshocks
ismuchreduced.Furthermore,ifthepuffexceedsauserdefinedmaximumage,puffmassis
transferredtothegridattherateof10%pertimestep.
6.5.5PiGRendering(IRONandGREASD)
Whilethemassconfinedtothepuffsatanygiventimehasnotyetaffectedthegrid
concentrations,itwilleventually,soitcanbesomewhatmisleadingtosequesterthismassfrom
visualizationsofamodelsimulation.Thepuffmasscanbeoptionallyincorporatedintothe
modelaverageoutputfilesforvisualizationpurposes(referredtoas“PiGrendering”).
Renderingemploysa“virtualdump”ofthepuffmassesintotheaverageoutputconcentration
arrayeachtimestep.Asdescribedforchemistry,virtualpuffmassisaddedasanincrement
overtheentiregridcolumnaccordingtofractionallayerdensityweightingoverpuffdepth,
thusdilutingit’sconcentrationsrelativetothatwithinthepuff.Theactualpuffmassremains
withineachpuffoverthecourseofitslifetime,andtheactualgridmassinunaffecteduntil
puffsarekilledandtheirmassestrulydumpedintothegrid.Thisvisualizationisavailablefor
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 142www.camx.com
either2Dsurfaceor3Daverageoutputfiles,andcanproducesomeratherstartlingeffectsin
outputdisplays,includingverynarrowvirtualplumes,orstreaks,representingmassmoving
throughthegridinsubgridpuffs,butnotsubjecttogridscaleeddydiffusion.
6.5.6HighResolutionPuffSampling(IRONandGREASD)
PiGoptionallyemployssurfacelayerpuffsamplingonauserdefinedgridofarbitraryhorizontal
resolution,similarlytothewaynestedgridsaredefined.Samplinggridsareentirelypassive,
andintendedtoprovideadisplayoftheplumeconcentrationsatscalesmuchsmallerthan
typicallyusedforthefinestcomputationalgrids(i.e.,<1km),primarilyaroundanddownwind
ofasourcecomplex.SampledPiGconcentrationsaretimeaveragedliketheoutput
concentrationsprovidedonthecomputationalgrids,andarewrittentofileswithsimilarformat
sothattheymaybereadilyviewedandmanipulatedwithCAMxpostprocessingsoftware.
AdditionalinformationonconfiguringandusingPiGsamplinggridsisprovidedinSections2and
4.
Giventhatthepuffsconstantlyevolveviadiffusivegrowthandreshapingduetodeforming
shears,thesamplingprocedureincludestrigonometriccalculationstodefinewhichsampling
pointsareinfluencedbyeachpuff.Thisinfluenceisdeterminedaccordingtothepuffs’two
dimensionalhorizontalGaussianshapeshowninFigure61.Toincludeasufficientlylarge
percentageofmassacrosseachpuffforsampling,limitsof±3
x/yinbothhorizontaldimensions
areusedtodefinethepuffs’totalellipticalareacoverage.Puffsareonlysamplediftheyextend
verticallywithin10moftheground.
SamplinggridsaredefinedintheCAMxcontrolfile(seeSection2),andarraydimensionsmust
besetsufficientlylargeintheCAMxFortranparametersfilein./Includes/camx.prm(see
Section2).Anexampleofthetypeofplumedetailthatcanbevisualizedusingasamplinggrid
isprovidedinFigure63.Inthiscase,averyfine200msamplinggridissetwithina4km
computationalgrid.
6.6Deposition
TheCAMxPiGtreatstheremovalofgasandPMspeciesfromeachpuffviadeposition
processes.Bothdryandwetdepositioncalculationspresenteduniqueimplementationissues
forpuffs.Themostdifficultissueforbothformsofdepositionwashowtomanagedeposition
exchangebetweenpuffsandthegroundinthecaseofnegativepuffconcentrationincrements.
6.6.1DryDeposition
Drydepositionneedstoconsiderthefollowing:(1)thepointatwhichpuffsbegintodepositto
thesurface;(2)howtohandledepositionthroughpotentiallydeeppuffsthatmaystraddle
severallayersofvaryingstabilitysincethepuffsdonotthemselvesresolvethesestratifications
orverticalconcentrationdistributions;(3)managingdepositionfluxesofnegative
concentrationincrements.Oursolutiontoissue(1)wastoignoredrydepositionwithinpuffs
untiltheydiffusivelygrowtotheground,althoughinrealitydepositionoccursonroughness
elementsthatextendsomedistanceabovetheground(trees,buildings,etc.).We
implementedacriterionthatthebottomofthepuffmustextendtoorbelowthemidpointof
thesurfacelayer,orbelow10m(whicheverislarger),inorderfordrydepositiontobeactive.
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 143www.camx.com
Figure63.ExampleofasinglepointsourcePiGplumeasdepictedbyasamplinggridwith
200mresolution(shownbytheextentoftheplot;40kmby32kmtotalextent).This
samplinggridwassetwithinaCAMxcomputationalgridwith4kmresolution.Thesource
locationisarbitraryandisemittinganinerttracer.
Issue(2)canbehandledinavarietyofwaysandcomplexity.Thecurrentimplementation
institutesasimplersolutionandwewillconsidermorecomplicatedimprovementsforfuture
developmentsifevidencesuggeststhattheywouldbenecessary.PiGutilizesprecomputed
speciesdependentdepositionvelocitiesderivedforthegrids.Eachpuffinaparticulargridcell
isprovidedthehostcell’sdepositionvelocitiesforeachspecies,andtheseareusedto
determinethefluxofmassthroughthefractionofpuffdepthoccupyingthemodel’ssurface
layer.
Issue(3)isuniquetotheincrementalchemistryconceptintroducedwithIRONPiG.Thefluxof
materialdepositingtothegroundisgivenby d
vcF
,wherebythenormaldefinitiona
positivedepositionvelocityvdleadstoapositivedepositionfluxtotheground.Ifthepuff
incrementcisnegative,thenanegativefluxiscalculated(fluxfromgroundtopuff).Thisis
appropriateifweconsiderthefollowingargument.Drydepositionappliedtoagridcell
removessomepollutantmassfromtheentirevolume.Ifthereisapuffexistinginthatcellwith
anegativeconcentrationincrement,thentheamountofmassremovedfromthecellwasover
estimatedifweconsiderthepuff’scontributiontototalcellmass.Thenegativedepositionflux
calculatedforthispuffleadstotheadditionofmasstothepuffincrement.Addingmasstoa
negativeincrementreducesthemagnitudeoftheincrement,asexpectedforadeposition
process.Thismassistakenfromthegridcell’saccumulateddepositedmasstomaintain
accuratemassaccountingwithinthemodel.
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 144www.camx.com
6.6.2WetDeposition
Wetdepositionneedstoconsiderthefollowing:(1)howtohandlescavengingofpollutants
throughpotentiallydeeppuffsthatmaystraddleseverallayersofvaryingcloudandrainwater
contentsbutthatdonotthemselvesresolveverticalconcentrationdistributions;(2)managing
depositionfluxesofnegativeconcentrationincrementsincombinationwiththepotentialfor
masstomoveinandoutofrainwaterasitfalls(e.g.,forslightlysolublegasses);(3)accounting
fortheinitialpollutantconcentrationsinrainwaterastheyenterthetopofeachpuff.
Itwasimportanttomaintainconsistencybetweenthetreatmentofwetdepositionandthe
approachforpuffchemistry.Thechemistryreliesontheassumptionofverticallywellmixed
puffreactorsthatcanspanmultiplelayers,andthisiswhylayerdensityweightedaverage
ambientconditionsarepassedtothechemistryroutines.Tomaintainthisassumptionforwet
deposition,asinglescavengingrateisappliedthroughtheentirepuffdepthaseffectivelya
singlelayerofpollutant.Thiswasfoundtobethesimplestimplementationapproach.This
singlescavengingrateiscalculatedaccordingtolayerdensityweightedaverageambientcloud
andrainwatercontents.
Wetscavengingisperformedthroughouttheentiredepthofthepufftodeterminetheamount
offluxinoroutofrainwater.Totalconcentrations(puff+background)areusedtodetermine
speciesdependentscavengingratesusingtheidenticalalgorithmasforgridremoval.Therates
areusedtoderiveremovalfractions,andthesefractionsarethenapplieddirectlytothepuff
incrementalmassforeachspecies.Removalfractionsareconsideredpositiveforthestandard
caseofmassmovingfrompufftorain.
Wefurtherassumethatthetopboundaryconditionforrainwaterenteringthetopofeachpuff
iszero.Thismeansthattheremovalfractionisalwayspositive(frompufftorain)inthesingle
layerpuff.Incontrast,forgriddedconcentrationsthelayerbylayerbuildupofslightlysoluble
speciescanleadtoareversaloffluxes(fromraintogrid)ifsupersaturationisdiagnosedina
particularlayer.
Notethatnegativepuffmassincrementsincombinationwithapositiveremovalfractionlead
toareversalofthefluxdirection(raintopuff),butthatisnotallowedandinsuchcaseswet
scavengingissettozero.Weaccountforimpactsonthemassbudgetappropriatelybyadding
tothewetdepositionmassarrayaccordingtothenetfluxesintorainwater.
6.7PiGConfiguration
SelectingtheindividualelevatedpointsourcestoreceivethePiGtreatmentisaccomplishedby
settingtheirstackdiametersnegativewithintheheader(timeinvariantpointlist)sectionofthe
CAMxinputpointsourcefile.CAMxwillruncorrectlywiththesenegativediametersevenifthe
PiGalgorithmisnotinvoked.CAMxpreprocessorsexisttoeasetheprocedureofranking
elevatedpointsourcesbyemissionrateandflaggingthesourcesthattheuserwishestotreat.
InvokingtheCAMxPiGsubmodeliscontrolledbykeywordsintheCAMxcontrolfile
(CAMx.in),asdescribedinSection2.Thechoicesare:
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 145www.camx.com
PiG_Submodel = 'NONE',
PiG_Submodel = 'GREASD',
PiG_Submodel = 'IRON',
NotethatthesinglechoicebetweenGREASDandIRONappliestoallflaggedpointsources.Itis
notpossibletomakeasingleCAMxrunwithIRONPiGappliedtoacertaingroupofsources,
andGREASDPiGappliedtoanothergroup.AlsonotethatGREASDmustbeselectedtorunPiG
withOSAT,PMandPSAT;IRONmustbeselectedtorunPiGwiththeRTRACProbingTool.
SeveraladditionalparametersareusedtoconfigurethePiG.ItisimportanttonotethatallPiG
configurationparametersexistintheCAMxFortranparametersfile
(./Includes/camx.prm),asdescribedinSection2.PiGparametersaregroupedtogether
andbrieflydescribedattheendofthatfile.ByconfiguringthePiGsubmodelinthecode,the
defaultPiGconfiguration(asrecommendedbythemodeldevelopers)ispresetwithinthe
modeldistributionandalleviatestheneedforuserstoselectsettingsontheirown.
Thedefaultvaluesareshownbelow:
parameter ( MXPIG = 50000 )
parameter ( MXRECTR = 1 )
parameter ( FLEAK = .25 )
parameter ( LEAKON = .FALSE. )
parameter ( LVISPIG = .FALSE. )
parameter ( OVERLAP = .FALSE. )
parameter ( DXYMAX = -10000. )
parameter ( AGEMAX = 18.*3600. )
parameter ( PIGMXDT = 300. )
parameter ( SHRFLG = 1 )
Usersshouldexercisethoughtfulconsiderationwhenalteringthesedefaultvalues.A
descriptionofeachoftheremainingparametersisprovidedbelow,alongwithguidancein
settingvalues.
6.7.1GuidanceontheUseofCAMxPiG
6.7.1.1PiGKeyword
ThePiGkeywordcontrolswhetherthePiGoptionistobeinvokedinaCAMxsimulation,and
whethertheemissionsaretreatedwiththeGREASDorIRONoptions.Thiskeywordcanbe
switchedfromNONEtoGREASDorIRONonamodelrestarttoinvokethePiGtreatmentatany
pointduringamultidaysimulation.Toallowforthis,itisnotmandatorytoprovideCAMxwith
apreexistingPiGoutputfileuponamodelrestartCAMxwillnotstopifthisfileismissing.It
isrecommendedthatthisfilebeprovidedonallsubsequentrestartssincethePiGoutputfileis
neededtoreinitializethePiGmodule,otherwiseallmasscontainedinpuffsattheendofthe
previousrunwillbelost.IfthePiGkeywordisswitchedtoNONEonamodelrestart,CAMxwill
continuethesimulationwithoutPiG,butallmasscontainedinpuffsattheendoftheprevious
runwillbelost.
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 146www.camx.com
Guidance:
- InvokeGREASDorIRONPiGatanypointduringamultidaysimulation,ornoneatall.
OncePiGisstarted,provideCAMxwiththePiGoutputfilefromthepreviousrunfor
allsubsequentmodelrestartssothatnopointsourcemassislost.
- GREASDPiGshouldbeinvokedforlargeNOxpointsourcesonly,sinceitdoesnot
provideanyorganicchemistry.GREASDPiGsupportsPMchemistry(CFbutnotCMU).
ItcanberuninconjunctionwiththeOSAT/PSAT.ItdoesnotsupportDDM,PA,or
RTRAC.
- IRONPiGcanbeinvokedforanypointsourcetotreatgasphasechemicalevolution
usinganyoftheCAMxphotochemicalmechanisms.IRONPiGdoesnottreat
particulatechemistry.ItcanberuninconjunctionwiththeRTRACProbingTool.It
doesnotsupportOSAT/PSAT,DDM,orPA.
BothGREASDandIRONoptionsusetheLSODEchemistrysolverexclusively,souserswillnotice
animpactonruntime,particularlyifmany(thousands)puffsaretobetracked,andIRONPiGis
invoked(2solutionsoffullphotochemistryforeachpuff),andIRONpuffsareconfiguredwith
manypuffreactorcells(fullphotochemistrysolutionseach).SinceGREASDchemistryissimpler
andthelifetimeofGREASDpuffsaremuchshorterthantheirIRONcounterparts,GREASDPiG
willrunfasterthanIRONPiGforthesamenumberofflaggedsources.PiGchemistryis
internallyparallelizedusingOMPtomaximizePiGspeedperformance.
6.7.1.2NumberofPiGPuffs
MXPIGsetsthemaximumnumberofPiGpuffstobeexpectedduringasimulation.Itisusedto
staticallyallocatememoryarraysforthePiGsubmodel.Avalueof10,000isusuallysufficient
formostapplicationsinwhichPiGisused;setthisparameterto1ifPiGisnotusedtoconserve
memory.Ifthisparameterisexceededduringasimulation,themodelwillhalt.Ifthishappens,
simplyincreaseMXPIG,recompilethemodelexecutable,andrestartthesimulation.
Guidance:Usethedefaultvalueformostsimulations,orsetto1ifPiGisnottobeused.
IfthemodelstopsbecauseMXPIGisexceeded,increaseitsvalue,recompile,andrestart
themodel.
6.7.1.3NumberofPiGReactors(IRONonly)
MXRECTRsetsthenumberofpuffreactors;whengreaterthan1,eachpuffisseparatedinto
thatnumberofreactorcellsandprimaryemissionsareapportionedamongthemusinga
Gaussiandistribution.Sincechemistryisperformedforeachindividualreactorcell(both
backgroundandpuff+background),thisparametercanaffectthespeedofchemical
computationsinthePiG.Wehavenotseenasignificantsensitivitytovaluesgreaterthan1,but
testingforeachapplicationiswarranted.
Guidance:Usethedefaultof1forinitialsimulations,buttestthesensitivitytothis
parameterforeachuniqueapplication.
Reactorsgreaterthan1arenotallowedforGREASDPiG.
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 147www.camx.com
6.7.1.4LeakageParameters
FLEAK,LEAKON,andDXYMAXtogethercontrolpuffleakagetothecomputationalgridand
ultimatelypufftermination.WhenLEAKONistrue,FLEAKandDXYMAXcontrolwhenpuffs
begintoleakportionsofreactormasstothegridalongtheirtrajectory.WhenLEAKONisfalse,
noleakingisperformedandpuffsmaintainalloftheirmassuntiltheyreachsizesfor
termination,atwhichpointallmassisdirectlyintroducedtothegridatthatpoint.DXYMAX
setsthemaximumdimensionthatpuffsizewillbecomparedtoforleakingandtermination:
whenitiszero,puffsizewillbecomparedtogridareaonly;whenitispositive,puffsizewillbe
comparedtothevalueofDXYMAXregardlessofgridresolution;whenitisnegative,puffsize
willbecomparedtoDXYMAXorgridresolution,whicheverissmaller.FLEAKistherelative
fractionofhorizontalpuffareatocellarea(orDXYMAX)abovewhichleakingwillbeginand
continueuntilsufficientmassisshedandthepuffisterminated.Intheexampleabove,puffs
willbegintoleakmasswhentheyreach25%ofthehostgridcell’sarea.
Guidance:IfLEAKONissettotrue,maintainFLEAKatthedefaultvalueof0.25.Thentest
modelsensitivitytodifferentvaluesofFLEAKand/orDXYMAX.
Guidance:WesuggestleavingDXYMAX=‐10000,meaningpuffswillbeterminatedwhen
theyreachthegridscaleor10km,whicheverissmaller.Puffsexceedingthissizeare
usuallywellagedandgobeyondreasonableassumptionsofpuffcoherence(alsosee
AGEMAXparameterbelow).
LeakingisnotallowedwhenPiGisrunwithPM.
6.7.1.5OverlapFlag(IRONonly)
OVERLAPcontrolswhetherpuffoverlapistobetreatedinthebackgroundchemistrystep.As
statedearlier,puffsonlyoverlapiftheymeetthesizecriteriaforleaking;allpuffssmallerthan
thissizedonotoverlapanyotherpuffsinthesamegridcell.
Guidance:WerecommendthattheOVERLAPflagremainsettothedefaultvalueof
“false”.
OverlapisnotallowedforGREASDPiG.
6.7.1.6VirtualPuffRendering
LVISPIGisaflagthatturnsonpuff“rendering”tothecomputationalgridaverage
concentrations.Whenitisfalse,thechemicaleffectsofpuffmassarenotseenontheoutput
averagefilesuntiltheyeitherbegintoleakmasstothegridand/ortheyareterminatedand
theirmassisentirelyintroducedtothecomputationgrid.However,whentheflagistrue,all
puffmassthatresidesineachgridcolumnissummed,apportionedverticallytoeachgridcell
accordingtopuffverticalextent(viadensityandlayerdepthweighting),convertedto
concentrations,andaddedtotheaveragegriddedconcentrationsforoutput.Thisprocessis
referredtoasrenderingsincetheeffectsofallpuffmasscanbereadilyvisualizedintheCAMx
output.
March2016CAMxUser’sGuideVersion6.3
6.PlumeinGridSubmodel
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 148www.camx.com
Guidance:ThisoptionhasnoimpactontheactualCAMxchemicalsolution.However,
outputaverageconcentrationfileswillbeaffectedbypuffrendering,andthereforecould
impactgraphicsofCAMxresultsandmodelperformancemeasures.
VirtualdumpsarenotallowedwhenPiGisrunwithPM.
6.7.1.7MaximumPuffAge
AGEMAXistheagelimitforallPiGpuffs(IRONandGREASD).Whenpuffsreachthisagelimit,
theyareterminatedandalloftheirmassistransferredtothehostgrid.Theassumptionofa
streamofcoherentpuffsbecomeslessvalidwithtimeashorizontalandverticalwindshears
increaseplumespread.Atsomepointtheplumemassisbetterresolvedonthegridthan
withinpuffs.Themaximumpuffageprovidesasafetychecktoensurethatpuffsdonotpersist
forunrealistictimesinstableenvironments.Themaximumpuffageshouldbesetlongenough
toallowpuffstopersistovernight,butalifetimeoflongerthanadayisprobablynotrealistic.
Guidance:limitpuffageto1224hourswefindthat18hoursworksbestsinceitwill
allowpuffsemittedinthelateafternoontolastthroughthenightandintothefollowing
morning.Twelvehoursisseentobetooshortinthisregard;puffsusuallydonotreach24
hoursofagebeforebeingterminatedbygridconstraints.
6.7.1.8MaximumPuffReleaseInterval
PIGMXDTsetsthemaximumfrequencyofreleaseandbydefaultissetto300seconds(5
minutes).Thisvalueshouldbeadequateformostapplications.However,iftheuserwishesto
improveplumeresolutionbyincreasingthenumberofpuffs,thefrequencyofreleasecanbe
increasedbyreducingthevalueofPIGMXDT.Thisvaluesupersedestheautomatedpuffrelease
ratethatisdeterminedbywindspeedandgridsize.
Guidance:Maintainthedefaultvalueof300sandallowPiGtousetheautomatedPiG
releasefrequency.Settoalowervalueifbetterplumeresolutionisdesired;notethat
morepuffswillbereleasedandthiscouldslowthemodelmarkedly.
6.7.1.9EffectsofWindShearonPuffGrowthRates
SHRFLGsetstheapproachbywhichtoapplytheeffectsofexplicitlyresolved(gridscale)wind
shearonpuffgrowthrates.Therearethreeoptionsavailabletotheuser:
0=shearisneverapplied;
1=shearisappliedonlywithintheboundarylayer;
2=shearisalwaysapplied.
Guidance:Theapplicationofwindshearcanleadtolargegrowthrates,especiallyabove
theboundarylayerwherestabilitysquelchesturbulentgrowth,andthismayoverdilute
puffconcentrations,leadtoearlytransferofpuffmasstothegrid,andhavemarkedly
reducedimpactsdownwind.Shearhaslessrelativeimpactongrowthratesinneutral/
unstableconditionsbecauseturbulentgrowthonitsownleadstorapidplumedilution.
Forthesereasons,thedefaultistoignoretheeffectsofshearwhenpuffsareabovethe
boundarylayer.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 149www.camx.com
7.SOURCEAPPORTIONMENT
Photochemicalgridmodelsareoftenusedtodevelopemissionreductionstrategiestoattainair
qualityobjectives.Traditionalmethodsinvolverunningnumerousiterativereductionor“zero
out”simulations(i.e.,“bruteforce”methods)toidentifythecontributionsfromspecific
pollutants,sourcecategoriesandsourceregions.Thisprocessquicklybecomesimpractical,but
thelackofsuchinformationmightleadtoimplicatingsourcesthatcontributelittletohigh
pollutantlevelsor,conversely,notproperlyidentifyingsourcesthatdocontribute.
CAMxincludesasourceapportionment(SA)orattributioncapabilitythatestimatesthe
contributionsfrommultiplesourceareas,categories,andpollutanttypestothespatialand
temporaldistributionofozoneandPMinasinglemodelrun.Themainchallengesin
implementingamethodologytotracktherelationshipsbetweenseparategroupsofprecursor
emissionsandsubsequentnonlinearformationoftargetpollutantsinclude:
Accountingnotonlyforthepresenceofprecursorsfromagivensourceregionatagiven
receptorlocation,butalsoaccuratelyestimatingtheircumulativecontributiontotarget
pollutantswhiletheywereenroutetothereceptor;
Ensuringcompatibilitywiththeunderlyingairqualitymodelformulationsothatderived
sourcereceptorrelationshipsareconsistentwithmodelresultsfortotalconcentrations;
Providingsufficientspatialandtemporalresolutionwhilemanaging,withinpractical
constraints,thecomputerresourcesrequiredtorunthesourceapportionmenttool.
SAusessetsoftracerspeciestotrackthefateofprecursoremissionsandtheozoneandPM
compoundsformedfromtheseemissions.Thetracersoperateas“spectators”tothenormal
CAMxcalculationssothattheunderlyingrelationshipsbetweentotalemissionsand
concentrationsarenotperturbed.SAtracersarenot“passive”:rathertheytracktheeffectsof
chemicalreaction,transport,diffusion,emissionsanddepositionwithinaCAMxsimulationand
arethusreferredtoas“reactiontracers.”Asourcecanbedefinedintermsofgeographical
area(orregion)and/oremissioncategory(orgroup).Figure71providesanexampleofthe
wayaCAMxdomaincanbesubdividedintomultiplesourceareas40inthisexample.Also,
theemissioninventorycouldbesubdividedintoseveralsourcecategories;forexample,three
emissioncategories(mobile,industrial,biogenic)over40sourceregionswouldproduce120
separatesetsoftracers.Allsourcesofprecursors,ozone,PMmustbeaccountedfor,soCAMx
intialandboundaryconditionsarealsotrackedasseparatesourcegroups.Themethodologyis
designedsuchthatallozone,PMandprecursorconcentrationsareattributedamongthe
selectedsourceregions/groupsatalltimesandthroughoutallgrids.Themethodologyalso
estimatesthefractionsofozoneformedenrouteunderVOC‐orNOXlimitedconditions,
indicatingwhetherozoneataparticulartimeandlocationswillrespondtoreductionsinVOCor
NOXprecursoremissions.
AnimportantfeatureofthereactiontracerapproachisthatthenormalCAMxcalculationsare
notperturbed;thus,SAestimatesthesametotalozone,PMandprecursorconcentrationsas
CAMx.Further,sincethesameinputsareusedformeteorology,emissionsetc.,andthesame
numericalmethodsareemployedthroughoutthemodel,thesourcereceptorrelationships
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 150www.camx.com
Figure71.ExampleofthesubdivisionofaCAMxdomainintoseparateareasforgeographic
sourceapportionment.
developedbySAinherentlyhaveahighdegreeofconsistencywiththosegeneratedbyCAMx.
Thebiggestlimitationofthis(oranyother)sourceapportionmentapproachrelatestonon
linearchemicalinteractionsbetweenemissionsfromdifferentsources,whichbyextension
meansthatanyperturbationtotheemissioninventorychangessourcereceptorrelationships
andattributioninanonlinearway.Thus,forpollutantslikeozoneandsomePM,SAresults
onlyapplytoaparticularemissionsscenario,andcannotbeusedtoextrapolateeffects
resultingfromemissionchangesamongthetrackedsourceregions/groups.
7.1OzoneSourceApportionment
Yarwoodetal(1996a,b)developedanozonesourceattributionapproachthathasbecome
knownasthe“OzoneSourceApportionmentTechnology”(OSAT).Thismethodwasoriginally
implementedintheUrbanAirshedModel(UAM)andwasbuiltintothefirstversionofCAMx.
Thesecondversion(OSAT2althoughthistermwasnotwidelyused)wasreleasedwithCAMx
v4.20in2005alongwiththeadditionofParticulateSourceApportionmentTechnology(PSAT).
TheOSAT2updateaccountedforsimultaneousproductionanddestructionofozoneby
photochemistryandtendedtoallocatelessozonetolongrangetransport(becauseof
destructionduringtransport)andmoretolocalproduction.Thethirdversion(OSAT3)was
releasedwithCAMxv6.30in2016,andincludesanimprovedapproachtohandleNOxrecycling
(YarwoodandKoo,2015).TheOSAT3updatetendstoallocatemoreozonetolongrange
transport(duetocontributionsfromNOxduringdownwindtransport)andlesstolocal
production.
-95-90-85-80-75-70
30
35
40
45
1
2
3
4
6
7
89
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 151www.camx.com
7.1.1OSATFormulation
TheoriginalOSATusesfourtracerspersourceregion/grouptoaccountforcontributionsto
ozoneformation.OzoneformationinvolvesbothNOxandVOC,andOSATusestwotracer
families(NiandVi)toapportionNOxandVOCbysourceregion/groupi.Theozoneformation
processiscontrolledbytherelativeavailabilityofNOxandVOC,andsoozoneformationis
describedeitherasNOxlimitedorVOClimited,respectively.Theratiooftheproductionrates
ofhydrogenperoxide(H2O2)andnitricacid(HNO3)istheindicatorusedtoclassifyozone
formationasbeinginstantaneouslylimitedbyNOxorVOC.Ozoneformationisclassifiedas
beingNOxlimitedwhenP(H2O2)/P(HNO3)<0.35(Sillman,1995).Whenozoneproductionata
givenlocationandtimeisNOxlimited,itmakessensetoattributethatproductiontosource
region/groupsbasedontheircontributionstothelocalNOx,andsimilarlytoattribute
productionbasedonVOCcontributionswhenozoneformationisVOClimited.Consequently,
separateozonetracerfamilies(O3NiandO3Vi)areusedtotrackozoneformedunderNOxand
VOClimitedconditions.
TheOSATtracersbysourceregion/groupiare:
NiNitricoxide(NO)andnitrogendioxide(NO2)emissions
ViVOCemissions
O3NiOzoneformedunderNOxlimitedconditionsfromNi
O3ViOzoneformedunderVOClimitedconditionsfromVi
TheoriginalOSATtracerschemeisillustratedinFigure72.Netozonechangeduetochemistry
(ΔO3)istrackedbythetracerfamiliesO3NandO3V.Ozonedestruction(ΔO3<0)reducesall
O3NandO3Vproportionately.Ozoneproduction(ΔO3>0)isclassifiedeitherasNOxlimitedor
VOClimitedusingtheindicatorH2O2/HNO3andassignedeithertoO3NorO3V,respectively,
inproportiontotheprecursortracerspresent,respectivelyNorV.TheprecursortracersNand
Vareremovedbychemicaldecay.
Figure72.TheoriginalOSATschemeforozoneapportionment.Informationflowsalong
arrows.Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,the
diamondrepresentstheOSATalgorithmthatdeterminesozonetracerchanges.
H2O2/HNO3istheindicatorratiousedtodetermineNOx‐orVOClimitedozoneproduction.
ΔO
3
V
O3V O3N
ΔH2O2/ΔHNO3
N
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 152www.camx.com
7.1.2OSAT2Formulation
TheoriginalOSATalgorithmallocatedthenetozonechange(ΔO3)totracersO3Nand/orO3V.
However,ozoneproductionanddestructionreactionsoperatesimultaneouslyandsothenet
ozonechangeisthebalanceofproductionanddestruction.Forexample,VOCoxidationcan
causephotochemicalozoneproductionatthesametimethatO3+VOCreactionsdirectly
consumeozone,andtheseprocessesmayleadtoanetozoneincreaseordecreasedepending
mainlyuponavailabilityofNOxandsunlight.
OSAT2accountsforthefollowingozonedestructionmechanisms:
1) O3+VOCreactionssincetheseremoveozone;
2) O(3P)+VOCreactionssincetheseeffectivelyremoveozone;
3) O(1D)+H2Oreactionsincethiseffectivelyremovesozone;
4) HOx+O3reactionsthatdonotreformozone.
Ozonedestructioniscalculatedasthesmaller(i.e.,morenegative)ofthesumofthesefour
mechanismsorΔO3.OzoneproductionisthencalculatedasthedifferencebetweenΔO3and
theozonedestruction.TheO3VandO3Ntracersareadjustedfirstforozonedestruction
(appliedtoalltracers)andsecondforozoneproduction(appliedusingtheOSATrules).
Theamountofozonedestructioniscalculatedfromthetimeintegratedratesofthefour
chemicalprocesseslistedabove.Itiseasytoaccountforprocesses13sincetheozone
destroyedissimplythetimeintegralofthereactionsinvolved.Process4islesseasyto
quantifybecauseozonecanbereformed.Forexample:
O3+OH→HO2
HO2+NO→OH+NO2
NO2+hν→NO+O
O+O2→O3
However,process4isanimportantozonedestructionmechanisminlowNOx(e.g.,rural)
environments.Therefore,accountingforprocess4isimportanttounderstandinglongrange
ozonetransport.ThemainreactionpathwaysbetweenozoneandHOx(OHandHO2)are
showninFigure73.
TheozonedestructionrateduetoO3+HOxreactionsiscomputedfrom:
TheOSAT2tracersarethesameastheoriginalOSAT.TheOSAT2schemeforozone
apportionmentisillustratedinFigure74.Ozoneproductionanddestructionaretreated
separatelyandcanoccursimultaneously.Ozonedestruction(−ΔO3)reducesallO3NandO3V
proportionately.Ozoneproduction(+ΔO3)isclassifiedeitherasNOxlimitedorVOClimited
 

termHONOHO
termHO
HOxO
22
2
3RateRate
Rate
RatenDestructioO3
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 153www.camx.com
Figure73.DaytimereactionsofozonewithHOx(OHandHO2)showingpotentialfor
reformationofozoneorozonedestructionviaperoxideformation.
Figure74.TheOSAT2schemeforozoneapportionment.Informationflowsalongarrows.
Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,thediamond
representstheOSATalgorithmthatdeterminesozonetracerproducton.H2O2/HNO3isthe
indicatorratiousedtodetermineNOx‐orVOClimitedozoneproduction.
usingtheindicatorH2O2/HNO3andassignedeithertoO3NorO3V,respectively,in
proportiontotheprecursortracerspresent,respectivelyNorV.TheprecursortracersVandN
areremovedbychemicaldecay.
7.1.3OSAT3Formulation
OSAT3improvestheaccuracyoftheOSATmethodsbykeepingtrackofthesource(s)ofozone
removedbyreactionwithNOtoformNO2andsubsequentlyreturnedasozonewhenNO2is
destroyedbyphotolysis.Accomplishingthisobjectiverequiresmaintainingsourceattribution
ofoddoxygenthroughthechemicalreactionsthatlinkozone,NOandNO2.Thisisillustratedin
thefollowingchemicalreactionswhereozoneiswrittenasOOO,NO2iswrittenasONO,and
thesourceattributedoddoxygenisshowninred:
OH
HO2
O3
OH HO2
hV
NO Peroxides
NO2
HOx
Radical
Pool
HO2,
RO2
+ΔO
3
V
O3V O3N
ΔH
2
O
2
/ΔHNO
3
−ΔO
3
N
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 154www.camx.com
NO+OOO→ONO
ONO+hv→NO+O
O+OO→OOO
SourceattributionoftheoddoxygencontentofNO2isperformedbytracerfamiliesOONand
OOVthatareintroducedinOSAT3.Twotracerfamiliesareneededinordertokeeptrackofthe
sourceprofileofozoneconsumed,whichwasrepresentedbyO3VandO3N.
SourceattributionofthenitrogeninNOandNO2mustalsobeperformedinordertoapplythe
apportionmentalgorithmsthattrackozoneproductionusingO3NandO3V.Accordingly,
OSAT3simultaneouslyattributesboththeNandoddoxygeninNO2tosources,andthesource
signaturesofthesetwoapportionmentswillalmostalwaysdiffer.Thisisillustratedbelow,
wherechemicalsourceattributionisshowninbluefornitrogenandredforoddoxygen:
NO+OOO→ONO
ONO+hν→NO+O
O+OO→OOO
Thechemicalconversionpathwaysbetweenoxidizednitrogenspecies(NOy)inCB6are
summarizedinFigure75.Arrowsshowthedirectionofconversion,whichisbidirectionalin
somecases.OtherchemicalmechanismshavesimilarNOyconversionpathwaystoCB6.Also
showninFigure75aretheOSAT3tracerfamilies.Colorcodingshowsthecorrespondence
betweenOSAT3tracerfamiliesandtheNOyspeciesthattheyrepresent(notethatthepurpose
forcolorcodinginFigure75isdifferentfromcolorsusedinthechemicalreactionsabove).
Figure75.CorrespondencebetweenNOyspeciesinCB6andtracerfamiliesinOSAT3with
conversionsbetweenspecies/tracersshownbyarrows.
NO
NO
2
HONO
NO
3
N
2
O
5
HNO
3
RNO
3
PAN
PNA
NIT
RGN
HN3
NTR
TPN
CB6 OSAT3
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 155www.camx.com
TrackingsourceattributionofnitrogenthroughallformsofNOyenablesOSAT3toaccountfor
NOxrecyclingwhenNOxisconvertedtoanotherformofNOy(e.g.,PANorHNO3)andlater
convertedbacktoNOx.OSAT3usesthefollowing10tracersbysourceregion/groupi:
ViVOCemissions
NITiNitricoxide(NO)andnitrousacid(HONO)emissions
RGNiNitrogendioxide(NO2),nitrateradical(NO3)anddinitrogenpentoxide(N2O5)
TPNiPeroxylacetylnitrate(PAN),analoguesofPANandperoxynitricacid(PNA)
NTRiOrganicnitrates(RNO3)
HN3iGaseousnitricacid(HNO3)
O3NiOzoneformedunderNOxlimitedconditionsfromNi
O3ViOzoneformedunderVOClimitedconditionsfromVi
OONiOddoxygeninNO2formedfromO3Ni
OOViOddoxygeninNO2formedfromO3Vi
TheOSAT3schemeforozoneapportionmentisillustratedinFigure76.TheVOCprecursor
tracerfamilyVisunchangedinOSAT3andremovedbychemicaldecay,whilethetracerNis
replacedwithNIT.ThefateofNOxemissionsistrackedbythenitrogentracerfamiliesNIT,
RGN,TPN,NTRandHN3.Ozoneproductionanddestructionaretreatedseparatelyandcan
occursimultaneously(asinOSAT2).Ozoneproduction(+ΔO3)isclassifiedeitherasNOxlimited
orVOClimitedusingtheindicatorH2O2/HNO3andassignedeithertoO3NorO3V,
respectively,inproportiontotheprecursortracerspresent,respectivelyNITorV.Ozone
destruction(−ΔO3)reducesallO3NandO3Vproportionately.Whenozonedestructionresults
fromreactionwithNOtoformNO2,theamountsofO3NandO3Vremovedaretransferredto
therespectiveoddoxygentracersOONandOOV.WhenNO2isremovedbyphotolysistoform
ozone,theamountsofOONandOOVremovedaretransferredtotherespectivetracersO3N
andO3V.
7.1.4AlternativeOzoneApportionmentUsingAPCA
AnalternativeozoneapportionmenttechniquecalledAnthropogenicPrecursorCulpability
Assessment(APCA)differsfromOSATinrecognizingthatcertainemissioncategoriesarenot
controllable(e.g.,biogenicemissions)andthatapportioningozoneproductiontothese
categoriesdoesnotprovideinformationthatisrelevanttodevelopmentofcontrolstrategies.
Toaddressthis,insituationswhereOSATwouldattributeozoneproductiontononcontrollable
emissions,APCAreallocatesthatozoneproductiontothecontrollableprecursorsthat
participatedinozoneformationwiththenoncontrollableprecursor.Forexample,whenozone
formationisduetobiogenicVOCandanthropogenicNOxunderVOClimitedconditions(a
situationwhereOSATwouldattributeozoneproductiontobiogenicVOC),APCAattributes
ozoneproductiontotheanthropogenicNOxpresent.UsingAPCAinsteadofOSATresultsin
moreozoneformationattributedtoanthropogenicNOxsourcesandlessozoneformation
attributedtobiogenicVOCsources.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 156www.camx.com
Figure76.TheOSAT3schemeforozoneapportionment.Informationflowsalongarrows.
Changesincoremodelspeciesareshowninblue,OSATtracersareinblack,thediamond
representtheOSATalgorithmsthatdetermineozonetracerproduction.H2O2/HNO3isthe
indicatorratiousedtodetermineNOx‐orVOClimitedozoneproduction.RGNapportions
thenitrogeninNO2whereasOONandOOVapportiontheoddoxygeninNO2.
TheonlydifferencebetweenAPCAandOSATisthealgorithmusedtoallocateozoneproduction
underVOCorNOxlimitedconditions.TheOSAT3updatedoesnotrevisetheallocationof
ozoneproductionunderVOCorNOxlimitedconditionsandthereforetheAPCAalgorithm
workswiththeOSAT3update.
7.2ParticulateSourceApportionment
ParticulateSourceApportionment(PSAT)usesmultipletracerfamiliestotrackthefateof
primaryandsecondaryPM(Yarwoodetal.,2004).PSATisdesignedtoapportionthefollowing
classesofCAMxPMspecies(CFmodeonly):
Sulfate(PSO4)
Particulatenitrate(PNO3)
Ammonium(PNH4)
Secondaryorganicaerosol(SOA)
Particulatemercury(HgP)
SixcategoriesofprimaryPM:
- Elementalcarbon(PEC)
- Primaryorganicaerosol(POA)
- Crustalfine(FCRS)
+ΔO
3
V
O3V O3N
ΔH
2
O
2
/ΔHNO
3
−ΔO
3
NIT
OOVOONRGN
NTR
TPNHN3
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 157www.camx.com
- Otherfine(FPRM)
- Crustalcoarse(CCRS)
- Othercoarse(CPRM)
AsingletracerfamilycanapportionprimaryPMspecieswhereassecondaryPMspeciesrequire
severaltracerfamiliestotracktherelationshipbetweengaseousprecursorsandtheresulting
PM.PNO3andSOAarethemostcomplexPMcategoriestoapportionbecausetheemitted
precursorgases(NO,VOC)areseveralstepsremovedfromtheresultingPMspecies(PNO3,
SOA).
ThePSAT“reactivetracers”foreachtypeofPMbysourceregion/groupiaredescribedbelow.
PSATtracernamesforparticulatespeciesbeginwiththeletter“P.”
Sulfur
SO2iPrimarySO2emissions
PS4iParticulatesulfatefromprimaryemissionsplussecondarilyformedsulfate
Nitrogen
NITiNitricoxide(NO)andnitrousacid(HONO)
RGNiNitrogendioxide(NO2),nitrateradical(NO3),anddinitrogenpentoxide(N2O5)
TPNiPeroxylacetylnitrate(PAN),analoguesofPANandperoxynitricacid(PNA)
NTRiOrganicnitrates(RNO3)
HN3iNitricacid(HNO3)
PN3iParticulatenitratefromprimaryemissionsplussecondarilyformednitrate
NH3iAmmonia(NH3)
PN4iParticulateammonium(NH4)
SecondaryOrganics
AROiAromatic(benzene,tolueneandxylene)secondaryorganicaerosolprecursors
ISPiIsoprenesecondaryorganicaerosolprecursors
TRPiTerpenesecondaryorganicaerosolprecursors
SQTSesquiterpenesecondaryorganicaerosolprecursors
CG1iCondensablegasesfromaromatics(lowvolatilityproducts)
CG2iCondensablegasesfromaromatics(highvolatilityproducts)
CG3iCondensablegasesfromisoprene(lowvolatilityproducts)
CG4iCondensablegasesfromisoprene(highvolatilityproducts)
CG5iCondensablegasesfromterpenes(lowvolatilityproducts)
CG6iCondensablegasesfromterpenes(highvolatilityproducts)
CG7iCondensablegasesfromsesqiterpenes
PO1iParticulateorganicaerosolassociatedwithCG1
PO2iParticulateorganicaerosolassociatedwithCG2
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 158www.camx.com
PO3iParticulateorganicaerosolassociatedwithCG3
PO4iParticulateorganicaerosolassociatedwithCG4
PO5iParticulateorganicaerosolassociatedwithCG5
PO6iParticulateorganicaerosolassociatedwithCG6
PO7iParticulateorganicaerosolassociatedwithCG7
POHiParticulatenonvolatileorganicaerosolfromaromaticprecursors
PPAiAnthropogenicorganicaerosolpolymers(SOPA)
PPBiBiogenicorganicaerosolpolymers(SOPB)
Mercury
HG0iElementalMercuryvapor
HG2iReactivegaseousMercuryvapor
PHGiParticulateMercury
PrimaryParticulates
PECiPrimaryElementalCarbon
POAiPrimaryOrganicAerosol
PFCiFineCrustalPM
PFNiOtherFineParticulate
PCCiCoarseCrustalPM
PCSiOtherCoarseParticulate
BothozoneandPNO3areassociatedwithNOxemissions.Theoxidizednitrogentracerfamilies
forOSAT3andPSATareequivalentwiththeonlydifferencebeingtheadditionaltracerfor
particulatespeciesinPSAT.Therefore,PSATusesthesameOSAT3tracerfamilyforoxidized
nitrogen.
PSATincludesatotalof40tracersforeachsourceregion/groupifappliedtoallPMtypes.
Sincesourceapportionmentmaynotalwaysbeneededforallspecies,thePSAT
implementationisflexibleandallowssourceapportionmentforanyorallofthechemical
classesineachCAMxsimulation(i.e.thePSO4,PNO3,PNH4,SOA,HgPandprimaryPMclasses
listedabove).Forexample,sourceapportionmentforsulfate,nitrateandammoniumrequires
just10tracerspersourceregion/group.
AfundamentalassumptioninPSATisthatPMshouldbeapportionedtotheprimaryprecursor
foreachtypeofPM.Forexample,PSO4isapportionedtoSOxemissions,PNO3isapportioned
toNOxemissions,PNH4isapportionedtoNH3emissions,etc.Asasourceapportionment
method,PSATmustaccountforallmodeledsourcesofaPMspecies.Considertwomodel
speciesAandBthatareapportionedbyreactivetracersaiandbi,respectively.Reactivetracers
mustbeincludedforallsourcesofAandBincludingemissions,initialandboundaryconditions
sothatcompletesourceapportionmentisobtained,i.e.,A=aiandB=bi.
InPSAT,thegeneralapproachtomodelingchangeoveramodeltimestep
tisillustratedfora
chemicalreactionA
B.Thegeneralequationforspeciesdestructionis:
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 159www.camx.com
Here,therelativeapportionmentofAispreservedasthetotalamountchanges.Thisequation
appliestochemicalremovalofAandalsotophysicalremovalofAbyprocessessuchas
depositionortransportoutofaspecificgridcell.
Thegeneralequationforspeciesproduction(e.g.,chemicalproductionbythechemicalreaction
A
B)is:
Here,productionofBinheritstheapportionmentoftheprecursorA.Thesameequation
appliesfor“production”ofBinaspecificgridcellduetoemissionsortransport.Forthecase
whereBincreasesduetoemissions,aiistheapportionmentoftheemissionsinventory.For
thecasewhereBincreasesduetotransport,aiistheapportionmentoftheupwindgridcell.
Insomecases,sourcecategoryspecificweightingfactors(wi)mustbeaddedtotheequation
forspeciesdestruction:
AnexampleischemicaldecayofthearomaticVOCtracers(ARO),whichmustbeweightedby
theaverageOHrateconstantofeachAROi.AROtracersfordifferentsourcegroupshave
differentaverageVOCreactivitiesbecausetherelativeamountsofbenzene,toluenesand
xylenesdifferbetweensourcecategories.
Insomecases,sourcecategoryspecificweightingfactors(wi)mustbeaddedtotheequation
forspeciesproduction:
Anexampleischemicalproductionofcondensablegases(CG1orCG2)fromaromaticVOC
tracers,whichmustbeweightedbyaerosolyieldweightingfactors.Theaerosolyieldweighting
factorsdependupontherelativeamountsofbenzene,toluenesandxylenesineachsource
group.
Severalaerosolreactionsaretreatedasequilibria,A
B.IfAandBreachequilibriumateach
timestep,itfollowsthattheirsourceapportionmentsalsoreachequilibrium:
 
i
i
ii a
a
Atatta
 
i
i
ii a
a
Btbttb
 
ii
ii
ii aw
aw
Atatta
 
ii
ii
ii aw
aw
Btbttb
 
 

