_950_Terminal_Theory_of_Operation_26Jan1981 950 Terminal Theory Of Operation 26Jan1981
_950_Terminal_Theory_of_Operation_26Jan1981 _950_Terminal_Theory_of_Operation_26Jan1981
User Manual: _950_Terminal_Theory_of_Operation_26Jan1981
Open the PDF directly: View PDF
.
Page Count: 88
| Download | |
| Open PDF In Browser | View PDF |
950 Theory of Operation
CPU, Timing and Control
(Refer to Figure 1) The 23.814 Mhz oscillator (Osc 1) is used
to generate all timing for the terminal.
It is used directly
as the dot clock (Shift Clock), divided by 13 to drive the UARTs,
and divided by 14 (1.701 Mhz) to.drive the CRT controller (CCLK)
and the CPU (via the clock stretch circuit).
The clock stretch circuit is capable, upon command, of generating
clock periods twice the normal length (588 ns versus 1175 ns) for
accessing slow memory or peripheral devices.
Its output drives
the 10 input of the 6502 CPU. The CPU then outputs 12, which
controls the timing of the CPU bus.
12 is a slightly delayed
ver.sion of 1 0 •
The result of these circuits are 12 and CCLK, two signals of
identical frequency but opposite phase, (except during clock
stretched cycles). The importance of this will be made clear
later in our discussion of the display controller.
The CPU fetches its program from the ROMs (Read Only Memory)
A41-43.
It uses the 6522 (A54) to sense switches Sl and S2 and
to generate control signals for the test of the terminal.
Display Controller
(Refer to Figure 2)
Timer T2, part of the 6522, and the 6545
(A55) are used to generate the memory address, in Display RAM,
of each character as it is about to be displayed, and the
horizontal and vertical synchronization pulses necessary to control the deflection circuits of the monitor.
Timer T2 is used to count horizontal scan lines and interrupt
the processor (via NMI) when a specified number of scans has
occurred. The processor then loads the memory address of the
next data row into the CRT Controller and "sets" this address by
generating a carefully-timed reset to the 6545.
At this same time the processor loads a 4 bit value into latch,
A61. At the time of the CRT reset this value is transferred to
counter A60 and becomes the Row Address of the next data row.
This value is then incremented by each horizontal sync pulse until
the start of the next data row when it is again preset to a value
determined by the CPU.
The CPU and the display controller share access to the System and
Display RAM (Random Access Memory).
This is done during alternate
phases of the 12 clock. During the positive portion of 12 the CPU
address may be gated onto the RAM address bus by Multiplexers
A43-46, and bidirectional transceiver A14 is enabled to pass data
between the CPU data bus and the RAM data bus.
During the negative portion of 12 the 6545 address bus is gated
onto the RAM address bus allowing the video data to be latched
by A24 and held for the display generator.
This alternating access or "interleaved" access allows the
processor to operate at normal-speed, without wai't_s of any kind,
yet prevents degradation of the display quality that could be
caused by inadvertant appropriation of the display bus by the
processor to access data.
The only penalty for this scheme is the necessity for fast RAM
(150 ns or faster).
Video Generation
(Refer to Figure 3) This Display Data and the Row Address (or
scan address) are used to obtain the dots for the next character
to be displayed from the character generator ROMs A32 and A33.
These dots are then fed in parallel to shift registers A22 and A23
and emerge serially as raw video.
Additionally, bits 0-3 of Display data and bit 7 of A33 are
combined to generate the attribute signals Underline, Blink, Blank,
and Reverse. ICs A19, 20, 21 and 30 latdhand delay the decoded
attributes from the previous data row for carry-over into the next.
Bit 6 of A33 controls the intensity of the character to be displayed.
~
Gates AI, 2, 10 and 11 are used to modify the raw video to the
proper intensity and polarity, and gate it on or off in response
to the attribute signals and control signals BOW (used to reverse
the entire display), cursor, BLI-RATE (used to blink the video)
and FORCE BLANK (used to blank the entire screen).
Transistor Ql is used to dr.ive the video to the proper voltage
and current levels to drive the video module and/or an external
mon.itor (using the composite video jumpers) .
I/O Circuits
(Refer to Figure 4) UART A49 is used to receive (and optionally
transmit) serial data from (and to) the keyboard. The transmit
path to the keyboard is normally used to conduct the bell tone from
the 6522 (via driver Q4) to the speaker in the keybo~rd.
UARTs A50 (Main Port, P3) and A5l (Printer Port, P4) are used to
send and receive ser ial data from P·3 and P4 via the dr ivers,
receivers and switching circuits A39, 40, 47, 48, 56, 57, 58 and 59.
The UARTs A49, 50 and A5l (655ls) are connected to the CPU Bus
and generate IRQ interrrupts when commanded by the CPU to send or
receive data. Additionally these parts contain internal baud
rate generators that must be programmed by the CPU to control the
baud rates.
(".
General Debugging Guidelines
The following procedures are usually 90ne when there is no
initial beep at turn on. To debug any microprocessor without an emulator, remove as mahy devices as possible from the
bus •. This includes the CPU, CRT controller, VIA, UARTs, and
Program, User, and Character Generator ROMs. The address and
data lines can then be checked for proper operation.
Field component failures will generally be the most complicated
integrated circuits. In case of a failure of this type, first
replace any of the socketed components associated with the
failure symptoms. Should the problem persist, check the RAM,
RS232 components, bus transceiver, and multiplexers. This
failure group is the most difficult to troubleshoot. An
effective way to check the RAM is to use a test wire with two
clips. Connect one end to the R4/Dl junction in the video
section of the logic and the other end touching the outputs
of the RAM. This, in essence, uses the monitor as a scope.
Compare the response on the screen with a good terminal, and
using this method, a faulty terminal can be debugged quickly.
Should the problem not be found in the second f~jlure group,
a simple hard failure in any area could be the cause of the
problem.
.
1/26/81
(
PART NUMBER
DOCUMENT NO. 29000 039
REV. 3, FEBRUARY 1979
'1'
Rockwell
R650X and R651X
R6500 Microcomputer System
DATA SHEET
R6500 MICROPROCESSORS (CPU's)
SYSTEM ABSTRACT
FEATURES
The S-bit R6500 microcomputer system is produced with NChannel, Silicon Gate technology. Its performance speeds are
This innovative
enhanced by advanced system architecture.
architecture results in smaller chips - the semiconductor threshold
to cost-effectivity. System cost-effectivity is further enhanced by
providing a family of 10 software-compatible microprocessor
(CPU) devices, described in this document. Rockwell also provides memory and microcomputer system ... as well as low-cost
design aids and documentation.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
R6500 MICROPROCESSOR (CPU) CONCEPT
Ten CPU devices are available.
All are software-compatible.
They provide options of addressable memory, interrupt input,
on-chip clock oscillators and drivers.
All are -b'us-compatible
with earlier generation microprocessors like the M6S00 devices.
The family includes six microprocessors with on-board clock
oscillators and drivers and four microprocessors driven by external
clocks. The on-chip clock versions are aimed at high performance,
low cost applications where single phase inputs, crystal or RC
inputs provide the time base. The external clock versions are
geared for multiprocessor system applications where maximum
timing control is mandatory. All R6500 microprocessors are
also available in a variety of packaging (ceramic and plastic),
operating frequency (1 MHz and 2 MHz) and temperature (commercial, industrial and military) versions.
MEMBERS OF THE R6500 MICROPROCESSOR
(CPU) FAMILY
•
•
Single +5V supply
N channel, silicon gate, depletion load technology
Eight bit parallel processing
56 InstrUctions
Decimal and binary arithmetic
Thirteen addressing modes
True indexing capability
Programmable stack pointer
Variable length stack
Interrupt capabil ity
Non-maskable interrupt
Use with any type of speed memory
S-bit Bidirectional Data Bus
Addressable memory range of up to 65K bytes
"Ready" input
Direct Memory Access capability
Bus compatible with M6S00
1 MHz and 2 MHz operation
Choice of external or on-chip clocks
On·the-chip clock options
External single clock input
- RC time base input
- Crystal time base input
Commercial, industrial and military temperature versions
Pi'peline architecture
Ordering Information
Order Number:
R65XX __ _
Microprocessors with On-Chip Clock Oscillator
Model
R6502
R6503
R6504
R6505
R6506
R6507
Addressable Memory
65K
41<
SK
4K
4K
SK
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
lTemperature Range:
No suffix = OOC to +700 C
E = -40 oC to +S50 C
(I ndustriall
MT = -550 C to +1250 C
(Military)
M =
MIL.sTD~3,
Class B
Package:
Microprocessors with External Two Phase Clock Output
Model
R6512
R6513
R6514
R6515
Addressable Memory
65K
4K
SK
4K
Bytes
Bytes
Bytes
Bytes
C = Ceramic;
P = Pla~
(Not AVaible for
M 'or MT suffix)
Ff'8t/uency Range:
No suffix = 1 MHz
A = 2 MHz
Model Designator:
XX = 02,03,04, ... 15
NOTE: Contact your local Rockwell Representative
concerning availability.
SpeclflCiition. tubJect to
@
Rockwell International Corporation 1979
All Rights Reserved
Printed in U.S.A.
change without notice
R6600 Signal Description
Clocks (41 1 , 41 2 )
Non-Maskable Interrupt (liI1l1l.
The R651X requires a two phase non-overhipping clock that runs
at the V CC voltage level.
A negative going edge on this input requests that a non-rnaskable
interrupt sequence be generated within the microprocessor.
The R650X clocks are suPPlied with ali internal clock generator.
The frequency of these clocks is externally controlled.
IiiMi is an unconditional interrupt. Following completion of the
current instruction, the sequence of operations defined for i'fiQ .
will be performed, regardless of the state interrupt mask flag. The
vector address loaded into the progrlilm counter, low and high, are
locations fFFA and FFFB respectively, thereby transferring pro·
gram·.control to the memory vector located at these addresses.
The instructions loaded at these locetions cause the microproc·
essor to branch to a non-rnaskable interrupt routine in memory.
Add,.. BUI (AO...A15)
These outputs are TTL compatible. capable of driving one standard
TTL load and 130 pF.
Data BUI (00·1)7)
Eight pins are used for the data bus. This is a bidirectional bus.
transferring data to and from the device end peripherals. The out·
puts are trioState buffers capable of driving one standard TTL load
and 130pF.
Data BUI Enable (DBEt
This TTL compatible input allows external control of the trioState
data output buffers and will enable the microprocessor bus driver
when in the high state. In normal operation DBE would be driven
by the phase ~ (41 2 ) clock. thus allowing data output from
microprocessor only during 41 • During the read cycle. the data
bus drivers are internally disa~ed. becoming .essentially an. open
circuit. To disable data bus drivers externally.DBE should be held
low.
Ready (ROY)
This input signal allows the user to halt or single cycle the microprocessor on all cycles except write cycles. A negative transition
•to the low state during or coincident with phase one (41,) will halt
the microprocessor with the output address lines reflecting the
current address being fetChed. If Ready is low during a write
cycle, it is ignored until the foUowing read operation. This condition will remain through a subsequent phase two (412) in which
the Ready signal is low. This feature allows microprocessor inter·
facing with the low speed PROMs as well as fast (max. 2 cycle)
Direct Memory Access (DMA).
Interrupt Request IIRQ)
This TTL level input requests that an interrupt sequence begin
within the microprocessor. The microprocessor will complete the
current instruction being executed before recognizing the request.
At that time, the interrupt mask bit in the Status Code Register
will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter
and Processor Status Register are stored in the stack. The micro·
processor will then set the interrupt mask flag high so that no fur·
ther interrupts may occur. At the end of this cycle, the program
counter low will be loaded from address FFFE, and program
counter high from location FFFF. therefore transferring program
control to the memory vector located at these addresses. The
RDY signal must be in the high state for any interrupt to be rec·
ognized. A 3KO external resistor should be used for proper
wire-OR operation.
NMI 'also requires an external 3K
wire·OR operations.
n regis.ter tc:>
(,
V CC for proper
Inputs iRO and NMI are hardware interrupts,lines that are sam.
pled during 412 (phase 2) and will begin the eppropriate interrupt
routine on the 41, (phase ,) following the completion of the cur·
rent instruction.
Set 0vrrflow Flag (5.0.)
A neg~tive going edge on this input sets the overflow bit in the
Status Code Register. This Signal is sampled on the trailing edge of
411 and must be externally synchronized.
SYNC
This output line is provided to identify those cycles in which the
microprocessor is doing an OPCODE fetch. The SYNC line goes
high during 41, of an OP CODE fetch and stays high for the
remainder of that cycle. If the RDY line is pulled low during the
41, clock pulse in which SYNC went high, the processor will stop
in its current state and will remain. in the state until the RDY line
goes high. In this manner, the SYNC signal can be used to control
RDY to cause Single instruction execution.
(
Reset
This input is used to reset or start the microprocessor from a
power down condition. During the time that this line is held low,
writing to or from the microprocessor is inhibited. When a posi·
tive edge is detected on the input. the microprocessor will imme·
diately begin the reset sequence.
After a system initialization time of six clock'cycles, the mask
interrupt flag will be set and the microprocessor will load the pro·
gram counter from the memory vector locations FFFC and FFFD.
This is the start location for program control.
After VCC reaches 4.75 volts in a power up routine, reset must be
held low for at least two clock cycles. At this time the R/W and
(SYNC) signal will become valid.,
When the reset signal goes high following these two clock cycles.
the microprocessor will proceed with the normal reset procedure
detailed above.
(
ADDRESSING MODES
ACCUMULATOR ADDRESSING - This fonn of addressing is
represented with a one byte instruction, implying an operation on
the accumulator.
IMPLIED ADDRESSING - In the implied addressing mode, the
address containing the operand is implicitly stated in the operation
code of the instruction.
IMMEDIATE ADDRESSING - In immediate addressing, the
operand is contained in the second byte of the inStruction, with
no further memory addressing required.
RELATIVE ADDRESSING - Relative addressing is used only
with branch instructions and establishes a destination for the conditional branch.
ABSOLUTE ADDRESSING - In absolute addressing, ~econd
byte of the instruction specifies the eight low order bits of the
effective address while the third byte specifies the eight high
order bits. Thus, the absolute addressing mode allows access to
the entire 65K bytes of addressable memory.
The second byte of the instruction becomes the operand which is
an "Offset"added to the contents of the lower eight bits of the
program counter when the counter is set at the next instruction.
The range of the offset is -128 to +127 bytes from tha next
instruction.
ZERO PAGE ADDRESSING - The zero page instructions allow
for shorter code and execution times by only fetching the second
byte of the instruction and assuming a zero high address byte.
Careful use of the zero page can result in significant increase in
code efficiency.
INDEXED ZERO PAGE ADDRESSING - (X, V indexing) - This
form of addressing is used in conjunction with the index register
and is referred to as "Zero Page, X" or "Zero Page, V". The effective address is calculated by adding the second byte to the contents of the index register. Since this is a fonn of "Zero Page"
addressing, the content of the second byte references a location in
page zero. Additionally due to the "Zero Page" addressing nature
of this mode, no carry is added to the high order 8 bits of memory
and crossing of page boundaries does not occur.
INDEXED ABSOLUTE ADDRESSING - (X, V indexing) - This
form of addressing is used in conjunction with X and V index register and is referred to as "Absolute, X", and "Absolute, V". The
effective address is formed by adding the contents of X or V to
the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or
count value and the instruction to contain the base address. This
type of indexing allows any location referencing and the index to
modify multiple fields resulting in reduced coding and execution
time.
INDEXED INDIRECT ADDRESSING - In indexed indirect
addressing (referred to as (Indirect, Xl), the second byte of the
instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory
location on page zero whose contents is the low order eight bits
of the effective address. The next memory location in page zero
contains the high order eight bits of the effective address. Both
memory locations specifying the high and low order bytes of the
effective address must be in page zero.
INDIRECT INDEXED ADDRESSING - In indirect .indexed
addressing (referred to as (Indirect!, V), the second byte of the
instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the V
index register, the result being the low order eight bits of the
effective address. The carry from this addition is added to the
contents. of the next page zero memory location, the result being
the high order eight bits of the effective address.
ABSOLUTE INDIRECT - The second byte of the instruction
contains the low order eight bits of a memory location. The high
order eight bits of that memory location is contained in tha third
byte of the instruction. The contents of tha fully specified memory location is the low order byte of the effective address. The
next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program
counter.
INSTRUCTION SET - ALPHABETIC SEQUENCE
ADC Add Memory to Accumulator with Carry
AND "AND" Memory with Accumulator
ASl Shift left One Bit (Memory or Accumulator)
BCC
BCS
BEQ
BIT
BMI
BNE
BPl
BRK
BVC
BVS
Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with Accumulator
Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break
Branch on Overflow Clear
Branch on Overflow Set
ClC
ClD
Cli
ClV
CMP
CPX
CPV
Clear Carry Flag
Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Overflow Flag
Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index V
DEC Decrement Memory by One
DEX Decrement Index X by One
DEV Decrement Index V by One
EOR "Exclusive-or" Memory with Accumulator
INC
INX
INV
Increment Memory by One
Increment Index X by One
Increment Index V by One
JMP
JSR
Jump to New location
Jump to New location Saving Return Address
lOA
lOX
lDV
lSR
load Accumulator with Memory
load Index X with Memory
load Index V with Memory
Shift One Bit Right (Memory or Accumulator!
NOP
No Operation
ORA "OR" Memory with Accumulator
PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PlA Pull Accumulator from Stack
PlP Pull Processor Status from Stack
ROL
ROR
RTI
RTS
Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt
Return from Subroutine
SBC
SEC
SED
SEI
STA
STX
STY
Subtract Memory from Accumulator with Borrow
Set Carry Flag
Set Decimal Mode
Set Interrupt Disable Status
Store Accumulator in Memory
Store Index X in Memory
Store Index V in Memory
TAX
TAV
TSX
TXA
TXS
TVA
Transfer Accumulator to Index X
Transfer Accumulator to Index V
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Register
Transfer Index V to Accumulator
VSS
ROY
O
O.4V
j~-PW-H-.-:---:'-:'-:':'~+-~
OL
Rm
----t=~:.I~---------..J/
~f
O.4V
CREF
O'4V~1
"A"
1.5V
.
L
ADDRESS FROM
CPU
I--PWHI/I 2 - 1
, .
+-__
DATAFROM __- i_ _ _
MEMORY
REF "B"
-r_~~
ROY, 5.0.
SYNC
Timing for Writing Data to Memory or Peripherals
Clock Timing - R6512, 13, 14, 15
,REF "A"
~l·~------TCYC------~~
Rm
(
ADDRESS FROM
CPU
DATAFROM __~-------r--c~
CPU
REF "B"
Note: "REF," means Reference Points on clocks.
PROGRAMMING MODEL
o
7
....1ACCUMULATOR
A
I'--______
o
7
15
1~_ _.y...;..._ _ _~IINDEX REGISTER
o
7
....1INDEX REGISTER
X
1,--_______
o
PCH__-=-~__~;.;;;...
PCl __~I PROGRAM COUNTER
,--_~...;;.;..
