Manual 1 Gvv Python 2d

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 4

1
JEE Problems in Linear
Algebra: 2D
G V V Sharma
Contents
1 Line 1
2 Medians of a Triangle 2
3 Altitudes of a Triangle 3
4 Angle Bisectors of a Triangle 4
Abstract—This manual introduces matrix computations
using python and the properties of a triangle.
1 Line
1.1 Let
A= 2
2!,B= 1
3!,C= 4
1!.(1)
Draw ABC.
Solution: The following code yields the de-
sired plot in Fig. 1.1
#Code by GVV Sharma
#January 28, 2019
#released under GNU GPL
import numpy as np
import matplotlib.pyplot as plt
#if using termux
import subprocess
import shlex
#end if
A=np.array([2,2])
B=np.array([1,3])
C=np.array([4,1])
len =10
*The author is with the Department of Electrical Engineering,
Indian Institute of Technology, Hyderabad 502285 India e-mail:
gadepall@iith.ac.in. All content in this manual is released under GNU
GPL. Free and open source.
lam 1 =np.linspace(0,1,len)
x AB =np.zeros((2,len))
x BC =np.zeros((2,len))
x CA =np.zeros((2,len))
for i in range(len):
temp1 =A+lam 1[i](BA)
x AB[:,i]=temp1.T
temp2 =B+lam 1[i](CB)
x BC[:,i]=temp2.T
temp3 =C+lam 1[i](AC)
x CA[:,i]=temp3.T
#print(x AB[0,:],x AB[1,:])
plt.plot(x AB[0,:],x AB[1,:],label=’$AB$’)
plt.plot(x BC[0,:],x BC[1,:],label=’$BC$’)
plt.plot(x CA[0,:],x CA[1,:],label=’$CA$’)
plt.plot(A[0], A[1], ’o’)
plt.text(A[0] (1 +0.1), A[1] (1 0.1) , ’
A’)
plt.plot(B[0], B[1], ’o’)
plt.text(B[0] (1 0.2), B[1] (1) , ’B’)
plt.plot(C[0], C[1], ’o’)
plt.text(C[0] (1 +0.03), C[1] (1 0.1) ,
’C’)
plt.xlabel(’$x$’)
plt.ylabel(’$y$’)
plt.legend(loc=’best’)
plt.grid() # minor
#if using termux
plt.savefig(’../figs/triangle.pdf’)
plt.savefig(’../figs/triangle.eps’)
subprocess.run(shlex.split(”termuxopen ../
figs/triangle.pdf”))
#else
#plt.show()
2
Fig. 1.1
1.2 Find the equation of AB.
Solution: The desired equation is obtained as
AB :x=A+λ1(BA)(2)
= 2
2!+λ1 3
5!(3)
Alternatively, the desired equation is
53(xA)=0 (4)
=53x=53 2
2!=4 (5)
1.3 Find the direction vector and the normal vector
for AB
Solution: Let
TAB =A B= 2 1
2 3!(6)
The direction vector of AB is
m=BA=TAB 1
1!= 3
5!(7)
The normal vector nis defined as
nTm=0 (8)
=n= 0 1
1 0!m= 5
3!(9)
1.4 Write a python code for computing the direc-
tion and normal vectors.
import numpy as np
def dir vec(AB):
return np.matmul(AB,dvec)
def norm vec(AB):
return np.matmul(omat,np.matmul(AB,dvec
))
A=np.array([2,2])
B=np.array([1,3])
dvec =np.array([1,1])
omat =np.array([[0,1],[1,0]])
AB =np.vstack((A,B)).T
print (dir vec(AB))
print (norm vec(AB))
1.5 Find the equations of BC and CA
2 Medians of a Triangle
2.1 Find the coordinates of D,Eand Fof the
mid points of AB,BC and CA respectively for
ABC.
Solution: The coordinates of the mid points
are given by
D=B+C
2,E=C+A
2,F=A+B
2(10)
The following code computes the values result-
ing in
D= 2.5
1!,E= 1
1.5!,F= 0.5
0.5!,(11)
#This program calculates the mid point
between
#any two coordinates
import numpy as np
import matplotlib.pyplot as plt
def mid pt(B,C):
D=(B+C)/2
return D
A=np. matrix(’2;2’)
B=np. matrix(’1;3’)
C=np. matrix(’4;1’)
print(mid pt(B,C))
print(mid pt(C,A))
print(mid pt(A,B))
3
2.2 Find the equations of AD,BE and CF. These
lines are the medians of ABC
Solution: Use the code in Problem 1.4.
2.3 Find the point of intersection of AD and CF.