BA
B
tbtattb
BA
A
tbtatta
iii
iii
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 160www.camx.com
Examplesaretheequilibriumbetweengasphasenitricacidandaerosolnitrate,gasphase
ammoniumandaerosolammonium,andcondensableorganicgases(CG)andsecondary
organicaerosols(SOA).
7.3RunningCAMxWithSA
7.3.1CAMxControlFile
SourceapportionmentisinvokedsimilarlytotheotherProbingToolswithintheCAMxcontrol
file.Inthe&CAMx_Controlnamelistmodule,thevariableProbing_Toolmustbesetto
“SA”ifOSAT,APCAorPSATaretoberun.Anadditionalnamelistmodulecalled
&SA_Control mustthenbeprovidedinthecontrolfiletoconfiguretheSAportionofthe
model.Theadditionalnamelistmoduleisdescribedbelow.Theorderofthevariablesfollows
thetemplateavailablewiththesourcecode.SeveralexamplesoftheSAportionoftheCAMx
runcontrolfileareshowninFigures77ac.
DescriptionofSAControlintheCAMxRunControlFile
&SA_Control  LabelfortheProbingToolnamelistmodulethatconfiguresthe
SAoption;itmustbeginincolumn2
&Flagendinganamelistmodule;itmustbeincolumn2
SA_Summary_Output Logicalflagusedtolimitthespecieswrittentothetracer
concentrationfiletoasubsetoftheSAtracers.Ifsettotrue,
theoutputwillberestrictedtoO3NandO3VforOSAT/APCA,
andthefollowingspeciesforPSAT:PS4,PN3,PN4,PO1,PO2,
PO3,PO4,PO5,PO6,PO7,POH,PPA,PPB,PEC,POA,PFC,PFN,
PCC,PCS,HG0,HG2,PHG
SA_Treat_SULFATE_Class Logicalflagtoturnonthesulfateclassoftracerspecies
SA_Treat_NITRATE_Class Logicalflagtoturnonthenitrateclassoftracerspecies
SA_Treat_SOA_Class LogicalflagtoturnontheSOAclassoftracerspecies
SA_Treat_PRIMARY_Class LogicalflagtoturnontheprimaryPMclassoftracerspecies
SA_Treat_MERCURY_Class Logicalflagtoturnonthemercuryclassoftracerspecies
SA_Treat_OZONE_Class Logicalflagtoturnontheozoneclassoftracerspecies(uses
OSATattributionbydefault)
SA_Use_APCA LogicalflagtouseAPCAattributionratherthanOSAT
(SA_Treat_OZONE_ClassmustbesettoTRUE)
SA_File_Root  Characterrootoutputpath/filename
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 161www.camx.com
SA_Master_Sfc_OutputLogicalflagformastergridsurfaceoutput(TRUE=SA
concentrationfilewillbeoutput,FALSE=SAconcentrationfile
willnotbeoutput)
SA_Nested_Sfc_OutputLogicalflagfornestedgridsurfaceoutput(TRUE=SA
concentrationfilewillbeoutput,FALSE=SAconcentrationfile
willnotbeoutput)
SA_Stratify_BoundaryLogicalflagtostratifyboundarytypes(TRUE=separatetracer
typeswillbeusedfortheNorth,South,East,WestandTop
boundaries,FALSE=asingletracertypewillbeusedforall5
boundaries)
SA_Deposition_OutputLogicalflagtooutputdepositedtracermasstoafile
(TRUE=outputdepositedtracermass,FALSE=donotgeneratea
tracerdepositionoutputfile)
SA_Number_of_Source_Regions Integernumberofsourceregionsforthisrun.Thismustbe
thesameasthenumberofsourceareasdefinedinthe
SA_Source_Area_Mapfile
SA_Number_of_Source_GroupsIntegernumberofemissiongroups(categories)forthisrun.
TogetherwiththeUse_Leftover_Groupflag,this
determinesthenumberofpairedgriddedandpointemission
filesthatmustbesupplied(additionaldetailsbelow)
Use_Leftover_GroupLogicalflagtodefinea“leftover”emissionsgroup(TRUE=
calculatea“leftover”emissionsgroupfromthedifference
betweenthesumoftheemissiongroupfilesandtheregular
CAMxemissionfiles,FALSE=donotcalculatea“leftover”
emissionsgroup)
SA_Receptor_DefinitionsCharacterinputSAreceptordefinitionpath/filename.(Thisisan
optionalfile)
SA_Source_Area_MapCharacterarray(byCAMxgrid)inputSAoriginalsourcearea
definitionpath/filenameuniquelyassigningeachgridcelltoa
singlesourceregion(requiredformastergrid,optionalfor
nestedgrids)
SA_Use_Partial_SourceMapLogicalflagforfractional(orpartial)sourceregion(orarea)
maps(TRUE=usefractionalmaps,FALSE=useoriginalsource
areadefinitiononly)
Partial_Source_Area_MapCharacterarray(bySAemissionsgroupandCAMxgrid)inputSA
fractionalsourceareadefinitionpath/filenameassigningeach
gridcelltomultiplesourceregionsbyemissiongroup(optional)
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 162www.camx.com
SA_PT_OverrideLogicalflagtoallowpointsourceoverride(TRUE=lookforand
usethepointsourceoverrideflagsinsectorspecificpoint
sourcefiles,FALSE=ignorepointsourceoverrideflags)
SA_Master_RestartCharacterinputmastergridSArestartpath/filename(ignoredif
Restart=FALSE)
SA_Nested_RestartCharacterinputnestedgridSArestartpath/filename(ignoredif
Restart=FALSEorNumber_of_Grids=1)
SA_Points_GroupCharacterarray(bysourcegroup)inputSAelevatedpoint
sourceemissionspath/filename(optional,ignoredif
Point_Emissions=FALSE)
SA_Emiss_Group_GridCharacterarray(bysourcegroup,byCAMxgrid)inputSA
griddedemissionspath/filename(optional,ignoredif
Gridded_Emissions=FALSE)
Eachpartialsourceareamaptobeusedintherunmustbelistedbysourcegroupandgrid:e.g.,
Partial_Source_Area_Map(3,2)referstoSAemissionsgroup3andgrid2.Thesemapfilesmust
belistedinthesameorderasthegroupemissioninputfiles(i.e.,themapassignedtocategory
1mustbeconsistentwiththeemissionsassignedtocategory1).
7.3.2SpecifyingEmissionGroups
SAcanapportionozone,PMandprecursorconcentrationsamongseveralemissioncategories
(or“groups”).Toachievethis,theemissionsforeachgroupmustbesuppliedinseparate
emissionfiles,bothforlowlevel(gridded)emissionsforthemasterandeachnestedgrid,and
forelevatedpointsources.TheadditionalemissionfilesmustbeintheCAMxgriddedand
pointemissionfileformats,asdescribedinSection3.Ifacategorydoesnotincludepoint
sources(e.g.biogenics),thepointsourcefilenameforthegroupcanbeleftblank.Ifacategory
hasnogriddedemissions,thegriddedfilenameforthegroupcanbeleftblankforallgrids.
APCArequiresatleasttwoemissiongroups,andthefirstgroupmustbebiogenicemissions.
Forexample,inthecasewhereemissionsaretrackedbythreegroups,threesetsofemission
filesshouldbesuppliedthatwhensummedequalthetotalemissionsintheregularCAMx
emissionfilessuppliedtothecoremodel.CAMxalsoallowsforanalternativeoption:twosets
offilescouldbesuppliedandthethirdgroupcanbecalculatedfromthe“leftover”emissions
(i.e.,thedifferencebetweentheregularCAMxemissionsandthetwospecifiedemission
groups).TheleftoveroptionissetaccordingtotheinputflagUse_Leftover_Group”.If
theleftoveroptionisselected,themodelverifiesthattheleftovergroupisnottoosmallto
calculatewithinthenumericalprecisionofthecomputer(thisalsotrapscaseswheretheflag
wassetinerror).Iftheleftoveroptionisnotselected,themodelverifiesthatthetotal
emissionsforthegroupssuppliedareequaltotheregularmodelemissions,i.e.,thataleftover
groupisnotneeded.Inbothcases,ifappropriateconditionsarenotmet,themodelstopswith
adescriptiveerrormessage.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 163www.camx.com
&SA_Control
SA_File_Root = './OSAT_output/CAMx.OSAT.020603',
SA_Master_Sfc_Output = .true.,
SA_Nested_Sfc_Output = .true.,
SA_Summary_Output = .true.,
SA_Stratify_Boundary = .false.,
SA_Deposition_Output = .false.,
SA_Number_of_Source_Regions = 19,
SA_Number_of_Source_Groups = 1,
Use_Leftover_Group = .false.,
SA_Treat_SULFATE_Class = .false.,
SA_Treat_NITRATE_Class = .false.,
SA_Treat_SOA_Class = .false.,
SA_Treat_PRIMARY_Class = .false.,
SA_Treat_MERCURY_Class = .false.,
SA_Treat_OZONE_Class = .true.,
SA_Use_APCA = .false.,
SA_Receptor_Definitions = './OSAT_input/receptor.cities ',
SA_Source_Area_Map(1) = './OSAT_input/OSAT.source.area.map',
SA_Source_Area_Map(2) = ' ',
SA_Use_Partial_SourceMap = .false.,
Partial_Source_Area_Map(1,1) = ' ', ! Map for SA group 1, grid 1
Partial_Source_Area_Map(1,2) = ' ', ! Map for SA group 1, grid 2
SA_PT_Override = .false.,
SA_Master_Restart = ' ',
SA_Nested_Restart = ' ',
SA_Points_Group(1) = ' ',
SA_Emiss_Group_Grid(1,1) = ' ',
SA_Emiss_Group_Grid(1,2) = ' ',
&
Figure77a.AnexampleofSAinputrecordsintheCAMxruncontrolfile.Theoptionsforthis
OSATrunareasfollows:thisisatwogridrun,masterandnestedgridsurfaceconcentrations
arewrittentofile,asingletracertypeistobeusedforallboundaries,19sourceregions,and
oneemissiongroup(i.e.,zeroadditionalemissionfilesandnoleftovergroup).Thisisthefirst
dayofthesimulation(i.e.,restartisfalse),sonoOSATrestartfilesaresupplied.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 164www.camx.com
&SA_Control
SA_File_Root = './OSAT_output/CAMx.OSAT.020604',
SA_Master_Sfc_Output = .true.,
SA_Nested_Sfc_Output = .true.,
SA_Summary_Output = .true.,
SA_Stratify_Boundary = .false.,
SA_Deposition_Output = .false.,
SA_Number_of_Source_Regions = 19,
SA_Number_of_Source_Groups = 3,
Use_Leftover_Group = .true.,
SA_Treat_SULFATE_Class = .false.,
SA_Treat_NITRATE_Class = .false.,
SA_Treat_SOA_Class = .false.,
SA_Treat_PRIMARY_Class = .false.,
SA_Treat_MERCURY_Class = .false.,
SA_Treat_OZONE_Class = .true.,
SA_Use_APCA = .false.,
SA_Receptor_Definitions = './OSAT_input/receptor.cities ',
SA_Source_Area_Map(1) = './OSAT_input/OSAT.source.area.map',
SA_Source_Area_Map(2) = ' ',
SA_Use_Partial_SourceMap = .false.,
Partial_Source_Area_Map(1,1) = ' ', ! Map for SA group 1, grid 1
Partial_Source_Area_Map(1,2) = ' ', ! Map for SA group 1, grid 2
SA_PT_Override = .false.,
SA_Master_Restart = './OSAT_output/CAMx.OSAT.020603.sa.inst',
SA_Nested_Restart = './OSAT_output/CAMx.OSAT.020603.sa.finst',
SA_Points_Group(1) = ' ',
SA_Points_Group(2) = './OSAT_input/utils.020604',
SA_Emiss_Group_Grid(1,1) = './OSAT_input/bio.grd1.020604',
SA_Emiss_Group_Grid(1,2) = './OSAT_input/bio.grd2.020604',
SA_Emiss_Group_Grid(2,1) = './OSAT_input/util.grd1.020604',
SA_Emiss_Group_Grid(2,2) = './OSAT_input/util.grd2.020604',
&
Figure77b.AsinFigure77a,butinthiscasetherunisacontinuationdayofarunwith
threeemissiongroups.Thethreeemissiongroupsaredefinedbysupplyingextraemission
filesforpointandareasourcesforeachgrid(emissiongroups1and2),andsettingthe
“Use_Leftover_Group”flagtoTRUEsothatthemodelcalculatesthethirdgroupinternally.
Thepointsourcegroup1filenameisblankbecausegroup1isacategorywithnopointsource
emissions(e.g.,biogenics).
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 165www.camx.com
&SA_Control
SA_File_Root = './OSAT_output/CAMx.APCA.020604',
SA_Master_Sfc_Output = .true.,
SA_Nested_Sfc_Output = .true.,
SA_Summary_Output = .true.,
SA_Stratify_Boundary = .false.,
SA_Deposition_Output = .false.,
SA_Number_of_Source_Regions = 19,
SA_Number_of_Source_Groups = 3,
Use_Leftover_Group = .false.,
SA_Treat_SULFATE_Class = .true.,
SA_Treat_NITRATE_Class = .true.,
SA_Treat_SOA_Class = .false.,
SA_Treat_PRIMARY_Class = .false.,
SA_Treat_MERCURY_Class = .false.,
SA_Treat_OZONE_Class = .true.,
SA_Use_APCA = .true.,
SA_Receptor_Definitions = './OSAT_input/receptor.cities ',
SA_Source_Area_Map(1) = './OSAT_input/OSAT.source.area.map',
SA_Source_Area_Map(2) = ' ',
SA_Use_Partial_SourceMap = .false.,
Partial_Source_Area_Map(1,1) = ' ', ! Map for SA group 1, grid 1
Partial_Source_Area_Map(1,2) = ' ', ! Map for SA group 1, grid 2
SA_PT_Override = .false.,
SA_Master_Restart = './OSAT_output/CAMx.APCA.020603.sa.inst',
SA_Nested_Restart = './OSAT_output/CAMx.APCA.020603.sa.finst',
SA_Points_Group(1) = ' ',
SA_Points_Group(2) = './OSAT_input/utils.020604',
SA_Points_Group(2) = './OSAT_input/other.020604',
SA_Emiss_Group_Grid(1,1) = './OSAT_input/bio.grd1.020604',
SA_Emiss_Group_Grid(1,2) = './OSAT_input/bio.grd2.020604',
SA_Emiss_Group_Grid(2,1) = './OSAT_input/util.grd1.020604',
SA_Emiss_Group_Grid(2,2) = './OSAT_input/util.grd2.020604',
SA_Emiss_Group_Grid(3,1) = './OSAT_input/othr.grd1.020604',
SA_Emiss_Group_Grid(3,2) = './OSAT_input/othr.grd2.020604',
&
Figure77c.ThisfigurefollowsfromFigure77b:itisacontinuationdayofa2gridrunwith
threeemissiongroups,andallthreeemissiongroupsaredefinedexplicitlybysupplyingextra
emissionfiles;therefore,the“Use_Leftover_Group”flagissettoFALSE.Thepointsource
group1filenameisblankbecausegroup1isacategorywithnopointsourceemissions(e.g.,
biogenics).APCAisusedtoattributeozonesources,sobiogenicemissionsMUSTbepresent
asgroup1.PSATwilltracePMsulfateandnitratespecies.
March2016CAMxUser’sGuideVersion6.3
7.SourceApportionment
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 166www.camx.com
Thenumberofemissionfilesthatneedtobesuppliedfordifferentmodelconfigurationsis
summarizedinTable71;thetablealsoshowshowtheemissionsgroupsarenumbered,which
isreflectedinthetracerspeciesnames(definedbelow).
Table71.Numbersofemissionfilesets(i.e.,griddedfilesandpointsourcefile)neededfor
differentmodelconfigurations.APCArequiresatleasttwoemissiongroups,andthefirst
groupmustbebiogenicemissions.
Numberof
EmissionGroups
Use
LeftoverGroup
NumberofEmission
FileSetsNeeded
NumberingofEmissionGroups
andTracerSpecies
n=1NotApplicable 0 0
n>1Falsen1,2,3,...n
n>1Truen11,2,3,...n
Whenspecifyingpointsourcefilestoresolvesourcecategories,thelistofpointsourcesoneach
filemustbeidentical(i.e.,samenumberofsources,sameorder)totheregularmodelpoint
sourcefile.Thisformalrestrictionisnecessarytoensurethatpointsourcesarecorrectlycross
referencedwithinCAMx.Thus,apointsourcefileforaspecificsourcegroupmayneedto
containrecordsforsourcesthatarenotinthegroup:theserecordsshouldhavezero
emissions.
7.3.3SourceAreaMapping
SAcanapportionozone,PMandprecursorconcentrationsamongseveralgeographicregions
withinthemodelingdomain,asshowninFigure71.SArequiresadigitalmapofthemodeling
gridthatdefineshowtracersareallocatedspatiallythis“sourceareamap”fileassignseach
gridcelltooneormoregeographicsourceregions.Asourceareamapmustbedefinedforthe
mastergridandoptionallyanynestedgrids.Thesourceareamapformatsareidenticalamong
allgrids,butmapsfornestedgridsmustincludetheboundary(“buffer”)rowsandcolumns.
Thesourceregionsdefinedoneachnesttakeprecedenceoverthosedefinedforthemaster
grid.Ifasourceareamapisnotprovidedforaspecificnestthenthesourceregiondefinition
willbedefinedbythesourceareamapfortheparentgrid.
Therearetwowaystodefinesourceareamaps.Thefirst(original)approachistouniquely
assigntheentiretyofeachgridcelltoasinglegeographicregionwithwhichtoapportionall
sourcecategoriespresentinthatgridcell.Thesecondoptionallowsforthefractional
allocationofeachgridcelltomultipleregions,forexample,incaseswhereseveralgeopolitical
boundariesintersectwithinasinglecell.Furthermore,separatefractionalareamapsmaybe
developedthatuniquelydefinesourceregiondistributionsforeachemissioncategorytobe
trackedbySA.TheoriginalsourceareamapsarerequiredtorunSA,butcanbesupercededby
theoptionalfractionalsourceareamaps.TheoriginalmapsprovidethedefaultSAregion
definitionincaseafractionalregionmapfileisnotprovidedforoneormoresourcecategories.
IfnofractionalareamapsareprovidedtoCAMx,thentheentireSAtreatmentdefaultsbackto
theoriginalareamapdefinition.CAMxincludesreportsintheoutputdiagnosticfiletoallow
theusertoreviewtheSAregionconfiguration.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 167www.camx.com
31 31 31 31 18 18 18 18 18 18 18 18 18 18 37 37 37 37 17 17 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 17 17 17 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 14 14 14 14 14 14 14 40
31 31 31 31 31 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 22 14 14 14 14 14 14 14 14
31 31 31 31 31 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 40 24 24 24 24 34 34 34 34 22 14 14 14 14 14 14 14 14
31 31 31 31 31 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 40 24 24 24 24 24 34 34 34 34 22 14 14 14 14 14 14 14 14
31 31 31 31 31 18 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 24 24 24 24 24 24 34 34 34 22 22 14 14 14 14 14 14 38 38
31 31 31 31 31 18 18 18 18 18 18 18 18 18 18 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 40 40 40 40 40 24 24 24 24 24 24 34 34 34 22 22 14 14 14 14 14 38 38 38
31 31 31 31 31 10 10 10 10 10 10 10 10 10 10 37 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 24 24 24 24 24 24 24 24 24 24 24 34 34 22 22 22 14 14 38 38 38 38 38 38
31 31 31 31 31 10 10 10 10 10 10 10 10 10 10 10 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 24 24 24 24 24 24 24 24 24 24 24 34 34 22 22 22 14 14 38 38 38 38 38 38
21 21 21 31 31 10 10 10 10 10 10 10 10 10 10 10 37 37 37 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 40 40 24 24 24 24 24 24 24 24 24 24 24 24 34 22 22 22 16 16 38 38 38 38 38 38
21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 10 10 8 8 37 37 37 37 37 17 17 17 17 17 17 17 17 17 40 40 40 40 40 24 24 24 24 24 24 24 24 24 24 24 24 24 16 16 16 16 16 16 16 38 38 38 38 38 38
21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 8 17 17 17 17 17 17 17 17 17 40 26 26 26 28 24 24 24 24 24 24 24 24 24 24 24 24 24 16 16 16 16 16 16 16 38 38 38 38 38 38
21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 9 9 17 17 17 17 17 17 17 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 24 24 24 3 3 3 29 29 16 16 16 38 38 38 38 38
21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 24 24 24 3 3 3 29 29 16 16 16 38 38 38 38 38
21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 23 24 24 3 3 24 24 29 16 16 16 38 38 38 38 38
21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 23 23 24 24 24 24 24 38 38 38 38 38 38 38 38 38
21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 8 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 23 23 24 24 38 38 38 38 38 38 38 38 38 38 38 38
21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 8 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 23 23 23 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 8 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 36 28 28 28 28 28 28 28 28 28 4 28 23 23 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 8 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 26 36 36 36 15 36 36 15 15 15 15 4 23 23 23 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 8 8 8 8 8 8 9 9 9 9 9 26 26 26 26 26 26 26 36 36 36 36 36 36 35 35 15 15 15 4 23 23 23 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 8 8 8 8 8 9 9 9 9 9 12 12 26 26 26 26 36 36 36 36 36 36 35 35 35 15 15 15 15 4 23 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 8 8 8 8 8 9 9 9 9 12 12 12 12 12 12 36 36 36 36 36 36 35 35 35 35 15 15 15 15 4 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 8 8 8 8 9 9 9 9 12 12 12 12 12 12 12 36 36 36 36 36 35 35 35 35 35 35 15 15 15 15 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 8 8 8 8 12 12 12 12 12 12 12 12 12 12 12 36 36 36 36 36 35 35 35 35 35 35 35 35 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 20 8 8 8 12 12 12 12 12 12 12 12 12 12 12 12 36 36 36 35 35 35 35 35 35 35 35 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
11 11 11 11 11 11 11 11 11 20 20 20 20 20 20 20 20 20 20 8 8 12 12 12 12 12 12 12 12 12 12 12 12 35 35 35 35 35 35 35 35 35 35 35 35 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 20 20 20 20 20 20 20 20 20 20 20 12 12 12 12 12 12 12 12 12 12 12 12 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 20 20 20 20 20 20 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 2 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 2 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 2 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 32 32 32 32 32 32 32 32 32 32 32 32 32 25 25 25 30 30 25 25 25 25 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 19 19 19 19 19 1 1 1 1 1 7 7 7 7 30 30 30 30 30 30 25 25 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 2 19 19 19 19 19 1 1 1 1 1 7 7 7 7 7 30 30 30 30 30 30 30 25 25 25 25 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
27 27 27 27 27 27 27 27 27 2 2 2 2 2 2 2 19 19 19 19 19 19 1 1 1 1 1 7 7 7 7 7 7 30 30 30 30 30 30 30 25 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 27 33 33 27 2 2 2 2 2 2 2 19 19 19 19 19 19 1 1 1 1 1 7 7 7 7 7 7 30 30 30 30 30 30 30 30 25 25 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 2 2 2 2 2 2 19 19 19 19 19 1 1 1 1 1 1 7 7 7 7 7 7 7 30 30 30 30 30 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 2 2 2 2 2 2 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 30 30 30 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 30 30 30 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 30 30 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 30 30 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 19 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 19 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 33 13 13 13 13 19 19 19 19 19 19 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 13 19 19 19 1 1 6 6 6 6 6 7 7 7 7 7 7 7 7 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 13 13 19 19 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 13 13 19 19 1 1 6 39 6 6 6 6 6 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 13 13 13 13 13 13 13 13 13 39 39 39 39 39 39 6 6 6 6 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 33 13 39 13 13 13 13 13 13 13 13 39 39 39 39 39 39 39 6 6 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 33 39 39 39 39 39 39 13 13 13 13 13 13 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 13 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
33 33 33 33 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 6 6 6 6 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
Figure78.ExampleoftheoriginalsourceareamapfileforthedomainandsourceareasshowninFigure71.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 168www.camx.com
TheoriginalSAmapformatissimple:anarrayof3digitintegers(i3)spanningtheentiretyofa
particularCAMxgrid.Figure78showsthesourceareamappingfileforthesinglegrid
correspondingtoFigure71.SincetheCAMxdomaininFigure71has63rowsand64columns
ofcells,thefileshowninFigure78has63lineswith64numbersoneachline.Thefirst
numberinthetopleftcorneralwayscorrespondstothenorthwestcornerofthedomain.This
fileistypicallygeneratedusingGISsoftwarebyoverlayingthemodelinggridontogeopolitical
mapsandusingthedominantcoverageineachgridcellasitssourceregionassignment.
Tofacilitatemultipleintersectingregionswithineachgridcell,afractionalareamapforasingle
gridmayincludemultiple“panels”,wherethetotalnumberofpanelsisdeterminedbythe
maximumnumberofregionoverlapsfoundamongallgridcells.Forexample,ifaparticular
gridcellcontainsagridwidemaximumoffouroverlappingregions,thenthefractionalmap
containsfourpanels,eachlistingoneofthefourregionsanditsfractionalcoverageinthatcell.
ThefractionalSAmapfilehasthefollowingformat:
Loopovernumberofpanels
/SRCMAPnn-mm/Headerkeyword,wherennissource
category/groupID,mmispanelID
 Loopfromnygridrowsto1
(regn(i,j),frc(i,j),i=1,nx)Loopovernxgridcolumns,
500(i3,1x,f5.1)
Endloopoverrows
Endloopoverpanels
/END/Endoffilekeyword
Theintegervariablearrayregnistheregionindexthatexistsincell(i,j)andtherealvariable
arrayfrcisthefraction(percent)ofcell(i,j)coveredbythatregion.Fornonzerocell
fractions,bothregnandfrcmustbelisted,otherwiseregnisshownas0andfrcisblank
tomaximizevisualclarityofthefile.Thetotalcoverageamongallregionsineachgridcell
equals100.0%whensummedoverallpanels.AnexampleisshowninFigure79forasmall
gridof10x10cells.
Theoriginalsourceareamap,andpossiblyeventhefractionalmap,maynotadequatelyresolve
theregiontowhichcertainpointsourcesshouldbeassigned.Toprovidefinercontrolofpoint
sourceassignmentstogeographicareas,theregionindexcanbespecifiedforanypointsource
usingthekcellvariableinthepointsourcefile(seefiledescriptioninSection3).Thisfeature
isreferredtoas“pointsourceoverride.”
7.3.3.1GeneratingFractionalAreaMapsFromSMOKEReports
AFortrantoolcalledREGNMAPhasbeendevelopedtosupportthedevelopmentoffractional
areamapsusinginformationderivedfromtheSparseMatrixOperatorKernelEmissions
(SMOKE)processingsystem.SMOKEcanbeconfiguredtooutputinformationto“reportfiles”
thatlistthespatialallocationofcountylevelemissionstoaparticularmodelinggridbycriteria
pollutant(NOx,VOC,SOx,andPM).Aseparatefractionalareamapcanbedevelopedforeach
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 169www.camx.com
Figure79.Examplefractionalareamapfileforasmall(10x10)grid.Thisfileisforsource
category/group#3andincludes2mappanels.Thegridcoverssourceregion#5and#6and
theseregionsoverlapinthemiddleofthedomain.Panel2showsjusttheremainingoverlap
informationforregion#6.
sourcesectororgroupofsectorsdependingonhowtheuserrunsSMOKEandconfiguresthe
listofsectorstobetrackedforSA(e.g.,considerspatialdifferencesbetweenurbanarea
sourcesandagriculturalnonroadsources).SMOKEspatialallocationreportsmustbeinvoked
inordertoutilizetheREGNMAPprogramtodevelopfractionalareamapsforCAMx.
Mobileemissionsarenotspatiallyallocatedinthesamewayasnonroadandstationary
sources,soSMOKEreportsarenotavailablefortheonroadsectorifSMOKEMOVESisused.
Therefore,theonroadsectormustcontinuetobetrackedinSAusingtheoriginalsourcearea
map.Additionally,SMOKEdoesnotallocateelevatedpointsourcestothemodelinggridlike
surfacecountylevelsources,andsoSMOKEspatialallocationreportsarenotavailableforpoint
sources.AllcategoryspecificpointsourcefilestobetrackedbySAareassignedtotheoriginal
regionmapdefinitionbydefault,exceptforthoseindividualpointsourcesflaggedforsource
regionoverride(seeSection3).
REGNMAPreadsSMOKEspatialallocationreportsforaspecificmodelinggridandsource
category(orgroupofcategories),extractsemissionsdatabygridcellandstate/countyFederal
InformationProcessingStandards(FIPS)code,andgeneratesafractionalareamapfileforthat
gridandsourcecategory/group.ThelistofSAregionstoprocessareexternallydefinedasa
countyorgroupofcounties,astateorgroupofstates,orallotherundefinedareas.REGNMAP
providesanoptiontoselectamongthecriteriapollutantsNOx,VOC,SOx,orPM2.5asthebasis
todefinethefractionalgridcellareasincasethespecificsourcecategory/grouptobe
processedisuniquelycharacterizedbyoneofthesespecies(e.g.,NOxformobilesources,SOx
forpowerplants).Alternatively,theusermayselect“All”criteriapollutants,inwhichcasethe
/SRCMAP03-01/
5 100.0 5 100.0 5 100.0 5 100.0 5 25.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 25.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 30.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 35.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 50.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 60.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 80.0 6 100.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 100.0 5 20.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 100.0 5 50.0 6 100.0 6 100.0 6 100.0 6 100.0
5 100.0 5 100.0 5 100.0 5 100.0 5 100.0 5 60.0 6 100.0 6 100.0 6 100.0 6 100.0
/SRCMAP03-02/
0 0 0 0 6 75.0 0 0 0 0 0
0 0 0 0 6 75.0 0 0 0 0 0
0 0 0 0 6 60.0 0 0 0 0 0
0 0 0 0 6 65.0 0 0 0 0 0
0 0 0 0 6 50.0 0 0 0 0 0
0 0 0 0 6 40.0 0 0 0 0 0
0 0 0 0 6 20.0 0 0 0 0 0
0 0 0 0 0 6 80.0 0 0 0 0
0 0 0 0 0 6 50.0 0 0 0 0
0 0 0 0 0 6 40.0 0 0 0 0
/END/
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 170www.camx.com
fractionalallocationisbasedonthesumofallemissionsreportedpergridcellforthatsource
category/group.AdditionalinformationonhowtorunREGNMAPisprovidedwiththe
program.
7.3.4ReceptorDefinition
Tracerconcentrationscanbeoptionallyoutputtoatextfileforselectedreceptorlocationsat
themodel’soutputfrequency(usually1hour).Thereceptorsforeachmodelrunaredefinedin
the“receptordefinition”inputfile.Threetypesofreceptorsaresupported:
POINT apointspecifiedintheCAMxprojectioncoordinatesystem.
Concentrationsatthepointaredeterminedbybilinear
interpolationofthesurroundingfoursurfacegridcells.
SINGLECELLasinglesurfacegridcellidentifiedbygridcellindex.
CELLAVERAGEagroupofsurfacegridcellsidentifiedbyarangeofgridindices
thatareaveragedtogethertoprovidemulticellaveragetracer
concentrations.
WALLOFCELLSagroupofgridcellsidentifiedbyarangeofgridandlayerindices
thatdefineawall(i.e.,afluxplane).
Forthereceptortypesthataredefinedbygridcellitisnecessarytospecifythegridcontaining
thereceptoronthereceptordefinitionrecord.Gridnumbersaredefinedusingtheinternal
CAMxgridordering.ThegridnumberingasdefinedbyCAMxisshowninatableinthe.diag
file.Eachreceptorcanbeidentifiedbya10charactername.Theformatsforspecifyingeach
receptortypearegiveninTable72.Anexamplereceptorfileisshownbelow:
POINT City 1 1024.0 -272.0
SINGLE CELL Cell 1 1 45 18
CELL AVERAGE Region 10 2 8
31 19
32 19
33 19
34 19
31 18
32 18
33 18
34 18
WALL OF CELLS Boundary1 2 10 20
18 18
1 5
7.3.5OutputFileFormats
SAwritesseveraloutputfilesthatareintheCAMxFortranbinaryformat,asdescribedin
Section3.Theseincludethemasterandnestedgridtracerinstantaneousconcentrationfiles
(.sa.instand.sa.finst),thegridspecificsurfacetraceraverageconcentrationfile
(.sa.grdnn),andthegridspecificsurfacedepositedmassfile(.sa.depn.grdnn).In
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 171www.camx.com
Table72.Formatforthereceptordefinitionfile.
ReceptorType Line Columns Data
POIN
T
1 115 Theword“POINT”
12130 Receptorname
13140 Xcoordinate
14150 Ycoordinate
SINGLECELL1 115 Theword“SINGLECELL”
12130 Receptorname
13140 GridNumber
14150 Xcellnumber
15160 Ycellnumber
CELLAVERAGE1 115 Thewords“CELLAVERAGE”
12130 Receptorname
13140 Gridnumber
14150 Thenumberofcellstoaverage(M)
2M 110 Xcellnumber
2M1120 Ycellnumber
WALLOFCELLS1 115 Thewords“WALLOFCELLS”
12130 Receptorname
13140 Gridnumber
14150 Xcellbegin
15160 Xcellend
24150 Ycellbegin
25160 Ycellend
34150 Zcellbegin
35160 Zcellend
addition,SAwritesouttracerconcentrationsforselectedreceptorlocationstoantextfile
(.sa.receptor).Thenamingconventionsfortracerspeciesandtheformatofthereceptor
concentrationfilearediscussedbelow.
7.3.5.1TracerSpeciesNames
Thenamesoftracerspeciesuniquelyidentifytheinformationcarriedbyeachspeciesand
togetheridentifytheSAconfiguration.Speciesnameshavelessthantencharacters,consistent
withtheCAMxconvention.Thenamingconventionsareasfollows:
EmissionSourcesSSSeeerrr
where:
SSSSpeciestype,e.g.,NOX,VOC,O3V,O3N,PSO4,etc.
eeeEmissionsgroup:
Singlegroup,always000
Multiplegroups,001,002,etc.
rrrRegiontracerreleasedfrom,001,002,003,etc.

Initial/Boundary SSSeeerrr
where:
SSSSpeciestype,e.g.,NOX,VOC,O3V,O3N,PSO4,etc.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 172www.camx.com
eeeInitialConcentrations:always000
BoundaryConcentrationsnotstratifiedbyboundary:always000
BoundaryConcentrationsstratifiedbyboundary:WST,EST,STH,NTH,
TOPindicatingboundaryoforigin
rrrICforInitialConcentrations,BCforBoundaryConcentrations
Examples:NOX000015,VOC002015,O3V000IC,O3NTOPBC
7.3.5.2ReceptorConcentrationFile
Tracerconcentrationsatuserspecifiedreceptorlocationsareoutputtothe“receptor
concentration”file.Thefileisincommadelimitedtextformatsuitableforimportingintoa
spreadsheet.AnexampleoutputfileisshowninFigure710.Twoheaderlinesatthetopof
thefileidentifythemodelversionandthedatetherunwasperformed.Next,twolinesidentify
thetimeperiodcoveredbythefileandtheaveraginginterval(generallyonehour,determined
bytheCAMxsimulationcontrolfile).Next,threelinesdefinetheSAconfiguration,followedby
thenumbersoftracerspeciesthatresultfromthisconfiguration.Thenamesofeachtracer
speciesarelistedbytracertype:theorderinwhichspeciesarelistedhereisthesameasthe
orderinwhichtracerconcentrationsaregivenlaterinthefile.
Thetracerspeciesnamesarefollowedbythenumberofreceptorsandreceptornamesas
specifiedinthe“receptordefinition”file.Thetracerconcentrationsarereportedinblockswith
adateandtimestampattheheadofeachblock.Withineachblock,receptorsarereportedin
numericalorder.Foreachreceptor,therearedataforthetracerspeciesidentifiedatthe
heading“TracerNames”.AllvaluesareinCAMxunitsofppmforgasesandg/m3forPM.
7.3.6Postprocessing
Thetracerconcentrationsinthegriddedsurfaceconcentrationfilescanbedisplayedusingany
postprocessingsoftwarenormallyusedfordisplayingCAMxaveragefileoutputformats.
Thereceptorconcentrationfilecontainsinformationforallreceptorsandallhourswithinthe
modelrunthatcreatedthefile.Itislefttotheusertodeveloppostprocessingtoolstoanalyze
theinformationcontainedinthisfile.
7.4StepsInDevelopingInputsAndRunningSA
BelowisasimplemethodologicallistofstepstofollowinsettingupandrunningSA.The
processissimilaramongtheOSAT/APCA,PSAT,andDDMProbingTools.
1) Definethesourcegroupsandregionsthatyouwishtotrack.Keepinmindthatmemory
resourcesincreasedramaticallyasthenumberoftracersgrows.ProbingTool
applicationswithlargenumbersoftracers,tracerclasses,nestedgridsorgridcellsmay
exceedavailablememory.
2) Buildasourceregionmap(Figure78)thatdefinesthespatialallocationoftracer
emissions.Forsmalldomainsorsmallnumberofregions,thiscanbedonebyhand.We
suggestusingGISsoftwaretodevelopcomplexsourceregionmapsonlargegrids.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 173www.camx.com
CAMx,CAMx 6.30 Test Problem -- Mech6 CF CB05 SA.OMP,Source Apportionment, SA 160408,
Thu Mar 31 13:18:53 2016
File Duration , 02154, 0.00, 02154, 24.00,
Average Interval , 1.0000
Number of timing periods , 0
Number of source areas , 4
Number of emission groupings , 4
Number of tracer species , 180
Number of VOC species , 18
Number of O3N species , 18
Number of O3V species , 18
Number of OON species , 18
Number of OOV species , 18
Number of NIT species , 18
Number of RGN species , 18
Number of TPN species , 18
Number of NTR species , 18
Number of HN3 species , 18
Number of INERT TIME species , 0
Number of DECAY TIME species , 0
Tracer Names,
VOC000IC ,VOC000BC,VOC001001,VOC001002,VOC001003,VOC001004,VOC002001,…
O3N000IC ,O3N000BC,O3N001001,O3N001002,O3N001003,O3N001004,O3N002001,…
O3V000IC ,O3V000BC,O3V001001,O3V001002,O3V001003,O3V001004,O3V002001,…
(List continues for remaining tracer species names)
Number of receptors , 4
No, Name, Type, Grid#, Xloc, Yloc,
1, City 1 , 0, , 1024.0, -272.0,
2, Cell 1 , 1, 1, 45, 18,
3, Region 10, 8, 2, 31, 19,
32, 19,
33, 19,
34, 19,
31, 18,
32, 18,
33, 18,
34, 18,
4, Boundary1, 3, 2, 10, 20,
18, 18,
1, 5,
Time Varying Tracer Data,
Data for Period, 02154, 0.00, 02154, 1.00,
Receptor, 1,
1.3265E-02, 1.3544E-09, 1.0000E-16, 1.0974E-15, 1.0000E-16, 1.0000E-16,…
1.2237E-01, 3.3869E-08, 1.0000E-16, 1.6165E-14, 1.0000E-16, 1.0000E-16,…
8.7304E-02, 1.1926E-08, 1.0000E-16, 1.0000E-16, 1.0000E-16, 1.0000E-16,…
9.0300E-02, 1.5269E-08, 1.0188E-16, 2.6997E-15, 1.0213E-16, 1.0162E-16,…
1.0036E-16, 4.0640E-15, 1.0036E-16, 1.0036E-16, 1.0036E-16, 1.0029E-16,…
1.0000E-16, 3.7563E-15, 1.0000E-16, 1.0000E-16, 1.0000E-16, 1.0000E-16,…
Receptor, 2,
(File continues with data for remaining receptors and hours)
Figure710.Examplereceptorconcentrationfile.Linesendingwith“…”aretruncatedtofit
thepage,andthefilewouldcontinuewithdataforadditionalreceptorsandhoursinthe
sameformat.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 174www.camx.com
3) Processtheemissionsinventoryintotheseparatesourcegroupfilesthatyouwantto
track(e.g.,mobile,area,point,biogenic,etc.).
a) Considerationofpotentialsourceapportionmentorsensitivityapplicationspriorto
anyemissionsprocessingcanbeverybeneficialsothatfilesbygroupareavailable
forlateruse.
b) Elevatedpointsourceswillautomaticallybeassignedtothesourceregioninwhich
theyreside.However,youmayoverridetheregiontowhicheachindividualpoint
sourceisassigned(seethedefinitionofkcellinSection3,ElevatedPointSource
File).Apointsourceregiondoesnotneedtobedefinedinthesourceregionmap,
e.g.,youcouldhaveamapwithtworegionsthatsplitthedomaininhalf,witha
thirdregionassignedarbitrarilytorepresentelevatedpointsourcesonly.
4) EdittheCAMxcontrolnamelistfile(Section2).
a) SettheProbing_Toolvariableto“SA”;thiswillactivatethe&SA_Control
namelistmodule.
b) Editoraddthe&SA_Controlnamelistmodule(describedearlier).Providethe
requiredinformation,including:
outputpaths
whethertostratifyboundaryconditions
flagstoturnonspecificozoneorPMclasses
numberofsourceregions
numberofsourcegroups
whethertousetheleftovergroupoption
receptordefinitions
listofinputemissionfilesbygroup.
c) NotethatAPCArequiresthatthebiogenicemissionfilesforeachgridarelistedfirst.
SeveralexamplesareshowninFigure77.
5) ConfiguretheCAMxsourcecodetodefinethenumberoftracers,andbuildan
executable.ThiswillensurethatyouhavesufficientmemoryfortheProbingTool
application.
a) EditthefileIncludes/camx.prm
b) ChangetheparameterMXTRSP,followingtheinstructionsprovidedinthefile.
CAMxisdistributedwithMXTRSP=1tominimizememoryrequirementsfor
standardapplicationsofthemodel.IfyourunSAwithaninsufficientvalue,the
modelwillstopandtellyoutherequiredvalueofMXTRSPforyourapplication.
c) ExecutetheCAMxMakefiletobuildanexecutableprogram(Section2).
6) RunCAMxandreviewthediagnosticoutputfilestoensurethatthemodeliscorrectly
interpretingandrunningtheProbingToolconfigurationthatyouhavespecified.Ensure
thatCAMxisgeneratingtheproperoutputfilesthatyouareexpecting.Reviewthe
tableofemissionsbysourcegroupandregion.
March2016CAMxUser’sGuideVersion6.3
7.OzoneSourceApportionmentTechnology
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 175www.camx.com
7) Reviewgriddedtracerfieldsusingcommonlyavailableplottingprograms.Utilitiessuch
asPAVEorVerdiwillreadProbingToolfilesdirectly.Useofanyothersoftwaremay
requirespecializedreformattingprocedures.
8) YoumaypostprocessandanalyzeSAreceptorfilesusingyourownspreadsheetor
databasesoftware.
9) ProbingToolgriddedtraceroutputfilesarewritteninthesameFortranbinaryformatas
theregularCAMxconcentrationoutputfiles.Youcanpostprocessgriddedoutputfields
usinganysoftwarethatreadsCAMxfiles,oryoucanadaptthoseprogramsorbuildyour
ownsoftwaretogeneratespecializedanalysisandgraphicalproducts.
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 176www.camx.com
8.DECOUPLEDDIRECTMETHODFORSENSITIVITYANALYSIS
Photochemicalmodelershavetraditionallyusedsensitivityanalysisbothformodel
performanceevaluationandemissioncontrolstrategydesign.Thesimplestapproachto
sensitivityanalysis,oftenreferredtoasthe“bruteforce”approach,involveschangingamodel
inputparameter,rerunningthemodel,andthenevaluatingthechangeinmodeloutputfor
eachparametertobeinvestigated.Forexample,amodelperformanceevaluationmayuse
sensitivitysimulationstoevaluatetheimpactofchanginginitialorboundaryconditions(ICsand
BCs),biogenicemissions,anthropogenicemissions,etc.Controlstrategyevaluationmay
reduceVOCandNOxemissionstodeterminewhetherVOCand/orNOxreductionstrategiesare
themosteffectivepathtoreduceozone.
Theadvantagesofthe“bruteforce”methodforsensitivityanalysisare:
Applicabletoanymodelinputparameter;
Resultsareconceptuallyeasytoexplainandinterpret.
Thelimitationsofthe“bruteforce”methodare:
Computationallyinefficient;
Sensitivitydependsuponthemagnitudeoftheperturbationifthemodelresponseisnon
linear;
Sensitivityderivedfromsmallperturbationsmaycontainsignificantlevelsofuncertainty
(numericalnoise).
Thelasttwopointsbearfurtherexplanation.Ifthemodelresponsetoaninputparameter
dependsuponnonlinearcomponentswithinthemodel(e.g.,chemistry),thentherelative
magnitudeorevensignoftheoutputresponsemaychangeforperturbationsofdifferentsizes.
AnexampleistheozoneresponsetoNOxreductionsinaVOClimitedenvironment:smaller
reductionsinNOxemissionsincreaseozonelevelswhereaslargerNOxreductionsdecrease
ozone.
Thissituationcanbeillustratedmathematically.Wedefinea“sensitivitycoefficient”(s)which
representsthechangeinconcentration(c)withrespecttosomeinputparameter(
-
),evaluated
relativetothebasestate(
-
=
-
0),
Ingeneral,
-
canbeavector(denotedas
-
),whichcontainsmultipleparametersrelatedto
processesinthemodel(e.g.,rateconstants)orinputstothemodel(e.g.,emissions).The
concentrationresponsetoachangein
-
canberepresentedbyaTaylorseriesofsensitivity
coefficients:
o
c
s
-
-
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 177www.camx.com
wherenisthenumberof
-
vectorelements,xisthespatialdimensionvector,andtistime.In
theozonesensitivityexampleabove,thenonlinearozoneresponsetolargeNOxemission
reductionsindicatesthathighordersensitivitycoefficients(curvaturesandinflections)are
significantrelativetothefirstordersensitivity(linearresponse).Asthemagnitudeoftheinput
perturbationtendstozero,theoutputresponsewillbecomedominatedbythefirstorder
sensitivity.Therefore,verysmallchangesintheinputparametermayberequiredtousethe
“bruteforce”methodtoestimatethefirstorder(local)sensitivity.Thepracticallimitationto
thisapproachisthatsincethechangeinoutputmustbedeterminedfromthedifference
betweentwosimulations,smalllevelsofnumericaluncertainty(noise)intwoverysimilar
outputswillcontaminatethesensitivitycalculation.
AnalternativemethodologyforevaluatingmodelsensitivitywasdevelopedbyDunker(1980,
1981)calledthedecoupleddirectmethod(DDM).TheDDMcanbeusedtocalculatethesame
typeofsensitivitycoefficientasthe“bruteforce”method.ThedifferenceisthatwithDDM,
sensitivitycoefficientsarecalculatedexplicitlybyspecializedalgorithmsimplementedinthe
hostmodel.Thus,theDDMoffersseveraladvantagesoverthebruteforcemethod:
Improvedcomputationalefficiency,especiallyasmultiplesensitivitiescanbecalculated
simultaneously;
Improvedaccuracysincesensitivitiesarenotcontaminatedbynumericalnoise.
8.1Implementation
TheoriginalCAMximplementationoftheDDMconsideredonlyfirstordersensitivityforgas
phasespecies.Dunkeretal.(2002)performedarigorousanalysisofDDManddemonstrated
excellentagreementagainstbruteforcetests.HighorderDDM(HDDM;Hakamietal.,2003;
Cohanetal.,2005)hassincebeenimplementedinCAMx.HDDMenablesCAMxtocalculate
secondordersensitivitiesalongwithfirstordervaluesforgasphasespecies(Kooetal.,
2007a,2008).ThefirstorderDDMsensitivityhasbeenextendedtoPMspecies(Kooetal.,
2007b,2009).InthefollowingdiscussionweusethetermDDMgenericallytomeanfirstand/or
higherordersensitivity.
TheCAMxDDMcalculatesconcentrationsensitivitytoseveralsources(i.e.,emissions,ICsand
BCs)andtochemicalrateconstants.Thesensitivitytobeevaluatedmaybearasimple
relationshiptoamodelinputparameter,suchasscalingozoneBCsbyafactor(BCnew=
-
×BC0),
oradditivelyincreasingtheozoneBC’sbyaconstantamounteverywhere(BCnew=
-
+BC0).To
allowcompleteflexibility,thesensitivityperturbationsarespecifiedbyprovidingadditionalIC,
BC,and/oremissioninputfileswiththesameformatastheregularmodelinputfiles.
  


