Howard Anton Student Solutions Manual Set For Calculus Early Transcendentals Single Variable 8th E

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 676 [warning: Documents this large are best viewed by clicking the View PDF Link!]

CONTENTS
Introduction .............................................................. 1
Chapter 1. Functions ..................................................... 2
Chapter 2. Limits and Continuity ......................................... 43
Chapter 3. The Derivative ................................................ 65
Chapter 4. Logarithmic and Exponential Functions ......................... 99
Chapter 5. Analysis of Functions and Their Graphs ........................139
Chapter 6. Applications of the Derivative .................................177
Chapter 7. Integration ...................................................209
Chapter 8. Applications of the Definite Integral
in Geometry, Science, and Engineering .........................256
Chapter 9. Principles of Integral Evaluation ...............................292
Chapter 10. Mathematical Modeling with Differential Equations ..............343
Chapter 11. Infinite Series ................................................361
Chapter 12. Analytic Geometry in Calculus .................................408
Chapter 13. Three-Dimensional Space; Vectors .............................448
Chapter 14. Vector-Valued Functions ......................................490
Chapter 15. Partial Derivatives ............................................524
Chapter 16. Multiple Integrals .............................................573
Chapter 17. Topics in Vector Calculus .....................................608
Appendix A. Real Numbers, Intervals, and Inequalities .......................640
Appendix B. Absolute Value ...............................................647
Appendix C. Coordinate Planes and Lines ...................................650
Appendix D. Distance, Circles, and Quadratic Equations ......................658
Appendix E. Trigonometry Review .........................................668
Appendix F. Solving Polynomial Equations .................................674
CALCULUS:
A New Horizon from Ancient Roots
EXERCISE SET FOR INTRODUCTION
1. (a) x=0.123123123 ...; 1000x= 123.123123123 ...= 123 + x; 999x= 123; x=123
999 =41
333
(b) x=12.7777 ...;10x= 127.7777 ...,so9x=10xx= 115; x=115
9
(c) x=38.07818181 ...; 100x= 3807.818181 ...;99x= 3769.74;
x=3769.74
99 =376974
9900 =41886
1100 =20943
550
(d) 0.4296000 ...=0.4296 = 4296
10000 =537
1250
2. (a) πis irrational, and thus has a nonrepeating decimal expansion, whereas 22
7=3.
repeats
z }| {
142857 ...
(b) 22
7
3. (a) 223
71 <333
106 <63
25 Ã17+15
5
7+15
5!<355
113 <22
7(b) 63
25 Ã17+15
5
7+15
5!
(c) 333
106 (d) 63
25 Ã17+15
5
7+15
5!
4. (a) If ris the radius, then D=2rso µ8
9D2
=µ16
9r2
=256
81 r2. The area of a circle of radius ris
πr2so 256/81 was the approximation used for π.
(b) 256/81 3.16049, 22/73.14268, and π3.14159 so 256/81 is worse than 22/7.
5. The first series, taken to ten terms, adds to 3.0418; the second, as printed, adds to 3.1416.
6. (a) 1
9=0.111111 ...=1
10 +1
100 +1
1000 +1
10000 +1
100000 +1
1000000 +...
(b) 2
27 =0.185185 ...=1
10 +8
100 +5
1000 +1
10000 +8
100000 +5
1000000 +...
(c) 14
45 =0.311111 ...=3
10 +1
100 +1
1000 +1
10000 +1
100000 +1
1000000 +...
7. (a) 7
11 =0.636363 ...=6
10 +3
100 +6
1000 +3
10000 +6
100000 +3
1000000 +...
(b) 8
33 =0.242424 ...=2
10 +4
100 +2
1000 +4
10000 +2
100000 +4
1000000 +...
(c) 5
12 =0.416666 ...=4
10 +1
100 +6
1000 +6
10000 +6
100000 +6
1000000 +...
8. (a) 1, 2, 1.75, 1.7321 (b) 1, 3, 2.33, 2.238, 2.2361
9. (a) 1, 4, 2.875, 2.6549, 2.6458 (b) 1, 25.5, 13.7, 8.69, 7.22, 7.0726, 7.0711
10. (a) Let x1=1
2(a+b), x2=1
2(a+x1), x3=1
2(a+x2), etc. Then b>x
1>x
2>···>x
n1>x
n>a
so all the xi’s are distinct, there are infinitely many of them and they all lie between aand b.
(b) x=0.99999 ...,10x=9.99999 ...,9x=9,x=1
(c) (1.999999 ...)/2=0.999999 ...= 1; yes it is consistent, as all three are equal.
(d) 10x=9+x,sox=9/9 = 1. They are equal.
1
CHAPTER 1
Functions
EXERCISE SET 1.1
1. (a) around 1943 (b) 1960; 4200
(c) no; you need the year’s population (d) war; marketing techniques
(e) news of health risk; social pressure, antismoking campaigns, increased taxation
2. (a) 1989; $35,600 (b) 1983; $32,000 (c) the first two years; the curve is steeper (downhill)
3. (a) 2.9,2.0,2.35,2.9(b) none (c) y=0
(d) 1.75 x2.15 (e) ymax =2.8atx=2.6; ymin =2.2atx=1.2
4. (a) x=1,4(b) none (c) y=1
(d) x=0,3,5(e) ymax =9atx=6;y
min =2atx=0
5. (a) x=2,4(b) none (c) x2; 4 x(d) ymin =1; no maximum value
6. (a) x=9 (b) none (c) x25 (d) ymin = 1; no maximum value
7. (a) Breaks could be caused by war, pestilence, flood, earthquakes, for example.
(b) Cdecreases for eight hours, takes a jump upwards, and then repeats.
8. (a) Yes, if the thermometer is not near a window or door or other source of sudden temperature
change.
(b) The number is always an integer, so the changes are in movements (jumps) of at least one unit.
9. (a) If the side adjacent to the building has length xthen L=x+2y. Since A=xy = 1000,
L=x+ 2000/x.
(b) x>0 and xmust be smaller than the width of the building, which was not given.
(c) 120
80
20 80
(d) Lmin 89.44
10. (a) V=lwh =(62x)(6 2x)x(b) From the figure it is clear that 0 <x<3.
(c) 20
0
03
(d) Vmax 16
2
3 Chapter 1
11. (a) V= 500 = πr2hso h=500
πr2. Then
C=(0.02)(2)πr2+(0.01)2πrh =0.04πr2+0.02πr 500
πr2
=0.04πr2+10
r;Cmin 4.39 at r3.4,h13.8.
7
4
1.5 6
(b) C=(0.02)(2)(2r)2+(0.01)2πrh =0.16r2+10
r. Since
0.04π<0.16, the top and bottom now get more weight.
Since they cost more, we diminish their sizes in the solution,
and the cans become taller.
7
4
1.5 5.5
(c) r3.1, h16.0, C4.76
12. (a) The length of a track with straightaways of length Land semicircles of radius ris
P= (2)L+ (2)(πr) ft. Let L= 360 and r=80togetP= 720 + 160π= 1222.65 ft.
Since this is less than 1320 ft (a quarter-mile), a solution is possible.
(b) P=2L+2πr = 1320 and 2r=2x+ 160, so
L=1
2(1320 2πr)=1
2(1320 2π(80 + x)) = 660 80ππx.
450
0
0 100
(c) The shortest straightaway is L= 360, so x=15.49 ft.
(d) The longest straightaway occurs when x=0,soL= 660 80π= 408.67 ft.
EXERCISE SET 1.2
1. (a) f(0) = 3(0)22=2; f(2) = 3(2)22 = 10; f(2)=3(2)22 = 10; f(3) = 3(3)22 = 25;
f(2)=3(
2)22=4;f(3t) = 3(3t)22=27t
22
(b) f(0) = 2(0) = 0; f(2) = 2(2) = 4; f(2)=2(2)=4; f(3) = 2(3) = 6; f(2)=2
2;
f(3t)=1/3tfor t>1 and f(3t)=6tfor t1.
2. (a) g(3) = 3+1
31=2; g(1) = 1+1
11=0;g(π)= π+1
π1;g(1.1) = 1.1+1
1.11=0.1
2.1=1
21;
g(t21) = t21+1
t
211=t
2
t
22
(b) g(3) = 3+1=2;g(1)=3;g(π)=
π+1;g(1.1)=3;g(t
21)=3ift
2<2 and
g(t21) = t21+1=|t|if t22.
3. (a) x6=3 (b) x≤−
3orx
3
Exercise Set 1.2 4
(c) x22x+ 5 = 0 has no real solutions so x22x+ 5 is always positive or always negative. If
x= 0, then x22x+5=5>0; domain: (−∞,+).
(d) x6=0 (e) sin x6=1,sox6=(2n+1
2)π,
n=0,±1,±2,...
4. (a) x6=7
5
(b) x3x2must be nonnegative; y=x3x2is a parabola that crosses the x-axis at x=0,1
3and
opens downward, thus 0 x1
3
(c) x24
x4>0, so x24>0 and x4>0, thus x>4; or x24<0 and x4<0, thus
2<x<2
(d) x6=1
(e) cos x1<2, 2 cos x>0, all x
5. (a) x3(b) 2x2(c) x0(d) all x(e) all x
6. (a) x2
3(b) 3
2x3
2(c) x0(d) x6=0 (e) x0
7. (a) yes (b) yes
(c) no (vertical line test fails) (d) no (vertical line test fails)
8. The sine of θ/2is(L/2)/10 (side opposite over hypotenuse), so that L= 20 sin(θ/2).
9. The cosine of θis (Lh)/L (side adjacent over hypotenuse), so h=L(1 cos θ).
10. T
t
11.
t
h12.
51015
t
w
13. (a) If x<0, then |x|=xso f(x)=x+3x+1=2x+1. If x0, then |x|=xso
f(x)=x+3x+1=4x+1;
f(x)=½2x+1,x<0
4x+1,x0
(b) If x<0, then |x|=xand |x1|=1xso g(x)=x+1x=12x.If0x<1, then
|x|=xand |x1|=1xso g(x)=x+1x=1. Ifx1, then |x|=xand |x1|=x1
so g(x)=x+x1=2x1;
g(x)=
12x, x < 0
1,0x<1
2x1,x1
14. (a) If x<5/2, then |2x5|=52xso f(x) = 3+(52x)=82x.Ifx5/2, then |2x5|=2x5
so f(x)=3+(2x5)=2x2;
f(x)=½82x, x < 5/2
2x2,x5/2
5 Chapter 1
(b) If x<1, then |x2|=2xand |x+1|=x1sog(x) = 3(2 x)(x1)=72x.If
1x<2, then |x2|=2xand |x+1|=x+1 sog(x) = 3(2 x)(x+1)=54x.If
x2, then |x2|=x2 and |x+1|=x+1so g(x)=3(x2) (x+1)=2x7;
g(x)=
72x, x < 1
54x, 1x<2
2x7,x2
15. (a) V=(82x)(15 2x)x(b) −∞ <x<+,−∞ <V <+(c) 0<x<4
(d) minimum value at x= 0 or at x= 4; maximum value somewhere in between (can be approxi-
mated by zooming with graphing calculator)
16. (a) x= 3000 tan θ(b) θ6=+π/2 for nan integer, −∞ <n<
(c) 0θ<π/2, 0 x<+(d) 3000 ft
6000
0
06
17. (i) x=1,2 causes division by zero (ii) g(x)=x+ 1, all x
18. (i) x= 0 causes division by zero (ii) g(x)=
x+ 1 for x0
19. (a) 25F(b) 2F(c) 15F
20. If v= 48 then 60=WCI=1.6T55; thus T=(60 + 55)/1.6≈−3
F.
21. If v= 8 then 10=WCI=91.4 + (91.4T)(0.0203(8) 0.30480.474); thus
T=91.4+(10+91.4)/(0.0203(8) 0.30480.474) and T=5
F
22. The WCI is given by three formulae, but the first and third don’t work with the data. Hence
15=WCI=91.4 + (91.420)(0.0203v0.304v0.474); set x=vso that v=x2and obtain
0.0203x20.304x0.474+(15+91.4)/(91.420) = 0. Use the quadratic formula to find the two
roots. Square them to get vand discard the spurious solution, leaving v25.
23. Let tdenote time in minutes after 9:23 AM. Then D(t) = 1000 20tft.
EXERCISE SET 1.3
1. (e) seems best, though only (a) is bad.
-0.5
0.5
y
-1 1 x
2. (e) seems best, though only (a) is bad and (b) is
not good.
-0.5
0.5
y
-1 1 x
Exercise Set 1.3 6
3. (b) and (c) are good; (a) is very bad.
12
13
14
15
y
-2 -1 0 1 2 x
4. (b) and (c) are good; (a) is very bad.
-14
-13
-12
-11
y
-2 -1 0 1 2 x
5. [3,3] ×[0,5]
2
4
y
-3 -2 -1 1 2 3 x
6. [4,2] ×[0,3]
1
2
y
-3 -2 -1 1 x
7. (a) window too narrow, too short (b) window wide enough, but too short
(c) good window, good spacing
-500
-400
-300
-200
-100
y
-5 5 101520
x
(d) window too narrow, too short
(e) window too narrow, too short
8. (a) window too narrow (b) window too short
(c) good window, good tick spacing
-250
-200
-150
-100
-50
50
y
-16 -12 -8 -4 4
x
(d) window too narrow, too short
(e) shows one local minimum only, window too narrow, too short
7 Chapter 1
9. [5,14] ×[60,40]
-60
-40
-20
20
40
y
-5 5 10 x
10. [6,12] ×[100,100]
-100
-50
50
100
y
81012
x
11. [0.1,0.1] ×[3,3]
-3
-2
-1
1
2
3
y
-0.1 x
0.1
12. [1000,1000] ×[13,13]
-10
-5
5
10
y
-1000 x
1000
13. [250,1050] ×[1500000,600000]
-500000
y
-1000 1000 x
14. [3,20] ×[3500,3000]
-2000
-1000
1000
51015
x
y
15. [2,2] ×[20,20]
-20
-10
10
20
y
x
-2 -1 1 2
16. [1.6,2] ×[0,2]
0.5
1
1.5
2
y
1.6 1.7 1.8 1.9 2 x
17. depends on graphing utility
-6
-4
-2
2
4
6
y
-4 -2 2 4 x
18. depends on graphing utility
-6
-4
-2
2
4
6
y
-4 -2 2 4 x
Exercise Set 1.3 8
19. (a) f(x)=
16 x2
1
2
3
4
-4 -2 2 4 x
y
(b) f(x)=
16 x2
-4
-3
-2
-1
x
y
-4 -2 2 4
(c)
-4
-2
2
4
x
y
-4 -2 2 4
(d)
1
2
3
4
1234
y
(e) No; the vertical line test fails.
20. (a) y=±3p1x2/4(b) y=±x2+1
-4
-2
2
4
-4 -2 2 4 x
y
21. (a)
-1 1 x
y
1
(b)
1x
1
2
y(c)
-1 1x
-1
y
(d)
2π
π
1
y
x
(e)
π
1
y
x
−π
—1
(f)
1x
1
-1
y
-1
22.
1
x
y
-1 1
-1
23. The portions of the graph of y=f(x) which lie below the x-axis are reflected over the x-axis to give the
graph of y=|f(x)|.
9 Chapter 1
24. Erase the portion of the graph of y=f(x) which lies in the left-half plane and replace it with the reflection
over the y-axis of the portion in the right-half plane (symmetry over the y-axis) and you obtain the graph
of y=f(|x|).
25. (a) for example, let a=1.1
µ
y
(b)
1
2
3
y
123
x
26. They are identical.
x
y
27.
5
10
15
y
-1 123
x
28. This graph is very complex. We show three views, small (near the origin), medium and large:
(a) y
x
-1
-1 2
(b)
-50
y
x
10
(c)
1000
y
40 x
29. (a)
0.5
1
1.5
y
-3 -2 -1 123x
(b)
-1
-0.5
0.5
1
-3 -2 -1 1 23
x
y
(c)
0.5
1
1.5
y
-1 1 2 3 x
(d)
0.5
1
1.5
-2 -1 1 x
y
Exercise Set 1.3 10
30. y
1
2x
31. (a) stretches or shrinks the graph in the
y-direction; flips it if cchanges sign
-2
2
4c = 2
c = 1
c = -1.5
-1 1 x
y
(b) As cincreases, the parabola moves down
and to the left. If cincreases, up and right.
2
4
6
8
-2 -1 1 2 x
c = 2
c = 1
c = -1.5
y
(c) The graph rises or falls in the y-direction with changes in c.
2
4
6
8
-2 -1 1 2 x
c = +2
c = .5
c = -1
y
32. (a) y
—2
2
12 x
(b) x-intercepts at x=0,a,b. Assume a<band let aapproach b. The two branches of the curve
come together. If amoves past bthen aand bswitch roles.
-3
-2
-1
1
2
3
123
x
a = 0.5
b = 1.5
y
-3
-2
-1
1
2
3
123
x
a = 1
b = 1.5
y
-3
-2
-1
1
2
3
123
x
a = 1.5
b = 1.6
y
11 Chapter 1
33. The curve oscillates between the lines
y=xand y=xwith increasing ra-
pidity as |x|increases.
-30
-20
-10
10
20
30
y
-30 -20 -10 10 20 30 x
34. The curve oscillates between the lines
y= +1 and y=1, infinitely many times
in any neighborhood of x=0.
y
—1
4—2
—1
x
35. Plot f(x)on[10,10]; then on [1,0], [0.7,0.6], [0.65,0.64], [0.646,0.645]; for the other
root use [4,5], [4.6,4.7], [4.64,4.65], [4.645,4.646]; roots 0.6455,4.6455.
36. Plot f(x)on[10,10]; then on [4,3], [3.7,3.6], [3.61,3.60], [3.606,3.605]; for the other
root use [3,4], [3.6,3.7], [3.60,3.61], [3.605,3.606]; roots 3.6055,3.6055.
EXERCISE SET 1.4
1. (a)
-1
0
1
y
-1 1 2 x
(b)
2
1
y
123x
(c)
1
y
-1 1 2 x
(d)
2
y
-4 -2 2 x
2. (a)
x
y
1
-2
-2
(b)
x
y
3
2
2
(c)
x
2
y
-1
3
1
(d)
x
y
1
1
-1
Exercise Set 1.4 12
3. (a)
-1
1
y
-2 -1 1 2 x
(b)
-1
1
y
-0.5 0.5 1 1.5 x
(c)
-1
1
y
-1 1 2 3 x
(d)
-1
1
y
-1 1 2 3 x
4.
1
y
-2 2 x
5. Translate right 2 units, and up one unit.
10
-2 2 4 6x
y
6. Translate left 1 unit, reflect over x-axis, and
translate up 2 units.
y
x
–2
1
7. Translate left 1 unit, stretch vertically by
a factor of 2, reflect over x-axis, translate
down 3 units.
-100
-80
-60
-40
-20
-8 -6 -4 -2 2 4 6 x
y
8. Translate right 3 units, compress vertically
by a factor of 1
2, and translate up 2 units.
y
x
2
4
9. y=(x+3)
29; translate left 3 units and
down 9 units.
-5
5
10
15
-8 -6 -4 -2 2 x
y
13 Chapter 1
10. y=(x+3)
219; translate left 3 units
and down 19 units.
y
x
–5
–4
11. y=(x1)2+ 2; translate right 1 unit,
reflect over x-axis, translate up 2 units.
-6
-4
-2
2
-2 -1 1 2 3 4 x
y
12. y=1
2[(x1)2+ 2]; translate left 1 unit
and up 2 units, compress vertically by
a factor of 1
2.
y
x
1
2
1
13. Translate left 1 unit, reflect over x-axis,
translate up 3 units.
1
2
2 4 6 8 10 12 x
y
14. Translate right 4 units and up 1 unit.
y
x
1
4
410
15. Compress vertically by a factor of 1
2,
translate up 1 unit.
2
y
123
x
16. Stretch vertically by a factor of 3 and
reflect over x-axis.
y
x
-1
2
17. Translate right 3 units.
-10
10
y
246
x
Exercise Set 1.4 14
18. Translate right 1 unit and reflect
over x-axis.
y
x
-4
2
-2 2
19. Translate left 1 unit, reflect over x-axis,
translate up 2 units.
-8
-6
-4
-2
2
4
6
8
10
12
y
-4 -3 -2 -1 1 2 x
20. y=11/x; reflect over x-axis, translate
up 1 unit.
y
x
-5
5
2
21. Translate left 2 units and down 2 units.
-2
-4 -2 x
y
22. Translate right 3 units, reflect over x-axis,
translate up 1 unit.
y
x
-1
1
5
23. Stretch vertically by a factor of 2, translate
right 1 unit and up 1 unit.
y
x
2
4
2
24. y=|x2|; translate right 2 units.
y
x
1
2
24
25. Stretch vertically by a factor of 2, reflect
over x-axis, translate up 2 units.
-1
1
2
3
4
-2 2 x
y
15 Chapter 1
26. Translate right 2 units and down 3 units.
y
x
–2
2
27. Translate left 1 unit and up 2 units.
1
2
3
y
-3 -2 -1 1 x
28. Translate right 2 units, reflect over x-axis.
y
x
–1
1
4
29. (a)
2
y
-1 1 x
(b) y=½0ifx0
2xif 0 <x
30. y
x
–5
2
31. x2+2x+ 1, all x;2xx
21, all x;2x
3+2x, all x;2x/(x2+ 1), all x
32. 3x2+|x|, all x;3x2−|x|, all x;3x|x|−2|x|, all x;(3x2)/|x|, all x6=0
33. 3x1, x1; x1, x1; 2x2, x1; 2, x>1
34. (2x2+1)/x(x2+ 1), all x6=0;1/x(x2+ 1), all x6=0;1/(x
2+ 1), all x6=0;x
2
/(x
2+ 1), all x6=0
35. (a) 3(b) 9(c) 2(d) 2
36. (a) π1(b) 0(c) π2+3π1(d) 1
Exercise Set 1.4 16
37. (a) t4+1 (b) t2+4t+5 (c) x2+4x+5 (d) 1
x2+1
(e) x2+2xh +h2+1 (f) x2+1 (g) x+1 (h) 9x2+1
38. (a) 5s+2 (b) px+2 (c) 35x(d) 1/x
(e) 4
x(f) 0(g) 1/4
x(h) |x1|
39. 2x22x+1, all x;4x
2+2x, all x40. 2x6, all x;x6+6x
412x2+ 8, all x
41. 1x,x1; 1x2,|x|≤142. px2+33, |x|≥
6; x,x3
43. 1
12x,x6=1
2,1; 1
2x1
2,x6=0,144. x
x2+1,x6=0; 1
x+x,x6=0
45. x6+1 46. x
x+1
47. (a) g(x)=
x,h(x)=x+2 (b) g(x)=|x|,h(x)=x
23x+5
48. (a) g(x)=x+1,h(x)=x
2(b) g(x)=1/x,h(x)=x3
49. (a) g(x)=x
2
,h(x) = sin x(b) g(x)=3/x,h(x) = 5 + cos x
50. (a) g(x)=3sinx,h(x)=x
2(b) g(x)=3x
2+4x,h(x) = sin x
51. (a) f(x)=x
3
,g(x) = 1 + sin x,h(x)=x
2(b) f(x)=
x,g(x)=1x,h(x)= 3
x
52. (a) f(x)=1/x,g(x)=1x,h(x)=x
2(b) f(x)=|x|,g(x)=5+x,h(x)=2x
53. y
x
-4
-3
-2
-1
1
2
-3 -2 -1 1 2 3
54. {−2,1,0,1,2,3}
55. Note that f(g(x)) = f(g(x)) = f(g(x)), so f(g(x)) is even.
f(g(x))
x
y
1
–3 –1 –1
–3
1
17 Chapter 1
56. Note that g(f(x)) = g(f(x)), so g(f(x)) is even.
x
y
–1
–2
1
3
–1
1
3
–3
g(f(x))
57. f(g(x)) = 0 when g(x)=±2, so x=±1.4; g(f(x)) = 0 when f(x)=0,sox=±2.
58. f(g(x))=0atx=1 and g(f(x))=0atx=1
59. 3(x+h)25(3x25)
h=6xh +3h
2
h=6x+3h
60. (x+h)2+6(x+h)(x
2+6x)
h=2xh +h2+6h
h=2x+h+6
61. 1/(x+h)1/x
h=x(x+h)
xh(x+h)=1
x(x+h)
62. 1/(x+h)21/x2
h=x2(x+h)2
x2h(x+h)2=2x+h
x2(x+h)2
63. (a) the origin (b) the x-axis (c) the y-axis (d) none
64. (a)
x
y(b)
x
y(c)
x
y
65. (a) x321 0 1 2 3
f(x) 1 51 0 15 1 (b) x321 0 1 2 3
f(x) 1 5 1 0 1 5 -1
66. (a)
x
y(b)
x
y
67. (a) even (b) odd (c) odd (d) neither
68. neither; odd; even
69. (a) f(x)=(x)
2=x
2=f(x), even (b) f(x)=(x)
3=x
3=f(x), odd
(c) f(x)=|−x|=|x|=f(x), even (d) f(x)=x+ 1, neither
(e) f(x)=(x)
3(x)
1+(x)
2=x
3+x
1+x
2=f(x), odd
(f) f(x)=2=f(x), even
Exercise Set 1.4 18
70. (a) x-axis, because x=5(y)
2+ 9 gives x=5y
2+9
(b) x-axis, y-axis, and origin, because x22(y)2=3,(x)
22y
2= 3, and
(x)22(y)2= 3 all give x22y2=3
(c) origin, because (x)(y) = 5 gives xy =5
71. (a) y-axis, because (x)4=2y
3+ygives x4=2y
3+y
(b) origin, because (y)= (x)
3+(x)
2gives y=x
3+x
2
(c) x-axis, y-axis, and origin because (y)2=|x|−5, y2=|−x|−5,and (y)2=|−x|−5 all give
y2=|x|−5
72. 3
–3
-4 4
73. 2
-2
-3 3
74. (a) Whether we replace xwith x,ywith y, or both, we obtain the same equation, so by Theorem
1.4.3 the graph is symmetric about the x-axis, the y-axis and the origin.
(b) y=(1x
2/3
)
3/2
(c) For quadrant II, the same; for III and IV use y=(1 x2/3)3/2. (For graphing it may be helpful
to use the tricks that precede Exercise 29 in Section 1.3.)
75.
1
2
3
4
5
y
-1 1 2 3 4 x
76. y
x
2
2
77. (a)
1
y
Cx
Oco
(b)
2
y
Ox
Cco
19 Chapter 1
78. (a)
x
1
y
1
-1
-1
(b)
x
1
y
1
-1
23
(c)
x
1
y
1
-1
3
(d)
x
y
1
-1
π/2
−π
79. Yes, e.g. f(x)=x
kand g(x)=x
nwhere kand nare integers.
80. If x0 then |x|=xand f(x)=g(x). If x<0 then f(x)=|x|
p/q if pis even and f(x)=−|x|p/q if p
is odd; in both cases f(x) agrees with g(x).
EXERCISE SET 1.5
1. (a) 30
02=3
2,3(8/3)
06=1
18,0(8/3)
26=2
3
(b) Yes; the first and third slopes above are negative reciprocals of each other.
2. (a) 1(1)
35=0, 13
57=2, 33
7(1) =0, 13
3(1) =2
(b) Yes; there are two pairs of equal slopes, so two pairs of parallel lines.
3. III <II <IV <I
4. III <IV <I<II
5. (a) 1(5)
1(2) =2, 5(1)
20=2, 1(1)
10= 2. Since the slopes connecting all pairs of points are
equal, they lie on a line.
(b) 42
20=1, 25
01=3, 45
21=1
3
. Since the slopes connecting the pairs of points are not
equal, the points do not lie on a line.
6. The slope, m=2, is obtained from y5
x7, and thus y5=2(x7).
(a) If x= 9 then y=1. (b) If y= 12 then x=7/2.
7. The slope, m= 3, is equal to y2
x1, and thus y2=3(x1).
(a) If x= 5 then y= 14. (b) If y=2 then x=1/3.
Exercise Set 1.5 20
8. (a) Compute the slopes: y0
x0=1
2or y=x/2. Also y5
x7=2ory=2x9. Solve simultaneously
to obtain x=6,y =3.
9. (a) The first slope is 20
1xand the second is 50
4x. Since they are negatives of each other we get
2(4 x)=5(1 x)or7x= 13, x=13/7.
10. (a) 27(b) 135(c) 63(d) 91
11. (a) 153(b) 45(c) 117(d) 89
12. (a) m= tan φ=3/3, so φ= 150(b) m= tan φ=4,soφ=76
13. (a) m= tan φ=3, so φ=60
(b) m= tan φ=2, so φ= 117
14. y= 0 and x= 0 respectively 15. y=2x+4
6
0
-1 1
16. y=5x3
2
–8
–1 2
17. Parallel means the lines have equal slopes, so
y=4x+7.
12
0
-1 1
18. The slope of both lines is 3/2, so y2=(3/2)(x(1)),
or 3x+2y=1
4
–4
-2 1
19. The negative reciprocal of 5 is 1/5, so y=1
5x+6. 12
0
-9 9
21 Chapter 1
20. The slope of x4y= 7 is 1/4 whose negative reciprocal
is 4, so y(4) = 4(x3) or y+4x=8.
9
–3
018
21. y(7)
x1=4(7)
21,ory=11x18 7
-9
04
22. y1
x(2) =61
3(2),ory=5x915
–5
–4 0
23. (a) m1=m2= 4, parallel (b) m1=2=1/m2, perpendicular
(c) m1=m2=5/3, parallel
(d) If A6= 0 and B6= 0 then m1=A/B =1/m2, perpendicular; if A=0orB= 0 (not both)
then one line is horizontal, the other vertical, so perpendicular.
(e) neither
24. (a) m1=m2=5, parallel (b) m1=2=1/m2, perpendicular
(c) m1=4/5=1/m2, perpendicular (d) If B6=0,m
1=m
2=A/B;ifB= 0 both
are vertical, so parallel
(e) neither
25. (a) m=(0(3))/(2 0))=3/2soy=3x/23
(b) m=(30)/(4 0) = 3/4soy=3x/4
26. (a) m=(02)/(2 0)) = 1soy=x+2
(b) m=(20)/(3 0)=2/3soy=2x/3
27. (a) The velocity is the slope, which is 5(4)
10 0=9/10 ft/s.
(b) x=4
(c) The line has slope 9/10 and passes through (0,4), so has equation x=9t/10 4; at t=2,
x=2.2.
(d) t=80/9
Exercise Set 1.5 22
28. (a) v=51
42= 2 m/s (b) x1=2(t2) or x=2t3(c) x=3
29. (a) The acceleration is the slope of the velocity, so a=3(1)
14=4
3ft/s2.
(b) v3=4
3
(t1), or v=4
3t+13
3(c) v=13
3ft/s
30. (a) The acceleration is the slope of the velocity, so a=05
10 0=5
10 =1
2ft/s2.
(b) v= 5 ft/s (c) v= 4 ft/s (d) t=4s
31. (a) It moves (to the left) 6 units with velocity v=3 cm/s, then remains motionless for 5 s, then
moves 3 units to the left with velocity v=1 cm/s.
(b) vave =09
10 0=9
10 cm/s
(c) Since the motion is in one direction only, the speed is the negative of the velocity, so
save =9
10 cm/s.
32. It moves right with constant velocity v= 5 km/h; then accelerates; then moves with constant, though
increased, velocity again; then slows down.
33. (a) If x1denotes the final position and x0the initial position, then v=(x
1x
0
)/(t
1t
0
) = 0 mi/h,
since x1=x0.
(b) If the distance traveled in one direction is d, then the outward journey took t=d/40 h. Thus
save =total dist
total time =2d
t+(2/3)t=80t
t+(2/3)t= 48 mi/h.
(c) t+(2/3)t=5,sot= 3 and 2d=80t= 240 mi round trip
34. (a) down, since v<0(b) v=0att=2 (c) It’s constant at 32 ft/s2.
35. (a) v
t
20
40
60
80
100
20 40 60 80 100 120
(b) v=
10tif 0 t10
100 if 10 t100
600 5tif 100 t120
36. x
t
23 Chapter 1
37. (a) y=2015 = 5 when x= 45, so 5 = 45k,
k=1/9, y=x/9
(b) y
x
0.2
0.4
0.6
246
(c) l=15+y= 15 + 100(1/9)=26.11 in. (d) If ymax = 15 then solve 15 = kx =x/9 for
x= 135 lb.
38. (a) Since y=0.2 = (1)k,k=1/5 and y=x/5(b) y
x
1
246
(c) y=3k=3/5so0.6 ft. (d) ymax =(1/2)3=1.5 so solve 1.5=x/5 for
x=7.5 tons
39. Each increment of 1 in the value of xyields the increment of 1.2 for y, so the relationship is linear. If
y=mx +bthen m=1.2; from x=0,y= 2, follows b=2,soy=1.2x+2
40. Each increment of 1 in the value of xyields the increment of 2.1 for y, so the relationship is linear.
If y=mx +bthen m=2.1; from x=0,y=10.5 follows b=10.5, so y=2.1x+10.5
41. (a) With TFas independent variable, we have TC100
TF212 =0100
32 212,soT
C=5
9
(T
F32).
(b) 5/9 (c) Set TF=TC=5
9(TF32) and solve for TF:TF=TC=40(F or C).
(d) 37C
42. (a) One degree Celsius is one degree Kelvin, so the slope is the ratio 1/1=1. ThusT
C=T
K273.15.
(b) TC=0273.15 = 273.15C
43. (a) p1
h0=5.91
50 0,orp=0.098h+1 (b) when p=2,orh=1/0.098 10.20 m
44. (a) R123.4
T20 =133.9123.4
45 20 ,soR=0.42T+ 115.
(b) T=32.38C
45. (a) r0.80
t0=0.75 0.80
40,sor=0.0125t+0.8
(b) 64 days
46. (a) Let the position at rest be y0. Then y0+y=y0+kx; with x=11wegety
0+kx =y0+11k= 40,
and with x=24wegety
0+kx =y0+24k= 60. Solve to get k=20/13 and y0= 300/13.
(b) 300/13 + (20/13)W= 30, so W= (390 300)/20=9/2g.
Exercise Set 1.6 24
47. (a) For xtrips we have C1=2xand
C2=25+x/4
C
x
20
40
60
510 15 20 25 30
(b) 2x=25+x/4, or x= 100/7, so the com-
muter pass becomes worthwhile at x= 15.
48. If the student drives xmiles, then the total costs would be CA= 4000 + (1.25/20)xand
CB= 5500 + (1.25/30)x. Set 4000 + 5x/80 = 5500 + 5x/120 and solve for x=72,000 mi.
49. (a) H20000/110 181
(b) One light year is 9.408 ×1012 km and t=d
v=1
H=1
20km/s/Mly =9.408 ×1018km
20km/s
=4.704 ×1017 s=1.492 ×1010 years.
(c) The Universe would be even older.
EXERCISE SET 1.6
1. (a) y=3x+b(b) y=3x+6
(c)
-10
-5
5
10
y
-2 -1 1 2 x
y = 3x + 6
y = 3x + 2
y = 3x - 4
2. Since the slopes are negative reciprocals, y=1
3x+b.
3. (a) y=mx +2 (b) m= tan φ= tan 135=1, so y=x+2
(c)
-1
1
2
3
4
5
-2 -1 1 2 x
y
m = –1
m = 1
m = 1.5
4. (a) y=mx (b) y=m(x1)
(c) y=2+m(x1) (d) 2x+4y=C
25 Chapter 1
5. (a) The slope is 1.
-3
-2
-1
1
2
3
4
5
-2 -1 1 2 x
y
(b) The y-intercept is y=1.
-6
-4
-2
2
4
-2 -1 1 2 x
y
(c) They pass through the point (4,2).
y
x
-2
2
4
6
-6 -4 -2
(d) The x-intercept is x=1.
-3
-2
-1
1
2
3
0.5 11.5 2x
y
6. (a) horizontal lines
x
y
(b) The y-intercept is y=1/2.
x
y
-1
2
2
(c) The x-intercept is x=1/2.
x
y
1
1
(d) They pass through (1,1).
x
y
-2
1
1
(-1,1)
7. Let the line be tangent to the circle at the point (x0,y
0) where x2
0+y2
0= 9. The slope of the tangent
line is the negative reciprocal of y0/x0(why?), so m=x0/y0and y=(x0/y0)x+b. Substituting
the point (x0,y
0) as well as y0=±p9x2
0we get y=±9x0x
p9x2
0
.
8. Solve the simultaneous equations to get the point (2,1/3) of intersection. Then y=1
3+m(x+ 2).
Exercise Set 1.6 26
9. The x-intercept is x= 10 so that with depreciation at 10% per year the final value is always zero, and
hence y=m(x10). The y-intercept is the original value.
y
246810
x
10. A line through (6,1) has the form y+1 = m(x6). The intercepts are x= 6+1/m and y=6m1.
Set (6+1/m)(6m+1)=3,or36m
2+15m+1 = (12m+1)(3m+1) = 0 with roots m=1/12,1/3;
thus y+1=(1/3)(x6) and y+1=(1/12)(x6).
11. (a) VI (b) IV (c) III (d) V(e) I(f) II
12. In all cases kmust be positive, or negative values would appear in the chart. Only kx3decreases, so
that must be f(x). Next, kx2grows faster than kx3/2, so that would be g(x), which grows faster than
h(x) (to see this, consider ratios of successive values of the functions). Finally, experimentation (a
spreadsheet is handy) for values of kyields (approximately) f(x)=10x
3
,g(x)=x
2
/2, h(x)=2x
1.5
.
13. (a)
-30
-20
-10
10
20
30
-2 -1 1 2 x
y
-60
-50
-40
-30
-20
-10
-2 -1 1 2 x
y
(b)
-4
-2
2
4
y
-4 -2 2 4 x
2
4
6
8
10
y
-4 -2 2 4 x
(c)
-2
-1
1
2
-1 1 2 3 x
y
0.5
1
1.5
y
123
x
27 Chapter 1
14. (a)
x
y
2
40
-2
-40
x
y
2
40
-2
80
(b)
x
y
2
4
-2
-4
x
y
2
-2
-2
-4
(c)
x
y
-1 -2
4
-3
x
y
-1
-2
15. (a)
-10
-5
5
10
y
-2 -1 1 2 x
(b)
-2
2
4
6
y
-2 -1 1 2 x
(c)
-10
-5
5
10
y
-2 -1 1 2 x
16. (a)
x
y
2
3
(b)
x
y
2
2
(c)
x
y
2
2
17. (a)
2
4
6
8
y
-3 -2 -1 1 x
(b)
-80
-60
-40
-20
20
40
60
80
y
-1 1 2 3 4 5x
Exercise Set 1.6 28
(c)
-50
-40
-30
-20
-10
y
-5 -4 -3 -2 -1 1 2 3 x
(d)
-40
-20
20
40
y
12 3 4 5
x
18. (a)
x
y
1
1
(b)
x
y
1
1
-2
(c)
x
y
2
4
-2
-4
(d)
x
y
-2
4
-6
19. (a)
-1.5
-1
-0.5
0.5
1
1.5
y
-3 -2 -1 1 x
(b)
-1
-0.5
0.5
1
y
123456x
(c)
-30
-20
-10
10
20
30
y
-1 1 2 3 x
(d)
-30
-20
-10
10
20
30
y
-2 -1 1 2 x
20. (a)
-10
10
y
134
x
(b)
-30
-20
-10
10
20
30
y
-1 1 2 3 x
29 Chapter 1
(c)
-106
106
y
-1 1 x
(d)
5
10
15
y
-4 -2 2 x
21.
5
10
15
y
-4 -2 2 x
22. (a)
0.5
1
1.5
y
-2 2 x
(b)
0.5
1
1.5
y
-2 2 x
23. t=0.445d
2.3
0
025
24. (a) t=0.373r1.5(b) 238,000 km (c) 1.89 days
25. (a) N·m(b) 20 N·m
(c) V(L) 0.25 0.5 1.0 1.5 2.0
P(N/m2) 80 ×10340 ×10320 ×10313.3×10310 ×103
26. If the side of the square base is xand the height of the container is ythen V=x2y= 100; minimize
A=2x
2+4xy =2x
2+ 400/x. A graphing utility with a zoom feature suggests that the solution is a
cube of side 1001
3cm.
27. (a) F=k/x2so 0.0005 = k/(0.3)2and
k=0.000045 N·m2.
(b) 0.000005 N
Exercise Set 1.6 30
(c)
d
510
F
10-5
(d) When they approach one another, the force
becomes infinite; when they get far apart it
tends to zero.
28. (a) 2000 = C/(4000)2,soC=3.2×1010 lb·mi2(b) W=C/50002=(3.2×1010)/(25 ×106)=
1280 lb.
(c)
5000
10000
15000
20000
W
2000 4000 6000 8000 10000
x
(d) No, but Wis very small when xis large.
29. (a) II; y=1,x=1,2(b) I; y=0,x=2,3
(c) IV; y=2 (d) III; y=0,x=2
30. The denominator has roots x=±1, so x21 is the denominator. To determine kuse the point (0,1)
to get k=1,y=1/(x
21).
31. Order the six trigonometric functions as sin, cos, tan, cot, sec, csc:
(a) pos, pos, pos, pos, pos, pos (b) neg, zero, undef, zero, undef, neg
(c) pos, neg, neg, neg, neg, pos (d) neg, pos, neg, neg, pos, neg
(e) neg, neg, pos, pos, neg, neg (f) neg, pos, neg, neg, pos, neg
32. (a) neg, zero, undef, zero, undef, neg (b) pos, neg, neg, neg, neg, pos
(c) zero, neg, zero, undef, neg, undef (d) pos, zero, undef, zero, undef, pos
(e) neg, neg, pos, pos, neg, neg (f) neg, neg, pos, pos, neg, neg
33. (a) sin(πx) = sin x; 0.588 (b) cos(x) = cos x; 0.924
(c) sin(2π+x) = sin x; 0.588 (d) cos(πx)=cos x;0.924
(e) sin 2x=±2 sin xp1sin2x; use the +
sign for xsmall and positive; 0.951
(f) cos2x=1sin2x; 0.654
34. (a) sin(3π+x)=sin x;0.588 (b) cos(x2π) = cos x; 0.924
(c) sin(8π+x) = sin x; 0.588 (d) sin(x/2) = ±p(1 cos x)/2; use the nega-
tive sign for xsmall and negative; 0.195
(e) cos(3π+3x)=4 cos3x+ 3 cos x;0.384 (f) tan2x=1cos2x
cos2x; 0.172
35. (a) a(b) b
(c) c(d) ±1a2
(e) b(f) a
(g) ±2b1b2(h) 2b21
(i) 1/b (j) 1/a
(k) 1/c (l) (1 b)/2
31 Chapter 1
36. (a) The distance is 36/360=1/10th of a great
circle, so it is (1/10)2πr =2,513.27 mi.
(b) 36/360=1/10
37. If the arc length is 1, then solve the ratio x
1=2πr
29.5to get x80,936 km.
38. The distance travelled is equal to the length of that portion of the circumference of the wheel which
touches the road, and that is the fraction 225/360 of a circumference, so a distance of (225/360)(2π)3 =
11.78 ft
39. The second quarter revolves twice (720) about its own center.
40. Add rto itself until you exceed 2πr; since 6r<2πr < 7r, you can cut off 6 pieces of pie, but there’s
not enough for a full seventh piece. We conclude that there is no exact solution of the equation
‘One pie = 2πr’.
41. (a) y= 3 sin(x/2) (b) y= 4 cos 2x(c) y=5 sin 4x
42. (a) y= 1 + cos πx (b) y=1+2sinx(c) y=5 cos 4x
43. (a) y= sin(x+π/2)
(b) y= 3 + 3 sin(2x/9)
(c) y= 1 + 2 sin(2(xπ/4))
44. V= 1202 sin(120πt)
45. (a) 3/2,0
y
x
-2
1
3
π/2
(b) 2,2,0
-2
2
24
x
(c) 1,4π, 0
y
x
1
2
3
2π4π6π
46. (a) 4,0
y
x
-4
-2
2
π/4 3π/4 5π/4 7π/4
(b) 1/2,2π/3/3
y
x
-0.2
0.4
π/3 2π/3 π
(c) 4,6π, 6π
y
x
-4
-2
2
4
3π/2 9π/2 15π/2 21π/2
47. (a) Asin(ωt +θ)=Asin(ωt) cos θ+Acos(ωt) sin θ=A1sin(ωt)+A
2cos(ωt)
(b) A1=Acos θ, A2=Asin θ,soA=pA
2
1+A
2
2and θ= tan1(A2/A1).
(c) A=5
13/2, θ= tan11
23;
x=513
2sin µ2πt + tan11
23
10
-10
^6
Exercise Set 1.7 32
48. three; x=0,x=±1.8955
3
–3
-3 3
EXERCISE SET 1.7
1. (a) x+1=t=y1, y=x+2
2
4
6
y
24
t=0
t=1
t=2
t=3
t=4
t=5
x
(c) t012345
x101234
y123456
2. (a) x2+y2=1
1
y
-1 1 x
t=1
t=.5
t=.75 t=.25
t=0
(c) t0 0.2500 0.50 0.7500 1
x1 0.7071 0.00 0.7071 1
y0 0.7071 1.00 0.7071 0
3. t=(x+4)/3; y=2x+10
-8 6
12
x
y
4. t=x+3;y=3x+2,3x0
x
y
(0, 2)
(-3, -7)
5. cos t=x/2,sin t=y/5; x2/4+y
2
/25=1
-5 5
-5
5
x
y
6. t=x2;y=2x
2+4,x0
1
4
8
x
y
33 Chapter 1
7. cos t=(x3)/2,sin t=(y2)/4;
(x3)2/4+(y2)2/16=1
7
-2
6
x
y
8. sec2ttan2t=1;x
2
y
2=1,
x≤−1 and y0
-1 x
y
9. cos 2t=12 sin2t;x=12y
2
,1y1
-1 1
-1
1
x
y
10. t=(x3)/4; y=(x3)29
x
y
(3, -9)
11. x/2+y/3=1,0x2,0y3
x
y
2
3
12. y=x1,x1,y 0
1
1
x
y
13. x= 5 cos t,y=5 sin t,0t2π
5
-5
-7.5 7.5
14. x= cos t,y= sin t,πt3π/2
1
–1
-1 1
15. x=2,y=t
2
-1
03
16. x= 2 cos t,y= 3 sin t,0t2π
3
–3
-2 2
Exercise Set 1.7 34
17. x=t2,y=t,1t1
1
-1
01
18. x=1+4cost,y=3+4sint,0t2π
2
-8
-7 8
19. (a) IV, because xalways increases whereas yoscillates.
(b) II, because (x/2)2+(y/3)2= 1, an ellipse.
(c) V, because x2+y2=t2increases in magnitude while xand ykeep changing sign.
(d) VI; examine the cases t<1 and t>1 and you see the curve lies in the first, second and
fourth quadrants only.
(e) III because y>0.
(f) I; since xand yare bounded, the answer must be I or II; but as truns, say, from 0 to π,xgoes
directly from 2 to 2, but ygoesfrom0to1to0to1 and back to 0, which describes I but
not II.
20. (a) from left to right
(b) counterclockwise
(c) counterclockwise
(d) As ttravels from −∞ to 1, the curve goes from (near) the origin in the third quadrant and
travels up and left. As ttravels from 1to+the curve comes from way down in the second
quadrant, hits the origin at t= 0, and then makes the loop clockwise and finally approaches the
origin again as t+.
(e) from left to right
(f) Starting, say, at (1,0), the curve goes up into the first quadrant, loops back through the origin
and into the third quadrant, and then continues the figure-eight.
21. (a) 14
0
-35 8
(b) t0 1 2 3 4 5
x0 5.5 8 4.5832.5
y1 1.5 3 5.5 9 13.5
(c) x= 0 when t=0,2
3. (d) for 0 <t<2
2(e) at t=2
22. (a) 5
0
-2 14
(b) yis always 1 since cos t1
(c) greater than 5, since cos t≥−1
35 Chapter 1
23. (a) 3
-5
020
(b) o
O
-1 1
24. (a) 1.7
-1.7
-2.3 2.3
(b)
-10 10
^
6
25. (a) xx0
x1x0
=yy0
y1y0
(b) Set t= 0 to get (x0,y
0); t= 1 for (x1,y
1).
(c) x=1+t,y=2+6t(d) x=2t,y=46t
26. (a) x=32t,y=4+5t(b) x=at,y=b(1 t)
27. (a) |RP|2=(xx
0
)
2+(yy
0)
2=t
2[(x1x0)2+(y
1y
0)
2] and |QP|2=(x
1x
0
)
2+(y
1y
0)
2,
so r=|RP|=|QP|t=qt.
(b) t=1/2(c) t=3/4
28. x=2+t,y=1+2t
(a) (5/2,0) (b) (9/4,1/2) (c) (11/4,1/2)
29. The two branches corresponding to 1t0 and 0 t1 coincide.
30. (a) Eliminate tt0
t1t0
to obtain yy0
xx0
=y1y0
x1x0
.
(b) from (x0,y
0)to(x
1
,y
1)(c) x=32(t1), y=1+5(t1)
5
-2
05
31. (a) xb
a=yd
c(b)
1
2
3
y
123
x
Exercise Set 1.7 36
32. (a) If a= 0 the line segment is vertical; if c= 0 it is horizontal.
(b) The curve degenerates to the point (b, d).
33.
0.5
1
1.5
2
y
0.5 1 x
34. x=1/24t, y =1/2 for 0 t1/4
x=1/2,y=1/24(t1/4) for 1/4t1/2
x=1/2+4(t1/2),y=1/2 for 1/2t3/4
x=1/2,y=1/2+4(t3/4) for 3/4t1
35. (a) x= 4 cos t,y= 3 sin t(b) x=1+4cost,y=2+3sint
(c) 3
-3
-4 4
5
-1
-5 3
36. (a) t=x/(v0cos α), so y=xtan αgx2/(2v2
0cos2α).
(b)
2000
4000
6000
8000
10000
12000
40000 80000 x
y
37. (a) From Exercise 36, x= 4002t,y= 4002t4.9t2.(b) 16,326.53 m (c) 65,306.12 m
38. (a) 15
–15
-25 25
(b) 15
–15
-25 25
(c) 15
–15
-25 25
a = 3, b = 2
15
–15
-25 25
a = 2, b = 3
15
–15
-25 25
a = 2, b = 7
37 Chapter 1
39. Assume that a6= 0 and b6= 0; eliminate the parameter to get (xh)2/a2+(yk)
2/b2=1. If|a|=|b|
the curve is a circle with center (h, k) and radius |a|;if|a|6=|b|the curve is an ellipse with center
(h, k) and major axis parallel to the x-axis when |a|>|b|, or major axis parallel to the y-axis when
|a|<|b|.
(a) ellipses with a fixed center and varying axes of symmetry
(b) (assume a6= 0 and b6= 0) ellipses with varying center and fixed axes of symmetry
(c) circles of radius 1 with centers on the line y=x1
40. Refer to the diagram to get =,θ=aφ/b but θα=φ+π/2
so α=θφπ/2=(a/b 1)φπ/2
x=(ab) cos φbsin α
=(ab) cos φ+bcos µab
bφ,
y=(ab) sin φbcos α
=(ab) sin φbsin µab
bφ.
x
y
θ
α
φφ
a
θ
b
ab
41. (a)
-a
a
-a a
y
x
(b) Use b=a/4 in the equations of Exercise 40 to get
x=3
4acos φ+1
4acos 3φ,y=3
4asin φ1
4asin 3φ;
but trigonometric identities yield cos 3φ= 4 cos3φ3 cos φ, sin 3φ= 3 sin φ4 sin3φ,
so x=acos3φ,y=asin3φ.
(c) x2/3+y2/3=a2/3(cos2φ+ sin2φ)=a
2/3
42.
-50
0
50
y
-3 -2 -1 x
a=2
-50
50
y
-2 -1 x
a=1
-1
1
y
-1 1 x
a=0
-50
50
y
12
x
a=1
-50
0
50
y
12 3
x
a=2
Supplementary Exercises 1 38
CHAPTER 1 SUPPLEMENTARY EXERCISES
1. 1940-45; the greatest five-year slope
2. (a) f(1)=3.3,g(3)=2 (b) x=3,3
(c) x<2,x>3(d) the domain is 5x5 and the range is
5y4
(e) the domain is 4x4.1, the range is
3y5
(f) f(x)=0atx=3,5; g(x)=0at
x=3,2
3.
40
50
60
70
0246
t
T4. x
58 13 t
5. If the side has length xand height h, then V=8=x
2
h,soh=8/x2. Then the cost C=5x
2+
2(4)(xh)=5x
2+64/x.
6. Assume that the paint is applied in a thin veneer of uniform thickness, so that the quantity of paint
to be used is proportional to the area covered. If P is the amount of paint to be used, P=kπr2. The
constant kdepends on physical factors, such as the thickness of the paint, absorption of the wood,
etc.
7. y
x
-1
5
-5 5
8. Suppose the radius of the uncoated ball is rand that of the coated ball is r+h. Then the plastic has
volume equal to the difference of the volumes, i.e. V=4
3π(r+h)34
3πr3=4
3πh[3r2+3rh +h2]in
3
.
9. (a) The base has sides (10 2x)/2 and 6 2x, and the height is x,soV=(62x)(5 x)xft3.
(b) From the picture we see that x<5 and 2x<6, so 0 <x<3.
(c) 3.57 ft ×3.79 ft ×1.21 ft
10. {x6=0}and (the empty set)
11. impossible; we would have to solve 2(3x2) 5 = 3(2x5) 2, or 9=17
12. (a) (3 x)/x (b) no; f(g(x)) can be defined at x=1,
whereas g, and therefore fg, requires
x6=1
13. 1/(2 x2)14. g(x)=x
2+2x
15. x4321 0 1 2 3 4
f(x) 0 1 2 1 3 23 4 4
g(x) 3 2 1 314 4 2 0
(fg)(x) 4 321 1 0 4 2 3
(gf)(x)13 4 42 1 2 0 3
39 Chapter 1
16. (a) y=|x1|,y=|(x)1|=|x+1|,
y=2|x+1|,y=2|x+1|−3,
y=2|x+1|+3
(b) y
x
-1
1
3
-3 -1 2
17. (a) even ×odd=odd (b) a square is even
(c) even + odd is neither (d) odd ×odd=even
18. (a) y= cos x2 sin xcos x=(12 sin x) cos x,sox=±π
2
,±3π
2,π
6
,5π
6,7π
6,11π
6
(b) (±π
2,0),(±3π
2,0),(π
6,3/2),(5π
6,3/2),(7π
6,3/2),(11π
6,3/2)
19. (a) If xdenotes the distance from Ato the base of the tower, and ythe distance from Bto the
base, then x2+d2=y2. Moreover h=xtan α=ytan β,sod
2=y
2x
2=h
2
(cot2βcot2α),
h2=d2
cot2βcot2α=d2sin2αsin2β
sin2αcos2βcos2αsin2β. The trigonometric identity
sin(α+β) sin(αβ) = sin2αcos2βcos2αsin2βyields h=dsin αsin β
psin(α+β) sin(αβ).
(b) 295.72 ft.
20. (a)
-20
20
40
60
y
100 200 300 t
(b) when 2π
365(t101) = 3π
2,ort= 374.75,
which is the same date as t=9.75, so dur-
ing the night of January 10th-11th
(c) from t=0tot=70.58 and from t= 313.92 to t= 365 (the same date as t= 0) , for a total of
about 122 days
21. Cis the highest nearby point on the graph; zoom to find that the coordinates of Care (2.0944,1.9132).
Similarly, Dis the lowest nearby point, and its coordinates are (4.1888,1.2284). Since f(x)=1
2xsin x
is an odd function, the coordinates of Bare (2.0944,1.9132) and those of Aare (4.1888,1.2284).
22. Let y=A+Bsin(at +b). Since the maximum and minimum values of yare 35 and 5, A+B=35
and AB=5,soA= 20, B= 15. The period is 12 hours, so 12a=2πand a=π/6. The
maximum occurs at t= 2, so 1 = sin(2a+b) = sin(π/3+b), π/3+b=π/2, b=π/2π/3=π/6 and
y= 20 + 15 sin(πt/6+π/6).
23. (a) The circle of radius 1 centered at (a, a2); therefore, the family of all circles of radius 1 with
centers on the parabola y=x2.
(b) All parabolas which open up, have latus rectum equal to 1 and vertex on the line y=x/2.
24. (a) x=f(1 t),y =g(1 t)25.
-2
-1
1
2
y
-2 -1 1 2 x
Supplementary Exercises 1 40
26. Let y=ax2+bx +c. Then 4a+2b+c=0,64a+8b+c=18,64a8b+c= 18, from which b=0
and 60a= 18, or finally y=3
10x26
5.
27.
-2
-1
1
2
y
-1 1 2 x
28. (a) R=R0is the R-intercept, R0kis the slope,
and T=1/k is the T-intercept
(b) 1/k =273, or k=1/273
(c) 1.1=R
0
(1+20/273), or R0=1.025 (d) T= 126.55C
29. d=p(x1)2+(
x2)2;
d=9.1atx=1.358094
1
2
y
12
x
30. d=p(x1)2+1/x2;
d=0.82 at x=1.380278
0.8
1
1.2
1.4
1.6
1.8
2
0.5 1 1.5 2 2.5 3
y
31. w=63.9V,w=63.9πh2(5/2h/3); h=0.48 ft when w= 108 lb
32. (a)
1000
2000
3000
4000
W
12345
h
(b) w=63.9πh2(5/2h/3); at h=5/2,
w= 2091.12 lb
33. (a)
50
100
150
200
N
10 20 30 40 50 t
(b) N= 80 when t=9.35 yrs
(c) 220 sheep
41 Chapter 1
34. (a) T
v
10
20
(b) T=17
F, 27F, 32F
35. (a)
-20
20
WCI
10 20 30 40 50 v
(b) T=3
F, 11F, 18F, 22F
(c) v=35,19,12,7 mi/h
36. The domain is the set of all x, the range is 0.1746 y0.1227.
37. The domain is the set 0.7245 x1.2207, the range is 1.0551 y1.4902.
38. (a) The potato is done in the interval
27.65 <t<32.71.
(b) 91.54 min.
39. (a)
5
10
15
20
25
v
12345
t
(b) As t→∞,(0.273)t0, and thus
v24.61 ft/s.
(c) For large tthe velocity approaches c.(d) No; but it comes very close (arbitrarily
close).
(e) 3.013 s
CHAPTER 1 HORIZON MODULE
1. (a) 0.25,6.25 ×102,3.91 ×103,1.53 ×105,2.32 ×1010,5.42 ×1020,2.94 ×1039,8.64 ×1078,
7.46 ×10155,5.56 ×10309;
1,1,1,1,1,1,1,1,1,1;
4,16,256,65536,4.29 ×109,1.84 ×1019,3.40 ×1038,1.16 ×1077,1.34 ×10154,1.80 ×10308
2. 2,2.25,2.2361111,2.23606798,2.23606798,...
3. (a) 1
2,1
4,1
8,1
16,1
32,1
64 (b) yn=1
2n
4. (a) yn+1 =1.05yn
(b) y0=$1000, y1=$1050, y2=$1102.50, y3=$1157.62, y4=$1215.51, y5=$1276.28
(c) yn+1 =1.05ynfor n1(d) yn=(1.05)n1000; y15 =$2078.93
Horizon Module 1 42
5. (a) x1/2,x
1/4,x
1/8,x
1/16,x
1/32 (b) They tend to the horizontal line y= 1, with
a hole at x=0.
1.8
0
03
6. (a) 1
2
2
3
3
5
5
8
8
13
13
21
21
34
34
55
55
89
89
144
(b) 1,2,3,5,8,13,21,34,55,89 ;
each new numerator is the sum of the previous two numerators.
(c) 144
233,233
377,377
610,610
987,987
1597,1597
2584,2584
4181,4181
6765,6765
10946,10946
17711
(d) F0=1,F
1=1,F
n=F
n1+F
n2for n2.
(e) the positive solution
7. (a) y1=cr,y2=cy1=cr2,y3=cr3,y4=cr4
(b) yn=crn
(c) If r= 1 then yn=cfor all n;ifr<1 then yntends to zero; if r>1, then yngets ever larger
(tends to +).
8. The first point on the curve is (c, kc(1 c)), so y1=kc(1 c) and hence y1is the first iterate. The
point on the line to the right of this point has equal coordinates (y1,y
1), and so the point above it on
the curve has coordinates (y1,ky
1(1 y1)); thus y2=ky1(1 y1), and y2is the second iterate, etc.
9. (a) 0.261,0.559,0.715,0.591,0.701
(b) It appears to approach a point somewhere near 0.65.
CHAPTER 2
Limits and Continuity
EXERCISE SET 2.1
1. (a) 1(b) 3(c) does not exist
(d) 1(e) 1(f) 3
2. (a) 2(b) 0(c) does not exist
(d) 2(e) 0(f) 2
3. (a) 1(b) 1(c) 1(d) 1(e) −∞ (f ) +
4. (a) 3(b) 3(c) 3(d) 3(e) +(f ) +
5. (a) 0(b) 0(c) 0(d) 3(e) +(f ) +
6. (a) 2(b) 2(c) 2(d) 3(e) −∞ (f ) +
7. (a) −∞ (b) +(c) does not exist
(d) undef (e) 2(f) 0
8. (a) +(b) +(c) +(d) undef (e) 0(f ) 1
9. (a) −∞ (b) −∞ (c) −∞ (d) 1(e) 1(f ) 2
10. (a) 1(b) −∞ (c) does not exist
(d) 2(e) +(f) +
11. (a) 0(b) 0(c) 0
(d) 0(e) does not exist (f) does not exist
12. (a) 3(b) 3(c) 3
(d) 3(e) does not exist (f) 0
13. for all x06=414. for all x06=6,3
15. (a) At x= 3 the one-sided limits fail to exist.
(b) At x=2 the two-sided limit exists but is not equal to F(2).
(c) At x= 3 the limit fails to exist.
16. (a) At x= 2 the two-sided limit fails to exist.
(b) At x= 3 the two-sided limit exists but is not equal to F(3).
(c) At x= 0 the two-sided limit fails to exist.
43
Exercise Set 2.1 44
17. (a) 2 1.5 1.1 1.01 1.001 0 0.5 0.9 0.99 0.999
0.1429 0.2105 0.3021 0.3300 0.3330 1.0000 0.5714 0.3690 0.3367 0.3337
1
0
02
The limit is 1/3.
(b) 2 1.5 1.1 1.01 1.001 1.0001
0.4286 1.0526 6.344 66.33 666.3 6666.3
50
0
12
The limit is +.
(c) 0 0.5 0.9 0.99 0.999 0.9999
11.7143 7.0111 67.001 667.06667.0
0
-50
01
The limit is −∞.
18. (a) 0.25 0.10.001 0.0001 0.0001 0.001 0.1 0.25
0.5359 0.5132 0.5001 0.5000 0.5000 0.4999 0.4881 0.4721
0.6
0
-0.25 0.25
The limit is 1/2.
45 Chapter 2
(b) 0.25 0.1 0.001 0.0001
8.4721 20.488 2000.5 20001
100
0
0 0.25
The limit is +.
(c) 0.25 0.10.001 0.0001
7.4641 19.487 1999.520000
0
-100
-0.25 0 The limit is −∞.
19. (a) 0.25 0.10.001 0.0001 0.0001 0.001 0.1 0.25
2.7266 2.9552 3.0000 3.0000 3.0000 3.0000 2.9552 2.7266
3
2
-0.25 0.25
The limit is 3.
(b) 00.50.90.99 0.999 1.51.11.01 1.001
1 1.7552 6.2161 54.87 541.10.1415 4.536 53.19 539.5
60
-60
-1.5 0
The limit does not exist.
Exercise Set 2.1 46
20. (a) 00.50.90.99 0.999 1.51.11.01 1.001
1.5574 1.0926 1.0033 1.0000 1.0000 1.0926 1.0033 1.0000 1.0000
1.5
1
-1.5 0
The limit is 1.
(b) 0.25 0.10.001 0.0001 0.0001 0.001 0.1 0.25
1.9794 2.4132 2.5000 2.5000 2.5000 2.5000 2.4132 1.9794
2.5
2
-0.25 0.25
The limit is 5/2.
21. (a) 100,000,000 100,000 1000 100 10 10 100 1000
2.0000 2.0001 2.0050 2.0521 2.8333 1.6429 1.9519 1.9950
100,000 100,000,000
2.0000 2.0000
40
-40
-14 6
asymptote y=2asx→±
(b) 100,000,000 100,000 1000 100 10 10 100 1000
20.0855 20.0864 20.1763 21.0294 35.4013 13.7858 19.2186 19.9955
100,000 100,000,000
20.0846 20.0855
70
0
-160 160
asymptote y=20.086.
47 Chapter 2
(c) 100,000,000 100,000 1000 100 10 10 100 1000 100,000 100,000,000
100,000,001 100,000 1001 101.011.2 9.2 99.0 999.0 99,999 99,999,999
50
–50
-20 20
no horizontal asymptote
22. (a) 100,000,000 100,000 1000 100 10 10 100 1000 100,000 100,000,000
0.2000 0.2000 0.2000 0.2000 0.1976 0.1976 0.2000 0.2000 0.2000 0.2000
0.2
-1.2
-10 10 asymptote y=1/5asx→±
(b) 100,000,000 100,000 1000 100 10 10 100
0.0000 0.0000 0.0000 0.0000 0.0016 1668.0 2.09 ×1018
1000 100,000 100,000,000
1.77 ×10301 ? ?
10
0
-6 6
asymptote y=0asx→−, none as
x+
(c) 100,000,000 100,000 1000 100 10 10 100
0.0000 0.0000 0.0008 0.0051 0.0544 0.0544 0.0051
1000 100,000 100,000,000
0.0008 0.0000 0.0000
1.1
-0.3
-30 30
asymptote y=0asx→±
23. (a) lim
x0+
sin x
x(b) lim
x0+
x1
x+1 (c) lim
x0(1+2x)
1/x
Exercise Set 2.2 48
24. (a) lim
x0+
cos x
x(b) lim
x0+
1
x+1 (c) lim
x0µ1+ 2
xx
25. (a) y
x
(b) yes; for example f(x) = (sin x)/x
26. (a) no
(b) yes; tan xand sec xat x=+π/2, and cot xand csc xat x=,n=0,±1,±2,...
29. (a) The plot over the interval [a, a] becomes subject to catastrophic subtraction if ais small enough
(the size depending on the machine).
(c) It does not.
EXERCISE SET 2.2
1. (a) 6(b) 13 (c) 8(d) 16 (e) 2(f ) 1/2
(g) The limit doesn’t exist because the denominator tends to zero but the numerator doesn’t.
(h) The limit doesn’t exist because the denominator tends to zero but the numerator doesn’t.
2. (a) 0
(b) The limit doesn’t exist because lim fdoesn’t exist and lim gdoes.
(c) 0(d) 3(e) 0
(f) The limit doesn’t exist because the denominator tends to zero but the numerator doesn’t.
(g) The limit doesn’t exist because pf(x) is not defined for 0 x<2.
(h) 1
3. (a) 7(b) 3(c) π(d) 6(e) 36 (f ) −∞
4. (a) 1(b) 1(c) 1(d) 1(e) 1(f ) 1
5. 06. 3/4 7. 88. 39. 4
10. 12 11. 4/512. 013. 3/2 14. 4/3
15. 016. 017. 018. 5/3 19. 5
20. 3
p3/221. 1/622. 523. 324. 1/6
25. +26. 327. does not exist 28. −∞ 29. −∞
30. +31. +32. does not exist 33. does not exist 34. −∞
35. +36. −∞ 37. −∞ 38. does not exist 39. 1/7
40. +41. 642. +43. +44. 4
49 Chapter 2
45. +46. +47. −∞ 48. +
49. (a) 2(b) 2(c) 2
50. (a) 2(b) 0(c) does not exist
51. (a) 3(b) y
x
4
1
52. (a) 6(b) F(x)=x3
53. (a) Theorem 2.2.2(a) doesn’t apply; moreover one cannot add/subtract infinities.
(b) lim
x0+µ1
x1
x2= lim
x0+µx1
x2=−∞
54. lim
x0µ1
x+1
x2= lim
x0
x+1
x
2=+55. lim
x0
x
x¡x+4+2
¢=1
4
56. lim
x0
x2
x¡x+4+2
¢=0
57. lim
x+(px2+3x)
x
2+3+x
x
2+3+x= lim
x+
3
x2+3+x=0
58. lim
x+(px23xx)x23x+x
x23x+x= lim
x+3x
x23x+x=3/2
59. lim
x+³px2+ax x´x2+ax +x
x2+ax +x= lim
x+
ax
x2+ax +x=a/2
60. lim
x+³px2+ax px2+bx´x2+ax +x2+bx
x2+ax +x2+bx = lim
x+
(ab)x
x2+ax +x2+bx =ab
2
61. lim
x+p(x)=(1)nand lim
x→−∞ p(x)=+
62. If m>nthe limits are both zero. If m=nthe limits are both 1. If n>mthe limits are (1)n+m
and +, respectively.
63. If m>nthe limits are both zero. If m=nthe limits are both equal to am, the leading coefficient of
p.Ifn>mthe limits are ±∞ where the sign depends on the sign of amand whether nis even or
odd.
64. (a) p(x)=q(x)=x(b) p(x)=x,q(x)=x
2
(c) p(x)=x
2
,q(x)=x(d) p(x)=x+3,q(x)=x
65. The left and/or right limits could be plus or minus infinity; or the limit could exist, or equal any
preassigned real number. For example, let q(x)=xx
0and let p(x)=a(xx
0
)
nwhere ntakes on
the values 0,1,2.
Exercise Set 2.3 50
66. If m>nthe limit is zero. If m=nthe limit is cm/dm.Ifn>mthe limit is ±∞, where the sign
depends on the signs of cnand dm.
EXERCISE SET 2.3
1. (a) |f(x)f(0)|=|x+22|=|x|<0.1 if and only if |x|<0.1
(b) |f(x)f(3)|=|(4x5) 7|=4|x3|<0.1 if and only if |x3|<(0.1)/4=0.0025
(c) |f(x)f(4)|=|x216|if |x4|. We get f(x)=16+²=16.001 at x=4.000124998,
which corresponds to δ=0.000124998; and f(x)=16²=15.999 at x=3.999874998, for
which δ=0.000125002. Use the smaller δ:thus|f(x)16|provided |x4|<0.000125 (to
six decimals).
2. (a) |f(x)f(0)|=|2x+33|=2|x|<0.1 if and only if |x|<0.05
(b) |f(x)f(0)|=|2x+33|=2|x|<0.01 if and only if |x|<0.005
(c) |f(x)f(0)|=|2x+33|=2|x|<0.0012 if and only if |x|<0.0006
3. (a) x1=(1.95)2=3.8025,x
2=(2.05)2=4.2025
(b) δ= min ( |43.8025|,|44.2025|)=0.1975
4. (a) x1=1/(1.1)=0.909090 ...,x
2=1/(0.9)=1.111111 ...
(b) δ= min( |10.909090|,|11.111111|)=0.0909090 ...
5. |2x8|=2|x4|<0.1if|x4|<0.05, δ=0.05
6. |x/2+1|=(1/2)|x(2)|<0.1if|x+2|<0.2, δ=0.2
7. |7x+5(2)|=7|x(1)|<0.01 if |x+1|<1
700,δ=1
700
8. |5x213|=5|x3|<0.01 if |x3|<1
500,δ=1
500
9. ¯¯¯¯
x24
x24¯¯¯¯
=¯¯¯¯
x244x+8
x2¯
¯
¯
¯
=|x2|<0.05 if |x2|<0.05, δ=0.05
10. ¯¯¯¯
x21
x+1 (2)¯¯¯¯
=¯¯¯¯
x21+2x+2
x+1 ¯
¯
¯
¯
=|x+1|<0.05 if |x+1|<0.05, δ=0.05
11. if δ<1 then ¯¯x216¯¯=|x4||x+4|<9|x4|<0.001 if |x4|<1
9000,δ=1
9000
12. if δ<1 then |x3|¯¯¯¯
x+3
x+3¯
¯
¯
¯
=|x9|
|
x+3|<|x9|
8+3 <1
4|x9|<0.001 if |x9|<0.004, δ=0.004
13. if δ1 then ¯¯¯¯
1
x1
5¯¯¯¯
=|x5|
5|x||x5|
20 <0.05 if |x5|<1, δ=1
14. |x0|=|x|<0.05 if |x|<0.05, δ=0.05 15. |3x15|=3|x5|if |x5|<1
3²,δ=1
3²
16. |(4x5) 7|=|4x12|=4|x3|if |x3|<1
4²,δ=1
4²
17. |2x7(3)|=2|x2|if |x2|<1
2²,δ=1
2²
51 Chapter 2
18. |23x5|=3|x+1|if |x+1|<1
3²,δ=1
3²
19. ¯¯¯¯
x2+x
x1¯¯¯¯
=|x|if |x|,δ=²20. ¯¯¯¯
x29
x+3 (6)¯¯¯¯
=|x+3|if |x+3|,δ=²
21. if δ<1 then |2x22|=2|x1||x+1|<6|x1|if |x1|<1
6²,δ= min(1,1
6²)
22. if δ<1 then |x254|=|x3||x+3|<7|x3|if |x3|<1
7²,δ= min(1,1
7²)
23. if δ<1
6then ¯¯¯¯
1
x3¯¯¯¯
=
3|x1
3|
|x|<18|x1
3|if |x1
3|<1
18²,δ= min( 1
6,1
18 ²)
24. If δ<1
2and |x(2)|then 5
2<x<3
2
,x+1<1
2,|x+1|>1
2; then
¯¯¯¯
1
x+1(1)¯¯¯¯
=|x+2|
|x+1|<2|x+2|if |x+2|<1
2²,δ= min( 1
2,1
2²)
25. |x2|=¯¯¯¯
(x2)x+2
x+2¯
¯
¯
¯
=¯
¯
¯
¯
x4
x+2¯
¯
¯
¯
<1
2|x4|if |x4|<2²,δ=2²
26. |x+33|¯
¯
¯
¯
x+3+3
x+3+3¯
¯
¯
¯
=|x6|
x+3+3 1
3|x6|if |x6|<3²,δ=3²
27. |f(x)3|=|x+23|=|x1|if 0 <|x1|,δ=²
28. If δ<1 then |(x2+3x1) 9|=|(x2)(x+5)|<8|x2|if |x2|<1
8²,δ= min (1,1
8²)
29. (a) |f(x)L|=1
x2<0.1ifx>
10, N=10
(b) |f(x)L|=|x
x+11|=|1
x+1|<0.01 if x+1>100, N=99
(c) |f(x)L|=¯¯¯¯
1
x3¯¯¯¯
<1
1000 if |x|>10, x<10, N=10
(d) |f(x)L|=¯¯¯¯
x
x+11
¯
¯
¯
¯
=¯
¯
¯
¯
1
x+1¯
¯
¯
¯
<0.01 if |x+1|>100, x1>100, x<101, N=101
30. (a) ¯¯¯¯
1
x3¯¯¯¯
<0.1, x>101/3,N=10
1/3(b) ¯¯¯¯
1
x3¯¯¯¯
<0.01, x>1001/3,N= 1001/3
(c) ¯¯¯¯
1
x3¯¯¯¯
<0.001, x>10, N=10
31. (a) x2
1
1+x
2
1
=1²,x
1=
r1²
²;x
2
2
1+x
2
2
=1²,x
2=r1²
²
(b) N=r1²
²(c) N=r1²
²
32. (a) x1=13;x2=13(b) N=13(c) N=13
33. 1
x2<0.01 if |x|>10, N=10
Exercise Set 2.3 52
34. 1
x+2 <0.005 if |x+2|>200, x>198, N= 198
35. ¯¯¯¯
x
x+11
¯
¯
¯
¯
=¯
¯
¯
¯
1
x+1¯
¯
¯
¯
<0.001 if |x+1|>1000, x>999, N= 999
36. ¯¯¯¯
4x1
2x+52
¯
¯
¯
¯
=¯
¯
¯
¯
11
2x+5¯
¯
¯
¯
<0.1if|2x+5|>110, 2x>105, N=52.5
37. ¯¯¯¯
1
x+20
¯
¯
¯
¯
<0.005 if |x+2|>200, x2>200, x<202, N=202
38. ¯¯¯¯
1
x2¯¯¯¯
<0.01 if |x|>10, x>10, x<10, N=10
39. ¯¯¯¯
4x1
2x+52
¯
¯
¯
¯
=¯
¯
¯
¯
11
2x+5¯
¯
¯
¯
<0.1if|2x+5|>110, 2x5>110, 2x<115, x<57.5, N=57.5
40. ¯¯¯¯
x
x+11
¯
¯
¯
¯
=¯
¯
¯
¯
1
x+1¯
¯
¯
¯
<0.001 if |x+1|>1000, x1>1000, x<1001, N=1001
41. ¯¯¯¯
1
x2¯¯¯¯
if |x|>1
²,N=1
²42. ¯¯¯¯
1
x¯¯¯¯
if |x|>1
²,x>1
²,x<1
²,N=1
²
43. ¯¯¯¯
1
x+2¯
¯
¯
¯
if |x+2|>1
²,x2<1
²,x>21
²,N=21
²
44. ¯¯¯¯
1
x+2¯
¯
¯
¯
if |x+2|>1
²,x+2>1
²,x>1
²2, N=1
²2
45. ¯¯¯¯
x
x+11
¯
¯
¯
¯
=¯
¯
¯
¯
1
x+1¯
¯
¯
¯
if |x+1|>1
²,x>1
²1, N=1
²1
46. ¯¯¯¯
x
x+11
¯
¯
¯
¯
=¯
¯
¯
¯
1
x+1¯
¯
¯
¯
if |x+1|>1
²,x1>1
²,x<11
²,N=11
²
47. ¯¯¯¯
4x1
2x+52
¯
¯
¯
¯
=¯
¯
¯
¯
11
2x+5¯
¯
¯
¯
if |2x+5|>11
²,2x5>11
²,2x<11
²5, x<11
2²5
2,N=5
211
2²
48. ¯¯¯¯
4x1
2x+52
¯
¯
¯
¯
=¯
¯
¯
¯
11
2x+5¯
¯
¯
¯
if |2x+5|>11
²,2x> 11
²5, x>11
2²5
2,N=11
2²5
2
49. (a) 1
x2>100 if |x|<1
10 (b) 1
|x1|>1000 if |x1|<1
1000
(c) 1
(x3)2<1000 if |x3|<1
1010 (d) 1
x4<10000 if x4<1
10000,|x|<1
10
50. (a) 1
(x1)2>10 if and only if |x1|<1
10 (b) 1
(x1)2>1000 if and only if
|x1|<1
1010
(c) 1
(x1)2>100000 if and only if |x1|<1
10010
51. if M>0 then 1
(x3)2>M,0<(x3)2<1
M,0<|x3|<1
M,δ=1
M
53 Chapter 2
52. if M<0 then 1
(x3)2<M,0<(x3)2<1
M,0<|x3|<1
M,δ=1
M
53. if M>0 then 1
|x|>M,0<|x|<1
M,δ=1
M
54. if M>0 then 1
|x1|>M,0<|x1|<1
M,δ=1
M
55. if M<0 then 1
x4<M,0<x
4<1
M,|x|<1
(M)
1/4,δ=1
(M)
1/4
56. if M>0 then 1
x4>M,0<x
4<1
M,x< 1
M
1/4,δ=1
M
1/4
57. if x>2 then |x+13|=|x2|=x2if 2 <x<2+²,δ=²
58. if x<1 then |3x+25|=|3x3|=3|x1|= 3(1 x)if 1 x<1
3²,11
3
²<x<1, δ=1
3²
59. if x>4 then x4if x4
2
,4<x<4+²
2
,δ=²
2
60. if x<0 then x<²if x<²
2
,²
2<x<0, δ=²2
61. if x>2 then |f(x)2|=|x2|=x2if 2 <x<2+²,δ=²
62. if x<2 then |f(x)6|=|3x6|=3|x2|= 3(2 x)if 2 x< 1
3²,21
3
²<x<2, δ=1
3²
63. (a) if M<0 and x>1 then 1
1x<M,x1<1
M,1<x<11
M,δ=1
M
(b) if M>0 and x<1 then 1
1x>M,1x< 1
M,11
M<x<1, δ=1
M
64. (a) if M>0 and x>0 then 1
x>M,x< 1
M,0<x< 1
M,δ=1
M
(b) if M<0 and x<0 then 1
x<M,x<1
M,1
M<x<0, δ=1
M
65. (a) Given any M>0 there corresponds N>0 such that if x>N then f(x)>M,x+1>M,
x>M1, N=M1.
(b) Given any M<0 there corresponds N<0 such that if x<N then f(x)<M,x+1 <M,
x<M1, N=M1.
66. (a) Given any M>0 there corresponds N>0 such that if x>N then f(x)>M,x
23>M,
x>
M+3,N=
M+3.
(b) Given any M<0 there corresponds N<0 such that if x<N then f(x)<M,x
3+5<M,
x<(M5)1/3,N=(M5)1/3.
67. if δ2 then |x3|<2, 2<x3<2, 1 <x<5, and |x29|=|x+3||x3|<8|x3|if
|x3|<1
8²,δ= min ¡2,1
8²¢
68. (a) We don’t care about the value of fat x=a, because the limit is only concerned with values of
xnear a. The condition that fbe defined for all x(except possibly x=a) is necessary, because
if some points were excluded then the limit may not exist; for example, let f(x)=xif 1/x is
not an integer and f(1/n) = 6. Then lim
x0f(x) does not exist but it would if the points 1/n were
excluded.
(b) when x<0 then xis not defined (c) yes; if δ0.01 then x>0, so xis defined
Exercise Set 2.4 54
69. |(x34x+5)2|<0.05, 0.05 <(x34x+5)2<0.05, 1.95 <x
34x+5 <2.05; x34x+5=1.95
at x=1.0616, x34x+5=2.05 at x=0.9558; δ= min (1.0616 1,10.9558) = 0.0442
2.2
1.9
0.9 1.1
70. 5x+1=3.5atx=2.25, 5x+1=4.5atx=3.85, so δ= min(3 2.25,3.85 3)=0.75
5
0
24
EXERCISE SET 2.4
1. (a) no, x=2 (b) no, x=2 (c) no, x=2 (d) yes
(e) yes (f) yes
2. (a) no, x=2 (b) no, x=2 (c) no, x=2 (d) yes
(e) no, x=2 (f) yes
3. (a) no, x=1,3(b) yes (c) no, x=1 (d) yes
(e) no, x=3 (f) yes
4. (a) no, x=3 (b) yes (c) yes (d) yes
(e) no, x=3 (f) yes
5. (a) 3(b) 3
6. 2/5
7. (a) y
x
3
(b) y
x
1
13
55 Chapter 2
(c) y
x
-1
1
1
(d) y
x
23
8. f(x)=1/x,g(x)=(0ifx=0
sin 1
xif x6=0
9. (a) C
t
1
$4
2
(b) One second could cost you one dollar.
10. (a) no; disasters (war, flood, famine, pestilence, for example) can cause discontinuities
(b) continuous
(c) not usually continuous; see Exercise 9
(d) continuous
11. none 12. none 13. none
14. fis not defined at x=±115. fis not defined at x=±4
16. fis not defined at x=7±57
2
17. fis not defined at x=±3
18. fis not defined at x=0,419. none
20. fis not defined at x=0,3
21. none; f(x)=2x+ 3 is continuous on x<4 and f(x)=7+16
xis continuous on 4 <x;
lim
x4f(x) = lim
x4+f(x)=f(4)=11sofis continuous at x=4
22. lim
x1f(x) does not exist so fis discontinuous at x=1
23. (a) fis continuous for x<1, and for x>1; lim
x1f(x)=5, lim
x1
+f(x)=k,soifk= 5 then fis
continuous for all x
(b) fis continuous for x<2, and for x>2; lim
x2f(x)=4k, lim
x2+f(x)=4+k,soif4k=4+k,
k=4/3 then fis continuous for all x
24. (a) no, fis not defined at x=2 (b) no, fis not defined for x2
(c) yes (d) no, fis not defined for x2
Exercise Set 2.4 56
25. (a) y
x
c
(b) y
x
c
26. (a) f(c) = lim
xcf(x)
(b) lim
x1f(x)=2
y
x
1
-1
lim
x1g(x)=1
y
x
1
1
(c) Define f(1) = 2 and redefine g(1)=1.
27. (a) x= 0, lim
x0f(x)=16=+1= lim
x0
+f(x) so the discontinuity is not removable
(b) x=3; define f(3) = 3 = lim
x→−3f(x), then the discontinuity is removable
(c) fis undefined at x=±2; at x= 2, lim
x2f(x) = 1, so define f(2) = 1 and fbecomes continuous
there; at x=2, lim
x→−2does not exist, so the discontinuity is not removable
28. (a) fis not defined at x= 2; lim
x2f(x) = lim
x2
x+2
x
2+2x+4 =1
3, so define f(2) = 1
3and fbecomes
continuous there
(b) lim
x2f(x)=16=4= lim
x2
+f(x), so fhas a nonremovable discontinuity at x=2
(c) lim
x1f(x)=86=f(1), so fhas a removable discontinuity at x=1
29. (a) discontinuity at x=1/2, not removable; at
x=3, removable
y
x
-5
5
5
(b) 2x2+5x3=(2x1)(x+3)
57 Chapter 2
30. (a) there appears to be one discontinuity near
x=1.52
4
–4
-3 3
(b) one discontinuity at x=1.52
31. For x>0, f(x)=x
3/5=(x
3
)
1/5is the composition (Theorem 2.4.6) of the two continuous functions
g(x)=x
3and h(x)=x
1/5and is thus continuous. For x<0, f(x)=f(x) which is the composition
of the continuous functions f(x) (for positive x) and the continuous function y=x. Hence f(x)is
continuous for all x>0. At x=0,f(0) = lim
x0f(x)=0.
32. x4+7x
2+11>0, thus f(x) is the composition of the polynomial x4+7x
2+ 1, the square root
x, and the function 1/x and is therefore continuous by Theorem 2.4.6.
33. (a) Let f(x)=kfor x6=cand f(c)=0;g(x)=lfor x6=cand g(c)=0. Ifk=lthen f+gis
continuous; otherwise it’s not.
(b) f(x)=kfor x6=c,f(c)=1;g(x)=l6= 0 for x6=c,g(c)=1. Ifkl = 1, then fg is continuous;
otherwise it is not.
34. A rational function is the quotient f(x)/g(x) of two polynomials f(x) and g(x). By Theorem 2.4.2 f
and gare continuous everywhere; by Theorem 2.4.3 f/g is continuous except when g(x)=0.
35. Since fand gare continuous at x=cwe know that lim
xcf(x)=f(c) and lim
xcg(x)=g(c). In the
following we use Theorem 2.2.2.
(a) f(c)+g(c) = lim
xcf(x) + lim
xcg(x) = lim
xc(f(x)+g(x)) so f+gis continuous at x=c.
(b) same as (a) except the + sign becomes a sign
(c) f(c)
g(c)=
lim
xcf(x)
lim
xcg(x)= lim
xc
f(x)
g(x)so f
gis continuous at x=c
36. h(x)=f(x)g(x) satisfies h(a)>0, h(b)<0. Use the Intermediate Value Theorem or Theorem
2.4.9.
37. Of course such a function must be discontinuous. Let f(x)=1on0x<1, and f(x)=1on
1x2.
38. A square whose diagonal has length rhas area f(r)=r
2
/2. Note that
f(r)=r
2
/2r
2
/2<2r
2=f(2r). By the Intermediate Value Theorem there must be a value
cbetween rand 2rsuch that f(c)=πr2/2, i.e. a square of diagonal cwhose area is πr2/2.
39. The cone has volume πr2h/3. The function V(r)=πr2h(for variable rand fixed h) gives the volume
of a right circular cylinder of height hand radius r, and satisfies V(0) r
2
h/3<V(r). By the
Intermediate Value Theorem there is a value cbetween 0 and rsuch that V(c)=πr2h/3, so the
cylinder of radius c(and height h) has volume equal to that of the cone.
40. If f(x)=x
34x+ 1 then f(0)=1,f(1) = 2. Use Theorem 2.4.9.
41. If f(x)=x
3+x
22xthen f(1)=2,f(1) = 0. Use the Intermediate Value Theorem.
Exercise Set 2.4 58
42. Since lim
x→−∞ p(x)=−∞ and lim
x+p(x)=+(or vice versa, if the leading coefficient of pis negative),
it follows that for M=1 there corresponds N1<0, and for M= 1 there is N2>0, such that
p(x)<1 for x<N
1and p(x)>1 for x>N
2
. Choose x1<N
1and x2>N
2and use Theorem 2.4.9
on the interval [x1,x
2] to find a solution of p(x)=0.
43. For the negative root, use intervals on the x-axis as follows: [2,1]; since f(1.3) <0 and
f(1.2) >0, the midpoint x=1.25 of [1.3,1.2] is the required approximation of the root.
For the positive root use the interval [0,1]; since f(0.7) <0 and f(0.8) >0, the midpoint x=0.75 of
[0.7,0.8] is the required approximation.
44. x=1.25 and x=0.75.
10
-5
-2 -1
1
-1
0.7 0.8
45. For the negative root, use intervals on the x-axis as follows: [2,1]; since f(1.7) <0 and
f(1.6) >0, use the interval [1.7,1.6]. Since f(1.61) <0 and f(1.60) >0 the midpoint
x=1.605 of [1.61,1.60] is the required approximation of the root. For the positive root use
the interval [1,2]; since f(1.3) >0 and f(1.4) <0, use the interval [1.3,1.4]. Since f(1.37) >0 and
f(1.38) <0, the midpoint x=1.375 of [1.37,1.38] is the required approximation.
46. x=1.605 and x=1.375.
1
-2
-1.7 -1.6
1
-0.5
1.3 1.4
47. x=2.24.
48. Set f(x)= a
x1+b
x3
. Since lim
x1+f(x)=+and lim
x3f(x)=−∞ there exist x1>1 and x2<3
(with x2>x
1
) such that f(x)>1 for 1 <x<x
1and f(x)<1 for x2<x<3. Choose x3in (1,x
1)
and x4in (x2,3) and apply Theorem 2.4.9 on [x3,x
4].
49. The uncoated sphere has volume 4π(x1)3/3 and the coated sphere has volume 4πx3/3. If the volume
of the uncoated sphere and of the coating itself are the same, then the coated sphere has twice the
volume of the uncoated sphere. Thus 2(4π(x1)3/3)=4πx3/3, or x36x2+6x2 = 0, with the
solution x=4.847 cm.
50. Let g(t) denote the altitude of the monk at time tmeasured in hours from noon of day one, and let f(t)
denote the altitude of the monk at time tmeasured in hours from noon of day two. Then g(0) <f(0)
and g(12) >f(12). Use Exercise 36.
51. We must show lim
xcf(x)=f(c). Let ²>0; then there exists δ>0 such that if |xc|then
|f(x)f(c)|. But this certainly satisfies Definition 2.3.3.
59 Chapter 2
EXERCISE SET 2.5
1. none 2. x=π3. x=,n=0,±1,±2,...
4. x=+π/2, n=0,±1,±2,... 5. x=,n=0,±1,±2,...
6. none 7. none 8. x=+π/2, n=0,±1,±2,...
9. 2+π/6,2+5π/6, n=0,±1,±2,... 10. none
11. (a) sin x, x3+7x+1 (b) |x|,sin x(c) x3,cos x, x +1
(d) x, 3+x, sin x, 2x(e) sin x, sin x(f) x52x3+1,cos x
12. (a) Use Theorem 2.4.6. (b) g(x) = cos x,g(x)= 1
x
2+1,g(x)=x
2+1
13. cos µlim
x+
1
x=cos0=1 14. sin µlim
x+
2
x=sin0=0
15. sin µlim
x+
πx
23x= sin ³π
3´=3
216. 1
2lim
h0
sin h
h=1
2
17. 3 lim
θ0
sin 3θ
3θ=3 18. µlim
θ0+
1
θlim
θ0+
sin θ
θ=+
19. lim
x0
sin x
x=120. 1
3µlim
x0
sin x
x2
=1
3
21. 1
5lim
x0+xlim
x0+
sin x
x=0 22. sin 6x
sin 8x=6
8
sin 6x
6x
8x
sin 8x, so lim
x0
sin 6x
sin 8x=6
8=3
4
23. tan 7x
sin 3x=7
3 cos 7x
sin 7x
7x
3x
sin 3xso lim
x0
tan 7x
sin 3x=7
3(1)(1)(1) = 7
3
24. µlim
θ0sin θlim
θ0
sin θ
θ=0 25. µlim
h0cos hlim
h0
h
sin h=1
26. sin h
1cos h=sin h
1cos h
1 + cos h
1 + cos h=sin h(1 + cos h)
1cos2h=1 + cos h
sin h; no limit
27. θ2
1cos θ
1 + cos θ
1 + cos θ=θ2(1 + cos θ)
1cos2θ=µθ
sin θ2
(1 + cos θ) so lim
θ0
θ2
1cos θ= (1)22=2
28. cos(1
2πx) = sin(1
2π) sin x= sin x, so lim
x0
x
cos ¡1
2πx¢=1
29. 030. t2
1cos2t=µt
sin t2
,solim
t0
t
2
1cos2t=1
31. 1cos 5h
cos 7h1=(1 cos 5h)(1 + cos 5h)(1 + cos 7h)
(cos 7h1)(1 + cos 5h)(1 + cos 7h)=25
49 µsin 5h
5h2µ7h
sin 7h21 + cos 7h
1 + cos 5hso
lim
h0
1cos 5h
cos 7h1=25
49
Exercise Set 2.5 60
32. lim
x0+sin µ1
x= lim
t+sin t;
limit does not exist
33. lim
x0+cos µ1
x= lim
t+cos t;
limit does not exist
34. lim
x0x3 lim
x0
sin x
x=335. 2 + lim
x0
sin x
x=3
36. k=f(0) = lim
x0
sin 3x
x= 3 lim
x0
sin 3x
3x=3,sok=3
37. lim
x0f(x)=klim
x0
sin kx
kx cos kx =k, lim
x0+f(x)=2k
2
,sok=2k
2
,k=1
2
38. No; sin x/|x|has unequal one-sided limits.
39. (a) lim
t0+
sin t
t=1 (b) lim
t0
1cos t
t= 0 (Theorem 2.5.3)
(c) sin(πt) = sin t, so lim
xπ
πx
sin x= lim
t0
t
sin t=1
40. cos ³π
2t´= sin t, so lim
x2
cos(π/x)
x2= lim
t0
(π2t) sin t
4t= lim
t0
π2t
4lim
t0
sin t
t=π
4
41. t=x1; sin(πx) = sin(πt +π)=sin πt; and lim
x1
sin(πx)
x1=lim
t0
sin πt
t=π
42. t=xπ/4; tan x1= 2 sin t
cos tsin t; lim
xπ/4
tan x1
xπ/4= lim
t0
2 sin t
t(cos tsin t)=2
43. xxcos µ50π
xx44. x2x2sin µ50π
3
xx2
45. lim
x0f(x) = 1 by the Squeezing Theorem
-1
0
1
-1 1 x
y = cos x
y = 1 – x2
y = f(x)
46. lim
x+f(x) = 0 by the Squeezing Theorem
y
x
-1
4
47. Let g(x)=1
xand h(x)= 1
x
; thus lim
x+
sin x
x= 0 by the Squeezing Theorem.
48. y
x
y
x
61 Chapter 2
49. (a) sin x= sin twhere xis measured in degrees, tis measured in radians and t=πx
180.Thus
lim
x0
sin x
x= lim
t0
sin t
(180t/π)=π
180.
50. cos x= cos twhere xis measured in degrees, tin radians, and t=πx
180.Thus
lim
x0
1cos x
x= lim
t0
1cos t
(180t/π)=0.
51. (a) sin 10=0.17365 (b) sin 10= sin π
18 π
18 =0.17453
52. (a) cos θ= cos 2α=12 sin2(θ/2)
12(θ/2)2=11
2θ
2
(b) cos 10=0.98481
(c) cos 10=11
2³π
18´20.98477
53. (a) 0.08749 (b) tan 5π
36 =0.08727
54. (a) h=52.55 ft (b) Since αis small, tan απα
180 isagood
approximation.
(c) h52.36 ft
55. (a) Let f(x)=xcos x;f(0) = 1, f(π/2)=π/2. By the IVT there must be a solution of
f(x)=0.
(b) y
x
0
0.5
1
1.5
y = cos x
π/2
y = x
(c) 0.739
56. (a) f(x)=x+ sin x1; f(0) = 1, f(π/6) = π/61/2>0. By the IVT there must be a solution
of f(x)=0.
(b) y
x
0
0.5
π/6
y = x
y = 1– sin x
(c) x=0.511.
57. (a) There is symmetry about the equatorial plane.
(b) Let g(φ) be the given function. Then g(38) <9.8 and g(39) >9.8, so by the Intermediate Value
Theorem there is a value cbetween 38 and 39 for which g(c)=9.8 exactly.
58. (a) does not exist
(b) the limit is zero
Supplementary Exercises 2 62
(c) For part (a) consider the fact that given any δ>0 there are infinitely many rational numbers x
satisfying |x|and there are infinitely many irrational numbers satisfying the same condition.
Thus if the limit were to exist, it could not be zero because of the rational numbers, and it could
not be 1 because of the irrational numbers, and it could not be anything else because of all the
numbers. Hence the limit cannot exist. For part (b) use the Squeezing Theorem with +xand
xas the ‘squeezers’.
CHAPTER 2 SUPPLEMENTARY EXERCISES
1. (a) 1(b) no limit (c) no limit (d) 1(e) 3
(f) 0(g) 0(h) 2(i) 1/2
2. (a) f(x)=2x/(x1) (b) y
x
10
10
4. f(x)=1 for ax< a+b
2and f(x)=1for a+b
2xb.
5. (a) 0.222 ...,0.24390,0.24938,0.24994,0.24999,0.25000; for x6=2,f(x)= 1
x+2, so the limit is 1/4;
the limit is 4.
(b) 1.15782,4.22793,4.00213,4.00002,4.00000,4.00000; to prove, use tan 4x
x=sin 4x
xcos 4x=4
cos 4x
sin 4x
4x.
6. (a) y=0 (b) none (c) y=2
7. (a) x 1 0.1 0.01 0.001 0.0001 0.00001 0.000001
f(x) 1.000 0.443 0.409 0.406 0.406 0.405 0.405
(b) y
x
0.5
-1 1
8. (a) 0.4 amperes (b) [0.3947,0.4054] (c) ·3
7.5+δ,3
7.5δ¸
(d) 0.0187 (e) It becomes infinite.
9. (a) y
x
0.4
1
0.2 0.8
(b) Let g(x)=xf(x). Then g(1) 0 and
g(0) 0; by the Intermediate Value Theo-
rem there is a solution cin [0,1] of g(c)=0.
63 Chapter 2
10. (a) lim
θ0tan µ1cos θ
θ= tan µlim
θ0
1cos θ
θ= tan µlim
θ0
1cos2θ
θ(1 + cos θ)=tan0=0
(b) t1
t1=t1
t1
t+1
t+1 =(t1)(t+1)
t1=
t+ 1; lim
t1
t1
t1= lim
t1(t+1)=2
(c) (2x1)5
(3x2+2x7)(x39x)=(2 1/x)5
(3+2/x 7/x2)(1 9/x2)25/3=32/3asx+
(d) sin(θ+π) = sin θcos πcos θsin π=sin θ, so lim
θ0cos µsin(θ+π)
2θ= lim
θ0cos µsin θ
2θ
= cos µlim
θ0sin θ
2θ= cos ¡1
2¢
11. If, on the contrary, f(x0)<0 for some x0in [0,1], then by the Intermediate Value Theorem we would
have a solution of f(x) = 0 in [0,x
0], contrary to the hypothesis.
12. For x<2fis a polynomial and is continuous; for x>2fis a polynomial and is continuous. At
x=2,f(2) = 13 6=13= lim
x2
+f(x)sofis not continuous there.
13. f(6) = 185, f(0) = 1, f(2) = 65; apply Theorem 2.4.9 twice, once on [6,0] and once on [0,2]
14. 3.317
15. Let ²=f(x0)/2>0; then there corresponds δ>0 such that if |xx0|then |f(x)f(x0)|,
²<f(x)f(x
0
),f(x)>f(x
0
)²=f(x
0
)/2>0 for x0δ<x<x
0+δ.
16. y
x
1
4
17. (a) 1.449 (xmust be ≥−1) (b) x=0,±1.896
18. Since lim
x0sin(1/x) does not exist, no conclusions can be drawn.
19. (a) 5, no limit, 10, 10, no limit, +,
no limit
(b) 5,10,0,0,10,−∞,+
20. (a) 1/5,+,1/10,1/10, no limit, 0, 0 (b) 1,+1,1,1, no limit, 1,+1
21. a/b 22. 123. does not exist
24. 225. 026. k227. 3k
28. The numerator satisfies: |2x+xsin 3x|≤|2x|+|x|=3|x|. Since the denominator grows like x2, the
limit is 0.
30. (a) x2+42
x
2
x
2+4+2
x
2+4+2=x
2
x
2
(
x
2+4+2) =1
x
2+4+2,so
lim
x0
x2+42
x
2= lim
x0
1
x2+4+2 =1
4
Supplementary Exercises 2 64
(b) x1 0.1 0.01 0.001 0.0001 0.00001
f(x) 0.236 0.2498 0.2500 0.2500 0.25000 0.00000
The division may entail division by zero (e.g. on an HP 42S), or the numerator may be inaccurate
(catastrophic subtraction, e.g.).
(c) in the 3d picture, catastrophic subtraction
31. x0.1 0.01 0.001 0.0001 0.00001 0.000001
f(x) 2.59 2.70 2.717 2.718 2.7183 2.71828
32. x3.1 3.01 3.001 3.0001 3.00001 3.000001
f(x) 5.74 5.56 5.547 5.545 5.5452 5.54518
33. x1.1 1.01 1.001 1.0001 1.00001 1.000001
f(x) 0.49 0.54 0.540 0.5403 0.54030 0.54030
34. x0.1 0.01 0.001 0.0001 0.00001 0.000001
f(x) 99.0 9048.8 368063.3 4562.7 3.9×1034 0
35. x100 1000 104105106107
f(x) 0.48809 0.49611 0.49876 0.49961 0.49988 0.49996
36. For large values of x(not much more than 100) the computer can’t handle 5xor 3x, yet the limit is 5.
37. δ=0.07747 38. $2,001.60, $2,009.66, $2,013.62, $2013.75
39. (a) x3x1=0,x
3=x+1,x=3
x+1. (b) y
x
-1
2
-1 1
(c) y
x
x1x2x3
(d) 1,1.26,1.31,1.322,1.324,1.3246,1.3247
40. (a) y
x
10
20
-1 1 32
x1x2
(b) 0,1,2,9,730
41. x=5
x+ 2; 1.267168 42. x= cos x; 0.739085 (after 33 iterations!).
CHAPTER 3
The Derivative
EXERCISE SET 3.1
1. (a) msec =f(4) f(3)
43=(4)2/2(3)2/2
1=7
2
(b) mtan = lim
x13
f(x1)f(3)
x13= lim
x13
x2
1/29/2
x13
= lim
x13
x2
19
2(x13) = lim
x13
(x1+ 3)(x13)
2(x13) = lim
x13
x1+3
2=3
(c) mtan = lim
x1x0
f(x1)f(x0)
x1x0
= lim
x1x0
x2
1/2x2
0/2
x1x0
= lim
x1x0
x2
1x2
0
2(x1x0)
= lim
x1x0
x1+x0
2=x0
(d)
x
y
Tangent
Secant
5
10
2. (a) msec =f(2) f(1)
21=2313
1=7
(b) mtan = lim
x11
f(x1)f(1)
x11= lim
x11
x3
11
x11= lim
x11
(x11)(x2
1+x1+1)
x
11
= lim
x11(x2
1+x1+1)=3
(c) mtan = lim
x1x0
f(x1)f(x0)
x1x0
= lim
x1x0
x3
1x3
0
x1x0
= lim
x1x0
(x2
1+x1x0+x2
0)
=3x
2
0
(d)
x
y
Secant
Tangent
5
9
3. (a) msec =f(3) f(2)
32=1/31/2
1=1
6
(b) mtan = lim
x12
f(x1)f(2)
x12= lim
x12
1/x11/2
x12
= lim
x12
2x1
2x1(x12) = lim
x121
2x1
=1
4
(c) mtan = lim
x1x0
f(x1)f(x0)
x1x0
= lim
x1x0
1/x11/x0
x1x0
= lim
x1x0
x0x1
x0x1(x1x0)
= lim
x1x0
1
x0x1
=1
x2
0
(d)
x
y
Secant
Tangent
1
4
65
Exercise Set 3.1 66
4. (a) msec =f(2) f(1)
21=1/41
1=3
4
(b) mtan = lim
x11
f(x1)f(1)
x11= lim
x11
1/x2
11
x11
= lim
x11
1x2
1
x2
1(x11) = lim
x11(x1+1)
x
2
1
=2
(c) mtan = lim
x1x0
f(x1)f(x0)
x1x0
= lim
x1x0
1/x2
11/x2
0
x1x0
= lim
x1x0
x2
0x2
1
x2
0x2
1(x1x0)
= lim
x1x0
(x1+x0)
x2
0x2
1
=2
x3
0
(d)
x
y
Tangent Secant
1
2
5. (a) mtan = lim
x1x0
f(x1)f(x0)
x1x0
= lim
x1x0
(x2
1+1)(x
2
0+1)
x
1x
0
= lim
x1x0
x2
1x2
0
x1x0
= lim
x1x0
(x1+x0)=2x
0
(b) mtan =2(2)=4
6. (a) mtan = lim
x1x0
f(x1)f(x0)
x1x0
= lim
x1x0
(x2
1+3x
1+2)(x
2
0+3x
0+2)
x
1x
0
= lim
x1x0
(x2
1x2
0)+3(x
1x
0
)
x
1x
0
= lim
x1x0
(x1+x0+3)=2x
0+3
(b) mtan =2(2)+3=7
7. (a) mtan = lim
x1x0
f(x1)f(x0)
x1x0
= lim
x1x0
x1x0
x1x0
= lim
x1x0
1
x1+x0
=1
2x0
(b) mtan =1
21=1
2
8. (a) mtan = lim
x1x0
f(x1)f(x0)
x1x0
= lim
x1x0
1/x11/x0
x1x0
= lim
x1x0
x0x1
x0x1(x1x0)= lim
x1x0
1
x0x1(x1+x0)=1
2x3/2
0
(b) mtan =1
2(4)3/2=1
16
9. (a) mtan = (50 10)/(15 5)
=40/10
= 4 m/s
(b)
t (s)
4
10 20
Velocity
(m/s)
67 Chapter 3
10. (a) (10 10)/(3 0) = 0 cm/s
(b) t=0,t= 2, and t=4.2 (horizontal tangent line)
(c) maximum: t= 1 (slope >0) minimum: t= 3 (slope <0)
(d) (3 18)/(4 2) = 7.5 cm/s (slope of estimated tangent line to curve at t=3)
11. From the figure:
t
s
t0t1t2
(a) The particle is moving faster at time t0because the slope of the tangent to the curve at t0is
greater than that at t2.
(b) The initial velocity is 0 because the slope of a horizontal line is 0.
(c) The particle is speeding up because the slope increases as tincreases from t0to t1.
(d) The particle is slowing down because the slope decreases as tincreases from t1to t2.
12.
t
s
t0t1
13. It is a straight line with slope equal to the velocity.
14. (a) decreasing (slope of tangent line decreases with increasing time)
(b) increasing (slope of tangent line increases with increasing time)
(c) increasing (slope of tangent line increases with increasing time)
(d) decreasing (slope of tangent line decreases with increasing time)
15. (a) 72F at about 4:30 P.M. (b) about (67 43)/6=4
F/h
(c) decreasing most rapidly at about 9 P.M.; rate of change of temperature is about 7F/h (slope
of estimated tangent line to curve at 9 P.M.)
16. For V= 10 the slope of the tangent line is about 0.25 atm/L, for V= 25 the slope is
about 0.04 atm/L.
17. (a) during the first year after birth
(b) about 6 cm/year (slope of estimated tangent line at age 5)
(c) the growth rate is greatest at about age 14; about 10 cm/year
(d)
t (yrs)
Growth rate
(cm/year)
5101520
10
20
30
40
Exercise Set 3.2 68
18. (a) The rock will hit the ground when
16t2= 576, t2= 36, t= 6 s (only t0
is meaningful)
(b) vave =16(6)216(0)2
60= 96 ft/s
(c) vave =16(3)216(0)2
30= 48 ft/s (d) vinst = lim
t16
16t2
116(6)2
t16= lim
t16
16(t2
136)
t16
= lim
t1616(t1+ 6) = 192 ft/s
19. (a) 5(40)3= 320,000 ft (b) vave = 320,000/40=8,000 ft/s
(c) 5t3= 135 when the rocket has gone 135 ft,
so t3= 27, t=3s;
v
ave = 135/3 = 45 ft/s.
(d) vinst = lim
t140
5t3
15(40)3
t140 = lim
t140
5(t3
1403)
t140
= lim
t140 5(t2
1+40t
1+ 1600) = 24,000 ft/s
20. (a) vave =[3(3)2+3][3(1)2+1]
31= 13 mi/h
(b) vinst = lim
t11
(3t2
1+t1)4
t11= lim
t11
(3t1+ 4)(t11)
t11= lim
t11(3t1+ 4) = 7 mi/h
21. (a) vave =6(4)46(2)4
42= 720 ft/min
(b) vinst = lim
t12
6t4
16(2)4
t12= lim
t12
6(t4
116)
t12
= lim
t12
6(t2
1+ 4)(t2
14)
t12= lim
t126(t2
1+ 4)(t1+ 2) = 192 ft/min
EXERCISE SET 3.2
1. f0(1)=2,f
0(3)=0,f
0(5) = 2, f0(6) = 1/2
2. f0(4) <f
0(0) <f
0(2) <0<f
0(3)
3. (b) f0(2) = m=3 (c) the same, f0(2)=3
4. f0(1) = m=43
0(1) =1
5. y
x
0
1
6. y
x
7. y(1)=5(x3),y=5x16 8. y3=4(x+2),y=4x5
9. f0(x) = lim
h0
f(x+h)f(x)
h= lim
h0
3(x2+2xh +h2)3x2
h= lim
h03(2x+h)=6x;f(3) = 3(3)2= 27,
f0(3)=18soy27 = 18(x3), y=18x27
69 Chapter 3
10. f0(x) = lim
h0
f(x+h)f(x)
h= lim
h0
(x+h)2(x+h)(x2x)
h= lim
h0(2x+h1)=2x1;
f(2) = 222=2,f
0
(2) = 3 so y2=3(x2),y=3x4
11. f0(x) = lim
h0
f(x+h)f(x)
h= lim
h0
(x+h)3x3
h=3x
2
;f(0)=0
3=0,
f
0(0) = 0 so y0 = (0)(x0), y=0
12. f0(x) = lim
h0
f(x+h)f(x)
h= lim
h0
2(x+h)3+1(2x3+1)
h= lim
h0(6x2+6xh +2h
2
)=6x
2
;
f(1)=2(1)3+1=1, f0(1)=6soy+1=6(x+ 1), y=6x+5
13. f0(x) = lim
h0
f(x+h)f(x)
h= lim
h0
x+1+h
x+1
h
= lim
h0
x+1+h
x+1
h
x+1+h+
x+1
x+1+h+
x+1 = lim
h0
1
x+1+h+
x+1 =1
2
x+1;
f(8) = 8+1=3,f
0(8) = 1
6so y3=1
6
(x8), y=1
6x+5
3
14. f0(x) = lim
h0
f(x+h)f(x)
h= lim
h0
(x+h)4x4
h= lim
h0(4x3+6x
2
h+4xh2+h3)=4x
3
;
f(2)=(2)4= 16, f0(2) = 32 so y16 = 32(x+ 2), y=32x48
15. f0(x) = lim
x0
1
x+∆x1
x
x= lim
x0
x(x+∆x)
x(x+∆x)
x
= lim
x0x
xx(x+∆x)= lim
x01
x(x+∆x)=1
x
2
16. f0(x) = lim
x0
1
(x+∆x)
21
x
2
x= lim
x0
x2(x+∆x)
2
x
2
(x+∆x)
2
x
= lim
x0
x2x22xxx2
x2x(x+∆x)
2= lim
x02xxx2
x2x(x+∆x)
2= lim
x02xx
x2(x+∆x)
2=2
x
3
17. f0(x) = lim
x0
[a(x+∆x)
2+b][ax2+b]
x= lim
x0
ax2+2axx+a(∆x)2+bax2b
x
= lim
x0
2axx+a(∆x)2
x= lim
x0(2ax +ax)=2ax
18. f0(x) = lim
x0
1
(x+∆x)+1 1
x+1
x= lim
x0
(x+1)(x+∆x+1)
(x+ 1)(x+∆x+1)
x
= lim
x0
x+1xx1
x(x+ 1)(x+∆x+1) = lim
x0x
x(x+ 1)(x+∆x+1)
= lim
x01
(x+ 1)(x+∆x+1) =1
(x+1)
2
19. f0(x) = lim
x0
1
x+∆x1
x
x= lim
x0
xx+∆x
x
x
x+∆x
= lim
x0
x(x+∆x)
x
x
x+∆x(
x+
x+∆x)= lim
x01
xx+∆x(
x+
x+∆x)=1
2x
3/2
Exercise Set 3.2 70
20. f0(x) = lim
x0
(x+∆x)
1/3x
1/3
x, but a3b3=(ab)(a2+ab +b2) so with a=(x+∆x)
1/3
and b=x1/3
f0(x) = lim
x0
(x+∆x)x
x[(x+∆x)
2/3+(x+∆x)
1/3
x
1/3+x
2/3
]
= lim
x0
1
(x+∆x)
2/3+(x+∆x)
1/3
x
1/3+x
2/3=1
3x
2/3
21. f0(t) = lim
h0
f(t+h)f(t)
h= lim
h0
[4(t+h)2+(t+h)] [4t2+t]
h
= lim
h0
4t2+8th +4h
2+t+h4t
2t
h
= lim
h0
8th +4h
2+h
h= lim
h0(8t+4h+1)=8t+1
22. dV
dr = lim
h0
4
3π(r+h)34
3πr3
h= lim
h0
4
3π(r3+3r
2
h+3rh2+h3r3)
h
= lim
h0
4
3π(3r2+3rh +h2)=4πr2
23. (a) D(b) F(c) B(d) C(e) A(f ) E
24. Any function of the form f(x)=x+khas slope 1, and thus the derivative must be equal to 1
everywhere.
y
x
1
-2
3
-2
25. (a)
x
y(b)
x
y
-1
(c)
x
y
12
26. (a)
x
y(b)
x
y(c)
x
y
27. (a) f(x)=x
2and a=3 (b) f(x)=
xand a=1
71 Chapter 3
28. (a) f(x) = cos xand a=π(b) f(x)=x
7and a=1
29. dy
dx = lim
h0
[4(x+h)2+1][4x2+1]
h= lim
h0
4x2+8xh +4h
2+14x
21
h= lim
h0(8x+4h)=8x
dy
dx¯¯¯¯x=1
=8(1)=8
30. dy
dx = lim
h0µ5
x+h+1
µ5
x+1
h= lim
h0
5
x+h5
x
h= lim
h0
5x5(x+h)
x(x+h)
h
= limh0
5x5x5h
hx(x+h)= lim
h05
x(x+h)=5
x2
dy
dx¯¯¯¯x=2
=5
(2)2=5
4
31. y=2x+1
5
-2 2
-3
32. 1.5
0
0 2.5
33. (b) h0.5 0.1 0.01 0.001 0.0001 0.00001
(f(1+h)f(1))/h 1.6569 1.4355 1.3911 1.3868 1.3863 1.3863
34. (b) h0.5 0.1 0.01 0.001 0.0001 0.00001
(f(1+h)f(1))/h 0.50489 0.67060 0.70356 0.70675 0.70707 0.70710
35. (a) dollars/ft
(b) As you go deeper the price per foot may increase dramatically, so f0(x) is roughly the price per
additional foot.
(c) If each additional foot costs extra money (this is to be expected) then f0(x) remains positive.
(d) From the approximation 1000 = f0(300) f(301) f(300)
301 300 we see that f(301) f(300) + 1000,
so the extra foot will cost around $1000.
36. (a) gallons/dollar
(b) The increase in the amount of paint that would be sold for one extra dollar.
(c) It should be negative since an increase in the price of paint would decrease the amount of paint
sold.
(d) From 100 = f0(10) f(11) f(10)
11 10 we see that f(11) f(10) 100, so an increase of one
dollar would decrease the amount of paint sold by around 100 gallons.
37. (a) F200 lb, dF/dθ 60 lb/rad (b) µ=(dF/dθ)/F 60/200=0.3
38. (a) dN/dt 34 million/year; in 1950 the world population was increasing at the rate of about 34
million per year.
(b) dN/dt
N34
2490 0.014=1.4 %/year
Exercise Set 3.2 72
39. (a) T120F, dT/dt ≈−4.5
F/min
(b) k=(dT /dt)/(TT0)(4.5)/(120 75) = 0.1
41. lim
x0f(x) = lim
x0
3
x=0=f(0), so fis continuous at x=0.
lim
h0
f(0+h)f(0)
h= lim
h0
3
h0
h= lim
h0
1
h2/3=+,so
f
0
(0) does not exist. x
y
2-2
2
42. lim
x2f(x) = lim
x2(x2)2/3=0=f(2) so fis continuous at x=2.
lim
h0
f(2+h)f(2)
h= lim
h0
h2/30
h= lim
h0
1
h1/3which does not exist
so f0(2) does not exist.
x
y
2
5
43. lim
x1f(x) = lim
x1+f(x)=f(1), so fis continuous at x=1.
lim
h0
f(1+h)f(1)
h= lim
h0
[(1 + h)2+1]2
h= lim
h0(2+h)=2;
lim
h0+
f(1+h)f(1)
h= lim
h0+
2(1 + h)2
h= lim
h0+2=2,sof
0(1)=2.
x
y
3-3
5
44. lim
x1f(x) = lim
x1+f(x)=f(1) so fis continuous at x=1.
lim
h0
f(1+h)f(1)
h= lim
h0
[(1 + h)2+2]3
h= lim
h0(2+h)=2;
lim
h0+
f(1+h)f(1)
h= lim
h0+
[(1 + h)+2]3
h= lim
h0+1=1,sof
0(1)
does not exist. x
y
3-3
5
45. fis continuous at x= 1 because it is differentiable there, thus lim
h0f(1+h)=f(1) and so f(1)=0
because lim
h0
f(1+h)
hexists; f0(1) = lim
h0
f(1+h)f(1)
h= lim
h0
f(1+h)
h=5.
46. Let x=y= 0 to get f(0) = f(0) + f(0) + 0 so f(0)=0. f
0
(x) = lim
h0
f(x+h)f(x)
h, but (with
y=h)f(x+h)=f(x)+f(h)+5xh so f(x+h)f(x)=f(h)+5xh and f0(x) = lim
h0
f(h)+5xh
h=
lim
h0(f(h)
h+5x)=3+5x.
47. f0(x) = limh0
f(x+h)f(x)
h= lim
h0
f(x)f(h)f(x)
h= lim
h0
f(x)[f(h)1]
h=f(x) lim
h0
f(h)f(0)
h
=f(x)f0(0) = f(x)
73 Chapter 3
EXERCISE SET 3.3
1. 28x62. 36x11 3. 24x7+2 4. 2x3
5. 06. 27. 1
3(7x6+2) 8. 2
5x
9. 3ax2+2bx +c10. 1
aµ2x+1
b11. 24x9+1/
x12. 42x75
2x
13. 3x47x814. 1
2x1
x2
15. f0(x)=(3x
2+6) d
dx µ2x1
4+µ2x1
4d
dx(3x2+6)=(3x
2+ 6)(2) + µ2x1
4(6x)
=18x
23
2x+12
16. f0(x)=(2x3x
3)d
dx(7+x5)+(7+x
5
)d
dx(2 x3x3)=(2x3x
3
)(5x4)+(7+x
5
)(19x2)
=24x76x5+10x
463x27
17. f0(x)=(x
3+7x
28) d
dx(2x3+x4)+(2x
3+x
4
)d
dx(x3+7x
28)
=(x
3+7x
28)(6x44x5)+(2x
3+x
4
)(3x2+14x)=15x214x3+48x
4+32x
5
18. f0(x)=(x
1+x
2)d
dx(3x3+27)+(3x
3+ 27) d
dx(x1+x2)
=(x
1+x
2
)(9x2)+(3x
3+ 27)(x22x3)=3+6x27x254x3
19. 12x(3x2+1) 20. f(x)=x
10 +4x
6+4x
2
,f0(x)=10x
9+24x
5+8x
21. dy
dx =
(5x3) d
dx(1) (1) d
dx(5x3)
(5x3)2=5
(5x3)2;y0(1) = 5/4
22. dy
dx =
(x+2) d
dx(3) 3d
dx(x+2)
(
x+2)
2=3/(2x(x+2)
2
;y
0(1) = 3/18 = 1/6
23. dx
dt =
(2t+1)d
dt(3t)(3t)d
dt(2t+1)
(2t+1)
2=(2t+ 1)(3) (3t)(2)
(2t+1)
2=3
(2t+1)
2
24. dx
dt =
(3t)d
dt(t2+1)(t
2+1)d
dt(3t)
(3t)2=(3t)(2t)(t2+ 1)(3)
9t2=t21
3t2
25. dy
dx =
(x+3) d
dx(2x1) (2x1) d
dx(x+3)
(x+3)
2=(x+ 3)(2) (2x1)(1)
(x+3)
2=7
(x+3)
2;dy
dx¯¯¯¯x=1
=7
16
26. dy
dx =
(x25) d
dx(4x+1)(4x+1) d
dx(x25)
(x25)2=(x25)(4) (4x+ 1)(2x)
(x25)2=4x2+2x+20
(x
25)2;
dy
dx¯¯¯¯x=1
=13
8
Exercise Set 3.3 74
27. dy
dx =µ3x+2
xd
dx ¡x5+1
¢+¡x
5+1
¢d
dx µ3x+2
x
=µ3x+2
x¡5x
6
¢+¡x
5+1
¢·x(3) (3x+ 2)(1)
x2¸=µ3x+2
x¡5x
6
¢+¡x
5+1
¢µ2
x
2;
dy
dx¯¯¯¯x=1
=5(5)+2(2) = 29
28. dy
dx =(2x
7x
2
)d
dx µx1
x+1+µx1
x+1d
dx(2x7x2)
=(2x
7x
2
)·(x+ 1)(1) (x1)(1)
(x+1)
2¸+µx1
x+1(14x62x)
=(2x
7x
2
)·2
(x+1)
2+µx1
x+1(14x62x);
dy
dx¯¯¯¯x=1
=(21)2
4+ 0(14 2) = 1
2
29. 32t30. 2π31. 3πr232. 2α2+1
33. (a) dV
dr =4πr2(b) dV
dr ¯¯¯¯r=5
=4π(5)2= 100π
35. (a) g0(x)=
xf0(x)+ 1
2
xf(x), g0(4) = (2)(5) + 1
4(3) = 37/4
(b) g0(x)=xf0(x)f(x)
x2,g0(4) = (4)(5) 3
16 =23/16
36. (a) g0(x)=6x5f
0(x), g0(3) = 6(3) 5(4) = 2
(b) g0(x)=2f(x)(2x+1)f0(x)
f2
(x),g
0(3) = 2(2) 7(4)
(2)2=8
37. (a) F0(x)=5f
0(x)+2g
0(x),F0(2) = 5(4) + 2(5)=10
(b) F0(x)=f
0(x)3g
0(x),F0(2)=43(5)=19
(c) F0(x)=f(x)g
0(x)+g(x)f0(x),F0(2)=(1)(5) + (1)(4) = 9
(d) F0(x)=[g(x)f
0(x)f(x)g
0(x)]/g2(x),F0(2) = [(1)(4) (1)(5)]/(1)2=1
38. dy
dx =(1+x)(1) (1 x)(1)
(1+x)2=2
(1+x)2,dy
dx¯¯¯¯x=2
=2
9and y=1
3for x= 2 so an equation of
the tangent line is yµ1
3=2
9(x2), or y=2
9x+1
9.
39. y2=5(x+ 3), y=5x+17
40. d
·λλ0+λ6
2λ0¸=1
2λ0
d
(λλ0+λ6)= 1
2λ
0
(λ
0+6λ
5
)=λ
0+6λ
5
2λ
0
41. (a) dy/dx =21x
210x+1,d
2
y/dx2=42x10
(b) dy/dx =24x2, d2y/dx2=24
(c) dy/dx =1/x2,d2y/dx2=2/x3
(d) y=35x
516x33x,dy/dx = 175x448x23, d2y/dx2= 700x396x
75 Chapter 3
42. (a) y0=28x
615x2+2,y
00 = 168x530x
(b) y0=3,y
00 =0
(c) y0=2
5x2,y00 =4
5x3
(d) y=2x
4+3x
310x15, y0=8x
3+9x
210, y00 =24x
2+18x
43. (a) y0=5x6+5x
4
,y
00 =30x
7+20x
3
,y
000 =210x8+60x
2
(b) y=x1,y0=x2,y00 =2x
3
,y
000 =6x4
(c) y0=3ax2+b,y00 =6ax,y000 =6a
44. (a) dy/dx =10x4, d2y/dx2= 10, d3y/dx3=0
(b) dy/dx =6x34x2+1,d
2
y/dx2=18x
4+8x
3
,d
3
y/dx3=72x524x4
(c) dy/dx =4ax3+2bx,d2y/dx2=12ax2+2b,d
3
y/dx3=24ax
45. (a) f0(x)=6x,f
00(x)=6,f
000(x)=0,f
000(2)=0
(b) dy
dx =30x
48x,d
2
y
dx2= 120x38, d2y
dx2¯¯¯¯x=1
= 112
(c) d
dx £x3¤=3x4,d2
dx2£x3¤=12x
5
,d
3
dx3£x3¤=60x6,d4
dx4£x3¤= 360x7,
d4
dx4£x3¤¯¯¯¯x=1
= 360
46. (a) y0=16x
3+6x
2
,y
00 =48x
2+12x,y
000 =96x+ 12, y000(0)=12
(b) y=6x
4
,dy
dx =24x5,d2y
dx2= 120x6,d3y
dx3=720x7,d4y
dx4= 5040x8,
d4y
dx4¯¯¯¯x=1
= 5040
47. y0=3x
2+3,y
00 =6x, and y000 =6so
y
000 +xy00 2y0=6+x(6x)2(3x2+3)=6+6x
26x
26=0
48. y=x1,y0=x2,y00 =2x
3so
x3y00 +x2y0xy =x3(2x3)+x
2
(x
2
)x(x
1
)=211=0
49. F0(x)=xf0(x)+f(x), F00(x)=xf 00(x)+f0(x)+f0(x)=xf00(x)+2f0(x)
51. The graph has a horizontal tangent at points where dy
dx = 0, but
dy
dx =x23x+2=(x1)(x2)=0ifx=1,2. The
corresponding values of yare 5/6 and 2/3 so the tangent line is
horizontal at (1,5/6) and (2,2/3).
1.5
0
03
Exercise Set 3.3 76
52. dy
dx =9x2
(x2+9)
2;dy
dx = 0 when x2=9sox=±3. The points are
(3,1/6) and (3,1/6).
0.2
-0.2
-5.5 5.5
53. f0(1) f(1.01) f(1)
0.01 =0.999699 (1)
0.01 =0.0301, and by differentiation, f0(1) = 3(1)23=0
54. f0(1) f(1.01) f(1)
0.01 =1.01504 1
0.01 =1.504, and by differentiation,
f0(1) = µx+x
2x¯¯¯x=1 =1.5
55. f0(1)=0 56. f0(1)=1
57. The y-intercept is 2 so the point (0,2) is on the graph; 2=a(0)2+b(0) + c,c=2. The
x-intercept is 1 so the point (1,0) is on the graph; 0 = a+b2. The slope is dy/dx =2ax +b;at
x= 0 the slope is bso b=1, thus a= 3. The function is y=3x
2x2.
58. Let P(x0,y
0) be the point where y=x2+kis tangent to y=2x. The slope of the curve is dy
dx =2x
and the slope of the line is 2 thus at P,2x
0=2sox
0= 1. But Pis on the line, so y0=2x
0=2.
Because Pis also on the curve we get y0=x2
0+kso k=y0x2
0=2(1)2=1.
59. The points (1,1) and (2,4) are on the secant line so its slope is (4 1)/(2 + 1) = 1. The slope of
the tangent line to y=x2is y0=2xso 2x=1,x=1/2.
60. The points (1,1) and (4,2) are on the secant line so its slope is 1/3. The slope of the tangent line to
y=xis y0=1/(2x)so1/(2x)=1/3, 2x=3,x=9/4.
61. y0=2x,soatanypoint(x
0
,y
0)ony=1x
2the tangent line is yy0=2x0(xx0), or
y=2x0x+x2
0+ 1. The point (2,0) is to be on the line, so 0 = 4x0+x2
0+1, x
2
04x
0+1=0. Use
the quadratic formula to get x0=4±16 4
2=2±
3.
62. Let P1(x1,ax
2
1) and P2(x2,ax
2
2) be the points of tangency. y0=2ax so the tangent lines at P1and P2
are yax2
1=2ax1(xx1) and yax2
2=2ax2(xx2). Solve for xto get x=1
2(x1+x2) which is the
x-coordinate of a point on the vertical line halfway between P1and P2.
63. y0=3ax2+b; the tangent line at x=x0is yy0=(3ax2
0+b)(xx0) where y0=ax3
0+bx0. Solve
with y=ax3+bx to get
(ax3+bx)(ax3
0+bx0)=(3ax2
0+b)(xx0)
ax3+bx ax3
0bx0=3ax2
0x3ax3
0+bx bx0
x33x2
0x+2x
3
0=0
(xx
0
)(x2+xx02x2
0)=0
(xx
0)
2(x+2x
0
)=0,so x=2x0.
64. Let (x0,y
0) be the point of tangency. Refer to the solution to Exercise 65 to see that the endpoints of
the line segment are at (2x0,0) and (0,2y0), so (x0,y
0) is the midpoint of the segment.
77 Chapter 3
65. y0=1
x2; the tangent line at x=x0is yy0=1
x2
0
(xx0), or y=x
x2
0
+2
x0
. The tangent line
crosses the x-axis at 2x0, the y-axis at 2/x0, so that the area of the triangle is 1
2(2/x0)(2x0)=2.
66. f0(x)=3ax2+2bx +c; there is a horizontal tangent where f0(x) = 0. Use the quadratic formula on
3ax2+2bx +c= 0 to get x=(b±
b
23ac)/(3a) which gives two real solutions, one real solution,
or none if
(a) b23ac > 0(b) b23ac =0 (c) b23ac < 0
67. F=GmMr2,dF
dr =2GmMr3=2GmM
r3
68. dR/dT =0.04124 3.558 ×105Twhich decreases as Tincreases from 0 to 700. When T=0,
dR/dT =0.04124 Ω/C; when T= 700, dR/dT =0.01633 Ω/C. The resistance is most sensitive to
temperature changes at T=0
C, least sensitive at T= 700C.
69. f0(x)=1+1/x2>0 for all x6
-6 6
-6
70. f0(x)=5x
24
(x
2+4)
2;
f0(x)>0 when x2<4, i.e. on 2<x<2
1.5
-1.5
-5 5
71. (f·g·h)0=[(f·g)·h]
0=(f·g)h
0+h(f·g)
0=(f·g)h
0+h[fg0+f0g]=fgh0+fg0h+f0gh
72. (f1f2···f
n)
0=(f
0
1
f
2···f
n)+(f
1
f0
2···f
n)+···+(f
1
f
2···f0
n)
73. (a) 2(1 + x1)(x3+7)+(2x+ 1)(x2)(x3+7)+(2x+ 1)(1 + x1)(3x4)
(b) (x7+2x3)3=(x
7+2x3)(x7+2x3)(x7+2x3) so
d
dx(x7+2x3)3=(7x
6+ 2)(x7+2x3)(x7+2x3)
+(x7+2x3)(7x6+ 2)(x7+2x3)
+(x7+2x3)(x7+2x3)(7x6+2)
= 3(7x6+ 2)(x7+2x3)2
74. (a) 5x6(x2+2x)(4 3x)(2x9+1)+x
5
(2x+ 2)(4 3x)(2x9+1)
+x
5
(x
2+2x)(3)(2x9+1)+x
5
(x
2+2x)(4 3x)(18x8)
Exercise Set 3.3 78
(b) (x2+1)
50 =(x
2+ 1)(x2+1)···(x
2+ 1), where (x2+ 1) occurs 50 times so
d
dx(x2+1)
50 = [(2x)(x2+1)···(x
2+1)]+[(x
2+ 1)(2x)···(x
2+ 1)]
+···+[(x
2+ 1)(x2+1)···(2x)]
=2x(x
2+1)
49 +2x(x
2+1)
49 +···+2x(x
2+1)
49
= 100x(x2+1)
49 because 2x(x2+1)
49 occurs 50 times.
75. fis continuous at 1 because lim
x1f(x) = lim
x1+f(x)=f(1), also lim
x1f0(x) = lim
x12x= 2 and
lim
x1+f0(x) = lim
x1+
1
2x=1
2so fis not differentiable at 1.
76. fis continuous at 1/2 because lim
x1/2f(x) = lim
x1/2+f(x)=f(1/2), also
lim
x1/2f0(x) = lim
x1/23x2=3/4 and lim
x1/2+f0(x) = lim
x1/2+3x/2=3/4sof
0
(1/2)=3/4.
77. If fis differentiable at x= 1, then fis continuous there;
lim
x1+f(x) = lim
x1f(x)=f(1)=3,a+b= 3; lim
x1+f0(x)=aand
lim
x1f0(x)=6soa= 6 and b=36=3.
78. (a) lim
x0f0(x) = lim
x02x= 0 and lim
x0+f0(x) = lim
x0+2x=0;f
0
(0) does not exist because fis not
continuous at x=0.
(b) lim
x0f0(x) = lim
x0+f0(x)=0andfis continuous at x=0,sof
0(0)=0;
lim
x0f00(x) = lim
x0(2) = 2 and lim
x0+f00(x) = lim
x0+6x=0,sof
00(0) does not exist.
79. (a) f(x)=3x2ifx2/3, f(x)=3x+2 if x<2/3sofis differentiable everywhere except
perhaps at 2/3. fis continuous at 2/3, also lim
x2/3f0(x) = lim
x2/3(3)=3 and lim
x2/3+f0(x)=
lim
x2/3+(3) = 3 so fis not differentiable at x=2/3.
(b) f(x)=x
24if|x|≥2, f(x)=x
2+4 if |x|<2sofis differentiable everywhere except
perhaps at ±2. fis continuous at 2 and 2, also lim
x2f0(x) = lim
x2(2x)=4 and lim
x2+f0(x)=
lim
x2+(2x)=4sofis not differentiable at x= 2. Similarly, fis not differentiable at x=2.
80. (a) f0(x)=(1)x2,f00(x)=(2·1)x3,f000(x)=(3 ·2·1)x4
f(n)(x)=(1)nn(n1)(n2) ···1
x
n+1
(b) f0(x)=2x
3
,f
00(x)=(3·2)x4,f000(x)=(4 ·3·2)x5
f(n)(x)=(1)n(n+ 1)(n)(n1) ···2
x
n+2
81. (a) d2
dx2[cf(x)] = d
dx ·d
dx[cf (x)]¸=d
dx ·cd
dx[f(x)]¸=cd
dx ·d
dx[f(x)]¸=cd2
dx2[f(x)]
d2
dx2[f(x)+g(x)] = d
dx ·d
dx[f(x)+g(x)]¸=d
dx ·d
dx[f(x)] + d
dx[g(x)]¸=d2
dx2[f(x)] + d2
dx2[g(x)]
(b) yes, by repeated application of the procedure illustrated in part (a)
82. (f·g)0=fg0+gf0,(f·g)00 =fg00 +g0f0+gf00 +f0g0=f00g+2f0g
0+fg00
83. (a) f0(x)=nxn1,f00(x)=n(n1)xn2,f000(x)=n(n1)(n2)xn3,...,
f(n)(x)=n(n1)(n2) ···1
(b) from part (a), f(k)(x)=k(k1)(k2) ···1sof
(k+1)(x) = 0 thus f(n)(x)=0ifn>k
79 Chapter 3
(c) from parts (a) and (b), f(n)(x)=a
n
n(n1)(n2) ···1
84. lim
h0
f0(2+h)f0(2)
h=f00(2); f0(x)=8x
72, f00(x)=56x
6
,sof
00(2) = 56(26) = 3584.
85. (a) If a function is differentiable at a point then it is continuous at that point, thus f0is continuous
on (a, b) and consequently so is f.
(b) fand all its derivatives up to f(n1)(x) are continuous on (a, b)
EXERCISE SET 3.4
1. f0(x)=2 sin x3 cos x
2. f0(x) = sin x(sin x) + cos x(cos x) = cos2xsin2x= cos 2x
3. f0(x)=x(cos x)sin x(1)
x2=xcos xsin x
x2
4. f0(x)=x
2
(sin x) + (cos x)(2x)=x
2sin x+2xcos x
5. f0(x)=x
3
(cos x) + (sin x)(3x2)5(sin x)=x
3cos x+(3x
2+ 5) sin x
6. f(x)=cot x
x(because cos x
sin x= cot x), f0(x)= x(csc2x)(cot x)(1)
x2=xcsc2x+ cot x
x2
7. f0(x) = sec xtan x2 sec2x
8. f0(x)=(x
2+ 1) sec xtan x+ (sec x)(2x)=(x
2+ 1) sec xtan x+2xsec x
9. f0(x) = sec x(sec2x) + (tan x)(sec xtan x) = sec3x+ sec xtan2x
10. f0(x)= (1 + tan x)(sec xtan x)(sec x)(sec2x)
(1 + tan x)2=sec xtan x+ sec xtan2xsec3x
(1 + tan x)2
=sec x(tan x+ tan2xsec2x)
(1 + tan x)2=sec x(tan x1)
(1 + tan x)2
11. f0(x) = (csc x)(csc2x) + (cot x)(csc xcot x)=csc3xcsc xcot2x
12. f0(x)=1+4cscxcot x2 csc2x
13. f0(x)=(1 + csc x)(csc2x)cot x(0 csc xcot x)
(1 + csc x)2=csc x(csc xcsc2x+ cot2x)
(1 + csc x)2but
1 + cot2x= csc2x(identity) thus cot2xcsc2x=1so
f
0
(x)= csc x(csc x1)
(1 + csc x)2=csc x
1 + csc x
14. f0(x)=tan x(csc xcot x)csc x(sec2x)
tan2x=csc x(1 + sec2x)
tan2x
15. f(x) = sin2x+ cos2x= 1 (identity) so f0(x)=0
16. f(x)= 1
cot x= tan x,sof
0
(x) = sec2x
Exercise Set 3.4 80
17. f(x)= tan x
1+xtan x(because sin xsec x= (sin x)(1/cos x) = tan x),
f0(x)= (1+xtan x)(sec2x)tan x[x(sec2x) + (tan x)(1)]
(1+xtan x)2
=sec2xtan2x
(1+xtan x)2=1
(1+xtan x)2(because sec2xtan2x=1)
18. f(x)= (x
2+ 1) cot x
3cot x(because cos xcsc x= (cos x)(1/sin x) = cot x),
f0(x)= (3 cot x)[2xcot x(x2+ 1) csc2x](x2+ 1) cot xcsc2x
(3 cot x)2
=6xcot x2xcot2x3(x2+ 1) csc2x
(3 cot x)2
19. dy/dx =xsin x+ cos x,d2y/dx2=xcos xsin xsin x=xcos x2 sin x
20. dy/dx =csc xcot x,d2y/dx2=[(csc x)(csc2x) + (cot x)(csc xcot x)] = csc3x+ csc xcot2x
21. dy/dx =x(cos x) + (sin x)(1) 3(sin x)=xcos x+ 4 sin x,
d2y/dx2=x(sin x) + (cos x)(1) + 4 cos x=xsin x+ 5 cos x
22. dy/dx =x2(sin x) + (cos x)(2x)+4cosx=x
2sin x+2xcos x+ 4 cos x,
d2y/dx2=[x2(cos x) + (sin x)(2x)]+2[x(sin x) + cos x]4 sin x=(2x
2
) cos x4(x+ 1) sin x
23. dy/dx = (sin x)(sin x) + (cos x)(cos x) = cos2xsin2x,
d2y/dx2= (cos x)(sin x) + (cos x)(sin x)[(sin x)(cos x) + (sin x)(cos x)] = 4 sin xcos x
24. dy/dx = sec2x;d2y/dx2= 2 sec2xtan x
26. Let f(x) = sin x, then f0(x) = cos x.
(a) f(0) = 0 and f0(0) = 1 so y0 = (1)(x0), y=x
(b) f(π)=0andf
0(π)=1soy0=(1)(xπ), y=x+π
(c) f³π
4´=1
2and f0³π
4´=1
2so y1
2=1
2³xπ
4´,y=1
2xπ
42+1
2
27. Let f(x) = tan x, then f0(x) = sec2x.
(a) f(0) = 0 and f0(0) = 1 so y0 = (1)(x0), y=x.
(b) f³π
4´= 1 and f0³π
4´=2soy1=2³xπ
4´,y=2xπ
2+1.
(c) f³π
4´=1 and f0³π
4´=2soy+1=2³x+π
4´,y=2x+π
21.
28. (a) If y= cos xthen y0=sin xand y00 =cos xso y00 +y=(cos x) + (cos x)=0;
if y= sin xthen y0= cos xand y00 =sin xso y00 +y=(sin x) + (sin x)=0.
(b) y0=Acos xBsin x,y00 =Asin xBcos xso
y00 +y=(Asin xBcos x)+(Asin x+Bcos x)=0.
29. (a) f0(x) = cos x=0atx=±π/2,±3π/2.
(b) f0(x)=1sin x=0atx=3π/2/2.
(c) f0(x) = sec2x1 always, so no horizontal tangent line.
(d) f0(x) = sec xtan x= 0 when sin x=0,x=±2π, ±π, 0
81 Chapter 3
30. (a) 0.5
-0.5
02p
(b) y= sin xcos x=(1/2) sin 2xand y0= cos 2x.Soy
0= 0 when 2x=(2n+1)π/2 for n=0,1,2,3
or x=π/4,3π/4,5π/4,7π/4
31. x= 10 sin θ,dx/dθ = 10 cos θ;ifθ=60
, then
dx/dθ = 10(1/2) = 5 ft/rad = π/36 ft/deg 0.087 ft/deg
32. s= 3800 csc θ, ds/dθ =3800 csc θcot θ;ifθ=30
, then
ds/dθ =3800(2)(3) = 76003 ft/rad = 3803π/9 ft/deg ≈−230 ft/deg
33. D= 50 tan θ, dD/dθ = 50 sec2θ;ifθ=45
, then
dD/dθ = 50(2)2= 100 m/rad = 5π/9m/deg 1.75 m/deg
34. (a) From the right triangle shown, sin θ=r/(r+h)sor+h=rcsc θ,h=r(csc θ1).
(b) dh/dθ =rcsc θcot θ;ifθ=30
, then
dh/dθ =6378(2)(3) ≈−22,094 km/rad ≈−386 km/deg
35. (a) d4
dx4sin x= sin x,so d
4k
dx4ksin x= sin x;d87
dx87 sin x=d3
dx3
d4·21
dx4·21 sin x=d3
dx3sin x=cos x
(b) d100
dx100 cos x=d4k
dx4kcos x= cos x
36. d
dx[xsin x]=xcos x+ sin xd2
dx2[xsin x]=xsin x+ 2 cos x
d3
dx3[xsin x]=xcos x3 sin xd4
dx4[xsin x]=xsin x4 cos x
By mathematical induction one can show
d4k
dx4k[xsin x]=xsin x(4k) cos x;d4k+1
dx4k+1 [xsin x]=xcos x+(4k+ 1) sin x;
d4k+2
dx4k+2 [xsin x]=xsin x+(4k+ 2) cos x;d4k+3
dx4k+3 [xsin x]=xcos x(4k+ 3) sin x;
Since 17 = 4 ·4+1, d
17
dx17 [xsin x]=xcos x+ 17 sin x
37. (a) all x(b) all x
(c) x6=π/2+,n=0,±1,±2,... (d) x6=,n=0,±1,±2,...
(e) x6=π/2+,n=0,±1,±2,... (f) x6=,n=0,±1,±2,...
(g) x6=(2n+1)π,n=0,±1,±2,... (h) x6=/2, n=0,±1,±2,...
(i) all x
Exercise Set 3.5 82
38. (a) d
dx[cos x] = lim
h0
cos(x+h)cos x
h= lim
h0
cos xcos hsin xsin hcos x
h
= lim
h0·cos xµcos h1
hsin xµsin h
h¶¸= (cos x)(0) (sin x)(1) = sin x
(b) d
dx[sec x]= d
dx ·1
cos x¸=cos x(0) (1)(sin x)
cos2x=sin x
cos2x= sec xtan x
(c) d
dx[cot x]= d
dx hcos x
sin xi=sin x(sin x)cos x(cos x)
sin2x
=sin2xcos2x
sin2x=1
sin2x=csc2x
(d) d
dx[csc x]= d
dx ·1
sin x¸=sin x(0) (1)(cos x)
sin2x=cos x
sin2x=csc xcot x
39. f0(x)=sin x,f00(x)=cos x,f000(x) = sin x, and f(4)(x) = cos xwith higher order derivatives
repeating this pattern, so f(n)(x) = sin xfor n=3,7,11,...
40. (a) lim
h0
tan h
h= lim
h0µsin h
cos h
h= lim
h0µsin h
h
cos h=1
1=1
(b) d
dx[tan x] = lim
h0
tan(x+h)tan x
h= lim
h0
tan x+ tan h
1tan xtan htan x
h
= lim
h0
tan x+ tan htan x+ tan2xtan h
h(1 tan xtan h)= lim
h0
tan h(1 + tan2x)
h(1 tan xtan h)
= lim
h0
tan hsec2x
h(1 tan xtan h)= sec2xlim
h0
tan h
h
1tan xtan h
= sec2x
lim
h0
tan h
h
lim
h0(1 tan xtan h)= sec2x
41. lim
x0
tan(x+y)tan y
x= lim
h0
tan(y+h)tan y
h=d
dy (tan y) = sec2y
43. Let tbe the radian measure, then h=180
πtand cos h= cos t, sin h= sin t.
(a) lim
h0
cos h1
h= lim
t0
cos t1
180t/π =π
180 lim
t0
cos t1
t=0
(b) lim
h0
sin h
h= lim
t0
sin t
180t/π =π
180 lim
t0
sin t
t=π
180
(c) d
dx[sin x] = sin xlim
h0
cos h1
h+ cos xlim
h0
sin h
h= sin x(0) + cos x(π/180) = π
180 cos x
EXERCISE SET 3.5
1. f0(x) = 37(x3+2x)
36 d
dx(x3+2x) = 37(x3+2x)
36(3x2+2)
2. f0(x) = 6(3x2+2x1)5d
dx(3x2+2x1) = 6(3x2+2x1)5(6x+ 2) = 12(3x2+2x1)5(3x+1)
83 Chapter 3
3. f0(x)=2µx
37
x
3d
dx µx37
x=2µx37
x3µ3x2+7
x2
4. f(x)=(x
5x+1)
9
,
f0(x)=9(x5x+1)
10 d
dx(x5x+1)=9(x5x+1)
10(5x41) = 9(5x41)
(x5x+1)
10
5. f(x) = 4(3x22x+1)
3
,
f0(x)=12(3x22x+1)
4d
dx(3x22x+1)=12(3x22x+1)
4
(6x2) = 24(1 3x)
(3x22x+1)
4
6. f0(x)= 1
2
x
32x+5
d
dx(x32x+5)= 3x
22
2
x
32x+5
7. f0(x)= 1
2
p4+3
x
d
dx(4+3
x)= 3
4
x
p4+3
x
8. f0(x)=3sin
2xd
dx(sin x)=3sin
2xcos x
9. f0(x) = cos(x3)d
dx(x3)=3x
2cos(x3)
10. f0(x) = 2 cos(3x)d
dx[cos(3x)] = 2 cos(3x) sin(3x)d
dx(3x)=3 cos(3x) sin(3x)
x
11. f0(x) = sec2(4x2)d
dx(4x2)=8xsec2(4x2)
12. f0(x)=12cot
3xd
dx(cot x)=12cot
3x(csc2x)=12 cot3xcsc2x
13. f0(x)=20cos
4xd
dx(cos x)=20cos
4x(sin x)=20 cos4xsin x
14. f0(x)=csc(x3) cot(x3)d
dx(x3)=3x
2csc(x3) cot(x3)
15. f0(x) = cos(1/x2)d
dx(1/x2)=2
x
3cos(1/x2)
16. f0(x)=4tan
3
(x
3
)d
dx[tan(x3)] = 4 tan3(x3) sec2(x3)d
dx(x3)=12x
2tan3(x3) sec2(x3)
17. f0(x) = 4 sec(x7)d
dx[sec(x7)] = 4 sec(x7) sec(x7) tan(x7)d
dx(x7)=28x
6sec2(x7) tan(x7)
18. f0(x)=3cos
2µx
x+1d
dx cos µx
x+1= 3 cos2µx
x+1¶·sin µx
x+1¶¸(x+ 1)(1) x(1)
(x+1)
2
=3
(x+1)
2cos2µx
x+1sin µx
x+1
19. f0(x)= 1
2
pcos(5x)
d
dx[cos(5x)] = 5 sin(5x)
2pcos(5x)
20. f0(x)= 1
2
p3xsin2(4x)
d
dx[3xsin2(4x)] = 38 sin(4x) cos(4x)
2p3xsin2(4x)
Exercise Set 3.5 84
21. f0(x)=3£x+ csc(x3+3)
¤4d
dx £x+ csc(x3+3)
¤
=3£x+ csc(x3+3)
¤4·1csc(x3+ 3) cot(x3+3) d
dx(x3+3)
¸
=3£x+ csc(x3+3)
¤4£13x
2csc(x3+ 3) cot(x3+3)
¤
22. f0(x)=4£x
4sec(4x22)¤5d
dx £x4sec(4x22)¤
=4£x4sec(4x22)¤5·4x3sec(4x22) tan(4x22) d
dx(4x22)¸
=16x£x4sec(4x22)¤5£x22 sec(4x22) tan(4x22)¤
23. f0(x)=x
2·2x
2
5x
2+2x
p5x
2=x(10 3x2)
5x2
24. f0(x)=
1x
2
(1) x(x/1x2)
1x2=1
(1 x2)3/2
25. dy
dx =x3(2 sin 5x)d
dx(sin 5x)+3x
2sin25x=10x
3sin 5xcos 5x+3x
2sin25x
26. dy
dx =x·3 tan2(x) sec2(x)1
2x¸+1
2xtan3(x)=3
2tan2(x) sec2(x)+ 1
2
xtan3(x)
27. dy
dx =x5sec µ1
xtan µ1
xd
dx µ1
x+ sec µ1
x(5x4)=x
5sec µ1
xtan µ1
x¶µ1
x
2+5x
4sec µ1
x
=x3sec µ1
xtan µ1
x+5x
4sec µ1
x
28. dy
dx =sec(3x+ 1) cos x3 sin xsec(3x+ 1) tan(3x+1)
sec2(3x+1) =cos x3 sin xtan(3x+1)
sec(3x+1)
29. dy
dx =sin(cos x)d
dx(cos x)=sin(cos x)(sin x) = sin(cos x) sin x
30. dy
dx = cos(tan 3x)d
dx(tan 3x)=3sec
23xcos(tan 3x)
31. dy
dx = 3 cos2(sin 2x)d
dx[cos(sin 2x)] = 3 cos2(sin 2x)[sin(sin 2x)] d
dx(sin 2x)
=6 cos2(sin 2x) sin(sin 2x) cos 2x
32. dy
dx =(1 cot x2)(2xcsc x2cot x2)(1 + csc x2)(2xcsc2x2)
(1 cot x2)2=2xcsc x21 + cot x2csc x2
(1 cot x2)2
33. dy
dx =(5x+8)
1312(x3+7x)
11 d
dx(x3+7x)+(x
3+7x)
1213(5x+8)
12 d
dx(5x+8)
= 12(5x+8)
13(x3+7x)
11(3x2+7)+65(x
3+7x)
12(5x+8)
12
34. dy
dx =(2x5)23(x2+4)
2
(2x)+(x
2+4)
3
2(2x5)(2) = 6x(2x5)2(x2+4)
2+ 4(2x5)(x2+4)
3
= 2(2x5)(x2+4)
2
(8x215x+8)
85 Chapter 3
35. dy
dx =3·x5
2x+1¸2d
dx ·x5
2x+1¸=3·x5
2x+1¸2
·11
(2x+1)
2=33(x5)2
(2x+1)
4
36. dy
dx =17µ1+x
2
1x
2
16 d
dx µ1+x
2
1x
2=17µ1+x
2
1x
2
16 (1 x2)(2x)(1+x2)(2x)
(1 x2)2
=17µ1+x
2
1x
2
16 4x
(1 x2)2=68x(1+x2)16
(1 x2)18
37. dy
dx =(4x21)8(3)(2x+3)
2
(2) (2x+3)
3
(8)(4x21)7(8x)
(4x21)16
=2(2x+3)
2
(4x21)7[3(4x21) 32x(2x+ 3)]
(4x21)16 =2(2x+3)
2
(52x2+96x+3)
(4x21)9
38. dy
dx = 12[1 + sin3(x5)]11 d
dx[1 + sin3(x5)]
= 12[1 + sin3(x5)]113 sin2(x5)d
dx sin(x5) = 180x4[1 + sin3(x5)]11 sin2(x5) cos(x5)
39. dy
dx =5£xsin 2x+ tan4(x7)¤4d
dx £xsin 2xtan4(x7)¤
=5£xsin 2x+ tan4(x7)¤4·xcos 2xd
dx(2x) + sin 2x+ 4 tan3(x7)d
dx tan(x7)¸
=5£xsin 2x+ tan4(x7)¤4£2xcos 2x+ sin 2x+28x
6tan3(x7) sec2(x7)¤
40. dy
dx = cos(3x2)d
dx(3x2)=6xcos(3x2),
d2y
dx2=6x(sin(3x2)) d
dx(3x2) + 6 cos(3x2)=36x2sin(3x2) + 6 cos(3x2)
41. dy
dx =x(sin(5x)) d
dx(5x) + cos(5x)2 sin xd
dx(sin x)
=5xsin(5x) + cos(5x)2 sin xcos x=5xsin(5x) + cos(5x)sin(2x),
d2y
dx2=5xcos(5x)d
dx(5x)5 sin(5x)sin(5x)d
dx(5x)cos(2x)d
dx(2x)
=25xcos(5x)10 sin(5x)2 cos(2x)
42. dy
dx =xsec2µ1
xd
dx µ1
x+ tan µ1
x=1
xsec2µ1
x+ tan µ1
x,
d2y
dx2=2
xsec µ1
xd
dx sec µ1
x+1
x2sec2µ1
x+ sec2µ1
xd
dx µ1
x=2
x3sec2µ1
xtan µ1
x
43. dy
dx =(1 x)+(1+x)
(1 x)2=2
(1 x)2= 2(1 x)2and d2y
dx2=2(2)(1)(1 x)3= 4(1 x)3
45. dy
dx =3xsin 3x+ cos 3x;ifx=πthen y=πand dy
dx =1soy+π=(xπ), y=x
46. dy
dx =3x
2cos(1 + x3); if x=3 then y= sin(26) = sin 26 and dy
dx = 27 cos 26
so y+ sin 26 = 27(cos 26)(x+3)
Exercise Set 3.5 86
47. dy
dx =3 sec3(π/2x) tan(π/2x); if x=π/2 then y=1 and dy
dx =0
so y+ 1 = (0)(x+π/2), y=1
48. dy
dx =3(x1/x)2(1+1/x2); if x= 2 then y=27/8 and dy
dx = 135/16
so y27
8=135
16 (x2), y=135
16 x27
2
49. y= cot3(πθ)=cot3θso dy/dx = 3 cot2θcsc2θ
50. 6µau +b
cu +d5ad bc
(cu +d)2
51. d
[acos2πω +bsin2πω]=2πa cos πω sin πω +2πb sin πω cos πω
=π(ba)(2 sin πω cos πω)=π(ba) sin 2πω
52. 2 csc2(π/3y) cot(π/3y)
53. (a) 2
-2 2
-2
(c) f0(x)=xx
4x
2+p4x
2=42x
2
4x
2
2
-2 2
-6
(d) f(1) = 3 and f0(1) = 2
3so the tangent line has the equation y3= 2
3
(x1).
3
0
02
54. (a) 0.5
0
^6
(c) f0(x)=2xcos x2cos xsin xsin x2
1.2
-1.2
^6
87 Chapter 3
(d) f(1) = sin 1 cos 1 and f0(1) = 2 cos21sin21, so the tangent line has the equation
ysin 1 cos 1 = (2 cos21sin21)(x1).
0.8
0
^6
55. (a) dy/dt =sin ωt, d2y/dt2=2cos ωt =ω2y
(b) one complete oscillation occurs when ωt increases over an interval of length 2π,oriftincreases
over an interval of length 2π/ω
(c) f=1/T
(d) amplitude = 0.6 cm, T=2π/15 s/oscillation, f=15/(2π) oscillations/s
56. dy/dt =3Acos 3t, d2y/dt2=9Asin 3t,so9Asin 3t+2Asin 3t= 4 sin 3t,
7Asin 3t= 4 sin 3t, 7A=4,A=4/7
57. (a) p10 lb/in2,dp/dh ≈−2 lb/in2/mi
(b) dp
dt =dp
dh
dh
dt (2)(0.3) = 0.6 lb/in2/s
58. (a) F=45
cos θ+0.3 sin θ,dF
=45(sin θ+0.3 cos θ)
(cos θ+0.3 sin θ)2;
if θ=30
, then dF/dθ 10.5 lb/rad 0.18 lb/deg
(b) dF
dt =dF
dt (0.18)(0.5) = 0.09 lb/s
59. With u= sin x,d
dx(|sin x|)= d
dx(|u|)= d
du(|u|)du
dx =d
du(|u|) cos x=½cos x, u > 0
cos x, u < 0
=½cos x, sin x>0
cos x, sin x<0=½cos x, 0<x<π
cos x, π<x<0
60. d
dx(cos x)= d
dx[sin(π/2x)] = cos(π/2x)=sin x
61. (a) for x6=0,f
0(x)=xµcos 1
x¶µ1
x
2+ sin 1
x=1
xcos 1
x+ sin 1
x
(b) lim
x0xsin 1
x=0=f(0)
(c) lim
h0
f(0+h)f(0)
h= lim
h0
hsin 1
h
h= lim
h0sin 1
h, which does not exist
62. (a) f0(x)=x
2µcos 1
x¶µ1
x
2+2xsin 1
x=cos 1
x+2xsin 1
x,x6=0
(b) lim
x0x2sin 1
x=0=f(0)
Exercise Set 3.5 88
(c) f0(0) = lim
h0
f(0+h)f(0)
h= lim
h0
h2sin 1
h
h= lim
h0hsin 1
h=0
(d) lim
x0f0(x) does not exist because cos 1
xoscillates between 1 and 1
63. (a) g0(x)=3[f(x)]2f0(x), g0(2)=3[f(2)]2f0(2) = 3(1)2(7)=21
(b) h0(x)=f
0(x
3
)(3x2), h0(2) = f0(8)(12) = (3)(12) = 36
64. (a) F0(x)=f
0(g(x))g0(x), F0(1) = f0(g(1))g0(1) = f0(2)(3) = (4)(3) = 12
(b) G0(x)=g
0(f(x))f0(x), G0(1) = g0(f(1))f0(1) = g0(2)(3) = (5)(3) = 15
65. (fg)0(x)=f
0(g(x))g0(x)so(fg)
0
(0) = f0(g(0))g0(0) = f0(0)(3) = (2)(3) = 6
66. F0(x)=f
0(g(x))g0(x)=p3(x21) + 4(2x)=2x
3x
2+1
67. F0(x)=f
0(g(x))g0(x)=f
0(
3x1) 3
23x1=3x1
(3x1)+1
3
2
3x1=1
2x
68. d
dx[f(x2)] = f0(x2)(2x), thus f0(x2)(2x)=x
2so f0(x2)=x/2ifx6=0
69. d
dx[f(3x)] = f0(3x)d
dx(3x)=3f
0(3x)=6x,sof
0
(3x)=2x. Let u=3xto get f0(u)=2
3
u;
d
dx[f(x)] = f0(x)= 2
3
x.
70. (a) If f(x)=f(x), then d
dx[f(x)] = d
dx[f(x)], f0(x)(1) = f0(x), f0(x)=f
0(x)so
f
0is odd.
(b) If f(x)=f(x), then d
dx[f(x)] = d
dx[f(x)], f0(x)(1) = f0(x), f0(x)=f
0(x)so
f
0is even.
71. For an even function, the graph is symmetric about the y-axis; the slope of the tangent line at
(a, f(a)) is the negative of the slope of the tangent line at (a, f(a). For an odd function, the graph
is symmetric about the origin; the slope of the tangent line at (a, f(a)) is the same as the slope of the
tangent line at (a, f(a).
y
x
f(x)
f'(x)
y
x
f(x)
f'(x)
72. dy
dx =dy
du
du
dv
dv
dw
dw
dx
73. d
dx[f(g(h(x)))] = d
dx[f(g(u))],u=h(x)
=
d
du[f(g(u))] du
dx =f0(g(u))g0(u)du
dx =f0(g(h(x)))g0(h(x))h0(x)
89 Chapter 3
EXERCISE SET 3.6
1. (a) dy =f0(x)dx =2xdx = 4(1) = 4 and
y=(x+∆x)
2x
2=(2+1)
22
2=5
(b)
x
y
dy y
4
23
2. (a) dy =3x
2
dx = 3(1)2(1) = 3 and
y=(x+∆x)
3x
3=(1+1)
31
3=7
(b)
1
y
x
8
1 2
(1,1) dx
y
dy
3. (a) dy =(1/x2)dx =(1)(0.5)=0.5 and
y=1/(x+∆x)1/x =1/(1 0.5) 1/1=21=1
(b) y
x
1
2
0.5 1
dy=0.5
y=1
4. (a) dy =(1/2
x)dx =(1/(2 ·3))(1) = 1/6≈−0.167 and
y=x+∆x
x=p9+(1) 9=
83≈−0.172
(b) y
x
3
89
dy = –0.167
y = –0.171
5. dy =3x
2
dx;
y=(x+∆x)
3x
3=x
3+3x
2
x+3x(∆x)2+(x)
3x
3=3x
2
x+3x(∆x)2+(x)
3
6. dy =8dx;∆y= [8(x+∆x)4] [8x4]=8x
7. dy =(2x2)dx;
y=[(x+∆x)
22(x+∆x)+1][x
22x+1]
=x
2+2xx+(x)
22x2∆x+1x
2+2x1=2xx+(x)
22∆x
8. dy = cos xdx;∆y= sin(x+∆x)sin x
Exercise Set 3.6 90
9. (a) dy = (12x214x)dx
(b) dy =xd(cos x) + cos xdx=x(sin x)dx + cos xdx =(xsin x+ cos x)dx
10. (a) dy =(1/x2)dx (b) dy = 5 sec2xdx
11. (a) dy =µ1xx
21xdx =23x
21xdx
(b) dy =17(1 + x)18dx
12. (a) dy =(x31)d(0) (1)d(x31)
(x31)2=(x31)(0) (1)3x2dx
(x31)2=3x2
(x31)2dx
(b) dy =(2 x)(3x2)dx (1 x3)(1)dx
(2 x)2=2x36x2+1
(2 x)2dx
13. (a) f(x)f(1) + f0(1)(x1)=1+3(x1) (b) f(1+∆x)f(1) + f0(1)∆x=1+3x
(c) From part (a), (1.02)31 + 3(0.02)=1.06. From part (b), (1.02)31 + 3(0.02)=1.06.
14. (a) f(x)f(2) + f0(2)(x2)=1/2+(1/2
2
)(x2)=(1/2) (1/4)(x2)
(b) f(2+∆x)f(2) + f0(2)∆x=1/2(1/4)∆x
(c) From part (a), 1/2.05 0.50.25(0.05)=0.4875, and from part (b),
1/2.05 0.50.25(0.05)=0.4875.
15. (a) f(x)f(x0)+f
0
(x
0
)(xx0) = 1+(1/(21)(x0) = 1+(1/2)x, so with x0= 0 and
x=0.1, we have 0.9=f(0.1) 1+(1/2)(0.1)=10.05=0.95. With x=0.1 we have
1.1=f(0.1) 1+(1/2)(0.1)=1.05.
(b) y
x
dy
0.1
–0.1
y
ydy
16. (a) f(x)f(x0)+f
0(x
0
)(xx0)=1/2£1/(2 ·43/2)¤(x4)=1/2(x4)/16, so with x0=4
and x=3.9wehave1/
3.9=f(3.9) 0.5(0.1)/16=0.50625. If x0= 4 and x=4.1 then
1/4.1=f(4.1) 0.5(0.1)/16=0.49375
(b)
x
y
43.9 4.1
y
y
dy
dy
17. f(x)=(1+x)
15 and x0=0. Thus(1+x)
15 f(x0)+f0(x
0
)(xx0) = 1 + 15(1)14(x0)=1+15x.
18. f(x)= 1
1xand x0=0,so 1
1xf(x
0
)+f0(x
0
)(xx0)=1+ 1
2(1 0)3/2(x0)=1+x/2
91 Chapter 3
19. tan xtan(0) + sec2(0)(x0) = x20. 1
1+x1+ 1
(1+0)
2(x0)=1x
21. x4(1)4+ 4(1)3(x1). Set ∆x=x1; then x=∆+1 and(1+∆x)
4=1+4x.
22. x1+ 1
2
1(x1), and x=1+∆x,so
1+∆x1+∆x/2
23. 1
2+x=1
2+11
(2+1)
2(x1), and 2 + x=3+∆x,so 1
3+∆x=1
31
9x
24. (4+x)3=(4+1)
3+3(4+1)
2
(x1) so, with 4 + x=5+∆xwe get (5 + ∆x)3= 125 + 75∆x
25. (a) The local linear approximation sin xxgives sin 1= sin(π/180) π/180=0.0174533 and
a calculator gives sin 1=0.0174524. The relative error |sin(π/180) (π/180)|/(sin π/180) =
0.000051 is very small, so for such a small value of xthe approximation is very good.
(b) Use x0=45
(this assumes you know, or can approximate, 2/2).
(c) 44=44π
180 radians, and 45=45π
180 =π
4radians. With x=44π
180 and x0=π
4we obtain
sin 44= sin 44π
180 sin π
4+³cos π
4´µ44π
180 π
4=2
2+2
2µπ
180=0.694765. With a
calculator, sin 44=0.694658.
26. (a) tan xtan 0 + sec20(x0)=x, so tan 2= tan(2π/180) 2π/180=0.034907, and with a
calculator tan 2=0.034921
(b) use x0=π/3 because we know tan 60= tan(π/3) = 3
(c) with x0=π
3=60π
180 and x=61π
180 we have tan 61= tan 61π
180 tan π
3+³sec2π
3´µ61π
180 π
3=
3+4 π
180 =1.8019, and with a calculator tan 61=1.8040
27. f(x)=x
4
,f
0(x)=4x
3
,x
0=3,x=0.02; (3.02)434+ (108)(0.02)=81+2.16=83.16
28. f(x)=x
3
,f
0(x)=3x
2
,x
0=2,x=0.03; (1.97)323+ (12)(0.03)=80.36=7.64
29. f(x)=
x,f
0(x)= 1
2
x
,x
0= 64, x=1;
65 64 + 1
16(1)=8+ 1
16 =8.0625
30. f(x)=
x,f
0(x)= 1
2
x
,x
0= 25, x=1; 24 25 + 1
10(1)=50.1=4.9
31. f(x)=
x,f
0(x)= 1
2
x
,x
0= 81, x=0.1; 80.981 + 1
18(0.1) 8.9944
32. f(x)=
x,f
0(x)= 1
2
x
,x
0= 36, x=0.03; 36.03 36 + 1
12(0.03)=6+0.0025 = 6.0025
33. f(x) = sin x,f0(x) = cos x,x0=0,x=0.1; sin 0.1sin 0 + (cos 0)(0.1)=0.1
34. f(x) = tan x,f0(x) = sec2x,x0=0,x=0.2; tan 0.2tan 0 + (sec20)(0.2)=0.2
35. f(x) = cos x,f0(x)=sin x,x0=π/6, ∆x=π/180;
cos 31cos 30+µ1
2³π
180´=3
2π
360 0.8573
Exercise Set 3.6 92
36. (a) Let f(x)=(1+x)
kand x0= 0. Then (1 + x)k1k+k(1)k1(x0)=1+kx. Set k= 37 and
x=0.001 to obtain (1.001)37 1.037.
(b) With a calculator (1.001)37 =1.03767.
(c) The approximation is (1.1)37 1 + 37(0.1)=4.7, and the calculator value is 34.004. The error
is due to the relative largeness of f0(1)∆x= 37(0.1)=3.7.
37. f(x)=
x+ 3 and x0=0,so
x+3
3+ 1
2
3(x0) = 3+ 1
2
3x, and
¯¯¯¯
f(x)µ3+ 1
2
3x
¯
¯
¯
¯
<0.1if|x|<1.692.
0
-0.1
-2 2
|
f(x) – ( 3 + x)
|
1
2 3
38. f(x)= 1
9xso 1
9x1
9+1
2(9 0)3/2(x0) = 1
3+1
54x,
and ¯¯¯¯
f(x)µ1
3+1
54x¯¯¯¯
<0.1if|x|<5.5114
0.06
0
-6 6
|
f(x) – ( + x)
|
1
31
54
39. tan xtan 0 + (sec20)(x0) = x, and |tan xx|<0.1if
|x|<0.6316
0.06
0
-0.8 0.8
|f(x) – x|
40. 1
(1+2x)
51
(1+2·0)5+5(2)
(1+2·0)6(x0)=110x, and
|f(x)(1 10x)|<0.1if|x|<0.0372
0.06
0
-0.8 0.8
|f(x) – x|
41. dy =3
23x2dx,x=2,dx =0.03; ∆ydy =3
4(0.03)=0.0225
42. dy =x
x2+8dx,x=1,dx =0.03; ∆ydy =(1/3)(0.03) = 0.01
93 Chapter 3
43. dy =1x2
(x2+1)
2dx,x=2,dx =0.04; ∆ydy =µ3
25(0.04)=0.0048
44. dy =µ4x
8x+1+
8x+1
dx,x=3,dx =0.05; ∆ydy = (37/5)(0.05)=0.37
45. (a) A=x2where xis the length of a side; dA =2xdx= 2(10)(±0.1) = ±2ft
2
.
(b) relative error in xis dx
x=±0.1
10 =±0.01 so percentage error in xis ≈±1%; relative error in
Ais dA
A=2xdx
x
2=2
dx
x=2(±0.01) = ±0.02 so percentage error in Ais ≈±2%
46. (a) V=x3where xis the length of a side; dV =3x
2
dx = 3(25)2(±1) = ±1875 cm3.
(b) relative error in xis dx
x=±1
25 =±0.04 so percentage error in xis ≈±4%; relative error in V
is dV
V=3x2dx
x3=3
dx
x=3(±0.04) = ±0.12 so percentage error in Vis ≈±12%
47. (a) x= 10 sin θ,y= 10 cos θ(see figure),
dx = 10 cos θdθ =10¡cos π
6¢¡±π
180 ¢=10³
3
2´¡±π
180 ¢
≈±0.151 in,
dy =10(sin θ)=10 ¡sin π
6¢¡±π
180 ¢=10 ¡1
2¢¡±π
180 ¢
≈±0.087 in
10x
y
θ
(b) relative error in xis dx
x= (cot θ)=³cot π
6´³±π
180´=3³±π
180´≈±0.030
so percentage error in xis ≈±3.0%;
relative error in yis dy
y=tan θdθ =³tan π
6´³±π
180´=1
3³±π
180´≈±0.010
so percentage error in yis ≈±1.0%
48. (a) x= 25 cot θ,y= 25 csc θ(see figure);
dx =25 csc2θdθ =25 ³csc2π
3´³±π
360´
=25 µ4
3³±π
360´≈±0.291 cm,
dy =25 csc θcot θdθ =25 ³csc π
3´³cot π
3´³±π
360´
=25 µ2
3¶µ1
3³±π
360´≈±0.145 cm
25 cm
x
y
θ
(b) relative error in xis dx
x=csc2θ
cot θ=4/3
1/3³±π
360´≈±0.020 so percentage
error in xis ≈±2.0%; relative error in yis dy
y=cot θdθ =1
3³±π
360´≈±0.005
so percentage error in yis ≈±0.5%
49. dR
R=(2k/r3)dr
(k/r2)=2dr
r, but dr
r≈±0.05 so dR
R≈−2(±0.05) = ±0.10; percentage error in Ris
≈±10%
50. h= 12 sin θthus dh = 12 cos θdθ so, with θ=60
=π/3 radians and =1=π/180 radians,
dh = 12 cos(π/3)(π/180) = π/30 ≈−0.105 ft
Supplementary Exercises 3 94
51. A=1
4(4)2sin 2θ= 4 sin 2θthus dA = 8 cos 2θdθ so, with θ=30
=π/6 radians and
=±150=±1/4=±π/720 radians, dA = 8 cos(π/3)(±π/720) = ±π/180 ≈±0.017 cm2
52. A=x2where xis the length of a side; dA
A=2xdx
x
2=2
dx
x, but dx
x≈±0.01 so
dA
A2(±0.01) = ±0.02; percentage error in Ais ≈±2%
53. V=x3where xis the length of a side; dV
V=3x2dx
x3=3
dx
x, but dx
x≈±0.02
so dV
V3(±0.02) = ±0.06; percentage error in Vis ≈±6%.
54. dV
V=4πr2dr
4πr3/3=3
dr
r, but dV
V≈±0.03 so 3dr
r≈±0.03, dr
r≈±0.01; maximum permissible
percentage error in ris ≈±1%.
55. A=1
4πD2where Dis the diameter of the circle; dA
A=(πD/2)dD
πD2/4=2
dD
D, but dA
A≈±0.01 so
2dD
D≈±0.01, dD
D≈±0.005; maximum permissible percentage error in Dis ≈±0.5%.
56. V=x3where xis the length of a side; approximate ∆Vby dV if x= 1 and dx =∆x=0.02,
dV =3x
2
dx = 3(1)2(0.02)=0.06 in3.
57. V= volume of cylindrical rod = πr2h=πr2(15) = 15πr2; approximate ∆Vby dV if r=2.5 and
dr =∆r=0.001. dV =30πr dr =30π(2.5)(0.001) 0.236 cm3.
58. P=2π
gL,dP =2π
g
1
2LdL =π
gLdL,dP
P=1
2
dL
Lso the relative error in P1
2the relative
error in L. Thus the percentage error in Pis 1
2the percentage error in L.
59. (a) α=∆L/(LT)=0.006/(40 ×10)=1.5×105
/C
(b) L=2.3×105(180)(25) 0.1 cm, so the pole is about 180.1 cm long.
60. V=7.5×104(4000)(20) = 60 gallons; the truck delivers 4000 60 = 3940 gallons.
CHAPTER 3 SUPPLEMENTARY EXERCISES
4. (a) dy
dx = lim
h0p94(x+h)94x
h= lim
h0
(9 4(x+h)(9 4x)
h(p94(x+h)+
94x)
= lim
h04h
h(p94(x+h)+
94x)=4
2
94x=2
94x
(b) dy
dx = lim
h0
x+h
x+h+1x
x+1
h= lim
h0
(x+h)(x+1)x(x+h+1)
h(x+h+ 1)(x+1)
= lim
h0
h
h(x+h+ 1)(x+1) =1
(x+1)
2
95 Chapter 3
5. Set f0(x)=0: f
0
(x) = 6(2)(2x+7)
5
(x2)5+ 5(2x+7)
6
(x2)4=0,so2x+7=0orx2=0
or, factoring out (2x+7)
5
(x2)4, 12(x2) + 5(2x+ 7) = 0. This reduces to x=7/2, x=2,or
22x+ 11 = 0, so the tangent line is horizontal at x=7/2,2,1/2.
6. Set f0(x)=0: f
0(x)=4(x2+2x)(x3)3(2x+ 2)(x3)4
(x2+2x)
2, and a fraction can equal zero only if its
numerator equals zero. So either x3 = 0 or, after factoring out (x3)3,4(x
2
+2x)(2x+2)(x3)=0,
2x
2+12x+ 6 = 0, whose roots are (by the quadratic formula) x=6±36 4·3
2=3±6. So
the tangent line is horizontal at x=3,3±
6.
7. Set f0(x)= 3
2
3x+1(x1)2+2
3x+1(x1)=0. Ifx= 1 then y0=0. Ifx6= 1 then divide out
x1 and multiply through by 23x+ 1 (at points where fis differentiable we must have 3x+16=0)
to obtain 3(x1) + 4(3x+1)=0,or15x+ 1 = 0. So the tangent line is horizontal at x=1,1/15.
8. f0(x)=3
µ3x+1
x
22d
dx
3x+1
x
2=3
µ3x+1
x
22x
2
(3) (3x+ 1)(2x)
x4=3µ3x+1
x
223x
2+2x
x
4=0.
If f0(x) = 0 then (3x+1)
2
(3x2+2x) = 0. The tangent line is horizontal at x=1/3,2/3(x=0is
ruled out from the definition of f).
9. (a) x=2,1,1,3(b) (−∞,2), (1,1), (3,+)(c) (2,1), (1,3)
(d) g00(x)=f
00(x) sin x+2f0(x) cos xf(x) sin x;g00(0)=2f
0(0) cos 0 = 2(2)(1) = 4
10. (a) f0(1)g(1) + f(1)g0(1)=3(2)+1(1) = 7
(b) g(1)f0(1) f(1)g0(1)
g(1)2=2(3) 1(1)
(2)2=5
4
(c) 1
2pf(1)f0(1) = 1
213=3
2(d) 0 (because f(1)g0(1) is constant)
11. The equations of such a line has the form y=mx. The points (x0,y
0) which lie on both the line and
the parabola and for which the slopes of both curves are equal satisfy y0=mx0=x3
09x2
016x0,
so that m=x2
09x016. By differentiating, the slope is also given by m=3x
2
018x016.