I
Y
X
7
I
7
11 I
8
I NIVI
IB
lOll I ZIClpROCESSOR STATUS REG
~
"PC"
CARRY
ZERO
"s"
1 = RESULT ZERO
IRQ DISABLE
1 = DISABLE
1 =TRUE
'-----DECiMAL MODE
' - - - - - - B R K COMMAND.
L--------OVERFlOW
L.--_ _ _ _ _ _ _
NEGATIVE
'P"
1 = TRUE
o
-'1 STACK POINTER
1...-'--_ _ _
S_ _ _ _
o
7
A
1= BRK
1 =TRUE
1 =NEG.
(
+-
-
.-r---
AD
....-
Al
A2
....
A3
CONTROL SECTION ---t.~
REGISTER SECTION
+t~
rINDEX
REGISTER
Y
~
INDEX
REGISTER
X
~
STACK
POINT
REGISTER
IS)
t?
INTERRUPT
LOGIC
'-RDY
ABL
.-
A4
..J
r-
....
A5
~~
..J
«
z
a:
w
INSTRUCTION
DECODE
I-
Z
.-
A6
....
A7
-~
~
ALU
~
~
ADDRESS
BUS
.-r---
AB
:I:
0
«
..J
«
z
I+I+I+-
~
Ii.
a:
+-
A9
....--
ACCUMULATOR
.--
w
l-
TIMING
CONTROL
~
·A1D
+-
All
+-
A12
A13
'
...
...
~
PCL
~
~
PCH
ABH
~
INPUT
DATA
LATCH
IDLI
I+-
A14
A15
'-
-
LEGEND:
11' :
L-<
'"
~
..... -
q,2
DATA BUS
BUFFER
H
PROCESSOR
STATUS
REGISTER
P
I
CLOCK
GENERATOR
,I
t
Note:
.m--2
-I
m
'"T1
l>
nm
l>
C
VSS
PAO
PAl
PA2
PA3
PA4
PA5
PA6
PA7
PBO
PBl
PB2
PB3
PB4
PB5
PB6
PB7
CB1
CB2
VCC
CAl
CA2
RSO
RSl
RS2
RS3
REs
DO
Dl
D2
D3
D4
D5
D6
D7
¢2
CSl
Cs2
R/W
iRQ
Pin Configuration
,=.-~~~,-~ .. =-"~.",-~~.,".,-."------------,,,
CD Rockwell International Corporation 1978
<
m
:rJ
Temperature
Range
+70 0 C
+70 0 C
+70 0 C
+70 0 C
+85 0 C
+85 0 C
+85 0 C
N
N
-I
Ordering Information
Order
Number
:rJ
0)
(J1
Specifications subject to
change without notice
l>
"m-I
--<
l>
:rJ
-
OPERATION SUMMARY
Register Select Lines I RSO, RS1, RS2, RS31
The four Register select lines are nCfmally connected to the processor address bus lines to allow the processor to select the internal R6522
register which is to be accessed. The sixteen possible combinations access the registers as follows:
RS1
L
L
L
L
ORB
L
L
L
H
ORA
L
L
H
L
DDRB
L
L
H
H
DORA
L
H
L
L
T1L-L
T1C-L
Write Latch
Read Counter
T1C-H
Trigger T1 L·UT1 Col
Transfer
H
L
RSO
Remarks
RS2
RS3
L
Register
H
RS3
RS2
RS1
RSO
Register
H
L
L
L
T2L-L
T2C-L
Write Latch
Read Counter
H
L
L
H
T2C-H
Triggers T2L-L/T2C-L
Transfer
Controls Handshake
L
H
H
L
T1L-L
L
H
H
H
T1 L-H
H
L
H
H
L
H
H
ACR
H
H
L
L
PCR
H
H
L
H
IFR
H
H
H
L
IER
H
H
H
H
ORA
(
Remarks
SR
No Effect on
Handshake
Note: L = O.4V DC, H = 2.4V DC.
Timer 2 Control
R/W= L
RS3
RS2
RS1
RSO
H
L
L
L
Write T2L-L
Read T2C-L
Clear I nterrupt flag
H
L
L
H
Write T2C-H
Transfer T2L-L to T2C-L
Clear I nterrupt flag
Read T2C-H
R/W=H
(
Writing the Timer 1 Register
The operations which take place when writing to each of the four T1 addresses are as follows:
RS3
RS2
RS1
RSO
Operation IR/W = LI
L
H
L
L
Write into low order latch
L
H
L
H
Write into high order latch
Write into high order counter
Transfer low order latch into low order counter
Reset T1 interrupt flag
L
H
H
l
Write low order latch
X
H
H
H
Write high order latch
Reset T1 interrupt flag
Reading the Timer 1 Registers
For reading the Timer 1 registers, the four addresses relate directly to the four registers as follows:
RS3
RS2
RS1
RSO
Operation IR/W = HI
l
H
L
l
Read T1 low order counter
Reset T1 interrupt flag
L
H
l
H
Read T1 high order counter
L
H
H
l
Read T1 low order latch
L
H
H
H
Read T1 high order latch
(
TIMING CHARACTERISTICS
Read Timing Characteristics (loading 130 pF and one TTL load)
Parameter
Symbol
Min
Delay time, address valid to clock positive transition
T ACR
180
Delay time, clock positive transition to data valid on bus
TCDR
-
Peripheral data setup time
TpCR
Data bus hold time
THR
Rise and fall time for clock input
T RC
Typ
300
10
-
Max
Unit
-
-
nS
-
395
nS
-
-
-
-
-
25
nS
,
nS
nS
TRF
PHASE TWO
CLOCK
Jr-t---t---t---=:..::..-------- 2.4V
ADDRESS
-----,-:! . , , - - - - + - - t - - + - - - - - - - - - - - O . 4 V
PERIPHERAL
DATA
Jr-..:..;::=---.:.--t--+----------2.4V
T
1.-_ _,,1_ -
_H.!I_ - - - - - -
O.4V
-2.4V
DATA BUS
r--"""';1f-- --
- - --O.4V
Read Timing Characteristics
Write Timing Characteristics
Parameter
Symbol
Min
Enable pulse width
TC
0.47
-
25
liS
Delay time, address valid to clock positive transition
T ACW
180
-
-
nS
Delay time, data valid to clock negative transition
T DCW
300
-
-
nS
Delay time, read/write negative transition to clock positive
transition
TWCW
180
-
-
nS
Data bus hold time
T HW
10
-
-
nS
Delay time, Enable negative transition to peripheral data valid
TCpW
-
-
1.0
J.l.S
T CMOS
-
Delay time, clock negative transition to peripheral data valid
CMOS (VCC - 30%)
Typ
Unit
1
-
PHASE TWO
CLOCK
,.--------2.4V
ADDRESS
--::;:o-J
Max
~==::r---1::::"'..4:r,:;;~----O.4V
rt-......::C::.:M~O::.:S'--_ _ _ _
2.4V
T DCW -1----1
READ/WRITE
-O.4V
DATA BUS
- - - - - - - - - O.4V
- - - - - - -
- - VCC
...Jro-------2.4V
PERIPHERAL
DATA
Write Timing Characteristics
2.0
liS
I/O Timing Characteristics
Characteristic
Symbol
Min
Typ
Max
Unit
Rise and fall time for CA 1, CB 1, CA2 and CB2 input signals
TRF
-
-
1.0
j.ts
Delay time, clock negative transition to CA2 negative
transition (read handshake or pulse mode)
TCA2
-
-
1.0
j.ts
Delay time, clock negative transition to CA2 positive
transition (pulse mode)
T RS1
-
-
1.0
j.ts
Delay time, CA 1 active transition to CA2 positive transition
(handshake mode)
T RS2
-
-
2.0
j.ts
Delay time, clock positive transition to CA2 or CB2 negative
transition (write handshake)
T WHS
-
-
1.0
j.tS
Delay time, peripheral data val id to CB2 negative transition
T DC
0
-
1.5
j.ts
Delay time, clock positive transition to CA2 or CB2 positive
transition (pulse mode)
T RS3
-
-
1.0
j.tS
Delay time, CB1 active transition to CA2 or CB2 positive
transition (handshake mode)
T RS4
-
-
2.0
j.ts
Delay time, peripheral data valid to CA 1 or CB 1 active
transition (input latching)
TIL
300
-
-
ns
Delay time CB1 negative transition to CB2 data valid
(internal SR clock, shift out)
TSR1
-
-
300
ns
Delay time, ne9ative transition of CB1 input clock to CB2 data
valid (external clock, shift out)
TSR2
-
-
300
ns
Delay time,CB2 data valid to positive transition of CB1 clock
(shift in, internal or external clock)
T SR3
-
-
300
ns
Pulse Width - PB6 Input Pulse
T IPW
2
-
-
j.ts
Pulse Width - CB 1 In'put Clock
T ICW
2
-
-
j.ts
liPS
2
-
-
j.ts
IICS
2
-
-
j.tS
.
\
Pulse Spacing - PB6 I nput Pulse
Pulse Spacing - CB1 Input Pulse
PB6 INPUT PULSE
COUNTING MODE
C
T
1PW
=:\{"'"_-_-_-_-_-_-_::::
~
r---2.4V
CB2 SERIAL
DATA IN
T ICW
CB1CLOCK
(
\
O.4V
~TS R3
V-- --
~
TSR1
2.4V
O.4V
TSR2
CB2 SERIAL
DATA OUT
~
I/O Timing Characteristics
2.4V
O.4V
(
Timer 1 Operating Modes
Two bits are provided in the Auxiliary Control Register to allow selection of the Tl operating modes. These bits and the four possible modes
are as follows:
ACR7
Output
Enable
ACR6
"Free-Run"
Enable
0
0
Generate a single time·out interrupt each time Tl is loaded
0
1
Generate) continuous interrupts
1
0
Generate a single interrupt and an output pulse on PB7 for
each Tl load operation
1
1
Generate continuous interrupts and a square wave output
on PB7
Mode
FUNCTION CONTROL
Control of the various functions and operating modes within the R6522 is accomplished primarily through two registers, the Peripheral Con·
trol Register (PCR), and the Auxiliary Control Register (ACR). The PCR is used primarily to select the operating mode for the four peripheral
control pins. The Auxiliary Control Hegister selects the operating mode for the Interval Timers (Tl, T2), and the Serial Port (SRI.
Peripheral Control Register
The Peripheral Control Register is organized as follows:
Bit
#
I
7
I
6
CB2 Control
Function
5
4
CBl
Control
3
I
2
I
CA2 Control
1
0
CAl
Control
Typical functions are shown below:
PCR3
PCR2
PCR1
Mode
0
0
0
Input mode - Set CA2 interrupt flag (IFRO) on a negative transition of the input signal. Clear
I FRO on a read or write of the Peripheral A Output Register.
0
0
1
Independent interrupt input mode - Set IFRO on a negative transition of the CA2 input sig·
nal. Reading or writing ORA does not clear the CA2 interrupt flag.
0
1
0
Input mode - Set CA2 interrupt flag on a positive transition of the CA2 input signal. Clear
I FRO with a read or write of the Peripheral A Output Register.
0
1
1
I ndependent interrupt input mode - Set I FRO on a positive transition of the CA2 input signal. Reading or writing ORA does not clear the CA2 interrupt flag.
1
0
0
Handshake output mode - Set CA2 output low on a read or write of the Peripheral A Output
Register. Reset CA2 high with an active transition on CAl.
1
0
1
Pulse output mode - CA2 goes low for one cycle following a read or write of the Peripheral
A Output Register.
1
1
0
Manual output mode - The CA2 output is held low in this mode.
1
1
1
Manual output mode - The CA2 output is held high in this mode.
,
Auxiliary Control Register
Many of the functions in the Auxiliary Control Register have been discussed previously. However, a summary of this register is presented
here as a convenient reference for the R6522 user. The Auxiliary Control Register is organized as'follows:
Bit fI
7
Function
I
6
Tl Control
4
5
T2
Control
I
3
I
2
Shift Register Control
1
0
PB
latch
Enable
PA
latch
Enable
(
Shift Register Control
The Shift Register operating mode is selected as follows:
ACR4
ACR3
ACR2
Mode
0
0
0
Shift Register Disabled.
0
0
1
Shift in under control of Timer 2 .
0
1
0
Shift in under control of system clock.
0
1
1
Shift in'under control of external clock pulses.
1
0
0
Free-running output at rate determined by Timer 2.
1
0
1
Shift out under control of Timer 2.
1
1
0
Shift out under control of the system clock ..
1
1
1
Shift out under control of external clock pulses.
(
T2 Control
Timer 2 operates In two modes. If ACR5 = 0, T2 acts as an interval timer in the one-shot mode. If ACR5 = 1, Timer 2 acts to count a pre:
determined number of pulses on pin PB6,
(
ROCKWEll INTERNATIONAL-MICROelECTRONIC DEVICES
~~~Y~O~U~R~L~O~C~A~L~R~EP~R~E~S~E~N~T~A~T~IV7.E~----'
REGIONAL SALES OFFICES
HOME OFFICE'
Rockwell International Corp.
Microelectronic Devices
P.O. Box 3669
Anaheim, Ca. 92803
U.S.A.
Phone: (,114) 632-0950
1WX: 910-591-1698
, Also Applications Centers
CENTRAL REGION, U.S.A.
Contact Robert 0 Whitesell & Associates
6691 East Washington Street
Indianapolis. Indiana 46219
(317) 359-9283 Attn. Milt Gamble. Mgr.
EASTERN REGION, U.S.A.'
Carolier Office Building
850-870 U.S. Route 1
North BrunswiCk, New Jersey 08902
Phone: (201) 246-3630
EUROPE
Rockwell International GmbH
Microelectronic Devices
Fraunhoferstrasse 11
0-8033 Munchen-Martinsried
Germany
Phone: (089) 859-9575
Tp.IA~: 0521/2650
MIDWEST REGION, U.S.A.
1011 E. Touhy Avenue, Suite 245
Des Plaines, IL 60018
.
Phone: (312) 297-8RI
WESTERN REGION, U.S.A.
3310 Miraloma Avenue
P.O. Box 3669
Anaheim, Ca. 92803
Phone: (714) 632- 0950
FAR EAST
Rockwell International Overseas Corp.
Ichiban-cho Central Building
22-1 Ichiban-cho, Chiyoda-ku
Toyko 102, Japan
Phone: 265-8808
Telex: J22198
808
(
(
PART NUMBER
A6545-1
'1'
.R6500 Microcomputer System
Rockwell
DATA SHEET
CRT CONTROLLER (CRTC)
DESCRIPTION
FEATURES
The R6545-1 CRT Controller (CRTC) is designed to interface
an 8-bit microprocessor to CRT raster scan video displays,
and adds an advanced CRT controller to the established and
expanding line of R6500 products.
• Compatible with 8-blt microprocessors
• Up to 2.5 MHz character clock operation
• Refresh RAM may be configured in row/column or straight
binary addressing
• Alphanumeric and limited graphics capability
• Up and down scrolling by page, line, or character
• Programmable Vertical Sync Width
• Fully programmable display (rows, columns, character
matrix)
The R6545-1 provides refresh memory addresses and character generator row addresses which allow up to 16K char_ acters with 32 scan lines per character to be addressed. A
major advantage of the R6545-1 is that the refresh memory
may be addressed in either straight binary or by row/column.
Other functions in the R6545-1 include an intemal cursor regIster which generates a cursor output when its contents are
equal to the current refresh address. Programmable cursor
start and end registers allow a cursor of up to the full character scan in height to be placed on any scan lines of the
character. Variable cursor display blink rates are provided.
A light pen strobe input allows capture of the current refresh
address in an internal light pen register. The refresh address
lines are configured to provide direct dynamic memory refresh.
All timing for the video refresh memory signals is derived
from the character clock input. Shift register, latch, and multiplex control Signals (when needed) are provided by external
high-speed timing. The mode control register allows noninterlaced video display modes at 50 or 60 Hz refresh rate.
The internal status register may be used to monitor the
R6545-1 operation. The RES input allows the CRTC-generated fi~d rate to be dynamically-synchronized with line frequency jitter.
ORDERING INFORMATION
Part
Number
R6545-1P
R6545-1AP
R6545-1C
R6545-1AC
Package
Type
Plastic
Plastic
Ce.ramic
Ceramic
o RockwelllntamaIIonaI Corporation 1980
All Rights RaHrved
PrInted In U.S.A.
Frequency
1 MHz
2 MHz
1 MHz
2 MHz
Temperature
Range
O°C to
O°C to
O°C to
O°C to
+70°C
+700C
+70°C
+70°C
• N9n-interlaced scan
• 50/60 Hz operation
• Fully programmable cursor
•
•
•
•
•
•
•
Light pen register
Addresses refresh RAM to 16K characters
No external DMA required
Internal status register
4Q-Pin ceramic or plastic DIP
Pin-compatible with MC6845
Single +5 ±5% Volt Power Supply
VSS
m
LPEN
CCO/MAO
CC1/MA1
CC2/MA2
CC3/MA3
CC4IMA4
CC5/MA5
CC8/MA8
CC7/MA7
CRO/MAS
CR1/MA9
CR2/MA10
CR3/MA11
CR4IMA12
CREI/MA13
DISPLAY ENABLE
CURSOR
VCC
VSYNC
HSYNC
RAO
RA1
RA2
'RA3
RA4,
00
01
02
03
04
DEI
08
07
Ci
RS
,2
Rlii
CCLK
R6545-1 Pin Configuration
SpecltlcaIIona subject to
change without notice
Document No. 21000 DI7
Decemblr1_
INTERFACE SIGNAL DESCRIPTION
CPU INTERFACE
!62 (Phase 2 Clock)
The input clock is the system Phase 2 (_2) clock and is used
to trigger all data transfers between the system processor (CPU)
and the R6545-1. Since there is no maximum limit to the allowable
clock time, it is not· necessary for it to be a continuous
clock. This capability permits the R6545-1 to be easily interfaced
to non-6500 compatible microprocessors.
_2
R/W (Read/Write)
The R/W input signal generated by the processor is useri to
control the direction. of data transfers. A high on the R/W pin
allows the processor to read the data supplied by the R6545-1,
a low on the R/W pin allows data on data lines 00-07 to be
written into the R6545-1.
CI (Chip Select)
The Chip Select input is normally connected to the processor
address bus either directly or through a decoder. The R6545-1
is selected when CS is low.
CURSOR (Cursor Coincidence)
The CURSOR signal is an active-high output used to indicate (
when the scan coincides with the programmed cursor position.
The cursor position may be programmect to be any character
in the address field. Furthermore, within the character, the·oursor may be programmed to be any block of scan lines, since
the start scan line and the end scan line are both programmable.
The cursor position may be delayed by one character time by
setting Bit 5 of RS to A "1".
LPEN (Light Pen Strobe)
The LPEN signal is an· edge-sensitive input used to load the
internal Light Pen Register with the contents of the Refresh .
Scan Counter at the time the active edge. occurs. The active
edge of LPEN is the low-to-high transition.
CCLK (Clock)
The CCLK signal is the character timing clock input and is used
as the time base for all internal count/control functions.
