Field Guide To Continuous Probability Distributions

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 206 [warning: Documents this large are best viewed by clicking the View PDF Link!]

 


 
  
 

        
 
     
http://threeplusone.com/fieldguide
https://github.com/gecrooks/fieldguide
      
     

        
    
           
          
           
          
           
          

           
        
          
          
         
    
           
        
             
         
         
  
        

          
       
        
       
        
 
       
        
    SU    

         
          
      
          
      
       t3 
        
           
            
  
         
         
         
         
         
         
           
         
        α   
         α γ
          
          
          
           
         
 
         
         
       
     
       
         
          
          
       
        
        
Endorsements
 
   
                
        
   
     
   

         
   
         
  
https://twitter.com/dataandme/status/770732084872810496
https://twitter.com/groditi/status/772266190190194688
   
https://twitter.com/DHarrisPsyc/status/870614354529370112
https://xkcd.com/163/
        
        

Preface: The search for GUD 3
Acknowledgments & Version History 4
Contents 8
List of gures 17
List of tables 18
Distribution hierarchies 20
     
   
    
    
Zero shape parameters
1 Uniform Distribution 24
  
   
   
   
  
  
2 Exponential Distribution 28
  
   
   
   
  
3 Laplace Distribution 31
  
   
   

  
4 Normal Distribution 34
  
   
   
   
  
One shape parameter
5 Power Function Distribution 37
   
   
   
  
   β 
   
   
  
   
   
   β 
  
  
   
  
    
  
6 Log-Normal Distribution 45
  
   
   
  
  
        

7 Gamma Distribution 48
  
   
  
  
   
  
   
  
  
8 Gamma-Exponential Distribution 54
  
   
   
  
   
  
   
  
  
  
9 Pearson VII Distribution 60
   
   
   
t2 
t3 
   
  
   
   
  
Two shape parameters
         

10 Unit Gamma Distribution 67
   
   
   
  
11 Amoroso Distribution 72
  
    
  
  
    
  
    β 
  
   
  
   
  
  
  
    β 
   
   
  
    
   
    
   
   
      
   
  
   
  
   
   
  
         

  
12 Beta Distribution 88
  
   
   
   
   
  
   
   
  
   
  
  
  
  
  
13 Beta Prime Distribution 96
   
   
    
 
   
  
14 Beta-Exponential Distribution 101
 
  
  
  
  
 
 
15 Beta-Logistic Distribution 107
 
  
         

  
   
    
  
 
  
 
16 Pearson IV Distribution 113
  
 
Three (or more) shape parameters
17 Generalized Beta Distribution 116
  
  
 
 
18 Gen. Beta Prime Distribution 121
   
  
  
 
 
 
  
 
  
 
    
  
 
19 Pearson Distribution 128
 
  
 
         

20 Grand Unied Distribution 132
  
  
  
 
 
  
   
 
 
  
  
  
    
  
 
Miscellanea
21 Miscellaneous Distributions 139
 
 
 
  
  
   
 

 
  
 
 
 
  
  
  
 
 
         

 
 
 
  
 
Appendix
A Notation and Nomenclature 149
 
 
B Properties of Distributions 152
C Order statistics 157
  
   
  
D Limits 160
   
   
   
  
E Algebra of Random Variables 164
 
 
 
 
F Miscellaneous mathematics 171
  
Bibliography 177
Index of distributions 191
Subject Index 201
         
  
  
     
      
    
             
   
    
    
   
    
     
    
     
      
    
     
    
     
     
      
      
           
             
            
       
    
     
     
     
     
   
    
           
    
    
   
   
         
  
    
   
              
         
  
  
      
      
      
      
        
       
      
      
            
             
        
       
       
             
      
      
       
               
     
                 
     
      
               
                
             
             
   
      
       
      
         
  
         
        
     

     
       
  
 
 
     
 
     

 

        
      

    
      
     
 

        
    
 
  

 
 
 
 

 

        
      
   
 
 
  
 


        
 
          
Uniform   
Uniform(x;a,s) = 1
|s|
 a,s R,
 x[a,a+s],s > 0
x[a+s,a],s < 0
         
  a b=a+s    a  s  
           
     
Special cases
 standard uniform      x[0, 1]
StdUniform(x) = Uniform(x; 0, 1)
 standardized uniform       
 Uniform(x;3, 23)
           
           
 half-uniform       
         unbounded uni-
form          
    degenerate      
       
Interrelations
        
          

 
0
1/s
a a+s
    Uniform(x;a,s)
      
Uniform(x;a,s) = Beta(x;a,s, 1, 1)
=PearsonII(x;a+s
2,s)
          
          
          
         
  
           
 
OrderStatisticUniform(a,s)(x;α,γ) = Beta(x;a,s,α,γ)
         
        
  X     F1
X(z)    
         
 
   
XF1
XStdUniform().
          
          
          
          
    
PowerFn(a,s,β)a+sStdUniform()
1
β
   n      
 
n
i=1
Uniformi(0, 1)IrwinHall(n)
       
n
i=1
Uniformi(0, 1)UniformProduct(n)
         
 
      

 (x;a,s)
 1
|s|
 xa
ss > 0s < 0
 a,s R
 axa+s s > 0
a+sxa s < 0
 a+1
2s
   
 a+1
2s
 1
12 s2
 0
  6
5
 ln |s|
 eat(est 1)
|s|t
 eiat(eist) − 1
i|s|t
         
        
 
Exponential        
  
Exp(x;a,θ) = 1
|θ|expxa
θ
a,θ, R
 x > a,θ > 0
x < a,θ < 0
           
       a=0, θ > 0  
    x > c  c     
          
         
         
       
Special cases
         
  anchored exponential  a=0 θ=1  
standard exponential 
Interrelations
        
Exp(x;a,θ) = Amoroso(x;a,θ, 1, 1)
=Gamma(x;a,θ, 1)
Exp(x; 0, θ) = Amoroso(x; 0, θ, 1, 1)
=Gamma(x; 0, θ, 1)
Exp(x;a,θ) = lim
β
PowerFn(x;aβθ,βθ,β)
          

 
      

 Exp(x;a,θ)
 1
|θ|expxa
θ
 1expxa
θθ > 0θ < 0
 a,θ, R
 [a,+]θ > 0
[−,a]θ < 0
 a+θln 2
 a
 a+θ
 θ2
 sgn(θ)2
  6
 1+ln |θ|
 exp(at)
(1θt)
 exp(iat)
(1iθt)
     
n
i=1
Expi(0, θ)Gamma(0, θ,n)
          θi>0
  
minExp1(0, θ1),Exp2(0, θ2), . . . , Expn(0, θn)Exp(0, θ),
 θ= (n
i=1
1
θi)1
         
 
0
0.5
1
01234
     Exp(x; 0, 1)
          
  
OrderStatisticExp(ζ,λ)(x;α,γ) = BetaExp(x;ζ,λ,α,γ)
         
  
Weibull(a,θ,β)a+θStdExp()
1
β
         
           
 
BetaPrime(0, θ1
θ2, 1, 1)ExpRatio(0, θ1
θ2)Exp1(0, θ1)
Exp2(0, θ2)
         
        
 
Laplace         
      
        
          
   
Laplace(x;ζ,θ) = 1
2|θ|e|xζ
θ|
 x,ζ,θ R
         ζ    
 θ
Special cases
 standard Laplace        
ζ=0 θ=1
Interrelations
          
        
 θ         
      θ     
  
       
           
    
Laplace(ζ,θ)Exp1(ζ,θ) − Exp2(ζ,θ)
          

Exp(ζ,|θ|)Laplace(ζ,θ) − ζ+ζ

 
0
0.5
-3 -2 -1 0 1 2 3
     Laplace(x; 0, 1)
          
Laplace(0, 1)ln StdUniform1()
StdUniform2()
          
  
+
1
2e|x|eitxdx =1
1+t2
         
 
      

 Laplace(x;ζ,θ)
 1
2|θ|e|xζ
θ|
 1
2e|xζ
θ|xζ
11
2e|xζ
θ|xζ
 ζ,θ R
 x[−,+]
 ζ
 ζ
 ζ
 2θ2
 0
  3
 1+ln(2|θ|)
 exp(ζt)
1θ2t2
 exp(iζt)
1+θ2t2
         
        
 
 Normal        
            
      
        
Normal(x;µ,σ) = 1
2πσ2exp(xµ)2
2σ2
 x,µ,σ R
   µ       σ  
         
   σ2       
       
           
           
        
           
          
     
Special cases
 µ=0 σ=1/2h   error function  
 µ=0 σ=1   standard normal Φz  

Interrelations
    σ      
     σ0     
          
         
   

 
0
0.5
1
-4 -2 0 2 4 6
σ=2
σ=1
σ=0.5
    Normal(x; 0, σ)
      
expNormal(µ,σ)LogNormal(0, eµ,σ)
Normal(0, σ)HalfNormal(σ)
StdNormal()2ChiSqr(1)
i=1,k
StdNormali()2ChiSqr(k)
Normal(0, σ)2evy(0, 1
σ2)
Normal(0, σ)
2
βStacy((2σ2)
1
β,1
2,β)
StdNormal1()
StdNormal2() StdCauchy() 
           
      
Normal1(µ1,σ1) + Normal2(µ2,σ2)Normal3(µ1+µ2,σ1+σ2)
         
 
      

 Normal(x;µ,σ)
 1
2πσ2exp(xµ)2
2σ2
 1
21+xµ
2σ2
 µ,σ R
 x[−,+]
 µ
 µ
 µ
 σ2
 0
  0
 1
2ln(2πeσ2)
 expµt +1
2σ2t2
 expiµt 1
2σ2t2
        
      
StdNormal1() ChiSqr(1)cos2πStdUniform2()
StdNormal2() ChiSqr(1)sin2πStdUniform2()
 ChiSqr(1)2 ln StdUniform1()
        
 
         
        
  
Power function        
        
       
     
PowerFn(x;a,s,β) =
β
sxa
sβ1

 x,a,s,β R
 x[a,a+s],s > 0, β > 0
 x[a+s,a],s < 0, β > 0
 x[a+s,+],s > 0, β < 0
 x[−,a+s],s < 0, β < 0
  β         
 β         
         
β   
Alternative parameterizations
Generalized Pareto      
    
GenPareto(x;a,s,ξ)
=
1
|θ|1+ξxζ
θ1
ξ1ξ̸=0
1
|θ|expxζ
θξ=0
=PowerFn(x;ζθ
ξ,θ
ξ,1
ξ)
q-exponential       
         

  
  expq(x)
QExp(x;ζ,θ,q)
=(2q)
|θ|expqxζ
θ
=
(2q)
|θ|1− (1q)xζ
θ
1
1qq̸=1
1
|θ|expxζ
θq=1
=PowerFn(x;ζ+θ
1q,θ
1q,2q
1q)
 x,ζ,θ,q R
Special cases: Positive β
         Pear-
son type VIII 0< β < 1     Pearson type IX
   β > 1
Wedge  
Wedge(x;a,s) = 2 sgn(s)xa
s2
=PowerFn(x;a,s, 2)
       ascending wedge   
      descending wedge  
Special cases: Negative β
Pareto       
Pareto(x;a,s,γ) =
¯
β
sxa
s¯
β1
¯
β > 0
x > a +s,s > 0
x < a +s,s < 0
=PowerFn(x;a,s,¯
β)
         
  
0
0.5
1
1.5
2
2.5
3
3.5
4
0 0.2 0.4 0.6 0.8 1
β
1.5
2.0
2.5
3.0
3.5
4.0
     PowerFn(x; 0, 1, β)β > 1
0
0.5
1
1.5
2
2.5
3
3.5
4
0 0.2 0.4 0.6 0.8 1
β
0.2
0.4
0.6
0.8
     PowerFn(x; 0, 1, β)0< β < 1
         
  
0
0.5
1
1.5
2
2.5
3
3.5
4
1 1.5 2 2.5 3
    Pareto(x; 0, 1, ¯
β)¯
β 
           
          
     
Lomax       
Lomax(x;a,s,¯
β) = ¯
β
|s|1+xa
s¯
β1

=Pareto(x;as,s,¯
β)
=PowerFn(x;as,s,¯
β)
          
          
             
 
         
  
        
   a s β
  <0
   
    (0, 1)
  1
    >1
 
 
Exponential ratio  
ExpRatio(x;s) = 1
|s|
1
1+x
s2
=Lomax(x; 0, s, 1)
=PowerFn(x;s,s, 1)
         
Uniform-prime  
UniPrime(x;a,s) = 1
|s|
1
1+xa
s2
=Lomax(x;a,s, 1)
=PowerFn(x;as,s,1)
          
            
         
Limits and subfamilies
 β=1    
PowerFn(a,s, 1)Uniform(a,s)
         
  
 β         
  
Exp(x;ν,λ) = lim
β
PowerFn(x;νβλ,βλ,β)
=lim
β
1
λ1+xν
βλ β1
  limc1+x
cc=ex
Interrelations
  β          
            
           
      
PowerFn(x;a,s,β)
=GenBeta(x;a,s, 1, 1, β)
=GenBeta(x;a,s,β, 1, 1)β > 0
=Beta(x;a,s,β, 1)β > 0
=GenBeta(x;a+s,s, 1, β,1)β < 0
=BetaPrime(x;a+s,s, 1, β)β < 0
=UnitGamma(x;a,s, 1, β)
          
