Civil__Upto_4th_Year_Syllabus_14.03.14 CE604C Civil Upto 4th Year Syllabus 14.03.14
User Manual: CE604C
Open the PDF directly: View PDF .
Page Count: 51
Download | |
Open PDF In Browser | View PDF |
Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Civil Engineering Second Year – Third Semester A. THEORY Sl. No Field Theory 1 2 3 HU301 PH301 CH301 Values & Ethics in Profession Physics - 2 Basic Environmental Engineering & Elementary Biology Solid Mechanics Surveying Building Material & Construction 3 3 3 0 1 1 0 0 0 3 4 4 21 3 4 4 21 B. PRACTICAL Physics - 2 Solid Mechanics Surveying Practice I Building Design & Drawing 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 12 33 2 2 2 2 8 29 CE301 4 5 CE302 CE303 6 Total Theory 7 PH391 8 CE391 9 CE392 CE393 10 Total Practical Total of Semester Contact hours per week L T P Total 3 0 0 3 3 1 0 4 (2+1) 0 0 3 Cr. Points 3 4 3 Second Year – Fourth Semester A. THEORY Sl. No Field 1 M(CS)401 2 M402 3 CE401 4 CE402 CE403 5 Total Theory 6 HU481 7 M(CS)491 8 CE491 9 CE492 CE493 10 Total Practical Total of Semester Theory Numerical Methods Mathematics - 3 Fluid Mechanics Structural Analysis Soil Mechanics B. PRACTICAL Technical Report Writing & Language Lab Practice Numerical Methods Fluid Mechanics Surveying Practice -II Soil Mechanics Lab - I 1 Contact hours per week L T P Total 2 1 0 3 3 1 0 4 3 0 0 3 3 1 0 4 3 1 0 4 18 Cr. Points 2 4 3 4 4 17 0 0 3 3 2 0 0 0 0 0 0 0 0 2 3 3 3 2 3 3 3 14 32 1 2 2 2 9 26 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Third Year – Fifth Semester A. THEORY Sl. No Field 1 HU501 2 CE501 3 CE502 4 CE503 5 CE504 Total Theory 6 7 8 CE591 CE592 CE593. 9 CE594 Total Practical Total of Semester Theory Economics for Engineers Foundation Engineering Design of RC Structures Concrete Technology Engineering Geology B. PRACTICAL Soil Mechanics Lab – II Concrete Laboratory Quantity Surveying, Specifications and Valuation Engineering Geology Laboratory Contact hours per week L T P Total 3 0 0 3 3 1 0 4 3 1 0 4 3 0 0 3 3 0 0 3 17 Cr. Points 3 4 4 3 3 17 0 0 0 0 0 0 3 3 3 3 3 3 2 2 2 0 0 3 3 12 29 2 8 25 Third Year – Sixth Semester A. THEORY Sl. No Field 1 HU601 2 CE601 3 CE602 4 CE603 5 CE604 6 CE605 Total Theory Theory Contact hours per week Principles of Management Highway & Transportation Engineering Design of Steel Structure Construction Planning and Management Professional Elective – I Free Elective – I L 2 3 3 3 3 3 T 0 0 0 0 0 0 P 0 0 0 0 0 0 Total 2 3 3 3 3 3 17 2 3 3 3 3 3 17 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 12 29 2 2 2 2 8 25 B. PRACTICAL 7 CE691 Highway & Transportation Engg Lab 8 CE692 Detailing of RC and Steel Structures 9 CE693 CAD Laboratory 10 CE681 Seminar Total Practical Total of Semester Professional Elective – I 1. CE604A : Bridge Engineering 2. CE604B : Prestressed Concrete 3. CE604C : Structural Dynamics and Earthquake Engineering Free Elective – I 1. CE605A : Operations Research(M) 2. CE605B : Human Resource Management(HSS) 3. CE6505C : Materials Handling(ME) 2 Cr. Points Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Proposed Structure for Forthcoming Semester of B.Tech Courses on CE Fourth Year – Seventh Semester A. THEORY Sl. No Field 1 CE701 2 CE702 3 CE703 4 CE704 5 CE705 Total Theory 6 7 8 9 10 HU781 CE791. CE792 CE793 CE782 Theory Contact hours per week L T P Total 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 15 Environmental Engineering Water Resource Engineering Professional Elective II Professional Elective III Free Elective II B. PRACTICAL Group Discussion Environmental Engg Lab Civil Engineering Practice Sessional Free Elective Laboratory Industrial Training 11 CE783 Total Practical Total of Semester Project Part I 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 4 weeks duration during 6th7th Semester break 6 18 33 Cr. Points 3 3 3 3 3 15 2 2 2 2 2 2 12 27 Fourth Year – Eighth Semester A. THEORY Sl. No Field 1 HU801A HU801B 2 CE801 3 CE802 Total Theory 4 CE891 5 CE881 6 CE882 Total Practical Total of Semester Theory Organisational Behaviour/ Project Management Professional Elective IV Professional Elective V B. PRACTICAL Structural Engineering Design Practice Project Part II Grand – Viva Contact hours per week L T P Total 2 0 0 2 Cr. Points 3 3 0 0 0 0 3 3 8 0 0 0 0 6 12 3 3 8 6 12 18 26 Free Elective II CE705A Engineering Materials (ME303) CE705B Electrical and Electronic Measurement (EE402) Free Elective Lab CE793A Material Testing Lab (ME493) CE793B Electrical and Electronic Measurement Laboratory (EE492) List of Electives: Professional Elective – II 1. CE703A Advanced Foundation Engineering 2. CE703B Soil Stabilization and Ground Improvement Techniques 3. CE703C Advanced Highway and Transportation Engineering Professional Elective – III 1. CE704A Advanced Structural Analysis 2. CE704B Hydraulic Structures Professional Elective – IV 1. CE801A Environmental Pollution and Control 2. CE801B Water Resource Management and Planning 3. CE801C Remote Sensing and GIS Professional Elective – V 1. CE802A Finite Element Method 2. CE802B Dynamics of Soils & Foundations 3. CE802C Design of Tall Buildings 4. CE802D Pavement Design 3 2 4 6 3 13 21 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) III Semester Theory VALUES & ETHICS IN PROFESSION HU-301 Contracts:3L Credits- 3 Science, Technology and Engineering as knowledge and as Social and Professional Activities Effects of Technological Growth: Rapid Technological growth and depletion of resources, Reports of the Club of Rome. Limits of growth: sustainable development Energy Crisis: Renewable Energy Resources Environmental degradation and pollution. Eco-friendly Technologies. Environmental Regulations, Environmental Ethics Appropriate Technology Movement of Schumacher; later developments Technology and developing notions. Problems of Technology transfer, Technology assessment impact analysis. Human Operator in Engineering projects and industries. Problems of man, machine, interaction, Impact of assembly line and automation. Human centered Technology. Ethics of Profession: Engineering profession: Ethical issues in Engineering practice, Conflicts between business demands and professional ideals. Social and ethical responsibilities of Technologists. Codes of professional ethics. Whistle blowing and beyond, Case studies. Profession and Human Values: Values Crisis in contemporary society Nature of values: Value Spectrum of a good life Psychological values: Integrated personality; mental health Societal values: The modern search for a good society, justice, democracy, secularism, rule of law, values in Indian Constitution. Aesthetic values: Perception and enjoyment of beauty, simplicity, clarity Moral and ethical values: Nature of moral judgements; canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility. Books: 1. 2. 3. Stephen H Unger, Controlling Technology: Ethics and the Responsible Engineers, John Wiley & Sons, New York 1994 (2nd Ed) Deborah Johnson, Ethical Issues in Engineering, Prentice Hall, Englewood Cliffs, New Jersey 1991. A N Tripathi, Human values in the Engineering Profession, Monograph published by IIM, Calcutta 1996. Physics 2 Code: PH-301 Contacts: 4L Credit: 3+1 Module 1: Vector Calculus: 1.1 Physical significances of grad, div, curl. Line integral, surface integral, volume integral- physical examples in the context of electricity and magnetism and statements of Stokes theorem and Gauss theorem [No Proof]. Expression of grad, div, curl and Laplacian in Spherical and Cylindrical co-ordinates. 2L Module 2 : Electricity 2.1 Coulumbs law in vector form. Electrostatic field and its curl. Gauss’s law in integral form and conversion to differential form . Electrostatic potential and field, Poisson’s Eqn. Laplace’s eqn (Application to Cartesian, Spherically and Cylindrically symmetric systems – effective 1D problems) Electric current, drift velocity, current density, continuity equation, steady current. 5L 2.2 Dielectrics-concept of polarization, the relation D=ε0E+P, Polarizability. Electronic polarization and polarization in monoatomic and polyatomic gases. 3L 4 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Module 3: Magnetostatics & Time Varying Field: 3. Lorentz force, force on a small current element placed in a magnetic field. Biot-Savart law and its applications, divergence of magnetic field, vector potential, Ampere’s law in integral form and conversion to differential form. Faraday’s law of electro-magnetic induction in integral form and conversion to differential form. 3L Module 4: Electromagnetic Theory: 4.1 Concept of displacement current Maxwell’s field equations, Maxwell’s wave equation and its solution for free space. E.M. wave in a charge free conducting media, Skin depth, physical significance of Skin Depth, E.M. energy flow, & Poynting Vector. 6L Module 5: Quantum Mechanics: 5.1 Generalised coordinates, Lagrange’s Equation of motion and Lagrangian, generalised force potential, momenta and energy. Hamilton’s Equation of motion and Hamiltonian. Properties of Hamilton and Hamilton’s equation of motion. 4L Course should be discussed along with physical problems of 1-D motion 5.2 Concept of probability and probability density, operators, commutator. Formulation of quantum mechanics and Basic postulates, Operator correspondence, Time dependent Schrödinger’s equation, formulation of time independent Schrödinger’s equation by method of separation of variables, Physical interpretation of wave function ψ (normalization and probability interpretation), Expectation values, Application of Schrödinger equation – Particle in an infinite square well potential (1-D and 3-D potential well), Discussion on degenerate levels. 9L Module 6: Statistical Mechanics: 3.1 Concept of energy levels and energy states. Microstates, macrostates and thermodynamic probability, equilibrium macrostate. MB, FD, BE statistics (No deduction necessary), fermions, bosons (definitions in terms of spin, examples), physical significance and application, classical limits of quantum statistics Fermi distribution at zero & non-zero temperature, Calculation of Fermi level in metals, also total energy at absolute zero of temperature and total number of particles, Bose-Einstein statistics – Planck’s law of blackbody radiation.. 7L Basic Environmental Engineering & Elementary Biology Code: CH301 Contacts: 3L = 3 Credits: 3 General Basic ideas of environment, basic concepts, man, society & environment, their interrelationship. 1L Mathematics of population growth and associated problems, Importance of population study in environmental engineering, definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development. 2L Materials balance: Steady state conservation system, steady state system with non conservative pollutants, step function. 1L 5 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Environmental degradation: Natural environmental Hazards like Flood, earthquake, Landslide-causes, effects and control/management; Anthropogenic degradation like Acid rain-cause, effects and control. Nature and scope of Environmental Science and Engineering. 2L Ecology Elements of ecology: System, open system, closed system, definition of ecology, species, population, community, definition of ecosystem- components types and function. 1L Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web. 2L Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur]. 1L Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity. 2L Air pollution and control Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause. 1L Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems. 1L Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food.Global warming and its consequence, Control of Global warming. Earth’s heat budget. 1L Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion). 2L Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model. 2L Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen, oxides of sulphur, particulate, PAN. 2L Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green house gases, effect of ozone modification. 1L Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). 1L Water Pollution and Control Hydrosphere, Hydrological cycle and Natural water. 6 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds. 2L River/Lake/ground water pollution: River: DO, 5 day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river[deoxygenation, reaeration], COD, Oil, Greases, pH. 2L Lake: Eutrophication [Definition, source and effect]. 1L Ground water: Aquifers, hydraulic gradient, ground water flow (Definition only) 1L Standard and control: Waste water standard [BOD, COD, Oil, Grease], Water Treatment system [coagulation and flocculation, sedimentation and filtration, disinfection, hardness and alkalinity, softening] Waste water treatment system, primary and secondary treatments [Trickling filters, rotating biological contractor, Activated sludge, sludge treatment, oxidation ponds] tertiary treatment definition. 2L Water pollution due to the toxic elements and their biochemical effects: Lead, Mercury, Cadmium, and Arsenic 1L Land Pollution Lithosphere; Internal structure of earth, rock and soil 1L Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes; Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling. Solid waste management and control (hazardous and biomedical waste). 2L Noise Pollution Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise] 1L Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, L10 (18 hr Index) , Ld n . Noise pollution control. 1L Environmental Management: Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol. 2L References/Books 1. Masters, G. M., “Introduction to Environmental Engineering and Science”, Prentice-Hall of India Pvt. Ltd., 1991. De, A. K., “Environmental Chemistry”, New Age International. SOLID MECHANICS Code: CE301 Contact: 3L Credits: 3 Mod Details of Course Content Review of Basic Concepts of Stress and Strain: Normal stress, Shear stress, Bearing stress, Normal strain, Shearing strain; Hooke’s law; Poisson’s ratio; Stress-strain diagram of ductile and brittle materials; Elastic limit; Ultimate stress; Yielding; Modulus of elasticity; Factor of safety. 