FmI
The Register Select input is used to access intemal registers.
A low on this pin permits writes (R/W = low) into the Address
Register and reads (R/W = high) from the Status Register. The
contents of the Address Register is the identity of the register
accessed when RS is high.
The R'ESsignal is an active-low input used to initialize all internal scan counter circuits. When ~ is low, all intemal
counters are stopped and cleared, all scan and video outputs
must stay
are low, and control registers are unaffected.
low for at least one CCLK period. All scan timing is initiated
can be used to synwhen RES goes high. In this way,
chronize display frame timing with line frequency. RES may also
be used to synchronize multiple CRTC's in horizontal· and/or (
.
vertical split screen operation.
00-07 (Data Bus)
REFRESH RAM AND CHARACTER ROM INTERFACE
00-07 are the eight data lines used to transfer data between
the processor and the R6545-1. These lines are bidirectional
and are normally high-impedance except during read cycles
when the chip is selected (~ = low).
MAo-MA13 (Refresh RAM Address Lines)
RS (Register Select)
VIDEO INTERFACE
HSYNC (Horizontal Sync)
The HSYNC signal is an active-high output used to determine
the· horizontal position of displayed text. It may drive a CRT
monitor directly or may be used for composite video generation.
HSYNC time position and width are fully programmable.
VSYNC (Vertical Sync)
The VSYNC signal is an active high output used to determine
the vertical position of displayed text. Like HSYNC, VSYNC may
be used to drive a CRT monitor or composite video generation
circuits. VSYNC time position and width are both programmable.
QISPLAYENABLE (Display Enable)
The OISPLAY ENABLE signal is an active-high output used to
indicate when the R6545-1 is generating active display information. The number of horizontal display characters per row
and the number of vertical display rows are both fully programmable and together are used to generate the OISPLAY ENABLE
signal. DISPLAY ENABLE can be delayed one character time
by setting bit 4 of RB equal to 1.
m
m
These 14 signals are active-high outputs used to address the
Refresh RAM for character storage and display operations. The
starting scan address is fully programmable and the ending
scan address is determined by the total number of characters
displayed, which is also programmable, in terms of characters/
line and lines/frame.
There are two selectable address modes for MAO~MA 13:
In the straight binary. mode (RB, Mode Control, bit 2 = "0"),
characters are stored in successive memory locations. Thus,
the software must be designed such that row and column character coordinates are translated into sequentially-numbered addresses. In the row/column mode (RB, Mode Control, bit 2 =
"1 "), MAO-MA7 become column addresses CCO-CC7 and MASMA13 become row addresses CRO-CR5. In this case, the software can manipulate characters in terms of row and column locations, but additional address compression circuits are needed
to convert the CCO-CC7 and CRO-CR5 addresses into a memory-efficient binary address scheme.
RAo-RA4 (Raster Address Lines)
These 5 signals are active-high outputs used to select each ras- (
ter scan within an individual character row. The number of raster
scan lines is programmable and determines the character height,
including spaces between character rows.
J
INTERNAL REGISTER ORGANIZATION
Addr_ Register
CS
RS
4 3 2 1 0
Reg.
No.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
0
0
X X X X X
X X X X X
X X X X· X
X
X
X
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
RO
Rl
R2
R3
R4
R5
A6
R1
RS
R9
R10
Rll
R12
R13
R14
R15
R16
R17
Register Name
Address Register
Status Register
Horizontal Total Char
Horizontal Displayed Char
Horizontal Sync Position
YSYNC, HSYNC Widths
Vertical Total Rows
Vertical Total Adjust Lines
Vert.ical Displayed Rows
Vertical Sync Position
Mode Control
Scan Line
Cursor Start Line
Cursor End Line
Display Start Address (HI
Display Start Address (L1
Cursor Position Address (HI
Cursor Position Address (L1
Light Pen Register IHI
Light Pen Register (LI
Read
IR/WHighl
Register Units
Register No.
Write
IR/WLowl
V
V
V
-
V
4 3
6 5V V
7 6 5 4 3
7 6 5 4 3
7 6 5 4 3
7 6 5 4 3
/' 6 5 4 3
/ ' / ' ./ 4 3
V 6 5 4 3
V 6 5 4 3
7 6 5 4 3
/ ' V ./ 4 3
V 8 5 4 3
/ ' V ./ 4 3
/' V 5 4 3
7 6 5 4 3
./'V 5 4 3
7 6 5 4 3
./' V 5 4 3
7 6 5 4 3
V
V
V
V
V
V
V
V
V
V
V
No. of Scan Lines
Scan Line No.
Scan Line No.
-
-
V
-
V
V
V
V
-
6 5 4 3 2 1 0
V / V
V
No. of Characters/Row
No. of Characters/Row
Character Position
No. of Scan Lines, Characters
No. of Character Rows
No. of Scan Lines
No. of Character Rows
No. of Character Rows
7
1/ I V V V / /
V
_..
Register Bit
V
2
1 0
/ ' ./
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 1. Overall Register Structure and Addressing
GND
CPU IIF
STATUS REGISTER (SR)
VIDEO IIF
~D7~~~~--------~--"HSYNC
cb2---4~
R/W ---II"
cs---II"
RS -
This 8-bit register contains the status of the CATC. Only two
bits are assigned, as follows:
..........~VSYNC
DISPLAY ENABLE
. CURSOR
LPEN
CCLK
RES
1.,..r----.,.,J
......
'----__..v___- - . J '
- - - - N O T USED
L.I
MAO-MA13
RAO·RA4
REFRESH RAM AND CHARACTER ROM
Vertical R. Tree (VRT)
o • Scan Is not currently in its vertical . .t..- time.
1 - Scan il currently in its vertiCil ....
time.
Not. the! this bit octulily g_ to I HI H when verti..1
re-trece stlrts, but goes to • "0" five char.etar clock
tim.. before vertiCal ...
In., 10 that critical
timings for refresh RAM _rations Ire lvoided.
t,_
R6545·1 Interface Diagram
·t.....
' - - - - - LPEN Register Full (LRF)
o - Register R16 Dr R17 h. bUn reod by the CPU.
INTERNAL REGISTER DESCRIPTION
ADDRESS REGISTER
This 5-bit write-only register is used as a "pointer" to direct
CATC/CPU data transfers within the CATC. Its contents is the
number of the desired register (0-17). When CS and AS are low,
then this register may be loaded; when CS is low and AS is
high, then the register selected is the one whose identity is
.
stored in this address register.
1 -
LPEN strobe h.. bUn .....ived.
' - - - - - - Not Used
NOTE:
The Statu. Register tak.. the State,
I-I 0 l' 1-1-1-1-1-1
immediately after pOWer (V CCI turn..,n.
Ro-HORIZONTAL TOTAL CHARACTERS
R7-VERnCAL SYNC POSmON
This 8-blt write-only register contains the total of displayed and
non-displayed characters, minus one, per horizontal line. The
frequency of HSYNC Is thus determined by this register.
This 7-bit write-only register is used to select the character row
time at which the vertical SYNC pulse is desired to occur and,
thus, is used to position the displayed text in the vertical direction.
R1-HORIZONTAL DISPLAYED CHARACTERS
"RI-MODE CONTROL (MC)
This 8-bit write-only register contains the number of displayed
characters per horizontal line.
This 8-bit write-only register selects the operating modes of the
R6545-1 , as follows:
R2-HORIZONTALSYNC POSITION
78543210
MC7 MC8
This 8-bit write-only register contains the position of the horizontal SYNC on the horizontal line, In terms of the character
location number on the line. The position of the HSYNC determines the left to right location of the displayed text on the video
screen. In this way, the side margins are adjusted.
(-
-
-
MC& MC4
CSK DES
MC3 MC2 MC. MC&
0
"AD _
0
L:=
R3-HORIZONTAL AND VERTICAL SYNC WIDTHS
..
This B-bit write-only register contains the widths of both HSYNC
and VSYNC, as follows:
M.... Program to "0"
NoIUoed
'---R".'_RAM Add .....ing Mode fRADI
o•
L...---
Mult
,
f or streight binary
or Row/Column
Protr.mtDUO'"
D ...... E...ble Skew IDESt
for no ....ay.
o•
• • to ct.1.., DilpllV EMbie OM ch.rlcter .tIme•
CUrsor Sk. w (CSKI
0- for no delay.
, .. to ctet.v CursoI' on. ehllrNtH' tim•.
HSYNC Pulse Width
}~
The width of the horizontal sync
pulse IHSYNC) in the number of
character clock times ICCLK).
' - - - - - - - - - VSYNC Pulse Width
The width of the vertical sync
pulse IVSYNC) in the number of
scan lines. When bits 4·7 are
all "0", VSYNC will be 16 scan
lines wide.
Control of thes~ parameters allows the R6545-1 to be interfaced
to a variety of CRT monitors, since the HSYNC and VSYNC
timing signals may be accommodated without the use of external one shot timing.
R4-VERTICAL TOTAL ROWS
The Vertical Total Register is a 7-bit register containing the total
number of character rows in a frame, minus one. This register,
along with R5, determines the overall frame rate, which should
be close to the line frequency to ensure flicker-free appearance.
If the frame time is adjusted to be longer than the period of the
line frequency, then RES may be used to provide absolute
synchronism.
RS-VERTICAL TOTAL LINE ADJUST
The Vertical Total Line Adjust Register (R5) is a 5-bit write-only
register containing the number of additional scan lines needed
to complete an entire frame scan and is intended as a fine adjustment for the video frame time.
R6-VERTICAL DISPLAYED ROWS
This 7-bit write-only register contains the number of displayed
character rows in each frame:
R9-ROW SCAN LINES
" This 5-bit write~only register contains the number of scan lines,
minus one, per character row, including spacing.
R10-CURSOR START LINE
R11-CURSOR END LINE
These 5-bit" write-only registers selept the starting and ending
scan lines for the cursor. In addition, bits 5 and 6 of R10 are
used to select the cursor blink mode, as follows:
Bit
Bit
~
...L
Cursor Blink Mode
o
o
Display Cursor Continuously
Blank Cursor Continuously
Blink Cursor at 1/16 Field Rate
Blink Cursor at 1/32 Field Rate
o
1
1
o
1
R12-DISPLAY START ADDRESS HIGH
R13-DISPLAY START ADDRESS LOW
These registers form a 14-bit register whose contents is the
memory address of the first character of the displayed scan (the
character on the top left of the video display, as in Figure 1).
Subsequent memory addresses are generated by the R6545-1
as a result of CCLK input pulses, Scrolling of the display is accomplished by changing R12 and R13 to the memory address
associated with the first character of the desired line of text to
be displayed first. Entire pages of text may be scrolled or
changed as well via R12 and R13.
( .
~~
NUMBER OF HORIZONTAL TOTAL
CHARACTERS CROI
____________________
____________________
-JA~
~,
NUMBER OF HORIZONTAL DISPLAVED CHARACTERS CRt!
r~--------------~A~------------~,
Lg::~~ START ADDRESS HIGH CR121*
START ADDRESS LOW CR13I*
~
l SCAN
NUMBER 0 F
LIN ES CRtl
~
~CURSO," START LINE CR1'1
I"""CURSOR END LINE CR111
1\
NUMBER OF
VERTICAL
TOTAL
ROWS
CR41
NUMBER OF
VERTICAL'
OISPLAV
ROWS
CRill •
\""D..nD
POSITION AODRESS HIGH CR141
CURSOR POSITION ADDRESS LOW CR1111
HORIZONTAL
RETRACE
PERIOD
CNON.oISPLA VI
. DISPLAV PERIOD
VERTICAL RETRACE PERIOO
CNON.oISPLAVI
VERTICAl.
TOTAL
{
ADJUST CRSI
Figure 1. Video Display Format
R14-CURSOR POsmolt.i HIGH
R15-CURSOR PosmON LOW
DESCRIPTION OF·OPERATION
These registers form a 14-bit register whose contents is the
memory address of the current cursor position. When the video
display scan counter (MA lines) matches the contents of this
register, and when the scan line counter (RA lines) falls within
the bounds set by R10 and R11, then the CURSOR output becomes active. Bit 5 of the Mode Control Register (RS) may be
used to delay the CURSOR output by a full CCLK time to accommodate slow access memories.
VIDEO DISPLAY
R16-LlGHT PEN HIGH
R17..;..LlGHT PEN LOW
These registers form a 14-bit register whose contents is the light
pen strobe position, in terms of the video display address at
which the strobe occurred. When the LPEN input changes from
low to high, then, on the next negative-going edge of CCLK, the
contents of the internal scan counter is stored in registers R16
and R17.
REGISTER FORMATS
Register pairs R12/R13, R14/R15, and R16/R17 are formatted
in one of two ways:
(1) Straight binary, if register RS, bit 2 = "0".
(2) Row/Column, if register RS, bit 2 = "1". In this case the·
low byte is the Character Column and the high byte is the
Character Row.
Figure 1 indicates the relationship of the various pr09ram registers in the R6545-1 and the resultant video display.
Non-displayed areas of the Video Display are used for horizontal and vertical retrace functions of the CRT monitor. The horizontal and vertical sync signals, HSYNC and VSYNC, are programmed to occur during these intervals and are used to trigger
the retrace in the CRT monitor. The pulse widths are eonstrained by the monitor requirements. The time position of the
pulses may be adjusted to vary the display margins (left, right,
top, and bottom) ..
REFRESH RAM ADDRESSINO
Shared Memory Mode (RB, bit 3 = "0")
In this mode, the Refresh RAM address lines (MAO-MA13) directly reflect the Contents of the internal refresh scan character
counter. Multiplex control, to permit addressing and selection of
the RAM by both the CPU and the CRTC, must be provided
external to the CRTC. In the Row/Column address mode, lines
MAO-MA7 become character column addresses (CCO-CC7) and
MAS-MA13 become character row addresses (CRO-CR5).
ADDRESSING MODES
Bits 5 and 6 in the Cursor Start Line High Register (R10) control
the cursor display and blink rate as follows:
(-
Row/Column
In this mode, the CRTC address lines (MAO-MA 13) are ganeratadas 8 column (MAo-MA7) and 6 row (MAS-MA 13) addresses. Extra hardware is needed to compress this addressing
into a straight binary sequence in order to conserve memory in
the refresh RAM.
BitS
Bit 5
Cursor C)ptInting Mode
0
0
0
1
0
Display Cursor Continuously.
Blank Cursor Continuously
Blink Cursor at 1/16 Field Rate
Blink Cursor at"1/32 Field Rate
1
1
1
Binary
In this mode, the CRTC address lines are straight binary and
no compression circuits are needed. However, software complexity is increased since the CRT characters cannot be stored
in terms of their row and column locations, but must be
sequential.
USE OF DYNAMIC RAM FOR REFRESH MEMORY
The R6545-1 permits the use of dynamic RAMS as storage devices for the Refresh RAM by continuing to increment memory
addresses in the non-display intervals of the scan. This is a viable technique, since the Display Enable Signal controls the
actual video display blanking. Figure 2 illustrates Refresh RAM
addressing for the case of binary addressing for 80 columns and
24 rows with 10 non-displayed columns and 10 non-displayed
rows.
.
DISPLAY·80
0
1
2
3
76
83
156
71
78
The cursor is positioned on the screen by loading the Cursor
Position Addtess High (R14) and Cursor Position Address Low
(R15) registers with the desired refresh RAM address. The cursor can be positioned in any of the 16K character positions.
Hardware paging and data scrolling is thus allowed without loss
of cursor position. Figure 3 is an example of the display cursor
scan line.
UNDERLINE
CURSOR
o
79
80
81
161
89
80
81
82
157
158
159
160
160
161
162
237
2.38
239
240
249
169
240
241
242
317
318
319
320
329
1680 1681 1682
1757 1758 175.9 1760
1769
1760 1761 1762
1837 1838 1839 1840
1849
1840 1841 1842
1917 1918 1919 1920
1929
1920 1921 1922
1997 1998 1999 2000
2009
2000 2001 2002
2077 2078 2079 2080
2089
2640 2641 2642
2717 2718 2720
2729
OVERLINE
CURSOR
O~~++~-
2
3
4
3
4
3
4
5
6
56
8
9
10
11
8
9
10
11
1
7
BOX
CURSOR
0
2
1
TOTAL-go
,
The cursor of up to 32 characters in height can be displayed on
and between the scan lines as loaded into the Cursor Start Line
(R10) and Cursor End Line (R11) Registers.
7
1~""~~
23ElI!~~
5~~:t~
6~
73EliliaaE
8
9
10~~++-H-
11-++++t-t-if--
CURSOR START
LINE = 9
CURSOR START
LINE = 1
CURSOR START
LINE = 1
CURSOR END
LlNE=9
CURSOR END
LINE = 1
CURSOR END
LINE =9
Figure 3.
(
Cursor Display Scan Line Control Examples
Figura 2. Memory Addressing Example (80 x 24)
CURSOR OPERATION
A one character wide cursor can be controlled by storing values
into the Cursor Start Line (R10) and Cursor End Une (R11) registers and into the Cursor Position Address High (R14) and Cursor Position .Low (R15) registers.
(
MPU WRITE TIMING CHARACTERISTICS
(V cc
'" 5.0V
±5%. T A = 0 to 70 o C. unless otherwise noted)
1 MHz
Symbol
2MHz
Min
Max
TCYC
1.0
TC
T ACW
440
Address Hold Time
TCAH
0
-
RtW Set-Up Time
Riiii Hold Time
TWCW
180
Data Bus Set-Up Time
TCWH
T DCW
0
Data Bus Hold Time
T HW ·
ClwlCteriitic
Cycle Time
02 Pulse Width
Address Set-Up Time
180
Min
Max
0.5
-
In
200
-
ns
90
-
ns
0
ns
-
90
-
0
-
ns
265
-
100
-
ns
10
-
10
-
ns
(tr and t f • 10 to 30 111)
WRITE CYCLE
~----------TCYC------------~
2.0V
2.0V
O.BV
...----_I-TACW
r-------J
.,..,..,..,~
2.0V
Ci,
RS
O.BV
____ ...----....-TWCW
O.BV
TOCW
DO-07
Unit
THW
ns
(
MPU READ TIMING CHARACTERISTICS
(V cc = 5.0V ±5%. T A = 0 to 70 0 C. unless otherwise noted),
1 MHz
2 MHz
Symbol
Min
Max
Cycle Time
TCYC
1.0
02 Pulse Width
TC
Address Set-Up Time
T ACR
Address Hold Time
Characteristic
Min
Max
Unit
-
0.5
440
-
200
ns
180
-
90
-
-
",5
ns
TCAR
0
-
0
~
ns
RtWSet-Up Time
TWCR
180
-
90
-
ns
Read Access Time
TCDR
-
340
-
150
ns
Read Hold Time
THR
10
-
10
-
ns
Data Bus Active'Time
(Invalid Data)
TCDA
40
-
40
-
ns
Itr and tf = 10 to 30 ns)
- - - , - ..
--~-------~-.
