Geo S Manual

Geos-manual

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 85

Package ‘GeoModels’
October 11, 2018
Version 1.0.3-4
Date 2018-01-15
Title A Package for Geostatistical Gaussian and non Gaussian Data
Analysis
Author Moreno Bevilacqua [aut, cre],
Víctor Morales-Onate [aut]
Maintainer Moreno Bevilacqua <moreno.bevilacqua@uv.cl>
Depends R (>= 2.12.0)
Description This package provides a set of procedures for a) simulation and estimation of some spa-
tial and spatio-temporal random fields using standard likelihood and a likelihood approxima-
tion method called composite likelihood and b) prediction using best linear unbiased prediction.
Spatio (temporal) bivariate data estimation involves estimation of both regression and covari-
ance parameters.
Gaussian and some non Gaussian Random fields can be analyzed using the GeoModels pack-
age. Among them gamma, Weibull, log-Gaussian, binomial, negative
binomial, skewGaussian, StudendT and circular random fields can be analyzed.
Imports methods
Suggests spam, scatterplot3d, fields, mapproj, gpuR, pbivnorm, plot3D,
shape, numDeriv, dfoptim, hypergeo, sphereplot,
License GPL (>= 2)
URL https://vmoprojs.github.io/GeoModels-page/
Repository GitHub
Encoding UTF-8
BugReports https://github.com/vmoprojs/GeoModels/issues
Rtopics documented:
anomalies .......................................... 2
CheckBiv .......................................... 3
CheckDistance ....................................... 3
CheckSph.......................................... 4
CheckST .......................................... 4
CkCorrModel........................................ 5
CkInput ........................................... 5
CkLikelihood ........................................ 7
1
2anomalies
CkModel .......................................... 7
CkType ........................................... 8
CkVarType ......................................... 8
CompLik .......................................... 9
CorrelationPar........................................ 11
CorrParam.......................................... 11
DeviceInfo ......................................... 12
GeoCovariogram ...................................... 13
GeoCovmatrix........................................ 18
GeoFit............................................ 29
GeoKrig........................................... 43
GeoResiduals ........................................ 53
GeoSim ........................................... 54
GeoTests .......................................... 61
GeoVarestbootstrap..................................... 64
GeoVariogram........................................ 65
GeoWLS .......................................... 70
Lik.............................................. 73
MatDecomp......................................... 75
MatSqrt,MatInv,MatLogDet................................ 76
NuisParam.......................................... 77
Prscores........................................... 78
StartParam.......................................... 79
winds ............................................ 81
winds.coords ........................................ 81
WlsStart........................................... 82
Index 84
anomalies Annual precipitation anomalies in U.S.
Description
A (7252x3)-matrix containing lon/lat and yearly total precipitation anomalies registered at 7.352 lo-
cation sites in USA. For more details see http://www.image.ucar.edu/Data/precip_tapering/.
Usage
data(anomalies)
Format
A numerical matrix of dimension 7252x3.
Source
Kaufman, C.G., Schervish, M.J., Nychka, D.W. (2008) Covariance tapering for likelihood-based
estimation in large spatial data sets. Journal of the American Statistical Association, Theory &
Methods,103, 1545–1555.
CheckBiv 3
CheckBiv Checking Bivariate covariance models
Description
The procedure control if the correlation model is bivariate.
Usage
CheckBiv(numbermodel)
Arguments
numbermodel numeric; the number associated to a given correlation model.
Value
Returns TRUE or FALSE depending if the correlation model is bivariate or not.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
Examples
library(GeoModels)
CheckBiv(CkCorrModel("Bi_matern_sep"))
CheckDistance Checking Distance
Description
The procedure controls the type of distance.
Usage
CheckDistance(distance)
Arguments
distance String; the type of distance, for the description see GeoCovmatrix. Default is
Eucl. Other possible values are Geod and Chor that is euclidean, geodesic and
chordal distance.
Value
Returns 0,1,2 for euclidean,geodesic, chordal distances respectively. Otherwise returns NULL.
4CheckST
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
CheckSph Checking if a covariance is valid only on sphere
Description
Subroutine called by InitParam. The procedure controls if a covariance model is valid only on the
sphere.
Usage
CheckSph(numbermodel)
Arguments
numbermodel Numeric; the code number for the covariance model.
Value
Returns TRUE or FALSE
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
CheckST Checking SpaceTime covariance models
Description
The procedure control if the correlation model is spacetime.
Usage
CheckST(numbermodel)
Arguments
numbermodel numeric; the number associated to a given correlation model.
Value
Returns TRUE or FALSE depending if the correlation model is spatiotemporal or not.
CkCorrModel 5
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
Examples
library(GeoModels)
CheckST(CkCorrModel("gneiting"))
CkCorrModel Checking Correlation Model
Description
The procedure controls if the correlation model inserted is correct.
Usage
CkCorrModel(corrmodel)
Arguments
corrmodel String; the name of a correlation model, for the description see GeoCovmatrix.
Value
Return a number associated to a given correlation model if the model is considered in the package.
Otherwise return NULL.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
CkInput Checking Input
Description
Subroutine called by the fitting procedures. The procedure controls the the validity of the input
inserted by the users.
Usage
CkInput(coordx, coordy, coordt, coordx_dyn,corrmodel, data, distance,
fcall, fixed, grid,likelihood, maxdist, maxtime,
model, n, optimizer, param, radius,
start, taper, tapsep, type, varest, vartype,
weighted,X)
6CkInput
Arguments
coordx A numeric (d×2)-matrix (where dis the number of points) assigning 2-dimensions
of coordinates or a numeric vector assigning 1-dimension of coordinates.
coordy A numeric vector assigning 1-dimension of coordinates; coordy is interpreted
only if coordx is a numeric vector otherwise it will be ignored.
coordt A numeric vector assigning 1-dimension of temporal coordinates.
corrmodel String; the name of a correlation model, for the description see GeoFit.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
data A numeric vector or a (n×d)-matrix or (d×d×n)-matrix of observations.
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See the Section Details.
fcall String; Fitting to call the fitting procedure and simulation to call the simula-
tion.
fixed A named list giving the values of the parameters that will be considered as
known values. The listed parameters for a given correlation function will be
not estimated, i.e. if list(nugget=0) the nugget effect is ignored.
grid Logical; if FALSE (the default) the data are interpreted as a vector or a (n×d)-
matrix, instead if TRUE then (d×d×n)-matrix is considered.
likelihood String; the configuration of the composite likelihood. Marginal is the default.
maxdist Numeric; an optional positive value indicating the maximum spatial distance
considered in the composite-likelihood computation.
maxtime Numeric; an optional positive value indicating the maximum temporal lag sepa-
ration in the composite-likelihood.
radius Numeric; the radius of the sphere in the case of lon-lat coordinates. The default
is 6371, the radius of the earth.
model String; the density associated to the likelihood objects. Gaussian is the default.
nNumeric; the number of trials in a binomial random fields. Default is 1.
optimizer String; the optimization algorithm (see optim for details). ’Nelder-Mead’ is the
default.
param A numeric vector of parameters, needed only in simulation. See GeoSim.
start A named list with the initial values of the parameters that are used by the nu-
merical routines in maximization procedure. NULL is the default.
taper String; the name of the tapered correlation function.
tapsep Numeric; an optional value indicating the separabe parameter in the space time
quasi taper (see Details).
type String; the type of the likelihood objects. If Pairwise (the default) then the
marginal composite likelihood is formed by pairwise marginal likelihoods.
varest Logical; if TRUE the estimate’ variances and standard errors are returned. FALSE
is the default.
vartype String; the type of estimation method for computing the estimate variances, see
GeoFit.
weighted Logical; if TRUE the likelihood objects are weighted. If FALSE (the default) the
composite likelihood is not weighted.
XNumeric; Matrix of space-time covariates in the linear mean specification.
CkLikelihood 7
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
CkLikelihood Checking Composite-likelihood Type
Description
Subroutine called by InitParam. The procedure controls the type of the composite-likelihood in-
serted by the users.
Usage
CkLikelihood(likelihood)
Arguments
likelihood String; the configuration of the composite likelihood. Marginal is the default.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
CkModel Checking Random Field type
Description
Subroutine called by InitParam. The procedure controls the type of random field inserted by the
users.
Usage
CkModel(model)
Arguments
model String; the density associated to the likelihood objects. Gaussian is the default.
8CkVarType
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
CkType Checking Likelihood Objects
Description
Subroutine called by InitParam. The procedure controls the type of likelihood objects inserted by
the users.
Usage
CkType(type)
Arguments
type String; the type of the likelihood objects. If Pairwise (the default) then the
marginal composite likelihood is formed by pairwise marginal likelihoods.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
CkVarType Checking Variance Estimates Type
Description
Subroutine called by InitParam. The procedure controls the method used to compute the estimates’
variances.
Usage
CkVarType(type)
Arguments
type String; the method used to compute the estimates’ variances. If SubSamp the
estimates’ variances are computed by the sub-sampling method, see GeoFit.
CompLik 9
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
CompLik Optimizes the Composite log-likelihood
Description
Subroutine called by GeoFit. The procedure estimates the model parameters by maximisation of
the composite log-likelihood.
Usage
CompLik(bivariate, coordx, coordy ,coordt, coordx_dyn, corrmodel, data, distance,
flagcorr, flagnuis, fixed, GPU, grid,likelihood,local,lower,
model, n, namescorr, namesnuis, namesparam,
numparam, numparamcorr, optimizer, onlyvar, param,
spacetime, type,upper, varest, vartype,
weigthed, winconst, winstp,winconst_t, winstp_t, ns, X,sensitivity)
Arguments
bivariate Logical; if TRUE then the data come froma a bivariate random field. Otherwise
from a univariate random field.
coordx A numeric (d×2)-matrix (where dis the number of points) assigning 2-dimensions
of coordinates or a numeric vector assigning 1-dimension of coordinates.
coordy A numeric vector assigning 1-dimension of coordinates; coordy is interpreted
only if coordx is a numeric vector otherwise it will be ignored.
coordt A numeric vector assigning 1-dimension of temporal coordinates. Optional ar-
gument, the default is NULL then a spatial random field is expected.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
corrmodel Numeric; the id of the correlation model.
data A numeric vector or a (n×d)-matrix or (d×d×n)-matrix of observations.
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See the Section Details.
flagcorr A numeric vector of binary values denoting which paramerters of the correlation
function will be estimated.
flagnuis A numeric vector of binary values denoting which nuisance paramerters will be
estimated.
fixed A numeric vector of parameters that will be considered as known values.
GPU Numeric; if NULL (the default) no GPU computation is performed.
10 CompLik
grid Logical; if FALSE (the default) the data are interpreted as a vector or a (n×d)-
matrix, instead if TRUE then (d×d×n)-matrix is considered.
likelihood String; the configuration of the compositelikelihood, see GeoFit.
local Numeric; number of local work-items of the GPU
lower A numeric vector with the lower bounds of the parameters’ ranges.
model Numeric; the id value of the density associated to the likelihood objects.
nNumeric; number of trials in a binomial random fields.
namescorr String; the names of the correlation parameters.
namesnuis String; the names of the nuisance parameters.
namesparam String; the names of the parameters to be maximised.
numparam Numeric; the number of parameters to be maximised.
numparamcorr Numeric; the number of correlation parameters.
optimizer String; the optimization algorithm (see optim for details). ’Nelder-Mead’ is the
default.
onlyvar Logical; if TRUE (and varest is TRUE) only the variance covariance matrix is
computed without optimizing. FALSE is the default.
param A numeric vector of parameters’ values.
spacetime Logical; if TRUE the random field is spatial-temporal otherwise is a spatial field.
type String; the type of the likelihood objects. If Pairwise (the default) then the
marginal composite likelihood is formed by pairwise marginal likelihoods.
upper A numeric vector with the upper bounds of the parameters’ ranges.
varest Logical; if TRUE the estimate’ variances and standard errors are returned. FALSE
is the default.
vartype String; the type of estimation method for computing the estimate variances, see
GeoFit.
weigthed Logical; if TRUE then decreasing weigths coming from a compactly supported
correlation function with compact support maxdist (maxtime)are used.
winconst Numeric; a positive value for computing the spatial sub-window in the sub-
sampling procedure.
winstp Numeric; a value in (0,1] for defining the the proportion of overlapping in the
spatial sub-sampling procedure.
winconst_t Numeric; a positive value for computing the temporal sub-window in the sub-
sampling procedure.
winstp_t Numeric; a value in (0,1] for defining the the proportion of overlapping in the
temporal sub-sampling procedure.
ns Numeric; Number of (dynamical) temporal instants.
XNumeric; Matrix of space-time covariates in the linear mean specification.
sensitivity Logical; if TRUE then the sensitivy matrix is computed
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
CorrelationPar 11
CorrelationPar Lists the Parameters of a Correlation Model
Description
Subroutine called by InitParam and other procedures. The procedure returns a list with the param-
eters of a given correlation model.
Usage
CorrelationPar(corrmodel)
Arguments
corrmodel Integer; an integer associated to a given correlation model.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
CorrParam Lists the Parameters of a Correlation Model
Description
Subroutine called by InitParam and other procedures. The procedure returns a list with the param-
eters of a given correlation model.
Usage
CorrParam(corrmodel)
Arguments
corrmodel String; the name of a correlation model.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoCovmatrix
12 DeviceInfo
Examples
require(GeoModels)
################################################################
###
### Example 1. Parameters of the Matern model
###
###############################################################
CorrParam("Matern")
################################################################
###
### Example 2. Parameters of the Generalized Wendland model
###
###############################################################
CorrParam("GenWend")
################################################################
###
### Example 3. Parameters of the Generalized Wendland model
###
###############################################################
CorrParam("GenCauchy")
################################################################
###
### Example 4. Parameters of the space time Gneiting model
###
###############################################################
CorrParam("Gneiting")
################################################################
###
### Example 5. Parameters of the bi-Matern separable model
###
###############################################################
CorrParam("Bi_Matern_sep")
DeviceInfo Prints Device Information
Description
Prints the device details available in your computer. Device name, Max compute units, whether it
supports double precision, among others.
GeoCovariogram 13
Usage
DeviceInfo()
Details
The user can take this information into account so that the local parameter is set up in GeoFit
when GPU computation is chosen.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
Examples
library(GeoModels)
DeviceInfo()
GeoCovariogram Computes fitted covariance and/or variogram
Description
The procedure computes and plots covariance or variogram estimated fitting a Gaussian, and non
Gaussian spatio (temporal) bivariate random fields. Allows to add the empirical estimates in order
to compare them with the fitted model.
Usage
GeoCovariogram(fitted, distance="Eucl",answer.cov=FALSE,
answer.vario=FALSE, answer.range=FALSE, fix.lags=NULL,
fix.lagt=NULL, show.cov=FALSE, show.vario=FALSE,
show.range=FALSE, add.cov=FALSE, add.vario=FALSE,
pract.range=95, vario, ...)
Arguments
fitted A fitted object obtained from the GeoFit or GeoWLS procedures.
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See GeoFit.
answer.cov Logical; if TRUE a vector with the estimated covariance function is returned; if
FALSE (the default) the covariance is not returned.
answer.vario Logical; if TRUE a vector with the estimated variogram is returned; if FALSE (the
default) the variogram is not returned.
answer.range Logical; if TRUE the estimated pratical range is returned; if FALSE (the default)
the pratical range is not returned.
fix.lags Integer; a positive value denoting the spatial lag to consider for the plot of the
temporal profile.
14 GeoCovariogram
fix.lagt Integer; a positive value denoting the temporal lag to consider for the plot of the
spatial profile.
show.cov Logical; if TRUE the estimated covariance function is plotted; if FALSE (the de-
fault) the covariance function is not plotted.
show.vario Logical; if TRUE the estimated variogram is plotted; if FALSE (the default) the
variogram is not plotted.
show.range Logical; if TRUE the estimated pratical range is added on the plot; if FALSE (the
default) the pratical range is not added.
add.cov Logical; if TRUE the vector of the estimated covariance function is added on the
current plot; if FALSE (the default) the covariance is not added.
add.vario Logical; if TRUE the vector with the estimated variogram is added on the current
plot; if FALSE (the default) the correlation is not added.
pract.range Numeric; the percent of the sill to be reached.
vario AVariogram object obtained from the GeoVariogram procedure.
... other optional parameters which are passed to plot functions.
Value
The returned object is eventually a list with:
covariance The vector of the estimated covariance function;
variogram The vector of the estimated variogram function;
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
References
Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
See Also
GeoFit.
