Poisson Superfish Los Alamos Manual
User Manual:
Open the PDF directly: View PDF
.
Page Count: 207
| Download | |
| Open PDF In Browser | View PDF |
L.A–UR–87–115
Issued: January 1987
User’s Guide
for the
POISSON/SLTPERFISH
Group
of Codes
M. T, Menzcl, H. K. Stokes
Accelerator
Theory
and Simulation
Los Alarrmr Natiunal
Los Alamos,
Crmrp,
AT-6,
Laboratory
New Mexico
87545
l)lS(’I,AIMltR
‘1’hls rcpml
wns prcprcd
(kcrnmcol
Ncilhcr
us :In 11.CXNIUIof work qrimlrcd
the I lni~cd SIIIICS (bwcrnmcrrl
CIIIPII)YCCS, mttkcs urry wirrrunty,
hility Ior the ntutlrncv,
c~prcw or in’p]id,
ctmlplctcncsx,
{Jr udulncss
hy An ngcrrcy If
nor my IIECIICY ihcrcd,
14c I Jnitcd SImcn
nor nnv d !hcir
or msumcs UnY ICRIII Imhilltv
or mIy Inl,)rn)uli,)rl,
nppsrnius.
!)r rcsrnmn~
produd,
or
pnxm
dischmd. or rcprcscn[s [hni ils URC would nut infringr prwniciy t)wncd rlgh!s. Mckr.
CIICC hcrrln III Hny qtcdllc ctmlmrr~;lnl r.{duct, proccw, m wrvicc hy !rmlr nnmc, Irmlcmurk,
nmcufnc!urcr,
or o!hcrwl~c
mcndmlmn, {)r fnvmirrp
Ilnd t)plmorrs or ttulhmx
I)nhcd
Arm
II(N Ilccmmr!ly
hy lhc Ilnhd
SI,IICR (hwcrnmcnl
umslltulc
SIntcs (iovcrrrtncn!
CRl)re!WCd herein
do md
or any nncrrcy lhcrc~)l
or imply
it! cmhwscmcn!,
or IInV aKcncy lhcrcd
nccmsurilv
SIIIIC or rcflccl
rcc{m}.
‘l”IIc VICWS
Ih(mc of lhc
User’s
Guide
for the
POISSON/SUPERFISH
Group
of Codes
Los Alamos National
Los Alamos,
Contents
.
.
.
.
New Mexico
.
.,
Chapter
1
Introduction
Chapter
2
AUTOMESH
Chapter
3
LATTICE
.
Chapter
4
TEKPLOT
.
Chapter
5
POISSON/PANDIRA
Chapter
6
SUPERFISH
Chapter
7
SFO1
Chapter
8
MART
Chapter
9
FORCE
. .
.
.
.
.
.
.
.
.
.
.
.
.
i
.
1-1
.
2-1
.
.
3-1
.
4-1
.
5-1
(In Process)
6-1
(In Procem)
7-1
. . . . . . .
(In Process)
8-1
. . . . . .
(In Process)
9-1
. , . .
..,,,,..
.
C}lnpter 10
POISSON/PANDIItA
EXAMPLES
Appendix
A
Access to the
.
Appendix
II
l]rogram
Appcntlix
C
Complete List of CON Variables
far l’OISSON/l’ANl) lltA/M!R~
In(lox
Laboratory
@dCS
Construction
.
.
,
.
.
.
.
. , , . . .
,,,
.,
, 1o-1
.,,
,.
.
,.
.,,,
D-1
. .
,.,
,,
. . . . . . . . . . . . . . . . .
,.,
,,
I
A-1
.
c1
1-’1
Chapter
1
Introduction
Contents
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1
Overview of the POISSON/SUPERFISH
Programs . . . . . . . . . . . .
1.2
Structure oi the Manual,.,
1.3
POISSON Example—H-Shaped Dipole Magnet
1,3.1 Executing AUTOMESH .,.