...
2
1
;,;,
1
0
1
0
2
1
0
0
termsorderhigherandthird
c
c
txctxc
n
i
jj
n
j
ii
ji
n
i
ii
i
o
o


----
--
--
-
--
-
-
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 178www.camx.com
Asaresult,theusercanperformmanydifferentsensitivitycalculationsinasinglerunaccording
tothecontentoftheDDMinputfiles.Forexample,ifthesameBCfileisspecifiedforboth
CAMxandDDM,theoutputsensitivityfieldsrepresentthesensitivityofthepredicted
concentrationstothoseparticularBCs.Simplyscalingtheoutputsensitivitycoefficientsfields
providestheincrementalconcentrationsresultingfromscalingtheBCs.IfaDDMBCfile
containsconstantconcentrationseverywhere,thesensitivitywillcorrespondtoauniform
absoluteincreaseintheBCsratherthanapercentageincreaseasdescribedabove.Another
possibilityincludesaDDMBCfilewithadifferentspatialpatternthantheCAMxinputfile.The
sensitivitycoefficientwouldthencorrespondtochangingboththegeographicdistributionand
magnitudeofBCs.Inshort,theDDMinputfilescanbearbitrarydifferentfromtheCAMx
inputfileintheoverallmagnitudeofconcentrationsoremissions,differentinthegeographic
andtemporaldistribution,anddifferentintherelativeproportionsofthechemicalspecies.
However,theusermustunderstandwhatperturbationsarebeingconsideredinorderto
properlyinterprettheresultingoutputsensitivitycoefficientfields.
Inmathematicalterms,aregularmodelinputfile,forexampletheBCinputfile,represents
somesetoffunctionsofspaceandtimefi(x,t),whereeachchemicalspeciesicanbedefinedby
auniquefunction.AnadditionalinputfileprovidedtotheDDMrepresentsanothersetof
functionsofspace,time,andchemicalspeciesgi(x,t)thatcanbedifferentfromtheregular
inputfile.Thescalarparameter
-
iisthendefinedby
Here,
-
i×gi(x,t)istheperturbation,andtheuserdesiresinformationonhowthemodelwould
respondiftheinputfi(x,t)isreplacedbytheinputFi(x,t).Inthecaseofsensitivitytorate
constants,nouserdefinedinputfileisprovidedandtheperturbationisalwaysdefinedas
-
i×k
wherekisavectorofselectedrateconstants.TheDDMcalculatesthefirstordersensitivity
si(1)(x,t)andsecondordersensitivitysi(2)(x,t)withrespecttothescalarparameter
-
i.TheTaylor
seriestosecondorderthengivestheestimate:
wherecl(x;t;
-
i)istheestimatedmodelresultforspecieslwhenFi(x,t)isusedasinput,and
cl(x,t;
-
i=0)isthebasecasemodelresultwhenfi(x,t)isusedasinput.
Forexample,tocalculatethesensitivityofthepredictedozoneconcentrationtoscaling
boundaryozonebyafactor,CAMxwouldbeprovidedwithaDDMBCfilethathasthesame
ozonevaluesastheregularmodelBCfile.ThesensitivitycoefficientfieldsoutputbyCAMx
couldthenbeusedtoestimatetheresultingozoneconcentrationiftheozoneBCswere
increasedby20%,asfollows(forsimplicityhereafter,thedependenceonspace,time,and
chemicalspecieswillbeomitted):

.,,, txgtxftxF iiii
-
   
txstxstxctxc iiiiilil ,
2
1
,0;,;, )2(2)1(
----
)2(2)1(
02.0 2.0
2
1
2.0 sscc
--
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 179www.camx.com
Tocalculatethesensitivityofthepredictedozoneconcentrationtoincreasingboundaryozone
by10ppb,CAMxwouldbeprovidedwithaDDMBCfilethathasaconstantozonevalueof10
ppb.Thesensitivitycoefficientfieldscouldbeusedtoestimatetheozoneconcentrationifthe
ozoneBCswereincreasedby10ppbasfollows:
whereeachsensitivityiscalculatedaccordingtothe10ppbadditioncarriedintheDDMBCfile
(thussensitivitiesarescaledbyunity).AnalternativeapproachwouldbetoprovideCAMxwith
aDDMBCfilethathasaconstantozonevalueof1ppb,andtoestimateozoneresponseifthe
ozoneBCswereincreasedby10ppbwouldrequirethateachsensitivityabovebescaledby10.
Theseareexamplesofrelativelysimplesensitivities.Amorecomplexexamplewouldbeto
calculateozonesensitivitytoscalingmorning(69AM)NOxemissionsinaspecificgroupofgrid
cells.InthiscaseyouwouldprovideCAMxwithaDDMemissionsfilewhereallvaluesarezero
exceptfortheNOxemissionsintheselectedgridcellsbetween6AMand9AM,whichwould
havethesamevalueastheregularemissionsfile.Thesensitivitycoefficientcouldbeusedto
predicttheconcentrationafterascalarchange(
-
)inthemorningNOxemissionsusingthe
samegeneralequationasgivenabove:
Anytypeofsensitivityperturbationcanbedescribedviaaninputfile.However,theCAMxuser
interfacealsoprovideseasywaystodefinesomesensitivitiesthatarelikelytobeused
frequently.Inthefirstexampleabove,theDDMBCfilewasdescribedashavingthe“same
ozonevaluesastheregularmodelBCfile.”Toavoidtheeffortofpreparinganinputfilethatis
triviallydifferentfromtheregularmodelfile,theuserinterfaceallowsyoutoselectspecific
speciesfromaninputfiletotrack‐inthiscaseozone.Itispossibletoseparatelytrackthe
sensitivitytomorethanonespeciesfromthesamefile(e.g.ozoneandNO).Itisalsopossible
totrackthecombinedsensitivitytoagroupofspecies,suchasNOx,VOC,HRVOC,orALL.The
userinterfacealsoprovidesasimplewaytotracksensitivitiestoemissionsfromspecificgrid
cellsorgroupsofcells(subregions).
8.1.1TrackingSensitivityCoefficientsWithinCAMx
DDMsensitivitycoefficientsarecalculatedinparalleltothecoreCAMxprocesses(emissions,
advection,diffusion,chemistry,deposition,etc.)thatstepthethreedimensionalconcentration
fieldsforwardintime.Forsomeprocesses(e.g.,chemistryandhorizontaladvection),the
sensitivityroutinesmakeuseofinformationsavedfromthecorrespondingcoremodelroutines
incaseswheretheresultsdependnonlinearlyuponspeciesconcentrations.Inothercases,the
sensitivityalgorithmisidenticaltotheCAMxalgorithm(e.g.,horizontaldiffusion)andboth
concentrationsandsensitivitycoefficientscanbeprocessedbythesingleroiutine.Finally,
therearecaseswhereaspecializedmodulehasbeenwrittenforthesensitivitycoefficientsto
improvethecomputationalefficiency(e.g.,verticaladvection).
)2(2)1(
00.1 1
2
1
1sscc
--
)2(2)1(
02
1sscc
--
--
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 180www.camx.com
PrioritiesintheDDMcodingimplementationwere:
Ensuringaccuracybyusingconsistentnumericalmethodsfortheconcentrationsand
sensitivities;
Ensuringaccuracybycalculatingtheconcentrationsandsensitivitieswithinthechemistry
solversoverthesamechemistrysubsteps(fororiginalDDM);
Optimizingtheefficiencyofthesensitivitycoefficientcalculationswithoutcompromising
accuracy;
ProvidingaflexibleUserInterfacethatallowscalculationofsensitivitiestoallsourcesand
precursors;
EnsuringthattheDDMalgorithmshaveminimalimpactoncomputerresource
requirements(memoryandCPUtime)whentheDDMisnotbeingused.
DDMandHDDMcanbeusedwitheitherofthetwohorizontaladvectionsolversavailablein
CAMx.TheoriginalfirstorderDDMimplementationwasdevelopedonlyfortheEBIchemistry
solver;itcannotbeusedwithLSODE.However,HDDMcanbeusedwithEBIorLSODE.
DDMandHDDMalgorithmsarenotcurrentlyimplementedfortheCAMxPlumeinGrid(PiG)
submodelortheACM2verticaldiffusionschemes.
8.1.2FlexiDDM
AlthoughDDMiscomputationallymuchmoreefficientthantheBruteForcemethod,itdoes
requiremuchmoreadditionalCPUtimeandmemoryspaceoverandaboveastandardCAMx
run,whichcanbesignificantespeciallywhenmanyfirstandsecondordersensitivitiesare
requestedforanestedgridrunwithmultiplesourcecategoriesandmultiplesourceregions.
Theincreasedcomputationalcostmaynotalwaysbeworthwhileifonlypartofthemodeling
domainisofinterest.Onewaytoenhancecomputationalefficiencyinsuchcasesistouseone
waynesting,whereBCsforanestedgridareextractedfromtheparentgrid,andsosubsequent
runswithsensitivitiesareperformedwithoutoutergrids.However,differencesbetweenthe
twonestingschemes(i.e.1wayvs.2way)sometimescausediscrepanciesinthemodelresults.
Analternativeapproachistorunthefull2waynestedmodelwhile“turningoff”sensitivity
calculationsoutsidenestedgridsofinterest.
CAMxprovidesafeaturecalled“FlexiDDM”,whichallowstheusertoturnoffsensitivity
calculationsforselectedgrids(normallygridsfaroutsidetheareaofinterest)toimprove
computationalefficiencyofDDMruns(attheexpenseofaccuracy).ThisreducesCPUtimesbut
willnotreducememoryrequirements.Also,notethatturningoffsensitivitycalculationsfor
outergridsisonlyappropriateforcertaintypesofsensitivitycalculations:e.g.,sensitivityto
mastergridBCscannotbecalculatedwithFlexiDDM.
8.2RunningCAMxWithDDMandHDDM
TheDDMuserinterfacewasdesignedalongsimilarlinestotheSourceApportionment(SA)user
interface.Thismakesiteasiertolearnhowtousebothoptionsandpromotesconsistencyin
analysesperformedusingSAandDDM.DDMisinvokedsimilarlytotheotherProbingTools
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 181www.camx.com
withintheCAMxcontrolfile.Inthe&CAMx_Controlnamelistmodule,thevariable
Probing_Toolmustbesettoeither“DDM”toutilizetheoriginalfirstorder
implementation,or“HDDM”toutilizethehighorderimplementation.Anadditionalnamelist
modulecalled&DDM_ControlmustthenbeprovidedinthecontrolfiletoconfiguretheDDM
portionofthemodel.Theadditionalnamelistmoduleisdescribedbelow.Theorderofthe
variablesfollowthetemplateavailablewiththesourcecode.AnexampleoftheDDMportion
oftheCAMxruncontrolfileisshowninFigure81.
DescriptionofDDMControlintheCAMxRunControlFile
&DDM_Control  LabelfortheProbingToolnamelistmodulethatconfiguresthe
DDMoption;itmustbeginincolumn2
&Flagendinganamelist;itmustbeincolumn2
DDM_File_Root  Characterrootoutputpath/filename
DDM_Master_Sfc_OutputLogicalflagformastergridsurfaceoutput(TRUE=DDMfilewill
beoutputforallsensitivities,FALSE=DDMfilewillnotbe
output)
DDM_Nested_Sfc_OutputLogicalflagfornestedgridsurfaceoutput(TRUE=DDMfilewill
beoutputforallsensitivities,FALSE=DDMfilewillnotbe
output)
DDM_Stratify_BoundaryLogicalflagtostratifyboundarytypes(TRUE=separate
sensitivitytypeswillbeusedfortheN,S,E,W,andTop
boundaries,FALSE=asinglesensitivitytypewillbeusedforall5
boundaries)
DDM_Number_of_Source_RegionsIntegernumberofsourceregionstobetracked.This
mustbethesameasthenumberofsourceareasdefinedinthe
DDM_Source_Area_Mapfile.Thisvaluemustbegreater
thanzerowhensensitivitytoemissionsisrequested.
DDM_Number_of_Source_Groups Integernumberofemissiongroupstobetracked.This
determinesthenumberofemissionfilesthatmustbesupplied
(additionaldetailsbelow).Thisvaluemustbegreaterthanzero
whensensitivitytoemissionsisrequested.
Number_of_IC_Species_Groups Integernumberofspeciesorspeciesgroupsinthe
initialconditionstobetracked.Thisnumbermaybebetween
zeroandthenumberofspeciesbeingsimulatedplusfour
(allowingforthefourspeciesgroupsVOC,HRVOC,NOX,ALL).
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 182www.camx.com
IC_Species_GroupsCharacterarray(byICgroup)namesofthespeciesorspecies
groupsintheinitialconditionstobetracked.Allowednames
areanyspeciesbeingsimulatedbythemechanisminuse(e.g.,
O3,PAR,NO,etc.)plusthespeciesgroupsNOX,VOC,HRVOC,
andALL.Itispermissibletospecifybothaspeciesandagroup
containingthatspecies,e.g.,bothNOandNOX.Eachname
mayhaveupto10characters.Notethatifyouselectaspecies
thatisnotpresentontheICfileprovided,theinitialsensitivities
forthatspecieswillbesettozero.Thisvariablemaybeleft
blankifthenumberofinitialconditionspeciesgroupsiszero.

Number_of_BC_Species_Groups Integernumberofspeciesorspeciesgroupsinthe
boundaryconditionstobetracked.Thisnumbermaybe
betweenzeroandthenumberofspeciesbeingsimulatedplus
four(allowingforthefourspeciesgroupsVOC,HRVOC,NOX,
ALL).
BC_species_GroupsCharacterarray(byBCgroup)namesofthespeciesorspecies
groupsintheboundaryconditionstobetracked.See
descriptionforIC_Species_Groupabove.
Number_of_EM_Species_Groups Integernumberofspeciesorspeciesgroupsinthe
emissionstobetracked.Thisnumbermaybebetweenzero
andthenumberofspeciesbeingsimulatedplusfour(allowing
forthefourspeciesgroupsVOC,HRVOC,NOX,ALL).
Emis_Species_GroupsCharacterarray(byemissionsgroup)namesofthespeciesor
speciesgroupsintheemissionstobetracked.Seedescription
forIC_Species_Groupabove.
Number_of_Rate_Const_Groups Integernumberofreactionratesensitivitygroupstobe
tracked.Thisnumbermaybezero.
Rate_Const_Groups Characterstringcontainingeachreactionratesensitivitygroup
nameandreactionnumbersthatbelongtothegroup.Group
nameandreactionnumbersareseparatedbycolon(:)andeach
reactionnumberisseparatedbycomma(,).
Number_of_HDDM_Sens_GroupsIntegernumberofsecondordersensitivitygroupstobetracked
(additionaldetailsbelow).Thisnumbermaybezero.
HDDM_parametersCharacterarraynamesofthefirstordersensitivityparameters
towhichsecondordersensitivityiscomputed.Thenamingof
thefirstorderparametersisthesameasthelongnameof
sensitivitieswiththefirst4charactersomitted(seeDDM
sensitivitynamingconventions/formatsbelow).Foreach
HDDMsensitivitygroup,twofirstorderparametersare
required(thesamecanbeusedtwice).Allthefirstorder
parametersmustbeincludedinthemodeling.
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 183www.camx.com
DDM_Receptor_DefinitionsCharacterinputDDMreceptordefinitionpath/filename.(Thisis
anoptionalfile).
DDM_Source_Area_MapCharacterarray(byCAMxgrid)inputDDMsourcearea
definitionpath/filename(requiredformastergrid,optionalfor
nestedgrids).Sourceregionsaredefinedusingamapinthe
sameformatastheintegerSAsourceareamap(Section7);
fractionalsourceareamapsarenotsupportedbyDDM.Unlike
SA,DDMdoesnotrequirethatallpartsofthemodelingdomain
betracked,thereforeitispermissibletodefineanarea
numberedzerointhesourceareamap(emissionsfromthose
areaswillnotbetracked).Thenonzerosourceregionnumbers
mustbebetween1andthenumberofregions.
DDM_PT_OverrideLogicalflagtoallowpointsourceoverride(TRUE=lookforand
usethepointsourceoverrideflagsinsectorspecificpoint
sourcefiles,FALSE=ignorepointsourceoverrideflags)
DDM_Calc_Grid LogicalarraycontainingFlexiDDMflagforeachgrid(.TRUE.=
calculatesensitivitiesinthegrid;.FALSE.=donotcalculate
sensitivitiesinthegrid).
DDM_Initial_ConditionsThenameofthesensitivityinitialconditionfile.Leavethefile
nameblankforrestartdaysorifsensitivitytoinitialconditions
isnotbeingcalculated.
DDM_Boundary_ConditionsThenameofthesensitivitylateralboundaryconditionfile.
Leavethefilenameblankifsensitivitytoboundaryconditionsis
notbeingcalculated.
DDM_Master_RestartCharacterinputmastergridDDMrestartpath/filename
(ignoredifRestart=FALSE)
DDM_Nested_RestartCharacterinputnestedgridDDMrestartpath/filename
(ignoredifRestart=FALSEorNumber_of_Grids=1)
DDM_Points_GroupCharacterarray(bysourcegroup)inputDDMelevatedpoint
sourceemissionspath/filename(optional,ignoredif
Point_Emissions=FALSE)
DDM_Emiss_Group_GridCharacterarray(bysourcegroup,byCAMxgrid)inputDDM
griddedemissionspath/filename(optional,ignoredif
Gridded_Emissions=FALSE)
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 184www.camx.com
&DDM_Control
DDM_File_Root = './DDM_output/CAMx.020604’,
DDM_Master_Sfc_Output = .true.,
DDM_Nested_Sfc_Output = .true.,
DDM_Stratify_Boundary = .false.,
DDM_Number_of_Source_Regions = 4,
DDM_Number_of_Source_Groups = 2,
Number_of_IC_Species_Groups = 1,
IC_Species_Groups(1) = 'O3',
Number_of_BC_Species_Groups = 1,
BC_species_Groups(1) = 'O3',
Number_of_EM_Species_Groups = 2,
Emis_Species_Groups(1) = 'NOX',
Emis_Species_Groups(2) = 'VOC',
Number_of_Rate_Const_Groups = 1,
Rate_Const_Groups(1) = 'RXN1: 120,121,122',
Number_of_HDDM_Sens_Groups = 3,
HDDM_parameters(1,1) = 'EM0201NOX_',
HDDM_parameters(1,2) = 'EM0201NOX_',
HDDM_parameters(2,1) = 'EM0201VOC_',
HDDM_parameters(2,2) = 'EM0201VOC_',
HDDM_parameters(3,1) = 'EM0201NOX_',
HDDM_parameters(3,2) = 'EM0201VOC_',
DDM_Receptor_Definitions = './DDM_input/receptor.cities',
DDM_Source_Area_Map(1) = './DDM_input/source_map.DDM.4areas',
DDM_Source_Area_Map(2) = ' ',
DDM_PT_Override = .false.,
DDM_Calc_Grid(1) = .true.,
DDM_Calc_Grid(2) = .true.,
DDM_Initial_Conditions = './DDM_input/IC.020603',
DDM_Boundary_Conditions = './DDM_input/BC.020604',
DDM_Master_Restart = './DDM_output/CAMx.020603.ddm.inst',
DDM_Nested_Restart = './DDM_output/CAMx.020603.ddm.finst',
DDM_Points_Group(1) = ' ',
DDM_Points_Group(2) = './DDM_input/utils.020604',
DDM_Emiss_Group_Grid(1,1) = './OSAT_input/bio.grd1.020604',
DDM_Emiss_Group_Grid(1,2) = './OSAT_input/bio.grd2.020604',
DDM_Emiss_Group_Grid(2,1) = './OSAT_input/util.grd1.020604',
DDM_Emiss_Group_Grid(2,2) = './OSAT_input/util.grd2.020604',
&
Figure81.ExampleofDDMinputsintheCAMxcontrolfile.CAMxisrunwithtwogrids,andDDMis
configuredtotrackemissionsfromfoursourceregionsandtwosourcegroups.Sensitivitytoozone
initialandboundaryconditionsaretracked,whilesensitivitiestoNOxandVOCemissionsaretracked.
Sensitivityforasinglerateconstantgroupwillbecalculatedinvolvingmechanismreactionnumbers
120,121,and122.ThreegroupsofsecondordersensitivitiestoanthropogenicNOxandVOC
emissions(fromemissionsgroup2,sourceregion1)willbecomputed(d2/dNOx2,d2/dVOC2and
d2/dNOxdVOC).Nosourceregionmapisprovidedforthenestedgrid(theregionassignmentsonthe
nestaredefinedbythemastergrid).Onlythegroup2pointsourcesaretracked(nobiogenicpoint
sourcesareavailable).
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 185www.camx.com
8.3DDMOutputFiles
TheoutputfiletypesforaDDMsimulationaredescribedinTable81.Thesefileshavethe
sameformatascorrespondingconcentrationoutputfiles,describedinSection3.
Table81.DDMoutputfilesuffixnames.
FileNameSuffixDDMFileType
.ddm.inst Binarymastergridinstantaneoussensitivityfileatendofsimulation(usedforrestart),3
D,allsensitivities,inµmolm3forgasesandµgm3forPM.
.ddm.finst Binarynestedgridinstantaneoussensitivityfileatendofsimulation(usedforrestart),3
D,allsensitivities,inµmolm3forgasesandµgm3forPM.
.ddm.grdnn Binaryaveragesensitivityfileforgridnn,2D,surfacelayersensitivitiesonlyforaffected
speciesrequestedintheCAMxaveragefile,inppmforgasesandµgm3forPM.
.ddm.receptor Texthourlyaveragesensitivitiesatuserspecificreceptorlocations.Thisfileisincomma
delimitedtextformatsuitableforimportingintoaspreadsheet.
8.4DDMSensitivityCoefficientNames
EachDDMsensitivitycoefficienttrackstheinfluenceofaspeciesfromaspecificsource(the
influencingspecies)onapredictedconcentration(theaffectedspecies).Thesensitivity
coefficientnamesareconstructedtoshowthisrelationship,asfollows:
{AffectedSpecies}{PollutantSource}{InfluencingSpecies}
Thisisalotofinformationtoencodeinanamethatmustconformtothetencharacterlimit
imposedbythebinaryI/Ofileformats.Becauseofthis,twonamingsystemsareusedinCAMx:
LongNames‐thesenamesareeasytoread,butsincetheyaremorethantencharacters
inlengththeycannotbeusedinsensitivitycoefficientbinaryoutputfiles.Ifanalternate
I/Oformatisimplementedinthefutureitmaybepossibletousethelongnameson
sensitivityoutputfiles.
ShortNames‐theseconveythesameinformationasthelongnamesbutrequiremore
practicetolearn.Theyareusedinthesensitivitycoefficientbinaryoutputfiles.
AtthestartofeachCAMxrunaconcordanceofLongandShortsensitivitycoefficientnamesis
writtentothediagnosticoutputfile(.diagfile).AnexampleconcordanceisshowninFigure8
2,andadetailedexplanationofthenamingconventionfollows.

March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 186www.camx.com
Affected Influencing Source Long Short
Species Species Type Group Region Name Name
-------------------------------------------------------------------------------
NO ALL EM 1 2 NO__EM0102ALL_ 0160102ALL
NO2 ALL EM 1 2 NO2_EM0102ALL_ 0170102ALL
O3 ALL EM 1 2 O3__EM0102ALL_ 0180102ALL
PAN ALL EM 1 2 PAN_EM0102ALL_ 0190102ALL
PANX ALL EM 1 2 PANXEM0102ALL_ 0200102ALL
PNA ALL EM 1 2 PNA_EM0102ALL_ 0210102ALL
FACD ALL EM 1 2 FACDEM0102ALL_ 0220102ALL
FORM ALL EM 1 2 FORMEM0102ALL_ 0230102ALL
H2O2 ALL EM 1 2 H2O2EM0102ALL_ 0240102ALL
HNO3 ALL EM 1 2 HNO3EM0102ALL_ 0250102ALL
HONO ALL EM 1 2 HONOEM0102ALL_ 0260102ALL
IOLE ALL EM 1 2 IOLEEM0102ALL_ 0270102ALL
ISOP ALL EM 1 2 ISOPEM0102ALL_ 0280102ALL
ISPD ALL EM 1 2 ISPDEM0102ALL_ 0290102ALL
MEOH ALL EM 1 2 MEOHEM0102ALL_ 0300102ALL
MEPX ALL EM 1 2 MEPXEM0102ALL_ 0310102ALL
MGLY ALL EM 1 2 MGLYEM0102ALL_ 0320102ALL
AACD ALL EM 1 2 AACDEM0102ALL_ 0330102ALL
ALDX ALL EM 1 2 ALDXEM0102ALL_ 0340102ALL
CO ALL EM 1 2 CO__EM0102ALL_ 0350102ALL
ALD2 ALL EM 1 2 ALD2EM0102ALL_ 0360102ALL
NTR ALL EM 1 2 NTR_EM0102ALL_ 0370102ALL
Figure82.Exampleconcordanceoflongandshortsensitivitycoefficientnamesfromthe
CAMxdiagnosticoutputfile.
8.4.1InitialConditionSensitivityNames
LongName NNNNIC____MMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
IC Indicatesthesensitivitycoefficientisforinitialconditions
____ Fourunderscorestopadthenameto14characters
MMMM Influencingspeciesnamewithtrailingunderscoretopadblanks
Examples: O3__IC____O3__
HNO3IC____NOX_
ETH_IC____HRVO
ShortName nnnI___mmm
where:
nnn Affectedspeciesnumber
I Indicatesthesensitivitycoefficientisforinitialconditions
___ Threeunderscorestopadthenameto10characters
mmm Influencingspeciesnumberornameofaspeciesgroup(NOX,
VOC,HRVOCorALL).
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 187www.camx.com
Examples: 018I___018 (whereO3isspeciesnumber18)
025I___NOX (whereHNO3isspeciesnumber25)
042I___HRV (whereETHisspeciesnumber42)
8.4.2BoundaryConditionSensitivityNames
LongName NNNNBCRRR_MMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
BC Indicatesthesensitivitycoefficientisforboundaryconditions
RRR NTH,STH,EST,WSTorTOPifstratifiedbyboundary;ALLifnot
stratifiedbyboundary
_Underscoretopadthenameto14characters
MMMM Influencingspeciesnamewithtrailingunderscoretopadblanks

Examples: O3__BCTOP_O3__
HNO3BCEST_NOX_
ETH_BCALL_HRVO
ShortName nnnBRRRmmm
where:
nnn Affectedspeciesnumber
B Indicatesthesensitivitycoefficientisforinitialconditions
RRR NTH,STH,EST,WSTorTOPifstratifiedbyboundary;ALLifnot
stratifiedbyboundary
mmm Influencingspeciesnumberornameofaspeciesgroup(NOX,
VOC,HRVOCorALL)
Examples:018BTOP018 (whereO3isspeciesnumber18)
025BESTNOX (whereHNO3isspeciesnumber25)
042BALLHRV (whereETHisspeciesnumber42)
8.4.3EmissionsSensitivityNames
LongName NNNNEMGGRRMMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
EM Indicatesthesensitivitycoefficientisforemissions
GG Emissionsgroupnumber
RR Emissionsregionnumber
MMMM Influencingspeciesnamewithtrailingunderscoretopadblanks
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 188www.camx.com
Examples: O3__EM0101O3__
HNO3EM0201NOX_
ETH_EM0103HRVO
ShortName nnnGGRRmmm
where:
nnn Affectedspeciesnumber
GG Emissionsgroupnumber
RR Emissionsregionnumber
mmm Influencingspeciesnumberornameofaspeciesgroup(NOX,
VOC,HRVOCorALL)
Examples: 0180101018 (whereO3isspeciesnumber18)
0250201NOX (whereHNO3isspeciesnumber25)
0420103HRV (whereETHisspeciesnumber42)
8.4.4ReactionRateSensitivityNames
LongName NNNNRATE__MMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
RATE Indicatesthesensitivitycoefficientisforrateconstants
__ Twounderscorestopadthenameto14characters
MMMM Reactionratesensitivitygroupnamewithtrailingunderscoreto
padblanks
Examples: NO__RATE__RXN1
O3__RATE__R28_
ShortName nnnRATEmmm
where:
nnn Affectedspeciesnumber
RATE Indicatesthesensitivitycoefficientisforrateconstants
mmm Reactionratesensitivitygroupnumber
Examples: 016RATE001 (whereNOisspeciesnumber16)
018RATE002 (whereO3isspeciesnumber18)