Examples
library(GeoModels)
library(scatterplot3d)
################################################################
###
### Example 1. Plot of fitted covariance and fitted
### and empirical variograms from a Gaussian RF
### with Matern correlation.
###
###############################################################
set.seed(21)
# Set the coordinates of the points:
x <- runif(300, 0, 1)
GeoCovariogram 15
y <- runif(300, 0, 1)
coords=cbind(x,y)
# Set the model's parameters:
corrmodel <- "Matern"
model <- "Gaussian"
mean <- 0
sill <- 1
nugget <- 0
scale <- 0.2/3
smooth=0.5
param=list(mean=mean,sill=sill, nugget=nugget, scale=scale, smooth=smooth)
# Simulation of the Gaussian random field:
data <- GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data
start=list(mean=0,scale=scale,sill=sill)
fixed=list(nugget=nugget,smooth=smooth)
# Maximum composite-likelihood fitting of the Gaussian random field:
fit <- GeoFit(data=data,coordx=coords, corrmodel=corrmodel,model=model,
likelihood="Marginal",type='Pairwise',start=start,
fixed=fixed,maxdist=0.05)
# Empirical estimation of the variogram:
vario <- GeoVariogram(data=data,coordx=coords,maxdist=0.5)
# Plot of covariance and variogram functions:
GeoCovariogram(fit, show.cov=TRUE,show.vario=TRUE, vario=vario,pch=20)
################################################################
###
### Example 2. Plot of fitted covariance and fitted
### and empirical variograms from a Binomial
### RF with exponential correlation.
###
###############################################################
set.seed(2111)
model="Binomial";n=20
# Set the coordinates of the points:
x <- runif(500, 0, 1)
y <- runif(500, 0, 1)
coords=cbind(x,y)
# Set the model's parameters:
corrmodel <- "exponential"
mean <- 0
sill <- 1
nugget <- 0
scale <- 0.2/3
param=list(mean=mean,sill=sill, nugget=nugget, scale=scale)
# Simulation of the Gaussian RF:
data <- GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param,n=n)$data
start=list(mean=0,scale=scale,sill=sill)
fixed=list(nugget=nugget)
16 GeoCovariogram
# Maximum composite-likelihood fitting of the BinomGaussian random field:
fit <- GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,
likelihood="Marginal",type='Pairwise',start=start,n=n,
fixed=fixed,maxdist=0.03)
# Empirical estimation of the variogram:
vario <- GeoVariogram(data,coordx=coords,maxdist=0.5)
# Plot of covariance and variogram functions:
GeoCovariogram(fit, show.cov=TRUE,show.vario=TRUE, vario=vario,pch=20)
################################################################
###
### Example 3. Plot of fitted covariance and fitted
### and empirical variograms from a RF
### RF with Wend0 correlation.
###
###############################################################
set.seed(211)
model="Gamma";shape=4
# Set the coordinates of the points:
x <- runif(700, 0, 1)
y <- runif(700, 0, 1)
coords=cbind(x,y)
# Set the model's parameters:
corrmodel <- "Wend0"
mean <- 0
sill <- 1
nugget <- 0
scale <- 0.3
power2=4
param=list(mean=mean,sill=sill, nugget=nugget, scale=scale,shape=shape,power2=power2)
# Simulation of the Gaussian RF:
data <- GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data
start=list(mean=0,scale=scale,shape=shape)
fixed=list(nugget=nugget,sill=sill,power2=power2)
# Maximum composite-likelihood fitting of the BinomGaussian random field:
fit <- GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,
likelihood="Marginal",type='Pairwise',start=start,
fixed=fixed,maxdist=0.03)
# Empirical estimation of the variogram:
vario <- GeoVariogram(data,coordx=coords,maxdist=0.5)
# Plot of covariance and variogram functions:
GeoCovariogram(fit, show.cov=TRUE,show.vario=TRUE, vario=vario,pch=20)
################################################################
###
### Example 4. Plot of fitted and empirical variograms
### from a space time Gaussian random fields
GeoCovariogram 17
### with double exponential correlation.
###
###############################################################
set.seed(92)
# Define the spatial-coordinates of the points:
x <- runif(50, 0, 1)
y <- runif(50, 0, 1)
coords=cbind(x,y)
# Define the temporal sequence:
time <- seq(0, 15, 1)
# Simulation of the spatio-temporal Gaussian random field:
data <- GeoSim(coordx=coords, coordt=time, corrmodel="Exp_Exp",param=list(mean=mean,
nugget=nugget,scale_s=0.5/3,scale_t=2/2,sill=sill))$data
fixed=list(nugget=0, mean=0)
start=list(scale_s=0.2, scale_t=0.5, sill=1)
# Maximum composite-likelihood fitting of the space-time Gaussian random field:
fit <- GeoFit(data, coordx=coords, coordt=time, corrmodel="Exp_Exp", maxtime=2,
maxdist=0.1, likelihood="Marginal", type="Pairwise",
fixed=fixed, start=start)
# Empirical estimation of spatio-temporal covariance:
vario <- GeoVariogram(data,coordx=coords, coordt=time, maxtime=5,maxdist=0.5)
# Plot of the fitted space-time variogram
GeoCovariogram(fit,vario=vario,show.vario=TRUE)
# Plot of covariance, variogram and spatio and temporal profiles:
GeoCovariogram(fit,vario=vario,fix.lagt=1,fix.lags=1,show.vario=TRUE,pch=20)
################################################################
###
### Example 5. Plot of parametric and empirical variograms
### estimated from a Bivariate Gaussian random fields with
### Matern correlation.
###
###############################################################
# Simulation of a bivariate spatial Gaussian random field:
set.seed(892)
# Define the spatial-coordinates of the points:
x <- runif(200, -1, 1)
y <- runif(200, -1, 1)
coords=cbind(x,y)
# Simulation of a bivariate Gaussian Random field
# with matern (cross) covariance function
scale_1 = 0.25/3
scale_2 = 0.2/3
scale_12 = 0.15/3
sill_1=1
sill_2=1
18 GeoCovmatrix
smooth=0.5
pcol=0.3
param=list(mean_1=0,mean_2=0,scale_1=scale_1,scale_2=scale_2,scale_12=scale_12,
sill_1=sill_1,sill_2=sill_2,nugget_1=0,nugget_2=0,
smooth_1=smooth,smooth_12=smooth,smooth_2=smooth,pcol=pcol)
data <- GeoSim(coordx=coords, corrmodel="Bi_Matern", param=param)$data
# Empirical bivariate variogram estimation:
biv_vario=GeoVariogram(data,coordx=coords, bivariate=TRUE,maxdist=c(1,1,1))
# selecting fixed and estimating parameters
fixed=list(mean_1=0,mean_2=0,nugget_1=0,nugget_2=0,
smooth_1=smooth,smooth_12=smooth,smooth_2=smooth)
start=list(sill_1=var(data[1,]),sill_2=var(data[2,]),
scale_1=scale_1,scale_2=scale_2,scale_12=scale_12,
pcol=cor(data[1,],data[2,]))
# Maximum likelihood fitting of the bivariate random field:
fit<- GeoFit(data, coordx=coords, corrmodel="Bi_Matern",likelihood="Marginal",
type="Pairwise",start=start,fixed=fixed,maxdist=c(0.1,0.1,0.1))
GeoCovariogram(fit, vario=biv_vario,show.vario=TRUE,pch=20)
GeoCovmatrix Spatial and Spatio-temporal (tapered) Covariance Matrix
Description
The function computes the covariance matrix associated to a spatial or spatio-temporal or a bivariate
spatial Gaussian or non Gaussian randomm field with given covariance model and a set of spatial
location sites and temporal instants.
Usage
GeoCovmatrix(coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel,
distance="Eucl", grid=FALSE, maxdist=NULL, maxtime=NULL,
model="Gaussian", n=1, param, radius=6371, sparse=FALSE,
taper=NULL, tapsep=NULL, type="Standard",X=NULL)
Arguments
coordx A numeric (d×2)-matrix (where dis the number of spatial sites) giving 2-
dimensions of spatial coordinates or a numeric d-dimensional vector giving 1-
dimension of spatial coordinates. Coordinates on a sphere for a fixed radius
radius are passed in lon/lat format expressed in decimal degrees.
coordy A numeric vector giving 1-dimension of spatial coordinates; coordy is inter-
preted only if coordx is a numeric vector or grid=TRUE otherwise it will be
ignored. Optional argument, the default is NULL then coordx is expected to be
numeric a (d×2)-matrix.
GeoCovmatrix 19
coordt A numeric vector giving 1-dimension of temporal coordinates. At the moment
implemented only for the Gaussian case. Optional argument, the default is NULL
then a spatial random field is expected.
coordx_dyn A list of Tnumeric (dt×2)-matrices containing dynamical (in time) coordinates.
Optional argument, the default is NULL
corrmodel String; the name of a correlation model, for the description see the Section De-
tails.
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See GeoFit.
grid Logical; if FALSE (the default) the data are interpreted as spatial or spatial-
temporal realisations on a set of non-equispaced spatial sites (irregular grid).
See GeoFit.
maxdist Numeric; an optional positive value indicating the marginal spatial compact sup-
port in the case of tapered covariance matrix. See GeoFit.
maxtime Numeric; an optional positive value indicating the marginal temporal compact
support in the case of spacetime tapered covariance matrix. See GeoFit.
nNumeric; the number of trials in a binomial random fields. Default is 1.
model String; the type of RF. See GeoFit.
param A list of parameter values required for the covariance model.
radius Numeric; a value indicating the radius of the sphere when using covariance
models valid using the great circle distance. Default value is the radius of the
earth in Km (i.e. 6371)
sparse Logical; if TRUE the function return an object of class spam. This option should
be used when a parametric compactly supporte covariance is used. Default is
FALSE.
taper String; the name of the taper correlation function if type is Tapering, see the
Section Details.
tapsep Numeric; an optional value indicating the separabe parameter in the space-time
non separable taper or the colocated correlation parameter in a bivariate spatial
taper (see Details).
type String; the type of covariance matrix Standard (the default) or Tapering for
tapered covariance matrix.
XNumeric; Matrix of space-time covariates.
Details
In the spatial case, the covariance matrix of the random vector
[Z(s1), . . . , Z(sn,)]T
with a specific spatial covariance model is computed. Here nis the number of the spatial location
sites.
In the space-time case, the covariance matrix of the random vector
[Z(s1, t1), Z(s2, t1), . . . , Z(sn, t1), . . . , Z(sn, tm)]T
with a specific space time covariance model is computed. Here mis the number of temporal in-
stants.
20 GeoCovmatrix
In the bivariate case, the covariance matrix of the random vector
[Z1(s1), Z2(s1), . . . , Z1(sn), Z2(sn)]T
with a specific spatial bivariate covariance model is computed.
The location site sican be a point in the d-dimensional euclidean space with d= 2 or a point (given
in lon/lat degree format) on a sphere of arbitrary radius.
Here there is the list of all the implemented space and space-time and bivariate correlation models.
The argument param is a list including all the parameters of a given correlation model specified
by the argument corrmodel. For each correlation model one can check the associated correlation
parameters using CorrParam. In what follows κ > 0,β > 0,α, αs, αt(0,2], and γ[0,1]. The
associated parameters in the argument param are smooth,power2,power,power_s,power_t and
sep respectively. Moreover let 1(A)=1when Ais true and 0otherwise.
Spatial correlation models:
1. Cauchy defined as:
R(h) = 1 + h2β/2
It is a special case of the Gencauchy model.
2. Exp defined as:
R(h) = eh
This model is a special case of the Matern and the Stable model.
3. Gauss defined as:
R(h) = eh2
This model is a special case of the stable model.
4. GenCauchy (generalised Cauchy) defined as:
R(h) = (1 + hα)β
If his the geodesic distance then α(0,1].
5. Matern defined as:
R(h) = 21κΓ(κ)1hκKκ(h)
If his the geodesic distance then κ(0,0.5]
6. Stable defined as:
R(h) = ehα
If his the geodesic distance then α(0,1].
7. W ave defined as:
R(h) = sin(h)/h
This model is valid only for dimensions less than or equal to 3.
8. W end0defined as:
R(h) = (1 h)µ1(h[0,1])
where µ0.5(d+ 1). If his the geodesic distance then µ2.
9. W end1defined as:
R(h) = (1 h)µ+1(1 + (µ+ 1)h)1(h[0,1])
where µ0.5(d+ 1) + 1. If his the geodesic distance then µ4.
GeoCovmatrix 21
10. W end2defined as:
R(h) = (1 h)µ+2(1 + (µ+ 2)h+ (1/3)((µ+ 1)21)h2)1(h[0,1])
where µ0.5(d+ 1) + 2. If his the geodesic distance then µ6.
11. GenW end (Generalized Wendland) defined as:
R(h) = Z1
h
[(1 x)µ1(x2h2)κ11(h[0,1])]dx/B(2κ+ 1, µ)
where µ0.5(d+ 1) + κ. The cases κ= 0,1,2correspond to the W end0,W end1and
W end2respectively.
12. Multiquadric defined as:
R(h) = (1 α0.5)2β/(1 + (α0.5)2αcos(h))β, h [0, π]
This model is valid on the unit sphere and his the geodesic distance.
13. Sinpower defined as:
R(h)=1(sin(h/2))α, h [0, π]
This model is valid on the unit sphere and his the geodesic distance.
14. Smoke defined as:
R(h) = K1F2(1/α, 1+ 0.5,2+ 0.5 + κ), h [0, π]
where K= (Γ(a)Γ(i))/Γ(i)Γ(o)). This model is valid on the unit sphere and his the
geodesic distance.
Spatio-temporal correlation models.
Non-separable models:
1. Gneiting defined as:
R(h, u) = ehαs/((1+uαt)0.5γαs)/(1 + uαt)
2. Gneiting_GC
R(h, u) = euαt/((1+hαs)0.5γαt)/(1 + hαs)
where hcan be both the euclidean and the geodesic distance
3. Iacocesare
R(h, u) = (1 + hαs+uα
t)β
4. P orcu
R(h, u) = (0.5(1 + hαs)γ+ 0.5(1 + uαt)γ)γ1
5. P orcu1
R(h, u)=(ehαs(1+uαt)0.5γαs)/((1 + uαt)1.5)
6. Stein
R(h, u)=(hψ(u)Kψ(u)(h))/(2ψ(u)Γ(ψ(u) + 1))
where ψ(u) = ν+u0.5αt
7. W enx_space,x= 0,1,2defined as:
R(h, u) = φ(u)3.5+2xW enx(h/φ(u), µs), x = 0,1,2
where φ(u) = (1 + u0.5αt)γ,0< γ αt/2,µs0.5(d+ 5) + x.
22 GeoCovmatrix
8. W enx_time,x= 0,1,2defined as:
R(h, u) = φ(h)3.5+2xW enx(u/φ(h); µt), x = 0,1,2
where φ(h) = (1 + h0.5αs)γ,0< γ αs/2,µt0.5(d+ 5) + x.
9. Multiquadric_st defined as:
R(h, u) = ((1 0.5αs)2/(1 + (0.5αs)2αsψ(u)cos(h)))as, h [0, π]
where ψ(u) = (1 + (u/at)αt)1. This model is valid on the unit sphere and his the
geodesic distance.
10. Sinpower_st defined as:
R(h, u) = (eαscos(h)ψ(u)/as(1 + αscos(h)ψ(u)/as))/k
where ψ(u) = (1+(u/at)αt)1and k= (1+αs/as)exp(αs/as), h [0, π]This
model is valid on the unit sphere and his the geodesic distance.
Separable models.
Space-time separable correlation models are easly obtained as the product of a spatial and
a temporal correlation model, that is
R(h, u) = R(h)R(u)
Several combinations are possible:
1. Exp_Exp defined as:
R(h, u) = Exp(h)Exp(u)
2. Matern_Matern defined as:
R(h, u) = Matern(h;κs)Matern(u;κt)
3. Stable_Stable defined as:
R(h, u) = Stable(h;αs)Stable(u;αt)
4. W endx_W endy defined as
R(h, u) = W endx(h;µs)W endy(u;µt), x, y = 0,1,2
.
Note that some models are nested. (The Exp_Exp with M atern_Matern for instance.)
Spatial bivariate correlation models (see below):
1. Bi_Matern (Bivariate full Matern model)
2. Bi_Matern_contr (Bivariate Matern model with contrainsts)
3. Bi_Matern_sep (Bivariate separable Matern model )
4. Bi_LMC (Bivariate linear model of coregionalization)
5. Bi_LMC_contr (Bivariate linear model of coregionalization with constraints )
6. Bi_W endx (Bivariate full Wendland model)
7. Bi_W endx_contr (Bivariate Wendland model with contrainsts)
8. Bi_W endx_sep (Bivariate separable Wendland model)
Spatial taper.
For spatial covariance tapering the taper functions are:
GeoCovmatrix 23
1. Bohman defined as:
T(h) = (1 h)(sin(2πh)/(2πh)) + (1 cos(2πh))/(2π2h)1[0,1](h)
2. W endlandx, x = 0,1,2defined as:
T(h) = W endx(h;x+ 2), x = 0,1,2
.
Spatio-temporal tapers.
For spacetime covariance tapering the taper functions are:
1. W endlandx_W endlandy (Separable tapers) x, y = 0,1,2defined as:
T(h, u) = W endx(h;x+ 2)W endy(h;y+ 2), x, y = 0,1,2.
2. W endlandx_time (Non separable temporal taper) x= 0,1,2defined as: W enx_time,
x= 0,1,2assuming αt= 2,µs= 3.5 + xand γ[0,1] to be fixed using tapsep.
3. W endlandx_space (Non separable spatial taper) x= 0,1,2defined as: W enx_space,
x= 0,1,2assuming αs= 2,µt= 3.5 + xand γ[0,1] to be fixed using tapsep.
Spatial bivariate taper (see below).
1. Bi_W endlandx, x = 0,1,2
Remarks:
In what follows we assume σ2, σ2
1, σ2
2, τ2, τ 2
1, τ2
2, a, as, at, a11, a22, a12, κ11, κ22, κ12, f11, f12, f21, f22
positive.
The associated parameters in param are sill,sill_1,sill_2,nugget,nugget_1,nugget_2,scale,scale_s,scale_t,
scale_1,scale_2,scale_12,smooth_1,smooth_2,smooth_12,a_1,a_12,a_21,a_2 respectively.
Let R(h)be a spatial correlation model given in standard notation. Then the covariance model
applied with arbitrary variance, nugget and scale equals to:
C(h)=(σ2+τ21(h= 0))R(h/a, , ...), h 0
Similarly if R(h, u)is a spatio-temporal correlation model given in standard notation, then the
covariance model is:
C(h, u)=(σ2+τ21(h= 0, u = 0))R(h/as, u/at, ...)h0, u 0
Here ‘... stands for additional parameters.
Let R(h)be a spatial taper given in standard notation. Then the taper function applied with an
arbitrary compact support (ds) equals to:
T(h) = R(h/ds)
Then the tapered covariance function is given by:
Ctap(h) = T(h)C(h)
Similarly if R(h, u)is a spatio-temporal taper given in standard notation, then the taper function
applied with arbitrary compact supports (ds, dt)Tequals to:
T(h, u) = R(h/ds, u/dt)
Then the tapered covariance function is given by:
Ctap(h, u) = T(h, u)C(h, u)
Compact supports dsand dtcan be set by the user with maxdist and maxtime.
The bivariate models implemented are the following :
24 GeoCovmatrix
1. Bi_Matern defined as:
Cij (h) = ρij (σiσj+τ2
i1(i=j, h = 0))M atern(h/aij , κij )i, j = 1,2. h 0
where ρ=ρ12 =ρ21 is the correlation colocated parameter and ρii = 1. The model
Bi_Matern_sep (separable matern) is a special case when a=a11 =a12 =a22 and
κ=κ11 =κ12 =κ22. The model Bi_Matern_contr (constrained matern) is a special case
when a12 = 0.5(a11 +a22)and κ12 = 0.5(κ11 +κ22)
2. Bi_W endx (x= 0,1,2) defined as:
Cij (h) = ρij (σiσj+τ2
i1(i=j, h = 0))W endx(h/aij , νij + 1) i, j = 1,2. h 0
where ρ=ρ12 =ρ21 is the correlation colocated parameter and ρii = 1. The model
Bi_W endx_sep (separable wendland) is a special case when a=a11 =a12 =a22 and
µ=µ11 =µ12 =µ22. The model Bi_W endx_contr (constrained matern) is a special case
when a12 = 0.5(a11 +a22)and µ12 = 0.5(µ11 +µ22)
3. Bi_LMC defined as:
Cij (h) =
2
X
k=1
(fikfjk +τ2
i1(i=j, h = 0))R(h/ak)
where R(h)is a correlation model. The model Bi_LM C_contr is a special case when f=
f12 =f21. Bivariate LMC models, in the current version of the package, is obtained with
R(h)equal to the exponential correlation model.
The bivariate spatial tapers implemented are the following :
1. Bi_W endlandx,x= 0,1,2defined as:
Tij (h) = rij W endx(h/dij , x), i, j = 1,2x= 0,1,2h0
with rii = 1 and r12 =r21 to be fixed using tapsep.
If Tij (h)is a bivariate taper, Then the tapered bivariate covariance function is given by:
Ctap
ij (h) = Tij (h)Cij (h)
Compact supports d11, d12, d22 can be set by the user with maxdist.
