Lycoming General Operations Article

User Manual: Lycoming-General-Operations-Article

Open the PDF directly: View PDF PDF.
Page Count: 28

Lycoming Flyer
Lycoming has been pleased and impressed by the number of requests for copies of the “Key Reprints”
pleased by your many favorable comments concerning it, and impressed by the thirst for knowledge
by operators of General Aviation aircraft engines.
In the event a reader perceives a conflict between the content of these articles and the content of the
current manuals, service bulletins or service instructions, the latter items govern, but the reader should
contact Lycoming Service and bring such a conflict to our attention. The service bulletins and parts of the
manuals are FAA approved; these articles are not.
Some of the articles published are based on information contained in Service Bulletins, Service
Instruction, and Service Letters. In addition, other articles are taken from actual field test data car-
ried on by Lycoming personnel. Furthermore, the Lycoming factory is a central collecting agency
on its aircraft engines in the field. Experiences and information from all over the world provide
feedback that is recorded and analyzed. We share this information with our readers in the Flyer
and Key Reprints.
During the preparation process of each article and as each subsequent re-issue updating of information
is part of the procedure. After articles are written, each one is carefully screened and checked by man-
agement, engineering and service personnel to ensure accuracy before being released for publication.
The Flyer does not have an established publishing date for each issue. The latest issue is Number .
The original concept of the Flyer has not changed since the first issue was published in 9. Approximately
8% of the prepared text deals with technical information related to Lycoming engines, and the remaining
% covers general newsworthy items. Distribution of the Flyer is made to owners and operators of
Lycoming powered aircraft, authorized distributors and others who write us and request that we place
them on our mailing list, with all costs of printing and mailing absorbed by Lycoming. It is the intention
of Lycoming to continue to make available service, maintenance and operational data in the Flyer and
Key Reprints to assist the owner and operator in improving their engine’s performance and reliability.
G E N E R A L
Lycoming Flyer
8 L y c o m i n g F l y e r
If you are not sure of the meaning of such termsas normally
aspirated, turbocharged, supercharged or direct-drive
engines, then perhaps youll want to read our simplified defini-
tion of them.
The Normally Aspirated Engine is one that is not turbocharged 
or supercharged. If the airplane has a manifold pressure gauge, 
at full takeoff power at sea level on a standard day, it would indi-
cate an MP reading of approximately 29" of Hg. Takeoff power 
at 5,000 ft. density altitude airport would read about 24" MP. 
The normally aspirated engine uses atmospheric pressure and is 
thereby altitude limited.
Direct-Drive Engines are those piston-powered engines where 
the propeller is bolted on the end of the crankshaft, and the prop 
turns at the same speed as the crankshaft.
Geared Engines are usually the higher powered, morecom-
plex engines using a reduction gear on the nose of the aircraft, 
and with the prop attached to it. As a result, the prop will turn 
somewhat slower than the crankshaft, resulting in a lower prop 
noise level. When the engine is geared, we precedethe engine 
designation with a “G.” Thus a geared, opposed (O) normally 
aspirated Lycoming engine with a 480-cubic inch displacement 
of the cylinders would be designated a GO-480 model.
Turbocharged Engines as manufactured by Lycoming simply 
consist of a turbocharger unit with a small turbine wheel attached 
bya common shaft to a compressor wheel,and utilizes the engine 
exhaust gas by directing it over the turbine wheel to drive the 
compressor. The horsepower loss in operating the turbocharger is 
negligible. Turbocharging can provide greater utility to the piston 
engine by providing sea-level horsepower, in somemodels, as high 
as 20,000 feet; or it can be used to add horsepower to the engine 
particularly for takeoffs. The faster the engine runs, the more air 
the turbocharger can pack into the cylinder to compensate for the 
thin air of altitude, or to increase the horsepower. Although this 
definition is somewhat oversimplified, it is a basic definition of 
turbocharging of General Aviation power plants.
Where turbocharging is used with a fuel-injected, opposed 
Lycoming  engine  with  a  540  cubic  inch  displacement,
we  designate  it  as  a  TIO-540  model.  “T”  represents  the
turbocharging.
Supercharged Engines as manufactured by Lycoming uses a 
compressor wheel to pack air into the cylinders; but the com-
pressor is driven by the crankshaft through an intricate gearing 
system, which takes considerable horsepower from the engine to 
operate. In comparisonwith a turbocharged engine, itis a medium 
altitude power plant.
Althoughsuperchargedenginescould be builtbyLycoming, 
new aircraft designs during the past 20 or more years have used 
turbocharging instead of supercharging because of the advantages 
that turbocharging offers.
A supercharged, geared, opposed, fuel-injected Lycoming 
engine with cylinders of 540-cubic inch displacement is desig-
nated an IGSO-540 model. “S” represents supercharging.
All publications may be ordered through authorized Lycoming 
distributors, or direct from Lycoming. If ordered by mail direct 
from Lycoming, payment in the form of check or money order 
must be submitted with the request as outlined in the latest revi-
sion of Lycoming Service Letter No. 114. Fax or telephone orders 
will be accepted if payment is made with a credit card: American 
Express, Visa and MasterCard are accepted.
The available maintenance publications for Lycoming engines 
and accessories consist of the following:
OPERATOR’S MANUAL
The Operator’s Manual contains information of use to pilots and 
maintenance personnel. It contains engine specifications, inspec-
tion procedures, operational information, and is used in conjunc-
tion with the Pilots Operating Handbook for the aircraft.
OVERHAUL MANUALS
The Overhaul Manual is a guide for major repair of the engine. It 
contains complete disassembly, inspection, repair, reassembly and 
test procedures for the various Lycoming reciprocating engines. 
When used in conjunction with the applicable parts catalog and 
service bulletins, service instructionsand service letters, this 
manual provides an authoritative text for complete overhaul of 
the engine. Overhaul Manuals for current Lycoming engines are 
published inloose-leafformat sothat revisions may be easily 
inserted.
PARTS CATALOGS
LycomingPartsCatalogs areillustratedto permitiden-
tificationofparts. Areferenced numericalindexis also 
included. 
SERVICE BULLETINS, INSTRUCTIONS, LETTERS
These publications are issued as required. Service Bulletins are 
mandatory, and require some modification or inspection to be 
accomplished on  theengine within a specified time.Service 
Instructions cover a variety of subjects; such as repair processes, 
modification procedures, inspection procedures and overhaul 
methods. Service Letters are of an informative nature, usually 
pertaining to service policy or vendor products.
SPECIAL SERVICE PUBLICATIONS
These  publications  are  concerned  with  topics  of  general 
interest or subjectsthat are toolengthy for inclusion in maintenance 
manuals.
ENGINE SPECIFICATIONS AND INSTALLATION
DRAWINGS
These materials are needed by those who are planning to install 
a particular engine model in their aircraft.
Lycoming Flyer 9
OWNER ADVISORY
This notification may be sent  without  charge toapplicable 
aircraft owners listed in the FAA database when a mandatory 
Service Bulletin is issued and it appears that it may affect the 
engine in your aircraft.
NOTE — In this publication, all references to maintenance
publications are to the most recent revision.
Asan enginebuildsoperatinghours andapproaches  TBO, 
which maybe  eitherthemanufacturer’s recommendedoper-
ating hours, or a calendar year limit before overhaul, the ques-
tion  arisesconcerning thedecision  to eithercontinue flying, 
or top overhaul, major overhaul or exchange engines. Here is a 
quick-reference checklist to help make such a decision, followed 
by a brief explanation of the nine points.
I. Oil consumption — any unusual increase?
II. Engine history and calendar age.
III. How has the engine been operated?
IV. Pilot’s opinion of the engine.
V. Maintenance — what kind has the engine received?
VI. What does the oil filter tell?
VII. What has been the trend in compression checks?
VIII. What do the spark plugs show?
IX. Refer to the engine manufacturer’s service letter for engine 
life and recommended overhaul periods.
Along with theabovequick-reference checklist, as an engine 
manufacturer we would like to share our experience with inter-
ested operators by discussing the nine points:
I. OIL CONSUMPTION
The operatorandmaintenancepeopleshould know what has been the 
general history of oil consumption during the life of an engine.
A possible danger signal concerning engine health is a definite 
increase in oil consumption during the recent 25 to 50 hours of 
flight time. The oil screens and filter should be carefullyobserved 
for signs of metal. Maintenance should also take a good differ-
ential compression check at this time. They should also look in 
the cylinders with a gooseneck light or a borescope to detect any 
unusual conditions in the combustion chamber.
If you havent looked at your air filter lately, it would be a good 
idea to carefully inspect it for wear and proper fit. This is all the 
moreimportant when operating industy areas, and definitely 
could be a cause of increased oil consumption.
II. ENGINE HISTORY AND CALENDAR AGE
If a power plant has been basically healthy throughout its life, this 
would be a favorable factor incontinuing tooperate it as the engine 
approached high time. Alternately, if it has required frequent 
repairs, the engine may not achieve its expected normal life. The 
engine logbook should contain this accumulative record.
Another important aspect ofan engine’shistorywouldbeits 
calendar age. Engine flight time and calendarage are equally 
important to the operator. We have observed that engines infre-
quently flown dotend to age or deteriorate more quickly than 
those flown ona regular basis. Therefore, Lycoming recommends 
both an operating-hour limit and a calendar-year limit between 
overhauls. Service Instruction 1009 gives these recommenda-
tions, but other items in this checklist will help to determine if an 
overhaul or engine exchange is needed before the engine reaches 
these recommended limits.
III. OPERATION
The basic question here would be how the engine has been oper-
ated the majority of its life. Some engines operating continuously 
at high power, or in dusty conditions, could have a reduced life. 
Likewise, if the pilot hasn’t followed the manufacturer’s recom-
mendations on operation,it may cause engine problems and 
reduce the expected life. This becomes a more critical influence 
on a decision in single engine aircraft, and also for single or twin 
engine planes flown frequently at night or in IFR conditions.
IV. PILOT’S OPINION OF THE ENGINE
The  pilotsopinion  ofthepower  plant,  basedon  experience 
operating  it,  is  another  important  point  in  our  checklist. 
Thepilot’sopinion andconfidencein the engine is basedon 
whether it has been a dependable power plant. If the pilot lacks 
confidencein anengineasitapproaches  the  manufacturer’s 
recommended limits, this could be a weighty factor in the deci-
sion to continue flying or to overhaul it. The pilot should consult 
with his maintenance personnel concerning their evaluation of 
the condition of the power plant.
V. MAINTENANCE
Good maintenanceshould aid in achieving maximum engine life; 
alternately, poor maintenance tends to reduce the expected life. 
We notice among those power plants coming back to the factory 
to be rebuilt or for an overhaul, that the smaller enginesin general 
have had less care and attention, and ina number of instances have 
been run until somethinggoeswrong. The higher powered engines 
have generally had better maintenance and show evidence that 
the operators do not wait until something goes wrong, but tend 
to observe the manufacturer’s recommended operatinghour or 
calendar limits to overhaul. The engine logbook should properly 
reflect the kind of maintenance provided the engine or engines. 
The technician who regularly caresfor an engine willusually have 
an opinion about its health.
 0 L y c o m i n g F l y e r
VI. WHAT DOES THE OIL FILTER TELL?
Clean oil has consistently been animportantfactorin aiding 
and extending engine life. A good full-flow oil filter has been 
a most desirable application here. When the filter is exchanged, 
ask the mechanic to open it and carefully examine for any for-
eign elements, just as is accomplished at oilchange when the 
engine oil screen is also examined for thesame purpose. Just 
as the spark plugs tellastoryaboutwhatisgoing  on in  the 
engine, so the engine oil screen and the external oilfilter tell 
a storyabout the health of an engine. Whether the engineis 
equipped with an oil filter or just a screen, oil changes should 
have been accomplished in accordance with the manufacturer’s 
recommendations. These oil changes should have been recorded 
in the engine logbook.
If oil is analyzed, it should be done at each oil change in order 
to establish a baseline. Analysis is a tool which only gives useful 
information when a dramatic departurefrom the established norm 
occurs. (See “Spectrometric Oil Analysis” later in this section.)
VII. COMPRESSION CHECKS
What has been the trend in compression in at least the last two 
differential compression checks? The differential compression 
check is the more reliable type and should be taken on a warm 
engine. If the differential check reveals 25% loss or more, then 
trouble may be developing.
Someoperators areconfusedbythecompressioncheckand 
its  application.  A  compression  test  should  be  made  any-
time  faulty  compression  is  suspected,  anytime  the  pilot 
observes a loss of power in flight, when high oil consumption is 
experienced, or when soft spots are noticed while hand pulling 
the prop.
Many maintenance technicians do a compression check at each 
oil change, and it is also considered part of the 100-hour engine 
inspection andthe annual inspection. Most experienced mechanics 
feel that the differential compression check is bestused to chart 
a trend over a periodof flight hours. A gradual deterioration of 
charted compression taken during maintenance checks would be 
a sound basis for further investigation.
VIII. SPARK PLUGS
The spark plugs when removed and carefully observed, tell the 
skilled mechanic whathas been happening in the cylinders during 
flight, and can be a helpful factorin deciding what to do with a 
high-time engine:
1. Copper run out and/or lead fouling means excessive heat.
2. Black carbon and lead bromide may indicate low temperatures, 
the type of fuel being used, and possibly excessive richness of 
fuel metering at idle.
3. Oil fouled plugs may indicate that piston rings are failing to 
seat, or excessive wear is taking place.
4. The normal color of a spark plug deposit is generally    
brownish gray.
5.  I n  h ig h  compre ssion  a nd   supe rcha rged  engi ne s, 
acrackedspark plug porcelain willcause or has been caused 
by preignition.
IX. ENGINE MANUFACTURER’S RECOMMENDED
OVERHAUL LIFE
Service  Instruction 1009  istheLycoming publishedrecom-
mendation  for operatinghourandcalendar  yearlimitsuntil 
engine overhaul asthey apply toeach specificengine model. 
The amount of total operating time on an engine will be a basic 
factor in any decision to either continue flying,change, top or 
major overhaul the power plant. Operators should be reminded, 
however,thatthe hoursofservicelifeshowninthe  service 
instruction are recommendationsfor engines as manufactured 
and delivered from thefactory. These hours can normally be 
expected, provided recommended operation, periodic inspections, 
frequent flights and engine maintenance have been exercised in 
accordance with respective engine operator’s manuals.
If an operator chooses to operate an engine beyond the recom-
mended limits, there are factors to consider. The cost of overhaul 
is likely to be greater as engine parts continue to wear, and the 
potential for failure may also increase.
Operators who have top overhauled their engine at some point in 
the engine life invariably want to know if this extends the life of 
the engine. This is an important question. The chances are that 
if the operator applies the checklist we have been discussing and 
comesup with favorable answers to these questions about his 
engine, he can probably get the hours desired — with only a few 
exceptions. But a top overhaul does not increase the official life 
or TBO of the engine.
We are surprised from time to time to have owners tell us they top 
overhauled their engine at some point lessthan the major overhaul 
life for no reason other than somebody said it was a good idea. 
Unless the manufacturer recommends it, or there is a problem 
requiring a top overhaul, this is a needless cost. If the engine is 
healthy and running satisfactorily, then leave it alone!
Oneother point deserves attention here;there is no substitute 
or cheaproute tosafetyin the proper maintenanceor correct 
overhaul of an engine.
CONCLUSION:
Apply  allofthesebasic  nine  pointsconcerningyourengine 
or  engines  and  then  make  a  decision  whether  to  top  over-
haul,  major overhaul,exchange engines  or continue  flying. 
QUESTION: I  hear  the  term  “Shower  of  Sparks  relative 
to  ignition  systems.  What  does  this  term  mean  to  pilots? 