Equating, we have x2
09x016=3x
2
018x016, or 2x2
09x0= 0. The root x0= 0 corresponds
to m=16,y
0= 0 and the root x0=9/2 corresponds to m=145/4,y
0=1305/8. So the line
y=16xis tangent to the curve at the point (0,0), and the line y=145x/4 is tangent to the curve
at the point (9/2,1305/8).
12. The slope of the line x+4y=10ism
1=1/4, so we set the negative reciprocal
4=m
2=d
dx(2x3x2)=6x
22xand obtain 6x22x4 = 0 with roots x=1±1+24
6=1,2/3.
13. The line yx= 2 has slope m1= 1 so we set m2=d
dx(3xtan x)=3sec2x= 1, or sec2x=2,
sec x=±2sox=±π/4 where n=0,±1,±2,....
14. f(x) is continuous and differentiable at any x6= 1, so we consider x=1.
(a) lim
x1(x21) = lim
x1+k(x1)=0=f(1), so any value of kgives continuity at x=1.
(b) lim
x1f0(x) = lim
x12x= 2, and lim
x1+f0(x) = lim
x1+k=k, so only if k=2isf(x) differentiable at
x=1.
Supplementary Exercises 3 96
15. The slope of the tangent line is the derivative
y0=2x
¯
¯
¯x=1
2(a+b)=a+b. The slope of the secant is
a2b2
ab=a+b, so they are equal.
y
x
ab
a+b
2
(a,a)
2
(b,b)
2
16. To average 60 mi/h one would have to complete the trip in two hours. At 50 mi/h, 100 miles are
completed after two hours. Thus time is up, and the speed for the remaining 20 miles would have to
be infinite.
17. (a) x=1.52=0.5; dy =1
(x1)2x=1
(2 1)2(0.5)=0.5; and
y=1
(1.51) 1
(2 1) =21=1.
(b) x=0(π/4) = π/4; dy =¡sec2(π/4)¢(π/4) = π/2; and ∆y= tan 0 tan(π/4)=1.
(c) x=30=3;dy =x
25 x2=0
p25 (0)2(3) = 0; and
y=25 3225 02=45=1.
18. (a) 4323
42=56
2=28 (b) (dV /d`)|`=5 =3`
2
¯
¯`=5 = 3(5)2=75
19. (a) dW
dt = 200(t15); at t=5, dW
dt =2000; the water is running out at the rate of 2000 gal/min.
(b) W(5) W(0)
50=10000 22500
5=2500; the average rate of flow out is 2500 gal/min.
20. cot 46= cot 46π
180 ; let x0=π
4and x=46π
180 . Then
cot 46= cot x= cot π
4³csc2π
4´³xπ
4´=12µ46π
180 π
4=0.9651;
with a calculator, cot 46=0.9657.
21. (a) h= 115 tan φ,dh = 115 sec2φdφ; with φ=51
=51
180πradians and =±0.5=±0.5³π
180´
radians, h±dh = 115(1.2349) ±2.5340 = 142.0135 ±2.5340, so the height lies between
139.48 m and 144.55 m.
(b) If |dh|≤5 then ||≤ 5
115 cos251
180 π0.017 radians, or ||≤0.98.
22. (a) dT
dL =2
g
1
2L=1
gL (b) s/m
(c) Since dT
dL >0 an increase in Lgives an increase in T, which is the period. To speed up a clock,
decrease the period; to decrease T, decrease L.
(d) dT
dg =L
g3/2<0; a decrease in gwill increase Tand the clock runs slower
(e) dT
dg =2
Lµ1
2g
3/2=
L
g
3/2(f) s3/m
97 Chapter 3
23. (a) f0(x)=2x, f0(1.8)=3.6
(b) f0(x)=(x
24x)/(x2)2,f0(3.5) ≈−0.777778
24. (a) f0(x)=3x
22x, f 0(2.3)=11.27 (b) f0(x)=(1x
2
)/(x
2+1)
2
,f0(0.5)=0.48
25. f0(x)=2
xln 2; f0(2) 2.772589
26. f0(x)=x
sin x(cos xln x+ sin x/x); f0(2)=0.312141
27. vinst = lim
h0
3(h+1)
2.5+ 580h3
10h=58+ 1
10
d
dx3x2.5¯¯¯¯x=1
=58+ 1
10(2.5)(3)(1)1.5=58.75 ft/s
28. 164 ft/s
2500
0
120
29. Solve 3x2cos x= 0 to get x=±0.535428.
30. When x4x1>0, f(x)=x
42x1; when x4x1<0,
f(x)=x
4+ 1, and fis differentiable in both cases. The roots of
x4x1=0arex
1=0.724492, x2=1.220744. So x4x1>0
on (−∞,x
1) and (x2,+), and x4x1<0on(x
1
,x
2). Then
lim
xx
1
f0(x) = lim
xx
1
(4x32)=4x
3
12 and
lim
xx+
1
f0(x) = lim
xx+
14x3=4x3
1which is not equal to 4x3
12, so
fis not differentiable at x=x1; similarly fis not differentiable at
x=x2.
1.5
-1.5
-1.5 2
31. (a) f0(x)=5x
4(b) f0(x)=1/x2(c) f0(x)=1/2x
3/2
(d) f0(x)=3/(x1)2(e) f0(x)=3x/3x2+5 (f ) f0(x) = 3 cos 3x
32. f0(x)=2xsin x+x2cos x33. f0(x)= 12
xsin 2x
2x
34. f0(x)=6x
2+8x17
(3x+2)
235. f0(x)=(1+x2) sec2x2xtan x
(1+x2)2
36. f0(x)=x
2cos x2x3/2sin x
2x7/2
37. f0(x)=2x
5sin x2x4cos x+4x
4+6x
2sin x+6x3xcos x4xsin x+ 4 cos x8
2x2x43+2(2cos x)2
Horizon Module 3 98
CHAPTER 3 HORIZON MODULE
1. x1=l1cos θ1,x
2=l
2cos(θ1+θ2), so x=x1+x2=l1cos θ1+l2cos(θ1+θ2) (see Figure 3 in text);
similarly y1=l1sin θ1+l2sin(θ1+θ2).
2. Fix θ1for the moment and let θ2vary; then the distance rfrom (x, y) to the origin (see Figure 3 in
text) is at most l1+l2and at least l1l2if l1l2and l2l1otherwise. For any fixed θ2let θ1vary
and the point traces out a circle of radius r.
(a) {(x, y):0x
2+y
22l
1
}
(b) {(x, y):l
1l
2x
2+y
2l
1+l
2
}
(c) {(x, y):l
2l
1x
2+y
2l
1+l
2
}
3. (x, y)=(l
1cos θ+l2cos(θ1+θ2),l
1sin θ1+l2sin(θ1+θ2))
= (cos(π/4) + 3 cos(5π/12),sin(π/4) + 3 sin(5π/12)) = Ã2+3
6
4,7
2+3
6
4!
4. x= (1) cos 2t+ (1) cos(2t+3t) = cos 2t+ cos 5t,
y= (1) sin 2t+ (1) sin(2t+3t) = sin 2t+ sin 5t
5. y
x
-2
2
-2 2
v1 = 3, v2 = 5
y
x
-2
2
-2 2
v1 = 1, v2 = 4
y
x
-2
2
12
v
1
= 4, v2 = 1
6. x= 2 cos t,y= 2 sin t, a circle of radius 2
7. (a) 9 = [3 sin(θ1+θ2)]2+ [3 cos(θ1+θ2)]2=[53 sin θ1]2+[33 cos θ1]2
=2530 sin θ1+ 9 sin2θ1+918 cos θ1+ 9 cos2θ1=4330 sin θ118 cos θ1,
so 15 sin θ1+ 9 cos θ1=17
(b) 1 = sin2θ1+ cos2θ2=µ17 9 cos θ1
15 2
+ cos θ1, or 306 cos2θ1306 cos θ1=64
(c) cos θ1=³153 ±p(153)24(153)(32)´/306 = 1
2±517
102
(e) If θ1=0.792436 rad, then θ2=0.475882 rad 27.2660;
if θ1=1.26832 rad, then θ2=0.475882 rad ≈−27.2660.
8. dx
dt =3 sin θ1
1
dt (3 sin(θ1+θ2)) µ1
dt +2
dt =31
dt (sin θ1+ sin(θ1+θ2)) 3 (sin(θ1+θ2)) 2
dt
=y1
dt 3(sin(θ1+θ2))2
dt ; similarly dy
dt =x1
dt + 3(cos(θ1+θ2))2
dt . Now set dx
dt =0, dy
dt =1.
9. (a) x= 3 cos(π/3) + 3 cos(π/3)=6
1
2= 3 and y= 3 sin(π/3) 3 sin(π/3) = 0; equations (4)
become 3 sin(π/3)2
dt =0,3
1
dt + 3 cos(π/3)2
dt = 1 with solution 2/dt =0,1/dt =1/3.
(b) x=3, y=3,so3
1
dt = 0 and 31
dt 32
dt = 1, with solution 1/dt =0,2/dt =1/3.
CHAPTER 4
Logarithmic and Exponential Functions
EXERCISE SET 4.1
1. (a) f(g(x))=4(x/4) = x,g(f(x))=(4x)/4=x,fand gare inverse functions
(b) f(g(x)) = 3(3x1)+1=9x26=xso fand gare not inverse functions
(c) f(g(x)) = 3
p(x3+2)2=x,g(f(x))=(x2)+2=x,fand gare inverse functions
(d) f(g(x))=(x
1/4
)
4=x,g(f(x))=(x
4
)
1/4=|x|6=x,fand gare not inverse functions
2. (a) They are inverse functions. 2
-2
-2 2
(b) The graphs are not reflections of each other
about the line y=x.
2
-2
-2 2
(c) They are inverse functions provided the domain of
gis restricted to [0,+)
5
0
05
(d) They are inverse functions provided the domain of f(x)
is restricted to [0,+)
2
0
02
3. (a) yes; all outputs (the elements of row two) are distinct
(b) no; f(1) = f(6)
4. (a) no; it is easy to conceive of, say, 8 people in line at two different times
(b) no; perhaps your weight remains constant for more than a year
(c) yes, since the function is increasing, in the sense that the greater the volume, the greater the
weight
99
Exercise Set 4.1 100
5. (a) yes (b) yes (c) no (d) yes (e) no (f ) no
6. (a) no, the horizontal line test fails
6
-2
-3 3
(b) yes, horizontal line test
10
-10
-1 3
7. (a) no, the horizontal line test fails
(b) no, the horizontal line test fails
(c) yes, horizontal line test
8. (a) no, the horizontal line test fails
(b) no, the horizontal line test fails
(c) yes, horizontal line test
9. (a) fhas an inverse because the graph passes the horizontal line test. To compute f1(2) start at
2onthey-axis and go to the curve and then down, so f1(2) = 8; similarly, f1(1) = 1 and
f1(0)=0.
(b) domain of f1is [2,2], range is [8,8] (c)
-2 -1 1 2
-8
-4
4
8
y
x
10. (a) the horizontal line test fails
(b) −∞ <x≤−1; 1x2; and 2 x<+.
11. (a) f0(x)=2x+8;f0<0on(−∞,4) and f0>0on(4,+); not one-to-one
(b) f0(x)=10x
4+3x
2+33>0; f0(x) is positive for all x,sofis one-to-one
(c) f0(x) = 2 + cos x1>0 for all x,sofis one-to-one
12. (a) f0(x)=3x
2+6x=x(3x+ 6) changes sign at x=2,0, so fis not one-to-one
(b) f0(x)=5x
4+24x
2+22>0; f0is positive for all x,sofis one-to-one
(c) f0(x)= 1
(x+1)
2;fis one-to-one because:
if x1<x
2<1 then f0>0on[x
1
,x
2], so f(x1)6=f(x2)
if 1<x
1<x
2then f0>0on[x
1
,x
2], so f(x1)6=f(x2)
if x1<1<x
2then f(x1)>1>f(x
2
) since f(x)>1on(−∞,1) and f(x)<1on(1,+)
13. y=f1(x), x=f(y)=y
5
,y=x
1/5=f
1
(x)
14. y=f1(x), x=f(y)=6y,y=1
6
x=f
1
(x)
15. y=f1(x), x=f(y)=7y6, y=1
7(x+6)=f1
(x)
16. y=f1(x), x=f(y)=y+1
y1,xy x=y+1,(x1)y=x+1,y=x+1
x1=f1
(x)
101 Chapter 4
17. y=f1(x), x=f(y)=3y
35, y=3
p(x+5)/3=f
1
(x)
18. y=f1(x), x=f(y)= 5
4y+2,y=1
4(x
52) = f1(x)
19. y=f1(x), x=f(y)= 3
2y1, y=(x
3+1)/2=f
1
(x)
20. y=f1(x), x=f(y)= 5
y
2+1,y=r5x
x=f1
(x)
21. y=f1(x), x=f(y)=3/y2,y=p3/x =f1(x)
22. y=f1(x), x=f(y)=½2y, y 0
y2,y>0
,y=f
1
(x)=½x/2,x0
x, x > 0
23. y=f1(x),x=f(y)=½5/2y, y < 2
1/y, y 2,y=f
1
(x)=½5/2x, x > 1/2
1/x, 0<x1/2
24. y=p1(x), x=p(y)=y
33y
2+3y1=(y1)3,y=x1/3+1=p
1
(x)
25. y=f1(x), x=f(y)=(y+2)
4for y0, y=f1(x)=x
1/42 for x16
26. y=f1(x), x=f(y)=
y+ 3 for y≥−3, y=f1(x)=x
23 for x0
27. y=f1(x), x=f(y)=
32yfor y3/2, y=f1(x)=(3x
2
)/2 for x0
28. y=f1(x), x=f(y)=3y
2+5y2 for y0, 3y2+5y2x= 0 for y0,
y=f1(x)=(5+
12x+ 49)/6 for x≥−2
29. y=f1(x), x=f(y)=y5y
2for y1, 5y2y+x= 0 for y1,
y=f1(x)=(1+
120x)/10 for x≤−4
30. (a) C=5
9(F32)
(b) how many degrees Celsius given the Fahrenheit temperature
(c) C=273.15C is equivalent to F=459.67F, so the domain is F≥−459.67, the range is
C≥−273.15
31. (a) y=f(x)=(6.214 ×104)x(b) x=f1(y)= 104
6.214y
(c) how many meters in ymiles
32. fand f1are continuous so f(3) = lim
x3f(x) = 7; then f1(7) = 3, and
lim
x7f1(x)=f
1³lim
x7x´=f1(7)=3
33. (a) f(g(x)) = f(x)
=(
x)
2=x, x > 1;
g(f(x)) = g(x2)
=x2=x, x > 1
(b)
x
y
y = f(x)
y = g(x)
Exercise Set 4.1 102
(c) no, because f(g(x)) = xfor every xin the domain of gis not satisfied (the domain of gis x0)
34. y=f1(x), x=f(y)=ay2+by +c,ay2+by +cx= 0, use the quadratic formula to get
y=b±pb24a(cx)
2a;
(a) f1(x)=b+pb
24a(cx)
2a(b) f1(x)= bpb
24a(cx)
2a
35. (a) f(f(x)) =
33x
1x
13x
1x
=33x3+x
1x3+x=xso f=f1
(b) symmetric about the line y=x
36. y=m(xx0) is an equation of the line. The graph of the inverse of f(x)=m(xx
0
) will be the
reflection of this line about y=x. Solve y=m(xx0) for xto get x=y/m +x0=f1(y)so
y=f
1
(x)=x/m +x0.
37. (a) f(x)=x
33x
2+2x=x(x1)(x2) so f(0) = f(1) = f(2) = 0 thus fis not one-to-one.
(b) f0(x)=3x
26x+2, f0(x) = 0 when x=6±36 24
6=1±
3/3. f0(x)>0(fis increasing)
if x<1
3/3, f0(x)<0(fis decreasing) if 1 3/3<x<1+3/3, so f(x) takes on values
less than f(1 3/3) on both sides of 1 3/3thus1
3/3 is the largest value of k.
38. (a) f(x)=x
3
(x2) so f(0) = f(2) = 0 thus fis not one to one.
(b) f0(x)=4x
36x
2=4x
2
(x3/2),f0(x) = 0 when x= 0 or 3/2; fis decreasing on (−∞,3/2]
and increasing on [3/2,+)so3/2 is the smallest value of k.
39. if f1(x) = 1, then x=f(1) = 2(1)3+ 5(1) + 3 = 10
40. if f1(x) = 2, then x=f(2) = (2)3/[(2)2+1]=8/5
41. 6
-2
-2 6
42. 10
-5
-5 10
43. 3
0
03
44. 6
0
06
45. f(f(x)) = xthus f=f1so the graph is symmetric about y=x.
46. (a) Suppose x16=x2where x1and x2are in the domain of gand g(x1), g(x2) are in the domain of f
then g(x1)6=g(x2) because gis one-to-one so f(g(x1)) 6=f(g(x2)) because fis one-to-one thus
fgis one-to-one because (fg)(x1)6=(fg)(x2)ifx
16=x
2
.
103 Chapter 4
(b) f,g, and fgall have inverses because they are all one-to-one. Let h=(fg)
1then
(fg)(h(x)) = f[g(h(x))] = x, apply f1to both sides to get g(h(x)) = f1(x), then apply g1
to get h(x)=g
1
(f
1
(x))=(g
1f
1
)(x), so h=g1f1
47.
x
y
48. Suppose that gand hare both inverses of fthen f(g(x)) = x,h[f(g(x))] = h(x), but h[f(g(x))] = g(x)
because his an inverse of fso g(x)=h(x).
49. F0(x)=2f
0
(2g(x))g0(x)soF
0
(3)=2f
0
(2g(3))g0(3). By inspection f(1)=3,sog(3) = f1(3)=1
and g0(3)=(f
1
)
0
(3)=1/f 0(f1(3)) = 1/f 0(1)=1/7 because f0(x)=4x
3+3x
2
.Thus
F
0
(3)=2f
0(2)(1/7) = 2(44)(1/7)=88/7.
EXERCISE SET 4.2
1. (a) 4(b) 4(c) 1/4
2. (a) 1/16 (b) 8(c) 1/3
3. (a) 2.9690 (b) 0.0341
4. (a) 1.8882 (b) 0.9381
5. (a) log216 = log2(24)=4 (b) log2µ1
32= log2(25)=5
(c) log44=1 (d) log93 = log9(91/2)=1/2
6. (a) log10(0.001) = log10(103)=3(b) log10(104)=4
(c) ln(e3)=3 (d) ln(e) = ln(e1/2)=1/2
7. (a) 1.3655 (b) 0.3011
8. (a) 0.5229 (b) 1.1447
9. (a) 2lna+1
2ln b+1
2ln c=2r+s/2+t/2(b) ln b3lnaln c=s3rt
10. (a) 1
3ln cln aln b=t/3rs(b) 1
2(ln a+3lnb2lnc)=r/2+3s/2t
11. (a) 1 + log x+1
2log(x3) (b) 2ln|x|+ 3 ln sin x1
2ln(x2+1)
12. (a) 1
3log(x+2)log cos 5x(b) 1
2ln(x2+1)1
2ln(x3+5)
13. log 24(16)
3= log(256/3) 14. log xlog(sin32x) + log 100 = log 100x
sin32x
Exercise Set 4.2 104
15. ln
3
x(x+1)
2
cos x16. 1+x=10
3= 1000, x= 999
17. x=10
1=0.1, x=0.01 18. x2=e4,x=±e2
19. 1/x =e2,x=e220. x=7
21. 2x=8,x=4 22. log10 x3= 30, x3=10
30,x=10
10
23. log10 x=5,x=10
5
24. ln 4xln x6=ln2,ln 4
x
5=ln2, 4
x
5=2,x
5=2,x=5
2
25. ln 2x2=ln3,2x
2=3,x
2=3/2, x=p3/2 (we discard p3/2 because it does not satisfy the original
equation)
26. ln 3x=ln2,xln3=ln2,x=ln 2
ln 3
27. ln 52x=ln3,2xln5=ln3,x=ln 3
2ln5
28. e2x=5/3,2x= ln(5/3),x=
1
2
ln(5/3)
29. e3x=7/2,3x= ln(7/2),x=1
3
ln(7/2)
30. ex(1 2x)=0soe
x= 0 (impossible) or 1 2x=0,x=1/2
31. ex(x+2)=0soe
x= 0 (impossible) or x+2=0,x=2
32. e2xex6=(e
x3)(ex+2)=0soe
x=2 (impossible) or ex=3,x=ln3
33. e2x3ex+2=(e
x2)(ex1)=0soe
x=2,x=ln 2 or ex=1,x=0
34. (a) y
x
-2
2
26
(b) y
x
2
-2 2
35. (a) y
x
2
4
6
-2 2 4
(b) y
x
-4
2
-4 2
105 Chapter 4
36. (a) y
x
-10
-1
(b) y
x
-1
3
37. log27.35 = (log 7.35)/(log 2) = (ln 7.35)/(ln 2) 2.8777;
log50.6 = (log 0.6)/(log 5) = (ln 0.6)/(ln 5) ≈−0.3174
38. 10
-5
02
39. 2
-3
03
40. (a) Let X= logbxand Y= logax. Then bX=xand aY=xso aY=bX,ora
Y/X =b, which means
logab=Y/X. Substituting for Yand Xyields logax
logbx= logab, logbx=logax
logab.
(b) Let x=ato get logba= (logaa)/(logab)=1/(logab) so (logab)(logba)=1.
(log281)(log332) = (log2[34])(log3[25]) = (4 log23)(5 log32) = 20(log23)(log32)=20
41. x=3.6541,y =1.2958
2
0.6
26
42. Since the units are billions, one trillion is 1,000 units. Solve 1000 = 0.051517(1.1306727)xfor xby
taking common logarithms, resulting in 3 = log 0.051517 + xlog 1.1306727, which yields x77.4, so
the debt first reached one trillion dollars around 1977.
43. (a) no, the curve passes through the origin (b) y=2
x/4
(c) y=2
x(d) y=(
5)x
5
0
-1 2
Exercise Set 4.2 106
44. (a) As x+the function grows very slowly,
but it is always increasing and tends to +.
As x1+the function tends to −∞.
(b) y
x
-2
150
45. log(1/2) <0 so 3 log(1/2) <2 log(1/2)
46. Let x= logbaand y= logbc,soa=b
xand c=by.
First, ac =bxby=bx+yor equivalently, logb(ac)=x+y= logba+logbc.
Secondly, a/c =bx/by=bxyor equivalently, logb(a/c)=xy= logbalogbc.
Next, ar=(b
x
)
r=b
rx or equivalently, logbar=rx =rlogba.
Finally, 1/c =1/by=byor equivalently, logb(1/c)=y=logbc.
47. 75et/125 =15,t=125 ln(1/5) = 125 ln 5 201 days.
48. (a) If t= 0, then Q= 12 grams (b) Q=12e
0.055(4) =12e
0.22 9.63 grams
(c) 12e0.055t=6,e
0.055t=0.5,t=(ln 0.5)/(0.055) 12.6 hours
49. (a) 7.4; basic (b) 4.2; acidic (c) 6.4; acidic (d) 5.9; acidic
50. (a) log[H+]=2.44,[H+]=10
2.44 3.6×103mol/L
(b) log[H+]=8.06,[H+]=10
8.06 8.7×109mol/L
51. (a) 140 dB; damage (b) 120 dB; damage
(c) 80 dB; no damage (d) 75 dB; no damage
52. Suppose that I1=3I
2and β1= 10 log10 I1/I0,β2= 10 log10 I2/I0. Then
I1/I0=3I
2
/I0, log10 I1/I0= log10 3I2/I0= log10 3 + log10 I2/I0,β1= 10 log10 3+β
2
,
β
1β
2= 10 log10 34.8 decibels.
53. Let IAand IBbe the intensities of the automobile and blender, respectively. Then
log10 IA/I0= 7 and log10 IB/I0=9.3, IA=10
7
I
0and IB=10
9.3
I
0
,soI
B
/IA=10
2.3200.
54. The decibel level of the nth echo is 120(2/3)n;
120(2/3)n<10 if (2/3)n<1/12,n> log(1/12)
log(2/3) =log 12
log 1.56.13 so 6 echoes can be heard.
55. (a) log E=4.4+1.5(8.2)=16.7,E =10
16.75×1016 J
(b) Let M1and M2be the magnitudes of earthquakes with energies of Eand 10E,
respectively. Then 1.5(M2M1) = log(10E)log E= log 10 = 1,
M2M1=1/1.5=2/30.67.
56. Let E1and E2be the energies of earthquakes with magnitudes Mand M+ 1, respectively. Then
log E2log E1= log(E2/E1)=1.5,E
2/E1=10
1.531.6.
57. If t=2x, then x=t/2 and lim
x0(1 2x)1/x = lim
t0(1+t)2/t = lim
t0[(1 + t)1/t]2=e2.
58. If t=3/x, then x=3/t and lim
x+(1+3/x)x= lim
t0+(1+t)3/t = lim
t0+[(1 + t)1/t]3=e3.
107 Chapter 4
EXERCISE SET 4.3
1. y=(2x5)1/3;dy/dx =2
3(2x5)2/3
2. dy/dx =1
3£2 + tan(x2)¤2/3sec2(x2)(2x)=2
3
xsec2(x2)£2 + tan(x2)¤2/3
3. dy/dx =3
2·x1
x+2¸1/2d
dx ·x1
x+2¸=9
2(x+2)
2·x1
x+2¸1/2
4. dy/dx =1
2·x2+1
x
25¸1/2d
dx ·x2+1
x
25¸=1
2·x
2+1
x
25¸1/212x
(x25)2=6x
(x25)2·x2+1
x
25¸1/2
5. dy/dx =x3µ2
3(5x2+1)
5/3
(10x)+3x
2
(5x2+1)
2/3=1
3x
2
(5x2+1)
5/3
(25x2+9)
6. dy/dx =
x24
3(3 2x)1/3(2) (3 2x)4/3(2x)
x4=2(3 2x)1/3(2x9)
3x3
7. dy/dx =5
2[sin(3/x)]3/2[cos(3/x)](3/x2)=15[sin(3/x)]3/2cos(3/x)
2x2
8. dy/dx =1
2£cos(x3)¤3/2£sin(x3)¤(3x2)=3
2
x
2sin(x3)£cos(x3)¤3/2
9. (a) 3x2+xdy
dx +y2=0, dy
dx =23x2y
x
(b) y=1+2xx
3
x=1
x+2x
2so dy
dx =1
x22x
(c) from part (a), dy
dx =23x2y
x=23x2(1/x +2x
2
)
x=2x1
x
2
10. (a) 1
2y1/2dy
dx ex=0or dy
dx =2e
x
y
(b) y=(2+e
x
)
2=2+4e
x+e
2xso dy
dx =4e
x+2e
2x
(c) from part (a), dy
dx =2e
x
y=2e
x
(2+ex)=4e
x+2e
2x
11. 2x+2ydy
dx =0so dy
dx =x
y
12. 3x23y2dy
dx =6(x
dy
dx +y), (3y2+6x)dy
dx =6y3x
2so dy
dx =x22y
y2+2x
13. x2dy
dx +2xy +3x(3y2)dy
dx +3y
31=0
(x
2+9xy2)dy
dx =12xy 3y3so dy
dx =12xy 3y3
x2+9xy2
14. x3(2y)dy
dx +3x
2
y
25x
2dy
dx 10xy +1=0
(2x3y5x2)dy
dx =10xy 3x2y21so dy
dx =10xy 3x2y21
2x3y5x2
Exercise Set 4.3 108
15. 1
y2
dy
dx 1
x2=0so dy
dx =y2
x2
16. 2x=(xy)(1 + dy/dx)(x+y)(1 dy/dx)
(xy)2,
2x(xy)2=2y+2xdy
dx so dy
dx =x(xy)2+y
x
17. cos(x2y2)·x2(2y)dy
dx +2xy2¸=1, dy
dx =12xy2cos(x2y2)
2x2ycos(x2y2)
18. 2x=(1 + csc y)(csc2y)(dy/dx)(cot y)(csc ycot y)(dy/dx)
(1 + csc y)2,
2x(1 + csc y)2=csc y(csc y+ csc2ycot2y)dy
dx,
but csc2ycot2y=1,so dy
dx =2x(1 + csc y)
csc y
19. 3 tan2(xy2+y) sec2(xy2+y)µ2xy dy
dx +y2+dy
dx=1
so dy
dx =13y2tan2(xy2+y) sec2(xy2+y)
3(2xy + 1) tan2(xy2+y) sec2(xy2+y)
20. (1 + sec y)[3xy2(dy/dx)+y
3
]xy3(sec ytan y)(dy/dx)
(1 + sec y)2=4y
3dy
dx,
multiply through by (1 + sec y)2and solve for dy
dx
to get dy
dx =y(1 + sec y)
4y(1 + sec y)23x(1 + sec y)+xy sec ytan y
21. dy
dx =3x
4y,d2y
dx2=(4y)(3) (3x)(4dy/dx)
16y2=12y12x(3x/(4y))
16y2=12y29x2
16y3=3(3x24y2)
16y3,
but 3x24y2=7so d
2
y
dx2=3(7)
16y3=21
16y3
22. dy
dx =x2
y2,d2y
dx2=y2(2x)x2(2ydy/dx)
y4=2xy22x2y(x2/y2)
y4=2x(y3+x3)
y5,
but x3+y3=1so d
2
y
dx2=2x
y5
23. dy
dx =y
x,d2y
dx2=x(dy/dx)y(1)
x2=x(y/x)y
x2=2y
x2
24. dy
dx =y
yx,
d2y
dx2=(yx)(dy/dx)y(dy/dx 1)
(yx)2=
(yx)µy
yxyµy
yx1
(yx)2
=y22xy
(yx)3but y22xy =3,so d2y
dx2=3
(yx)3
25. dy
dx = (1 + cos y)1,d2y
dx2=(1 + cos y)2(sin y)dy
dx =sin y
(1 + cos y)3
109 Chapter 4
26. dy
dx =cos y
1+xsin y,
d2y
dx2=(1+xsin y)(sin y)(dy/dx)(cos y)[(xcos y)(dy/dx) + sin y]
(1+xsin y)2
=2 sin ycos y+(xcos y)(2 sin2y+ cos2y)
(1+xsin y)3,
but xcos y=y, 2 sin ycos y= sin 2y, and sin2y+ cos2y=1so
d
2
y
dx2=sin 2y+y(sin2y+1)
(1+xsin y)3
27. By implicit differentiation, 2x+2y(dy/dx)=0,dy
dx =x
y;at(1/
2,1/
2), dy
dx =1; at (1/2,1/2),
dy
dx = +1. Directly, at the upper point y=1x2,dy
dx =x
1x2=1 and at the lower point
y=1x2,dy
dx =x
1x2= +1.
28. If y2x+ 1 = 0, then y=x1 goes through the point (10,3) so dy/dx =1/(2x1). By
implicit differentiation dy/dx =1/(2y). In both cases, dy/dx|(10,3) =1/6. Similarly y=x1
goes through (10,3) so dy/dx =1/(2x1) = 1/6 which yields dy/dx =1/(2y)=1/6.
29. 4x3+4y
3dy
dx =0,so dy
dx =x3
y3=1
153/4≈−0.1312.
30. 3y2dy
dx +x2dy
dx +2xy +2x6ydy
dx =0,so dy
dx =2xy+1
3y
2+x
26y=0atx=0
31. 4(x2+y2)µ2x+2ydy
dx=25µ2x2ydy
dx,
dy
dx =x[25 4(x2+y2)]
y[25+4(x
2+y
2
)] ;at(3,1) dy
dx =9/13
32. 2
3µx1/3+y1/3dy
dx=0, dy
dx =y1/3
x1/3=3at(1,3
3)
34. (a) y
–2
0
2
12 x
(b) 2ydy
dx =(xa)(xb)+x(xb)+x(xa)=3x
22(a+b)x+ab.If
dy
dx = 0 then
3x22(a+b)x+ab = 0. By the quadratic formula
x=2(a+b)±p4(a+b)24·3ab
6=1
3ha+b±(a2+b2ab)1/2i.
(c) y=±px(xa)(xb). The square root is only defined for nonnegative arguments, so it is
necessary that all three of the factors x,xa,xbbe nonnegative, or that two of them be
nonpositive. If, for example, 0 <a<bthen the function is defined on the disjoint intervals
0<x<aand b<x<+, so there are two parts.
Exercise Set 4.3 110
35. (a) y
x
2
-2 2
2
(b) ±1.1547
(c) Implicit differentiation yields 2xxdy
dx y+2ydy
dx = 0. Solve for dy
dx =y2x
2yx.Ifdy
dx = 0 then
y2x=0ory=2x.Thus4=x
2xy +y2=x22x2+4x
2=3x
2
,x=±2
3
.
36. 1
2u1/2du
dv +1
2v1/2=0so du
dv =u
v
37. 4a3da
dt 4t3=6µa
2+2at da
dt , solve for da
dt to get da
dt =2t3+3a
2
2a
36at
38. 1 = (cos x)dx
dy so dx
dy =1
cos x= sec x39. 2a2ω
+2b
2
λ=0so
=b2λ
a2ω
40. Let P(x0,y
0) be the required point. The slope of the line 4x3y+1=0is4/3 so the slope of
the tangent to y2=2x
3at Pmust be 3/4. By implicit differentiation dy/dx =3x
2
/y,soatP,
3x
2
0
/y0=3/4, or y0=4x2
0. But y2
0=2x
3
0because Pis on the curve y2=2x
3
. Elimination of y0
gives 16x4
0=2x
3
0
,x
3
0
(8x01) = 0, so x0= 0 or 1/8. From y0=4x2
0it follows that y0= 0 when
x0= 0, and y0=1/16 when x0=1/8. It does not follow, however, that (0,0) is a solution because
dy/dx =3x
2
/y (the slope of the curve as determined by implicit differentiation) is valid only if y6=0.
Further analysis shows that the curve is tangent to the x-axis at (0,0), so the point (1/8,1/16) is
the only solution.
41. The point (1,1) is on the graph, so 1 + a=b. The slope of the tangent line at (1,1) is 4/3; use
implicit differentiation to get dy
dx =2xy
x2+2ay so at (1,1), 2
1+2a=4
3, 1+2a=3/2, a=1/4 and
hence b=1+1/4=5/4.
42. Use implicit differentiation to get dy/dx =(y3x
2
)/(3y2x), so dy/dx =0ify=3x
2
. Substitute
this into x3xy +y3= 0 to obtain 27x62x3=0,x
3=2/27, x=3
2/3 and hence y=3
4/3.
43. Let P(x0,y
0) be a point where a line through the origin is tangent to the curve
x24x+y2+ 3 = 0. Implicit differentiation applied to the equation of the curve gives
dy/dx =(2x)/y.AtPthe slope of the curve must equal the slope of the line so
(2 x0)/y0=y0/x0,ory
2
0=2x
0x
2
0
. But x2
04x0+y2
0+ 3 = 0 because (x0,y
0) is on the curve,
and elimination of y2
0in the latter two equations gives x2
04x0+(2x
0x
2
0
)+3=0,x
0=3/2 which
when substituted into y2
0=2x
0x
2
0yields y2
0=3/4, so y0=±3/2. The slopes of the lines are
(±3/2)/(3/2) = ±3/3 and their equations are y=(
3/3)xand y=(3/3)x.
44. By implicit differentiation, dy/dx =k/(2y) so the slope of the tangent to y2=kx at (x0,y
0)is
k/(2y0)ify
06= 0. The tangent line in this case is yy0=k
2y0
(xx0), or 2y0y2y2
0=kx kx0.
But y2
0=kx0because (x0,y
0) is on the curve y2=kx, so the equation of the tangent line becomes
2y0y2kx0=kx kx0which gives y0y=k(x+x0)/2. If y0= 0, then x0= 0; the graph of y2=kx
has a vertical tangent at (0,0) so its equation is x= 0, but y0y=k(x+x0)/2 gives the same result
when x0=y0=0.
111 Chapter 4
45. By the chain rule, dy
dx =dy
dt
dt
dx. Use implicit differentiation on 2y3t+t3y= 1 to get
dy
dt =2y3+3t
2
y
6ty2+t3, but dt
dx =1
cos tso dy
dx =2y3+3t
2
y
(6ty2+t3) cos t.
46. 2x3ydy
dt +3x
2
y
2dx
dt +dy
dt =0,dy
dt =3x2y2
2x3y+1
dx
dt
47. 2xy dy
dt =y2dx
dt = 3(cos 3x)dx
dt ,dy
dt =3 cos 3xy2
2xy
dx
dt
48. (a) f0(x)= 4
3
x
1/3
,f
00(x)=4
9
x
2/3
(b) f0(x)=7
3
x
4/3
,f
00(x)=28
9x1/3,f000(x)=28
27x2/3
(c) generalize parts (a) and (b) with k=(n1)+1/3=n2/3
49. y0=rxr1,y
00 =r(r1)xr2so 3x2£r(r1)xr2¤+4x¡rxr1¢2xr=0,
3r(r1)xr+4rxr2xr=0,(3r2+r2)xr=0,
3r
2+r2=0,(3r2)(r+1)=0;r=1,2/3
50. y0=rxr1,y
00 =r(r1)xr2so 16x2£r(r1)xr2¤+24x¡rxr1¢+xr=0,
16r(r1)xr+24rxr+xr=0,(16r2+8r+1)x
r=0,
16r2+8r+1=0,(4r+1)
2=0;r=1/4
51. We shall find when the curves intersect and check that the slopes are negative reciprocals. For the
intersection solve the simultaneous equations x2+(yc)
2=c
2and (xk)2+y2=k2to obtain
cy =kx =1
2(x2+y2). Thus x2+y2=cy +kx,ory
2cy =x2+kx, and yc
x=xk
y.
Differentiating the two families yields (black) dy
dx =x
yc, and (gray) dy
dx =xk
y. But it was
proven that these quantities are negative reciprocals of each other.
52. Differentiating, we get the equations (black) xdy
dx +y= 0 and (gray) 2x2ydy
dx = 0. The first says
the (black) slope is = y
xand the second says the (gray) slope is x
y, and these are negative reciprocals
of each other.
53. y=f1(x), x=f(y)=5y
3+y7, dx
dy =15y
2+1, dy
dx =1
15y2+1;
check: 1 = 15y2dy
dx +dy
dx,dy
dx =1
15y2+1
54. y=f1(x), x=f(y)=1/y2,dx
dy =2y3,dy
dx =y3/2;
check: 1 = 2y3dy
dx,dy
dx =y3/2
55. y=f1(x), x=f(y)=2y
5+y
3+1, dx
dy =10y
4+3y
2
,dy
dx =1
10y4+3y
2;
check: 1 = 10y4dy
dx +3y
2dy
dx,dy
dx =1
10y4+3y
2
Exercise Set 4.4 112
56. y=f1(x), x=f(y)=5ysin 2y,dx
dy =52 cos 2y,dy
dx =1
52 cos 2y;
check: 1 = (5 2 cos 2y)dy
dx,dy
dx =1
52 cos 2y
EXERCISE SET 4.4
1. 1
2x(2)=1/x 2. 1
x3(3x2)=3/x
3. 2(ln x)µ1
x=2lnx
x4. 1
sin x(cos x) = cot x
5. 1
tan x(sec2x)=sec2x
tan x6. 1
2+
xµ1
2
x=1
2
x(2+x)
7. 1
x/(1+x2)·(1+x2)(1) x(2x)
(1+x2)2¸=1x2
x(1+x2)8. 1
ln xµ1
x=1
xln x
9. 3x214x
x37x2310. x3µ1
x+(3x
2
)lnx=x
2(1+3lnx)
11. 1
2(ln x)1/2µ1
x=1
2xln x12.
1
22(ln x)(1/x)
p1+ln
2x=ln x
xp1+ln
2x
13. 1
xsin(ln x)14. 2 sin(ln x) cos(ln x)1
x=sin(ln x2)
x
15. 3x2log2(3 2x)+ 2x
3
(ln 2)(3 2x)16. £log2(x22x)¤3+3x£log2(x22x)¤22x2
(x22x)ln2
17. 2x(1 + log x)x/(ln 10)
(1 + log x)218. 1/[x(ln 10)(1 + log x)2]
19. 7e7x20. 10xe5x2
21. x3ex+3x
2
e
x=x
2
e
x
(x+3) 22. 1
x2e1/x
23. dy
dx =(ex+ex)(ex+ex)(exex)(exex)
(ex+ex)2
=(e2x+2+e
2x
)(e
2x2+e
2x
)
(e
x+e
x
)
2=4/(e
x+e
x
)
2
24. excos(ex)
25. (xsec2x+ tan x)extan x26. dy
dx =(ln x)exex(1/x)
(ln x)2=ex(xln x1)
x(ln x)2
27. (1 3e3x)e(xe3x)28. 15
2x2(1+5x
3
)
1/2exp(p1+5x
3
)
29. (x1)ex
1xex=x1
exx30. 1
cos(ex)[sin(ex)]ex=extan(ex)
113 Chapter 4
31. dy
dx +1
xy µxdy
dx +y=0, dy
dx =y
x(y+1)
32. dy
dx =1
xtan yµxsec2ydy
dx + tan y,dy
dx =tan y
x(tan ysec2y)
33. d
dx ·ln cos x1
2ln(4 3x2)¸=tan x+3x
43x2
34. d
dx µ1
2[ln(x1) ln(x+ 1)]=1
2µ1
x11
x+1
35. ln |y|=ln|x|+1
3ln |1+x
2
|,dy
dx =x3
p1+x
2·1
x+2x
3(1 + x2)¸
36. ln |y|=1
5[ln |x1|−ln |x+1|], dy
dx =1
5
5
rx1
x+1·1
x11
x+1¸
37. ln |y|=1
3ln |x28|+1
2ln |x3+1|−ln |x67x+5|
dy
dx =(x28)1/3x3+1
x
67x+5 ·2x
3(x28) +3x2
2(x3+1) 6x
57
x
67x+5¸
38. ln |y|=ln|sin x|+ln|cos x|+3ln|tan x|−1
2ln |x|
dy
dx =sin xcos xtan3x
x·cot xtan x+3 sec2x
tan x1
2x¸
39. f0(x)=2
xln 2; y=2
x
,lny=xln 2, 1
yy0=ln2,y
0=yln2=2
xln 2
40. f0(x)=3
xln 3; y=3
x
,lny=xln 3, 1
yy0=ln 3, y0=yln 3 = 3xln 3
41. f0(x)=π
sin x(ln π) cos x;
y=πsin x,lny= (sin x)lnπ,1
yy
0= (ln π) cos x,y0=πsin x(ln π) cos x
42. f0(x)=π
xtan x(ln π)(xsec2x+ tan x);
y=πxtan x,lny=(xtan x)lnπ,1
yy
0= (ln π)(xsec2x+ tan x)
y0=πxtan x(ln π)(xsec2x+ tan x)
43. ln y= (ln x) ln(x32x), 1
y
dy
dx =3x22
x32xln x+1
xln(x32x),
dy
dx =(x
32x)
ln x·3x22
x32xln x+1
xln(x32x)¸
44. ln y= (sin x)lnx,1
y
dy
dx =sin x
x+ (cos x)lnx,dy
dx =xsin x·sin x
x+ (cos x)lnx
¸
45. ln y= (tan x) ln(ln x), 1
y
dy
dx =1
xln xtan x+ (sec2x) ln(ln x),
dy
dx = (ln x)tan x·tan x
xln x+ (sec2x) ln(ln x)¸
Exercise Set 4.4 114
46. ln y= (ln x) ln(x2+ 3), 1
y
dy
dx =2x
x2+3ln x+1
xln(x2+ 3),
dy
dx =(x
2+3)
ln x·2x
x2+3ln x+1
xln(x2+3)
¸
47. y=Ae2x+Be4x,y0=2Ae2x4Be4x,y00 =4Ae2x+16Be4xso
y00 +2y
08y=(4Ae2x+16Be4x) + 2(2Ae2x4Be4x)8(Ae2x+Be4x)=0
48. y=Aekt,dy/dt =kAekt =k(Aekt)=ky
49. (a) f0(x)=kekx,f00(x)=k
2
e
kx,f000(x)=k
3
e
kx,...,f(n)(x)=k
n
e
kx
(b) f0(x)=kekx,f00(x)=k
2
e
kx,f000(x)=k
3
e
kx,...,f(n)(x)=(1)nknekx
50. dy
dt =eλt(ωA cos ωt ωB sin ωt)+(λ)e
λt(Asin ωt +Bcos ωt)
=eλt[(ωA λB) cos ωt (ωB +λA) sin ωt]
51. f0(x)= 1
2πσ exp "1
2µxµ
σ2#d
dx "1
2µxµ
σ2#
=1
2πσ exp "1
2µxµ
σ2#·µxµ
σ¶µ1
σ¶¸
=1
2πσ3(xµ) exp "1
2µxµ
σ2#
52. (a) y0=xex+ex=ex(1 x), xy0=xex(1 x)=y(1 x)
(b) y0=x2ex2/2+ex2/2=ex2/2(1 x2), xy0=xex2/2(1 x2)=y(1 x2)
53. (a) logxe=ln e
ln x=1
ln x,d
dx[logxe]=1
x(ln x)2
(b) logx2= ln 2
ln x,d
dx[logx2] = ln 2
x(ln x)2
54. β= 10 log I10 log I0,
dI =10
Iln 10
(a)
dI ¸I=10I0
=1
I0ln 10 db/W/m2(b)
dI ¸I=100I0
=1
10I0ln 10 db/W/m2
(c)
dI ¸I=100I0
=1
100I0ln 10 db/W/m2
55. dk
dT =k0exp ·q(TT0)
2T0T¸³q
2T2´=qk0
2T2exp ·q(TT0)
2T0T¸
56. (a) because xxis not of the form axwhere ais constant
(b) y=xx,lny=xln x,1
yy0=1+lnx,y
0=x
x
(1+lnx)
57. f0(x)=exe1
115 Chapter 4
58. Let P(x0,y
0)beapointony=e
3xthen y0=e3x0.dy/dx =3e
3xso mtan =3e
3x
0at Pand an equation
of the tangent line at Pis yy0=3e
3x
0(xx
0
), ye3x0=3e
3x
0(xx
0
). If the line passes through
the origin then (0,0) must satisfy the equation so e3x0=3x0e3x0which gives x0=1/3 and thus
y0=e. The point is (1/3,e).
59. (a) f(x)=lnx;f
0(1) = lim
h0
ln(1 + h)ln 1
h= lim
h0
ln(1 + h)
h=1
x¯¯¯¯x=1
=1
(b) f(x)=10
x
;f
0(0) = lim
h0
10h1
h=d
dx(10x)¯¯¯¯x=0
=10
xln 10¯¯¯¯x=0
=ln10
60. (a) f(x)=lnx;f
0(e
2
) = lim
h0
ln(e2+h)2
h=d
dx(ln x)¯¯¯¯x=e2
=1
x¯¯¯¯x=e2
=e2
(b) f(x)=2
x
;f
0(1) = lim
x1
2x2
x1=d
dx(2x)¯¯¯¯x=1
=2
xln 2¯¯¯¯x=1
= 2 ln 2
61. (b) y
x
2
4
6
1234
(c) dy
dx =1
21
xso dy
dx <0at
x= 1 and dy
dx >0atx=e
(d) The slope is a continuous function which goes from a negative value to a positive value; therefore
it must take the value zero in between, by the Intermediate Value Theorem.
(e) dy
dx = 0 when x=2
62. (a) 100
-100
-5 5
(c) 125
-25
-5 5
(d) x=2,5/3
63. (a) excos πx oscillates between +exand ex
as cos πx oscillates between 1 and +1.
(b) y
x
-20
20
123
Exercise Set 4.5 116
64. (a) 12
0
09
(b) Ptends to 12 as tgets large; lim
t+P(t) = lim
t+
60
5+7e
t=60
5+7 lim
t+e
t=60
5=12
(c) the rate of population growth tends to zero
3.2
0
09
65. (a) 100
20
08
(b) as ttends to +, the population tends to 19
lim
t+P(t) = lim
t+
95
54et/4=95
54 lim
t+et/4=95
5=19
(c) the rate of population growth tends to zero
0
-80
08
EXERCISE SET 4.5
1. (a) π/2(b) π(c) π/4(d) 0
2. (a) π/3(b) π/3(c) π/4(d) 4π/3
3. θ=π/3; cos θ=1/2, tan θ=3, cot θ=1/3, sec θ= 2, csc θ=2/3
117 Chapter 4
4. θ=π/3; sin θ=3/2, tan θ=3, cot θ=1/
3, sec θ= 2, csc θ=2/
3
5. tan θ=4/3, 0 /2; use the triangle shown to get sin θ=4/5,
cos θ=3/5, cot θ=3/4, sec θ=5/3, csc θ=5/4
θ
3
4
5
6. domain range
sin1[1,1] [π/2/2]
cos1[1,1] [0]
tan1(−∞,+) (π/2/2)
cot1(−∞,+) (0)
sec1(−∞,1] [1,+) [0/2) [π, 3π/2)
csc1(−∞,1] [1,+) (0/2] (π, π/2]
7. (a) π/7(b) sin1(sin π) = sin1(sin 0) = 0
(c) sin1(sin(5π/7)) = sin1(sin(2π/7))=2π/7
(d) Note that π/2<630 200π<πso
sin(630) = sin(630 200π) = sin(π(630 200π)) = sin(201π630) where
0<201π630 /2; sin1(sin 630) = sin1(sin(201π630)) = 201π630.
8. (a) π/7(b) π
(c) cos1(cos(12π/7)) = cos1(cos(2π/7))=2π/7
(d) Note that π/2<200 64π<0 so cos(200) = cos(200 64π) = cos(64π200) where
0<64π200 /2; cos1(cos 200) = cos1(cos(64π200)) = 64π200.
9. (a) 0xπ(b) 1x1
(c) π/2<x<π/2(d) −∞ <x<+
10. Let θ= sin1(3/4) then sin θ=3/4, π/2<0 and
(see figure) sec θ=4/
7
θ
3
4
÷7
11. Let θ= cos1(3/5), sin 2θ= 2 sin θcos θ= 2(4/5)(3/5)=24/25
θ
3
4
5
Exercise Set 4.5 118
12. (a) sin(cos1x)=
1x
2
1
x
1 x
2
cos1x
(b) tan(cos1x)=
1x
2
x
1
x
cos1x
1 x
2
(c) csc(tan1x)=
1+x
2
x
1
x
tan1x
1 + x
2
(d) sin(tan1x)= x
1+x
2
1
x
tan1x
1 + x
2
13. (a) cos(tan1x)= 1
1+x
2
1
x
tan1x
1 + x
2
(b) tan(cot1x)= 1
x
x
1
cot1x
1 + x
2
(c) sin(sec1x)=
x
21
x
1
x
sec1x
x
2
1
(d) cot(csc1x)=px
21
1
x
csc1x
x
2
1
14. (a) x1.00 0.80 0.60.40 0.20 0.00 0.20 0.40 0.60 0.80 1.00
sin1x1.57 0.93 0.64 0.41 0.20 0.00 0.20 0.41 0.64 0.93 1.57
cos1x3.14 2.50 2.21 1.98 1.77 1.57 1.37 1.16 0.93 0.64 0.00
(b) y
x
1
1
(c) y
x
-1
1
2
3
0.5 1
119 Chapter 4
15. (a) y
x
1
3
-10 10
y
x
-π/2
π/2
-5 51
(b) The domain of cot1xis (−∞,+), the range is (0); the domain of csc1xis
(−∞,1] [1,+), the range is [π/2,0) (0/2].
16. (a) y= cot1x,x= cot y, tan y=1/x,y= tan1(1/x)
(b) y= sec1x,x= sec y, cos y=1/x,y= cos1(1/x)
(c) y= csc1x,x= csc y, sin y=1/x,y= sin1(1/x)
17. (a) 55.0(b) 33.6(c) 25.8
18. (a) x=πsin1(0.37) 2.7626 rad (b) θ= 180+ sin1(0.61) 217.6
19. (a) x=π+ cos1(0.85) 3.6964 rad (b) θ=cos1(0.23) ≈−76.7
20. (a) x= tan1(3.16) π≈−1.8773 (b) θ= 180tan1(0.45) 155.8
21. (a) 1
p1x2/9(1/3)=1/
p9x
2(b) 2/p1(2x+1)
2
22. (a) 2x/(1+x4)(b) 1
1+xµ1
2x
1/2
=1
2(1 + x)x
23. (a) 1
x7x14 1(7x6)= 7
x
x
14 1(b) 1/e2x1
24. (a) y=1/tan x= cot x,dy/dx =csc2x
(b) y= (tan1x)1,dy/dx =(tan1x)2µ1
1+x
2
25. (a) 1
p11/x2(1/x2)=1
|x|
x
21(b) sin x
1cos2x=sin x
|sin x|=½1,sin x>0
1,sin x<0
26. (a) 1
(cos1x)1x2(b) 1
2cot1x(1+x2)
27. (a) ex
xx21+exsec1x(b) 3x2(sin1x)2
1x2+2x(sin1x)3
28. (a) 0(b) 0
29. x3+xtan1y=ey,3x
2+x
1+y
2y
0+ tan1y=eyy0,y0=(3x2+ tan1y)(1 + y2)
(1+y2)eyx
Exercise Set 4.5 120
30. sin1(xy) = cos1(xy), 1
p1x2y2(xy0+y)=1
p1(xy)
2(1 y0),
y0=yp1(xy)2+p1x2y2
p1x2y2xp1(xy)2
31. (a) y
x
1
2
3
-1 1
32. (a) y
x
1
2
33. (a) y
x
π
2π4π
34. (a) sin10.9>1, so it is not in the domain of sin1x
(b) 1sin1x1 is necessary, or 0.841471 x0.841471
35. (a)
-0.5 0.5
-6
6
x
y(b)
-6
6
x
y
36. (a) x=2πcos1k(b) x=π+ tan1k
(c) 2x= sin1kor 2x=πsin1kso x=1
2sin1kor x=π/21
2sin1k
37. (b) θ= sin1R
R+h= sin16378
16,378 23
38. (a) If γ=90
, then sin γ=1,p1sin2φsin2γ=p1sin2φ= cos φ,
D= tan φtan λ= (tan 23.55)(tan 65)0.934684245 so h21.2 hours.
(b) If γ= 270, then sin γ=1, D=tan φtan λ≈−0.934684245 so h2.8 hours.
39. sin 2θ=gR/v2=(9.8)(18)/(14)2=0.9, 2θ= sin1(0.9) or 2θ= 180sin1(0.9) so
θ=1
2sin1(0.9) 32or θ=90
1
2sin1(0.9) 58. The ball will have a lower
parabolic trajectory for θ=32
and hence will result in the shorter time of flight.
40. 42=2
2+3
22(2)(3) cos θ, cos θ=1/4, θ= cos1(1/4) 104
121 Chapter 4
41. y= 0 when x2= 6000v2/g,x=10v
p60/g = 100030 for v= 400 and g= 32;
tan θ= 3000/x =3/
30, θ= tan1(3/30) 29.
42. θ=αβ, cot α=x
a+band cot β=x
bso
θ= cot1x
a+bcot1x
b
a
θ
αβ
b
x
43. (a) Let θ= sin1(x) then sin θ=x,π/2θπ/2. But sin(θ)=sin θand
π/2≤−θπ/2 so sin(θ)=(x)=x,θ= sin1x,θ=sin1x.
(b) proof is similar to that in part (a)
44. (a) Let θ= cos1(x) then cos θ=x,0θπ. But cos(πθ)=cos θand
0πθπso cos(πθ)=x,πθ= cos1x,θ=πcos1x
(b) Let θ= sec1(x) for x1; then sec θ=xand π/2π.So0πθ<π/2 and
πθ= sec1sec(πθ) = sec1(sec θ) = sec1x,orsec
1
(x)=πsec1x.
45. (a) sin1x= tan1x
1x2
x
1
÷1
x
2
sin1x
(b) sin1x+ cos1x=π/2; cos1x=π/2sin1x=π/2tan1x
1x2
46. tan(α+β)= tan α+ tan β
1tan αtan β,
tan(tan1x+ tan1y)= tan(tan1x) + tan(tan1y)
1tan(tan1x) tan(tan1y)=x+y
1xy
so tan1x+ tan1y= tan1x+y
1xy
47. (a) tan11
2+ tan11
3= tan11/2+1/3
1(1/2) (1/3) = tan11=π/4
(b) 2 tan11
3= tan11
3+ tan11
3= tan11/3+1/3
1(1/3) (1/3) = tan13
4,
2 tan11
3+ tan11
7= tan13
4+ tan11
7= tan13/4+1/7
1(3/4) (1/7) = tan11=π/4
48. sin(sec1x) = sin(cos1(1/x)) = s1µ1
x2
=x21
|x|
Exercise Set 4.6 122
EXERCISE SET 4.6
1. (b) A=x2(c) dA
dt =2x
dx
dt
(d) Find dA
dt ¯¯¯¯x=3
given that dx
dt ¯¯¯¯x=3
= 2. From part (c), dA
dt ¯¯¯¯x=3
= 2(3)(2) = 12 ft2/min.
2. (b) A=πr2(c) dA
dt =2πr dr
dt
(d) Find dA
dt ¯¯¯¯r=5
given that dr
dt ¯¯¯¯r=5
= 2. From part (c), dA
dt ¯¯¯¯r=5
=2π(5)(2) = 20πcm2/s.
3. (a) V=πr2h,so dV
dt =πµr2dh
dt +2rhdr
dt .
(b) Find dV
dt ¯¯¯¯h=6,
r=10
given that dh
dt ¯¯¯¯h=6,
r=10
= 1 and dr
dt ¯¯¯¯h=6,
r=10
=1. From part (a),
dV
dt ¯¯¯¯h=6,
r=10
=π[102(1) + 2(10)(6)(1)] = 20πin3/s; the volume is decreasing.
4. (a) `2=x2+y2,sod`
dt =1
`µxdx
dt +ydy
dt .
(b) Find d`
dt ¯¯¯¯x=3,
y=4
given that dx
dt =1
2and dy
dt =1
4.
From part (a) and the fact that `= 5 when x= 3 and y=4,
d`
dt ¯¯¯¯x=3,
y=4
=1
5·3µ1
2+4µ1
4¶¸=1
10 ft/s; the diagonal is increasing.
5. (a) tan θ=y
x,sosec
2θ
dt =
xdy
dt ydx
dt
x2,
dt =cos2θ
x2µxdy
dt ydx
dt
(b) Find
dt ¯¯¯¯x=2,
y=2
given that dx
dt ¯¯¯¯x=2,
y=2
= 1 and dy
dt ¯¯¯¯x=2,
y=2
=1
4.
When x= 2 and y= 2, tan θ=2/2=1soθ=π
4and cos θ= cos π
4=1
2.Thus
from part (a),
dt ¯¯¯¯x=2,
y=2
=(1/2)2
22·2µ1
42(1)¸=5
16 rad/s; θis decreasing.
6. Find dz
dt ¯¯¯¯x=1,
y=2
given that dx
dt ¯¯¯¯x=1,
y=2
=2 and dy
dt ¯¯¯¯x=1,
y=2
=3.
dz
dt =2x
3
ydy
dt +3x
2
y
2dx
dt ,dz
dt ¯¯¯¯x=1,
y=2
= (4)(3) + (12)(2) = 12 units/s; zis decreasing
7. Let Abe the area swept out, and θthe angle through which the minute hand has rotated.
Find dA
dt given that
dt =π
30 rad/min; A=1
2r2θ=8θ,so dA
dt =8
dt =4π
15 in2/min.
123 Chapter 4
8. Let rbe the radius and Athe area enclosed by the ripple. We want dA
dt ¯¯¯¯t=10
given that dr
dt =3. We
know that A=πr2,so dA
dt =2πrdr
dt . Because ris increasing at the constant rate of 3 ft/s, it follows
that r= 30 ft after 10 seconds so dA
dt ¯¯¯¯t=10
=2π(30)(3) = 180πft2/s.
9. Find dr
dt ¯¯¯¯A=9
given that dA
dt = 6. From A=πr2we get dA
dt =2πr dr
dt so dr
dt =1
2πr
dA
dt .IfA= 9 then
πr2=9,r=3/
πso dr
dt ¯¯¯¯A=9
=1
2π(3/π)(6)=1/
πmi/h.
10. The volume Vof a sphere of radius ris given by V=4
3πr3or, because r=D
2where D
is the diameter, V=4
3πµD
23
=1
6πD3. We want dD
dt ¯¯¯¯r=1
given that dV
dt = 3. From
V=1
6πD3we get dV
dt =1
2πD2dD
dt ,dD
dt =2
πD2
dV
dt ,so dD
dt ¯¯¯¯r=1
=2
π(2)2(3) = 3
2πft/min.
11. Find dV
dt ¯¯¯¯r=9
given that dr
dt =15. From V=4
3πr3we get dV
dt =4πr2dr
dt so
dV
dt ¯¯¯¯r=9
=4π(9)2(15) = 4860π. Air must be removed at the rate of 4860πcm3/min.
12. Let xand ybe the distances shown in the diagram. We want to find
dy
dt ¯¯¯¯y=8
given that dx
dt = 5. From x2+y2=17
2we get
2xdx
dt +2ydy
dt =0,so dy
dt =x
y
dx
dt . When y=8,x
2+8
2=17
2
,
x
2= 289 64 = 225, x=15so dy
dt ¯¯¯¯y=8
=15
8(5) = 75
8ft/s; the
top of the ladder is moving down the wall at a rate of 75/8 ft/s.
17
x
y
13. Find dx
dt ¯¯¯¯y=5
given that dy
dt =2. From x2+y2=13
2we get
2xdx
dt +2ydy
dt =0so dx
dt =y
x
dy
dt . Use x2+y2= 169 to find that
x= 12 when y=5so dx
dt ¯¯¯¯y=5
=5
12(2) = 5
6ft/s.
13
x
y
14. Let θbe the acute angle, and xthe distance of the bottom of the plank from the wall. Find
dt ¯¯¯¯x=2
given that dx
dt ¯¯¯¯x=2
=1
2ft/s. The variables θand xare related by the equation cos θ=x
10 so
sin θ
dt =1
10
dx
dt ,
dt =1
10 sin θ
dx
dt . When x= 2, the top of the plank is 10222=96 ft above
the ground so sin θ=96/10 and
dt ¯¯¯¯x=2
=1
96 µ1
2=1
296 0.051 rad/s.
Exercise Set 4.6 124
15. Let xdenote the distance from first base and ythe distance from
home plate. Then x2+60
2=y
2and 2xdx
dt =2ydy
dt . When x=50
then y=10
61 so dy
dt =x
y
dx
dt =50
1061(25) = 125
61 ft/s.
60 ft
y
x
Home
First
16. Find dx
dt ¯¯¯¯x=4
given that dy
dt ¯¯¯¯x=4
= 2000. From x2+5
2=y
2we get
2xdx
dt =2ydy
dt so dx
dt =y
x
dy
dt . Use x2+25=y
2to find that y=41
when x=4so dx
dt ¯¯¯¯x=4
=41
4(2000) = 50041 mi/h.
Rocket
yx
5 mi
Radar
station
17. Find dy
dt ¯¯¯¯x=4000
given that dx
dt ¯¯¯¯x=4000
= 880. From y2=x2+ 30002
we get 2ydy
dt =2x
dx
dt so dy
dt =x
y
dx
dt .Ifx= 4000, then y= 5000 so
dy
dt ¯¯¯¯x=4000
=4000
5000(880) = 704 ft/s.
Rocket
Camera
3000 ft
yx
18. Find dx
dt ¯¯¯¯φ=π/4
given that
dt ¯¯¯¯φ=π/4
=0.2. But x= 3000 tan φso
dx
dt = 3000(sec2φ)
dt ,dx
dt ¯¯¯¯φ=π/4
= 3000 ³sec2π
4´(0.2) = 1200 ft/s.
19. (a) If xdenotes the altitude, then rx= 3960, the radius of the Earth. θ= 0 at perigee, so
r= 4995/1.12 4460; the altitude is x= 4460 3960 = 500 miles. θ=πat apogee, so
r= 4995/0.88 5676; the altitude is x= 5676 3960 = 1716 miles.
(b) If θ= 120, then r= 4995/0.94 5314; the altitude is 5314 3960 = 1354 miles. The rate of
change of the altitude is given by
dx
dt =dr
dt =dr
dt =4995(0.12 sin θ)
(1+0.12 cos θ)2
dt .
Use θ= 120and /dt =2.7
/min = (2.7)(π/180) rad/min to get dr/dt 27.7 mi/min.
20. (a) Let xbe the horizontal distance shown in the figure. Then x= 4000 cot θand
dx
dt =4000 csc2θ
dt ,so
dt =sin2θ
4000
dx
dt . Use θ=30
and
dx/dt = 300 mi/h = 300(5280/3600) ft/s = 440 ft/s to get
/dt =0.0275 rad/s ≈−1.6
/s; θis decreasing at the rate of 1.6/s.
(b) Let ybe the distance between the observation point and the aircraft. Then y= 4000 csc θso
dy/dt =4000(csc θcot θ)(dθ/dt). Use θ=30
and /dt =0.0275 rad/s to get dy/dt 381
ft/s.
125 Chapter 4
21. Find dh
dt ¯¯¯¯h=16
given that dV
dt = 20. The volume of water in the tank
at a depth his V=1
3πr2h. Use similar triangles (see figure) to get
r
h=10
24 so r=5
12hthus V=1
3πµ5
12h2
h=25
432πh3,
dV
dt =25
144πh2dh
dt ;dh
dt =144
25πh2
dV
dt ,dh
dt ¯¯¯¯h=16
=144
25π(16)2(20) = 9
20π
ft/min.
h
r
24
10
22. Find dh
dt ¯¯¯¯h=6
given that dV
dt =8. V=1
3
πr2h, but r=1
2hso
V=1
3πµh
22
h=1
12πh3,dV
dt =1
4πh2dh
dt ,dh
dt =4
πh2
dV
dt ,
dh
dt ¯¯¯¯h=6
=4
π(6)2(8) = 8
9πft/min.
h
r
23. Find dV
dt ¯¯¯¯h=10
given that dh
dt =5. V=1
3
πr2h, but r=1
2hso
V=1
3πµh
22
h=1
12πh3,
dV
dt =1
4πh2dh
dt ,dV
dt ¯¯¯¯h=10
=1
4π(10)2(5) = 125πft3/min.
h
r
24. Let rand hbe as shown in the figure. If Cis the circumference of
the base, then we want to find dC
dt ¯¯¯¯h=8
given that dV
dt = 10. It is
given that r=1
2h,thusC=2πr =πh so
dC
dt =πdh
dt (1)
Use V=1
3πr2h=1
12πh3to get dV
dt =1
4πh2dh
dt ,so
dh
dt =4
πh2
dV
dt (2)
Substitution of (2) into (1) gives dC
dt =4
h2
dV
dt so
dC
dt ¯¯¯¯h=8
=4
64(10) = 5
8ft/min.
h
r
25. With sand has shown in the figure, we want to find dh
dt given that
ds
dt = 500. From the figure, h=ssin 30=1
2sso
dh
dt =1
2
ds
dt =1
2(500) = 250 mi/h.
sh
Ground
30°
Exercise Set 4.6 126
26. Find dx
dt ¯¯¯¯y=125
given that dy
dt =20. From x2+10
2=y
2we get
2xdx
dt =2ydy
dt so dx
dt =y
x
dy
dt . Use x2+ 100 = y2to find that
x=15,525=15
69 when y= 125 so
dx
dt ¯¯¯¯y=125
=125
1569(20) = 500
369. The boat is approaching the
dock at the rate of 500
369 ft/min.
y
xBoat
Pulley
10
27. Find dy
dt given that dx
dt ¯¯¯¯y=125
=12. From x2+10
2=y
2we get
2xdx
dt =2ydy
dt so dy
dt =x
y
dx
dt . Use x2+ 100 = y2to find that
x=p15,525=15
69 when y= 125 so
dy
dt =1569
125 (12) = 3669
25 . The rope must be pulled at the rate
of 3669
25 ft/min.
y
xBoat
Pulley
10
28. (a) Let xand ybe as shown in the figure. It is required to find
dx
dt , given that dy
dt =3. By similar triangles, x
6=x+y
18 ,
18x=6x+6y,12x=6y,x=1
2
y,so
dx
dt =1
2
dy
dt =1
2(3) = 3
2ft/s. 6
18
Man
Shadow
Light
yx
(b) The tip of the shadow is z=x+yfeet from the street light, thus the rate at which it is
moving is given by dz
dt =dx
dt +dy
dt . In part (a) we found that dx
dt =3
2when dy
dt =3so
dz
dt =(3/2)+(3) = 9/2 ft/s; the tip of the shadow is moving at the rate of 9/2 ft/s toward
the street light.
29. Find dx
dt ¯¯¯¯θ=π/4
given that
dt =2π
10 =π
5rad/s. Then
x= 4 tan θ(see figure) so dx
dt = 4 sec2θ
dt ,
dx
dt ¯¯¯¯θ=π/4
=4³sec2π
4´³π
5´=8π/5 km/s.
x
4
Ship
θ
127 Chapter 4
30. If x,y, and zare as shown in the figure, then we want dz
dt ¯¯¯¯x=2,
y=4
given
that dx
dt =600 and dy
dt ¯¯¯¯x=2,
y=4
=1200. But z2=x2+y2so
2zdz
dt =2x
dx
dt +2ydy
dt ,dz
dt =1
zµxdx
dt +ydy
dt . When x= 2 and
y=4,z
2=2
2+4
2= 20, z=20=2
5so
dz
dt ¯¯¯¯x=2,
y=4
=1
25[2(600) + 4(1200)] = 3000
5=6005 mi/h; the
distance between missile and aircraft is decreasing at the rate of
6005 mi/h.
Aircraft
P
Missile
x
y
z
31. We wish to find dz
dt ¯¯¯¯x=2,
y=4
given dx
dt =600 and dy
dt ¯¯¯¯x=2,
y=4
=1200 (see
figure). From the law of cosines,
z2=x2+y22xy cos 120=x2+y22xy(1/2) = x2+y2+xy,so
2z
dz
dt =2x
dx
dt +2ydy
dt +xdy
dt +ydx
dt ,
dz
dt =1
2z·(2x+y)dx
dt +(2y+x)dy
dt ¸. When x= 2 and y=4,
z
2=2
2+4
2+ (2)(4) = 28, so z=28=2
7, thus
dz
dt ¯¯¯¯x=2,
y=4
=1
2(27)[(2(2) + 4)(600) + (2(4) + 2)(1200)] = 4200
7=
6007 mi/h; the distance between missile and aircraft is
decreasing at the rate of 6007 mi/h.
Aircraft
P
Missile
x
y
z
120°
32. (a) Let x,y, and zbe the distances shown in the first figure. Find dz
dt ¯¯¯¯x=2,
y=0
given that dx
dt =75 and
dy
dt =100. In order to find an equation relating x,y, and z, first draw the line segment that
joins the point Pto the car, as shown in the second figure. Because triangle OPC is a right
triangle, it follows that PC has length px2+(1/2)2; but triangle HPC is also a right triangle
so z2=³px2+(1/2)2´2+y2=x2+y2+1/4 and 2zdz
dt =2x
dx
dt +2ydy
dt +0,
dz
dt =1
zµxdx
dt +ydy
dt . Now, when x= 2 and y=0,z
2= (2)2+ (0)2+1/4=17/4, z=17/2
so dz
dt ¯¯¯¯x=2,
y=0
=1
(17/2)[2(75)+0(100)] = 300/17 mi/h
West East
North
Car
Helicopter
x
z
y
P
mi
1
2
C
H
x
O
z
y
P
mi
1
2
(b) decreasing, because dz
dt <0.
Exercise Set 4.6 128
33. (a) We want dy
dt ¯¯¯¯x=1,
y=2
given that dx
dt ¯¯¯¯x=1,
y=2
= 6. For convenience, first rewrite the equation as
xy3=8
5+8
5y2then 3xy2dy
dt +y3dx
dt =16
5ydy
dt ,dy
dt =y3
16
5y3xy2
dx
dt so
dy
dt ¯¯¯¯x=1,
y=2
=23
16
5(2) 3(1)22
(6) = 60/7 units/s.
(b) falling, because dy
dt <0
34. Find dx
dt ¯¯¯¯(2,5)
given that dy
dt ¯¯¯¯(2,5)
= 2. Square and rearrange to get x3=y217
so 3x2dx
dt =2ydy
dt ,dx
dt =2y
3x2
dy
dt ,dx
dt ¯¯¯¯(2,5)
=µ5
6(2) = 5
3units/s.
35. The coordinates of Pare (x, 2x), so the distance between Pand the point (3,0) is
D=p(x3)2+(2x0)2=5x26x+ 9. Find dD
dt ¯¯¯¯x=3
given that dx
dt ¯¯¯¯x=3
=2.
dD
dt =5x3
5x26x+9
dx
dt ,so dD
dt ¯¯¯¯x=3
=12
36(2) = 4 units/s.
36. (a) Let Dbe the distance between Pand (2,0). Find dD
dt ¯¯¯¯x=3
given that dx
dt ¯¯¯¯x=3
=4.
D=p(x2)2+y2=p(x2)2+x=x23x+4 so dD
dt =2x3
2x23x+4;
dD
dt ¯¯¯¯x=3
=3
24=3
4units/s.
(b) Let θbe the angle of inclination. Find
dt ¯¯¯¯x=3
given that dx
dt ¯¯¯¯x=3
=4.
tan θ=y
x2=x
x2so sec2θ
dt =x+2
2
x(x2)2
dx
dt ,
dt =cos2θx+2
2
x(x2)2
dx
dt .
When x=3,D= 2 so cos θ=1
2and
dt ¯¯¯¯x=3
=1
4
5
23(4) = 5
23rad/s.
37. Solve dy
dt =3
dx
dt given y=xln x. Then dy
dt =dy
dx
dx
dt =(1+lnx)dx
dt ,so1+lnx=3,lnx=2,x=e
2
.
38. 32xdx
dt +18ydy
dt =0;ifdy
dt =dx
dt 6= 0, then (32x+18y)
dx
dt =0,32x+18y=0,y=
16
9xso
16x2+9256
81 x2= 144, 400
9x2= 144, x2=81
25,x=±9
5.Ifx=9
5
, then y=16
9
9
5=16
5. Similarly,
if x=9
5, then y=16
5. The points are (9
5,16
5) and (9
5,16
5).
39. Find dS
dt ¯¯¯¯s=10
given that ds
dt ¯¯¯¯s=10
=2. From 1
s+1
S=1
6we get 1
s2
ds
dt 1
S2
dS
dt =0,so
dS
dt =S2
s2
ds
dt .Ifs= 10, then 1
10 +1
S=1
6which gives S= 15. So dS
dt ¯¯¯¯s=10
=225
100(2)=4.5 cm/s.
The image is moving away from the lens.
129 Chapter 4
40. Suppose that the reservoir has height Hand that the radius at the top is R. At any instant of time
let hand rbe the corresponding dimensions of the cone of water (see figure). We want to show that
dh
dt is constant and independent of Hand R, given that dV
dt =kA where Vis the volume of water,
Ais the area of a circle of radius r, and kis a positive constant. The volume of a cone of radius rand
height his V=1
3πr2h. By similar triangles r
h=R
H,r=R
Hhthus V=1
3πµR
H2
h3so
dV
dt =πµR
H2
h2dh
dt (1)
But it is given that dV
dt =kA or, because A=πr2=πµR
H
2
h2,
dV
dt =µR
H
2
h2, which when substituted into equation (1) gives
µR
H
2
h2=πµR
H
2
h2dh
dt ,dh
dt =k.
h
r
H
R
41. Let rbe the radius, Vthe volume, and Athe surface area of a sphere. Show that dr
dt is a constant
given that dV
dt =kA, where kis a positive constant. Because V=4
3πr3,
dV
dt =4πr2dr
dt (1)
But it is given that dV
dt =kA or, because A=4πr2,dV
dt =4πr2kwhich when substituted into
equation (1) gives 4πr2k=4πr2dr
dt ,dr
dt =k.
42. Let xbe the distance between the tips of the minute and hour hands, and αand βthe angles shown
in the figure. Because the minute hand makes one revolution in 60 minutes,
dt =2π
60 =π/30 rad/min; the hour hand makes one revolution in 12 hours (720 minutes), thus
dt =2π
720 =π/360 rad/min. We want to find dx
dt ¯¯¯¯α=2π,
β=3π/2
given that
dt =π/30 and
dt =π/360.
Using the law of cosines on the triangle shown in the figure,
x2=3
2+4
22(3)(4) cos(αβ)=2524 cos(αβ), so
2xdx
dt = 0 + 24 sin(αβ)µ
dt
dt ,
dx
dt =12
xµ
dt
dt sin(αβ). When α=2πand β=3π/2,
x2=2524 cos(2π3π/2) = 25, x=5;so
dx
dt ¯¯¯¯α=2π,
β=3π/2
=12
5(π/30 π/360) sin(2π3π/2) = 11π
150 in/min. 3
4
a
x
b
43. Extend sides of cup to complete the cone and let V0be the volume
of the portion added, then (see figure) V=1
3πr2hV0where
r
h=4
12 =1
3so r=1
3hand V=1
3πµh
32
hV0=1
27πh3V0,
dV
dt =1
9πh2dh
dt ,dh
dt =9
πh2
dV
dt ,dh
dt ¯¯¯¯h=9
=9
π(9)2(20) = 20
9πcm/s.
r
4
2h
6
6
Exercise Set 4.7 130
EXERCISE SET 4.7
1. (a) lim
x2
x24
x2+2x8= lim
x2
(x2)(x+2)
(x+ 4)(x2) = lim
x2
x+2
x+4 =2
3
(b) lim
x+
2x5
3x+7 =
2lim
x+
5
x
3 + lim
x+
7
x
=2
3
2. (a) sin x
tan x= sin xcos x
sin x= cos xso lim
x0
sin x
tan x=0
(b) x21
x31=(x1)(x+1)
(x1)(x2+x+1) =x+1
x
2+x+1 so lim
x1
x21
x31=2
3
3. lim
x1
1/x
1=1 4. lim
x0
2 cos 2x
5 cos 5x=2/5
5. lim
x0
ex
cos x=1 6. lim
x3
1
6x13 =1/5
7. lim
θ0
sec2θ
1=1 8. lim
t0
tet+et
et=1
9. lim
xπ+
cos x
1=110. lim
x0+
cos x
2x=+
11. lim
x+
1/x
1=0 12. lim
x+
3e3x
2x= lim
x+
9e3x
2=+
13. lim
x0+csc2x
1/x = lim
x0+x
sin2x= lim
x0+1
2 sin xcos x=−∞
14. lim
x0+1/x
(1/x2)e1/x = lim
x0+
x
e1/x =0
15. lim
x+
100x99
ex= lim
x+
(100)(99)x98
ex=···= lim
x+
(100)(99)(98) ···(1)
ex=0
16. lim
x0+
cos x/ sin x
sec2x/ tan x= lim
x0+cos2x=1 17. lim
x0
2/14x2
1=2
18. lim
x0
11
1+x
2
3x
2= lim
x0
1
3(1 + x2)=1
319. lim
x+xex= lim
x+
x
ex= lim
x+
1
ex=0
20. lim
xπ(xπ) tan(x/2) = lim
xπ
xπ
cot(x/2) = lim
xπ
1
(1/2) csc2(x/2) =2
21. lim
x+xsin(π/x) = lim
x+
sin(π/x)
1/x = lim
x+
(π/x2) cos(π/x)
1/x2= lim
x+πcos(π/x)=π
22. lim
x0+tan xln x= lim
x0+
ln x
cot x= lim
x0+
1/x
csc2x= lim
x0+sin2x
x= lim
x0+2 sin xcos x
1=0
23. lim
x(π/2)sec 3xcos 5x= lim
x(π/2)
cos 5x
cos 3x= lim
x(π/2)5 sin 5x
3 sin 3x=5(+1)
(3)(1) =5
3
131 Chapter 4
24. lim
xπ(xπ) cot x= lim
xπ
xπ
tan x= lim
xπ
1
sec2x=1
25. y=(13/x)x, lim
x+ln y= lim
x+
ln(1 3/x)
1/x = lim
x+3
13/x =3, lim
x+y=e3
26. y=(1+2x)
3/x, lim
x0ln y= lim
x03 ln(1 + 2x)
x= lim
x06
1+2x=6, lim
x0y=e6
27. y=(e
x+x)
1/x, lim
x0ln y= lim
x0
ln(ex+x)
x= lim
x0
ex+1
e
x+x= 2, lim
x0y=e2
28. y=(1+a/x)bx, lim
x+ln y= lim
x+
bln(1 + a/x)
1/x = lim
x+
ab
1+a/x =ab, lim
x+y=eab
29. y=(2x)
tan(πx/2), lim
x1ln y= lim
x1
ln(2 x)
cot(πx/2) = lim
x1
2 sin2(πx/2)
π(2 x)=2, lim
x1y=e2
30. y= [cos(2/x)]x2,lim
x+ln y= lim
x+
ln cos(2/x)
1/x2= lim
x+
(2/x2)(tan(2/x))
2/x3= lim
x+tan(2/x)
1/x
= limx+
(2/x2) sec2(2/x)
1/x2=2,lim
x+y=e2
31. lim
x0µ1
sin x1
x= lim
x0
xsin x
xsin x= lim
x0
1cos x
xcos x+ sin x= lim
x0
sin x
2 cos xxsin x=0
32. lim
x0
1cos 3x
x2= lim
x0
3 sin 3x
2x= lim
x0
9
2cos 3x=9
2
33. lim
x+
(x2+x)x2
x2+x+x= lim
x+
x
x2+x+x= lim
x+
1
p1+1/x +1 =1/2
34. lim
x0
ex1x
xexx= lim
x0
ex1
xex+ex1= lim
x0
ex
xex+2e
x=1/2
35. lim
x+[xln(x2+ 1)] = lim
x+[ln exln(x2+ 1)] = lim
x+ln ex
x2+1,
lim
x+
ex
x2+1 = lim
x+
ex
2x= lim
x+
ex
2=+so lim
x+[xln(x2+1)]=+
36. lim
x+ln x
1+x= lim
x+ln 1
1/x +1 = ln(1) = 0
38. (a) lim
x+
ln x
xn= lim
x+
1/x
nxn1= lim
x+
1
nxn=0
(b) lim
x+
xn
ln x= lim
x+
nxn1
1/x = lim
x+nxn=+
39. (a) L’Hˆopital’s Rule does not apply to the problem lim
x1
3x22x+1
3x
22xbecause it is not a 0
0form
(b) lim
x1
3x22x+1
3x
22x=2
40. lim
x1
4x312x2+12x4
4x
39x
2+6x1= lim
x1
12x224x+12
12x218x+6 = lim
x1
24x24
24x18 =0
Exercise Set 4.7 132
41. lim
x+
1/(xln x)
1/(2x)= lim
x+
2
xln x=0 0.15
0
100 10000
42. y=xx, lim
x0+ln y= lim
x0+
ln x
1/x = lim
x0+x= 0, lim
x0+y=1 1
0
0 0.5
43. y= (sin x)3/ln x, lim
x0+ln y= lim
x0+
3lnsinx
ln x= lim
x0+(3 cos x)x
sin x=3,
lim
x0+y=e3
25
19
0 0.5
44. lim
xπ/2
4 sec2x
sec xtan x= lim
xπ/2
4
sin x=4 4
0
0.5 p/2
45. ln xex=lnx1
e
x=e
xln x1
ex;
lim
x+exln x= lim
x+
ln x
ex= lim
x+
1/x
ex= 0 by L’Hˆopital’s Rule, so
lim
x+[ln xex] = lim
x+
exln x1
ex=−∞
0
-16
03
46. lim
x+[ln exln(1 + 2ex)] = lim
x+ln ex
1+2e
x
= lim
x+ln 1
ex+2 =ln1
2
;
horizontal asymptote y=ln 2
-0.6
-1.2
012
133 Chapter 4
47. y= (ln x)1/x, lim
x+ln y= lim
x+
ln(ln x)
x= lim
x+
1
xln x=0;
lim
x+y=1,y= 1 is the horizontal asymptote
1.02
1
100 10000
48. y=µx+1
x+2
x
,
lim
x+ln y= lim
x+
ln x+1
x+2
1/x = lim
x+x2
(x+ 1)(x+2) =1;
lim
x+y=e1is the horizontal asymptote
1
0
050
49. (a) 0(b) +(c) 0(d) −∞ (e) +(f ) −∞
50. (a) y=xln a
1+ln x; lim
x0+ln y= lim
x0+
(ln a)lnx
1+lnx= lim
x0+
(ln a)/x
1/x = lim
x0+ln a=lna, lim
x0+y=eln a=a
(b) same as part (a) with x+
(c) y=(x+1)ln a
x, lim
x0ln y= lim
x0
(ln a) ln(x+1)
x= lim
x0
ln a
x+1 =lna, lim
x0y=eln a=a
51. lim
x+
1 + 2 cos 2x
1does not exist, nor is it ±∞; lim
x+
x+ sin 2x
x= lim
x+µ1+sin 2x
x=1
52. lim
x+
2cos x
3 + cos xdoes not exist, nor is it ±∞; lim
x+
2xsin x
3x+ sin x= lim
x+
2(sin x)/x
3 + (sin x)/x =2
3
53. lim
x+(2 + xcos 2x+ sin 2x) does not exist, nor is it ±∞; lim
x+
x(2 + sin 2x)
x+1 = lim
x+
2 + sin 2x
1+1/x , which
does not exist because sin 2xoscillates between 1and1asx+
54. lim
x+µ1
x+1
2cos x+sin x
2xdoes not exist, nor is it ±∞;
lim
x+
x(2 + sin x)
x2+1 = lim
x+
2 + sin x
x+1/x =0
55. lim
R0+
Vt
Le
Rt/L
1=Vt
L
56. (a) lim
xπ/2(π/2x) tan x= lim
xπ/2
π/2x
cot x= lim
xπ/21
csc2x= lim
xπ/2sin2x=1
(b) lim
xπ/2µ1
π/2xtan x= lim
xπ/2µ1
π/2xsin x
cos x= lim
xπ/2
cos x(π/2x) sin x
(π/2x) cos x
= lim
xπ/2(π/2x) cos x
(π/2x) sin xcos x
= lim
xπ/2
(π/2x) sin x+ cos x
(π/2x) cos x+ 2 sin x=0
Supplementary Exercises 4 134
(c) 1/(π/21.57) 1255.765849,tan 1.57 1255.765592;
1/(π/21.57) tan 1.57 0.000265
57. (b) lim
x+x(k1/x 1) = lim
t0+
kt1
t= lim
t0+
(ln k)kt
1=lnk
(c) ln 0.3=1.20397, 1024 ¡1024
0.31¢=1.20327; ln 2 = 0.69315, 1024 ¡1024
21¢=0.69338
58. (a) No; sin(1/x) oscillates as x0. (b) 0.05
-0.05
-0.35 0.35
(c) For the limit as x0+use the Squeezing Theorem together with the inequalities x2
x2sin(1/x)x2.Forx0
do the same; thus lim
x0f(x)=0.
59. If k6=1 then lim
x0(k+ cos `x)=k+16= 0, so lim
x0
k+ cos `x
x2=±∞. Hence k=1, and by the rule
lim
x01 + cos `x
x2= lim
x0`sin `x
2x= lim
x0`2cos `x
2=`2
2=4if`=±2
2.
60. (a) Apply the rule to get lim
x0cos(1/x)+2xsin(1/x)
cos xwhich does not exist (nor is it ±∞).
(b) Rewrite as lim
x0hx
sin xi[xsin(1/x)], but lim
x0
x
sin x= lim
x0
1
cos x= 1 and lim
x0xsin(1/x)=0,thus
lim
x0hx
sin xi[xsin(1/x)] = (1)(0) = 0
61. lim
x0+
sin(1/x)
(sin x)/x, lim
x0+
sin x
x= 1 but lim
x0+sin(1/x) does not exist because sin(1/x) oscillates between 1
and1asx+, so lim
x0+
xsin(1/x)
sin xdoes not exist.
CHAPTER 4 SUPPLEMENTARY EXERCISES
1. (a) f(g(x)) = xfor all xin the domain of g, and g(f(x)) = xfor all xin the domain of f.
(b) They are reflections of each other through the line y=x.
(c) The domain of one is the range of the other and vice versa.
(d) The equation y=f(x) can always be solved for xas a function of y. Functions with no inverses
include y=x2,y= sin x.
(e) Yes, gis continuous; this is evident from the statement about the graphs in part (b) above.
(f) Yes, gmust be differentiable (where f06= 0); this can be inferred from the graphs. Note that if
f0= 0 at a point then g0cannot exist (infinite slope).
2. (a) For sin x,π/2xπ/2; for cos x,0xπ; for tan x,π/2<x<π/2; for sec x,
0x<π/2orπ/2<xπ.
135 Chapter 4
(b) y
x
-1
1
π/2
y = sin-1x
y = sinx
y
x
-1
π
y = cos-1x
y = cosx
y
x
-2
2
π/2
-π/2
y = tan-1x
y = tanx
y
x
-1
2
π/2
y = sec-1xy = sec x
y = sec-1x
y = secx
3. (a) when the limit takes the form 0/0or/
(b) Not necessarily; only if lim f(x) = 0. Consider g(x)=x; lim
x0g(x)=0. Forf(x) choose
cos x,x2, and |x|1/2. There are three possibilities; lim
x0
cos x
xdoes not exist; lim
x0
x2
x= 0, and
lim
x0|x|1/2
x2=+.
4. In the case +∞−(−∞) the limit is +; in the case −∞(+) the limit is −∞, because large positive
(negative) quantities are being added to large positive (negative) quantities. The cases +∞−(+)
and ∞−(−∞) are indeterminate; large numbers of opposite sign are being subtracted, and more
information about the sizes is needed.
5. (a) x=f(y)=8y
31; y=f1(x)=µx+1
81/3
=1
2(x+1)
1/3
(b) f(x)=(x1)2;fdoes not have an inverse because fis not one-to-one, for example
f(0) = f(2)=1.
(c) x=f(y)=(e
y
)
2+1;y=f1
(x)=ln
x1=1
2ln(x1)
(d) x=f(y)=y+2
y1;y=f1
(x)= x+2
x1
6. f0(x)= ad bc
(cx +d)2;ifadbc = 0 then the function represents a horizontal line, no inverse. If adbc 6=0
then f0(x)>0orf
0
(x)<0sofis invertible. If x=f(y)= ay +b
cy +dthen y=f1(x)= bxd
xc a.
7. (a) Differentiating, 2
3x1/32
3y1/3y0y0=0. Atx= 1 and y=1, y0= 2. The tangent line is
y+1=2(x1).
(b) (xy0+y) cos xy =y0. With x=π/2 and y= 1 this becomes y0= 0, so the equation of the
tangent line is y1=0(xπ/2) or y=1.
8. Draw equilateral triangles of sides 5, 12, 13, and 3, 4, 5. Then sin[cos1(4/5)]=3/5,
sin[cos1(5/13)] = 12/13, cos[sin1(4/5)]=3/5, cos[sin1(5/13)] = 12/13
(a) cos[cos1(4/5) + sin1(5/13)] = cos(cos1(4/5)) cos(sin1(5/13)) sin(cos1(4/5)) sin(sin1(5/13))
=4
5
12
13 3
5
5
13 =33
65.
Supplementary Exercises 4 136
(b) sin[sin1(4/5) + cos1(5/13)] = sin(sin1(4/5)) cos(cos1(5/13)) + cos(sin1(4/5)) sin(cos1(5/13))
=4
5
5
13 +3
5
12
13 =56
65.
9. 3ln¡e
2x(e
x)
3¢+ 2 exp(ln 1) = 3 ln e2x+ 3 ln(ex)3+2·1 = 3(2x)+(3·3)x+2=15x+2
10. Y= ln(Cekt)=lnC+lne
kt =lnC+kt, a line with slope kand Y-intercept ln C
11. (a) lim
x+(exx2) = lim
x+x2(ex/x21), but lim
x+
ex
x2= lim
x+
ex
2x= lim
x+
ex
2=+
so lim
x+(ex/x21)=+and thus lim
x+x2(ex/x21)=+
(b) lim
x1
ln x
x41= lim
x1
1/x
4x3=1
4; lim
x1rln x
x41=rlim
x1
ln x
x41=1
2
(c) lim
x0axln a=lna
12. y0=aeax sin bx +beax cos bx and y00 =(a
2b
2
)e
ax sin bx +2abeax cos bx,soy
00 2ay0+(a
2+b
2
)y
=(a
2b
2
)e
ax sin bx +2abeax cos bx 2a(aeax sin bx +beax cos bx)+(a
2+b
2
)e
ax sin bx =0.
13. sin(tan1x)=x/1+x
2and cos(tan1x)=1/
1+x
2
, and y0=1
1+x
2,y
00 =2x
(1+x2)2, hence
y00 + 2 sin ycos3y=2x
(1+x2)2+2 x
1+x
2
1
(1+x2)3/2=0.
14. ln y=2xln3+7xln 5; dy
dx/y = 2 ln 3 + 7 ln 5, or dy
dx = (2 ln 3 + 7 ln 5)y
15. Find
dt ¯¯¯¯x=1
y=1
given dz
dt =aand dy
dt =b. From the figure
sin θ=y/z; when x=y=1,z=
2. So θ= sin1(y/z) and
dt =1
p1y2/z2µ1
z
dy
dt y
z2
dz
dt =ba
2when x=y=1.
y
x
z
θ
16. (a) f0(x)=3/(x+1)
2
.Ifx=f(y)=3/(y+ 1) then y=f1(x)=(3/x)1, so d
dxf1(x)= 3
x
2;
and 1
f0(f1(x)) =(f1(x)+1)
2
3=(3/x)2
3=3
x2.
(b) f(x)=e
x/2,f0(x)=1
2
e
x/2.Ifx=f(y)=e
y/2then y=f1(x)=2lnx,so d
dxf1(x)= 2
x
; and
1
f0(f1(x)) =2e
f
1
(x)/2=2e
ln x=2x
1=2
x
17. (a) y
x
-2
2
24
(b) The curve y=ex/2sin 2xhas x-intercepts
at x=0/2. It intersects the curve y=
ex/2at x=π/4, and it intersects the curve
y=ex/2at x=π/4,3π/4.
137 Chapter 4
18. (a) y
x
π/2
1
(b) y
x
π/2
1
(c) y
x
−π/2
5
(d) y
x
π/2
1
19. (a) ln y=ln(1 + x)
x,y0
y=x/(1+x)ln(1 + x)
x2=1
x(1+x)ln(1 + x)
x2,
dy
dx =1
x(1+x)(1/x)1(1+x)(1/x)
x2ln(1 + x)
(b) ln y=exln x,y0
y=exµ1
x+lnx
,dy
dx =xexexµ1
x+lnx
=e
x£x
e
x1+x
e
xln x¤
(c) y=x3+1so y
0=3x
2
.
(d) y0=abex
(1+bex)2
(e) 2
3xy1/3dy
dx +y2/3+2
3yx1/3+x2/3dy
dx =2x. Multiply by 3x1/3y1/3:
2x4/3dy
dx +3x
1/3
y+2y
4/3+3xy1/3dy
dx =6x
4/3
y
1/3
. Regroup:
dy
dx ³2x4/3+3xy1/3´=6x
4/3
y
1/33x
1/3
y2y
4/3
,dy
dx =6x4/3y1/33x1/3y2y4/3
2x4/3+3xy1/3.
(f) y=1
2ln x+1
3ln(x+1)ln sin x+ ln cos x,so
y
0=1
2x+1
3(x+1) cos x
sin xsin x
cos x=5x+3
6x(x+1) cot xtan x.
20. (a) Find xwhen y=5·12 = 60 in. Since y= log x,x=10
y=10
60 in. This is approximately
2.68 ×1042 light-years, so even in astronomical terms it is a fabulously long distance.
(b) Find xwhen y= 100(5280)(12) in. Since y=10
x
,x= log y=6.80 in or 0.57 ft, approximately.
21. (a) The function ln xx0.2is negative at x= 1 and positive at x= 4, so it must be zero in between
(IVT).
(b) x=3.654
Supplementary Exercises 4 138
22. (a) If xk=exthen kln x=x,or ln x
x=1
k. The steps are reversible.
(b) By zooming it is seen that the maximum value of yis
approximately 0.368 (actually, 1/e), so there are two distinct
solutions of xk=exwhenever k>1/0.368 2.717.
y
x
-2
2
(c) x=1.155
23. Set y= logbxand solve y0=1: y
0=1
xln b=1sox=1
ln b. The
curves intersect when (x, x) lies on the graph of y= logbx,so
x= logbx. From Formula (9), Section 4.2, logbx=ln x
ln bfrom which
ln x=1,x=e,lnb=1/e,b=e1/e 1.4447.
y
x
2
2
24. (a) Find the point of intersection: f(x)=
x+k=lnx. The
slopes are equal, so m1=1
x=m2=1
2x,x=2,x=4.
Then ln 4 = 4+k,k=ln42.
y
x
2
2
(b) Since the slopes are equal m1=k
2x=m2=1
x,sok
x=2.
At the point of intersection kx=lnx,2=lnx,x=e
2
,
k=2/e.
y
x
0
2
5
CHAPTER 5
Analysis of Functions and Their Graphs
EXERCISE SET 5.1
1. (a) f0>0 and f00 >0
y
x
(b) f0>0 and f00 <0
y
x
(c) f0<0 and f00 >0
y
x
(d) f0<0 and f00 <0
y
x
2. (a) y
x
(b) y
x
(c) y
x
(d) y
x
3. A:dy/dx < 0,d
2
y/dx2>0
B:dy/dx > 0,d
2
y/dx2<0
C:dy/dx < 0,d
2
y/dx2<0
4. A:dy/dx < 0,d
2
y/dx2<0
B:dy/dx < 0,d
2
y/dx2>0
C:dy/dx > 0,d
2
y/dx2<0
139
Exercise Set 5.1 140
5. An inflection point occurs when f00 changes sign: at x=1,0,1 and 2.
6. (a) f(0) <f(1) since f0>0on(0,1). (b) f(1) >f(2) since f0<0on(1,2).
(c) f0(0) >0 by inspection. (d) f0(1) = 0 by inspection.
(e) f00(0) <0 since f0is decreasing there. (f) f00(2) = 0 since f0has a minimum there.
7. (a) [4,6] (b) [1,4] and [6,7] (c) (1,2) and (3,5)
(d) (2,3) and (5,7) (e) x=2,3,5
8. (1,2) (2,3) (3,4) (4,5) (5,6) (6,7)
f0− − − ++
f00 ++ + − −
9. f0(x)=2x5
f
00(x)=2
(a) [5/2,+)(b) (−∞,5/2]
(c) (−∞,+)(d) none
(e) none
10. f0(x)=2(x+3/2)
f00(x)=2
(a) (−∞,3/2] (b) [3/2,+)
(c) none (d) (−∞,+)
(e) none
11. f0(x)=3(x+2)
2
f00(x)=6(x+2)
(a) (−∞,+)(b) none
(c) (2,+)(d) (−∞,2)
(e) 2
12. f0(x) = 3(4 x2)
f00(x)=6x
(a) [2,2] (b) (−∞,2], [2,+)
(c) (−∞,0) (d) (0,+)
(e) 0
13. f0(x)=12x
2
(x1)
f00(x)=36x(x2/3)
(a) [1,+)(b) (−∞,1]
(c) (−∞,0), (2/3,+)(d) (0,2/3)
(e) 0,2/3
14. f0(x)=4x(x
24)
f00(x) = 12(x24/3)
(a) [2,0], [2,+)(b) (−∞,2], [0,2]
(c) (−∞,2/3), (2/3,+)(d) (2/3,2/3)
(e) 2/3, 2/3
15. f0(x)= 4x
(x
2+2)
2f00(x)=43x
22
(x
2+2)
3
(a) [0,+)(b) (−∞,0] (c) (p2/3,+p2/3)
(d) (−∞,p2/3), (+p2/3,+)(e) p2/3,p2/3
16. f0(x)= 2x
2
(x
2+2)
2f00(x)=2x(x
26)
(x2+2)
3
(a) [2,2] (b) (−∞,2], [2,+)(c) (6,0), (6,+)
(d) (−∞,6), (0,6) (e) 6,0,6
17. f0(x)=1
3(x+2)
2/3
f00(x)=2
9(x+2)
5/3
(a) (−∞,+)(b) none
(c) (−∞,2) (d) (2,+)
(e) 2
141 Chapter 5
18. f0(x)=2
3x
1/3
f
00(x)=2
9x
4/3
(a) [0,+)(b) (−∞,0]
(c) none (d) (−∞,0), (0,+)
(e) none
19. f0(x)=4(x+1)
3x
2/3
f00(x)=4(x2)
9x5/3
(a) [1,+)(b) (−∞,1]
(c) (−∞,0), (2,+)(d) (0,2)
(e) 0,2
20. f0(x)=4(x1/4)
3x2/3
f00(x)=4(x+1/2)
9x5/3
(a) [1/4,+)(b) (−∞,1/4]
(c) (−∞,1/2), (0,+)(d) (1/2,0)
(e) 1/2,0
21. f0(x)=xex2/2
f00(x)=(1+x
2
)e
x
2/2
(a) (−∞,0] (b) [0,+)
(c) (−∞,1), (1,+)(d) (1,1)
(e) 1,1
22. f0(x)=(2x
2+1)e
x
2
f00(x)=2x(2x2+3)e
x
2
(a) (−∞,+)(b) none
(c) (0,+)(d) (−∞,0)
(e) 0
23. f0(x)= 2x
1+x
2
f00(x)=2 1x
2
(1+x2)2
(a) [0,+)(b) (−∞,0]
(c) (1,1) (d) (−∞,1),(1,+)
(e) 1,1
24. f0(x)=x(2 ln x+1)
f00(x)=2lnx+3
(a) [e1/2,+)(b) (0,e
1/2]
(c) (e3/2,+)(d) (0,e
3/2)
(e) e3/2
25. f0(x)=sin x
f00(x)=cos x
(a) [π, 2π](b) [0]
(c) (π/2,3π/2) (d) (0/2), (3π/2,2π)
(e) π/2, 3π/2
1
-1
02p
26. f0(x) = 2 sin 4x
f00(x) = 8 cos 4x
(a) (0/4], [π/2,3π/4] (b) [π/4/2], [3π/4]
(c) (0/8), (3π/8,5π/8), (7π/8)(d) (π/8,3π/8), (5π/8,7π/8)
(e) π/8, 3π/8, 5π/8, 7π/8
1
0
0p
Exercise Set 5.1 142
27. f0(x) = sec2x
f00(x)=2sec
2xtan x
(a) (π/2/2) (b) none
(c) (0/2) (d) (π/2,0)
(e) 0
10
-10
^6
28. f0(x)=2csc2x
f00(x)=2csc
2xcot x=2cos x
sin3x
(a) [π/4,3π/4] (b) (0/4],[3π/4)
(c) (0/2) (d) (π/2)
(e) π/2
8
-2
0p
29. f0(x) = cos 2x
f00(x)=2 sin 2x
(a) [0/4], [3π/4](b) [π/4,3π/4]
(c) (π/2)(d) (0/2)
(e) π/2
0.5
-0.5
0p
30. f0(x)=2 cos xsin x2 cos x=2 cos x(1 + sin x)
f00(x)=2sinx(sin x+1)2 cos2x= 2 sin x(sin x+1)2+2sin
2x= 4(1 + sin x)(sin x1/2)
Note: 1 + sin x0
(a) [π/2,3π/2] (b) [0/2], [3π/2,2π]
(c) (π/6,5π/6) (d) (0/6), (5π/6,2π)
(e) π/6, 5π/6
2
-2
0o
31. (a)
2
4
x
y(b)
2
4
x
y(c)
2
4
x
y
143 Chapter 5
32. (a)
2
4
x
y(b)
2
4
x
y(c)
2
4
x
y
33. (a) f0(x)=3(xa)
2
,f
00(x)=6(xa); inflection point is (a, 0)
(b) f0(x)=4(xa)
3
,f
00(x) = 12(xa)2; no inflection points
34. For n2, f00(x)=n(n1)(xa)n2; there is a sign change of f00 (point of inflection) at (a, 0) if and
only if nis odd. For n=1,y=xa, so there is no point of inflection.
35. f0(x)=1/31/[3(1 + x)2/3]sofis increasing on [0,+)thusif
x>0, then f(x)>f(0)=0,1+x/33
1+x>0,
3
1+x<1+x/3.
2.5
0
010
36. f0(x) = sec2x1sofis increasing on [0/2) thus if 0 <x<π/2,
then f(x)>f(0) = 0, tan xx>0, x<tan x.
10
0
06
37. xsin xon [0,+): let f(x)=xsin x. Then f(0) = 0 and
f0(x)=1cos x0, so f(x) is increasing on [0,+).
4
-1
04
38. (a) Let h(x)=e
x1xfor x0. Then h(0) = 0 and h0(x)=e
x10 for x0, so h(x)is
increasing.
(b) Let h(x)=e
x1x1
2x
2
. Then h(0) = 0 and h0(x)=e
x1x. By part (a), ex1x0
for x0, so h(x) is increasing.
Exercise Set 5.1 144
(c) 6
0
02
6
0
02
39. Points of inflection at x=2,+2. Concave up on (5,2) and
(2,5); concave down on (2,2). Increasing on [3.5829,0.2513] and
[3.3316,5] , and decreasing on [5,3.5829] and [0.2513,3.3316].
250
-250
-5 5
40. Points of inflection at x=±1/3. Concave up on (5,1/3) and
(1/3,5), and concave down on (1/3,1/3). Increasing on
[5,0] and decreasing on [0,5].
1
-2
-5 5
41. Break the interval [5,5] into ten subintervals and check f00(x) at each endpoint. We find f00(1) >0
and f00(0) <0. Refine [1,0] into ten subintervals; f00(0.2) >0, f00(0.1) <0; repeat, f00(0.18) >0,
f00(0.17) <0, so x=0.175 is correct to two decimal places. Note also that f00(1) = 0 so there are
two inflection points.
42. Break the interval [5,5] into ten subintervals and check f00(x) at each endpoint. We discover
f00(1) >0, f00(0) <0 and f00(1) >0. Refine [1,0] into ten subintervals and we see that f00(0.6) >0,
f00(0.5) <0. Subdivide [0.6,0.5] into 10 subintervals and we see that f00(0.58) >0 and
f00(0.57) <0. Thus x=0.575 is within 0.005 of the true root and is thus correct to two dec-
imal places. For the other root we could proceed in a similar manner, but it easier to note that f00(x)
is an even function and thus the other root is x=0.575 to two decimal places.
43. f00(x)=2
90x381x2585x+ 397
(3x25x+8)
3.The denominator has complex roots, so is always positive; hence
the x-coordinates of the points of inflection of f(x) are the roots of the numerator (if it changes sign).
A plot of the numerator over [5,5] shows roots lying in [3,2], [0,1], and [2,3]. Breaking each of
these intervals into ten subintervals locates the roots in [2.5,2.4], [0.6,0.7] and [2.7,2.8]. Thus to
one decimal place the roots are x=2.45,0.65,2.75.
44. f00(x)=2x
5+5x
3+14x
2+30x7
(x
2+1)
5/2. Points of inflection will occur when the numerator changes sign,
since the denominator is always positive. A plot of y=2x
5+5x
3+14x
2+30x7 suggests that there
is only one root and it lies in [0,1]. Subdivide into ten subintervals and determine that the root lies
between x=0.2 and x=0.3. Thus to one decimal place the point of inflection is located at x=0.25.
45. f(x1)f(x2)=x
2
1x
2
2=(x
1+x
2
)(x1x2)<0ifx
1<x
2for x1,x2in [0,+), so f(x1)<f(x
2
)
and fis thus increasing.
46. f(x1)f(x2)= 1
x
11
x
2
=x
2x
1
x
1
x
2
>0ifx
1<x
2for x1,x2in (0,+), so f(x1)>f(x
2
) and thus f
is decreasing.
145 Chapter 5
47. (a) If x1<x
2where x1and x2are in I, then f(x1)<f(x
2
) and g(x1)<g(x
2
), so f(x1)+g(x
1
)<
f(x
2
)+g(x
2
), (f+g)(x1)<(f+g)(x2). Thus f+gis increasing on I.
(b) Case I: If fand gare 0onI, and if x1<x
2where x1and x2are in I, then 0 <f(x
1
)<f(x
2
)
and 0 <g(x
1
)<g(x
2
), so f(x1)g(x1)<f(x
2
)g(x
2
), (f·g)(x1)<(f·g)(x2). Thus f·gis
increasing on I.
Case II: If fand gare not necessarily positive on Ithen no conclusion can be drawn: for example,
f(x)=g(x)=xare both increasing on (−∞,0), but (f·g)(x)=x
2is decreasing there.
48. (a) f(x)=x,g(x)=2x(b) f(x)=x,g(x)=x+6 (c) f(x)=2x,g(x)=x
49. (a) f00(x)=6ax +2b=6a(x+b
3a
), f00(x) = 0 when x=b
3a.fchanges its direction of concavity
at x=b
3aso b
3ais an inflection point.
(b) If f(x)=ax3+bx2+cx +dhas three x-intercepts, then it has three roots, say x1,x2and x3,so
we can write f(x)=a(xx
1
)(xx2)(xx3)=ax3+bx2+cx +d, from which it follows that
b=a(x1+x2+x3). Thus b
3a=1
3(x1+x2+x3), which is the average.
(c) f(x)=x(x
23x
2+2)=x(x1)(x2) so the intercepts are 0, 1, and 2 and the average is 1.
f00(x)=6x6=6(x1) changes sign at x=1.
50. f00(x)=6x+2b, so the point of inflection is at x=b
3. Thus an increase in bmoves the point of
inflection to the left.
51. (a) Let x1<x
2belong to (a, b). If both belong to (a, c] or both belong to [c, b) then we have
f(x1)<f(x
2
) by hypothesis. So assume x1<c<x
2
. We know by hypothesis that f(x1)<f(c),
and f(c)<f(x
2
). We conclude that f(x1)<f(x
2
).
(b) Use the same argument as in part (a), but with inequalities reversed.
52. By Theorem 5.1.2, fis increasing on any interval ((2n1)π, 2(n+1)π)(n=0,±1,±2,···), because
f0(x) = 1+ cos x>0on[(2n1)π, (2n+1)π]. By Exercise 51 (a) we can piece these intervals together
to show that f(x) is increasing on (−∞,+).
53. t=7.67 1000
0
015
54. By zooming on the graph of y0(t), maximum increase is at x=0.577 and maximum decrease is at
x=0.577.
55.
t
1
2
y
infl pt
56. y
x
infl pts
1
2
3
4
Exercise Set 5.2 146
EXERCISE SET 5.2
1. (a)
f(x)
x
y(b)
f(x)
x
y
(c)
f(x)
x
y(d)
f(x)
x
y
2. (a) y
x
(b) y
x
(c) y
x
(d) y
x
3. (a) f0(x)=6x6 and f00(x) = 6, with f0(1) = 0. For the first derivative test, f0<0 for x<1 and
f0>0 for x>1. For the second derivative test, f00(1) >0.
(b) f0(x)=3x
23 and f00(x)=6x.f
0
(x)=0atx=±1. First derivative test: f0>0 for x<1
and x>1, and f0<0 for 1<x<1, so there is a relative maximum at x=1, and a relative
minimum at x= 1. Second derivative test: f00 <0atx=1, a relative maximum; and f00 >0
at x= 1, a relative minimum.
4. (a) f0(x)=2sinxcos x= sin 2x(so f0(0) = 0) and f00(x) = 2 cos 2x. First derivative test: if xis
near 0 then f0<0 for x<0 and f0>0 for x>0, so a relative minimum at x= 0. Second
derivative test: f00(0)=2>0, so relative minimum at x=0.
(b) g0(x)=2tanxsec2x(so g0(0) = 0) and g00(x)=2sec
2x(sec2x+ 2 tan2x). First derivative test:
g0<0 for x<0 and g0>0 for x>0, so a relative minimum at x= 0. Second derivative test:
g00(0)=2>0, relative minimum at x=0.
(c) Both functions are squares, and so are positive for values of xnear zero; both functions are zero
at x= 0, so that must be a relative minimum.
5. (a) f0(x)=4(x1)3,g0(x)=3x
26x+3 sof0(1) = g0(1)=0.
(b) f00(x) = 12(x1)2,g00(x)=6x6, so f00(1) = g00(1) = 0, which yields no information.
(c) f0<0 for x<1 and f0>0 for x>1, so there is a relative minimum at x=1;
g
0
(x)=3(x1)2>0 on both sides of x= 1, so there is no relative extremum at x=1.
147 Chapter 5
6. (a) f0(x)=5x
4
,g
0(x)=12x
324x2so f0(0) = g0(0)=0.
(b) f00(x)=20x3,g00(x)=36x
248x,sof
00(0) = g00(0) = 0, which yields no information.
(c) f0<0 on both sides of x= 0, so there is no relative extremum there; g0(x)=12x
2
(x2) <0
on both sides of x= 0 (for xnear 0), so again there is no relative extremum there.
7. (a) f0(x)=3x
2+6x9=3(x+ 3)(x1), f0(x) = 0 when x=3,1 (stationary points).
(b) f0(x)=4x(x
23), f0(x) = 0 when x=0,±
3 (stationary points).
8. (a) f0(x)=6(x
21), f0(x) = 0 when x=±1 (stationary points).
(b) f0(x)=12x
312x2=12x
2
(x1), f0(x) = 0 when x=0,1 (stationary points).
9. (a) f0(x)=(2x
2
)/(x
2+2)
2
,f0(x) = 0 when x=±2 (stationary points).
(b) f0(x)=2
3x
1/3=2/(3x1/3), f0(x) does not exist when x=0.
10. (a) f0(x)=8x/(x2+1)
2
,f0(x) = 0 when x= 0 (stationary point).
(b) f0(x)=1
3(x+2)
2/3
,f0(x) does not exist when x=2.
11. (a) f0(x)= 4(x+1)
3x
2/3,f0(x) = 0 when x=1 (stationary point), f0(x) does not exist when x=0.
(b) f0(x)=3 sin 3x, f0(x) = 0 when sin 3x=0,3x=, n =0,±1,±2,···
x=/3,n=0,±1,±2,··· (stationary points)
12. (a) f0(x)=4(x3/2)
3x2/3,f0(x) = 0 when x=3/2 (stationary point), f0(x) does not exist when x=0.
(b) f(x)=|sin x|=½sin x, sin x0
sin x, sin x<0so f0(x)=½cos x, sin x>0
cos x, sin x<0and f0(x)doesnot
exist when x=,n=0,±1,±2,···(sin x= 0) because limxf0(x)6= limx+f0(x) (see
Theorem preceding Exercise 75, Section 3.3). Now f0(x) = 0 when ±cos x= 0 provided sin x6=0
so x=π/2+,n=0,±1,±2,···are stationary points.
13. (a) x= 2 because f0(x) changes sign from to + there.
(b) x= 0 because f0(x) changes sign from + to there.
(c) x=1,3 because f00(x) (the slope of the graph of f0(x)) changes sign at these points.
14. (a) x=1 (b) x=5 (c) x=1,0,3
15. (a) critical points x=0,±
5; f0:00
0
0
−−−− ++
++
5
5
x= 0: relative maximum; x=±5: relative minimum
(b) critical point x=0;f
0:0
0
−+−+−+
x= 0: relative minimum
16. (a) critical points x=0,1/2,1; f0:00
0
0
1
−−−+++ +
1
2
x= 0: neither; x=1/2: relative maximum; x= 1: relative minimum
Exercise Set 5.2 148
(b) critical points: x=±3/2,1; f0:0?
1
0
++++
−−
3
23
2
x=±3/2: relative maximum; x=1: relative minimum
17. f0(x)=2(x+ 2); critical point x=2; f0(x): 0
-2
−−+++
f
00(x)=2; f00(2) <0, f(2) = 5; relative max of 5 at x=2
18. f0(x)=6(x2)(x1); critical points x=1,2; f0(x): 00
12
−+++ ++
+−
f
00(x)=12x18; f00(1) <0, f00(2) >0, f(1)=5,f(2) = 4; relative min of 4 at x= 2, relative max
of5atx=1
19. f0(x)=2sinxcos x= sin 2x; critical points x=π/2, π,3π/2; f0(x): 00
π
0
++++
−−
ππ
22
3
f
00(x) = 2 cos 2x;f00(π/2) <0, f00(π)>0, f00(3π/2) <0, f(π/2) = f(3π/2)=1,
f(π) = 0; relative min of 0 at x=π, relative max of 1 at x=π/2, 3π/2
20. f0(x)=1/2cos x; critical points x=π/3, 5π/3; f0(x): 00
++−−
+++
ππ
3 3
5
f
00(x)=sin x;f00(π/3) <0, f00(5π/3) >0
f(π/3) = π/63/2, f(5π/3)=5π/6+
3/2;
relative min of π/63/2atx=π/3, relative max of 5π/6+
3/2atx=5π/3
21. f0(x)=3x
2+ 5; no relative extrema because there are no critical points.
22. f0(x)=4x(x
21); critical points x=0,1,1
f
00(x)=12x
24; f00(0) <0, f00(1) >0, f00(1) >0
relative min of 6 at x=1,1, relative max of 7 at x=0
23. f0(x)=(x1)(3x1); critical points x=1,1/3
f
00(x)=6x4; f00(1) >0, f00(1/3) <0
relative min of 0 at x= 1, relative max of 4/27 at x=1/3
24. f0(x)=2x
2
(2x+ 3); critical points x=0,3/2
relative min of 27/16 at x=3/2 (first derivative test)
25. f0(x)=4x(1 x2); critical points x=0,1,1
f
00(x)=412x2;f00(0) >0, f00(1) <0, f00(1) <0
relative min of 0 at x= 0, relative max of 1 at x=1,1
26. f0(x) = 10(2x1)4; critical point x=1/2; no relative extrema (first derivative test)
27. f0(x)=4
5x
1/5
; critical point x= 0; relative min of 0 at x= 0 (first derivative test)
28. f0(x)=2+2
3x
1/3
; critical points x=0,1/27
relative min of 0 at x= 0, relative max of 1/27 at x=1/27
29. f0(x)=2x/(x2+1)
2
; critical point x= 0; relative min of 0 at x=0
149 Chapter 5
30. f0(x)=2/(x+2)
2
; no critical points (x=2 is not in the domain of f) no relative extrema
31. f0(x)=2x/(1+x2); critical point at x= 0; relative min of 0 at x= 0 (first derivative test)
32. f0(x)=x(2 + x)ex; critical points at x=0,2; relative min of 0 at x= 0 and relative max of 4/e2at
x=2 (first derivative test)
33. f0(x)=2xif |x|>2, f0(x)=2xif |x|<2,
f0(x) does not exist when x=±2; critical points x=0,2,2
relative min of 0 at x=2,2, relative max of 4 at x=0
34. f0(x)=1ifx<3, f0(x)=2xif x>3, f0(3) does not exist;
critical point x= 3, relative min of 6 at x=3
35. f0(x) = 2 cos 2xif sin 2x>0, f0(x)=2 cos 2xif sin 2x<0,
f0(x) does not exist when x=π/2,3π/2;
critical points x=π/4,3π/4,5π/4,7π/4/2,3π/2
relative min of 0 at x=π/2,3π/2; relative max of 1 at
x=π/4,3π/4,5π/4,7π/4
1
0
0o
36. f0(x)=
3+2cosx; critical points x=5π/6,7π/6
relative min of 73π/61atx=7π/6; relative max of
53π/6+1atx=5π/6
12
0
0o
37. f0(x)=sin 2x; critical points x=π/2,3π/2
relative min of 0 at x=π/2,3π/2; relative max of 1 at x=π
1
0
0o
38. f0(x)=(2cosx1)/(2 cos x)2; critical points x=π/3,5π/3
relative max of 3/3atx=π/3, relative min of
3/3atx=5π/3
0.8
0o
-0.8
Exercise Set 5.2 150
39. f0(x)=lnx+1, f00(x)=1/x;f0(1/e)=0,f
00(1/e)>0;
relative min of 1/e at x=1/e
2.5
-0.5
0 2.5
40. f0(x)=2e
xe
x
(e
x+e
x
)
2= 0 when x= 0. By the first derivative test
f0(x)>0 for x<0 and f0(x)<0 for x>0; relative max of 1 at
x=0
1
0
-2 2
41. f0(x)=2x(1 x)e2x=0atx=0,1. f00(x)=(4x
28x+2)e
2x
;
f00(0) >0 and f00(1) <0, so a relative min of 0 at x= 0 and a
relative max of 1/e2at x=1.
0.14
0
-0.3 4
42. f0(x)=10/x 1=0atx= 10; f00(x)=10/x2<0;
relative max of 10(ln(10) 1) 13.03 at x=10
14
-4
020
43. Relative minima at x=3.58,3.33; relative max at x=0.25 250
-250
-5 5
44. Relative min at x=0.84; relative max at x=0.84 1.2
-1.2
-66
151 Chapter 5
45. relative max at x=0.255 46. relative max at x=0.845
47. Relative min at x=1.20 and a relative max at x=1.80 y
x
-2
-1
1
-4 -2 2 4
f'(x)
f''(x)
48. Relative max at x=0.78 and a relative min at x=1.55 y
x
-5
5
-4 -2 2 4
f'(x)
f''(x)
49. (a) Let f(x)=x
2+k
x
, then f0(x)=2xk
x
2=2x
3k
x
2.fhas a relative extremum when 2x3k=0,
so k=2x
3= 2(3)3= 54.
(b) Let f(x)= x
x
2+k
, then f0(x)= kx
2
(x
2+k)
2
.fhas a relative extremum when kx2=0,so
k=x
2=3
2=9.
50. (a) one relative maximum, located at x=n0.3
0
014
(b) f0(x)=cxn1(x+n)ex=0atx=n. Since f0(x)>0 for x<nand f0(x)<0 for
x>nit’s a maximum.
51. (a) f0(x)=xf(x). Since f(x)isalways
positive, f0(x)=0atx=0,f
0(x)>0
for x<0 and f0(x)<0 for x>0, so
x= 0 is a maximum.
(b) y
x
µ
1
µ,
()
2π
1
2π
Exercise Set 5.3 152
52. (a) relative minima at x=±0.6436,
relative max at x=0
y
x
1
1.2
1.4
1.6
1.8
2
-1.5 -1 -0.5 0.5 1 1.5
(b) x=±0.6436,0
53. f0(x)=3ax2+2bx +cand f0(x) has roots at x=0,1, so f0(x) must be of the form f0(x)=3ax(x1);
thus c= 0 and 2b=3a,b=3a/2. f00(x)=6ax +2b=6ax 3a,sof
00(0) >0 and f00(1) <0
provided a<0. Finally f(0) = d,sod= 0; and f(1) = a+b+c+d=a+b=a/2soa=2. Thus
f(x)=2x
3+3x
2
.
54. (a) Because hand ghave relative maxima at x0,h(x)h(x0) for all xin I1and g(x)g(x0) for all
xin I2, where I1and I2are open intervals containing x0.Ifxis in I1I2then both inequalities
are true and by addition so is h(x)+g(x)h(x
0)+g(x
0) which shows that h+ghas a relative
maximum at x0.
(b) By counterexample; both h(x)=x
2and g(x)=2x
2have relative maxima at x= 0 but
h(x)g(x)=x
2has a relative minimum at x= 0 so in general hgdoes not necessarily have
a relative maximum at x0.
55. (a)
x
y
)( x0
f(x0) is not an extreme value.
(b)
x
y
)( x0
f(x0) is a relative maximum.
(c)
x
y
)( x0
f(x0) is a relative minimum.
EXERCISE SET 5.3
1. y=x22x3;
y0=2(x1);
y00 =2
1
-4
x
y
(1, -4)
153 Chapter 5
2. y=1+xx
2
;
y
0=2(x1/2);
y00 =2
1
1
x
y
1
25
4
()
,
3. y=x33x+1;
y
0=3(x
21);
y00 =6x
x
y
(1, -1)
(0, 1)
(-1, 3)
4. y=2x
33x
2+12x+9;
y
0=6(x
2x+ 2);
y00 = 12(x1/2)
1
10
x
y
1
229
2
()
,
5. y=x4+2x
31;
y0=4x
2
(x+3/2);
y00 =12x(x+1) x
y
3
243
16
, -
(-1, -2)
(0, -1)
-
()
6. y=x42x212;
y0=4x(x
21);
y00 = 12(x21/3)
1
10
x
y
1
3
113
9
-1 113
9
(1, -13)
(-1, -13)
(0, -12)
, - , -
()()
3
Exercise Set 5.3 154
7. y=x3(3x25);
y0=15x
2
(x
21);
y00 =30x(2x21)
x
y
(-1, 2)
(0, 0)
(1, -2)
178
178
, -
()
-
,
()
3
3
3
3
8. y=3x
3
(x+4/3);
y0=12x
2
(x+ 1);
y00 =36x(x+2/3)
x
y
(-1, -1)
(0, 0)
2
316
27
-, -
()
9. y=x(x1)3;
y0=(4x1)(x1)2;
y00 = 6(2x1)(x1) 0.1
-0.1
x
y
1
427
256
1
21
16
(1, 0)
, -
()
, -
()
10. y=x4(x+ 5);
y0=5x
3
(x+ 4);
y00 =20x
2
(x+3)
300
x
y
(0, 0)
(-4, 256)
(-3, 162)
11. y=2x/(x3);
y0=6/(x3)2;
y00 =12/(x3)3
x
y
y = 2
x = 3
155 Chapter 5
12. y=x
x21;
y0=x2+1
(x
21)2;
y00 =2x(x2+3)
(x
21)3x
y
x = 1
x = -1
1
(0, 0)
13. y=x2
x21;
y0=2x
(x21)2;
y00 =2(3x2+1)
(x
21)3x
y
x = 1
y = 1
x = -1
(0, 0)
14. y=x21
x2+1;
y
0=4x
(x
2+1)
2;
y
00 =4(1 3x2)
(x2+1)
3x
y
11
211
2
(0, -1)
y = 1
, -
(
-
()
, -
)
3 3
15. y=x21
x=x31
x;
y0=2x3+1
x
2,
y
0= 0 when x=3
r1
2≈−0.8;
y00 =2(x31)
x3
x
y
(-0.8, 1.9)
(1, 0)
16. y=2x21
x2;
y0=2
x3;
y00 =6
x4x
y
y = 2
Exercise Set 5.3 156
17. y=x31
x3+1;
y
0=6x
2
(x
3+1)
2;
y
00 =12x(1 2x3)
(x3+1)
3x
y
(0, -1)
(1/ 2 , -1/3)
3
y = 1
x = -1
18. y=8
4x2;
y0=16x
(4 x2)2;
y00 =16(3x2+4)
(4 x2)3x
y
x = 2x = -2
1
19. y=x1
x24;
y0=x22x+4
(x
24)2
x
y
x = 2
x = -2 4
20. y=34
x4
x
2;
y
0=4(x+2)
x
3;
y
00 =8(x+3)
x
4
x
y
(-2, 4)
y = 3
-3,
()
35
9
21. y=(x1)2
x2;
y0=2(x1)
x3;
y00 =2(3 2x)
x4
y
x
(1, 0)
1
9
3
2
y = 1
,
()
157 Chapter 5
22. y=2+3
x1
x
3;
y
0=3(1 x2)
x4;
y00 =6(x22)
x5x
y
(–1, 0)
(1, 4)
y = 2
2, 2 + 2
)(
5
4
2, 2 – 2
)(
5
4
23. (a) VI (b) I(c) III (d) V(e) IV (f ) II
24. (a) When nis even the function is defined only for x0; as nincreases the graph approaches the
line y= 1 for x>0.
y
x
(b) When nis odd the graph is symmetric with respect to the origin; as nincreases the graph
approaches the line y= 1 for x>0 and the line y=1 for x<0.
y
x
25. y=x21;
y0=x
x21;
y00 =1
(x21)3/2-1 1 x
y
3
26. y=3
px24;
y0=2x
3(x24)2/3;
y00 =2(3x2+4)
9(x24)5/3-2
(-2, 0) (2, 0)
(0, -2)
2x
y
3
Exercise Set 5.3 158
27. y=2x+3x
2/3
;
y
0=2+2x
1/3
;
y
00 =2
3x4/3
x
y
4
5
(0, 0)
28. y=4x3x
4/3
;
y
0=44x
1/3
;
y
00 =4
3x2/3
x
y
1
(1, 1)
3
29. y=x(3 x)1/2;
y0=3(2 x)
23x;
y00 =3(x4)
4(3 x)3/2x
y
(2, 2)
30. y=x1/3(4 x);
y0=4(1 x)
3x2/3;
y00 =4(x+2)
9x
5/3
-10
10
x
y
(1, 3)
(-2, -6 )2
3
31. y=8(x1)
x;
y0=4(2 x)
x2;
y00 =2(3x8)
x315 x
y
(4, 2) 64
915
8
,
4
()
159 Chapter 5
32. y=1+
x
1
x;
y
0=1
2
x(1x);
y00 =3x1
2x3/2(1 x)3
2
-2
x
y
x = 1
y = -1
1
9, 2
()
33. y=x+ sin x;
y0= 1 + cos x,y0= 0 when x=π+2;
y00 =sin x;y00 = 0 when x=
n=0,±1,±2,... c
c
x
y
34. y=xcos x;
y0= 1 + sin x;
y0= 0 when x=π/2+2;
y00 = cos x;
y00 = 0 when x=π/2+
n=0,±1,±2,...
c
c
x
y
35. y= sin x+ cos x;
y0= cos xsin x;
y0= 0 when x=π/4+;
y00 =sin xcos x;
y00 = 0 when x=3π/4+
-oo
-2
2
x
y
36. y=3 cos x+ sin x;
y0=3 sin x+ cos x;
y0= 0 when x=π/6+;
y00 =3 cos xsin x;
y00 = 0 when x=2π/3+
o
-2
2
x
y
Exercise Set 5.3 160
37. y= sin2x, 0x2π;
y0= 2 sin xcos x= sin 2x;
y00 = 2 cos 2x
co
x
y
1
38. y=xtan x, π/2<x<π/2;
y0=xsec2x+ tan x;
y0= 0 when x=0;
y
00 = 2 sec2x(xtan x+ 1), which is always
positive for π/2<x<π/2-6 6
x
y
39. (a) lim
x+xex=+, lim
x→−∞ xex=0
(b) y=xex;
y0=(x+1)e
x
;
y
00 =(x+2)e
x
-1
-1-3-5
1
x
y
(-2, -0.27)
(-1, -0.37)
40. (a) lim
x+xe2x= 0, lim
x→−∞ xe2x=−∞
(b) y=xe2x;y0=2µx1
2e2x;y00 =4(x1)e2x
-3 -1 1 3
-0.3
-0.1
0.1
0.3
x
y
(0.5, 0.18)
(1, 0.14)
41. (a) lim
x+
x2
e2x= 0, lim
x→−∞
x2
e2x=+
(b) y=x2/e2x=x2e2x;
y0=2x(1 x)e2x;
y00 = 2(2x24x+1)e
2x
;
y
00 = 0 if 2x24x+ 1 = 0, when
x=4±16 8
4=1±
2/20.29,1.71
123
0.3
x
y
(0, 0)
(0.29, 0.05)
(1, 0.14)
(1.71, 0.10)
42. (a) lim
x+x2e2x=+, lim
x→−∞ x2e2x=0.
161 Chapter 5
(b) y=x2e2x;
y0=2x(x+1)e
2x
;
y
00 = 2(2x2+4x+1)e
2x
;
y
00 = 0 if 2x2+4x+1=0,when
x=4±16 8
4=1±2/2≈−0.29,1.71
-3 -2 -1
y
x
0.2
0.3
(-1.71, 0.10)
(-1, 0.14)
(0, 0)
(-0.29, 0.05)
43. (a) lim
x+f(x)=+, lim
x→−∞ f(x)=−∞
(b) y=xex2;
y0=(1+2x
2
)e
x
2;
y
00 =2x(3+2x
2
)e
x
2
no relative extrema, inflection point at (0,0)
y
x
-100
100
-2 2
(0,0)
44. (a) lim
x→±∞ f(x)=1
(b) f0(x)=2x
3
e
1/x2so f0(x)<0 for x<0 and f0(x)>0 for
x>0. By L’Hˆopital’s Rule limx0f0(x) = 0, so (by the first
derivative test) f(x) has a minimum at x=0.
f
00(x)=(6x
4+4x
6
)e
1/x2,sof(x) has points of inflection
at x=±p2/3
.y
x
0.4
0.8
1
-10 -5 5 10
(0, 0)
2/3, e3/2
()
2/3, e3/2
()
45. (a) lim
x0+y= lim
x0+xln x= lim
x0+
ln x
1/x = lim
x0+
1/x
1/x2=0;
lim
x+y=+
(b) y=xln x,
y0=1+lnx,y
00 =1/x,
y0= 0 when x=e1
1x
y
(e-1, -e-1)
46. (a) lim
x0+y= lim
x0+
ln x
1/x2= lim
x0+
1/x
2/x3=0,
lim
x+y=+
(b) y=x2ln x, y0=x(1+2lnx),
y
00 =3+2lnx,
y0=0ifx=e
1/2
,
y
00 =0ifx=e
3/2
,
lim
x0+y0=0
1
-0.2
-0.1
0.1
0.2
x
y
(
e-1/2, - e-1
)
1
2
(
e-3/2, - e-3
)
3
2
Exercise Set 5.3 162
47. (a) lim
x0+y= lim
x0+
ln x
x2=−∞;
lim
x+y= lim
x+
ln x
x2= lim
x+
1/x
2x=0
(b) y=ln x
x2,y
0=12lnx
x
3,
y
00 =6lnx5
x
4,
y
0=0ifx=e
1/2
,
y
00 =0ifx=e
5/6
123
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
x
y
(
e1/2, e-1
)
1
2
(
e5/6, e-5/3
)
5
6
48. (a) lim
x0+(ln x)/x=−∞ by inspection, lim
x+(ln x)/x= lim
x+
1/x
1/2x= lim
x+
2
x= 0, L’Hˆopital’s
Rule.
(b) y=ln x
x,y0=2ln x
2x3/2
y00 =8+3lnx
4x
5/2
y
0=0ifx=e
2
,
y
00 =0ifx=e
8/3
y
x
-1
0.5
2 6 10 14
(e2, 2/e)
(
e8/3, e-4/3
)
8
3
49. (a) lim
x→−∞ y=−∞, lim
x+y=+;
curve crosses x-axis at x=0,1,1
y
x
-6
-4
-2
2
4
-2 -1 1
(b) lim
x→±∞ y=+;
curve never crosses x-axis
y
x
0.1
0.2
-1 1
(c) lim
x→−∞ y=−∞, lim
x+y=+;
curve crosses x-axis at x=1
y
x
-0.2
0.2
0.4
-1 1
163 Chapter 5
(d) lim
x→±∞ y=+;
curve crosses x-axis at x=0,1
y
x
0.2
0.4
-1 1
50. (a) y
x
ab
y
x
ab
y
x
ab
(b) y
x
ab
y
x
ab
(c) y
x
ab
51. (a) horizontal asymptote y=3asx→±, vertical asymptotes of
x=±2
y
x
-5
5
10
-5 5
Exercise Set 5.3 164
(b) horizontal asymptote of y=1asx→±, vertical asymptotes
at x=±1
y
x
-10
10
-5 5
(c) horizontal asymptote of y=1asx→±, vertical
asymptotes at x=2,1
y
x
-10
10
-5 5
(d) horizontal asymptote of y=1asx→±,
vertical asymptote at x=1,2
y
x
-10
10
-5 5
52. y
x
ab
53. (a) 0.4
-0.2
-0.5 3
(b) y0=(1bx)ebx,y00 =b2(x2/b)ebx;
relative max at x=1/b,y=1/be;pointof
inflection at x=2/b,y=2/be2. Increasing
bmoves the relative max and the point of
inflection to the left and down, i.e. towards
the origin.
54. (a) 1
0
-2 2
(b) y0=2bxebx2,y00 =2b(1+2bx2)ebx2;
relative max at x=0,y= 1; points
of inflection at x=±p1/2b,y=1/
e.
Increasing bmoves the points of inflection
towards the y-axis; the relative max doesn’t
move.
165 Chapter 5
55. (a) The oscillations of excos xabout zero
increase as x→±so the limit does not
exist.
(b) y
x
-2
4
6
-2 -1 1 2
(0,1)
(1.52, 0.22)
(c) The curve y=eax cos bx oscillates between y=eax and y=eax. The frequency of oscillation
increases when bincreases.
y
x
-5
5
-1 1 2
a = 1
b = 1
b = 2
b = 3
y
x
5
10
-1 0.5 1
b = 1
a = 1
a = 2
a = 3
56. lim
x→±∞ ·P(x)
Q(x)(ax +b)¸= lim
x→±∞
R(x)
Q(x)= 0 because the degree of R(x) is less than
the degree of Q(x).
57. y=x22
x=x2
xso
y=xis an oblique asymptote;
y0=x2+2
x
2,
y
00 =4
x3
x
y
y = x
4
4
58. y=x22x3
x+2 =x4+ 5
x+2 so
y=x4 is an oblique asymptote;
y0=x2+4x1
(x+2)
2,y
00 =10
(x+2)
3
(-4.24, -10.48)
(0.24, -1.52)
x = -2
y = x - 4
-10 10 x
y
59. y=(x2)3
x2=x6+12x8
x2so
y=x6 is an oblique asymptote;
y0=(x2)2(x+4)
x
3,
y
00 =24(x2)
x4
x
y
-10
(-4, -13.5)
y = x - 6
(2, 0)
10
Exercise Set 5.3 166
60. y=4x3
x2,
y0=x3+8
x
3,
y
00 =24
x4
x
y
(-2, 3)
y = -x
61. y=x+11
x1
x
2=(x1)(x+1)
2
x
2,
y=x+ 1 is an oblique asymptote;
y0=(x+ 1)(x2x+2)
x
3,
y
00 =2(x+3)
x
4
x
y
y = x + 1
(-1, 0)
16
9
-3, -
)(
62. The oblique asymptote is y=2xso (2x33x+4)/x2=2x,3x+4=0,x=4/3.
63. lim
x→±∞[f(x)x2] = lim
x→±∞(1/x)=0
y=x
2+1
x=x
3+1
x,y
0=2x1
x
2=2x
31
x
2,
y
00 =2+ 2
x
3=2(x3+1)
x
3,y
0= 0 when x=1/3
20.8,
y=33
2/21.9; y00 = 0 when x=1,y =0
x
y
y = x2
3
3
64. lim
x→±∞[f(x)(3 x2)] = lim
x→±∞(2/x)=0
y=3x
2+2
x=2+3xx
3
x,y
0=2x2
x
2=2(x3+1)
x
2,
y
00 =2+ 4
x
3=2(x32)
x3,y0= 0 when x=1,y =0;
y
00 = 0 when x=3
21.3, y=3
x
y
y = 3 - x2
3
1
65. Let ybe the length of the other side of the rectangle, then
L=2x+2yand xy = 400 so y= 400/x and hence L=2x+ 800/x.
L=2xis an oblique asymptote (see Exercise 48)
L=2x+800
x=2(x2+ 400)
x,L0=2800
x2=2(x2400)
x2,
L00 =1600
x3,L0= 0 when x=20,L =80 20
100
x
L
167 Chapter 5
66. Let ybe the height of the box, then S=x2+4xy and x2y= 500 so
y= 500/x2and hence S=x2+ 2000/x.
The graph approaches the curve S=x2asymptotically
(see Exercise 63)
S=x2+2000
x=x3+ 2000
x,S0=2x2000
x2=2(x31000)
x2,
S00 =2+4000
x3=2(x3+ 2000)
x3,S00 = 0 when x=10,S = 300
30
1000
x
S
67. y0=0.1x
4
(6x5);
critical points: x=0,x=5/6;
relative minimum at x=5/6,
y≈−6.7×103
-1 1
0.01
x
y
68. y0=0.1x
4
(x+ 1)(7x+ 5);
critical points: x=0,x=1, x=5/7,
relative maximum at x=1, y=0;
relative minimum at x=5/7, y≈−1.5×103
1
0.001
x
y
69. (a) P0(t)= kL2AekLt
(1+AekLt)2S,soP
0
(0) = kL2A
(1+A)2
(b) The rate of growth increases to its maximum, which occurs when Pis halfway between 0 and
L, or when t=1
Lk ln A; it then decreases back towards zero.
(c) From (6) one sees that dP
dt is maximized when Plies half way between 0 and L, i.e. P=L/2.
This follows since the right side of (6) is a parabola (with Pas independent variable) with
P-intercepts P=0,L. The value P=L/2 corresponds to t=1
Lk ln A, from (8).
70. Since 0 <P <Lthe right-hand side of (7) can change sign only if the factor L2Pchanges sign,
which it does when P=L/2. From (5) we have L
2=L
1+AekLt ,1=AekLt,t=1
Lk ln A.
SUPPLEMENTARY EXERCISES FOR CHAPTER 5
4. (a) False; an example is y=x3
3x2
2on [2,2]; x= 0 is a relative maximum and x= 1 is a relative
minimum, buty=0isnotthelargest value of yon the interval, nor is y=1
6the smallest.
Supplementary Exercises 168
(b) true
(c) False; for example y=x3on (1,1) which has a critical point but no relative extrema
6. (a)
2
4
x
y(b)
2
4
x
y(c)
2
4
x
y
7. (a) f0(x)= 7(x7)(x1)
3x2/3; critical points at x=0,1,7;
neither at x= 0, relative max at x= 1, relative min at x= 7 (first derivative test)
(b) f0(x)=2cosx(1 + 2 sin x); critical points at x=π/2,3π/2,7π/6,11π/6;
relative max at x=π/2,3π/2, relative min at x=7π/6,11π/6
(c) f0(x)=33
x1
2; critical points at x= 5; relative max at x=5
8. (a) f0(x)= x9
18x3/2,f00(x)=27 x
36x5/2; critical point at x=9;f
00(9) >0, relative min at x=9
(b) f0(x)=2
x
34
x
2,f
00(x)=2
x
3+8
x
3;
critical point at x=4
1/3
,f
00(41/3)>0, relative min at x=4
1/3
(c) f0(x) = sin x(2 cos x+ 1), f00(x)=2cos
2x2 sin2x+ cos x; critical points at x=2π/3,4π/3;
f00(2π/3) <0, relative max at x=2π/3; f00(π)>0, relative min at x=π;f00(4π/3) <0, relative
max at x=4π/3
9. lim
x→−∞ f(x)=+, lim
x+f(x)=+
f
0(x)=x(4x29x+ 6), f00(x) = 6(2x1)(x1)
relative min at x=0,
points of inflection when x=1/2,1,
no asymptotes
y
x
1
2
3
4
12
(0,1)
)(
(1,2)
1
2,23
16
10. lim
x→−∞ f(x)=−∞, lim
x+f(x)=+
f(x)=x
3
(x2)2,f0(x)=x
2
(5x6)(x2),
f00(x)=4x(5x212x+6)
critical points at x=0,8±2
31
5
relative max at x=8231
5=0.63
relative min at x=8+2
31
5=3.83
points of inflection at x=0,6±
66
5=0,0.42,2.82
no asymptotes
y
x
-200
-100
-1 1234
(0,0)
(-0.42,0.16)
(2.82,-165.00) (3.83,-261.31)
(-0.63,0.27)
169 Chapter 5
11. lim
x→±∞ f(x) doesn’t exist
f0(x)=2xsec2(x2+ 1),
f00(x)=2sec
2
(x
2+1)£1+4x
2tan(x2+1)
¤
critical point at x= 0; relative min at x=0
point of inflection when 1 + 4x2tan(x2+1)=0
vertical asymptotes at x=±qπ(n+1
2)1, n=0,1,2,...
y
x
-4
-2
2
4
-2 -1 1 2
12. lim
x→−∞ f(x)=−∞, lim
x+f(x)=+
f
0(x) = 1 + sin x,f00(x) = cos x
critical points at x=2+π/2, n=0,±1,±2,...,
no extrema because f00 and by Exercise 51 of Section 5.1,
fis increasing on (−∞,+)
inflections points at x=+π/2, n=0,±1,±2,...
no asymptotes
y
x
-6
-4
-2
2
4
−π π
13. f0(x)=2 x(x+5)
(x
2+2x+5)
2,f00(x)=2
2x
3+15x
225
(x2+2x+5)
3
critical points at x=5,0;
relative max at x=5,
relative min at x=0
points of inflection at x=7.26,1.44,1.20
horizontal asymptote y=1asx→±
y
x
0.2
0.4
0.6
0.8
1
-20 -10 10 20
14. f0(x)=3
3x
225
x4,f00(x)=6
3x
250
x5
critical points at x=±53/3;
relative max at x=53/3,
relative min at x=+5
3/3
inflection points at x=±5p2/3
horizontal asymptote of y=0asx→±,
vertical asymptote x=0
y
x
-5
5
-4 6
15. lim
x→−∞ f(x)=+, lim
x+f(x)=−∞
f0(x)=½x
2xif ½x0
x>0
critical point at x= 0, no extrema
inflection point at x=0(fchanges concavity)
no asymptotes
y
x
-2
1
2
-2 1
Supplementary Exercises 170
16. f0(x)= 53x
3(1 + x)1/3(3 x)2/3,
f00(x)= 32
9(1 + x)4/3(3 x)5/3
critical point at x=5/3;
relative max at x=5/3
cusp at x=1;
point of inflection at x=3
oblique asymptote y=xas x→±
y
x
-3
-1
2
4
-4 -2 2
17. lim
x+f(x)=+
f
0(x)=1+lnx,f00(x)=1/x
lim
x0+f(x)=0, lim
x0
+f
0(x)=−∞
critical point at x=1/e;
relative min at x=1/e
no points of inflection, no asymptotes
y
x
1
12
18. lim
x+f(x)=+
f
0(x)=x(2 ln x+ 1), f00(x)=2lnx+3
lim
x0+f(x)=0, lim
x0
+f
0(x)=0
critical point at x=e1/2;
relative min at x=e1/2
point of inflection at x=e3/2
y
x
-0.1
0.2 0.4 0.6
19. f0(x)=12lnx
x
3,f00(x)=6lnx5
x
4
critical point at x=e1/2,
relative max at x=e1/2
point of inflection at x=e5/6
horizontal asymptote y=0asx+
y
x
-2
-1
12
20. lim
x→±∞ f(x)=+
f
0(x)= 2x
x
2+1,f00(x)=2 1x
2
(x
2+1)
2
critical point at x=0;
relative min at x=0
points of inflection at x=±1
no asymptotes
y
x
1
2
-2 2
171 Chapter 5
21. lim
x+f(x)=+
f
0(x)=e
xx1
x
2,f
00(x)=e
xx
22x+2
x
3
critical point at x=1;
relative min at x=1
no points of inflection
vertical asymptote x=0,
horizontal asymptote y= 0 for x→−
y
x
-2
2
6
-2 1 3
22. f0(x)=(1x)e
x
,f
00(x)=(x2)ex
critical point at x= 1; relative max at x=1
point of inflection at x=2
horizontal asymptote y=0asx+, lim
x→−∞ f(x)=−∞
y
x
-0.8
0.2
12
23. f0(x)=x(2 x)e1x,f00(x)=(x
24x+2)e
1x
critical points at x=0,2;
relative min at x=0,
relative max at x=2
points of inflection at x=2±
2
horizontal asymptote y=0asx+,
lim
x→−∞ f(x)=+
y
x
0.6
1
1.8
1234
24. f0(x)=x
2
(3+x)ex1,f00(x)=x(x
2+6x+6)e
x1
critical points at x=3,0;
relative min at x=3
points of inflection at x=0,3±
3
horizontal asymptote y=0asx→−
lim
x+f(x)=+
y
x
-0.4
0.4
1
-4 -2 1
25. (a) 40
-40
-5 5
(b) f0(x)=x
21
400,f00(x)=2x
critical points at x=±1
20;
relative max at x=1
20,
relative min at x=1
20
Supplementary Exercises 172
(c) The finer details can be seen when graphing over
a much smaller x-window.
0.0001
-0.0001
-0.1 0.1
26. (a) 200
-200
-5 5
(b) critical points at x=±2,3
2,2;
relative max at x=2,
relative min at x=2,
relative max at x=3
2,
relative min at x=2
(c) 10
-4
-2.2 3.5
-2.909
-2.912
1.3 1.6
27. (a) 6
-6
-5 5
(b) Divide y=x2+ 1 into y=x38 to get the
asymptote ax +b=x
28. (a) p(x)=x
3x(b) p(x)=x
4x
2
(c) p(x)=x
5x
4x
3+x
2(d) p(x)=x
5x
3
29. f0(x)=4x
318x2+24x8, f00(x) = 12(x1)(x2)
f00(1)=0,f
0(1)=2,f(1)=2;f
00(2)=0,f
0(2)=0,f(2)=3,
so the tangent lines at the inflection points are y=2xand y=3.
30. cos x(sin y)dy
dx =2
dy
dx;dy
dx = 0 when cos x= 0. Use the first derivative test: dy
dx =cos x
2 + sin yand
2 + sin y>0, so critical points when cos x= 0, relative maxima when x=2+π/2, relative minima
when x=2π/2, n=0,±1,±2,...
173 Chapter 5
31. f(x)= (2x1)(x2+x7)
(2x1)(3x2+x1) =x2+x7
3x2+x1,x6=1/2
horizontal asymptote: y=1/3,
vertical asymptotes: x=(1±
13)/6
y
x
-5
5
10
-4 -2 2 4
32. (a) f(x)= (x2)(x2+x+ 1)(x22)
(x2)(x22)2(x2+1)
=x
2+x+1
(x
22)(x2+1)
(b)
y
x
-2
4
-2 1 3
33. (a) sin x=1 yields the smallest values, and
sin x= +1 yields the largest
3
0
Oo
(b) f0(x)=e
sin xcos x; relative maxima at x=2+π/2, y=e; relative minima at x=2π/2,
y=1/e;n=0,±1,±2,... (first derivative test)
(c) f00(x)=(1sin xsin2x)esin x;f00(x) = 0 when sin x=t,arootoft
2+t1=0,
t=1±
5
2; sin x=15
2is impossible. So the points of inflection on 0 <x<2πoccur
when sin x=1+
5
2,orx=0.66624,2.47535
34. f0(x)=3ax2+2bx +c;f0(x)>0orf
0
(x)<0on(−∞,+)iff
0
(x) = 0 has no real solutions so
from the quadratic formula (2b)24(3a)c<0, 4b212ac < 0, b23ac < 0. If b23ac = 0, then
f0(x) = 0 has only one real solution at, say, x=cso fis always increasing or always decreasing on
both (−∞,c] and [c, +), and hence on (−∞,+) because fis continuous everywhere. Thus fis
always increasing or decreasing if b23ac 0.
35. (a) relative minimum 0.232466 at x=0.450184 2
-0.5
-1 1.5
Supplementary Exercises 174
(b) relative maximum 0 at x=0;
relative minimum 0.107587 at x=±0.674841
0.2
-0.15
-1.2 1.2
(c) relative maximum 0.876839; at x=0.886352;
relative minimum 0.355977 at x=1.244155
1
-0.4
-1.5 1.5
36. (a) f0(x) = 2+3x24x3has one real root at x=1.14, a relative max; so fis one-to-one for x1.14
(b) f(1.14)=3.07 so the domain of f1is (−∞,3.07) and the range is (−∞,1.14); f1(1) = 0.70
37. (a) 0.5
0
05
(b) y=0atx= 0; lim
x+y=0
(c) relative max at x=1/a, inflection point at x=2/a
(d) As aincreases, the x-coordinate of the maximum and the inflection point move towards the
origin.
38. (a) 4
0
-2 2
4
0
-2 2
(b) y=1atx=a; lim
x→−∞ y=+, lim
x+y=0
(c) Since y0is always negative and y00 is always positive, there are
no relative extrema and no inflection points.
(d) An increase in bmakes the graph flatter.
(e) An increase in ashifts the graph to the right.
175 Chapter 5
39. f0(x) = ln(1 + 1/x)1
xand f00(x)= 1
x
2
(x+1);sof
00 >0ifx>1 and therefore f0is increasing on
[1,+). Next, f0(1)=ln21<0. Then by L’Hˆopital’s Rule,
lim
x+xln(1 + 1/x) = lim
x+
ln(1 + 1/x)
1/x = lim
x+1/x2
(1+1/x)(1/x2)=1
and thus lim
x+f0(x) = lim
x+
xln(1 + 1/x)1
xis indeterminate.
By L’Hˆopital’s Rule lim
x+f0(x) = lim
x+·ln µ1+ 1
x1
x+1¸=0.
Thus on [1,+) the function f0starts negative and increases towards zero, so it is negative
on the whole interval. So f(x) is decreasing, and f(x)>f(x+ 1). Set x=nand obtain
ln(1 + 1/n)n+1 >ln(1 + 1/(n+ 1))n+2. Since ln xand its inverse function exare both increasing,
it follows that (1 + 1/n)n+1 >(1+1/(n+ 1))n+2.
CALCULUS HORIZON MODULE CHAPTER 5
1. The sum of the squares for the residuals for line I is approximately 12+12+12+02+22+12+12+12= 10,
and the same for line II is approximately 02+(0.4)2+(1.2)2+0
2+(2.2)2+(0.6)2+(0.2)2+0
2=6.84;
line II is the regression line.
2. (a) y=5.035714286x4.232142857 (b) y
x
2
6
10
14
1234
4. r=0.9907002406
5. (a) S=2.155239850t+ 190.3600714; r=0.9569426456
(b) yes, because ris close to 1
(c) 244.241068 mi/h
(d) It is assumed that the line still gives a good estimate in the year 2000.
6. (a) Y=lny=bx +lnahas slope band Y-intercept ln a.
(b) y=a+bX has slope band y-intercept a.
(c) Y=lny=bln x+lna=bX +lnahas slope band Y-intercept ln a.
(d) The same algebraic rules hold.
7. (a) y=3.923208367 + e0.2934589528x(b) y
x
5
10
15
20
25
30
1234567
Calculus Horizon Module 176
8. (a) It appears that log T=a+blog d,soT=10
a
d
b
, an exponential model.
(b) log T=1.719666407 ×104+1.499661719 log d
(c) T=1.000396046 d1.499661719
(d) “The squares of the periods of revolution of the planets are proportional to the cubes of their
mean distances”
9. (a) T=27+57.8e
0.046t(b) T0=84.9
C(c) 53.19 min
CHAPTER 6
Applications of the Derivative
EXERCISE SET 6.1
1. relative maxima at x=2,6; absolute maximum at x= 6; relative and absolute minimum at x=4
2. relative maximum at x= 3; absolute maximum at x= 7; relative minima at x=1,5; absolute minima
at x=1,5
3. (a) y
x
10
(b) y
x
27
(c)
y
x
53 7
4. (a) y
x
(b) y
x
(c) y
x
-5 5
5. f0(x)=8x4, f0(x) = 0 when x=1/2; f(0)=1,f(1/2)=0,f(1) = 1 so the maximum value is 1
at x=0,1 and the minimum value is 0 at x=1/2.
6. f0(x)=82x,f
0
(x) = 0 when x=4;f(0)=0,f(4) = 16, f(6) = 12 so the maximum value is 16 at
x= 4 and the minimum value is 0 at x=0.
7. f0(x)=3(x1)2,f0(x) = 0 when x=1;f(0) = 1, f(1)=0,f(4) = 27 so the maximum value is 27
at x= 4 and the minimum value is 1atx=0.
8. f0(x)=6x
26x12=6(x+ 1)(x2), f0(x) = 0 when x=1,2; f(2) = 4, f(1)=7,
f(2) = 20, f(3) = 9 so the maximum value is 7 at x=1 and the minimum value is 20 at x=2.
9. f0(x)=3/(4x2+1)
3/2
, no critical points; f(1)=3/5, f(1)=3/
5 so the maximum value is
3/5atx= 1 and the minimum value is 3/5atx=1.
10. f0(x)= 2(2x+1)
3(x2+x)1/3,f0(x) = 0 when x=1/2 and f0(x) does not exist when x=1,0;
f(2)=2
2/3
,f(1)=0,f(1/2)=4
2/3
,f(0)=0,f(3)=12
2/3so the maximum value is 122/3at
x= 3 and the minimum value is 0 at x=1,0.
11. f0(x)=1sec2x,f0(x)=0forxin (π/4/4) when x=0;f(π/4)=1π/4, f(0)=0,
f(π/4) = π/41 so the maximum value is 1 π/4atx=π/4 and the minimum value is π/41
at x=π/4.
177
Exercise Set 6.1 178
12. f0(x) = cos x+ sin x,f0(x)=0forxin (0) when x=3π/4; f(0) = 1, f(3π/4)=2, f(π)=1so
the maximum value is 2atx=3π/4 and the minimum value is 1atx=0.
13. f(x)=1+|9x
2
|=½10 x2,|x|≤3
8+x
2
,|x|>3,f0(x)=½2x, |x|<3
2x, |x|>3thus f0(x) = 0 when x=0,
f
0
(x) does not exist for xin (5,1) when x=3 because lim
x→−3f0(x)6= lim
x→−3+f0(x) (see Theorem
preceding Exercise 75, Section 3.3); f(5) = 17, f(3)=1,f(0) = 10, f(1) = 9 so the maximum
value is 17 at x=5 and the minimum value is 1 at x=3.
14. f(x)=|64x|=½64x, x 3/2
6+4x, x > 3/2,f0(x)=½4,x<3/2
4,x>3/2
,f
0
(x) does not exist when
x=3/2thus3/2 is the only critical point in (3,3); f(3) = 18, f(3/2)=0,f(3) = 6 so the
maximum value is 18 at x=3 and the minimum value is 0 at x=3/2.
15. f0(x)=2x3; critical point x=3/2. Minimum value f(3/2) = 13/4, no maximum.
16. f0(x)=4(x+ 1); critical point x=1. Maximum value f(1) = 5, no minimum.
17. f0(x)=12x
2
(1 x); critical points x= 0, 1. Maximum value f(1) = 1, no minimum because
lim
x+f(x)=−∞.
18. f0(x)=4(x
3+ 1); critical point x=1. Minimum value f(1) = 3, no maximum.
19. No maximum or minimum because lim
x+f(x)=+and lim
x→−∞ f(x)=−∞.
20. No maximum or minimum because lim
x+f(x)=+and lim
x→−∞ f(x)=−∞.
21. f0(x)=x(x+2)/(x+1)
2
; critical point x=2in(5,1). Maximum value f(2) = 4, no
minimum.
22. f0(x)=6/(x3)2; no critical points in [5,5] (x= 3 is not in the domain of f). No maximum or
minimum because lim
x3+f(x)=+and lim
x3f(x)=−∞.
23. (x21)2can never be less than zero because it is the square of
x21; the minimum value is 0 for x=±1, no maximum because
lim
x+f(x)=+.
10
0
-2 2
24. (x1)2(x+2)
2can never be less than zero because it is the product
of two squares; the minimum value is 0 for x=1or2, no
maximum because lim
x+f(x)=+.
15
0
-3 2
179 Chapter 6
25. f0(x)=5(8 x)
3x1/3,f0(x) = 0 when x= 8 and f0(x) does not exist
when x=0;f(1) = 21, f(0)=0,f(8) = 48, f(20) = 0 so the
maximum value is 48 at x= 8 and the minimum value is 0 at
x=0,20.
50
0
-1 20
26. f0(x)=(2x
2
)/(x
2+2)
2
,f0(x)=0forxin the interval (1,4)
when x=2; f(1) = 1/3, f(2) = 2/4, f(4)=2/9sothe
maximum value is 2/4atx=
2 and the minimum value is
1/3atx=1.
0.4
-0.4
-1 4
27. f0(x)=1/x2; no maximum or minimum because there are no
critical points in (0,+).
25
0
010
28. f0(x)=(1x
2
)/(x
2+1)
2
; critical point x= 1. Maximum value
f(1)=1/2, minimum value 0 because f(x) is never less than zero
on [0,+) and f(0)=0.
0.5
0
020
29. f0(x)=2secxtan xsec2x= (2 sin x1)/cos2x,f0(x)=0forxin
(0/4) when x=π/6; f(0)=2,f(π/6) = 3, f(π/4)=2
21so
the maximum value is 2 at x= 0 and the minimum value is 3at
x=π/6.
2
1.5
03
30. f0(x)=2sinxcos xsin x= sin x(2 cos x1), f0(x)=0forxin
(π, π) when x=0,±π/3; f(π)=1, f(π/3)=5/4, f(0)=1,
f(π/3)=5/4, f(π)=1 so the maximum value is 5/4at
x=±π/3 and the minimum value is 1atx=±π.
1.5
-1.5
Cc
Exercise Set 6.1 180
31. f0(x)=x
2
(2x3)e2x,f0(x)=0forxin [1,4] when x=3/2;
if x=1,3/2,4, then f(x)=e
2
,27
8e3,64e8;
critical point at x=3/2; absolute maximum of 27
8e3at x=3/2,
absolute minimum of 64e8at x=4
0.2
0
14
32. f0(x)=1ln x
x2,f0(x) = 0 when x=e;
absolute minimum of 0 at x=1;
absolute maximum of 1/e at x=e
0.4
0
1e
33. f0(x)=[cos(cos x)] sin x;f0(x) = 0 if sin x= 0 or if cos(cos x)=0.
If sin x= 0, then x=πis the critical point in (0,2π); cos(cos x)=0
has no solutions because 1cos x1. Thus f(0) = sin(1),
f(π) = sin(1) = sin(1), and f(2π) = sin(1) so the maximum
value is sin(1) 0.84147 and the minimum value is
sin(1) ≈−0.84147.
1
-1
0o
34. f0(x)=[sin(sin x)] cos x;f0(x) = 0 if cos x= 0 or if sin(sin x)=0.
If cos x= 0, then x=π/2 is the critical point in (0);
sin(sin x) = 0 if sin x= 0, which gives no critical points in (0).
Thus f(0)=1,f(π/2) = cos(1), and f(π) = 1 so the maximum
value is 1 and the minimum value is cos(1) 0.54030.
1.5
0
0c
35. f0(x)=½4,x<1
2x5,x>1so f0(x) = 0 when x=5/2, and f0(x) does not exist when x= 1 because
lim
x1f0(x)6= lim
x1+f0(x) (see Theorem preceding Exercise 75, Section 3.3); f(1/2)=0,f(1)=2,
f(5/2) = 1/4, f(7/2)=3/4 so the maximum value is 2 and the minimum value is 1/4.
36. f0(x)=2x+pwhich exists throughout the interval (0,2) for all values of pso f0(1) = 0 because
f(1) is an extreme value, thus 2 + p=0,p=2. f(1) = 3 so 12+(2)(1) + q=3,q= 4 thus
f(x)=x
22x+ 4 and f(0)=4,f(2) = 4 so f(1) is the minimum value.
37. sin 2xhas a period of π, and sin 4xa period of π/2sof(x) is periodic with period π. Consider the
interval [0]. f0(x) = 4 cos 2x+ 4 cos 4x,f0(x) = 0 when cos 2x+ cos 4x= 0, but cos 4x= 2 cos22x1
(trig identity) so
2 cos22x+ cos 2x1=0
(2 cos 2x1)(cos 2x+1)=0
cos 2x=1/2 or cos 2x=1.
From cos 2x=1/2, 2x=π/3or5π/3sox=π/6or5π/6. From cos 2x=1, 2x=πso x=π/2.
f(0)=0,f(π/6)=3
3/2, f(π/2)=0,f(5π/6) = 33/2, f(π) = 0. The maximum value is 33/2
at x=π/6+and the minimum value is 33/2atx=5π/6+,n=0,±1,±2,···.
181 Chapter 6
38. cos x
3has a period of 6π, and cos x
2a period of 4π,sof(x) has a period of 12π. Consider the interval
[0,12π]. f0(x)=sin x
3sin x
2,f0(x) = 0 when sin x
3+ sin x
2= 0 thus, by use of the trig identity
sin a+ sin b= 2 sin a+b
2cos ab
2, 2 sin µ5x
12 cos ³x
12´=0sosin
5x
12 =0orcosx
12 = 0. Solve
sin 5x
12 = 0 to get x=12π/5, 24π/5, 36π/5, 48π/5 and then solve cos x
12 = 0 to get x=6π. The
corresponding values of f(x) are 4.0450,1.5450,1.5450,4.0450,1,5,5 so the maximum value is 5
and the minimum value is 4.0450 (approximately).
39. Let f(x)=xsin x, then f0(x)=1cos xand so f0(x) = 0 when cos x= 1 which has no solution
for 0 <x<2πthus the minimum value of fmust occur at 0 or 2π.f(0)=0,f(2π)=2πso0isthe
minimum value on [0,2π]thusxsin x0, sin xxfor all xin [0,2π].
40. Let f(x)=lnxx+ 1, then f0(x)=1/x 1 and so f0(x)=0atx= 1. Since lim
x0+f(x)=−∞ and
lim
x+f(x)=−∞,f(x) has a maximum of f(1) = 0 at x= 1 and so f(x)0 for 0 <x<+,so
ln xx1on(0,+).
41. Let m= slope at x, then m=f0(x)=3x
26x+5, dm/dx =6x6; critical point for mis x=1,
minimum value of mis f0(1)=2
42. (a) f0(x)=64 cos x
sin2x+27 sin x
cos2x=64 cos3x+ 27 sin3x
sin2xcos2x,f0(x) = 0 when
27 sin3x= 64 cos3x, tan3x=64/27, tan x=4/3 so the critical point is x=x0where
tan x0=4/3 and 0 <x
0/2. To test x0first rewrite f0(x)as
f
0
(x)= 27 cos3x(tan3x64/27)
sin2xcos2x=27 cos x(tan3x64/27)
sin2x;
if x<x
0then tan x<4/3 and f0(x)<0, if x>x
0then tan x>4/3 and f0(x)>0sof(x
0
)is
the minimum value. fhas no maximum because lim
x0+f(x)=+.
(b) If tan x0=4/3 then (see figure)
sin x0=4/5 and cos x0=3/5
so f(x0)=64/sin x0+27/cos x0
=64/(4/5)+27/(3/5)
=80+45=125
3
45
x
0
43. f0(x)=2x(x
324x2+ 192x640)
(x8)3; real root of x324x2+ 192x640 at x= 4(2 + 3
2). Since
lim
x8+f(x) = lim
x+f(x)=+and there is only one relative extremum, it must be a minimum.
44. (a) dC
dt =K
ab¡aeat bebt¢so dC
dt =0att=ln(a/b)
ab. This is the only stationary point and
C(0) = 0, lim
x+C(t)=0,C(t)>0 for 0 <t<+, so it is an absolute maximum.
(b) 0.7
0
010
Exercise Set 6.2 182
45. The slope of the line is 1, and the slope of the tangent to y=x2is 2xso 2x=1, x=1/2.
The line lies above the curve so the vertical distance is given by F(x)=2x+x
2
;F(1)=4,
F(1/2)=7/4, F(3/2)=11/4. The point (1/2,1/4) is closest, the point (1,1) farthest.
46. The slope of the line is 4/3; and the slope of the tangent to y=x3is 3x2so 3x2=4/3, x2=4/9,
x=±2/3. The line lies below the curve so the vertical distance is given by F(x)=x
34x/3+1;
F(1)=4/3, F(2/3)=43/27, F(2/3)=11/27, F(1)=2/3. The closest point is (2/3,8/27), the
farthest is (2/3,8/27).
47. The absolute extrema of y(t) can occur at the endpoints t=0,12 or when dy/dt = 2 sin t= 0, i.e.
t=0,12,kπ,k=1,2,3; the absolute maximum is y=4att=π, 3π; the absolute minimum is y=0
at t=0,2π.
48. (a) The absolute extrema of y(t) can occur at the endpoints t=0,2πor when
dy/dt = 2 cos 2t4 sin tcos t= 2 cos 2t2 sin 2t=0,t=0,2π, π/8,5π/8,9π/8,13π/8;
the absolute maximum is y=3.4142 at t=π/8,9π/8; the absolute minimum is y=0.5859
at t=5π/8,13π/8.
(b) The absolute extrema of x(t) occur at the endpoints t=0,2πor when dx
dt =2 sin t+1
(2 + sin t)2=0,
t=7π/6,11π/6. The absolute maximum is x=0.5774 at t=11π/6 and the absolute minimum
is x=0.5774 at t=7π/6.
49. f0(x)=2ax +b; critical point is x=b
2a
f00(x)=2a>0sofµb
2a
is the minimum value of f, but
fµb
2a=aµb
2a2
+bµb
2a+c=b2+4ac
4athus f(x)0 if and only if
fµb
2a0, b2+4ac
4a0, b2+4ac 0, b24ac 0
50. Use the proof given in the text, replacing “maximum” by “minimum” and “largest” by “smallest” and
reversing the order of all inequality symbols.
EXERCISE SET 6.2
1. Let x= one number, y= the other number, and P=xy where x+y= 10. Thus y=10xso
P=x(10 x)=10xx
2for xin [0,10]. dP/dx =102x,dP/dx = 0 when x=5. Ifx=0,5,10
then P=0,25,0soPis maximum when x= 5 and, from y=10x, when y=5.
2. Let xand ybe nonnegative numbers and zthe sum of their squares, then z=x2+y2. But x+y=1,
y=1xso z=x2+(1x)
2=2x
22x+ 1 for 0 x1. dz/dx =4x2, dz/dx = 0 when x=1/2.
If x=0,1/2,1 then z=1,1/2,1so
(a) zis as large as possible when one number is 0 and the other is 1.
(b) zis as small as possible when both numbers are 1/2.
3. If y=x+1/x for 1/2x3/2 then dy/dx =11/x2=(x
21)/x2,dy/dx = 0 when x=1. If
x=1/2,1,3/2 then y=5/2,2,13/6so
(a) yis as small as possible when x=1. (b) yis as large as possible when x=1/2.
183 Chapter 6
4. A=xy where x+2y= 1000 so y= 500 x/2 and A= 500xx2/2
for xin [0,1000]; dA/dx = 500 x,dA/dx = 0 when x= 500. If
x= 0 or 1000 then A=0,ifx= 500 then A= 125,000 so the area
is maximum when x= 500 ft and y= 500 500/2 = 250 ft.
x
y
Stream
5. Let xand ybe the dimensions shown in the figure and Athe area,
then A=xy subject to the cost condition 3(2x) + 2(2y) = 6000, or
y= 1500 3x/2. Thus A=x(1500 3x/2) = 1500x3x2/2 for xin
[0,1000]. dA/dx = 1500 3x,dA/dx = 0 when x= 500. If x=0or
1000 then A=0,ifx= 500 then A= 375,000 so the area is greatest
when x= 500 ft and (from y= 1500 3x/2) when y= 750 ft.
Heavy-duty
Standard
x
y
6. Let xand ybe the dimensions shown in the figure and Athe area of
the rectangle, then A=xy and, by similar triangles,
x/6=(8y)/8, y=84x/3soA=x(8 4x/3)=8x4x
2
/3 for
xin [0,6]. dA/dx =88x/3, dA/dx = 0 when x=3. Ifx=0,3,6
then A=0,12,0 so the area is greatest when x= 3 in and (from
y=84x/3) y= 4 in.
8
y
x
6
10
7. Let x,y, and zbe as shown in the figure and Athe area of the
rectangle, then A=xy and, by similar triangles, z/10 = y/6,
z=5y/3; also x/10=(8z)/8=(85y/3)/8thus
y=24/512x/25 so A=x(24/512x/25)=24x/512x2/25 for
xin [0,10]. dA/dx =24/524x/25, dA/dx = 0 when x=5. If
x=0,5,10 then A=0,12,0 so the area is greatest when x= 5 in.
and y=12/5 in.
8
z
x
y
6
10
8. A=(2x)y=2xy where y=16x
2so A=32x2x
3for 0 x4;
dA/dx =326x
2
,dA/dx = 0 when x=4/
3. If x=0,4/
3,4
then A=0,256/(33),0 so the area is largest when x=4/
3 and
y=32/3. The dimensions of the rectangle with largest area are
8/3by32/3.
-4 4
16
x
y
y
x
9. A=xy where x2+y2=20
2= 400 so y=400 x2and
A=x400 x2for 0 x20; dA/dx = 2(200 x2)/400 x2,
dA/dx = 0 when x=200=10
2. If x=0,102,20 then
A=0,200,0 so the area is maximum when x=10
2 and
y=400 200=10
2. x
y
10
10. Let xand ybe the dimensions shown in the figure, then the area of
the rectangle is A=xy.
But ³x
2´2+y2=R2,thusy=pR
2x
2
/4= 1
2
p4R
2x
2so
A=1
2xp4R2x2for 0 x2R.dA/dx =(2R
2x
2
)/
4R
2x
2
,
dA/dx = 0 when x=2R.Ifx=0,
2R, 2Rthen A=0,R
2,0so
the greatest area occurs when x=2Rand y=2R/2.
x
y
R
x
2
Exercise Set 6.2 184
11. Let x= length of each side that uses the $1 per foot fencing,
y= length of each side that uses the $2 per foot fencing.
The cost is C= (1)(2x) + (2)(2y)=2x+4y, but A=xy = 3200 thus y= 3200/x so
C=2x+ 12800/x for x>0,
dC/dx =212800/x2, dC/dx = 0 when x=80,d
2
C/dx2>0so
Cis least when x= 80, y= 40.
12. A=xy where 2x+2y=pso y=p/2xand A=px/2x2for x
in [0,p/2]; dA/dx =p/22x,dA/dx = 0 when x=p/4. If x=0or
p/2 then A=0,ifx=p/4 then A=p2/16 so the area is maximum
when x=p/4 and y=p/2p/4=p/4, which is a square. x
y
13. Let xand ybe the dimensions of a rectangle; the perimeter is p=2x+2y. But A=xy thus
y=A/x so p=2x+2A/x for x>0, dp/dx =22A/x2=2(x
2A)/x2,dp/dx = 0 when x=A,
d2p/dx2=4A/x3>0ifx>0sopis a minimum when x=Aand y=Aand thus the rectangle
is a square.
14. With x,y,r, and sas shown in the figure, the sum of the enclosed
areas is A=πr2+s2where r=x
2πand s=y
4because xis the
circumference of the circle and yis the perimeter of the square, thus
A=x2
4π+y2
16. But x+y= 12, so y=12xand
A=x2
4π+(12 x)2
16 =π+4
16πx23
2x+ 9 for 0 x12.
dA
dx =π+4
8πx3
2,dA
dx = 0 when x=12π
π+4.Ifx=0,12π
π+4,12
then A=9,36
π+4,36
πso the sum of the enclosed areas is
x y
12
rs
cut
(a) a maximum when x= 12 in. (when all of the wire is used for the circle)
(b) a minimum when x=12π/(π+ 4) in.
15. (a) dN
dt = 250(20 t)et/20 =0att= 20, N(0) = 125000, N(20) 161788, and N(100) 128,369;
the absolute maximum is N= 161788 at t= 20, the absolute minimum is N= 125000 at t=0.
(b) The absolute minimum of dN
dt occurs when d2N
dt2=12.5(t40)et/20 =0,t= 40.
16. The area of the window is A=2rh +πr2/2, the perimeter is
p=2r+2h+πr thus h=1
2[p(2+π)r]so
A=r[p(2+π)r]+πr2/2
=pr (2+π/2)r2for 0 rp/(2+π),
dA/dr =p(4+π)r,dA/dr = 0 when r=p/(4+π) and
d2A/dr2<0, so Ais maximum when r=p/(4+π). 2r
r
h
17. V=x(12 2x)2for 0 x6; dV/dx = 12(x2)(x6),
dV/dx = 0 when x= 2 for 0 <x<6. If x=0,2,6 then
V=0,128,0 so the volume is largest when x= 2 in.
x
xx
x
x
x
x
x
12
12
12 2x
12 2x
185 Chapter 6
18. The dimensions of the box will be (k2x)by(k2x)byxso V=(k2x)
2
x=4x
34kx2+k2xfor
xin [0,k/2]. dV/dx =12x
28kx +k2=(6xk)(2xk), dV /dx = 0 for xin (0,k/2) when x=k/6.
If x=0,k/6,k/2 then V=0,2k
3
/27,0soVis maximum when x=k/6. The squares should have
dimensions k/6byk/6.
19. Let xbe the length of each side of a square, then V=x(3 2x)(8 2x)=4x
322x2+24xfor
0x3/2; dV/dx =12x
244x+ 24 = 4(3x2)(x3), dV/dx = 0 when x=2/3 for 0 <x<3/2.
If x=0,2/3,3/2 then V=0,200/27,0 so the maximum volume is 200/27 ft3.
20. Let x= length of each edge of base, y= height. The cost is
C= (cost of top and bottom) + (cost of sides) = (2)(2x2) + (3)(4xy)=4x
2+12xy, but
V=x2y= 2250 thus y= 2250/x2so C=4x
2+ 27000/x for x>0, dC/dx =8x27000/x2,
dC/dx = 0 when x=3
3375 = 15, d2C/dx2>0soCis least when x= 15, y= 10.
21. Let x= length of each edge of base, y= height, k=$/cm2for the sides. The cost is
C=(2k)(2x2)+(k)(4xy)=4k(x
2+xy), but V=x2y= 2000 thus y= 2000/x2so
C=4k(x
2+ 2000/x) for x>0dC/dx =4k(2x2000/x2), dC/dx = 0 when
x=3
1000 = 10, d2C/dx2>0soCis least when x= 10, y= 20.
22. Let xand ybe the dimensions shown in the figure and Vthe
volume, then V=x2y. The amount of material is to be 1000 ft2,
thus (area of base) + (area of sides) = 1000, x2+4xy = 1000,
y=1000 x2
4xso V=x21000 x2
4x=1
4(1000xx3) for
0<x1010.
dV
dx =1
4(1000 3x2), dV
dx = 0 when x=p1000/3=10
p10/3.
If x=0,10p10/3,1010 then V=0,5000
3p10/3,0;
the volume is greatest for x=10
p10/3ftandy=5
p10/3 ft.
xx
y
23. Let x= height and width, y= length. The surface area is S=2x
2+3xy where x2y=V,soy=V/x2
and S=2x
2+3V/x for x>0; dS/dx =4x3V/x2,dS/dx = 0 when x=3
p3V/4, d2S/dx2>0soS
is minimum when x=3
r3V
4,y=4
3
3
r3V
4.
24. Let rand hbe the dimensions shown in the figure, then the volume
of the inscribed cylinder is V=πr2h. But
r2+µh
22
=R2thus r2=R2h2
4
so V=πµR2h2
4h=πµR2hh3
4
for 0 h2R.dV
dh =πµR23
4h2,dV
dh =0
h
2
h
r
R
when h=2R/3. If h=0,2R/3,2Rthen V=0,4π
3
3
R
3
,0 so the volume is largest when
h=2R/3 and r=p2/3R.
