I3ELVIS User Guide
User Manual:
Open the PDF directly: View PDF .
Page Count: 29
Download | ![]() |
Open PDF In Browser | View PDF |
A User's Guide to I3ELVIS in Subduction and Collision setup by Ria Fischer Geophysical Fluid Dynamics Department of Earth Sciences ETH Zurich Zurich October 2012 Contents 1 Physics 1.1 1.2 1.3 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t3c files 2.1 2.2 2.3 3 2 Basic physical principals . . . . . . . . . . . . . 1.1.1 The continuity equation . . . . . . . . . 1.1.2 The Navier-Stokes Euqation . . . . . . . 1.1.3 Heat conservation equation . . . . . . . 1.1.4 Rheology . . . . . . . . . . . . . . . . . 1.1.5 Impact treatment . . . . . . . . . . . . . 1.1.6 Computation of crust . . . . . . . . . . 1.1.7 Phase transitions, melting and hydration I2ELVIS . . . . . . . . . . . . . . . . . . . . . . I3ELVIS . . . . . . . . . . . . . . . . . . . . . . 9 le.t3c . . . . . . . . . . . . . . . . . . . . . . . . . init.t3c . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Grid parameter description . . . . . . . . . 2.2.2 Rock type description . . . . . . . . . . . . 2.2.3 Boundary conditions . . . . . . . . . . . . . 2.2.4 Box description . . . . . . . . . . . . . . . . 2.2.5 Temperature box description . . . . . . . . mode.t3c . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Timestepping description . . . . . . . . . . 2.3.2 General parameters . . . . . . . . . . . . . . 2.3.3 Erosion and Sedimentation parameters . . . 2.3.4 Velocity- and Pressure-iterations parameters 2.3.5 Temperature-iterations parameters . . . . . 2.3.6 Hydration and melting parameters . . . . . 2.3.7 Collision velocity parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Raw output files: .prn 3.1 3.2 3.3 3.4 3.5 3.6 Part Part Part Part Part Part 2 2 2 3 4 5 6 6 7 8 I: General Information . . . . . . . II: Rock type information . . . . . III: Nodes information . . . . . . . IV: Gridline positions . . . . . . . . V: Boundary Condition Equations VI: Markers . . . . . . . . . . . . . 9 9 9 10 13 14 15 17 17 18 18 19 20 21 21 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 23 23 24 24 25 4 Numerical problems and solutions 26 5 Usage of paraview 27 5.1 5.2 27 27 27 Conversion from raw output to Paraview les . . . . . . . . . . . . . . . . . . Visualisation with Paraview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Visualize composition . . . . . . . . . . . . . . . . . . . . . . . . . . . References 28 1 1 Physics 1 Physics 1.1 Basic physical principals 1.1.1 The continuity equation The continuity equation describes the conservation of mass, while it is displaced in a continuous medium. In its Lagrangian form it reads the following, Dρ + ρ∇ · ~v = 0, Dt where ρ denotes material density, ~v denotes displacement velocity and grangian time derivative. (1.1) D denotes the LaDt For many geological media like the crust or the mantle, where temperature and pressure are not too large and no phase changes occur, which would lead to larger volume changes, one can assume the following incompressibility condition, Dρ ∂ρ = + ~v ∇ρ = 0, Dt ∂t (1.2) which means that the density of material points does not change in time. This leads us to the following incompressible continuity equation, which is the same in its Eulerian and Lagrangian form, ∇ · ~v = 0, (1.3) The incompressible continuity equation very widely used in numerical geodynamic modelling, although it is often a rather strong simplication. 1.1.2 The Navier-Stokes Euqation The Navier-Stokes equation of motion in its full form reads the following, 0 ∂σij ∂P Dvi − + ρgi = ρ , ∂xj ∂xi Dt where σij is the strain-rate and ~g = (gx , gy , gz ) is the gravity vector. 2 (1.4) 1 Physics Dvi , is much smaller Dt compared to the gravitational force and therefore, be neglected. This leads to the Stokes In highly viscous ows the right-hand side of (1.4), the inertial forces ρ equation for creeping ow, 0 ∂σij ∂P − + ρgi = 0. ∂xj ∂xi (1.5) Under Boussinesq approximation the density is assumed to be constant, except in the buoyancy force term, where temperature and volatile content play an important role (?). Taking into account the Boussinesq approximation, density ρ(T, P, c) in the buoyancy term ρgi may vary locally as a function of temperature T , pressure P and composition c, 0 ∂σij ∂P − = −ρ(T, P, c)gi . ∂xj ∂xi (1.6) 1.1.3 Heat conservation equation The heat conservation equation, also called temperature equation, describes the heat balance in a convective medium, taking into account changes due to internal heat generation, advection and conduction. The Lagrangian heat conservation equation reads as follows, ρCp DT Dt = −∇ · ~q + Hr + Ha + Hs + HL , (1.7) with ~ q = −k(T, p, c)∇T , where thermal conductivity k(T, P, c) depends on temperature, pressure and rock composition c. Hr , Ha , Hs , HL denote radioactive, adiabatic, shear and latent heating. Adiabatic and shear heating have shown to be important in many tectonic situations, which is why they are not taken as constant. Hr = const. (1.8a) Ha = T α~v ∇P (1.8b) 0 Hs = σij ˙0ij − ˙ij(elastic) HL = const. (1.8c) (1.8d) The resulting set of the above equations, together with equations (1.6) and (1.8), is called the extended Boussinesq approximations. 