ANSWER: It means that while the engineiscrankingduring 
a start, a prolonged series of sparks is jumping the spark plug 
gapas comparedtoone single spark. This resultsin improved 
cold-weather starting.
Lycoming Flyer  
QUESTION: During starts with theshower ofsparks ignition 
system, Igetsome prettysevere kickbacks. Why?
ANSWER: The common cause here is that the retard breaker 
doesn’t close, resulting in a start attempt on the advance points. 
A simplecheck is to run the engine at about 700 RPM and for a 
fraction of a second, hold the starter switch to the start position. 
The tachometer will indicate an immediate drop in RPM if the 
retard points are operating. There will be no drop in RPM with a 
malfunctioning retard breaker.
CAUTIONThis check noT recommended on our
direcT-drive engines using auTomoTive-Type sTarTers.
QUESTION: Atwhat RPM should Icheckmy mags?
ANSWER: Where  the  airplane  manual  says.  For  example, 
checking at a lowerthan indicated RPM may give a higher than 
normal mag drop.
QUESTION: Is the actualmagdropin RPM very important?
ANSWER: No.We are more concernedthat the magdrop is 
lessthan50RPMbetweenthetwo magsand smooth,rather 
than whether its 50-75 or 150. Again, it should be within the 
limitsasindicatedinthe manual.
QUESTION: I noticed someofyourenginesshow practically 
nomag drop. Isthisnormal?
ANSWER: Yes,  but  give  it  a  little  more  time,  and  I  think 
you’ll note some mag drop. However, if in doubt about any 
mag drop, be suspicious of a hot mag. Reduce engine RPM 
to idle, and turn switch to off and see if engine dies out. If it
keeps running, beware of hot mag. It’s sad but true that we 
will still have people getting hurt due to hot mags.
QUESTION: Can  I  save  the  engine  any  by  using  less  than 
takeoffpower?
ANSWER: Indeed not. In fact,harmto theengine can be 
causedby usingless thantakeoffpower.
A condensed version of several articles.
TIME BETWEEN OVERHAUL (TBO)
Lycoming publishes, and updates from time to time as needed, 
ServiceInstruction 1009. This document sets forth factory recom-
mendations for time between overhaul (TBO). Aircraft owners 
often have questions concerning TBO, and the need for engine 
overhaul or replacement. This condensed article will answer many 
of those questions.
Published in Service Instruction 1009 is a table listing recom-
mended operating-hour limits for all Lycoming engine models. 
Some owners are  inclinedto  thinkthatthe number ofhours 
listed is some magic number that an engine is certain to obtain, 
butafter whichit willimmediatelyfailtooperate.  Actually, 
the recommended number is not magic at all. It is the average 
numberofoperating hoursa particularmodel is expectedto 
achieve, but there are many qualifying factors.
The  recommended  operating  hours  (TBO)  for  Lycoming 
aircraft engines only applies to those engines thatincorporate 
genuine Lycoming parts. Reliability and average service life also 
cannot be predicted when an engine has undergone any modi-
fication not approved by Lycoming. Other factors affecting the 
operating life of an engine are operating conditions, frequency 
of operation and the mannerin which the engineis operated 
and maintained.
OPERATING CONDITIONS
Engines installed in aircraft thatare used to apply chemicals (crop 
dusting) may be affected by those chemicals and therefore are 
subject to shorter than normal recommended TBOs. Operation 
in dusty conditions, or in an atmosphere of salt air near the ocean 
are examples of conditions that may have a detrimental affect on 
engine condition, and on the capability of reaching the recom-
mended TBO.
OPERATING TECHNIQUE
Pilot technique is another factor affecting engine life. Following 
manufacturerrecommendations could be categorized as good 
operation. On the other hand, complete disregard for these rec-
ommendations could conceivably cause engine destruction in as 
little as 100 hours. Although this would be extreme and unusual, 
pilots who regularly climb at steep angles, make abrupt throttle 
changes, improperly lean the engine in climb, exceed maximum 
specified manifold pressure and/or RPM, chop throttles abruptly 
and let down rapidly causing rapid contraction of metals that have 
been up to operating temperatures are using techniques that may 
shorten TBO.
THEFOUR-STROKECYCLE
  L y c o m i n g F l y e r
GOOD VS. IRREGULAR MAINTENANCE
Regular maintenance, performed by qualified personnel using 
factory-recommended inspection procedures and intervals, will 
contribute toengine performance andthe capability of reaching the 
manufacturerrecommended TBO hours. Stretching inspection or 
oil change intervals may create the illusion of saving money, but is 
really false economy. Regularoil changes andscheduled mainte-
nance play an important role in achieving recommended TBO.
FREQUENCY OF FLIGHT
Frequency of flight also plays an important part in the operating 
history of an engine. Engines flown only occasionally and with 
extended periods between oil changes are subject to corrosion 
becauseofacidsthat  buildup  inthe oiland  attackinternal 
metallic parts of the engine. Only regular oil changes can elimi-
nate these acids.
Moisture that enters through the breather or exhaust system can 
cause rusting of cylinders and other steel parts. Rings may take 
a set and stick in the groove. Condensation in the magnetos may 
cause shorting of the breaker points. Flying as often as possible to 
bring the engine temperatures up to their normal operating levels 
will help to eliminate moisture. A ground run of the engine only 
is not considered satisfactory. Frequent flights are needed.
Thenumber of hoursthat needtobe flown eachmonth,and 
the length of time between flights cannot be specified for every 
aircraft and engine. Variables such as geographic location and 
local temperature and humidity must be considered. Inactivity 
and time will cause hardening of gaskets, seals and hoses. Long 
periods between flights can be expected to cause excessive wear 
during engine start due to lossof the protective oil film on bearing 
surfaces during the long periods of inactivity. Regardless of the 
operating hours, those engines that have not reached the recom-
mended number of operating hours for TBO in a 12-year period 
must be overhauled or replaced during that twelfth year.
DECISION TIME
The timing of engine overhaul or replacement is sometimes the 
result of governmentregulations. Anytime regulationsare not 
a factor, the engine owner must make the decision to overhaul 
or replace the engine based on knowledge of the engine and the 
conditions under which it has been operated. This decision may 
come before the engine has reached the recommended number of 
operating hours, or in some cases, after that number of operating 
hours has been achieved.
TBO recommendations apply to the engine, and in some cases, 
engine accessories and propellers. There is the possibility that 
certain components such as magnetos, ignition harness, gover-
nors and other engine-driven accessories may require overhaul 
or replacement prior to engine overhaul. This decision, too, is to 
be made by the party responsible for maintaining the engine, or 
by the accessory manufacturer.
NEW ENGINE
A  new  engine  is  a  product  manufactured  by  Lycoming 
containing  all  new  parts  and  accessories,  and  meeting  all 
productiontestspecifications, quality control testsandregu-
lations  necessaryto hold and maintain a “production certifi-
cate” issuedbythe FAA.Whenthisenginehas met each of 
these criteriaand  is shipped  to anairframe manufacturer, it 
will be subject to further testing during flight test of the aircraft 
for itscertificationacceptance.When theultimate  purchaser 
receives theaircraft, it may have also been subjectedto ferry 
time. However, all flight testing and ferry time will be logged. 
The user then receives the engine with the full Lycoming new 
engine warranty, accompanied by an Engine Logbook.
REBUILT ENGINE
To the aircraft engine purchaser, the “rebuilt” engine, as provided 
by Lycoming, offers the opportunity to obtain many of the ben-
efits of a new engine, but at a price savings.
A Lycomingfactory-rebuilt engine is defined as an aircraft engine 
originally designed and manufactured byLycoming that has been 
disassembled, cleaned,inspected, repaired as necessary, reas-
sembled, and tested to the same tolerances and limits as a new 
item, using either new parts or used parts that either conform to 
new part tolerances and limits or to approved oversized or under-
sized dimensions. Tolerances andlimits established andpublished 
by Lycoming, and approved rework procedures, are used during 
the rebuilding of the engine so that the engine is brought back to 
zero time. It is important to note that the Lycoming factory is the 
only agency authorized by the FAA to return a Lycoming engine 
to ZERO time. Such engines retain their original serial number, 
but the letter “R” is added preceding the letter L” on the data 
plate which designates rebuilt by Lycoming.
Thus, a factory-rebuiltengine that has been returned to zero time, 
by Lycomings definition, has all the foregoing, plus the fact that 
it is done by Lycoming at its factory, by factory personnel with 
manufacturing and engineering expertise. This factory-rebuilt 
engine must also meetthe same production test specifications 
used foranew  engine.WitheachLycoming  factory-rebuilt 
engine, an Engine Logbook is furnished with Lycoming Form 
No. 489 included on the inside of the first page. Additionally, each 
engine released through the rebuilding system is accompanied by 
a maintenance release that refers to the factory order to which all 
work was performed.
OVERHAULED ENGINE
Overhaul  is  a  term  which  certainly  means  different  things 
to  different  people.  When  the  aircraft  owner  has  run  a 
factory-new engine  to TBO,and  then paidfor an overhaul, 
that  owner  usually  has  expectations  of  running  the  engine 
untilthemanufacturer’s  recommendedTBOhas  againbeen 
achieved.  These  expectations  may  or  may  not  be  realistic 
depending on what the overhauler puts into the overhaul. There 
isnospecific definitionof  the term  overhaul  in  the Codeof 
FederalRegulations forAeronautics  and  Space(FAR).FAR 
Part43 statesthe following  about  Maintenance,Rebuilding 
and Alteration.
a.  Each  person  maintaining  or  altering,  or  performing 
preventive  maintenance,  shall  use  methods,  techniques 
andpracticesacceptableto theAdministrator. Thetools, 
equipment  and  test  apparatus  necessary  to  assure  com-
Lycoming Flyer  
pletion of  the work  shall  be in accordance withaccepted 
industry  practices.Ifspecialequipment ortest  apparatus 
is recommended by the manufacturerinvolved,equipment 
acceptable to the Administrator must be used.
b. Each person maintaining or altering, or performing preven-
tive maintenance, shall do that work in such a manner and use 
materials of such quality, that the condition of the aircraft, 
airframe, aircraft engine, propeller or applianceworked on 
will be at least equal to its original or properly altered condi-
tions (with regardto aerodynamicfunction, structural strength, 
resistance to vibration and deterioration,and other qualities 
affecting airworthiness).
TheLycomingoverhaul manuals, assupplemented by appro-
priateservicebulletins, serviceinstructions,  and servicelet-
ters,clearly  stipulatetheworkto  bedonetoaccomplish  an 
overhaul.Weat Lycomingdonot distinguish  between  major 
overhaul  and  overhaul.  We  prefer  to  use  the  one  word, 
overhaul,  because  we  want  it  to  be  as  broad  as  possible. 
Overhaul means the entire engine must be considered part by part 
as per the applicable overhaul manuals. To accomplish this, there 
must be complete teardown so that all parts can be examined. In 
overhaul, there are certain parts that must be replaced, regardless 
of condition as per the overhaul manuals, and Lycoming Service 
Bulletin No. 240. The remaining parts must then be examined as 
required by one or more of the following: (1) visual examination 
for discrepancy, (2) non-destructive testing or other mechanical 
examination, and (3) dimensional checking. At this point, parts 
must conform to the fits and limits specifications listed as part of 
the Lycoming Overhaul Manual, and the Table of Limits.
By means of overhaul manuals for the various engine models, 
Lycoming makes availableall maintenance data and informa-
tion necessary tomaintain,repairor  overhaulenginesthat 
arein service. Inaddition, Service Bulletin240lists the parts 
that  arerecommendedforreplacementatoverhaul. Service 
Instruction No. 1009 lists therecommended overhaul periods 
for the variousenginemodels. However, theFAAhasnospe-
cific requirements that the repair agency must comply with the 
Lycoming manual, or with the applicable service bulletins and 
instructions.The final decision on the typeof maintenance or 
repairaccomplishedisleft  to  the  mechanicdoing the work. 
Whenthe mechanic signsfor the overhaulof an aircraft engine, 
the signature certifies that the work performed using methods, 
techniques and practices acceptable to the FAA Administrator. 
Whilethefactory-remanufacturedenginegoesbacktozero 
time, previous time on an overhauled engine is carried forward 
in the engine logbook.
In  addition  to  manufacturing  and  rebuilding  aircraft 
engines, Lycoming also overhauls engines at the Lycoming fac-
tory. These overhauled engines exceedindustrystandardsfor 
quality through the use of genuine Lycoming parts and full fac-
tory support. Although these engines do not become zero-time 
as when rebuilt, a policy of extensive parts replacement ensures 
a quality product which has a parts and labor warranty against 
defects in material and workmanship.
Customers  may  choose  either  a  “custom  overhaul  or  an 
“exchange overhaul.” Bothofthese overhauls provide expert 
workmanship and replacementof all the parts recommended 
for replacement in Service Bulletin 240.
The exchange overhaul has the advantage of very short aircraft 
down time. A freshly overhauled exchange engine can be shipped 
to the aircraft owner’s airport for installation, and the old engine 
core can be returned to Lycoming after it has been removed and 
replaced.
The owner who orders acustom overhaul getshis or her own 
engine back after overhaul. The disadvantage is the time required 
toremove the engine, ship it for overhaul,have theoverhaul 
completed and then have the freshly overhauled engine returned 
and reinstalled in the aircraft. To some owners, getting their own 
engine back is worth the wait.
TOP OVERHAUL VS. MAJOR OVERHAUL
The industry originated the terms top overhaul and major over-
haul years ago to identify and make a distinction between the 
degrees of work done on an engine. Lycoming defines a top over-
haul as the repair or overhaul of those parts on the outside of the 
crankcase without completely disassembling the entire engine. It 
includes the removal of the cylinders and deglazing the cylinder 
walls, inspectionof the pistons, valveoperating mechanism, valve 
guides and replacing piston rings. A major overhaul consists of 
the complete disassembly ofan engine, its repair, reassembly 
and testing to assure proper operation. Nevertheless, whether the 
work accomplished is a top or major overhaul, Federal Aviation 
Regulations require that it meet regulations, which were quoted 
at the very beginning of this discussion of overhaul.
OVERHAUL — A SUMMARY
To  summarize,  all  engine  overhauls  are  not  the  same.
The Lycoming  factory-overhauled engine is a  QUALITY 
product which  assures  long-term  reliability  to  meet  your
expectations. An overhauled engine carries forward all pre-
vious timein the engine logbook; a factory-rebuilt engine
goes back to zero time. The cheapest overhaul may not be the 
best. There should be no compromise with safety. Lycoming 
provides overhaul manuals and related service publications 
to aid operators in the field to accomplish a top overhaul,
or the more complete major overhaul; but the overhauling
agency must comply with the performance rules set forth in 
Section 43 of the Federal Aviation Regulations. Lycoming
can supply either a custom or an exchange engine overhaul. 
Much is heard these days about the use of oil analysis as a tool 
for helping todetermineenginecondition. However, the vast 
majority of the general aviation public do not understand how 
this tool is to be used. We will attempt here to set forth a brief 
summary of the subject.
Oil analysis is not new, but it came late to general aviation as a 
maintenance tool. The object is to examine oil samples from an 
  L y c o m i n g F l y e r
engine, and break down the sample in parts per million in order 
to determine the internal health of the engine. This is based on 
the fact that all lubricated engine parts wear and deposit a certain 
amount of metallic particles in the oil. The number of particles 
permillion of each metal determines the wear pattern for the 
particular engine being analyzed. It is of the utmost importance 
to understand that the result of the analysis is only pertinent to 
the engine being analyzed, although accumulation of data on 
any specific engine series is a basis for establishing standards for 
that series of engine.