Exercise Set 6.2 186
25. Let rand hbe the dimensions shown in the figure, then the surface
area is S=2πrh +2πr2.
But r2+µh
22
=R2thus h=2
R
2r
2so
S=4πrR2r2+2πr2for 0 rR,
dS
dr =4π(R22r2)
R2r2+4πr;dS
dr = 0 when
R22r2
R2r2=r(i)
R22r2=rR2r2
R44R2r2+4r
4=r
2
(R
2r
2
)
5r
45R
2
r
2+R
4=0
h
2
h
r
R
and using the quadratic formula r2=5R2±25R420R4
10 =5±5
10 R2,r=s5±5
10 R, of which
only r=s5+
5
10 Rsatisfies (i). If r=0,s5+
5
10 R, 0 then S=0,(5 + 5)πR2,2πR2so the surface
area is greatest when r=s5+
5
10 Rand, from h=2
pR
2r
2
,h=2
s5
5
10 R.
26. Let Rand Hbe the radius and height of the cone, and rand hthe
radius and height of the cylinder (see figure), then the volume of the
cylinder is V=πr2h. By similar triangles (see figure) Hh
H=r
R
thus
h=H
R(Rr)soV=π
H
R
(Rr)r
2=π
H
R
(Rr2r3) for 0 rR.
dV
dr =πH
R(2Rr 3r2)=πH
Rr(2R3r), dV
dr = 0 for 0 <r<R
when r=2R/3. If r=0,2R/3,R then V=0,4πR2H/27,0sothe
maximum volume is 4πR2H
27 =4
9
1
3πR2H=4
9·(volume of cone).
R
r
H
h
27. From (13), S=2πr2+2πrh. But V=πr2hthus h=V/(πr2) and so S=2πr2+2V/r for r>0.
dS/dr =4πr 2V/r2, dS/dr =0ifr=3
pV/(2π). Since d2S/dr2=4π+4V/r3>0, the minimum
surface area is achieved when r=3
pV/2πand so h=V/(πr2)=[V/(πr3)]r=2r.
28. V=πr2hwhere S=2πr2+2πrh so h=S2πr2
2πr ,V=1
2(Sr 2πr3) for r>0.
dV
dr =1
2(S6πr2)=0ifr=pS/(6π), d2V
dr2=6πr < 0soVis maximum when
r=pS/(6π) and h=S2πr2
2πr =S2πr2
2πr2r=SS/3
S/3r=2r, thus the height is equal to the
diameter of the base.
29. The surface area is S=πr2+2πrh where V=πr2h= 500 so
h= 500/(πr2) and S=πr2+ 1000/r for r>0;
dS/dr =2πr 1000/r2=(2πr31000)/r2,dS/dr = 0 when
r=3
p500,d2S/dr2>0 for r>0soSis minimum when
r=3
p500and h=500
πr2=500
πr3r=500
π(500)
3
p500
=3
p500.
r
h
187 Chapter 6
30. The total area of material used is
A=Atop +Abottom +Aside =(2r)
2+(2r)
2+2πrh =8r
2+2πrh.
The volume is V=πr2hthus h=V/(πr2)soA=8r
2+2V/r for r>0,
dA/dr =16r2V/r2= 2(8r3V)/r2,dA/dr = 0 when r=3
V/2. This is the only critical point,
d2A/dr2>0 there so the least material is used when r=3
V/2, r
h=r
V/(πr2)=π
Vr3and, for
r=3
V/2, r
h=π
V
V
8=π
8.
31. Let xbe the length of each side of the squares and ythe height of the frame, then the volume is V=x2y.
The total length of the wire is Lthus 8x+4y=L,y=(L8x)/4soV=x
2
(L8x)/4=(Lx28x3)/4
for 0 xL/8. dV /dx =(2Lx 24x2)/4, dV/dx = 0 for 0 <x<L/8 when x=L/12. If
x=0,L/12,L/8 then V=0,L
3/1728,0 so the volume is greatest when x=L/12 and y=L/12.
32. (a) Let x= diameter of the sphere, y= length of an edge of the cube. The combined volume is
V=1
6πx3+y3and the surface area is S=πx2+6y
2= constant. Thus y=(Sπx2)1/2
61/2and
V=π
6x3+(Sπx2)3/2
63/2for 0 xrS
π;
dV
dx =π
2x23π
63/2x(Sπx2)1/2=π
26x(6xpSπx2). dV
dx = 0 when x= 0, or when
6x=Sπx2,6x
2=Sπx2,x2=S
6+π,x=rS
6+π.Ifx=0,rS
6+π,rS
π, then
V=S3/2
63/2,S3/2
66+π,S
3/2
6
πso that Vis smallest when x=rS
6+π, and hence when y=rS
6+π,
thus x=y.
(b) From part (a), the sum of the volumes is greatest when there is no cube.
33. Let hand rbe the dimensions shown in the figure, then the volume
is V=1
3πr2h. But r2+h2=L2thus r2=L2h2so
V=1
3π(L2h2)h=1
3π(L2hh3) for 0 hL.
dV
dh =1
3π(L23h2). dV
dh = 0 when h=L/3. If h=0,L/
3,0
then V=0,2π
9
3
L
3
,0 so the volume is as large as possible when
h=L/3 and r=p2/3L.
hL
r
34. Let rand hbe the radius and height of the cone (see figure). The
slant height of any such cone will be R, the radius of the circular
sheet. Refer to the solution of Exercise 33 to find that the largest
volume is 2π
93R3.hR
r
Exercise Set 6.2 188
35. The area of the paper is A=πrL =πrr2+h2, but
V=1
3πr2h=10thush=30/(πr2)soA=πrpr2+ 900/(π2r4).
To simplify the computations let S=A2,
S=π2r2µr2+900
π2r4=π2r4+900
r2for r>0,
dS
dr =4π
2
r
31800
r3=4(π2r6450)
r3,dS/dr = 0 when
r=6
p4502,d2S/dr2>0, so Sand hence Ais least when
r=6
p4502,h=30
π
3
pπ2/450.
hL
r
36. The area of the triangle is A=1
2hb. By similar triangles (see figure)
b/2
h=R
h22Rh,b=2Rh
h22Rh so A=Rh2
h22Rh for h>2R,
dA
dh =Rh2(h3R)
(h22Rh)3/2,dA
dh = 0 for h>2Rwhen h=3R, by the first
derivative test Ais minimum when h=3R.Ifh=3Rthen
b=2
3R(the triangle is equilateral).
R
h R
R
h
bb/2
h2 2Rh
37. The volume of the cone is V=1
3πr2h. By similar triangles (see
figure) r
h=R
h22Rh,r=Rh
h22Rh so
V=1
3πR2h3
h22Rh =1
3πR2h2
h2Rfor h>2R,
dV
dh =1
3πR2h(h4R)
(h2R)2,dV
dh = 0 for h>2Rwhen h=4R,bythe
first derivative test Vis minimum when h=4R.Ifh=4Rthen
r=2R.
r
R
h R
R
h
h2 2Rh
38. The area is (see figure)
A=1
2(2 sin θ)(4 + 4 cos θ)
= 4(sin θ+ sin θcos θ)
for 0 θπ/2;
dA/dθ = 4(cos θsin2θ+ cos2θ)
= 4(cos θ[1 cos2θ] + cos2θ)
= 4(2 cos2θ+ cos θ1)
= 4(2 cos θ1)(cos θ+1)
dA/dθ = 0 when θ=π/3 for 0 /2. If θ=0/3/2 then
A=0,3
3,4 so the maximum area is 33.
42 cos
θ
θ
4 cos
θ
2 sin
θ
2
39. Let band hbe the dimensions shown in the figure, then the
cross-sectional area is A=1
2h(5+b). But h= 5 sin θand
b= 5 + 2(5 cos θ)=5+10cosθso A=5
2sin θ(10 + 10 cos θ)
= 25 sin θ(1 + cos θ) for 0 θπ/2.
dA/dθ =25 sin2θ+ 25 cos θ(1 + cos θ)
= 25(sin2θ+ cos θ+ cos2θ)
= 25(1 + cos2θ+ cos θ+ cos2θ)
= 25(2 cos2θ+ cos θ1) = 25(2 cos θ1)(cos θ+1).
dA/dθ = 0 for 0 /2 when cos θ=1/2, θ=π/3. If
θ=0/3/2 then A=0,753/4,25 so the cross-sectional area is
greatest when θ=π/3.
b
5 cos
θ
θ
5
5
5
h = 5 sin
θ
189 Chapter 6
40. I=kcos φ
`2,kthe constant of proportionality. If his the height of the lamp above the table then
cos φ=h/` and `=h2+r2so I=kh
`3=kh
(h2+r2)3/2for h>0, dI
dh =kr22h2
(h2+r2)5/2,dI
dh =0
when h=r/2, by the first derivative test Iis maximum when h=r/2.
41. Let L,L1, and L2be as shown in the figure, then
L=L1+L2= 8 csc θ+ sec θ,
dL
=8 csc θcot θ+ sec θtan θ, 0/2
=8 cos θ
sin2θ+sin θ
cos2θ=8 cos3θ+ sin3θ
sin2θcos2θ;
dL
= 0 if sin3θ= 8 cos3θ, tan3θ= 8, tan θ= 2 which gives the
absolute minimum for Lbecause lim
θ0+L= lim
θπ/2L=+.If
tan θ= 2, then csc θ=5/2 and sec θ=5so
L=8(
5/2)+5=5
5 ft.
1
8
θ
L2
L1
L
42. Let x= number of steers per acre
w= average market weight per steer
T= total market weight per acre
then T=xw where w= 2000 50(x20) = 3000 50x
so T=x(3000 50x) = 3000x50x2for 0 x60,
dT/dx = 3000 100xand dT/dx = 0 when x= 30. If x=0,30,60 then T=0,45000,0 so the total
market weight per acre is largest when 30 steers per acre are allowed.
43. (a) The daily profit is
P= (revenue) (production cost) = 100x(100,000+50x+0.0025x2)
=100,000+50x0.0025x2
for 0 x7000, so dP/dx =500.005xand dP/dx = 0 when x=10,000. Because 10,000
is not in the interval [0,7000], the maximum profit must occur at an endpoint. When x=0,
P=100,000; when x= 7000, P= 127,500 so 7000 units should be manufactured and sold
daily.
(b) Yes, because dP/dx > 0 when x= 7000 so profit is increasing at this production level.
44. (a) R(x)=px but p= 1000 xso R(x) = (1000 x)x
(b) P(x)=R(x)C(x) = (1000 x)x(3000 + 20x)=3000 + 980xx2
(c) P0(x) = 980 2x,P0(x) = 0 for 0 <x<500 when x= 490; test the points 0,490,500 to find
that the profit is a maximum when x= 490.
(d) P(490) = 237,100
(e) p= 1000 x= 1000 490 = 510.
45. The profit is
P= (profit on nondefective) (loss on defective) = 100(xy)20y= 100x120y
but y=0.01x+0.00003x2so P= 100x120(0.01x+0.00003x2)=98.8x0.0036x2for x>0,
dP/dx =98.80.0072x,dP/dx = 0 when x=98.8/0.0072 13,722, d2P/dx2<0 so the profit is
maximum at a production level of about 13,722 pounds.
Exercise Set 6.2 190
46. The total cost Cis
C=c·(hours to travel 3000 mi at a speed of vmi/h)
=c·3000
v=(a+bvn)3000
v= 3000(av1+bvn1) for v>0,
dC/dv = 3000[av2+b(n1)vn2] = 3000[a+b(n1)vn]/v2,
dC/dv = 0 when v=·a
b(n1)¸1/n
. This is the only critical point and dC/dv changes sign from to
+ at this point so the total cost is least when v=·a
b(n1)¸1/n
mi/h.
47. The distance between the particles is D=p(1 tt)2+(t2t)
2=
5t
24t+ 1 for t0. For
convenience, we minimize D2instead, so D2=5t
24t+1, dD2/dt =10t4, which is 0 when t=2/5.
d2D2/dt2>0soD
2and hence Dis minimum when t=2/5. The minimum distance is D=1/
5.
48. The distance between the particles is D=p(2tt)2+(2t
2
)
2=
t
43t
2+ 4 for t0. For
convenience we minimize D2instead so D2=t43t2+4,dD2/dt =4t
36t=4t(t
23/2), which is
0 for t>0 when t=p3/2. d2D2/dt2=12t
26>0 when t=p3/2soD
2and hence Dis minimum
there. The minimum distance is D=7/2.
49. Let P(x, y) be a point on the curve x2+y2= 1. The distance between P(x, y) and P0(2,0) is
D=p(x2)2+y2, but y2=1x
2so D=p(x2)2+1x
2=
54xfor 1x1,
dD
dx =2
54xwhich has no critical points for 1<x<1. If x=1,1 then D=3,1sothe
closest point occurs when x= 1 and y=0.
50. Let P(x, y)beapointony=
x, then the distance Dbetween Pand (2,0) is
D=p(x2)2+y2=p(x2)2+x=x23x+ 4, for 0 x3. For convenience we find the
extrema for D2instead, so D2=x23x+4, dD2/dx =2x3 = 0 when x=3/2. If x=0,3/2,3
then D2=4,7/4,4soD=2,
7/2,2. The points (0,0) and (3,3) are at the greatest distance, and
(3/2,p3/2) the shortest distance from (2,0).
51. Let (x, y) be a point on the curve, then the square of the distance between (x, y) and (0,2) is
S=x2+(y2)2where x2y2=1,x
2=y
2+1so
S=(y
2+1)+(y2)2=2y
24y+ 5 for any y,dS/dy =4y4, dS/dy = 0 when y=1,
d
2
S/dy2>0soSis least when y= 1 and x=±2.
52. The square of the distance between a point (x, y) on the curve and the point (0,9) is
S=x2+(y9)2where x=2y
2so S=4y
4+(y9)2for any y,
dS/dy =16y
3+2(y9) = 2(8y3+y9), dS/dy = 0 when y= 1 (which is the only real solution),
d2S/dy2>0soSis least when y=1,x=2.
53. If P(x0,y
0) is on the curve y=1/x2, then y0=1/x2
0.AtPthe slope of the tangent line is 2/x3
0so its
equation is y1
x2
0
=2
x3
0
(xx0), or y=2
x3
0
x+3
x2
0
. The tangent line crosses the y-axis at 3
x2
0
, and
the x-axis at 3
2x0. The length of the segment then is L=s9
x4
0
+9
4x2
0for x0>0. For convenience,
we minimize L2instead, so L2=9
x4
0
+9
4x2
0,dL2
dx0
=36
x5
0
+9
2x0=9(x6
08)
2x5
0
, which is 0 when x6
0=8,
x
0=
2. d2L2
dx2
0
>0soL
2and hence Lis minimum when x0=2, y0=1/2.
191 Chapter 6
54. If P(x0,y
0) is on the curve y=1x
2
, then y0=1x
2
0
.AtPthe slope of the tangent line is 2x0so
its equation is y(1 x2
0)=2x
0
(xx
0
), or y=2x0x+x2
0+ 1. The y-intercept is x2
0+ 1 and the
x-intercept is 1
2(x0+1/x0) so the area Aof the triangle is A=1
4(x2
0+1)(x0+1/x0)=1
4
(x
3
0
+2x0+1/x0)
for 0 x01.
dA/dx0=1
4(3x2
0+21/x2
0)=1
4
(3x4
0+2x
2
01)/x2
0which is 0 when x2
0=1 (reject), or
when x2
0=1/3sox
0=1/
3. d2A/dx2
0=1
4(6x0+2/x3
0)>0atx
0=1/
3 so a relative minimum and
hence the absolute minimum occurs there.
55. At each point (x, y) on the curve the slope of the tangent line is m=dy
dx =2x
(1+x2)2for any x,
dm
dx =2(3x21)
(1+x2)3,dm
dx = 0 when x=±1/3, by the first derivative test the only relative maximum
occurs at x=1/3, which is the absolute maximum because lim
x→±∞ m= 0. The tangent line has
greatest slope at the point (1/3,3/4).
56. Let xbe how far Pis upstream from where the man starts
(see figure), then the total time to reach Tis
t= (time from Mto P) + (time from Pto T)
=x2+1
r
R
+1x
r
W
for 0 x1,
where rRand rWare the rates at which he can row and walk,
respectively. M
TP
1
1
x
(a) t=x2+1
3+1x
5,dt
dx =x
3x2+11
5so dt
dx = 0 when 5x=3
px
2+1,
25x2=9(x
2+1),x
2=9/16, x=3/4. If x=0,3/4,1 then t=8/15,7/15,2/3 so the time is a
minimum when x=3/4 mile.
(b) t=x2+1
4+1x
5,dt
dx =x
4x2+11
5so dt
dx = 0 when x=4/3 which is not in the interval
[0,1]. Check the endpoints to find that the time is a minimum when x= 1 (he should row
directly to the town).
57. With xand yas shown in the figure, the maximum length of pipe
will be the smallest value of L=x+y. By similar triangles
y
8=x
x216,y=8x
x216 so
L=x+8x
x216 for x>4, dL
dx =1128
(x216)3/2,dL
dx = 0 when
(x216)3/2= 128
x216 = 1282/3= 16(22/3)
x2= 16(1 + 22/3)
x=4(1+2
2/3
)
1/2
,
8
4
x
y
x
2
16
d2L/dx2= 384x/(x216)5/2>0ifx>4soLis smallest when x=4(1+2
2/3
)
1/2
.
For this value of x,L=4(1+2
2/3
)
3/2ft.
Exercise Set 6.2 192
58. s=(x
1¯x)
2+(x
2¯x)
2+···+(x
n¯x)
2
,
ds/d¯x=2(x1¯x)2(x2¯x)···2(xn¯x),
ds/d¯x= 0 when
(x1¯x)+(x
2¯x)+···+(x
n¯x)=0
(x
1+x
2+···x
n)xx+···x)=0
(x
1+x
2+···+x
n)n¯x=0
¯x=1
n
(x
1+x
2+···+x
n),
d
2s/d¯x2=2+2+···+2=2n>0, so sis minimum when ¯x=1
n(x1+x2+···+x
n).
59. Let x= distance from the weaker light source, I= the intensity at that point, and kthe constant of
proportionality. Then
I=kS
x2+8kS
(90 x)2if 0 <x<90;
dI
dx =2kS
x3+16kS
(90 x)3=2kS[8x3(90 x)3]
x3(90 x)3=18
kS(x30)(x2+ 2700)
x3(x90)3,
which is 0 when x= 30; dI
dx <0ifx<30, and dI
dx >0ifx>30, so the intensity is minimum at a
distance of 30 cm from the weaker source.
60. If f(x0) is a maximum then f(x)f(x0) for all xin some open interval containing x0thus
pf(x)pf(x0) because xis an increasing function, so pf(x0) is a maximum of pf(x)at
x
0
. The proof is similar for a minimum value, simply replace by .
61. Let v= speed of light in the medium. The total time required for the light to travel from Ato Pto
Bis
t= (total distance from Ato Pto B)/v =1
v(p(cx)2+a2+px2+b2),
dt
dx =1
v"cx
p(cx)2+a2+x
x2+b2#
and dt
dx = 0 when x
x2+b2=cx
p(cx)2+a2. But x/x2+b2= sin θ2and
(cx)/p(cx)2+a2= sin θ1thus dt/dx = 0 when sin θ2= sin θ1so θ2=θ1.
62. The total time required for the light to travel from Ato Pto Bis
t= (time from Ato P) + (time from Pto B)=
x
2+a
2
v
1
+p(cx)
2+b
2
v
2
,
dt
dx =x
v1x2+a2cx
v2p(cx)2+b2but x/x2+a2= sin θ1and
(cx)/p(cx)2+b2= sin θ2thus dt
dx =sin θ1
v1sin θ2
v2
so dt
dx = 0 when sin θ1
v1
=sin θ2
v2
.
63. (a) The rate at which the farmer walks is analogous to the speed of light in Fermat’s principle.
(b) the best path occurs when θ1=θ2
(see figure).
x1x
3
4
1
4
θ
2
θ
1
House
Barn
(c) by similar triangles,
x/(1/4) = (1 x)/(3/4)
3x=1x
4x=1
x=1/4mi.
193 Chapter 6
EXERCISE SET 6.3
1. (a) positive, negative, slowing down (b) positive, positive, speeding up
(c) negative, positive, slowing down
2. (a) positive, slowing down (b) negative, slowing down
(c) positive, speeding up
3. (a) left because v=ds/dt < 0att
0
(b) negative because a=d2s/dt2and the curve is concave down at t0(d2s/dt2<0)
(c) speeding up because vand ahave the same sign
(d) v<0 and a>0att
1so the particle is slowing down because vand ahave opposite signs.
4. (a) C(b) A(c) B
5.
t(s)
s(m)
6. (a) when s0, so 0 <t<2 and 4 <t8(b) when the slope is zero, at t=3
(c) when sis decreasing, so 0 t<3
7.
6
25
t
s
6t
a
–15
–15
8. (a) v(30 10)/(15 10)=20/5=4m/s
(b)
t
v
t
a
2525
(1) (2)
9. (a) At 60 mi/h the slope of the estimated tangent line is about 4.6 mi/h/s. Use 1 mi = 5,280 ft
and 1 h = 3600 s to get a=dv/dt 4.6(5,280)/(3600) 6.7 ft/s2.
(b) The slope of the tangent to the curve is maximum at t=0s.
Exercise Set 6.3 194
10. (a) t1 2 3 4 5
s0.71 1.00 0.71 0.00 0.71
v0.56 0.00 0.56 0.79 0.56
a0.44 0.62 0.44 0.00 0.44
(b) to the right at t= 1, stopped at t= 2, otherwise to the left
(c) speeding up at t= 3; slowing down at t=1,5; neither at t=2,4
11. (a) v(t)=3t
212t,a(t)=6t12
(b) s(1) = 5 ft, v(1) = 9 ft/s, speed = 9 ft/s, a(1) = 6 ft/s2
(c) v=0att=0,4
(d) for t0, v(t) changes sign at t= 4, and a(t) changes sign at t= 2; so the particle is speeding
up for 0 <t<2 and 4 <tand is slowing down for 2 <t<4
(e) total distance = |s(4) s(0)|+|s(5) s(4)|=|−32 0|+|−25 (32)|=39ft
12. (a) v(t)=4t
34, a(t)=12t
2
(b) s(1) = 1 ft, v(1) = 0 ft/s, speed = 0 ft/s, a(1) = 12 ft/s2
(c) v=0att=1
(d) speeding up for t>1, slowing down for 0 <t<1
(e) total distance = |s(1) s(0)|+|s(5) s(1)|=|−12|+|607 (1)|= 611 ft
13. (a) v(t)=(3π/2) sin(πt/2), a(t)=(3π2/4) cos(πt/2)
(b) s(1) = 0 ft, v(1) = 3π/2 ft/s, speed = 3π/2 ft/s, a(1) = 0 ft/s2
(c) v=0att=0,2,4
(d) vchanges sign at t=0,2,4 and achanges sign at t=1,3,5, so the particle is speeding up for
0<t<1, 2 <t<3 and 4 <t<5, and it is slowing down for 1 <t<2 and 3 <t<4
(e) total distance = |s(2) s(0)|+|s(4) s(2)|+|s(5) s(4)|
=|−33|+|3(3)|+|03|=15ft
14. (a) v(t)= 4t
2
(t
2+4)
2,a(t)= 2t(t
212)
(t2+4)
3
(b) s(1)=1/5 ft, v(1)=3/25 ft/s, speed = 3/25 ft/s, a(1) = 22/125 ft/s2
(c) v=0att=2
(d) achanges sign at t=2
3, so the particle is speeding up for 2 <t<2
3 and it is slowing down
for 0 <t<2 and for 23<t
(e) total distance = |s(2) s(0)|+|s(5) s(2)|=¯¯¯¯
1
40¯¯¯¯
+¯¯¯¯
5
29 1
4¯¯¯¯
=19
58 ft
15. v(t)= 5t
2
(t
2+5)
2,a(t)= 2t(t
215)
(t2+5)
3
0.25
0
020
s(t)
0.2
-0.05
020
v(t)
0.01
-0.15
010
a(t)
195 Chapter 6
(a) v=0att=
5(b) s=5/10 at t=5
(c) achanges sign at t=15, so the particle is speeding up for 5<t<
15 and slowing down
for 0 <t<
5 and 15 <t
16. v(t)=(1t)e
t
,a(t)=(t2)et
0.4
0
010
s(t)
1
-0.2
08
v(t)
0.1
-2
06
a(t)
(a) v=0att=1 (b) s=1/e at t=1
(c) achanges sign at t= 2, so the particle is speeding up for 1 <t<2 and slowing down for
0<t<1 and 2 <t
17. s=3t+2
v=3
a=0
2
Constant speed t = 0 s
18. s=t36t2+9t+1
v=3(t1)(t3)
a=6(t2) 531
t = 1 (Stopped)
t = 0
(Stopped) t = 3t = 2
s
Speeding up
Slowing down
19. s=t39t2+24t
v=3(t2)(t4)
a=6(t3)
2018160
t = 2 (Stopped)
t = 0
(Stopped) t = 4
t = 3
s
Speeding up
Slowing down
Slowing down
20. s=t+9
t+1
v=(t+ 4)(t2)
(t+1)
2
a=18
(t+1)
3
95
(Stopped) t = 2
s
Speeding up
Slowing down
21. s=½cos t, 0t2π
1,t>2π
v=
½
sin t, 0t2π
0, t>2π
a=
½
cos t, 0t<2π
0,t>2π
10-1 s
Speeding up
t = π
t = π/2
t = 3π/2 t = 2π
t = 0
(Stopped
permanently)
Slowing down
22. v(t)=5t
26t+2
tis always positive, a(t)=15t26t2
2t3/2has a positive root at t=3+
39
15
0s
Slowing down Speeding up
3 +
15 39
Exercise Set 6.3 196
23. (a) v=10t22, speed = |v|=|10t22|.d|v|/dt does not exist at t=2.2 which is the only critical
point. If t=1,2.2,3 then |v|=12,0,8. The maximum speed is 12 ft/s.
(b) the distance from the origin is |s|=|5t222t|=|t(5t22)|, but t(5t22) <0 for
1t3so|s|=(5t222t)=22t5t
2
,d|s|/dt =2210t, thus the only critical point is
t=2.2. d2|s|/dt2<0 so the particle is farthest from the origin when t=2.2. Its position is
s= 5(2.2)222(2.2) = 24.2.
24. v=200t
(t2+ 12)2, speed = |v|=200t
(t2+ 12)2for t0. d|v|
dt =600(4 t2)
(t2+ 12)3= 0 when t= 2, which is the
only critical point in (0,+). By the first derivative test there is a relative maximum, and hence an
absolute maximum, at t= 2. The maximum speed is 25/16 ft/s to the left.
25. s(t)=s
01
2gt2=s04.9t2m, v=9.8tm/s, a=9.8 m/s2
(a) |s(1.5) s(0)|=11.025 m
(b) v(1.5) = 14.7 m/s
(c) |v(t)|= 12 when t=12/9.8=1.2245 s
(d) s(t)s0=100 when 4.9t2= 100, t=4.5175 s
26. (a) s(t)=s
01
2gt2= 800 16t2ft, s(t) = 0 when t=r800
16 =5
2
(b) v(t)=32tand v(52) = 1602226.27 ft/s = 154.28 mi/h
27. s(t)=s
0+v
0
t1
2gt2=60t4.9t
2m and v(t)=v
0gt =609.8tm/s
(a) v(t) = 0 when t=60/9.86.12 s
(b) s(60/9.8) 183.67 m
(c) another 6.12 s; solve for tin s(t) = 0 to get this result, or use the symmetry of the parabola
s=60t4.9t
2about the line t=6.12 in the t-splane
(d) also 60 m/s, as seen from the symmetry of the parabola (or compute v(6.12))
28. (a) they are the same
(b) s(t)=v
0
t1
2gt2and v(t)=v
0gt;s(t) = 0 when t=0,2v
0
/g;
v(0) = v0and v(2v0/g)=v
0g(2v0/g)=v
0so the speed is the same
at launch (t= 0) and at return (t=2v
0
/g).
29. Ifg=32ft/s2,s0= 7 and v0is unknown, then s(t)=7+v
0
t16t2and v(t)=v
032t;s=smax when
v=0,ort=v
0
/32; and smax = 208 yields 208 = s(v0/32)=7+v
0
(v
0
/32) 16(v0/32)2=7+v
2
0
/64,
so v0=8
201 113.42 ft/s.
30. (a) Use (6) and then (5) to get v2=v2
02v0gt +g2t2=v2
02g(v0t1
2gt2)=v
2
02g(ss
0
).
(b) Add v0to both sides of (6): 2v0gt =v0+v,v01
2gt =1
2(v0+v);
from (5) s=s0+t(v01
2gt)=s
0+1
2(v
0+v)t
(c) Add vto both sides of (6): 2v+gt =v0+v,v+1
2gt =1
2(v0+v); from part (b), s=s0+1
2(v0+v)t=
s0+vt +1
2gt2
31. v0= 0 and g=9.8, so v2=19.6(ss0); since v= 24 when s= 0 it follows that 19.6s0=24
2or
s0=29.39 m.
32. s= 1000 + vt +1
2(32)t2= 1000 + vt +16t
2;s= 0 when t=5,sov=(1000 + 16 ·52)/5=280 ft/s.
197 Chapter 6
33. (a) s=smax when v=0,so0=v
2
02g(s
max s0), smax =v2
0/2g+s0.
(b) s0=7,s
max = 208, g= 32 and v0is unknown, so from part (a) v2
0=2g(208 7)=64·201,
v0=8
201 113.42 ft/s.
34. s=t36t2+1,v=3t
212t,a=6t12.
(a) a= 0 when t=2;s=15, v=12.
(b) v= 0 when 3t212t=3t(t4)=0,t=0ort=4. Ift= 0, then s= 1 and a=12; if t=4,
then s=31 and a= 12.
35. (a) 1.5
0
05
(b) v=2t
2t2+1, lim
t+v=2
2=2
36. (a) a=dv
dt =dv
ds
ds
dt =vdv
ds because v=ds
dt
(b) v=3
23t+7 =3
2s;dv
ds =3
2s2;a=9
4s3=9/500
37. (a) s1=s2if they collide, so 1
2t2t+3= 1
4t
2+t+1, 3
4t
22t+ 2 = 0 which has no real solution.
(b) Find the minimum value of D=|s1s2|=¯¯3
4t22t+2
¯
¯. From part (a), 3
4t22t+2
is never zero, and for t= 0 it is positive, hence it is always positive, so D=3
4t22t+2.
dD
dt =3
2t2 = 0 when t=4
3.d2D
dt2>0soDis minimum when t=4
3,D=2
3.
(c) v1=t1, v2=1
2t+1. v
1<0if0t<1, v1>0ift>1; v2<0ift>2, v2>0if0t<2.
They are moving in opposite directions during the intervals 0 t<1 and t>2.
38. (a) sAsB=200=20ft
(b) sA=sB,15t
2+10t+20=5t
2+40t,10t
230t+20=0,(t2)(t1)=0,t=1ort=2s.
(c) vA=vB,30t+10=10t+ 40, 20t= 30, t=3/2 s. When t=3/2, sA= 275/4 and sB= 285/4
so car Bis ahead of car A.
39. (a) From the estimated tangent to the graph at the point where v= 2000, dv/ds ≈−1.25 ft/s/ft.
(b) a=v dv/ds (2000)(1.25) = 2500 ft/s2
40. r0(t)=2v(t)v
0(t)/[2pv2(t)] = v(t)a(t)/|v(t)|so r0(t)>0 (speed is increasing) if vand ahave the same
sign, and r0(t)<0 (speed is decreasing) if vand ahave opposite signs.
EXERCISE SET 6.4
1. f(x)=x
22, f0(x)=2x,x
n+1 =xnx2
n2
2xn
x1=1,x
2=1.5, x3=1.416666667,···,x
5=x
6=1.414213562
Exercise Set 6.4 198
2. f(x)=x
27, f0(x)=2x,x
n+1 =xnx2
n7
2xn
x1=3,x
2=2.666666667, x3=2.645833333,···,x
5=x
6=2.645751311
3. f(x)=x
36, f0(x)=3x
2
,x
n+1 =xnx3
n6
3x2
n
x1=2,x
2=1.833333333, x3=1.817263545,···,x
5=x
6=1.817120593
4. xna=0
5. f(x)=x
3x+3,f0(x)=3x
21, xn+1 =xnx3
nxn+3
3x
2
n1
x
1=2, x2=1.727272727, x3=1.673691174,···,x
5=x
6=1.671699882
6. f(x)=x
3+x1, f0(x)=3x
2+1,x
n+1 =xnx3
n+xn1
3x2
n+1
x
1=1,x
2=0.75, x3=0.686046512,···,x
5=x
6=0.682327804
7. f(x)=x
5+x
45, f0(x)=5x
4+4x
3
,x
n+1 =xnx5
n+x4
n5
5x4
n+4x
3
n
x
1=1,x
2=1.333333333, x3=1.239420573,···,x
6=x
7=1.224439550
8. f(x)=x
5x+1,f0(x)=5x
41, xn+1 =xnx5
nxn+1
5x
4
n1
x
1=1, x2=1.25, x3=1.178459394,···,x
6=x
7=1.167303978
9. f(x)=x
4+x3, f0(x)=4x
3+1,x
n+1 =xnx4
n+xn3
4x3
n+1
x
1=2, x2=1.645161290,
x3=1.485723955,···,x
6=x
7=1.452626879
15
-6
-2 2
10. f(x)=x
55x
32, f0(x)=5x
415x2,xn+1 =xnx5
n5x3
n2
5x4
n15x2
n
x1=2,x
2=2.5, x3=2.327384615,···,x
7=x
8=2.273791732
10
-20
-2.5 2.5
11. f(x)=2sinxx,f
0(x)=2cosx1, xn+1 =xn2 sin xnxn
2 cos xn1
x1=2,x
2=1.900995594, x3=1.895511645, x4=x5=1.895494267
1
–7
06
199 Chapter 6
12. f(x) = sin xx2,f0(x) = cos x2x,xn+1 =xnsin xnx2
n
cos xn2xn
x1=1,x
2=0.891395995,
x3=0.876984845,···,x
5=x
6=0.876726215
0.3
–1.3
0 1.5
13. f(x)=xtan x,f0(x)=1sec2x=tan2x,
xn+1 =xn+xntan xn
tan2xn
x1=4.5, x2=4.493613903, x3=4.493409655,
x4=x5=4.493409458
100
–100
6i
14. f(x)=1e
xcos x,f0(x)=e
x
(sin xcos x),
xn+1 =xn+1excos x
ex(sin xcos x)
x1=1,x
2=1.572512605, x3=1.363631415, x7=x8=1.292695719
25
-5
0c
15. At the point of intersection, x3=0.5x1, x30.5x+1=0. Let
f(x)=x
30.5x+ 1. By graphing y=x3and y=0.5x1itis
evident that there is only one point of intersection and it occurs in
the interval [2,1]; note that f(2) <0 and f(1) >0.
f0(x)=3x
20.5so
x
n+1 =xnx3
n0.5x+1
3x
2
n0.5;x
1=1, x2=1.2,
x3=1.166492147,···,
x
5=x
6=1.165373043
2
-2
-2 2
16. The graphs of y=exand y=lnxintersect near x=1.3; let
f(x)=e
xln x,f0(x)=e
x1/x,x1=1.3,
xn+1 =xn+exnln xn
exn+1/xn
,x2=1.309759929, x4=x5=1.309799586
1
-4
02
17. The graphs of y=x2and y=2x+ 1 intersect at points near
x=0.5 and x=1;x
2=
2x+1,x
42x1=0. Let
f(x)=x
42x1, then f0(x)=4x
32so
x
n+1 =xnx4
n2xn1
4x3
n2.
If x1=0.5, then x2=0.475, x3=0.474626695,
x4=x5=0.474626618; if x1= 1, then x2=2,
x
3=1.633333333,···,x
8=x
9=1.395336994.
4
0
-0.5 2
Exercise Set 6.4 200
18. The graphs of y=x3/8+1and y= cos 2xintersect at x= 0 and at
a point near x=2;
x3/8 + 1 = cos 2x,x38 cos 2x+8=0. Letf(x)=x
38 cos 2x+8,
then f0(x)=3x
2+ 16 sin 2xso xn+1 =xnx3
n8 cos 2xn+8
3x
2
n+ 16 sin 2xn
.
x1=2, x2=2.216897577,
x3=2.193821581,···,x
5=x
6=2.193618950.
2
-2
-3 2
19. (a) f(x)=x
2a,f
0(x)=2x,x
n+1 =xnx2
na
2xn
=1
2µxn+a
xn
(b) a= 10; x1=3,x
2=3.166666667, x3=3.162280702, x4=x5=3.162277660
20. (a) f(x)= 1
xa,f
0(x)=1
x
2,x
n+1 =xn(2 axn)
(b) a= 17; x1=0.05, x2=0.0575, x3=0.058793750, x5=x6=0.058823529
21. f0(x)=x
3+2x+ 5; solve f0(x) = 0 to find the critical points. Graph y=x3and y=2x5tosee
that they intersect at a point near x=1; f00(x)=3x
2+2so x
n+1 =xnx3
n+2x
n+5
3x
2
n+2 .
x
1=1, x2=1.4, x3=1.330964467,···,x
5=x
6=1.328268856 so the minimum value of f(x)
occurs at x≈−1.328268856 because f00(x)>0; its value is approximately 4.098859132.
22. From a rough sketch of y=xsin xwe see that the maximum occurs at a point near x= 2, which will
be a point where f0(x)=xcos x+ sin x=0. f
00(x)=2cosxxsin xso
xn+1 =xnxncos xn+ sin xn
2 cos xnxnsin xn
=xnxn+ tan xn
2xntan xn
.
x1=2,x
2=2.029048281, x3=2.028757866, x4=x5=2.028757838; the maximum value is approxi-
mately 1.819705741.
23. Let f(x) be the square of the distance between (1,0) and any point (x, x2) on the parabola, then
f(x)=(x1)2+(x
20)2=x4+x22x+ 1 and f0(x)=4x
3+2x2. Solve f0(x) = 0 to find
the critical points; f00(x)=12x
2+2 so x
n+1 =xn4x3
n+2x
n2
12x2
n+2 =x
n2x
3
n+x
n1
6x
2
n+1 .x
1=1,
x
2=0.714285714, x3=0.605168701,···,x
6=x
7=0.589754512; the coordinates are approximately
(0.589754512,0.347810385).
24. The area is A=xy =xcos xso dA/dx = cos xxsin x. Find xso that dA/dx =0;
d
2
A/dx2=2 sin xxcos xso xn+1 =xn+cos xnxnsin xn
2 sin xn+xncos xn
=xn+1xntan xn
2 tan xn+xn
.
x1=1,x
2=0.864536397, x3=0.860339078, x4=x5=0.860333589; y0.652184624.
25. (a) Let sbe the arc length, and Lthe length of the chord, then s=1.5L. But s=and
L=2rsin(θ/2) so =3rsin(θ/2), θ3 sin(θ/2)=0.
(b) Let f(θ)=θ3 sin(θ/2), then f0(θ)=11.5 cos(θ/2) so θn+1 =θnθn3 sin(θn/2)
11.5 cos(θn/2).
θ1=3,θ
2=2.991592920, θ3=2.991563137, θ4=θ5=2.991563136 rad so θ171.
26. r2(θsin θ)/2=πr2/4soθsin θπ/2=0. Letf(θ)=θsin θπ/2, then f0(θ)=1cos θso
θn+1 =θnsin θnπ/2
1cos θn
.
θ1=2,θ
2=2.339014106, θ3=2.310063197,···
5=θ
6=2.309881460 rad; θ132.
201 Chapter 6
27. If x= 1, then y4+y=1,y
4+y1 = 0. Graph z=y4and z=1yto see that they intersect near
y=1 and y= 1. Let f(y)=y
4+y1, then f0(y)=4y
3+1so y
n+1 =yny4
n+yn1
4y3
n+1 .
If y1=1, then y2=1.333333333, y3=1.235807860,···,y
6=y
7=1.220744085;
if y1= 1, then y2=0.8, y3=0.731233596,···,y
6=y
7=0.724491959.
28. If x= 1, then 2ycos y= 0. Graph z=2yand z= cos yto see that they intersect near y=0.5. Let
f(y)=2ycos y, then f0(y) = 2 + sin yso yn+1 =yn2yncos yn
2 + sin yn
.
y1=0.5, y2=0.450626693, y3=0.450183648, y4=y5=0.450183611.
29. S(25) = 250000 = 5000
i£(1+i)25 1¤; set f(i)=50i(1 + i)25 +1, f
0(i)=5025(1 + i)24; solve
f(i)=0. Seti
0=.06 and ik+1 =ik£50i(1+i)25 +1
¤/£50 25(1 + i)24¤. Then i1=0.05430,
i2=0.05338, i3=0.05336, ···,i=0.053362.
30. (a) x1=2,x
2=5.3333,
x3=11.055, x4=22.293,
x5=44.676
0.5
0
015
(b) x1=0.5, x2=0.3333, x3=0.0833, x4=0.0012, x5=0.0000 (and xn= 0 for n6)
31. (a) x1x2x3x4x5x6x7x8x9x10
0.5000 0.7500 0.2917 1.5685 0.4654 0.8415 0.1734 2.7970 1.2197 0.1999
(b) The sequence xnmust diverge, since if it did converge then f(x)=x
2+ 1 = 0 would have a
solution. It seems the xnare oscillating back and forth in a quasi-cyclical fashion.
EXERCISE SET 6.5
1. f(0) = f(4)=0;f
0(3)=0;[0,4], c=3 2. f(3) = f(3)=0;f
0(0)=0
3. f(2) = f(4)=0,f
0(x)=2x6, 2c6=0,c=3
4. f(0) = f(2)=0,f
0(x)=3x
26x+2,3c
26c+2=0;c=6±
36 24
6=1±
3/3
5. f(π/2) = f(3π/2)=0,f
0(x)=sin x,sin c=0,c=π
6. f(1) = f(1)=0,f
0(x)=x
24x+1
(x2)2,c24c+1
(c2)2=0,c
24c+1=0
c=4±
16 4
2=2±
3, of which only c=2
3isin(1,1)
7. f(0) = f(4)=0,f
0(x)=1
21
2
x
,1
21
2
c=0,c=1
8. f(1) = f(3)=0,f
0(x)=2
x
3+4
3x
2,2
c
3+4
3c
2=0,6+4c=0,c=3/2
Exercise Set 6.5 202
9. f(8) f(0)
80=6
8=3
4=f0(1.54); c=1.54 10. f(4) f(0)
40=1.19 = f0(0.77)
11. f(4) = 12, f(6) = 42, f0(x)=2x+1, 2c+1= 42 12
6(4) =3,c=1
12. f(1) = 6, f(2)=6,f
0(x)=3x
2+1, 3c
2+1= 6(6)
2(1) =4,c
2=1,c=±1 of which only c=1is
in (1,2)
13. f(0)=1,f(3)=2,f
0(x)= 1
2
x+1,1
2
c+1 =21
30=1
3,
c+1=3/2, c+1=9/4, c=5/4
14. f(3)=10/3, f(4)=17/4, f0(x)=11/x2,11/c2=17/410/3
43=11/12, c2= 12, c=±23of
which only c=2
3isin(3,4)
15. f(5)=0,f(3)=4,f
0(x)=x
25 x2,c
25 c2=40
3(5) =1
2,2c=25 c2,
4c2=25c
2
,c
2=5,c=
5
(we reject c=5 because it does not satisfy the equation 2c=25 c2)
16. f(2)=1,f(5)=1/4, f0(x)=1/(x1)2,1
(c1)2=1/41
52=1
4,(c1)2=4,c1=±2,
c=1 (reject), or c=3
17. (a) f(2) = f(1)=0 (b) c=1.29
6
-2
-2 1
(c) x0=1, x1=1.5, x2=1.32, x3=1.290, x4=1.2885843
18. (a) m=f(2) f(1)
21=16 5
3=7soy5=7(x1),
y=7x2
(b) f0(x)=3x
2+ 4 = 7 has solutions x=±1;
discard x=1,soc=1
(c) yf(1)=7(x(1)) or y=7x+2
(d) 5
-20
-2 1
19. (a) f0(x) = sec2x, sec2c= 0 has no solution (b) tan xis not continuous on [0]
20. (a) f(1)=1,f(8)=4,f
0(x)=2
3
x
1/3
2
3
c
1/3=41
8(1) =1
3,c1/3=2,c= 8 which is not in (1,8).
(b) x2/3is not differentiable at x= 0, which is in (1,8).
203 Chapter 6
21. (a) Two x-intercepts of fdetermine two solutions aand bof f(x) = 0; by Rolle’s Theorem there
exists a point cbetween aand bsuch that f0(c) = 0, i.e. cis an x-intercept for f0.
(b) f(x) = sin x=0atx=, and f0(x) = cos x=0atx=+π/2, which lies between and
(n+1)π,(n=0,±1,±2,...)
22. f(x1)f(x0)
x1x0
is the average rate of change of ywith respect to xon the interval [x0,x
1]. By the
Mean-Value Theorem there is a value cin (x0,x
1) such that the instantaneous rate of change f0(c)=
f(x
1
)f(x
0
)
x
1x
0
.
23. Let s(t) be the position function of the automobile for 0 t5, then by the Mean-Value Theorem
there is at least one point cin (0,5) where
s0(c)=v(c)=[s(5) s(0)]/(5 0)=4/5=0.8 mi/min = 48 mi/h.
24. Let T(t) denote the temperature at time with t= 0 denoting 11 AM, then T(0) = 76 and T(12) = 52.
(a) By the Mean-Value Theorem there is a value cbetween 0 and 12 such that
T0(c)=[T(12) T(0)]/(12 0) = (52 76)/(12) = 2F/h.
(b) Assume that T(t1)=88
F where 0 <t
1<12, then there is at least one point cin (t1,12) where
T0(c)=[T(12) T(t1)]/(12 t1) = (52 88)/(12 t1)=36/(12 t1). But 12 t1<12 so
T0(c)<36/12 = 3F/h.
25. Let f(t) and g(t) denote the distances from the first and second runners to the starting point, and let
h(t)=f(t)g(t). Since they start (at t= 0) and finish (at t=t1) at the same time, h(0) = h(t1)=0,
so by Rolle’s Theorem there is a time t2for which h0(t2) = 0, i.e. f0(t2)=g
0
(t
2
); so they have the
same velocity at time t2.
26. f(x)=x
62x
2+xsatisfies f(0) = f(1) = 0, so by Rolle’s Theorem f0(c) = 0 for some cin (0,1).
27. (a) By the Constant Difference Theorem f(x)g(x)=kfor some k; since f(x0)=g(x
0
), k=0,so
f(x)=g(x) for all x.
(b) Set f(x) = sin2x+ cos2x,g(x) = 1; then f0(x)=2sinxcos x2 cos xsin x=0=g
0
(x). Since
f(0)=1=g(0), f(x)=g(x) for all x.
28. (a) By the Constant Difference Theorem f(x)g(x)=kfor some k; since f(x0)g(x0)=c,k=c,
so f(x)g(x)=cfor all x.
(b) Set f(x)=(x1)3,g(x)=(x
2+ 3)(x3). Then
f0(x)=3(x1)2,g0(x)=(x
2+3)+2x(x3)=3x
26x+3=3(x
22x+1)=3(x1)2,
so f0(x)=g
0(x) and hence f(x)g(x)=k. Expand f(x) and g(x)toget
h(x)=f(x)g(x)=(x
33x
2+3x1) (x33x2+3x9)=8.
(c) h(x)=x
33x
2+3x1(x
33x
2+3x9)=8
29. (a) If x, y belong to Iand x<ythen for some cin I,f(y)f(x)
yx=f0(c),
so |f(x)f(y)|=|f0(c)||xy|≤M|xy|;ifx>yexchange xand y;ifx=ythe inequality
also holds.
(b) f(x) = sin x,f0(x) = cos x,|f0(x)|≤1=M,so|f(x)f(y)|≤|xy|or |sin xsin y|≤|xy|.
30. (a) If x, y belong to Iand x<ythen for some cin I,f(y)f(x)
yx=f0(c),
so |f(x)f(y)|=|f0(c)||xy|≥M|xy|;ifx>yexchange xand y;if
x=ythe inequality also holds.
(b) If xand ybelong to (π/2/2) and f(x) = tan x, then |f0(x)|= sec2x1 and
|tan xtan y|≥|xy|
Exercise Set 6.5 204
(c) ylies in (π/2/2) if and only if ydoes; use part (b) and replace ywith y
31. (a) Let f(x)=
x. By the Mean-Value Theorem there is a number cbetween xand ysuch that
yx
yx=1
2c<1
2xfor cin (x, y), thus yx<yx
2
x
(b) multiply through and rearrange to get xy < 1
2(x+y).
32. Suppose that f(x) has at least two distinct real solutions r1and r2in I. Then
f(r1)=f(r
2
) = 0 so by Rolle’s Theorem there is at least one number between r1and r2where
f0(x) = 0, but this contradicts the assumption that f0(x)6=0,sof(x) = 0 must have fewer than two
distinct solutions in I.
33. (a) If f(x)=x
3+4x1 then f0(x)=3x
2+ 4 is never zero, so by Exercise 32 fhas at most one real
root; since fis a cubic polynomial it has at least one real root, so it has exactly one real root.
(b) Let f(x)=ax3+bx2+cx +d.Iff(x) = 0 has at least two distinct real solutions r1and r2, then
f(r1)=f(r
2
) = 0 and by Rolle’s Theorem there is at least one number between r1and r2where
f0(x)=0. Butf
0(x)=3ax2+2bx +c= 0 for
x=(2b±
4b
212ac)/(6a)=(b±
b
23ac)/(3a), which are not real if b23ac < 0
so f(x) = 0 must have fewer than two distinct real solutions.
34. f0(x)= 1
2
x
,1
2
c=
4
3
43=2
3. But 1
4<1
2c<1
23for cin (3,4) so
1
4<23<1
23,0.25 <23<0.29, 1.75 <3<1.71, 1.71 <3<1.75.
35. (a) d
dx[f2(x)+g
2
(x)]=2f(x)f
0(x)+2g(x)g
0(x)=2f(x)g(x)+2g(x)[f(x)]=0,
so f2(x)+g
2
(x) is constant.
(b) f(x) = sin xand g(x) = cos x
36. (a) d
dx[f2(x)g2(x)]=2f(x)f
0(x)2g(x)g
0(x)=2f(x)g(x)2g(x)f(x)=0sof
2
(x)g
2
(x)
is constant.
(b) f0(x)=1
2(e
xe
x
)=g(x) and g0(x)=1
2(e
x+e
x
)=f(x)
37. If f0(x)=g
0(x), then f(x)=g(x)+k. Let x=1,
f(1) = g(1) + k= (1)34(1)+6+k=3+k=2,sok=1. f(x)=x
34x+5.
38. Let h=fg, then his continuous on [a, b], differentiable on (a, b), and h(a)=f(a)g(a)=0,
h(b)=f(b)g(b) = 0. By Rolle’s Theorem there is some cin (a, b) where h0(c)=0. But
h
0(c)=f
0(c)g
0(c)sof
0
(c)g
0
(c)=0,f
0(c)=g
0(c).
39. y
x
c
205 Chapter 6
40. (a) Suppose f0(x) = 0 more than once in (a, b), say at c1and c2. Then f0(c1)=f
0
(c
2
)=0and
by using Rolle’s Theorem on f0, there is some cbetween c1and c2where f00(c) = 0, which
contradicts the fact that f00(x)>0sof
0
(x) = 0 at most once in (a, b).
(b) If f00(x)>0 for all xin (a, b), then fis concave up on (a, b) and has at most one relative
extremum, which would be a relative minimum, on (a, b).
41. similar to the proof of part (a) with f0(c)<0
42. similar to the proof of part (a) with f0(c)=0
CHAPTER 6 SUPPLEMENTARY EXERCISES
3. (a) If fhas an absolute extremum at a point of (a, b) then it must, by Theorem 6.1.4, be at a critical
point of f; since fis differentiable on (a, b) the critical point is a stationary point.
(b) It could occur at a critical point which is not a stationary point: for example, f(x)=|x|on
[1,1] has an absolute minimum at x= 0 but is not differentiable there.
4. No; speeding up means the velocity and acceleration have the same sign, i.e. av > 0; the velocity is
increasing when the acceleration is positive, i.e. a>0. These are not the same thing. An example is
s=tt2at t= 1, where v=1 and a=2, so av > 0 but a<0.
5. Yes; by the Mean Value Theorem there is a point cin (a, b) such that f0(c)=f(b)f(a)
ba=0.
7. (a) f0(x)=1/x26= 0, no critical points; by inspection M=1/2atx=2; m=1atx=1
(b) f0(x)=3x
24x
3=0atx=0,3/4; f(1) = 2,f(0)=0,f(3/4)=27/256,f(3/2) = 27/16,
so m=2atx=1, M=27/256 at x=3/4
(c) f0(x)= x(7x12)
3(x2)2/3, critical points at x=12/7,2; m=f(12/7) = 144
49 µ2
71/3
≈−1.9356 at
x=12/7, M=9atx=3
(d) lim
x0+f(x) = lim
x+f(x)=+and f0(x)= e
x
(x2)
x3, stationary point at x= 2; by Theorem
6.1.5 f(x) has an absolute minimum at x= 2, and m=e2/4.
8. (a) f0(x)=2 3x
2
(x
2+3)
2, critical point at x=3. Since lim
x0+f(x)=0,f(x) has no minimum, and
M=3/3atx=
3.
(b) f0(x)=10x
3
(x2), critical points at x=0,2; lim
x3f(x) = 88, so f(x) has no maximum; m=9
at x=2
(c) critical point at x=2;m=3atx=3,M=0atx=2
(d) f0(x)=(1+lnx)x
x
, critical point at x=1/e; lim
x0+f(x) = lim
x0+exln x= 1, lim
x+f(x)=+;no
absolute maximum, absolute minimum m=e1/e at x=1/e
9. x=2.3561945 10. x=2.11491,0.25410,1.86081
11. (a) yes; f0(0)=0 (b) no, fis not differentiable on (1,1)
(c) yes, f0(pπ/2)=0
12. (a) no, fis not differentiable on (2,2) (b) yes, f(3) f(2)
32=1=f
0(1+2)
Supplementary Exercises 6 206
(c) lim
x1f(x) = 2, lim
x1+f(x)=2sofis continuous on [0,2]; lim
x1f0(x) = lim
x12x=2 and
lim
x1+f0(x) = lim
x1+(2/x2)=2, so fis differentiable on (0,2); and f(2) f(0)
20=1=f
0(
2)
13. Let kbe the amount of light admitted per unit area of clear glass. The total amount of light admitted
by the entire window is
T=k·(area of clear glass) + 1
2k·(area of blue glass) = 2krh +1
4πkr2.
But P=2h+2r+πr which gives 2h=P2rπr so
T=kr(P2rπr)+1
4πkr2=khPr³2+ππ
4´r
2
i
=k·Pr8+3π
4r
2
¸for 0 <r< P
2+π,
dT
dr =kµP8+3π
2r
,dT
dr = 0 when r=2P
8+3π.
This is the only critical point and d2T/dr2<0 there so the most light is admitted when
r=2P/(8+3π) ft.
14. If one corner of the rectangle is at (x, y) with x>0, y>0, then A=4xy,y=3
p
1(x/4)2,
A=12x
p1(x/4)2=3x
16 x2,dA
dx =6 8x
2
16 x2, critical point at x=2
2. Since A= 0 when
x=0,4 and A>0 otherwise, there is an absolute maximum A=24atx=2
2.
15. (a) If a=k, a constant, then v=kt +bwhere bis constant; so
the velocity changes sign at t=b/k.
v
t
b-b/k
(b) Consider the equation s=5t
3
/6, v=t2/2, a=t. Then
for t>0, ais decreasing and av > 0, so the particle is
speeding up.
v
t
16. s(t)=t/(t2+ 5), v(t)=(5t
2
)/(t
2+5)
2
,a(t)=2t(t
215)/(t2+5)
3
(a) 0.25
0
020
s(t)
0.2
-0.05
020
v(t)
0.01
-0.15
010
a(t)
(b) vchanges sign at t=5(c) s=5/10, v=0,a=
5/50
207 Chapter 6
(d) achanges sign at t=15, so the particle is speeding up for 5<t<
15, and it is slowing
down for 0 <t<
5 and 15 <t
(e) v(0)=1/5, lim
t+v(t)=0,v(t) has one t-intercept at t=5 and v(t) has one critical point at
t=15. Consequently the maximum velocity occurs when t= 0 and the minimum velocity
occurs when t=15.
17. (a) s(t)=s
0+v
0
t1
2
gt2=v0t4.9t2,v(t)=v
09.8t;s
max occurs when v= 0, i.e. t=v0/9.8,
and then 0.76 = smax =v0(v0/9.8) 4.9(v0/9.8)2=v2
0/19.6, so v0=0.76 ·19.6=3.86 m/s and
s(t)=3.86t4.9t2. Then s(t) = 0 when t=0,0.7878, s(t)=0.15 when t=0.0410,0.7468, and
s(t)=0.760.15=0.61 when t=0.2188,0.5689, so the player spends 0.56890.2188 = 0.3501 s
in the top 15.0 cm of the jump and 0.0410 + (0.7878 0.7468) = 0.0820 s in the bottom
15.0 cm.
(b) The height vs time plot is a parabola that opens down, and the slope is smallest near the top
of the parabola, so a given change ∆hin height corresponds to a large time change ∆tnear the
top of the parabola and a narrower time change at points farther away from the top.
18. (a) s(t)=s
0+v
04.9t
2
; assume s0=v0=0,sos(t)=4.9t
2
,v(t)=9.8t
t0 1 2 3 4
s04.919.644.178.4
v09.819.629.439.2
(b) The formula for vis linear (with no constant term).
(c) The formula for sis quadratic (with no linear or constant term).
19. (a) 2.1
-0.5
-10 10
(b) minimum: (2.111985,0.355116)
maximum: (0.372591,2.012931)
20. (a) y
x
-2
-1.5
-1
-0.5
0.2 0.6 1
(b) The distance between the boat and the origin is px2+y2, where y=(x
10/31)/(2x2/3). The
minimum distance is 0.8247 mi when x=0.6598 mi. The boat gets swept downstream.
(c) Use the equation of the path to obtain dy/dt =(dy/dx)(dx/dt), dx/dt =(dy/dt)/(dy/dx). Let
dy/dt =4 and find the value of dy/dx for the value of xobtained in part (b) to get
dx/dt =3 mi/h.
21. (a) v=2t(t4+2t
21)
(t4+1)
2,a=2
3t
8+10t
612t46t2+1
(t
4+1)
3
Supplementary Exercises 6 208
(b) s
t
0.2
0.4
0.6
0.8
1
1.2
123456
v
t
-1
-0.8
-0.6
-0.4
-0.2
0.2
0.4
123456
a
t
-3
-2
-1
1
2
123456
(c) It is farthest from the origin at approximately t=0.64 (when v= 0) and s=1.2
(d) Find tso that the velocity v=ds/dt > 0. The particle is moving in the positive direction for
0t0.64 s.
(e) It is speeding up when a, v > 0ora, v < 0, so for 0 t<0.36 and 0.64 <t<1.1, otherwise it
is slowing down.
(f) Find the maximum value of |v|to obtain: maximum speed = 1.05 m/s when t=1.10 s.
22. Find tso that N0(t) is maximum. The size of the population is increasing most rapidly when t=8.4
years.
23. Solve φ0.0167 sin φ=2π(90)/365 to get φ=1.565978 so
r= 150 ×106(1 0.0167 cos φ) = 149.988 ×106km.
24. Solve φ0.0934 sin φ=2π(1)/1.88 to get φ=3.325078 so
r= 228 ×106(1 0.0934 cos φ) = 248.938 ×106km.
CHAPTER 7
Integration
EXERCISE SET 7.1
1. A= 1(1)/2=1/2; ∆x=(ba)/n =1/n,x
k=k/n,f(x
k)=k/n,An=·1
n+2
n+···+n
n¸1
n
n12345678910
An1.0000 0.7500 0.6666 0.6250 0.6000 0.5833 0.5714 0.5625 0.5556 0.5500
2. A= 4(2)/2=4;x=(ba)/n =2/n,x
k=2k/n,f(x
k)=42(2k/n)=44k/n = 4(1 k/n),
An=4·µ11
n+µ12
n+···+³1n
n´¸2
n
n1 2 3 4 5 6 7 8 9 10
An0.0000 2.0000 2.6667 3.0000 3.2000 3.3333 3.4286 3.50000 3.5556 3.6000
3. A= 2(2 + 14)/2 = 16; ∆x=(ba)/n =2/n,x
k=2k/n,f(x
k)=2+12k/n = 2(1+6k/n),
An=2·µ1+ 6
n+µ1+ 12
n+···+µ1+6n
n¶¸2
n
n12345678910
An28.0000 22.0000 20.0000 19.0000 18.4000 18.0000 17.7143 17.5000 17.3333 17.2000
4. A=π(1)2/4=π/4; ∆x=(ba)/n =1/n,x
k=k/n,f(x
k)=p1(k/n)2,
An=hp1+(1/n)2+p1+(2/n)2+···+p1+(n/n)2i1
n
n1 2 3 4 5 6 7 8 9 10
An0.0000 0.4330 0.5627 0.6239 0.6593 0.6822 0.6982 0.7100 0.7190 0.7261
5. A(1) A(0)=1/26. A(2) A(0)=4
7. A(2) A(0)=16 8. A(1) A(0) = 1
2
π
2=π/4
9. A(x)=e
x
, area = A(1) A(0) = e110. A(x)=cos x, area = A(π)A(0)=2
EXERCISE SET 7.2
1. (a) Zx
1+x
2dx =p1+x
2+C(b) Z(x+1)e
x
dx =xex+C
2. (a) d
dx(sin xxcos x+C) = cos xcos x+xsin x=xsin x
(b) d
dx µx
1x2+C=1x2+x2/1x2
1x2=1
(1 x2)3/2
3. d
dx hpx3+5
i=3x
2
2
x
3+5 so Z3x2
2x3+5dx =px3+5+C
4. d
dx ·x
x2+3¸=3x
2
(x
2+3)
2so Z3x2
(x2+3)
2dx =x
x2+3+C
209
Exercise Set 7.2 210
5. d
dx £sin ¡2x¢¤=cos (2x)
xso Zcos (2x)
xdx = sin ¡2x¢+C
6. d
dx[sin xxcos x]=xsin xso Zxsin xdx= sin xxcos x+C
7. (a) x9/9+C(b) 7
12x12/7+C(c) 2
9x9/2+C
8. (a) 3
5x5/3+C(b) 1
5x5+C=1
5x5+C(c) 8x1/8+C
9. (a) 1
2Zx3dx =1
4x2+C(b) u4/4u2+7u+C
10. 3
5x5/35x4/5+4x+C
11. Z(x3+x1/23x1/4+x2)dx =1
2x2+2
3x3/212
5x5/4+1
3x3+C
12. Z(7y3/4y1/3+4y
1/2
)dy =28y
1/43
4
y
4/3+8
3
y
3/2+C
13. Z(x+x4)dx =x2/2+x
5
/5+C
14. Z(4+4y
2+y
4
)dy =4y+4
3
y
3+1
5
y
5+C
15. Zx1/3(4 4x+x2)dx =Z(4x1/34x4/3+x7/3)dx =3x
4/312
7x7/3+3
10x10/3+C
16. Z(2 x+2x
2x
3
)dx =2x1
2
x
2+2
3
x
31
4
x
4+C
17. Z(x+2x
2x
4
)dx =x2/22/x +1/(3x3)+C
18. Z(t32)dt =1
2t22t+C19. 2lnx+3e
x+C
20. Z·1
2t12et¸dt =1
2ln t2et+C21. 4 cos x+ 2 sin x+C
22. 4 tan xcsc x+C23. Z(sec2x+ sec xtan x)dx = tan x+ sec x+C
24. Z(sec xtan x+1)dx = sec x+x+C25. ln θ2eθ+ cot θ+C
26. Zsin ydy =cos y+C27. Zsec xtan xdx= sec x+C
28. Z(φ+ 2 csc2φ)=φ2/22 cot φ+C29. Z(1 + sin θ)=θcos θ+C
211 Chapter 7
30. Z2 sin xcos x
cos xdx =2Zsin xdx=2 cos x+C
31. Z1sin x
1sin2xdx =Z1sin x
cos2x=Z¡sec2xsec xtan x¢dx = tan xsec x+C
33. (a) y
x
2
4
6
-1 1 2
(b) f(x)=x
2
/2+5
34. (a) y
x
2
4
6
-1 1 2
(b) f(x)=e
x
/2+1/2
35. y
x
-5
5
π/4π/2
36. y
x
2
4
12345
37. f0(x)=m=sin xso f(x)=Z(sin x)dx = cos x+C;f(0)=2=1+Cso C=1,f(x) = cos x+1
38. f0(x)=m=(x+1)2,sof(x)=Z(x+1)2dx =1
3(x+1)3+C;f(2)=8= 1
3
(2+1)3+C=1
3+C,
C=8+1
3=25
3,f(x)=1
3
(x+1)
3+25
3
39. (a) y(x)=Zx
1/3
dx =3
4x4/3+C,y(1) = 3
4+C=2,C=5/4; y(x)=3
4
x
4/3+5
4
(b) y(t)=Zt
1
dt =ln|t|+C,y(1) = C=5,C=5;y(t)=ln|t|+5
(c) y(x)=Z(x
1/2+x
1/2
)dx =2
3x3/2+2x
1/2+C,y(1)=0=8
3+C,C=8
3
,
y(x)=2
3
x
3/2+2x
1/28
3
40. (a) y(x)=Zµ1
8
x
3
dx =1
16x2+C,y(1)=0=1
16 +C,C=1
16;y(x)=1
16x2+1
16
Exercise Set 7.2 212
(b) y(t)=Z(sec2tsin t)dt = tan t+ cos t+C,y(π
4)=1=1+
2
2+C,C=
2
2;
y(t) = tan t+ cos t2
2
(c) y(x)=Zx
7/2
dx =2
9x9/2+C,y(0)=0=C,C=0;y(x)=2
9
x
9/2
41. f0(x)=2
3
x
3/2+C
1
;f(x)= 4
15x5/2+C1x+C2
42. f0(x)=x
2
/2 + sin x+C1, use f0(0) = 2 to get C1=2sof
0(x)=x
2
/2 + sin x+2,
f(x)=x
3
/6cos x+2x+C
2
, use f(0) = 1 to get C2=2sof(x)=x
3
/6cos x+2x+2
43. dy/dx =2x+1,y =Z(2x+1)dx =x2+x+C;y= 0 when x=3
so (3)2+(3)+C=0,C =6thusy=x
2+x6
44. dy/dx =x2,y =Zx
2dx =x3/3+C;y= 2 when x=1so(1)3/3+C=2,C =7/3
thus y=x3/3+7/3
45. dy/dx =Z6xdx =3x
2+C
1
. The slope of the tangent line is 3sody/dx =3 when x=1. Thus
3(1)2+C1=3, C1=6sody/dx =3x
26, y=Z(3x26)dx =x36x+C2;Ifx= 1, then
y=53(1) = 2 so (1)26(1) + C2=2,C
2= 7 thus y=x36x+7.
46. dT/dx =C1,T=C1x+C2;T= 25 when x=0soC
2= 25, T=C1x+ 25. T= 85 when x=50so
50C1+ 25 = 85, C1=1.2, T=1.2x+25
47. (a) F0(x)=G
0(x)=3x+4
(b) F(0)=16/6=8/3, G(0)=0,soF(0) G(0)=8/3
(c) F(x)=(9x
2+24x+ 16)/6=3x
2
/2+4x+8/3=G(x)+8/3
48. (a) F0(x)=G
0(x)=10x/(x2+5)
2
(b) F(0)=0,G(0) = 1, so F(0) G(0)=1
(c) F(x)= x
2
x
2+5 =(x
2+5)5
x
2+5 =15
x
2+5 =G(x)+1
49. Z(sec2x1)dx = tan xx+C50. Z(csc2x1)dx =cot xx+C
51. (a) 1
2Z(1 cos x)dx =1
2(xsin x)+C(b) 1
2Z(1 + cos x)dx =1
2(x+ sin x)+C
52. (a) F0(x)=G
0(x)=f(x), where f(x)=½1,x>0
1,x<0
(b) G(x)F(x)=½2,x>0
3,x<0so G(x)6=F(x) plus a constant
(c) no, because (−∞,0) (0,+) is not an interval
53. v=1087
2273 ZT1/2dT =1087
273T1/2+C,v(273) = 1087 = 1087 + Cso C=0,v=1087
273T1/2ft/s
213 Chapter 7
EXERCISE SET 7.3
1. (a) Zu23du =u24/24+C=(x
2+1)
24/24+C
(b) Zu3du =u4/4+C=(cos4x)/4+C
(c) 2Zsin udu=2 cos u+C=2 cos x+C
(d) 3
8Zu1/2du =3
4u1/2+C=3
4p4x2+5+C
(e) 1
3Zu1du =1
3ln u+C=1
3ln(x34)+C
2. (a) 1
4Zsec2udu=1
4tan u+C=1
4tan(4x+1)+C
(b) 1
4Zu1/2du =1
6u3/2+C=1
6(1+2y
2
)
3/2+C
(c) 1
πZu1/2du =2
3πu3/2+C=2
3πsin3/2πθ +C
(d) Zu4/5du =5
9u9/5+C=5
9(x2+7x+3)
9/5+C
(e) Zdu
u=lnu+C= ln(1 + ex)+C
3. (a) Zudu=1
2u
2+C=1
2cot2x+C
(b) Zu9du =1
10u10 +C=1
10(1 + sin t)10 +C
(c) Z1
udu =ln|u|+C=ln|ln x|+C
(d) 1
5Zeudu =1
5eu+C=1
5e5x+C
(e) 1
3Z1
udu =1
3ln |u|+C=1
3ln |(1 + cos 3θ)|+C
4. (a) Z(u1)2u1/2du =Z(u5/22u3/2+u1/2)du =2
7u7/24
5u5/2+2
3u3/2+C
=2
7(1+x)7/24
5(1+x)5/2+2
3(1+x)3/2+C
(b) Zcsc2udu=cot u+C=cot(sin x)+C
(c) Zeudu =eu+C=etan x+C
(d) 1
2Zu1/2du =1
3u3/2+C=1
3(1+e2t)3/2+C
(e) Z1
udu =ln|u|+C=ln¯
¯x
5+1
¯
¯+C
5. u=2x,du =2dx;1
2Zeudu =1
2eu+C=1
2e2x+C
Exercise Set 7.3 214
6. u=2x,du =2dx;1
2Z1
udu =1
2ln |u|+C=1
2ln |2x|+C
7. u=2x
2
,du =2xdx;1
2Zu
3du =u4/8+C=(2 x2)4/8+C
8. u=3x1, du =3dx;1
3Zu5du =1
18u6+C=1
18(3x1)6+C
9. u=8x,du =8dx;1
8Zcos udu=1
8sin u+C=1
8sin 8x+C
10. u=3x,du =3dx;1
3Zsin udu=1
3cos u+C=1
3cos 3x+C
11. u=4x,du =4dx;1
4Zsec utan udu=1
4sec u+C=1
4sec 4x+C
12. u=5x,du =5dx;1
5Zsec2udu=1
5tan u+C=1
5tan 5x+C
13. u=7t
2+ 12, du =14tdt;1
14 Zu1/2du =1
21u3/2+C=1
21(7t2+ 12)3/2+C
14. u=45x
2
,du =10xdx;1
10 Zu1/2du =1
5u1/2+C=1
5p45x2+C
15. u=x3+1,du =3x
2
dx;1
3Zu1/2du =2
3u1/2+C=2
3px3+1+C
16. u=13x,du =3dx;1
3Zu2du =1
3u1+C=1
3(1 3x)1+C
17. u=4x
2+1,du =8xdx;1
8Zu
3du =1
16u2+C=1
16(4x2+1)
2+C
18. u=3x
2
,du =6xdx;1
6Zcos udu=1
6sin u+C=1
6sin(3x2)+C
19. u= sin x,du = cos xdx;Ze
udu =eu+C=esin x+C
20. u=x4,du =4x
3
dx;1
4Zeudu =1
4eu+C=1
4ex4+C
21. u=2x3,du =6x2,1
6Zeudu =1
6eu+C=1
6e2x3+C
22. u=exex,du =(e
x+e
x
)dx,Z1
udu =ln|u|+C=ln¯
¯e
xe
x
¯
¯+C
23. u=5/x,du =(5/x2)dx;1
5Zsin udu=1
5cos u+C=1
5cos(5/x)+C
24. u=x,du =1
2xdx;2
Zsec2udu= 2 tan u+C= 2 tan x+C
25. u=x3,du =3x
2
dx;1
3Zsec2udu=1
3tan u+C=1
3tan(x3)+C
215 Chapter 7
26. u= cos 2t,du =2 sin 2tdt;1
2Zu
3du =1
8u4+C=1
8cos42t+C
27. Zexdx;u=x,du =dx;Zeudu =eu+C=ex+C
28. Zex/2dx;u=x/2, du =dx/2; 2 Zeudu =2e
u+C=2e
x/2+C=2
e
x+C
29. u= sin 3t,du = 3 cos 3tdt;1
3Zu
5du =1
18u6+C=1
18 sin63t+C
30. u= 5 + cos 2θ,du =2 sin 2θdθ;1
2Zu
3du =1
4u2+C=1
4(5 + cos 2θ)2+C
31. u=2sin 4θ,du =4 cos 4θdθ;1
4Zu
1/2du =1
6u3/2+C=1
6(2 sin 4θ)3/2+C
32. u= tan 5x,du = 5 sec25xdx;1
5Zu
3du =1
20u4+C=1
20 tan45x+C
33. u= sec 2x,du = 2 sec 2xtan 2xdx;1
2Zu
2du =1
6u3+C=1
6sec32x+C
34. u= sin θ,du = cos θdθ;Zsin udu =cos u+C=cos(sin θ)+C
35. u=y,du =1
2ydy,2
Ze
u
du =2e
u+C=2e
y+C
36. u=y,du =1
2ydy,2
Z1
e
udu =2Ze
u
du =2eu+C=2ey+C
38. u=a+bx,du =bdx,dx =1
bdu
1
bZu1/ndu =n
b(n+1)u
(n+1)/n +C=n
b(n+1)(a+bx)(n+1)/n +C
39. u= sin(a+bx), du =bcos(a+bx)dx
1
bZundu =1
b(n+1)u
n+1 +C=1
b(n+1)sinn+1(a+bx)+C
41. u=x3, x=u+3,dx =du
Z(u+3)u
1/2
du =Z(u3/2+3u
1/2
)du =2
5u5/2+2u
3/2+C=2
5(x3)5/2+2(x3)3/2+C
42. u=y+1,y=u1, dy =du
Zu1
u1/2du =Z(u1/2u1/2)du =2
3u3/22u1/2+C=2
3(y+1)
3/22(y+1)
1/2+C
43. u=3θ,du =3
1
3Ztan2udu=1
3Z(sec2u1)du =1
3(tan uu)+C=1
3(tan 3θ3θ)+C
44. Zsin22θsin 2θdθ=Z(1 cos22θ) sin 2θdθ;u= cos 2θ,du =2 sin 2θdθ,
1
2Z(1 u2)du =1
2u+1
6u3+C=1
2cos 2θ+1
6cos32θ+C
Exercise Set 7.3 216
45. Zµ1+1
tdt =t+ln|t|+C
46. e2lnx=e
ln x2=x2,x>0, so Ze2lnxdx =Zx2dx =1
3x3+C
47. ln(ex) + ln(ex) = ln(exex)=ln1=0soZ[ln(ex) + ln(ex)]dx =C
48. Zcos x
sin xdx;u= sin x,du = cos xdx;Z1
udu =ln|u|+C=ln|sin x|+C
49. (a) with u= sin x,du = cos xdx;Zudu =1
2u
2+C
1=1
2sin2x+C1;
with u= cos x,du =sin xdx;Zudu =1
2u
2+C
2=1
2cos2x+C2
(b) because they differ by a constant:
µ1
2sin2x+C1µ1
2cos2x+C2=1
2(sin2x+ cos2x)+C
1C
2=1/2+C
1C
2
50. (a) First method: Z(25x210x+1)dx =25
3x35x2+x+C1;
second method: 1
5Zu2du =1
15u3+C2=1
15(5x1)3+C2
(b) 1
15(5x1)3+C2=1
15(125x375x2+15x1)+C2=25
3x35x2+x1
15 +C2;
the answers differ by a constant.
51. y(x)=Z
3x+1dx =2
9(3x+1)
3/2+C,
y(1) = 16
9+C=5,C=29
9so y(x)=2
9
(3x+1)
3/2+29
9
52. y(x)=Z(6 5 sin 2x)dx =6x+5
2cos 2x+C,
y(0) = 5
2+C=3,C=1
2so y(x)=6x+5
2cos 2x+1
2
53. f0(x)=m=
3x+1, f(x)=Z(3x+1)
1/2
dx =2
9(3x+1)
3/2+C;f(0)=1=2
9+C,C=7
9
,so
f(x)=2
9
(3x+1)
3/2+7
9
54. y
x
4
-4 4
217 Chapter 7
55. p(t)=Z(4+0.15t)3/2dt =8
3(4+0.15t)5/2+C;p(0) = 100,000 = 8
345/2+C=256
3+C,
C= 100,000 256
399,915, p(t)=8
3
(4+0.15t)5/2+99,915, p(5) = 8
3(4.75)5/2+99,915 100,416
56. dr
dt =kt,r=kZt1/2dt =2
3kt3/2+C;r(0)=10,000 = Cso C=10,000 and
r=2
3kt3/2+10,000; r(25) = 9,000 = 2
3k(25)3/2+10,000=10,000 250
3k,so
k= 12, r=8t3/2+10,000, and r(60) = 6281.94 m
EXERCISE SET 7.4
1. (a) 1+8+27=36 (b) 5+8+11+14+17=55
(c) 20+12+6+2+0+0=40 (d) 1+1+1+1+1+1=6
(e) 12+48+16=11 (f) 0+0+0+0+0+0=0
2. (a) 1+03+0=2(b) 11+11+11=0
(c) e2+e2+···+e
2=14e
2
(14 terms)
(d) 24+2
5+2
6= 112
(e) ln 1 + ln 2 + ln 3 + ln 4 + ln 5 + ln 6 = ln(1 ·2·3·4·5·6) = ln 720
(f) 11+11+11+11+11+1=1
3.
10
X
k=1
k4.
20
X
k=1
3k5.
49
X
k=1
k(k+1) 6.
4
X
k=0
2k
7.
10
X
k=1
2k8.
8
X
k=1
(2k1) 9.
6
X
k=1
(1)k+1(2k1)
10.
5
X
k=1
(1)k+1 1
k11.
5
X
k=1
(1)k1
k12.
3
X
k=0
cos
7
13. (a)
50
X
1
2k(b)
50
X
1
(2k1)
14. (a)
5
X
k=1
(1)k+1ak(b)
5
X
k=0
(1)k+1bk(c)
n
X
k=0
akxk(d)
5
X
k=0
a5kbk
15. 1
2(100)(100 + 1) = 5050
16.
100
X
k=1
k
2
X
k=1
k=1
2(100)(100 + 1) (1 + 2) = 5050 3 = 5047
17. 1
6(20)(21)(41) = 2,870 18. 7
100
X
k=1
k+
100
X
k=1
1=7
2
(100)(101) + 100 = 35,450
19. 4
6
X
k=1
k32
6
X
k=1
k+
6
X
k=1
1=4·1
4
(6)2(7)2¸2·1
2(6)(7)¸+ 6 = 1728
Exercise Set 7.4 218
20.
20
X
k=1
k2
3
X
k=1
k2=2,870 14=2,856
21.
30
X
k=1
k(k24) =
30
X
k=1
(k34k)=
30
X
k=1
k34
30
X
k=1
k=1
4(30)2(31)24·1
2(30)(31) = 214,365
22.
6
X
k=1
k
6
X
k=1
k3=1
2(6)(7) 1
4(6)2(7)2=420
23.
n
X
k=1
(4k3)=4
n
X
k=1
k
n
X
k=1
3=4·1
2
n(n+1)3n=2n
2n
24.
n1
X
k=1
k2=1
6(n1)[(n1) + 1][2(n1)+1]= 1
6n(n1)(2n1)
25.
n
X
k=1
3k
n=3
n
n
X
k=1
k=3
n·1
2n(n+1)= 3
2(n+1)
26.
n1
X
k=1
k2
n=1
n
n1
X
k=1
k2=1
n·1
6(n1)(n)(2n1) = 1
6(n1)(2n1)
27.
n1
X
k=1
k3
n2=1
n2
n1
X
k=1
k3=1
n2·1
4(n1)2n2=1
4(n1)2
28.
n
X
k=1 µ5
n2k
n=5
n
n
X
k=1
12
n
n
X
k=1
k=5
n(n)2
n·1
2n(n+1)=4n
30. SrS =
n
X
k=0
ark
n
X
k=0
ark+1
=(a+ar +ar2+···+arn)(ar +ar2+ar3+···+arn+1)
=aarn+1 =a(1 rn+1)
so (1 r)S=a(1 rn+1), hence S=a(1 rn+1)/(1 r)
31. (a)
19
X
k=0
3k+1 =
19
X
k=0
3(3k)=3(1 320)
13=3
2(320 1)
(b)
25
X
k=0
2k+5 =
25
X
k=0
252k=25(1 226)
12=2
31 25
(c)
100
X
k=0
(1) µ1
2k
=(1)(1 (1/2)101)
1(1/2) =2
3(1+1/2
101)
32. (a) 1.999023438,1.999999046,2.000000000; 2 (b) 2.831059456,2.990486364,2.999998301; 3
33. 1+2+3+···+n
n
2=
n
X
k=1
k
n2=1
n2
n
X
k=1
k=1
n2·1
2n(n+1)= n+1
2n; lim
n+
n+1
2n=1
2
219 Chapter 7
34. 12+2
2+3
2+···+n
2
n
3=
n
X
k=1
k2
n3=1
n3
n
X
k=1
k2=1
n3·1
6n(n+ 1)(2n+1)= (n+ 1)(2n+1)
6n
2;
lim
n+
(n+ 1)(2n+1)
6n
2= lim
n+
1
6(1+1/n)(2+1/n)=1
3
35.
n
X
k=1
5k
n2=5
n2
n
X
k=1
k=5
n2·1
2n(n+1)= 5(n+1)
2n; lim
n+
5(n+1)
2n=5
2
36.
n1
X
k=1
2k2
n3=2
n3
n1
X
k=1
k2=2
n3·1
6(n1)(n)(2n1) = (n1)(2n1)
3n2;
lim
n+
(n1)(2n1)
3n2= lim
n+
1
3(1 1/n)(2 1/n)=2
3
37. (a)
5
X
j=0
2j(b)
6
X
j=1
2j1(c)
7
X
j=2
2j2
38. (a)
5
X
k=1
(k+ 4)2k+8 (b)
13
X
k=9
(k4)2k
39. (a)
18
X
k=1
sin ³π
k´(b)
6
X
k=0
ek=e71
e1
40. 1+3+5+···+(2n1) =
n
X
k=1
(2k1)=2
n
X
k=1
k
n
X
k=1
1=2·1
2
n(n+1)n=n
2
41. For 1 knthe k-th L-shaped strip consists of the corner square, a strip above and a strip to the
right for a combined area of 1 + (k1)+(k1)=2k1, so the total area is
n
X
k=1
(2k1) = n2.
42. n(n+1)
2= 465, n2+n930=0,(n+ 31)(n30)=0,n= 30.
43. (3534)+(3
63
5
)+···+(3
17 316)=3
17 34
44. µ11
2+µ1
21
3+···+µ1
50 1
51=50
51
45. µ1
221
12+µ1
321
22+···+µ1
2021
192=1
2021=399
400
46. (222)+(2
32
2
)+···+(2
101 2100)=2
101 2
47. (a)
n
X
k=1
1
(2k1)(2k+1)=1
2
n
X
k=1 µ1
2k11
2k+1
=1
2·µ11
3+µ1
31
5+µ1
51
7+···+µ1
2n11
2n+1¶¸
=1
2·11
2n+1¸=n
2n+1
(b) lim
n+
n
2n+1 =1
2
Exercise Set 7.4 220
48. (a)
n
X
k=1
1
k(k+1)=
n
X
k=1 µ1
k1
k+1
=µ11
2+µ1
21
3+µ1
31
4+···+µ1
n1
n+1
=11
n+1 =n
n+1
(b) lim
n+
n
n+1 =1
49. both are valid 50. none is valid
51.
n
X
i=1
(xi¯x)=
n
X
i=1
xi
n
X
i=1
¯x=
n
X
i=1
xin¯xbut ¯x=1
n
n
X
i=1
xithus
n
X
i=1
xi=n¯xso
n
X
i=1
(xi¯x)=n¯xn¯x=0
52.
n
X
k=1
(akbk)=(a
1b
1)+(a
2b
2
)+···+(a
nb
n
)
=(a
1+a
2+···+a
n)(b
1+b
2+···+b
n)=
n
X
k=1
ak
n
X
k=1
bk
53.
n
X
k=1 £(k+1)
4k
4
¤=(n+1)
41 (telescoping sum), expand the
quantity in brackets to get
n
X
k=1
(4k3+6k
2+4k+1)=(n+1)
41,
4
n
X
k=1
k3+6
n
X
k=1
k2+4
n
X
k=1
k+
n
X
k=1
1=(n+1)
41
n
X
k=1
k3=1
4"(n+1)
416
n
X
k=1
k24
n
X
k=1
k
n
X
k=1
1#
=1
4[(n+1)
41n(n+ 1)(2n+1)2n(n+1)n]
=1
4(n+ 1)[(n+1)
3n(2n+1)2n1]
=1
4(n+ 1)(n3+n2)=1
4
n
2
(n+1)
2
54. If n=2mthen 2m+2(m1)+···+2·2+2=2
m
X
k=1
k=2·m(m+1)
2=m(m+1)= n
2+2n
4;
if n=2m+ 1 then (2m+1)+(2m1)+···+5+3+1=
m+1
X
k=1
(2k1)
=2
m+1
X
k=1
k
m+1
X
k=1
1=2·(m+ 1)(m+2)
2(m+1)=(m+1)
2=n
2+2n+1
4
55. 50·30+49·29+···+22·2+21·1=
30
X
k=1
k(k+20) =
30
X
k=1
k2+20
30
X
k=1
k=30 ·31 ·61
6+2030 ·31
2=18,755
221 Chapter 7
EXERCISE SET 7.5
1. (a) 1
2bh =1
2·4·4=8 y
x
1
1A
(b) The approximation is greater than A,
as the rectangles extend beyond the area.
4
X
k=1
f(x
k)∆x=(4+3+2+1)(1) = 10
y
x
1
1
(c) The approximation is less than A,
as the rectangles lie inside the area.
4
X
k=1
f(x
k)∆x=(3+2+1+0)(1) = 6
y
x
1
1
(d) The approximation is equal to A,
as can be seen by measuring congruent triangles.
4
X
k=1
f(x
k)∆x=(3.5+2.5+1.5+0.5)(1) = 8
y
x
1
1
2. (a) 1
2bh =1
24·12=24 y
x
2
6
3
9
18
6
Exercise Set 7.5 222
(b) The approximation is less than A,
as the rectangles lie inside the area.
4
X
k=1
f(x
k)∆x=(6+9+12+15)(1) = 42
y
x
2
6
3
9
18
6
(c) The approximation is greater than A,
as the rectangles extend beyond the area.
4
X
k=1
f(x
k)∆x= (9 + 12 + 15 + 18)(1) = 54
y
x
2
6
3
9
18
6
(d) The approximation is equal to A,
as can be seen by measuring congruent triangles.
4
X
k=1
f(x
k)∆x=(7.5+10.5+13.5+16.5)(1) = 48
y
x
2
6
3
9
18
6
3. (a) x
k=0,1,2,3,4
5
X
k=1
f(x
k)∆x=(1+2+5+10+17)(1) = 35
(b) x
k=1,2,3,4,5
5
X
k=1
f(x
k)∆x=(2+5+10+17+26)(1) = 60
(c) x
k=1/2,3/2,5/2,7/2,9/2
5
X
k=1
f(x
k)∆x=(5/4+13/4+29/4+53/4+85/4)(1) = 185/4=46.25
4. (a) x
k=1,2,3,4,5
5
X
k=1
f(x
k)∆x=(1+8+27+64+125)(1) = 225
(b) x
k=2,3,4,5,6
5
X
k=1
f(x
k)∆x= (8 + 27 + 64 + 125 + 216)(1) = 440
(c) x
k=3/2,5/2,7/2,9/2,11/2
5
X
k=1
f(x
k)∆x= (27/8 + 125/8 + 343/8 + 729/8 + 1331/8)(1) = 2555/8 = 319.375
223 Chapter 7
5. (a) x
k=π/2,π/4,0/4
4
X
k=1
f(x
k)∆x=(0+1/
2+1+1/
2)(π/4)=(1+
2)π/41.896
(b) x
k=π/4,0/4/2
4
X
k=1
f(x
k)∆x=(1/
2+1+1/
2 + 0)(π/4)=(1+
2)π/41.896
(c) x
k=3π/8,π/8/8,3π/8
4
X
k=1
f(x
k)∆x=·cos 3π
8+ cos π
8+ cos π
8+ cos 3π
8¸π
4=πcos π
4cos π
8=³π2 cos π
8´/22.052
6. (a) x
k=0,1,2,3,4
4
X
k=1
f(x
k)∆x=¡e0+e1+e2+e3+e4¢(1)=(1e
5
)/(1 e)=85.791
(b) x
k=1,2,3,4,5
4
X
k=1
f(x
k)∆x=¡e1+e2+e3+e4+e5¢(1) = e(1 e5)/(1 e) = 233.204
(c) x
k=1/2,3/2,5/2,7/2,9/2
4
X
k=1
f(x
k)∆x=³e1/2+e3/2+e5/2+e7/2+e9/2´(1) = e1/2(1 e5)/(1 e) = 141.446
7. left endpoints: x
k=1,2,3,4;
4
X
k=1
f(x
k)∆x=(2+3+2+1)(1) = 8
right endpoints: x
k=2,3,4,5;
4
X
k=1
f(x
k)∆x=(3+2+1+2)(1) = 8
8. (a) A=1
2(h1+h2)w=1
2(4 + 16)(4) = 40 y
x
1
4
2
7
16
5
(b) (left) x
k=1,2,3,4;
4
X
k=1
f(x
k)∆x=(4+7+10+13)(1) = 34
(right) x
k=2,3,4,5;
4
X
k=1
f(x
k)∆x= (7 + 10 + 13 + 16)(1) = 46; the average is 1
2(34 + 46) = 40
(c) The right endpoint approximation exceeds the true area by four triangles; the true area exceeds
the left endpoint approximation by four different, but congruent, triangles.
9. 0.718771403, 0.668771403, 0.692835360 10. 0.761923639, 0.584145862, 0.663501867
11. 0.919403170, 1.07648280, 1.001028825 12. 4.884074732, 5.684074732, 5.347070728
13. 0.351220577, 0.420535296, 0.386502483 14. 1.63379940, 1.805627583, 1.717566087
Exercise Set 7.5 224
15. n1/x 1/x2sin xxln x ex
(a) 25 0.693097198 0.666154270 1.000164512 5.336963538 0.386327689 1.718167282
(b) 50 0.693134682 0.666538346 1.000041125 5.334644416 0.386302694 1.718253191
(c) 100 0.693144056 0.666634573 1.000010281 5.333803776 0.3862964444 1.718274669
17. (a) A=1
2(3)(3) = 9/2
3x
y
A
(b) A=1
2(1)(1 + 2) = 3/2
-2 -1 x
y
A
(c) A1+A2=1
2+8=15/2
-1
4x
y
A1
A2
(d) A1+A2=0
-5
5x
y
A1
A2
18. (a) A=1
2(1)(2) = 1
2
1
x
y
A
(b) A=1
2(2)(3/2+1/2)=2
-1 1
1
x
y
A
(c) A=1
2(1/2)(1) = 1/4
2
1
x
y
A
(d) A1A2=11/4=3/4
2
1
x
y
A
2
A
1
225 Chapter 7
19. (a) A=2(5)=10
y
x
1
2
12345
A
(b) 0; A1=A2by symmetry
6
cx
y
A1
A2
(c) A1+A2=1
2(5)(5/2) + 1
2(1)(1/2)
=13/2
-1
5
2x
y
3
2
A1A2
(d) 1
2[π(1)2]=π/2
y
x
1
-1 1
A
20. (a) A= (6)(5) = 30
-10 -5
6
x
y
A
(b) A1+A2= 0 because
A1=A2by symmetry
$
4x
y
A1
A2
(c) A1+A2=1
2(2)(2) + 1
2(1)(1) = 5/2
2
2
3x
y
A1A2
(d) 1
4π(2)2=π
y
x
2
2
A
21. (a) 0.8(b) 2.6(c) 1.8(d) 0.3
22. (a) Z1
0
f(x)dx =Z1
0
2xdx =x2¸1
0
=1
(b) Z1
1
f(x)dx =Z1
1
2xdx =x2¸1
1
=1
2(1)2=0
Exercise Set 7.5 226
(c) Z10
1
f(x)dx =Z10
1
2dx =2x
¸10
1
=18
(d) Z5
1/2
f(x)dx =Z1
1/2
2xdx +Z5
1
2dx =x2¸1
1/2
+2x
#5
1
=1
2(1/2)2+2·52·1=3/4+8=35/4
23. Z2
1
f(x)dx +2Z2
1
g(x)dx =5+2(3) = 1
24. 3Z4
1
f(x)dx Z4
1
g(x)dx = 3(2) 10 = 4
25. Z5
1
f(x)dx =Z5
0
f(x)dx Z1
0
f(x)dx =1(2)=3
26. Z2
3
f(x)dx =Z3
2
f(x)dx =·Z1
2
f(x)dx +Z3
1
f(x)dx¸=(2 6)=4
27. (a) Z1
0
xdx +2Z1
0p1x
2
dx =1/2+2(π/4)=(1+π)/2
(b) 4Z3
1
dx 5Z3
1
xdx =4·45(1/2+(3·3)/2) = 4
28. (a) Z0
3
2dx +Z0
3p9x2dx =2·3+(π(3)2)/4=6+9π/4
(b) Z2
2
dx 3Z2
2|x|dx =4·13(2)(2 ·2)/2=8
29. (a) x>0, 1 x<0on[2,3] so the integral is negative
(b) x2>0, 3 cos x>0 for all xso the integral is positive
30. (a) x4>0, 3x>0on[3,1] so the integral is positive
(b) x39<0, |x|+1>0on[2,2] so the integral is negative
31. Z10
0p25 (x5)2dx =π(5)2/2=25π/2
32. Z3
0p9(x3)2dx =π(3)2/4=9π/4
33. (a) Z3
3
4x(1 3x)dx (b) Z1
0
exdx
34. (a) Z2
1
x3dx (b) Zπ/2
0
sin2xdx
35. Z1
0
(3x+1)dx =5/236. Z2
2p4x2dx =π(2)2/2=2π
37. (a) lim
max ∆xk0
n
X
k=1
2x
kxk;a=1,b=2 (b) lim
max ∆xk0
n
X
k=1
x
k
x
k+1x
k;a=0,b=1
227 Chapter 7
38. (a) lim
max ∆xk0
n
X
k=1
ln x
kxk,a=1,b=2
(b) lim
max ∆xk0
n
X
k=1
(1 + cos x
k)∆x
k,a=π/2, b=π/2
39. (a) x
k+1 =x
k+1
nand x
1=1+1
n
,sox
2=x
1+1
n=1+2
n
,x
k+1 =x
k+1
n=1+k+1
nfor
k=2,3,···,n1
(b) f(x
k)=1+k
nand ∆x=1
n
(c) 1
n
n
X
k=1
1+ 1
n
2
n
X
k=1
k=1
nn+1
n2
n(n+1)
2=3
2+1
2n
(d) lim
n+µ3
2+1
2n=3
2which is the area of the trapezoid with base 1 and sides 1 and 2
40. f(x
k)=1+k1
n,
n
X
k=1
f(x
k)∆x=
n
X
k=1 µ1+k1
n1
n=1
nn+1
n
2
(n1)n
2=3
21
2n;
lim
n+µ3
21
2n=3
2
41. (a) (right) ∆x=ba
n=1
n,x
k=k
n,
n
X
k=1
f(x
k)∆x=
n
X
k=1 µk
n21
n=1
n3
n
X
k=1
k2=1
n3
n(n+ 1)(2n+1)
6; lim
n+
n
X
k=1
f(x
k)∆x=2
6=1
3
(b) (left) ∆x=ba
n=1
n,x
k=k1
n,
n
X
k=1
f(x
k)∆x=
n
X
k=1 µk1
n21
n=1
n3
n
X
k=1
(k1)2=1
n3
(n1)n(2n1)
6;
lim
n+
n
X
k=1
f(x
k)∆x=2
6=1
3
42. (a) (right) ∆x=ba
n=3
n,x
k=3k
n,
n
X
k=1
f(x
k)∆x=
n
X
k=1 Ã41
4µ3k
n2!3
n=12
n
n
X
k=1
127
4n3
n
X
k=1
k2=1227
4n3
n(n+ 1)(2n+1)
6;
lim
n+
n
X
k=1
f(x
k)∆x=1227(2)
4(6) =39
4
(b) (left) ∆x=ba
n=3
n,x
k=3(k1)
n,
n
X
k=1
f(x
k)∆x=
n
X
k=1 Ã41
4µ3(k1)
n2!3
n=12
n
n
X
k=1
127
4n3
n
X
k=1
(k1)2=1227
4n3
(n1)n(2n1)
6;
lim
n+
n
X
k=1
f(x
k)∆x=1227(2)
4(6) =39
4
Exercise Set 7.5 228
43. (a) (right) ∆x=ba
n=4
n,x
k=2+4k
n,
n
X
k=1
f(x
k)∆x=
n
X
k=1 µ2+4k
n34
n= 32+192
n2
n(n+1)
2+384
n3
n(n+ 1)(2n+1)
6+256
n4µn(n+1)
22
;
lim
n+
n
X
k=1
f(x
k)∆x=32+192
2+384(2)
6+256
4= 320
(b) (left) ∆x=ba
n=4
n,x
k=2+4(k1)
n,
n
X
k=1
f(x
k)∆x=
n
X
k=1 µ2+4(k1)
n34
n= 32+192
n2
(n1)n
2+384
n3
(n1)n(2n1)
6+256
n4µ(n1)n
22
;
lim
n+
n
X
k=1
f(x
k)∆x=32+192
2+384(2)
6+256
4= 320
44. (a) (right) ∆x = ba
n=2
n,x
k=3+2k
n,
n
X
k=1
f(x
k)∆x=
n
X
k=1 Ã1µ2k
n33!2
n=56
n
n
X
k=1
1108
n2
n
X
k=1
k+72
n3
n
X
k=1
k216
n4
n
X
k=1
k3
=56108
n2
n(n+1)
2+72
n3
n(n+ 1)(2n+1)
616
n4µn(n+1)
22
;
lim
n+
n
X
k=1
f(x
k)∆x=5654 + 72(2)
616
4=22
(b) (left) ∆x = ba
n=2
n,x
k=3+2(k1)
n,
n
X
k=1
f(xk)∆x=
n
X
k=1 Ã1µ2(k1)
n33!2
n
=56
n
n
X
k=1
1108
n2
n
X
k=1
(k1) + 72
n3
n
X
k=1
(k1)216
n4
n
X
k=1
(k1)3
=56108
n2
(n1)n
2+72
n3
(n1)n(2n1)
616
n4µ(n1)n
22
;
lim
n+
n
X
k=1
f(x
k)∆x=56108
2+72(2)
616
4=22
45. (a) fis continuous on [1,1] so fis integrable there by part (a) of Theorem 7.5.8
(b) |f(x)|≤1sofis bounded on [1,1], and fhas one point of discontinuity, so by part (b) of
Theorem 7.5.8 fis integrable on [1,1]
(c) fis not bounded on [-1,1] because lim
x0f(x)=+,sofis not integrable on [0,1]
(d) f(x) is discontinuous at the point x= 0 because lim
x0sin 1
xdoes not exist. fis continuous
elsewhere. 1f(x)1 for xin [1,1] so fis bounded there. By part (b), Theorem 7.5.8, f
is integrable on [1,1].
46. Each subinterval of a partition of [a, b] contains both rational and irrational numbers. If all x
kare
chosen to be rational then
n
X
k=1
f(x
k)∆xk=
n
X
k=1
(1)∆xk=
n
X
k=1
xk=baso lim
max ∆xk0
n
X
k=1
f(x
k)∆xk=ba.
If all x
kare irrational then lim
max ∆xk0
n
X
k=1
f(x
k)∆xk=0. fis not integrable on [a, b] because the
preceding limits are not equal.
229 Chapter 7
47. (a) Let Sn=
n
X
k=1
f(x
k)∆xkand S=Zb
a
f(x)dx then
n
X
k=1
cf(x
k)∆xk=cSnand we want to prove
that lim
max ∆xk0cSn=cS.Ifc= 0 the result follows immediately, so suppose that c6= 0 then for
any ²>0, |cSncS|=|c||SnS|if |SnS|/|c|. But because fis integrable on [a, b],
there is a number δ>0 such that |SnS|/|c|whenever max ∆xkso |cSncS|and
hence lim
max ∆xk0cSn=cS.
(b) Let Rn=
n
X
k=1
f(x
k)∆xk,Sn=
n
X
k=1
g(x
k)∆xk,Tn=
n
X
k=1
[f(x
k)+g(x
k
)]∆xk,R=Zb
a
f(x)dx, and
S=Zb
a
g(x)dx then Tn=Rn+Snand we want to prove that lim
max ∆xk0Tn=R+S.
|Tn(R+S)|=|(RnR)+(S
nS)|≤|R
nR|+|S
nS|
so for any ²>0|T
n(R+S)|if |RnR|+|SnS|.
Because fand gare integrable on [a, b], there are numbers δ1and δ2such that
|RnR|/2 for max ∆xk
1and |SnS|/2 for max ∆xk
2
.
If δ= min(δ1
2) then |RnR|/2 and |SnS|/2 for max xkthus
|RnR|+|SnS|and so |Tn(R+S)|for max ∆xkwhich shows that
lim
max ∆xk0Tn=R+S.
48. For the smallest, find x
kso that f(x
k) is minimum on each subinterval: x
1=1,x
2=3/2, x
3=3so
(2)(1)+(7/4)(2) +(4)(1) = 9.5. For the largest, find x
kso that f(x
k) is maximum on each subinterval:
x
1=0,x
2=3,x
3= 4 so (4)(1) + (4)(2) + (8)(1) = 20.
EXERCISE SET 7.6
1. (a) Z2
0
(2 x)dx =(2xx
2
/2)¤2
0=44/2=2
(b) Z1
1
2dx =2x
¸1
1
= 2(1) 2(1)=4
(c) Z3
1
(x+1)dx =(x
2
/2+x)
i3
1=9/2+3(1/2+1)=6
2. (a) Z5
0
xdx =x2/2¸5
0
=25/2(b) Z9
3
5dx =5x
¸9
3
= 5(9) 5(3) = 30
(c) Z2
1
(x+3)dx =(x
2
/2+3x)
¸2
1
=4/2+6(1/23)=21/2
3. Z3
2
x3dx =x4/4¸3
2
=81/416/4=65/44. Z1
1
x4dx =x5/5¸1
1
=1/5(1)/5=2/5
5. Z9
1
xdx =2
3x3/2¸9
1
=2
3(27 1)=52/36. Z4
1
x3/5dx =5
2x2/5¸4
1
=5
2(42/51)
7. Z3
1
exdx =ex¸3
1
=e3e8. Z5
1
1
xdx =lnx
¸5
1
=ln5ln1=ln5
9. µ1
3x32x2+7x
¶¸0
3
=48 10. µ1
2x2+1
5x5¶¸2
1
=81/10
Exercise Set 7.6 230
11. Z3
1
x2dx =1
x¸3
1
=2/312. Z2
1
x6dx =1
5x5¸2
1
=31/160
13. 4
5x5/2¸9
4
= 844/514. µ3x5/3+4
x¶¸8
1
= 179/2
15. cos θiπ/2
π/2=0 16. tan θiπ/4
0=1
17. sin xiπ/4
π/4=218. µ1
2x2sec x¶¸1
0
=3/2sec(1)
19. 5exi3
ln 2 =5e
35(2) = 5e310 20. (ln x)/2i1
1/2= (ln 2)/2
21. µ6t10
3t3/2+2
t¶¸4
1
=55/322. µ8y+4
3y3/22
3y3/2¶¸9
4
= 10819/324
23. µ1
2x22 cot x¶¸π/2
π/6
=π2/9+2
3
24. ³ln x+2ex+ csc x´i2
1=ln2+
2(e2e) + csc 2 csc 1
26. µa1/2x2
3x3/2#4a
a
=5
3a3/2
27. (a) Z3/2
0
(3 2x)dx +Z2
3/2
(2x3)dx =(3xx
2
)
¸3/2
0
+(x
23x)
¸2
3/2
=9/4+1/4=5/2
(b) Zπ/2
0
cos xdx+Z3π/4
π/2
(cos x)dx = sin x¸π/2
0sin x¸3π/4
π/2
=2
2/2
28. (a) Z0
1
2xdx+Z2
0
2+xdx=2
3(2 x)3/2¸0
1
+2
3(2+x)3/2¸2
0
=2
3(2233) + 2
3(8 22) = 2
3(8 42+3
3)
(b) Z0
1
(1ex)dx+Z1
0
(ex1)dx =(xe
x
)
¸0
1
+(exx)¸1
0
=1(1e1)+e11=e+1/e2
29. Z0
2
x2dx +Z3
0
(x)dx =1
3x3¸0
21
2x2¸3
0
=11/6
30. Z1
0
xdx+Z4
1
1
x
2dx =2
3x3/2¸1
01
x¸4
1
=17/12
31. 0.665867079; Z3
1
1
x2dx =1
x¸3
1
=2/3
32. 1.000257067; Zπ/2
0
sin xdx =cos x¸π/2
0
=1
231 Chapter 7
33. 1.098242635; Z3
1
1
xdx =lnx
¸3
1
=ln31.098612289
35. A=Z3
0
(x2+1)dx =µ1
3x3+x¶¸3
0
=12
36. A=Z2
1
(x2+3x2)dx =µ1
3x3+3
2x22x¶¸2
1
=1/6
37. A=Z2π/3
0
3 sin xdx=3 cos x#2π/3
0
=9/238. A=Z1
2
x3dx =1
4x4¸1
2
=15/4
39. A1=Z2
3
(x23x10)dx =µ1
3x33
2x210x¶¸2
3
=23/6,
A
2=Z5
2
(x
23x10)dx = 343/6,
A3=Z8
5
(x23x10)dx = 243/6, A=A1+A2+A3= 203/2
-3
-2
85
10
x
y
A1
A2
A3
40. (a) the area is positive
(b) Z5
2µ1
100x31
20x21
25x+1
5dx =µ1
400x41
60x31
50x2+1
5x¶¸5
2
=343
1200
41. (a) the area between the curve and the x-axis breaks into equal parts, one above and one below the
x-axis, so the integral is zero
(b) Z1
1
x3dx =1
4x4¸1
1
=1
4(14(1)4)=0;
Zπ/2
π/2
sin xdx =cos x#π/2
π/2
=cos(π/2) + cos(π/2)=0+0=0
(c) The area on the left side of the y-axis is equal to the area on the right side, so
Za
a
f(x)dx =2Za
0
f(x)dx
(d) Z1
1
x2dx =1
3x3¸1
1
=1
3(13(1)3)=2
3=2Z1
0
x
2
dx;
Zπ/2
π/2
cos xdx = sin x#π/2
π/2
= sin(π/2) sin(π/2)=1+1=2=2Zπ/2
0
cos xdx
42. The numerator is an odd function and the denominator is an even function, so the integrand is an
odd function and the integral is zero.
43. (a) x3+1 (b) F(x)=µ1
4
t
4+t
¶¸x
1
=1
4x4+x5
4;F0(x)=x
3+1
44. (a) cos 2x(b) F(x)= 1
2sin 2t¸x
π/4
=1
2sin 2x1
2,F0(x) = cos 2x
45. (a) sin x(b) ex2
Exercise Set 7.6 232
46. (a) 1
1+
x(b) ln x
47. x
cos x48. |u|
49. F0(x)=
3x
2+1,F00(x)= 3x
3x
2+1
(a) 0(b) 13 (c) 6/13
50. F0(x)= cos x
x2+3,F00(x)=(x
2+ 3) sin x2xcos x
(x2+3)
2
(a) 0(b) 1/3(c) 0
51. (a) F0(x)= x3
x
2+7 = 0 when x= 3, which is a relative minimum, and hence the absolute minimum,
by the first derivative test.
(b) increasing on [3,+), decreasing on (−∞,3]
(c) F00(x)=7+6xx
2
(x
2+7)
2=(7 x)(1 + x)
(x2+7)
2; concave up on (1,7), concave down on (−∞,1) and
on (7,+)
52. F
t
2
3
-20 -10 10 20
53. (a) (0,+) because fis continuous there and 1 is in (0,+)
(b) at x= 1 because F(1)=0
54. (a) (3,3) because fis continuous there and 1 is in (3,3)
(b) at x= 1 because F(1)=0
55. (a) fave =1
9Z9
0
x1/2dx =2;
x
=2,x
=4
(b) fave =1
e1Ze
1
1
xdx =1
e1ln x¸e
1
=1
e1;1
x=1
e1,x=e1
56. (a) fave =1
2πZπ
π
sin xdx= 0; sin x=0,x
=π, 0
(b) fave =1
2Z3
1
1
x2dx =1
3;1
(x)2=1
3,x=3
57. 2x3+2
29, so 32Z3
0px3+2dx 329
58. Let f(x)=xsin x,f(0) = f(1)=0,f
0
(x) = sin x+xcos x= 0 when x=tan x,x2.0288,
so fhas an absolute maximum at x2.0288; f(2.0288) 1.8197, so 0 xsin x1.82 and
0Zπ
0
xsin xdx 1.82π=5.72
233 Chapter 7
59. 0ln xln 5 for xin [1,5], so 0 Z5
1
ln xdx 4ln5
60. (a) £cF (x)¤b
a=cF (b)cF (a)=c[F(b)F(a)] = c£F(x)¤b
a
(b) £F(x)+G(x)
¤b
a=[F(b)+G(b)] [F(a)+G(a)]
=[F(b)F(a)]+[G(b)G(a)] = F(x)¤b
a+G(x)¤b
a
(c) £F(x)G(x)¤b
a=[F(b)G(b)] [F(a)G(a)]
=[F(b)F(a)] [G(b)G(a)] = F(x)¤b
aG(x)¤b
a
EXERCISE SET 7.7
1. (a) the increase in height in inches, during the first ten years
(b) the change in the radius in centimeters, during the time interval t=1tot= 2 seconds
(c) the change in the speed of sound in ft/s, during an increase in temperature from t=32
Fto
t= 100F
(d) the displacement of the particle in cm, during the time interval t=t1to t=t2seconds
2. (a) Z1
0
V(t)dt gal
(b) the change f(x1)f(x2) in the values of fover the interval
3. (a) displ = s(3) s(0)
=Z3
0
v(t)dt =Z2
0
(1 t)dt +Z3
2
(t3)dt =(tt
2
/2)¸2
0
+(t
2
/23t)
¸3
2
=1/2;
dist = Z3
0|v(t)|dt =(tt
2
/2)¸1
0
+(t
2
/2t)
¸2
1
+(t
2
/23t)
¸3
2
=1/2
(b) displ = s(3) s(0)
=Z3
0
v(t)dt =Z1
0
tdt +Z2
1
dt +Z3
2
(5 2t)dt =t2/2¸2
0
+t¸3
2
+(5tt
2
)
¸3
2
=5;
dist = Z1
0
tdt +Z2
1
dt +Z5/2
2
(5 2t)dt +Z3
5/2
(2t5)dt
=t2/2¸1
0
+t¸2
1
+(5tt
2
)
¸5/2
2
+(t
25t)
¸3
5/2
=5/2
4. v
t
-1
1
246810
5. (a) v(t)=20+Zt
0
a(u)du; add areas of the small blocks to get
v(5) 20 + 1
2(1.5+2.7+4.6+6.2+7.6)=31.3
Exercise Set 7.7 234
(b) v(10) = v(4) + Z10
5
a(u)du 31.3+1
2(8.6+9.3+9.7+10+10.1)=55.15
6. a>0 and therefore (Theorem 7.5.6(a)) v>0, so the particle is always speeding up for 0 <t<10
7. (a) s(t)=Z(t
32t
2+1)dt =1
4t42
3t3+t+C,
s(0) = 1
4(0)42
3(0)3+0+C=1,C=1,s(t)= 1
4
t
42
3
t
3+t+1
(b) v(t)=Z4 cos 2tdt= 2 sin 2t+C1,v(0) = 2 sin 0 + C1=1, C1=1,
v(t) = 2 sin 2t1, s(t)=Z(2 sin 2t1)dt =cos 2tt+C2,
s(0) = cos 0 0+C
2=3, C2=2, s(t)=cos 2tt2
8. (a) s(t)=Z(1 + sin t)dt =tcos t+C,s(0)=0cos 0 + C=3, C=2, s(t)=tcos t2
(b) v(t)=Z(t
23t+1)dt =1
3t33
2t2+t+C1,
v(0) = 1
3(0)33
2(0)2+0+C
1=0,C
1=0,v(t)=1
3
t
33
2
t
2+t,
s(t)=Zµ1
3
t
33
2
t
2+t
dt =1
12t41
2t3+1
2t2+C2,
s(0) = 1
12(0)41
2(0)3+1
2(0)2+C2=0,C
2=0,s(t)= 1
12t41
2t3+1
2t2
9. (a) s(t)=Z(2t3)dt =t23t+C,s(1) = (1)23(1) + C=5,C=7,s(t)=t
23t+7
(b) v(t)=Zcos tdt = sin t+C1,v(π/2)=2=1+C
1
,C
1=1,v(t) = sin t+1,
s(t)=Z(sin t+1)dt =cos t+t+C2,s(π/2)=0=π/2+C2,C2=π/2, s(t)=cos t+tπ/2
10. (a) s(t)=Zt
2/3
dt =3
5t5/3+C,s(8)=0=3
5
32+C,C=96
5,s(t)=3
5
t
5/396
5
(b) v(t)=Z
tdt =2
3t3/2+C1,v(4)=1=2
3
8+C
1
,C
1=13
3,v(t)=2
3
t
3/213
3,
s(t)=Zµ2
3
t
3/213
3dt =4
15t5/213
3t+C2,s(4) = 5= 4
1532 13
34+C
2=44
5+C2,
C2=19
5,s(t)= 4
15t5/213
3t+19
5
11. (a) displacement = s(π/2) s(0) = Zπ/2
0
sin tdt =cos t¸π/2
0
=1
distance = Zπ/2
0|sin t|dt =1
(b) displacement = s(2π)s(π/2) = Z2π
π/2
cos tdt = sin t¸2π
π/2
=1
distance = Z2π
π/2|cos t|dt =Z3π/2
π/2
cos tdt +Z2π
3π/2
cos tdt =3
235 Chapter 7
12. (a) displacement = s(6) s(0) = Z6
0
(2t4)dt =(t
24t)
¸6
0
=12
distance Z6
0|2t4|dt =Z2
0
(4 2t)dt +Z6
2
(2t4)dt =(4tt
2
)
¸2
0
+(t
24t)
¸6
2
=20
(b) displacement = Z5
0|t3|dt =Z3
0(t3)dt +Z5
3
(t3)dt =13/2
distance = Z5
0|t3|dt =13/2
13. (a) v(t)=t
33t
2+2t=t(t1)(t2)
displacement = Z3
0
(t33t2+2t)dt =9/4
distance = Z3
0|v(t)|dt =Z1
0
v(t)dt +Z2
1v(t)dt +Z3
2
v(t)dt =11/4
(b) displacement = Z3
0
(et2)dt =e37
distance = Z3
0|v(t)|dt =Zln 2
0
v(t)dt +Z3
ln 2
v(t)dt =e39+4ln2
14. (a) displacement = Z3
1
(1
21
t)dt =1ln 3
distance = Z3
1|v(t)|dt =Z2
1
v(t)dt +Z3
2
v(t)dt = 2 ln 2 ln 3
(b) displacement = Z9
4
3t1/2dt =6
distance = Z9
4|v(t)|dt =Z9
4
v(t)dt =6
15. v(t)=2t+3
displacement = Z4
1
(2t+3)dt =6
distance = Z4
1|−2t+3|dt =Z3/2
1
(2t+3)dt +Z4
3/2
(2t3)dt =13/2
16. v(t)= 1
2t
22t
displacement = Z5
1µ1
2t22tdt =10/3
distance = Z5
1¯¯¯¯
1
2t22t¯¯¯¯
dt =Z4
1µ1
2t22tdt +Z5
4µ1
2t22tdt =17/3
17. v(t)= 2
55t+1+8
5
displacement = Z3
0µ2
55t+1+8
5dt =4
75(5t+1)
3/2+8
5t
¸3
0
= 204/25
distance = Z3
0|v(t)|dt =Z3
0
v(t)dt = 204/25
Exercise Set 7.7 236
18. v(t)=cos t+2
displacement = Zπ/2
π/4
(cos t+2)dt =(π+
22)/2
distance = Zπ/2
π/4|−cos t+2|dt =Zπ/2
π/4
(cos t+2)dt =(π+
22)/2
19. (a) s=Zsin 1
2πt dt =2
πcos 1
2πt +C
s= 0 when t= 0 which gives C=2
πso s=2
πcos 1
2πt +2
π.
a=dv
dt =π
2cos 1
2πt. When t=1:s=2,v=1,|v|=1,a=0.
(b) v=3Ztdt =3
2t
2+C
1,v= 0 when t= 0 which gives C1=0sov=3
2
t
2
s=3
2Zt
2
dt =1
2t3+C2,s= 1 when t= 0 which gives C2=1sos=1
2
t
3+1.
When t=1:s=1/2, v=3/2, |v|=3/2, a=3.
20. (a) negative, because vis decreasing
(b) speeding up when av > 0, so 2 <t<5; slowing down when 1 <t<2
(c) negative, because the area between the graph of v(t) and the t-axis appears to be greater where
v<0 compared to where v>0
21. A=A1+A2=Z1
0
(1 x2)dx +Z3
1
(x21)dx =2/3+20/3=22/3
22. A=A1+A2=Zπ
0
sin xdx Z3π/2
π
sin xdx =2+1=3
23. A=A1+A2=Z0
1
(1 ex)dx +Z1
0
(ex1)dx =1/e +e2
24. A=A1+A2=Z1
1/2
1x
xdx +Z2
1
x1
xdx =µ1
2ln 2+(1ln 2) = 1/2
25. s(t)=20
3t350t2+50t+s
0
,s(0) = 0 gives s0=0,sos(t)= 20
3t350t2+50t,a(t)=40t100
150
-100
06
150
-100
06
50
0
06
237 Chapter 7
26. v(t)=2t
230t+v0,v(0)=3=v
0
,sov(t)=2t
230t+3, s(t)=2
3
t
315t2+3t+s
0,s(0) = 5=s
0
,
so s(t)=2
3
t
315t2+3t5
1200
-1200
025
s(t)
500
-200
025
v(t)
70
-30
025
a(t)
27. (a) from the graph the velocity is positive, so the displacement is
always increasing and is therefore positive
v
t
0.2
0.3
0.4
0.5
12345
(b) s(t)=t/2+(t+1)e
t
28. (a) If t0<1 then the area between the velocity curve and the
t-axis, between t= 0 and t=t0, will always be negative, so
the displacement will be negative.
v
t
-0.2
-0.1
0.1
0.2 0.4 0.6 0.8 1
(b) s(t)=µt
2
21
200ln(t+0.1) t2
4+t
20 1
200 ln 10
29. (a) a(t)=½0,t<4
10,t>4
a
t
-10
-5
24 12
(b) v(t)=½25,t<4
65 10t, t > 4
v
t
-40
-20
20
2 4 6 8 10 12
(c) x(t)=½25t, t < 4
65t5t280,t>4
,sox(8) = 120, x(12) = 20
(d) x(6.5) = 131.25
Exercise Set 7.7 238
30. (a) From exercise 30 part (a), in Section 3 of Chapter 6, v2=v2
02g(ss0), so a=g=v2v2
0
2(ss0)
(b) From exercise 30 part (b), in Section 3 of Chapter 6, s=s0+1
2(v0+v)t,sot=2(ss0)
v0+v
(c) From exercise 30 part (c), in Section 3 of Chapter 6, s=s0+vt +1
2gt2=s0+vt 1
2at2
31. (a) a=1 mi/h/s = 22/15 ft/s2(b) a= 30 km/h/min = 1/7200 km/s2
32. Take t= 0 when deceleration begins, then a=10 so v=10t+C1, but v= 88 when t= 0 which
gives C1=88thusv=10t+ 88, t0
(a) v= 45 mi/h = 66 ft/s, 66 = 10t+ 88, t=2.2s
(b) v= 0 (the car is stopped) when t=8.8s
s=Zvdt =Z(10t+ 88)dt =5t2+88t+C
2
, and taking s= 0 when t=0,C
2=0so
s=5t
2+88t.Att=8.8, s= 387.2. The car travels 387.2 ft before coming to a stop.
33. a=a0ft/s2,v=a0t+v0=a0t+ 132 ft/s, s=a0t2/2 + 132t+s0=a0t2/2 + 132tft; s= 200 ft
when v= 88 ft/s. Solve 88 = a0t+ 132 and 200 = a0t2/2 + 132tto get a0=121
5when t=20
11,so
s=12.1t2+ 132t,v=121
5t+ 132.
(a) a0=121
5ft/s2(b) v= 55 mi/h = 242
3ft/s when t=70
33 s
(c) v= 0 when t=60
11 s
34. dv/dt =3,v=3t+C
1
, but v=v0when t=0soC
1=v
0
,v=3t+v
0
. From ds/dt =v=3t+v
0we
get s=3t
2
/2+v
0
t+C
2and, with s= 0 when t=0,C
2=0sos=3t
2
/2+v
0
t.s= 40 when t=4
thus 40 = 3(4)2/2+v
0
(4), v0= 4 m/s
35. Suppose s=s0=0,v=v
0=0att=t
0=0;s=s
1= 120, v=v1at t=t1; and s=s2,v=v2=12
at t=t2. From Exercise 30(a),
2.6=a=v
2
1v
2
0
2(s1s0),v
2
1=2as1=5.2(120) = 624. Applying the formula again,
1.5=a=v
2
2v
2
1
2(s2s1),v
2
2=v
2
13(s2s1), so
s2=s1(v2
2v2
1)/3 = 120 (144 624)/3 = 280 m.
36. a(t)=½4,t<2
0,t>2
, so, with v0=0,v(t)=½4t, t < 2
8,t>2
and, since s0=0,s(t)=½2t
2
,t<2
8t8,t>2
s= 100 when 8t8 = 100, t= 108/8=13.5s
37. The truck’s velocity is vT= 50 and its position is sT=50t+ 5000. The car’s acceleration is aC=2,
so vC=2t,s
C=t
2(initial position and initial velocity of the car are both zero). sT=sCwhen
50t+ 5000 = t2,t250t5000 = (t+ 50)(t100) = 0, t= 100 s and sC=sT=t2=10,000 ft
38. Let t= 0 correspond to the time when the leader is 100 m from the finish line; let s= 0 correspond to
the finish line. Then vC= 12, sC=12t115; aL=0.5 for t>0, vL=0.5t+8, s
L=0.25t2+8t100.
sC=0att= 115/12 9.58 s, and sL=0att=16+4
41 9.61, so the challenger wins.
39. s= 0 and v= 112 when t=0sov(t)=32t+ 112, s(t)=16t2+ 112t
(a) v(3) = 16 ft/s, v(5) = 48 ft/s
(b) v= 0 when the projectile is at its maximum height so 32t+112=0,t=7/2s,
s(7/2) = 16(7/2)2+ 112(7/2) = 196 ft.
239 Chapter 7
(c) s= 0 when it reaches the ground so 16t2+ 112t=0,16t(t7)=0,t=0,7 of which t=7
is when it is at ground level on its way down. v(7) = 112, |v|= 112 ft/s.
40. s= 112 when t=0sos(t)=16t2+v0t+ 112. But s= 0 when t= 2 thus
16(2)2+v0(2) + 112 = 0, v0=24 ft/s.
41. (a) s(t) = 0 when it hits the ground, s(t)=16t2+16t=16t(t1) = 0 when t=1s.
(b) The projectile moves upward until it gets to its highest point where v(t)=0,
v(t)=32t+ 16 = 0 when t=1/2s.
42. (a) s(t) = 0 when the rock hits the ground, s(t)=16t2+ 555 = 0 when t=555/4s
(b) v(t)=32t,v(555/4) = 8555, the speed at impact is 8555 ft/s
43. (a) s(t) = 0 when the package hits the ground,
s(t)=16t2+20t+ 200 = 0 when t=(5+5
33)/8s
(b) v(t)=32t+ 20, v[(5+5
33)/8] = 2033, the speed at impact is 2033 ft/s
44. (a) s(t) = 0 when the stone hits the ground,
s(t)=16t296t+ 112 = 16(t2+6t7) = 16(t+ 7)(t1) = 0 when t=1s
(b) v(t)=32t96, v(1) = 128, the speed at impact is 128 ft/s
45. s(t)=4.9t
2+49t+ 150 and v(t)=9.8t+49
(a) the projectile reaches its maximum height when v(t)=0,9.8t+49=0,t=5s
(b) s(5) = 4.9(5)2+ 49(5) + 150 = 272.5m
(c) the projectile reaches its starting point when s(t) = 150, 4.9t2+49t+ 150 = 150,
4.9t(t10)=0,t=10s
(d) v(10) = 9.8(10) + 49 = 49 m/s
(e) s(t) = 0 when the projectile hits the ground, 4.9t2+49t+ 150 = 0 when (use the quadratic
formula) t12.46 s
(f) v(12.46) = 9.8(12.46)+49≈−73.1, the speed at impact is about 73.1 m/s
46. take s= 0 at the water level and let hbe the height of the bridge, then s=hand v= 0 when t=0
so s(t)=16t2+h
(a) s= 0 when t= 4 thus 16(4)2+h=0,h= 256 ft
(b) First, find how long it takes for the stone to hit the water (find tfor s=0):16t2+h=0,
t=
h/4. Next, find how long it takes the sound to travel to the bridge: this time is h/1080
because the speed is constant at 1080 ft/s. Finally, use the fact that the total of these two
times must be 4 s: h
1080 +h
4=4,h+ 270h= 4320, h+ 270h4320 = 0, and by the
quadratic formula h=270 ±p(270)2+ 4(4320)
2, reject the negative value to get h15.15,
h229.5 ft.
47. g=9.8/6=4.9/3 m/s2,sov=(4.9/3)t,s=(4.9/6)t2+5,s= 0 when t=p30/4.9 and
v=(4.9/3)p30/4.9≈−4.04, so the speed of the module upon landing is 4.04 m/s
48. s(t)=1
2gt2+v0t;s= 1000 when v=0,so0=v=gt +v0,t=v0/g,
1000 = s(v0/g)=1
2g(v
0
/g)2+v0(v0/g)=1
2v
2
0
/g,sov
2
0= 2000g,v0=2000g.
The initial velocity on the Earth would have to be 6 times faster than that on the Moon.
Exercise Set 7.7 240
49. fave =1
31Z3
1
3xdx=3
4x
2¸3
1
=6 50. fave =1
2(1) Z2
1
x2dx =1
9x3¸2
1
=1
51. fave =1
π0Zπ
0
sin xdx=1
πcos x¸π
0
=2
52. fave =1
π0Zπ
0
cos xdx=1
πsin x¸π
0
=0
53. fave =1
e1=Ze
1
1
xdx =1
1e(ln eln 1) = 1
e1
54. fave =1
ln 5 (1) Zln 5
1
exdx =1
ln5+1(5 e1)= 5e
1
1+ln5
55. (a) fave =1
20Z2
0
x2dx =4/3(b) (x)2=4/3,x
=±2/
3,
but only 2/3isin[0,2]
(c)
2
4
x
y
2
3
56. (a) fave =1
40Z4
0
2xdx=4 (b) 2x=4,x
=2
(c)
24
4
8
x
y
57. (a) vave =1
41Z4
1
(3t3+2)dt =1
3
789
4=263
4
(b) vave =s(4) s(1)
41=100 7
3=31
58. (a) aave =1
50Z5
0
(t+1)dt =7/2
(b) aave =v(π/4) v(0)
π/40=2/21
π/4=(2
24)
59. time to fill tank = (volume of tank)/(rate of filling) = [π(3)25]/(1)=45π, weight of water in tank at
time t= (62.4) (rate of filling)(time) = 62.4t,
weightave =1
45πZ45π
0
62.4tdt= 1404πlb
241 Chapter 7
60. (a) If xis the distance from the cooler end, then the temperature is T(x)= (15+1.5x)
C, and
Tave =1
10 0Z10
0
(15+1.5x)dx =22.5
C
(b) By the Mean-Value Theorem for Integrals there exists xin [0,10] such that
f(x)= 1
10 0Z10
0
(15+1.5x)dx =22.5, 15 + 1.5x=22.5, x=5
61. (a) amount of water = (rate of flow)(time) = 4tgal, total amount = 4(30) = 120 gal
(b) amount of water = Z60
0
(4+t/10)dt = 420 gal
(c) amount of water = Z120
0
(10 + t)dt = 1200 + 16030 2076.36 gal
62. (a) The maximum value of Roccurs at 4:30 P.M. when t=0.
(b) Z60
0
100(1 0.0001t2)dt = 5280 cars
63. (a) Zb
a
[f(x)fave]dx =Zb
a
f(x)dx Zb
a
favedx =Zb
a
f(x)dx fave(ba)=0
because fave(ba)=Zb
a
f(x)dx
(b) no, because if Zb
a
[f(x)c]dx = 0 then Zb
a
f(x)dx c(ba)=0so
c=1
baZb
a
f(x)dx =fave is the only value
EXERCISE SET 7.8
1. (a) Z3
1
u7du (b) 1
2Z4
7
u1/2du (c) 1
πZπ
π
sin udu (d) Z0
3
(u+5)u
20du
2. (a) 1
2Z1
1
eudu (b) Z2
1
udu
(c) Z1
0
u2du (d) 1
2Z4
3
(u3)u1/2du
3. u=2x+1, 1
2Z3
1
u
4
du =1
10u5¸3
1
= 121/5, or 1
10(2x+1)
5
¸1
0
= 121/5
4. u=4x2, 1
4Z6
2
u3du =1
16u4¸6
2
= 80, or 1
16(4x2)4¸2
1
=80
5. u=12x,1
2Z1
3
u
3
du =1
8u4¸1
3
= 10, or 1
8(1 2x)4¸0
1
=10
6. u=43x,1
3Z2
1
u
8
du =1
27u9¸2
1
= 19, or 1
27(4 3x)9¸2
1
=19
Exercise Set 7.8 242
7. u=1+x,Z9
1
(u1)u1/2du =Z9
1
(u3/2u1/2)du =2
5u5/22
3u3/2¸9
1
= 1192/15,
or 2
5(1+x)5/22
3(1+x)3/2¸8
0
= 1192/15
8. u=4x,Z4
9
(u4)u1/2du =Z4
9
(u3/24u1/2)du =2
5u5/28
3u3/2¸4
9
=506/15
or 2
5(4 x)5/28
3(4 x)3/2¸0
5
=506/15
9. u=x/2, 8 Zπ/4
0
sin udu=8 cos u¸π/4
0
=84
2, or 8 cos(x/2)¸π/2
0
=84
2
10. u=3x,2
3Zπ/2
0
cos udu=2
3sin u¸π/2
0
=2/3, or 2
3sin 3x¸π/6
0
=2/3
11. u=ex+4,du =exdx,u=eln 3 +4= 1
3+4= 13
3when x=ln 3,
u=eln 3 + 4 = 3 + 4 = 7 when x=ln3,Z7
13/3
1
udu =lnu
¸7
13/3
= ln(7) ln(13/3) = ln(21/13)
12. u=34e
x
,du =4exdx,u=1 when x=0,u=17 when x=ln5
1
4Z17
1
udu=1
8u
2¸17
1
=36
13. 1
3Z5
0p25 u2du =1
3·1
4π(5)2¸=25
12π
14. 1
2Z4
0p16 u2du =1
2·1
4π(4)2¸=2π
15. 1
2Z0
1p1u2du =1
2Z1
0p1u2du =1
2·1
4[π(1)2]=π/8
16. Z6
6p36 u2du =π(6)2/2=18π
17. Z1
0
sin πxdx =1
πcos πx¸1
0
=1
π(11)=2
18. A=Zπ/8
0
3 cos 2xdx=3
2sin 2x¸π/8
0
=3
2/4
19. Z7
3
(x+5)
2=(x+5)
1
¸7
3
=1
12 +1
8=1
24
20. A=Z1
0
dx
(3x+1)
2=1
3(3x+1)¸1
0
=1
4
21. fave =1
40Z4
0
e2xdx =1
8e2x¸4
0
=1e8
8
243 Chapter 7
22. fave =1
1/4(1/4) Z1/4
1/4
sec2πxdx =2
πtan πx#1/4
1/4
=4
π
23. 2
3(3x+1)
1/2
¸1
0
=2/324. 2
15(5x1)3/2¸2
1
=38/15
25. 2
3(x3+9)
1/2
¸1
1
=2
3(
10 22) 26. 1
10(t3+1)
20¸0
1
=1/10
27. u=x2+4x+7, 1
2Z28
12
u1/2du =u1/2¸28
12
=28 12=2(
7
3)
28. Z2
1
1
(x3)2dx =1
x3¸2
1
=1/2
29. 1
2sin2x¸π/4
3π/4
=0 30. 2
3(tan x)3/2¸π/4
0
=2/331. 5
2sin(x2)¸π
0
=0
32. u=x,2
Z2π
π
sin udu=2 cos u¸2π
π
=4
33. u=3θ,1
3Zπ/3
π/4
sec2udu=1
3tan u¸π/3
π/4
=(
31)/3
34. u= sin 3θ,1
3Z1
0
u2du =1
9u3¸1
0
=1/9
35. u=43y,y=1
3
(4 u), dy =1
3du
1
27 Z1
4
16 8u+u2
u1/2du =1
27 Z4
1
(16u1/28u1/2+u3/2)du
=1
27 ·32u1/216
3u3/2+2
5u5/2¸4
1
= 106/405
36. u=5+x,Z9
4
u5
udu =Z9
4
(u1/25u1/2)du =2
3u3/210u1/2¸9
4
=8/3
37. ln(x+e)ie
0= ln(2e)ln e=ln2 38. 1
2ex2¸2
1
=(e
1e
2
)/2
40. Z2
2p4u2du =1
2[π(2)2]=2π
41. (a) u=3x+1,1
3Z4
1
f(u)du =5/3(b) u=3x,1
3Z9
0
f(u)du =5/3
(c) u=x2,1/2Z0
4
f(u)du =1/2Z4
0
f(u)du =1/2
42. u=1x,Z1
0
x
m
(1 x)ndx =Z0
1
(1 u)mundu =Z1
0
un(1 u)mdu =Z1
0
xn(1 x)mdx
Exercise Set 7.8 244
43. sin x= cos(π/2x),
Zπ/2
0
sinnxdx=Zπ/2
0
cosn(π/2x)dx =Z0
π/2
cosnudu (u=π/2x)
=Zπ/2
0
cosnudu=Zπ/2
0
cosnxdx (by replacing uby x)
44. u=1x,Z0
1
(1 u)undu =Z1
0
(1 u)undu =Z1
0
(unun+1)du =1
n+11
n+2 =1
(n+ 1)(n+2)
45. y(t) = (802.137) Ze1.528tdt = 524.959e1.528t+C;y(0) = 750 = 524.959 + C,C= 225.041,
y(t) = 524.959e1.528t+ 225.041, y(12) = 48,233,525,650
46. Vave =275000
10 0Z10
0
e0.17tdt =161764.7059e0.17t¸10
0
= $132,212.96
47. s(t)=Z(25+10e
0.05t)dt =25t200e0.05t+C
(a) s(10) s(0) = 250 200(e0.51) = 450 200/e328.69 ft
(b) yes; without it the distance would have been 250 ft
48. Zk
0
e2xdx =3,1
2
e
2x
¸k
0
=3,1
2
(e
2k1)=3,e
2k=7,k =1
2ln 7
49. (a) V2
rms =1
1/f 0Z1/f
0
V2
psin2(2πft)dt =1
2fV2
pZ1/f
0
[1 cos(4πft)]dt
=1
2fV2
p[t1
4πf sin(4πft)]¸1/f
0
=1
2V2
p,so Vrms =Vp/2
(b) Vp/2 = 120,V
p= 1202169.7V
50. Let u=tx, then du =dx and
Zt
0
f(tx)g(x)dx =Z0
t
f(u)g(tu)du =Zt
0
f(u)g(tu)du;
the result follows by replacing uby xin the last integral.
51. (a) I=Z0
a
f(au)
f(au)+f(u)du =Za
0
f(au)+f(u)f(u)
f(au)+f(u)du
=Za
0
du Za
0
f(u)
f(au)+f(u)du, I =aIso 2I=a, I =a/2
(b) 3/2(c) π/4
52. x=1
u,dx =1
u2du,I=Z1
1
1
1+1/u2(1/u2)du =Z1
1
1
u2+1du =Iso I= 0 which is impossible
because 1
1+x
2is positive on [1,1]. The substitution u=1/x is not valid because uis not continuous
for all xin [1,1].
53. Z1
0
sin πxdx =2
245 Chapter 7
55. (a) Let u=xthen
Za
a
f(x)dx =Za
a
f(u)du =Za
a
f(u)du =Za
a
f(u)du
so, replacing uby xin the latter integral,
Za
a
f(x)dx =Za
a
f(x)dx,2
Za
a
f(x)dx =0,Za
a
f(x)dx =0
The graph of fis symmetric about the origin so Z0
a
f(x)dx is the negative of Za
0
f(x)dx thus
Za
a
f(x)dx =Z0
a
f(x)+Za
0
f(x)dx =0
(b) Za
a
f(x)dx =Z0
a
f(x)dx +Za
0
f(x)dx, let u=xin Z0
a
f(x)dx to get
Z0
a
f(x)dx =Z0
a
f(u)du =Za
0
f(u)du =Za
0
f(u)du =Za
0
f(x)dx
so Za
a
f(x)dx =Za
0
f(x)dx +Za
0
f(x)dx =2Za
0
f(x)dx
The graph of f(x) is symmetric about the y-axis so there is as much signed area to the left of
the y-axis as there is to the right.
EXERCISE SET 7.9
1. (a) y
t
1
2
3
123
(b) y
t
1
2
3
0.5 1
(c) y
t
1
2
3
1e2
2. y
t
1
2
3
1
2
33
2
3. (a) ln tiac
1= ln(ac)=lna+lnc=7 (b) ln ti1/c
1= ln(1/c)=5
(c) ln tia/c
1= ln(a/c)=25=3(d) ln tia3
1=lna
3=3lna=6
Exercise Set 7.9 246
4. (a) ln tia
1=lna
1/2=2 (b) ln ti2a
1=ln2+4
(c) ln ti2/a
1=ln24(d) ln tia
2=4ln 2
5. ln 5 1.603210678; ln 5 = 1.609437912; magnitude of error is <0.0063
6. ln 3 1.098242635; ln 3 = 1.098612289; magnitude of error is <0.0004
7. (a) x1,x>0(b) x2,x6=0
(c) x2,−∞ <x<+(d) x,−∞ <x<+
(e) x3,x>0(f) ln x+x,x>0
(g) x3
x,−∞ <x<+(h) ex
x,x>0
8. (a) f(ln 3) = e2ln3 =e
ln(1/9) =1/9
(b) f(ln 2) = eln 2 +3e
ln 2 =2+3e
ln(1/2) =2+3/2=7/2
9. (a) 3π=eπln 3 (b) 22=e2ln2
10. (a) πx=exln π(b) x2x=e2xln x
11. (a) lim
x+·µ1+ 1
xx
¸2
=·lim
x+µ1+ 1
xx
¸2
=e
2
(b) y=2x, lim
y0(1+y)2/y = lim
y0h(1+y)1/yi2=e2
12. (a) y=3x, lim
y+µ1+ 1
yy/3
= lim
y+·µ1+ 1
yy¸1/3
=·lim
y+µ1+ 1
yy¸1/3
=e
1/3
(b) lim
x0(1+x)1/3x= lim
x0h(1+x)1/xi1/3=e1/3
13. g0(x)=x
2x14. g0(x)=1cos x
15. (a) 1
x3(3x2)= 3
x(b) eln x1
x=1
16. (a) 2xx2+1 (b) µ1
x2sin µ1
x
17. F0(x)= cos x
x2+3,F00(x)=(x
2+ 3) sin x2xcos x
(x2+3)
2
(a) 0(b) 1/3(c) 0
18. F0(x)=
3x
2+1,F00(x)= 3x
3x
2+1
(a) 0(b) 13 (c) 6/13
19. (a) d
dx Zx2
1
t1+tdt =x2p1+x
2
(2x)=2x
3
p1+x
2
(b) Zx2
1
t1+tdt =2
3(x2+1)
3/2+2
5(x
2+1)
5/24
2
15
247 Chapter 7
20. (a) d
dx Za
x
f(t)dt =d
dx Zx
a
f(t)dt =f(x)
(b) d
dx Za
g(x)
f(t)dt =d
dx Zg(x)
a
f(t)dt =f(g(x))g0(x)
21. (a) sin x2(b) tan2x
1 + tan2xsec2x=tan2x
22. (a) (x2+1)
40 (b) cos3µ1
x¶µ1
x
2=cos3(1/x)
x2
23. 33x1
9x2+1+2xx
21
x
4+1
24. If fis continuous on an open interval Iand g(x), h(x), and aare in Ithen
Zg(x)
h(x)
f(t)dt =Za
h(x)
f(t)dt +Zg(x)
a
f(t)dt =Zh(x)
a
f(t)dt +Zg(x)
a
f(t)dt
so d
dx Zg(x)
h(x)
f(t)dt =f(h(x))h0(x)+f(g(x))g0(x)
25. (a) sin2(x3)(3x2)sin2(x2)(2x)=3x
2sin2(x3)2xsin2(x2)
(b) 1
1+x(1) 1
1x(1) = 2
1x2
26. F0(x)= 1
3x
(3) 1
x(1) = 0 so F(x) is constant on (0,+). F(1) = ln 3 so F(x) = ln 3 for all x>0.
27. from geometry, Z3
0
f(t)dt =0,Z5
3
f(t)dt =6,Z7
5
f(t)dt =0;andZ10
7
f(t)dt =Z10
7
(4t37)/3dt =3
(a) F(0)=0,F(3)=0,F(5)=6,F(7)=6,F(10) = 3
(b) Fis increasing where F0=fis positive, so on [3/2,6] and [37/4,10], decreasing on [0,3/2] and
[6,37/4]
(c) critical points when F0(x)=f(x)=0,sox=3/2,6,37/4; maximum 15/2 at x= 6, minimum
9/4atx=3/2
(d) F(x)
x
-2
2
4
6
246810
28. fave =1
10 0Z10
0
f(t)dt =1
10F(10) = 0.3
29. x<0:F(x)=Zx
1
(t)dt =1
2t2¸x
1
=1
2(1 x2),
x0:F(x)=Z0
1
(t)dt +Zx
0
tdt=1
2+1
2x
2;F(x)=((1 x2)/2,x<0
(1+x2)/2,x0
Exercise Set 7.9 248
30. 0x2:F(x)=Zx
0
tdt=1
2x
2,
x>2:F(x)=Z2
0
tdt+Zx
2
2dt =2+2(x2)=2x2; F(x)=(x
2
/2,0x2
2x2,x>2
31. y(x)=2+Zx
1
t
1/3
dt =2+3
4
t
4/3
¸x
1
=5
4+3
4
x
4/3
32. y(x)=Zx
1
(t
1/2+t
1/2
)dt =2
3x3/22
3+2x
1/22
33. y(x)=1+Zx
π/4
(sec2tsin t)dt = tan x+ cos x2/2
34. y(x)=Zx
0
tet2dt =1
2ex21
235. P(x)=P
0+Zx
0
r(t)dt individuals
36. s(T)=s
1+ZT
1
v(t)dt
37. II has a minimum at x= 1, and I has a zero there, so I could be the derivative of II; on the other
hand I has a minimum near x=1/3, but II is not zero there, so II could not be the derivative of I
38. (b) lim
k0
1
k(xk1)=lnxlim
k0xk=lnxby L’Hˆopital’s rule (with respect to k)
39. (a) where f(t) = 0; by the first derivative test, at t=3
(b) where f(t) = 0; by the first derivative test, at t=1
(c) at t=0,1 or 5; from the graph it is evident that it is at t=5
(d) at t=0,3 or 5; from the graph it is evident that it is at t=3
(e) Fis concave up when F00 =f0is positive, i.e. where fis increasing, so on (0,1/2) and (2,4);
it is concave down on (1/2,2) and (4,5)
(f) F(x)
x
-1
-0.5
0.5
1
12345
40. (a)
x
-1
1
-4 -2 2 4
erf(x)
(c) erf0(x)>0 for all x, so there are no relative extrema
(e) erf00(x)=4xex2/πchanges sign only at x= 0 so that is the only point of inflection
(g) lim
x+erf(x) = +1, lim
x→−∞ erf(x)=1
249 Chapter 7
41. C0(x) = cos(πx2/2), C00(x)=πx sin(πx2/2)
(a) cos tgoes from negative to positive at 2π/2, and from positive to negative at t=2+π/2,
so C(x) has relative minima when πx2/2=2π/2, x=±4k1, k=1,2,..., and C(x)
has relative maxima when πx2/2=(4k+1)π/2, x=±4k+1,k=0,1,....
(b) sin tchanges sign at t=,soC(x) has inflection points at πx2/2=,x=±2k,k=1,2,...;
the case k= 0 is distinct due to the factor of xin C00(x), but xchanges sign at x= 0 and
sin(πx2/2) does not, so there is also a point of inflection at x=0
42. Let F(x)=Zx
1
ln tdt,F0(x) = lim
h0
F(x+h)F(x)
h= lim
h0
1
hZx+h
x
ln tdt; but F0(x)=lnxso
lim
h0
1
hZx+h
x
ln tdt =lnx
43. Differentiate: f(x)=3e
3x
,so2+Zx
a
f(t)dt =2+Zx
a
3e
3t
dt =2+e
3t
¸x
a
= 2+e
3xe
3a=e
3xprovided
e3a=2,a= (ln 2)/3.
44. (a) The area under 1/t for xtx+ 1 is less than the area of the rectangle with altitude 1/x and
base 1, but greater than the area of the rectangle with altitude 1/(x+ 1) and base 1.
(b) Zx+1
x
1
tdt =lnt
¸x+1
x
= ln(x+1)ln x= ln(1 + 1/x), so
1/(x+1)<ln(1 + 1/x)<1/x for x>0.
(c) from part (b), e1/(x+1) <e
ln(1+1/x)<e
1/x,e1/(x+1) <1+1/x<e
1/x,
ex/(x+1) <(1+1/x)x<e; by the Squeezing Theorem, lim
x+(1+1/x)x=e.
(d) Use the inequality ex/(x+1) <(1+1/x)xto get e<(1+1/x)x+1 so
(1+1/x)x<e<(1+1/x)x+1.
45. From Exercise 44(d) ¯¯¯¯¯
eµ1+ 1
5050¯¯¯¯¯
<y(50), and from the graph y(50) <0.06
0.2
0
0 100
46. F0(x)=f(x), thus F0(x) has a value at each xin Ibecause fis continuous on Iso Fis continuous
on Ibecause a function that is differentiable at a point is also continuous at that point
CHAPTER 7 SUPPLEMENTARY EXERCISES
5. If the acceleration a= const, then v(t)=at +v0,s(t)=1
2at2+v0t+s0
6. (a) Divide the base into nequal subintervals. Above each subinterval choose the lowest and highest
points on the curved top. Draw a rectangle above the subinterval going through the lowest point,
and another through the highest point. Add the rectangles that go through the lowest points to
obtain a lower estimate of the area; add the rectangles through the highest points to obtain an
upper estimate of the area.
Supplementary Exercises 7 250
(b) n= 10: 25.0 cm, 22.4cm
(c) n= 20: 24.4 cm, 23.1cm
7. (a) 1
2+1
4=3
4(b) 11
2=3
2
(c) 5µ13
4=35
4(d) 2
(e) not enough information (f) not enough information
8. (a) 1
2+2= 5
2(b) not enough information
(c) not enough information (d) 4(2) 31
2=13
2
9. (a) Z1
1
dx +Z1
1p1x2dx = 2(1) + π(1)2/2=2+π/2
(b) 1
3(x2+1)
3/2
¸3
0π(3)2/4=1
3
(103/21) 9π/4
(c) u=x2,du =2xdx;1
2Z1
0p1u2du =1
2π(1)2/4=π/8
10. 1
2
y
x
0.2
0.4
0.6
0.8
1
0.2 0.6 1
11. The rectangle with vertices (0,0), (π, 0), (π, 1) and (0,1) has area πand is much too large; so is the
triangle with vertices (0,0), (π, 0) and (π, 1) which has area π/2; 1 πis negative; so the answer is
35π/128.
12. Divide ex+ 3 into e2xto get e2x
ex+3 =e
x3e
x
e
x+3 so
Ze2x
ex+3dx =Zexdx 3Zex
ex+3dx =ex3 ln(ex+3)+C
13. Since y=exand y=lnxare inverse functions, their graphs are
symmetric with respect to the line y=x; consequently the areas A1
and A3are equal (see figure). But A1+A2=e,so
Ze
1
ln xdx +Z1
0
exdx =A2+A3=A2+A1=e
y
x
1
e
1e
A3
A1
A2
14. (a) 1
n
n
X
k=1 rk
n=
n
X
k=1
f(x
k)∆xwhere f(x)=
x,x
k=k/n, and ∆x=1/n for 0 x1. Thus
lim
n+
1
n
n
X
k=1 rk
n=Z1
0
x1/2dx =2
3
251 Chapter 7
(b) 1
n
n
X
k=1 µk
n4
=
n
X
k=1
f(x
k)∆xwhere f(x)=x
4
,x
k=k/n, and ∆x=1/n for 0 x1. Thus
lim
n+
1
n
n
X
k=1 µk
n4
=Z1
0
x4dx =1
5
(c)
n
X
k=1
ek/n
n=
n
X
k=1
f(x
k)∆xwhere f(x)=e
x
,x
k=k/n, and ∆x=1/n for 0 x1. Thus
lim
n+
n
X
k=1
ek/n
n= lim
n+
n
X
k=1
f(x
k)∆x=Z1
0
exdx =e1.
15. Since f(x)= 1
xis positive and increasing on the interval [1,2], the left endpoint approximation
overestimates the integral of 1
xand the right endpoint approximation underestimates it.
(a) For n= 5 this becomes
0.2·1
1.2+1
1.4+1
1.6+1
1.8+1
2.0¸<Z2
1
1
xdx < 0.2·1
1.0+1
1.2+1
1.4+1
1.6+1
1.8¸
(b) For general nthe left endpoint approximation to Z2
1
1
xdx =ln2is
1
n
n
X
k=1
1
1+(k1)/n =
n
X
k=1
1
n+k1=
n1
X
k=0
1
n+kand the right endpoint approximation is
n
X
k=1
1
n+k. This yields
n
X
k=1
1
n+k<Z2
1
1
xdx <
n1
X
k=0
1
n+kwhich is the desired inequality.
(c) By telescoping, the difference is 1
n1
2n=1
2nso 1
2n0.1, n5
(d) n1,000
16. The direction field is clearly an even function, which means that the solution is even, its derivative
is odd. Since sin xis periodic and the direction field is not, that eliminates all but x, the solution of
which is the family y=x2/2+C.
17. (a) 1·2+2·3+···+n(n+1)=
n
X
k=1
k(k+1)=
n
X
k=1
k2+
n
X
k=1
k
=1
6n(n+ 1)(2n+1)+ 1
2n(n+1)= 1
3n(n+ 1)(n+2)
(b)
n1
X
k=1 µ9
nk
n2=9
n
n1
X
k=1
11
n2
n1
X
k=1
k=9
n(n1) 1
n2·1
2(n1)(n)=17
2µn1
n;
lim
n+
17
2µn1
n=17
2
(c)
3
X
i=1 "2
X
j=1
i+
2
X
j=1
j#=
3
X
i=1 ·2i+1
2(2)(3)¸=2
3
X
i=1
i+
3
X
i=1
3=2·1
2
(3)(4) + (3)(3) = 21
18. (a)
14
X
k=0
(k+ 4)(k+1) (b)
19
X
k=5
(k1)(k4)
Supplementary Exercises 7 252
19. (a) If u= sec x,du = sec xtan xdx,Zsec2xtan xdx =Zudu =u2/2+C
1= (sec2x)/2+C
1
;
if u= tan x,du = sec2xdx,Zsec2xtan xdx =Zudu =u2/2+C
2= (tan2x)/2+C
2
.
(b) They are equal only if sec2xand tan2xdiffer by a constant, which is true.
20. 1
2sec2xiπ/4
0=1
2(2 1)=1/2 and 1
2tan2xiπ/4
0=1
2(1 0)=1/2
21. Zp1+x
2/3
dx =Zx1/3px2/3+1dx;u=x2/3+1,du =2
3x1/3dx
3
2Zu1/2du =u3/2+C=(x
2/3+1)
3/2+C
22. (a) Zb
a
n
X
k=1
fk(x)dx =
n
X
k=1 Zb
a
fk(x)dx
(b) yes; substitute ckfk(x) for fk(x) in part (a), and then use Zb
a
ckfk(x)dx =ckZb
a
fk(x)dx from
Theorem 7.5.4
23. (a) Zx
1
1
1+t
2dt
(b) Zx
tan(π/42)
1
1+t
2dt
24. (a) F0(x)= x3
x
2+7; increasing on [3,+), decreasing on (−∞,3]
(b) F00(x)=7+6xx
2
(x
2+7)
2=(7 x)(1 + x)
(x2+7)
2; concave up on (1,7), concave down on (−∞,1) and
(7,+)
(c) F0(x)= x3
x
2+7 = 0 when x= 3, which is a relative minimum, and hence the absolute minimum,
by the first derivative test.
(d) F(x)
x
1
2
3
-10 10 20
25. F0(x)= 1
1+x
2+1
1+(1/x)2(1/x2)=0soFis constant on (0,+).
26. (3,3) because fis continuous there and 1 is in (3,3)
27. (a) The domain is (−∞,+); F(x)is0ifx= 1, positive if x>1, and negative if x<1, because
the integrand is positive, so the sign of the integral depends on the orientation (forwards or
backwards).
(b) The domain is [2,2]; F(x)is0ifx=1, positive if 1<x2, and negative if 2x<1;
same reasons as in part (a).
253 Chapter 7
28. The left endpoint of the top boundary is ((ba)/2,h) and the right endpoint of the top boundary is
((b+a)/2,h)so
f(x)=
2hx/(ba),x<(ba)/2
h, (ba)/2<x<(b+a)/2
2h(xb)/(ab),x>(a+b)/2
The area of the trapezoid is given by
Z(ba)/2
0
2hx
badx +Z(b+a)/2
(ba)/2
hdx +Zb
(b+a)/2
2h(xb)
abdx =(ba)h/4+ah +(ba)h/4=h(a+b)/2.
29. (a) Z24
0³2000et/48 + 500 sin(πt/12)´dt = 96000(1 1/e)37,773.06
(b) 1
80Z8
0³2000et/48 + 500 sin(πt/12)dt´= 1125+ 12000(1 e1/6)2,200.32
(c) 2300
2000
08
(d) maximum rate is 2285.32 kW/h at t=4.8861
30. wave =1
52 26 Z52
26
(t/7)dt =39/7; t/7=39/7, t=39
31. (a) no, since the velocity curve is not a straight line
(b) 25 <t<40
(c) 3.54 ft/s
(d) 141.5ft
(e) no since the velocity is positive and the acceleration is never negative
(f) need the position at any one given time (e.g. s0)
32. (a) x=aekt +bekt,dx/dt =akekt bkekt,
d2x/dt2=ak2ekt +bk2ekt =k2(aekt +bekt)=k
2
x
(b) At t=0,v=ak bk =(ab)k=v
0so k=v0/(ab) and a=k2x=v2
0x/(ab)2.
33. u= 5 + 2 sin 3x,du = 6 cos 3xdx;Z1
6udu =1
3u1/2+C=1
35 + 2 sin 3x+C
34. u=3+
x,du =1
2xdx;Z2udu =4
3u3/2+C=4
3(3+x)3/2+C
35. u=ax3+b,du =3ax2dx;Z1
3au2du =1
3au +C=1
3a2x3+3ab +C
36. u=ax2,du =2axdx;1
2aZsec2udu =1
2atan u+C=1
2atan(ax2)+C
37. ln(ex) + ln(ex) = ln(exex)=ln1=0soZ[ln(ex) + ln(ex)]dx =C
Supplementary Exercises 7 254
38. µ1
3u33
u+1
4u4¶¸1
2
= 389/192
39. u=lnx,du =(1/x)dx;Z2
1
1
udu =lnu
¸2
1
=ln2
40. Z1
0
ex/2dx = 2(1 1/e)
41. u=e2x,du =2e2xdx;1
2Z1/4
1
(1 + cos u)du =3
8+1
2µsin 1 sin 1
4
42. 1
3πsin3πx¸1
0
=0
43. With b=1.618034, area = Zb
0
(x+x2x3)dx =1.007514.
44. (a) f(x)= 1
3
x
2sin 3x2
27 sin 3x+2
9xcos 3x0.251607
(b) f(x)=p4+x
2+4
4+x
26
45. (a) Solve 1
4k4kk2+7
4= 0 to get k=2.073948.
(b) Solve 1
2cos 2k+1
3k3+1
2= 3 to get k=1.837992.
46. F(x)=Zx
1
t
2+t
3dt,F0(x)= x
2+x
3,soFis increasing on [1,3]; Fmax =F(3) 1.152082854
and Fmin =F(1) ≈−0.07649493141
47. (a)
12345678
-0.5
0.5
1
y = J0(x)
x
y(b) 0.7651976866 (c) J0(x)=0ifx=2.404826
48. (a) A=Z1
0
x2dx =1
3x3¸1
0
=1/3
(b)
n
X
k=1 µk1
n21
n=1
n3"n
X
k=1
k22
n
X
k=1
k+
n
X
k=1
1#=1
n3µn(n+ 1)(2n+1)
62n(n+1)
2+n
,
lim
n+
n
X
k=1 µk1
n21
n=2
6=1
3
(c)
n
X
k=1 µk
n21
n=1
n3
n
X
k=1
k2=1
n3
n(n+ 1)(2n+1)
6and lim
n+
n
X
k=1 µk
n21
n=2
6=1
3
49. 100,000/(ln 100,000) 8,686; Z100,000
2
1
ln tdt 9,629, so the integral is better
255 Chapter 7
CHAPTER 7 HORIZON MODULE
1. vx(0) = 35 cos α, so from Equation (1), x(t) = (35 cos α)t;vy(0) = 35 sin α, so from Equation (2),
y(t) = (35 sin α)t4.9t2.
2. (a) vx(t)= dx(t)
dt = 35 cos α,vy(t)= dy(t)
dt = 35 sin α9.8t
(b) vy(t)=35sinα9.8t,v
y
(t) = 0 when t= 35 sin α/9.8;
y=vy(0)t4.9t2= (35 sin α)(35 sin α)/9.84.9((35 sin α)/9.8)2=62.5 sin2α,so
y
max =62.5 sin2α.
3. t=x/(35 cos α)soy= (35 sin α)(x/(35 cos α)) 4.9(x/(35 cos α))2= (tan α)x0.004
cos2αx2;
the trajectory is a parabola because yis a quadratic function of x.
4. 1525354555657585
no yes no no no yes no no
65
0
0 120
5. y(t) = (35 sin αs)t4.9t2= 0 when t= 35 sin α/4.9, at which time
x= (35 cos α)(35 sin α/4.9) = 125 sin 2α; this is the maximum value of x,soR= 125 sin 2αm.
6. (a) R= 95 when sin 2α=95/125=0.76, α=0.4316565575,1.139139769 rad 24.73,65.27.
(b) y(t)<50 is required; but y(1.139) 51.56 m, so his height would be 56.56 m.
7. 0.4019 <α<0.4636 (radians), or 23.03<α<26.57
256
CHAPTER 8
Applications of the Definite Integral
in Geometry, Science, and Engineering
EXERCISE SET 8.1
1. A=Z2
1(x2+1x)dx =(x
3
/3+xx
2/2)2
1
=9/2
2. A=Z4
0(x+x/4)dx =(2x
3/2
/3+x
2/8)4
0
=22/3
3. A=Z2
1(y1/y2)dy =(y
2
/2+1/y)2
1
=1
4. A=Z2
0(2 y2+y)dy =(2yy
3
/3+y
2/2)2
0
=10/3
5. (a) A=Z4
0(4xx2)dx =32/3(b) A=Z16
0(yy/4)dy =32/3
5
1
(4, 16)
y = 4x
y = x2
x
y
(4, 4)
(1, -2)
x
y
y2 = 4x
y = 2x – 4
6. Eliminate xto get y2=4(y+4)/2,y
22y8=0,
(y4)(y+2)=0;y=2,4 with corresponding
values of x=1,4.
(a) A=Z1
0[2x(2x)]dx +Z4
1[2x(2x4)]dx
=Z1
04xdx +Z4
1(2x2x+4)dx =8/3+19/3=9
(b) A=Z4
2[(y/2+2)y
2/4]dy =9
1
4
(1, 1)
x
y
y = x2
y = x
7. A=Z1
1/4(xx2)dx =49/192
257 Chapter 8
8. A=Z2
0[0 (x34x)]dx
=Z2
0(4xx3)dx =4
2
x
y
y = 2x3 – 4x
9. A=Zπ/2
π/4(0 cos 2x)dx
=Zπ/2
π/4cos 2xdx=1/2
36
-1
1
x
y
y = cos 2x
10. Equate sec2xand 2 to get sec2x=2,
1
2
x
y
y = sec2 x
(#, 2)(3
, 2)
sec x=±2, x=±π/4
A=Zπ/4
π/4(2 sec2x)dx =π2
11. A=Z3π/4
π/4sin ydy=2
3
9
x
y
x = sin y
12. A=Z2
1[(x+2)x
2]dx =9/2
(2, 4)
(–1, 1)
x
y
y = x2
x = y – 2
13. A=Zln 2
0e2xexdx =1
2e2xex#ln 2
0
=1/2
2
4
x
y
ln 2
y = e2x
y = ex
1/e1
1
e
x
y
14. A=Ze
1
dy
y=lny
ie
1=1
Exercise Set 8.1 258
(–5, 8)
(5, 6)
y = 3 – xy = 1 + x
y =x + 7
1
5
x
y
15. y=2+|x1|=(3x, x 1
1+x, x 1,
A=Z1
51
5x+7
(3 x)dx
+Z5
11
5x+7
(1+x)dx
=Z1
54
5x+4
dx +Z5
166
5xdx
=72/5+48/5=24
16. A=Z2/5
0(4xx)dx
+Z1
2/5(x+2x)dx
=Z2/5
03xdx+Z1
2/5(2 2x)dx =3/5
(1, 1)
2
5
8
5
(, )
x
y
y = 4x
y = x
y = x + 2
17. A=Z1
0(x34x2+3x)dx
+Z3
1[(x34x2+3x)]dx
=5/12+32/12=37/12
4
-8
-1 4
9
-2
-1 3
18. Equate y=x32x2and y=2x
23x
to get x34x2+3x=0,
x(x1)(x3)=0;x=0,1,3
with corresponding values of y=0,1.9.
A=Z1
0[(x32x2)(2x23x)]dx
+Z3
1[(2x33x)(x32x2)]dx
=Z1
0(x34x2+3x)dx +Z3
1(x3+4x
23x)dx
=5
12 +8
3=37
12
1
-1
0o
19. From the symmetry of the region
A=2Z5π/4
π/4(sin xcos x)dx =4
2
259 Chapter 8
20. The region is symmetric about the
origin so
A=2Z0
2
(x
34x)dx =8
3.1
-3.1
-3 3
21. A=Z0
1(y3y)dy +Z1
0(y3y)dy
=1/2
1
-1
-1 1
4.1
0
-2.2 12.1
22. A=Z1
0y34y2+3y(y
2y)
dy
+Z4
1y2y(y34y2+3y)
dy
=7/12+45/4=71/6
23. Solve 32x=x6+2x53x4+x2to find the real roots x=3,1; from a plot it is seen that the line
is above the polynomial when 3<x<1, so A=Z1
3(32x(x6+2x53x4+x2)) dx = 9152/105
24. Solve x52x33x=x3to find the roots x=0,±1
2
q6+2
21. Thus, by symmetry,
A=2Z
(6+221)/2
0(x3(x52x33x)) dx =27
4+7
421
25. Zk
02ydy =Z9
k
2ydy
Zk
0y1/2dy =Z9
k
y1/2dy
2
3k3/2=2
3(27 k3/2)
k3/2=27/2
k= (27/2)2/3=9/3
4
y = 9
y = k
x
y
26. Zk
0x2dx =Z2
k
x2dx
1
3k3=1
3(8 k3)
k3=4
k=3
4
2
x
y
x = y
x = k
Exercise Set 8.1 260
27. (a) A=Z2
0(2xx2)dx =4/3
(b) y=mx intersects y=2xx
2where mx =2xx
2
,x
2+(m2)x=0,x(x+m2)=0so
x=0orx=2m. The area below the curve and above the line is
Z2m
0(2xx2mx)dx =Z2m
0[(2 m)xx2]dx =1
2(2 m)x21
3x32m
0
=1
6(2 m)3
so (2 m)3/6=(1/2)(4/3)=2/3,(2 m)3=4,m=23
4.
c
11
2
c5
6,
( )
x
y
y = sin x
28. The line through (0,0) and (5π/6,1/2) is y=3
5πx;
A=Z5π/6
0sin x3
5πxdx =3
25
24π+1
29. (a) It gives the area of the region that is between fand gwhen f(x)>g(x) minus the area of
the region between fand gwhen f(x)<g(x), for axb.
(b) It gives the area of the region that is between fand gfor axb.
30. (b) lim
n+Z1
0(x1/n x)dx = lim
n+n
n+1x
(n+1)/n x2
21
0
= lim
n+n
n+11
2=1/2
31. The curves intersect at x= 0 and, by Newton’s Method, at x2.595739080 = b,so
AZb
0(sin x0.2x)dx =cos x+0.1x
2b
01.180898334
32. By Newton’s Method, the points of intersection are at x≈±0.824132312, so with
b=0.824132312 we have A2Zb
0(cos xx2)dx = 2(sin xx3/3)b
01.094753609
33. distance = R|v|dt,so
(a) distance = Z60
0(3tt2/20) dt = 1800 ft.
(b) If T60 then distance = ZT
0(3tt2/20) dt =3
2T21
60T3ft.
34. Since a1(0) = a2(0)=0,A=
ZT
0(a
2
(t)a
1
(t)) dt =v2(T)v1(T) is the difference in the velocities
of the two cars at time T.
a
a
x
y
35. Solve x1/2+y1/2=a1/2for yto get
y=(a
1/2x
1/2
)
2=a2a
1/2
x
1/2+x
A=Za
0(a2a
1/2
x
1/2+x)dx =a2/6
261 Chapter 8
36. Solve for yto get y=(b/a)a2x2for the upper half of the ellipse; make use of symmetry to
get A=4Za
0
b
a
pa
2x
2
dx =4b
aZa
0pa2x2dx =4b
a×1
4πa2=πab.
37. Let Abe the area between the curve and the x-axis and ARthe area of the rectangle, then
A=Zb
0kxmdx =k
m+1x
m+1b
0
=kbm+1
m+1,A
R=b(kbm)=kbm+1,soA/AR=1/(m+ 1).
EXERCISE SET 8.2
1. V=πZ3
1(3 x)dx =8π2. V=πZ1
0[(2 x2)2x2]dx
=πZ1
0(4 5x2+x4)dx
=38π/15
3. V=πZ2
0
1
4(3 y)2dy =13π/64. V=πZ2
1/2(4 1/y2)dy =9π/2
5. V=πZ2
0x4dx =32π/5
2
x
y
y = x2
6. V=πZπ/3
π/4sec2xdx=π(
31)
34
-2
-1
1
2
x
y
y = sec x
36
-1
1
x
y
y = cos x
7. V=πZπ/2
π/4cos xdx=(1
2/2)π
1
1(1, 1)
y = x2
y = x3
x
y
8. V=πZ1
0[(x2)2(x3)2]dx
=πZ1
0(x4x6)dx =2π/35
Exercise Set 8.2 262
9. V=πZ4
4[(25 x2)9]dx
=2πZ4
0(16 x2)dx = 256π/3
5
x
yy = 25 – x2
y = 3
10. V=πZ3
3(9 x2)2dx
=πZ3
3(81 18x2+x4)dx = 1296π/5
-3 3
9
x
y
y = 9 – x2
11. V=πZln 3
0e2xdx =π
2e2xln 3
0
=4π
12. V=πZ1
0e4xdx =π
4(1 e4)
1
-1
1
x
y
13. V=πZ4
0[(4x)2(x2)2]dx
=πZ4
0(16x2x4)dx = 2048π/15
4
16 (4, 16)
x
y
y = x2
y = 4x
14. V=πZπ/4
0(cos2xsin2x)dx
=πZπ/4
0cos 2xdx=π/2
3
-1
1
x
y
y = cos x
y = sin x
15. V=πZ1
0y2/3dy =3π/5
-1 1
1
x
y
y = x3
263 Chapter 8
16. V=πZ1
1(1 y2)2dy
=πZ1
1(1 2y2+y4)dy =16π/15
-1 1
-1
1
x
y
x = 1 – y2
17. V=πZ3
1(1+y)dy =8π
3
2
x
y
x = 1 + y
18. V=πZ3
0[22(y+ 1)]dy
=πZ3
0(3 y)dy =9π/2
3(2, 3)
x
yy = x2 – 1
19. V=πZ3π/4
π/4csc2ydy=2π
-2 -1 1 2
3
6
9
x
y
x = csc y
20. V=πZ1
0(yy4)dy =3π/10
-1 1
-1
1(1, 1)
x
y
y = x2
x = y2
21. V=πZ2
1[(y+2)
2y
4]dy =72π/5
(4, 2)
x
y
x = y2
x = y + 2
(1, –1)
12
-1
1
x
yx = 2 + y2
x = 1 – y2
22. V=πZ1
1(2+y2)2(1 y2)2dy
=πZ1
1(3+6y
2)dy =10π
Exercise Set 8.2 264
23. V=πZa
a
b2
a2(a2x2)dx =4πab2/3
aa
b
x
y
b
a
y = a2x2
24. V=πZ2
b
1
x2dx =π(1/b 1/2); π(1/b 1/2)=3,b=2π/(π+6)
25. V=πZ0
1(x+1)dx
+πZ1
0[(x+1)2x]dx
=π/2+π/2=π
-1 1
1
x
y
y = 2x
(1, 2)
y = x + 1
26. V=πZ4
0xdx+πZ6
4(6 x)2dx
=8π+8π/3=32π/3
46
x
y
y = xy = 6 – x
27. V=πZ3
0(9 y2)2dy
=πZ3
0(81 18y2+y4)dy
= 648π/5
9
3
x
y
x = y2
28. V=πZ9
0[32(3 x)2]dx
=πZ9
0(6xx)dx
= 135π/2
9
x
y
y = x
y = 3
1
1
x
y
x = y2
x = y
y = −1
29. V=πZ1
0[(x+1)
2(x+1)
2]dx
=πZ1
0(2xxx2)dx =π/2
265 Chapter 8
30. V=πZ1
0[(y+1)
2(y
2+1)
2]dy
=πZ1
0(2yy2y4)dy =7π/15
1
1
x
y
x = y2
x = y
x = –1
31. A(x)=π(x
2
/4)2=πx4/16,
V=Z20
0(πx4/16)dx =40,000πft3
32. V=πZ1
0(xx4)dx =3π/10
33. V=Z1
0(xx2)2dx
=Z1
0(x22x3+x4)dx =1/30
Square
(1, 1)
1
y = x
y = x2
x
y
34. A(x)=1
2
π1
2
x
2
=1
8
πx,
V=Z4
0
1
8πx dx =π
4x
y
y = x
35. On the upper half of the circle, y=1x2, so:
(a) A(x) is the area of a semicircle of radius y,so
A(x)=πy2/2=π(1 x2)/2; V=π
2Z1
1(1 x2)dx =πZ1
0(1 x2)dx =2π/3
1
-1
y = 1 – x2
x
yy
(b) A(x) is the area of a square of side 2y,so
A(x)=4y
2= 4(1 x2); V=4Z1
1
(1 x2)dx =8Z1
0(1 x2)dx =16/3
1
-1
y = 1 – x2x
y
2y
Exercise Set 8.2 266
(c) A(x) is the area of an equilateral triangle with sides 2y,so
A(x)=
3
4(2y)2=3y2=3(1 x2);
V=Z1
1
3(1 x2)dx =2
3Z1
0(1 x2)dx =4
3/3
x
y
1
-1
y = 1 – x2
2y
2y2y
y
R
r
h
36. By similar triangles, R/r =y/h so
R=ry/h and A(y)=πr2y2/h2.
V=(πr2/h2)Zh
0y2dy =πr2h/3
37. The two curves cross at x=b1.403288534, so
V=πZb
0((2x/π)2sin16 x)dx +πZπ/2
b
(sin16 x(2x/π)2)dx =0.710172176.
38. V=πZe
1(1 (ln y)2)dy =π
39. (a) V=πZr
rh
(r2y2)dy =π(rh2h3/3) = 1
3πh2(3rh)
r
h
rx
y
x2 + y2 = r2
(b) By the Pythagorean Theorem,
r2=(rh)
2+ρ
2
,2hr =h2+ρ2; from part (a),
V=πh
3(3hr h2)=πh
33
2(h2+ρ2)h2)
=1
6πh(h2+3ρ
2).
10
h – 10
−10
h
x
y
x = 100 – y2
40. Find the volume generated by revolving
the shaded region about the y-axis.
V=πZ10+h
10 (100 y2)dy =π
3h2(30 h)
Find dh/dt when h= 5 given that dV/dt =1/2.
V=π
3(30h2h3), dV
dt =π
3(60h3h2)dh
dt ,
1
2=π
3(300 75)dh
dt ,dh
dt =1/(150π) ft/min
267 Chapter 8
41. (b) x=5
10 =0.5; {y0,y
1,···,y
10}={0,2.00,2.45,2.45,2.00,1.46,1.26,1.25,1.25,1.25,1.25};
left = π
9
X
i=0 yi
22x11.157;
right = π
10
X
i=1 yi
22x11.771; Vaverage = 11.464 cm3
r
2
x
y
x = r2y2
3r
2
3r
2
42. If x=r/2 then from y2=r2x2we get y=±3r/2
as limits of integration; for 3y3,
A(y)=π[(r2y2)r2/4] = π(3r2/4y2), thus
V=πZ3r/2
3r/2(3r2/4y2)dy
=2πZ
3r/2
0(3r2/4y2)dy =3πr3/2.
43. (a)
h
-4
x
y
0 h < 2
h – 4
(b)
-4
-2 h
2 h 4
h – 4 x
y
If the cherry is partially submerged then 0 h<2 as shown in Figure (a); if it is totally sub-
merged then 2 h4 as shown in Figure (b). The radius of the glass is 4 cm and that of the
cherry is 1 cm so points on the sections shown in the figures satisfy the equations x2+y2=16
and x2+(y+3)
2= 1. We will find the volumes of the solids that are generated when the shaded
regions are revolved about the y-axis.
For 0 h<2,
V=πZh4
4[(16 y2)(1 (y+3)
2)]dy =6πZh4
4(y+4)dy =3πh2;
for 2 h4,
V=πZ2
4[(16 y2)(1 (y+3)
2)]dy +πZh4
2(16 y2)dy
=6πZ2
4(y+4)dy +πZh4
2(16 y2)dy =12π+1
3
π(12h2h340)
=1
3π(12h2h34)
so
V=
3πh2if 0 h<2
1
3
π(12h2h34) if 2 h4
Exercise Set 8.3 268
44. x=h±pr2y2,
V=πZr
rh(h+pr2y2)2(hpr2y2)2idy
=4πh Zr
rpr2y2dy
=4πh 1
2πr2=2π
2
r
2
h
x
y
(xh2) + y2 = r2
x
h
u
45. tan θ=h/x so h=xtan θ,
A(y)=1
2
hx =1
2x2tan θ=1
2(r2y2) tan θ
because x2=r2y2,
V=1
2tan θZr
r
(r2y2)dy
= tan θZr
0(r2y2)dy =2
3r3tan θ
46. A(x)=(xtan θ)(2pr2x2)
= 2(tan θ)xpr2x2,
V= 2 tan θZr
0xpr2x2dx
=2
3r3tan θ
yx
r2x2
x tan u
47. Each cross section perpendicular to the
y-axis is a square so
A(y)=x
2=r
2y
2
,
1
8
V=Zr
0(r
2y
2
)dy
V= 8(2r3/3)=16r
3
/3
r
x = r2y2
x
y
48. The regular cylinder of radius rand height hhas the same circular cross sections as do those of
the oblique clinder, so by Cavalieri’s Principle, they have the same volume: πr2h.