3 1 Physics 1.1.4 Rheology Equation of State ρ = ρr [1 + β (P − Pr )] × [1 − α (T − Tr )] (1.9) where ρr is the reference density given separately for each rock type, Pr = 1.0 bar is the reference pressure, Tr = 298.15 K is the reference temperature, α is the thermal expansion and β is the compressibility. Viscosity Plastic yield strength σyield = C + sin(φdry )(1 − λ)P (1.10) where σyield denotes the shear stress limit after which plastic yielding occurs, C is the cohesion, Pf luid φdry is the eective internal friction angle in dry rock, λ = 1 − is the pore uid pressure Psolid factor and P = Psolid is the mean stress of the solid. Peirl’s creep (Katayamo & Karato, 2008) " k #q ) E + P V σ a a II 2 = AP eirl σII exp − 1− RT σP eirl ( ˙II (TODO: No! Visco-plastic!) deviatoric strain-rate ˙0ij (1.11) A visco-elasto-plastic rheology is employed, with the being composed of the following components, ˙0ij = ˙0ij(viscous) + ˙0ij(elastic) + ˙0ij(plastic , (1.12) where 1 0 σ , 2η ij (1.13a) 0 1 Dσij , 2µ Dt (1.13b) ˙0ij(viscous) = ˙0ij(elastic) = ˙0ij(plastic) = χ 4 0 σij ∂G = χ 0 ∂σij 2σII for G = σII = σyield . (1.13c) 1 Physics 0 denotes the deviatoric stress tensor, µ denotes the shear moduwhere η denotes viscosity, σij q 0 lus, G is the plastic potential, σyield is yield strength, σII = 12 σij2 is second deviatoric stress invariant and χ is plastic potential. Generally the strain tensor ij can be dened as a function of displacement ~u = (ux , uy , uz ), ∂uj ∂ui + . ∂xj xi q 0 and the second strain rate invariant is given by ˙II = 12 ˙ij2 ij = 1 2 (1.14) The viscosity η is dened as follows, η= 2 σII (n−1) Fn E + PV exp , AD RT (1.15) where AD , E, V and n are experimentally dened ow parameters, R is the gas constant and F is a dimensionless factor depending on the type of experiment (triaxial compression, simple shear). The viscous constitutive relationship relates stress σij with strain ij , 0 σij = 2η ˙0ij + δij ηbulk ˙kk , (1.16) 0 is the deviatoric stress, ˙0 is the deviatoric strain-rate, ˙ where σij kk is the bulk strain-rate, ij and η and ηbulk are shear and bulk viscosity. 1.1.5 Impact treatment The actual impact is not part of the model. The model only starts after the intrusion of the impactor into the parent body. Processes like crater excavation, redistribution of impactor and parent body material around the planet or decompression melting are not considered. A simplied model takes into account the thermal anomaly created by the impactor. A region called the isobaric core, of uniform temperature increase and shock pressure around the impactor can be found (Senshu et al., 2002). 1 Ric = 3 3 rimp (1.17) where Ric is the radius of the isobaric core and rimp is the radius of the impactor. 5 1 Physics Thermal anomaly in the isobaric core has been approximated by ∆T = ? in the following way, 4π ψ ρP GRP2 9 F cP (1.18) where ψ is the eciency of conversion of kinetic energy to thermal energy and in this thesis assumed to be 0.3. Outside the isobaric core, for r > Ric , the thermal anomaly ∆T is decaying exponentially, according to the following rule (Senshu et al., 2002; ?), T (r) = ∆T Ric r 4.4 (1.19) 1.1.6 Computation of crust This algorithm is only implemented in the 3D code. Silicate melt within a certain depth is positively buoyant (ddepthmelt = 2e5) and rises up to the surface (Golabek et al., 2011). Only markers with a melt fraction between 1% and 20% are considered, as this corresponds roughly to the pyroxene fraction in a fertile mantle (Golabek et al., 2011). Silicate melt on markers fullling these criteria now percolates upwards through the mantle and at the surface crust is formed by freezing of the silicate melt. 1.1.7 Phase transitions, melting and hydration reactions Melting +20 Melting occurs a soon as the melt fraction is larger than 0. +20 is added to the type rock type (not for 11/13/31/33 and 19/20/21). A rock type >20 signies that the material is partially molten. Freezing -20 If the melt fraction becomes 0, -20 is subtracted from the type (not for 11/13/31/33 and 19/20/21). A rock type <20 signies that the material is fully solid. Hydrated Peridotite 11 -> 34 (-> 14) (and 31 -> 14) Hydrated wet mantle peridotite (type 11) can be molten (type 34) and resolidied again to quenched dry mantle peridotite (type 14). 