The factthat is important is asharp rise above normal of the 
amount of a particular metal in the oil. It is imperative then to 
build a case history of each engine, wherein a sharp rise in any 
one metal will indicate abnormal engine wear. The analysis can 
also tell you whether the oil contains other liquid contaminants 
such as gasoline or water. Gasoline contamination of the oil can 
result fromblow-by from the combustion chamber caused by poor 
combustion, bad timing, improper fuel mixture, worn rings and 
the like. Water contamination is usually restricted to condensed 
vapor, but this vapor combines with the fuel combustion products 
to form harmful metal-attackingacids. Based on this contami-
nation in the oil, the analysis will be able to pinpoint improper 
mixture, poor maintenance, etc.
LycomingService Letter No. L171, entitled “General Aspectsof 
Spectrometric OilAnalysis,providesa guideforthe useofoilanalysis 
inmeasuringenginehealth. Theinformation isin generalterms since the 
healthofeachenginemustbedeterminedon its own merits.
Differencesin manufacturing processes may cause a variation
in analysis results for different engine models. The amount of 
tin plating,copper plating, nitriding, etc., performed during 
manufacture has  a  definite relationship  to  the  oil  analysis 
reports. It is not uncommon, for example, to see what seems 
to behigh copper content early in the life of an engine, only 
to have this content continually decrease as the engine accu-
mulates time, and then disappear altogether. Poor air filter
maintenance, running the aircraft on the ground with carbu-
retor/ alternate air on, and holes in the air intake system are all 
factors which will allow an engine to ingest dirt and foreign 
matter. The result of this will show up as high iron (cylinder bar-
rels) and chrome (piston rings) content at the next oil analysis. 
Neither time nor space permits us here to list all of the variables 
involved (indeed we do not profess to know them all) but it should 
be obvious to everyone that a continuing history of each engine is 
the only criteria by which its health can be determined.
Remember that several samples taken at the regular oil change 
intervalsmust be analyzed to determine the normal characteristics 
of an engine, and also remember that the first few samples on 
factory fresh engines will read high as new parts are wearing in 
and conforming to each other.
Excessively heavy wear of internal engine parts will show up as 
traces in parts per million during analysis long before detrimental 
flaking or scoring takes place, and almost always beforeany 
outward indication of trouble. This initial departure from normal 
is not usually any reason to tear the engine down. An investiga-
tion and timely and appropriate corrective action (replacing the 
air filter, perhaps) by the operator will usually result in trace 
elements returning to normal at the next oil change. If long 
TBOs are to be achieved, it is most important that clean air be 
provided to the engines.
Basically and briefly, that is the oil analysis story. It is a good 
tool if properly used. Like any other tool, it is only one of many 
things that must be used to determine engine health. 
A Flyer reader wrote to express interest in a Lycoming IO-360 
engine. He went on to say that the engine would be used in an 
aircraft capable or unlimitedaerobatics. Astatement like this 
indicates a need for explanation of the differences between the 
standard Lycoming engine and the aerobatic Lycoming engine. 
Aerobaticflightwithanon-aerobaticenginecould  resultin 
engine stoppage from either fuel or oil starvation.
It  should  first  be  explained  that  unlimited  aerobatic  flight 
implies that the aircraft may beflown inany altitude with no 
limitations. Although an aircraft may have excellent aerobatic 
capability, every aircraft and engine does have limitations which 
must not be exceeded.
Any engine which employs a float-type carburetor  for  fuel 
metering isimmediately eliminated from use in afully aero-
batic aircraft. Inverted flight for more than a few seconds would 
cause the carburetor to stop metering fuel and the engine to stop 
running. While carbureted engines are used in someaircraft with 
limited aerobatic capability, only positive G maneuvers and very 
brief periods of inverted flight are possible.
To operate correctly, an engine must have fuel which is properly 
metered in proportion to the air entering the engine induction 
system. The fuel injector measures air flow and meters fuel to 
the inlet ports ofeachcylinder. Unlike the carburetor, afuel 
injector is not affected by unusual aircraft attitudes. Therefore, 
all Lycoming engines that are designed for aerobatic flight are 
equipped with a fuel injector.
Delivery of metered fuel to the combustion chamber is not the 
onlychallengeaddressedin designinganaerobatic  aircraft 
engine. It is also necessaryto provide lubricating oil to many 
points in an operating engine regardless of the aircraft attitude. 
Two different methods have been used to provideoil for aerobatic 
engines manufactured by Lycoming.
Theflat,  opposedcylinderaerobaticenginesfirstoffered by 
Lycomingwere designated AIO-320 or AIO-360. These engines 
were the dry sump type with appropriate oilinlet and outlet con-
nections as well as two crankcase breather connections. Necessary 
lines and an external oil tank with a revolving pickup capable of 
reaching oil in almost any aircraft attitude werethen supplied bythe 
aircraft manufacturer. This type of installation provided aerobatic 
capability, but it was complicated enough to be very expensive. A 
simpler, more universally usable system was needed.
Most Lycoming engines are termed “wet sump” engines because 
oil is stored internally in a sump at the bottom of the crankcase. 
When the engine is inverted, the oil will be in the top of the crank-
Lycoming Flyer  
case rather than in the oil sump. To maintain a continuous flow 
of oil during inverted flight, an oil pickup line must be provided 
near the top of the engine as well as in the oil sump. Lycoming 
aerobatic engines carrying an AEIO designation use inverted oil 
system hardware to adapt oil pickup lines at the top and bottom 
of the wet sump engine.
This inverted oil system comprises two major components: the 
oil valve and the oil separator. Several other items of hardware 
adapt the system to the Lycoming engine so that oil is available 
to the oil pump in either the upright or inverted position. These 
hardware items include a standpipe in the sump which acts as the 
engine breather during inverted flight, a special adapter or plug at 
the oil sump suction screen, and other hoses and fittings.
In addition tothe inverted oil system, Lycoming makes other 
engine modificationsto adapt standard engine models to aerobatic 
use. Some models of the AEIO-540 engine have a baffle added in 
the oil sump to eliminate oil loss through the oil separator. Also 
the flow of oil to the oil pickup in the accessory case is limited in 
the inverted position. To improvethis oil flow, holes are machined 
in the upper rear wall of the crankcase.
With these changes completed, the engine is capable of inverted 
flight in addition to normal upright  flight.Because theoil 
pickup pointsare atthe topand bottom ofthe engine, knife-
edge flight or flight at very high up or down pitch angles have 
some limitations; these limitations do not prevent engines from 
being used in aircraft which perform all the maneuvers required 
for international aerobatic competition. Engines built with the 
inverted oil systemand incorporatingthe other modifications 
discussed earlier are certified by the FAA as aerobatic engines.
Aerobatic  engines  subjected  to  the  exceedingly  stressful 
maneuvers developedinrecentyears are alsolimited by pos-
sible  damage  to  the  crankshaft  flange.  Lycoming  Service 
Bulletin No. 465 requires periodic inspections of all crankshafts 
installed in aircraft that are used for aerobatics.
The  me a n i ng s   o f   t he  le t t e r s  a nd   nu m b er s   i n  t h e 
Lycoming engine designation are fully explained elsewhere in 
this publication, but the AEpart of theAEIO indicates “aer-
obaticengine.” LycomingiscurrentlyproducingAEIO-320, 
AEIO-360, AEIO-540 and AEIO-580 aerobatic engines which 
range from 150 to 320 horsepower. One of these models should 
be installed in a general aviation aircraft which is designed for 
aerobatic flight.
Condensed from two articles on this subject
Many  Lycoming  engines  designated  as  low  compression 
engines were originally certified to use Grade 80aviation 
gasoline. Thefuel wasrated at 80octane when theenginewas 
leaned for cruise, and at87 octanewhen it was set at richfor 
takeoffand climb. Thisaviationgasolinecontained one-half 
milliliter of leadper gallon.Owners of aircraftthat use engines 
certified to use Grade 80fuel occasionallyhave questions 
about theuse ofhigherleadedfuels.
During the mid-1970s, announcement of a single-grade aviation 
fuel for all reciprocating aircraft engines created a furor which 
gradually  fadedaway  as  pilots  and mechanicsbecame  more 
knowledgeable of the actual effects of using the new fuel, Grade 
100LL. Grade 100LL has two milliliters of lead per gallon and 
is rated at 100 octane when the engine is leaned for cruise, and at 
130 octane when the mixture is set at rich. The fuel is designated 
as low lead” because the previous fuel with a 100/130 octane 
rating contained twice as much lead, four milliliters per gallon.
For all practicalpurposes, Grade 80 fuel with one-half milliliter 
of leadhas been phased out and is nolongeravailable. Use of 
Grade 100LLfuel in enginescertified for 80 octanefuel can 
result inincreased engine depositsin both thecombustion 
chamber and theengine oil. Itmay requireincreased spark plug 
maintenance andmore frequent oil changes. The frequencyof 
spark plug maintenance and oil drain periods will be governed 
by the typeof operation.Operation atfull-rich mixture requires 
morefrequent maintenance periods; therefore, it is importantto 
use approved mixture-leaning procedures.
Toreduceor keep enginedeposits ata minimum whenusing 
theleaded fuel availabletoday,  it is essential that the fol-
lowing  four  conditions  of  operation  and  maintenance  are 
applied. These procedures are taken directly from Service Letter 
No. L185.
A. GENERAL RULES
1. Never lean the mixture from full rich during take-off, climb or 
high-performance cruise operation unless the Pilot’s Operating 
Handbook advises otherwise. However, during takeoff from 
high-elevation airports  or duringclimb at  higher altitudes,
roughness or reduction of power may occur at full-rich mixture. 
In such a case, the mixture may be adjusted only enough to 
obtain smooth engine operation. Careful observation of tempera-
ture instruments should be practiced.
2.  Operate  the  engine  at  maximum  power  mixture  for 
performance  cruise  powers  and  at  best  economy  mixture 
for  economycruise  power;  unless  otherwisespecified in the 
Pilot’s Operating Handbook.
3. Always return the mixture to full rich before increasing     
power settings.
4. During let-down and reduced-power flight operations, it may 
be necessary to manually lean or leave mixture setting at cruise 
position  priorto  landing. During thelanding  sequence,the 
mixture control should then be placed in the full-rich position, 
unless landing at high-elevation fields where operation at a lean 
setting may be necessary.
5. Methods for manually setting maximum power or best     
economy mixture.
a.  Engine  Tachometer  —  Airspeed  Indicator  Method: 
The  tachometer  and/or  the  airspeed  indicator  may  be 
usedto  locate,  approximately, maximum  powerandbest 
economy-mixture ranges. When afixed-pitchpropelleris 
  L y c o m i n g F l y e r
used, either or both instruments are useful indicators. When 
the airplane uses a constantspeedpropeller, the airspeed 
indicator  isuseful.  Regardlessofthepropellertype,set 
thecontrols for  thedesired cruise power asshown  in the 
Pilot’s Operating Handbook. Gradually lean the mixture from 
full rich until either the tachometer or the airspeed indicator 
are reading peaks. At peak indication the engine is operating 
in the maximum power range.
b. For Cruise Power: Where besteconomy operation isallowed 
by the manufacturer, the mixture is first leaned from full rich 
to maximum power, then leaning is slowly continued until 
engineoperation becomes rough or untilengine power is 
rapidly diminishing as noted by an undesirable decrease in 
airspeed. When either condition occurs, enrich the mixture 
sufficiently to obtain anevenly firing engine ortoregain 
most of the lost airspeed or engine RPM. Some slight engine 
power and airspeed must be sacrificed to gain a best economy 
mixture setting.
c. Exhaust Gas Temperature Method (EGT): Refer to the 
article on this subject in the Operations section of this book.
Recommended fuel management — manual leaning will not only 
result in less engine deposits and reduced maintenance cost, but 
will provide more economical operation and fuel savings.
B. ENGINE GROUND OPERATION
Theengine groundoperationgreatly influencesformationof 
lead salt deposits on spark plugs and exhaust valve stems. Proper 
operation of the engine on the ground (warm-up, landing, taxi 
and engine shut-down) can greatly reduce the deposition rate and 
deposit formation which cause sparkplug fouling and exhaust 
valve sticking.
1. Proper adjustment of the idle speed (600 to 650 RPM) fuel 
mixture, and maintenance of the induction air system will ensure 
smooth engine operation and eliminate excessively rich fuel/air 
mixtures at idle speeds. This will minimize the separation of the 
nonvolatile components of the high-leaded aviation fuels greatly 
retarding the deposition rate.
2.  Theengine  should  beoperated  at enginespeedsbetween 
1000 and 1200 RPM after starting and during the initial warm-
up period. Avoid prolonged closed-throttle idle enginespeed 
operation (when possible). At engine speeds from 1000 to 1200 
RPM, the spark plug core temperatures are hot enough to activate 
the lead scavenging agents contained in the fuel which retards 
the formation of theleadsalt deposits onthe spark plugs and 
exhaust valvestems. Avoid rapid engine speed changes after start-
up, and use only the power settings required to taxi.
3.Rapidengine cooldown from low-power altitude changes, low-
power landing approach and/or engine shut-down too soon after 
landing or ground runs should be avoided.
4. Prior totheengine shut-down, theengine speed shouldbe 
maintained between 1000and1200 RPM until the operating 
temperatures  have stabilized.  Atthistime,the  enginespeed 
should be increased to approximately 1800 RPM for 15 to 20 
seconds,thenreducedto1000  to 1200  RPMand shut  down 
immediately using the mixture control.
C. LUBRICATION RECOMMENDATIONS
Many of the engine deposits formed by combustion, regardlessof 
the lead content of fuel used, are in suspension within the engine 
oiland arenot removed by a full-flow filter. Whensufficient 
amounts of these contaminants in the oil reach high temperature 
areas of the engine, they can be baked out, resulting in possible 
malfunctions such as in exhaust valve guides, causing sticking 
valves. The recommended periods of 50-hour interval oil change 
and filter replacement for all engines using full-flow filtration 
system and 25-hour intervals for oil change and screen cleaning 
for pressure screen systems must be followed. If valve sticking is 
noted, all guides should be reamed using the procedures stated 
in latest editions of Service Instruction No. 1116 and/or Service 
Instruction No. 1425, and the time between oil and filter changes 
should be reduced.
D. SPARK PLUGS
The fuel management techniques outlinedpreviously will aid 
in minimizing spark plug fouling. Engine operation, spark plug 
selection and spark plug maintenance are all factors that help to 
keep engines operating smoothly with leaded fuels. 
Ifthe magneto check before or after flight reveals any rough-
ness caused by a fouled spark plug, open the throttle slowly and 
smoothly to cruise RPM, and lean the mixture as far as possible 
(yet with a smooth engine). After several seconds leaned, return 
to the proper mixture position for takeoff and recheck the mag-
neto. If two such attempts do not clear the fouled plug, then return 
to the line and report the problem to maintenance.
Spark plugs should be rotated from top to bottom on a 50-hour 
basis, and serviced on a 100-hour basis. If excessive spark plug 
leadfoulingoccurs,the  selection of  a hotterplug  from the 
approved list in Service Instruction No. 1042 may be necessary. 
However, depending on the type of lead deposit formed, a colder 
plugfromtheapproved listmaybetterresolve  the  problem. 
Depending on the lead content of the fuel and the type of opera-
tion, more frequent cleaning of the spark plugs may be neces-
sary. Where the majority of operation is at low power, such as 
patrol, a hotter plug would be advantageous. If the majority of 
operation is at high cruise power, a colder plug is recommended.
Spark plug fouling is not limited to engines that were certified 
for 80-octane aviation fuel, but which are using the higher leaded 
100-octane gasoline. Therefore, the techniques recommended 
herein for  operationand maintenance  applyto all Lycoming 
piston engines,  butwithemphasis  on the 80-octane engine 
using 100-octane fuel.