EXERCISE SET 8.3
1. V=Z2
12πx(x2)dx =2πZ2
1x
3
dx =15π/2
2. V=Z2
02πx(p4x2x)dx =2πZ
2
0(x
p4x
2x
2
)dx =8π
3(2 2)
3. V=Z1
02πy(2y2y2)dy =4πZ1
0(y
2y
3
)dy =π/3
269 Chapter 8
4. V=Z2
02πy[y(y22)]dy =2πZ2
0(y
2y
3+2y)dy =16π/3
5. V=Z1
02π(x)(x3)dx
=2πZ1
0x
4
dx =2π/5
-1 1
-1
1
x
y
y = x3
6. V=Z9
42πx(x)dx
=2πZ9
4x
3/2
dx = 844π/5
-9 -4 4 9
1
2
3
x
y
y = x
7. V=Z3
12πx(1/x)dx =2πZ3
1dx =4π
-3 -1 1 3
y = x
1
x
y
8. V=Zπ/2
02πx cos(x2)dx =π/2
p
2
x
y
y = cos (x2)
9. V=Z2
12πx[(2x1) (2x+ 3)]dx
=8πZ2
1(x
2x)dx =20π/3
(2, 3)
(2, –1)
(1, 1)
x
y
10. V=2πZ1
0
x
x
2+1dx
=πln(x2+1)
i1
0=πln 2
-1 1
1
x
y
y = 1
x2 + 1
-3-1 1
3
10
20
x
y
y = ex2
11. V=Z3
12πxex2dx =πex2i3
1=π(e3e)
Exercise Set 8.3 270
12. V=Z2
02πx(2xx2)dx
=2πZ2
0(2x2x3)dx =8
3π
2
x
y
y = 2xx2
13. V=Z1
02πy3dy =π/2
1
x
y
x = y2
14. V=Z3
22πy(2y)dy =4πZ3
2y
2
dy =76π/3
2
3
x
y
x = 2y
15. V=Z1
02πy(1 y)dy
=2πZ1
0(yy
3/2
)dy =π/5
1
x
y
y = x
16. V=Z4
12πy(5 y4/y)dy
=2πZ4
1(5yy24)dy =9π
(1, 4)
(4, 1)
x
y
x = 5 – y
x = 4/y
17. V=2πZπ
0xsin xdx =2π
218. V=2πZπ/2
0xcos xdx =π22π
19. (a) V=Z1
02πx(x33x2+2x)dx =7π/30
(b) much easier; the method of slicing would require that xbe expressed in terms of y.
-1 1
x
y
y = x3 – 3x2 + 2x
271 Chapter 8
20. V=Z2
12π(x+ 1)(1/x3)dx
=2πZ2
1(x
2+x
3
)dx =7π/4
-1 x21
x
y
y = 1/x3
x + 1
1
x
y
1 – yx = y1/3
21. V=Z1
02π(1 y)y1/3dy
=2πZ1
0(y
1/3y
4/3
)dy =9π/14
22. (a) Zb
a
2πx[f(x)g(x)]dx (b) Zd
c
2πy[f(y)g(y)]dy
x
y
(0, r)
(h, 0)
23. x=h
r(ry) is an equation of the line
through (0,r) and (h, 0) so
V=Zr
02πy h
r(ry)dy
=2πh
rZr
0(ry y2)dy =πr2h/3
x
y
x = k/2
k/2 – x
x = k/4
y = kx
y = kx
24. V=Zk/4
02π(k/2x)2kxdx
=2π
kZk/4
0(kx1/22x3/2)dx =7πk3/60
a
x
y
y = r2x2
y = r2x2
25. V=Za
02πx(2pr2x2)dx =4πZa
0x(r
2x
2
)
1/2
dx
=4π
3(r2x2)3/2a
0
=4π
3hr3(r2a2)3/2i
Exercise Set 8.4 272
26. V=Za
a
2π(bx)(2pa2x2)dx
=4πb Za
apa2x2dx 4πZa
a
xpa2x2dx
=4πb ·(area of a semicircle of radius a)4π(0)
=2π
2
a
2
b
aa
x
y
a
2
x2
a2x2
bx
x = b
27. Vx=πZb
1/2
1
x2dx =π(2 1/b), Vy=2πZb
1/2dx =π(2b1);
Vx=Vyif 2 1/b =2b1, 2b23b+ 1 = 0, solve to get b=1/2 (reject) or b=1.
EXERCISE SET 8.4
1. (a) dy
dx =2,L=Z2
1
1+4dx =5
(b) dx
dy =1
2,L=Z4
2p1+1/4dy =2
5/2=
5
2. dx
dt =1, dy
dt =5,L=Z1
0p1
2+5
2dt =26
3. f0(x)=9
2
x
1/2
,1+[f0(x)]2=1+81
4x,
L=Z1
0p1+81x/4dx =8
243 1+81
4x3/2#1
0
= (8585 8)/243
4. g0(y)=y(y
2+2)
1/2,1+[g
0(y)]2=1+y
2
(y
2+2)=y
4+2y
2+1=(y
2+1)
2,
L=Z1
0p(y
2+1)
2dy =Z1
0(y2+1)dy =4/3
5. dy
dx =2
3x1/3,1+dy
dx2
=1+4
9
x
2/3=9x
2/3+4
9x
2/3,
L=Z8
1
9x
2/3+4
3x
1/3dx =1
18 Z40
13 u1/2du, u =9x
2/3+4
=1
27u3/240
13
=1
27(4040 1313) = 1
27(8010 1313)
or (alternate solution)
x=y3/2,dx
dy =3
2y1/2,1+dx
dy 2
=1+9
4
y=4+9y
4,
L=1
2Z4
1p4+9ydy=1
18 Z40
13 u1/2du =1
27(8010 1313)
273 Chapter 8
6. f0(x)=1
4
x
3x
3
, 1+[f0(x)]2=1+1
16x61
2+x6=1
16x6+1
2+x6=1
4x3+x32
,
L=Z3
2s1
4x3+x32
dx =Z3
21
4x3+x3dx = 595/144
7. f0(x)=1
2e
xe
x
,1+[f0(x)]2=1+1
4e
2x2+e
2x
=1
4e
2x+2+e
2x
,so
L=Z3
0p1+(f0(x))2dx =1
2Z3
0ex+exdx =(e
3e
3
)/2
8. g0(y)=1
2
y
31
2
y
3
,1+[g
0(y)]2=1+1
4
y
61
2+1
4
y
6
=1
2
y
3+1
2
y
3
2
,
L=Z4
11
2
y
3+1
2
y
3
dy = 2055/64
9. (dx/dt)2+(dy/dt)2=(t
2
)
2+(t)
2=t
2(t
2+ 1), L=Z1
0t(t2+1)
1/2dt =(2
21)/3
10. (dx/dt)2+(dy/dt)2= [2(1 + t)]2+ [3(1 + t)2]2=(1+t)
2
[4+9(1+t)2],
L=Z1
0(1+t)[4 + 9(1 + t)2]1/2dt = (8010 1313)/27
11. (dx/dt)2+(dy/dt)2=(2 sin 2t)2+ (2 cos 2t)2=4,L=Zπ/2
02dt =π
12. (dx/dt)2+(dy/dt)2=(sin t+ sin t+tcos t)2+ (cos tcos t+tsin t)2=t2,
L=Zπ
0tdt=π
2/2
13. (dx/dt)2+(dy/dt)2=[e
t
(cos tsin t)]2+[e
t
(cos t+ sin t)]2=2e
2t
,
L=Zπ/2
0
2etdt =2(eπ/21)
14. (dx/dt)2+(dy/dt)2=(2e
tcos t)2+(2e
tsin t)2=4e
2t
,L=Z4
12e
t
dt =2(e
4e)
15. dy/dx =sec xtan x
sec x= tan x,p1+(y
0)
2=
1 + tan2x= sec xwhen 0 <x<π/4, so
L=Zπ/4
0sec xdx= ln(1 + 2)
16. dy/dx =cos x
sin x= cot x,p1+(y
0)
2=
1 + cot2x= csc xwhen π/4<x<π/2, so
L=Zπ/2
π/4csc xdx=ln(21) = ln 21
2+1(
2+1)
!= ln(1 + 2)
17. (a) (dx/dθ)2+(dy/dθ)2=(a(1 cos θ))2+(asin θ)2=a2(2 2 cos θ), so
L=Z2π
0p(dx/dθ)2+(dy/dθ)2=aZ2π
0p2(1 cos θ)
Exercise Set 8.4 274
18. (a) Use the interval 0 φ<2π.
(b) (dx/dφ)2+(dy/dφ)2=(3acos2φsin φ)2+(3asin2φcos φ)2
=9a
2cos2φsin2φ(cos2φ+ sin2φ)=(9a
2
/4) sin22φ, so
L=(3a/2) Z2π
0|sin 2φ|=6aZπ/2
0sin 2φdφ=3acos 2φπ/2
0
=6a
19. (a)
(-1, 1)
(8, 4)
x
y(b) dy/dx does not exist at x=0.
(c) x=g(y)=y
3/2
,g
0(y)=3
2y
1/2
,
L=Z1
0p1+9y/4dy (portion for 1x0)
+Z4
0p1+9y/4dy (portion for 0 x8)
=8
27 13
813 1+8
27(1010 1) = (1313+80
10 16)/27
20. For (4), express the curve y=f(x) in the parametric form x=t, y =f(t)sodx/dt = 1 and
dy/dt =f0(t)=f
0(x)=dy/dx. For (5), express x=g(y)asx=g(t),y =tso
dx/dt =g0(t)=g
0(y)=dx/dy and dy/dt =1.
21. L=Z2
0p1+4x
2dx 4.645975301 22. L=Zπ
0p1 + cos2ydy3.820197789
23. Numerical integration yields: in Exercise 21, L4.646783762; in Exercise 22, L3.820197788.
24. 0mf0(x)M,so m
2[f
0
(x)]2M2, and 1 + m21+[f0(x)]21+M2;thus
1+m
2p1+[f0(x)]21+M2,
Zb
ap1+m
2dx Zb
ap1+[f0(x)]2dx Zb
ap1+M2dx, and
(ba)p1+m
2L(ba)
p1+M2
25. f0(x) = cos x,2/2cos x1 for 0 xπ/4so
(π/4)p1+1/2L(π/4)1+1, π
4p3/2Lπ
4
2.
26. (dx/dt)2+(dy/dt)2=(asin t)2+(bcos t)2=a2sin2t+b2cos2t
=a2(1 cos2t)+b
2cos2t=a2(a2b2) cos2t
=a21a2b2
a2cos2t=a2[1 k2cos2t],
L=Z2π
0ap1k2cos2tdt=4aZπ/2
0p1k2cos2tdt
275 Chapter 8
27. (a) (dx/dt)2+(dy/dt)2= 4 sin2t+ cos2t= 4 sin2t+(1sin2t)=1+3sin
2t,
L=Z2π
0p1+3sin
2tdt=4Zπ/2
0p1+3sin
2tdt
(b) 9.69
(c) distance traveled = Z4.8
1.5p1+3sin
2tdt5.16 cm
28. The distance is Z4.6
0p1+(2.09 0.82x)2dx 6.65 m
1 2 1.84 1.83 1.832
3.8202 5.2704 5.0135 4.9977 5.0008
k
L
29. L=Zπ
0p1+(kcos x)2dx
Experimentation yields the values in the table, which by the Intermediate-Value Theorem show
that the true solution kto L= 5 lies between k=1.83 and k=1.832, so k=1.83 to two decimal
places.
EXERCISE SET 8.5
1. S=Z1
02π(7x)1+49dx =70π
2Z1
0xdx=35π
2
2. f0(x)= 1
2
x
,1+[f0(x)]2=1+ 1
4x
S=Z4
12π
x
r1+ 1
4xdx =2πZ4
1px+1/4dx =π(1717 55)/6
3. f0(x)=x/4x2,1+[f0(x)]2=1+ x
2
4x
2=4
4x
2,
S=Z1
12π
p4x
2
(2/p4x2)dx =4πZ1
1dx =8π
4. y=f(x)=x
3for 1 x2, f0(x)=3x
2
,
S=Z2
12πx3p1+9x
4dx =π
27(1+9x
4)
3/22
1
=5π(29145 210)/27
5. S=Z2
02π(9y+1)
82dy =2π
82 Z2
0(9y+1)dy =40π
82
6. g0(y)=3y
2
,S=Z1
02πy3p1+9y
4dy =π(1010 1)/27
7. g0(y)=y/p9y2,1+[g
0(y)]2=9
9y2,S=Z2
22πp9y2·3
p9y2dy =6πZ2
2dy =24π
8. g0(y)=(1 y)1/2,1+[g
0(y)]2=2y
1y,
S=Z0
12π(2p1y)2y
1ydy =4πZ0
1p2ydy=8π(3322)/3
Exercise Set 8.5 276
9. f0(x)=1
2
x
1/21
2
x
1/2
,1+[f0(x)]2=1+1
4
x
11
2+1
4
x=1
2
x
1/2+1
2
x
1/2
2
,
S=Z3
12πx
1/21
3
x
3/2
1
2x
1/2+1
2x
1/2dx =π
3Z3
1(3+2xx
2)dx =16π/9
10. f0(x)=x
21
4
x
2
,1+[f0(x)]2=1+x
41
2+1
16x4=x2+1
4x22
,
S=Z2
12π1
3x3+1
4x1x
2+1
4x
2dx =2πZ2
11
3
x
5+1
3
x+1
16x3dx = 515π/64
11. x=g(y)=1
4
y
4+1
8
y
2
,g
0(y)=y
31
4
y
3
,
1+[g
0(y)]2=1+y
61
2+1
16y6=y3+1
4y32
,
S=Z2
12π1
4y4+1
8y2y
3+1
4y
3dy =π
16 Z2
1(8y7+6y+y
5)dy =16,911π/1024
12. x=g(y)=
16 y;g0(y)=1
2
16 y,1+[g
0(y)]2=65 4y
4(16 y),
S=Z15
02πp16 ys65 4y
4(16 y)dy =πZ15
0p65 4ydy = (6565 55)π
6
13. f0(x)=e
x
, 1+[f0(x)]2=1+e
2x
,S=Z1
02πexp1+e
2xdx 22.94
14. f0(x) = cos x, 1+[f0(x)]2= 1 + cos2x,S=Zπ
02πsin xp1 + cos2xdx14.42
15. x=g(y)=lny, g0(y)=1/y, 1+[g
0(y)]2=1+1/y2;S=Ze
12πp1+1/y2ln ydy 7.05
16. x=g(y) = tan y, g0(y) = sec2y, 1+[g
0(y)]2= 1 + sec4y;
S=Zπ/4
02πtan yp1 + sec4ydy 3.84
17. Revolve the line segment joining the points (0,0) and (h, r) about the x-axis. An equation of the
line segment is y=(r/h)xfor 0 xhso
S=Zh
02π(r/h)xp1+r
2/h2dx =2πr
h2pr2+h2Zh
0xdx=πrpr2+h2
18. f(x)=
r
2x
2
,f
0(x)=x/r2x2,1+[f0(x)]2=r2/(r2x2),
S=Zr
r
2πpr2x2(r/pr2x2)dx =2πr Zr
r
dx =4πr2
19. g(y)=pr
2y
2
,g
0(y)=y/pr2y2,1+[g
0(y)]2=r2/(r2y2),
(a) S=Zr
rh
2πpr2y2pr2/(r2y2)dy =2πr Zr
rh
dy =2πrh
(b) From part (a), the surface area common to two polar caps of height h1>h
2is
2πrh12πrh2=2πr(h1h2).
277 Chapter 8
20. For (4), express the curve y=f(x) in the parametric form x=t, y =f(t)sodx/dt = 1 and
dy/dt =f0(t)=f
0(x)=dy/dx. For (5), express x=g(y)asx=g(t),y =tso
dx/dt =g0(t)=g
0(y)=dx/dy and dy/dt =1.
21. x0=2t, y0=2,(x
0)
2+(y
0)
2=4t
2+4
S=2πZ4
0(2t)p4t2+4dt =8πZ4
0t
pt
2+1dt =8π
3(1717 1)
22. x0=et(cos tsin t),y
0=e
t(cos t+ sin t),(x0)2+(y
0)
2=2e
2t
S=2πZπ/2
0(etsin t)2e2tdt =2
2πZπ/2
0e2tsin tdt
=2
2π1
5
e
2t
(2 sin tcos t)π/2
0
=22
5π(2eπ+1)
23. x0=1,y
0=4t,(x
0
)
2+(y
0)
2=1+16t
2,S=2πZ1
0t
p1+16t
2dt =π
24(1717 1)
24. x0=2 sin tcos t, y0= 2 sin tcos t, (x0)2+(y
0)
2= 8 sin2tcos2t
S=2πZπ/2
0cos2tp8 sin2tcos2tdt=4
2πZπ/2
0cos3tsin tdt=2π
25. x0=rsin t,y0=rcos t,(x
0
)
2+(y
0)
2=r
2,
S=2πZπ
0rsin tr2dt =2πr2Zπ
0sin tdt=4πr2
26. dx
=a(1 cos φ), dy
=asin φ,dx
2
+dy
2
=2a
2
(1 cos φ)
S=2πZ2π
0a(1 cos φ)p2a2(1 cos φ)=2
2πa2Z2π
0(1 cos φ)3/2dφ,
but 1 cos φ= 2 sin2φ
2so (1 cos φ)3/2=2
2 sin3φ
2for 0 φπand, taking advantage of the
symmetry of the cycloid, S=16πa2Zπ
0sin3φ
2=64πa2/3.
27. (a) length of arc of sector = circumference of base of cone,
=2πr, θ =2πr/`;S= area of sector = 1
2`2(2πr/`)=πr`
(b) S=πr2`2πr1`1=πr2(`1+`)πr1`1=π[(r2r1)`1+r2`];
Using similar triangles `2/r2=`1/r1,r
1`
2=r
2`
1,r
1(`
1+`)=r
2
`
1
,(r
2r
1
)`
1=r
1
`
so S=π(r1`+r2`)=π(r
1+r
2
)`.
r
1
r
2
l
2
l
1
l
Exercise Set 8.6 278
28. 2πkp1+[f0(x)]22πf(x)p1+[f0(x)]22πKp1+[f0(x)]2,so
Zb
a
2πkp1+[f0(x)]2dx Zb
a
2πf(x)p1+[f0(x)]2dx Zb
a
2πKp1+[f0(x)]2dx,
2πk Zb
ap1+[f0(x)]2dx S2πK Zb
ap1+[f0(x)]2dx,2πkL S2πKL
29. (a) 1p1+[f0(x)]2so 2πf(x)2πf(x)p1+[f0(x)]2,
Zb
a
2πf(x)dx Zb
a
2πf(x)p1+[f0(x)]2dx,2π
Zb
a
f(x)dx S, 2πA S
(b) 2πA =Sif f0(x) = 0 for all xin [a, b]sof(x) is constant on [a, b].
EXERCISE SET 8.6
1. (a) W=F·d= 30(7) = 210 ft·lb
(b) W=Z6
1F(x)dx =Z6
1x2dx =1
x6
1
=5/6ft·lb
2. W=Z5
0F(x)dx =Z2
040 dx Z5
2
40
3(x5) dx =80+60=140J
3. distance traveled = Z5
0v(t)dt =Z5
0
4t
5dt =2
5t2i5
0= 10 ft. The force is a constant 10 lb, so the
work done is 10 ·10 = 100 ft·lb.
4. (a) F(x)=kx, F(0.05)=0.05k=45,k = 900 N/m
(b) W=Z0.03
0900xdx=0.405 J (c) W=Z0.10
0.05 900xdx=3.375 J
5. F(x)=kx,F(0.2)=0.2k= 100, k= 500 N/m, W=Z0.8
0500xdx = 160 J
6. F(x)=kx,F(1/2) = k/2=6,k= 12 N/m, W=Z2
012xdx=24J
7. W=Z1
0kx dx =k/2 = 10, k= 20 lb/ft
9 - x
x
0
6
95
8. W=Z6
0(9 x)62.4(25π)dx
= 1560πZ6
0(9 x)dx =56,160πft·lb
9. W=Z6
0(9 x)ρ(25π)dx = 900πρ ft·lb
279 Chapter 8
15 - x
x
0
10
1510
r
10. r/10 = x/15, r=2x/3,
W=Z10
0(15 x)62.4(4πx2/9)dx
=83.2
3πZ10
0(15x2x3)dx
= 208,000π/3ft·lb
3 - x
x
0
2
3
4
w(x)
11. w/4=x/3,w =4x/3,
W=Z2
0(3 x)(9810)(4x/3)(6)dx
= 78480 Z2
0(3xx2)dx
= 261,600 J
3
2
0
-2
3 - x
x
w(x)
2
12. w=2
p4x
2
W=Z2
2
(3 x)(50)(2p4x2)(10)dx
= 3000 Z2
2p4x2dx 1000 Z2
2xp4x2dx
= 3000[π(2)2/2] 0 = 6000πft·lb
0
10
910 - x
x
20 15
13. (a) W=Z9
0(10 x)62.4(300)dx
=18,720 Z9
0(10 x)dx
= 926,640 ft·lb
(b) to empty the pool in one hour would require
926,640/3600 = 257.4ft·lb of work per second
so hp of motor = 257.4/550=0.468
3000
0
x
Rocket
14. When the rocket is xft above the ground
total weight = weight of rocket
+ weight of fuel
= 3 + [40 2(x/1000)]
=43x/500 tons,
W=Z3000
0(43 x/500)dx = 120,000 ft·tons
Exercise Set 8.7 280
15. W=Z100
015(100 x)dx
=75,000 ft·lb
100
0
100 - x
x
Pulley
Chain
16. Let F(x) be the force needed to hold
charge Aat position x, then
F(x)= c
(ax)
2,F(a)= c
4a
2=k,
so c=4a
2
k.
W=Z0
a
4a
2
k(ax)
2
dx =2ak J
0aax
BA
17. (a) 150 = k/(4000)2,k=2.4×109,w(x)=k/x2=2,400,000,000/x2lb
(b) 6000 = k/(4000)2,k=9.6×1010,w(x)=9.6×1010/(x+ 4000)2lb
(c) W=Z5000
4000 9.6(1010)x2dx =4,800,000 mi·lb = 2.5344 ×1010 ft·lb
18. (a) 20 = k/(1080)2,k=2.3328 ×107, weight = w(x+ 1080) = 2.3328 ·107/(x+ 1080)2lb
(b) W=Z10.8
0[2.3328 ·107/(x+ 1080)2]dx = 213.86 mi·lb = 1,129,188 ft·lb
19. W=F·d=(6.40 ×105)(3.00 ×103)=1.92 ×109J; from Theorem 8.6.4,
v2
f=2W/m +v2
i= 2(1.92 ·109)/(4 ·105)+20
2=10,000, vf= 100 m/s
20. W=F·d=(2.00 ×105)(2.00 ×105)=4×1010 J; from Theorem 8.6.4,
v2
f=2W/m +v2
i=8·1010/(2 ·103)+10
811.832 m/s.
21. (a) The kinetic energy would have decreased by 1
2mv2=1
24·106(15000)2=4.5×1014 J
(b) (4.5×1014)/(4.2×1015)0.107 (c) 1000
13 (0.107) 8.24 bombs
EXERCISE SET 8.7
1. (a) F=ρhA =62.4(5)(100) = 31,200 lb
P=ρh =62.4(5) = 312 lb/ft2
(b) F=ρhA = 9810(10)(25) = 2,452,500 N
P=ρh = 9810(10) = 98.1kPa
2. (a) F=PA =6·105(160) = 9.6×107N(b) F=PA = 100(60) = 6000 lb
3. F=Z2
062.4x(4)dx
= 249.6Z2
0xdx= 499.2lb
2
04
x
281 Chapter 8
4. F=Z3
19810x(4)dx
= 39240 Z3
1xdx
= 156,960 N 3
1
0
4
x
50
5
xy = 25 – x2
y
225 – x2
5. F=Z5
09810x(2p25 x2)dx
=19,620 Z5
0x(25 x2)1/2dx
=8.175 ×105N
23
04
44
xw(x)
6. By similar triangles
w(x)
4=23x
23,w(x)= 2
3
(23x),
F=Z23
062.4x2
3(23x)dx
=124.8
3Z23
0(23xx2)dx = 499.2lb
10
2
0
xw(x)
8
6
7. By similar triangles
w(x)
6=10 x
8
w(x)=3
4
(10 x),
F=Z10
29810x3
4(10 x)dx
= 7357.5Z10
2(10xx2)dx =1,098,720 N
12
44
16
4
0
x
w(x)
u(x)
8. w(x)=16+2u(x),but
u(x)
4=12 x
8so u(x)=1
2
(12 x),
w(x)=16+(12x)=28x,
F=Z12
462.4x(28 x)dx
=62.4Z12
4(28xx2)dx =77,209.6 lb.
9. Yes: if ρ2=2ρ
1then F2=Zb
a
ρ2h(x)w(x)dx =Zb
a
2ρ1h(x)w(x)dx =2Zb
a
ρ
1
h(x)w(x)dx =2F
1
.
Exercise Set 8.7 282
10. F=Z2
050x(2p4x2)dx
= 100 Z2
0x(4 x2)1/2dx
= 800/3lb
20
x
y
2
4 – x2
y = 4 – x2
0
x
x
2a
2a
2a/2
w1(x)
w2(x)
a
a
a
a
11. Find the forces on the upper and lower halves and add them:
w1(x)
2a=x
2a/2,w1(x)=2x
F
1=Z
2a/2
0ρx(2x)dx =2ρZ
2a/2
0x2dx =2ρa3/6,
w2(x)
2a=2ax
2a/2,w2(x)=2(
2ax)
F
2=Z
2a
2a/2ρx[2(2ax)]dx =2ρZ
2a
2a/2(2ax x2)dx =2ρa3/3,
F=F1+F2=2ρa3/6+
2ρa3/3=ρa3/2lb
xh(x)
200
100
0
60°
12. h(x)=xsin 60=3x/2,
F=Z100
09810(3x/2)(200)dx
= 9810003Z100
0xdx
=4,905,0003N
16
10
4
4
0
4
417
x
h(x)
13. 162+4
2=
272=4
17 is the
other dimension of the bottom.
(h(x)4)/4=x/(417)
h(x)=x/17+4,
F=Z4
17
062.4(x/17 + 4)10dx
= 624 Z417
0(x/17+4)dx
=14,97617 lb
h + 2
h
0
2
2
x
h
14. F=Zh+2
h
ρ0x(2)dx
=2ρ
0Zh+2
h
xdx
=4ρ
0
(h+1)
283 Chapter 8
15. (a) From Exercise 14, F=4ρ
0
(h+ 1) so (assuming that ρ0is constant) dF/dt =4ρ
0
(dh/dt)
which is a positive constant if dh/dt is a positive constant.
(b) If dh/dt = 20 then dF/dt =80ρ
0lb/min from part (a).
EXERCISE SET 8.8
1. (a) sinh 3 10.0179
(b) cosh(2) 3.7622
(c) tanh(ln 4) = 15/17 0.8824
(d) sinh1(2) ≈−1.4436
(e) cosh131.7627
(f) tanh13
40.9730
2. (a) csch(1) ≈−0.8509
(b) sech(ln 2) = 0.8
(c) coth 1 1.3130
(d) sech11
21.3170
(e) coth130.3466
(f) csch1(3) ≈−0.5493
3. (a) sinh(ln 3) = 1
2(eln 3 eln 3)=1
231
3
=4
3
(b) cosh(ln 2) = 1
2(eln 2 +eln 2)=1
21
2+2
=5
4
(c) tanh(2 ln 5) = e2ln5 e
2ln5
e
2ln5 +e
2ln5 =25 1/25
25+1/25 =312
313
(d) sinh(3ln2)= 1
2(e
3ln2 e
3ln2)=1
21
88
=63
16
4. (a) 1
2(eln x+eln x)=1
2x+1
x
=x
2+1
2x,x>0
(b) 1
2(eln xeln x)=1
2x1
x
=x
21
2x,x>0
(c) e2lnxe
2lnx
e
2lnx+e
2lnx=x
21/x2
x2+1/x2=x41
x4+1,x>0
(d) 1
2(eln x+eln x)=1
21
x+x
=1+x
2
2x,x>0
5. sinh x0 cosh x0 tanh x0 coth x0 sech x0 csch x0
252
/
5
5
/
21
/
5
1
/
2
3
/
45
/
43
/
55
/
34
/
5
4
/
3
4
/
3
(a)
(b)
(c) 5/34
/
55
/
43
/
5
3
/
4
(a) cosh2x0= 1 + sinh2x0= 1 + (2)2= 5, cosh x0=5
(b) sinh2x0= cosh2x01=25
16 1= 9
16, sinh x0=3
4(because x0>0)
(c) sech2x0=1tanh2x0=14
5
2
=116
25 =9
25, sech x0=3
5,
cosh x0=1
sech x0=5
3, from sinh x0
cosh x0= tanh x0we get sinh x0=5
34
5=4
3
Exercise Set 8.8 284
6. d
dx cschx=d
dx
1
sinh x=cosh x
sinh2x=coth xcsch xfor x6=0
d
dx sech x=d
dx
1
cosh x=sinh x
cosh2x=tanh xsech xfor all x
d
dx coth x=d
dx
cosh x
sinh x=sinh2xcosh2x
sinh2x=csch2xfor x6=0
7. (a) y= sinh1xif and only if x= sinh y;1=dy
dx
dx
dy =dy
dx cosh y;so
d
dx[sinh1x]= dy
dx =1
cosh y=1
p1 + sinh2y=1
1+x
2for all x.
(b) Let x1. Then y= cosh1xif and only if x= cosh y;1=dy
dx
dx
dy =dy
dx sinh y,so
d
dx[cosh1x]= dy
dx =1
sinh y=1
pcosh2y1=1
x21for x1.
(c) Let 1<x<1. Then y= tanh1xif and only if x= tanh y;thus
1=dy
dx
dx
dy =dy
dx sech2y=dy
dx(1 tanh2y)=1x
2
,so d
dx[tanh1x]= dy
dx =1
1x2.
9. 4 cosh(4x8) 10. 4x3sinh(x4)11. 1
xcsch2(ln x)
12. 2sech22x
tanh 2x13. 1
x2csch(1/x) coth(1/x)14. 2e2xsech(e2x) tanh(e2x)
15. 2 + 5 cosh(5x) sinh(5x)
q4x+ cosh2(5x)16. 6 sinh2(2x) cosh(2x)
17. x5/2tanh(x) sech2(x)+3x
2tanh2(x)
18. 3 cosh(cos 3x) sin 3x19. 1
p1+x
2/91
3=1/
p9+x
2
20. 1
p1+1/x2(1/x2)=1
|x|
x
2+1 21. 1/(cosh1x)x21
22. 1/q(sinh1x)211+x
223. (tanh1x)2/(1 x2)
24. 2(coth1x)/(1 x2)25. sinh x
pcosh2x1=sinh x
|sinh x|=1,x>0
1,x<0
26. (sech2x)/p1 + tanh2x27. ex
2x1x+exsech1x
28. 10(1 + xcsch1x)9x
|x|1+x
2+ csch1x
31. 1
7sinh7x+C32. 1
2sinh(2x3)+C33. 2
3(tanh x)3/2+C
285 Chapter 8
34. 1
3coth(3x)+C35. ln(cosh x)+C36. 1
3coth3x+C
37. 1
3sech3xln 3
ln 2
=37/375 38. ln(cosh x)iln 3
0=ln5ln 3
39. u=3x,1
3Z1
1+u
2du =1
3sinh13x+C
40. x=2u,Z2
2u22du =Z1
u21du = cosh1(x/2)+C
41. u=ex,Z1
u1u2du =sech1(ex)+C
42. u= cos θ,Z1
1+u
2du =sinh1(cos θ)+C
43. u=2x,Zdu
u1+u
2=csch1|u|+C=csch1|2x|+C
44. x=5u/3, Z5/3
25u225du =1
3Z1
u21du =1
3cosh1(3x/5)+C
45. tanh1xi1/2
0= tanh1(1/2) tanh1(0) = 1
2ln 1+1/2
11/2=1
2ln 3
46. sinh1ti3
0= sinh13sinh10 = ln(3+2)
49. A=Zln 3
0sinh 2xdx=1
2cosh 2xln 3
0
=1
2[cosh(2 ln 3) 1],
but cosh(2 ln 3) = cosh(ln 9) = 1
2(eln 9 +eln 9)=1
2
(9+1/9)=41/9soA=1
2
[41/91]=16/9.
50. V=πZln 2
0sech2xdx=πtanh xln 2
0
=πtanh(ln 2) = 3π/5
51. V=πZ5
0(cosh22xsinh22x)dx =πZ5
0dx =5π
52. Z1
0cosh ax dx =2,1
asinh ax1
0
=2,1
asinh a=2,sinh a=2a;
let f(a) = sinh a2a, then an+1 =ansinh an2an
cosh an2,a
1=2.2,...,a
4=a
5=2.177318985.
53. y0= sinh x,1+(y
0)
2= 1 + sinh2x= cosh2x
L=Zln 2
0cosh xdx= sinh xln 2
0
= sinh(ln 2) = 1
2(eln 2 eln 2)=1
221
2
=3
4
Exercise Set 8.8 286
54. y0= sinh(x/a),1+(y
0)
2= 1 + sinh2(x/a) = cosh2(x/a)
L=Zx1
0cosh(x/a)dx =asinh(x/a)x1
0
=asinh(x1/a)
55. sinh(x)=1
2
(e
xe
x
)=1
2
(e
xe
x
)=sinh x
cosh(x)=1
2
(e
x+e
x
)=1
2
(e
x+e
x
) = cosh x
56. (a) cosh x+ sinh x=1
2(ex+ex)+1
2(e
xe
x
)=e
x
(b) cosh xsinh x=1
2(ex+ex)1
2(exex)=e
x
(c) sinh xcosh y+ cosh xsinh y=1
4(exex)(ey+ey)+1
4(e
x+e
x
)(eyey)
=1
4[(ex+yex+y+exyexy)+(e
x+y+e
x+ye
xye
xy)]
=1
2[e(x+y)e(x+y)] = sinh(x+y)
(d) Let y=xin part (c).
(e) The proof is similar to part (c), or: treat xas variable and yas constant, and differentiate
the result in part (c) with respect to x.
(f) Let y=xin part (e).
(g) Use cosh2x= 1 + sinh2xtogether with part (f).
(h) Use sinh2x= cosh2x1 together with part (f).
57. (a) Divide cosh2xsinh2x= 1 by cosh2x.
(b) tanh(x+y)=sinh xcosh y+ cosh xsinh y
cosh xcosh y+ sinh xsinh y=
sinh x
cosh x+sinh y
cosh y
1+ sinh xsinh y
cosh xcosh y
=tanh x+ tanh y
1 + tanh xtanh y
(c) Let y=xin part (b).
58. (a) Let y= cosh1x; then x= cosh y=1
2(ey+ey), ey2x+ey=0,e
2y2xey+1=0,
e
y=2x±
4x
24
2=x±px
21. To determine which sign to take, note that y0
so eyey,x=(e
y+e
y
)/2(e
y+e
y
)/2=e
y
, hence eyxthus ey=x+x21,
y= cosh1x= ln(x+x21).
(b) Let y= tanh1x; then x= tanh y=eyey
ey+ey=e2y1
e2y+1,xe2y+x=e2y1,
1+x=e
2y(1 x), e2y=(1+x)/(1 x), 2y=ln1+x
1x,y=1
2ln 1+x
1x.
59. (a) d
dx(cosh1x)=1+x/x21
x+x21=1/
px
21
(b) d
dx(tanh1x)= d
dx 1
2(ln(1 + x)ln(1 x))=1
21
1+x+1
1x=1/(1 x2)
287 Chapter 8
60. Let y= sech1xthen x= sech y=1/cosh y, cosh y=1/x,y= cosh1(1/x); the proofs for the
remaining two are similar.
61. If |u|<1 then, by Theorem 8.8.6, Zdu
1u2= tanh1u+C.
For |u|>1,Zdu
1u2= coth1u+C= tanh1(1/u)+C.
62. (a) d
dx(sech1|x|)= d
dx(sech1x2)=1
x
2
1x
2
x
x
2=1
x
1x
2
(b) Similar to solution of part (a)
63. (a) lim
x+sinh x= lim
x+
1
2(exex)=+∞−0=+
(b) lim
x→−∞ sinh x= lim
x→−∞
1
2(exex)=0−∞=−∞
(c) lim
x+tanh x= lim
x+
exex
ex+ex=1
(d) lim
x→−∞ tanh x= lim
x→−∞
exex
ex+ex=1
(e) lim
x+sinh1x= lim
x+ln(x+px2+1)=+
(f) lim
x1tanh1x= lim
x1
1
2[ln(1 + x)ln(1 x)]=+
64. (a) lim
x+(cosh1xln x) = lim
x+[ln(x+px21) ln x]
= lim
x+ln x+x21
x= lim
x+ln(1 + p11/x2)=ln2
(b) lim
x+
cosh x
ex= lim
x+
ex+ex
2ex= lim
x+
1
2(1+e2x)=1/2
65. For |x|<1, y= tanh1xis defined and dy/dx =1/(1 x2)>0; y00 =2x/(1 x2)2changes sign
at x= 0, so there is a point of inflection there.
66. Let x=u,Z1
u21du =Z1
x21dx =cosh1x+C=cosh1(u)+C.
cosh1(u)=ln(u+pu21)=ln 1
u+
u
21
= ln(upu21)=ln|u+pu
21|
67. Using sinh x+ cosh x=ex(Exercise 56a), (sinh x+ cosh x)n=(e
x
)
n=e
nx = sinh nx + cosh nx.
68. Za
a
etxdx =1
tetxa
a
=1
t(eat eat)=2 sinh at
tfor t6=0.
69. (a) y0= sinh(x/a),1+(y
0)
2= 1 + sinh2(x/a) = cosh2(x/a)
L=2Zb
0cosh(x/a)dx =2asinh(x/a)b
0
=2asinh(b/a)
(b) The highest point is at x=b, the lowest at x=0,
so S=acosh(b/a)acosh(0) = acosh(b/a)a.
Chapter 8 Supplementary Exercises 288
70. From part (a) of Exercise 69, L=2asinh(b/a)so120=2asinh(50/a),asinh(50/a) = 60. Let
u=50/a, then a=50/u so (50/u) sinh u=60,sinh u=1.2u.Iff(u) = sinh u1.2u, then
un+1 =unsinh un1.2un
cosh un1.2;u1=1,...,u
5=u
6=1.064868548 50/a so a46.95415231.
From part (b), S=acosh(b/a)a46.95415231[cosh(1.064868548) 1] 29.2 ft.
71. From part (b) of Exercise 69, S=acosh(b/a)aso 30 = acosh(200/a)a. Let u= 200/a,
then a= 200/u so 30 = (200/u)[cosh u1],cosh u1=0.15u.Iff(u) = cosh u0.15u1,
then un+1 =uncosh un0.15un1
sinh un0.15 ;u1=0.3,...,u
4=u
5=0.297792782 200/a so
a671.6079505. From part (a), L=2asinh(b/a)2(671.6079505) sinh(0.297792782) 405.9 ft.
72. (a) When the bow of the boat is at the point (x, y) and the person has walked a distance D,
then the person is located at the point (0,D), the line segment connecting (0,D) and (x, y)
has length a;thusa
2=x
2+(Dy)
2,D=y+
a
2x
2=asech1(x/a).
(b) Find Dwhen a= 15, x= 10: D= 15 sech1(10/15)=15ln 1+p5/9
2/3!14.44 m.
(c) dy/dx =a2
xa2x2+x
a2x2=1
a2x2a2
x+x=1
xpa2x2,
1+[y
0]
2=1+a
2x
2
x
2=a
2
x
2; with a= 15 and x=5,L=Z15
5
225
x2dx =225
x15
5
=30m.
CHAPTER 8 SUPPLEMENTARY EXERCISES
6. (a) A=Z2
0(2+xx2)dx (b) A=Z2
0ydy+Z4
2[(y(y2)] dy
(c) V=πZ2
0[(2 + x)2x4]dx
(d) V=2πZ2
0y
ydy+2πZ4
2y[
y(y2)] dy
(e) V=2πZ2
0x(2+xx2)dx (f) V=πZ2
0ydy+Z4
2π(y(y2)2)dy
7. (a) A=Zb
a
(f(x)g(x)) dx +Zc
b
(g(x)f(x)) dx +Zd
c
(f(x)g(x)) dx
(b) A=Z0
1(x3x)dx +Z1
0(xx3)dx +Z2
1(x3x)dx =1
4+1
4+9
4=11
4
8. (a) S=Z8/27
02πxp1+x
4/3dx (b) S=Z2
02πy3
27p1+y
4/81 dy
(c) S=Z2
02π(y+2)
p1+y
4/81 dy
9. By implicit differentiation dy
dx =y
x1/3,so1+dy
dx2
=1+y
x
2/3=x
2/3+y
2/3
x
2/3=a
2/3
x
2/3,
L=Za/8
a
a1/3
(x1/3)dx =a1/3Za/8
a
x1/3dx =9a/8.
289 Chapter 8
10. The base of the dome is a hexagon of side r. An equation of the circle of radius rthat lies in a
vertical x-yplane and passes through two opposite vertices of the base hexagon is x2+y2=r2.
A horizontal, hexagonal cross section at height yabove the base has area
A(y)=3
3
2x
2=3
3
2(r
2y
2
), hence the volume is V=Zr
0
33
2(r2y2)dy =3r3.
11. Let the sphere have radius R, the hole radius r. By the Pythagorean Theorem, r2+(L/2)2=R2.
Use cylindrical shells to calculate the volume of the solid obtained by rotating about the y-axis
the region r<x<R,
R
2x
2<y<
R
2x
2
:
V=ZR
r
(2πx)2pR2x2dx =4
3π(R2x2)3/2R
r
=4
3π(L/2)3,
so the volume is independent of R.
12. V=2ZL/2
0π16R2
L4(x2L2/4)2=4π
15 LR2
13. Set a=68.7672, b=0.0100333, c= 693.8597, d= 299.2239.
(a) 650
0
-300 300
(b) L=2Zd
0p1+a
2b
2sinh2bx dx
= 1480.2798 ft
(c) x= 283.6249 ft (d) 82
14. y=0atx=b=30.585; distance = Zb
0p1 + (12.54 0.82x)2dx = 196.306 yd
15. Let u=ax then du =adx,Z1
a
2+u
2du =Za
a2+a2x2dx =Z1
1+x
2dx = sinh1(u/a)+C,
Z1
u2a2du =Z1
x21dx = cosh1(u/a)+C,u>a,
Z1
a
2u
2du =1
aZ1
1x2dx =
1
atanh1(u/a)+C, |u|<a
1
acoth1(u/a)+C, |u|>a
=1
2aln
a+u
au+C
(a) sinh1(x/2)+C
(b) cosh1(x/3)+C
(c)
1
2tanh1(x/2)+C, |x|<2
1
2coth1(x/2)+C, |x|>2
=1
22ln
2+x
2x
+C
(d) Zdx
16+5x
2=1
5Zdx
p16/5+x
2dx =1
5sinh1 5x
4!+C
Chapter 8 Supplementary Exercises 290
16. (a) cosh 3x= cosh(2x+x) = cosh 2xcosh x+ sinh 2xsinh x
= (2 cosh2x1) cosh x+ (2 sinh xcosh x) sinh x
= 2 cosh3xcosh x+ 2 sinh2xcosh x
= 2 cosh3xcosh x+ 2(cosh2x1) cosh x= 4 cosh3x3 cosh x
(b) from Theorem 8.8.2 with xreplaced by x
2: cosh x= 2 cosh2x
21,
2 cosh2x
2= cosh x+ 1, cosh2x
2=1
2(cosh x+ 1),
cosh x
2=r1
2(cosh x+ 1) (because cosh x
2>0)
(c) from Theorem 8.8.2 with xreplaced by x
2: cosh x= 2 sinh2x
2+1,
2 sinh2x
2= cosh x1, sinh2x
2=1
2(cosh x1), sinh x
2=±r1
2(cosh x1)
17. (a) F=kx,1
2=k1
4,k=2,W=Z1/4
0kx dx =1/16 J
(b) 25 = ZL
0kx dx =kL2/2, L=5m
18. F=30x+ 2000, W=Z150
0(30x+ 2000) dx =15·1502+ 2000 ·150 = 637,500 lb·ft
19. (a) F=Z1
0ρx3dx N
0
4
2
h(x) = 1 + x
w(x)
x
(b) By similar triangles w(x)
4=x
2,w(x)=2x,so
F=Z4
1ρ(1+x)2xdx lb/ft2.
(c) A formula for the parabola is y=8
125x210, so F=Z0
10 9810|y|2r125
8(y+ 10) dy N.
20. (a)
1
1
2
t
r(b) r= 1 when t0.673080 s.
(c) dr/dt =4.48 m/s.
291 Chapter 8
21. (a)
100 200
-1.6
-1.2
-0.8
-0.4
x
y(b) The maximum deflection occurs at
x= 96 inches (the midpoint
of the beam) and is about 1.42 in.
(c) The length of the centerline is
Z192
0p1+(dy/dx)2dx = 192.026 in.
22. The x-coordinates of the points of intersection are a≈−0.423028 and b1.725171; the area is
Zb
a
(2 sin xx2+1)dx 2.542696.
23. Let (a, k), where π/2<a<π, be the coordinates of the point of intersection of y=kwith
y= sin x.Thusk= sin aand if the shaded areas are equal,
Za
0(ksin x)dx =Za
0(sin asin x)dx =asin a+ cos a1=0
Solve for ato get a2.331122, so k= sin a0.724611.
24. The volume is given by 2πZk
0xsin xdx=2π(sin kkcos k) = 8; solve for kto get
k=1.736796.
25. (a) Za+2
a
x
1+x
3dx
(b) Use the result in Exercise 24, Section 7.9, to obtain
d
da Za+2
a
x
1+x
3dx=a+2
p1+(a+2)
3a
1+a
3= 0; solve for ato get a0.683772.
The maximum work is Za+2
a
x
1+x
3dx 1.347655 J.
292
CHAPTER 9
Principles of Integral Evaluation
EXERCISE SET 9.1
1. u=32x, du =2dx, 1
2Zu3du =1
8u4+C=1
8(3 2x)4+C
2. u=4+9x, du =9dx, 1
9Zu1/2du =2
3·9u3/2+C=2
27(4+9x)
3/2+C
3. u=x2,du=2xdx, 1
2Zsec2udu=1
2tan u+C=1
2tan(x2)+C
4. u=x2,du=2xdx, 2Ztan udu=2ln|cos u|+C=2ln|cos(x2)|+C
5. u= 2 + cos 3x, du =3 sin 3xdx, 1
3Zdu
u=1
3ln |u|+C=1
3ln(2 + cos 3x)+C
6. u=3x
2,du=3
2dx, 2
3Zdu
4+4u
2=1
6Zdu
1+u
2=1
6tan1u+C=1
6tan1(3x/2)+C
7. u=ex,du=e
xdx, Zsinh udu= cosh u+C= cosh ex+C
8. u=lnx, du =1
xdx, Zsec utan udu= sec u+C= sec(ln x)+C
9. u= cot x, du =csc2xdx, Zeudu =eu+C=ecot x+C
10. u=x2,du=2xdx, 1
2Zdu
1u2=1
2sin1u+C=1
2sin1(x2)+C
11. u= cos 7x, du =7 sin 7xdx, 1
7Zu5du =1
42u6+C=1
42 cos67x+C
12. u= sin x, du = cos x dx, Zdu
uu2+1 =ln
1+
1+u
2
u
+C=ln
1+p1 + sin2x
sin x+C
13. u=ex,du=e
xdx, Zdu
4+u
2=lnu+pu
2+4
+C=lne
x+pe
2x+4
+C
14. u= tan1x, du =1
1+x
2dx, Zeudu =eu+C=etan1x+C
15. u=x2,du=1
2
x2dx, 2Zeudu =2e
u+C=2e
x2+C
16. u=3x
2+2x, du =(6x+2)dx, 1
2Zcot udu=1
2ln |sin u|+C=1
2ln sin |3x2+2x|+C
293 Chapter 9
17. u=x, du =1
2xdx, Z2 cosh udu= 2 sinh u+C= 2 sinh x+C
18. u=lnx, du =dx
x,Zdu
u=ln|u|+C=ln|ln x|+C
19. u=x, du =1
2xdx, Z2du
3u=2Ze
uln 3 du =2
ln 3euln 3 +C=2
ln 33x+C
20. u= sin θ, du = cos θdθ, Zsec utan udu= sec u+C= sec(sin θ)+C
21. u=2
x,du=2
x
2dx, 1
2Zcsch2udu=1
2coth u+C=1
2coth 2
x+C
22. Zdx
x23=ln
x+px
23
+C
23. u=ex,du=e
xdx, Zdu
4u2=1
4ln
2+u
2u
+C=1
4ln
2+e
x
2e
x
+C
24. u=lnx, du =1
xdx, Zcos udu= sin u+C= sin(ln x)+C
25. u=ex,du=e
xdx, Zexdx
1e2x=Zdu
1u2= sin1u+C= sin1ex+C
26. u=x1/2,du=1
2x
3/2dx, Z2 sinh udu=2 cosh u+C=2 cosh(x1/2)+C
27. u=x2,du=2xdx, 1
2Zdu
sec u=1
2Zcos udu=1
2sin u+C=1
2sin(x2)+C
28. 2u=ex,2du =exdx, Z2du
44u2= sin1u+C= sin1(ex/2)+C
29. 4x2=ex2ln 4,u=x
2ln 4,du=2xln 4 dx =xln 16 dx,
1
ln 16 Zeudu =1
ln 16eu+C=1
ln 16ex2ln 4 +C=1
ln 164x2+C
30. 2πx =eπx ln 2,Z2πx dx =1
πln 2eπx ln 2 +C=1
πln 22πx +C
31. (a) With u=xwe get
from (15), Zdx
1x2= sin1x+C(|x|<1)
from (17), Zdx
1+x
2= tan1x+C
from (19), Zdx
xx21= sec1x+C(x>1)
Exercise Set 9.2 294
(b) With u=ax, du =adx, we get (for a>0)
Zdu
a2u2=Zadx
a1x2= sin1x+C= sin1(u/a)+C
Zdu
a2+u2=1
a2Zadx
1+x
2=1
atan1x+C=1
atan1(u/a)+C
Zdu
uu2a2=Zadx
a2xx21=1
asec1x+C=1
asec1(u/a)+C
EXERCISE SET 9.2
1. u=x,dv =exdx,du =dx,v=ex;Zxexdx =xex+Zexdx =xexex+C
2. u=x,dv =e3xdx,du =dx,v=1
3e3x;Zxe3xdx =1
3xe3x1
3Ze3xdx =1
3xe3x1
9e3x+C
3. u=x2,dv =exdx,du =2xdx,v=e
x;Zx
2e
xdx =x2ex2Zxexdx.
For Zxexdx use u=x,dv =exdx,du =dx,v=exto get
Zxexdx =xexex+C1so Zx2exdx =x2ex2xex+2e
x+C
4. u=x2,dv =e2xdx,du =2xdx,v=1
2e
2x;Zx
2e
2xdx =1
2x2e2x+Zxe2xdx
For Zxe2xdx use u=x,dv =e2xdx to get
Zxe2xdx =1
2xe2x+1
2Ze2xdx =1
2xe2x1
4e2x+C
so Zx2e2xdx =1
2x2e2x1
2xe2x1
4e2x+C
5. u=x,dv = sin 2xdx,du =dx,v=1
2cos 2x;
Zxsin 2xdx=1
2xcos 2x+1
2Zcos 2xdx=1
2xcos 2x+1
4sin 2x+C
6. u=x,dv = cos 3xdx,du =dx,v=1
3sin 3x;
Zxcos 3xdx=1
3xsin 3x1
3Zsin 3xdx=1
3xsin 3x+1
9cos 3x+C
7. u=x2,dv = cos xdx,du =2xdx,v= sin x;Zx2cos xdx=x
2sin x2Zxsin xdx
For Zxsin xdx use u=x,dv = sin xdx to get
Zxsin xdx=xcos x+ sin x+C1so Zx2cos xdx=x
2sin x+2xcos x2 sin x+C
295 Chapter 9
8. u=x2,dv = sin xdx,du =2xdx,v=cos x;
Zx2sin xdx=x
2cos x+2Zxcos xdx; for Zxcos xdx use u=x,dv = cos xdx to get
Zxcos xdx=xsin x+ cos x+C1so Zx2sin xdx=x
2cos x+2xsin x+ 2 cos x+C
9. u=lnx,dv =xdx,du =1
xdx,v=2
3x3/2;
Zxln xdx=2
3x
3/2ln x2
3Zx1/2dx =2
3x3/2ln x4
9x3/2+C
10. u=lnx,dv =xdx,du =1
xdx,v=1
2x2;Zxln xdx=1
2x
2ln x1
2Zxdx=1
2x
2ln x1
4x2+C
11. u= (ln x)2,dv =dx,du =2
ln x
xdx,v=x;Z(ln x)2dx =x(ln x)22Zln xdx.
Use u=lnx,dv =dx to get Zln xdx=xln xZdx =xln xx+C1so
Z(ln x)2dx =x(ln x)22xln x+2x+C
12. u=lnx,dv =1
xdx,du =1
xdx,v=2
x;Zln x
xdx =2
xln x2Z1
xdx =2
xln x4x+C
13. u= ln(2x+ 3), dv =dx,du =2
2x+3dx,v=x;Zln(2x+3)dx =xln(2x+3)Z2x
2x+3dx
but Z2x
2x+3dx =Z13
2x+3dx =x3
2ln(2x+3)+C
1so
Zln(2x+3)dx =xln(2x+3)x+3
2ln(2x+3)+C
14. u= ln(x2+ 4), dv =dx,du =2x
x2+4dx,v=x;Zln(x2+4)dx =xln(x2+4)2Zx
2
x
2+4dx
but Zx2
x2+4dx =Z14
x2+4dx =x2 tan1x
2+C1so
Zln(x2+4)dx =xln(x2+4)2x+ 4 tan1x
2+C
15. u= sin1x,dv =dx,du =1/
1x
2
dx,v=x;
Zsin1xdx=xsin1xZx/p1x2dx =xsin1x+p1x2+C
16. u= cos1(2x), dv =dx,du =2
14x2dx,v=x;
Zcos1(2x)dx =xcos1(2x)+Z2x
14x
2dx =xcos1(2x)1
2p14x2+C
Exercise Set 9.2 296
17. u= tan1(2x), dv =dx,du =2
1+4x
2dx,v=x;
Ztan1(2x)dx =xtan1(2x)Z2x
1+4x
2dx =xtan1(2x)1
4ln(1 + 4x2)+C
18. u= tan1x,dv =xdx,du =1
1+x
2dx,v=1
2x2;Zxtan1xdx=1
2x
2tan1x1
2Zx2
1+x
2dx
but Zx2
1+x
2dx =Z11
1+x
2dx =xtan1x+C1so
Zxtan1xdx=1
2x
2tan1x1
2x+1
2tan1x+C
19. u=ex,dv = sin xdx,du =exdx,v=cos x;Zexsin xdx=e
xcos x+Zexcos xdx.
For Zexcos xdx use u=ex,dv = cos xdx to get Zexcos x=exsin xZexsin xdx so
Zexsin xdx=e
xcos x+exsin xZexsin xdx,
2Ze
xsin xdx=e
x(sin xcos x)+C
1,Ze
xsin xdx=1
2e
x(sin xcos x)+C
20. u=e2x,dv = cos 3xdx,du =2e
2x
dx,v=1
3sin 3x;
Ze2xcos 3xdx=1
3e
2xsin 3x2
3Ze2xsin 3xdx. Use u=e2x,dv = sin 3xdx to get
Ze2xsin 3xdx=1
3e
2xcos 3x+2
3Ze2xcos 3xdx so
Ze2xcos 3xdx=1
3e
2xsin 3x+2
9e2xcos 3x4
9Ze2xcos 3xdx,
13
9Ze2xcos 3xdx=1
9e
2x(3 sin 3x+2 cos 3x)+C1,Ze2xcos 3xdx=1
13e2x(3 sin 3x+2 cos 3x)+C
21. u=eax,dv = sin bx dx,du =aeaxdx,v=1
bcos bx (b6= 0);
Zeax sin bx dx =1
beax cos bx +a
bZeax cos bx dx. Use u=eax,dv = cos bx dx to get
Zeax cos bx dx =1
beax sin bx a
bZeax sin bx dx so
Zeax sin bx dx =1
beax cos bx +a
b2eax sin bx a2
b2Zeax sin bx dx,
Zeax sin bx dx =eax
a2+b2(asin bx bcos bx)+C
22. From Exercise 21 with a=3,b=5,x =θ, answer = e3θ
34 (3 sin 5θ5 cos 5θ)+C
297 Chapter 9
23. u= sin(ln x), dv =dx,du =cos(ln x)
xdx,v=x;
Zsin(ln x)dx =xsin(ln x)Zcos(ln x)dx. Use u= cos(ln x), dv =dx to get
Zcos(ln x)dx =xcos(ln x)+Zsin(ln x)dx so
Zsin(ln x)dx =xsin(ln x)xcos(ln x)Zsin(ln x)dx,
Zsin(ln x)dx =(x/2)[sin(ln x)cos(ln x)]+C
24. u= cos(ln x), dv =dx,du =1
xsin(ln x)dx,v=x;
Zcos(ln x)dx =xcos(ln x)+Zsin(ln x)dx. Use u= sin(ln x), dv =dx to get
Zsin(ln x)dx =xsin(ln x)Zcos(ln x)dx so
Zcos(ln x)dx =xcos(ln x)+xsin(ln x)Zcos(ln x)dx,
Zcos(ln x)dx =1
2x[cos(ln x) + sin(ln x)]+C
25. u=x,dv = sec2xdx,du =dx,v= tan x;
Zxsec2xdx=xtan xZtan xdx=xtan xZsin x
cos xdx =xtan x+ln|cos x|+C
26. u=x,dv = tan2xdx= (sec2x1)dx,du =dx,v= tan xx;
Zxtan2xdx=xtan xx2Z(tan xx)dx
=xtan xx2+ln|cos x|+1
2x2+C=xtan x1
2x2+ln|cos x|+C
27. u=x2,dv =xex2dx,du =2xdx,v=1
2e
x
2;
Zx
3e
x
2dx =1
2x2ex2Zxex2dx =1
2x2ex21
2ex2+C
28. u=xex,dv =1
(x+1)
2dx,du =(x+1)e
xdx,v=1
x+1;
Zxex
(x+1)
2dx =xex
x+1+Ze
x
dx =xex
x+1+e
x+C=e
x
x+1+C
Exercise Set 9.2 298
29. u=x,dv =e5xdx,du =dx,v=1
5e5x;
Z1
0xe5xdx =1
5xe5x1
0
+1
5Z1
0e5xdx
=1
5e51
25e5x1
0
=1
5e51
25(e51)=(16e
5
)/25
30. u=x,dv =e2xdx,du =dx,v=1
2e2x;
Z2
0xe2xdx =1
2xe2x2
01
2Z2
0e2xdx =e41
4e2x2
0
=e41
4(e41)=(3e
4+1)/4
31. u=lnx,dv =x2dx,du =1
xdx,v=1
3x3;
Ze
1x2ln xdx=1
3x
3ln xe
11
3Ze
1x2dx =1
3e31
9x3e
1
=1
3e31
9(e31)=(2e
3+1)/9
32. u=lnx,dv =1
x2dx,du =1
xdx,v=1
x;
Ze
e
ln x
x2dx =1
xln xe
e
+Ze
e
1
x2dx
=1
e+1
eln e1
xe
e
=1
e+1
2e1
e+1
e=3e4
2e
33. u= ln(x+ 3), dv =dx,du =1
x+3dx,v=x;
Z2
2ln(x+3)dx =xln(x+3)
2
2Z2
2
x
x+3dx = 2 ln 5 + 2 ln 1 Z2
213
x+3dx
= 2 ln 5 [x3 ln(x+ 3)]2
2= 2 ln 5 (2 3ln5)+(23ln1)=5ln54
34. u= sin1x,dv =dx,du =1
1x2dx,v=x;
Z1/2
0sin1xdx=xsin1x1/2
0Z1/2
0
x
1x2dx =1
2sin11
2+p1x21/2
0
=1
2π
6+r3
41= π
12 +3
21
35. u= sec1θ,dv =,du =1
2θθ1,v=θ;
Z4
2sec1θdθ =θsec1θ4
21
2Z4
2
1
θ1= 4 sec122 sec12θ14
2
=4π
32π
4
3+1= 5π
6
3+1
299 Chapter 9
36. u= sec1x,dv =xdx,du =1
xx21dx,v=1
2x2;
Z2
1xsec1xdx=1
2x
2sec1x2
11
2Z2
1
x
x21dx
=1
2[(4)(π/3) (1)(0)] 1
2px212
1
=2π/33/2
37. u=x,dv = sin 4xdx,du =dx,v=1
4cos 4x;
Zπ/2
0xsin 4xdx=1
4xcos 4xπ/2
0
+1
4Zπ/2
0cos 4xdx=π/8+ 1
16 sin 4xπ/2
0
=π/8
38. Zπ
0(x+xcos x)dx =1
2x2π
0
+Zπ
0xcos xdx=π
2
2+Zπ
0xcos xdx;
u=x,dv = cos xdx,du =dx,v= sin x
Zπ
0xcos xdx=xsin xπ
0Zπ
0sin xdx= cos xπ
0
=2soZπ
0(x+xcos x)dx =π2/22
39. u= tan1x,dv =xdx,du =1
2x(1+x)dx,v=2
3x3/2;
Z3
1
xtan1xdx =2
3x3/2tan1x3
11
3Z3
1
x
1+xdx
=2
3x3/2tan1x3
11
3Z3
111
1+xdx
=2
3x3/2tan1x1
3x+1
3ln |1+x|
3
1
=(2
3ππ/22+ln2)/3
40. u= ln(x2+ 1), dv =dx,du =2x
x2+1dx,v=x;
Z2
0ln(x2+1)dx =xln(x2+1)
2
0Z2
0
2x
2
x
2+1dx = 2 ln 5 2Z2
011
x2+1dx
= 2 ln 5 2(xtan1x)i2
0= 2 ln 5 4+2tan
12
41. t=x, t2=x, dx =2tdt
(a) Zexdx =2Ztetdt;u=t, dv =etdt, du =dt, v =et,
Zexdx =2tet2Zetdt =2(t1)et+C=2(
x1)ex+C
(b) Zcos xdx=2Ztcos tdt;u=t, dv = cos tdt, du =dt, v = sin t,
Zcos xdx=2tsin t2Zsin tdt =2tsin t+ 2 cos t+C=2
xsin x+ 2 cos x+C
Exercise Set 9.2 300
43. (a) A=Ze
1ln xdx=(xln xx)e
1
=1
(b) V=πZe
1(ln x)2dx =πh(x(ln x)22xln x+2x)
ie
1=π(e2)
44. A=Zπ/2
0(xxsin x)dx =1
2x2π/2
0Zπ/2
0xsin xdx=π
2
8(xcos x+ sin x)π/2
0
=π2/81
45. V=2πZπ
0xsin xdx=2π(xcos x+ sin x)π
0
=2π
2
46. V=2πZπ/2
0xcos xdx=2π(cos x+xsin x)π/2
0
=π(π2)
47. distance = Z5
0t2etdt;u=t2,dv =e
tdt, du =2tdt, v =et,
distance = t2eti5
0+2Z5
0tetdt;u=2t, dv =etdt, du =2dt, v =et,
distance = 25e52teti5
0+2Z5
0e
t
dt =25e510e52eti5
0
=25e510e52e5+2=37e5+2
48. u=2t, dv = sin(kωt)dt, du =2dt, v =1
cos(kωt); the integrand is an even function of tso
Zπ/ω
π/ω
tsin(kωt)dt =2Zπ/ω
0tsin(kωt)dt =2
tcos(kωt)π/ω
0
+2Zπ/ω
0
1
cos(kωt)dt
=2π(1)k+1
2+2
k2ω2sin(kωt)π/ω
0
=2π(1)k+1
2
49. (a) Zsin3xdx =1
3sin2xcos x+2
3Zsin xdx=1
3sin2xcos x2
3cos x+C
(b) Zsin4xdx=1
4sin3xcos x+3
4Zsin2xdx,Zsin2xdx=1
2sin xcos x+1
2x+C1so
Zπ/4
0sin4xdx=1
4sin3xcos x3
8sin xcos x+3
8xπ/4
0
=1
4(1/2)3(1/2) 3
8(1/2)(1/2)+3π/32=3π/32 1/4
50. (a) Zcos5xdx=1
5cos4xsin x+4
5Zcos3xdx=1
5cos4xsin x+4
51
3cos2xsin x+2
3sin x+C
=1
5cos4xsin x+4
15 cos2xsin x+8
15 sin x+C
301 Chapter 9
(b) Zcos6xdx=1
6cos5xsin x+5
6Zcos4xdx
=1
6cos5xsin x+5
61
4cos3xsin x+3
4Zcos2xdx
=1
6cos5xsin x+5
24 cos3xsin x+5
81
2cos xsin x+1
2x+C,
1
6cos5xsin x+5
24 cos3xsin x+5
16 cos xsin x+5
16xπ/2
0
=5π/32
51. u= sinn1x,dv = sin xdx,du =(n1) sinn2xcos xdx,v=cos x;
Zsinnxdx=sinn1xcos x+(n1) Zsinn2xcos2xdx
=sinn1xcos x+(n1) Zsinn2x(1 sin2x)dx
=sinn1xcos x+(n1) Zsinn2xdx(n1) Zsinnx dx,
nZsinnxdx=sinn1xcos x+(n1) Zsinn2x dx,
Zsinnxdx=1
nsinn1xcos x+n1
nZsinn2xdx
52. (a) u= secn2x,dv = sec2xdx,du =(n2) secn2xtan xdx,v= tan x;
Zsecnxdx= secn2xtan x(n2) Zsecn2xtan2xdx
= secn2xtan x(n2) Zsecn2x(sec2x1)dx
= secn2xtan x(n2) Zsecnxdx+(n2) Zsecn2x dx,
(n1) Zsecnxdx= secn2xtan x+(n2) Zsecn2xdx,
Zsecnxdx=1
n1secn2xtan x+n2
n1Zsecn2xdx
(b) Ztannxdx=Ztann2x(sec2x1) dx =Ztann1xsec2xdxZtann2xdx
=1
n1tann1xZtann2xdx
(c) u=xn,dv =exdx,du =nxn1dx,v=ex;Zxnexdx =xnexnZxn1exdx
53. (a) Ztan4xdx =1
3tan3xZtan2xdx=1
3tan3xtan x+Zdx =1
3tan3xtan x+x+C
(b) Zsec4xdx=1
3sec2xtan x+2
3Zsec2xdx=1
3sec2xtan x+2
3tan x+C
Exercise Set 9.2 302
(c) Zx3exdx =x3ex3Zx2exdx =x3ex3x2ex2Zxexdx
=x3ex3x2ex+6xexZexdx=x3ex3x2ex+6xex6ex+C
54. (a) u=3x,
Zx
2
e
3x
dx =1
27 Zu2eudu =1
27 u2eu2Zueudu=1
27u2eu2
27 ueuZeudu
=1
27u2eu2
27ueu+2
27eu+C=1
3x2e3x2
9xe3x+2
27e3x+C
(b) u=x,
Z1
0xexdx =2Z1
0u
3
e
u
du,
Zu3eudu =u3eu3Zu2eudu =u3eu3u2eu2Zueudu
=u3eu3u2eu+6ueuZeudu=u3eu3u2eu+6ueu6eu+C,
2Z1
0u3eudu =2(u
33u
2+6u6)eu1
0
=1232e1
55. u=x,dv =f00(x)dx,du =dx,v=f0(x);
Z1
1xf00(x)dx =xf 0(x)1
1Z1
1f0(x)dx
=f0(1) + f0(1) f(x)1
1
=f0(1) + f0(1) f(1) + f(1)
56. (a) u=f(x),dv =dx, du =f0(x),v =x;
Zb
a
f(x)dx =xf(x)b
aZb
a
xf0(x)dx =bf(b)af(a)Zb
a
xf0(x)dx
(b) Substitute y=f(x),dy =f0(x)dx, x =awhen y=f(a), x=bwhen y=f(b),
Zb
a
xf0(x)dx =Zf(b)
f(a)xdy =Zf(b)
f(a)f1(y)dy
(c) From a=f1(α) and b=f1(β)weget
bf(b)af(a)=βf1(β)αf1(α); then
Zβ
α
f1(x)dx =Zβ
α
f1(y)dy =Zf(b)
f(a)f1(y)dy,
which, by part (b), yields
a
b
a = f–1(a) b = f–1(b)
x
y
A1
A2
Zβ
α
f1(x)dx =bf(b)af(a)Zb
a
f(x)dx
=βf1(β)αf1(α)Zf1(β)
f1(α)f(x)dx
303 Chapter 9
Note from the figure that A1=Zβ
α
f1(x)dx, A2=Zf1(β)
f1(α)f(x)dx, and
A1+A2=βf1(β)αf1(α), a ”picture proof”.
57. (a) Use Exercise 56(c);
Z1/2
0sin1xdx=1
2sin11
20·sin10Zsin1(1/2)
sin1(0) sin xdx=1
2sin11
2Zπ/6
0sin xdx
(b) Use Exercise 56(b);
Ze2
e
ln xdx=e
2ln e2eln eZln e2
ln e
f1(y)dy =2e
2eZ2
1e
ydy =2e
2eZ2
1e
xdx
58. (a) Zxexdx =x(ex+C1)Z(ex+C1)dx =xex+C1xexC1x+C=xexex+C
(b) u(v+C1)Z(v+C1)du =uv +C1uZvduC
1u=uv Zvdu
EXERCISE SET 9.3
1. u= cos x,Zu5du =1
6cos6x+C2. u= sin 3x,1
3Zu4du =1
15 sin53x+C
3. u= sin ax,1
aZudu=1
2asin2ax +C,a6=0
4. Zcos23xdx=1
2Z(1 + cos 6x)dx =1
2x+1
12 sin 6x+C
5. Zsin25θdθ=1
2Z(1 cos 10θ)=1
2θ1
20 sin 10θ+C
6. Zcos3at dt =Z(1 sin2at) cos at dt
=Zcos at dt Zsin2at cos at dt =1
asin at 1
3asin3at +C(a6=0)
7. Zcos5θdθ =Z(1 sin2θ)2cos θdθ =Z(1 2 sin2θ+ sin4θ) cos θdθ
= sin θ2
3sin3θ+1
5sin5θ+C
8. Zsin3xcos3xdx=Zsin3x(1 sin2x) cos xdx
=Z(sin3xsin5x) cos xdx=1
4sin4x1
6sin6x+C
9. Zsin22tcos32tdt=Zsin22t(1 sin22t) cos 2tdt=Z(sin22tsin42t) cos 2tdt
=1
6sin32t1
10 sin52t+C
Exercise Set 9.3 304
10. Zsin32xcos22xdx=Z(1 cos22x) cos22xsin 2xdx
=Z(cos22xcos42x) sin 2xdx=1
6cos32x+1
10 cos52x+C
11. Zsin2xcos2xdx=1
4Zsin22xdx=1
8Z(1 cos 4x)dx =1
8x1
32 sin 4x+C
12. Zsin2xcos4xdx=1
8Z(1 cos 2x)(1 + cos 2x)2dx =1
8Z(1 cos22x)(1 + cos 2x)dx
=1
8Zsin22xdx+1
8Zsin22xcos 2xdx=1
16 Z(1 cos 4x)dx +1
48 sin32x
=1
16x1
64 sin 4x+1
48 sin32x+C
13. Zsin xcos 2xdx=1
2Z(sin 3xsin x)dx =1
6cos 3x+1
2cos x+C
14. Zsin 3θcos 2θdθ =1
2Z(sin 5θ+ sin θ)=1
10 cos 5θ1
2cos θ+C
15. Zsin xcos(x/2)dx =1
2Z[sin(3x/2) + sin(x/2)]dx =1
3cos(3x/2) cos(x/2)+C
16. u= cos x,Zu1/5du =5
6cos6/5x+C
17. Zπ/4
0cos3xdx=Zπ/4
0(1 sin2x) cos xdx
=sin x1
3sin3xπ/4
0
=(
2/2) 1
3(2/2)3=5
2/12
18. Zπ/2
0sin2(x/2) cos2(x/2)dx =1
4Zπ/2
0sin2xdx=1
8Zπ/2
0(1 cos 2x)dx
=1
8x1
2sin 2xπ/2
0
=π/16
19. Zπ/3
0sin43xcos33xdx=Zπ/3
0sin43x(1 sin23x) cos 3xdx=1
15 sin53x1
21 sin73xπ/3
0
=0
20. Zπ
π
cos25θdθ=1
2Zπ
π
(1 + cos 10θ)=1
2θ+1
10 sin 10θπ
π
=π
21. Zπ/6
0sin 2xcos 4xdx=1
2Zπ/6
0(sin 6xsin 2x)dx =1
12 cos 6x+1
4cos 2xπ/6
0
=[(1/12)(1)+(1/4)(1/2)] [1/12+1/4]=1/24
22. Z2π
0sin2kx dx =1
2Z2π
0(1 cos 2kx)dx =1
2x1
2ksin 2kx2π
0
=π1
4ksin 4πk (k6=0)
305 Chapter 9
23. 1
3tan(3x+1)+C24. 1
5ln |cos 5x|+C
25. u=e2x,du=2e
2xdx;1
2Ztan udu=1
2ln |cos u|+C=1
2ln |cos(e2x)|+C
26. 1
3ln |sin 3x|+C27. 1
2ln |sec 2x+ tan 2x|+C
28. u=x, du =1
2xdx;Z2 sec udu=2ln|sec u+ tan u|+C=2ln|sec x+ tan x|+C
29. u= tan x,Zu2du =1
3tan3x+C
30. Ztan5x(1 + tan2x) sec2xdx=Z(tan5x+ tan7x) sec2xdx=1
6tan6x+1
8tan8x+C
31. Ztan34x(1 + tan24x) sec24xdx=Z(tan34x+ tan54x) sec24xdx=1
16 tan44x+1
24 tan64x+C
32. Ztan4θ(1 + tan2θ) sec2θdθ=1
5tan5θ+1
7tan7θ+C
33. Zsec4x(sec2x1) sec xtan xdx=Z(sec6xsec4x) sec xtan xdx=1
7sec7x1
5sec5x+C
34. Z(sec2θ1)2sec θtan θdθ =Z(sec4θ2 sec2θ+ 1) sec θtan θdθ =1
5sec5θ2
3sec3θ+ sec θ+C
35. Z(sec2x1)2sec xdx=Z(sec5x2 sec3x+ sec x)dx =Zsec5xdx2Zsec3xdx+Zsec xdx
=1
4sec3xtan x+3
4Zsec3xdx2Zsec3xdx+ln|sec x+ tan x|
=1
4sec3xtan x5
41
2sec xtan x+1
2ln |sec x+ tan x|+ln|sec x+ tan x|+C
=1
4sec3xtan x5
8sec xtan x+3
8ln |sec x+ tan x|+C
36. Z[sec2(x/2) 1] sec3(x/2)dx =Z[sec5(x/2) sec3(x/2)]dx
=2Zsec5uduZsec3udu
(u=x/2)
=21
4sec3utan u+3
4Zsec3udu
Zsec3udu
(equation (20))
=1
2sec3utan u1
2Zsec3udu
=1
2sec3utan u1
4sec utan u1
4ln |sec u+ tan u|+C(equation (20), (22))
=1
2sec3x
2tan x
21
4sec x
2tan x
21
4ln sec x
2+ tan x
2+C
Exercise Set 9.3 306
37. Zsec22t(sec 2ttan 2t)dt =1
6sec32t+C38. Zsec4x(sec xtan x)dx =1
5sec5x+C
39. Zsec4xdx=Z(1 + tan2x) sec2xdx =Z(sec2x+ tan2xsec2x)dx = tan x+1
3tan3x+C
40. Using equation (20),
Zsec5xdx=1
4sec3xtan x+3
4Zsec3xdx
=1
4sec3xtan x+3
8sec xtan x+3
8ln |sec x+ tan x|+C
41. Use equation (19) to get Ztan4xdx=1
3tan3xtan x+x+C
42. u=4x, use equation (19) to get
1
4Ztan3udu=1
41
2tan2u+ln|cos u|+C=1
8tan24x+1
4ln |cos 4x|+C
43. Ztan x(1 + tan2x) sec2xdx=2
3tan3/2x+2
7tan7/2x+C
44. Zsec1/2x(sec xtan x)dx =2
3sec3/2x+C
45. Zπ/6
0(sec22x1)dx =1
2tan 2xxπ/6
0
=3/2π/6
46. Zπ/6
0sec2θ(sec θtan θ)=1
3sec3θπ/6
0
=(1/3)(2/3)31/3=8
3/27 1/3
47. u=x/2,
2Zπ/4
0tan5udu=1
2tan4utan2u2ln|cos u|π/4
0
=1/212 ln(1/2) = 1/2+ln2
48. u=πx, 1
πZπ/4
0sec utan udu=1
πsec uπ/4
0
=(
21)
49. Z(csc2x1) csc2x(csc xcot x)dx =Z(csc4xcsc2x)(csc xcot x)dx =1
5csc5x+1
3csc3x+C
50. Zcos23t
sin23t·1
cos 3tdt =Zcsc 3tcot 3tdt=1
3csc 3t+C
51. Z(csc2x1) cot xdx=Zcsc x(csc xcot x)dx Zcos x
sin xdx =1
2csc2xln |sin x|+C
52. Z(cot2x+ 1) csc2xdx=1
3cot3xcot x+C
307 Chapter 9
53. (a) Z2π
0sin mx cos nx dx =1
2Z2π
0[sin(m+n)x+sin(mn)x]dx =cos(m+n)x
2(m+n)cos(mn)x
2(mn)2π
0
but cos(m+n)x2π
0
=0,cos(mn)x2π
0
=0.
(b) Z2π
0cos mx cos nx dx =1
2Z2π
0[cos(m+n)x+ cos(mn)x]dx;
since m6=n, evaluate sin at integer multiples of 2πto get 0.
(c) Z2π
0sin mx sin nx dx =1
2Z2π
0[cos(mn)xcos(m+n)x]dx;
since m6=n, evaluate sin at integer multiples of 2πto get 0.
55. y0= tan x,1+(y
0)
2= 1 + tan2x= sec2x,
L=Zπ/4
0
sec2xdx=Zπ/4
0sec xdx=ln|sec x+ tan x|π/4
0
= ln(2+1)
56. V=πZπ/4
0(1 tan2x)dx =πZπ/4
0(2 sec2x)dx =π(2xtan x)π/4
0
=1
2π(π2)
57. V=πZπ/4
0(cos2xsin2x)dx =πZπ/4
0cos 2xdx=1
2πsin 2x#π/4
0
=π/2
58. V=πZπ
0sin2xdx=π
2Zπ
0(1 cos 2x)dx =π
2x1
2sin 2xπ
0
=π2/2
59. With 0 <α<β,D=D
β
D
α=L
2πZβ
α
sec xdx=L
2πln |sec x+ tan x|#β
α
=L
2πln
sec β+ tan β
sec α+ tan α
60. (a) D=100
2πln(sec 25+ tan 25)=7.18 cm (b) D=100
2πln
sec 50+ tan 50
sec 30+ tan 30=7.34 cm
61. (a) Zcsc xdx =Zsec(π/2x)dx =ln |sec(π/2x) + tan(π/2x)|+C
=ln |csc x+ cot x|+C
(b) ln |csc x+ cot x|=ln 1
|csc x+ cot x|=ln |csc xcot x|
|csc2xcot2x|=ln|csc xcot x|,
ln |csc x+ cot x|=ln
1
sin x+cos x
sin x=ln
sin x
1 + cos x
=ln
2 sin(x/2) cos(x/2)
2 cos2(x/2) =ln|tan(x/2)|
62. sin x+ cos x=2[(1/2) sin x+(1/
2) cos x]
=2[sin xcos(π/4) + cos xsin(π/4)] = 2 sin(x+π/4),
Zdx
sin x+ cos x=1
2Zcsc(x+π/4)dx =1
2ln |csc(x+π/4) + cot(x+π/4)|+C
=1
2ln
2 + cos xsin x
sin x+ cos x+C
Exercise Set 9.4 308
63. asin x+bcos x=pa2+b2a
a2+b2sin x+b
a2+b2cos x=pa2+b2(sin xcos θ+ cos xsin θ)
where cos θ=a/a2+b2and sin θ=b/a2+b2so asin x+bcos x=a2+b2sin(x+θ)
and Zdx
asin x+bcos x=1
a2+b2Zcsc(x+θ)dx =1
a2+b2ln |csc(x+θ) + cot(x+θ)|+C
=1
a2+b2ln
a2+b2+acos xbsin x
asin x+bcos x+C
64. (a) Zπ/2
0sinnxdx=1
nsinn1xcos xπ/2
0
+n1
nZπ/2
0sinn2xdx=n1
nZπ/2
0sinn2xdx
(b) By repeated application of the formula in part (a)
Zπ/2
0sinnxdx=n1
nn3
n2Zπ/2
0sinn4xdx
=
n1
nn3
n2n5
n4···1
2Zπ/2
0dx, n even
n1
nn3
n2n5
n4···2
3Zπ/2
0sin x dx, n odd
=
1·3·5···(n1)
2·4·6···n·π
2,n even
2·4·6···(n1)
3·5·7···n,n odd
65. (a) Zπ/2
0sin3xdx=2
3(b) Zπ/2
0sin4xdx=1·3
2·4·π
2=3π/16
(c) Zπ/2
0sin5xdx=2·4
3·5=8/15 (d) Zπ/2
0sin6xdx=1·3·5
2·4·6·π
2=5π/32
66. Similar to proof in Exercise 64.
EXERCISE SET 9.4
1. x= 2 sin θ,dx = 2 cos θdθ,
4Zcos2θdθ=2Z(1 + cos 2θ)=2θ+ sin 2θ+C
=2θ+ 2 sin θcos θ+C= 2 sin1(x/2) + 1
2xp4x2+C
2. x=1
2sin θ,dx =1
2cos θdθ,
1
2Zcos2θdθ=1
4Z(1 + cos 2θ)=1
4θ+1
8sin 2θ+C
=1
4θ+1
4sin θcos θ+C=1
4sin12x+1
2xp14x2+C
309 Chapter 9
3. x= 3 sin θ,dx = 3 cos θdθ,
9Zsin2θdθ=9
2Z(1 cos 2θ)=9
2θ9
4sin 2θ+C=9
2θ9
2sin θcos θ+C
=9
2sin1(x/3) 1
2xp9x2+C
4. x= 4 sin θ,dx = 4 cos θdθ,
1
16 Z1
sin2θ=1
16 Zcsc2θdθ=1
16 cot θ+C=16 x2
16x+C
5. x= 2 tan θ,dx = 2 sec2θdθ,
1
8Z1
sec2θ=1
8Zcos2θdθ=1
16 Z(1 + cos 2θ)=1
16θ+1
32 sin 2θ+C
=1
16θ+1
16 sin θcos θ+C=1
16 tan1x
2+x
8(4 + x2)+C
6. x=5 tan θ,dx =5 sec2θdθ,
5Ztan2θsec θdθ=5Z(sec3θsec θ)=51
2sec θtan θ1
2ln |sec θ+ tan θ|+C1
=1
2xp5+x
25
2ln 5+x
2+x
5+C
1=1
2x
p5+x
25
2ln(p5+x
2+x)+C
7. x= 3 sec θ,dx = 3 sec θtan θdθ,
3Ztan2θdθ=3Z(sec2θ1)= 3 tan θ3θ+C=px293 sec1x
3+C
8. x= 4 sec θ,dx = 4 sec θtan θdθ,
1
16 Z1
sec θ=1
16 Zcos θdθ=1
16 sin θ+C=x216
16x+C
9. x=2 sin θ,dx =2 cos θdθ,
2
2Zsin3θdθ=2
2Z1cos2θsin θdθ
=2
2cos θ+1
3cos3θ+C=2p2x2+1
3(2 x2)3/2+C
10. x=5 sin θ,dx =5 cos θdθ,
255Zsin3θcos2θdθ=25
51
3cos3θ+1
5cos5θ+C=5
3(5 x2)3/2+1
5(5 x2)5/2+C
11. x=3
2sec θ,dx =3
2sec θtan θdθ,2
9Z1
sec θ=2
9Zcos θdθ=2
9sin θ+C=4x29
9x+C
12. t= tan θ,dt = sec2θdθ,
Zsec3θ
tan θ=Ztan2θ+1
tan θsec θdθ=Z(sec θtan θ+ csc θ)
= sec θ+ln|csc θcot θ|+C=p1+t
2+ln
1+t
21
|t|+C
Exercise Set 9.4 310
13. x= sin θ,dx = cos θdθ,Z1
cos2θ=Zsec2θdθ= tan θ+C=x/p1x2+C
14. x= 5 tan θ,dx = 5 sec2θdθ,1
25Zsec θ
tan2θ=1
25Zcsc θcot θdθ =1
25 csc θ+C=x2+25
25x+C
15. x= sec θ,dx = sec θtan θdθ,Zsec θdθ=ln|sec θ+ tan θ|+C=ln
x+px
21
+C
16. 1+2x
2+x
4=(1+x
2
)
2
,x= tan θ,dx = sec2θdθ,
Z1
sec2θ=Zcos2θdθ=1
2Z(1 + cos 2θ)=1
2θ+1
4sin 2θ+C
=1
2θ+1
2sin θcos θ+C=1
2tan1x+x
2(1 + x2)+C
17. x=1
3sec θ,dx =1
3sec θtan θdθ,
1
3Zsec θ
tan2θ=1
3Zcsc θcot θdθ=1
3csc θ+C=x/p9x21+C
18. x= 5 sec θ,dx = 5 sec θtan θdθ,
25 Zsec3θdθ=25
2sec θtan θ+25
2ln |sec θ+ tan θ|+C1
=1
2xpx225 + 25
2ln |x+px225|+C
19. ex= sin θ,exdx = cos θdθ,
Zcos2θdθ=1
2Z(1 + cos 2θ)=1
2θ+1
4sin 2θ+C=1
2sin1(ex)+1
2e
x
p1e
2x+C
20. u= sin θ,Z1
2u2du = sin1sin θ
2+C
21. x= 4 sin θ,dx = 4 cos θdθ,
1024 Zπ/2
0sin3θcos2θdθ= 1024 1
3cos3θ+1
5cos5θπ/2
0
= 1024(1/31/5) = 2048/15
22. x=2
3sin θ,dx =2
3cos θdθ,
1
24 Zπ/6
0
1
cos3θ=1
24 Zπ/6
0sec3θdθ=1
48 sec θtan θ+1
48 ln |sec θ+ tan θ|π/6
0
=1
48[(2/3)(1/3)+ln|2/
3+1/
3|]= 1
48 2
3+1
2ln 3
23. x= sec θ,dx = sec θtan θdθ,Zπ/3
π/4
1
sec θ=Zπ/3
π/4cos θdθ= sin θπ/3
π/4
=(
3
2)/2
24. x=2 sec θ,dx =2 sec θtan θdθ,2
Zπ/4
0tan2θdθ=2 tan θ2θπ/4
0
=2π/2
311 Chapter 9
25. x=3 tan θ,dx =3 sec2θdθ,
1
9Zπ/3
π/6
sec θ
tan4θ=1
9Zπ/3
π/6
cos3θ
sin4θ=1
9Zπ/3
π/6
1sin2θ
sin4θcos θdθ=1
9Z3/2
1/2
1u
2
u
4du (u= sin θ)
=1
9Z3/2
1/2(u4u2)du =1
91
3u3+1
u3/2
1/2
=103+18
243
26. x=3 tan θ,dx =3 sec2θdθ,
3
3Zπ/3
0
tan3θ
sec3θ=3
3Zπ/3
0sin3θdθ=3
3Zπ/3
01cos2θsin θdθ
=3
3cos θ+1
3cos3θπ/3
0
=3
31
2+1
241+1
3=5
3/72
27. u=x2+4,du =2xdx,
1
2Z1
udu =1
2ln |u|+C=1
2ln(x2+4)+C;orx= 2 tan θ,dx = 2 sec2θdθ,
Ztan θdθ=ln|sec θ|+C1=ln
x
2+4
2+C
1= ln(x2+4)
1/2ln 2 + C1
=1
2ln(x2+4)+Cwith C=C1ln 2
29. y0=1
x,1+(y
0)
2=1+ 1
x
2=x
2+1
x
2,
L=Z2
1rx
2+1
x
2dx =Z2
1
x2+1
xdx;x= tan θ,dx = sec2θdθ,
L=Ztan1(2)
π/4
sec3θ
tan θ=Ztan1(2)
π/4
tan2θ+1
tan θsec θdθ=Ztan1(2)
π/4(sec θtan θ+ csc θ)
=sec θ+ln|csc θcot θ|tan1(2)
π/4
=5+ln
5
21
2!h
2+ln|
21|
i
=
5
2+ln2+2
2
1+
5
30. y0=2x,1+(y
0)
2=1+4x
2,
L=Z1
0p1+4x
2dx;x=1
2tan θ,dx =1
2sec2θdθ,
L=1
2Ztan12
0sec3θdθ=1
21
2sec θtan θ+1
2ln |sec θ+ tan θ|tan12
0
=1
4(5)(2) + 1
4ln |5+2|=1
2
5+1
4ln(2 + 5)
31. y0=2x,1+(y
0)
2=1+4x
2,
S=2πZ1
0x
2
p1+4x
2dx;x=1
2tan θ,dx =1
2sec2θdθ,
Exercise Set 9.4 312
S=π
4Ztan12
0tan2θsec3θdθ=π
4Ztan12
0(sec2θ1) sec3θdθ=π
4Ztan12
0(sec5θsec3θ)
=π
41
4sec3θtan θ1
8sec θtan θ1
8ln |sec θ+ tan θ|tan12
0
=π
32[185ln(2 + 5)]
32. V=πZ1
0y2p1y2dy;y= sin θ,dy = cos θdθ,
V=πZπ/2
0sin2θcos2θdθ=π
4Zπ/2
0sin22θdθ=π
8Zπ/2
0(1 cos 4θ)=π
8θ1
4sin 4θπ/2
0
=π2
16
33. (a) x= 3 sinh u,dx = 3 cosh udu,Zdu =u+C= sinh1(x/3)+C
(b) x= 3 tan θ,dx = 3 sec2θdθ,
Zsec θdθ=ln|sec θ+ tan θ|+C= ln(px2+9/3+x/3)+C
but sinh1(x/3) = ln(x/3+px
2/9+1)=ln(x/3+
x
2+9/3) so the results agree.
(c) x= cosh u,dx = sinh udu,
Zsinh2udu=1
2Z(cosh 2u1)du =1
4sinh 2u1
2u+C
=1
2sinh ucosh u1
2u+C=1
2xpx211
2cosh1x+C
because cosh u=x, and sinhu=pcosh2u1=
x
21
34. A=4b
aZa
0pa2x2dx;x=acos θ, dx =asin θdθ,
A=4b
aZ0
π/2a2sin2θdθ=4ab Zπ/2
0sin2θdθ=2ab Zπ/2
0(1 cos 2θ)=πab
35. Z1
(x2)2+9dx =1
3tan1x2
3+C36. Z1
p1(x1)2dx = sin1(x1)+C
37. Z1
p9(x1)2dx = sin1x1
3+C
38. Z1
16(x+1/2)2+1dx =1
16 Z1
(x+1/2)2+1/16dx =1
4tan1(4x+2)+C
39. Z1
p(x3)2+1dx =lnx3+p(x3)2+1
+C
40. Zx
(x+3)
2+1dx, let u=x+3,
Zu3
u
2+1du =Zu
u2+13
u
2+1du =1
2ln(u2+1)3 tan1u+C
=1
2ln(x2+6x+ 10) 3 tan1(x+3)+C
313 Chapter 9
41. Zp4(x+1)
2dx, let x+1=2sinθ,
4Zcos2θdθ=2θ+ sin 2θ+C=2θ+ 2 sin θcos θ+C
= 2 sin1x+1
2+1
2(x+1)
p32xx
2+C
42. Zex
p(ex+1/2)2+3/4dx, let u=ex+1/2,
Z1
pu2+3/4du = sinh1(2u/3)+C= sinh12ex+1
3+C
Alternate solution: let ex+1/2=
3
2tan θ,
Zsec θdθ=ln|sec θ+ tan θ|+C=ln 2
e
2x+e
x+1
3+2e
x+1
3!+C
1
= ln(2pe2x+ex+1+2e
x+1)+C
43. Z1
2(x+1)
2+5dx =1
2Z1
(x+1)
2+5/2dx =1
10 tan1p2/5(x+1)+C
44. Z2x+3
4(x+1/2)2+4dx, let u=x+1/2,
Z2u+2
4u
2+4du =1
2Zu
u2+1+1
u
2+1du =1
4ln(u2+1)+1
2tan1u+C
=1
4ln(x2+x+5/4) + 1
2tan1(x+1/2)+C
45. Z2
1
1
4xx2dx =Z2
1
1
p4(x2)2dx = sin1x2
22
1
=π/6
46. Z1
0p4xx2dx =Z1
0p4(x2)2dx, let x2=2sinθ,
4Zπ/6
π/2cos2θdθ =2θ+ sin 2θπ/6
π/2
=2π
33
2
48. u=xsin x, du =(xcos x+ sin x)dx;
Zp1+u
2du =1
2up1+u
2+1
2sinh1u+C=1
2xsin xp1+x
2sin2x+1
2sinh1(xsin x)+C
49. u= sin2x, du = 2 sin xcos xdx;
1
2Zp1u
2du =1
4hup1u2+ sin1ui+C=1
4hsin2xp1sin4x+ sin1(sin2x)i+C
Exercise Set 9.5 314
50. u=3
x=e
xln 3,du= (ln 3)3xdx;
1
ln 3 Z3
1pu21du =1
2ln3u
pu
21ln u+pu213
1
=62ln(3 + 22)
2ln3
EXERCISE SET 9.5
1. A
(x2) +B
(x+5) 2. 5
x(x3)(x+3) =A
x+B
x3+C
x+3
3. 2x3
x2(x1) =A
x+B
x2+C
x14. A
x+2+B
(x+2)
2+C
(x+2)
3
5. A
x+B
x2+C
x3+Dx +E
x2+1 6. A
x1+Bx +C
x2+5
7. Ax +B
x2+5 +Cx +D
(x2+5)
28. A
x2+Bx +C
x2+1 +Dx +E
(x2+1)
2
9. 1
(x+ 4)(x1) =A
x+4+B
x1;A=1
5,B=1
5so
1
5Z1
x+4dx +1
5Z1
x1dx =1
5ln |x+4|+1
5ln |x1|+C=1
5ln
x1
x+4
+C
10. 1
(x+ 1)(x+7) =A
x+1+B
x+7;A=1
6,B=1
6so
1
6Z1
x+1dx 1
6Z1
x+7dx =1
6ln |x+1|−1
6ln |x+7|+C=1
6ln
x+1
x+7
+C
11. 11x+17
(2x1)(x+4) =A
2x1+B
x+4;A=5,B=3so
5Z1
2x1
dx +3Z1
x+4dx =5
2ln |2x1|+3ln|x+4|+C
12. 5x5
(x3)(3x+1) =A
x3+B
3x+1;A=1,B=2so
Z1
x3
dx +2Z1
3x+1dx =ln|x3|+2
3ln |3x+1|+C
13. 2x29x9
x(x+ 3)(x3) =A
x+B
x+3+C
x3;A=1,B=2,C=1so
Z1
x
dx +2Z1
x+3dx Z1
x3dx =ln|x|+2ln|x+3|−ln |x3|+C=ln
x(x+3)
2
x3
+C
Note that the symbol Chas been recycled; to save space this recycling is usually not mentioned.
315 Chapter 9
14. 1
x(x+ 1)(x1) =A
x+B
x+1+C
x1;A=1, B=1
2,C=1
2so
Z1
xdx +1
2Z1
x+1dx +1
2Z1
x1dx =ln |x|+1
2ln |x+1|+1
2ln |x1|+C
=1
2ln
(x+ 1)(x1)
x2+C=1
2ln |x21|
x2+C
15. x2+2
x+2 =x2+ 6
x+2,Zx2+ 6
x+2dx =1
2x22x+6 ln|x+2|+C
16. x24
x1=x+13
x1,Zx+13
x1dx =1
2x2+x3ln|x1|+C
17. 3x210
x24x+4 =3+ 12x22
x24x+4,12x22
(x2)2=A
x2+B
(x2)2;A= 12, B=2so
Z3dx +12Z1
x2dx +2Z1
(x2)2dx =3x+12ln|x2|−2/(x2)+C
18. x2
x23x+2 =1+ 3x2
x
23x+2,3x2
(x1)(x2) =A
x1+B
x2;A=1, B=4so
Zdx Z1
x1dx +4Z1
x2dx =xln |x1|+4ln|x2|+C
19. x5+2x
2+1
x
3x=x
2+1+2x
2+x+1
x
3x,
2x
2+x+1
x(x+ 1)(x1) =A
x+B
x+1+C
x1;A=1, B=1,C=2so
Z(x
2+1)dx Z1
xdx +Z1
x+1dx +2Z1
x1dx
=1
3x3+xln |x|+ln|x+1|+2ln|x1|+C=1
3x
3+x+ln
(x+ 1)(x1)2
x+C
20. 2x5x31
x34x=2x
2+7+28x1
x34x,
28x1
x(x+ 2)(x2) =A
x+B
x+2+C
x2;A=1
4,B=57
8,C=55
8so
Z(2x2+7)dx +1
4Z1
xdx 57
8Z1
x+2dx +55
8Z1
x2dx
=2
3x3+7x+1
4ln |x|−57
8ln |x+2|+55
8ln |x2|+C
21. 2x2+3
x(x1)2=A
x+B
x1+C
(x1)2;A=3,B=1, C=5so
3Z1
x
dx Z1
x1dx +5Z1
(x1)2dx =3ln|x|−ln |x1|−5/(x1)+C
Exercise Set 9.5 316
22. 3x2x+1
x
2(x1) =A
x+B
x2+C
x1;A=0,B=1, C=3so
Z1
x
2dx +3Z1
x1dx =1/x +3ln|x1|+C
23. x2+x16
(x+ 1)(x3)2=A
x+1+B
x3+C
(x3)2;A=1, B=2,C=1so
Z1
x+1dx +2Z1
x3dx Z1
(x3)2dx
=ln |x+1|+2ln|x3|+1
x3+C=ln(x3)2
|x+1|+1
x3+C
24. 2x22x1
x2(x1) =A
x+B
x2+C
x1;A=3,B=1,C=1so
3
Z1
x
dx +Z1
x2dx Z1
x1dx =3ln|x|−1
xln |x1|+C
25. x2
(x+2)
3=A
x+2+B
(x+2)
2+C
(x+2)
3;A=1,B=4, C=4so
Z1
x+2dx 4Z1
(x+2)
2dx +4Z1
(x+2)
3dx =ln|x+2|+4
x+22
(x+2)
2+C
26. 2x2+3x+3
(x+1)
3=A
x+1+B
(x+1)
2+C
(x+1)
3;A=2,B=1, C=2so
2Z1
x+1dx Z1
(x+1)
2dx +2Z1
(x+1)
3dx =2ln|x+1|+1
x+11
(x+1)
2+C
27. 2x21
(4x1)(x2+1) =A
4x1+Bx +C
x2+1 ;A=14/17, B=12/17, C=3/17 so
Z2x21
(4x1)(x2+1)dx =7
34 ln |4x1|+6
17 ln(x2+1)+ 3
17 tan1x+C
28. 1
x(x2+1) =A
x+Bx +C
x2+1 ;A=1,B=1, C=0so
Z1
x
3+x
dx =ln|x|−1
2ln(x2+1)+C=1
2ln x2
x2+1+C
29. x3+3x
2+x+9
(x
2+ 1)(x2+3) =Ax +B
x2+1 +Cx +D
x2+3 ;A=0,B=3,C=1,D=0so
Zx
3+3x
2+x+9
(x
2+ 1)(x2+3)dx = 3 tan1x+1
2ln(x2+3)+C
30. x3+x2+x+2
(x
2+ 1)(x2+2) =Ax +B
x2+1 +Cx +D
x2+2 ;A=D=0,B=C=1so
Zx
3+x
2+x+2
(x
2+ 1)(x2+2)dx = tan1x+1
2ln(x2+2)+C
317 Chapter 9
31. x33x2+2x3
x
2+1 =x3+ x
x
2+1,
Zx
33x
2+2x3
x
2+1 dx =1
2x23x+1
2ln(x2+1)+C
32. x4+6x
3+10x
2+x
x
2+6x+10 =x
2+x
x
2+6x+10,
Zx
x
2+6x+10dx =Zx
(x+3)
2+1dx =Zu3
u2+1du, u =x+3
=1
2ln(u2+1)3 tan1u+C1
so Zx4+6x
3+10x
2+x
x
2+6x+10 dx =1
3x3+1
2ln(x2+6x+ 10) 3 tan1(x+3)+C
33. Let x= sin θto get Z1
x2+4x5dx, and 1
(x+ 5)(x1) =A
x+5+B
x1;A=1/6,
B=1/6soweget1
6Z1
x+5dx +1
6Z1
x1dx =1
6ln
x1
x+5
+C=1
6ln 1sin θ
5 + sin θ+C.
34. Let x=et; then Zet
e2t4dt =Z1
x24dx,
1
(x+ 2)(x2) =A
x+2+B
x2;A=1/4, B=1/4so
1
4Z1
x+2dx +1
4Z1
x2dx =1
4ln
x2
x+2
+C=1
4ln
et2
et+2
+C.
35. V=πZ2
0
x4
(9 x2)2dx,x4
x418x2+81 =1+ 18x281
x418x2+81,
18x281
(9 x2)2=18x281
(x+3)
2(x3)2=A
x+3+B
(x+3)
2+C
x3+D
(x3)2;
A=9
4,B=9
4,C=9
4,D=9
4so
V=πx9
4ln |x+3|− 9/4
x+3+9
4ln |x3|− 9/4
x32
0
=π19
59
4ln 5
36. Let u=exto get Zln 5
ln 5
dx
1+e
x=Zln 5
ln 5
exdx
ex(1+ex)=Z5
1/5
du
u(1+u),
1
u(1+u)=A
u+B
1+u;A=1,B=1; Z5
1/5
du
u(1+u)= (ln uln(1 + u))5
1/5
=ln5
37. x2+1
(x
2+2x+3)
2=Ax +B
x2+2x+3+Cx +D
(x2+2x+3)
2;A=0,B=1,C=D=2so
Zx
2+1
(x
2+2x+3)
2dx =Z1
(x+1)
2+2dx Z2x+2
(x
2+2x+3)
2dx
=1
2tan1x+1
2+1/(x
2+2x+3)+C
Exercise Set 9.5 318
38. x5+x4+4x
3+4x
2+4x+4
(x
2+2)
3=Ax +B
x2+2 +Cx +D
(x2+2)
2+Ex +F
(x2+2)
3;
A=B=1,C=D=E=F=0so
Zx+1
x
2+2dx =1
2ln(x2+2)+ 1
2tan1(x/2)+C
39. x43x37x2+27x18=(x1)(x2)(x3)(x+ 3),
1
(x1)(x2)(x3)(x+3) =A
x1+B
x2+C
x3+D
x+3;
A=1/8, B=1/5, C=1/12, D=1/120 so
Zdx
x43x37x2+27x18 =1
8ln |x1|−1
5ln |x2|+1
12 ln |x3|− 1
120 ln |x+3|+C
40. 16x34x2+4x1=(4x1)(4x2+ 1),
1
(4x1)(4x2+1) =A
4x1+Bx +C
4x2+1;A=4/5, B=4/5, C=1/5so
Zdx
16x34x2+4x1=1
5ln |4x1|− 1
10 ln(4x2+1)1
10 tan1(2x)+C
41. (a) x4+1=(x
4+2x
2+1)2x
2=(x
2+1)
22x
2
=[(x
2+1)+
2x][(x2+1)
2x]
=(x
2+
2x+ 1)(x22x+ 1); a=2,b =2
(b) x
(x2+2x+ 1)(x22x+1) =Ax +B
x2+2x+1+Cx +D
x22x+1;
A=0,B=
2
4,C=0,D=
2
4so
Z1
0
x
x4+1dx =2
4Z1
0
1
x2+2x+1dx +2
4Z1
0
1
x22x+1dx
=2
4Z1
0
1
(x+2/2)2+1/2dx +2
4Z1
0
1
(x2/2)2+1/2dx
=2
4Z1+2/2
2/2
1
u2+1/2du +2
4Z12/2
2/2
1
u2+1/2du
=1
2tan12u1+2/2
2/2
+1
2tan12u12/2
2/2
=1
2tan1(2+1)+1
2π
4+1
2tan1(21) 1
2π
4
=π
41
2[tan1(2+1)tan1(21)]
=π
41
2[tan1(1+2) + tan1(1 2)]
=π
41
2tan1"(1+2)+(1
2)
1(1+2)(1 2)#(Exercise 46, Section 4.5)
=π
41
2tan11=π
41
2π
4=π
8
319 Chapter 9
42. 1
a2x2=A
ax+B
a+x;A=1
2a,B =1
2aso
1
2aZ1
ax+1
a+xdx =1
2a(ln |ax|+ln|a+x|)+C=1
2aln
a+x
ax+C
EXERCISE SET 9.6
1. Formula (60): 3
16h4x+ln|−1+4x|i+C2. Formula (62): 1
92
23x+ln|23x|
+C
3. Formula (65): 1
5ln
x
5+2x
+C4. Formula (66): 1
x5ln
15x
x
+C
5. Formula (102): 1
5(x+ 1)(3+2x)
3/2+C6. Formula (105): 2
3(x4)2x+C
7. Formula (108): 1
2ln
43x2
43x+2
+C8. Formula (108): tan13x4
2+C
9. Formula (69): 1
25ln
x+5
x5+C10. Formula (70): 1
6ln
x3
x+3
+C
11. Formula (73): x
2px233
2ln x+px23+C
12. Formula (93): x2+5
x+ ln(x+px2+5)+C
13. Formula (95): x
2px2+42 ln(x+px2+4)+C
14. Formula (90): x22
2x+C15. Formula (74): x
2p9x2+9
2sin1x
3+C
16. Formula (80): 4x2
xsin1x
2+C
17. Formula (79): 3x23ln
3+
9x
2
x
+C
18. Formula (117): 6xx2
3x+C19. Formula (38): 1
10 sin(5x)+1
2sin x+C
20. Formula (40): 1
14 cos(7x)+1
6cos(3x)+C
21. Formula (50): x4
16 [4 ln x1]+C22. Formula (50): 4x1
2ln x1+C
23. Formula (42): e2x
13 (2 sin(3x)3 cos(3x))+C
Exercise Set 9.6 320
24. Formula (43): ex
5(cos(2x) + 2 sin(2x))+C
25. u=e2x,du=2e
2x
dx, Formula (62): 1
2Zudu
(4 3u)2=1
18 4
43e2x+ln
43e
2x
+C
26. u= sin 2x, du = 2 cos 2xdx, Formula (116): Zdu
2u(3 u)=1
6ln
sin 2x
3sin 2x+C
27. u=3
x, du =3
2xdx, Formula (68): 2
3Zdu
u2+4 =1
3tan13x
2+C
28. u= sin 4x, du = 4 cos 4xdx, Formula (68): 1
4Zdu
9+u
2=1
12 tan1sin 4x
3+C
29. u=3x, du =3dx, Formula (76): 1
3Zdu
u24=1
3ln 3x+p9x24+C
30. u=2x2,du=2
2xdx, Formula (72):
1
22Zpu2+3du =x2
4p2x4+3+ 3
4
2ln 2x2+p2x4+3
+C
31. u=3x
2
,du=6xdx, u2du =54x
5
dx, Formula (81):
1
54 Zu2du
5u2=x2
36p59x4+5
108 sin13x2
5+C
32. u=2x, du =2dx, Formula (83): 2 Zdu
u23u2=1
3xp34x2+C
33. u=lnx, du =dx/x, Formula (26): Zsin2udu=1
2ln x+1
4sin(2 ln x)+C
34. u=e2x,du=2e
2x, Formula (27): 1
2Zcos2udu=1
4e
2x1
8sin 2e2x+C
35. u=2x, du =2dx, Formula (51): 1
4Zueudu =1
4(2x1)e2x+C
36. u=5x1,du=5dx, Formula (50): 1
5Zln udu=1
5(uln uu)+C=1
5(5x1)[ln(5x1)1]+C
37. u= cos 3x, du =3 sin 3x, Formula (67): Zdu
u(u+1)
2=1
31
1 + cos 3x+ln
cos 3x
1 + cos 3x+C
38. u=lnx, du =1
xdx, Formula (105): Zudu
4u1=1
12(2 ln x+1)
4lnx1+C
39. u=4x
2
,du=8xdx, Formula (70): 1
8Zdu
u21=1
16 ln
4x21
4x2+1
+C
40. u=2e
x
,du=2e
x
dx, Formula (69): 1
2Zdu
3u2=1
43ln
2ex+3
2ex3+C
321 Chapter 9
41. u=2e
x
,du=2e
x
dx, Formula (74):
1
2Zp3u2du =1
4up3u2+3
4sin1(u/3)+C=1
2exp34e2x+3
4sin1(2ex/3)+C
42. u=3x, du =3dx, Formula (80):
3Z4u2du
u2=34u2
u3 sin1(u/2)+C=49x2
x3 sin1(3x/2)+C
43. u=3x, du =3dx, Formula (112):
1
3Zr5
3uu2du =1
6u5
6r5
3uu2+25
216 sin1u5
5+C
=18x5
36 p5x9x2+25
216 sin118x5
5+C
44. u=5x, du =5dx, Formula (117):
Zdu
uq(u/5) u2=q(u/5) u2
u/(25) +C=2x5x2
x+C
45. u=3x, du =3dx, Formula (44):
1
9Zusin udu=1
9(sin uucos u)+C=1
9(sin 3x3xcos 3x)+C
46. u=x, u2=x, 2udu =dx, Formula (45): 2 Zucos udu= 2 cos x+2
xsin x+C
47. u=x, u2=x, 2udu =dx, Formula (51): 2 Zueudu =2(x+1)e
x+C
48. u=23x
2
,du=6xdx, Formula (50):
1
6Zln udu=1
6(uln uu)+C=1
6((2 3x2) ln(2 3x2)+1
6(2 3x2)+C
49. x2+4x5=(x+2)
29; u=x+2,du=dx, Formula (70):
Zdu
u29=1
6ln
u3
u+3
+C=1
6ln
x1
x+5
+C
50. x2+2x3=(x+1)
24,u=x+1,du=dx, Formula (77):
Zp4u2du =1
2up4u2+ 2 sin1(u/2)+C
=1
2(x+1)
p32xx
2+ 2 sin1((x+1)/2)+C
51. x24x5=(x2)29,u =x2,du=dx, Formula (77):
Zu+2
9u
2du =Zudu
9u
2+2Zdu
9u2=p9u2+ 2 sin1u
3+C
=p5+4xx
2+ 2 sin1x2
3+C
Exercise Set 9.6 322
52. x2+6x+13=(x+3)
2+4,u=x+3,du=dx, Formula (71):
Z(u3) du
u2+4 =1
2ln(u2+4)3
2tan1(u/2)+C=1
2ln(x2+6x+ 13) 3
2tan1((x+3)/2)+C
53. u=x2, x=u2+2,dx =2udu;
Z2u
2(u
2+2)du =2Z(u
4+2u
2)du =2
5u5+4
3u3+C=2
5(x2)5/2+4
3(x2)3/2+C
54. u=x+1,x=u
21, dx =2udu;
2Z(u
21)du =2
3u32u+C=2
3(x+1)
3/22
x+1+C
55. u=x3+1,x
3=u
21, 3x2dx =2udu;
2
3Zu
2(u
21)du =2
3Z(u4u2)du =2
15u52
9u3+C=2
15(x3+1)
5/22
9(x
3+1)
3/2+C
56. u=x31, x3=u2+1,3x
2dx =2udu;
2
3Z1
u
2+1du =2
3tan1u+C=2
3tan1px31+C
57. u=x1/6,x=u6,dx =6u
5
du;
Z6u5
u3+u2du =6Zu
3
u+1du =6Zu
2u+11
u+1du
=2x
1/23x
1/3+6x
1/66 ln(x1/6+1)+C
58. u=x1/5,x=u5,dx =5u
4
du;Z5u4
u5u3du =5Zu
u
21
du =5
2ln |x2/51|+C
59. u=x1/4,x=u4,dx =4u
3
du;4
Z1
u(1 u)du =4Z1
u+1
1u
du =4ln x
1/4
|1x
1/4
|+C
60. u=x1/3,x=u3,dx =3u
2
du;3
Zu
4
u
3+1du =3Z(uu
u
3+1)du,
u
u3+1 =u
(u+ 1)(u2u+1) =1/3
u+1+(1/3)u+1/3
u
2u+1 so
3Zuu
u3+1du =Z3u+1
u+1u+1
u
2u+1du
=3
2u2+ln|u+1|−1
2ln(u2u+1)
3 tan12u1
3+C
=3
2x2/3+ln|x
1/3+1|−1
2ln(x2/3x1/3+1)
3 tan12x1/31
3+C
61. u=x1/6,x=u6,dx =6u
5
du;
6Zu3
u1du =6Zu
2+u+1+ 1
u1du =2x
1/2+3x
1/3+6x
1/6+6 ln|x
1/61|+C
323 Chapter 9
62. u=x,x=u2,dx =2udu;
2Zu
2+u
u1du =2Zu+2+ 2
u1du =x4x4ln|x1|+C
63. u=1+x
2,x
2=u
21, 2xdx=2udu,xdx=udu;
Z(u
21)du =1
3(1+x2)3/2(1+x2)1/2+C
64. u=(x+3)
1/5,x=u
53, dx =5u
4
du;
5Z(u83u3)du =5
9(x+3)
9/515
4(x+3)
4/5+C
65. u=x,x=u2,dx =2udu, Formula (44): 2 Zusin udu= 2 sin x2xcos x+C
66. u=x,x=u2,dx =2udu, Formula (51): 2 Zueudu =2
xex2ex+C
67. Z1
1+ 2u
1+u
2+1u
2
1+u
2
2
1+u
2du =Z1
u+1du =ln|tan(x/2)+1|+C
68. Z1
2+ 2u
1+u
2
2
1+u
2du =Z1
u2+u+1du
=Z1
(u+1/2)2+3/4du =2
3tan12 tan(x/2)+1
3+C
69. u= tan(θ/2), Z
1cos θ=Z1
u2du =1
u+C=cot(θ/2)+C
70. u= tan(x/2),
Z2
3u2+8u3du =2
3Z1
(u+4/3)225/9du =2
3Z1
z225/9dz (z=u+4/3)
=1
5ln
z5/3
z+5/3
+C=1
5ln
tan(x/2) 1/3
tan(x/2)+3
+C
71. u= tan(x/2), 2 Z1u2
(3u2+ 1)(u2+1)du;
1u2
(3u2+ 1)(u2+1) =(0)u+2
3u
2+1 +(0)u1
u2+1 =2
3u
2+11
u
2+1 so
Zcos x
2cos xdx =4
3tan1[3 tan(x/2)] x+C
72. u= tan(x/2), 1
2Z1u2
udu =1
2Z(1/u u)du =1
2ln |tan(x/2)|−1
4tan2(x/2)+C
Exercise Set 9.6 324
73. Zx
2
1
t(4 t)dt =1
4ln t
4tx
2
(Formula (65), a=4,b =1)
=1
4ln x
4xln 1=1
4ln x
4x,1
4ln x
4x=0.5,ln x
4x=2,
x
4x=e
2
,x=4e
2e
2
x,x(1+e2)=4e
2
,x=4e
2
/(1+e2)3.523188312
74. Zx
1
1
t2t1dt = 2 tan12t1x
1
(Formula (108), a=1,b=2)
=2tan12x1tan11=2tan12x1π/4,
2(tan12x1π/4) = 1, tan12x1=1/2+π/4, 2x1 = tan(1/2+π/4),
x= [1 + tan2(1/2+π/4)]/26.307993516
75. A=Z4
0p25 x2dx =1
2xp25 x2+25
2sin1x
54
0
(Formula (74), a=5)
=6+25
2sin14
517.59119023
76. A=Z2
2/3p9x24dx;u=3x,
A=1
3Z6
2pu
24du =1
31
2upu242ln
u+pu
24
6
2
(Formula (73), a2=4)
=1
33
32 2 ln(6 + 32) + 2 ln 2=4
22
3ln(3 + 22) 4.481689467
77. A=Z1
0
1
25 16x2dx;u=4x,
A=1
4Z4
0
1
25 u2du =1
40 ln
u+5
u5
4
0
=1
40 ln 9 0.054930614 (Formula (69), a=5)
78. A=Z4
1
xln xdx=4
9x
3/23
2ln x14
1
(Formula (50), n=1/2)
=4
9(12 ln 4 7) 4.282458815
79. V=2πZπ/2
0xcos xdx=2π(cos x+xsin x)π/2
0
=π(π2) 3.586419094 (Formula (45))
80. V=2πZ8
4x
x4dx =4π
15 (3x+ 8)(x4)3/28
4
(Formula (102), a=4,b=1)
=1024
15 π214.4660585
81. V=2πZ3
0xexdx;u=x,
V=2πZ3
0ueudu =2πeu(u1)3
0
=2π(1 4e3)5.031899801 (Formula (51))
325 Chapter 9
82. V=2πZ5
1xln xdx=π
2x
2(2 ln x1)5
1
=π(25 ln 5 12) 88.70584621 (Formula (50), n=1)
83. L=Z2
0p1+16x
2dx;u=4x,
L=1
4Z8
0p1+u
2du =1
4u
2p1+u
2+1
2ln u+p1+u
28
0
(Formula (72), a2=1)
=
65 + 1
8ln(8 + 65) 8.409316783
84. L=Z3
1p1+9/x2dx =Z3
1
x2+9
xdx = px2+93ln
3+
x
2+9
x
!#3
1
=3
2
10+3ln3+
10
1+
23.891581644 (Formula (89), a=3)
85. S=2πZπ
0(sin x)p1 + cos2xdx;u= cos x,
S=2πZ1
1p1+u
2du =4πZ1
0p1+u
2du =4πu
2p1+u
2+1
2ln u+p1+u
21
0
a2=1)
=2π[
2+ln(1+2)] 14.42359945 (Formula (72)
86. S=2πZ4
1
1
x
p1+1/x4dx =2πZ4
1
x
4+1
x
3dx;u=x2,
S=πZ16
1
u2+1
u
2du =π u2+1
u+lnu+pu
2+1!#16
1
=π 2257
16 +ln16+257
1+
2!9.417237485 (Formula (93), a2=1)
87. (a) s(t)=2+Zt
020 cos6usin3udu
=20
9sin2tcos7t40
63 cos7t+166
63
(b)
3 6 9 12 15
1
2
3
4
t
s(t)
88. (a) v(t)=Zt
0a(u)du =1
10etcos 2t+1
5etsin 2t+1
74etcos 6t3
37etsin 6t+1
10 1
74
s(t)=10+Zt
0v(u)du
=3
50etcos 2t2
25etsin 2t+35
2738etcos 6t+6
1369etsin 6t+16
185t+343866
34225
Exercise Set 9.7 326
(b)
2 6 10 14 18
2
4
6
8
10
12
t
s(t)
89. (a) Zsec xdx =Z1
cos xdx =Z2
1u2du =ln
1+u
1u
+C=ln
1 + tan(x/2)
1tan(x/2)+C
=ln
cos(x/2) + sin(x/2)
cos(x/2) sin(x/2)
cos(x/2) + sin(x/2)
cos(x/2) + sin(x/2)+C=ln
1 + sin x
cos x+C
=ln|sec x+ tan x|+C
(b) tan π
4+x
2=tan π
4+ tan x
2
1tan π
4tan x
2
=1 + tan x
2
1tan x
2
90. Zcsc xdx=Z1
sin xdx =Z1/u du =ln|tan(x/2)|+Cbut
ln |tan(x/2)|=1
2ln sin2(x/2)
cos2(x/2) =1
2ln (1 cos x)/2
(1 + cos x)/2=1
2ln 1cos x
1 + cos x; also,
1cos x
1 + cos x=1cos2x
(1 + cos x)2=1
(csc x+ cot x)2so 1
2ln 1cos x
1 + cos x=ln |csc x+ cot x|
91. Let u= tanh(x/2) then cosh(x/2)=1/sech(x/2)=1/
q1tanh2(x/2)=1/
1u
2
,
sinh(x/2) = tanh(x/2) cosh(x/2) = u/1u2, so sinh x= 2 sinh(x/2) cosh(x/2)=2u/(1 u2),
cosh x= cosh2(x/2) + sinh2(x/2)=(1+u
2
)/(1 u2), x= 2 tanh1u, dx =[2/(1 u2)]du;
Zdx
2 cosh x+ sinh x=Z1
u2+u+1du =2
3tan12u+1
3+C=2
3tan12 tanh(x/2)+1
3+C.
EXERCISE SET 9.7
1. exact value = 14/34.666666667
(a) 4.667600663, |EM|≈0.000933996
(b) 4.664795679, |ET|≈0.001870988
(c) 4.666651630, |ES|≈0.000015037
2. exact value = 2
(a) 1.998377048, |EM|≈0.001622952
(b) 2.003260982, |ET|≈0.003260982
(c) 2.000072698, |ES|≈0.000072698
3. exact value = 2
(a) 2.008248408, |EM|≈0.008248408
(b) 1.983523538, |ET|≈0.016476462
(c) 2.000109517, |ES|≈0.000109517
4. exact value = sin(1) 0.841470985
(a) 0.841821700, |EM|≈0.000350715
(b) 0.840769642, |ET|≈0.000701343
(c) 0.841471453, |ES|≈0.000000468
5. exact value = e1e30.318092373
(a) 0.317562837, |EM|≈0.000529536
(b) 0.319151975, |ET|≈0.001059602
(c) 0.318095187, |ES|≈0.000002814
6. exact value = 1
2ln 5 0.804718956
(a) 0.801605339, |EM|≈0.003113617
(b) 0.811019505, |ET|≈0.006300549
(c) 0.805041497, |ES|≈0.000322541
327 Chapter 9
7. f(x)=
x+1,f00(x)=1
4
(x+1)
3/2,f(4)(x)=15
16(x+1)
7/2;K
2=1/4, K4=15/16
(a) |EM|≤ 27
2400(1/4)=0.002812500 (b) |ET|≤ 27
1200(1/4)=0.005625000
(c) |ES|≤ 243
180 ×104(15/16) 0.000126563
8. f(x)=1/
x,f
00(x)=3
4
x
5/2
,f
(4)(x)=105
16 x9/2;K2=3/4, K4= 105/16
(a) |EM|≤ 27
2400(3/4)=0.008437500 (b) |ET|≤ 27
1200(3/4)=0.016875000
(c) |ES|≤ 243
180 ×104(105/16) 0.000885938
9. f(x) = sin x,f00(x)=sin x,f(4)(x) = sin x;K2=K4=1
(a) |EM|≤ π
3
2400(1) 0.012919282 (b) |ET|≤ π
3
1200(1) 0.025838564
(c) |ES|≤ π
5
180 ×104(1) 0.000170011
10. f(x) = cos x,f00(x)=cos x,f(4)(x) = cos x;K2=K4=1
(a) |EM|≤ 1
2400(1) 0.000416667 (b) |ET|≤ 1
1200(1) 0.000833333
(c) |ES|≤ 1
180 ×104(1) 0.000000556
11. f(x)=e
x
,f
00(x)=f
(4)(x)=e
x
;K
2=K
4=e
1
(a) |EM|≤ 8
2400(e1)0.001226265 (b) |ET|≤ 8
1200(e1)0.002452530
(c) |ES|≤ 32
180 ×104(e1)0.000006540
12. f(x)=1/(2x+ 3), f00(x) = 8(2x+3)
3,f(4)(x) = 384(2x+3)
5;K
2=8,K
4= 384
(a) |EM|≤ 8
2400(8) 0.026666667 (b) |ET|≤ 8
1200(8) 0.053333333
(c) |ES|≤ 32
180 ×104(384) 0.006826667
13. (a) n>(27)(1/4)
(24)(5 ×104)1/2
23.7; n=24 (b) n>
(27)(1/4)
(12)(5 ×104)1/2
33.5; n=34
(c) n>(243)(15/16)
(180)(5 ×104)1/4
7.1; n=8
14. (a) n>(27)(3/4)
(24)(5 ×104)1/2
41.1; n=42 (b) n>
(27)(3/4)
(12)(5 ×104)1/2
58.1; n=59
(c) n>(243)(105/16)
(180)(5 ×104)1/4
11.5; n=12
Exercise Set 9.7 328
15. (a) n>(π
3
)(1)
(24)(103)1/2
35.9; n=36 (b) n>(π
3
)(1)
(12)(103)1/2
50.8; n=51
(c) n>(π
5
)(1)
(180)(103)1/4
6.4; n=8
16. (a) n>(1)(1)
(24)(103)1/2
6.5; n=7 (b) n>(1)(1)
(12)(103)1/2
9.1; n=10
(c) n>(1)(1)
(180)(103)1/4
1.5; n=2
17. (a) n>(8)(e1)
(24)(106)1/2
350.2; n= 351 (b) n>(8)(e1)
(12)(106)1/2
495.2; n= 496
(c) n>(32)(e1)
(180)(106)1/4
15.99; n=16
18. (a) n>(8)(8)
(24)(106)1/2
1632.99; n= 1633 (b) n>(8)(8)
(12)(106)1/2
2309.4; n= 2310
(c) n>(32)(384)
(180)(106)1/4
90.9; n=92
19. 0.746824948,
0.746824133 20. 1.137631378,
1.137630147 21. 2.129861595,
2.129861293
22. 2.418388347,
2.418399152 23. 0.805376152,
0.804776489 24. 1.536963087,
1.544294774
25. (a) 3.142425985, |EM|≈0.000833331
(b) 3.139925989, |ET|≈0.001666665
(c) 3.141592614, |ES|≈0.000000040
26. (a) 3.152411433, |EM|≈0.010818779
(b) 3.104518326, |ET|≈0.037074328
(c) 3.127008159, |ES|≈0.014584495
27. S14 =0.693147984, |ES|≈0.000000803 = 8.03 ×107; the method used in Example 5 results
in a value of nwhich ensures that the magnitude of the error will be less than 106, this is not
necessarily the smallest value of n.
28. (a) greater, because the graph of ex2is concave up on the interval (1,2)
(b) less, because the graph of ex2is concave down on the interval (0,0.5)
29. f(x)=xsin x,f00(x)=2cosxxsin x,|f00(x)|≤2|cos x|+|x||sin x|≤2+2=4soK
24,
n>(8)(4)
(24)(104)1/2
115.5; n= 116 (a smaller nmight suffice)
30. f(x)=e
cos x,f00(x) = (sin2x)ecos x(cos x)ecos x,|f00(x)|≤e
cos x(sin2x+|cos x|)2eso
K22e,n>(1)(2e)
(24)(104)1/2
47.6; n= 48 (a smaller nmight suffice)
31. f(x)=
x,f
00(x)=1
4x
3/2, lim
x0+|f00(x)|=+
329 Chapter 9
32. f(x) = sin x,f00(x)=
xsin x+ cos x
4x3/2, lim
x0+|f00(x)|=+
33. L=Zπ
0p1 + cos2xdx3.820187623 34. L=Z3
1p1+1/x4dx 2.146822803
35. 0
0
0
5
40
58.67
10
60
88
15
73
107.07
20
84
123.2
t (s)
v (mi/hr)
v (ft/s)
Z20
0vdt20
(3)(4)[0 + 4(58.67) + 2(88) + 4(107.07) + 123.2] 1604 ft
36. 0
0
1
0.02
2
0.08
3
0.20
4
0.40
t
a
5
0.60
6
0.70
7
0.60
8
0
Z8
0adt8
(3)(8)[0 + 4(0.02) + 2(0.08) + 4(0.20) + 2(0.40) + 4(0.60) + 2(0.70) + 4(0.60)+0]
2.7 cm/s
37. Z180
0vdt180
(3)(6)[0.00 + 4(0.03) + 2(0.08) + 4(0.16) + 2(0.27) + 4(0.42)+0.65]=37.9mi
38. Z1800
0(1/v)dx 1800
(3)(6) 1
3100 +4
2908 +2
2725 +4
2549 +2
2379 +4
2216 +1
20590.71 s
39. V=Z16
0πr2dy =πZ16
0r2dy π16
(3)(4)[(8.5)2+ 4(11.5)2+ 2(13.8)2+ 4(15.4)2+ (16.8)2]
9270 cm39.3L
40. A=Z600
0hdx600
(3)(6)[0 + 4(7) + 2(16) + 4(24) + 2(25) + 4(16) + 0] = 9000 ft2,
V=75A75(9000) = 675,000 ft3
41. Zb
a
f(x)dx A1+A2+···+A
n=ba
n1
2(y
0+y
1)+1
2(y
1+y
2)+···+1
2(y
n1+y
n)
=ba
2n[y
0+2y
1+2y
2+···+2y
n1+y
n
]
42. right endpoint, trapezoidal, midpoint, left endpoint
43. (a) The maximum value of |f00(x)|is approximately 3.844880.
(b) n=18
(c) 0.904741
44. (a) The maximum value of |f00(x)|is approximately 1.467890.
(b) n=12
(c) 1.112062
Exercise Set 9.8 330
45. (a) The maximum value of |f(4)(x)|is approximately 42.551816.
(b) n=8
(c) 0.904524
46. (a) The maximum value of |f(4)(x)|is approximately 7.022710.
(b) n=8
(c) 1.111443
EXERCISE SET 9.8
1. (a) improper; infinite discontinuity at x=3
(b) continuous integrand, not improper
(c) improper; infinite discontinuity at x=0
(d) improper; infinite interval of integration
(e) improper; infinite interval of integration and infinite discontinuity at x=1
(f) continuous integrand, not improper
2. (a) improper if p>0(b) improper if 1 <p<2
(c) integrand is continuous for all p, not improper
3. lim
`+(ex)`
0
= lim
`+(e`+1)=1
4. lim
`+
1
2ln(1 + x2)`
1
= lim
`+
1
2[ln(1 + `2)ln 2] = +, divergent
5. lim
`+ln x1
x+1`
4
= lim
`+ln `1
`+1ln 3
5=ln 3
5=ln5
3
6. lim
`+1
2ex2`
0
= lim
`+
1
2e`2+1
=1/2
7. lim
`+1
2ln
2x`
e
= lim
`+1
2ln
2`+1
2=1
2
8. lim
`+2ln x`
2
= lim
`+(2ln `2ln 2) = +, divergent
9. lim
`→−∞ 1
4(2x1)20
`
= lim
`→−∞
1
4[1+1/(2`1)2]=1/4
10. lim
`→−∞
1
2tan1x
22
`
= lim
`→−∞
1
2π
4tan1`
2=1
2[π/4(π/2)]=3π/8
11. lim
`→−∞
1
3e3x0
`
= lim
`→−∞ 1
31
3e3`=1
3
12. lim
`→−∞ 1
2ln(3 2ex)0
`
= lim
`→−∞
1
2ln(3 2e`)=1
2ln 3
331 Chapter 9
13. Z+
−∞
x3dx converges if Z0
−∞
x3dx and Z+
0x3dx both converge; it diverges if either (or both)
diverge. Z+
0x3dx = lim
`+
1
4x4`
0
= lim
`+
1
4`4=+so Z+
−∞
x3dx is divergent.
14. Z+
0
x
x2+2dx = lim
`+px2+2
`
0
= lim
`+(p`2+2
2)=+
so Z
−∞
x
x2+2dx is divergent.
15. Z+
0
x
(x2+3)
2dx = lim
`+1
2(x2+3)`
0
= lim
`+
1
2[1/(`2+3)+1/3] = 1
6,
similarly Z0
−∞
x
(x2+3)
2dx =1/6soZ
−∞
x
(x2+3)
2dx =1/6+(1/6)=0
16. Z+
0
et
1+e
2tdt = lim
`+tan1(et)`
0
= lim
`+htan1(e`)+π
4i=π
4,
Z0
−∞
et
1+e
2tdt = lim
`→−∞ tan1(et)0
`
= lim
`→−∞ hπ
4+ tan1(e`)i=π
4,
Z+
−∞
et
1+e
2tdt =π
4+π
4=π
2
17. lim
`3+1
x34
`
= lim
`3+1+ 1
`3=+, divergent
18. lim
`0+
3
2x2/38
`
= lim
`0+
3
2(4 `2/3)=6
19. lim
`π/2ln(cos x)`
0
= lim
`π/2ln(cos `)=+, divergent
20. lim
`929x`
0
= lim
`92(9`+3)=6
21. lim
`1sin1x`
0
= lim
`1sin1`=π/2
22. lim
`→−3+p9x21
`
= lim
`→−3+(8+p9`
2)=
8
23. lim
`π/612 sin x`
0
= lim
`π/6(12 sin `+1)=1
24. lim
`π/4ln(1 tan x)`
0
= lim
`π/4ln(1 tan `)=+, divergent
25. Z2
0
dx
x2= lim
`2ln |x2|`
0
= lim
`2(ln |`2|−ln 2) = −∞, divergent
Exercise Set 9.8 332
26. Z2
0
dx
x2= lim
`0+1/x2
`
= lim
`0+(1/2+1/`)=+so Z2
2
dx
x2is divergent
27. Z8
0x1/3dx = lim
`0+
3
2x2/38
`
= lim
`0+
3
2(4 `2/3)=6,
Z0
1x
1/3
dx = lim
`0
3
2x2/3`
1
= lim
`0
3
2(`2/31) = 3/2
so Z8
1x1/3dx =6+(3/2)=9/2
28. Z2
0
dx
(x2)2/3= lim
`23(x2)1/3`
0
= lim
`23[(`2)1/3(2)1/3]=33
2,
similarly Z4
2
dx
(x2)2/3= lim
`2+3(x2)1/34
`
=33
2soZ4
0
dx
(x2)2/3=63
2
29. Define Z+
0
1
x2dx =Za
0
1
x2dx +Z+
a
1
x2dx where a>0; take a= 1 for convenience,
Z1
0
1
x2dx = lim
`0+(1/x)1
`
= lim
`0+(1/` 1)=+so Z+
0
1
x2dx is divergent.
30. Define Z+
1
dx
xx21=Za
1
dx
xx21+Z+
a
dx
xx21where a>1,
take a= 2 for convenience to get
Z2
1
dx
xx21= lim
`1+sec1x2
`
= lim
`1+(π/3sec1`)=π/3,
Z+
2
dx
xx21= lim
`+sec1x`
2
=π/2π/3soZ+
1
dx
xx21=π/2.
31. Z+
0
ex
xdx =2Z+
0e
u
du = 2 lim
`+eu`
0
= 2 lim
`+1e`=2
32. Z+
0
dx
x(x+4) =2Z+
0
du
u2+4 = 2 lim
`+
1
2tan1u
2`
0
= lim
`+tan1`
2=π
2
33. Z+
0
ex
1exdx =Z1
0
du
u= lim
`0+2u1
`
= lim
`0+2(1 `)=2
34. Z+
0
ex
1e2xdx =Z0
1
du
1u2=Z1
0
du
1u2= lim
`1sin1u`
0
= lim
`1sin1`=π
2
36. A=Z+
0xe3xdx = lim
`+1
9(3x+1)e
3x
`
0
=1/3
37. lim
`+Z`
0excos xdx= lim
`+
1
2ex(sin xcos x)`
0
=1/2
39. (a) 2.726585 (b) 2.804364 (c) 0.219384 (d) 0.504067
333 Chapter 9
40. 1+dy
dx2
=1+ 16x2
94x2=9+12x
2
94x
2; the arc length is Z3/2
0s9+12x
2
94x
2dx 3.633168
41. Zln xdx=xln xx+C,
Z1
0ln xdx= lim
`0+Z1
`
ln xdx= lim
`0+(xln xx)1
`
= lim
`0+(1`ln `+`),
but lim
`0+`ln `= lim
`0+
ln `
1/` = lim
`0+(`)=0soZ1
0ln xdx=1
42. Zln x
x2dx =ln x
x1
x+C,
Z+
1
ln x
x2dx = lim
`+Z`
1
ln x
x2dx = lim
`+ln x
x1
x`
1
= lim
`+ln `
`1
`+1
,
but lim
`+
ln `
`= lim
`+
1
`=0soZ+
1
ln x
x2=1
43. Zxe3xdx =1
3xe3x1
9e3x+C,
Z+
0xe3xdx = lim
`+Z`
0xe3xdx = lim
`+1
3xe3x1
9e3x`
0
= lim
`+1
3`e3`1
9e3`+1
9
but lim
`+`e3`= lim
`+
`
e3`= lim
`+
1
3e3`=0soZ+
0xe3xdx =1/9
44. A=Z+
3
8
x24dx = lim
`+2lnx2
x+2`
3
= lim
`+2ln `2
`+2ln 1
5= 2 ln 5
45. (a) V=πZ+
0e2xdx =π
2lim
`+e2x`
0
=π/2
(b) S=2πZ+
0e
x
p1+e
2x
dx, let u=exto get
S=2πZ0
1p1+u
2du =2πu
2p1+u
2+1
2ln |u+p1+u
2|
1
0
=πh
2+ln(1+2)i
47. (a) For x1,x
2x, ex2ex
(b) Z+
1exdx = lim
`+Z`
1exdx = lim
`+exi`
1= lim
`+(e1e`)=1/e
(c) By parts (a) and (b) and Exercise 46(b), Z+
1ex2dx is convergent and is 1/e.
48. (a) If x0 then ex1,1
2x+1 e
x
2x+1
(b) lim
`+Z`
0
dx
2x+1 = lim
`+
1
2ln(2x+1)
`
0
=+
(c) By parts (a) and (b) and Exercise 46(a), Z+
0
ex
2x+1dx is divergent.
Exercise Set 9.8 334
49. V= lim
`+Z`
1(π/x2)dx = lim
`+(π/x)i`
1= lim
`+(ππ/`)=π
A= lim
`+Z`
12π(1/x)p1+1/x4dx; use Exercise 46(a) with f(x)=2π/x,g(x)=(2π/x)p1+1/x4
and a= 1 to see that the area is infinite.
50. (a) 1x3+1
xfor x2, Z+
21dx =+
(b) Z+
2
x
x5+1dx Z+
2
dx
x4= lim
`+1
3x3`
2
=1/24
(c) 1
2x+1 e
x
2x+1 for x0, Z+
0
1
2x+1dx = lim
`+
1
2ln(2x+1)
`
0
=+
51. Z2x
0p1+t
3dt Z2x
0t3/2dt =2
5t5/22x
0
=2
5(2x)5/2,
lim
x+Z2x
0t3/2dt = lim
x+
2
5(2x)5/2=+so Z+
0p1+t
3dt =+; by L’Hˆopital’s Rule
lim
x+Z2x
0p1+t
3dt
x5/2= lim
x+
2p1+(2x)
3
(5/2)x3/2= lim
x+
2p1/x3+8
5/2=8
2/5
52. (b) u=x, Z+
0
cos x
xdx =2Z+
0cos udu;Z+
0cos udu diverges by part (a).
53. Let x=rtan θto get Zdx
(r2+x2)3/2=1
r2Zcos θdθ=1
r
2sin θ+C=x
r2r2+x2+C
so u=2πNIr
klim
`+
x
r2r2+x2`
a
=2πNI
kr lim
`+(`/pr2+`2a/pr2+a2)
=2πNI
kr (1 a/pr2+a2).
54. Let a2=M
2RT to get
(a) ¯v=4
πM
2RT 3/21
2M
2RT 2
=2
πr2RT
M=r8RT
πM
(b) v2
rms =4
πM
2RT 3/23π
8M
2RT 5/2
=3RT
Mso vrms =r3RT
M
55. (a) Satellite’s weight = w(x)=k/x2lb when x= distance from center of Earth; w(4000) = 6000
so k=9.6×1010 and W=Z4000+`
4000 9.6×1010x2dx mi·lb.
(b) Z+
4000 9.6×1010x2dx = lim
`+9.6×1010/x`
4000
=2.4×107mi·lb
56. (a) L{1}=Z+
0estdt = lim
`+1
sest`
0
=1
s
(b) L{e2t}=Z+
0este2tdt =Z+
0e(s2)tdt = lim
`+1
s2e(s2)t`
0
=1
s2
335 Chapter 9
(c) L{sin t}=Z+
0est sin tdt= lim
`+
est
s2+1(ssin tcos t)`
0
=1
s2+1
(d) L{cos t}=Z+
0est cos tdt= lim
`+
est
s2+1(scos t+ sin t)`
0
=s
s2+1
57. (a) L{f(t)}=Z+
0test dt = lim
`+(t/s +1/s2)est`
0
=1
s2
(b) L{f(t)}=Z+
0t2est dt = lim
`+(t2/s +2t/s2+2/s3)est`
0
=2
s3
(c) L{f(t)}=Z+
3estdt = lim
`+1
sest`
3
=e3s
s
58. 10 100 1000 10,000
0.8862269 0.8862269 0.8862269 0.8862269
59. (a) u=ax, du =a dx, 2Z+
0eax2dx =2
aZ+
0eu2du =pπ/a
(b) x=2σu, dx =2σ du, 2
2πσ Z+
0ex2/2σ2dx =2
πZ+
0eu2du =1
60. (a) Z3
0ex2dx 0.8862; π/20.8862
(b) Z+
0ex2dx =Z3
0ex2dx +Z+
3ex2dx so E=Z+
3ex2dx < Z+
3xex2dx =1
2e9<7×105
61. (a) Z4
0
1
x6+1dx 1.047; π/31.047
(b) Z+
0
1
x6+1dx =Z4
0
1
x6+1dx +Z+
4
1
x6+1dx so
E=Z+
4
1
x6+1dx < Z+
4
1
x6dx =1
5(4)5<2×104
62. If p= 0, then Z+
0(1)dx = lim
`+x`
0
=+,
if p6= 0, then Z+
0epxdx = lim
`+
1
pepx`
0
= lim
`+
1
p(ep` 1) = 1/p, p < 0
+,p>0
.
63. If p= 1, then Z1
0
dx
x= lim
`0+ln x1
`
=+;
if p6= 1, then Z1
0
dx
xp= lim
`0+
x1p
1p1
`
= lim
`0+[(1 `1p)/(1 p)] = 1/(1 p),p<1
+, p>1
.
64. u=1x, u2=1x, 2udu=dx;
2Z0
1p2u2du =2Z1
0p2u
2du =hup2u2+ 2 sin1(u/2)i1
0=2+π/2
65. 2Z1
0cos(u2)du 1.809 66. 2Z0
1sin(1 u2)du =2Z1
0sin(1 u2)du 1.187
Chapter 9 Supplementary Exercises 336
CHAPTER 9 SUPPLEMENTARY EXERCISES
1. (a) integration by parts, u=x,dv = sin xdx (b) u-substitution: u= sin x
(c) reduction formula (d) u-substitution: u= tan x
(e) u-substitution: u=x3+1 (f) u-substitution: u=x+1
(g) integration by parts: dv =dx, u = tan1x(h) trigonometric substitution: x= 2 sin θ
(i) u-substitution: u=4x
2
2. (a) x= 3 tan θ(b) x= 3 sin θ(c) x=1
3sin θ
(d) x= 3 sec θ(e) x=3 tan θ(f) x=1
9tan θ
5. (a) #40 (b) #57 (c) #113
(d) #108 (e) #52 (f) #71
6. (a) u=x2,dv =x
x2+1dx,du =2xdx,v=x
2+1;
Z1
0
x
3
x
2+1dx =x2px2+1
i1
02Z1
0x(x
2+1)
1/2dx
=22
3(x2+1)
3/21
0
=
22
3[221]=(2
2)/3
(b) u2=x2+1,x
2=u
21, 2xdx=2udu,xdx=udu;
Z1
0
x
3
x
2+1dx =Z1
0
x2
x2+1xdx=Z2
1
u
21
uudu
=Z2
1(u
21)du =1
3u3u2
1
=(2
2)/3
7. (a) u=2x,
Zsin42xdx=1
2Zsin4udu=1
21
4sin3ucos u+3
4Zsin2udu
=1
8sin3ucos u+3
81
2sin ucos u+1
2Zdu
=1
8sin3ucos u3
16 sin ucos u+3
16u+C
=1
8sin32xcos 2x3
16 sin 2xcos 2x+3
8x+C
(b) u=x2,
Zxcos4(x2)dx =1
2Zcos4udu=1
21
4cos3usin u+3
4Zcos2udu
=1
8cos3usin u+3
81
2cos usin u+1
2Zdu
=1
8cos3usin u+3
16 cos usin u+3
16u+C
=1
8cos3(x2) sin(x2)+ 3
16 cos(x2) sin(x2)+ 3
16x2+C
8. (a) With x= sec θ:
Z1
x3xdx =Zcot θdθ=ln|sin θ|+C=ln
x
21
|x|+C; valid for |x|>1.
337 Chapter 9
(b) With x= sin θ:
Z1
x3xdx =Z1
sin θcos θ=Z2 csc 2θdθ
=ln |csc 2θcot 2θ|+C=ln|cot θ|+C=ln
1x
2
|x|+C, 0<|x|<1.
(c) By partial fractions:
Z1
x+1/2
x+1+1/2
x1dx =ln |x|+1
2ln |x+1|+1
2ln |x1|+C
=lnp|x
21|
|x|+C; valid for all xexcept x=0,±1.
9. (a) With u=x:
Z1
x2xdx =2Z1
2u
2du = 2 sin1(u/2)+C= 2 sin1(px/2)+C;
with u=2x:
Z1
x2xdx =2
Z1
2u2du =2 sin1(u/2)+C=2 sin1(2x/2)+C;
completing the square:
Z1
p1(x1)2dx = sin1(x1)+C.
(b) In the three results in part (a) the antiderivatives differ by a constant, in particular
2 sin1(px/2) = π2 sin1(2x/2) = π/2 + sin1(x1).
10. A=Z2
1
3x
x3+x2dx,3x
x2(x+1) =A
x+B
x
2+C
x+1;A=4, B=3,C=4
A=4ln|x|−3
x+4ln|x+1|
2
1
=(4ln23
2+ 4 ln 3) (4ln13 + 4 ln 2) = 3
28ln2+4ln3= 3
2+4ln3
4
11. Solve y=1/(1+x2) for xgetting
x=r1y
yand integrate with respect to
to yto get A=Z1
0r1y
ydy (see figure)
1y = 1/(1 + x2)
x
y
12. A=Z+
e
ln x1
x2dx = lim
`+ln x
x`
e
=1/e
13. V=2πZ+
0xexdx =2πlim
`+ex(x+1)
`
0
=2πlim
`+1e`(`+1)
but lim
`+e`(`+ 1) = lim
`+
`+1
e
`= lim
`+
1
e`=0soV=2π
14. Z+
0
dx
x2+a2= lim
`+
1
atan1(x/a)`
0
= lim
`+
1
atan1(`/a)= π
2a=1,a=π/2
Chapter 9 Supplementary Exercises 338
15. u= cos θ,Zu1/2du =2
3cos3/2θ+C
16. Use Endpaper Formula (31) to get Ztan7θdθ =1
6tan6θ1
4tan4θ+1
2tan2θ+ln|cos θ|+C.
17. u= tan(x2), 1
2Zu2du =1
6tan3(x2)+C
18. x=(1/
2) sin θ,dx =(1/
2) cos θdθ,
1
2Zπ/2
π/2cos4θdθ =1
2(1
4cos3θsin θπ/2
π/2
+3
4Zπ/2
π/2cos2θdθ
)
=3
4
2(1
2cos θsin θπ/2
π/2
+1
2Zπ/2
π/2)=3
42
1
2π=3π
82
19. x=3 tan θ,dx =3 sec2θdθ,
1
3Z1
sec θ=1
3Zcos θdθ=1
3sin θ+C=x
33+x
2+C
20. Zcos θ
(sin θ3)2+3, let u= sin θ3, Z1
u2+3du =1
3tan1[(sin θ3)/3]+C
21. Zx+3
p(x+1)
2+1dx, let u=x+1,
Zu+2
u
2+1du =Zu(u2+1)
1/2+2
u
2+1du =pu2+1+2sinh1u+C
=px2+2x+2+2sinh1(x+1)+C
Alternate solution: let x+ 1 = tan θ,
Z(tan θ+ 2) sec θdθ=Zsec θtan θdθ+2Zsec θdθ= sec θ+2ln|sec θ+ tan θ|+C
=px2+2x+2+2ln(
px
2+2x+2+x+1)+C.
22. Let x= tan θto get Z1
x3x2dx.
1
x2(x1) =A
x+B
x2+C
x1;A=1, B=1, C=1so
Z1
x
dx Z1
x2dx +Z1
x1dx =ln |x|+1
x+ln|x1|+C
=1
x+ln
x1
x
+C= cot θ+ln
tan θ1
tan θ+C= cot θ+ln|1cot θ|+C
23. 1
(x1)(x+ 2)(x3) =A
x1+B
x+2+C
x3;A=1
6,B=1
15,C=1
10 so
1
6Z1
x1dx +1
15 Z1
x+2dx +1
10 Z1
x3dx
=1
6ln |x1|+1
15 ln |x+2|+1
10 ln |x3|+C
339 Chapter 9
24. 1
x(x2+x+1) =A
x+Bx +C
x2+x+1;A=1,B=C=1so
Zx1
x
2+x+1dx =Zx+1
(x+1/2)2+3/4dx =Zu+1/2
u
2+3/4du, u =x+1/2
=1
2ln(u2+3/4) 1
3tan12u/3+C
1
so Zdx
x(x2+x+1) =ln|x|−1
2ln(x2+x+1)1
3tan12x+1
3+C
25. u=x4, x=u2+4,dx =2udu,
Z2
0
2u
2
u
2+4du =2Z2
014
u
2+4du =2u4 tan1(u/2)2
0
=4π
26. u=x,x=u2,dx =2udu,
2Z3
0
u
2
u
2+9du =2Z3
019
u
2+9du =2u6 tan1u
33
0
=63
2
π
27. u=ex+1,e
x=u
21, x= ln(u21), dx =2u
u21du,
Z2
u21du =Z1
u11
u+1du =ln|u1|−ln |u+1|+C=ln
e
x+11
e
x+1+1+C
28. u=ex1, ex=u2+1,x= ln(u2+ 1), dx =2u
u2+1du,
Z1
0
2u2
u2+1du =2Z1
011
u
2+1du =(2u2 tan1u)1
0
=2π
2
29. lim
`+1
2(x2+1)`
a
= lim
`+1
2(`2+1)+1
2(a2+1)=1
2(a2+1)
30. lim
`+
1
ab tan1bx
a`
0
= lim
`+
1
ab tan1b`
a=π
2ab
31. Let u=x4to get 1
4Z1
1u2du =1
4sin1u+C=1
4sin1(x4)+C.
32. Z(cos32 xsin30 xcos30 xsin32 x)dx =Zcos30 xsin30 x(cos2xsin2x)dx
=1
230 Zsin30 2xcos 2xdx=sin31 2x
31(231)+C
33. Zqxpx24dx =1
2Z(x+2
x2)dx =2
3[(x+2)
3/2(x2)3/2]+C
34. Z1
x10(1+x9)dx =1
9Z1
udu =1
9ln |u|+C=1
9ln |1+x
9|+C
Chapter 9 Supplementary Exercises 340
35. (a) (x+ 4)(x5)(x2+1)
2;A
x+4+B
x5+Cx +D
x2+1 +Ex +F
(x2+1)
2
(b) 3
x+4+2
x5x2
x
2+13
(x
2+1)
2
(c) 3ln|x+4|+2ln|x5|+ 2 tan1x1
2ln(x2+1)3
2x
x
2+1+ tan1x
36. (a) Γ(1) = Z+
0etdt = lim
`+et`
0
= lim
`+(e`+1)=1
(b) Γ(x+1)=Z+
0t
x
e
t
dt; let u=tx,dv =etdt to get
Γ(x+1)= t
x
e
t
+
0+xZ+
0t
x1e
t
dt =txet+
0+xΓ(x)
lim
t+txet= lim
t+
tx
et= 0 (by multiple applications of L’Hˆopital’s rule)
so Γ(x+1)=xΓ(x)
(c) Γ(2) = (1)Γ(1) = (1)(1) = 1, Γ(3) = 2Γ(2) = (2)(1) = 2, Γ(4) = 3Γ(3) = (3)(2) = 6
It appears that Γ(n)=(n1)! if nis a positive integer.
(d) Γ1
2=Z+
0t1/2etdt =2Z+
0e
u
2du (with u=t)=2(
π/2) = π
(e) Γ3
2=1
2Γ1
2=1
2π
5
2
=3
2
Γ
3
2
=3
4
π
37. (a) t=ln x, x =et,dx=e
tdt,
Z1
0(ln x)ndx =Z0
+
(t)netdt =(1)nZ+
0tnetdt =(1)nΓ(n+1)
(b) t=xn,x=t
1/n,dx=(1/n)t1/n1dt,
Z+
0exndx =(1/n)Z+
0t1/n1etdt =(1/n)Γ(1/n) = Γ(1/n +1)
38. (a) pcos θcos θ0=q2sin2(θ0/2) sin2(θ/2)=q2(k2k2sin2φ)=p2k
2cos2φ
=2kcos φ;ksin φ= sin(θ/2) so kcos φdφ=1
2cos(θ/2) =1
2q1sin2(θ/2)
=1
2q1k2sin2φdθ,thus=2kcos φ
p1k2sin2φand hence
T=s8L
gZπ/2
0
1
2kcos φ·2kcos φ
p1k2sin2φ=4
sL
gZπ/2
0
1
p1k2sin2φ
(b) If L=1.5ftandθ
0=(π/180)(20) = π/9, then
T=3
2Zπ/2
0
q1sin2(π/18) sin2φ1.37 s.
341 Chapter 9
CHAPTER 9 HORIZON MODULE
1. The depth of the cut equals the terrain elevation minus the track elevation. From Figure 2, the
cross sectional area of a cut of depth Dmeters is 10D+2·1
2D
2=D
2+10Dsquare meters.
Distance from
town A (m) Terrain elevation
(m)
0
2000
4000
6000
8000
10,000
12,000
14,000
16,000
18,000
20,000
100
105
108
110
104
106
120
122
124
128
130
Track elevation
(m)
100
101
102
103
104
105
106
107
108
109
110
Depth of cut
(m)
0
4
6
7
0
1
14
15
16
19
20
Cross-sectional area
f(x) of cut (m2)
0
56
96
119
0
11
336
375
416
551
600
The total volume of dirt to be excavated, in cubic meters, is Z2000
0f(x)dx.
By Simpson’s Rule, this is approximately
20,000 0
3·10 [0+4·56+2·96+4·119+2·0+4·11+2·336+4·375+2·416+4·551 + 600]
=4,496,000 m3.
Excavation costs $4 per m3, so the ttal cost of the railroad from kAto Mis about
4·4,496,000=17,984,000 dollars.
2. (a) Distance from
town A (m) Terrain elevation
(m)
20,000
20,100
20,200
20,300
20,400
20,500
20,600
20,700
20,800
20,900
21,000
130
135
139
142
145
147
148
146
143
139
133
Track elevation
(m)
110
109.8
109.6
109.4
109.2
109
108.8
108.6
108.4
108.2
108
Depth of cut
(m)
20
25.2
29.4
32.6
35.8
38
39.2
37.4
34.6
30.8
25
Cross-sectional area
f(x) of cut (m2)
300
887.04
1158.36
1388.76
1639.64
1824
1928.64
1772.76
1543.16
1256.64
875
The total volume of dirt to be excavated, in cubic meters, is Z21,000
20,000 f(x)dx.
By Simpson’s Rule this is approximately
21,000 20,000
3·10 [600 + 4 ·887.04+2·1158.36+...+4·1256.64 + 875] = 1,417,713.33 m3.
The total cost of a trench from Mto Nis about 4 ·1,417,713.33 5,670,853 dollars.
Chapter 9 Horizon Module 342
(b) Distance from
town A (m) Terrain elevation
(m)
21,000
22,000
23,000
24,000
25,000
26,000
27,000
28,000
29,000
30,000
31,000
133
120
106
108
106
98
100
102
96
91
88
Track elevation
(m)
108
106
104
102
100
98
96
94
92
90
88
Depth of cut
(m)
25
14
2
6
6
0
4
8
4
1
0
Cross-sectional area
f(x) of cut (m2)
875
336
24
96
96
0
56
144
56
11
0
The total volume of dirt to be excavated, in cubic meters, is Z31,000
21,000 f(x)dx. By Simpson’s
Rule this is approximately
31,000 21,000
3·10 [875 + 4 ·336+2·24+...+4·11+0]=1,229,000 m3.
The total cost of the railroad from Nto Bis about 4 ·1,229,000 4,916,000 dollars.
3. The total cost if trenches are used everywhere is about
17,984,000+5,670,853+4,916,000=28,570,853 dollars.
4. (a) The cross-sectional area of a tunnel is AT=80+1
2
π5
2119.27 m2. The length of the
tunnel is 1000 m, so the volume of dirt to be removed is about 1000AT1,119,269.91 m3,
and the drilling and dirt-piling costs are 8 ·1000AT954,159 dollars.
(b) To extend the tunnel from a length of xmeters to a length of x+dx meters, we must move
a volume of ATdx cubic meters of dirt a distance of about xmeters. So the cost of this
extension is about 0.06 ×ATdx dollars. The cost of moving all of the dirt in the tunnel is
therefore
Z1000
00.06 ×ATdx =0.06AT
x2
21000
0
=30,000AT3,578,097 dollars.
(c) The total cost of the tunnel is about 954,159+3,578,097 4,532,257 dollars.
5. The total cost of the railroad, using a tunnel, is 17,894,000+4,532,257+4,916,000+27,432,257
dollars, which is smaller than the cost found in Exercise 3. It will be cheaper to build the railroad
if a tunnel is used.
343
CHAPTER 10
Mathematical Modeling with Differential
Equations
EXERCISE SET 10.1
1. y0=2x
2
e
x
3
/3=x
2
yand y(0) = 2 by inspection.
2. y0=x32 sin x, y(0) = 3 by inspection.
3. (a) first order; dy
dx =c;(1+x)dy
dx =(1+x)c=y
(b) second order; y0=c1cos tc2sin t, y00 +y=c1sin tc2cos t+(c
1sin t+c2cos t)=0
4. (a) first order; 2dy
dx +y=2
c
2
e
x/2+1
+cex/2+x3=x1
(b) second order; y0=c1etc2et,y
00 y=c1et+c2etc1et+c2et=0
5. 1
y
dy
dx =xdy
dx +y, dy
dx(1 xy)=y
2
,dy
dx =y2
1xy
6. 2x+y2+2xy dy
dx = 0, by inspection.
7. (a) IF: µ=e3Rdx =e3x,d
dxye3x=0,ye
3x=C, y =Ce3x
separation of variables: dy
y=3dx, ln |y|=3x+C1,y =±e
3xe
C
1=Ce3x
(b) IF: µ=e2Rdt =e2t,d
dt[ye2t]=0,ye
2t=C, y =Ce2t
separation of variables: dy
y=2dt, ln |y|=2t+C
1
,y=±e
C
1
e
2t=Ce2t
8. (a) IF: µ=e4Rxdx =e
2x
2,d
dx hye2x2i=0,y=Ce2x2
separation of variables: dy
y=4x dx, ln |y|=2x
2+C
1
,y=±e
C
1
e
2x
2=Ce2x2
(b) IF: µ=eRdt =et,d
dt yet=0,y=Cet
separation of variables: dy
y=dt, ln |y|=t+C1,y =±e
C
1e
t=Cet
9. 1
ydy =1
xdx,ln|y|=ln|x|+C
1
,ln
y
x
=C
1
,y
x=±e
C
1=C,y=Cx
10. dy
1+y
2=x
2dx, tan1y=1
3x3+C, y = tan 1
3x3+C
11. dy
1+y=x
1+x
2dx, ln |1+y|=
p1+x
2+C
1,1+y=±e
1+x2eC1=Ce1+x2,
y=Ce1+x21
Exercise Set 10.1 344
12. ydy =x
3dx
1+x
4,y
2
2=1
4ln(1 + x4)+C
1,2y
2= ln(1 + x4)+C, y =±p[ln(1 + x4)+C]/2
13. 1
y+ydy =exdx, ln |y|+y2/2=e
x+C; by inspection, y=0
14. dy
y=x dx, ln |y|=x2/2+C
1,y=±e
C
1
e
x
2
/2=Cex2/2
15. eydy =sin x
cos2xdx = sec xtan xdx,e
y= sec x+C,y= ln(sec x+C)
16. dy
1+y
2=(1+x)dx, tan1y=x+x2
2+C, y = tan(x+x2/2+C)
17. dy
y2y=dx
sin x,Z1
y+1
y1dy =Zcsc x dx, ln
y1
y=ln|csc xcot x|+C1,
y1
y=±eC1(csc xcot x)=C(csc xcot x),y=1
1C(csc xcot x);
by inspection, y= 0 is also a solution.
18. 1
tan ydy =3
sec xdx,cos y
sin ydy = 3 cos xdx,ln|sin y|= 3 sin x+C1,
sin y=±e3 sin x+C1=±eC1e3 sin x=Ce3 sin x
19. µ=eR3dx =e3x,e3xy=Zexdx =ex+C,y=e2x+Ce3x
20. µ=e2Rxdx =e
x
2,d
dxhyex2i=xex2,ye
x
2=1
2e
x
2+C, y =1
2+Cex2
21. µ=eRdx =ex,exy=Zexcos(ex)dx = sin(ex)+C,y=e
xsin(ex)+Cex
22. dy
dx +2y=1
2,µ=e
R2dx =e2x,e2xy=Z1
2e2xdx =1
4e2x+C,y=1
4+Ce2x
23. dy
dx +x
x2+1y=0=e
R(x/(x2+1))dx =e1
2ln(x2+1) =px2+1,
d
dx hypx2+1
i=0,y
px
2+1=C, y =C
x2+1
24. dy
dx +y=1
1+e
x,µ=e
Rdx =ex,exy=Zex
1+e
xdx = ln(1 + ex)+C,y=e
xln(1 + ex)+Cex
25. dy
dx +1
xy=1=e
R(1/x)dx =eln x=x, d
dx[xy]=x, xy =1
2x2+C, y =x/2+C/x
(a) 2=y(1) = 1
2+C, C =3
2,y =x/2+3/(2x)
(b) 2=y(1) = 1/2C, C =5/2,y =x/25/(2x)
345 Chapter 10
26. dy
y=x dx, ln |y|=x2
2+C1,y=±e
C
1
e
x
2
/2=Cex2/2
(a) 1=y(0) = Cso C=1,y=e
x
2
/2
(b) 1
2=y(0) = C,soy=1
2
e
x
2
/2
27. µ=eRxdx =e
x
2/2,e
x
2/2y=Zxex2/2dx =ex2/2+C,
y=1+Cex2/2,3=1+C,C=4,y=1+4e
x
2/2
28. µ=eRdt =et,ety=Z2etdt =2e
t+C,y=2+Cet,1=2+C,C=1, y=2e
t
29. (y+ cos y)dy =4x
2dx, y2
2+ sin y=4
3x3+C, π2
2+ sin π=4
3(1)3+C, π2
2=4
3+C,
C=π2
24
3,3y2+ 6 sin y=8x
3+3π
28
30. dy
dx =(x+2)e
y,e
ydy =(x+2)dx,ey=1
2x2+2x+C,1=C,
e
y=1
2
x
2+2x1, ey=1
2x22x+1,y=ln 12x1
2x2
31. 2(y1) dy =(2t+1)dt, y22y=t2+t+C, 1+2=C, C =3,y
22y=t
2+t+3
32. y0+sinh x
cosh xy= cosh x,µ=eR(sinh x/ cosh x)dx =eln cosh x= cosh x,
(cosh x)y=Zcosh2xdx=Z1
2(cosh 2x+1)dx =1
4sinh 2x+1
2x+C=1
2sinh xcosh x+1
2x+C,
y=1
2sinh x+1
2xsech x+Csech x,1
4=C,y=1
2sinh x+1
2xsech x+1
4sech x
-2 2
-2
2
x
y
y = 0.5x2
y = –1.5x2
y = x2
y = 2x2
y = 2.5x2
y = 0
y = 3x2
33. (a) dy
y=dx
2x,ln |y|=1
2ln |x|+C1,|y|=C|x|1/2;
by inspection y= 0 is also a solution.
(b) 2=C(1)2,C =2,x =2y
2
-3 3
-3
3
x
yy = 9 – x2
y = 6.25 – x2
y = 4 – x2
y = 1 – x2
y = 2.25 – x2
y = 0.25 – x2
34. (a) ydy =x dx, y2
2=x2
2+C1,y =±pC2x
2
(b) y=25 x2
Exercise Set 10.1 346
35. dy
y=xdx
x
2+4,
ln |y|=1
2ln(x2+4)+C
1,
y=C
x
2+4
1.5
-1
-2 2
C = 1
C = 1
C = 0 C = 2
C = 2
36. y0+2y=3e
t
=e
2Rdt =e2t,
d
dtye2t=3e
3t
,ye
2t=e
3t+C,
y=et+Ce2t
C = 2
C = 1
C = 0
C = 1
C = 2
100
-100
-2 2
37. (1 y2)dy =x2dx,
yy3
3=x3
3+C1,x
3+y
33y=C
-2 2
-2
2
x
y
38. 1
y+ydy =dx, ln |y|+y2
2=x+C1,
yey2/2=±eC1ex=Cex
-5 5
-3
3
x
y
41. dy
dx =xey,e
ydy =x dx, ey=x2
2+C, x = 2 when y=0so1=2+C, C =3,x
2+2e
y=6
2
0
0 1.6
42. dy
dx =3x2
2y,2ydy =3x
2dx, y2=x3+C, 1=1+C, C =0,
y
2=x
3
,y=x
3/2passes through (1,1).
43. dy
dt = rate in rate out, where yis the amount of salt at time t,
dy
dt = (4)(2) y
50(2)=81
25y, so dy
dt +1
25y= 8 and y(0) = 25.
µ=eR(1/25)dt =et/25,et/25y=Z8et/25dt = 200et/25 +C,
y= 200 + Cet/25, 25 = 200 + C,C=175,
(a) y= 200 175et/25 oz (b) when t= 25, y= 200 175e1136 oz
347 Chapter 10
44. dy
dt = (5)(10) y
200(10) = 50 1
20y, so dy
dt +1
20y= 50 and y(0)=0.
µ=e
R1
20 dt =et/20,et/20y=Z50et/20dt = 1000et/20 +C,
y= 1000 + Cet/20, 0 = 1000 + C,C=1000;
(a) y= 1000 1000et/20 lb (b) when t= 30, y= 1000 1000e1.5777 lb
45. The volume Vof the (polluted) water is V(t) = 500 + (20 10)t=500+10t;
if y(t) is the number of pounds of particulate matter in the water,
then y(0) = 50, and dy
dt =010 y
V=1
50+ty, dy
dt +1
50+ty=0; µ=e
Rdt
50+t=50+t;
d
dt[(50 + t)y]=0,(50 + t)y=C, 2500 = 50y(0) = C, y(t) = 2500/(50 + t).
The tank reaches the point of overflowing when V=500+10t= 1000, t= 50 min, so
y= 2500/(50 + 50) = 25 lb.
46. The volume of the lake (in gallons) is V= 246πr2h= 246π(15)23 = 166,050π. Let y(t) denote
the number of pounds of mercury salts at time t, then dy
dt =0103y
V=y
166.05πlb/h and
y0=10
5
V=1.6605πlb; dy
y=dt
166.05π,ln y=t
166.05π+C1,y=Cet/(166.05π), and
C=y(0) = y0=1.6605π,y=1.6605πet/(166.05π).
t
y(t)
1
5.2066
2
5.1967
3
5.1867
4
5.1768
5
5.1669
6
5.1570
7
5.1471
8
5.1372
9
5.1274
10
5.1176
11
5.1078
12
5.0980
47. (a) dv
dt +c
mv=g, µ =e(c/m)Rdt =ect/m,d
dt hvect/mi=gect/m,ve
ct/m =gm
cect/m +C,
v=gm
c+Cect/m, but v0=v(0) = gm
c+C, C =v0+gm
c,v =gm
c+v0+gm
cect/m
(b) Replace mg
cwith vτand ct/m with gt/vτin (23).
(c) From part (b), s(t)=Cv
τt(v
0+v
τ)
v
τ
ge
gt/vτ;
s0=s(0) = C(v0+vτ)vτ
g,C=s
0
+(v0+vτ)vτ
g,s(t)=s
0v
τt+v
τ
g(v
0+v
τ)1e
gt/vτ
48. Given m= 240,g =32,v
τ=mg/c: with a closed parachute vτ= 120 so c= 64, and with an open
parachute vτ= 24, c= 320.
(a) Let tdenote time elapsed in seconds after the moment of the drop. From Exercise 47(b),
while the parachute is closed
v(t)=e
gt/vτ(v0+vτ)vτ=e32t/120 (0 + 120) 120 = 120 e4t/15 1and thus
v(25) = 120 e20/31≈−119.85, so the parachutist is falling at a speed of 119.85 ft/s
when the parachute opens. From Exercise 47(c), s(t)=s
0120t+120
32 120 1e4t/15,
s(25) = 10000 120 ·25 + 450 1e20/37449.43 ft.
(b) If tdenotes time elapsed after the parachute opens, then, by Exercise 47(c),
s(t) = 7449.43 24t+24
32 (119.85 + 24) 1e32t/24= 0, with the solution (Newton’s
Method) t= 310.42 s, so the sky diver is in the air for about 25 + 310 = 335 s.
Exercise Set 10.1 348
49. dI
dt +R
LI=V(t)
L=e
(R/L)Rdt =eRt/L,d
dt(eRt/LI)=V(t)
Le
Rt/L,
IeRt/L =I(0) + 1
LZt
0V(u)eRu/Ldu, I(t)=I(0)eRt/L +1
LeRt/L Zt
0V(u)eRu/Ldu.
(a) I(t)=1
4
e
5t/2Zt
012e5u/2du =6
5e5t/2e5u/2t
0
=6
51e5t/2A.
(b) lim
t+I(t)=6
5A
50. From Exercise 49 and Endpaper Table #42,
I(t)=15e
2t+1
3
e
2tZt
03e
2usin udu=15e
2t+e
2te
2u
5(2 sin ucos u)t
0
=15e
2t+1
5
(2 sin tcos t)+1
5e
2t
.
51. (a) dv
dt =ck
m0kt g, v =cln(m0kt)gt +C;v= 0 when t=0so0=cln m0+C,
C=cln m0,v =cln m0cln(m0kt)gt =cln m0
m0kt gt.
(b) m0kt =0.2m
0when t= 100 so
v= 2500 ln m0
0.2m09.8(100) = 2500 ln 5 980 3044 m/s.
52. (a) By the chain rule, dv
dt =dv
dx
dx
dt =dv
dxvso mdv
dt =mv dv
dx.
(b) mv
kv2+mg dv =dx, m
2kln(kv2+mg)=x+C;v=v
0when x=0so
C=m
2kln(kv2
0+mg),m
2kln(kv2+mg)=x+m
2kln(kv2
0+mg),x=m
2kln kv2
0+mg
kv2+mg .
(c) x=xmax when v=0so
x
max =m
2klnkv2
0+mg
mg =3.56 ×103
2(7.3×106)ln(7.3×106)(988)2+(3.56 ×103)(9.8)
(3.56 ×103)(9.8) 1298 m
53. (a) A(h)=π(1)2=π, π dh
dt =0.025h, π
hdh =0.025dt, 2πh=0.025t+C;h= 4 when
t=0,so4π=C, 2πh=0.025t+4π, h=20.025
2πt, h (2 0.003979t)2.
(b) h= 0 when t2/0.003979 502.6s8.4 min.
h22
24 − (h2)2
h
54. (a) A(h)=6h2
p4(h2)2i=12
p4hh
2
,
12p4hh2dh
dt =0.025h,12
4hdh=0.025dt,
8(4 h)3/2=0.025t+C;h= 4 when t=0soC=0,
(4 h)3/2=(0.025/8)t,4h=(0.025/8)2/3t2/3,
h40.021375t2/3ft
(b) h= 0 when t=8
0.025(4 0)3/2= 2560 s 42.7 min
349 Chapter 10
55. dv
dt =0.04v2,1
v2dv =0.04dt, 1
v=0.04t+C;v= 50 when t=0so1
50 =C,
1
v=0.04t1
50,v =50
2t+1 cm/s. But v=dx
dt so dx
dt =50
2t+1,x = 25 ln(2t+1)+C
1;x=0
when t=0soC
1=0,x = 25 ln(2t+ 1) cm.
56. dv
dt =0.02v, 1
vdv =0.02dt, 2v=0.02t+C;v= 9 when t=0so6=C,
2
v=0.02t+6,v =(30.01t)2cm/s. But v=dx
dt so dx
dt =(30.01t)2,
x=100
3(3 0.01t)3+C1;x= 0 when t=0soC
1= 900,x= 900 100
3(3 0.01t)3cm.
57. Differentiate to get dy
dx =sin x+ex2,y(0)=1.
58. Zh(y)dy =Zh(y(x))y0(x)dx; since h(y)dy
dx =g(x) it follows that Zh(y)dy =Zg(x)dx.
EXERCISE SET 10.2
1.
1234
1
2
3
4
x
y2.
1234
1
2
3
4
x
y3.
5
-1
2
x
y
y(0) = 1
y(0) = 2
y(0) = –1
4. dy
dx +y=1 =e
Rdx =ex,
d
dx[yex]=e
x
,
yex=ex+C, y =1+Cex
(a) 1=1+C, C =2,y =12e
x
(b) 1=1+C, C =0,y =1
(c) 2=1+C, C =1,y =1+e
x
5.
-2 2
-10
10
x
y
y(0) = –1
y(–1) = 0 y(1) = 1
6. dy
dx 2y=x, µ =e2Rdx =e2x,d
dx ye2x=xe2x,ye
2x=1
4
(2x+1)e
2x+C,
y=1
4(2x+1)+Ce2x
(a) 1=3/4+Ce2,C=1/4e
2
,y=1
4
(2x+1)+1
4e
2x2
(b) 1=1/4+C, C =5/4,y =1
4(2x+1)5
4e
2x
(c) 0=1/4+Ce2,C=e
2
/4,y=1
4
(2x+1)+1
4e
2x+2
Exercise Set 10.2 350
7. lim
x+y=1 8. lim
x+y=(+if y01/4
−∞,if y0<1/4
9. (a) IV, since the slope is positive for x>0 and negative for x<0.
(b) VI, since the slope is positive for y>0 and negative for y<0.
(c) V, since the slope is always positive.
(d) II, since the slope changes sign when crossing the lines y=±1.
(e) I, since the slope can be positive or negative in each quadrant but is not periodic.
(f) III, since the slope is periodic in both xand y.
11. (a) y0=1,
y
n+1 =yn+(x
n+y
n
)(0.2)=(x
n+6y
n
)/5 n
x
n
y
n
0
0
1
1
0.2
1.20
2345
0.4
1.48
0.6
1.86
0.8
2.35
1.0
2.98
(b) y0y=x, µ =ex,d
dx yex=xex,
yex=(x+1)e
x+C, 1=1+C,
C=2,y =(x+1)+2e
x
x
n
y(x
n
)
abs. error
perc. error
0
1
0
03
0.2
1.24
0.04
7 9 11 13
0.4
1.58
0.10
0.6
2.04
0.19
0.8
2.65
0.30
1.0
3.44
0.46
(c)
0.2 0.4 0.6 0.8 1
3
x
y
12. h=0.1,y
n+1 =(x
n+11y
n
)/10
n
xn
yn
0
0
1.00
1
0.1
1.10
2345
0.2
1.22
0.3
1.36
0.4
1.53
0.5
1.72
6
0.6
1.94
7
0.7
2.20
8
0.8
2.49
9
0.9
2.82
10
1.0
3.19
In Exercise 11, y(1) 2.98; in Exercise 12, y(1) 3.19; the true solution is y(1) 3.44; so the
absolute errors are approximately 0.46 and 0.25 respectively.
2413
9
x
y
13. y0=1,y
n+1 =yn+yn/2
n
xn
yn
0
0
1
1
0.5
1.50
2
1
34
2
5
2.11
1.5
2.84 3.68
2.5
4.64
6
3
5.72
7
3.5
6.91
8
4
8.23
351 Chapter 10
14. y0=1,y
n+1 =yn+(x
ny
2
n
)/4
n
x
n
y
n
0
0
1
1
0.25
0.75
2345
0.50
0.67
0.75
0.68
1.00
0.75
1.25
0.86
6
1.50
0.99
7
1.75
1.12
8
2.00
1.24
0.5 1 1.5 2
0.5
1
1.5
2
x
y
3
3
t
y
15. y0=1,y
n+1 =yn+1
2sin yn
n
tn
yn
0
0
1
1
0.5
1.42
2
1
34
2
1.92
1.5
2.39 2.73
1
1
t
y
16. y0=0,y
n+1 =yn+eyn/10
n
tn
yn
0
0
0
1
0.1
0.10
2345
0.2
0.19
0.3
0.27
0.4
0.35
0.5
0.42
6
0.6
0.49
7
0.7
0.55
8
0.8
0.60
9
0.9
0.66
10
1.0
0.71
17. h=1/5,y
0=1,y
n+1 =yn+1
5cos(2πn/5)
n
tn
yn
0
0
1.00
1
0.2
1.06
0.4
0.90
234
0.6
0.74
0.8
0.80
1.0
1.00
5
18. (a) By inspection, dy
dx =ex2and y(0)=0.
(b) yn+1 =yn+ex2
n/20 = yn+e(n/20)2/20 and y20 =0.7625. From a CAS, y(1)=0.7468.
19. (b) ydy =x dx, y2/2=x
2
/2+C
1,x
2+y
2=C;ify(0) = 1 then C=1soy(1/2) = 3/2.
20. (a) y0=1,y
n+1 =yn+(
y
n
/2)h
h=0.2: y
n+1 =yn+yn/10; y51.5489
h=0.1:y
n+1 =yn+yn/20; y10 1.5556
h=0.05 : yn+1 =yn+yn/40; y20 1.5590
(c) dy
y=1
2dx, 2y=x/2+C, 2=C,
y=x/4+1,y =(x/4+1)
2,
y(1)=25/16=1.5625
Exercise Set 10.3 352
EXERCISE SET 10.3
1. (a) dy
dt =ky2,y(0) = y0,k > 0(b) dy
dt =ky2,y(0) = y0,k > 0
3. (a) ds
dt =1
2s(b) d2s
dt2=2
ds
dt
4. (a) dv
dt =2v2(b) d2s
dt2=2ds
dt 2
5. (a) dy
dt =0.01y, y0=10,000 (b) y=10,000et/100
(c) T=1
kln 2 = 1
0.01 ln 2 69.31 hr (d) 45,000=10,000et/100,
t= 100 ln 45,000
10,000 150.41 hr
6. k=1
Tln 2 = 1
20 ln 2
(a) dy
dt = ((ln 2)/20)y, y(0)=1 (b) y(t)=e
t(ln 2)/20 =2
t/20
(c) y(120) = 26=64 (d) 1,000,000=2
t/20,
t=20
ln 106
ln 2 398.63 min
7. (a) dy
dt =ky, y(0)=5.0×107;3.83 = T=1
kln 2, so k=ln 2
3.83 0.1810
(b) y=5.0×107e0.181t
(c) y(30) = 5.0×107e0.1810(30) 219,297
(d) y(t)=0.1y
0=y
0
e
kt,kt =ln0.1,t=ln 0.1
0.1810 =12.72 days
8. (a) k=1
Tln 2 = 1
140 ln 2 0.0050, so dy
dt =0.0050y, y0= 10.