. . .
1.3,2 Executing LATTICE,
.,,
. . .
1.3,3 Executing TEKPLOT after LATTICE
1.3.4 Executing POISSON
. . . . . . .
1.3.5 Executing TEKPLOT after POISSON
. . . . . . . . . . . . . . . . .,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
,
.
.
.
.
.
.
.
.
,
.
.
.
.
.
.
.
.
.
.
.
,
.
.
.
.
.
,
.,
.
,
.
.
.
.
.
.
,
.
,
,
.
.
.
,.
. ,
.
.
.
.
,
.
.
.
,.
. ,
.
.
.
,
l_~
!-3
.,,
.
.
.
.
.
,
1–1
,
.
.
,
.
,
.
.
.
.
.
.
.
.
.
.
.
.
1-3
l--t
1-6
1-6
1-9
1-12
.
.
.
,
.
. ,
.
.
.
.
.
,
1.4
SUPERFISH Example—Modified Pillbox Cavity
1.4.1 Executing AUTOMESH . . . . . . .
1.4,2 Executing LATTICE
. . . . . . . .
1,4.3 Executing TEKPLOT after LATTICE ,
1,4.4 Executing SUPERFISH . . . . . . .
1.4.5 Executing TEKPLOT after SLIPERFISH
.
.
,
.
,
,
1-13
1-13
1-15
1-16
1-19
1-20
1.5
1,6
List of the Programs and their Functions . , , . . , . . , . . . . . , ,
Physical Units Used in the Programs . . . . . . . . . . . , , , , , . .
1-22
1-23
16.1
1.6,2
Unit~ in .lUTOMESH, LATTiCE, POISSON, PANI)IRA, and MIRT
Constants and Unite in SUF’ERFISII . . . . . . . . . , , , , ,
1,7
Acknowledgmenta,
1.8
Rc[crencrw,
Figuro 1-1
Figuro 1-2
Figure 1-3
Figure
1-4
Figuro I-5
Figuro
k’igurn
Figure
Figl]re
Figurn
1-0
1--7
1-8
1 4)
1 10
.,.
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . ,,,
Vcrtic,al crons section of an 1[-shaped dipole magnet. . . ,
I’lot from “1’EKI’LOT of t.ho mngnct goomatry. . , , .
Plot from TEKI’LOT of tha mesh gcncratcd by l,ATTICIZ.
Section from the file OUTPOI gcncratcd by POISSON . ,
PlOt from Tiwrm’r
d the magnolic field litlcn
gcncrntc(l l]yl’OISSON
.,,.,.
,,,
,,,
,,,
Modilicd pillbox r.nvity , , , . , . , , . , ,
, ,
]’]oL frolrl ‘~KK1’l,()’~ Of thr cnvity geometry
. , , .
I’lot frmn T13KI’l,OT of the mrnh gcncratm! hy LATTICE
Plot frnm TltKP1,OT of clcctri: Ikld Iineu , , , , , , ,
13xncutiun Ordnr of the lJOISSON/SIJl)KllFISIl
I}rogramn
l-l
,,,
1-23
1-23
1-25
.
1-25
,
,
.
,
.
,
. , ,
. , .
, , .
1-4
18
1-8
1-11
,,,
, .
. .
.
, ,
,
,,
, . ,
,
,
1-13
1-14
1-18
1-lR
1-21
1 24
,
,
,
,
. , ,
, , ,
1.J Overview of the Programs
Chapter J Introduction
1.1
Ov~rview of the POISSON/SUPERFISH
Programs
The POISSON/S UPERFISH Group Codes are a set of programs written by RonaId Holsinger,
with theoretical assistance from Klaus Halbach, to solve two distinct problems—the calculation
of magnetostatic and electrostatic fields, and the computation cf the resonant frequencies and
fields in radio-frequency cavities —in a two-dimensional Cartesian or three-dimensional cylindrical
geometry, Three codes are widely used for the design of magnets and radio frequency cavities,
These codes are grouped together since they utilize common programs ewwell aa common sub
routines. The initial setup of either a magnet or a cavity problem uses two common programs,
AUTOMESH and LATTICE, to generate the mesh for the given input geometry. The program
TEKPLOT provides graphical output for either of the two problems.