E. SUMMARY
WhenGrade80 aviationgasolinewasfirst phasedout,the 
highly leaded Grade 100 green  fuel wasthe onlyalternative 
for some operators. During that period of time,inthe middle 
1970s, exhaust valve erosion was a concern for the operators of 
low-compression engines. There are two reasons why this should 
not cause concern today. First, Grade 100LL does not cause this 
problem, and second, the materials used in Lycoming exhaust 
valves are highly resistant to erosion.
Lycoming Flyer  
In addition, Grade 100LL has proved to be a satisfactory fuel for 
all Lycoming reciprocating aircraft engines. The higher octane 
level does not change engine operating temperatures, and engine 
deposits on the spark plugs and in the oil can be managed byusing 
the techniques outlined in previous paragraphs.
With the increase inrecent years of the number of fuel injec-
tors on our engines, there havebeen anumber of complaints 
about a mysterious occasional engine “miss” in flight. We have 
beenabletoverifythat the majorityof these  complaintson 
fuel-injected  power  plants  are  from  contamination  in  the 
fuel — principallywater. We have been telling operators for many 
years that fuel injectors and their systems are more vulnerable 
to contaminationthanarecarburetors. Sincewater and other 
contaminants collect on the bottom of the airplane fuel tank, it 
also makes good sense not to make a practice of running a fuel 
tank dry.
Careful draining of fuel sumps for water will help alleviate the 
“miss” problem. Asufficient amount of fuel must bedrained 
to ensure getting the water. Experience indicates that draining 
should be accomplished before refueling, because fuel servicing 
mixes the waterand fuel, and the water may not havesettled 
to the bottom of the tank until the airplane is airborne. Learn 
to identify suspended water dropletsin the fuel which causes 
the fuel to have a cloudy appearance; or the clear separation of 
water from the colored fuel afterthewater has settledtothe 
bottom of the fuel tank.
TheFlyer articles  reprinted  here  provide  product   
information. Informed pilots and mechanics contribute 
to safe flying
Lycoming does not permit the use of any fuel other than those 
specified in our latest edition of Service Instruction No. 1070. 
Although Supplemental Type Certificates (STC) now make the 
use of automotive fuel, which meetsminimum specified stan-
dards, legal for use in some aircraft, reciprocating engine manu-
facturers and most major oil companies do not approve. While 
it is true that octane levels appear adequate, these organizations 
are of theopinion thatthe varyingqualitycontrol  standards 
applicable toautomobile gasolineproduceundue riskwhen it 
is  used inaircraft.Several specific reasonsare given forthe 
non-approval of automobile fuel:
1.Itsuse reduces safety. Although anoperator may find that 
the engine runs well on a specific grade of auto fuel, there is no 
assurance that fuel from the same tank will be of the same quality 
when purchased the next time. Risk is increased.
2.  Itsuse can  voidwarranty,or result  incancellation  ofthe 
owner’s insurance.
3. The storage characteristics of automotive fuel are less desir-
able in comparison with the good storage characteristics of avia-
tion gasoline. After several months, stored automotive fuel may 
suffer loss of octane rating, and tends to deteriorate into hard 
starting, along with forming gum deposits thatcause sticking 
exhaust and intake valves, and fuel metering problems, resulting 
in rough running engines. The turnover of automotive fuel is so 
fast that long-lasting storage characteristics are not required.
4. Theadditives in automotive fuels are chemically different 
from those designedfor aviation, and containauxiliary scav-
engers  which  are  very  corrosive,  and  under  continued  use 
can  lead  to  exhaustvalve failures.  Theyalso causerustand 
corrosion  intheinternalpartsof  theengine.  The allowable 
additives for aviation gasoline are rigidly tested and controlled. 
There is no uniform control of additives in automotive gasoline. 
Many different additives are used, depending on the fuel manu-
facturer. For example, one fuel company adds a detergent to clean 
carburetors. This additive creates a significant increase in the 
affinity of the gasoline for water which can cause fuel filter icing 
problems in flight if outside temperatures are cold enough.
5. Automotivefuels have higher vapor pressures than aviation 
fuel. This can lead to vapor lock during flight because the fuel 
companiesadvisethat automotive fuelscan  have doublethe 
vapor lock pressures of aviation gasoline, depending on the sea-
sons of the year and the location because of climatic conditions. 
In  addition,automotive fuelalso increasesthe  possibilityof 
vapor lock on the ground with a warm engine on a hot day.
6. Although the fuel octane numbers shown on the pump of auto-
motive and aircraft gasolines may be similar, the actual octane 
ratings are not comparable due to the different methods used to 
rate the two types of fuels. Furthermore, aviation gasolines have 
a lean andrich rating, i.e., 100/130, whereas motor gas is not 
tested for a rich rating.
COMBUSTIONDEPOSITFOULINGFUNDAMENTALS
 8 L y c o m i n g F l y e r
7. Automotive fuel used in an aircraft engine may lead to destruc-
tive detonation or preignition and potential engine failure at high 
power conditions.
8. Please review the Mo-Gas fuel requirements in your state or 
destination.
SUMMARY:
Auto fuel is now being used as a substitute for Grade 80 aviation 
gasoline under STCs issued by the FAA. Most major oil com-
panies and engine manufacturers continueto recommend that 
aircraft piston enginesbe operated only on aviationgasoline. 
Deterioration of engine and fuel system parts have been reported 
in aircraft using auto fuel. Operators should consider the addedrisk 
of using auto fuel in aircraft. Remember — a pilot cant pull over 
to the side of the road when fuelcreatesa problem with the engine. 
The advent of the lightweight turbocharger has been called the 
shot of adrenaline which the piston engine needed to remain the 
prime method ofpowering general aviation-type aircraft.Although 
in some respects this may be an overstatement, it does have much 
merit, and it isthe lightweight turbocharger that has enabled 
general aviation aircraft to operate above adverse weather in the 
smooth air of the higher altitudes, and to realize that increased true 
air speed is not possible with normally aspirated engines. So this 
is the “why” of turbocharging, and since it is possible that there 
is a turbocharged Lycoming engine in your present or future, we 
are going to review the very basics of turbocharging and bring the 
reader up to the present “state of the art” of it.
The aircraft engine, as any reciprocating engine, is a heat engine 
which derives its power from the burning of a mixture of air 
and fuel, which has been mixed in the proper proportions by a 
fuel-metering device. The amount of power the engine develops 
will be directly proportional to the total mass of air pumped 
through the engine, providing the fuel/air ratio is kept constant. 
This can be varied in a normally aspirated (unturbocharged)
engine by changing the throttle setting and/or changing the RPM. 
Let us go over that again.Changing the throttle will vary themani-
fold pressure available to the cylinder during the intake stroke. 
As a result, the cylinder will develop a given amount of power 
on each power stroke. So if we increase manifold pressure to the 
cylinder, we will in turn receive more power from the engine. 
Now if we keep the manifold pressure constant, but increase the 
number of power strokes by increasing the RPM, we will also 
receive more power from the engine. We see that changing either 
the throttle setting (manifold pressure) or the number of power 
strokes per minute (RPM), will result in varying the total air mass 
flow through the engine and will determine the horsepower the 
engine will develop. So in essence, a reciprocating engine is also 
an air pump, and if the fuel/air ratio is kept constant, the power 
developed will vary directly with the mass of air consumed.
We are limited in the speed at which we can operate the engine 
because of engine and prop mechanical limitations. So the only 
other way to change the mass flow is to increase the manifold 
pressure. We all know, however, that as we ascend in altitude, the 
air becomes less dense which reduces the mass flow through the 
engine with the result of a power loss that is proportional to the 
reduced-mass air flow through the engine. You have noted that 
in climb with a normally aspirated engine, it is necessary to keep 
opening the throttle if you are to keep the air speed and the rate 
of climb constant. So we see that if there were a way we could 
put theengine into a container so it could be kept at sea level 
conditions, we could maintain the same performance regardless 
of ambient conditions and altitude.
A long time ago, a smart engineer who was thinking along these 
samelinesreasoned that if he built an air pump intothe enginethat 
could pump the less dense air at altitude up to the same pressure 
he had at sea level, he would be able to maintain sea level horse-
power. So he designed a centrifugal air compressor and placed it 
between the fuel-metering system and the intake pipes. The pump 
consisted of an impeller, diffuser and collector. The impeller was 
driven at about 12 times crankshaft speed, and this high rota-
tional speed imparted a large velocity of energy to the air passing 
through. Now as the fuel/air charge leaves the impeller, it goes to 
the diffuser where vanes smooth out the air flow while allowing 
the mixture to slow down so that the velocity pressure acquired 
from therapid rotational speed of the impeller is transformed 
into static pressure. This air mass is then stored momentarily and 
equalized in the collector and is thendrawn into the cylinders. Our 
engineer now has his air pump, but how is he to drive it? Well, 
he could drive it from the accessory gear train or from the rear 
of the crankshaft, but both of these methods robbed the engine 
of horsepower it could deliver to the propeller. Although super-
chargers for many years have been driven mechanically off the 
crankshaft, our engineer realized he had not reached the ultimate 
in the “state of the art” of supercharging, so he began looking for 
another means of driving his air pump.
Ourhypothetical engineer realizedthat the largest percent of 
energy released by burning the fuel/air mixture was going out 
of the exhaust pipe in the form of heat. Realizing if he could in 
some way harness this wasted energy to drive his air pump, the 
horsepowernormally robbed from the engine to drive the impeller 
could be used by the propeller.
We haveall seen a windmill turning in the breeze, so our engineer 
rightfully reasoned if he puta turbine wheel in the exhaust stream, 
he could take the hot exhaust gas under pressure andexpand 
it as it passed through the wheel to extract energy. He took an 
impeller, connected it by a common shaft to the turbine, and he 
had a means of driving his air pump by energy which was for-
merly going to waste. Supercharging by meansof using exhaust 
gases to drivetheairpumpiscalled turbocharging. Now our 
engineerhad progressed to the point where he required ameans 
of controlling histurbocharger.As he climbed in altitudethe 
pump must constantly put outa higherpressure ratio in order to 
maintain sea level conditions. He reasoned that if he can dump 
the exhaustgas at sealevel through a butterfly valve in aleg off 
the exhaustpipe andahead of the turbine wheel,hewillbe able 
to control the amount of energy being used to drive the turbine 
and thus control the speed of the compressor.
Lycoming Flyer  9
The butterfly valve (wastegate) can be positioned by means of 
mechanical linkage, but the disadvantage in this system is that 
the engine can be overboosted, causing detonation and severe 
engine damage if someone forgets” and leaves the wastegate 
in the closed position. So our engineer was looking for an auto-
matic means for control which would eliminate someone putting 
Murphy’s  Law”intopractice. (Murphy’sLaw states thatif 
something can be done incorrectly, someone is bound to do it.) 
So he came up with an automatic system that sensed compressor 
discharge pressure and positioned the wastegate to maintain the 
correct manifold pressure.
The system contains a controller, which senses the compressor 
discharge pressure and regulates engine oil pressure used as the 
muscle for the actuatoron the wastegate. When the controller calls 
for more compressor discharge pressure, it closes the oil bleed line 
from the wastegate so the wastegate actuator sees higher engine 
oil pressure and thus closes the butterfly. When the compressor 
discharge pressure comes up to the desired control pressure, the 
controller will bleed oil from the wastegate to maintain the cor-
rect butterfly position, which in turn will maintain the correct 
compressor discharge pressure. Now the system is complete and 
automatic and except in cases of poor or abrupt throttle manage-
ment, it does not overboost.
The automaticcontrol system justdescribedis basic, but it is 
thebasis for most control systems used on Lycoming engines. 
In another article, we will also talk about the changes required 
in an engine to make it suitable for turbocharging, and the dif-
ference between an engine designed for turbocharging and the 
one that has just had a turbocharger added. We will also discuss 
turbocharging to increase power at sea level instead of only using 
it to maintain sea level pressure at altitude. (See “The Pilot and 
Turbocharging” in the Operation section.)
Although Lycoming publication SSP-885-2 covers the latest 
information concerning full-flow oil filters for our engines, we 
feel it is also important to emphasize and explain key aspects of 
the publication to help people in thefield. SSP-885-2 is concerned 
with full-flow oil filters in our direct-drive engines,but does 
include one exception, the geared TIGO-541 which powers the 
Piper Pressurized Navajo.
Operators  and  mechanics  must  carefully  read  SSP-885-2
before handling the various types of Lycoming-approved filters. 
Special note should be made of the differences of installing the 
canister-type vs. spin-on filters. The canister-type is installed 
with the housing not turned, but with an attaching bolt through 
the center of the housing, torqued to 20-25 foot pounds.
The spin-onfilter callsfor a different installation in that the 
filter housing itself is turned to a torque of 18-20 foot pounds. 
Never exceed the maximum torque limit. Maintenance people in 
the field using both types of filters must be very careful during 
installation of this part.
SSP-885-2 data includes the full-flow spin-on filter which is 
installed as optional equipment on all direct-drive Lycoming 
aircraft engines. Advantages of the spin-on filter include a resin 
impregnated paper that constitutes the filter element, which is 
heat-cured, acid resistant and capable of removing contaminants 
that would be injurious to the engine. The spin-on was designed 
to save weight and also shorten maintenance time, and is avail-
able in long and short sizes. There is no need to replace elements, 
O-rings, and various nuts and bolts and washers, or to clean the 
filtering units.
All models of Lycoming direct-drive engines can be converted 
to use  the  Lycoming-approved full-flow  filter element  or
full-flow spin-on oilfilter; however, beforeinstalling, check 
the distance between the firewall and the mounting pad on the 
accessory housing. Do not over-torque the filter at installation. 
After installation of the full-flow filter, always ground run the 
engine before flight and get oil temperature into the bottom of the 
green arc on the gage. After a good runup, shut engine down, and 
inspect the filter area for oil leaks. Also check engine oil level; 
addition of the filter assembly will require adding approximately 
one quart of oil.
Champion and Airwolf both offer a “canopener” service tool for 
the aviation mechanic. The tool easily cuts open the filter without 
contaminating it, so the element can be examined for any signs 
of metal chips indicating engine deterioration.
Before  discarding,  the  filter  elements  should  be  examined 
byunfolding thepleated element andexaminingthe mate-
rial trapped for evidence of internalengine damage. In new or 
newlyoverhauledengines, somesmall  particlesof  metallic 
shaving might be found; these are generally caused during manu-
facture and should notbe cause for alarm.However, positive 
evidence of internal engine damage found in the filter element 
justifies further examination to determine the cause.
To examine the cartridge-type filter element, remove the outerper-
forated paper cover, and using a sharp knife, cut through the folds 
oftheelement atboth endsclose to themetal caps. For examination 
of the spin-on filter, Champion Tool CT-470 or AirwolfAFC-470 
must be used to cut the top of the can.
Clean engine oil is essential to long engine life. Consequently, 
the quest for betterways to keepthelubricating oil free from 
contaminants is endless.
Although knowledge of detonation and preignition may be “old 
hat” to the old timers in aviation, lots of people in our industry 
are still somewhat confused over the difference between the 
two, and what causes either of them.
DETONATION
There is a limit to the amount of compression and the degree of 
temperaturerise that can be tolerated within an engine cylinder
and still permit normal combustion. When this limit is exceeded, 
detonation can take place. Piston engines are vulnerable to 
 0 L y c o m i n g F l y e r
D e t o n a t i o n a n d P r e i g n i -
t i o n
detonation at high power output because combustion temperature 
and pressure are, of course, higher than they are at low or medium 
powers. Leaning the mixture at high power can cause it.
Unless detonation isheavy, there is no cockpit evidence of its 
presence. Light to medium detonation may not cause noticeable 
roughness, observable cylinder head or oil temperature increase, 
orloss ofpower. However, when anenginehasexperienced 
detonation, we see evidence of it at teardown as indicated by 
dishedpistonheads, collapsedvalve heads, broken ring lands 
or eroded portions of valves, pistons and cylinder heads. Severe 
detonation can cause a rough-running engine and high cylinder 
head temperature.