(b) y=10e
0.0050t
(c) 10weeks=70dayssoy=10e
0.35 7 mg.
(d) 0.3y0=y0ekt,t=ln 0.3
0.0050 243.2days
9. 100e0.02t= 5000, e0.02t= 50, t=1
0.02 ln 50 196 days
10. y=10,000ekt, but y=12,000 when t=10so10,000e10k=12,000, k=1
10 ln 1.2. y=20,000 when
2=e
kt,t=ln 2
k=10 ln 2
ln 1.238, in the year 2025.
11. y(t)=y
0
e
kt =10.0e
kt,3.5=10.0e
k(5),k=
1
5
ln 3.5
10.00.2100,T=1
k
ln 2 3.30 days
353 Chapter 10
12. dy
dt =y0ekt,0.6y0=y0e5k,k=
1
5
ln 0.60.10
(a) T=ln 2
k6.8yr
(b) y(t)y0e0.10t,y
y0e0.10t,soe
0.10t×100 percent will remain.
13. (a) k=ln 2
50.1386; y2e0.1386t(b) y(t)=5e
0.015t
(c) y=y0ekt,1=y
0
e
k
,100 = y0e10k. Divide: 100 = e9k,k=1
9
ln 100 0.5117,
yy0e0.5117t; also y(1)=1,so y0=e0.5117 0.5995,y 0.5995e0.5117t.
(d) k=ln 2
T0.1386,1=y(1) y0e0.1386,y
0e
0.1386 0.8706,y0.8706e0.1386t
14. (a) k=ln 2
T0.1386,y10e0.1386t(b) y=10e
0.015t
(c) 100 = y0ek,1=y
0
e
10k. Divide: e9k= 100,k=1
9
ln 100 0.5117;
y0=e10ke5.117 166.81,y= 166.81e0.5117t.
(d) k=ln 2
T0.1386,10 = y(1) y0e0.1386,y
010e0.1386 11.4866,y11.4866e0.1386t
16. (a) None; the half-life is independent of the initial amount.
(b) kT =ln2,soTis inversely proportional to k.
17. (a) T=ln 2
k; and ln 2 0.6931. If kis measured in percent, k0= 100k,
then T=ln 2
k69.31
k070
k0.
(b) 70 yr (c) 20 yr (d) 7%
18. Let y=y0ekt with y=y1when t=t1and y=3y
1when t=t1+T; then y0ekt1=y1(i) and
y0ek(t1+T)=3y
1(ii). Divide (ii) by (i) to get ekT =3,T=1
kln 3.
19. From (12), y(t)=y
0
e
0.000121t.If0.27 = y(t)
y0=e0.000121tthen t=ln 0.27
0.000121 10,820 yrs,
and if 0.30 = y(t)
y0then t=ln 0.30
0.000121 9950, or roughly between 9000 B.C. and 8000 B.C.
20. (a) 1
0
0 50000
(b) t= 1988 yields
y/y0=e0.000121(1988) 79%.
21. y02,L8; since the curve y=2·8
2+6e
kt passes through the point (2,4), 4 = 16
2+6e
2k,
6e
2k=2,k=1
2
ln 3 0.5493.
Exercise Set 10.3 354
22. y0400,L1000; since the curve y=400,000
400 + 600ekt passes through the point (200,600),
600 = 400,000
400 + 600e200k,600e200k=800
3,k=1
200 ln 2.25 0.00405.
23. (a) y0=5 (b) L=12 (c) k=1
(d) L/2=6= 60
5+7e
t,5+7e
t=10,t=ln(5/7) 0.3365
(e) dy
dt =1
12y(12 y),y(0)=5
24. (a) y0=1 (b) L= 1000 (c) k=0.9
(d) 750 = 1000
1 + 999e0.9t,3(1 + 999e0.9t)=4,t=1
0.9
ln(3 ·999) 8.8949
(e) dy
dt =0.9
1000y(1000 y),y(0)=1
25. See (13):
(a) L=10 (b) k=10
(c) dy
dt = 10(1 0.1y)y=25(y5)2is maximized when y=5.
26. dy
dt =50y11
50,000y; from (13), k=50,L=50,000.
(a) L=50,000 (b) k=50
(c) dy
dt is maximized when 0 = d
dy dy
dt =50y/500,y =25,000
27. Assume y(t) students have had the flu tdays after semester break. Then y(0)=20,y(5) = 35.
(a) dy
dt =ky(Ly)=ky(1000 y),y
0=20
(b) Part (a) has solution y=20000
20 + 980e1000kt =1000
1+49e
1000kt ;
35 = 1000
1+49e
5000k,k=0.000115,y1000
1+49e
0.115t.
(c) t
y(t)
0
20
1
22
2
25
3
28
4
31
5
35
6
39
7
44
8
49
9
54
10
61
11
67
12
75
13
83
14
93
(d)
36912
25
50
75
100
t
y
355 Chapter 10
28. (a) dp
dh =kh, p(0) = p0
(b) p0=1,sop=e
kh, but p=0.83 when h= 5000 thus e5000k=0.83,
k=ln 0.83
5000 0.0000373,pe
0.0000373hatm.
29. (a) dT
dt =k(T21),T(0)=95,dT
T21 =k dt, ln(T21) = kt +C1,
T=21+e
C
1e
kt =21+Cekt,95 = T(0)=21+C, C =74,T=21+74e
kt
(b) 85 = T(1)=21+74e
k
,k=ln 64
74 =ln 32
37,T=21+74e
tln(32/37) =21+7432
37t
,
T= 51 when 30
74 =32
37t
,t=ln(30/74)
ln(32/37) 6.22 min
30. dT
dt =k(70 T),T(0) = 40; ln(70 T)=kt +C, 70 T=ekteC,T= 40 when t=0,so
30 = eC,T=7030ekt;52=T(1)=7030ek,k=ln 70 52
30 =ln5
30.5,
T70 30e0.5t
31. Let Tdenote the body temperature of McHam’s body at time t, the number of hours elapsed after
10:06 P.M.; then dT
dt =k(T72),dT
T72 =kdt, ln(T72) = kt +C, T =72+e
C
e
kt,
77.9=72+e
C
,e
C=5.9,T=72+5.9e
kt,75.6=72+5.9e
k
,k=ln 3.6
5.90.4940,
T= 72+5.9e0.4940t. McHam’s body temperature was last 98.6when t=ln(26.6/5.9)
0.4940 ≈−3.05,
so around 3 hours and 3 minutes before 10:06; the death took place at approximately 7:03 P.M.,
while Moore was on stage.
32. If T0<T
athen dT
dt =k(TaT) where k>0. If T0>T
athen dT
dt =k(TTa) where k>0;
both cases yield T(t)=T
a+(T
0T
a
)e
kt with k>0.
33. k/m =0.25/1=0.25
(a) From (21), y=0.3 cos(t/2) (b) T=2π·2=4πs, f=1/T =1/(4π)Hz
(c)
6cio
-0.3
0.3
t
y(d) y= 0 at the equilibrium position,
so t/2=π/2,t=πs.
(e) t/2=πat the maximum position below
the equlibrium position, so t=2πs.
34. 64 = w=mg, m =2,k/m=0.25/2=1/8,pk/m =1/(22)
(a) From (21), y= cos(t/(22)) (b) T=2π
rm
k=2π(22)=4π
2s,
f=1/T =1/(4π2) Hz
Exercise Set 10.3 356
(c)
-1
1
t
y
2p6p10p
(d) y= 0 at the equilibrium position,
so t/(22) = π/2,t=π
2s
(e) t/(22) = π, t =2π
2s
35. l=0.05,k/m=g/l =9.8/0.05 = 196 s2
(a) From (21), y=0.12 cos 14t.(b) T=2π
pm/k =2π/14 = π/7s,
f=7Hz
(c)
-0.15
0.15
t
y
π
7
π
7
2
(d) 14t=π/2,t=π/28 s
(e) 14t=π, t =π/14 s
36. l=0.5,k/m=g/l =32/0.5=64,pk/m =8
(a) From (21), y=1.5 cos 8t.(b) T=2π
pm/k =2π/8=π/4s;
f=1/T =4Hz
(c)
36
-2
2
t
y(d) 8t=π/2,t=π/16 s
(e) 8t=π, t =π/8s
37. Assume y=y0cos rk
mt, so v=dy
dt =y0rk
msin rk
mt
(a) The maximum speed occurs when sin rk
mt=±1,rk
mt=+π/2,
so cos rk
mt=0,y=0.
(b) The minimum speed occurs when sin rk
mt=0,rk
mt=,socos
rk
mt=±1,y=±y
0
.
38. (a) T=2π
rm
k,k=4π
2
T
2m=4π
2
T
2
w
g
,sok=4π
2
g
w
9=4π
2
g
w+4
25 ,25w=9(w+4),
25w=9w+36,w =9
4,k =4π
2
g
w
9=4π
2
32
1
4=π2
32
(b) From part (a), w=1
4
357 Chapter 10
39. By Hooke’s Law, F(t)=kx(t), since the only force is the restoring force of the spring. Newton’s
Second Law gives F(t)=mx00(t), so mx00(t)+kx(t)=0,x(0) = x0,x
0(0)=0.
40. 0=v(0) = y0(0) = c2rk
m,soc
2=0; y
0=y(0) = c1,soy=y
0cos rk
mt.
41. (a) y=y0bt=y0etln b=y0ekt with k=lnb>0 since b>1.
(b) y=y0bt=y0etln b=y0ekt with k=ln b>0 since 0 <b<1.
(c) y= 4(2t)=4e
tln 2 (d) y= 4(0.5t)=4e
tln 0.5=4e
tln 2
42. If y=y0ekt and y=y1=y0ekt1then y1/y0=ekt1,k=ln(y1/y0)
t1;ify=y
0
e
kt and
y=y1=ekt1then y1/y0=ekt1,k=
ln(y1/y0)
t1.
CHAPTER 10 SUPPLEMENTARY EXERCISES
4. The differential equation in part (c) is not separable; the others are.
5. (a) linear (b) linear and separable (c) separable (d) neither
6. IF: µ=e2x2,d
dx hye2x2i=xe2x2,ye
2x
2=
1
4
e
2x
2+C, y =1
4+Ce2x2
Sep of var: dy
4y+1 =x dx, 1
4ln |4y+1|=x
2
2+C
1,4y+1 = ±e
4C
1e
2x
2=C
2e
2x
2;y=1
4+Ce2x2
7. The parabola ky(Ly) opens down and has its maximum midway between the y-intercepts, that
is, at the point y=1
2(0+L)=L/2, where dy
dt =k(L/2)2=kL2/4.
8. (a) If y=y0ekt,then y1=y0ekt1,y
2=y
0
e
kt2, divide: y2/y1=ek(t2t1),k=1
t
2t
1ln(y2/y1),
T=ln 2
k=(t2t1)ln2
ln(y2/y1).Ify=y
0
e
kt, then y1=y0ekt1,y
2=y
0
e
kt2,
y2/y1=ek(t2t1),k =1
t
2t
1ln(y2/y1),T=ln 2
k=(t2t1)ln2
ln(y2/y1).
In either case, Tis positive, so T=
(t2t1)ln2
ln(y2/y1).
(b) In part (a) assume t2=t1+ 1 and y2=1.25y1. Then T=ln 2
ln 1.25 3.1h.
9. dV
dt =kS; but V=4π
3r3,dV
dt =4πr2dr
dt ,S=4πr2,sodr/dt =k, r =kt +C, 4=C,
r=kt +4,3=k+4,k =1,r =4tm.
Chapter 10 Supplementary Exercises 358
10. Assume the tank contains y(t) oz of salt at time t. Then y0= 0 and for 0 <t<15,
dy
dt =5·10 y
100010 = (50 y/100) oz/min, with solution y= 5000 + Cet/100. But y(0) = 0 so
C=5000, y= 5000(1 et/100) for 0 t15, and y(15) = 5000(1 e0.15). For 15 <t<30,
dy
dt =0y
10005,y=C
1
e
t/200,C
1
e
0.075 =y(15) = 5000(1e0.15),C
1= 5000(e0.075 e0.075),
y= 5000(e0.075 e0.075)et/100,y(30) = 5000(e0.075 e0.075)e0.3556.13 oz.
11. (a) Assume the air contains y(t)ft
3of carbon monoxide at time t. Then y0= 0 and for
t>0, dy
dt =0.04(0.1) y
1200(0.1)=1/250 y/12000,d
dt hyet/12000i=1
250et/12000,
yet/12000 =48e
t/12000 +C, y(0)=0,C=48; y= 48(1 et/12000). Thus the percentage
of carbon monoxide is P=y
1200100 = 4(1 et/12000) percent.
(b) 0.012 = 4(1 et/12000),t=35.95 min
12. dy
y2+1 =dx, tan1y=x+C, π/4=C;y= tan(x+π/4)
13. 1
y5+1
ydy =dx
x,1
4y4+ln|y|=ln|x|+C;1
4=C, y4+ 4 ln(x/y)=1
14. dy
dx +2
xy=4x, µ =eR(2/x)dx =x2,d
dx yx2=4x
3
,yx
2=x
4+C, y =x2+Cx2,
2=y(1)=1+C, C =1,y=x
2+1/x2
15. dy
y2= 4 sec22x dx, 1
y= 2 tan 2x+C, 1 = 2 tan 2π
8+C= 2 tan π
4+C=2+C, C =3,
y=1
32 tan 2x
16. dy
y25y+6 =dx, dy
(y3)(y2) =dx, 1
y31
y2dy =dx, ln
y3
y2=x+C1,
y3
y2=Cex;y=ln2ifx=0,so C=ln 2 3
ln 2 2;y=32Cex
1cex=3ln26(2 ln 2 6)ex
ln 2 2(ln 2 3)ex
17. (a) µ=eRdx =ex,d
dx yex=xexsin 3x,
yex=Zxexsin 3xdx =3
10x3
50excos 3x+1
10x+2
25exsin 3x+C;
1=y(0) = 3
50 +C, C =53
50,y=
3
10x3
50cos 3x+1
10x+2
25sin 3x+53
50ex
(c)
-10 -2
-2
4
x
y
359 Chapter 10
19. (a) Let T1= 5730 40 = 5690,k
1=ln 2
T10.00012182; T2= 5730 + 40 = 5770,k
20.00012013.
With y/y0=0.92,0.93,t
1=1
k
1ln y
y0= 684.5,595.7; t2=1
k2ln(y/y0) = 694.1,604.1; in
1988 the shroud was at most 695 years old, which places its creation in or after the year 1293.
(b) If the true half-life is Twith decay rate kand solution y(t)=y
0
e
kt, and if the half-life is
taken to be T1=T(1+r/100) with decay rate k1and solution y1(t)=y
0
e
k
1
t
, then
k1=ln 2
T1=ln 2
T(1+r/100) =k
1+r/100 =100k
100 + r;kk1=k100k
100 + r=kr
100 + rand the
percentage error is given by 100
y1y
y= 100 e(kk1)t1= 100 ektr/(100+r)1percent.
20. (a) yn+1 =yn+0.1(1+5t
ny
n
),y
0=5
n
t
n
y
n
0
1
5.00
1
1.1
5.10
2345
1.2
5.24
1.3
5.42
1.4
5.62
1.5
5.86
6
1.6
6.13
7
1.7
6.41
8
1.8
6.72
9
1.9
7.05
10
2
7.39
(b) The true solution is y(t)=5t4+4e
1t
, so the percentage errors are given by
tn
yn
y(tn)
abs. error
rel. error (%)
1
5.00
5.00
0.00
0.00
1.1
5.10
5.12
0.02
0.38
1.2
5.24
5.27
0.03
0.66
1.3
5.42
5.46
0.05
0.87
1.4
5.62
5.68
0.06
1.00
1.5
5.86
5.93
0.06
1.08
1.6
6.13
6.20
0.07
1.12
1.7
6.41
6.49
0.07
1.13
1.8
6.72
6.80
0.08
1.11
1.9
7.05
7.13
0.08
1.07
2
7.39
7.47
0.08
1.03
21. (b) y=C1ex+C2ex
(c) 1=y(0) = C1+C2,1=y
0(0) = C1C2;C2=0,C
1=1,y =e
x
22. (a) 2ydy =dx, y2=x+C;ify(0) = 1 then C=1,y
2=x+1,y =x+1; ify(0) = 1 then
C=1,y
2=x+1,y =x+1.
-1 1
-1
1
x
y
-1 1
-1
1
x
y
-1 1
1
x
y
(b) dy
y2=2x dx, 1
y=x2+C, 1=C, y =1/(x
2+1)
23. (a) Use (15) in Section 10.3 with y0=19,L= 95: y(t)= 1805
19+76e
kt ,25 = y(1) = 1805
19+76e
k,
k0.3567; when 0.8L=y(t)= y
0
L
19+76e
kt ,19+76e
kt =5
4y0=95
4,t7.77 yr.
Chapter 10 Supplementary Exercises 360
(b) From (13), dy
dt =k1y
95y, y(0) = 19.
24. (a) y0=y(0) = c1,v
0=y
0
(0) = c2rk
m,c
2=
rm
k
v
0
,y=y
0cos rk
mt+v0rm
ksin rk
mt
1.1
-1.1
0 3.1
(b) l=0.5,k/m=g/l =9.8/0.5=19.6,
y=cos(19.6t)+0.25 1
19.6sin(19.6t)
(c) v=y0(t)=
19.6 sin 19.6t+0.25 cos 19.6t= 0 when tan 19.6t=0.25
19.6,so
sin 19.6t=±0.25
19.6625,cos 19.6t=19.6
19.6625,
|y(t)|=19.6
19.6625 +0.25
19.6
0.25
19.6625 =19.6625
19.6
1.0016 m is the maximum displacement.
25. y=y0cos rk
mt, T =2π
rm
k,y=y
0cos 2πt
T
(a) v=y0(t)=2π
Ty
0sin 2πt
Thas maximum magnitude 2π|y0|/T and occurs when
2πt/T =+π/2,y=y
0cos(+π/2)=0.
(b) a=h00(t)=4π
2
T
2y
0cos 2πt
Thas maximum magnitude 4π2|y0|/T 2and occurs when
2πt/T =, y =y0cos =±y0.
26. (a) In tyears the interest will be compounded nt times at an interest rate of r/n each time. The
value at the end of 1 interval is P+(r/n)P=P(1 + r/n), at the end of 2 intervals it is
P(1+r/n)+(r/n)P(1+r/n)=P(1+r/n)2, and continuing in this fashion the value at the
end of nt intervals is P(1+r/n)nt.
(b) Let x=r/n, then n=r/x and
lim
n+P(1+r/n)nt = lim
x0+P(1+x)rt/x = lim
x0+P[(1 + x)1/x]rt =Pe
rt.
(c) The rate of increase is dA/dt =rPert =rA.
27. (a) A= 1000e(0.08)(5) = 1000e0.4$1,491.82
(b) Pe
(0.08)(10) =10,000, Pe
0.8=10,000, P=10,000e0.8$4,493.29
(c) From (11) with k=r=0.08, T= (ln 2)/0.08 8.7 years.
361
CHAPTER 11
Infinite Series
EXERCISE SET 11.1
1. (a) 1
3n1(b) (1)n1
3n1(c) 2n1
2n(d) n2
π1/(n+1)
2. (a) (r)n1;(r)
n(b) (1)n+1rn;(1)nrn+1
3. (a) 2,0,2,0(b) 1,1,1,1(c) 2(1+(1)n); 2 + 2 cos
4. (a) (2n)! (b) (2n1)!
5. 1/3, 2/4, 3/5, 4/6, 5/7,...; lim
n+
n
n+2 = 1, converges
6. 1/3, 4/5, 9/7, 16/9, 25/11,...; lim
n+
n2
2n+1 =+, diverges
7. 2,2,2,2,2,...; lim
n+2 = 2, converges
8. ln 1, ln 1
2,ln1
3
,ln1
4
,ln1
5
,...; lim
n+ln(1/n)=−∞, diverges
9. ln 1
1,ln 2
2,ln 3
3,ln 4
4,ln 5
5,...;
lim
n+
ln n
n= lim
n+
1
n=0apply L’Hˆopital’s Rule to ln x
x, converges
10. sin π, 2 sin(π/2), 3 sin(π/3), 4 sin(π/4), 5 sin(π/5),...;
lim
n+nsin(π/n) = lim
n+
sin(π/n)
1/n = lim
n+
(π/n2) cos(π/n)
1/n2=π, converges
11. 0,2,0,2,0,...; diverges
12. 1, 1/4, 1/9, 1/16, 1/25,...; lim
n+
(1)n+1
n2= 0, converges
13. 1, 16/9, 54/28, 128/65, 250/126,...; diverges because odd-numbered terms approach
2, even-numbered terms approach 2.
14. 1/2, 2/4, 3/8, 4/16, 5/32,...; lim
n+
n
2n= lim
n+
1
2nln 2 = 0, converges
15. 6/2, 12/8, 20/18, 30/32, 42/50,...; lim
n+
1
2(1+1/n)(1+2/n)=1/2, converges
16. π/4, π2/42,π3/43,π4/44,π5/45,...; lim
n+(π/4)n= 0, converges
17. cos(3), cos(3/2), cos(1), cos(3/4), cos(3/5),...; lim
n+cos(3/n) = 1, converges
18. 0, 1, 0, 1, 0,...; diverges
Exercise Set 11.1 362
19. e1,4e
2
,9e
3
,16e
4
,25e
5
,...; lim
x+x2ex= lim
x+
x2
ex= 0, so lim
n+n2en= 0, converges
20. 1, 10 2, 18 3, 28 4, 40 5,...;
lim
n+(pn2+3nn) = lim
n+
3n
n2+3n+n= lim
n+
3
p1+3/n +1 =3
2, converges
21. 2, (5/3)2,(6/4)3,(7/5)4,(8/6)5,...; let y=x+3
x+1x
, converges because
lim
x+ln y= lim
x+
ln x+3
x+1
1/x = lim
x+
2x2
(x+ 1)(x+3) = 2, so lim
n+n+3
n+1n
=e
2
22. 1, 0, (1/3)3,(2/4)4,(3/5)5,...; let y=(12/x)x, converges because
lim
x+ln y= lim
x+
ln(1 2/x)
1/x = lim
x+2
12/x =2, lim
n+(1 2/n)n= lim
x+y=e2
23. 2n1
2n+
n=1
; lim
n+
2n1
2n= 1, converges
24. n1
n2+
n=1
; lim
n+
n1
n2= 0, converges 25. 1
3n+
n=1
; lim
n+
1
3n= 0, converges
26. {(1)nn}+
n=1; diverges because odd-numbered terms tend toward −∞,
even-numbered terms tend toward +.
27. 1
n1
n+1+
n=1
; lim
n+1
n1
n+1= 0, converges
28. 3/2n1+
n=1; lim
n+3/2n1= 0, converges
29. n+1
n+2
+
n=1; converges because
lim
n+(n+1
n+ 2) = lim
n+
(n+1)(n+2)
n+1+
n+2 = lim
n+1
n+1+
n+2 =0
30. (1)n+1/3n+4+
n=1; lim
n+(1)n+1/3n+4 = 0, converges
32. lim
n+
n
n= 1, so lim
n+
n
n3=1
3=1
33. (a) 1,2,1,4,1,6(b) an=(n, n odd
1/2n,neven (c) an=(1/n, n odd
1/(n+1),neven
(d) In part (a) the sequence diverges, since the even terms diverge to +and the odd terms
equal 1; in part (b) the sequence diverges, since the odd terms diverge to +and the even
terms tend to zero; in part (c) lim
n+an=0.
34. The even terms are zero, so the odd terms must converge to zero, and this is true if and only if
lim
n+bn=0,or1<b<1.
363 Chapter 11
35. lim
n+yn+1 = lim
n+
1
2(yn+p/yn), L=1
2(L+p/L), L2=p,L=±p;
L=p(reject, because the terms in the sequence are positive) or L=p; lim
n+yn=p.
36. (a) an+1 =6+a
n
(b) lim
n+an+1 = lim
n+6+a
n
,L=
6+L,L
2L6=0,(L3)(L+2)=0,
L=2 (reject, because the terms in the sequence are positive) or L= 3; lim
n+an=3.
37. (a) 1, 1
4+2
4,1
9+2
9+3
9,1
16 +2
16 +3
16 +4
16 =1,3
4
,2
3
,5
8
(c) an=1
n2(1+2+···+n)= 1
n
2
1
2
n(n+1)= 1
2
n+1
n,lim
n+an=1/2
38. (a) 1, 1
8+4
8,1
27 +4
27 +9
27,1
64 +4
64 +9
64 +16
64 =1,5
8
,14
27,15
32
(c) an=1
n3(12+2
2+···+n
2)= 1
n
3
1
6
n(n+ 1)(2n+1)= 1
6
(n+ 1)(2n+1)
n
2,
lim
n+an= lim
n+
1
6(1+1/n)(2+1/n)=1/3
39. Let an=0,b
n=sin2n
n,c
n=1
n; then anbncn, lim
n+an= lim
n+cn= 0, so lim
n+bn=0.
40. Let an=0,b
n=1+n
2nn
,c
n=3
4n
; then (for n2), anbnn/2+n
2nn
=c
n
,
lim
n+an= lim
n+cn= 0, so lim
n+bn=0.
41. (a) a1=(0.5)2,a
2=a
2
1=(0.5)4,...,a
n=(0.5)2n
(c) lim
n+an= lim
n+e2nln(0.5) = 0, since ln(0.5) <0.
(d) Replace 0.5 in part (a) with a0; then the sequence converges for 1a01, because if
a0=±1, then an= 1 for n1; if a0= 0 then an= 0 for n1; and if 0 <|a0|<1 then
a1=a2
0>0 and lim
n+an= lim
n+e2n1ln a1= 0 since 0 <a
1<1.
42. f(0.2)=0.4,f(0.4)=0.8,f(0.8)=0.6,f(0.6)=0.2 and then the cycle repeats, so the sequence
does not converge.
43. (a) 30
0
05
(b) Let y=(2
x+3
x
)
1/x, lim
x+ln y= lim
x+
ln(2x+3
x
)
x= lim
x+
2xln2+3
xln 3
2x+3
x
= lim
x+
(2/3)xln2+ln3
(2/3)x+1 = ln 3, so lim
n+(2n+3
n
)
1/n =eln 3 =3
Exercise Set 11.2 364
44. Let f(x)=1/(1+x), 0 x1. Take ∆xk=1/n and x
k=k/n then
an=
n
X
k=1
1
1+(k/n)(1/n)=
n
X
k=1
1
1+x
k
x
kso lim
n+an=Z1
0
1
1+xdx = ln(1 + x)1
0
=ln2
45. an=1
n1Zn
1
1
xdx =ln n
n1, lim
n+an= lim
n+
ln n
n1= lim
n+
1
n=0,
apply L’Hˆopital’s Rule to ln n
n1, converges
46. (a) If n1, then an+2 =an+1 +an,soa
n+2
an+1 =1+ a
n
a
n+1 .
(c) With L= lim
n+(an+2/an+1) = lim
n+(an+1/an), L=1+1/L,L2L1=0,
L=(1±
5)/2, so L=(1+
5)/2 because the limit cannot be negative.
47.
1
n0=1
n<if n>1/
(a) 1/ =1/0.5=2,N=3 (b) 1/ =1/0.1 = 10, N=11
(c) 1/ =1/0.001 = 1000, N= 1001
48.
n
n+11
=1
n+1 <if n+1>1/,n>1/ 1
(a) 1/ 1=1/0.25 1=3,N=4 (b) 1/ 1=1/0.11=9,N=10
(c) 1/ 1=1/0.001 1 = 999, N= 1000
49. (a)
1
n0=1
n<if n>1/, choose any N>1/.
(b)
n
n+11
=1
n+1 <if n>1/ 1, choose any N>1/ 1.
50. If |r|<1 then lim
n+rn=0;ifr>1 then lim
n+rn=+,ifr<1 then rnoscillates between
positive and negative values that grow in magnitude so lim
n+rndoes not exist for |r|>1; if r=1
then lim
n+1n=1;ifr=1 then (1)noscillates between 1 and 1 so lim
n+(1)ndoes not exist.
EXERCISE SET 11.2
1. an+1 an=1
n+11
n=1
n(n+1) <0 for n1, so strictly decreasing.
2. an+1 an=(11
n+1)(1 1
n)= 1
n(n+1) >0 for n1, so strictly increasing.
3. an+1 an=n+1
2n+3n
2n+1 =1
(2n+ 1)(2n+3) >0 for n1, so strictly increasing.
365 Chapter 11
4. an+1 an=n+1
4n+3n
4n1=1
(4n1)(4n+3) <0 for n1, so strictly decreasing.
5. an+1 an=(n+12
n+1)(n2n)=12
n<0 for n1, so strictly decreasing.
6. an+1 an=[(n+1)(n+1)
2](nn
2)=2n<0 for n1, so strictly decreasing.
7. an+1
an
=(n+1)/(2n+3)
n/(2n+1) =(n+ 1)(2n+1)
n(2n+3) =2n
2+3n+1
2n
2+3n>1 for n1, so strictly increasing.
8. an+1
an
=2n+1
1+2
n+1 ·1+2
n
2
n=2+2
n+1
1+2
n+1 =1+ 1
1+2
n+1 >1 for n1, so strictly increasing.
9. an+1
an
=(n+1)e
(n+1)
nen=(1+1/n)e1<1 for n1, so strictly decreasing.
10. an+1
an
=10n+1
(2n+ 2)! ·(2n)!
10n=10
(2n+ 2)(2n+1) <1 for n1, so strictly decreasing.
11. an+1
an
=(n+1)
n+1
(n+ 1)! ·n!
nn=(n+1)
n
n
n=(1+1/n)n>1 for n1, so strictly increasing.
12. an+1
an
=5n+1
2(n+1)2·2n2
5n=5
22n+1 <1 for n1, so strictly decreasing.
13. f(x)=x/(2x+ 1), f0(x)=1/(2x+1)
2>0 for x1, so strictly increasing.
14. f(x)=31/x,f0(x)=1/x2>0 for x1, so strictly increasing.
15. f(x)=1/(x+lnx), f0(x)=1+1/x
(x+lnx)
2<0 for x1, so strictly decreasing.
16. f(x)=xe2x,f0(x)=(12x)e
2x<0 for x1, so strictly decreasing.
17. f(x)=ln(x+2)
x+2 ,f0(x)=1ln(x+2)
(x+2)
2<0 for x1, so strictly decreasing.
18. f(x) = tan1x,f0(x)=1/(1+x2)>0 for x1, so strictly increasing.
19. f(x)=2x
27x,f
0(x)=4x7>0 for x2, so eventually strictly increasing.
20. f(x)=x
34x
2
,f
0(x)=3x
28x=x(3x8) >0 for x3, so eventually strictly increasing.
21. f(x)= x
x
2+10,f0(x)= 10 x2
(x2+ 10)2<0 for x4, so eventually strictly decreasing.
22. f(x)=x+17
x,f0(x)=x
217
x2>0 for x5, so eventually strictly increasing.
23. an+1
an
=(n+ 1)!
3n+1 ·3n
n!=n+1
3>1 for n3, so eventually strictly increasing.
24. f(x)=x
5
e
x
,f
0(x)=x
4
(5 x)ex<0 for x6, so eventually strictly decreasing.
Exercise Set 11.2 366
25. (a) Yes: a monotone sequence is increasing or decreasing; if it is increasing, then it is increas-
ing and bounded above, so by Theorem 11.2.3 it converges; if decreasing, then use Theo-
rem 11.2.4. The limit lies in the interval [1,2].
(b) Such a sequence may converge, in which case, by the argument in Part (a), its limit is 2.
But convergence may not happen: for example, the sequence {−n}+
n=1 diverges.
26. (a) an+1 =|x|n+1
(n+ 1)! =|x|
n+1|x|
n
n!=|x|
n+1a
n
(b) an+1/an=|x|/(n+1)<1ifn>|x|−1.
(c) From Part (b) the sequence is eventually decreasing, and it is bounded below by 0, so by
Theorem 11.2.4 it converges.
(d) If lim
n+an=Lthen from Part (a), L=|x|
lim
n+(n+1)L=0.
(e) lim
n+|x|n
n!= lim
n+an=0
27. (a) 2, q2+
2, r2+q2+
2
(b) a1=2<2soa
2=
2+a
1<
2+2=2,a
3=
2+a
2<
2 + 2 = 2, and so on
indefinitely.
(c) a2
n+1 a2
n=(2+a
n
)a
2
n=2+a
na
2
n=(2a
n
)(1 + an)
(d) an>0 and, from Part (b), an<2so2a
n>0 and 1 + an>0 thus, from Part (c),
a2
n+1 a2
n>0, an+1 an>0, an+1 >a
n
;{a
n
}is a strictly increasing sequence.
(e) The sequence is increasing and has 2 as an upper bound so it must converge to a limit L,
lim
n+an+1 = lim
n+2+a
n
,L=
2+L,L
2L2=0,(L2)(L+1)=0
thus lim
n+an=2.
28. (a) If f(x)=1
2(x+3/x), then f0(x)=(x
23)/(2x2) and f0(x)=0forx=
3; the minimum
value of f(x) for x>0isf(
3) = 3. Thus f(x)3 for x>0 and hence an3 for
n2.
(b) an+1 an=(3a
2
n
)/(2an)0 for n2 since an3 for n2; {an}is eventually
decreasing.
(c) 3 is a lower bound for anso {an}converges; lim
n+an+1 = lim
n+
1
2(an+3/an),
L=1
2(L+3/L), L23=0,L=
3.
29. (a) The altitudes of the rectangles are ln kfor k=2ton, and their bases all have length 1 so
the sum of their areas is ln 2 + ln 3 + ···+lnn= ln(2 ·3···n)=lnn!. The area under the
curve y=lnxfor xin the interval [1,n]isZn
1ln xdx, and Zn+1
1ln xdx is the area for xin
the interval [1,n+ 1] so, from the figure, Zn
1ln xdx< ln n!<Zn+1
1ln xdx.
(b) Zn
1ln xdx=(xln xx)n
1
=nln nn+ 1 and Zn+1
1ln xdx=(n+ 1) ln(n+1)nso from
Part (a), nln nn+1<ln n!<(n+ 1) ln(n+1)n,e
nln nn+1 <n!<e
(n+1) ln(n+1)n,
enln ne1n<n!<e
(n+1) ln(n+1)en,nn
en1<n!<(n+1)
n+1
en
367 Chapter 11
(c) From part (b), nn
en11/n
<n
n!<(n+1)
n+1
en1/n
,
n
e11/n <n
n!<(n+1)
1+1/n
e,1
e11/n <
n
n!
n<(1+1/n)(n+1)
1/n
e,
but 1
e11/n 1
eand (1+1/n)(n+1)
1/n
e1
eas n+(why?), so lim
n+
n
n!
n=1
e.
30. n!>nn
en1,n
n!>n
e11/n , lim
n+
n
e11/n =+so lim
n+
n
n!=+.
EXERCISE SET 11.3
1. (a) s1=2,s
2=12/5, s3=62
25,s4=312
125 sn=22(1/5)n
11/5=5
25
2(1/5)n,
lim
n+sn=5
2, converges
(b) s1=1
4,s2=3
4,s3=7
4,s4=15
4sn=(1/4) (1/4)2n
12=1
4+1
4(2n),
lim
n+sn=+, diverges
(c) 1
(k+ 1)(k+2) =1
k+11
k+2,s
1=1
6,s
2=1
4,s
3=3
10,s4=1
3;
sn=1
21
n+2, lim
n+sn=1
2, converges
2. (a) s1=1/4,s
2=5/16,s
3=21/64,s
4=85/256
sn=1
4 1+1
4+···+1
4n1!=1
4
1(1/4)n
11/4=1
311
4n
; lim
n+sn=1
3
(b) s1=1,s
2=5,s
3=21,s
4= 85; sn=4n1
3, diverges
(c) s1=1/20,s
2=1/12,s
3=3/28,s
4=1/8;
sn=
n
X
k=1 1
k+31
k+4=1
41
n+4, lim
n+sn=1/4
3. geometric, a=1,r=3/4, sum = 1
1(3/4) =4/7
4. geometric, a=(2/3)3,r=2/3, sum = (2/3)3
12/3=8/9
5. geometric, a=7,r=1/6, sum = 7
1+1/6=6
6. geometric, r=3/2, diverges
7. sn=
n
X
k=1 1
k+21
k+3=1
31
n+3, lim
n+sn=1/3
Exercise Set 11.3 368
8. sn=
n
X
k=1 1
2k1
2k+1 =1
21
2n+1 , lim
n+sn=1/2
9. sn=
n
X
k=1 1/3
3k11/3
3k+2=1
61/3
3n+2, lim
n+sn=1/6
10. sn=
n+1
X
k=2 1/2
k11/2
k+1=1
2"n+1
X
k=2
1
k1
n+1
X
k=2
1
k+1#
=1
2"n+1
X
k=2
1
k1
n+3
X
k=4
1
k1#=1
21+1
21
n+11
n+2; lim
n+sn=3
4
11.
X
k=3
1
k2=
X
k=1
1/k, the harmonic series, so the series diverges.
12. geometric, a=(e/π)4,r=e/π < 1, sum = (e/π)4
1e/π =e4
π3(πe)
13.
X
k=1
4k+2
7k1=
X
k=1
64 4
7k1
; geometric, a= 64, r=4/7, sum = 64
14/7= 448/3
14. geometric, a= 125,r = 125/7, diverges
15. 0.4444 ···=0.4+0.04+0.004 + ···=0.4
10.1=4/9
16. 0.9999 ···=0.9+0.09+0.009 + ···=0.9
10.1=1
17. 5.373737 ···=5+0.37+0.0037 + 0.000037 + ···=5+ 0.37
10.01 =5+37/99 = 532/99
18. 0.159159159 ···=0.159+0.000159 + 0.000000159 + ···=0.159
10.001 = 159/999=53/333
19. 0.782178217821 ···=0.7821 + 0.00007821 + 0.000000007821 + ···=0.7821
10.0001 =7821
9999 =869
1111
20. 0.451141414 ···=0.451+0.00014 + 0.0000014 + 0.000000014 + ···=0.451 + 0.00014
10.01 =44663
99000
22. (a) geometric; 18/5 (b) geometric; diverges (c)
X
k=1
1
21
2k11
2k+1=1/2
23. d=10+2·3
4·10+2·3
4·3
4·10+2·3
4·3
4·3
4·10+···
=10+203
4+203
42
+203
43
+···=10+20(3/4)
13/4= 10 + 60 = 70 meters
369 Chapter 11
24. volume = 13+1
23
+1
43
+···+1
2
n3
+···=1+1
8+1
8
2
+···+1
8n
+···
=1
1(1/8) =8/7
25. (a) sn=ln1
2+ln2
3+ln3
4+···+ln n
n+1 =ln1
2·2
3·3
4··· n
n+1=ln 1
n+1 =ln(n+1),
lim
n+sn=−∞, series diverges.
(b) ln(1 1/k2)=lnk
21
k
2=ln(k1)(k+1)
k
2=lnk1
k+lnk+1
k=lnk1
kln k
k+1,
s
n=
n+1
X
k=2 ln k1
kln k
k+1
=ln 1
2ln 2
3+ln 2
3ln 3
4+ln 3
4ln 4
5+···+ln n
n+1ln n+1
n+2
=ln1
2ln n+1
n+2,lim
n+sn=ln1
2=ln 2
26. (a)
X
k=0
(1)kxk=1x+x
2x
3+···=1
1(x)=1
1+xif |−x|<1, |x|<1, 1<x<1.
(b)
X
k=0
(x3)k=1+(x3)+(x3)2+···=1
1(x3) =1
4xif |x3|<1, 2 <x<4.
(c)
X
k=0
(1)kx2k=1x
2+x
4x
6+···=1
1(x
2)=1
1+x
2if |−x2|<1, |x|<1, 1<x<1.
27. (a) Geometric series, a=x,r=x2. Converges for |−x
2|<1, |x|<1;
S=x
1(x2)=x
1+x
2.
(b) Geometric series, a=1/x2,r=2/x. Converges for |2/x|<1, |x|>2;
S=1/x2
12/x =1
x22x.
(c) Geometric series, a=ex,r=ex. Converges for |ex|<1, ex<1, ex>1, x>0;
S=ex
1ex=1
ex1.
28. k+1
k
k
2+k=
k+1
k
k
k+1 =1
k1
k+1,
s
n=
n
X
k=1 1
k1
k+1=1
11
2+1
21
3+1
31
4
+···+1
n1
n+1=11
n+1; lim
n+sn=1
29. sn=(11/3)+(1/21/4)+(1/31/5)+(1/41/6)+···+[1/n 1/(n+ 2)]
=(1+1/2+1/3+···+1/n)(1/3+1/4+1/5+···+1/(n+ 2))
=3/21/(n+1)1/(n+2),lim
n+sn=3/2
Exercise Set 11.3 370
30. sn=
n
X
k=1
1
k(k+2) =
n
X
k=1 1/2
k1/2
k+2=1
2"n
X
k=1
1
k
n
X
k=1
1
k+2#
=1
2"n
X
k=1
1
k
n+2
X
k=3
1
k#=1
21+1
21
n+11
n+2; lim
n+sn=3
4
31. sn=
n
X
k=1
1
(2k1)(2k+1) =
n
X
k=1 1/2
2k11/2
2k+1=1
2"n
X
k=1
1
2k1
n
X
k=1
1
2k+1#
=1
2"n
X
k=1
1
2k1
n+1
X
k=2
1
2k1#=1
211
2n+1; lim
n+sn=1
2
32. Geometric series, a= sin x,r=1
2sin x. Converges for |−1
2sin x|<1, |sin x|<2,
so converges for all values of x.S=sin x
1+1
2sin x
=2 sin x
2 + sin x.
33. a2=1
2a1+1
2,a3=1
2a2+1
2=1
22a1+1
22+1
2,a4=1
2a3+1
2=1
23a1+1
23+1
22+1
2,
a5=1
2a4+1
2=1
24a1+1
24+1
23+1
22+1
2,...,a
n=1
2
n1a
1+1
2
n1+1
2
n2+···+1
2,
lim
n+an= lim
n+
a1
2n1+
X
n=1 1
2n
=0+ 1/2
11/2=1
34. 0.a1a2···a
n9999 ···=0.a1a2···a
n+0.9 (10n)+0.09 (10n)+···
=0.a1a2···a
n+0.9 (10n)
10.1=0.a1a2···a
n+10
n
=0.a1a2···(a
n+1)=0.a1a2···(a
n+ 1) 0000 ···
35. The series converges to 1/(1 x) only if 1<x<1.
36. P0P1=asin θ,
P1P2=asin θcos θ,
P2P3=asin θcos2θ,
P3P4=asin θcos3θ,...
(see figure)
Each sum is a geometric series.
a
P
uu
u
a sin u cos3 u
a sin u cos2 u
a sin u cos u
a sin u
P1
P0P2P4
P3
(a) P0P1+P1P2+P2P3+···=asin θ+asin θcos θ+asin θcos2θ+···=asin θ
1cos θ
(b) P0P1+P2P3+P4P5+···=asin θ+asin θcos2θ+asin θcos4θ+···
=asin θ
1cos2θ=asin θ
sin2θ=acsc θ
(c) P1P2+P3P4+P5P6+···=asin θcos θ+asin θcos3θ+···
=asin θcos θ
1cos2θ=asin θcos θ
sin2θ=acot θ
371 Chapter 11
37. By inspection, θ
2θ
4+θ
8θ
16 +···=θ/2
1(1/2) =θ/3
38. A1+A2+A3+···=1+1/2+1/4+···=1
1(1/2) =2
39. (b) 2kA
3k2k+2kB
3k+1 2k+1 =2k3k+1 2k+1A+2
k3
k2
k
B
(3k2k)(3
k+1 2k+1)
=3·6k2·22kA+6k22kB
(3k2k)(3
k+1 2k+1)=(3A+B)6k(2A+B)22k
(3k2k)(3
k+1 2k+1)
so 3A+B= 1 and 2A+B=0,A= 1 and B=2.
(c) sn=
n
X
k=1 2k
3k2k2k+1
3k+1 2k+1 =
n
X
k=1
(akak+1) where ak=2k
3k2k.
But sn=(a
1a
2
)+(a
2a
3)+(a
3a
4)+···+(a
na
n+1) which is a telescoping sum,
sn=a1an+1 =22
n+1
3n+1 2n+1 , lim
n+sn= lim
n+2(2/3)n+1
1(2/3)n+1 =2.
EXERCISE SET 11.4
1. (a)
X
k=1
1
2k=1/2
11/2=1;
X
k=1
1
4k=1/4
11/4=1/3;
X
k=1 1
2k+1
4k=1+1/3=4/3
(b)
X
k=1
1
5k=1/5
11/5=1/4;
X
k=1
1
k(k+1) = 1 (Example 5, Section 11.3);
X
k=1 1
5k1
k(k+1)=1/41=3/4
2. (a)
X
k=2
1
k21=3/4 (Exercise 10, Section 11.3);
X
k=2
7
10k1=7/10
11/10 =7/9;
so
X
k=2 1
k217
10k1=3/47/9=1/36
(b) with a=9/7,r =3/7, geometric,
X
k=1
7k3k+1 =9/7
1(3/7) =9/4;
with a=4/5,r =2/5, geometric,
X
k=1
2k+1
5k=4/5
1(2/5) =4/3;
X
k=1 7k3k+1 2k+1
5k=9/44/3=11/12
3. (a) p=3, converges (b) p=1/2, diverges (c) p=1, diverges (d) p=2/3, diverges
4. (a) p=4/3, converges (b) p=1/4, diverges (c) p=5/3, converges (d) p=π, converges
Exercise Set 11.4 372
5. (a) lim
k+
k2+k+3
2k
2+1 =1
2; the series diverges. (b) lim
k+1+1
kk
=e; the series diverges.
(c) lim
k+cos does not exist;
the series diverges.
(d) lim
k+
1
k!= 0; no information
6. (a) lim
k+
k
ek= 0; no information (b) lim
k+ln k=+; the series diverges.
(c) lim
k+
1
k= 0; no information (d) lim
k+
k
k+3 = 1; the series diverges.
7. (a) Z+
1
1
5x+2 = lim
`+
1
5ln(5x+2)
`
1
=+, the series diverges by the Integral Test.
(b) Z+
1
1
1+9x
2dx = lim
`+
1
3tan13x`
1
=1
3π/2tan13,
the series converges by the Integral Test.
8. (a) Z+
1
x
1+x
2dx = lim
`+
1
2ln(1 + x2)`
1
=+, the series diverges by the Integral Test.
(b) Z+
1(4+2x)
3/2dx = lim
`+1/4+2x
`
1
=1/
6,
the series converges by the Integral Test.
9.
X
k=1
1
k+6 =
X
k=7
1
k, diverges because the harmonic series diverges.
10.
X
k=1
3
5k=
X
k=1
3
51
k, diverges because the harmonic series diverges.
11.
X
k=1
1
k+5 =
X
k=6
1
k, diverges because the p-series with p=1/21 diverges.
12. lim
k+
1
e1/k = 1, the series diverges because lim
k+uk=16=0.
13. Z+
1(2x1)1/3dx = lim
`+
3
4(2x1)2/3`
1
=+, the series diverges by the Integral Test.
14. ln x
xis decreasing for xe, and Z+
3
ln x
x= lim
`+
1
2(ln x)2`
3
=+,
so the series diverges by the Integral Test.
15. lim
k+
k
ln(k+1) = lim
k+
1
1/(k+1) =+, the series diverges because lim
k+uk6=0.
16. Z+
1xex2dx = lim
`+1
2ex2`
1
=e1/2, the series converges by the Integral Test.
373 Chapter 11
17. lim
k+(1+1/k)k=1/e 6= 0, the series diverges.
18. lim
k+
k2+1
k
2+3 =16= 0, the series diverges.
19. Z+
1
tan1x
1+x
2dx = lim
`+
1
2tan1x2`
1
=3π
2
/32, the series converges by the Integral Test, since
d
dx
tan1x
1+x
2=12xtan1x
1+x
2<0 for x1.
20. Z+
1
1
x2+1dx = lim
`+sinh1x`
1
=+, the series diverges by the Integral Test.
21. lim
k+k2sin2(1/k)=16= 0, the series diverges.
22. Z+
1x2ex3dx = lim
`+1
3ex3`
1
=e1/3,
the series converges by the Integral Test (x2ex3is decreasing for x1).
23. 7
X
k=5
k1.01,p-series with p>1, converges
24. Z+
1sech2xdx= lim
`+tanh x`
1
=1tanh(1), the series converges by the Integral Test.
25. 1
x(ln x)pis decreasing for xep, so use the Integral Test with Z+
ep
dx
x(ln x)pto get
lim
`+ln(ln x)`
ep
=+if p= 1, lim
`+
(ln x)1p
1p`
ep
=
+if p<1
1
(1)ppp(p1) if p>1
Thus the series converges for p>1.
26. Set g(x)=x(ln x)[ln(ln x)]p,g
0(x)=(1+lnx) ln(ln x)+p, so for fixed pthere exists A>0 such
that g0(x)>0,1/g(x) is decreasing for x>A; use the Integral Test with Z+
A
dx
x(ln x)[ln(ln x)]p
to get
lim
`+ln[ln(ln x)]`
A
=+if p= 1, lim
`+
[ln(ln x)]1p
1p`
A
=
+if p<1,
1
(p1)[ln(ln A)]p1if p>1
Thus the series converges for p>1.
27. (a) 3
X
k=1
1
k2
X
k=1
1
k4=π2/2π4/90 (b)
X
k=1
1
k211
22=π2/65/4
(c)
X
k=2
1
(k1)4=
X
k=1
1
k4=π4/90
Exercise Set 11.4 374
28. (a) Suppose Σ(uk+vk) converges; then so does Σ[(uk+vk)uk], but Σ[(uk+vk)uk]=Σv
k
,
so Σvkconverges which contradicts the assumption that Σvkdiverges. Suppose Σ(ukvk)
converges; then so does Σ[uk(ukvk)]=Σv
kwhich leads to the same contradiction as
before.
(b) Let uk=2/k and vk=1/k; then both Σ(uk+vk) and Σ(ukvk) diverge; let uk=1/k and
vk=1/k then Σ(uk+vk) converges; let uk=vk=1/k then Σ(ukvk) converges.
29. (a) diverges because
X
k=1
(2/3)k1converges and
X
k=1
1/k diverges.
(b) diverges because
X
k=1
1/(3k+ 2) diverges and
X
k=1
1/k3/2converges.
(c) converges because both
X
k=2
1
k(ln k)2(Exercise 25) and
X
k=2
1/k2converge.
30. (a) If S=
X
k=1
ukand sn=
n
X
k=1
uk, then Ssn=
X
k=n+1
uk. Interpret uk,k=n+1,n+2,...,as
the areas of inscribed or circumscribed rectangles with height ukand base of length one for
the curve y=f(x) to obtain the result.
(b) Add sn=
n
X
k=1
ukto each term in the conclusion of part (a) to get the desired result:
sn+Z+
n+1 f(x)dx <
+
X
k=1
uk<s
n+Z+
n
f(x)dx
31. (a) In Exercise 30 above let f(x)= 1
x
2. Then Z+
n
f(x)dx =1
x+
n
=1
n;
use this result and the same result with n+ 1 replacing nto obtain the desired result.
(b) s3=1+1/4+1/9=49/36; 58/36 = s3+1
4<1
6π2<s
3+1
3=61/36
(d) 1/11 <1
6π2s10 <1/10
32. Apply Exercise 30 with f(x)= 1
(2x+1)
2,Z+
n
f(x)dx =1
2(2n+1):
(a) 1
46 <
X
k=1
1
(2k+1)
2s
10 <1
42
(b) π/2tan1(11) <
X
k=1
1
k2+1s
10 /2tan1(10)
(c) 12e11 <
X
k=1
k
ek<11e10
33. (a) Z+
n
1
x3dx =1
2n2; use Exercise 30(b)
(b) 1
2n21
2(n+1)
2<0.01 for n=5.
(c) From Part (a) with n= 5 obtain 1.1995 <S<1.2057, so S1.203.
375 Chapter 11
34. (a) Z+
n
1
x4dx =1
3n3; choose nso that 1
3n31
3(n+1)
3<0.005,n=4; S1.084
35. (a) Let F(x)= 1
x
, then Zn
1
1
xdx =lnnand Zn+1
1
1
xdx = ln(n+ 1), u1=1so
ln(n+1)<s
n<1+lnn.
(b) ln(1,000,001) <s
1,000,000 <1 + ln(1,000,000), 13 <s
1,000,000 <15
(c) s109<1+ln10
9= 1 + 9 ln 10 <22
(d) sn>ln(n+1)100, ne100 12.688 ×1043;n=2.69 ×1043
36. p-series with p=lna; convergence for p>1,a>e
37. x2exis decreasing and positive for x>2 so the Integral Test applies:
Z
1x2exdx =(x
2+2x+2)e
x
1
=5e
1so the series converges.
38. (a) f(x)=1/(x
3+ 1) is decreasing and continuous on the interval [1,+], so the Integral Test
applies.
(c) n
sn
10
0.681980
20
0.685314
30
0.685966
40
0.686199
50
0.686307
n
sn
60
0.686367
70
0.686403
80
0.686426
90
0.686442
100
0.686454
(e) Set g(n)=Z+
n
1
x
3+1dx =3
6π+1
6
n3+1
(n+1)
3
3
3tan12n1
3; for n10,
g(n)g(n+1) 0.001; s10 +(g(10) + g(11))/20.6865, so the sum 0.6865 to three
decimal places.
EXERCISE SET 11.5
1. (a) f(k)(x)=(1)kex,f
(k)
(0)=(1)k;ex1x+x2/2 (quadratic), ex1x(linear)
(b) f0(x)=sin x, f00(x)=cos x, f(0)=1,f0(0)=0,f00(0) = 1,
cos x1x2/2 (quadratic), cos x1 (linear)
(c) f0(x) = cos x, f00(x)=sin x, f(π/2)=1,f0(π/2)=0,f00(π/2) = 1,
sin x1(xπ/2)2/2 (quadratic), sin x1 (linear)
(d) f(1)=1,f0(1)=1/2,f00(1) = 1/4;
x=1+1
2
(x1) 1
8(x1)2(quadratic), x1+1
2(x1) (linear)
2. (a) p2(x)=1+x+x
2
/2, p1(x)=1+x
(b) p2(x)=3+1
6
(x9) 1
216(x9)2,p1(x)=3+1
6
(x9)
(c) p2(x)=π
3+
3
6(x2) 7
723(x2)2,p1(x)=π
3+
3
6(x2)
(d) p2(x)=x,p
1
(x)=x
Exercise Set 11.5 376
3. (a) f0(x)=1
2
x
1/2
,f
00(x)=1
4
x
3/2
;f(1)=1,f0(1) = 1
2,f00(1) = 1
4;
x1+1
2(x1) 1
8(x1)2
(b) x=1.1,x
0=1,
1.11+1
2(0.1) 1
8(0.1)2=1.04875, calculator value 1.0488088
4. (a) cos x1x2/2
(b) 2=π/90 rad, cos 2= cos(π/90) 1π2
2·9020.99939077, calculator value 0.99939083
5. f(x) = tan x, 61=π/3+π/180 rad; x0=π/3,f
0
(x) = sec2x, f00(x)=2sec
2xtan x;
f(π/3) = 3,f0(π/3)=4,f00(x)=8
3; tan x3+4(xπ/3)+4
3(xπ/3)2,
tan 61= tan(π/3+π/180) 3+4π/180+4
3(π/180)21.80397443,
calculator value 1.80404776
6. f(x)=
x, x0=36,f0(x)=1
2
x
1/2
,f
00(x)=1
4
x
3/2
;
f(36) = 6,f0(36) = 1
12,f00(36) = 1
864;x6+ 1
12(x36) 1
1728(x36)2;
36.03 6+0.03
12 (0.03)2
1728 6.00249947917, calculator value 6.00249947938
7. f(k)(x)=(1)kex,f(k)(0)=(1)k;p0(x)=1,p
1
(x)=1x, p2(x)=1x+1
2
x
2
,
p
3
(x)=1x+1
2
x
21
3!x3,p
4
(x)=1x+1
2
x
21
3!x3+1
4!x4;
X
k=0
(1)k
k!xk
8. f(k)(x)=a
k
e
ax,f(k)(0) = ak;p0(x)=1,p
1
(x)=1+ax, p2(x)=1+ax +a2
2x2,
p3(x)=1+ax +a2
2x2+a3
3! x3,p
4
(x)=1+ax +a2
2x2+a3
3! x3+a4
4! x4;
X
k=0
ak
k!xk
9. f(k)(0) = 0 if kis odd, f(k)(0) is alternately πkand πkif kis even; p0(x)=1,p
1
(x)=1,
p
2
(x)=1π
2
2! x2;p3(x)=1π
2
2! x2,p
4
(x)=1π
2
2! x2+π4
4! x4;
X
k=0
(1)kπ2k
(2k)! x2k
10. f(k)(0) = 0 if kis even, f(k)(0) is alternately πkand πkif kis odd; p0(x)=0,p
1
(x)=πx,
p2(x)=πx;p3(x)=πx π3
3! x3,p
4
(x)=πx π3
3! x3;
X
k=0
(1)kπ2k+1
(2k+ 1)! x2k+1
11. f(0)(0) = 0; for k1, f(k)(x)=(1)k+1(k1)!
(1+x)k,f(k)(0)=(1)k+1(k1)!; p0(x)=0,
p
1
(x)=x, p2(x)=x1
2
x
2
,p
3
(x)=x1
2
x
2+1
3
x
3
,p
4
(x)=x1
2
x
2+1
3
x
31
4
x
4
;
X
k=1
(1)k+1
kxk
12. f(k)(x)=(1)kk!
(1+x)k+1 ;f(k)(0)=(1)kk!; p0(x)=1,p
1
(x)=1x,
p2(x)=1x+x
2
,p
3
(x)=1x+x
2x
3
,p
4
(x)=1x+x
2x
3+x
4
;
X
k=0
(1)kxk
377 Chapter 11
13. f(k)(0) = 0 if kis odd, f(k)(0) = 1 if kis even; p0(x)=1,p
1(x)=1,
p
2
(x)=1+x
2
/2,p
3
(x)=1+x
2
/2,p
4
(x)=1+x
2
/2+x
4/4!;
X
k=0
1
(2k)!x2k
14. f(k)(0) = 0 if kis even, f(k)(0) = 1 if kis odd; p0(x)=0,p
1
(x)=x, p2(x)=x,
p3(x)=x+x
3
/3!,p
4
(x)=x+x
3
/3!;
X
k=0
1
(2k+ 1)!x2k+1
15. f(k)(x)=((1)k/2(xsin xkcos x)keven
(1)(k1)/2(xcos x+ksin x)kodd ,f
(k)
(0) = ((1)1+k/2kkeven
0kodd
p0(x)=0,p
1
(x)=0,p
2
(x)=x
2
,p
3(x)=x
2
,p
4
(x)=x
21
6
x
4
;
X
k=0
(1)k
(2k+ 1)!x2k+2
16. f(k)(x)=(k+x)e
x
,f
(k)
(0) = k;p0(x)=0,p
1
(x)=x, p2(x)=x+x
2
,
p
3
(x)=x+x
2+1
2
x
3
,p
4
(x)=x+x
2+1
2
x
3+1
3!x4;
X
k=1
1
(k1)!xk
17. (a) f(0)=1,f0(0)=2,f00(0) = 2,f000(0)=6,f(k)(0) = 0 for k4;
the Maclaurin series for f(x)isf(x).
(b) f(k)(0) = k!ckfor kn, and f(k)(0) = 0 for k>n; the Maclaurin series for f(x)isf(x).
19. f(k)(x0)=e;p
0
(x)=e, p1(x)=e+e(x1),
p2(x)=e+e(x1) + e
2(x1)2,p
3
(x)=e+e(x1) + e
2(x1)2+e
3!(x1)3,
p4(x)=e+e(x1) + e
2(x1)2+e
3!(x1)3+e
4!(x1)4;
X
k=0
e
k!(x1)k
20. f(k)(x)=(1)kex,f
(k)
(ln 2) = (1)k1
2;p0(x)=1
2
,p
1
(x)=1
21
2
(xln 2),
p2(x)=1
21
2
(xln 2)+ 1
2·2(xln 2)2,p
3
(x)=1
21
2
(xln 2)+ 1
2·2(xln 2)21
2·3!(xln 2)3,
p4(x)=1
21
2
(xln 2) + 1
2·2(xln 2)21
2·3!(xln 2)3+1
2·4!(xln 2)4;
X
k=0
(1)k
2·k!(xln 2)k
21. f(k)(x)=(1)kk!
xk+1 ,f(k)(1) = k!; p0(x)=1; p1(x)=1(x+ 1);
p2(x)=1(x+1)(x+1)
2;p
3(x)=1(x+1)(x+1)
2(x+1)
3;
p
4(x)=1(x+1)(x+1)
2(x+1)
3(x+1)
4;
X
k=0
(1)(x+1)
k
Exercise Set 11.5 378
22. f(k)(x)= (1)kk!
(x+2)
k+1 ,f(k)(3) = (1)kk!
5k+1 ;p0(x)=1
5
;p
1
(x)=1
51
25(x3);
p2(x)=1
51
25(x3) + 1
125(x3)2;p3(x)=1
51
25(x3) + 1
125(x3)21
625(x3)3;
p4(x)=1
51
25(x3) + 1
125(x3)21
625(x3)3+1
3025(x3)4;
X
k=0
(1)k
5k+1 (x3)k
23. f(k)(1/2)=0ifkis odd, f(k)(1/2) is alternately πkand πkif kis even;
p0(x)=p
1
(x)=1,p
2(x)=p
3
(x)=1π
2
2(x1/2)2,
p4(x)=1π
2
2(x1/2)2+π4
4! (x1/2)4;
X
k=0
(1)kπ2k
(2k)! (x1/2)2k
24. f(k)(π/2)=0ifkis even, f(k)(π/2) is alternately 1and1ifkis odd; p0(x)=0,
p
1
(x)=(xπ/2),p
2
(x)=(xπ/2),p
3
(x)=(xπ/2) + 1
3!(xπ/2)3,
p4(x)=(xπ/2) + 1
3!(xπ/2)3;
X
k=0
(1)k+1
(2k+ 1)!(xπ/2)2k+1
25. f(1) = 0, for k1,f(k)(x)=(1)k1(k1)!
xk;f(k)(1)=(1)k1(k1)!;
p0(x)=0,p
1
(x)=(x1); p2(x)=(x1) 1
2(x1)2;p3(x)=(x1) 1
2(x1)2+1
3(x1)3,
p4(x)=(x1) 1
2(x1)2+1
3(x1)31
4(x1)4;
X
k=1
(1)k1
k(x1)k
26. f(e)=1,fork1,f(k)(x)=(1)k1(k1)!
xk;f(k)(e)=(1)k1(k1)!
ek;
p0(x)=1,p
1
(x)=1+1
e
(xe); p2(x)=1+1
e
(xe)1
2e
2(xe)
2
;
p
3
(x)=1+1
e
(xe)1
2e
2(xe)
2+1
3e
3(xe)
3
,
p
4
(x)=1+1
e
(xe)1
2e
2(xe)
2+1
3e
3(xe)
31
4e
4(xe)
4
;1+
X
k=1
(1)ke
kek(xe)k
27. (a) f(1)=1,f0(1)=2,f00(1) = 2,f000(1)=6,f(k)(1) = 0 for k4;
the Taylor series for f(x)isf(x).
(b) f(k)(x0)=k!c
kfor kn; for k > n, f(k)(x0) = 0; the Taylor series for f(x)isf(x).
379 Chapter 11
29. f(k)(0)=(2)k;p0(x)=1,p
1
(x)=12x,
p2(x)=12x+2x
2,p
3
(x)=12x+2x
24
3x
3
4
-1
-0.6 0.6
30. f(k)(π/2)=0ifkis odd, f(k)(π/2) is alternately 1
and 1ifkis even; p0(x)=1,p
2
(x)=11
2
(xπ/2)2,
p4(x)=11
2
(xπ/2)2+1
24(xπ/2)4,
p6(x)=11
2
(xπ/2)2+1
24(xπ/2)41
720(xπ/2)6
1.25
-1.25
^i
31. f(k)(π)=0ifkis odd, f(k)(π/2) is alternately 1
and1ifkis even; p0(x)=1,p
2
(x)=1+1
2(xπ)
2,
p
4(x)=1+1
2(xπ)
21
24(xπ)4,
p6(x)=1+1
2(xπ)
21
24(xπ)4+1
720(xπ)6
1.25
-1.25
0o
32. f(0) = 0; for k1,f(k)(x)=(1)k1(k1)!
(x+1)
k,
f(k)(0)=(1)k1(k1)!; p0(x)=0,p
1
(x)=x,
p
2
(x)=x1
2
x
2
,p
3
(x)=x1
2
x
2+1
3
x
3
1.5
-1.5
-1 1
33. p(0)=1,p(x) has slope 1atx= 0, and p(x) is concave up at x= 0, eliminating I, II and III
respectively and leaving IV.
34. Let p0(x)=2,p
1(x)=p
2
(x)=13x, p3(x)=13x+x
3
, and, for any arbitrary integer n4
and constants c4,c
5,...,c
n, let pn(x)=23(x1)+(x1)3+
n
X
k=4
ck(x1)k; then any of the
polynomials p0,p
1,...,p
nis a possible Taylor polynomial for fabout x=1.
35. f(k)(ln 4) = 15/8 for keven, f(k)(ln4) = 17/8 for kodd, which can be written as
f(k)(ln 4) = 16 (1)k
8;
X
k=0
16 (1)k
8k!(xln 4)k
Exercise Set 11.6 380
36. (a) cos α1α2/2; x=rrcos α=r(1 cos α)2/2
(b) In Figure Ex-36 let r= 4000 mi and α=1/80 so that the arc has length 2= 100 mi.
Then x2/2= 4000
2·802=5/16 mi.
37. From Exercise 2(a), p1(x)=1+x,p
2
(x)=1+x+x
2
/2
(a) 3
-1
-1 1
(b) x
f(x)
p1(x)
p2(x)
1.000
0.431
0.000
0.500
0.750
0.506
0.250
0.531
0.500
0.619
0.500
0.625
0.250
0.781
0.750
0.781
0.000
1.000
1.000
1.000
0.250
1.281
1.250
1.281
0.500
1.615
1.500
1.625
0.750
1.977
1.750
2.031
1.000
2.320
2.000
2.500
(c) |esin x(1+x)|<0.01
for 0.14 <x<0.14
0.01
0
-0.15 0.15
(d) |esin x(1+x+x2/2)|<0.01
for 0.50 <x<0.50
0.015
0
-0.6 0.6
EXERCISE SET 11.6
1. (a) 1
5k2k1
5k2k2=1
4k2,
X
k=1
1
4k2converges
(b) 3
k1/4>3
k,
X
k=1
3/k diverges
2. (a) k+1
k
2k>k
k
2=1
k,
X
k=2
1/k diverges (b) 2
k4+k<2
k4,
X
k=1
2
k4converges
3. (a) 1
3k+5 <1
3
k,
X
k=1
1
3kconverges (b) 5 sin2k
k!<5
k!,
X
k=1
5
k!converges
4. (a) ln k
k>1
kfor k3,
X
k=1
1
kdiverges
(b) k
k3/21/2>k
k3/2=1
k;
X
k=1
1
kdiverges
381 Chapter 11
5. compare with the convergent series
X
k=1
1/k5,ρ= lim
k+
4k72k6+6k
5
8k
7+k8=1/2, converges
6. compare with the divergent series
X
k=1
1/k,ρ= lim
k+
k
9k+6 =1/9, diverges
7. compare with the convergent series
X
k=1
5/3k,ρ= lim
k+
3k
3k+1 = 1, converges
8. compare with the divergent series
X
k=1
1/k,ρ= lim
k+
k2(k+3)
(k+ 1)(k+ 2)(k+5) = 1, diverges
9. compare with the divergent series
X
k=1
1
k2/3,
ρ= lim
k+
k2/3
(8k23k)1/3= lim
k+
1
(8 3/k)1/3=1/2, diverges
10. compare with the convergent series
X
k=1
1/k17,
ρ= lim
k+
k17
(2k+3)
17 = lim
k+
1
(2+3/k)17 =1/2
17, converges
11. ρ= lim
k+
3k+1/(k+ 1)!
3k/k!= lim
k+
3
k+1 = 0, the series converges
12. ρ= lim
k+
4k+1/(k+1)
2
4
k
/k2= lim
k+
4k2
(k+1)
2= 4, the series diverges
13. ρ= lim
k+
k
k+1 = 1, the result is inconclusive
14. ρ= lim
k+
(k+ 1)(1/2)k+1
k(1/2)k= lim
k+
k+1
2k=1/2, the series converges
15. ρ= lim
k+
(k+ 1)!/(k+1)
3
k!/k3= lim
k+
k3
(k+1)
2=+, the series diverges
16. ρ= lim
k+
(k+1)/[(k+1)
2+1]
k/(k2+1) = lim
k+
(k+ 1)(k2+1)
k(k
2+2k+2) = 1, the result is inconclusive.
17. ρ= lim
k+
3k+2
2k1=3/2, the series diverges
18. ρ= lim
k+k/100=+, the series diverges
19. ρ= lim
k+
k1/k
5=1/5, the series converges
20. ρ= lim
k+(1 ek) = 1, the result is inconclusive
Exercise Set 11.6 382
21. Ratio Test, ρ= lim
k+7/(k+ 1) = 0, converges
22. Limit Comparison Test, compare with the divergent series
X
k=1
1/k
23. Ratio Test, ρ= lim
k+
(k+1)
2
5k
2=1/5, converges
24. Ratio Test, ρ= lim
k+(10/3)(k+1)=+, diverges
25. Ratio Test, ρ= lim
k+e1(k+1)
50/k50 =e1<1, converges
26. Limit Comparison Test, compare with the divergent series
X
k=1
1/k
27. Limit Comparison Test, compare with the convergent series
X
k=1
1/k5/2,ρ= lim
k+
k3
k3+1 =1,
converges
28. 4
2+3
k
k<4
3
k
k,
X
k=1
4
3kkconverges (Ratio Test) so
X
k=1
4
2+k3
kconverges by the Comparison Test
29. Limit Comparison Test, compare with the divergent series
X
k=1
1/k,ρ= lim
k+
k
k2+k=1,
diverges
30. 2+(1)k
5k3
5k,
X
k=1
3/5kconverges so
X
k=1
2+(1)k
5kconverges
31. Limit Comparison Test, compare with the convergent series
X
k=1
1/k5/2,
ρ= lim
k+
k3+2k
5/2
k
3+3k
2+3k= 1, converges
32. 4+|cos k|
k3<5
k3,
X
k=1
5/k3converges so
X
k=1
4+|cos k|
k3converges
33. Limit Comparison Test, compare with
X
k=1
1/k
34. Ratio Test, ρ= lim
k+(1+1/k)k=1/e < 1, converges
35. Ratio Test, ρ= lim
k+
ln(k+1)
eln k= lim
k+
k
e(k+1) =1/e < 1, converges
36. Ratio Test, ρ= lim
k+
k+1
e
2k+1 = lim
k+
1
2e2k+1 = 0, converges
37. Ratio Test, ρ= lim
k+
k+5
4(k+1) =1/4, converges
383 Chapter 11
38. Root Test, ρ= lim
k+(k
k+1)
k= lim
k+
1
(1+1/k)k=1/e, converges
39. diverges because lim
k+
1
4+2
k=1/46=0
40.
X
k=1
kln k
k3+1 =
X
k=2
kln k
k3+1 because ln1 = 0, kln k
k3+1 <kln k
k3=ln k
k2,
Z+
2
ln x
x2dx = lim
`+ln x
x1
x`
2
=1
2(ln 2+1) so
X
k=2
ln k
k2converges and so does
X
k=1
kln k
k3+1.
41. tan1k
k2<π/2
k2,
X
k=1
π/2
k2converges so
X
k=1
tan1k
k2converges
42. 5k+k
k!+3 <5
k+5
k
k!=25
k
k!,
X
k=1
25k
k!converges (Ratio Test) so
X
k=1
5k+k
k!+3 converges
43. Ratio Test, ρ= lim
k+
(k+1)
2
(2k+ 2)(2k+1) =1/4, converges
44. Ratio Test, ρ= lim
k+
2(k+1)
2
(2k+ 4)(2k+3) =1/2, converges
45. uk=k!
1·3·5···(2k1), by the Ratio Test ρ= lim
k+
k+1
2k+1 =1/2; converges
46. uk=1·3·5···(2k1)
(2k1)! , by the Ratio Test ρ= lim
k+
1
2k= 0; converges
47. Root Test: ρ= lim
k+
1
3(ln k)1/k =1/3, converges
48. Root Test: ρ= lim
k+
π(k+1)
k
1+1/k = lim
k+πk+1
k=π, diverges
49. (b) ρ= lim
k+
sin(π/k)
π/k = 1 and
X
k=1
π/k diverges
50. (a) cos x1x2/2,1cos 1
k1
2k2(b) ρ= lim
k+
1cos(1/k)
1/k2= 2, converges
51. Set g(x)=
xln x;d
dxg(x)= 1
2
x1
x= 0 when x= 4. Since lim
x0+ g(x) = lim
x+g(x)=+
it follows that g(x) has its minimum at x=4,g(4) = 4ln 4 >0, and thus xln x>0 for
x>0.
(a) ln k
k2<k
k2=1
k3/2,
X
k=1
1
k3/2converges so
X
k=1
ln k
k2converges.
(b) 1
(ln k)2>1
k,
X
k=2
1
kdiverges so
X
k=2
1
(ln k)2diverges.
Exercise Set 11.7 384
52. By the Root Test, ρ= lim
k+
α
(k1/k)α=α
1α=α, the series converges if α<1 and diverges
if α>1. If α= 1 then the series is
X
k=1
1/k which diverges.
53. (a) If Pbkconverges, then set M=Pbk. Then a1+a2+···+a
nb
1+b
2+···+b
nM;
apply Theorem 11.4.6 to get convergence of Pak.
(b) Assume the contrary, that Pbkconverges; then use part (a) of the Theorem to show that
Pakconverges, a contradiction.
54. (a) If lim
k+(ak/bk) = 0 then for kK,ak/bk<1, ak<b
kso Pakconverges by the Comparison
Test.
(b) If lim
k+(ak/bk)=+then for kK,ak/bk>1, ak>b
kso Pakdiverges by the
Comparison Test.
EXERCISE SET 11.7
1. ak+1 <a
k
,lim
k+ak=0,a
k>0
2. ak+1
ak
=k
3(k+1) <1
3for k>0, so {ak}is decreasing and tends to zero.
3. diverges because lim
k+ak= lim
k+
k+1
3k+1 =1/36=0
4. diverges because lim
k+ak= lim
k+
k+1
k+1 =+∞6=0
5. {ek}is decreasing and lim
k+ek= 0, converges
6. ln k
kis decreasing and lim
k+
ln k
k= 0, converges
7. ρ= lim
k+
(3/5)k+1
(3/5)k=3/5,converges absolutely
8. ρ= lim
k+
2
k+1 = 0, converges absolutely
9. ρ= lim
k+
3k2
(k+1)
2= 3, diverges
10. ρ= lim
k+
k+1
5k=1/5, converges absolutely
11. ρ= lim
k+
(k+1)
3
ek3=1/e, converges absolutely
12. ρ= lim
k+
(k+1)
k+1k!
(k+ 1)!kk= lim
k+(1+1/k)k=e, diverges
385 Chapter 11
13. conditionally convergent,
X
k=1
(1)k+1
3kconverges by the Alternating Series Test but
X
k=1
1
3kdiverges
14. absolutely convergent,
X
k=1
1
k4/3converges
15. divergent, lim
k+ak6=0
16. absolutely convergent, Ratio Test for absolute convergence
17.
X
k=1
cos
k=
X
k=1
(1)k
kis conditionally convergent,
X
k=1
(1)k
kconverges by the Alternating Series
Test but
X
k=1
1/k diverges.
18. conditionally convergent,
X
k=3
(1)kln k
kconverges by the Alternating Series Test but
X
k=3
ln k
k
diverges (Limit Comparison Test with P1/k).
19. conditionally convergent,
X
k=1
(1)k+1 k+2
k(k+3) converges by the
Alternating Series Test but
X
k=1
k+2
k(k+3) diverges (Limit Comparison Test with P1/k)
20. conditionally convergent,
X
k=1
(1)k+1k2
k3+1 converges by the Alternating Series Test but
X
k=1
k2
k3+1 diverges (Limit Comparison Test with P(1/k))
21.
X
k=1
sin(kπ/2)=1+01+0+1+01+0+···, divergent ( lim
k+sin(kπ/2) does not exist)
22. absolutely convergent,
X
k=1
|sin k|
k3converges (compare with P1/k3)
23. conditionally convergent,
X
k=2
(1)k
kln kconverges by the Alternating Series Test but
X
k=2
1
kln kdiverges
(Integral Test)
24. conditionally convergent,
X
k=1
(1)k
pk(k+1) converges by the Alternating Series Test but
X
k=1
1
pk(k+1) diverges (Limit Comparison Test with P1/k)
25. absolutely convergent,
X
k=2
(1/ln k)kconverges by the Root Test
Exercise Set 11.7 386
26. conditionally convergent,
X
k=1
(1)k+1
k+1+
kconverges by the Alternating Series Test but
X
k=1
1
k+1+
kdiverges (Limit Comparison Test with P1/k)
27. conditionally convergent, let f(x)=x
2+1
x
3+2 then f0(x)=x(4 3xx3)
(x3+2)
20 for x2so
{a
k
}
+
k=2 =k2+1
k
3+2+
k=2
is nonincreasing, lim
k+ak= 0; the series converges by the
Alternating Series Test but
X
k=2
k2+1
k
3+2 diverges (Limit Comparison Test with P1/k)
28.
X
k=1
kcos
k2+1 =
X
k=1
(1)kk
k2+1 is conditionally convergent,
X
k=1
(1)kk
k2+1 converges by the
Alternating Series Test but
X
k=1
k
k2+1 diverges
29. absolutely convergent by the Ratio Test, ρ= lim
k+
k+1
(2k+ 1)(2k)=0
30. divergent, lim
k+ak=+31. |error|<a
8=1/8=0.125
32. |error|<a
6=1/6! <0.0014 33. |error|<a
100 =1/
100=0.1
34. |error|<a
4=1/(5 ln 5) <0.125
35. |error|<0.0001 if an+1 0.0001, 1/(n+1)0.0001, n+110,000, n9,999, n=9,999
36. |error|<0.00001 if an+1 0.00001, 1/(n+ 1)! 0.00001, (n+ 1)! 100,000. But 8! = 40,320,
9! = 362,880 so (n+ 1)! 100,000 if n+19, n8, n=8
37. |error|<0.005 if an+1 0.005, 1/n+10.005, n+1 200, n+140,000, n39,999,
n=39,999
38. |error|<0.05 if an+1 0.05, 1/[(n+ 2) ln(n+ 2)] 0.05, (n+ 2) ln(n+2)20. But 9 ln 9 19.8
and 10 ln 10 23.0so(n+ 2) ln(n+2)20 if n+210, n8, n=8
39. ak=3
2k+1 ,|error|<a
11 =3
212 <0.00074; s10 0.4995; S=3/4
1(1/2) =0.5
40. ak=2
3k1
,|error|<a
11 =2
310
<0.01735; s10 0.5896; S=1
1(2/3) =0.6
41. ak=1
(2k1)!,an+1 =1
(2n+ 1)! 0.005, (2n+ 1)! 200, 2n+16, n2.5; n=3,
s
3=11/6+1/120 0.84
42. ak=1
(2k2)!,an+1 =1
(2n)! 0.005, (2n)! 200, 2n6, n3; n=3,s
30.54
387 Chapter 11
43. ak=1
k2k,an+1 =1
(n+ 1)2n+1 0.005, (n+ 1)2n+1 200, n+16, n5; n=5,s
50.41
44. ak=1
(2k1)5+ 4(2k1),an+1 =1
(2n+1)
5+ 4(2n+1) 0.005,
(2n+1)
5+ 4(2n+1)200, 2n+13, n1; n=1,s
1=0.20
45. (c) ak=1
2k1,an+1 =1
2n+1 102,2n+1100, n49.5; n=50
46. P(1/kp) converges if p>1 and diverges if p1, so
X
k=1
(1)k1
kpconverges absolutely if p>1,
and converges conditionally if 0 <p1 since it satisfies the Alternating Series Test; it diverges
for p0 since lim
k+ak6=0.
47. 1+ 1
3
2+1
5
2+···=1+ 1
2
2+1
3
2+···1
2
2+1
4
2+1
6
2+···
=π
2
61
2
21+ 1
2
2+1
3
2+···=π
2
61
4
π
2
6=π
2
8
48. 1+ 1
3
4+1
5
4+···=1+ 1
2
4+1
3
4+···1
2
4+1
4
4+1
6
4+···
=π
4
90 1
241+ 1
2
4+1
3
4+···=π
4
90 1
16
π4
90 =π4
96
49. Every positive integer can be written in exactly one of the three forms 2k1or4k2or4k,
so a rearrangement is
11
21
4+1
31
61
8+1
51
10 1
12+···+1
2k11
4k21
4k+···
=1
21
4+1
61
8+1
10 1
12+···+1
4k21
4k+···=1
2ln 2
50. (a) 1.5
0
010
(b) Yes; since f(x) is decreasing for x1
and lim
x+f(x) = 0, so the series
satisfies the Alternating Series Test.
51. (a) The distance dfrom the starting point is
d= 180 180
2+180
3···180
1000 = 180 11
2+1
3···1
1000.
From Theorem 11.7.2, 1 1
2+1
3···1
1000 differs from ln 2 by less than 1/1001 so
180(ln 2 1/1001) <d<180 ln 2, 124.58 <d<124.77.
Exercise Set 11.8 388
(b) The total distance traveled is s= 180 + 180
2+180
3+···+180
1000, and from inequality (2) in
Section 11.4,
Z1001
1
180
xdx<s<180 + Z1000
1
180
xdx
180 ln 1001 <s<180(1 + ln 1000)
1243 <s<1424
52. (a) Suppose Σ|ak|converges, then lim
k+|ak|=0so|a
k
|<1 for kKand thus |ak|2<|ak|,
a2
k<|ak|hence Σa2
kconverges by the Comparison Test.
(b) Let ak=1
k, then Pa2
kconverges but Pakdiverges.
EXERCISE SET 11.8
1. geometric series, ρ= lim
k+
uk+1
uk=|x|, so the interval of convergence is 1<x<1, converges
there to 1
1+x(the series diverges for x=±1)
2. geometric series, ρ= lim
k+
uk+1
uk=|x|2, so the interval of convergence is 1<x<1, converges
there to 1
1x2(the series diverges for x=±1)
3. geometric series, ρ= lim
k+
uk+1
uk=|x2|, so the interval of convergence is 1 <x<3, converges
there to 1
1(x2) =1
3x(the series diverges for x=1,3)
4. geometric series, ρ= lim
k+
uk+1
uk=|x+3|, so the interval of convergence is 4<x<2,
converges there to 1
1+(x+3) =1
4+x(the series diverges for x=4,2)
5. (a) geometric series, ρ= lim
k+
uk+1
uk=|x/2|, so the interval of convergence is 2<x<2,
converges there to 1
1+x/2=2
2+x; (the series diverges for x=2,2)
(b) f(0)=1; f(1)=2/3
6. (a) geometric series, ρ= lim
k+
uk+1
uk=
x5
3, so the interval of convergence is 2 <x<8,
converges to 1
1+(x5)/3=3
x2(the series diverges for x=2,8)
(b) f(3)=3,f(6)=3/4
389 Chapter 11
7. ρ= lim
k+
k+1
k+2|x|=|x|, the series converges if |x|<1 and diverges if |x|>1. If x=1,
X
k=0
(1)k
k+1 converges by the Alternating Series Test; if x=1,
X
k=0
1
k+1 diverges. The radius of
convergence is 1, the interval of convergence is [1,1).
8. ρ= lim
k+3|x|=3|x|, the series converges if 3|x|<1or|x|<1/3 and diverges if |x|>1/3. If
x=1/3,
X
k=0
(1)kdiverges, if x=1/3,
X
k=0
(1) diverges. The radius of convergence is 1/3, the
interval of convergence is (1/3, 1/3).
9. ρ= lim
k+|x|
k+1 = 0, the radius of convergence is +, the interval is (−∞,+).
10. ρ= lim
k+
k+1
2|x|=+, the radius of convergence is 0, the series converges only if x=0.
11. ρ= lim
k+
5k2|x|
(k+1)
2=5|x|, converges if |x|<1/5 and diverges if |x|>1/5. If x=1/5,
X
k=1
(1)k
k2
converges; if x=1/5,
X
k=1
1/k2converges. Radius of convergence is 1/5, interval of convergence is
[1/5,1/5].
12. ρ= lim
k+
ln k
ln(k+1)|x|=|x|, the series converges if |x|<1 and diverges if |x|>1. If x=1,
X
k=2
(1)k
ln kconverges; if x=1,
X
k=2
1/(ln k) diverges (compare to P(1/k)). Radius of convergence
is 1, interval of convergence is [1,1).
13. ρ= lim
k+
k|x|
k+2 =|x|, converges if |x|<1, diverges if |x|>1. If x=1,
X
k=1
(1)k
k(k+1) converges;
if x=1,
X
k=1
1
k(k+1) converges. Radius of convergence is 1, interval of convergence is [1,1].
14. ρ= lim
k+2k+1
k+2|x|=2|x|, converges if |x|<1/2, diverges if |x|>1/2. If x=1/2,
X
k=0
1
2(k+1)
diverges; if x=1/2,
X
k=0
(1)k
2(k+1) converges. Radius of convergence is 1/2, interval of convergence
is (1/2,1/2].
15. ρ= lim
k+
k
k+1|x|=|x|, converges if |x|<1, diverges if |x|>1. If x=1,
X
k=1
1
kdiverges; if
x=1,
X
k=1
(1)k1
kconverges. Radius of convergence is 1, interval of convergence is (1,1].
Exercise Set 11.8 390
16. ρ= lim
k+|x|2
(2k+ 2)(2k+1) = 0, radius of convergence is +, interval of convergence is (−∞,+).
17. ρ= lim
k+|x|2
(2k+ 3)(2k+2) = 0, radius of convergence is +, interval of convergence is (−∞,+).
18. ρ= lim
k+
k3/2|x|3
(k+1)
3/2=|x|
3, converges if |x|<1, diverges if |x|>1. If x=1,
X
k=0
1
k3/2converges;
if x=1,
X
k=0
(1)k
k3/2converges. Radius of convergence is 1, interval of convergence is [1,1].
19. ρ= lim
k+
3|x|
k+1 = 0, radius of convergence is +, interval of convergence is (−∞,+).
20. ρ= lim
k+
k(ln k)2|x|
(k+ 1)[ln(k+ 1)]2=|x|, converges if |x|<1, diverges if |x|>1. If x=1, then, by
Exercise 11.4.25,
X
k=2
1
k(ln k)2converges; if x=1,
X
k=2
(1)k+1
k(ln k)2converges. Radius of convergence
is 1, interval of convergence is [1,1].
21. ρ= lim
k+
1+k
2
1+(k+1)
2|x|=|x|, converges if |x|<1, diverges if |x|>1. If x=1,
X
k=0
(1)k
1+k
2
converges; if x=1,
X
k=0
1
1+k
2converges. Radius of convergence is 1, interval of convergence is
[1,1].
22. ρ= lim
k+
1
2|x3|=1
2|x3|, converges if |x3|<2, diverges if |x3|>2. If x=1,
X
k=0
(1)k
diverges; if x=5,
X
k=0
1 diverges. Radius of convergence is 2, interval of convergence is (1,5).
23. ρ= lim
k+
k|x+1|
k+1 =|x+1|, converges if |x+1|<1, diverges if |x+1|>1. If x=2,
X
k=1
1
k
diverges; if x=0,
X
k=1
(1)k+1
kconverges. Radius of convergence is 1, interval of convergence is
(2,0].
24. ρ= lim
k+
(k+1)
2
(k+2)
2|x4|=|x4|, converges if |x4|<1, diverges if |x4|>1. If x=3,
X
k=0
1/(k+1)2converges; if x=5,
X
k=0
(1)k/(k+1)2converges. Radius of convergence is 1, interval
of convergence is [3,5].
391 Chapter 11
25. ρ= lim
k+(3/4)|x+5|=3
4
|x+5|, converges if |x+5|<4/3, diverges if |x+5|>4/3. If
x=19/3,
X
k=0
(1)kdiverges; if x=11/3,
X
k=0
1 diverges. Radius of convergence is 4/3, interval
of convergence is (19/3,11/3).
26. ρ= lim
k+
(2k+ 3)(2k+2)k
3
(k+1)
3|x2|=+, radius of convergence is 0,
series converges only at x=2.
27. ρ= lim
k+
k2+4
(k+1)
2+4|x+1|2=|x+1|2, converges if |x+1|<1, diverges if |x+1|>1. If x=2,
X
k=1
(1)3k+1
k2+4 converges; if x=0,
X
k=1
(1)k
k2+4 converges. Radius of convergence is 1, interval of
convergence is [2,0].
28. ρ= lim
k+
kln(k+1)
(k+1)lnk|x3|=|x3|, converges if |x3|<1, diverges if |x3|>1. If
x=2,
X
k=1
(1)kln k
kconverges; if x=4,
X
k=1
ln k
kdiverges. Radius of convergence is 1, interval of
convergence is [2,4).
29. ρ= lim
k+
π|x1|2
(2k+ 3)(2k+2) = 0, radius of convergence +, interval of convergence (−∞,+).
30. ρ= lim
k+
1
16|2x3|=1
16|2x3|, converges if 1
16|2x3|<1or|x3/2|<8, diverges if
|x3/2|>8. If x=13/2,
X
k=0
(1)kdiverges; if x=19/2,
X
k=0
1 diverges. Radius of convergence
is 8, interval of convergence is (13/2,19/2).
31. ρ= lim
k+
k
p|uk|= lim
k+|x|
ln k= 0, the series converges absolutely for all xso the interval of
convergence is (−∞,+).
32. ρ= lim
k+
2k+1
(2k)(2k1)|x|=0
so R=+.
33. (a) 10
-1
-1 1
Exercise Set 11.8 392
34. Ratio Test: ρ= lim
k+|x|2
4(k+ 1)(k+2) =0,R=+
35. By the Ratio Test for absolute convergence,
ρ= lim
k+
(pk +p)!(k!)p
(pk)![(k+ 1)!]p|x|= lim
k+
(pk +p)(pk +p1)(pk +p2) ···(pk +p[p1])
(k+1)
p|x|
= lim
k+pp1
k+1p2
k+1···pp1
k+1|x|=p
p
|x|,
converges if |x|<1/pp, diverges if |x|>1/pp. Radius of convergence is 1/pp.
36. By the Ratio Test for absolute convergence,
ρ= lim
k+
(k+1+p)!k!(k+q)!
(k+p)!(k+ 1)!(k+1+q)!|x|= lim
k+
k+1+p
(k+ 1)(k+1+q)|x|=0,
radius of convergence is +.
37. (a) By Theorem 11.4.3(b) both series converge or diverge together, so they have the same radius
of convergence.
(b) By Theorem 11.4.3(a) the series P(ck+dk)(xx0)kconverges if |xx0|<R;if|xx
0
|>R
then P(ck+dk)(xx0)kcannot converge, as otherwise Pck(xx0)kwould converge by
the same Theorem. Hence the radius of convergence of P(ck+dk)(xx0)kis R.
(c) Let rbe the radius of convergence of P(ck+dk)(xx0)k.If|xx
0
|<min(R1,R
2)
then Pck(xx0)kand Pdk(xx0)kconverge, so P(ck+dk)(xx0)kconverges. Hence
rmin(R1,R
2) (to see that r>min(R1,R
2) is possible consider the case ck=dk= 1).
If in addition R16=R2, and R1<|xx0|<R
2(or R2<|xx0|<R
1
) then
P(ck+dk)(xx0)kcannot converge, as otherwise all three series would converge. Thus
in this case r= min(R1,R
2).
38. By the Root Test for absolute convergence,
ρ= lim
k+|ck|1/k|x|=L|x|,L|x|<1if|x|<1/L so the radius of convergence is 1/L.
39. By assumption
X
k=0
ckxkconverges if |x|<Rso
X
k=0
ckx2k=
X
k=0
ck(x2)kconverges if |x2|<R,
|x|<
R. Moreover,
X
k=0
ckx2k=
X
k=0
ck(x2)kdiverges if |x2|>R,|x|>
R.Thus
X
k=0
ckx2k
has radius of convergence R.
40. The assumption is that
X
k=0
ckRkis convergent and
X
k=0
ck(R)kis divergent. Suppose that
X
k=0
ckRk
is absolutely convergent then
X
k=0
ck(R)kis also absolutely convergent and hence convergent
because |ckRk|=|ck(R)k|, which contradicts the assumption that
X
k=0
ck(R)kis divergent so
X
k=0
ckRkmust be conditionally convergent.
393 Chapter 11
EXERCISE SET 11.9
1. sin 4= sin π
45=π
45 (π/45)3
3! +(π/45)5
5! ···
(a) Method 1: |Rn(π/45)|≤(π/45)n+1
(n+ 1)! <0.000005 for n+1=4,n =3;
sin 4π
45 (π/45)3
3! 0.069756
(b) Method 2: The first term in the alternating series that is less than 0.000005 is (π/45)5
5! ,so
the result is the same as in part (a).
2. cos 3= cos π
60=1(π/60)2
2+(π/60)4
4! ···
(a) Method 1: |Rn(π/60)|≤(π/60)n+1
(n+ 1)! <0.0005 for n= 2; cos 31(π/60)2
20.9986.
(b) Method 2: The first term in the alternating series that is less than 0.0005 is (π/60)4
4! , so the
result is the same as in part (a).
3. f(k)(x)=e
x
,|f
(k)
(x)|≤e
1/2<2on[0,1/2],let M=2,e
1/2=1+1
2+1
8+1
48 +1
24 ·16 +···;
|R
n(1/2)|≤ M
(n+ 1)!(1/2)n+1 2
(n+ 1)!(1/2)n+1 0.00005 for n=5;
e
1/21+1
2+1
8+1
48 +1
24 ·16 1.64844, calculator value 1.64872
4. f(x)=e
x
,f(k)(x)=e
x
,|f
(k)
(x)|≤1on[1,0], |Rn(x)|≤ 1
(n+ 1)!(1)n+1 =1
(n+ 1)! <0.5×103
if n=6,soe
111+ 1
2! 1
3! +1
4! 1
5! +1
6! 0.3681, calculator value 0.3679
5. |Rn(0.1)|≤(0.1)n+1
(n+ 1)! 0.000005 for n= 3; cos 0.11(0.1)2/2=0.99500, calculator value
0.995004 ...
6. (0.1)3/3<0.5×103so tan1(0.1) 0.100, calculator value 0.0997
7. Expand about π/2 to get sinx=11
2!(xπ/2)2+1
4!(xπ/2)4···,85
=17π/36 radians,
|Rn(x)|≤|xπ/2|n+1
(n+ 1)! ,|Rn(17π/36)|≤|17π/36 π/2|n+1
(n+ 1)! =(π/36)n+1
(n+ 1)! <0.5×104
if n= 3, sin 8511
2(π/36)20.99619, calculator value 0.99619 ...
8. 175=π+π/36 rad; x0=π, x =π+π/36,cos x=1+(x+π)
2
2(x+π)
4
4! ···;
|R
n|≤(π/36)n+1
(n+ 1)! 0.00005 for n= 3; cos(π+π/36) = 1+(π/36)2
2≈−0.99619,
calculator value 0.99619 ...
Exercise Set 11.9 394
9. f(k)(x) = cosh xor sinh x, |f(k)(x)|≤cosh xcosh 0.5=1
2
e
0.5+e
0.5
<1
2
(2+1) = 1.5
so |Rn(x)|<1.5(0.5)n+1
(n+ 1)! 0.5×103if n= 4, sinh 0.50.5+(0.5)3
3! 0.5208, calculator
value 0.52109 ...
10. f(k)(x) = cosh xor sinh x, |f(k)(x)|≤cosh xcosh 0.1=1
2e
0.1+e
0.1
<1.06 so |Rn(x)|<
1.06(0.1)n+1
(n+ 1)! 0.5×103for n= 2, cosh 0.11+(0.1)2
2! =1.005, calculator value 1.0050 ...
11. f(x) = sin x,f(n+1)(x)=±sin xor ±cos x,|f(n+1)(x)|≤1, |Rn(x)|≤|xπ/4|n+1
(n+ 1)! ,
lim
n+|xπ/4|n+1
(n+ 1)! = 0; by the Squeezing Theorem, lim
n+|Rn(x)|=0
so lim
n+Rn(x) = 0 for all x.
12. f(x)=e
x
,f
(n+1)(x)=e
x
;ifx>1 then |Rn(x)|≤ e
x
(n+ 1)!|x1|n+1;ifx<1 then
|Rn(x)|≤ e
(n+ 1)!|x1|n+1. But lim
n+|x1|n+1
(n+ 1)! = 0 so lim
n+Rn(x)=0.
13. (a) Let x=1/9 in series (17).
(b) ln 1.25 21/9+(1/9)3
3= 2(1/9+1/3
7)0.223, which agrees with the calculator value
0.22314 ... to three decimal places.
14. (a) Let x=1/2 in series (17).
(b) ln 3 21/2+(1/2)3
3= 2(1/2+1/24)=13/12 1.083; the calculator value is 1.099 to
three decimal places.
15. (a) (1/2)9/9<0.5×103and (1/3)7/7<0.5×103so
tan11/21/2(1/2)3
3+(1/2)5
5(1/2)7
70.4635
tan11/31/3(1/3)3
3+(1/3)5
50.3218
(b) From Formula (21), π4(0.4635 + 0.3218) = 3.1412
(c) Let a= tan11
2,b= tan11
3; then |a0.4635|<0.0005 and |b0.3218|<0.0005, so
|4(a+b)3.140|≤4|a0.4635|+4|b0.3218|<0.004, so two decimal-place accuracy is
guaranteed, but not three.
16. (27+x)1/3= 3(1+x/33)1/3=31+ 1
3
4x1·2
3
82x
2+1·2·5
3
123! x3+...
, alternates after first term,
3·2
382<0.0005, 28 31+ 1
3
43.0370
395 Chapter 11
17. (a) sin x=xx3
3! +0·x
4+R
4(x),
|R
4(x)|≤|x|
5
5! <0.5×103if |x|5<0.06,
|x|<(0.06)1/50.569,(0.569,0.569)
(b) 0.0001
0
-0.7 0.7
18. (a) f(k)(x)=e
xe
b
,
|R
2
(x)|≤e
b
b
3
3! <0.0005,
ebb3<0.003 if b<0.137 (by trial and
error with a hand calculator), so [0,0.136].
(b) 0.0004
0
-0.2 0.2
19. (a) cos x=1x
2
2! +x4
4! + (0)x5+R5(x),
|R5(x)|≤|x|
6
6! (0.2)6
6! <9×108
(b) 0.000000005
0
-0.2 0.2
20. (a) f00(x)=1/(1+x)2,
f00(x)<1/(0.99)21.03,
|R1(x)|≤1.03|x|2
21.03(0.01)2
2
5.11 ×105for 0.01 x0.01
(b) 0.00005
0
-0.01 0.01
21. (a) (1+x)1=1x+1(2)
2! x2+1(2)(3)
3! x3+···+1(2)(3) ···(k)
k!x
k+···
=
X
k=0
(1)kxk
(b) (1+x)1/3=1+(1/3)x+(1/3)(2/3)
2! x2+(1/3)(2/3)(5/3)
3! x3+···
+(1/3)(2/3) ···(4 3k)/3
k!xk+···=1+x/3+
X
k=2
(1)k12·5···(3k4)
3kk!xk
(c) (1+x)3=13x+(3)(4)
2! x2+(3)(4)(5)
3! x3+···+(3)(4) ···(2k)
k!x
k+···
=
X
k=0
(1)k(k+ 2)!
2·k!xk=
X
k=0
(1)k(k+ 2)(k+1)
2x
k
Exercise Set 11.9 396
22. (1+x)m=m
0+
X
k=1 m
kxk=
X
k=0 m
kxk
23. (a) d
dx ln(1 + x)= 1
1+x,d
k
dxkln(1 + x)=(1)k1(k1)!
(1+x)k; similarly d
dx ln(1 x)=(k1)!
(1 x)k,
so f(n+1)(x)=n!(1)n
(1+x)n+1 +1
(1 x)n+1 .
(b) f(n+1)(x)n!
(1)n
(1+x)n+1 +n!
1
(1 x)n+1 =n!1
(1+x)n+1 +1
(1 x)n+1
(c) If f(n+1)(x)Mon the interval [0,1/3] then |Rn(1/3)|≤ M
(n+ 1)! 1
3n+1
.
(d) If 0 x1/3 then 1 + x1,1x2/3,f(n+1)(x)M=n!1+ 1
(2/3)n+1 .
(e) 0.000005 M
(n+ 1)! 1
3n+1
=1
n+1"1
3n+1
+(1/3)n+1
(2/3)n+1 #=1
n+1"1
3n+1
+1
2n+1#
24. Set x=1/4 in Formula (17). Follow the argument of Exercise 23: parts (a) and (b) remain
unchanged; in part (c) replace (1/3) with (1/4): M
(n+ 1)! 1
4n+1
0.000005 for xin the interval
[0,1/4]. From part (b), together with 0 x1/4,1+x1,1x3/4, follows
part (d): M=n!1+ 1
(3/4)n+1 . Part (e) now becomes 0.000005 M
(n+ 1)! 1
4n+1
=1
n+1"1
4n+1
+1
3n+1#, which is true for n=9.
25. f(x) = cos x, f(n+1)(x)=±sin xor ±cos x, |f(n+1)(x)|≤1,set M=1,
|R
n
(x)|≤ 1
(n+ 1)!|xa|n+1,lim
n+|xa|n+1
(n+ 1)! = 0 so lim
n+Rn(x) = 0 for all x.
26. f(x) = sin x, f(n+1)(x)=±sin xor ±cos x, |f(n+1)(x)|≤1, follow Exercise 25.
27. (a) From Machin’s formula and a CAS, π
40.7853981633974483096156609,accurate to the 25th
decimal place.
(b) n
0
1
2
3
1/p
sn
0.3183098 78 . . .
0.3183098 861837906 067 . . .
0.3183098 861837906 7153776 695 . . .
0.3183098 861837906 7153776 752674502 34 . . .
0.3183098 861837906 7153776 752674502 87 . . .
28. (a) f0(0) = lim
h0
f(h)f(0)
h= lim
h0
e1/h2
h, let t=1/h then h=1/t and
lim
h0+
e1/h2
h= lim
t+tet2= lim
t+
t
et2= lim
t+
1
2tet2= 0, similarly lim
h0
e1/h2
h=0so
f
0
(0)=0.
397 Chapter 11
(b) The Maclaurin series is 0 + 0 ·x+0·x
2+···= 0, but f(0) = 0 and f(x)>0ifx6= 0 so the
series converges to f(x) only at the point x=0.
EXERCISE SET 11.10
1. (a) Replace xwith x:1
1+x=1x+x
2···+(1)kxk+···;R=1.
(b) Replace xwith x2:1
1x2=1+x
2+x
4+···+x
2k+···;R=1.
(c) Replace xwith 2x:1
12x=1+2x+4x
2+···+2
k
x
k+···;R=1/2.
(d) 1
2x=1/2
1x/2; replace xwith x/2: 1
2x=1
2+1
2
2x+1
2
3x
2+···+1
2
k+1 xk+···;R=2.
2. (a) Replace xwith x: ln(1 x)=xx
2
/2x
3
/3···x
k/k ···;R=1.
(b) Replace xwith x2: ln(1 + x2)=x
2x
4
/2+x
6/3···+(1)k1x2k/k +···;R=1.
(c) Replace xwith 2x: ln(1+2x)=2x(2x)2/2+(2x)3/3···+(1)k1(2x)k/k+···;R=1/2.
(d) ln(2 + x) = ln 2 + ln(1 + x/2); replace xwith x/2:
ln(2 + x)=ln2+x/2(x/2)2/2+(x/2)3/3+···+(1)k1(x/2)k/k +···;R=2.
3. (a) From Section 11.9, Example 5(b), 1
1+x=11
2
x+1·3
2
2·2!x21·3·5
23·3! x3+···,so
(2+x)1/2=1
2p1+x/2=1
21/21
25/2x+1·3
29/2·2!x21·3·5
213/2·3!x3+···
(b) Example 5(a): 1
(1+x)2=12x+3x
24x
3+···,so 1
(1 x2)2=1+2x
2+3x
4+4x
6+···
4. (a) 1
ax=1/a
1x/a =1/a +x/a2+x2/a3+···+x
k/ak+1 +···;R=|a|.
(b) 1/(a+x)2=1
a2
1
(1+x/a)2=1
a212(x/a)+3(x/a)24(x/a)3+···
=1
a
22
a
3x+3
a
4x
24
a
5x
3+···
5. (a) 2x23
3! x3+25
5! x527
7! x7+···;R=+(b) 12x+2x
24
3x
3+···;R=+
(c) 1+x
2+1
2!x4+1
3!x6+···;R=+(d) x2π2
2x4+π4
4! x6π6
6! x8+···;R=+
6. (a) 122
2! x2+24
4! x426
6! x6+···;R=+
(b) x21+x+1
2!x2+1
3!x3+···=x
2+x
3+1
2!x4+1
3!x5+···;R=+
(c) x1x+1
2!x21
3!x3+···=xx
2+1
2!x31
3!x4+···;R=+
(d) x21
3!x6+1
5!x10 1
7!x14 +···;R=+
Exercise Set 11.10 398
7. (a) x213x+9x
227x3+···=x
23x
3+9x
427x5+···;R=1/3
(b) x2x+23
3! x3+25
5! x5+27
7! x7+···=2x
2+2
3
3! x4+25
5! x6+27
7! x8+···;R=+
(c) Substitute 3/2 for mand x2for xin Equation (22) of Section 11.9, then multiply by x:
x3
2x3+3
8x5+1
16x7+···;R=1
8. (a) x
x1=x
1x=x1+x+x
2+x
3+···=xx
2x
3x
4···;R=1.
(b) 3+ 3
2!x4+3
4!x8+3
6!x12 +···;R=+
(c) From Table 11.9 with m=3,(1+x)3=13x+6x
210x3+···,so
x(1+2x)
3=x6x
2+24x
380x4+···;R=1/2
9. (a) sin2x=1
2(1 cos 2x)=1
2112
2
2! x2+24
4! x426
6! x6+···
=x223
4! x4+25
6! x627
8! x8+···
(b) ln (1+x3)12= 12 ln(1 + x3)=12x
36x
6+4x
93x
12 +···
10. (a) cos2x=1
2(1 + cos 2x)=1
21+12
2
2! x2+24
4! x426
6! x6+···
=1x
2+2
3
4! x425
6! x6+···
(b) In Equation (17) of Section 11.9 replace xwith x:ln
1x
1+x=2x+1
3x
3+1
5x
5+···
11. (a) 1
x=1
1(1 x)=1+(1x)+(1x)
2+···+(1x)
k+···
=1(x1)+(x1)2···+(1)k(x1)k+···
(b) (0,2)
12. (a) 1
x=1/x0
1+(xx
0)/x0=1/x0(xx0)/x2
0+(xx
0)
2/x3
0−···+(1)k(xx0)k/xk+1
0+···
(b) (0,2x0)
13. (a) (1+x+x2/2+x
3/3!+x4/4!+···)(xx3/3!+x5/5! ···)=x+x
2+x
3
/3x
5
/30+···
(b) (1+x/2x2/8+x
3/16 (5/128)x4+···)(xx2/2+x
3/3x
4/4+x
5/5···)
=xx
3/24+x4/24 (71/1920)x5+···
14. (a) (1 x2+x4/2x6/6+···)11
2x
2+1
24x41
720x6···=13
2
x
2+25
24x4331
720x6+···
(b) 1+4
3x
2+···1+1
3x1
9x
2+5
81x3···=1+1
3
x+11
9x2+41
81x3+···
399 Chapter 11
15. (a) 1
cos x=1
11
2!x2+1
4!x41
6!x6+···=1+1
2
x
2+5
24x4+61
720x6+···
(b) sin x
ex=xx3
3! +x5
5! ···1+x+x
2
2! +x3
3! +x4
4! +···=xx
2+1
3x
31
30x5+···
16. (a) tan1x
1+x=xx
3/3+x
5/5···/(1+x)=xx
2+2
3
x
32
3
x
4···
(b) ln(1 + x)
1x=xx2/2+x
3/3x
4/4+···/(1 x)=x+1
2
x
2+5
6
x
3+7
12x4+···
17. ex=1+x+x
2
/2+x
3/3! + ···+x
k/k!+···,e
x=1x+x
2
/2x
3
/3! + ···+(1)kxk/k!+···;
sinh x=1
2exex=x+x3/3!+x5/5!+···+x
2k+1/(2k+1)!+···,R=+
cosh x=1
2ex+ex=1+x
2
/2+x
4/4!+···+x
2k/(2k)!+···,R=+
18. tanh x=x+x3/3!+x5/5!+···
1+x
2/2+x
4/4!+··· =x1
3x
3+2
15x517
315x7+···
19. 4x2
x21=1
1x+3
1+x=1+x+x
2+x
3+x
4+···+31x+x
2x
3+x
4+···
=24x+2x
24x
3+2x
4+···
20. x3+x2+2x2
x
21=x+11
1x+2
1+x
=x+11+x+x
2+x
3+x
4+···+21x+x
2x
3+x
4+···
=22x+x
23x
3+x
4···
21. (a) d
dx 1x2/2!+x4/4! x6/6!+···=x+x
3/3! x5/5!+···=sin x
(b) d
dx xx2/2+x
3/3···=1x+x
2···=1/(1+x)
22. (a) d
dx x+x3/3!+x5/5!+···=1+x
2
/2!+x4/4!+···= cosh x
(b) d
dx xx3/3+x
5/5x
7/7+···=1x
2+x
4x
6+···=1
1+x
2
23. (a) Z1+x+x
2/2!+···dx =(x+x
2
/2!+x3/3!+···)+C
1
=1+x+x
2/2!+x3/3!+···+C
11=e
x+C
(b) Zx+x3/3!+x5/5!+···=x
2/2!+x4/4!+···+C
1
=1+x
2
/2!+x4/4!+···+C
11 = cosh x+C
Exercise Set 11.10 400
24. (a) Zxx3/3!+x5/5! ···dx =x2/2! x4/4!+x6/6! ···+C
1
=1x
2/2!+x4/4! x6/6!+···+C
1+1
=cos x+C
(b) Z1x+x2···dx =xx2/2+x
3/3···+C= ln(1 + x)+C
(Note: 1<x<1, so |1+x|=1+x)
25. (a) Substitute x2for xin the Maclaurin Series for 1/(1 x) (Table 11.9.1)
and then multiply by x:x
1x2=x
X
k=0
(x2)k=
X
k=0
x2k+1
(b) f(5)(0)=5!c
5=5,f
(6)(0)=6!c
6=0 (c) f(n)(0) = n!cn=(n!ifnodd
0ifneven
26. x2cos 2x=
X
k=0
(1)k22k
(2k)! x2k+2;f(99)(0) = 0 because c99 =0.
27. (a) lim
x0
sin x
x= lim
x01x2/3!+x4/5! ···=1
(b) lim
x0
tan1xx
x3= lim
x0xx3/3+x
5/5x
7/7+···x
x
3=1/3
28. (a) 1cos x
sin x=11x2/2!+x4/4! x6/6!+···
xx
3/3!+x5/5! ··· =x
2/2! x4/4!+x6/6! ···
xx
3/3!+x5/5! ···
=x/2! x3/4!+x5/6! ···
1x
2/3!+x4/5! ··· ,x6= 0; lim
x0
1cos x
sin x=0
1=0
(b) lim
x0
1
xln 1+xsin 2x= lim
x0
1
x1
2ln(1 + x)sin 2x
= lim
x0
1
x1
2x1
2x2+1
3x3···2x4
3x
3+4
15x5···
= lim
x03
21
4x+3
2x2+···=3/2
29. Z1
0sin x2dx =Z1
0x21
3!x6+1
5!x10 1
7!x14 +···dx
=1
3x31
7·3!x7+1
11 ·5!x11 1
15 ·7!x15 +···1
0
=1
31
7·3! +1
11 ·5! 1
15 ·7! +···,
but 1
15 ·7! <0.5×103so Z1
0sin(x2)dx 1
31
7·3! +1
11 ·5! 0.3103
401 Chapter 11
30. Z1/2
0tan12x2dx =Z1/2
02x28
3x6+32
5x10 128
7x14 +···dx
=2
3x38
21x7+32
55x11 128
105x15 +···1/2
0
=2
3
1
2
38
21
1
27+32
55
1
211 128
105
1
215 ···,
but 128
105 ·215 <0.5×104so Z1/2
0tan1(2x2)dx 2
3·238
21 ·27+32
55 ·211 0.0806
31. Z0.2
01+x
41/3dx =Z0.2
01+1
3x
41
9x
8+···dx
=x+1
15x51
81x9+···0.2
0
=0.2+ 1
15(0.2)51
81(0.2)9+···,
but 1
15(0.2)5<0.5×103so Z0.2
0(1+x4)1/3dx 0.200
32. Z1/2
0(1+x2)1/4dx =Z1/2
011
4x2+5
32x415
128x6+···dx
=x1
12x3+1
32x515
896x7+···1/2
0
=1/21
12(1/2)3+1
32(1/2)515
896(1/2)7+···,
but 15
896(1/2)7<0.5×103so Z1/2
0(1+x2)1/4dx 1/21
12(1/2)3+1
32(1/2)50.4906
33. (a) x
(1 x)2=xd
dx 1
1x=xd
dx "
X
k=0
xk#=x"
X
k=1
kxk1#=
X
k=1
kxk
(b) ln(1 x)=Z1
1xdx C=Z"
X
k=0
xk#dx C
=
X
k=0
xk+1
k+1C=
X
k=1
xk
kC, ln(1 0)=0soC=0.
(c) Replace xwith xin part (b): ln(1 + x)=
+
X
k=1
(1)k
kxk=
+
X
k=1
(1)k+1
kxk
(d)
+
X
k=1
(1)k+1
kconverges by the Alternating Series Test.
(e) By parts (c) and (d) and the remark,
+
X
k=1
(1)k+1
kxkconverges to ln(1 + x) for 1<x1.
Exercise Set 11.10 402
34. (a) In Exercise 33(a), set x=1
3,S=1/3
(1 1/3)2=3
4
(b) In part (b) set x=1/4,S = ln(4/3) (c) In part (e) set x=1,S =ln2
35. (a) sinh1x=Z1+x
21/2dx C=Z11
2x2+3
8x45
16x6+···dx C
=x1
6x3+3
40x55
112x7+···C; sinh10=0soC=0.
(b) 1+x
21/2=1+
X
k=1
(1/2)(3/2)(5/2) ···(1/2k+1)
k!(x
2)
k
=1+
X
k=1
(1)k1·3·5···(2k1)
2kk!x2k,
sinh1x=x+
X
k=1
(1)k1·3·5···(2k1)
2kk!(2k+1) x
2k+1
(c) R=1
36. (a) sin1x=Z(1 x2)1/2dx C=Z1+1
2x
2+3
8x
4+5
16x6+···dx C
=x+1
6x3+3
40x5+5
112x7+···C, sin10=0soC=0
(b) 1x21/2=1+
X
k=1
(1/2)(3/2)(5/2) ···(1/2k+1)
k!x
2k
=1+
X
k=1
(1)k(1/2)k(1)(3)(5) ···(2k1)
k!(1)kx2k
=1+
X
k=1
1·3·5···(2k1)
2kk!x2k
sin1x=x+
X
k=1
1·3·5···(2k1)
2kk!(2k+1) x
2k+1
(c) R=1
37. (a) y(t)=y
0
X
k=0
(1)k(0.000121)ktk
k!
(b) y(1) y0(1 0.000121t)it=1 =0.999879y0
(c) y0e0.000121 0.9998790073y0
38. (a) If ct
m0 then ect/m 1ct
m, and v(t)1ct
mv0+mg
cmg
c=v0cv0
m+gt.
(b) The quadratic approximation is
v01ct
m+(ct)2
2m2v0+mg
cmg
c=v0cv0
m+gt+c2
2m2v0+mg
ct2.
403 Chapter 11
39. θ0=5
=π/36 rad, k= sin(π/72)
(a) T2πrL
g=2π
p1/9.82.00709 (b) T2πrL
g1+k
2
42.008044621
(c) 2.008045644
40. The third order model gives the same result as the second, because there is no term of degree three
in (5). By the Wallis sine formula, Zπ/2
0sin4φdφ=1·3
2·4
π
2, and
T4rL
gZπ/2
01+1
2k
2sin2φ+1·3
222!k4sin4φ=4
sL
gπ
2+k
2
2
π
4+3k
4
8
3π
16
=2π
sL
g1+k
2
4+9k
4
64
41. (a) F=mgR2
(R+h)2=mg
(1+h/R)2=mg 12h/R +3h
2/R24h3/R3+···
(b) If h= 0, then the binomial series converges to 1 and F=mg.
(c) Sum the series to the linear term, Fmg 2mgh/R.
(d) mg 2mgh/R
mg =12h
R=12·29,028
4000 ·5280 0.9973, so about 0.27% less.
42. (a) We can differentiate term-by-term:
y0=
X
k=1
(1)kx2k1
22k1k!(k1)! =
X
k=0
(1)k+1x2k+1
22k+1(k+ 1)!k!,y
00 =
X
k=0
(1)k+1(2k+1)x
2k
2
2k+1(k+ 1)!k!, and
xy00 +y0+xy =
X
k=0
(1)k+1(2k+1)x
2k+1
22k+1(k+ 1)!k!+
X
k=0
(1)k+1x2k+1
22k+1(k+ 1)!k!+
X
k=0
(1)kx2k+1
22k(k!)2,
xy00 +y0+xy =
X
k=0
(1)k+1x2k+1
22k(k!)22k+1
2(k+1)+1
2(k+1)1
=0
(b) y0=
X
k=0
(1)k(2k+1)x
2k
2
2k+1k!(k+ 1)! ,y
00 =
X
k=1
(1)k(2k+1)x
2k1
2
2k
(k1)!(k+ 1)! .
Since J1(x)=
X
k=0
(1)kx2k+1
22k+1k!(k+ 1)! and x2J1(x)=
X
k=1
(1)k1x2k+1
22k1(k1)!k!, it follows that
x2y00 +xy0+(x
21)y
=
X
k=1
(1)k(2k+1)x
2k+1
22k(k1)!(k+ 1)! +
X
k=0
(1)k(2k+1)x
2k+1
22k+1(k!)(k+ 1)! +
X
k=1
(1)k1x2k+1
22k1(k1)!k!
X
k=0
(1)kx2k+1
22k+1k!(k+ 1)!
=x
2x
2+
X
k=1
(1)kx2k+1
22k1(k1)!k!2k+1
2(k+1)+2k+1
4k(k+1)11
4k(k+1)=0.
Chapter 11 Supplementary Exercises 404
(c) From part (a), J0
0(x)=
X
k=0
(1)k+1x2k+1
22k+1(k+ 1)!k!=J1(x).
43. If
X
k=0
akxk=
X
k=0
bkxkfor xin (r,r) then
X
k=0
(akbk)xk= 0 so by Theorem 11.10.6
X
k=0
(akbk)xk
is the Taylor series for f(x) = 0 about 0 and hence akbk=0,a
k=b
kfor all k.
CHAPTER 11 SUPPLEMENTARY EXERCISES
4. (a)
X
k=0
f(k)(0)
k!xk(b)
X
k=0
f(k)(x0)
k!(xx0)k
9. (a) always true by Theorem 11.4.2
(b) sometimes false, for example the harmonic series diverges but P(1/k2) converges
(c) sometimes false, for example f(x) = sin πx, ak=0,L =0
(d) always true by Example 3(d) of Section 11.1
(e) sometimes false, for example an=1
2+(1)n1
4
(f) sometimes false, for example uk=1/2
(g) always false by Theorem 11.4.3
(h) sometimes false, for example uk=vk=(2/k)
(i) always true by the Comparison Test
(j) always true by the Comparison Test
(k) sometimes false, for example P(1)k/k
(l) sometimes false, for example P(1)k/k
10. (a) false, f(x) is not differentiable at x= 0, Definition 11.5.4
(b) true: sn=1ifnis odd and s2n=1+1/(n+ 1); lim
n+sn=1
(c) false, lim ak6=0
11. (a) geometric, r=1/5, converges (b) 1/(5k+1)<1/5
k
, converges
(c) 9
k+1 9
k+
k=9
2
k,
X
k=1
9
2kdiverges
12. (a) converges by Alternating Series Test
(b) absolutely convergent,
X
k=1 k+2
3k1k
converges by the Root Test.
(c) k1/2
2 + sin2k>k1
2+1 =1
3k,
X
k=1
1
3kdiverges
13. (a) 1
k3+2k+1 <1
k
3,
X
k=1
1/k3converges, so
X
k=1
1
k3+2k+1 converges by the Comparison Test
(b) Limit Comparison Test, compare with the divergent series
X
k=1
1
k2/5, diverges
405 Chapter 11
(c)
cos(1/k)
k2<1
k2,
X
k=1
1
k2converges, so
X
k=1
cos(1/k)
k2converges absolutely
14. (a)
X
k=1
ln k
kk=
X
k=2
ln k
kkbecause ln1 = 0,
Z+
2
ln x
x3/2dx = lim
`+2lnx
x
1/24
x
1/2`
2
=2(ln2 + 2) so
X
k=2
ln k
k3/2converges
(b) k4/3
8k2+5k+1 k
4/3
8k
2+5k
2+k
2=1
14k2/3,
X
k=1
1
14k2/3diverges
(c) absolutely convergent,
X
k=1
1
k2+1 converges (compare with P1/k2)
15.
X
k=0
1
5k
99
X
k=0
1
5k=
X
k=100
1
5k=1
5100
X
k=0
1
5k=1
4·599
16. no, lim
k+ak=1
26= 0 (Divergence Test)
17. (a) p0(x)=1,p
1(x)=17x, p2(x)=17x+5x
2
,p
3(x)=17x+5x
24x
3
,
p
4
(x)=17x+5x
24x
3
(b) If f(x) is a polynomial of degree nand knthen the Maclaurin polynomial of degree kis
the polynomial itself; if k<nthen it is the truncated polynomial.
18. ln(1 + x)=xx
2
/2+···;so|ln(1 + x)x|≤x
2
/2 by Theorem 11.7.2.
19. sin x=xx3/3!+x5/5! x7/7!+···is an alternating series, so
|sin xx+x3/3! x5/5!|≤x
7
/7! π7/(477!) 0.00005
20. Z1
0
1cos x
xdx =x2
2·2! x4
4·4! +x6
6·6! ···1
0
=1
2·2! 1
4·4! +1
6·6! ···, and 1
6·6! <0.0005,
so Z1
0
1cos x
xdx =1
2·2! 1
4·4! =0.2396 to three decimal-place accuracy.
21. (a) ρ= lim
k+2k
k!1/k
= lim
k+
2
k
k!= 0, converges
(b) ρ= lim
k+u1/k
k= lim
k+
k
k
k!=e, diverges
22. (a) 111!; if kkk!,then (k+1)k+1 (k+1)kk(k+1)k!=(k+1)!; mathematical induction
(b) X1
kkX1
k!, converges
Chapter 11 Supplementary Exercises 406
(c) lim
k+1
kk1/k
= lim
k+
1
k= 0, converges
23. (a) u100 =
100
X
k=1
uk
99
X
k=1
uk=21
10021
99=1
9900
(b) u1= 1; for k2,u
k=21
k21
k1=1
k(k1),lim
k+uk=0
(c)
X
k=1
uk= lim
n+
n
X
k=1
uk= lim
n+21
n=2
24. (a)
X
k=1 3
2k2
3k=
X
k=1
3
2k
X
k=1
2
3k=3
21
1(1/2) 2
31
1(1/3) = 2 (geometric series)
(b)
n
X
k=1
[ln(k+1)ln k] = ln(n+ 1), so
X
k=1
[ln(k+1)ln k] = lim
n+ln(n+1)=+, diverges
(c) lim
n+
n
X
k=1
1
21
k1
k+2= lim
n+
1
21+1
21
n+11
n+2=3
4
(d) lim
n+
n
X
k=1 tan1(k+1)tan1k= lim
n+tan1(n+1)tan1(1)=π
2π
4=π
4
25. (a) e21(b) sin π=0 (c) cos e(d) eln 3 =1/3
26. ak+1 =ak=a1/2
k=a1/4
k1=···=a
1/2
k
1=c
1/2
k+1
(a) If c=1/2 then lim
k+ak=1. (b) if c=3/2 then lim
k+ak=1.
27. Expand in a Maclaurin Series about x= 100 : e[(x100)/16]2=1(x100)2
162+(x100)4
2·164,so
p1
162πZ110
100 1(x100)2
162+(x100)4
2·164dx =1
162π10 103
3·162+105
2·5·164
0.220678, or about 22.07%.
28. f(x)=xex=x+x2+x3
2! +x4
3! +···=
X
k=0
xk+1
k!,
f0(x)=(x+1)e
x=1+2x+3x
2
2! +4x3
3! +···=
X
k=0
k+1
k!x
k
;
X
k=0
k+1
k!=f0(1)=2e.
29. Let A=11
2
2+1
3
21
4
2+···; since the series all converge absolutely,
π2
6A=21
2
2+21
4
2+21
6
2+···=1
21+ 1
2
2+1
3
2+···=1
2
π
2
6,soA=1
2
π
2
6=π
2
12.
30. Compare with 1/kp: converges if p>1, diverges otherwise.
407 Chapter 11
31. (a) x+1
2x2+3
14x3+3
35x4+···;ρ= lim
k+
k+1
3k+1|x|=1
3|x|,
converges if 1
3|x|<1, |x|<3soR=3.
(b) x3+2
3x52
5x7+8
35x9···;ρ= lim
k+
k+1
2k+1|x|
2=1
2|x|
2,
converges if 1
2|x|2<1, |x|2<2, |x|<2soR=
2.
32. By the Ratio Test for absolute convergence, ρ= lim
k+|xx0|
b=|xx0|
b; converges if
|xx0|<b, diverges if |xx0|>b.Ifx=x
0
b,
X
k=0
(1)kdiverges; if x=x0+b,
X
k=0
1 diverges. The interval of convergence is (x0b, x0+b).
33. If x0, then cos x=1(
x)
2
2! +(x)4
4! (x)6
6! +···=1x
2! +x2
4! x3
6! +···;ifx0, then
cosh(x)=1+(
x)
2
2! +(x)4
4! +(x)6
6! +···=1x
2! +x2
4! x3
6! +···.
34. By Exercise 70 of Section 3.5, the derivative of an odd (even) function is even (odd); hence all
odd-numbered derivatives of an odd function are even, all even-numbered derivatives of an odd
function are odd; a similar statement holds for an even function.
(a) If f(x) is an even function, then
2f0(0) = lim
h0+
f(0+h)f(0)
h+ lim
h0+
f(0) f(0 h)
h= lim
h0+
f(0+h)f(0 h)
h=0,so
f
0(0)=0. Iff(x) is even then so is f(2k),thusf
(2k+1)(0)=0,k=0,1,2,.... Hence
c2k+1 =f(2k+1)(0)/(2k+1)!=0.
(b) If f(x) is an odd function, then f(2k1) is even (k=1,2,...), and thus by Part (a),
f(2k)(0)=0,c
2k=f
(2k)(0)/(2k)!=0.
35. 1v2
c21/2
1+ v
2
2c
2,soK=m
0
c
2"1
p1v
2
/c21#m0c2(v2/(2c2)=m
0
v
2
/2
36. (a) Z+
n
1
x3.7dx < (0.5)105if n>63.7; let n= 64.
(b) sn1.10628342; CAS: 1.10628824
408
CHAPTER 12
Analytic Geometry in Calculus
EXERCISE SET 12.1
1.
(1, 6)
(3, 3)
(4, e)(–1, r)
0
p/2
(5, 8)
(–6, –p)
2.
( , L)
3
20
p/2
(–3, i)
(–5, @)
(2, $)
(0, c)
(2, g)
3. (a) (33,3) (b) (7/2,73/2) (c) (33,3)
(d) (0,0) (e) (73/2,7/2) (f) (5,0)
4. (a) (42,42) (b) (72/2,72/2) (c) (42,42)
(d) (5,0) (e) (0,2) (f) (0,0)
5. (a) both (5)(b) (4,11π/6),(4,π/6) (c) (2,3π/2),(2,π/2)
(d) (82,5π/4),(82,3π/4) (e) both (6,2π/3) (f) both (2/4)
6. (a) (2,5π/6) (b) (2,11π/6) (c) (2,7π/6) (d) (2,π/6)
7. (a) (5,0.6435) (b) (29,5.0929) (c) (1.2716,0.6658)
8. (a) (5,2.2143) (b) (3.4482,2.6260) (c) (p4+π
2/36,0.2561)
9. (a) r2=x2+y2= 4; circle (b) y= 4; horizontal line
(c) r2=3rcos θ,x2+y2=3x,(x3/2)2+y2=9/4; circle
(d) 3rcos θ+2rsin θ=6,3x+2y= 6; line
10. (a) rcos θ=5,x= 5; vertical line
(b) r2=2rsin θ,x2+y2=2y,x
2+(y1)2= 1; circle
(c) r2=4rcos θ+4rsin θ, x2+y2=4x+4y, (x2)2+(y2)2= 8; circle
(d) r=1
cos θ
sin θ
cos θ,rcos2θ= sin θ,r2cos2θ=rsin θ,x2=y; parabola
11. (a) rcos θ=7 (b) r=3
(c) r26rsin θ=0,r= 6 sin θ
(d) 4(rcos θ)(rsin θ)=9,4r
2sin θcos θ=9,r
2sin 2θ=9/2
12. (a) rsin θ=3(b) r=5
(c) r2+4rcos θ=0,r=4 cos θ
(d) r4cos2θ=r2sin2θ,r2= tan2θ,r= tan θ
409 Chapter 12
13.
0
p/2
-3
-3
3
3
r= 3 sin 2θ
14. 2
-2
-2 2
r= 2 cos 3θ
15.
0
p/2
-4 4
-1
r=34 sin 3θ
16.
0
p/2
r=2+2sinθ
17. (a) r=5
(b) (x3)2+y2=9,r= 6 cos θ
(c) Example 6, r=1cos θ
18. (a) From (8-9), r=a±bsin θor r=a±bcos θ. The curve is not symmetric about the y-axis,
so Theorem 12.2.1(a) eliminates the sine function, thus r=a±bcos θ. The cartesian point
(3,0) is either the polar point (3)or(3,0), and the cartesian point (1,0) is either
the polar point (1)or(1,0). A solution is a=1,b =2; we may take the equation as
r=12 cos θ.
(b) x2+(y+3/2)2=9/4,r =3 sin θ
(c) Figure 12.1.18, a=1,n =3,r = sin 3θ
19. (a) Figure 12.1.18, a=3,n =2,r = 3 sin 2θ
(b) From (8-9), symmetry about the y-axis and Theorem 12.1.1(b), the equation is of the form
r=a±bsin θ. The cartesian points (3,0) and (0,5) give a=3and5=a+b,sob= 2 and
r=3+2sinθ.
(c) Example 8, r2= 9 cos 2θ
20. (a) Example 6 rotated through π/2 radian: a=3,r =33 sin θ
(b) Figure 12.1.18, a=1,r = cos 5θ
(c) x2+(y2)2=4,r= 4 sin θ
Exercise Set 12.1 410
21.
Line
2
22.
Line
(
23.
Circle
3
24. 4
Circle
25.
6
Circle
26.
1
2
Cardioid
27.
Circle
1
2
28.
4
2
Cardioid
29.
Cardioid
3
6
30.
5
10
Cardioid
31. 4
8
Cardioid
32.
1
3
1
Limaçon
33.
1
2
Cardioid
34.
17
4
Limaçon
35.
3
2
1
Limaçon
36.
42
3
Limaçon
37.
Limaçon
3
17
38.
2
5
8
Limaçon
411 Chapter 12
39.
3
5
Limaçon
7
40.
3
1
7
Limaçon
41.
Lemniscate
3
42. 1
Lemniscate
43.
Lemniscate
444.
Spiral
2p
4p
6p
8p
45.
Spiral
2p4p
6p
8p
46. 2p
6p
4p
Spiral
47.
1
Four-petal rose
48.
3
Four-petal rose
49.
9
Eight-petal rose
50.
2
Three-petal rose
52. 1
-1
-1 1
53. 3
-3
-3 3
54. 2
-2
-2 2
55. 1
-1
-1 1
Exercise Set 12.1 412
56. 0θ8π57. (a) 4π<θ<4π
58. In I, along the x-axis, x=rgrows ever slower with θ.InIIx=rgrows linearly with θ.
Hence I: r=θ;II:r=θ.
59. (a) r=a/ cos θ, x =rcos θ=a, a family of vertical lines
(b) r=b/ sin θ, y =rsin θ=b, a family of horizontal lines
60. The image of (r0
0) under a rotation through an angle αis (r0
0+α). Hence (f(θ)) lies on
the original curve if and only if (f(θ)+α) lies on the rotated curve, i.e. (r, θ) lies on the rotated
curve if and only if r=f(θα).
61. (a) r= 1 + cos(θπ/4)=1+
2
2(cos θ+ sin θ)
(b) r= 1 + cos(θπ/2) = 1 + sin θ
(c) r= 1 + cos(θπ)=1cos θ
(d) r= 1 + cos(θ5π/4)=1
2
2(cos θ+ sin θ)
62. r2= 4 cos 2(θπ/2) = 4 cos 2θ
63. Either r1=0orθ1=0,
so the graph consists of the
circle r= 1 and the line θ=1.
0
p
/
2
r = 1
u = 1
64. (a) r2=Ar sin θ+Br cos θ,x2+y2=Ay +Bx, (xB/2)2+(yA/2)2=(A
2+B
2
)/4, which
is a circle of radius 1
4pA2+B2.
(b) Formula (4) follows by setting A=0,B =2a, (xa)2+y2=a2, the circle of radius aabout
(a, 0). Formula (5) is derived in a similar fashion.
65. y=rsin θ= (1 + cos θ) sin θ= sin θ+ sin θcos θ,
dy/dθ = cos θsin2θ+ cos2θ= 2 cos2θ+ cos θ1=(2cosθ1)(cos θ+ 1);
dy/dθ = 0 if cos θ=1/2orifcosθ=1; θ=π/3orπ.
If θ=π/3, then y=3
3/4,0 so the maximum value of yis 33/4 and the polar coordinates
of the highest point are (3/2/3).
66. x=rcos θ= (1 + cos θ) cos θ= cos θ+ cos2θ,dx/dθ =sin θ2 sin θcos θ=sin θ(1 + 2 cos θ),
dx/dθ = 0 if sin θ= 0 or if cos θ=1/2; θ=0,2π/3, or π.Ifθ=0,2π/3, π, then x=2,1/4,0
so the minimum value of xis 1/4. The leftmost point has polar coordinates (1/2,2π/3).
67. (a) Let (x1,y
1) and (x2,y
2) be the rectangular coordinates of the points (r1
1) and (r2
2) then
d=p(x2x1)2+(y
2y
1)
2=p(r
2cos θ2r1cos θ1)2+(r
2sin θ2r1sin θ1)2
=pr2
1+r2
22r1r2(cos θ1cos θ2+ sin θ1sin θ2)=pr
2
1+r
2
22r
1
r
2cos(θ1θ2).
(b) Let Pand Qhave polar coordinates (r1
1),(r
2
2), respectively, then the perpendicular
from OQ to OP has length h=r2sin(θ2θ1) and A=1
2hr1=1
2r1r2sin(θ2θ1).
413 Chapter 12
(c) From Part (a), d=p9+42·3·2 cos(π/6π/3) = p13 631.615
(d) A=1
22 sin(5π/6π/3)=1
68. (a) 0=(x
2+y
2+a
2
)
2a
44a
2
x
2=x
4+y
4+a
4+2x
2y
2+2x
2a
2+2y
2a
2a
44a
2x
2
=x
4+y
4+2x
2y
22x
2a
2+2y
2a
2=(x
2+y
2
)
2+2a
2(y
2x
2)
=r
4+2a
2r
2(sin2θcos2θ)=r
42a
2
r
2cos 2θ, so r2=2a
2cos 2θ
(b) (x2+a2+y2)24x2a2=a4;(xa)2+y2(x+a)2+y2=a4;
p(x+a)2+y2p(xa)+y
2=a
2
69. lim
θ0+y= lim
θ0+rsin θ= lim
θ0+
sin θ
θ=1
70. lim
θ0±y= lim
θ0±rsin θ= lim
θ0±
sin θ
θ2= lim
θ0±
sin θ
θlim
θ0±
1
θ=1·lim
θ0±
1
θ, so lim
θ0±ydoes not exist.
71. Note that r→±as θapproaches odd multiples of π/2;
x=rcos θ= 4 tan θcos θ= 4 sin θ,
y=rsin θ= 4 tan θsin θ
so x→±4 and y→±as θapproaches
odd multiples of π/2.4
-4
u
r
72. lim
θ(π/2)x= lim
θ(π/2)rcos θ= lim
θ(π/2)2 sin2θ=2,x= 2 is a vertical asymptote.
73. Let r=asin (the proof for r=acos is similar). If θstarts at 0, then θwould have to increase
by some positive integer multiple of πradians in order to reach the starting point and begin to
retrace the curve. Let (r, θ) be the coordinates of a point Pon the curve for 0 θ<2π.Now
asin n(θ+2π)=asin(+2πn)=asin =rso Pis reached again with coordinates (r, θ +2π)
thus the curve is traced out either exactly once or exactly twice for 0 θ<2π. If for 0 θ<π,
P(r, θ) is reached again with coordinates (r, θ +π) then the curve is traced out exactly once for
0θ<π, otherwise exactly once for 0 θ<2π. But
asin n(θ+π)=asin(+)=asin nθ, n even
asin , n odd
so the curve is traced out exactly once for 0 θ<2πif nis even, and exactly once for 0 θ<π
if nis odd.
EXERCISE SET 12.2
1. (a) dy/dx =1/2
2t=1/(4t); dy/dxt=1=1/4; dy/dxt=1 =1/4
(b) x=(2y)
2+1, dx/dy =8y, dy/dxy=±(1/2) =±1/4
2. (a) dy/dx = (4 cos t)/(3 sin t)=(4/3) cot t;dy/dxt=π/4=4/3, dy/dxt=7π/4=4/3
(b) (x/3)2+(y/4)2=1,2x/9+(2y/16)(dy/dx)=0, dy/dx =16x/9y,
dy/dxx=3/2
y=4/2
=4/3; dy/dxx=3/2
y=4/2
=4/3
Exercise Set 12.2 414
3. d2y
dx2=d
dx
dy
dx =d
dt dy
dxdt
dx =1
4t2(1/2t)=1/(8t3); positive when t=1,
negative when t=1
4. d2y
dx2=d
dt dy
dxdt
dx =(4/3)(csc2t)
3 sin t=4
9csc3t; negative at t=π/4, positive at t=7π/4.
5. dy/dx =2
1/(2t)=4
t,d
2
y/dx2=2/t
1/(2t)=4,dy/dxt=1 =4, d
2
y/dx2t=1 =4
6. dy/dx =t2
t=t,d2y/dx2=1
t,dy/dxt=2 =2, d
2
y/dx2t=2 =1/2
7. dy/dx =sec2t
sec ttan t= csc t,d2y/dx2=csc tcot t
sec ttan t=cot3t,
dy/dxt=π/3=2/
3, d2y/dx2t=π/3=1/(33)
8. dy/dx =sinh t
cosh t= tanh t,d2y
dx2= sech2t/ cosh t= sech3t,dy/dxt=0 =0,d
2y/dx2t=0 =1
9. dy
dx =dy/dθ
dx/dθ =cos θ
2sin θ;d2y
dx2=d
dy
dx/dx
=2
(2 sin θ)2
1
2sin θ=1
(2 sin θ)3;
dy
dxθ=π/3=1/2
23/2=1
43;d2y
dx2θ=π/3=1
(2 3/2)3=8
(4 3)3
10. dy
dx =3 cos φ
sin φ=3 cot φ;d2y
dx2=d
(3 cot φ)
dx =3(csc2φ)(csc φ)=3 csc3φ;
dy
dxφ=5π/6
=3
3; d2y
dx2φ=5π/6
=24
11. (a) dy/dx =et
et=e2t; for t=1,dy/dx =e2,(x, y)=(e, e1); ye1=e2(xe),
y=e2x+2e
1
(b) y=1/x, dy/dx =1/x2,m=1/e2,ye
1=1
e
2(xe),y =1
e
2x+2
e
12. dy/dx =16t2
2=8t1; for t=1,dy/dx =7,(x, y)=(6,10); y10=7(x6), y=7x32
13. dy/dx =4 cos t
2 sin t=2 cot t
(a) dy/dx = 0 if cot t=0,t=π/2+for n=0,±1,···
(b) dx/dy =1
2tan t= 0 if tan t=0,t=for n=0,±1,···
14. dy/dx =2t+1
6t
230t+24 =2t+1
6(t1)(t4)
(a) dy/dx =0ift=1/2
(b) dx/dy =6(t1)(t4)
2t+1 =0ift=1,4
415 Chapter 12
15. x=y= 0 when t=0;dy
dx =2 cos 2t
cos t;dy
dxt=0
=2,dy
dxt=π
=2,the equations of the tangent
lines are y=2x, y =2x.
16. y(t) = 0 has three solutions, t=0,±π/2; the last two correspond to the crossing point.
For t=±π/2, m=dy
dx =2
±π; the tangent lines are given by y=±2
π(x2).
17. If y= 4 then t2=4,t=±2, x= 0 for t=±2so(0,4) is reached when t=±2.
dy/dx =2t/(3t24). For t=2,dy/dx =1/2 and for t=2, dy/dx =1/2. The tangent lines
are y=±x/2+4.
18. If x= 3 then t23t+5=3,t
23t+2=0,(t1)(t2)=0,t= 1 or 2. If t= 1 or 2 then
y= 1 so (3,1) is reached when t= 1 or 2. dy/dx =(3t
2+2t10)/(2t3). For t=1,dy/dx =5,
the tangent line is y1=5(x3), y=5x14. For t=2,dy/dx = 6, the tangent line is
y1=6(x3), y=6x17.
19. (a) 1
-1
-1 1
(b) dx
dt =3 cos2tsin tand dy
dt = 3 sin2tcos tare both zero when t=0/2,3π/2,2π,
so singular points occur at these values of t.
20. (a) when y=0
(b) dy
dx =asin θ
aacos θ= 0 when θ=2+π/2,n=0,1,... (which is when y= 0).
21. Substitute θ=π/3, r= 1, and dr/dθ =3 in equation (7) gives slope m=1/
3.
22. As in Exercise 21, θ=π/4, dr/dθ =2/2, r=1+
2/2, m=12
23. As in Exercise 21, θ=2,dr/dθ =1/4, r=1/2, m=tan 2 2
2 tan 2 + 1
24. As in Exercise 21, θ=π/6, dr/dθ =4
3a,r=2a,m=3
3/5
25. As in Exercise 21, θ=3π/4, dr/dθ =32/2, r=2/2, m=2
26. As in Exercise 21, θ=π,dr/dθ =3,r=4,m=4/3
27. m=dy
dx =rcos θ+ (sin θ)(dr/dθ)
rsin θ+ (cos θ)(dr/dθ)=cos θ+ 2 sin θcos θ
sin θ+ cos2θsin2θ;ifθ=0/2,
then m=1,0,1.
28. m=dy
dx =cos θ(4 sin θ1)
4 cos2θ+ sin θ2;ifθ=0/2then m=1/2,0,1/2.
Exercise Set 12.2 416
29. dx/dθ =asin θ(1 + 2 cos θ), dy/dθ =a(2 cos θ1)(cos θ+1)
(a) horizontal if dy/dθ = 0 and dx/dθ 6=0.dy/dθ = 0 when cos θ=1/2orcosθ=1soθ=π/3,
5π/3, or π;dx/dθ 6= 0 for θ=π/3 and 5π/3. For the singular point θ=πwe find that
lim
θπdy/dx = 0. There is a horizontal tangent line at (3a/2/3),(0), and (3a/2,5π/3).
(b) vertical if dy/dθ 6= 0 and dx/dθ =0. dx/dθ = 0 when sin θ= 0 or cos θ=1/2soθ=0,π,
2π/3, or 4π/3; dy/dθ 6= 0 for θ=0,2π/3, and 4π/3. The singular point θ=πwas discussed
in part (a). There is a vertical tangent line at (2a, 0),(a/2,2π/3), and (a/2,4π/3).
30. dx/dθ =a(cos2θsin2θ)=acos 2θ, dy/dθ =2asin θcos θ=asin 2θ
(a) horizontal if dy/dθ = 0 and dx/dθ 6=0. dy/dθ = 0 when θ=0/2,3π/2,2π;dx/dθ 6=0
for (0,0),(a, π/2),(0),(a, 3π/2),(0,2π); in reality only two distinct points
(b) vertical if dy/dθ 6= 0 and dx/dθ =0. dx/dθ = 0 when θ=π/4,3π/4,5π/4,7π/4; dy/dθ 6=0
there, so vertical tangent line at (a/2/4),(a/2,3π/4),(a/2,5π/4),(a/2,7π/4),
only two distinct points
31. dy/dθ =(d/dθ)(sin2θcos2θ) = (sin 4θ)/2=0atθ=0/4/2,3π/4; at the same points,
dx/dθ =(d/dθ)(sin θcos3θ) = cos2θ(4 cos2θ3). Next, dx
=0atθ=π/2, a singular point; and
θ=0both give the same point, so there are just three points with a horizontal tangent.
32. dx/dθ = 4 sin2θsin θ2, dy/dθ = cos θ(1 4 sin θ). dy/dθ = 0 when cos θ= 0 or sin θ=1/4so
θ=π/2, 3π/2, sin1(1/4), or πsin1(1/4); dx/dθ 6= 0 at these points, so there is a horizontal
tangent at each one.
33.
0
p/2
2
θ0=π/6/2,5π/6
34.
0
p/2
θ0=π/2
35.
0
p/2
4
θ0=±π/4
36.
0
p/2
θ0=0/2
37.
0
p/2
3
θ0=2π/3,4π/3
38.
0
p/2
θ0=0
39. r2+(dr/dθ)2=a2+0
2=a
2,L=Z2π
0adθ =2πa
417 Chapter 12
40. r2+(dr/dθ)2=(2acos θ)2+(2asin θ)2=4a
2
,L=Zπ/2
π/22adθ =2πa
41. r2+(dr/dθ)2=[a(1 cos θ)]2+[asin θ]2=4a
2sin2(θ/2), L=2Zπ
02asin(θ/2)=8a
42. r2+(dr/dθ)2= [sin2(θ/2)]2+ [sin(θ/2) cos(θ/2)]2= sin2(θ/2), L=Zπ
0sin(θ/2)=2
43. r2+(dr/dθ)2=(e
3θ
)
2+(3e
3θ)
2=10e
6θ
,L=Z2
0
10e3θ=10(e61)/3
44. r2+(dr/dθ)2= [sin3(θ/3)]2+ [sin2(θ/3) cos(θ/3)]2= sin4(θ/3),
L=Zπ/2
0sin2(θ/3)=(2π3
3)/8
45. (a) From (3), dy
dx =3 sin t
13 cos t
(b) At t=10,dy
dx =3 sin 10
13 cos 10 ≈−0.4640tan1(0.4640) = 0.4344
46. (a) dy
dx = 0 when dy
dt = 2 sin t=0,t=0,2π, 3π
(b) dx
dt = 0 when 1 2 cos t=0,cos t=1/2,t =π/3,5π/3,7π/3
47. (a) r2+(dr/dθ)2= (cos )2+(nsin )2= cos2+n2sin2
=(1sin2)+n
2sin2=1+(n
21) sin2,
L=2Zπ/(2n)
0q1+(n
21) sin2
(b) L=2Zπ/4
0p1+3sin
22θdθ 2.42
(c) n
L
2
2.42211
3
2.22748
4
2.14461
5
2.10100
6
2.07501
7
2.05816
8
2.04656
9
2.03821
10
2.03199
11
2.02721
n
L
12
2.02346
13
2.02046
14
2.01802
15
2.01600
16
2.01431
17
2.01288
18
2.01167
19
2.01062
20
2.00971
48. (a)
0
p/2
(b) r2+(dr/dθ)2=(e
θ
)
2+(e
θ)
2=2e
2θ
,L=
Z+
0
2e
θ
(c) L= lim
θ0+Zθ0
0
2eθ= lim
θ0+
2(1 eθ0)=
2
Exercise Set 12.2 418
49. x0=2t,y
0=2,(x
0)
2+(y
0)
2=4t
2+4
S=2πZ4
0(2t)p4t2+4dt =8πZ4
0t
pt
2+1dt =8π
3(t2+1)
7/24
0
=8π
3(1717 1)
50. x0=et(cos tsin t), y0=et(cos t+ sin t), (x0)2+(y
0)
2=2e
2t
S=2πZπ/2
0(etsin t)2e2tdt =2
2πZπ/2
0e2tsin tdt
=2
2π1
5
e
2t
(2 sin tcos t)π/2
0
=22
5π(2eπ+1)
51. x0=2 sin tcos t,y0= 2 sin tcos t,(x
0
)
2+(y
0)
2= 8 sin2tcos2t
S=2πZπ/2
0cos2tp8 sin2tcos2tdt=4
2πZπ/2
0cos3tsin tdt=2πcos4tπ/2
0
=2π
52. x0=1,y
0=4t,(x
0
)
2+(y
0)
2=1+16t
2,S=2πZ1
0t
p1+16t
2dt =π
24(1717 1)
53. x0=rsin t,y0=rcos t,(x
0
)
2+(y
0)
2=r
2,S=2πZπ
0rsin tr2dt =2πr2Zπ
0sin tdt=4πr2
54. dx
=a(1 cos φ), dy
=asin φ,dx
2
+dy
2
=2a
2
(1 cos φ)
S=2πZ2π
0a(1 cos φ)p2a2(1 cos φ)=2
2πa2Z2π
0(1 cos φ)3/2dφ,
but 1 cos φ= 2 sin2φ
2so (1 cos φ)3/2=2
2 sin3φ
2for 0 φπand, taking advantage of the
symmetry of the cycloid, S=16πa2Zπ
0sin3φ
2=64πa2/3
55. (a) dr
dt = 2 and
dt =1sodr
=dr/dt
/dt =2
1=2,r=2θ+C,r= 10 when θ=0so
10 = C, r =2θ+ 10.
(b) r2+(dr/dθ)2=(2θ+ 10)2+ 4, during the first 5 seconds the rod rotates through an angle
of (1)(5) = 5 radians so L=Z5
0p(2θ+ 10)2+4, let u=2θ+10toget
L=1
2Z20
10 pu2+4du =1
2hu
2pu2+4+2ln|u+pu
2+4|
i20
10
=1
2"10404 5104 + 2 ln 20+404
10+104#75.7mm
56. x=rcos θ, y =rsin θ, dx
=dr
cos θrsin θ, dy
=rcos θ+dr
sin θ,
dx
2
+dy
2
=r2+dr
2
, and Formula (6) of Section 8.4 becomes
L=Zβ
αsr2+dr
2
419 Chapter 12
EXERCISE SET 12.3
1. (a) Zπ
π/2
1
2(1 cos θ)2(b) Zπ/2
0
1
24 cos2θdθ (c) Zπ/2
0
1
2sin22θdθ
(d) Z2π
0
1
2θ2(e) Zπ/2
π/2
1
2(1 sin θ)2(f) 2Zπ/4
0
1
2cos22θdθ
2. (a) 3π/8+1 (b) π/2(c) π/8
(d) 4π3/3(e) 3π/4(f) π/8
3. (a) A=Z2π
0
1
2a2=πa2(b) A=Zπ
0
1
24a2sin2θdθ=πa2
(c) A=Zπ/2
π/2
1
24a2cos2θdθ =πa2
4. (a) r2=rsin θ+rcos θ, x2+y2yx=0,x1
2
2
+y1
2
2
=1
2
(b) A=Z3π/4
π/4
1
2(sin θ+ cos θ)2=π/2
5. A=2Zπ
0
1
2
(2 + 2 cos θ)2=6π6. A=Zπ/2
0
1
2(1 + sin θ)2=3π/8+1
7. A=6Zπ/6
0
1
2(16 cos23θ)=4π
8. The petal in the first quadrant has area Zπ/2
0
1
24 sin22θdθ=π/2, so total area = 2π.
9. A=2Zπ
2π/3
1
2(1 + 2 cos θ)2=π33/210. A=Z3
1
2
θ2=4/3
11. area = A1A2=Zπ/2
0
1
24 cos2θdθZπ/4
0
1
2cos 2θdθ=π/21
4
12. area = A1A2=Zπ
0
1
2(1 + cos θ)2Zπ/2
0
1
2cos2θdθ=5π/8
13. The circles intersect when cos t=3 sin t, tan t=1/
3,t =π/6, so
A=A1+A2=Zπ/6
0
1
2(43 sin t)2dt+Zπ/2
π/6
1
2(4 cos t)2dt =2π3
3+4π/33=10π/343.
14. The curves intersect when 1 + cos t= 3 cos t, cos t=1/2,t=±π/3, and hence
total area = 2 Zπ/3
0
1
2(1+cos t)2dt+2 Zπ/2
π/3
1
29 cos2tdt=2(π/4+93/16+3π/893/16)=5π/4.
Exercise Set 12.3 420
15. A=2Zπ/2
π/6
1
2[25 sin2θ(2 + sin θ)2]=8π/3+
3
16. A=2Zπ
0
1
2
[16 (2 2 cos θ)2]=10π
17. A=2Zπ/3
0
1
2[(2 + 2 cos θ)29]=9
3/2π
18. A=2Zπ/4
0
1
2(16 sin2θ)=2π4
19. A=2"Z2π/3
0
1
2(1/2 + cos θ)2Zπ
2π/3
1
2(1/2 + cos θ)2#=(π+3
3)/4
20. A=2Zπ/3
0
1
2(2 + 2 cos θ)29
4sec2θ=2π+9
4
3
21. A=2Zcos1(3/5)
0
1
2(100 36 sec2θ)= 100 cos1(3/5) 48
22. A=8Zπ/8
0
1
2(4a2cos22θ2a2)=2a
2
23. (a) ris not real for π/4<θ<3π/4 and 5π/4<θ<7π/4
(b) A=4Zπ/4
0
1
2a2cos 2θdθ=a
2
(c) A=4Zπ/6
0
1
2h4 cos 2θ2i=2
32π
3
24. A=2Zπ/2
0
1
2sin 2θdθ=1 25. A=Z4π
2π
1
2a2θ2Z2π
0
1
2a2θ2=8π
3
a
2
26. (a) x=rcos θ, y =rsin θ,
(dx/dθ)2+(dy/dθ)2=(f
0(θ) cos θf(θ) sin θ)2+(f0(θ) sin θ+f(θ) cos θ)2=f0(θ)2+f(θ)2;
S=Zβ
α
2πf(θ) sin θpf0(θ)2+f(θ)2if about θ= 0; similarly for θ=π/2
(b) f0,g
0are continuous and no segment of the curve is traced more than once.
27. r2+dr
2
= cos2θ+ sin2θ=1,
so S=Zπ/2
π/22πcos2θdθ =π
2.
421 Chapter 12
28. S=Zπ/2
02πeθcos θ2e2θ
=2
2πZπ/2
0e2θcos θdθ=2
2π
5(e
π2)
29. S=Zπ
02π(1 cos θ) sin θp12 cos θ+ cos2θ+ sin2θdθ
=2
2πZπ
0sin θ(1 cos θ)3/2=2
522π(1 cos θ)5/2
π
0=32π/5
30. S=Zπ
02πa sin(θ)adθ =4πa2
31. (a) r3cos3θ3r2cos θsin θ+r3sin3θ=0,r=3 cos θsin θ
cos3θ+ sin3θ
32. (a) A=2Zπ/(2n)
0
1
2a2cos2nθ dθ =πa2
4n(b) A=2Zπ/(2n)
0
1
2a2cos2nθ dθ =πa2
4n
(c) 1
2n×total area = πa2
4n(d) 1
n×total area = πa2
4n
33. If the upper right corner of the square is the point (a, a) then the large circle has equation r=2a
and the small circle has equation (xa)2+y2=a2,r=2acos θ,so
area of crescent = 2 Zπ/4
0
1
2h(2acos θ)2(2a)2i=a2= area of square.
Exercise Set 12.4 422
34. A=Z2π
0
1
2(cos 3θ+2)
2=9π/2
3
-3
-3 3
35. A=Zπ/2
0
1
24 cos2θsin4θdθ=π/16
1
–1
01
EXERCISE SET 12.4
1. (a) 4px =y2,point(1,1),4p=1,x=y
2(b) 4py =x2,point(3,3),12p=9,3y=x
2
(c) a=3,b =2,x
2
9+y
2
4=1 (d) a=3,b =2,x
2
4+y
2
9=1
(e) asymptotes: y=±x,soa=b;point(0,1), so y2x2=1
(f) asymptotes: y=±x,sob=a;point(2,0), so x2
4y2
4=1
2. (a) part (a), vertex (0,0),p=1/4; focus (1/4,0), directrix: x=1/4
part (b), vertex (0,0),p=3/4; focus (0,3/4), directrix: y=3/4
(b) part (c), c=a2b2=5, foci (±5,0)
part (d), c=a2b2=5, foci (0,±5)
(c) part (e), c=a2+b2=2, foci at (0,±2); asymptotes: y2x2=0,y =±x
part (f), c=a2+b2=8=2
2, foci at (±22,0); asymptotes: x2
4y2
4=0,y =±x
3. (a)
-3 3
-3
3
3
2
F( , 0)x
y
3
2
x =
(b)
x
y
9
4
F(0, –
)
9
4
y =
-5 5
-5
5
4. (a)
5
2
x =
5
2
F( , 0)x
y(b)
x
y
F(0, 1)
y = 1
423 Chapter 12
5. (a)
6
6
x
y1
2
x =
V(2, 3)
7
2
F( , 3)
(b)
-4
-4
x
y
9
4
F(–2,
)
7
4
y =
V(–2, –2)
6. (a) 23
4
x =
x
y
9
4
F( , –1)V(4, –1)
(b)
1
2
y =
F( , )
1
2
3
2
V( , 1)
1
2
x
y
7. (a)
4
4
x
y
5
2
V(2,
)
F(2, 2)
y = 3
(b)
2
4
x
y
V(–2, 2) 7
4
F( , 2)
9
4
x =
8. (a)
x
y
9
2
x =
7
2
F( , 3)
V(–4, 3)
(b)
15
16
y =
17
16
F(–1, )
x
y
V (–1, 1)
9. (a) c2=169=7,c=
7
(4, 0)
(0, 3)
(0, –3)
(–4, 0) x
y
(–7, 0)
(7, 0)
(b) x2
1+y2
9=1
c
2=91=8,c=8
(0, 3)
(0, –3)
(–1, 0) (1, 0)
x
y
(0, 8)
(0, –8)
Exercise Set 12.4 424
10. (a) c2=254 = 21, c=21
(0, 5)
(0, –5)
(–2, 0) (2, 0)
x
y
(0, –21)
(0, 21)
(b) x2
9+y2
4=1
c
2=94=5,c=5
(0, 2)
(0, –2)
(–3, 0)
(3, 0)
x
y
(–5, 0)
(5, 0)
11. (a) (x1)2
16 +(y3)2
9=1
c
2=169=7,c=7
(1, 6)
(1, 0)
x
y
(1 – 7, 3) (1 + 7, 3)
(5, 3)(–3, 3)
(b) (x+2)
2
4+(y+1)
2
3=1
c
2=43=1,c=1
(–4, –1) (–3, –1)
(–1, –1) (0, –1)
x
y
(–2, –1 + 3)
(–2, –1 – 3)
12. (a) (x+3)
2
16 +(y5)2
4=1
c
2=164=12,c=2
3
(1, 5)
(–3, 7)
(–3, 3)
(–7, 5)
x
y
(–3 –23, 5)
(–3 +23, 5)
(b) x2
4+(y+2)
2
9=1
c
2=94=5,c=5
(0, –5)
(0, 1) (0, –2 + 5)
(0, –2 – 5)
(–2, –2) (2, –2)
x
y
425 Chapter 12
13. (a) (x+1)
2
9+(y1)2
1=1
c
2=91=8,c=8
(–1, 2)
(–1, 0)
(–4, 1)
(2, 1)
x
y
(–1 – 8, 1)
(–1 + 8, 1)
(b) (x+1)
2
4+(y5)2
16 =1
c
2=164=12,c=2
3
(1, 5)(–3, 5)
(–1, 1)
(–1, 9)
x
y
(–1, 5 + 23)
(–1, 5 – 23)
14. (a) (x+1)
2
4+(y3)2
9=1
c
2=94=5,c=5
(–1, 3 + 5)
(–1, 3 – 5)
(1, 3)
(–1, 6)
(–1, 0)
(–3, 3)
x
y
(b) (x2)2
9+(y+3)
2
5=1
c
2=95=4,c=2
(2, –3 + 5)
(2, –3 – 5)
(4, –3)
(–1, –3) (5, –3)
(0, –3)
x
y
15. (a) c2=a2+b2=16+4=20,c=2
5
(0, –2)
(0, 2)
x
y
2
3
y =x2
3
y = x
(0, 13)
(0, –13)
(b) y2/4x2/9=1
c
2=4+9=13,c=13
(–4, 0) (4, 0)
x
y
1
2
y =x1
2
y = x
(–25, 0) (25, 0)
Exercise Set 12.4 426
16. (a) c2=a2+b2=9+25=34,c=34
(0, –3)
(0, 3)
x
y
(0, 34)
(0, –34)
3
5
y =x3
5
y = x
(b) x2/25 y2/16=1
c
2=25+16=41,c=41
(–5, 0) (5, 0)
x
y
4
5
y =x4
5
y = x
(–41, 0) (41, 0)
17. (a) c2=9+4=13,c=13
(5, 4)
x
y
(2 – 13, 4) (2 + 13, 4)
(–1, 4)
y – 4 = – (x – 2)
2
3
y – 4 = (x – 2)
2
3
(b) (y+3)
2/36 (x+2)
2/4=1
c
2=36+4=40,c =2
10
(–2, 3)
(–2, –9)
y + 3 =3(x + 2) y + 3 = 3(x + 2)
x
y
(–2, –3 + 210)
(–2, –3 – 210)
18. (a) c2=3+5=8,c=2
2
x
y
(2, –4 + 3)
(2, –4 – 3)
(2, –4 – 22)
(2, –4 + 22)
3
5
y + 4 = (x – 2)
3
5
y + 4 =(x – 2)
(b) (x+1)
2/1(y3)2/2=1
c
2=1+2=3,c =3
(–2, 3)
(-1 + 3, 3)(-1 3, 3)
(0, 3)
y 3 = 2(x + 1)
y 3 = −2(x + 1)
x
y
427 Chapter 12
19. (a) (x+1)
2/4(y1)2/1=1
c
2=4+1=5,c =5
(–3, 1)
(1, 1)
x
y
y – 1 = – (x + 1)
1
2
y – 1 = (x + 1)
1
2
(–1 – 5, 1)
(–1 + 5, 1)
(b) (x1)2/4(y+3)
2/64=1
c
2=4+64=68,c =2
17
(–1, –3) (3, –3) x
y
y + 3 =4(x –1)
y + 3 = 4(x –1)
(1 + 217, –3)(–1 – 217, –3)
20. (a) (y3)2/4(x+2)
2/9=1
c
2=4+9=13,c=13
(-2, 5)
(-2, 1)
x
y
2
3
y – 3 =(x + 2)
2
3
y – 3 = (x + 2)
(–2, 3 – 13)
(–2, 3 + 13)
(b) (y+5)
2/9(x+2)
2/36=1
c
2=9+36=45,c =3
5
(–2, –8)
(–2, –2) x
y
1
2
y + 5 =(x + 2)
1
2
y + 5 = (x + 2)
(–2, –5 + 35)
(–2, –5 – 35)
21. (a) y2=4px,p=3,y
2=12x(b) y2=4px,p=7,y
2=28x
22. (a) x2=4py,p=4,x
2=16y(b) x2=4py,p=1/2, x2=2y
23. (a) x2=4py,p=3,x
2=12y
(b) The vertex is 3 units above the directrix so p=3,(x1)2= 12(y1).
24. (a) y2=4px,p=6,y
2=24x
(b) The vertex is half way between the focus and directrix so the vertex is at (2,4), the focus is 3
units to the left of the vertex so p=3,(y4)2=12(x2)
25. y2=a(xh), 4 = a(3 h) and 9 = a(2 h), solve simultaneously to get h=19/5, a=5so
y
2=5(x19/5)
26. (x5)2=a(y+ 3), (9 5)2=a(5+3)soa=2,(x5)2=2(y+3)
27. (a) x2/9+y
2/4=1
(b) a=26/2 = 13, c=5,b
2=a
2c
2= 169 25 = 144; x2/169 + y2/144=1
Exercise Set 12.4 428
28. (a) x2+y2/5=1
(b) b=8,c=6,a
2=b
2+c
2= 64 + 36 = 100; x2/64+y2/100=1
29. (a) c=1,a
2=b
2+c
2=2+1=3;x
2
/3+y
2/2=1
(b) b2=1612=4;x
2
/16+y2/4=1andx
2
/4+y
2/16=1
30. (a) c=3,b
2=a
2c
2=169=7;x
2
/16+y2/7=1
(b) a2=9+16=25;x
2/25+y2/9=1andx
2
/9+y
2/25=1
31. (a) a=6,(2,3) satisfies x2/36+y2/b2= 1 so 4/36+9/b2=1,b
2=81/8; x2/36+y2/(81/8)=1
(b) The center is midway between the foci so it is at (1,3), thus c=1,b=1,a
2=1+1=2;
(x1)2+(y3)2/2=1
32. (a) Substitute (3,2) and (1,6) into x2/A +y2/B = 1 to get 9/A +4/B = 1 and 1/A +36/B =1
which yields A= 10, B= 40; x2/10+y2/40=1
(b) The center is at (2,1) thus c=2,a=3,b
2=94=5;(x2)2/5+(y+1)
2/9=1
33. (a) a=2,c=3,b
2=94=5;x
2
/4y
2
/5=1
(b) a=1,b/a =2,b=2;x
2y
2
/4=1
34. (a) a=3,c=5,b
2=259 = 16; y2/9x2/16=1
(b) a=3,a/b =1,b=3;y
2
/9x
2
/9=1
35. (a) vertices along x-axis: b/a =3/2soa=8/3; x2/(64/9) y2/16=1
vertices along y-axis: a/b =3/2soa=6;y
2
/36 x2/16=1
(b) c=5,a/b = 2 and a2+b2= 25, solve to get a2= 20, b2=5;y
2
/20 x2/5=1
36. (a) foci along the x-axis: b/a =3/4 and a2+b2= 25, solve to get a2= 16, b2=9;
x
2
/16 y2/9=1
foci along the y-axis: a/b =3/4 and a2+b2= 25 which results in y2/9x2/16=1
(b) c=3,b/a = 2 and a2+b2=9soa
2=9/5, b2=36/5; x2/(9/5) y2/(36/5)=1
37. (a) the center is at (6,4), a=4,c=5,b
2=2516=9;(x6)2/16 (y4)2/9=1
(b) The asymptotes intersect at (1/2,2) which is the center, (y2)2/a2(x1/2)2/b2=1is
the form of the equation because (0,0) is below both asymptotes, 4/a2(1/4)/b2= 1 and
a/b = 2 which yields a2=3,b
2=3/4; (y2)2/3(x1/2)2/(3/4)=1.
38. (a) the center is at (1,2); a=2,c= 10, b2= 100 4 = 96; (y+2)
2/4(x1)2/96=1
(b) the center is at (1,1); 2a=5(3)=8,a =4,(x1)2
16 (y+1)
2
16 =1
39. (a) y=ax2+b, (20,0) and (10,12) are on the curve so
400a+b= 0 and 100a+b= 12. Solve for bto get
b= 16 ft = height of arch.
(b) x2
a2+y2
b2=1,400 = a2,a = 20; 100
400 +144
b2=1,
b=8
3 ft = height of arch.
-20 -10 10 20
(10, 12)
x
y
429 Chapter 12
40. (a) (xb/2)2=a(yh), but (0,0) is on the parabola so b2/4=ah,a=b2
4h,
(xb/2)2=b2
4h(yh)
(b) As in part (a), y=4h
b2(xb/2)2+h,A=Zb
04h
b2(xb/2)2+hdx =2
3bh
41. We may assume that the vertex is (0,0) and the parabola opens to the right. Let P(x0,y
0)bea
point on the parabola y2=4px, then by the definition of a parabola, PF = distance from Pto
directrix x=p,soPF =x
0+pwhere x00 and PF is a minimum when x0= 0 (the vertex).
42. Let p= distance (in millions of miles) between
the vertex (closest point) and the focus F,
then PD =PF,2p+ 20 = 40, p= 10 million miles.
40 60°
40 cos 60° = 20
p
DP
p
Directrix
43. Use an xy-coordinate system so that y2=4px is an equation of the parabola, then (1,1/2) is a
point on the curve so (1/2)2=4p(1), p=1/16. The light source should be placed at the focus
which is 1/16 ft. from the vertex.
44. (a) Substitute x2=y/2intoy
28x
2= 5 to get y24y5=0;
y=1,5. Use x2=y/2 to find that there is no solution if
y=1 and that x=±p5/2ify= 5. The curves intersect
at (p5/2,5) and (p5/2,5), and thus the area is
A=2Z
5/2
0(
p5+8x
2
2x)dx
=52
2(51) + 5
42 ln(2 + 5)
5
2
(
, 5
)
5
2
(
, 5
)
x
y
(b) Eliminate xto get y2=1,y=±1. Use either equation
to find that x=±2ify= 1 or if y=1. The curves
intersect at (2,1), (2,1), (2,1), and (2,1),
and thus the area is
A=4Z
5/3
0
1
3
p1+2x
2dx
+4Z2
5/31
3
p1+2x
21
7p3x
25
dx
=1
32 ln(22+3)+10
2121 ln(23+
7) 5
21 ln 5
(–2, 1)
(–2, –1) (2, –1)
(2, 1)
x
y
Exercise Set 12.4 430
(c) Add both equations to get x2=4,x=±2.
Use either equation to find that y=±3ifx=2
or if x=2. The curves intersect at
(2,3), (2,3), (2,3), (2,3) and thus
A=4Z1
0p7x
2dx +4Z2
1hp7x
2px
21
idx
=4
3+14sin
12
7
7
4
3 + 2 ln(2 + 3)
x
y
(–2, 3) (2, 3)
(–2, –3) (2, –3)
45. (a) P:(bcos t, b sin t); Q:(acos t, a sin t); R:(acos t, b sin t)
(b) For a circle, tmeasures the angle between the positive x-axis and the line segment joining
the origin to the point. For an ellipse, tmeasures the angle between the x-axis and OPQ,
not OR.
46. (a) Foranypoint(x, y),the equation
y=bsinh thas a unique solution t,
−∞ <t<+. On the hyperbola,
x2
a2=1+y
2
b
2= 1 + sinh2t
= cosh2t,sox=±acosh t.
(b) 3
-3
-3 3
47. (a) Foranypoint(x, y), the equation y=btan thas a unique solution twhere π/2<t<π/2.
On the hyperbola, x2
a2=1+y
2
b
2= 1 + tan2t= sec2t,sox=±asec t.
(b) 3
-3
-3 3
48. By Definition 12.4.1, (x+1)
2+(y4)2=(y1)2,(x+1)
2=6y15,(x+1)
2=6(y5/2)
49. (4,1) and (4,5) are the foci so the center is at (4,3) thus c=2,a=12/2=6,b
2=364 = 32;
(x4)2/32+(y3)2/36=1
50. From the definition of a hyperbola, p(x1)2+(y1)2px2+y2=1,
p(x1)2+(y1)2px2+y2=±1, transpose the second radical to the right hand side of the
equation and square and simplify to get ±2px2+y2=2x2y+ 1, square and simplify again
to get 8xy 4x4y+1=0.
51. Let the ellipse have equation 4
81x2+y2
4= 1, then A(x)=(2y)
2=1614x
2
81 ,
V=2Z9/2
016 14x2
81 dx =96
431 Chapter 12
52. See Exercise 51, A(y)=
3x
2=
3
81
41y2
4,V =381
2Z2
01y2
4dy =54
3
53. Assume x2
a2+y2
b2=1,A =4Za
0b
p1x
2
/a2dx =πab
54. (a) Assume x2
a2+y2
b2=1,V =2Za
0πb21x2/a2dx =4
3πab2
(b) In Part (a) interchange aand bto obtain the result.
55. Assume x2
a2+y2
b2=1,dy
dx =bx
aa2x2,1+dy
dx2
=a4(a2b2)x2
a2(a2x2),
S=2Za
0
2πb
ap1x2/a2sa4(a2b2)x2
a2x2dx =2πab b
a+a
csin1c
a,c=pa
2b
2
56. As in Exercise 55, 1 + dx
dy 2
=b4+(a
2b
2)y
2
b
2(b
2y
2),
S=2Zb
02πap1y2/b2sb4+(a
2b
2)y
2
b
2(b
2y
2)dy =2πab a
b+b
cln a+c
b,c=pa
2b
2
57. Open the compass to the length of half the major axis, place the point of the compass at an end
of the minor axis and draw arcs that cross the major axis to both sides of the center of the ellipse.
Place the tacks where the arcs intersect the major axis.
58. Let Pdenote the pencil tip, and let R(x, 0) be the point below Qand Pwhich lies on the line L.
Then QP +PF is the length of the string and QR =QP +PR is the length of the side of the
triangle. These two are equal, so PF =PR. But this is the definition of a parabola according to
Definition 12.4.1.
59. Let Pdenote the pencil tip, and let kbe the difference between the length of the ruler and that
of the string. Then QP +PF
2+k=QF1, and hence PF
2+k=PF
1,PF
1PF
2=k. But this
is the definition of a hyperbola according to Definition 12.4.3.
60. In the x0y0-plane an equation of the circle is x02+y02=r2where ris the radius of the cylinder. Let
P(x, y) be a point on the curve in the xy-plane, then x0=xcos θand y0=yso x2cos2θ+y2=r2
which is an equation of an ellipse in the xy-plane.
61. L=2a=pD
2+p
2
D
2=D
p1+p
2(see figure), so a=1
2Dp1+p
2, but b=1
2D,
T=c=pa2b2=r1
4D2(1+p2)1
4D2=1
2pD.
D
pD
62. y=1
4px2,dy/dx =1
2px,dy/dxx=x0
=1
2px0, the tangent line at (x0,y
0) has the formula
yy0=x0
2p(xx0)=x
0
2p
xx
2
0
2p
, but x2
0
2p=2y
0because (x0,y
0) is on the parabola y=1
4px2.
Thus the tangent line is yy0=x0
2px2y0,y=x0
2pxy0.
Exercise Set 12.4 432
63. By implicit differentiation, dy
dx(x0,y0)
=b2
a2
x0
y0if y06= 0, the tangent line is
yy0=b2
a2
x0
y0(xx0), a2y0ya2y2
0=b2x0x+b2x2
0,b2x0x+a2y0y=b2x2
0+a2y2
0,
but (x0,y
0) is on the ellipse so b2x2
0+a2y2
0=a2b2; thus the tangent line is b2x0x+a2y0y=a2b2,
x0x/a2+y0y/b2=1. Ify
0= 0 then x0=±aand the tangent lines are x=±awhich also follows
from x0x/a2+y0y/b2=1.
64. By implicit differentiation, dy
dx(x0,y0)
=b2
a2
x0
y0if y06= 0, the tangent line is yy0=b2
a2
x0
y0(xx0),
b2x0xa2y0y=b2x2
0a2y2
0=a2b2,x0x/a2y0y/b2=1. Ify
0= 0 then x0=±aand the tangent
lines are x=±awhich also follow from x0x/a2y0y/b2=1.
65. Use x2
a2+y2
b2= 1 and x2
A2y2
B2= 1 as the equations of the ellipse and hyperbola. If (x0,y
0)is
a point of intersection then x2
0
a2+y2
0
b2=1= x
2
0
A
2y
2
0
B
2,sox
2
01
A
21
a
2
=y
2
01
B
2+1
b
2
and
a2A2y2
0(b2+B2)=b
2
B
2
x
2
0
(a
2A
)
. Since the conics have the same foci, a2b2=c2=A2+B2,
so a2A2=b2+B2. Hence a2A2y2
0=b2B2x2
0. From Exercises 63 and 64, the slopes of the
tangent lines are b2x0
a2y0and B2x0
A2y0, whose product is b2B2x2
0
a2A2y2
0
=1. Hence the tangent lines are
perpendicular.
66. Use implicit differentiation on x2+4y
2= 8 to get dy
dx(x0,y0)
=x0
4y0where (x0,y
0) is the point
of tangency, but x0/(4y0)=1/2 because the slope of the line is 1/2sox
0=2y
0
.(x
0
,y
0)is
on the ellipse so x2
0+4y2
0= 8 which when solved with x0=2y
0yields the points of tangency (2,1)
and (2,1). Substitute these into the equation of the line to get k=±4.
67. Let (x0,y
0) be such a point. The foci are at (5,0) and (5,0),the lines are perpendicular if
the product of their slopes is 1so y
0
x
0+
5·y
0
x
0
5=1,y
2
0=5x
2
0and 4x2
0y2
0=4.Solve
to get x0=±3/5,y
0=±4/
5. The coordinates are (±3/5,4/5),(±3/5,4/5).
68. Let (x0,y
0) be one of the points; then dy/dx(x0,y0)=4x
0
/y0, the tangent line is y=(4x
0
/y0)x+4,
but (x0,y
0) is on both the line and the curve which leads to 4x2
0y2
0+4y
0= 0 and 4x2
0y2
0= 36,
solve to get x0=±313/2, y0=9.