6 1 Physics Hydrated, wet mantle peridotite (11) -> Molten Peridotite (34) -> Resolidied dry quenched mantle peridotite (14) (31 -> 14) Mantle hydration [9,10,12,14] -> 11 If water is present, lithospheric (type 9) and asthenospheric (type 10) peridotite as well as dry peridotite from the shear zone (type 12) and the resolidied quenched (type 14) peridotite are hydrated (type 11). Crust hydration 5/6 -> 17/18 If water is present, continental upper (type 5) and lower (type 6) crust are hydrated (type 17+18). Layered Sedimentation Sequence of 3,4,3,4,3,4,.... Formation of new crust -> 16 Antigorite weakening 13 -> 11 (11 -> 13) Serpentinization of hydrated peridotite depending on Antigorite pressure and temperature eld following (??) Eclogitization No type change. Happens for type 7/8 (upper/lower oc. crust) and 27/28 (molten upper/lower oc. crust). 1.2 I2ELVIS To model two-dimensional creeping ow under extended Boussinesq approximation, with both thermal and chemical buoyancy, the conservative nite-dierence code I2ELVIS (?Gerya and Yuen, 2007) is used, which operates on a staggered grid and uses the moving marker technique. See also part ??, chapter ?? for a more detailed discussion. Silicate material is assumed to have temperature-, pressure-, strain-rate and melt fraction-dependant visco-elasto-plastic rheology. Furthermore, impact heat, batch melting of silicates and phase changes have all been taken into account. 7 1 Physics 1.3 I3ELVIS The 3D models have been carried out by the 3D numerical I3ELVIS (Gerya and Yuen, 2007) code which is also based on a conservative nite dierence method with a marker-in-cell technique and multigrid solver (?Gerya and Yuen, 2007). See also part ??, chapter ?? for a more detailed discussion. Additionally, the 3D code also features impact heat, batch melting of silicates and phase changes as discussed in Golabek et al. (2011) for the 2D case. The initial thermal-chemical model setup (including initial conditions, boundary condition and uid/melt transport mechanism) and numerical approach are kept as similar as possible to the 2D models. Furthermore, the 3D code also features computation of the primordial crust from silicate melt. Parameter Radius of planetary body Radius of impactor core Radius of nal core rel. to Rplanet Temperature of impactor core Temperature of protocore Temperature of diapirs Mean temperature of nal core Mean temperature of silicate mantle Mean temperature of planetary body Mean density of nal core Mean density of silicate mantle Mean density of planetary body Volume fraction of iron (3D) Mass fraction of iron (3D) Gravitational acceleration Table 1: 8 Symbol Value Unit RM ars ric rcore Tic Tp Td T̄c T̄m T̄tot ρ̄c ρ̄m ρ̄tot fF e,vol fF e,mass g 3389 232 − 500 0.5 1300 − 2300 1300 − 2500 1300 − 2300 − − − − − − 0.1 0.2 3.73 km km % K K K K K K kg m−3 kg m−3 kg m−3 % % m s−2 TODO: complete table List of parameters 2 t3c les 2 t3c files 2.1 file.t3c The le 'le.t3c' contains only one number, which gives the number of the NEXT le to write. The number given here is the actual number of the le, if all les would be numbered from the beginning (including the initial le), starting with 0. The le name though can be dierent (and is given in the 'mode.t3c'-le) and can contain any dierent number. 2.2 init.t3c Null-point is in the frontal upper left corner of the grid. 2.2.1 Grid parameter description The rst part of 'init.t3c' describes some basic grid parameters: 9 2 t3c les Parameter xnumx Description Number of nodes in x ynumy Number of nodes in y znumz Number of nodes in z mnumx mnumy mnumz xsize ysize zsize pxinit pyinit pzinit pinit GXKOEFF GYKOEFF GZKOEFF timesum nonstab xnonstab Number markers per cell in x Number markers per cell in y Number markers per cell in z Dimension of model in x Dimension of model in y Dimension of model in z x-coordinate of initial pressure cell y-coordinate of initial pressure cell z-coordinate of initial pressure cell Initial pressure in initial pressure cell Gravitational acceleration in x Gravitational acceleration in y Gravitational acceleration in z Starting time number of random number generated maximum random displacement of markers in x direction maximum random displacement of markers in y direction maximum random displacement of markers in z direction Number of initial output le ynonstab znonstab markers types le name Y(Name) N(0) data output le name TYPE Name of initial output le type of data output Initial value 16N + 5 (4 multigrid