H 24_serial Drum_Nov65 24 Serial Drum Nov65

H-24_serialDrum_Nov65 H-24_serialDrum_Nov65

User Manual: H-24_serialDrum_Nov65

Open the PDF directly: View PDF PDF.
Page Count: 168

DownloadH-24_serial Drum_Nov65 H-24 Serial Drum Nov65
Open PDF In BrowserView PDF
fP?'~ ~f7
ct Lt - ~~-~} .q \ \ ~
H-24

SERIAL.' DRUM

24
t. ..

I NSTRUCTI() N

DIGITAL EQUIPMENT CORPORATIION

MANUAL

•

MAYNARD, MASSACHUSETTS

ICOpy NO.

This manual contains proprietary information. It is provided to the
customers of Digital Equipment Corporation to help them properly
use and maintain DEC equipment. Reveal ing the contents to any
person or organ iza'tion for any other purpose is proh ibited.

Copyright 1965 by Digital Equipment Corporation
ii

CONTENTS
Chapter

Page

IN TR 0 DU CTION . . . . . • . . • . • . . • . • . . . . . • • • . . . • . . • . . . • • • . • • • • . . . . • • . • . • • • .
Functional Description ••••••••.•••••••••••••••••••••••••••••••••••••

1-1

Physical Description •••.••.....•••••...•••..••.••......••.•....•....

1-2

..••.•.••••.•.•••••••••.•.•••••...•.•••..••.•••••

1-3

Abbreviations ......................................................

1-4

Reference Conventions ••••••••••••••••••••••••••••••••••••••••.•••••

1-6

Reference Documents ••••••••••••••••••••••••••••.•••..•.•••••••••.•

1-7

PRINCIPLES OF OPERATION ••••••••••••••••••••••••••••••••••••••••••••

2-1

Recording and Playback Technique. • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • •

2-1

Drum Format .................................. ••••.••••••••...•

2-2

Specificatiol1S

2

1- 1

CI

•

•

•

•

•

•

Block Diagram Discussion............................. • • • • • • • • • • • • • • • •

2-5

Drum Core location Counter (DCl) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2-5

Drum Track Address Register (DTR) ••••••••••••••••••••••••••••••••

2-5

Drum Track Address Decoder (DTD) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2-5

Drum Head Se lection •••••.•••••••••••••••••••••••••••••••••••••

2-7

Drum Sense Amplifiers ••.•••••••••••••••••••••••••••••••••••••••

2-7

Drum Control (DCT) ••••••••••••••••••••••••••••••••••••••••••••

2-7

Drum Data Control (DDC) •••••••••••••••••••••••••••••••••••••••

2-7

Drum Final Buffer (DFB) •••••••••••••••••••••••••••••••••••••••••

2-7

Drum Serial Buffer (DSB) ••••••••••••••••••••••••••••••••••••••••

2-8

Read/Write Parity (R/WP) •••••••••••••••••••••••.•••••••••••••••

2-8

Drum Write Cycle ......••..•..••.....•......•..•...•...•.•.•.•....•

2-8

Writing One Sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2-9

Writing Two Consecutive Sectors •••••••••••••••••••••••••••••••••

2-12

Read CY'cle ••.•.•••.••••••••..••••••••••••••••••.••••••••••••••••••

2-13

Reading One Sector •••••... •••••••••••••••••••.•••••••••••••••••

2-13

Reading Two Consecutive Sectors •••••••••••••••••••••••••••••••••

2-15

Parity Check ............

2-15

I,

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Data Error and Parity Error ••••• ".....................................

2-15

Maintenance Switch Control of PE· DE .............................

2-16

Drum Track Selection Circuits

••

h

•••••••••••••••••••••••••••••••••••••

2-16

Power Supply and Distribution

•

II

•••••••••••••••••••••••••••••••••••••

2-16

,

iii

CONTENTS (continued)
Chapter
2 (cont)

Page
Drum Mechanical Description ••••••••••••••••••••••••••••••••••••••••

2-17

Drum Head Mounting Description •••••••••••••••••••••••••••••• • • •

2-17

Mechan ica I Actuator •••••••••••••••••••••••••••••••••••••••••••

2-18

Analysis of Instructions •••••••••••••••••••••••••••••••••••••••••••••

2-19

3

INTERFACE •••••••

4

INSTALLATION AND OPERATION

0

•••••••••••••••••••••••••••••••••••••••••••••••••••

......................................

Site Requirement:s ••••••••••••••••••••••••••••••••••••••••••••••••••
Signal and Power Connections ••••••••••••••••••••••••••• ':' •••••••••••
Contro Is and Indi cators
Equipment Turnon and Turnoff ••••••••••••••••••••••••••••••••••••••••

5

6

PROGRAMMI NG ••

f)

••••••••••••••••••••••••••••••••••••

'.'

•••••••••••••

4-1
4-1
4-1
4-1
4-3
5-1

Instruction Codes.

5-1

Drum Format and Program Ti mi ng •••••••••••••••••••••••••••••••••••••

5-2

Programming Subroutines ••••••••••••••••••••••••••••••••••••••••••••

5-3

Program Sequence Example A

5-3

Program Sequence Examp Ie B ••••••••••••••••••••••••••••••••••••

5-5

Field Lockout Switches •••••••••••••••••••••••••••••••••••••••••••••

5-7

MAINTENANCE

6-1

Ad iustments •••.' •••••••••••••••••••••••••••••••••••••••••••••••••••

6-1

Timing Checks and Adjustments ••••••••••••••••••••••••••••••••.••

6-1

Drum Sense Amplifier Check and Adjustment •••••••••••••••••••••••

6-1

Drum Head IAounting Adjustments •••••••••••••••••••••••••••••••••

6-2

Pad

Levelin~1

Adjustment ••••••••••••••••••••••••••••••••••••••••

6-3

Marginal Checks •••••••••••••••••••••••••••••••••••••••••••••••••••

6-3

Diagnostics

........................................................

Head Pad Replacement ••••••••••••••••••••••••••••••••••••••••••

7

3-1

ENGINEERING DRAWiNGS •••••••••••••••••••••••••••••••••••••••••••••
Drawing Numbers

..................................................
iv

6-6

6-13

7-1
7-1

CONTENTS (continued)
Chapter
7 (cont)

Page
Circuit Symbols •••••••••••••••••••••••••••••••••••••••••••••••••••

7-1

Logic Signal Symbols ••••••••••••••••••••••••••••••••••••••••••••••

7-2

Coordinate System •••••••••••••••••••••••••••••••••••••••••••••••••

7-2

Module Identification •••••••••

7-2

fI

••••••••••••••••••••••••••••••••••••

Example •••••••••••••••••••••••••••••••••••••••••••••••••••••••••

7-3

TELEPRINTER SUBROUTINES FOR PDP-4 ••••••••••••••••••••••••••••••••••

A 1-1

TELEPRINTER SUBROUTINES FOR PDP-1 ••••••••••••••••••••••••••••••••••

A2-1

Appendix

2

ILLUSTRATIONS
Figure
1-1

Component Locations •••••••••••••••••••••••••••••••••••••••••••••••••••

1-3

2-1

Simplified Timing of NRZ Writing ••••••••••••••••••••••••••••••••••••••••

2-1

2-2

Simplified Logic of Writing Circuits ••••••••••••••••••••••••••••••••••••••

2-2

2-3

Typical Recording and Playback

•••••••••••••••••••••••••••••••••••

2-3

2-4

Drum Surface Format •••••••••••••••••••••••••••••••••••••••••••••••••••

2-4

2-5

Sector Word Format ••••••••••••••••••••••••••••••••••••••••••••••••••••

2-5

2-6

Type 24 Serial Drum Block Diagram ••••••••••••••••••••••••••••••••••••••

2-6

2-7

Write Cyc Ie Tim ing ••••••••••••••••••••••••••••••••••••

2-11

2-8

Read Cycle Timing ••••••••••••••••••••••••••••••••••••••••••••••••••••

2-14

2-9

Drum Head Mounting •••••••••••••••••••••••••••••••••••••••••••••••••••

2-18

2-10

Operating Position of Head Pad •••••.••••••••••••••••••••••••••••••••••••

2-18

6-1

Stop Screw Position ••••••••••••••••••••••••••••••••••••••••••••••••••••

6-2

6-2

Operating Positions of Head Pad •••••••••••••••••••••••••••••••••••••••••

6-4

7-1

7-2

Timin~~

0

•••••••••••••••

....................................................
Typical Digital Logic Block Diagram .....................................
DEC Logic Symbols

7-4
7-6

TABLES
Table

2-1

Analysis of Instructions for Write Cyc Ie ••••••••••••••••••••••.••••••••••••

2-19

2-2

Analysis of Instructions for Read Cycle ••••••••••••••••••••••••••••••••••••

2-21

v

TABLES (continued)
Page

Table
3-1

Inputs to 24 from PDP-4 ••...••.••••••••••••••••.••••••••••••

3·-2

3-2

Outputs from 24 to PDP-4 •••••.••••••••••••••

••••

3-4

3-3

I nputs to Drum -1 Seri es from PDP- 1 •••

3-5

3-4

Outputs from Drum-1 Series to PDP-1 ••

5-1

Type 24 Serial Drum Instruction List (PDP-4) ••.•

5-2

Type 24 Serial Drum Instruction List (PDP-1) •••.•••••••••••••••

5-2

7-1

Semiconductor Substitution •••••••••

ENGINEERING

0

••

0

•

0

•

0

••

0

•

00

0

0

0

•••

•••

••

0

0

0.

o ••

0

••

0

000

•••••

00

••••

••

•••••••••••

0

••••

0

0000000000.000000.0.

0

0

•

3-6
5-1

0

0000

7-6

DRAWINGS

Drawings
0

•

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7-7

•

0

0

•

0

0

000

0

0

0

0

0

0

0

0

0

0

0

0

0

7-9

0

••

0

0

0

000

•

0

0

0

••

0

•

0

0

0

•

E-10208

Digital Cable and Component Numbering

BS-D-24604

Drum Core Location Counter

BS-D-24-EFG-0-7

Drum Track Address Register and Decoding (X and Y)

BS-D-24-EFG-0-8

Drum Control (DCT) •

BS-D-24-EFG-0-9

Drum Final Buffer and Data Channel ••••••••••••••

BS-D-24-EFG-0-10

DSB, Control and Parity •

BS-D-24-EFG-0-11

Drum DClta Channel (DDC) ••••••••••••••

BS-D-24-EFG-0-14

Write Field Lock Out Select •••••••••••••

BS-E-24-EFG-0-13

Drum X and Y Select and Drum Heads ••••••••••••

BS-D-24-EFG-0-2

Flow Diagram ....•••••••••••••••••••••

BS-D-24-EFG-0-31

Timing ()iagram ••.••••.••••••••••

PW-D-24-EFG-0-29

Power Wiring •.•.•

WD-D-24-EFG-0-3

Wiring Diagram (Sheet 1) •

WD-D-24-EFG-0-3

Wiring Diagram (Sheet 2) ••.

CD-D-24613

Indicator Cable Breakout and Junction ••••

WL-A-24-EFG-0-12

Field Lock Out Switch Panel (Sheet 1) ••••••

WL-A-24-EFG-0-12

Field Lock Out Switch Panel (Sheet 2) •••

CL-A-24-EFG-0-21

Control Logic to Indicator Panel ••.••••••••••••••••

CL-A-24-EFG-0-22

Drum Track Address to Indicator Panel ••••

CL-A-24-EFG-0-23

Core Location Register to Indicator Panel

CL-A-24-EFG-0-24

Serial Buffer Register to Indicator Panel •

CL-A-24-EFG-0-25

Final Buffer to Indicator Panel ..••

0

0

•

0

•••

0

0

0

••

0

0

0

•

••

•

0

0

0

0

0

•

0

••

•••

0

0

0

0

0

0

0

0

00

0

0

vi

•

0

0

0

••

0

0

00

7-15

••••••

7-17

0

0

•••••••

0

0

•

0

0

••

0

•••••••••

0

•••••••••

•

00

••

0

•

0

0

0

••••••••

•••

0

••

0

•••

0

•••••••••••

••

0

0

0

•••••

0

•

0

0

•••

0

0

•

0

.0.

0

••••••••••••••

0

••

•

•••••••

•

7-13

o ••••

0

7-11

•••••

0

0

0

0

••

00

••

•

0

••••••••

0

0

••••

00

0

0

0

0

•

0

•

0

0

0

•••••••

•••••••••••••••••

0

•

•

0

.0.

7-25
7-27
7-29
7-31

•••

0

0

0

•

0

••••

0

•••

7-33

••••••••

0

•

0

•••

0

••••

7-35

••

0

••

00

••••

7-37

•••••

7-38

0

•

0

0

••••

0

0

•••••••••

0

•••••••

0

0

••

0

0

7-23

0

0

0

7-21

•••••••

••

•••

7-19

0

•••••

0

•••

7-39

0

0

•

0

7-40

0

•

0

0

••

0

••

0.

o.

0

0

0

0

o.

00

••

00000

7-41

0

•

0

0

0

0

•

0

•

0

0

0

•

0

••••

0

7-42

0

0

0

0

0

•

0

•••••••••••••••

7-43

0

0

0

ENGINEERING DRAWINGS (continued).
Page

Drawing
CL-A-24-EFG-0-26

F3 to Logic Drum Side (Sheet 1) ••••••••••••••••••••••••••••••

7-44

CL-A-24-EFG-0-26

F4 to Logic Drum Side (Sheet 2) ••••••••••••••••••••••••••••••

7-45

CL-A-24-EFG-0-26

Head Sel ection (Sheet 3) ••••••••••••••••••••••••••••••••••••

7-46

CL-A-24-EFG-0-26

Clock Track (Sheet 4) ••••••••••••••••••••••••••••••••••••••

7-47

WL-A-24-EFG-0-27

lOT and 10 Skip, Computer Side ••••••••••••••••••••••••••••.

7-48

CL-A-24-E FG-0-28

Selection Cable ••••••••••••••••••••••••••••••••••••••.••••

7-49

UML-D-24-EFG-0-4

Util ization Modul e List ••••••••••••••••••••••••••••••.••••••

7-51

RS-779

Power Suppl y ••••••••••••••••••••••••••••••••••••••••••••••

7-53

RS-832

Power Control Panel ••••••.•••••••••••••••.•••••••••••••••••

7-53

RS-1011

Diode ................

•••••••••••••••••••••••••••••••••••

7-54

RS-1201

FI ip-Flop ................................................ .

7-54

RS-1304

Delay .•••••••••••••••••••••••••••••••••••••••••••••••••••

7-55

RS-1410

Pulse Generator •••••••••••••••••••••••••••••••••••••••••••

7-55

RS-1537

Drum Sense Ampl ifier ••••.••••••••••••••••••••••••••••••••••

7-56

RS-4102

Inverter

7-56

RS-4105

Inverter

7-57

RS-4110

Diode Unit ••••••••••••••••••••••••••••••••••••••••••••••••

7-57

RS-4112

Diode ................................................... .

7-58

RS-4113

Diode ................................................... .

7-58

RS-4115

Diode ................................................... .

7-59

RS-4127

Capacitor-Diode-Inverter •••••••••••••••••••••••••••••••••••

7-59

RS-4215

4-Bit Counter ••.•••••••••••••••••••••••••••••••••••••.••••

7-60

RS-4216

Quadruple FI ip-Flop .••••.••••••••••••••••.••••••••••.•.•••

7-60

RS-4217

4-Bit Counter •••••••••••••••••••••••••••••••••••••••••••••

7-61

RS-4301

Delay •••••.•••••••••••••••••••••••••••••••••••••.••.••••.

7-61

RS-4303

Integrating One-Shot •••••••••.•••••••••••••••••••••••••••••

7-62

RS-4401

Clock ••••••••••••••••.•••••.••••••••••••••.••••••••.•.•••

7-62

RS-4529

Drum NRZ Writer •••••••••••••••••••••••••••••••••••••••••.

7-63

RS-4530

Drum X Sel ect ••••••••.••••••••••••••••••••••••.••••.••••••

7-63

RS-4531

Drum Y Sel ect •••••••••••••••••••••••••••••••••••••••••••••

7-64

RS-4604

Pulse Amp'ifier ••••••••.••••••••••••••••••••.•••••••...••••

7-64

RS-4606

Pulse Amp'ifier •••••••• ,••••••••••••••••••••••••••••••••••••

7-65

RS-4912

FLIP CHIP Adapter •••••••••••••••••••••••••••••••••••••••••

7-65

vi'i

II

ENG I N EERI NG 0 RAWI NGS (co nti n ued).
Page

prawing

RS-6102

I'nverter .......................•...................•..•.•••••..••.••.•

7-66

RS-6115

Diode

.....................•................•...•......•...•......•..

7-66

IRS-B104

Inverter .....••.........••...••.••.•..•••.....•.•••.••••.•.••••••••.•.

7-67

IRS-W505

Low Voltage Detector .••••••••••.••.•••••.••.••••••••••.•••••••••••••••

7-67

viii

Serial Drum Type 24

ix

CHAPTER 1
INTRODUCTION

The Digital Equipment Corporation (DEC) Type 24 Serial Drum System serves as an auxi liary data storage
device for programmed data processor PDP-1, PDP-4 l and PDP-7. Information in the computer can be
stored (written) in the serial drum and retrieved (read) in blocks of 256 computer words. After programmed
initial ization, 256-word blocks (sectors) of data are transferred automatically between the computer and
the serial drum; transfer of each word is interleaved with the running computer program. Serial drums can
store either 128, 256, or 512 data blocks, providing a memory capabil ity of up to 131,032 computer words.
Each word is transferred between the computer and the serial drum in parallel (18 bits at a time) and is
written or read on the drum surface in seri es.
Since applications of the serial drum are more commcln in a PDP-4 computing system, this manual and the
engineering drawings assume the machine is connected to a PDP-4. When the serial drum is connected to
another computer, all references in this manual to si!~nal origins and destinations and to data interrupt
functions in the PDP-4 can be interpreted to refer to circuits performing simi lar functions.

FUNCTIONAL DESCRIPTION
The basic functions of the Type 24 Serial Drum are d'Jta storage and retrieval, core memory address control, track selection, data request and transfer control, error checking, and power supply distribution.
Under program control, the lOT (input-output transfer) instructions set up the drum control to transfer data.
When the instructions specify the write cycle, a memory start address is set into a register in the serial
drum. The memory address is incremented automatically after each word transfer to the serial drum from
the computer. The track and sector address is also SE3t into a register in the serial drum. The setup instruction initiates a data break cycle to transfer an 18-bit word to the serial drum from the addressed core memory location. A parity bit is generated for each 18-bit word so that a 19-bit word is written on the drum
surface. After the 19-bit word is written, the data break cycle is entered to obtain the next word.
Following the writing of the 256 words of the addressed sector, a flag is set to signify the completion of
the sector transfer. The track and sector address register is incremented by one to simpl ify programming
of continuous sector transfers.
When the program specifies a read cycle, a similar routine sets up the serial drum. The memory start
address is set into the serial drum memory address re~Jister and the track and sector address is set into the
serial drum track and sector address register. After

10

1-,1

word is ~ead from the addressed drum location, the

data break cycle,.is entered to transfer the word to core memory in the computer. When all 256 words of the
addressed sector have been transferred, a flag is set to indicate the completion of the sector transfer.
Error circuits in the serial drum check for parity error during the read cycle and check data transmission
timing errors during both read and write cycles. If bits are picked up or dropped out, if data received from
the computer is late during a write cycle, or if data is late being stored in the core memory during a read
cycle, an error signal is sent to the computer (when sensed by the program).

PHYSICAL DESCRIPTION
The Type 24 Serial Drum System is contained in a DEC computer cabinet 21-5/8 inches wide, 25-3/4 inches
deep, and 67-7/16 inches high. All indicators are located on a panel at the front of the machine. Maintenance controls are located on the plenum door inside the double rear doors. Power and signal cables
enter the cabinet through a port in the bottom. The power cable is permanently wired to the equipment,
and the two signal cables mate with connectors which are mounted on the front of the cabinet, fac ing the
center of the machine. Four casters allow mobil ity of the machine (which weighs 550 pounds). The cabinet
is constructed of a welded steel frame covered with sheet steel. Double front and read doors are held closed
by magnetic latches. A full-width plenum door .provides mounting for the power control, power supply, and
switch panel inside the double rear doors. The plenum door is latched by a spring-loaded pin at the top.
The indicator panel, racks of logic, and cable connector panel are attached to the front of the cabinet.
Module racks are mounted on the front of the cabinet with the wiring side forward, so that modules are
accessible for insertion or extraction by opening the plenum door at the rear. A fan mounted at the bottom
of the cabinet draws cooling air through a dust filter and passes it over the electronic components.

The

memory drum housing is mounted on Ibraces above the fan assembly.
A coordinate system is used to locate racks, modules, cable connectors, and terminals. Each 5-1/4 inch
position on the front of the cabinet is assigned a capital letter, beginning with A at the top, as indicated
on Figure 1-1. Modules are numbered from 1 through 25 from left to right in a rack, as vie~ed from the
wiring side (front). Connectors are numbered from 1 through 6, from left to right as viewed from the front
of the machine. Blank module and connector locations are not numbered. Terminals on a module connector are designated by capital letters from top to bottom. Therefore, D09E is in the fourth location from the
top (D), the ninth module from the left (9), and the fifth terminal (E) from the top of th~ module. Components mounted on the plenum door are not identified by location.

Engineering drawing E-l0208

(Chapter 7) shows the system for locating terminal blocks and standoffs mounted on the logic racks.

1-2

INDICATOR PANEL

TYPE 832
POWER
CONTROL

BLANK

LOGIC 1 C

LOGIC t D
TYPE 779
POWER
SUPPLY
LOGIC tE

SWITCH PANEL
PLUG PANEL

BLANK

BLANK

BLANK
BLANK

BLANK

FRONT VIEW

BACK VIEW

Figure 1-1

Dimensions

Component Locations

23-1/2 inches wide
27-1/16 inches deep
69-1/8 inches high

1-·3

Service Clearances

8-3/4 inches in front
14-7/8 inches in back

Weight

550lbs

Power Required

115v, 60 cps, single phase, 8-amp starting
current, 5-amp running current

Power Dissipation

450 watts

Power Control Po i nt

Local or remote (computer)

Initial Starting Delay

5 min

Signal Cables

2, 50 wire, shielded

Temperature

32 to 105°F operating range

Drum Motor

115v, single phase, 2 pole, induction,
capac itor start and run

Magnetic Head Interference

Maximum interchannel read cross talk at
least 25 db below nominal signal level.
Maximum noise in any channel at least 25 db
below nominal signal level.

Write Current

100 ma

Pulse Repetition Rate

1 .70 J.lsec

Word Transfer Time

66.5 fJsec

Block Transfer Cycle
(1 drum revol ution)

17.3 msec

ABBREVIATIONS
The following abbreviations are used throughout this manual-and on engineering drawings:

AC

Accumulator in computer

ACB

Buffered outputs of accumulator in computer

ACT

Active

AMP

Amplifier

AMPH

Amphenol connector

ANS

Answered

1-4

B

Break (computer state)

COMP

Complement

COND

Conditioned or enabled

DCl

Drum core location counter in serial drum

OCT

Drum control element in serial drum

DOC

Drum data channel in serial drum

DE

Data error

OF and DFB

Drum final buffer in serial drum

DIC

Data interrupt control in computer

ER SYNC

Error sync fl ip-flop

OS

Device selector in computer

DSB

Drum serial buffer in serial drum

DT and DTR

Drum track address register in serial drum

DTD

Drum track address decoder in serial drum

EXT

External

F

As a subscript means final or last bit of
information; the bit after the least significant
data word bit

FL

Field lockout

lOS

Input/output skip facility in computer

lOT

Input/output transfer

MA and MAR

Memory address register in computer

MB

Memory buffer register in computer

PA

Pulse ampl ifier

PAR

Parity

PC

Power control (Type 832)

PE

Parity error

PG

Pulse generator

1·-5

PIC

Program interrupt control in computer

R

Read

RD/WR

Read/write fl ip-flop

RQ

Request flip-flop

R/WP

Read/write parity element in serial drum

S

As a subscript means the first or initial bit
of information; the bit preceding the most
significant data word bit

SA

Sector address

SEC CNT

Sector cou nter

STR ADD

Sector address

TRA

Transfer

WD

Write data fl ip-flop

WRENA

Write enabl e

XA

Most significant octal digit of X address

XB

Least significant octal digit of X address

YA

Most significant octal digit of Y address

YB

Least significant octal digit of Y address

REFERENCE CONVENTIONS
The Digital Equipment Corporation engineering drawing conventions and instruction manual referencing
should be understood at this point. A study of the material contained in Chapter 7 and the following
paragraphs before proceeding with detailed descriptions will save considerable reference time and preserve
thought continuity when reading the text that follows.

Any reference to an illustration by a chapter-oriented figure number indicates that the figure is to be
found in text following the reference. Any reference to an engineering drawing number indicates that
the drawing is to be found in a spec iial drawing section or chapter.
enced first by the full drawing number.
Example: BS-D-24EFG-O-8

1-6

All engineering drawings are refer-

To locate a specific signal or function on a drawing, a system of coordinates is used. As shown on the
drawings of Chapter 7, coordinates are designated by a number and letter. Thus, in any drawing reference,
coordinate location appears immediately after the number separated by a colon.
Example: BS-D-24E FG-0-8:D 1
To avoid needless repetition of the full drawing number, in-text references can use a short designation
form that includes only the difference modifier(s) of 1~he drawing designation plus the coordinates.
Example: -8:D1
One last text reference convention must be noted. Occasionally it is desirable to indicate the condition
of a circuit' within a logic description. As shown on the drawings of Chapter 7, circuit locations are
identified. For reference in text, this designation

i~i

noted; for example, CB24.

If the condition of the

circuit is to be stated, the reference becomes either CB24(1) or CB24(0).

REFERENCE DOCUMENTS
Systems Modules Catalog, C-100

by Digital Equipment Corp.

FLIP CH IP Modules Catalog, C-105

by Digital Equipment Corp.

1--7

CHAPTER

2

PRINCIPLES OF OPERATION

RECORDING AND PLAYBACK TECHNIQUE
The record ing and playback techn ique employed by the Type 24 Serial Drum is NRZ (non-return-to-zero)
phase modulation. This techn ique records binary lis and OIS by controlling the direction of flux change
on the drum surface. For example, a flux change in one direction represents a 1, and a flux change in the
opposite direction represents a O.

BITS TO BE WRITTEN

0A

t--- 1 "I-

"I-

0 -

~850L
-IO~
r
nsee

_______~I
0B

1.7

I

U :
100-1:.
i

nsee

0B DELAYED

I I

--p.see

I

I-!-I

U

U

I

0 _____

-,--

U-

U

U

U

U

Lf

I

I

U--':'-LJ~
I
I
I

0

I

~:u
14- nsee

-I-

I

U

U

U

I

WRITE DATA FLlP- FLOP ---------iL.J~----'

______

DRUM FLUX

I
I

I

~--~

________.
I

~r--l

Figure 2-1

Simpl ified Timing of NRZ Writing

To clarify this point consider the timing diagram Figure 2-1 and the simplified logic diagram Figure 2-2.
As shown on these drawings, a positive voltage swin~J (identified by the arrow) from the write fl ip-flop
produces a flux change to write a 1, and a negative voltage swing produces a flux change in the opposite
direction to write a

o.