69. Let d1and d2be the distances of the first and second observers, respectively, from the point
where the gun was fired. Then t= (time for sound to reach the second observer) (time for
sound to reach the first observer) = d2/v d1/v so d2d1=vt. For constant vand tthe
difference of distances, d2and d1is constant so the gun was fired somewhere on a branch of a
hyperbola whose foci are where the observers are. Since d2d1=2a, a =vt
2,b
2=c
2v
2t
2
4, and
x2
v2t2/4y2
c2(v2t2/4) =1.
70. As in Exercise 69, d2d1=2a=vt = 299,792,458 ×107,a
2=(vt/2)2224.6888; c2= (50)2
= 2500,b
2=c
2a
22275.3112,x2
224.6888 y2
2275.3112 = 1. But y= 200 km, so x64.6 km.
433 Chapter 12
71. (a) Use x2
9+y2
4=1,x=3
2
p4y
2
,
V=Z2+h
2(2)(3/2)p4y2(18)dy =54Z2+h
2p4y2dy
=54y
2p4y
2+ 2 sin1y
22+h
2
=274 sin1h2
2+(h2)p4hh2+2π
ft3
(b) When h= 4 ft, Vfull = 108 sin11+54π= 108πft3, so solve for hwhen V=(k/4)Vfull,
k=1,2,3, to get h=1.19205,2,2.80795 ft or 14.30465,24,33.69535 in.
72. We may assume A>0, since if A<0 then one can multiply the equation by 1, and if A=0
then one can exchange Awith C(Ccannot be zero simultaneously with A). Then
Ax2+Cy2+Dx +Ey +F=Ax+D
2A2
+Cy+E
2C2
+FD2
4AE2
4C=0.
(a) Let AC > 0. If F<D
2
4A
+
E
2
4Cthe equation represents an ellipse (a circle if A=C);
if F=D2
4A+E2
4C, the point x=D/(2A),y =E/(2C); and if F>D
2
4A+E
2
4Cthen there is
no graph.
(b) If AC < 0 and F=D2
4A+E2
4C, then
Ax+D
2A+Cy+E
2CAx+D
2ACy+E
2C= 0, a pair of lines;
otherwise a hyperbola
(c) Assume C=0,soAx2+Dx+Ey+F=0.IfE6= 0, parabola; if E= 0 then Ax2+Dx+F=0.
If this polynomial has roots x=x1,x
2with x16=x2then a pair of parallel lines; if x1=x2
then one line; if no roots, then no graph. If A=0,C 6= 0 then a similar argument applies.
73. (a) (x1)25(y+1)
2= 5, hyperbola
(b) x23(y+1)
2=0,x =±3(y+ 1), two lines
(c) 4(x+2)
2+8(y+1)
2= 4, ellipse
(d) 3(x+2)
2+(y+1)
2= 0, the point (2,1) (degenerate case)
(e) (x+4)
2+2y= 2, parabola
(f) 5(x+4)
2+2y=14, parabola
74. distance from the point (x, y) to the focus (0,p) = distance to the directrix y=p,sox
2+(yp)2
=(y+p)
2
,x
2=4py
75. distance from the point (x, y) to the focus (0,c) plus distance to the focus (0,c) = const = 2a,
px2+(y+c)
2+px
2+(yc)
2=2a, x2+(y+c)
2=4a
2+x
2+(yc)
24a
px
2+(yc)
2,
px
2+(yc)
2=ac
ay, and since a2c2=b2,x2
b2+y2
a2=1
76. distance from the point (x, y) to the focus (c, 0) less distance to the focus (c, 0) is equal to 2a,
p(x+c)2+y2p(xc)2+y2=±2a, (x+c)2+y2=(xc)
2+y
2+4a
2±4a
p(xc)
2+y
2,
p(xc)
2+y
2=±cx
aa, and, since c2a2=b2,x2
a2y2
b2=1
Exercise Set 12.5 434
EXERCISE SET 12.5
1. (a) r=3/2
1cos θ,e=1,d=3/2
0
p
/
2
-2
-2
2
2
(b) r=3/2
1+1
2sin θ,e=1/2,d=3
0
p
/
2
–2
–2 2
(c) r=2
1+3
2cos θ,e=3/2,d=4/3
0
p
/
2
-5 10
-7
7
(d) r=5/3
1 + sin θ,e=1,d=5/3
0
p
/
2
-11
3
-7 7
2. (a) r=4/3
12
3cos θ,e=2/3,d=2
0
p
/
2
(b) r=1
14
3sin θ,e=4/3,d=3/4
0
p
/
2
(c) r=1/3
1 + sin θ,e=1,d=1/3
0
p
/
2
(d) r=1/2
1+3sinθ,e =3,d =1/6
0
p
/
2
435 Chapter 12
3. (a) e=1,d=8,parabola, opens up
10
-10
-15 15
(b) r=4
1+3
4sin θ,e=3/4,d=16/3,
ellipse, directrix 16/3 units
above the pole
5
-20
-8 8
(c) r=2
13
2sin θ,e=3/2,d=4/3,
hyperbola, directrix 4/3 units
below the pole
4
-8
-6 6
(d) r=3
1+1
4cos θ,e=1/4,d=12,
ellipse, directrix 12 units
to the right of the pole
4
-4
-5 3
4. (a) e=1,d=15,parabola, opens left
20
-20
-20 20
(b) r=2/3
1 + cos θ,e=1,
d=2/3,parabola, opens left
10
-10
-15 5
(c) r=64/7
112
7sin θ,e=12/7,d=16/3,
hyperbola, directrix 16/3 units below pole
20
-40
-30 30
(d) r=4
12
3cos θ,e=2/3,d=6,
ellipse, directrix 6 units left of the pole
6
-6
-3 13
Exercise Set 12.5 436
5. (a) d=1,r =ed
1+ecos θ=2/3
1+2
3cos θ=2
3+2cosθ
(b) e=1,d =1,r =ed
1ecos θ=1
1cos θ
(c) e=3/2,d =1,r =ed
1+esin θ=3/2
1+3
2sin θ=3
2+3sinθ
6. (a) e=2/3,d =1,r =ed
1esin θ=2/3
12
3sin θ=2
32 sin θ
(b) e=1,d =1,r =ed
1+esin θ=1
1 + sin θ
(c) e=4/3,d =1,r =ed
1ecos θ=4/3
14
3cos θ=4
34 cos θ
7. (a) r=ed
1±ecos θ=0:6= ed
1±e=π:4= ed
1e,6±6e=44e, 2=10e, use bottom
sign to get e=1/5,d =24,r=24/5
1cos θ=24
55 cos θ
(b) e=1,r =d
1sin θ,1=d
2,d=2,r =2
1sin θ
(c) r=ed
1±esin θ=π/2:3= ed
1±e=3π/2:7= ed
1e,ed=3±3e=7±7e, 10 = ±4e,
e=5/2,d =21/5,r =21/2
1+(5/2) sin θ=21
2+5sinθ
8. (a) r=ed
1±esin θ,1= ed
1±e,4= ed
1e,1±e=44e, upper sign yields e=3/5,d=8/3,
r=8/5
1+3
5sin θ=8
5+3sinθ
(b) e=1,r =d
1cos θ,3=d
2,d=6,r=6
1cos θ
(c) a=b=5,e =c/a =50/5=
2,r =2d
1+
2 cos θ;r= 5 when θ=0,sod=5+ 5
2
,
r=5
2+5
1+
2 cos θ.
9. (a) r=3
1+1
2sin θ,e=1/2,d= 6, directrix 6 units above pole; if θ=π/2:r
0=2;
if θ=3π/2:r
1=6,a =(r
0+r
1
)/2=4,b =r
0r
1=2
3, center (0,2) (rectangular
coordinates), x2
12 +(y+2)
2
16 =1
(b) r=1/2
11
2cos θ,e=1/2,d= 1, directrix 1/2 unit left of pole; if θ=π:r0=1/2
3/2=1/3;
if θ=0:r
1=1,a =2/3,b =1/
3, center = (1/3,0) (rectangular coordinates),
9
4(x1/3)2+3y
2=1
437 Chapter 12
10. (a) r=6/5
1+2
5cos θ,e=2/5,d= 3, directrix 3 units right of pole, if θ=0:r
0=6/7,
if θ=π:r1=2,a =10/7,b=2
3/
7, center (4/7,0) (rectangular coordinates),
49
100(x+4/7)2+7
12y2=1
(b) r=2
13
4sin θ,e=3/4,d=8/3, directrix 8/3 units below pole, if θ=3π/2:r
0=8/7,
if θ=π/2; r1=8,a=32/7,b =8/
7, center: (0,24/7) (rectangular coordinates),
7
64x2+49
1024 y24
72
=1
11. (a) r=2
1+3sinθ,e =3,d =2/3, hyperbola, directrix 2/3 units above pole, if θ=π/2:
r
0=1/2; θ=3π/2:r
1= 1, center (0,3/4),a=1/4,b =1/
2,2x
2+16y3
42
=1
(b) r=5/3
13
2cos θ,e=3/2,d=10/9, hyperbola, directrix 3/2 units left of pole, if θ=π:
r0=2/3; θ=0:r
1=5/3
1/2=10/3, center (2,0),a=4/3,b =p20/9,9
16(x+2)29
20y2=1
12. (a) r=4
12 sin θ,e=2,d= 2, hyperbola, directrix 2 units below pole, if θ=3π/2:r
0=4/3;
θ=π/2:r
1=
4
12
= 4, center (0,8/3),a=4/3,b =4/
3,9
16 y+8
32
3
16x2=1
(b) r=15/2
1+4cosθ,e =4,d =15/8, hyperbola, directrix 15/8 units right of pole, if θ=0:
r
0=3/2; θ=π:r1=5
2=5/2,a=1/2,b =15
2, center (2,0),4(x2)24
15y2=1
13. (a) r=1
2d
1+1
2cos θ=d
2 + cos θ,ifθ=0:r
0=d/3; θ=π, r1=d,
8=a=1
2
(r
1+r
0
)=2
3
d, d =12,r=12
2 + cos θ
(b) r=3
5d
13
5sin θ=3d
53 sin θ,ifθ=3π/2:r
0=3
8
d;θ=π/2,r
1=3
2d,
4=a=1
2
(r
1+r
0
)=15
16d, d =64
15,r =3(64/15)
53 sin θ=64
25 15 sin θ
(c) r=3
5d
13
5cos θ=3d
53 cos θ,ifθ=π:r
0=3
8
d;θ=0,r
1=3
2d, 4=b=3
4
d,
d=16/3,r=16
53 cos θ
(d)
1
5d
1+1
5sin θ=d
5 + sin θ,ifθ=π/2:r
0=d/6; θ=3π/2,r
1=d/4,
5=c=1
2
d1
41
6
=1
24d, d = 120,r=120
5 + sin θ
Exercise Set 12.5 438
14. (a) r=1
2d
1+1
2sin θ=d
2 + sin θ,ifθ=π/2:r
0=d/3; θ=3π/2:r
1=d,
10 = a=1
2(r0+r1)=2
3
d, d =15,r=15
2 + sin θ
(b) r=1
5d
11
5cos θ=d
5cos θ,ifθ=π:r
0=d/6=0:r
1=d/4,
6=a=1
2
(r
1+r
0
)=1
2
d1
4+1
6
=5
24d, d = 144/5,r=144/5
5cos θ=144
25 5 cos θ
(c) r=3
4d
13
4sin θ=3d
43 sin θ,ifθ=3π/2:r
0=3
7
d, θ =π/2:r
1=3d, 4=b=3d/7,
d=4
37,r=4
7
43 sin θ
(d) r=4
5d
1+4
5cos θ=4d
5+4cosθ,ifθ=0:r
0=4
9
d;θ=π:r
1=4d,
c=10=1
2
(r
1r
0
)=1
2
d44
9
=16
9d, d =45
8,r=45/2
5+4cosθ=45
10 + 8 cos θ
15. (a) e=c/a =1
2(r1r0)
1
2(r1+r0)=r1r0
r1+r0
(b) e=r1/r01
r1/r0+1,e(r
1/r0+1)=r
1/r01,r1
r0=1+e
1e
16. (a) e=c/a =1
2(r1+r0)
1
2(r1r0)=r1+r0
r1r0
(b) e=r1/r0+1
r
1/r01,e(r
1/r01) = r1/r0+1,r
1
r
0=e+1
e1
17. (a) T=a3/2=39.5
1.5248 yr
(b) r0=a(e)=39.5(1 0.249) = 29.6645 AU 4,449,675,000 km
r1=a(1+e)=39.5(1+0.249) = 49.3355 AU 7,400,325,000 km
(c) r=a(1 e2)
1+ecos θ39.5(1 (0.249)2)
1+0.249 cos θ37.05
1+0.249 cos θAU
(d)
0
p/2
-50
50
-30 20
18. (a) In yr and AU, T=a3/2; in days and km, T
365 =a
150 ×1063/2
,
so T= 365 ×109a
1503/2days.
439 Chapter 12
(b) T= 365 ×10957.95 ×106
150 3/2
87.6days
(c) From (17) the polar equation of the orbit has the form r=a(1 e2)
1+ecos θ=37.82
1+0.205 cos θ
(d)
0
p/2
20-50
-40
40
19. (a) a=T2/3= 23802/3178.26 AU
(b) r0=a(1 e)0.8735 AU,r
1=a(1+e)355.64 AU
(c) r=a(1 e2)
1+ecos θ1.74
1+0.9951 cos θAU
(d)
0
p/2
-400
-20
20
20. (a) By Exercise 15(a), e=r1r0
r1+r00.093
(b) r=1
2(a0+a1) = 225,400,000 km 1.503 AU, so T=a3/21.84 yr
(c) r=a(1 e2)
1+ecos θ1.49
1+0.093 cos θAU
(d)
0
p/2
1.3632
1.49
1.49
1.6428
21. r0=a(1 e)7003 km, hmin 7003 6440 = 563 km,
r1=a(1+e)10,726 km, hmax 10,726 6440 = 4286 km
Chapter 12 Supplementary Exercises 440
22. r0=a(1 e)651,736 km, hmin 581,736 km; r1=a(1+e)6,378,102 km,
hmax 6,308,102 km
23. Since the foci are fixed, ais constant; since e0, the distance a
e+.
Let dbe the distance between the directrix and the focus, then d=a1
eeand lim
e0d=+;
but the center and the focus come together, so distance between the directrix and the center also
tends to +.
24. (a) From Figure 12.4.22, x2
a2y2
b2=1,x
2
a
2y
2
c
2a
2=1,(xc)
2+y
2=c
a
xa
2,
p(xc)
2+y
2=c
a
xafor x>0.
(b) From Part (a), PF =c
aPD, PF
PD =c/a.
CHAPTER 12 SUPPLEMENTARY EXERCISES
2. (a) (2,3π/4) (b) (2,7π/4) (c) (2,3π/4) (d) (2,π/4)
3. (a) circle (b) rose (c) line (d) lima¸con
(e) lima¸con (f) none (g) none (h) spiral
4. (a) r=1/3
1+1
3cos θ, ellipse, right of pole, distance = 1
(b) hyperbola, left of pole, distance = 1/3
(c) r=1/3
1 + sin θ, parabola, above pole, distance = 1/3
(d) parabola, below pole, distance = 3
5. (a) p/2
0
(b) p/2
0
(1, 9)
(c) p/2
0
(1, #)
(d) p/2
0
(–1, 3)
(e) p/2
0
(1, 3)
(2, 3)
441 Chapter 12
6. Family I: x2+(yb)
2=b
2
,b < 0, or r=2bsin θ; Family II: (xa)2+y2=a2,a < 0, or
r=2acos θ
7. (a) r=2a/(1 + cos θ),r+x=2a, x2+y2=(2ax)
2
,y
2=4ax +4a
2, parabola
(b) r2(cos2θsin2θ)=x
2y
2=a
2
, hyperbola
(c) rsin(θπ/4)=(
2/2)r(sin θcos θ)=4,yx=4
2, line
(d) r2=4rcos θ+8rsin θ, x2+y2=4x+8y, (x2)2+(y4)2= 20, circle
9. (a) c
a=e=2
7and 2b=6,b =3,a
2=b
2+c
2=9+ 4
49a2,45
49a2=9,a=7
5,5
49x2+1
9y2=1
(b) x2=4py, directrix y= 4, focus (4,0),2p=8,x
2=16y
(c) For the ellipse, a=4,b =3,c
2=a
2b
2=163 = 13, foci (±13,0);
for the hyperbola, c=13, b/a =2/3,b =2a/3,13 = c2=a2+b2=a2+4
9a2=13
9a2,
a=3,b =2,x
2
9y
2
4=1
10. (a) e=4/5=c/a, c =4a/5, but a=5soc=4,b=3,(x+3)
2
25 +(y2)2
9=1
(b) directrix y=2,p =2,(x+2)
2=8y
(c) center (1,5), vertices (1,7) and (1,3),a=2, a/b =8,b=1/4,(y5)2
416(x+1)2=1
11. (a)
-4 8
-10
2x
y(b)
210
-3
4
x
y(c)
-8 8
-12
4
x
y
13. (a) The equation of the parabola is y=ax2and it passes through (2100,470), thus a=470
21002,
y=470
21002x2.
(b) L=2Z2100
0s1+2470
21002x2
dx 4336.3ft
14. (a) As truns from 0 to π, the upper portion of the curve is traced out from right to left; as t
runs from πto 2πthe bottom portion of the curve is traced out from right to left. The loop
occurs for π+ sin11
4<t<2πsin11
4.
(b) lim
t0+x=+,lim
t0+y= 1; lim
tπx=−∞,lim
tπy= 1; lim
tπ+x=+,lim
tπ+y=1;
lim
t2πx=−∞,lim
t2πy= 1; the horizontal asymptote is y=1.
(c) horizontal tangent line when dy/dx =0,ordy/dt =0,socost=0,t=π/2,3π/2;
vertical tangent line when dx/dt =0,socsc2t4 sin t=0,t=π+sin11
3
4,2πsin11
3
4,
t=3.823,5.602
Chapter 12 Supplementary Exercises 442
(d) r2=x2+y2= (cot t+ 4 cos t)2+(1+4sint)
2= (4 + csc t)2,r = 4 + csc t; with t=θ,
f(θ) = 4 + csc θ;m=dy/dx =(f(θ) cos θ+f0(θ) sin θ)/(f(θ) sin θ+f0(θ) cos θ); when
θ=π+ sin1(1/4),m =15/15, when θ=2πsin1(1/4),m =15/15, so the tangent
lines to the conchoid at the pole have polar equations θ=±15/15.
15. A
2=Zπ/6
0
1
2(2 sin θ)2+Zπ/4
π/6
1
212,dθ =2θ1
4sin 2θπ/6
0
+π
24,A =5π
12 3
2
16. The circle has radius a/2 and lies entirely inside the cardioid, so
A=Z2π
0
1
2a2(1 + sin θ)2πa2/4=3a
2
2πa
2
4π=5a
2
4π
17. (a) r=1, dr/dθ =12,r
2+(dr/dθ)2=12+14,L=
Zπ/2
π/4
1
θ2p1+θ
20.9457 by
Endpaper Table Formula 93.
(b) The integral Z+
1
1
θ2p1+θ
2diverges by the comparison test (with 1), and thus the
arc length is infinite.
18. (a) When the point of departure of the thread from the circle has traversed an angle θ, the
amount of thread that has been unwound is equal to the arc length traversed by the point of
departure, namely . The point of departure is then located at (acos θ, a sin θ), and the tip of
the string, located at (x, y), satisfies the equations xacos θ=sin θ, yasin θ=cos θ;
hence x=a(cos θ+θsin θ),y =a(sin θθcos θ).
(b) Assume for simplicity that a= 1. Then dx/dθ =θcos θ, dy/dθ =θsin θ;dx/dθ = 0 has
solutions θ=0/2,3π/2; and dy/dθ = 0 has solutions θ=0,2π.Atθ=π/2, dy/dθ > 0,
so the direction is North; at θ=π, dx/dθ < 0, so West; at θ=3π/2, dy/dθ < 0, so South; at
θ=2π, dx/dθ > 0, so East. Finally, lim
θ0+dy/dx = lim
θ0+tan θ= 0, so East.
(c) u
x
y
0
1
0
p/2
p/2
1
p
–1
p
3p/2
–3p/2
–1
2p
1
–2p
Note that the parameter θin these equations does not satisfy equations (1) and (2) of Section
12.1, since it measures the angle of the point of departure and not the angle of the tip of the
thread.
4
-8
-5 2
443 Chapter 12
19. (a) V=Za2+b2
a
πb2x2/a2b2dx
=πb2
3a2(b22a2)pa2+b2+2
3ab2π
x
y
(b) V=2πZ
a
2
+b
2
a
x
pb
2
x
2
/a2b2dx =(2b
4
/3a)π
x
y
20. (a)
-5 5
-5
5
0
p/2(b) θ=π/2,3π/2,r =1
(c) dy/dx =rcos θ+(dr/dθ) sin θ
rsin θ+(dr/dθ) cos θ;atθ=π/2,m
1=(1)/(1)=1,m
2=1/(1) = 1,
m1m2=1; and at θ=3π/2,m
1=1,m
2=1,m
1m
2=1
22. The tips are located at r=1=π/6,5π/6,3π/2 and, for example,
d=p1+12 cos(5π/6π/6) = p2(1 cos(2π/3)) = 3
23. (a) x=rcos θ= cos θ+cos2θ, dx/dθ =sin θ2 sin θcos θ=sin θ(1 +2 cos θ) = 0 if sin θ=0
or cos θ=1/2, so θ=0,2π/3,4π/3; maximum x=2atθ= 0, minimum x=1/4at
θ=π
(b) y=rsin θ= sin θ+ sin θcos θ, dy/dθ = 2 cos2θ+ cos θ1 = 0 at cos θ=1/2,1, so
θ=π/3,5π/3; maximum y=3
3/4atθ=π/3, minimum y=33/4atθ=5π/3
24. (a) y=rsin θ= (sin θ)/θ, dy/dθ =2θcos θsin θ
2θ3/2=0if2θcos θ= sin θ, tan θ=2θwhich
only happens once on (0]. Since lim
θ0+y= 0 and y=0atθ=π,yhas a maximum when
tan θ=2θ.
(b) θ1.16556
(c) ymax = (sin θ)/θ0.85124
Chapter 12 Supplementary Exercises 444
25. The width is twice the maximum value of yfor 0 θπ/4:
y=rsin θ= sin θcos 2θ= sin θ2 sin3θ, dy/dθ = cos θ6 sin2θcos θ= 0 when cos θ=0or
sin θ=1/
6,y =1/
62/(66) = 6/9, so the width of the petal is 26/9.
26. (a) x2
225 y2
1521 =1,soV=2Zh/2
0225π1+ y
2
1521dy =25
2028πh3+ 225πh ft3.
(b) S=2Zh/2
02πxp1+(dx/dy)2dy =4πZh/2
0v
u
u
t225 + y2 225
1521 +225
15212!dy
=5
26πhp6084 + h2+ 1170πln "h+6084 + h2
78 #ft2
27. (a) The end of the inner arm traces out the circle x1= cos t, y1= sin t. Relative to the end of
the inner arm, the outer arm traces out the circle x2= cos 2t, y2=sin 2t. Add to get the
motion of the center of the rider cage relative to the center of the inner arm:
x= cos t+ cos 2t, y = sin tsin 2t.
(b) Same as part (a), except x2= cos 2t, y2= sin 2t,sox= cos t+ cos 2t, y = sin t+ sin 2t
(c) L1=Z2π
0"dx
dt 2
+dy
dt 2#1/2
dt =Z2π
0
54 cos 3tdt13.36489321,
L2=Z2π
0
5+4costdt13.36489322; L1and L2appear to be equal, and indeed, with the
substitution u=3tπand the periodicity of cos u,
L1=1
3Z5π
πp54 cos(u+π)du =Z2π
0
5+4cosudu=L
2.
29. C=4Zπ/2
0"dx
dt 2
+dy
dt 2#1/2
dt =4Zπ/2
0(a2sin2t+b2cos2t)1/2dt
=4Zπ/2
0(a2sin2t+(a
2c
2) cos2t)1/2dt =4aZπ/2
0(1 e2cos2t)1/2dt
30. a=3,b =2,c =5,C= 4(3) Zπ/2
0p1(5/9) cos2udu 15.86543959
31. (a) r0
r1=59
61 =1e
1+e,e=1
60
(b) a=93×106,r
0=a(1 e)=59
60 93 ×106=91,450,000 mi
(c) C=4×93 ×106Zπ/2
0"1cos θ
60 2#1/2
584,295,652.5mi
32. (a) y=y0+(v
0sin α)x
v0cos αg
2x
v0cos α2
=y0+xtan αg
2v2
0cos2αx2
(b) dy
dx = tan αg
v2
0cos2αx, dy/dx =0atx=v
2
0
gsin αcos α,
y=y0+v2
0
gsin2αg
2v2
0cos2αv2
0sin αcos α
g2
=y0+v2
0
2gsin2α
445 Chapter 12
33. α=π/4,y
0=3,x =v
0t/2,y =3+v
0
t/216t2
(a) Assume the ball passes through x= 391,y = 50, then 391 = v0t/2,50 = 3 + 391 16t2,
16t2= 344,t=21.5,v
0=2x/t 119.3 ft/s
(b) dy
dt =v0
232t= 0 when t=v0
322,y
max =3+ v
0
2
v
0
32216 v2
0
211 =3+ v
2
0
128 114.2ft
(c) y= 0 when t=v0/2±pv2
0/2 + 192
32 ,t≈−0.04 (discard) and 5.31, dist = 447.9ft
34. (a)
x
y
-1 1
-1
1
(c) L=Z1
1cos2πt2
2+ sin2πt2
2dt =2
35. tan ψ= tan(φθ)= tan φtan θ
1 + tan φtan θ=
dy
dx y
x
1+y
x
dy
dx
=
rcos θ+(dr/dθ) sin θ
rsin θ+(dr/dθ) cos θsin θ
cos θ
1+rcos θ+(dr/dθ) sin θ)
rsin θ+(dr/dθ) cos θ)sin θ
cos θ=r
dr/dθ
36. (a) From Exercise 35,
tan ψ=r
dr/dθ =1cos θ
sin θ= tan θ
2,
so ψ=θ/2.
(b)
0
p/2
(c) At θ=π/2=θ/2=π/4. At θ=3π/2=θ/2=3π/4.
37. tan ψ=r
dr/dθ =ae
abe=1
bis constant, so ψis constant.
Chapter 12 Horizon Module 446
CHAPTER 12 HORIZON MODULE
1. For the Earth, aE(1 e2
E) = 1(1 0.0172)=0.999711, so the polar equation is
r=aE(1 e2
E)
1eEcos θ=0.999711
10.017 cos θ.
For Rogue 2000, aR(1 e2
R) = 5(1 0.982)=0.198, so the polar equation is
r=aR(1 e2
R)
1eRcos θ=0.198
10.98 cos θ.
2. 1
-1
-1 10
3. At the intersection point A,kE
1eEcos θ=kR
1eRcos θ,sok
Ek
E
e
Rcos θ=kRkReEcos θ.
Solving for cos θgives cos θ=kEkR
kEeRkReE
.
4. From Exercise 1, kE=0.999711 and kR=0.198, so
cos θ=kEkR
kEeRkReE
=0.999711 0.198
0.999711(0.98) 0.198(0.017) 0.821130
and θ= cos10.821130 0.607408 radian.
5. Substituting cos θ0.821130 into the polar equation for the Earth gives
r0.999711
10.017(0.821130) 1.013864,
so the polar coordinates of intersection Aare approximately (1.013864,0.607408).
6. By Theorem 12.3.2 the area of the elliptic sector is ZθF
θI
1
2r2. By Exercise 12.4.53 the area of
the entire ellipse is πab, where ais the semimajor axis and bis the semiminor axis. But
b=a2c2=pa2(ea)2=a1e2,
so Formula (1) becomes t
T=ZθF
θI
r2
2πa21e2, which implies Formula (2).
7. In Formula (2) substitute T=1
I= 0, and θF0.607408, and use the polar equation of the
Earth’s orbit found in Exercise 1:
t=ZθF
0kE
1eEcos θ2
2πp1e2
EZ0.607408
00.999711
10.017 cos θ2
2π0.999711 0.099792 yr.
447 Chapter 12
Note: This calculation can be done either by numerical integration or by using the integration
formula
Z
(1 ecos θ)2=
2 tan1r1+e
1etan θ
2
(1 e2)3/2+esin θ
(1 e2)(1 ecos θ)+C,
obtained by using a CAS or by the substitution u= tan(θ/2).
8. In Formula (2) we substitute T=5
5 and θI=0.45, and use the polar equation of Rogue 2000’s
orbit found in Exercise 1:
t=
TZθF
θIaR(1 e2
R)
1eRcos θ2
2πa2
Rp1e2
R
=
55ZθF
0.45 aR(1 e2
R)
1eRcos θ2
2πa2
Rp1e2
R
,
so
ZθF
0.45 aR(1 e2
R)
1eRcos θ2
=2a2
Rp1e2
R
55.
9. (a) A CAS shows that
ZaR(1 e2
R)
1eRcos θ2
=a2
R2q1e2
Rtan1r1+e
R
1e
R
tan θ
2+eR(1 e2
R) sin θ
1eRcos θ+C
(b) Evaluating the integral above from θ=0.45 to θ=θF, setting the result equal to the right
side of (3), and simplifying gives
tan1r1+R
1eR
tan θ
2+eRp1e2
Rsin θ
2(1 eRcos θ)θF
0.45
=
55.
Using the known values of eRand t, and solving numerically, θF0.611346.
10. Substituting θF0.611346 in the equation for Rogue 2000’s orbit gives r1.002525 AU. So the
polar coordinates of Rogue 2000 when the Earth is at intersection Aare about (1.002525,0.611346).
11. Substituting the values found in Exercises 5 and 10 into the distance formula in Supplementary
Exercise 22 gives d=pr2
1+r2
22r1r2cos(θ1θ2)0.012013 AU 1.797201 ×106km.
Since this is less than 4 million kilometers, a notification should be issued. (Incidentally, Rogue
2000’s closest approach to the Earth does not occur when the Earth is at A, but about 9 hours
earlier, at t0.098768 yr, at which time the distance is about 1.219435 million kilometers.)
448
CHAPTER 13
Three-Dimensional Space; Vectors
EXERCISE SET 13.1
1. (a) (0,0,0),(3,0,0),(3,5,0),(0,5,0),(0,0,4),(3,0,4),(3,5,4),(0,5,4)
(b) (0,1,0),(4,1,0),(4,6,0),(0,6,0),(0,1,2),(4,1,2),(4,6,2),(0,6,2)
2. corners: (2,2,±2), (2,2,±2),
(2,2,±2), (2,2,±2)
y
x
z
(–2, –2, 2) (–2, 2, 2)
(–2, 2, –2)(–2, –2, –2)
(2, 2, –2)(2, –2, –2)
(2, –2, 2) (2, 2, 2)
3. corners: (4,2,2), (4,2,1), (4,1,1), (4,1,2),
(6,1,1), (6,2,1), (6,2,2), (6,1,2)
(–6, 2, 1)
(–6, 2, –2)
y
x
z
(–6, 1, –2)
(4, 1, 1)
(4, 1, –2)
(4, 2, 1)
4. (a) (x2,y
1
,z
1
),(x
2
,y
2
,z
1
),(x
1
,y
2
,z
1
)(x1,y
1
,z
2
),(x
2
,y
1
,z
2
),(x
1
,y
2
,z
2
)
(b) The midpoint of the diagonal has coordinates which are the coordinates of the midpoints
of the edges. The midpoint of the edge (x1,y
1
,z
1
) and (x2,y
1
,z
1
)is1
2
(x
1+x
2
),y
1
,z
1
;
the midpoint of the edge (x2,y
1
,z
1
) and (x2,y
2
,z
1
)is
x
2
,
1
2
(y
1+y
2
),z
1
; the midpoint
of the edge (x2,y
2
,z
1
) and (x2,y
2
,z
2
)) is x2,y
2
,1
2(z
1+z
2
)
. Thus the coordinates of the
midpoint of the diagonal are 1
2(x1+x2),1
2(y1+y2),1
2(z1+z2).
5. The diameter is d=p(1 3)2+(24)2+(4+12)
2=
296, so the radius is 296/2=
74.
The midpoint (2,1,4) of the endpoints of the diameter is the center of the sphere.
6. Each side has length 14 so the triangle is equilateral.
7. (a) The sides have lengths 7, 14, and 75; it is a right triangle because the sides satisfy the
Pythagorean theorem, (75)2=7
2+14
2
.
(b) (2,1,6) is the vertex of the 90angle because it is opposite the longest side
(the hypotenuse).
(c) area = (1/2)(altitude)(base) = (1/2)(7)(14) = 49
8. (a) 3(b) 2(c) 5
(d) p(2)2+(3)2=13 (e) p(5)2+(3)2=34 (f ) p(5)2+ (2)2=29
9. (a) (x1)2+y2+(z+1)
2=16
(b) r=p(10)2+(30)2+(20)2=14, (x+1)
2+(y3)2+(z2)2=14
449 Chapter 13
(c) r=1
2p(10)2+(22)2+(13)2=1
25, center (1/2,2,2),
(x+1/2)2+(y2)2+(z2)2=5/4
10. r=|[distance between (0,0,0) and (3,2,4)] ±1|=29 ±1,
x2+y2+z2=r2=29 ±12=30±2
29
11. (x2)2+(y+1)
2+(z+3)
2=r
2
,
(a) r2=3
2=9 (b) r2=1
2=1 (c) r2=2
2=4
12. (a) The sides have length 1, so the radius is 1
2; hence (x+2)
2+(y1)2+(z3)2=1
4
(b) The diagonal has length 1+1+1=
3 and is a diameter, so (x+2)2+(y1)2+(z3)2=3
4.
13. (x+5)
2+(y+2)
2+(z+1)
2= 49; sphere, C(5,2,1), r=7
14. x2+(y1/2)2+z2=1/4; sphere, C(0,1/2,0), r=1/2
15. (x1/2)2+(y3/4)2+(z+5/4)2=54/16; sphere, C(1/2,3/4,5/4), r=3
6/4
16. (x+1)
2+(y1)2+(z+1)
2= 0; the point (1,1,1)
17. (x3/2)2+(y+2)
2+(z4)2=11/4; no graph
18. (x1)2+(y3)2+(z4)2= 25; sphere, C(1,3,4), r=5
19. (a)
y
x
z(b)
y
x
z(c)
y
x
z
20. (a)
y
x
z
x = 1
(b)
y
x
zy = 1
(c)
y
x
z
z = 1
21. (a)
5
y
x
z(b)
5
y
x
z(c)
5
y
x
z
Exercise Set 13.1 450
22. (a)
y
x
z(b)
y
x
z(c)
y
x
z
23. (a) 2y+z=0 (b) 2x+z=0
(c) (x1)2+(y1)2=1 (d) (x1)2+(z1)2=1
24. (a) (xa)2+(za)
2=a
2
(b) (xa)2+(ya)
2=a
2
(c) (ya)2+(za)
2=a
2
25.
y
x
z
26.
y
x
z27.
1
1
x
y
z
28.
y
x
z29.
3
3
2
y
x
z
30.
2
3
y
x
z31.
2-3
3
x
y
z32.
3
3
y
x
z
451 Chapter 13
33.
-2 2
x
y
z34.
y
x
z
35. (a)
1.4-1.4
-1.4
1.4 (b) z
y
x
36. (a) 1
-1
-2 2
(b)
y
x
z
37. Complete the square to get (x+1)
2+(y1)2+(z2)2= 9; center (1,1,2), radius 3. The
distance between the origin and the center is 6<3 so the origin is inside the sphere. The largest
distance is 3 + 6, the smallest is 3 6.
38. (x1)2+y2+(z+4)
225; all points on and inside the sphere of radius 5 with center
at (1,0,4).
39. (y+3)
2+(z2)2>16; all points outside the circular cylinder (y+3)
2+(z2)2= 16.
40. p(x1)2+(y+2)
2+z
2=2
px
2+(y1)2+(z1)2, square and simplify to get
3x2+3y
2+3z
2+2x12y8z+ 3 = 0, then complete the square to get
(x+1/3)2+(y2)2+(z4/3)2=44/9; center (1/3,2,4/3), radius 211/3.
41. Let rbe the radius of a styrofoam sphere. The distance from the origin to the center of the bowling
ball is equal to the sum of the distance from the origin to the center of the styrofoam sphere nearest
the origin and the distance between the center of this sphere and the center of the bowling ball so
3R=3r+r+R,(
3+1)r=(
31)R,r=31
3+1R=(2
3)R.
42. (a) Complete the square to get (x+G/2)2+(y+H/2)2+(z+I/2)2=K/4, so the equation
represents a sphere when K>0, a point when K= 0, and no graph when K<0.
(b) C(G/2,H/2,I/2), r=K/2
Exercise Set 13.2 452
43. (asin φcos θ)2+(asin φsin θ)2+(acos φ)2=a2sin2φcos2θ+a2sin2φsin2θ+a2cos2φ
=a2sin2φ(cos2θ+ sin2θ)+a
2cos2φ
=a2sin2φ+a2cos2φ=a2(sin2φ+ cos2φ)=a
2
EXERCISE SET 13.2
1. (a–c)
2, 5
5, –4
2, 0
x
y(d–f)
x
y
-5i + 3j
3i - 2j
-6j
2. (a–c)
0, -8
6, -2
-3, 7
x
y(d–f)
-2 i - j
4i + 2 j
4i
x
y
3. (a–b)
1, -2, 2
2, 2, –1
y
x
z(c–d)
y
x
zi + 2j + 3k
2i + 3jk
4. (a–b)
-1, 3, 2
3, 4, 2
y
x
z(c–d)
i - j + 2 k
2j - k
y
x
z
453 Chapter 13
5. (a) h41,15i=h3,4i
x
y
3i – 4j
(b) h02,03,40i=h−2,3,4i
y
x
–2i – 3j + 4kz
6. (a) h−32,33i=h−5,0i
–5i
x
y
(b) h03,40,44i=h−3,4,0i
y
x
– 3i + 4j
z
7. (a) h23, 8 5i=h−1,3i
(b) h07, 0 (2)i=h−7,2i
(c) h−3,6,1i
8. (a) h−4(6), 1(2)i=h2,1i
(b) h−1,6,1i
(c) h5,0,0i
9. (a) Let (x, y) be the terminal point, then x1=3,x= 4 and y(2) = 2, y=4.
The terminal point is (4,4).
(b) Let (x, y, z) be the initial point, then 5 x=3, y= 1, and 1z=2sox=8,
y=1, and z=3. The initial point is (8,1,3).
10. (a) Let (x, y) be the terminal point, then x2=7,x= 9 and y(1)=6,y=5.
The terminal point is (9,5).
(b) Let (x, y, z) be the terminal point, then x+2=1,y1=2,andz4=3sox=1,
y= 3, and z= 1. The terminal point is (1,3,1).
11. (a) i+4j2k (b) 18i+12j6k (c) i5j2k
(d) 40i4j4k (e) 2i16j18k(f)i+13j2k
12. (a) h1,2,0i(b) h28,0,14i+h3,3,9i=h31,3,5i
(c) h3,1,5i(d) 3(h2,1,3i−h28,0,14i)=3h−26,1,17i=h−78,3,51i
(e) h−12,0,6i−h8,8,24i=h−20,8,18i
(f) h8,0,4i−h3,0,6i=h5,0,10i
13. (a) kvk=1+1=
2(b) kvk=1+49=5
2
(c) kvk=21 (d) kvk=14
14. (a) kvk=9+16=5 (b) kvk=2+7=3
(c) kvk=3 (d) kvk=3
Exercise Set 13.2 454
15. (a) ku+vk=k2i2j+2kk=2
3(b) kuk+kvk=14+2
(c) k−2uk+2kvk=2
14+2
2(d) k3u5v+wk=k−12j+2kk=2
37
(e) (1/6)i+(1/
6)j(2/6)k(f)1
16. If one vector is a positive multiple of the other, say u=αvwith α>0, then u,vand u+vare
parallel and ku+vk=(1+α)kvk=kuk+kvk.
17. (a) k−i+4jk=
17 so the required vector is 1/17i+4/17j
(b) k6i4j+2kk=2
14 so the required vector is (3i+2jk)/
14
(c) −→
AB=4i+jk,k−→
AB k=3
2 so the required vector is (4i+jk)/32
18. (a) k3i4jk= 5 so the required vector is 1
5(3i4j)=3
5
i+4
5
j
(b) k2ij2kk= 3 so the required vector is 2
3i1
3j2
3k
(c) −→
AB =4i3j,k−→
AB k= 5 so the required vector is 4
5i3
5j
19. (a) 1
2v=h−3/2,2i(b) kvk=85, so 17
85v=1
5h7,0,6ihas length 17
20. (a) 3v=6i+9j (b) 2
kvkv=6
26i8
26j2
26k
21. (a) v =kvkhcos π/4,sin π/4i=h32/2,32/2i
(b) v =kvkhcos 90,sin 90i=h0,2i
(c) v =kvkhcos 120,sin 120i=h−5/2,53/2i
(d) v =kvkhcos π, sin πi=h−1,0i
22. From (12), v=hcos π/6,sin π/6i=h3/2,1/2iand w=hcos 3π/4,sin 3π/4i=h−2/2,2/2i,
so v+w=((
3
2)/2,(1+2)/2,vw=((
3+
2)/2,(1 2)/2)
23. From (12), v=hcos 30,sin 30i=h3/2,1/2iand w=hcos 135,sin 135i=h−2/2,2/2i,so
v+w=((
3
2)/2,(1+2)/2)
24. w =h1,0i, and from (12), v=hcos 120,sin 120i=h−1/2,3/2i,sov+w=h1/2,
3/2i
25. (a) The initial point of u+v+w
is the origin and the endpoint
is (2,5), so u+v+w=h−2,5i.
-5 5
-5
5
x
y
–2i + 5j
(b) The initial point of u+v+w
is (5,4) and the endpoint
is (2,4), so u+v+w=h3,8i.
-5 5
-8
2
x
y
3i – 8j
455 Chapter 13
26. (a) v =h−10,2iby inspection, so uv+w=u+v+w2v=h−2,5i+h20,4i=h18,1i.
(b) v =h−3,8iby inspection, so uv+w=u+v+w2v=h3,8i+h6,16i=h9,24i.
27. 6x=2uvw=h−4,6i,x=h−2/3,1i
28. u 2x=xw+3v,3x=u+w3v,x=1
3
(u+w3v)=h2/3,2/3i
29. u =5
7i+2
7j+1
7k,v=8
7i1
7j4
7k 30. u =h−5,8i,v=h7,11i
31. k(i+j)+(i2j)k=k2ijk=
5,k(i+j(i2j)k=k3jk=3
32. Let A, B,Cbe the vertices (0,0), (1,3), (2,4) and Dthe fourth vertex (x, y). For the parallelogram
ABCD, −→
AD =−→
BC,hx, yi=h1,1iso x=1,y= 1 and Dis at (1,1). For the parallelogram ACBD,
−→
AD =−→
CB,hx, yi=h−1,1iso x=1, y=1 and Dis at (1,1). For the parallelogram
ABDC, −→
AC=−→
BD,hx1,y3i=h2,4i,sox=3,y = 7 and Dis at (3,7).
33. (a) 5=kkvk=|k|kvk=±3k,sok=±5/3
(b) 6=kkvk=|k|kvk=2kvk,sokvk=3
34. If kkvk= 0 then |k|kvk= 0 so either k=0orkvk= 0; in the latter case, by (9) or (10), v=0.
35. (a) Choose two points on the line, for example P1(0,2) and P2(1,5); then −→
P 1P 2=h1 ,3 iis
parallel to the line, kh1,3ik =10, so h1/10,3/10iand h−1/10,3/10iare unit
vectors parallel to the line.
(b) Choose two points on the line, for example P1(0,4) and P2(1,3); then −→
P 1P 2=h1 ,1 iis
parallel to the line, kh1,1ik =2soh1/
2,1/
2iand h−1/2,1/2iare unit vectors
parallel to the line.
(c) Pick any line that is perpendicular to the line x+y= 4, for example y=x/5; then P1(0,0)
and P2(5,1) are on the line, so −→
P 1P 2=h5 ,1 iis perpendicular to the line, so ±1
26h5,1iare
unit vectors perpendicular to the line.
36. (a) ±k (b) ±j (c) ±i
37. (a) the circle of radius 1 about the origin
(b) the solid disk of radius 1 about the origin
(c) all points outside the solid disk of radius 1 about the origin
38. (a) the circle of radius 1 about the tip of r0
(b) the solid disk of radius 1 about the tip of r0
(c) all points outside the solid disk of radius 1 about the tip of r0
39. (a) the (hollow) sphere of radius 1 about the origin
(b) the solid ball of radius 1 about the origin
(c) all points outside the solid ball of radius 1 about the origin
40. The sum of the distances between (x, y) and the points (x1,y
1
), (x2,y
2
) is the constant k,so
the set consists of all points on the ellipse with foci at (x1,y
1
) and (x2,y
2
), and major axis of
length k.
Exercise Set 13.2 456
41. Since φ=π/2, from (13) we get kF1+F2k2=kF1k2+kF2k2= 3600 + 900,
so kF1+F2k=30
5 lb, and sin α=kF2k
kF1+F2ksin φ=30
30526.57=α26.57.
42. kF1+F2k2=kF1k2+kF2k2+2kF
1
kkF2kcos φ=14,400+10,000 + 2(120)(100)1
2=36,400, so
kF1+F2k=20
91 N, sin α=kF2k
kF1+F2ksin φ=100
2091 sin 60=53
291 27.16,
θ=α27.16.
43. kF1+F2k2=kF1k2+kF2k2+2kF
1
kkF2kcos φ= 160,000 + 160,000 2(400)(400)3
2,
so kF1+F2k≈207.06 N, and sin α=kF2k
kF1+F2ksin φ400
207.06 1
2=75.00,
θ=α30=45.00.
44. kF1+F2k2=kF1k2+kF2k2+2kF
1
kkF2kcos φ=16+4+2(4)(2) cos 77,so
kF
1
+F
2
k≈4.86 lb, and sin α=kF2k
kF1+F2ksin φ=2
4.86 sin 7723.64=α27≈−3.36.
45. Let F1,F2,F3be the forces in the diagram with magnitudes 40,50,75 respectively. Then
F1+F2+F3=(F
1+F
2
)+F
3
. Following the examples, F1+F2has magnitude 45.83 N and
makes an angle 79.11with the positive x-axis. Then
k(F1+F2)+F3k245.832+752+2(45.83)(75) cos 79.11,soF
1+F
2+F
3has magnitude 94.995
N and makes an angle θ=α28.28with the positive x-axis.
46. Let F1,F2,F3be the forces in the diagram with magnitudes 150,200,100 respectively. Then
F1+F2+F3=(F
1+F
2
)+F
3
. Following the examples, F1+F2has magnitude 279.34 N and
makes an angle 91.24with the positive x-axis. Then
kF1+F2+F3k2279.342+ 1002+ 2(279.34)(100) cos(270 91.24), and F1+F2+F3has
magnitude 179.37 N and makes an angle 91.94with the positive x-axis.
47. Let F1,F2be the forces in the diagram with magnitudes 8,10 respectively. Then kF1+F2khas
magnitude 82+10
2+2·8·10 cos 120=2
21 9.165 lb, and makes an angle
60+sin1kF1k
kF1+F2ksin 120 109.11with the positive x-axis, so Fhas magnitude 9.165 lb and
makes an angle 70.89with the positive x-axis.
48. kF1+F2k=1202+ 1502+2·120 ·150 cos 75= 214.98 N and makes an angle 92.63with the
positive x-axis, and kF1+F2+F3k= 232.90 N and makes an angle 67.23with the positive x-axis,
hence Fhas magnitude 232.90 N and makes an angle 112.77with the positive x-axis.
49. F1+F2+F=0, where Fhas magnitude 250 and makes an angle 90with the positive x-axis.
Thus kF1+F2k2=kF1k2+kF2k2+2kF
1
kkF2kcos 105= 2502and
45=α= sin1kF2k
250 sin 105,so
2
2kF
2
k
250 0.9659,kF2k≈183.02 lb,
kF1k2+ 2(183.02)(0.2588)kF1k+ (183.02)2=62,500,kF1k= 224.13 lb.
50. Similar to Exercise 49, kF1k= 1003N,kF
2
k= 100 N
51. (a) c1v1+c2v2=(2c
1+4c
2
)i+(c
1+2c
2
)j=4j,so2c
1+4c
2= 0 and c1+2c
2=4
which gives c1=2,c
2=1.
(b) c1v1+c2v2=hc12c2,3c1+6c
2
i=h3,5i,so c12c2= 3 and 3c1+6c
2=5
which has no solution.
457 Chapter 13
52. (a) Equate corresponding components to get the system of equations c1+3c
2=1,
2c2+c3= 1, and c1+c3= 5. Solve to get c1=2,c
2=1, and c3=3.
(b) Equate corresponding components to get the system of equations c1+3c
2+4c
3=2,
c
1c
3= 1, and c2+c3=1. From the second and third equations, c1=1c3and
c2=1c3; substitute these into the first equation to get 4 = 2, which is nonsense so the
system has no solution.
53. Place uand vtip to tail so that u+vis the vector from the initial point of uto the terminal
point of v. The shortest distance between two points is along the line joining these points so
ku+vk≤kuk+kvk.
54. (a): u+v=(u
1
i+u
2j)+(v
1
i+v
2j)=(v
1
i+v
2j)+u
1
i+u
2j=v+u
(c): u+0=u1i+u2j+0i+0j=u
1
i+u
2j=u
(e): k(lu)=k(l(u
1
i+u
2j)) = k(lu1i+lu2j)=klu1i+klu2j=(kl)u
55. (d): u+(u)=u
1
i+u
2j+(u
1
iu
2j)=(u
1u
1
)i+(u
1u
1
)j=0
(g): (k+l)u=(k+l)(u1i+u2j)=ku1i+ku2j+lu1i+lu2j=ku+lu
(h): 1u=1(u
1
i+u
2j)=1u
1
i+1u
2j=u
1
i+u
2j=u
56. Draw the triangles with sides formed by the vectors u,v,u+vand ku,kv,ku+kv. By similar
triangles, k(u+v)=ku+kv.
57. Let a,b,cbe vectors along the sides of the triangle and A,B the
midpoints of aand b, then u=1
2a1
2b=1
2(ab)=1
2
cso uis
parallel to cand half as long.
A
B
u
c
b
a
58. Let a,b,c,dbe vectors along the sides of the quadrilateral
and A, B, C, D the corresponding midpoints, then
u=1
2b+1
2cand v=1
2d1
2abut d=a+b+cso
v=1
2(a+b+c)1
2a=1
2b+1
2c=uthus ABCD
is a parallelogram because sides AD and BC are equal
and parallel.
v
a
b
c
d
u
A
B
C
D
EXERCISE SET 13.3
1. (a) (1)(6) + (2)(8) = 10; cos θ=(10)/[(5)(10)] = 1/5
(b) (7)(0) + (3)(1) = 3; cos θ=(3)/[(58)(1)] = 3/58
(c) (1)(8) + (3)(2) + (7)(2) = 0; cos θ=0
(d) (3)(4) + (1)(2) + (2)(5) = 20; cos θ=(20)/[(14)(45)] = 20/(370)
2. (a) u ·v= 1(2) cos(π/6) = 3(b) u ·v= 2(3) cos 135=32
3. (a) u ·v=34 <0, obtuse (b) u ·v=6>0, acute
(c) u ·v=1<0, obtuse (d) u ·v= 0, orthogonal
Exercise Set 13.3 458
4. Let the points be P, Q, R in order, then −→
PQ=h2(1),22,03i=h3,4,3i,
−→
QR=h32,1(2),40i=h1,3,4i,−→
RP =h−13,21,3(4)i=h−4,1,7i;
since −→
QP ·
−→
QR=3(1) + 4(3) + 3(4) = 3<0,6PQR is obtuse;
since −→
RP ·
−→
RQ=4(1)+(3) + 7(4) = 29 >0,6PRQ is acute;
since −→
PR ·
−→
PQ= 4(3) 1(4) 7(3)=37>0,6RP Q is acute
5. Since v1·vi= cos φi, the answers are, in order, 2/2,0,2/2,1,2/2,0,2/2
6. Proceed as in Exercise 5; 25/2,25/2,25,25/2,25/2
7. (a) −→
AB =h1,3,2i,−→
BC =h4,2,1i,−→
AB ·
−→
BC =0so −→
AB and −→
BC are orthogonal; it is a right
triangle with the right angle at vertex B.
(b) Let A, B, and Cbe the vertices (1,0), (2,1), and (1,4) with corresponding interior angles
α,β, and γ, then
cos α=
−→
AB ·
−→
AC
k−→
AB kk−→
AC k
=h3,1i·h2,4i
1020 =1/(52)82
cos β=
−→
BA ·
−→
BC
k−→
BAkk−→
BC k
=h−3,1i·h−1,5i
1026 =4/
6560
cos γ=
−→
CA ·
−→
CB
k−→
CAkk−→
CBk
=h−2,4i·h1,5i
2026 =9/
13038
8. −→
AB ·
−→
AP =[2i+j+2k]·[(k1)i+(k+1)j+(k3)k]
=2(k1)+(k+1)+2(k3)=5k7=0,k =7/5.
9. (a) v ·v1=ab +ba =0;v·v
2=ab +b(a)=0
(b) Let v1=2i+3j,v
2=2i3j;
take u1=v1
kv1k=2
13i+3
13j,u2=u1.
-3 3
-3
3
x
y
v
u1
u2
10. By inspection, 3i4jis orthogonal to and has the same length as 4i+3j
so u1=(4i+3j)+(3i4j)=7ijand u2=(4i+3j)+(1)(3i4j)=i+7jeach make an angle
of 45with 4i+3j; unit vectors in the directions of u1and u2are (7ij)/50 and (i+7j)/
50.
11. (a) The dot product of a vector uand a scalar v·wis not defined.
(b) The sum of a scalar u·vand a vector wis not defined.
(c) u ·vis not a vector.
(d) The dot product of a scalar kand a vector u+vis not defined.
459 Chapter 13
12. (b): u·(v+w)=(6ij+2k)·((2i+7j+4k)+(i+j3k))=(6ij+2k)·(3i+8j+k) = 12;
u·v+u·w=(6ij+2k)·(2i+7j+4k)+(6ij+2k)·(i+j3k)=131=12
(c): k(u·v)=5(13) = 65; (ku)·v=(30i+5j10k)·(2i+7j+4k)=65;
u·(kv)=(6ij+2k)·(10i35j20k)=65
13. (a) h1,2i·(h28,14i+h6,0i)=h1,2i·h34,14i=6
(b) k6wk=6kwk=36 (c) 245(d) 245
14. false, for example a=h1,2i,b=h−1,0i,c=h5,3i
15. (a) kvk=3socosα= cos β=1/
3, cos γ=1/3, α=β55,γ125
(b) kvk= 3 so cos α=2/3, cos β=2/3, cos γ=1/3, α48,β132,γ71
16. (a) kvk= 7 so cos α=3/7, cos β=2/7, cos γ=6/7, α65,β107,γ149
(b) kvk= 5, cos α=3/5, cos β= 0, cos γ=4/5, α53,β90,γ143
17. cos2α+ cos2β+ cos2γ=v2
1
kvk2+v2
2
kvk2+v2
3
kvk2=v2
1+v2
2+v2
3/kvk2=kvk2/kvk2=1
18. Let v=hx, y, zi, then x=px2+y2cos θ, y =px2+y2sin θ, px2+y2=kvkcos λ, and
z=kvksin λ,sox/kvk= cos θcos λ, y/kvk= sin θcos λ, and z/kvk= sin λ.
19. cos α=3
2
1
2=3
4,cos β=3
2
3
2=3
4,cos γ=1
2;α6441=60
20. Let u1=ku1khcos α1,cos β1,cos γ1i,u2=ku2khcos α2,cos β2,cos γ2i,u1and u2are perpendicular
if and only if u1·u2=0soku
1
kku
2
k(cos α1cos α2+ cos β1cos β2+ cos γ1cos γ2)=0,
cos α1cos α2+ cos β1cos β2+ cos γ1cos γ2=0.
21. (a) b
kbk=h3/5,4/5i, so projbv=h6/25,8/25i
and vprojbv=h44/25,33/25i
2
-2
-2
2
x
y
v
vprojbv
projbv
(b) b
kbk=h1/5,2/5i, so projbv=h−6/5,12/5i
and vprojbv=h26/5,13/5i
x
y
-5 5
-5
5
v
vprojbv
projbv
Exercise Set 13.3 460
(c) b
kbk=h2/5,1/5i, so projbv=h−16/5,8/5i
and vprojbv=h1/5,2/5ix
y
-4
-4
v
vprojbv
projbv
22. (a) b
kbk=h1/3,2/3,2/3i, so projbv=h2/3,4/3,4/3iand vprojbv=h4/3,7/3,5/3i
(b) b
kbk=h2/7,3/7,6/7i, so projbv=h−74/49,111/49,222/49i
and vprojbv=h270/49,62/49,121/49i
23. (a) projbv=h−1,1i,sov=h−1,1i+h3,3i
(b) projbv=h16/5,0,8/5i,sov=h16/5,0,8/5i+h−1/5,1,2/5i
24. (a) projbv=h1,1i,sov=h1,1i+h−4,4i
(b) projbv=h0,8/5,4/5i,sov=h0,8/5,4/5i+h−2,13/5,26/5i
25. −→
AP =i+3j,−→
AB=3i+4j,kproj−→
AB
−→
AP k=|−→
AP ·
−→
AB |/k−→
AB k=9/5
k−→
AP k=10,p10 81/25=13/5
26. −→
AP =4i+2k,−→
AB =3i+2j4k,kproj−→
AB
−→
AP k=|−→
AP ·
−→
AB |/k−→
AB k=4/
29.
k−→
AP k=20, p20 16/29 = p564/29
27. Let Fbe the downward force of gravity on the block, then kFk= 10(9.8) = 98 N, and if F1and
F2are the forces parallel to and perpendicular to the ramp, then kF1k=kF2k=49
2N.Thus
the block exerts a force of 492 N against the ramp and it requires a force of 492 N to prevent
the block from sliding down the ramp.
28. Let xdenote the magnitude of the force in the direction of Q. Then the force Facting on the
block is F=xi10j. Let u=1
2(i+j) and v=1
2(ij) be the unit vectors in the directions
along and against the ramp. Then Fdecomposes as F=x10
2u+x+10
2v, and thus the block
will not slide down the ramp provided x10 N.
29. Three forces act on the block: its weight 300j; the tension in cable A, which has the form
a(i+j); and the tension in cable B, which has the form b(3ij), where a, b are positive
constants. The sum of these forces is zero, which yields a= 450 + 1503,b= 150 + 1503. Thus
the forces along cables A and B are, respectively,
k150(3 + 3)(ij)k= 4502 + 1506 lb, and k150(3 + 1)(3ij)k= 300 + 3003 lb.
461 Chapter 13
30. (a) Let T
Aand T
Bbe the forces exerted on the block by cables Aand B. Then
T
A=a(10i+dj) and T
B=b(20i+dj) for some positive a, b. Since T
A+T
B100j=0,we
find a=200
3d,b=100
3d,T
A=2000
3di+200
3j, and T
B=2000
3di+100
3j.
500
-100
-20 100
(b) An increase in dwill decrease both forces. 500
-100
-20 100
(c) The inequality kT
Ak≤150 is equivalent to d40
65, and kT
Bk≤150 is equivalent to
d40
77. Hence we must have d40
65.
31. Let Pand Qbe the points (1,3) and (4,7) then −→
PQ=3i+4jso W=F·
−→
PQ=12 ft ·lb.
32. W=F·
−→
PQ=kFkk−→
PQkcos 45= (500)(100) 2/2=25,0002N·m
33. W=F·15i=15·50 cos 60= 375 ft ·lb.
34. W=F·(15/3)(i+j+k)=15/3N·m
35. With the cube as shown in the diagram,
and athe length of each edge,
d1=ai+aj+ak,d2=ai+ajak,
cos θ=(d
1·d
2
)/(kd
1
kkd
2
k)=1/371
d1
d2
y
x
z
36. Take i,j, and kalong adjacent edges of the box, then 10i+15j+25kis along a diagonal, and a
unit vector in this direction is 2
38i+3
38j+5
38k. The direction cosines are cos α=2/
38,
cos β=3/
38, and cos γ=5/
38 so α71,β61, and γ36.
Exercise Set 13.3 462
37. u +vand uvare vectors along the diagonals,
(u+v)·(uv)=u·uu·v+v·uv·v=kuk
2−kvk
2so (u+v)·(uv)=0
if and only if kuk=kvk.
38. The diagonals have lengths ku+vkand kuvkbut
ku+vk2=(u+v)·(u+v)=kuk
2+2u·v+kvk
2
, and
kuvk2=(uv)·(uv)=kuk
22u·v+kvk
2
. If the parallelogram is a rectangle then
u·v=0soku+vk
2=kuvk
2
; the diagonals are equal. If the diagonals are equal, then
4u·v=0,u·v=0souis perpendicular to vand hence the parallelogram is a rectangle.
39. ku+vk2=(u+v)·(u+v)=kuk
2+2u·v+kvk
2and
kuvk2=(uv)·(uv)=kuk
22u·v+kvk
2
, add to get
ku+vk2+kuvk2=2kuk
2+2kvk
2
The sum of the squares of the lengths of the diagonals of a parallelogram is equal to twice the sum
of the squares of the lengths of the sides.
40. ku+vk2=(u+v)·(u+v)=kuk
2+2u·v+kvk
2and
kuvk2=(uv)·(uv)=kuk
22u·v+kvk
2
, subtract to get
ku+vk2−kuvk
2=4u·v, the result follows by dividing both sides by 4.
41. v =c1v1+c2v2+c3v3so v·vi=civi·vibecause vi·vj=0ifi6=j,
thus v·vi=cikvik2,c
i=v·v
i/kv
ik2for i=1,2,3.
42. v1·v2=v1·v3=v2·v3= 0 so they are mutually perpendicular. Let v=ij+k, then
c1=v·v1
kv1k2=3
7,c2=v·v2
kv2k2=1
3, and c3=v·v3
kv3k2=1
21.
43. (a) u =xi+(x
2+1)j,v=xi(x+1)j= cos1[(u·v)/(kukkvk)].
Solve /dx = 0 to find that the minimum value of θoccurs when x≈−3.136742 so the
minimum angle is about 40.
(b) Solve u·v= 0 for xto get x≈−0.682328.
44. (a) u = cos θ1i±sin θ1j,v=±sin θ2j+ cos θ2k,cos θ=u·v=±sin θ1sin θ2
(b) cos θ=±sin245=±1/2=60
(c) Let θ(t) = cos1(sin tsin 2t); solve θ0(t)=0fortto find that θmax 140(reject, since θ
is acute) when t2.186276 and that θmin 40when t0.955317; for θmax check the
endpoints t=0/2 to obtain θmax = cos1(0) = π/2.
45. Let u=hu1,u
2
,u
3
i,v=hv
1
,v
2
,v
3
i,w=hw
1
,w
2
,w
3
i. Then
u·(v+w)=hu
1
(v
1+w
1
),u
2
(v
2+w
2
),u
3
(v
3+w
3
)i=hu
1
v
1+u
1
w
1
,u
2
v
2+u
2
w
2
,u
3
v
3+u
3
w
3
i
=hu
1
v
1
,u
2
v
2
,u
3
v
3
i+hu
1
w
1
,u
2
w
2
,u
3
w
3
i=u·v+u·w
0·v=0·v
1+0·v
2+0·v
3=0
463 Chapter 13
EXERCISE SET 13.4
1. (a) i ×(i+j+k)=
ijk
100
111
=j+k
(b) i ×(i+j+k)=(i×i)+(i×j)+(i×k)=j+k
2. (a) j ×(i+j+k)=
ijk
010
111
=ik
j×(i+j+k)=(j×i)+(j×j)+(j×k)=ik
(b) k ×(i+j+k)=
ijk
001
111
=i+j
k×(i+j+k)=(k×i)+(k×j)+(k×k)=ji+0=i+j
3. h7,10,9i4. i2j7k5.h−4,6,3i6. i +2j4k
7. (a) v ×w=h−23,7,1i,u×(v×w)=h−20,67,9i
(b) u ×v=h−10,14,2i,(u×v)×w=h−78,52,26i
(c) (u×v)×(v×w)=h−10,14,2i×h23,7,1i=h0,56,392i
(d) (v×w)×(u×v)=h0,56,392i
9. u ×v=(i+j)×(i+j+k)=kjk+i=ij, the direction cosines are 1
2,1
2,0
10. u ×v=12i+30j6k,so± 2
30i+5
6j1
30k!
11. n =−→
AB ×−→
AC =h1,1,3i×h1,3,1i=h8,4,4i, unit vectors are ±1
6h2,1,1i
12. A vector parallel to the yz-plane must be perpendicular to i;
i×(3i j+2k)=2jk,k−2jkk=
5, the unit vectors are ±(2j+k)/5.
13. A=ku×vk=k−7ij+3kk=
59 14. A=ku×vk=k−6i+4j+7kk=
101
15. A=1
2k−→
PQ ×−→
PRk=1
2kh−1,5,2i×h2,0,3ik =1
2kh−15,7,10ik =374/2
16. A=1
2k−→
PQ ×−→
PRk=1
2kh−1,4,8i×h5,2,12ik =1
2kh32,52,22ik =9
13
17. 80 18. 29 19. 320. 1
21. V=|u·(v×w)|=|−16|=16 22. V=|u·(v×w)|=|45|=45
23. (a) u ·(v×w)=0,yes (b) u ·(v×w)=0,yes (c) u ·(v×w) = 245, no
Exercise Set 13.4 464
24. (a) u ·(w×v)=u·(v×w)=3(b) (v×w)·u=u·(v×w)=3
(c) w ·(u×v)=u·(v×w)=3 (d) v ·(u×w)=u·(w×v)=3
(e) (u×w)·v=u·(w×v)=3(f ) v ·(w×w) = 0 because w×w=0
25. (a) V=|u·(v×w)|=|−9|=9 (b) A=ku×wk=k3i8j+7kk=
122
(c) v ×w=3ij+2kis perpendicular to the plane determined by vand w; let θbe the
angle between uand v×wthen
cos θ=u·(v×w)
kukkv×wk=9
1414 =9/14
so the acute angle φthat umakes with the plane determined by vand wis
φ=θπ/2 = sin1(9/14).
26. From the diagram,
d=kuksin θ=kukkvksin θ
kvk=ku×vk
kvku
v
d
P
θ
27. (a) u =−→
AP =4i+2k,v=−→
AB =3i+2j4k,u×v=4i22j8k;
distance = ku×vk/kvk=2
p141/29
(b) u =−→
AP =2i+2j,v=−→
AB =2i+j,u×v=6k; distance = ku×vk/kvk=6/
5
28. Take vand was sides of the (triangular) base, then area of base = 1
2kv×wkand
height = kprojv×wuk=|u·(v×w)|
kv×wkso V=1
3(area of base) (height) = 1
6|u·(v×w)|
29. −→
PQ=h3,1,3i,−→
PR=h2,2,1i,−→
PS=h4,4,3i,
V=1
6|−→
PQ ·(−→
PR ×−→
PS)|=1
6|−4|=2/3
30. (a) cos θ=u·v
kukkvk=23
49 (b) sin θ=ku×vk
kukkvk=k36i24jk
49 =1213
49
(c) 232
492+144 ·13
492=2401
492=1
31. From Theorems 13.3.3 and 13.4.5a it follows that sin θ= cos θ,soθ=π/4.
32. ku×vk2=kuk2kvk2sin2θ=kuk2kvk2(1 cos2θ)=kuk
2
kvk
2(u·v)
2
33. (a) F =10jand −→
PQ=i+j+k, so the vector moment of Fabout Pis
−→
PQ ×F=
ijk
111
0100
=10i+10k, and the scalar moment is 102lb·ft.
The direction of rotation of the cube about Pis counterclockwise looking along
−→
PQ ×F=10i+10ktoward its initial point.
465 Chapter 13
(b) F =10jand −→
PQ=j+k, so the vector moment of Fabout Pis
−→
PQ ×F=
ijk
011
0100
=10i, and the scalar moment is 10 lb·ft. The direction of rotation
of the cube about Pis counterclockwise looking along 10itoward its initial point.
(c) F =10jand −→
PQ=j, so the vector moment of Fabout Pis
−→
PQ ×F=
ijk
010
0100
=0, and the scalar moment is 0 lb·ft. Since the force is parallel to
the direction of motion, there is no rotation about P.
34. (a) F =1000
2(i+k) and −→
PQ=2jk, so the vector moment of Fabout Pis
−→
PQ ×F= 5002
ijk
021
10 1
= 5002(2i+j+2k), and the scalar moment is
15002N·m.
(b) The direction angles of the vector moment of Fabout the point Pare
cos1(2/3) 48,cos1(1/3) 71, and cos1(2/3) 48.
35. F makes an angle 72with the positive x-axis, and ~
PQ =0.2i+0.03jmakes an angle
α= tan1(0.03/0.2) with the x-axis, so φ728.53=63.47and kFk= 200 N, so
k−→
PQ ×Fk=k~
PQkkFk|sin 63.47|= 200k(0.2i+0.030j)k|sin 63.47|≈36.19 N·m.
36. Part (b) : let u=hu1,u
2
,u
3
i,v=hv
1
,v
2
,v
3
i,and w=hw1,w
2
,w
3
i; show that
u×(v+w) and (u×v)+(u×w) are the same.
Part (c) : (u+v)×w=[w×(u+v)] from part (a)
=[(w×u)+(w×v)] from part (b)
=(u×w)+(v×w) from part (a)
37. Let u=hu1,u
2
,u
3
iand v=hv1,v
2
,v
3
i; show that k(u×v), (ku)×v, and u×(kv) are all the
same; Part (e) is proved in a similar fashion.
38. Suppose the first two rows are interchanged. Then by definition,
b1b2b3
a1a2a3
c1c2c3
=b1
a2a3
c2c3b2
a1a3
c1c3
+b3
a1a2
c1c2
=b1(a2c3a3c2)b2(a1c3a3c1)+b
3
(a
1
c
2a
2
c
1
),
which is the negative of the right hand side of (2) after expansion. If two other rows were to be
exchanged, a similar proof would hold. Finally, suppose ∆ were a determinant with two identical
rows. Then the value is unchanged if we interchange those two rows, yet ∆ = ∆ by Part (b) of
Theorem 13.4.1. Hence ∆ = ,∆=0.
39. 8i20j+2k,8i8k
40. (a) From the first formula in Exercise 39 it follows that u×(v×w) is a linear combination of
vand wand hence lies in the plane determined by them.
(b) Similar to (a).
Exercise Set 13.5 466
41. If a,b,c, and dlie in the same plane then a×band c×dare parallel so (a×b)×(c×d)=0
42. Let uand vbe the vectors from a point on the curve to the points (2,1,0) and (3,2,2), respec-
tively. Then u=(2x)i+(1lnx)jand v=(3x)i+(2lnx)j+2k.The area of the triangle
is given by A=(1/2)ku×vk; solve dA/dx = 0 for xto get x=2.091581. The minimum area is
1.887850.
43.
−→
PQ
0×F=−→
PQ ×F+−→
QQ0×F=−→
PQ ×F, since Fand −→
QQ0are parallel.
EXERCISE SET 13.5
In many of the Exercises in this section other answers are also possible.
1. (a) L1:P(1,0),v=j,x=1,y =t
L
2
:P(0,1),v=i,x=t, y =1
L
3
:P(0,0),v=i+j,x=t, y =t
(b) L1:P(1,1,0),v=k,x=1,y =1,z =t
L
2
:P(0,1,1),v=i,x=t, y =1,z =1
L
3
:P(1,0,1),v=j,x=1,y =t, z =1
L
4
:P(0,0,0),v=i+j+k,x=t,
y=t, z =t
2. (a) L1:x=t, y =1,0t1
L
2
:x=1,y =t, 0t1
L3:x=t, y =t, 0t1
(b) L1:x=1,y =1,z =t, 0t1
L2:x=t, y =1,z =1,0t1
L
3
:x=1,y =t, z =1,0t1
L
4
:x=t, y =t, z =t, 0t1
3. (a) −→
P 1P 2=h2 ,3 iso x=3+2t,y=2+3tfor the line; for the line segment add the condition
0t1.
(b) −→
P 1P 2=h−3,6,1iso x=53t,y=2+6t,z=1+tfor the line; for the line segment add
the condition 0 t1.
4. (a) −→
P 1P 2=h−3,5iso x=3t,y=15tfor the line; for the line segment add the condition
0t1.
(b) −→
P 1P 2=h0 ,0 ,3 iso x=1, y=3,z=53tfor the line; for the line segment add the
condition 0 t1.
5. (a) x=2+t, y =34t(b) x=t, y =t, z =1+t
6. (a) x=3+2t, y =4+t(b) x=1t, y =3t, z =2
7. (a) r0=2ijso P(2,1) is on the line, and v=4ijis parallel to the line.
(b) At t=0,P(1,2,4) is on the line, and v=5i+7j8kis parallel to the line.
8. (a) At t=0,P(1,5) is on the line, and v=2i+3jis parallel to the line.
(b) r0=i+j2kso P(1,1,2) is on the line, and v=jis parallel to the line.
9. (a) hx, yi=h−3,4i+th1,5i;r=3i+4j+t(i+5j)
(b) hx, y, zi=h2,3,0i+th−1,5,1i;r=2i3j+t(i+5j+k)
10. (a) hx, yi=h0,2i+th1,1i;r=2j+t(i+j)
(b) hx, y, zi=h1,7,4i+th1,3,5i;r=i7j+4k+t(i+3j5k)
11. x=5+2t,y=23t12. x=t,y=32t
467 Chapter 13
13. 2x+2yy0=0,y
0=x/y =(3)/(4)=3/4, v=4i+3j;x=3+4t,y=4+3t
14. y0=2x=2(2) = 4, v=i4j;x=2+t,y=44t
15. x=1+3t,y=24t,z=4+t16. x=2t,y=1+2t,z=5+7t
17. The line is parallel to the vector h2,1,2iso x=2+2t,y=t,z=5+2t.
18. The line is parallel to the vector h1,1,0iso x=t,y=t,z=0.
19. (a) y=0,2t=0,t =2,x=7 (b) x=0,1+3t=0,t=1/3,y =7/3
(c) y=x2,2t=(1+3t)
2
,9t
2+7t1=0,t=7±85
18 ,x=1±85
6,y =43 85
18
20. (4t)2+(3t)
2=25,25t2=25,t=±1, the line intersects the circle at ±h4,3i
21. (a) z= 0 when t= 3 so the point is (2,10,0)
(b) y= 0 when t=2sothepointis(2,0,5)
(c) xis always 2 so the line does not intersect the yz-plane
22. (a) z= 0 when t= 4 so the point is (7,7,0)
(b) y= 0 when t=3sothepointis(7,0,7)
(c) x= 0 when t=1/2sothepointis(0,7/2,7/2)
23. (1 + t)2+(3t)
2= 16, t22t3=0,(t+ 1)(t3)=0;t=1, 3. The points of intersection
are (0,4,2) and (4,0,6).
24. 2(3t)+3(1+2t)=6,12t=9;t=3/4. The point of intersection is (5/4,9/4,1/2).
25. The lines intersect if we can find values of t1and t2that satisfy the equations 2 + t1=2+t
2
,
2+3t
1=3+4t
2
, and 3 + t1=4+2t
2
. Solutions of the first two of these equations are t1=1,
t2=1 which also satisfy the third equation so the lines intersect at (1,1,2).
26. Solve the equations 1+4t
1=13+12t
2
,3+t
1=1+6t
2
, and 1 = 2 + 3t2. The third equation
yields t2=1/3 which when substituted into the first and second equations gives t1=4inboth
cases; the lines intersect at (17,1,1).
27. The lines are parallel, respectively, to the vectors h7,1,3iand h−1,0,2i. These vectors are not
parallel so the lines are not parallel. The system of equations 1 + 7t1=4t
2
,3+t
1= 6, and
53t1=7+2t
2has no solution so the lines do not intersect.
28. The vectors h8,8,10iand h8,3,1iare not parallel so the lines are not parallel. The lines do not
intersect because the system of equations 2 + 8t1=3+8t
2
,68t
1=53t
2
,10t
1=6+t
2has no
solution.
29. The lines are parallel, respectively, to the vectors v1=h−2,1,1iand v2=h−4,2,2i;
v2=2v
1
,v
1and v2are parallel so the lines are parallel.
30. The lines are not parallel because the vectors h3,2,3iand h9,6,8iare not parallel.
31. −→
P 1P2=h3 ,7 ,7 i ,−→
P 2P 3=h−9,7,3i; these vectors are not parallel so the points do not lie on
the same line.
Exercise Set 13.5 468
32. −→
P 1P 2=h2 ,4 ,4 i ,−→
P2P 3=h1 ,2 ,2 i ;−→
P 1P 2=2 −→
P2P 3so the vectors are parallel and the points
lie on the same line.
33. If t2gives the point h−1+3t
2
,96t
2
ion the second line, then t1=43t
2yields the point
h3(4 3t2),1 + 2(4 3t2)i=h−1+3t
2
,96t
2
ion the first line, so each point of L2is a point
of L1; the converse is shown with t2=(4t
1
)/3.
34. If t1gives the point h1+3t
1
,2+t
1
,2t
1
ion L1, then t2=(1t
1
)/2 gives the point
h46(1 t1)/2,12(1 t1)/2,24(1 t1)/2i=h1+3t
1
,2+t
1
,2t
1
ion L2, so each point of
L1isapointofL
2
; the converse is shown with t1=12t
2
.
35. The line segment joining the points (1,0) and (3,6).
36. The line segment joining the points (2,1,4) and (7,1,1).
37. A(3,0,1) and B(2,1,3) are on the line, and (method of Exercise 25)
−→
AP =5i+j,−→
AB=i+j+2k,kproj−→
AB
−→
AP k=|−→
AP ·
−→
AB |/k−→
AB k=6 and k−→
AP k=26,
so distance = 26 6=4
5. Using the method of Exercise 26, distance = k−→
AP ×−→
AB k
k−→
AB k
=2
5.
38. A(2,1,0) and B(3,2,3) are on the line, and (method of Exercise 25)
−→
AP =i+5j3k,−→
AB=ij+3k,kproj−→
AB
−→
AP k=|−→
AP ·
−→
AB |/k−→
AB k=15
11 and
k−→
AP k=35, so distance = p35 225/11=4
p10/11. Using the method of Exercise 26,
distance = k−→
AP ×−→
AB k
k−→
AB k
=4
p10/11.
39. The vectors v1=i+2j+kand v2=2i4j2kare parallel to the lines, v2=2v1so v1and
v2are parallel. Let t= 0 to get the points P(2,0,1) and Q(1,3,5) on the first and second lines,
respectively. Let u=−→
PQ=i+3j+4k,v=1
2v
2=i2jk;u×v=5i+3jk; by the method
of Exercise 26 of Section 13.4, distance = ku×vk/kvk=p35/6.
40. The vectors v1=2i+4j6kand v2=3i+6j9kare parallel to the lines, v2=(3/2)v1so v1
and v2are parallel. Let t= 0 to get the points P(0,3,2) and Q(1,0,0) on the first and second
lines, respectively. Let u=−→
PQ=i3j2k,v=1
2v
1=i+2j3k;u×v=13i+j+5k,
distance = ku×vk/kvk=p195/14 (Exer. 26, Section 13.4).
41. (a) The line is parallel to the vector hx1x0,y
1y
0
,z
1z
0
iso
x=x0+(x
1x
0
)t,y=y
0+(y
1y
0
)t,z=z
0+(z
1z
0
)t
(b) The line is parallel to the vector ha, b, ciso x=x1+at,y=y1+bt,z=z1+ct
42. Solve each of the given parametric equations (2) for tto get t=(xx
0
)/a,t=(yy
0
)/b,
t=(zz
0
)/c,so(x, y, z) is on the line if and only if (xx0)/a =(yy
0
)/b =(zz
0
)/c.
43. (a) It passes through the point (1,3,5) and is parallel to v=2i+4j+k
(b) hx, y, zi=h1+2t, 3+4t, 5+ti
44. Let the desired point be P(x0,y
0
,z
0
), then −→
P 1P=(2/3) −→
P1P 2,
hx01 ,y
04,z
0+3i=(2/3)h0,1,2i=h0,2/3,4/3i; equate corresponding components to get
x0=1,y
0=14/3, z0=5/3.
469 Chapter 13
45. (a) Let t= 3 and t=2, respectively, in the equations for L1and L2.
(b) u =2ij2kand v=i+3jkare parallel to L1and L2,
cos θ=u·v/(kukkvk)=1/(311)84.
(c) u ×v=7i+7kis perpendicular to both L1and L2, and hence so is i+k,thusx=7+t,
y=1, z=2+t.
46. (a) Let t=1/2 and t= 1, respectively, in the equations for L1and L2.
(b) u =4i2j+2kand v=ij+4kare parallel to L1and L2,
cos θ=u·v/(kukkvk)=14/
43248.
(c) u ×v=6i14j2kis perpendicular to both L1and L2, and hence so is 3i+7j+k,
thus x=2+3t,y=7t,z=3+t.
47. (0,1,2) is on the given line (t=0)sou=jkis a vector from this point to the point (0,2,1),
v=2ij+kis parallel to the given line. u×v=2j2k, and hence w=j+k, is perpendicular
to both lines so v×w=2i2j+2k, and hence i+jk, is parallel to the line we seek. Thus
x=t,y=2+t,z=1tare parametric equations of the line.
48. (2,4,2) is on the given line (t=0)sou=5i3j4kis a vector from this point to the point
(3,1,2), v=2i+2j+kis parallel to the given line. u×v=5i13j+16kis perpendicular to
both lines so v×(u×v)=45i27j36k, and hence 5i3j4kis parallel to the line we seek.
Thus x=3+5t,y=13t,z=24tare parametric equations of the line.
49. (a) When t= 0 the bugs are at (4,1,2) and (0,1,1) so the distance between them is
42+0
2+1
2=
17 cm.
(b)
5
0
0
10 (c) The distance has a minimum value.
(d) Minimize D2instead of D(the distance between the bugs).
D2=[t(4 t)]2+[(1+t)(1+2t)]2+[(1+2t)(2+t)]2=6t
218t+ 17,
d(D2)/dt =12t18 = 0 when t=3/2; the minimum
distance is p6(3/2)218(3/2)+17=
14/2 cm.
50. The line intersects the xz-plane when t=1, the xy-plane when t=3/2. Along the line,
T=25t
2
(1 + t)(3 2t) for 1t3/2. Solve dT/dt = 0 for tto find that the maximum value
of Tis about 50.96 when t1.073590.
EXERCISE SET 13.6
1. x=3,y =4,z =5 2. x=x0,y =y
0
,z =z
0
3. (x2)+4(y6)+2(z1)=0,x+4y+2z=28
4. (x+1)+7(y+1)+6(z2)=0,x+7y+6z=6
Exercise Set 13.6 470
5. z=0 6. 2x3y4z=0 7. n =ij,xy=0
8. n =i+j,P(1,0,0),(x1)+y=0,x+y=1
9. n =j+k,P(0,1,0),(y1)+z=0,y+z=1 10. n =jk,yz=0
11. −→
P 1P 2×−→
P 1P 3=h2 ,1 ,2 i×h3,1,2i=h0,10,5i,for convenience choose h0,2,1iwhich is also
normal to the plane. Use any of the given points to get 2yz=1
12. −→
P 1P 2×−→
P 1P 3=h−1,1,2i×h4,1,1i=h1,9,5i,x+9y5z=16
13. (a) parallel, because h2,8,6iand h−1,4,3iare parallel
(b) perpendicular, because h3,2,1iand h4,5,2iare orthogonal
(c) neither, because h1,1,3iand h2,0,1iare neither parallel nor orthogonal
14. (a) neither, because h3,2,1iand h6,4,3iare neither parallel nor orthogonal
(b) parallel, because h4,1,2iand h1,1/4,1/2iare parallel
(c) perpendicular, because h1,4,7iand h5,3,1iare orthogonal
15. (a) parallel, because h2,1,4iand h3,2,1iare orthogonal
(b) neither, because h1,2,3iand h1,1,2iare neither parallel nor orthogonal
(c) perpendicular, because h2,1,1iand h4,2,2iare parallel
16. (a) parallel, because h−1,1,3iand h2,2,0iare orthogonal
(b) perpendicular, because h−2,1,1iand h6,3,3iare parallel
(c) neither, because h1,1,1iand h1,1,1iare neither parallel nor orthogonal
17. (a) 3t2t+t5=0,t=5/2sox=y=z=5/2, the point of intersection is (5/2,5/2,5/2)
(b) 2(2 t)+(3+t)+t= 1 has no solution so the line and plane do not intersect
18. (a) 2(3t)5t+(t)+1=0,1 = 0 has no solution so the line and the plane do not intersect.
(b) (1+t)(1+3t)+4(2+4t)=7,t=3/14 so x=13/14=11/14,
y=19/14 = 23/14, z=212/14=8/7, the point is (11/14,23/14,8/7)
19. n1=h1,0,0i,n2=h2,1,1i,n1·n2=2so
cos θ=n1·n2
kn1kkn
2
k=2
1
6=2/
6= cos1(2/6) 35
20. n1=h1,2,2i,n2=h6,3,2i,n1·n2=4so
cos θ=(n1)·n2
k−n
1
kkn
2
k=4
(3)(7) =4/21= cos1(4/21) 79
(Note: n1is used instead of n1to get a value of θin the range [0/2])
21. h4,2,7iis normal to the desired plane and (0,0,0) is a point on it; 4x2y+7z=0
22. v =h3,2,1iis parallel to the line and n=h1,2,1iis normal to the given plane so
v×n=h0,4,8iis normal to the desired plane. Let t= 0 in the line to get (2,4,3) which is
also a point on the desired plane, use this point and (for convenience) the normal h0,1,2ito find
that y+2z= 10.
471 Chapter 13
23. Find two points P1and P2on the line of intersection of the given planes and then find an equation
of the plane that contains P1,P2, and the given point P0(1,4,2). Let (x0,y
0
,z
0
)beonthe
line of intersection of the given planes; then 4x0y0+z02 = 0 and 2x0+y02z03=0,
eliminate y0by addition of the equations to get 6x0z05=0;ifx
0= 0 then z0=5, if x0=1
then z0= 1. Substitution of these values of x0and z0into either of the equations of the planes
gives the corresponding values y0=7 and y0=3soP
1
(0,7,5) and P2(1,3,1) are on the
line of intersection of the planes. −→
P 0P 1×−→
P 0P 2=h4 ,13,21iis normal to the desired plane whose
equation is 4x13y+21z=14.
24. h1,2,1iis parallel to the line and hence normal to the plane x+2yz=10
25. n1=h2,1,1iand n2=h1,2,1iare normals to the given planes, n1×n2=h−1,1,3iso h1,1,3i
is normal to the desired plane whose equation is x+y3z=6.
26. n =h4,1,3iis normal to the given plane, −→
P 1P 2=h3 ,1 ,1 iis parallel to the line,
n×−→
P 1P 2=h4 ,13,1iis normal to the desired plane whose equation is 4x+13yz=1.
27. n1=h2,1,1iand n2=h1,1,2iare normals to the given planes,
n1×n2=h1,5,3iis normal to the desired plane whose equation is x+5y+3z=6.
28. Let t= 0 and t= 1 to get the points P1(1,0,4) and P2(0,1,2) that lie on the line. Denote the
given point by P0, then −→
P 0P 1×−→
P 0P 2=h7 ,1 ,3 iis normal to the desired plane whose equation
is 7xy3z=5.
29. The plane is the perpendicular bisector of the line segment that joins P1(2,1,1) and P2(3,1,5).
The midpoint of the line segment is (5/2,0,3) and −→
P 1P 2=h1 ,2 ,4 iis normal to the plane so an
equation is x+2y+4z=29/2.
30. n1=h2,1,1iand n2=h0,1,1iare normals to the given planes, n1×n2=h−2,2,2iso
n=h1,1,1iis parallel to the line of intersection of the planes. v=h3,1,2iis parallel to the
given line, v×n=h−3,5,2iso h3,5,2iis normal to the desired plane. Let t= 0 to find the
point (0,1,0) that lies on the given line and hence on the desired plane. An equation of the plane
is 3x5y2z=5.
31. The line is parallel to the line of intersection of the planes if it is parallel to both planes. Normals
to the given planes are n1=h1,4,2iand n2=h2,3,1iso n1×n2=h−2,5,11iis parallel to
the line of intersection of the planes and hence parallel to the desired line whose equations are
x=52t,y=5t,z=2+11t.
32. Denote the points by A,B,C, and D, respectively. The points lie in the same plane if −→
AB ×−→
AC
and −→
AB ×−→
AD are parallel (method 1). −→
AB ×−→
AC =h0,10,5i,−→
AB ×−→
AD =h0,16,8i, these
vectors are parallel because h0,10,5i=(10/16)h0,16,8i. The points lie in the same plane
if Dlies in the plane determined by A, B, C (method 2), and since −→
AB ×−→
AC =h0,10,5i,an
equation of the plane is 2y+z+1=0,2yz= 1 which is satisfied by the coordinates of D.
33. v =h0,1,1iis parallel to the line.
(a) For any t, 6·0+4t4t=0,so(0,t,t) is in the plane.
(b) n =h5,3,3iis normal to the plane, v·n= 0 so the line is parallel to the plane. (0,0,0) is
on the line, (0,0,1/3) is on the plane. The line is below the plane because (0,0,0) is below
(0,0,1/3).
Exercise Set 13.6 472
(c) n =h6,2,2i,v·n= 0 so the line is parallel to the plane. (0,0,0) is on the line, (0,0,3/2)
is on the plane. The line is above the plane because (0,0,0) is above (0,0,3/2).
34. The intercepts correspond to the points A(a, 0,0),B(0,b,0), and C(0,0,c). −→
AB ×−→
AC =hbc, ac, abi
is normal to the plane so bcx +acy +abz =abc or x/a +y/b +z/c =1.
35. v1=h1,2,1iand v2=h−1,2,1iare parallel, respectively, to the given lines and to each
other so the lines are parallel. Let t= 0 to find the points P1(2,3,4) and P2(3,4,0) that lie,
respectively, on the given lines. v1×−→
P 1P 2=h−7,1,9iso h7,1,9iis normal to the desired plane
whose equation is 7x+y+9z= 25.
36. The system 4t11=12t
213, t1+3=6t
2+1,1=3t
2+ 2 has the solution (Exercise 26,
Section 13.5) t1=4, t2=1/3so(17,1,1) is the point of intersection. v1=h4,1,0iand
v2=h12,6,3iare (respectively) parallel to the lines, v1×v2=h3,12,12iso h1,4,4iis normal
to the desired plane whose equation is x4y+4z=9.
37. n1=h−2,3,7iand n2=h1,2,3iare normals to the planes, n1×n2=h−23,1,7iis parallel
to the line of intersection. Let z= 0 in both equations and solve for xand yto get x=11/7,
y=12/7so(11/7,12/7,0) is on the line, a parametrization of which is
x=11/723t,y=12/7+t,z=7t.
38. Similar to Exercise 37 with n1=h3,5,2i,n2=h0,0,1i,n1×n2=h−5,3,0i.z=0so
3x5y= 0, let x= 0 then y= 0 and (0,0,0) is on the line, a parametrization of which is
x=5t,y=3t,z=0.
39. D=|2(1) 2(2) + (3) 4|/4+4+1=5/3
40. D=|3(0) + 6(1) 2(5) 5|/9+36+4=9/7
41. (0,0,0) is on the first plane so D=|6(0) 3(0) 3(0) 5|/36+9+9=5/
54.
42. (0,0,1) is on the first plane so D=|(0)+(0)+(1)+1|/
1+1+1=2/
3.
43. (1,3,5) and (4,6,7) are on L1and L2, respectively. v1=h7,1,3iand v2=h−1,0,2iare,
respectively, parallel to L1and L2,v1×v2=h2,11,1iso the plane 2x11y+z+51=0
contains L2and is parallel to L1,D=|2(1) 11(3) + (5) + 51|/4+121+1=25/
126.
44. (3,4,1) and (0,3,0) are on L1and L2, respectively. v1=h−1,4,2iand v2=h1,0,2iare parallel to
L1and L2,v1×v2=h8,4,4i=4h2,1,1iso 2x+yz3 = 0 contains L2and is parallel to
L1,D=|2(3) + (4) (1) 3|/4+1+1=
6.
45. The distance between (2,1,3) and the plane is |23(1)+2(3)4|/1+9+4=11/
14 which
is the radius of the sphere; an equation is (x2)2+(y1)2+(z+3)
2= 121/14.
46. The vector 2i+jkis normal to the plane and hence parallel to the line so parametric equations
of the line are x=3+2t,y=1+t,z=t. Substitution into the equation of the plane yields
2(3+2t)+(1+t)(t)=0,t=7/6; the point of intersection is (2/3,1/6,7/6).
47. v =h1,2,1iis parallel to the line, n=h2,2,2iis normal to the plane, v·n=0sovis
parallel to the plane because vand nare perpendicular. (1,3,0) is on the line so
D=|2(1) 2(3) 2(0) + 3|/4+4+4=5/
12
473 Chapter 13
48. (a)
P(x0, y0)P(x, y)
n
r0
rr0
r
O
(b) n ·(rr0)=a(xx
0
)+b(yy
0
)=0
(c) See the proof of Theorem 13.6.1. Since aand bare not both zero, there is at least one point
(x0,y
0
) that satisfies ax+by +d=0,soax0+bx0+d=0. If(x, y) also satisfies ax+by+d=0
then, subtracting, a(xx0)+b(yy
0
) = 0, which is the equation of a line with n=ha, bi
as normal.
(d) Let Q(x1,y
1
) be a point on the line, and position the normal n=ha, bi, with length a2+b2,
so that its initial point is at Q. The distance is the orthogonal projection of
−→
QP0=hx0x1,y
0y
1
ionto n. Then
D=kprojn
−→
QP 0k=
−→
QP0·n
knk2n
=|ax0+by0+d|
a2+b2.
49. D=|2(3) + (5) 1|/4+1=2/
5
50. (a) If hx0,y
0
,z
0
ilies on the second plane, so that ax0+by0+cz0+d2= 0, then by Theorem
13.6.2, the distance between the planes is D=|ax0+by0+cz0+d1|
a2+b2+c2=|−d
2+d
1
|
a
2+b
2+c
2
(b) The distance between the planes 2x+y+z= 0 and 2x+y+z+5
3=0is
D=|05/3|
4+1+1 =5
3
6.
EXERCISE SET 13.7
1. (a) elliptic paraboloid, a=2,b=3
(b) hyperbolic paraboloid, a=1,b =5
(c) hyperboloid of one sheet, a=b=c=4
(d) circular cone, a=b=1
(e) elliptic paraboloid, a=2,b=1
(f) hyperboloid of two sheets, a=b=c=1
2. (a) ellipsoid, a=2/2,b=1/2,e =3/3
(b) hyperbolic paraboloid, a=b=1
(c) hyperboloid of one sheet, a=1,b=3,c =1
(d) hyperboloid of two sheets, a=1,b=2,c=1
(e) elliptic paraboloid, a=2,b=2/2
(f) elliptic cone, a=2,b=3
Exercise Set 13.7 474
3. (a) z=x2+y2, circular paraboloid
opening down the negative z-axis
z
y
x
(b) z=x2+y2, circular paraboloid, no change
(c) z=x2+y2, circular paraboloid, no change
(d) z=x2+y2, circular paraboloid, no change
y
x
z
(e) x=y2+z2, circular paraboloid
opening along the positive x-axis
z
y
x
(f) y=x2+z2, circular paraboloid
opening along the positive y-axis
z
y
x
4. (a) x2+y2z2= 1, no change
(b) x2+y2z2= 1, no change
(c) x2+y2z2= 1, no change
(d) x2+y2z2= 1, no change
z
y
x
475 Chapter 13
(e) x2+y2+z2= 1, hyperboloid
of one sheet with x-axis as axis
z
y
x
(f) x2y2+z2= 1, hyperboloid
of one sheet with y-axis as axis
z
y
x
5. (a) hyperboloid of one sheet, axis is y-axis
(b) hyperboloid of two sheets separated by yz-plane
(c) elliptic paraboloid opening along the positive x-axis
(d) elliptic cone with x-axis as axis
(e) hyperbolic paraboloid straddling x- and z-axes
(f) paraboloid opening along the negative y-axis
6. (a) same (b) same (c) same
(d) same (e) y=x2
a2z2
c2(f) y=x2
a2+z2
c2
7. (a) x=0:y
2
25 +z2
4=1;y=0:x
2
9+z
2
4=1;
z=0:x
2
9+y
2
25 =1
y
2
25
z2
4
+= 1
x2
9
z2
4
+= 1
x2
9
y2
25
+= 1
y
x
z
(b) x=0:z=4y
2
;y=0:z=x
2
;
z=0:x=y=0
xy
z
z = x2
x2 + 4y2 = 0
z = 4y2
(0, 0, 0)
Exercise Set 13.7 476
(c) x=0:y
2
16 z2
4=1;y=0:x
2
9z
2
4=1;
z=0:x
2
9+y
2
16 =1
y
x
z
y
2
16
z2
4
= 1
x2
9
z2
4
= 1
x2
9
y2
16
+= 1
8. (a) x=0:y=z=0;y=0:x=9z
2
;z=0:x=y
2z
y
x
x = 9z2
x = y2
(b) x=0:y
2+4z
2=4;y=0:x
2+z
2=1;
z=0:4x
2y
2=4 z
y
x
y = 0
x = 0
z = 0
(c) x=0:z=±y
2;y=0:z=±x;z=0:x=y=0 z
y
x
x = 0
y = 0
z = 0
9. (a) 4x2+z2= 3; ellipse (b) y2+z2= 3; circle (c) y2+z2= 20; circle
(d) 9x2y2= 20; hyperbola (e) z=9x
2+ 16; parabola (f) 9x2+4y
2= 4; ellipse
10. (a) y24z2= 27; hyperbola (b) 9x2+4z
2= 25; ellipse (c) 9z2x2= 4; hyperbola
(d) x2+4y
2= 9; ellipse (e) z=14y
2
; parabola (f) x24y2= 4; hyperbola
477 Chapter 13
11.
(0, 2, 0)
(0, 0, 3)
(1, 0, 0)
Ellipsoid
xy
z12.
(0, 3, 0)
(0, 0, 2)
(6, 0, 0)
Ellipsoid
xy
z13.
(0, 3, 0)
(2, 0, 0)
Hyperboloid
of one sheet
y
x
z
14.
(0, 3, 0)
(3, 0, 0)
Hyperboloid
of one sheet
xy
z15.
Elliptic cone
y
x
z16.
Elliptic cone
xy
z
17.
(0, 0, 2) (0, 0, –2)
Hyperboloid
of two sheets
xy
z18. z
y
x
Hyperboloid
of two sheets
19.
Hyperbolic paraboloid
x
y
z
20. z
y
xHyperbolic
paraboloid
21.
Elliptic paraboloid
xy
z22.
Circular paraboloid
x
z
y
Exercise Set 13.7 478
23.
Circular cone
xy
z24.
Elliptic paraboloid
xy
z25.
(0, 0, 2)
(0, 2, 0)
Hyperboloid
of one sheet
xy
z
26.
(3, 0, 0)
Hyperboloid
of two sheets
(-3, 0, 0)
y
x
z27.
Hyperbolic
paraboloid
y
x
z28.
(0, 0, 2)
(2, 0, 0)
Hyperboloid
of one sheet
y
x
z
29. z
y
x
30.
(0, 1, 0)
(0, 0, 1)
(1, 0, 0)
y
x
z
31.
(1, 0, 0)
(0, 1, 0)
z
y
x
32.
(0, 0, 1)
xy
z
479 Chapter 13
33.
Circular paraboloid
z
y
x
(–2, 3, –9)
34.
Hyperboloid
of one sheet
(0, 0, 2)
y
x
z
35.
Ellipsoid
z
y
x
(1, –1, –2)
36.
Hyperboloid
of one sheet
(-1, 1, 2)
y
x
z
37. (a) x2
9+y2
4=1 (b) 6,4(c) (±5,0,2)
(d) The focal axis is parallel to the x-axis.
38. (a) y2
4+z2
2=1 (b) 4,22(c) (3,±2,0)
(d) The focal axis is parallel to the y-axis.
39. (a) y2
4x2
4=1 (b) (0,±2,4) (c) (0,±22,4)
(d) The focal axis is parallel to the y-axis.
40. (a) x2
4y2
4=1 (b) (±2,0,4) (c) (±22,0,4)
(e) The focal axis is parallel to the x-axis.
41. (a) z+4=y
2(b) (2,0,4) (c) (2,0,15/4)
(d) The focal axis is parallel to the z-axis.
42. (a) z4=x
2(b) (0,2,4) (c) (0,2,15/4)
(d) The focal axis is parallel to the z-axis.
Exercise Set 13.7 480
43. x2+y2=4x
2y
2
,x
2+y
2= 2; circle of radius 2
in the plane z= 2, centered at (0,0,1)
xy
x2 + y2 = 2
(z = 2)
4
z
44. y2+z=42(y2+z),y
2+z=4/3;
parabolas in the planes x=±2/3
which open in direction of the negative y-axis
z
y
x
z = – y2, x =
4
3
4
3
45. y=4(x
2+z
2
)46. y2=4(x
2+z
2
)
47. |z(1)|=px2+y2+(z1)2,z2+2z+1=x
2+y
2+z
22z+1,z=(x
2+y
2
)/4; circular
paraboloid
48. |z+1|=2
px
2+y
2+(z1)2,z2+2z+1=4x
2+y
2+z
22z+1
,
4x
2+4y
2+3z
210z+3=0, x
2
4/3+y
2
4/3+(z5/3)2
16/9= 1; ellipsoid, center at (0,0,5/3).
49. If z=0, x
2
a
2+y
2
a
2=1;ify= 0 then x2
a2+z2
c2= 1; since c<athe major axis has length 2a, the
minor axis length 2c.
50. x2
a2+y2
a2+z2
b2= 1, where a= 6378.1370,b = 6356.5231.
51. Each slice perpendicular to the z-axis for |z|<cis an ellipse whose equation is
x2
a2+y2
b2=c2z2
c2,or x
2
(a
2
/c2)(c2z2)+y2
(b2/c2)(c2z2)= 1, the area of which is
πa
cpc2z2b
cpc2z2=πab
c2c2z2so V=2Zc
0
πab
c2c2z2dz =4
3πabc.
481 Chapter 13
EXERCISE SET 13.8
1. (a) (8/6,4) (b) 52,3π/4,6(c) (2/2,0) (d) (8,5π/3,6)
2. (a) (2,7π/4,1) (b) (1/2,1) (c) (42,3π/4,7) (d) (22,7π/4,2)
3. (a) 23,2,3(b) 42,42,2(c) (5,0,4) (d) (7,0,9)
4. (a) 3,33,7(b) (0,1,0) (c) (0,3,5) (d) (0,4,1)
5. (a) 22/3,3π/4(b) (2,7π/4/4) (c) (6, π/2, π/3) (d) (10,5π/6, π/2)
6. (a) 82/4/6
(b) 22,5π/3,3π/4(c) (2,0/2) (d) (4/6/6)
7. (a) (56/4,52/4,52/2) (b) (7,0,0)
(c) (0,0,1) (d) (0,2,0)
8. (a) 2/4,6/4,2/2(b) 32/4,32/4,33/2
(c) (26,22,42) (d) 0,23,2
9. (a) 23/6/6
(b) 2/4,3π/4
(c) (2,3π/4/2) (d) 43,1,2π/3
10. (a) 42,5π/6/4
(b) 22,0,3π/4
(c) (5/2,tan1(4/3)) (d) (210,tan13)
11. (a) 53/2/4,5/2
(b) (0,7π/6,1)
(c) (0,0,3) (d) (4/6,0)
12. (a) (0/2,5/2) (b) (32,0,32)
(c) (0,3π/4,3) (d) (5/2,2π/3,53/2)
15.
y
x
z
(3, 0, 0)
x2 + y2 = 9
16.
y = x, x 0
y
x
z17.
y
x
z
z = x2 + y2
Exercise Set 13.8 482
18.
z = x
y
x
z19.
y
x
z
(0, 4, 0)
x2 + (y – 2)2 = 4
20.
x = 2
(2, 0, 0)
y
x
z
21.
(1, 0, 0)
y
x
z
x2 + y2 + z2 = 1
22. z
y
x
x2y2 = z
23.
(3, 0, 0)
y
x
z
x2 + y2 + z2 = 9
24.
y
x
z
y = 3x
25. z
y
x
z = x2 + y2
26.
(0, 0, 2)
z = 2
y
x
z
483 Chapter 13
27. (0, 0, 2)
y
x
z
x2 + y2 + (z – 2)2 = 4
28.
(1, 0, 0)
y
x
z
x2 + y2 = 1
29.
(1, 0, 0)
y
x
z
(x – 1)2 + y2 = 1
30.
(1, 0, 0)
y
x
z
(x – 1)2 + y2 + z2 = 1
31. (a) z=3 (b) ρcos φ=3= 3 sec φ
32. (a) rsin θ=2,r = 2 csc θ(b) ρsin φsin θ=2= 2 csc φcsc θ
33. (a) z=3r
2(b) ρcos φ=3ρ
2sin2φ, ρ =1
3csc φcot φ
34. (a) z=3r(b) ρcos φ=3ρsin φ, tan φ=1
3=π
6
35. (a) r=2 (b) ρsin φ=2= 2 csc φ
36. (a) r26rsin θ=0,r= 6 sin θ(b) ρsin φ= 6 sin θ, ρ = 6 sin θcsc φ
37. (a) r2+z2=9 (b) ρ=3
38. (a) z2=r2cos2θr2sin2θ=r2(cos2θsin2θ), z2=r2cos 2θ
(b) Use the result in part (a) with r=ρsin φ,z=ρcos φto get ρ2cos2φ=ρ2sin2φcos 2θ,
cot2φ= cos 2θ
39. (a) 2rcos θ+3rsin θ+4z=1
(b) 2ρsin φcos θ+3ρsin φsin θ+4ρcos φ=1
40. (a) r2z2=1
(b) Use the result of part (a) with r=ρsin φ,z=ρcos φto get ρ2sin2φρ2cos2φ=1,
ρ
2cos 2φ=1
Exercise Set 13.8 484
41. (a) r2cos2θ=16z
2
(b) x2=16z
2
,x
2+y
2+z
2=16+y
2
,ρ
2=16+ρ
2sin2φsin2θ,ρ21sin2φsin2θ=16
42. (a) r2+z2=2z(b) ρ2=2ρcos φ,ρ= 2 cos φ
43. all points on or above the paraboloid z=x2+y2, that are also on or below the plane z=4
44. a right circular cylindrical solid of height 3 and radius 1 whose axis is the line x=0,y =1
45. all points on or between concentric spheres of radii 1 and 3
46. all points on or above the cone φ=π/6, that are also on or below the sphere ρ=2
47. θ=π/6, φ=π/6, spherical (4000/6, π/6), rectangular 10003,1000,20003
48. (a) y=rsin θ=asin θbut az =asin θso y=az, which is a plane that contains the curve of
intersection of z= sin θand the circular cylinder r=a. From Exercise 60, Section 12.4, the
curve of intersection of a plane and a circular cylinder is an ellipse.
(b) z = sin
θ
y
x
z
49. (a) (10/2,1) (b) (0,10,1) (c) (101/2,tan110)
50. 20
0
030
51. Using spherical coordinates: for point A,θA= 36060= 300
A=90
40=50
; for point
B,θB= 36040= 320
B=90
20=70
. Unit vectors directed from the origin to the
points Aand B, respectively, are
uA= sin 50cos 300i+ sin 50sin 300j+ cos 50k,
uB= sin 70cos 320i+ sin 70sin 320j+ cos 70k
The angle αbetween uAand uBis α= cos1(uA·uB)0.459486 so the shortest distance is
6370α2,927 km.
485 Chapter 13
CHAPTER 13 SUPPLEMENTARY EXERCISES
2. (c) F =ij
(d) kh1,2,2ik =3,sokr−h1,2,2ik =3,or(x1)2+(y+2)
2+(z2)2=9
3. (b) x= cos 120=1/2,y =±sin 120=±3/2
(d) true: ku×vk=kukkvk|sin(θ)|=1
4. (d) x+2yz=0
5. (b) (y, x, z),(x, z, y),(z, y, x)
(c) circle of radius 5 in plane z= 1 with center at (0,0,1) (rectangular coordinates)
(d) the two half-lines z=±x,x0inthexz-plane
6. (x+3)
2+(y5)2+(z+4)
2=r
2
,
(a) r2=4
2=16 (b) r2=5
2=25 (c) r2=3
2=9
7. (a) −→
AB =i+2j+2k,−→
AC =i+jk,−→
AB ×−→
AC=4i+j3k, area = 1
2k−→
AB ×−→
AC k=26/2
(b) area = 1
2hk−→
AB k=3
2h=1
226, h=26/3
8. The sphere x2+(y1)2+(z+3)
2= 16 has center Q(0,1,3) and radius 4, and
k−→
PQ k=12+4
2=
17, so minimum distance is 17 4, maximum distance is 17+4.
9. (a) a ·b=0,4c+3=0,c=3/4
(b) Use a·b=kakkbkcos θto get 4c+3=pc
2+ 1(5) cos(π/4), 4c+3=5
pc
2+1/
2
Square both sides and rearrange to get 7c2+48c7=0,(7c1)(c+7)=0soc=7
(invalid) or c=1/7.
(c) Proceed as in (b) with θ=π/6 to get 11c296c+ 39 = 0 and use the quadratic formula to
get c=48 ±253/11.
(d) a must be a scalar multiple of b,soci+j=k(4i+3j),k =1/3,c=4/3.
10. −→
OS =−→
OP +−→
PS=3i+4j+−→
QR =3i+4j+(4i+j)=7i+5j
11. (a) the plane through the origin which is perpendicular to r0
(b) the plane through the tip of r0which is perpendicular to r0
12. The normals to the planes are given by ha1,b
1
,c
1
iand ha2,b
2
,c
2
i, so the condition is
a1a2+b1b2+c1c2=0.
13. Since −→
AC ·(−→
AB ×−→
AD)=
−→
AC ·(−→
AB ×−→
CD)+−→
AC ·(−→
AB ×−→
AC)=0+0=0, the volume of the
parallelopiped determined by −→
AB, −→
AC, and −→
AD is zero, thus A, B, C, and Dare coplanar (lie in
the same plane). Since −→
AB ×−→
CD6=0, the lines are not parallel. Hence they must intersect.
14. The points Plie on the plane determined by A, B and C.
15. (a) false, for example i·j=0 (b) false, for example i×i=0
(c) true; 0 = kuk·kvkcos θ=kuk·kvksin θ, so either u=0or v=0since cos θ= sin θ=0is
impossible.
Chapter 13 Supplementary Exercises 486
16. (a) Replace uwith a×b,vwith c, and wwith din the first formula of Exercise 39.
(b) From the second formula of Exercise 39,
(a×b)×c+(b×c)×a+(c×a)×b
=(c·a)b(c·b)a+(a·b)c(a·c)b+(b·c)a(b·a)c=0
17. kuvk2=(uv)·(uv)=kuk
2+kvk
22kukkvkcos θ= 2(1 cos θ)=4sin
2
(θ/2), so
kuvk= 2 sin(θ/2)
18. −→
AB=i2j2k,−→
AC=2ij2k,−→
AD=i+2j3k
(a) From Theorem 13.4.6 and formula (9) of Section 13.4,
122
212
123
= 29, so V= 29.
(b) The plane containing A, B, and Chas normal −→
AB ×−→
AC=2i+6j5k, so the equation of
the plane is 2(x1)+6(y+1)5(z2)=0,2x+6y5z=14. From Theorem 13.6.2,
D=|2(2) + 6(1) 5(1)|
65 =15
65.
19. (a) h2,1,1i×h1,2,1i=h3,3,3i, so the line is parallel to ij+k. By inspection, (0,2,1)
lies on both planes, so the line has an equation r=2jk+t(ij+k), that is,
x=t, y =2t, z =1+t.
(b) cos θ=h2,1,1i·h1,2,1i
kh2,1,1ikkh1,2,1ik =1/2, so θ=π/3
20. Let α=50
=70
, then γ= cos1p1cos2αcos2β47.
21. 5hcos 60,cos 120,cos 135i=h5/2,5/2,52/2i
22. (a) Let kbe the length of an edge and introduce a coordinate system as shown in the figure,
then d=hk, k, ki,u=hk, k, 0i, cos θ=d·u
kdkkuk=2k
2
k
3
k
2
=2/
6
so θ= cos1(2/6) 35
d
u
θ
y
x
z
(b) v =h−k, 0,ki,cos θ=d·v
kdkkvk=0soθ=π/2 radians.
23. (a) (x3)2+4(y+1)
2(z2)2= 9, hyperboloid of one sheet
(b) (x+3)
2+(y2)2+(z+6)
2= 49, sphere
(c) (x1)2+(y+2)
2z
2= 0, circular cone
24. (a) perpendicular, since h2,1,2i·h−1,2,2i=0
(b) L1:hx, y, zi=h1+2t, 3
2+t, 1+2ti;L
2
:hx, y, zi=h4t, 32t, 4+2ti
487 Chapter 13
(c) Solve simultaneously 1 + 2t1=4t
2
,3
2+t
1=32t
2
,1+2t
1=4+2t
2
, solution
t1=1
2,t
2=2,x =2,y =1,z =0
25. (a) r2=z;ρ2sin2φ=ρcos φ, ρ = cot φcsc φ
(b) r2(cos2θsin2θ)z2=0,z2=r
2cos 2θ;
ρ2sin2φcos2θρ2sin2φsin2θρ2cos2φ=0,cos 2θ= cot2φ
26. (a) z=r2cos2θr2sin2θ=x2y2(b) (ρsin φcos θ)(ρcos φ)=1,xz =1
27. (a) z
y
x
(2, 0, 0)
(0, 0, 2)
(0, 2, 0)
(b) z
y
x
p/6
(c)
p/6
y
x
z(0, 0, 2)
28. (a) z
y
x5
5
5
(b)
y
x
z
z = 2
f
(c) z
y
x
2
2
Chapter 13 Supplementary Exercises 488
29. (a) z
y
x
r = 1
r = 2 (b)
y
x
z
z = 3
z = 2
(c) z
y
x
u = p/6 u = p/3
(d) z
y
x
u = p/6 u = p/3
r = 1
z = 2
z = 3
r = 2
30. (a)
y
x
z
2
2
2
(b)
y
x
z
1(c)
y
x
z
2
2
2
1
31. (a) At x=cthe trace of the surface is the circle y2+z2=[f(c)]2, so the surface is given by
y2+z2=[f(x)]2
(b) y2+z2=e2x(c) y2+z2=43
4
x
2
,soletf(x)=r43
4
x
2
32. (a) Permute xand yin Exercise 31a: x2+z2=[f(y)]2
(b) Permute xand zin Exercise 31a: x2+y2=[f(z)]2
(c) Permute yand zin Exercise 31a: y2+z2=[f(x)]2
33. z
y
x
34. −→
PQ=h1,1,6i, and W=F·
−→
PQ =13lb·ft
489 Chapter 13
35. F =F1+F2=2ij+3k,−→
PQ=i+4j3k,W =F·−→
PQ=11 N·m
36. F1= 250 cos 38i+ 250 sin 38j,F= 1000i,F2=FF1= (1000 250 cos 38)i250 sin 38j;
kF2k= 1000r17
16 1
2cos 38817.62 N·m, θ= tan1250 sin 38
250 cos 381000 ≈−11
37. (a) F =6i+3j6k
(b) −→
OA=h5,0,2i, so the vector moment is −→
OA ×F=6i+18j+15k
490
CHAPTER 14
Vector-Valued Functions
EXERCISE SET 14.1
1. (−∞,+); r(π)=i3πj2.[1/3,+); r(1) = h2,1i
3. [2,+); r(3) = iln 3j+k4.[1,1); r(0) = h2,0,0i
5. r = 3 cos ti+(t+ sin t)j6.r=(t
2+1)i+e
2t
j
7. r =2ti+ 2 sin 3tj+ 5 cos 3tk8.r=tsin ti+lntj+ cos2tk
9. x=3t
2
,y=2, z=0 10. x= sin2t,y=1cos 2t,z=0
11. x=2t1, y=3t,z= sin 3t12. x=tet,y=0,z=5t
2
13. the line in 2-space through the point (2,0) and parallel to the vector 3i4j
14. the circle of radius 3 in the xy-plane, with center at the origin
15. the line in 3-space through the point (0,3,1) and parallel to the vector 2i+3k
16. the circle of radius 2 in the plane x= 3, with center at (3,0,0)
17. an ellipse in the plane z=1, center at (0,0,1), major axis of length 6 parallel to x-axis, minor
axis of length 4 parallel to y-axis
18. a parabola in the plane x=2, vertex at (2,0,1), opening upward
19. (a) The line is parallel to the vector 2i+3j; the slope is 3/2.
(b) y= 0 in the xz-plane so 1 2t=0,t=1/2thusx=2+1/2=5/2 and z= 3(1/2)=3/2;
the coordinates are (5/2,0,3/2).
20. (a) x=3+2t=0,t=3/2soy=5(3/2) = 15/2
(b) x=t,y=1+2t,z=3tso 3(t)(1+2t)(3t)=2,t=3/4; the point of intersection is
(3/4,5/2,9/4).
21. (a)
x
y
(1, 0)
(0, 1) (b)
x
y
(1, -1)
(1, 1)
491 Chapter 14
22. (a)
y
x
z
(0, 0, 1)
(1, 1, 0)
(b)
y
x
z
(1, 1, 0)
(1, 1, 1)
23. r =(1t)(3i+4j),0t124. r =(1t)4k+t(2i+3j),0t1
25. x=2
2
x
y
26. y=2x+10
-5
10
x
y
27. (x1)2+(y3)2=1
1
3
x
y
28. x2/4+y
2
/25=1
2
5
x
y
29. x2y2=1,x1
1
2
x
y
30. y=2x
2+4,x0
1
4
x
y
Exercise Set 14.1 492
31.
(0, 2,
π
/2)
(2, 0, 0)
y
x
z32.
(9, 0, 0)
(0, 4,
π
/2)
y
x
z
33.
2
y
x
z34.
c
oy
x
z
35. x=t, y =t, z =2t
2
z
x
y
36. x=t, y =t, z =21t2
y
x
zy + x = 0
z = 2 – x2y2
37. r =ti+t2j±1
3p81 9t2t4k
x
y
z
38. r =ti+tj+(12t)ks
z
x
y
x + y + z = 1
y = x
493 Chapter 14
39. x2+y2=(tsin t)2+(tcos t)2=t2(sin2t+ cos2t)=t
2=z
40. xy+z+1=t(1+t)/t +(1t
2
)/t +1=[t
2(1+t)+(1t
2
)+t]/t =0
41. x= sin t,y= 2 cos t,z=3 sin tso x2+y2+z2= sin2t+ 4 cos2t+ 3 sin2t= 4 and z=3x;it
is the curve of intersection of the sphere x2+y2+z2= 4 and the plane z=3x, which is a circle
with center at (0,0,0) and radius 2.
42. x= 3 cos t,y= 3 sin t,z= 3 sin tso x2+y2= 9 cos2t+ 9 sin2t= 9 and z=y; it is the curve
of intersection of the circular cylinder x2+y2= 9 and the plane z=y, which is an ellipse with
major axis of length 62 and minor axis of length 6.
43. The helix makes one turn as tvaries from 0 to 2πso z=c(2π)=3,c=3/(2π).
44. 0.2t= 10, t= 50; the helix has made one revolution when t=2πso when t= 50 it has made
50/(2π)=257.96 revolutions.
45. x2+y2=t2cos2t+t2sin2t=t2,px2+y2=t=z; a conical helix.
46. The curve wraps around an elliptic cylinder with axis along the z-axis; an elliptical helix.
47. (a) III, since the curve is a subset of the plane y=x
(b) IV, since only xis periodic in t, and y, z increase without bound
(c) II, since all three components are periodic in t
(d) I, since the projection onto the yz-plane is a circle and the curve increases without bound in
the x-direction
49. (a) Let x= 3 cos tand y= 3 sin t, then z= 9 cos2t.(b) z
y
x
50. The plane is parallel to a line on the surface of
the cone and does not go through the vertex so
the curve of intersection is a parabola. Eliminate
zto get y+2=px
2+y
2
,(y+2)
2=x
2+y
2
,
y=x
2
/41; let x=t, then y=t2/41
and z=t2/4+1.
z
y
x
Exercise Set 14.2 494
EXERCISE SET 14.2
1.
-2 2
-2
2
x
y2.
x
y
r'(p/4)
r''(p)
r(2p) – r(3p/2)
3. r0(t)=5i+(12t)j4.r
0
(t) = sin tj5.r
0
(t)=1
t
2i+sec2tj+2e2tk
6. r0(t)= 1
1+t
2i+ (cos ttsin t)j1
2tk
7. r0(t)=h1,2ti,
r
0
(2) = h1,4i,
r(2) = h2,4i
2
4
1, 4
x
y
8. r0(t)=3t
2
i+2tj,
r
0
(1)=3i+2j
r(1) = i+j
1 2 3 4
1
2
3
x
y
9. r0(t) = sec ttan ti+ sec2tj,
r0(0) = j
r(0) = i
1.5
x
y
-1
1
10. r0(t)=2costi3 sin tj,
r0π
6=3i3
2j
rπ
6=i+33
2j
-2 -1 1 2
-3
-2
-1
1
2
3
x
y
495 Chapter 14
11. r0(t)=2costi2 sin tk,
r0(π/2) = 2k,
r(π/2) = 2i+j
r(
6
) = -2k
y
x
z
(2, 1, 0)
12. r0(t)=sin ti+ cos tj+k,
r0(π/4) = 1
2i+1
2j+k,
r(π/4) = 1
2i+1
2j+π
4k
1
2
1
2
i + j + k
r(
3
) =
1
2
1
2
( , ,
3
)y
x
z
13. 9i+6j 14. h2/2,2/2i15. h1/3,0i
16. j 17. 2i3j+4k 18. h3,1/2,sin 2i
19. (a) continuous, lim
t0r(t)=0=r(0) (b) not continuous, lim
t0r(t) does not exist
20. (a) not continuous, lim
t0r(t) does not exist. (b) continuous, lim
t0r(t)=5ij+k=r(0)
21. (a) lim
t0(r(t)r0(t)) = ij+k
(b) lim
t0(r(t)×r0(t)) = lim
t0(cos tisin tj+k)=i+k
(c) lim
t0(r(t)·r0(t))=0
22. r(t)·(r0(t)×r00 (t)) =
tt
2t
3
12t3t
2
026t
=2t
3
, so lim
t1r(t)·(r0(t)×r00 (t))=2
23. r0(t)=2ti1
tj,r
0
(1)=2ij,r(1) = i+2j;x=1+2t,y=2t,z=0
24. r0(t)=2e
2t
i+ 6 sin 3tj,r0(0)=2i,r(0) = i2j;x=1+2t,y=2, z=0
25. r0(t)=2πsin πti+2πcos πtj+3k,r
0
(1/3) = 3πi+πj+3k,
r(1/3) = i+3j+k;x=1
3πt,y=3+πt,z=1+3t
26. r0(t)=1
tie
t
j+3t
2
k,r
0
(2) = 1
2ie2j+12k,
r(2)=ln2i+e
2
j+8k;x=ln2+1
2
t,y=e
2e
2
t,z=8+12t
Exercise Set 14.2 496
27. r0(t)=2i+3
2
3t+4j,t=0atP
0so r0(0)=2i+3
4
j,
r(0) = i+2j;r=(i+2j)+t2i+3
4j
28. r0(t)=4 sin ti3j,t=π/3atP
0so r0(π/3) = 23i3j,
r(π/3)=2iπj;r=(2iπj)+t(2
3i3j)
29. r0(t)=2ti+1
(t+1)
2j2tk,t=2atP
0so r0(2) = 4i+j+4k,
r(2)=4i+j;r=(4i+j)+t(4i+j+4k)
30. r0(t) = cos ti+ sinh tj+1
1+t
2k,t=0atP
0so r0(0) = i+k,r(0) = j;r=ti+j+tk
31. 3ti+2t
2
j+C 32. (sin t)i(cos t)j+C 33. (tcos t+ sin t)i+tj+C
34. h(t1)et,t(ln t1)i+C 35. (t3/3)it2j+ln|t|k+C 36. h−et,e
t,t
3i+C
37. 1
3sin 3t, 1
3cos 3tπ/3
0
=h0,2/3i38. 1
3t3i+1
4t4j1
0
=1
3i+1
4j
39. Z2
0pt2+t4dt =Z2
0
t(1+t2)1/2dt =1
31+t
2
3/22
0
=(5
51)/3
40. 2
5(3 t)5/2,2
5(3+t)5/2,t
3
3
=h726/5,726/5,6i
41. 2
3t3/2i+2t
1/2
j
9
1
=52
3i+4j 42. 1
2(e21)i+(1e
1
)j+1
2k
43. y(t)=Zy
0
(t)dt =1
3t3i+t2j+C,y(0) = C=i+j,y(t)=(
1
3
t
3+1)i+(t
2+1)j
44. y(t)=Zy
0
(t)dt = (sin t)i(cos t)j+C,
y(0) = j+C=ijso C=iand y(t)=(1+sint)i(cos t)j.
45. y0(t)=Zy
00 (t)dt =ti+etj+C1,y0(0) = j+C1=jso C1=0and y0(t)=ti+e
t
j.
y(t)=Zy
0
(t)dt =1
2t2i+etj+C2,y(0) = j+C2=2iso C2=2ijand
y(t)=1
2
t
2+2
i+(e
t1)j
497 Chapter 14
46. y0(t)=Zy
00 (t)dt =4t
3
it
2
j+C
1
,y
0
(0) = C1=0,y0(t)=4t
3
it
2
j
y(t)=Zy
0
(t)dt =t4i1
3t3j+C2,y(0) = C2=2i4j,y(t)=(t
4+2)i(1
3t
3+4)j
47.
1.50
0
1.5 48. 6
0
05
49. r0(t)=4 sin ti+ 3 cos tj,kr(t)k=p16 cos2t+ 9 sin2t, kr0(t)k=p16 sin2t+ 9 cos2t,
krkkr0k=p144 + 49 sin2tcos2t, θ = cos17 sin tcos t
p144 + 49 sin2tcos2t
rand r0are parallel when θ=0,sot=0/2,3π/2,2π; the angle between rand r0is greatest at
θmax =0.28 (t2.23,5.53) and θmin =0.28, (t0.77,3.95), so rand r0are never perpendicular.
o0
0
3
50. r0(t)=2ti+3t
2
j,kr(t)k=t
2
1+t
2
,kr
0
(t)k=t
4+9t
2
,cos θ=2+3t
2
1+t
2
4+9t
2
cos θ= 1 when t=0,±2
3/4
/
3 and rand r0are parallel; cos θ>0, so they are never perpendicular.
0.3
0
01
51. (a) 2tt23t=2, t2+t2=0,(t+ 2)(t1)=0sot=2,1. The points of intersection
are (2,4,6) and (1,1,3).
(b) r0=i+2tj3k;r
0
(2) = i4j3k,r0(1) = i+2j3k, and n=2ij+kis normal to
the plane. Let θbe the acute angle, then
for t=2: cos θ=|n·r0|/(knkkr
0
k)=3/
156, θ76;
for t= 1: cos θ=|n·r0|/(knkkr
0
k)=3/
84, θ71.
Exercise Set 14.2 498
52. r0=2e2tisin tj+3 cos tk,t= 0 at the point (1,1,0) so r0(0) = 2i+3kand hence the tangent
line is x=12t,y=1,z=3t. But x= 0 in the yz-plane so 1 2t=0,t=1/2. The point of
intersection is (0,1,3/2).
53. r1(1) = r2(2) = i+j+3kso the graphs intersect at P; r0
1(t)=2ti+j+9t
2
kand
r0
2(t)=i+1
2
tjkso r0
1(1)=2i+j+9kand r0
2(2) = i+jkare tangent to the graphs at P,
thus cos θ=r0
1(1) ·r0
2(2)
kr0
1(1)kkr
0
2
(2)k=6
863,θ= cos1(6/258) 68.
54. r1(0) = r2(1)=2i+j+3kso the graphs intersect at P; r0
1(t)=2e
t
i(sin t)j+2tkand
r0
2(t)=i+2tj+3t
2
kso r0
1(0) = 2iand r0
2(1) = i2j+3kare tangent to the graphs at P,
thus cos θ=r0
1(0) ·r0
2(1)
kr0
1(0)kkr
0
2
(1)k=1
14,θ74.
55. (a) r0
1=2i+6tj+3t
2
k,r
0
2=4t
3
k,r
1·r
2=t
7
;d
dt(r1·r2)=7t
6=r
1·r
0
2+r
0
1·r
2
(b) r1×r2=3t
6
i2t
5
j,d
dt(r1×r2)=18t
5
i10t4j=r1×r0
2+r0
1×r2
56. (a) r0
1=sin ti+cos tj+k,r0
2=k,r1·r2= cos t+t2;d
dt(r1·r2)=sin t+2t=r1·r0
2+r0
1·r2
(b) r1×r2=tsin ti+t(1 cos t)jsin tk,
d
dt(r1×r2) = (sin t+tcos t)i+(1+tsin tcos t)jcos tk=r1×r0
2+r0
1×r2
57. d
dt[r(t)×r0(t)] = r(t)×r00 (t)+r
0
(t)×r
0
(t)=r(t)×r
00 (t)+0=r(t)×r
00 (t)
58. d
dt[u·(v×w)] = u·
d
dt[v×w]+du
dt
·[v×w]=u·v×dw
dt +dv
dt ×w+du
dt
·[v×w]
=u·v×dw
dt +u·dv
dt ×w+du
dt
·[v×w]
59. In Exercise 60, write each scalar triple product as a determinant.
60. Let c=c1i+c2j,r(t)=x(t)i+y(t)j,r
1
(t)=x
1
(t)i+y
1
(t)j,r
2
(t)=x
2
(t)i+y
2
(t)jand use
properties of derivatives.
61. Let r1(t)=x
1
(t)i+y
1
(t)j+z
1
(t)kand r2(t)=x
2
(t)i+y
2
(t)j+z
2
(t)k, in both (8) and (9); show
that the left and right members of the equalities are the same.
62. (a) Zkr(t)dt =Zk(x(t)i+y(t)j+z(t)k)dt
=kZx(t)dt i+kZy(t)dt j+kZz(t)dt k=kZr(t)dt
(b) Similar to Part (a) (c) Use Part (a) on Part (b) with k=1
499 Chapter 14
EXERCISE SET 14.3
1. (a) The tangent vector reverses direction at the four cusps.
(b) r0(t)=3 cos2tsin ti+ 3 sin2tcos tj=0when t=0/2,3π/2,2π.
2. r0(t) = cos ti+ 2 sin tcos tj=0when t=π/2,3π/2. The tangent vector reverses direction at (1,1)
and (1,1).
3. r0(t)=3t
2
i+(6t2)j+2tk; smooth
4. r0(t)=2tsin(t2)i+2tcos(t2)jetk; smooth
5. r0(t)=(1t)e
t
i+(2t2)jπsin(πt)k; not smooth, r0(1) = 0
6. r0(t)=πcos(πt)i+(21/t)j+(2t1)k; not smooth, r0(1/2) = 0
7. (dx/dt)2+(dy/dt)2+(dz/dt)2=(3 cos2tsin t)2+ (3 sin2tcos t)2+0
2= 9 sin2tcos2t,
L=Zπ/2
0
3 sin tcos tdt=3/2
8. (dx/dt)2+(dy/dt)2+(dz/dt)2=(3 sin t)2+ (3 cos t)2+16=25,L=Zπ
0
5dt =5π
9. r0(t)=he
t
,e
t
,
2i,kr
0
(t)k=e
t+e
t
,L=Z1
0
(e
t+e
t
)dt =ee1
10. (dx/dt)2+(dy/dt)2+(dz/dt)2=1/4+(1t)/4+(1+t)/4=3/4, L=Z1
1
(3/2)dt =3
11. r0(t)=3t
2
i+j+
6tk,kr
0
(t)k=3t
2+1,L=Z3
1
(3t2+1)dt =28
12. r0(t)=3i2j+k,kr
0
(t)k=
14, L=Z4
3
14 dt =14
13. r0(t)=3 sin ti+ 3 cos tj+k,kr0(t)k=10, L=Z2π
0
10 dt =2π
10
14. r0(t)=2ti+tcos tj+tsin tk,kr0(t)k=5t, L =Zπ
0
5tdt=π
25/2
15. (dr/dt)(dt/dτ)=(i+2tj)(4) = 4i+8tj=4i+ 8(4τ+1)j;
r(τ)=(4τ+1)i+(4τ+1)
2
j,r
0
(τ)=4i+ 2(4)(4τ+1)
16. (dr/dt)(dt/dτ)=h−3 sin t, 3 cos ti(π)=h−3πsin πτ,3πcos πτi;
r(τ)=h3 cos πτ, 3 sin πτi,r0(τ)=h−3πsin πτ, 3πcos πτi
17. (dr/dt)(dt/dτ)=(e
t
i4e
t
j)(2τ)=2τeτ2i8τeτ2j;
r(τ)=e
τ
2i+4e
τ2j,r
0
(τ)=2τeτ2i4(2)τeτ2j
Exercise Set 14.3 500
18. (dr/dt)(dt/dτ)=9
2
t
1/2
j+k
(1 2)=9
2τ
5/2j1
τ
2k;
r(τ)=i+3τ3/2
j+1
τk,r
0
(τ)=9
2
τ
5/2
j1
τ
2k
19. (a) kr0(t)k=2,s=Zt
0
2dt =2t;r=s
2i+s
2j,x=s
2,y =s
2
(b) Similar to Part (a), x=y=z=s
3
20. (a) x=s
2,y =s
2(b) x=s
3,y =s
3,z =s
3
21. (a) r(t)=h1,3,4iwhen t=0,
so s=Zt
0
1+4+4du =3t, x =1+s/3,y =32s/3,z =4+2s/3
(b) rs=25
=h28/3,41/3,62/3i
22. (a) r(t)=h−5,0,1iwhen t=0,sos=Zt
0
9+4+1du =14t,
x=5+3s/14,y =2s/14,z =5+s/14
(b) r(s)s=10
=h−5+30/
14,20/14,5+10/
14i
23. x= 3 + cos t,y= 2 + sin t,(dx/dt)2+(dy/dt)2=1,
s=Zt
0
du =tso t=s,x= 3 + cos s,y= 2 + sin sfor 0 s2π.
24. x= cos3t,y= sin3t,(dx/dt)2+(dy/dt)2= 9 sin2tcos2t,
s=Zt
0
3 sin ucos udu=3
2sin2tso sin t=(2s/3)1/2, cos t=(12s/3)1/2,
x=(12s/3)3/2,y=(2s/3)3/2for 0 s3/2
25. x=t3/3, y=t2/2, (dx/dt)2+(dy/dt)2=t2(t2+ 1),
s=Zt
0
u(u2+1)
1/2
du =1
3[(t2+1)
3/21] so t= [(3s+1)
2/31]1/2,
x=1
3[(3s+1)
2/31]3/2,y=1
2[(3s+1)
2/31] for s0
26. x=(1+t)
2
,y=(1+t)
3
,(dx/dt)2+(dy/dt)2=(1+t)
2
[4+9(1+t)2],
s=Zt
0
(1+u)[4 + 9(1 + u)2]1/2du =1
27([4 + 9(1 + t)2]3/21313) so
1+t=1
3[(27s+13
13)2/34]1/2,x=1
9[(27s+13
13)2/34],
y=1
27[(27s+13
13)2/34]3/2for 0 s(8010 1313)/27
501 Chapter 14
27. x=etcos t,y=etsin t,(dx/dt)2+(dy/dt)2=2e
2t
,s=Zt
0
2e
udu =2(et1) so
t= ln(s/2 + 1), x=(s/2 + 1) cos[ln(s/2 + 1)], y=(s/2 + 1) sin[ln(s/2 + 1)]
for 0 s2(eπ/21)
28. x= sin(et), y= cos(et), z=3et,
(dx/dt)2+(dy/dt)2+(dz/dt)2=4e
2t
,s=Zt
0
2e
udu =2(e
t1) so
et=1+s/2; x= sin(1 + s/2), y= cos(1 + s/2), z=3(1 + s/2) for s0
29. dx/dt =asin t,dy/dt =acos t,dz/dt =c,
L=Zt0
0pa2sin2t+a2cos2t+c2dt =Zt0
0pa2+c2dt =t0pa2+c2
30. x=acos t,y=asin t,z=ct,(dx/dt)2+(dy/dt)2+(dz/dt)2=a2+c2=w2,
s=Zt
0
wdu=wt so t=s/w;x=acos(s/w), y=asin(s/w), z=cs/w for s0
31. x=at asin t,y=aacos t,(dx/dt)2+(dy/dt)2=4a
2sin2(t/2),
s=Zt
0
2asin(u/2)du =4a[1 cos(t/2)] so cos(t/2)=1s/(4a), t= 2 cos1[1 s/(4a)],
cos t= 2 cos2(t/2) 1 = 2[1 s/(4a)]21,
sin t= 2 sin(t/2) cos(t/2) = 2(1 [1 s/(4a)]2)1/2(2[1 s/(4a)]21),
x=2acos1[1 s/(4a)] 2a(1 [1 s/(4a)]2)1/2(2[1 s/(4a)]21),
y=s(8as)
8afor 0 s8a
32. dx
dt = cos θdr
dt rsin θ
dt ,dy
dt = sin θdr
dt +rcos θ
dt ,
dx
dt
2
+dy
dt
2
+dz
dt
2
=dr
dt
2
+r2
dt
2
+dz
dt
2
33. (a) (dr/dt)2+r2(dθ/dt)2+(dz/dt)2=9e
4t
,L=Zln 2
0
3e2tdt =3
2e2tln 2
0
=9/2
(b) (dr/dt)2+r2(dθ/dt)2+(dz/dt)2=5t
2+t
4=t
2
(5+t2),
L=Z2
1
t(5+t2)1/2dt =92
6
34. dx
dt = sin φcos θ
dt +ρcos φcos θ
dt ρsin φsin θ
dt ,
dy
dt = sin φsin θ
dt +ρcos φsin θ
dt +ρsin φcos θ
dt ,dz
dt = cos φ
dt ρsin φ
dt ,
dx
dt
2
+dy
dt
2
+dz
dt
2
=
dt
2
+ρ2sin2φ
dt
2
+ρ2
dt
2
Exercise Set 14.4 502
35. (a) (dρ/dt)2+ρ2sin2φ(dθ/dt)2+ρ2(dφ/dt)2=3e
2t
,L=Z2
0
3e
t
dt =3(1 e2)
(b) (dρ/dt)2+ρ2sin2φ(/dt)2+ρ2(dφ/dt)2=5,L=Z5
1
5dt =4
5
36. (a) d
dtr(t)=i+2tjis never zero, but d
r3(τ)= d
(τ3i+τ6j)=3τ
2
i+6τ5
jis zero at τ=0.
(b) dr
=dr
dt
dt
, and since t=τ3,dt
= 0 when τ=0.
37. (a) g(τ)=πτ (b) g(τ)=π(1 τ)38. t=1τ
39. Represent the helix by x=acos t,y=asin t,z=ct with a=6.25 and c=10, so that the
radius of the helix is the distance from the axis of the cylinder to the center of the copper cable,
and the helix makes one turn in a distance of 20 in. (t=2π). From Exercise 29 the length of the
helix is 2πp6.252+ (10)244 in.
40. r(t) = cos ti+ sin tj+t3/2k,r0(t)=sin ti+ cos tj+3
2t1/2k
(a) kr0(t)k=qsin2t+ cos2t+9t/4=1
2
4+9t
(b) ds
dt =1
24+9t(c) Z2
0
1
24+9tdt=2
27(1122 4)
41. r0(t)=(1/t)i+2j+2tk
(a) kr0(t)k=p1/t2+4+4t
2=p(2t+1/t)2=2t+1/t
(b) ds
dt =2t+1/t (c) Z3
1
(2t+1/t)dt =8+ln3
42. If r(t)=x(t)i+y(t)j+z(t)kis smooth, then kr0(t)kis continuous and nonzero. Thus the angle
between r0(t) and i, given by cos1(x0(t)/kr0(t)k), is a continuous function of t. Similarly, the
angles between r0(t) and the vectors jand kare continuous functions of t.
43. Let r(t)=x(t)i+y(t)jand use the chain rule.
EXERCISE SET 14.4
1. (a)
x
y(b)
x
y
503 Chapter 14
2.
x
y
3. r0(t)=2ti+j,kr
0
(t)k=
4t
2+1,T(t)=(4t
2+1)
1/2
(2ti+j),
T0(t)=(4t
2+1)
1/2
(2i)4t(4t2+1)
3/2
(2ti+j);
T(1) = 2
5i+1
5j,T0(1) = 2
55(i2j), N(1) = 1
5i2
5j.
4. r0(t)=ti+t
2
j,T(t)=(t
2+t
4
)
1/2
(ti+t
2
j),
T0(t)=(t
2+t
4
)
1/2
(i+2tj)(t+2t
3
)(t2+t4)3/2(ti+t2j);
T(1) = 1
2i+1
2j,T0(1) = 1
22(i+j), N(1) = 1
2i+1
2j
5. r0(t)=5 sin ti+ 5 cos tj,kr0(t)k=5,T(t)=sin ti+ cos tj,T0(t)=cos tisin tj;
T(π/3) = 3
2i+1
2j,T0(π/3) = 1
2i3
2j,N(π/3) = 1
2i3
2j
6. r0(t)=1
ti+j,kr
0
(t)k=
1+t
2
t,T(t)=(1+t
2
)
1/2
(i+tj),
T0(t)=(1+t
2
)
1/2
(j)t(1+t2)3/2(i+tj); T(e)= 1
1+e
2i+e
1+e
2j,
T
0
(e)= 1
(1+e2)3/2(ei+j), N(e)=e
1+e
2i+1
1+e
2j
7. r0(t)=4 sin ti+ 4 cos tj+k,T(t)= 1
17(4 sin ti+ 4 cos tj+k),
T0(t)= 1
17(4 cos ti4 sin tj), T(π/2) = 4
17i+1
17k
T0(π/2) = 4
17j,N(π/2) = j
8. r0(t)=i+tj+t
2
k,T(t)=(1+t
2+t
4
)
1/2
(i+tj+t
2
k),
T0(t)=(1+t
2+t
4
)
1/2
(j+2tk)(t+2t
3
)(1 + t2+t4)3/2(i+tj+t2k),
T(0) = i,T0(0) = j=N(0)
9. r0(t)=e
t
[(cos tsin t)i+ (cos t+ sin t)j+k], T(t)= 1
3
[(cos tsin t)i+ (cos t+ sin t)j+k],
T0(t)= 1
3
[(sin tcos t)i+(sin t+ cos t)j],
T(0) = 1
3i+1
3j+1
3k,T0(0) = 1
3(i+j), N(0) = 1
2i+1
2j
Exercise Set 14.4 504
10. r0(t) = sinh ti+ cosh tj+k,kr0(t)k=psinh2t+ cosh2t+1=
2 cosh t,
T(t)= 1
2
(tanh ti+j+ sech tk), T0(t)= 1
2
(sech2tisech ttanh tk), at t=ln2,
tanh(ln 2) = 3
5and sech(ln 2) = 4
5so T(ln 2) = 3
52i+1
2j+4
52k,
T0(ln 2) = 4
252(4i3k), N(ln 2) = 4
5i3
5k
11. From the remark, the line is parametrized by normalizing v, but T(t0)=v/kvk,sor=r(t
0
)+tv
becomes r=r(t0)+sT(t
0
).
12. r0(t)it=1 =h1,2tiit=1 =h1,2i, and T(1) = h1
5,2
5i, so the tangent line can be parametrized as
r=h1,1i+s1
5,2
5,sox=1+ s
5
,y =1+ 2s
5
.
13. r0(t) = cos tisin tj+tk,r0(0) = i,r(0) = j,T(0) = i, so the tangent line has the parametrization
x=s, y =1.
14. r(1) = i+j+8k,r0(t)=i+jt
9t
2k,r
0
(1) = i+j1
8k,kr0(1)k=17
8, so the tangent
line has parametrizations r=i+j+8k+ti+j1
8k=i+j+8k+s8
17 i+j1
8k.
15. T =3
5cos ti3
5sin tj+4
5k,N=sin ticos tj,B=T×N=4
5cos ti4
5sin tj3
5k
16. T0(t)= 1
2
[(cos t+ sin t)i+(sin t+ cos t)j],N=1
2[(sin t+ cos t)i(cos t+ sin t)j],
B=T×N=k
17. r0(t)=tsin ti+tcos tj,kr0k=t, T= sin ti+ cos tj,N= cos tisin tj,B=T×N=k
18. T =(asin ti+acos tj+bk)/a2+b2,N=cos tisin tj,
B=T×N=(bsin tibcos tj+ak)/a2+b2
19. r(π/4) = 2
2i+2
2j+k,T=sin ti+ cos tj=2
2(i+j),N=(cos ti+ sin tj)=
2
2(i+j),
B=k; the rectifying, osculating, and normal planes are given (respectively) by x+y=2,
z=1,x+y=0.
20. r(0) = i+j,T=1
3(i+j+k),N=1
2(j+k),B=1
6(2ijk); the rectifying, osculating,
and normal planes are given (respectively) by y+z=1,2xyz=1,x+y+z=2.
21. (a) By formulae (1) and (11), N(t)=B(t)×T(t)= r
0
(t)×r
00 (t)
kr0(t)×r00 (t)k×r0(t)
kr0(t)k.
(b) Since r0is perpendicular to r0×r00 it follows from Lagrange’s Identity (Exercise 32 of Section
13.4) that k(r0(t)×r00 (t)) ×r0(t)k=kr0(t)×r00 (t)kkr0(t)k, and the result follows.
(c) From Exercise 39 of Section 13.4, (r0(t)×r00 (t)) ×r0(t)=kr
0
(t)k
2
r
00 (t)(r0(t)·r00 (t))r0(t)=
u(t), so N(t)=u(t)/ku(t)k
505 Chapter 14
22. (a) r0(t)=2ti+j,r
0
(1)=2i+j,r
00 (t)=2i,u=2i4j,N=1
5
i2
5
j
(b) r0(t)=4 sin ti+ 4 cos tj+k,r0(π
2)=4i+k,r
00 (t)=4 cos ti4 sin tj,
r00 (π
2)=4j,u= 17(4j),N=j
23. r0(t) = cos tisin tj+k,r00 (t)=sin ticos tj,u=2(sin ti+cos tj),kuk=2,N=sin ticos tj
24. r0(t)=i+2tj+3t
2
k,r
00 (t)=2j+6tk,u(t)=(4t+18t
3
)i+(218t4)j+(6t+12t
3
)k,
N=1
2
81t8+ 117t6+54t
4+13t
2+1(4t+18t
3
)i+(218t4)j+(6t+12t
3
)k
EXERCISE SET 14.5
1. κ1
0.5=2 2. κ1
4/3=3
4
3. r0(t)=2ti+3t
2
j,r
00 (t)=2i+6tj,κ=kr
0
(t)×r
00 (t)k/kr0(t)k3=6
t(4+9t
2
)
3/2
4. r0(t)=4 sin ti+cos tj,r00 (t)=4 cos tisin tj,κ=kr0(t)×r00 (t)k/kr0(t)k3=4
(16 sin2t+ cos2t)3/2
5. r0(t)=3e
3t
ie
t
j,r
00 (t)=9e
3t
i+e
t
j,κ=kr
0
(t)×r
00 (t)k/kr0(t)k3=12e2t
(9e6t+e2t)3/2
6. r0(t)=3t
2
i+(12t)j,r
00 (t)=6ti2j,κ=kr
0
(t)×r
00 (t)k/kr0(t)k3=6pt2(t1)2
(9t4+4t
24t+1)
3/2
7. r0(t)=4 sin ti+ 4 cos tj+k,r00 (t)=4 cos ti4 sin tj,
κ=kr0(t)×r00 (t)k/kr0(t)k3=4/17
8. r0(t)=i+tj+t
2
k,r
00 (t)=j+2tk,κ=kr
0
(t)×r
00 (t)k/kr0(t)k3=t4+4t
2+1
(t
4+t
2+1)
3/2
9. r0(t) = sinh ti+ cosh tj+k,r00 (t) = cosh ti+ sinh tj,κ=kr0(t)×r00 (t)k/kr0(t)k3=1
2 cosh2t
10. r0(t)=j+2tk,r
00 (t)=2k,κ=kr
0
(t)×r
00 (t)k/kr0(t)k3=2
(4t2+1)
3/2
11. r0(t)=3 sin ti+ 4 cos tj+k,r00 (t)=3 cos ti4 sin tj,
r0(π/2) = 3i+k,r00 (π/2) = 4j;κ=k4i+12kk/k−3i+kk
3=2/5 =5/2
12. r0(t)=e
t
ie
t
j+k,r
00 (t)=e
t
i+e
t
j,
r
0
(0) = ij+k,r00 (0) = i+j;κ=k−i+j+2kk/kij+kk
3=
2/3 =3/
2
13. r0(t)=e
t
(cos tsin t)i+et(cos t+ sin t)j+etk,
r00 (t)=2e
tsin ti+2e
tcos tj+etk,r0(0) = i+j+k,
r00 (0)=2j+k;κ=k−ij+2kk/ki+j+kk
3=
2/3 =3
2/2
Exercise Set 14.5 506
14. r0(t) = cos tisin tj+tk,r00 (t)=sin ticos tj+k,
r0(0) = i,r00 (0) = j+k;κ=k−jkk/kik
3=
2=2/2
15. r0(s)=1
2cos 1+s
2i1
2sin 1+s
2j+
3
2k,kr
0
(s)k=1,so
dT
ds =1
4sin 1+s
2i1
4cos 1+s
2j=
dT
ds
=1
16
16. r0(s)=
r32s
3si+r2s
3j,kr
0
(s)k=1,so
dT
ds =1
96si+1
6sj=
dT
ds
=r1
96s+1
6s=s3
2s(9 6s)
17. (a) r0=x0i+y0j,r00 =x00 i+y00 j,kr0×r00 k=|x0y00 x00 y0|=|x
0
y
00 y0x00 |
(x02+y02)3/2
(b) r =xi+y(x)j,r0(x)=i+(dy/dx)j,r00 (x)=(d
2
y/dx2)j,so
κ(x)=k(d
2
y/dx2)kk/ki+(dy/dx)jk3=|d2y/dx2|/[1+(dy/dx)2]3/2.
18. dy
dx = tan φ, (1 + tan2φ)3/2= (sec2φ)3/2=|sec φ|3,κ(x)= |y
00 |
|sec φ|3=|y00 cos3φ|
19. κ(x)= |sin x|
(1 + cos2x)3/2,κ(π/2)=1 20. κ(x)= 2|x|
(1+x4)3/2,κ(0)=0
21. κ(x)= 2|x|
3
(x
4+1)
3/2,κ(1)=1/
222. κ(x)= e
x
(1+e2x)3/2,κ(1) = e1
(1+e2)3/2
23. κ(x)= 2 sec2x|tan x|
(1 + sec4x)3/2,κ(π/4)=4/(55)
24. By implicit differentiation, dy/dx =4x/y,d2y/dx2=36/y3so κ=36/|y|3
(1+16x
2
/y2)3/2;
if (x, y)=(2,5) then κ=36/125
(1+64/25)3/2=36
8989
25. x0(t)=2t,y
0
(t)=3t
2
,x
00 (t)=2,y
00 (t)=6t,
x
0
(1/2)=1,y
0
(1/2)=3/4, x00 (1/2)=2,y
00 (1/2)=3;κ=96/125
26. x0(t)=4 sin t,y0(t) = cos t,x00 (t)=4 cos t,y00 (t)=sin t,
x0(π/2) = 4, y0(π/2)=0,x
00 (π/2)=0,y
00 (π/2) = 1; κ=1/16
27. x0(t)=3e
3t
,y
0
(t)=e
t
,x
00 (t)=9e
3t
,y
00 (t)=e
t
,
x
0
(0)=3,y
0
(0) = 1, x00 (0)=9,y
00 (0)=1;κ=6/(510)
28. x0(t)=3t
2
,y
0
(t)=12t,x
00 (t)=6t,y
00 (t)=2,
x0(1) = 3, y0(1) = 1, x00 (1) = 6, y00 (1) = 2; κ=0
507 Chapter 14
29. x0(t)=1,y
0
(t)=1/t2,x
00 (t)=0,y
00 (t)=2/t3
x0(1)=1,y
0
(1) = 1,x
00 (1)=0,y
00 (1)=2;κ=1/
2
30. x0(t) = 4 cos 2t, y0(t)=3cost, x00 (t)=8 sin 2t, y00 (t)=3 sin t,
x0(π/2) = 4,y
0
(π/2)=0,x
00 (π/2)=0,y
00 (π/2) = 3=12/4
3/2=3/2
31. (a) κ(x)= |cos x|
(1 + sin2x)3/2,
ρ(x)=(1 + sin2x)3/2
|cos x|
ρ(0) = ρ(π)=1.
c
(0) = ( ) = 1
c
x
y
rr
(b) κ(t)= 2
(4 sin2t+ cos2t)3/2,
ρ(t)=1
2
(4 sin2t+ cos2t)3/2,
ρ(0)=1/2, ρ(π/2)=4
1
2
ρ
(
6
)
= 4
ρ
(0) =
1
2
x
y
32. x0(t)=e
t
(cos t+ sin t),
y0(t)=e
t
(cos tsin t),
x00 (t)=2e
tsin t,
y00 (t)=2e
tcos t;
using the formula of Exercise 17(a),
κ=1
2et.
3-3
t
κ
6
33. (a) At x= 0 the curvature of I has a large value, yet the value of II there is zero, so II is not the
curvature of I; hence I is the curvature of II.
(b) I has points of inflection where the curvature is zero, but II is not zero there, and hence is
not the curvature of I; so I is the curvature of II.
34. (a) II takes the value zero at x= 0, yet the curvature of I is large there; hence I is the curvature
of II.
(b) I has constant zero curvature; II has constant, positive curvature; hence I is the curvature
of II.
35. (a)
5
00
1(b) 1
0
05
Exercise Set 14.5 508
36. (a) 4
-4
-1 1
(b) 4
-4
-1 1
37. (a) κ=|12x24|
(1+(4x
34x)
2
)
3/2(b)
f(x)
k
-2 2
8
x
y
(c) f0(x)=4x
34x=0atx=0,±1,f00 (x)=12x
24, so extrema at x=0,±1, and ρ=1/4
for x= 0 and ρ=1/8 when x=±1.
38. (a)
-30 30
-30
30
x
y(c) κ(t)= t
2+2
(t
2+1)
3/2(d) lim
t+κ(t)=0
39. r0(θ)=rsin θ+ cos θdr
i+rcos θ+ sin θdr
j;
r00 (θ)=rcos θ2 sin θdr
+ cos θd2r
2i+rsin θ+ 2 cos θdr
+ sin θd2r
2j;
κ=
r2+2dr
2
rd2r
2
"r2+dr
2#3/2.
40. Let r=abe the circle, so that dr/dθ = 0, and κ(θ)=1
r=1
a
41. κ(θ)= 3
2
2(1 + cos θ)1/2,κ(π/2) = 3
2242. κ(θ)= 1
5e
2θ(1) = 1
5e2
43. κ(θ)= 10 + 8 cos23θ
(1 + 8 cos2θ)3/2(0) = 2
344. κ(θ)= θ
2+2
(θ
2+1)
3/2(1) = 3
22
509 Chapter 14
45. The radius of curvature is zero when θ=π, so there is a cusp there.
46. dr
=sin θ,d2r
2=cos θ,κ(θ)= 3
2
3/2
1 + cos θ
47. Let y=t, then x=t2
4pand κ(t)= 1/|2p|
[t
2
/(4p2)+1]
3/2;
t= 0 when (x, y)=(0,0) so κ(0)=1/|2p|,ρ=2|p|.
48. κ(x)= e
x
(1+e2x)3/2,κ0(x)=e
x
(1 2e2x)
(1+e2x)5/2;κ0(x) = 0 when e2x=1/2, x=(ln 2)/2. By the first
derivative test, κ(1
2ln 2) is maximum so the point is (1
2ln 2,1/2).
49. Let x= 3 cos t,y= 2 sin tfor 0 t<2π,κ(t)= 6
(9 sin2t+ 4 cos2t)3/2so
ρ(t)=1
6
(9 sin2t+ 4 cos2t)3/2=1
6(5 sin2t+4)
3/2which, by inspection, is minimum when
t=0orπ. The radius of curvature is minimum at (3,0) and (3,0).
50. κ(x)= 6x
(1+9x
4
)
3/2for x>0, κ0(x)= 6(1 45x4)
(1+9x
4
)
5/2;κ
0
(x) = 0 when x=45
1/4which, by the
first derivative test, yields the maximum.
51. r0(t)=sin ti+ cos tjsin tk,r00 (t)=cos tisin tjcos tk,
kr0(t)×r00 (t)k=k−i+kk=
2, kr0(t)k= (1 + sin2t)1/2;κ(t)=
2/(1 + sin2t)3/2,
ρ(t)=(1+sin
2t)
3/2
/
2. The minimum value of ρis 1/2; the maximum value is 2.
52. r0(t)=e
t
ie
t
j+
2k,r
00 (t)=e
t
i+e
t
j;
κ(t)=
2
e
2t+e
2t+2,ρ(t)= 1
2
(e
t+e
t
)
2=2
2 cosh2t. The minimum value of ρis 22.
53. From Exercise 39: dr/dθ =ae=ar,d2r/dθ2=a2e=a2r;κ=1/[
p1+a
2r].
54. Use implicit differentiation on r2=a2cos 2θto get 2rdr
=2a2sin 2θ,rdr
=a2sin 2θ, and
again to get rd2r
2+dr
2
=2a2cos 2θso rd2r
2=dr
2
2a2cos 2θ=dr
2
2r2,thus
r
2+2dr
2
rd2r
2
=3"r
2+dr
2#,κ=3
[r2+(dr/dθ)2]1/2;dr
=a2sin 2θ
rso
r2+dr
2
=r2+a4sin22θ
r2=r4+a4sin22θ
r2=a4cos22θ+a4sin22θ
r2=a4
r2, hence κ=3r
a2.
Exercise Set 14.5 510
55. (a) d2y/dx2=2(φ)=|2 cos3φ|
(b) dy/dx = tan φ=1=π/4(π/4) = |2 cos3(π/4)|=1/
2=
2
(c)
-2 1
3
x
y
56. (a) 5
3,0,0,5
2(b) clockwise (c) it is a point, namely the center of the circle
57. κ= 0 along y= 0; along y=x2,κ(x)=2/(1+4x
2
)
3/2
,κ(0) = 2. Along y=x3,
κ(x)=6|x|/(1+9x
4
)
3/2
,κ(0)=0.
58. (a)
2-2
4
x
y(b) For y=x2,κ(x)= 2
(1+4x
2
)
3/2
so κ(0) = 2; for y=x4,
κ(x)= 12x2
(1+16x
6
)
3/2so κ(0)=0.
κis not continuous at x=0.
59. κ=1/r along the circle; along y=ax2,κ(x)=2a/(1+4a
2
x
2
)
3/2
,κ(0)=2aso 2a=1/r,
a=1/(2r).
60. κ(x)= |y
00 |
(1+y02)3/2so the transition will be smooth if the values of yare equal, the values of y0
are equal, and the values of y00 are equal at x=0.Ify=e
x
, then y0=y00 =ex;ify=ax2+bx +c,
then y0=2ax +band y00 =2a. Equate y,y0, and y00 at x= 0 to get c=1,b= 1, and a=1/2.
61. The result follows from the definitions N=T0(s)
kT0(s)kand κ=kT0(s)k.
62. (a) B ·
dB
ds = 0 because kB(s)k=1so dB
ds is perpendicular to B(s).
(b) B(s)·T(s)=0,B(s)·
dT
ds +dB
ds
·T(s)=0,butdT
ds =κN(s)soκB(s)·N(s)+dB
ds
·
T(s)=0, dB
ds
·T(s) = 0 because B(s)·N(s)=0;thus dB
ds is perpendicular to T(s).
(c) dB
ds is perpendicular to both B(s) and T(s) but so is N(s), thus dB
ds is parallel to N(s) and
hence a scalar multiple of N(s).
(d) If Clies in a plane, then T(s) and N(s) also lie in the plane; B(s)=T(s)×N(s)soB(s)is
always perpendicular to the plane and hence dB/ds =0,thusτ=0.
511 Chapter 14
63. dN
ds =B×dT
ds +dB
ds ×T=B×(κN)+(τN)×T=κB×NτN×T, but B×N=Tand
N×T=Bso dN
ds =κT+τB
64. r00 (s)=dT/ds =κNso r000 (s)=κdN/ds +(dκ/ds)Nbut dN/ds =κT+τBso
r000 (s)=κ
2
T+(dκ/ds)N+κτB,r0(s)×r00 (s)=T×(κN)=κT×N=κB,
[r
0
(s)×r
00 (s)] ·r000 (s)=κ
3
B·T+κ(dκ/ds)B·N+κ2τB·B=κ2τ,
τ=[r
0
(s)×r
00 (s)] ·r000 (s)2=[r
0
(s)×r
00 (s)] ·r000 (s)/kr00 (s)k2and
B=T×N=[r
0
(s)×r
00 (s)]/kr0(s)k
65. r =acos(s/w)i+asin(s/w)j+(cs/w)k,r0=(a/w) sin(s/w)i+(a/w) cos(s/w)j+(c/w)k,
r00 =(a/w2) cos(s/w)i(a/w2) sin(s/w)j,r000 =(a/w3) sin(s/w)i(a/w3) cos(s/w)j,
r0×r00 =(ac/w3) sin(s/w)i(ac/w3) cos(s/w)j+(a
2
/w3)k,(r
0×r
00 )·r000 =a2c/w6,
kr00 (s)k=a/w2,soτ=c/w2and B=(c/w) sin(s/w)i(c/w) cos(s/w)j+(a/w)k
66. (a) T0=dT
dt =dT
ds
ds
dt =(κN)s
0=κs0N,
N0=dN
dt =dN
ds
ds
dt =(κT+τB)s
0=κs0T+τs0B.
(b) kr0(t)k=s0so r0(t)=s
0
Tand r00 (t)=s
00 T+s0T0=s00 T+s0(κs0N)=s
00 T+κ(s0)2N.
(c) r000 (t)=s
00 T0+s000 T+κ(s0)2N0+[2κs0s00 +κ0(s0)2]N
=s00 (κs0N)+s
000 T+κ(s0)2(κs0T+τs0B)+[2κs0s00 +κ0(s0)2]N
=[s
000 κ2(s0)3]T+[3κs0s00 +κ0(s0)2]N+κτ(s0)3B.
(d) r0(t)×r00 (t)=s
0
s
00 T×T+κ(s0)3T×N=κ(s0)3B,[r
0
(t)×r
00 (t)] ·r000 (t)=κ
2
τ(s
0
)
6so
τ=[r0(t)×r00 (t)] ·r000 (t)
κ2(s0)6=[r0(t)×r00 (t)] ·r000 (t)
kr0(t)×r00 (t)k2
67. r0=2i+2tj+t
2
k,r
00 =2j+2tk,r
000 =2k,r
0×r
00 =2t
2
i4tj+4k,kr
0×r
00 k=2(t
2+ 2),
τ=8/[2(t2+ 2)]2=2/(t
2+2)
2
68. r0=asin ti+acos tj+bk,r00 =acos tiasin tj,r000 =asin tiacos tj,
r0×r00 =ab sin tiab cos tj+a2k,kr0×r00 k=pa2(a2+b2),
τ=a2b/[a2(a2+b2)] = b/(a2+b2)
69. r0=etietj+2k,r00 =eti+etj,r000 =etietj,r0×r00 =2eti+2etj+2k,
kr
0×r
00 k=2(et+et), τ=(2
2)/[2(et+et)2]=
2/(e
t+e
t
)
2
70. r0=(1cos t)i+ sin tj+k,r00 = sin ti+ cos tj,r000 = cos tisin tj,
r0×r00 =cos ti+ sin tj+ (cos t1)k,
kr0×r00 k=qcos2t+ sin2t+ (cos t1)2=q1+4sin
4
(t/2), τ=1/[1 + 4 sin4(t/2)]
Exercise Set 14.6 512
EXERCISE SET 14.6
1. v(t)=3 sin ti+ 3 cos tj
a(t)=3 cos ti3 sin tj
kv(t)k=p9 sin2t+ 9 cos2t=3
r(π/3)=(3/2)i+(3
3/2)j
v(π/3) = (33/2)i+(3/2)j
a(π/3) = (3/2)i(33/2)j
3
3
233
2
()
,
3
233
2
a = i j
x
y
33
2
v = i + j
3
2
2. v(t)=i+2tj
a(t)=2j
kv(t)k=
1+4t
2
r(2)=2i+4j
v(2) = i+4j
a(2)=2j
(2, 4)
a = 2j
v = i + 4j
8
4
x
y
3. v(t)=e
t
ie
t
j
a(t)=e
t
i+e
t
j
kv(t)k=
e
2t+e
2t
r(0) = i+j
v(0) = ij
a(0) = i+j
(1, 1)
v = i j
a = i + j
x
y
4. v(t)=4ij
a(t)=0
kv(t)k=
17
r(1)=6i
v(1)=4ij
a(1) = 0
(6, 0)
v = 4ij
a = 0
x
y
5. v =i+tj+t2k,a=j+2tk;att=1,v=i+j+k,kvk=
3, a=j+2k
6. r =(1+3t)i+(24t)j+(7+t)k,v=3i4j+k,
a=0;att=2,v=3i4j+k,kvk=
26, a=0
7. v =2 sin ti+ 2 cos tj+k,a=2 cos ti2 sin tj;
at t=π/4, v=2i+2j+k,kvk=5, a=2i2j
8. v =et(cos t+ sin t)i+et(cos tsin t)j+k,a=2e
tcos ti2etsin tj;att=π/2,
v=eπ/2ieπ/2j+k,kvk=(1+2e
π)
1/2
,a=2e
π/2j
513 Chapter 14
9. (a) v =sin ωti+cos ωtj,a=2cos ωti2sin ωtj=ω2r
(b) From Part (a), kak=ω2krk
10. (a) v =16πcos πti8πsin 2πtj,a=16π2sin πti16π2cos 2πtj;
at t=1,v=16πi,kvk=16π,a=16π2j
(b) x= 16 sin πt, y = 4 cos 2πt = 4 cos2πt 4 sin2πt =48 sin2πt, y =4x
2
/32
(c) Both x(t) and y(t) are periodic and have period 2, so after 2 s the particle retraces its path.
11. v =(6/
t)i+(3/2)t1/2j,kvk=p36/t +9t/4,dkvk/dt =(36/t2+9/4)/(2p36/t +9t/4)=0
if t= 4 which yields a minimum by the first derivative test. The minimum speed is 32 when
r=24i+8j.
12. v =(12t)i2tj,kvk=p(1 2t)2+4t
2=
8t
24t+1,
d
dtkvk=8t2
8t24t+1 =0ift=1
4which yields a minimum by the first derivative test. The
minimum speed is 1/2 when the particle is at r=3
16i1
16j.
13. (a)
803
6
(b) v = 3 cos 3ti+ 6 sin 3tj,kvk=p9 cos23t+ 36 sin23t=3
p1+3sin
23t; by inspection, maxi-
mum speed is 6 and minimum speed is 4
(d) d
dtkvk=9 sin 6t
2p1+3sin
23t= 0 when t=0/6/3/2,2π/3; the maximum speed is 6 which
occurs first when sin3t=1,t=π/6.
14. (a) 8
0
0c
(d) v =6 sin 2ti+2 cos 2tj+4k,kvk=p36 sin22t+ 4 cos22t+16=2
p8 sin2t+ 5; by inspec-
tion the maximum speed is 213 when t=π, the minimum speed is 25 when t=π/2.
15. v(t)=sin ti+ cos tj+C1,v(0) = j+C1=i,C1=ij,v(t)=(1sin t)i+ (cos t1)j;
r(t)=(t+ cos t)i+ (sin tt)j+C2,r(0) = i+C2=j,
C2=i+jso r(t)=(t+ cos t1)i+ (sin tt+1)j
Exercise Set 14.6 514
16. v(t)=tie
t
j+C
1
,v(0) = j+C1=2i+j;C
1=2i+2jso
v(t)=(t+2)i+(2e
t
)j;r(t)=(t
2
/2+2t)i+(2t+e
t
)j+C
2
r(0) = j+C2=ij,C2=i2jso r(t)=(t
2
/2+2t+1)i+(2t+e
t2)j
17. v(t)=cos ti+ sin tj+etk+C1,v(0) = i+k+C1=kso
C1=i,v(t)=(1cos t)i+ sin tj+etk;r(t)=(tsin t)icos tj+etk+C2,
r(0) = j+k+C2=i+kso C2=i+j,r(t)=(tsin t1)i+(1cos t)j+etk.
18. v(t)=1
t+1j+1
2e
2t
k+C
1
,v(0) = j+1
2k+C1=3ijso
C1=3i1
2
k,v(t)=3i1
t+1j+1
2e
2t1
2k;
r(t)=3tiln(t+1)j1
4e
2t+1
2t
k+C
2
,
r(0) = 1
4k+C2=2kso C2=9
4k,r(t)=3tiln(t+1)j+9
41
4e
2t1
2t
k.
19. If a=0then x00 (t)=y
00 (t)=z
00 (t)=0,sox(t)=x
1
t+x
0
,y(t)=y
1
t+y
0
,z(t)=z
1
t+z
0
, the
motion is along a straight line and has constant speed.
20. (a) If krkis constant then so is krk2, but then x2+y2=c2(2-space) or x2+y2+z2=c2
(3-space), so the motion is along a circle or a sphere of radius ccentered at the origin, and
the velocity vector is always perpendicular to the locating vector.
(b) If kvkis constant then by the Theorem, v(t)·a(t) = 0, so the velocity is always perpendicular
to the acceleration.
21. v =3t
2
i+2tj,a=6ti+2j;v=3i+2jand a=6i+2jwhen t=1so
cos θ=(v·a)/(kvkkak)=11/
130, θ15.
22. v =et(cos tsin t)i+et(cos t+ sin t)j,a=2etsin ti+2e
tcos tj,v·a=2e
2t
,kvk=
2e
t
,
kak=2e
t
, cos θ=(v·a)/(kvkkak)=1/
2, θ=45
.
23. (a) displacement = r1r0=0.7i+2.7j3.4k
(b) r=r1r0,sor
0=r
1r=0.7i2.9j+4.8k.
24. (a)
-4 -2 2 4
-4
-2
2
4
x
y(b) distance = p50(1 cos 2πt)
25. r=r(3) r(1)=8i+26/3j;v=2ti+t
2
j,s=Z3
1
t
p4+t
2
dt = (1313 55)/3.
26. r=r(3π/2) r(0)=3i3j;v= 3 cos ti3 sin tj,s=Z3π/2
0
3dt =9π/2.
515 Chapter 14
27. r=r(ln 3) r(0)=2i2/3j+
2ln3k;v=e
tie
tj+2k,s=Zln 3
0
(et+et)dt =8/3.
28. r=r(π)r(0) = 0;v=2 sin 2ti+ 2 sin 2tjsin 2tk,
kvk=3|sin 2t|,s=Zπ
0
3|sin 2t|dt =6Zπ/2
0
sin 2tdt=6.
29. In both cases, the equation of the path in rectangular coordinates is x2+y2= 4, the particles
move counterclockwise around this circle; v1=6 sin 3ti+ 6 cos 3tjand
v2=4tsin(t2)i+4tcos(t2)jso kv1k= 6 and kv2k=4t.
30. Let u=1t
3in r2to get r2(u)=(3+2u)i+uj+(1u)kso both particles move along the same
line; v1=2i+jkand v2=6t2i3t2j+3t
2
kso kv1k=6 and kv2k=3
6t
2
.
31. (a) v =eti+etj,a=eti+etj; when t=0,v=i+j,a=i+j,kvk=
2, v·a=0,
v×a=2kso aT=0,a
N=
2.
(b) aTT=0,a
NN=aa
TT=i+j (c) κ=1/
2
32. (a) v =2tsin(t2)i+2tcos(t2)j,a=[4t
2cos(t2)2 sin(t2)]i+[4t
2sin(t2) + 2 cos(t2)]j; when
t=π/2, v=pπ/2i+pπ/2j,a=(π/22)i+(π/2+
2)j,kvk=π,
v·a=2
π,v×a=π
3/2
kso aT=2,a
N=π
(b) aTT=2(ij),a
N
N=aa
T
T=(π/2)(i+j)
(c) κ=1
33. (a) v =(3t
22)i+2tj,a=6ti+2j; when t=1,v=i+2j,a=6i+2j,kvk=
5, v·a= 10,
v×a=10kso aT=2
5, aN=2
5
(b) aTT=25
5(i+2j)=2i+4j,a
N
N=aa
T
T=4i2j
(c) κ=2/
5
34. (a) v =et(sin t+cos t)i+et(cos t+sin t)j,a=2etsin ti+2etcos tj; when t=π/4, v=2eπ/4j,
a=2eπ/4i+2eπ/4j,kvk=2eπ/4,v·a=2e
π/2,v×a=2e
π/2kso aT=2eπ/4,
aN=2eπ/4
(b) aTT=2eπ/4j,a
N
N=aa
T
T=
2e
π/4i
(c) κ=1
2eπ/4
35. (a) v =i+2tj+3t
2
k,a=2j+6tk; when t=1,v=i+2j+3k,a=2j+6k,kvk=
14,
v·a= 22, v×a=6i6j+2kso aT=22/
14, aN=76/14 = p38/7
(b) aTT=11
7i+22
7j+33
7k,a
N
N=aa
T
T=
11
7i8
7j+9
7k
(c) κ=19
714
36. (a) v =eti2e2tj+k,a=eti+4e
2t
j; when t=0,v=i2j+k,a=i+4j,kvk=
6,
v·a=7, v×a=4i+j+6kso aT=7/6, aN=p53/6
Exercise Set 14.6 516
(b) aTT=7
6(i2j+k),a
NN=aa
TT=13
6i+19
3j+7
6k
(c) κ=53
66
37. (a) v = 3 cos ti2 sin tj2 cos 2tk,a=3 sin ti2 cos tj+4 sin 2tk; when t=π/2, v=2j+2k,
a=3i,kvk=2
2, v·a=0,v×a=6j6kso aT=0,a
N=3
(b) aTT=0,a
NN=a=3i
(c) κ=3
8
38. (a) v =3t
2
j(16/t)k,a=6tj+ (16/t2)k; when t=1,v=3j16k,a=6j+16k,kvk=265,
v·a=238, v×a= 144iso aT=238/265, aN= 144/265
(b) aTT=714
265j+3808
265 k,a
N
N=aa
T
T=2304
265 j+432
265k
(c) κ=144
2653/2
39. kvk=4,v·a=12, v×a=8kso aT=3, aN=2,T=j,N=(aa
TT)/aN=i
40. kvk=5, v·a=3,v×a=6kso aT=3/
5, aN=6/
5, T=(1/
5)(i+2j),
N=(aa
TT)/aN=(1/
5)(2ij)
41. kvk=3,v·a=4,v×a=4i3j2kso aT=4/3, aN=29/3, T=(1/3)(2i+2j+k),
N=(aa
TT)/aN=(i8j+14k)/(329)
42. kvk=5,v·a=5, v×a=4i10j3kso aT=1, aN=5, T=(1/5)(3i4k),
N=(aa
TT)/aN=(8i5j+6k)/(55)
43. aT=d2s
dt2=d
dtp3t2+4=3t/p3t2+ 4 so when t=2,a
T=3/2.
44. aT=d2s
dt2=d
dtpt2+e3t=(2t3e
3t
)/[2pt2+e3t] so when t=0,a
T=3/2.
45. aT=d2s
dt2=d
dtp(4t1)2+ cos2πt =[4t1πcos πt sin πt]/p(4t1)2+ cos2πt so when
t=1/4, aT=π/2.
46. aT=d2s
dt2=d
dtpt4+5t
2+3=(2t
3+5t)/
pt
4+5t
2+ 3 so when t=1,a
T=7/3.
47. aN=κ(ds/dt)2=(1)(ds/dt)2=(1/1)(2.9×105)2=8.41 ×1010 km/s2
48. a =(d
2
s/dt2)T+κ(ds/dt)2Nwhere κ=|d2y/dx2|
[1+(dy/dx)2]3/2.Ifd
2
y/dx2= 0, then κ= 0 and
a=(d
2
s/dt2)Tso ais tangent to the curve.
49. aN=κ(ds/dt)2=[2/(1+4x
2
)
3/2
](3)2=18/(1+4x
2
)
3/2
50. y=ex,a
N=κ(ds/dt)2=[e
x
/(1+e2x)3/2](2)2=4e
x
/(1+e2x)3/2
517 Chapter 14
51. a =aTT+aNN; by the Pythagorean Theorem aN=pkak2a2
T=99=0
52. As in Exercise 51, kak2=a2
T+a2
N,81=9+a
2
N,a
N=72=6
2.
53. Let c=ds/dt, aN=κds
dt 2
,a
N=1
1000c2,soc
2= 1000aN,c10101.538.73 m/s.
54. 10 km/h is the same as 100
36 m/s, so kFk= 500 1
15 100
36 2
257.20 N.
55. (a) v0= 320, α=60
,s
0=0sox= 160t,y= 1603t16t2.
(b) dy/dt = 160332t,dy/dt = 0 when t=5
3so
y
max = 1603(53) 16(53)2= 1200 ft.
(c) y=16t(103t), y= 0 when t= 0 or 103sox
max = 160(103) = 16003 ft.
(d) v(t) = 160i+ (160332t)j,v(103) = 160(i3j), kv(103)k= 320 ft/s.
56. (a) v0= 980, α=45
,s
0=0sox= 4902t,y= 4902t4.9t2
(b) dy/dt = 49029.8t,dy/dt = 0 when t=50
2so
y
max = 4902(502) 4.9(502)2=24,500 m.
(c) y=4.9t(1002t), y= 0 when t= 0 or 1002so
x
max = 4902(1002)=98,000 m.
(d) v(t) = 4902i+ (49029.8t)j,v(1002) = 4902(ij), kv(1002)k= 980 m/s.