levels) 16N + 5 (4 multigrid levels) 16N + 5 (4 multigrid levels) (xnumx − 1)/2 (ynumy − 1)/2 - Unit [m] [m] [m] - [P a] [m/s2 ] [m/s2 ] [m/s2 ] [years] - - name_0.prn b (= binary), no other supported - Table 2: Grid parameter description 2.2.2 Rock type description In the next part a table lists all possible types of material compositions together with there rheological properties. (TODO: Add ductile rheology equation. Chp.1) (TODO: Add density equation) 10 But maybe not here but in 2 t3c les Parameter rocknum markn0 markn1 marks0 marks1 Nu or marknu DE or markdh DV or markdv SS or markss MM or markmm LL or markll a0 or marka0 a1 or marka1 b0 or markb0 b1 or markb1 e0 or marke0 e1 or marke1 RO or markro bb or bRo or markbb aa or aRo or markaa CP or markcp Kt or markkt Kf or markkf Kp or markkp Ht Description Rock number Individual lower viscosity limit Individual upper viscosity limit Individual lower stress limit (TODO: ???) Individual upper stress limit Newtonian viscosity Activation energy Ea Activation volume Va dislocation-diusion transition stress σcrit Stress exponent for creep law Pore uid pressure factor 1 − λ (see eq. 1.10) Cohesion (see eq. 1.10) unused Sinus of eective internal friction angle in dry rock (see eq. 1.10) unused Koef in ductile rheology weakening (TODO: ???) Koef in ductile rheology weakening (TODO: ???) Density Thermal expansion α (see eq.1.9) Compressibility β (see eq.1.9) Heat capacity Thermal conductivity Temperature dependency coecient of conductivity Pressure dependency coecient of conductivity heat generation Unit - [P aM M ∗ s] [J] [J/bar] [P a] (P ower) (koef ) [P a] [deg°]/[rad] - (TODO: ???) (TODO: ???) [kg/M 3 ] [1/K] [1/kbar] [J/kg] [W t/(m ∗ K)] [W t/m] [1/bar] [W t/kg] Table 3: Rock type parameters 11 2 t3c les Nr. 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 Description Air Water 15 16 17 (TODO: ???) (TODO: Sediments 1) Sediments 2 Sediments 3 Upper Continental Crust Lower Continental Crust Upper Oceanic Crust Lower Oceanic Crust Lithospheric Mantle Asthenospheric Mantle Hydrated Mantle Shear Zone Serpentinized Mantle Resolidied peridotite/ quenched mantle Newly formed crust Hydrated Upper Crust 18 Hydrated Lower Crust 19 20 21 22 23 24 25 26 27 28 29 30 31 - 32 33 Molten Shear Zone 34 35 36 37 38 +50 +100 NAN (TODO: Molten Sediments 1) Molten Sediments 2 Molten Sediments 3 Molten Upper Continental Crust Molten Lower Continental Crust Molten Upper Oceanic Crust Molten Lower Oceanic Crust Molten Lithospheric Mantle Molten Asthenospheric Mantle (TODO: Molten Mantle 1) (TODO: Molten tinized Mantle) Hydrated Serpen- Rheology WET QUARTZITE RANALLI 1995 WET QUARTZITE RANALLI 1995 WET QUARTZITE RANALLI 1995 dry,felsic - WET QUARTZITE RANALLI 1995 dry,felsic - WET QUARTZITE RANALLI 1995 Basalts - WET QUARTZITE RANALLI 1995 Gabbro - An75 Ranalli1995 dry peridotite - DRY OL Ranalli1995 dry peridotite - DRY OL Ranalli1995 wet peridotite - WET OL Ranalli1995 dry mantle peridotite - WET OL Ranalli1995 wet peridotite dry peridotite Basalt felsic - Hydrated WET QUARTZITE RANALLI 1995 felsic - Hydrated WET QUARTZITE RANALLI 1995 felsic molten gabbro molten basalt molten gabbro dry peridotite dry peridotite dry peridotite Molten Peridotite (TODO: dry or wet?) Molten Newly Formed Crust Molten Hydrated Upper Crust Molten Hydrated Lower Crust Water markers External Composition Undened composition black (TODO: ???) light yellow molten basalt molten gabbro molten gabbro Table 4: Rock types 12 2 t3c les Compositions 0-19 are all solids (except air and water). 20-39 are the equivalent melts. 50-89 are uid markers. 100-139 are external compositions of the equivalent type, waiting outside the boundary to come into the model. They have the same properties as their internal equivalents. 2.2.3 Boundary conditions Boundary conditions are prescribed separately for each of the six faces of the cube. Boundary conditions on each face don't have to be homogeneous. Special 'open boundary conditions' can be prescribed, where e.g. the last marker gets 99% of the velocity of the second to last and so on. Parameter Val m10 m11 m20 m21 m30 m31 Const Koef nshiftx nshifty nshiftz Koef1 nshiftx1 nshifty1 nshiftz1 Koef2 nshiftx2 nshifty2 nshiftz2 Description BC type starting node position in x ending node position in x starting node position in y ending node position in y starting node position in z. ending node position in z Range of values P, Vx, Vy, Vz, T, X, Y, Z, M Ignored if Koef1 is 0 Ignored if Koef1 is 0 Ignored if Koef1 is 0 Ignored if Koef2 is 0 Ignored if Koef2 is 0 Ignored if Koef2 is 0 Table 5: Boundary condition parameters P, Vx, Vy, Vz, T boundary conditions For all nodes in the