7 Hours Total Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) I II III IV Beam Statics: Support reactions, concepts of redundancy, axial force, shear force and bending moment diagrams for concentrated, uniformly distributed, linearly varying load, concentrated moments in simply supported beams, cantilever and overhanging beams Symmetric Beam Bending: Basic kinematic assumption, moment of inertia, elastic flexure formulae and its application, Bending and shear stress for regular sections, shear centre Deflection of statically determinate beams: Fundamental concepts: Elastic curve, moment Curvature relationship, governing differential equation, boundary conditions: Direct integration solution Analysis of determinate plane trusses: Concepts of redundancy, Analysis by method of joints, method of sections Two Dimensional Stress Problems: Principal stresses, maximum shear stresses, Mohr’s circle of stresses, construction of Mohr’s circle Introduction to thin cylindrical & spherical shells: Hoop stress and meridonial - stress and volumetric changes. Torsion: Pure torsion, torsion of circular solid shaft and hollow shafts, torsional equation, torsional rigidity, closed coil helical; springs Columns: Fundamentals, criteria for stability in equilibrium, column buckling theory, Euler’s load for columns with different end conditions, limitations of Euler’s theory – problems, eccentric load and secant formulae. References Sl. Name No 1 Elements of Strength of Material Author Publishers S. P. Timoshenko & D. H. Young EWP Pvt. Ltd 9 13 42 10 10 2 Engineering Mechanics of Solids E. P. Popov Pearson Education 3 Strength of Materials R. Subramanian OXFORD University Press 4 5 Strength of Material Strength of Materials Bansal S S Bhavikatti Vikas Publishing House Pvt. Ltd 6 7 8 Strength of Material Strength of Material Engineering Mechanics I by A. Pytel & F. L. Singer Ramamrutham J. L. Mariam AWL Inc 9 Engineering Mechanics I. H. Shames PHI 10 Fundamentals of Strength of Material Nag & Chandra WIE John Willey SURVEYING Code: CE302 Contact: 3L + 1T Credits: 4 Mod Details of Course Content Introduction: Definition, classification of surveying, objectives, principles of surveying Chain surveying: Chain and its types, Optical square, Cross staff, Reconnaissance and site Location, Locating ground features by offsets – Field book. Chaining for obtaining the outline of structures, Methods for overcoming obstacles, Conventional symbols, Plotting chain survey and Computation of areas, Errors in chain surveying and their elimination: Problems I Hours 12 Compass Surveying: Details of prismatic compass, Use and adjustments, Bearings, Local attraction and its adjustments. Chain and compass surveying of an area, Booking and plotting, Adjustments of traverse, Errors in compass surveying and precautions: Problems. Plane Table Surveying: Equipment, Orientation, Methods of Plane Tabling, Three Point Problems. Leveling: Introduction, Basic definitions, Detail of dumpy Level, Temporary adjustment of Levels, Sensitiveness of bubble tube; Methods of leveling – Differential, Profile & fly Leveling, Effect of curvature and refraction, Automatic levels, Plotting longitudinal sections and Cross sections; Measurement of area and volume II 42 11 8 Total Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Contouring: Topographic Map, Characteristics of Contour, Contour Interval. Methods of Locating Contours, Interpolation of Contours Theodolite Surveying: Components of a Transit Theodolite, Measurement of horizontal and vertical Angles, Co-ordinates and traverse Table III Tacheometry: Definition, Details of stadia System, Determination of horizontal and vertical distance with Tacheometer- Staff held vertically and normal to the line of sight Simple & Transition Curves: Definition, Degree of Curve, Elements of Simple Curve, Setting out by Linear method and Rankine's tangential method, Transition Curves. IV 11 8 Introduction to Total Station with Field applications References Sl No. Title 1 Surveying:- Vol - I & II 2 3 4 5 6 7 9 10 11 Author B.C. Punmia Surveying & Leveling R. Subramanian (OXFORD) Surveying& Leveling Vol - I [Part I & II ] Surveying:- Vol - I & II Fundamental of Engineering Survey Higher Surveying Surveying Plane and Geodetic Surveying ( Vol - I & II ) Fundamental of Surveying Surveying T.P.Kanetkar & Kulkarni S.K. Duggal J.K. Ghosh (Studium Press, Roorkee) Dr. A. M. Chandra R.B. Gupta & B.K. Gupta David Clark S. K. Roy Saikia & Das (PHI) BUILDING MATERIAL AND CONSTRUCTION Code: CE303 Contact: 3L + 1 T Credits: 4 Mod I Details of Course Content Material of Construction Bricks: Classification, Characteristics of good bricks, Ingredients of good brick earth, Harmful substance in brick Earth, Different forms of bricks, Testing of bricks as per BIS. Defects of bricks. Aggregates: Classification, Characteristics, Deleterious substances, Soundness, Alkali – aggregates reaction, Fine aggregates, Coarse aggregates, Testing of aggregates Lime: Impurities in limestone, Classification, Slaking and hydration, Hardening, Testing, Storage, Handling Hours 13 Cement & Concrete: Cement: OPC: Composition, PPC, Slag cement, Hydration, setting time Concrete: Types, ingredients, W/C ratio, Workability, Different grades in cement concrete, Tests on cement concrete Mortars: Classification, Uses, Characteristics of good mortar, Ingredients. Cement mortar, Lime mortar, Lime cement mortar, special mortars Wood and Wood Products: Classification of Timber, Structure, Characteristics of good timber, Seasoning of timber, Defects in Timber, Diseases of timber, Decay of Timber, Preservation of Timber Testing of Timber, Veneers , Plywood, Fibre Boards, Particle Boards, Chip Boards , Black Boards, Button Board and Laminated Boards, Applications of wood and wood products II 10 Paints, Enamels and Varnishes: Composition of oil paint, characteristic of an ideal paint, preparation of paint, covering power of paints, Painting: Plastered surfaces, painting wood surfaces, painting metal Surfaces. Defects, Effect of weather, enamels, distemper, water wash and colour wash, Varnish , French Polish, Wax Polish Miscellaneous Materials: Gypsum: Classification, Plaster of Paris, Gypsum wall Plasters, Gypsum Plaster Boards, Adhesives, Heat and sound insulating materials, Geo-synthetics 9 Total Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 42 Building Construction Foundations: Function of Foundations, Essential requirement of good foundation, Different types of shallow and deep Foundations III IV Brick masonry: Definitions, Rules for bonding, Type of bonds – stretcher bond, Header bond, English bond, Flemish Bond, Comparison of English Bond and Flemish Bond (one and one and half brick thick wall) Wall, Doors and Windows: Load bearing wall, Partition wall, Reinforced brick wall Common types of doors and windows of timber and metal Stairs: Technical Terms, Requirements of good stair, Dimension of steps, Classification, Geometric design of a dog legged stair case Flooring: Components of a floor, selection of flooring materials, Brick flooring, Cement concrete flooring, mosaic, marble, Terrazzo flooring, Tiled roofing Plastering and Pointing: Plastering with cement mortar, Defects in plastering, pointing, white washing, colour washing, Distempering, 10 9 Roofs: Types, Pitched roofs and their sketches, Lean – to roof, King Post – Truss, Queen post truss and Simple steel Truss , Roof Covering materials: AC sheets GI sheet References Sl. Name No 1 1. Building Materials 2 Building Materials 2. Author Publishers S.K. Duggal P.C. Varghese 3 4 5 Engineering Materials Concrete Technology Concrete Technology[ S.C. Rangwala M. S. Shetty A.M. Nevile & J.J. Brooks 6 Building Construction B.C. Punmia 7 Building Construction and Foundation Engineering Jha and Sinha PHI Pearson Education Practical Code: PH-391 Contacts: (3P) Credit: (2) Group 1: Experiments on Electricity and Mangentism 1. Determination of dielectric constant of a given dielectric material. 3. Determination of resistance of ballistic galvanometer by half deflection method and study of variation of logarithmic decrement with series resistance. 4. Determination of the thermo-electric power at a certain temperature of the given thermocouple. 5. Determination of specific charge (e/m) of electron by J.J. Thomson’s method. Group 2: Quantum Physics 6. Determination of Planck’s constant using photocell. 7. Determination of Lande’g factor using Electron spin resonance spetrometer. 8. Determination of Stefan’s radiation constant 9. Verification of Bohr’s atomic orbital theory through Frank-Hertz experiment. 10. Determination of Rydberg constant by studying Hydrogen/ Helium spectrum Group 3: Modern Physics 11. Determination of Hall co-efficient of semiconductors. 12. Determination of band gap of semiconductors. 13. To study current-voltage characteristics, load response, areal characteristics and spectral response of photo voltaic solar cells. 10 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) a) A candidate is required to perform 3 experiments taking one from each group. Initiative should be taken so that most of the Experiments are covered in a college in the distribution mentioned above. Emphasis should be given on the estimation of error in the data taken. b) In addition a student should perform one more experiments where he/she will have to transduce the output of any of the above experiments or the experiment mentioned in c] into electrical voltage and collect the data in a computer using phoenix or similar interface. c) Innovative experiment: One more experiment designed by the student or the concerned teacher or both. Note: i. Failure to perform each experiment mentioned in b] and c] should be compensated by two experiments mentioned in the above list. ii. At the end of the semester report should sent to the board of studies regarding experiments, actually performed by the college, mentioned in b] and c] iii. Experiment in b] and c] can be coupled and parts of a single experiment. Recommended Text Books and Reference Books: For Both Physics I and II 1. B. Dutta Roy (Basic Physics) 2. R.K. Kar (Engineering Physics) 3. Mani and Meheta (Modern Physics) 4.. Arthur Baiser (Perspective & Concept of Modern Physics) Physics I (PH101/201) Vibration and Waves 3. Kingsler and Frey 4. D.P. Roychaudhury 5. N.K. Bajaj (Waves and Oscillations) 6. K. Bhattacharya 7. R.P. Singh ( Physics of Oscillations and Waves) 8. A.B. Gupta (College Physics Vol.II) 9. Chattopadhya and Rakshit (Vibration, Waves and Acoustics) Optics 1. Möler (Physical Optics) 2. A.K. Ghatak 3. E. Hecht (Optics) 4. E. Hecht (Schaum Series) 5. F.A. Jenkins and H.E. White 6. 6. Chita Ranjan Dasgupta ( Degree Physics Vol 3) Quantum Physics 1. Eisberg and Resnick 2. A.K. Ghatak and S. Lokenathan 3. S.N. Ghoshal (Introductory Quantum Mechanics) 4. E.E. Anderson (Modern Physics) 5. Haliday, Resnick and Crane (Physics vol.III) 6. Binayak Dutta Roy [Elements of Quantum Mechanics] Crystallography 1. S.O. Pillai (a. Solid state physics b. Problem in Solid state physics) 2. A.J. Dekker 3. Aschroft and Mermin 4. Ali Omar 5. R.L. Singhal 6. Jak Tareen and Trn Kutty (Basic course in Crystallography Laser and Holography 1. A.K. Ghatak and Thyagarajan (Laser) 2. Tarasov (Laser) 3. P.K. Chakraborty (Optics) 4. B. Ghosh and K.G. Majumder (Optics) 5. B.B. Laud (Laser and Non-linear Optics) 6. Bhattacharyya [Engineering Physics] Oxford 11 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Physics II(PH 301) Classical Mechanics (For Module 5.1 in PH 301) H. Goldstein A.K. Roychaudhuri R.G. Takwal and P.S. Puranik Rana and Joag M. Speigel (Schaum Series) J.C. Upadhya (Mechanics) Electricity and Magnetism 2. Reitz, Milford and Christy 3. David J. Griffith 4. D. Chattopadhyay and P.C. Rakshit 5. Shadowitz (The Electromagnetic Field) Quantum Mechanics 7. Eisberg and Resnick 8. A.K. Ghatak and S. Lokenathan 9. S.N. Ghoshal (Introductory Quantum Mechanics) 10. E.E. Anderson (Modern Physics) 11. Haliday, Resnick and Crane (Physics vol.III) 12. Binayak Dutta Roy [Elements of Quantum Mechanics] Statistical Mechanics 1. Sears and Sallinger (Kinetic Theory, Thermodynamics and 2. Mondal (Statistical Physics) 3. S.N. Ghoshal ( Atomic and Nuclear Physics) 4. Singh and Singh 5. B.B. Laud (Statistical Mechanics) 6. F. Reif (Statistical Mechanics) Dilectrics 7. Bhattacharyya [Engineering Physics] Oxford Statistical Thermodynamics) Solid Mechanics Lab Code:CE391 Contact – 3 P Credits – 2 1. 2. 3. 4. 5. 6. 7. 8. Tension test on Structural Materials: Mild Steel and Tor steel (HYSD bars) Compression Test on Structural Materials: Timber, bricks and concrete cubes Bending Test on Mild Steel Torsion Test on Mild Steel Circular Bar Hardness Tests on Ferrous and Non-Ferrous Metals: Brinnel and Rockwell Tests Test on closely coiled helical spring Impact Test: Izod and Charpy Demonstration of Fatigue Test Surveying Practice I Code:CE392 Contact- 3P Credits -2 Chain surveying Preparing index plans, Location sketches, Ranging, Preparation of map, Heights of objects using chain and ranging rods, Getting outline of the structures by enclosing them in triangles/quadrilaterals, Distance between inaccessible points, Obstacles in chain survey. Compass surveying Measurement of bearings, Preparation of map, Distance between two inaccessible points by chain and compass, Chain and compass traverse Plane Table survey Temporary adjustments of plane table and Radiation method, Intersection, Traversing and Resection methods of plane tabling, Three-point problem 12 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Leveling Temporary adjustment of Dumpy level, Differential leveling, Profile leveling and plotting the profile, Longitudinal and cross sectioning, Gradient of line and setting out grades, Sensitiveness of Bubble tube Contouring Direct contouring, Indirect contouring – Block leveling, Indirect contouring – Radial contouring, Demonstration of minor instruments Building Design and Drawing Code:CE 393 Contact- 3P Credits: 2; Foundations Spread foundation for walls and columns; Footing for a RCC column, raft and pile foundations; Doors and Windows Glazed and paneled doors of standard sizes; Glazed and paneled windows of standard sizes; special windows and ventilators Stairs Proportioning and design of a dog-legged, open well RCC stair case for an office / Residential building; Details of reinforcements for RCC stair cases; Plan and elevation of straight run, quarter turn, dog-legged and open well stair cases. Roofs and Trusses Types of sloping roof, lean-to roofs, RCC roof with details of reinforcements, King post and Queen post trusses. Functional Design of Buildings To draw the line diagram, plan, elevation and section of the following: Residential Buildings (flat, pitched and combined roofs), Office Buildings (flat roof), School The designs must show positions of various components including lift well and their sizes. Introduction to drawing by using software package References Sl No. Title 1 Principles of Building Drawing 2 3 Author Shah & Kale Text Book of Building Construction Building Construction Sharma & Kaul B C Punmia 13 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Semester: IV NUMERICAL METHODS Code: M (CS) 401 Contacts: 2L+1T Credits: 2 Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors. (4) Interpolation: Newton forward/backward interpolation, Lagrange’s and Newton’s divided difference Interpolation. (5) Numerical integration: Trapezoidal rule, Simpson’s 1/3 rule, Expression for corresponding error terms. (3) Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method. (6) Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton-Raphson method. (4) Numerical solution of ordinary differential equation: Euler’s method, Runge-Kutta methods, Predictor-Corrector methods and Finite Difference method. (6) Text Books: 1. 2. 3. 4. C.Xavier: C Language and Numerical Methods. Dutta & Jana: Introductory Numerical Analysis. J.B.Scarborough: Numerical Mathematical Analysis. Jain, Iyengar , & Jain: Numerical Methods (Problems and Solution). References: 1. 2. 3. 4. 5. Balagurusamy: Numerical Methods, Scitech. Baburam: Numerical Methods, Pearson Education. N. Dutta: Computer Programming & Numerical Analysis, Universities Press. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP. Srimanta Pal: Numerical Methods, OUP. Subject Name : MATHEMATICS Code: M 402 Contacts: 3L +1T = 4 Credits: 4 Note 1: The entire syllabus has been divided into four modules. Note 2: Structure of Question Paper There will be two groups in the paper: Group A: Ten questions, each of 2 marks, are to be answered out of a total of 15 questions, covering the entire syllabus. Group B: Five questions, each carrying 10 marks, are to be answered out of (at least) 8 questions. Students should answer at least one question from each module. [At least 2 questions should be set from each of Modules II & IV. At least 1 question should be set from each of Modules I & III. Sufficient questions should be set covering the whole syllabus for alternatives.] Module I: Fourier Series & Fourier Transform [8L] Topic: Fourier Series: Sub-Topics: Introduction, Periodic functions: Properties, Even & Odd functions: Properties, Special wave forms: Square wave, Half wave Rectifier, Full wave Rectifier, Saw-toothed wave, Triangular wave. (1) Euler’s Formulae for Fourier Series, Fourier Series for functions of period 2π, Fourier Series for functions of period 2l, Dirichlet’s conditions, Sum of Fourier series. Examples. (1) 14 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Theorem for the convergence of Fourier Series (statement only). Fourier Series of a function with its periodic extension. Half Range Fourier Series: Construction of Half range Sine Series, Construction of Half range Cosine Series. Parseval’s identity (statement only). Examples. (2) Topic: Fourier Transform: Sub-Topics: Fourier Integral Theorem (statement only), Fourier Transform of a function, Fourier Sine and Cosine Integral Theorem (statement only), Fourier Cosine & Sine Transforms. Fourier, Fourier Cosine & Sine Transforms of elementary functions. (1) Properties of Fourier Transform: Linearity, Fourier Transform of Derivatives. Examples. Shifting, Change of scale, Modulation. (1) Convolution Theorem (statement only), Inverse of Fourier Transform, Examples. Examples. (2) Module II : Calculus of Complex Variable [13L] Topic: Introduction to Functions of a Complex Variable. Sub-Topics: Complex functions, Concept of Limit, Continuity and Differentiability. (1) Analytic functions, Cauchy-Riemann Equations (statement only). Sufficient condition for a function to be analytic. Harmonic function and Conjugate Harmonic function, related problems. (1) Construction of Analytic functions: Milne Thomson method, related