The read/write circuits are synchronized so that recording occurs on the phase A

time pulse. The write fl ip-flop must be in a state (reset to write a 0 or set to write a 1) so that the phase A
pulse can complement the fl ip-flop to write the spec ified bit. The phase B pulse shifts the bit to be written
into the last bit of the data register I the DSBO fl ip-flop. The delayed phase B pulse senses the DSBO bit
to put the write fl ip-flop into the proper state so that the next phase A pulse compl ements the write fl ipflop to write the bit specified by DSBO.
Obviously, when the state of the write fl ip-flop is switched by the delayed phase B pulse, it causes a
flux change on the drum surface. This flus change, however, is not sensed (two flux reversals per bit)
because during playback (reading) the drum is sensed for a flux change only at phase A time.
information on the principle of NRZ recording using phase modulation is shown in Figure 2-3.
2-1

Detailed

DSB
DSBO

(SHIFT REGISTER)
SHIFT DIRECTION

DSBt

4

DSB!!

t

o B SHIF"r PULSE

DRUM READ I WRITE HEAD

NRZ
WRITER

DSBO'
WRITE

FF

0B DELAYED

0B DELAYED

o A PULSE

Figure 2-2

Simplified Logic of Writing Circuits

DRUM FORMAT
Data from the computer is written on drum tracks that circumscribe the drum cyl inder as shown in Figure 2-4. The 24 Serial Drum Systems are available with 8, 16, 32, 64, 128, 192, or 256 tracks.
Each data track contains 2 sectors, and each sector contains 256 19-bit words. The 19-bit word consists
of 18 data bits pi us a parity bit (used only in the drum system).
The words within a sector are not stored consecutively on the track; rather, every other word is pecul iar
to the same sector as shown in Figure 2-4. Each word is transferred to the drum serial buffer in approximately 34 jJsec; a sector transfer is completed in approx imately 17.3 msec.
The drum also contains a clock pulse track. The clock pulse track suppl ies clock pulses to the drum control logic at 1 .7-jJsec intervals to synchronize writing and reading of the drum. A 300-jJsec gap, where
no clock pulses exist, separates the beginning and the end of each track.
Figure 2-5 shows a closer view of a typical 19-bit word. The word shown is the first word of the track,
word 1 of sector

o.

The first clock pulse (index pulse) following the 300-jJsec gap does "not write a bit;

it alerts the drum control circuits of the beginning of timing pulses. The next 18 drum clock pulses write
the 18 data bits of the word. After 18 bits are written, an odd parity bit is written; i. e., if the 18 bits
contain an even number of l's, a ptJrity bit of 1 is written to indicate odd parity. To separate words
written on the drum, every 20th drum clock pulse does not write a bit, thereby providing a 3.5-jJsec-gap

2-2

'IME IN
MICROS!CONlS

o
I I I I I I

-t

Ie

12

I I I

24

I I I I I I I I I I

I

,JAM TRANSFER

DSB o
(Example of

__--'1

~-'

0

o

0

o

L

word to be

written)

WRITE DATA
FLIP-FLOP

HEAD
CURRENT

+0
DRUM
SURFACE
FLUX

SATURATE

~'-------\~'-I--(---\-\;------...,~
-0 SATURATE

HEAD VOLTAGE
(Input to Sense
Amplifier at terminals
F and H) AND SENSE
AMPLIFIER SLICE
LEVEL (terminal S)

READ
STROBE

"

SLICE / \ "

~

-t

"=7~V ' V

t

/\

~'

t

t

~

t

t

0

«
ILl
ex:

SENSE AMPLIFIER
LEVEL
(terminal M)

J

SENSE AMPLIFIER
OUTPUT
(t erminal L)

---t

I
~'

DSBs

Figure 2-3

Typical Recording and Playback Timing
2-3

/ \

A

~\

t

t-

300#sl!c

GAP

~

CLOCK
TRACK
DATA TRACKS
AND 1

o

SEC 1

SEC 0

WO 0

WO 0

INDEX

65,536
DATA TRACKS

,76-'77
131072

DATA TRACKS

376-377

DATA TRACKS

776-777

·1
Figure 2-4

Drum Surface Format

between words. There are 20 drum clock pulses per word throughout the entire drum track. This remains
true even though the first clock pulse does not record a bit. The last word written does not contain a gap
and consequently no clock pulse is needed; therefore, it requires only 19 clock pulses. This makes up for
the index pulse so that there are 20 clock pulses per word throughout the drum track.

2-4

r
DRUM CLOCK PULSES

INDEX PULSE

I I I I

BIT WRITTEN

1

I I I

1 1 1.,,1 1 1 1 1 1

t t t 1 t t 1 t t t \-1--1....L-.1

~t~t

...&-t

BIT

I

BIT

2

BIT

3

BIT

4

BIT

5

~

BIT

6

BIT

1

BIT

8

BIT

9

BIT\ \ BIT

10

SECTOFI O. WORD 1

Figure 2-5

11

BIT

18

P

'J ~~--""'."'I.""

GAP

GAP

BIT

I

BIT

2

SECTOR 1
WORD 1

Sector Word Format

BLOCK DIAGRAM DISCUSSION
Major functional elements of the Serial Drum are shown in Figure 2-6. Complete information transfer
flow and timing of operations in the serial drum are indicated in engineering drawings FD-D-24EFG-0-2
and TD-D24EFG-0-31 .
Drum Core locat iron Counter (DCl)
The DCl is shown on engineering drawing BS-D-24604 to be a 16-bit fl ip-flop register which contains the
computer core memory address to or from which the next word is to be transferred. Before transfer of the
initial word in a block, the address of the first word is set into the DCl from the computer accumulator.

As each word is transferred, the DCl is automatically incremented by one.

Drum Track Address Register (DTR)
The DTR is a 9-bit fl ip-flop register which contains 1rhe address of the drum track selected for transfer of
a data block. The least significant bit is the sector address. The drum track (which may be considered
as the data block address in the drum) is set into the serial drum, during program initialization, from the
O
accumulator of the computer. At the completion of a successful block transfer (if the DE • PEO flag is a 0)
the DTR is incremented by one to simpl ify programming of continuous transfers at successive drum tracks.
Engineering drawing BS-D-24EFG-0-7 shows the DTR.

Drum Track Addr,ess Decoder (DTD)
Half of the drum track selection is performed by dec,oding of the DTRfl ip-flop outputs in the DTD. As
shown on engineering drawing -7, the DTD consists ,of two groups of eight 2-input diode gates, one group
for the X address and one for the Y address. The ei~~ht X address outputs function as a 2-digit octal
address which is further decoded in the drum X select logic. The eight Y address outputs serve a similar
function.

2-·5

ACB

FROM
ACCUMULATOR

~

THROUGH ACB

MB6 THROUGH MB

FROM MEMORY
BUFFER REGISTER

I~

~

DRUM CORE
LOCATION COUfHER
(DeL)

DCL
THROUGH DCL 117 _ _ •_
L.. _ _--.;;...;.;;;..a,_...,.;..;.;.;..;..;:;..;;.;;;;.;..;..-~;;..u._:._

DFB ~ THROUGH DFB

17

TO
MEMORY
ADDRESS
REGISTER

t'!'---<11
.
TO MEMORY
. .a.. . BUFFER
REGISTER

...--_ _ _ _ _ _......;V!L..._ _ _ _ _lJ.

..... UNDER CONTROL OF
DATA INTERRUPT
DRUM FINAL
BUFFER
(DFB)

~. DSB 1

6

rN~O~R~~~~

DATA REQUEST ANSWERED.TO

CONTROL

o

DFB
THROUGH

g~k

DFB

DOC

THROUGH

DSBI~

t~o
DRUM SERIAL
BUFFER
(DSS)

""
DSB~ _

READ/WRITE
PARITY
(R/WP)

OVERFLOW

(2)

R PARITY
(2)

WRITE
ENABLE - - - - ,

READ
DATA

~~---_..&(.&-(.-.,
ACB,'o
THROUGH

WRITE DATA
AND
WRITER

ACB"7

FROM
ACCUMULATOR

UJ

READ
... STROBE

READER
(DRUM S.A.)

~

6""
!:;
a:
0
a:
a:

0

a:

0
~

UJ

-

>-

I-

UJ

ir

READ/WRITE
BUSSUS
(2)

DRUM TRACK
ADDRESS
REGISTER
(DTR)

)

TRANSFER

DRUM CONTROL

TO I/O SKIP
PROGRAM
INTERRUPT
AND DATA
COLLECTOR

(OCT)

DT XAO_3
DTXBO_3
DRUM X SELECT

(8)

DRUM
TRACK
ADDRESS
DECODER
(DTD)

l-

r----L.-~--'--__ DONE FL AG

DT7
THROUGH
DTI7
}

~

C(

"J.

0
DTYA _
O 3
DTYB 0-3
(8)

32

.....

a:
a: «
0
UJ Oa:
a: ..J a: «
a: 0 OUJ
UJ
a: ~..J
0
IJJ
«
I- ~ ~o
« 0 «0
0
a.. 1-0

IJJ

DRUM
Y
SELECT

I/)

(

..J

~

a..
~

DIODE
MATRIX

.!!.e

0

0

..J
0

H
I/)

o

«
REMOTE
FROM POWER TURN ON
CONTROL

.

~

~s,...}
-15 VDe
TO

POWER
LOGIC
SUPPLY
~~
AND
-15 VDC Dc:LAYED..... TO
.....- - - - 1... DISTRIBUTION
-20 VDC
TO
- INDICATORS
.....-------I~~WRITER

CLOCK
TRACK
AMPLIFIER
(DRUM SA)

CD

It)

N

a:

o

CD

~

wi

CD

(

CLOCK TRACK'
(2)

DRUM MEMORY

r---~~""-'''''''''
PDP-4
TIME
PULSES

BEGIN
{

~T~7B~__________________________________________~:~

-

Figure 2-6

DRUM DATA
CHANNEL
(DOC)

Type 24 Serial Drum Block Diagram

2-6

SC· SA } BRK_ REQ
REQUEST
}
....
TO DATA
DATA IN
INTERRUPT

....

Drum Head Selection
Final selection of a drum head is performed in the drum X and Y select circuits shown on engineering
drawing BS-E-24EFG-0-13 and in the diode matrix within the drum housing.

Each of the 32 field lockout

switches inhibits the writing on 8 tracks or 4096 words of drum memory.

Drum SensE~ Amplifiers
Two Type 1537 Drum Sense Ampl ifier modules convert information sensed by the magnetic heads of the
drum into digital pulse data.

Information recorded on a clock track is sensed by the clock head and sup-

pi ied to the sense ampl ifier shown on drawing BS-D-24EFG-0-8 as the clock track ampl ifier. The output
from this sense ampl ifier is appl ied to the drum control (OCT) to establ ish the basic clock rate of all drum
operations. The sense ampl ifier shown on drawing BS-D-24EFG-0-l 0 as the READER samples the signals
picked up by the selected data head and produces a pulse to set a 1 into the drum serial buffer (DSB) when
the read strobe signal occurs during the maximum ne~~ative excursion of the head signal.

Drum Control (OCT)
The basic timing pulses for the machine are generated in the OCT from pulses received from the clock track
ampl ifier. The OCT contains the sector counter and sector equal ity logic. The OCT also contains a 4-state
device consisting of four negative diode gates. Each state of this device corresponds with and initiates one
of the four machine control states: idle, transfer, active, or transfer done. This logic is shown on engineering drawing -8.

Drum Data Control (DOC)
Engineering drawing -11 shows the DDC. Circuits within the DDC control the transfer of each word between the computer and the drum serial buffer. The DOC establ ishes the read/write status of the machine,
makes the data break request for a computer break c'ycle, indicates the detection of an errori and designates the direction of the ensuing data transfer.

Drum Final Buffer (DFB)
The DFB is an 18-bit register which serves as a buffer between the computer memory buffer register and
the drum serial buffer. Words are transferred in pamllel (18 bits at a time) under control of the computer
data interrupt control.

During drum writing, the DrB holds the next word.

During drum reading, the

DFB is empty and is prepared to accept information read from the DSB and place it into core memory under
control of the data interrupt control. The logic circ:uits which compose the DFB are shown on engineering
drawing D-24EFG-0-9.

2··7

Drum Serial Buffer (DSB)
As shown on the top and left side of engineering drawing -10, the DSB is an la-bit shift register which is
(I

serial-to-parallel converter during drum reading, and a parallel-to-serial converter during drum writing.

Information is read from the drum into the DSB serially and transferred to the DFB in parallel. During
drum writing, a word is read from the DFB into the DSB and written serially around the drum.

Read/Write Parity (R/VVP)

As each bit of a word is written on the surface of the drum, the R parity flip-flop counts the number of
binary l's and produces a 19th bit to provide odd parity. When data is read from the drum, this fl ip-flop
c::ounts the l's again and sets the parity error fl ip-flop if an even number is detected in anyone word. The
c::ondition of the parity error flip-flop is indicated in the OCT as one of the two possible causes of an error
c::ondition. These circuits are shown on engineering drawing -10:C4,C5.

DRUM WR ITE CYCLE
In general, the DRlCWR instruction (see Table 5-1, Chapter 5) initiates a drum write cycle in the drum


AC (10)

--<>

AC (10)

---+

I

I

INPUTS TO 24 FROM PDP-4
To Serial Drum
Drawing
logic

Function

OTR

-7:C

Provides track address to be strobed
into OTR by lOT 6104 pulse.

0-4-00-01-03
0-4-00-01-04
0-40004-3

DCl

-4:B

Provides initial address of data
transfer into DCl.

Keys

0-4-oo-C1-01

DOC

-1: B1
-11: B1

0-4-00-01-04
0-40004-3

I

Produces DOC CLEAR signal.

Data Request Answered
(Equals Data. B· Tl)
(Data Address => MA)

---+

DIC

0-40004-1

OCl
DOC
OFB

-4:C2
-11:82
-9:01

Produces OCl + 1 signal which increments DCl.
Clears REQUEST (RQ) flip-flop.
Produces OF CLEAR signal in write
mode.

lOT 6002

---+-

OS

0-40004-4

DCl
DOC
DFB

-4:C1
-11: B1
-9:01

Produces DCl CLEAR signal.
Produces ODC CLEAR signal.
Produces OF CLEAR signal.

lOT 6004

----.

OS

0-40004-4

OCl

-4: B1

DOC

-11: B2

OSB

-10:C1

Strobes AC~-17 information into
OCl.
1
Strobes MB into RD/WT, RQ, and
ONG flip- ops.
:roduces TAKE WORD signal if MB12
IS a 1 .

R/WP
OCT
OTR
DOC

-10:C5
-8: B1
-7:Cl
-11:83

lOT 6102

- ---+

-

OS

0-40004-4

1fc

OR to clear par error flip-flop.
OR to set IDLE to 1 .
Produces DT CLEAR signal.
OR to cI ear data error (DE) fli p-flop •

TABLE 3-1
Signal Name

Symbol

---+

lOT 6104

Logic
DS

I NPUTS TO 24 FROM PDP-4 (continued)
From PDP-4
Drawing
D-40004-4

To Serial Drum
Drawing
Logic
OCT

-10:C1

DCT

-10:D3

DCT

-8:C1

DTR

-7:C2

-10:C5
-11: B3
-8:B2

Function

Produces TAKE WORD signal in
write mode.
Produces DSB INITIAL CONDITION
signal in read mode.
Sets transfer request (TRA) to a 1
after 200-J-lsec delay.
Strobes ACB 0-17 information into
1
DTR.

--+

OS

0-40004-4

R/WP
DOC
OCT

--<>

MB

D-4-00-0 1-06

DFB

1
MB12

--<>

MB

0-4-00-01-06

DDC

-11: B2

Controls setting of RO/WR 1, RQ,
and ERROR SYNC flip-flops by
lOT 6004 pulse.

Remote Turnon

Contact
Closure

Power
Control

PSD

None

Energizes drum from computer START
key.

T7B

---+

Timing

DOC

-11 :D3

Produces a T7C pulse which clears
the DFB in the read mode,
MB-+ DFB in the write mode,
and clears the ERROR SYNC flipflop in the DDC.

lOT 6204

OR to clear par error flip-flop.
OR to clear data error (DE) flip-flop
OR to set TRA to a 1 .

W
I

W

1
1
MBO through MB17

I

0-4-00-01-01

I

-9:C

I

Provides data read from core memory
to be written on the drum.

TABLE 3-2

Signal Name

Symbol

OUTPUTS FROM 24 TO PDP-4

From Seri 01 Drum
Drawing
logic

logic

To PDP-4
Drawing

Function

Data In

•

DOC

-11 :C2

DIC

0-40004-1

Indicates the direction of data trCl1Sfers. Data passes into the computer
from the drum when this signal is at -3v

Data Request

•

DOC

-11:C2

DIC

0-40004-1

Indicates the serial drum is ready for
data transfer.

1
1
OCl through OCl
17
2

•

DCl

-4:B

O

•

OCT

-8:03

lOS

0-40004-1

Indicates that no data errors and no
parity errors have occurred when at
the -3v level.

1
1
DFBO through OFB
17

•

DFB

-10: B

MB(DIC)

0-4-00-01-06

Provides data read from drum which is
to be written in core memory.

Transfer Done Flag

•

OCT

-8:A4

105

0-4004-1

Signals completion of a block transfer when reverting to -3v (Nominally
ground level).

DE

O

. PE

MAR(OIC) 0-4-00-01-05

PIC

Holds the core memory address for the
next word to be transferred.

TABLE 3-3

I NPUTS TO DRUM-1 SERIES FROM PDP-1
From
PDP-1

To
Drum

Name

Symbol

- 10

--<>

10
D-20011

DCl

Provides drum with initial core address

10 - 10
16
9

--<>

10
D-20011

DTR

Provides track address to be strobed
into DTR by lOT 0162 pulse

10

--<>

10
D-20011

Sector
Address
DTR

Provides sector address to be jammed
into SA by X162-7 pulse

---+

General
Control
D-20007

DATA
RE Q ANSWERED
(DRA)
TO- HSC BREAK

----+

High speed
channel
D-21303

TP10

--+

10

10

17

17

START CLEAR

i

Function

Produces DDC clear signal

DCl
DDC
DFB

Indexes DCl
Clears REQ
Clears DFB (Write)

General
control
D-2007

DDC

Forms T1 OC during break to strobe
The MB ~DFB (Write)

lOT X161-7

---+

DS

DCl
DDC
DFB

Clears DCl
Produces DDC clear
Clears DFB

lOT X161-10

--+

DS

DCl
DDC

Strobes 10 --;:..DCl
Sets RE Q (Write)

lOT 0162-7

--+

DS

DT
DCT
DSB
DDC

Jams 1017 into sector address
Produces DT clear
Sets idle
Clears parity error
Clears data error

DSB
DSB
DTR
DCT

Produces DSB INI cond
Produces TAKE WORD (Write)
Strobes 10 data into DTR
After 200-llsec delay sets TRA

lOT 0162-10

--+

DS

3-5

TABLE 3-3

I NPUTS TO DRUM-1 SERIES FROM PDP-1 (continued)

Name

lOT 162

lOT 1163

MBO - MB17

MBa

Symbol

!

From
PDP-1

To
Drum

Function

---+

DS

DET
DSB
DDC

Sets TRA
Clears parity error
Clears data error

,.

DS

DSB
DDC
DCT

Clears parity error
Clears data error
Clears flag and set idle

MB

DFB

Provides data from core memory to
be written on drum

MB

DDC

Controls setting of RD/WT FF by
lOT X162-7

Power
Supply

836
Power
control

Enables drum to energize from remote
station

•
•

REMOTE TURN ON

-15v

TABLE 3-4
Name

Symbol

OUTPUTS FROM DRUM-1 SERIES TO PDP-1
From
Drum

To
PDP-l

Function

DATA IN

•

DDC

HSR

Indicates direction of transfer

DATA REQUEST

•

DDC

HSC

Indicates drum is requesting a data
break

DCl

HSC

Indicates memory address of next break

DFB

MB

Provides data read from drum which
is to be wri tten into core memory

DCT

New logic

Sensed by T. lOT 720163, indicates
completion of transfer

DCT

SQ BRK

Indicates completion of transfer

•

DSB

New logic

Sensed by IOT721164, indicatesthe
presence of a parity error on the last
track read

---<>

DCT

New logic

Sensed by lOT 720164

DCL~ -

1
17

DFBl _ 1
o 17
DRUM DONE FLAG

DRUM DONE PULSE
PARI TY ERROR

PEG . DEO

•
•
•
---+

3-6

CHAPTER 4
INSTALLATION AND OPERATION

SITE REQUIREMENTS
The installation site must provide floor space at least 14 inches wide and 28 inches deep to accommodate
the serial drum.

At least 9 inches must be provided in front of the cabinet and 15 inches at the back of

the cabinet to allow opening of the doors for maintencmce.
A source of l'I5v (±17v), 60 cps, single-phase power must be supplied by the site. This source must be
capable of supplying the 8. O-amp starting surge current and 5 .O-amp running current required by the serial
drum.
Ambient temperature at the installation site can vary between 32 and 105° F (0 to 41°C) without deleterious
effect upon equipment operation.

For normal operati()n an ambient temperature range from 70 to 85°F is

recommended.

SIGNAL AND POWER CONNECTIONS
All signal connections from the computer to the Type 24 Serial Drum are made at connectors F3 and F4 on
the plug panel at the front of the mach ine. To mate with these connectors, a cable shou Id contain an
Amphenol connector of the 115-114P series with a HOllsing 1391 and Wire Clamp 3057. Maximum signal
cable length shou Id not exceed 25 ft.

The input and output signals are defined in Tables 3-1 and 3-2 and

their wiring connections are given on sheet A-24EFG-·O-26.
A grounded, 3-wire power cable is permanently attached to the machine. A standard 3-prong male power
plug at the end of this cable allows connection to a power source at least 18 ft from the cabinet.

CONTROLS AND INDICATORS
Toggle switches on the switch panel at the rear of the machine provide all manual control of the serial drum.
The function of these switches is as follows:
MAINT ON/OFF

Allows maintenance personnel to select the normal or stop-on-error
mode of operation. In the OFF position the equipment functions
normally and data errors or parity errors can be detected by the
error flag only at j"he end of a 256-word block. In the ON position detection of data error or parity error by the machine inhibits
generation of clock signals (0 AI Read Strobe, and DB) so that all
data transfer stops and the contents of all regi ste rs can be observed
to locate the cause of the error.

REMOTE ON/OFF/LOCAL ON

Allows local or remote control of machine energization. In
the REMOTE ON position the machine is energized by a contact closure in the computer. The OFF and LOCAL ON positions function as a normal power switch.

FIELD LOCKOUT
(0-37)

Each switch allows a group of 16 consecutive address (4096
words) to be inhibited during writing so that the information
stored on those tracks cannot be acidentally destroyed.

Visual indication of the machine status and register contents is given on the indicator panel. The functions
denoted by these lamps are as follows:
TRACK ADDRESS
(9)

Light to indicate lis in the drum track address register.

CORE LOCATION
( 16)

Light to indicate lis in the drum core location counter.

FI NAL BUFFER
( 18)

Light to indicate lis in the drum final buffer.

SERIAL BUFFER
( 18)

Light to indicate lis in the drum serial buffer.

READY (RD and WR)
(2)

Indicate the machine is in either the read or write mode.
RD READY light indicates that the initial delay following
energization of the power control has elapsed and the machine is ready for use.

TRA

Lights to acknowledge receipt of lOT pulses and indicates
that the machine has been taken out of the idle state and is
waiting for clock pulses to be read from the drum to assure that
the drum is in the correct position before initiating a transfer.

ACT

Lights to indicate that the machine has been taken out of
the transfer state and is actively engaged in a data transfer.

FLAG

Lights to indicate that a block transfer has
and the machine has been taken out of the
machine remains in this state until the flag
the machine is set to either the idle or the

OVERFLOW

Lights to indicate that a 19-bit word has been assembled in
the DSB and is ready for transfer to the DFB in the read mode,
or that a 19-bit word has been transferred from the DSB to the
drum in the write mode.

REQUEST

Lights to indicate that a data request signal has been sent to
the computer to request a data break to transfer a word.

4-2

been completed
active state. The
is cleared when
transfer state.

PE

Lights to indicate that the machine has detected a parity error
after readin from drum to core. If the MAl NT ON/OFF switch
is OFF when a parity error occurs, the drum error flag is set to
1; if the swi'tch is ON, the flag is set to 1 and the transfer is
term i nated •

DE

Lights to indicate that the machine has detected a data error,
in that the data request signal from the drum was not answered
within the b6-!-,sec period required. (When reading a data
word is therefore incorrect in the computer core memory or when
writing the next word to be written has not been received by
the DFB.) Ilf the MAINT ON/OFF switch is OFF when a data
error occurs, the drum error flag is set to 1; if the switch is
ON, the flc::lg is set to 1 and the transfer is terminated. This
condition occurs either because devices with higher priority
are connected to the data interrupt control, or because the instruction being executed at the time of the data request takes
longer than 66 !-,sec for completion.

EQUIPMENT TURNION AND TURNOFF
Operation of the Type 24 can be controlled locally by operation of a switch, or remotely from a signal received from the computer. Control point is selected at the REMOTE ON/OFF/LOCAL ON switch on the
switch panel.

In normal use this switch is left in the REMOTE ON position with the circuit breaker in the

ON position.

For maintenance operations this switc:h is set to the LOCAL ON position to apply power and

to the OFF position to remove power. Power is not controlled by manual operation of the circuit breaker.
Note that the circuit breaker must be in the ON position to allow either local or remote control of primary
power in the serial drum by means of the switch; setting the switch to the REMOTE ON position alone is
not suffic ient for remote operation.

4-3

CHAPTER 5

PROGRAMMING

INSTRUCTilON CODES
The instructions that are used with the serial drum are I isted in Table 5-1 for the PDP-4 and Table 5-2
for the PDP-1. Simi lar instructions are used for the PDP-7 {refer to PDP-7 programming documentation}.

TABLE 5-1

TYPE 24 SERIAL DRUM INSTRUCTION LIST (PDP-4)

Octal
Code

Mnemonic
Code

706006

DRLCRD

Load the drum core location counter with the core memory location
information in acc:umulator bits 2-17. Prepare to read one block of
information from the drum into the specified core location. *

706046

DRLCWR

Load the drum core location counter with the core memory location
information in accumulator bits 2-17. Prepare to write one block
of information int,o the drum from the specified core location. *
Clears all flags.

706101

DRSF

Skip next instruction if the drum transfer done flag is a 1. (The
block transfer is complete.)

706102

DRCF

Clear the drum trclnsfer done flag and the DE ·PE

706106

DRLBLK

Load the drum track address register with the contents of accumulator blIs 10 through 17. Clear the drum transfer done flag, clear
the DE . PEO error flag, and begin a transfer (reading or writing). *

706201

DRSOK

Skip next instruction if the drum transfer done flag is not a 1 .

706204

DRCONT

Clear the drum tmnsfer done flag, clear the DE . PE
and begin a transfer.

Operation

o

o

0

error flag.

0

error flag

*The drum core location counter is incremented afte~r each word transfer and the drum track address
register is advanced to the next position at the end of each block transfer if the drum error flag is not
set to a 1 and the MAl NT ON/OFF switch is in the OFF position.