given range [m10, m11] × [m20, m21] × [m30, m31] the following boundary condition is applied: A(x, y, z) = Const + Koef · A(x + nshif tx, y + nshif ty, z + nshif tz) (2.1) E.g. the following part in the init.t3c le: / Left_Bondary 13 2 t3c les /Val___m10_m11___m20_m21___m30_m31___Const___Koef_dm1_dm2_dm3 Vx____0___0_____0___y−1___0___z−1___3e−10___0____0___0___0 translates into the following boundary condition: Vx (x, y, z) = 3 × 10−10 X, Y, Z coordinates definition | x = 0, y ∈ [0, y − 1], z ∈ [0, z − 1] (2.2) For all nodes in the given range [m10, m11] × [m20, m21] × [m30, m31] the following equation is applied, shown at the example of the x-grid: X(x, y, z) = X(x − 1, y, z) + Const + (Koef − Const) · (x − m10) (m11 − m10) | Koef 1 = 0 (2.3a) Koef 1 (x − m10) X(x, y, z) = X(x − 1, y, z) + exp log(Const) + log · Const (m11 − m10) M marker grid set to cell (2.3b) For all nodes in the given range [m10, m11] × [m20, m21] × [m30, m31] additional markers are added. All parameters (Koef , Koef 1, Koef 2, nshif tx, nshif tx1,..,nshif tz1,nshif tz2) need to be set. nshif tx gives the shift in x, nshif ty1 gives the shift in y , nshif tz2 gives the shift in z and all other shift parameters are ignored. If Koef is set, random nonstability is set on the new marker eld in X in the following way: markx = x+ rand()% (bConstc ∗ 2 + 1) − bConstc X(x + 1, y, z) − X(x, y, z) · ·Koef (2.4) Const nshif tx Random nonstability is set in Y for Koef 1 > 0 and in Z for Koef 2 > 0 in the same way. 2.2.4 Box description Arbitrary shapes of cubes are prescribed by setting the (x,y,z) coordinate of each of the 8 corners. 14 2 t3c les Parameter Description Range of value Type [x0 , y0 , z0 ] [x1 , y1 , z1 ] [x2 , y2 , z2 ] [x3 , y3 , z3 ] [x4 , y4 , z4 ] [x5 , y5 , z5 ] [x6 , y6 , z6 ] [x7 , y7 , z7 ] Rock type front upper left front lower left front upper right front lower right back upper left back lower left back upper right back lower right 0 − 140 Table 6: Box parameters Coordinates can be given either relative [0,1], or absolute [m0, mMAXSIZE], where MAXSIZE cannot be larger than the maximum domain size in this direction. With the leading 'm', the value is interpreted as an absolute value in meters. e.g. /Type=RockType /Type__x0__y0__z0___x1__y1__z1_____x2__y2__z2_____x3__y3__z3 /_____x4__y4__z4___x5__y5__z5_____x6__y6__z6______x7__y7__z7 / Asthenosphere 10____0_m15000_0___0__1. 1__0_____1. 1_m15000_0_____1. 1 _1 . 1__0 ______0_m15000_1___0__1. 1__1_____1. 1_m15000_1_____1. 1 _1 . 1__1 2.2.5 Temperature box description Arbitrary shapes of cubes are prescribed by setting the (x,y,z) coordinate of each of the 8 corners. 15 2 t3c les Parameter Description Type [x0 , y0 , z0 ] [x1 , y1 , z1 ] [x2 , y2 , z2 ] [x3 , y3 , z3 ] [x4 , y4 , z4 ] [x5 , y5 , z5 ] [x6 , y6 , z6 ] [x7 , y7 , z7 ] t0 t1 t2 t3 t4 t5 t6 t7 Box type: 0 - simple box; 1&4 - age box; 5&6 - transitional front upper left front lower left with x1 = x0 , z1 = z0 front upper right with z2 = z0 front lower right with x3 = x2 , z3 = z0 back upper left with x4 = x5 , z4 = z7 back lower left with z4 = z7 back upper right with x6 = x7 , z6 = z7 back lower right simple box: temperature P0 ; age box: surface temperature simple box: temperature P1 ; age box: initial temperature simple box: temperature P2 ; age box: thermal diusivity κ in P0 simple box: temperature P3 ; age box: thermal diusivity κ in P2 simple box: temperature P4 ; age box: thermal diusivity κ in P4 simple box: temperature P5 ; age box: thermal diusivity κ in P6 simple box: temperature P6 ; age box: characteristic diusion time simple box: temperature P7 ; age box: overprinted linear geotherm [/m] Table 7: Temperature box parameters Coordinates can be given either relative [0,1], or absolute [m0, mMAXSIZE], where MAXSIZE cannot be larger than the maximum domain size in this direction. With the leading 'm', the value is interpreted as an absolute value in meters. Box type 0: simple box The given temperatures are set to the given coordinates and tem- perature is interpolated linearly within the box. Box type 1&4: age box Within the given coordinates the temperature is given by conductive cooling in the following way: y T (y, t) = T1 − (1 − erf ( √ ))(T1 − T0 ), 2 κτ (2.5) k l2 is the thermal diusivity interpolated over the corner of the box and τ = ρcp κ is the characteristic diusion time. where κ = Box type 5&6: transitional box No new temperatures are set but existing temperatures at the coordinates of the box corners are read. Those are then interpolated linearly through out the box. 16 2 t3c les E.g. the continental crust and lithosphere is modelled in a simple box by a geothermal gradient of ∼ 17 K/km spanning