Value
Returns an object of class CovMat. An object of class CovMat is a list containing at most the
following components:
bivariate Logical:TRUE if the Gaussian random field is bivariaete otherwise FALSE;
coordx Ad-dimensional vector of spatial coordinates;
coordy Ad-dimensional vector of spatial coordinates;
coordt At-dimensional vector of temporal coordinates;
coordx_dyn A list of tmatrices of spatial coordinates;
covmatrix The covariance matrix if type isStandard. An object of class spam if type is
Tapering or Standard and sparse is TRUE.
corrmodel String: the correlation model;
distance String: the type of spatial distance;
GeoCovmatrix 25
grid Logical:TRUE if the spatial data are in a regular grid, otherwise FALSE;
nozero In the case of tapered matrix the percentage of non zero values in the covariance
matrix. Otherwise is NULL.
maxdist Numeric: the marginal spatial compact support if type is Tapering;
maxtime Numeric: the marginal temporal compact support if type is Tapering;
nThe number of trial for Binomial RFs
namescorr String: The names of the correlation parameters;
numcoord Numeric: the number of spatial coordinates;
numtime Numeric: the number the temporal coordinates;
model The type of RF, see GeoFit.
param Numeric: The covariance parameters;
tapmod String: the taper model if type is Tapering. Otherwise is NULL.
spacetime TRUE if spatio-temporal and FALSE if spatial covariance model;
sparse Logical: is the returned object of class spam? ;
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
References
Daley J. D., Porcu E., Bevilacqua M. (2015) Classes of compactly supported covariance functions
for multivariate random fields. Stochastic Environmental Research and Risk Assessment. 29 (4),
1249–1263.
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
Gneiting, T. (2013), Strictly and Non-Strictly Positive Definite Functions on Spheres Bernoulli, 19,
1327-1349.
Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. Journal of
the American Statistical Association, 97, 590–600.
Gneiting T, Kleiber W., Schlather M. 2010. Matern cross-covariance functions for multivariate
random fields. Journal of the American Statistical Association, 105, 1167–1177.
Porcu, E.,Bevilacqua, M. and Genton M. (2015) Spatio-Temporal Covariance and Cross-Covariance
Functions of the Great Circle Distance on a Sphere. Journal of the American Statistical Association.
DOI: 10.1080/01621459.2015.1072541
See Also
GeoKrig,GeoSim,GeoFit
Examples
library(GeoModels)
library(spam)
################################################################
###
### Example 1. Spatial covariance matrix associated to
### a Matern correlation model
26 GeoCovmatrix
###
###############################################################
# Define the spatial-coordinates of the points:
x <- runif(500, 0, 1)
y <- runif(500, 0, 1)
coords <- cbind(x,y)
# Correlation Parameters for Matern model
CorrParam("Matern")
# Matern Parameters
param=list(smooth=0.5,sill=1,scale=0.2,nugget=0)
matrix1 <- GeoCovmatrix(coordx=coords, corrmodel="Matern", param=param)
dim(matrix1$covmatrix)
################################################################
###
### Example 2. Spatial tapered Covariance matrix associated to
### a Matern correlation model
###
###############################################################
matrix2 <- GeoCovmatrix(coordx=coords, corrmodel="Matern", param=param,
maxdist=0.2,taper="Wendland1",type="Tapering")
# Tapered covariance matrix
as.matrix(matrix2$covmatrix)[1:15,1:15]
# Percentage of no zero values in the tapered matrix
matrix2$nozero
################################################################
###
### Example 3. Spatial covariance matrix associated to
### a Generalized Wendland correlation model
###
###############################################################
# Gen Wendland Parameters
param=list(sill=1,scale=0.2,nugget=0,smooth=0,power2=4)
matrix3 <- GeoCovmatrix(coordx=coords, corrmodel="GenWend", param=param,
,sparse=TRUE,maxdist=0.1)
# Percentage of no zero values in the tapered matrix
matrix3$nozero
################################################################
###
### Example 4. Spatial covariance matrix associated to
### a Generalized Cauchy correlation model
GeoCovmatrix 27
###
###############################################################
# Gen Cauchy Parameters
param=list(sill=1,scale=0.2,nugget=0,power1=1,power2=1)
# Correlation Parameters for Gen Cauchy model
CorrParam("GenCauchy")
matrix4 <- GeoCovmatrix(coordx=coords, corrmodel="GenCauchy", param=param)
matrix4$covmatrix[1:4,1:4]
################################################################
###
### Example 5. Covariance matrix associated to
### a space-time double exponential correlation model
###
###############################################################
# Define the temporal-coordinates:
times <- seq(1, 4, 1)
# Define covariance parameters
param=list(scale_s=0.3,scale_t=0.5,sill=1)
# Correlation Parameters for double exp model
CorrParam("Exp_Exp")
# Simulation of a spatial Gaussian random field:
matrix5 <- GeoCovmatrix(coordx=coords, coordt=times, corrmodel="Exp_Exp",
param=param)
dim(matrix5$covmatrix)
################################################################
###
### Example 6. Covariance matrix associated to
### a skew gaussian RF with Exp correlation model
###
###############################################################
param=list(sill=1,scale=0.3/3,nugget=0,skew=4)
# Simulation of a spatial Gaussian random field:
matrix6 <- GeoCovmatrix(coordx=coords, corrmodel="Exp", param=param,
model="SkewGaussian")
# covariance matrix
matrix6$covmatrix[1:10,1:10]
################################################################
###
### Example 7. Covariance matrix associated to
### a Weibull RF with Genwend correlation model
28 GeoCovmatrix
###
###############################################################
param=list(sill=1,scale=0.3,nugget=0,shape=4,mean=0,smooth=1,power2=5)
# Simulation of a spatial Gaussian random field:
matrix7 <- GeoCovmatrix(coordx=coords, corrmodel="GenWend", param=param,
sparse=TRUE,model="Weibull")
# covariance matrix
matrix7$nozero
################################################################
###
### Example 8. Covariance matrix associated to
### a binomial gaussian RF with Wendland correlation model
###
###############################################################
param=list(sill=1,scale=0.2,nugget=0,power2=4)
# Simulation of a spatial Gaussian random field:
matrix8 <- GeoCovmatrix(coordx=coords, corrmodel="Wend0", param=param,n=5,
model="Binomial")
# covariance matrix
matrix8$covmatrix[1:10,1:10]
################################################################
###
### Example 9. Covariance matrix associated to
### a bivariate Matern exponential correlation model
###
###############################################################
set.seed(8)
# Define the spatial-coordinates of the points:
x <- runif(10, -1, 1)
y <- runif(10, -1, 1)
coords <- cbind(x,y)
# Parameters
param=list(scale=0.3,mean_1=0,mean_2=0,sill_1=1,sill_2=1,
nugget_1=0,nugget_2=0,smooth=0.5,pcol=-0.25)
# Covariance matrix
matrix9 <- GeoCovmatrix(coordx=coords, corrmodel="Bi_matern_sep", param=param)$covmatrix
head(matrix8)
GeoFit 29
GeoFit Max-Likelihood-Based Fitting of Gaussian and non Gaussian RFs.
Description
Maximum weighted composite-likelihood fitting for Gaussian and some Non-Gaussian univariate
spatial, spatio-temporal and bivariate spatial RFs The function returns the model parameters’ esti-
mates and the estimates’ variances. Moreover the function allows to fix any of the parameters and
setting upper/lower bound in the optimization.
Usage
GeoFit(data, coordx, coordy=NULL, coordt=NULL,coordx_dyn=NULL, corrmodel, distance="Eucl",
fixed=NULL,GPU=NULL, grid=FALSE, likelihood='Marginal', local=c(1,1),lower=NULL,
maxdist=NULL, maxtime=NULL, method="cholesky", model='Gaussian',
n=1, onlyvar=FALSE ,optimizer='Nelder-Mead',radius=6371, sensitivity=FALSE,
sparse=FALSE, start=NULL, taper=NULL, tapsep=NULL,type='Pairwise',
upper=NULL, varest=FALSE, vartype='SubSamp', weighted=FALSE, winconst=NULL,
winstp=NULL,winconst_t=NULL, winstp_t=NULL,X=NULL)
Arguments
data Ad-dimensional vector (a single spatial realisation) or a (d×d)-matrix (a single
spatial realisation on regular grid) or a (t×d)-matrix (a single spatial-temporal
realisation) or an (d×d×t×n)-array (a single spatial-temporal realisation on
regular grid). For the description see the Section Details.
coordx A numeric (d×2)-matrix (where dis the number of spatial sites) assigning 2-
dimensions of spatial coordinates or a numeric d-dimensional vector assigning
1-dimension of spatial coordinates. Coordinates on a sphere for a fixed radius
radius are passed in lon/lat format expressed in decimal degrees.
coordy A numeric vector assigning 1-dimension of spatial coordinates; coordy is in-
terpreted only if coordx is a numeric vector or grid=TRUE otherwise it will be
ignored. Optional argument, the default is NULL then coordx is expected to be
numeric a (d×2)-matrix.
coordt A numeric vector assigning 1-dimension of temporal coordinates. Optional ar-
gument, the default is NULL then a spatial RF is expected.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
corrmodel String; the name of a correlation model, for the description see the Section De-
tails.
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See the Section Details.
fixed An optional named list giving the values of the parameters that will be consid-
ered as known values. The listed parameters for a given correlation function will
be not estimated.
GPU Numeric; if NULL (the default) no OpenCL computation is performed. The user
can choose the device to be used. Use DeviceInfo() function to see available
devices, only double precision devices are allowed
30 GeoFit
grid Logical; if FALSE (the default) the data are interpreted as spatial or spatial-
temporal realisations on a set of non-equispaced spatial sites (irregular grid).
likelihood String; the configuration of the composite likelihood. Marginal is the default,
see the Section Details.
local Numeric; number of local work-items of the OpenCL setup
lower An optional named list giving the values for the lower bound of the space pa-
rameter when the optimizer is L-BFGS-B or optimize. T he names of the list
must be the same of the names in the start list.
maxdist Numeric; an optional positive value indicating the maximum spatial distance
considered in the composite or tapered likelihood computation. See the Section
Details for more information.
maxtime Numeric; an optional positive value indicating the maximum temporal separa-
tion considered in the composite or tapered likelihood computation (see De-
tails).
method String; the type of matrix decomposition used in the simulation. Default is
cholesky. The other possible choices is svd.
model String; the type of RF and therefore the densities associated to the likelihood
objects. Gaussian is the default, see the Section Details.
nNumeric; number of trials in a binomial RF; number of successes in a negative
binomial RF
optimizer String; the optimization algorithm (see optim for details). Nelder-Mead is the
default. Other possible choices are nlm and L-BFGS-B. In this last case upper
and lower bounds can be passed by the user. In the case of one-dimensional
optimization, the function optimize is used.
onlyvar Logical; if TRUE (and varest is TRUE) only the variance covariance matrix is
computed without optimizing. FALSE is the default.
radius Numeric; the radius of the sphere in the case of lon-lat coordinates. The default
is 6371, the radius of the earth.
sensitivity Logical; if TRUE then the sensitivy matrix is computed
sparse Logical; if TRUE then maximum likelihood is computed using sparse matrices
algorithms (spam packake).It should be used with compactly supported covari-
ance models.FALSE is the default.
start An optional named list with the initial values of the parameters that are used
by the numerical routines in maximization procedure. NULL is the default (see
Details).
taper String; the name of the type of covariance matrix. It can be Standard (the
default value) or Tapering for taperd covariance matrix.
tapsep Numeric; an optional value indicating the separabe parameter in the space time
adaptive taper (see Details).
type String; the type of the likelihood objects. If Pairwise (the default) then the
marginal composite likelihood is formed by pairwise marginal likelihoods (see
Details).
upper An optional named list giving the values for the upper bound of the space pa-
rameter when the optimizer is or L-BFGS-B or optimize. The names of the list
must be the same of the names in the start list.
varest Logical; if TRUE the estimates’ variances and standard errors are returned. FALSE
is the default.
GeoFit 31
vartype String; (SubSamp the default) the type of method used for computing the esti-
mates’ variances, see the Section Details.
weighted Logical; if TRUE the likelihood objects are weighted, see the Section Details. If
FALSE (the default) the composite likelihood is not weighted.
winconst Numeric; a positive value for computing the spatial sub-window in the sub-
sampling procedure. See Details for more information.
winstp Numeric; a value in (0,1] for defining the the proportion of overlapping in the
spatial sub-sampling procedure. The case 1correspond to no overlapping. See
Details for more information.
winconst_t Numeric; a positive value for computing the temporal sub-window in the sub-
sampling procedure. See Details for more information.
winstp_t Numeric; a value in (0,1] for defining the the proportion of overlapping in the
temporal sub-sampling procedure. The case 1correspond to no overlapping.
See Details for more information.
XNumeric; Matrix of spatio(temporal)covariates in the linear mean specification.
Details
Note, that the standard likelihood may be seen as particular case of the composite likelihood. In
this respect GeoFit provides maximum likelihood fitting. Only composite likelihood estimation
based on pairs are considered. Specifically marginal pairwise likelihood is considered for each type
of random field (Gaussian and not Gaussian). In the Gaussian case other types of estimation are
available: conditional and difference pairwise likelihood, covariance tapering and cross-validation
method.
The optimization method is specified using optimizer. The default method is Nelder-mead and
other available methods are nlm,BFGS and L-BFGS-B. In this last case upper and lower bounds
constraints in the optimization can be specified using lower and upper.
Depending on the dimension of data and on the name of the correlation model, the observations
are assumed as a realization of a spatial, spatio-temporal or bivariate RF. Specifically, with data,
coordx,coordy,coordt parameters:
If data is a numeric d-dimensional vector, coordx and coordy are two numeric d-dimensional
vectors (or coordx is (d×2)-matrix and coordy=NULL), then the data are interpreted as a single
spatial realisation observed on dspatial sites;
If data is a numeric (t×d)-matrix, coordx and coordy are two numeric d-dimensional vectors
(or coordx is (d×2)-matrix and coordy=NULL), coordt is a numeric t-dimensional vector,
then the data are interpreted as a single spatial-temporal realisation of a RF observed on d
spatial sites and for ttimes.
If data is a numeric (2×d)-matrix, coordx and coordy are two numeric d-dimensional vectors
(or coordx is (d×2)-matrix and coordy=NULL), then the data are interpreted as a single spatial
realisation of a bivariate RF observed on dspatial sites.
If data is a list, coordxdyn is a list and coordt is a numeric t-dimensional vector, then the
data are interpreted as a single spatial-temporal realisation of a RF observed on dynamical
spatial sites (different locations sites for each temporal instants) and for ttimes.
It is possible consider data on a regular grid using option grid=TRUE. Specifically:
If data is a numeric (d×d)-matrix, coordx and coordy are two numeric d-dimensional
vectors, grid=TRUE, then the data are interpreted as a single spatial RF realisation observed
on dequispaced spatial sites (named regular grid).
32 GeoFit
If data is a numeric (d×d×t)-array, coordx and coordy are two numeric d-dimensional
vectors, coordt is a numeric t-dimensional vector, grid=TRUE, then the data are interpreted
as a single spatial-temporal realisation of a RF observed on dequispaced spatial sites and for
ttimes.
If data is a numeric (d×d×2)-array, coordx and coordy are two numeric d-dimensional
vectors, grid=TRUE, then the data are interpreted as a single realisation of a bivariate RF
observed on dequispaced spatial sites.
When grid=FALSE is is possible to specify a matrix of covariates using X. Specifically:
In the spatial case Xmust be a (d×k) covariates matrix associated to data a numeric d-
dimensional vector;
In the spatiotemporal case Xmust be a (N×k) covariates matrix associated to data a numeric
(t×d)-matrix, where N=t×d;
In the spatiotemporal case Xmust be a (N×k) covariates matrix associated to data a numeric
(t×d)-matrix, where N= 2 ×d;
The corrmodel parameter allows to select a specific correlation function for the RF. (See GeoCovmatrix
).
The distance parameter allows to consider differents kinds of spatial distances. The settings alter-
natives are:
1. Eucl, the euclidean distance (default value);
2. Chor, the chordal distance;
3. Geod, the geodesic distance;
The likelihood parameter represents the composite-likelihood configurations. The settings alter-
natives are:
1. Conditional, the composite-likelihood is formed by conditionals likelihoods;
2. Marginal, the composite-likelihood is formed by marginals likelihoods;
3. Full, the composite-likelihood turns out to be the standard likelihood;
The model parameter indicates the type of RF considered. The available options are:
RF with marginal symmetric distribution:
Gaussian, for a Gaussian RF
Logistic, for a Logistic RF (see Bevilacqua, M. Caamano C., Gaetan , C. 2018)
StudentT, for a StudentT RF (see Bevilacqua, M. Caamano C., 2018)
RF with positive right skewed marginal distribution:
Gamma for a Gamma RF (see Bevilacqua, M. Caamano C., 2018)
Gamma for a Weibull RF (see Bevilacqua, M. Caamano C., 2018)
LogGaussian for a LogGaussian RF
LogLogistics for a LogLogistic RF (see Bevilacqua, M. Caamano C., Gaetan , C. 2018)
RF with with possibly asymmetric marginal distribution:
SkewGaussian for a skew Gaussian RF (see Hao Zhang, H. and El-Shaarawi A. (2010))
SinhAsinh for Sinh-arcsinh RF (see Bevilacqua, M. Caamano C., 2018)
GeoFit 33
RF with for directional data
Wrapped for a wrapped Gaussian RF (see Alegria A., Bevilacqua, M., Porcu, E. (2016))
Rf with marginal counts data
Binomial for a Binomial RF (see Bevilacqua, M. Caamano C., Gaetan C. (2018))
BinomialNeg for a negative Binomial RF(see Bevilacqua, M. Caamano C., Gaetan C. (2018))
For a given model the associated parameters are given by nuisance and covariance parameters. In
order to obtain the nuisance parameter use NuisParam. In order to obtain the covariance parameter
associated to a given covariance model use CorrParam.
All the nuisance and covariance parameters must be specified by the user using the start and the
fixed parameter. Specifically:
The start parameter allows to specify (as starting values for the optimization) the parameters to be
estimated. The fixed parameter allows to fix some of the parameters.
Regression parameters in the linear specfication must be specified as mean,mean1,..meank (see
NuisParam). In this case a matrix of covariates with suitable dimension can be specified using the
parameter X. In the case of a single mean then Xshould not be specified and it is interpreted as a
vector of ones.
The taper parameter, optional in case that type=Tapering, indicates the type of taper correlation
model. (See GeoCovmatrix)
The type parameter represents the type of likelihood used in the composite-likelihood definition.
The possible alternatives are listed in the following scheme.
If a Gaussian or (any) non Gaussian RF is considered then the possible combination is marginal
pairwise likelihoods (likelihood=Marginal) and type="Pairwise").
If a Gaussian RF is considered (model=Gaussian) then:
If the composite is formed by marginal likelihoods (likelihood=Marginal):
Pairwise, the composite-likelihood is defined by the pairwise likelihoods;
Difference, the composite-likelihood is defined by likelihoods which are obtained as
difference of the pairwise likelihoods.
If the composite is formed by conditional likelihoods (likelihood=Conditional)
Pairwise, the composite-likelihood is defined by the pairwise conditional likelihoods.
If the composite is formed by a full likelihood (likelihood=Full):
Standard, the objective function is the classical multivariate likelihood;
Restricted, the objective function is the restricted version of the full likelihood (e.g.