   
OrderStatisticPowerFn(a,s,β)(x;α,γ) = GenBeta(x;a,s,α,γ,β)
           
  
GenBeta(x;a,s,α, 1, β) = PowerFn(x;a,s,αβ)
           
β
s>0   β
s<0
         
         
  
     β      
α
i=1
PowerFni(0, si,β)UnitGamma(0,
α
i=1
si,α,β)
        
    β   
α
α
i=1
PowerFni(0, si,β)UnitGamma(0,
α
i=1
si,α,αβ)
          
 x(xa
s)β    
PowerFn(a,s,β)a+sStdUniform()
1
β
        

Exp(x;a,θ) = lim
β
PowerFn(x;a+βθ,βθ,β)
         
  
       

 (x;a,s,β)

β
sxa
sβ1
 xa
sβ
s
β>0s
β<0
 a,s,β R
 x[a,a+s]s > 0, β > 0
x[a+s,a]s < 0, β > 0
x[a+s,+]s > 0, β < 0
x[−,a+s]s < 0, β < 0
 a β > 0
a+s β < 0
 a+
β+1β /[−1, 0]
 s2β
(β+1)2(β+2)β /[−2, 0]
 sgn(β
s)2(1β)
(β+3)β+2
ββ /[−3, 0]
  6(β3β26β+2)
β(β+3)(β+4)β /[−4, 0]
 
         
        
 
Log-normal    
   Λ  
        
         
  
LogNormal(x;a,ϑ,β)
=|β|
2πϑ2xa
ϑ1
exp1
2βln xa
ϑ2
 x,a,ϑ,β R,
xa
ϑ>0
           
          
        
   
Special cases
 anchored log-normal    a=0
          
           
       a=0ϑ=1σ=1
  standard log-normal   
Interrelations
      
LogNormal(a,ϑ,β)a+ϑStdLogNormal()1
          
 
LogNormal(a,ϑ,β)a+expNormal(− ln ϑ, 1)

 
0
0.5
1
1.5
0.5 1 1.5 2 2.5 3
β=1
β=2
β=4
     LogNormal(x; 0, 1, β)
          
           
   µ=ln ϑσ=1   
  
           
         
           
 
Normal(x;µ,σ) = lim
β
LogNormal(x;µ+βσ,βσ,β)
         
            
   
n
i=1
LogNormali(0, ϑi,βi)LogNormali(0,
n
i=1
ϑi,(
n
i=0
β2
i)1
2)
         
 
      

 LogNormal(x;a,ϑ,β)
 |β|
2πϑ2xa
ϑ1
exp1
2βln xa
ϑ2
 1
2+1
21
2βln xa
ϑϑ > 0ϑ < 0
 a,ϑ,β R
 x[a,+]ϑ > 0
x[−,a]ϑ < 0
 a+ϑ
 a+ϑeβ2
 a+ϑe 1
2β2
 ϑ2(eβ21)eβ2
 sgn(ϑ) (eβ2+2)eβ21
  e4β2+2e3β2+3e2β26
 1
2+1
2ln(2πβ2) + ln |ϑ|
    
     
         
        
 
Gamma Γ      
Gamma(x;a,θ,α) = 1
Γ(α)|θ|xa
θα1
expxa
θ
 x,a,θ,α R,α > 0
=Amoroso(x;a,θ,α, 1)
         
Special cases
            
β=1
           
             
Wien   Wien(x;T) = Gamma(x; 0, T, 4)  
             
  Erlang       
  α        α  
    1θ > 0  α=1   
 
Standard gamma    
StdGamma(x;α) = 1
Γ(α)xα1ex
=Gamma(x; 0, 1, α)

 
0
0.5
1
1.5
0 1 2 3
α=1
α=2
α=4
α=6
α=8
      Gamma(x;1
α,α)
Chi-square χ2  
ChiSqr(x;k) = 1
2Γ(k
2)x
2k
21
expx
2
   k
=Gamma(x; 0, 2, k
2)
=Stacy(x; 2, k
2, 1)
=Amoroso(x; 0, 2, k
2, 1)
        k   
         
        
         
 
0
0.5
012345678
k=1
k=2
k=3
k=4
k=5
    ChiSqr(x;k)
Scaled chi-square  
ScaledChiSqr(x;σ,k) = 1
2σ2Γ(k
2)x
2σ2k
21
expx
2σ2
   k
=Stacy(x; 2σ2,k
2, 1)
=Gamma(x; 0, 2σ2,k
2)
=Amoroso(x; 0, 2σ2,k
2, 1)
        k   
   σ2
         
 
      

 Gamma(x;a,θ,α)
 1
Γ(α)|θ|xa
θα1
expxa
θ
   1Qα,xa
θθ > 0θ < 0
 a,θ,α, R,α > 0
 xa θ > 0
xa θ < 0
 a+θ(α1)α1
a α 1
 a+θα
 θ2α
 sgn(θ)2
α
  6
α
 ln|θ|Γ(α)+α+(1α)ψ(α)
 eat(1θt)α
 eiat(1iθt)α
Porter-Thomas  
PorterThomas(x;σ) = 1
2σ2Γ(1
2)x
2σ21
2expx
2σ2
=Stacy(x; 2σ2,1
2, 1)
=Gamma(x; 0, 2σ2,1
2)
=Amoroso(x; 0, 2σ2,1
2, 1)
           
        
         
 
Interrelations
        
Gamma1(0, θ,α1) + Gamma2(0, θ,α2)Gamma3(0, θ,α1+α2)
         
 θ    α      
 
         
       x7→ xa
θβ
Amoroso(a,θ,α,β)a+θStdGamma(α)1
  α      
Normal(x;µ,σ) = lim
α
Gamma(x;µσα,σ
α,α)
           
   
i=1,k
StdNormali()2ChiSqr(k)Gamma(0, 2, k
2)
         
           
         
 
       
Normal(µ,σ)µ+σSgn() 2StdGamma(1
2)
GammaExp(a,s,α)aslnStdGamma(α)
PearsonVII(a,s,m)a+sSgn()StdGamma1(1
2)
StdGamma2(m1
2)
Cauchy(a,s)a+sSgn()StdGamma1(1
2)
StdGamma2(1
2)
UnitGamma(a,s,α,β)a+sexp1
βStdGamma(α)
Beta(a,s,α,γ)a+s1+StdGamma2(γ)
StdGamma1(α)1

BetaPrime(a,s,α,γ)a+sStdGamma1(α)
StdGamma2(γ)
Amoroso(a,θ,α,β)a+θStdGamma(α)
1
β
BetaExp(a,s,α,γ)asln1+StdGamma2(γ)
StdGamma1(α)1

BetaLogistic(a,s,α,γ)aslnStdGamma1(α)
StdGamma2(γ)
GenBeta(a,s,α,γ,β)a+s1+StdGamma2(γ)
StdGamma1(α)1
β
GenBetaPrime(a,s,α,γ,β)a+sStdGamma1(α)
StdGamma2(γ)1
β
 Sgn()         
 1   +1
         
        
 
 gamma-exponential    
      
        
           
  
GammaExp(x;ν,λ,α)
=1
Γ(α)|λ|expαxν
λexpxν
λ
 x,ν,λ,α, R,α > 0,
 x
         ν   
 λ     α
         
           
           
          
  
           
  λ        
       
Special cases
Standard gamma-exponential 
StdGammaExp(x;α) = 1
Γ(α)exp{α x exp(−x)}
=GammaExp(x; 0, 1, α)
        

 
       
  ν λ α
   0 1 α
  ln 2 1 k
2
   n
 
  
  π
2
  1
2
Chi-square-exponential   
ChiSqrExp(x;k) = 1
2k
2Γ(k
2)expk
2x1
2exp(−x)
   k
=GammaExp(x; ln 2, 1, k
2)
       
Generalized Gumbel  
GenGumbel(x;u,λ,n)
=nn
Γ(n)|λ|expnxu
λnexpxu
λ
   n
=GammaExp(x;uλln n,λ,n)
     n       
       
     
Gumbel     
         
         
 
      

 GammaExp(x;ν,λ,α)
 1
Γ(α)|λ|expαxν
λexpxν
λ
 Qα,exν
λλ > 0λ < 0
 ν,λ,α, R,α > 0,
 x[−,+]
 νλln α
 νλψ(α)
 λ2ψ1(α)
 (λ)ψ2(α)
ψ1(α)3/2
  ψ3(α)
ψ1(α)2
 eνt Γ(αλt)
Γ(α)
 eiνt Γ(αiλt)
Γ(α)
         
 
0
0.5
1
-3 -2 -1 0 1 2 3
α=1
α=2
α=3
α=4
α=5
     GammaExp(x; 0, 1, α)
   
Gumbel(x;u,λ) = 1
|λ|expxu
λexpxu
λ
=GammaExp(x;u,λ, 1)
          
         
λ > 0           
  λ < 0        
            
         
   
Standard Gumbel   
StdGumbel(x) = expxex
=GammaExp(x; 0, 1, 1)
         
         
 
0
0.5
-3 -2 -1 0 1 2 3 4 5 6 7 8
     StdGumbel(x)
BHP   
BHP(x;ν,λ) = 1
Γ(π
2)|λ|expπ
2xν
λexpxν
λ
=GammaExp(x;ν,λ,π
2)
           

Moyal  
Moyal(x;µ,λ) = 1
2π|λ|exp1
2xµ
λ1
2expxµ
λ
=GammaExp(x;µ+λln 2, λ,1
2)
        

         
 
Interrelations
        
         
StdGammaExp(α)lnStdGamma(α)
GammaExp(ν,λ,α)lnAmoroso(0, eν,α,1
λ)
       
      
BetaLogistic(x;ζ1ζ2,λ,α,γ)GammaExp1(x;ζ1,λ,α)
GammaExp2(x;ζ2,λ,γ)
            
 
         
           

lim
α
GammaExp(x;µ+σαln α,σα,α) = Normal(x;µ,σ)
         
        
  
 Pearson type VII        
       
         

PearsonVII(x;a,s,m) = 1
|s|B(m1
2,1
2)1+xa
s2m

m > 1
2
=PearsonIV(x;a,s,m, 0)
           

Special cases
Student’s t       
StudentsT(x;k) = 1
kB(1
2,1
2k)1+x2
k1
2(k+1)

=PearsonVII(x; 0, k,1
2(k+1))
 k0
     t      
       
t=n¯
xµ
¯
s
¯
x=1
n
n
i=1
Normali(µ,σ)
¯
s2=1
n1
n
i=1Normali(µ,σ) − ¯
x2
 ¯
x     n    
  µ  σ2¯
s     k=n1 

  
0
0.5
-3 -2 -1 0 1 2 3 4
       k=1 t2k=2 t3
k=3  k    
  
Student’s t2t2   
StudentsT2(x) = 1
(2+x2)
3
2

=StudentsT(x; 2)
=PearsonVII(x; 0, 2, 3
2)
           

         
  
         
    a s m
 tkk+1
2
 t223
2
 t33 2
 z  
 
  
  
Student’s t3t3   
StudentsT3(x) = 2
π1+x2
32
=StudentsT(x; 3)
=RelBreitWigner(x; 0, 3)
=PearsonVII(x; 0, 3, 2)
           
         
StudentsT3CDF(x) = 1
2+1
3πarctan(x
3) +
x
3
1+x2
3
Student’s z  
StudentsZ(z;n) = 1
B(n1
2,1
2)1+z2n
2
=PearsonVII(z; 0, 1, n
2)
     z      
           
           

         
  
     
z=¯
xµ
s
¯
x=1
n
n
i=1
Normali(µ,σ),
s2=1
n
n
i=1Normali(µ,σ) − ¯
x2
 ¯
x     n    
  µ  σ2  s2     
  n     n1    
          t=z/n1
Cauchy      
    
Cauchy(x;a,s) = 1
1+xa
s21

=PearsonVII(x;a,s, 1)
          
     
Cauchy1(a1,s1) + Cauchy2(a2,s2)Cauchy3(a1+a2,s1+s2)
Standard Cauchy  
StdCauchy(x) = 1
π
1
1+x2
=1
π(x+i)1(xi)1
=Cauchy(x; 0, 1)
=PearsonVII(x; 0, 1, 1)
         
  
0
0.5
-3 -2 -1 0 1 2 3 4
     StdCauchy(x)
Relativistic Breit-Wigner    
RelBreitWigner(x;a,s) = 2
|s|π1+xa
s22

=PearsonVII(x;a,s, 2)
          

Interrelations
            
      m      

Normal(x;µ,σ) = lim
m
PearsonVII(x;µ,σ2m,m)
            
         
  
    
PearsonVII(a,s,m)a+s2m1StdNormal()
StdGamma(m1
2)
           

Cauchy(0, 1)Normal1(0, 1)
Normal2(0, 1)
        
Cauchy(0, 1)2
StdGamma1(1
2)
StdGamma2(1
2)
         
  
       

 (x;a,s,m)
 1
|s|B(m1
2,1
2)1+xa
s2m
   1
2+xa
s1
B(m1
2,1
2)2F11
2,m;3
2;xa
s2
 a,s,mR
m > 1
2
 < x < +
 a
 a
 a m > 1
 s2
2m3m > 3
2
 0m > 2
 
 eiat 2Km1
2(s|t|)·1
2s|t|m1
2
Γ(m1
2)m > 1
2
         
        
   