problems. (1) Topic: Complex Integration. Sub-Topics: Concept of simple curve, closed curve, smooth curve & contour. Some elementary properties of complex Integrals. Line integrals along a piecewise smooth curve. Examples. (2) Cauchy’s theorem (statement only). Cauchy-Goursat theorem (statement only). Examples. (1) Cauchy’s integral formula, Cauchy’s integral formula for the derivative of an analytic function, Cauchy’s integral formula for the successive derivatives of an analytic function. Examples. (2) Taylor’s series, Laurent’s series. Examples (1) Topic: Zeros and Singularities of an Analytic Function & Residue Theorem. Sub-Topics: Zero of an Analytic function, order of zero, Singularities of an analytic function. Isolated and non-isolated singularity, essential singularities. Poles: simple pole, pole of order m. Examples on determination of singularities and their nature. (1) Residue, Cauchy’s Residue theorem (statement only), problems on finding the residue of a given function, evaluation of definite integrals: ∫ ∞ 0 sin x dx , x ∫ 2π 0 dθ , a + b cos θ + c sin θ polynomials of 2nd order or less). P( z ) ∫ Q ( z ) dz (elementary cases, P(z) & Q(z) are C (2) Topic: Introduction to Conformal Mapping. Sub-Topics: Concept of transformation from z-plane to w-plane. Concept of Conformal Mapping. Idea of some standard transformations. Bilinear Transformation and determination of its fixed point. (1) Module III: Probability [8L] Topic: Basic Probability Theory Sub-Topics: Classical definition and its limitations. Axiomatic definition. Some elementary deduction: i) P(O)=0, ii) 0≤P(A)≤1, iii) P(A’)=1-P(A) etc. where the symbols have their usual meanings. Frequency interpretation of probability. (1) 15 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Addition rule for 2 events (proof) & its extension to more than 2 events (statement only). Related problems. Conditional probability & Independent events. Extension to more than 2 events (pairwise & mutual independence). Multiplication Rule. Examples. Baye’s theorem (statement only) and related problems. (3) Topic: Random Variable & Probability Distributions. Expectation. Sub-Topics: Definition of random variable. Continuous and discrete random variables. Probability density function & probability mass function for single variable only. Distribution function and its properties (without proof). Examples. Definitions of Expectation & Variance, properties & examples. (2) Some important discrete distributions: Binomial & Poisson distributions and related problems. Some important continuous distributions: Uniform, Exponential, Normal distributions and related problems. Determination of Mean & Variance for Binomial, Poisson & Uniform distributions only. (2) Module IV: Partial Differential Equation (PDE) and Series solution of Ordinary Differential Equation (ODE) [13L] Topic: Basic concepts of PDE. Sub-Topics: Origin of PDE, its order and degree, concept of solution in PDE. Introduction to different methods of solution: Separation of variables, Laplace & Fourier transform methods. (1) Topic: Solution of Initial Value & Boundary Value PDE’s by Separation of variables, Laplace & Fourier transform methods. Sub-Topics: PDE I: One dimensional Wave equation. PDE II: One dimensional Heat equation. PDE III: Two dimensional Laplace equation. (2) (2) (2) Topic: Introduction to series solution of ODE. Sub-Topics: Validity of the series solution of an ordinary differential equation. General method to solve Po y''+P1 y'+P2 y=0 and related problems. Topic: Bessel’s equation. (2) Sub-Topics: Series solution, Bessel function, recurrence relations of Bessel’s Function of first kind. (2) Topic: Legendre’s equation. Sub-Topics: Series solution, Legendre function, recurrence relations and orthogonality relation. (2) TOTAL LECTURES : 42 Text Books: 2. Brown J.W and Churchill R.V: Complex Variables and Applications, McGraw-Hill. 3. Das N.G.: Statistical Methods, TMH. 4. Grewal B S: Higher Engineering Mathematics, Khanna Publishers. 5. James G.: Advanced Modern Engineering Mathematics, Pearson Education. 6. Lipschutz S., and Lipson M.L.: Probability (Schaum's Outline Series), TMH. References: 1. Bhamra K. S.: Partial Differential Equations: An introductory treatment with applications, PHI 2. Dutta Debashis: Textbook of Engineering Mathematics, New Age International Publishers. 3. Kreyzig E.: Advanced Engineering Mathematics, John Wiley and Sons. 4. Potter M.C, Goldberg J.L and Aboufadel E.F.: Advanced Engineering Mathematics, OUP. 5. Ramana B.V.: Higher Engineering Mathematics, TMH. 6. Spiegel M.R. , Lipschutz S., John J.S., and Spellman D., : Complex Variables, TMH. Fluid Mechanics Code:CE401 Contact: 3L 16 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Credits: 3 Sl. Details of Course Content No 1 Fluid statics: Forces on plane and curved surfaces, Center of pressure. Stability of floating bodies, Metacentre... 4 2 3 3 Weirs and Notches: Rectangular, triangular, Cippoletti, sharp crested and broad crested weirs, submerged weirs Turbulent flow in circular pipes: Fluid friction in pipes, head loss due to friction. Darcy-Weisbach equation, Variation of friction factor with wall roughness – Moody’s chart. Minor losses in pipes Water Hammer: Speed of pressure wave, slow and rapid closure, use of surge tank. 4 8 9 Pumps: Centrifugal pumps, performance characteristic graph – design flow rate. Working principles of positive displacement pumps, gear, reciprocating and vane pumps. Hydraulic Ram 6 7 References Sl. Name No 1 Fluid Mechanics 2 3 4 5 Total 5 3 Steady uniform flow in open channel: Characteristics, Chezy's, Manning's and Bazin’s formulae. Hydraulically efficient cross sections. Flow through channels of circular cross sections – depths for maximum velocity and discharge. Varied flow through open channel: Gradually varied and rapidly varied flows. Definition, Specific Energy, Critical, Sub-critical and Super-critical flows. Channel transitions - constricted or raised bed. Establishment of critical flow, Venturi flume and Parshall flume. Definition and diagram for Specific force, Hydraulic Jump Dimensional Analysis and Model studies: Dimensions and dimensional homogeneity, Importance and use of dimensional analysis. Buckingham’s Pi theorem with applications. Geometric, Kinematic and Dynamic similarity. Non Dimensional Numbers. Introduction to Hydraulic Turbines: Working Principles of Pelton, Francis and Kaplan turbines 5 Hours 6 Fluid Mechanics Fluid Mechanics & Machinery Fluid Mechanics and Fluid Machines Fluid Mechanics, Hydraulics and Fluid Machines Basic Fluid Mechanics 7 8 Open Channel Hydraulics Fluid Mechanics 9 10 Introduction to Fluid Mechanics Fundamental of Fluid Mechanics 5 10 42 4 3 5 Author Publishers Modi & Seth Standard Book House, New Delhi A.K.Jain H. M. Raghunath S. K. Som & G. Biswas S. Ramamrutham Khanna Publishers, New Delhi CBS Publishers, New Delhi Tata McGraw Hill. Dhanpat Rai C. P. Kothandaraman & R. Rudramoorthy Van te Chow John F. Douglas, Gasiorek & Swaffield, Fox, Pritchand Munsen, Young New Age International McGraw Hill Pearson Education WIE STRUCTURAL ANALYSIS Code: CE402 Contact: 3L + 1 T Credits: 4 Sl. Details of Course Content No 1 Review of basic concept of mechanics: Equilibrium, Free body diagram, Determinate and Indeterminate structures, Degree of indeterminacy for different types of structures: Beams, Frames, Trusses 2 Analysis of determinate structures: Portal frames, arches, cables Strain energy: Due to axial load, bending and shear, Torsion; Castigliano's theorems, theorem of 3 minimum potential energy, principle of virtual work, Maxwell’s theorem of reciprocal deflection, Betti’s law 4 Deflection determinate structures: Moment area and Conjugate beam method, Energy methods, Unit load method for beams, Deflection of trusses and simple portal frames. 17 Hours 4 4 4 8 Total Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 6 6 7 Influence line diagrams: Statically determinate beams and trusses under series of concentrated and uniformly distributed rolling loads, criteria for maximum and absolute maximum moments and shears. Analysis of statically Indeterminate beams: Theorem of three moments, Energy methods, Force method (method of consistent deformations) [for analysis of propped cantilever, fixed beams and continuous beams (maximum two degree of indeterminacy) for simple loading cases], Analysis of two-hinged arch. Analysis of statically Indeterminate structures: Moment distribution method - solution of continuous beam, effect of settlement and rotation of support, frames with or without side sway. Slope Deflection Method – Method and application in continuous beams and Frames. Approximate method of analysis of structures: Portal & Cantilever methods References Sl. Name No 1 Engineering Mechanics of Solids Author Publishers By E. P. Popov Pearson Education 2 Basic structural Analysis C.S. Reddy TMH 3 4 Statically indeterminate structures Elastic analysis of structures C. K. Wang Kennedy and Madugula McGraw-Hill Harper and Row 5 6 7 Structural Analysis (Vol I & Vol II) Structural Analysis Structures S S Bhavikatti Ramammurtham Schodek & M. Bechhold Vikas Publishing House Pvt. Ltd 42 6 8 8 Pearson Education SOIL MECHANICS Code:CE403 CONTACT-3L+1T CREDITS-4 Sl. No 1 2 3 4 5 6 7 8 Details of Course Content Introduction: Origin & formation of Soil: Types, Typical Indian Soil, Fundamental of Soil Structure, Clay Mineralogy Physical & Index properties of soil: Weight- Volume Relationships, Insitu Density, Moisture Content, Specific Gravity, Relative Density, Atterberg’s Limits, Soil Indices, consistency of soil , Particle Size Distribution of soil: Sieving, Sedimentation Analysis Identification & Classification of soil: Field identification of soil, Soil Classification: as per Unified Classification System, IS Code Recommendation, AASHTO Classification Flow through soil: Darcy’s Law, Coefficient of permeability, laboratory and field determination of coefficient of permeability, Permeability for Stratified Deposits, Laplace’s Equations, Flow nets, Flow Through Earthen Dam, Estimation of Seepage, Uplift due to seepage Effective Stress Principles: Effective Stress, Effective pressure due to different conditions, Seepage force, Critical hydraulic gradient, Quick sand condition, Design of filters, Capillarity in soil Stress Distribution In Soil: Normal and shear stresses, Stress due to point loads, Stress beneath Line, strip & uniformly loaded circular area & rectangular area, pressure bulbs, Newmark’s charts- Use for determination of stress due to arbitrarily loaded areas b Compaction of soil: Principles of Compaction, IS Light & Heavy Compaction Test, Field Compaction, Various methods of field compaction and control Compressibility & Consolidation of Soil: Terzaghi’s theory of one dimensional consolidation, Compressibility characteristics of soils: Compression index, Coefficient of compressibility & volume change, Coefficient of consolidation, Degree & rate of consolidation, Laboratory method of one dimensional consolidation test, Determination of consolidation parameters, Secondary consolidation Shear Strength of Soil: Basic concepts, Mohr- Columb’s Theory, Laboratory Determination of soil shear parameter- Direct Shear, Tri-axial Test, Unconfined Compression, Vane Shear Test, Sensitivity & thixotropy of clay. References Sl. Name Author Publishers 9 18 Hours Total 2 6 4 6 4 4 42 4 6 6 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) No 1 2 3 4 5 6 Principles of Geotechnical Engineering B. M. Das Thomson Book Store Text book of Soil Mechanics & Foundation Engineering Geotechnical Engineering – Principles and Practice Soil Mechanics Basic & Applied Soil Mechanics V.N.S. Murthy CBS Publisher’s & Distributors Pearson Education WIE Willes EasternLtd SP 36 (Part I ) Numerical Problems – Geotechnical Engineering Coduto Lambe & Whitman. Gopal Ranjan & A.S.R.Rao Rao & Venkatramaiah University Press Practical Technical Report Writing & Language Lab Practice Code: HU481 Cr-2 Guidelines for Course Execution: Objectives of this Course: This course has been designed: 1. To inculcate a sense of confidence in the students. 2. To help them become good communicators both socially and professionally. 3. To assist them to enhance their power of Technical Communication. A. Detailed Course Outlines: Technical Report Writing : 1. 2. 3. 2L+6P Report Types (Organizational / Commercial / Business / Project ) Report Format & Organization of Writing Materials Report Writing (Practice Sessions & Workshops) B. Language Laboratory Practice I. Introductory Lecture to help the students get a clear idea of Technical Communication & the need of Language Laboratory Practice Sessions 2L 2. Conversation Practice Sessions: (To be done as real life interactions) 2L+4P a) Training the students by using Language Lab Device/Recommended Texts/cassettes /cd’s to get their Listening Skill & Speaking Skill honed b) Introducing Role Play & honing over all Communicative Competence 3. Group Discussion Sessions: 2L+6P a) Teaching Strategies of Group Discussion b) Introducing Different Models & Topics of Group Discussion c) Exploring Live /Recorded GD Sessions for mending students’ attitude/approach & for taking remedial measure Interview Sessions; 2L+6P a) Training students to face Job Interviews confidently and successfully b) Arranging Mock Interviews and Practice Sessions for integrating Listening Skill with Speaking Skill in a formal situation for effective communication 4. a) b) c) Presentation: 2L+6P Teaching Presentation as a skill Strategies and Standard Practices of Individual /Group Presentation Media & Means of Presentation: OHP/POWER POINT/ Other Audio-Visual Aids 5. a) b) c) Competitive Examination: 2L+2P Making the students aware of Provincial /National/International Competitive Examinations Strategies/Tactics for success in Competitive Examinations SWOT Analysis and its Application in fixing Target Books – Recommended: Nira Konar: English Language Laboratory: A Comprehensive Manual PHI Learning, 2011 19 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) D. Sudharani: Advanced Manual for Communication Laboratories & Technical Report Writing Pearson Education (W.B. edition), 2011 References: Adrian Duff et. al. (ed.): Cambridge Skills for Fluency A) Speaking (Levels 1-4 Audio Cassettes/Handbooks) B) Listening (Levels 1-4 Audio Cassettes/Handbooks) Cambridge University Press 1998 Mark Hancock: English Pronunciation in Use 4 Audio Cassettes/CD’S OUP 2004 NUMERICAL METHODS LAB Code: M(CS)491 Contact: 2L Cr:1 1. Assignments on Newton forward /backward, Lagrange’s interpolation. 2. Assignments on numerical integration using Trapezoidal rule, Simpson’s 1/3 rule, Weddle’s rule. 3. Assignments on numerical solution of a system of linear equations using Gauss elimination and Gauss-Seidel iterations. 4. Assignments on numerical solution of Algebraic Equation by Regular-falsi and Newton Raphson methods. 5. Assignments on ordinary differential equation: Euler’s and Runga-Kutta methods. 6. Introduction to Software Packages: Matlab / Scilab / Labview / Mathematica. Fluid Mechanics Lab Code: CE491 Contact- 3P Credits-2 1. Determination of Orifice co-efficient 2. 3. 4. 5. 6. 7. 8. Calibration of Orifice meter Calibration of V- Notch Measurement of velocity of water in an open channel using a pitot tube Measurement of water surface profile for flow over Broad crested weir Preparation of discharge rating curve for a sluice Measurement of water surface profile for a hydraulic jump Determination of efficiency of a Centrifugal pump 9. Determination of efficiency of a Reciprocating pump 10. Determination of efficiency of a Pelton wheel Turbine 11. Determination of efficiency of a Francis Turbine 12. Determination of efficiency of a Hydraulic Ram Note: Students will have to study the Layout experimental units in the laboratory Surveying Practice II Code:CE492 Contact – 3 P Credits – 2 1. 2. 3. 4. Traversing by Using Theodolite: Preparation of Gales Table from field data Traversing by using Total Station Use of Total Station for leveling and Contouring Setting out of Simple Curves 20 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Soil Mechanics Lab. – I Code:CE493 Contact – 3 P Credits – 2 1. Field identification of different types of soil as per Indian standards [collection of field samples and identifications without laboratory testing], determination of natural moisture content. 