5-1

TABLE 5-2
Octal
Code

TYPE 24 SERIAL DRUM INSTRUCTION LIST (PDP .. l)

Mnemonic
Code

Operation

721161

DWR

Load core location from I/O bits 2-17 to drum control.
wr ite on drum.

720161

DRD

Load core location from I/O bits 2-17 to drum control. Set mode to
read from drum.

720162

DBL

Load drum track address from I/O bits 9-17 and initiate drum transfer. Clears all flags.

721162

DCN

Cont inue a transfer (do not reset addresses).

720163

DTD

Drum transfer done. Execute the next instruction if the transfer
has not been completed; skip the next instruction if the transfer is
completed.

720164

DSE

Execute the next command if any error flag exists after a transfer
is complete. Skip the next instruction if no error flag exists after
a transfer is compl ete. (Error flags are reset with a drum transfer
begin command).

721164

DSP

Execute the next command if the parity flag is on.
command if the parity flag is off.

Set mode to

Skip the next

DRUM FORMAT AND PROGRAM TIMING
Chapter 2 explained the drum format and showed diagrams of the drum format and word format.

A sector

transfer begins when the continuously rotating drum reaches the index mark, 1.7 fJsec before the beginning
of the data in a selecterl track and sector.

A 300-fJsec interval seporates the end of the last sector from

the beginning of the first sector on each track.
Because the selection of the track read-write read requires 200 fJsec stabil ization time, for continuous
transferring a new trac.k must be specified during the first 100 fJsec of the 300-~sec interval.

If selected

tracks and sectors are consecuti'!e, uninterrupted transferring may be programmed merely by specifying
continuation since the sector and/or track number and core memory location are automatically incremented.
However, if a data timing or parity error occurs, the track and sector number are not advanced and operat ions stop at the concl usion of the sector transfer. Th is feature allows the program to sense for error conditions and to locate the track and sector at which transmission fails.
can be given any time within 200 tJsec after the completion flag is set.

5-2

In general, the continuation command

The drum completion flag is set upon completion of a sector transfer, causing a program interrupt. The
flag is cleared either by a clear flag (DRCF) or automatically when one of two transfer instructions
(DRLBL K, DRCONT) is given.
The error flag, which should be checked at the completion of each transfer, indicates either of the following conditions:
1 '. A parity error has been detected after reading from drum to core memory.
2. The data break request signal from thE~ drum was not answered within the required
66-!-,sec period. This condition occurs either because other devices with higher priority
are connected to the data break facil ity, or because an instruction requiring longer
than 66 !-,sec for compl etion was in progress when the break request was made. Thus,
in reading from the drum, the data word stored in core memory is incorrect; in writing
on the drum, the next word has not been received from the computer.

PROGRAMMING SUBROUTINES
The following program examples indicate the operation of the drum system in multiple sector transfers. The
subroutines are for the PDP-4; however, simi lar routines exist for the PDP-l.

For the PDP-7, in simi lar

routines the LAW instructions are changed to LAC (see PDP-7 programming documentation). The explanation of example A is explained following its listing. Example B is a more sophisticated routine in which
frequent error checks are made; this example wi II not be explained.
Program Sequence Example A
ISUBRounNE TO READ OR WRITE n BLOCKS.
ICORE LOCATION A, DRUM BLOCK LOCATION B.
ICALLING SEQUENCE:

I
I
I
I

LAW A

LAM -n+1

IBLOCK NUMBER

DRUMRD,

o

IREAD ENTRY

DRLCRD

IGIVE READ COMMAND

LAC DRUMRD

ISETUP TO USE COMMON

JMS DRUMRD

lOR DRUMWR

LAW B

DCA DRUMWR
JMP
DRUMWR,

CO~AMON

o

IWRITE ENTRY

5-3

DRLCWR
COMMON,

XCT I DRUMWR

/FETCH BLOCK NUMBER, LOAD

DRLBLK

/BEGIN FIRST BLOCK TRANSFER

ISZ DRUMWR
XCT I DRUMWR

/GET NUMBER OF BLOCKS

DAC TEMP
DRCON,

DRSF

/WAIT TILL TRANSFER IS DONE

JMP DRCON
DRSOK

/CHECK FOR VALID TRANSFER

HLT

/STOP IF NOT GOOD

ISZ TEMP

/INDEX BLOCK NUMBER

JMP .+2
JMP DRDONE
DRCONT

/GIVE CONTINUE FOR MORE BLOCKS

JMP DRCON
DRDONE,

DRCF
ISZ DRUMWR

/ ADVANCE RETURN

JlV\P I DRUMWR
/END OF DRUM READ OR WRITE SUBROUTINE
The LAW A instruction loads the accumulator with the address of the initial core memory location which
contains the first word of the sector transfer. The JMS DRUMWR jumps to the write entry point and deposits the contents of the program counter + 1 (which addresses the LAW B instruction) into the DRUMWR
location.

Note that the accumulator, which contains the core memory address, remains unchanged;

therefore, the next instruction (DRLCWR) can transfer the accumulator contents which contain the core
memory address into the drum core memory address register (DCL register). The next instruction is an
execute instruction (XCT I) indirectly addressed to DRUMWR.

Since the DRUMWR location contains the

cJddress of the LAW B instruction, ,the LAW B instruction is executed, loading the accumulator with the
track address. The DRLBLK is then executed to transfer the accumulator contents, which contain the
track address, into the drum track register and start the sector transfer.

Data transfer begins between the

drum and core memory; data is transferred automatically (without further intervention by the program); each
word transfer takes the word in core memory spec ified by the drum memory address and writes it on the
spec ified track and sector.

Following a word transfer, the drum memory address is incremented so that the

next transfer takes the word from the next sequential memory location.

5-4

The ISZ DRUMWR instruction increments the contents of the DRUMWR location so that the DRUMWR
location contains the address of the next sequential instruction {following LAW B} which is the LAM -n+1
instruction. The LAM -n+ 1 instruction specifies thle number of block transfers in 2 1 s complement form.
The XCT I DRUMWR instruction loads the accumulator with the number of block transfers; the OAC TEMP
stores the number of block transfers into location TEMP.
The DRSF {skip if transfer done} senses the status of the drum FLAG and if the sector transfer is complete,
the program skips to the DRSOK instruction; if not, the program loops back to the DRSF instruction and
continues in this loop until the sector transfer is cOlTlplete.
The ORSOK instruction {skip if no error} senses the error flag for errors occurring during the previous sector
transfer. If an error occurs, the next instruction is executed which halts the program. If no error occurs,
the program skips to the ISZ TEMP instruction.
OIS

ThE~

ISZ TEMP instruction senses the TEMP location for all

which signifies that the block transfer is complete. If not 0, the block transfer is not complete; there-

fore, the TEMP location is incremented and the ne>d instruction (JMP +.2) is performed. The JMP +.2
(jump to this location +2) advances the program to DRCONT which initiates another block {sector} transfer.
The JMP DRCON instruction returns the program bClck to the DRSF instruction to wait till the sector transfer is compl ete.
When the block transfer is complete, the ISZ TEMP instruction senses a 0 in TEMP; consequently, the
next instruction is performed which jumps the progrcJm to DRDONE. The DRCF instruction clears all flags
in the drum. The ISZ DRUMWR instruction increments the DRUMWR location so that it will address the
advance return location. This permits the JMP I DRUMWR to return the program control to the main
program.

Program Sequence Example B
IDRUM SUBROUTINES

IA::::

INITIAL CORE MEMORY ADDRESS

B:::: INITIAL DRUM ADDRESS

lOR LAW (A)

ICALLING SEQUENCE:

LAC (A)

I
I
I
I

JMS DRUMRD OR DRUMWR

I

LAW B

lOR LAC (B)

LAM -n+1

In::::

JMP SUBR

IRETURN TO DRSUB + 1, FOR
IMUL TIPROGRAMMING

JMP ERR

DRLCRO :::: 706006
DRLCWR :::: 706046

5-5

NO. OF BLOCKS TO WRITE

DRLBL K = 706106
DRCONT
DRSF

= 706204

= 706101

DRSOK = 706201
DRCF = 706102
DRUMWR,

o
DRLCWR

/DRUiA WRITE

DAC DRUMTl
LAC DRUMWR
DAC DRUMRD
Jlv\P DR UMCM
DRUMRD,

o
/DRUM READ

DRLCRD
DAC DRUMTl
DRUMCM,

XCT I DRUMRD
DAC DRUMT2
DRLBLK

/ST ART TRANSFER

ISZ DRUMRD
XCT I DRUMRD

/BLOCK COUNTER

DAC DRUMT3
ISZ DRUMDR
LAC I DRUM DR

DAC DRSUB

ISZ DRUMRD

/POINTS TO ERROR RETURN

.JMP DRSUB
DRCON,

DRCONT
ISZ DRUMT2
LAC DRUMTl
ADD DEC IMAL (256 ) OCTAL
DAC DRUMTl

DRSUB,

o
DRSF
IMP .-1
[lRSOI<
JMP DREXIT
ISZ DRUMT3

5-6

JMP DRCON
ISZ DRUMRD
DREXIT ,

DRCF
JMP I DRUMRD

DRUMT1,

o

/CURRENT CORE ADDRESS

DRUMT2,

o
o

/DRUM ADDRESS

DRUMT3,

/COUNTER

START

FIELD LOCKOUT SWITCHES
The programmer should be aware of the settings of the FIELD LOC KOUT switches to avoid attempting to
write at track addresses which are inhibited by switches in the up position. The octal addresses inhibited
by each switch are as follows:
Switch

Addresses

Switch

Addresses

0

0000 to 0017

20

0400 to 0417

0020 to 0037

21

0420 to 0437

2

0040 to 0057

22

0440 to 0457

3

0060 to 0077

23

0460 to 0477

4

01 00 to 0117

24

0500 to 0517

5

0120 to 0137

25

0520 to 0537

6

1040 to 0157

26

0540 to 0557

7

0160 to 0177

27

0560 to 0577

10

0200 to 0217

30

0600 to 0617

n

0220 to 0237

31

0620 to 0637

12

0240 to 0257

32

0640 to 0657

13

0260 to 0277

33

0660 to 0677

14

0300 to 0317

34

0700 to 0717

15

0320 to 0337

35

0720 to 0737

16

0340 to 0357

36

0740 to 0757

17

0360 to 0377

37

0760 to 0777

5-7

CHAF'TER 6
MAINTENANCE

The maintenance techniques for the serial drum consiist of the normal maintenance and troubleshooting techniques employed on digital equipment; these techniques include visual inspections, cleaning air fi Iters,
fault isolation, etc.

Any techniques peculiar to the 24 Serial Drum are described in this chapter.

ADJUSTMENTS

Timing Checks and Adjustments
Using the osci Iloscope and referring to engineering drawing -8, check the timing of the Type 4303 Integrating Single Shot at location 1 C9, and the Type 1:304 Delay at location 1 D24.

If necessary, adjust the

timing of these modules by turning the potentiometer screw which is accessible through a hole in the handle.
Check the single-shot by observing the 1 output at lC9W while triggering the oscilloscope on 1C9K.

Dur-

ing each revolution of the drum the sing Ie shot i s tri!~gered every 1 .7 jJsec for approximately 17 msec during
data reading and receives no pulses during the 300-~lsec gap. The output at terminal 1C9W shou Id be at
ground level during the gap, drop to - 3v at the first triggering pu Ise, and remai n at - 3v unti I 3.4 jJsec
after the last triggering pulse is received before revE~rting to ground potential.
Check the timing of the 1304 Delay module (1 D24) by observing the negative read strobe pulse at terminal
1 D24E while triggering the oscilloscope on the lOA pulse. Read strobe pulses should follow lOA pulses by
approximately 0.3 jJsec. Observe t'he read strobe pulses and the amplified output of a magnetic read head
by connecting the second input of the dual-trace oscilloscope to terminal 1E24S. It is important that the
read strobe pulses occur at the negative peak of the sinusoidal read signal. Measurements should be made
using several different head outputs, and the read strobe pulse should be adjusted for an average of the
measurement's to el im inate large di fferences in peak playback time.

Drum Sense Amplifier Check and Adjustment
The Type 1537 Drum Sense Amplifier modules at loc(ltions 1 E25 (clock track) and 1 E24 (data track) are
checked for proper slice or threshold level at terminl:::!1 S. This measurement can be made with the oscilloscope by measuring the amount the base line shifts above ground when the signal is connected to the input.
The clock track sense amplifier slice level should be +100 mv. The data track sense amplifier slice level
should be +150 mv. Adjustment of the slice level c(m be achieved by turning the potentiometer screw
which is accessible through a hole in the module handle.

6-1

l)rum Head Mounti ng Ad justments
Adjustment of the magnetic heads is provided by the stop screw for each pad of heads and its actuating arm,
as shown in Figure 6-1 .

Figure 6-1

Stop Screw Position

With this stop screw properly positioned, the actuating arm moves the pad to a position where the read is
sl ightly bent and the pad is tangent to the drum surface at the Iine of head gap.

These ad justments are made

Cit the factory and ordinari Iy need no't be changed, at least no more than a minor adjustment.
should adjustment be necessary, proceed as follows:
1. Connect an osc i lIoscope to 1 E25S to observe the preampl i fi er output for the drum
head in question.

6-2

However,

2.

Set the DTA to address the drum head in question.

Engineering drawing -13 shows

the bar and pad location and the octal address of each drum head.
3" Set the drum control status to read.
4. Using a 5/64 hexagonal for socket heClds, adjust the stop screws unti I a maximum
output is noted on the osci Iloscope as shown in Figure 6-2. The adjustment screw is
located on the right side of each bar viewing the drum as shown in Figure 6-1 .

CAUTION
If head adjustment is attempted with diode boards in place, make sure that
the adjustment wrench is placed, and/or insulated to prevent shorting connections or components to ground.

The best method of making this check is to run a program in which the patterns of all OIS, all lis, or alternate lis and OIS are written on the selected track, then read the data and monitor the output of the
selected track.

If data on the selected track is to be retained, it should be read into core memory before

proceeding with this adjustment. Rewrite the selec:ted track and read the recorded signal after every
ad justment.

Pad Level ing Adjustment
The amplitude of head playback signals among the eight heads in each pad is set as uniformly as possible
by using the pad leveling screws which are accessible at the outer surface of each bar, roughly adjacent
to the upper and lower edges of each pad. This mClY be checked on heads 1 and 8 (top and bottom heads)
with secondary reference to heads 2 and 7 .. Clockwise rotation of a pad leveling screw tends to increase
signal amplitude at that end of the pad. Continuously write and read the selected heads, always alternating
between the two.

MARGINAL CHECKS
Marginal checks are performed to aggravate borderline conditions within the logic to reveal observable
faults. The checks are performed by operating the equipment logic circuits from an external, adjustable
power source, such as the DEC Type 734 Variable Power Supply. (See Chapter 2, Power Supply and Distributions for descriptions of marginal check terminals and switches.)

6-3

J{A"

~

~

1. HEAD PAD RETRACTED

~nlllP)
...

~.

CENTER OF INITIAL

~~ HYDRODYNAMIC
\\~\\\ ,\\\"\\~,,,\,,\-

FILM
.

__~_

i

I
~~ I ,

:
--

I

_--L --

I

2. HEADS APPROACHING ROTATING DRUM

HEAD GAP TANGENT,
MAXIMUM SIGNAL
AMPLrrUDE
3. OPERATING POSITION

I

'

- - l--_. -,

i

!