Unit gamma   
UnitGamma(x;a,s,α,β)
=1
Γ(α)
β
sxa
sβ1βln xa
sα1
 x,a,s,α,β R,α > 0
 x[a,a+s],s > 0, β > 0
 x[a+s,a],s < 0, β > 0
 x[a+s,+],s > 0, β < 0
 x[−,a+s],s < 0, β < 0
           
           
         
Special cases
Uniform product  
UniformProduct(x;n) = 1
Γ(n)(ln x)n1
=UnitGamma(x; 0, 1, n, 1)
0> x > 1, n=1, 2, 3, . . .
   n   
Interrelations
 α=1          
UnitGamma(x;a,s, 1, β) = PowerFn(x;a,s,β)
           

   
 
UnitGamma(0, 1, α,β)expGamma(0, 1
β,α)
UnitGamma(0, 1, α, 1)expStdGamma(α)
           
            

Gamma(x;a,s,α) = lim
β
UnitGamma(x;a+βs,βs,α,β)
lim
α
UnitGamma(x;a,ϑeσα,α,α
σ)
lim
αxa
ϑeσα
α
σ1α
σln xa
ϑeσαα1
xa
ϑ1
lim
α
expα1
σln xa
ϑ11
α
1
σln xa
ϑα1
xa
ϑ1
lim
α
ezα1+z
αα,z= 1
σln xa
ϑ
xa
ϑ1
exp1
2σ2ln xa
ϑ2
=LogNormal(x;a,ϑ,σ)
       limcezc1+z
cc=
e1
2z2
        β 
   
UnitGamma1(0, s1,α1,β)UnitGamma2(0, s2,α2,β)
UnitGamma3(0, s1s2,α1+α2,β)
           
         
   
0
0.5
1
1.5
2
2.5
3
0.5 1
α=1.5,β=1
α=2,β=2
α=5,β=8
      UnitGamma(x; 0, 1, α,β)β > 0

UnitGamma1(0, s1,α1,β)UnitGamma2(0, s2,α2,β)
s1s2(UnitGamma1(0, 1, α1, 1)UnitGamma2(0, 1, α2, 1))
1
β
s1s2eStdGamma1(α1)−StdGamma2(α2)1
β
s1s2eStdGamma3(α1+α2)1
β
UnitGamma3(0, s1s2,α1+α2,β)
         
   
0
0.5
1
1 1.5 2 2.5 3 3.5 4
α=1.5,β=-1
α=2,β=-1
α=5,β=-8
      UnitGamma(x; 0, 1, α,β)
β < 0
         
   
       

 (x;a,s,α,β)
 1
Γ(α)
β
sxa
sβ1βln xa
sα1
 1Qα,βln xa
sβ
s>0β
s<0
 a,s,α,β R,α,β > 0
 [a,a+s],s > 0, β > 0
[a+s,a],s < 0, β > 0
[a+s,+]s > 0, β < 0
[−,a+s],s < 0, β < 0
 a+sβ
β+1α
 s2β
β+2αs2β
β+12α
  
   
E(Xh)β
β+hαa=0
         
        
  
 Amoroso     
        
         
  
Amoroso(x;a,θ,α,β)
=1
Γ(α)
β
θxa
θαβ1
expxa
θβ
 x,a,θ,α,β R,α > 0,
 xa θ > 0, xa θ < 0.
        
          
    α       
          
          
       
           
           
  a    θ     α β
          
          
 α         α=n 
 α=k
2         
   ¯
β= −β        
      σ  θ= (2σ2)1
 σ         
     
Special cases: Miscellaneous
   β=1        
Stacy      
      

  
         
  a θ α β
  0  
    1
β
   n
 
  <0
   n <0
    1
2k
   1
2
1
2k
   01
   
    1
2k
   1
2
1
2k
  1
2
   
    1
  0>0n1
  
    1
2
   1
2k
    1
2k
    1 1
   
  2
3
3
2
  2
   1
2k
  21
2k
   1
2
 
  3
2
 
   n >0
  >0
  11
β>0
(k,n )
         
  
   
Stacy(x;θ,α,β) = 1
Γ(α)
β
θx
θαβ1
expx
θβ
=Amoroso(x; 0, θ,α,β)
       Amoroso     
           
  β      generalized inverse
gamma         
     
          
           
Stacy(2σ2)
1
β,1
2,βNormal(0, σ)
2
β
         k   
Stacy(2σ2)
1
β,1
2k,βk
i=1Normal(0, σ)2
1
β
Pseudo-Weibull  
PseudoWeibull(x;a,θ,β) = 1
Γ(1+1
β)
β
|θ|xa
θβ
expxa
θβ

 β > 0
=Amoroso(x;a,θ, 1 +1
β,β)
      
Half exponential power    
HalfExpPower(x;a,θ,β) = 1
Γ(1
β)
β
θ
expxa
θβ
=Amoroso(x;a,θ,1
β,β)
         
  
0
0.5
1
1.5
2
0 1 2 3
β=4
β=3,Wilson-Hilferty
β=2,scaledchi
β=1,gamma
       
Amoroso(x; 0, 1, 2, β)
          
  β= −1   β=1 
β=2
3   β=2   
Hohlfeld  
Hohlfeld(x;a,θ) = 1
Γ(2
3)
3
2θ
expxa
θ3/2
=HalfExpPower(x;a,θ,3
2)
=Amoroso(x;a,θ,2
3,3
2)
          
Special cases: Positive integer β
 β=1        
         
         
  
Nakagami      
Nakagami(x;a,θ,α)
=2
Γ(α)|θ|xa
θ2α1
expxa
θ2
=Amoroso(x;a,θ,α, 2)
            
 
Half normal      
 
HalfNormal(x;a,σ) = 2
2πσ2exp(xa)2
2σ2
(xa)/σ > 0
=Amoroso(x;a,2σ2,1
2, 2)
        
Chi χ  
Chi(x;k) = 2
Γ(k
2)x
2k1
expx2
2
   k
=ScaledChi(x; 1, k)
=Stacy(x;2, k
2, 2)
=Amoroso(x; 0, 2, k
2, 2)
   k     
      
Chi(k)ChiSqr(k)
         
  
0
0.5
1
1.5
0 1 2 3
α=1/2,half-normal
α=1,Rayleigh
α=3/2,Maxwell
        Amoroso(x;
0, 1, α, 2)
Scaled chi    
ScaledChi(x;σ,k) = 2
Γ(k
2)2σ2x
2σ2k1
expx2
2σ2
   k
=Stacy(x;2σ2,k
2, 2)
=Amoroso(x; 0, 2σ2,k
2, 2)
   k    
      σ2
         
  
Rayleigh    
Rayleigh(x;σ) = 1
σ2xexpx2
2σ2
=ScaledChi(x;σ, 2)
=Stacy(x;2σ2, 1, 2)
=Amoroso(x; 0, 2σ2, 1, 2)
        
       σ2    
       
          
  
Maxwell      
 
Maxwell(x;σ) = 2
πσ3x2expx2
2σ2
=ScaledChi(x;σ, 3)
=Stacy(x;2σ2,3
2, 2)
=Amoroso(x; 0, 2σ2,3
2, 2)
         
        
      σ2
Wilson-Hilferty  
WilsonHilferty(x;θ,α) = 3
Γ(α)|θ|x
θ3α1
expx
θ3
=Stacy(x;θ,α, 3)
=Amoroso(x; 0, θ,α, 3)
          
            α
         
  
  
WilsonHilferty(x;θ,α)Normal(x; 1 2
9α,2
9α)
         
  Amoroso(x; 0, θ,α, 4)
Special cases: Negative integer β
  β       
   β    (xa
θ)7→ (θ
xa)
Inverse gamma       
InvGamma(x;θ,α) = 1
Γ(α)|θ|θ
xaα+1
expθ
xa
=Amoroso(x;a,θ,α,1)
          
            
       
Inverse exponential  
InvExp(x;a,θ) = 1
|θ|θ
xa2
expθ
xa
=InvGamma(x;a,θ, 1)
=Amoroso(x;a,θ, 1, 1)
           
   
Lévy      
L´evy(x;a,c) = |c|
2π
1
(xa)3/2expc
2(xa)
=Amoroso(x;a,c
2,1
2,1)
           
         
         
  
0
0.5
1
1.5
2
2.5
0 1 2
β=-1
inverse
gamma
β=-2
scaled
inverse-chi
β=-3
        Amoroso(x;
0, 1, 2, β)  β
         
            
         
          
          
Scaled inverse chi-square  
ScaledInvChiSqr(x;σ,k)
=2σ2
Γ(k
2)1
2σ2xk
2+1
exp1
2σ2x
   k
=InvGamma(x; 0, 1
2σ2,k
2)
=Stacy(x;1
2σ2,k
2,1)
=Amoroso(x; 0, 1
2σ2,k
2,1)
         
  
          α 
         
Inverse chi-square  
InvChiSqr(x;k) = 2
Γ(k
2)1
2xk
2+1
exp1
2x
   k
=ScaledInvChiSqr(x; 1, k)
=InvGamma(x; 0, 1
2,k
2)
=Stacy(x;1
2,k
2,1)
=Amoroso(x; 0, 1
2,k
2,1)
     
Scaled inverse chi  
ScaledInvChi(x;σ,k)
=22σ2
Γ(k
2)1
2σ2xk+1
exp1
2σ2x2
=Stacy(x;1
2σ2,k
2,2)
=Amoroso(x; 0, 1
2σ2,k
2,2)
           
Inverse chi  
InvChi(x;k) = 22
Γ(k
2)1
2xk+1
exp1
2x2
=Stacy(x;1
2,k
2,2)
=Amoroso(x; 0, 1
2,k
2,2)
         
  
0
0.5
1
-3 -2 -1 0 1 2 3
standardGumbel
reversedWeibull,β=2 Frechet,β=-2
      
Inverse Rayleigh  
InvRayleigh(x;σ) = 22σ21
2σ2x3
exp1
2σ2x2
=Stacy(x;1
2σ2, 1, 2)
=Fechet(x; 0, 1
2σ2, 2)
=Amoroso(x; 0, 1
2σ2, 1, 2)
           
         
  
Special cases: Extreme order statistics
Generalized Fisher-Tippett  
GenFisherTippett(x;a,ω,n,β)
=nn
Γ(n)
β
ωxa
ω1
expnxa
ωβ
   n
=Amoroso(x;a,ω/n 1
β,n,β)
   N      
  N nN     n   
        β
          
         β    
       β < 0       β > 0 
         
        
         β/ω   
    n      n 
Fisher-Tippett       
      
FisherTippett(x;a,ω,β)
=
β
ωxa
ωβ1
expxa
ωβ
=GenFisherTippett(x;a,ω, 1, β)
=Amoroso(x;a,ω, 1, β)
           
            
     max stable distribution   
 β/ω < 0  min stable distribution    
β/ω > 0
        
         
  
β/ω > 0      
max FisherTippett(a,ω1,β),FisherTippett(a,ω2,β)
FisherTippett(a,ω1ω2
(ωβ
1+ωβ
2)1,β)
           
         
     expxa
ωβ
Generalized Weibull  
GenWeibull(x;a,ω,n,β)
=nn
Γ(n)
β
|ω|xa
ω1
expnxa
ωβ
 β > 0
=GenFisherTippett(x;a,ω,n,β)
=Amoroso(x;a,ω/n 1
β,n,β)
     n       
        a  ω 
      n  
Weibull        
       
  
Weibull(x;a,ω,β) = β
|ω|xa
ωβ1
expxa
ωβ
 β > 0
=FisherTippett(x;a,ω,β)
=Amoroso(x;a,ω, 1, β)
           
        a  ω 
  
  
         
  
    reversed Weibull      
         
β=1   β=2 
Generalized Fréchet  
GenFechet(x;a,ω,n,¯
β)
=nn
Γ(n)
¯
β
|ω|xa
ωn¯
β1
expnxa
ω¯
β
 ¯
β > 0
=GenFisherTippett(x;a,ω,n,¯
β)
=Amoroso(x;a,ω/n 1
β,n,¯
β),
     n       
          
       ω   
   
Fréchet           
   
Fechet(x;a,ω,¯
β) = ¯
β
|ω|xa
ω¯
β1
expxa
ω¯
β
 ¯
β > 0
=FisherTippett(x;a,ω,¯
β)
=Amoroso(x;a,ω, 1, ¯
β)
          
          
      ω   
          
  ¯
β=1    ¯
β=2 
         
  
      

 Amoroso(x;a,θ,α,β)
 1
Γ(α)
β
θxa
θαβ1
expxa
θβ
   1Qα,xa
θβθ
β>0θ
β<0
 a,θ,α,β R,α > 0
 xa θ > 0
xa θ < 0
 a+θ(α1
β)1
βαβ 1
a αβ 1
 a+θΓ(α+1
β)
Γ(α)α+1
β0
 θ2Γ(α+2
β)
Γ(α)Γ(α+1
β)2
Γ(α)2α+2
β0
 sgn(β
θ)Γ(α+3
β)
Γ(α)3Γ(α+2
β)Γ(α+1
β)
Γ(α)2+2Γ(α+1
β)3
Γ(α)3
Γ(α+2
β)
Γ(α)Γ(α+1
β)2
Γ(α)23/2
  Γ(α+4
β)
Γ(α)4Γ(α+3
β)Γ(α+1
β)
Γ(α)2+6Γ(α+2
β)Γ(α+1
β)2
Γ(α)3
3Γ(α+1
β)4
Γ(α)4Γ(α+2
β)
Γ(α)Γ(α+1
β)2
Γ(α)22
3
 ln |θ|Γ(α)
|β|+α+1
βαψ(α)
         