When the mesh has been genernted and the appropriate materials and boundary conditions have
been SI ecified, the finite difference equations are set up and solved by one of the equation-solving
programs, For magnet problems, these programs arc I’ANDIRA, POISSON anrl/or MIRT; for
cavity problems, the programs are SUPERFiSH and SFO1.
The programa POISSON and PANDIRA solve elcc.trostatic and magnetostatic problems. PAI!DIRA
also solves permanent magnet problems. The program POISSON solves the diacretized problem
by the traditional “successive point over-relaxation” (SPOR) method which is very el%cicnt for
problems that converge rapidly with thirr met~od. However, it is well known tl~nt many interesting problems converge slowlj or not at all with SPOR. In those Caacs, the program PA ND IRA
should be Ufd.
The program PANDIRA SOIVCB
by a “direct” muthod and iteration is required only for nonlinear
problems. Tho fact th~t the mesh is topologically regular mcanrr that the ( ~cflicient matrix of
the tinitc diffcrcncc cquationa haa an identical Struct’lre for any problcm Iiccauoc this structure
is always the oamc, a very efTcicnt sparse mrdrix Incthml in IJFXXI to solve thmn systcrrw, which
typically contain many thousands of cquationa.
TIIC program SIJI’ERFISII IIrICn thin direct mlutit)n rwthod for the cigcnvaluc prot]lort~ tn dct,crminc tho rcsnnnnt frrqucncica in stwldinK-wave rndio-freqm?ncy cRviticn.
A list of nll tlw progrotnn arid lhcir fun::timln in the PO ISSON/S( JI)P;llFISII (lrolly COdcn is
givct)
ir) SM. 1.5. ‘i’ltc indivi(l~lnl I)ronrnmi ~rc drncrihd in dutnil Ilndcr their chnptcr listing
12
1.2 Structure of the Manual
Chapter 1 lntrocfuction
1.2
Structure of the Manual
Since this manual is B user’s guide for the POISSON/SUPERFISH
programs, the material covered is primarily information that is relevant for tbe execution of the programs. The user is advised to coneult the POISSON/SUPERFISH
Reference Manual for information on the theoretical
derivations, numerical methods, and an in-depth explanation of the programs.
All the chapters and mctions of this manual are largely self-contained; any outside information
that is required is clearly indicatei by a reference to the necessary section. The user does not
have to read the complute chapter; the sections could be skimmed and the subsections that are
relevant to the problem should be read.
Chapter 1, the introduction, provides an overview of what the programs do and how they interact and work together. Each of the following chapters describes onc of the programs in the
group. These chapters are structured in the same manner: they begin with a general introduction followed by sections. Each section givee a general overview of the topic, with detailed information discussed in the subsections that follow.
We suggest thnt a new user begin by reading Chapter 1, following the step-by-step instructions
for the execution of the example in Sec. 1.3 or Sec. 1.4. Then, for each chapter, the user should
read both the introduction and the input section, then skip to the examples at the end of the
chapter. At that point, the user may refer to sections which are of interest or pertinent to the
problem.
Additional examples are given in Chapter 10, The examples there uti!lze different options to illustrate the great variety of problems that can be solved by thcec programa.