March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 189www.camx.com
8.4.5HDDMSensitivityNames
LongName NNNNHDDMLLLMMM
where:
NNNN Affectedspeciesnamewithtrailingunderscoretopadblanks
HDDM Indicatesthesensitivitycoefficientissecondorder
LLL Theindexofthefirst1stordersensitivityparameterintheinternal
listofthe1storderparameters
MMM Theindexofthesecond1stordersensitivityparameterinthe
internallistofthe1storderparameters
Examples: NO__HDDM001001
O3__HDDM001002
ShortName nnnHlllmmm
where:
nnn Affectedspeciesnumber
H Indicatesthesensitivitycoefficientissecondorder
lll Theindexofthefirst1stordersensitivityparameterintheinternal
listofthe1storderparameters
mmm Theindexofthesecond1stordersensitivityparameterinthe
internallistofthe1storderparameters
Examples: 016H001001 (whereNOisspeciesnumber16)
018H001002 (whereO3isspeciesnumber18)
8.5StepsInDevelopingInputsAndRunningDDM
BelowisasimplemethodologicallistofstepstofollowinsettingupandrunningDDM.The
processissimilaramongtheSAandDDMProbingTools.
1) Definethesourcegroupsandregionsthatyouwishtotrack.Keepinmindthatmemory
resourcesincreasedramaticallyasthenumberofsensitivitiesgrows.ProbingTool
applicationswithlargenumbersofsensitivities,nestedgridsorgridcellsmayexceed
availablememory.
2) Buildanintegersourceregionmap(seeSection7)thatdefinesthespatialallocationof
emissionsensitivities.Forsmalldomainsorsmallnumberofregions,thiscanbedoneby
hand.WesuggestusingGISsoftwaretodevelopcomplexsourceregionmapsonlarge
grids.
3) Processtheemissionsinventoryintotheseparatesourcegroupfilesthatyouwantto
track(e.g.,mobile,area,point,biogenic,etc.).
March2016CAMxUser’sGuideVersion6.3
8.DecoupledDirectMethod
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 190www.camx.com
a) Considerationofpotentialsourceapportionmentorsensitivityapplicationspriorto
anyemissionsprocessingcanbeverybeneficialsothatfilesbygroupareavailable
forlateruse.
b) Elevatedpointsourceswillautomaticallybeassignedtothesourceregioninwhich
theyreside.However,youmayoverridetheregiontowhicheachindividualpoint
sourceisassigned(seethedefinitionofkcellinSection3,ElevatedPointSource
File).Apointsourceregiondoesnotneedtobedefinedinthesourceregionmap,
e.g.,youcouldhaveamapwithtworegionsthatsplitthedomaininhalf,witha
thirdregionassignedarbitrarilytorepresentelevatedpointsourcesonly.
4) EdittheCAMxcontrolnamelistfile(Section2).
a) SettheProbing_Toolvariabletothetechnologyyouwishtouse(DDM,HDDM).
Thiswillactivatethe&DDM_Controlnamelistmodule.
b) Editoraddthe&DDM_Controlnamelistmodule(describedearlier).Providethe
requiredinformation,including:
outputpaths
whethertostratifyboundaryconditions
numberofsourceregions
numberofsourcegroups
numbersandnamesofIC,BC,emissions,rateconstant,andHDDMgroups
receptordefinitions
IC/BCinputfiles
listofinputemissionfilesbygroup.
5) ConfiguretheCAMxsourcecodetodefinethenumberoftracers,andbuildan
executable.ThiswillensurethatyouhavesufficientmemoryfortheProbingTool
application.
a) EditthefileIncludes/camx.prm
b) ChangetheparametersMXTRSPandMXFDDM,followingtheinstructionsprovided
inthefile.CAMxisdistributedwithMXTRSP = 1andMXFDDM = 1tominimize
memoryrequirementsforstandardapplicationsofthemodel.IfyourunDDMwith
aninsufficientvalue,themodelwillstopandtellyoutherequiredvalueofMXTRSP
andMXFDDMforyourapplication.
c) ExecutetheCAMxMakefiletobuildanexecutableprogram(Section2).
6) RunCAMxandreviewthediagnosticoutputfilestoensurethatthemodeliscorrectly
interpretingandrunningtheProbingToolconfigurationthatyouhavespecified.Ensure
thatCAMxisgeneratingtheproperoutputfilesthatyouareexpecting.Reviewthetable
ofconcordanceoflongandshortsensitivitycoefficientnames.
7) Reviewgriddedtracerfieldsusingcommonlyavailableplottingprograms.Utilitiessuchas
PAVEorVerdiwillreadProbingToolfilesdirectly.Useofanyothersoftwaremayrequire
specializedreformattingprocedures.
8) ProbingToolgriddedtraceroutputfilesarewritteninthesameFortranbinaryformatas
theregularCAMxconcentrationoutputfiles.Youcanpostprocessgriddedoutputfields
usinganysoftwarethatreadsCAMxfiles,oryoucanadaptthoseprogramsorbuildyour
ownsoftwaretogeneratespecializedanalysisandgraphicalproducts.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 191www.camx.com
9.PROCESSANALYSIS
ProcessAnalysis(PA)allowsforindepthanalysisofphotochemicalmodelperformanceby
revealingthecontributionsfromindividualphysicalandchemicalprocessesoperatingwithin
themodel(JeffriesandTonnesen,1994).UsingPA,onecanmorefullyunderstandthecomplex
interactionsbetweenthedifferentprocesses,explainsimulationresultswithinthecontextof
themodelformulation,andimprovethedesignofcontrolstrategies.
Aconventionalmodelperformanceevaluationemploysstatisticalandgraphicalmethodsto
analyzepredictedconcentrationsagainstobservedconcentrations.Thisanswersthebasic
question:“Howwellisthemodelreplicatingmeasurements?”Whilesuchcomparisonsare
necessarytosummarizeperformance,theyarefarfromsufficienttodeterminewhetherthe
modelisadequatelyrepresentingtherealsituation.Thisisbecausecompensatingerrors
amongvariousmodelprocessescanresultinpredictionsthatserendipitouslyagreewithlimited
observationsbutforthewrongreasons.IncontrastPAprovidesinformationonhowthe
specificmodelpredictionswereobtained,whichcanbeinterpretedtoimprovemodel
performanceand/orinformcontrolstrategydecisions.
9.1ProcessAnalysisInCAMx
ThreecomponentsofPAareimplementedinCAMx:
1) IntegratedProcessesRate(IPR)analysis.TheIPRmethodprovidesdetailedprocessrate
informationforeachphysicalprocessinCAMx(i.e.,advection,diffusion,deposition,
emissions,andchemistry)forselectedgridcellsandselectedspecies(Wang,Langstaff,
andJeffries,1995).TheIPRoutputscanbeanalyzedtodeterminewhatprocesses
governedthemodelpredictedconcentrationsatanytimeandplace.IPRinformationhas
oftenbeenplottedasatimeseriesofprocesscontributionsforspecificcellsorgroupsof
cells.IPRoutputshavealsobeenusedtocheckthemassbalanceinthehostmodel,i.e.,
todeterminewhethermodelconcentrationsarefullyexplainedbythediagnosedprocess
informationorwhetherunexpectedartifactsareoccurring.TheIPRdataarerelatively
easytointerpretandcanbeanalyzedusingsimpletoolssuchasspreadsheets.IPRworks
forallgasandPMmechanismsandwithPiG.IPRdoesnotworkwiththeACM2vertical
diffusionoption.
2) IntegratedReactionRate(IRR)analysis.TheIRRmethodprovidesdetailedreactionrate
informationforallreactionsinthechemicalmechanismforselectedgridcells(Jeffriesand
Tonnesen,1994).TheIRRdatacanbeanalyzedtodeterminehowthechemicalchanges
occurringinthemodelarerelatedtothechemicalmechanism.Forexample,byanalyzing
rateinformationovergroupsofreactionsitispossibletoquantifychemicallymeaningful
attributessuchasradicalinitiationrates,radicalpropagationefficiencies,chainlengths,
etc.Sincetheseanalysestendtobecomplex,IRRdatagenerallyrequirepostprocessing
tobeuseful.IRRisimplementedfortheCB05chemicalmechanism,andpartiallyfor
CB6r2;itisnotimplementedforotherCB6variantsorforSAPRC07(seeChapter5,Table
51).
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 192www.camx.com
3) ChemicalProcessAnalysis(CPA).CPAisrelatedtotheIRRmethodbutisdesignedtobe
moreuserfriendlyandaccessible.WithCPA,aselectionofusefulparametersis
calculatedfromIRRdatawithinCAMxandthenoutputtogriddedfilesforentiregrids
(TonnesenandDennis,2000).ThegriddedCPAfilesusethesameformatasthegridded
concentrationoutputsandcanbevisualizedandprocessedusingstandardpost
processingtools.CPAisimplementedfortheCB05chemicalmechanism,andpartiallyfor
CB6r2;itisnotimplementedforotherCB6variantsorforSAPRC07(seeChapter5,Table
51).
9.1.1IntegratedProcessRateAnalysis
ThespecificprocessesthatarereportedbyIPRarelistedinTable91.Thisinformationis
outputforeachchemicalspeciesselectedforinclusionintheaverageconcentrationoutputfile,
andforeachgridcellselectedforanalysis.Theprocessratesareintegratedacrosseachmodel
outputtimeinterval(normallyhourly).Takentogether,thisinformationprovidesacomplete
descriptionofhowthespeciesconcentrationchangedacrosstheoutputtimeintervalandthe
magnitudeofalloftheprocessesthatcausedthischange.Informationisoutputinthe
concentrationunitsusedinternallywithinCAMx(µmole/m3forgases,µg/m3forPMspecies).A
gasconversionfactor(ppm/µmole/m3)specifictothegridcell/timeperiodisalsooutputto
allowconversiontomixingratio(ppm)forcomparisonofgasspecieswithCAMxaverage
concentrationoutputs.ForPMspecies,theconversionfactorisalways1.Gridcellvolumeis
alsooutputtoallowaggregationacrossgridcells.
FormostoftheprocessrateslistedinTable91theinterpretationisstraightforward,therateis
simplytheconcentrationchangecausedbythenamedprocessacrosstheoutputtimeinterval.
Thesignconventionissuchthatapositivefluxalwaystendstoincreasethecellconcentration.
Furtherexplanationisprovidedforseveralprocessesbelow:
PlumeinGridchange:ThegridcellconcentrationchangecausedbyPlumeinGridpuffs
thattransferredmasstothegridcellduringtheoutputtimeinterval.
Pointsourceemissions:DoesnotincludepointsourcesselectedforPiGtreatmentas
thesearereportedinPlumeinGridChange.
Dilutioninthevertical:CAMxallowsforlayerinterfaceheightstochangeovertime
whichcanleadtoa“dilution”termforaffectedgridcells.
Boundarydiffusion:Insomecasesthistermwillbezerobydefinition,namely:the
bottomboundaryofsurfacelayergridcells;thetopboundaryoftoplayergridcells;any
lateralboundarythatcoincideswithanestboundary.
Drydeposition:Thistermiszerobydefinitionforallgridcellsabovethesurfacelayer.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 193www.camx.com
Table91.ProcessinformationreportedbytheIPRoption.
IPRParameterProcessInformation Unitsa
1Initialconcentration µmole/m3(µg/m3)
2Gasphasechemistry µmole/m3(µg/m3)
3Griddedemissions µmole/m3(µg/m3)
4Pointsourceemissions µmole/m3(µg/m3)
5PlumeinGridchange µmole/m3(µg/m3)
6Westboundaryadvection µmole/m3(µg/m3)
7Eastboundaryadvection µmole/m3(µg/m3)
8Southboundaryadvection µmole/m3(µg/m3)
9Northboundaryadvection µmole/m3(µg/m3)
10Bottomboundaryadvection µmole/m3(µg/m3)
11Topboundaryadvection µmole/m3(µg/m3)
12Dilutioninthevertical µmole/m3(µg/m3)
13Westboundarydiffusion µmole/m3(µg/m3)
14Eastboundarydiffusion µmole/m3(µg/m3)
15Southboundarydiffusion µmole/m3(µg/m3)
16Northboundarydiffusion µmole/m3(µg/m3)
17Bottomboundarydiffusion µmole/m3(µg/m3)
18Topboundarydiffusion µmole/m3(µg/m3)
19Drydeposition µmole/m3(µg/m3)
20Wetdeposition µmole/m3(µg/m3)
21Inorganicaerosolchemistry µmole/m3(µg/m3)
22Organicaerosolchemistry µmole/m3(µg/m3)
23Aqueousaerosolchemistry µmole/m3(µg/m3)
24Finalconcentration µmole/m3(µg/m3)
25Unitsconversion ppm/(µmole/m3)(N/A)b
26Averagecellvolume m3
aUnitsintheparenthesesareforPMspecies.
bUnitconversionfactorforPMspeciesisalways1.
9.1.2IntegratedReactionRateAnalysis
IRRprovidestheintegratedrateofeachgasphasechemicalreactioninunitsofppmhr1for
eachgridcellselectedforprocessanalysis.Reactionratesareaccumulated(integrated)within
thechemistrysolveratthetimestepsbeingusedtosolvethechemicalequations,andoutput
attheCAMxoutputtimeinterval(usually1hour).
9.1.3ChemicalProcessAnalysis
TheCPAmethodcalculatesapredeterminedsetofparametersaslistedinTable92.TheCPA
parametersarecalculatedforallgridcellsineitherthesurfacelayeroralllayers.Theselection
betweensurfacelayeroralllayerCPAoutputsisdeterminedbythe“3Daveragefile”flag
specifiedintheCAMxControlFile(seeSection2).Thisisbasedonthepremisethat3DCPA
informationwillbeinterpretedinconjunctionwith3Dconcentrationfields.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 194www.camx.com
Table92.ChemicalProcessAnalysis(CPA)variablescalculatedinCAMxfortheCB05and
CB6r2mechanisms.Concentrationsareppb;productionanddestructionareppb/hr;
photolysisratesarehr1,ratiosareunitless.
CB05CB6r2Description
OzoneandOxidantProductionandLoss
OxProdOxProdProductionofOx=Ozone+NOyNO
OxLossOxLossDestructionofOx
PO3_netPO3_netNetozoneproduced
PO3_VOCsnsPO3_VOCsnsNetozoneproducedunderVOCsensitiveconditions
PO3_NOxsnsPO3_NOxsnsNetozoneproducedunderNOxsensitiveconditions
PH2O2_PHN3PH2O2_PNH3RatioofH2O2produced/HNO3produced.Greaterthan0.35meansNOx
sensitiveozoneproduction
O3_destO3_destOzonedestructionbychemicalreactions
RadicalInitiation
OH_newNewOHproduced(initiated)
HO2_newNewHO2produced
HOx_newNewHOx(HOx=OH+HO2)produced
newOH_O1DProductionofOHfromozonephotolysis
newOH_HONOProductionofOHfromHONOphotolysis
nOH_O3_OLEProductionofOHfromozonealkenereactions
nwHO2_HCHOProductionofHO2fromformaldehydephotolysis
RO2_newNewRO2produced
RadicalPropagation
OHw_COOHw_COOHreactedwithcarbonmonoxide
OHw_CH4OHw_CH4OHreactedwithmethane
OHw_ECH4OHreactedwithlocallyemittedmethane
OHw_ETHAOHw_ETHAOHreactedwithalkanes
OHw_PAROHw_PAR
OHw_PRPAOHreactedwithpropane
OHw_BENZOHreactedwithbenzene
OHw_TOLOHw_TOLOHreactedwithtolueneandmonosubstitutedaromatics
OHw_XYLOHw_XYLOHreactedwithxylenesandpolysubstitutedaromatics
OHw_ETHOHw_ETHOHreactedwithethene
OHw_ETHYOHreactedwithethylene
OHw_OLEOHw_OLEOHreactedwithterminalalkenes(R
HC=CH2,e.g.propene)
OHw_IOLEOHw_IOLEOHreactedwithinternalalkenes(R
HC=CH
R,e.g.2butene)
OHw_ISOPOHw_ISOPOHreactedwithisoprene
OHw_TERPOHw_TERPOHreactedwithterpenes
OHw_all_HCOHw_all_HCOHreactedwithallorganiccompounds(includingCO)
ISOPwOxIsoprenereactedwithO3,NO3andO(3P)
TERPwOxTerpenesreactedwithO3,NO3andO(3P)
OH_rctdOH_rctdTotalOHreacted
HO2_rctdTotalHO2reacted
HOx_rctdTotalHOxreacted
RO2_rctdTotalRO2reacted
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 195www.camx.com
CB05CB6r2Description
OHfromHO2OHproducedfromreactionsofHO2
Y_OHperHO2YieldofOHperHO2reacted(=OHfromHO2/HO2_rctd)
RadicalTerminationandHOxChainLength
OH_termOHterminated
HO2_termHO2terminated
HOx_termHOxterminated
RO2_termRO2terminated
HOx_CLHOxchainlength(=HOx_rctd/{2xHOx_new})
FormaldehydeProduction
HCHOp_ethFormaldehydeproducedfromethene
HCHOp_ole
Formaldehydefromterminalalkenes(R
HC=CH2,e.g.propene)inthefirst
generationofproducts
HCHOp_iole
Formaldehydefrominternalalkenes(R
HC=CH
R,e.g.2butene)inthefirst
generationofproducts
HCHOp_terpFormaldehydefromterpenesinthefirstgenerationofproducts
HCHOp_isopFormaldehydefromisopreneinthefirstgenerationofproducts
HCHOp_ispd
Formaldehydefromisoprenedaughterproducts(isoprod,methacroleinand
methylvinylketone)
HCHOp_TotTotalformaldehydeproduced
NOyReactions
HNO3_OHNO2HNO3_OHNO2NitricacidproducedfromOHreactingwithNO2
HNO3_NO3HCHNO3_NO3HCNitricacidproducedfromNO3reactingwithorganics
HNO3_N2O5HNO3_N2O5NitricacidproducedfromN2O5reactingwithwater
PANprodNetNetPANproduced
PANlossNetNetPANdestroyed
NTR1_prodOrganicnitrateproduction
NTR2_prodOrganicnitrateproduction
INTR_prodOrganicnitrateproduction
NTR1toNTR2Organicnitrateconversion
INTRtoNTR2Organicnitrateconversion
RNO3_prodOrganicnitrates(RNO3)produced
NOxrecyclNOxrecyclNitrates(HNO3andRNO3)recycledtoNOx
NOw_HO2NOreactedwithHO2(formingNO2)
NOw_RO2sNOreactedwithRO2(formingNO2)
NOw_RCO3sNOreactedwithRCO3(formingNO2)
Photolysis
J_NO2J_NO2NO2photolysisrate
J_O3O1DJ_O3O1DO3photolysisratetoO(1D)atoms
J_CLDADJCloud/hazeadjustmentfactor
RadicalConcentrations
OHOHradicalconcentration
HO2HO2radicalconcentration
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 196www.camx.com
9.2RunningProcessAnalysis
PAcanbeusedwithmostofthephysicaloptionsavailableforthe“core”CAMxmodel,e.g.,the
variousadvectionandchemistrymechanisms/solvers.However,PAcannotbeusedatthe
sametimeastheotherCAMx“ProbingTool”options(e.g.,SA,DDM,orRTRAC)becausethe
ProbingToolsshareinternaldatastructurestominimizethetotalmemoryresourcesrequired
byCAMx.IPRcannotbeusedwiththeACM2diffusionoption.
PAisinvokedsimilarlytotheotherProbingToolswithintheCAMxcontrolfile.Inthe
&CAMx_Controlnamelistmodule,thevariableProbing_Toolmustbesettoeither“PA”
(generatesallPAoutput),“IPR”,or“IRR”.Table93summarizesthetypesofprocessanalysis
performedforeachkeywordandtheoutputfilesthatareproduced.
Table93.ProcessanalysiskeywordsandassociatedCAMxoutputfiles.
ProcessAnalysisKeyWordOutput
Filename
File
Contains
IPRIRRPA
Yes No Yes *.ipr Integrated process rate (IPR)
information for all selected cells
No Yes Yes *.irr Integrated reaction rate (IRR)
information for all selected cells
No Yes Yes *.cpa.grdnn Chemical process analysis
(CPA) parameters for grid nn
Anadditionalnamelistmodulecalled&PA_Controlmustthenbeprovidedinthecontrolfile
toconfigurethePAportionofthemodel.Theadditionalnamelistmoduleisdescribedbelow.
Theorderofthevariablesfollowthetemplateavailablewiththesourcecode.Anexampleof
thePAportionoftheCAMxruncontrolfileisshowninFigure91.
TherulesfordefiningPAsubdomainsareasfollows:
1) TheymustbecontainedwithinasingleCAMxgrid;
2) Theymaynotincludecellsthatcontainanestedgrid;
3) Theymaycontainasfewas1gridcells;
4) TheymaycontainuptoallofthegridcellsinaCAMxgridprovidedthatthisdoesnot
violatethesecondrule;
5) Theymayintersectoroverlapthesamegridcellmaybeinseveralprocessanalysis
domains.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 197www.camx.com
DescriptionofPAControlintheCAMxRunControlFile
&PA_Control LabelfortheProbingToolnamelistmodulethatconfiguresthe
PAoption;itmustbeginincolumn2
& Flagendinganamelist;itmustbeincolumn2
PA_File_Root Characterrootoutputpath/filename
Number_of_PA_Domains IntegernumberofPAanalysisdomainstobeevaluatedduring
thesimulation.
Within_CAMx_Grid Integerarray(byPAdomain)pointerintotheCAMxgridwithin
whichthePAdomainexists(1=mastergrid,etc.).UsetheCAMx
internalgridnumberreportedinthe*.diagfile.Notethatthis
maydifferfromthenestorderprovidedbytheuserinthe
CAMxcontrolfile.
PA_Beg_I_Index Integerarray(byPAdomain)gridcolumncontainingwestern
edgeofPAdomain.
PA_End_I_Index Integerarray(byPAdomain)gridcolumncontainingeastern
edgeofPAdomain.
PA_Beg_J_Index Integerarray(byPAdomain)gridrowcontainingsouthernedge
ofPAdomain.
PA_End_J_Index Integerarray(byPAdomain)gridrowcontainingnorthernedge
ofPAdomain.
PA_Beg_K_Index Integerarray(byPAdomain)gridlayercontainingbottomofPA
domain.
PA_End_K_Index Integerarray(byPAdomain)gridlayercontainingtopofPA
domain.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 198www.camx.com
Figure91.ExamplesectionofaCAMxcontrolfilespecifyingoptionsforProcessAnalysis.
9.2.1SettingCAMxParameters
PAstoresinformationindatastructuresthataredimensionedusingFortranparameter
statements.TheseparametersmustbelargeenoughtoaccommodatethePAconfiguration
specifiedintheCAMxcontrolfile.IfoneoftheseparametersisexceededCAMxwillstopwith
anerrormessagestatingthataparametermustbechangedandthemodelrecompiled.Itis
alwaysagoodideatodoacompleterebuild(usetheUnixcommand“makeclean”)whena
parameterischanged.Theparametersthatmayneedtobechangedareintwoincludefiles,
procan.incandcamx.prm”.
procan.inc
MXPADOMThemaximumnumberofProcessAnalysisdomains.
MXPACELThemaximumnumberofProcessAnalysiscellsoveralldomains
camx.prm
MXTRSPThisparameterdefinesgriddeddatastructuresthatareusedbyseveral
probingtools.ForPAthedatastructuresstorechemicalprocessanalysis(CPA)
variables,soMXTRSPmustbesettoatleastthevalueofMXCPA(setinprocan.inc)
whichis99.
&PA_Control
PA_File_Root = 'CAMx.OTAG.950707.PA',
Number_of_PA_Domains = 2,
Within_CAMx_Grid(1) = 1,
PA_Beg_I_Index(1) = 8,
PA_End_I_Index(1) = 12,
PA_Beg_J_Index(1) = 9,
PA_End_J_Index(1) = 13,
PA_Beg_K_Index(1) = 1,
PA_End_K_Index(1) = 5,
Within_CAMx_Grid(2) = 2,
PA_Beg_I_Index(2) = 107,
PA_End_I_Index(2) = 110,
PA_Beg_J_Index(2) = 78,
PA_End_J_Index(2) = 82,
PA_Beg_K_Index(2) = 1,
PA_End_K_Index(2) = 7,
&
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 199www.camx.com
9.2.2OutputFileFormats
CAMxmayoutputuptofourfilescontainingPAinformationaccordingtothePAoption
selected(seeTable93).AllofthesefilesareinFortranbinaryformattoconservediskspace.
Twofiles(the*.iprand*.irrfiles)containinformationforjustthegridcellsselectedfor
PA.TheformatsforthesefilesarenotdescribedheresincetwoFortranpostprocessor
programsareprovidedtoextractdatafromthesefilesinacommadelimitedtextformat.The
filescontainingCPAinformation(the*.cpa.grdnn)aregriddedfilescoveringthesamearea
astheregularmodelaveragefiles(*.avrg.grdnn).ThegriddedCPAfileshavethesame
formatasaregularmodelaveragefileasdescribedinSection3.
9.3Postprocessing
Twopostprocessorsareprovidedtoreadthebinary*.iprand*.irroutputfilesand
extractPAdataforfurtheranalysis.TheCPAoutputfilescanbevisualizeddirectly.
9.3.1IPROutputFiles
TheFortranprogramext_iprextractsIPRdatafromoneormoreCAMx*.iprbinaryfiles
andreformatsthedatatocommadelimitedtextformat(.csv)suitableforsubsequent
analysis(e.g.,usingspreadsheets).Theext_iprprogramperformsthefollowingtasks:
Readsandoutputsthedescriptiveheaderofthe*.iprfile;
Optionallycombinesdatafromseveralconsecutive*.iprfilestoprovidemultiday
output;
SelectsdataforanindividualcellwithinaPAsubdomainoraggregatesdataovermultiple
cellswithinaPAsubdomain;
OutputstheselectedIPRdatain.csvformatineitherppbormolarunitsforgasspecies;
PMspeciesareineitherg/m3ormassunits.
Asamplescripttoruntheext_iprprogramisprovidedwithitssourcecode,andthescript
includesadescriptionofhowtousetheprogram.
Theext_iprprogramcancombineIPRinformationacrossseveralcells.Thisisusefulfor
analyzingthecontributionsofmodelprocessestoageographicareathatspansmultiplecells
andlayers(e.g.,anurbanarea).Forsimplicity,themulticellareamustbedefinedasa
rectangularbox.ThecapabilityofaggregatingIPRinformationacrossverticallayersis
particularlyimportantduringthedaybecauseverticalcolumnsofcellswithinthemixedlayer
becomestronglycoupledontimescalesshorterthanonehour.Thus,iftheprocess
contributionsforasurfacegridcellareanalyzedduringthedayverticaldiffusionwilloften
completelydominateallotherprocesses.Inthissituation,itismoreinformativetoanalyzea
columnofcellsextendingfromthesurfacetotheapproximateheightofthemixedlayer.When
theext_iprprogramaggregatesinformationacrossgridcellsitaccountsfordifferencesin
cellvolume.Iftheoutputforaggregatecellsisrequestedinppbunits,theoutputfromCAMx
inmicromole/volumeunitsisconvertedtoppbusingthevolumeweightedaverageunits
conversionfactorforthecellsbeingaggregated.
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 200www.camx.com
OneusefulapproachtoanalyzingIPRdataistoplotthecontributionsofseveralprocessesasa
timeseries.Figure92presentsanexampleasanillustrationofhowPAcanbeused.
Figure92.ExampleIPRtimeseriesanalysisforPSO4;lateralboundaryandchemistryterms
arenotaggregated.
9.3.2IRROutputFiles
TheFortranprogramext_irrextractsIRRdatafromoneormoreCAMx*.irrbinaryfiles
andreformatsthedataforsubsequentanalysis.Theext_irrprogramperformsthe
followingtasks:
Readsandoutputsthedescriptiveheaderofthe*.irrfile;
Optionallycombinesdatafromseveralconsecutive*.irrfilestoprovidemultiday
output;
SelectsdataforanindividualcellormultiplecellswithinaPAsubdomain;
Optionally,outputstheselectedIRRdatatoa.csvformattextfile;
Optionally,outputstheselectedIRRdatatoaUAMaverageformatbinaryfile.
Hourly PSO4 Change from Different Processes in Chicago Area.
Run = postproc_test
Grid cells used from grid number 1: (43, 47) to (52, 56) using layers 1 to 5
-1.5
-1
-0.5
0
0.5
1
Jun 13, 2002 Jun 14, 2002
Change in PSO4 (ug/m3)
Top Boundary Deposition Emissions
Gas-Phase Chemistry Heterogeneous Chemistry West Boundary
East Boundary South Boundary North Boundary
March2016CAMxUser’sGuideVersion6.3
9.ProcessAnalysis
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 201www.camx.com
ThetextIRRdataaresuitableforsubsequentanalysis(e.g.,usingspreadsheets).ThebinaryIRR
outputfrom“ext_irr”canbedisplayedusinganypostprocessingsoftwarethatcandisplay
CAMxaverageconcentrationoutputs.
9.3.3CPAOutputFiles
CPAresultsareoutputfromCAMxasgriddedfilesinthesameformatastheaverage
concentrationfiles,andthereforecanbevisualizedusinganypostprocessingsoftwarethatcan
displayCAMxconcentrationoutputs.Thesefilesmayoptionallyincludejustthesurfacelayer
oralllayersaccordingtohowthe“3Doutput”flagissetintheCAMxcontrolfile.Surfacelayer
speciesconcentrationsreflectthebalancebetweenseveralmodelprocessesincludingsurface
emissions/deposition,verticalmixing,andchemicalreactionsinsurface(andpossiblyaloft)grid
cells.Incontrast,theCPAoutputdataaregridcellspecificandreflectchemicalchangeinsingle
gridcells.Thefactthatverticalmixingtendstoaveragespeciesconcentrationsovermultiple
layerswhereasCPAvariablesarelayerspecificmaycomplicateandbiastheinterpretationof
CPAresults.AsolutionistoplaceboththeconcentrationsandCPAvariablesonacomparable
basisbyaveragingthemoveralllayerswithintheplanetaryboundarylayer.
Apostprocessor(VERTAVG)wasdevelopedtoaverageCPAvariablesandconcentrationsover
multiplelayerscontainedwithinthedepthoftheplanetaryboundarylayer(PBL).ThePBL
depthvariesinspaceandtimeaccordingtothestrengthandverticalextentofturbulent
mixing.VerticalturbulentmixingisspecifiedforCAMxbytheinputdiffusivity(Kv)fields.The
VERTAVGprocessorreadsCAMxKv,height,temperature,andpressureinputfiles,andthen
calculatesthePBLdepthforeachgridcolumnateachhour.VERTAVGalsoreadsaCAMx3D
outputfileofCPAvariables(orspeciesconcentrations)andcalculatesairmassweightedPBL
valuesforeachgridcolumnateachhour.TheoutputfromVERTAVGisa2Dfileinaveragefile
formatwherethesinglelayerrepresentsthePBLaveragevaluesratherthansurfacelayer
values.
VERTAVGappendstwoextravariablestothefilebeingprocessedtoaidwithinterpretationand
tomakeclearthatthedatahavebeenverticallyaveraged.Theaddedvariablesare:
PBL_ZisthediagnosedheightofthePBLforeachgridcolumn.
PBL_IisthelayerindexofthetoplayerwithinthediagnosedPBLforeachgridcolumn.
CAMxmustberunusingtheoptiontocreate3Dspeciesconcentration(andthereforeCPA)
outputfilesinordertouseVERTAVG.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 202www.camx.com
10.REACTIVETRACERS
TheCAMxreactivetraceralgorithmprovidesaflexibleapproachforsimulatingtheemission,
dispersion,chemistry,anddepositionofmultipletracegasandparticulatetracersonthe
computationalgrid(s)andwithintheIRONPiGtreatment.Originallydevelopedtomodelair
toxics,itwasextendedandgeneralizedtobeabletotrackavarietyofuserdefinedorganicand
inorganicspecies.
Reactivetracersarecarriedseparatelyfromthecoremodelphotochemical/PMchemistry
mechanisms,andthuscanbeusedtoaddressavarietyofissues,separatelyorincombination:
Reactiveandinertgaseousandparticleairtoxiccompounds;
ChemicaldecayofindividualVOCcompoundsintomultiplegenerationsofdaughter
products;
Sourcetaggingofprimaryemittedinertandreactivecompoundsfromspecificsource
types/classes,orfromindividualstacks,facilitiesand/orcomplexes.
ThereactivetraceralgorithmisimplementedasaCAMx“ProbingTool”andthussharesmodel
datastructureswithotherProbingToolssuchastheSA,DDMandPA.Thisstreamlinesthe
CAMxcode,improvesefficiency,andmaximizesconsistencywiththecoremodelsinceitallows
reactivetracercalculationsforemissions,transport,anddepositiontousetheexistingCAMx
algorithms.However,thismeansthatreactivetracerscannotbeusedsimultaneouslywith
otherProbingTools.
Thereactivetracerimplementationemploystwoapproachestodefinetracerchemistry.The
originalapproach,referredtoasRTRAC,allowstracerstodecayandformmultiplegenerations
ofdaughterproductsthroughphotolysisanduserspecifiedthermalreactionswithozoneand
radicals(OH,NO3)thatareextractedfromthecoremodel’sgasphasechemistry(CBorSAPRC).
Asecondapproach,referredtoastheRTRACChemicalMechanismCompiler(RTCMC),allows
theusertoexternallydefineafullchemistrymechanismwithnolimitsoncomplexity(within
availablecomputerresources).RTCMCcanalsoaccessanygasphaseconcentrationsfromthe
coregasphasemechanismaswell.Neitheroptionallowschemistryforparticulatetracers.
10.1DescriptionofRTRAC
ReactivetracersaredefinedforeachCAMxrunbyprovidinganRTRACchemistryparameters
filesimilartothatusedforthecoremodel.TheexampleinFigure101illustratesanexample
RTRACairtoxicsapplication(ENVIRON,2002;Morrisetal.,2003).Thenumberandnamesof
thetracersarearbitrary;i.e.informationonthetracerspecies’chemicalidentities,structure,
reactionpathways,andkineticsarekeptseparatefromthecoremodel.Consistentwiththe
chemistryparametersfilesusedforthecoremodel’sphotochemistry,thephysical
characteristicsforeachreactivetracermustbespecifiedfordepositioncalculations,andtheir
reactionpathwaysandratesmustbedefined.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 203www.camx.com
Figure101.ExampleRTRACchemistryinputfileformodelingspecifictoxicspecies.
ThestructureoftheRTRACtracerdefinitionprovidescompleteflexibilityintheselectionofthe
compoundsandtracerstobeincludedineachanalysis.Theuserisabletoeasilyalteror
expandthecompoundsasneeded.
Forgasspecies,therequireddepositionparametersaretheHenry’sLawconstantand
molecularweightMg,thelatterofwhichdefinesadiffusivityparameteraccordingto
OHg MM 2
/.Thedepositioncalculationforgasesthatreactinplanttissuealsoneedsa
reactivityparameterthatdescribeswhetheraspeciesreactswhendissolvedinsideleaftissues
(Wesely,1989).Thisparameterisintendedformodelingthedepositionofreactivespecies,
suchasozone,andshouldbesettozeroforairtoxics.Thedepositioncalculationforgasses
CAMx Version |VERSION6.3
Description |Example RTRAC Chemsitry for Toxics
No of gas tracers |6
No of aero tracers |8
No photolysis rxns |4
No thermal rxns |12
Gas Tracers
No. Name P/S SNAM lower bnd H-law T-fact Molwt Reactvty Rscale
1 PACET PRIM 1.00E-12 6.30e+03 -6492. 44.00 0.0 1.0
2 HCHO PRIM 1.00E-12 6.30e+03 -6492. 30.00 0.0 1.0
3 BENZ PRIM 1.00E-12 1.80e-01 0. 78.00 0.0 1.0
4 BUTA PRIM 1.00E-12 1.00e-02 0. 54.00 0.0 1.0
5 SACET SEC ALD2 1.00E-12 6.30e+03 -6492. 44.00 0.0 1.0
6 SFORM SEC FORM 1.00E-12 6.30e+03 -6492. 30.00 0.0 1.0
Aero Tracers
No. Name lower bnd Density Low cut Upper cut
7 DSLF 1.00E-09 1.5 0.10 2.50
8 ECF 1.00E-09 1.5 0.10 2.50
9 CRF 1.00E-09 1.5 0.10 2.50
10 CR6F 1.00E-09 1.5 0.10 2.50
11 DSLC 1.00E-09 1.5 2.50 10.00
12 ECC 1.00E-09 1.5 2.50 10.00
13 CRC 1.00E-09 1.5 2.50 10.00
14 CR6C 1.00E-09 1.5 2.50 10.00
Photolysis reactions
Toxic Rxn # Factor
PACET 108 1.0
SACET 108 1.0
HCHO 98 1.6
SFORM 98 1.6
Thermal reactions and rates
Toxic React A(ppm-1min-1) Ea(K) B Tref
PACET OH 8.2015E+03 -3.1099E+02 0.0 300.0
PACET NO3 2.0689E+03 1.8599E+03 0.0 300.0
HCHO OH 1.6699E+03 -6.4815E+02 2.0 300.0
HCHO NO3 4.1377E+03 2.5161E+03 0.0 300.0
BENZ OH 3.6944E+03 1.9978E+02 0.0 300.0
BUTA OH 2.1871E+04 -4.4787E+02 0.0 300.0
BUTA O3 4.8766E+01 2.5000E+03 0.0 300.0
BUTA NO3 2.1871E+04 1.4890E+03 0.0 300.0
SACET OH 8.2015E+03 -3.1099E+02 0.0 300.0
SACET NO3 2.0689E+03 1.8599E+03 0.0 300.0
SFORM OH 1.6699E+03 -6.4815E+02 2.0 300.0
SFORM NO3 4.1377E+03 2.5161E+03 0.0 300.0
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 204www.camx.com
alsousesan“Rscale”factortoadjustthesurfaceresistance.Thisisusedtosetthesurface
resistancetozeroforstrongacids(e.g.,HNO3)andshouldbesetto1.0formodelingairtoxics.
Thedepositioncalculationforparticlesrequirestheparticledensityandsizeassociatedwith
eachspecies.Theparticlesizeiscalculatedasthegeometricmeanoftheloweranduppercut
points(seeFigure101).Ifpossible,theparticlesizeanddensityshouldbebasedonthe
measuredsizeofparticlesassociatedwitheachRTRACspecies(e.g.,foracompoundassociated
withsootparticles,useadensityandsizerepresentingthesoot).
TheemissionratesfortheRTRACspeciesareprovidedbyanextrasetofemissionfiles(surface
and/orpointsource).Emissionsofgasesareinmolespertimeperiod(normallymoles/hour),
whereasparticlesareingramspertimeperiod.Theemissionsfileformatisthesameasfora
regularCAMxemissionsfile,asdescribedinSection3.
10.1.1RTRACGasPhaseChemistry
TheRTRACchemistrycalculationsuseaspecialchemistrymodule.Chemistrymaybemodeled
forprimaryandsecondarygasspecies,meaningthattracerscanbeformedfromthedecayof
primarytracersorfromthedecayofhostmodelspecies(e.g.,secondaryformaldehyde).The
chemicaldecayofgaseoustracerscanaccountforthermalreactionswithozone(O3),hydroxyl
radical(OH)andnitrateradical(NO3),aswellasphotolysis.Thealgorithmsarecodedsothatall
chemicaldecaypathwaysarezerobydefaultandonlybecomenonzeroifdecayratesare
explicitlyspecifiedintheinputfile(seeFigure101).TheexampleRTRACchemistryinputfilein
Figure101showshowthermalreactionsarespecifiedbynamingthetracerandoxidant,and
providingreactionrateparameters.NotethattheRTRACchemicalreactionratesdependon
theratesandparametersprovidedintheRTRACinputfile,andnottheratesinthehostmodel
chemicalmechanism;howeverthehostmodeldoesprovidetheoxidizingspecies
concentrations(i.e.,O3,OH,andNO3).
10.1.1.1ThermalReactions
Thermalreactionswithoxidantsaremodeledassecondorderreactions:
whereRisthedecayrateandtherateconstantkisdefinedusingthegeneralizedtemperature
dependentrateexpression:
TheArrheniusfactor(A)mustbeinunits(ppm1min1),theactivationenergy(Ea)mustbeKelvin
andBisdimensionless.Thisisthesameasexpression3inTable33a.Oxidantconcentrations
forthedecaycalculationareobtainedfromtheCAMxphotochemicalsimulationforeachgrid
cellateachtimestep.RTRACcanbeusedwithanyofthephotochemicalmechanismsthatare
availableinthecurrentversionofCAMx(seeSection5).Choosingbetweenthecore
oxidanttracerkR
T
ET
Ak a
B
exp
300
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 205www.camx.com
mechanismswillinfluencetheRTRACchemicaldecayratesbychangingtheoxidant
concentrationsinthehostmodel.
10.1.1.2Photolysis
Photolysisreactionsarespecifiedbynamingthetracerundergoingphotolysisandprovidinga
ratioofthetracerphotolysisratetooneofthephotolysisreactionsinthehostphotochemical
mechanism.Forexample,Figure101showsthattherearebothprimaryandsecondary
acetaldehydereactivetracers(PACETandSACET)andthephotolysisrateforbothspeciesisset
equaltoCB6r2reaction108(photolysisofALD2),whichisbasedonacetaldehyde.Figure101
alsoshowsthattherearetwotypesofformaldehyde(PFORMandSFORM).Modelingthe
photolysisofformaldehydewithRTRACiscomplicatedbythefactthattheCB6r2mechanism
includestwophotolysisreactionsforformaldehyde(reactions97and98).Thesolutionshown
inFigure101istomodelformaldehydephotolysisas1.6timestherateofreaction98.The
CAMxhostmechanismsarediscussedinSection5andaredefinedbythetextchemistry
parametersfiles(Section3)andmechanismlistingsdistributedwithCAMxandavailablefrom
theCAMxwebpage(www.camx.com).
10.1.1.3SecondarySpecies
RTRACallowsforformationofsecondary/daughterproductsrelatedtothechemicaldecayof
oneoftheprimarytracers.Secondaryspeciescanalsobesubjecttochemicaldecay,justlike
primaryspecies,iftheuserdesires.Therefore,theRTRACchemistrymoduleallowsdecay
reactions(thermalandphotolysis)tobespecifiedforsecondaryspeciesusingthesamemethod
asforprimaryspecies.Inthismanner,concentrationsofsecondaryspeciesaredeterminedby
thebalancebetweenchemicalproductionanddestruction.RTRACrequiresthatanysecondary
daughtertracersmustbespecifiedaftertheirparenttracerinthechemistryparametersinput
file.
RTRACalsoallowstracersthattrackthesecondaryformationofanyspeciesthatisincludedin
thehostchemicalmechanism.Forexample,inFigure101thespeciesSFORMisusedtotrack
secondaryformaldehyde,andsoSFORMisdefinedasasecondaryspeciesandidentifiedwith
thehostspeciesFORM.ThismeansthattheRTRACchemistrymodulewillidentifythechemical
productionofFORMineachgridcellateachtimestep,andaddthischemicalproductiontothe
SFORMtracer.SinceSFORMisintendedtotrackonlysecondaryformaldehyde,noprimary
emissionsshouldbeincludedforSFORM.
10.1.1.4ChemicalDecayRatesforNearSourceModeling
TheRTRACalgorithmcanoutputhourlychemicaldecayratesatuserspecifiedlocationsto
supportexternalanalyses,forexample,asinputtoaGaussianplume/puffmodel.Theuser
providesthelocationsofeachreceptorusingtheCAMxProbingToolsreceptorfileinput
format.Figure102displaysanexampleRTRACreceptorinputfileforthefivelocations.At
eachgridcell,hourlydecayratesforeachRTRACcompoundandeveryverticallayerareoutput
andcanthenbeinterfacedwithauserselectedplumemodel.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 206www.camx.com
Figure102.ExampleRTRACreceptorinputfileidentifyingthegridcellswithlocationswhere
hourlydecayrateswillbeoutputforsubgridscalepointsourcemodeling(seeformatforSA
receptorfileinTable72).
Separatefamiliesofreactivetracercompoundscanbesimulatedbyprovidingseparate
emissioninputssimilarlytoSA(seeSection7).TrackingseparatefamiliesofRTRACtracers
allowsforsourceapportionmentandcanbeusedtoavoiddoublecountingwhenanexternal
plumemodelisusedtoobtainnearsourceimpacts.Forexample,separatefamiliesofairtoxic
tracerscanbespecifiedforeachpointsourcecomplextobemodeledbytheexternalplume
model,sothattotalconcentrationscouldincludethelocalpointsourceimpacts(plumemodel)
plustheregionalcontributionsfromallothersources(CAMxRTRAC).
10.2DescriptionofRTCMC
LikeRTRAC,thepurposeofRTCMCistoaddtracerspeciestoaCAMx“coremodel”simulation
andhavethetracersundergochemicalchangesthatdepend,inpart,upontheevolutionof
CAMxcoremodelspecies.TheRTCMCapproachdiffersfromtheoriginalRTRACapproachby
allowingarbitrarilycomplexchemicalreactionschemes,butitisexactlylikeRTRACinevery
otherrespect.ThecurrentimplementationofRTCMCisforgasphasereactions,i.e.,gasphase
tracersreactingwitheachotherand/orgasphasehostmodelspecies.Thecoremodel’s
photochemicalmechanismsremainintactandseparatefromthereactivetracerchemistry.
10.2.1RTCMCGasPhaseChemistry
TheRTCMCallowsuserstoinput,inatextbasedformat,asetofchemicalreactions
(mechanism)forcertaintargetspeciestobetreatedbytheCAMxReactiveTracerProbingTool.
RTCMCisanextensionoftheoriginalRTRACalgorithmthatreads(andsolves)acompletely
independent,userdefinedchemicalmechanismforreactivetracersthatcanutilize
concentrationsofanyphotochemicalspeciesfromthecoremodelmechanism.Uponstartup,
RTCMCcompilesinformationonthechemicalmechanismandconfiguresthereactivetracer
chemistrysolver.Duringthemodelsimulation,theRTCMCchemistrysolverreceivesambient
pollutantinformationfromthecorephotochemicalmechanismandusesthistocalculatethe
evolutionofRTRACspecies.
TheformatoftheRTCMCinputfileisessentiallythesameasthe“IMC”inputfileformatofthe
SCICHEMLagrangianpuffmodel(EPRI,2000).AnexampleIMCformatfileisshowninFigure
103.TherearefoursectionsinanIMCfilethatareidentifiedbyakeywordatthestartofeach
section,asfollows:
SINGLE CELL Test Cell 1 42 44
SINGLE CELL Test Cell 1 41 36
SINGLE CELL Test Cell 1 39 36
SINGLE CELL Test Cell 1 50 43
SINGLE CELL Test Cell 1 34 48
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 207www.camx.com
Figure103.ExamplefreeformatRTCMCIMCchemistryinputfile.
#Control Configurationinformationidentifiedbykeywords
#Species Namesofchemicalspeciesandassociateddata
#Table Photolysisratedataforanyphotolyticreactions
#EquationsChemicalreactionsandthermalrateconstants
TheIMCfileusesspacedelimitedfreeformtextformat.Leadingwhitespaceatthestartof
anylinewillbeignored.CAMxreadstheIMCfileascaseinsensitive.
Thehashsymbol(#)beforeeachsectionkeywordmarksthestartofasectionandshouldbe
reservedforthispurpose.Thefoursectionsshouldappearintheordershownabove.Theonly
sectionthatmaybeunnecessaryinsomecases(i.e.,iftherearenophotolyticreactions)isthe
#Tablesectionandguidanceonhandlingthiscaseisprovidedbelow.
10.2.1.1TheControlSection
AccordingtotheSCICHEMdocumentation,the#ControlsectionoftheIMCfilemustalways
haveatleastthreelines,asfollows:
#CONTROL
&CONTROL
&END
#Control
rate_species_units = 'ppm'
rate_time_units = 'min'
solver = 'dlsode'
Jacobian = 'numeric'
#Name, Type, Ambient, ATol, Dep, Wet Scav, MW, Spec Map
O3 A 1.0 1.0E-12 0.0 0.0 0.0
OH A 1.0 1.0E-12 0.0 0.0 0.0
ATRAC F 1.0 1.0E-12 0.010 0.0 0.0
BTRAC F 1.0 1.0E-12 0.001 0.0 0.0
CTRAC F 1.0 1.0E-12 0.020 0.0 0.0
DTRAC F 1.0 1.0E-12 0.001 0.0 0.0
ETRAC F 1.0 1.0E-12 0.030 0.0 0.0
FTRAC F 1.0 1.0E-12 -0.001 0.0 0.0 NO2
#Table
0 0. 15. 30. 45. 60. 75.
80. 86. 87. 88.
1 4.1590E-04 4.0600E-04 3.7540E-04 3.27E-04 2.6040E-04 9.4990E-05
2.9930E-05 4.8590E-06 8.3030E-08 1.0000E-09
#Equations
1 [ATRAC] -> (2.0)[BTRAC] ; 0 0.000E-00
2 (1.5)[CTRAC] + [OH] -> (0.5)[DTRAC] ; 1 4.2000E+04
3 [ETRAC] + [O3] -> [FTRAC] ; 1 1.8000E-02
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 208www.camx.com
Thefirstlineisthekeywordidentifyingthecontrolsection.Thesecondandthirdlinesare
additionalkeywordsdenotingthestartandendofthecontrolsection.Note,however,that
CAMxignoresthe&CONTROLand&ENDlines.
Oneormorecontroloptionsmaybespecifiedusingkeywords,insertedoneperline,aheadof
theclosing&ENDline,likethis:
#CONTROL
&CONTROL
Keyword = ‘option’
Keyword = ‘option’
&END
ThekeywordsusedbyCAMxandSCICHEMarelistedinTable101andarecaseinsensitive.Not
allkeywordsareusedbybothmodels,andCAMxwillignoreanynonrecognizedkeyword.A
=symbolmustseparateeachkeywordandoption.Theoptionmustbeenclosedwithin
singlequotes.Inpractice,onlythefirstsixlettersofeachkeywordandthefirstthreelettersof
eachoptionareconsideredandyoumayabbreviateaccordingly(i.e.,keyword = ‘opt’).
Table101.Keywords,optionsanddefaultvaluesfortheControlsectionoftheIMCfile.
Keyword
Usedby
SCICHEM
Usedby
CAMxOptionsAllowedbyCAMx
Ambient file
n/a
Species_units
n/a
Emission_units
n/a
Rate_species_units molecules/cm3(default)
ppm
Rate_time_units
seconds(default)
minutes
hours
Solver
DLSODE(default)
SLSODE
Rosenbrock
Rtol Realnumber(default=1.0E5)
Atol Realnumber(default=1.0E18)
Jacobian Numeric(default)
Algebraic
AllCAMxrecognizedkeywordshaveadefaultoptionthatwillbeusedifthekeywordisomitted,
meaningthattheCAMxRTCMCmayberunwithoutspecifyinganykeywordsprovidedthatthat
allotherinputdata(e.g.,rateconstants)areconsistentwiththedefaults.Theallowedkeyword
optionsinTable101arediscussedbelow:
Rate_species_units
Theconcentrationunitsforthermalrateconstantexpressions.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 209www.camx.com
Rate_time_units
Thetimeunitsforphotolysisandthermalrateconstantexpressions.
Solver
Thenameofthenumericalintegratortobeusedasthechemistrysolver.SLSODEand
DLSODEare,respectively,thesingleanddoubleprecisionversionsoftheLivermore
SolverforOrdinaryDifferentialEquations(Hindmarsh1983).TheRosenbrocksolveris
thedoubleprecisionRODASsolver(HairerandWanner,1991).
Rtol
Therelativeerrortolerance(convergencecriterion)employedforallchemicalspeciesby
thechemistrysolver.
Atol
Theabsoluteerrortolerance(convergencecriterion)employedforallchemicalspecies
bythechemistrysolver.CAMxdoesnotusespeciesspecificAtolvaluesthatmay
appearinthespeciessection,asdiscussedbelow.
Jacobian
ThechemistrysolversemployaJacobianmatrixoffirstorderderivativesofeach
chemicalspecieswithrespecttoallspecies.TheJacobianmatrixisconstructed
automaticallybytheRTCMC.ThisoptioncontrolswhethertheJacobianisconstructed
algebraicallyornumerically.Bothoptionsmaybeusedwiththedoubleprecision
solversandnumericmaybemoreefficient.Thealgebraicoptionisstrongly
recommendedforthesingleprecisionSLSODEsolver(becausesingleprecisionmaybe
inadequateforconstructinganumericJacobianbyfinitedifference).
10.2.1.1.1ConcentrationUnits
CAMxdoesnotusetheSpecies_unitsorEmission_unitskeywordsandwillignore
themiftheyarepresent.CAMxwilloutputRTCMCspeciesaverageconcentrationsinppm
units.EmissionsofRTCMCspeciesmustbeprovidedinmoles/hour.
10.2.1.1.2SettingErrorTolerances
AllthreeRTCMCchemistrysolversusetheRtolandAtolparametersspecifiedinthecontrol
sectiontomanageerrorsinpredictedconcentrations.CAMxdoesnotusethespeciesspecific
Atolvaluesthatmayappearinthespeciessectionbecauseitisdifficulttoselectreliable
Atolvaluesforeachspecies.Theerror(err)inthepredictedconcentration(con)forspeciesi
shouldberoughlylessthan:
err(i) = rtol
con(i) + atol
ThecombinedRtolandAtoldetermineaccuracy.SettingAtoltozerowillresultinpure
relativeerrorcontrol.Relativeerrorcontrolhastheadvantageofbeingeasilyunderstood(the
errorsshouldbesmallerthanXpercent)butsuffersthedisadvantageofexcessive
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 210www.camx.com
computationalresourcesthatmaybeexpendedtomanageerrorsinspeciesconcentrations
thatareessentiallyzero.NotethatRTCMCsetsaconcentrationfloorof1.0E16ppm.
ThedefaultsettingsforRtolandAtollistedinTable101shouldbegenerallyapplicable
becausetheyareconservativeandeffectivelyresultinpurerelativeerrorcontrol.We
recommendagainstsettingRtolgreaterthan0.001.AppropriatesettingsforAtoldepend
uponthemagnitudeofconcentrationpredictionsandtheneedforaccuratepredictionsinhigh
vs.lowconcentrationareas(e.g.,plumecenterlinevs.outofplume).
DonotrequestinfeasibleaccuracyfromsingleprecisionSLSODEbysettingRtolandAtol
smallerthanabout1.0E7.
10.2.1.2TheSpeciesSection
ThespeciessectionoftheIMCfilelistschemicalspeciesandassociateddata.Allchemical
speciesreferredtointheequationsectionmustappearinthespeciessection.Extraspecies
mayappearinthespeciessection,butincludingnumerousextraspeciesmaycausearuntime
errorbyexceedingthememoryavailableforstoringspeciesinformation(ifthishappens,delete
someoftheunusedspeciesfromthespeciessection).
Thefirstlineisthekeywordidentifyingthespeciessection.Thefollowinginformationmustbe
providedforeachlistedspecies:
Name
Speciesnamesmaybeupto8charactersandmuststartwithaletter.Theyarecase
insensitive.AccuratenamesareimportantbecauseotherCAMxinputdata(e.g.,
emissions,boundaryconditions)willbematchedtoRTRACspeciesbyname.
Type
Therearefourpermissiblespeciestypesidentifiedbyfirstletter:Ambient(A),Fast(F),
Slow(S),andEquilibrium(E).Settingthespeciestypeisdiscussedinmoredetailbelow.
Ambient
TheambientvalueisnotusedbyCAMx,butisusedbySCICHEM.Providearealnumber
(e.g.,0.0).
Atol
SpeciesspecificerrortolerancesarenotusedbyCAMx,butareusedbySCICHEM.
Providearealnumber(e.g.,0.0).
Dep
Thespeciesdepositionvelocityinm/s.Thisdepositionvelocitywillbeusedforallland
surfacetypes,whichisasimplificationcomparedtotheCAMxdrydepositionscheme.
Providearealnumber(e.g.,0.0).
Wet Scav
ThewetscavengingcoefficientisnotusedbyCAMx.ForSCICHEM,thisisawashout
ratio.CAMxdoesnotusethewashoutratiobecausethisapproachisincompatiblewith
theCAMxwetdepositionalgorithms.Providearealnumber(e.g.,0.0).
MW
ThemolecularweightisnotneededbyCAMx.Providearealnumber(e.g.,1.0).
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 211www.camx.com
Spec Map
Thecoremodelspeciesnamefromwhichtouseinternallycalculateddrydeposition
velocityfortheRTCMCspecies.ThisistriggeredbyanegativeDepvalueinthesame
record.Providea10characterstring.Intheexamplebelow,RTCMCtracerO3Awilluse
depositionvelocitiescalculatedbyCAMxforthecoremodelspeciesO3:
#Name, Type, Ambient, ATol, Dep, Wet Scav, MW, Spec Map
O3A F 1.0 1.000E-08 -3.00E-03 0.0 48.0 O3
10.2.1.2.1ChoosingtheSpeciesType
TheTypeforeachRTCMCspeciesshouldbesetaccordingto:(a)whetherthespecies
concentrationshouldbeobtainedfromthecoremodelormodeledusingtheRTCMC;and(b)
themostaccurateandefficientnumericalmethodforperformingchemistrywithinRTCMC.
Allspeciestobeobtainedfromthecoremodel(e.g.,O3,OH,NO,NO2,H2O,M,O2)mustbeset
totypeAmbient.ThisrulewillbeenforcedbyCAMxand,forexample,thespeciesO3must
besettotypeA,becauseitispartofallthecorechemicalmechanisms.
SpeciesthataresolvedbytheRTCMCmaybetypeF,SorE.Therecommendeddefaulttype
isF(fast)inwhichcasechemistrywillbeperformedusingtheselectedchemistrysolver(e.g.,
DLSODE).Speciesthatundergoslowchemicalchange(lifetimeofhoursorlonger)maybeset
totypeS(slow)withpotentialgaininefficiencybutsomelossinaccuracy.Speciesthat
undergoextremelyrapidchemicalchange(lifetimesmallerthanasecond)maybesettotypeE
(equilibrium)andsolvedusingasteadystateapproximationwithsomegaininefficiencybut
somelossinaccuracy.TheRosenbrocksolverdoesnotworkwellwithspeciestypesSorE.
EquilibriumspeciesmaybeusedeffectivelywiththesingleprecisionSLSODEsolvertoavoidthe
needfordoubleprecision.YoushouldusetypesSorEwithcautionandevaluateboth
computationalspeedandconcentrationaccuracybycomparingagainstresultswithusing
typeF.
10.2.1.3TheTableSection
ThetablesectionoftheIMCfileprovidesphotolysisratesforanyphotolyticreactionsinthe
RTCMCmechanism.Itmustcontainatleasttwolines:
#Table
0 zenith1, zenith2, zenith3, …
Thefirstlineisthekeywordidentifyingthetablesection.Thesecondlinemustbeginwith0
(zero)followedbyalistofspacedelimitedzenithangles(indegrees)startingwithzerodegrees
andascendingtothelargestangle.Ifthelargestzenithanglespecifiedislessthan90degreesa
valueof90degreesisimplicitlyaddedtothelist.Bydefault,upto15zenithanglesareallowed
(thismaybechangedasdescribedunderadjustableparameters,below).Ifthefinalzenith
angleisnot90degrees,nomorethan14anglesshouldbelistedtoallowthe15thangletobe
implicitlysetto90degrees.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 212www.camx.com
Ifthereactionmechanismhasnophotolyticreactions,includejustthefirsttwolines(keyword
followedbyzenithangles)inthetablesection.Ifthereactionmechanismincludesphotolytic
reactions,listthemonereactionperspacedelimitedlineafterthezenithangles:
reaction_ID, rate1, rate2, rate3, …
Thereaction_IDmustbetheintegeridentificationnumberofthephotolyticreaction
followedbythephotolysisrateateachzenithangle,fromzerotothelargestangle.Photolysis
reactionsarefirstorderandhaverateunitsofreciprocaltimetobeprovidedinthe
Rate_time_unitsspecifiedinthecontrolsectionoftheIMCfile.Aphotolysisrateofzero
isimplicitlyassumedat90degreesunlessyouspecifyotherwise.
Anegativereaction_IDinthetablesectioncausesthephotolysisratetobesettoacore
modelreactionnumber,whichissetinthepositionofrate1”.Intheexamplebelow,
RTCMCreaction#1isphotolyticandrateswillbesetaccordingtotheCAMxcorephotolysis
reactionnumber9:
#Table
0 0. 10. 20. 30. 40. 50. 60. 70. 78. 86.
-001 9
10.2.1.4TheEquationsSection
TheequationssectionoftheIMCfileliststhechemicalreactionsandrateconstantsforthe
RTCMCreactionmechanismandmustcontainatleasttwolines:
#Equations
reaction_ID [Reactants] > (Stoichiometry) [Products] ; Rate_Constant
Thefirstlineisthekeywordidentifyingtheequationssectionandmustbefollowedbyatleast
onereactionline.Reactionlineslistreactionsandrateconstantsandaredelimitedbywhite
spaceandseparators.Thereaction_IDandtheReactantsmustbeseparatedbywhite
space.TheReactantsandProductsmustbeseparatedbyarightarrowsymbol(theright
arrowmaybeprecededbycharacters,e.g.,=>or>).TheProductsandthe
Rate_Constantmustbeseparatedbyasemicolon.
Thereaction_IDmustbeanintegervaluethatuniquelyidentifieseachreaction.Reactions
identifiersneednotbeinorderorcontinuous.
ThenameofReactantsandProductsmustbeenclosedwithinsquarebrackets,begin
withaletter,andnotexceed8charactersinlength.Allspeciesnamesusedintheequations
sectionmustalsoappearinthespeciessection.Zerotothreereactantsareallowed.Zeroto20
productsareallowed(themaximumisauseradjustableparameter).Reactantandproduct
namesmaybeprecededbyastoichiometriccoefficientenclosedwithinroundbrackets.Ifthe
stoichiometriccoefficientisomitteditisassumedtobeunity.
RateconstantsarespecifiedusingSCICHEMconventionsandmustbeintheunitsspecifiedby
thekeywordsRate_species_unitsandRate_time_unitsinthecontrolsection(the
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 213www.camx.com
defaultsaremoleculescm3andseconds,respectively).SCICHEMsupportsnumerousrate
constantexpressiontypesandCAMxshouldinterpretallofthemcorrectly,althoughnotall
havebeenthoroughlytested.Table102definesasubsetoftheSCICHEMrateconstant
expressiontypesthatarerecommendedforusewithCAMx.Theformatforspecifyingrate
expressionsistheintegerexpressiontypefollowedbyalistofthenumericalvaluesrequiredby
thatexpressiontype.Itisimportantthatrateexpressionsaredefinedinunitsthatare
consistentwiththereactionorder,andTable103defineshowthereactionorderandrate
constantunitdimensionsmaybedetermined.
Table102a.RecommendedSCICHEMrateconstantexpressiontypesforuseinCAMx.
ExpressionTypeDescriptionExpression
0 Photolysis k=0
1 Constant 0
kk
2 General temperature
dependence

TBc eTAk /
3 Troe-type temperature and
pressure dependence
G
F
kMk
Mk
k
/][1
][
0
0
B
TAk
0
D
TCk
6.0
F
1
2
0/][log1
kMkG
8 Equilibrium with a previously
defined reaction (kref)

TB
ref eAkk /
13 Lindemann - Hinshelwood
as used for OH + HNO3
23
3
0/}[1
][
kMk
Mk
kk