  
Interrelations
           
          
       
      
GammaExp(x;ν,λ,α) = lim
β
Amoroso(x;ν+βλ,βλ,α,β)
LogNormal(x;a,ϑ,σ) = lim
α
Amoroso(x;a,ϑασα,α,1
σα)
Normal(x;µ,σ) = lim
α
Amoroso(x; 0, µσα,σ
α,α, 1)
       
lim
α
Amoroso(x;a,ϑασα,α,1
σα)
    
xa
θ1expαln(xa
θ)βeln(xa
θ)β
   
xa
ϑ1expα1
σαln(xa
ϑ) − αe
1
σαln(xa
ϑ)
     
    
xa
ϑ1exp1
2σ2ln xa
ϑ2
    
=LogNormal(x;a,ϑ,σ)
         
        
  
Beta β        
Beta(x;a,s,α,γ)
=1
B(α,γ)
1
|s|xa
sα11xa
sγ1
=GenBeta(x;a,s,α,γ, 1)
          
            
          

Special cases
            β=1
 α < 1 γ < 1       
U-shaped beta   (α1)(γ1)0   
  J-shaped beta 
Standard beta  
StdBeta(x;α,γ) = 1
B(α,γ)xα1(1x)γ1
=Beta(x; 0, 1, α,γ)
=GenBeta(x; 0, 1, α,γ, 1)
        α > 0 γ > 0
  x[0, 1]

  
0
0.5
1
1.5
2
2.5
3
0 1
     Beta(0, 1, 2, 4)
Pert          
   a  b   x
Pert(x;a,b,x)
=1
B(α,γ)(ba)xa
baα1bx
baγ1
x =a+4x +b
6
α=(x a)(2x ab)
(x x)(ba)
γ=α(bx)
x a
=Beta(x;a,ba,α,γ)
=GenBeta(x;a,ba,α,γ, 1)
         
         modied
pert         x =a+λx+b
2+λ
 λ          
         
  
0
0.5
1
1.5
2
2.5
3
0 1
       Beta(0, 1, 1
4, 1 3
4)
 
Pearson XII  
PearsonXII(x;a,b,α) = 1
B(α,α+2)
1
|ba|xa
bxα1

=Beta(x;a,ba,α, 2 α)
=GenBeta(x;a,ba,α, 2 α, 1)
0<α<2
           
 
         
  
      

 Beta(x;a,s,α,γ)
 1
B(α,γ)
1
|s|xa
sα11xa
sγ1
   Bα,γ;xa
s
B(α,γ)=I(α,γ;xa
s)s > 0s < 0
 a,s,α,γ, R,
α,γ0
 axa+s,s > 0a+sxa,s < 0
 a+sα1
α+γ2α,γ > 1
 a+sα
α+γ
 s2αγ
(α+γ)2(α+γ+1)
 sgn(s)2(γα)α+γ+1
(α+γ+2)αγ
  6(αγ)2(α+γ+1) − αγ(α+γ+2)
αγ(α+γ+2)(α+γ+3)
 ln(|s|) + lnB(α,γ)− (α1)ψ(α)
− (γ1)ψ(γ)+(α+γ2)ψ(α+γ)
  
 1F1(α;α+γ;it)
         
  
0
0.5
1
-1 0 1
Arcsine
Uniform
Semicircle
Epanechnikov
Biweight
Triweight
         α=1
2, 1, 3
2, 2, 3, 4
Pearson II    
PearsonII(x;µ,b,α) = 1
22α1|b|
Γ(2α)
Γ(α)21xµ
b2α1

=Beta(x;µb, 2b,α,α)
=GenBeta(x;µb, 2b,α,α, 1)
      [µb,µ+b]
Arcsine  
Arcsine(x;a,s) = 1
π|s|(xa
s)(1xa
s)

=Beta(x;a,s,1
2,1
2)
=GenBeta(x;a,s,1
2,1
2, 1)
              
            
         
  
   ArcsineCDF(x; 0, 1) = 2
πarcsin(x)
Central arcsine  
CentralArcsine(x;b) = 1
2πb2x2
=Beta(x;b,2b,1
2,1
2)
=GenBeta(x;b,2b,1
2,1
2, 1)
        x[−b,b] 
            
      b  b=1  
             
         
Semicircle     
Semicircle(x;b) = 2
πb2b2x2
=Beta(x;b, 2b, 1 1
2, 1 1
2)
=GenBeta(x;b, 2b, 1 1
2, 1 1
2, 1)
          
          
      
Epanechnikov   
Epanechnikov(x;µ,b) = 3
4
1
|b|1xµ
b2
=PearsonII(x;µ,b, 2)
=Beta(x;µb, 2b, 2, 2)
=GenBeta(x;µb, 2b, 2, 2, 1)
     
         
  
Biweight  
Biweight(x;µ,b) = 15
16
1
|b|1xµ
b22

=PearsonII(x;µ,b, 3)
=Beta(x;µb, 2b, 3, 3)
=GenBeta(x;µb, 2b, 3, 3, 1)
     
Triweight 
Triweight(x;µ,b) = 35
32
1
|b|1xµ
b23

=PearsonII(x;µ,b, 4)
=Beta(x;µb, 2b, 4, 4)
=GenBeta(x;µb, 2b, 4, 4, 1)
     
Interrelations
          

OrderStatisticUniform(a,s)(x;α,γ) = Beta(x;a,s,α,γ)
            

Beta(x;a,s, 1, 1) = Uniform(x;a,s)
       
StdBeta(α,γ)StdGamma1(α)
StdGamma1(α) + StdGamma2(γ)
         
         
  
      
         
 
           
        
Gamma(x;a,θ,α) = lim
γ
Beta(x;a,θγ,α,γ)
         
        
   
Beta prime          
   β  
BetaPrime(x;a,s,α,γ)
=1
B(α,γ)
1
|s|xa
sα11+xa
sαγ
=GenBetaPrime(x;a,s,α,γ, 1)
 a,s,α,γ R,α > 0, γ > 0
 xa s > 0, xa s < 0
          
             
      
Special cases
            
β=1
Standard beta prime    
StdBetaPrime(x;α,γ) = 1
B(α,γ)xα1(1+x)αγ
=BetaPrime(x; 0, 1, α,γ)
=GenBetaPrime(x; 0, 1, α,γ, 1)

   
0
0.5
1
1.5
0 1 2
      BetaPrime(0, 1, 2, 4)
F      
 
F(x;k1,k2) = k
k1
2
1k
k2
2
2
B(k1
2,k2
2)
xk1
21
(k2+k1x)1
2(k1+k2)

=BetaPrime(x; 0, k2
k1,k1
2,k2
2)
=GenBetaPrime(x; 0, k2
k1,k1
2,k2
2, 1)
   k1,k2
         
         k1 k2
 
F(k1,k2)ChiSqr(k1)/k1
ChiSqr(k2)/k2
         
   
0
0123456
      InvLomax(0, 1, 2)
Inverse Lomax    
InvLomax(x;a,s,α) = α
|s|xa
sα11+xa
sα1

=BetaPrime(x;a,s,α, 1)
=GenBetaPrime(x;a,s,α, 1, 1)
Interrelations
        
StdBetaPrime(α,γ)1
StdBetaPrime(γ,α)
          
 
StdBetaPrime(α,γ)1
StdBeta(α,γ)11
         
   
       

 BetaPrime(x;a,s,α,γ)
 1
B(α,γ)
1
|s|xa
sα11+xa
sαγ
   Bα,γ;(1+ ( xa
s)1)1
B(α,γ)s > 0s < 0
=Iα,γ;(1+ ( xa
s)1)1
 a,s,α,γ, R
α > 0, γ > 0
 xa s > 0
xa s < 0
 a+sα1
γ+1α1
a α < 1
 a+sα
γ1γ > 1
 s2α(α+γ1)
(γ2)(γ1)2γ > 2
  
   
 
         
   
           
      
GenBetaPrime(a,s,α,γ,β)a+sStdBeta(α,γ)111
β
            
        
BetaPrime(0, s,α,γ)Gamma20, Gamma1(0, s,γ),α
  compound gamma distribution      
         
           
          
        
Gamma(x; 0, θ,α) = lim
γ
BetaPrime(x; 0, θγ,α,γ)
InvGamma(x;θ,α) = lim
γ
BetaPrime(x; 0, θ/γ,α,γ)
         
        
  
 beta-exponential   
         
         
          
  
BetaExp(x;ζ,λ,α,γ) = 1
B(α,γ)
1
|λ|eαxζ
λ1exζ
λγ1
 x,ζ,λ,α,γ R,
α,γ > 0, xζ
λ>0
          
  ζ    λ     
 α γ  standard beta-exponential    
ζ=0   λ=1
          
       xγ1   
  
Special cases
Exponentiated exponential    
 
ExpExp(x;ζ,λ,γ) = γ
|λ|exζ
λ1exζ
λγ1
=BetaExp(x;ζ,λ, 1, γ)
            
          
       
ExpExpCDF(x;ζ,λ,γ) = ExpCDF(x;ζ,λ)γ

  
0
0.5
1
01234
     BetaExp(x; 0, 1, 2, 2) 
BetaExp(x; 0, 1, 2, 4)  BetaExp(x; 0, 1, 2, 8)
0
0.5
1
01234
     ExpExp(x; 0, 1, 2)
         
  
0
0.5
1
01234
    HyperbolicSine(x;1
2) 
NadarajahKotz(x)
Hyperbolic sine  
HyperbolicSine(x;ζ,λ,γ) = 1
B(1γ
2,γ)
1
|λ|e+xζ
2λexζ
2λγ1
=2γ1
B(1γ
2,γ)|λ|sinh(xζ
2λ)γ1
=BetaExp(x;ζ,λ,1γ
2,γ), 0 <γ<1
      
Nadarajah-Kotz   
NadarajahKotz(x;ζ,λ) = 1
π|λ|
1
exζ
λ1

=BetaExp(x;ζ,λ,1
2,1
2)
     α=γ=1
2   
         
  
       
  ζ λ α γ
  0 1  
   1
   1
2(1γ)γ0<γ<1
  1
2
1
2
    1
    
NadarajahKotzCDF(x; 0, 1) = 2
πarctan exp(x) − 1 .
Interrelations
          
          
        
          
 
StdBetaExp(α,γ)lnStdBeta(α,γ)
           

StdBetaExp(α,γ)ln StdGamma1(α)
StdGamma1(α) + StdGamma2(γ)
        
   
OrderStatisticExp(ζ,λ)(x;γ,α) = BetaExp(x;ζ,λ,α,γ)
 γ=1    
BetaExp(x;ζ,λ,α, 1) = Exp(x;ζ,λ
α)
         
  
      

 BetaExp(x;ζ,λ,α,γ)
 1
B(α,γ)
1
|λ|eαxζ
λ1exζ
λγ1
 Iα,γ;exζ
λλ > 0λ < 0
 ζ,λ,α,γ R
α,γ > 0
 xζ λ > 0
xζ λ < 0
 ζ+λ[ψ(α+γ) − ψ(α)] 
 λ2[ψ1(α) − ψ1(α+γ)] 
 sgn(λ)ψ2(α) − ψ2(α+γ)
ψ1(α) − ψ1(α+γ)3
2
  3ψ1(α)26ψ1(α)ψ1(α+γ) + 3ψ1(α+γ)2+ψ3(α)
ψ3(α+γ)ψ1(α) − ψ1(α+γ)2
 ln |λ|+ln B(α,γ)+(α+γ1)ψ(α+γ)
− (γ1)ψ(γ) − αψ(α)
 eζt B(αλt,γ)
B(α,γ)
 eiζt B(αiλt,γ)
B(α,γ)
         
  
          
         
GammaExp(x;ν,λ,α) = lim
γ
BetaExp(x;ν+λ/ ln γ,λ,α,γ)
         
        
  
 beta-logistic      
        
        
        
        
     
BetaLogistic(x;ζ,λ,α,γ) = 1
B(α,γ)|λ|
eαxζ
λ
1+exζ
λα+γ
x,ζ,λ,α,γ R
α,γ > 0
         ζ   
λ      α γ  standard beta-logistic
    ζ=0   λ=1
         
         
         
            
           
         

Special cases
Burr type II      
 
BurrII(x;ζ,λ,γ) = γ
|λ|
exζ
λ
1+exζ
λγ+1
=BetaLogistic(x;ζ,λ, 1, γ)

  
0
0.5
-3 -2 -1 0 1 2 3 4 5 6
γ=2
γ=8
      BurrII(x; 0, 1, γ)
Reversed Burr type II      
RevBurrII(x;α) = γ
|λ|
e+xζ
λ
1+e+xζ
λγ+1
=BurrII(x;ζ,λ,γ)
=BetaLogistic(x;ζ,λ, 1, γ)
=BetaLogistic(x;ζ,+λ,γ, 1)
   λ  1  α       
Symmetric Beta-Logistic       
         
  
       
