Candidate Instructions

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 2

DownloadCandidate Instructions
Open PDF In BrowserView PDF
Candidate​ ​instructions:​ ​Hired/Not-Hired
classifier​ ​for​ ​Pokemon​ ​Trainers
You​ ​are​ ​asked​ ​to​ ​give​ ​advice​ ​for​ ​teams​ ​of​ ​Pokemon​ ​Trainers​ ​all​ ​across​ ​Pokemon​ ​World​ ​who​ ​are
looking​ ​for​ ​new​ ​trainers​ ​to​ ​add​ ​to​ ​their​ ​team.
Trainers​ ​fall​ ​into​ ​one​ ​of​ ​8​ ​classes​ ​(​Curmudgeon​,​ ​Doctor​,​ ​Dragon​ ​Tamer​,​ ​Engineer,​ ​ ​Nurse​,
Pokemon​ ​Ranger​,​ ​Scientist​ ​and​ ​Skier)​ .​ ​In​ ​each​ ​region​ ​of​ ​Pokemon​ ​world,​ ​and​ ​for​ ​each​ ​Trainer
Class,​ ​there’s​ ​a​ ​distinct​ ​team​ ​that’s​ ​hiring​ ​(regions​ ​are​ K
​ anto​,​ ​Johto​,​ ​Hoenn,​ ​ ​Sinnoh​,​ ​Unova​,
Kalos​,​ ​Alola​ ​and​ ​the​ ​Sevii​ ​Islands​).​ ​A​ ​team​ ​can​ ​be​ ​uniquely​ ​identified​ ​by​ ​trainer​ ​class​ ​and
region.
Given​ ​data​ ​from​ ​job​ ​applications​ ​for​ ​Pokemon​ ​Trainers:
1.​ ​Which​ ​team​ ​(i.e.​ ​combination​ ​of​ ​region​ ​and​ ​trainer​ ​class)​ ​is​ ​the​ ​most​ ​competitive​ ​(meaning
the​ ​most​ ​difficult​ ​to​ ​get​ ​hired​ ​into)?
2.​ ​Train​ ​a​ ​model​ ​that​ ​predicts​ ​whether​ ​candidates​ ​will​ ​get​ ​hired​ ​or​ ​not.
3.​ ​If​ ​you​ ​were​ ​a​ ​team​ ​hiring​ ​a​ ​Pokemon​ ​Trainer,​ ​how​ ​would​ ​you​ ​use​ ​this​ ​data​ ​to​ ​make​ ​the​ ​hiring
process​ ​easier?
Please​ ​aim​ ​to​ ​spend​ ​no​ ​more​ ​than​ ​3​ ​hours​ ​on​ ​the​ ​entire​ ​exercise​ ​and​ ​explain​ ​your​ ​thought
process​ ​and​ ​any​ ​choices​ ​you​ ​make,​ ​such​ ​as​ ​how​ ​to​ ​deal​ ​with​ ​missing​ ​values​ ​and​ ​which
columns​ ​to​ ​use,​ ​as​ ​well​ ​as​ ​how​ ​you​ ​evaluate​ ​your​ ​model.
Please​ ​submit​ ​all​ ​the​ ​files​ ​necessary​ ​to​ ​run​ ​you​ ​code​ ​(for​ ​example​ ​a​ ​Jupyter​ ​notebook​ ​with
Python​ ​code​ ​or​ ​an​ ​R​ ​markdown​ ​file),​ ​together​ ​with​ ​any​ ​instructions​ ​on​ ​how​ ​to​ ​run​ ​it,​ ​including
which​ ​packages​ ​must​ ​be​ ​installed.

Data
The​ ​applications​ ​of​ ​aspiring​ ​Pokemon​ ​Trainers​ ​can​ ​be​ ​found​ ​in​ ​the​ ​file
pokemon_trainer_application_data.csv

Columns
-​ ​Target​ ​column:​ ​hired​
​ ​(​0​​​or​ ​1​
,​ ​where​ ​1​
​ ​means​ ​"hired")
-​ ​Columns​ ​indicating​ ​team​ ​are​ ​a​ ​combination​ ​of​ ​region​ ​in​ ​Pokemon​ ​world​ ​and​ ​Trainer​ ​class:
(​PokemonWorldRegion​
,​ ​PokemonTrainerClass​
)
Furthermore,​ ​there​ ​are​ ​many​ ​more​ ​columns,​ ​of​ ​which​ ​you​ ​should​ ​decide​ ​whether​ ​you​ ​want​ ​to
use​ ​them​ ​or​ ​not.​ ​Some​ ​have​ ​to​ ​do​ ​with​ ​a​ ​trainer's​ ​previous​ ​education​ ​or​ ​training​ ​experience,​ ​or
which​ ​Pokemon​ ​they​ ​have​ ​won​ ​badges​ ​with​ ​(for​ ​instance​ G
​ ymBadge1Pokemon​
).​ ​Other​ ​columns
may​ ​contain​ ​details​ ​of​ ​the​ ​position​ ​for​ ​which​ ​they're​ ​applying​ ​(for​ ​instance

PositionForTrainingPokemon​
​ ​which​ ​states​ ​which​ ​Pokemon​ ​they​ ​will​ ​be​ ​training),​ ​or​ ​details
about​ ​the​ ​application​ ​itself​ ​(for​ ​instance​ ​ApplicationType​
​ ​or​ ​ApplyDate​
).
You​ ​don’t​ ​need​ ​to​ ​know​ ​anything​ ​about​ ​Pokemon​ ​to​ ​do​ ​this​ ​exercise,​ ​but​ ​for​ ​your​ ​information,
there​ ​are​ ​three​ ​types​ ​of​ ​Pokemon-specific​ ​names.​ ​These​ ​are​ ​present​ ​in​ ​the​ ​following​ ​columns:
Region​ ​names​ ​appear​ ​in​ ​columns:​ ​PokemonWorldRegion
Trainer​ ​classes​ ​appear​ ​in​ ​columns:​ ​PokemonTrainerClass
Pokemon​ ​names​ ​appear​ ​in​ ​columns:​ ​CurrentPokemonTraining​
,
PositionForTrainingPokemon​
,​ ​GymBadge1Pokemon,​​
…,​​
GymBadge4Pokemon.​
​ ​A​ ​list​ ​of
Pokemon​ ​names​ ​can​ ​be​ ​found​ ​in​ ​the​ ​file​ ​pokemon_names.csv



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.5
Linearized                      : Yes
Producer                        : Skia/PDF m63
Page Count                      : 2
EXIF Metadata provided by EXIF.tools

Navigation menu