57. v0= 80, α=60,s0= 168 so x=40t,y= 168 403t16t2;y= 0 when
t=73/2 (invalid) or t=3sox(
3)=40
3 ft.
58. v0= 80, α=0
,s
0= 168 so x=80t,y= 168 16t2;y= 0 when t=42/2 (invalid) or
t=42/2sox(
42/2)=40
42 ft.
59. α=30
,s
0=0sox=
3v
0
t/2, y=v0t/216t2;dy/dt =v0/232t,dy/dt = 0 when t=v0/64
so ymax =v2
0/256 = 2500, v0= 800 ft/s.
60. α=45
,s
0=0sox=
2v
0
t/2, y=2v0t/24.9t2;y= 0 when t=0or
2v
0
/9.8so
x
max =v2
0/9.8=24,500, v0= 490 m/s.
61. v0= 800, s0=0sox= (800 cos α)t,y= (800 sin α)t16t2=16t(50 sin αt); y= 0 when t=0
or 50 sin αso xmax =40,000 sin αcos α=20,000 sin 2α=10,000, 2α=30
or 150,α=15
or 75.
62. (a) v0=5,α=0
,s
0=4sox=5t,y=416t2;y= 0 when t=1/2 (invalid) or 1/2soit
takes the ball 1/2 s to hit the floor.
(b) v(t)=5i32tj,v(1/2)=5i16j,kv(1/2)k=281 so the ball hits the floor with a speed
of 281 ft/s.
(c) v0=0,α=90,s0=4sox=0,y=416t2;y= 0 when t=1/2 so both balls would hit
the ground at the same instant.
Exercise Set 14.6 518
63. (a) v0=40=60,s
0=4,sox=20t, y =4+20
3t16t2; when x=15,t=3
4,
y=4+20
33
416 3
42
20.98 ft, so the water clears the corner point Awith 0.98 ft to
spare.
(b) y= 20 when 16t2+25
3t16=0,t =0.668 (reject) or 1.500,x(1.500) 30 ft, so the
water hits the roof.
(c) about 15 ft
64. x=(v
0
/2)t, y =4+(v
0
3/2)t16t2, solve x=15,y = 20 simultaneously for v0and t,
v0/2=15/t, t2=15
1631,t 0.7898,v
030/0.7898 37.98 ft/s.
65. (a) x= (352/2)t, y = (352/2)t4.9t2, from Exercise 17a in Section 14.5
κ=|x0y00 x00 y0|
[(x0)2+(y
0
)
2
]
3/2(0) = 9.8
3522=0.00420.00566
(b) y0(t) = 0 when t=25
142,y =125
4m
66. (a) a =aTT+aNN,a
T=d
2s
dt2=7.5 ft/s2,aN=κds
dt 2
=1
ρ(132)2=1322
3000 ft/s2,
kak=pa2
T+a2
N=s(7.5)2+1322
30002
9.49 ft/s2
(b) cos θ=a·T
kakkTk=aT
kak≈−7.5
9.49 ≈−0.792.48 radians 142
67. s0=0sox=(v
0cos α)t,y=(v
0sin α)tgt2/2
(a) dy/dt =v0sin αgt so dy/dt = 0 when t=(v
0sin α)/g,ymax =(v
0sin α)2/(2g)
(b) y= 0 when t= 0 or (2v0sin α)/g,sox=R=(2v
2
0sin αcos α)/g =(v
2
0sin 2α)/g when
t=(2v
0sin α)/g;Ris maximum when 2α=90
,α=45
, and the maximum value of R
is v2
0/g.
68. The range is (v2
0sin 2α)/g and the maximum range is v2
0/g so (v2
0sin 2α)/g =(3/4)v2
0/g,
sin 2α=3/4, α=(1/2) sin1(3/4) 24.3or α=(1/2)[180sin1(3/4)] 65.7.
69. v0= 80, α=30
,s
0=5sox=40
3t,y=5+40t16t2
(a) y= 0 when t=(40±p(40)24(16)(5))/(32)=(5±
30)/4, reject (5 30)/4toget
t=(5+
30)/42.62 s.
(b) x403(2.62) 181.5 ft.
70. (a) v0=v,s0=hso x=(vcos α)t,y=h+(vsin α)t1
2gt2.Ifx=R, then (vcos α)t=R,
t=R
vcos αbut y= 0 for this value of tso h+(vsin α)[R/(vcos α)] 1
2g[R/(vcos α)]2=0,
h+ (tan α)Rg(sec2α)R2/(2v2)=0,g(sec2α)R22v2(tan α)R2v2h=0.
519 Chapter 14
(b) 2gsec2αtan αR2+2gsec2αRdR
2v2sec2αR 2v2tan αdR
=0;ifdR
= 0 and α=α0
when R=R0, then 2gsec2α0tan α0R2
02v2sec2α0R0=0,gtan α0R0v2=0,
tan α0=v2/(gR0).
(c) If α=α0and R=R0, then from part (a) g(sec2α0)R2
02v2(tan α0)R02v2h= 0, but from
part (b) tan α0=v2/(gR0)sosec
2
α
0= 1 + tan2α0=1+v
4
/(gR0)2thus
g[1+v4/(gR0)2]R2
02v2[v2/(gR0)]R02v2h=0,gR2
0v4/g 2v2h=0,
R
2
0=v
2
(v
2+2gh)/g2,R0=(v/g)pv2+2gh and
tan α0=v2/(vpv2+2gh)=v/pv2+2gh,α0= tan1(v/pv2+2gh).
71. (a) v0(cos α)(2.9) = 259 cos 23so v0cos α82.21061, v0(sin α)(2.9) 16(2.9)2=259 sin 23
so v0sin α11.50367; divide v0sin αby v0cos αto get tanα0.139929, thus α8
and v082.21061/cos 883 ft/s.
(b) From part (a), x82.21061tand y11.50367t16t2for 0 t2.9; the distance traveled
is Z2.9
0p(dx/dt)2+(dy/dt)2dt 268.76 ft.
EXERCISE SET 14.7
1. The results follow from formulae (1) and (7) of Section 12.5.
2. (a) (rmax rmin)/(rmax +rmin)=2ae/(2a)=e
(b) rmax/rmin =(1+e)/(1 e), and the result follows.
3. (a) From (15) and (6), at t=0,
C=v
0×b
0GMu=v0j×r0v0kGMu=r0v2
0iGMi=(r
0
v
2
0GM)i
(b) From (22), r0v2
0GM =GMe, so from (7) and (17), v×b=GM(cos θi+ sin θj)+GMei,
and the result follows.
(c) From (10) it follows that bis perpendicular to v, and the result follows.
(d) From Part (c) and (10), kv×bk=kvkkbk=vr0v0. From Part (b),
kv×bk=GMq(e+ cos θ)2+ sin2θ=GMe2+2ecos θ+1.By (10) and
Part (d), kv×bk=kvkkbk=v(r0v0)thusv=GM
r0v0pe2+2ecos θ+ 1. From (22),
r0v2
0/(GM)=1+e,GM/(r0v0)=v
0
/(1+e)sov=v
0
1+epe
2+2ecos θ+1.
4. At the end of the minor axis, cos θ=c/a =eso
v=v0
1+epe
2+2e(e)+1= v
0
1+ep1e
2=v
0
r1e
1+e.
5. vmax occurs when θ=0sov
max =v0;vmin occurs when θ=πso
vmin =v0
1+epe
22e+1=v
max
1e
1+e,thusv
max =vmin
1+e
1e.
6. If the orbit is a circle then e= 0 so from Part (e) of Exercise 3, v=v0at all points on the orbit.
Use (22) with e= 0 to get v0=pGM/r0so v=pGM/r0.
Chapter 14 Supplementary Exercises 520
7. r0= 6440 + 200 = 6640 km so v=p3.99 ×105/6640 7.75 km/s.
8. From Example 1, the orbit is 22,352 mi above the Earth, thus vs1.24 ×1012
26,352 6859.68 mi/h.
9. From (23) with r0= 6440 + 300 = 6740 km, vesc =r2(3.99) ×105
6740 10.88 km/s.
10. From (29), T=2π
GM a3/2. But T= 1 yr = 365 ·24 ·3600 s, thus M=4π2a3
GT 21.99 ×1030 kg.
11. (a) At perigee, r=rmin =a(1 e) = 238,900 (1 0.055) 225,760 mi; at apogee,
r=rmax =a(1+e) = 238,900(1 + 0.055) 252,040 mi. Subtract the sum
of the radius of the moon and the radius of the Earth to get
minimum distance = 225,760 5080 = 220,680 mi,
and maximum distance = 252,040 5080 = 246,960 mi.
(b) T=2π
pa
3
/(GM)=2π
p(238,900)3/(1.24 ×1012)659 hr 27.5 days.
12. (a) rmin = 6440 + 649 = 7,089 km, rmax = 6440 + 4,340 = 10,780 km so
a=(r
min +rmax)/2 = 8934.5 km.
(b) e= (10,780 7,089)/(10,780 + 7,089) 0.207.
(c) T=2π
pa
3
/(GM)=2π
p(8934.5)3/(3.99 ×105)8400 s 140 min
13. (a) r0= 4000 + 180 = 4180 mi, v=p1.24 ×1012/4180 17,224 mph
(b) r0= 4180 mi, v0=17,224+600 = 17,824 mi/h; e=r0v2
0
GM 1=(4180)(17,824)2
1.24 ×1012 10.07094.
rmax = 4180(1 + 0.07094)/(1 0.07094) 4818 mi; the apogee altitude
is 4818 4000 = 818 mi.
14. By equation (20), r=k
1+ecos θ, where k>0. By assumption, ris minimal when θ=0,
hence e0.
CHAPTER 14 SUPPLEMENTARY EXERCISES
2. (a) the line through the tips of r0and r1
(b) the line segment connecting the tips of r0and r1
(c) the line through the tip of r0which is parallel to r0(t0)
4. (a) speed (b) distance traveled (c) distance of the particle from the origin
7. (a) r(t)=Zt
0
cos πu2
2du i+Zt
0
sin πu2
2du j;
dr
dt
2
=x0(t)2+y0(t)2= cos2πt2
2+ sin2πt2
2= 1 and r(0) = 0
521 Chapter 14
(b) r0(s) = cos πs2
2i+ sin πs2
2j,r00 (s)=πs sin πs2
2i+πs cos πs2
2j,
κ=kr00 (s)k=π|s|
(c) κ(s)+, so the spiral winds ever tighter.
8. (a) The tangent vector to the curve is always tangent to the sphere.
(b) kvk= const, so v·a= 0; the acceleration vector is always perpendicular to the velocity
vector
(c) kr(t)k2=11
4cos2t(cos2t+ sin2t)+1
4cos2t=1
9. (a) kr(t)k= 1, so by Theorem 14.2.7, r0(t) is always perpendicular to the vector r(t). Then
v(t)=(sin ωti+ cos ωtj),v =kv(t)k=
(b) a =2(cos ωti+ sin ωtj),a =kak=2, and a=ω2ris directed toward the origin.
(c) The smallest value of tfor which r(t)=r(0) satisfies ωt =2π,soT=t=2π
ω.
10. (a) F=kFk=mkak=mRω2=mR v2
R2=mv2
R
(b) R= 6440 + 3200 = 9600 km, 6.5=v== 9600ω, ω =6.5
9600 =13
19,200,
a=ar
krk=2r
R=2(cos ωti+sin ωtj)=13
2cos 13t
19,200i+ sin 13t
19,200j
(c) F=ma =702
13 kg ·km/s210.77 N
11. (a) Let r=xi+yj+zk, then x2+z2=t2(sin2πt + cos2πt)=t
2=y
2
xy
z
(b) Let x=t, then y=t2,z =±p4t
2/3t
4/6
x
y
z
Chapter 14 Supplementary Exercises 522
12.
x
y
t = 0
t = 1 t = 1
3
t = 2
3
13. (a) ker(t)k2= cos2θ+sin2θ=1,soe
r
(t) is a unit vector; r(t)=r(t)e(t), so they have the same
direction if r(t)>0, opposite if r(t)<0. eθ(t) is perpendicular to er(t) since er(t)·eθ(t)=0,
and it will result from a counterclockwise rotation of er(t) provided e(t)×eθ(t)=k, which
is true.
(b) d
dter(t)=
dt (sin θi+ cos θj)=
dt eθ(t) and d
dteθ(t)=
dt (cos θi+ sin θj)=
dt er(t), so
v(t)= d
dtr(t)= d
dt(r(t)er(t)) = r0(t)er(t)+r(t)
dt eθ(t)
(c) From Part (b), a=d
dtv(t)
=r00 (t)er(t)+r
0
(t)
dt eθ(t)+r
0
(t)
dt eθ(t)+r(t)d
2
θ
dt2eθ(t)r(t)
dt 2
er(t)
="d2r
dt2r
dt 2#er(t)+rd
2
θ
dt2+2dr
dt
dt eθ(t)
14. The height y(t) of the rocket satisfies tan θ=y/b, y =btan θ, v =dy
dt =dy
dt =bsec2θ
dt .
15. r =r0+t
−→
PQ=(t1)i+(42t)j+(3+2t)k;
dr
dt
=3,r(s)=s3
3i+12 2s
3j+9+2s
3k
16. By equation (26) of Section 14.6, r(t) = (60 cos α)ti+ ((60 sin α)t16t2+4)j, and the maximum
height of the baseball occurs when y0(t)=0,60 sin α=32t, t =15
8sin α, so the ball clears the
ceiling if ymax = (60 sin α)15
8sin α16152
82sin2α+425,152sin2α
421,sin2α28
75. The ball
hits the wall when x=60,t = sec α, and y(sec α)=60sinαsec α16 sec2α+ 4. Maximize the
height h(α)=y(sec α)=60tanα16 sec2α+ 4, subject to the constraint sin2α28
75. Then
h0(α)=60sec
2
α32 sec2αtan α=0,tan α=60
32 =15
8, so sin α=15
82+15
2=15
17, but for
this value of αthe constraint is not satisfied (the ball hits the ceiling). Hence the maximum
value of hoccurs at one of the endpoints of the α-interval on which the ball clears the ceiling, i.e.
h0,sin1p28/75i. Since h0(0) = 60, it follows that his increasing throughout the interval, since
h0>0 inside the interval. Thus hmax occurs when sin2α=28
75,hmax = 60 tan α16 sec2α+4=
6028
47 1675
47 +4= 120329 1012
47 24.78 ft. Note: the possibility that the baseball keeps
climbing until it hits the wall can be rejected as follows: if so, then y0(t) = 0 after the ball hits
the wall, i.e. t=15
8sin αoccurs after t= sec α, hence 15
8sin αsec α, 15 sin αcos α8,
15 sin 2α16, impossible.
523 Chapter 14
17. r0(1)=3i+10j+10k,soifr
0
(t)=3t
2
i+10j+10tkis perpendicular to r0(1), then
9t2+ 100 + 100t=0,t =10,10/9,
so r=1000i100j+ 500k,(1000/729)i(100/9)j+ (500/81)k.
18. Let r(t)=x(t)i+y(t)j, then dx
dt =x(t),dy
dt =y(t),x(0) = x0,y(0) = y0,so
x(t)=x
0
e
t
,y(t)=y
0
e
t
,r(t)=e
t
r
0
19. (a) dv
dt =2t
2
i+j+ cos 2tk,v0=i+2jk,sox
0
(t)=2
3
t
3+1,y
0
(t)=t+2,z0
(t)=1
2sin 2t1,
x(t)=1
6
t
4+t, y(t)=1
2
t
2+2t, z(t)=1
4cos 2tt+1
4, since r(0) = 0. Hence
r(t)=1
6
t
4+t
i+1
2
t
2+2t
j1
4cos 2t+t1
4k
(b) ds
dt it=1 =kr0(t)kit=1p(5/3)2+9+(1(sin 2)/2)23.475
20. kvk2=v(t)·v(t),2kvkd
dtkvk=2v·a,d
dt (kvk)= 1
kvk(v·a)
524
CHAPTER 15
Partial Derivatives
EXERCISE SET 15.1
1. (a) f(2,1) = (2)2(1)+1=5 (b) f(1,2) = (1)2(2)+1=3
(c) f(0,0) = (0)2(0)+1=1 (d) f(1,3) = (1)2(3)+1=2
(e) f(3a, a)=(3a)
2
(a)+1=9a
3+1 (f) f(ab,ab)=(ab)2(ab)+1=a
3
b
2a
2
b
3+1
2. (a) 2t(b) 2x(c) 2y2+2y
3. (a) f(x+y, x y)=(x+y)(xy)+3=x
2y
2+3
(b) fxy, 3x2y3=(xy)3x2y3+3=3x
3
y
4+3
4. (a) (x/y) sin(x/y)(b) xy sin(xy)(c) (xy) sin(xy)
5. F(g(x),h(y)) = Fx3,3y+1
=x
3
e
x
3
(3y+1)
6. g(u(x, y),v(x, y)) = gx2y3xy
=πxy sin hx2y32(πxy)i=πxy sin πx5y7
7. (a) t2+3t
10 (b) 0(c) 3076
8. te3ln
(
t
2+1)=t
(t2+1)
3
9. (a) 19 (b) 9(c) 3
(d) a6+3 (e) t8+3 (f) (a+b)(ab)2b3+3
10. (a) x2(x+y)(xy)+(x+y)=x
2x
2y
2
+(x+y)=x
4x
2
y
2+x+y
(b) (xz)(xy)(y/x)+xy =xy2z+xy
11. Fx2,y+1,z2=(y+1)e
x
2
(y+1)z2
12. gx2z3, πxyz, xy/z=(xy/z) sin πx3yz4
13. (a) f(5,2,3π)=80
π(b) f(1,1,...,1) =
n
X
k=1
k=n(n+1)/2
14. (a) f(2,2,0/4)=1
(b) f(1,2,...,n)=n(n+ 1)(2n+1)/6, see (Theorem 2(b), Section 7.4)
15.
1
x
y16.
2
x
y
525 Chapter 15
17.
x
y18.
x
y
19. (a) all points above or on the line y=2
(b) all points on or within the sphere x2+y2+z2=25
(c) all points in 3-space
20. (a) all points on or between the vertical lines x=±2.
(b) all points above the line y=2x
(c) all points not on the plane x+y+z=0
21.
3
x
y
z22.
(0, 3, 0)
z
y
x
23. z
y
x
24. z
y
x
25. z
y
x
26.
(2, 0, 0)
(0, 2, 0)
(0, 0, 4)
z
y
x
Exercise Set 15.1 526
27. z
y
x
(0, 0, 1)
28.
(0, 1, 0)
(1, 0, 0)
z
y
x
29. z
y
x
(0, 0, 1)
(0, –1, 0)
30. z
y
x
31.
1234k = 0
x
y32.
k = -1
k = -2 k = 2
k = 1
k = 0x
y
33.
x
y
k = 2
k = 1
k = 0
k = –1
k = –2
34.
1234
k = 0
x
y
527 Chapter 15
35.
x
y
k = 2
k = 2
k = 1
k = 1
k = 0
k = 0
k = –1
k = –1
k = –2
k = –2
-2
-2
2
2
36.
2
co
k = -2
k = 2
k = -1
k = 0
k = 1
x
y
37.
(0, 4, 0)
(0, 0, 2)
(2, 0, 0)
z
y
x
38. z
y
x
39.
(0, 0, 3)
z
xy
40.
(0, 0, 1)
( , 0, 0)
1
4
(0, , 0)
1
2
z
x
y
41. concentric spheres, common center at (2,0,0)
42. parallel planes, common normal 3ij+2k
43. concentric cylinders, common axis the y-axis
44. circular paraboloids, common axis the z-axis, all the same shape but with different vertices along
z-axis.
45. (a) f(1,1)=0;x
22x
3+3xy =0 (b) f(0,0)=0;x
22x
3+3xy =0
(c) f(2,1) = 18; x22x3+3xy =18
Exercise Set 15.1 528
46. (a) f(ln 2, 1) = 2; yex=2 (b) f(0,3)=3;yex=3
(c) f(1,2) = 2e;yex=2e
47. (a) f(1,2,0)=5;x
2+y
2z=5 (b) f(1,0,3) = 2; x2+y2z=2
(c) f(0,0,0)=0;x
2+y
2z=0
48. (a) f(1,0,2)=3;xyz +3=3,xyz =0 (b) f(2,4,1) = 5; xyz +3=5, xyz =8
(c) f(0,0,0)=3;xyz =0
49. (a)
4
4
x
y
T = 1
T = 2
T = 3
(b) At (1,4) the temperature is
T(1,4) = 4 so the temperature
will remain constant along
the path xy =4.
50. V=8/
p16+x2+y2p16+x2+y2
=8/V x2+y2=64/V 216
the equipotential curves are circles.
10 20
20 V = 2.0
V = 1.0
V = 0.5x
y
51. (a) f(x, y)=1x
2y
2
, because f=cis a circle of radius 1c(provided c1), and the
radii in (a) decrease as cincreases.
(b) f(x, y)=p
x
2+y
2because f=cis a circle of radius c, and the radii increase uniformly.
(a) is the contour plot of f(x, y)=1x
2y
2
, because f=cis a circle of radius 1c
(provided c1), and the radii in (a) decrease as cincreases.
(c) f(x, y)=x
2+y
2because f=cis a circle of radius cand the radii in the plot grow like
the square root function.
52. (a) III (b) IV (c) I(d) II
53. (a) A(b) B(c) increase
(d) decrease (e) increase (f) decrease
54. (a) Calgary, since the contour lines are closer together near Calgary than they are near Chicago.
(b) The change in atmospheric pressure is about ∆p1012 999 = 13, so the average rate of
change is ∆p/1600 0.0081.
529 Chapter 15
55. (a)
5-5
-3
2(b)
4
-4
-3
1
56. (a) 10
-10
-10 10
(b) 10
-10
-10 10
57. (a) z
xy
(b)
-2 -1 0 1 2
-2
-1
0
1
2
58. (a)
0
1
2
3
4 x
0y
-5
0
5
z
6cio
(b)
0 1 2 3 4
0
3
6
9
c
f
i
l
o
59. (a) The graph of gis the graph of fshifted one unit in the positive x-direction.
(b) The graph of gis the graph of fshifted one unit up the z-axis.
(c) The graph of gis the graph of fshifted one unit down the y-axis and then inverted with
respect to the plane z=0.
Exercise Set 15.2 530
60. (a) z
y
x
(b) If ais positive and increasing then the graph of gis more pointed, and in the limit as a+
the graph approaches a ’spike’ on the z-axis of height 1. As adecreases to zero the graph of
ggets flatter until it finally approaches the plane z=1.
EXERCISE SET 15.2
1.
-1
x
y2.
y = x
x
y3.
5
x
y
4.
1
y = 2x + 1
x
y5.
x
y6.
x
y
7.
x
y
xy = 1
xy = 1
xy = 1
xy = 1
8.
x
y
9. all of 3-space
531 Chapter 15
10. all points inside the sphere with radius 2 and center at the origin
11. all points not on the cylinder x2+z2=1 12. all of 3-space
13. 35 14. π2/215. 8
16. e717. 018. 0
19. (a) Along x= 0 lim
(x,y)(0,0)
3
x2+2y
2= lim
y0
3
2y2does not exist.
(b) Along x=0,lim
(x,y)(0,0)
x+y
x+y2= lim
y0
1
ydoes not exist.
20. (a) Along y=0:lim
x0
x
x
2= lim
x0
1
xdoes not exist because
1
x+as x0 so the original
limit does not exist.
(b) Along y=0:lim
x0
1
xdoes not exist, so the original limit does not exist.
21. Let z=x2+y2, then lim
(x,y)(0,0)
sin x2+y2
x2+y2= lim
z0+
sin z
z=1
22. Let z=x2+y2, then lim
(x,y)(0,0)
1cos x2+y2
x2+y2= lim
z0+
1cos z
z= lim
z0+
sin z
1=0
23. Let z=x2+y2, then lim
(x,y)(0,0) e1/(x2+y2)= lim
z0+e1/z =0
24. With z=1
x2+y2, lim
z+
1
ze1/z; let w=1
z,lim
w+
w
ew=0
25. lim
(x,y)(0,0) x2+y2x
2y
2
x
2+y
2= lim
(x,y)(0,0) x2y2=0
26. lim
(x,y)(0,0) x2+4y
2
x
24y
2
x
2+4y
2= lim
(x,y)(0,0) x24y2=0
27. along y=0:lim
x0
0
3x
2= lim
x00 = 0; along y=x: lim
x0
x2
5x2= lim
x01/5=1/5
so the limit does not exist.
28. Let z=x2+y2, then lim
(x,y)(0,0)
1x2y2
x2+y2= lim
z0+
1z2
z2=+so the limit does not exist.
29. 8/330. ln 5
31. Let t=px2+y2+z2, then lim
(x,y,z)(0,0,0)
sin x2+y2+z2
px2+y2+z2= lim
t0+
sin t2
t=0
Exercise Set 15.2 532
32. With t=px2+y2+z2, lim
t0+
sin t
t2= lim
t0+
cos t
2t=+so the limit does not exist.
33. yln(x2+y2)=rsin θln r2=2r(ln r) sin θ, so lim
(x,y)(0,0) yln(x2+y2) = lim
r0+2r(ln r) sin θ=0
34. x2y2
px2+y2=(r2cos2θ)(r2sin2θ)
r=r3cos2θsin2θ, so lim
(x,y)(0,0)
x2y2
px2+y2=0
35. ex2+y2+z2
px2+y2+z2=eρ
ρ, so lim
(x,y,z)(0,0,0)
ex2+y2+z2
px2+y2+z2= lim
ρ0+
eρ
ρdoes not exist.
36. lim
(x,y,z)(0,0,0) tan11
x2+y2+z2= lim
ρ0+tan11
ρ2=π
2
37. (a) No, since there seem to be points near (0,0) with z= 0 and other points near (0,0) with
z1/2.
(b) lim
x0
mx3
x4+m2x2= lim
x0
mx
x2+m2=0 (c) lim
x0
x4
2x4= lim
x01/2=1/2
(d) A limit must be unique if it exists, so f(x, y) cannot have a limit as (x, y)(0,0).
38. (a) Along y=mx : lim
x0
mx4
2x6+m2x2= lim
x0
mx2
2x4+m2=0;
along y=kx2: lim
x0
kx5
2x6+k2x4= lim
x0
kx
2x2+k2=0.
(b) lim
x0
x6
2x6+x6= lim
x0
1
3=1
36=0
39. (a) lim
t0
abct3
a2t2+b4t4+c4t4= lim
t0
abct
a2+b4t2+c4t2=0
(b) lim
t0
t4
t4+t4+t4= lim
t01/3=1/3
40. π/2 because x2+1
x
2+(y1)2+as (x, y)(0,1)
41. π/2 because x21
x2+(y1)2→−as (x, y)(0,1)
42. with z=x2+y2, lim
z0+
sin z
z=1=f(0,0)
43. No, because lim
(x,y)(0,0)
x2
x2+y2does not exist.
Along x=0:lim
y00/y2= lim
y00 = 0; along y=0:lim
x0x
2
/x2= lim
x01=1.
44. Using polar coordinates with r>0, xy =r2sin θcos θand x2+y2=r2so
|xy ln x2+y2|=|r2sin θcos θln r2|≤|2r
2ln r|, but lim
r0+2r2ln r= 0 thus
lim
(x,y)(0,0) xy ln x2+y2=0;f(x, y) will be continuous at (0,0) if we define f(0,0)=0.
533 Chapter 15
EXERCISE SET 15.3
1. (a) 9x2y2(b) 6x3y(c) 9y2(d) 9x2
(e) 6y(f) 6x3(g) 36 (h) 12
2. (a) 2e2xsin y(b) e2xcos y(c) 2 sin y(d) 0
(e) cos y(f) e2x(g) 0(h) 4
3. (a) 1
4x3/2cos y(b) xcos y(c) sin y
2x(d) sin y
2x
4. (a) 8+84x
2
y
5(b) 140x4y3(c) 140x3y4(d) 140x3y4
5. (a) ∂z
∂x =3
23x+2y; slope = 3
8(b) ∂z
∂y =1
3x+2y; slope = 1
4
6. (a) ∂z
∂x =ey; slope = 1 (b) ∂z
∂y =xey+ 5; slope = 2
7. (a) ∂z
∂x =4 cos(y24x); rate of change = 4 cos 7
(b) ∂z
∂y =2ycos(y24x); rate of change = 2 cos 7
8. (a) ∂z
∂x =1
(x+y)2; rate of change = 1
4(b) ∂z
∂y =1
(x+y)2; rate of change = 1
4
9. z/∂x = slope of line parallel to xz-plane = 4; z/∂y = slope of line parallel to yz-plane = 1/2
10. The slope at Pin the positive x-direction is negative, the slope in the positive y-direction is
negative, thus ∂z/∂x < 0,∂z/y < 0; the curve through Pwhich is parallel to the x-axis is
concave down, so 2z/∂x2<0; the curve parallel to the y-axis is concave down, so 2z/y2<0.
11. z/∂x =8xy3ex2y3,z/∂y =12x
2
y
2
e
x
2
y
3
12. z/∂x =5x4y4sin(x5y4), z/∂y =4x5y3sin x5y4
13. z/∂x =x3/(y3/5+x)+3x
2ln(1 + xy3/5),∂z/y=(3/5)x4/(y8/5+xy)
14. z/∂x =yexy sin(4y2),∂z/y=8yexy cos(4y2)+xexy sin(4y2)
15. ∂z
∂x =y(x2y2)
(x2+y2)2,∂z
∂y =x(x2y2)
(x2+y2)216. ∂z
∂x =xy3(3x+4y)
2(x+y)3/2,∂z
∂y =x2y2(6x+5y)
2(x+y)3/2
17. fx(x, y)=(3/2)x2y5x273x
5y7x
3y
1/2
f
y(x, y)=(1/2)x33x273x
5y7x
3y
1/2
18. fx(x, y)=2y/(xy)2,fy(x, y)=2x/(xy)2
19. fx(x, y)= y
1/2
y
2+x
2,f
y
(x, y)=xy3/2
y2+x23
2y5/2tan1(x/y)
Exercise Set 15.3 534
20. fx(x, y)=3x
2
e
y+(1/2)x1/2y3sec xtan x,fy(x, y)=x
3
e
y+3y
2sec x
21. fx(x, y)=(4/3)y2sec2xy2tan x7/3,fy(x, y)=(8/3)ytan xy2tan x7/3
22. fx(x, y)=2y
2cosh xsinh xy2cosh xy2+1
2x1/2sinh xsinh2xy2
fy(x, y)=4xy cosh xsinh xy2cosh xy2
23. fx(x, y)=2x, fx(3,1) = 6; fy(x, y)=21y2,f
y
(3,1) = 21
24. f/∂x =x2y2exy +2xyexy,∂f/x
(1,1) =3e;f/∂y =x3yexy +x2exy,∂f/y
(1,1) =2e
25. z/∂x =x(x2+4y2)1/2,∂z/x
(1,2) =1/
17 ; z/∂y =4y(x
2+4y2)1/2,∂z/y
(1,2) =8/
17
26. w/∂x =x2ysin xy +2xcos xy, ∂w
∂x (1/2)=π/4; w/∂y =x3sin x, ∂w
∂y (1/2)=1/8
27. fx=8x8y
4
,f
y=32xy3+35y
4
,f
xy =fyx =32y3
28. fx=x/px2+y2,f
y=y/px2+y2,f
xy =fyx =xy(x2+y2)3/2
29. fx=excos y, fy=exsin y, fxy =fyx =exsin y
30. fx=exy2,f
y=2yexy2,f
xy =fyx =2yexy2
31. fx=4/(4x5y),f
y=5/(4x5y),f
xy =fyx =20/(4x5y)2
32. fx=4xy2/(x2+y2)2,f
y=4x
2
y/(x2+y2)2,f
xy =fyx =8xy(x2y2)/(x2+y2)3
35. (a) 2x2z(z/∂x)=0,∂z/x=x/z =±3/(26) = ±6/4,∂z/x=±
6/4
(b) z=±px2+y21,∂z/x=±x/px2+y21=±
6/4
36. (a) 2y2z(z/∂y)=0,∂z/y=y/z =±4/(26) = ±6/3
(b) z=±px2+y21,∂z/y=±y/px2+y21=±
6/3
37. 3
2x2+y2+z21/22x+2z∂z
∂x=0,z/∂x =x/z; similarly, z/∂y =y/z
38. 4x3z2(z/∂x)
2x2+yz3=1, ∂z
∂x =4x2x2y+z3
3z2;13z2(z/∂y)
2x2+yz3=1, ∂z
∂y =12x2y+z3
3z2
39. 2x+zxy ∂z
∂x +yzcos xyz +∂z
∂x sin xyz =0, ∂z
∂x =2x+yz2cos xyz
xyz cos xyz + sin xyz ;
zxy ∂z
∂y +xzcos xyz +∂z
∂y sin xyz =0, ∂z
∂y =xz2cos xyz
xyz cos xyz + sin xyz
40. exy(cosh z)∂z
∂x +yexy sinh zz22xz ∂z
∂x =0, ∂z
∂x =z2yexy sinh z
exy cosh z2xz ;
exy(cosh z)∂z
∂y +xexy sinh z2xz ∂z
∂y =0, ∂z
∂y =xexy sinh z
exy cosh z2xz
535 Chapter 15
41. III is a plane, and its partial derivatives are constants, so III cannot be f(x, y). If I is the graph
of z=f(x, y) then (by inspection) fyis constant as yvaries, but neither II nor III is constant as
yvaries. Hence z=f(x, y) has II as its graph, and as II seems to be an odd function of xand an
even function of y,fxhas I as its graph and fyhas III as its graph.
42. Moving to the right from (x0,y
0) decreases f(x, y), so fx<0; moving up increases f,sof
y>0.
43. (a) 30xy44(b) 60x2y3(c) 60x3y2
44. (a) 120(2xy)2(b) 240(2xy)2(c) 480(2xy)
45. (a) fxyy(0,1) = 30 (b) fxxx(0,1) = 125 (c) fyyxx(0,1) = 150
46. (a) 3w
∂y2∂x =eysin x,3w
∂y2∂x
(π/4,0)
=1/2
(b) 3w
∂x2∂y =eycos x,3w
∂x2∂y
(π/4,0)
=1/2
47. (a) 3f
∂x3(b) 3f
∂y2∂x (c) 4f
∂x2∂y2(d) 4f
∂y3∂x
48. (a) fxyy (b) fxxxx (c) fxxyy (d) fyyyxx
49. (a) 2xy4z3+y(b) 4x2y3z3+x(c) 3x2y4z2+2z
(d) 2y4z3+y(e) 32z3+1 (f) 438
50. (a) 2xy cos z(b) x2cos z(c) x2ysin z
(d) 4ycos z(e) 4 cos z(f) 0
51. fx=2z/x,fy=z/y,fz= ln(x2ycos z)ztan z
52. fx=y5/2zsec(xz/y) tan(xz/y), fy=xy7/2zsec(xz/y) tan(xz/y)(3/2)y5/2sec(xz/y),
fz=xy5/2sec(xz/y) tan(xz/y)
53. fx=y2z3/1+x
2
y
4
z
6
,f
y=2xyz3/1+x
2
y
4
z
6
,f
z=3xy2z2/1+x
2
y
4
z
6
54. fx=4xyz cosh zsinh x2yzcosh x2yz,fy=2x
2
zcosh zsinh x2yzcosh x2yz,
fz=2x
2
ycosh zsinh x2yzcosh x2yz+(1/2)z1/2sinh zsinh2x2yz
55. w/∂x =yzezcos xz,w/∂y =ezsin xz,w/∂z =yez(sin xz +xcos xz)
56. w/∂x =2x/ y2+z2,w/∂y =2yx2+z2/y2+z22,w/∂z =2zy
2x
2
/y
2+z
2
2
57. w/∂x =x/px2+y2+z2,w/∂y =y/px2+y2+z2,w/∂z =z/px2+y2+z2
58. w/∂x =2y
3
e
2x+3z,w/∂y =3y
2
e
2x+3z,w/∂z =3y
3
e
2x+3z
59. (a) e(b) 2e(c) e
Exercise Set 15.3 536
60. (a) 2/7(b) 4/7(c) 1/7
62.
-2
-1
0
1
2
x
-2
-1
0
1
2
-1
0
1
z
y
-2
-1
0
1
2
x
-2
-1
0
1
2
0
6
z
y
63. (3/2) x2+y2+z2+w21/22x+2w∂w
∂x =0,w/∂x =x/w; similarly, w/∂y =y/w
and w/∂z =z/w
64. w/∂x =4x/3, w/∂y =1/3, w/∂z =(2x
2+yz
3+3z
2+3w)/3
65. ∂w
∂x =yzw cos xyz
2w+ sin xyz ,∂w
∂y =xzw cos xyz
2w+ sin xyz ,∂w
∂z =xyw cos xyz
2w+ sin xyz
66. ∂w
∂x =yexy sinh w
z2exy cosh w,∂w
∂y =xexy sinh w
z2exy cosh w,∂w
∂z =2zw
exy cosh wz2
67. (a) fxy =15x
2
y
4
z
7+2y(b) fyz =35x
3
y
4
z
6+3y
2
(c) fxz =21x
2
y
5
z
6(d) fzz =42x
3
y
5
z
5
(e) fzyy = 140x3y3z6+6y(f) fxxy =30xy4z7
(g) fzyx = 105x2y4z6(h) fxxyz = 210xy4z6
68. (a) 160(4x3y+2z)
3(b) 1440(4x3y+2z)
2(c) 5760(4x3y+2z)
69. fx=ex2,f
y=e
y
270. fx=yex2y2,f
y=xex2y2
71. w/∂xi=isin(x1+2x
2+...+nxn)72. w/∂xi=1
n n
X
k=1
xk!(1/n)1
73. (a) fx=2x+2y, fxx =2,f
y=2y+2x, fyy =2; fxx +fyy =22=0
(b) zx=exsin yeysin x, zxx =exsin yeycos x, zy=excos y+eycos x,
zyy =exsin y+eycos x;zxx +zyy =exsin yeycos xexsin y+eycos x=0
(c) zx=2x
x2+y22y
x2
1
1+(y/x)2=2x2y
x2+y2,z
xx =2x2y22xy
(x2+y2)2,
zy=2y
x2+y2+21
x
1
1+(y/x)2=2y+2x
x
2+y
2,z
yy =2y2x2+2xy
(x2+y2)2;
zxx +zyy =2x2y22xy
(x2+y2)22y2x2+2xy
(x2+y2)2=0
537 Chapter 15
74. (a) zt=etsin(x/c),z
x=(1/c)etcos(x/c),z
xx =(1/c2)etsin(x/c);
ztc2zxx =etsin(x/c)c2((1/c2)etsin(x/c))=0
(b) zt=etcos(x/c),z
x=(1/c)etsin(x/c),z
xx =(1/c2)etcos(x/c);
ztc2zxx =etcos(x/c)c2((1/c2)etcos(x/c))=0
75. ux=ωsin tcos ωx, uxx =ω2sin tsin ωx, ut=cos tsin ωx, utt =c2ω2sin tsin ωx;
uxx 1
c2utt =ω2sin tsin ωx 1
c2(c2)ω2sin tsin ωx =0
76. (a) u/∂x =v/∂y =2x,u/∂y =v/∂x =2y
(b) u/∂x =v/∂y =excos y,u/∂y =v/∂x =exsin y
(c) u/∂x =v/∂y =2x/(x2+y2), u/∂y =v/∂x =2y/(x2+y2)
77. u/∂x =v/∂y and u/∂y =v/∂x so 2u/∂x2=2v/∂x∂y, and 2u/∂y2=2v/∂y∂x,
2u/∂x2+2u/∂y2=2v/∂x∂y 2v/∂y∂x,if
2
v/∂x∂y =2v/∂y∂x then
2u/∂x2+2u/∂y2=0;thususatisfies Laplace’s equation. The proof that vsatisfies Laplace’s
equation is similar. Adding Laplace’s equations for uand vgives Laplaces’ equation for u+v.
78. z/∂y =6y,z/∂y (2,1) =6
79. z/∂x =x29 x2y21/2,z/∂x](4,3) =2
80. (a) z/∂y =8y,z/∂y](1,1) =8 (b) z/∂x =2x,z/∂x](1,1) =2
81. (a) V/∂r =2πrh (b) V/∂h =πr2
(c) V/∂r]r=6,h=4 =48π(d) V/∂h]r=8,h=10 =64π
82. (a) V/∂s =πsd2
64s2d2(b) V/∂d =πd(8s23d2)
244s2d2
(c) V/∂s]s=10,d=16 = 320π/9(d) V/∂d]s=10,d=16 =16π/9
83. (a) P=10T/V,P/∂T =10/V ,P/∂T ]T=80,V=50 =1/5 lb/(in2K)
(b) V=10T/P, ∂V/∂P =10T/P2,if V= 50 and T= 80 then
P= 10(80)/(50) = 16,∂V/P]
T=80,P=16 =25/8(in5/lb3)
84. (a) z/∂y =x2,z/∂y](1,3) =1,j+kis parallel to the tangent line so x=1,y=3+t,
z=3+t
(b) z/∂x =2xy,z/∂x](1,3) =6,i+6kis parallel to the tangent line so x=1+t,y=3,
z=3+6t
85. 1+∂z
∂xcos(x+z) + cos(xy)=0, ∂z
∂x =1cos(xy)
cos(x+z);∂z
∂y cos(x+z)cos(xy)=0,
∂z
∂y =cos(xy)
cos(x+z);2z
∂x∂y =cos(x+z) sin(xy) + cos(xy) sin(x+z)(1 + z/∂x)
cos2(x+z),
substitute for z/∂x and simplify to get 2z
∂x∂y =cos2(x+z) sin(xy) + cos2(xy) sin(x+z)
cos3(x+z).
Exercise Set 15.4 538
86. V/∂r =2
3πrh =2
r(1
3πr2h)=2V/r
87. (a) T/∂x =3x
2+1, T /∂x](1,2) =4 (b) T /∂y =4y,T/∂y](1,2) =8
88. 2R/∂R2
1=2R2
2/(R1+R2)3,∂
2
R/∂R2
2=2R2
1/(R1+R2)3,
2R/∂R2
12R/∂R2
2=4R
2
1
R
2
2
/(R
1+R
2
)
6=h4/(R
1+R
2
)
4
i[R
1
R
2
/(R
1+R
2
)]2
=4R
2
/(R
1+R
2
)
4
89. f(x+∆x, y)f(x, y)
x=2(x+∆x)
23(x+∆x)y+y
2(2x23xy +y2)
x=4x+2x3y,
fx= lim
x0
f(x+∆x, y)f(x, y)
x= lim
x0(4x+2x3y)=4x3y;f
x
(2,1)=11
f(x, y +∆y)f(x, y)
y=2x23x(y+∆y)+(y+∆y)
2(2x23xy +y2)
y=3x+2y+∆y,
fy= lim
y0
f(x, y +∆y)f(x, y)
y=3x+2y;f
y(2,1) = 8
90. fx(x, y)=2
3
(x
2+y
2
)
1/3
(2x)= 4x
3(x2+y2)1/3,(x, y)6=(0,0);
fx(0,0) = d
dx[f(x, 0)]x=0
=d
dx[x4/3]x=0
=4
3x1/3x=0
=0.
91. (a) fy(0,0) = d
dy [f(0,y)]y=0
=d
dy [y]y=0
=1
(b) If (x, y)6=(0,0), then fy(x, y)=1
3
(x
3+y
3
)
2/3
(3y2)= y
2
(x
3+y
3
)
2/3;
f
y
(x, y) does not exist where y=x,x6=0.
EXERCISE SET 15.4
1. 42t13 2. 2(3 + t1/3)
3(2t+t2/3)
3. 3t2sin(1/t)4. 12t48t4ln t
2t1+lnt2t
4ln t
5. 10
3t7/3e1t10/36. (1+t)etcosh (tet/2) sinh (tet/2)
7. z/∂u =24u
2
v
216uv32v+3,∂z/v=16u
3
v24u2v22u3
8. z/∂u =2u/v2u2vsec2(u/v)2uv2tan(u/v)
z/∂v =2u2/v3+u3sec2(u/v)2u2vtan(u/v)
9. z/∂u =2 sin u
3 sin v,∂z/v=
2 cos ucos v
3 sin2v
10. z/∂u =3+3v/u 4u, z/∂v =2+3lnu+2lnv
539 Chapter 15
11. z/∂u =eu,z/∂v =0
12. z/∂u =sin(uv) sin u2+v2+2ucos(uv) cos u2+v2
z/∂v = sin(uv) sin u2+v2+2vcos(uv) cos u2+v2
13. T/∂r =3r
2sin θcos2θ4r3sin3θcos θ
T/∂θ =2r3sin2θcos θ+r4sin4θ+r3cos3θ3r4sin2θcos2θ
14. dR/dφ =5e
5φ
15. t/∂x =x2+y2/4x2y3,t/∂y =y23x2/4xy4
16. w/∂u =2v2u2v2(u2v)2
[u2v2+(u2v)
2
]
2,w/∂v =u2(u2v)2u2v2
[u2v2+(u2v)
2
]
2
17. π18. 351/2, 168
19. 3e3,243e320. 1161
21. F(x, y)=x
2
y
3+ cos y,dy
dx =2xy3
3x2y2sin y
22. F(x, y)=x
33xy2+y35, dy
dx =3x23y2
6xy +3y
2=x
2y
2
2xy y2
23. F(x, y)=e
xy +yey1, dy
dx =yexy
xexy +yey+ey
24. F(x, y)=x(xy)1/2+3y4, dy
dx =1(1/2)(xy)1/2y
(1/2)(xy)1/2x+3 =2
xy y
x6xy
25. D=x2+y21/2where xand yare the distances of cars A and B, respectively, from the
intersection and Dis the distance between them.
dD/dt =hx/ x2+y21/2i(dx/dt)+hy/ x2+y21/2i(dy/dt), dx/dt =25 and dy/dt =30
when x=0.3 and y=0.4sodD/dt =(0.3/0.5)(25)+(0.4/0.5)(30) = 39 mph.
26. T=(1/10)PV,dT/dt =(V/10)(dP/dt)+(P/10)(dV /dt), dV/dt = 4 and dP/dt =1 when
V= 200 and P=5sodT/dt = (20)(1)+(1/2)(4) = 18 K/s.
27. A=1
2ab sin θbut θ=π/6 when a= 4 and b=3soA=1
2
(4)(3) sin(π/6)=3.
Solve 1
2ab sin θ= 3 for θto get θ= sin16
ab,0θπ/2.
dt =∂θ
∂a
da
dt +∂θ
∂b
db
dt =1
r136
a2b26
a2bda
dt +1
r136
a2b26
ab2db
dt
=6
a2b236 1
a
da
dt +1
b
db
dt ,da
dt = 1 and db
dt =1
when a= 4 and b=3so
dt =6
144 36 1
4+1
3=7
123=7
363 radians/s
Exercise Set 15.4 540
28. From the law of cosines, c=a2+b22ab cos θwhere cis the length of the third side.
θ=π/3soc=
a
2+b
2ab,
dc
dt =∂c
∂a
da
dt +∂c
∂b
db
dt =1
2(a2+b2ab)1/2(2ab)da
dt +1
2a2+b2ab1/2(2ba)db
dt
=1
2a2+b2ab (2ab)da
dt +(2ba)db
dt ,da
dt = 2 and db
dt = 1 when a= 5 and b=10
so dc
dt =1
275[(0)(2) + (15)(1)] = 3/2 cm/s. The third side is increasing.
29. V=(π/4)D2hwhere Dis the diameter and his the height, both measured in inches,
dV/dt =(π/2)Dh(dD/dt)+(π/4)D2(dh/dt), dD/dt = 3 and dh/dt = 24 when D= 30 and
h= 240, so dV /dt =(π/2)(30)(240)(3) + (π/4)(30)2(24) = 16,200πin3/year.
30. dT
dt =∂T
∂x
dx
dt +∂T
∂y
dy
dt =y2
x
dx
dt +2yln xdy
dt ,dx/dt = 1 and dy/dt =4 at (3,2) so
dT/dt =(4/3)(1) + (4 ln 3)(4)=4/316 ln 3C/s.
31. (a) xy-plane, fx=12x
2
y+6xy, fy=4x
3+3x
2
,f
xy =fyx =12x
2+6x
(b) y6=0,f
x=3x
2
/y, fy=x3/y2,f
xy =fyx =3x2/y2
32. (a) x2+y2>1, (the exterior of the circle of radius 1 about the origin);
fx=x/px2+y21,f
y=y/px2+y21,f
xy =fyx =xy x2+y213/2
(b) xy-plane, fx=2xcos(x2+y3),f
y=3y
2cos(x2+y3),f
xy =fyx =6xy2sin x2+y3
33. (a) 4: f
xxx,f
xxy =fxyx =fyxx,f
xyy =fyxy =fyyx,f
yyy
(b) 5: f
xxxx,f
xxxy =fxxyx =fxyxx =fyxxx,
fxxyy =fxyxy =fxyyx =fyxyx =fyyxx =fyxxy,
fxyyy =fyxyy =fyyxy =fyyyx,f
yyyy
34. (a) Since ewhas infinitely many continuous derivatives, as does xy2, by the Chain Rule the
function exy2has infinitely many continuous derivatives, hence by Theorem 15.4.6,
fxyx =fxxy ; since fxy =fyx if follows that fxyx =fyxx.
(b) fxyx =fxxy =fyxx =2xy5exy2+4y
3
e
xy2
35. (a) f(tx, ty)=3t
2
x
2+t
2
y
2=t
2
f(x, y); n=2
(b) f(tx, ty)=pt
2
x
2+t
2
y
2=tf(x, y); n=1
(c) f(tx, ty)=t
3
x
2
y2t
3
y
3=t
3
f(x, y); n=3
(d) f(tx, ty)=5/t
2
x
2+2t
2
y
2
2=t
4
f(x, y); n=4
36. (a) If f(u, v)=t
n
f(x, y), then ∂f
∂u
du
dt +∂f
∂v
dv
dt =ntn1f(x, y), x∂f
∂u +y∂f
∂v =ntn1f(x, y);
let t= 1 to get x∂f
∂x +y∂f
∂y =nf(x, y).
541 Chapter 15
(b) If f(x, y)=3x
2+y
2then xfx+yfy=6x
2+2y
2=2f(x, y);
If f(x, y)=px
2+y
2then xfx+yfy=x2/px2+y2+y2/px2+y2=px2+y2=f(x, y);
If f(x, y)=x
2
y2y
3then xfx+yfy=3x
2
y6y
3=3f(x, y);
If f(x, y)= 5
(x
2+2y
2
)
2then xfx+yfy=x5(2)2x
(x2+2y
2
)
3+y5(2)4y
(x2+2y
2
)
3=4f(x, y)
37. (a) ∂z
∂x =dz
du
∂u
∂x,∂z
∂y =dz
du
∂u
∂y
(b) 2z
∂x2=dz
du
2u
∂x2+
∂x dz
du∂u
∂x =dz
du
2u
∂x2+d2z
du2∂u
∂x2
;
2z
∂y∂x =dz
du
2u
∂y∂x +
∂y dz
du∂u
∂x =dz
du
2u
∂y∂x +d2z
du2
∂u
∂x
∂u
∂y
2z
∂y2=∂z
∂u
2u
∂y2+
∂y ∂z
∂u∂u
∂y =dz
du
2u
∂y2+d2z
du2∂u
∂z 2
38. (a) z=f(u), u=x2y2;z/∂x =(dz/du)(u/∂x)=2xdz/du
z/∂y =(dz/du)(u/∂y)=2ydz/du, yz/∂x +x∂z/∂y =2xydz/du 2xydz/du =0
(b) z=f(u), u=xy;∂z
∂x =dz
du
∂u
∂x =ydz
du,∂z
∂y =dz
du
∂u
∂y =xdz
du,
x∂z
∂x y∂z
∂y =xy dz
du xy dz
du =0.
(c) yzx+xzy=y(2xcos(x2y2)) x(2ycos(x2y2))=0
(d) xzxyzy=xyexy yxexy =0
39. (a) 1=rsin θ∂θ
∂x + cos θ∂r
∂x and 0 = rcos θ∂θ
∂x + sin θ∂r
∂x; solve for r/∂x and θ/∂x.
(b) 0=rsin θ∂θ
∂y + cos θ∂r
∂y and 1 = rcos θ∂θ
∂y + sin θ∂r
∂y; solve for r/∂y and θ/∂y.
(c) ∂z
∂x =∂z
∂r
∂r
∂x +∂z
∂θ
∂θ
∂x =∂z
∂r cos θ1
r
∂z
∂θ sin θ.
∂z
∂y =∂z
∂r
∂r
∂y +∂z
∂θ
∂θ
∂y =∂z
∂r sin θ+1
r
∂z
∂θ cos θ.
(d) Square and add the results of parts (a) and (b).
(e) From Part (c),
2z
∂x2=
∂r ∂z
∂r cos θ1
r
∂z
∂θ sin θ∂r
∂x +
∂θ ∂z
∂r cos θ1
r
∂z
∂θ sin θ∂θ
∂x
=2z
∂r2cos θ+1
r2
∂z
∂θ sin θ1
r
2z
∂r∂θ sin θcos θ
+2z
∂θ∂r cos θ∂z
∂r sin θ1
r
2z
∂θ2sin θ1
r
∂z
∂θ cos θsin θ
r
=2z
∂r2cos2θ+2
r2
∂z
∂θ sin θcos θ2
r
2z
∂θ∂r sin θcos θ+1
r2
2z
∂θ2sin2θ+1
r
∂z
∂r sin2θ.
Exercise Set 15.4 542
Similarly, from Part (c),
2z
∂y2=2z
∂r2sin2θ2
r2
∂z
∂θ sin θcos θ+2
r
2z
∂θ∂r sin θcos θ+1
r2
2z
∂θ2cos2θ+1
r
∂z
∂r cos2θ.
Add to get 2z
∂x2+2z
∂y2=2z
∂r2+1
r2
2z
∂θ2+1
r
∂z
∂r.
40. zx=2y
x2+y2,z
xx =4xy
(x2+y2)2,z
y=2x
x
2+y
2,z
yy =4xy
(x2+y2)2,z
xx +zyy =0;
z= tan12r2cos θsin θ
r2(cos2θsin2θ)= tan1tan 2θ=2θ, zr=0,z
θθ =0
41. (a) By the chain rule, ∂u
∂r =∂u
∂x cos θ+∂u
∂y sin θand ∂v
∂θ =∂v
∂xrsin θ+∂v
∂yrcos θ, use the
Cauchy-Riemann conditions ∂u
∂x =∂v
∂y and ∂u
∂y =∂v
∂x in the equation for ∂u
∂r to get
∂u
∂r =∂v
∂y cos θ∂v
∂x sin θand compare to ∂v
∂θ to see that ∂u
∂r =1
r
∂v
∂θ. The result ∂v
∂r =1
r
∂u
∂θ
can be obtained by considering ∂v
∂r and ∂u
∂θ .
(b) ux=2x
x2+y2,v
y=21
x
1
1+(y/x)2=2x
x2+y2=ux;
uy=2y
x2+y2,v
x=2y
x
2
1
1+(y/x)2=2y
x2+y2=uy;
u=lnr
2
,v =2θ, ur=2/r, vθ=2,sou
r=1
rv
θ
,u
θ=0,v
r=0,sov
r=1
ru
θ
42. z=f(u, v) where u=xyand v=yx,
∂z
∂x =∂z
∂u
∂u
∂x +∂z
∂v
∂v
∂x =∂z
∂u ∂z
∂v and ∂z
∂y =∂z
∂u
∂u
∂y +∂z
∂v
∂v
∂y =∂z
∂u +∂z
∂v so ∂z
∂x +∂z
∂y =0
43. (a) ux=f0(x+ct),u
xx =f00(x+ct),u
t=cf0(x+ct),u
tt =c2f00(x+ct); utt =c2uxx
(b) Substitute gfor fand cfor cin Part (a).
(c) Since the sum of derivatives equals the derivative of the sum, the result follows from Parts
(a) and (b).
(d) sin tsin x=1
2(cos(x+t) + cos(xt))
44. fx(x0,y
0)=y
0
,f
y
(x
0
,y
0)=x
0
,
f=(x
0+∆x)(y0+∆y)x
0
y
0=y
0
x+x
0
y+∆xy
=f
x
(x
0
,y
0)∆x+fy(x0,y
0)∆y+ (0)∆x+(x)∆ywhere 1= 0 and 2=∆x.
45. fx(x0,y
0)=2x
0
,f
y
(x
0
,y
0)=2y
0
,
f=(x
0+∆x)
2+(y
0+∆y)
2x
2
0+y
2
0=2x
0
x+(x)
2+2y
0
y+(y)
2
=f
x
(x
0
,y
0)∆x+fy(x0,y
0)∆y+(x)∆x+(y)∆ywhere 1=∆xand 2=∆y.
543 Chapter 15
46. fx(x0,y
0)=2x
0
y
0
,f
y
(x
0
,y
0)=x
2
0
,
f=(x
0+∆x)
2
(y
0+∆y)x
2
0
y
0=2x
0
y
0
x+x
2
0
y+y
0
(∆x)2+(x)
2
y+2x
0
xy
=f
x
(x
0
,y
0)∆x+fy(x0,y
0)∆y+(y
0
x+∆xy)∆x+(2x
0
x)∆y
where 1=y0x+∆xyand 2=2x
0
x.
47. fx(x0,y
0)=3,f
y
(x
0
,y
0)=2y
0
,
f=3(x
0+∆x)+(y
0+∆y)
23x
0y
2
0=3x+2y
0
y+(y)
2
=f
x
(x
0
,y
0)∆x+fy(x0,y
0)∆y+ (0)∆x+(y)∆ywhere 1= 0 and 2=∆y.
48. (a) lim
(x,y)(0,0) f(x, y)=0=f(0,0)
(b) lim
x0
f(0+∆x, 0) f(0,0)
x= lim
x0
f(∆x, 0)
x= lim
x0|x|
x, which does not exist because
lim
x0+|x|/x= 1 and lim
x0|x|/x=1.
49. fx(0,0) = lim
x0
f(∆x, 0) f(0,0)
x= lim
x03∆x
x=3,
fy(0,0) = lim
y0
f(0,y)f(0,0)
y= lim
y02∆y
y=2;
lim
(x,y)(0,0) f(x, y) does not exist because f(x, y)5if(x, y)(0,0) where x0ory0, but
f(x, y)0if(x, y)(0,0) where x<0 and y<0, so fis not continuous at (0,0).
50. fx(0,0) = lim
x0
f(∆x, 0) f(0,0)
x= lim
x0
00
x= lim
x00=0
f
y
(0,0) = lim
y0
f(0,y)f(0,0)
y= lim
y0
00
y= 0; along y= 0, lim
x0
0
x2= lim
x00=0,
along y=x, lim
x0
x2
2x2= lim
x01/2=1/2 so lim
(x,y)(0,0) f(x, y) does not exist.
51. (a) fx(0,0) = lim
x0
f(∆x, 0) f(0,0)
x= 0; similarly, fy(0,0)=0
(b) fx(0,y) = lim
x0
f(∆x, y)f(0,y)
x= lim
x0
y(∆x2y2)
x2+y2=y
fy(x, 0) = lim
y0
f(x, y)f(x, 0)
y= lim
y0
x(x2y2)
x2+∆y
2=x
(c) fxy(0,0) = lim
y0
fx(0,y)fx(0,0)
y= lim
y0y
y=1
fyx(0,0) = lim
x0
fy(∆x, 0) fy(0,0)
x= lim
x0
x
x=1
(d) No, since fxy and fyx are not continuous.
52. Represent the line segment Cthat joins Aand Bby x=x0+(x
1x
0
)t,y=y
0+(y
1y
0
)t
for 0 t1. Let F(t)=f(x
0+(x
1x
0
)t, y0+(y
1y
0
)t) for 0 t1; then
f(x1,y
1)f(x
0,y
0)=F(1) F(0). Apply the Mean Value Theorem to F(t) on the interval [0,1]
to get [F(1) F(0)]/(1 0) = F0(t), F(1) F(0) = F0(t) for some tin (0,1) so
f(x1,y
1)f(x
0,y
0)=F
0(t
). By the chain rule, F0(t)=f
x
(x, y)(dx/dt)+f
y
(x, y)(dy/dt)=
f
x
(x, y)(x1x0)+f
y(x, y)(y1y0). Let (x,y
) be the point on Cfor t=tthen
f(x1,y
1)f(x
0,y
0)=F
0(t
)=f
x(x
,y
)(x
1x
0)+f
y(x
,y
)(y
1y
0).
Exercise Set 15.5 544
53. Let (a, b) be any point in the region, if (x, y) is in the region then by the result of Exercise 52
f(x, y)f(a, b)=f
x
(x
,y
)(xa)+f
y(x
,y
)(yb) where (x,y
) is on the line segment joining
(a, b) and (x, y). If fx(x, y)=f
y
(x, y) = 0 throughout the region then
f(x, y)f(a, b) = (0)(xa)+ (0)(yb)=0,f(x, y)=f(a, b)sof(x, y) is constant on the region.
EXERCISE SET 15.5
1. At P,z/∂x = 48 and z/∂y =14, tangent plane 48x14yz= 64, normal line x=1+48t,
y=214t,z=12t.
2. At P,z/∂x = 14 and z/∂y =2, tangent plane 14x2yz= 16, normal line x=2+14t,
y=42t,z=4t.
3. At P,z/∂x = 1 and z/∂y =1, tangent plane xyz= 0, normal line x=1+t,y=t,
z=1t.
4. At P,z/∂x =1 and z/∂y = 0, tangent plane x+z=1, normal line x=1t,y=0,
z=t.
5. At P,z/∂x = 0 and z/∂y = 3, tangent plane 3yz=1, normal line x=π/6, y=3t,
z=1t.
6. At P,z/∂x =1/4 and z/∂y =1/6, tangent plane 3x+2y12z=30, normal line x=4+t/4,
y=9+t/6, z=5t.
7. By implicit differentiation z/∂x =x/z,z/∂y =y/z so at P,z/∂x =3/4 and
z/∂y = 0, tangent plane 3x4z=25, normal line x=3+3t/4, y=0,z=4t.
8. By implicit differentiation z/∂x =(xy)/(4z), z/∂y =x2/(8z)soatP,z/∂x =3/8 and
z/∂y =9/16, tangent plane 6x9y16z= 5, normal line x=3+3t/8, y=19t/16,
z=2t.
9. The tangent plane is horizontal if the normal z/∂xi+z/∂yjkis parallel to kwhich occurs
when z/∂x =z/∂y =0.
(a) z/∂x =3x
2
y
2
,z/∂y =2x
3
y;3x
2
y
2= 0 and 2x3y= 0 for all (x, y)onthex-axis or y-axis,
and z= 0 for these points, the tangent plane is horizontal at all points on the x-axis or
y-axis.
(b) z/∂x =2xy2, z/∂y =x+2y+ 4; solve the system 2xy2=0,x+2y+4=0,
to get x=0,y=2. z=4at(0,2), the tangent plane is horizontal at (0,2,4).
10. z/∂x =6x,z/∂y =2y,so6x
0
i2y
0
jkis normal to the surface at a point (x0,y
0,z
0)on
the surface. 6i+4jkis normal to the given plane. The tangent plane and the given plane are
parallel if their normals are parallel so 6x0=6,x
0= 1 and 2y0=4,y
0=2. z=1at(1,2),
the point on the surface is (1,2,1).
11. z/∂x =6x,z/∂y =4yso 6x0i4y0jkis normal to the surface at a point (x0,y
0,z
0)on
the surface. This normal must be parallel to the given line and hence to the vector
3i+8jkwhich is parallel to the line so 6x0=3, x0=1/2 and 4y0=8,y
0=2.
z=3/4at(1/2,2). The point on the surface is (1/2,2,3/4).
12. (3,4,5) is a point of intersection because it satisfies both equations. Both surfaces have
(3/5)i+(4/5)jkas a normal so they have a common tangent plane at (3,4,5).
545 Chapter 15
13. df =2xydx +x2dy =0.6+0.2=0.8,f=(x+∆x)
2(y+∆y)x
2y=(1.1)2(3.2) 12·3=0.872
14. dz =6xdx 2dy =12(0.02) 2(0.03) = 0.18,
z=3(2+0.02)22(4 0.03) (3(2)22(4)) = 0.1788
15. 3/1(1)/2=7/216. 2(4)(2) (2)3(0 13)=7
17. dz =3x
2
y
2
dx +2x
3
ydy, z=(x+∆x)
3
(y+∆y)
2x
3
y
2
18. dz =yexydx +xexy dy, z=e(x+∆x)(y+∆y)exy
19. dz =7dx 2dy 20. dz = (10xy52)dx + (25x2y4+4)dy
21. dz =y/ 1+x
2
y
2
dx +x/ 1+x
2
y
2
dy
22. dz = 2 sec2(x3y) tan(x3y)dx 6 sec2(x3y) tan(x3y)dy
23. (a) Let f(x, y)=e
xsin y;f(0,0)=0,f
x(0,0)=0,f
y(0,0)=1,soe
xsin yy
(b) Let f(x, y)=2x+1
y+1 ;f(0,0)=1,f
x(0,0)=2,f
y(0,0) = 1, so 2x+1
y+1 1+2xy
24. f(1,1)=1,f
x(x, y)=αxα1yβ,f
x(1,1) = α, fy(x, y)=βxαyβ1,f
y(1,1) = β,so
x
α
y
β1+α(x1)+β(y1)
25. dT =Txdx +Tydy 2(0.02) (0.02) = 0.06,TT(1,3)+dT 93 0.06=92.94
26. p(104,103) p(100,98) px(100,98)(104 100) py(100,98)(103 98)
= 1008 + (2)4 + (1)5 = 1005 mb
27. f(x, y)=(x
2+y
2
)
1/2
,f
x
(4,3) = x
(x2+y2)3/2=4
125,f
y
(4,3) = y
(x2+y2)3/2=3
125,
1
p(3.92)2+(3.01)21
42+3
24
125(0.08) 3
125(0.01)=0.20232; actual value 0.202334.
28. From Exercise 24, x0.5y0.31+0.5(x1)+0.3(y1), so
(1.05)0.5(0.97)0.31+0.5(0.05)+0.3(0.03)=1.016, actual value 1.01537
29. df =(2x+2y4)dx +2xdy;x=1,y=2,dx =0.01, dy =0.04 so df =0.10
30. df =(1/3)x2/3y1/2dx +(1/2)x1/3y1/2dy;x=8,y=9,dx =0.02, dy =0.03 so df =0.005
31. df =x 2dx y2dy;x=1, y=2, dx =0.02, dy =0.04 so df =0.03
32. df =y
2(1 + xy)dx +x
2(1 + xy)dy;x=0,y=2,dx =0.09, dy =0.02 so df =0 . 09
33. z=px2+y2,dz =xx2+y21/2dx +yx2+y21/2dy;x=3,y=4,dx =0.2,
dy =0.04 so dz =0.088 cm.
34. dV =(2/3)πrhdr +(1/3)πr2dh;r=4,h= 20, dr =0.05, dh =0.05 so dV =2.4π7.54 in3.
Exercise Set 15.5 546
35. A=xy,dA =ydx +xdy,dA/A =dx/x +dy/y,|dx/x|≤0.03 and |dy/y|≤0.05,
|dA/A|≤|dx/x|+|dy/y|≤0.08=8%
36. V=(1/3)πr2h,dV =(2/3)πrhdr +(1/3)πr2dh,dV/V =2(dr/r)+dh/h,|dr/r|≤0.01 and
|dh/h|≤0.04, |dV/V |≤2|dr/r|+|dh/h|≤0.06 = 6%.
37. z=px2+y2,dz =x
px2+y2dx +y
px2+y2dy,
dz
z=x
x2+y2dx +y
x2+y2dy =x2
x2+y2dx
x+y2
x2+y2dy
y,
dz
zx2
x2+y2
dx
x
+y2
x2+y2
dy
y
,if
dx
xr/100 and
dy
yr/100 then
dz
zx2
x2+y2(r/100) + y2
x2+y2(r/100) = r
100 so the percentage error in zis at most about r%.
38. (a) z=px2+y2,dz =xx2+y21/2dx +yx2+y21/2dy,
|dz|≤xx
2+y
2
1/2|dx|+yx2+y21/2|dy|;ifx=3,y=4,|dx|≤0.05, and
|dy|≤0.05 then |dz|≤(3/5)(0.05)+(4/5)(0.05)=0.07 cm
(b) A=(1/2)xy,dA =(1/2)ydx +(1/2)xdy,
|dA|≤(1/2)y|dx|+(1/2)x|dy|≤2(0.05)+(3/2)(0.05)=0.175 cm2.
39. dR =R2
2
(R1+R2)2dR1+R2
1
(R1+R2)2dR2,dR
R=R2
R1+R2dR1
R1+R1
R1+R2dR2
R2,
dR
RR2
R1+R2
dR1
R1
+R1
R1+R2
dR2
R2
;ifR
1= 200, R2= 400, |dR1/R1|≤0.02, and
|dR2/R2|≤0.02 then |dR/R|≤(400/600)(0.02) + (200/600)(0.02)=0.02 = 2%.
40. dP =(k/V )dT (kT/V 2)dV ,dP/P =dT/T dV /V ;ifdT/T =0.03 and dV/V =0.05 then
dP/P =0.02 so there is about a 2% decrease in pressure.
41. =1
c2a2da a
cc2a2dc;ifa=3,c=5,|da|≤0.01, and |dc|≤0.01 then
||≤(1/4)(0.01)+(3/20)(0.01)=0.004 radians.
42. V=πr2h,dV =2πrhdr +πr2dh;r=2,h=5,dr =0.01, and dh =0.01 so
dV = (20π)(0.01)+(4π)(0.01)=0.24π, or about 0.754 cm3.
43. dT =π
gpL/g dL πL
g2pL/g dg,dT
T=1
2
dL
L1
2
dg
g;|dL/L|≤0.005 and |dg/g|≤0.001 so
|dT/T |≤(1/2)(0.005) + (1/2)(0.001) = 0.003=0.3%
44. Let hbe the height of the building, xthe distance to the building, and θthe angle of elevation,
then h=xtan θ,dh = tan θdx +xsec2θdθ;ifx= 100, θ=60
,|dx|≤1/6 ft, and
||≤(0.2)(π/180) = π/900 radians, then |dh|≤
3
(1/6) + (100)(4)(π/900) <1.7 ft.
45. (a) z=xy,dz =ydx +xdy,dz/z =dx/x +dy/y;(r+s)%.
(b) z=x/y,dz =dx/y xdy/y2,dz/z =dx/x dy/y;(r+s)%.
547 Chapter 15
(c) z=x2y3,dz =2xy3dx +3x
2
y
2
dy,dz/z =2dx/x +3dy/y;(2r+3s)%.
(d) z=x3y1/2,dz =3x
2
y
1/2
dx +x3dy/ 2y1/2,dz/z =3dx/x +(1/2)dy/y;(3r+s/2)%.
46. z=k
xy ; at a point a, b, k
abon the surface, k
a2b,k
ab2,1and hence bk, ak, a2b2is
normal to the surface so the tangent plane is bkx +aky +a2b2z=3abk. The plane cuts the x,
y, and z-axes at the points 3a, 3b, and 3k
ab , respectively, so the volume of the tetrahedron that is
formed is V=1
33k
ab 1
2(3a)(3b)=9
2k, which does not depend on a and b.
47. (a) 2t+7=(1+t)
2+(2+t)
2
,t
2=1,t=±1 so the points of intersection are (2,1,5) and
(0,3,9).
(b) z/∂x =2x,z/∂y =2yso at (2,1,5) the vector n=4i+2jkis normal to the surface.
v=i+j+2kis parallel to the line; n·v=4 so the cosine of the acute angle is
[n·(v)]/(knkk−vk)=4/
216=4/3
14. Similarly, at (0,3,9) the vector
n=6jkis normal to the surface, n·v= 4 so the cosine of the acute angle is
4/376=4/
222.
48. z=xf(u) where u=x/y,z/∂x =xf 0(u)u/∂x +f(u)=(x/y)f0(u)+f(u)=uf0(u)+f(u),
z/∂y =xf 0(u)u/∂y =(x2/y2)f0(u)=u
2
f
0
(u). If (x0,y
0,z
0) is on the surface then, with
u0=x0/y0,[u
0
f
0(u
0
)+f(u
0
)] iu2
0f0(u0)jkis normal to the surface so the tangent plane is
[u0f0(u0)+f(u
0
)] xu2
0f0(u0)yz=[u
0
f
0
(u
0
)+f(u
0
)]x0u2
0f0(u0)y0z0
=x0
y0
f0(u0)+f(u
0
)
x
0x
2
0
y
2
0
f0(u
0
)y
0z
0
=x
0
f(u
0
)z
0=0
so all tangent planes pass through the origin.
49. Use implicit differentiation to get z/∂x =c2x/ a2z,z/∂y =c2y/ b2z.At(x
0
,y
0,z
0),
z06= 0, a normal to the surface is c2x0/a2z0ic2y0/b2z0jkso the tangent plane is
c2x0
a2z0
xc2y0
b2z0
yz=c2x2
0
a2z0c2y2
0
b2z0z0,x0x
a2+y0y
b2+z0z
c2=x2
0
a2+y2
0
b2+z2
0
c2=1
50. z/∂x =2x/a2,z/∂y =2y/b2.At(x
0
,y
0,z
0) the vector 2x0/a2i+2y0/b2jkis normal
to the surface so the tangent plane is 2x0/a2x+2y0/b2yz=2x
2
0
/a2+2y
2
0/b2z0, but
z0=x2
0/a2+y2
0/b2so 2x0/a2x+2y0/b2yz=2z
0z
0=z
0
,2x
0
x/a2+2y
0
y/b2=z+z0
51. n1=fx(x0,y
0)i+f
y(x
0,y
0)jkand n2=gx(x0,y
0)i+g
y(x
0,y
0)jkare normal, respectively,
to z=f(x, y) and z=g(x, y)atP;n
1and n2are perpendicular if and only if n1·n2=0,
f
x
(x
0
,y
0)g
x(x
0,y
0)+f
y(x
0
,y
0)g
y(x
0,y
0)+1=0,
f
x(x
0
,y
0)g
x(x
0,y
0)+f
y(x
0
,y
0)g
y(x
0,y
0)=1.
52. n1=fxi+fyjk=x0
px2
0+y2
0
i+y0
px2
0+y2
0
jk; similarly n2=x0
px2
0+y2
0
iy0
px2
0+y2
0
jk;
since a normal to the sphere is N=x0i+y0j+z0k, and n1·N=px2
0+y2
0z0=0,
n
2·N=
px
2
0+y
2
0z
0= 0, the result follows.
Exercise Set 15.6 548
EXERCISE SET 15.6
1. fincreases the most in the direction of III.
2. The contour lines are closer at P, so the function is increasing more rapidly there, hence fis
larger at P.
3. z=4i8j4.z=4e
3y
sin 4xi3e3ycos 4xj
5. z=x
x2+y2i+y
x2+y2j
6. z=e5xsec x2y2xy tan x2y5i+x2tan x2yj
7. f(x, y) = 3(2x+y)x2+xy2i+3xx
2+xy2j,f(1,1) = 36i12j
8. f(x, y)=xx
2+y
2
3/2iyx
2+y
2
3/2j,f(3,4) = (3/125)i(4/125)j
9. f(x, y)=[y/(x+y)]i+[y/(x+y) + ln(x+y)]j,f(3,4)=4i+4j
10. f(x, y)=3y
2tan2xsec2xi+2ytan3xj,f(π/4,3)=54i6j
11. f(x, y)=(3y/2)(1 + xy)1/2i+(3x/2)(1 + xy)1/2j,f(3,1)=3i+9j,
D
u
f=f·u=12/
2=6
2
12. f(x, y)=2ye2xyi+2xe2xy j,f(4,0)=8j,D
u
f=f·u=32/5
13. f(x, y)=2x/ 1+x
2+y
i+1/1+x
2+y
j,f(0,0) = j,Duf=3/10
14. f(x, y)=(c+d)y/(xy)2i+(c+d)x/(xy)2j,
f(3,4) = 4(c+d)i+3(c+d)j,D
u
f=(7/5)(c+d)
15. f(x, y)=12x
2
y
2
i+8x
3
yj,f(2,1)=48i+64j,u=(4/5)i(3/5)j,Duf=f·u=0
16. f(x, y)=(2x3y)i+3x+12y
2
j,f(2,0) = 4i+6j,u=(i+2j)/
5, Duf=8/
5
17. f(x, y)=y
2
/xi+2yln xj,f(1,4)=16i,u=(i+j)/
2, Duf=82
18. f(x, y)=e
xcos yiexsin yj,f(0/4)=(ij)/
2, u=(5i2j)/
29, Duf=7/
58
19. f(x, y)=y/ x2+y2i+x/ x2+y2j,
f(2,2) = (i+j)/4, u=(i+j)/2, Duf=2/4
20. f(x, y)=(e
yyex)i+(xeyex)j,f(0,0) = ij,u=(5i2j)/
29, Duf=7/
29
21. f(x, y)=(y/2)(xy)1/2i+(x/2)(xy)1/2j,f(1,4) = i+(1/4)j,
u= cos θi+ sin θj=(1/2)i+3/2j,Duf=1/2+
3/8
22. f(x, y)=[2y/(x+y)2]i[2x/(x+y)2]j,f(1,2) = (4/9)i+(2/9)j,u=j,Duf=2/9
549 Chapter 15
23. f(x, y)=2sec
2
(2x+y)i+ sec2(2x+y)j,f(π/6/3)=8i+4j,u=(ij)/
2, Duf=2
2
24. f(x, y) = cosh xcosh yi+ sinh xsinh yj,f(0,0) = i,u=i,Duf=1
25. f(1,2) = 3, level curve 4x2y+3=3,2xy=0;
f(x, y)=4i2j
f(1,2)=4i2j(1, 2)
4i – 2jx
y
26. f(2,2)=1/2, level curve y/x2=1/2,y=x
2
/2 for x6=0.
f(x, y)=2y/x3i+1/x2j
f(2,2)=(1/2)i+(1/4)j
1
21
4
i + j
(2, 2)
x
y
27. f(2,0) = 4, level curve x2+4y
2=4,x
2
/4+y
2=1.
f(x, y)=2xi+8yj
f(2,0) = 4i
-4i
1
2
x
y
28. f(2,1) = 3, level curve x2y2=3.
f(x, y)=2xi2yj
f(2,1)=4i+2j
(2, 1)
4i + 2j
x
y
29. f(x, y)=12x
2
y
2
i+8x
3
yj,f(1,1)=12i8j,u=(3i2j)/
13, k∇f(1,1)k=4
13
Exercise Set 15.6 550
30. f(x, y)=3i(1/y)j,f(2,4)=3i(1/4)j,u= (12ij)/145, k∇f(2,4)k=145/4
31. f(x, y)=xx
2+y
2
1/2i+yx
2+y
2
1/2j,
f(4,3)=(4i3j)/5, u=(4i3j)/5, k∇f(4,3)k=1
32. f(x, y)=y(x+y)
2
ix(x+y)
2
j,f(0,2)=(1/2)i,u=i,k∇f(0,2)k=1/2
33. f(x, y)=2xi2yj,f(1,3)=2i+6j,u=(i+3j)/
10, −k∇f(1,3)k=210
34. f(x, y)=yexyi+xexy j;f(2,3) = e6(3i+2j), u=(3i+2j)/
13, −k∇f(2,3)k=13e6
35. f(x, y)=3 sin(3xy)i+ sin(3xy)j,
f(π/6/4)=(3i+j)/
2, u=(3ij)/
10, −k∇f(π/6/4)k=5
36. f(x, y)= y
(x+y)
2rx+y
xyix
(x+y)
2rx+y
xyj,f(3,1)=(
2/16)(i3j),
u=(i3j)/10, −k∇f(3,1)k=5/8
37. f(x, y)=y(x+y)
2
ix(x+y)
2
j,f(1,0) = j,−→
PQ=2ij,u=(2ij)/
5,
Duf=1/
5
38. f(x, y)=e
xsec yi+exsec ytan yj,
f(0/4) = 2(i+j), −→
PO=(π/4)j,u=j,Duf=2
39. f(x, y)= yey
2xy i+xyey+xey
2xy j,f(1,1)=(e/2)(i+3j), u=j,Duf=3e/2
40. f(x, y)=y(x+y)
2
i+x(x+y)
2
j,f(2,3)=(3i+2j)/25, if Duf= 0 then uand fare
orthogonal, by inspection 2i+3jis orthogonal to f(2,3) so u=±(2i+3j)/
13.
41. f(x, y)=8xyi+4x
2
j,f(1,2) = 16i+4jis normal to the level curve through Pso
u=±(4i+j)/17.
42. f(x, y)=(6xy y)i+3x2xj,f(2,3)=33i+10jis normal to the level curve through
Pso u=±(33i+10j)/
1189.
43. Solve the system (3/5)fx(1,2) (4/5)fy(1,2) = 5, (4/5)fx(1,2)+(3/5)fy(1,2) = 10 for
fx(1,2) and fy(1,2) to get fx(1,2)=5,f
y
(1,2) = 10. For (c), f(1,2)=5i+10j,
u=(i2j)/
5, Duf=55.
44. f(5,1) = 3i+2j,−→
PQ=i+2j,u=(i+2j)/
5, Duf=1/
5
45. f(4,5)=2ij,u=(5i+2j)/
29, Duf=8/
29
46. Let u=u1i+u2jwhere u2
1+u2
2= 1, but Duf=f·u=u12u2=2sou
1=2u
22,
(2u22)2+u2
2=1,5u
2
28u
2+3=0,u
2=1oru
2=3/5thusu
1=0oru
1=4/5; u=jor
u=4
5i+3
5j.
551 Chapter 15
47. (a) At (1,2) the steepest ascent seems to be in the direction i+jand the slope in that direction
seems to be 0.5/(2/2)=1/
2, so f1
2i+1
2j, which has the required direction and
magnitude.
(b)
5
5
x
y
−∇f(4, 4)
48. (a)
500
P
0 ft
100200 300 400
Depart from each contour line in a direction orthogonal to that contour line, as an approxi-
mation to the optimal path.
(b)
500
P
0 ft
100200 300 400
At the top there is no contour line, so head for the nearest contour line. From then on depart
from each contour line in a direction orthogonal to that countour line, as in Part (a).
49. z=6xi2yj,k∇zk=p36x2+4y
2=6if36x
2+4y2= 36; all points on the ellipse 9x2+y2=9.
50. z=3i+2yj,k∇zk=p9+4y
2
,so∇k∇zk=4y
p9+4y
2=8
9+16 =8
5
51. r =tit2j,dr/dt =i2tj=i4jat the point (2,4), u=(i4j)/
17;
z=2xi+2yj=4i8jat (2,4), hence dz/ds =Duz=z·u=36/
17.
52. (a) T(x, y)=y1x
2+y
2
(1+x2+y2)2i+x1+x
2y
2
(1+x2+y2)2j,T(1,1)=(i+j)/9, u=(2ij)/
5,
DuT=1/9
5
(b) u =(i+j)/2, opposite to T(1,1)
Exercise Set 15.6 552
53. (a) V(x, y)=2e
2xcos 2yi2e2xsin 2yj,E=−∇V(π/4,0)=2e
π/2i
(b) V(x, y) decreases most rapidly in the direction of −∇V(x, y) which is E.
54. z=4xi8yj,ifx=20 and y= 5 then z=80i40j.
(a) u =ipoints due west, Duz=80, the climber will descend because zis decreasing.
(b) u =(i+j)/
2 points northeast, Duz=20
2, the climber will ascend at the rate of 202
ftperftoftravelinthexyplane.
(c) The climber will travel a level path in a direction perpendicular to z=80i40j,by
inspection ±(i+2j)/
5 are unit vectors in these directions; (i+2j)/
5 makes an angle of
tan1(1/2) 27with the positive y-axis so (i+2j)/5 makes the same angle with the
negative y-axis. The compass direction should be N 27EorS27
W.
55. (a) r=x
px2+y2i+y
px2+y2j=r/r
(b) f(r)=∂f(r)
∂x i+∂f(r)
∂y j=f0(r)∂r
∂xi+f0(r)∂r
∂yj=f0(r)r
56. (a) re3r=(1 3r)
re3rr
(b) 3r2r=f0(r)
rrso f0(r)=3r
3
,f(r)=3
4
r
4+C,f(2)=12+C=1,C=11; f(r)=3
4
r
411
57. ur= cos θi+ sin θj,uθ=sin θi+ cos θj,
z=∂z
∂xi+∂z
∂yj=∂z
∂r cos θ1
r
∂z
∂θ sin θi+∂z
∂r sin θ+1
r
∂z
∂θ cos θj
=∂z
∂r(cos θi+ sin θj)+1
r
∂z
∂θ(sin θi+ cos θj)=∂z
∂rur+1
r
∂z
∂θuθ
58. (a) (f+g)=(f
x+g
x
)i+(f
y+g
y)j=(f
x
i+f
y
j)+(g
x
i+g
yj)=f+g
(b) (cf)=(cfx)i+(cfy)j=c(fxi+fyj)=cf
(c) (fg)=(fgx+gfx)i+(fgy+gfy)j=f(gxi+gyj)+g(f
x
i+f
yj)=fg+gf
(d) (f/g)=gfxfgx
g2i+gfyfgy
g2j=g(fxi+fyj)f(gxi+gyj)
g2=gffg
g2
(e) (fn)=nf n1fxi+nfn1fyj=nfn1(fxi+fyj)=nfn1f
59. r0(t)=v(t)=k(x, y)T=8k(x, y)xi2k(x, y)yj;dx
dt =8kx, dy
dt =2ky. Divide and solve
to get y4= 256x; one parametrization is x(t)=e
8t
,y(t)=4e
2t
.
60. r0(t)=v(t)=kT=2k(x, y)xi4k(x, y)yj. Divide and solve to get y=3
25x2; one parametriza-
tion is x(t)=5e
2t
,y(t)=3e
4t
.
553 Chapter 15
61.
-3 3
-5
5
x
y
C = 0
C = –5
C = –10
C = –15
62. 4
-4
-6 6
T = 80
T = 95
T = 97
(5, 3)
T = 90
63. (a) z
xy
(c) f=[2x2x(x
2+3y
2
)]e(x2+y2)i+[6y2y(x
2+3y
2
)]e(x2+y2)j
(d) f=0if x=y=0orx=0,y =±1orx=±1,y =0.
64. dz/dt =(z/∂x)(dx/dt)+(z/∂y)(dy/dt)
=(z/∂xi+z/∂yj)·(dx/dti+dy/dtj)=z·r
0
(t)
65. f(x, y)=f
x
(x, y)i+fy(x, y)j,iff(x, y) = 0 throughout the region then
fx(x, y)=f
y
(x, y) = 0 throughout the region, the result follows from Exercise 51, Section 15.4.
66. Let u1and u2be nonparallel unit vectors for which the directional derivative is zero. Let ube
any other unit vector, then u=c1u1+c2u2for some choice of scalars c1and c2,
Duf(x, y)=f(x, y)·u=c1f(x, y)·u1+c2f(x, y)·u2
=c1Du1f(x, y)+c
2
D
u
2f(x, y)=0.
EXERCISE SET 15.7
1. 165t32 2. 3(4/3)t1/324t7
3t2t2/3+4t
63. 2tcos t2
4. 1512t52560t5ln t
2t1+lnt512t5ln t5. 3264 6. 0
7. f(x, y, z)=20x
4
y
2
z
3
i+8x
5
yz3j+12x
5
y
2
z
2
k,f(2,1,1) = 320i256j+ 384k,Duf=320
Exercise Set 15.7 554
8. f(x, y, z)=yzexzi+exzj+(xyexz +2z)k,f(0,2,3)=6i+j+6k,D
u
f=45/7
9. f(x, y, z)= 2x
x
2+2y
2+3z
2i+4y
x
2+2y
2+3z
2j+6z
x
2+2y
2+3z
2k,
f(1,2,4)=(2/57)i+(8/57)j+ (24/57)k,Duf=314/741
10. f(x, y, z)=yz cos xyzi+xz cos xyzj+xy cos xyzk,
f(1/2,1/3)=(π
3/6)i+(π
3/4)j+(
3/12)k,Duf=(1π)/12
11. f(x, y, z)=3x
2
z2xyix2j+x3+2z
k,f(2,1,1)=16i4j+10k,
u=(3ij+2k)/
14, Duf=72/
14
12. f(x, y, z)=xx
2+z
2
1/2i+jzx
2+z
2
1/2k,f(3,1,4)=(3/5)i+j(4/5)k,
u=(2i2jk)/3, Duf=0
13. f(x, y, z)=1
z+yizx
(z+y)
2j+y+x
(z+y)
2k,f(1,0,3)=(1/3)i+(4/9)j+(1/9)k,
u=(6i+3j2k)/7, Duf=8/63
14. f(x, y, z)=e
x+y+3z(i+j+3k), f(2,2,1) = e3(i+j+3k), u= (20i4j+5k)/21,
Duf= (31/21)e3
15. f(1,1,1)=3i3j,u=(ij)/
2, k∇f(1,1,1)k=3
2
16. f(0,3,0)=(i3j+4k)/6, u=(i3j+4k)/26, k∇f(0,3,0)k=26/6
17. f(1,2,2)=(i+j)/2, u=(i+j)/
2, k∇f(1,2,2)k=1/
2
18. f(4,2,2)=(ijk)/8, u=(ijk)/
3, k∇f(4,2,2)k=3/8
19. f(5,7,6) = i+11j12k,u=(i11j+12k)/
266, −k∇f(5,7,6)k=266
20. f(0,1/4)=2
2(ik), u=(ik)/2, −k∇f(0,1/4)k=4
21. f(2,1,1) = i+jk.−→
PQ=3i+j+k,u=(3i+j+k)/
11, Duf=3/
11
22. f(1,2,1)=13i+5j20k,u=k,Duf=20
23. Let ube the unit vector in the direction of a, then
Duf(3,2,1)=f(3,2,1) ·u=k∇f(3,2,1)kcos θ= 5 cos θ=5, cos θ=1, θ=πso
f(3,2,1) is oppositely directed to u;f(3,2,1) = 5u=10/3i+5/3j+10/3k.
24. (a) T(1,1,1)=(i+j+k)/8, u=(i+j+k)/3, DuT=3/8
(b) (i+j+k)/3(c) 3/8
25. (a) f(x, y, z)=x
2+y
2+4z
2
,f=2xi+2yj+8zk,f(2,2,1)=4i+4j+8k,
n=i+j+2k,x+y+2z=6
(b) r(t)=2i+2j+k+t(i+j+2k),x(t)=2+t, y(t)=2+t, z(t)=1+2t
(c) cos θ=n·k
knk=2
335.26
555 Chapter 15
26. (a) f(x, y, z)=xz yz3+yz2,n=f(2,1,1) = i+3k; tangent plane x+3z=5
(b) normal line x=2+t,y=1, z=1+3t
(c) cos θ=n·k
knk=3
1018.43
27. Set f(x, y)=z+xz
4
(y1), then f(x, y, z)=0,n=±∇f(3,5,1) = ±(ij19k),
unit vectors ±1
363(ij19k)
28. f(x, y, z) = sin xz 4 cos yz,f(π, π, 1) = iπk; unit vectors ±1
1+π
2(i+πk)
29. f(x, y, z)=x
2+y
2+z
2
,if(x
0
,y
0,z
0) is on the sphere then f(x0,y
0,z
0)=2(x
0
i+y
0
j+z
0
k)
is normal to the sphere at (x0,y
0,z
0), the normal line is x=x0+x0t,y=y0+y0t,z=z0+z0t
which passes through the origin when t=1.
30. f(x, y, z)=2x
2+3y
2+4z
2
,if(x
0
,y
0,z
0) is on the ellipsoid then
f(x0,y
0,z
0)=2(2x
0
i+3y
0
j+4z
0
k) is normal there and hence so is n1=2x
0
i+3y
0
j+4z
0
k;
n
1must be parallel to n2=i2j+3kwhich is normal to the given plane so n1=cn2
for some constant c. Equate corresponding components to get x0=c/2, y0=2c/3, and
z0=3c/4; substitute into the equation of the ellipsoid yields 2 c2/4+34c
2/9+49c
2/16=9,
c
2= 108/49, c=±63/7. The points on the ellipsoid are 33/7,43/7,93/14and
33/7,43/7,93/14.
31. f(x, y, z)=x
2+y
2z
2
,if(x
0
,y
0,z
0) is on the surface then f(x0,y
0,z
0)=2(x
0
i+y
0
jz
0
k)
is normal there and hence so is n1=x0i+y0jz0k;n1must be parallel to −→
PQ=3i+2j2kso
n1=c−→
PQ for some constant c. Equate components to get x0=3c,y
0=2cand z0=2cwhich
when substituted into the equation of the surface yields 9c2+4c
24c
2=1,c
2=1/9, c=±1/3
so the points are (1,2/3,2/3) and (1,2/3,2/3).
32. f1(x, y, z)=2x
2+3y
2+z
2
,f
2
(x, y, z)=x
2+y
2+z
26x8y8z+ 24,
n1=f1(1,1,2)=4i+6j+4k,n
2=f
2
(1,1,2) = 4i6j4k,n1=n2so n1and n2are
parallel.
33. n1=2i2jk,n
2=2i8j+4k,n
1×n
2=16i10j12kis tangent to the line, so
x(t)=1+8t, y(t)=1+5t, z(t)=2+6t
34. f(x, y, z)=px
2+y
2
z,n1=f(4,3,5) = 4
5i+3
5jk,n2=i+2j+2k,n1×n2= (16i13j+5k)/5
is tangent to the line, x(t)=4+16t, y(t)=313t, z(t)=5+5t
35. f(x, y, z)=x
2+z
225,g(x, y, z)=y
2+z
225,n1=f(3,3,4)=6i+8k,
n
2=g(3,3,4) = 6j+8k,n
1×n
2=48i48j36kis tangent to the line,
x(t)=3+4t, y(t)=34t, z(t)=43t
36. (a) f(x, y, z)=z8+x
2+y
2
,g(x, y, z)=4x+2yz, n1=4j+k,n
2=4i+2jk,
n
1×n
2=6i+4j16kis tangent to the line, x(t)=3t, y(t)=22t, z(t)=4+8t
37. dw =3x
2
y
2
zdx +2x
3
yzdy +x3y2dz, w=(x+∆x)
3
(y+∆y)
2
(z+∆z)x
3
y
2
z
38. dw =yzexyzdx +xzexyzdy +xyexyz dz, w=e(x+∆x)(y+∆y)(z+∆z)exyz
Exercise Set 15.7 556
39. dw =8dx 3dy +4dz
40. dw =8xy3z73ydx +12x2y2z73xdy +28x2y3z6+1
dz
41. dw =yz
1+x
2
y
2
z
2dx +xz
1+x
2
y
2
z
2dy +xy
1+x
2
y
2
z
2dz
42. dw =1
2xdx +1
2ydy +1
2zdz
43. df =2y
2
z
3
dx +4xyz3dy +6xy2z2dz
=2(1)2(2)3(0.01) + 4(1)(1)(2)3(0.02) + 6(1)(1)2(2)2(0.02)=0.96
44. df =yz(y+z)
(x+y+z)2dx +xz(x+z)
(x+y+z)2dy +xy(x+y)
(x+y+z)2dz
=(16)(0.04)+(12)(0.02)+(6)(0.03)=0.58
45. V=`wh,dV =wh d` +`h dw +`w dh,
|dV |≤wh|d`|+`h|dw|+`w|dh|≤(4)(5)(0.05) + (3)(5)(0.05) + (3)(4)(0.05)=2.35 cm3
46. R=1/(1/R1+1/R2+1/R3), R/∂R1=1
R2
1(1/R1+1/R2+1/R3)2=R2/R2
1, similarly
R/∂R2=R2/R2
2and R/∂R3=R2/R2
3so dR
R=(R/R1)dR1
R1
+(R/R2)dR2
R2
+(R/R3)dR3
R3
,
dR
R(R/R1)
dR1
R1
+(R/R2)
dR2
R2
+(R/R3)
dR3
R3
(R/R1)(0.10)+(R/R2)(0.10)+(R/R3)(0.10)
=R(1/R1+1/R2+1/R3)(0.10) = (1)(0.10)=0.10 = 10%
47. dA =1
2bsin θda +1
2asin θdb +1
2ab cos θdθ,
|dA|≤ 1
2bsin θ|da|+1
2asin θ|db|+1
2ab cos θ||
1
2(50)(1/2)(1/2) + 1
2(40)(1/2)(1/4) + 1
2(40)(50) 3/2(π/90)
=35/4+50π
3/939 ft2
48. V=`wh,dV =whd` +`hdw +`wdh,|dV/V |≤|d`/`|+|dw/w|+|dh/h|≤3(r/100) = 3r%
49. f/∂v =8vw3x4y5,f/∂w =12v
2
w
2
x
4
y
5
,f/∂x =16v
2
w
3
x
3
y
5
,f/∂y =20v
2
w
3
x
4
y
4
50. w/∂r = cos st +ueucos ur,w/∂s =rt sin st,
w/∂t =rs sin st,w/∂u =reucos ur +eusin ur
51. f/∂v1=2v
1
/v
2
3+v
2
4
,f/∂v2=2v2/v2
3+v2
4,f/∂v3=2v3v2
1v2
2/v2
3+v2
42,
f/∂v4=2v4v2
1v2
2/v2
3+v2
42
52. ∂V
∂x =2xe2xy+e2xy,∂V
∂y =xe2xy+w,∂V
∂z =w2ezw,∂V
∂w =wzezw +ezw +y
557 Chapter 15
53. (a) 0(b) 0(c) 0(d) 0
(e) 2(yw +1)e
yw sin zcos z(f) 2xw(yw +2)e
yw sin zcos z
54. 128, 512, 32, 64/3
55. z/∂r =(dz/dx)(x/∂r)=2rcos2θ/ r2cos2θ+1
,
z/∂θ =(dz/dx)(x/∂θ)=2r
2sin θcos θ/ r2cos2θ+1
56. u/∂x =(u/∂r)(dr/dx)+(u/∂t)(t/∂x)
=s2ln t(2x)+rs2/ty
3=x(4y+1)
21+2lnxy3
u/∂y =(u/∂s)(ds/dy)+(u/∂t)(t/∂y)
=(2rs ln t)(4) + rs2/t3xy2=8x
2
(4y+1)lnxy3+3x
2
(4y+1)
2
/y
57. w/∂ρ =2ρ4 sin2φ+ cos2φ,w/∂φ =6ρ
2sin φcos φ,w/∂θ =0
58. dw
dx =∂w
∂x +∂w
∂y
dy
dx +∂w
∂z
dz
dx =3y
2
z
3+(6xyz3)(6x)+9xy2z21
2x1
= 3(3x2+2)
2
(x1)3/2+36x
2
(3x2+ 2)(x1)3/2+9
2x(3x2+2)
2
x1
=3
2(3x2+ 2)(39x330x2+10x4)x1
59. (a) V=`wh, dV
dt =∂V
∂`
d`
dt +∂V
∂w
dw
dt +∂V
∂h
dh
dt =whd`
dt +`hdw
dt +`w dh
dt
= (3)(6)(1) + (2)(6)(2) + (2)(3)(3) = 60 in3/s
(b) D=p`2+w2+h2;dD/dt =(`/D)d`/dt +(w/D)dw/dt +(h/D)dh/dt
=(2/7)(1) + (3/7)(2) + (6/7)(3) = 26/7 in/s
60. (a) A/∂a =(1/2)bsin θ=(1/2)(10) 3/2=5
3/2
(b) A/∂θ =(1/2)ab cos θ=(1/2)(5)(10)(1/2)=25/2
(c) b=(2Acsc θ)/a,b/∂a =(2Acsc θ)/a2=b/a =2
61. Let z=f(u) where u=x+2y; then z/∂x =(dz/du)(u/∂x)=dz/du,
z/∂y =(dz/du)(u/∂y)=2dz/du so 2z/∂x z/∂y =2dz/du 2dz/du =0
62. Let z=f(u) where u=x2+y2; then z/∂x =(dz/du)(u/∂x)=2x dz/du,
z/∂y =(dz/du)(u/∂y)=2ydz/du so y∂z/xx∂z/∂y =2xydz/du 2xydz/du =0
63. w/∂x =(dw/dρ)(ρ/∂x)=(x/ρ)dw/dρ, similarly w/∂y =(y/ρ)dw/dρ and
w/∂z =(z/ρ)dw/dρ so (w/∂x)2+(w/∂y)2+(w/∂z)2=(dw/dρ)2
64. Let w=f(r, s, t) where r=xy,s=yz,t=zx;
w/∂x =(w/∂r)(r/∂x)+(w/∂t)(t/∂x)=w/∂r w/∂t, similarly
w/∂y =w/∂r +w/∂s and w/∂z =w/∂s +w/∂t so w/∂x +w/∂y +w/∂z =0
65. w/∂ρ = sin φcos θ∂w/∂x + sin φsin θ∂w/∂y + cos φ∂w/∂z
w/∂φ =ρcos φcos θ∂w/∂x +ρcos φsin θ∂w/∂y ρsin φ∂w/∂z
w/∂θ =ρsin φsin θ∂w/∂x +ρsin φcos θ∂w/∂y
Exercise Set 15.7 558
66. ∂F
∂x +∂F
∂z
∂z
∂x =0so ∂z
∂x =F/∂x
F/∂z ,∂F
∂y +∂F
∂z
∂z
∂y =0so ∂z
∂y =F/∂y
F/∂z .
67. ∂z
∂x =2x+yz
6yz xy ,∂z
∂y =xz 3z2
6yz xy
68. ln(1 + z)+xy2+z1=0; ∂z
∂x =y2(1+z)
2+z,∂z
∂y =2xy(1+z)
2+z
69. yex5 sin 3z3z=0; ∂z
∂x =yex
15 cos 3z3=yex
15 cos 3z+3,∂z
∂y =ex
15 cos 3z+3
70. ∂z
∂x =zeyz cos xz yexy cos yz
yexy sin yz +xeyz cos xz +yeyz sin xz ,∂z
∂y =zexy sin yz xexy cos yz +zeyz sin xz
yexy sin yz +xeyz cos xz +yeyz sin xz
71. f(u, v, w)= ∂f
∂xi+∂f
∂y j+∂f
∂z k
=∂f
∂u
∂u
∂x +∂f
∂v
∂v
∂x +∂f
∂w
∂w
∂x i+∂f
∂u
∂u
∂y +∂f
∂v
∂v
∂y +∂f
∂w
∂w
∂y j
+∂f
∂u
∂u
∂z +∂f
∂v
∂v
∂z +∂f
∂w
∂w
∂z k=∂f
∂uu+∂f
∂v v+∂f
∂ww
72. (a) ∂w
∂x =∂f
∂x +∂f
∂z
∂z
∂x (b) ∂w
∂y =∂f
∂y +∂f
∂z
∂z
∂y
73. wr=er/(er+es+et+eu), wrs =eres/(er+es+et+eu)2,
wrst =2e
r
e
s
e
t
/(e
r+e
s+e
t+e
u
)
3,
w
rstu =6ereseteu/(er+es+et+eu)4=6er+s+t+u/e4w=6er+s+t+u4w
74. w/∂y1=a1w/∂x1+a2w/∂x2+a3w/∂x3,
w/∂y2=b1w/∂x1+b2w/∂x2+b3w/∂x3
75. (a) dw/dt =
4
X
i=1
(w/∂xi)(dxi/dt)
(b) w/∂vj=
4
X
i=1
(w/∂xi)(∂xi/∂vj) for j=1,2,3
76. Let u=x2
1+x2
2+...+x
2
n
; then w=uk,w/∂xi=kuk1(2xi)=2kx
i
u
k1
,
2
w/x2
i=2k(k1)xiuk2(2xi)+2kuk1=4k(k1)x2
iuk2+2kuk1for i=1,2,...,n
so
n
X
i=1
2w/x2
i=4k(k1) uk2
n
X
i=1
x2
i+2kn uk1
=4k(k1)uk2u+2kn uk1=2kuk1[2(k1)+n]
which is 0 if k= 0 or if 2(k1)+n=0,k=1n/2.
77. dF/dx =(F/∂u)(du/dx)+(F/∂v)(dv/dx)
=f(u)g0(x)f(v)h0(x)=f(g(x))g0(x)f(h(x))h0(x)
559 Chapter 15
78. f=fxi+fyj+fzkand g=gxi+gyj+gzkevaluated at (x0,y
0,z
0) are normal, respectively,
to the surfaces f(x, y, z)=0andg(x, y, z)=0at(x
0
,y
0,z
0). The surfaces are orthogonal at
(x0,y
0,z
0) if and only if f·g=0sof
x
g
x+f
y
g
y+f
z
g
z=0.
79. f(x, y, z)=x
2+y
2+z
2a
2=0,g(x, y, z)=z
2x
2y
2=0,
f
x
g
x+f
y
g
y+f
z
g
z=4x
24y
2+4z
2=4g(x, y, z)=0
EXERCISE SET 15.8
1. (a) minimum at (2,1), no maxima (b) maximum at (0,0), no minima
(c) no maxima or minima
2. (a) maximum at (1,5), no minima (b) no maxima or minima
(c) no maxima or minima
3. f(x, y)=(x3)2+(y+2)
2
, minimum at (3,2), no maxima
4. f(x, y)=(x+1)
22(y1)2+ 4, maximum at (1,1), no minima
5. fx=6x+2y=0,f
y=2x+2y= 0; critical point (0,0); D=8>0 and fxx =6>0 at (0,0),
relative minimum.
6. fx=3x
23y=0,f
y=3x3y
2= 0; critical points (0,0) and (1,1); D=9<0 at (0,0),
saddle point; D=27>0 and fxx =6<0at(1,1), relative maximum.
7. fx=2x2xy =0,f
y=4yx
2= 0; critical points (0,0) and (±2,1); D=8>0 and fxx =2>0
at (0,0), relative minimum; D=16 <0at(±2,1), saddle points.
8. fx=3x
23=0,f
y=3y
23 = 0; critical points (1,±1) and (1,±1); D=36 <0at(1,1)
and (1,1), saddle points; D=36>0 and fxx =6>0 at (1,1), relative minimum; D=36>0
and fxx =36 <0at(1,1), relative maximum.
9. fx=y+2=0,f
y=2y+x+ 3 = 0; critical point (1,2); D=1<0at(1,2), saddle point.
10. fx=2x+y2=0,f
y=x2 = 0; critical point (2,2); D=1<0at(2,2), saddle point.
11. fx=2x+y3=0,f
y=x+2y= 0; critical point (2,1); D=3>0 and fxx =2>0at(2,1),
relative minimum.
12. fx=y3x2=0,f
y=x2y= 0; critical points (0,0) and (1/6,1/12); D=1<0 at (0,0),
saddle point; D=1>0 and fxx =1<0at(1/6,1/12), relative maximum.
13. fx=2x2/
x
2
y
=0,f
y=2y2/
xy2= 0; critical points (1,1) and (1,1); D=32>0
and fxx =6>0at(1,1) and (1,1), relative minima.
14. fx=ey= 0 is impossible, no critical points.
15. fx=2x=0,f
y=1e
y= 0; critical point (0,0); D=2<0at(0,0), saddle point.
16. fx=y2/x2=0,f
y=x4/y2= 0; critical point (1,2); D=3>0 and fxx =4>0at(1,2),
relative minimum.
Exercise Set 15.8 560
17. fx=exsin y=0,f
y=e
xcos y= 0, sin y= cos y= 0 is impossible, no critical points.
18. fx=ycos x=0,f
y= sin x= 0; sin x=0ifx=for n=0,±1,±2,... and cos x6= 0 for these
values of xso y= 0; critical points (, 0) for n=0,±1,±2,...;D=1<0at(, 0), saddle
points.
19. fx=2(x+1)e
(
x
2
+y
2
+2x)=0,f
y=2ye(x2+y2+2x)= 0; critical point (1,0); D=4e
2>0
and fxx =2e<0at(1,0), relative maximum.
20. fx=ya3/x2=0,f
y=xb
3
/y2= 0; critical point a2/b, b2/a;ifab>0 then D=3>0 and
fxx =2b
3
/a3>0ata
2
/b, b2/a, relative minimum; if ab < 0 then D=3>0 and
fxx =2b
3
/a3<0ata
2
/b, b2/a, relative maximum.
21.
-2 -1 0 1 2
-2
-1
0
1
2
f=(4x4y)i(4x4y3)j=0when x=y, x =y3,sox=y=0orx=y=±1. At
(0,0),D =16, a saddle point; at (1,1) and (1,1),D =32>0,f
xx = 4, a relative minimum.
22.
-5 -4 -3 -2 -1 0 1 2 3 4 5
-5
-4
-3
-2
-1
0
1
2
3
4
5140
100
140
100
60
60
40 20
20
20
0
0
0
-20
-20
-40
-60
-100
f=(2y
22xy +4y)i+(4xy x2+4x)j=0when 2y22xy +4y=0,4xy x2+4x= 0, with
solutions (0,0),(0,2),(4,0),(4/3,2/3). At (0,0), D=16, a saddle point. At (0,2),
D=16, a saddle point. At (4,0),D =16, a saddle point. At (4/3,2/3),D =16/3,
fxx =4/3>0, a relative minimum.
23. (a) critical point (0,0); D=0
(b) f(0,0)=0,x
4+y
40sof(x, y)f(0,0), relative minimum.
24. (a) critical point (0,0); D=0
(b) f(0,0) = 0, inside any circle centered at (0,0) there are points where f(x, y)>0 (along the
x-axis) and points where f(x, y)<0 (along the y-axis) so (0,0) is a saddle point.
561 Chapter 15
25. (a) fx=3e
y3x
2=3e
yx
2
=0,f
y=3xey3e3y=3e
yxe
2y
=0,e
y=x
2and
e2y=x,x4=x,xx31=0sox=0,1; critical point (1,0); D=27>0 and fxx =6<0
at (1,0), relative maximum.
(b) lim
x→−∞ f(x, 0) = lim
x→−∞ 3xx31=+so no absolute maximum.
26. fx=8xey8x3=8x(e
yx
2
)=0,f
y=4x
2
e
y4e
4y=4e
y
(x
2e
3y
)=0,x
2=e
yand
x2=e3y,e3y=ey,e2y=1,soy= 0 and x=±1; critical points (1,0) and (1,0). D= 128 >0
and fxx =16 <0 at both points so a relative maximum occurs at each one.
27. fx=y1=0,f
y=x3 = 0; critical point (3,1).
Along y=0: u(x)=x; no critical points,
along x=0: v(y)=3y; no critical points,
along y=4
5x+4: w(x)=4
5
x
2+27
5x12; critical point (27/8,13/10).
(x, y) (3,1) (0,0) (5,0) (0,4) (27/8,13/10)
f(x, y)3 0 512 231/80
Absolute maximum value is 0, absolute minimum value is 12.
28. fx=y2=0,f
y=x= 0; critical point (0,2), but (0,2) is not in the interior of R.
Along y=0: u(x)=2x; no critical points,
along x=0: v(y) = 0; no critical points,
along y=4x:w(x)=2xx
2
; critical point (1,3).
(x, y) (0,0) (0,4) (4,0) (1,3)
f(x, y) 0 0 8 1
Absolute maximum value is 1, absolute minimum value is 8.
29. fx=2x2=0,f
y=6y+ 6 = 0; critical point (1,1).
Along y=0: u
1
(x)=x
22x; critical point (1,0),
along y=2: u
2
(x)=x
22x; critical point (1,2)
along x=0: v
1
(y)=3y
2+6y; critical point (0,1),
along x=2: v
2
(y)=3y
2+6y; critical point (2,1)
(x, y) (1,1) (1,0) (1,2) (0,1) (2,1) (0,0) (0,2) (2,0) (2,2)
f(x, y) 2 11330000
Absolute maximum value is 3, absolute minimum value is 1.
30. fx=ey2x=0,f
y=xeyey=ey(x1) = 0; critical point (1,ln 2).
Along y=0: u
1
(x)=xx
21; critical point (1/2,0),
along y=1: u
2
(x)=ex x2e; critical point (e/2,1),
along x=0: v
1
(y)=e
y
; no critical points,
along x=2: v
2
(y)=e
y4; no critical points (for 0 <y<1).
(x, y) (0,0) (0,1) (2,1) (2,0) (1,ln 2) (1/2,0) (e/2,1)
f(x, y)1e e 4313/4e(e4)/4≈−0.87
Absolute maximum value is 3/4, absolute minimum value is 3.
Exercise Set 15.8 562
31. fx=2x1=0,f
y=4y= 0; critical point (1/2,0).
Along x2+y2=4:y
2=4x
2
,u(x)=8xx
2for 2x2; critical points (1/2,±15/2).
(x, y) (1/2,0) 1/2,15/21/2,15/2(2,0) (2,0)
f(x, y)1/4 33/4 33/4 6 2
Absolute maximum value is 33/4, absolute minimum value is 1/4.
32. fx=y2=0,f
y=2xy = 0; no critical points in the interior of R.
Along y=0: u(x) = 0; no critical points,
along x=0: v(y) = 0; no critical points
along x2+y2=1: w(x)=xx
3for 0 x1; critical point 1/3,p2/3.
(x, y) (0,0) (0,1) (1,0) 1/3,p2/3
f(x, y) 0 0 0 23/9
Absolute maximum value is 2
93, absolute minimum value is 0.
33. Maximize P=xyz subject to x+y+z= 48, x>0, y>0, z>0. z=48xyso
P=xy(48 xy)=48xy x2yxy2,Px=48y2xy y2=0,P
y=48xx
22xy = 0. But
x6= 0 and y6= 0 so 48 2xy= 0 and 48 x2y= 0; critical point (16,16). PxxPyy P2
xy >0
and Pxx <0 at (16,16), relative maximum. z= 16 when x=y= 16, the product is maximum for
the numbers 16,16,16.
34. Minimize S=x2+y2+z2subject to x+y+z= 27, x>0, y>0, z>0. z=27xyso
S=x2+y2+ (27 xy)2,Sx=4x+2y54=0,S
y=2x+4y54 = 0; critical point (9,9);
SxxSyy S2
xy =12>0 and Sxx =4>0 at (9,9), relative minimum. z= 9 when x=y= 9, the
sum of the squares is minimum for the numbers 9,9,9.
35. Maximize w=xy2z2subject to x+y+z=5,x>0, y>0, z>0. x=5yzso
w=(5yz)y
2
z
2=5y
2
z
2y
3
z
2y
2
z
3
,w
y=10yz23y2z22yz3=yz2(10 3y2z)=0,
w
z=10y
2
z2y
3
z3y
2
z
2=y
2
z(102y3z)=0,103y2z= 0 and 102y3z= 0; critical
point when y=z=2;w
yywzz w2
yz = 320 >0 and wyy =24 <0 when y=z= 2, relative
maximum. x= 1 when y=z=2,xy2z2is maximum at (1,2,2).
36. Minimize w=D2=x2+y2+z2subject to x2yz =5. x
2=5+yz so w=5+yz +y2+z2,
wy=z+2y=0,w
z=y+2z= 0; critical point when y=z=0;w
yywzz w2
yz =3>0 and
wyy =2>0 when y=z= 0, relative minimum. x2=5,x=±
5 when y=z= 0. The points
±5,0,0are closest to the origin.
37. The diagonal of the box must equal the diameter of the sphere, thus we maximize V=xyz or, for
convenience, w=V2=x2y2z2subject to x2+y2+z2=4a
2
,x>0,y>0,z>0; z2=4a
2
x
2
y
2
hence w=4a
2
x
2
y
2x
4
y
2x
2
y
4
,w
x=2xy2(4a22x2y2)=0,w
y=2x
2
y4a
2x
22y
2
=0,
4a
22x
2y
2= 0 and 4a2x22y2= 0; critical point 2a/3,2a/3;
wxxwyy w2
xy =4096
27 a8>0 and wxx =128
9a4<0at
2a/3,2a/3, relative maximum.
z=2a/3 when x=y=2a/3, the dimensions of the box of maximum volume are
2a/3,2a/3,2a/3.
38. Maximize V=xyz subject to x+y+z=1,x>0, y>0, z>0. z=1xyso V=xyx2yxy2,
Vx=y(1 2xy)=0,V
y=x(1 x2y)=0,12xy= 0 and 1 x2y= 0; critical point
(1/3,1/3); VxxVyy V2
xy =1/3>0 and Vxx =2/3<0at(1/3,1/3), relative maximum. The
maximum volume is V=(1/3)(1/3)(1/3)=1/27.
563 Chapter 15
39. Let x,y, and zbe, respectively, the length, width, and height of the box. Minimize
C= 10(2xy) + 5(2xz +2yz) = 10(2xy +xz +yz) subject to xyz = 16. z=16/(xy)
so C= 20(xy +8/y +8/x), Cx= 20(y8/x2)=0,C
y= 20(x8/y2)=0;
critical point (2,2); CxxCyy C2
xy = 1200 >0
and Cxx =40>0 at (2,2), relative minimum. z= 4 when x=y= 2. The cost of materials is
minimum if the length and width are 2 ft and the height is 4 ft.
40. Maximize the profit P= 500(yx)(x40) + [45,000 + 500(x2y)](y60)
= 500(x22y2+2xy 20x+ 170y5400).
Px= 1000(x+y10)=0,P
y= 1000(2y+x+ 85) = 0; critical point (65,75);
PxxPyy P2
xy =1,000,000 >0 and Pxx =1000 <0 at (65,75), relative maximum. The profit
will be maximum when x= 65 and y= 75.
41. (a) x=0:f(0,y)=3y
2
, minimum 3, maximum 0;
x=1,f(1,y)=43y
2+2y, ∂f
∂y (1,y)=6y+2=0aty=1/3, minimum 3,
maximum 13/3;
y=0,f(x, 0)=4x
2
, minimum 0, maximum 4;
y=1,f(x, 1)=4x
2+2x3,∂f
∂x(x, 1)=8x+2 6= 0 for 0 <x<1, minimum 3, maximum 3
(b) f(x, x)=3x
2
, minimum 0, maximum 3; f(x, 1x)=x
2
+8x3,d
dxf(x, 1x)=2x+8 6=0
for 0 <x<1, maximum 4, minimum 3
(c) fx(x, y)=8x+2y=0,f
y(x, y)=3y+2x= 0, solution is (0,0), which is not an interior
point of the square, so check the sides: minimum 3, maximum 14/3.
42. Maximize A=ab sin αsubject to 2a+2b=`,a>0, b>0, 0 <α<π.b=(`2a)/2so
A=(1/2)(`a 2a2) sin α,Aa=(1/2)(`4a) sin α,Aα=(a/2)(`2a) cos α; sin α6= 0 so from
Aa= 0 we get a=`/4 and then from Aα= 0 we get cosα=0,α=π/2. AaaAαα A2
=`2/8>0
and Aaa =2<0 when a=`/4 and α=π/2, the area is maximum.
43. Minimize S=xy +2xz +2yz subject to xyz =V,x>0, y>0, z>0 where x,y, and zare,
respectively, the length, width, and height of the box. z=V/(xy)soS=xy +2V/y +2V/x,
Sx=y2V/x2=0,S
y=x2V/y2= 0; critical point ( 3
2V, 3
2V); SxxSyy S2
xy =3>0 and
Sxx =2>0 at this point so there is a relative minimum there. The length and width are each
3
2V, the height is z=3
2V/2.
44. The altitude of the trapezoid is xsin φand the lengths of the lower and upper bases are, respectively,
27 2xand 27 2x+2xcos φso we want to maximize
A=(1/2)(xsin φ)[(27 2x)+(272x+2xcos φ)]=27xsin φ2x2sin φ+x2sin φcos φ.
Ax= sin φ(27 4x+2xcos φ),
Aφ=x(27 cos φ2xcos φxsin2φ+xcos2φ)=x(27 cos φ2xcos φ+2xcos2φx).
sin φ6= 0 so from Ax= 0 we get cosφ=(4x27)/(2x), x6= 0 so from Aφ= 0 we get
(27 2x+2xcos φ) cos φx= 0 which, for cos φ=(4x27)/(2x), yields 4x27 x=0,
x=9. Ifx= 9 then cosφ=1/2, φ=π/3. The critical point occurs when x= 9 and φ=π/3;
AxxAφφ A2
= 729/2>0 and Axx =33/2<0 there, the area is maximum when x= 9 and
φ=π/3.
Exercise Set 15.8 564
45. (a) ∂g
∂m =
n
X
i=1
2(mxi+byi)xi=2 m
n
X
i=1
x2
i+b
n
X
i=1
xi
n
X
i=1
xiyi!=0if
n
X
i=1
x2
i!m+ n
X
i=1
xi!b=
n
X
i=1
xiyi,
∂g
∂b =
n
X
i=1
2(mxi+byi)=2 m
n
X
i=1
xi+bn
n
X
i=1
yi!=0if n
X
i=1
xi!m+nb =
n
X
i=1
yi
(b) The function z=g(m, b), as a function of mand b, has only one critical point, found in part
(a), and tends to +as either |m|or |b|tends to infinity. Thus the only critical point must
be a minimum.
46. (a)
n
X
i=1
(xi¯x)2=
n
X
i=1 x2
ixxix
2
=
n
X
i=1
x2
ix
n
X
i=1
xi+n¯x2
=
n
X
i=1
x2
i2
n n
X
i=1
xi!2
+1
n n
X
i=1
xi!2
=
n
X
i=1
x2
i1
n n
X
i=1
xi!2
>0son
n
X
i=1
x2
i n
X
i=1
xi!2
>0
(b) gmm =2
n
X
i=1
x2
i,g
bb =2n, gmb =2
n
X
i=1
xi,
D=gmmgbb g2
mb =4
n
n
X
i=1
x2
i n
X
i=1
xi!2
>0 and gmm >0
(c) g(m, b) is of the second-degree in mand bso the graph of z=g(m, b) is a quadric surface.
(d) The only quadric surface of this form having a relative minimum is a paraboloid that opens
upward where the relative minimum is also the absolute minimum.
47. n=3,
3
X
i=1
xi=3,
3
X
i=1
yi=7,
3
X
i=1
xiyi=13,
3
X
i=1
x2
i=11,y =3
4x+19
12
48. n=4,
4
X
i=1
xi=7,
4
X
i=1
yi=4,
4
X
i=1
x2
i=21,
4
X
i=1
xiyi=2,y =36
35x+14
5
49.
4
X
i=1
xi=10,
4
X
i=1
yi=8.2,
4
X
i=1
x2
i=30,
4
X
i=1
xiyi=23,n=4; m=0.5,b=0.8,y=0.5x+0.8.
50.
5
X
i=1
xi=15,
5
X
i=1
yi=15.1,
5
X
i=1
x2
i=55,
5
X
i=1
xiyi=39.8,n=5;m=0.55,b =4.67,y =4.670.55x
565 Chapter 15
51. (a) y=8843
140 +57
200t63.1643 + 0.285t(b)
600(1930)
60
80
(c) y=2909
35 83.1143
52. (a) y119.84 1.13x(b) 90
60
35 50
(c) about 52 units
53. (a) P=2798
21 +171
350T133.2381 + 0.4886T(b)
1200
130
190
(c) T≈−139,900
513 =≈−272.7096C
54. (a) for example, z=y
(b) For example, on 0 x1,0y1 let z=(yif 0 <x<1,0<y<1
1/2ifx=0,1ory=0,1
55. f(x0,y
0)f(x, y) for all (x, y) inside a circle centered at (x0,y
0) by virtue of Definition 15.8.1.
If ris the radius of the circle, then in particular f(x0,y
0)f(x, y0) for all xsatisfying
|xx0|<rso f(x, y0) has a relative maximum at x0. The proof is similar for the function
f(x0,y).
EXERCISE SET 15.9
1. (a) xy = 4 is tangent to the line, so the maximum value of fis 4.
(b) xy = 2 intersects the curve and so gives a smaller value of f.
(c) Maximize f(x, y)=xy subject to the constraint g(x, y)=x+y4=0,f=λg,
yi+xj=λ(i+j), so solve the equations y=λ, x =λwith solution x=y=λ, but x+y=4,
so x=y= 2, and the maximum value of fis f=xy =4.
Exercise Set 15.9 566
2. (a) x2+y2= 25 is tangent to the line at (3,4), so the minimum value of fis 25.
(b) A smaller value of fyields a circle of a smaller radius, and hence does not intersect the line.
(c) Minimize f(x, y)=x
2+y
2subject to the constraint g(x, y)=3x+4y25=0,f=λg,
2xi+2yj=3λi+4λj, so solve 2x=3λ, 2y=4λ; solution is x=3,y = 4, minimum = 25.
3. y=8,x=16;y/(8x)=x/(16y), x2=2y
2so 4 2y2+8y
2= 16, y2=1,y=±1. Test
±2,1and (±2,1). f2,1=f2,1=2, f2,1=f2,1=2.
Maximum 2at
2,1
and 2,1, minimum 2at
2,1
and 2,1.
4. 2x=2xλ, 1=2.Ifx6= 0 then λ= 1 and y=1/2sox
2+(1/2)2= 25,
x2=99/4, x=±311/2. If x= 0 then 02+y2= 25, y=±5. Test ±311/2,1/2and (0,±5).
f±311/2,1/2= 101/4, f(0,5)=5,f(0,5) = 5. Maximum 101/4at±3
11/2,1/2,
minimum 5 at (0,5).
5. 12x2=4,2y=2.Ify6= 0 then λ= 1 and 12x2=4x,12x(x1/3)=0,x=0orx=1/3
so from 2x2+y2= 1 we find that y=±1 when x=0,y=±
7/3 when x=1/3. If y=0
then 2x2+ (0)2=1,x=±1/
2. Test (0,±1), 1/3,±7/3, and ±1/2,0.f(0,±1)=1,
f
1/3,±
7/3
=25/27, f1/2,0=2, f1/2,0=2. Maximum 2at
1/
2,0
,
minimum 2at1/
2,0
.
6. 1=2,3=6;1/(2x)=1/(2y), y=xso x2+3(x)
2= 16, x=±2. Test (2,2) and
(2,2). f(2,2) = 9, f(2,2) = 7. Maximum 7 at (2,2), minimum 9at(2,2).
7. 2=2xλ, 1=2, 2=2;1/x =1/(2y)=1/z thus x=2y,z=2yso
(2y)2+y2+(2y)
2=4,y
2=4/9, y=±2/3. Test (4/3,2/3,4/3) and (4/3,2/3,4/3).
f(4/3,2/3,4/3) = 6, f(4/3,2/3,4/3) = 6. Maximum 6 at (4/3,2/3,4/3), minimum 6
at (4/3,2/3,4/3).
8. 3=4,6=8,2=2;3/(4x)=3/(4y)=1/z thus y=x,z=4x/3, so
2x2+4(x)
2+(4x/3)2= 70, x2=9,x=±3. Test (3,3,4) and (3,3,4).
f(3,3,4) = 35, f(3,3,4) = 35. Maximum 35 at (3, 3, 4), minimum 35 at (3,3,4).
9. yz =2,xz =2,xy =2;yz/(2x)=xz/(2y)=xy/(2z)thusy
2=x
2
,z
2=x
2so
x2+x2+x2=1,x=±1/
3. Test the eight possibilities with x=±1/3, y=±1/3, and
z=±1/3 to find the maximum is 1/33at 1/3,1/3,1/3,1/3,1/3,1/3,
1/3,1/3,1/3, and 1/3,1/3,1/3; the minimum is 1/33at
1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3, and 1/3,1/3,1/3.
10. 4x3=λ, 4y3=λ, 4z3=λ,sox=y=z;x+y+z=3x=1,x =y=z=1/3, minimum value
1/27, no maximum
11. f(x, y)=x
2+y
2
;2x=2λ,2y=4λ;y=2xso 2x4(2x)=3,x=3/10. The point is
(3/10,3/5).
12. f(x, y)=(x4)2+(y2)2,g(x, y)=y2x3; 2(x4) = 2λ,2(y2) = λ;x4=2(y2),
x=2y+8soy=2(2y+8)+3,y=19/5. The point is (2/5,19/5).
13. f(x, y, z)=x
2+y
2+z
2
;2x=λ,2y=2λ,2z=λ;y=2x,z=xso x+ 2(2x)+x=1,x=1/6.
The point is (1/6,1/3,1/6).
14. f(x, y, z)=(x1)2+(y+1)
2+(z1)2;2(x1)=4λ,2(y+1)=3λ,2(z1) = λ;x=4z3,
y=3z4so4(4z3) + 3(3z4)+z=2,z= 1. The point is (1,1,1).
567 Chapter 15
15. f(x, y)=(x1)2+(y2)2;2(x1)=2,2(y2)=2;(x1)/x =(y2)/y,y=2x
so x2+(2x)
2= 45, x=±3. f(3,6) = 80 and f(3,6) = 20 so (3,6) is closest and (3,6) is
farthest.
16. f(x, y, z)=x
2+y
2+z
2
;2x=,2y=,2z=2.Ifz6= 0 then λ=1so2x=yand
2y=x,x=y= 0; substitute into xy z2= 1 to get z2=1 which has no real solution. If
z= 0 then xy (0)2=1,y=1/x, and also (from 2x=and 2y=), 2x/y =2y/x,y2=x2
so (1/x)2=x2,x4=1,x=±1. Test (1,1,0) and (1,1,0) to see that they are both closest to
the origin.
17. f(x, y, z)=x+y+z,x
2+y
2+z
2= 25 where x,y, and zare the components of the vector;
1=2,1=2,1=2;1/(2x)=1/(2y)=1/(2z); y=x,z=xso x2+x2+x2= 25,
x=±5/3. f5/3,5/3,5/3=53 and f5/3,5/3,5/3=5
3 so the vector
is 5(i+j+k)/3.
18. x2+y2= 25 is the constraint; 8x4y=2,4x+2y=2;(4x2y)/x =(2x+y)/y,
2x2+3xy 2y2=0,(2xy)(x+2y)=0,y=2xor x=2y.Ify=2xthen x2+(2x)
2= 25,
x=±5. If x=2ythen 2y2+y2= 25, y=±5. T5,25=T5,25= 0 and
T25,5=T25,5= 125. The highest temperature is 125 and the lowest is 0.
19. (a)
31.5
-31.5
-27
15 (b) minimum value 5,
maximum value 101/4
(c) Find the minimum and maximum values of f(x, y)=x
2ysubject to the constraint
g(x, y)=x
2+y
225=0,f=λg, 2xij=2λxi+2λyj, so solve 2x=2λx, 1=2λy.
If x= 0 then y=±5,f =5, and if x6= 0 then λ=1,y =1/2,x
2=251/4=99/4,
f=99/4+1/2 = 101/4, so the maximum value of fis 101/4at(±3
11/2,1/2) and the
minimum value of fis 5at(0,5).
20. (a)
0 1 2 3 4 5 6
0
1
2
3
4
5
6(b) f15
(d) Set f(x, y)=x
3+y
33xy, g(x, y)=(x4)2+(y4)225; minimize fsubject to the
constraint g=0: f=λg, (3x23y)i+(3y
23x)j=2λ(x4)i+2λ(y4)j, so solve
(use a CAS) 3x23y=2λ(x4),3y23x=2λ(y4); minimum value f=14.52 at
(2.5858,2.5858)
21. Minimize f=x2+y2+z2subject to g(x, y, z)=x+y+z27=0. f=λg,
2xi+2yj+2zk=λi+λj+λk, solution x=y=z= 9, minimum value 243
Exercise Set 15.9 568
22. Maximize f(x, y, z)=xy2z2subject to g(x, y, z)=x+y+z5=0,f=λg=λ(i+j+k),
λ=y
2
z
2=2xyz2=2xy2z, λ = 0 is impossible, hence x, y, z 6= 0, and z=y=2x, 5x5=0,
x=1,y =z= 2, maximum value 8 at (1,2,2)
23. Minimize f=x2+y2+z2subject to x2yz =5,f=λg, 2x=2xλ, 2y=,2z=.
If λ6=±2, then y=z=0,x =±5,f =5;ifλ=±2 then x= 0, and since yz =5,
y=z=±
5,f = 10, thus the minimum value is 5 at (±5,0,0).
24. The diagonal of the box must equal the diameter of the sphere so maximize V=xyz or, for
convenience, maximize f=V2=x2y2z2subject to g(x, y, z)=x
2+y
2+z
24a
2=0,f=λg,
2xy2z2=2λx, 2x2yz2=2λy, 2x2y2z=2λz. Since V6= 0 it follows that x, y, z 6= 0, hence
x=±y=±z,3x2=4a
2
,x=±2a/3, maximum volume 8a3/(33).
25. Let x,y, and zbe, respectively, the length, width, and height of the box. Minimize
f(x, y, z) = 10(2xy) + 5(2xz +2yz) = 10(2xy +xz +yz) subject to g(x, y, z)=xyz 16=0,
f=λg, 20y+10z=λyz, 20x+10z=λxz, 10x+10y=λz. Since V=xyz =16,x,y,z 6=0,
thus λz = 20 + 10(z/y)=20+10(z/x)=10x+10y,sox=y. Then z=16/x2,thus
20 + 10(16/x3)=20x, x3+8=x
4
, the only real solution of which is x= 2,thus x=y=2,z =4,
minimum value 240.
26. Minimize f(p, q, r)=2pq +2pr+2qr, subject to g(p, q, r)=p+q+r1=0,
(p,q,r)f=λ(p,q,r)g,
2(q+r)=λ, 2(p+r)=λ, 2(p+q)=λ, solution p=q=r=1/3, minimum value 2/3.
27. Maximize A(a, b, α)=ab sin αsubject to g(a, b, α)=2a+2b`=0,
(a,b,α)f=λ(a,b,α)g,
bsin α=2λ, a sin α=2λ, ab cos α= 0 with solution a=b, α =π/2 maximum value if parallelogram
is a square.
28. Minimize f(x, y, z)=xy +2xz +2yz subject to g(x, y, z)=xyz V=0,f=λg,
y+2z=λyz, x +2z=λxz, 2x+2y=λxy;λ= 0 leads to x=y=z= 0, impossible, so solve for
λ=1/z +2/x =1/z +2/y =2/y +2/x,sox=y=2z, x3=2V, minimum value 3(2V)2/3
29. (a) Maximize f(α, β, γ) = cos αcos βcos γsubject to g(α, β, γ)=α+β+γπ=0,
f=λg, sin αcos βcos γ=λ, cos αsin βcos γ=λ, cos αcos βsin γ=λwith solution
α=β=γ=π/3, maximum value 33/8
(b) for example, f(α, β) = cos αcos βcos(παβ)
z
xy
30. Find maxima and minima z=x2+4y
2subject to the constraint g(x, y)=x
2+y
21=0,
z=λg, 2xi+8yj=2λxi+2λyj, solve 2x=2λx, 8y=2λy.Ify6= 0 then λ=4,x =0,y
2=1
and z=x2+4y
2=4. Ify= 0 then x2= 1 and z= 1, so the maximum height is obtained for
(x, y)=(0,±1),z = 4 and the minimum height is z= 1 at (±1,0).
569 Chapter 15
CHAPTER 15 SUPPLEMENTARY EXERCISES
1. (a) They approximate the profit per unit of any additional sales of the standard or high-resolution
monitors, respectively.
(b) The rates of change with respect to the two directions xand y, and with respect to time.
3. z=px2+y2=cimplies x2+y2=c2, which is the equation of a circle; x2+y2=cis also the
equation of a circle (for c>0).
-3 3
-3
3
x
y
z = x2 + y2
-3 3
-3
3
x
y
z = x2 + y2
5. (b) f(x, y, z)=zx
2y
2
7. (a) f(ln y, ex)=e
ln yln ex=xy (b) er+sln rs
8. (a)
x
y
y = 1
x
(b)
x
y
–1 1
9. wx=2xsec2(x2+y2)+
y, wxy =8xy sec2(x2+y2) tan(x2+y2)+1
2y
1/2
,
w
y=2ysec2(x2+y2)+1
2xy1/2,w
yx =8xy sec2(x2+y2) tan(x2+y2)+1
2y
1/2
10. w/∂x =1
xysin(x+y),∂2w/∂x2=1
(xy)2cos(x+y),
w/∂y =1
xysin(x+y),∂
2
w/y2=1
(xy)2cos(x+y)=
2
w/x2
11. Fx=6xz, Fxx =6z,Fy=6yz, Fyy =6z,Fz=6z
23x
23y
2
,
F
zz =12z,Fxx +Fyy +Fzz =6z6z+12z=0
12. fx=yz +2x, fxy =z, fxyz =1,f
xyzx =0; f
z=xy (1/z),f
zx =y, fzxx =0,f
zxxy =0
Chapter 15 Supplementary Exercises 570
13. (a) P=10T
V,dP
dT =10
V
dT
dt = 12 K/(m2min) (b) dP
dt =10 P
V2
dV
dt = 240 K/(m2min)
14. (a) z=1y
2
, slope = ∂z
∂y =2y=4 (b) z=14x
2
,∂z
∂x =8x=8
15. x4x+yx3y=(x
31)(xy), limit = 1, continuous
16. x4y4
x2+y2=x2y2, limit = lim
(x,y)(0,0)(x2y2) = 0, continuous
17. Use the unit vectors u=h1
2,1
2i,v=h0,1i,w=h− 1
5,2
5i=2
5u+1
5v, so that
Dwf=2
5Duf+1
5Dvf=2
522+ 1
5(3) = 7
5
18. (a) n =zxi+zyjk=8i+8jk, tangent plane 8x+8yz= 4 + 8 ln 2, normal line
x(t)=1+8t, y(t)=ln2+8t, z(t)=4t
(b) n =3i+10j14k, tangent plane 3x+10y14z= 30, normal line
x(t)=2+3t, y(t)=1+10t, z(t)=114t
19. The origin is not such a point, so assume that the normal line at (x0,y
0,z
0)6=(0,0,0) passes
through the origin, then n=zxi+zyjk=y0ix0jk; the line passes through the origin and
is normal to the surface if it has the form r(t)=y
0
tix
0
tjtkand (x0,y
0,z
0)=(x
0
,y
0,2x
0y
0)
lies on the line if y0t=x0,x0t=y0,t=2x
0
y
0
, with solutions x0=y0=1,
x0=y0=1,x
0=y
0= 0; thus the points are (0,0,2),(1,1,1),(1,1,1).
20. n =2
3x1/3
0i+2
3y1/3
0j+2
3z1/3
0k, tangent plane x1/3
0x+y1/3
0y+z1/3
0z=x2/3
0+y2/3
0+z2/3
0=1;
intercepts are x=x1/3
0,y =y
1/3
0,z =z1/3
0, sum of squares of intercepts is x2/3
0+y2/3
0+z2/3
0=1.
21. A tangent to the line is 6i+4j+k, a normal to the surface is n=18xi+8yjk, so solve
18x=6k, 8y=4k, 1=k;k=1,x =1/3,y =1/2,z =2
22. w=(1.1)2(0.1) 2(1.1)(0.1)+(0.1)2(1.1) 0=0.11,
dw =(2xy 2y+y2)dx +(x
22x+2yx)dy =(0.1)=0.1
23. dV =2
3xhdx +1
3x2dh =2
32(0.1) + 1
3(0.2) = 0.06667 m3;∆V=0.07267 m3
24. f=(2x+3y6)i+(3x+6y+3)j=0if 2x+3y=6,x+2y=1,x=15,y =8,D =3>0,
f
xx =2>0, so fhas a relative minimum at (15,8).
25. f=(2xy 6x)i+(x
212y)j=0if 2xy 6x=0,x
212y=0;ifx= 0 then y= 0, and
if x6= 0 then y=3,x =±6, thus the gradient vanishes at (0,0),(6,3),(6,3); fxx = 0 at all
three points, fyy =12 <0,D =4x
2,so(±6,3) are saddle points, and near the origin we write
f(x, y)=(y3)x26y2; since y3<0 when |y|<3, fhas a maximum by inspection.
26. f=(3x
23y)i(3xy)j=0if y=x2,3x=y,sox=y=0orx=3,y =9;at
x=y=0,D =9, saddle point; at x=3,y =9,D =9,f
xx =18>0, relative minimum
571 Chapter 15
27. (a)
P = 1
P = 3
P = 2
12345
1
2
3
4
5
L
K(b)
012345
0
1
2
3
4
5
28. (a) P/∂L =cαLα1Kβ,∂P/K =LαKβ1
(b) the rates of change of output with respect to labor and capital equipment, respectively
(c) K(P/∂K)+L(P/∂L)=LαKβ+cαLαKβ=(α+β)P=P
29. (a) L+K= 200,000,P = 1000L0.6(200,000 L)0.4,
dP/dL = 600(200,000 L)0.4
L4400 L6
(200,000 L)0.6= 0 when L= 120,000,
P= 102,033,960.1, which is a maximum because P=0atL=0,200,000, P>0 in between,
and dP/dL = 0 has only the one solution.
(b) Since L+K= 200,000 and L= 120,000,K =80,000
30. (a) y2=84x
2
, find extrema of f(x)=x
2
(8 4x2)=4x
4+8x
2defined for 2x2.
Then f0(x)=16x3+16x= 0 when x=0,±1,f00(x)=48x2+ 16, so fhas a relative
maximum at x=±1,y =±2 and a relative minimum at x=0,y =±2
2. At the endpoints
x=±2,y = 0 we obtain the minimum f= 0 again.
(b) f(x, y)=x
2
y
2
,g(x, y)=4x
2+y
28=0,f=2xy2i+2x
2
yj=λg=8λxi+2λyj,so
solve 2xy2=λ8x, 2x2y=λ2y.Ifx= 0 then y=±22, and if y= 0 then x=±2. In
either case fhas a relative and absolute minimum. Assume x, y 6= 0, then y2=4λ, x2=λ,
use g= 0 to obtain x2=1,x =±1,y =±2, and f= 4 is a relative and absolute maximum
at (±1,±2).
31. Let a corner of the box be at (x, y, z), so that (x/a)2+(y/b)2+(z/c)2= 1. Maximize V=xyz
subject to g(x, y, z)=(x/a)2+(y/b)2+(z/c)2=1,solve V=λg,or
yzi+xzj+xyk=(2λx/a2)i+(2λy/b2)j+(2λz/c2)k,a
2yz =2λx, b2xz =2λy, c2xy =2λz. For the
maximum volume, x, y, z 6= 0; divide the first and second equations to obtain a2y2=b2x2; the first
and third to obtain a2z2=c2x2, and finally b2z2=c2y2. From g= 0 get 3(x/a)2=1,x =±a/3,
and then y=±b/3,z =±c/3. The dimensions of the box are 2a
3×2b
3×2c
3, and the
maximum volume is 8abc/(33).
32. (a) Let f(x, y)=3x
25xy + tan xy = 0. Then
df
dx =6x5y+ysec2xy +(5x+xsec2xy)dy
dx =0,so dy
dx =6x5y+ysec2xy
5xxsec2xy .
(b) Let g(x, y)=xln y+ sin(xy)=π, dg
dx =lny+ cos(xy)+x
ycos(xy)dy
dx =0,
dy
dx =ln y+ cos(xy)
x/y + cos(xy)
Chapter 15 Supplementary Exercises 572
33. F(x, y)=0,F
x+F
y
dy
dx =0,F
xx +Fxy
dy
dx +Fyx
dy
dx +Fy
d2y
dx2=0,thus
dy
dx =Fx
Fy
,d2y
dx2=Fxx +2F
xy(dy/dx)
Fy
=FxxFy2FxFxy
F2
y
34. Denote the currents I1,I
2,I
3by x, y, z respectively. Then minimize F(x, y, z)=x
2
R
1
+y
2
R
2
+z
2
R
3
subject to g(x, y, z)=x+y+zI= 0, so solve F=λg, 2xR1i+2yR2j+2zR3k=λ(i+j+k),
λ=2xR1=2yR2=2zR3, so the minimum value of Foccurs when I1:I2:I3=1
R1
:1
R2
:1
R3
.
35. Solve (t1)2/4+16e
2t+(2
t)
2= 1 for tto get t=1.8332,2.83984; the particle strikes
the surface at the points P1(0.8332,0.63959,0.64603),P
2(1.83984,0.23374,0.31482). The velocity
vectors are given by v=dx
dt i+dy
dt j+dz
dt k=i4etj1/(2t)k, and a normal to the surface is
n=(x2/4+y
2+z
2
)=x/2i+2yj+2zk. At the points Pithese are
v1=i0.639589j0.369286k,v2=i0.23374j+0.29670k;
n1=0.41661i+1.27918j+1.29207kand n2=0.91992i+0.46748j+0.62963kso
cos1[(vi·ni)/(kvikkn
ik)] = 112.3,61.1; the acute angles are 67.7,61.1.
36. (a) F0(x)=Z1
0
e
ycos(xey)dy =sin(ex)sin x
x
(b) Use a CAS to get x=π
e+1 so the maximum value of F(x)is
Fπ
e+1=Z1
0
sin π
e+1e
ydy 0.909026.
37. Let x, y, z be the lengths of the sides opposite angles α, β, γ, located at A, B, C respectively. Then
x2=y2+z22yz cos αand x2= 100 + 400 2(10)(20)/2 = 300,x =10
3 and
2xdx
dt =2ydy
dt +2zdz
dt 2ydz
dt cos α+zdy
dt cos αyz(sin α)
dt
= 2(10)(4) + 2(20)(2) 2 10(2)1
2+ 20(4)1
210(20)3
2
π
60!=60+10π
3
so dx
dt =3+π
6, the length of BC is increasing.
38. (a) d
dt ∂z
∂x=
∂x ∂z
∂xdx
dt +
∂y ∂z
∂xdy
dt =2z
∂x2
dx
dt +2z
∂y∂x
dy
dt by the Chain Rule, and
d
dt ∂z
∂y=
∂x ∂z
∂ydx
dt +
∂y ∂z
∂ydy
dt =2z
∂x∂y
dx
dt +2z
∂y2
dy
dt
(b) dz
dt =∂z
∂x
dx
dt +∂z
∂y
dy
dt ,
d2z
dt2=dx
dt 2z
∂x2
dx
dt +2z
∂y∂x
dy
dt +∂z
∂x
d2x
dt2+dy
dt 2z
∂x∂y
dx
dt +2z
∂y2
dy
dt +∂z
∂y
d2y
dt2
573
CHAPTER 16
Multiple Integrals
EXERCISE SET 16.1
1. Z1
0Z2
0
(x+3)dy dx =Z1
0
(2x+6)dx =7 2. Z3
1Z1
1
(2x4y)dy dx =Z3
1
4xdx=16
3. Z4
2Z1
0
x2ydxdy=Z4
2
1
3ydy =2 4. Z0
2Z2
1
(x2+y2)dx dy =Z0
2
(3+3y
2
)dy =14
5. Zln 3
0Zln 2
0
ex+ydy dx =Zln 3
0
exdx =2
6. Z2
0Z1
0
ysin xdydx=Z2
0
1
2sin xdx=(1cos 2)/2
7. Z0
1Z5
2
dx dy =Z0
1
3dy =3 8. Z6
4Z7
3
dy dx =Z6
4
10dx =20
9. Z1
0Z1
0
x
(xy +1)
2dy dx =Z1
011
x+1dx =1ln 2
10. Zπ
π/2Z2
1
xcos xy dy dx =Zπ
π/2
(sin 2xsin x)dx =2
11. Zln 2
0Z1
0
xy ey2xdy dx =Zln 2
0
1
2(ex1)dx =(1ln 2)/2
12. Z4
3Z2
1
1
(x+y)2dy dx =Z4
31
x+11
x+2dx = ln(25/24)
13. Z1
1Z2
2
4xy3dy dx =Z1
1
0dx =0
14. Z1
0Z1
0
xy
px2+y2+1dy dx =Z1
0
[x(x2+2)
1/2x(x
2+1)
1/2
]dx =(3
34
2+1)/3
15. Z1
0Z3
2
xp1x2dy dx =Z1
0
x(1 x2)1/2dx =1/3
16. Zπ/2
0Zπ/3
0
(xsin yysin x)dy dx =Zπ/2
0x
2π2
18 sin xdx =π2/144
19. V=Z5
3Z2
1
(2x+y)dy dx =Z5
3
(2x+3/2)dx =19
20. V=Z3
1Z2
0
(3x3+3x
2
y)dy dx =Z3
1
(6x3+6x
2
)dx = 172
Exercise Set 16.1 574
21. V=Z2
0Z3
0
x2dy dx =Z2
0
3x2dx =8
22. V=Z3
0Z4
0
5(1 x/3)dy dx =Z3
0
5(4 4x/3)dx =30
23. (a)
(1, 0, 4)
(2, 5, 0)
x
y
z(b)
(0, 0, 5)
(3, 4, 0)
z
x
y
24. (a)
(1, 1, 0)
(0, 0, 2)
x
y
z(b)
(2, 2, 0)
(2, 2, 8)
x
y
z
25. Z1/2
0Zπ
0
xcos(xy) cos2πx dy dx =Z1/2
0
cos2πx sin(xy)iπ
0dx
=Z1/2
0
cos2πx sin πx dx =1
3cos3πxi1/2
0=1
3π
26. (a)
y
x
z
5
3
(b) The projection onto the xy-plane consists of R1:[0,5] ×[0,1], over which lie each of the two
skew planes, and R2:[0,5] ×[1,3], over which is only the plane z=2y+6,so
V=Z5
0Z1
0
((2y+6)y)dy dx +Z5
0Z3
1
(2y+6)dy dx =45
2+20= 85
2
27. fave =2
πZπ/2
0Z1
0
ysin xy dy dx =2
πZπ/2
0cos xyi1
0dx =2
πZπ/2
0
(1 cos x)dx =12
π
575 Chapter 16
28. average = 1
3Z3
0Z1
0
x(x2+y)1/2dx dy =Z3
0
1
9[(1 + y)3/2y3/2]dy = 2(31 93)/45
29. Tave =1
2Z1
0Z2
010 8x22y2dy dx =1
2Z1
044
316x2dx =14
3
30. fave =1
A(R)Zb
aZd
c
kdydx=1
A(R)(ba)(dc)k=k
31. 0.6211310829 32. 2.230985141
33. ZZ
R
f(x, y)dA =Zb
a"Zd
c
g(x)h(y)dy#dx =Zb
a
g(x)"Zd
c
h(y)dy#dx
="Zb
a
g(x)dx#"Zd
c
h(y)dy#
34. The integral of tan x(an odd function) over the interval [1,1] is zero.
35. The first integral equals 1/2, the second equals 1/2. No, because the integrand is not continuous.
36. (a)
16
X
k=1
f(x
k,y
k)∆A
k=
4
X
i=1
4
X
j=1 i
21
42j
21
41
22
=4
(b) Z2
0Z2
0
(x2y)dy dx =Z2
0
(2x4) dx =4
EXERCISE SET 16.2
1. Z1
0Zx
x2
xy2dy dx =Z1
0
1
3(x4x7)dx =1/40
2. Z3/2
1Z3y
y
ydxdy=Z3/2
1
(3y2y2)dy =7/24
3. Z3
0Z9y2
0
ydxdy=Z3
0
y
p9y
2dy =9
4. Z1
1/4Zx
x2px/y dy dx =Z1
1/4Zx
x2
x1/2y1/2dy dx =Z1
1/4
2(xx3/2)dx =13/80
5. Z2π
πZx3
0
sin(y/x)dy dx =Z2π
π
[xcos(x2)+x]dx =π/2
6. Z1
1Zx2
x2
(x2y)dy dx =Z1
1
2x4dx =4/57. Zπ
π/2Zx2
0
1
xcos(y/x)dy dx =Zπ
π/2
sin xdx=1
Exercise Set 16.2 576
8. Z1
0Zx
0
ex2dy dx =Z1
0
xex2dx =(e1)/29. Z1
0Zx
0
ypx2y2dy dx =Z1
0
1
3x3dx =1/12
10. Z2
1Zy2
0
ex/y2dx dy =Z2
1
(e1)y2dy =7(e1)/3
11. (a) Z2
0Zx2
0
xy dy dx =Z2
0
1
2x5dx =16
3
(b) Z3
1Z(y+7)/2
(y5)/2
xy dx dy =Z3
1
(3y2+3y)dy =38
12. (a) Z1
0Zx
x2
(x+y)dy dx =Z1
0
(x3/2+x/2x3x4/2)dx =3/10
(b) Z1
1Z1x2
1x2
xdydx+Z1
1Z1x
2
1x
2
ydydx=Z1
1
2x
p1x
2dx +0=0
13. Z8
4Zx
16/x
x2dy dx =Z8
4
(x316x)dx = 576 14. Z2
1Zy
0
xy2dx dy =Z2
1
1
2y4dy =31/10
15. Z4
0Zy
0
x(1+y2)1/2dx dy =Z4
0
1
2y(1+y2)1/2dy =(
17 1)/2
16. Zπ
0Zx
0
xcos ydydx=Zπ
0
xsin xdx=π
17. Z1
1Z1x2
1x2
(3x2y)dy dx =Z1
1
6xp1x2dx =0
18. Z5
0Z25x2
5x
ydydx=Z5
0
(5xx2)dx = 125/6
19. Z2
0Z6y
y2
xy dx dy =Z2
0
1
2(36y12y2+y3y5)dy =50/3
20. Zπ/4
0Z1/2
sin y
xdxdy =Zπ/4
0
1
4cos 2ydy=1/8
21. Z0
1Zx3
x
(x1)dy dx +Z1
0Zx
x3
(x1)dy dx
=Z0
1
(x4x3x2+x)dx +Z1
0
(x4+x3+x2x)dx =1/2
22. Z1/2
0Z2x
x
x2dy dx +Z1
1/2Z1/x
x
x2dy dx =Z1/2
0
x3dx +Z1
1/2
(xx3)dx =1/8
577 Chapter 16
24. (a)
1 2 3
5
15
25
x
y
R
(b) (1,3),(3,27)
(c) Z3
1Z4x3x4
34x+4x2
xdydx=Z3
1
x[(4x3x4)(3 4x+4x
2
)] dx =224
15
25. A=Zπ/4
0Zcos x
sin x
dy dx =Zπ/4
0
(cos xsin x)dx =21
26. A=Z1
4Zy2
3y4
dx dy =Z1
4
(y23y+4)dy = 125/6
27. A=Z3
3Z9y2
1y2/9
dx dy =Z3
3
8(1 y2/9)dy =32
28. A=Z1
0Zcosh x
sinh x
dy dx =Z1
0
(cosh xsinh x)dx =1e
1
29. Z4
0Z63x/2
0
(3 3x/4y/2) dy dx =Z4
0
[(3 3x/4)(6 3x/2) (6 3x/2)2/4] dx =12
30. Z2
0Z4x2
0p4x2dy dx =Z2
0
(4 x2)dx =16/3
31. V=Z3
3Z9x2
9x2
(3 x)dy dx =Z3
3
(6p9x22xp9x2)dx =27π
32. V=Z1
0Zx
x2
(x2+3y
2
)dy dx =Z1
0
(2x3x4x6)dx =11/70
33. V=Z3
0Z2
0
(9x2+y2)dy dx =Z3
0
(18x2+8/3)dx = 170
34. V=Z1
1Z1
y2
(1 x)dx dy =Z1
1
(1/2y2+y4/2)dy =8/15
35. V=Z3/2
3/2Z94x2
94x2
(y+3)dy dx =Z3/2
3/2
6p94x2dx =27π/2
36. V=Z3
0Z3
y2/3
(9 x2)dx dy =Z3
0
(18 3y2+y6/81)dy = 216/7
Exercise Set 16.2 578
37. V=8Z5
0Z
25x2
0p25 x2dy dx =8Z5
0
(25 x2)dx = 2000/3
38. V=2Z2
0Z
1(y1)2
0
(x2+y2)dx dy =2Z2
01
3
[1 (y1)2]3/2+y2[1 (y1)2]1/2dy,
let y1 = sin θto get V=2
Zπ/2
π/21
3cos3θ+(1+sinθ)
2cos θcos θdθ which eventually yields
V=3π/2
39. V=4Z1
0Z
1x
2
0
(1 x2y2)dy dx =8
3Z1
0
(1 x2)3/2dx =π/2
40. V=Z2
0Z4x2
0
(x2+y2)dy dx =Z2
0x2p4x2+1
3(4 x2)3/2dx =2π
41. Z2
0Z2
y2
f(x, y)dx dy 42. Z8
0Zx/2
0
f(x, y)dy dx 43. Ze2
1Z2
ln x
f(x, y)dy dx
44. Z1
0Ze
ey
f(x, y)dx dy 45. Zπ/2
0Zsin x
0
f(x, y)dy dx 46. Z1
0Zx
x2
f(x, y)dy dx
47. Z4
0Zy/4
0
ey2dx dy =Z4
0
1
4yey2dy =(1e
16)/8
48. Z1
0Z2x
0
cos(x2)dy dx =Z1
0
2xcos(x2)dx = sin 1
49. Z2
0Zx2
0
ex3dy dx =Z2
0
x2ex3dx =(e
81)/3
50. Zln 3
0Z3
ey
xdxdy =1
2Zln 3
0
(9 e2y)dy =1
2(9 ln 3 4)
51. Z2
0Zy2
0
sin(y3)dx dy =Z2
0
y2sin(y3)dy =(1cos 8)/3
52. Z1
0Ze
ex
xdydx=Z1
0
(ex xex)dx =e/21
53. (a) Z4
0Z2
x
sin πy3dy dx; the inner integral is non-elementary.
Z2
0Zy2
0
sin πy3dx dy =Z2
0
y2sin πy3dy =1
3πcos πy32
0
=0
579 Chapter 16
(b) Z1
0Zπ/2
sin1y
sec2(cos x)dx dy ; the inner integral is non-elementary.
Zπ/2
0Zsin x
0
sec2(cos x)dy dx =Zπ/2
0
sec2(cos x) sin xdx= tan 1
54. V=4Z2
0Z
4x
2
0
(x
2+y
2
)dy dx =4Z2
0x
2
p4x
2+1
3
(4 x2)3/2dx (x= 2 sin θ)
=Zπ/2
064
3+64
3sin2θ128
3sin4θ=64
3
π
2+64
3
π
4128
3
π
2
1·3
2·4=8π
55. Z1
2Z2
0
xy2dy dx +Z1
1Z2
1
xy2dy dx +Z2
1Z2
0
xy2dy dx
=Z1
2
8
3xdx+Z1
1
7
3xdx+Z2
1
8
3xdx=0
56. This is the volume in the first octant under the surface z=p1x2y2, so 1/8 of the volume of
the sphere of radius 1, thus π
6.
57. Area of triangle is 1/2, so ¯
f=2Z1
0Z1
x
1
1+x
2dy dx =2Z1
01
1+x
2x
1+x
2dx =π
2ln 2
58. Area = Z2
0
(3xx2x)dx =4/3, so
¯
f=3
4Z2
0Z3xx2
x
(x2xy)dy dx =3
4Z2
0
(2x3+2x
4x
5
/2)dx =3
4
8
15 =2
5
59. y= sin xand y=x/2 intersect at x= 0 and x=a=1.895494, so
V=Za
0Zsin x
x/2p1+x+ydydx=0.676089
EXERCISE SET 16.3
1. Zπ/2
0Zsin θ
0
rcos θdr dθ =Zπ/2
0
1
2sin2θcos θdθ=1/6
2. Zπ
0Z1+cos θ
0
rdrdθ=Zπ
0
1
2(1 + cos θ)2=3π/4
3. Zπ/2
0Zasin θ
0
r2dr dθ =Zπ/2
0
a3
3sin3θdθ=2
9a
3
4. Zπ/3
0Zcos 3θ
0
rdrdθ=Zπ/3
0
1
2cos23θdθ=π/12
5. Zπ
0Z1sin θ
0
r2cos θdrdθ=Zπ
0
1
3(1 sin θ)3cos θdθ=0
Exercise Set 16.3 580
6. Zπ
0Zcos θ
0
r3dr dθ =Zπ
0
1
4cos4θdθ=3π/32
7. A=Z2π
0Z1cos θ
0
rdrdθ=Z2π
0
1
2(1 cos θ)2=3π/2
8. A=4Zπ/2
0Zsin 2θ
0
rdrdθ=2Zπ/2
0
sin22θdθ=π/2
9. A=Zπ/2
π/4Z1
sin 2θ
rdrdθ=Zπ/2
π/4
1
2(1 sin22θ)=π/16
10. A=2Zπ/3
0Z2
sec θ
rdrdθ=Zπ/3
0
(4 sec2θ)=4π/33
11. A=2Zπ/2
π/6Z4 sin θ
2
rdrdθ=Zπ/2
π/6
(16 sin2θ4)=4π/3+2
3
12. A=2Zπ
π/2Z1
1+cos θ
rdrdθ=Zπ
π/2
(2 cos θcos2θ)=2π/4
13. V=8Zπ/2
0Z3
1
rp9r2dr dθ =128
32Zπ/2
0
=64
32π
14. V=2Zπ/2
0Z2 sin θ
0
r2dr dθ =16
3Zπ/2
0
sin3θdθ=32/9
15. V=2Zπ/2
0Zcos θ
0
(1 r2)rdrdθ=1
2Zπ/2
0
(1 sin4θ)=5π/32
16. V=4Zπ/2
0Z3
1
dr dθ =8Zπ/2
0
=4π
17. V=Zπ/2
0Z3 sin θ
0
r2sin θdrdθ=9Zπ/2
0
sin4θdθ=27π/16
18. V=4Zπ/2
0Z2 cos θ
0
rp4r2dr dθ =32
3Zπ/2
0
(1 sin3θ)=16
9(3π4)
19. Z2π
0Z1
0
er2rdrdθ=1
2(1 e1)Z2π
0
=(1e
1
)π
20. Zπ/2
0Z3
0
rp9r2dr dθ =9Zπ/2
0
=9π/2
21. Zπ/4
0Z2
0
1
1+r
2rdrdθ=1
2ln 5 Zπ/4
0
=π
8ln 5
22. Zπ/2
π/4Z2 cos θ
0
2r2sin θdrdθ=16
3Zπ/2
π/4
cos3θsin θdθ=1/3
581 Chapter 16
23. Zπ/2
0Z1
0
r3dr dθ =1
4Zπ/2
0
=π/8
24. Z2π
0Z2
0
er2rdrdθ=1
2(1 e4)Z2π
0
=(1e
4
)π
25. Zπ/2
0Z2 cos θ
0
r2dr dθ =8
3Zπ/2
0
cos3θdθ=16/9
26. Zπ/2
0Z1
0
cos(r2)rdrdθ=1
2sin 1 Zπ/2
0
=π
4sin 1
27. Zπ/2
0Za
0
r
(1+r2)3/2dr dθ =π
211/p1+a
2
28. Zπ/4
0Zsec θtan θ
0
r2dr dθ =1
3Zπ/4
0
sec3θtan3θdθ=2(
2+1)/45
29. Zπ/4
0Z2
0
r
1+r
2dr dθ =π
4(51)
30. Zπ/2
tan1(3/4) Z5
3 csc θ
rdrdθ=1
2Zπ/2
tan1(3/4)
(25 9 csc2θ)
=25
2hπ
2tan1(3/4)i6=25
2tan1(4/3) 6
31. V=Z2π
0Za
0
hr dr dθ =Z2π
0
ha2
2=πa2h
32. (a) V=8Zπ/2
0Za
0
c
a(a2r2)1/2rdrdθ =4c
3aπ(a
2r
2)
3/2a
0
=4
3πa2c
(b) V4
3π(6378.1370)26356.5231 1,083,168,200,000 km3
33. V=2Zπ/2
0Zasin θ
0
c
a(a2r2)1/2rdrdθ=2
3a
2cZπ/2
0
(1 cos3θ)=(3π4)a2c/9
34. A=4Zπ/4
0Za2 cos 2θ
0
rdrdθ=4a
2Zπ/4
0
cos 2θdθ=2a
2
35. A=Zπ/4
π/6Z4 sin θ
8 cos 2θ
rdrdθ+Zπ/2
π/4Z4 sin θ
0
rdrdθ
=Zπ/4
π/6
(8 sin2θ4 cos 2θ)+Zπ/2
π/4
8 sin2θdθ=4π/3+2
32
36. A=Zφ
0Z2asin θ
0
rdrdθ=2a
2Zφ
0
sin2θdθ=a
2φ1
2a
2sin 2φ
Exercise Set 16.4 582
37. (a) I2=Z+
0
ex2dxZ+
0
e
y
2dy=Z+
0Z+
0
ex2dxey2dy
=Z+
0Z+
0
ex2ey2dx dy =Z+
0Z+
0
e(x2+y2)dx dy
(b) I2=Zπ/2
0Z+
0
er2rdrdθ=1
2Zπ/2
0
=π/4(c) I=π/2
38. (a) 1.173108605 (b) Zπ
0Z1
0
rer4dr dθ =πZ1
0
rer4dr 1.173108605
39. V=Z2π
0ZR
0
D(r)rdrdθ=Z2π
0ZR
0
kerrdrdθ =2πk(1+r)erR
0
=2πk[1 (R+1)e
R
]
40. Ztan1(2)
tan1(1/3) Z2
0
r3cos2θdrdθ=4Ztan1(2)
tan1(1/3)
cos2θdθ=1
5+ 2[tan1(2) tan1(1/3)] = 1
5+π
2
EXERCISE SET 16.4
1. (a) z
xy
(b)
xy
z
(c)
x
y
z
2. (a)
y
x
z(b) z
y
x
583 Chapter 16
(c) z
y
x
3. (a) x=u, y =v, z =5
2+3
2u2v(b) x=u, y =v, z =u2
4. (a) x=u, y =v, z =v
1+u
2(b) x=u, y =v, z =1
3v25
3
5. (a) x= 5 cos u, y = 5 sin u, z =v;0u2π, 0v1
(b) x= 2 cos u, y =v, z = 2 sin u;0u2π, 1v3
6. (a) x=u, y =1u, z =v;1v1(b) x=u, y =5+2v, z =v;0u3
7. x=u, y = sin ucos v, z = sin usin v8. x=u, y =eucos v, z =eusin v
9. x=rcos θ, y =rsin θ, z =1
1+r
210. x=rcos θ, y =rsin θ, z =er2
11. x=rcos θ, y =rsin θ, z =2r
2cos θsin θ
12. x=rcos θ, y =rsin θ, z =r2(cos2θsin2θ)
13. x=rcos θ, y =rsin θ, z =9r2;r5
14. x=rcos θ, y =rsin θ, z =r;r315. x=1
2ρcos θ, y =1
2ρsin θ, z =3
2ρ
16. x= 3 cos θ, y = 3 sin θ, z = 3 cot φ17. z=x2y; a plane
18. y=x2+z2,0y4; part of a circular paraboloid
19. (x/3)2+(y/2)2=1;2z4; part of an elliptic cylinder
20. z=x2+y2;0z4; part of a circular paraboloid
21. (x/3)2+(y/4)2=z2;0z1; part of an elliptic cone
22. x2+(y/2)2+(z/3)2= 1; part of an ellipsoid
23. (a) x=rcos θ, y =rsin θ, z =r;x=u, y =v, z =u2+v2;0z2
24. (a) I: x=rcos θ, y =rsin θ, z =r2;II:x=u, y =v, z =u2+v2;u2+v22
25. (a) 0u3,0vπ(b) 0u4,π/2vπ/2
Exercise Set 16.4 584
26. (a) 0u6,πv0(b) 0u5/2v3π/2
27. (a) 0φπ/2,0θ2π(b) 0φπ, 0θπ
28. (a) π/2φπ(b) 0θπ/2,0φπ/2
29. u=1,v =2,r
u×r
v=2i4j+k;2x+4yz=5
30. u=1,v =2,r
u×r
v=4i2j+8k;2x+y4z=6
31. u=0,v =1,r
u×r
v=6k;z=0 32. ru×rv=2ij3k;2xy3z=4
33. ru×rv=(
2/2)i(2/2)j+(1/2)k;xy+2
2z=π2
8
34. ru×rv=2iln 2k;2x(ln 2)z=0
35. z=p9y2,zx=0,z
y=y/p9y2,z2
x+z2
y+1=9/(9 y2),
S=Z2
0Z3
3
3
p9y2dy dx =Z2
0
3πdx=6π
36. z=82x2y,z
2
x+z
2
y+1=4+4+1=9,S=Z4
0Z4x
0
3dy dx =Z4
0
3(4 x)dx =24
37. z2=4x
2+4y
2
,2zzx=8xso zx=4x/z, similarly zy=4y/z thus
z2
x+z2
y+ 1 = (16x2+16y
2
)/z2+1=5,S=Z1
0Zx
x
2
5dy dx =5Z1
0
(xx2)dx =5/6
38. z2=x2+y2,zx=x/z,zy=y/z,z2
x+z2
y+1=(z
2+y
2
)/z2+1=2,
S=ZZ
R
2dA =2Zπ/2
0Z2 cos θ
0
2rdrdθ=4
2Zπ/2
0
cos2θdθ=2π
39. zx=2x,zy=2y,z2
x+z2
y+1=4x
2+4y
2+1,
S=ZZ
Rp4x2+4y
2+1dA =Z2π
0Z1
0
rp4r2+1dr dθ
=1
12(551) Z2π
0
=(5
51)π/6
40. zx=2,z
y=2y,z
2
x+z
2
y+1=5+4y
2
,
S=Z1
0Zy
0p5+4y
2dx dy =Z1
0
yp5+4y
2dy = (27 55)/12
41. r/∂u = cos vi+ sin vj+2uk,r/∂v =usin vi+ucos vj,
kr/∂u ×r/∂vk=u4u2+1; S=Z2π
0Z2
1
u
p4u
2+1du dv = (1717 55)π/6
42. r/∂u = cos vi+ sin vj+k,∂r/∂v =usin vi+ucos vj,
kr/∂u ×r/∂vk=2u;S=Zπ/2
0Z2v
0
2ududv=
2
12 π3
585 Chapter 16
43. zx=y,zy=x,z2
x+z2
y+1=x
2+y
2+1,
S=ZZ
Rpx2+y2+1dA =Zπ/6
0Z3
0
rpr2+1dr dθ =1
3(10101) Zπ/6
0
= (10101)π/18
44. zx=x,zy=y,z2
x+z2
y+1=x
2+y
2+1,
S=ZZ
Rpx2+y2+1dA =Z2π
0Z8
0
rpr2+1dr dθ =26
3Z2π
0
=52π/3
45. On the sphere, zx=x/z and zy=y/z so z2
x+z2
y+1=(x
2+y
2+z
2
)/z2=16/(16 x2y2);
the planes z= 1 and z= 2 intersect the sphere along the circles x2+y2= 15 and x2+y2= 12;
S=ZZ
R
4
p16 x2y2dA =Z2π
0Z15
12
4r
16 r2dr dθ =4Z2π
0
=8π
46. On the sphere, zx=x/z and zy=y/z so z2
x+z2
y+1=(x
2+y
2+z
2
)/z2=8/(8 x2y2);
the cone cuts the sphere in the circle x2+y2=4;
S=Z2π
0Z2
0
2
2r
8r
2dr dθ =(84
2) Z2π
0
= 8(2 2)π
47. r(u, v)=acos usin vi+asin usin vj+acos vk,kru×rvk=a2sin v,
S=Zπ
0Z2π
0
a2sin vdudv=2πa2Zπ
0
sin vdv =4πa2
48. r =rcos ui+rsin uj+vk,kru×rvk=r;S=Zh
0Z2π
0
rdudv =2πrh
49. zx=h
a
x
px2+y2,zy=h
a
y
px2+y2,z2
x+z2
y+1= h
2
x
2+h
2
y
2
a
2
(x
2+y
2
)+1=(a
2+h
2
)/a2,
S=Z2π
0Za
0
a2+h2
ardrdθ=1
2a
pa
2+h
2Z2π
0
=πapa2+h2
50. Revolving a point (a0,0,b
0)ofthexz-plane around the z-axis generates a circle, an equation of
which is r=a0cos ui+a0sin uj+b0k,0u2π. A point on the circle (xa)2+z2=b2which
generates the torus can be written r=(a+bcos v)i+bsin vk,0v2π. Set a0=a+bcos v
and b0=a+bsin vand use the first result: any point on the torus can thus be written in the form
r=(a+bcos v) cos ui+(a+bcos v) sin uj+bsin vk, which yields the result.
51. r/∂u =(a+bcos v) sin ui+(a+bcos v) cos uj,
r/∂v =bsin vcos uibsin vsin uj+bcos vk,kr/∂u ×r/∂vk=b(a+bcos v);
S=Z2π
0Z2π
0
b(a+bcos v)du dv =4π
2
ab
52. kru×rvk=u2+1;S=Z4π
0Z5
0pu
2+1du dv =4πZ5
0pu
2+1du = 174.7199011
53. z=1 when v0.27955,z = 1 when v2.86204,kru×rvk=|cos v|;
S=Z2π
0Z2.86204
0.27955 |cos v|dv du 9.099
Exercise Set 16.5 586
54. (a) x=vcos u, y =vsin u, z =f(v), for example (b) x=vcos u, y =vsin u, z =1/v2
(c) z
y
x
55. (x/a)2+(y/b)2+(z/c)2= cos2v(cos2u+ sin2u) + sin2v= 1, ellipsoid
56. (x/a)2+(y/b)2(z/c)2= cos2ucosh2v+ sin2ucosh2vsinh2v= 1, hyperboloid of one sheet
57. (x/a)2+(y/b)2(z/c)2= sinh2v+ cosh2v(sinh2ucosh2u)=1, hyperboloid of two sheets
EXERCISE SET 16.5
1. Z1
1Z2
0Z1
0
(x2+y2+z2)dx dy dz =Z1
1Z2
0
(1/3+y
2+z
2
)dy dz =Z1
1
(10/3+2z
2
)dz =8
2. Z1/2
1/3Zπ
0Z1
0
zxsin xy dz dy dx =Z1/2
1/3Zπ
0
1
2xsin xy dy dx =Z1/2
1/3
1
2(1cos πx)dx =1
12 +32
4π
3. Z2
0Zy2
1Zz
1
yz dx dz dy =Z2
0Zy2
1
(yz2+yz)dz dy =Z2
01
3y7+1
2y51
6ydy =47
3
4. Zπ/4
0Z1
0Zx2
0
xcos ydzdxdy=Zπ/4
0Z1
0
x3cos ydxdy=Zπ/4
0
1
4cos ydy =2/8
5. Z3
0Z9z2
0Zx
0
xy dy dx dz =Z3
0Z9z2
0
1
2x3dx dz =Z3
0
1
8(81 18z2+z4)dz =81/5
6. Z3
1Zx2
xZln z
0
xeydy dz dx =Z3
1Zx2
x
(xz x)dz dx =Z3
11
2x53
2x3+x2dx = 118/3
7. Z2
0Z4x2
0Z3x2y2
5+x2+y2
xdzdydx=Z2
0Z4x
2
0
[2x(4 x2)2xy2]dy dx
=Z2
0
4
3x(4 x2)3/2dx = 128/15
8. Z2
1Z2
zZ3y
0
y
x2+y2dx dy dz =Z2
1Z2
z
π
3dy dz =Z2
1
π
3(2 z)dz =π/6
587 Chapter 16
9. Zπ
0Z1
0Zπ/6
0
xy sin yz dz dy dx =Zπ
0Z1
0
x[1 cos(πy/6)]dy dx =Zπ
0
(1 3)xdx =π(π3)/2
10. Z1
1Z1x2
0Zy
0
ydzdydx=Z1
1Z1x
2
0
y
2
dy dx =Z1
1
1
3(1 x2)3dx =32/105
11. Z2
0Zx
0Z2x2
0
xyzdzdydx=Z
2
0Zx
0
1
2xy(2 x2)2dy dx =Z2
0
1
4x3(2 x2)2dx =1/6
12. Zπ/2
π/6Zπ/2
yZxy
0
cos(z/y)dz dx dy =Zπ/2
π/6Zπ/2
y
ysin xdxdy =Zπ/2
π/6
ycos ydy =(5π6
3)/12
14. 8Z1
0Z1x2
0Z1x2y2
0
ex2y2z2dz dy dx 2.381
15. V=Z4
0Z(4x)/2
0Z(123x6y)/4
0
dz dy dx =Z4
0Z(4x)/2
0
1
4(12 3x6y)dy dx
=Z4
0
3
16(4 x)2dx =4
16. V=Z1
0Z1x
0Zy
0
dz dy dx =Z1
0Z1x
0
ydydx=Z1
0
2
3(1 x)3/2dx =4/15
17. V=2Z2
0Z4
x
2Z4y
0
dz dy dx =2Z2
0Z4
x
2
(4 y)dy dx =2Z2
084x
2+1
2
x
4
dx = 256/15
18. V=Z1
0Zy
0Z1y2
0
dz dx dy =Z1
0Zy
0p1y2dx dy =Z1
0
yp1y2dy =1/3
19. The projection of the curve of intersection onto the xy-plane is x2+y2=1,
V=4Z1
0Z
1x
2
0Z43y
2
4x
2
+y
2
dz dy dx
20. The projection of the curve of intersection onto the xy-plane is 2x2+y2=4,
V=4Z
2
0Z
42x
2
0Z8x
2
y
2
3x
2
+y
2
dz dy dx
21. V=2Z3
3Z
9x
2
/3
0Zx+3
0
dz dy dx 22. V=8Z1
0Z
1x
2
0Z
1x
2
0
dz dy dx
Exercise Set 16.5 588
23. (a)
(0, 0, 1)
(1, 0, 0)
z
y
x
(b)
(0, 9, 9)
(3, 9, 0)
z
xy
(c)
(0, 0, 1)
(1, 2, 0)
x
y
z
24. (a)
(3, 9, 0)
(0, 0, 2)
x
y
z(b)
(0, 0, 2)
(0, 2, 0)
(2, 0, 0)
x
y
z
(c)
(2, 2, 0)
(0, 0, 4)
x
y
z
25. V=Z1
0Z1x
0Z1xy
0
dz dy dx =1/6,f
ave =6Z1
0Z1x
0Z1xy
0
(x+y+z)dz dy dx =3
4
26. The integrand is an odd function of each of x, y, and z, so the answer is zero.
589 Chapter 16
27. (a) Za
0Zb(1x/a)
0Zc(1x/ay/b)
0
dz dy dx,Zb
0Za(1y/b)
0Zc(1x/ay/b)
0
dz dx dy,
Zc
0Za(1z/c)
0Zb(1x/az/c)
0
dy dx dz,Za
0Zc(1x/a)
0Zb(1x/az/c)
0
dy dz dx,
Zc
0Zb(1z/c)
0Za(1y/bz/c)
0
dx dy dz,Zb
0Zc(1y/b)
0Za(1y/bz/c)
0
dx dz dy
(b) Use the first integral in part (a) to get
Za
0Zb(1x/a)
0
c1x
ay
bdy dx =Za
0
1
2bc 1x
a2dx =1
6abc
28. (a) Z3
0Z9x2
0Z9x2y2
0
f(x, y, z)dz dy dx
(b) Z4
0Zx/2
0Z2
0
f(x, y, z)dz dy dx (c) Z2
0Z4x2
0Z4y
x2
f(x, y, z)dz dy dx
29. V=8Za
0Zb
1x
2
/a2
0Zc1x2/a2y2/b2
0
dz dy dx
30. Zb
aZd
cZ`
k
f(x)g(y)h(z)dz dy dx =Zb
aZd
c
f(x)g(y)"Z`
k
h(z)dz#dy dx
="Zb
a
f(x)"Zd
c
g(y)dy#dx#"Z`
k
h(z)dz#
="Zb
a
f(x)dx#"Zd
c
g(y)dy#"Z`
k
h(z)dz#
31. (a) Z1
1
xdx
Z1
0
y
2dy"Zπ/2
0
sin zdz
#= (0)(1/3)(1) = 0
(b) Z1
0
e2xdx"Zln 3
0
eydy#"Zln 2
0
ezdz#=[(e
21)/2](2)(1/2)=(e
21)/2
32. (a) At any point outside the closed sphere {x2+y2+z21}the integrand is negative, so to
maximize the integral it suffices to include all points inside the sphere; hence the maximum
value is taken on the region G={x2+y2+z21}.