  ζ λ α γ
   
    
   α α
 
   1
2
1
2
      

 BetaLogistic(x;ζ,λ,α,γ)
 1
B(α,γ)|λ|
eαxζ
λ
1+exζ
λα+γ
   Bγ,α;(1+exζ
λ)1
B(α,γ)λ > 0λ < 0
=Iγ,α;(1+exζ
λ)1
 ζ,λ,α,γ R
α,γ > 0
 x[−,+]
 ζ+λ[ψ(γ) − ψ(α)]
 λ2[ψ1(α) + ψ1(γ)]
 sgn(λ)ψ2(γ) − ψ2(α)
[ψ1(α) + ψ1(γ)]3/2
  ψ3(α) + ψ3(γ)
[ψ1(α) + ψ1(γ)]2
 eζt Γ(αλt)Γ(γ+λt)
Γ(α)Γ(γ)
 eiζt Γ(α+iλt)Γ(γiλt)
Γ(α)Γ(γ)
         
  
 
SymBetaLogistic(x;ζ,λ,α) = 1
B(α,α)|λ|
eαxζ
λ
1+exζ
λ2α
=1
B(α,α)|λ|1
2sechxζ
2λ2α
=BetaLogistic(x;ζ,λ,α,α)
         
      
Logistic       

Logistic(x;ζ,λ) = 1
|λ|
exζ
λ
1+exζ
λ2
=1
4|λ|sech2xζ
λ
=BetaLogistic(x;ζ,λ, 1, 1)
Hyperbolic secant       
 
HyperbolicSecant(x;ζ,λ) = 1
π|λ|
1
e+xζ
2λ+exζ
2λ

=1
2π|λ|sech(xζ
2λ)
=BetaLogistic(x;ζ,λ,1
2,1
2)
        
   gd(z)
HyperbolicSecantCDF(x;ζ,λ) = 1
πgd(xζ
2λ)
=2
πarctan(exζ
2λ) − 1
2
        
         
  
0
0.5
-3 -2 -1 0 1 2 3
         
      α  α=1
  α=1
2   α0    
 HyperbolicSecant(x; 0, 1)
Interrelations
           
         
     
           

BetaLogistic(0, 1, α,γ)ln BetaPrime(0, 1, α,γ)
           
BetaLogistic(ζ,λ,α,γ)ζλln StdGamma1(γ)
StdGamma2(α)
         
         
  
 
BetaLogistic(x;ζ,+λ,α,γ) = BetaLogistic(x;ζ,λ,γ,α)
     α γ   
   
OrderStatisticLogistic(ζ,λ)(x;γ,α) = BetaLogistic(x;ζ,λ,α,γ)
          

GammaExp(x;ν,λ,α) = lim
γ
BetaLogistic(x;ν+λ/ ln γ,λ,α,γ)
Laplace(x;η,θ) = lim
α0BetaLogistic(x;η,θα α,α)
         
        
   
Pearson IV t       
        
  
PearsonIV(x;a,s,m,v)
=2F1(−iv,iv;m; 1)
|s|B(m1
2,1
2)1+xa
s2m
exp2varctanxa
s
=2F1(−iv,iv;m; 1)
|s|B(m1
2,1
2)1+ixa
sm+iv1ixa
smiv
x,a,s,m,vR
m > 1
2
        arctan(z) = 1
2iln 1iz
1+iz  
           
           
          
           
      
Interrelations
     
PearsonIV(x;a,s,m,v) = PearsonIV(x;a,s,m,v).
         v=0   
           

PearsonIV(x;a,s,m, 0) = PearsonVII(x;a,s,m)
         

   
  
lim
v
exp(−2varctan(−2vx) − πv) = e1
x
   v        
         
          
lim
v
PearsonIV(x; 0, θ
2v,α+1
2,v) = InvGamma(x;θ,α)
          
 α=1m=1
         
   
       

 (x;a,s,m,v)
 2F1(−iv,iv;m; 1)
|s|B(m1
2,1
2)1+xa
s2m
×exp2varctanxa
s
 (x;a,s,m,v)
×|s|
2m1ixa
s2F11, m+iv; 2m;2
iixa
s
 a,s,m,v R
m > 1
2
 x[−,+]
 asv
m
 asv
(m1)(m > 1)
 s2
2m3(1+v2
(m1)2) (m > 3
2)
  
   
         
        
   
 Generalized beta        
         
         
 
GenBeta(x;a,s,α,γ,β)
=1
B(α,γ)
β
sxa
sαβ11xa
sβγ1
 x,a,θ,α,γ,β R,
α > 0, γ > 0
 x[a,a+s],s > 0, β > 0
x[a+s,a],s < 0, β > 0
x[a+s,+],s > 0, β < 0
x[−,a+s],s < 0, β < 0
          
   x(xa
s)β        
         
 a   s    β   
 α γ
Special Cases
   β      
Kumaraswamy   
Kumaraswamy(x;a,s,γ,β) = γ
β
sxa
sβ11xa
sβγ1

=GenBeta(x;a,s, 1, γ,β)
          
         

   
      
   a s α γ β
 
 
  
    <1<1
    (α1)(γ1)0
   α α
  1
2
1
2
   b2b1
2
1
2
  b2b11
211
2
 
 
 
   αα < 2
   
  
   
  
         
   
       

 (x;a,s,α,γ,β)
 1
B(α,γ)
β
sxa
sαβ11xa
sβγ1
   Bα,γ;(xa
s)β
B(α,γ)
β
s>0β
s<0
=Iα,γ;(xa
s)β
 a,s,α,γ,β, R,
α,γ0
 x[a,a+s], 0 < s, 0 < β
x[a+s,a],s < 0, 0 < β
x[a+s,+], 0 < s,β < 0
x[−,a+s],s < 0, β < 0
 a+sB(α+1
β,γ)
B(α,γ)α+1
β>0
 s2B(α+2
β,γ)
B(α,γ)s2B(α+1
β,γ)2
B(α,γ)2
  
   
 
E(Xh)shB(α+h
β,γ)
B(α,γ)a=0, α+h
β>0
         
   
0
0.5
1
1.5
2
2.5
3
0 1
     Kumaraswamy(0, 1, 2, 4)

KumaraswamyCDF(x; 0, 1, γ,β) = 1− (1xβ)γ.
Interrelations
          
  
OrderStatisticPowerFn(a,s,β)(x;α,γ) = GenBeta(x;a,s,α,γ,β)
           
  
GenBeta(x;a,s, 1, 1, β) = PowerFn(x;a,s,β)
 β=1    
GenBeta(x;a,s,α,γ, 1) = Beta(x;a,s,α,γ),
         
   
  β= −1        
GenBeta(x;a,s,α,γ,1) = BetaPrime(x;a+s,s,γ,α).
           
     
         limβ0 αβ =

lim
β0GenBeta(x;a,s,δ
β,γ,β) = UnitGamma(x;a,s,γ,δ).
   γ  α     
          
  
lim
γ
GenBeta(x;a,θγ 1
β,α,γ,β) = Amoroso(x;a,θ,α,β).
  limβ+    
lim
β+
GenBeta(x;ζ+βλ,βλ,α,γ,β) = BetaExp(x;ζ,λ,α,γ).
         
        
    
 Generalized beta prime   
       
       
       
       
GenBetaPrime(x;a,s,α,γ,β)
=1
B(α,γ)
β
sxa
sαβ11+xa
sβαγ
a,s,α,γ,β R,α,γ > 0
          
    a   s    α γ
     β    α γ 

           
           
          
           
         
     
Special cases
Transformed beta  
TransformedBeta(x;s,α,γ,β)
=1
B(α,γ)
β
sx
sαβ11+x
sβαγ
=GenBetaPrime(x; 0, s,α,γ,β)
         a=0
Burr          

    
       
    a s α γ β
 
   
    β
   β 
   
  
     1
βm1
β
  
   
  
   
 k2
k1
k1
2
k2
2
   
  
   1
2 
  1
2
1
2
   
Burr(x;a,s,γ,β) = βγ
|s|xa
sβ11+xa
sβγ1

=GenBetaPrime(x;a,s, 1, γ,β)
        
Dagum          
         
    
        

 (x;a,s,α,γ,β)
 1
B(α,γ)
β
sxa
sαβ11+xa
sβαγ
   Bα,γ;(1+ ( xa
s)β)1
B(α,γ)
β
s>0β
s<0
=Iα,γ;(1+ ( xa
s)β)1
 a,s,α,γ,β R
α > 0, γ > 0
 xa s > 0
xa s < 0
 a+sB(α+1
β,γ1
β)
B(α,γ)α < 1
β< γ
 s2
B(α+2
β,γ2
β)
B(α,γ)B(α+1
β,γ1
β)
B(α,γ)2
α < 2
β< γ
  
   
E[Xh]|s|hB(α+h
β,γh
β)
B(α,γ)a=0, α < h
β< γ 
         
    
  
Dagum(x;γ,β) = βγ
|s|xa
sγβ11+xa
sβγ1

=GenBetaPrime(x;a,s, 1, γ,β)
=GenBetaPrime(x;a,s,γ, 1, +β)
Paralogistic  
Paralogistic(x;a,s,β) = β2
|s|xa
sβ1
(1+xa
sβ)β+1
=GenBetaPrime(x;a,s, 1, β,β)
Inverse paralogistic  
InvParalogistic(x;a,s,β) = β2
|s|xa
sβ21
(1+xa
sβ)β+1
=GenBetaPrime(x;a,s,β, 1, β)
Log-logistic        
 
LogLogistic(x;a,s,β) =
β
sxa
sβ1
1+xa
sβ2
=Burr(x;a,s, 1, β)
=GenBetaPrime(x; 0, s, 1, 1, β)
            
           
      
LogLogistic(0, s,β)expLogistic(− ln s,1
β)
         
    
0
0.5
1
1.5
2
0 1 2
    LogLogistic(x; 0, 1, β)
Half-Pearson VII   
HalfPearsonVII(x;a,s,m)
=1
B(1
2,m1
2)
2
|s|1+xa
s2m
=GenBetaPrime(x;a,s,1
2,m1
2, 2)
           
          
Half-Cauchy  
HalfCauchy(x;a,s) = 2
π|s|1+xa
s21

=HalfPearsonVII(x;a,s, 1)
=GenBetaPrime(x;a,s,1
2,1
2, 2)
          
         
    
      
Half generalized Pearson VII  
HalfGenPearsonVII(x;a,s,m,β)
=β
|s|B(m1
β,1
β)1+xa
sβm
=GenBetaPrime(x;a,s,1
β,m1
β,β)
           
        half Laha   
   
HalfGenPearsonVII(x;a,s,m, 2) = HalfPearsonVII(x;a,s,m)
HalfGenPearsonVII(x;a,s, 1, 2) = HalfCauchy(x;a,s)
HalfGenPearsonVII(x;a,s, 1, 4) = HalfLaha(x;a,s)
HalfGenPearsonVII(x;a,s, 2, 1) = UniPrime(x;a,s)
          m
lim
m
HalfGenPearsonVII(x;a,θm 1
β,m,β) = HalfExpPower(x;a,θ,β)
Interrelations
         
       α γ
GenBetaPrime(x;a,s,α,γ,β) = GenBetaPrime(x;a,s,γ,α,β)
        
GenBetaPrime(a,s,α,γ,β)a+sStdGamma1(α)
StdGamma2(γ)1
β
         
         
    
     
lim
γ
GenBetaPrime(x;a,θγ 1
β,α,γ,β) = Amoroso(x;a,θ,α,β)
lim
β
GenBetaPrime(x;ζ+βλ,βλ,α,γ,β) = BetaLogistic(x;ζ,λ,γ,α)
          
        
    
          
  
OrderStatisticLogLogistic(a,s,β)(x;γ,α) = GenBetaPrime(x;a,s,α,γ,β)
        
           
      
         
        
  
 Pearson        
      
Pearson(x;a,s;a1,a2;b0,b1,b2)
=1
N11
r0
xa
se011
r1
xa
se1
a,s,a1,a2,b0,b1,b2,x R
r0=b1+b2
14b2b0
2b2e0=a1a2r0
r1r0
r1=b1b2
14b2b0
2b2e1=a1+a2r1
r1r0
 N        a2 
           
       a2   
      
         
   
d
dx ln Pearson(x; 0, 1; a1,a2;b0,b1,b2) = − a1+a2x
b0+b1x+b2x2,
= 1
x
a1x+a2x2
b0+b1x+b2x2,
=e0
xr0
+e1
xr1
.
        