the whole width of the model and starting at 12 km depth with a surface temperature of 273 K , going down to a depth of 90 km: /T_BOXES_DESCRIPTION /Typ__x0________x2_______y0________y1_______y2_______y3_______z0_______ _x5_______x7_______y4_______y5_______y6_______y7_______z7_______ t0___t1___t2___t3___t4___t5___t6___t7 / Oceanic_and_continental_geotherms 0 − 0.000001 m350001 m12000 m90000 m12000 m90000 − 0.000001 − 0.000001 m350001 m12000 m90000 m12000 m90000 1.000001 273 1595 273 1595 273 1595 273 1595 2.3 mode.t3c 2.3.1 Timestepping description The rst/second line gives the lename and type of the initial le. In the next very large block one timestep corresponds with one line and the data is only valid for one timestep. Seperate timestep parameters are given in table 8. Parameter SAVEFILE TYPE cyc0max maxxystep maxtkstep maxtmstep nubeg nuend p0koef p1koef p2koef unused multinum stp1 multinum2 Description name of the le (if this name is non-unique, the le will be overwritten without warning) le type: b = binary (no other supported) number of iterations maximum step size in dimension (TODO: ???) maximum step size in temperature (TODO: ???) maximum step size in time (TODO: ???) global lower viscosity cut-o global upper viscosity cut-o Pressure penalty factor 1, Relaxation parameter in Continuity equation Pressure update interpolation from coarser multigrid levels Pressure penalty factor 2 (TODO: ???) number of multigrid levels number of iterations/ repeats for whole timestep number of multigrid levels 2 (TODO: ???) Table 8: Timestep parameters 17 2 t3c les 2.3.2 General parameters The following parameters are mainly used to control the general behaviour of the program. Parameter loadmod printmod crustmod dynamod 0num movemod tempmod markmod gridmod outgrid densimod stp100 CTreset smeltextract sthdatabase p2vmod lestop Description load from data le (1) or set initial conditions (0) print information on the monitor, Yes (1)/ No (2) print information on crustthickness in les for each nth timestep; 0 = disable do dynamo calculations for each nth timestep; 0 = disabled number of otput le Names do velocity-pressure iterations, solve continuity and Stokes equation do temperature iterations, solve heat transfer equation move markers Y(1-simple,2-Runge-Kutta4)/N(0) recalculate density and viscosity marker move out of grid Y(0)/N(1) Orthogonal Only (2) mode of density calculation: 0-constant, 1-PT-dependent, 2-TDbase 3PT-dependent+WaterTDbase (TODO: ???) composition/temperature reset for water/air at 100 km above surface Y(1)/N(0) extract melt when moving markers Y(1)/N(0) Use of Mars thermodynamic database Y(1) or standard database N(0) convert each nth prn to vtr /N(0) number of timesteps to execute before exiting Default 1 1 1 1 2 1 2 3 9000 1 1 1 10 50 Table 9: General parameters 2.3.3 Erosion and Sedimentation parameters Parameter eroslev sedilev waterlev Description Erosion level: markers above this depth which are neither sticky air nor water get converted to sticky air Sedimentation level: sticky air or water below this depth gets converted to sediments Water level: sticky air markers below water level are converted to water and water markers above water level are converted to sticky air Table 10: Erosion and Sedimentation parameters 18 Initial value 8000 20000 12000 2 t3c les 2.3.4 Velocity- and Pressure-iterations parameters The following parameters are mainly needed to solve the Continuity and Stokes equation with multigrid. Some these parameters already appeared in table 8 and their global value given here will be overwritten with the new value for each timestep. Parameter cyc1max DIVVMIN STOKSMIN DIVVMAX STOKSMAX multinum multicyc multinnn p0koef p1koef p2koef v0koef v1koef nubeg nuend nukoef viscmod viscoutermod spheryn Description unused Continuity equation lower error bound Stokes equation lower error bound Continuity equation upper error bound Stokes equation upper error bound number of multigrid levels; overwritten by separate timestep value Number of whole multigrid V-cycle iterations V-cycle structure: number of GS-iterations for each multigrid level in upcycle and downcycle. Global pressure penalty factor 1, Relaxation parameter in Continuity equation; overwritten by separate timestep value Global pressure update interpolation from coarser multigrid level; overwritten by separate timestep value Global pressure penalty factor 2 (TODO: ???); overwritten by separate timestep value Velocity penalty facto. Relaxation parameter in vx-,vy-,vzStokes equation (TODO: ???) global lower viscosity cut-o; overwritten by separate timestep value global upper viscosity cut-o; overwritten by separate timestep value Average ν for pressure optimisation Eective viscosity mode. 0 = lin. interp; 1 = exp. interp; 2 = inverse interp; viscosity in space/air/water; 1-gradual increase in space, 2-gradual increase in water/air Spherical gravity. 