MEMORY AND VIDEO INTERFACE CHARACTERISTICS
(V cc
'" 5.0V ±.5%, T A" 0
to 70 De. unless otherwise noted)
1 MHz
Min
Mo.
Min
Mo.
Units
TCCY
0.'
40
0.'
40
.s
TCCH
200
-
200
-
ns
MAO·MA 13 Propagation Delay
TMAD
-
300
-
300
ns
RAO-RA4 Propagation Delav
TRAD
-
300
-
300
ns
DISPLAY ENABLE Prop. Delay
-
450
-
450
ns
HVSNC Propagation Delay
TDTD
T HSD
450
450
ns
VSYNC Propagation
TVSD
-
450
450
ns
Cursor Propagation Delay
T CDO
-
450
-
450
ns
LPEN Strobe Width
T LPH
ISO
-
ISO
ns
LPEN to CCLK Delay
T LPI
20
-
20
-
CCLK to. LPEN Delay
T LP2
0
-
0
-
ns
Symbol
Characterittics
fr.
2MHz
Char.. Clock CVcle Time
Char. Clock Pulse Width
ns
tf ., 20 ns (max)
SYSTEM TIMING DEFINITIONS
~------------TCCY--------------~
2.0V
\"----
CCLK
SIGNAL-
ISee Belowl
*
SIGNAL
SIGNAL
SYMBOL IX)
MAO·MA13
TMAD
RAO·RA4
TRAD
DISPLAY ENABLE
TDTD
HSYNC
T HSD
VSYNC
TVSD
CURSOR
TCDD
LIGHT PEN STROBE TIMING DEFINITIONS
CCLK
O.BV
1------'
LPEN
SEE NOTE
MAO.MA13 _ _ _ _ _
~~\..
_ _ _n_+l_ _ _
NOTE:
SLASH AREA DEFINES THE "WINDOW" IN WHICH AN
LPEN POSITIVE EDGE WILL CAUSE ADDRESS N+2 TO
LOAD INTO LIGHT PEN REGISTER. TRANSITIONS ON
EITHER SIDE OF THIS "WINDOW" WILL RESULT IN
UNPREDICTABLE VALUES BEING LOADED INTO THE
LIGHT PEN REGISTER.
___l~\..
______
n+_2_ _ _ _ _ _[
SPECIFICATIONS
(
Maximum Ratings
Symbol
Rating
Supply Voltage
VCC
V IN
Input Voltage
Operating Temperature Range
TOp
T STG
Storage Temperature
Value
Unit
-0.3 to +7.0
Vdc
-0.3 to +7.0
Vdc
o to +70
°c
°c
·55 to 150
All inputs contain protection circuitry to prevent damage due to high static discharges., Care should be taken to prevent unnecessary application of voltages in excess of the allowable limits.
Electrical Characteristics
(V CC = 5.0V ±5%, T A = 0·70 o C, unless otherwise noted)
Symbol
Characteristic
Min
Max
Unit\
Input High Voltage
V IH
2.0
Input Low Voltage
V IL
0.3
VCC
0.8
Input Leakage (02, RfiiJ, RES,~, RS, LPEN, CCLK)
liN
-
2.5
"Adc
ITSI
-
10.0
"Adc
VOH
2.4
-
Vdc
Vdc
Vdc
Three-State Input Leakage (00-07)
(V IN = 0.4 to 2.4V)
Output High Voltage
I LOAO = 205 "Adc (00-07)
(
I LOAO = 100 "Adc (all others)
Output Low Voltage
I LOAO = 1.6 mAdc
Power Oissipation
VOL
-
0.4
Vdc
Po
-
1000
mW
-
10.0
pF
12.5
pF
10.0
pF
Input Capacitance
02,RAN,RES,CS,RS, LPEN,CCLK
C IN
00-07
Output Capacitance
COUT
..
TEST LOAD
2.4Kfl
R854S-1 PIN
130pF
I
R
(
R=11KO FOR 00-07
=24KO FOR ALL OTHER OUTPUTS
PART NUMBER
R6551
R6500 Microcomputer System
DATA SHEET
Asynchronous Communication Interface Adapter (ACIA)
The R6551 Asynchronous Communication Interface Adapter
(ACIA) provides a program-controlled interface between 8-bit
microprocessor-based systems and serial communication data
sets and modems.
With its on-chip baud rate generator, the R6551 is capable of
transmitting at 15 different program-selectable rates between
50 baud and 19,200 baud, and receiving at either the transmit
rate or at 16 times an external clock rate. The R6551 has programmable word lengths of 5, 6, 7, or 8 bits; even, odd or no
FEATURES
•
•
•
Compatible with 8-bit microprocessors
Full duplex or half duplex operation with buffered receiver
and transmitter
15 programmable Baud Rates (50 to 19,200)
Receiver data rate may be identical to baud rate or may be
16 times the external clock input
Data set/modem control functions
Programmable word lengths, number of stop bits, and parity
bit generation and detection
Programmable interrupt control
•
•
•
•
•
•
•
Software reset
Program-selectable serial echo mode
Two chip selects
2 MHz or 1 MHz clock rate
Single +5V ±5% power supply
28-pin plastic or ceramic DIP
Full TTL compatibility
•
•
•
•
parity; 1, 1-1/2 or 2 stop bits.
With the R6551, a crystal is the only required external support
component - eliminating the multiple-component support that
is typically needed.
In addition, the R6551 is designed for maximum programmed
control from the CPU, to simplify hardware implementation. A
control register and a separate command register permit the CPU
to easily select the R6551 's operating modes and check data,
parameters and status.
Frequency
Temperature
Range
R6551 P
Plastic
1 MHz
OOC to +70 0 C
R6551AP
Plastic
2 MHz
OOC to +70 0 C
+70 0
R6551C
Ceramic
1 MHz
OOC to
C
R6551AC
Ceramic
2 MHz
OOC to +70 0 C
IRQ
RTS
CTS
TxO
OTR
RxO
RSO
RS1
11
12
13
14
R6551 Pin Configuration
©
Rockwell International Corporation 1981
All Rights Reserved
Printed in U.S.A.
en
c::
:s
-.
~--CTS
'---I~TxD
I/O
CONTROL
CS1
..
BAUD
RATE
GENERATOR
141--I~ RxC
~--XTLI
I--"'XTLO
VSS
Q)
(')
»
0.
Q)
"0
r+
...
»
n
»
CD
TIMING
& CONTROL
LOGIC
DTR
RTS
VCC
:s
:r+s
CD
CSO
RES
o
:::.l.
RtW
JJ2
_.
r+
CD
.....- - DCD
RS1
IRQ
07
06
05
04
03
02
01
DO
DSR
OCO
VCC
:s
c::
o
o
3
3
TRANSMIT
DATA &
SHIFT
REGISTERS
RSO
VSS
CSO
CS1
RES
RxC
XTLI
...o:::T
n
DATA
BUS
BUFFERS
Ordering Information
Package
Type
-<:s
(')
(')
Q)
00-07<::8
Order
Number
»
en
RECEIVE
DATA &
SHIFT
REGISTERS
RxD
R6551 Interface Diagram
Specifications subject to
change without notice
Document No_ 29000 053
Rev. 1, January 1981
-
Control Register
INTERNAL ORGANIZATION
The Control Register selects the desired baud rate, frequency
source, word· length, and the number of stop bits.
T.O
00-07
I
SBN I
I RCS ,
WLO I
seR'
, ' - - - - - SELECTED BAVO RATE ISBR)
DsR
~tW
R.C
CSO
XTLI
CS;
XTLQ
RSO
OTR
RS,
fiTS
I
[SBR3ISBR2ISBR'ISBROI
Lc--I
6CD
IRQ
WL
I WL'
(
~ ! !.~
o Q 00
00 0 ,
00 1 0
00 1 1
o 1 00
o1 0 1
o1 1 0
o 1 ., 1
, 0 00
'001
10 10
10 1 1
1 1 00
11 01
1 1 1 0
1111
.2
R.O
Rei
16x b .... M) Clock
a.\ld
50
75
'&.Iud
109.92
Baud
134.58
Baud
150
s.ud
300
600
Blud
12()O
Blud
1800
Baud
2400
Baud
3600
Blud
4800
S.ud
7200
Baud
9600
s.ud
Bo'"
19.200
a.ud
' - - - - - - - - - - RECEIVER. CLOCK SOURCE IRCS)
o .. E~t...n.1 Receiver Ctock
1. - B.ud R••e
' - - - - - - - - - - - - - - WORD LENGTH IWL)
R6551 BI;)ck Diagram
n
00
Transmitter/Receiver
8 Bits
0'
'Bits
10
T1
SBits
SSits
' - - - - - - - - - - - - - - - - - SToP BIT NUMBER ISBN)
Bits 0-3 of the Control Register .select the divisor used to generate the
baud rate for the Transmitter. If the Receiver clock is to use the same
baud rate as the Tr·ansmitter, then RxC becomes an output pin and
can be used to slave other circuits to the R6551.
.....-""""T--
0-1 Stop Bit
7 6 5 4 3 2 1 O.
10 10 10 I 0 10 10 10 10 I H"d ...," R.... ,IiU)
-
-
-
-
-
-
-
-
Prolr.mRese!
T =2StopBits
-l%StopBitl
IFor WL - 6.nd No Parity)
zlStopBit .
(For Wl" 8 and Paritvl
R6551 Control Register
RxD
(
....- - - - - - - - - - - RxC
Commllnd Register
XTLI
The Command Register controls specific modes and functions.
Transmitter/Receiver Clock Circuits
Transmit and. Receive Data
Regist~rs
These registers are used as temporary data storage for the 6551 Transmit and Receive circuits. The Transmit Data Register is characterized
as follows:
•
Bit 0 is the leading bit to be transmitted.
•
Unused data bits are the high-order bits and are "don't care"
for transmission.
~
OATATERMINAL READY IOTR)
o • Deb T«miNlI Not R_cty (OTA High)
, • Datil TermlNlI RNdy li5TlI' Low)
INTERRUPT REQUEST DISABLED (lRO)
O. IRQ E..bltd
, -IAQDilllblfd
TRANSMITTER INTERRUPT CONTRDLITlC)
~ ~
iffiI. Hloh, T........ I......upt O_blod
0"
RTI- Low, Tnn....1t Im.rupt E_1ed
1 0 m · LoW, Transmit Int.rupt Enlbled
1 1 fITS .. Low. TrlMlnit Interrupt DI_11Id
Tr.n....it Bruk on TxO
' - - - - - - - - - - RECEIVER ECHO MODE IREM)
0" Recti. . Nor.... Mode .
, .. ANI'_ Echo Mod.
The Receive Data Register is characterized in a similar fashion:
L--_ _ _ _--'-...;.._ _ _ _ _ PARITY MODE ENABLED IPME)
o. .. PII,ity
Mod.
No Plirity
BitDi.b'-'
0 __
•
Bit 0 is the leading bit received.
•
Unused data bits are the high-order bits and are "0" for the
receiver.
Parity Check D_bled
1 .. Perity Mode El1Iblld
' - - - - - - - - - - - - - - - - PARITY MODE CONTROLIPMC)
•
Parity bits are not contained in the Receive Data Register, but
are stripped-off after being used for external parity checking.
Parity and all unused high-order bits are "0".
Z Ii
o 0 Odd ,.-Ity Tn..wmlttedIRectiwd
o 1 E.... PI,ity Tr.ftlmittedlA. .i....
1 0 Mlrk "'rhy Bit Tr.lIIMiIted
PII,ity Check Otab...
1 1 StMce ..... ity Bit T,..nsm'*tecl
...,ityCheclcDillblMl
R6551 Command Register
(
Status Register
cso,
The Status Register reports the status of various R6551 functions
The two ch ip select inputs are normally connected to the processor
address lines either directly or through decoders. The R6551 is selected
when CSO is high and CS1 is low.
1
I
0
~ ~; ; : ; "'.
Frammg Error·
a '" No Framing Error
1 ,. Framing Error Detected
CS, (Chip Selects)
RSO, RS' (Register Selects)
The two register select lines are normally connected to the processor
address lines to allow the processor to select the various R6551 internal
registers.
The following table indicates the internal register select
coding:
OverrunD = No Ollerrun
1 = Overrun Hi'15 Occurred
L-_ _ _ _ _ _ Receiver Data Register Full
o .,
Not Full
1 ,. Full
RS'
RSO
Write
Read
0
0
Transmit Data
Register
Receiver Data
Register
0
1
Programmed
Reset (Data is
"Don't Care")
Status Register
1
0
Command Register
1
1
Control Register
L-_ _ _ _ _ _ _ _ Transmitter Data Register Empty
o = Not Empty
1 = Empty
L-_ _~_ _ _ _ _ _ _ Data Carrier Detect lOCO)
o = OeD low (Detect)
1 = OeD high (Not Detectedl
L-_ _ _ _ _ _ _ _ _ _ _ _ Data Set Ready (DSR)
o = DSA low (Ready)
1 '" DSA high (Not Ready)
L-_ _ _ _ _ _ _ _ _ _ _ _ _ _ Interrupt (tRQ!
a '" No Interrupt
, '" Interrupt Has Occurred
-No interrupt occurs for these conditions
R6551 Status Register
INTERFACE SIGNAL DESCRIPTION
Note that only the Command and Control registers are read/write.
The Programmed Reset operation does not cause any data transfer,
but is used to clear Bits 0 through 4 in the Command Register and Bit 2
in the Status Register. The Programmed Reset is slightly different
from the Hardware Reset (RES); these differences are described in the
individual register definitions.
RES (Reset)
ACIA/Modem Interface Signal Description
During system initialization a low on the RES input will cause internal
registers to be cleared.
02 (Input Clock)
The input clock is the system 02 clock and is used to synchronize all
data transfers between the system microprocessor and the R6551.
XTLI, XTLO (Crystal Pins)
These pins are normally directly connected to the external crystal
(1.8432 MHz) used to derive the various baud rates. Alternatively,
an externally generated clock may be used to drive the XTLI pin, in
which case the XTLO pin must float. XTLI is the input pin for the
transmit clock.
R/W (Read/Write)
TxD (Transmit Data)
The R/W is generated by the microprocessor and is used to control
the direction of data transfers. A high on the R/W pin allows the proc'
essor to read the data supplied by the R6551. A low on the R!W pin
allows a write to the R6551.
I RQ (Interrupt Request)
The TxD output line is used to transfer serial NRZ (non-return-tozero) data to the modem. The LSB (least significant bit) of the Transmit Data Register is the first data bit transmitted and the rate of data
transmission is determined by the baud rate selected, or under control
of an external clock (as selected by the Control Register!.
RxD (Receive Data)
The iRCi pin is an interrupt output from the interrupt control logic.
It is an open drain output, permitting several devices to be connected
to the common IRQ microprocessor input. Normally a high level,
iR5 goes low when an interrupt occurs.
The RxD input line is used to transfer serial NRZ data into the ACIA
from the modem, LSB first. The receiver data rate is either the programmed baud rate or the rate of an externally generated receiver
clock (as selected by the Control Register!.
00-07 (Data Bus)
RxC (Receive Clock)
The 00-07 pins are the eight data lines used to transfer data between
the processor and the R6551. These lines are bi-directional and are
normally high-impedance, except during Read cycles when the R6551
is selected.
The RxC is a bi-directional pin which serves as either the receiver 16x
clock input or the receiver 16x clock output. The latter mode results
if the internal baud rate generator is selected for receiver data clocking.
(
",-
',,'
(\
'
RTS (Request to Send)
DSR (Data Set Ready)
The RTS output pin is used to control the modem from the processor.
The state of the RTS pin is determined by the contents of the Command Register.
The DSR input pin is used to indicate to the R6551 the status of the
modem. A low indicates the "ready" state and a high, "not-ready".
DSR is a high-impedance input, and must be connected. If .unused,
it should be driven high or lOiN, but not switched.
CTS (Clear to Send)
The CTS inp~t pin is used to control the transmitter operation. The
enable state is with CTS low. The transmitter is automatically disabled if CTS is high.
DTR (Data Terminal Ready)
DCD (Data Carrier Detect)
The DCD input pin is used to indicate to the R6551 the status of the
carrier-detec~ outpuf of the modem. A low indicates that the modem
carrier signal is present and a high, that it is not. Like 5SR, DCD is
a high-impedance input, and must be connected.
This output pin is used to indicate the status of the R6551 to the
modem_ A Iowan DTR indicates the R6551 is enabled and a high
indicates it is disabled. The processor controls this pin via bit 0 of
the Command Register.
READ/WRITE CYCLE CHARACTERISTICS
(VCC = 5.0V ±5%, T A = 0 to 70 0 C, unless otherwise noted)
1 MHz
Characteristic
2MHz
Symbol
Min
Max
Min
Max
Cycle Time
02 Pulse Width
tCYC
tc
1.0
400
40
0.5
40
-
200
-
Address Set-Up Time
Unit
J..Is
ns
tAC
120
-
70
-
Address Hold Time
tCAH
0
-
0
-
ns
ns
R/W Set-Up Time
twc
120
-
70
-
ns
R/W Hold Time
Data Bus Set-Up Time
tCWH
0
-
0
-
ns
tDCW
tHW
150
20
-
60
-
20
-
150
ns
ns
20
40
-
Data Bus Hold Time
Read Access Time (Valid Data)
Read Hold Time
Bus Active Time (Invalid Data)
tCDR
tHR
tCDA
20
40
200
-
-
ns
ns
(t r and tf = 10 to 30 ns)
===~VIH
CSO, CS1, RSO, RSl
~~~VIL
~------------------VIH
V 1L
Write Timing Characteristics
RtW
~---------------------------------------------------VIH
Read Timing Characteristics
ns
I---------tccv--------~
TRANSMIT/RECEIVE CHARACTERISTICS
2 MHz
1 MHz
Symbol
Min
Max
Min
Max
Unit
Transmit/Receive
Clock Rate
tCCY
400'
-
400'
-
ns
Transmit/Receive
Clock High Time
tCH
175
-
175
-
ns
-
175
-
ns
Characteristic
XTll
(TRANSMIT
CLOCK INPUT)_ _.....I
(
TxO
NOTE: TxO rate is 1/16 TxC rate
Transmit/Receive
Clock low Time
tCl
175
XTLI to TxD
Propagation Delay
too
-
500
-
500
ns
RTS Propagation
Delay
t Dly
-
500
-
500
ns
I RQ Propagation
Delay (Clear)
tlRQ
-
500
-
500
ns
Transmit Timing with External Clock
(t r , t f = 10 to 30 ns)
1
'The baud rate with external clocking is: Baud Rate = -16--'--x TCCY
IRQ
(CLEAR)
!-
tIRQ
_
-----J
Interrupt and Output Timing
I------tccv------~~I
(
Rxe
(INPUT)
NOTE: RxO rate is 1/16 RxC rate
Receive External Clock Timing
PACKAGE OUTLINES
28 LEAD PLASTIC
28 LEAD CERAMIC
I
(.550)
(.530)
1.115)
'"
(1.420)
(1.380)
•
I
+
1.080)
j~~~A,,,,,
: jt=
(.055)
(.010)
(.022)
(.015)
I "'"
--lI 11.090 )
I---:::: ---I ,-,
1.155) 1.065)
(.125) (.015)
a.,.;,..,.,..,1"'I"T"I"T"I...................................................