           
       
       a1,a2   
         
    a0  
         r0
 r1           
             
          

  
     
p(x)xα1(1x)γ1, 0 < x < 1
          
            
          
     
p(x)xα1(1+x)αγ, 0 < x < +
           
             
           
             
          
          
            
 
p(x)(ix)m+iv(i+x)miv,< x < +
            

Special cases
          
           
              
         
            
             
           
         
        
         
  
q-Gaussian     
QGaussian(x;µ,σ,q) = 1
2σ2Nexpq1
2xµ
σ2
=1
2σ2N11
2(1q)xµ
σ21
1q
2< q < 3
x(−,+) 1q < 3
x(µ2σ
1q,µ+2σ
1q) q < 1
 expq       
  
N=
π2Γ(1
1q)
(3q)1(3q
2(1q))2< q < +1
π q = +1
πΓ(3q
2(q1))
q1Γ(1
q1)+1< q < +3
            
         
          
 
QGaussian(x;µ,σ,q)
=
Beta(x;a2σ
1q,22σ
1q,2q
1q,2q
1q) −2< q < 1
PearsonII(x;a,2σ
1q,2q
1q) −2< q < 1
Normal(x;µ,σ)q=1
PearsonVII(x;a,2σ
q1,1
q1)1< q < 3
         
  
   
   
  
   
    
   
     
   
    
       
       
       
   
   
    
       
  a s a1a2b0b1b2
  a s 0 0 0 1 1
   µb2b α 1 2α2 0 1 1
  a s α 1α+γ2 0 1 1
  a θ 010 1 0
  a θ α 11 0 1 0
   a s α 1γ1 0 1 1
   a θ 1α+1 0 0 1
   a θ 1 2 0 0 1
   a s 2v2m1 0 1
   a s 2m1 0 1
  a s 2 1 0 1
  µ σ 0 2 1 0 0
         
        
   
      n     
  
d
dx ln GUD(n)(x;a,s;a0,a1, . . . , an;b0,b1, . . . , bn;β)
= −
β
s
1
xa
s
a0+a1xa
sβ+··· +anxa
s
b0+b1xa
sβ+··· +bnxa
s
a,s,a0,a1, . . . , an,b0,b1, . . . , bn,β,x R
β=1 a0=0
         
          
        
          
      n=2       
     
Special cases
Extended Pearson    β=1   
 
d
dx ln ExtPearson(x; 0, 1; a0,a1,a2;b0,b1,b2)
= 1
x
a0+a1x+a2x2
b0+b1x+b2x2
a,s,a0,a1,a2,b0,b1,b2 R
Inverse Gaussian     
InvGaussian(x;µ,λ) = λ
2πx3expλ(xµ)2
2µ2x
=ExtPearson(x; 0, 1 ; λ
2,2
3,λ
2µ2; 0, 1, 0)
=GUD(x; 0, 1 ; λ
2,2
3,λ
2µ2; 0, 1, 0 ; 1)

   
    

    
     
        
  a s a0a1a2b0b1b2β
      1
    1
   
      
   2
3  
  κ1α κ   
   κ1α κ β
  κκ  
   1ακ2  
    1ακ2  
  λ1α κ   
         
   
  x > 0  µ > 0   λ > 0   
             
    Wald       µ=1
         
        x 
     t    D  
v  Normal(vt,2Dt)          
          y > 0  
  InvGaussian(y
v,y2
2D)
    µ       
         

lim
µ
InvGaussian(x;µ,λ) = evy(x; 0, λ)
          
    µ2  
i
InvGaussiani(x;µwi,λw2
i)
InvGaussianx;µ
i
wi,λ
i
wi2
      µ λ
cInvGaussian(µ,λ)InvGaussian(,)
            
   
1
N
N
i=1
InvGaussiani(µ,λ)InvGaussian(µ,)
         
   
Halphen    
Halphen(x;a,s,α,κ)
=1
2|s|Kα(2κ)xa
sα1
expκxa
sκxa
s1,
=GUD(x;a,s;κ, 1 α,κ; 0, 1, 0 ; 1)
0xa
s
          
      
Hyperbola   
Hyperbola(x;a,s,κ)
=1
2|s|K0(2κ)xa
s1
expκxa
sκxa
s1,
=Halphen(x;a,s, 0, κ)
=GUD(x;a,s;κ, 1, κ; 0, 1, 0 ; 1)
0xa
s
Halphen B  
HalphenB(x;a,s,α,κ)
=2
|s|H2α(κ)xa
sα1
expxa
s2
+κxa
s,
=GUD(x;a,s; 1 α,κ, 2 ; 1, 0, 0 ; 1)
0xa
s
   H2α(κ)     
          κ
         
   
Inverse Halphen B  
InvHalphenB(x;a,s,α,κ)
=2
|s|H2α(κ)xa
sα+1
expxa
s2
+κxa
s1,
=GUD(x;a,s; 1 α,κ,2; 0, 0, 1; 1)
0xa
s
       κ
Sichel     
Sichel(x;a,s,α,κ,λ)
=(κ/λ)α/2
2|s|Kα(2κλ)xa
sα1
expκxa
sλxa
s1,
=GUD(x;a,s;λ, 1 α,κ; 0, 1, 0 ; 1)
0xa
s
    λ=κ    
α=1
3
Libby-Novick  
LibbyNovick(x;a,s,c,α,γ)
=1
|s|B(α,γ)xa
sα11xa
sγ11− (1c)xa
sαγ
=GUD(x|a,s;α1, 3 αc, 2c2;
1, c2, 1 c; 1)
 a,s,c,α,γ R,α,γ > 0
0xa
s1
         
       
LibbyNovick(0, s1
s2,α,γ)Gamma1(0, s1,α)
Gamma1(0, s1,α) + Gamma2(0, s2,γ)
         
   
     u=1   u 
Gauss hypergeometric  
GaussHypergeometric(x;a,s,u,α,γ,δ)
=1
|s|N xa
sα11xa
sγ11− (1u)xa
sδ
N=B(α,γ)2F1(α,δ;α+γ, 1 u)
 a,s,u,α,γ,δ R,α,γ,δ > 0
=GUD(x;a,s;α1, 2 αγ+ (1u)(1+ρ+α),
u(α+γρ2); 1, 1c,u; 1)
0xa
s1
         
        
Conuent hypergeometric  
Confluent(x;α,γ,δ)
=1
Nxa
sα11xa
sγ1
expκxa
s
N=B(α,γ)1F1(α;α+γ;κ)
=GUD(x; 0, 1; 1 α,α+γ+κ2; κ; 1, 1, 0; 1)
0xa
s1
          

Generalized Halphen  
GenHalphen(x;a,s,α,κ,β)
=|β|
2|s|Kα(2κ)xa
sβα1
expκxa
sβ
κxa
sβ
=GUD(x;a,s;κ, 1 α,κ; 0, 1, 0; β)
0xa
s1
         
   
Greater Grand Unied Distributions
            
     
Appell Beta  
AppellBeta(x;a,s,α,γ,ρ,δ)
=1
N |s|xa
sα11xa
sγ1
1uxa
sρ1vxa
sδ
N=B(α,γ)F1(α,ρ,δ,α+γ;u,v)
=GUD(3)(x;a,s;a0,a1,a2,a3;b0,b1,b2,b3; 1)
b0= −1, b1=1+u+v,b2= −uvuv,b3=uv
 F1        
Laha  
Laha(x;a,s) = 2
|s|π
1
1+ ( xa
s)4
=GUD(4)(x;a,s; 0, 4, 0, 0, 0 ; 1, 0, 2, 0, 1 ; 1)
       
          
          
             
           
   
          
           
           
            
 
         
        
  
            
         
           
            
       
Bates  
Bates(n)1
n
n
i=1
Uniformi(0, 1)
1
nIrwinHall(n)
   n   
Beta-Fisher-Tippett    
BetaFisherTippett(x;ζ,λ,α,γ,β)
=1
B(α,γ)
β
λxζ
λβ1
eα(xζ
λ)β1e−( xζ
λ)βγ1
 x,ζ,λ,α,γ,β R,
α,γ > 0, xζ
λ>0
        
        
          
  
OrderStatisticFisherTippett(a,s,β)(x;α,γ)
=BetaFisherTippett(x;a,s,α,γ,β)
          
   

  
 β=1      
    inverse beta-exponentialβ= −1  
          expo-
nentiated Weibull   α=1
Birnbaum-Saunders     
BirnbaumSaunders(x;a,s,γ)
=1
2γ2πs2
s
xa(xa
s+s
xa)exp
(xa
ss
xa)2
2γ2
       
Exponential power      
  
ExpPower(x;ζ,θ,β) = β
2|θ|Γ(1
β)e|xζ
θ|β
          
    
ExpPower(x;ζ,θ, 1) = Laplace(x;ζ,θ)
ExpPower(x;ζ,θ, 2) = Normal(x;ζ,θ/2)
lim
β
ExpPower(x;ζ,θ,β) = Uniform(x;ζθ, 2θ)
         
  
Generalized K  
GenK(x;s,α1,α2,β) = 2|β|
|s|Γ(α1)Γ(α2)x
s1
2(α1+α2)β1
Kα1α22x
sβ
2

x0, α1>0, α2>0
          
       
GenK(s1s2,α1,α2,β)Amoroso1(0, s1,α1,β)Amoroso2(0, s2,α2,β)
s1Gamma1(0, α1)1
βs2Gamma2(0, α2)1
β
s1s2Gamma1(1, α1)Gamma2(1, α2)1
β
s1s2K(1, α1,α2)1
β
Generalized Pearson VII    

GenPearsonVII(x;a,s,m,β)
=β
2|s|B(m1
β,1
β)1+
xa
s
βm
x,a,s,m,β R
β > 0, m > 0, βm > 1
          
          
         
  
   
GenPearsonVII(x;a,s,m, 2) = PearsonVII(x;a,s,m)
GenPearsonVII(x;a,s, 1, 2) = Cauchy(x;a,s)
GenPearsonVII(x;a,s, 1, 4) = Laha(x;a,s)
GenPearsonVII(x;a,s, 2, 1) = Meridian(x;a,s)
lim
m
GenPearsonVII(x;a,m1θ,m,β) = ExpPower(x;a,θ,β)
     half generalized Pearson VII   
      
Holtsmark  
Holtsmark(x;µ,c) = Stable(x;µ,c,3
2, 0)
        
           
       
Holtsmark(x;µ,c) = 1
πΓ(5
3)2F35
12 ,11
12 ;1
3,1
2,5
6;4
729 (xµ
c)6
1
3π(xµ
c)23F43
4, 1, 5
4;2
3,5
6,7
6,4
3;4
729 (xµ
c)6
+7
81πΓ(4
3)( xµ
c)42F313
12 ,19
12 ;7
6,3
2,5
3;4
729 (xµ
c)6
K 
K(x;s,α1,α2) = 2
|s|Γ(α1)Γ(α2)x
s1
2(α1+α2)−1
Kα1α22x
s
x0, α1>0, α2>0
           
     Kv(+z) = Kv(−z)   
         K(x;s,α1,α2) =
         
  
K(x;s,α2,α1)
         

K(s1s2,α1,α2)Gamma1(0, s1,α1)Gamma2(0, s2,α2)
        
    
Irwin-Hall    
IrwinHall(x;n) = 1
2(n1)!
n
k=0
(1)kn
k(xk)n1sgn(xk)
   n   
IrwinHall(n)
n
i=1
Uniformi(0, 1)
       n=1   
    n=2   
Johnson SU  
JohnsonSU(x;µ,σ,γ,δ) = δ
λ2π
1
1+xξ
λ2e1
2(γ+δsinh1(xξ
λ))2

       
Johnsong(µ,σ,γ,δ)σg(StdNormal()−γ)
δ) + µ
   SU   g(x) = sinh(x)   SB
  g(x) = 1/(1+exp(x))   SLg(x) = exp(x))  
         
  
    SN     
 
Landau  
Landau(x;µ,c) = Stable(x;µ,c, 1, 1)
           
        
Log-Cauchy  
LogCauchy(x;a,s,β) = |β|
|s|πxa
s11
1+lnxa
sβ2
          
   
LogCauchy(0, s,β)expCauchy(− ln s,1
β)
Meridian     
Meridian(x;a,s) = 1
2|s|
1
1+|xa
s|2
    
Meridian(x; 0, s1
s2)Laplace1(0, s1)
Laplace2(0, s2)
         
         
  
Noncentral chi-square  χ2χ2  
NoncentralChiSqr(x;k,λ) = 1
2e−(x+λ)/2x
λk
41
2Ik
21(λx)
k,λ,x R,>0
 Iv(z)           
           k
       µi 
  σi
NoncentralChiSqr(k,λ)
k
i=11
σi
Normali(µi,σi)2
    λ=k
i=1(µii)2
Non-central F   
NoncentralF(k1,k2,λ1,λ2)NoncentralChiSqr1(k1,λ1)/k1
NoncentralChiSqr2(k2,λ2)/k2
 k1,k2,λ1,λ2>0
 x > 0
          
  λ1,λ2       doubly non-central F
         singly non-central F distribution
           
Pseudo Voigt  
PseudoVoigt(x;a,σ,s,η) = (1η)Normal(x;a,σ) + ηCauchy(x;a,s)
 0η1
         
         
  
         

Rice      
 
Rice(x;ν,σ) = x
σ2expx2+ν2
2σ2I0(x|ν|
σ2)
x > 0
 I0(z)         
          
 
Rice(ν,σ)Normal2
1(νcos θ,σ) + Normal2
2(νsin θ,σ)
           
 
Rice(ν, 1)2NoncentralChiSqr(2, ν2)
Slash  
Slash(x) = StdNormal(x) − StdNormal(x)
x2
       
Slash() StdNormal()
StdUniform()
  limx0Slash(x) = 1/8π
         
  
Stable          
            
        
StableCF(t;µ,c,α,β) = expitµ |ct|α(1sgn(t)Φ(α)
 Φ(α) = tan(πα/2) α̸=1  Φ(1) = −(2)log |t| 
 µ  c         
  α(0, 2]    β[−1, 1]
         β=0
Lévy symmetric alpha-stable     β=±1
0< α 1         c α  
        