TB
eAk /
0

TD
eCk /
2

TF
eEk /
3
7
Simple pressure
dependence used for OH +
CO
Pkk 6.01
0
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 214www.camx.com
Table102b.ParametersrequiredbySCICHEMrateconstantexpressiontypes.
Expression
TypeParameters
12 3 4 56
0
0

1
k
o
2AB
C
3AB
C
D
8
k
re
f
A B
13AB
C
D E
F
7
k
o
Table103.Determiningthereactionorderandconsequentunitdimensionsforrate
constants.
NumberofReactantsReactionOrder
ConcentrationUnit
DimensionTimeUnitDimension
0ZeroNone Time1
1FirstNone Time1
2SecondConcentration1Time1
3ThirdConcentration2Time1
TheCAMxoutput“diag”filelistsdiagnosticinformationonthemechanismandrateconstant
expressionsreadbyfromtheIMCfile.Youshouldreviewthisdiagnosticoutputtoensurethat
CAMxcorrectlyreadandconfiguredtheRTCMCchemistrymechanism.
10.3ReactiveTracersInIRONPiG
RTRAC/RTCMCcalculationsforemissionsandchemistryhavebeenintegratedintotheIRONPiG
algorithms.TherearetwowaysinwhichRTRACtracersmayenteraPiGplume:asprimary
emissionsfromspecificallyflaggedsourceswithintheRTRACpointsourcefile,orbyformation
ofsecondaryspeciesfromdecayofprimaryplumeemissions.Thereisnoentrainmentof
tracersfromthegridtotheplumeasthisislikelytoresultinnegativetracerconcentrations,
especiallyiftheentrainedtracerisasecondaryproductofahostmodelspecies(e.g.,secondary
formaldehyde).TracersareassumedtohavenegligibleimpactonPiGpuffchemistryoroxidant
levels.Ifthetracerconcentrationintheplumeishighenoughtoenhanceorsuppressthe
plumeoxidantlevels,thenthephotochemicalimpactsofthetracercanbeaccountedforby
separatelyaddingthetraceremissionsintothehostmodellumpedemissions;e.g.,fortracing
highconcentrationsofpropeneandbuteneinaplume,onewouldtrackthepropene/butene
concentrationsusingRTRACtracersbutalsoaddCBOLEorSAPRCOLE1emissionstotheplume
toaccountfortheoxidantimpacts.RTRACcheckstoensurethatitisreadingitsowninput
pointsourcefile.RTRACandhostmodelpointsourcefilesmusthavethesamenumberof
sourcesinthesameorder;however,thelistofspeciesoneachfilemaybedifferent,andthe
sourcesflaggedtoreceivethePiGtreatmentmayvary.Apreprocessorprogramwascodedto
helpprepareconsistentRTRACandhostmodelpointsourcefiles.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 215www.camx.com
TracersreleasedfromPiGsourcesdecayaccordingtotheoxidantandphotolyticenvironment
oftheplumeusingusersuppliedchemicalrateparameters(asdescribedearlier).Oxidant
concentrationsforthedecaycalculationareobtainedfromtheCAMxPiGincremental
photochemicalsimulationforeachpuffateachtimestep.RTRACtracersineachpuffreactor
areupdatedbasedonthetotaloxidantconcentrationsforthereactor,i.e.,puffincrementplus
puffambient/background.RTRACenforcesarulethatnosecondarytracerformationfromthe
decayofhostmodelspeciesareallowedifIRONPiGisactive(e.g.,nosecondaryformaldehyde
tracerformationisallowedwithIRONPiG).Secondarytracerproductionfromprimarytracer
decayisallowed.
TracersaretransferredfromthePiGtothegridusingthesameapproachasforanyotherhost
modelspecies(seeSection6).Tracerconcentrationsatanypointarethesuperpositionofthe
gridconcentrationplusanycollocatedPiGpuffs.
RTRACoptionallyemployssurfacelayerIRONpuffsamplingoftracersonauserdefined
samplinggrid(seeSection6).Samplinggridsareentirelypassive,andintendedtoprovidea
displayofthereactivetracerplumeconcentrationsatscalesmuchsmallerthantypicallyused
forthefinestcomputationalgrids(i.e.,<1km).
10.4RunningCAMxWithReactiveTracers
10.4.1CAMxControlFile
RTRACisinvokedsimilarlytotheotherProbingToolswithintheCAMxcontrolfile.Inthe
&CAMx_Controlnamelistmodule,thevariableProbing_Toolmustbesetto“RTRAC”or
“RTCMC”.Anadditionalnamelistmodulecalled&RT_Controlmustthenbeprovidedinthe
controlfiletoconfiguretheRTRACportionofthemodel.Theadditionalnamelistmoduleis
describedbelow.Theorderofthevariablesfollowsthetemplateavailablewiththesource
code.Figure105providesanexampleoftheRTRACcontrolmodule.
DescriptionofRTRACControlintheCAMxRunControlFile
&RT_Control LabelfortheProbingToolnamelistmodulethatconfiguresthe
RTRACoption;itmustbeginincolumn2
& Flagendinganamelist;itmustbeincolumn2
RT_File_Root Characterrootoutputpath/filename
RT_Initial_Conditions CharacterinputmastergridRTRACinitialconditions
path/filename(optional,ignoredif Restart=TRUE)
RT_Boundary_Conditions CharacterinputmastergridRTRACboundaryconditions
path/filename(optional)
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 216www.camx.com
RT_Master_Restart CharacterinputmastergridRTRACrestartpath/filename
(ignoredif Restart=FALSE)
RT_Nested_Restart CharacterinputnestedgridRTRACrestartpath/filename
(ignoredif Restart=FALSE or Number_of_Grids=1)