\

~~~" ,:\\~

CENTER OF FILM

HEAD GAP NO LONGEH TANGENT,
SIGNAL AMPLITUDE REDUCED

4. ADJUST STOP BACKED OFF TOO FAR

Figure 6-2

Operating Positions of Head Pad

6-4

'

-

-~

Raising the bias voltage above +10 is equivalent to lowering the amount of base drive on a particular
transistor. This in turn simulates a lower gain driving transistor. Raising the bias voltage thus tends to
indicate low gain transistors.

Lowering the bias vcdtage below +10v simulates a condition where the vol-

tage drop across the previous driving transistor (V CE) has increased; this tends to indicate high V CE drop
(leakage) transistors or low gain driving transistors. The -15v supply margins are not checked in the serial
drum because raising or lowering the -15v does nol' affect the majority of control logic, since it is the
collector load voltage and is usually clamped to -3v. The +10v margin should be about ±5v.*
By recording the level of bias voltage at which circuits fail, progressive deterioration can be plotted and
expected fai lure dates predicted. Therefore, these~ checks provide a means of planned replacement. Marginal checks of the +10 (A) supply (top switch at the left of the rack) to rack E varies the slice level on
the drum sense amplifier modules and so is a valuable tool in verifying the capability of the machine to
read and write on the drum surface.

Normally increasing the + 10 (A) supply by 5 or 6v also increases the

slice level and causes bits to be dropped out.

Decreasing the +10 (A) source by 5 or 6v usually lowers the

slice level and causes bits to be picked up.
To perform marginal checks, proceed as follows:
1. Connect the external marginal-check power supply to the colored connector on any
rack between the green (+) and the black (ground) terminal.

2. Energize the marginal-check power supply and adjust the outputs to supply the nominal
+10 vdc.
3 . Start equipment operation in a repetitive pattern or in a routine which fully utilizes
the circuits in the rack to be tested.

4. Set the top switch on the rack to be clhecked to the up position.
5. Lower the +10v marginal-check power supply until normal system operation is interrupted. Record the marginal-check voltage. At this point marginal transistors can
be located and replaced.
6, Start equ ipment operation. Then decrease the + 1Ov marg inal-check supply unti I
normal operation is interrupted, at which point record the marginal-check voltage.
Transistors can again be replaced.

*The 1537 Sense Amplifier, 1C1 and lE25, has only ±2v margins on +10B.
6-5

7.

Stop operation and return the top switch to the down position.

8. Repeat steps 2 through 7 for the center switch on the logic rack being checked.
9. Repeat steps 2 through 8 for each rack of logic to be checked.
10. De-energize and/or disconnect the external marginal-check power supply.

DIAGNOSTICS
Tlhe diagnostic program is a test procedure designed to check the basic control functions performed by the
mach ine and to determ i ne the rei iabil ity of recording on various tracks.

Speci fically the program performs

the following:

1. Writing and checking of any desired pattern on the entire drum, writing one track
at a time.

2. Writing and checking of specific patterns on the entire drum, writing one track at a
time.

3. Writing and checking of ramdon numbers over the entire drum, writing four tracks at
a time.
Prepare a perforated tape or other vehic Ie for loading the following program into the computer.

24/
WRA

= 2000

RDA = 4000
BEGI N,

LAC DLNGTH
CMA
ADD (1)
DAC DLOOP1 +3
DAC DWRITE+1
ADD (3)

DAC D3A

DO,

LAS
SMA
JMP D1
HL.T

6-6

LAS
JMS DLOOP1
JMP DO
D1,

LAM TB-TBE
DAC T2
LAW TB-1
DAC 17

D2,

LAC I 17
JMS DLOOP1
ISZ T2
JMP D2

D3,

/TEST RANDOM 2000 WD PATTERNS

LAC (736425)
DAC RNK
LAC (NOP)
DAC DRSUB+4

D3A,

/MODIFIED, -DLNGTH+4

LAM
DCA Tl
DZM DK1

D4,

LAM -17777
DAC T2
LAW WRA-1
DAC10

D5,

JMSRN
OAC I 10
ISZ T2
JMP 05

06,

LAC (WRA)
JMS ORUMWR
LAC OK1
LAM -3
JMP ORSUB+1
.JMP WZE

07,

JMS OCMP
LAM -3
LAM -1777
ISZ OK1
6-7

I SZ 11
JMP 04
JMP D3A
DCMP,

/COMPARE READ AREA AGAI NST WRITE AREA

0
LAC (RDA)
JMS DRUMRD
LAC DKl
XCT I DCMP
JMP DRSUB+l
JMP .+1
ISZ DCMP
XCT I DCMP
DAC DCTl
LAC (LAC WRA-l)
DAC10
LAC (LAC RDA-l)
DAC 11

DCMP2,

LAC I 10
SAD I 11
JMP .+2
JMS DCMPE
ISZ DCT1
JMP DCMP2
ISZ DCMP
JMP I DCMP

Dell,

0

DK1,

0

DK2,

0

DK3,

0

DCMPE,

0

/TYPE OUT DRUM ERROR

TIN
LAC DKl
DAC DK2

/CHANNEL NO.

LAC (LAC RDA)
CMA
ADD 11

6-8

DCMPE1,

ADD (DECIMAl., 255 OCTAL)
SPA
JMP DCMPE2
ADD (-1)
ISZ DK2
JMP DCMPE1

DCMPE2,

ADD (DECIMAL, 255 OCTAL)
SPA
CMA
DAC DK3

/WORD NO.

LAC DK2

/TRACK t-.JUMBER

TWORDZ

6
TAB
LAC DK3

/WORD NUMBER

TV/ORDZ

6
TAB
XCT 10

/WORD WRITTEN

TWORD

6
TSP
XCT 11

/WORD READ

TWORD

6
JMP I DCMPE
DLOOP1,

0

/DO WRITING AND CHECKING

JMS DSPRD
JMS DWRITE
LAM

/MODIFIED, -DLNGTH+1

DAC T1
DZM WRA
DZM DKl
DLOOP2,

JMS DCMP
LAM
LAM DECIMAL, 255 OCTAL

6-9

ISZ DKl
ISZ WRA
ISZ Tl
JMP DLOOP2
JMP I DLOOPl
Tl,
T2,
DSPRD,

o
o
o

/SPREADS 256 WORDS IN WRA

DAC DSPRDA
LAM DECIMAL, 255 OCTAL
DAC DSPRDC
LAW WRA-l
DAC 10
LAC DSPRDA
DAC I 10
ISZ DSPRDC
JMP .-2
DZM WRA
DZM DK1
JMP I DSPRD
DSPRDC,

o

DSPRDA,

o

DWRITE,

o

/WRITES ALL CHANNELS

LAM

/MODIFIED, -DLNGTH+l

DAC DWC
LAC (JMP DREXI T)
DAC DRSUB+4
DW1,

LAC (WRA)
JMS DRUMWR
LAC DK1
LAM
JMP DRSUB+1
JMS WZE
ISZ WRA
ISZ DK1
ISZ DWC
6-10

DCMPE1,

ADD (DECIMAL, 255 OCTAL)
SPA
JMP DCMPE2
ADD (-1)
ISZ DK2
JMP DCMPE1

DCMPE2,

ADD (DECIMAL, 2'55 OCTAL)
SPA
CMA
DAC DK3

/WORD NO.

LAC DK2

/TRACK NUMBER

TWORDZ

6
TAB
/WORD NUMBER

LAC DK3
TWORDZ

6
TAB
XCT10

/WORD WRITTEN

TWORD

6
TSP
XCT 11

/WORD READ

TWORD

6
JMP I DCMPE
DLOOP1,

0

/DO WRITING AND CHECKING

JMS DSPRD
JMS DWRITE
LAM

/MODIFIED, -DLNGTH+1

DAC Tl
DZM WRA
DZM DK1
DLOOP2,

JMS DCMP
LAM
LAM DECIMAL, 255 OCTAL

6-9

ISZ DKl
ISZ WRA
ISZ Tl
.JMP DLOOP2
.JMP I DLOOPl
Tl,
T2,
DSPRD,

o
o
o

/SPREADS 256 WORDS IN WRA

DAC DSPRDA
LAM DECIMAL, 255 OCTAL
DAC DSPRDC
LAW WRA-l
DAC 10
LAC DSPRDA
DAC I 10
ISZ DSPRDC
JMP .-2
DZM WRA
DZM DKl
JMP I DSPRD
DSPRDC,
DSPRDA,
DWRITE,

o
o
o

/WRITES ALL CHANNELS

LAM

/MODIFIED, -DLNGTH+l

DAC DWC
LAC (J MP DREXI T)
DAC DRSUB+4
DW1,

LAC (WRA)
JMS DRUMWR
LAC DKl
LAM
JMP DRSUB+l
JMS WZE
ISZ WRA
ISZ DKl
ISZ DWC
6-10

JMP DWl
JMP I DWRITE
DWC,
RN,

o
o

/RANDOM NUMBER GENERATOR

lAC RNK
Cll V RAR
SZl
XOR (400000)
XOR (335671)
ADD (335671)
DAC RNK
JMPIRN
RNK,

o

WZE,

o

/WORKING NUMBER

TIN
LAC DKl
TWORDZ
6
TSP
LAC (FLEX WRE)

TY3
JMP I WZE
TB,

o
777777

525252
252525
666666
TBE,

111111

DlNGTH,

400

/256 TRACKS DECIMAL

START
This program assumes that DEC Readin Mode loader program and standard teleprinter subroutines are stored
in core memory.

If the subroutines are not in the computer, prepare routines as listed in Appendix 1, or

equivalent, and load them into the computer.

6-11

To use this program set the ADDRESS switches to 7770, load the tape in the reader, and depress the START
key. When the program is in the computer press the STOP key, set the ADDRESS switches to 24, then
press the START key.

!hase a - If bit 0 of the ACCUMULATOR switches is a 1, the program will halt.

Put the pattern desired

to be written on the drum in the ACCUMULATOR switches and press CONTI NUE. The pattern will be
written on all tracks and checked.

Note that during this phase and during phase b below, the first word

wri tten on each track is the track number.
After the entire drum (tracks 0-127

or 0-255 ) has been checked, the program will continue with
10
10
phase b unless bit 0 of the ACCUMULATOR switches is a 1, in which case the machine will halt again
and the entire process can be repeated. The switches can be changed any time after CONTINUE is pressed"

If bit 0 of the ACCUMULATOR switches is a 0 when starting the program, phase b will begin immediately.

!hase b - During this phase the following patterns are written and checked over the entire drum, writing
one track at a time:
000000
777777
525252
666666
111111
(The fi rst word on each track wi II bE! the track number)

Phase c - When phase b is completed, the program wi II generate pseudo-random numbers and write and
check the enti re drum wri ti ng and reading, four tracks at a time (i . e. 0-3, 1-4, 2-5, 3-6 etc. through
124-127

10

or 252-255

10

), This phase will continue indefinitely until the machine is stopped.

If information is misread from the drum, the following typical message wi II be typed, and the program wi II
continue checking the next channel:
000100

000236

525252

525250

Where: word one = the track number (octal 0-255)
word two = word number (octal 0-377)
word three

= the

word wri tten on the drum

word four = the word read from the drum (in this example bit 16 was dropped)

6-12

If an error occurs during writing, the message 000100 WRE will be typed, indicating a write error on track
100 (octal). The program will continue; however, if this error occurs during phase c, start the program
over manually.

Normally this error cannot occur,

CIS

parity is not checked during writing, and no timing

problems are imposed by the programming.
The program has been assembled for a 256
change register DLNGTH to 200 ,
8

track drum. To use the same program for a 128
track drum,
10
10
DLNGTH = 313 (memory location).

Head Pad Replacement
This replacement should be preformed only by qualified personnel. To replace the head pads, the following tools are required:
1. Surface plate (at least 3 ft by 2 ft)
2. Two 2-inch machinist's parallels
3.

Aligning pin, VRC (Vermont Research Corp.) part no. 59P7

4. Steel scale, 1/32-inch calibrations
5.

Height comparator with 0.000050 inch calibration (or finer), with less than 5 gram

contact pressure. The "Electroprobe" manufactured by Federal Products, Providence,
R.I., is suggested.
6. Adjustable height gage, 3 to 4 inch micrometer caliper
Replacement of the head pad must be done with the head mounting bar removed from the drum.

This is

done by removing the four socket head cap screws a1' the ends of the bar, disconnecting the matrix wiring,
and setting the head mounting bar on the two parallels on the surface plate. Place the bar with the bearing surface of the pads upward, and the stop adjusting screws accessible at the edge of the surface plate.
Remove the head pad by removing screws at the pad and those holding the leads with a strain relief and
the associated connector.

Insert the new pad, bending the leads gently. Replace all screws. Check

polarization of connector locating pins (which also s,erve as mounting screws) to ensure proper mating with
other half.

Before tightening head pad mounting screws, insert aligning pin through corresponding hole

in bar and up into aligning hole in the loose pad.

6-13

Insert aligning pin into pad carefully making sure that no leads are caught at the pin hole. With the pin
in place, scale the distance from eac:h end of the pad to the reed mount and adjust the parallel within 1/64
inch. Tighten pad mounting screws (2nd recheck parallelism. Remove the aligning pin and proceed to
height ad justment.
Using housing flat-to-drum dimensions and the required drop allowance, measure the thickness of the bar
and parallels in use and calculate the height setting for the height gage as follows:
HOUSING-TO-DRUM DIMENSION - DROP ALLOWANCE = REQUIRED BAR-TO-HEAD DIM
REQUIRED BAR-TO-HEAD PAD DIM + PARALLEL THICKNESS + BAR THICKNESS
HEIGHT GAGE SETTING

=

Set the height gage to size using the micrometer caliper; then use the height gage to set the comparator to
zero or center range. Rotate the actuator Iink and allow the head pad to move into actuated position.
Using a hexagonal wrench in the corresponding stop screw, lower the pad being adjusted until the height
comparator reads approximately zero at the center of the pad. Check elevation of the entire pad. Using
the two differential pad leveling screws bptween the reed mount and bar, and the stop screw for over all
elevation, set the pad level within 0.0001 inch (leading to trailing edge) and 0.0002 inch (end to end).

6-14

CHAIPTER 7
ENGINEERING

DRAWINGS

This chapter contains reduced copies of the block schematics, circuit schematics, and other engineering
drawings necessary for understanding and maintaining this equipment. Only those drawings which are
essential and are not available in the referenced pertinent documents are included. Refer to the table of
contents for a list of these drawings.
A complete set of engineering drawings is supplied with the equipment. Should any discrepancy exist
between the drawings in this chapter and those suppl ied, the assumption is that the latter drawings are
correct.

DRAWING NUMBERS
Engineering drawing numbers contain five pieces of information, separated by hyphens. This information
consists of a 2-letter code specifying the type of drawing; a 1-letter code spec ifying the size of the drawing; and variable-length codes specifying the type number of the equipment, the manufacturing series of
the equ ipment, and a serial number for the

drawin~,.

The drawing type codes are:

BS, block schematic or logic diagram
CD, cable diagram
CS, circuit schematic
FD, flow diagram
PW, power wiring
RS, replacement schematic
TO, timing diagram
UML, uti! ization module list

'NO, wiring diagram

CIRCUIT SYMBOLS
The block schematics of Digital equipment are mulHpurpose drawings that combine signal flow, logical
function, circuit type and location, wiring, and ol,her pertinent information.

Individual circuits are

shown in block or semiblock form, using special symbols that define the circuit operation. These symbols
are similar to those in the Digital System Modules Catalog but are often simplified. Figure 7-1 illustrates
most of the symbols used in Digital engineering drawings.

7-1

NON- STANDARD SIGNAL

GROUND LEVEL PULSE

NEGATIVE PULSE

-----0

GROUND LEVEL

•

NEGATIVE LEVEL

-----OC>

LEVEL TRANSITION USED AS A PULSE
OR TRIGGERING ON THE LEADING EDGE
OF A GROUND LEVEL

----~t4>

TRIGGERING ON THE TRAILING EDGE
OF A PULSE

-t!5V LOAD RESISTOR CLAMPED AT -3V

,-+
2

or

or

,~

3

or

PNP TRANSISTOR INVERTER
t BASE
2. COLLECTOR
3. EMITTER

3

.... v

or

GROUND -LEVEL NAND, NEGATIVE-LEVEL
NOR DIODE GATE

2
DELAY (ONE-SHOT MULTIVIBRATORl
I. INPUT PULSE
2. OUTPUT LEVEL. -3V DURING DELAY
3,4. TRANSFORMER-COUPLED PULSE
OUTPUT. EITHER TERMINAL MAY
BE GROUNDED

DE

Figure 7-1

DEC Logic Symbols

7-2

GROUND-LEVEL NOR, NEGATIVE -LEVEL
NAND DIODE GATE

or

or

3

'-i

1. PULSE INPUT
2. CONDITIONING LEVEL INPUT
3. PULSE OUTPUT

2

CAPACITOR-DIODE
GATE

PULSE INVERTER

'-1

PA

~:

PULSE AMPLIFIER
t. PULSE INPUT, POLARITY INDICATED
BY INPUT SIGNAL
2,3. TRANSFORMER - COUPLED PULSE
OUTPUT. EITHER TERMINAL MAY
BE GROUNDED

FLIP-FLOP (MOST FLIP-FLOPS HAVE ONLY SOME
OF THE FOLLOWING):
I. 01 RECT· CLEAR I N PUT
2. GATED~LEAR INPUT
3. DIRECT-SET INPUT
4. GATED-SET INPUT
~. COMPLEMENT INPUT
6. OUTPUT LEVEL, -3 V IF 0,0 V IF ,
1. OUTPUT LEVEL, 0 V IF 0, -3 V IF t
8. CARRY PULSE OUTPUT, UPON BEING CLEARED

o
2

5

4

Figure 7-1

DEC Logic Symbols (continued)

LOGIC SIGNAL SYMBOLS
A Digital logic signal symbol is shown at the input of almost all circuit symbols to specify the assertive
conditions required to produce a desired output.
All logic signals are either standard Digital logic levels or standard Digital pulses. A standard Digital
logic

I

iis either a ground (0 to -0.3v) or -3v (-2.5 to -3.5v). Logic signals are generally given

mnemonic names which indicate the condition repre:sented by assertion of the signal. An open diamond

7--3

(-----<» indicates that the signal is a level and that ground represents assertion; a sol id diamond (

.)

indicates that the signal is a level and that - 3v represents assertion.
The standard Digital negative pulse is indicated by a sol id triangle ( - -... ) and goes from ground to - 2.5
or -3v (-2.3 to -3.5v tolerances). The standard Digital positive pulse, indicated by an open triangle

(---1», goes either from -3v to ground or from ground to+2.5v (+2.3 to+3.0v). The width of the
stcmdard pulses are used in this equipment is either 1.0, 0.4, orO.07jJsec, depending on the module and
appl ication.
Occasionally, the transition of the level is used at an input where a standard pulse is otherwise expected
and a composite symbol (

~) is drawn to indicate this fact.

The triangl e is drawn open or sol id de-

pending, respectively, on whether the positive (- 3v to ground) or the negative (ground to - 3v) transition
triggers circuit action. The shading of the diamond either is the same as that of the triangle to indicate
triggering on the leading edge of a level, or is opposite that of the triangle to indicate triggering on the
trail ing edge. Any other signal is nonstandard and is indicated by an arrowhead (
direction of signal flow.

• )pointing in the

Figure 7-2 illustrates the use of many 6f these symbols.

COORDINATE SYSTEM
Each engineering logic drawing is divided into 32 zones (4 horizontal, and 8 vertical) by marginal map
coordinates. Figure references in the text are usually followed by a letter and a digit specifying the zone
in which the referenced circuit is lo,:ated.

MODULE IDENTIFICATION
Two numbers appear in or near each circuit symbol or inside the dotted I ine surrounding multiple circuit
symbols. The upper number designates the module type and is usually four digits long. Standard modules
are identified by this number in the Digital System Modules or FLIP CH IP Modules Catalog. Nonstandard
modules are described in this manual or in the referenced pertinent documents.
The lower number is the module location code. Sometimes this code is just the 1- or 2-digit basic number
indicating the module connector location within a mounting panel, as shown in Figure 7-2. Usually this
basic number is preceded by a number to identify the cabinet and a letter to indicate the mounting panel
within the cabinet. Mounting panels are usually identified alphabetically, with A in the upper location.
Module connector terminals are identified by letters next to the circuit symbol. To identify any particular
terminal, the terminal letter is added to the module location as a suffix. These letters run in alphabetical
order, with the letters G, I, 0, and Q omitted. (See Figure 7-2 for examples.)

7-4

Some modules have the suffix II JII or IIRII followingl the normal 4-digit module type number. II JII indicates
that some of the jumpers have been removed. An .:>ctal code may follow the module number to indicate
which jumpers are connected, but in general the block schematic must be consulted. "R" indicates that
all the output collectors have clamped load resistors jumpered to them. A number and suffix such as
4112-70R" indicates that the first three outputs (H" L, and P), counting octally in alphabetical order,
have clamped load resistor jumpers and that the last three outputs (T, W, and Z) do not.

EXAMPLE
Figure 7-2 illustrates Digital symbols and nomenclclture. The circuit shown is a Type 4303 Integrating
Single Shot used to control the enabl ing time of several gates. The module is located in the twelfth position from the left (when viewed from the front, or wiring side) of mounting panel B (the second from the
top) in cabinet 1, specified by the module location code 1B12. The symbol marked DELAY is a monostable
multivibrator with two complementary outputs, terminals U and W each shown twice.

In the stable state

these terminals are at ground and - 3v as shown by the diamonds inside the symbol on the left. The - 3v
from terminal U is the assertive level for a gate in 2D18 and is applied to terminal F as the SAFE signal.
When the rnultivibrator is triggered, it momentarily goes to the 1 state and terminals U and W reverse
their voltage levels, as shown by the diamonds replresenting the 1 state conditions. Terminal U now provides a ground assertive level to terminal M of a gl:lte in 1 B15, and terminal W provides a - 3v assertive
level to terminal F of a gate in 1 D02. The time the multivibrator remains in the 1 state is a function of
the capacitor selected by jumpering terminal D to jrerminal E and the setting of the external variable resistor between terminals X and Z.

.....

---<>

SAFE

-- ----_. __

TO 2D18F

: 4303-

u w

- ---

1B12

u

W

-

-

-

DELAY

VARIABLE

I
I

TO 1D02F

I

-kJ--!--k"., s I

I

I

TO lB1SM

GO
lC12H
START
1BllJ

D
KI

----

L-

-RS

X

Z

lOKQ

OPEN
1B13H

TIME

Figure 7-2

T

Typical [)igital Logic Block Diagram

7-5

I

_J

SAMPLE
lC21Z

The multivibrator is triggered to the 1 state when anyone of three signals occurs. One of these is a
positive pulse named GO from a pu~se amplifier in 1C12. Another is a negative pulse named SAMPLE
from a NOR gate in 1C21, which is applied to the base of an inverter. The third is the positive transition
a"t the trailing edge of the START si~~nal, a negative level from a delay in 1 Bll. This will only trigger
the capacitor-diode gate when a gmund signal designated OPEN from a flip-flop in 1 B13 has been present
for at least 1 ~sec.

SEMICONDUCTOR SUBSTITUTION
The majority of DEC semiconductors used in modules of the 24 Drum can be replaced with standard EIA
components as specified in Table 7-·1. Exact replacement is recommended for semiconductors that are
not listed.

TABLE 7-1
DEC

SEMI CON DUCTOR SU BSTITUTI ON
DEC

EIA

EIA

D-001

1 N276

DEC 1754

2N1499A or 2N1754

D-003

1 N994

DEC 3009

2N3009

D-007

1 N277

DEC 3639

2N3639

D-662

1 N645

MA90

2N2451

D-664

1 N914

MD95

2N2489

D-668

Two 1 N3606 in Series

MDl14

2N1499A

D-670

1 N3653

1/4 M6.8 Az 5

1 N4099

DEC 999

MM999

7-6

NOTES:

BASI~HRU

I. NUMBERc "()'
CALLED
:25' ARE
2.WHEN h
NUMBERS
MUUNTEg ~~ CONNECTOR IS
OF PANEL IT RIGHT SIDE
IS "26 WHEN
MOUNTED
PANEL IT ~~ L EFT SIDE
3.WHEN 22
COMES ;29
ARE MOU:+~DCONNECTORS
SIDE OF PA
ON LEFT
'28 g, '29 W NEL THEY AR
RIGHT
MOUNTED 6N
BECOME ""2G &~ PANEL THEY

SIDt~N

A

y

SEE NOTE 1& 8

l

4. AT NO TIME

27
A 50 PIN
OUNT ON TH
PIN CONN.
5. WHEN BLO
E SAME SIDE
OVER POSI~~IS VERTICALLY
BASIC NUMBE~ ADD 30 TO

~ONNECTOR &W~~L

I

6. ON
WHEN BLO
TOP O~K~;N HORIZONTAL
TO BASIC NUM EL ADD 60
WHEN f:1LOCK
SER.
~~ BOTTOM ~~ ~ORIZONTAL
TO BASIC NUM NEL ADD
7. WHEN ST
BER
ADO 100 ~~oOFF IS ON TOP
WHEN STANg~SIC NUMBER
BOTTOM ADD FF IS ON TH'E
NUMBER
130 TO BASIC

i\SEE NOTE 4

1\

/

8. NUMBERS
READ FRO:~L
EFTALWAYS
TO RIGHT

\

SEE NOTE 6---1

SEE NOTE

SEE NOTE 3

2

J

Digital Cable and Component N umbering E-10208

7-7

Drum Core Location Counter BS-D-24604

7-9

3

2
DClB~
...

DCle
•

50 PIN AMPH (
2i
"F "'2
~102RI C24
I

I

__

3Q

3g

...

37

- - -- - - - - -

---

..

...

- ----

40

42
-

.z,1

---

8

.

..

41

--IGI02R
IC25

...

...
44

43

~R

~~

~;

~j

--:::-

-=

-

-----

:=roc ~I

~~

-!

45

46

----

--- - -

F

H

J

e90 (

H

J

K

L

M

N

p

H

J

K

L

M

.N

p

C
K

JK r;;1lp Jp
I~L3~'

E _~OoeL2~'

?J

J

;-slu Ju

~I---

F"....

lW"Jy Jy IWlv Jy Is1u u WP Jp
EJ'8DCL~'
raDCLsO:,
~3DCL4~'
~OCL~' r6OClsU:,
tl. f--L!.. ~ f--ilL
tI.. f-...

~~

=:8¢C~

~~

~~

~R

-.P.oc~

.......

~

......

-

~~
-

~a

~6
-'-

-'-

-=

I
I
I

I
I

I
I

------ ------ ------ - - ---- --- -.J

N

P

R

S

T

U

V

W

R

~

T

U

V

W

X

Y

Z.

R

S

T

U

V

W

X

Y

z)

M

F _'"

R

B

~

~

4217
013

J""h

v

)

L

V

Z

Z

V

4217
014

R

Jj(

~K

J

K

LL -

J'rYoCLI~·1
tL -

l

l

rrYOCl :;'

E

...

i'MlP

Jp

I'8DCLI~'

Islu

---wJy

rrYDCll~I'
tL

t!:i -

~
-v

Ju
~

Jy

~y

42r7
015

V

ACB~
50 PIN AMPH,
F-2

IOT6002~S
PA 2 T
DCl

(

CLEAR

ACB~
4

3

ACB ~
5

ACB~

ACB ~
7

6

ACB ~

ACB~

8

9

ACB ~
10

6

ACB I
II

ACB 1\
12

f3

Ju IMIPJp

v

z

ITlK

A

ACB I~
[4

V

4217

J

K

r80cL

J~

tL r-- DCL+1
)

)

z

Q8
ACB I12

~

~

..,t"

R

Jy

rBOCll~I' Er~CLI~'
raDCLI~' ~8DCLI~~
iL
\1:L
iLI-tL f--r-FJ',.

TERM

4604

1

3.3K ....

H

P R

49

----- ------ -- - l

>

~~

K

...

48

47

~

-=1
--- -- -- ...L __ - - - - - - - - - - - - - - - - - - ------

E

..

...

t

~

0

070

lOT 6004

DCLBt

C

RESISTORS ARE

oCl CLEAR

25) AMPH. (
F-I

DClB~

(

oeL INDICATOR S
AO 3

ALL

50 PIN

4

DCLe~
...

---- -- ------- - - - - - - - - - - -

L

~

~

~

I

A

3

24

~~

i
I
1

l

l

R

B

Ole;
20

-=

ACB
15

114

ACB

115

If,

1

ACB I6

ACBi 7

r7

18

~

DATA

DCl+1

T

REQUEST 5
ANSWERED

012
4102R

Cf2

c

c

D

2

3

4

Drum Core Location Counter B5-D-24604

Drum Track Address Register and Decoding (X and Y)

BS-D-24-EFG-O-7
7-11

3

2

A

DT INDIC ATOFl.S
A 02

C 98

5

4

7

6

8

(

F

H

J

K

M

N

P

R

s)

I

E

F

H

j

K

L

'M

N

p

I

E

F

H

J

K

L

N

p

I

A

ALL RESI5TO RS ARE 3.3K

I

D 78

... E.....
H

..... E.....

DTXA 0

H

F",

B

J

:-<>DTXA I

N....
....

c

DT CLEAR

~-

P

S IU

....

R

ACBI~

ACB~

lu

20,',
t!.- r--

tN

L

S

r~OT

,°11

F .....

IOTSI04

Z

N

...... K

T
T

4217
020

rV
ACB ,II

rw lv

w y

r~OT ~~,

~ ..k--

iTXB 3

~

R

'"

M

T

TYA

K H K

EfooT

fx

JI~I

~ I--

r-;;r P

M

~s..

...

P.

~ OT 5 '·1

U S U

~DT61'

~ '--

~ I--

orB

-----w< Y

w

~)OT

1

L
ACB ,13

R

ACBI~

4217
019

H

?Ij

'"'
Z

V
Ace 1'5

y

~-

rh

...

ACB:2

411ZR.

.5

F.....
Z

OTYB 3

~

4112R
017
H

...

.R

.3

S

022

.i---aTYB 2

N

OTY, 2

ACBI~

DHI

H~

c

~E
L
II

rOT J
6102

IJ

,'9SA 9.j
4215
CIS

H

to>

[~
"'";t"

K

4127
CI7

F

Xw

4102R
CI2

IOT610Z
DT CLEAR

T+l

82..n..
TERM

B

~DTYB I

~

M....

4113R

DZI

r~DT

OTXB

5 ....

4113R

EJ bOor oot~1

P

.R,.,
... ...

!:r-<>DTXA 3

... 5"M

J""

f:------4>OTYA I

K

_M ...

..... R"

r-;;;- lp

F

N

M

K H K

DnB 0

H

L

K

~OTXA2

N

J.....-L

b-<>OTXB I

L

K"

...E

DTYA 0
H

~F,;.,

L

H

""EA.
....

DTXB 0

..... F",

..... J .....

M

4604
DIZ

10K

DI

4127R
CII

EXT

-15V

Drum Track Address Register and Decoding (X and Y)

2

3

BS-D-24-EFG-O-7

ACB I
17

Drum Control (DCI) BS-D-24-EFG-O-8
7-13

3

2

5

4

r-____________________~________~U

fT
V

CONTROL
INDICATOR
AOI
TRANSFER
REQUEST
(TRA)

8

K
J __+_----1
B 82 '--+H~_ _-+=:.._

3.3K

,

A

7

C

B

A

6

C 1;2

3.3K

3.31(

H

J

K

A

ACTIVE

.------------!~::J_-_<> (Ae T)

TRANSFER

DONE
(FLAG)
4102R

ACT

TRA

IDLE

C04

SC#SA
SC=SA

x

t-=-z--..-__~W:_.c:J.-----". se= SA
4102-J
CI9

4113R

021

4115R

C05

1
CLEAR~

B

lOT 6102

DOC

w

B

4113R

022

E

START

DONE
ACT

4112
4127

C06

C03

N
4127-J

I

JjL

START

ell

----!--

ACT
DONE START

[ K 4127

OSB ell
CONTROL

'------;~~ E 7 8

c

READ
STROBE

!2!A
F

(ORUM\
JI \CABINE1)

RED

20

WHITE

19

BLACK

21

SHIELD

4604
012

CLOCK

1

4606
023

10K

+IOV(S)
E 25

B82

-=

4112R
DIS

-15V
E2SC

4127

AGA5TAT 2122
..w~'V\I\r--+~I'+-- 1-'1 N 2
PA R ERROR 0
~~'\/\vl'y--+-+ilf+-_

x

u

C62
IO(),ll.II2W

D

c

4606
023

K

18

¢8

V

¢A

V

y

BLANKI

OVERF LOW I

CI7

-15 V

4127

el7

664

-=4401

4102-J

el2

CI3

2

3

4

Drum Control (OCT) BS-D-24-EFG-O-8

Drum Final Buffer and Data Channel BS-D-24-EFG-O-9

7-15

3

2

1

J
-=

!

L __ - -

OF INDICAT ORS
A04

I

D82

-

-

5

-r

~~
P -=

M

-=

--

~-

-

--

-

-

-

-r

.

-

-

-

-

-

-

1

-=
-

-

-

-

-

r-

- -

-

.

-

.

.r?"
,~-~

-

-

-

E~~
=

y<:G ~:

-=-

-

-16i 02R~I
I

DFBII

•

DFBlz

12

II

10

----<

wr<8G~

-=

-

-

Lx

U

DFB:O J

-

-

-

H~~

-

-

t

DF8: 3 O

f--

DFB: 4
14

.

-

-

-

M~~

K

-

~
13

L

-:!::-

.

-

-

-

DFS: 5

-:..

•

OFB: 6 4

t-

-

-

DFS: 7 •
[7

16

s~

p.!~I

T

Y

J-

L N

K

N

S V

wi -Z

W Z

r30F~ Uj~1

8 ~

r DF 4

X

Z

C

r80Fs

E

O;~1

K

r80F

E K

ET-K"

9°l~ ~I

X

DS8

~

'I<

058

H

M

L N

J-

5 V

N

~OF'I °l~'

OF IO0 1

o.

l.l

R...

J

U

D58~

~

T

W

W

no
4[27
E02

V

1/

OiSB

~

w z

V

J- -

w Z

Z

rgOF15~

X

4216

DSS!

4127
E05

S'v
j80F

JV

L N

'5~~~1

r6'OF

L

;:.

~

J h

H

P

;:.

~

OSB

'e

M~

i-l

T

MB~

MB~

MB~

MB~

MB~

MB~

MB~

Me

21

22

2:3

24

25

·26

27

28

~

M-b

Xrh

4127
E07

W
0

Urr-.

~V

05BI~

MBI~

MB,~

MBI12

MB ,13

MB

29

30

3t

32

33

O'B,~

20

l;:'

05B,:

O:>B!

MB:

X
4127
E05

Z

P
l;:'

N

N

E K

N

'6~1

j6'OF

42r6

~

Y
D

B,~

l~

Rrh

J ... i-l

S
'

DIlB,!

,~

L

,

DSB '5
MB
~4

liS

K

OSB,~

D5B1-DF

T

OF CLEAR

S
REAO·SC;5A

WRITE

4127R

4b06
E09

ell

2-82.41.

,~

36 )

REAO'SC"SA

R

I

Me

OSB TAKE WORD

~LOW

F
DSB! 7

c

N~P
OF
PA R

OVER

4127
E07

:35

I J

lOT 6002
DATA
REQUEST
ANSWERED

H

£..0

hlB,'"

DFMB1-DF

M

T

H

T
L;:'

L
WRITE

1

B

"7<)1~'

M

DOC T7C K

D

E1-~

EGS

y

F

K

Z
L:.

Jr

\

£06

S

D:'8~

Y

T

w1- t

j80F '4VI~·1

~
v

c.v...

~S

;r -

r8DF'2~

~

H

19

~

~I

J-~

~

T
421~

R

J

F

y

0581

J~

P-"
y

y

T
L;:'

~

~

X
4127
E02

N

MB~

~

E

.~OF7 ~

<)r~~

4216

L

H
l~

£~

DSBb

L

!;,v>;I

P

N

-V

... "2

L;'
~.

OF 0 5B1-DF

oF6

s v )

v

)T

M

H

4216

fd

Ji

p.",

v

v

EO!

c

. W Z

V

p .....

p."

50 PIN3 AMPH.
IFJ

J

I--

I-

~DF3 Vr'~

j80F2 \.j ~I

X

J

W

TERM

2

3

4

Drum Final Buffer and Data Channel BS-D-24-EFG-O-9

DSB, Control and Parity BS-D-24-EFG-O-10
7-17

--t ______________ _______
~

2________~______3________~______~4______~_______5________~______6________~______7________~______8________r _

I

Dsa

A

iNDiCATORS

N

p

R

s

T

L

5

T

u

v

W

x

y

L

s

T

u

v

W

x

y

B

C

D

E

F

F

H

J

K

F

H

J

K

J

H

K

u

v

A

AOS

ALL

RE

SI STGRS

ARE

x

058 CLEAR

R

F

J

DSB -0 DS8 S' OSB 6° DSB'6 OSB 7°OSB 7'
SHiFT---+--------~~------~--------4_------~~--------~--·-------_+--------+_------~~--------_+--------;---------r-------~~--------_+--------4_--------+_------_+~--------_+--------~~~~~

B

p

p

p
y

T 4216

DSB

003

DF

CONTROL

6

y

OF

k

OF

T 4216
OF ~ 004

~

M

OF

T 4216

H

OF~

~

OF

OF~

~

005

M

OF

B

p

p

T

4216

OF~2

~

M 421G

M

,

006

007

OF"

O5BOF1-+0SB------~--------------------------------------------------------------------------~~-------------------------------------1~E~2~27E--------~~~------~D~IO~D~E~S~A~R~E~D~6~7~0~0~R~--~-------------------------r~~

rt ...:E~f~2~F--~=FT~;=T_---'tI~D~6~6::4~RE D

....

82

d

:

DSB

K

INITIAL
COND.+

L

JL

-=

SHIFT

l

j OVERFLOW o

Ius

A

~
P
2 R

S

OSB DF1-0SB
F

DSB
Z

X

WRITE

4604
002

INITIAL
COND·tlJ-os

V

T

DSB
CLEAR

~~------+-~----_r----~+_------~~~_+--~----l
F

4217

OSB~

TAKE W~D
I

)(

y

I

6204

DSB~
DSB,~

6102

D$SP3

6104
W RITE --t--~.
4127

OVE RFl.C";'

Dse~

DSBI~

DSB~

TAKE WORD
4110
C07

OSSO

K

OSB~

Pot

OS8~

S
4127·J

cal

1537

Z

14105 -I

I
I

(15

~+DII-'---WRITE DATAl

820j,J.uF
4{)04

002

J

O

WRITE

DATA I

6115-J
010

DseO E
N

OVERFLOW

o
O

-,-F'f)t-4~~1

4215
CI8

READ
ACT+

~B

T

DSB OF-Dse u
DSB CONTROL

4102R
el9

u rOT 6104

Dse~

411l-J

OSe

022

WRITE

4110

coe

BKE2

2

3

C

E24

WRITE DATA

~J

L_

WRITE DATAO.~E:.-__i'::J...c::)l
ACT --:.,.F...--Kri
H

Z

OVERFLOW'

4112
C06

,

I
R .PARITyl Y

DSB

ose~

C20

T
DSB's

INITAL
CONO
WRITE U

)(

ossi

1011

~EAD X

4127
008

DssR

COl

READ

II

~A

lOT

DSB?4

M

R

L ___ J~ ____ J

lOT

OSB,~

'READ

4110 'ST ROBE
C08 I

:

009

DI

K
REAO

COI-J

ell

READ

1~s

4127

4127-J

lOT

J

INITIAL

CONO.t
~~~--------+-~~--~--~--------------~------_.