Harville 1977, see References);
Tapering, the objective function is the tapered 2 (unbiased estimating equation) version
of the full likelihood (e.g. Kaufman et al. 2008, see References);
Tapering1, the objective function is the tapered 1 (biased estimating equation) version
of the full likelihood (e.g. Kaufman et al. 2008, see References);
CV, the objective function is the cross validation estimation method ;
The maxdist parameter set the maximum spatial distance below which pairs of sites with inferior
distances are considered in the composite-likelihood. This can be lower of the maximum spatial
distance. Note that this corresponds to use a weighted composite-likelihood with binary weights.
Pairs with distance less than maxdist have weight 1 and are included in the likelihood computation,
instead those with greater distance have weight 0 and then excluded. The default is NULL, in this
case the effective maximum spatial distance between sites is considered.
34 GeoFit
The same arguments of maxdist are valid for maxtime but here the weigthed composite-likelihood
regards the case of spatial-temporal field. At the moment is implemented only for Gaussian RFs.
The default is NULL, in this case the effective maximum temporal lag between pairs of observations
is considered.
In the case of tapering likelihood maxdist and maxtime describes the spatial and temporal compact
support of the taper (see GeoCovmatrix). If they are not specified then the maximum spatial and
temporal distances are considered. In the case of space time adaptive taper the tapsep parameter
allows to specify the spatio temporal compact support (see GeoCovmatrix).
The varest parameter specifies if the standard error estimation of the estimated parameters must
be computed. For Gaussian RF and standard (restricted) likelihood estimation, standard errors are
computed as square root of the diagonal elements of the Fisher Information matrix (asymptotic
covariance matrix of the estimates under increasing domain). For Gaussian RF and tapered and
composite likelihood estimation, standard errors estimate are computed as square root of the diag-
onal elements of the Godambe Information matrix. (asymptotic covariance matrix of the estimates
under increasing domain (see Shaby, B. and D. Ruppert (2012) for tapering and Bevilacqua et.
al. (2012) , Bevilacqua and Gaetan (2013) for weighted composite likelihood)). The vartype pa-
rameter specifies the method used to compute the estimates’ variances in the composite likelihood
case. In particular for estimating the variability matrix Jin the Godambe expression matrix. This
parameter is considered if varest=TRUE. The options are:
SubSamp (the default), indicates the Sub-Sampling method;
The weighted parameter specifies if the likelihoods forming the composite-likelihood must be
weighted. If TRUE the weights are selected by opportune procedures that improve the efficient
of the maximum composite-likelihood estimator (not implemented yet). If FALSE the efficient im-
provement procedure is not used.
For computing the standard errors by the sub-sampling procedure, winconst and winstp param-
eters represent respectively a positive constant used to determine the sub-window size and the the
step with which the sub-window moves.
In the spatial case (subset of R2), the domain is seen as a rectangle B×H, therefore the size of the
sub-window side bis given by b=winconst ×p(B)(similar is of h). For a complete description
see Lee and Lahiri (2002). By default winconst is set B/(4 ×p(B)). This way we ensure to
have at least eight spatial blocks. The winstp parameter is used to determine the sub-window step.
The latter is given by the proportion of the sub-window size, so that when winstp=1 there is not
overlapping between contiguous sub-windows. In the spatial case by default winstp=0.5. The
sub-window is moved by successive steps in order to cover the entire spatial domain. Observations,
that fall in disjoint or overlapping windows are considered indipendent samples.
In the spatio-temporal case the subsampling is meant only in time as described by Li et al. (2007).
Thus, winconst_t represents the lenght of the temporal sub-window. By default the size of the
sub-window is computed following the rule established in Li et al. (2007). By default winstp is the
time step.
Value
Returns an object of class GeoFit. An object of class GeoFit is a list containing at most the
following components:
bivariate Logical:TRUE if the Gaussian RF is bivariate, otherwise FALSE;
clic The composite information criterion, if the full likelihood is considered then it
coincides with the Akaike information criterion;
coordx Ad-dimensional vector of spatial coordinates;
GeoFit 35
coordy Ad-dimensional vector of spatial coordinates;
coordt At-dimensional vector of temporal coordinates;
coordx_dyn A list of dynamical (in time) spatial coordinates;
convergence A string that denotes if convergence is reached;
corrmodel The correlation model;
data The vector or matrix or array of data;
distance The type of spatial distance;
fixed The vector of fixed parameters;
iterations The number of iteration used by the numerical routine;
likelihood The configuration of the composite likelihood;
logCompLik The value of the log composite-likelihood at the maximum;
maxdist The maximum spatial distance used in the weigthed composite likelihood. If no
spatial distance is specified then it is NULL;
maxtime The maximum temporal distance used in the weigthed composite likelihood. If
no spatial distance is specified then it is NULL;
message Extra message passed from the numerical routines;
model The density associated to the likelihood objects;
nThe number of trials in a binominal RF;the number of successes in a negative
Binomial RFs;
nozero In the case of tapered likelihood the percentage of non zero values in the covari-
ance matrix. Otherwise is NULL.
numcoord The number of spatial coordinates;
numtime The number of the temporal realisations of the RF;
param The vector of parameters’ estimates;
param The radius of the sphere in the case of great circle distance;
stderr The vector of standard errors;
sensmat The sensitivity matrix;
varcov The matrix of the variance-covariance of the estimates;
varimat The variability matrix;
vartype The method used to compute the variance of the estimates;
type The type of the likelihood objects.
winconst The constant used to compute the window size in the spatial sub-sampling;
winstp The step used for moving the window in the spatial sub-sampling;
winconst_t The constant used to compute the window size in the spatio-temporal sub-sampling;
winstp_ The step used for moving the window in the spatio-temporal sub-sampling;
XThe matrix of covariates;
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
36 GeoFit
References
Maximum Restricted Likelihood Estimator:
Harville, D. A. (1977) Maximum Likelihood Approaches to Variance Component Estimation and
to Related Problems. Journal of the American Statistical Association,72, 320–338.
Tapered likelihood:
Kaufman, C. G., Schervish, M. J. and Nychka, D. W. (2008) Covariance Tapering for Likelihood-
Based Estimation in Large Spatial Dataset. Journal of the American Statistical Association,103,
1545–1555.
Shaby, B. and D. Ruppert (2012). Tapered covariance: Bayesian estimation and asymptotics. J.
Comp. Graph. Stat.,21-2, 433–452.
Composite-likelihood:
Varin, C., Reid, N. and Firth, D. (2011). An Overview of Composite Likelihood Methods. Statistica
Sinica,21, 5–42.
Varin, C. and Vidoni, P. (2005) A Note on Composite Likelihood Inference and Model Selection.
Biometrika,92, 519–528.
Weighted Composite-likelihood for binary RFs:
Patrick, J. H. and Subhash, R. L. (1998) A Composite Likelihood Approach to Binary Spatial Data.
Journal of the American Statistical Association, Theory & Methods,93, 1099–1111.
Weighted Composite-likelihood for wrapped directional RFs:
Alegria A., Bevilacqua, M., Porcu, E. (2016) Likelihood-based inference for multivariate space-
time wrapped-Gaussian fields. Journal of Statistical Computation and Simulation.86(13), 2583–
2597.
Weighted Composite-likelihood for Gaussian RFs:
Bevilacqua, M. Gaetan, C., Mateu, J. and Porcu, E. (2012) Estimating space and space-time co-
variance functions for large data sets: a weighted composite likelihood approach. Journal of the
American Statistical Association, Theory & Methods,107, 268–280.
Bevilacqua, M. Gaetan, C. (2013) On composite likelihood inference based on pairs for spatial
Gaussian RFs Techical Report, Department of Statistics, de Valparaiso University.
Sub-sampling estimation:
Carlstein, E. (1986) The Use of Subseries Values for Estimating the Variance. The Annals of Statis-
tics,14, 1171–1179.
Heagerty, P. J. and Lumley T. (2000) Window Subsampling of Estimating Functions with Applica-
tion to Regression Models. Journal of the American Statistical Association, Theory & Methods,95,
197–211.
Lee, Y. D. and Lahiri S. N. (2002) Variogram Fitting by Spatial Subsampling. Journal of the Royal
Statistical Society. Series B,64, 837–854.
Li, B., Genton, M. G. and Sherman, M. (2007). A nonparametric assessment of properties of space-
time covariance functions. Journal of the American Statistical Association,102, 736–744
Examples
library(GeoModels)
library(fields)
###############################################################
############ Examples of spatial Gaussian RFs ################
GeoFit 37
###############################################################
################################################################
###
### Example 1, 2, 3: Estimation of a spatial Gaussian RF with
### exponential correlation using and pairwise likelihood
### maximum likelihood and tapering likelihood
###############################################################
# Define the spatial-coordinates of the points:
set.seed(3)
N=400 # number of location sites
x <- runif(N, 0, 1)
set.seed(6)
y <- runif(N, 0, 1)
coords <- cbind(x,y)
# Define spatial matrix covariates
X=cbind(rep(1,N),runif(N))
# Set the covariance model's parameters:
corrmodel <- "Exp"
mean <- 0.2
mean1 <- -0.5
sill <- 1
nugget <- 0
scale <- 0.2/3
param<-list(mean=mean,mean1=mean1,sill=sill,nugget=nugget,scale=scale)
# Simulation of the spatial Gaussian RF:
data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param,X=X)$data
fixed<-list(nugget=nugget)
start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill)
################################################################
###
### Example 1. Maximum pairwise likelihood fitting of
### Gaussian RFs with exponential correlation.
###
###############################################################
fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel,
maxdist=0.05,likelihood="Marginal",type="Pairwise",
start=start,fixed=fixed,X=X)
print(fit1)
################################################################
###
### Example 2. Standard Maximum likelihood fitting of
### Gaussian RFs with exponential correlation.
###
###############################################################
fit2 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel,
likelihood="Full",type="Standard",
start=start,fixed=fixed,X=X)
print(fit2)
38 GeoFit
################################################################
###
### Example 3. Tapered Maximum likelihood fitting of
### Gaussian RFs with exponential correlation.
###
###############################################################
fit3 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel,
likelihood="Full",type="Tapering",taper="Wendland1",
maxdist=0.1,start=start,fixed=fixed,X=X)
print(fit3)
###############################################################
############ Examples of spatial non-Gaussian RFs #############
###############################################################
################################################################
###
### Example 4. Maximum pairwise likelihood fitting of spatial
### Gamma and Weibull RFs with Wendland correlation
###
###############################################################
set.seed(524)
# Define the spatial-coordinates of the points:
N=500
x <- runif(N, 0, 1)
y <- runif(N, 0, 1)
coords <- cbind(x,y)
X=cbind(rep(1,N),runif(N))
mean=1; mean1=2 # regression parameters
nugget=0
shape=2
scale=0.2
model="Weibull"
corrmodel="Wend0"
param=list(mean=mean,mean1=mean1,sill=1-nugget,scale=scale,shape=shape,nugget=nugget,power2=4)
# Simulation of a non stationary weibull RF:
data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model,X=X,
param=param)$data
fixed<-list(nugget=nugget,power2=4,sill=1-nugget)
start<-list(mean=mean,mean1=mean1,scale=scale,shape=shape)
# Maximum pairwise composite-likelihood fitting of the RF:
fit <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
maxdist=.05,likelihood="Marginal",type="Pairwise",X=X,
start=start,fixed=fixed)
print(fit$param)
model="Gamma"
start<-list(mean=mean,mean1=mean1,scale=scale)
fixed<-list(nugget=nugget,power2=4,sill=1-nugget,shape=6)
GeoFit 39
# Maximum pairwise composite-likelihood fitting of the RF:
fit <- GeoFit(data=data,coordx=coords,corrmodel="Wend0", model=model,
maxdist=.05,likelihood="Marginal",type="Pairwise",X=X,
start=start,fixed=fixed)
print(fit$param)
################################################################
###
### Example 5. Maximum pairwise likelihood fitting of
### StudendT spatial RFs with Wendland correlation
###
###############################################################
set.seed(15274)
# Define the spatial-coordinates of the points:
N=300
x <- runif(N, 0, 1)
y <- runif(N, 0, 1)
coords <- cbind(x,y)
X=cbind(rep(1,N),runif(N))
mean=1; mean1=2 # regression parameters
nugget=0
sill=0.5
scale=0.2
df=4 ## degrees of freedom
model="StudentT"
corrmodel="Wend0"
param=list(mean=mean,mean1=mean1,sill=sill,scale=scale,df=1/df,nugget=nugget,power2=4)
# Simulation of a studentT RF:
data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model,X=X,
param=param)$data
## estimation assuming df unknown
fixed<-list(nugget=nugget,power2=4)
start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill,df=1/df)
# Maximum pairwise composite-likelihood fitting of the RF:
fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
maxdist=.05,likelihood="Marginal",type="Pairwise",X=X,
start=start,fixed=fixed)
print(fit1$param)
## df must be rounded and fixed
df=round(1/(as.numeric(fit1$param['df'])))
fixed<-list(nugget=nugget,power2=4,df=1/df)
start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill)
# Maximum pairwise composite-likelihood fitting of the RF:
fit <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
maxdist=.05,likelihood="Marginal",type="Pairwise",X=X,
start=start,fixed=fixed)
print(fit$param)
################################################################
###
### Example 6. Maximum pairwise likelihood fitting of
### SinhAsinh-Gaussian spatial RFs with Wendland correlation
###
###############################################################
40 GeoFit
set.seed(261)
model="SinhAsinh"
# Define the spatial-coordinates of the points:
x <- runif(500, 0, 1)
y <- runif(500, 0, 1)
coords <- cbind(x,y)
corrmodel="Wend0"
mean=0;nugget=0
sill=1
skew=-0.5
tail=1.5
power2=4
c_supp=0.2
# model parameters
param=list(power2=power2,skew=skew,tail=tail,
mean=mean,sill=sill,scale=c_supp,nugget=nugget)
data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data
plot(density(data))
fixed=list(power2=power2,nugget=nugget)
start=list(scale=c_supp,skew=skew,tail=tail,mean=mean,sill=sill)
# Maximum pairwise likelihood:
fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
maxdist=0.05,likelihood="Marginal",type="Pairwise",
start=start,fixed=fixed)
print(fit1$param)
# Maximum likelihood:
fit2 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
likelihood="Full",type="Standard",
start=start,fixed=fixed)
print(fit2$param)
################################################################
###
### Example 7. Maximum pairwise likelihood fitting of
### Binomial and negative Binomial RFs
### with exponential correlation.
###
###############################################################
set.seed(422)
N=350
x <- runif(N, 0, 1)
y <- runif(N, 0, 1)
coords <- cbind(x,y)
mean=0.1; mean1=0.8; mean2=-0.5 # regression parameters
X=cbind(rep(1,N),runif(N),runif(N)) # marix covariates
corrmodel <- "Wend0"
param=list(mean=mean,mean1=mean1,mean2=mean2,sill=1,nugget=0,scale=0.2,power2=4)
# Simulation of the spatial Binomial-Gaussian RF:
data <- GeoSim(coordx=coords, corrmodel=corrmodel, model="Binomial", n=10,X=X,
param=param)$data
fixed <- list(nugget=nugget,power2=4,sill=1)
GeoFit 41
start <- list(scale=0.2,mean=mean,mean1=mean1,mean2=mean2)
# Maximum pairwise likelihood:
fit1 <- GeoFit(data=data, coordx=coords, corrmodel=corrmodel,n=10, X=X,
maxdist=0.05,model="Binomial", fixed=fixed,
start=start)
print(fit1)
set.seed(220)
# Simulation of the spatial Negative Binomial-Gaussian RF:
data <- GeoSim(coordx=coords, corrmodel=corrmodel, model="BinomialNeg", n=5,X=X,
param=param)$data
# Maximum pairwise likelihood:
fit2 <- GeoFit(data=data, coordx=coords, corrmodel=corrmodel, n=5,X=X,
maxdist=0.05,model="BinomialNeg", fixed=fixed,
start=start)
print(fit2)
###############################################################
######### Examples of spatio-temporal RFs ###########
###############################################################
set.seed(52)
# Define the temporal sequence:
time <- seq(1, 10, 1)
# Define the spatial-coordinates of the points:
x <- runif(20, 0, 1)
set.seed(42)
y <- runif(20, 0, 1)
coords=cbind(x,y)
# Set the covariance model's parameters:
corrmodel="Exp_Exp"
scale_s=0.2/3
scale_t=1
sill=1
nugget=0
mean=0
param<-list(mean=0,scale_s=scale_s,scale_t=scale_t,
sill=sill,nugget=nugget)
# Simulation of the spatial-temporal Gaussian RF:
data <- GeoSim(coordx=coords,coordt=time,corrmodel=corrmodel,
param=param)$data
################################################################
###
### Example 8. Maximum pairwise likelihood fitting of a
### space time Gaussian RF with double-exponential correlation.
###
###############################################################
# Fixed parameters
fixed<-list(nugget=nugget)
# Starting value for the estimated parameters
start<-list(mean=mean,scale_s=scale_s,scale_t=scale_t,sill=sill)
42 GeoFit
# Maximum composite-likelihood fitting of the RF:
fit <- GeoFit(data=data,coordx=coords,coordt=time,
corrmodel="Exp_Exp",maxtime=1,maxdist=0.3,
likelihood="Marginal",type="Pairwise",
start=start,fixed=fixed)
print(fit)
################################################################
###
### Example 9. Maximum standard likelihood fitting of a
### space time Gaussian RF observed on dynamical spatial coordinates
### with double-exponential correlation.
###############################################################
maxN=50
coordx_dyn=list()
set.seed(31)
for(k in 1:length(time))
{
NN=sample(1:maxN,size=1)
x <- runif(NN, 0, 1)
y <- runif(NN, 0, 1)
coordx_dyn[[k]]=cbind(x,y)
}
data <- GeoSim(coordx_dyn=coordx_dyn, coordt=time, corrmodel="Exp_Exp",
param=param)$data
fit <- GeoFit(data=data,coordx_dyn=coordx_dyn,coordt=time,
corrmodel="Exp_Exp",
likelihood="Full",type="Standard",
start=start,fixed=fixed)
print(fit)
###############################################################
######### Examples of spatial bivariate RFs ###########
###############################################################
################################################################
###
### Example 10. Maximum, and pairwise likelihood fitting of a
### bivariate Gaussian RF with separable Bivariate matern
### (cross) correlation model.
###
###############################################################
# Define the spatial-coordinates of the points:
set.seed(5)
x <- runif(250, 0, 1)
y <- runif(250, 0, 1)
coords=cbind(x,y)
# parameters
param=list(mean_1=0,mean_2=0,scale=0.1,smooth=0.5,sill_1=1,sill_2=1,
GeoKrig 43
nugget_1=0,nugget_2=0,pcol=0.2)
# Simulation of a spatial Gaussian RF:
data <- GeoSim(coordx=coords, corrmodel="Bi_Matern_sep",
param=param)$data
# selecting fixed and estimated parameters
fixed=list(nugget_1=0,nugget_2=0,smooth=0.5)
start=list(mean_1=0,mean_2=0,sill_1=var(data[1,]),sill_2=var(data[2,]),
scale=0.1,pcol=cor(data[1,],data[2,]))
# Maximum pairwise likelihood
fitcl<- GeoFit(data=data, coordx=coords, corrmodel="Bi_Matern_sep",
likelihood="Marginal",type="Pairwise",start=start,
fixed=fixed,maxdist=c(0.05,0.05,0.05))
print(fitcl)
# Maximum likelihood :
fitml<- GeoFit(data=data, coordx=coords, likelihood="Full",
corrmodel="Bi_Matern_sep", type="Standard",
start=start, fixed=fixed)
print(fitml)
GeoKrig Spatial (bivariate) and spatio temporal optimal linear prediction for
Gaussian and non Gaussian RFs.