2. Determination of specific gravity of i) Cohesionless ii) cohesive soil 3. Determination of Insitu density by core cutter method & sand replacement method. 4. Grain size distribution of cohessionless soil by sieving & finegrained soil by hydrometer analysis. 5. Determination of Atterberg’s limits (liquid limit, plastic limit & shrinkage limit). 6. Determination of co- efficient of permeability by constant head pemeameter (coarse grained soil) & variable head parameter (fine grained soil). 7. Determination of compaction characteristics of soil. References: 1. Soil Testing by T.W. Lamb (John willey) 2. 2. SP-36 (Part I- & Part – II) 3. Soil Mechanics Laboratory Manual by Braja Mohan Das, OXFORD UNIVERSITY PRESS 4. Measurement of Engineering properties of soil by E Saibaba Reddy & K. Rama Sastri. (New age International publication. 21 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) SEMESTER - V Theory Economics for Engineers HU-501 Contracts: 3L Credits- 3 Module-I 1. Economic Decisions Making – Overview, Problems, Role, Decision making process. 2. Engineering Costs & Estimation – Fixed, Variable, Marginal & Average Costs, Sunk Costs, Opportunity Costs, Recurring And Nonrecurring Costs, Incremental Costs, Cash Costs vs Book Costs, Life-Cycle Costs; Types Of Estimate, Estimating Models - Per-Unit Model, Segmenting Model, Cost Indexes, Power-Sizing Model, Improvement & Learning Curve, Benefits. Module-II 3. Cash Flow, Interest and Equivalence: Cash Flow – Diagrams, Categories & Computation, Time Value of Money, Debt repayment, Nominal & Effective Interest. 4. Cash Flow & Rate Of Return Analysis – Calculations, Treatment of Salvage Value, Annual Cash Flow Analysis, Analysis Periods; Internal Rate Of Return, Calculating Rate of Return, Incremental Analysis; Best Alternative Choosing An Analysis Method, Future Worth Analysis, Benefit-Cost Ratio Analysis, Sensitivity And Breakeven Analysis. Economic Analysis In The Public Sector - Quantifying And Valuing Benefits & drawbacks. Module-III 5. Inflation And Price Change – Definition, Effects, Causes, Price Change with Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates. 6. Present Worth Analysis: End-Of-Year Convention, Viewpoint Of Economic Analysis Studies, Borrowed Money Viewpoint, Effect Of Inflation & Deflation, Taxes, Economic Criteria, Applying Present Worth Techniques, Multiple Alternatives. 7. Uncertainty In Future Events - Estimates and Their Use in Economic Analysis, Range Of Estimates, Probability, Joint Probability Distributions, Expected Value, Economic Decision Trees, Risk, Risk vs Return, Simulation, Real Options. Module-IV 8. Depreciation - Basic Aspects, Deterioration & Obsolescence, Depreciation And Expenses, Types Of Property, Depreciation Calculation Fundamentals, Depreciation And Capital Allowance Methods, Straight-Line Depreciation Declining Balance Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances. 9. Replacement Analysis - Replacement Analysis Decision Map, Minimum Cost Life of a New Asset, Marginal Cost, Minimum Cost Life Problems. 10. Accounting – Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation. Readings 1. James L.Riggs,David D. Bedworth, Sabah U. Randhawa : Economics for Engineers 4e , Tata McGraw-Hill 2. Donald Newnan, Ted Eschembach, Jerome Lavelle : Engineering Economics Analysis, OUP 3. John A. White, Kenneth E.Case,David B.Pratt : Principle of Engineering Economic Analysis, John Wiley 4. Sullivan and Wicks: Engineering Economy, Pearson 5. R.Paneer Seelvan: Engineering Economics, PHI 6. Michael R Lindeburg : Engineering Economics Analysis, Professional Pub The hours allotted are lecture hours, the tutorial classes should be held accordingly to contact hours allotted subject wise FOUNDATION ENGINEERING Code: CE501 Contact: 3L + 1T Credits: 4 Sl.No Hours Total Details of Course Content Earth pressure theories: Plastic equilibrium of soil, Earth pressure at rest, Active & passive earth pressure, Rankine’s & Coulomb’s earth pressure theories, wedge method of analysis, 1 estimation of earth pressure by graphical construction (Culmann Method). 4 Retaining wall & sheet pile structures: Proportions of retaining walls, stability checks, 2 cantilever and anchored sheet piles, free earth and fixed earth method of analysis of anchored 6 bulk heads Stability of slopes: Analysis of finite and infinite slopes, Swedish And friction circle 22 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 3 method, Taylor’s stability number, Bishop’s method of stability analysis 4 36 + 12 for tutorial Site investigation & soil exploration: Planning of sub-surface exploration, methods, 4 sampling, samples, Insitu tests: SPT, SCPT, DCPT, Field vane shear, Plate load test 6 Shallow foundations : Safe bearing capacity, Terzaghi’s bearing capacity theory, effect of 5 depth of embedment, water table, eccentricity of load, foundation shape on bearing capacity, 6 Bearing capacity as per 1S 6403. Settlement analysis of shallow foundation: Immediate and consolidation settlement, correction for rigidity and dimensional effects, settlement in various types of soil, IS-1904 6 and 8009 recommendations, Allowable bearing capacity 4 Deep foundations: Pile: Types, load transfer mechanism, Determination of load carrying 7 capacities of piles by static and Dynamic formulae, Recommendations of IS 2911, Pile 6 group: Group efficiency, Negative skin friction, pile load test Text & References Sl. Name Author Publishers No 1 Principles of Geotechnical Engineering B.M. Das Thomson 2 Principles of soil Mechanics & Foundation Engineering VNS Moorthy UBS Publication 3 4 5 6 7 Principles of Foundation Engineering Foundation Analysis & Design Basic & Applied Soil Mechanics SP-36 (Part-I & Part-II) Relevant latest IS Codes (IS 6403, IS 1904, IS 8009, IS 2911) B.M. Das J.E. Bowels Gopal Ranjan & A.S.R. Rao Thomson Mc Graw Hill Wiley Eastern Ltd Bureau of Indian Standard DESIGN OF RC STRUCTURES Code: CE502 Contact: 3L + 1T Credits: 4 Sl.No Details of Course Content 1 Introduction: Principles of design of reinforced concrete members - Working stress and Limit State method of design Working stress method of design: Basic concepts and IS code provisions (IS: 456 2000)for 2 design against bending moment and shear forces - Balanced, under reinforced and overreinforced beam/ slab sections; design of singly and doubly reinforced sections Limit state method of design: Basic concepts and IS code provisions (IS: 456 2000) for design against bending moment and shear forces; concepts of bond stress and development length; Use of ‘design aids for reinforced concrete’ (SP:16). Analysis, design and detailing of singly reinforced rectangular, ‘T’, ‘L’ and doubly reinforced beam sections by limit state method. Design and detailing of one-way and two-way slab panels as per IS code provisions Design and detailing of continuous beams and slabs as per IS code provisions Staircases: Types; Design and detailing of reinforced concrete doglegged staircase Design and detailing of reinforced concrete short columns of rectangular and circular crosssections under axial load. Design of short columns subjected to axial load with moments (uniaxial and biaxial bending) – using SP 16. Shallow foundations: Types; Design and detailing of reinforced concrete isolated square and rectangular footing for columns as per IS code provisions by limit state method 3 4 5 6 7 8 9 • Hours 2 Total 5 5 5 6 3 3 3 36 + 12 for tutorial 4 Limit state method should be followed for serial number 4 to 9 as above as per IS 456 - 2000 Text & References Sl. No 1 2 Name Author IS: 456- 2000 “Indian Standard for Plain and reinforced concrete – code of practice” SP:16 Design Aid to IS 456 Bureau of Indian Standard 23 Publishers Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 3 Reinforced Concrete Design by Pillai and Menon 4 Reinforced concrete Limit state design Ashok K. Jain 5 Reinforced concrete S.N.Sinha 6 Fundamentals of reinforced concrete TMH TMH S.Chand &Co N.C.Sinha and S.K. Roy 7. 8. Limit State Design of Reinforced Concrete P. C. Varghese PHI S. K. Mallick and A. P. Gupta Oxford IBH Reinforced Concrete CONCRETE TECHNOLOGY Code: CE503 Contact: 3L Credits: 3 Sl.No Details of Course Content Concrete as a Structural Material, Chemical Composition of Cement, Hydration of Cement, Heat of Hydration and Strength, Tests on Cement and Cement Paste – fineness, consistency, setting 1 time, soundness, strength Quality of Water – Mixing Water, Curing Water, Harmful Contents Types of Portland Cement – ordinary, Rapid hardening, low-heat, sulphate resisting, Portland slag, 2 Portland pozzolana, super sulphated cement, white cement Aggregates – Classification, Mechanical and Physical Properties, Deleterious Substances, AlkaliAggregate Reaction, Sieve Analysis, Grading Curves, Fineness modules, Grading Requirements. 3 Testing of Aggregates – Flakiness, Elongation Tests, Aggregate Crushing Value, Ten Percent Fines Value, Impact Value, Abrasion Value Properties of Fresh Concrete – Workability, Factors Affecting Workability, Slump Test 4 Compacting Factor Test, Flow Table Test, Segregation, Bleeding, Setting Time, Mixing and Vibration of Concrete, Mixers and Vibrators, Curing methods, Maturity. Strength of Concrete – Water/Cement ratio, Gel/Space ratio, Strength in Tension, Compression, Effect of Age on Strength, Relation between Compressive and Tensile Strength, Fatigue Strength, 5 Stress Strain Relation and Modulus of Elasticity, Poisson’s Ratio, Shrinkage and Creep, Compression Test on Cubes, Cylinders, Introduction to Non-Destructive Tests (Rebound hammer & Ultrasonic pulse velocity) Admixtures – different types, effects, uses, Retarders and Super plasticizers. 6 Mix Design by I.S. 20262 (2009). Light-weight, Polymer and Fibre-reinforced concrete Text & References Sl. Name Author Publishers No 1 Concrete Technology Neville Pearson Education 2 Concrete Technology M.S. Shetty S.Chand 3 4 5 Concrete Technology Concrete Technology Text book of Concrete Technology A. R. Santakumar M.L. Gambhir P.D. Kulkarni Engineering Geology 24 OXFORD University Press Tata McGraw Hill Tata McGraw Hill Hours Total 6 4 8 36 6 6 6 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) CE-504 Contracts: 3L Credits- 3 Module no. 1. Topic Hrs Geology and its importance in Civil Engineering. 222 2. Mineralogy: Definition, internal and external structure of minerals, study of crystals, Classification and physical properties of minerals. 3 3. Classification of rocks: Igneous rocks: Origin, mode of occurrence, forms & texture, classification and engineering importance. Sedimentary rocks: Process of sedimentation, classification and engineering importance. Metamorphic rocks: Agents and types of metamorphism, classification and engineering importance. Weathering of rocks: Agents and kinds of weathering, soil formation & classification based on origin. Geological work of rivers: Origin and stages in the system, erosion, transportation and deposition. Structural geology: Introduction to structural elements of rocks, dip & strike, definition, description, classification of folds, faults and joints, importance of geological structures in Civil Engineering. Earthquakes and seismic hazards: Causes and effects, seismic waves and seismographs, Mercelli’s intensity scale and Richter’s scale of magnitude. Engineering properties of rocks: Porosity, permeability, compressive strength, tensile strength and abrasive resistance. Rocks as construction materials: Qualities required for building and ornamental stones, foundations, concrete aggregate, railway ballast, road metal, pavement, flooring and roofing. 444 4. 5. 6. 7. 8. 9. 10. 2 1 4 3 3 3 Geophysical exploration: Methods of Geophysical Exploration, electrical resistivity method field 4 procedure – sounding and profiling, electrode configuration, and interpretation of resistivity data. Geophysical surveys in ground water and other Civil Engg. Projects. 11. Applied Geology: Surface and subsurface geological and geophysical investigations in major Civil 4 Engg. Projects. Geological studies of Dams and reservoir sites, Geological studies for selection of tunnels and underground excavations. 12. Landslides: Types of landslides, causes, effects and prevention of landslides. 3 Text & References Sl. Name Author Publishers No 1 Engineering and General Geology Parvin Singh Katson publishing house Delhi 1987 2 Engineering Geology for Civil Engineers D. Venkat Reddy, Oxford, IBH, 1995. 3 Principles of petrology Tyrell Asia, Bombay 4 Structural Geology Marland P. Billings Wiley eastern Prentice-Hall, U.S.A. 5 Ground Water hydrology Todd D.K. John Wiley & Sons, Second edition, 1980. 25 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Practical Soil Mechanics Lab.-II Code-CE591 Contact: 3P Credit –2 Determination of compressibility characteristics of soil by Oedometer test ( co-efficient of consolidation & compression Index) Determination of unconfined compressive strength of soil Determination of Shear parameter of soil by Direct shear test Determination of undrained shear strength of soil by Vane shear test. Determination of shear parameter of soil by Triaxial test (UU) Standard Penetration Test Expt No. 6 by large groups in the field. References 1. 2. 3. 4. Soil testing by T.W. Lamb ( John Willey) SP-36 (Part-I & Part –II ) Soil Mechanics Laboratory Manual by B. M. Das, OXFORD UNIVERSITY PRESS Measurement of engineering properties of soil by E.Jaibaba Reddy & K. Ramasastri. CONCRETE LABORATORY Code CE 592 Contact: 3P Credits: 2 1. 2. 3. 4. 5. 6. Tests on cement – specific gravity, fineness, soundness, normal consistency, setting time, compressive strength on cement mortar cubes Tests on fine aggregate – specific gravity, bulking, sieve analysis, fineness modules, moisture content , bulk density and deleterious materials. Tests on coarse aggregate - specific gravity, sieve analysis, fineness modulus, bulk density. Tests on Fresh Concrete: Workability : Slump, Vee-Bee, Compaction factor tests Hardened Concrete: Compressive strength on Cubes, Split tensile strength, Static modulus of elasticity, Flexure tests , Non destructive testing (Rebound hammer & Ultrasonic pulse velocity) Mix Design of Concrete. References: 1. 2. Relevant latest IS codes on Aggregates, Cement & Concrete [269, 383, 2386, 10262(2009), SP23] Laboratory manual of concrete testing by V.V. Sastry and M. L. Gambhir Quantity Surveying, Specification and Valuation Code-CE 593 Contact: 3P Credits- 2 Quantity Surveying: Types of estimates, approximate estimates, items of work, unit of measurement, unit rate of payment. Quantity estimate of a single storied building Bar bending schedule. Details of measurement and calculation of quantities with cost, bill of quantities, abstract of quantities. Estimate of quantities of road, Underground reservoir, Surface drain, Septic tank. Analysis and schedule of rates: Earthwork, brick flat soling, DPC, PCC and RCC, brick work, plastering, flooring and finishing, Specification of materials: Brick, cement, fine and coarse aggregates Specification of works: Plain cement concrete, reinforced cement concrete, first class brickwork, cement plastering, pointing, white washing, colour washing, distempering, lime punning, painting and varnishing 26 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Valuation: Values and cost, gross income, outgoing, net income, scrap value, salvage value, market value, Book Value, sinking fund, capitalised value, Y. P., depreciation, obsolescence, deferred income, freehold and leasehold property, mortgage, rent fixation, valuation table . References: 1. 2. 3. Estimating, costing, Specification and Valuation in Civil Engineering by M..Chakroborty Estimating and Costing in Civil Engineering” by B.N.Dutta, USB Publishers & Distributers Civil Estimating, Costing and Valuation by Agarwal / Upadhay Engineering Geology Lab Code-CE 593 Contact: 3P Credits- 2 Serial No 1. 2. 3. 4. Experiment on Study of crystals with the help of crystal models Identification of Rocks and Minerals [Hand Specimens] Microscopic study of Rocks and minerals Study of Geological maps, interpretation of geological structures Thickness problems, Bore-hole Problems 27 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) SEMESTER – VI Theory Principles of Management Code: HU601 Contact: 2L Credits: 2 Module-I 1. 