RT_Chemistry_Parameters CharacterinputRTRACchemistryparameterspath/filename,or
RTCMCIMCchemistrydefinitionpath/filename
RT_Receptor_Definitions CharacterinputRTRACreceptordefinitionpath/filename
(optional)
RT_Point_Sources CharacterinputRTRACelevatedpointsourceemissions
path/filename(optional,ignoredif
Point_Emissions=FALSE)
RT_Emiss_Grid Characterarray(byCAMxgrid)inputRTRACgriddedemissions
path/filename(optional,ignoredif
Gridded_Emissions=FALSE)
RT_PiG_Sample LogicalsamplinggridflagforRTRACIRONPiGoutput;sampling
gridsaredefinedinthemain &CAMx_Controlnamelist
(TRUE=samplinggridoutputwillbegenerated,FALSE=sampling
gridoutputwillnotbegenerated)
Figure104.ExampleinputofRTRACoptionsandfilenameswithintheCAMxcontrolfile.
&RT_Control
RT_File_Root = 'CAMx6.test.020614',
RT_Initial_Conditions = ' ',
RT_Boundary_Conditions = ' ',
RT_Master_Restart = 'CAMx6.test.020613.rt.inst',
RT_Nested_Restart = 'CAMx6.test.020613.rt.finst',
RT_Chemistry_Parameters = 'CAMx6.chemparam.rtrac_test',
RT_Receptor_Definitions = 'receptor.rtrac.test',
RT_Point_Sources = 'pt.rtrac.test',
RT_Emiss_Grid(1) = 'emiss.rtrac.36km',
RT_Emiss_Grid(2) = 'emiss.rtrac.12km',
RT_Emiss_Grid(3) = 'emiss.rtrac.04km',
RT_PiG_Sample = .true.,
&
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 217www.camx.com
AswiththeoutputforthehostmodelandotherProbingTools,a“root”filenameisspecified
andsuffixesareaddeddependinguponthetypeofoutputproduced.Aseparaterootnamefor
RTRAC(andotherProbingTools)allowstheusertodirecttheoutputtoacompletelydifferent
path.RTRACwritesseveraloutputfilesthatareinFortranbinaryformat,asdescribedin
Section3.Theseincludethemasterandnestedgridtracerinstantaneousconcentrationfiles
(.rt.instand.rt.finst),thegridspecificsurfacetraceraverageconcentrationfile
(.rt.grdnn).Thesefilesarewritteninthesameformatasfortheregularmodelspecies
describedinSection3.
TheRT_Chemistry_Parameternamelistvariablespecifiesthepath/filenameofeither
theRTRACchemistryparametersfileortheRTCMCIMCchemistrydefinitionfile.Thechoiceof
whichtypeoffileformatisreadissetaccordingthemainProbing_Toolvariable(i.e.,
RTRACorRTCMC).
RTRAC/IRONPiGsamplinggridsareinvokedintheRTRACnamelistbysettingalogicalflag.If
settoTRUE,theusermustprovidethenumberofsamplinggridsandthegridparametersof
eachinthemain&CAMx_Controlnamelist.Samplinggridsaresetidenticallytotheway
nestedgridsarespecifiedforthehostmodel,withoneexception:therearenoverticallevelsto
define(samplinggridsarecurrentlyonly2Dsurfacefields).Thesamerulesthatapplyforthe
specificationofnestedgridsholdsforthespecificationofallsamplinggrids(seeSections2,4,
and6).The“meshfactor”setstheresolutionorcellsizeofthesamplinggridrelativetothe
mastergrid.TheCAMxdiagnosticoutputfileprovidesinformationonthelocationandsizeof
eachsamplinggridtohelpensurepropersetup.
10.4.2UserAdjustableParameters
OncetheRTRAC/RTCMCchemistryparameters/definitionfileisestablished,theusershouldbe
surethatasufficientallocationofmemoryisprovidedforthisProbingTool.Thisisdoneby
examiningthemainProbingToolparameterandcommonblockfilein
Includes/camx.prm.TheparameterMXTRSPshouldbesettothetotalnumberofspecies
definedinthechemistryparametersfile.Ifsamplinggridsaretobeused,theusershould
ensurethatsufficientmemoryisavailabletodefinethesizeofsamplinggridarrays.Thisisalso
setinIncludes/camx.prm.
UseradjustableparametersforRTCMCaresetintheCAMxincludefile
Includes/rtcmcchm.inc.Ifanerrorisencounteredatmodelstartupbecauseoneof
theseRTCMCparameterhasbeenexceeded,consultthelistofparametersinTable104and
thenchangetheparameterappropriatelyinthertcmcchm.incincludefile.Rebuildthe
CAMxexecutable(werecommendperformingamake cleanbeforemakinganewCAMx
executable)afterchanginganyRTCMCparameter.
March2016CAMxUser’sGuideVersion6.3
10.ReactiveTracers
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 218www.camx.com
Table104.RTCMCparametersdefaultsettingsintheIncludes/rtcmcchm.incinclude
file.
NameDescriptionDefault
MXRX maximumnumberofRTCMCreactions 20
MXPHOT maximumnumberofphotolysisreactions 10
MXZEN maximumnumberofphotolysisreactionzenithangles 15
MXRCTMaximumnumberofreactantsineachreaction 3
MXPRD maximumnumberofproductsineachreaction 20
MXEQM maximumnumberofequilibriumspecies 5
MXSLOmaximumnumberofslowspecies 25
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 219www.camx.com
11.REFERENCES
Anthes,R.A.andT.T.Warner.1978.DevelopmentofHydrodynamicModelsSuitableforAir
PollutionandOtherMesometeorologicalStudies.Mon.Wea.Rev.,106,10451078.
Arey,J.,S.M.Aschmann,E.S.C.Kwok,R.Atkinson.2001.Alkylnitrate,hydroxyalkylnitrate,and
hydroxycarbonylformationfromtheNOxairphotooxidationsofC5C8nalkanes.J.
Phys.Chem.,A105,10201027.
Ariya,P.A.,A.KhalizovandA.Gidas.2002.Reactionsofgaseousmercurywithatomicand
molecularhalogens:kinetics,productstudies,andatmosphericimplications.J.Phys.
Chem.,106,73107320.
AstithaM.,C.Spyrou,G.Kallos,H.DenierVanderGon,A.VisschedijkandJ.Lelieveld.2009.
Chemicalcompositionchangeofaerosolsalonglongrangetransportpaths.30th
NATO/SPSITMonAirPollutionModellinganditsApplications,May2009,SanFrancisco,
CA.
Atkinson,R.,W.P.Carter,A.M.Winer.1983.Effectsoftemperatureandpressureonalkyl
nitrateyieldsinthenitrogenoxide(NOx)photooxidationsofnpentaneandnheptane.
J.Phys.Chem.,87(11),20122018.
Atkinson,R.A.,D.L.Baulch,R.A.Cox,J.N.Crowley,R.F.Hampson,R.G.Hynes,M.E.Jenkin,J.A.
Kerr,M.J.Rossi,J.Troe.2010.“Evaluatedkineticandphotochemicaldatafor
atmosphericchemistry‐IUPACsubcommitteeongaskineticdataevaluationfor
atmosphericchemistry.”January3,2010webversionavailableathttp://www.iupac
kinetic.ch.cam.ac.uk/index.html.
Barlage,M.,F.Chen,M.Tewari,K.Ikeda,D.Gochis,J.Dudhia,R.Rasmussen,B.Livneh,M.Ek,
K.Mitchell.2010.Noahlandsurfacemodelmodificationstoimprovesnowpack
predictionintheColoradoRockyMountains.J.Geophys.Res.,115,D22101,
doi:10.1029/2009JD013470.
Bertram,T.H.,Thornton,J.A.2009.TowardageneralparameterizationofN2O5reactivityon
aqueousparticles:thecompetingeffectsofparticleliquidwater,nitrateandchloride.
Atmos.Chem.Phys.,9,83518363.
Bott,A.1989.APositiveDefiniteAdvectionSchemeObtainedbyNonlinearRenormalizationof
theAdvectiveFluxes.Mon.Wea.Rev.,117,10061015.
Brown,S.S.,Ryerson,T.B.,Wollny,A.G.,Brock,C.A.,Peltier,R.,Sullivan,A.P.,Weber,R.J.,Dube,
W.P.,Trainer,M.,Meagher,J.F.,Fehsenfeld,F.C.,Ravishankara,A.R.2006.Variabilityin
nocturnalnitrogenoxideprocessinganditsroleinregionalairquality.Science,311,67
70.
Carlton,A.G.,B.J.Turpin,K.E.Altieri,S.Seitzinger,A.Reff,H.J.Lim,B.Ervens.2007.
AtmosphericoxalicacidandSOAproductionfromglyoxal:Resultsofaqueous
photooxidationexperiments.Atmos.Environ.,41,75887602.
Carpenter,L.J.2003.Iodineinthemarineboundarylayer.ChemicalReviews,103,49534962.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 220www.camx.com
Carter,W.P.L.1996.CondensedAtmosphericPhotooxidationMechanismsforIsoprene.
Atmos.Environ.,30,42754290.
Carter,W.P.L.2010.DevelopmentoftheSAPRC07chemicalmechanism.Atmos.Environ.,44,
53245335.
Carter,W.P.andG.Heo.2013.DevelopmentofrevisedSAPRCaromaticsmechanisms.Atmos.
Environ.,77,404414.
Chang,J.S.,R.A.Brost,I.S.A.Isaksen,S.Madronich,P.Middleton,W.R.Stockwell,andC.J,
Walcek.1987.AThreedimensionalEulerianAcidDepositionModel:PhysicalConcepts
andFormulation.J.Geophys.Res.,92,14,68114,700.
Clever,H.,S.A.JohnsonandE.M.Derrick.1985.Thesolubilityofmercuryandsomesparingly
solublemercurysaltsinwaterandaqueoussolutions.J.Phys.Chem.Ref.Data,14,631
680.
Cohan,D.S.,A.Hakami,Y.Hu,andA.G.Russell.2005.NonlinearResponseofOzoneto
Emissions:SourceApportionmentandSensitivityAnalysis.Environ.Sci.Technol.,39,
67396748.
Colella,P.,andP.R.Woodward.1984.ThePiecewiseParabolicMethod(PPM)forGas
dynamicalSimulations.J.Comp.Phys.,54,174201.
DelGenio,A.D.,M.S.Yao,W.Kovari,K.K.W.Lo.1996.Aprognosticcloudwater
parameterizationforglobalclimatemodels.J.Climate,9,270304.
Donahue,N.M.,A.L.Robinson,C.O.Stanier,S.N.Pandis.2006.Coupledpartitioning,dilution,
andchemicalagingofsemivolatileorganics.Environ.Sci.Technol.,40,26352643.
Donahue,N.M.,S.A.Epstein,S.N.Pandis,A.L.Robinson.2011.Atwodimensionalvolatility
basisset:1.organicaerosolmixingthermodynamics.Atmos.Chem.Phys.,11,3303
3318.
Donahue,N.M.,J.H.Kroll,S.N.Pandis,A.L.Robinson.2012.Atwodimensionalvolatilitybasis
setPart2:Diagnosticsoforganicaerosolevolution.Atmos.Chem.Phys.,12,615634.
Dunker,A.M.1980.Theresponseofanatmosphericreactiontransportmodeltochangesin
inputfunctions.Atmos.Environ.,14,671679.
Dunker,A.M.1981.Efficientcalculationsofsensitivitycoefficientsforcomplexatmospheric
models.Atmos.Environ.15,11551161.
DunkerA.M.,G.Yarwood,J.P.Ortmann,G.M.Wilson.2002.Thedecoupleddirectmethodfor
sensitivityanalysisinathreedimensionalairqualitymodelimplementation,accuracy
andefficiency.Environ.Sci.Technol.,36,29652976.
Edgerton,E.S.,B.E.HartsellandJ.J.Jansen.2001.Atmosphericmercurymeasurementsata
ruralandurbansitenearAtlanta,GA,USA.6thInternationalConferenceonMercuryasa
GlobalPollutant,1519October2001,Minamata,Japan.
Ek,M.B.,K.E.Mitchell,Y.Lin,E.Rogers,P.Grunmann,V.Koren,G.Gayno,J.D.Tarpley.2003.
ImplementationofNoahlandsurfacemodeladvancesintheNationalCentersfor
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 221www.camx.com
EnvironmentalPredictionoperationalmesoscaleEtamodel.J.Geophys.Res.,108(D22),
8851,doi:10.1029/2002JD003296.
Elterman,L.1968.“UV,Visible,andIRAttenuationforAltitudesto50km,1968.”USAirForce
CambridgeResearchLaboratoryReport,AFCRL680153.
Emery,C.,J.Jung,J.Johnson,G.Yarwood,S.Madronich,G.Grell.2010.Improvingthe
CharacterizationofCloudsandtheirImpactonPhotolysisRateswithintheCAMx
PhotochemicalGridModel.PreparedfortheTexasCommissiononEnvironmental
Quality,Austin,TX.PreparedbyENVIRONInternationalCorporation,Novato,CAand
theNationalCenterforAtmosphericResearch,Boulder,CO(August27,2010).
Emery,C.,E.Tai,G.Yarwood,R.Morris.2011.Investigationintoapproachestoreduce
excessiveverticaltransportovercomplexterraininaregionalphotochemicalgrid
model.Atmos.Environ.,45,73417351,doi:10.1016/j.atmosenv.2011.07.052.
Emery,C.,J.Jung,B.Koo,G.Yarwood.2015.ImprovementstoCAMxSnowCoverTreatments
andCarbonBondChemicalMechanismforWinterOzone.PreparedfortheUtah
DepartmentofEnvironmentalQuality,DivisionofAirQuality,SaltLakeCity,UT.
PreparedbyRambollEnviron,Novato,CA(August2015).
ENVIRON.2002.Development,Application,andEvaluationofanAdvancedPhotochemicalAir
ToxicsModelingSystem.PreparedfortheCoordinatingResearchCouncil,Alpharetta,
GA,andtheU.S.DepartmentofEnergy,OfficeofHeavyVehicleTechnologies
(September27,2002).Availablefromwww.crcao.com.
EPA.1990.User’sGuidefortheUrbanAirshedModelVolumeI;User’sManualforUAM(CB
IV).U.S.EnvironmentalProtectionAgency,ResearchTrianglePark,NC,EPA450/490
007a.
EPA.1998.User’sGuidefortheAERMODMeteorologicalPreprocessor(RevisedDraft).
PreparedbytheU.S.EnvironmentalProtectionAgency,ResearchTrianglePark,NC
(November,1998).
EPRI.2000.SCICHEMVersion1.2:TechnicalDocumentation.FinalReportpreparedby
ARAP/TitanCorporation,Princeton,NJ,forEPRI,PaloAlto,CA.December2000
(1000713).
Fahey,K.M.andS.N.Pandis.2001.Optimizingmodelperformance:variablesizeresolutionin
cloudchemistrymodeling.Atmos.Environ.35,44714478.
FLAG.2000.“FederalLandManagers’AirQualityRelatedValuesWorkgroup(FLAG),PhaseI
Report.”PreparedbytheUSForestService,AirQualityProgram;NationalParkService,
AirResourcesDivision;andUSFishandWildlifeService,AirQualityBranch(December
2000).
Gallagher,W.M.,K.M.Beswick,J.Duyzer,H.Westrate,T.W.Choularton,J.P.Hummelsho.1997.
MeasurementsofaerosolfluxestoSpeulderforestusingamicrometeorological
technique.Atmos.Environ.,31,359373.
Ganzeveld,L.,D.Helmig,C.W.Fairall,J.Hare,andA.Pozzer.2009.Atmosphereoceanozone
exchange:Aglobalmodelingstudyofbiogeochemical,atmospheric,andwaterside
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 222www.camx.com
turbulencedependencies.GlobalBiogeochem.Cycles,23,GB4021,
doi:10.1029/2008GB003301.
Gardfeldt,K.andM.Johnson.2003.IsbimolecularreductionofHg(II)complexespossiblein
aqueoussystemsofenvironmentalimportance?J.Phys.Chem.,107,44784482.
Gear,C.W.1971.NumericalInitialValueProblemsinOrdinaryDifferentialEquations.Prentice
Hall,EnglewoodCliffs,NJ.
Gery,M.W.,G.Z.Whitten,J.P.Killus,andM.C.Dodge.1989.APhotochemicalKinetics
MechanismforUrbanandRegionalScaleComputerModeling.J.Geophys.Res.,94,
925956.
Goliff,W.S.,W.R.Stockwell,C.V.Lawson.2013.Theregionalatmosphericchemistry
mechanism,version2.Atmos.Environ.,68,174185.
Hairer,E.,andG.Wanner.1991.SolvingordinarydifferentialequationsIIStiffanddifferential
algebraicproblems.SpringerVerlag,Berlin.
Hakami,A.,M.T.Odman,andA.G.Russell.2003.Highorder,directsensitivityanalysisof
multidimensionalairqualitymodels.Environ.Sci.Technol.,37,24422452.
Hall,B.1995.Thegasphaseoxidationofelementalmercurybyozone.WaterAirSoilPollut.,
80,301315.
Helmig,D.,E.K.Lang,L.Bariteau,P.Boylan,C.W.Fairall,L.Ganzeveld,J.E.Hare,J.Hueber,M.
Pallandt.2012.AtmospherieoceanozonefluxesduringtheTexAQS2006,STRATUS
2006,GOMECC2007,GasEx2008andAMMA2008Cruises.J.Geophys.Res.,117,
D04305,doi:10.1029/2011JD015955.
Herman,J.R.andE.A.Celarier.1997.Earthsurfacereflectivityclimatologyat340380nmfrom
TOMSdata.J.Geophys.Res.,102,No.23.
HertelO.,R.Berkowics,J.ChristensenandO.Hov.1993.Testoftwonumericalschemesfor
useinatmospherictransportchemistrymodels.Atmos.Env.,27,25912611.
HildebrandtRuiz,L.H,andG.Yarwood.2013.InteractionsbetweenorganicaerosolandNOy:
Influenceonoxidantproduction.PreparedfortheTexasAQRP(Project12012),bythe
UniversityofTexasatAustin,andENVIRONInternationalCorporation,Novato,CA
(http://aqrp.ceer.utexas.edu/projectinfoFY12_13/12012/12
012%20Final%20Report.pdf).
HildebrandtRuiz,L.,Koo,B.,Yarwood,G.2015.SourcesofOrganicParticulateMatterin
Houston:EvidencefromDISCOVERAQdata‐ModelingandExperiments.FinalReport
preparedfortheTexasAQRP(Project14024),bytheUniversityofTexasatAustin,and
RambollEnviron,Novato,CA(http://aqrp.ceer.utexas.edu/projectinfoFY14_15/14
024/14024%20Final%20Report.pdf).
Hindmarsh,A.C.1983.ODEPACK,aSystematizedCollectionofODESolvers.InNumerical
MethodsforScientificComputation,55,R.S.Stepleman,Ed.,NorthHolland,NewYork.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 223www.camx.com
Holmes,C.D.,D.J.Jacob,andX.Yang.2006.Globallifetimeofelementalmercuryagainst
oxidationbyatomicbromineinthefreetroposphere.Geophys.Res.Lett.,33,L20808,
doi:10.1029/2006GL027176.
Holtslag,A.A.M.andB.A.Boville.1993.Localversusnonlocalboundarylayerdiffusionina
globalclimatemodel.J.Climate,6,1825–1842.
Huebert,B.J.,andC.H.Robert.1985.TheDryDepositionofNitricAcidtoGrass.J.Geophys.
Res.,90(D1),20852090(doi:10.1029/JD090iD01p02085).
Hutzell,W.T.,Luecken,D.J.,Appel,K.W.,Carter,W.P.L.2012.Interpretingpredictionsfromthe
SAPRC07mechanismbasedonregionalandcontinentalsimulations.Atmos.Environ.,
46,417429.
IUPAC.1992.EvaluatedKineticandPhotochemicalDataforAtmosphericChemistry.
SupplementIV.IUPACSubcommitteeonGasKineticDataEvaluationforAtmospheric
Chemistry(R.Atkinson,D.L.Baulch,R.A.Cox,R.F.Hampson,Jr.,J.A.Kerr,andJ.Troe).
JournalofPhysicalandChemicalReferenceData,21,No.6,11251568.
IUPAC.2014a.“SummaryofReactionsandPreferredRateData,Volume3‐InorganicHalogen
Species.”Availableathttp://iupac.pole
ether.fr/datasheets/summary/vol3_summary.xml.
IUPAC.2014b.“SummaryofReactionsandPreferredRateData,Volume‐OrganicHalogen
Species.”Availableathttp://iupac.pole
ether.fr/datasheets/summary/vol4_summary.xml.
IUPAC.2015.“TaskGrouponAtmosphericChemicalKineticDataEvaluationDataSheet
NOx33.”Availableathttp://iupac.pole
ether.fr/htdocs/datasheets/pdf/NOx33_N2O5_H2O.pdf.
Jacob,D.J.2000.Heterogeneouschemistryandtroposphericozone.Atmos.Environ.,34,
21312159.
Jaegle,L.,D.J.Jacob,W.H.BruneandP.O.Wennberg.2001.ChemistryofHOxradicalsinthe
uppertroposphere.Atmos.Environ.,35,469489.
Jathar,S.H.,Gordon,T.D.,Hennigan,C.J.,Pye,H.O.T.,Pouliot,G.,Adams,P.J.,Donahue,N.M.,
Robinson,A.L.2014.Unspeciatedorganicemissionsfromcombustionsourcesandtheir
influenceonthesecondaryorganicaerosolbudgetintheUnitedStates.Proc.Natl.
Acad.Sci.,111,1047310478.
Jeffries,H.E.,andG.S.Tonnesen.1994.Comparisonoftwophotochemicalreaction
mechanismsusingamassbalanceandprocessanalysis.Atmos.Environ.,28,29913003.
Kalberer,M.,D.Paulson,M.Sax,M.Steinbacher,J.Dommen,A.S.H.Prevot,R.Fisseha,E.
Weingartner,V.Franhevich,R.Zenob,andU.Balternsperger.2004.Identificationof
polymersasmajorcomponentsofatmosphericorganicaerosols.Science,303,1659
1662.
Karamchandani,P.,A.Koo,C.Seigneur.1998.Reducedgasphasekineticmechanismfor
atmosphericplumechemistry.Environ.Sci.Technol.,32,17091720.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 224www.camx.com
Koo,B.,A.S.Ansari,andS.N.Pandis.2003.IntegratedApproachestoModelingtheOrganic
andInorganicAtmosphericAerosolComponents.Atmos.Environ.,37,47574768.
Koo,B.,G.Yarwood,D.S.Cohan.2007a.IncorporationofHighorderDecoupledDirectMethod
(HDDM)SensitivityAnalysisCapabilityintoCAMx.PreparedfortheTexasCommission
onEnvironmentalQuality,Austin,TX.PreparedbyENVIRONInternationalCorporation,
Novato,CAandRiceUniversity,Houston,TX.
Koo,B.,A.M.Dunker,G.Yarwood.2007b.ImplementingtheDecoupledDirectMethodfor
SensitivityAnalysisinaParticulateMatterAirQualityModel.Environ.Sci.Technol.,41,
28472854.
Koo,B.,G.Yarwood,D.S.Cohan.2008.HigherorderDecoupledDirectMethod(HDDM)for
OzoneModelingSensitivityAnalysesandCodeRefinements.PreparedfortheTexas
CommissiononEnvironmentalQuality,Austin,TX.PreparedbyENVIRONInternational
Corporation,Novato,CAandRiceUniversity,Houston,TX.
Koo,B.,G.M.Wilson,R.E.Morris,A.M.Dunker,G.Yarwood.2009.ComparisonofSource
ApportionmentandSensitivityAnalysisinaParticulateMatterAirQualityModel.
Environ.Sci.Technol.,43,66696675.
Koo,B.,G.YarwoodandJ.Roberts.2012.AnAssessmentofNitrylChlorideFormation
ChemistryanditsImportanceinOzoneNonAttainmentAreasinTexas.Finalreportfor
TexasAirQualityResearchProgramproject10015.PreparedbyENVIRONInternational
Corporation,Novato,CAandNOAA/ESRL,Boulder,CO.Availableat
http://aqrp.ceer.utexas.edu/projectinfo%5C10015%5C10015%20Final%20Report.pdf.
Koo,B.,E.Knipping,G.Yarwood.2014.1.5Dimensionalvolatilitybasissetapproachfor
modelingorganicaerosolinCAMxandCMAQ.Atmos.Environ.,95,158164.
Kumar,N.,F.W.Lurmann,A.S.Wexler,S.Pandis,andJ.H.Seinfeld.1996.Developmentand
ApplicationofaThreeDimensionalAerosolModel.PresentedattheA&WMASpecialty
ConferenceonComputinginEnvironmentalResourceManagement,ResearchTriangle
Park,NC,December24,1996.
Kumar,N.andA.G.Russell.1996.DevelopmentofaComputationallyefficient,ReactiveSub
GridScalePlumeModelandtheImpactintheNortheasternUnitedStatesUsing
IncreasingLevelsofChemicalDetail.J.Geophys.Res.,101,16,73716,744.
Landis,M.S.andG.Keeler.2002.AtmosphericmercurydepositiontoLakeMichiganduringthe
LakeMichiganMassBalanceStudy.Environ.Sci.Technol.,36,45184524.
Lane,T.E.,N.M.Donahue,S.N.Pandis.2008.Simulatingsecondaryorganicaerosolformation
usingthevolatilitybasissetapproachinachemicaltransportmodel.Atmos.Environ.,
42,74397451.
Lee,L.,P.J.Wooldridge,J.B.Gilman,C.Warneke,J.deGouw,R.C.Cohen.2014.Low
temperaturesenhanceorganicnitrateformation:evidencefromobservationsinthe
2012UintahBasinWinterOzoneStudy.Atmos.Chem.Phys.Disc.,14(11),1740117438.
Lin,C.J.andS.O.Pehkonen.1997.Aqueousfreeradicalchemistryofmercuryinthepresence
ofironoxidesandambientaerosol.Atmos.Environ.,31,41254137.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 225www.camx.com
Lin,C.J.andS.O.Pehkonen.1998.Oxidationofelementalmercurybyaqueouschlorine
(HOCl/OCl):Implicationsfortroposphericmercurychemistry.J.Geophys.Res.,103,
2809328102.
Lindberg,S.,O.R.Bullock,R.Ebinghaus,D.Engstrom,X.Feng,W.Fitzgerald,N.Pirrone,E.
Prestbo,andC.Seigneur.2007.Asynthesisofprogressanduncertaintiesinattributing
thesourcesofmercuryindeposition.Ambio,36,1933.
Lindqvist,O.andH.Rodhe.1985.Atmosphericmercury‐areview.Tellus,37B,136159.
Liu,M.andJ.Carroll.1996.Ahighresolutionairpollutionmodelsuitablefordispersionstudies
incomplexterrain.Mon.Wea.Rev.,124,10,23962409.
Livneh,B.,Y.Xia,K.E.Mitchell,M.B.Ek.2010.NoahLSMsnowmodeldiagnosticsand
enhancements.J.Hydromet.,11,doi:10.1175/2009JHM1174.1.
Locatelli,J.D.andP.V.Hobbs.1974.Fallspeedsandmassesofsolidprecipitationparticles.J.
Geophys.Res.,79(15),21852197.
Louis,J.F.1979.AParametricModelofVerticalEddyFluxesintheAtmosphere.Bound.Lay.
Meteor.17,187202.
May,A.A.,A.A.Presto,C.J.Hennigan,N.T.Nguyen,T.D.Gordon,A.L.Robinson.2013a.Gas
particlepartitioningofprimaryorganicaerosolemissions:(1)Gasolinevehicleexhaust.
Atmos.Environ.,77,128139.
May,A.A.,A.A.Presto,C.J.Hennigan,N.T.Nguyen,T.D.Gordon,A.L.Robinson.2013b.Gas
ParticlePartitioningofPrimaryOrganicAerosolEmissions:(2)DieselVehicles.Environ.
Sci.Technol.,47,82888296.
May,A.A.,E.J.T.Levin,C.J.Hennigan,I.Riipinen,T.Lee,J.L.CollettJr.,J.L.Jimenez,S.M.
Kreidenweis,A.L.Robinson.2013c.Gasparticlepartitioningofprimaryorganicaerosol
emissions:3.Biomassburning.J.Geophys.Res.,118,1132711338.
Moore,R.andTokarczyk,R.1993.VolatileBiogenicHalocarbonsintheNorthwestAtlantic.
GlobalBiogeochem.Cy.,7,195–210,
Moore,R.andZafiriou,O.1994.Photochemicalproductionofmethyliodideinseawater.J.
Geophys.Res.,99,16415–16420,doi:10.1029/94JD00786.
Morris,R.E.,S.Lau,andG.Yarwood.2003.DevelopmentandApplicationofanAdvancedAir
ToxicsHybridPhotochemicalGridModelingSystem.Presentedat96thAnnual
ConferenceandExhibitionoftheA&WMA,SanDiego,California(June2003).
Munthe,J.1992.Theaqueousoxidationofelementalmercurybyozone.Atmos.Environ.,Part
A,26,14611468.
Murphy,B.N.,S.N.Pandis.2009.SimulatingtheFormationofSemivolatilePrimaryand
SecondaryOrganicAerosolinaRegionalChemicalTransportModel.Environ.Sci.
Technol.,43,47224728.
NASA.1997.ChemicalKineticsandPhotochemicalDataforUseinStratosphericModeling,JPL
Publication974.JetPropulsionLaboratory,CaliforniaInstituteofTechnology,
Pasadena,California.January15.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 226www.camx.com
NCAR.2011.TheTroposphericVisibleandUltraviolet(TUV)RadiationModelwebpage.
NationalCenterforAtmosphericResearch,AtmosphericChemistryDivision,Boulder,
Colorado,http://cprm.acd.ucar.edu/Models/TUV/index.shtml.
Nenes,A,C.Pilinis,andS.N.Pandis.1998.ISORROPIA:ANewThermodynamicModelfor
MultiphaseMulticomponentInorganicAerosols.AquaticGeochemistry,4,123152.
Nenes,A.,C.Pilinis,andS.N.Pandis.1999.ContinuedDevelopmentandTestingofaNew
ThermodynamicAerosolModuleforUrbanandRegionalAirQualityModels.Atmos.
Environ.33,15531560.
Odman,M.T.andIngram,C.L.1993.MultiscaleAirQualitySimulationPlatform(MAQSIP):
SourceCodeDocumentationandValidation.Technicalreport,83pp.,ENV96TR002,
MCNC–NorthCarolinaSupercomputingCenter,ResearchTrianglePark,NorthCarolina,
1996.
Ordóñez,C.,J.F.Lamarque,S.Tilmes,D.E.Kinnison,E.L.Atlas,D.R.Blake,G.SousaSantos,G.
Brasseur,andA.SaizLopez.2012.Bromineandiodinechemistryinaglobalchemistry
climatemodel:descriptionandevaluationofveryshortlivedoceanicsources.Atmos.
Chem.Phys.,12,14231447,doi:10.5194/acp1214232012.
Pal,B.,andP.A.Ariya.2003.Atmosphericreactionsofgaseousmercurywithozoneand
hydroxylradical:kineticsandproductstudies.J.Phys.,107,189–192.
Pal,B.andP.A.Ariya.2004.GasphaseHOinitiatedreactionsofelementalmercury:Kinetics,
productstudiesandatmosphericimplications.Environ.Sci.Technol.,38,55555566.
Pandis,S.N.,A.S.Wexler,andJ.H.Seinfeld.1993.Secondaryorganicaerosolformationand
transport,II,Predictingtheambientsecondaryorganicaerosolsizedistribution.Atmos.
Environ.,27A,24032416.
Parrella,J.P.,D.J.Jacob,Q.Liang,Y.Zhang,L.J.Mickley,B.Miller,M.J.Evansetal.2012.
Troposphericbrominechemistry:implicationsforpresentandpreindustrialozoneand
mercury.Atmos.Chem.Phys.,12,no.15:67236740.
Paulot,F.,J.D.Crounse,H.G.Kjaergaard,J.H.Kroll,J.H.Seinfeld,P.O.Wennberg.2009a.
Isoprenephotooxidation:newinsightsintotheproductionofacidsandorganicnitrates.
Atmos.Chem.Phys.,9,14791501.
Paulot,F,J.D.Crounse,H.G.Kjaergaard,A.Kurten,J.M.St.Clair,J.H.Seinfeld,P.O.Wennberg.
2009b.UnexpectedEpoxideFormationintheGasPhasePhotooxidationofIsoprene.
Science,325,730733.
Peeters,J.,Nguyen,T.L.,Vereecken,L.2009.HOxradicalregenerationintheoxidationof
isoprene.Phys.Chem.andChem.Phys.,11,59355939
Pehkonen,S.O.andC.J.Lin.1998.Aqueousphotochemistryofdivalentmercurywithorganic
acids.J.AirWasteManage.Assoc.,48,144150.
Perring,A.E.,S.E.Pusede,R.C.Cohen.2013.Anobservationalperspectiveontheatmospheric
impactsofalkylandmultifunctionalnitratesonozoneandsecondaryorganicaerosol.
ChemicalReviews,113(8),58485870.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 227www.camx.com
Pleim,J.2007.Acombinedlocalandnonlocalclosuremodelfortheatmosphericboundary
layer.PartI:Modeldescriptionandtesting.J.Appl.Met.andClim.,46,13831395.
Radhakrishnan,K.andA.C.Hindmarsh.1993.DescriptionandUseofLSODE,theLivermore
SolverforOrdinaryDifferentialEquations.NASAreferencePublication1327.Lawrence
LivermoreNationalLaboratory,Livermore,CA.
Ranjan,M.,A.A.Presto,A.A.May,A.L.Robinson.2012.TemperatureDependenceofGas–
ParticlePartitioningofPrimaryOrganicAerosolEmissionsfromaSmallDieselEngine.
AerosolSci.Technol.,46,1321.
Raofie,F.andP.A.Ariya.2003.ReactionsofBrOwithmercury:kineticstudies.J.Phys.IV,107,
1119–1121.
Robinson,A.L.,N.M.Donahue,M.K.Shrivastava,E.A.Weitkamp,A.M.Sage,A.P.Grieshop,T.E.
Lane,J.R.Pierce,S.N.Pandis.2007.Rethinkingorganicaerosols:semivolatileemissions
andphotochemicalaging.Science,315,12591262.
Russell,L.M.,S.N.Pandis,andJ.H.Seinfeld.1994.Aerosolproductionandgrowthinthe
marineboundarylayer.J.Geophys.Res.,99,2098921003.
Rutter,A.P.,andJ.J.Schauer.2007a.Theeffectoftemperatureonthegasparticlepartitioning
ofreactivemercuryinatmosphericaerosols.Atmos.Environ.,41,86478657.
Rutter,A.P.;Schauer,J.J.2007b.Theimpactofaerosolcompositionontheparticletogas
partitioningofreactivemercury.Environ.Sci.Technol.,41,39343939.
Ryaboshapko,A.,R.Bullock,R.Ebinghaus,I.Ilyin,K.Lohman,J.Munthe,G.Petersen,C.
SeigneurandI.Wängberg.2002.Comparisonofmercurychemistrymodels.Atmos.
Environ.,36,38813898.
Sander,S.P.,R.R.Friedl,D.M.Golden,M.J.Kurylo,R.E.Huie,V.L.Orkin,G.K.Moortgat,P.H.
Wine,A.R.Ravishankara,C.E.Kolb,M.J.Molina,B.J.FinlaysonPitts.2006.Evaluation
number15:Chemicalkineticsandphotochemicaldataforuseinatmosphericstudies.
NASAPanelforDataEvaluation,JPLPublication062,JetPropulsionLaboratory,
CaliforniaInsituteofTechnology,Pasadena,California.
Sanemasa,I.1975.Thesolubilityofelementalmercuryvaporinwater.Bull.Chem.Soc.Jpn.,
48,17951798.
Sauter,D.P.andP.K.Wang.1989.Anexperimentalstudyofthescavengingofaerosolparticles
bynaturalsnowcrystals.J.Atmos.Sci.,46,16501655.
Schroeder,W.H.andJ.Munthe.1998.AtmosphericmercuryAnoverview.Atmos.Environ.,
32,809822.
Scott,B.C.1978.Parameterizationofsulfateremovalbyprecipitation.J.Appl.Meteor.,17,
13751389.
Sehmel,G.A.1980.ParticleandGasDeposition,aReview.Atmos.Environ.,14,9831011.
Seigneur,C.,H.Abeck,G.Chia,M.Reinhard,N.S.Bloom,E.PrestboandP.Saxena.1998.
Mercuryadsorptiontoelementalcarbon(soot)particlesandatmosphericparticulate
matter.Atmos.Environ.,32,26492657.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 228www.camx.com
Seigneur,C.,P.Karamchandani,K.Lohman,K.VijayaraghavanandR.L.Shia.2001a.Multiscale
modelingoftheatmosphericfateandtransportofmercury.J.Geophys.Res.,106,
2779527809.
Seigneur,C.,P.Karamchandani,K.LohmanandJ.Jansen.2001b.Modelingofmercuryin
powerplantplumes.6thInternationalConferenceonMercuryasaGlobalPollutant,15
19October2001,Minamata,Japan.
Seigneur,C.,P.Karamchandani,K.Vijayaraghavan,K.LohmanandG.Yelluru.2003.Scoping
StudyforMercuryDepositionintheUpperMidwest.AERReportCP1490301a,
preparedfortheMidwestRegionalPlanningOrganization,DesPlaines,IL.
Seigneur,C.,K.Vijayaraghavan,K.LohmanandP.Karamchandani.2004.Modelingthe
atmosphericfateandtransportofmercuryoverNorthAmerica.FuelProcessing
Technol.,85,441450.
Seigneur,C.andK.Lohman.2008.Effectofbrominechemistryontheatmosphericmercury
cycle.J.Geophys.Res.,113,D23309,doi:10.1029/2008JD010262.
Seinfeld,J.H.,andS.N.Pandis.1998.AtmosphericChemistryandPhysics,FromAirPollutionto
ClimateChange.JohnWileyandSons,Inc.,NY.
Sillen,G.L.andA.E.Martell,(Eds.).1964.Stabilityconstantsofmetalioncomplexes,Spec.
Publ.Chem.Soc.,17,754.
Sillman,S.1995.TheUseofNOy,H2O2,andHNO3asIndicatorsforOzone‐NOXHydrocarbon
SensitivityinUrbanLocations.J.Geophys.Res.,100,14,17514,188.
Slinn,S.A.andW.G.N.Slinn.1980.Predictionsforparticledepositiononnaturalwaters.
Atmos.Environ.,24,10131016.
Slinn,W.G.N.1982.Predictionsforparticledepositiontovegetativesurfaces.Atmos.Environ.,
16,17851794.
Smagorinsky,J.1963.GeneralCirculationExperimentswiththePrimitiveEquations:I.The
BasicExperiment.Mon.Wea.Rev.,91,99164.
Smoydzin,L.,andR.vonGlasow.2009.ModellingchemistryovertheDeadSea:bromineand
ozonechemistry.AtmosphericChemistryandPhysics,9(14),50575072.
Sommar,J.,K.Gårdfeldt,D.StrömbergandX.Feng.2001.Akineticstudyofthegasphase
reactionbetweenthehydroxylradicalandatomicmercury.Atmos.Environ.,35,3049
3054.
Strader,R.,F.Lurmann,andS.N.Pandis.1999.Evaluationofsecondaryorganicaerosol
formationinwinter.Atmos.Environ.,33,48494863.
Takemura,T.,T.Nakajima,O.Dubovik,B.N.Holben,S.Kinne.2002.Singlescatteringalbedo
andradiativeforcingofvariousaerosolspecieswithaglobalthreedimensionalmodel.
J.Climate,15(4),333352.
Tanaka,P.L.,D.T.Allen,E.C.McDonaldBuller,S.Chang,Y.Kimura,C.B.Mullins,G.Yarwood,
andJ.D.Neece.2003.Developmentofachlorinemechanismforuseinthecarbon
bondIVchemistrymodel.J.Geophys.Res.:Atmos.,108(D4),1984–2012.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 229www.camx.com
Tokos,J.J.S.,B.Hall,J.A.Calhoun,andE.M.Prestbo.1998.Homogeneousgasphasereactionof
Hg0withH2O2,O3,CH3I,and(CH3)2S:ImplicationsforatmosphericHgcycling.Atmos.
Environ.,32,823827.
Tonnesen,G.S.andR.L.Dennis.2000.Analysisofradicalpropagationefficiencytoassess
ozonesensitivitytohydrocarbonsandNOx.Part1:Localindicatorsofoddoxygen
productionsensitivity.J.Geophys.Res.,105,92139225.
Turner,D.B.,T.Chico,andA.Catalano.1986.TUPOS:AMultipleSourceGaussianDispersion
AlgorithmUsingOnSiteTurbulenceData.U.SEnvironmentalProtectionAgency,
ResearchTrianglePark,NorthCarolina(EPA600/886/010).
Turner,D.B.andR.H.Schulze.2007.PracticalGuidetoAtmosphericDispersionModeling.Air
andWasteManagementAssociation.
vanLoon,L.,E.Mader,andS.L.Scott.2000.Reductionoftheaqueousmercuricionbysulfite:
UVspectrumofHgSO3anditsintramolecularredoxreactions.J.Phys.Chem.,104,
16211626.
vanLoon,L.L.,E.A.Mader,andS.L.Scott.2001.Sulfitestabilizationandreductionofthe
aqueousmercuricion:kineticdeterminationofsequentialformationconstants.J.Phys.
Chem.,105,31903195.
Vijayaraghavan,K.,P.Karamchandani,C.Seigneur,R.Balmori,andS.Y.Chen.2008.Plumein
gridmodelingofatmosphericmercury.J.Geophys.Res.,113,D24305,
doi:10.1029/2008JD010580.
Vogt,R.,R.Sander,R.vonGlasow,andP.J.Crutzen.1999.Iodinechemistryanditsrolein
halogenactivationandozonelossinthemarineboundarylayer:Amodelstudy.J.
Atmos.Chem.,32(3),375395.
Voulgarakis,A.,N.H.Savage,O.Wild,G.D.Carver,K.C.Clemitshaw,J.A.Pyle.2009.Upgrading
photolysisinthepTOMCATCTM:modelevaluationandassessmentoftheroleof
clouds.Geo.Mod.Devel.,2,5972.
Wang,Z.,J.E.Langstaff,andH.E.Jeffries.1995.TheApplicationoftheIntegratedProcessRate
AnalysisMethodforInvestigationofUrbanAirshedModel(UAM)Sensitivityto
SpeciationinVOCEmissionsData.Air&WasteManagementAssociationannual
meeting,SanAntonio,TX.
Wang,Z.,andX.Zeng.2010.Evaluationofsnowalbedoinlandmodelsforweatherand
climatestudies.J.Appl.MetClim.,49,doi:10.1175/2009JAMC2134.1.
Wesely,M.L.1989.ParameterizationofSurfaceResistancestoGaseousDryDepositionin
RegionalScaleNumericalModels.Atmos.Environ.,23,12931304.
Wesely,M.L.,andB.B.Hicks.2000.Areviewofthecurrentstatusofknowledgeondry
deposition.Atmos.Environ.,34,2261.
Whitten,G.,H.P.Deuel,C.S.Burton,andJ.L.Haney.1996.“OverviewoftheImplementationof
anUpdatedIsopreneChemistryMechanisminCB4/UAMV.”(RevisedMemorandumto
OTAGParticipants,July22).
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 230www.camx.com
Whitten,G.Z.,andG.Yarwood.2008.TheOzoneProductivityofnPropylBromide:Part2—An
ExceptiontotheMaximumIncrementalReactivityScale.J.AirWasteManag.Assoc.,
58(7),891901.
Whitten,G.Z.,G.Heo,Y.Kimura,E.McDonaldBuller,D.T.Allen,W.P.I.Carter,G.Yarwood.
2010.ANewCondensedTolueneMechanismforCarbonBond:CB05TU.Atmos.
Environ.,44(40),doi:10.1016/j.atmosenv.2009.12.029.
Woody,M.C.,Baker,K.R.,Hayes,P.L.,Jimenez,J.L.,Koo,B.,Pye,H.O.T.2016.Understanding
sourcesoforganicaerosolduringCalNex2010usingtheCMAQVBS.Atmos.Chem.
Phys.,16,40814100(doi:10.5194/acp1640812016).
Yamartino,R.2000.RefinementofHorizontalDiffusioninPhotochemicalGridModels.
PresentedattheAmericanMeteorologicalSociety11thJointConferenceonthe
ApplicationsofAirPollutionMeteorologywiththeAirandWasteManagement
Association,LongBeach,CA,January913.
Yang,X.,R.A.Cox,N.J.Warwick,J.A.Pyle,G.D.Carver,F.M.O'Connor,andN.H.Savage.2005.
Troposphericbrominechemistryanditsimpactsonozone:Amodelstudy.J.Geophys.
Res.:Atmos.,110(D23),DOI:10.1029/2005JD006244.
Yarwood,G.,R.E.Morris,M.A.Yocke,H.HogoandT.Chico.1996a.Developmentofa
MethodologyforSourceApportionmentofOzoneConcentrationEstimatesfroma
PhotochemicalGridModel.Presentedatthe89thAWMAAnnualMeeting,Nashville
TN,June2328.
Yarwood,G.,T.E.Stoeckenius,G.Wilson,R.E.Morris,andM.A.Yocke.1996b.Developmentof
aMethodologytoAssessGeographicandTemporalOzoneControlStrategiesforthe
SouthCoastAirBasin.PreparedforSouthCoastAirQualityManagementDistrict,
DiamondBar,CA.
Yarwood,G.,R.E.Morris,G.M.Wilson.2004.ParticulateMatterSourceApportionment
Technology(PSAT)intheCAMxPhotochemicalGridModel.Proceedingsofthe27th
NATO/CCMSInternationalTechnicalMeetingonAirPollutionModelingand
Application.SpringerVerlag(Availablefrom
http://camx.com/publ/pdfs/yarwood_itm_paper.pdf).
Yarwood.G.,G.Z.Whitten,andS.Rao.2005a.UpdatestotheCarbonBond4Photochemical
Mechanism.PreparedfortheLakeMichiganAirDirectorsConsortium,DesPlains,
Illinois.
Yarwood.G.,S.Rao,M.Yocke,andG.Z.Whitten.2005b.UpdatestotheCarbonBondchemical
mechanism:CB05.FinalReportpreparedforUSEPA.Availableat
http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf.
Yarwood,G.,J.Jung,G.Z.Whitten,G.Heo,J.MellbergandE.Estes.2010.Updatestothe
CarbonBondMechanismforVersion6(CB6).Presentedatthe9thAnnualCMAS
Conference,ChapelHill,October.
Yarwood,G.,H.Gookyoung,W.P.L.Carter,G.Z.Whitten.2012a.EnvironmentalChamber
ExperimentstoEvaluateNOxSinksandRecyclinginAtmosphericChemicalMechanisms.
March2016CAMxUser’sGuideVersion6.3
11.References
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 231www.camx.com
FinalReportpreparedfortheTexasAirQualityResearchProgram,UniversityofTexas,
Austin,Texas(AQRPProject10042,February2012).
Yarwood,G.,J.Jung,U.Nopmongcol,C.Emery.2012b.ImprovingCAMxPerformancein
SimulatingOzoneTransportfromtheGulfofMexico.FinalReportpreparedforthe
TexasCommissiononEnvironmentalQuality,Austin,Texas(September2012).Prepared
byENVIRONInternationalCorporation,Novato,CA.
Yarwood,G.,T.Sakulyanontvittaya,U.Nopmongcol,B.Koo.2014.OzoneDepletionby
BromineandIodineovertheGulfofMexico.FinalReportpreparedfortheTexas
CommisisiononEnvironmentalQuality,Austin,Texas(November2014).Preparedby
ENVIRONInternationalCorporation,Novato,CA.
Yarwood,G.andB.Koo.2015.ImprovedOSAT,APCAandPSATAlgorithmsforCAMx.Final
reportpreparedfortheTexasCommissiononEnvironmentalQuality,Austin,Texas
(August,2015).PreparedbyRambollEnviron,Novato,CA.
Yeh,G.K.andP.J.Ziemann.2014.AlkylNitrateFormationfromtheReactionsofC8–C14n
AlkaneswithOHRadicalsinthePresenceofNOx:MeasuredYieldswithEssential
CorrectionsforGas–WallPartitioning.J.Phys.Chem.,118(38),87978806.
Zhang,L.,S.Gong,J.Padro,L.Barrie.2001.Asizesegregatedparticledrydepositionscheme
foranatmosphericaerosolmodule.Atmos.Environ.,35,549560.
Zhang,L.,J.R.Brook,andR.Vet.2003.Arevisedparameterizationforgaseousdrydeposition
inairqualitymodels.Atmos.Chem.Phys.,3,2067–2082.
Zhang,X.,S.Kondragunta,C.Schmidt,andF.Kogan.2008.Nearrealtimemonitoringof
biomassburningparticulateemissions(PM2.5)acrosscontiguousUnitedStatesusing
multiplesatelliteinstruments.AtmosphericEnvironment,42,69596972.
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 232www.camx.com
AppendixA
CAMxMechanism2:CB6r2GasPhaseChemistry
TableA1.ReactionsandrateconstantexpressionsfortheCB6r2mechanism.k298istherate
constantat298Kand1atmosphereusingunitsinmolecules/cm3and1/s.Forphotolysis
reactionsk298showsthephotolysisrateatasolarzenithangleof60°andheightof600m
MSL/AGL.SeeTable52forspeciesnames.SeeSection3.1ontemperatureandpressure
dependencies.
NumberReactantsandProductsRateConstantExpressionk298
1NO2=NO+OPhotolysis6.30E3
2O+O2+M=O3+Mk=5.68E34(T/300)^2.65.78E34
3O3+NO=NO2k=1.40E12exp(1310/T)1.73E14
4O+NO+M=NO2+Mk=1.00E31(T/300)^1.61.01E31
5O+NO2=NOk=5.50E12exp(188/T)1.03E11
6O+NO2=NO3Falloff:F=0.6;n=1
k(0)=1.30E31(T/300)^1.5
k(inf)=2.30E11(T/300)^0.24
2.11E12
7O+O3=k=8.00E12exp(2060/T)7.96E15
8O3=OPhotolysis3.33E4
9O3=O1DPhotolysis8.78E6
10O1D+M=O+Mk=2.23E11exp(115/T)3.28E11
11O1D+H2O=2OHk=2.14E102.14E10
12O3+OH=HO2k=1.70E12exp(940/T)7.25E14
13O3+HO2=OHk=2.03E16(T/300)^4.57exp(693/T)2.01E15
14OH+O=HO2k=2.40E11exp(110/T)3.47E11
15HO2+O=OHk=2.70E11exp(224/T)5.73E11
16OH+OH=Ok=6.20E14(T/298)^2.6exp(945/T)1.48E12
17OH+OH=H2O2Falloff:F=0.5;n=1.13
k(0)=6.90E31(T/300)^0.8
k(inf)=2.60E11
5.25E12
18OH+HO2=k=4.80E11exp(250/T)1.11E10
19HO2+HO2=H2O2k=k1+k2[M]
k1=2.20E13exp(600/T)
k2=1.90E33exp(980/T)
2.90E12
20HO2+HO2+H2O=H2O2k=k1+k2[M]
k1=3.08E34exp(2800/T)
k2=2.66E54exp(3180/T)
6.53E30
21H2O2=2OHPhotolysis3.78E6
22H2O2+OH=HO2k=2.90E12exp(160/T)1.70E12
23H2O2+O=OH+HO2k=1.40E12exp(2000/T)1.70E15
24NO+NO+O2=2NO2k=3.30E39exp(530/T)1.95E38
25HO2+NO=OH+NO2k=3.45E12exp(270/T)8.54E12
26NO2+O3=NO3k=1.40E13exp(2470/T)3.52E17
27NO3=NO2+OPhotolysis1.56E1
28NO3=NOPhotolysis1.98E2
29NO3+NO=2NO2k=1.80E11exp(110/T)2.60E11
30NO3+NO2=NO+NO2k=4.50E14exp(1260/T)6.56E16
31NO3+O=NO2k=1.70E111.70E11
32NO3+OH=HO2+NO2k=2.00E112.00E11
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 233www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
33NO3+HO2=OH+NO2k=4.00E124.00E12
34NO3+O3=NO2k=1.00E171.00E17
35NO3+NO3=2NO2k=8.50E13exp(2450/T)2.28E16
36NO3+NO2=N2O5Falloff:F=0.35;n=1.33
k(0)=3.60E30(T/300)^4.1
k(inf)=1.90E12(T/300)^0.2
1.24E12
37N2O5=NO3+NO2Falloff:F=0.35;n=1.33
k(0)=1.30E3(T/300)^3.5exp(11000/T)
k(inf)=9.70E+14(T/300)^0.1exp(
11080/T)
4.46E2
38N2O5=NO2+NO3Photolysis2.52E5
39N2O5+H2O=2HNO3k=1.00E221.00E22
40NO+OH=HONOFalloff:F=0.81;n=0.87
k(0)=7.40E31(T/300)^2.4
k(inf)=3.30E11(T/300)^0.3
9.77E12
41NO+NO2+H2O=2HONOk=5.00E405.00E40
42HONO+HONO=NO+NO2k=1.00E201.00E20
43HONO=NO+OHPhotolysis1.04E3
44HONO+OH=NO2k=2.50E12exp(260/T)5.98E12
45NO2+OH=HNO3Falloff:F=0.6;n=1
k(0)=1.80E30(T/300)^3
k(inf)=2.80E11
1.06E11
46HNO3+OH=NO3k=k1+k3[M]/(1+k3[M]/k2)
k1=2.40E14exp(460/T)
k2=2.70E17exp(2199/T)
k3=6.50E34exp(1335/T)
1.54E13
47HNO3=OH+NO2Photolysis2.54E7
48HO2+NO2=PNAFalloff:F=0.6;n=1
k(0)=1.80E31(T/300)^3.2
k(inf)=4.70E12
1.38E12
49PNA=HO2+NO2Falloff:F=0.6;n=1
k(0)=4.10E5exp(10650/T)
k(inf)=4.80E+15exp(11170/T)
8.31E2
50PNA=0.59HO2+0.59NO2+0.41OH+
0.41NO3
Photolysis2.36E6
51PNA+OH=NO2k=3.20E13exp(690/T)3.24E12
52SO2+OH=SULF+HO2Falloff:F=0.53;n=1.1
k(0)=4.50E31(T/300)^3.9
k(inf)=1.30E12(T/300)^0.7
8.12E13
53C2O3+NO=NO2+MEO2+RO2k=7.50E12exp(290/T)1.98E11
54C2O3+NO2=PANFalloff:F=0.3;n=1.41
k(0)=2.70E28(T/300)^7.1
k(inf)=1.20E11(T/300)^0.9
9.40E12
55PAN=NO2+C2O3Falloff:F=0.3;n=1.41
k(0)=4.90E3exp(12100/T)
k(inf)=5.40E+16exp(13830/T)
2.98E4
56PAN=0.6NO2+0.6C2O3+0.4NO3+0.4
MEO2+0.4RO2
Photolysis3.47E7
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 234www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
57C2O3+HO2=0.41PACD+0.15AACD+
0.15O3+0.44MEO2+0.44RO2+0.44OH
k=5.20E13exp(980/T)1.39E11
58C2O3+RO2=C2O3k=8.90E13exp(800/T)1.30E11
59C2O3+C2O3=2MEO2+2RO2k=2.90E12exp(500/T)1.55E11
60C2O3+CXO3=MEO2+ALD2+XO2H+2
RO2
k=2.90E12exp(500/T)1.55E11
61CXO3+NO=NO2+ALD2+XO2H+RO2k=6.70E12exp(340/T)2.10E11
62CXO3+NO2=PANXk=k(ref)K
k(ref)=k(54)
K=1.00E+0
9.40E12
63PANX=NO2+CXO3k=k(ref)K
k(ref)=k(55)
K=1.00E+0
2.98E4
64PANX=0.6NO2+0.6CXO3+0.4NO3+0.4
ALD2+0.4XO2H+0.4RO2
Photolysis3.47E7
65CXO3+HO2=0.41PACD+0.15AACD+
0.15O3+0.44ALD2+0.44XO2H+0.44
RO2+0.44OH
k=5.20E13exp(980/T)1.39E11
66CXO3+RO2=0.8ALD2+0.8XO2H+0.8
RO2
k=8.90E13exp(800/T)1.30E11
67CXO3+CXO3=2ALD2+2XO2H+2RO2k=3.20E12exp(500/T)1.71E11
68RO2+NO=NOk=2.40E12exp(360/T)8.03E12
69RO2+HO2=HO2k=4.80E13exp(800/T)7.03E12
70RO2+RO2=k=6.50E14exp(500/T)3.48E13
71MEO2+NO=FORM+HO2+NO2k=2.30E12exp(360/T)7.70E12
72MEO2+HO2=0.9MEPX+0.1FORMk=3.80E13exp(780/T)5.21E12
73MEO2+C2O3=FORM+0.9HO2+0.9
MEO2+0.1AACD+0.9RO2
k=2.00E12exp(500/T)1.07E11
74MEO2+RO2=0.685FORM+0.315MEOH
+0.37HO2+RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E13
75XO2H+NO=NO2+HO2k=2.70E12exp(360/T)9.04E12
76XO2H+HO2=ROOHk=6.80E13exp(800/T)9.96E12
77XO2H+C2O3=0.8HO2+0.8MEO2+0.2
AACD+0.8RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E11
78XO2H+RO2=0.6HO2+RO2k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E13
79XO2+NO=NO2k=k(ref)K
k(ref)=k(75)
K=1.00E+0
9.04E12
80XO2+HO2=ROOHk=k(ref)K
k(ref)=k(76)
K=1.00E+0
9.96E12
81XO2+C2O3=0.8MEO2+0.2AACD+0.8
RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E11
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 235www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
82XO2+RO2=RO2k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E13
83XO2N+NO=0.5NTR1+0.5NTR2k=k(ref)K
k(ref)=k(75)
K=1.00E+0
9.04E12
84XO2N+HO2=ROOHk=k(ref)K
k(ref)=k(76)
K=1.00E+0
9.96E12
85XO2N+C2O3=0.8HO2+0.8MEO2+0.2
AACD+0.8RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E11
86XO2N+RO2=RO2k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E13
87MEPX+OH=0.6MEO2+0.6RO2+0.4
FORM+0.4OH
k=5.30E12exp(190/T)1.00E11
88MEPX=MEO2+RO2+OHPhotolysis2.68E6
89ROOH+OH=0.54XO2H+0.06XO2N+0.6
RO2+0.4OH
k=5.30E12exp(190/T)1.00E11
90ROOH=HO2+OHPhotolysis2.68E6
91NTR1+OH=NTR2k=2.00E122.00E12
92NTR1=NO2Photolysis1.06E6
93FACD+OH=HO2k=4.50E134.50E13
94AACD+OH=MEO2+RO2k=4.00E14exp(850/T)6.93E13
95PACD+OH=C2O3k=5.30E12exp(190/T)1.00E11
96FORM+OH=HO2+COk=5.40E12exp(135/T)8.49E12
97FORM=2HO2+COPhotolysis1.78E5
98FORM=CO+H2Photolysis2.38E5
99FORM+O=OH+HO2+COk=3.40E11exp(1600/T)1.58E13
100FORM+NO3=HNO3+HO2+COk=5.50E165.50E16
101FORM+HO2=HCO3k=9.70E15exp(625/T)7.90E14
102HCO3=FORM+HO2k=2.40E+12exp(7000/T)1.51E+2
103HCO3+NO=FACD+NO2+HO2k=5.60E125.60E12
104HCO3+HO2=0.5MEPX+0.5FACD+0.2
OH+0.2HO2
k=5.60E15exp(2300/T)1.26E11
105ALD2+O=C2O3+OHk=1.80E11exp(1100/T)4.49E13
106ALD2+OH=C2O3k=4.70E12exp(345/T)1.50E11
107ALD2+NO3=C2O3+HNO3k=1.40E12exp(1860/T)2.73E15
108ALD2=MEO2+RO2+CO+HO2Photolysis1.76E6
109ALDX+O=CXO3+OHk=1.30E11exp(870/T)7.02E13
110ALDX+OH=CXO3k=4.90E12exp(405/T)1.91E11
111ALDX+NO3=CXO3+HNO3k=6.30E156.30E15
112ALDX=ALD2+XO2H+RO2+CO+HO2Photolysis6.96E6
113GLYD+OH=0.2GLY+0.2HO2+0.8C2O3k=8.00E128.00E12
114GLYD=0.74FORM+0.89CO+1.4HO2+
0.15MEOH+0.19OH+0.11GLY+0.11
XO2H+0.11RO2
Photolysis1.56E6
115GLYD+NO3=HNO3+C2O3k=1.40E12exp(1860/T)2.73E15
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 236www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
116GLY+OH=1.8CO+0.2XO2+0.2RO2+
HO2
k=3.10E12exp(340/T)9.70E12
117GLY=2HO2+2COPhotolysis5.50E5
118GLY+NO3=HNO3+1.5CO+0.5XO2+0.5
RO2+HO2
k=1.40E12exp(1860/T)2.73E15
119MGLY=C2O3+HO2+COPhotolysis1.46E4
120MGLY+NO3=HNO3+C2O3+XO2+RO2k=1.40E12exp(1860/T)2.73E15
121MGLY+OH=C2O3+COk=1.90E12exp(575/T)1.31E11
122H2+OH=HO2k=7.70E12exp(2100/T)6.70E15
123CO+OH=HO2k=k1+k2[M]
k1=1.44E13
k2=3.43E33
2.28E13
124CH4+OH=MEO2+RO2k=1.85E12exp(1690/T)6.37E15
125ETHA+OH=0.991ALD2+0.991XO2H+
0.009XO2N+RO2
k=6.90E12exp(1000/T)2.41E13
126MEOH+OH=FORM+HO2k=2.85E12exp(345/T)8.95E13
127ETOH+OH=0.95ALD2+0.9HO2+0.1
XO2H+0.1RO2+0.078FORM+0.011
GLYD
k=3.00E12exp(20/T)3.21E12
128KET=0.5ALD2+0.5C2O3+0.5XO2H+0.5
CXO3+0.5MEO2+RO2‐2.5PAR
Photolysis2.27E7
129ACET=0.38CO+1.38MEO2+1.38RO2+
0.62C2O3
Photolysis2.08E7
130ACET+OH=FORM+C2O3+XO2+RO2k=1.41E12exp(620.6/T)1.76E13
131PRPA+OH=0.71ACET+0.26ALDX+0.26
PAR+0.97XO2H+0.03XO2N+RO2
k=7.60E12exp(585/T)1.07E12
132PAR+OH=0.11ALDX+0.76ROR+0.13
XO2N+0.11XO2H+0.76XO2+RO2‐0.11
PAR
k=8.10E138.10E13
133ROR=0.2KET+0.42ACET+0.74ALD2+
0.37ALDX+0.04XO2N+0.94XO2H+0.98
RO2+0.02ROR‐2.7PAR
k=5.70E+12exp(5780/T)2.15E+4
134ROR+O2=KET+HO2k=1.50E14exp(200/T)7.67E15
135ROR+NO2=NTR1k=8.60E12exp(400/T)3.29E11
136ETHY+OH=0.7GLY+0.7OH+0.3FACD+
0.3CO+0.3HO2
Falloff:F=0.37;n=1.3
k(0)=5.00E30(T/300)^1.5
k(inf)=1.00E12
7.52E13
137ETH+O=FORM+HO2+CO+0.7XO2H+
0.7RO2+0.3OH
k=1.04E11exp(792/T)7.29E13
138ETH+OH=XO2H+RO2+1.56FORM+
0.22GLYD
Falloff:F=0.48;n=1.15
k(0)=8.60E29(T/300)^3.1
k(inf)=9.00E12(T/300)^0.85
7.84E12
139ETH+O3=FORM+0.51CO+0.16HO2+
0.16OH+0.37FACD
k=9.10E15exp(2580/T)1.58E18
140ETH+NO3=0.5NO2+0.5NTR1+0.5
XO2H+0.5XO2+RO2+1.125FORM
k=3.30E12exp(2880/T)2.10E16
141OLE+O=0.2ALD2+0.3ALDX+0.1HO2+
0.2XO2H+0.2CO+0.2FORM+0.01XO2N
+0.21RO2+0.2PAR+0.1OH
k=1.00E11exp(280/T)3.91E12
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 237www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
142OLE+OH=0.781FORM+0.488ALD2+
0.488ALDX+0.976XO2H+0.195XO2+
0.024XO2N+1.195RO2‐0.73PAR
Falloff:F=0.5;n=1.13
k(0)=8.00E27(T/300)^3.5
k(inf)=3.00E11(T/300)^1
2.86E11
143OLE+O3=0.295ALD2+0.555FORM+
0.27ALDX+0.15XO2H+0.15RO2+0.334
OH+0.08HO2+0.378CO+0.075GLY+
0.075MGLY+0.09FACD+0.13AACD+
0.04H2O2‐0.79PAR
k=5.50E15exp(1880/T)1.00E17
144OLE+NO3=0.5NO2+0.5NTR1+0.48
XO2+0.48XO2H+0.04XO2N+RO2+0.5
FORM+0.25ALD2+0.375ALDX‐1PAR
k=4.60E13exp(1155/T)9.54E15
145IOLE+O=1.24ALD2+0.66ALDX+0.1
XO2H+0.1RO2+0.1CO+0.1PAR
k=2.30E112.30E11
146IOLE+OH=1.3ALD2+0.7ALDX+XO2H+
RO2
k=1.05E11exp(519/T)5.99E11
147IOLE+O3=0.732ALD2+0.442ALDX+
0.128FORM+0.245CO+0.5OH+0.3
XO2H+0.3RO2+0.24GLY+0.06MGLY+
0.29PAR+0.08AACD+0.08H2O2
k=4.70E15exp(1013/T)1.57E16
148IOLE+NO3=0.5NO2+0.5NTR1+0.48
XO2+0.48XO2H+0.04XO2N+RO2+0.5
ALD2+0.625ALDX+PAR
k=3.70E133.70E13
149ISOP+OH=ISO2+RO2k=2.70E11exp(390/T)9.99E11
150ISOP+O=0.75ISPD+0.5FORM+0.25
XO2+0.25RO2+0.25HO2+0.25CXO3+
0.25PAR
k=3.00E113.00E11
151ISO2+NO=0.1INTR+0.9NO2+0.673
FORM+0.9ISPD+0.818HO2+0.082
XO2H+0.082RO2
k=2.39E12exp(365/T)8.13E12
152ISO2+HO2=0.88ISPX+0.12OH+0.12
HO2+0.12FORM+0.12ISPD
k=7.43E13exp(700/T)7.78E12
153ISO2+C2O3=0.598FORM+1ISPD+
0.728HO2+0.072XO2H+0.8MEO2+0.2
AACD+0.872RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E11
154ISO2+RO2=0.598FORM+1ISPD+0.728
HO2+0.072XO2H+0.072RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E13
155ISO2=HO2+HPLDk=3.30E+9exp(8300/T)2.64E3
156ISOP+O3=0.6FORM+0.65ISPD+0.15
ALDX+0.2CXO3+0.35PAR+0.266OH+
0.2XO2+0.2RO2+0.066HO2+0.066CO
k=1.03E14exp(1995/T)1.27E17
157ISOP+NO3=0.35NO2+0.65NTR2+0.64
XO2H+0.33XO2+0.03XO2N+RO2+0.35
FORM+0.35ISPD
k=3.03E12exp(448/T)6.74E13
158ISPD+OH=0.022XO2N+0.521XO2+
0.115MGLY+0.115MEO2+0.269GLYD+
0.269C2O3+0.457OPO3+0.117PAR+
0.137ACET+0.137CO+0.137HO2+0.658
RO2
k=5.58E12exp(511/T)3.10E11
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 238www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
159ISPD+O3=0.04ALD2+0.231FORM+
0.531MGLY+0.17GLY+0.17ACET+0.543
CO+0.461OH+0.15FACD+0.398HO2+
0.143C2O3
k=3.88E15exp(1770/T)1.02E17
160ISPD+NO3=0.717HNO3+0.142NTR2+
0.142NO2+0.142XO2+0.142XO2H+
0.113GLYD+0.113MGLY+0.717PAR+
0.717CXO3+0.284RO2
k=4.10E12exp(1860/T)7.98E15
161ISPD=0.76HO2+0.34XO2H+0.16XO2+
0.34MEO2+0.208C2O3+0.26FORM+
0.24OLE+0.24PAR+0.17ACET+0.128
GLYD+0.84RO2
Photolysis1.60E5
162ISPX+OH=0.904EPOX+0.933OH+0.067
ISO2+0.067RO2+0.029IOLE+0.029
ALDX
k=2.23E11exp(372/T)7.77E11
163HPLD=OH+ISPDPhotolysis4.41E4
164HPLD+NO3=HNO3+ISPDk=6.00E12exp(1860/T)1.17E14
165EPOX+OH=EPX2+RO2k=5.78E11exp(400/T)1.51E11
166EPX2+HO2=0.275GLYD+0.275GLY+
0.275MGLY+1.125OH+0.825HO2+
0.375FORM+0.074FACD+0.251CO+
2.175PAR
k=7.43E13exp(700/T)7.78E12
167EPX2+NO=0.275GLYD+0.275GLY+
0.275MGLY+0.125OH+0.825HO2+
0.375FORM+NO2+0.251CO+2.175PAR
k=2.39E12exp(365/T)8.13E12
168EPX2+C2O3=0.22GLYD+0.22GLY+0.22
MGLY+0.1OH+0.66HO2+0.3FORM+
0.2CO+1.74PAR+0.8MEO2+0.2AACD+
0.8RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E11
169EPX2+RO2=0.275GLYD+0.275GLY+
0.275MGLY+0.125OH+0.825HO2+
0.375FORM+0.251CO+2.175PAR+RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E13
170INTR+OH=0.63XO2+0.37XO2H+RO2+
0.444NO2+0.185NO3+0.104INTR+
0.592FORM+0.331GLYD+0.185FACD+
2.7PAR+0.098OLE+0.078ALDX+0.266
NTR2
k=3.10E113.10E11
171TERP+O=0.15ALDX+5.12PARk=3.60E113.60E11
172TERP+OH=0.75XO2H+0.5XO2+0.25
XO2N+1.5RO2+0.28FORM+1.66PAR+
0.47ALDX
k=1.50E11exp(449/T)6.77E11
173TERP+O3=0.57OH+0.07XO2H+0.69
XO2+0.18XO2N+0.94RO2+0.24FORM
+0.001CO+7PAR+0.21ALDX+0.39
CXO3
k=1.20E15exp(821/T)7.63E17
174TERP+NO3=0.47NO2+0.28XO2H+0.75
XO2+0.25XO2N+1.28RO2+0.47ALDX+
0.53NTR2
k=3.70E12exp(175/T)6.66E12
175BENZ+OH=0.53CRES+0.352BZO2+
0.352RO2+0.118OPEN+0.118OH+0.53
HO2
k=2.30E12exp(190/T)1.22E12
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 239www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
176BZO2+NO=0.918NO2+0.082NTR2+
0.918GLY+0.918OPEN+0.918HO2
k=2.70E12exp(360/T)9.04E12
177BZO2+C2O3=GLY+OPEN+HO2+MEO2
+RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E11
178BZO2+HO2=k=1.90E13exp(1300/T)1.49E11
179BZO2+RO2=GLY+OPEN+HO2+RO2k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E13
180TOL+OH=0.18CRES+0.65TO2+0.72
RO2+0.1OPEN+0.1OH+0.07XO2H+
0.18HO2
k=1.80E12exp(340/T)5.63E12
181TO2+NO=0.86NO2+0.14NTR2+0.417
GLY+0.443MGLY+0.66OPEN+0.2XOPN
+0.86HO2
k=2.70E12exp(360/T)9.04E12
182TO2+C2O3=0.48GLY+0.52MGLY+0.77
OPEN+0.23XOPN+HO2+MEO2+RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E11
183TO2+HO2=k=1.90E13exp(1300/T)1.49E11
184TO2+RO2=0.48GLY+0.52MGLY+0.77
OPEN+0.23XOPN+HO2+RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E13
185XYL+OH=0.155CRES+0.544XLO2+
0.602RO2+0.244XOPN+0.244OH+
0.058XO2H+0.155HO2
k=1.85E111.85E11
186XLO2+NO=0.86NO2+0.14NTR2+0.221
GLY+0.675MGLY+0.3OPEN+0.56XOPN
+0.86HO2
k=2.70E12exp(360/T)9.04E12
187XLO2+HO2=k=1.90E13exp(1300/T)1.49E11
188XLO2+C2O3=0.26GLY+0.77MGLY+
0.35OPEN+0.65XOPN+HO2+MEO2+
RO2
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E11
189XLO2+RO2=0.26GLY+0.77MGLY+0.35
OPEN+0.65XOPN+HO2+RO2
k=k(ref)K
k(ref)=k(70)
K=1.00E+0
3.48E13
190CRES+OH=0.025GLY+0.025OPEN+
HO2+0.2CRO+0.732CAT1+0.02XO2N+
0.02RO2
k=1.70E12exp(950/T)4.12E11
191CRES+NO3=0.3CRO+HNO3+0.48XO2+
0.12XO2H+0.24GLY+0.24MGLY+0.48
OPO3+0.1XO2N+0.7RO2
k=1.40E111.40E11
192CRO+NO2=CRONk=2.10E122.10E12
193CRO+HO2=CRESk=5.50E125.50E12
194CRON+OH=NTR2+0.5CROk=1.53E121.53E12
195CRON+NO3=NTR2+0.5CRO+HNO3k=3.80E123.80E12
196CRON=HONO+HO2+FORM+OPENPhotolysis9.45E5
197XOPN=0.4GLY+XO2H+0.7HO2+0.7CO
+0.3C2O3
Photolysis5.04E4
March2016CAMxUser’sGuideVersion6.3
AppendixA:Mechanism2CB6r2
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 240www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
198XOPN+OH=MGLY+0.4GLY+2XO2H+2
RO2
k=9.00E119.00E11
199XOPN+O3=1.2MGLY+0.5OH+0.6C2O3
+0.1ALD2+0.5CO+0.3XO2H+0.3RO2
k=1.08E16exp(500/T)2.02E17
200XOPN+NO3=0.5NO2+0.5NTR2+0.45
XO2H+0.45XO2+0.1XO2N+RO2+0.25
OPEN+0.25MGLY
k=3.00E123.00E12
201OPEN=OPO3+HO2+COPhotolysis5.04E4
202OPEN+OH=0.6OPO3+0.4XO2H+0.4
RO2+0.4GLY
k=4.40E114.40E11
203OPEN+O3=1.4GLY+0.24MGLY+0.5OH
+0.12C2O3+0.08FORM+0.02ALD2+
1.98CO+0.56HO2
k=5.40E17exp(500/T)1.01E17
204OPEN+NO3=OPO3+HNO3k=3.80E123.80E12
205CAT1+OH=0.14FORM+0.2HO2+0.5
CRO
k=5.00E115.00E11
206CAT1+NO3=CRO+HNO3k=1.70E101.70E10
207OPO3+NO=NO2+0.5GLY+0.5CO+0.8
HO2+0.2CXO3
k=1.00E111.00E11
208OPO3+NO2=OPANk=k(ref)K
k(ref)=k(54)
K=1.00E+0
9.40E12
209OPAN=OPO3+NO2k=k(ref)K
k(ref)=k(55)
K=1.00E+0
2.98E4
210OPO3+HO2=0.41PACD+0.15AACD+
0.15O3+0.44ALDX+0.44XO2H+0.44
RO2+0.44OH
k=k(ref)K
k(ref)=k(57)
K=1.00E+0
1.39E11
211OPO3+C2O3=MEO2+XO2+ALDX+2
RO2
k=k(ref)K
k(ref)=k(59)
K=1.00E+0
1.55E11
212OPO3+RO2=0.8XO2H+0.8ALDX+1.8
RO2+0.2AACD
k=k(ref)K
k(ref)=k(58)
K=1.00E+0
1.30E11
213OPAN+OH=0.5NO2+0.5GLY+CO+0.5
NTR2
k=3.60E113.60E11
214PANX+OH=ALD2+NO2k=3.00E123.00E12
215NTR2=HNO3k=2.30E52.30E5
216ECH4+OH=MEO2+RO2k=1.85E12exp(1690/T)6.37E15
March2016CAMxUser’sGuideVersion6.3
AppendixB:Mechanism3CB6r2withHalogenChemistry
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 241www.camx.com
AppendixB
CAMxMechanism3:CB6r2withHalogenChemistry
TableB1.ListingoftheCB6r2halogenmechanism(seeTableA1foracompletelistingof
CB6r2).k298istherateconstantat298Kand1atmosphereusingunitsinmolecules/cm3and
1/s.Forphotolysisreactionsk298showsthephotolysisrateatasolarzenithangleof60°and
heightof600mMSL/AGL.SeeTableB2forspeciesnames.SeeSection3.1ontemperature
andpressuredependencies.
NumberReactantsandProductsRateConstantExpression k298
1CL2=2CL Photolysis 1.56E3
2HOCL=CL+OH Photolysis 1.34E4
3CL+O3=CLO k=2.30E11exp(200/T) 1.18E11
4CLO+CLO=0.3CL2+1.4CL k=1.63E14 1.63E14
5CLO+NO=CL+NO2 k=6.40E12exp(290/T) 1.69E11
6CLO+HO2=HOCL k=2.70E12exp(220/T) 5.65E12
7CLO+NO2=CLN3 Falloff:F=0.6;n=1
k(0)=1.80E31(T/300)^3.4
k(inf)=1.50E11(T/300)^1.9
2.34E12
8CLN3=CLO+NO2 Falloff:F=0.6;n=1
k(0)=4.48E5(T/300)^1exp(12530/T)
k(inf)=3.71E+15(T/300)^3.5exp(
12530/T)
3.11E4
9CLN3=CLO+NO2 Photolysis 4.97E6
10CLN3=CL+NO3 Photolysis 4.67E4
11CLN3+H2O=HOCL+HNO3 k=2.50E22 2.50E22
12OH+HCL=CL k=6.58E13(T/300)^1.2exp(58/T)7.93E13
13OH+FMCL=CL+CO k=3.67E11exp(1419/T) 3.14E13
14FMCL=CL+CO+HO2 Photolysis 6.10E8
15CLO+MEO2=CL+FORM+HO2 k=4.10E13exp(800/T) 2.80E14
16CL+CH4=HCL+MEO2 k=6.60E12exp(1240/T) 1.03E13
17CL+PAR=HCL k=5.00E11 5.00E11
18CL+ETHA=HCL+0.991ALD2+0.991
XO2H+0.009XO2N+RO2
k=8.30E11exp(100/T) 5.93E11
19CL+PRPA=HCL+ACET+0.97XO2H+
0.03XO2N+RO2
k=1.40E10 1.40E10
20CL+ISOP=FMCL+ISPD+0.96XO2H+
0.04XO2N+RO2
k=4.30E10 4.30E10
21HCL+N2O5=CLN2+HNO3 k=6.00E13 6.00E13
22CLN2=CL+NO2 Photolysis 2.86E4
23BR2=2BR Photolysis 2.79E2
24HOBR=BR+OH Photolysis 1.51E3
25BR2+OH=HOBR+BR k=5.40E11exp(180/T) 9.88E11
26HBR+OH=BR k=5.50E12exp(200/T) 2.81E12
27BR+O3=BRO k=1.60E11exp(780/T) 2.19E10
28BR+HO2=HBR k=4.80E12exp(310/T) 1.36E11
29BR+NO2=BRN2 Falloff:F=0.6;n=1
k(0)=4.20E31(T/300)^2.4
k(inf)=2.70E11
4.89E12
30BR+NO3=BRO+NO2 k=1.60E11 1.60E11
31BRO=BR+O Photolysis 2.05E2
32BRO+HO2=HOBR k=4.50E12exp(460/T) 2.11E11
March2016CAMxUser’sGuideVersion6.3
AppendixB:Mechanism3CB6r2withHalogenChemistry
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 242www.camx.com
NumberReactantsandProductsRateConstantExpression k298
33BRO+OH=BR+HO2 k=1.70E11exp(250/T) 3.93E11
34BRO+BRO=2BR k=2.40E12exp(40/T) 2.74E12
35BRO+BRO=BR2k=2.80E14exp(860/T) 5.02E13
36BRO+NO=BR+NO2 k=8.80E12exp(260/T) 2.11E11
37BRO+NO2=BRN3 Falloff:F=0.6;n=1
k(0)=5.20E31(T/300)^3.2
k(inf)=6.90E12
2.81E12
38BRN2=BR+NO2 Photolysis 3.21E3
39BRN3=BR+NO3 Photolysis 9.76E4
40BRN3+H2O=HOBR+HNO3 k=2.50E22 2.50E22
41FMBR+OH=BR+CO k=5.00E12 5.00E12
42FMBR=BR+CO+HO2 Photolysis 4.15E6
43BRO+MEO2=0.75HOBR+0.25BR+
FORM
k=4.10E13exp(800/T) 2.80E14
44BR+FORM=HBR+CO+HO2 k=7.70E11exp(580/T) 1.10E11
45BR+ALD2=HBR+C2O3 k=1.80E11exp(460/T) 3.84E12
46BR+OLE=FMBR+ALD2+XO2H‐ 1PAR
+RO2
k=3.60E12 3.60E12
47BR+ISOP=FMBR+ISPD+0.96XO2H+
0.04XO2N+RO2
k=5.00E12 5.00E12
48I2=2I Photolysis 1.30E1
49HOI=I+OH Photolysis 6.36E2
50I2+OH=I+HOI k=2.10E10 2.10E10
51I2+NO3=I+INO3 k=1.50E12 1.50E12
52HI+OH=I k=1.60E11exp(440/T) 7.00E11
53I+O3=IO k=2.10E11exp(830/T) 1.30E12
54I+HO2=HI k=1.50E11exp(1090/T) 3.87E13
55I+NO2=INO2 Falloff:F=0.63;n=1
k(0)=3.00E31(T/300)^1
k(inf)=6.60E11
5.24E12
56IO=I+O Photolysis 1.18E1
57IO+IO=0.4I+0.4OIO+0.6I2O2 k=5.40E11exp(180/T) 9.88E11
58IO+HO2=HOI k=1.40E11exp(540/T) 8.57E11
59IO+NO=I+NO2 k=7.15E12exp(300/T) 1.96E11
60IO+NO2=INO3 Falloff:F=0.4;n=1
k(0)=7.70E31(T/300)^5
k(inf)=1.60E11
3.55E12
61HOI+OH=IO k=5.00E12 5.00E12
62OIO=I Photolysis 1.28E1
63OIO+OH=HIO3 Falloff:F=0.3;n=1
k(0)=1.50E27(T/300)^3.93
k(inf)=5.50E10exp(46/T)
4.72E10
64OIO+IO=IXOY k=1.00E10 1.00E10
65OIO+OIO=IXOY k=1.50E10 1.50E10
66OIO+NO=IO+NO2 k=1.10E12exp(542/T) 6.78E12
67I2O2=I+OIO k=1.00E+1 1.00E+1
68I2O2+O3=IXOY k=1.00E12 1.00E12
69INO2=I+NO2 Photolysis 3.21E3
70INO2+INO2=I2+2NO2 k=4.70E13exp(1670/T) 1.73E15
71INO3=I+NO3 Photolysis 1.25E2
72INO3+H2O=HOI+HNO3 k=2.50E22 2.50E22
March2016CAMxUser’sGuideVersion6.3
AppendixB:Mechanism3CB6r2withHalogenChemistry
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 243www.camx.com
NumberReactantsandProductsRateConstantExpression k298
73CLO+BRO=CL+BR k=4.70E12exp(320/T) 1.38E11
74CLO+IO=CL+I k=4.70E12exp(280/T) 1.20E11
75BRO+IO=BR+I k=1.50E11exp(510/T) 8.31E11
76CH3I=I+MEO2 Photolysis 3.19E6
77MI2=2I+FORM Photolysis 4.69E3
78MIB=I+BR+FORM Photolysis 2.53E4
79MIC=I+CL+FORM Photolysis 7.48E5
80MB3=3BR+HO2+CO Photolysis 4.64E7
81MB3+OH=3BR+CO k=1.35E12exp(600/T) 1.80E13
82MB2+OH=2BR+HO2+CO k=2.00E12exp(840/T) 1.19E13
83MBC+OH=BR+MEO2 k=2.35E12exp(1300/T) 3.00E14
84MBC2+OH=BR+MEO2 k=9.00E13exp(600/T) 1.20E13
85MB2C+OH=BR+MEO2 k=9.00E13exp(600/T) 1.20E13
86IALK=I+ALDX+XO2H+RO2Photolysis 5.88E7
87SSCL+HNO3=HCL+SSN3 k=1.00E12 1.00E12
88SSBR+HOBR=BR2 k=1.00E12 1.00E12