PREIGNITION
Preignition, as thename implies, means that combustion takes 
place within the cylinder before the timed spark jumps across 
the spark plug terminals. This condition can often be traced to 
excessive combustion deposits or other deposits (such as lead) 
which cause local hot spots. Detonation often leads to preigni-
tion. However, preignition may also be caused by high power 
operation at excessively leaned mixtures. Preignition is usually 
indicated in the cockpit by engine roughness, backfiring, and 
by a sudden increase in cylinder head temperature. It may also 
be caused by a cracked valve or piston, or a broken spark plug 
insulator which creates a hot point and serves as a glow spot. 
Specifically, preignition is a condition similar to early timing of 
the spark.Preignition is a serious condition in the combustion 
chamber and will cause burnt pistons and tuliped intake valves.
The best temporary in-flight methods for correcting preignition 
and detonation are to reduce the cylinder temperature by retarding 
the throttle, enriching the mixture, opening cowl flaps if avail-
able, or a combination of all of these.
Lycoming Engineering, in their continuing effort to improve our 
engines, developed a better method of manufacturing hardened 
alloy  steelcylinderbarrelsanumberofyears  ago by  means 
of a method known as nitriding. Simply described, the addition 
of nitrogen to the surface of an alloy steel produced a hard, wear-
resistant surface. Commercially, the introduction of nitrogen into 
the surface layers of alloy steel is brought about by subjecting 
the practically finished parts to an atmosphere of ammonia gas. 
The process requires special heat treating furnaces which are 
air tight and capable of holding the parts at a high temperature. 
At this heat level (975oF), theammoniagas flowinginto the 
furnace is broken down into its elements of hydrogenand 
nitrogen,andthis is thesource of the nitrogenwhich penetrates 
thesurfacesofthesteel.Inorder toproduce  a satisfactory 
nitrided surface, theprocess must beoperated for an extended 
period oftime, generally from  25 to 80 hours. Along  with 
cylinderbarrels,Lycomingnitridesall its crankshafts and 
somegears.
The nitriding process applied to cylinder barrels has been thor-
oughly service tested in military as well as commercial service. 
Afterhaving been  FAAtype  tested,  we began productionof 
engines using nitrided cylinders in 1960. The service record of 
these cylinders has been excellent. In fact, our management was 
so impressedwith the favorable service recordof thenitrided 
cylinder that they changed from chrome to nitridedcylinders 
in  all  our  higher  powered  turbocharged  and  supercharged 
engines. Some favorable characteristics of nitrided barrels are 
as follows:
1. Reduced cylinder wall wear - the harder a surface the more 
difficult to wear down.
2. Natural choked barrels provide improved piston ring life due to 
a resulting straight cylinder wall when engine is hot or operating, 
and a better job of sealing.
3. Nitriding permits use of chrome plated piston rings, which are 
more wear resistant and quite compatible with hardened steel.
4.Nitriding  provides ahardenedsurface  withanincreased 
fatigue strength.
5. Italso has the ability to resist softening when excessively heated 
during engine operation.
These worthwhile features in the power plants have meant even 
longer operating life than standard steel barrels, and they mean 
dependability and economy.
Now chromeplated cylinderscannot be obtained fromthe factory, 
but the identification specification for them has been an orange 
band around the cylinder base, or theequivalent coloron the 
edges of the top cylinder head fins between the two valve push 
rod shroud tubes. The color coding for the nitrided cylinders is 
azure blue and will appear in either of the two locations indicated 
above. The band around the cylinder base is used when cylinders 
are painted black as a separate operation priorto engine assembly. 
The color coding on the top edges of the cylinder head fins has 
been used on engines painted all gray after assembly.
From the service standpoint on nitrided cylinders, there
are three methods of handling an engine at overhaul.
1. The barrels can simply be reworked and returned to
service if they are not beyond service limits.
2. The barrel can be reground and then chrome plated, but
the factory has achieved better results with nitriding and
uses method three.
3. The old cylinder may be discarded and replaced with
a new one as in the Lycoming factory overhaul and
rebuild programs.
CHROME VS. NITRIDING
Either method provides a satisfactory hard-wearing surface, but 
application of the chrome plate is a critical operation. Engines 
with chrome or nitride-hardened barrels have a good wear charac-
teristic, and are more rugged than standard steel barrels. In spite 
of hardened barrels, a good, properly maintained air filter is still 
a must. Pistons are moving up and down at a rate of more than 
two thousand times per minute, and when dirt or any abrasive 
is introduced into the combustion chambers, it causes a lapping 
process which rapidly wears metal away. No engine can digest 
dirt and give a satisfactory service life.
Lycoming Flyer  
We arent attempting to make mechanics out of pilots by writing 
about compression ratio in aircraft engines, but we desire to help 
both groups by providing a simplified description as it relates to 
our engines.
In order to gain a reasonable amount of work from an internal 
combustion engine,we must compress the fuel/air mixture during 
each powerstroke. The fuel/air chargein the cylinder can be com-
pared to a coil spring in that the more it is compressed, (within 
limits), the more work it is potentially capable of doing.
Engineering tells us that the compression ratio of an engine is a 
comparison of the volume of space in a cylinder when the piston 
is at the bottom of the stroke to the volume of space when the 
piston is at the top of the stroke. For example, if there are 140 
cubic inches of space in the cylinder when thepiston isat the 
bottom and 20 cubic inches of space when the piston is at the top 
of the stroke, the compression ratio would be 140 to 20 or usually 
represented at 7:1. 
Although we can create a more efficient engine by increasing the 
compression ratio, there are limits and a compromise is needed. 
If the pressureis too high, premature ignitionwill occur and 
produce overheating. Compression ratio is a controlling factor 
in the maximum horsepower developed by an engine, but it is 
limited by present-day fuel grades and the high engine speeds 
and manifold pressures required for takeoff.
Our normallyaspirated engines are generally categorized as 
either low-compression or high-compression power plants. In 
surveying the complete range of all Lycoming engine models, 
we notethat compression ratios vary all the way from a low
6.5:1 to a high of 10:1. Engineering has generally established the 
low-compression group as those with a compression ratioof 6.5:1 
to 7.9:1; and the high-compression group from 8:1 and higher.
All  Lycoming  engines  in  the  high-compression  category 
require a minimum of Grade 100LL (blue) or 100/130 (green) 
octane,FAA-approvedaviationfuel,andnothingless.With 
high-compressionengines we  must stress  theimportance  of 
the manufacturer’s recommendations as outlined in the Engine 
Operator’s Manual or in the Pilot’s Operating Handbook. These 
engines require not only the correct fuel, but the proper oil, pre-
cise timing and a good air filter. All are very important in order 
to protect this high-performance power plant.
By F. F. Rohm, Chief Qualification Engineer (Ret.)
JamesWatt,  Scottishphysicist,hadanengine  problemeven 
in 1769. Although steam engines had beeninvented before he 
was born, they werecrude, inefficient machines and only a few 
were in use. So he had, after much experimental work, developed 
a relatively efficient condensing steam engine, the forerunner of 
the present-day type.
Being  a  good  businessman,  Watt  tried  to  sell  his  engine 
to coal mine operators who were then using draft horses to supply 
power to drive the pumps which kept the mines free of water. 
But  the  mine  owners  had  sales  resistance!  They  insisted 
on  knowing  exactly  how  many  horses  each  engine  would 
replace, or, in other words, the horsepower of the engine. How 
muchwork would his steam engine do? This, then, was James 
Watt’s problem.
Although simple machines such as sailing vessels, windmills and 
waterwheels had been used for centuries, Watt realized that for 
the most part, the majority of work in the world had been done 
by man and his domesticated animals. Work was measured and 
paid for by the day, from “sun to sun.” With the advent of reli-
able clocks, work was then accounted and paid for by the hour. 
Evaluating workby this time method, it was assumed that all men 
and animals could and did perform the same amount of work. 
This was far from being true.
Watt  realized  that  in  order  to  have  his  steam  engine  used 
by  the  coal  mine  operators,  he  would  have  to  answer  their 
questions — how much work will it do, and how many men and 
horses will it replace?” Since the “power” of one horse was a gen-
erallyknown and a constant quantity, he would have to determine 
the “power” of his engine in order to compare it with the horses 
which it was to replace. His problem then was to define “power.” 
Power did not mean force. The mine owners cared nothing about 
the force Watt’s engine might exert. They wanted to know how 
fastthe engine would pump water out of the mine; in other words, 
how fast will the engine do the work? Simply, that was the defini-
tion of “power.
The methodical physicist experimenting with draft horses used 
to operate mine pumps found that, on an average, a horse pulling 
with a force equal to a weight of 150 pounds walked 2-½ miles 
LOW COMPRESSION  HIGHCOMPRESSION
This interesting article was written for us by Fred Rohm,
who was our Chief Qualification Engineer when he retired.
Fred had a career of 44 years in the industry, with a ma-
jority of those years spent at Lycoming. Most of his career
at Lycoming was as Chief Experimental Engineer, which
establishes his qualifications to author this kind of article.
  L y c o m i n g F l y e r
per hour. Since work is force exerted through a given distance, 
it is measured in terms of feet pounds. Thus, on an average, one 
horse could do work at the rate of 33,000 feet pounds per minute 
or 550 feet pounds per second.
Watt’s definition for one horsepower, which has now become 
universal, was, therefore, the doing of work at the rate of 33,000 
feet pounds per minute. Today, all conventional power producing 
units are rated on this basis.
The 250-horsepower engine in the modern light plane is capable 
of doing work at the same rate as that of 250 average horses. From 
an interested engineer’s point of view,it is capable of moving 
137,500 pounds of weight one foot in one second. Yet, what a dif-
ference there is in its size and weight (approximately 400 pounds) 
when compared to the horses it replaces!
The effect the propeller has on engine operation and on aircraft 
performance is quite significant. Based on questions which have 
been asked by aircraft owners and from experience, there are 
several  areas  ofpropeller-related informationwhich may be 
of interest.
Aircraft equipped with a fixed-pitch propeller will usually have 
static RPM (full throttle with aircraft standing still) limitations 
and full power in-flight RPM limitations spelled out in the Pilot’s 
Operating Handbook. If static RPM is below the minimum speci-
fied, the engine could be low in power. However, experience has 
shown that this is not always true. Faulty induction air systems 
and/or faulty exhaust systems have been shown to contribute to 
indications of low power. A propeller which is ever so slightly 
less than perfect may cause the static RPM to be outside the des-
ignated full throttle static RPM zone. In addition to these other 
factors, it is not unusual to find a tachometer which is inaccurate. 
If an incorrect static RPM reading is observed during the engine 
check, any one or all of these components could be at fault. 
The tachometer may be the easiest to check as there are hand-held 
devicesthat quickly give an RPM reading that will verify the 
accuracy of the standardaircraft instrument. Knowingthe accu-
racylimits of the aircraft tachometer may eliminate the need for 
furtherexamination of the engine and propeller, or it may confirm 
the need for further troubleshooting. In any case, consider each 
component of the system before blaming low-static RPM reading 
on one of them.
Another aspectof operation with a fixed-pitch propeller came in 
the form of a question from a Lycoming engine owner. He indi-
cated thatthe propeller provided by the airframe manufacturer 
had been exchanged for a cruise propeller. (This exchange should 
onlybe done with FAA approval.)With the new cruise propellerin 
use, an increase in fuel usage was soon apparent. Operating costs 
increased, and an explanation was requested.
It is well known that the amount of horsepower taken from an 
engine will have a direct relationship to the amount of fuel used. 
Therefore, it can be deduced that use of the cruise propeller 
increasedthe horsepower requirement. This deduction deserves 
some additional explanation.
As an example, the standard propeller supplied with an aircraft 
may allow the engine to develop 180 horsepower at 2700 RPM at 
full throttle, in flight at sea level, with a standard temperature. The 
Lycoming O-360-A Series normally aspirated engine illustrates 
this example.
Next,  let  us  assume  that  this  same  engine/propeller  com-
bination  is  operated  at  75%  power  with  a  “best  economy” 
fuel/air mixture setting.Again, assume sealevel and stan-
dardtemperature  tosimplifyandstandardizethe discussion. 
75%powerwill  require  about  2450 RPM  witha  brake-spe-
cific fuelconsumptionof.435 poundsperbrakehorsepower 
hour.  Also,  75%  of  the  180  rated  horsepower  is  equal  to 
135  horsepower.  Fuel  usage  at  this  power  and  mixture  set-
ting  will  be  58.7  pounds  per  hour  or  9.8  gallons  per  hour. 
CUTAWAYOF AFOURCYLINDER POWERPLAN
Lycoming Flyer  
The  mathematics  to  arrive  at  this  fuel  usage  are  simple: 
180 HP X 75% of power = 135 HP
135 HP X .435 BSFC = 58.7 lbs. of fuel
58.7 lbs. of fuel 6 lbs. per gal. = 9.8 gal. per hour
Having made some assessments about what can happen with a 
standard propeller, now we will try to see what happens when 
a cruise propeller is installed in place of the original. The first 
thing we must know about the cruise propeller is that it has more 
pitch than the standard propeller.This means it will take a bigger 
“bite” of air than the original propeller with each revolution. This 
bigger bite of air will have an effect on aircraft performance and 
on how the engine may be operated.
Taking a bigger bite of air increasesthe resistanceto the turning 
propeller. Perhaps itmaybeeasiesttoimagine what happens 
by considering your hand when held inthe airstream outside 
a moving automobilewith  the palmforwardascompared to 
having the side of the hand forward. Because of this increased 
resistance, the static RPM will be lower than with the original 
propeller. The same thingwill betruewhenfull throttle, in-
flight RPM, iscomparedto thatof the standardpropeller at a 
similar altitude and temperature. This will reduce takeoff per-
formance of any aircraft.Using theearlier example,the engine 
wasrated at180 horsepower atfull throttleand 2700RPM. 
Now, in spite of applying full throttle, the increased resistance 
reduces the maximum attainable RPM to something less than 
2700.As a resultofnot developingthe rated 2700 RPM,the 
enginealso willnot develop the power for which it was rated. 
Sincemaximum power islessthanfull rated,aircraftperfor-
mance will suffer. This should be consideredbeforea fixed-
pitch propeller is chosen or exchanged for a different model. 
Atthis  point,wemustreturnto  theoriginalquestion.Why 
doesthe engine require morefuel withthe cruise propeller? 
It is an accepted fact that the cruise propeller is more efficient 
for cruiseoperation,so it would not beunusualto follow this 
lineof thinking.Seventy-five  percent  of rated  power, using 
theoriginalpropellerat sealevel andstandardtemperature, 
requiredathrottlesettingtoachieve2450RPM.Therefore, 
withoutmorethoughtfulconsideration,itseemslogical  that 
the cruise propellermightalsobesetfor 2450  RPMwhen 
75%power is desired. Of course, there is an increase in per-
formance,  but  this  can  be  attributed  to  the  more  efficient 
cruise propeller.Next comes the realizationthatthe improved 
cruiseperformance isn’t all efficiency. Instead of 9.8 gallons 
of fuel, the engineis now usinga greater amount of fuel per 
hour. Forpurposes ofthisillustration, letusassumethat the 
number is 11 GPH. By reversing the mathematics used earlier, 
itis  possibletoestimatethehorsepower  andpercentageof 
power actuallybeing used as aresult of operating the cruise 
prop  at  2450  RPM  with  a  best  economy  fuel/air  mixture. 