EIO

z

OSB

4102R
C04

4604
002

4606

C

CA PAC ITO RS ARE
47 0 PUF

..--

DSB, Control and Parity BS-D-24-EFG-O-10

4121
CI7

DF-DSB R

s

SC_SA

o

Drum Data Channel (DOC) BS-D-24-EFG-O-ll
7-19

2

3

4

5

6

7

8

CONTROL
INDICATffiS
AOt

DT INDICATORS

A02

ALL

A

E

H

882

E

M

P

C 62

E

M

P

RESISTORS

A

DOC CLEAR'

'I

4t02J- ---,

I

I
I

I

I

el2

I
I
I
L

4216

C02

CLEAR

DRA~

B

4102-J
ell

P

-=
WCRD-+~.m

TAKE

41l7-J

C03

C03
5

4105

CI~

lOT

EBROR

SYNC'
II

I

,......,,~-+--

TAKE WORD~

A"~

'C 06

IOT~204~

I

TV 4127-J

lOT 6102

WRITE COl

.----'!!-+I'--I-l

y

4112

4110

C06

C08

4604

B

T

4127-J

cra

DSB

_T 4105
- CI5

c

CONTROL

c

Z

50P AMPH
FJ4

T

X

39..!2...
TERM

4127R

CII

F

4fl2R
0[7

410lR
C4
READ

D

DATA·B·TI = DATA RQ

WRITE

ANS

4102R
co4

I

2

RD!WTI

3

Drum Data Channel (DOC) BS-D-24-EFG-O-l1

Write Field Lock Out Select BS-D-24-EFG-O-14

7-21

3

2

4

5

6

7

A

8

A

r- -

B

,- -

-

I
I

4~R--1

I

C19

I

1011

I

lC20

---,

FIELD
LOCK
OLT

I

I

I

sw
LOCK OLT
YO-Y 7

I-I1ITE

-::-

-=
10
11
12
U
14
15
16
17

OCTAL
TRACKS
PROTECTED
0-17
20-37
40-57
60-77
100-117
1JO--137
140-157
160-177
200-217
220-237
240-257
260-277
300-317
320-337
340-357
360-377

FIELD
LOCK
OLT
SW
20
21
22
23
24
25
26
27
30
31
32
33
34
35

36
37

OCTAL
TRACKS
PROTECTED

8

400-417
420-417
440--457
460-477
500-517
520-537
5lIO-557
560-577
bOO-b17
620-637
b40-t>57

6bO-b77
700-717
720-737
740-757
760-777

DrS

-=

-=

C

C

I
I
I
I
I

DT4

I
IL

-=

-=
I

_____

-.J

LOCK ruT
YID- Y17

I

I
I
L ____ J

D

I

Write Field Lock Out Select BS-D-24-EFG-O-14

2

3

4

r-----i---I

r

-- -

I

PA04

BARE

-

.. -

I

-- RARE

-,----.

"II)!5

BAAG
..... 01

I

DTYAO

D'tYBD

DTYAO
DTYS I

A

DTYA 0
OHe 2

DTYA 0

Diva 3

DTYA I

DTYaD

DTYA I
DTYS I

DTYA I
DTYS 2

B

DTYA I
DTye 3

DTVA 2

DTveO

DTYA2
OTYS I

DTYA

Z

OTYB ..

I
DTYA 2

I

DTye 3

I
I
I
I

DTYA 3

I
I

OTYS 0

I

DTYA 3

I
I

DTYS I

DHA

>

one

2

c

I
I
I
I

I

O"CYA 3

I

OTYB .3

I
I
I

I

~OP

C!~===!~====~~==~~==~~--~~--~~---t~--~~--~~~--~~--~~~~~~~~~~~~~~~~-J

AMPH

FE,

o
READ/WRITE BUS

NOH
OCTAL NUMBER ASSIGNED TO EACH HEAD
REPRESENTS THE TRACKS ASSOCIATED WITH
THAT HEAD

Drum X and Y Select and Drum Heads BS-E-24-EFG-O-13
7-23

2

3

6

7

Flow Diagram BS-D-24-EFG-O-2

7-25

_+______ ______________ ._L__._._________
~

COrflMON EVENT

TP

~

--- ------..--- 1-- . _ - - - - - - - - - . PCWER CLR OR
B(GIN

~

___L . _

0::1

kt=.AU

WRITE

.,,,"'--,-...._-

--

-~----

----t-

8=~~RMIRITE
(PUT
I N READ STATE

nR

a-

DATA ERROR
R PARITY
OVER FLCW
WRITE DATA
WR ITE ENABLE
BLANK
FLAG
ERRDR SYNC
I - IDLE, 1-DATA IN
o - rcL
0 - DF

lOT 6002

lOT b002

,-"

I

I

MB12

r 1~ITE•

1

O-J>o{)~TA

lOT bOO4

IN
1--+REO,
ERROR SYNC

ACB1 ..... DCL

~

I

MB~2

I

I

REMAIN
IN
READ STATE

1

BREAK'

-I'..,)

o--.-eTA
PAR ERROR
DATA ERROR

lOT b102

1~5~

8m.

I'V

-~~5

a--oSB

SC=SA
1 - RE :
1-=R

AC~TA
~ PARITY

lOT 6104

~

I
I
I

w

1200 us

START TIME

LSC;tSA

rn

TE NOT
NEXTWRI
SECTOR

1

BREAK

~~

I

l

I

1----*DSBS
DFs--IlSB'

1 1-[)SB171

I

\~~NSA,

w

~RA

~

1---1ooI\CT
DSBn-Ml

16_9ms

11-ACT

CCf4PLlt-'ENTI
WD

r--e{

READ
SJ.ROBE

r
.-

~

SHIFT DSB' a-.!lSB$
CCf4P R PARity IF A 1 IS
WRITTEN

liB

•

I NOB~OW,

A1 IN DSBS-2

..

T
WRITE
PARITY

19TH 0A

"

...

r l DSBF=O

I

~

...

1

DSBF~1:

,I
1-OVERFLCJ.I

I

0-- orB
I_~

I

r

II

IS READ

I SHIFT DSB I

r>LOIN~

I

DAT~SBr

CCf4P R PARITY IF A

I

DSBS-2
1-oVERFLQI"l
5nPARITY 1d

DSB

~~~8BE

1

•

C;

0A

I

I SC¢SA I

1
I

1-+BLANK

PARITY BIT"'DSBS
Ca<1P R PARI TY
IF A I IS READ

I

~

01

!~~I~M ~~~~Hl~T;
M~R~6~D'~ A I;

o--aVERFLQI.j,
C(l.1P SEC GTR,

b~JC€~A

O-oSB
~ PARITY

~VERFLCW

CCf4P SEC CTR

19TH 0B

I

~

...
1 - REO
SC=SA

:

b5i~~~tf~

I

I

...
SCjlSA

I

Q$
I

[;

H

+
L-j1-DSB

,~~~

I

17

0.

I o-DSB
TAKE hORD= rI

It

1-R PARITY

o

~

o
o
co
..,

~~KED

I

()-MLANK

PULSE

r

o

3

...
SC=S~
1- Q
1~

•

•

ITE NEXT
SECIOIl

1

*BREAK

I

r

•

0::1

l/)

I

oI

~~~

[;

'"t-

...

I IDOS~f~-1

' -

DSBcr-w:>

.......

I~C~A

I

m

It

G)
I

a

I

H'LAG
CO'IIP
SEC ADD

DM TIME

....,I

-

~

lOT 6204
CCtHltu:

SA=O
TAKE WoRD
I--D-DSB
OF-DS
l-oSBs
HEQ

-1

~

WR I TE romE

~~~~RAI

(l-toofJATA ERROR

J

-rEAD MJDE

I-

l~Jj~R

SM
romE

SA;tO

I-

co

- - - - - - -

*T1=DCL-MA, +1..,{)CL,O-.RQ,O-{)F

**T1

13= CORE-+MB
T7=m-DF,

o

~~~

()

-----~

-----1

OJ

DCL-ofIIA, +1-oCL, o--flQ

13

D~

T7

O_ERROR SYNC

»

Timing Diagram BS-D-24-EFG-O-31

7-27

3

2

I"
I

GAP I!-JDEX

OA=

~t

CSECTOR r/J WORD (/J
~
34.uS
START

ACT
I
II
:,

R.EAD STRoe,e: .: ¢A "1".3..)4 sec

I'

I

I

I

I

I
I

I

I

I

:

l

B

REQ(I) = TAKE"

WO~1J

I I

I I

,

I

I I

,

I

COMMON
TI MING

I

I

r

SC = SA

lui

SC

= SA

I

I

I

I

I

I

I I I

I

~l

ur-

III

I

-.l

I I I I I I I I II II I ; I I I

-.l-.l.l

I ,

~+24.uS ~
READ MODE

1.)

t- -=.l.U I -

r-rI

7

GAP

ill:

i
TAKE WORD

READ
MODE"

11111111111111

DONE

III

I
I'"
I
I

I-R PARITY AND CHECK PARITY= DSB IN!: COfJD~.8...u.5ec

I/J------;..

j

FLAG

!:I'

I

I------tl

c

I)
I

I

COMP SECTOR COU~"'ER "OVERFLOW(O) AilJD ACT - - o - D F - -= OV ( I) -t- 40 BITS

~

CLOCK PULSE' +3.4ftsec

!

4

2

3

SHOWN.

4

Timing Diagram BS-D-24-EFG-O-31

Power Wiring PW-D-24-EFG-O-29
7-29

t

3

2

!

4

5

7

6

8

,I

DC WIRING

AC WIPING
6RN RED BLK BLU YEL

VIEW - FAC ING REAR 000 R

[ili][ill][ill]0TI0JI]
+ 10V +IOV GND -15V -15V
MC

A

REAR

I

AC

832

PC

FAST

ON

~

-f--l

CB 1

r--

25 FEE T

POWER CORD

GRN
RED
8l K

If---+---'~--IJ( [

AC PLUG
20 AMP
TWIST LO CK

Ll

I

I

SPACE

(j]=

(

I

16I J2 I3 1 146165

IA

BLANK

18

BLANK

0

A

DeAD
'1..-1-\ I ,

I=O(\I\IT
'VI~

BLANK
DELAY 0 N

MC

BLANK
832
PC

779
PS

B

+IOV

ORN

::

GND

YEL

t:r:

-15V

BlU

-JOY

RED

-20V

GRN

a.

a.

3:
t-

t-

tJ:

::

::

'~Ia:

.-

f--oAC
f--o

IN

UJ

YEL

a:

F 2

GND)~9

_I

l

(REMOTE
(REMOTE -15V)

FIELD LOCK
OUT SWITCH
PANEL

40

"----/

LOCAL
4-----

COM

FIELD lOCK OUT
SWITCH PANEL

I

3

'-+-++--'-r.*,v
0
8 ie 'V 04
11---Hf-t-'<70

SEE CABLE LlSTi±A-24EFG-O-12
FOR FLO SWITCH WIRIN6

REMOTE

,
I

1::)5

IC62W POWER
CLEAR

AGASTAT
RELAY 2122

G

IE 12 Q

IH

BLANK

C

BLANK

IJ

12345678

-

BLANK

BLANK

~!

BLANK

C

1

I J 1.1· . 1 1.1 lill
<:t

- 20 V '-==--I==~::::========='--j

~-

1
1836 PC 1

#'
0.1

836 PC

BLANK

~I

IK

UJ,

a:

Irh

8

o

SPACE
BlK

DI

-

-

2

SPACE

SPACE

A

(
\

I

RD/WHT/8 l K/ T WP
0--0
#18
2.5 FEE T
'-JONES ST RIP
MOUNTED RIGHT
REAR BELOW DOOR

EE

BLANK

AC PLUG TO
DRUM MOTOR

3

C
F

4

Power Wiring PW-D-24-EFG-O-29

100)lH
CHOKE

17

1

4127-J
r--

18

4127

4215

----:-

20

19
4102R

21

1011

r-

---~-~

22
r--

24

23

-

25

-

r--

PART ONE

OF
C

-

'---:"

.-

2

4§Q4

-

3
~IEI

.-.~~

r-----~-+_j-____ji+t+.-

5

6

4~6

4£!.§

20

21

22

<1217

4113R

24

25

4113R
,-

13()4

1410

r-

r--

r--

-

-;.:--

!)/\ F< T O!\J E

OF

o

-

l~_

-.-~.-

1;~7J Il~7
i
;fil;":~ ~? ~ t: I~Jl ~

1
4216

r--

-

A_

A_

:-:+l

¥:

;:;

I

r

I:':
'---- 1---"

PART ONE

OF

f.-

::-1--

E
L_

~.

w_

._

I ._

::

".. L=::'.. _

'---:"

r

:-~ 1--.

._

-I--.~!C--

._

-

-b". ~

--

~

-

-

-

~f-

.--

-

::.- r--'-

~?t=--tCt_-c-- -

RUN NR: WIRE::, l!THER n~
RED ItD[ (;REE~: WP
__ ~~ ~_ _ '---:"~~ T H s..... ~E A '---:"_ '---- __

'= h

:: I'

==.J

-

'---:"

8zfl

0--

1

IE 120

Wiring Diagram WD-D-24-EFG-O-3 (Sheet I)

7-31

Wiring Diagram WD-D-24-EFG-O-3 (Sheet 2)
7-33

BB2-!e-~

F

JK ~

H'

4!27
~

,- ~
.- Il

PART TWO::

M

P ~R -S .T .U eV

N

4!02R

.---

r--+-+.-r;-=_+-t'
~:

~

~I

4112

.~

-

.- u
.- n.."'"

:!::~

1

••

! ~

U 'IV

~

'1Y

ALL

0670

E62tic~~E~F~~~~J~~K-+'L~~M+~r.IN~~~~R~~S-r.T~~U~~rV~W~l~X~Y~~~
~

5
4216

.---

'll2IG

4127

.--.~

._iO-+~~

PART TWO ::

OF
E

4127
r-

r-

ALL

ARE

--

42110
.---

4127
r--

._

'

I"'"

...

.....
,,..

.~

-~
'--

--

I

I' - 1

CJ

---

--

E82~~~~E~F-4~H~J~~K-¥l~~~IM~N~P~~R_~r'S~~T-rU~~V~W~X~~~'Y~!~~
ALL

RESISTORS

ARE 820

WIRING LAYOUT
TYPES 191 4

1

1

~

F62 -f+-

E -F

H

J

K

L '1.1

N

P

R 'S

T

U

V

W

x

eY

Il-$+-

SHEET 2 OF 2

NOTE:
ALL WIRES RUNNING FROM 098 AND
078 ARE TO BE RUN IN BACK.

Wiring Diagram WD-D-24-EFG-O-3 (Sheet 2)

DIODES ARE
OR 0664 R
CAPAC I TORS
4700 PUF

Indicator Cable Breakout and Junction CD-D-24613

7-35

3

2

4

5

8

7

6

RFAR. VIFW
INDICATOR CABLE LOCATION

I

A

I

: IIA02

n
u

AI

I IA03

A

I IA041

lAOI

I lA05

TPB
TO

BLANK
~

(9)

TO IAOI

I

INDICATORS

I

~

3

B

~

@l

(I

Ill)

BLUE

CI

-:]

Is

liB)

((Il

eJ

(is

@

0

BLUE

7
L-

BLUE

1-_

BLUE

9

B

-::1

[0

TO IA03

_::J

TO IA05

+L:~.

PARITY

TO
IA04

0

47MFO

DCl, DTA, DSB, CONT ROL

AND

6[
c_

§l

-]

TO IA02

I
(il

5

C-

[6
_:l
7

I

Ill)

~1
c_

-"]

BLUE TAB AWGI8

i)

(iii

3
c-

5

1

I

21

-L_

f~
_.::I
.,15

I

c:-

[2
_::1

779 PS

DC CONTROL
AND DOC

0

~J

II

II

E PANEL
SU PP L y _--=B:.;:L:.:;;:A=C:.:..K-r:
STRIP GND
17

c::

TO
TAO 5

TO
lAO 3

TO
IA02

TO
lAOI

TO IA04
@

OF BUFFERS; DRUM

e)

Er-

X-Y

SE LEC~ AND DRUM HEADS
L-------------------------------~r-L_E29

16
17

c.:-

':-J

18

c

18

c:

:::1

c

r9
:::1

20

=J

o
E29

NOTE~

NOTE:
I. 19~'_-.::£)IIl)
2. I

I

=18

CONNECTION

TERMINAL STANDOFF

AMPH TAPER PIN BLOCK

BOARD

E29 IS DEC STOCK

IOOA-480065-6

INDICATORS

D

I

BK[2

2

3

4

Indicator Cable Breakout and Junction CD-D- 24613

T--~

NAME

COLOR

PIN

PIN

1----.

REMARKS
" •••

RED WET
.4t.

J~

-

---

..,,.
RED/WHT

1E15M

sw oLe OM

sw 1

L

SW 1/eOM

2

V

FLO SVV 0

sw 2/eOM

.4 ..

3

U

4

1E16M

4

5

L

5

6

V

6

7

U

7

3

10

l.E17M

10

11

L

11

12

V

12

13

U

13

14

1E18M

14

15

L

15

16

::l

16

17

U

17

20

IF-19M

21)

21

L

21

22

V

22

23

U

23

24

1E20M

24

25

L

25

26

V

26

~,

FLO SW_ 27

~,

S':rJ

U

~~

--

---

--

....,,.

27/eOM

Field Lock Out Switch Panel WL-A-24-EFG-O-12 (Sheet 1)

7-37

_._.

A_

COLOR

NAME

PIN

PIN

REMARKS

-RED/WIlT
Jl

J~

RED/WHT

'\

T

32

V

32

33

U

33

34

lE22M

34

35

L

35

36

V

.Ir

FLO SW 37

U

SW 37/COM

RED

T

LOCAL POWER ON

WIlT

~

LOCAL POWER ON

WIlT

DCT (PEa DEO )

36

.1.

MAINT SW
NORM OPF.N

.L_1--D17Z

DCT (PEO DEO

31

~~

L

w
P

BLU

l

31

,kr

"

SW 30/COM

lE2lM

FLO SW 30

D18Q

MAINT SW COM.

JONES STRIP
832/PIN 2
JONES STRIP
832/PIN 3

POWER SW. COM.

lC20W

SW 361

lC20X

SW 37/

.../

"'\

POWER SWo LOCA

~

ON

../

1---

BLU/WHT
BLU!WIlT

LOCK OUT
0-7
LOCK OUT
10-17

NORM
OPEN
NORM
OPEN

0

0

JUMPERED TO ALL
N/O EVEN NUMBER" D
J~~ERED TO ALL
N 0 ODD NUM.SWS

1--1---

Field Lock Out Switch Panel WL-A-24-EFG-O-12 (Sheet 2)

7-38

JACK

~

PLUGD

FEMALE

~

MALED

COLOR

PIN

LOCATION, LENGTH, ROUTE

MARK
lAOl

33" LONG

PIN

NAME

W/BLK (x)
W/BRN (z)

B82H
B82J

A
B

'lIRA

W/RED (R)

B82K

C

FLAG

W/ORN (0)

B82L

D

OVERFLOW

W/YEL (Y)

B82M

E

REQUEST

W/GRN (N)

B82N

F

PARITY ERROR

W/BLU (B)

B82P

II

DATA ERROR

E29/6R

K

-lSV

E29/1SR

L

GND.

REMARKS

TO CONNECI
THIS CABLE IS A 10
PLUG~D

ACT

PIN AMPHENOL.
.-

--~-

--

----BLUE
D AND
BLACK
I( TWP

ARE TO BE
53" LONG

~~

---

~

~

-

en

trj

!
!

~,

Control Logic to Indicator Panel CL-A-24-EFG-O-21

7-39

,........'

JACK

GJ

FEMALE

[i]

r---

LOCATION, LENGTH, ROUTE

PLUGD

MARK

lA02
50 11 LONG

MALED

--

COLOR
F=:
-- - W/ BLK (X)
-WI BRN (Z)

PIN

WI RED(R)
--

W/ORN (0)
W/YEL

(Y)

---------

W/GRN (N)
----:-W/ BLU (B)

--

W/VIO

(V)

---'_.-.- - -

W/GRY (G)

---_..-

WHT

NAME

C
D

--

--

E

---

L

C98E

F

DTRO

C98F

H

C98H

J

C98J

K

DTRI
I
DTR2
I
DTR3

(W)

L

L

C98K

M

C98L

N

1

W/ BLK (X)
-W/ BRN (Z)
-WI RED (R)

C98M

W/ORN (0)

C98N

R

DTRj

C98P

S

STR 1

--

-W/YEL

REMARKS

B

--

-----------

PIN
-A

(Y)

W/GRN (N)

DTR4
_.

P
-----

DTR~
r
DTR6

T

~-

WI BLU

(B)

U

r - - - - . - - - - - t----

, W/VIO

(V)

~--------

W/GRY (G)'
WHT

B82F

V

READ

B82E

W

WRITE

(W)

BLUEl'
AND
BLK ' ) '

TWP

r--

X
E29/7R

Y

E29/14R

Z

--

-15
GND

Drum Track Address to Indicator Panel CL-A-24-EFG-0-22
7-40

JACK

[iJ

PlUGD

FEMALE

L~J

MALED

COLOR

PIN

LOCATION, l:-ENGTH, ROUTE

4411 L()NG

PIN

WI BLK (X)

A

WI BRN (Z)

B

NAME

C90H

C

DCL~

W/ORN (0)

C90J

D

DCL3

W/YEL (Y)

C90K

E

DCL 4

f

DeL 5

WI RED (R)

W/GRN (N)

cc}Or.

WI BLU (B)

C90M

H

DCL 6

(V)

C90N

J

C90P

K

DeL 7
1
DCLS

W/VIO

W/GRY (G)
WHT

(W)
C90R

M

DCL~

WI BRN (Z)

N

(R)

C90S
C90T

P

DCL 10
DCL 11

W/ORN (O)

C90U

R

DCL 12

'W/YEL (Y)

C90V

S

DCL 13

W/GRN (N)

T
U

DCL 14
DCL 1 .)c-

WI BLU

(B)

C90w
C90X

W/VIO

(V)

C90Y

V

W/GRY (G)

C90X

W

WHT

(W)

BLUE~

AND
BLACK)
TWP

REMARKS

L

WI BLK (X)

WI RED

MARK
lA03

DCL 16
I
DeL17

X
E29/SR

Y

-lSV

E29/l3R

Z

GND

Core Location Register to Indicator Panel CL-A-24-EFG-O-23

7-·41

'--

EJ

JACK

0
MALE 0

LOCATION, LENGTH, ROUTE

PLUG

FEMALE ~

PIN

COLOR

38 11 LONG

PIN

NAME

WI BLK (X)
WI BRN (Z)

C82E

A

1
DSBO

C82F

B

DSB 1

WI RED (R)

C82H

C

DSB 2

W/ORN (0)

C82J

D

DSB 3

W/YEL (Y)

C82K

E

DSB 4

W/GRN (N)

C82L

F

DSB 5

C82M

H

DSB 6

(V)

C82N

J

DSB 7

W/GRY (G)

C82p

K

DSB~

-------- r----

--

WI BLU (B)

1---------

W/VIO

--WHT

- - - - - - - -1 - - - -

(W)
C82R

M

1
DSB9

WI BRN (Z)

C82S

N

DSB 10

WI RED (R)

C82T

-----

P

DSB 11

W/ORN (0)

C82U

R

DSB 12

W/YEL (Y)

C82V

S

W/GRN (N)

C82W

T

DSB 13
DSB 14

WI BLU (B) __ C82X

U

DSB 15

C82Y

V

C82Z

W

DSB 16
1
DSB17

1--1--------

W/VIO

(V)

1---

W/GRY (G)
WHT

(W)

BLUE?
AND
BLACK)
TWP ...

REMARKS

L

WI BLK (X)

1---

MARK
lA05

X
E29/9R

Y

-15V

E29/12R

Z

GND

Serial Buffer Register to Indicator Panel CL-A-24-EFG-O-24
7-42

[iJ

JACK

FEMALE [~

---

LOCATION, LEN :JTH. ROUTE

PLUGD

44" LONG

PIN

PIN

WI BLK (X)
WI BRN (Z)
WI RED (R)

D82E

A

1
DFB 0

D82F

B

DFB 1
DFB 2

NAME

D82H

C

W/ORN (0)

D82J

D

DFB 3

W/YEL (Y)

D82K

E

DFB 4

W/GRN (N)

D82L

F

DFB 5

WI BLU (B)

D82M

H

DFB 6

(V)

D82N

J

D82P

K

DFB 7
DFB 1
8

W/GRY (G)
WHT

(W)

WI BLK (X)
WI BRN (Z)
WI RED (R)

-

D82S

N

D82T

P

DFB 11

R

W/YEL (Y)

D82U
D82V

S

DFB 12
DFB 13

W/GRN (N)

D82W

T

DFB 14

WI BLU (B)

D82X

U

DFB 15

W/VIO

(V)

D82Y

V

W/GRY (G)

D82Z

W

DFB 16
1
DFB
17

BLAC~

.1

X

-15

Z

GND

E29/11R

---

--

L

E29/10R Y

=1

..

DFB 91
1
DFB 10

TWP

REMARKS

-l

M

(W)
WHT
BLUE,
AND

~"l

-

D82R

W/ORN (0)

--

MARK
1A04

MALED

COLOR

W/VIO

---

Final Buffer to Indicator Panel CL-A-24-EFG .... O-25

7-43

...--

JACK
FEMALE
---

--

~

PLUG D

~

MALED

- -

LoCATION, LENGTH, ROUTE

F3

-

PIN

COLOR

PIN

;:::=:--=---== F=---

~~-~£

1

~~
------ ------ --

J

2

--

L

WHITE

f-----------, - - - -

r-----------

------

3
4

N

---------- f - - - - 1------

-----f--

R

f-----------

- - - --

T

,-

1--.

5
6
7
8

V

X

f--------

- - - - 1----

1-------

- - - f--~~
----

~-----

-------

~-------

~-----

~---

C23F

:~~~:-

- - - - t-----

-~

~-----

1------- ~-

1------

- - - - 1----

--

NAME

PIN

PIN

NAM~

E04T

26

MBD7------. DF7

COLOR

DF~BO

WH TE
~.

1
2

M
" H
ROn H

L

4
5

M

T
Y
"
E08Y

6

7

9
8
10 ___ 9
11
10
r---12
11
13
12
~--

14

r----

---

18 DFI 7---MB1 7
__ r-----f.-li.z___ --19
EOIT
1------- MBD~DFO
20
Y
1
1--21
E03H
2
1--22
M
3
---- 1 - - - - - - 1 - - - - - - - - - - 23 _____4...._
1 - - - - - - ------ f - - - - - - -~---- f - - - 24
Y
~----- --.5
25
MBD~FO
WHITE
E04Y
'----

I

,

,.

M

WH

BLACK

16

MBDl 7----e-DF I'
DCL5~S

J

L

43

11

N

44

1?