March2016CAMxUser’sGuideVersion6.3
AppendixB:Mechanism3CB6r2withHalogenChemistry
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 244www.camx.com
TableB2.ChemicalspeciesincludedinCB6r2h.
SpeciesDescription
Constituents
Mol.Wt.C H O N ClBrI
CL2Molecularchlorine270.9
CLChlorineatom135.5
CLOChlorinemonoxide1 151.4
HCLHydrogenchloride1 136.5
HOCLHypochlorousacid1 1 152.4
CLN2Nitrylchloride:ClNO22 181.4
CLN3Chlorinenitrate:ClONO23 197.4
FMCLFormylchloride:HC(O)Cl1 1 1 164.5
BR2Molecularbromine2159.8
BRBromineatom179.9
BROBrominemonoxide1 195.9
HBRHydrogenbromide1 180.9
HOBRHypobromousacid1 1 196.9
BRN2Nitrylbroride:BrNO22 1125.9
BRN3Brominenitrate:BrONO23 1141.9
FMBRFormylbromide:HC(O)Br1 1 1 1108.9
I2Moleculariodine2253.8
IIodineatom1126.9
IOIodinemonoxide1 1142.9
OIOIodinedioxide2 1158.9
I2O2Diiodinedioxide2 2285.8
IXOYCondensableiodineoxides(>I2O2) 3 2301.8
HIHydrogeniodide1 1127.9
HOIHypoiodousacid1 1 1143.9
HIO3Iodicacid:HONO21 3 1175.9
INO2Nitryliodide:INO22 1172.9
INO3Iodinenitrate:IONO23  1188.9
CH3IIodomethane1 3   1141.9
MI2Diiodomethane:CH2I21 2 2267.8
MIBBromoiodomethane:CH2BrI1 2 11220.8
MICChloroiodomethane:CH2ClI1 2 11176.4
MBCChlorobromomethane:CH2ClBr 1 2 11129.4
MB2Dibromomethane:CH2Br21 2 2173.8
MBC2Dichlorobromomethane:CHCl2Br 1 3 21165.8
MB2CChlorodibromomethane:CHClBr21 3 12210.3
MB3BromoformCHBr31 1 3252.7
IALKAlkyliodides3 7   1170.0
SSCLPseudogasphasespeciesforseasaltchloride 0 1  35.5
SSBRPseudogasphasespeciesforseasaltbromide 0 179.9
SSN3Pseudogasphasespeciesforseasaltnitrate 0 3 1    62.0
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 245www.camx.com
AppendixC
CAMxMechanism6:CB05GasPhaseChemistry
TableC1.ReactionsandrateconstantexpressionsfortheCB05mechanism.k298istherate
constantat298Kand1atmosphereusingunitsinmolecules/cm3and1/s.SeeTable52for
speciesnames.SeeSection3.1ontemperatureandpressuredependencies.
NumberReactantsandProductsRateConstantExpressionk298
1NO2=NO+OPhotolysis5.89E3
2O+O2+M=O3+Mk=6.00E34(T/300)^2.46.10E34
3O3+NO=NO2k=3.00E12exp(1500/T)1.95E14
4O+NO2=NOk=5.60E12exp(180/T)1.02E11
5O+NO2=NO3Falloff:F=0.6;n=1
k(0)=2.50E31(T/300)^1.8exp(2/T)
k(inf)=2.20E11(T/300)^0.7exp(3/T)
3.26E12
6O+NO=NO2Falloff:F=0.6;n=1
k(0)=9.00E32(T/300)^1.5
k(inf)=3.00E11
1.66E12
7NO2+O3=NO3k=1.20E13exp(2450/T)3.23E17
8O3=OPhotolysis3.34E4
9O3=O1DPhotolysis8.95E6
10O1D+M=O+Mk=2.10E11exp(102/T)2.96E11
11O1D+H2O=2OHk=2.20E102.20E10
12O3+OH=HO2k=1.70E12exp(940/T)7.25E14
13O3+HO2=OHk=1.00E14exp(490/T)1.93E15
14NO3=NO2+OPhotolysis1.51E1
15NO3=NOPhotolysis1.64E2
16NO3+NO=2NO2k=1.50E11exp(170/T)2.65E11
17NO3+NO2=NO+NO2k=4.50E14exp(1260/T)6.56E16
18NO3+NO2=N2O5Falloff:F=0.6;n=1
k(0)=2.00E30(T/300)^4.4
k(inf)=1.40E12(T/300)^0.7
1.18E12
19N2O5+H2O=2HNO3k=2.50E222.50E22
20N2O5+H2O+H2O=2HNO3k=1.80E391.80E39
21N2O5=NO3+NO2Falloff:F=0.45;n=1
k(0)=1.00E3(T/300)^3.5exp(11000/T)
k(inf)=9.70E+14(T/300)^0.1exp(
11080/T)
5.28E2
22NO+NO+O2=2NO2k=3.30E39exp(530/T)1.95E38
23NO+NO2+H2O=2HONOk=5.00E405.00E40
24NO+OH=HONOFalloff:F=0.6;n=1
k(0)=7.00E31(T/300)^2.6
k(inf)=3.60E11(T/300)^0.1
7.41E12
25HONO=NO+OHPhotolysis1.05E3
26OH+HONO=NO2k=1.80E11exp(390/T)4.86E12
27HONO+HONO=NO+NO2k=1.00E201.00E20
28NO2+OH=HNO3Falloff:F=0.6;n=1
k(0)=2.00E30(T/300)^3
k(inf)=2.50E11
1.05E11
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 246www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
29OH+HNO3=NO3k=k1+k3[M]/(1+k3[M]/k2)
k1=2.40E14exp(460/T)
k2=2.70E17exp(2199/T)
k3=6.50E34exp(1335/T)
1.54E13
30HO2+NO=OH+NO2k=3.50E12exp(250/T)8.10E12
31HO2+NO2=PNAFalloff:F=0.6;n=1
k(0)=3.00E31(T/300)^3.2
k(inf)=4.70E12
1.77E12
32PNA=HO2+NO2Falloff:F=0.6;n=1
k(0)=4.10E5exp(10650/T)
k(inf)=4.80E+15exp(11170/T)
8.31E2
33OH+PNA=NO2k=1.30E12exp(380/T)4.65E12
34HO2+HO2=H2O2k=k1+k2[M]
k1=2.30E13exp(600/T)
k2=1.70E33exp(1000/T)
2.92E12
35HO2+HO2+H2O=H2O2k=k1+k2[M]
k1=3.22E34exp(2800/T)
k2=2.38E54exp(3200/T)
6.58E30
36H2O2=2OHPhotolysis3.78E6
37OH+H2O2=HO2k=2.90E12exp(160/T)1.70E12
38O1D+H2=OH+HO2k=1.10E101.10E10
39OH+H2=HO2k=5.50E12exp(2000/T)6.69E15
40OH+O=HO2k=2.20E11exp(120/T)3.29E11
41OH+OH=Ok=4.20E12exp(240/T)1.88E12
42OH+OH=H2O2Falloff:F=0.6;n=1
k(0)=6.90E31(T/300)^1
k(inf)=2.60E11
6.29E12
43OH+HO2=k=4.80E11exp(250/T)1.11E10
44HO2+O=OHk=3.00E11exp(200/T)5.87E11
45H2O2+O=OH+HO2k=1.40E12exp(2000/T)1.70E15
46NO3+O=NO2k=1.00E111.00E11
47NO3+OH=HO2+NO2k=2.20E112.20E11
48NO3+HO2=HNO3k=3.50E123.50E12
49NO3+O3=NO2k=1.00E171.00E17
50NO3+NO3=2NO2k=8.50E13exp(2450/T)2.28E16
51PNA=0.61HO2+0.61NO2+0.39OH+
0.39NO3
Photolysis2.53E6
52HNO3=OH+NO2Photolysis2.55E7
53N2O5=NO2+NO3Photolysis2.52E5
54XO2+NO=NO2k=2.60E12exp(365/T)8.85E12
55XO2N+NO=NTRk=2.60E12exp(365/T)8.85E12
56XO2+HO2=ROOHk=7.50E13exp(700/T)7.86E12
57XO2N+HO2=ROOHk=7.50E13exp(700/T)7.86E12
58XO2+XO2=k=6.80E146.80E14
59XO2N+XO2N=k=6.80E146.80E14
60XO2+XO2N=k=6.80E146.80E14
61NTR+OH=HNO3+HO2+0.33FORM+
0.33ALD2+0.33ALDX‐0.66PAR
k=5.90E13exp(360/T)1.76E13
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 247www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
62NTR=NO2+HO2+0.33FORM+0.33ALD2
+0.33ALDX‐0.66PAR
Photolysis1.06E6
63SO2+OH=SULF+HO2Falloff:F=0.6;n=1
k(0)=3.00E31(T/300)^3.3
k(inf)=1.50E12
8.89E13
64ROOH+OH=XO2+0.5ALD2+0.5ALDXk=3.01E12exp(190/T)5.69E12
65ROOH=OH+HO2+0.5ALD2+0.5ALDXPhotolysis2.72E6
66OH+CO=HO2k=k1+k2[M]
k1=1.44E13
k2=3.43E33
2.28E13
67OH+CH4=MEO2k=2.45E12exp(1775/T)6.34E15
68MEO2+NO=FORM+HO2+NO2k=2.80E12exp(300/T)7.66E12
69MEO2+HO2=MEPXk=4.10E13exp(750/T)5.08E12
70MEO2+MEO2=1.37FORM+0.74HO2+
0.63MEOH
k=9.50E14exp(390/T)3.52E13
71MEPX+OH=0.7MEO2+0.3XO2+0.3
HO2
k=3.80E12exp(200/T)7.43E12
72MEPX=FORM+HO2+OHPhotolysis2.72E6
73MEOH+OH=FORM+HO2k=7.30E12exp(620/T)9.12E13
74FORM+OH=HO2+COk=9.00E129.00E12
75FORM=2HO2+COPhotolysis1.40E5
76FORM=COPhotolysis2.43E5
77FORM+O=OH+HO2+COk=3.40E11exp(1600/T)1.58E13
78FORM+NO3=HNO3+HO2+COk=5.80E165.80E16
79FORM+HO2=HCO3k=9.70E15exp(625/T)7.90E14
80HCO3=FORM+HO2k=2.40E+12exp(7000/T)1.51E+2
81HCO3+NO=FACD+NO2+HO2k=5.60E125.60E12
82HCO3+HO2=MEPXk=5.60E15exp(2300/T)1.26E11
83FACD+OH=HO2k=4.00E134.00E13
84ALD2+O=C2O3+OHk=1.80E11exp(1100/T)4.49E13
85ALD2+OH=C2O3k=5.60E12exp(270/T)1.39E11
86ALD2+NO3=C2O3+HNO3k=1.40E12exp(1900/T)2.38E15
87ALD2=MEO2+CO+HO2Photolysis1.76E6
88C2O3+NO=MEO2+NO2k=8.10E12exp(270/T)2.00E11
89C2O3+NO2=PANFalloff:F=0.3;n=1
k(0)=2.70E28(T/300)^7.1
k(inf)=1.20E11(T/300)^0.9
1.05E11
90PAN=C2O3+NO2Falloff:F=0.3;n=1
k(0)=4.90E3exp(12100/T)
k(inf)=5.40E+16exp(13830/T)
3.31E4
91PAN=C2O3+NO2Photolysis3.47E7
92C2O3+HO2=0.8PACD+0.2AACD+0.2
O3
k=4.30E13exp(1040/T)1.41E11
93C2O3+MEO2=0.9MEO2+0.9HO2+
FORM+0.1AACD
k=2.00E12exp(500/T)1.07E11
94C2O3+XO2=0.9MEO2+0.1AACDk=4.40E13exp(1070/T)1.60E11
95C2O3+C2O3=2MEO2k=2.90E12exp(500/T)1.55E11
96PACD+OH=C2O3k=4.00E13exp(200/T)7.83E13
97PACD=MEO2+OHPhotolysis0.00E+0
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 248www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
98AACD+OH=MEO2k=4.00E13exp(200/T)7.83E13
99ALDX+O=CXO3+OHk=1.30E11exp(870/T)7.02E13
100ALDX+OH=CXO3k=5.10E12exp(405/T)1.99E11
101ALDX+NO3=CXO3+HNO3k=6.50E156.50E15
102ALDX=MEO2+CO+HO2Photolysis6.96E6
103CXO3+NO=ALD2+NO2+HO2+XO2k=6.70E12exp(340/T)2.10E11
104CXO3+NO2=PANXFalloff:F=0.3;n=1
k(0)=2.70E28(T/300)^7.1
k(inf)=1.20E11(T/300)^0.9
1.05E11
105PANX=CXO3+NO2Falloff:F=0.3;n=1
k(0)=4.90E3exp(12100/T)
k(inf)=5.40E+16exp(13830/T)
3.31E4
106PANX=CXO3+NO2Photolysis3.47E7
107PANX+OH=ALD2+NO2k=3.00E133.00E13
108CXO3+HO2=0.8PACD+0.2AACD+0.2
O3
k=4.30E13exp(1040/T)1.41E11
109CXO3+MEO2=0.9ALD2+0.9XO2+HO2
+0.1AACD+0.1FORM
k=2.00E12exp(500/T)1.07E11
110CXO3+XO2=0.9ALD2+0.1AACDk=4.40E13exp(1070/T)1.60E11
111CXO3+CXO3=2ALD2+2XO2+2HO2k=2.90E12exp(500/T)1.55E11
112CXO3+C2O3=MEO2+XO2+HO2+ALD2k=2.90E12exp(500/T)1.55E11
113OH+ETHA=0.991ALD2+0.991XO2+
0.009XO2N+HO2
k=8.70E12exp(1070/T)2.40E13
114OH+ETOH=HO2+0.9ALD2+0.05ALDX+
0.1FORM+0.1XO2
k=6.90E12exp(230/T)3.19E12
115PAR+OH=0.87XO2+0.13XO2N+0.11
HO2+0.06ALD2‐0.11PAR+0.76ROR+
0.05ALDX
k=8.10E138.10E13
116ROR=0.96XO2+0.6ALD2+0.94HO2‐2.1
PAR+0.04XO2N+0.02ROR+0.5ALDX
k=1.00E+15exp(8000/T)2.19E+3
117ROR=HO2k=1.60E+31.60E+3
118ROR+NO2=NTRk=1.50E111.50E11
119O+OLE=0.2ALD2+0.3ALDX+0.3HO2+
0.2XO2+0.2CO+0.2FORM+0.01XO2N
+0.2PAR+0.1OH
k=1.00E11exp(280/T)3.91E12
120OH+OLE=0.8FORM+0.33ALD2+0.62
ALDX+0.8XO2+0.95HO2‐0.7PAR
k=3.20E113.20E11
121O3+OLE=0.18ALD2+0.74FORM+0.32
ALDX+0.22XO2+0.1OH+0.33CO+0.44
HO2‐1PAR
k=6.50E15exp(1900/T)1.11E17
122NO3+OLE=NO2+FORM+0.91XO2+
0.09XO2N+0.56ALDX+0.35ALD2‐1PAR
k=7.00E13exp(2160/T)4.98E16
123O+ETH=FORM+1.7HO2+CO+0.7XO2
+0.3OH
k=1.04E11exp(792/T)7.29E13
124OH+ETH=XO2+1.56FORM+0.22ALDX
+HO2
Falloff:F=0.6;n=1
k(0)=1.00E28(T/300)^0.8
k(inf)=8.80E12
8.15E12
125O3+ETH=FORM+0.63CO+0.13HO2+
0.13OH+0.37FACD
k=1.20E14exp(2630/T)1.76E18
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 249www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
126NO3+ETH=NO2+XO2+2FORMk=3.30E12exp(2880/T)2.10E16
127IOLE+O=1.24ALD2+0.66ALDX+0.1
HO2+0.1XO2+0.1CO+0.1PAR
k=2.30E112.30E11
128IOLE+OH=1.3ALD2+0.7ALDX+HO2+
XO2
k=1.00E11exp(550/T)6.33E11
129IOLE+O3=0.65ALD2+0.35ALDX+0.25
FORM+0.25CO+0.5O+0.5OH+0.5HO2
k=8.40E15exp(1100/T)2.09E16
130IOLE+NO3=1.18ALD2+0.64ALDX+HO2
+NO2
k=9.60E13exp(270/T)3.88E13
131TOL+OH=0.44HO2+0.08XO2+0.36
CRES+0.56TO2
k=1.80E12exp(355/T)5.92E12
132TO2+NO=0.9NO2+0.9HO2+0.9OPEN
+0.1NTR
k=8.10E128.10E12
133TO2=CRES+HO2k=4.20E+04.20E+0
134OH+CRES=0.4CRO+0.6XO2+0.6HO2+
0.3OPEN
k=4.10E114.10E11
135CRES+NO3=CRO+HNO3k=2.20E112.20E11
136CRO+NO2=NTRk=1.40E111.40E11
137CRO+HO2=CRESk=5.50E125.50E12
138OPEN=C2O3+HO2+COPhotolysis1.26E4
139OPEN+OH=XO2+2CO+2HO2+C2O3+
FORM
k=3.00E113.00E11
140OPEN+O3=0.03ALDX+0.62C2O3+0.7
FORM+0.03XO2+0.69CO+0.08OH+
0.76HO2+0.2MGLY
k=5.40E17exp(500/T)1.01E17
141OH+XYL=0.7HO2+0.5XO2+0.2CRES+
0.8MGLY+1.1PAR+0.3TO2
k=1.70E11exp(116/T)2.51E11
142OH+MGLY=XO2+C2O3k=1.70E111.70E11
143MGLY=C2O3+HO2+COPhotolysis1.54E4
144O+ISOP=0.75ISPD+0.5FORM+0.25
XO2+0.25HO2+0.25CXO3+0.25PAR
k=3.60E113.60E11
145OH+ISOP=0.912ISPD+0.629FORM+
0.991XO2+0.912HO2+0.088XO2N
k=2.54E11exp(407.6/T)9.97E11
146O3+ISOP=0.65ISPD+0.6FORM+0.2
XO2+0.066HO2+0.266OH+0.2CXO3+
0.15ALDX+0.35PAR+0.066CO
k=7.86E15exp(1912/T)1.29E17
147NO3+ISOP=0.2ISPD+0.8NTR+XO2+
0.8HO2+0.2NO2+0.8ALDX+2.4PAR
k=3.03E12exp(448/T)6.74E13
148NO2+ISOP=0.2ISPD+0.8NTR+XO2+
0.8HO2+0.2NO+0.8ALDX+2.4PAR
k=1.50E191.50E19
149OH+ISPD=1.565PAR+0.167FORM+
0.713XO2+0.503HO2+0.334CO+0.168
MGLY+0.252ALD2+0.21C2O3+0.25
CXO3+0.12ALDX
k=3.36E113.36E11
150O3+ISPD=0.114C2O3+0.15FORM+
0.85MGLY+0.154HO2+0.268OH+0.064
XO2+0.02ALD2+0.36PAR+0.225CO
k=7.10E187.10E18
March2016CAMxUser’sGuideVersion6.3
AppendixC:Mechanism6CB05
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 250www.camx.com
NumberReactantsandProductsRateConstantExpressionk298
151NO3+ISPD=0.357ALDX+0.282FORM+
1.282PAR+0.925HO2+0.643CO+0.85
NTR+0.075CXO3+0.075XO2+0.15
HNO3
k=1.00E151.00E15
152ISPD=0.333CO+0.067ALD2+0.9FORM
+0.832PAR+1.033HO2+0.7XO2+0.967
C2O3
Photolysis1.11E6
153TERP+O=0.15ALDX+5.12PARk=3.60E113.60E11
154TERP+OH=0.75HO2+1.25XO2+0.25
XO2N+0.28FORM+1.66PAR+0.47ALDX
k=1.50E11exp(449/T)6.77E11
155TERP+O3=0.57OH+0.07HO2+0.76
XO2+0.18XO2N+0.24FORM+0.001CO
+7PAR+0.21ALDX+0.39CXO3
k=1.20E15exp(821/T)7.63E17
156TERP+NO3=0.47NO2+0.28HO2+1.03
XO2+0.25XO2N+0.47ALDX+0.53NTR
k=3.70E12exp(175/T)6.66E12
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 251www.camx.com
AppendixD
CAMxMechanism5:SAPRC07TCGasPhaseChemistry
TableD1.ReactionsandrateconstantsfortheSAPRC07TCmechanism.k300istherate
constantat300Kand1atmosphereusingunitsinmolecules/cm3and1/s.SeeTableD2for
speciesnames.SeeSection3.1ontemperatureandpressuredependencies.
NumberReactantsandProductsRateConstantExpression k300
1NO2=NO+O3PPhotolysis 6.37E3
2O3P+O2+M=O3k=5.68E34(T/300)^2.6 5.68E34
3O3P+O3= k=8.00E12exp(2060/T) 8.34E15
4O3P+NO=NO2Falloff:F=0.6;n=1
k(0)=9.00E32(T/300)^1.5
k(inf)=3.00E11
1.64E12
5O3P+NO2=NOk=5.50E12exp(188/T) 1.03E11
6O3P+NO2=NO3Falloff:F=0.6;n=1
k(0)=2.50E31(T/300)^1.8
k(inf)=2.20E11(T/300)^0.7
3.24E12
7O3+NO=NO2k=3.00E12exp(1500/T) 2.02E14
8O3+NO2=NO3k=1.40E13exp(2470/T) 3.72E17
9NO+NO3=2.NO2k=1.80E11exp(110/T) 2.60E11
10NO+NO+O2=2.NO2k=3.30E39exp(530/T) 1.93E38
11NO2+NO3=N2O5Falloff:F=0.35;n=1.33
k(0)=3.60E30(T/300)^4.1
k(inf)=1.90E12(T/300)^0.2
1.24E12
12N2O5=NO2+NO3Falloff:F=0.35;n=1.33
k(0)=1.30E3(T/300)^3.5exp(11000/T)
k(inf)=9.70E+14(T/300)^0.1exp(11080/T)
5.69E2
13N2O5+H2O=2.HNO3k=1.00E22 1.00E22
14N2O5+H2O+H2O=2.HNO3k=0.00E+0 0.00E+0
15NO2+NO3=NO+NO2k=4.50E14exp(1260/T) 6.75E16
16NO3=NOPhotolysis 1.98E2
17NO3=NO2+O3PPhotolysis 1.56E1
18O3=O1DPhotolysis 9.47E6
19O3=O3PPhotolysis 3.40E4
20O1D+H2O=2.OHk=1.63E10exp(60/T) 1.99E10
21O1D+M=O3Pk=2.38E11exp(96/T) 3.28E11
22OH+NO=HONOFalloff:F=0.6;n=1
k(0)=7.00E31(T/300)^2.6
k(inf)=3.60E11(T/300)^0.1
7.31E12
23HONO=OH+NOPhotolysis 9.88E4
24OH+HONO=NO2k=2.50E12exp(260/T) 5.95E12
25OH+NO2=HNO3Falloff:F=0.6;n=1
k(0)=1.80E30(T/300)^3
k(inf)=2.80E11
1.05E11
26OH+NO3=HO2+NO2k=2.00E11 2.00E11
27OH+HNO3=NO3k=k1+k3[M]/(1+k3[M]/k2)
k1=2.40E14exp(460/T)
k2=2.70E17exp(2199/T)
k3=6.50E34exp(1335/T)
1.51E13
28HNO3=OH+NO2Photolysis 2.55E7
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 252www.camx.com
NumberReactantsandProductsRateConstantExpression k300
29OH+CO=HO2+CO2k=k1+k2[M]
k1=1.44E13
k2=3.43E33
2.28E13
30OH+O3=HO2k=1.70E12exp(940/T) 7.41E14
31HO2+NO=OH+NO2k=3.60E12exp(270/T) 8.85E12
32HO2+NO2=PNAFalloff:F=0.6;n=1
k(0)=2.00E31(T/300)^3.4
k(inf)=2.90E12(T/300)^1.1
1.12E12
33PNA=HO2+NO2Falloff:F=0.6;n=1
k(0)=3.72E5(T/300)^2.4exp(10650/T)
k(inf)=5.42E+15(T/300)^2.3exp(11170/T)
1.07E1
34PNA=0.61HO2+0.61NO2+0.39OH+0.39
NO3
Photolysis 3.17E6
35PNA+OH=NO2 k=1.30E12exp(380/T) 4.61E12
36HO2+O3=OHk=2.03E16(
T
/300)^4.57exp(693/T)2.05E15
37HO2+HO2=H2O2k=k1+k2[M]
k1=2.20E13exp(600/T)
k2=1.90E33exp(980/T)
2.84E12
38HO2+HO2+H2O=H2O2k=k1+k2[M]
k1=3.08E34exp(2800/T)
k2=2.66E54exp(3180/T)
6.09E30
39NO3+HO2=0.8OH+0.8NO2+0.2HNO3 k=4.00E12 4.00E12
40NO3+NO3=2.NO2k=8.50E13exp(2450/T) 2.41E16
41H2O2=2.OHPhotolysis 3.78E6
42H2O2+OH=HO2k=1.80E12 1.80E12
43OH+HO2= k=4.80E11exp(250/T) 1.10E10
44OH+SO2=HO2+SULFFalloff:F=0.6;n=1
k(0)=3.30E31(T/300)^4.3
k(inf)=1.60E12
9.49E13
45OH+H2=HO2k=7.70E12exp(2100/T) 7.02E15
46MEO2+NO=NO2+HCHO+HO2 k=2.30E12exp(360/T) 7.64E12
47MEO2+HO2=COOHk=3.46E13(T/300)^0.36exp(780/T)4.66E12
48MEO2+HO2=HCHOk=3.34E14(T/300)^3.53exp(780/T)4.50E13
49MEO2+NO3=HCHO+HO2+NO2 k=1.30E12 1.30E12
50MEO2+MEO2=MEOH+HCHOk=6.39E14(T/300)^1.8exp(365/T)2.16E13
51MEO2+MEO2=2.HCHO+2.HO2 k=7.40E13exp(520/T) 1.31E13
52RO2C+NO=NO2k=2.60E12exp(380/T) 9.23E12
53RO2C+HO2= k=3.80E13exp(900/T) 7.63E12
54RO2C+NO3=NO2k=2.30E12 2.30E12
55RO2C+MEO2=0.5HO2+0.75HCHO+0.25
MEOH
k=2.00E13 2.00E13
56RO2C+RO2C= k=3.50E14 3.50E14
57RO2X+NO=XNk=k(52) 9.23E12
58RO2X+HO2= k=k(53) 7.63E12
59RO2X+NO3=NO2k=k(54) 2.30E12
60RO2X+MEO2=0.5HO2+0.75HCHO+0.25
MEOH
k=k(55) 2.00E13
61RO2X+RO2C= k=k(56) 3.50E14
62RO2X+RO2X= k=k(56) 3.50E14
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 253www.camx.com
NumberReactantsandProductsRateConstantExpression k300
63MCO3+NO2=PANFalloff:F=0.3;n=1.41
k(0)=2.70E28(T/300)^7.1
k(inf)=1.21E11(T/300)^0.9
9.38E12
64PAN=MCO3+NO2Falloff:F=0.3;n=1.41
k(0)=4.90E3exp(12100/T)
k(inf)=4.00E+16exp(13600/T)
6.27E4
65PAN=0.6MCO3+0.6NO2+0.4MEO2+0.4
CO2+0.4NO3
Photolysis 3.50E7
66MCO3+NO=MEO2+CO2+NO2 k=7.50E12exp(290/T) 1.97E11
67MCO3+HO2=0.7CO3H+0.3AACD+0.3O3 k=5.20E13exp(980/T) 1.36E11
68MCO3+NO3=MEO2+CO2+NO2 k=k(54) 2.30E12
69MCO3+MEO2=0.1AACD+HCHO+0.9HO2
+0.9MEO2+0.9CO2
k=2.00E12exp(500/T) 1.06E11
70MCO3+RO2C=MEO2+CO2k=4.40E13exp(1070/T) 1.56E11
71MCO3+RO2X=MEO2+CO2k=k(70) 1.56E11
72MCO3+MCO3=2.MEO2+2.CO2 k=2.90E12exp(500/T) 1.54E11
73RCO3+NO2=PAN2k=1.21E11(T/300)^1.07 1.21E11
74PAN2=RCO3+NO2k=8.30E+16exp(13940/T) 5.48E4
75PAN2=0.6RCO3+0.6NO2+0.4RO2C+0.4
XHO2+0.4YRPX+0.4XCCH+0.4CO2+0.4
NO3
Photolysis 3.50E7
76RCO3+NO=NO2+RO2C+XHO2+YRPX+
XCCH+CO2
k=6.70E12exp(340/T) 2.08E11
77RCO3+HO2=0.75RO3H+0.25PACD+0.25
O3
k=k(67) 1.36E11
78RCO3+NO3=NO2+RO2C+XHO2+YRPX+
XCCH+CO2
k=k(54) 2.30E12
79RCO3+MEO2=HCHO+HO2+RO2C+XHO2
+XCCH+YRPX+CO2
k=k(69) 1.06E11
80RCO3+RO2C=RO2C+XHO2+XCCH+YRPX+
CO2
k=k(70) 1.56E11
81RCO3+RO2X=RO2C+XHO2+XCCH+YRPX+
CO2
k=k(70) 1.56E11
82RCO3+MCO3=2.CO2+MEO2+RO2C+
XHO2+YRPX+XCCH
k=k(72) 1.54E11
83RCO3+RCO3=2.RO2C+2.XHO2+2.XCCH+
2.YRPX+2.CO2
k=k(72) 1.54E11
84BZC3+NO2=PBZNk=1.37E11 1.37E11
85PBZN=BZC3+NO2k=7.90E+16exp(14000/T) 4.27E4
86PBZN=0.6BZC3+0.6NO2+0.4CO2+0.4
BZO+0.4RO2C+0.4NO3
Photolysis 3.50E7
87BZC3+NO=NO2+CO2+BZO+RO2C k=k(76) 2.08E11
88BZC3+HO2=0.75RO3H+0.25PACD+0.25
O3+4.XC
k=k(67) 1.36E11
89BZC3+NO3=NO2+CO2+BZO+RO2C k =k(54) 2.30E12
90BZC3+MEO2=HCHO+HO2+RO2C+BZO+
CO2
k=k(69) 1.06E11
91BZC3+RO2C=RO2C+BZO+CO2 k=k(70) 1.56E11
92BZC3+RO2X=RO2C+BZO+CO2 k=k(70) 1.56E11
93BZC3+MCO3=2.CO2+MEO2+BZO+RO2C k=k(72) 1.54E11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 254www.camx.com
NumberReactantsandProductsRateConstantExpression k300
94BZC3+RCO3=2.CO2+2.RO2C+XHO2+
YRPX+XCCH+BZO
k=k(72) 1.54E11
95BZC3+BZC3=2.BZO+2.RO2C+2.CO2 k=k(72) 1.54E11
96MAC3+NO2=MPANk=k(73) 1.21E11
97MPAN=MAC3+NO2k=1.60E+16exp(13486/T) 4.80E4
98MPAN=0.6MAC3+0.6NO2+0.4CO2+0.4
HCHO+0.4MCO3+0.4NO3
Photolysis 3.50E7
99MAC3+NO=NO2+CO2+HCHO+MCO3 k=k(76) 2.08E11
100MAC3+HO2=0.75RO3H+0.25PACD+0.25
O3+XC
k=k(67) 1.36E11
101MAC3+NO3=NO2+CO2+HCHO+MCO3 k=k(54) 2.30E12
102MAC3+MEO2=2.HCHO+HO2+CO2+
MCO3
k=k(69) 1.06E11
103MAC3+RO2C=CO2+HCHO+MCO3 k=k(70) 1.56E11
104MAC3+RO2X=CO2+HCHO+MCO3 k=k(70) 1.56E11
105MAC3+MCO3=2.CO2+MEO2+HCHO+
MCO3
k=k(72) 1.54E11
106MAC3+RCO3=HCHO+MCO3+RO2C+
XHO2+YRPX+XCCH+2.CO2
k=k(72) 1.54E11
107MAC3+BZC3=HCHO+MCO3+BZO+RO2C
+2.CO2
k=k(72) 1.54E11
108MAC3+MAC3=2.HCHO+2.MCO3+2.CO2 k=k(72) 1.54E11
109TBUO+NO2=RNO3‐2.XCk=2.40E11 2.40E11
110TBUO=ACET+MEO2k=7.50E+14exp(8152/T) 1.19E+3
111BZO+NO2=NPHEk=2.30E11exp(150/T) 3.79E11
112BZO+HO2=CRES‐1.XCk=k(53) 7.63E12
113BZO=CRES+RO2C+XHO2‐1.XC k=1.00E31.00E3
114XHO2+NO=NO+HO2k=k(52) 9.23E12
115XHO2+HO2=HO2k=k(53) 7.63E12
116XHO2+NO3=NO3+HO2k=k(54) 2.30E12
117XHO2+MEO2=MEO2+0.5HO2 k=k(55) 2.00E13
118XHO2+RO2C=RO2C+0.5HO2k=k(56) 3.50E14
119XHO2+RO2X=RO2X+0.5HO2k=k(56) 3.50E14
120XHO2+MCO3=MCO3+HO2k=k(70) 1.56E11
121XHO2+RCO3=RCO3+HO2k=k(70) 1.56E11
122XHO2+BZC3=BZC3+HO2k=k(70) 1.56E11
123XHO2+MAC3=MAC3+HO2k=k(70) 1.56E11
124XOH+NO=NO+OHk=k(52) 9.23E12
125XOH+HO2=HO2k=k(53) 7.63E12
126XOH+NO3=NO3+OHk=k(54) 2.30E12
127XOH+MEO2=MEO2+0.5OHk=k(55) 2.00E13
128XOH+RO2C=RO2C+0.5OHk=k(56) 3.50E14
129XOH+RO2X=RO2X+0.5OHk=k(56) 3.50E14
130XOH+MCO3=MCO3+OHk=k(70) 1.56E11
131XOH+RCO3=RCO3+OHk=k(70) 1.56E11
132XOH+BZC3=BZC3+OHk=k(70) 1.56E11
133XOH+MAC3=MAC3+OHk=k(70) 1.56E11
134XNO2+NO=NO+NO2k=k(52) 9.23E12
135XNO2+HO2=HO2+XNk=k(53) 7.63E12
136XNO2+NO3=NO3+NO2k=k(54) 2.30E12
137XNO2+MEO2=MEO2+0.5NO2+0.5XN k=k(55) 2.00E13
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 255www.camx.com
NumberReactantsandProductsRateConstantExpression k300
138XNO2+RO2C=RO2C+0.5NO2+0.5XN k=k(56) 3.50E14
139XNO2+RO2X=RO2X+0.5NO2+0.5XN k=k(56) 3.50E14
140XNO2+MCO3=MCO3+NO2k=k(70) 1.56E11
141XNO2+RCO3=RCO3+NO2k=k(70) 1.56E11
142XNO2+BZC3=BZC3+NO2k=k(70) 1.56E11
143XNO2+MAC3=MAC3+NO2k=k(70) 1.56E11
144XMEO+NO=NO+MEO2k=k(52) 9.23E12
145XMEO+HO2=HO2+XCk=k(53) 7.63E12
146XMEO+NO3=NO3+MEO2k=k(54) 2.30E12
147XMEO+MEO2=1.5MEO2+0.5XC k=k(55) 2.00E13
148XMEO+RO2C=RO2C+0.5MEO2+0.5XC k=k(56) 3.50E14
149XMEO+RO2X=RO2X+0.5MEO2+0.5XC k=k(56) 3.50E14
150XMEO+MCO3=MCO3+MEO2k=k(70) 1.56E11
151XMEO+RCO3=RCO3+MEO2k=k(70) 1.56E11
152XMEO+BZC3=BZC3+MEO2k=k(70) 1.56E11
153XMEO+MAC3=MAC3+MEO2k=k(70) 1.56E11
154XMC3+NO=NO+MCO3k=k(52) 9.23E12
155XMC3+HO2=HO2+2.XCk=k(53) 7.63E12
156XMC3+NO3=NO3+MCO3k=k(54) 2.30E12
157XMC3+MEO2=MEO2+0.5MCO3+XC k=k(55) 2.00E13
158XMC3+RO2C=RO2C+0.5MCO3+XC k=k(56) 3.50E14
159XMC3+RO2X=RO2X+0.5MCO3+XC k=k(56) 3.50E14
160XMC3+MCO3=2.MCO3k=k(70) 1.56E11
161XMC3+RCO3=RCO3+MCO3k=k(70) 1.56E11
162XMC3+BZC3=BZC3+MCO3k=k(70) 1.56E11
163XMC3+MAC3=MAC3+MCO3k=k(70) 1.56E11
164XRC3+NO=NO+RCO3k=k(52) 9.23E12
165XRC3+HO2=HO2+3.XCk=k(53) 7.63E12
166XRC3+NO3=NO3+RCO3k=k(54) 2.30E12
167XRC3+MEO2=MEO2+0.5RCO3+1.5XC k=k(55) 2.00E13
168XRC3+RO2C=RO2C+0.5RCO3 +1.5XC k=k(56) 3.50E14
169XRC3+RO2X=RO2X+0.5RCO3+1.5XC k=k(56) 3.50E14
170XRC3+MCO3=MCO3+RCO3k=k(70) 1.56E11
171XRC3+RCO3=2.RCO3k=k(70) 1.56E11
172XRC3+BZC3=BZC3+RCO3k=k(70) 1.56E11
173XRC3+MAC3=MAC3+RCO3k=k(70) 1.56E11
174XMA3+NO=NO+MAC3k=k(52) 9.23E12
175XMA3+HO2=HO2+4.XCk=k(53) 7.63E12
176XMA3+NO3=NO3+MAC3k=k(54) 2.30E12
177XMA3+MEO2=MEO2+0.5MAC3+2.XC k=k(55) 2.00E13
178XMA3+RO2C=RO2C+0.5MAC3+2.XC k=k(56) 3.50E14
179XMA3+RO2X=RO2X+0.5MAC3+2.XC k=k(56) 3.50E14
180XMA3+MCO3=MCO3+MAC3k=k(70) 1.56E11
181XMA3+RCO3=RCO3+MAC3k=k(70) 1.56E11
182XMA3+BZC3=BZC3+MAC3k=k(70) 1.56E11
183XMA3+MAC3=2.MAC3k=k(70) 1.56E11
184XTBU+NO=NO+TBUOk=k(52) 9.23E12
185XTBU+HO2=HO2+4.XCk=k(53) 7.63E12
186XTBU+NO3=NO3+TBUOk=k(54) 2.30E12
187XTBU+MEO2=MEO2+0.5TBUO+2.XC k=k(55) 2.00E13
188XTBU+RO2C=RO2C+0.5TBUO+2.XC k=k(56) 3.50E14
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 256www.camx.com
NumberReactantsandProductsRateConstantExpression k300
189XTBU+RO2X=RO2X+0.5TBUO+2.XC k=k(56) 3.50E14
190XTBU+MCO3=MCO3+TBUOk=k(70) 1.56E11
191XTBU+RCO3=RCO3+TBUOk=k(70) 1.56E11
192XTBU+BZC3=BZC3+TBUOk=k(70) 1.56E11
193XTBU+MAC3=MAC3+TBUOk=k(70) 1.56E11
194XCO+NO=NO+COk=k(52) 9.23E12
195XCO+HO2=HO2+XCk=k(53) 7.63E12
196XCO+NO3=NO3+COk=k(54) 2.30E12
197XCO+MEO2=MEO2+0.5CO+0.5XC k=k(55) 2.00E13
198XCO+RO2C=RO2C+0.5CO+0.5XC k=k(56) 3.50E14
199XCO+RO2X=RO2X+0.5CO+0.5XC k=k(56) 3.50E14
200XCO+MCO3=MCO3+COk=k(70) 1.56E11
201XCO+RCO3=RCO3+COk=k(70) 1.56E11
202XCO+BZC3=BZC3+COk=k(70) 1.56E11
203XCO+MAC3=MAC3+COk=k(70) 1.56E11
204HCHO=2.HO2+COPhotolysis 1.78E5
205HCHO=COPhotolysis 2.38E5
206HCHO+OH=HO2+COk=5.40E12exp(135/T) 8.47E12
207HCHO+NO3=HNO3+HO2+CO k=2.00E12exp(2431/T) 6.05E16
208CCHO+OH=MCO3k=4.40E12exp(365/T) 1.49E11
209CCHO=CO+HO2+MEO2Photolysis 1.77E6
210CCHO+NO3=HNO3+MCO3k=1.40E12exp(1860/T) 2.84E15
211RCHO+OH=0.965RCO3+0.035RO2C+
0.035XHO2+0.035XCO+0.035XCCH+
0.035YRPX
k=5.10E12exp(405/T) 1.97E11
212RCHO=RO2C+XHO2+YRPX+XCCH+CO+
HO2
Photolysis 6.95E6
213RCHO+NO3=HNO3+RCO3k=1.40E12exp(1601/T) 6.74E15
214ACET+OH=RO2C+XMC3+XHCH+YRPX k=4.56E14(T/300)^3.65exp(429/T)1.91E13
215ACET=0.62MCO3+1.38MEO2+0.38CO Photolysis 1.04E7
216MEK+OH=0.967RO2C+0.039RO2X+0.039
ZRN3+0.376XHO2+0.51XMC3+0.074
XRC3+0.088XHCH+0.504XCCH+0.376
XRCH+YRPX+0.3XC
k=1.30E12(T/300)^2exp(25/T)1.20E12
217MEK=MCO3+RO2C+XHO2+XCCH+YRPX Photolysis 8.13E7
218MEOH+OH=HCHO+HO2k=2.85E12exp(345/T) 9.02E13
219FACD+OH=HO2+CO2k=4.50E13 4.50E13
220AACD+OH=0.509MEO2+0.491RO2C+
0.509CO2+0.491XHO2+0.491XMGL+
0.491YRPX‐0.491XC
k=4.20E14exp(855/T) 7.26E13
221PACD+OH=RO2C+XHO2+0.143CO2+
0.142XCCH+0.4XRCH+0.457XBAC+YRPX‐
0.455XC
k=1.20E12 1.20E12
222COOH+OH=0.3HCHO+0.3OH+0.7MEO2 k=3.80E12exp(200/T) 7.40E12
223COOH=HCHO+HO2+OHPhotolysis 2.72E6
224ROOH+OH=0.744OH+0.251RO2C+0.004
RO2X+0.004ZRN3+0.744RCHO+0.239
XHO2+0.012XOH+0.012XHCH+0.012
XCCH+0.205XRCH+0.034XPD2+0.256
YRPX‐0.115XC
k =2.50E11 2.50E11
225ROOH=RCHO+HO2+OHPhotolysis 2.72E6
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 257www.camx.com
NumberReactantsandProductsRateConstantExpression k300
226R6PX+OH=0.84OH+0.222RO2C+0.029
RO2X+0.029ZRN3+0.84PRD2+0.09XHO2
+0.041XOH+0.02XCCH+0.075XRCH+
0.084XPD2+0.16YRPX+0.02XC
k=5.60E11 5.60E11
227R6PX=OH+0.142HO2+0.782RO2C+0.077
RO2X+0.077ZRN3+0.085RCHO+0.142
PRD2+0.782XHO2+0.026XCCH+0.058
XRCH+0.698XPD2+0.858Y6PX+0.017XC
Photolysis 2.72E6
228RAPX+OH=0.139OH+0.148HO2+0.589
RO2C+0.124RO2X+0.124ZRN3+0.074
PRD2+0.147MGLY+0.139IPRD+0.565
XHO2+0.024XOH+0.448XRCH+0.026XGLY
+0.03XMEK+0.252XMGL+0.073XAF1+
0.073XAF2+0.713Y6PX+2.674XC
k=1.41E10 1.41E10
229RAPX=OH+HO2+0.5GLY+0.5MGLY+0.5
AFG1+0.5AFG2+0.5XC
Photolysis 2.72E6
230GLY=2.CO+2.HO2Photolysis 7.88E5
231GLY=HCHO+COPhotolysis 2.23E5
232GLY+OH=0.63HO2+1.26CO+0.37RCO3‐
0.37XC
k=1.10E11 1.10E11
233GLY+NO3=HNO3+0.63HO2+1.26CO+
0.37RCO3‐0.37XC
k=2.80E12exp(2376/T) 1.02E15
234MGLY=HO2+CO+MCO3Photolysis 1.39E4
235MGLY+OH=CO+MCO3k=1.50E11 1.50E11
236MGLY+NO3=HNO3+CO+MCO3 k=1.40E12exp(1895/T) 2.53E15
237BACL=2.MCO3Photolysis 2.45E4
238CRES+OH=0.2BZO+0.8RO2C+0.8XHO2+
0.8Y6PX+0.25XMGL+5.05XC
k=1.70E12exp(950/T) 4.03E11
239CRES+NO3=HNO3+BZO+XCk=1.40E11 1.40E11
240NPHE+OH=BZO+XNk=3.50E12 3.50E12
241NPHE=HONO+6.XCPhotolysis 9.55E6
242NPHE=6.XC+XNPhotolysis 9.55E5
243BALD+OH=BZC3k=1.20E11 1.20E11
244BALD=7.XCPhotolysis 2.48E5
245BALD+NO3=HNO3+BZC3k=1.34E12exp(1860/T) 2.72E15
246AFG1+OH=0.217MAC3+0.723RO2C+0.06
RO2X+0.06ZRN3+0.521XHO2+0.201
XMC3+0.334XCO+0.407XRCH+0.129
XMEK+0.107XGLY+0.267XMGL+0.783
Y6PX+0.284XC
k=7.40E11 7.40E11
247AFG1+O3=0.826OH+0.522HO2+0.652
RO2C+0.522CO+0.174CO2+0.432GLY+
0.568MGLY+0.652XRC3+0.652XHCH+
0.652Y6PX‐0.872XC
k=9.66E18 9.66E18
248AFG1=1.023HO2+0.173MEO2+0.305
MCO3+0.5MAC3+0.695CO+0.195GLY+
0.305MGLY+0.217XC
Photolysis 3.07E3
249AFG2+OH=0.217MAC3+0.723RO2C+0.06
RO2X+0.06ZRN3+0.521XHO2+0.201
XMC3+0.334XCO+0.407XRCH+0.129
XMEK+0.107XGLY+0.267XMGL+0.783
Y6PX+0.284XC
k=7.40E11 7.40E11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 258www.camx.com
NumberReactantsandProductsRateConstantExpression k300
250AFG2+O3=0.826OH+0.522HO2+0.652
RO2C+0.522CO+0.174CO2+0.432GLY+
0.568MGLY+0.652XRC3+0.652XHCH+
0.652Y6PX‐0.872XC
k=9.66E18 9.66E18
251AFG2=PRD2‐1.XCPhotolysis 3.07E3
252AFG3+OH=0.206MAC3+0.733RO2C+
0.117RO2X+0.117ZRN3+0.561XHO2+
0.117XMC3+0.114XCO+0.274XGLY+0.153
XMGL+0.019XBAC+0.195XAF1+0.195
XAF2+0.231XIPR+0.794Y6PX+0.938XC
k=9.35E11 9.35E11
253AFG3+O3=0.471OH+0.554HO2+0.013
MCO3+0.258RO2C+0.007RO2X+0.007
ZRN3+0.58CO+0.19CO2+0.366GLY+
0.184MGLY+0.35AFG1+0.35AFG2+0.139
AFG3+0.003MACR+0.004MVK+0.003
IPRD+0.095XHO2+0.163XRC3+0.163
XHCH+0.095XMGL+0.264Y6PX‐0.575XC
k=1.43E17 1.43E17
254MACR+OH=0.5MAC3+0.5RO2C+0.5
XHO2+0.416XCO+0.084XHCH+0.416
XMEK+0.084XMGL+0.5YRPX‐0.416XC
k=8.00E12exp(380/T) 2.84E11
255MACR+O3=0.208OH+0.108HO2+0.1
RO2C+0.45CO+0.117CO2+0.1HCHO+0.9
MGLY+0.333FACD+0.1XRC3+0.1XHCH+
0.1YRPX‐0.1XC
k=1.40E15exp(2100/T) 1.28E18
256MACR+NO3=0.5MAC3+0.5RO2C+0.5
HNO3+0.5XHO2+0.5XCO+0.5YRPX+1.5
XC+0.5XN
k=1.50E12exp(1815/T) 3.54E15
257MACR+O3P=RCHO+XCk=6.34E12 6.34E12
258MACR=0.33OH+0.67HO2+0.34MCO3+
0.33MAC3+0.33RO2C+0.67CO+0.34
HCHO+0.33XMC3+0.33XHCH+0.33YRPX
Photolysis 1.39E6
259MVK+OH=0.975RO2C+0.025RO2X+0.025
