Factoring Quadratic Trinomials TARSIA P310 2

User Manual: TARSIA P310

Open the PDF directly: View PDF PDF.
Page Count: 7

FactoringQuadraticTrinomials

StudentProbe
Factor2310
x
x.
Answer:
52xx
LessonDescription
Thislessonusestheareamodelofmultiplicationto
factorquadratictrinomials.Part1ofthelesson
consistsof“circlepuzzles”asapreparationforthe
actualfactoringlesson inPart2. Whilethegoalof
thelessonisforstudentstobeabletofactor
quadratictrinomialswithoutdevicessuchascircle
puzzlesorrectangles,itmaytakesometimebefore
theydevelopfluencywhenfactoring.Part3ofthe
lessonusesthegraphingcalculatortohelpstudents
relatethefactorsofaquadratictrinomialtoitsx
intercepts.

Rationale
Factoringisavaluabletoolwhichhelpsstudents
becomeawareoftheconnectionsbetweenthe
rootsofaquadraticfunctionanditsintercepts.
Whilemany,infactmost,polynomialfunctionsare
primeovertherationalnumbers,studentscangain
valuableinsightintofunctionbehaviorbyanalyzing
functionsinthismanner.
Whenstudentsarerequiredtosolvequadratic
equations,factoringwillbeoneofthemethods
used.
Preparation
ForPart1ofthelesson,prepareseveralcirclepuzzlesforstudentstosolve.
ForPart2,prepareseveralrectanglesforstudentstousetowritetheareasasproducts.
Examplesofeachoftheseappearattheendofthelesson.
ForPart3,provideagraphingcalculatorforeachstudent.
AtaGlance
What:Factorquadratictrinomials
CommonCoreStateStandard:CC.9
12.A.SSE.3aFactoraquadraticexpressionto
revealthezerosofthefunctionitdefines.
MatchedArkansasStandard. CC.912.A.SSE.3a.
Chooseandproduceanequivalentformofan
expressiontorevealandexplainpropertiesof
thequantityrepresentedbytheexpression.
(a)Factoraquadraticexpression to reveal the
zeros of the function it defines.
MathematicalPractices:
Lookforandmakeuseofstructure.
Lookforandexpressregularityinrepeated
reasoning.
Who:Studentswhocannotfactorquadratic
trinomials.
GradeLevel:Algebra1
PrerequisiteVocabulary:factor,quadratic,
trinomial
PrerequisiteSkills:polynomialarithmetic,
factoringwholenumbers,distributiveproperty
DeliveryFormat:individual,smallgroup,whole
group
LessonLength:30minutesperday,over
severaldays
Materials,Resources,Technology:graphing
calculator
StudentWorksheets:none
Lesson
Theteachersaysordoes…Expectstudentstosayordo…Ifstudentsdonot,thenthe
teachersaysordoes…
Part1
1. Wearegoingtosolvea
“circlepuzzle”.Circle
puzzleshavethisformat:
Noticethattheproductof
twonumbers,aandb,isin
thetopsectionofthe
puzzleandthesumofthe
twonumbersisinthe
lowersection.Ifanytwo
sectionsofthepuzzleare
filledin,itispossibleto
determinetheremaining
twosections.
Whatdoesproductmean?
Whatdoessummean?
2. Completethiscirclepuzzle.
a=2andb=1
or
a=1andb=2
Whattwonumbershavea
productof2?
Whichofthosenumberpairs
haveasumof3?
3. Repeatcirclepuzzleswith
avarietyofnumber
combinations.
(SeeCirclePuzzlesatthe
endofthelesson.)

ab
ba
a+b
2
ba
3
Theteachersaysordoes…Expectstudentstosayordo…Ifstudentsdonot,thenthe
teachersaysordoes…
Part2
4. Writetheareaofthe
rectangleasasum.
222
x
xx
Whatistheareaofeachpart
oftherectangle?
5. Canwecombineanylike
terms?
Whatdoweget?
232
x
x
RefertoAdditionand
SubtractionofPolynomials.
6. Whatarethedimensions
ofthelargerectangle?

1x
and
2x
RefertoMultiplying
PolynomialExpressions.
7. Whatisitsareaasa
product?

12xx
Howdowefindtheareaofa
rectangle?
8. Sincetheareaofthe
rectangleisthesame
regardlessofhowwewrite
it,wecansay

232 1 2xx x x .
Multiply

12xxto
verifyourresults.