V

6
7
8

9

10

13

X

C25Z

49

17

T
V

GND. LUG

F3 to Logic Drum Side CL-A-24-EFG-O-26 (Sheet 1)
7-44

15

45
46
47
48

.,
:TE

36
37

11
12
13
14

38
39
40
41
42

R

.,

10

35

X
C24Z
C25F

15
14
----16
15
f - - - - -------17
16

9

29
30
31
32

T

H

,..

8

33
34

"
C24T

13

27
28

50

14

15
1n

GND

1 JACK

[~J

0
MALE 0

FEMALE ~J
COLOR

LOCATION, LENGTH, ROUTE

PLUG

PIN

*ONLY USED IF SPECIFIED
F4

PIN

NAME

COLOR

PIN

PIN

1

26

2

27

NAME

WHIT~E~__~~__~D~13~L~__r-3_+_A_C_B_2_~
___
DC~L~2_~________~__________r-28-+________~
~l

3

29

V

4
5

4

30

z

6

5

31

D14z

7

6

V

8

7

R

9

8

R

,r

"

32
33

I

34

1

L

10

9

WHT

D1SL

11

10

BLK \

R

12

11

V

13

12

RED)

z

14

13

WHT

D16Z

15

14

BRN

V

16

15

R

17

16

L

18

ACB17 ....DCL1

C04Z

19

DRUM FLAG

TWP

TA/PIN 1

35

TEM SW (TA) ~

TA/PIN 2

36

TA GND*

--~---~~--~--~--~----~·~--~~v---1~~~~---+---~~~----~

"

37
mT&Tn

r- - -

flg~~

38

836PC-S

39

836PC-1

40

+10 MC

~Bd~WE
Tt~R~or,rE

./

"

C12X

21

41
GRY/BLK!TW

E09Y

42

DATA REO AN:;

~l

C10E

43

BEGIN

C11X

44

T7B

45

lOT 6002

46

lOT 6004

DATA REQ.

D13F

~~~__~~O~t4~~:N~-+_2_2~!~
DA~~A~I~::N~~,~__~___~_~D.~:12~:E~____+-4_7~~I:~IQT~6~,1~.O~,.2~~

..

C24L

23

DCL 2

C24N

24

DCL 3

WHITE

C24R

25

DCL4~MA4

-'I'

I

GRY/BLK/TW
BLK

i)

Dll Y

48

lOT 6104

C06X

49

lOT 6204

GND LUG

50

GND

F4 to Logic Drum Side CL·-A-24-EFG-O-26 (Sheet 2)

7-·45

JACK

W

I

LOCATION, LENGTH, ROUTE

PLUG D

FEMALE ~

F5

MALED

-

PIN

COLOR

RED
GREEN
RED
GREEN
RED
GREEN
RED

El5 J
~

H

Y
El5 Z
El6 J
4~

., ..

H

Y

GREEN

Ei6 Z

RED
GREEN

El7 J
~~

RED
GREEN
RED
GREEN
RED

H

Y
El7 Z
El8 J
• If.

H

Y

GREEN

El8 Z

RED

El9 J

,j-

GREEN
RED
;
GREEN
I--

Y
~
El9 Z

RED

SPARE
E20 J

I

I

GREEN
RED
GREEN

0

H

H

Y
E20 Z

PIN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

NAME

PIN

PIN

NAME

E21 J

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Xl4

COLOR

RED

XO

~~

XO
Xl
Xl
X2
X2
X3

GREEN
RED
GREEN
RED
GREEN
RED

X3

GREEN

E22 Z

X4
X4

BLACK
~Il

Ell E

H

Y
E21 Z
E22 J

•

H

Y

~~

X5

L

R
~

X5
X6

Ell V
El2 E
l~

X6
X7

L

R
~

X7

El2 V

XIO

El3 E
4~

XIO
XII
XII

L

,..i'
El3

R
V

...

L

El4 E
Xl2
Xl2
Xl3

.

Xl3

BLACK

R
El4 V

""II'

GND LUG

Head Selection CL-A-24-EFG-O-26 (Sheet 3)
7-46

Xl4
Xl5
Xl5
Xl6
Xl6
Xl7
Xl7
YO
YI
Y2
Y3
Y4
Y5
Y6
Y7
YIO
YII
Yl2
Yl3
Y14

Yl5
Yl6
Yl7
GND

r - - - -..........- ......-

JACK
FEMALE

. - - - -.... - - _..... _

...... - ...._ .

[=J

PLUG [~]

[_-J

MALE

LOCATION, LENGTH, ROUTE - AT PLUG END.

USE TRIPLE CONDUCTOR SHIELDED. JUMPER IN SPARES

'xl

AS NEEDED. PLUG END MUST NOT BE CONNECTED WHli:.E
SOLDERING LOGIC END.

~

COLOR
PIN
PIN
NAME
II:
1=====:==t======t==t===~==::::U'
E25H
1
RED
STARTl
BLACK

~~ E

2

CT

F

3

FIN

-~~~~~--_4---+~~-

GREEN

:J'

TAPER PIN CONNECTION

_.................. .

'c..LOCK

.7;1

SHIELD

GND

4

GND.J

RED

H

5

STA~

BLACK

E

GREEN

F

6
7

CT

CLOCK

COLOR

PIN

PIN
..

NAME

-- I

-cd

26

STAR~

E

27

CT

GREEN

F

28

FIN. (

fl:L... _. ~

SHIELD

GND

29

GND)

i

RED

H

30

STAR:r1 ...___ _

BLACK

E

31

CT

n F

32

FIN.

33

GND

RED

E2SH..

~~

BLACK

GREEN
SHIELD

E25GND

SHIELD

GND

8

GND

RED

H

9

STA~

34

BLACK

E

10

CT

bLOCK

35

GREEN

F

11

FIN.

j3

36

GND

12

GND

37

H

13

STA~

38

~

~CLOC.!5~

.. 1eLOcK

(#8
)

.....

- ..--.------4---+-------~-4----~~---~.----------+_----------~~----------~

SHIELD

-4---+--~--_+--_4--=~~-----------------+_----------~~----------~

RED

~B~LA~C~K~.-~--_+~EL---_+-l-4_+-~CT~J~L-~l~dAT·.~~I,~~~.----------~---------_+-3-9~---__------~
GREEN
11 F
15
FIN. ~4
40
SHIELD

E25GND

16

RED
BLACK
GREEN

41

~

42

18

STA~

E

19

CT

F

20

FIN.

E25H

4~

J

GND

17

43

lc;LOCK

1#5
GND J

SHIELD

GND

21

RED

H

22

STA~

BLACK

E

23

CT

NOTEz

SA~LE

ALL

CLOC~~4

HEADS AND INITIALLY
USE HEAD WITH

l CLOCK

45

HIGHEsr~ 46

OUTPUT

)(#6

47
48

GREEN

•

F

24

FIN.

49

SHIELD

E25GND

25

GND

50

~--------+_~,~~----~_4.

Clock Track CL-A-24-EFG-O-26 (Sheet 4)

7-47

,---

COLOR
GRAY
GRAY

1---------

PIN

NAME
lOT 6101
r---

PIN

2F20E

2H07E/Fl

SKIP ON DRUM

2F21E

2H07H/Fl

SKIP ON PEG DEo

DRUM FLAG'

2H05P/F2

2H07F/Fl

DRUM FLAG'

2H07F/F2

2H25L/F2

lOT 6201

1---

1---

WHITE

1--f--

BLUE

MBO

~~

~~ 1

1---

--

REMARKS

____lE25A/F3
~~

2E24E
~~

B

H

2

C

K

3

D

M

4

E

P

5

F

S

6

G

U

7

H

8

J

2E24Y

9

K

10

L

2E25E
~~ H

11

M

K

12

N

M

13

P

P

14

R

S

15

S

U

••

V 16

BLUE

MB17

,J

"

,r

T

lE25U/F3

W

W

2E25Y

1..--

lOT and 10 Skip, Computer Side WL-A-24-EFG-O-27

7-48

FL~

[J
FEMALE [J

PLUG

JACK

J1~E
1

RED")
"J."vvr

2

GRNJ

- .•-

3
4

.•-

5
6

.Lnc

GRNJ
RED?

-~

.Lnc

GRNJ
RED?
GRNJ

RED3

7

rnT......

.. ' ..

8
9

'PW::-

10

GRN
RED'"')

11
12
13
14

.............

J.L"r.-

GRN
RED?

rnr.......

rJ ....

GRN

RED?

_._

J
GRN

"J."nr

RED'")

mLTn

RED"')

rm.Tn

GRN5"

~

sMJ ..JtlHT
RED -;

I·

-

rftY.......

rJ ... '...

GRN
RED

2

.)

GRN

LOCATION, LENGTH, ROUTE

MALE~

COLOR

RED?

[!]

15
16
17
18
19
20
21
22
23
24

.Lur

25

10" INSIDE DXMENSION

F5-J2

CABLE

I~E
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

NAME

COLOR

L. __

RED

XO

GRN

Xl
Xl
X2
X2

RED") _,.•

X3
X3
X4
X4

5
GRN

.LVYC

GRN

REDi.
GRN --;

,..

T.T ...

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

X14

32

_n

.&..".

33
34

II

35
/

,36
37
38
39
40
41
42
43

X7
X7
X10
Y10
X11
X11

26
28
29
30
31

B~ JK

X5
X5
X6
X6

NAME

27

.L'~

-- . . .-RED'")
l:f".&.....

PIN

~

XO

"}

PIN

..

44
45

X12
X12

46
47
48

X13

49

SPARE

X13

B~

Selection Cable CL-A-24-EFG-O-28
7·-49

50

.0.

.".._--:::

X14
X15
X15
X16
'X16
X17
X17
YO
Y1
Y2
Y3
Y4
Y5
Y6
Y7

Y10
Y11
Y12
Y13
Y14
Y15
Y16
Y17
GND

Utilization Module List UML-D-24-EFG-O-4
7-5i

3

2

2

t

11127-117

11216

4

5

111132-777

4115R-17

ACT~WO

DSBS

A

3
11127

R

6

7

4112-30

DATA REQ

lj

4303

4110

4604

12

11127-17

111132-173

RQ

DSB 17

R

t--WRITE~
R

RQ

DATA IN
ERROR SYNC

TAKE WORD

-

TRA

R

R

READ

OVERFLOW

ACT
&

DT/ST

R

CWMP
R PAR I TY

DE
DNG
ACT

SET RQ
R

R

R

PAR ERROR

R

DE
FLAG

11216

116011

OLe + I

R
11216

11127-20

B

11217

6115-12

4301

r--

t

I

R
R PARI TY
OSB

DSB

DSB

DSB

DSB

I

i

I

I

DSBS

WRITE
EN 1

FL
R

WR ENA

RQ

FL

PARI TY
ERROR

SET S. A.

R PARITY

BLANK

SC ;i SA

1m DATA

a

R
11217

11217

11217

4217

4112-77

11216

4127

4216

I

4216

I

OV ERFLOW O

i

PA2
DELAY
lOT 61011

OLC CLR

OLC

DLe

I
I

DLC

Ole

IjRITE

I

DFB

r--

I

c--

---'

-

11112-77

-

~

TI ME
CHAI N

WR ENA
4217

R

4217

4113-77

OF

OF

r--

I

t--

-

I

-i
-l

11113-76

1160'6

13134

11110

I

R

-

-I-

R

OT

DT

R

~"'"

-

R

R

- r--

4606

4531

11531

4531

4530

11531

11530

WR I TE ENABLE

R

-

R

SPARE

I

READ STAD" CLOC:, >RA"

R
READ
TAKE
WORD

R
SC=SA

PAR ERROR

11530

0A

R

R

CLOCK TRACK

ERRO

R

I

R

R

t--

- t-- OTXB

I
R

-

R

R
115313

11530

11530'

11530'

0B

SC=SA
R
11530'

11529

1537

·1537

c

PAl

DFMBI-DF

OSB SHI FT

1

r--

OF

DF

I

i

i

i

E

DCLS
9-17

621311
TAKE
WORD

fl
DT YA t-- DT YB --E

T7C

I

I

DCLB
0-8

LOCK
OUT
10-17

-.B

B..I-

DE' PAR

11606

A

I

i

r--

-

f---

DFB
9-17

0-8

R

DATA I -

PAl

I

61132R

I

LOCK
CUT
9-7

R

c

61132R

B

~

DT CLR

I

PAR ERROR

4216

11127

6HJ2R

R

I_BLANK

PAR ERROR

4216

25

LOW
VOL TAGE
DETECTOR

WRITE DATA

1I127

24

R

R

1I60'1I

""'l

OV~RFLOWi

DSB CLEAR

LOCK
OUT
113-17

R

R

j

I

R

FL

o -ER SYNC

DATAO

DSB

I

0-7

6102R

23

PAl
OV ERFLOW

0- DSBS

D

R

22

B 1134
491'2

11311

FL

SEC
CNT

O--BLANK

OVERFLOW
1

DSB s

FL

21

LOCK
OUT

FL
STR

STR
ADD O

/,

C

111132-776

4215

ADD RI

SET I
DSB 17

20

19

R

T7B

11216

4127
STR
ADOI

SET 0
DSB 17

R

11216

12131

18

8

DSB-WD
R

R

11216

17

7

DT + I

PA 3

DE
R

POWER
CLEAR

OPTI CtlAL
W5135
LOW
VOL TAGE
DETECTION

FLAG

FLAG

R

R

T7C

ACT

TAKE WORD

~

R

COMP
R
PAR ITY

111135

I

-R

R
DF CLEAR

ACT

TRA

r--

CLEAR

16

~REQ

06

TRA

DSB I NIT
-.R

DC

COMP
SEC CTR

OVERFLOW

SET REG

R

5002
AND

I

.-B-

4401

6

15

~R

O-CTR

TAKE WORD

14
W505
4912

REO
DRUM
POWER

DOC CLEAR
R

13

LQ....

62011
TAKE WORD

IDLE

RD / WT

R

11

DISABLE

IDlE

R

10

9

8

110

5

4

PA2

I
DF

!

I

~
1

-

-

f-----

t--

-l

DF

i

PA2
DSBDFI-DSB "Y" AXES

OSDSBI-DF

"Y" AXES

"Y" AXES

"Y" AXES

IIX

32K WORDS MA IMUM

Il

AXES

nXI!

AXES

"X" AXES

"X" AXES

"X" AXES

"X" AXES

"K"

AXES

"X" AXES

"X" AXES

WR ITER

CLOCK TRACK
AMP

...... E

65K WORDS MA IMUM
F

I

131 K MAX I MUM

PA3

G

I

r--

-

~
1

-

t--

lAKE WORD

DF-CLR

-

I
I

I

I

i

J

D

i

I
I

I
D

2

3

4

Utilization Module List UML-D-24-EFG-O-4

TI
T41!113
100-X-1016 BROWN

01
IN3208

*

ORANGE

3
INO.141Io--......-:-.....

ORANGE
02
IN3208

+
I!I

3!1,OOO
MFO
2!1V

INPUT
II!lV AC

25W
YELLOW

601\.1

+
04
IN3208

-

CI
35
,000
MFD
2!1V

10V

RI

C!I

+

+
-

C2

135,000
MFO
2!1V

+
-

1

C3
35
,000
MFO
25V

6

1

REO-WHT
TWISTED

+

15V

r---O

.. ,~~~~--~~------~--.------~~--------~~~------~---------*~--~
BLUE

05
IN3208

*

YELLOW

BLUE*

RED

.I"
-

*

RED

35,000
MFO
25V

+
I!lV

YELLOW

~

*

t---------;------+--.------~~----------~~~--------------~~~--~ YELLOW

+
15V

08
IN3208
GREEN

GREEN
UNLESS OTHERWISE INDICATED
HEYMAN MFG CO TABTERMINAL IN PLASTIC BUSHING

*

*

c:::J CINC:H

.JONES TERMINAL

STRIP.

r-----------------------------------------------------------------------------------------------.-----QGN0
CI
REOr - -

#14 RED

}

O~~:_4~~--~~~~ O~.-----_T------------------------------+_--------------~~--------------~~+_~+_4-+_0 ~:~~:~FF
WHT\

#14 WHT

03

NOTES:

-6 TERM
JONES STRIP
#541-6

Power Supply RS-779

Power Control Panel RS-832
7-53

0C
C6
.001 MFO

UI2

E 0

..--......
Ill' --cr-- -

.,
.,Ill'

II

I

, 0~

........-O
D9

I

1<

0 --1111--9-- --

08

Ill'
.....- 6
Ill'
Ill'
07

L 0

-

I~

.,

.,

T

I
I

014

tlo"

F

E

OUT "1" IN
C

C

T

f662

R9
68,000'

R3 5600

I
1

..,

~-662 T

....

R2

R8
A

68,000

5600

AA

CI .001, ,MFO
~

013 J-662

I
I

'r 0 ~...-.......O

N

68,0'00'

!4 5600

...

r

.; 0"---"'--Cj>-- --

~T

~

RIO

C2 .001 ,MFO

02

UNLESS OTHERWISE INDICATED
RESISTORS ARE 1/4 W, 10%.
DIODES ARE 0-001

.., W

1
V'

TOl5

I

0 ~111--6

01

.

..,

I

...,

'~662

r

P 0I - -......._Cj>---O:!-

68,000

C3 .001,MFO

04

Ill'

RII

~5 5600
v
~

TOl6

I

..--.....-6

NO

I

..

~

I

II 0 ~I+-~Cj>--­
05

v

C4 .OO\LMFO

..,

06

.,

AA

v---

017 D;,662

I

R 12

68,~0~

R~ A5~00

C5 .001,MFO

9' --- -

0 >-----et--6

....

I
1
r

010
H 0 --1111-......

J

I

1018 0..:,662

I

011

-15V

A +IOV(A)

...-

I

...,
~

I

R7
A

RI 5600

68,000

A AVV_

~-~-E--M-E-~--PU-~--E--------~"r---ro-M-P-~-M-E-N-T--PU-~-E------'

~~
1>AA

I~IP~ ou~

~)t

vvv"

~~

II

AA

o:t~TL o~~
•

vv'"

TI

T2

w~~LwiJ
.

, CI
-470

~L~-.I~"""---h
I

:601
MFO

>

AI
68,000
~

R2

Y

......

R~~" ~)
15 v v V '

O - -.......y~~\A2f-4
yo.-..-!
!iB
R2!i
100,000

'---

3~

894-2

QI

.A~

( RIB
( 470
(!i1lo

>
>

4~12

, 014
0-662

~015

r--

0-662

~R17
">~~

1/2W

~
Q2

~~ ..t"'I!
vvv..,5

1>

'016
0-662

U

""

D,K GNO

R22

J>~~ ~

v~~

-0 V

Helll
!iB

R28
100,000

1~ 017
0-662

-...., C-15V
~

UNLESS OTHERWISE INDICATED:
RorSI STORS ARE 114 W; 10 'II.
CAPACITORS ARE M M FO
DIODES ARE 0-664
,.RANSISTOR5 ARE DEC 2894-1

C16, \ 68

I CI7 1l 68

--'t:--~I~
_~~--==-...~-.-~~~========--=-====------------~

~!~!!!l!~!!!!!!!~~:!!!

I

Diode RS-10ll

Flip-Flop RS-1201

7-54

--------------------------------------~._----------aA+IOV(A)

R5
68,00,:.0_ _ _ _ _-+________________-.

RI7
68,000

-+---"--41----0 D, V GN D

C6
220

C3
150

CKH
3 00

roN

C4

50~ M .....---l__- -....._...-J
R8
750
5%

R6
3,900

RII

3,300

RI2
100
5%

RI4
220
5%

RI5
820
112W
5%
C8
100

T

' - - - - 0 C-15V
UNLESS OTHERWISE IN DICATED:
TRANSISTORS ARE DEC 2894-1
CAPACITORS ARE MMFD
RESISTORS ARE 1/4 W ,10%
DIODES ARE 0- 664
RI9 IS A 80URNS POT

,---------------------------------------------------<0 A+IOV (A)
.-----+------_-------------------------------------------------<08 +IOV (8)
R7

3,900
5%

RS
2,200
5%

RIO

22,000

-------~--~--------+_------+_------------~~--+_------._-------<.-~~--~D

u

GND

~~~--_+--+_---UE

Z~------~

K

n..---------.

~o

ca

.01 MFD

L-_________________________________- "_ _ _ _ _ _ _ _ _ _ _ _ _ _ _I---Q

UNLESS OTHEWISE INDICATED:
RESISTORS ARE 1/4W i 10%
CAPACITORS ARE MM FD

I ••••••••••••
0

I:

>< >-

N

r---------~--------~~--------1_----.----~----------1_--------_.--------~~--------~--------------------~A+I~~)

NO

R28

~

R29

R31

I~~

L-------~~------~~------~.-------~~------~~------~~------~~------~~--~--~--_+--~~-_4~'C
-IIIV

UNLESS
OTHERWISE
INDICATED
RESISTORS
ARE
1/4Yt\ 10%
CAPACITORS
ARE
MMFD

USE THE E~l:tf:p__BOAR~OF~~~ __

[!! ~ ~!! t ! ! ! ! ! ! ! ! ! ~! I!! !J

Drum Sense Amplifier RS-1537

Inverter RS-4102
7-56

-----------...,.--------------------------------------,-----oa+10\1(8)
r----,------t---------.....
+IOV(A)
-·---------~OA

th
E,.

CI

3,000

680

5%

0

GNO

04
0-662

L

P

K

V

U

O~

0-662

C6
.01

01
0-001

0-662

MFO

R
RII
1,500
5%

OS

Z

V

RI2
1,500
5%

02
0-001

07
0-662

RI3
1,500
5%

D3
0,-001

C7
.01

MFO

RI4
560

112W

C-15V

UNL.ESS OTHERWISE INDICATED:
RESISTORS ARE 114Wj 10%
CAPACITORS ARE M M F 0

~
L~

...........
c

'"

\I.

:J:

"'"'

'"

-'

•

Z

IL

a:

-;-~~
~ ~~~
1/1

...

r-------------~-----._-----------·-----------------------------------------~OA+IOV(A)
~------------+--------~~-----~---------~----------------------------------<>B+IOV(B)

r----~~-~--_oO

Q2
2NI305

O~I

K O-----M14~---~~~A,Ar~+H
L.

GNO

016
0-662

O-----fl~.....~-:~--I-1- t

C4

017
0-662

.01

MFD

0 .. 001

N

o----.....~--...

N

o___"14.0_-_00_1~

05

018

0-662
C3

06

.01

0-,001

RIO

01

1,1500

O-OO!

07
0-,001

5%

MFO

08
0-001

D9

0-001

V

RII
560

V2W

010
O--O-O,-I--t

O------tlt-I......

011
0-001

W

0"001
013
0-001
014

Z

---~----------~~-_--------~___<>C-I!5V

O------~~~-0-12----~

--_14.-

0 ___

0 001
------'

UNL.ESS OTHERWISE INDICATED:

~~~l~r,9tR~ ~~~ 1~~1b

10%

1!!~!!H!!!!!n!!'~!n~
L:
______________ .__~ .

Inverter RS-4105

Diode Unit RS-4110

7-·57

, - - - - - - - - - - , - - - - - - - - ? - - - - - - - - - - - - - - - - - - ' p - - - - - - - - - - - . . , . . - - - - - - - - - - O A + 1 0 .... (A)

.----------.---I--_.--------------1f---.----------+----------oB+IOV(Bl

...------------+--4--_---------+--+----.-----+-I-...---+--+--.--QD

G~ID

ROO
120,000

R8
IZopo

D4
NO--~~__t

IN

IN

IN

D3

R25

560

M()---!III~--'

Fo--~~--'

112W

C8

.01

MFD

,
02
T

D2
IN
S

DI4

OUT INU :7

DI

R5

UNLESS OTHERWISE INDICATED:
RESISTORS ARE 114W 10%
CAPACITORS ARE MMFD.
DIODES ARE D-66<:'

I,~O

D5

x n---NlII---"
IN

DI3

DI7

V

.----------~-+----------------~r_~--------~

......- - - - - - - - - - -.....-----oC -I~,V

·-------~~--------------

----_-------------------f~----------------_{)A-t«:lV(A)
....-~-------OIB

..ICIV(B)

-----I--~t_-------------_4--_4~-----~_+-~-~-~~D
RI2

(lND

"l000

CI

.01
MFD

t > - - -.........np
OUT

DI6
IN

IN

DI5

M o----IIOI-~
D3D

RI9
560
112W

C2

.01

Q4
DEC 2894-4

MFD

O----~T

R o----IIII-~
IN

OUT

DI2

U 0----Il0l--4

IN

v 0----Il0l--....

D9

OUT
XO---IW--~

uw

50---_811-.......,

01
UNLESS OTHERWISE INDICATED
I~ESISTORS ARE 114W. 10·4
oCAPACITO:1S ARE MMFD
DIODES ARE D-864

O------nz

(}------N

----------------------------.--------------------------------.---------------------------------------0
A+IOV(~
r-------------__

r_------------~~·--------------r_------------~~----------------~8+IOV(8)

IIlI
33,000

t-------+-------+-------+-------t-------+--------+_------+-------+_------~----~+_------_.---4~OO

+

C2
.01
MFO

CI3
3.9 lIFO

- IOV

01
0-001

r
UNLESS
OTHERWISE INDICATED:
RESISTORS
ARE
1/4W, 10%
CAPACITORS
ARE MMFD

ONO

M

N

v

R

1
1 .0(
••
••
III •
U •
0 •
......
z ....

I
":l
:.I: I
-' '
:I! "
;E
G."
CI: "
!II I-

:.

• •)( 1.
>- N

•

Diode RS-4115

Capac itor-Diode-Inverter RS-4127
7-59

y

~·I
,~o

(;E (;H

)J
ONE
OUT
FFO

ADD ZERO
FFO OUT
FFO

ce

2.Z00

o----t (

CLEAR

'010

~:.I.ooo

>

~~

k()'

>

.~y30

~§JIN

PU

~~
.<

.. ~~O±

~>

~f

S T
PULSE IN

01

}l'l!t

C

<-

.

~~
~ 4~
~'lI. •

&~

·
~

6aUb?
(>

>

68,~~1>

s/J1lo.>>

>

C

....... ~~

···

···

>

~~~O

.....

......... ~

~ f-

R26~

:!p00

~%

4 ~.

4~

l.g~>

012

>

>~~OO

23

........

16

···

~OO
~%

~

>

4

~ ~013·~

~

f---

R3~

R28

USO

--- ~~

(

"0

~---

>

~%

R29

<

.....

,..............

~~~oo

:.>,,38
\~O

~::::C19

;,,000

150

~

•

~:i00 <- 019
&!I..

~R39

4~

4

R32,?

R~:

~.

024

: ~oo
•

R41

~

1"028
0-662

GND

"029
o-"'e62L...~~

1M

I~O

I"'C~

B
~~~
C)o 5%

.>

023
0-668

O-~

.. ~

~ f-

R20

.>il

RI3,<

~

CII
1M

RI9
3,000
"'"

~%_<> ~~c5

......... ~RII

•~O~ ?'

~ ~

017

~J:l

"030 r"MFD

~

l>[l51

0:-662
>-

> .~ ~

R44

~o.~:i

~60

>1~2W
~-15 v

..
..,.

,-

U~

5% c

~

0-~8
03

~~o.> ~
C4
30

• R8

~~
~~i

I

0;..66B

U3~

R21

~500

08

R 30
1,500
5%..
vv

[)-,l68
014

A5:/~

~

0'20
[)-668

CI7
330

027

~

..AAA

~~2v 1~8

1,500
5%

0~66B

~500

51" ..

