Cascade Manual
Cascade-manual
Cascade-manual
User Manual:
Open the PDF directly: View PDF
.
Page Count: 19
| Download | |
| Open PDF In Browser | View PDF |
Package ‘Cascade’ March 24, 2014 Type Package Title Selection, Reverse-Engineering and Prediction in Cascade networks. Version 1.03 Date 2014-03-24 Author Nicolas Jung, Frederic Bertrand, Myriam Maumy-Bertrand Laurent Vallat MaintainerDescription The Cascade is a modeling tool allowing gene selection, reverse engineering, and prediction. License GPL (>= 2) Depends methods, abind, animation, cluster, graphics, grDevices, grid,igraph, lars, lattice, limma, magic, methods, nnls, splines,stats, stats4, survival, tnet, utils, VGAM Collate global.R micro_array.R network.R micro_array-network.R micropredict.R R topics documented: Cascade-package . . analyze_network . . as.micro_array . . . compare . . . . . . . cutoff . . . . . . . . dim . . . . . . . . . evolution . . . . . . geneNeighborhood . genePeakSelection . gene_expr_simulation head . . . . . . . . . inference . . . . . . micropredict-class . . micro_array-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 3 4 5 6 6 7 8 9 10 10 11 12 2 Cascade-package micro_S . . . . . . . micro_US . . . . . . network . . . . . . . network-class . . . . network_random . . plot-methods . . . . position-methods . . predict . . . . . . . . print-methods . . . . summary-methods . . unionMicro-methods Cascade-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 14 14 15 16 17 17 17 18 18 The Cascade Package Description The Cascade is a modeling tool allowing gene selection, reverse engineering, and prediction. Details Package: Type: Version: Date: License: Depends: Cascade Package 1.03 2014-03-24 GNU 2.0 methods Author(s) This package has been written by Nicolas Jung in collaboration with Frederic Bertrand, Myriam Maumy-Bertrand and Laurent Vallat. Maintainer: References Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2013). Cascade: a Rpackage to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics, btt705. Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 110(2), 459-464. analyze_network 3 analyze_network Analysing the network Description Calculates some indicators for each node in the network. Usage analyze_network(Omega,nv,...) Arguments Omega a network object nv the level of cutoff at which the analysis should be done ... label_v : (optionnal) name of the genes Value A matrix containing, for each node, its betweenness,its degree, its output, its closeness. Author(s) Nicolas Jung, Fr\’ed\’eric Bertrand , Myriam Maumy-Bertrand. References Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2013). Cascade: a Rpackage to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics, btt705. Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 110(2), 459-464. Examples data(network) analyze_network(network,nv=0) 4 as.micro_array Coerce a matrix into a micro_array object. as.micro_array Description Coerce a matrix into a micro_array object. Usage as.micro_array(M, time, subject) Arguments M A matrix. Contains the microarray measurements. Should of size N * K, with N the number of genes and K=T*P with T the number of time points, and P the number of individuals. This matrix should be created using cbind(M1,M2,...) with M1 a N*T matrix with the measurements for individual 1, M2 a N*T matrix with the measurements for individual 2. time A vector. The time points measurements. subject The number of subjects. Value A micro_array object. Author(s) Nicolas Jung, Fr\’ed\’eric Bertrand , Myriam Maumy-Bertrand. References Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2013). Cascade: a Rpackage to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics, btt705. Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 110(2), 459-464. Examples data(micro_US) micro_US<-as.micro_array(micro_US,time=c(60,90,210,390),subject=6) compare 5 Some basic criteria of comparison between actual and inferred network. compare Description Allows comparison between actual and inferred network. Usage compare(Net, Net_inf, nv) Arguments Net A network object containing the actual network. Net_inf A network object containing the inferred network. nv A number that indicates at which level of cutoff the comparison should be done. Value A vector containing : sensibility, predictive positive value, and the F-score Author(s) Nicolas Jung, Fr\’ed\’eric Bertrand , Myriam Maumy-Bertrand. References Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2013). Cascade: a Rpackage to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics, btt705. Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 110(2), 459-464. cutoff Choose the best cutoff Description Allows estimating the best cutoff, in function of the scale-freeness of the network. For a sequence of cutoff, the corresponding p-value is then calculated. Usage cutoff(Omega,...) 