2. Basic concepts of management: Definition – Essence, Functions, Roles, Level. Functions of Management: Planning – Concept, Nature, Types, Analysis, Management by objectives; Organisation Structure – Concept, Structure, Principles, Centralization, Decentralization, Span of Management; Organisational Effectiveness. Module-II 3. Management and Society – Concept, External Environment, CSR, Corporate Governance, Ethical Standards. 4. People Management – Overview, Job design, Recruitment & Selection, Training & Development, Stress Management. 5. Managerial Competencies – Communication, Motivation, Team Effectiveness, Conflict Management, Creativity, Entrepreneurship. Module-III 6. 7. 8. Leadership: Concept, Nature, Styles. Decision making: Concept, Nature, Process, Tools & techniques. Economic, Financial & Quantitative Analysis – Production, Markets, National Income Accounting, Financial Function & Goals, Financial Statement & Ratio Analysis, Quantitative Methods – Statistical Interference, Forecasting, Regression Analysis, Statistical Quality Control. Module-IV 9. Customer Management – Market Planning & Research, Marketing Mix, Advertising & Brand Management. 10. Operations & Technology Management – Production & Operations Management, Logistics & Supply Chain Management, TQM, Kaizen & Six Sigma, MIS. Readings: 1. Management: Principles, Processes & Practices – Bhat, A & Kumar, A (OUP). 2. Essentials for Management – Koontz, Revised edition, Tata McGraw Hill (TMH) 3. Management – Stoner, James A. F. (Pearson) 4.Management - Ghuman, Tata McGraw Hill(TMH) Highway & Transportation Engineering Code: CE601 Contact: 3L Credits: 3 Sl.No 1 2 3 4 Details of Course Content Introduction to Highway Engineering: Scope of highway engineering; Jayakar Committee Report; saturation system; highway financing ('pay as you go method and credit financing method) and highway economics (quantifiable and non quantifiable benefits to highway users, cost of vehicle operation, annual cost method, and benefit-cost ratio method) Hours Highway Alignment: Requirements: factors controlling alignment; engineering surveys for 2 highway alignment and location. Highway Geometric Design: Cross-sectional elements; design speed, passing and non-passing sight distances; PIEV theory, requirements and design principles of horizontal alignment including radius of curvature, super elevation, extra-widening, design of transition curves, curve resistance, set back distance, grade compensation and vertical alignment. Pavement design: Evaluation of soil subgrade, sub-base, base and wearing courses; design factors for pavement thickness (including design wheel load and ESWL, strength of pavement materials and plate load tests, and effect of climatic variations) Group Index and CBR, IRC method of flexible pavement design; Westergaards analysis of wheel load stresses in rigid pavements; frictional stresses and warping stresses; IRC recommendations for design of rigid pavements; 28 Total 2 12 8 36 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) design of expansion and contraction joints. Benkelmen Beam Test, Fialure of flexible and rigid pavements. 5 Pavement construction Technique: Types of pavement; construction of earth roads, gravel roads, 4 WBM, bitumen and cement concrete roads; joints in cement concrete pavements. 6 Traffic Engineering: Traffic characteristics, theory of traffic flow, intersection design, traffic sign 8 and signal design, highway capacity 7 Road Materials and Testing : Soil, Stone Aggregate, Bitumen, Marshal Stability Test ** ** To be covered in CE 691 ( Highway and Transportation Engineering Lab) Text & References Sl.No Name Author Publishers 1 High Way Engineering Khanna& Justo 2 Principles of Transportation Engineering P. Chakraborty& 3 Transportation Engineering- A. Das C.J Khisty& B.K Lall. 4 I.S Specifications on Concrete , Aggregate & Bitumen Bureau of Indian Standard 5 Relevant latest IRC Codes (IRC-37 – 2001, IRC 58 – 2002, IRC 73 1980, IRC 86 - - 1983, IRC 106 – 1990, IRC 64 – 1990, IRC 152002 Nemchand& Brothers, Roorkee PHI Indian Road Congress Design of Steel structure Code: CE602 Contact: 3L Credits: 3 Sl. No 1 2 3 4 5 Hours Details of Course Content Materials and Specification :-Rolled steel section, types of structural steel , specifications 2 Structure connections: Riveted, welded and bolted including High strength friction grip bolted joints. – types of riveted & bolted joints, assumptions, failure of joints ,efficiency of joints, design of bolted ,riveted & welded joints for axial load. ii) Eccentric connection:- Riveted & bolted joints subjected to torsion & shear, tension & shear, design of riveted, bolted & welded connection. Tension members: Design of tension members, I.S code provisions. Permissible stresses, Design rules, Examples. Compression members: Effective lengths about major & minor principal axes, I.S code provisions. Permissible stresses, Design rules, Design of one component, two components and built up compression members under axial load. Examples. Built up columns under eccentric loading: Design of lacing and batten plates, Different types of Column Bases- Slab Base , Gusseted Base, Connection details Beams: Permissible stresses in bending, compression and tension. Design of rolled steel sections, plated beams. simple Beam end connections, beam -Column connections. I.S code provisions 8 Total 3 36 8 4 6 Plate girders: Design of webs & flanges, Concepts of curtailment of flanges – Riveted & welded web stiffeners, web flange splices - Riveted, welded& bolted. 6 7 Gantry Girder: Design gantry girder considering lateral buckling – I.S code provisions. 5 Text & References: Sl. Name No 1 Design of Steel structures 2 Design Of Steel Structures - Author Publishers N. Subramanian S.K.Duggal 3 A.S.Arya and J.L.Ajmani Oxford University Press Tata Mc-Graw Hill , New Delhi New Delhi Nemchand& Bros., Design of steel structures 29 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 4 Design of steel structures, Vol. I & II Ramachandra 5 6 Design of steel structures Design of steel structures PasalaDayaratnam – B.S.Krishnamachar and D.AjithaSinha – 7 8 9 Design of steel structures IS 800 – 2007(Latest Revised code) S.P.: 6(1) – 1964 Structural Steel Sections Ramamurtham Bureau of Indian Standard Bureau of Indian Standard A.H.Wheeler& Co Ltd. 1990 Tata McGraw – Hill publishing Co. Delhi. Construction Planning &Management Code :–CE603 Contact : 3L Credits : 3 Sl. No 1 Hours Details of Course Content Planning: General consideration, Definition of aspect, prospect, roominess, grouping, circulation privacy, acclusion Regulation and Bye laws : Bye Laws in respect of side space, Back and front space, Covered areas, height of building etc., Lavatory blocks , ventilation, Requirements for stairs, lifts in public assembly building, offices Fire Protection: Fire fighting arrangements in public assembly buildings, planning , offices, auditorium Construction plants & Equipment: Plants & equipment for earth moving, road constructions, excavators, dozers, scrapers, spreaders, rollers, their uses. Plants &Equipment for concrete construction: Batching plants, Ready Mix Concrete, concrete mixers, Vibrators etc., quality control Planning &Scheduling of constructions Projects: Planning by CPM &PERT,Preparation of network, Determination of slacks or floats. Critical activities. Critical path, project duration .expected mean time , probability of completion of project, Estimation of critical path, problems. 2 Management: Professional practice, Defination, Rights and responsibilities of owner, engineer, Contractors, types of contract 4 Departmental Procedures: Administration, Technical and financial sanction, operation of PWD, Tenders and its notification, EMD and SD, Acceptance of tenders, Arbritation * Serial 1, 2, 3 are as per National Building Code Text & References: Sl. Name Author Publishers No 1 Construction Planning, Equipments and methods Puerifoy, R.L. McGraw Hill. 8 2 3 4 5 6 7 2 Management in construction industry 3 Construction Management, Methods in Construction, 4 PERT and CPM L.S. Srinath 5 Project planning and control with PERT and CPM’ Construction equipments and its management B.C.Punmia and K.K.Kandelwal S.C.Sharma 6 National Building code BIS Critical P.P.Dharwadkar path J.O.Brien 30 Total 4 2 8 36 8 Oxford and IBH Publishing company New Delhi Wiley Interscience Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Professional Elective Bridge Engineering Code : CE 604A Contact : 3L Credits :3 Sl. No Details of Course Content 1 Introduction, - Definition and Basic Forms, Component of bridge, classification of bridge, short history of bridge development. I.R.C Loads. Analysis of IRC Loads, Impact factors, Other loads to be considered, Importance of Hydraulic factors in Bridge Design. 2 Reinforced concrete solid slab bridge: Introduction, General design features, Effective width method. Simply supported and cantilever Slab Bridge, analysis and design 3 Box Culvert: Introduction, Design method and Design example 4 Beam and Slab Bridges Introduction, Design of interior panel of slab. Pigeauds method, Design of longitudinal girder, Calculation of longitudinal moment, design example. 5 Balanced Cantilever Bridges: General Features, Arrangement of supports, design features Articulation, Design example. 6 Steel Bridges: General features, types of stress, Design example. 7 Plate Girder Bridge: Elements, design, lateral bracing, Box- girder Bridges. 8 Composite Bridges: General aspects, method of construction, analysis of composite section, shear connectors, design of composite beam. 9 Cable Stayed Bridge: General features, Philosophy of design. References: Sl. Name Author Publishers No 1 Principle & Practice of Bridge Engineering S.P. Bindra– DhanpatRai Pub 2 Essentials of bridge engineering D.J. Victor 3 Bridge engineering Ponnuswamy 4 Design of Bridge Structures T.R. Jagadesh, M.A. Jayaram 5 Bridge engineering by Krishnaraju 6 Design of concrete bridges 7 Design of steel structures 8 Concrete Structures 9 Structures design and drawing 10 Relevant IS & IRC codes Prestressed Concrete Code : CE604B Contact :– 3L Credits :3 Sl. No 1 2 3 4 5 Hours 4 Total 8 2 6 36 5 3 3 3 2 by Aswani, Vizirani , Ratwani Arya&Ajmani Vaziram&Ratwani Krishnamurthy Details of Course Content Hours Introduction of Prestressed concrete: Materials, prestressing system, analysis of prestress and bending stress, losses Shear and torsional resistance: design of shear reinforcement, design of reinforcement for torsion shear and bending. Deflections of prestressed concrete members: Importance, factors, short term and long term deflection Limit state design criteria: Inadequacy of elasticand ultimate load method, criteria for limit states, strength and serviceability. Design of sections for flexure: methods by Lin and Magnel 7 Anchorage Zone stresses in post tensioned members: Stress distribution in end block, anchorage zone reinforcement Composite construction of prestressed and in-situ concrete: Types, analysis of stresses Statically Indeterminate structures: advantages of continuous member, effect of prestressing, methods of achieving continuity and method of analysis of secondary moments 6 5 8 Prestressed concrete poles and sleepers: Design of sections for compression and bending 5 31 Total 36 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 6 Partial prestressing and non prestressed reinforcement References: Sl. Name Author No 1 Prestressed Concrete, Fourth Edition, N Krishna Raju 2 Design of Prestressed Structures, T.Y.Lin and N.H.Burns, 3 Fundamentals of Prestressed Concrete, N.C.Sinha and S.K.Roy 4 Prestressed Concrete, S.Ramamurthan 5 Publishers McGraw Hill Wiley Eastern Ltd Structural Dynamics & Earthquake Engineering Code :CE 604C Contact : 3L Credits : 3 Sl. No 1 Details of Course Content Hours Total Theory of vibrations: Degrees of freedom, Undamped single degree freedom system, Damped 6 single degree freedom system, Natural frequency, modes of vibration, Introduction to multiple degree freedom system 2 Response of single degree freedom system due to harmonic loading: Undamped harmonic excitation, Damped Harmonic excitation 8 3 Response due to Transient loading: Duhamel’s Integral, Response due to constant force, Rectangular load, Introduction to numerical evaluation of Duhamel’s integral of undamped system. 6 4 Elements of seismology: Fundamentals: Elastic rebound theory, Plate tectonics, Definitions of magnitude, Intensity, Epicenter etc., Seismographs, Seismic zoning, Response of Simple Structural 4 Systems 5 Principles of earthquake resistant design: Terminology, General principles and Design criteria, Methods of Analysis, Equivalent lateral force method of Analysis for multistoried building as per 12 36 Indian Standard Code of Practice, Introduction to Response Spectrum Method, Fundamental concepts of Ductile detailing References: Sl. Name Author Publishers No 1 Structural Dynamics (Theory and Computation) Mario Paz. CBS Publishers and Distributor 2 Dynamics of Structure (Theory and Application to A.K.Chopra Pearson Education Earthquake Engineering) 3 Elements of Eathquake Engineering Jai Krishna, A. R. Chandrashekhar and South Asian Brijesh Chandra Publishers 4 Earthquake Resistant Design D. J. Dowrick John Willey & Sons 5 IS 1893 (Part 1): 2002, IS 3920, IS 4326 -------Bureau of Indian Standard Free Elective Operation Research CE605A Contact: 3L Credits: 3 Module I Linear Programming Problems (LPP): Basic LPP and Applications; Various Components of LP Problem Formulation. Solution of Linear Programming Problems: Solution of LPP: Using Simultaneous Equations and Graphical Method; Definitions: Feasible Solution, Basic and non-basic Variables, Basic Feasible Solution, Degenerate and Non-degenerate Solution, Convex set and explanation with examples. 5L Solution of LPP by Simplex Method; Charnes’ Big-M Method; Duality Theory.Transportation Problems and Assignment Problems. 12L 32 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Module II Network Analysis: Shortest Path: Floyd Algorithm; Maximal Flow Problem (Ford-Fulkerson); PERT-CPM (Cost Analysis, Crashing, Resource Allocation excluded). 6L Inventory Control: Introduction to EOQ Models of Deterministic and Probabilistic ; Safety Stock; Buffer Stock. 3L Module III Game Theory: Introduction; 2-Person Zero-sum Game; Saddle Point; Mini-Max and Maxi-Min Theorems (statement only) and problems; Games without Saddle Point; Graphical Method; Principle of Dominance. 5L Module IV Queuing Theory: Introduction; Basic Definitions and Notations; Axiomatic Derivation of the Arrival & Departure (Poisson Queue). Poisson Queue Models: (M/M/1): (∞ / FIFO) and (M/M/1: N / FIFO) and problems. 5L Text Books: 1. H. A. Taha, “Operations Research”, Pearson 2. P. M. Karak – “Linear Programming and Theory of Games”, ABS Publishing House 3. Ghosh and Chakraborty, “Linear Programming and Theory of Games”, Central Book Agency 4. Ravindran, Philips and Solberg - “Operations Research”, WILEY INDIA References: 1. 2. 3. 4. 5. 6. KantiSwaroop — “Operations Research”, Sultan Chand & Sons Rathindra P. Sen—“Operations Research: Algorithms and Applications”, PHI R. Panneerselvam - “Operations Research”, PHI A.M. Natarajan, P. Balasubramani and A. Tamilarasi - “Operations Research”, Pearson M. V. Durga Prasad – “Operations Research”, CENGAGE Learning J. K. Sharma - “Operations Research”, Macmillan Publishing Company Human Resource Management (HSS) CE605B Contact: 3L Credits: 3 Introduction : HR Role and Functions, Concept and Significance of HR, Changing role of HR managers - HR functions and Global Environment, role of a HR Manager. Human Resources Planning : HR Planning and Recruitment: Planning Process - planning at different levels - Job Analysis - Recruitment and selection processes - Restructuring strategies - Recruitment-Sources of Recruitment-Selection ProcessPlacement and Induction-Retention of Employees. Training and Development : need for skill upgradation - Assessment of training needs - Retraining and Redeployment methods and techniques of training employees and executives - performance appraisal systems. Performance Management System : Definition, Concepts and Ethics-Different methods of Performance Appraisal- Rating Errors-Competency management. Industrial Relations : Factors influencing industrial relations - State Interventions and Legal Framework - Role of Trade unions - Collective Bargaining - Workers' participation in management. Case study. Books : 1. Gary Dessler, Human Resource Management - (8th ed.,) Pearson Education, Delhi 33 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 2.Decenzo& Robbins, Personnel / Human Resource Management, 3rd ed., John Wiley & Sons (Pvt.) Ltd. 3. BiswajeetPatanayak, Human Resource Management, PHI, New Delhi 4. Luis R. Gomez, Mejia, Balkin and Cardy, Managing Human Resources PHI, New Delhi. Materials Handling CE605C Contacts: 3L Credits- 3 Contact Hrs 4 Module Syllabus 1. Introduction: Definition, importance and scope of materials handling (MH); classification of materials; codification of bulk materials ; utility of following principles of MH – (i) materials flow, (ii) simplification, (iii) gravity, (iv) space utilization, (v) unit size, (vi) safety, (vii) standardization, (viii) dead-weight, (ix) idle time, (x) motion. 