Description
For a given set of spatial location sites and temporal instants, the function computes optimal linear
prediction and associated mean square error for the Gaussian and non Gaussian case.
Usage
GeoKrig(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel,distance="Eucl",
grid=FALSE, loc, maxdist=NULL, maxtime=NULL, method="cholesky",
model="Gaussian", n=1,nloc=NULL,mse=FALSE, lin_opt=TRUE,
param, radius=6371, sparse=FALSE,taper=NULL,tapsep=NULL,
time=NULL, type="Standard",type_mse=NULL,
type_krig="Simple",weigthed=TRUE,which=1, X=NULL,Xloc=NULL)
Arguments
data Ad-dimensional vector (a single spatial realisation) or a (d×d)-matrix (a single
spatial realisation on regular grid) or a (t×d)-matrix (a single spatial-temporal
realisation) or an (d×d×t×n)-array (a single spatial-temporal realisation on
regular grid) giving the data used for prediction.
coordx A numeric (d×2)-matrix (where dis the number of spatial sites) giving 2-
dimensions of spatial coordinates or a numeric d-dimensional vector giving 1-
dimension of spatial coordinates used for prediction. qndd-dimensional vector
giving 1-dimension of spatial coordinates. Coordinates on a sphere for a fixed
radius radius are passed in lon/lat format expressed in decimal degrees.
44 GeoKrig
coordy A numeric vector giving 1-dimension of spatial coordinates used for prediction;
coordy is interpreted only if coordx is a numeric vector or grid=TRUE other-
wise it will be ignored. Optional argument, the default is NULL then coordx is
expected to be numeric a (d×2)-matrix.
coordt A numeric vector giving 1-dimension of temporal coordinates used for predic-
tion; the default is NULL then a spatial random field is expected.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
corrmodel String; the name of a correlation model, for the description see the Section De-
tails.
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See the Section Details of GeoFit.
grid Logical; if FALSE (the default) the data used for prediction are interpreted as
spatial or spatial-temporal realisations on a set of non-equispaced spatial sites
(irregular grid).
lin_opt Logical;If TRUE (default) then optimal (pairwise) linear kriging is computed.
Otherwise optimal (pairwise) kriging is computed in the mean square sense.
loc A numeric (n×2)-matrix (where nis the number of spatial sites) giving 2-
dimensions of spatial coordinates to be predicted.
maxdist Numeric; an optional positive value indicating the maximum spatial compact
support in the case of covariance tapering kriging.
maxtime Numeric; an optional positive value indicating the maximum temporal compact
support in the case of covasriance tapering kriging.
method String; the type of matrix decomposition used in the simulation. Default is
cholesky. The other possible choices is svd.
nNumeric; the number of trials in a binomial random fields. Default is 1.
nloc Numeric; the number of trials of the locations sites to be predicted in a binomial
random fields type II. Default is 1.
mse Logical; if TRUE (the default) MSE of the kriging predictor is computed
model String; the type of RF and therefore the densities associated to the likelihood
objects. Gaussian is the default, see the Section Details.
param A list of parameter values required for the correlation model.See the Section
Details.
radius Numeric: the radius of the sphere if coordinates are passed in lon/lat format;
sparse Logical; if TRUE kriging is computed with sparse matrices algorithms using spam
package. Default is FALSE. It should be used with compactly supported covari-
ances.
taper String; the name of the taper correlation function, see the Section Details.
tapsep Numeric; an optional value indicating the separabe parameter in the space time
quasi taper (see Details).
time A numeric (m×1) vector (where mis the number of temporal instants) giving the
temporal instants to be predicted; the default is NULL then only spatial prediction
is performed.
type String; if Standard then standard kriging is performed;if Tapering then krig-
ing with covariance tapering is performed;if Pairwise then pairwise kriging is
performed
GeoKrig 45
type_mse String; if Theoretical then theoretical MSE pairwise kriging is computed. If
SubSamp then an estimation based on subsampling is computed.
type_krig String; the type of kriging. If Simple (the default) then simple kriging is per-
formed. (See the Section Details).
weigthed Logical; if TRUE then decreasing weigths coming from a compactly supported
correlation function with compact support maxdist (maxtime)are used in the
pairwise kriging.
which Numeric; In the case of bivariate (tapered) cokriging it indicates which variable
to predict. It can be 1 or 2
XNumeric; Matrix of spatio(temporal)covariates in the linear mean specification.
Xloc Numeric; Matrix of spatio(temporal)covariates in the linear mean specification
associated to predicted locations.
Details
Best linear unbiased predictor and associated mean square error is computed for Gaussian and some
non Gaussian cases. Specifically, for a spatial or spatio-temporal or spatial bivariate dataset, given
a set of spatial locations and temporal istants and a correlation model corrmodel with some fixed
parameters and given the type of RF (model) the function computes simple kriging, for the specified
spatial locations loc and temporal instants time, providing also the respective mean square error.
For the choice of the spatial or spatio temporal correlation model see details in GeoCovmatrix func-
tion. The list param specifies mean and covariance parameters, see CorrParam and GeoCovmatrix
for details. The type_krig parameter indicates the type of kriging. In the case of simple kriging,
the known mean can be specified by the parameter mean in the list param (See examples). In the
Gaussian case, it is possible to perform kriging based on covariance tapering for simple kriging
(Furrer et. al, 2008). In this case, space or space-time tapered function and spatial or spatio- tem-
poral compact support must be specified. For the choice of a space or space-time tapered function
see GeoCovmatrix. When performing kriging with covariance tapering, sparse matrix algorithms
are exploited using the package spam.
Value
Returns an object of class Kg. An object of class Kg is a list containing at most the following
components:
bivariate TRUE if spatial bivariate cokriging is performed, otherwise FALSE;
coordx Ad-dimensional vector of spatial coordinates used for prediction;
coordy Ad-dimensional vector of spatial coordinates used for prediction;
coordt At-dimensional vector of temporal coordinates used for prediction;
corrmodel String: the correlation model;
covmatrix The covariance matrix if type is Standard. An object of class spam if type is
Tapering
data The vector or matrix or array of data used for prediction
distance String: the type of spatial distance;
grid TRUE if the spatial data used for prediction are observed in a regular grid, other-
wise FALSE;
loc A (n×2)-matrix of spatial locations to be predicted.
nThe number of trial for Binomial RFs
46 GeoKrig
nozero In the case of tapered simple kriging the percentage of non zero values in the
covariance matrix. Otherwise is NULL.
numcoord Numeric:he number dof spatial coordinates used for prediction;
numloc Numeric: the number nof spatial coordinates to be predicted;
numtime Numeric: the number dof the temporal instants used for prediction;
numt Numeric: the number mof the temporal instants to be predicted;
model The type of RF, see GeoFit.
param Numeric: The covariance parameters;
pred A (m×n)-matrix of spatio or spatio temporal kriging prediction;
radius Numeric: the radius of the sphere if coordinates are pssed in lon/lat format;
spacetime TRUE if spatio-temporal kriging and FALSE if spatial kriging;
tapmod String: the taper model if type is Tapering. Otherwise is NULL.
time Am-dimensional vector of temporal coordinates to be predicted;
type String: the type of kriging (Standard or Tapering).
type_krig String: the type of kriging.
mse A (m×n)-matrix of spatio or spatio temporal mean square error kriging predic-
tion;
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
References
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
Furrer R., Genton, M.G. and Nychka D. (2006). Covariance Tapering for Interpolation of Large
Spatial Datasets. Journal of Computational and Graphical Statistics, 15-3, 502–523.
See Also
GeoCovmatrix
Examples
library(GeoModels)
library(fields)
################################################################
############### Examples of Spatial kriging ###################
################################################################
# Define the spatial-coordinates of the points:
set.seed(79)
x <- runif(200, 0, 1)
y <- runif(200, 0, 1)
coords<-cbind(x,y)
# Set the exponential cov parameters:
corrmodel_1 <- "exponential"
GeoKrig 47
mean<-0
sill<-1
nugget<-0
scale<-0.3/3
param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale)
# Set the wendland parameters (two compatible correlations):
corrmodel_2 <- "Wend0"
mean<-0
sill<-1
nugget<-0
power2=3
c_supp<-0.3
param_wen<-list(mean=mean,sill=sill,nugget=nugget,scale=c_supp,power2=power2)
# Simulation of the spatial Gaussian random field:
data <- GeoSim(coordx=coords, corrmodel=corrmodel_1,
param=param)$data
# locations to predict
xx<-seq(0,1,0.03)
loc_to_pred<-as.matrix(expand.grid(xx,xx))
################################################################
###
### Example 1. Spatial simple kriging of n sites of a
### Gaussian random fields with exponential correlation.
###
###############################################################
pr<-GeoKrig(loc=loc_to_pred,coordx=coords,corrmodel=corrmodel_1,
param= param, data=data,mse=TRUE)
################################################################
###
### Example 2. Spatial tapered simple kriging of n sites of a
### Gaussian random fields with exponential correlation.
###
###############################################################
pr_tap=GeoKrig(loc=loc_to_pred,coordx=coords,corrmodel=corrmodel_1,data=data,
param= param,type="Tapering",maxdist=0.2,taper="Wendland1",mse=TRUE)
################################################################
###
### Example 3. Spatial simple kriging of n sites of a
### Gaussian random fields using a compatible Wendland model
###
###############################################################
param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,power2=power2)
pr_wen=GeoKrig(loc=loc_to_pred,coordx=coords,corrmodel=corrmodel_2,data=data,
param=param_wen,sparse=TRUE,mse=TRUE)
colour <- rainbow(100)
par(mfrow=c(3,2))
zlim=c(-2.6,2.6)
48 GeoKrig
# simple kriging map prediction
image.plot(xx, xx, matrix(pr$pred,ncol=length(xx)),col=colour,
zlim=zlim,xlab="",ylab="",
main="Simple Kriging with exponential model ")
# simple kriging map prediction variance
image.plot(xx, xx, matrix(pr$mse,ncol=length(xx)),col=colour,
xlab="",ylab="",main="Std error")
# simple tapered kriging map prediction
image.plot(xx, xx, matrix(pr_tap$pred,ncol=length(xx)),col=colour,
zlim=zlim,xlab="",ylab="",main="Simple Tapered Kriging")
# simple taperd kriging map prediction variance
image.plot(xx, xx, matrix(pr_tap$mse,ncol=length(xx)),col=colour,
xlab="",ylab="",main="Std error")
# simple tapered kriging map prediction
image.plot(xx, xx, matrix(pr_wen$pred,ncol=length(xx)),col=colour,
zlim=zlim,xlab="",ylab="",main="Simple Kriging with Wendland model")
# simple kriging map prediction variance
image.plot(xx, xx, matrix(pr_wen$mse,ncol=length(xx)),col=colour,
xlab="",ylab="",main="Std error")
################################################################
###
### Example 4. Spatial simple kriging of a binomial
### random field
###
###############################################################
set.seed(312)
model="Binomial";n=6
# Define the spatial-coordinates of the points:
x <- runif(800)
y <- runif(800)
coords=cbind(x,y)
#### mean and covariance parameters ###
mean<-0
sill<-1
nugget<-0
scale<-0.2
#################
param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,power2=4)
# Simulation of the Binomial Gaussian random field:
data <- GeoSim(coordx=coords, corrmodel="Wend0",model=model,n=n,
sparse=TRUE,param=param)$data
par(mfrow=c(1,2))
#### map of simulated data
quilt.plot(x, y, data,nlevel=n+1,col=rainbow(n+1),zlim=c(0,n), main="Data")
GeoKrig 49
## estimation with pairwise likelihood
fixed=list(nugget=nugget,power2=4,sill=1)
start=list(mean=0,scale=scale)
# Maximum pairwise likelihood fitting :
fit <- GeoFit(data, coordx=coords, corrmodel="Wend0",model=model,n=n,
likelihood='Marginal', type='Pairwise',maxdist=0.03,
start=start,fixed=fixed)
# locations to predict
xx<-seq(0,1,0.03)
loc_to_pred<-as.matrix(expand.grid(xx,xx))
## simple kriging
pr<-GeoKrig(data=data, coordx=coords,loc=loc_to_pred,corrmodel="Wend0",model=model,n=n,
sparse=TRUE,param= as.list(c(fit$param,fixed)))
#standard binomial kriging
map_binom=matrix(round(pr$pred),ncol=length(xx))
image.plot(xx, xx, map_binom,nlevel=n+1,col=rainbow(n+1),zlim=c(0,n),
xlab="",ylab="",main="Simple Kriging ")
################################################################
###
### Example 5. Spatial simple kriging of a Weibull
### random field
###
###############################################################
set.seed(312)
model="Weibull";
# Define the spatial-coordinates of the points:
x <- runif(800)
y <- runif(800)
coords=cbind(x,y)
#### mean and covariance parameters ###
mean<-0
sill<-1
nugget<-0
scale<-0.2
shape=0.8
#################
param<-list(mean=mean,sill=sill,shape=shape,nugget=nugget,scale=scale,power2=4)
# Simulation of the Weibull random field:
data <- GeoSim(coordx=coords, corrmodel="Wend0",model=model,
sparse=TRUE,param=param)$data
par(mfrow=c(1,2))
#### map of simulated data
quilt.plot(x, y, data, main="Data")
50 GeoKrig
## estimation with pairwise likelihood
fixed=list(nugget=nugget,power2=4,sill=1)
start=list(mean=0,scale=scale,shape=shape)
# Maximum pairwise likelihood fitting :
fit <- GeoFit(data, coordx=coords, corrmodel="Wend0",model=model,
likelihood='Marginal', type='Pairwise',maxdist=0.03,
start=start,fixed=fixed)
# locations to predict
xx<-seq(0,1,0.04)
loc_to_pred<-as.matrix(expand.grid(xx,xx))
#optimal linear kriging
pr<-GeoKrig(data=data, coordx=coords,loc=loc_to_pred,corrmodel="Wend0",model=model,
sparse=TRUE,param= as.list(c(fit$param,fit$fixed)))
map_weibull=matrix(pr$pred,ncol=length(xx))
image.plot(xx, xx, map_weibull,
xlab="",ylab="",main="Simple Kriging ")
################################################################
###
### Example 5. Spatial simple kriging of a t
### random field
###
###############################################################
model="StudentT"
df=6
corrmodel <- "Wend0"
nsel=800
coords=cbind(runif(nsel),runif(nsel))
mean <- 0
sill <- 1.9
nugget <- 0
power2=4
scale <- 0.2
# Starting value for the estimated parameters
set.seed(3132)
param=list(nugget=nugget,mean=mean, scale=scale,sill=sill,df=1/df,power2=power2)
data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param,
model=model,sparse=TRUE)$data
fixed<-list(nugget=nugget,power2=4,df=1/df)
start<-list(mean=mean, scale=scale,sill=sill)
# Maximum pairwise composite-likelihood fitting of the RF:
fit <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel,
maxdist=0.02,likelihood="Marginal",type="Pairwise",
start=start,fixed=fixed, model = model)
GeoKrig 51
# locations to predict
xx<-seq(0,1,0.04)
loc_to_pred<-as.matrix(expand.grid(xx,xx))
#optimal linear kriging
pr<-GeoKrig(data=data, coordx=coords,loc=loc_to_pred,corrmodel="Wend0",model=model,
sparse=TRUE,param= as.list(c(fit$param,fit$fixed)))
par(mfrow=c(1,2))
#### map of simulated data
quilt.plot(coords[,1], coords[,2], data, main="Data")
map_t=matrix(pr$pred,ncol=length(xx))
image.plot(xx, xx, map_t,
xlab="",ylab="",main="Simple Kriging ")
################################################################
########### Examples of spatio temporal kriging ############
################################################################
# Define the spatial-coordinates of the points:
x <- runif(80, 0, 1)
y <- runif(80, 0, 1)
coords<-cbind(x,y)
times<-1:8
# Define model correlation and associated parameters
corrmodel<-"exp_exp"
param<-list(nugget=0,mean=0,scale_s=0.2/3,scale_t=1,sill=1)
# Simulation of the space time Gaussian random field:
set.seed(31)
data<-GeoSim(coordx=coords,coordt=times,corrmodel=corrmodel,
param=param)$data
# Maximum pairwise likelihood fitting of the space time random field:
start <- list(scale_s=0.2/3,scale_t=1,sill=1,mean=0)
fixed <- list(nugget=0)
fit <- GeoFit(data, coordx=coords, coordt=times,
corrmodel=corrmodel, likelihood='Marginal',
type='Pairwise',start=start,fixed=fixed,
maxdist=0.1,maxtime=1)
################################################################
###
### Example 6. Spatio temporal simple kriging of n locations
### sites and m temporal instants for a Gaussian random fields
### with estimated double exponential correlation.
###
###############################################################
set.seed(3)
param<-as.list(c(fit$param,fit$fixed))
# locations to predict
xx<-seq(0,1,0.04)
loc_to_pred<-as.matrix(expand.grid(xx,xx))
# Define the times to predict
52 GeoKrig
times_to_pred<-1:2
pr<-GeoKrig(loc=loc_to_pred,time=times_to_pred,coordx=coords,coordt=times,
corrmodel=corrmodel, param=param,data=data,mse=TRUE)
par(mfrow=c(2,2))
zlim=c(-2.5,2.5)
colour <- rainbow(100)
for(i in 1:2) {
image.plot(xx, xx, matrix(pr$pred[i,],ncol=length(xx)),col=colour,
zlim=zlim, main = paste(" Kriging Time=" , i),ylab="")
image.plot(xx, xx, matrix(pr$mse[i,],ncol=length(xx)),col=colour,
main = paste("Std err Time=" , i),ylab="")
}
################################################################
########### Examples of spatial bivariate cokriging ############
################################################################
################################################################
###
### Example 7. Bivariate simple cokriging of n locations
### for a Gaussian random fields with separable Matern correlation
###
###############################################################
# Define the spatial-coordinates of the points:
x <- runif(80, 0, 1)
y <- runif(80, 0, 1)
coords<-cbind(x,y)
# Simulation of a spatial bivariate Gaussian random field
# with Matern separable covariance model
set.seed(12)
param=list(scale=0.3/3,mean_1=0,mean_2=0,sill_1=1,sill_2=1,
nugget_1=0,nugget_2=0,pcol=0.7,smooth=0.5)
data <- GeoSim(coordx=coords, corrmodel="Bi_matern_sep", param=param)$data
fixed=list(nugget_1=0,nugget_2=0,smooth=0.5,mean_1=0,mean_2=0)
start=list(sill_1=var(data[,1]),sill_2=var(data[,2]),scale=0.3/3,
pcol=cor(data[1,],data[2,]))
# Maximum Composite likelihood fitting of the random field:
fitcl<- GeoFit(data, coordx=coords, corrmodel="Bi_matern_sep",
likelihood="Marginal",type="Pairwise",maxdist=0.1,
start=start,fixed=fixed)
# locations to predict
xx<-seq(0,1,0.04)
loc_to_pred<-as.matrix(expand.grid(xx,xx))
pr1<-GeoKrig(loc=loc_to_pred,coordx=coords,corrmodel="Bi_matern_sep",
param= as.list(c(fitcl$param,fitcl$fixed)), data=data,which=1,mse=TRUE)
GeoResiduals 53
pr2<-GeoKrig(loc=loc_to_pred,coordx=coords,corrmodel="Bi_matern_sep",
param= as.list(c(fitcl$param,fitcl$fixed)), data=data,which=2,mse=TRUE)
par(mfrow=c(2,2))
# simple kriging map prediction of the first variable
image.plot(xx, xx, matrix(pr1$pred,ncol=length(xx)),col=colour,
xlab="",ylab="",main="First Simple coKriging")
# simple kriging map prediction variance of the first variable
image.plot(xx, xx, matrix(pr1$mse,ncol=length(xx)),col=colour,
xlab="",ylab="",main="Std error")
# simple kriging map prediction of the second variable
image.plot(xx, xx, matrix(pr2$pred,ncol=length(xx)),col=colour,
xlab="",ylab="",main="Second Simple coKriging")
# simple kriging map prediction variance of the second variable
image.plot(xx, xx, matrix(pr2$mse,ncol=length(xx)),col=colour,
xlab="",ylab="",main="Std error")
GeoResiduals Computes fitted covariance and/or variogram
Description
The procedure return a GeoFit object associated to the estimated residuals
Usage
GeoResiduals(fit)
Arguments
fit A fitted object obtained from the GeoFit.