 α < 2   stable Paretian distributions   
   
       
  µ c α β
   
   3
2
   
  1
2
 
           
a1Stable1(µ,c,α,β) + a2Stable2(µ,c,α,β)a3Stable3(µ,c,α,β) + b
   a1,a2,a3,b       
          
           
         
           

         
  
Suzuki         
 
Suzuki(ϑ,σ)Rayleigh(σ)
σLogNormal(0, ϑ,σ)
        
Triangular   
Triangular(x;a,b,c) = 2(xa)
(ba)(ca)axc
2(bx)
(ba)(bc)cxb
 x[a,b]  c       

Uniform difference  
UniformDiff(x) = (1+x) −1x0
(1x)0x1
=Triangular(x;1, 1, 0)
        
Voigt     
Voigt(a,σ,s) = Normal(0, σ) + Cauchy(a,s)
          
         
     
         
        
  
Notation
  Amoroso(x;a,θ,α,β)    AmorosoCDF(x;
a,θ,α,β)     Amoroso(a,θ,α,β)
     XAmoroso(a,θ,α,β) 
          
         
    
  
a 
b  b=a+s
ζ  
µ  
ν  
ζ  
s  
λ  
σ  
ϑ  
θ  
ω    
β   
α >0      
γ >0      
n  >0     
k  >0   
m >1
2  
v >0  
    
        
        
β        
abνµ   sθσ   αγmv 
       αγ m  

  
           β= −¯
β 
              
   
Nomenclature
interesting         
           
      
generalized-X          
         
        
         
 
standard-X           
       

  
    
shifted-X         

anchored-X         
      
scaled-X         
inverse-X      
      x7→ 1
x   
        β7→ β 
       
log-X         
    exp X() log-X()    ln ()
log-X()        
         
      
         
  
X-exponential        ln ()
()        
       
  
reversed-X      
X of the Nth kind    
folded-X          X
beta-X        
            
            
         
        
  
notation        
           
probability density function (PDF)    fX(x)  
          
            
     
P[aXb] = b
a
fX(x)dx .
cumulative density function (CDF)      
        x    FX(x)  
     
FX(x) = x
fX(z)dz
           
       
fX(x) = d
dxFX(x)
          
        
   =1
complimentary cumulative density function (CCDF)  
        1
FX(x)           x 
       
       
support            
          
             
          

  
mode          
          
            
          
           
/  \
mean       
E[X] = x fX(x)dx
         
       µ
variance        
var[X] = E(XE[X])2=EX2EX2
            
       σ    
     
central moment
µn[X] = EXE[X]n
 n           
    
skew            
           
           
  
           
    3
2    
skew[X] = EXE[X]
σ[X]3=κ3
κ2
3
2
         
  
kurtosis         
         
           
      
          
     
ExKurtosis[X] = κ4
κ22
            
         µ4  
    κ4
κ22=µ4
κ223
entropy         
  
entropy[X] = f(x)ln f(x)dx
           
           
moment generating function (MGF)  
MGFX(t) = E[etX].
 n         0 
   n    
dn
dtnMGFX(t)0=E[Xn]
         
    
cumulant generating function (CGF)      
 
CGFX(t) = ln E[etX]
         
  
          
    
 n         0
    n    
dn
dtnCGFX(t)0=κn(X)
 n        n   
             
κ1=E[X]
κ2=E(XE[X])2
κ3=E(XE[X])3
κ4=E(XE[X])43E(XE[X])2
           
      
         
        
CGFX+Y(t) = CGFX(t) + CGFY(t)
characteristic function (CF)      
           
    
ϕX(t) = E[eitX],
         
          
     
ϕX+Y(t) = ϕX(t)ϕY(t)
          
   
ϕZ(t) =
i
ϕXi(cit),Z=
i
ciXi.
         
  
quantile function       
  F1(p)  Q(p)     
      
median[X] = F1
X(1
2)
           
     
hazard function          
   
hazardX(x) = fX(x)
1FX(x)
         
        
 
Order statistics
      m+n1    
      m    
 n  
OrderStatisticX(x;m,n) = (m+n1)!
(m1)!(n1)!F(x)m1f(x) (1F(x))n1
 X    f(x)    
 F(x)          
     m+n1     m1
 n1        m1
             
m           n1
         m=1  
  n=1      m=n
         
        I(p,q;z)
OrderStatisticCDFX(x;m,n) = Im,n;F(x)
         Im,n;F(x) 
F(x)        
  Iα,γ;x        
     Iα,γ;FX(x)  
α γ          
 
           
          
           

 
   
OrderStatisticUniform(a,s)(x;α,γ) = Beta(x;a,s,α,γ)
OrderStatisticExp(ζ,λ)(x;γ,α) = BetaExp(x;ζ,λ,α,γ)
OrderStatisticPowerFn(a,s,β)(x;α,γ) = GenBeta(x;a,s,α,γ,β)
OrderStatisticUniPrime(a,s)(x;α,γ) = BetaPrime(x;a,s,α,γ)
OrderStatisticLogistic(ζ,λ)(x;γ,α) = BetaLogistic(x;ζ,λ,α,γ)
OrderStatisticLogLogistic(a,s,β)(x;α,γ) = GenBetaPrime(x;a,s,α,γ,β)
Extreme order statistics
    nm  mn    
 
  
     
            
          
          
          
  β      
         
          
 
Median statistics
   N      N 
        
MedianStatisticX(x;N) = OrderStatisticX(x;N1
2,N1
2)
      
MedianStatisticsUniform(a,s)(x; 2α+1) = PearsonII(x;a+s, 2s,α)
MedianStatisticsLogistic(a,s)(x; 2α+1) = SymBetaLogistic(x;a,s,α)
        
         
 
   
    
     
  
    
β=1
β
β= −1
β
β=±1
β=1
β
β
β±1
β= −1
  
 
         
        
 
Exponential function limit
     
lim
c+1+x
cac =eax .
   X      
 
lim
β
fxa
sβ=lim
β
f11
β
xζ
λβ=fexζ
λ
(a=ζ+βλ,s= −βλ)
Exp(x;a,θ) = lim
β
PowerFn(x;a+βθ,βθ,β)
GammaExp(x;ν,λ,α) = lim
β
Amoroso(x;ν+βλ,βλ,α,β)
Gamma(x;a,s,α) = lim
β
UnitGamma(x;a+βs,βs,α,β)
BetaExp(x;ζ,λ,α,γ) = lim
β
GenBeta(x;ζ+βλ,βλ,α,γ,β)
BetaLogistic(x;ζ,λ,α,γ) = lim
β
GenBetaPrime(x;ζ+βλ,βλ,α,γ,β)
Normal(x;µ,σ) = lim
β
LogNormal(x;µ+βσ,βσ,β)
        γ     
  
lim
γ
f1xa
sβ
γ1=lim
γ
f11
γxa
θβ
γ1
=fe−( xa
θ)βs=θγ 1
β
Amoroso(x;a,θ,α,β) = lim
γ
GenBeta(x;a,θγ 1
β,α,γ,β)
Gamma(x;a,θ,α) = lim
γ
Beta(x;a,θγ,α,γ)

 
lim
γ
f1+xa
sβ
αγ=lim
γ
f1+1
γxa
θβ
αγ
=fe−( xa
θ)βs=θγ 1
β
Amoroso(x;a,θ,α,β) = lim
γ
GenBetaPrime(x;a,θγ 1
β,α,γ,β)
Gamma(x; 0, θ,α) = lim
γ
BetaPrime(x; 0, θγ,α,γ)
InvGamma(x;θ,α) = lim
γ
BetaPrime(x; 0, θ/γ,α,γ)
        
    
GammaExp(x;ν,λ,α) = lim
γ
BetaExp(x;ν+λ/ ln γ,λ,α,γ)
GammaExp(x;ν,λ,α) = lim
γ
BetaLogistic(x;ν+λ/ ln γ,λ,α,γ)
Logarithmic function limit
lim
c0
xc1
c=ln x
UnitGamma(x;a,s,γ,β) = lim
α
GenBeta(x;a,s,α,γ,β/α)
Gaussian function limit
lim
c
ezc1+z
cc=e1
2z2
         
 
LogNormal(x;a,ϑ,σ) = lim
γ
UnitGamma(x;a,ϑeσγ,α,γ
σ)
Normal(x;µ,σ) = lim
α
Gamma(x;µσα,σ
α,α)
Normal(x;µ,σ) = lim
α
InvGamma(x;µσα,σα 3
2,α)
lim
c
ec+cz
cce
z
c=ez2
2
LogNormal(x;a,ϑ,σ) = lim
α
Amoroso(x;a,ϑασα,α,1
σα)
Normal(x;µ,σ) = lim
α
GammaExp(x;µ+σαln α,σα,α)
Miscellaneous limits
InvGamma(x;θ,α) = lim
v
PearsonIV(x; 0, θ
2v,α+1
2,v)
 
Normal(x;µ,σ) = lim
m
PearsonVII(x;µ,σ2m,m)
Normal(x;µ,σ) = lim
α
PearsonII(x;µ,σ8α,α)
Laplace(x;η,θ) = lim
α0BetaLogistic(x;η,θα,α,α)
         
 
        

     
       
  
 
 
     
 
     
β=1
β=1
β
β= −1
α
γ
β
β=±1
γ
γ=α
γ
γ
γ
γ
γ
v
v=0
γ=1
β
β=1
β
β= −1
α=1
α
β=1
β
γ
α
α=1
α
α
α=1
m
m=1
β
α

 
         
        
   
          
         
 
Transformations
     X    FX
 fX     h(x)   
      X       
 Y
Yh(X)
FY(y) = FXh1(y)h(x)  
1FXh1(y)h(x)  
fY(y) =
d
dy h1(y)fXh1(y)
        

  
 h h1   
FYy) = PYy=Ph(X)y=PXh1(y)=FXh1(y)
 
FYy) = PYy=Ph(X)y=PXh1(y)=1FXh1(y).
Linear transformation
h(x) = a+sx
    
 
 
Weibull transformation
h(x) = a+sx
1
β

   
         

PowerFn(a,s,β)a+sStdUniform()
1
β
Weibull(a,θ,β)a+θStdExp() 1
β
LogNormal(a,ϑ,β)a+ϑStdLogNormal() 1
β
Amoroso(a,θ,α,β)a+θStdGamma(α)
1
β
GenBeta(a,s,α,γ,β)a+sStdBeta(α,γ)
1
β
GenBetaPrime(a,s,α,γ,β)a+sStdBetaPrime(α,γ)
1
β
      s
β>0    s
β<0
Inverse (reciprocal) transformation
h(x) = x1
    a=0s=1  β= −1
Gamma(0, 1, α)InvGamma(0, 1, α)1
Exp(0, 1)InvExp(0, 1)1
Cauchy(0, 1)Cauchy(0, 1)1
Log and anti-log transformations
h(x) = ln(x)h(x) = exp(−x)
            
      
StdUniform() expStdExp()
StdLogNormal() expStdNormal()
StdGamma(α)expStdGammaExp(α)
StdBeta(α,γ)expStdBetaExp(α,γ)
StdBetaPrime(α,γ)expStdBetaLogistic(α,γ)
         
   
          
         
PowerFn(0, s,β)expExp(− ln s,1
β)
LogLogistic(0, s,β)expLogistic(− ln s,1
β)
FisherTippett(0, s,β)expGumbel(− ln s,1
β)
Amoroso(0, s,α,β)expGammaExp(− ln s,1
β,α)
LogNormal(0, ϑ,β)expNormal(− ln ϑ,1
β)
UnitGamma(0, s,α,β)expGamma(− ln s,1
β,α)
GenBeta(0, s,α,γ,β)expBetaExp(− ln s,1
β,α,γ)
GenBetaPrime(0, s,α,γ,β)expBetaLogistic(− ln s,1
β,α,γ)
Prime transformation
prime(x) = 1
1
x1, prime1(y) = 1
1
y+1
       
StdUniPrime() primeStdUniform()
StdBetaPrime(α,γ)primeStdBeta(α,γ)
Combinations
Sum       
ZX+Y
         
  
fZ(z) = (fXfY)(z) = +
fX(x)fY(zx)dx
         
   
          
       
ϕX+Y(t) = ϕX(t)ϕY(t)

Normal1(µ1,σ1) + Normal2(µ2,σ2)Normal3(µ1+µ2,σ2
1+σ2
2)
Exp1(a1,θ) + Exp(a2,θ)Gamma(a1,a2,θ, 2)
Gamma1(a1,θ,α1) + Gamma2(a2,θ,α2)Gamma3(a1+a2,θ,α1+α2)
         
    
Difference      
ZXY
ϕXY(t) = ϕX(t)ϕY(−t)

UniformDiff(x)StdUniform1(x) − StdUniform2(x)
BetaLogistic(x;ζ1ζ2,λ,α,γ)GammaExp1(x;ζ1,λ,α)
GammaExp2(x;ζ2,λ,γ)
Product
 
      

ZXY
    Z
fZ(z) = fX(x)fYz
x1
|x|dx
         
   

n
i=1
Uniformi(0, 1)UniformProduct(n)
n
i=1
PowerFni(0, si,β)UnitGamma(0,
n
i=1
si,n,β)
n
i=1
UnitGammai(0, si,αi,β)UnitGamma(0,
n
i=1
si,
n
i=1
αi,β)
n
i=1
LogNormali(0, ϑi,βi)LogNormali(0,
n
i=1
ϑi,(
n
i=0
β2
i)1
2)
Ratio            

RX
Y

StdBetaPrime(α,γ)StdGamma1(α)
StdGamma2(γ)
StdCauchy() StdNormal1()
StdNormal2()
Mixture           
          
 
Z(x;α) = X(x;β)Y(β;α)
       
Z(α)XY(α)
 Z(α)X(β)
βY(α).
           