2A. Unit load: Definition; advantages & disadvantages of unitization; unitization by use of platform, container, rack, sheet, bag and self contained unit load; descriptive specification and use of pallets, skids, containers, boxes, crates and cartons; shrink and stretch wrapping. 2B Classification of MH Equipment : Types of equipment – (i) industrial trucks & vehicles, (ii) conveyors, (iii) hoisting equipment, (iv) robotic handling system and (v) auxiliary equipment; Independent equipment wise sub classification of each of above type of equipment. 5 Industrial trucks & vehicles : Constructional features and use of the following equipment – (i) wheeled hand truck, (ii) hand pallet truck, (iii) fork lift truck; Major specifications, capacity rating and attachments of fork lift truck. 8 3 3 3. 4. 5. 6A. 6B. Conveyors : Use and characteristics of belt conveyor, constructional features of flat and troughed belt conveyor; Use and constructional features of Flg. types of chain conveyors – (i) apron, car and trolley type; Construction of link-plate chains; Dynamic phenomena in chain drive; Use and constructional features of roller conveyors; Gravity and powered roller conveyor; Pneumatic conveyor-use and advantages; Positive, negative and combination system of pneumatic conveyors; constructional feature, application and conveying capacity of screw conveyor. Hoisting Equipment : Advantage of using steel wire rope over chain; constructional features of wire ropes; Rope drum design; Pulley system-simple vs. multiple pulley; Load handling attachments : hooks, grabs, tongs, grab bucket; Arrangement of hook suspension with cross piece and pulleys (sheaves); Use and constructional features of (i) hand operated trolley hoist , (ii) winch; (iii) bucket elevator, (iv) Jib crane, (v) overhead traveling crane and (vi) wharf crane; Level luffing system of a wharf crane; Utility of truck mounted and crawler crane. Robotic handling : Materials handling at workplace; Major components of a robot; Applications of robotic handling. Auxiliary Equipment : Descriptive specification and use of – (i) Slide and trough gates, (ii) belt, screw and vibratory feeders, (iii) Chutes, (iv) positioners like elevating platform, ramps, universal vise; (v) ball table. 8 2 3 Note for Teachers : 1. ructional features, working principle and specific applications of each of the MH equipment should be explained. 2. Working of some of the MH equipment should be shown to students through factory visits/video shows. to Exmination Paper Setter : tleae question should be set from each module. Books Recommended : 1. S. Ray, Introduction to Materials Handling, New Age Int. Pub. 2. T. K. Ray, Mechanical Handling of Materials, Asian Books Pvt. Ltd. 3. T.H. Allegri, Materials Handling: Principles and Practices, CBS Publishers and Distributors. 4. J.A. Apple, Material Handling System Design, John Wiley & Sons. Practical Highway Engineering Lab. Code :CE691 34 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Contact: 3P Credits :2 Tests on highway materials – Aggregates- Impact value, Los-Angeles Abrasion value water absorption , Elongation & Flakiness Index. Bitumen & bituminous materials: Specific gravity, penetration value, softening point, loss on heating, Flash & Fire point test. Stripping value test Design of B.C. & S.D.B.C. Mix CBR Test Marshal Stability Test Benkelman beam Test. References: BIS codes on Aggregates & Bituminous materials Highway material testing(Laboratory Manual)by S.K. Khanna and CE.G. Justo Relevant IS & I.R.C. codes. Detailing of RCC & steel structures Code : CE692 Contact :3P Credits: 2 RCC structures General considerations: Design principle of R.C.C. sections. Limit state method of design Loads and stresses to be considered in the design as per I.S. code provision. Design & detailing of a i) simply supported R.C.C Beam ii) Continuous T- Beam. Design & Detailing of columns, isolated and combined footing Design & detailing of a i) simply supported one way slabii) One way Continuous slab. Design of different units: Slab, beam column, roofing and staircase from floor plan of a multistoried frame building, typical detailing of a two way floor slab. Steel structures Problems on general consideration and basic concepts Discussion on different loads (i.e. wind load, Dead load, live load and others) as per IS875 Design & drawing of the following components of a roof truss: 1. Members of the roof truss. 2. Joints of the roof truss members 3. Purlins 4. Gable bracings 5. Column with bracings 6. Column base plate 7. Column foundation References: I.S- 456-2000, SP 34, SP 16,I.S. 875, I.S. Code 800 – 2007, Standard text books on RCC & Steel Design CAD Laboratory Code CE: 693 Contact 3P Credits: – 2 Introduction and important features ofa software dealing with analysis and design of structures Analysis and design of a multistoried building using software, Preparation of detailed drawings of different structural elements including ductility detailing RCC Slab, beam, column and footing design. 35 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) VII SEMESTER SYLLABUS Environmental Engineering Code – CE 701 Contact – 3L Credits- 3 36 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Module 1 Broad Topic Water Demand 2 3 Sources of Water Water Quality 4 5 Conveyance of water Water Treatment 6 Water Distribution 7 Sewage and Drainage Sewer Design 8 9 Wastewater Characteristics Wastewater Treatment 10 Details of Course Content Water demands; Per capita demand; Variations in demand; Factors affecting demand;Design period; Population forecasting Surface water sources; ground water sources Impurities in water; Water quality parameters; Standards for potable water Hydraulic design of pressurepipes Hours 3 Typical flow chart for surface and ground water treatments; Aeration, Plain sedimentation, Sedimentation with coagulation, Water Softening, Filtration,Disinfection. Analysis of distribution network;Storage and distribution reservoirs; Capacity of reservoirs Definition of Common Terms, Quantity estimation for sanitary sewage and storm sewage Hydraulic design of sewers, Partial flow diagrams and Nomograms Physical, chemical and biological characteristics, DO, BOD and COD Typical flow chart for wastewater treatment; Primary Treatments; Secondary Treatments: Activated Sludge Process, Trickling Filter Process, Septic Tank 8 Total 2 2 2 4 36 3 3 3 6 References: Sl. No 1 2 3 4 5 Name Author Publishers Environmental Engineering, Water Supply, Waste Disposal and Environmental Pollution Engineering, , Environmental Engineering, Vol.II, Environmental Modelling, , Environmental Engineering S.K .Garg, A.K.Chatterjee Khanna Publishers Khanna Publishers. P. N. Modi, Rajagopalan P. V. Rowe Oxford University Press. TMH Water Resource Engineering Code – CE 702 Contact – 3L Credits- 3 37 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Module 1 2 3 4 5 6 7 8 9 Details of Course Content Catchment area and Hydrologic cycle, Measurement of rainfall – Rain gauges, Estimation of missing rainfall data, checking of consistency, Optimum number of Rain gauges. Calculation of average rainfall over area – different methods, Frequency analysis of rainfall intensity duration curve. Rainfall mass curve, hyetograph, Examples Evaporation, evapo-transpiration and infiltration: Processes, Factors affecting run off, estimation of run-off, rainfall run off relationship Hours 4 Stream flow measurement: Direct and indirect methods, Examples. Stagedischarge relationships Hydrographs; characteristics: Base flow separation. Unit Hydrographs. Derivation of unit hydrographs, S-curve, flood routing. Types of Irrigation systems, methods of irrigation: Water requirements of crops: Crop period or Base period, Duty & Delta of a crop, relation between Duty & Delta, Duty at various places, flow Duty & quantity Duty, factors affecting Duty, measures for improving Duty of water, crop seasons 4 4 4 4 Canal Irrigation: Introduction, classification of irrigation canals, Efficient section, certain important definitions, Time factor, Capacity factor, full supply coefficient, Nominal duty, Channel losses, Examples. Design of unlined alluvial channels by silt Theories: Introduction, Kennedy’s theory, procedure for design of channel by Kennedy’s method, Lacey’s theory, concept of True regime Initial regime and final regime, design procedure using Lacey’s theory, examples Water logging and drainage: Causes, effects and prevention of waterlogging. Type of drains-open drains and closed drains (introduction only), Discharge and spacing of closed drains. Examples. Lining of Irrigation Canals : Objectives, advantages and disadvantages of canal lining, economics and requirements of canal lining, Design of lined Canalsexamples 2 Introduction to ground water flow, Darcy law; Wells: Definition, Types-open well or Dug well, Tube well, open well-shallow open well, deep open well, cavity formation in open wells, construction of open wells, Yield of an open well – Equilibrium pumping test, Recuperating test, examples, Tube wells - Strainer type, cavity type, slotted type. Examples. 4 References Sl. Name No 1 Engineering Hydrology Total 36 4 6 Author Publishers K. Subramanya Tata McGraw-Hill 2 3 A Text Book of HydrologyHydrology & Water Resource Engineering- P. Jaya Ram Reddy S.K Garg Laxmi Publications-New Delhi Khanna Publishers. 4 Hydrology Principles, Analysis and Design H. M. Raghunath. . 5 Hydraulics of Groundwater J. Bear McGraw-Hill 6 Water Resources Engineering Through Objective Questions Irrigation & Water Power Engineering- K. Subramanya Tata McGraw-Hill B.C Purnia, S Pande- Standard Publication-New Delhi. G.L Aswa Dr. P.N Modi- Wiley Eastern-New Delhi Standard Book House-New Delhi 7 8 9 Irrigation Engineering Irrigation, Water Resource & Water Power Enginee ring-. 38 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Professional Elective II Advanced Foundation Engineering Code – CE 703A Contact – 3L Credits- 3 Module Hours Details of Course Content 4 Soil Exploration and Site Investigation Planning of soil exploration programme, Field testing, Preparation of bore-log and soil investigation report Geo-physical exploration: Seismic refraction survey electrical resistively method 2 Shallow Foundations Bearing Capacity from SPT and SCPT and Plate load Test data, Proportioning of footing based on settlement criteria. Beams on elastic foundation: Infinite beam, Finite beam, Modulus of sub-grade reaction and 10 effecting parameters. Raft Foundation: Settlement and Bearing Capacity analysis, Analysis of flexible and rigid raft as per IS 2950. 3 Deep Foundations Pile: Tension piles, Laterally loaded piles: Elastic continuum approach, Ultimate load Analysis, Deflection and maximum moment as per IS 2911, Pile load test 8 Drilled Shaft: Construction procedures, Design Considerations, Load Carrying Capacity and settlement analysis Caissons: Types, Sinking and control. 4 Retaining walls and sheet pile structures Gravity, cantilever and counter fort retaining walls: Stability checks and design 8 Sheet Pile Structures: Cantilever sheet piling, Anchored sheet piling: Free and fixed earth support methods of Analysis, Braced Excavation 5 Design of foundation for vibration control Elements of vibration theory, Soil- springs and damping constants, dynamic soil parameters, Types 4 of Machine foundations, General consideration in designing dynamic bases. 6 Foundations on expansive soils: Problems and Remedies 2 References: Sl. Name Author Publishers NO 1 Foundation Analysis & Design J.E. Bowels McGraw Hill 2 Principles of Foundation Engineering B.M. Das Thomson Book 3 Foundation Design Manual N. V. Nayak Dhanpat Rai Publication Pvt. Ltd 4 Foundations for Machines: Analysis ShamsherPrakash, Vijay K Puri Wiley Series in Geotechnical and design Engineering 5 Advance Foundation Engineering N. Som& S. C. Das 6 Hand Book of Machine Foundation P. Sirinivashalu& C.V. Tata McGraw Hill Vaiddyanathan 7 IS –1904, 6403, 8009, 2950, 2911 etc Bureau of Indian Standard Soil Stabilisation & Ground Improvement Technique Code – CE 703B Contact – 3L Credits- 3 Total 1 Module 1 2 3 Details of Course Content Soil Stabilization: Introduction, Stabilization of soil with granular skeleton and soil without granular skeleton, common nomenclature of stabilized soil systems and stabilization methods, specific methods of soil stabilization: Stabilization with cement, lime fly-ash Insitu densification: Introduction, Compaction: methods and controls Densification of granular soil: Vibration at ground surface, Impact at ground surface, Vibration at depth (Vibroflotation), Impact at depth. Densification of Cohesive Soils: Preloading and dewatering, Design of Sand drains and Stone columns, Electrical and thermal methods. Geo-textiles: Over view: Geotextiles as separators, reinforcement. Geotextiles in filtration and drainage, geotextiles in erosion control. 39 Hours 8 12 6 Total 36 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 4 5 Grouting: Over view: Suspension and Solution grout, Grouting equipment and methods, Grout design and layout, Grout monitoring schemes. Soil stability: Reinforced earth fundamentals, Soil nailing, Soil and Rock Anchors, Underpinning References: Sl. Name No 1 Foundation Analysis & Design 2 Principles of Foundation Engineering 3 Foundation Design Manual 4 Construction and Geotechnical methods in foundation engineering 5 Technology in tunnelling and dam construction 6 7 Reinforced Earth Designing with Geosynthetics 6 36 4 Author Publishers J.E. Bowels B.M. Das N. V. Nayak R.M. Koener McGraw Hill Thomson Book Dhanpat Rai Publication Pvt. Ltd McGraw Hill A.V. Shroff. & D.L. Shah T S Ingold R M Koerner Oxford and IBH Publishing Co.Pvt.Ltd Thoam Telford Prentice Hall Advanced Highway &Transportation Engineering Code – CE 703C Contact – 3L Credits- 3 Module Details of Course Content Hours Total 1 Traffic Engineering : Road user and vehicle characteristics; Traffic flow characteristics – Traffic 12 36 Volume, Speed, Headway, Concentration and Delay; Traffic surveys & studies; Traffic estimation; Statistical applications in traffic engineering analysis; Parking; Road intersections – Basic traffic conflicts, classification of at-grade intersections, channelization, rotaries, traffic signals, signs and marking; Road Safety; Traffic System Management... 2 Transportation planning : Transportation planning at different levels; Transport Project planning 8 – Planning studies and investigation; Elements of Urban Transportation Planning; Transport Demand Analysis; Preparation of Project Report 3 Railway Engineering : Location surveys & alignment, Permanent way components, Gauges, 8 Geometric Design, Points & crossings, Stations & Yards, Signalling, Track Maintenance 4 Airport Engineering : Functional areas of airports: Runways, Taxiways, , Aprons, Terminal 8 buildings; Classification of Airports; Airport site selection; Design of Runway, Runway orientation, Wind Rose diagram; Design of Taxiway and Terminal Building References Sl. Name Author Publishers No 1 Transportation Engineering Khisty and Lal PHI 2 A Text Book of Railway Engineering S.P. Arora& S.C. Saxena 3 Satish Chandra Oxford University press Railway Engineering 4 Transportation Engineering Vazirani&Chandola 5 Airport planning and Design S.K.Khanna&M.G.Arora 6 Airport Transportation Planning & Design-. Virendra Kumar &Satish Galgotia Publication Pvt. Ltd. Chandra New Delhi Professional Elective III Advanced Structural Analysis Code – CE 704A Contact – 3L Credits- 3 Sl. No Details of Course Content 40 Hours Total Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 1 Review of analysis of indeterminate structures; Force methods: Statically indeterminate structures (method of consistent deformations; theorem of least work) Displacement Methods: Kinematically indeterminate structures (slope-deflection method; moment distribution method). Matrix concepts and Matrix analysis of structures: Introduction; coordinate systems; displacement and force transformation matrices; Contra-gradient principle; element and structure stiffness matrices; Element and structure flexibility matrices; equivalent joint loads; stiffness and flexibility approaches. Matrix analysis of structures with axial elements: Plane Truss; Analysis by flexibility method Space trusses: Matrix analysis of beams and grids: Flexibility method for fixed and continuous beams: Stiffness method for grids: Matrix analysis of plane and space frames: Flexibility method for plane frames: Stiffness method for space frames: 18 2 Theory of Elasticity : Three dimensional stress and strain analysis, stress - strain transformation, stress invariants; equilibrium and compatibility equations, boundary conditions; Two dimensional problems in Cartesian, polar and curvilinear co-ordinates, bending of a beam, thick cylinder under pressure, complex variable, harmonic and bi-harmonic functions; Torsion of rectangular bars including hollow sections, bending problems; Energy principles, variational methods and numerical methods. 