Value
A GeoFit object with the estimated residuals
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit.
54 GeoSim
Examples
library(GeoModels)
set.seed(211)
model="Weibull";shape=4
# Set the coordinates of the points:
x <- runif(700, 0, 1)
y <- runif(700, 0, 1)
coords=cbind(x,y)
# Set the model's parameters:
corrmodel <- "Wend0"
mean <- 5
sill <- 1
nugget <- 0
scale <- 0.3
power2=4
param=list(mean=mean,sill=sill, nugget=nugget, scale=scale,shape=shape,power2=power2)
# Simulation of the Gaussian RF:
data <- GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data
start=list(mean=mean,scale=scale,shape=shape)
fixed=list(nugget=nugget,sill=sill,power2=power2)
# Maximum composite-likelihood fitting of the BinomGaussian random field:
fit <- GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,
likelihood="Marginal",type='Pairwise',start=start,
fixed=fixed,maxdist=0.1)
res=GeoResiduals(fit)
# Empirical estimation of the variogram for the residuals:
vario <- GeoVariogram(res$data,coordx=coords,maxdist=0.5)
# Plot of covariance and variogram functions:
GeoCovariogram(res, show.vario=TRUE, vario=vario,pch=20)
GeoSim Simulation of Gaussian and non Gaussian Random Fields.
Description
Simulation of Gaussian and some non Gaussian spatial, spatio-temporal and spatial bivariate ran-
dom fields. The function return a realization of a Random Field for a given covariance model and
covariance parameters. Simulation is based on Cholesky decomposition.
Usage
GeoSim(coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl",
GPU=NULL, grid=FALSE, local=c(1,1),method="cholesky", model='Gaussian', n=1, param,
radius=6371, sparse=FALSE, X=NULL)
GeoSim 55
Arguments
coordx A numeric (d×2)-matrix (where dis the number of spatial sites) giving 2-
dimensions of spatial coordinates or a numeric d-dimensional vector giving 1-
dimension of spatial coordinates. Coordinates on a sphere for a fixed radius
radius are passed in lon/lat format expressed in decimal degrees.
coordy A numeric vector giving 1-dimension of spatial coordinates; coordy is inter-
preted only if coordx is a numeric vector or grid=TRUE otherwise it will be
ignored. Optional argument, the default is NULL then coordx is expected to be
numeric a (d×2)-matrix.
coordt A numeric vector giving 1-dimension of temporal coordinates. Optional argu-
ment, the default is NULL then a spatial RF is expected.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
corrmodel String; the name of a correlation model, for the description see the Section De-
tails.
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See the Section Details of GeoFit.
GPU Numeric; if NULL (the default) no GPU computation is performed.
grid Logical; if FALSE (the default) the data are interpreted as spatial or spatial-
temporal realisations on a set of non-equispaced spatial sites (irregular grid).
local Numeric; number of local work-items of the GPU
method String; the type of matrix decomposition used in the simulation. Default is
cholesky. The other possible choices is svd.
model String; the type of RF and therefore the densities associated to the likelihood
objects. Gaussian is the default, see the Section Details.
nNumeric; the number of trials for binomial RFs. The number of successes in the
negative Binomial RFs. Default is 1.
param A list of parameter values required in the simulation procedure of RFs, see Ex-
amples.
radius Numeric; a value indicating the radius of the sphere when using the great circle
distance. Default value is the radius of the earth in Km (i.e. 6371)
sparse Logical; if TRUE then cholesky decomposition is performed using sparse ma-
trices algorithms (spam packake). It should be used with compactly supported
covariance models.FALSE is the default.
XNumeric; Matrix of space-time covariates.
Value
Returns an object of class GeoSim. An object of class GeoSim is a list containing at most the
following components:
bivariate Logical:TRUE if the Gaussian RF is bivariate, otherwise FALSE;
coordx Ad-dimensional vector of spatial coordinates;
coordy Ad-dimensional vector of spatial coordinates;
coordt At-dimensional vector of temporal coordinates;
coordx_dyn A list of dynamical (in time) spatial coordinates;
56 GeoSim
corrmodel The correlation model; see GeoCovmatrix.
data The vector or matrix or array of data, see GeoFit;
distance The type of spatial distance;
model The type of RF, see GeoFit.
nThe number of trial for Binomial RFs;the number of successes in a negative
Binomial RFs;
numcoord The number of spatial coordinates;
numtime The number the temporal realisations of the RF;
param The vector of parameters’ estimates;
radius The radius of the sphere if coordinates are passed in lon/lat format;
randseed The seed used for the random simulation;
spacetime TRUE if spatio-temporal and FALSE if spatial RF;
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
Examples
library(GeoModels)
library(mapproj)
library(fields)
################################################################
###
### Example 1. Simulation of a spatial Gaussian RF on a regular grid
###
###############################################################
# Define the spatial-coordinates of the points:
x <- seq(0,1,0.045)
y <- seq(0,1,0.045)
set.seed(261)
# Simulation of a spatial Gaussian RF with Matern correlation function
data1 <- GeoSim(x,y,grid=TRUE, corrmodel="Matern", param=list(smooth=0.5,
mean=0,sill=1,scale=0.4/3,nugget=0))$data
# Simulation of a spatial Gaussian RF with Generalized Wendland correlation function
# using sparse alghorithm matrices
set.seed(261)
data2 <- GeoSim(x,y,grid=TRUE, corrmodel="GenWend", param=list(smooth=0,
power2=4,mean=0,sill=1,scale=0.4,nugget=0))$data
par(mfrow=c(1,2))
image.plot(x,y,data1,col=terrain.colors(100),main="Matern",xlab="",ylab="")
image.plot(x,y,data2,col=terrain.colors(100),main="Wendland",xlab="",ylab="")
################################################################
###
### Example 2. Simulation of a spatial binomial RF based on
### the latent Gaussian RF with exponential correlation
GeoSim 57
### on a regular grid
###
################################################################
# Define the spatial-coordinates of the points:
x <- seq(0, 1, 0.022)
y <- seq(0, 1, 0.022)
coords <- cbind(x,y)
set.seed(251)
n=5
# Simulation of a spatial Binomial RF:
sim <- GeoSim(x,y,grid=TRUE, corrmodel="Wend0",
model="Binomial",n=n,sparse=TRUE,
param=list(nugget=0,mean=0,scale=.2,sill=1,power2=4))
image.plot(x,y,sim$data,nlevel=n+1,col=terrain.colors(n+1),zlim=c(0,n))
################################################################
###
### Example 3. Simulation of a spatial Weibull RF
### with exponential correlation
###
###############################################################
# Define the spatial-coordinates of the points:
x <- seq(0,1,0.032)
y <- seq(0,1,0.032)
set.seed(261)
# Simulation of a spatial Gaussian RF with Matern correlation function
data1 <- GeoSim(x,y,grid=TRUE, corrmodel="Exponential",model="Weibull",
param=list(shape=1.2,mean=0,sill=1,scale=0.3/3,nugget=0))$data
image.plot(x,y,data1,col=terrain.colors(200),main="Weibull RF",xlab="",ylab="")
################################################################
###
### Example 4. Simulation of a spatial t RF
### with exponential correlation
###
###############################################################
# Define the spatial-coordinates of the points:
x <- seq(0,1,0.03)
y <- seq(0,1,0.03)
set.seed(268)
# Simulation of a spatial Gaussian RF with Matern correlation function
data1 <- GeoSim(x,y,grid=TRUE, corrmodel="GenWend",model="StudentT", sparse=TRUE,
param=list(df=1/4,mean=0,sill=1,scale=0.3,nugget=0,smooth=1,power2=5))$data
image.plot(x,y,data1,col=terrain.colors(100),main="Student-t RF",xlab="",ylab="")
################################################################
###
### Example 5. Simulation of a sinhasinh RF
### with Wend0 correlation.
58 GeoSim
###
###############################################################
# Define the spatial-coordinates of the points:
x <- runif(800, 0, 2)
y <- runif(800, 0, 2)
coords <- cbind(x,y)
set.seed(261)
corrmodel="Wend0"
# Simulation of a spatial Gaussian RF:
param=list(power2=4,skew=0,tail=1,
mean=0,sill=1,scale=0.2,nugget=0) ## gaussian case
data0 <- GeoSim(coordx=coords, corrmodel=corrmodel,
model="SinhAsinh", param=param,sparse=TRUE)$data
plot(density(data0),xlim=c(-7,7))
param=list(power2=4,skew=0,tail=0.7,
mean=0,sill=1,scale=0.2,nugget=0) ## heavy tails
data1 <- GeoSim(coordx=coords, corrmodel=corrmodel,
model="SinhAsinh", param=param,sparse=TRUE)$data
lines(density(data1),lty=2)
param=list(power2=4,skew=0.5,tail=1,
mean=0,sill=1,scale=0.2,nugget=0) ## asymmetry
data2 <- GeoSim(coordx=coords, corrmodel=corrmodel,
model="SinhAsinh", param=param,sparse=TRUE)$data
lines(density(data2),lty=3)
################################################################
###
### Example 6. Simulation of a bivariate Gaussian RF
### with separable bivariate exponential correlation model
### on a regular grid.
###
###############################################################
# Define the spatial-coordinates of the points:
x <- seq(-1,1,0.08)
y <- seq(-1,1,0.08)
# Simulation of a bivariate spatial Gaussian RF:
# with a separable Bivariate Matern
set.seed(12)
param=list(mean_1=0,mean_2=0,scale=0.12,smooth=0.5,
sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=0.5)
data <- GeoSim(x,y,grid=TRUE,corrmodel="Bi_matern_sep",
param=param)$data
par(mfrow=c(1,2))
image.plot(x,y,data[,,1],col=terrain.colors(100),main="1",xlab="",ylab="")
image.plot(x,y,data[,,2],col=terrain.colors(100),main="2",xlab="",ylab="")
GeoSim 59
################################################################
###
### Example 7. Simulation of a spatio temporal Gaussian RF.
### observed on dynamical location sites with double exponential correlation
###
###############################################################
# Define the dynamical spatial-coordinates of the points:
coordt=1:5
coordx_dyn=list()
maxN=40
set.seed(8)
for(k in 1:length(coordt))
{
NN=sample(1:maxN,size=1)
x <- runif(NN, 0, 1)
y <- runif(NN, 0, 1)
coordx_dyn[[k]]=cbind(x,y)
}
coordx_dyn
param<-list(nugget=0,mean=0,scale_s=0.2/3,scale_t=2/3,sill=1)
data <- GeoSim(coordx_dyn=coordx_dyn, coordt=coordt, corrmodel="Exp_Exp",
param=param)$data
## spatial realization at first temporal instants
data[[1]]
## spatial realization at third temporal instants
data[[3]]
################################################################
###
### Example 8. Simulation of a Gaussian RF
### with a Wend0 correlation on the planet earth
###
###############################################################
require(plot3D)
require(sphereplot)
distance="Geod";radius=6371
NN=4500 ## total point on the sphere on lon/lat format
set.seed(80)
coords=pointsphere(NN,c(-180,180),c(-90,90),c(radius,radius))
## Set the wendland parameters
corrmodel <- "Wend0"
param<-list(mean=0,sill=1,nugget=0,scale=radius*0.3,power2=3)
# Simulation of a spatial Gaussian RF on the sphere
#set.seed(2)
data <- GeoSim(coordx=coords,corrmodel=corrmodel,sparse=TRUE,
distance=distance,radius=radius,param=param)$data
#converting in 3d cartesian coordinates
b=sph2car(coords[,1], coords[,2], radius = radius, deg = TRUE)
60 GeoSim
x0 = b[,1]; y0 = b[,2]; z0 = b[,3]
# plotting
scatter3D(x0,y0,z0,colvar=data,clim=c(min(data),max(data)),pch=20,cex=0.8,
col=rainbow(200))
################################################################
###
### Example 9. Simulation of a Gaussian RF
### with Wend0 model on USA
###
###############################################################
distance="Geod";radius=6378.88
NN=40
x=seq(-125,-64,length.out=NN)
y=seq(27,50, length.out =NN)
nrow(expand.grid(x,y))
## Set the wendland parameters
corrmodel <- "Wend0"
param<-list(mean=0,sill=1,nugget=0,scale=radius*0.3,power2=3)
# Simulation of a spatial Gaussian RF on the sphere
#set.seed(2)
data <- GeoSim(x,y,grid=TRUE,corrmodel=corrmodel,sparse=TRUE,
distance=distance,radius=radius,param=param)$data
image.plot(x,y,data,col=terrain.colors(100),xlab="",ylab="")
map("usa", add = TRUE)
################################################################
###
### Example 10. Simulation of a Wrapped RF
### with exponential correlation
### on a regular grid
###
###############################################################
# Define the spatial-coordinates of the points:
x <- runif(200,0, 1)
y <- runif(200,0, 1)
coords <- cbind(x,y)
set.seed(251)
# Simulation of a spatial wrapped RF:
sim <- GeoSim(coordx=coords, corrmodel="Exp",
model="Wrapped",
param=list(nugget=0,mean=0,scale=.1,sill=1))$data
long <- 0.08;
x1 <- coords[,1] + long*cos(sim)
y1 <- coords[,2] + long*sin(sim)
eps <- 0.1
plot(0,xlim=c(0-eps,1+eps),ylim=c(0-eps,1+eps));
GeoTests 61
require(shape)
Arrows(coords[,1], coords[,2], x1, y1, arr.length = 0.2, code = 2, arr.type = "triangle",col=1)
GeoTests Statistical Hypothesis Tests for Nested Models
Description
The function performs statistical hypothesis tests for nested models based on composite or standard
likelihood versions of: Wald-type and Wilks-type (likelihood ratio) statistics.
Usage
GeoTests(object1, object2, ..., statistic)
Arguments
object1 An object of class GeoFit.
object2 An object of class GeoFit that is a nested model within object1.
... Further successively nested objects.
statistic String; the name of the statistic used within the hypothesis test (see Details).
Details
The implemented hypothesis tests for nested models are based on the following statistics:
1. Wald-type (Wald);
2. Likelihood ratio or Wilks-type (Wilks under standard likelihood); For composite likelihood
available variants of the basic version are:
Rotnitzky and Jewell adjustment (WilksRJ);
Satterhwaite adjustment (WilksS);
Chandler and Bate adjustment (WilksCB);
Pace, Salvan and Sartori adjustment (WilksPSS);
More specifically, consider an p-dimensional random vector Ywith probability density function
f(y;θ), where θΘis a q-dimensional vector of parameters. Suppose that θ= (ψ, τ)can
be partitioned in a q0-dimensional subvector ψand q00-dimensional subvector τ. Assume also to be
interested in testing the specific values of the vector ψ. Then, one can use some statistical hypothesis
tests for testing the null hypothesis H0:ψ=ψ0against the alternative H1:ψ6=ψ0. Composite
likelihood versions of ’Wald’ and ’score’ statistics have the usual asymptotic chi-square distribution
with q0degree of freedom. The Wald-type statistic is
W= ( ˆ
ψψ0)T(Gψψ)1(ˆ
θ)( ˆ
ψψ0),
where Gψψ is the q0×q0submatrix of the Godambe or Fisher information pertaining to ψand ˆ
θis
the maximum likelihood estimator from the full model. This statistic can be called from the routine
GeoTests assigning at the argument statistic the value: Wald.
62 GeoTests
Alternatively to the Wald-type statistic one can use the composite version of the Wilks-type or
likelihood ratio statistic, given by
W= 2[C`(ˆ
θ;y)C`{ψ0,ˆτ(ψ0); y}].
In the composite likelihood case, the asymptotic distribution of the composite likelihood ratio statis-
tic is given by
W˙X
i
λiχ2,
for i= 1, . . . , q0, where χ2
iare q0iid copies of a chi-square one random variable and λ1, . . . , λq0
are the eigenvalues of the matrix (Hψψ )1Gψψ. There exist several adjustments to the composite
likelihood ratio statistic in order to get an approximated χ2
q0. For example, Rotnitzky and Jewell
(1990) proposed the adjustment W0=W/¯
λwhere ¯
λis the average of the eigenvalues λi. This
statistic can be called within the routine by the value: WilksRJ. A better solution is proposed by
Satterhwaite (1946) defining W00 =νW/(q0¯
λ), where ν= (Piλ)2/Piλ2
ifor i= 1 ...,q0, is the
effective number of the degree of freedom. Note that in this case the distribution of the likelihood
ratio statistic is a chi-square random variable with νdegree of freedom. This statistic can be called
from the routine assigning the value: WilksS. For the adjustments suggested by Chandler and Bate
(2007) and Pace, Salvan and Sartori (2011) we refere to the articles (see References), these versions
can be called from the routine assigning respectively the values: WilksCB and WilksPSS.
Value
An object of class c("data.frame"). The object contain a table with the results of the tested
models. The rows represent the responses for each model and the columns the following results:
Num.Par The number of the model’s parameters.
Diff.Par The difference between the number of parameters of the model in the previous
row and those in the actual row.
Df The effective number of degree of freedom of the chi-square distribution.
Chisq The observed value of the statistic.
Pr(>chisq) The p-value of the quantile Chisq computed using a chi-squared distribution
with Df degrees of freedom.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
References
Chandler, R. E., and Bate, S. (2007). Inference for Clustered Data Using the Independence log-
likelihood. Biometrika,94, 167–183.
Pace, L., Salvan, A. and Sartori, N. (2011). Adjusting Composite Likelihood Ratio Statistics. Sta-
tistica Sinica,21, 129–148.
Rotnitzky, A. and Jewell, N. P. (1990). Hypothesis Testing of Regression Parameters in Semipara-
metric Generalized Linear Models for Cluster Correlated Data. Biometrika,77, 485–497.