~
~_------_(1.470)----_-.
(1.440)
(.
(.065)
1.065)
Intel
S04SH/S04SH-1 /S035H LlS035H L-1
HMOS SINGLE COMPONENT S-BIT MICROCOMPUTER
• S04SH/S048H-1 Mask Programmable ROM
• S03SHL/803SHL-1 CPU Only with Power Down Mode
x 8 ROM
• 1K
64 x 8 RAM
CP.U, ROM, RAM, I/O in Single
• 8-BIT
Package
• High Performance HMOS
• Reduced, Power Consumption
1.4 usec and 1.9 usec Cycle Versions
• All
Instructions 1 or 2 Cycles.
• Over 90 Instructions: 70% Single Byte
27 I/O Lines
• Interval Timer/Event Counter
• Easily Expandable Memory and I/O
Compatible with 8080/8085 Series
• Peripherals
• Two Single Level Interrupts
The Intel@ B04BH/B04BH-1/B035HLlB035HL-1 are totally self-sufficient, B-bit parallel computers fabricated
on single silicon chips using Intel's advanced N-channel silicon gate HMOS process,
The B04BH contains a 1K X B program memory, a 64 X B RAM data memory, 27 I/O lines, and an B-bit
timer/counter in addition to on-board oscillator and clock circuits, For systems that require extra capability
the B048H can be expanded using standard memories and MCS-80 Tl1/MCS-B5 T11 peripherals, The B035HL is
the equivalent of the 8048H without program memory and can be used with external ROM AND RAM,
To reduce development problems to a minimum and provide maximum flexibility, a logically and functionally
pin compatible version of the B048H with UV-erasable user-programmable EPROM program memory is available. The B74B will. emulate the B04BH up to 6 MHz clock frequency with minor differences.
The B04BH is fully compatible with the 8048 when operated at 6 MHz.
These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have
extensive bit handling capability as well as facilities for' bo(h binary and BCD arithmetic. Efficient use of
program memory results from an instruction set consisting mostly of single bit instructions and no instructions over 2 bytes in length.
BLOCK DIAGRAM
LOGIC SYMBOL
PIN CONFIGURATION
TO
XTAL 1
Tl
XTAL 2
P27
IiEsTt
P26
ss
P2S
INT
P24
EA
P17
RD
P16
PSEN
WR
PIS
ALE
P13
DBa
P12
OB,
Pll
PORT
o 1
PORT
'. 2
B048H
80:iSHL
B04BH-l
803SHL-l
P14
DB2
PIa
DB3
DB4
VDD
PROG
DBs
P23
DBS
P22
DB7
P21
VSS
P20
1024 WORDS
PROGRAM
MEMORY
CLOCK
,
B BIT
CPU
>
;:.
IY-
V
B BIT
TIMER
EVENT COUNTER
BUS
64 WORDS
DATA
MEMORY
r-
V
27
1/0 LINES
PORT
EXPANDER
STROBE
Intel Corporation assumes no responsibility for the use of any circuit.ry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.
elntel Corporation 1980'
AFN-01491A-01
APPENDIX A
8035/8048/8748/ and 8049 CPU SPECIFICATIONS
(
This appendix contains the specifications for the CPU chips that may
possibly be used with the system as its hardware design exists.
of the 8035 is expected to compose the bulk of the applications.
A-I
Use
intel
[?)OO ~ OJfu(]O~~OOW
S04SH/S04SH-1 /S035HL/S035H L-1
PIN DESCRIPTION
=
Designation
Pin
VSS
VDD
20
Circuit GND potential
26
low power standby pin
VCC
40
Main power supply; +5V
during operation.
PROG
25
Output strobe for 8243 1/0
expander.
P10-P17
Port 1
P20-27
Port 2
27-34
8-bit quasi-bidirectional
port.
8-bit quasi-bidirectional
port.
P20-P23 contain the four
high order program counter
bits during an external program memory fetch and
serve as a 4-bit 1/0 expander
bus for 8243.
21-24
35-38
DBO-DB7
BUS
12-19
Function
True bidirectional port
which can be written or read
synchronously using the
RD, WR strobes. The port
can also be statically
latched.
Contains the 8 low order
program counter bits during
an external program
memory fetch, and receives
the addressed instruction
under the control of PSEN.
Also contains the address
and data during an external
RAM data store instruction,
under control of ALE, RD,
and WR.
TO
Input pin testable using the
conditional transfer instructions JTO and JNTO. TO
can be designated as a clock
output using ENTO ClK
instruction.
T1
39
Input pin testable using the
JT1, and JNT1 instructions.
Can be designated the
timer/counter input using
the STRT CNT instruction.
INT
6
Interrupt input. Initiates an
interrupt if interrupt is
enabled. Interrupt is disabled after a reset. Also
Designation
Pin
=
Function
testable with conditional
jump instruction.
(Active low)
RD
8
Output strobe' activated
during a BUS read. Can be
used to enable data onto the
bus from an external device.
Used as a read strobe to
external data memory.
(Active low)
'RESET
WR
4
Input which is used to
initialize the processor.
(Active low)
(Non TTL VI H)
10
Output strobe during a bus
write. (Active low)
Used as write strobe to
external data memory.
ALE
11
Address latch enable. This
signal occurs once during
each cycle and is useful as a
clock output.
The negative edge of ALE
strobes address into external data and program
'memory.
PS'E'N
9
Program store enable. This
output occurs only during a
fetch to external program
memory. (Active low)
SS
5
Single step input can be
used in conjunction with
ALE to "single step" the
processor through each
instruction. (Active low)
EA
7
External access input which
forces all program memory
fetches to reference external
memory. Useful for emulation and debug, and
essential for testing and
program verification.
(Active high)
XTAl1
2
One side of c"rystal input for
internal oscillator. Also
input for external source.
(Non TTL VIH)
XTAl2
3
Other side of crystal input.
AFN-01491A-02
S04SH/S04SH-1/S035HL-1/S035HL-1
INSTRUCT~ON
SET
Mnemonic
ADD A, R
ADD A, @R
ADD A, /I data
ADDC A, R
ADDC A,@R"
ADDC A, /I data
ANL A, R
ANL A,@R
ANL A, # data
ORl A, R
ORL A@R
ORL A, /I data
XRL A, R
XRL A, @R
XRL, A, # data
INCA
DECA
CLR A
CPLA
DAA
SWAP A
RL A
RLC A
RR A
RRC A
De,crlpllon
Add register 10 A
Add data memory to A
Add immediate to A
Add register with carry
Add dala memory with carry
Add immediale with carry
And register to A
And dala memory to A
And immediale to A
Or regisler 10 A
Or data memory to A
Or immediale to A
Exclusive or register to A
Exclusive or data memory to A
Exclusive or immediate to A
Increment A
Decrement A
Clear A
Complement A
Decimal adjust A
Swap nibbles 01 A
Rotate A left
Rotate A left through carry
Rotate A right
Rotate A right through carry
Byle, Cycle.
1
1
1
1
2
2
1
;!
1
2
1
2
1
1
2
1
1
2
1
2
1
2
1
2
Descrlpllon
Mnemonic
Inpul port to A
IN A, P
Output A to port
OUTL P, A
And immediate to port
ANL p, /I data
Or Immediate to pori
ORL P, /I data
Inpul BUS to A
INS A, BUS
OUTL BUS, A
Output A to BUS
ANl BUS, # data And immediate to BUS
ORl BUS, /I data Or immediate to BUS
Input expander port to A
MOVD A,P
MOVD P, A
Oulput A to expander port
And A to expander port
ANLD P, A
Or A to expander port
ORLO P, A
1
1
Bylel Cycle,
2
1
1
2
2
2
2
2
I
1
2
2
2
2
2
2
2
1
1
1
1
2
2
2
Regiliers
Descrlpllon
Increment register
Increment data memory
Decrement register
Byles Cyclel
1
I
I
1
I
I
Branch
Mnemonic
JMP addr
JMPP@A
DJNZ R, addr
JC addr
JNC addr
JZ addr
JNZ addr
JTO addr
JNTO addr
JTI addr
JNTI addr
JFO addr
JFl addr
JTF addr
JNI addr
JBb addr
Descrlpllon
Jump unconditional
Jump indirect
Decrement register and skip
Jump on carry = 1
Jump on carry = 0
Jump on A zero
Jump on A not zero
Jump on TO" I
Jump on TO" 0
Jump on Tl " 1
Jump on TI "0
Jump on FO" I
Jump on Fl " I
Jump on timer flag
Jump on INT " 0
Jump on accumulator bit
Mnemonic
CALL addr
RETR
RETR
Delcrlpllon
Jump to subroutine
Return
Return and restore status
Bytes Cycles
Description
Clear carry
Complement carry
CLear flag 0
Complement flag 0
Clear flag I
Complement flag 1
Bylel Cycle.
1
1
1
2
2
2
2
Flags
Mnemonic
ClR C
CPL C
ClR FO
CPL FO
ClR FI
CPL FI
Dala Moves
Input/Oulpul
Mnemonic
INC R
INC@R
DEeR
(
Subroullne
Accumulalor
Byles Cycles
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Mnemonic
Delcrlpllon
Byle. Cycles
MOV A, R
Move register to A
1
1
Move data memory to A
MOVA,@R
1
I
Move immediate to A
MOV A, /I data
2
2
Move A to register
MOV R, A
1
1
MOV@R,A
Move A to data memory
1
1
MOV R, /I data
Move immediate to register
2
2
MOV @R, /ldata Move immediate to data memory
2
2
MOVA, PSW
Move PSW to A
1
1
Move A toPSW
I
1
MOV PSW, A
XCH A, R
Exchange A and register
1
1
1
1
Exchange A and data memory
XCH A, @R
XCHD A;@A
Exchange nibble of A and
1
register
Move exlernal data memory to A
MOVXA,@R
1
2
MOVX@R,A
1
2
Move A to external data memory
MOVPA,@A
Move to A from current page
1
2
MOVP3A, @
1
2
Move to A from page 3
(
Tlmer/Counler
Description
Aead timer/counter
Load timer/counier
Start timer
Start counter
Stop timer/counter
Enable>timer/counter interrupt
Disable timer/counter interrupt
Byle, Cycles
I
I
1
1
1
1
1
I
1
1
I
I
1
I
Mnemonic
EN I
DIS I
SEL RBO
SEL RBI
SEL MBO
SEL MBI
ENT 0 ClK
Descrlpllon
Enable external interrupt
Disable external interrupt
Select register bank 0
Select register bank I
Select memory bank 0
Select memory bank 1
Enable clock output on TO
Bytes Cycle.
I
I
1
I
1
1
1
1
1
I
1
I
Mnemonic
NOP
Description
No operation
Byles Cycles
1
I
Mnemonic
MOVA, T
MOV T, A
STAT T
STRT CNT
STOP TCNT
EN TCNTI
DIS TCNTl
Control
1
1
(
AFN·01491 A·03
S04SH/S04SH-1 IS035H LlS035H L-1
A~C.
CHARACTERISTICS (PORT 2 TIMING) TA
= O°Cto 70°C, VCC = 5V±100f0, VSS = OV
8048H·1
8035HL·1
8048H
8035HL
Parameter
Symbol
6 MHz
Min.
Max.
8 MHz
Min.
11 MHz
Max.
Min.
Unit
Max.
tcp
Port control Setup Before Falling
edge of PROG.
110
105
ns
tpc
Port Control Hold After Falling
Edge of PROG.
100
90
ns
tpR
PROG to Time P2 Input Must Be Valid
tpF
Input Data Hold Tinie
tDP
Output Data Setup Time
250
210
200
ns
tpD
Output Data Hold Time
65
35
20
ns
tpp
PROG Pulse Width
1200
970
700
ns
tpL
Port 2 1/0 Data Setup
350
300
250
ns
tLP
Port 2 I/O Data'Hold
150
65
20
ns
810
0
700
150
0
150
0
650
ns
150
ns
PORT 2 TIMING
\'--_ _ _~V
\'---_ _~I
--1' r'
CA
EXPANDER
PORT
OUTPUT
r'DPi'PDl
PCH
I
PORT CONTROL
,-
EXPANDER
PORT
OUTPUT DATA
'PR
I
INPUT
PCH
PORT 20 3 DATA
PORT CONTROL
'PC--!
~.
PROG
'PP
.
V
I
I
, BUS TIMING AS A FUNCTION OF TCY *
SYMBOL
TLL
TAL
TLA
TCC (1)
TCC (2)
TDW
TWD
TDR
FUNCTION OF
7/30
TCY
1/10
TCY
1/15
TCY
1/2
TCY
2/5
TCY
2/15
TCY
1/15
TCY
0
TCY
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
SYMBOL
TCC (1) : RDIWR
T CC (2) : PSEN
TRD (1)
TRD (2)
TAW
TAD (1)
TAD (~)
TAFC
TCA
FUNCTION OF TCY
11/30
3/10
3/10
1/2
1/3
1/30
1/15
TCY
TCY
TCY
TCY
TCY
TCY
TCY
MAX
MAX
MIN
MAX
MAX
MIN
MIN
TRD (1) : RD
TRD (2) : PSEN
TAD(1);RD
TAD (2) : PSEN
• APPROXIMATE VALUES NOT INCLUDING GATE DELAYS.
AFN·OI491A·05
(
.
(,
S04SH/S04SH-1/S035HL/S035HL-1
WAVEFORMS
f-oo~-__-_-IL-L-_-I-ALE
ICY
------·----i
J \'-___-----'I
L
I
ALEJ
I-
i--
i - I C C - - j - ICA
I
AD - - - - - - - . \
pst",
IAFC - - ;
I--
-I
L
i---IDR
Ii
FLOATING ~-F-LO-A-TI-NG---
: i FLOATING
BUS
BUS
I___ IAD~~~
Instruction Fetch From External Program Memory
ALE
J
Read From External Data Memory
L
WR
-------,.X ~:: ~ TEST
2.4V
O.4SV _ _ _ _....J.
-:::~::
X. . .____
-
-
FLOATING
BUS
Input and Output for A.C.rests.
Write to External Data Memory
A.C. CHARACTERISTICS TA
= O°C to 70°C VCC = VDD = 5V ± 10%, VSS = OV
8048H
8035HL
Symbol
POINTS
•
Parameter
6 MHz
8048H-1
8035HL-1
8 MHz
11 MHz
Conditions
Min. Max. Min. Max. Min. Max. Unit (Note 1)
tLL
ALE Pulse Width
tAL
400
270
150
ns
Address Setup to ALE
75
75
70
ns
tLA
Address Hold from ALE
65
65
50
ns
tcc
Control Pulse Width (PSEN, RD, WR) 700
490
300
ns
tow
Data Setup before WR
370
370
280
ns
two
Data Hold after WR
80
80
40
ns
tCY
Cycle Time
2.5
1.875
1.36
f.1s
tOR
Data Hold
tRD
PSEN, RD to Data In
tAW
Address Setup to WR
tAD
Address Setup to Data In
tAFC
Address Float to RD, PSEN
tCA
Control Pulse to ALE
NOTE 1: Control outputs
BUS outputs
0
CL = 80 pF
CL = 150 pF
200
0
500
230
150
0
340
210
950
100
ns
200
ns
ns
200
400
650
CL = 20pF
(NOTE 2)
ns
0
0
-1
ns
10
10
0
ns
NOTE 2: BUS High Impedance Load: 20 pF
AFN-01491A-06
(
(,
(
(
(
(
(
I
lIONEl LTRI
[
1811
AI~
REVISIONS
DESCRIPTION
DATE
E.C"-I 54
I
APPRovED
I
~
4
f"
.00'--
'7"~4'l,' .~
5H 2-
'51-1 Z.
~H
~H
t-
eo.
AQ.RAM I'!. _ _ _ _ _ _ _ _.;.:13<-1c.
-=:::::.:.:...:.:.:....::..::.
~------~------------------------------------------------------------------------------------------------------------------------,
AD· RAIJ· II
~~~~
__~----------__--1~5,A
AD.RAM·lt
I·
14 8
8t~~~------~----------------------------~-----------------------------------------------------------------------------------------------------,
I 6b'~I4_4_--------------------------------------------------------------------------------------------------------------,
5
ac.. CoLI(.
I.t
"
~~~~------------------~O
"
14~
10_
'"
., ) AI'"
':>0'=---""---/
A8
"L~~
l4LS~'Z.
}:8~t_--------__r
14LS~t
+-_~-S...;.,,-I
AI"
'"
AD·RAM·IO
AO.RAM·e
AD. RAM.'
5H t.-
AD. RAIJ.'5
AD·RAM·"
AD·RAM·'
AD·RAIJ·'l,
AD· RAM· I
0$
,..
~ ~ ~ c c < ~
At5
'2.114
..,
8
I...
13
It
8
e
5
G~D
\I
Ii-
I~
+5V
5".,,, 3 Z I
~
18
..,""In
cO-'"
c c c c c
Vee.
11 I" 1'5'
r
>II
C
88
14
OB.~
!!1M I
DB·!
OB·Z
DB"
DB· I/>
'!IH 25101 I
OME~.E.~
: R./W
"
It
1\
14
e,
',"
:\AI:(.~
'"
e,
Al
A:
B4 U
Ie. at
IS
8
11
BI
18
A3
A2.
AI
B~
'6l. mt~
01
T~I"
IS
...
3
t
c:
13
~
p
G~O~9
rr
s
01t-t-,~1::::.:.:.:.~-,
08
A4
~
,&_N'"
~
c c <
8'''5
Lt.'
OEL·DI5P\...ENA
I
11\ All
iSl~j5L.EN
·v
.-I RI9
IIC.
RA3
,A
l'
"
~-
8 1
18
''
" 5
tc~~
All
.,
AIO
fcs
.
~
"
~~_+_+_+_+-----4'
~.•
"
AW /I
.::1+5\1
Rn
15
LD CLR ,
1
Icn,o.
L -__
,A
~
OH
t
lot
U
"MLSOO
I.... H. LD
+5V
~
II<.
5.11/-
S A
~---..f-~8
"10
oz- I-:-:-______________
01
4
~-------------'---+--5~ C
t
1.1 ....
H
r---f>CI<.
C.K
03
()4.
A8 An
I
vsr..r __________~~---------..:.:'5~5IR
~~
IQt-3~_+------~--_.~_+_+~------~----------_.----~
A1 233L·_ 05
14
4
~
.5\1
0(.
r--------,,~ 10 AlB
2.Q'1-:5=-+-------t---+-+-+-4-------------~t-----+----::-I Af.
1
.-----,t~ Z.D14L51133Qt-f.--+-...,.---~-.-+~-4--....;,..--.....--------t-----+----.:::..j A5
01
4
11.14
r----~3D
4at---~------t--t-~4---~--_+-----------~--_+----... A4
E5
IK
---2!. 40
Eft
I4
1
••
r-__~14L~~_OO
____1~,CLK
510/ '1.
IDE
/I
"
I,"
TC.