18 References: Sl. Name No 1 Matrix Methods of Structural Analysis 2 Analysis of Structures 3 Intermediate Structural Analysis 4 Theory of Elasticity Author Publishers M.B. Kanchi. T.S. Thandavamoorthy C.K. Wang Timoshenko & Goodier Oxford University Press Mc Graw Hill McGraw-Hill Hydraulic Structures Code – CE 704B Contact – 3L Credits- 3 Module Details of Course Content 1 Diversion Head works: Necessity, Difference between weir and Barrage, Type of Weirs, Selection of site, layout and description of each part, Effects of construction of a weir on the river regime, causes of failure of weirs on permeable foundation and their remedies 2 Theories of seepage and Design of weirs and Barrages: Failure of Hydraulic Structures Founded on Pervious foundations: i) By piping ii) By Direct uplift, Bligh’s creep theory of seepage flow, Khosla’s theory & concept of flownets, concept of exit gradient and critical exit gradient, Khosla’s method of independent variable for determination of pressures and exit gradient for seepage below a weir or a barrage, necessary corrections, examples. 3 Hydraulic structures for canals: Canal falls – necessity, locations, types and description of Ogee fall, Trapezoidal-notch fall, Syphon well drop. Examples. Hours 4 4 Cross-Drainage Works: Necessity, types, selection of a suitable type (Introduction only) 4 5 Dam (General): Definition, classification of Dams, factors governing selection of type of dam, selection of suitable site for a dam. Earthen Dams: Introduction, Types of Earthen Dams, Methods of Construction, Causes of failure, Design Criteria, Determination of line of seepage or phreatic line in Earthen Dam, seepage control in Earthen Dam, Examples. Gravity Dam: Definition, Typical cross- section, Forces acting on Gravity Dam, Combination of forces for design, Mode of failure and criteria for structural stability of Gravity Dams, Principal and shear stresses. Elementary profile of a Gravity Dam, Concept of High and low Gravity Dam, Examples. 2 41 Total 6 4 6 36 36 6 6 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Spillways: Types, Location, Essential requirements, spillway capacity. Components of spillway, 4 Energy Dissipators, Stilling basins (Indian standard). References Sl. Name Author Publishers No 1 Irrigation Engineering and hydraulic structures. Santosh Kumar Garg Khanna Publishers. 2 Irrigation, water Resources and Water Power Engg. Dr.P.N. Modi, Standard Book House, Delhi-6 3 Water Resources Engineering Principle and practice By SatyaNarayana Murthy Challa. 4 Design of Small Dams. 5 Concrete Danms US Department of the Interior Bureau of Reclamation. R.S. Varsney, New Age Internation (P) Ltd. Publishers. New delhi, McGraw Hill Oxford & I & H Publishing Co. New Delhi Free Elective II Engineering Materials Code – CE 705A Contact – 3L Credits- 3 Sl.N o. 1. 2. 3. 4. 5. 6. 7. 8. 9. Syllabus Introduction: Material Science―its importance in engineering; Classification of Materials―metals, polymers, ceramics, composites; Advanced materials―semiconductors, smart materials, nano-materials; Review atomic structure, Atomic bonding in solids―bonding forces and energies; ionic/covalent/metallic bonding. Crystal Structure: Fundamental concepts; Unit cells; seven crystal systems; single crystal, polycrystalline and non-crystalline materials; Metallic crystal structures―FCC, atomic packing factor, BCC & HCP structures. Imperfections in Metals: Point defects due to vacancy & impurities, alloys, solid solutions; Dislocations―linear defects, interfacial defects, grain boundaries. Phase Diagrams: Definition and basic concepts; solubility limit; Phase equilibria, onecomponent phase diagram, binary phase diagram, interpretation of phase diagrams. Iron-carbon System: allotropy of iron, iron-iron carbide phase diagram, properties and uses of plain carbon steel Classification of Metals and Alloys- compositions, general properties and uses: 6.1 Ferrous alloys: Classification –low carbon steels, medium carbon steels, high carbon steels, stainless steels, alloy steels, tool and die steel, cast irons. 6.2 Non-ferrous alloys: Copper & Copper alloys; Aluminum alloys; Zinc alloys; Nickel alloys; Lead & Tin alloys; Mechanical Properties of Materials: Elastic properties of materials―tensile and compressive stress and strain, stress-strain behaviour, modulus of elasticity (Young’s modulus), yield strength, tensile strength, plastic deformation, true stress and strain; Ductility; Resilience; Toughness, impact tests; Hardness- Brinell, Rockwell and Vickers hardness and their testing procedures, correlation between hardness and tensile strength; Fatigue strength; Effect of temperature on tensile strength & impact properties, creep failure. Heat Treatment: Definition and purposes; Heat treatment processes for steels―Hardening, structural change during heating and cooling, factors affecting hardening; Tempering; Austempering; Normalizing; Annealing―full annealing, spheroidising annealing, stress–relieving, recrystallisation annealing; Preciptation or Age Hardening of non-ferrous alloys. Polymers & Elastomers: Definition; How polymers are made- polymerization; Polymer molecular structures; Thermoplastics & Thermosets; Special characteristics 42 Contact Hrs. 2 2 2 3 2 6 6 4 2 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Sl.N o. Syllabus Contact Hrs. like low sp. gravity, optical, electrical & thermal property, decorative color, easy formability, low corrosion etc; Uses of polymers and elastomers. 10. Ceramic Materials: What is ceramics; common ceramic materials and their characteristics; How ceramics are made―sintering and vitrification process; Ceramic structures; Properties and applications. 11. Composite materials: What is composites; Polymers matrix and their applications; Metal matrix and ceramic matrix composites and their applications; How composites are made. 12. Corrosion and Degradation of Engineering Materials: Definition; Types of corrosion―uniform, pitting, crevice, galvanic, stress corrosion cracking and erosion; Corrosion control ― material selection, environment control, proper design. 13. Materials Selection Methodology: Selection of material based on required properties, availability and cost of material, environmental issues. Note for Teachers: 2 2 2 1 1. Stress should be given to clarify different concepts. 2. Industrial examples must be cited regarding use of various materials and the specific properties involved for selection of these materials. Note for examination paper setter: 1. Question should be set covering all the 13 topics of the syllabus. 2. Marks of questions from each topic should be proportionate to the recommended contact hours allotted, as far as possible. Books Recommended 1. 2. 3. 4. 5. Materials Science and Engineering by W.D. Callister and adapted by R. Balasubramaniam, Willey India, 2010 Ed. Engineering Materials: properties and selection by Budinski & Budinski, 9th Ed., Prentice Hall India Engineering Materials and Metallurgy by R.Srinivasan, 2nd Ed., Tata McGraw Hill. Materials & Processes in Manufacturing by E.P.Degarmo and adapted by Black & Kosher, 10th Ed., Wiley India. Materials Science and Engineering by V.Raghavan, 5th Ed., Prentice Hall India. Electrical & Electronic Measurement Code – CE 705B Contact – 3L Credits- 3 Topic No of periods Module-I Measurements: • Method of measurement, Measurement system, Classification of instruments, Definition of accuracy, Precision, Resolution, Speed of response, Error in measurement, Classification of errors, loading effect due to shunt and series connected instruments. Analog meters: • General features, Construction, Principle of operation and torque equation of Moving coil, Moving iron, Electrodynamometer, Induction instruments • Principle of operation of the Electrostatic, Thermoelectric, Rectifier type instruments, Extension of instrument ranges and multipliers. 3 3 3 Module-II Instrument transformer: • Disadvantage of shunt and multipliers, Advantage of Instrument transformers, Principle of operation of Current & Potential transformer, errors. 4 3 Measurement of Power: • Principle of operation of Electrodynamic & Induction type wattmeter. Wattmeter errors. 4 Measurement of resistance: 43 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) • Measurement of medium, low and high resistances, Megger. Module-III Measurement of Energy: • Construction, theory and application of AC energy meter, testing of energy meters. 3 Potentiometer: • Principle of operation and application of Crompton’s DC potentiometer, Polar and Coordinate type AC potentiometer. Application. 4 AC Bridges: • Measurement of Inductance, Capacitance and frequency by AC bridges. Module-IV Cathode ray oscilloscope (CRO): • Measurement of voltage, current, frequency & phase by oscilloscope. Frequency limitation of CRO. Sampling and storage oscilloscope, Double beam CRO. Electronic Instruments: • Advantages of digital meter over analog meters, Digital voltmeter, Resolution and sensitivity of digital meters, Digital multimeter, Digital frequency meter, Signal generator. Sensors & Transducers: • Introduction to sensors & Transducers, Strain gauge, LVDT, Temperature transducers, Flow measurement using magnetic flow measurement. 4 3 4 3 Numerical Problems to be solved in the tutorial classes. Text Books: 1. A course in Electrical & Electronic Measurements & Instrumentation, A.K. Sawhney, Dhanpat Rai & sons. 2. Electrical Measurement & Measuring Instruments, E.W. Golding & F.C. Wides, Wheeler Publishing. 3. Electronic Instruments, H.S. Kalsi, Tata Mc-Graw hill, 2nd Edition. Reference Books: 1. Sensors & Transducers, D. Patranabis, PHI, 2nd edition. 2. Digital Instrumentation, A.J. Bouwens, Tata Mc-Graw hill. 3. Modern Electronic instrumentation & Measuring instruments, A.D. Heltric & W.C. Copper, Wheeler Publication. 4. Instrument transducers, H.K.P. Neubert, Oxford University press. Practical Group Discussion Code – HU Contact – 3L Credits- 2 Will be implemented latter ENVIRONMENTAL ENGINEERING LAB CODE: CE-791 CRDIT-2 44 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Experiment No. 1. 2. 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Experiment Name Type of Test Determination of turbidity for a given sample of water Determination of color for a given sample of water Determination of solids in a given sample of water: Total Solids, Suspended Solids and Dissolved Solids Determination of pH for a given sample of water Determination of concentration of Chlorides in a given sample of water Determination of carbonate, bi-carbonate and hydroxide alkalinity for a given sample of water Determination of hardness for a given sample of water Determination of concentration of Fluorides in a given sample of water Determination of concentration of Iron in a given sample of water Determination of the Optimum Alum Dose for a given sample of water through Jar Test Determination of the Residual Chlorine in a given sample of water Determination of the Chlorine Demand for a given sample of water Determination of the Available Chlorine Percentage in a given sample of bleaching powder Determination of amount of Dissolved Oxygen (DO) in a given sample of water Determination of the Biochemical Oxygen Demand (BOD) for a given sample of wastewater Determination of the Chemical Oxygen Demand (COD) for a given sample of wastewater Determination of bacteriological quality of water: presumptive test, confirmative test and Determination of MPN Physical Chemical Bacteriological CIVIL ENGINEERING PRACTICE SESSIONAL CE 792 CREDIT 2 Course Content Foundation Engineering Stability Analysis of Slopes, Preparation of typical soil test report, Estimation of bearing capacity and settlement of foundation from typical field data, Structural design and detailing of isolated rectangular footing and combined footing. Water Resource Engineering Estimation of runoff, Field capacity and permanent wilting point Construction of hydrograph& S curve, efficient section of canal, Design of lined canals, Determination of yield of wells, flood routing Environmental Engineering Population forecasting, Analysis and design of water distribution network, Hydraulic design of sewer Transportation Engineering Determination of highway capacity, Highway geometric design, Design of flexible and rigid pavement, Traffic Signal Design Material Testing lab CE 793A CREDIT 2 Impact tests: Charpy and Izod tests; Test for drawability of sheet metals through cupping test; Fatigue test of a typical sample. Sample preparation and etching of ferrous and non-ferrous metals and alloys for metallographic observation; Experiments on heat treatment of carbon steels under different rates of cooling including quenching, and testing for the change in hardness and observing its microstructural changes through metallographic studies. Observation of presence of surface/ sub-surface cracks using different non-destructive techniques, such as dye penetration (DP) test, magnaflux test, ultrasonic or eddy current test. (At least six experiments must be conducted) 45 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Electrical & Electronics Measurement lab CE 793B CREDIT 2 List of Experiments: 1. Instrument workshop- Observe the construction of PMMC, Dynamometer, Electrothermal and Rectifier type of instruments, Oscilloscope and Digital multimeter. 2. Calibrate moving iron and electrodynamometer type ammeter/voltmeter by potentiometer. 3. Calibrate dynamometer type wattmeter by potentiometer. 4. Calibrate AC energy meter. 5. Measurement of resistance using Kelvin double bridge. 6. Measurement of power using Instrument transformer. 7. Measurement of power in Polyphase circuits. 8. Measurement of frequency by Wien Bridge. 9. Measurement of Inductance by Anderson bridge 10. Measurement of capacitance by De Sauty Bridge. 11. Measurement of capacitance by Schering Bridge. VIII Semester Organisational Behaviour HU801A Contracts: 2L Credits- 2 1. Organizational Behaviour: Definition, Importance, Historical Background, Fundamental Concepts of OB, Challenges and Opportunities for OB. [2] 2. Personality and Attitudes: Meaning of personality, Personality Determinants and Traits, Development of Personality, Types of Attitudes, Job Satisfaction. [2] 3. Perception: Definition, Nature and Importance, Factors influencing Perception, Perceptual Selectivity, Link between Perception and Decision Making. [2] 4. Motivation: Definition, Theories of Motivation - Maslow’s Hierarchy of Needs Theory, McGregor’s Theory X & Y, Herzberg’s Motivation-Hygiene Theory, Alderfer’s ERG Theory, McClelland’s Theory of Needs, Vroom’s Expectancy Theory. [4] 5. Group Behaviour: Characteristics of Group, Types of Groups, Stages of Group Development, Group Decision Making. [2] 6. Communication: Communication Process, Direction of Communication, Barriers to Effective Communication. [2] 7. Leadership: Definition, Importance, Theories of Leadership Styles. [2] 8. Organizational Politics: Definition, Factors contributing to Political Behaviour. [2] 9. Conflict Management: Traditional vis-a-vis Modern View of Conflict, Functional and Dysfunctional Conflict, Conflict Process, Negotiation – Bargaining Strategies, Negotiation Process. [2] 10. Organizational Design: Various Organizational Structures and their Effects on Human Behaviour, Concepts of Organizational Climate and Organizational Culture. [4] References: 1. Robbins, S. P. & Judge, T.A.: Organizational Behavior, Pearson Education, 15th Edn. 2. Luthans, Fred: Organizational Behavior, McGraw Hill, 12th Edn. 3. Shukla, Madhukar: Understanding Organizations – Organizational Theory & Practice in India, PHI 4. Fincham, R. & Rhodes, P.: Principles of Organizational Behaviour, OUP, 4th Edn. 5. Hersey, P., Blanchard, K.H., Johnson, D.E.