11 GPH X 6 lbs. per gallon = 66 pounds
66 pounds .435 BSFC = 151.7 horsepower
151.7 HP 180 rated HP = 84.3% of power
Assuming a fuel usage of 11 gallons per hour for this problem 
providesareasonablyrealisticexampleofthechangethat a 
differentfixed-pitch propeller might create. Italso illustrates 
the need forpilots tochangetheir habitswhena propeller is 
changed.  Inaddition  tothechange  ofhabits,the  discussion 
shows arealneedtoreevaluatethetakeoff, climbandcruise 
performance  of  an  aircraft  if  the  fixed-pitch  propeller  is 
changed fora different model.
Another very important point concerns leaning. Remember that 
Lycoming recommends leaning to best economy only at 75% of 
rated horsepower or less. It is very possible that leaning to rough-
ness or to peak onthe EGT gage could cause serious damage if the 
engine is actually producing more than 75% of rated horsepower 
as shown in this illustration.
With this information as background, it is easy to see that set-
ting a desired power with a fixed-pitch propeller can only be 
accomplished if the pilot has a chart that applies to the specific 
aircraft/engine/propeller combination. Although the power chart 
for a new aircraft may come from data obtained by test flying 
with a calibrated torque meter, a fairly accurate chart can be 
derived for any fixed-pitch propeller and engine combination. 
Briefly,this is done by finding the maximum availableRPM 
at any particular altitude and applying data from the propeller 
load curve.
To conclude, the purpose of this article is to make readers more 
aware of some operational aspects of the fixed-pitch propeller. 
Usually, it isonly necessaryto accept thematerial provided 
by theairframe manufacturer and to use the engine/propeller 
asdirected.  If  apropellerchangeismade,  oronthoserare 
occasions  whenwe question  thepoweravailabletothepro-
peller, thematerial presented herecouldprove tobe helpful. 
From time to time, a field-service report states that an engine has 
damage. After further examination of the engine, this damage 
may be classified as “induced damage.” To clarify what is meant 
by this term, induced engine damage is a failure or unsatisfactory 
condition which results fromoperational or maintenance practices 
employed after the engine is placed in service. Although there are 
a variety of conditions which may fall into the induced damage 
category, this article will discuss two particular types of failure 
and the circumstances which can induce them.
Examination of an engine that is reported to have low compres-
sion, loss of power, erraticoperation, metalcontaminationor 
even complete engine stoppagemay result in a determination 
that pistons are burned or valves stretched. (Stretched valves are 
sometimes said to be tuliped.) These two types of damage can 
be initiated in a number of ways, but the chain of events is often 
the same; detonation is followed by preignition and the engine 
damage has begun. Toprevent burnedpistons and tuliped(or 
stretched) valves, action mustbe taken to eliminate the possibility 
of detonation and preignition.
  L y c o m i n g F l y e r
Detonationis a phenomenon which can occur in any internal 
combustion  engine.  The  possibility  of  detonation  cannot 
becompletely eliminated.By definition, detonationisavio-
lent  explosion.  When  used  with  reference  to  a  spark  igni-
tioninternalcombustion  engineliketheLycoming aircraft 
piston  engines,  detonation  indicates  abnormal  combustion. 
Essentially,  detonation  is  an  uncontrolled  explosion  of  the 
unburned  gases  in  the  engine  combustion  chamber.  Some 
engines  are  moresusceptibleto  detonation  thanothers.For 
example, turbocharged engines are more susceptible than similar 
non-turbocharged models and engines with higher compression 
ratios aremore likely to exhibit detonationthan engines with 
lower compression ratios.
Detonation may occur in an aircraft engine as a result of main-
tainingamanifoldpressurethatistoohighforthespecific 
engine speed and mixture setting being used. The engine power 
(i.e., speed and manifold pressure) and mixture settings recom-
mendedin thePilots  OperatingHandbook  (POH)  fora  par-
ticularaircraft model  havebeen determinedbyadetonation 
survey.These  surveysuse  specialinstrumentationtodetect 
and record detonation as it occurs. Based on these surveys, the 
detonation-limiting conditions are defined. Data from the sur-
veys indicate thatdetonation occursin varying degrees;it is 
sometimes  possible  tooperate an  engineforrelatively  long 
periods in the first minor phase of detonation without inducing 
damage.Lycoming  doesnotrecommendor  condoneengine 
operation which even approaches conditions which might cause 
detonation.  The  laboratory  quality  equipment  used  for  the 
detonation survey is not practical for use in an aircraft engaged 
innormal flight operations. Without this equipment, thepilot 
may not know that detonation is occurring, and it is impossible to 
establish the fine line between the first phase of minor detonation 
and the detonation magnitude which induces preignition and/or 
engine damage. For this reason, it is imperative that power and 
mixture recommendations of the POH be carefully observed.
Preignition  is  acircumstance thatcausesdestructiveengine 
damageand  willbe  examined  here  briefly. MostLycoming 
enginesare  designed forignition  of  thefuel/airmixture  at 
20 crankshaftangle degrees (CAD)beforethe piston reaches 
top deadcenterduring thecompression stroke.Some engine 
models specify ignition at 18, 23, or 25 CAD before top dead 
center.  Ifignitionofthe  fuel/airmixtureoccursbeforethe 
scheduled point in the operational sequence of events, preigni-
tion exists and the compression stroke continues as the burning 
fuel/air mixture is trying to expand. This subjects the combus-
tion chamber and pistons to temperaturesand pressures far in 
excess of those experienced during normal combustion. These 
excessivetemperatures and pressures cause damage topistons 
and valves. In somecases, both burned pistons andstretched 
valveswillbefound  inanenginewhichhas  been subjected 
to preignition.
Considering  the  millions  of  hours  f lown  each  year  in 
piston-poweredaircraft, enginedamagefrom detonationand 
preignitionis  quite  rare.The  infrequencyofthishappening 
means little if your engine is the one affected. Therefore, it seems 
appropriate to look more closely at some of the factors which lead 
to detonation and preignition.
The  possibility  of  overboost  is  a  characteristic  of  all  super-
charged  and  turbocharged  engines.  Generally,  overboost 
means the application of manifold pressure which exceedsthe 
limit  specified  by  the  manufacturer.  Early  versions  of  the 
manually controlled turbocharger allowed quite a few pilots to 
inadvertently induce damage by overboost.With this system,the 
turbocharger  wastegate  was  normally  left  full  open  for 
takeoff; full throttlewould produce 28 to 30" of manifoldpres-
sure.  After  takeoff  at  full  throttle,  gradual  closing  of  the 
wastegate wouldslowly increase turbocharger speed and mani-
fold  pressure  to  maintain  climb  power  to  cruise  altitude  or 
tothe critical altitudeofthe engine. The systemworkedfineuntil 
the wastegate wasinadvertentlyleft in theclosed position.If thepilot 
then applied full throttle for takeoff or a go-round, it could produce 
60" or more of manifold pressure and failure of the engine.
More recent turbocharger installationsusually include a pres-
sure relief valve and/or an automatic wastegate control which 
helps to avoid the possibility of overboost. Even with these pro-
tective devices, it is still possible to overboost by rapid throttle 
operationand/orinattentiontolimiting  manifoldpressures 
at low engine speeds.
Automatic controllersmay not becapable of preventing over-
boostif fullthrottle operationisattemptedbeforeengineoil 
iswarmedupsufficiently. LycomingServiceBulletin369F 
addresses the problem of overboost and recommends, depending 
on the severity and duration of the overboost, a log-book entry, 
engine inspection or complete engine overhaul including replace-
ment of the crankshaft.
As  statedearlier, ignitionof  the fuel/airmixturemust  take 
place at precisely the right time. A spark plug which has been 
dropped, or damaged in someother way, may induce preigni-
tion by causing a “hot spot” in the combustion chamber which 
self-ignites the fuel/air  mixture.Thiscould alsooccurfrom 
use of unapproved spark plugs. Flight with defective magnetos 
or  flight  in  excess  of  certified  aircraft  limits  may  allow 
cross-firing within the magneto, improperly sequenced ignition 
of  thefuel/air  mixtureandenginedamage. Propermagneto 
engine timing is also an important factor. The timing is affected 
by wear and therefore should be checked and reset at specified 
intervals. Regular, meticulous spark plug and magneto mainte-
nance will help to avoid preignition and possible engine damage 
from these sources.
Although overboost  and incorrectignition timing  arecauses 
of  inducedenginedamage,this damagecanoftenbeattrib-
uted to fuel and the fuel/air mixture. The first problem related 
tofuel  is  simply having  improperfuel  intheaircrafttanks. 
A piston-powered aircraft refueled with jet fuel would have a fuel 
blend with greatly reduced octane level. A piston engine should 
not bestarted wheneven small amounts of jet fuel have been 
addedto aviation gasolinebecause engine contamination and 
detonation are likely;attempted flight under these conditions will 
certainlyresult in destructive detonation and preignition. The use 
of 80 octane aviation fuel in an engine certified for 100 octane 
aviation fuel will produce similar results.
Thelubricating oilmay be a source of octane reducing fuel con-
tamination. Excessivelyworn piston rings mayallow enoughoilinto 
Lycoming Flyer  
In some cases, it is possible to repair the engine by removing the 
metal contamination from the engine and oil system, including 
the oil cooler, and by replacing all damaged parts, but often it 
is necessary to replace the entire engine. If an engine is to be 
repaired, it must be remembered that repairing the damage is not 
enough; the cause of the malfunction which induced detonation 
and preignition must also be found and corrected. Did a magneto 
malfunction produce ignition outside the normal firing sequence? 
Were manufacturer-approved spark plugs installed in the engine? 
Did a cracked spark plug induce preignition? Was an approved 
fuel used,and if so, is there evidence of fuel contamination? 
Whatever the malfunction, it must be corrected along with the 
damage or the same problem could reoccur.
To conclude, induced damage in the form of tuliped valves and 
burnedpistonscanusuallybeavoidedbyunderstandingthe 
sequenceof events which lead to this form of engine damage. 
Careful attention to detail is required of pilots and maintenance 
personnel. Compared to the expense of repairing or replacing a 
damaged engine, it is worth the time and effort necessary to avoid 
induced engine damage.
We often tend to believe what we know, everyone knows. While 
participating in a flight instructor refresher recently, a young lady 
from Maine provided a reminder that this is often not the case.
This lady andher husband fly in Maine throughout theyear. 
During the winter, they and their aircraft are frequently exposed 
to extremely cold temperatures. During the past winter, they had 
an unfortunate experience. The end of the engine breather tube 
froze over, a pressure buildup occurred in the crankcase, and the 
crankshaft nose seal ruptured. The oil leak that resulted covered 
the aircraft with oil from nose to tail. Fortunately, a safe landing 
was made before all oil was lost.
As she related her story, another flight instructor quickly indi-
cated that he had also experienced the same problem several years 
earlier. The safe landings in both cases are good news. The bad 
news is the expense incurred to repair the engine.
An incidentlikethisispreventable, and forthat reason,it is 
important that we repeat ourselves from time to time. We should 
not  assumethat  everyoneknowsaboutthe  whistleslot”  or 
other methods of ensuring adequate crankcase venting.
First, the cause of this incident. Moisture is expelled from the 
engine crankcase through the breather tube which often extends 
through the bottom ofthe engine cowling into the airstream. 
Under very cold conditions, thismoisture may freezeandcontinue 
a buildup of ice until the tube is completely blocked.
It isnormalpractice for the airframemanufacturer to provide 
some means of preventing freeze-up of the crankcase breather 
tube. The breather tube may be insulated, it may be designed so 
the end is located in a hot area, it may be equipped with an electric 
heater, or it may incorporate a hole, notch or slot which is often 
the combustion chamber to dilute the fuel/air mixture. The dilution 
will reduce the octane rating of the fuel andcanlead to detonation 
andengine damage. While thisscenario is not entirelytypical of 
theengine that uses large amounts of oil because of worn or broken 
piston rings, it is possible for this situation to occur.
Even the use of 100 octane fuel in an engine in good mechanical 
conditiondoesnot  eliminateall  thepossibilitiesof induced 
engine damage. Most engines operatedat takeoff poweror at 
a power setting in the high cruise range need a relatively rich 
fuel/air mixture to help cool the engine and reduce possibilities 
of detonation. Since lean fuel/air mixtures and high power set-
tings promotedetonation, itis recommendedthatLycoming 
engines not be leaned at power settings which produce more than 
75% of rated engine power unless this operation is approved in 
the POH. The pilot, by simply leaning the mixture excessively at 
power settings above the cruise ranges, may be responsible for 
inducing the detonation and preignition which leads to tuliped 
valves and burned pistons.
Andfinally, asmallamountof  dirtinthe  fuelsystem may 
beresponsibleforclogginga fuelinjectornozzle ornozzles. 
A  partially  clogged  fuel  injection  nozzle  will  reduce  fuel 
flow  to thatcylinderand  will  causealean  fuel/airmixture. 
A nozzle which ispartially clogged in an aircraft that has a pressure 
operated fuel flow indicator will cause that indicator to display 
a higher than normal fuel flow. Leaning in an attempt to correct 
the high indicated fuel flow will result in an even leaner mixture 
in the affected cylinder. Again, it is possible that a burned piston 
or tuliped valve will be the final result.
Understanding  andavoiding  those  factors which  lead toin- 
ducedengine damage is certainlypreferabletothe discovery 
of  tuliped  valves  or  burned  pistons  in  your  engine.  This 
entire discussion is aimed at promoting an understanding which 
will allow pilots and maintenance personnel to direct their efforts 
tothoseelements which willreduce the possibility of induced engine 
damage. Observing the refueling of the aircraft andchecking 
the  fuel  system  for  indications  of  contamination  are 
tasks expected of the pilot. Meticulousmanagementof power 
and fuel/air mixture as recommended by the POH is also a pilot 
activity which will reduce the possibility of induced damage.
Maintenance  personnel  play  an  equally  important  role. 
Troubleshooting a fuel-injected engine for rough idle may lead to 
the cleaning or changing of partially clogged fuel injector nozzles. 
Damage could result if the engine were operated at takeoff or 
climb power with reduced fuel flow to one or more cylinders. A 
close check of magneto timing and magneto condition at regular 
inspection intervals will help to ensure the continued satisfactory 
operation of any engine.
There are some “after-the-damage” factors that maintenance 
personnel should consider. Suppose  that  a  power loss has
been reported. A compressioncheck reveals low compression; 
a stretchedor tuliped valve may be found. This is an indica-
tion that the engine has experienced detonation and preignition. 
A borescope examination should be conducted to see if a piston 
has been burned. A burned piston often results in damage to cyl-
inder walls and piston skirts; it also may contaminate the engine 
with metal particles. There is no healing process for this damage. 
  L y c o m i n g F l y e r
called a whistle slot.” The operator of any aircraft should know 
which method isusedfor preventingfreezing of the breather 
tube, and should ensure that the configuration is maintained as 
specified by the airframe manufacturer.
Because  of  its  simplicity,  the  “whistle  slot  is  often  used. 
Although the end of the tube may extend into the air stream, a 
notch or hole in the tube is located in a warm area near the engine 
where freezing is extremely unlikely. When a breather tube with 
whistle slot is changed, the new tube must be of the same design. 
Replacing a slotted tube with a non-slotted tube could resultin an 
incident like the one described by the lady from Maine.
The Flyer may have carried information onthis subject inthe 
past, but the reminder from someone who hadan unfortunate 
incident prompted this story. Preventing possible freezing of the 
crankcase breather tube by use of a whistle slot or other means is 
an important little detail which all of our readers should be aware 
of. Many may benefit from the knowledge.
If you aretold that a cylinder head onyour engine should be 
welded because of a crack, think long and hard about the step 
you are about to take. The argument is that it is less expensive to 
recondition a cylinder head than to buy a new one. This is true 
when the only consideration is getting your aircraft back in the 
air as cheaply as possible. For the long run, welding the aluminum 
parts of an aircraft engine to repair cracks maynot be a permanent 
solution, and may cause you many headaches.