6 dim Arguments Omega a network object ... Optional arguments: sequence a vector corresponding to the sequence of cutoffs that will be tested. x_min an integer ; only values over x_min are further retained for performing the test. Value A list containing two objects : p.value the p values corresponding to the sequence of cutoff p.value.inter the smoothed p value vector, using the loess function Author(s) Nicolas Jung, Fr\’ed\’eric Bertrand , Myriam Maumy-Bertrand. References Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2013). Cascade: a Rpackage to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics, btt705. Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 110(2), 459-464. Examples data(network) cutoff(network) #See vignette for more details dim Dimension of the data Description Dimension of the data Methods signature(x = "micro_array") Gives the dimension of the matrix of measurements. evolution evolution 7 See the evolution of the network with change of cutoff Description See the evolution of the network with change of cutoff. This function may be usefull to see if the global topology is changed while increasing the cutoff. Usage evolution(net,list_nv,...) Arguments net a network object list_nv a vector of cutoff at which the network should be shown ... Optionnal arguments: gr a vector giving the group of each gene color.vertex a vector giving the color of each node fix logical, should the position of the node in the network be calculated once at the beginning ? Defaut to TRUE. taille vector giving the size of the plot. Default to c(2000,1000) . . . see plot function Value A HTML page with the evolution of the network. Author(s) Nicolas Jung, Fr\’ed\’eric Bertrand , Myriam Maumy-Bertrand. References Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2013). Cascade: a Rpackage to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics, btt705. Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 110(2), 459-464. Examples data(network) sequence<-seq(0,0.2,length.out=20) evolution(network,sequence) 8 geneNeighborhood geneNeighborhood Find the neighborhood of a set of nodes. Description Find the neighborhood of a set of nodes. Usage geneNeighborhood(net,targets,...) Arguments net a network object targets a vector containing the set of nodes ... Optional arguments. See plot options. Value The neighborhood of the targeted genes. Author(s) Nicolas Jung, Fr\’ed\’eric Bertrand , Myriam Maumy-Bertrand. References Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2013). Cascade: a Rpackage to study, predict and simulate the diffusion of a signal through a temporal gene network. Bioinformatics, btt705. Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 110(2), 459-464. Examples #See vignette genePeakSelection 9 genePeakSelection Methods for selecting genes Description Selection of differentially expressed genes. Usage geneSelection(x,y,tot.number,...) genePeakSelection(x,pic,...) Arguments x either a micro_array object or a list of micro_array objects. In the first case, the micro_array object represents the stimulated measurements. In the second case, the control unstimulated data (if present) should be the first element of the list. y either a micro_array object or a list of strings. In the first case, the micro_array object represents the stimulated measurements. In the second case, the list is the way to specify the contrast: First element: condition, condition&time or pattern. The condition specification is used when the overall is to compare two conditions. The condition&time specification is used when comparing two conditions at two precise time points. The pattern specification allows to decide which time point should be differentially expressed. Second element: a vector of length 2. The two conditions which should be compared. If a condition is used as control, it should be the first element of the vector. However, if this control is not measured throught time, the option cont=TRUE should be used. Third element: depends on the first element. It is no needed if condition has been specified. If condition&time has been specified, then this is a vector containing the time point at which the comparison should be done. If pattern has been specified, then this is a vector of 0 and 1 of length T, where T is the number of time points. The time points with desired differential expression are provided with 1. tot.number an integer. The number of selected genes. If tot.number <0 all differentially genes are selected. If tot.number > 1, tot.number is the maximum of diffenrtially genes that will be selected. If 0
Source Exif Data:File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 19 Producer : pdfTeX-1.40.14 Creator : TeX Create Date : 2014:03:24 11:32:49+01:00 Modify Date : 2014:03:24 11:32:49+01:00 Trapped : False PTEX Fullbanner : This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) kpathsea version 6.1.1EXIF Metadata provided by EXIF.tools