I
Qtt-l~____~,
01
~D~B~~~_____4~DI
,
e
A"
AU.
04 l!a
Atl.
A8 Z 33'1. . os ~,"------------~I-----..:.:,t' F 14LSIGoGo
Al
G
~~~+8Qt-'-'~+_~~------_t__t_~~------~4~
OE.
'0 E
11
:~
I"
15
If.
11
.A
:
14 It
1
f,J
~I>CIC.
CIt.I ....... ·
.Hr'3'--------------~------------
II(.
~~
PR
~____-+~5~~
..!.o
Q
5
DEL CURSOR
511 ~
A11
14L'71
3
~.
I
~~~~------~_+_+_+_+_+----------~_a
~
5
>'-"t---I~~~--"'--.:....j
~_.~~I~~~
1___
-,
A10
3
141.S08
IV.-.:4::-+-I----1....,:...---...--::1
4' 10
---.;. 14
II~
l..A
~
8
AQ<.14\.$n4
CI(. Q'
UIJDERLlt-lE
~t=_--~H~~_+---------------::~~.;;:;;.;..=___
REVERSE·YIlJEO
,
Q'lt-:,=------4~_+-+---------------=~::::::::.;.==-
BL't.lK
QS~--------.......f-+-----------------.=:..:.:..;:.:..:....----
1
BLAt.JK.
4V~I~t~_+--_+~_+_+~-~~1 4D
Q.~I~O----------~-t---------------__~~~~----DEL.OI5PL·Et-lA1.0
wD AZ' Q5 It
HALF·lt-lTEt-l5ITY
w . "MoLS"1
1415'1+ Q(oJ~'5~-------------------_----..:.:;:..;;;;....::~~=.;.;.~
10 t~
r---+-+-+-+"";'''''i' 5D
10
13 18
,QIQ,
II 31) Ajq -
TI
q
1
2Vt-q::--t-t---i--"'-+~Go
1.D
3Yt-:::-++-+--....f-f-:7-I30
a.-____________________~14 4A
....20=-____________--'--____' :-1 I,
3
~t---::4:-i II)
~ ~g
ell.
CLR
..-----....;;...-..:---~3'A
o
~)
~ 14L~
r-------------~~~~~"~1_
A12'4
14LS.04
.,
~-r__~~~_q...~A~~
1--1 .
Z~
I-f-+-+-+---~I'I
A..
3
5_
~~ow.\O~
~~A~I~~--~
14L~4
VSVt.lC
311 "
RIB
SMIFT. CLI(..
O\SPL.EtJA
DOT BIAL
"17
.j'-",u> ~
,,.
____~~~~--
+5V
I All
+5V
Z,I
At.~
0 14L"lIf.w
II
YPP
'4L.~
~I_~
14L50+
SH f.
DATE
I
54,',
5 0
/0
03 11
S A5
z.f!
[eN
CL~
"
ot
A~
A.
1(,
-~CL/(.
CRTC.Kt5
ADO
J
1Q
II 8D
-
5H I
~
11 lD At.4
ClI·AD·'
~II
"
.'1
RI"
o
01
I
DESCRIPTION
"IIC.
\J
~
L i
+!5V
In
r CM.AD.'
REVISIONS
I ZONE I LlRl
%
cut
48
STRI
.l
I'
~SH
w
~V
_I
14LSoa
ROW.'
DISPL·EIJ-
_ICA'.
. .,_,
_011
_ _•
-......... '........... .-
~o
~--.
5Hw
51014
DW.O.~_
""'0._ ..
-
COUTROL 80·
"SO
'~..: a.-OO1
Ii
---~
-
7
8
6
.I
I
~
~
'X"TALI
D
-=A=B~~~
~
______~~____________________________~~I'
ECIJ
I
ii:
5+
ILl
~~IRQ
~A~B=I~______~~~__________________________~I~'"
:
fl.
APPIIOVED
DESCRIPTION
....
,
I"
________ ______________________________ u. _
Y1tQ"
~==
REVISIONS
.,.
"
I
2
3
4
5
D
R~~
R51
P'7-1
~R~~______~4-~~__________________-+~t~~ R~
A8q
..
~~~~---+-+-r;----------------------r~C5~
~r~o~.p~.S~E~L~__~~~I-1~~----__--______--__---+~~ CSI
~D~B~~________~~~~~~--------__----~----~~le OB~
5H I.....
OBI
ICJ OBI
DBl.
DB'
W DBl.
DB4
DBS
Z"Z. 0 B4
t3 OBS
D~
«
DB'
.2.
1..5 DB'
~ DB'
10
Q
r-:t
1----..1....
...._-:-- - - 1
10
11
+;'
I~
U.
~~~_+~4_+_~~_+~4_+_~~~~
XLI
_+--_+-_+H~---~--_~++----~----...:..J
OBl.
CTS~q~--~~_+_+--4_----------~
t-r-r-~~~~~~4
OB9
t-r-~~~~~~z~t DB4
t-~H_4---+-~~DB5
.-~~__~~Z4~DB~
.....r-r-_r-Z5~DB'
"
ro 38
~HHH_+......;,;.jl 3A
-::!:I
Y-+-++~+-+_+_~I___4_+_+---.!.I!t~ R5¢
,
Pf>-Z
~!
1"88
5
---4---.
'D!R ~I...:..l
3
~r_~~~r;~~_+_;-----..::~CST
~r_~~~~~~~~--~la~O&o
T.
~ t---<
C43
330
r l I--<
C45
rl--<
C55
1'188
PF
330 PF
.,
II?'CJ
e
1
L,
L--....
I
-
....-____..::Z~ A48
P!-w
CTS
,\.
P+~'S
RT'
~
.J:.15
,"
.~
..
05R
C4t
330 PF
-
P;l-IO
;t
I~
SIG. Gt.lD
[
'IG.Gt.lO
PROT· GMD
~~~~r---~1.~3 OB5
L...j~~f---~1.4.:..j DB"
A51
"551
'-IHf---~~~ DB'
'-I~--....::t'.!.I. ~
L-----4:..tR~E,.
.J:I
AM)
E"
..:
140b
+SV ........
.... R54
5104
b¥a
P3~1
P3-13
A
" ......--..
~~
....
5
P4-1
P3·Z5
a
.cAlI:
6
P3-'
,
P"-I
'------+------------__________________ ~A'8\.~"'~~
___
4-~~~
B
q
10 "'48 p..;;--......------+---------------~,
2Y~-----r----r_----------~--------------~~----------~~~~.~I~ 1L.....-j1~
C5~
I
.
330 PF
20
OTR
C43
~~I~t~r____+------------______--------4_----------------J
~~~~~~~~--~t~O OBt
~~~~~~~--~,~I DB'
Y~HHH----.....:U!:.lDB4
PF
330 PF
14aa
~~I~.~r_--_+------~------------------~--~
~~~r;~~_+_;----~lq~DBI
A48
10 Asq
tA
I
330
P4-3
....---~
"7
L.....-j,--
P3-t
IzIA3q~~II~----------~J~__--+_-3-30--P-F----~R~.~D~"
'Yr~~----+----i------------~--------------~4_-+-q~
&---+~ tIS
-
rt/W
7
P3-14
P4-B
1A!q
11_.
8
1m r::------+_+--~__=..f I D l Y ...
10
<----t-2=-t I'"
TID ~-----'I
"D'TR ~
SU.
14
YH-+_+++-+-+_H~___4----..!:!.I R!ll
L-jH-+-+--+-+--I-+-hl--l>--_....:Z~8
_A_B_I_O---:-____________---!HHH~HH~_+_+_+-------!!2::.j C50
IOO.a.
,
oeD",
5
~~+-----~
13
It
4
~48 ASq 4Y~-----;-----r------------~--------------~~------------~~
L~~+_+_~~_+_+~~4_+_+_---!t~~~ttl~~~-~111~5--1
1m XLI
8
8
1'.0 MOO
.....~~~~IO~4A 74LS157
v
~MO.At1lM
'---t---\
14LS'2
~~~~~---r-r-r~~1-1-+-+-+-+-+-+-+-+---+---------~+~5V~------------~~~~~~ "L
.-_......-
74L!I32 r--_ _~4..f
q ASS
'-------i
'"55"1
t--I--4~RE,et
P3~24
5
c
"-
1 .
10
1150
t1 02
A
,
AS8
PI-'Z
PI-4
1\
TltO
" A48 rp..:..:--------..--------~~-:..:....::~4
----./ 1488
L - - C!il
'
t
PH
';' R~l,SIOA I/?W
1~3t 11--__....:.::12:.{,-1--"""""
~-----+~4_-~-'
PO~I
'
-A
R~O~I~Z~------_+_+--_+--------4----++~----~----------~~
W
RIIOI
+SV
14L50S
OCO rLI-"------~_+_+--_+--------H----++4_----~----------_+--~
~r_r_r-r-~~~~~~14q OBI
"
ES
to
I,
OSR
t-~H-4-+--+4--I-+---~~OB¢
!lH 1
,
RxO
--'"
RlIC !-=-5____
18
Bl:-OIR.EI.lA
GI.lO
TXD~I~O------_+--_+--_r~r-----_1----~~~----~------~------~----------~
t-HH_+_+-+-+-+-+~--+....:3~ CSl
5H'
<50=:
El
PO-l
UF
=--____
~-+~~~~~~~--~m~~W
B
Ct~.OI
R'30 510A 'fl,W
DTR~I~I------+_----_,
1m 1-8
-+_..,
~A~B~I~I______~~HHH~~~H~_+_+_+_+_+--_+~t eso
ZI
*
'3rO-P~F~--------~
115
~~~_;-4-+_+_-+~~4_+_+_--~I~' ~
~r_~r_r_r-~~~~~~--~~14~RSI
SH I
Of
AlioS
14LS!('"
q
"
C40
(/7
TKO
~
T
PF
It.
RlIO
~~
c
l
C411
330 ,..
Z1 IU.
"I-
... ~
SH('
Pl-Z
A~
'"551
4
3
2
(
,
"
(
I
I
(
REVISIONS
APPIIOIlED
D£SCRIPTION
51-1 25H l.
EC.
RArb.
R.A3
BLACK.OIJ·WH.ITE .(a.O·W)
'4L904
C9
'5
BLI·RATE
IO.OI~t
It
t
15
BLAIJ'"
•
AIO
'''OG.
DOTS. SERIAL
"llII
UIJ DER LlIJE
+511
DEL CURSOR
REVERe.E VIDEO
OEl
DI~PL·
,
EIJ -
-It II
.
•
G....O
AIO
5
~
• AIO
II
RS
1If.
'40'" .
I'
!o
R4
2.10.4.
'40'"
.
l'l
•
" E.4
--~------
____________r-__________________ __
~
11
~1I~-+---------4~I~
Iltt~~
. r-:l
-
~
A5
SEL,CPU'ADDR
SH ""
5H Z
4-
SH
+5V ~ JVV'v-
?'
PR
~J Ae.
"
QrL
'4L'510'l
eL.K
...
l
1
RII
!·31fRli
1M
.
.,
~
q
,4-UK>0
~4
)O~A~8~-t---------------------,
RESET
_8
A8
14L.S04
'4L5~.
1
.I.
i
MlI,T 11
SHIn-.Cll(.
SH 1FT .CLI(
5H 4
5H,
occil5COR
~ rt:J8
'"
'"
10~'500
q
A5
14-LS08 '--__________________.J
_1CA'' '
~..-
:;=_=-OII-.c:--.-..
I-.-:-.,":'_~
..
___
_ I' ""I' ""I
......---4----'-1.
• I.
- ~ - I:'
,
•.
'KMM·
.~_
c:oooo.c.....Aoe .. II.,.
.-.....
__
5H 1
5H ..
XTALI
'5
5H 1,'5,'
C49
.01Ad
ifJo
4
,
+5V
A'S
f
Pl.-I
SH 2.
5H
RIOolK
AS
0..:.1_
1__
pl.-'
..HSV ....C.
DC.CARRY
'1
~~I~WA~
t-----------__------________~3~
~4~1
P2. -(g
.. "SYNC (",.... )
DC.CARRY
..
...
CQI..\P.""TTL IIIDEO
c.eLK
t
Pb-8
pl.-'
r------.~_~------------SH
1
.. I
P6-10
~-,
AIO
',,"lS04
'4 l!l ,t.
p,,-,
RI
II<.
3
AI'"
~-
~~-----------------~
PAt
3"
~~~--------------------------:jR5Z
~~----------------------__3:~~RS3
PA4
PA I
pAl/)
CA I
CA2
3
1-J---------~S~IY
Z.
l40
~______________________________________--,
L-:-~_--.
,
P5-1
PA~
v
PSG.
3Y
_o
BI.DIR.ENA
LI~4---I---_--_--------~'___;qoo.
I.!I~t~-l-..,...-------------IiIO;o,~~
5AI.!~
10 __~~r-________________~IO~
4A
q
IA L~Z__LLL+-.-~---------o
liND
> R40
II<.
~
10
3
IY
LI
115
GT
Gt""
, ty
5
C.D~
3Y
q
11"'4-
4Y
" 5Y
~ ('Y
("Q~
5A
A"5 4A
14LS3l.o'3A
tA
IA
I..
IZ.
.."
'l.
GIJD
··.f:8
C·CLK
+t
A~q
ClR
HSN
r~~~~---------1r-------------------~~7
+-ltV
q
+I~V
Q
~~1-.---------+---------------r_~)-I,V
r +SV
-11.'1
~
" . 1___ 1 <.: ..•
~J!TC1t, -r. . C11~ T :' To.I';" T
L---:.I~Ic> eLK
PR
910
I -v. A
_c
2.2:...1
Gt-IO
22 ...f
.01.....
I
:
T
C,,"
1'01 ....
z.1....J
" Gt.lD
-7
q
r---
1\
10
1+5V
"14l504
8 q
JV~~
Al0 he
'4L500
5
10
I
/
SW 5
•
HSt.J
05
I j 11J~01
PS-3
Gf
""
~ (,,~
GLR
PS-4
___
5Y 141.5""ZA
--q~cU<.
,
'"
~~~-~~4Y
~~_I-41 A~b ~Lw~--~~+-~----------------~e~~
1..!...----1-1-1~I--..--.r_----------:,~.,.,.
[IT: 40 14L5114
P5'-S
Gr
~~~-+ 15~t~
+sv
3D
... 3G
'
5H 5
"A~I~~~________--~~r1r---~~--~4~~
GIJD
LJ-I--lH-+--:::-1IY
__
&-+-+-+---1
~
511 (,.
OUT SPEAKER
IiLIICK·Ot.I·WIIITe
(BOW)
SH
?a
ti3================-------===-tHttt~JT~I~~15
z
ID
IQ
4Q~
~
4
'50~
5 tD
It
rZ ZQ
'Q~
"
irI
("Y
GND
5H
,
Gt
3q
5H Z.
L..
~-
~2.4
~
8
G~ ___ IALt~------~~+_~r__t_r--~
9"
PB4 15
pes
~~
2.3 C'll
~~-----------------~
____________________
CSZ
______________________~B
,
q 4Y A<..'
__________________-:jzt ~W
34 RES
~~----------------~
~~
~
LI~4 -_-4-+-+-t--Hr---:3;o,~
~-------~,12.Y
5AIII~0~__________~+-~rlr_~~~~
l~----------------------------------------_=======:t:t:t~======~3Y
4A~"
,,~
It
3A ~------------'---irl----:';o:
P8t 13
"
!lY l1L5%'l.A L..!.-.----------------t--t---e8~J,.
PS3 14
13
IALZ.~--~--------------~~r-__
~e
~~~----------------------:3,jR51
38 R':.,p
~~~
tS5"
PA5t:t=========================---------------rt---------~JA~'I~~I~
-E~-----------------------:3t1DBI
____________________:j2.5
..
...
________________________________
~~________________________:30~DB3
~~
S
--------~~~IY~I
~
ZY
PA~~=======----------------------_l---------tlj_------_,~
L"
A~. sv 1.,~----J-~~~4__1_+--_.--~~~~~--P8'LI~o~
_t--__----_,
'~L5!"12AL
~-----J~~~_f_+--_t~--~z ~
~
-l~~--------------------------::JD84
~~
RE'l. I K.
Iq
CBt [!
____________________________________~
~~----~-----------------~~' OB~
2.8 DBS
~~--------------------:2.q~
SW "
SH Go
4S'''2.4'=o8153
/
, RP!I
l ~Ii~. II<.
l\P,
RE~·
IK
__________________________________________________________
eRic RESET
~~~~~
___
SH
~
()
(
i
i
82
RPI
~ I\I~ ~O'O~ I"
~
R3
Ql
El
CSr"\
R4
'-" + R5
I ;' ~
~
Q:
'
~
u ~ o· ~ ,Q:~' G"~ ai' ~ (~
rn"
01
:c
E2 '"
'"
C7
'"
;;;
a;
R9
OSC 1
A7
E4
E3
Al1~ 0:I2~
~
CS~
'"
'"
0
A
0
g:
C;;
a
RIO
Q
'"
-;.AI~3
00
TELEVIDEO
0
AI4
....
;;;
(.)
c::::::J
0
o
RS
t.)
c::::::J
c::::::J
~9 ~ O~ A~10
~
o
g:
CALIF, USA
Cl0
:
~
~A15~ COI~ A~I6
~
~
~
'...
R"i
C9;;;
co
OCI4
A'D7
II
C12C::::>
R12c::5=l
+r"\ C15
~2
It
CI3
A24
A26
A25
0
C19
A27
A28
9~ ~
0
C20
'"
~
:
~
A
C28 A35
0
C29 A38
0
~
L
C30 A37
0
~
~
;;;
I
;;;
;;;
E28
C40 C41
M
~
00
_ _
A53
03
A47
DO j
~
....
AM
A55
R28
c::::::J
n"'~
M8
M9
ASI
A50
0452
C52
'"
'"'" '"~
~
I
'"'"
~
'"
'"'"
'"
0
'"
,.'"'"
0
'"
,.'"'"'"
'"'"
'"
A
13
(
(
(.
ITEMI
FIND
NO.
~\L.~
OTY PER ASSY
tJ2
C
ZOw
::;) 2
f
-N
>
>
~
~
W
..2
I
3
t,?
/
6
,Rol./p
US
-()S7 7[3 7~/q.
1800000- 018 . Ie PROORRMED EPROM
7... 7 t,/-{}o/0 - IJ ::l.)t- IC 7~L5 37~
L 7~OO/O - /) :LS I (I 74t L~ 377
7
<9
I
9_
/0
2 2
I /
/1
"2-
R ,t-/c,tooo
-023
If.?
2... 2-
~60oloo -
002-
/S
I
/6
I
C>
0,5
RlE-S
c/ft
Res
C/F
~;(
, Kn..
U5
U4
U2..~3
UI
74L50$
VOLTAGE REGULATOR
RES SIP (PRC\() 10K ..n.
R 51"l 000- 103
f?/;/~ooo -
211'-)
,.c
17(,L-o%-DoSR. G:>OOOO 0 - 00 I
Ufo
UfO
PcPo3S
~'k<<:oR
I.. 7~oOIO
/
2
I
.,,...