          
   
         
   
Transmutations
Fold           
    
FoldedX(ζ)∼ |Xζ|
     folded normal 
FoldedNormal(x;µ,σ)
=1
2Normal(x;+µ,σ) + 1
2Normal(x;µ,σ)
 x,µ,σ R,x0
             
         
         
     
Truncate          

TruncatedX(x;a,b) = f(x)
|F(a) − F(b)|
         
       Gompertz 
        truncated nor-
mal distribution
Dual            
      
Z(z;x) = X(x;z)
dz X(x;z)
     z      
     
         
   
Tilt        
  
Tiltedθf(x)=f(x)eθx
f(x)eθxdx =f(x)eθxκ(θ)
 κ(θ) = ln f(x)eθxdx      
Generation
           
        
  
         
          
        
           
          
       
         
          
            
     
         
        
 
Special functions
Gamma function 
Γ(a) =
0
ta1etdt
= (a1)!
= (a1)Γ(a1)
Γ(1
2) = π
Γ(1) = 1
Γ(3
2) = π
2
Γ(2) = 1
Incomplete gamma function 
Γ(a,z) =
z
ta1etdt
Γ(a, 0) = Γ(a)
Γ(1, z) = exp(−x)
Γ(1
2,z) = πerfc(z)
Regularized gamma function 
Q(a;z) = Γ(a;z)
Γ(a)
Q(1
2;z) = erfc(z)
Q(1; z) = exp(−z)
d
dz Q(a;z) = − 1
Γ(a)za1ez

 
Beta function 
B(a,b) = 1
0
ta1(1t)b1dt
=Γ(a)Γ(b)
Γ(a+b)
B(a,b) = B(b,a)
B(1, b) = 1
b
B(1
2,1
2) = π
Incomplete beta function 
B(a,b;z) = z
0
ta1(1t)b1dt
d
dz B(a,b;z) = za1(1z)b1
B(1, 1; z) = z
Regularized beta function 
I(a,b;z) = B(a,b;z)
B(a,b)
I(a,b; 0) = 0
I(a,b; 1) = 1
I(a,b;z) = 1I(b,a; 1 z)
Error function 
erf(z) = 2
πz
0
et2dt
         
 
Complimentary error function 
erfc(z) = 1erf(z)
=2
π
z
et2dt.
Gudermannian function 
gd(z) = z
0
sech(t)dt
=2 arctan(ex) − π
2
  
Modied Bessel function of the rst kind 
Iv(z) = 1
2zv
k=0
(1
4z2)k
k!Γ(v+k+1)
    
Modied Bessel function of the second kind 
Kv(z) = π
2
Iv(z) − Iv(z)
sin()
    
Arcsine function
arcsin(z) = z
0
1
1x2dx
arcsin(sin(z)) = z
d
dz arcsin(z) = 1
1z2
      
         
 
Arctangent function
arctan(z) = 1
2iln 1iz
1+iz
arctan(z) = z
0
1
1+x2dx
arctan(tan(z)) = z
d
dz arctan(z) = 1
1+z2
arctan(z) = arctan(−z)
      
Hyperbolic sine function
sinh(z) = e+xex
2
Hyperbolic cosine function
cosh(z) = e+x+ex
2
Hyperbolic secant function
sech(z) = 2
e+x+ex=1
cosh(z)
Hyperbolic cosecant function
csch(z) = 2
e+xex=1
sinh(z)
Hypergeometric function        
      
pFq(a1,a2, . . . , ap;b1,b2, . . . , bq;z) =
n=0
a¯
n
1, . . . , a¯
n
p
b¯
n
1, . . . , b¯
n
q
zn
n!
         
 
 x¯
n    
x¯
n=x(x+1)···(x+n1) = (x+n1)!
(x1)!.
     2F1(a,b;c;z)   
            
2F1(a,b;c;z) = 1
B(b,cb)1
0
tb1(1t)cb1
(1zt)adt |z|1 . 
  1F1(a;c;z)      
0F1(c;z)    
  
B(a,b;z) = za
a2F1(a, 1 b;a+1; z)
B(a,b) = 1
a2F1(a, 1 b;a+1; 1)
Γ(a;z) = Γ(a) − za
a1F1(a;a+1; z)
erfc(z) = 2z
π1F1(1
2;3
2;z2)
sinh(z) = z0F1(;3
2;z2
4)
cosh(z) = 0F1(;1
2;z2
4)
arctan(z) = z2F1(1
2, 1; 3
2;z2)
arcsin(z) = z2F1(1
2,1
2;3
2;z2)
Iv(z) = (1
2v)v
Γ(v+1)0F1(;v+1; z2
4)
d
dz 2F1(a,b;c;z) = ab
c2F1(a+1, b+1; c+1; z)
Sign function          
   
sgn(x) =
1 x < 0
0 x=0
+1 x > 0
,
         
 
          
sgn(z) = z
|z| z̸=0
0 z=0.
Polygamma function   (n+1)     
         digamma function  
 ψ(x)ψ0(x)     trigamma function ψ1(x)
ψn(x) = dn+1
dzn+1ln Γ(x)
=dn
dznψ(x)
q-exponential and q-logarithmic functions    
  
lim
c0
xc1
c=ln x

lim
c+1+x
cac =eax .
         
       
expq(x) =
exp(x)q=1
1+ (1q)x1
1qq̸=1, 1 + (1q)x > 0
0q < 1, 1 + (1q)x0
+q > 1, 1 + (1q)x0
lnq(x) = x1q1
1qq̸=1
ln(x)q=1
          
   
         
        

        
          http:
//threeplusone.com/fieldguide  

  
        

  
       
  
  
        

  
       
  
  
         

   
     
 
          
    
    
 
    
  
           
      
    
 
     
          
       
    
    
  
          

 
   
   
            
   
  
 
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html  
         
          

     


            
   
         


    
        
  
        
   
    
   
   
   
  
             
   
  
 
  
             
      


     
  
  
   
           
            

   
    

           


     
 
              
 
     
  
          
 
 
     
        
   
    
  
  
     
 
          

   
    
            
   
      
 
       
         

   
   
   
     
            


       
            
    
    
  http://www.jstor.org/stable/2983618  
            


     
   
  
    
    
             
         
  

     
 
             
     

 
  
              
            
   
  
 
 
        
 
        
      
      

    
  
       

 
    
             
      
 
 
    
             
   
   
 
      

  
  
         

  
   
 
  http://www.nrbook.com/devroye/  
  
           

    
     
             
    
     
   
         
 
    
          

 
   http://www.jstor.org/stable/2957731
 
            
          

  
  
    
       
     

       
   
    
  
   
        
  

      
           
        
  
 
   
  
           


    
  
         
  
   
          
   
 
 
    
   ˇ
       


    
         

          
  
    
  
  
            
   
  
  
    
    m       
        
  
          
      
     
     
   
  
  
  
              
        
 
  
  
              
    
  
 
   
             
       
 
 
  
      
   
      
  
  
  
           
    
      
              
   
 
 
  
            

 
         
  
     
     
 
       
  
       
 
           
         

        
 
 
        
   ˇ
      
  
 
    
 ˇ
           
   
      
           
  
      
           n
 
 
      
        

  
    
         
 

    
          
  

    
   
      
 
   
            

 
     
  
     
     
      
         

¯
 
 http://www.jstor.org/stable/25049987    
  
       
 
         
          

 
    
         

  
    

          
  

      
   
      
 
      
         

                

  
   http://www.jstor.org/
stable/2235955  
         

      
           
  

¯
   http://www.jstor.org/
stable/25049460    
         

   
   
   
           
     
  
    
           

          
  
    
         
      
 
 
  
             
 

    
          
   
 
    
 
            
     
 
   
  
    
    
 
      
  
 
      
          
       
 
        
  
 
  
    
 
     
         

            

  
  http://www.jstor.org/stable/
41137425  
           
  
  
 
  
        
 

    
          
    
         
  
 
   
  
         
  
 
 
  
           
      
  
 
  
          
    

         
           
 

       
          
 
 
    
            
  
   
    
         

 
      
   
   
    
  
       q    

  
    

            

     
    
         

        
 

     
       

  
  
             
    
    
  
http://www.jstor.org/stable/2984691  
       
    
   
      
  
          

    
     
      
          
     
  
 
    
 
     
    
   
    
        
   

    
             
 

   
  
        
 
   
     
        
   
   
 
  
          
     
  
 
  
             
 
 
    
  
         

      
   
   
      
      
      
          


   
   
           

 
  http://www.jstor.org/
stable/2348939  
       
  
 
 
   
       F1   
  
    
 
    
      
   
      
             
   
    
 
  
         
      
   
 
     
            
       
  
   
         
  
 
 
   
          
        

    
             

 
     
               


     
         

      
  
    
           
       
 
 
     
           
   
   
  
  
          
      t
 

   http://www.jstor.
org/stable/3532334  
           
    
 
 
      
           
 
   
 
    
       
 
    
           
    
  
  
  
         
  
  
 
    
           
        
       
          
  
  
 
    
       
   
  
 
  
            
           
     

 
  
         

           n  
             
  

   
 
           


     
            
 

      
      
    
    
  
  
               
          
  
     
          
  

     
           
    
   
 
  
           
 
 
 
  
   
       
    
        
  L
 
   http://www.jstor.org/stable/
2243119  
         
 

    
         
  
  
   
   
       
 
  
    
            

  
    
         

          
  
  
 
  
           

 
    

   
      

       
         
    
 
  
    

           
  
   
 
  
           
 
  
    
         
 
     
  
    
         

 
      
      q  q 
  
 
   
    
       
    
      
   
   
              
 

   http://www.jstor.
org/stable/2334368    
               
    
   
  
  
          
  
        
 
     

         

          
    
   
 
      
   
 
  
   
              
      

¯
  http://www.jstor.org/stable/25664553  
             
      
  
  
  
            
             
    
       
     
             
  
    
          
      
   
 
   
         
        
  
                                   
 
 
 
Distribution Synonym or Equation
β
β
χ
χ2
Γ
Λ
Φ
                                
 
 
 
 
 
 
 
 
 
 
 
  
  
 
                                   
 
 
  
 
 
             

  
 
                                      
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
  
 
                                    
 
                            
 
 
         
  
 
 
 
 
                          
                       
                            
                          
 
 
  
 
                              
 
 
                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
  
  
 
                               
 
                       
                                 
 
                           
 
 
 
                            
                              
                
                        
                  
 
 
                                
 
 
 
                                      
                              
                        
                                    
                       
  
 
 
   
 
 
                                    
 
 
 
 
         
  
 
 
 
 
                            
 
 
                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    
 
 
 
   
 
  
 
                               
 
 
 
 
 
 
 SU
         
  
 SBSU 
 SL                          SU 
 SNSU 
 SU
 
 
 
 
 
 
 
 
 
 
 
 
  
 
                                  
 
                          
 
 
 
 
                          
 
 
 
 
 
 
 
 
  
                             
 
 
         
  
 
 
 
 
 
 
                             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   
                                    
 
 
         
  
 
 
 
                                 
 
 
 
 
 
  
  
 
q 
q 
 
 
 
 
 
 
 

 
 
 
 
 
                             
 
 
 
 
 
 
t
 
 
 
         
  
 
 
 
 
                     
                              
 
 
                                
 
  
 
 
                                  
 
 
                                    
                                   

 t
t
t2
t3
z
 t
 
 
 q
 
tt
t2t2
t3t3
 
 
 
 
 
 
         
  
 
 
 
 
 
 

 
 
                                   
 
 
 
 
 
 
 
 
 
 
 

z
         
        
 
B(a,b)

 
B(a,b;z)

 

F1(p)

 
pFq

 
F(x)

 

I(a,b;z)

 

Iv(z)

  
   
Kv(z)

  
   
Q(a;z)

 

Γ(a)

 
Γ(a,z)

 

arcsin(z)

 
arctan(z)

 
csch(z)

 

E


cosh(z)

 

erfc(z)

 

erf(z)

 
gd(z)

 
sgn(x)

 
ϕ(t)  
ψ(x)

 
ψ1(x)

 
ψn(x)

 
sech(z)

 

sinh(z)

  

 
 
  
 
  
  
 
  
  



 



 

   
  


 


 

  
 
  
   
  
  

  
 
 
   
 
  


  
 
  
  

 
 

 

  

  
  
  
    
   
  
   
   
 
 
  
  
   
   
 
  
 
  
 
 
  
   
   
   
   
  
 
   
   
 
 
  




  
 
  
   
 
 
 
 
  
  
  
 
  
   
 
 
 
  
 


 

  
 
     
 
    
  
   
 
  


 

  
  
         
 
    
  
 

 
  
  
  
  
 



  

 
   
 
  
 
  
 
   
   
  
 
  
 
  
 
   
  

  
 
  
 
  
 
  
 
  
 
 
  
 
 
 
  
  
         
 
        

 
         

Navigation menu