(b) 8π
15
EXERCISE SET 16.6
1. Let abe the unknown coordinate of the fulcrum; then the total moment about the fulcrum is
5(0 a) + 10(5 a) + 20(10 a) = 0 for equilibrium, so 250 35a=0,a=50/7. The fulcrum
should be placed 50/7 ft to the right of m1.
Exercise Set 16.6 590
2. At equilibrium, 10(0 4) + 3(2 4) + 4(3 4)+m(6 4)=0,m=25
3. A=1,¯x=Z1
0Z1
0
xdydx=1
2,¯y=Z1
0Z1
0
ydydx=1
2
4. A=2,¯x=1
2Z0
1Z1+x
1x
xdydx+Z1
0Z1x
1+x
xdydx= 0, similarly ¯y=0.
5. A=1/2, ZZ
R
xdA=Z1
0Zx
0
xdydx=1/3, ZZ
R
ydA=Z1
0Zx
0
ydydx=1/6;
centroid (2/3,1/3)
6. A=Z1
0Zx2
0
dy dx =1/3, ZZ
R
xdA=Z1
0Zx
2
0
xdydx=1/4,
ZZ
R
ydA=Z1
0Zx
2
0
ydydx=1/10; centroid (3/4,3/10)
7. A=Z1
0Z2x2
x
dy dx =7/6, ZZ
R
xdA=Z1
0Z2x
2
x
xdydx=5/12,
ZZ
R
ydA=Z1
0Z2x
2
x
ydydx=19/15; centroid (5/14,38/35)
8. A=π
4,ZZ
R
xdA=Z1
0Z1x
2
0
xdydx=1
3x=4
3π
,¯y=4
3πby symmetry
9. ¯x= 0 from the symmetry of the region,
A=1
2π(b2a2), ZZ
R
ydA=Zπ
0Zb
a
r
2sin θdrdθ=2
3(b
3a
3); centroid ¯x=0,¯y=4(b3a3)
3π(b2a2).
10. ¯y= 0 from the symmetry of the region, A=πa2/2,
ZZ
R
xdA=Zπ/2
π/2Za
0
r2cos θdrdθ=2a
3
/3; centroid 4a
3π,0
11. M=Z1
0Zx
0
(x+y)dy dx =13/20, Mx=Z1
0Zx
0
(x+y)ydydx=3/10,
My=Z1
0Zx
0
(x+y)xdydx=19/42, ¯x=My/M = 190/273, ¯y=Mx/M =6/13;
the mass is 13/20 and the center of gravity is at (190/273,6/13).
12. M=Zπ
0Zsin x
0
ydydx=π/4, ¯x=π/2 from the symmetry of the density and the region,
Mx=Zπ
0Zsin x
0
y2dy dx =4/9, ¯y=Mx/M =16
9π; mass π/4, center of gravity π
2,16
9π.
591 Chapter 16
13. M=Zπ/2
0Za
0
r3sin θcos θdrdθ =a
4/8, ¯xyfrom the symmetry of the density and the
region, My=Zπ/2
0Za
0
r4sin θcos2θdrdθ =a
5/15, ¯x=8a/15; mass a4/8, center of gravity
(8a/15,8a/15).
14. M=Zπ
0Z1
0
r3dr dθ =π/4, ¯x= 0 from the symmetry of density and region,
Mx=Zπ
0Z1
0
r4sin θdrdθ=2/5, ¯y=8
5π; mass π/4, center of gravity 0,8
5π.
15. V=1,¯x=Z1
0Z1
0Z1
0
xdzdydx=1
2, similarly ¯yz=1
2
; centroid 1
2,1
2,1
2
16. V=πr2h=2πxy= 0 by symmetry, ZZZ
G
zdzdydx=Z2
0Z2π
0Z1
0
rz dr dθ dz =2π,
centroid = (0,0,1)
17. ¯xyzfrom the symmetry of the region, V=1/6,
¯x=1
VZ1
0Z1x
0Z1xy
0
xdzdydx= (6)(1/24)=1/4; centroid (1/4,1/4,1/4)
18. The solid is described by 1y1,0z1y2,0x1z;
V=Z1
1Z1y2
0Z1z
0
dx dz dy =4
5,¯x=1
VZ1
1Z1y2
0Z1z
0
xdxdzdy =5
14,¯y= 0 by symmetry,
¯z=1
VZ1
1Z1y2
0Z1z
0
zdxdzdy=2
7; the centroid is 5
14,0,2
7.
19. ¯x=1/2 and ¯y= 0 from the symmetry of the region,
V=Z1
0Z1
1Z1
y2
dz dy dx =4/3, ¯z=1
VZZZ
G
zdV =(3/4)(4/5)=3/5; centroid (1/2,0,3/5)
20. ¯xyfrom the symmetry of the region,
V=Z2
0Z2
0Zxy
0
dz dy dx =4,¯x=1
VZZZ
G
xdV =(1/4)(16/3)=4/3,
¯z=1
VZZZ
G
zdV =(1/4)(32/9)=8/9; centroid (4/3,4/3,8/9)
21. ¯xyzfrom the symmetry of the region, V=πa3/6,
¯x=1
VZa
0Za2x2
0Za2x2y2
0
xdzdydx=1
VZa
0Za
2x
2
0
x
pa
2x
2y
2dy dx
=1
VZπ/2
0Za
0
r2pa2r2cos θdrdθ =6
πa3(πa4/16)=3a/8; centroid (3a/8,3a/8,3a/8)
Exercise Set 16.6 592
22. ¯xy= 0 from the symmetry of the region, V=2πa3/3
¯z=1
VZa
aZa2x2
a2x2Za2x2y2
0
zdzdydx=1
VZa
aZ
a
2
x
2
a
2
x
2
1
2(a
2x
2y
2
)dy dx
=1
VZ2π
0Za
0
1
2(a2r2)rdrdθ=3
2πa3(πa4/4)=3a/8; centroid (0,0,3a/8)
23. M=Za
0Za
0Za
0
(ax)dz dy dx =a4/2, ¯yz=a/2 from the symmetry of density and
region, ¯x=1
MZa
0Za
0Za
0
x(ax)dz dy dx =(2/a4)(a5/6) = a/3;
mass a4/2, center of gravity (a/3,a/2,a/2)
24. M=Za
aZa2x2
a2x2Zh
0
(hz)dz dy dx =1
2πa2h2xy= 0 from the symmetry of density
and region, ¯z=1
MZZZ
G
z(hz)dV =2
πa2h2(πa2h3/6) = h/3;
mass πa2h2/2, center of gravity (0,0,h/3)
25. M=Z1
1Z1
0Z1y2
0
yz dz dy dx =1/6, ¯x= 0 by the symmetry of density and region,
¯y=1
MZZZ
G
y2zdV = (6)(8/105) = 16/35, ¯z=1
MZZZ
G
yz2dV = (6)(1/12)=1/2;
mass 1/6, center of gravity (0,16/35,1/2)
26. M=Z3
0Z9x2
0Z1
0
xz dz dy dx =81/8, ¯x=1
MZZZ
G
x2zdV =(8/81)(81/5)=8/5,
¯y=1
MZZZ
G
xyz dV =(8/81)(243/8)=3,¯z=1
MZZZ
G
xz2dV =(8/81)(27/4)=2/3;
mass 81/8, center of gravity (8/5,3,2/3)
27. (a) M=Z1
0Z1
0
k(x2+y2)dy dx =2k/3, ¯xyfrom the symmetry of density and region,
¯x=1
MZZ
R
kx(x2+y2)dA =3
2k(5k/12)=5/8; center of gravity (5/8,5/8)
(b) ¯y=1/2 from the symmetry of density and region,
M=Z1
0Z1
0
kx dy dx =k/2, ¯x=1
MZZ
R
kx2dA =(2/k)(k/3)=2/3,
center of gravity (2/3,1/2)
593 Chapter 16
28. (a) ¯xyzfrom the symmetry of density and region,
M=Z1
0Z1
0Z1
0
k(x2+y2+z2)dz dy dx =k,
¯x=1
MZZZ
G
kx(x2+y2+z2)dV =(1/k)(7k/12)=7/12; center of gravity (7/12,7/12,7/12)
(b) ¯xyzfrom the symmetry of density and region,
M=Z1
0Z1
0Z1
0
k(x+y+z)dz dy dx =3k/2,
¯x=1
MZZZ
G
kx(x+y+z)dV =2
3k(5k/6)=5/9; center of gravity (5/9,5/9,5/9)
29. V=ZZZ
G
dV =Zπ
0Zsin x
0Z1/(1+x2+y2)
0
dz dy dx =0.666633,
x=1
VZZZ
G
xdV =1.177406, y=1
VZZZ
G
ydV =0.353554, z=1
VZZZ
G
zdV =0.231557
30. (b) Use cylindrical coordinates to get
V=ZZZ
G
dV =Z2π
0Za
0Z1/(1+r2)
0
rdzdrdθ=πln(1 + a2),
z=1
VZZZ
G
zdV =a2
2(1 + a2) ln(1 + a2)
(c) lim
a0+¯z=1
2; lim
a+¯z= 0; solve z=1/4 for ato obtain a1.980291.
31. Let x=rcos θ,y=rsin θ, and dA =rdrdθ in formulas (10) and (11).
32. ¯x= 0 from the symmetry of the region, A=Z2π
0Za(1+sin θ)
0
rdrdθ=3πa2/2,
¯y=1
AZ2π
0Za(1+sin θ)
0
r2sin θdrdθ=2
3πa2(5πa3/4)=5a/6; centroid (0,5a/6)
33. ¯xyfrom the symmetry of the region, A=Zπ/2
0Zsin 2θ
0
rdrdθ=π/8,
¯x=1
AZπ/2
0Zsin 2θ
0
r2cos θdrdθ=(8)(16/105) = 128
105π; centroid 128
105π,128
105π
34. ¯x=3/2 and ¯y= 1 from the symmetry of the region,
ZZ
R
xdAxA =(3/2)(6) = 9, ZZ
R
ydAyA = (1)(6) = 6
35. ¯x= 0 from the symmetry of the region, πa2/2 is the area of the semicircle, 2π¯yis the distance
traveled by the centroid to generate the sphere so 4πa3/3=(πa2/2)(2π¯y), ¯y=4a/(3π)
Exercise Set 16.7 594
36. (a) V=1
2πa22πa+4a
3π=1
3π(3π+4)a
3
(b) the distance between the centroid and the line is 2
2a+4a
3πso
V=1
2πa2"2π2
2a+4a
3π#=1
62π(3π+4)a
3
37. ¯x=kso V=(πab)(2πk)=2π
2
abk
38. ¯y= 4 from the symmetry of the region,
A=Z2
2Z8x2
x2
dy dx =64/3soV= (64/3)[2π(4)] = 512π/3
39. The region generates a cone of volume 1
3πab2when it is revolved about the x-axis, the area of the
region is 1
2ab so 1
3πab2=1
2ab(2π¯y), ¯y=b/3. A cone of volume 1
3πa2bis generated when the
region is revolved about the y-axis so 1
3πa2b=1
2ab(2π¯x), ¯x=a/3. The centroid is (a/3,b/3).
40. Ix=Za
0Zb
0
y2δdydx=1
3δab3,I
y=
Za
0Zb
0
x
2
δdydx=1
3δa3b,
Iz=Za
0Zb
0
(x2+y2)δdydx=1
3δab(a2+b2)
41. Ix=Z2π
0Za
0
r3sin2θ δ dr dθ =δπa4/4; Iy=Z2π
0Za
0
r3cos2θ δ dr dθ =δπa4/4=I
x
;
I
z=I
x+I
y=δπa4/2
EXERCISE SET 16.7
1. Z2π
0Z1
0Z1r2
0
zr dz dr dθ =Z2π
0Z1
0
1
2(1 r2)rdrdθ=Z2π
0
1
8=π/4
2. Zπ/2
0Zcos θ
0Zr2
0
rsin θdzdrdθ =Zπ/2
0Zcos θ
0
r3sin θdrdθ=Zπ/2
0
1
4cos4θsin θdθ=1/20
3. Zπ/2
0Zπ/2
0Z1
0
ρ3sin φcos φdρdφdθ =Zπ/2
0Zπ/2
0
1
4sin φcos φdφdθ =Zπ/2
0
1
8=π/16
4. Z2π
0Zπ/4
0Zasec φ
0
ρ2sin φdρdφdθ =Z2π
0Zπ/4
0
1
3a3sec3φsin φdφdθ =Z2π
0
1
6a
3=πa3/3
5. V=Z2π
0Z3
0Z9
r2
rdzdrdθ =Z2π
0Z3
0
r(9 r2)dr dθ =Z2π
0
81
4=81π/2
595 Chapter 16
6. V=2Z2π
0Z2
0Z
9r
2
0
rdzdrdθ =2Z2π
0Z2
0
r
p9r
2
dr dθ
=2
3(27 55) Z2π
0
= 4(27 55)π/3
7. r2+z2= 20 intersects z=r2in a circle of radius 2,
V=Z2π
0Z2
0Z20r2
r2
rdzdrdθ=Z2π
0Z2
0
(r
p20 r2r3)dr dθ
=4
3(10519) Z2π
0
= 8(10519)π/3
8. z=hr/a intersects z=hin a circle of radius a,
V=Z2π
0Za
0Zh
hr/a
rdzdrdθ =Z2π
0Za
0
h
a(ar r2)dr dθ =Z2π
0
1
6a2hdθ =πa2h/3
9. V=Z2π
0Zπ/3
0Z4
0
ρ2sin φdρdφdθ =Z2π
0Zπ/3
0
64
3sin φdφdθ =32
3Z2π
0
=64π/3
10. V=Z2π
0Zπ/4
0Z2
1
ρ2sin φdρdφdθ =Z2π
0Zπ/4
0
7
3sin φdφdθ =7
6(22) Z2π
0
= 7(22)π/3
11. In spherical coordinates the sphere and the plane z=aare ρ=2aand ρ=asec φ, respectively.
They intersect at φ=π/3,
V=Z2π
0Zπ/3
0Zasec φ
0
ρ2sin φdρdφdθ+Z2π
0Zπ/2
π/3Z2a
0
ρ2sin φdρdφdθ
=Z2π
0Zπ/3
0
1
3a3sec3φsin φdφdθ+Z2π
0Zπ/2
π/3
8
3a3sin φdφdθ
=1
2a
3Z2π
0
+4
3a3Z2π
0
=11πa3/3
12. V=Z2π
0Zπ/2
π/4Z3
0
ρ2sin φdρdφdθ =Z2π
0Zπ/2
π/4
9 sin φdφdθ =9
2
2Z2π
0
=9
2π
13. Zπ/2
0Za
0Za2r2
0
r3cos2θdzdrdθ =Zπ/2
0Za
0
(a2r3r5) cos2θdrdθ
=1
12a6Zπ/2
0
cos2θdθ=πa6/48
14. Zπ
0Zπ/2
0Z1
0
eρ3ρ2sin φdρdφdθ =1
3(1 e1)Zπ
0Zπ/2
0
sin φdφdθ =(1e
1
)π/3
15. Zπ/2
0Zπ/4
0Z8
0
ρ4cos2φsin φdρdφdθ = 32(221)π/15
16. Z2π
0Zπ
0Z3
0
ρ3sin φdρdφdθ =81π
Exercise Set 16.7 596
18. Zπ/2
0Zπ/4
0
1
18 cos37 θcos φdφdθ =2
36 Zπ/2
0
cos37 θdθ=4,294,967,296
755,505,013,72520.008040
19. (a) V=2Z2π
0Za
0Z
a
2
r
2
0
rdzdrdθ =4πa3/3
(b) V=Z2π
0Zπ
0Za
0
ρ2sin φdρdφdθ =4πa3/3
20. (a) Z2
0Z4x2
0Z4x2y2
0
xyzdzdydx
=Z2
0Z
4x
2
0
1
2xy(4 x2y2)dy dx =1
8Z2
0
x(4 x2)2dx =4/3
(b) Zπ/2
0Z2
0Z4r2
0
r3zsin θcos θdzdrdθ
=Zπ/2
0Z2
0
1
2(4r3r5) sin θcos θdrdθ=8
3Zπ/2
0
sin θcos θdθ=4/3
(c) Zπ/2
0Zπ/2
0Z2
0
ρ5sin3φcos φsin θcos θdρdφdθ
=Zπ/2
0Zπ/2
0
32
3sin3φcos φsin θcos θdφdθ=8
3Zπ/2
0
sin θcos θdθ=4/3
21. M=Z2π
0Z3
0Z3
r
(3 z)rdzdrdθ =Z2π
0Z3
0
1
2r(3 r)2dr dθ =27
8Z2π
0
=27π/4
22. M=Z2π
0Za
0Zh
0
kzrdzdrdθ =Z2π
0Za
0
1
2kh2rdrdθ=1
4ka2h2Z2π
0
=πka2h2/2
23. M=Z2π
0Zπ
0Za
0
3sin φdρdφdθ =Z2π
0Zπ
0
1
4ka4sin φdφdθ =1
2ka4Z2π
0
=πka4
24. M=Z2π
0Zπ
0Z2
1
ρsin φdρdφdθ =Z2π
0Zπ
0
3
2sin φdφdθ =3Z2π
0
=6π
25. ¯xy= 0 from the symmetry of the region,
V=Z2π
0Z1
0Z2r2
r2
rdzdrdθ =Z2π
0Z1
0
(r
p2r
2r
3)dr dθ =(8
27)π/6,
¯z=1
VZ2π
0Z1
0Z2r2
r2
zr dz dr dθ =6
(827)π(7π/12)=7/(16214);
centroid 0,0,7
16214
26. ¯xy= 0 from the symmetry of the region, V=8π/3,
¯z=1
VZ2π
0Z2
0Z2
r
zr dz dr dθ =3
8π(4π)=3/2; centroid (0,0,3/2)
597 Chapter 16
27. ¯xyzfrom the symmetry of the region, V=πa3/6,
¯z=1
VZπ/2
0Zπ/2
0Za
0
ρ3cos φsin φdρdφdθ =6
πa3(πa4/16)=3a/8;
centroid (3a/8,3a/8,3a/8)
28. ¯xy= 0 from the symmetry of the region, V=Z2π
0Zπ/3
0Z4
0
ρ2sin φdρdφdθ =64π/3,
¯z=1
VZ2π
0Zπ/3
0Z4
0
ρ3cos φsin φdρdφdθ =3
64π(48π)=9/4; centroid (0,0,9/4)
29. ¯y= 0 from the symmetry of the region, V=2Zπ/2
0Z2 cos θ
0Zr2
0
rdzdrdθ =3π/2,
¯x=2
VZπ/2
0Z2 cos θ
0Zr2
0
r2cos θdzdrdθ =4
3π(π)=4/3,
¯z=2
VZπ/2
0Z2 cos θ
0Zr2
0
rz dz dr =4
3π(5π/6)=10/9; centroid (4/3,0,10/9)
30. M=Zπ/2
0Z2 cos θ
0Z4r2
0
zr dz dr dθ =Zπ/2
0Z2 cos θ
0
1
2r(4 r2)2dr dθ
=16
3Zπ/2
0
(1 sin6θ)= (16/3)(11π/32)=11π/6
31. V=Zπ/2
0Zπ/3
π/6Z2
0
ρ2sin φdρdφdθ =Zπ/2
0Zπ/3
π/6
8
3sin φdφdθ =4
3(
31) Zπ/2
0
=2(
31)π/3
32. M=Z2π
0Zπ/4
0Z1
0
ρ3sin φdρdφdθ =Z2π
0Zπ/4
0
1
4sin φdφdθ =1
8(2 2) Z2π
0
=(2
2)π/4
33. ¯xy= 0 from the symmetry of density and region,
M=Z2π
0Z1
0Z1r2
0
(r2+z2)rdzdrdθ =π/4,
¯z=1
MZ2π
0Z1
0Z1r2
0
z(r2+z2)rdzdrdθ =(4)(11π/120) = 11/30; center of gravity (0,0,11/30)
34. ¯xy= 0 from the symmetry of density and region, M=Z2π
0Z1
0Zr
0
zr dz dr dθ =π/4,
¯z=1
MZ2π
0Z1
0Zr
0
z2rdzdrdθ =(4)(2π/15)=8/15; center of gravity (0,0,8/15)
35. ¯xy= 0 from the symmetry of density and region,
M=Z2π
0Zπ/2
0Za
0
3sin φdρdφdθ =πka4/2,
¯z=1
MZ2π
0Zπ/2
0Za
0
4sin φcos φdρdφdθ =2
πka4(πka5/5)=2a/5; center of gravity (0,0,2a/5)
Exercise Set 16.7 598
36. ¯xz= 0 from the symmetry of the region, V=54π/316π/3=38π/3,
¯y=1
VZπ
0Zπ
0Z3
2
ρ3sin2φsin θdρdφdθ =1
VZπ
0Zπ
0
65
4sin2φsin θdφdθ
=1
VZπ
0
65π
8sin θdθ=3
38π(65π/4) = 195/152; centroid (0,195/152,0)
37. M=Z2π
0Zπ
0ZR
0
δ0e(ρ/R)3ρ2sin φdρdφdθ =Z2π
0Zπ
0
1
3(e1)R3δ0sin φdφdθ =4
3π(e1)δ0R3
38. (a) The sphere and cone intersect in a circle of radius ρ0sin φ0,
V=Zθ2
θ1Zρ0sin φ0
0Zρ2
0r2
rcot φ0
rdzdrdθ =Zθ
2
θ
1Zρ
0sin φ0
0rqρ2
0r2r2cot φ0dr dθ
=Zθ2
θ1
1
3ρ3
0(1 cos3φ0sin3φ0cot φ0)=1
3ρ3
0(1 cos3φ0sin2φ0cos φ0)(θ2θ1)
=1
3ρ3
0(1 cos φ0)(θ2θ1).
(b) From part (a), the volume of the solid bounded by θ=θ1,θ=θ2,φ=φ1,φ=φ2, and
ρ=ρ0is 1
3ρ3
0(1 cos φ2)(θ2θ1)1
3ρ3
0(1 cos φ1)(θ2θ1)=1
3
ρ
3
0
(cos φ1cos φ2)(θ2θ1)
so the volume of the spherical wedge between ρ=ρ1and ρ=ρ2is
V=1
3ρ3
2(cos φ1cos φ2)(θ2θ1)1
3ρ3
1(cos φ1cos φ2)(θ2θ1)
=1
3(ρ3
2ρ3
1)(cos φ1cos φ2)(θ2θ1)
(c) d
cos φ=sin φso from the Mean-Value Theorem cosφ2cos φ1=(φ2φ1) sin φwhere
φis between φ1and φ2. Similarly d
ρ3=3ρ
2so ρ3
2ρ3
1=3ρ
2
(ρ
2ρ
1
) where ρis between
ρ1and ρ2. Thus cos φ1cos φ2= sin φφand ρ3
2ρ3
1=3ρ
2
ρso ∆V=ρ2sin φρφθ.
39. Iz=Z2π
0Za
0Zh
0
r2δ r dz dr dθ =δZ2π
0Za
0Zh
0
r3dz dr dθ =1
2δπa4h
40. Iy=Z2π
0Za
0Zh
0
(r2cos2θ+z2)δr dz dr dθ =δZ2π
0Za
0
(hr3cos2θ+1
3h3r)dr dθ
=δZ2π
01
4a4hcos2θ+1
6a2h3=δπ
4a4h+π
3a2h3
41. Iz=Z2π
0Za2
a1Zh
0
r2δ r dz dr dθ =δZ2π
0Za2
a1Zh
0
r3dz dr dθ =1
2δπh(a4
2a4
1)
42. Iz=Z2π
0Zπ
0Za
0
(ρ2sin2φ)δρ
2sin φdρdφdθ =δZ2π
0Zπ
0Za
0
ρ
4sin3φdρdφdθ =8
15δπa5
599 Chapter 16
EXERCISE SET 16.8
1. (x, y)
(u, v)=
14
35
=17 2. (x, y)
(u, v)=
14v
4u1
=116uv
3. (x, y)
(u, v)=
cos usin v
sin ucos v
= cos ucos v+ sin usin v= cos(uv)
4. (x, y)
(u, v)=
2(v2u2)
(u2+v2)24uv
(u2+v2)2
4uv
(u2+v2)2
2(v2u2)
(u2+v2)2
=4/(u
2+v
2
)
2
5. x=2
9u+5
9v,y=1
9u+2
9v;(x, y)
(u, v)=
2/95/9
1/92/9
=
1
9
6. x=lnu,y=uv;(x, y)
(u, v)=
1/u 0
vu
=1
7. x=u+v/2, y=vu/2; (x, y)
(u, v)=
1
22u+v
1
22u+v
1
22vu
1
22vu
=1
4v2u2
8. x=u3/2/v1/2,y=v1/2/u1/2;(x, y)
(u, v)=
3u1/2
2v1/2u3/2
2v3/2
v1/2
2u3/2
1
2u1/2v1/2
=1
2v
9. (x, y, z)
(u, v, w)=
31 0
102
01 1
=5
10. (x, y, z)
(u, v, w)=
1vu0
vvw u uw uv
vw uw uv
=u2v
11. y=v, x =u/y =u/v, z =wx=wu/v;(x, y, z)
(u, v, w)=
1/v u/v20
010
1/v u/v21
=1/v
12. x=(v+w)/2,y =(uw)/2,z =(uv)/2,(x, y, z)
(u, v, w)=
01/21/2
1/201/2
1/21/20
=
1
4
Exercise Set 16.8 600
13.
x
y
(0, 2)
(–1, 0) (1, 0)
(0, 0)
14.
1 2 3
1
2
3
4
x
y
(0, 0) (4, 0)
(3, 4)
15.
-3 3
-3
3
x
y
(2, 0)
(0, 3) 16.
1 2
1
2
x
y
17. x=1
5u+2
5v,y=2
5u+1
5v,(x, y)
(u, v)=1
5;1
5ZZ
S
u
vdAuv =1
5Z3
1Z4
1
u
vdu dv =3
2ln 3
18. x=1
2u+1
2v,y=1
2u1
2v,(x, y)
(u, v)=1
2;1
2ZZ
S
veuvdAuv =1
2Z4
1Z1
0
veuvdu dv =1
2(e4e3)
19. x=u+v,y=uv,(x, y)
(u, v)=2; the boundary curves of the region Sin the uv-plane are
v=0,v =u, and u= 1 so 2 ZZ
S
sin ucos vdAuv =2Z1
0Zu
0
sin ucos vdvdu=11
2sin 2
20. x=pv/u,y=uv so, from Example 3, (x, y)
(u, v)=1
2u; the boundary curves of the region Sin
the uv-plane are u=1,u=3,v = 1, and v=4soZZ
S
uv21
2udAuv =1
2Z4
1Z3
1
v2du dv =21
21. x=3u, y =4v, (x, y)
(u, v)= 12; Sis the region in the uv-plane enclosed by the circle u2+v2=1.
Use polar coordinates to obtain ZZ
S
12pu2+v2(12) dAuv = 144 Z2π
0Z1
0
r2dr =96π
22. x=2u, y =v, (x, y)
(u, v)=2;Sis the region in the uv-plane enclosed by the circle u2+v2= 1. Use
polar coordinates to obtain ZZ
S
e(4u2+4v2)(2) dAuv =2Z2π
0Z1
0
re4r2dr =(1e
4
)π/2
601 Chapter 16
23. Let Sbe the region in the uv-plane bounded by u2+v2=1,sou=2x, v =3y,
x=u/2,y =v/3,(x, y)
(u, v)=
1/20
01/3
=1/6, use polar coordinates to get
1
6ZZ
S
sin(u2+v2)du dv =1
6Zπ/2
0Z1
0
rsin r2dr dθ =π
24(cos r2)i1
0=π
24(1 cos 1)
24. u=x/a, v =y/b, x =au, y =bv;(x, y)
(u, v)=ab;A=ab Z2π
0Z1
0
rdrdθ=πab
25. x=u/3,y =v/2,z =w, (x, y, z)
(u, v, w)=1/6; Sis the region in uvw-space enclosed by the sphere
u2+v2+w2=36so
ZZZ
S
u2
9
1
6dVuvw =1
54 Z2π
0Zπ
0Z6
0
(ρsin φcos θ)2ρ2sin φdρdφdθ
=1
54 Z2π
0Zπ
0Z6
0
ρ4sin3φcos2θdρdφdθ=192
5π
26. Let G1be the region u2+v2+w21, let x=au, y =bv, z =cw, (x, y, z)
(u, v, w)=abc;
Ix=ZZZ
G
(y2+z2)dx dy dz =ZZZ
G1
(b2v2+c2w2)du dv dw
=Z2π
0Zπ
0Z1
0
abc(b2sin2φsin2θ+c2cos2φ)ρ4sin φdρdφdθ
=Z2π
0
abc
15 (4b2sin2θ+2c
2
)=4
15πabc(b2+c2)
27. Let u=y4x, v =y+4x, then x=1
8(vu),y =1
2(v+u)so(x, y)
(u, v)=1
8;
1
8ZZ
S
u
vdAuv =1
8Z5
2Z2
0
u
vdu dv =1
4ln 5
2
28. Let u=y+x, v =yx, then x=1
2(uv),y =1
2(u+v)so(x, y)
(u, v)=1
2;
1
2ZZ
S
uv dAuv =1
2Z2
0Z1
0
uv du dv =1
2
29. Let u=xy, v =x+y, then x=1
2(v+u),y =1
2(vu)so(x, y)
(u, v)=1
2; the boundary curves of
the region Sin the uv-plane are u=0,v =u, and v=π/4; thus
1
2ZZ
S
sin u
cos vdAuv =1
2Zπ/4
0Zv
0
sin u
cos vdu dv =1
2[ln(2+1)π/4]
Exercise Set 16.8 602
30. Let u=yx, v =y+x, then x=1
2(vu),y =1
2(u+v)so(x, y)
(u, v)=1
2; the boundary
curves of the region Sin the uv-plane are v=u, v =u, v = 1, and v=4;thus
1
2ZZ
S
eu/v dAuv =1
2Z4
1Zv
v
eu/vdu dv =15
4(ee1)
31. Let u=y/x, v =x/y2, then x=1/(u
2
v),y =1/(uv)so(x, y)
(u, v)=1
u4v3;
ZZ
S
1
u4v3dAuv =Z4
1Z2
1
1
u4v3du dv =35/256
32. Let x=3u, y =2v,(x, y)
(u, v)=6;Sis the region in the uv-plane enclosed by the circle u2+v2=1
so ZZ
R
(9 xy)dA =ZZ
S
6(9 3u2v)dAuv =6Z2π
0Z1
0
(9 3rcos θ2rsin θ)rdrdθ=54π
33. x=u, y =w/u, z =v+w/u, (x, y, z)
(u, v, w)=1
u;
ZZZ
S
v2w
udVuvw =Z4
2Z1
0Z3
1
v2w
udu dv dw = 2 ln 3
34. u=xy, v =yz, w =xz, 1u2,1v3,1w4,
x=puw/v, y =puv/w, z =pvw/u, (x, y, z)
(u, v, w)=1
2uvw
V=ZZZ
G
dV =Z2
1Z3
1Z4
1
1
2uvw dw dv du =4(
21)(31)
35. (b) If x=x(u, v),y =y(u, v) where u=u(x, y),v =v(x, y), then by the chain rule
∂x
∂u
∂u
∂x +∂x
∂v
∂v
∂x =∂x
∂x =1,∂x
∂u
∂u
∂y +∂x
∂v
∂v
∂y =∂x
∂y =0
∂y
∂u
∂u
∂x +∂y
∂v
∂v
∂x =∂y
∂x =0,∂y
∂u
∂u
∂y +∂y
∂v
∂v
∂y =∂y
∂y =1
36. (a) (x, y)
(u, v)=
1vu
vu
=u;u=x+y, v =y
x+y,
(u, v)
(x, y)=
11
y/(x+y)2x/(x+y)2
=x
(x+y)2+y
(x+y)2=1
x+y=1
u;
(u, v)
(x, y)
(x, y)
(u, v)=1
(b) (x, y)
(u, v)=
vu
02v
=2v
2
;u=x/y, v =y,
(u, v)
(x, y)=
1/yx/(2y3/2)
01/(2y)
=1
2y=1
2v2;(u, v)
(x, y)
(x, y)
(u, v)=1
603 Chapter 16
(c) (x, y)
(u, v)=
uv
uv
=2uv;u=x+y, v =xy,
(u, v)
(x, y)=
1/(2x+y)1/(2x+y)
1/(2xy)1/(2xy)
=1
2px2y2=1
2uv ;(u, v)
(x, y)
(x, y)
(u, v)=1
37. (u, v)
(x, y)=3xy4=3vso (x, y)
(u, v)=1
3v;1
3ZZ
S
sin u
vdAuv =1
3Z2
1Z2π
π
sin u
vdu dv =2
3ln 2
38. (u, v)
(x, y)=8xy so (x, y)
(u, v)=1
8xy ;xy
(x, y)
(u, v)
=xy 1
8xy =1
8so
1
8ZZ
S
dAuv =1
8Z16
9Z4
1
du dv =21/8
39. (u, v)
(x, y)=2(x2+y2)so(x, y)
(u, v)=1
2(x2+y2);
(x4y4)exy
(x, y)
(u, v)
=x4y4
2(x2+y2)exy =1
2(x2y2)exy =1
2veuso
1
2ZZ
S
veudAuv =1
2Z4
3Z3
1
veudu dv =7
4(e3e)
40. Set u=x+y+2z, v =x2y+z,w =4x+y+z, then (u, v, w)
(x, y, z)=
112
121
411
= 18, and
V=ZZZ
R
dx dy dz =Z6
6Z2
2Z3
3
(x, y, z)
(u, v, w)du dv dw = 6(4)(12) 1
18 =16
41. (a) Let u=x+y, v =y, then the triangle Rwith vertices (0,0),(1,0) and (0,1) becomes the
triangle in the uv-plane with vertices (0,0),(1,0),(1,1), and
ZZ
R
f(x+y)dA =Z1
0Zu
0
f(u)(x, y)
(u, v)dv du =Z1
0
uf(u)du
(b) Z1
0
ueudu =(u1)eui1
0=1
42. (a) (x, y)
(r, θ)=
cos θrsin θ
sin θrcos θ
=r,
(x, y)
(r, θ)
=r
(b) (x, y, z)
(ρ, θ, φ)=
sin φcos θρsin φsin θρcos φcos θ
sin φsin θρsin φcos θρcos φsin θ
cos φ0ρsin φ
=ρ2sin φ;
(x, y, z)
(ρ, θ, φ)
=ρ2sin φ
Chapter 16 Supplementary Exercises 604
CHAPTER 16 SUPPLEMENTARY EXERCISES
3. (a) ZZ
R
dA (b) ZZZ
G
dV (c) ZZ
Rs∂z
∂x2
+∂z
∂y2
dA
4. (a) x=asin φcos θ, y =asin φsin θ, z =ρcos φ, 0θ2π, 0φπ
(b) x=acos θ, y =asin θ, z =z,0θ2π, 0zh
7. Z1
0Z1+1y2
11y2
f(x, y)dx dy 8. Z2
0Z2x
x
f(x, y)dy dx +Z3
2Z6x
x
f(x, y)dy dx
9. (a) (1,2)=(b, d),(2,1)=(a, c), so a=2,b =1,c=1,d=2
(b) ZZ
R
dA =Z1
0Z1
0
(x, y)
(u, v)du dv =Z1
0Z1
0
3du dv =3
10. 0<sin xy < 1 for 0 < x,y < π,so
0=Zπ
0Zπ
0
0dy dx < Zπ
0Zπ
0
sin xy dy dx < Zπ
0Zπ
0
1dy dx =π2
11. Z1
1/2
2xcos(πx2)dx =1
πsin(πx2)i1
1/2=1/(2π)
12. Z2
0
x2
2ey3x=2y
x=y
dy =3
2Z2
0
y2ey3dy =1
2ey32
0
=1
2e81
13. Z1
0Z2
2y
exeydx dy 14. Zπ
0Zx
0
sin x
xdy dx
15.
6
1
x
y
y = sin x
y = tan (x/2)
16.
0
p/2
p/6
r = a
r = a(1 + cos u)
17. 2Z8
0Zy1/3
0
x2sin y2dx dy =2
3Z8
0
ysin y2dy =1
3cos y28
0
=1
3(1 cos 64) 0.20271
18. Zπ/2
0Z2
0
(4 r2)rdrdθ=2π
605 Chapter 16
19. sin 2θ= 2 sin θcos θ=2xy
x2+y2, and r=2asin θis the circle x2+(ya)
2=a
2
,so
Za
0Za+
a
2
x
2
a
a
2
x
2
2xy
x2+y2dy dx =Za
0
xhln a+pa2x2ln apa2x2idx =a2
20. Zπ/2
π/4Z2
0
4r2(cos θsin θ)rdrdθ=4 cos 2θπ/2
π/4
=4
21. Z2π
0Z2
0Z16
r4
r2cos2θrdzdrdθ =Z2π
0
cos2θdθZ2
0
r
3(16 r4)dr =32π
22. Zπ/2
0Zπ/2
0Z1
0
1
1+ρ
2ρ
2sin φdρdφdθ =1π
4π
2Zπ/2
0
sin φdφ
=1π
4π
2(cos φ)iπ/2
0=1π
4π
2
23. (a) Z2π
0Zπ/3
0Za
0
(ρ2sin2φ)ρ2sin φdρdφdθ =Z2π
0Zπ/3
0Za
0
ρ4sin3φdρdφdθ
(b) Z2π
0Z3a/2
0Za2r2
r/3
r2dz rdr dθ =Z2π
0Z3a/2
0Za2r2
r/3
r3dz dr dθ
(c) Z3a/2
3a/2Z(3a2/4)x2
(3a2/4)x2Za2x2y2
x2+y2/3
(x2+y2)dz dy dx
24. (a) Z4
0Z4xx2
4xx2Z4x
x2+y2
dz dy dx
(b) Zπ/2
π/2Z4 cos θ
0Z4rcos θ
r2
rdzdrdθ
25. Z2
0Z2y/2
(y/2)1/3
dx dy =Z2
02y
2y
21/3dy =2yy2
43
2y
24/32
0
=3
2
26. A=6Zπ/6
0Zcos 3θ
0
rdrdθ=3Zπ/6
0
cos23θ=π/4
27. V=Z2π
0Za/3
0Za
3r
rdzdrdθ =2πZa/3
0
r(a3r)dr =πa3
9
28. The intersection of the two surfaces projects onto the yz-plane as 2y2+z2=1,so
V=4Z1/
2
0Z
12y
2
0Z1y
2
y
2
+z
2
dx dz dy
=4Z1/
2
0Z
12y
2
0
(1 2y2z2)dz dy =4Z1/
2
0
8
3
(1 2x2)3/2dx =2π
4
29. kru×rvk=2u2+2v
2+4,
S=ZZ
u2+v24p2u2+2v
2+4dA =Z2π
0Z2
0
2pr2+2rdrdθ =8π
3(331)
Chapter 16 Supplementary Exercises 606
30. kru×rvk=1+u
2
,S=
Z2
0Z3u
0p
1+u
2
dv du =Z2
0
3up1+u
2
du =5
3/21
31. (ru×rv)iu=1
v=2
=h−2,4,1i, tangent plane 2x+4yz=5
32. u=3,v =0,(r
u×r
v
)
iu=3
v=0
=h−18,0,3i, tangent plane 6x+z=9
33. A=Z4
4Z2+y2/8
y2/4
dx dy =Z4
42y2
8dy =32
3y= 0 by symmetry;
Z4
4Z2+y2/8
y2/4
xdxdy =Z4
42+1
4y
23
128y4dy =256
15 ,¯x=3
32
256
15 =8
5; centroid 8
5,0
34. A=πab/2,¯x= 0 by symmetry,
Za
aZb1x2/a2
0
ydydx=1
2Za
a
b
2
(1 x2/a2)dx =2ab2/3, centroid 0,4b
3π
35. V=1
3πa2h, ¯xy= 0 by symmetry,
Z2π
0Za
0Zhrh/a
0
rz dz dr =πZa
0
rh21r
a2dr =πa2h2/12, centroid (0,0,h/4)
36. V=Z2
2Z4
x2Z4y
0
dz dy dx =Z2
2Z4
x2
(4 y)dy dx =Z2
284x2+1
2x4dx =256
15 ,
Z2
2Z4
x2Z4y
0
ydzdydx=Z2
2Z4
x
2
(4yy2)dy dx =Z2
21
3x62x4+32
3dx =1024
35
Z2
2Z4
x2Z4y
0
zdzdydx=Z2
2Z4
x
2
1
2(4 y)2dy dx =Z2
2x6
6+2x
48x
2+32
3dx =2048
105
¯x= 0 by symmetry, centroid 0,8
7,4
37. The two quarter-circles with center at the origin and of radius Aand 2Alie inside and outside
of the square with corners (0,0),(A, 0),(A, A),(0,A), so the following inequalities hold:
Zπ/2
0ZA
0
1
(1+r2)2rdr dθ ZA
0ZA
0
1
(1+x2+y2)2dx dy Zπ/2
0Z2A
0
1
(1+r2)2rdr dθ
The integral on the left can be evaluated as πA2
4(1 + A2)and the integral on the right equals
2πA2
4(1+2A
2
). Since both of these quantities tend to π
4, it follows by sandwiching that
Z+
0Z+
0
1
(1+x2+y2)2dx dy =π
4.
38. The centroid of the circle which generates the tube travels a distance
s=Z4π
0qsin2t+ cos2t+1/16 dt =17π,soV=π(1/2)217π=17π2/4.
607 Chapter 16
39. (a) The values of xin the formula of the astroidal sphere lie between aand a; and the same is
true for x=(acos ucos v)3; similarly for yand z. Moreover,
x2/3+y2/3+z2/3=a2/3cos2ucos2v+a2/3sin2ucos2v+a2/3sin2v
=a2/3cos2v+a2/3sin2v=a2/3
(b) S=8Zπ/2
0Zπ/2
0kru×rvkdu dv
=72Zπ/2
0Zπ/2
0
sin ucos usin vcos4vpsin2v+ sin2ucos2ucos2vdu dv 4.451
(c) 8Z(1x2/3)3/2
0Z1
0p1x2/3y2/3dy dx 0.3590
(d) Let x=tcos3u, y =tsin3u, 0t1,0uπ/2, then J=(x, y)
(t, u)=3tsin2ucos2u,
V=8Z1
0Zπ/2
0
(1 t2/3)3/23tsin2ucos2ududt=3π
2Z1
0
t(1 t2/3)3/2dt =4π
35
40. V=4
3πa3,¯
d=3
4πa3ZZZ
ρa
ρdV =3
4πa3Zπ
0Z2π
0Za
0
ρ3sin φdρdθdφ =3
4πa32π(2)a4
4=3
4a
41. (a) (x/a)2+(y/b)2+(z/c)2= sin2φcos2θ+sin2φsin2θ+cos2φ= sin2φ+cos2φ= 1, an ellipsoid
(b) r(φ, θ)=h2 sin φcos θ, 3 sin φsin θ, 4 cos φi;rφ×rθ=2h6 sin2φcos θ, 4 sin2φsin θ, 3 cos φsin φi,
krφ×rθk=2
p16 sin4φ+ 20 sin4φcos2θ+ 9 sin2φcos2φ,
S=Z2π
0Zπ
0
2q16 sin4φ+ 20 sin4φcos2θ+ 9 sin2φcos2φdφdθ 111.5457699
608
CHAPTER 17
Topics in Vector Calculus
EXERCISE SET 17.1
1. (a) III because the vector field is independent of yand the direction is that of the negative x-axis
for negative x, and positive for positive
(b) IV, because the y-component is always positive, and the x-component is positive for positive
x, negative for negative x
2. (a) I, since the vector field is constant
(b) II, since the vector field points away from the origin
3. (a) true (b) true (c) true
4. (a) false, the lengths are equal to 1 (b) false, the y-component is then zero
(c) false, the x-component is then zero
5.
x
y6.
x
y7.
x
y
8.
x
y9.
x
y10.
x
y
11. (a) φ=φxi+φyj=y
1+x
2
y
2i+x
1+x
2
y
2j=F,soFis conservative for all x, y
(b) φ=φxi+φyj=2xi6yj+8zk=Fso Fis conservative for all x, y
12. (a) φ=φxi+φyj=(6xy y3)i+(4y+3x
23xy2)j=F,soFis conservative for all x, y
(b) φ=φxi+φyj+φzk= (sin z+ycos x)i+ (sin x+zcos y)j+(xcos z+ sin y)k=F,soFis
conservative for all x, y
609 Chapter 17
13. div F=2x+y, curl F=zi
14. div F=z3+8y
3
x
2+10zy, curl F=5z
2
i+3xz2j+4xy4k
15. div F= 0, curl F= (40x2z412xy3)i+ (14y3z+3y
4
)j(16xz5+21y
2
z
2
)k
16. div F=yexy + sin y+ 2 sin zcos z, curl F=xexyk
17. div F=2
px2+y2+z2, curl F=0
18. div F=1
x+xzexyz +x
x2+z2, curl F=xyexyz i+z
x2+z2j+yzexyzk
19. ·(F×G)=·((z+4y
2
)i+(4xy +2xz)j+(2xy x)k)=4x
20. ·(F×G)=·((x2yz2x2y2)ixy2z2j+xy2zk)=xy2
21. ·(∇×F)=·(sin(xy)k)=0
22. ·(∇×F)=·(zeyzi+xexzj+3e
yk)=0
23. ∇×(∇×F)=∇×(xziyzj+yk)=(1+y)i+xj
24. ∇×(∇×F)=∇×((x+3y)iyj2xyk)=2xi+2yj3k
25. div (kF)=k
∂f
∂x +k∂q
∂y +k∂h
∂z =kdiv F
26. curl (kF)=k∂h
∂y ∂g
∂zi+k∂f
∂z ∂h
∂xj+k∂g
∂x ∂f
∂y k=kcurl F
27. Let F=f(x, y, z)i+g(x, y, z)j+h(x, y, z)kand G=P(x, y, z)i+Q(x, y, z)j+R(x, y, z)k, then
div (F+G)=∂f
∂x +∂P
∂x +∂g
∂y +∂Q
∂y +∂h
∂z +∂R
∂z
=∂f
∂x +∂g
∂y +∂h
∂z +∂P
∂x +∂Q
∂y +∂R
∂z = div F+ div G
28. Let F=f(x, y, z)i+g(x, y, z)j+h(x, y, z)kand G=P(x, y, z)i+Q(x, y, z)j+R(x, y, z)k, then
curl (F+G)=
∂y(h+R)
∂z(g+Q)i+
∂z(f+P)
∂x(h+R)j
+
∂x(g+Q)
∂y(f+P)k;
expand and rearrange terms to get curl F+ curl G.
29. div (φF)=φ
∂f
∂x +∂φ
∂xf+φ∂g
∂y +∂φ
∂y g+φ∂h
∂z +∂φ
∂z h
=φ∂f
∂x +∂g
∂y +∂h
∂z +∂φ
∂xf+∂φ
∂y g+∂φ
∂z h
=φdiv F+φ·F
Exercise Set 17.1 610
30. curl (φF)=
∂y(φh)
∂z(φg)i+
∂z(φf)
∂x(φh)j+
∂x(φg)
∂y(φf )k; use the product
rule to expand each of the partial derivatives, rearrange to get φcurl F+φ×F
31. div(curl F)=
∂x ∂h
∂y ∂g
∂z+
∂y ∂f
∂z ∂h
∂x+
∂z ∂g
∂x ∂f
∂y
=2h
∂x∂y 2g
∂x∂z +2f
∂y∂z 2h
∂y∂x +2g
∂z∂x 2f
∂z∂y =0,
assuming equality of mixed second partial derivatives
32. curl (φ)=
2
φ
∂y∂z 2φ
∂z∂yi+2φ
∂z∂x 2φ
∂x∂z j+2φ
∂x∂y 2φ
∂y∂xk=0, assuming equality
of mixed second partial derivatives
33. ·(kF)=k·F,·(F+G)=·F+·G,·(φF)=φ·F+φ·F,·(∇×F)=0
34. ∇×(kF)=k∇×F,∇×(F+G)=∇×F+∇×G,∇×(φF)=φ∇×F+φ×F,∇×(φ)=0
37. (a) curl r=0i+0j+0k=0
(b) ∇krk=px2+y2+z2=x
px2+y2+z2i+y
px2+y2+z2j+z
px2+y2+z2k=r
krk
38. (a) div r=1+1+1=3
(b) 1
krk=(x2+y2+z2)1/2=xi+yj+zk
(x2+y2+z2)3/2=r
krk3
39. (a) f(r)=f
0
(r)∂r
∂xi+f0(r)∂r
∂yj+f0(r)∂r
∂zk=f0(r)r=f0(r)
rr
(b) div[f(r)r]=f(r)div r+f(r)·r=3f(r)+f0(r)
rr·r=3f(r)+rf0(r)
40. (a) curl[f(r)r]=f(r)curl r+f(r)×r=f(r)0+f0(r)
rr×r=0+0=0
(b) 2f(r) = div[f(r)] = div f0(r)
rr=f0(r)
rdiv r+f0(r)
r
·r
=3
f
0
(r)
r+rf00(r)f0(r)
r3r·r=2
f
0
(r)
r+f
00(r)
41. f(r)=1/r3,f0(r)=3/r4, div(r/r3) = 3(1/r3)+r(3/r4)=0
42. Multiply 3f(r)+rf0(r) = 0 through by r2to obtain 3r2f(r)+r
3
f0(r)=0,
d[r
3
f(r)]/dr =0,r
3
f(r)=C, f(r)=C/r3,soF=Cr/r3(an inverse-square field).
43. (a) At the point (x, y) the slope of the line along which the vector yi+xjlies is x/y; the
slope of the tangent line to Cat (x, y)isdy/dx,sody/dx =x/y.
(b) ydy =xdx, y2/2=x
2
/2+K
1
,x
2+y
2=K
611 Chapter 17
44. dy/dx =x, y =x2/2+K
x
y
45. dy/dx =1/x, y =lnx+K
x
y
46. dy/dx =y/x, (1/y)dy =(1/x)dx, ln y=ln x+K1,
y=eK1eln x=K/x
x
y
EXERCISE SET 17.2
1. (a) Z1
0
dy = 1 because s=yis arclength measured from (0,0)
(b) 0, because sinxy = 0 along C
2. (a) Z
C
ds = length of line segment = 2 (b) 0, because xis constant and dx =0
3. (a) ds =sdx
dt 2
+dy
dt 2
dt,soZ1
0
(2t3t2)p4+36t
2dt =11
10810 1
36 ln(103) 4
27
(b) Z1
0
(2t3t2)2 dt =0 (c) Z1
0
(2t3t2)6tdt=1
2
4. (a) Z1
0
t(3t2)(6t3)2p1+36t
2+ 324t4dt =864
5(b) Z1
0
t(3t2)(6t3)2dt =54
5
(c) Z1
0
t(3t2)(6t3)26tdt=648
11 (d) Z1
0
t(3t2)(6t3)218t2dt = 162
5. (a) C:x=t,y=t,0t1; Z1
0
6tdt=3
(b) C:x=t,y=t2,0t1; Z1
0
(3t+6t
22t
3
)dt =3
Exercise Set 17.2 612
(c) C:x=t,y= sin(πt/2), 0 t1;
Z1
0
[3t+ 2 sin(πt/2)+πt cos(πt/2) (π/2) sin(πt/2) cos(πt/2)]dt =3
(d) C:x=t3,y=t,0t1; Z1
0
(9t5+8t
3t)dt =3
6. (a) C:x=t, y =t, z =t, 0t1; Z1
0
(t+tt)dt =1
2
(b) C:x=t, y =t2,z =t
3,0t1; Z1
0
(t2+t3(2t)t(3t2)) dt =1
60
(c) C:x= cos πt, y = sin πt, z =t, 0t1; Z1
0
(πsin2πt +πt cos πt cos πt)dt =π
22
π
7. Z3
0
1+t
1+tdt =Z3
0
(1+t)1/2dt =2 8. 5Z1
0
1+2t
1+t
2dt =5(π/4+ln2)
9. Z1
0
3(t2)(t2)(2t3/3)(1 + 2t2)dt =2Z1
0
t
7
(1+2t
2
)dt =13/20
10. 5
4Z2π
0
etdt =5(1 e2π)/411. Zπ/4
0
(8 cos2t16 sin2t20 sin tcos t)dt =1π
12. Z1
12
3t2
3t5/3+t2/3dt =6/5
13. C:x=(3t)
2
/3, y=3t,0t3; Z3
0
1
3(3 t)2dt =3
14. C:x=t2/3,y=t,1t1; Z1
12
3t2/32
3t1/3+t7/3dt =4/5
15. C:x= cos t,y= sin t,0tπ/2; Zπ/2
0
(sin tcos2t)dt =1π/4
16. C:x=3t,y=43t,0t1; Z1
0
(37+41t9t
2
)dt =39/2
17. Z1
0
(3)e3tdt =1e
3
18. Zπ/2
0
(sin2tcos tsin2tcos t+t4(2t)) dt =π6
192
20. (a) Zπ/2
0
cos21 tsin9tq(3 cos2tsin t)2+ (3 sin2tcos t)2dt
=3
Zπ/2
0
cos22 tsin10 tdt=61,047
4,294,967,296π
(b) Ze
1t5ln t+7t
2
(2t)+t
4
(ln t)1
tdt =5
36e6+59
16e4491
144
613 Chapter 17
21. (a) C1:(0,0) to (1,0); x=t, y =0,0t1
C
2:(1,0) to (0,1); x=1t, y =t, 0t1
C3:(0,1) to (0,0); x=0,y =1t, 0t1
Z1
0
(0)dt +Z1
0
(1)dt +Z1
0
(0)dt =1
(b) C1:(0,0) to (1,0); x=t, y =0,0t1
C
2:(1,0) to (1,1); x=1,y =t, 0t1
C3:(1,1) to (0,1); x=1t, y =1,0t1
C
4:(0,1) to (0,0); x=0,y =1t, 0t1
Z1
0
(0)dt +Z1
0
(1)dt +Z1
0
(1)dt +Z1
0
(0)dt =2
22. (a) C1:(0,0) to (1,1); x=t, y =t, 0t1
C2:(1,1) to (2,0); x=1+t, y =1t, 0t1
C3:(2,0) to (0,0); x=22t, y =0,0t1
Z1
0
(0)dt +Z1
0
2dt +Z1
0
(0)dt =2
(b) C1:(5,0) to (5,0); x=t, y =0,5t5
C
2:x= 5 cos t, y = 5 sin t, 0tπ
Z5
5
(0)dt +Zπ
0
(25)dt =25π
23. C1:x=t, y =z=0,0t1,Z1
0
0dt =0; C
2:x=1,y =t, z =0,0t1,Z1
0
(t)dt =1
2
C3:x=1,y =1,z =t, 0t1,Z1
0
3dt =3; ZC
x
2
zdxyx2dy +3dz =01
2+3= 5
2
24. C1:(0,0,0) to (1,1,0); x=t, y =t, z =0,0t1
C
2:(1,1,0) to (1,1,1); x=1,y =1,z =t, 0t1
C3:(1,1,1) to (0,0,0); x=1t, y =1t, z =1t, 0t1
Z1
0
(t3)dt +Z1
0
3dt +Z1
03dt =1/4
25. Zπ
0
(0)dt =0 26. Z1
0
(e2t4et)dt =e2/2+4e
19/2
27. Z1
0
etdt =1e
128. Zπ/2
0
(7 sin2tcos t+ 3 sin tcos t)dt =23/6
29. Represent the circular arc by x= 3 cos t, y = 3 sin t, 0tπ/2.
ZC
xyds =9
3Zπ/2
0
sin tcos tdt=6
3
30. δ(x, y)=k
px
2+y
2where kis the constant of proportionality,
ZC
kpx2+y2ds =kZ1
0
et(2et)dt =2kZ1
0
e2tdt =(e
21)k/2
Exercise Set 17.2 614
31. ZC
kx
1+y
2ds =15kZπ/2
0
cos t
1+9sin
2tdt =5ktan13
32. δ(x, y, z)=kz where kis the constant of proportionality,
ZC
kzds =Z4
1
k(4t)(2+1/t)dt = 136k/3
33. C:x=t2,y=t,0t1; W=Z1
0
3t4dt =3/5
34. W=Z3
1
(t2+11/t3+1/t)dt =92/9+ln3 35. W=Z1
0
(t3+5t
6
)dt =27/28
36. C1:(0,0,0) to (1,3,1); x=t,y=3t,z=t,0t1
C
2:(1,3,1) to (2,1,4); x=1+t,y=34t,z=1+3t,0t1
W=Z1
0
(4t+8t
2
)dt +Z1
0
(11 17t11t2)dt =37/2
37. Since Fand rare parallel, F·r=kFkkrk, and since Fis constant,
ZF·dr=Z
C
d(F·r)=Z
C
d(kFkkrk)=
2Z4
4
2dt =16
Z
C
F·r=
2(42)
38. Z
C
F·r= 0, since Fis perpendicular to the curve
39. C:x= 4 cos t, y = 4 sin t, 0tπ/2
Zπ/2
01
4sin t+ cos tdt =3/4
40. C1:(0,3) to (6,3); x=6t, y =3,0t1
C
2:(6,3) to (6,0); x=6,y =33t, 0t1
Z1
0
6
36t2+9dt +Z1
0
12
36 + 9(1 t)2dt =1
3tan122
3tan1(1/2)
41. Represent the parabola by x=t, y =t2,0t2.
ZC
3xds =Z2
0
3tp1+4t
2dt = (1717 1)/4
42. Represent the semicircle by x= 2 cos t, y = 2 sin t, 0tπ.
ZC
x2yds =Zπ
0
16 cos2tsin tdt=32/3
43. (a) 2πrh =2π(1)2 = 4π(b) S=ZC
z(t)dt
(c) C:x= cos t, y = sin t, 0t2π;S=Z2π
0
(2+(1/2) sin 3t)dt =4π
615 Chapter 17
44. C:x=acos t, y =asin t, 0t2π,ZC
dt =ZC
dt =Z2π
0
dt =2π
45. W=Z1
0
λ[(1 λ)t+(3λ1)t2(1+2λ)t
3
]dt =λ/12, W= 1 when λ=12
46. The force exerted by the farmer is F=150+201
10zk=170 3
4πtk,so
F·dr=170 1
10zdz, and W=Z60
0170 1
10zdz =10,020. Note that the functions
x(z),y(z) are irrelevant.
EXERCISE SET 17.3
1. x/∂y =0=y/∂x, conservative so φ/∂x =xand φ/∂y =y,φ=x2/2+k(y), k0(y)=y,
k(y)=y
2
/2+K,φ=x
2
/2+y
2
/2+K
2. (3y2)/∂y =6y=(6xy)/∂x, conservative so φ/∂x =3y
2and φ/∂y =6xy,
φ=3xy2+k(y), 6xy +k0(y)=6xy,k0(y)=0,k(y)=K,φ=3xy2+K
3. (x2y)/∂y =x2and (5xy2)/∂x =5y
2
, not conservative
4. (excos y)/∂y =exsin y=(exsin y)/∂x, conservative so φ/∂x =excos yand
φ/∂y =exsin y,φ=excos y+k(y), exsin y+k0(y)=e
xsin y,
k0(y)=0,k(y)=K,φ=e
xcos y+K
5. (cos y+ycos x)/∂y =sin y+ cos x=(sin xxsin y)/∂x, conservative so
φ/∂x = cos y+ycos xand φ/∂y = sin xxsin y,φ=xcos y+ysin x+k(y),
xsin y+ sin x+k0(y) = sin xxsin y,k0(y)=0,k(y)=K,φ=xcos y+ysin x+K
6. (xln y)/∂y =x/y and (yln x)/∂x =y/x, not conservative
7. (a) (y2)/∂y =2y=(2xy)/∂x, independent of path
(b) C:x=1+2t,y=2+t,0t1; Z1
0
(4+14t+6t
2
)dt =13
(c) φ/∂x =y2and φ/∂y =2xy,φ=xy2+k(y), 2xy +k0(y)=2xy,k0(y)=0,k(y)=K,
φ=xy2+K. Let K= 0 to get φ(1,3) φ(1,2)=9(4)=13
8. (a) (ysin x)/∂y = sin x=(cos x)/∂x, independent of path
(b) C1:x=πt,y=12t,0t1; Z1
0
(πsin πt 2πt sin πt + 2 cos πt)dt =0
(c) φ/∂x =ysin xand φ/∂y =cos x,φ=ycos x+k(y), cos x+k0(y)=cos x,
k0(y)=0,k(y)=K,φ=ycos x+K. Let K= 0 to get φ(π, 1)φ(0,1)=(1)(1)=0
9. (3y)/∂y =3=(3x)/∂x,φ=3xy,φ(4,0) φ(1,2) = 6
10. (exsin y)/∂y =excos y=(excos y)/∂x,φ=exsin y,φ(1/2) φ(0,0) = e
11. (2xey)/∂y =2xey=(x2ey)/∂x,φ=x2ey,φ(3,2) φ(0,0)=9e
2
Exercise Set 17.3 616
12. (3xy+1)/∂y =1=[(x+4y+ 2)]/∂x,
φ=3x
2
/2xy +x2y22y,φ(0,1) φ(1,2)=11/2
13. (2xy3)/∂y =6xy2=(3x2y2)/∂x,φ=x2y3,φ(1,0) φ(2,2)=32
14. (exln yey/x)/∂y =ex/y ey/x =(ex/y eyln x)/∂x,
φ=exln yeyln x,φ(3,3) φ(1,1)=0
15. φ=x2y2/2, W=φ(0,0) φ(1,1) = 1/216. φ=x2y3,W =φ(4,1) φ(3,0)=16
17. φ=exy,W=φ(2,0) φ(1,1)=1e
1
18. φ=eysin x, W =φ(π/2,0) φ(π/2,1) = 11/e
19. (ey+yex)/∂y =ey+ex=(xey+ex)/∂x so Fis conservative, φ(x, y)=xey+yexso
ZC
F·dr=φ(0,ln 2) φ(1,0)=ln21
20. (2xy)/∂y =2x=(x
2+ cos y)/∂x so Fis conservative, φ(x, y)=x
2
y+ sin yso
ZC
F·dr =φ(π, π/2) φ(0,0) = π3/2+1
21. F ·dr=[(e
y+yex)i+(xey+ex)j]·[(π/2) cos(πt/2)i+(1/t)j]dt
=π
2cos(πt/2)(ey+yex)+(xey+ex)/tdt,
so ZC
F·dr=Z2
1π
2cos(πt/2) eln t+ (ln t)esin(πt/2)+sin(πt/2)eln t+esin(πt/2)dt ≈−0.307
22. F ·dr=2t2cos(t/3)+[t
2+ cos(tcos(t/3))](cos(t/3) (t/3) sin(t/3))dt,so
ZC
F·dr=Zπ
02t
2cos(t/3)+[t
2+ cos(tcos(t/3))](cos(t/3) (t/3) sin(t/3))dt 16.503
23. No; a closed loop can be found whose tangent everywhere makes an angle with the vector
field, so the line integral ZC
F·dr>0, and by Theorem 17.3.2 the vector field is not conservative.
24. The vector field is constant, say F=ai+bj,soletφ(x, y)=ax +by and Fis conservative.
25. If Fis conservative, then F=φ=∂φ
∂xi+∂φ
∂y j+∂φ
∂z kand hence f=∂φ
∂x,g =∂φ
∂y , and h=∂φ
∂z .
Thus ∂f
∂y =2φ
∂y∂x and ∂g
∂x =2φ
∂x∂y,∂f
∂z =2φ
∂z∂x and ∂h
∂x =2φ
∂x∂z ,∂g
∂z =2φ
∂z∂y and ∂h
∂y =2φ
∂y∂z.
The result follows from the equality of mixed second partial derivatives.
26. Let f(x, y, z)=yz, g(x, y, z)=xz, h(x, y, z)=yx2, then f/∂z =y, ∂h/∂x =2xy 6=f/∂z,thus
by Exercise 25, F=fi+gj+hkis not conservative, and by Theorem 17.3.2, ZC
yz dx+xz dy+yx2dz
is not independent of the path.
617 Chapter 17
27.
∂y(h(x)[xsin y+ycos y]) = h(x)[xcos yysin y+ cos y]
∂x(h(x)[xcos yysin y]) = h(x) cos y+h0(x)[xcos yysin y],
equate these two partial derivatives to get (xcos yysin y)(h0(x)h(x)) = 0 which holds for all
xand yif h0(x)=h(x), h(x)=Cexwhere Cis an arbitrary constant.
28. (a)
∂y
cx
(x2+y2)3/2=3cxy
(x2+y2)5/2=
∂x
cy
(x2+y2)3/2when (x, y)6=(0,0),
so by Theorem 17.3.3, Fis conservative. Set φ/∂x =cx/(x2+y2)3/2,
then φ(x, y)=c(x
2+y
2
)
1/2+k(y), ∂φ/∂y =cy/(x2+y2)3/2+k0(y), so k0(y)=0.
Thus φ(x, y)=c
(x
2+y
2
)
1/2is a potential function.
(b) curl F=0is similar to part (a), so Fis conservative. Let
φ(x, y, z)=Zcx
(x2+y2+z2)3/2dx =c(x2+y2+z2)1/2+k(y, z). As in part (a),
k/∂y =k/∂z =0,soφ(x, y, z)=c/(x2+y2+z2)1/2is a potential function for F.
29. (a) See Exercise 28, c=1;W=ZQ
P
F·dr=φ(3,2,1) φ(1,1,2) = 1
14 +1
6
(b) Cbegins at P(1,1,2) and ends at Q(3,2,1) so the answer is again W=1
14 +1
6.
(c) Cbegins at, say, (3,0) and ends at the same point so W=0.
30. (a) F ·dr=ydx
dt xdy
dt dt for points on the circle x2+y2=1,so
C
1:x= cos t, y = sin t, 0tπ, ZC1
F·dr=Zπ
0
(sin2tcos2t)dt =π
C2:x= cos t, y =sin t, 0tπ, ZC2
F·dr=Zπ
0
(sin2t+ cos2t)dt =π
(b) ∂f
∂y =x2y2
(x2+y2)2,∂g
∂x =y2x2
(x2+y2)2=∂f
∂y
(c) The circle about the origin of radius 1, which is formed by traversing C1and then traversing
C2in the reverse direction, does not lie in an open simply connected region inside which F
is continuous, since Fis not defined at the origin, nor can it be defined there in such a way
as to make the resulting function continuous there.
31. If Cis composed of smooth curves C1,C
2,...,C
nand curve Ciextends from (xi1,y
i1)to(x
i
,y
i)
then ZC
F·dr=
n
X
i=1 ZCi
F·dr=
n
X
i=1
[φ(xi,y
i)φ(x
i1,y
i1)] = φ(xn,y
n)φ(x
0,y
0)
where (x0,y
0) and (xn,y
n) are the endpoints of C.
32. ZC1
F·dr+ZC2
F·dr= 0, but ZC2
F·dr=ZC2
F·drso ZC1
F·dr=ZC2
F·dr,thus
Z
C
F·dris independent of path.
Exercise Set 17.4 618
33. Let C1be an arbitrary piecewise smooth curve from (a, b)toapoint(x, y1) in the disk, and C2
the vertical line segment from (x, y1)to(x, y). Then
φ(x, y)=ZC
1
F·dr+ZC
2
F·dr=Z(x,y1)
(a,b)
F·dr+ZC2
F·dr.
The first term does not depend on y;
hence ∂φ
∂y =
∂y ZC2
F·dr=
∂y ZC2
f(x, y)dx +g(x, y)dy.
However, the line integral with respect to xis zero along C2,so∂φ
∂y =
∂y ZC2
g(x, y)dy.
Express C2as x=x, y =twhere tvaries from y1to y, then ∂φ
∂y =
∂y Zy
y1
g(x, t)dt =g(x, y).
EXERCISE SET 17.4
1. ZZ
R
(2x2y)dA =Z1
0Z1
0
(2x2y)dy dx = 0; for the line integral, on x=0,y
2dx =0,x
2dy =0;
on y=0,y
2dx =x2dy =0;onx=1,y
2dx +x2dy =dy; and on y=1,y
2dx +x2dy =dx,
hence I
C
y2dx +x2dy =Z1
0
dy +Z0
1
dx =11=0
2. ZZ
R
(1 1)dA = 0; for the line integral let x= cos t, y = sin t,
I
C
ydx+xdy =Z2π
0
(sin2t+ cos2t)dt =0
3. Z4
2Z2
1
(2y3x)dy dx =0 4. Z2π
0Z3
0
(1+2rsin θ)rdrdθ =9π
5. Zπ/2
0Zπ/2
0
(ycos x+xsin y)dy dx =0 6. ZZ
R
(sec2xtan2x)dA =ZZ
R
dA =π
7. ZZ
R
[1 (1)]dA =2ZZ
R
dA =8π8. Z1
0Zx
x2
(2x2y)dy dx =1/30
9. ZZ
Ry
1+y1
1+ydA =ZZ
R
dA =4
10. Zπ/2
0Z4
0
(r2)rdrdθ =32π
11. ZZ
Ry2
1+y
21
1+y
2dA =ZZ
R
dA =1
619 Chapter 17
12. ZZ
R
(cos xcos ycos xcos y)dA =0 13. Z1
0Zx
x2
(y2x2)dy dx =0
15. (a) C:x= cos t, y = sin t, 0t2π;
IC
=Z2π
0esin t(sin t) + sin tcos tecos tdt ≈−3.550999378;
ZZ
R
∂x(yex)
∂yeydA =ZZ
R
[yexey]dA
=Z2π
0Z1
0rsin θercos θersin θrdrdθ≈−3.550999378
(b) C1:x=t, y =t2,0t1; Z
C1
[eydx +yexdy]=Z1
0he
t
2+2t
3
e
t
idt 2.589524432
C2:x=t2,y =t, 0t1; Z
C2
[eydx +yexdy]=Z1
0h2tet+tet2idt =e+3
22.859140914
Z
C1
Z
C2
≈−0.269616482; ZZ
R
=Z1
0Zx
x2
[yexey]dy dx ≈−0.269616482
16. (a) IC
xdy =Z2π
0
ab cos2tdt=πab (b) ICydx=Z2π
0
ab sin2tdt=πab
17. A=1
2ICydx+xdy=1
2Z2π
0
(3a2sin4φcos2φ+3a
2cos4φsin2φ)
=3
2a2Z2π
0
sin2φcos2φdφ=3
8a
2Z2π
0
sin22φdφ=3πa2/8
18. C1:(0,0) to (a, 0); x=at, y =0,0t1
C
2:(a, 0) to (0,b); x=aat, y =bt, 0t1
C3:(0,b)to(0,0); x=0,y=bbt, 0t1
A=IC
xdy =Z1
0
(0)dt +Z1
0
ab(1 t)dt +Z1
0
(0)dt =1
2ab
19. C1:(0,0) to (a, 0); x=at,y=0,0t1
C
2:(a, 0) to (acos t0,bsin t0); x=acos t,y=bsin t,0tt
0
C
3:(acos t0,bsin t0)to(0,0); x=a(cos t0)t,y=b(sin t0)t,1t0
A=1
2ICydx+xdy =1
2Z1
0
(0) dt +1
2Zt0
0
ab dt +1
2Z0
1
(0) dt =1
2ab t0
20. C1:(0,0) to (a, 0); x=at,y=0,0t1
C
2:(a, 0) to (acosh t0,bsinh t0); x=acosh t,y=bsinh t,0tt
0
C
3:(acosh t0,bsinh t0)to(0,0); x=a(cosh t0)t,y=b(sinh t0)t,1t0
A=1
2ICydx+xdy =1
2Z1
0
(0) dt +1
2Zt0
0
ab dt +1
2Z0
1
(0) dt =1
2ab t0
Exercise Set 17.4 620
21. W=ZZ
R
ydA=Zπ
0Z5
0
r
2sin θdrdθ= 250/3
22. We cannot apply Green’s Theorem on the region enclosed by the closed curve C, since Fdoes not
have first order partial derivatives at the origin. However, the curve C, consisting of
y=x3
0/4,x
0x2; x=2,x
0y2; and y=x3/4,x
0x2 encloses a region Rin which
Green’s Theorem does hold, and
W=I
C
F·dr= lim
0+I
C
F·dr= lim
0+ZZ
R
·FdA =Z2
x0Zx3/4
x3
0/41
2x1/21
2y1/2dy dx
= lim
0+ 18
3522
4x3
0+x3/2
0+3
14x7/2
03
10x5/2
0!=18
352
23. IC
ydxxdy =ZZ
R
(2)dA =2Z2π
0Za(1+cos θ)
0
rdrdθ=3πa2
24. ¯x=1
AZZ
R
xdA, but IC
1
2x2dy =ZZ
R
xdA from Green’s Theorem so
¯x=1
AIC
1
2x2dy =1
2AIC
x2dy. Similarly, ¯y=1
2AIC
y2dx.
25. A=Z1
0Zx
x3
dy dx =1
4;C1:x=t, y =t3,0t1,ZC1
x2dy =Z1
0
t2(3t2)dt =3
5
C2:x=t, y =t, 0t1; ZC2
x2dy =Z1
0
t2dt =1
3,IC
x2dy =ZC1ZC2
=3
51
3=4
15,¯x=8
15
ZC
y2dx =Z1
0
t6dt Z1
0
t2dt =1
71
3=4
21,¯y=8
21,centroid 8
15,8
21
26. A=a2
2;C1:x=t, y =0,0ta, C2:x=at, y =t, 0ta;C3:x=0,y =at, 0ta;
Z
C1
x2dy =0,Z
C
2
x
2dy =Za
0
(at)2dt =a3
3,Z
C3
x2dy =0,I
C
x
2dy =Z
C1
+Z
C2
+Z
C3
=a3
3,¯x=a
3;
Z
C
y2dx =0Za
0
t
2dt +0=a
3
3,¯y=a
3,centroid a
3,a
3
27. ¯x= 0 from the symmetry of the region,
C1:(a, 0) to (a, 0) along y=a2x2;x=acos t,y=asin t,0tπ
C
2:(a, 0) to (a, 0); x=t,y=0,ata
A=πa2/2,¯y=1
2AZπ
0a3sin3tdt+Za
a
(0)dt
=1
πa24a3
3=4a
3π; centroid 0,4a
3π
621 Chapter 17
28. A=ab
2;C1:x=t, y =0,0ta, C2:x=a, y =t, 0tb;
C3:x=at, y =bbt/a, 0ta;
ZC1
x2dy =0,ZC
2
x
2dy =Zb
0
a2dt =ba2,ZC3
x2dy =Za
0
(at)2(b/a)dt =ba2
3,
IC
x2dy =ZC1
+ZC2
+ZC3
=2ba2
3,¯x=2a
3;
ZC
y2dx =0+0Za
0
b
2at
adt =ab2
3,¯y=b
3,centroid 2a
3,b
3
29. From Green’s Theorem, the given integral equals ZZ
R
(1x2y2)dA where Ris the region enclosed
by C. The value of this integral is maximum if the integration extends over the largest region for
which the integrand 1 x2y2is nonnegative so we want 1 x2y20, x2+y21. The
largest region is that bounded by the circle x2+y2= 1 which is the desired curve C.
30. (a) C:x=a+(ca)t,y=b+(db)t,0t1
ZCydx+xdy =Z1
0
(ad bc)dt =ad bc
(b) Let C1,C2, and C3be the line segments from (x1,y
1)to(x
2
,y
2), (x2,y
2)to(x
3
,y
3), and
(x3,y
3)to(x
1
,y
1), then if Cis the entire boundary consisting of C1,C
2,and C3
A=1
2ZCydx+xdy =1
2
3
X
i=1 ZCiydx+xdy
=1
2[(x1y2x2y1)+(x
2
y
3x
3
y
2
)+(x
3
y
1x
1
y
3
)]
(c) A=1
2[(x1y2x2y1)+(x
2
y
3x
3
y
2
)+···+(x
n
y
1x
1
y
n
)]
(d) A=1
2[(0 0)+(6+8)+(0+2)+(00)]=8
31. ZC
F·dr=ZC
(x2+y)dx +(4xcos y)dy =3ZZ
R
dA = 3(25 2)=69
32. ZC
F·dr=ZC
(ex+3y)dx +xdy =2ZZ
R
dA =2[π(4)2π(2)2]=24π
EXERCISE SET 17.5
1. Ris the annular region between x2+y2= 1 and x2+y2=4;
ZZ
σ
z2dS =ZZ
R
(x2+y2)sx2
x2+y2+y2
x2+y2+1dA
=2ZZ
R
(x2+y2)dA =2Z2π
0Z2
1
r3dr dθ =15
2π2.
Exercise Set 17.5 622
2. z=1xy,Ris the triangular region enclosed by x+y=1,x= 0 and y=0;
ZZ
σ
xy dS =ZZ
R
xy3dA =3Z1
0Z1x
0
xy dy dx =3
24 .
3. Let r(u, v) = cos ui+vj+ sin uk,0uπ, 0v1. Then ru=sin ui+ cos uk,rv=j,
ru×rv=cos ui+ sin uk,kru×rvk=1,ZZσ
x2ydS =Z1
0Zπ
0
vcos2ududv =π/4
4. z=p4x2y2,Ris the circular region enclosed by x2+y2=3;
ZZ
σ
(x2+y2)zdS=ZZ
R
(x2+y2)p4x2y2sx2
4x2y2+y2
4x2y2+1dA
=ZZ
R
2(x2+y2)dA =2Z2π
0Z
3
0
r
3
dr dθ =9π.
5. If we use the projection of σonto the xz-plane then y=1xand Ris the rectangular region in
the xz-plane enclosed by x=0,x=1,z= 0 and z=1;
ZZ
σ
(xyz)dS =ZZ
R
(2x1z)2dA =2Z1
0Z1
0
(2x1z)dz dx =2/2
6. Ris the triangular region enclosed by 2x+3y=6,x= 0, and y=0;
ZZ
σ
(x+y)dS =ZZ
R
(x+y)14 dA =14 Z3
0Z(62x)/3
0
(x+y)dy dx =5
14.
7. There are six surfaces, parametrized by projecting onto planes:
σ1:z=0;0x1, 0 y1 (onto xy-plane), σ2:x=0;0y1, 0 z1 (onto yz-plane),
σ3:y=0;0x1, 0 z1 (onto xz-plane), σ4:z=1;0x1, 0 y1 (onto xy-plane),
σ5:x=1;0y1, 0 z1 (onto yz-plane), σ6:y=1;0x1, 0 z1 (onto xz-plane).
By symmetry the integrals over σ1
2and σ3are equal, as are those over σ4
5and σ6, and
ZZ
σ1
(x+y+z)dS =Z1
0Z1
0
(x+y)dx dy =1; ZZ
σ4
(x+y+z)dS =Z1
0Z1
0
(x+y+1)dx dy =2,
thus, ZZ
σ
(x+y+z)dS =3·1+3·2=9.
8. Let r(φ, θ) = sinφcos θi+ sin φsin θj+ cos φk,
0θ2π, 0φπ/2; krφ×rθk=p1cos2φ= sin φ,
ZZ
σ
(1+p1x2y2)dS =Z2π
0Zπ/2
0
(1+q1sin2φ) sin φdφdθ
=2πZπ/2
0
(1 + cos φ) sin φdφ=3π
623 Chapter 17
9. Ris the circular region enclosed by x2+y2=1;
ZZ
σpx2+y2+z2dS =ZZ
Rp2(x2+y2)sx2
x2+y2+y2
x2+y2+1dA
= lim
r00+2ZZ
R0px2+y2dA
where R0is the annular region enclosed by x2+y2= 1 and x2+y2=r2
0with r0slightly larger
than 0 because sx2
x2+y2+y2
x2+y2+ 1 is not defined for x2+y2=0,so
ZZ
σpx2+y2+z2dS = lim
r00+2Z2π
0Z1
r0
r2dr dθ = lim
r00+
4π
3(1 r3
0)=4π
3.
10. Let r(φ, θ)=asin φcos θi+asin φsin θj+acos φk,
0θ2π, 0φπ/2; krφ×rθk=a2p1cos2φ,
ZZ
σ
f(x, y, z)=a
2Z2π
0Zπ
0
a
2sin2φp1cos2φdφdθ =8
3πa4
11. (a) 29
16 Z6
0Z(122x)/3
0
xy(12 2x3y)dy dx
(b) 29
4Z3
0Z(124z)/3
0
yz(12 3y4z)dy dz
(c) 29
9Z3
0Z62z
0
xz(12 2x4z)dx dz
12. (a) aZa
0Za2x2
0
xdydx (b) aZa
0Za2z2
0
zdydz
(c) aZa
0Za2z2
0
xz
a2x2z2dx dz
13. 1829/514. a4/3
15. Z4
0Z2
1
y3zp4y2+1dy dz;1
2Z4
0Z4
1
xz1+4xdxdz
16. aZ9
0Za/2
a/5
x2y
pa2y2dy dx,aZ2a/5
a/2Z9
0
x2dx dz 17. 39117/15 55/3
18. The region R:3x
2+2y
2= 5 is symmetric in y. The integrand is
x2yz dS =x2y(5 3x22y2)p1+36x
2+16y
2dy dx, which is odd in y, henceZZZ
σ
x2yz dS =0.
Exercise Set 17.5 624
19. z=4x2,∂z
∂x =x
4x2,∂z
∂y =0;
ZZ
σ
δ0dS =δ0ZZ
Rrx2
4x2+1dA =2δ
0Z4
0Z1
0
1
4x
2dx dy =4
3πδ0.
20. z=1
2(x2+y2), Ris the circular region enclosed by x2+y2=8;
ZZ
σ
δ0dS =δ0ZZ
Rpx2+y2+1dA =δ0Z2π
0Z8
0pr2+1rdrdθ =52
3πδ0.
21. z=4y
2
,Ris the rectangular region enclosed by x=0,x=3,y= 0 and y=3;
ZZ
σ
ydS =ZZ
R
yp4y2+1dA =Z3
0Z3
0
yp4y2+1dy dx =1
4(3737 1).
22. Ris the annular region enclosed by x2+y2= 1 and x2+y2= 16;
ZZ
σ
x2zdS=ZZ
R
x2px2+y2sx2
x2+y2+y2
x2+y2+1dA
=2ZZ
R
x2px2+y2dA =2Z2π
0Z4
1
r4cos2θdrdθ=10232
5π.
23. M=ZZ
σ
δ(x, y, z)dS =ZZ
σ
δ0dS =δ0ZZ
σ
dS =δ0S
24. δ(x, y, z)=|z|; use z=pa2x2y2, let Rbe the circular region enclosed by x2+y2=a2, and
σthe hemisphere above R. By the symmetry of both the surface and the density function with
respect to the xy-plane we have
M=2ZZ
σ
zdS =2ZZ
Rpa2x2y2sx2
a2x2y2+y2
a2x2y2+1dA = lim
r0a2aZZ
Rr
0
dA
where Rr0is the circular region with radius r0that is slightly less than a. But ZZ
Rr
0
dA is simply
the area of the circle with radius r0so M= lim
r0a2a(πr2
0)=2πa3.
25. By symmetry ¯xy=0.
ZZ
σ
dS =ZZ
Rpx2+y2+1dA =Z2π
0Z8
0pr2+1rdrdθ =52π
3,
ZZ
σ
zdS=ZZ
R
zpx2+y2+1dA =1
2ZZ
R
(x2+y2)px2+y2+1dA
=1
2Z2π
0Z8
0
r3pr2+1dr dθ =596π
15
so ¯z=596π/15
52π/3=149
65 . The centroid is (¯x, ¯y, ¯z)=(0,0,149/65).
625 Chapter 17
26. By symmetry ¯xy=0.
ZZ
σ
dS =ZZ
R
2
p4x2y2dA =2Z2π
0Z
3
0
r
4r
2dr dθ =4π,
ZZ
σ
zdS =ZZ
R
2dA = (2)(area of circle of radius 3)=6π
so ¯z=6π
4π=3
2. The centroid is (¯x, ¯y, ¯z)=(0,0,3/2).
27. r/∂u = cos vi+ sin vj+3k,∂r/∂v =usin vi+ucos vj,kr/∂u ×r/∂vk=10u;
310 ZZ
R
u4sin vcos vdA=3
10 Zπ/2
0Z2
1
u4sin vcos vdudv=93/
10
28. r/∂u =j,∂r/∂v =2 sin vi+ 2 cos vk,kr/∂u ×r/∂vk=2;
8ZZ
R
1
udA =8Z2π
0Z3
1
1
u
du dv =16πln 3
29. r/∂u = cos vi+ sin vj+2uk,∂r/∂v =usin vi+ucos vj,kr/∂u ×r/∂vk=u4u2+1;
ZZ
R
udA=Zπ
0Zsin v
0
ududv =π/4
30. r/∂u = 2 cos ucos vi+ 2 cos usin vj2 sin uk,r/∂v =2 sin usin vi+ 2 sin ucos vj;
kr/∂u ×r/∂vk= 4 sin u;
4ZZ
R
e2 cos usin udA=4Z2π
0Zπ/2
0
e2 cos usin ududv =4π(1 e2)
31. z/∂x =2xex2y2,∂z/y =2yex2y2,
(z/∂x)2+(z/∂y)2+1=4(x
2+y
2
)e
2(x2+y2)+ 1; use polar coordinates to get
M=Z2π
0Z3
0
r2p4r2e2r2+1dr dθ 57.895751
32. (b) A=ZZ
σ
dS =Z2π
0Z1
1
1
2p40ucos(v/2)+u2+4u
2cos2(v/2) + 100du dv 62.93768644;
¯x0.01663836266; ¯yz= 0 by symmetry
EXERCISE SET 17.6
1. (a) zero (b) zero (c) positive
(d) negative (e) zero (f) zero
2. (a) positive (b) zero (c) zero
(d) zero (e) negative (f) zero
Exercise Set 17.6 626
3. (a) positive (b) zero (c) positive
(d) zero (e) positive (f) zero
4. 0; the flux is zero on the faces y=0,1 and z=0,1; it is 1 on x= 1 and 1onx=0
5. (a) n =cos visin vj (b) inward, by inspection
6. (a) rcos θirsin θj+rk (b) inward, by inspection
7. n =zxizyj+k,ZZ
R
F·ndS =ZZ
R
(2x2+2y
2+ 2(1 x2y2)) dS =Z2π
0Z1
0
2rdrdθ=2π
8. With z=1xy,Ris the triangular region enclosed by x+y=1,x= 0 and y= 0; use upward
normals to get
ZZ
σ
F·ndS =2ZZ
R
(x+y+z)dA =2ZZ
R
dA = (2)(area of R)=1.
9. Ris the annular region enclosed by x2+y2= 1 and x2+y2=4;
ZZ
σ
F·ndS =ZZ
R x2
px2+y2y2
px2+y2+2z
!dA
=ZZ
Rpx2+y2dA =Z2π
0Z2
1
r2dr dθ =14π
3.
10. Ris the circular region enclosed by x2+y2=4;
ZZ
σ
F·ndS =ZZ
R
(2y21)dA =Z2π
0Z2
0
(2r2sin2θ1)rdrdθ=4π.
11. Ris the circular region enclosed by x2+y2y=0;ZZ
σ
F·ndS =ZZ
R
(x)dA = 0 since the
region Ris symmetric across the y-axis.
12. With z=1
2(6 6x3y), Ris the triangular region enclosed by 2x+y=2,x= 0, and y=0;
ZZ
σ
F·ndS =ZZ
R3x2+3
2yx +zxdA =3ZZ
R
xdA=3Z1
0Z22x
0
xdydx=1.
13. r/∂u = cos vi+ sin vj2uk,∂r/∂v =usin vi+ucos vj,
r/∂u ×r/∂v =2u
2cos vi+2u
2sin vj+uk;
ZZ
R
(2u3+u)dA =Z2π
0Z2
1
(2u3+u)du dv =18π
14. r/∂u =k,∂r/∂v =2 sin vi+ cos vj,r/∂u ×r/∂v =cos vi2 sin vj;
ZZ
R
(2 sin2vesin vcos v)dA =Z2π
0Z5
0
(2 sin2vesin vcos v)du dv =10π
627 Chapter 17
15. r/∂u = cos vi+ sin vj+2k,∂r/∂v =usin vi+ucos vj,
r/∂u ×r/∂v =2ucos vi2usin vj+uk;
ZZ
R
u2dA =Zπ
0Zsin v
0
u2du dv =4/9
16. r/∂u = 2 cos ucos vi+ 2 cos usin vj2 sin uk,r/∂v =2 sin usin vi+ 2 sin ucos vj;
r/∂u ×r/∂v = 4 sin2ucos vi+ 4 sin2usin vj+ 4 sin ucos uk;
ZZ
R
8 sin udA=8Z2π
0Zπ/3
0
sin ududv =8π
17. In each part, divide σinto the six surfaces
σ1:x=1 with |y|≤1, |z|≤1, and n=i,σ2:x= 1 with |y|≤1, |z|≤1, and n=i,
σ3:y=1 with |x|≤1, |z|≤1, and n=j,σ4:y= 1 with |x|≤1, |z|≤1, and n=j,
σ5:z=1 with |x|≤1, |y|≤1, and n=k,σ6:z= 1 with |x|≤1, |y|≤1, and n=k,
(a) ZZ
σ1
F·ndS =ZZ
σ1
dS =4,ZZ
σ2
F·ndS =ZZ
σ2
dS = 4, and ZZ
σi
F·ndS = 0 for
i=3,4,5,6soZZ
σ
F·ndS =4+4+0+0+0+0=8.
(b) ZZ
σ1
F·ndS =ZZ
σ1
dS = 4, similarly ZZ
σi
F·ndS = 4 for i=2,3,4,5,6so
ZZ
σ
F·ndS =4+4+4+4+4+4=24.
(c) ZZ
σ1
F·ndS =ZZ
σ1
dS =4, ZZ
σ2
F·ndS = 4, similarly ZZ
σi
F·ndS =4 for i=3,5
and ZZ
σi
F·ndS = 4 for i=4,6soZZ
σ
F·ndS =4+44+44+4=0.
18. Decompose σinto a top σ1(the disk) and a bottom σ2(the portion of the paraboloid). Then
n1=k,ZZ
σ1
F·n1dS =ZZ
σ1
ydS =Z2π
0Z1
0
r
2sin θdrdθ=0,
n
2=(2xi+2yjk)/
p1+4x
2+4y
2
,ZZ
σ2
F·n2dS =ZZ
σ2
y(2x2+2y
2+1)
p1+4x
2+4y
2dS =0,
because the surface σ2is symmetric with respect to the xy-plane and the integrand is an odd
function of y. Thus the flux is 0.
19. Ris the circular region enclosed by x2+y2=1;
ZZ
σ
F·ndS =ZZ
R x
px2+y2+y
px2+y21!dA =ZZ
R
x+ypx2+y2
px2+y2dA
= lim
r00+Z2π
0Z1
r0
(rcos θ+rsin θr)dr dθ = lim
r00+π(r2
01) = π.
Exercise Set 17.6 628
20. Let r= cos vi+uj+ sin vk,2u1,0v2π;ru×rv= cos vi+ sin vk,
ZZ
σ
F·ndS =ZZ
R
(cos2v+ sin2v)dA = area of R=3·2π=6π
21. (a) ZZ
σ
F·ndS =ZZ
R
F·i∂x
∂yj∂x
∂z kdA,ifσis oriented by front normals, and
ZZ
σ
F·ndS =ZZ
R
F·i+∂x
∂yj+∂x
∂z kdA,ifσis oriented by back normals,
where Ris the projection of σonto the yz-plane.
(b) Ris the semicircular region in the yz-plane enclosed by z=p1y2and z=0;
ZZ
σ
F·ndS =ZZ
R
(y2yz +16z)dA =Z1
1Z1y2
0
(y2yz +16z)dz dy =32
3.
22. (a) ZZ
R
F·∂y
∂xij+∂y
∂zkdA,σoriented by right normals,
and ZZ
R
F·∂y
∂xi+j∂y
∂zkdA,σoriented by left normals,
where Ris the projection of σonto the xz-plane.
(b) Ris the semicircular region in the xz-plane enclosed by z=1x2and z=0;
ZZ
σ
F·ndS =ZZ
R
(2x2(x2+z2)+z
2
)dA =Z1
1Z1x2
0
(x2+z2)dz dx =π
4.
23. (a) On the sphere, krk=aso F=akrand F·n=akr·(r/a)=a
k1
krk
2=a
k1
a
2=a
k+1,
hence ZZ
σ
F·ndS =ak+1 ZZ
σ
dS =ak+1(4πa2)=4πak+3.
(b) If k=3, then ZZ
σ
F·ndS =4π.
24. Let r= sin ucos vi+ sin usin vj+ cos uk,ru×rv= sin2ucos vi+ sin2usin vj+ sin ucos uk,
F·(ru×rv)=a
2sin3ucos2v+1
9sin3usin2v+asin ucos3u,
ZZ
σ
F·ndS =Z2π
0Zπ
0
(a2sin3ucos2v+1
9sin3usin2v+asin ucos3u)du dv
=a2Zπ
0
sin3uduZ2π
0
cos2vdv+1
aZπ
0
sin3udu
+Z2π
0
sin2vdv+2πa Zπ
0
sin ucos3udu
=4π
3a
2+1
a=10ifa≈−1.722730,0.459525,1.263205
629 Chapter 17
EXERCISE SET 17.7
1. σ1:x=0,F·n=x=0,ZZ
σ1
(0)dA =0 σ
2:x=1,F·n=x=1,ZZ
σ2
(1)dA =1
σ
3:y=0,F·n=y=0,ZZ
σ3
(0)dA =0 σ
4:y=1,F·n=y=1,ZZ
σ4
(1)dA =1
σ
5:z=0,F·n=z=0,ZZ
σ5
(0)dA =0 σ
6:z=1,F·n=z=1,ZZ
σ6
(1)dA =1
ZZσ
F·n=3; ZZZ
G
div FdV =ZZZ
G
3dV =3
2. For any point r=xi+yj+zkon σlet n=xi+yj+zk; then F·n=x2+y2+z2=1,so
ZZ
σ
F·ndS =ZZ
σ
dS =4π; also ZZZ
G
div FdV =ZZZ
G
3dV = 3(4π/3)=4π
3. σ1:z=1,n=k,F·n=z
2=1,ZZ
σ1
(1)dS =π,
σ2:n=2xi+2yjk,F·n=4x
24x
2
y
2x
43y
4
,
ZZ
σ2
F·ndS =Z2π
0Z1
04r2cos2θ4r4cos2θsin2θr4cos4θ3r4sin4θrdrdθ=π
3;
ZZ
σ
=4π
3
ZZZ
G
div FdV =ZZZ
G
(2+z)dV =Z2π
0Z1
0Z1
r2
(2+z)dzrdrdθ =4π/3
4. σ1:x=0,F·n=xy =0,ZZ
σ1
(0)dA =0 σ
2:x=2,F·n=xy =2y, ZZ
σ2
(2y)dA =8
σ
3:y=0,F·n=yz =0,ZZ
σ3
(0)dA =0 σ
4:y=2,F·n=yz =2z,ZZ
σ4
(2z)dA =8
σ
5:z=0,F·n=xz =0,ZZ
σ5
(0)dA =0 σ
6:z=2,F·n=xz =2x, ZZ
σ6
(2x)dA =8
ZZ
σ
F·n= 24; also ZZZ
G
div FdV =ZZZ
G
(y+z+x)dV =24
5. Gis the rectangular solid; ZZZ
G
div FdV =Z2
0Z1
0Z3
0
(2x1) dx dy dz = 12.
6. Gis the spherical solid enclosed by σ;ZZZ
G
div FdV =ZZZ
G
0dV =0ZZZ
G
dV =0.
Exercise Set 17.7 630
7. Gis the cylindrical solid;
ZZZ
G
div FdV =3ZZZ
G
dV = (3)(volume of cylinder) = (3)[πa2(1)] = 3πa2.
8. Gis the solid bounded by z=1x
2y
2and the xy-plane;
ZZZ
G
div FdV =3ZZZ
G
dV =3Z2π
0Z1
0Z1r
2
0
rdzdrdθ =3π
2.
9. Gis the cylindrical solid;
ZZZ
G
div FdV =3ZZZ
G
(x2+y2+z2)dV =3Z2π
0Z2
0Z3
0
(r
2+z
2
)rdzdrdθ= 180π.
10. Gis the tetrahedron; ZZZ
G
div FdV =ZZZ
G
xdV =Z1
0Z1x
0Z1xy
0
xdzdydx=1
24.
11. Gis the hemispherical solid bounded by z=p4x2y2and the xy-plane;
ZZZ
G
div FdV =3ZZZ
G
(x2+y2+z2)dV =3Z2π
0Zπ/2
0Z2
0
ρ4sin φdρdφdθ =192π
5.
12. Gis the hemispherical solid;
ZZZ
G
div FdV =5ZZZ
G
zdV =5Z2π
0Zπ/2
0Za
0
ρ3sin φcos φdρdφdθ =5πa4
4.
13. Gis the conical solid;
ZZZ
G
div FdV =2ZZZ
G
(x+y+z)dV =2Z2π
0Z1
0Z1
r
(rcos θ+rsin θ+z)rdzdrdθ=π
2.
14. Gis the solid bounded by z=2xand z=x2+y2;
ZZZ
G
div FdV =ZZZ
G
dV =2Zπ/2
0Z2 cos θ
0Z2rcos θ
r2
rdzdrdθ =π
2.
15. Gis the solid bounded by z=4x
2
,y+z= 5, and the coordinate planes;
ZZZ
G
div FdV =4ZZZ
G
x2dV =4Z2
2Z4x
2
0Z5z
0
x
2
dy dz dx =4608
35 .
16. ZZ
σ
F·ndS =ZZZ
G
div FdV =ZZZ
G
0dV =0;
since the vector field is constant, the same amount enters as leaves.
17. ZZ
σ
r·ndS =ZZZ
G
div rdV =3ZZZ
G
dV = 3vol(G)
631 Chapter 17
18. ZZ
σ
F·ndS =3[π(32)(5)] = 135π
19. ZZ
σ
curl F·ndS =ZZZ
G
div(curl F)dV =ZZZ
G
(0)dV =0
20. ZZ
σf·ndS =ZZZ
G
div (f)dV =ZZZ
G
2fdV
21. ZZ
σ
(fg)·n=ZZZ
G
div (fg)dV =ZZZ
G
(f2g+f·g)dV by Exercise 29, Section 17.1.
22. ZZ
σ
(fg)·ndS =ZZZ
G
(f2g+f·g)dV by Exercise 29, Section 17.1;
ZZ
σ
(gf)·ndS =ZZZ
G
(g2f+g·f)dV by interchanging fand g;
subtract to obtain the result.
23. Let the normal n=n1i+n2j+n3k, then we have to show that
ZZ
σ
(fn1i+fn2j+fn3k)dS =ZZZ
G
(fxi+fyj+fzk)dV . We shall show that
ZZ
σ
fn1idS =ZZZ
G
fxidV , i.e. that ZZ
σ
fn1dS =ZZZ
G
fxdV ; the other parts will follow in a
similar manner. Let F(x, y, z)=f(x, y, z)i, then by the Divergence Theorem
ZZ
σ
fn1dS =ZZ
σ
F·ndS =ZZZ
G
·FdV =ZZZ
G
fxdV .
24. div r=c
∂x
x
(x2+y2+z2)3/2+
∂y
y
(x2+y2+z2)3/2+
∂z
z
(x2+y2+z2)3/2
=c(2x2+y2+z2)+(2y
2+x
2+z
2
)+(2z
2+x
2+y
2
)
(x
2+y
2+z
2
)
5/2=0
25. (a) The flux through any cylinder whose axis is the z-axis is positive by inspection; by the
Divergence Theorem, this says that the divergence cannot be negative at the origin, else
the flux through a small enough cylinder would also be negative (impossible), hence the
divergence at the origin must be 0.
(b) Similar to Part (a), 0.
26. (a) F =xi+yj+zk, div F=3 (b) F =xiyjzk, div F=3
27. div F= 0; no sources or sinks.
28. div F=yx; sources where y>x, sinks where y<x.
29. div F=3x
2+3y
2+3z
2
; sources at all points except the origin, no sinks.
Exercise Set 17.8 632
30. div F=3(x
2+y
2+z
21); sources outside the sphere x2+y2+z2= 1, sinks inside the sphere
x2+y2+z2=1.
31. Let σ1be the portion of the paraboloid z=1x
2y
2for z0, and σ2the portion of the plane
z= 0 for x2+y21. Then
ZZ
σ1
F·ndS =ZZ
R
F·(2xi+2yj+k)dA
=Z1
1Z1x2
1x2
(2x[x2y(1 x2y2)2]+2y(y
3x)+(2x+23x
23y
2
)) dy dx
=3π/4;
z= 0 and n=kon σ2so F·n=12x,ZZ
σ2
F·ndS =ZZ
σ2
(1 2x)dS =π.Thus
ZZ
σ
F·ndS =3π/4+π=7π/4. But div F=2xy +3y
2+3so
ZZZ
G
div FdV =Z1
1Z1x2
1x2Z1x2y2
0
(2xy +3y
2+3)dz dy dx =7π/4.
EXERCISE SET 17.8
1. (a) The flow is independent of zand has no component in the direction of k, and so by inspection
the only nonzero component of the curl is in the direction of k. However both sides of (9)
are zero, as the flow is orthogonal to the curve Ca. Thus the curl is zero.
(b) Since the flow appears to be tangential to the curve Ca, it seems that the right hand side of
(9) is nonzero, and thus the curl is nonzero, and points in the positive z-direction.
2. (a) The only nonzero vector component of the vector field is in the direction of i, and it increases
with yand is independent of x. Thus the curl of Fis nonzero, and points in the negative
z-direction.
(b) By inspection the vector field is constant, and thus its curl is zero.
3. If σis oriented with upward normals then Cconsists of three parts parametrized as
C1:r(t)=(1t)i+tjfor 0 t1, C2:r(t)=(1t)j+tkfor 0 t1,
C3:r(t)=ti+(1t)kfor 0 t1.
ZC1
F·dr=ZC2
F·dr=ZC3
F·dr=Z1
0
(3t1)dt =1
2so
IC
F·dr=1
2+1
2+1
2=3
2. curl F=i+j+k,z=1xy,Ris the triangular region in
the xy-plane enclosed by x+y=1,x= 0, and y=0;
ZZ
σ
(curl F)·ndS =3ZZ
R
dA = (3)(area of R) = (3) 1
2(1)(1)=3
2.
633 Chapter 17
4. If σis oriented with upward normals then Ccan be parametrized as r(t) = cos ti+ sin tj+kfor
0t2π.
IC
F·dr=Z2π
0
(sin2tcos tcos2tsin t)dt =0;
curl F=0so ZZ
σ
(curl F)·ndS =ZZ
σ
0dS =0.
5. If σis oriented with upward normals then Ccan be parametrized as r(t)=acos ti+asin tjfor
0t2π.
IC
F·dr=Z2π
0
0dt = 0; curl F=0so ZZ
σ
(curl F)·ndS =ZZ
σ
0dS =0.
6. If σis oriented with upward normals then Ccan be parametrized as r(t)=3costi+ 3 sin tjfor
0t2π.
IC
F·dr=Z2π
0
(9 sin2t+ 9 cos2t)dt =9Z2π
0
dt =18π.
curl F=2i+2j+2k,Ris the circular region in the xy-plane enclosed by x2+y2=9;
ZZ
σ
(curl F)·ndS =ZZ
R
(4x+4y+2)dA =Z2π
0Z3
0
(4rcos θ+4rsin θ+2)rdrdθ =18π.
7. Take σas the part of the plane z= 0 for x2+y21 with n=k; curl F=3y2i+2zj+2k,
ZZ
σ
(curl F)·ndS =2ZZ
σ
dS = (2)(area of circle) = (2)[π(1)2]=2π.
8. curl F=xi+(xy)j+6xy2k;
ZZ
σ
(curl F)·ndS =ZZ
R
(xy6xy2)dA =Z1
0Z3
0
(xy6xy2)dy dx =30.
9. Cis the boundary of Rand curl F=2i+3j+4k,so
IF·r=ZZR
curl F·ndS =ZZR
4dA = 4(area of R)=16π
10. curl F=4i6j+6yk,z=y/2 oriented with upward normals, Ris the triangular region in the
xy-plane enclosed by x+y=2,x= 0, and y=0;
ZZ
σ
(curl F)·ndS =ZZ
R
(3+6y)dA =Z2
0Z2x
0
(3+6y)dy dx = 14.
11. curl F=xk, take σas part of the plane z=yoriented with upward normals, Ris the circular
region in the xy-plane enclosed by x2+y2y=0;
ZZ
σ
(curl F)·ndS =ZZ
R
xdA=Zπ
0Zsin θ
0
r2cos θdrdθ=0.
12. curl F=yizjxk,z=1xyoriented with upward normals, Ris the triangular region in
the xy-plane enclosed by x+y=1,x= 0 and y=0;
ZZ
σ
(curl F)·ndS =ZZ
R
(yzx)dA =ZZ
R
dA =1
2(1)(1) = 1
2.
Exercise Set 17.8 634
13. curl F=i+j+k, take σas the part of the plane z= 0 with x2+y2a2and n=k;
ZZ
σ
(curl F)·ndS =ZZ
σ
dS = area of circle = πa2.
14. curl F=i+j+k, take σas the part of the plane z=1/
2 with x2+y21/2 and n=k.
ZZ
σ
(curl F)·ndS =ZZ
σ
dS = area of circle = π
2.
15. (a) Take σas the part of the plane 2x+y+2z= 2 in the first octant, oriented with downward
normals; curl F=xi+(y1)jk,
IC
F·Tds =ZZ
σ
(curl F)·ndS
=ZZ
Rx1
2y+3
2dA =Z1
0Z22x
0x1
2y+3
2dy dx =3
2.
(b) At the origin curl F=jkand with n=k, curl F(0,0,0) ·n=(jk)·k=1.
(c) The rotation of Fhas its maximum value at the origin about the unit vector in the same
direction as curl F(0,0,0) so n=1
2j1
2k.
16. (a) div(curl F)=
∂x ∂h
∂y ∂g
∂z+
∂y ∂f
∂z ∂h
∂x+
∂z ∂g
∂x ∂f
∂y
=2h
∂x∂y 2g
∂x∂z +2f
∂y∂z 2h
∂y∂x +2g
∂z∂x 2f
∂z∂y =0,
assuming equality of mixed second partial derivatives
(b) By the Divergence Theorem
ZZ
σ
(curl F)·ndS =ZZZ
G
div(curl F)dV =ZZZ
G
0dV =0.
(c) The flux of the curl field through the boundary of a solid is zero.
17. Since I
C
E·rdr=ZZ
σ
curl E·ndS, it follows that ZZ
σ
curl E·ndS =ZZ
σ
B
∂t
·ndS. This
relationship holds for any volume σ, hence curl E=B
∂t .
18. Parametrize Cby x= cos t, y = sin t, 0t2π. But F=x2yi+(y
3x)j+(2x1)kalong C
so IC
F·dr=5π/4. Since curl F=(2z2)j+(1x
2
)k,
ZZ
σ
(curl F)·ndS =ZZ
R
(curl F)·(2xi+2yj+k)dA
=Z1
1Z1x2
1x2
[2y(2x2+2y
24) 1x2]dy dx =5π/4
635 Chapter 17
CHAPTER 17 SUPPLEMENTARY EXERCISES
2. (b) c
krr0k3(rr0)(c) cxi+yj+zk
px2+y2+z2
3. (a) Zb
af(x(t),y(t))dx
dt +g(x(t),y(t))dy
dt dt
(b) Zb
a
f(x(t),y(t))px0(t)2+y0(t)2dt
4. (a) M=Z
C
δ(x, y, z)ds (b) L=Z
C
ds (c) S=ZZ
σ
dS
(d) A=I
C
xdy =I
C
ydx=1
2I
C
ydx+xdy
11. ZZ
σ
f(x, y, z)dS =ZZ
R
f(x(u, v),y(u, v),z(u, v))kru×rvkdu dv
13. C1:(0,0) to (1,0); x=t,y=0,0t1
C
2:(1,0) to (cosh t0,sinh t0); x= cosh t,y= sinh t,0tt
0
C
3: (cosh t0,sinh t0)to(0,0); x=(cosh t0)t,y=(sinh t0)t,1t0
A=1
2ICydx+xdy =1
2Z1
0
(0) dt +1
2Zt0
0
dt +1
2Z0
1
(0) dt =1
2t0
14. (a) F(x, y, z)= qQ(xi+yj+zk)
4π0(x2+y2+z2)3/2
(b) F =φ, where φ=qQ
4π0(x2+y2+z2)1/2,soW=φ(3,1,5)φ(3,0,0) = qQ
4π01
31
35.
C:x=3,y =t, z =5t, 0t1; F·dr=qQ[0+t+25t]dt
4π0(9+t2+25t
2
)
3/2
W=Z1
0
26qQt dt
4π0(26t2+9)
3/2=qQ
4π01
35 1
3
15. (a) Assume the mass Mis located at the origin and the mass mat (x, y, z), then
r=xi+yj+zk,F(x, y, z)=GmM
(x2+y2+z2)3/2r,
W=Zt2
t1
GmM
(x2+y2+z2)3/2xdx
dt +ydy
dt +zdz
dt dt
=GmM(x2+y2+z2)1/2it2
t1
=GmM 1
r21
r1
(b) W=3.99 ×105×1031
7200 1
7000≈−1.597 ×109J
Chapter 17 Supplementary Exercises 636
16. Let g(x, y)=x
2
, then Z
C
gdy =ZZ
R
2xdA,so¯x=1
AZZ
R
xdA=1
2AZ
C
gdy =1
2AZ
C
x
2dy,
similarly for ¯y.
17. ¯x= 0 by symmetry; by Exercise 16, ¯y=1
2AZ
C
y2dx;C1:y=0,axa, y2dx =0;
C
2:x=acos θ, y =asin θ, 0θπ,so
¯y=1
2(πa2/2) Zπ
0
a2sin2θ(asin θ)=4a
3π
18. ¯yxby symmetry; by Exercise 16, ¯x=1
2AZ
C
x2dy;C1:y=0,0xa, x2dy =0;
C
2:x=acos θ, y =asin θ, 0θπ/2; C3:x=0,x
2dy =0;
¯x=1
2(πa2/4) Zπ/2
0
a2(cos2θ)acos θdθ=4a
3π
19. ¯y= 0 by symmetry; ¯x=1
2AZ
C
x2dy;A=αa2;C1:x=tcos α, y =tsin α, 0ta;
C2:x=acos θ, y =asin θ, αθα;C3:x=tcos α,
y=tsin α, 0ta(reverse orientation);
2A¯x=Za
0
t2cos2αsin αdt+Zα
α
a
3cos3θdθZa
0
t
2cos2αsin α dt,
=2a3
3cos2αsin α+2a
3Zα
0
cos3θdθ=2a
3
3cos2αsin α+2a3
3cos2αsin α=4
3a3sin α;
¯x=2a
3
sin α
α
20. A=Za
0bb
a2x2dx =2ab
3,C
1:x=t, y =bt2/a2,0ta;
C2:x=at, y =b, 0ta, x2dy =0;C
3:x=0,y =bt, 0tb, x2dy =y2dx =0;
2A¯x=Za
0
t
2
(2bt/a2)dt =a2b
2,¯x=3a
8;
2A¯y=Za
0
(bt2/a2)2dt +Za
0
b2dt =ab2
5+ab2=4ab2
5,¯y=3b
5
21. (a) Z
C
f(x)dx +g(y)dy =ZZ
R
∂xg(y)
∂yf(x)dA =0
(b) W=Z
C
F·dr=Z
C
f(x)dx +g(y)dy = 0, so the work done by the vector field around any
simple closed curve is zero. The field is conservative.
637 Chapter 17
22. (a) Let r=dcos θi+dsin θj+zkin cylindrical coordinates, so
dr
dt =dr
dt =ω(dsin θi+dcos θj),v=dr
dt =ωk×r=ω×r.
(b) From Part (a), v=ωd(sin θi+ cos θj)=ωyi+ωxj
(c) From Part (b), curl v=2ωk=2ω
(d) No; from Exercise 32 in Section 17.1, if φwere a potential function for v, then
curl (φ) = curl v= 0, contradicting Part (c) above.
23. Yes; by imagining a normal vector sliding around the surface it is evident that the surface has two
sides.
24. Dnφ=n·φ,soZZ
σ
DnφdS =ZZ
σ
n·φdS =ZZZ
G
·(φ)dV
=ZZZ
G2φ
∂x2+2φ
∂y2+2φ
∂z2dV
25. By Exercise 24, ZZ
σ
DnfdS=ZZZ
G
[fxx +fyy +fzz]dV =6ZZZ
G
dV =6vol(G)=8π
26. (a) fygx=exy +xyexy exy xyexy = 0 so the vector field is conservative.
(b) φx=yexy 1=e
xy x+k(x)
y=xexy, let k(x)=0;φ(x, y)=e
xy x
(c) W=Z
C
F·dr=φ(x(8π),y(8π)) φ(x(0),y(0)) = φ(8π, 0) φ(0,0) = 8π
27. (a) If h(x)Fis conservative, then
∂y(yh(x)) =
∂x(2xh(x)), or h(x)=2h(x)2xh0(x) which
has the general solution x3h(x)2=C1,h(x)=Cx3/2,soCy
x
3/2iC2
x
1/2jis conservative,
with potential function φ=2Cy/x.
(b) If g(y)F(x, y) is conservative then
∂y(yg(y)) =
∂x(2xg(y)), or g(y)+yg0(y)=2g(y),
with general solution g(y)=C/y3,soF=C1
y
2
iC
2x
y
3
jis conservative, with potential
function Cx/y2.
28. A computation of curl Fshows that curl F=0if and only if the three given equations hold.
Moreover the equations hold if Fis conservative, so it remains to show that Fis conservative if
curl F=0. Let Cby any simple closed curve in the region. Since the region is simply connected,
there is a piecewis smooth, oriented surface σin the region with boundary C. By Stokes’ Theorem,
I
C
F·r=ZZ
σ
(curl F)·ndS =ZZ
σ
0dS =0.
By the 3-space analog of Theorem 17.3.2, Fis conservative.
29. (a) conservative, φ(x, y, z)=xz2ey(b) not conservative, fy6=gx(for example)
30. (a) conservative, φ(x, y, z)=cos x+yz (b) not conservative, fz6=hx
Chapter 17 Horizon Module 638
CHAPTER 17 HORIZON MODULE
1. (a) If r=xi+yjdenotes the position vector, then F1·r= 0 by inspection, so the velocity field
is tangent to the circle. The relationship F1×r=k
2πkindicates that r,F1,kis a right-
handed system, so the flow is counterclockwise. The polar form F1=k
2πr(sin θicos θj)
shows that the speed is the constant k
2πr on a circle of radius r; and it also shows that the
speed is proportional to 1
rwith constant of proportionality 2.
(b) Since kF1k=k
2πr, when r= 1 we get k=2πkF
1
k
2.
x
y
–1
–1
1
1
3. (a) F2=q
2πkrk2rso F2is directed toward the origin, and kF2k=q
2πr is constant for constant
r, and the speed is proportional to the distance from the origin (constant of proportionality
q
2π). Since the velocity vector is directed toward the origin, the fluid flows towards the origin,
which must therefore be a sink.
(b) From Part (a) when r=1,q=2πkF
2
k.
4.
x
y
–1
–1
1
1
5. (b) The magnitudes of the field vectors increase, and their directions become more tangent to
circles about the origin.
(c) The magnitudes of the field vectors increase, and their directions tend more towards the
origin.
639 Chapter 17
6. (a) The inward component is F2,soatr=20,15 = kF2k=q
2π(20),soq= 600π; the tangential
component is F1,soatr=20,45 = kF1k=k
2π(20),sok= 1800π.
(b) F =1
x2+y2[(300x+ 900y)i+ (300y900x)j]
(c) kFk=30010
r5 km/hr if r6010 189.7 km.
7. F =1
2πr[(qcos θ+ksin θ)i+(qsin θkcos θ)j]=q
2πr ur+k
2πruθ=1
2πr(qurkuθ)
8. F ·ψ=1
2πr(qurkuθ)·(1
2π(kur+quθ)) = 1
(2πr)2(qk kq) = 0, since urand uθare unit
orthogonal vectors.
9. From the hypotheses of Exercise 8, ψ=1
2πkln r+α(θ),
∂θψ=α0(θ)=q
2π,
α=q
2πθ, ψ =1
2π(kln r+)
10. The streamline ψ=cbecomes kln r+=2πc, ln r=qθ/k 2πc/k,
r=eqθ/ke2πc/k =κe, where κ>0.
11.
321
1
x
y
12. q= 600π, k = 1800π, r =κeθ/3;atr=20=π/4=reθ/3=20e
π/12 25.985; the desired
streamline has the polar equation r=25.985eθ/3.
25
10
20
x
y
640
APPENDIX A
Real Numbers, Intervals, and Inequalities
EXERCISE SET A
1. (a) rational (b) integer, rational (c) integer, rational
(d) rational (e) integer, rational (f) irrational
(g) rational (h) integer, rational
2. (a) irrational (b) rational (c) rational (d) rational
3. (a) x=0.123123123 ..., 1000x= 123 + x,x= 123/999=41/333
(b) x=12.7777 ..., 10(x12)=7+(x12), 9x= 115, x= 115/9
(c) x=38.07818181 ..., 100x= 3807.81818181 ...,99x= 100xx= 3769.74,
x=3769.74
99 =376974
9900 =20943
550
(d) 4296
10000
4. x=0.99999 ...,10x=9+x,9x=9,x=1
5. (a) If ris the radius, then D=2rso 8
9D2
=16
9r2
=256
81 r2. The area of a circle of radius
ris πr2so 256/81 was the approximation used for π.
(b) 22/73.1429 is better than 256/81 3.1605.
6. (a) 223
71 <333
106 <63
25 17+15
5
7+15
5!<355
113 <22
7
(b) Ramanujan’s (c) Athoniszoon’s (d) Ramanujan’s
7. Line 2 3 4 5 6 7
Blocks 3,4 1,2 3,4 2,4,5 1,2 3,4
8. Line 1 2 3 4 5
Blocks all blocks none 2,4 2 2,3
9. (a) always correct (add 3 to both sides of ab)
(b) not always correct (correct only if a=b)
(c) not always correct (correct only if a=b)
(d) always correct (multiply both sides of abby 6)
(e) not always correct (correct only if a0)
(f) always correct (multiply both sides of abby the nonnegative quantity a2)
10. (a) always correct
(b) not always correct (for example let a=b=0,c=1,d=2)
(c) not always correct (for example let a=1,b=2,c=d=0)
11. (a) all values because a=ais always valid (b) none
12. a=b, because if a6=bthen a<band b<aare contradictory
641 Appendix A
13. (a) yes, because abis true if a<b (b) no, because a<bis false if a=bis true
14. (a) x25x=0,x(x5)=0sox=0orx=5
(b) 1,0,1,2 are the only integers that satisfy 2<x<3
15. (a) {x:xis a positive odd integer}(b) {x:xis an even integer}
(c) {x:xis irrational}(d) {x:xis an integer and 7 x10}
16. (a) not equal to Abecause 0 is not in A(b) equal to A
(c) equal to Abecause (x3)(x23x+2)=0,(x3)(x2)(x1)=0sox=1,2,or3
17. (a) false, there are points inside the triangle that are not inside the circle
(b) true, all points inside the triangle are also inside the square
(c) true (d) false (e) true
(f) true, ais inside the circle (g) true
18. (a) ,{a1},{a2},{a3},{a1,a
2
},{a
1
,a
3
},{a
2
,a
3
},{a
1
,a
2
,a
3
}(b)
19. (a) 4(b) 3
(c) 17
(d) 33
(e) 33
(f) 33
20. (a)
84
(b)
52
(c)
3
(d) none
21. (a) [2,2] (b) (−∞,2) (2,+)
22. (a) 34
(b)
41168
(c) 51
(d)
274
(e)
04
(f)
1 2.3
(g) (h)
05
Exercise Set A 642
23. 3x<10; (−∞,10/3)
10
3
24. 1
5x8; [40,+)
40
25. 2x≤−11; (−∞,11/2]
11
2
26. 9x<10; (−∞,10/9)
10
9
27. 2x1 and 2x>3; (3/2,1/2]
1
2
3
2
28. 8x5 and 8x14; [5
8,7
4]
7
4
5
8
29. x
x34<0,12 3x
x3<0,4x
x3<0;
(−∞,3) (4,+)4
3
34
0
0
0
34
−−−
+++++
+++
++
+++++++
−−−−−−
−−−
4 x
x 3
x 3
4 x
30. x
8x+2= 16 x
8x0;
(−∞,8) [16,+)16
8
816
0
0
0
816
−−−
−−
+++++++
++++++
+++
16 x
8 x
16 x
8 x
31. 3x+1
x21=2x+3
x2<0,x+3/2
x2<0;
(3
2,2)
0
0
0
2
+++
+
++
+−+++
++++++
−−− x 2
3
2
2
3
2
2
3
2
x + 3
2
x 2
x + 3
2
643 Appendix A
32. x/23
4+x1>0,x6
4+x2>0,x+14
x+4 <0;
(14,4)
0
0
0
4
+++
+
++
+−+++
++++++
−−−
x + 14
x + 4
x + 4
4
4
x + 14
14
14
14
33. 4
2x1=x+2
2x0; (−∞,2] (2,+)0
0
0
2
+++
++++
+++
−−
+−+++
−−−−−−
+++
x + 2
2 x
2
2
2 x
x + 2
2
2
2
34. 3
x52=13 2x
x50,13/2x
x50;
(−∞,5) [13
2,+)
0
0
0
−−−
+++++
+++
++
+++++++
−−−−−−
−−− x 5
5
5
13
2
13
2
513
2
x
13
2
x 5
x
13
2
35. x29=(x+ 3)(x3) >0;
(−∞,3) (3,+)
0
0
00
33
3
3
+++
+
++
+−+++
++++++
−−−
x + 3
x 3
3
3
(x + 3)(x 3)
Exercise Set A 644
36. x25=(x
5)(x+5) 0; [5,5] 0
0
00
+++
+
++
+−+++
++++++
−−−
5x + 5
x 5
()()
x + 5 x 5
5
5
5
5
5
37. (x4)(x+2)>0; (−∞,2) (4,+)
00
42
2
++++++
0
2
++++−+++x + 2
4
0+
++−−− x 4
4
(x 4)(x + 2)
38. (x3)(x+4)<0; (4,3)
3
4
4 3
43
0
0
00
+++
+++++
++
−−
++++++
−−−
x 3
x + 4
(x 3)(x + 4)
39. (x4)(x5) 0; [4,5]
4 5
45
0
0
−++++++
5
0+++−−x 5
4
0+++++++−−− x 4
(x 4)(x 5)
40. (x2)(x1) 0; (−∞,1] [2,+)
1 2
12
00
−++++++
2
0+++−−x 2
1
0+++++++−−− x 1
(x 1)(x 2)
645 Appendix A
41. 3
x42
x=x+8
x(x4) >0; (8,0) (4,+)
−−+++++−−
4
0
4
++−−x 4
0
0
0
++−−++
x
8
0
8
408
0
+++++++−− + x + 8
x(x 4)
(x + 8)
42. 1
x+13
x2=2x5
(x+ 1)(x2) 0,
x+5/2
(x+ 1)(x2) 0;
(−∞,5
2](1,2)
0
0
0
2
+++
−−
++
++−+++
+++−−
−−− x 2
5
2
2
5
2
2
++++
++−−− x + 1
0
1
1
1
x + 5
2
(x + 1)(x 2)
x + 5
2
5
2
43. By trial-and-error we find that x= 2 is a root of the equation x3x2x2=0sox2
is a factor of x3x2x2. By long division we find that x2+x+ 1 is another factor so
x3x2x2=(x2)(x2+x+ 1). The linear factors of x2+x+ 1 can be determined by first
finding the roots of x2+x+ 1 = 0 by the quadratic formula. These roots are complex numbers
so x2+x+1 6= 0 for all real x;thusx
2+x+ 1 must be always positive or always negative.
Since x2+x+ 1 is positive when x= 0, it follows that x2+x+1 >0 for all real x. Hence
x3x2x2>0, (x2)(x2+x+1)>0, x2>0, x>2, so S=(2,+).
44. By trial-and-error we find that x= 1 is a root of the equation x33x+2=0sox1
is a factor of x33x+ 2. By long division we find that x2+x2 is another factor so
x33x+2=(x1)(x2+x2)=(x1)(x1)(x+2)=(x1)2(x+ 2). Therefore we
want to solve (x1)2(x+2)0. Now if x6= 1, then (x1)2>0 and so x+20, x≤−2. By
inspection, x= 1 is also a solution so S=(−∞,2] ∪{1}.
45. x2+x6 is real if x2+x60. Factor to get (x+ 3)(x2) 0 which has as its solution
x≤−3orx2.
46. x+2
x10; (−∞,2] (1,+)
47. 25 5
9(F32) 40, 45 F32 72, 77 F104
48. (a) n=2k,n
2=4k
2= 2(2k2) where 2k2is an integer.
(b) n=2k+1,n
2=4k
2+4k+ 1 = 2(2k2+2k) + 1 where 2k2+2kis an integer.
Exercise Set A 646
49. (a) Assume mand nare rational, then m=p
qand n=r
swhere p,q,r, and sare integers so
m+n=p
q+r
s=ps +rq
qs which is rational because ps +rq and qs are integers.
(b) (proof by contradiction) Assume mis rational and nis irrational, then m=p
qwhere pand
qare integers. Suppose that m+nis rational, then m+n=r
swhere rand sare integers
so n=r
sm=r
sp
q=rq ps
sq . But rq ps and sq are integers, so nis rational which
contradicts the assumption that nis irrational.
50. (a) Assume mand nare rational, then m=p
qand n=r
swhere p,q,r, and sare integers so
mn =p
q·r
s=pr
qs which is rational because pr and qs are integers.
(b) (proof by contradiction) Assume mis rational and nonzero and that nis irrational, then
m=p
qwhere pand qare integers and p6= 0. Suppose that mn is rational, then mn =r
s
where rand sare integers so n=r/s
m=r/s
p/q =rq
ps. But rq and ps are integers, so nis
rational which contradicts the assumption that nis irrational.
51. a=2,b =3,c =6,d =2 are irrational, and a+d= 0, a rational; a+a=2
2, an
irrational; ad =2, a rational; and ab =c, an irrational.
52. (a) irrational (Exercise 49(b)) (b) irrational (Exercise 50(b))
(c) rational by inspection; Exercise 51 gives no information
(d) πmust be irrational, for if it were rational, then so would be π=(
π)
2by Exercise 50(a);
but πis known to be irrational.
53. The average of aand bis 1
2(a+b); if aand bare rational then so is the average, by Exercise 49(a)
and Exercise 50(a). On the other hand if a=b=2 then the average of aand bis irrational, but
the average of aand bis rational.
54. If 10x= 3, then x>0 because 10x1 for x0. If 10p/q = 3 with p, q integers, then 10p=3
q
,
so 3qmust be even (as well as 10podd), a contradiction to Exercise 48(b).
55. 8x34x22x+ 1 can be factored by grouping terms:
(8x34x2)(2x1)=4x
2
(2x1)(2x1)=(2x1)(4x21)=(2x1)2(2x+1). The problem,
then, is to solve (2x1)2(2x+1)<0. By inspection, x=1/2 is not a solution. If x6=1/2, then
(2x1)2>0 and it follows that 2x+1<0, 2x<1, x<1/2, so S=(−∞,1/2).
56. First, rewrite the inequality as 12x320x2+11x20. Now, if a polynomial in xwith integer
coefficients has a rational zero p
q, then pwill be a factor of the constant term and qwill be a factor
of the coefficient of the highest power of x. By trial-and-error we find that x=1/2 is a zero, thus
(x1/2) is a factor so
12x320x2+11x2=(x1/2) 12x214x+4
=2(x1/2) 6x27x+2
=2(x1/2)(2x1)(3x2)=(2x1)2(3x2).
Now to solve (2x1)2(3x2) 0 we first note that x=1/2 is a solution. If x6=1/2 then
(2x1)2>0 and 3x20, 3x2, x2/3soS=[2/3,+)∪{1/2}.
57. If a<b, then ac<bcbecause cis positive; if c<d, then bc<bdbecause bis positive, so ac<bd
(Theorem A.1(a)).
58. no, since the decimal representation is not repeating (the string of zeros does not have constant
length)
647
APPENDIX B
Absolute Value
EXERCISE SET B
1. (a) 7(b) 2(c) k2(d) k2
2. p(x6)2=x6ifx6, p(x6)2=(x6) = x+6ifx<6
3. |x3|=|3x|=3xif 3 x0, which is true if x3
4. |x+2|=x+2ifx+20sox≥−2. 5. All real values of xbecause x2+9>0.
6. |x2+5x|=x
2+5xif x2+5x0sox(x+5)0 which is true for x≤−5orx0.
7. |3x2+2x|=|x(3x+2)|=|x||3x+2|.If|x||3x+2|=x|3x+2|, then |x||3x+2|−x|3x+2|=0,
(|x|−x)|3x+2|= 0, so either |x|−x=0or|3x+2|=0. If|x|−x= 0, then |x|=x, which is
true for x0. If |3x+2|= 0, then x=2/3. The statement is true for x0orx=2/3.
8. |62x|=|2(3 x)|=|2||3x|=2|x3|for all real values of x.
9. p(x+5)
2=|x+5|=x+5ifx+50, which is true if x≥−5.
10. p(3x2)2=|3x2|=|23x|=23xif 2 3x0sox2/3.
13. (a) |79|=|−2|=2 (b) |32|=|1|=1
(c) |6(8)|=|14|=14 (d) |−3
2|=|−(3+2)|=3+
2
(e) |−4(11)|=|7|=7 (f) |−50|=|−5|=5
14. a4=p(a2)2=|a2|, but |a2|=a2because a20 so it is valid for all values of a.
15. (a) Bis 6 units to the left of A;b=a6=36=9.
(b) Bis 9 units to the right of A;b=a+9=2+9=7.
(c) Bis 7 units from A; either b=a+7=5+7=12orb=a7=57=2. Since it is
given that b>0, it follows that b= 12.
16. In each case we solve for ein terms of f:
(a) e=f4; eis to the left of f.(b) e=f+4;eis to the right of f.
(c) e=f+6;eis to the right of f.(d) e=f7; eis to the left of f.
17. |6x2|=7
Case 1: Case 2:
6x2=7 6x2=7
6x=9 6x=5
x=3/2x=5/6
18. |3+2x|=11
Case 1: Case 2:
3+2x=11 3+2x=11
2x=8 2x=14
x=4 x=7
19. |6x7|=|3+2x|
Case 1: Case 2:
6x7=3+2x6x7=(3+2x)
4x=10 8x=4
x=5/2x=1/2
20. |4x+5|=|8x3|
Case 1: Case 2:
4x+5=8x34x+5=(8x3)
4x=812x=2
x=2 x=1/6
Exercise Set B 648
21. |9x|−11 = x
Case 2:
9x11 = x9x11 = x
8x=11 10x=11
x=11/8x=11/10
22. 2x7=|x+1|
Case 1: Case 2:
2x7=x+1 2x7=(x+1)
x=8 3x=6
x= 2; not a solution
because xmust also
satisfy x<1
23.
x+5
2x
=6
Case 1: Case 2:
x+5
2x=6 x+5
2x=6
x+5=126xx+5=12+6x
7x=7 5x=17
x=1 x=17/5
24.
x3
x+4
=5
Case 1: Case 2:
x3
x+4=5 x3
x+4=5
x3=5x+20 x3=5x20
4x=23 6x=17
x=23/4x=17/6
25. |x+6|<3
3<x+6<3
9<x<3
S=(9,3)
26. |7x|≤5
57x5
12 ≤−x≤−2
12 x2
S=[2,12]
27. |2x3|≤6
62x36
32x9
3/2x9/2
S=[3/2,9/2]
28. |3x+1|<4
4<3x+1<4
5<3x<3
5/3<x<1
S=(5/3,1)
29. |x+2|>1
Case 1: Case 2:
x+2>1x+2<1
x>1x<3
S=(−∞,3) (1,+)
30.
1
2x12
Case 1: Case 2:
1
2x121
2x1≤−2
1
2
x31
2
x≤−1
x6x≤−2
S=(−∞,2] [6,+)
31. |52x|≥4
Case 1: Case 2:
52x452x≤−4
2x≥−12x≤−9
x1/2x9/2
S=(−∞,1/2] [9/2,+)
32. |7x+1|>3
Case 1: Case 2:
7x+1>37x+1<3
7x>27x<4
x>2/7x< 4/7
S=(−∞,4/7) (2/7,+)
649 Appendix B
33. 1
|x1|<2,x6=1
|x1|>1/2
Case 1: Case 2:
x1>1/2x1<1/2
x>3/2x< 1/2
S=(−∞,1/2) (3/2,+)
34. 1
|3x+1|5,x6=1/3
|3x+1|≤1/5
1/53x+11/5
6/53x≤−4/5
2/5x≤−4/15
S=[2/5,1/3) (1/3,4/15]
35. 3
|2x1|4,x6=1/2
|2x1|
31
4
|2x1|≤3/4
3/42x13/4
1/42x7/4
1/8x7/8
S=[1/8,1/2) (1/2,7/8]
36. 2
|x+3|<1,x6=3
|x+3|
2>1
|x+3|>2
Case 1: Case 2:
x+3>2x+3<2
x>1x<5
S=(−∞,5) (1,+)
37. p(x25x+6)
2=x
25x+6ifx
25x+60 or, equivalently, if (x2)(x3) 0;
x(−∞,2] [3,+).
38. If x2 then 3 x27so5x9; if x<2 then 3 2x7so5x≤−1.
S=[5,1] [5,9].
39. If u=|x3|then u24u= 12, u24u12=0,(u6)(u+2)=0,sou=6oru=2. If
u= 6 then |x3|=6,sox=9orx=3. If u=2 then |x3|=2 which is impossible. The
solutions are 3 and 9.
41. |ab|=|a+(b)|
≤|a|+|−b|(triangle inequality)
=|a|+|b|.
42. a=(ab)+b
|a|=|(ab)+b|
|a|≤|ab|+|b|(triangle inequality)
|a|−|b|≤|ab|.
43. From Exercise 42
(i) |a|−|b|≤|ab|; but |b|−|a|≤|ba|=|ab|, so (ii) |a|−|b|≥−|ab|.
Combining (i) and (ii): −|ab|≤|a|−|b|≤|ab|,so||a|−|b||≤|ab|.
650
APPENDIX C
Coordinate Planes and Lines
EXERCISE SET C
1.
x
y
(-4, 1)
(-4, 7) (6, 7)
(6, 1)
2. area = 1
2bh =1
2(5 (3))(1) = 4
x
y
(-3, 2)
(4, 3)
(5, 2)
3. (a) x=2
2x
y
(b) y=3
-3
x
y
(c) x0
x
y
(d) y=x
x
y
(e) yx
x
y
(f) |x|≥1
x
y
-1 1
651 Appendix C
4. (a) x=0
x
y
(b) y=0
x
y
(c) y<0
x
y
(d) x1 and y2
x
y
1
2
(e) x=3
x
y
3
(f) |x|=5
x
y
5-5
5. y=4x
2
x
y
4
5-5
6. y=1+x
2
x
y
5
5-5
Exercise Set C 652
7. y=x4
x
y
4
5
8. y=x+1
x
y
-5 5
5
9. x2x+y=0
y
x
-3
-2
-1
-1 1 2
10. x=y3y2
y
x
-1
1
-2 -1 1 2
11. x2y=2
y
x
-3
-2
-1
-1 1 2
12. xy =1
x
y
1
1
13. (a) m=42
3(1) =1
2(b) m=13
75=1
(c) m=22
34=0 (d) m=12 (6)
2(2) =18
0, not defined
14. m1=52
6(1) =3
7,m2=72
2(1) =5
3,m3=75
26=1
2
15. (a) The line through (1,1) and (2,5) has slope m1=51
21= 2, the line through (1,1) and
(0,1) has slope m2=11
01= 2. The given points lie on a line because m1=m2.
653 Appendix C
(b) The line through (2,4) and (0,2) has slope m1=24
0+2 =1, the line through (2,4) and
(1,5) has slope m2=54
1+2 =1
3. The given points do not lie on a line because m16=m2.
16.
x
y
(4, 2)
(a)
(b)
(c)
17.
x
y
(-1, -2)
(b)
(a)
(c)
18. The triangle is equiangular because it is equilateral. The angles of
inclination of the sides are 0,60
, and 120(see figure), thus the
slopes of its sides are tan0= 0, tan 60=3, and tan 120=3.
x
y
120°
60°
19. III <II <IV <I20. III <IV <I<II
21. Use the points (1,2) and (x, y) to calculate the slope: (y2)/(x1)=3
(a) if x= 5, then (y2)/(5 1)=3,y2 = 12, y=14
(b) if y=2, then (22)/(x1)=3,x1=4/3, x=1/3
22. Use (7,5) and (x, y) to calculate the slope: (y5)/(x7) = 2
(a) if x= 9, then (y5)/(9 7) = 2, y5=4, y=1
(b) if y= 12, then (12 5)/(x7) = 2, x7=7/2, x=7/2
23. Using (3,k) and (2,4) to calculate the slope, we find k4
3(2) =5,k4 = 25, k= 29.
24. The slope obtained by using the points (1,5) and (k, 4) must be the same as that obtained from
the points (1,5) and (2,3) so 45
k1=35
21,1
k1=8, k1=1/8, k=9/8.
25. 02
x1=05
x4,2x+8=5x5, 7x= 13, x=13/7
26. Use (0,0) and (x, y)togety0
x0=1
2
,y=1
2
x. Use (7,5) and (x, y)togety5
x7=2,
y5=2(x7), y=2x9. Solve the system of equations y=1
2xand y=2x9toget
x=6,y=3.
27. Show that opposite sides are parallel by showing that they have the same slope:
using (3,1) and (6,4), m1=5/3; using (6,4) and (3,2), m2=2/9;
using (3,2) and (6,3), m3=5/3; using (6,3) and (3,1), m4=2/9.
Opposite sides are parallel because m1=m3and m2=m4.
Exercise Set C 654
28. The line through (3,1) and (6,3) has slope m1=2/3, the line through (3,1) and (2,9) has slope
m2=8, the line through (6,3) and (2,9) has slope m3=3/2. Because m1m3=1, the
corresponding lines are perpendicular so the given points are vertices of a right triangle.
29. (a)
8
3
x
y(b)
3x
y
(c)
-2
x
y(c)
4
-7
x
y
30. (a)
3
-4
x
y(b)
-8 x
y
(c)
x
y(d)
2
5
x
y
655 Appendix C
31. (a)
-1
x
y
5-5
(b)
3
x
y
5-5
(c)
x
y
5-5
5
32. (a)
2
x
y
5-5
(b)
x
y
5-5
5
(c)
x
y
5-5
5
33. (a) m=3,b=2 (b) m=1
4,b=3
(c) y=3
5x+8
5so m=3
5,b=8
5(d) m=0,b=1
(e) y=b
ax+bso m=b
a,y-intercept b
34. (a) m=4, b=2 (b) y=1
3x2
3so m=1
3,b=2
3
(c) y=3
2x+3som=3
2,b=3 (d) y=3som=0,b=3
(e) y=a0
a1
xso m=a0
a1
,b=0
35. (a) m=(0(3))/(2 0))=3/2soy=3x/23
(b) m=(30)/(4 0) = 3/4soy=3x/4
36. (a) m=(02)/(2 0)) = 1soy=x+2
(b) m=(20)/(3 0)=2/3soy=2x/3
37. y=2x+4 38. y=5x3
39. The slope mof the line must equal the slope of y=4x2, thus m= 4 so the equation is y=4x+7.
40. The slope of the line 3x+2y=5is3/2 so the line through (1,2) with this slope
is y2=3
2
(x+ 1); y=3
2x+1
2.
41. The slope mof the line must be the negative reciprocal of the slope of y=5x+9,thusm=1/5
and the equation is y=x/5+6.
Exercise Set C 656
42. The slope of the line x4y= 7 is 1/4 so a line perpendicular to it must have a slope of 4;
y+4=4(x3); y=4x+8.
43. y4=74
12(x2) = 11(x2), y=11x18.
44. y6= 16
2(3)(x(3)), y6=5(x+ 3), y=5x9.
45. The line passes through (0,2) and (4,0), thus m=02
40=1
2so y=1
2x+2.
46. The line passes through (0,b) and (a, 0), thus m=0b
a0=b
a, so the equation is
y=b
ax+b.
47. y=1 48. y=8
49. (a) m1=4,m
2= 4; parallel because m1=m2
(b) m1=2,m
2=1/2; perpendicular because m1m2=1
(c) m1=5/3, m2=5/3; parallel because m1=m2
(d) If A6= 0 and B6= 0, then m1=A/B,m2=B/A and the lines are perpendicular because
m1m2=1. If either Aor B(but not both) is zero, then the lines are perpendicular because
one is horizontal and the other is vertical.
(e) m1=4,m
2=1/4; neither
50. (a) m1=5, m2=5; parallel because m1=m2
(b) m1=2,m
2=1/2; perpendicular because m1m2=1.
(c) m1=4/5, m2=5/4; perpendicular because m1m2=1.
(d) If B6= 0, then m1=m2=A/B and the lines are parallel because m1=m2.IfB= 0 (and
A6= 0), then the lines are parallel because they are both perpendicular to the x-axis.
(e) m1=1/2, m2= 2; neither
51. y=(3/k)x+4/k,k6=0
(a) 3/k =2,k=3/2
(b) 4/k =5,k=4/5
(c) 3(2)+k(4)=4,k=5/2
(d) The slope of 2x5y= 1 is 2/5so3/k =2/5, k=15/2.
(e) The slope of 4x+3y=2is4/3 so the slope of the line perpendicular to it is 3/4;
3/k =3/4, k=4.
52. y2=3x: the union of the graphs of y=3xand y=3x
x
y
5-5
5
657 Appendix C
53. (xy)(x+y) = 0: the union of the graphs of
xy= 0 and x+y=0
x
y
5-5
5
54. F=9
5C+32
-30 30
-30
50
C
F
55. u=3v
2
u
v
8
5
56. Y=4X+5
5
-1 Y
X
57. Solve x=5t+ 2 for tto get t=1
5x2
5,soy=1
5
x2
5
3=1
5
x17
5, which is a line.
58. Solve x=1+3t
2for t2to get t2=1
3x1
3,soy=21
3
x1
3
=1
3
x+7
3
, which is a line;
1+3t
21 for all tso x1.
59. An equation of the line through (1,4) and (2,1) is y=3x+7. It crosses the y-axis at y= 7, and
the x-axis at x=7/3, so the area of the triangle is 1
2(7)(7/3)=49/6.
60. (2x3y)(2x+3y)=0,so2x3y=0,y=2
3
xor 2x+3y=0,
y=2
3
x. The graph consists of the lines y=±2
3x.
x
y
5-5
5
61. (a) yes (b) yes (c) no (d) yes (e) yes (f) yes (g) no
658
APPENDIX D
Distance, Circles, and Quadratic Equations
EXERCISE SET D
1. in the proof of Theorem D.1
2. (a) d=p(12)2+(15)2=9+16=
25=5
(b) 2+(1)
2,5+1
2=(1/2,3)
3. (a) d=p(1 7)2+(91)2=36+64=
100=10
(b) 7+1
2,1+9
2=(4,5)
4. (a) d=p(32)2+(60)2=25+36=
61
(b) 2+(3)
2,0+6
2=(1/2,3)
5. (a) d=p[7(2)]2+[4(6)]2=25+4=
29
(b) 2+(7)
2,6+(4)
2=(9/2,5)
6. Let A(1,1), B(2,8), and C(4,10) be the given points
(see diagram). A,B, and Clie on a straight line if and only if
d1+d2=d3, where d1,d2, and d3are the lengths of the line
segments AB,AC, and BC. But
d1=p(21)2+(81)2=3
10,
d2=p(4 1)2+ (10 1)2=3
10,
d3=p(4+2)
2+(10+8)
2=6
10; because d1+d2=d3,
it follows that A,B, and Clie on a straight line.
x
y
C(4, 10)
A(1, 1)
B(-2, -8)
d3
d2
d1
7. Let A(5,2), B(6,5), and C(2,2) be the given vertices and a,b, and cthe lengths of the sides
opposite these vertices; then
a=p(2 6)2+(25)2=25 = 5 and b=p(2 5)2+(2+2)
2=
25=5.
Triangle ABC is isosceles because it has two equal sides (a=b).
8. A triangle is a right triangle if and only if the square of the longest side is equal to the sum of the
squares of the other two sides (Pythagorean theorem). With A(1,3), B(4,2), and C(2,6) as ver-
tices and s1,s2, and s3the lengths of the sides opposite these vertices we find that
s2
1=(24)2+(62)2= 100, s2
2=(21)2+(63)2= 90, s2
3=(41)2+(23)2= 10,
and that s2
1=s2
2+s2
3,soABC is a right triangle.
9. P1(0,2), P2(4,8), and P3(3,1) all lie on a circle whose center is C(2,3) if the points P1,
P2and P3are equidistant from C. Denoting the distances between P1,P2,P3and Cby d1,d2
and d3we find that d1=p(0+2)
2+(23)2=29, d2=p(4+2)
2+(83)2=29, and
d3=p(3+2)
2+(13)2=29, so P1,P2and P3lie on a circle whose center is C(2,3) because
d1=d2=d3.
659 Appendix D
10. The distance between (t, 2t6) and (0,4) is
p(t0)2+(2t64)2=pt2+(2t10)2=5t240t+ 100;
the distance between (t, 2t6) and (8,0) is p(t8)2+(2t6)2=5t240t+ 100,
so (t, 2t6) is equidistant from (0,4) and (8,0).
11. If (2,k) is equidistant from (3,7) and (9,1), then
p(2 3)2+(k7)2=p(2 9)2+(k1)2,1+(k7)2=49+(k1)2,
1+k
214k+49=49+k
22k+1,12k=0,k=0.
12. (x3)/2 = 4 and (y+2)/2=5sox= 11 and y=12.
13. The slope of the line segment joining (2,8) and (4,6) is 68
42=1
3so the slope of the perpen-
dicular bisector is 3. The midpoint of the line segment is (1,7) so an equation of the bisector is
y7=3(x+ 1); y=3x+4.
14. The slope of the line segment joining (5,1) and (4,8) is 8(1)
45=9 so the slope of the perpen-
dicular bisector is 1
9. The midpoint of the line segment is (9/2,7/2) so an equation of the bisector is
y7
2=1
9x9
2;y=1
9x+3.
15. Method (see figure): Find an equation of the perpendicular bisector of the line segment joining
A(3,3) and B(7,3). All points on this perpendicular bisector are equidistant from Aand B,thus
find where it intersects the given line.
The midpoint of AB is (5,0), the slope of AB is 3/2thusthe
slope of the perpendicular bisector is 2/3 so an equation is
y0=2
3
(x5)
3y=2x10
2x3y10=0.
The solution of the system
(4x2y+3=0
2x3y10=0
gives the point (29/8,23/4).
x
y
A(3, 3)
B(7, -3)
4x - 2y + 3 = 0
16. (a) y= 4 is a horizontal line, so the vertical distance is |4(2)|=|6|=6.
(b) x=1 is a vertical line, so the horizontal distance is |−13|=|−4|=4.
17. Method (see figure): write an equation of the line that goes through
the given point and that is perpendicular to the given line; find the
point Pwhere this line intersects the given line; find the
distance between Pand the given point.
The slope of the given line is 4/3, so the slope of a line
perpendicular to it is 3/4. x
y
4x – 3y + 10 = 0
(2, 1)
P
Exercise Set D 660
The line through (2,1) having a slope of 3/4isy1=
3
4
(x2) or, after simplification,
3x+4y= 10 which when solved simultaneously with 4x3y+ 10 = 0 yields (2/5,14/5) as the
point of intersection. The distance dbetween (2/5,14/5) and (2,1) is
d=p(2+2/5)2+(114/5)2=3.
18. (See the solution to Exercise 17 for a description of the method.) The slope of the line
5x+12y36=0is5/12. The line through (8,4) and perpendicular to the given line is
y4=12
5(x8) or, after simplification, 12x5y= 76. The point of intersection of this line with
the given line is found to be 84
13,4
13and the distance between it and (8,4) is 4.
19. If B= 0, then the line Ax +C= 0 is vertical and x=C/A for each point on the line. The line
through (x0,y
0
) and perpendicular to the given line is horizontal and intersects the given line at
the point (C/A,y0). The distance dbetween (C/A,y0) and (x0,y
0
)is
d=p(x
0+C/A)2+(y
0y
0
)
2=r(Ax0+C)2
A2=|Ax0+C|
A2
which is the value of |Ax0+By0+C|
A2+B2for B=0.
If B6= 0, then the slope of the given line is A/B and the line through (x0,y
0
) and perpendicular
to the given line is
yy0=B
A(xx0), Ay Ay0=Bx Bx0,Bx Ay =Bx0Ay0.
The point of intersection of this line and the given line is obtained by solving
Ax +By =Cand Bx Ay =Bx0Ay0.
Multiply the first equation through by Aand the second by Band add the results to get
(A2+B2)x=B2x0ABy0AC so x=B2x0ABy0AC
A2+B2
Similarly, by multiplying by Band A,wegety=ABx0+A2y0BC
A2+B2.
The square of the distance dbetween (x, y) and (x0,y
0
)is
d
2=x
0B
2
x
0ABy0AC
A2+B22
+y0ABx0+A2y0BC
A2+B22
=(A2x0+ABy0+AC)2
(A2+B2)2+(ABx0+B2y0+BC)2
(A2+B2)2
=A2(Ax0+By0+C)2+B2(Ax0+By0+C)2
(A2+B2)2
=(Ax0+By0+C)2(A2+B2)
(A2+B2)2=(Ax0+By0+C)2
A2+B2
so d=|Ax0+By0+C|
A2+B2.
20. d=|4(2) 3(1) + 10|
p42+(3)2=|15|
25 =15
5=3. 21. d=|5(8) + 12(4) 36|
52+12
2=|52|
169 =52
13 =4.
661 Appendix D
22. Method (see figure): Let A(0,a), B(b, 0), and C(c, 0) be the given
vertices; find equations for the perpendicular bisectors L1,L2, and
L3and show that they all intersect at the same point.
x
y
L3
L1
L2
B(b, 0)
A(0, a)
C(c, 0)
line L1: The midpoint of BC is b+c
2,0and since L1is vertical,
an equation for L1is x=b+c
2;
line L2: The midpoint of AB is b
2,a
2; the slope of AB is a
b
(if b6= 0) so the slope of
L2is b
a(even if b= 0) and an equation of L2is ya
2=b
axb
2;
line L3: The midpoint of AC is c
2,a
2; the slope of AC is a
c(if c6= 0) so the slope of
L3is c
a(even if c= 0) and an equation of L3is ya
2=c
axc
2.
For the point of intersection of L1and L2, solve x=b+c
2and ya
2=b
axb
2.
The point is found to be b+c
2,a2+bc
2. The point of intersection of L1and L3is obtained by
solving the system x=b+c
2and ya
2=c
axc
2, its solution yields the point b+c
2,a2+bc
2.
So L1L2, and L3all intersect at the same point.
23. (a) center (0,0), radius 5 (b) center (1,4), radius 4
(c) center (1,3), radius 5(d) center (0,2), radius 1
24. (a) center (0,0), radius 3 (b) center (3,5), radius 6
(c) center (4,1), radius 8(d) center (1,0), radius 1
25. (x3)2+(y(2))2=4
2
,(x3)2+(y+2)
2=16
26. (x1)2+(y0)2=(
8/2)2,(x1)2+y2=2
27. r= 8 because the circle is tangent to the x-axis, so (x+4)
2+(y8)2= 64.
28. r= 5 because the circle is tangent to the y-axis, so (x5)2+(y8)2= 25.
29. (0,0) is on the circle, so r=p(30)2+(40)2=5;(x+3)
2+(y+4)
2= 25.
30. r=p(4 1)2+(53)2=73; (x4)2+(y+5)
2= 73.
31. The center is the midpoint of the line segment joining (2,0) and (0,2) so the center is at (1,1).
The radius is r=p(2 1)2+(01)2=2, so (x1)2+(y1)2=2.
32. The center is the midpoint of the line segment joining (6,1) and (2,3), so the center is at (2,2).
The radius is r=p(6 2)2+(12)2=17, so (x2)2+(y2)2= 17.
33. (x22x)+(y
24y) = 11, (x22x+1)+(y
24y+4)=11+1+4,(x1)2+(y2)2= 16;
center (1,2) and radius 4
Exercise Set D 662
34. (x2+8x)+y
2=8, (x2+8x+16)+y2=8 + 16, (x+4)
2+y
2= 8; center (4,0) and radius
22
35. 2(x2+2x)+2(y
22y)=0,2(x
2+2x+1)+2(y
22y+1)=2+2,(x+1)
2+(y1)2=2;
center (1,1) and radius 2
36. 6(x2x)+6(y
2+y)=3,6(x
2x+1/4)+6(y
2+y+1/4)=3+6/4+6/4,
(x1/2)2+(y+1/2)2= 1; center (1/2,1/2) and radius 1
37. (x2+2x)+(y
2+2y)=2, (x2+2x+1)+(y
2+2y+1)=2+1+1,(x+1)
2+(y+1)
2=0;
the point (1,1)
38. (x24x)+(y
26y)=13, (x24x+4)+(y
26y+9)=13+4+9,(x2)2+(y3)2=0;
the point (2,3)
39. x2+y2=1/9; center (0,0) and radius 1/3
40. x2+y2= 4; center (0,0) and radius 2
41. x2+(y
2+10y)=26, x2+(y
2+10y+ 25) = 26 + 25, x2+(y+5)
2=1; no graph
42. (x210x)+(y
22y)=29, (x210x+25)+(y
22y+1)=29+25+1,
(x5)2+(y1)2=3; no graph
43. 16 x2+5
2x+ 16(y2+y)=7,16x
2+5
2
x+25
16+16y
2+y+1
4=7+25+4,
(x+5/4)2+(y+1/2)2=9/4; center (5/4,1/2) and radius 3/2
44. 4(x24x)+4(y
26y)=9,4(x
24x+4)+4(y
26y+9)=9+16+36,
(x2)2+(y3)2=61/4; center (2,3) and radius 61/2
45. (a) y2=16x
2
,soy=±
16 x2. The bottom half is y=16 x2.
(b) Complete the square in yto get (y2)2=32xx
2
,soy2=±
32xx
2
,
or y=2±
32xx
2
. The top half is y=2+
32xx
2
.
46. (a) x2=9y
2so x=±p9y2. The right half is x=p9y2.
(b) Complete the square in xto get (x2)2=1y
2so x2=±
p1y
2
,x=2±p1y
2
.
The left half is x=2p1y
2
.
47. (a)
-5 5
5
x
y(b) y=5+4xx
2
=p5(x
24x)
=p5+4(x
24x+4)
=p9(x2)2
-1 5
3
x
y
663 Appendix D
48. (a)
-2
-2
2
x
y(b)
35
-2
2
x
y
49. The tangent line is perpendicular to the radius at the point. The slope of the radius is 4/3, so
the slope of the perpendicular is 3/4. An equation of the tangent line is y4=3
4
(x3), or
y=3
4x+25
4.
50. (a) (x+1)
2+y
2= 10, center at C(1,0). The slope of CP is 1/3 so the slope of the tangent
is 3; y+1=3(x2), y=3x7.
(b) (x3)2+(y+2)
2= 26, center at C(3,2). The slope of CP is 5 so the slope of the tangent
is 1
5;y3=1
5
(x4), y=1
5x+19
5.
51. (a) The center of the circle is at (0,0) and its radius is 20=2
5. The distance between Pand
the center is p(1)2+ (2)2=5 which is less than 25, so Pis inside the circle.
(b) Draw the diameter of the circle that passes through P, then the shorter segment of the
diameter is the shortest line that can be drawn from Pto the circle, and the longer segment
is the longest line that can be drawn from Pto the circle (can you prove it?). Thus, the
smallest distance is 255=
5, and the largest is 25+
5=3
5.
52. (a) x2+(y1)2= 5, center at C(0,1) and radius 5. The distance between Pand Cis 35/2
so Pis outside the circle.
(b) The smallest distance is 3
255=1
2
5, the largest distance is 3
25+
5=5
2
5.
53. Let (a, b) be the coordinates of T(or T0). The radius from (0,0) to T(or T0) will be perpendicular
to L(or L0) so, using slopes, b/a =(a3)/b,a2+b2=3a. But (a, b) is on the circle so a2+b2=1,
thus 3a=1,a=1/3. Let a=1/3ina
2+b
2= 1 to get b2=8/9, b=±8/3. The coordinates of
Tand T0are (1/3,8/3) and (1/3,8/3).
54. (a) p(x2)2+(y0)2=2p(x0)2+(y1)2; square both sides and expand to get
x24x+4+y
2=2(x
2+y
22y+ 1), x2+y2+4x4y2 = 0, which is a circle.
(b) (x2+4x)+(y
24y)=2,(x
2+4x+4)+(y
24y+4)=2+4+4,(x+2)
2+(y2)2= 10;
center (2,2), radius 10.
55. (a) [(x4)2+(y1)2]+[(x2)2+(y+5)
2
]=45
x
28x+16+y
22y+1+x
24x+4+y
2+10y+25=45
2x
2+2y
212x+8y+ 1 = 0, which is a circle.
(b) 2(x26x)+2(y
2+4y)=1, 2(x26x+9)+2(y
2+4y+4)=1+18+8,
(x3)2+(y+2)
2=25/2; center (3,2), radius 5/2.
Exercise Set D 664
56. If x2y2= 0, then y2=x2so y=xor y=x. The graph of x2y2= 0 consists of the graphs
of the two lines y=±x. The graph of (xc)2+y2= 1 is a circle of radius 1 with center at (c, 0).
Examine the figure to see that the system cannot have just one solution, and has 0 solutions if
|c|>2, 2 solutions if |c|=2, 3 solutions if |c|= 1, and 4 solutions if |c|<2, |c|6=1.
x
y
1x
y
1
2 solutions 3 solutions
x
y
x
y
4 solutions 0 solutions
2
57. y=x2+2
x
y
(0, 2)
58. y=x23
x
y
(0, -3)
3– 3
59. y=x2+2x3
-3 1
-3
x
y
(-1, -4)
60. y=x23x4
-1 4
-4
x
y
3
225
4
()
, –
61. y=x2+4x+5
-1 5
5
x
y
(2, 9)
665 Appendix D
62. y=x2+x
1x
y
1
21
4
()
,
63. y=(x2)2
4
x
y
(2, 0)
64. y=(3+x)
2
9
x
y
(-3, 0)
65. x22x+y=0
2x
y
(1, 1)
66. x2+8x+8y=0
-8 x
y
(-4, 2)
67. y=3x
22x+1
1
x
y
2
3
1
3
()
,
68. y=x2+x+2
2
x
y
7
4
1
2
()
,
69. x=y2+2y+2
2x
y
(3, 1)
1 – 3
1 + 3
70. x=y24y+5
5x
y
(1, 2)
71. (a) x2=3y,x=±
3y. The right half is x=3y.
(b) Complete the square in xto get (x1)2=y+1, x=1±
y+ 1. The left half is x=1
y+1.
72. (a) y2=x+5,y=±
x+ 5. The upper half is y=x+5.
(b) Complete the square in yto get (y1/2)2=x+9/4, y1/2=±
px+9/4,
y=1/2±px+9/4. The lower half is y=1/2px+9/4.
Exercise Set D 666
73. (a)
x
y
-5
5
(b)
4
x
y
5
74. (a)
4x
y
5
(b)
3x
y
5
75. (a)
12
8
16
t
s(b) The ball will be at its highest point
when t= 1 sec; it will rise 16 ft.
76. (a) 2x+y= 500, y= 500 2x.(b) A=xy =x(500 2x) = 500x2x2.
(c) The graph of Aversus xis a parabola with its vertex (high point) at
x=b/(2a)=500/(4) = 125, so the maximum value of Ais
A= 500(125) 2(125)2= 31,250 ft2.
77. (a) (3)(2x) + (2)(2y) = 600, 6x+4y= 600, y= 150 3x/2
(b) A=xy =x(150 3x/2) = 150x3x2/2
(c) The graph of Aversus xis a parabola with its vertex (high point) at
x=b/(2a)=150/(3) = 50, so the maximum value of Ais
A= 150(50) 3(50)2/2 = 3,750 ft2.
667 Appendix D
78. (a) y=ax2+bx +c=ax2+b
ax+c
=ax2+b
ax+b2
4a2+cb2
4a=ax+b
2a2
+cb2
4a
(b) If a<0 then yis always less than cb2
4aexcept when x=b
2a, so the graph has its high
point there. If a>0 then yis always greater than cb2
4aexcept when x=b
2a, so the
graph has its low point there.
79. (a) The parabola y=2x
2+5x1 opens upward and has x-intercepts of x=(5±
33)/4, so
2x2+5x1<0if(5
33)/4<x<(5+
33)/4.
(b) The parabola y=x22x+ 3 opens upward and has no x-intercepts, so x22x+3>0if
−∞ <x<+.
80. (a) The parabola y=x2+x1 opens upward and has x-intercepts of x=(1±
5)/2, so
x2+x1>0ifx<(1
5)/2orx>(1+
5)/2.
(b) The parabola y=x24x+ 6 opens upward and has no x-intercepts, so x24x+6<0 has
no solution.
81. (a) The t-coordinate of the vertex is t=40/[(2)(16)] = 5/4, so the maximum height is
s= 5 + 40(5/4) 16(5/4)2= 30 ft.
(b) s=5+40t16t2=0ift2.6s
(c) s=5+40t16t2>12 if 16t240t+7<0, which is true if (532)/4<t<(5+3
2)/4.
The length of this interval is (5 + 32)/4(5 32)/4=3
2/22.1s.
82. x+3x
2>0, x2x3<0, (1 13)/2<x<(1+13)/2
668
APPENDIX E
Trigonometry Review
EXERCISE SET E
1. (a) 5π/12 (b) 13π/6(c) π/9(d) 23π/30
2. (a) 7π/3(b) π/12 (c) 5π/4(d) 11π/12
3. (a) 12(b) (270)(c) 288(d) 540
4. (a) 18(b) (360)(c) 72(d) 210
5. sin θcos θtan θcsc θsec θcot θ
(a) 21/5 2/521/2 5/21 5/2 2/21
(b) 3/47/4 3/7 4/3 4/77/3
(c) 3/10 1/10 3 10/310 1/3
6. sin θcos θtan θcsc θsec θcot θ
(a) 1/2 1/2 1 22 1
(b) 3/5 4/5 3/4 5/3 5/4 4/3
(c) 1/415/4 1/15 4 4/15 15
7. sin θ=3/
10, cos θ=1/
10 8. sin θ=5/3, tan θ=5/2
9. tan θ=21/2, csc θ=5/
21 10. cot θ=15, sec θ=4/
15
11. Let xbe the length of the side adjacent to θ, then cos θ=x/6=0.3, x=1.8.
12. Let xbe the length of the hypotenuse, then sinθ=2.4/x =0.8, x=2.4/0.8=3.
13. θsin θcos θtan θcsc θsec θcot θ
(a) 2251/21/2 1 22 1
(b) 2101/23/21/322/33
(c) 5π/33/2 1/232/3 2 1/3
(d) 3π/2 1 0 — 1 — 0
14. θsin θcos θtan θcsc θsec θcot θ
(a) 3301/23/21/32 2/33
(b) 1203/21/232/32 1/3
(c) 9π/4 1/2 1/2 1 22 1
(d) 3π01 0 1 —
669 Appendix E
15. sin θcos θtan θcsc θsec θcot θ
(a) 4/5 3/5 4/3 5/4 5/3 3/4
(b) 4/5 3/54/35/4 5/33/4
(c) 1/23/21/3 2 233
(d) 1/23/21/32 2/33
(e) 1/21/21221
(f) 1/21/21221
16. sin θcos θtan θcsc θsec θcot θ
(a) 1/415/4 1/15 4 4/15 15
(b) 1/415/41/15 4 4/15 15
(c) 3/10 1/10 3 10/310 1/3
(d) 3/10 1/10 3 10/310 1/3
(e) 21/52/521/2 5/21 5/22/21
(f) 21/52/521/25/21 5/2 2/21
17. (a) x= 3 sin 251.2679 (b) x=3/tan(2π/9) 3.5753
18. (a) x=2/sin 205.8476 (b) x=3/cos(3π/11) 4.5811
19. sin θcos θtan θcsc θsec θcot θ
(a) a/39a2/3a/9a23/a 3/9a29a2/a
(b) a/a2+25 5/
a
2+25 a/5a2+25/a a2+25/5 5/a
(c) a21/a 1/a a21a/a21a1/a21
20. (a) θ=3π/4±2and θ=5π/4±2,n=0,1,2,...
(b) θ=5π/4±2and θ=7π/4±2,n=0,1,2,...
21. (a) θ=3π/4±,n=0,1,2,...
(b) θ=π/3±2and θ=5π/3±2,n=0,1,2,...
22. (a) θ=7π/6±2and θ=11π/6±2,n=0,1,2,...
(b) θ=π/3±,n=0,1,2,...
23. (a) θ=π/6±,n=0,1,2,...
(b) θ=4π/3±2and θ=5π/3±2,n=0,1,2,...
24. (a) θ=3π/2±,n=0,1,2,... (b) θ=π±2,n=0,1,2,...
25. (a) θ=3π/4±,n=0,1,2,... (b) θ=π/6±,n=0,1,2,...
26. (a) θ=2π/3±2and θ=4π/3±2,n=0,1,2,...
(b) θ=7π/6±2and θ=11π/6±2,n=0,1,2,...
Exercise Set E 670
27. (a) θ=π/3±2and θ=2π/3±2,n=0,1,2,...
(b) θ=π/6±2and θ=11π/6±2,n=0,1,2,...
28. sin θ=3/5, cos θ=4/5, tan θ=3/4, csc θ=5/3, sec θ=5/4, cot θ=4/3
29. sin θ=2/5, cos θ=21/5, tan θ=2/21, csc θ=5/2, sec θ=5/21, cot θ=21/2
30. (a) θ=π/2±2,n=0,1,2,... (b) θ=±2,n=0,1,2,...
(c) θ=π/4±,n=0,1,2,... (d) θ=π/2±2,n=0,1,2,...
(e) θ=±2,n=0,1,2,... (f) θ=π/4±,n=0,1,2,...
31. (a) θ=±,n=0,1,2,... (b) θ=π/2±,n=0,1,2,...
(c) θ=±,n=0,1,2,... (d) θ=±,n=0,1,2,...
(e) θ=π/2±,n=0,1,2,... (f) θ=±,n=0,1,2,...
32. Construct a right triangle with one angle equal to 17, measure the lengths of the sides and
hypotenuse and use formula (6) for sin θand cos θto approximate sin 17and cos 17.
33. (a) s==4(π/6)=2π/3cm (b) s== 4(5π/6)=10π/3cm
34. r=s/θ =7/(π/3)=2135. θ=s/r =2/5
36. θ=s/r so A=1
2r2θ=1
2r2(s/r)=1
2
rs
37. (a) 2πr =R(2πθ), r=2πθ
2πR
(b) h=pR2r2=pR2(2πθ)2R2/(4π2)=
4πθ θ2
2πR
38. The circumference of the circular base is 2πr. When cut and flattened, the cone becomes a circular
sector of radius L.Ifθis the central angle that subtends the arc of length 2πr, then θ=(2πr)/L
so the area Sof the sector is S=(1/2)L2(2πr/L)=πrL which is the lateral surface area of the
cone.
39. Let hbe the altitude as shown in the figure, then
h= 3 sin 60=3
3/2soA=1
2
(33/2)(7) = 213/4.
60°
h
3
7
40. Draw the perpendicular from vertex Cas shown in the figure, then
h= 9 sin 30=9/2, a=h/ sin 45=9
2/2,
c1= 9 cos 30=9
3/2, c2=acos 45=9/2,
c1+c2=9(
3+1)/2,angle C= 180(30+45
) = 105
A
C
30°45°
h
9a
c1c2B
41. Let xbe the distance above the ground, then x= 10 sin 679.2 ft.
42. Let xbe the height of the building, then x= 120 tan 76481 ft.
671 Appendix E
43. From the figure, h=xybut x=dtan β,
y=dtan αso h=d(tan βtan α).
x
h
y
α
β
d
44. From the figure, d=xybut x=hcot α,
y=hcot βso d=h(cot αcot β),
h=d
cot αcot β.
d
x
y
h
αβ
45. (a) sin 2θ= 2 sin θcos θ=2(
5/3)(2/3)=4
5/9
(b) cos 2θ= 2 cos2θ1 = 2(2/3)21=1/9
46. (a) sin(αβ) = sin αcos βcos αsin β=(3/5)(1/5) (4/5)(2/5) = 1/5
(b) cos(α+β) = cos αcos βsin αsin β=(4/5)(1/5) (3/5)(2/5) = 2/(55)
47. sin 3θ= sin(2θ+θ) = sin 2θcos θ+ cos 2θsin θ= (2 sin θcos θ) cos θ+ (cos2θsin2θ) sin θ
= 2 sin θcos2θ+ sin θcos2θsin3θ= 3 sin θcos2θsin3θ; similarly, cos 3θ= cos3θ3 sin2θcos θ
48. cos θsec θ
1 + tan2θ=cos θsec θ
sec2θ=cos θ
sec θ=cos θ
(1/cos θ)= cos2θ
49. cos θtan θ+ sin θ
tan θ=cos θ(sin θ/ cos θ) + sin θ
sin θ/ cos θ= 2 cos θ
50. 2 csc 2θ=2
sin 2θ=2
2 sin θcos θ=1
sin θ 1
cos θ= csc θsec θ
51. tan θ+ cot θ=sin θ
cos θ+cos θ
sin θ=sin2θ+ cos2θ
sin θcos θ=1
sin θcos θ=2
2 sin θcos θ=2
sin 2θ= 2 csc 2θ
52. sin 2θ
sin θcos 2θ
cos θ=sin 2θcos θcos 2θsin θ
sin θcos θ=sin θ
sin θcos θ= sec θ
53. sin θ+ cos 2θ1
cos θsin 2θ=sin θ+(12 sin2θ)1
cos θ2 sin θcos θ=sin θ(1 2 sin θ)
cos θ(1 2 sin θ)= tan θ
54. Using (47), 2 sin 2θcos θ= 2(1/2)(sin θ+ sin 3θ) = sin θ+ sin 3θ
55. Using (47), 2 cos 2θsin θ= 2(1/2)[sin(θ) + sin 3θ] = sin 3θsin θ
Exercise Set E 672
56. tan(θ/2) = sin(θ/2)
cos(θ/2) =2 sin2(θ/2)
2 sin(θ/2) cos(θ/2) =1cos θ
sin θ
57. tan(θ/2) = sin(θ/2)
cos(θ/2) =2 sin(θ/2) cos(θ/2)
2 cos2(θ/2) =sin θ
1 + cos θ
58. From (52), cos(π/3+θ) + cos(π/3θ) = 2cos(π/3) cos θ= 2(1/2) cos θ= cos θ
59. From the figure, area = 1
2hc but h=bsin A
so area = 1
2bc sin A. The formulas
area = 1
2ac sin Band area = 1
2ab sin C
follow by drawing altitudes from vertices Band C, respectively. A
C
ha
c
b
B
60. From right triangles ADC and BDC,
h1=bsin A=asin Bso a/ sin A=b/ sin B.
From right triangles AEB and CEB,
h2=csin A=asin Cso a/ sin A=c/ sin C
thus a/ sin A=b/ sin B=c/ sin C.
A
E
B
C
D
h1
h2
a
c
b
61. (a) sin(π/2+θ) = sin(π/2) cos θ+ cos(π/2) sin θ= (1) cos θ+ (0) sin θ= cos θ
(b) cos(π/2+θ) = cos(π/2) cos θsin(π/2) sin θ= (0) cos θ(1) sin θ=sin θ
(c) sin(3π/2θ) = sin(3π/2) cos θcos(3π/2) sin θ=(1) cos θ(0) sin θ=cos θ
(d) cos(3π/2+θ) = cos(3π/2) cos θsin(3π/2) sin θ= (0) cos θ(1) sin θ= sin θ
62. tan(α+β)= sin(α+β)
cos(α+β)=sin αcos β+ cos αsin β
cos αcos βsin αsin β, divide numerator and denominator by
cos αcos βand use tan α=sin α
cos αand tan β=sin β
cos βto get (38);
tan(αβ) = tan(α+(β)) = tan α+ tan(β)
1tan αtan(β)=tan αtan β
1 + tan αtan βbecause
tan(β)=tan β.
63. (a) Add (34) and (36) to get sin(αβ) + sin(α+β)=2sinαcos βso
sin αcos β=(1/2)[sin(αβ) + sin(α+β)].
(b) Subtract (35) from (37).
(c) Add (35) and (37).
64. (a) From (47), sin A+B
2cos AB
2=1
2(sin B+ sin A)so
sin A+ sin B= 2 sin A+B
2cos AB
2.
(b) Use (49) (c) Use (48)
673 Appendix E
65. sin α+ sin(β)=2sinαβ
2cos α+β
2, but sin(β)=sin βso
sin αsin β= 2 cos α+β
2sin αβ
2.
66. (a) From (34), Csin(α+φ)=Csin αcos φ+Ccos αsin φso Ccos φ= 3 and Csin φ=5,
square and add to get C2(cos2φ+sin2φ) = 9+ 25, C2= 34. If C=34 then cos φ=3/
34
and sin φ=5/
34 so φis the first-quadrant angle for which tanφ=5/3.
3 sin α+ 5 cos α=34 sin(α+φ).
(b) Follow the procedure of part (a) to get Ccos φ=Aand Csin φ=B,C=A2+B2,
tan φ=B/A where the quadrant in which φlies is determined by the signs of Aand Bbecause
cos φ=A/C and sin φ=B/C,soAsin α+Bcos α=A2+B2sin(α+φ).
67. Consider the triangle having a,b, and das sides. The angle formed by sides aand bis πθso
from the law of cosines, d2=a2+b22ab cos(πθ)=a
2+b
2+2ab cos θ,d=a2+b2+2ab cos θ.
674
APPENDIX F
Solving Polynomial Equations
EXERCISE SET F
1. (a) q(x)=x
2+4x+2,r(x)=11x+6 (b) q(x)=2x
2+4,r(x)=9
(c) q(x)=x
3x
2+2x2,r(x)=2x+1
2. (a) q(x)=2x
2x+2,r(x)=5x+5 (b) q(x)=x
3+3x
2x+2,r(x)=3x1
(c) q(x)=5x
35,r(x)=4x
2+10
3. (a) q(x)=3x
2+6x+8,r(x)=15 (b) q(x)=x
35x
2+20x100,r(x) = 504
(c) q(x)=x
4+x
3+x
2+x+1,r(x)=0
4. (a) q(x)=2x
2+x1,r(x)=0 (b) q(x)=2x
35x
2+3x39,r(x) = 147
(c) q(x)=x
6+x
5+x
4+x
3+x
2+x+1,r(x)=2
5. x0 1 3 7
p(x)43 101 5001
6. x11 3 3 7 7 21 21
p(x)24 12 12 0 420 168 10416 7812
7. (a) q(x)=x
2+6x+13,r =20 (b) q(x)=x
2+3x2,r =4
8. (a) q(x)=x
4x
3+x
2x+1,r =2(b) q(x)=x
4+x
3+x
2+x+1,r =0
9. Assume r=a/b a and bintegers with a>0:
(a) bdivides 1, b=±1; adivides 24, a=1,2,3,4,6,8,12,24;
the possible candidates are 1,±2,±3,±4,±6,±8,±12,±24}
(b) bdivides 3 so b=±1,±3; adivides 10 so a=1,2,5,10;
the possible candidates are 1,±2,±5,±10,±1/3,±2/3,±5/3,±10/3}
(c) bdivides 1 so b=±1; adivides 17 so a=1,17;
the possible candidates are 1,±17}
10. An integer zero cdivides 21, so c=±1,±3,±7,±21 are the only possibilities; substitution of
these candidates shows that the integer zeros are 7,1,3
11. (x+ 1)(x1)(x2) 12. (x+ 2)(3x+ 1)(x2)
13. (x+3)
3
(x+1) 14. 2x4+x319x2+9
15. (x+ 3)(x+ 2)(x+1)
2
(x3) 17. 3 is the only real root.
18. x=3/2 is the only real root. 19. x=2,2/3 are the only real roots.
675 Appendix F
20. 2,1,1/2,321. 2,2,3 are the only real roots.
23. If x1 is a factor then p(1)=0,sok
27k+10=0,k
27k+10=(k2)(k5), so k=2,5.
24. (3)7=2187, so 3 is a root and thus by Theorem F.4(a), x+ 3 is a factor of x7+ 2187.
25. If the side of the cube is xthen x2(x3) = 196; the only real root of this equation is x= 7 cm.
26. (a) Try to solve a
b>a
b3+ 1. The polynomial p(x)=x
3x+ 1 has only one real root
c≈−1.325, and p(0) = 1 so p(x)>0 for all x>c; hence there is no positive rational
solution of a
b>a
b3+1.
(b) From part (a), any real x<cis a solution.
27. Use the Factor Theorem with xas the variable and yas the constant c.
(a) For any positive integer nthe polynomial xnynhas x=yas a root.
(b) For any positive even integer nthe polynomial xnynhas x=yas a root.
(c) For any positive odd integer nthe polynomial xn+ynhas x=yas a root.

Navigation menu