Satterthwaite, F. E. (1946). An Approximate Distribution of Estimates of Variance Components.
Biometrics Bulletin,2, 110–114.
Varin, C., Reid, N. and Firth, D. (2011). An Overview of Composite Likelihood Methods. Statistica
Sinica,21, 5–42.
GeoTests 63
See Also
GeoFit.
Examples
library(GeoModels)
################################################################
###
### Example 1. Parametric test of Gaussianity
### using SinhAsinh random fields using standard likelihood
###
###############################################################
set.seed(314)
model="SinhAsinh"
# Define the spatial-coordinates of the points:
NN=500
x <- runif(NN, 0, 1)
y <- runif(NN, 0, 1)
coords <- cbind(x,y)
# Parameters
mean=0; nugget=0; sill=1
### skew and tail parameters
skew=0;tail=1 ## H0 i.e Gaussianity
# underlying model correlation
corrmodel="Wend0"
power2=4;c_supp=0.2
# simulation
param=list(power2=power2,skew=skew,tail=tail,
mean=mean,sill=sill,scale=c_supp,nugget=nugget)
data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data
##### H1
fixed=list(power2=power2,nugget=nugget,mean=mean)
start=list(scale=c_supp,skew=skew,tail=tail,sill=sill)
# Maximum pairwise composite-likelihood fitting of the RF:
fitH1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
likelihood="Full",type="Standard",varest=TRUE,
start=start,fixed=fixed)
fitH1$param
##### H0: Gaussianity (i.e tail1=1, skew=0 fixed)
fixed=list(power2=power2,nugget=nugget,mean=mean,tail=1,skew=0)
start=list(scale=c_supp,sill=sill)
# Maximum pairwise composite-likelihood fitting of the RF:
fitH0 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
likelihood="Full",type="Standard",varest=TRUE,
start=start,fixed=fixed)
# Wald statistic test
GeoTests(fitH1, fitH0 ,statistic='Wald')
64 GeoVarestbootstrap
# likelihood ratio statistic test
GeoTests(fitH1, fitH0 , statistic='Wilks')
################################################################
###
### Example 2. Composite likelihood-based hypothesis testing.
### Testing significance of a covariate parameter
###
###############################################################
set.seed(31)
# Define the spatial-coordinates of the points:
N=1500
x <- runif(N, 0, 1)
y <- runif(N, 0, 1)
X=cbind(rep(1,N),runif(N))
coords=cbind(x,y)
# Set the model's parameters:
corrmodel <- "Exp"
mean <- 1; mean1=0.3 ## H0: mean1=0
sill <- 1
nugget <- 0
scale <- 0.15/3
# Simulation of the spatial Gaussian random field:
data <- GeoSim(coordx=coords, corrmodel=corrmodel, param=list(mean=mean,mean1=mean1,
sill=sill,nugget=nugget,scale=scale),X=X)$data
# Pairwise-likelihood fitting of the random field, full model:
start=list(mean=mean,mean1=mean1,sill=sill,scale=scale)
fixed=list(nugget=nugget)
fitH1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, maxdist=0.01,
varest=TRUE,likelihood="Marginal",type="Pairwise",
fixed=fixed,start=start,X=X)
# Pairwise-likelihood fitting of the random field, with a nested model:
start=list(mean=mean,sill=sill,scale=scale)
fixed=list(nugget=nugget,mean1=0) # setting H0 restriction
fitH0 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, maxdist=0.01,
varest=TRUE,likelihood="Marginal",type="Pairwise",
fixed=fixed,start=start,X=X)
# Hypothesis testing results:
# composite Wald statistic test:
GeoTests(fitH1, fitH0 ,statistic='Wald')
# composite likelihood ratio statistic test with PSS adjustment:
GeoTests(fitH1, fitH0, statistic='WilksPSS')
GeoVarestbootstrap Update a GeoFit object using parametric bootstrap for std error esti-
mation
GeoVariogram 65
Description
The procedure update a GeoFit object estimating stderr estimation using parametric bootstrap.
Usage
GeoVarestbootstrap(fit,K=100,sparse=FALSE,GPU=NULL,local=c(1,1))
Arguments
fit A fitted object obtained from the GeoFit.
KThe number of simulations in the parametric bootstrap.
sparse Logical; if TRUE then cholesky decomposition is performed using sparse matri-
ces algorithms (spam packake).
GPU Numeric; if NULL (the default) no OpenCL computation is performed. The user
can choose the device to be used. Use DeviceInfo() function to see available
devices, only double precision devices are allowed
local Numeric; number of local work-items of the OpenCL setup
Value
Returns an object of class GeoFit.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit.
GeoVariogram Empirical Variogram(variants) estimation
Description
The function returns an empirical estimate of the variogram for spatio (temporal) and bivariate
random fields.
Usage
GeoVariogram(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, cloud=FALSE,
distance='Eucl', grid=FALSE, maxdist=NULL,
maxtime=NULL, numbins=NULL, radius=6371,
type='variogram',bivariate=FALSE)
66 GeoVariogram
Arguments
data Ad-dimensional vector (a single spatial realisation) or a (n×d)-matrix (niid
spatial realisations) or a (d×d)-matrix (a single spatial realisation on regular
grid) or an (d×d×n)-array (niid spatial realisations on regular grid) or a
(t×d)-matrix (a single spatial-temporal realisation) or an (t×d×n)-array
(niid spatial-temporal realisations) or or an (d×d×t×n)-array (a single
spatial-temporal realisation on regular grid) or an (d×d×t×n)-array (niid
spatial-temporal realisations on regular grid). See GeoFit for details.
coordx A numeric (d×2)-matrix (where dis the number of spatial sites) assigning 2-
dimensions of spatial coordinates or a numeric d-dimensional vector assigning
1-dimension of spatial coordinates. Coordinates on a sphere for a fixed radius
radius are passed in lon/lat format expressed in decimal degrees.
coordy A numeric vector assigning 1-dimension of spatial coordinates; coordy is in-
terpreted only if coordx is a numeric vector or grid=TRUE otherwise it will be
ignored. Optional argument, the default is NULL then coordx is expected to be
numeric a (d×2)-matrix.
coordt A numeric vector assigning 1-dimension of temporal coordinates. Optional ar-
gument, the default is NULL then a spatial random field is expected.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
cloud Logical; if TRUE the variogram cloud is computed, otherwise if FALSE (the de-
fault) the empirical (binned) variogram is returned.
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See the Section Details of GeoFit.
grid Logical; if FALSE (the default) the data are interpreted as spatial or spatial-
temporal realisations on a set of non-equispaced spatial sites.
maxdist A numeric value denoting the spatial maximum distance, see the Section De-
tails.
maxtime A numeric value denoting the temporal maximum distance, see the Section De-
tails.
numbins A numeric value denoting the numbers of bins, see the Section Details.
radius Numeric; a value indicating the radius of the sphere when using the great circle
distance. Default value is the radius of the earth in Km (i.e. 6371)
type A String denoting the type of variogram. The option available is : variogram.
bivariate Logical; if FALSE (the default) the data are interpreted as univariate spatial or
spatial-temporal realisations. Otherwise they are intrepreted as a a realization
from a bivariate field.
Details
We briefly report the definitions of semi-variogram used in this function. In the case of a spatial
Gaussian random field the sample variogram estimator is defined by
ˆγ(h)=0.5X
xi,xjN(h)
(Z(xi)Z(xj))2/|N(h)|
where N(h)is the set of all the sample pairs whose distances fall into a tolerance region with size
h(equispaced intervalls are considered).
GeoVariogram 67
In the case of a spatio-temporal Gaussian random field the sample variogram estimator is defined
by
ˆγ(h, u)=0.5X
(xi,l),(xj,k)N(h,u)
(Z(xi, l)Z(xj, k))2/|N(h, u)|
where N(h, u)is the set of all the sample pairs whose spatial distances fall into a tolerance region
with size hand |kl|=u. Note, that Z(xi, l)is the observation at site xiand time l.
The numbins parameter indicates the number of adjacent intervals to consider in order to grouped
distances with which to compute the (weighted) lest squares.
The maxdist parameter indicates the maximum spatial distance below which the shorter distances
will be considered in the calculation of the (weigthed) least squares.
The maxtime parameter indicates the maximum temporal distance below which the shorter dis-
tances will be considered in the calculation of the (weigthed) least squares.
Value
Returns an object of class Variogram. An object of class Variogram is a list containing at most the
following components:
bins Adjacent intervals of grouped spatial distances if cloud=FALSE. Otherwise if
cloud=TRUE all the spatial pairwise distances;
bint Adjacent intervals of grouped temporal distances if cloud=FALSE. Otherwise if
cloud=TRUE all the temporal pairwise distances;
cloud If the variogram cloud is returned (TRUE) or the empirical variogram (FALSE);
centers The centers of the spatial bins;
distance The type of spatial distance;
lenbins The number of pairs in each spatial bin;
lenbinst The number of pairs in each spatial-temporal bin;
lenbint The number of pairs in each temporal bin;
maxdist The maximum spatial distance used for the calculation of the variogram. If no
spatial distance is specified then it is NULL;
maxtime The maximum temporal distance used for the calculation of the variogram. If
no temporal distance is specified then it is NULL;
variograms The empirical spatial variogram;
variogramst The empirical spatial-temporal variogram;
variogramt The empirical temporal variogram;
type The type of estimated variogram
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
References
Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
68 GeoVariogram
See Also
GeoFit
Examples
library(GeoModels)
################################################################
###
### Example 1. Empirical estimation of the semi-variogram from a
### spatial Gaussian random field with exponential correlation.
###
###############################################################
set.seed(514)
# Set the coordinates of the sites:
x <- runif(200, 0, 1)
y <- runif(200, 0, 1)
coords <- cbind(x,y)
# Set the model's parameters:
corrmodel <- "exponential"
mean <- 0
sill <- 1
nugget <- 0
scale <- 0.3/3
# Simulation of the spatial Gaussian random field:
data <- GeoSim(coordx=coords, corrmodel=corrmodel, param=list(mean=mean,
sill=sill, nugget=nugget, scale=scale))$data
# Empirical spatial semi-variogram estimation:
fit <- GeoVariogram(coordx=coords,data=data,maxdist=0.6)
# Results:
plot(fit$centers, fit$variograms, xlab='h', ylab=expression(gamma(h)),
ylim=c(0, max(fit$variograms)), pch=20,
main="Semi-variogram")
################################################################
###
### Example 2. Empirical estimation of the variogram from a
### spatio-temporal Gaussian random fields with Gneiting
### correlation function.
###
###############################################################
set.seed(331)
# Define the temporal sequence:
# Set the coordinates of the sites:
x <- runif(400, 0, 1)
y <- runif(400, 0, 1)
coords <- cbind(x,y)
times <- seq(1,5,1)
# Simulation of a spatio-temporal Gaussian random field:
data <- GeoSim(coordx=coords, coordt=times, corrmodel="gneiting",
GeoVariogram 69
param=list(mean=0,scale_s=0.1,scale_t=0.1,sill=1,
nugget=0,power_s=1,power_t=1,sep=0.5))$data
# Empirical spatio-temporal semi-variogram estimation:
fit <- GeoVariogram(data=data, coordx=coords, coordt=times, maxtime=5,maxdist=0.5)
# Results: Marginal spatial empirical semi-variogram
par(mfrow=c(2,2), mai=c(.5,.5,.3,.3), mgp=c(1.4,.5, 0))
plot(fit$centers, fit$variograms, xlab='h', ylab=expression(gamma(h)),
ylim=c(0, max(fit$variograms)), xlim=c(0, max(fit$centers)),
pch=20,main="Marginal spatial semi-variogram",cex.axis=.8)
# Results: Marginal temporal empirical semi-variogram
plot(fit$bint, fit$variogramt, xlab='t', ylab=expression(gamma(t)),
ylim=c(0, max(fit$variogramt)),xlim=c(0,max(fit$bint)),
pch=20,main="Marginal temporal semi-variogram",cex.axis=.8)
# Building space-time semi-variogram
st.vario <- matrix(fit$variogramst,length(fit$centers),length(fit$bint))
st.vario <- cbind(c(0,fit$variograms), rbind(fit$variogramt,st.vario))
# Results: 3d Spatio-temporal semi-variogram
require(scatterplot3d)
st.grid <- expand.grid(c(0,fit$centers),c(0,fit$bint))
scatterplot3d(st.grid[,1], st.grid[,2], c(st.vario),
highlight.3d=TRUE, xlab="h",ylab="t",
zlab=expression(gamma(h,t)), pch=20,
main="Space-time semi-variogram",cex.axis=.7,
mar=c(2,2,2,2), mgp=c(0,0,0),
cex.lab=.7)
# A smoothed version
par(mai=c(.2,.2,.2,.2),mgp=c(1,.3, 0))
persp(c(0,fit$centers), c(0,fit$bint), st.vario,
xlab="h", ylab="u", zlab=expression(gamma(h,u)),
ltheta=90, shade=0.75, ticktype="detailed", phi=30,
theta=30,main="Space-time semi-variogram",cex.axis=.8,
cex.lab=.8)
################################################################
###
### Example 3. Empirical estimation of the (cross) semivariograms
### from a bivariate Gaussian random fields with Matern
### correlation function.
###
###############################################################
# Simulation of a bivariate spatial Gaussian random field:
set.seed(29)
# Define the spatial-coordinates of the points:
x <- runif(200, 0, 1)
set.seed(7)
y <- runif(200, 0, 1)
coords=cbind(x,y)
# Simulation of a bivariate Gaussian Random field
# with matern (cross) covariance function
param=list(mean_1=0,mean_2=0,scale_1=0.15/3,scale_2=0.2/3,scale_12=0.15/3,
70 GeoWLS
sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,
smooth_1=0.5,smooth_12=0.5,smooth_2=0.5,pcol=-0.45)
data <- GeoSim(coordx=coords, corrmodel="Bi_matern", param=param)$data
# Empirical semi-(cross)variogram estimation:
biv_vario=GeoVariogram(data,coordx=coords, bivariate=TRUE,maxdist=c(0.5,0.5,0.5))
# Variograms plots
par(mfrow=c(2,2))
plot(biv_vario$centers,biv_vario$variograms[1,],pch=20,xlab="h",ylim=c(0,1.2),
ylab="",main=expression(gamma[11](h)))
plot(biv_vario$centers,biv_vario$variogramst,pch=20,xlab="h",
ylab="",main=expression(gamma[12](h)))
plot(biv_vario$centers,biv_vario$variogramst,pch=20,xlab="h",ylab="",
main=expression(gamma[21](h)))
plot(biv_vario$centers,biv_vario$variograms[2,],pch=20,xlab="h",,ylim=c(0,1.2),
ylab="",main=expression(gamma[22](h)))
GeoWLS WLS of Random Fields
Description
the function returns the parameters’ estimates and the estimates’ variances of a random field ob-
tained by the weigthed least squares estimator.
Usage
GeoWLS(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel,
distance="Eucl", fixed=NULL, grid=FALSE, maxdist=NULL,
maxtime=NULL, model='Gaussian', optimizer='Nelder-Mead',
numbins=NULL, radius=6371, start=NULL, weighted=FALSE)
Arguments
data Ad-dimensional vector (a single spatial realisation) or a (d×d)-matrix (a single
spatial realisation on regular grid) or an (d×d×n)-array (niid spatial realisa-
tions on regular grid) or a (t×d)-matrix (a single spatial-temporal realisation)
or an (d×d×t×n)-array (a single spatial-temporal realisation on regular grid).
See GeoFit for details.
coordx A numeric (d×2)-matrix (where dis the number of spatial sites) giving 2-
dimensions of spatial coordinates or a numeric d-dimensional vector giving 1-
dimension of spatial coordinates.
coordy A numeric vector giving 1-dimension of spatial coordinates; coordy is inter-
preted only if coordx is a numeric vector or grid=TRUE otherwise it will be
ignored. Optional argument, the default is NULL then coordx is expected to be
numeric a (d×2)-matrix.
coordt A numeric vector giving 1-dimension of temporal coordinates. Optional argu-
ment, the default is NULL then a spatial random field is expected.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
GeoWLS 71
corrmodel String; the name of a correlation model, for the description (see GeoFit).
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See the Section Details of GeoFit.
fixed A named list giving the values of the parameters that will be considered as
known values. The listed parameters for a given correlation function will be
not estimated, i.e. if list(nugget=0) the nugget effect is ignored.
grid Logical; if FALSE (the default) the data are interpreted as a vector or a (n×d)-
matrix, instead if TRUE then (d×d×n)-matrix is considered.
maxdist A numeric value denoting the maximum distance, see Details and GeoFit.
maxtime Numeric; an optional positive value indicating the maximum temporal lag con-
sidered in the composite-likelihood computation (see GeoFit.
model String; the type of random field. Gaussian is the default, see GeoFit for the
different types.
optimizer String; the optimization algorithm (see optim for details). ’Nelder-Mead’ is the
default.
numbins A numeric value denoting the numbers of bins, see the Section Details
radius Numeric; a value indicating the radius of the sphere when using the great circle
distance. Default value is the radius of the earth in Km (i.e. 6371)
start A named list with the initial values of the parameters that are used by the nu-
merical routines in maximization procedure. NULL is the default (see GeoFit).
weighted Logical; if TRUE then the weighted least square estimator is considered. If FALSE
(the default) then the classic least square is used.
Details
The numbins parameter indicates the number of adjacent intervals to consider in order to grouped
distances with which to compute the (weighted) lest squares.
The maxdist parameter indicates the maximum distance below which the shorter distances will be
considered in the calculation of the (weigthed) least squares.