Solution: Let the respective equations be
nT
1x=p1and (12)
nT
2x=p2(13)
This can be written as the matrix equation
nT
1
nT
2!x=p(14)
=NTx=p(15)
where
N=n1n2,(16)
The point of intersection is then obtained as
x=NT1p(17)
=NTp(18)
The following code yields the point of inter-
section
G= 1
0!(19)
#This program calculates the
#intersection of AD and CF
import numpy as np
def mid pt(B,C):
D=(B+C)/2
return D
def norm vec(AB):
return np.matmul(omat,np.matmul(AB,dvec
))
def line intersect(AD,CF):
n1=norm vec(AD)
n2=norm vec(CF)
N=np.vstack((n1,n2))
p=np.zeros(2)
p[0] =np.matmul(n1,AD[:,0])
p[1] =np.matmul(n2,CF[:,0])
return np.matmul(np.linalg.inv(N),p)
A=np.array([2,2])
B=np.array([1,3])
C=np.array([4,1])
D=mid pt(B,C)
F=mid pt(A,B)
AD =np.vstack((A,D)).T
CF =np.vstack((C,F)).T
dvec =np.array([1,1])
omat =np.array([[0,1],[1,0]])
print(line intersect(AD,CF))
2.4 Using the code in Problem 2.3, verify that G
is the point of intersection of BE,CF as well
as AD,BE.Gis known as the centroid of
ABC.
2.5 Graphically show that the medians of ABC
meet at the centroid.
2.6 Verify that
G=A+B+C
3(20)
3 Altitudes of a Triangle
3.1 In ABC, Let Pbe a point on BC such that
AP BC. Then AP is defined to be an altitude
of ABC.
3.2 Find the equation of AP.
3.3 Find the equations of the altitudes BQ and CR.
3.4 Find the point of intersection of AP and BQ.
Solution: Using the code in Problem 2.3, the
desired point of intersection is
H= 1.407
0.56 !(21)
Interestingly, BQ and CR also intersect at the
same point. Thus, the altitudes of a triangle
meet at a single point known as the orthocentre
3.5 Find P,Q,R.
Solution: P is the intersection of AP and BC.
Thus, the code in Problem 2.3 can be used to
find P. The desired coordinates are
P= 2.32
1.24!,Q= 1.73
1.38!,R= 0.03
1.38!(22)
3.6 Draw AP,BQ and CR and verify that they meet
at H.
4
4 Angle Bisectors of a Triangle
4.1 In ABC, let Ube a point on BC such that
BAU =CAU. Then AU is known as the
angle bisector.
4.2 Find the length of AB,BC and CA
Solution: The length of CA is given by
CA =kCAk(23)
The following code calculates the respective
values as
AB =5.83,BC =5,CA =6.08 (24)
#This program calculates the distance
between
#two points
import numpy as np
import matplotlib.pyplot as plt
A=np.array([2,2])
B=np.array([1,3])
C=np.array([4,1])
print (np.linalg.norm(AB))
4.3 If AU,BV and CW are the angle bisectors, find
the coordinates of U,Vand W.
Solution: Using the section formula,
W=AW.B+WB.A
AW +WB =
AW
WB .B+A
AW
WB +1(25)
=
CA
BC .B+A
CA
BC +1(26)
=CA ×B+BC ×A
BC +CA (27)
=a×A+b×B
a+b(28)
where a=BC,b=CA, since the angle bisector
has the property that
AW
WB =CA
AB (29)
4.4 Write a program to find U,V,W.
4.5 Find the intersection of AU and BV.
Solution: Using the code in Problem 2.3, the
desired point of intersection is
I= 1.15
0.14!(30)
It is easy to verify that even BV and CW meet
at the same point. Iis known as the incentre
of ABC.
4.6 Draw AU,BV and CW and verify that they
meet at a point I.
4.7 Verify that
I=BC.A+CA.B+AB.C
AB +BC +CA (31)
4.8 Let the perpendicular from Ito AB be IX. If
the equation of AB is
nT(xA)=0 (32)
show that
IX =nT(IA)
knk(33)
Verify through a Python script.
4.9 If IY BC and IZ CA, verify that
IX =IY =IZ =r(34)
ris known as the inradius of ABC.
4.10 Draw the incircle of ABC
4.11 Draw the circumcircle of ABC

Navigation menu