ZRN3+0.3XHO2+0.675XMC3+0.3XHCH+
0.675XGLD+0.3XMGL+YRPX‐0.05XC
k=2.60E12exp(610/T) 1.99E11
260MVK+O3=0.164OH+0.064HO2+0.05
RO2C+0.05XHO2+0.475CO+0.124CO2+
0.05HCHO+0.95MGLY+0.351FACD+0.05
XRC3+0.05XHCH+0.05YRPX‐0.05XC
k=8.50E16exp(1520/T) 5.36E18
261MVK+O3P=0.45RCHO+0.55MEK+0.45XC k=4.32E12 4.32E12
262MVK=0.4MEO2+0.6CO+0.6PRD2+0.4
MAC3‐2.2XC
Photolysis 5.25E7
263IPRD+OH=0.289MAC3+0.67RO2C+0.67
XHO2+0.041RO2X+0.041ZRN3+0.336XCO
+0.055XHCH+0.129XGLD+0.013XRCH+
0.15XMEK+0.332XPD2+0.15XGLY+0.174
XMGL‐0.504XC+0.711Y6PX
k=6.19E11 6.19E11
264IPRD+O3=0.285OH+0.4HO2+0.048 RO2C
+0.048XRC3+0.498CO+0.14CO2+0.124
HCHO+0.21MEK+0.023GLY+0.742MGLY+
0.1FACD+0.372PACD+0.047XGLD+0.001
XHCH+0.048Y6PX‐0.329XC
k=4.18E18 4.18E18
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 259www.camx.com
NumberReactantsandProductsRateConstantExpression k300
265IPRD+NO3=0.15MAC3+0.15HNO3+0.799
RO2C+0.799XHO2+0.051RO2X+0.051
ZRN3+0.572XCO+0.227XHCH+0.218XRCH
+0.008XMGL+0.572XRN3+0.85Y6PX+
0.278XN‐0.815XC
k=1.00E13 1.00E13
266IPRD=1.233HO2+0.467MCO3+0.3RCO3+
1.233CO+0.3HCHO+0.467GLYD+0.233
MEK‐0.233XC
Photolysis 1.39E6
267PRD2+OH=0.472HO2+0.379XHO2+0.029
XMC3+0.049XRC3+0.473RO2C+0.071
RO2X+0.071ZRN3+0.002HCHO+0.211
XHCH+0.001CCHO+0.083XCCH+0.143
RCHO+0.402XRCH+0.115XMEK+0.329
PRD2+0.007XPD2+0.528Y6PX+0.877XC
k =1.55E11 1.55E11
268PRD2=0.913XHO2+0.4MCO3+0.6RCO3+
1.59RO2C+0.087RO2X+0.087ZRN3+0.303
XHCH+0.163XCCH+0.78XRCH+Y6PX‐
0.091XC
Photolysis 2.26E8
269RNO3+OH=0.189HO2+0.305XHO2+0.019
NO2+0.313XNO2+0.976RO2C+0.175
RO2X+0.175ZRN3+0.011XHCH+0.429
XCCH+0.001RCHO+0.036XRCH+0.004
XACE+0.01MEK+0.17XMEK+0.008PRD2+
0.031XPD2+0.189RNO3+0.305XRN3+
0.157YRPX+0.636Y6PX+0.174XN+0.04XC
k=7.20E12 7.20E12
270RNO3=0.344HO2+0.554XHO2+NO2+
0.721RO2C+0.102RO2X+0.102ZRN3+
0.074HCHO+0.061XHCH+0.214CCHO+
0.23XCCH+0.074RCHO+0.063XRCH+
0.008XACE+0.124MEK+0.083XMEK+0.19
PRD2+0.261XPD2+0.066YRPX+0.591Y6PX
+0.396XC
Photolysis 1.20E6
271GLYD+OH=MCO3k=k(208) 1.49E11
272GLYD=CO+2.HO2+HCHOPhotolysis 2.75E6
273GLYD+NO3=HNO3+MCO3k=k(210) 2.84E15
274ACRO+OH=0.25XHO2+0.75MAC3+0.25
RO2C+0.167XCO+0.083XHCH+0.167XCCH
+0.083XGLY+0.25YRPX‐0.75XC
k=1.99E11 1.99E11
275ACRO+O3=0.83HO2+0.33OH+1.005CO+
0.31CO2+0.5HCHO+0.185FACD+0.5GLY
k=1.40E15exp(2528/T) 3.07E19
276ACRO+NO3=0.031XHO2+0.967MAC3+
0.031RO2C+0.002RO2X+0.002ZRN3+
0.967HNO3+0.031XCO+0.031XRN3+
0.033YRPX+0.002XN‐1.097XC
k=1.18E15 1.18E15
277ACRO+O3P=RCHOk=2.37E12 2.37E12
278ACRO=1.066HO2+0.178OH+0.234MEO2
+0.33MAC3+1.188CO+0.102CO2+0.34
HCHO+0.05AACD‐0.284XC
Photolysis 1.28E6
279CO3H+OH=0.98MCO3+0.02RO2C+0.02
CO2+0.02XOH+0.02XHCH+0.02YRPX
k=5.28E12 5.28E12
280CO3H=MEO2+CO2+OHPhotolysis 3.60E7
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 260www.camx.com
NumberReactantsandProductsRateConstantExpression k300
281RO3H+OH=0.806RCO3+0.194RO2C+
0.194YRPX+0.11CO2+0.11XOH+0.11
XCCH+0.084XHO2+0.084XRCH
k=6.42E12 6.42E12
282RO3H=XHO2+XCCH+YRPX+CO2+OH Photolysis 3.60E7
283XHCH+NO=NO+HCHOk=k(52) 9.23E12
284XHCH+HO2=HO2+XCk=k(53) 7.63E12
285XHCH+NO3=NO3+HCHOk=k(54) 2.30E12
286XHCH+MEO2=MEO2+0.5HCHO+0.5XC k=k(55) 2.00E13
287XHCH+RO2C=RO2C+0.5HCHO+0.5XC k=k(56) 3.50E14
288XHCH+RO2X=RO2X+0.5HCHO+0.5XC k=k(56) 3.50E14
289XHCH+MCO3=MCO3+HCHOk=k(70) 1.56E11
290XHCH+RCO3=RCO3+HCHOk=k(70) 1.56E11
291XHCH+BZC3=BZC3+HCHOk=k(70) 1.56E11
292XHCH+MAC3=MAC3+HCHOk=k(70) 1.56E11
293XCCH+NO=NO+CCHOk=k(52) 9.23E12
294XCCH+HO2=HO2+2.XCk=k(53) 7.63E12
295XCCH+NO3=NO3+CCHOk=k(54) 2.30E12
296XCCH+MEO2=MEO2+0.5CCHO+XC k=k(55) 2.00E13
297XCCH+RO2C=RO2C+0.5CCHO+XC k=k(56) 3.50E14
298XCCH+RO2X=RO2X+0.5CCHO+XC k=k(56) 3.50E14
299XCCH+MCO3=MCO3+CCHOk=k(70) 1.56E11
300XCCH+RCO3=RCO3+CCHOk=k(70) 1.56E11
301XCCH+BZC3=BZC3+CCHOk=k(70) 1.56E11
302XCCH+MAC3=MAC3+CCHOk=k(70) 1.56E11
303XRCH+NO=NO+RCHOk=k(52) 9.23E12
304XRCH+HO2=HO2+3.XCk=k(53) 7.63E12
305XRCH+NO3=NO3+RCHOk=k(54) 2.30E12
306XRCH+MEO2=MEO2+0.5RCHO+1.5XC k=k(55) 2.00E13
307XRCH+RO2C=RO2C+0.5RCHO+1.5XC k=k(56) 3.50E14
308XRCH+RO2X=RO2X+0.5RCHO+1.5XC k=k(56) 3.50E14
309XRCH+MCO3=MCO3+RCHOk=k(70) 1.56E11
310XRCH+RCO3=RCO3+RCHOk=k(70) 1.56E11
311XRCH+BZC3=BZC3+RCHOk=k(70) 1.56E11
312XRCH+MAC3=MAC3+RCHOk=k(70) 1.56E11
313XACE+NO=NO+ACETk=k(52) 9.23E12
314XACE+HO2=HO2+3.XCk=k(53) 7.63E12
315XACE+NO3=NO3+ACETk=k(54) 2.30E12
316XACE+MEO2=MEO2+0.5ACET+1.5XC k=k(55) 2.00E13
317XACE+RO2C=RO2C+0.5ACET+1.5XC k=k(56) 3.50E14
318XACE+RO2X=RO2X+0.5ACET+1.5XC k=k(56) 3.50E14
319XACE+MCO3=MCO3+ACETk=k(70) 1.56E11
320XACE+RCO3=RCO3+ACE
T
k=k(70) 1.56E11
321XACE+BZC3=BZC3+ACE
T
k=k(70) 1.56E11
322XACE+MAC3=MAC3+ACETk=k(70) 1.56E11
323XMEK+NO=NO+MEKk=k(52) 9.23E12
324XMEK+HO2=HO2+4.XCk=k(53) 7.63E12
325XMEK+NO3=NO3+MEKk=k(54) 2.30E12
326XMEK+MEO2=MEO2+0.5MEK+2.XC k=k(55) 2.00E13
327XMEK+RO2C=RO2C+0.5MEK+2.XC k=k(56) 3.50E14
328XMEK+RO2X=RO2X+0.5MEK+2.XC k=k(56) 3.50E14
329XMEK+MCO3=MCO3+MEKk=k(70) 1.56E11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 261www.camx.com
NumberReactantsandProductsRateConstantExpression k300
330XMEK+RCO3=RCO3+MEKk=k(70) 1.56E11
331XMEK+BZC3=BZC3+MEKk=k(70) 1.56E11
332XMEK+MAC3=MAC3+MEKk=k(70) 1.56E11
333XPD2+NO=NO+PRD2k=k(52) 9.23E12
334XPD2+HO2=HO2+6.XCk=k(53) 7.63E12
335XPD2+NO3=NO3+PRD2k=k(54) 2.30E12
336XPD2+MEO2=MEO2+0.5PRD2+3.XC k=k(55) 2.00E13
337XPD2+RO2C=RO2C+0.5PRD2+3.XC k=k(56) 3.50E14
338XPD2+RO2X=RO2X+0.5PRD2+3.XC k=k(56) 3.50E14
339XPD2+MCO3=MCO3+PRD2k=k(70) 1.56E11
340XPD2+RCO3=RCO3+PRD2k=k(70) 1.56E11
341XPD2+BZC3=BZC3+PRD2k=k(70) 1.56E11
342XPD2+MAC3=MAC3+PRD2k=k(70) 1.56E11
343XGLY+NO=NO+GLYk=k(52) 9.23E12
344XGLY+HO2=HO2+2.XCk=k(53) 7.63E12
345XGLY+NO3=NO3+GLYk=k(54) 2.30E12
346XGLY+MEO2=MEO2+0.5GLY+XC k=k(55) 2.00E13
347XGLY+RO2C=RO2C+0.5GLY+XC k=k(56) 3.50E14
348XGLY+RO2X=RO2X+0.5GLY+XC k=k(56) 3.50E14
349XGLY+MCO3=MCO3+GLYk=k(70) 1.56E11
350XGLY+RCO3=RCO3+GLYk=k(70) 1.56E11
351XGLY+BZC3=BZC3+GLYk=k(70) 1.56E11
352XGLY+MAC3=MAC3+GLYk=k(70) 1.56E11
353XMGL+NO=NO+MGLYk=k(52) 9.23E12
354XMGL+HO2=HO2+3.XCk=k(53) 7.63E12
355XMGL+NO3=NO3+MGLYk=k(54) 2.30E12
356XMGL+MEO2=MEO2+0.5MGLY+1.5XC k=k(55) 2.00E13
357XMGL+RO2C=RO2C+0.5MGLY+1.5XC k=k(56) 3.50E14
358XMGL+RO2X=RO2X+0.5MGLY+1.5XC k=k(56) 3.50E14
359XMGL+MCO3=MCO3+MGLYk=k(70) 1.56E11
360XMGL+RCO3=RCO3+MGLYk=k(70) 1.56E11
361XMGL+BZC3=BZC3+MGLYk=k(70) 1.56E11
362XMGL+MAC3=MAC3+MGLYk=k(70) 1.56E11
363XBAC+NO=NO+BACLk=k(52) 9.23E12
364XBAC+HO2=HO2+4.XCk=k(53) 7.63E12
365XBAC+NO3=NO3+BACLk=k(54) 2.30E12
366XBAC+MEO2=MEO2+0.5BACL+2.XC k=k(55) 2.00E13
367XBAC+RO2C=RO2C+0.5BACL+2.XC k=k(56) 3.50E14
368XBAC+RO2X=RO2X+0.5BACL+2.XC k=k(56) 3.50E14
369XBAC+MCO3=MCO3+BACLk=k(70) 1.56E11
370XBAC+RCO3=RCO3+BACLk=k(70) 1.56E11
371XBAC+BZC3=BZC3+BACLk=k(70) 1.56E11
372XBAC+MAC3=MAC3+BACLk=k(70) 1.56E11
373XBAL+NO=NO+BALDk=k(52) 9.23E12
374XBAL+HO2=HO2+7.XCk=k(53) 7.63E12
375XBAL+NO3=NO3+BALDk=k(54) 2.30E12
376XBAL+MEO2=MEO2+0.5BALD+3.5XC k=k(55) 2.00E13
377XBAL+RO2C=RO2C+0.5BALD+3.5XC k=k(56) 3.50E14
378XBAL+RO2X=RO2X+0.5BALD+3.5XC k=k(56) 3.50E14
379XBAL+MCO3=MCO3+BALDk=k(70) 1.56E11
380XBAL+RCO3=RCO3+BALDk=k(70) 1.56E11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 262www.camx.com
NumberReactantsandProductsRateConstantExpression k300
381XBAL+BZC3=BZC3+BALDk=k(70) 1.56E11
382XBAL+MAC3=MAC3+BALDk=k(70) 1.56E11
383XAF1+NO=NO+AFG1k=k(52) 9.23E12
384XAF1+HO2=HO2+5.XCk=k(53) 7.63E12
385XAF1+NO3=NO3+AFG1k=k(54) 2.30E12
386XAF1+MEO2=MEO2+0.5AFG1+2.5XC k=k(55) 2.00E13
387XAF1+RO2C=RO2C+0.5AFG1+2.5XC k=k(56) 3.50E14
388XAF1+RO2X=RO2X+0.5AFG1+2.5XC k=k(56) 3.50E14
389XAF1+MCO3=MCO3+AFG1k=k(70) 1.56E11
390XAF1+RCO3=RCO3+AFG1k=k(70) 1.56E11
391XAF1+BZC3=BZC3+AFG1k=k(70) 1.56E11
392XAF1+MAC3=MAC3+AFG1k=k(70) 1.56E11
393XAF2+NO=NO+AFG2k=k(52) 9.23E12
394XAF2+HO2=HO2+5.XCk=k(53) 7.63E12
395XAF2+NO3=NO3+AFG2k=k(54) 2.30E12
396XAF2+MEO2=MEO2+0.5AFG2+2.5XC k=k(55) 2.00E13
397XAF2+RO2C=RO2C+0.5AFG2+2.5XC k=k(56) 3.50E14
398XAF2+RO2X=RO2X+0.5AFG2+2.5XC k=k(56) 3.50E14
399XAF2+MCO3=MCO3+AFG2k=k(70) 1.56E11
400XAF2+RCO3=RCO3+AFG2k=k(70) 1.56E11
401XAF2+BZC3=BZC3+AFG2k=k(70) 1.56E11
402XAF2+MAC3=MAC3+AFG2k=k(70) 1.56E11
403XAF3+NO=NO+AFG3k=k(52) 9.23E12
404XAF3+HO2=HO2+7.XCk=k(53) 7.63E12
405XAF3+NO3=NO3+AFG3k=k(54) 2.30E12
406XAF3+MEO2=MEO2+0.5AFG3+3.5XC k=k(55) 2.00E13
407XAF3+RO2C=RO2C+0.5AFG3+3.5XC k=k(56) 3.50E14
408XAF3+RO2X=RO2X+0.5AFG3+3.5XC k=k(56) 3.50E14
409XAF3+MCO3=MCO3+AFG3k=k(70) 1.56E11
410XAF3+RCO3=RCO3+AFG3k=k(70) 1.56E11
411XAF3+BZC3=BZC3+AFG3k=k(70) 1.56E11
412XAF3+MAC3=MAC3+AFG3k=k(70) 1.56E11
413XMAC+NO=NO+MACRk=k(52) 9.23E12
414XMAC+HO2=HO2+4.XCk=k(53) 7.63E12
415XMAC+NO3=NO3+MACRk=k(54) 2.30E12
416XMAC+MEO2=MEO2+0.5MACR+2.XC k=k(55) 2.00E13
417XMAC+RO2C=RO2C+0.5MACR+2.XC k=k(56) 3.50E14
418XMAC+RO2X=RO2X+0.5MACR+2.XC k=k(56) 3.50E14
419XMAC+MCO3=MCO3+MACRk=k(70) 1.56E11
420XMAC+RCO3=RCO3+MACRk=k(70) 1.56E11
421XMAC+BZC3=BZC3+MACRk=k(70) 1.56E11
422XMAC+MAC3=MAC3+MACRk=k(70) 1.56E11
423XMVK+NO=NO+MVKk=k(52) 9.23E12
424XMVK+HO2=HO2+4.XCk=k(53) 7.63E12
425XMVK+NO3=NO3+MVKk=k(54) 2.30E12
426XMVK+MEO2=MEO2+0.5MVK+2.XC k=k(55) 2.00E13
427XMVK+RO2C=RO2C+0.5MVK+2.XC k=k(56) 3.50E14
428XMVK+RO2X=RO2X+0.5MVK+2.XC k=k(56) 3.50E14
429XMVK+MCO3=MCO3+MVKk=k(70) 1.56E11
430XMVK+RCO3=RCO3+MVKk=k(70) 1.56E11
431XMVK+BZC3=BZC3+MVKk=k(70) 1.56E11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 263www.camx.com
NumberReactantsandProductsRateConstantExpression k300
432XMVK+MAC3=MAC3+MVKk=k(70) 1.56E11
433XIPR+NO=NO+IPRDk=k(52) 9.23E12
434XIPR+HO2=HO2+5.XCk=k(53) 7.63E12
435XIPR+NO3=NO3+IPRDk=k(54) 2.30E12
436XIPR+MEO2=MEO2+0.5IPRD+2.5XC k=k(55) 2.00E13
437XIPR+RO2C=RO2C+0.5IPRD+2.5XC k=k(56) 3.50E14
438XIPR+RO2X=RO2X+0.5IPRD+2.5XC k=k(56) 3.50E14
439XIPR+MCO3=MCO3+IPRDk=k(70) 1.56E11
440XIPR+RCO3=RCO3+IPRDk=k(70) 1.56E11
441XIPR+BZC3=BZC3+IPRDk=k(70) 1.56E11
442XIPR+MAC3=MAC3+IPRDk=k(70) 1.56E11
443XRN3+NO=NO+RNO3k=k(52) 9.23E12
444XRN3+HO2=HO2+6.XC+XNk=k(53) 7.63E12
445XRN3+NO3=NO3+RNO3k=k(54) 2.30E12
446XRN3+MEO2=MEO2+0.5RNO3+0.5XN+
3.XC
k=k(55) 2.00E13
447XRN3+RO2C=RO2C+0.5RNO3 +0.5XN+3.
XC
k=k(56) 3.50E14
448XRN3+RO2X=RO2X+0.5RNO3+0.5XN+3.
XC
k=k(56) 3.50E14
449XRN3+MCO3=MCO3+RNO3k=k(70) 1.56E11
450XRN3+RCO3=RCO3+RNO3k=k(70) 1.56E11
451XRN3+BZC3=BZC3+RNO3k=k(70) 1.56E11
452XRN3+MAC3=MAC3+RNO3k=k(70) 1.56E11
453YRPX+NO=NOk=k(52) 9.23E12
454YRPX+HO2=HO2+ROOH‐3.XC k=k(53) 7.63E12
455YRPX+NO3=NO3k=k(54) 2.30E12
456YRPX+MEO2=MEO2+0.5MEK‐ 2.XC k=k(55) 2.00E13
457YRPX+RO2C=RO2C+0.5MEK‐ 2.XC k=k(56) 3.50E14
458YRPX+RO2X=RO2X+0.5MEK‐ 2.XC k=k(56) 3.50E14
459YRPX+MCO3=MCO3k=k(70) 1.56E11
460YRPX+RCO3=RCO3k=k(70) 1.56E11
461YRPX+BZC3=BZC3k=k(70) 1.56E11
462YRPX+MAC3=MAC3k=k(70) 1.56E11
463Y6PX+NO=NOk=k(52) 9.23E12
464Y6PX+HO2=HO2+R6PX‐6.XC k=k(53) 7.63E12
465Y6PX+NO3=NO3k=k(54) 2.30E12
466Y6PX+MEO2=MEO2+0.5PRD2‐ 3.XC k=k(55) 2.00E13
467Y6PX+RO2C=RO2C+0.5PRD2‐ 3.XC k=k(56) 3.50E14
468Y6PX+RO2X=RO2X+0.5PRD2‐ 3.XC k=k(56) 3.50E14
469Y6PX+MCO3=MCO3k=k(70) 1.56E11
470Y6PX+RCO3=RCO3k=k(70) 1.56E11
471Y6PX+BZC3=BZC3k=k(70) 1.56E11
472Y6PX+MAC3=MAC3k=k(70) 1.56E11
473YAPX+NO=NOk=k(52) 9.23E12
474YAPX+HO2=HO2+RAPX‐8.XC k=k(53) 7.63E12
475YAPX+NO3=NO3k=k(54) 2.30E12
476YAPX+MEO2=MEO2+0.5PRD2‐ 3.XC k=k(55) 2.00E13
477YAPX+RO2C=RO2C+0.5PRD2‐ 3.XC k=k(56) 3.50E14
478YAPX+RO2X=RO2X+0.5PRD2‐ 3.XC k=k(56) 3.50E14
479YAPX+MCO3=MCO3k=k(70) 1.56E11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 264www.camx.com
NumberReactantsandProductsRateConstantExpression k300
480YAPX+RCO3=RCO3k=k(70) 1.56E11
481YAPX+BZC3=BZC3k=k(70) 1.56E11
482YAPX+MAC3=MAC3k=k(70) 1.56E11
483ZRN3+NO=NO+RNO3‐1.XNk=k(52) 9.23E12
484ZRN3+HO2=HO2+6.XCk=k(53) 7.63E12
485ZRN3+NO3=NO3+PRD2+HO2 k=k(54) 2.30E12
486ZRN3+MEO2=MEO2+0.5PRD2+0.5HO2+
3.XC
k=k(55) 2.00E13
487ZRN3+RO2C=RO2C+0.5PRD2+0.5HO2+
3.XC
k=k(56) 3.50E14
488ZRN3+RO2X=RO2X+0.5PRD2+0.5HO2+
3.XC
k=k(56) 3.50E14
489ZRN3+MCO3=MCO3+PRD2+HO2 k=k(70) 1.56E11
490ZRN3+RCO3=RCO3+PRD2+HO2 k=k(70) 1.56E11
491ZRN3+BZC3=BZC3+PRD2+HO2 k=k(70) 1.56E11
492ZRN3+MAC3=MAC3+PRD2+HO2 k=k(70) 1.56E11
493XGLD+NO=NO+GLYDk=k(52) 9.23E12
494XGLD+HO2=HO2+2.XCk=k(53) 7.63E12
495XGLD+NO3=NO3+GLYDk=k(54) 2.30E12
496XGLD+MEO2=MEO2+0.5GLYD+XC k=k(55) 2.00E13
497XGLD+RO2C=RO2C+0.5GLYD+XC k=k(56) 3.50E14
498XGLD+RO2X=RO2X+0.5GLYD+XC k=k(56) 3.50E14
499XGLD+MCO3=MCO3+GLYDk=k(70) 1.56E11
500XGLD+RCO3=RCO3+GLYDk=k(70) 1.56E11
501XGLD+BZC3=BZC3+GLYDk=k(70) 1.56E11
502XGLD+MAC3=MAC3+GLYDk=k(70) 1.56E11
503XACR+NO=NO+ACROk=k(52) 9.23E12
504XACR+HO2=HO2+3.XCk=k(53) 7.63E12
505XACR+NO3=NO3+ACROk=k(54) 2.30E12
506XACR+MEO2=MEO2+0.5ACRO+1.5XC k=k(55) 2.00E13
507XACR+RO2C=RO2C+0.5ACRO+1.5XC k=k(56) 3.50E14
508XACR+RO2X=RO2X+0.5ACRO+1.5XC k=k(56) 3.50E14
509XACR+MCO3=MCO3+ACROk=k(70) 1.56E11
510XACR+RCO3=RCO3+ACROk=k(70) 1.56E11
511XACR+BZC3=BZC3+ACROk=k(70) 1.56E11
512XACR+MAC3=MAC3+ACROk=k(70) 1.56E11
513CH4+OH=MEO2k=1.85E12exp(1690/T) 6.62E15
514ETHE+OH=XHO2+RO2C+1.61XHCH+
0.195XGLD+YRPX
Falloff:F=0.6;n=1
k(0)=1.00E28(T/300)^4.5
k(inf)=8.80E12(T/300)^0.85
8.15E12
515ETHE+O3=0.16HO2+0.16OH+0.51CO+
0.12CO2+HCHO+0.37FACD
k=9.14E15exp(2580/T) 1.68E18
516ETHE+NO3=XHO2+RO2C+XRCH+YRPX+
XN‐1.XC
k=3.30E12(T/300)^2exp(2880/T)2.24E16
517ETHE+O3P=0.8HO2+0.29XHO2+0.51
MEO2+0.29RO2C+0.51CO+0.278XCO+
0.278XHCH+0.1CCHO+0.012XGLY+0.29
YRPX+0.2XC
k=1.07E11exp(800/T) 7.43E13
518PRPE+OH=0.984XHO2+0.984RO2C+
0.016RO2X+0.016ZRN3+0.984XHCH+
0.984XCCH+YRPX‐0.048XC
k=4.85E12exp(504/T) 2.60E11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 265www.camx.com
NumberReactantsandProductsRateConstantExpression k300
519PRPE+O3=0.165HO2+0.35OH+0.355
MEO2+0.525CO+0.215CO2+0.5HCHO+
0.5CCHO+0.185FACD+0.075AACD+0.07
XC
k=5.51E15exp(1878/T) 1.05E17
520PRPE+NO3=0.949XHO2+0.949RO2C+
0.051RO2X+0.051ZRN3+YRPX+XN+2.694
XC
k=4.59E13exp(1156/T) 9.73E15
521PRPE+O3P=0.45RCHO+0.55MEK‐ 0.55XC k=1.02E11exp(280/T) 4.01E12
522BD13+OH=0.951XHO2+1.189RO2C+
0.049RO2X+0.049ZRN3+0.708XHCH+0.48
XACR+0.471XIPR+YRPX‐0.797XC
k=1.48E11exp(448/T) 6.59E11
523BD13+O3=0.08HO2+0.08OH+0.255CO+
0.185CO2+0.5HCHO+0.185FACD+0.5
ACRO+0.375MVK+0.125PRD2‐0.875XC
k=1.34E14exp(2283/T) 6.64E18
524BD13+NO3=0.815XHO2+0.12XNO2+
1.055RO2C+0.065RO2X+0.065ZRN3+
0.115XHCH+0.46XMVK+0.12XIPR+0.355
XRN3+YRPX+0.525XN‐1.075XC
k=1.00E13 1.00E13
525BD13+O3P=0.25HO2+0.117XHO2+0.118
XMA3+0.235RO2C+0.015RO2X+0.015
ZRN3+0.115XCO+0.115XACR+0.001XAF1
+0.001XAF2+0.75PRD2+0.25YRPX‐1.532
XC
k=2.26E11exp(40/T) 1.98E11
526ISOP+OH=0.907XHO2+0.986RO2C+0.093
RO2X+0.093ZRN3+0.624XHCH+0.23
XMAC+0.32XMVK+0.357XIPR+Y6PX‐
0.167XC
k=2.54E11exp(410/T) 9.96E11
527ISOP+O3=0.066HO2+0.266OH+0.192
XMA3+0.192RO2C+0.008RO2X+0.008
ZRN3+0.275CO+0.122CO2+0.4HCHO+
0.192XHCH+0.204FACD+0.39MACR+0.16
MVK+0.15IPRD+0.1PRD2+0.2Y6PX‐
0.559XC
k=7.86E15exp(1912/T) 1.34E17
528ISOP+NO3=0.749XHO2+0.187XNO2+
0.936RO2C+0.064RO2X+0.064ZRN3+
0.936XIPR+Y6PX+0.813XN‐0.064XC
k=3.03E12exp(448/T) 6.81E13
529ISOP+O3P=0.25MEO2+0.24XMA3+0.24
RO2C+0.01RO2X+0.01ZRN3+0.24XHCH+
0.75PRD2+0.25Y6PX‐1.01XC
k=3.50E11 3.50E11
530APIN+OH=0.799XHO2+0.004XRC3+1.042
RO2C+0.197RO2X+0.197ZRN3+0.002XCO
+0.022XHCH+0.776XRCH+0.034XACE+
0.02XMGL+0.023XBAC+Y6PX+6.2XC
k=1.21E11exp(436/T) 5.18E11
531APIN+O3=0.009HO2+0.102XHO2+0.728
OH+0.001XMC3+0.297XRC3+1.511RO2C
+0.337RO2X+0.337ZRN3+0.029CO+
0.051XCO+0.017CO2+0.344XHCH+0.24
XRCH+0.345XACE+0.008MEK+0.002XGLY
+0.081XBAC+0.255PRD2+0.737Y6PX+
2.999XC
k=5.00E16exp(530/T) 8.55E17
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 266www.camx.com
NumberReactantsandProductsRateConstantExpression k300
532APIN+NO3=0.056XHO2+0.643XNO2+
0.007XRC3+1.05RO2C+0.293RO2X+0.293
ZRN3+0.005XCO+0.007XHCH+0.684XRCH
+0.069XACE+0.002XMGL+0.056XRN3+
Y6PX+0.301XN+5.608XC
k=1.19E12exp(490/T) 6.09E12
533APIN+O3P=PRD2+4.XCk=3.20E11 3.20E11
534ACYE+OH=0.3HO2+0.7OH+0.3CO+0.3
FACD+0.7GLY
Falloff:F=0.6;n=1
k(0)=5.50E30(T/300)^2
k(inf)=8.30E13
7.56E13
535ACYE+O3=1.5HO2+0.5OH+1.5CO+0.5
CO2
k=1.00E14exp(4100/T) 1.16E20
536BENZ+OH=0.57HO2+0.29XHO2+0.116
OH+0.29RO2C+0.024RO2X+0.024ZRN3+
0.29XGLY+0.57CRES+0.029XAF1+0.261
XAF2+0.116AFG3+0.314YAPX‐0.976XC
k=2.33E12exp(193/T) 1.22E12
537TOLU+OH=0.181HO2+0.454XHO2+0.312
OH+0.454RO2C+0.054RO2X+0.054ZRN3
+0.238XGLY+0.151XMGL+0.181CRES+
0.065XBAL+0.195XAF1+0.195XAF2+0.312
AFG3+0.073Y6PX+0.435YAPX‐0.109XC
k=1.81E12exp(338/T) 5.58E12
538MXYL+OH=0.159HO2+0.52XHO2+0.239
OH+0.52RO2C+0.082RO2X+0.082ZRN3+
0.1XGLY+0.38XMGL+0.159CRES+0.041
XBAL+0.336XAF1+0.144XAF2+0.239AFG3
+0.047Y6PX+0.555YAPX+0.695XC
k=2.31E11 2.31E11
539OXYL+OH=0.161HO2+0.554XHO2+0.198
OH+0.554RO2C+0.087RO2X+0.087ZRN3
+0.084XGLY+0.238XMGL+0.185XBAC+
0.161CRES+0.047XBAL+0.253XAF1+0.253
XAF2+0.198AFG3+0.055Y6PX+0.586YAPX
+0.484XC
k=1.36E11 1.36E11
540PXYL+OH=0.159HO2+0.487XHO2+0.278
OH+0.487RO2C+0.076RO2X+0.076ZRN3
+0.286XGLY+0.112XMGL+0.159CRES+
0.088XBAL+0.045XAF1+0.067XAF2+0.278
AFG3+0.286XAF3+0.102Y6PX+0.461YAPX
+0.399XC
k=1.43E11 1.43E11
541B124+OH=0.022HO2+0.627XHO2+0.23
OH+0.627RO2C+0.121RO2X+0.121ZRN3
+0.074XGLY+0.405XMGL+0.112XBAC+
0.022CRES+0.036XBAL+0.088XAF1+0.352
XAF2+0.23AFG3+0.151XAF3+0.043Y6PX
+0.705YAPX+1.19XC
k=3.25E11 3.25E11
542ETOH+OH=0.95HO2+0.05XHO2+0.05
RO2C+0.081XHCH+0.95CCHO+0.01XGLD
+0.05YRPX‐0.001XC
k=5.49E13(T/300)^2exp(530/T)3.21E12
543ALK1+OH=XHO2+RO2C+XCCH+YRPX k=1.34E12(T/300)^2exp(499/T)2.54E13
544ALK2+OH=0.965XHO2+0.965RO2C+
0.035RO2X+0.035ZRN3+0.261XRCH+
0.704XACE+YRPX‐0.105XC
k=1.49E12(T/300)^2exp(87/T)1.11E12
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 267www.camx.com
NumberReactantsandProductsRateConstantExpression k300
545ALK3+OH=0.695XHO2+0.236XTBU+
1.253RO2C+0.07RO2X+0.07ZRN3+0.026
XHCH+0.445XCCH+0.122XRCH+0.024
XACE+0.332XMEK+0.983YRPX+0.017
Y6PX‐0.046XC
k=1.51E12exp(126/T) 2.30E12
546ALK4+OH=0.83XHO2+0.01XMEO+0.011
XMC3+1.763RO2C+0.149RO2X+0.149
ZRN3+0.002XCO+0.029XHCH+0.438XCCH
+0.236XRCH+0.426XACE+0.106XMEK+
0.146XPD2+Y6PX‐0.119XC
k=3.75E12exp(44/T) 4.34E12
547ALK5+OH=0.647XHO2+1.605RO2C+
0.353RO2X+0.353ZRN3+0.04XHCH+0.106
XCCH+0.209XRCH+0.071XACE+0.086
XMEK+0.407XPD2+Y6PX+2.004XC
k=2.70E12exp(374/T) 9.39E12
548OLE1+OH=0.871XHO2+0.001XMEO+
1.202RO2C+0.128RO2X+0.128ZRN3+
0.582XHCH+0.01XCCH+0.007XGLD+0.666
XRCH+0.007XACE+0.036XACR+0.001
XMAC+0.012XMVK+0.009XIPR+0.168
XPD2+0.169YRPX+0.831Y6PX+0.383XC
k=6.72E12exp(501/T) 3.57E11
549OLE1+O3=0.095HO2+0.057XHO2+0.128
OH+0.09RO2C+0.005RO2X+0.005ZRN3+
0.303CO+0.088CO2+0.5HCHO+0.011
XCCH+0.5RCHO+0.044XRCH+0.003XACE
+0.009MEK+0.185FACD+0.159PACD+
0.268PRD2+0.011YRPX+0.052Y6PX+0.11
XC
k=3.19E15exp(1701/T) 1.10E17
550OLE1+NO3=0.772XHO2+1.463RO2C+
0.228RO2X+0.228ZRN3+0.013XCCH+
0.003XRCH+0.034XACE+0.774XRN3+
0.169YRPX+0.831Y6PX+0.226XN‐1.149
XC
k=5.37E13exp(1047/T) 1.64E14
551OLE1+O3P=0.45RCHO+0.39MEK+0.16
PRD2+1.13XC
k=1.61E11exp(326/T) 5.43E12
552OLE2+OH=0.912XHO2+0.953RO2C+
0.088RO2X+0.088ZRN3+0.179XHCH+
0.835XCCH+0.51XRCH+0.144XACE+0.08
XMEK+0.002XMVK+0.012XIPR+0.023
XPD2+0.319YRPX+0.681Y6PX+0.135XC
k=1.26E11exp(488/T) 6.41E11
553OLE2+O3=0.094HO2+0.041XHO2+0.443
OH+0.307MEO2+0.156XMC3+0.008XRC3
+0.212RO2C+0.003RO2X+0.003ZRN3+
0.299CO+0.161CO2+0.131HCHO+0.114
XHCH+0.453CCHO+0.071XCCH+0.333
RCHO+0.019XRCH+0.051ACET+0.033
MEK+0.001XMEK+0.024FACD+0.065
AACD+0.235PACD+0.037PRD2+0.073
YRPX+0.136Y6PX+0.16XC
k=8.59E15exp(1255/T) 1.31E16
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 268www.camx.com
NumberReactantsandProductsRateConstantExpression k300
554OLE2+NO3=0.4XHO2+0.426XNO2+0.035
XMEO+1.193RO2C+0.14RO2X+0.14ZRN3
+0.072XHCH+0.579XCCH+0.163XRCH+
0.116XACE+0.002XMEK+0.32XRN3+
0.319YRPX+0.681Y6PX+0.254XN+0.13XC
k=2.31E13exp(382/T) 8.25E13
555OLE2+O3P=0.079RCHO+0.751MEK+0.17
PRD2+0.739XC
k=1.43E11exp(111/T) 2.07E11
556ARO1+OH=0.123HO2+0.566XHO2+0.202
OH+0.566RO2C+0.11RO2X+0.11ZRN3+
0.158XGLY+0.1XMGL+0.123CRES+0.072
XAF1+0.185XAF2+0.202AFG3+0.309XPD2
+0.369Y6PX+0.31XC
k=7.84E12 7.84E12
557ARO2+OH=0.077HO2+0.617XHO2+0.178
OH+0.617RO2C+0.128RO2X+0.128ZRN3
+0.088XGLY+0.312XMGL+0.134XBAC+
0.077CRES+0.026XBAL+0.221XAF1+0.247
XAF2+0.178AFG3+0.068XAF3+0.057XPD2
+0.101Y6PX+1.459XC
k=3.09E11 3.09E11
558TERP+OH=0.734XHO2+0.064XRC3+1.211
RO2C+0.201RO2X+0.201ZRN3+0.001XCO
+0.411XHCH+0.385XRCH+0.037XACE+
0.007XMEK+0.003XMGL+0.009XBAC+
0.003XMVK+0.002XIPR+0.409XPD2+Y6PX
+4.375XC
k=2.27E11exp(435/T) 9.68E11
559TERP+O3=0.078HO2+0.046XHO2+0.499
OH+0.202XMC3+0.059XRC3+0.49RO2C+
0.121RO2X+0.121ZRN3+0.249CO+0.063
CO2+0.127HCHO+0.033XHCH+0.208
XRCH+0.057XACE+0.002MEK+0.172FACD
+0.068PACD+0.003XMGL+0.039XBAC+
0.002XMAC+0.001XIPR+0.502PRD2+
0.428Y6PX+3.852XC
k=8.28E16exp(785/T) 6.05E17
560TERP+NO3=0.227XHO2+0.287XNO2+
0.026XRC3+1.786RO2C+0.46RO2X+0.46
ZRN3+0.012XCO+0.023XHCH+0.002XGLD
+0.403XRCH+0.239XACE+0.005XMAC+
0.001XMVK+0.004XIPR+0.228XRN3+
Y6PX+0.485XN+3.785XC
k=1.33E12exp(490/T) 6.81E12
561TERP+O3P=0.237RCHO+0.763PRD2+
4.711XC
k=4.02E11 4.02E11
562SESQ+OH=0.734XHO2+0.064XRC3+
1.211RO2C+0.201RO2X+0.201ZRN3+
0.001XCO+0.411XHCH+0.385XRCH+
0.037XACE+0.007XMEK+0.003XMGL+
0.009XBAC+0.003XMVK+0.002XIPR+
0.409XPD2+Y6PX+9.375XC
k=k(558) 9.68E11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 269www.camx.com
NumberReactantsandProductsRateConstantExpression k300
563SESQ+O3=0.078HO2+0.046XHO2+0.499
OH+0.202XMC3+0.059XRC3+0.49RO2C+
0.121RO2X+0.121ZRN3+0.249CO+0.063
CO2+0.127HCHO+0.033XHCH+0.208
XRCH+0.057XACE+0.002MEK+0.172FACD
+0.068PACD+0.003XMGL+0.039XBAC+
0.002XMAC+0.001XIPR+0.502PRD2+
0.428Y6PX+8.852XC
k=k(559) 6.05E17
564SESQ+NO3=0.227XHO2+0.287XNO2+
0.026XRC3+1.786RO2C+0.46RO2X+0.46
ZRN3+0.012XCO+0.023XHCH+0.002XCCH
+0.403XRCH+0.239XACE+0.005XMAC+
0.001XMVK+0.004XIPR+0.228XRN3+
Y6PX+0.485XN+8.785XC
k=k(560) 6.81E12
565SESQ+O3P=0.237RCHO+0.763PRD2+
9.711XC
k=k(561) 4.02E11
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 270www.camx.com
TableD2.ExplicitspeciesintheSAPRC07TCmechanism.
SpeciesNameDescription
BD131,3butadiene
AACDAceticacid
ACE
T
Acetone
ACROAcrolein
ACYEAcetylene
AFG1Lumpedphotoreactivemonounsaturateddicarbonyl
aromaticfragmentationproductsthatphotolyzetoform
radicals
AFG2Lumped photoreactivemonounsaturateddicarbonyl
aromaticfragmentationproductsthatphotolyzetoform
nonradicalproducts
AFG3Lumpeddiunsaturatreddicarbonylaromaticfragmentation
product.
ALK1Alkanesandothernonaromaticcompoundsthatreactonly
withOH,andhavekOHbetween2and5E2ppm1min1.
(Primarilyethane)
ALK2Alkanesandothernonaromaticcompoundsthatreactonly
withOH,andhavekOHbetween5E2and2.5E3ppm1min1.
(Primarilypropaneandacetylene)
ALK3Alkanesandothernonaromaticcompoundsthatreactonly
withOH,andhavekOHbetween2.5E3and5E3ppm1min1.
ALK4Alkanesandothernonaromaticcompoundsthatreactonly
withOH,andhavekOHbetween5E3and1E4ppm1min1.
ALK5Alkanesandothernonaromaticcompoundsthatreactonly
withOH,andhavekOHgreaterthan1E4ppm1min1.
APINpinene
ARO1AromaticswithkOH <2E4ppm1min1.
ARO2AromaticswithkOH >2E4ppm1min1.
B1241,2,4trimethylbenzene
BACLBiacetyl
BALDAromaticaldehydes(e.g.,benzaldehyde)
BENZBenzene
BZC3PeroxyacylradicalformedfromAromaticAldehydes
BZOPhenoxyRadicals
CCHOAcetaldehyde
CO3HPeroxyaceticacid
CH4Methane
COCarbonMonoxide
CO2CarbonDioxide
COOHMethylHydroperoxide
CRESPhenolsandCresols
ETHEEthene
ETOHEthanol
FACDFormicAcid
GLYGlyoxal
H2Hydrogen
H2OWater
HCHOFormaldehyde
HNO3NitricAcid
PNAPeroxynitricAcid
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 271www.camx.com
SpeciesNameDescription
HO2HydroperoxideRadicals
H2O2HydrogenPeroxide
GLYDGlycolaldehyde
HONONitrousAcid
IPRDLumpedisopreneproductspecies
ISOPIsoprene
MAtmosphericpressure
MAC3Peroxyacylradicalsformedfrommethacroleinandother
acroleins.
MACRMethacrolein
MPANPANanalogueformedfromMethacrolein
MCO3AcetylPeroxyRadicals
MEKKetonesandothernonaldehydeoxygenatedproducts
whichreactwithOHradicalsfasterthan5E13butslower
than5E12cm3molec2sec1.(Basedonmechanismfor
methylethylketone).
MEO2MethylPeroxyRadicals
MEOHMethanol
MGLYMethylGlyoxal
MVKMethylVinylKetone
MXYLmxylene
N2O5NitrogenPentoxide
NONitricOxide
NO2NitrogenDioxide
NO3NitrateRadical
NPHENitrophenols
O1DExcitedOxygenAtoms
O2Oxygen
O3Ozone
O3PGroundStateOxygenAtoms
OHHydroxylRadicals
OLE1Alkenes(otherthanethene)withkOH <7E4ppm1min1.
OLE2AlkeneswithkOH >7E4ppm1min1.
OXYLoxylene
PACDPropanoicacid
PANPeroxyAcetylNitrate
PAN2PPNandotherhigheralkylPANanalogues
PBZNPANanaloguesformedfromAromaticAldehydes
PRD2Ketonesandothernonaldehydeoxygenatedproducts
whichreactwithOHradicalsfasterthan5E12cm3molec2
sec1
PRPEPropene
PXYLpxylene
R6PXLumpedorganichydroperoxideswith5ormorecarbons
(otherthanthoseformedfollowingOHadditiontoaromatic
rings,whichisreprsentedseparately).Mechanismbasedon
thatestimatedfor3hexylhydroperoxide.
RAPXOrganichydroperoxidesformedfollowingOHadditionto
aromaticrings,whichisreprsentedseparatelybecauseof
theirprobableroleinSOAformation.Mechanismbasedon
twoisomersexpectedtobeformedinthemxylenesystem.
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 272www.camx.com
SpeciesNameDescription
RCHOLumpedC3+Aldehydes(mechanismbasedon
propionaldehyde)
RCO3PeroxyPropionylandhigherperoxyacylRadicals
RO3HHigherorganicperoxyacids(mechanismbasedon
peroxypropionicacid).
RNO3LumpedOrganicNitrates
RO2CPeroxyRadicalOperatorrepresentingNOtoNO2andNO3
toNO2conversions,andtheeffectsofperoxyradical
reactionsonacylperoxyandotherperoxyradicals.
RO2XPeroxyRadicalOperatorrepresentingNOconsumption
(usedinconjunctionwithorganicnitrateformation),and
theeffectsofperoxyradicalreactionsonNO3,acylperoxy
radicals,andotherperoxyradicals.
ROOHLumpedorganichydroperoxideswith24carbons.
Mechanismbasedonthatestimatedfornpropyl
hydroperoxide.
SES
Q
Sesquiterpenes
SO2SulfurDioxide
SULFSulfates(SO3orH2SO4)
TBUOtButoxyRadicals
TERPTerpenes
TOLUToluene
XACEAsforxHO2
XACRAsforxHO2
XAF1AsforxHO2
XAF2AsforxHO2
XAF3AsforxHO2
XBACAsforxHO2
XBALAsforxHO2
XCLostCarbonorcarboninunreactiveproducts
XCCHAsforxHO2
XCOAsforxHO2
XGLYAsforxHO2
XHCHAsforxHO2
XHO2FormationofHO2fromalkoxyradicalsformedinperoxy
radicalreactionswithNOandNO3(100%yields)andRO2
(50%yields)
XGLDAsforxHO2
XIPRAsforxHO2
XMA3AsforxHO2
XMACAsforxHO2
XMC3AsforxHO2
XMEKAsforxHO2
XMEOAsforxHO2
XMGLAsforxHO2
XMVKAsforxHO2
XNLostNitrogenornitrogeninunreactiveproducts
XNO2AsforxHO2
XOHAsforxHO2
XPD2AsforxHO2
XRCHAsforxHO2
March2016CAMxUser’sGuideVersion6.3
AppendixD:Mechanism5SAPRC07TC
COMPREHENSIVEAIRQUALITYMODELWITHEXTENSIONS 273www.camx.com
SpeciesNameDescription
XRC3AsforxHO2
XRN3AsforxHO2
XTBUAsforxHO2
Y6PXAsforROOH,butforR6PX
YAPXAsforROOH,butforRAPX
YRPXFormationofROOHfollowingRO2+HO2reactions
ZRN3FormationofRNO3intheRO2+NO,reaction.

Navigation menu