Value
Returns an object of class WLS. An object of class WLS is a list containing at most the following
components:
bins Adjacent intervals of grouped distances;
bint Adjacent intervals of grouped temporal separations
centers The centers of the bins;
coordx The vector or matrix of spatial coordinates;
coordy The vector of spatial coordinates;
coordt The vector of temporal coordinates;
convergence A string that denotes if convergence is reached;
corrmodel The correlation model;
data The vector or matrix of data;
distance The type of spatial distance;
fixed The vector of fixed parameters;
72 GeoWLS
iterations The number of iteration used by the numerical routine;
maxdist The maximum spatial distance used for the calculation of the variogram used in
least square estimation. If no spatial distance is specified then it is NULL;
maxtime The maximum temporal distance used for the calculation of the variogram used
in least square estimation. If no temporal distance is specified then it is NULL;
message Extra message passed from the numerical routines;
model The type of random fields;
numcoord The number of spatial coordinates;
numtime The number the temporal realisations of the random field;
param The vector of parameters’ estimates;
variograms The empirical spatial variogram;
variogramt The empirical temporal variogram;
variogramst The empirical spatial-temporal variogram;
weighted A logical value indicating if its the weighted method;
wls The value of the least squares at the minimum.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
References
Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
See Also
GeoFit,optim
Examples
library(GeoModels)
# Set the coordinates of the sites:
set.seed(211)
x <- runif(200, 0, 1)
set.seed(98)
y <- runif(200, 0, 1)
coords <- cbind(x,y)
################################################################
###
### Example 1. Least square fitting of a Gaussian random field
### with exponential correlation.
###
###############################################################
# Set the model's parameters:
Lik 73
corrmodel <- "Exponential"
mean <- 0
sill <- 1
nugget <- 0
scale <- 0.15/3
param <- list(mean=0,sill=sill, nugget=nugget, scale=scale)
# Simulation of the Gaussian random field:
set.seed(2)
data <- GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data
fixed=list(nugget=0,mean=mean)
start=list(scale=scale,sill=sill)
# Least square fitting of the random field:
fit <- GeoWLS(data=data,coordx=coords, corrmodel=corrmodel,
fixed=fixed,start=start,maxdist=0.5)
# Results:
print(fit)
################################################################
###
### Example 3. Least square fitting of a spatio-temporal
### Gaussian random field with double exponential correlation.
###
###############################################################
# Define the temporal sequence:
time <- seq(1, 10, 1)
mean <- 0
sill <- 1
scale_s <- 0.15/3
scale_t <- 2/3
param <- list(mean=0,scale_s=scale,scale_t=scale_t,sill=sill,nugget=nugget)
# Simulation of the Gaussian random field:
set.seed(35)
data <- GeoSim(coordx=coords,coordt=time, corrmodel="exp_exp",
param=param)$data
fixed<-list(nugget=nugget,mean=0)
start<-list(scale_s=scale_s,scale_t=scale_t,sill=1)
# Weighted least square estimation:
fit <- GeoWLS(data=data, coordx=coords,coordt=time, corrmodel="exp_exp",
,maxdist=0.5,maxtime=3,fixed=fixed,start=start)
# Results
print(fit)
Lik Optimizes the Log Likelihood
74 Lik
Description
Subroutine called by GeoFit. The procedure estimates the model parameters by maximization of
the log-likelihood.
Usage
Lik(bivariate,coordx,coordy,coordt,coordx_dyn,corrmodel,data,fixed,flagcor,flagnuis,
grid,lower,mdecomp,model,namescorr,namesnuis,namesparam,numcoord,
numpairs,numparamcor,numtime,optimizer,onlyvar,param,radius,setup,
spacetime,sparse,varest,taper,type,upper,ns,X)
Arguments
bivariate Logical; if TRUE then the data come froma a bivariate random field. Otherwise
from a univariate random field.
coordx A numeric (d×2)-matrix (where dis the number of spatial sites) assigning 2-
dimensions of spatial coordinates or a numeric d-dimensional vector assigning
1-dimension of spatial coordinates.
coordy A numeric vector assigning 1-dimension of spatial coordinates; coordy is in-
terpreted only if coordx is a numeric vector or grid=TRUE otherwise it will be
ignored. Optional argument, the default is NULL then coordx is expected to be
numeric a (d×2)-matrix.
coordt A numeric vector assigning 1-dimension of temporal coordinates. Optional ar-
gument, the default is NULL then a spatial random field is expected.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
corrmodel Numeric; the id of the correlation model.
data A numeric vector or a (n×d)-matrix or (d×d×n)-matrix of observations.
flagcor A numeric vector of flags denoting which correlation parameters have to be
estimated.
flagnuis A numeric verctor of flags denoting which nuisance parameters have to esti-
mated.
fixed A numeric vector of parameters that will be considered as known values.
grid Logical; if FALSE (the default) the data are interpreted as a vector or a (n×d)-
matrix, instead if TRUE then (d×d×n)-matrix is considered.
lower A numeric vector with the lower bounds of the parameters’ ranges.
model Numeric; the id value of the density associated to the likelihood objects.
namescorr String; the names of the correlation parameters.
namesnuis String; the names of the nuisance parameters.
namesparam String; the names of the parameters to be maximised.
numcoord Numeric; the number of coordinates.
numpairs Numeric; the number of pairs.
numparamcor Numeric; the number of the correlation parameters.
numtime Numeric; the number of temporal observations.
mdecomp String; the type of matrix decomposition used in the simulation. Default is
cholesky. The other possible choices is svd (Singular values decomposition).
MatDecomp 75
optimizer String; the optimization algorithm (see optim for details). ’Nelder-Mead’ is the
default.
onlyvar Logical; if TRUE (and varest is TRUE) only the variance covariance matrix is
computed without optimizing. FALSE is the default.
param A numeric vector of parameters.
sparse Logical; if TRUE then maximum likelihood is computed using sparse matrices
algorithms.FALSE is the default.
radius Numeric; the radius of the sphere when considering data on a sphere.
ns Numeric: vector of number of location sites for each temporal instants
setup A List of useful components for the estimation based on the maximum tapered
likelihood.
spacetime Logical; if the random field is spatial (FALSE) or spatio-temporal (TRUE).
varest Logical; if TRUE the estimate’ variances and standard errors are returned. FALSE
is the default.
taper String; the name of the taper correlation function.
type String; the type of the likelihood objects. If Pairwise (the default) then the
marginal composite likelihood is formed by pairwise marginal likelihoods.
upper A numeric vector with the upper bounds of the parameters’ ranges.
XNumeric; Matrix of spatio(temporal)covariates in the linear mean specification.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
MatDecomp Matrix decomposition
Description
Matrix decomposition.
Usage
MatDecomp(mtx, method)
Arguments
mtx numeric; a square positive or semipositive definite matrix.
method string; the type of matrix decomposition. Two possible choices: cholesky and
svd.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
76 MatSqrt, MatInv, MatLogDet
MatSqrt, MatInv, MatLogDet
Square root, inverse and log determinant of a (semi)positive definite
matrix, given a matrix decomposition.
Description
Square root, inverse and log determinant of a (semi)positive definite matrix, given a matrix decom-
position.
Usage
MatSqrt(mat.decomp,method)
MatInv(mat.decomp,method)
MatLogDet(mat.decomp,method)
Arguments
mat.decomp numeric; a matrix decomposition.
method string; the type of matrix decomposition. Two possible choices: cholesky and
svd.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
MatDecomp
Examples
library(GeoModels)
################################################################
###
### Example 1. Inverse of Covariance matrix associated to
### a Matern correlation model
###
###############################################################
# Define the spatial-coordinates of the points:
x <- runif(15, 0, 1)
y <- runif(15, 0, 1)
coords <- cbind(x,y)
# Matern Parameters
param=list(smooth=0.5,sill=1,scale=0.2,nugget=0)
a=matrix <- GeoCovmatrix(coordx=coords, corrmodel="Matern", param=param)
## decomposition with cholesky method
b=MatDecomp(a$covmat,method="cholesky")
## inverse of covariance matrix
inverse=MatInv(b,method="cholesky")
NuisParam 77
NuisParam Lists the Nuisance Parameters of a Random Field
Description
Subroutine called by InitParam and other procedures. The procedure returns a list with the nuisance
parameters of a given random field model.
Usage
NuisParam(model, bivariate,num_betas)
Arguments
model String; the name of a random field.
bivariate Logical; if FALSE (the default) the correlation model is univariate spatial or
spatial-temporal. Otherwise is bivariate.
num_betas Numerical; the nunber of mean parameters in the linear specification.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
Examples
library(GeoModels)
NuisParam("Gaussian", FALSE,1)
## note that in the bivariate case sill and nugget are considered as correlation parameteres
NuisParam("Gaussian", TRUE,1)
NuisParam("BinomialGaussian", FALSE,1)
NuisParam("Chisq", FALSE,2)
NuisParam("SkewGaussian", FALSE,3)
NuisParam("SinhAsinhGaussian",FALSE,1)
78 Prscores
Prscores Computation of three predictive scores: RMSE, LSCORE, CRPS for
spatial, spatiotemporal and bivariate Gaussian RF.
Description
The function computes RMSE, LSCORE, CRPS predictive scores.
Usage
Prscores(data, method="cholesky", matrix)
Arguments
data Ad-dimensional vector (a single spatial realisation) or a a(t×d)-matrix (a single
spatial-temporal realisation). or a a(2×d)-matrix (a single bivariate realisation).
method String; the type of matrix decomposition used in the computation of the predic-
tive scores. Default is cholesky. The other possible choices is svd.
matrix An object of class matrix. See the Section Details.
Details
For a given covariance matrix object (GeoCovmatrix) and a given spatial, spatiotemporal or bivari-
are realization from a Gaussian random field, the function computes three predictive scores.
Value
Returns a list containing the following informations:
RMSE Root-mean-square error predictive score
LSCORE Logarithmic predictive score
CRPS Continuous ranked probability predictive score
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
References
Zhang H. and Wang Y. (2010). Kriging and cross-validation for massive spatial data. Environ-
metrics, 21, 290–304.
Gneiting T. and Raftery A. Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of
the American Statistical Association, 102
See Also
GeoCovmatrix
StartParam 79
Examples
library(GeoModels)
library(fields)
################################################################
######### Examples of predictive score computation ############
################################################################
# Define the spatial-coordinates of the points:
x <- runif(500, 0, 2)
y <- runif(500, 0, 2)
coords=cbind(x,y)
matrix1 <- GeoCovmatrix(coordx=coords, corrmodel="Matern", param=list(smooth=0.5,
sill=1,scale=0.2,nugget=0))
data <- GeoSim(coordx=coords, corrmodel="Matern", param=list(mean=0,smooth=0.5,
sill=1,scale=0.2,nugget=0))$data
Pr_scores <- Prscores(data,matrix=matrix1)
Pr_scores
StartParam Initializes the Parameters for Estimation Procedures
Description
Subroutine called by the fitting procedures. The procedure initializes the parameters for the fitting
procedure.
Usage
StartParam(coordx, coordy, coordt,coordx_dyn, corrmodel, data, distance, fcall,
fixed, grid,likelihood, maxdist, maxtime, model, n, param,
parscale, paramrange, radius, start, taper, tapsep,
type,typereal,varest, vartype, weighted, winconst,
winstp, winconst_t, winstp_t,X)
Arguments
coordx A numeric (d×2)-matrix (where dis the number of points) assigning 2-dimensions
of coordinates or a numeric vector assigning 1-dimension of coordinates.
coordy A numeric vector assigning 1-dimension of coordinates; coordy is interpreted
only if coordx is a numeric vector otherwise it will be ignored.
coordt A numeric vector assigning 1-dimension of temporal coordinates.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
corrmodel String; the name of a correlation model.
data A numeric vector or a (n×d)-matrix or (d×d×n)-matrix of observations.
80 StartParam
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See the Section Details.
fcall String; "fitting" to call the fitting procedure and "simulation" to call the simula-
tion procedure.
fixed A named list giving the values of the parameters that will be considered as
known values.
grid Logical; if FALSE (the default) the data are interpreted as a vector or a (n×d)-
matrix, instead if TRUE then (d×d×n)-matrix is considered.
likelihood String; the configuration of the composite likelihood.
maxdist Numeric; an optional positive value indicating the maximum spatial distance
considered in the composite-likelihood computation.
maxtime Numeric; an optional positive value indicating the maximum temporal lag con-
sidered in the composite-likelihood computation.
radius Numeric; the radius of the sphere in the case of lon-lat coordinates. The default
is 6371, the radius of the earth.
model String; the density associated to the likelihood objects. Gaussian is the default.
nNumeric; number of trials for binomial random fields.
param A numeric vector of parameter values required in the simulation procedure of
random fields.
parscale A numeric vector of scaling factor to improve the maximizing procedure, see
optim.
paramrange A numeric vector of parameters ranges, see optim.
start A named list with the initial values of the parameters that are used by the nu-
merical routines in maximization procedure.
taper String; the name of the type of covariance matrix. It can be Standard (the
default value) or Tapering for taperd covariance matrix.
tapsep Numeric; an optional value indicating the separabe parameter in the space time
adaptive taper (see Details).
type String; the type of likelihood objects. Temporary value set to be "WLeast-
Square" (weigthed least-square) in order to compute the starting values.
typereal String; the real type of likelihood objects. See GeoFit.
varest Logical; if TRUE the estimates’ variances and standard errors are returned. FALSE
is the default.
vartype String; the type of estimation method for computing the estimate variances, see
the Section Details.
weighted Logical; if TRUE the likelihood objects are weighted, see GeoFit.
winconst Numeric; a positive value for computing the spatial sub-window in the sub-
sampling procedure.
winstp Numeric; a value in (0,1] for defining the the proportion of overlapping in the
spatial sub-sampling procedure.
winconst_t Numeric; a positive value for computing the temporal sub-window in the sub-
sampling procedure.
winstp_t Numeric; a value in (0,1] for defining the the proportion of overlapping in the
temporal sub-sampling procedure.
XNumeric; Matrix of space-time covariates.
winds 81
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit
winds Irish Daily Wind Speeds
Description
A matrix containing daily wind speeds, in kilometers per hour, from 1961 to 1978 at 12 sites in
Ireland.
Usage
data(irishwinds)
Format
A (6574 ×11)-matrix containing wind speed observations.
Source
Haslett, J. and Raftery, A. E. (1989), Space-time modelling with long-memory dependence: assess-
ing Ireland’s wind-power resource (with discussion), Applied Statistics, 38, 1–50.
winds.coords Weather Stations of the Irish Daily Wind Speeds
Description
A data frame containing information about the weather stations where the data are recorded in
Ireland.
Usage
data(irishwinds)
Format
A data frame containing site - the name of the city (character), abbr - the abbrevation (character),
elev - the elevation (numeric), lat - latitude (numeric) and lon - longitude.
Source
Haslett, J. and Raftery, A. E. (1989), Space-time modelling with long-memory dependence: assess-
ing Ireland’s wind-power resource (with discussion), Applied Statistics, 38, 1–50.
82 WlsStart
WlsStart Computes Starting Values based on Weighted Least Squares
Description
Subroutine called by GeoFit. The function returns opportune starting values for the composite-
likelihood fitting procedure based on weigthed least squares.
Usage
WlsStart(coordx, coordy, coordt, coordx_dyn, corrmodel, data, distance, fcall,
fixed, grid,likelihood, maxdist, maxtime, model, n, param,
parscale, paramrange, radius,start, taper, tapsep, type, varest,
vartype, weighted, winconst,winconst_t, winstp_t, winstp,X)
Arguments
coordx A numeric (d×2)-matrix (where dis the number of points) assigning 2-dimensions
of coordinates or a numeric vector assigning 1-dimension of coordinates.
coordy A numeric vector assigning 1-dimension of coordinates; coordy is interpreted
only if coordx is a numeric vector otherwise it will be ignored.
coordt A numeric vector assigning 1-dimension of temporal coordinates.
coordx_dyn A list of mnumeric (dt×2)-matrices containing dynamical (in time) spatial
coordinates. Optional argument, the default is NULL
corrmodel String; the name of a correlation model, for the description.
data A numeric vector or a (n×d)-matrix or (d×d×n)-matrix of observations.
distance String; the name of the spatial distance. The default is Eucl, the euclidean
distance. See the Section Details.
fcall String; "fitting" to call the fitting procedure and "simulation" to call the simula-
tion procedure.
fixed A named list giving the values of the parameters that will be considered as
known values.
grid Logical; if FALSE (the default) the data are interpreted as a vector or a (n×d)-
matrix, instead if TRUE then (d×d×n)-matrix is considered.
likelihood String; the configuration of the composite likelihood.
maxdist Numeric; an optional positive value indicating the maximum spatial distance
considered in the composite-likelihood computation.
maxtime Numeric; an optional positive value indicating the maximum temporal separa-
tion considered in the composite-likelihood computation.
model String; the name of the model. Here the default is NULL.
nNumeric; number of trials in a binomial random field.
param A numeric vector of parameter values required in the simulation procedure of
random fields.
parscale A numeric vector with scaling values for improving the maximisation routine.
paramrange A numeric vector with the range of the parameter space.
WlsStart 83
radius Numeric; a value indicating the radius of the sphere when using the great circle
distance. Default value is the radius of the earth in Km (i.e. 6371)
start A numeric vector with starting values.
taper String; the name of the type of covariance matrix. It can be Standard (the
default value) or Tapering for taperd covariance matrix.
tapsep Numeric; an optional value indicating the separabe parameter in the space time
quasi taper (see Details).
type String; the type of estimation method.
varest Logical; if TRUE the estimates’ variances and standard errors are returned. FALSE
is the default.
vartype String; the type of estimation method for computing the estimate variances, see
the Section Details.
weighted Logical; if TRUE the likelihood objects are weighted, see GeoFit.
winconst Numeric; a positive value for computing the spatial sub-window in the sub-
sampling procedure.
winstp Numeric; a value in (0,1] for defining the the proportion of overlapping in the
spatial sub-sampling procedure.
winconst_t Numeric; a positive value for computing the temporal sub-window in the sub-
sampling procedure.
winstp_t Numeric; a value in (0,1] for defining the the proportion of overlapping in the
temporal sub-sampling procedure.
XNumeric; Matrix of spatio(temporal)covariates in the linear mean specification.
Author(s)
Moreno Bevilacqua, <moreno.bevilacqua@uv.cl>,https://sites.google.com/a/uv.cl/moreno-bevilacqua/
home, Víctor Morales Oñate, <victor.morales@uv.cl>
See Also
GeoFit.
Index
Topic Composite
CheckBiv,3
CheckDistance,3
CheckSph,4
CheckST,4
CkCorrModel,5
CkInput,5
CkLikelihood,7
CkModel,7
CkType,8
CkVarType,8
CompLik,9
CorrelationPar,11
CorrParam,11
GeoCovariogram,13
GeoFit,29
GeoKrig,43
GeoResiduals,53
GeoVarestbootstrap,64
Lik,73
MatDecomp,75
MatSqrt, MatInv, MatLogDet,76
NuisParam,77
StartParam,79
Topic Devices
DeviceInfo,12
Topic LeastSquare
GeoWLS,70
WlsStart,82
Topic Predictive scores
Prscores,78
Topic Simulation
GeoCovmatrix,18
GeoSim,54
Topic Variogram
GeoVariogram,65
Topic datasets
anomalies,2
winds,81
winds.coords,81
Topic spatial
GeoTests,61
anomalies,2
CheckBiv,3
CheckDistance,3
CheckSph,4
CheckST,4
CkCorrModel,5
CkInput,5
CkLikelihood,7
CkModel,7
CkType,8
CkVarType,8
CompLik,9
CorrelationPar,11
CorrParam,11,20,33,45
DeviceInfo,12
GeoCovariogram,13
GeoCovmatrix,3,5,11,18,3234,45,46,56,
78
GeoFit,4,611,13,14,19,25,29,44,46,53,
55,56,63,65,66,68,7072,75,77,
80,81,83
GeoKrig,25,43
GeoResiduals,53
GeoSim,6,25,54
GeoTests,61
GeoVarestbootstrap,64
GeoVariogram,14,65
GeoWLS,13,70
Lik,73
MatDecomp,75,76
MatInv (MatSqrt, MatInv, MatLogDet),76
MatLogDet (MatSqrt, MatInv, MatLogDet),
76
MatSqrt (MatSqrt, MatInv, MatLogDet),76
MatSqrt, MatInv, MatLogDet,76
NuisParam,33,77
optim,6,10,30,71,72,75,80
print.GeoFit (GeoFit),29
print.GeoSim (GeoSim),54
84
INDEX 85
print.GeoWLS (GeoWLS),70
Prscores,78
StartParam,79
winds,81
winds.coords,81
WlsStart,82

Navigation menu