0 = o; 1 = on; Initial value 3000 3e−03 5e+01 0e−03 3e−03 4 1 4 16 16 32 0; 4 16 16 32 64 3.0e−01 1.0e−00 0.0e−00 1.0e−00 1.0e−00 1e+18 1e+25 0.0 0 2 0 Table 11: V and P iterations parameters viscmod: Effective viscosity interpolation Type of interpolation done to obtain eective vis- cosity. viscmod = 0 uses linear interpolation (eq. 2.6a), viscmod = 1 uses exponential interpolation (eq. 2.6b) and viscmod = 2 uses inverse interpolation (eq. 2.6c). ηef f = 1X ηi 8 (2.6a) i 19 2 t3c les ηef f ! 1X = exp (log (ηi )) 8 (2.6b) i ηef f = 1 8 1 P i (2.6c) 1 ηi 2.3.5 Temperature-iterations parameters The following parameters are mainly needed to solve the temperature equation with multigrid. Parameter cyc2max HEATMIN multinumt multicyct multittt t0koef t1koef heatdif frictyn adiabyn Description unused Temperature equation lower error bound Number of multigrid levels Number of whole multigrid V-cycle iterations V-cycle structure: number of GS-iterations for each multigrid level in upcycle and downcycle (TODO: (TODO: (TODO: (TODO: (TODO: ???) ???) ???) ???) ???) Table 12: T iterations parameters 20 Initial value 2500 1e−4 0 1 1; 0 1.0e−00 1.0e−00 1.0 1 1 2 t3c les 2.3.6 Hydration and melting parameters Parameter tkpor zmpor vyuid vymelt dmwamin tdeep dtdeep drdeep zdeep vdeep nudeep dxwater dywater dzwater maxwater minmelt maxmelt Description Initial value (TODO: ???) (TODO: ???) 97300000.0 75000 −3e−09 −3e−09 1e−1 1880.0 100.0 000.0 660000.0 670000.0 1e+21 2e+3 2e+3 2e+3 5e−1 1e−2 1e−2 Initial uid velocity Initial melt velocity Minimum water release dierence (TODO: (TODO: (TODO: (TODO: (TODO: (TODO: ???) ???) ???) ???) ???) ???) Fluid extension in x Fluid extension in y Fluid extension in z (TODO: ???) (TODO: ???) (TODO: ???) Table 13: Hydration and melting parameters 2.3.7 Collision velocity parameters Linearly change collision velocity. Use initial constant velocity set from boundary conditions. Between timebeg and timeend linearly change the collision velocity to the nal velocity velocitykf. Parameter timebeg timeend velocitykf Description Begin velocity change End velocity change Final collision velocity Initial value 20e+6 25e+6 0 Table 14: Collision velocity parameters 21 3 Raw output les: .prn 3 Raw output files: .prn Valid for subduction/collision setup 3.1 Part I: General Information Parameter xnumx Description Number of nodes in x ynumy Number of nodes in y znumz Number of nodes in z mnumx mnumy mnumz xsize ysize zsize pxinit pyinit pzinit pinit GXKOEFF GYKOEFF GZKOEFF rocknum bondnum marknum n1 timesum ival1 gridcur gridtot Number markers per cell in x Number markers per cell in y Number markers per cell in z Dimension of model in x Dimension of model in y Dimension of model in z x-coordinate of initial pressure cell y-coordinate of initial pressure cell z-coordinate of initial pressure cell Initial pressure in initial pressure cell Gravitational acceleration in x Gravitational acceleration in y Gravitational acceleration in z Starting time Initial value 16N + 5 (4 multigrid levels) 16N + 5 (4 multigrid levels) 16N + 5 (4 multigrid levels) (xnumx − 1)/2 (ynumy − 1)/2 [m] [m] [m] - - [P a] [m/s2 ] [m/s2 ] [m/s2 ] - [years] Table 15: prn-le general information block 22 Unit - 3 Raw output les: .prn 3.2 Part II: Rock type information Parameter markn0 markn1 marks0 marks1 marknu markdh markdv markss markmm markll marka0 marka1 markb0 markb1 marke0 marke1 markro markbb markaa markcp markkt markkf markkp markht Description Individual viscosity limit (TODO: ???) Individual viscosity limit (TODO: ???) Individual stress limit (TODO: ???) Individual stress limit (TODO: ???) Coecients in ductile rheology (TODO: ???) Powerlaw stress Koef in ductile rheology (TODO: ???) Activation energy Koef in ductile rheology (TODO: ???) Activation volume Koef in ductile rheology (TODO: ???) Max. Stess up to dislocation creep/diusion creep Koef in ductile rheology (TODO: ???) Koef in ductile rheology (TODO: ???) Koef in ductile rheology Coh (TODO: ???) Koef in ductile rheology Coh (TODO: ???) Koef in ductile rheology sinus/ friction angle Unit - Koef in ductile rheology sinus/ friction angle [deg°]/[rad] (TODO: ???) Koef in ductile rheology weakening (TODO: ???) Koef in ductile rheology weakening (TODO: ???) Density Density koef b Density koef a Heat capacity Thermal conductivity Temperature dependeny koef in conductivity (TODO: ???) (TODO: ???) [kg/M 3 ] [1/K] [1/kbar] [J/kg] [W t/(m ∗ K)] (TODO: ???) Pressure dependeny koef in conductivity (TODO: (TODO: ???) heat generation (W t/kg) (TODO: ???) (TODO: ???) (TODO: ???) ???) [P aM M ∗ s] [J] [J/bar] [P a] (P ower) (koef ) [P a] (TODO: ???) [P a] (TODO: ???) [deg°]/[rad] (TODO: ???) Table 16: prn-le Rock type information block, see also tbl 3. 