- Management of Organizational Behavior Leading Human Resources, PHI, 10th Edn. Or Project Management HU801B Contracts: 2L Credits- 2 1. 2. 3. Project Management Concepts: Concept and Characteristics of a Project, Importance of Project Management.[1] Project Planning: Project Evaluation, Financial Sources, Feasibility Studies. [4] Project Scheduling: Importance of Project Scheduling, Work Breakdown Structure and Organization Breakdown Structure, Scheduling Techniques – Gantt Chart and LOB, Network Analysis – CPM/PERT. [6] 46 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 4. 5. 6. 7. 8. 9. 10. Time Cost Trade-off Analysis – Optimum Project Duration. [2] Resource Allocation and Leveling. [2] Project Life Cycle. [2] Project Cost – Capital & Operating Costs, Project Life Cycle Costing, Project Cost Reduction Methods. [2] Project Quality Management: Concept of Project Quality, TQM in Projects, Project Audit. [1] Software Project Charateristics and Mangement [2] IT in Projects: Overview of types of Softwares for Projects, Major Features of Project Management Softwares like MS Project, Criterion for Software Selection. [2] References 1. Gopalkrishnan P. and Rama Mmoorthy: Text Book of Project Management, Macmillan 2. Nicholas John M.: Project Management for Business and Technology – Principles and Practice, Prentice Hall India, 2nd Edn. 3. Levy Ferdinand K., Wiest Jerome D.: A Management Guide to PERT/CPM with GERT/PDM/DCPM and other networks, Prentice Hall India, 2nd Edn. 4. Mantel Jr., Meredith J. R., Shafer S. M., Sutton M. M., Gopalan M. R.: Project Management: Core Text Book, Wiley India, 1st Indian Edn. 5. Maylor H.: Project Management, Pearson, 3rd Edn. 6. Nagarajan K.: Project Management, New Age International Publishers, 5th Edn. 7. Kelkar. S.A, Sotware Project Management: A concise Study, 2nd Ed., PHI Professional Elective IV Environmental Pollution and Control Code – CE 801A Contact – 3L Credits- 3 Sl. Details of Course Content No 1. Introduction: Environment. Pollution, Pollution control 2. Air Pollution: Air Pollutants: Types, Sources, Effects; Air Pollution Meteorology: Lapse Rate, Inversion, Plume Pattern; Air Pollution Dispersion Model: Point Source Gaussian Plume Model, Stability Classes, Stability Charts, Design of Stack Height. 3. Air pollution Control: Self cleansing properties of the environment; Dilution method; Engineered Control of Air Pollutants: Control of the particulates, Control of Gaseous Pollutants, Control of Air pollution from Automobiles. 4. Noise Pollution: Definition; Sound Pressure, Power and Intensity; Noise Measurement: Relationships among Pressure, Power and Intensity, Levels, Frequency Band, Decibel Addition, Measures of community Noise i.e. LN, Leq, Ldn,, LNP; Sources, ; Effects; Control. 5. Water pollution: Pollution Characteristics of Typical Industries, Suggested Treatments. 6. Global Environmental Issues: Ozone Depletion, Acid Rain, Global Warming-Green House Effects 7. Administrative Control on Environment: Functions of Central and State Pollution Control Boards; Environmental Clearance Process for Industries and Infrastructural Projects 8. Environmental Laws: Water Act, Air Act, Motor Vehicle Act References: Sl. Name No 1. Introduction to Environmental Engineering and Science 2 Environmental Engineering: A Design Approach 3 Environmental Engineering 4 Environmental Engineering, 5 Air Polution 4 Water Supply, Waste Disposal and Environmental Pollution Engineering, , 5 Environmental Engineering, Vol.II, 6 Environmental Modelling, , 47 Hours Total 2 8 8 4 36 4 4 4 2 Author Publishers G. Masters, W. Ela A. Sincero, G. Sincero P. V. Rowe S.K . Garg, Rao and Rao A.K.Chatterjee PHI PHI TMH Khanna Publishers TMH Khanna Publishers. P. N. Modi, Rajagopalan Oxford University Press. Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Water Resources Management & Planning Code – CE 801B Contact – 3L Credits- 3 Module 1 2 3 4 5 6 Details of Course Content Planning and analysis of Water Resource Systems: Introduction, System Analysis, Engineers and Policymakers Methods of Analysis: Introduction, Evaluation of Time streams of Benefits and Costs. Plan formulation, Planning models and solution procedures, Lagranges Multipliers, Dynamic Programming, Recursive equations, Bellmans’ principle of optimality. Curse of dimensionality of discrete dynamic programming. Examples Reservoir Operation: Sequential process, single Reservoir problem - with release as decision variable, with storage as decision variable (deterministic approach). Examples, Related Computer Programming. Multi–reservoir problems (Deterministic approach) Water Resources Planning under Uncertainty: Introduction, probability concepts and Methods – Random variable and Distributions, Univariate probability Distributions ,properties of Random variable – Moment and Expectation ( Univariate Distributions) , Moment Generating Functions, Measures of Central tendency, Measures of Dispersion, Measures of symmetry ( Skewness), measures of peakedness ( kurtosis), examples Stochastic River Basin Planning Model: Introduction, Reservoir operation, Stochastic, Dynamic programming, Operating Model, Probability Distribution of Storage volumes and Releases, examples Water quality Management: Prediction and Simulation, Water quality Management Modeling References: Sl. Name No 1 Applied Hydrology 2 Hydrology Author Hours 3 Total 8 6 36 10 6 3 Publishers V.T. Chow Raudkivi 3 Stochastic Hydrology Jayarami Reddy 4 Water Resources Engg. M.C. Chaturvedi 5 Water Resources Systems Planning & Analysis 6 Water Resources Engineering Ddenice P Loucks, Jery R Stedinger& Douglas A Heinth Larry W Mays Prentice Hall, Inc New Jersy. John Wiley & Sons(Asia) Remote Sensing and GIS Code – CE 801C Contact – 3L Credits: 3 Sl. Details of Course Content No 1 Introduction: Definition and types of remote sensing, Tacheometry (Planimetry/ altimetry), Triangulation (Frame work / adjustment), Trilateration (EDM/ Total Station), Geodetics (physical/ geometrical geodesy), Error Analysis (causes / law of weights), Numerical example 2 Photogrammetry: Camera System (phototheodolite/ aircraft), Ground photograph (oblique/orthogonal streophoto), Aerial photograph ( perspective scale/ flight planning), distortion (relief / tilt), Geometrix ( parallax / mapping), application (topographics / interpretation), Numerical examples 3 Satellite survey: Satellite Sensing (Sensors / platforms), energy sources (electromagnetic / atmospheric interaction), visual interpretation ( Band width), digital processing (imageries / enhancement), data integration (multi-approach / GIS), microwave imaging (active system / radars), applications 4 Astronomy: Celestial sphere (star-coordinates / transformation), field astronomy (azimuth, solar and polar method), 3D computation (local vs global), spherical trigonometry, Multilateration, Observation, Corrections in astronomy, Correlation of low, medium, remote objects, Global Positioning Systems 48 Hours Total 7 7 36 7 7 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) 5 Geoinformatics: GIS concept (Introduction/ definition), planning and management, spatial data 8 model, database and DBMS, linking of attributes, geospatial analysis, modern trends References: Sl. Name Author Publishers No 1 Surveying (Volume 2): Duggal S.K. Tata McGraw Hill 2 3 4 Remote Sensing & GIS: Geographic Information System: Surveying: Bhatta B. Tor Bern Herdgen Bannister, Raymond & Baker Oxford Univ Press Wiley Pearson Education 5 6 7 Remote Sensing & Image Interpretation: Surveying (Volume 2): Remote Sensing & Geographical information System Lilesand, Kiefer and Chipman Kanetker.&Kulkarni Reddy M.A. Wiley 8 9 Advanced Surveying Fundamantals of Geographic Information System: Rampal K.K. Demers M.N. (BS publication). (Wiley) Professional Elective V Finite Element Method Code – CE 802A Contact – 3L Credits: 3 No Details of Course Content 1 Introduction to Finite ElementAnalysis: Introduction, Basic Concepts of Finite Element Analysis, Steps in Finite Element Analysis, Fundamental concepts of Elasticity 2 Finite Element Formulation Techniques: Virtual Work and Variational Principle, GalerkinApproach, Displacement Approach, Stiffness Matrix and Boundary Conditions 3 Element properties: Concepts of shape functions: Natural Coordinates, one dimensional, Triangular, Rectangular Elements, Lagrange and Serendipity Elements Isoparametric Formulation: Isoparametric Elements, Stiffness Matrix of Isoparametric Elements, Numerical Integration: One Dimensional, Two Dimensional 4 Formation of stiffness matrices and analysisofTruss, Continuous Beam and Simple Plane Frame 5 FEM for two dimensional analysis: Constant Strain Triangle, Linear Strain Triangle, Rectangular Elements, Numerical Evaluation of Element Stiffness, Computation of Stresses 6 FEM for Plates : Introduction to Plate Bending Problems, Finite Element Analysis of Thin Plate 7 Introduction to application of standard FEM software in civil Engineering References: Sl. Name No 1 Finite Element Method with Applications in Engineering 2 Introduction to Finite Element in Engineering 3 A First Course in Finite Element Method 4 Surveying: 5 6 7 8 Concepts and Applications of Finite Element Analysis Finite Element Analysis – Theory and Programming Matrix, Finite Element,Computer and Structural Analysis Finite Element Procedures Hours 4 Total 4 36 8 6 6 4 4 Author Publishers Y. Desai et. al Pearson Chandrapatla&Belegundu Pearson Education D. L. Logan Bannister, Raymond & Baker R. D. Cook et. al Thomson Pearson Education Wiley India C. S. Krishnamoorthy Tata Mcgraw Hill M. Mukhopadhyay Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India K. J. Bathe PHI, New Delhi, India 49 Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Dynamics of Soils and Foundations Code – CE 802B Contact – 3L Credits: 3 No Details of Course Content 1 Introduction: Types of Machine Foundations, General requirement of Machine foundations, Dimensional criteria, Design data, Permissible amplitude, Permissible Bearing pressure 2 Fundamental of vibrations: Degrees of freedom, Natural frequency, Undamped single degree freedom system, Damped single degree freedom system, Transmissibility, Response to ground motion, Introduction to multiple degree freedom system 3 Dynamic properties of Soil, Laboratory and field evaluation of soil properties as per IS codes; 4 Analysis and design of Block type Machine Foundation: Modes of Vibrations, Methods of Dynamic Analysis, Design considerations for dynamically loaded foundations and constructional features; Design procedures for foundations for hammers, reciprocating engines , Vibration Isolation and damping 5 Liquefaction of soils: Definition, Causes and effects of Liquefaction, Evaluation of Liquefaction potential, Mitigation of Liquefaction Hazards 6 Propagation of elastic waves in soils: Mechanism of wave propagation, Body waves, Surface waves, Rayleigh waves Hours 2 Total 8 36 8 10 6 2 Sl. No 1 2 3 4 Name Author Publishers Hand Book of Machine Foundation Dynamics of Bases and Foundations Geotechnical Earthquake Engineering Earthquke Resistant Design Srinivasalu & Vaidyanathan D. D. Barkan S. L. Kramer D. J. Dorwick TMH Mc-Graw Hill Printice Hall Wiley 5 Fundamentals of Soil Dynamics & Earthquake Engineering B. B. Prasad PHI Design of Tall Buildings Code – CE 802C Contact – 3L Credits: 3 Sl. No 1 Hours Details of Course Content Total Introduction : Necessity of Tall Buildings, Design Philosophy, Strength and Stability, Creep, 6 Shrinkage and Temperature Effects, Fire, Foundation Settlement and Soil-Structure Interaction 2 Loadings : Gravity loading, Wind loading, Earthquake Loading, Combination of Loadings 6 3 Structural Forms : Braced-Frame Structures, Rigid Frame Structures, Infilled-Frame Structures, 36 Shear Wall Structures, Wall Frame Structures, Tubular Structures, Core Structures, Floor Systems – 12 Reinforced Concrete : One-Way slab, Two-way slab, Floor Systems – Steel Framing, One-way Beam System, Two-Way Beam System, Three-Way Beam System, Composite Steel-Concrete Floor Systems 4 Modelling for Analysis : Approaches to analysis, Highrise behaviour, Modeling for approximate 4 analysis, Modelling for Accurate Analysis 5 Stability of High-rise buildings, Buckling analysis of Frames 4 6 Dynamic Analysis : Dynamic Response to Wind Loading, Dynamic Response to Earthquake 4 Loading *The objective of this course is to introduce basic principles and design philosophy of tall buildings. Detail analytical treatment is not required. Sl. Name Author Publishers No 1 Tall Building Structures: Analysis and Bryan S. Smith and Alex Coull John Wiley & Sons, Inc, New York, Design 1991 2 Designing Tall Buildings Mark Sarkinsian, Routledge, New York, 2012 3 Structural Frameworks Clyde T. Morris and Samuel T. Carpenter 50 John Wiley Syllabus for B.Tech(Civil Engineering) Up to Third Year Revised Syllabus of B.Tech CE (for the students who were admitted in Academic Session 2010-2011) Pavement Design Code – CE 802D Contact – 3L Credits: 3 Sl. No 1 2 3 4 5 6 Details of Course Content Hours Principles of Pavement Design : Types of Pavements, Concept of pavement performance, Structural and functional failure of pavement, Different types of pavement performance, Different pavement design approaches Traffic Consideration in Pavement Design : Vehicle types, Axle configurations, Contact shapes and contact stress distribution, Concept of standard axle load, Vehicle damage factor, Axle load surveys, Estimation of design traffic Pavement Material Characterization : Identification of different type of materials Field and laboratory methods for characterization of pavement materials Analysis and Design of Flexible Pavements : Selection of appropriate theoretical model for flexible pavements, Analysis of different layers of flexible pavements based on linear elastic theory, Different methods of design of flexible pavements, IRC guidelines(IRC-37) Analysis and Design of Rigid Pavements : Selection of appropriate theoretical models for rigid pavements, Analysis of wheel load stresses, curling, temperature differential, Critical stress combinations, Different methods of design of rigid pavements, IRC guidelines (IRC-58) Pavement Overlay Designs : Overlay design as per Indian Roads Congress guidelines (IRC-81) Overlay design as per AASHTO-1993 guidelines 6 References : Sl. Name No 1 Principles of Pavement Design 6 36 8 6 6 4 Author Publishers Wiley 2 Pavement Analysis and Design E.J.Yoder and M.W. Witczak Y. H. Huang 3 Highway Engineering Khanna and Justo 4 IRC-37, IRC-58, IRC-73, IRC-81, IRC-106 and other relevant IRC codes Indian Roads Congress Structural Engineering Design Practice Code – CE 891 Contact – 6P Credits: 4 Sl. Details of Course Content No 1 Water Tanks : Beams curved in plan, Domes, Circular and Intze Tanks, Rectangular Tanks, Underground Tanks 2 Pipes, Silos & Chimneys : Reinforced concrete pipes, Bunkers and Silos, Chimeneys 3 Aqueducts and Box Culverts, Concrete Bridges : Type of load, Impact Effect, Design of T-beam bridge 4 Plate Girders : Design of Web, Design of flanges, Intermediate Vertical Stiffners, Horizontal Stiffners, Bearing Stiffners, Horizontal Stiffners 5 Roof trusses : General, Roof and Side Coverings, Design Loads, Purlins, Members, End Bearings, Industrial Building Frames, Framing, Bracing, Crane Girders and Columns 6 Steel Bridges : Plate girder bridges 51 Total PrenticeHall Nem Chand Hours Total 8 8 72 20 12 12 12
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.4 Linearized : No Page Count : 51 XMP Toolkit : XMP toolkit 2.9.1-13, framework 1.6 About : uuid:7f756cb4-ada7-11e3-0000-f59cafca5965 Producer : GPL Ghostscript 9.07 Keywords : () Modify Date : 2014:03:14 13:10:58+05:30 Create Date : 2014:03:14 13:10:58+05:30 Creator Tool : PDFCreator Version 1.7.1 Document ID : uuid:7f756cb4-ada7-11e3-0000-f59cafca5965 Format : application/pdf Title : Civil_Final_Upto_4th_Year_Syllabus_14.03.14 Creator : WBUT Description : () Author : WBUT Subject :EXIF Metadata provided by EXIF.tools