Therecommendation toreplace rather than weld is based on 
years  of  experience  and  thousands  of  examinations  in  the 
Lycoming Metallurgical Laboratory. Based on this experience, 
the vast knowledge of the individuals who work in this Met Lab 
should not be ignored. The brief explanation that follows will 
attempt to relatesome ofthisexperienceand toexplain why 
welding is not generally recommended.
Startingwith two verybasicbut critical items in the welding 
process, we lookat the materialto be welded and the welder. 
The material is an aluminum alloy, and it takes more than just a 
very good welder to successfully weld aluminum. The experience 
in qualifying welders at the factory shows is that only the most 
outstanding can pass the annual FAA qualifying examination for 
Aircraft CertifiedWelder. Even a good welder may leave tungsten 
in the weld. This causes it to be unsatisfactory.
Even an expert welder with complete knowledge of the aluminum 
alloy material cannot assure a satisfactory weld in a cracked 
engine part. There are many inherent pitfalls over which the 
welder hasno control. Cylinder heads are made of aluminum 
alloy. Cracks sometimes occur inside the dome area. The metal-
lurgists consider repair by welding to be absolutely foolish, and 
their experience provides them with good reasons. The surface 
area in the dome is affected by a thermochemical attack — to put 
it simply, corrosion. This corrosionis a form of oxidation that will 
not fuse properly during welding. It is not practical to remove all 
of the corrosion, because this would entail remachining the entire 
interior surface which would change the designed compression 
ratio of the engine. Those who attempt to weld this area make 
an effort to clean the crack thoroughly. Unfortunately, this is of 
little help because the area adjacent to the cleaned-out crack will 
still be affected by thermochemical attack. Because this corrosion 
will not allow the weld to fuse completely, new cracks are almost 
certain to occur.
Thermochemical attackis not something  we can see.To the 
novice,aweldedcrackina cylinderhead may lookgreat.It 
maynot even bepossible  to identify the  weld.Butwhenthe 
part isdissectedbyametallurgist forexamination undera 
high-powered microscope, the weld, the poor fusion and cracks 
around the weld are immediately identified.
Based on this explanation, readers should now understand why 
Lycoming does not recommend the welding of cracks in cylinder 
heads. These cracks usually occur as the result of fatigue over 
long hours of use, and the oddsof achieving long-term satis-
faction by welding are extremely remote. If you are buying an 
aircraft,watch out for the engine with reconditioned cylinders 
that have been repaired by welding, and if you own an engine 
which has experienced cracks, remember that you probably are 
wasting money by having those cracks welded. Experience has 
shown that replacement of these parts is likely to be most eco-
nomical and is likely to cause fewer headaches over the long run.
Aftercertifying  hundredsof  flat, opposedcylinder  aircraft 
engines, and after building more than three hundred thousand 
engines for general aviation, Lycoming engineers have learned 
what ittakes to produce properly balanced engines. Many engines 
have been tested over the years and a great deal of data is available 
to support the building of engines to factory specifications. To 
put it simply, the subject of engine balance is well understood by 
Lycoming and is a major consideration in the design and manu-
facturer of all Lycoming-Certified engines.
These statements are contrary to what has been impliedby several 
advertisements and magazine articles. Some reports in several 
industry publications say your Lycoming-Certified engine would 
be much betterifyou would just take thetimeand spend the 
money to have it “custom balanced”. The implication is that the 
manufacturer knows nothing about the importance of balancing. 
This is absolutely false.Lycoming-Certified enginesarevery 
carefully balanced to the degree that is necessary. They are not 
balanced to a point of absolute perfection because they run at 
relatively low speeds (compared to some automobile engines)and 
therefore do not require the degree of balancing being advocated 
by shops that deal in this specialty.
To justify this excessive emphasis on balancing, the automobile 
racing engineis often cited as another place where balancing 
Lycoming Flyer  
is important. This is like comparing apples to oranges; the two 
types of engines are not thesame. A typical Lycoming direct drive 
engine is red-lined at 2700 or 2800 RPM while an auto racing 
engine may operate at more than three times this speed.
In orderto delve into the subject a little deeper, severalques-
tions  were  directed  to  the  Senior  Analytical  Engineer  at 
Lycoming. His responses may help those who have doubts about 
the quality of engine balancing done at the factory.
Several  Lycomingengine  componentsaredynamicallybal-
anced. For non-engineers, that means that the proper balance is 
determined while the part is in motion; it is spinning as it would 
be during operation. These parts are the starter ring gear sup-
ports and the crankshaft. In addition, dynamic counterweights 
are statically balanced to control the location of the very critical 
center of gravity.
Balancealso includesthecontrolofweightfora  numberof 
moving engine components. Items suchaspiston pins, piston 
plugs, and piston rings are 100% machined to close tolerances 
that provide consistent weights. These are three types of piston 
plug, and although they are interchangeable, each type must be 
used as a set because of their weight differences. The weight of 
dynamic counterweights is also carefully controlled.
A  second  aspect  of  engine  balancing  is  accomplished  by 
matching  some  engine  parts  by  weight.  Pistons  and  con-
necting  rods  are  in  this  category.  Both  of  these  parts  are 
organized in matchedsets, by weight,beforeinstallation in a 
Lycoming engine. Should it be necessary to replace one of these 
matched  parts  during  the  service  life  of  the  engine,  there 
isa  systemto  keepthebalancewithinspecified  tolerances. 
(See “Notes on Replacing Rods or Pistons” in the Maintenance 
Section of this book.)
Perhaps the engineering answer to other questions may be enlight-
ening– or to the non-engineers, confusing.The pointis, Lycoming 
engineers are well aware of what is needed to make a Lycoming-
Certified engine safe and reliable for the long TBO times that are 
recommended for these engines. Thousands of hours of engine 
testing followed by days and weeks of data analysis provide the 
basis for the Lycoming engine design.
The engineering answer as to why there is a need for matching 
and balancing of engine parts is this: As a matter of sound design 
practice, matching and balancing componentswill load crank-
shaft bearings in a predictable manner and reduce the reaction 
loads at the engine mounts.” Just as we suspected – right!
Since those engineers did such a good job on that last question, 
anotherwas  ventured,Is  thereanydangeror  problem with 
additional balancing by non-factory activities?” Those of us who 
are pilots will understand some of the response, but it will take 
those who speak the language of engineeringtocomprehend 
the rest. Here it is: “There are occasions when dynamic balance 
of the prop/engine combination can provide reduced first order 
vibration,but additional internal balancing of Lycoming pro-
duction engines is not required nor recommended. The rotating 
and reciprocating masses of the six and eight cylinder opposed 
engines are inherently balanced. The rotating masses of the four 
cylinder opposed design are balanced.Therotating masses of 
the four cylinder opposed design are balanced. The reciprocating 
masses of the four-cylinder engine are not balanced as a vibratory 
inertia moment at second order exists in the plane of cylinder 
center lines. Matching the weights ofcomponents closer will 
not reduce the second order moment. A redesign incorporating 
counter rotating layshafts rotating at twice engine speed could 
be implemented.
Additional internal balancing contributes little to engine
smoothness, and it may even be harmful when material is
removed from highly stressed parts of the engine.”
To summarize, these are the points we have attempted to com-
municate  by  providing  information  about  the  balancing  of 
Lycoming-Certified engines. First, Lycoming engineershave 
acquired vast amounts of data though years of enginetesting. 
This  knowledge  is  used  to  insure  that  Lycoming  Certified 
engines are carefully balanced duringmanufacture. It isalso 
used to formulate a system which allows satisfactory engine bal-
ance to be maintained when weight matched parts are replaced 
during the operational life of the engine. The engine balancing 
donebyLycoming  ispart of anorganizedsystemwhichis 
intended to provide a high-quality product.
The second point isthat additional internal custom balancing, 
by removing material from highly stressed parts is not recom-
mended by Lycoming. Lycoming does currently offer additional 
custom balancing for Non-Certified/Experimental Engines, sold 
throughThunderboltEngines(FactoryCustom-BuildShop), 
but this is accomplished via another method. Due tothe sheer 
number ofparts availableatthefactory, Lycomingisableto 
satisfy customers’ close to exact balancing demands by weighing 
and matching parts.
From time to time, there is a question about the advantages of a 
fuelinjection system over a carburetor. That is probably the wrong 
way to approach the matter when there is a choice to be made. 
Each of these methods of fuel metering has its own unique set of 
characteristics. It may be helpful to consider the advantages or 
disadvantages of each system.
First, consider why we needacarburetoror fuel injector as a 
part of any engine. Both devices provide a means of delivering a 
metered amount of fuel to be mixed with a measured volume of 
air. This is necessary because combustion can only occur when 
theair/fuel mixture falls  withinagivenrange. The  extreme 
outside limits of this range are approximately 20:1 at the lean end 
and 8:1 on the rich end. For practical purposes, the operational 
air/fuel mixture rangefor most air-cooled Lycoming engines will 
fall between 16:1 at lean and 10:1 when operating at full rich. 
Obviously, both the fuel injector and the carburetor are capable 
of metering within these limits.
The float type carburetor is a device which mixes fuel with air 
and has been used for many years. It has the advantage of being 
 8 L y c o m i n g F l y e r
relatively simple. There are no diaphragm or springs — in gen-
eral, very few moving parts. Installation on the engine is simple. 
All of this adds up to the significant advantage of being the least 
costly method of fuel metering. One additional item should also 
be considered. The fuellines to a carburetor are large enough that 
there is little chance of them becoming clogged by the very tiny 
particles of foreign matter that may be found in the fuel.
Along  with  these  advantages,  the  disadvantage  frequently 
attributed  to  the  carburetor  is  its  inherent  capability  for 
developing ice in the vicinity of the throttle plate. For the pilot 
who understands and recognizes carburetor icing, this disadvan-
tage is easily managed since all certified aircraft are required 
to havea carburetor air-heating system which will prevent or 
eliminate icing.
Since thefuelinjectorismore complex  and expensive  than 
a  carburetor, why  should  itbeconsidered? Because the  fuel 
injector has its own set of advantages which in some cases are 
worth the additional cost.
First,thefuelinjector causesair and fueltobe mixed at the 
cylinder intake port. Therefore, the refrigeration-type icing that 
occurs in a carburetor venturi when fuel vaporizes in moist air 
cannot happen when a fuel injector is used for fuel metering. 
Many pilots consider this to be a significant advantage.
The primary characteristic of the fuel injector is improved fuel 
distribution to each cylinder. This feature reduces the possibility 
of one cylinder operating at a very lean air/fuel mixture while 
another may be operating near the rich end of the mixture scale. 
The improved distribution allows leaning that results in slightly 
lower overall fuel consumption. This is of particular value in the 
higherhorsepower engines where saving a small percentage of the 
fuel being burned may result in a significant dollar savings.
Finally, the fuelinjector will meterfuel regardlessof aircraft 
attitudewhileafloat-typecarburetorcan onlyoperate  in  an 
upright position. This advantage, of operating in any attitude, 
makes the fuelinjectoranidealfuel-meteringdevice for the 
engine that is designed for aerobatics.
Questionsthat  frequentlyareaskedofLycomingsalesper-
sonnel,engineers  and  technical  representatives  indicatethat 
amongaircraftownersandaviationwriters thereisa myth 
regarding  Lycoming  pistonengines.  Manyoftheseindivid-
uals assume each Lycoming engine in a series to be essentially 
thesame.For example,somebelieve thatall360-cubic inch 
displacementenginesareinherentlythesameexcept fordif-
ferences in fuel metering or turbocharging. The idea that these 
engines are the same is false. A few specific examples may help 
to put this myth to rest.
Lycoming builds O-320 engines that produce 150 HP or 160 HP. 
The 150 HP O-320-E series engines operateat a compression ratio 
of 7.0:1. The O-320-D series has high-compression pistons which 
raise the compression ratio to 8.5:1, and increase rated output to 
160 HP. Those who believe that the pistons are the only difference 
in these engines will be disappointed if they plan to upgrade their 
O-320-E to the higher horsepower by simply changing pistons. 
Many models in the O-320-E series were designed for economy. 
Thousands of these low-compressionengines were built with plain 
steel cylinder barrels instead of the nitrided barrels used in the 
O-320-Dseriesengines.Theyalso  hadtwo narrow bearings 
instead of one long front main bearing. The engines were certi-
fied at 150 HP and were not intended to withstand the additional 
stress of higher horsepower.
Because ofthe similarity indesignation,itwould beeasyto 
believe that the O-360-AlA and the IO-360-A1A are the same 
engine  exceptthat  thefirstenginehas  acarburetor  andthe 
second a fuel injection system. Here are some features of each 
engine for comparison. The O-360-AlA has a bottom-mounted 
updraft carburetor,  parallel valves, 8.5:1  compression ratio 
andproduces180HP.The IO-360-AlA featuresa  horizontal 
front-mountedfuelinjector,  angle  valves,8.7:1compression 
ratio,  and  is  rated  at  200  HP.  The  IO-360-A1A  incorpo-
rates  additionaldesign items whicharenotincludedinthe 
O-360: piston cooling nozzles, stronger crankshaft, tongue and 
groove connecting rods with stretch bolts, tuned intake system 
and rotator type intake valves. There are actually few similarities 
except for the 360-cubic inch displacement.
Therehavebeensuggestions that by putting10:1  compres-
sion  ratio  pistonsin  anIO-360engine,itcouldbethesame 
as  theHIO-360-D1A.Thesearesomecharacteristicsof  the 
HIO-360-D1Ahelicopterenginethat  canbecomparedwith 
the  dataon theIO-360listed  intheprevious  paragraph.To 
start, the HIO has conical rather than dynafocal mounts. The 
main bearing isa thick-wall bearing instead of the thin-wall, 
high-crush bearing used in the IO-360.Other differences include: 
crankshaft designed for small crankpins, high-speed camshaft, 
rear-mounted RSA7AA1 fuel injector, largeintake valves and 
torsional vibration damper magneto drives.
Finally,  both  the  Navajo  engines  and  the  turbocharged 
Lycoming  used in the  Mooney  TLS areequipped  withdif-
ferential  and  density  controllers  that  automatically  set  the 
maximum allowable horsepower when the throttle is advanced 
fully  for  takeoff.  Some  believe  that  the  TIO-540-AF1A 
whichpowerstheMooneyTLSis  simply  a  derated Navajo 
engine. This conclusion could hardly be more inaccurate. The 
most obvious difference, even to the complete novice can be seen 
by looking at the rocker box covers. The TIO-540-AF1A is rated 
at 270 HP and hasparallel valve-down exhaust cylinders. The 
Navajo series has three engines at 310 HP, 325 HP and 350 HP. 
All have cylinders designed withup exhaust and angle valves. 
Otherdifferencesrespectivelyinthe270 HPAF1Aand  the 
Navajo series engines are: small main bearing instead of large 
main bearing, 8.0:1 compression ratio rather than 7.3:1, inter-
cooled and non-intercooled, pressurized Slick magnetos versus 
Bendix/TCM magnetos and an RSA5AD1 fuel injector in place 
of the RSA10AD1 injector. There are some other differences, but 
those comparisonslisted should convince even the most skeptical 
that these engines are vastly different.
Lycoming Flyer  9
Comparing various parts and accessories used in engine models 
which some individuals have considered to be much the same, 
illustratesthe differences.AlthoughsomeLycomingmodels 
are closelyrelated,thiscannotbe  assumed.Areview of  the 
engineering parts list for each engine model by a knowledgeable 
individual is the only sure way of establishing similarities and 
differences. Those who may have been taken in by the myth that 
all Lycoming engines of a particular displacement are very much 
the same are now armed with a better knowledge.