T330

>r~30

(

5%

~~

pi

v

1,500
5%

>

RI7
g500 >
%

vv

o~~

-'Y:'{; J.~CI3

0.:"668

T

330

L...~I~

T330

-'YY
R31

T

'lcl8
330
1,500
5%

oJt Zfj~t Z~~O

8ii

LEVEL
FFB

o~~

ZJJ~
FF8

4-Bit Counter RS-4215

Quadruple FI ip-Flop RS-4216

7-60

st;
o

E
LEVEL
FFA

D.

J•

0-S68

f~

T~

,.
,.

..

..
N.

o•

s.

.~

OUT
FFC

c.

H.

O!,

>N&
>5%

( H
( E
SET
ZERO
IN
ONE
OUT
OUT
IN OUT
FF 0
LEVEL
FF 0
LEVEL
FF 0 FF 0 FF C
FFo
FFC
UNLESS OTHERWISE INDICATED. RESISTORS ARE 114W, 10%.
CAPACITORS ARE MMFO. DIODES ARE 0-664. TRANSISTORS ARE DEC 1754

~~ 0-668

R40

v

T.
U.

,)V

'6\1;

FF II

:>w

~o
FFA

OV

~ 1011

~~

~

~ ~ ~ ~
ofr.

011

~O

~ ~-+

~

8
<-f8PDO ee.Cb o ~

~

~

R~ ~,
,~nCI ~OOEP

~~~OOO

, 026

"022

'016

OZ

w\

v.
w.
x.

,.

,.

'--

r------ ---------r----~,

C12~

LEAR

2200

01

,
C9
330

~
3000

~,

>

~

Q3

K

I

FO
I OUTPUT

-.

~-~,

..

--

---

\I

"'> RS
>S8,OOO

03 ~,

--- '--

-~

>

R7
SB,OOO

~

R8

o4~'

~

R9
68,000",>

~ S8,OOO

A

+ lOlA)

~

i + 10 IB)
R)9
3p00
5%

Q4

Q5

Q9

Q8

Q7

Q6

~

~ .. 026

RII
• 3,000

>
>

RI2
3,000
5%

5%

4 ~7
68
C3
.
150' .

06 ~

psJ

I:;:I"IC~

~----

.. .....

~

R5
S8,OOO?

>68%0

..~.'.

0

Fsh:::1"

R20
1,5~0 5%

D2~"

.--~

--0

Q2

~~

F

>

R3
?
S8,OOO

---~

-

~

5%

r

> R2
~S8000

HI
68000

..

I'--~

~ .. OI4
>R21
1500
5%

>

-- 1
olq~

4~016

~1500

~

5%

..
~

-b

'i~

~S\1,·~

500

i~~J..

CII,.J. 1500
330
11%

I

UNLESS OTHERWISE INDICATED
RESISTORS ARE 1/4 W,IO%
CAPACITORS ARE MMFIl
DIODES ARE 0-664
TRANSISTORS ARE DEC 2894-4

o

Ol

)H

FFo

I IN

FFO

CI3 , 1500V'
330- 5%

CI4
330

1

N
COMPLEMENY
C

4 .. 020

•

u

0

......

>R41
560
II2W

•

~-15

C

J..

1500 5%1

Ln.D~~

cle -b-

C15.i 1500
330
5')10

330

z

....... :I

Z

..

>

)5

o OUT

FFB.

III

Rl~

ci~411o

CI7.J. 1500
330.
5'l1o
II

Y
IOIJT FFA
)R39
<1500
V

.......

~

> I:

C21
330
R40
1500
5%

~IIN

I ---------------------.
c

[).662

>

1511~

R34

T
COMPLEMENT
B

U
lOUT
FFB

I~' 029

0214 110

R35

~

R39
1500
( M R(
OUT I IN
FFC
"Fe

~'00::2

leD,

A

I

o

b6FJ

~ 1500 .•
R28
? 6%

C20

dl~

~

~

c R27

1
5" ~

FFC

~~

0
" 0 ::2

~ 012~~

I%';r-

•
• ReG
.1500
5%

1500 11%1

~~~J

330

P
lOUT

C6

J50

A~!

>R37
,>1500
~ 5%

o OUT

0668

1-1--

>

RI8
3,000
5%

,08iFt::

>,R25
)1500
8%

R12

> RI7
>3.000
> 5%

110011

0194110

~6
5%

1

,
CIS
330

J
COMPLEMENT

5".1

~~

~~

4~018

I

.A~I

1500 "50101

~

RIS
3,000
5% )

RI5
3POO
5%

?R23

A,R29

CIO
330

...8il"

~

... 150

>,~22
>'500
)5%

0-662

O~~

08

RI4
3,000
5%

~

0154~

013

~3~6~0
5%

J(

".

...

:

FFB

)x
COMPLEMENT
A

W

o OUT
FFA

z

I IN
FFA

~------------------~------------------_4~--,------------------~r_----------------------------------~A+IO(A)

~,OtJO
Vo-------------;_------~----~~--~--~~------------;_------._------------~~--._--~--._~----,_----

__

~--~~

GND

Dli
0-662
Dl2
0-662

013
0-ee2

R24
3,000
5%
R4
15,000
5%

R3
3,~0

R!!

os

15,000

5'l1o

UNLESS OTHERWISE INOICATED
RESIS10RS ARE 1/4 WI IO'llo
CAPACITORS ARE MMFO
DIOOES ARE 0-864
~4-------_1~---~----------------------

____

~~

______ __________ __
~

4-Bit Counter RS-4217

Delay RS-4301
7--61

~

~----------~~--~~~----~c-lav

-OA+IO.I

.

.

:el&o

>~

:A~

.

>

>.,!!Jo
>.,~c
~.,
C

c:>33~dfx,

~B+I

~.~

c> R24
:
10,000

R21
10,000

c

>68,

QI

~

,..
~

~EC

~"{

,t

.AAA

R2
3,000 11% 02
O~
0,;.,668
....

fii?

Q2
DEC
2894-1

~ ~: ~O ~~
0-664

Q3
DEC

De
0-664

,

~-I

>

N3605

:~OO

>I~

~"
~~~:6~

< RI5
< 1,000
•

:~

~'~~

Q9

• 5%

-

2J-2~0

~.R4

> R7

BOURNS

'>I;~

>I,,!IOO
!I'll.

MFO

)

;~

J

-+
~I 4

:;r-9~0

3.9

MFD

"

Dl3

,

012

"

Dli

~,OV

~,

DIO

~

09
~

>,R211

>I,!IOO
5%

,>,R2B
,>~90

1/~~-15V

~

(

W

ONE OUT

014

ZERO OUT

1!!~1!!'!!~1!!!!!1!:!!!

C2

~OOO

4~---T---'-------""'---'-------T-----"1"-""-O
R4
20,000
C9

,~
((

R9
10

C8
.01
MfD

3·~!2...0R

C5
.39M1'D

o.L,Z GND

.01
MFD
R7
22

C3
... ( - ~9M~M

CI
.01
MFO

'>R22

+r-~:D

"~F~

+

9

E

-_ CIO

C9

MFD

0

X

Z

,......-

tl~9

~7

-

"
CI3

D-664

~~

5%

Q2
56

A~D8

RIO

y~

f--

<

R2

>' 5%

Q6

QII

~

:

~

: 6~

D-6G4

36

Q7
OEC28

• AllI

~~D4

~~ 0111

>

(>~

A~~

...

.g622 MFO

~~ '" . ,,-,

<'82

5%

0-!64

QIO

t;;-

~O C!I ,flRIl
C~
1,000
:
%
TI50
5%

>R

64

-

''''OGNO

'r~

oe

DEC
2894-3

2894-1

0

P

C6
( .027MEQ..oN
C7
( .0027~U

ll~F

T3~E
T2021

T2021

R6
120
112W, 5%

T2019

120
1/2~5%

,------~-----~~~---~-------------~---~~,~-~-~C-15V

UrLESS OTHERWISE INDICATED:
RESISTORS
ARE 114W; 10%
CAPACITORS ARE MMFD

1
l__~1.-.-;...u' ... -'-~--;~-~·.I
f - .:
0

..,

II..

I I I I I I • -;

....

Z

II.

II[

<011

..

::')

"-;-;-;1
~

•

JC

)-

N

Integrating One-Shot RS-4303

Clock RS-4401

7-62

r---------------~--------------_;~----_;r_------------;,------;,--------------~~------_.--------~A+I~(A)

r---~----_r----------------t_~----!_--·----------~----.__+----------------!_--~._~----~.__oB+~W~

RI?
I B,OOO

RIB
18,000

RI9
IB,OOO

RI4
120,000

R20
IB,OOO

RI6
120,000

09
0-003

WRITE{::~F
''oNE''

~loo

2,~

1tt8----...I--.................

....-J

150

~---f----------------~------+-----~"""--------------~----~------------4I~----~OO
R4
560
5%

RI3

C7

5%

MFD
SOV

560

IW

GND

.01

IW

~·-----------------------~-----------------------4~~--------------~~----~C-15V

x

(-ZOV)

UNL.ESS OTHERWISE
INDICATED'
RESISTORS ARE 1/4W; 10%
CAPACITORS ARE MMFD

H

'fc57

100~600 >
.AA

r6J

oy

?Z
~

I---

OZO
A
OU TPUT

B OUTPUT(+)

B OUTPUT (-)

A OUTPUT (+)
OH

R9
112W

~

y

IJ

-"

A
vvv

RII
1,200
Jo.

> R7

R13~

RI2

112W

r-RI5
100,000

100,000
RI4

1/2W

A

v

~

112W

~
~

-A

~;4

fP 09

1,200

R2B
4,700
112W

4,700~

112W

>
>>
>

4~ 011

0-007

O-g~7 4~
(

R!5

R6
3,300
RI W BUSS
+FO

.~
>

R21

.120,000

.

2NI305

D3~'

)

04f

"1
M

o·f

07

q

I"~,,

~

013
"014

)

to" to" to"
w

4700ph
TRANSISTORS ARE OEC 3009

Drum NRZ V/riter RS-4529

Drum X Select RS-4530

7-·63

..., D GND

~

2NI305

...

- E

NLESS OTHERWISE INDICATED:
RESISTORS ARE 114 W: 10%
DIODES ARE 0-003
INDUCTORS ARE ESSEX RFC· L

>

R22
3,300

• 1

D~ri~7··

50V

.. y

vvv

-AR3~

~r-~FO

R20
120,000

.AA A
Y

~O,OOO

R31
I00,000
~

lC2

< 6'~2~
010 .. I ~IFD*
0-662 50V

~

R29
>100,000

100,000

RI6

t-

R4
120,000

['ELI'>«>

D~b~7 ~,
R27
1,200
-A

R23 '

v

L4

-"YV~

~'D~6~7

RIB
100,000

~OO,OOO

.~DI
0-007

"00

112W
-A

A+IOV(A)

..., B+IOV(B)

~~02

R26

3,900

L3

RI9
100,000

A

4,700

>4,700

YR2
100,000

(?04

R25

~?

~

FlI7
10Cl,ooo

D?~07 "
RB
1,200

~

R3
100,000

06

liZ,!
vvv

A

"O~~07

Y

~~ 022

"00 ~
" ~o...,

3,900

LI

.4~OZI

RIO

INPUTS

A

R3
120,0 00

~+IO VIA)

.,

B
R2
120,000

R9
120,000

R4

'-----<

if
IW

~

R6
10,000

01
CI
2NI30!1
2200

E
(~

04

...

-

__ C2

...
02
...

09
N ..

R5
2,200

..

-

07"

-

I

RII
2,200

~

P'

~

05
2NI30!1

"014
0-670

.

P'

-

~'

"--'

......... ......-0

W 0:4

...
...

X O!!I

...
......

"

2~~~0 >

017

023

> R24

~2,200

..... y 0~6

P-67C

.....

027

......

0

~

~G NO

C6
'M",:IO

R22 •
6800 :

!lOV

,Ir 019
0-662
,,020
0-662

1
<,

DlJ"
L9"~D:'OO

02

G4 330

...

~

C3,133O

~

R7
10 ,000

:;: ..

O~ ~FO
!IOV

~

> RI9

RI3
10,000

10,000
~Z

---I~-

NOT E:
RESISTORS ARE 1/4W; 10%
CAPACITORS ARE MMFO
DIODES ARE 0-003

~C-I5V

..

08

CIO 330

_~-H

' U , R I4700
9

....

~

"

fR33
4700

018

~

....

=9'~'~D'

CI5 330
1

+Y~I

R30
1,!lOO
!I%

Rle
I,!loo
!I%

5%':

014

CI6 330

!~,

=9,~j~D'

~~30
+IN

~~'>

"030
0-67o

...

018

RI
10,000

fi(l

)10,000

I'

0-662

016

U

> R2!1

r,(p
'r
028_'r~~O

~-

...

1,800
IW ~

R20

0~::2

R

2200

'---

~T

>

C4

~ R23~

~

> RIB
> 10,000

IW

S 0~5

+

01

K

r...

...

010
..... p ..

cr670

:;:

0~:J2"

~~

~8

>'~
~

022,0
0-662

L~

P'

~3

.....J

03
2NI30!1

"--'
M

"--'

RI2
10,000

'" -2200

P'

H

>

IW

~

0~~!2 "

0~~~2"

~~

"------'
F

K:

L-----4

R21
120,000 >

+10 V (8)

.--

>

> RI4

RI!I
120,000

RIO

~
~

\.!!.

'r

O!l
0-6 62
06
0-66 2"

RB
120,000

~

~A+IOVIA)

-oB+IOV(B)

>r~

:'~tvf> ~>.RI3
'~'> ~ 68,000

'>"Mr:'

>,RI7

>~

..--

,]24

n'

> R27

6~~~~«

'>R31

':J@.O

r--

.000, :>68,000

05

08

•

68,R4oool

•

~ ~~!I%"""-28-:;~~=-:-C'--IH-~-R-(&o-t-+~-~"""2-~-~-""""~-:~~f.~4:-C-~""""""'-2-~~A..::'C:-t---H:se:-R-:~-0+-tI-~""'2--N-99~-9"""-+0-OE=-7C-~""''''''''-2-8~~~~C''''''''-+<-l:>68-R-b-7-+-+I-~~2-:r~-13-0-9"""++--oO
~ 2894-1

~~

L..C2

R7

>

3~00>

'1'" 120

%?
'n

'-

h

R8
1,5O<1c>
!I%;>

*.~5

,1,000

--'

1..1

~: .~

j~03

> RI

~

2894jl,

.W;

.l,CB
MFO
120
TI
DEC
PI"\)
~
'-'
,CT
2037

RI2 •

~<

•

~~

RZI
3,000>
5% >

RZ2

h

I~; ~
,~--

% >

__

~~ II~'
":,.~
~
04~ ~

3000
I ~ 5%

R~

.~09

,t1

~~> I~ ~

~

06 ~\~&
?" 5%

R
I,5

5%

UNLESS OTHERWISE IN ICATEO
RESISTORS ARE 1/4W,10%
CAPACITORS ARE MMFO
DIODES ARE 0- 664

~zg>

5'Mo~
II2W"

5'Mo
1/2 W
>.RI9

>I,~oo

~ 5%

< R25
<:80'"
~ II2W,5% ,

• R20
• 1,500

"i

5'"

U!!!!!I!!!I)l!!!!!:!!!

Drum Y Select RS-4531

Pulse Amplifier RS-4604
7-64

1,

>

.l,CI4
120

we..l~

R2~.>I~ ~T

010. ~

RI!!

~~-

MFO ...
T2
DEC
T2037

D""~ II~'

'H~

1

::: 289

R35
3,000,)
5% ?

~

D

013.~

A~015

~ R29

R36

iCI7
MFO
,1,000 T3
DEC
__
iT2037

DO' ~:IIFV
~
R40,) 11)1

_ CI9
'021 M9JO
0-682

~~i~

"1

~~
016h

~ 3~

...--

~6t8- ~~~

h

t,SOO~;
5'Mo.

GNO

~

R4~.

,--

~

•

r----

~

1/2W
(R32

< R34

5%

5'"

< I,~OO < 1,500

< R39

<

~ ~ 43

IBO
?1/2W,5%

3000
5 %

C-15V

01

CI 330

- IN

E

0··003

o-j ~--._-,

A

r------------------~--~~~~----_..----------------------~~~~--4_----~----------------~+~(A\
r--------------------;--------~----_+.~--------------------~--------~----~~--------------~~IOV(B)

o

R5

3,OOQ
5%

RI2

R34

R52

3,000

1,500

5%

~

~
~

~~~~~~----~-4--~------------~--~~~~~~--~~-~------~--------~--~4_~~--4_--~~4_--------------~-I5V

LEVEL
IN

UNLESS OTHERWISE INOICm-EO'

~~~i~W~~s A:iE I~~~~O%

TRANSISTORS ARE DEC2894-1
DIODES ARE 0-664

FLIP
CHIP

SYSTEM
MODULE

SOCKET

PLUG
A 0------0 A
08
80------0C

Co---E O------OE
F O-----0F
HO-----OH
J o-----OJ
K O-----0K
L o-----oL
MO-----<>M
No------oN
PO-----OP
Ro-----oR
So-----oS
To------o-r:
U 0------<) U

V 0-----<> V

w

Pulse Amplifier RS-4606

FLI P CHI P Adapter RS-4912

7-·65

+IOV (AI
T:A
CI3
.01
MFD

.01
MFD

0
GND

CI2
DI
MFD

015
012
0-662 0-662

CI
56
010
017
0-662 0-662

CII
.01
MFD

R7
1,500
5%

RI6
1,1100
11%

~--------~--------~--------~--------~--------~--------~--------~--------~--------~----~--~--~--~--~C

-1l5V

UNLESS OTHERW ISE INDICATED
f'ESISTORS ARE 114 W, 10%
CAPACITORS ARE MMFD
TRANSISTORS ARE DEI: 2894-1
DIODES ARE 0-664

---------------------c:. u

Q

......

::J:

........

I

z ........

;:).>

I:

1'(

..

N

--------------------~----------------------------------------------------OA+~VW

r------------------------4------------------------~--------------------------~8+IOV~

--~----------------~------._----------------+_----~~------~--~--~--oO

GND

030
0-662

02t
0-662

021
0-662

CII

M~O

021
0-662
04

017

Oil

C6
01

023

FO

wu---tlll---.
03
M
02
01

010

16

Tv---t..--t
09

R3
1,500
5%

07

22

Dill
014

021
020

OM

RI
12,000
UNLESS OTHERWISE INDICATED:

~~~~JOMEAc:8~:W, 10%.
TRANSISTORS ARE DEC 2894-1
~--------------+-----~~--------------~~----~----------------~------~----------~~~~_oC-ISV

~!~!!U!!!!!l!!!~!:!!!

Inverter RS-6102

Diode RS-6115
7-66

'
4 4
CI
56

RI
3,000

C2

F

5l--

OEC2894-1

ol~S6

L02
DEC 2894-1

R2

K

E

C5
1$6

C3

3POO

R5

3POO

P

o

R03
EC2894-1

V

4

4

R8

U

J

DEC2894-1

3POO

...-------......

T

.....

--.----t_-------e---

--oB-15v

-3V
01

02
0-664

R3

0-664

I,!IOO

R4

R6

I,!IOO

~soo

C4

1
MFO
H

M

D6

0-882

05
0-662

C8

.01
MFO

04
0-662
~--~~----e---~c

GNO

r---.----------------~.--------~----------------------OA+IOV(A)
r------------+---------+----------~---------QC

D4
IN 964 A

R2

7,500

GNO

R6

3,000 07

Q2
TRIMPOT
BOURNS

DEC 2894- 21

03

RI

5,000

• 01
114M 6.8 AZ5

R3
68,000
10%

R4
61300
10%

R5
1,000

-4'--------------------------0 B - 15 V

UNLESS OTHEI~WISE INDICATED:
RESISTORS ARE 114W, 5%
DIODES ARE Ct-664

Inverter RS-B104

NOTE: 1 N964A -13v I 10%
Low Voltage Detector RS-W505

7-67

APPENDIX 1
TELEPRINTER SUBROUTINES FOR

PDP-4

The diagnostitc test given as a corrective maintenance tool in Chapter 6 is for use with a PDP-4 computer
wh ich has the following standard subroutines stored in core memory. The routines allow automatic printing
of test results on the Type 65 Printer-Keyboard. These routines are presented here to allow generation of
a binary tape to store them in the PDP-4 if they are not present, or to allow comparison to determine the
extent of modifications required in the diagnostic prclgram to allow it to function with existing subroutines.
/TElETYPE SUBROUTINES, OCTAL AND DECIMAL FRACTIONAL PRINTS
/TURNS INTERRUPT OFF
/OCTAl PRINT, WITH ZERO SUPPRESSION
/FORMAT

lAC WD

/

TWORDZ

/

n

/n=NUMBER OF DIGITS TO PRINT FROM
/lEFT END OF WORD

OCTAL
TWORDZ=JMS

o
DAC DCPNUM
lAC (SZA)
DAC TWORDZ+ 17-JMS
LAC I TWORDZ-JMS
CMA
DAC DCPCNT
ISZ DCPCNT
ISZ TWORDZ-JMS
LAC DCPNUM
RTL
RAL
DAC DCPNUM
RAL
AND (7)
SZA

/MODIFIED

JMP TWORDZ+25-JMS
A 1-1

ISZ DCPCNT
JMP TWORDZ+ ll-JMS
TDIGIT
JMP I TWORDZ-JMS
DAC DCPDTG
LAC (JMP TWORDZ+31-JMS)
DAC TWORDZ+17-JMS
LAC DCPDIG
TDIGIT
ISZ DCPCNT
JMP TWORDZ+ll-JMS
JMP I TWORDZ-JMS
/OCTAL PRINT, NO ZERO SUPPRESSION
IFORMAT SAME AS TWORDZ
TWORD=JMS

a
DAC DCPNUM
LAC TWORD-JMS
DAC TWORDZ-JMS
LAC (JMP TWORDZ+31-JMS)
JMP TWORDZ+3-JMS
ITABLE FOR OCTAL TO DECIMAL CONVERSION
DECIMAL
DCPTAB,

100000

10000

1000

OCTAL
ITELETYPE OUTPUT PAC KAGE 0-1 9-26-62
EXT=JMP I-JMS

TTAB=lO

ITYPE 1 CHARACTER FROM AC BITS 12-17
TY1=JMS

a
RAR
JMS Ty'lA
EXT TYl
ITYPE 1 CHARACTER (5 BIT), L~ N KIN DICATES CASE

Al-2

100

10

TY1A,

o
DAC T'E"MY
AND (37
SNA
JMP TY2
lAC OCl
SPl
lAC OCU
SAD OCS
JMP .3
JMS OTY
DAC OCS
lAC TEMY
JMS OTY
ISZ TaC

TY2,

lAC TEMY
JMP I TY1A

/TYPE 3 CHARACTERS FROM AC 0-5, 6-11, 12-17' RESPECTIVELY
TY3=JMS

o
JMS R16
JMS TY1A
JMS R16
JMS TY1A
JMS R16
JMS TY1A
EXT TY3
/TYPE A CARRIAGE RETURN, AND LINE FEED
TCR = JMS

o
lAW 2
JMS OTY
LAW 10
JMS OTY
DZM TBC
EXT TCR
Al-3

/TELETYPE OUTPUT PACKAGE - PAGE 2
/TYPE A SPACE
TSP=JMS

o
LAW 4
JMS OTY
ISZ TBC
EXT TSP
/TYPE A TABULATION
TYT=JMS
TAB=TYT

o
LAC TBC
ADD (-TTAB-1
SMA
JMP .-2
ADD (1
SMA
LAC (-TTAB-1
ADD (-1
DAC TEM
TSP
ISZ TEM
JMP .'-2
EXT TYT
/TYPEWRITER INITIALIZE
TIN=JMS

o
LAC OCL.
DAC OCS
JMS OTY
TCR
EXT TIN
/TYPE THE DIGIT IN THE AC
TDIGIT-JMS

Al-4

o
AND (17
ADD (LAC NCT
DAC • 1
XX
TYl
EXT TDIGIT
/TELETYPE OUTPUT PAC KAGE - PAGE 3
/TYPE A STRING OF CHARACTERS
TSR=JMS

o
DAC TEMYl
LAC (JMP TSR 1
DAC TY1A 4
LAC I TEMYl
TY3
ISZ TEMYl
JMP .-3
TSR1,

LAC (JMP TY2
DAC TY1A 4
LAC TEMYl
EXT TSR

/OUTPUT ONE FIVE-BIT CHARACTER
OTY,

o
IOF
DAC TWORD-JMS

/SAVE

LAW

/COUNTER

DAC R16
LAC TWORD-JMS
TSF
SKP
JMP .+3
ISZ R16
JMP .-4
TLS
JMP I OTY

/ROTATE LEFT 6
R16,

0
RTL
RTL
RTL
JMP I R16

/TABLE OF DIGITS
NCT,

33

73

63

41

25

3

53

71

31

7

/CASE STORAGE
OCU,

33

OCL,

37

OCS,

0

/DECIMAL FRACTIONAL PRINT SUBROUTINE
fUSES TELETYPE OUTPUT PAC KAGE
/SUPPRESSES UNNECESSARY ZEROS
/FORMAT

LAC NUMBER

/

DECFR

/

X

/NUMBER OF DECIMAL PLACES (0-6)

DECFR=JMS

o
SMA VCCL
CMA

vell

/MAKE WORD NEGATIVE

DAC DCPNUM
LAW CHAR R

/SPACE

SZL
LAW CHAR R-

/MINUS

TY1
LAC (ADD DCPT AB)
DAC DEC FR 1+2

LAM -5
DAC DCPCNT
LAC I DECFR-JMS
ISZ DECFR-JMS

/-5

ADD .-4
Al-6.

DAC DCPCNl
SMA
/WR ITE I NIT IAL ZER 0

JMP DECFR6
LAC (SZA)
DAC DECFR2
DZM DCPDTG

/VALUE COUNTER

LAC DCPNUM
JMP .+3
DECFR1,

DAC DCPNUM
ISZ DCPDIG
ADD DCPTAB

/MODIFIED

SPA
JMP DECFRl
ISZ DECFR1+2
LAC DCPDIG
DECFR2,

SZA

/MODIFIED TO JMP DECFR3

JMP DECFR3
ISZ DCPCNl
JMP DECFR5
CLC
DAC DCPCN1
CLA
DECFR3,

TDIGIT
ISZ DCPCNT
SKP
JMP I DECFR-JMS

DECFR4,

LAC DECFR2+1
ISZ DCPCN1
JMP DECFRl-4
LAW CHAR R.

/PERIOD

TY1
JMP DECFR4
DECFR5,

ISZ DCPCNT
JMP DEC FR 1··2
TDIGIT

/SHOULD NEVER REACH HERE

Al-7

JMP I DECFR-JMS
DECFR6,

CLA
TDIGIT
JMP DEC FR4+3

START

Al-8.