3.3 Part III: Nodes information For each node the following parameters are given. The order is the following, where n is the number of nodes nodenum: pr0 , vx0 , ...ht0 , pr1 , .., ht1 , .., prn , .., htn 23 3 Raw output les: .prn Parameter pr vx vy vz ro nu tk cp et kt ht Description Pressure Velocity in x Velocity in y Velocity in z Density Viscosity Temperature Heat capacity Thermal expansivity Thermal conductivity Heat sources Unit [P a] [m/s] [m/s] [m/s] [kg/m3 ] [P a ∗ s] [K] [J/kg] [1/K] [W t/m/K] [W t/kg] Table 17: prn-le Marker information block 3.4 Part IV: Gridline positions Position of gridlines in x direction xnumx numbers are given Position of gridlines in y direction ynumy numbers are given Position of gridlines in z direction znumz numbers are given 3.5 Part V: Boundary Condition Equations For each boundary condition there 5 values neede. The total number of boundary conditions is bondnum. The boundary conditions are all of the following general form: CU RP AR = CON ST + KOEF 1 ∗ P AR1 Parameter m2 m3 bondv1[m3][0] bondv1[m3][1] bondn1[m3] Description Index in Indexmatrix bondm Index in BC-matrices, saved in bondm CON ST value in BC equ. KOEF 1 value in BC equ. P AR1+1 value in BC equ., P AR1 = 0 means no boundary Table 18: prn-le Marker information block 24 3 Raw output les: .prn 3.6 Part VI: Markers The total number of markers is marknum. For each marker the following parameters is given: Parameter markx marky markz markk markw markd markex marktm markc1 markc2 markt Description Momentary marker position in x Momentary marker position in y Momentary marker position in z Temperature in K Water percentage Density Meltfraction? creation time Melt composition Granite part ?? Melt composition Dacite part ?? Rock type of marker Table 19: prn-le Marker information block 25 4 Numerical problems and solutions 4 Numerical problems and solutions - Program stops because pressure gets too high. Solution: This might indicate an awkward or inappropriate model setup. Try to lower the two pressure penalty factors from table 8 to [0.5, 0.3, 0.1, 0.001]. If that doesn't help, try another model setup. - Timestep doesn't converge within the time-limit of the Brutus queue. Solution: Use a longer queue, e.g. 24h-queue instead of the 8h-queue. If the problem still persists try one of the following: a) Increase continuity equation error limit DIVMIN in tbl. 11 to 3e−3 b) Decrease multinum1 and multinum2 in tbl. 8 to 3. c) Increase both pressure penalty factors in tbl. 8. Choose something along [0.05, 0.11, 0.31, 0.41]. d) Decrease continuity equation error limit DIVMIN in tbl. 11 to 1e−3. e) Try the following congurations for the pressure penalty [p0koef,p1koef,p2koef,p3koef] = [0.31, 1.00, 0, 0] , [0.41, 1.00, 0, 0], [0.11, 0.50, 0, 0] f) Make 4 v-cycles series. In tbl. 11 set multicyc = 4. - Unstable model, model goes into very fast convection Solution: Try one of the following: a) Decrease maximum timestep maxtkstep from 500 to 100. b) Decrease maximum timestep maxtmstep from 5e3 to 1e3. c) Increase lower viscosity limit from 1018 to 1019 . 26 factors 5 Usage of paraview 5 Usage of paraview 5.1 Conversion from raw output to Paraview files prn2vtr 5.2 Visualisation with Paraview 5.2.1 Visualize composition Use the following pipeline: - Threshold lter: set upper and lower threshold to the same composition number. Don't set the 'All Scalars' option. - Contour lter: Contour by composition. Choose x.001 as value for the isosurface. - GenerateSurfaceNormals lter: This generates a polygonal mesh, which has a smoothing eect. 27 References References Gerya, T. V. and Yuen, D. A. (2007). Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Physics of the Earth and Planetary Interiors, 163(1-4):83105. Golabek, G. J., Keller, T., Gerya, T. V., Zhu, G., Tackley, P. J., and Connolly, J. A. D. (2011). Origin of the martian dichotomy and tharsis from a giant impact causing massive magmatism. Icarus, 215(1):346357. Senshu, H., Kuramoto, K., and Matsui, T. (2002). Thermal evolution of a growing mars. J. Geophys. Res., 107(E12):5118. 28
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 29 Producer : MiKTeX pdfTeX-1.40.12 Creator : TeX Create Date : 2014:06:05 09:27:41+02:00 Modify Date : 2014:06:05 09:27:41+02:00 Trapped : False PTEX Fullbanner : This is MiKTeX-pdfTeX 2.9.4487 (1.40.12)EXIF Metadata provided by EXIF.tools