Thereare many who look  for an aircraft engine on  theopen 
market.Whilethere  is nothing wrongwiththisapproachto 
acquiring a needed power plant,itsometimes results inan 
unfortunate choice. Perhaps a little information on the possible 
pitfalls may help to reduce the number of bad choices.
Individuals working on home-built aircraft may be particularly 
susceptible to this type of error. At Lycoming, there have been 
many calls from people who grabbed an engine that seemed to 
be an exceptionally good deal — only to find that this “engine of 
their dreams” would not fit into the aircraft they are building.
Consider the circumstances which lead to these problems. The 
person looking for an engine is usually building an aircraft from 
his own plans or from a kit supplied by a kit manufacturer.
As the airframe begins to take shape, obtaining a suitable engine 
may be reason for some concern and anxiety. When a Lycoming 
0-320, 0-360 or other engine with appropriate horsepower rating 
is found, there is a temptation to buy now and ask questions later. 
This could be a serious mistake.
The  article  “Low-time  Engine  May  Not  Mean  Quality  and 
Value” that appears next in this booklet explains that old engines 
with low time are frequently affected by internal rust and corro-
sion. Any engine that is not used frequently should be preserved. 
The condition of the engine is just one of the items to be consid-
ered when acquiring a power plant in the resale market.
Other mistakes often involve the engine model. Unfortunately, 
thereare those  whobelieve thatall  Lycoming0-320  engine 
models are alike, and that all Lycoming O-360 engine models 
arealsovery similar. The Lycoming-certified aircraft engine 
list shows 58 O-320 models and 51 0-360 models. While these 
engines may be similar in many respects, it is the differences that 
are likely to cause installation problems. These differences should 
be well understood before an engine is purchased.
What are the differences that may cause installation problems? 
The engine-mounts should be considered. Older engine models 
were built with conical mounts that make installation somewhat 
easier, but which do not dampen engine vibration as well. With 
very few exceptions, engines certifiedduring the l970s and 1980s 
have dynafocal mounts.
Although  the  type  of  engine  mount  is  not  likely  to  be  a
serious problem, the shape of the sump, the location of the 
carburetor or an engine-mounted oil filter may result in airframe 
interference which makes installation of a particular engine 
model difficult or impossible. Some aircraft, for example, do not 
have enough space between the engine and the fire-wall for an 
engine-mounted oil  filter. In  the  case  of  an  engine  with  a 
single-unit dual magneto, there is nothing that can be done since 
the filter is a required part of the engine design. All Lycoming 
engines with two individual magnetos can be configured to 
operate withoutanoil filter. Should an oil filter and the space 
needed to remove it be the only problem in adapting this type of 
engine to an airframe, the filter and adapter can be removed and 
an oil pressure screen housing can be installed instead. Should this 
stepbe necessary, the recommended oil change interval is reduced 
to 25 hours. A second option would involve removing the filter 
from its standard location and mounting it remotely.
Engine to firewall is not the only area where space may be limited. 
The sump is often tailored in size and shape to meet the require-
ments for a particular airframe. For that reason, the home-builder 
may find that some engine modelswill notfit the plane being built 
because of interference. As if this were not enough to be con-
cerned about, the carburetor or fuel injector location must also be 
considered. These fuel-metering devices are frequently mounted 
under the engine in an updraft configuration, but there are also 
front- and rear-mounted configurations. Some engine models are 
equipped with horizontal carburetors. All of these variations in 
model, may have an effect on engine/airframe fit.
Another error in choice which occurs all toofrequently is the 
purchase of an engineoriginally designed for a high-wing aircraft 
when the builder has a low-wing design under construction. The 
low wing needs a fuel pump, but the high wing usually delivers 
fuelto thecarburetor by gravity. In most cases, a fuel pump cannot 
be added to the engine because the drive mechanismwas not built 
in during engine manufacture, and the accessory housing was not 
machined to allow mounting of a fuel pump.
As a result of contacts with individuals who have made engine
purchases for their aircraft, we know that the variations in 
engine configuration outlined in this article have resulted in 
problems. The purpose of bringing these issues to the atten-
tion of Flyer and Key Reprints readers is to help them avoid
making the same mistakes others have made. If a particular 
engine model has been recommended by a kit manufacturer, it
is best to search out that model. Although similar,other engine 
models may not meet your needs. 
Choosing  the  right  engine  is  often  a  difficult  decision  that 
ultimately could affect the success of the home-built aircraft. 
Finding a used engine is tricky and, as we have already cov-
ered, the builder has to keep a lot of factors in mind such as size 
and configuration.
Lycoming recognizes  that home-built aircraft builders are 
mechanically inclined and technically trained and are always 
strivingfor more options and new technologies. Therefore, 
Lycoming has recently launched several new product lines that 
offer builders the “Power of Choice.
Lycoming  works  very  hard  with  Experimental  Aircraft
Manufacturers to ensure that they have power plants for their 
customers. Lycoming currently offers fully assembled Certified 
 0 L y c o m i n g F l y e r
and Non-Certified Engines through most if not all Experimental 
OEMs. Since these manufacturers designed the aircraft, they are 
well equipped to handle your powerplant questions and needs.
Lycoming has recently launched Thunderbolt Engines. This is 
where technology and passion meet. Only the most premium 
engines carry the Thunderbolt Engine Medallion. These engines 
will be custom-built to your specifications from horsepower to 
engine color and everything in between at Lycoming’s perfor-
mance-proven facility in Williamsport,PA.Its one-of-a-kind 
pairing of Lycoming reliability and cutting-edge technology for 
the kind of power and status only the most passionate ever attain. 
Please contact Thunderbolt Engines at 570-327-7115 to exercise 
your “Power of Choice.
Lycoming has also launched an impressive lineup of engine kits 
that are available through an exclusive network of internation-
ally recognizedshops. These engines will be assembled from 
100% Lycoming parts and tested before delivery. Through this 
exclusive network, Lycoming’s Kit Engine product line delivers 
the power plant solutions that experimental aircraft builders have 
been asking for.
For more facts on the power of making the right choice, please 
visit us at www.lycoming.textron.com. 
Reading the Aircraft for Sale” advertisements can be interesting 
and misleading. As aviation-oriented people, we are conditioned 
tolook for certainbits of informationwhichwe believe will 
allow us to evaluate the product offered for sale. In the case of 
airplanes, this information can generally be segregated into three 
categories — airframe, avionics and engine. For purposes of this 
article, you are on your own with respect to airframe and avionics. 
There does seem to be information on engines which cannot be 
emphasized too strongly.
Engine information isusually provided as hours of operation 
since new or from some major maintenance event. For example, 
700TTSN  wouldindicatethatthis aircraftand enginehave 
been flown for700 hours since  new from the factory.Other, 
but not all, engine-related abbreviations include SMOH (hours 
since major overhaul, SPOH (hours since prop overhaul), STOH 
(hours  since  top  overhaul)  and  SFRM  (hours  since  factory 
remanufacture). Assuming that the recommended TBO of the 
engine being considered is 1800 or 2000 hours, it would appear 
that hours of use in the 400- to 800-hour range would automati-
cally make this engine a very valuable commodity. Unfortunately 
this is not always true, and therefore an advertisement like those 
discussed earlier may state numbers and facts which are abso-
lutely correct, but still misleading.
Consider  a  situation  which  occurred  recently.  A  Lycoming 
IO-360 engine with less than 700 hours since new was reported to 
be using oil at the rate of two-thirds quart per hour and losing oil 
pressure during flight. On closer examination, it was determined 
thatdeterioration andwearhad  causedmetal contamination 
throughout the engine. An engine overhaul was necessary, and 
it included replacement of items such as the camshaft, oil pump 
gears and pistons. Why should an engine with less than 700 hours 
since new be in this sad state?
It should be apparent that the number of hours the engine has 
operated is only part of the story. We need to know all the facts 
if we are to understand what may have happened to this normally 
reliable engine, and also if we are to determine the value of a 
low-time engine in a preowned airplane.
The  engine  with  metal  contamination  and  less  than  700 
hours  of  operation  had  been  installed  brand  new  from  the 
factorymore than 12 years before.Theengine  logbook 
shows that during the first 10 years of service, this engine had 
averaged less than four hours of flight time each month. Chances 
are excellent that there were some months when the engine was 
not flown at all.
Lycoming Service Instruction No.1009  states thattherec-
ommended  TBO  is  based  on  the  use  of  genuine  Lycoming 
parts, average experience in operation and continuous service. 
Continuous service assumes that the aircraft will not be out of 
service for any extended period of time. If an engine is to be out 
of service for longer than 30 days,it should be preserved as speci-
fied in Lycoming Service Letter No. L180. Service Instruction 
No. 1009 also states that because of the variations in operation 
and maintenance, there can be no assurance that an individual 
operator will achieve the recommended TBO.
The point of this discussion is simple. A low-time engine may 
not add value to an aircraft, and the buyer should be aware of all 
factors whichmayaffect the condition and value of the engine. An 
engine which is not flown frequently is subject to deterioration as 
a result inactivity. When the engine does not achieve flight oper-
ating temperatures on a regular basis, the moisture and acids that 
form as a result of combustion and condensation are notvaporized 
and eliminated through the exhaust and crankcase breather. As 
moisture and acids collect in the engine, they contribute to the 
formation of rust on the cylinder walls, camshaft and tappets.
As the engine is run after rust has formed, the rust becomes a 
very fine abrasive causing internal engine wear, particularly to 
the camshaft and tappets. As these components wear, they make 
more metal which attacks the softer metals in the engine. Piston 
pin plugs are examples of parts that may wear rapidly when rust 
becomes an abrasive inside the engine. This wear could eventu-
ally lead to failure.
Theinfrequently  flown engineisjustone example of a low-
timeenginenotmeetingtheexpectationsofabuyer  or  new 
owner. The term zero SMOH is always enticing since it indicates 
theenginehasbeenoverhauled,  haszero  hourssince over-
haul and now may be expected to fly happily on through a full 
manufacturer-recommended  TBO. This willhappeninsome 
cases, but in others, there will not be a chance of this happening. 
It depends on the quality of the overhaul.
Lycoming ServiceBulletinNo. 240 recommends  partstobe 
replaced at overhaul regardless of the apparent condition of the 
old parts. The number of these new parts used in the engine at 
Lycoming Flyer  
overhaul will probably determine the possibilities of achieving 
a full TBO. Consider that most overhaulers install reconditioned 
cylinders on the engines they overhaul. These cylinders are not 
traceable. There is no requirement to maintain a record of their 
previous history. They may have only 2000 hours of operation, 
but they could just as easily have 5000, 7000 or more hours of 
operation. Those cylinders may have been cracked and repaired 
by welding — a procedure that Lycoming metallurgists do not 
recommendbecausethestrengthof a repaired cylinder head 
may be significantly less than that of a new head. There is no 
requirement to let a prospective engine buyer know if cylinders 
have been welded, and this cannot be determined even by close 
examination. The possibility of finding a reconditioned cylinder 
with cracks after a few hundred hours of operation is very real. 
Should this happen, it will be a costly experience.
The  lesson  to  be  learned  here  is  a  very  old  one  —  “Buyer 
Beware.” Whether you are looking at those Aircraft for Sale” 
advertisements or looking for a replacement engine for an aircraft 
you already own, consider carefully what you are about to buy. 
What doyou reallyknow about the engine other than the low-time 
number? How much validity does that number really have? What 
questions can you ask which may help you ensure this engine will 
meet your expectations?
Perhaps simply rereading the paragraphs you have just read may 
helpyou to formulate questions you want answered before taking 
the plunge. In the case of a low-time engine with a history of 
infrequentflight,borescope examination of the cylinders and 
an inspection of cam and tappet surfaces by a competent and 
knowledgeable A & Pmechanic would bea verywise move. 
Always rememberthat low numbers in the hours of operation 
records do not guarantee reaching TBO with many long hours of 
trouble-free operation. The buyer must investigate every detail 
of engine history as closely as possible, and be satisfied that the 
product does have the value which the low hours of operation 
number suggests.
Like ducts in a heating system, the baffles and seals of an 
engine compartment form a channel that’s designed to trans-
port air from one location to another along a prescribed route. 
In this case, the “duct” funnels ram air through the engine 
compartment and back out into the slipstream, cooling down
heat-sensitive components in the process. Faulty or improperly 
performing baffles and seals, like a leaky duct, are inefficient 
and apt to cause damage to your assets. 
Both are criticalto coolingyourengine,says aviationcol-
umnistandformer  Shell  Oilchemist,BenVisser.Common 
engineproblemsrelatedtofaultybafflesandsealsinclude 
abnormallyhighcylinder head temperatures,stickingvalves 
and spark plug overheating. 
Tounderstandtheimportanceofthe function of bafflesand 
seals, Visser says you first have to grasp the physical process 
of how an air-cooled engine is cooled. He explains that when 
an aircraft is flying, air enters the cowling and is slowed in the 
plenum formed by the cowling, engine, baffles and seals. The 
effect creates a static, or higher pressure area, above the engine. 
Since gasses move from high pressure to low pressure, the air 
then flows down through the cylinders and across the oil cooler 
to the low-pressure areas below and behind the engine. The air 
exits the cowling through cowl flaps or other flaring openings, 
carrying away excess heat.
If the baffles are broken or misshapen, Visser says the deformity 
can reduce the volume of air passing some or all of the cylinders, 
meaning less than expected cooling for the cylinders or for the 
oil cooler. Seals can create similar problems. Visser says if the 
seals are not in good condition or are not properly adjusted, air 
can “bleed up” and reduce the static pressure, slowing the flow 
of cooling air and increasing engine temperatures. 
Higher  engine  temperatures  can  foreshadow  trouble  to 
come.  Lycomingsaysthatif coolingairis not“adequately 
contained and directed, hot spots which promote a lead or carbon 
buildup” on  the valve  guides  can occur,  potentially  leading 
to valve stickingproblemsduring startup. PaulMcBride, aka 
“Mr. Lycoming,” says a stuck valvemost of the time ends up 
bending a push rod and causing an oil leak, but can also cause a 
large reduction in engine power and very expensive damage to 
the crankcase. McBride, now an aviation columnist and lecturer, 
retired from Lycoming after a four-decade career.
Other problems withinsufficient cooling include overheating 
the spark plug barrels, a problem that deteriorates ignition leads 
and boosts temperatures in the insulator tip high enough to cause 
preignition and piston distress.Lycoming points out that adequate 
air flowis particularly importantduring hot weather in order 
to provide proper cooling of the oil cooler; oil that runs too hot 
breaks down and causes more friction inside the engine.
Visser recommends having the baffles checked any time the 
engine is being serviced or before a new engine is installed. The 
seals, he says, should be checked during periodic inspections. 
While the first step in diagnosing abnormal engine temperatures 
in normal operations ismaking surethetemperature gauge is 
providing accuratereadings — aproblem thatmechanics say 
accounts for most of the high temperature complaints — Visser 
says the next step is to check all the seals for fit and condition. If 
the seals arent soft and pliable, replace them,” he says. 
One  way to observe how wellthe sealsare  performing their 
stop-gapfunctionis toremovethe cowling and look atthe 
residuesleft wherethecowling and seals rubtogether.Visser 
says havingonecontinuous lineof smudge means the seal is 
doing its job. If there are breaks in the line — which might show 
upas  unmarked  areawhere  the airwas  rushingthrough the 
gap — that could mean leaks and lower static pressure above the 
engine. Visser also recommends inspecting cowl flaps or flaring 
openings at the rear of the cowling for excessive leakage, indi-
cated by discoloration. 
Ifhighcylinderheadtemperaturescontinueto  beproblem-
atic, Lycoming suggestshavingtheignitionand fuel systems 
inspected for problems. 
  L y c o m i n g F l y e r
NOTES
Lycoming Flyer  
NOTES
  L y c o m i n g F l y e r
NOTES

Navigation menu