APPENDIX 2
TELEPRINTER SUBROUTINES FOR PDP-1

type 24 drum test - pdp 1- 11 dec 64
define
rcr 777
rcr 777
term

swap

define
isp A
jmp B
term

count A,B

define
law i B
dac A
term

setup A,B

/octal typeout - suppresses leading zeros
/calling sequence: lac number, jda opt
100/
opt,
0
dap opx
setup op2,- 6
stf 1
opl,
szf i 1
tyo
lio opt
cla
rcl 3s
dio opt
sza
clf 1
sza i
law 20
swap
count op2, opl
tyo
opx,
jmp

.

ott,
0
dap ot1
setup op2,6
ot2,
lio ott
cla
rcl 3s
dio ott
sza i

A2-1

law 20
swap
tyo
count op2,ot2
ot1,
jmp •
/drum test 3
beg,
jmp rng-3
law pta
dac pha
clf 7
law 1 10
dac cfF
szs 10
jsp tst
jsp spd
jmp wrl
boo,
jmp .-3
law 1 2
dac ctr
stf 4
rng,
dzm wat
rbI,
dac t'iii3
rcn,
dac rnu
dac 1 tm3
Idx tm3
sas wrn
jmp rcn
110 wca
dwr
110 wdt
dbl
jsp wtl
e1,
jsp wtl
e2,
110 rca
drd
110 rdt
dbl
jsp wtl
e3,
jsp wtl
e4,
Id.x rdt
sas drs
jmp rbl
szs 40
jmp rng
lsp ctr
jmp rng
jmp beg

szs 40

lsp ctr

dzm rat
lac wca
jsp rad

dcn
Id.x wdt

dcn
jsp rcm

A2-2

rad,
lac
lio
rcr
xor
dac
dio
b,

dap b
hi

/random number generator routine

10

7s
10
10

hi

jmp

wtl,
dtd
jmp .-1
dse
jmp par
wtx,

dap wtx
/test for drum done

rcm,
lac
dac
lac
dac
law
dac
rdd,
sas
jsp
idx
idx
sas
jmp
szf
jmp
rcx,
big,
sas
jsp
idx
idx
sas
jmp
jmp

dap rcx
'W'ca
tm3
rca
tm6
1. 6
opp

/test for errors after transfer
jmp
/data error test routine

/initialize for limited error printouts
lac i tm6

1. tm3
ert
tm6
tm3
wrl
rdd

4

big

/random number routine?
jmp
lac i tm6

i tm3
ert
tm6
tm3
wrn
b1.g
rcx

/done with second block yet?

tst,
hIt
lat
dac tml
hIt
lat
dac dta
tsx,

dap tsx

spd,
lac
dac
dzm
lio
dio
idx

dap spx

/routine to use TW switches for data

jmp

wca
tm2
dta
dta
i tm2
tm2
A2-3

mdo,
szs 10
110 trn1
d10 1 trn2
Idx trn2
sas wrl
jrnp .-3
spx,

110 1 pha

wr1,
jrnp
dzrn
goo,
dwr
110
db1
jsp

szs 10

e5,

jrnp
/wr1te rout1ne

goo
dta
110 wca
dta
/load track address and go
wt1
szs 20

jrnp
1dx
szs
jsp
dac
sas
jrnp
jrnp
tsw,
lat
dac
tax,
rea,
jrnp
dzrn
lac
dac
doo,
drd
110
dbl
jsp

rea
dta
10
tsw
1 wca
drs
goo
rea
dap tax
dta
jmp
szs 20
doo
dta
dta
1 wca
110 rca
dta
wtl

e6,

/start read1ng
jsp rcm

1dx
szs
jsp
szs
jrnp
dac
sas
jmp
1dx
jrnp

dta
20
tsw
10
wr1
1 wca
drs

doo
pha
boo

/error rout1ne

A2-4

par,
szs 30
jmp wtx-2
dsp
jmp prt
lio (flexo par
repeat 3,ril 6s
jmp pr1
prt,
lio (flexo mis
repea.t 3,ril 6s
pr1,
lac wtx
and (7777
jda opt
lio (36
tyo
lac wtx
and 4(7777
szf
jmp pr2
lac dta
jmp pr3
pr2,
sub (e3-1
spa
/skip if e3 or e4
jmp pr4
lac rdt
jda opt
pr3,
lio (77
tyo
jmp wtx
pr4,
lac wdt
jmp pr3
ert,
szs
jmp
lio
tyo
rir
tyo
lac
szf
lac
jda
lio
tyo
lac
and
jda
lio
tyo

/parity error
tyo
/mi:3s error
tyo
/prlnt out the err loc

dap erx
30
erx
(7734
68
dta
4
rdt
opt
(36

/track address
/random routine?

tm6
ran
opt
(36

/word number

md2,
szs 10
lac
jda
lio
tyo
rir
tyo
lac
jda

/swrpress printout

tm1
ott
(3635

lac i tm3
/get data word written

68
i tm6
ott

/drum word
A2--5

szs i 60
jmp • 4
isp opp
jmp • 2

xx

erx,

/eonstants
wea,
wrl,

wrn,

rca,
reI,
drs,
pto,
ptl,
pt2,
pt3,
pt4,
pt5,
pt6,
pt7,
pha,
ran,
hi,
10,

/pritn out more than 6 errors?

jmp •

2000
2400
3000
4000
4400
1000
777777
000000
111111
222222
333333
444444
555555
666666
pto
777
365273
141053

dwr=721161
drd=720161
dbl=720162
dse=720164
dtd=720163
den=721162
dsp=721164
constants
variables
start beg

A2-6

APPENIDIX 3
SERIAL DRUM TYPIE 24 INTERFACE
WITH

PDP-7 COMPUTER

For adaptation of some peripheral equipment the PDP-7 computer has a special adapter panel shown in
Figure A3-1.
PDP-7.

Figure A3-2 details the conversion circuits for connection of Type 24 Drum signals to the

The interface tables that follow detail all computer and drum connections to the interface panel.

TABLE A3-1
Color

Pin

WHT

3G11-R1-C

WHT

3G11-R1-E

2

WHT

3G11-R1-G

3

WHT

3G11-R1-J

WHT

Pin

SERIAL DRUM 24D JACK F1 TO ADAPTER PANEL. PLUG.J1
Name

Color

Pin

Pin

DFBO--•• MBO

WHT

3G11-R2-V

18

DFB

WHT

3G4-F

19

MBB

2

WHT

3G4-J

20

4

3

WHT

3G4-L

21

2

3G11-R1-L

5

4

WHT

3G4-N

22

3

WHT

3G11-R1-N

6

5

WHT

3G4-R

23

4

WHT

3G11-R1-R

7

6

WHT

3G4-T

24

5

WHT

3G11-R1-T

8

7

WHT

3G4-V

25

MBB 6 -____
.DF 6

WHT

3G11-R1-V

9

8

WHT

3G4-X

26

MBB7

WHT

3G11-R2-C

10

9

WHT

3G4-Z

27

8

WHT

3G11-R2-E

11

10

WHT

3G5-F

28

9

WHT

3G11-R2-G

12

11

WHT

3G5-J

29

10

WHT

3G11-R2-J

13

12

WHT

3G5-1

30

11

WHT

3G11-R2-L

14

13

WHT

3G5-N

31

12

WHT

3G 11-R2-N

15

14

WHT

3G5-R

32

13

WHT

3G11-R2-R

16

15

WHT

3G5-T

33

14

WHT

3Gll-R2-T

17

16

WHT

3G5-V

34

15

A3-·1

Name
17

_ _".MB

O

.. DFO

.. DF7

17

----

~

-

.-

3G

0

,

2

3

4

5

6

r--

r--

r--

r--

r--

•

HOA

0

w
a:

w
a:

e/)

e/)

: :

Fa

~

t •t

0
CD

CD

e/)

e/)

W

CD

0

0

I&.
I&.

....

~

CD

t
-- -

0
CD
CD

C(

CD
CD

2

- 2

0

-15

10

0
CD

2

.t t .t t
12

11

.-

CD

u

~

a:
w
I&.
I&.

t t.t
•
t •t •

2

9

~

,
,,

a:

::)

C(

8

7

CD

~0
I-

+108

0

•

~

w
a:

i

f.-

w
a::

f

e/)

•

CD

2

e/)

i
lIS

-'
0

a:

l-

~

u
0

;:::

o.

CD CD
22

.t::

14

N •
C(C(

.-

N

w
a:

:

e/)

• t::

~

t
•

u-'

0

w
a:

0

1 f.-

:en

•
t

tt tt
o . -'-'

1&.1&.

16

•
u-'

22

N

15

t

11 1f
00

FigUie A3-1

13

.-

•

•

u
C(

U

C(

00

J2

J1

;

N

uu

...

21

PDP-7 to Type 24 Drum Adapter Panel

r----------------------------------~

i
,

l.

I

~MBBOl~f}
E

M8BO(O

F

H

-

MBB9(1)

-=

4:MBB9I1~)
E

L __

M88
K 1 [ (L* )

M882(1)

-=

1,1

J

MB81(1l

F

H

M881O(1)

J

MBB2I(~) MB831(~) MBB41(~)
M

N

MB83(1)

-=

-=

-= ___ __ _= ___

MU
BB51(
ST
V* )

R

M885(1)

6102

P

R

~~~_=

M886(1)

y

z

MBB8(1)

-=

':'

_uu

I

~

MBB161~11.-mJ

M88131*') M8814*11) M8815*11)
STU
V
W
x
MB815(1)
MBB16(1)
MBB17(1)

MB814(1)

y

z

I
I

___ ~ __ _= ___ ~ __ _= __ _.J
PA
4604
A3

~s
-DATA
ADO
-+ MA(8)

"---...,j

Figure A3-2

x

W

':'

DATA
ADOiN
--+ MA

T7

MB86I(~) MBB71(~)

M887(1)

-=

':'

~:'4:')

MB81014:'1 MBB1114:')
K
L
MN
M8812(1)
MB813(1)

MB811(1)

~

P

M8M(1)

l

Type 24 Drum Interface to PDP-7

T

+

TABLE A3-1

SERIAL DRUM 24D JACK F1 TO ADAPTER PANEL PLUG J1 (continued)

Color

Pin

Pin

Name

Color

Pin

Pin

Name

WHT

3G5-X

35

16

WHT

3G12-R2-G

43

11

WHT

3G5-Z

36

MBB17

WHT

3G12-R2-J

44

12

WHT

3G12-R1-N

37

DCLB

WHT

3G12-R2-L

45

13

WHT

3G12-R1-R

38

6

WHT

3G12-R2-N

46

14

WHT

3G12-R1-T

39

7

WHT

3G12-R2-R

47

15

WHT

3G12-R1-V

40

8

WHT

3G12-R2-T

48

16

WHT

3G12-R2-C

41

9

WHT

3G12-R2-V

49

DCLB 17

WHT

3G12-R2-E

42

10

BLK

GNDLUG

40

GND

TABLE A3-2
Color

Pin

Pin

"-DF

5

17

.. MA

5

17

SERIAL DRUM 24F JACK J2 COMPUTER SIDE
Name

Color

2
ACB

.MA

2

2

Pin

Pin

Name

WHT

3G16-Rl-J

13

12

WHT

3G16-R1-L

14

13

WHT

3G16-R1-N

15

14

WHT

3G15-R1-G

3

WHT

3G15-R1-J

4

3

WHT

3G16-R1-R

16

15

WHT

3G15-R1-L

5

4

WHT

3G16-R1-T

17

16

WHT

3G15-R1-N

6

5

WHT

3G 16-R1-V

18

ACS

WHT

3G15-R1-R

7

6

WHT

3G10-R2-G

19

DRUM FLAG

WHT

3G15-R1-T

8

7

WHT

3G10-R2-J

20

PEO·DEO

WHT

3G15-R1-V

9

8

WHT

3G 1O-R2-L

21

DATA REQ

WHT

3G16-R1-C

10

9

WHT

3G10-R2-N

22

DATA IN

WHT

3G16-R1-E

11

10

WHT

3G12-R1-G

23

DeL

WHT

3G16-R1-G

12

11

WHT

3G 12-R1-J

24

DCl

.DCL

A.3-3

17

2
3

... DCl 17

"MA
.MA

2
3

TABLE A3-2

Pin

Color

Name

Pin

Pin

Color

SERIAL DRUM 24F JACK J2 COMPUTER SIDE {continued}
Name

Pin

======r===========--=··-=-==-=·--=--::"-=-=='::::.=c.
3G 12-R 1-L

WHT

25

DCL 4_--.... MA

4

39

26

40

27

41

28
29

30
31

GRY l TWP
BLK (

3G3-S

42

DATA REQ AN5

GRYlTWP
BLK (

3G10-R1-N

43

BEGIN

GRY l TWP
BLK (

3G3-J

44

T7B

GRYlTWP
BLK (

3G10-R1-C

45

lOT

GRY l TWP
BLK (

3G10-R1-E

46

lOT

GRY l TWP
BLK (

3G10-R1-G

47

lOT

GRYlTWP
BLK (

3G10-R1-J

48

lOT

GRY l TWP
BLK (

3G10-R1-L

49

lOT

32
33
34

WHj TWP
BLK

3G10-R2-C

35 TEMP:,W (T A)

3G10-R2-E

36

TA GND

37
RED

3G10-R2-R

38 +10 MC

.-------------_.__.__......•._..
TABLE A3-3
Color

BLK
_...-

--~

.

GND
50 GND
----------.-------.---

SERIAL DRUM 24D INTERFACE COMPUTER SIDE MB INVERSIONS
Name

Pin

Pin

.=========
___====--===c.:_---..=-...:=-c:·=::.c==c:_ _ _ _ _ _ _ _ ...

Remarks
__ .._ ...._... _._ ......._. __... __ ._..

---=. ::-:..-=

WHT

3G6-R1-C

3G4-E

BUSS PINS

WHT

3G6-Rl-E

3G4-H

B, 0, F, H, K, M,

WHT

2

3G6-Rl-G

3G4-K

P, 5, U, & W to

WHT

3

3G6-R1-J

3G4-M

GROUND.

WHT

4

3G6-R1-L

3G4-P

A3-4

~

TABLE A3-3 SERIAL DRUM 240 INTERFACE
COMPUTER SIDE MB INVERSIONS (continued)
Color

Name

Pin

Pin

WHT

5

:3G6-Rl-N

3G4-S

WHT

6

:3G6-Rl-R

3G4-U

WHT

7

:3G6-Rl-T

3G4-W

WHT

8

:3G6-Rl-V

3G4-Y

WHT

9

:3G7-Rl-C

3G5-E

WHT

10

:3G7-Rl-E

3G5-H

WHT

11

:3G7-Rl-G

3G5-K

WHT

12

:3G7-Rl-J

3G5-M

WHT

13

:3G7-Rl-L

3G5-P

WHT

14

~3G7-R1-N

3G5-S

WHT

15

:3G7-R1-R

3G5-U

WHT

16

:3G7-R1-T

3G5-W

WHT

1
MB17

:3G7-R1-V

3G5-Y

T7

3Gl O-R2-T

3G3-E

~IG1

3G3-N

DATA ADD

TABLE A3-4
Color

.. MA

0-R2-V

Remarks

I/O INFO FROM DRUM INTERFACE F10(R2) TO 1N10
Name

Pin

Location

Remarks

A

BLANK

B

BLANK

W/BLK

GND

C

W/BRN

lOT 6101

D

W/RED

GND

3G10-R2-C

M13K

3G1O-R2-D
--~,~---

A3-5

-

TABLE A3-4

I/O INFO FROM DRUM INTERFACE F10(R2) TO lN10 (continued)
Pin

Name

Color

Location

Remarks

W/ORN

lOT 6201

E

3G 10-R2-E

W/YEL

GND

F

3G10-R2-F

W/GRN

DRUM FLG.

H

3G10-R2-G

W/BLU

J

3G10-R2-H

W/VIO

K

3G 10-R2-J

M13N

L17U

W/GRY

GND

L

WHT

DATA REQ

M

3G10-R2-L

W/BLK

GND

N

3G10-R2-M

W/BRN

DATA IN

P

3G10-R2-N

W/RED

GND

R

3G 1O-R2-P

5

3G 10-R2-R

W/ORN
GND

W/GRN

T7

T

3Gl 0-R2-T

W/BLU

GND

U

3G10-R2-U

W/VIO

DATA ADD

v

3G10-R2-V

W/GRY

GND

Color

W/BLK
W/BRN

Pin

ACBl

L 16H

_ __
.....

Location

Remarks

A

BLANK

B

BLANK

C

<>ACB 0

W/ORN

K15N

ACB 0-8 FROM CPU TO DRUM INTERFACE

GND

GND

Ll8F

-_._-----_.. -._-----_._-- _. __.... - ... _.. _.._. __.._..•

Name

W/RED

M13L

3G10-R2-S

W/YEL

TABLE A3-5

M13M

D

E
A3-6

3G15C

R2

3G15D

R2

3G15E

R2

._ ..._--_ ..

__._-

TABLE A3-5
Color

ACB 0-8 FROM CPU TO DRUM INTERFACE (continued)
Name

Pin

Location

Remarks

W/VEL

GND

F

3G15F

R2

W/GRN

ACB 2

H

3G15G

R2

W/BLU

GND

J

3G15H

R2

W/VIO

ACB 3

K

3G15J

R2

W/GRY

GND

L

3G15K

R2

WHT

ACB 4

M

3G15L

R2

W/BLK

GND

N

3G15M

R2

W/BRN

ACB 5

P

3G15N

R2

W/RED

GND

R

3G15P

R2

W/ORN

ACB 6

5

3G15R

R2

W/YEL

GND

3G15S

R2

W/GRN

ACB 7

T

3G15T

R2

W/BLU

GND

U

3G15U

R2

W/VIO

ACB 8

V

3G15V

R2

W/GRY

GND

TABLE A3-6
Color

AC 9-17 FROM CPU TO DRUM INTERFACE

Name

Pin

Remarks

A

BLANK

B

BLANK

W/BLK

GND

C

W/BRN

ACB 9

D

W/RED

GND

W/ORN

ACB 10

W/YEL

GND
A~I-7

Location

3G16C

Rl

3G16D

Rl

E

3G16E

R1

F

3G16F

R1

TABLE A3-6

AC 9-17 FROM CPU TO DRUM I NTERFACE {continued}

Color

Name

Pin

Location

Remarks

W/GRN

ACB 11

H

3G16G

R1

W/BLU

GND

J

3G16H

R1

W/VIO

ACB 12

K

3G16J

R1

W/GRY

GND

L

3G16K

R1

WHT

ACB 13

M

3G16L

R1

W/BLK

GND

N

3G16M

R1

W/BRN

ACB 14

P

3G16N

R1

W/RED

GND

R

3G16P

R1

W/ORN

ACB 15

S

3G16R

R1

W/YEL

GND

3G16S

R1

W/GRN

ACB 16

T

3G16T

R1

W/BLU

GND

U

3G16U

R1

W/VIO

ACB 17

V

3G16V

R1

W/GRY

GND

TABLE A3-7
Color

Name

DFB 0-17 TO MB 0-17
Pin

Location

A

BLANK

B

BLANK

W/BLK

GND

C

W/BRN

DFB 0

D

W/RED

GND

W/ORN

DFB 1

E

3Gl1-R1-E

W/YEL

GND

F

3G11-R1-F

3Gl1-R1-C
3Gll-R1-D

A3-8

Remarks

TABLE A3-7

DFB 0-17 TO MB 0-17 (continued)

Color

Name

Pin

Location

W/GRN

DFB 2

H

3Gll-R1-G

W/BLU

GND

J

3G11-R1-H

W/VIO

DFB 3

K

3G11-R1-J

W/GRV

GND

L

3Gll-Rl-K

WHT

DFB 4

M

3Gll-R1-L

W/BLK

GND

N

3Gll-Rl-M

W/BRN

DFB 5

P

3Gll-Rl-N

W/RED

GND

R

3Gl1-Rl-P

W/ORN

DFB 6

S

3Gll-Rl-R

W/VEL

GND

~/GRN

DFB 7

T

3Gll-Rl-T

W/BLU

GND

U

3Gll-Rl-U

W/VIO

DFB 8

V

3Gl1-Rl-V

W/GRV

GND

Remarks

3G11-Rl-S

A

BLANK

B

BLANK

W/BLK

GND

C

W/BRN

DFB 9

D

W/RED

GND

W/ORN

DFB 10

E

3G 11-R2-E

W/VEL

GND

F

3G 11-R2-F

W/GRN

DFB 11

H

3Gl1-R2-G

W/BLU

GND

J

3Gll-R2-H

W/VIO

DFB 12

K

3G ll-R2-J

3Gll-R2-C
3Gl1-R2-D

A:3-9

TABLE A3-7
Color

Name

DFB 0-17 TO MB 0-17 (continued)
Pin

Location

W/GRY

GND

L

3G11-R2-K

WHT

DFB 13

M

3G11-R2-L

W/BLK

GND

N

3G11-R2-M

W/BRN

DFB 14

P

3G11-R2-N

W/RED

GND

R

3G11-R2-P

W/ORN

DFB 15

S

3G11-R2-R

W/YEL

GND

W/GRN

DFB 16

T

3Gll-R2-T

W/BLU

GND

U

3G11-R2-U

W/VIO

DFB 17

V

3Gll-R2-V

W/GRY

GND

TABLE A3-8
Color

Remarks

3G11-R2-S

MBB 0-17 FROM CPU TO DRUM INTERFACE

Name

Pin

Location

Remarks

A

BLANK

B

BLANK

W/BLK

GND

C

3G6B

Rl

W/BRN

MBB 0(1)

D

3G6C

Rl

W/RED

GND

3G6D

Rl

W/ORN

MBB 1

E

3G6E

R1

W/YEL

GND

F

3G6F

Rl

W/GRN

MBB 2

H

3G6G

R1

W/BLU

GND

J

3G6H

R1

W/VIO

MBB 3

K

3G6J

Rl

A3-10

TABLE A3-8

MBB 0-17 FROM CPU TO DRUM INTERFACE (continued)

Color

Name

Pin

Location

W/GRV

GND

L

3G6K

R1

WHT

MBB 4

M

3G6L

R1

W/BLK

GND

N

3G6M

R1

W/BRN

MBB 5

P

3G6N

R1

W/RED

GND

R

3G6P

R1

W/ORN

MBB 6

S

3G6R

R1

W/VEL

GND

3G6S

R1

W/GRN

MBB 7

T

3G6T

R1

W/BLU

GND

U

3G6U

R1

W/VIO

MBB 8

V

3G6V

R1

W/GRV

GND

Remarks

A

BLANK

B

BLANK

W/BLK

GND

C

W/BRN

MBB 9

D

W/RED

GND

W'/ORN

MBB 10

W/VEL

3G7C

R1

3G7D

R1

E

3G7E

R1

GND

F

3G7F

R1

W'/GRN

MBB 11

H

3G7G

R1

W/BLU

GND

J

3G7H

Rl

W/VIO

MBB 12

K

3G7J

Rl

W/GRV

GND

L

3G7K

Rl

WHT

MBB 13

M

3G7L

Rl

W/BLK

GND

N

3G7M

R1

TABLE A3-8

MBB 0-17 FROM CPU TO DRUM INTERFACE (continued)
Remarks

Color

Name

Pin

location

W/BRN

MBB 14

P

3G7N

R1

W/RED

GND

R

3G7P

R1

W/ORN

MBB 15

S

3G7R

R1

W/YEl

GND

3G7S

R1

W/GRN

MBB 16

T

3G7T

R1

W/BlU

GND

U

3G7U

R1

W/VIO

MBB 17

V

3G7V

R1

W/GRY

GND

TABLE A3-9
Color

Name

DCl 2-17 TO MA 2-17
Pin

location

A

BLANK

B

BLANK

W/BlK

GND

C

3G12-R1-B

W/BRN

Del

D

3G12-R1-C

W/RED

GND

W/ORN

DCl

E

3G12-R1-E

W/YEl

GND

F

3G12-R1-F

W/GRN

DCl2

H

3G12-R1-G

W/BlU

GND

J

3G12-R1-H

W/VIO

DCl3

K

3G12-R1-J

W/GRY

GND

l

3G12-R1-K

WHT

DCl4

M

3G12-R1-l

W/BlK

GNI)

N

3G12-Rl-M

3G12-R1-D

A3-12

Remarks

TABLE A3-9

DCl 2-17 TO MA 2-17 {continued}

Color

Name

Pin

location

W/BRN

DCl5

P

3G12-R1-N

W/RED

GND

R

3G12-Rl-P

W/ORN

DCl6

S

3G12-R1-R

W/YEl

GND

W/GRN

DCl7

T

3G12-R1-T

W/BlU

GND

U

3G12-R1-U

W/VIO

DCl8

V

3G12-R1-V

W/GRY

GND

Remarks

3G12-Rl-S

3G12-R1-W
A

BLANK

B

BLANK

W/BlK

GND

C

3G12-R2-B

W/BRN

DCl9

D

3G12-R2-C

W/RED

GND

W/ORN

DCl 10

E

3G12-R2-E

W/YEl

GND

F

3G12-R2-F

W/GRN

DCl 11

H

3G12-R2-G

W/BlU

GND

J

3G12-R2-H

W/VIO

DCl 12

K

3G12-R2-J

W/GRY

GND

l

3G12-R2-K

WHT

DCl 13

M

3G12-R2-l

W/BlK

GND

N

3G12-R2-M

W/BRN

Del 14

P

3G12-R2-N

W/RED

GND

R

3G12-R2-P

W/ORN

DCl 15

S

3G12-R2-R

3G12-R2-D

A3-·13

TABLE A3-9
Color

DCl 2-17 TO MA 2-17 (continued)
Pin

Name

location

W/YEl

GND

W/GRN

DCl 16

T

3G12-R2-T

W/BlU

GND

U

3G12~R2-U

W/VIO

DCl 17

V

3G12-R2-V

W/GRY

GND

TABLE A3-10
Color

Remarks

3G12-R2-S

3G12-R2-W

I/O INFO TO DRUM INTERFACE TO D16 DS

Name

Pin

location

A

BLANK

B

BLANK

W/BLK

GND

C

W/BRN

lOT 6002

D

W/RED

GND

W/ORN

lOT 6004

E

3G10-R1-E

W/YEL

GND

F

3G10-R1-F

W/GRN

lOT 6102

H

3G10-R1-G

W/BLU

GND

J

3G10-R1-H

W/VIO

lOT 6104

K

3G10-R1-J

W/GRY

GND

L

3G 10-R1-K

WHT

lOT 6204

M

3G 1O-Rl-l

W/BLK

GND

N

3G10-R1-M

W/BRN

BEGIN

P

3G10-R1-N

W/RED

GND

R

3G10-R1-P

W/ORN

lOT 6101

S

3G10-R1-R

W/YEL

GND

3G10-R1-C
3G10-R1-D

3G10-R1-S

A3-14

Remarks

TABLE A3-10
Color

I/O INFO TO DRUM INTERFACE TO D16 DS (continued)
Name

Pin

Location

W/GRN

lOT 6204

T

3G10-Rl-T

W/BLU

GND

U

3G10-Rl-U

V

W/VIO
W/GRY

GND

A3-15

Remarks

5536

PRINTED

IN

U.S.A

1.5-11/65



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2002:12:04 14:57:17Z
Creator Tool                    : g4pdf
Modify Date                     : 2009:09:24 11:43:49-07:00
Metadata Date                   : 2009:09:24 11:43:49-07:00
Producer                        : Adobe Acrobat 9.13 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:346146e9-2898-4bfe-8786-1e2e62741406
Instance ID                     : uuid:b6ed4ab2-86ac-4569-ae0d-bb47f53d5831
Page Mode                       : UseOutlines
Page Count                      : 168
Creator                         : g4pdf
EXIF Metadata provided by EXIF.tools

Navigation menu