Ie PROGRAMED ROM
I74COC)/O -036 7C HICPolPRo
/
I
s-
REMARKS
TITLE I DESCRIPTION
I8COCoO - Op 9
/
/
PART NUMBERI
REFERENCE DOCUMENT
W
VI
RPc...3
~w
R'Z.
RI, R3
S-%
YStW
~ov
C~,8
CJDV
CIO
2- '2
PIP N rl' A ::;;..oN
C q{) 0 lot) - OD-.S CA'P c/b 3~o\?-P .20%
{",tt../ . 50 V
C 6'00/00 - 0 0 / cAr R/L
.1 3
C c?o 0/00 -t:J02 CAP c/p
/0 k.n..
/1-
IJ
I
IrAP
Cl el'2.
17
/t/
10 0,<
soy'
C"2-S,9,11,13
J
19
NOTES:
/J, 0/ AI..f.
0 I
o~
804-&. /11 cRO.PIAl"J~,,,, Cf-~J 80
ENGRtG..
APPDr\.L
,*., J'..
U/1i
9-'">"'>::'0
9/; J ft,t;
APPD{?'£)/J-ttl
APPD
KEY 2:
:r T '1
(.0'<'.:: '"''':.'.;
/,
UNIT OF MEASURE:
A;'::"..,S
'l~3/g'1
ADDS
7,/~4-/3
/=-( '!...
ITEM
!J[,...,
I
I
9
ENGR CHANGES
REV
p
DI
Pl
CHG
NO.
-eN
/:;~'I
I::C/U
DATE
'-15-81
-:') «-
1.- 3-~1
£,f~
~-z8
TeleVldeo~lnc.
APPD
TITLE
pART LisT
75-0 TI/I Kel Bt)ARD
SIZE
SHT---L- BILL OF MAT'L NO.
REY
A
OF~ BQOOOO3-001
Q'
(
(l
I
..;
(
---------~.---------.-.
-
ITEMI
FIND
NO.
OTY PER ASSY
III
u..c(
-...
Zow
~
>-
w
I-
02.0/
~
~
N
>-
w
PART NUMBERI
REFERENCE DOCUMENT
REMARKS
TITLE I DESCRIPTION
~
-2.0
:J-I
22.
/
/
/
I
B80DD0.3 -
00 J
'D,c.
Bl> A~ D
.:13
..2.~
..2S-
S3bO/OO - 00/
UIO»E'
c.Rt
ItJ 1/-00/
~t
I
:27
~
IV 2. DO (,?o!..- ()O 2- Cf'PIN
pLUer .
P. , '1-:l3 -'Co
APPD
APPD
f.l.. () /i.t ,tI~ 1/:'''
t;(:1'%J1,1' 9kJ/o()
APPD
KEY 2:
ENGR CHANGES
1...go
DWNO(l",/:!t:".r..
REV
CHG
NO.
DATE
APPD
TITLE
TeleVldeo:'lnc.
1JART LiST
ito TVI
I
/k::Cj eo/4f2f)
SIZE
SHT ..2
A
OF~ BQOCO03-00 I
REV
BILL OF MAT'L NO.
I
.0
(
()
~-~-----~--------~----~----~------
-
~-~~
-
-
.... en
-Y.e
ZOw
ITEMI
FIND
NO.
~
::I
>-
->-
~
~
~
W
N
W
PART NUMBER I
REFERENCE DOCUMENT
REMARKS
TITLE I DESCRIPTION
2. 2..
.2 L
ARH.
CHA 5$1 S
II
NOTES:
APPLICATION
NEXT ASSY I
USED ON
UNIT OF MEASURE:
01-EACH
02-INCH
03-FEET
KEY 1:
OWN
-CHI{
O.lJ..~f" ... q·2J·El::
0. ~.z{lfv,..
Ct_, ~..":"
OS-AS REQ'D
ENGR~:J~~~ '1--:2J-/{O
09-0THER
APPD
' ... nol•• )
A-WITH BIM
D-WITHOUT BIM
R-REFERENCE
S- SPECIFICATION
O-OTHER( ••• not •• )
ENGR CHANGES
AIltV
RE.
I
... H_G
I
nATII'
I
•
I
ADDn I
TF!IF!VlrtF!n~
Inc.
- - - - - - - J
TITLE
CUART
rt
aft T UI
1 () A.t: '~:3h
APPD!2!IIJ1i11 rAJ/iO
4
APPD
KEY 2:
/
t---+--I---+---I
I
-
SIZE
A
L/~7
kG'! BDA RD
/
ISHT~IBILL OF IIAT'L NO.
OF ..3
BQ00003-00 I
REV
o
(
(
ITEMI
FIND
NO,
OTY PER ASSY
/
SZ
~u..~
-N
zow >
;:) 2 w
~3 ~2. 01
lIIC
>
W
lIIC
5Z
3 3- 3·
.2..
~Z
r: qlJPI"tJ
¥
I
"
.t6
I
I
1
I
,1
I
&>b I
r.. 9~o/()o -00.3
I I I
7
-
C 700100·· 00'
Vl 1V/.7 IT}
3
PART NUMBER I
REFERENCE DOCUMENT
ICI·~sJ-lq, ~-33J35-3q,,: "
4 q.1)8~,.~b~-l7.L7-"':
J
w
~
->
N
PART NUMBER I
REFERENCE DOCUMENT
w
2- .2..
.2. .:L .2-
I
7~bOlo
1
7~o%
I
7~OC)lo -i!',:J..O
:2.3
I I I
.4 4, 4
I7~~%
~~
lI- lY! f/-
I7~ob10 -
~
.:20
:2.t
.:l.2.
- t) /jl
- 0/9
-
0 2 /
Ie
7~~t; /'<3
Ie
It!
7~~<
/6'6'
7~ L.~
/73
A3.4
A. 22..,Z3
AlB
Ie
7~~>
17~
Alq,c.I,G:,IJ~4
0:2.3 Ie.
A~5--~ "1
7~LS _~67
.2..t
I
~
2... ..2. 2-
L 7~tJolO - O~S If' 7U t-<.. . .~ 7~
7~/RJl
I 7~~o/O - oJ..6
:2..7
..2... :l. 2-
I
.:zi
/ / I
I I I
:29
I I
:30
3/
4 4
3L
/
~S
3£
I
~7
/ I I
I I L
3<1-
3f
I
7~60/l) - 0.2..7
,
7~polD -p~q
Ie 7~/tP9
Ie
I 71,t~olo -I'JSS
It
I 7~o%
- 059
I 7~&'o// - Poo
I~
I
Z
I
I I /
3'· 3 ~
I I I
f
I
4 2.. /'
·33
A "2..4
A39,48
A40.51
A4"1
Ie
4
/
REMARKS
TITLE I DESCRIPTION
~
Z
Z
TIL //7
Ll-N.3J' .
ASb
.2.11"
AL5 -'28}
(150 "Sec.)
Ie 6//6 PAN .2Y X AI
7~ooll 002- Ze 6S-{).2..A H/"-R/..)tP/ettJ~6S~L)R .
7~~LPII - /) 1/ 3 Ie 6S-~~
cRr I":LJA/T
7~poll - ~Dt,t- "Ie bS-~/
uARr
7~()OII- DD~ Y 6S-22.A I/. I.A
A34- 37
A53
A S5
A49-5 \
A54
Al4
.:I 740010-·QbJ-=<.;· -Ie I..}ST'Z4Skj
I7f"/-DO/O - ok6 Ie Klllq..A nl< ~~ur CRY~TAL 6S: 2.3·814 Mt-lt
A41
5YS ROM ·2.33"2- (':-000 ')
T8/)~ooo - ~ () I
I
lose, I
NOTES:
APPLICATION
NEXT ASSY
USED ON
UNIT OF MEASURE:
DWN
01-EACH
04-BULK
CHK
02-INCH
05- AS REQ'D
ENGR~
03-FEET
09-0THER
, ... not•• )
APPD
KEY 1A-WITH BIM
D- WITHOUT BI M
R- REFERENCE
S- SPECIFICATION
0- OTHER ( ••• not •• )
APPD
ENGR CHANGES
REV
CHG
NO.
DATE
APPD
TITLE
CCJAJ rROL
711z
APPD
KEY 2:
TeleVldeo; Inc.
7ARTS ~/~T
BoAR 0
q.1-o
SIZE
SHT~ BILL OF MAT'L NO.
A
OF
~ B~OOOO'2.-00
.
REV
I
B4
(I
---.~
....- - - . -
ITEM/
FIND
NO,
!::LL~
OTY PER ASSY
~.3 OJ. ,,/
39
ZOw
::l
2
->-
-N>-
lit:
lII:
W
IT ~t1£'tlt?
I II I
! / /
0<2_
~3
I I
I I
I f
~~
2 2 2
cr/
~2-
t,.s
PART NUMBER /
REFERENCE DOCUMENT
W
/J/)H .:l53~ CUf?P~R 8ViE) A33
CJ()3 Y CHAR tfG-N .RON ..23 3 <. ('.La iu E-R RVTt==) .A'32
- C'/CJ 2.. Ie CHAR GF,rAv
II Jot?ot'O r 800000 -00,
I
I
I140010-010
I740010- 0 ,1
I
R514000-015
R 514000- 018
Sys
. ROM. 2332
Ie. ,4 LS 4'2
Ie.. IJE 555
RES. elF' 7t;O.Q
V4W
R32
~w
'/4W
RI,~3
P~5
~..Q..
<."'-~
RES
4-;1 I<. ..
50]0
Lf-J
I I
R !;'/~ooo
R~<,
4-'1
2..71)
,
~
- 0 () 2-
..a.
.5'1
1 L r
2.0 2.0 2.C
R~/tU)t)() - 005 £,z;.<
~ S"I t"e. &>1)(,) - bJ CJS- R.~
R s/~t)O() - ()o6 R~5
S2
55 5
1£ S/~OOO
-
!:J09 p~s
,$'3
s(t
l l I
I J I
II< S/¢,O()O
-
017
R~5
RES
J-t'
4 4 4
s-t
R6J4oo0 - 014
£S/~oo -I"&>
2. 2
!? S:-IUOOO -
12a-5
$-/o.fl...
S-7
I
RES
22.
50
:2- 2...
2..
I I
R~/4000
02.'L
- 02.4
_~~n
..(L
~/o.n..
An
5°10
!J41
~6
(,J.7
RES.
1142 I
(EOoo)
5OJo '/4 W
I r 1.
Z z. Z.
1 1 -:"1
I
REMARKS
TITLE I DESCRIPTION
s%' '~tU
R '2.1,"2.'2. / 2<=1,31.35-37
R4
.~% ~w.
~X V~IJ.
R'4l43
R·.34
'lh-:.:f4~-IO,'4 -20,Z3-2S,38
I k..{L
~ Y~tJ.
3·3K.n
s%
len.. 5%
~t.)
~w.
R 11 / 2.8,3'1)45 ,
R 2~
.5%
iL4 W
RI2:
RPI-4
R '2.1.30
/00
.r I..IJ
!(,GS rPAe it:
'.
It.Q
fL
12. \J .
5 '70
.
4"
RI
1/4 W
NOTES:
I
APPLICATION
NEXT ASSY
USED ON
UNIT OF MEASURE:
01-EACH
04-BULK
CHK
02-INCH
05- AS REO'D
ENGR~
03-FEET
09-0THER
'He
not•• )
KEY 1:
A-WITH BIM
D-WITHOUT BIM
R-REFERENCE
S- SPECIFICATION
O-OTHER( ••• not •• )
ENGR CHANGES
DWN
REV
CHG
NO.
DATE
TeleVldeo~lnc.
APPD
TITlE
APPD
APPD
C.::?t1J rRtJL.
TVZ
APPD
KEY 2:
?A1<.75
SIZE
A
SHT_j
OF _ _
I
i-/5> T
BCJAR.D
9.i-o
BILL OF MAT'l NO.
RfV
BqOOOO'2. - 00 I
84
(I
(:
ITEMI
FIND
NO.
OTY
--.-_.....-~_.....-----,I
77
II J I r
.R
11!7 1"1
~
('II
0
- IL. C
::;) :I
ZOW
~
~
~
~
~
PART NUMBER 1
REFERENCE DOCUMENT
Rc -404 73.T . .. I 7{E.\.~ ._ 4.'.J';.
Mt0 0 30/- 002.IIG S05:!KET
J!L
REMARKS
TITlE 1 DESCRIPTION
~
W 5 C1J~
2.4- RIM5
R~'13
·:1/4
H~2-34
0~ I -.r c ~ocxr;T ;&·2.1tUS..
37.-4:-6.-4'l..,5Z .
.~
,~1915-
1M :L 0 0 ~o t -
cf/
~1313
H..::LOb~O'
<13
<.1"2...1<"
a~
2.12J~
gf-
t I rl t
CDNNE-~TOR RS:2..~2.. RIA.
I P'3,4
H..:loo601-DD~1 PLUIir ~. PINS
I PZ.5
tL."J.OO ;?:O'-'Q.t;> II R1 II l1k+.iALe-'
K€-Y
8l)ARD CMuN~croR.. S-.:LD ~I
."
I)
-oosl J:c.
Sact<&"T
A¥J.-51
A 53 - 55
~oPJrv~
-~:l-
_£6
I I '-1 ~ .
h
!
H.200:l..01 -DOli
13 13
}../\l.OOf,Ol-OOJ
I -PLUGc...PINS·
~'lOO 100 - OOl.
I TRA'-JS.
-"2
.PI
I P9
-
!
PAO· LARGE
01.2 .4
~J
tJ:j
:b
__qL
···4~
q3
111'1.t'
NOTES:
APPLICATION
NEXT ASSY
USED ON
UNIT OF MEASURE:
01-EACH
04-BUlK
02-INCH
05-AS REO'D?)'tY1.
03-FEET
09-0THER
, ... not•• )
KEY1:
t-----+---~I
t-----+---~
OWN
A-WITH 81M
0- WITHOUT BI M
R- REFERENCE
S-SPECIFICATION
O-OTHER{ ••• not •• )
CHK
:::
APP.D
APPD
KEY 2:
ENGR CHANGES
REV
CHG
NO.
DATE
TeleVldeo;lnc.
APPD
J
tf>A£ IS t.-/ ~ 7
.0
CcJt1J r/?IJL !5~AI'\..P
n7 ~"lJ
~
Tv I
TITLE
SIZE
A
,
ISHT~IBlll OF MATl NO.
of--LIBQOOODZ-OOI
REV
~l~
(
(
-
-------------~---
ITEM!
FIND
NO.
I
OTY PER
A~t: u.. ~I
ZOw
I J 2
b3~
!':
>
~
N
>
~
PART NUMBER!
REFERENCE DOCUMENT
REMARKS
TITLE! DESCRIPTION
~
sr
60
61
/2
63
t'~_
(r
+1~12.
66
II II I
/ 1/ 1/
,.5<~.(-O/O() - DOO I ;;..# :l~/'9
,s :~..:ffL/,() 0 -00 2. I ::LA.! ~FJ I q
5350100-003 I 2A.J ZCf07A
41414
SJ60/00 ~ 000 IIAI
67
Q
T R AAI..s I 5. T/2/?
TRAN51<'
1,4
02
03
T{)~
TRAIJ515 TOR
:61
6~l
7 IJ
Ib 3CO/bO -~t:) I /11/ ~"(J I
III111
71
q/¥ D'nb~
/
OJ -4
D,S
J)/I') 7),t:;. .
72.
1..)..J2..1 ~
73
H2.ooJPl
y
~- 0
0
~ D>~p...<. r.(? I T~ H
u
••
10 P_QSa..,_.
5 \ ,'2.
.s I D,;. .
7f
7'-
NOTES:
APPLICATION
NEXT ASSY
USED ON
UNIT OF MEASURE:
DWN
01-EACH
Q4-BULK
CHK
02-INCH
05-AS REO'D
ENGR~
03-FEET
09-0THER
APPD
, ... not..)
APPD
KEY 1:
A-WITH B/M
APPD -
DBI R
M ENC
KEY
R WITHOUT
-REFE
E2·
·
S- SPECIFICATION
O-OTHER( ••• not••)
REV
~eleVldeo®lnc
ENGR CHANGES
CHG
NO.
DATE
APPD
rlJA Rr
r'l
TITLE
_
I
. . , .
t.-/~
7
I
AO£)
CtJN Tf(~ t, & rrl'.
7 l/ I
'-9 SO
SIZE
A
I
~JBILL
SHT
OF
__
OF MAT'L NO.
B90000Z - 00 I
REV
84
(1
(
(i
--
---
-.~----------.--
--_._---
-
- - - -
8
7
4
5
6
1
2
3
~l
D
~I
r---- ---- ---- ---- --- -- ----I
I
I
I
I
I
no
ill
I
I
I
I
S
-
I
I
I
-oot.
I
I
\
-
\
PIO
PII
T.
~
P'-I
pn
PI!.
II
U
A
•
D
•
..q
TI
Pili
I
CTRL.
! ~1
Po . . . . . . .
P"'~
J
~,-
.
+rtvl
v..
Rll
v••
AU
1>0
01
".
p,.,
t.O
~
......
O~
v ••
D4
OS
DO.
tL.~
0'
10K
........
LINE
liP!.
+511
~
•
~1.+5VI
I1P !.
RP!.l
toK
101.
10K
7
." ",.. '.*
UOT• .,:·UUL,US OT....W . . . . .ClF1£D
1:
LlW(.
IIU£tt
a
w
l
%
D
P
[
:t
TAB
F
G
H
• .0 "
TAlI
7.
,<
"!
"r
..
I.
I
,
,
1lCUE1 ........
~
foe
F.
TO
••
.
.,"
IIPI
U
PI.
P,-!.
,"
10IC
ps
a••
.
SP
.,
_It
.PACE
T
"
I
I
"
" , 58
I
I
8
u
.........,
I
I
l:"l~~
I-
Pl.
I
I
I
I
I
(a<»5~n
EA
*
I
I
·c_.,
I .. ' 1. J
Ulo
-001
I
I
XTAU
1::
10K
I'
l.\
'.- r
flIPS, 1114
10K
ruin
I
c
.
~l
I
D
- - - --- --- --------- --.iV --
n
'5
1: F.
'10
.....T
I.tlEAK
ill
YEII.IOU ·00. A..O '001.
[i)
VERSION 000!.
I!l
CIIlCUITRT
_LV
OPTIO&.IAL
II
:l
C
.[]
8
L'Na
FUll
"
c
v
DEL
..
•
~
I~l una
F1
'8
I
L'__
~~~
----,
.• B
UI
14LSU,'
II
ALE
n.
~
IS
.!!.!
I.
~
15
e1
I..
~~"'1.
~
"
I.
~
I..
.!!.!..
WI[
L ____________ - - - ________________________________________________________ _
A
,
--a
~
~
'1,
....... =. .
A
e~
K£YIICMRD ..50
1CiJ::i:[,,_--, I·"
1
7
1
6
I
5
i
4
I
3
I·
2
I
1
..
I
:.-
L
I
n
~
I.