2
2
12 22
32
x
xxxx
xx
 
 
RefertoMultiplying
PolynomialExpressions.
9. Writinganexpressionasa
productiscalledfactoring.

10. RepeatSteps48witha
varietyofrectangles.
(SeeRectanglesattheend
ofthelesson.)

x2
2x
2x
Theteachersaysordoes…Expectstudentstosayor
do…
Ifstudentsdonot,thenthe
teachersaysordoes…
11. Factorthispolynomialby
writingthesumasaproduct:
2428
x
xx
Youmayusetherectangleto
helpyou.
42xx
Modelforstudents.
12. Since4xand2xareliketerms,
thispolynomialcanbewritten
as268
x
x.
Howdoweknow?
426xxx
RefertoAdditionand
SubtractionofPolynomials.
13. WhenwedidtheCircle
Puzzles,welookedfor
numberswithacertain
productandacertainsum.
Whatnumbershaveaproduct
of8andasumof6?
4and2
Whatnumbershavea
productof8?(1and8or2
and4)
Whichofthesehaveasum
of6?
14. Sowecansay

268 4 2xx x x .

15. RepeatSteps1114witha
varietyofquadratic
trinomials,movingfrom
writingthetrinomialwith4
termstowritingitwith3
terms.

Part3
16. Nowthatweknowhowto
factoraquadratictrinomial,
let’sseewhatthegraphcan
tellus.

x24x
82x
Theteachersaysordoes…Expectstudentstosayor
do…
Ifstudentsdonot,thenthe
teachersaysordoes…
17. Usingyourgraphing
calculator,graph

268 4 2yx x x x 
.
Whatdoyounoticeaboutthe
graph?
(SeeTeacherNotes.)
Answerswillvary,butlisten
for“thexinterceptsare‐4
and‐2andtheyinterceptis
8”.
Modelforstudents.Itmay
takeseveralexamples
beforestudentsseethe
relationship.
18. RepeatStep17withadditional
trinomialsuntilstudentsmake
theconnectionbetweenthe
factorsandthexintercepts.

19. Cansomeonesummarizewhat
wehavediscovered?
Thexinterceptsarethe
oppositesofthenumbersin
thefactors.
Theyinterceptisthe
constantterminthe
trinomial.
20. Useyourgraphingcalculator
tograph222yx x
.
Whatdoyounotice?
Answersmayvary,butlisten
for,“therearenox
intercepts”.
Wheredoesthegraphcross
thexaxis?
21. Whatdoyouthinkthismeans
aboutitsfactors?
Therearenotanyfactors.
Notalltrinomialshavereal
factors.
TeacherNotes:
1. Itissuggestedthatthislessonbetaughtoveranumberofdays.Studentsseldomdevelop
fluencyinfactoringquickly.
2. Itisrecommendedthatteachersusethe“circlepuzzles”inpartoneaswarmupactivities
forseveraldayspriortotheactualfactoringlesson.Thesepuzzleswillhelpstudentsthink
aboutnumbersinwaysthatwillhelpthemintheactualfactoringlesson.
3. Useavarietyofcirclepuzzles,includingpositiveandnegativenumbers.
4. HelpstudentsremembertheformatofcirclepuzzlesbyplacingthediagraminStep1where
studentscanrefertoit.
5. Whensolvingcirclepuzzles,itmaybehelpfulforstudentstolistallofthefactorpairsfora
number.
6. Oncestudentscansolvecirclepuzzles,movetowritingareasassumsandasproductsin
Part2.
7. Remindstudentsthatthewordfactoringmeanstowriteanexpressionasaproduct.
8. Itmaytakeseveralexamplesofgraphingquadratictrinomialsbeforestudentsseethe
relationshipbetweenthefactorsandthexintercepts.Bepatientandletthestudents
“discover”thisrelationship.
Variations
Algebratilesmaybeusedinplaceof,orinadditionto,therectangles.
FormativeAssessment
Factor2536
x
x.
Answer:
94xx
References
RussellGersten,P.(n.d.).RTIandMathematicsIESPracticeGuide‐ResponsetoInterventionin
Mathematics.Retrieved225,2011,fromrti4sucess.
CirclePuzzles
Rectangles
9
6
8
2
8
2
5
6
3
4
6
1
x2
4x
123x
x23x
3x
x2
5x
5x
x2
3x
93x
x24x
205x
x2
5x
102x

Navigation menu