,.
r
I
1
I
,-
9
~
a i °.. 0,.
-1
.... .. .
I
\
~
! g~
\
i
~
~
0
~
f-
...,
....
r
::: ::
l
s
5
I
'Ul
..
;
9l!S2a2~a.
::; ,
iii J:
;I
= 15
~
•
-
J
...
.
i~
/: =.. ~... •
t
11:
f0o-
~~~5
~e:
'I~&
'"
---------- ,
!;Ii
- - -----
-'------------------
:-
•
~
•1
'"
51"
....
l-
:-
I
8
UI
:a ,
!l J
iii
51 I
g
'1
.1J:
e&..
-I
~ 9'
1= i
'
- - -- - -
---------- -
. .. . ..
J
s"~
i
I: ..
•
~ ...
S
UI
e !l !l t
~
,
;j
L_____
;:I
2
'n-:,~
~
~2~
I-
(
, '1
------- J
-- ---
...
...
r-1"'- - - • •
..9l
I5E
·1
'"
I
.-
I
I
I
i
ro-
~
N
I
I
I
---,
•
15
..IlIr
.B'"
::I 11 iJ
1 f
S t
011
... .. =
.. r
•
.
~
I
.
~
;I
15 ii .J:
I
I
~-
'"
.I
"
.L..
~ ~ J ~ R§
~
'1
011
r ... •
I , J I !I
=
-II .rtln ~
f'. iii"
....
,.-
B
I!
c
L. _____________________
J
[!
--
=lie:
11-
!d!-,
;I ..
.. .. .
O
. .. . .
9 II iii 2 S 2~'!.c" ;.
.
~
11
I
- - - - - - - ----
-
N
~
.-
f--
.IJI
e je
I
....
-
g
-
I-i
:.-
I
I I
..
_.
T
n
I
~
I-
(,~)
E\SIEI1E,5
. 9-
74L'3o!~4L.S~t
..
oz.
Et,
R2.4
~
1~
E 1"\
I
A(.3
"74LSS'l.
~ VO'4t;;,
I
~YI'tZ.
.
,
V3
n
•
•
I
20
7s<
B~~
~
.
1.q.L5~'l.
-
~
c.s/AII
I
~
II I
'
5
r- III
goo
'9- cr
4:
c(
III r- ..9 ......
4: '"
A'S
t
A"
,
A'
Vee
1ft
« « '"
'"
2. ,
4
_ G"'D
lie.
cs
AI
At.
• :
II
....
0
1Jcc.'
'7 :~
"
(S
q 10 II 13 14 15 I'- 11 ., tz 2.3 I
..SV
t.4
A42.
0
REVISIONS
In
II
l'If./'Z~3'Z.
"" 1"'1
0 0
1'Z.)A5S~'~.
IS
I
~
E2.1
tol
I~I
"5V:'
l4
"lloO
mfES
18
_
Nco'!
l.
~
:~5'IJ
IEM
p-
~
...
A"9 5
~
--. 1.
'Z 4 ___
I
u
n
E2.0
lONE
l
'll
I
q
I/Ot'O
A2
TJt;:P." 11
~
zm : : "
t/Of.
IS
tlOl ".
t}oe 11
~A8
-5V
I. l'
R30
IiUi
SH
~Aq
~AIO
-5.
II ~
5Hl,'5,'
AS!
5N1.,o:.,1
~
5
SH"
ABt/J
~
AB5
....,
AS,"
SH Z
~
ABa
AS,.,
ABI¢>
ABH
A5~
tio50ZA
SHZ,5
5142,,5
~
AS"
s ...
~O
"
.BoI
SfoI ,
oJW
51< ,
OAf
.
2,4
RA2.
RS
tt
.
1-0 AI.-5'
RA.,
R/w
RA4JSTB
u.o>
A55
CD545
MAl
~../74LS!l'l.
..... 4
5H I
1~
.DB~
. 084
Das
DB"
0,,"
10
5H I
51< ,
11>.
vs'"
'8
D~PL.eUA
,.
GURSOR
~H "."
51< •
5H ...
"*
~
~
f,:-
T
5
~
B
~
"
30 OS2DB.
2.9 OM
.....a
Z8 085
LU"
2."1 DB"
MAil
....
MAIO
"B
2S
'4
~
'"
IA." ~
I" .;,'
~t
r
• ~/
)A'" "
fO:"'P.'S'EL
51< ,
40
....A'
1.6 DEn
'4L5'!2.
"S'"
...-..
.. ,"".
.....
"
DS¢
!t 081
0'"
,.
ECl.l 64
,
. . A. '0•
.....
t..\A2.
It
DB.
Lta
v"
A'"
AB.
ABO
A84 AS'S
AB'"
A8'
""'AB.
A....
ABOO
un
+5V
;--
~
ABIl
AS"
~
.1L~,
•• . .
•• ,
I" ...... I·'······
, I"" ....
~ I.... ·.. ·~
oas
2.15 II
a.
IO.I!I
- "" A4r.
'""....
'4LSI~
t~~~
5H"
5EL..cPU.ADDR.
41'
'1"
'K
"
.... - E~
.....
'5
~
5~L
_
!.~
g5!i
.
~
~
(01
'It- _
A45
'4L515'
_
I -
~ ~ ~ ~
.... 1 q It
q It
I~a ~~
.,
~
j
D
2 ....
H
iacio
" ..
. . ...
.,I
:i
.--
""
,.
15
,
~L
" '013
/I 14-
1ft'"EU
-
"' ...
-
..44
'4L$IS'
-=-
~ l\, ~ .;:
.... l " I "
""
-
_
-
SEL
"'
..
~~ ii
. ...
DO ~i
.'"
'---,-'
Of
'" ....
-
"" 1ft
, ...t\in
?:~~~
..
~
,-=15
EU
sa.
4 ,. ., It
.. 1 ell It
:I ..
I
a 5 II 14
15
-"9
j
./
Ha
00
" :I
c .. ~ ~
.iii
'----y---'
I
I
-----. ......-.-_.. --.•
, I, I, I,
--
e1ill&Vlclec(K
COIJTROL 8D·
't50
"J:::Hi'Goool-aool ..
.........
.,
~
74L54t.
SH
~
5.
~
~H
..
~H
~
l!t
AD·RA ..... II
15 "A
0
~
••
'•
•.~
,
AD.RAM·It.
.,~
ac..c:.L1<.
0
"
-
E.C.N 14
~
.. ·
c.
AQR.AM '''I
;;;;;0;;;;;-
Sr-...
lUS')!
~
'"
AIr.
~
'0
..
AS
~J
A,S>8
""l4L5'!tl
'1-LS04
-
AD. RAM· 10
5HZ.
AD·RAM·"
AD.RAU·e
AD.RAM.'
AO.RAU·c;.
AD.RA""·5
AD·RAJ"A·4
AD-RA.... ·'
AD·RAU·!'
AD-RA ...... !
.i
AD.RAU.c6
-t 51" I,
WSggg
.
.5Y
I
4
3,
'5
t I 11 '"
c ::
I/:c ~ III ; !II :I ~
Vee.
to
At5
"§'
2.114
...
It
GND
"
+t ]5 .. I, ••
8
Vc.c.
11
10
18
5""'" n ... "
i~:C~;~:!;=~ s
At'
~U4
W
~,{
DB."
D8-$
DB·.
DB·'
DB·Z
DB./
DB-.,.
~.
t
OM'
DMEN.EN
R/W
, , - ..
11.81
111
'0
Ala
B"'AI4 At. 1
....
B\tto(' ..
IS, B4
4
I . as
I' 82.
!!I
All. 3
B
d ll
I.~t
,.
GND
14
D~
oa·'
"5"~
I.l
g8§ g =
"'"
5H ..
W
13 1,
II
'"
.
It
81, ..
5 •
• t
,
t
+5V
.. tt ,.
t'c~~:t~;I!;(i~clll
"'.
.,.
"B ~
21 WE.
"II'"
<5E' 20
~
i 011,
GU
~ §
+1
15
"5
Ate.
%.114
g
r
.~
t , " ...
,ei<~~~~~!C:"
2.4
.g~.ag.§~.Qg~
II
+5V
ct
SGt14!.tlnl'-'5
~O_N!II::!~:I"'''''
18 4: c C
C
C
~
r"!.
""'t
AtS
Vee
10 -
2.\14
g g 8 g
14
S
N
'"
IS
..
''tlll
GND
1011
"1415''''1 ~
+SV
f!.
.55
Yo<
WIt:
CIt
CH:AD"
eM.AD."
eN·AD·!
CIol·AD·4
CH·AD·.
CH·AD·2.
CH.AD·'
CM-AD-IP
A1C.
"""
CS
""..
.Q.
10
t""
11
,~
'4
1'14 15
'"
151~
lC."
It
I
t ., .....
rW{ """
':'
0 .,
18
c;
p:
!5E~
.g %
% .Q..Q.
r-".a~~""'''
=
21
Vee.
.. WE
CI1011
tt ret
.
<'":;3
~~g~,§g~~
8 ' '" 5 4 ,. !. , t5
-~lc~~S:i:l!Ctft
8
P:
,I_
8' .... , . , ...
~c:.!~~~
I
'511t.ln ":"
'tt ..
z.4'c:t:l~!Q:I!C~'t 18
V..
"BI>-
A"
-~~
~~.Q~.Q~~8"
1" -
q -'0 II - .. -'0
I-::r=.. e_~_'1. "E=.....
J
-"l" '
CWo
eot.I1WlL 10
'110
_II
1,." "
!
::_,~
CH· .... _
eM· ~~:~
SH 3
CH·
~
\
CH
~~.~
~
14
r
-'-'cP
~
0"
BS
~b
~I
AbO
CP ~ts!'4
q
H
.. ,:,1=,......
,H ..
40
4Q
'4l'3lqo,
0'5
~ 02.
Q5 15
Q'l. 1
15 00
I 01
4
01
0p
Q1 5
GriZ.
lOOt
3
~ ~~8 .~v
SWIFT. elK
~
DC CARRY
~-
"....
I
,.1 AI>
.,
:
14L'500
r
RC.
~
:
E5
::
U
04
;;
:~
05 15
.; ~
c~ _
f
<:.
'it
Cf.I·-..
''!O '.'
Ir I
A4
f
B
a~PP ~
JV~~y I
01~ .
"l4LSOb
08
,""
I I I
I
'--_+__+-=1S~
~
"T4LSo04
SHIFT. eLK.
::: ~
,a
tit
IIIIII
LC?k'4lS04
~~~~V~DEO
BLlJJK
OISPl.BlA
BLAt.JK.
.DEL.DISPL-.EN5T".
'---,
r
SH "
HALF. tIlTEIl'ITY
t3
...
v
SH..
vsv"c
(Y5~l)1
'5
IIII
"15
ROW.CIJ
SWOo
Dr3PL·BJ-
a~
"lIT."" __ .:'":"'__
__
o.~
_ ..c..-....
5W4
•
~Inc.
COLITROL aD.
"we>
l~
~
~
7
8
5
6
t
'H ..
XTALI
~,=
~
R/w
-<
5" r.
18
OBI
;,
DSt.
~~
OB5
2.2. DB4t3 DBS
De~
2.4
DB'
!~ DB'
.
. " II!
1I11111111111
S
'3
,t.
'5V
«
n
~
Ob'+sv
EI1
glE.IZ
EIO
EI3
~
Q
;:.
~
.'V
..
,.,,,>< -"
". "07
.5V
iii
t
iii
~or aJ
'"
~
D
...
!t30.n,.
~
,~~
fU
~
P1-1
P1-Z
SPI
330
C".
330 Pf
PF
.I
f1
r-----
6
T
I U·~·D'UF
..0
GilD
14L'53""
10
~
po ••
.~x=:
t17
.""
PO ...
l~~PF
.
•
E.
El
+sv
EB
'0
PO-,
PI-I
PI-2
PI-4
R'21,510.n I/'ZW
'2.
14lSOS
5+
,n
C4,l
3~~~F 13;~SPF
£CIJ
r
:
~
,,~
DESCRIPTION
ZONEILlJt
l.
'3'30 PF
~Ir
,.
IOJ
el
~
V
'"
~Dlm
OBf<>
~" 1)5
SH ,
on
t-
~~
~
.'0
y
~~
cr..
~
c
REVISIONS
.,
:
~
1
2
3
., ., ..
~ ;i:
s
!.
"
~
~A5~~~
_ _
IKe.,
L _(.,
I
l ~
'"
+5V
:~~
A4'>
G:.551
D~I
DB4
is
'5V
oed>
DB"
r;
a:
o
ll'fW
il ~~
DBz.
~
y
y
oJ
28 RSI
-U.J
[O.P.5EL
t
c
~~~
ASq
5H I
y,.
XL'
~
~,
.~ ..
on
1'5V
I"
~
D
.4
..
II
P ....
c
R'30 5IOAt/'lW
P3-14
"
~-Il
~
PE.-2.
P!-Z
C.,
?~o
~:~
PF
~ ~:~
P4-S
2.2. OB4
"""""
"'0
""
A50
&.55"1
23 DBS
24 DB'"
P4-3
25 DB'
'--~
~~
B
.2
aTR
P'3-'2.Q
RESET
B
CTS
5. ,
P4-~
Rn
P3-4
05R
P4-r.
C4.'t
330 PF
5H
,
ASIC
Pi-IO
1
P3-1Z
A
P3-Z4
IUDI
"0"1.
I
-r-IE>q
CTS
r--;'~';::;-i
AS!
D' I
A~4'5
"''1,.1
:
.~_~ 0;- _ •.J
AIO
74010
E31
''!is I
'5V
'trv ...
~
3.3K
RU.
-=-
.33,".4
~
..
.54
SlO~
A~-
R31
StK.
4.1"
...12.JA!B~
--"'-8
7
6
5
I,!
4
3
"..,
:
,.02:l :
_If ...... _011 .... ~ ....III_o.
'00 ....
P3-1
PROT· Gli.
TIDI
" .
R3t.
P4-1
PR01'· GNO
);
-'s
w~.a,.
-
P3-'
SIG.G~D
O
...~_~NE2i1~.tb4"~'4I
r
_
I
SIG. GNO
I,
!
t·!
2
(TTY)
1-
e
P3-15
P3-13
A
"I8II¥IcIec(1nc.
COliTROL BD·
qSO
~
'-'
~
REVISIONS
51< 2
S.2
S" ,
5"
~
"""""""EQJ
81
RA¢>
RA3
8l.ACK'.OJ,J·WHITE .(a.C.W)
~.
5H
•
'4LSOO
4
SLltJl<.
54
BLI.·RATE
SIl'
BLAlJl.
OOTS.SER.lAL
I : . .... .
:
:
+llV
PEl-I
ROW·q
UJJDERLINE
5...
DEL CURSOR
5,
REVERSE VIDEO
.. )) Al
.
t4-LSOO
.5V
• AIO
,40<.
HALF·urrEN!iITV
~VV~
•
AIO
'40,"
~ORCE·
AlO
~
SH'
....
EI
Et1
'40~
VS"-'
-5iW-i:iEij
'l.f'~
H'f,J
14L~ec.
01
04
'2.'04
11J~f4.
E.
04
.
.
,
-
....-q
-ltV
?"'-5
QI
2JJ'Z."Z.ICI!
I. C~
R8
PG.-B
Pl.-4
GoB ....
II<
pz-,
S. 4
COUP.V+"TL VIDEO
~
PZ·'"
•VlYt.lC (vs;;O ~
II<
• ...SV ....C.
L·crJu·Al561
.sv
PG.-'
T4.' ..
'40""
SH I
~-IO
:
Gf,JO
f ~~ I
150n.
II<
~
SLAWK
SH'
S.
.,
Un.
'4LS8c..
DEL O~PL'EfoJ -
POo-I4
·sv
15
Pt-,
~
Pl-I
SH 2
DC.CARRV
SH ..
c.cu:c
s.
2
SH 4
DC,CARRY
c.EiJ(
5H
~
13
51< I
.11 I
14l!3!.
ltV" I
AS"·
t-----------------------~3~8
-'4lSC)4.
+5V~'-'..-,--"1'~,_,
,
I "'~
RESE-r
C4.
SH '.~.'
~.Ol'"
o
~.
SHIFT·C,LK
XTALI
~
~
5. I
s.
~
•• 4
5.5
5.5
.~
.........
w;;;;;;;;;;--
.,
ZONE I LlII
E"'"
BlI· RATE
FORCE' II!SI..AJ.lK
•• v
.5V
1,
~
.~-f.
."
~
5 ,.
£!!!.
~
.....
OB4
-i
5H I
DB'
GNP
r'
DBI/>
~
Z.
~
,H ,
I
I
~
5
IilLACK·OW·WH ITII!
(BOW)
5H '"
IIII
GIla,.
IV
'tV
'3V
I:
GoA It.
!SA
4A I0
I"
•
o-ll-.
:
~
'2.
8
o-!.L
"'"S"t
a----.
I
~
~
'"A 1't
10
0--
I
10
~
~"
10
A"," 3A "
","V74L5".,4A1I
II 5Y
2A1
l
.5V
fiQ
13 r.V
~JA
.
I ..
2
5
'
Go
: : 11.
5
1!I"y
.1
~
:IT:
~
Z
~
I
5 1 '" 2. '4 '" 8
+SV
RP"
RE5,·I'"
,
51312.1
......
--="SV
RE!t· IK
Ii'fir
~
..z.V"
PS .. I
.. I'Z..V
-=
W
PS·4
.01.....f
~~T-~--~~~~--~----~--~--~
..
GI
J,-
PR
10
c..,
1.2....1
~IO
GND
SH ..
I----yCLK
ilL
+.V
Cil
t'2...J
PS"'3
~
;
~~
IA Z.
T& "'
c:reLK.
~
~
l:TGtI.
~~
"~
NO.
o-!!-
,
"
: :~14~:;":: ;.0
H.'"
q
SM5
~
ROO
...
p,...
o-ll-,
..MI".
ct
,SH Z.
oJ-!-
4
!II
IIIIII .r:JCJ.
~ i~y
5" 5
~
BI.DIR.E...."
-;:a;;u
SH •
OUT 5PE'AKE'R
IA
"1"&
A81'3
.. ,
" Is
~
6' ! ..
1
...stt
ia..,.L
s. ,
Gt
~,-y
J3.
SN ,
"
J
3Y~
~ :~~~~~:
-
..!
Source Exif Data:
File Type : PDF
File Type Extension : pdf
MIME Type : application/pdf
PDF Version : 1.4
Linearized : No
XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Modify Date : 2014:01:31 14:59:22-08:00
Create Date : 2014:01:31 14:20:59-08:00
Metadata Date : 2014:01:31 14:59:22-08:00
Format : application/pdf
Document ID : uuid:8fe4241c-772b-ec46-ae49-139928695e52
Instance ID : uuid:50ec74c2-94b7-0941-8630-a23cdf154794
Producer : Adobe Acrobat 9.55 Paper Capture Plug-in
Page Layout : SinglePage
Page Count : 88
EXIF Metadata provided by EXIF.tools