1.3
POISSON
Example—H-Shaped
Dipole Magnet
In this ucction, we uoe a simple cxnrrr~le to il]umtratc the usc of the I’OISSON Group Codes in
the solution of a magnet proh]cm. We are intarcstcd in ctdculating the nlagnotic ilcld distribution of * long dipole magnet aa uwxl in circlllftr pnrticl(! ar.cclcrfitors, Ibcause the dipole is long,
the calculation of the fich.1far from tho ends of t.hc mngrmt i~ cmcntially a two dimcnoionnl problom and thus nolvablo with the 1’OISSON proglnmn, Fig~]re I I nhowHthn vcrticnl mono ncction
picturo of this li-~hnpod rnagnct.
A atcp-by-st(tp dution of the 1[-m~gnct prnblcm i~ olltlinctt in the nubncctions below, In ordor
to avoid tho um of unfamiliar 1’OISSON lcrnlinology nt l,hi~~tagc, only I)ricf axplnuntionn o{ tha
procerluron me givun. A complclo dclnihd dowril)tion of the 11-nmgnct Imblcm is given in IIuhrIoqucnt chaptcrn.
I :1
Chapter 1 Introduction
1.9 P01S90N
ExarnpJe
Fig. 1-1: A v~rtlcal cross se:tlon of an H-shaped dipole m~net showing Iron, coil, anti air regions.
The terminal output for the execution of the programs on a CRAY computer is also listed. The
user only types the underlined quantities; the other text is generated by the executable program.
1.3.1,
Executing
AUTOMESI1
The execution of AUTOMXSH requiren an input file in the format shown below, A eucceaeful
AUTOMESH run generates an output file, TAPE73, which is the input file for LATTICE.
Bccauoe of uymrnetry options available in the POISSON programs, we only ncod to input the
upncr right-hand quadrant of Fig, 1-1, Below is a listing of this input file, IIMAG, correopondlng to the geometric configuration on the right, A complete, Iinc-by-line, description of llMAG
io qivcn in Sec. 2.5, Hero we indicate that the input file umo two Fortran NAM ELIST entries”
$REG--unod to input region parnmotcro and $PO used to input the physical cowdinatce of the
Fcgion,
;-4
Chapter 1 Introduction
1.3 POISSOIVExamp]e
HMAG, Input File for AUTOMESH:
h-magnet
test, umiform mmmh
4/23/86
$rOg nrog-3 ,dx- .46, xBmx-22.,ymx=ls. ,npc+int-s$
$pox-o.
o, y-o.
$pox-22.
$pox-22.
$pox-o.
$pox-o.
o,
o,
o,
o,
o$
y-o. a$
y-13. o$
y-is. oo
y-o. o$
$reg mat-2, npoint=108
$pox-o. o, y-2. oo
opox-6.1,
y-2. o$
8p0 x-6.6, y-2.4$
$po x-6.6, y-6.0$
$POX-16.0, y-ti.o$
$po x-16.0, y- O.O$
$pox-22. o, y-o. o$
$pox-22. o, y-13. o$
$pox-o.o.
y-13.o$
$pox-o.o.
y-2.o$
$r.gm i-l,npoint-6,
(0.. 13.)
(22.. 13. )
RA@om 2
lroll
y(cul)
(S.she)
(15.$)
9
v
(6., 6.5)
2.4)
(6.1, 2.) ~
(14.6,
6.5;
(6.6,
(o., 2. )P
F@ial
R.eglon 3
coil
Alr
A
A
(0.:0.)
(6.:0.)
X(all)
AA
( 14.5, O.J(lS.O.)
CUP-26466.791$
8po x-6.0,
y-O.0$
$po x-14.6,
y-O.O#
$po x-14.6,
y-6.60
$po x-6.0,
y-6.6$
8pox-6.o.
y-o-o,
Following theliBtingof
?type input filo
?tuw
region no
HMAG intheexecution
listing of AUTOMESH ueing this file.
ntmo
1
ok
region
no
2
nd.
3
ok
region
ok
●tl.p
autommh
CPU=
ctmm time
.120
i/o-
380
21U
●mcondm
● 9m-
0.41
mll don-
1-6
(22.. -0.)
1.3 POISSON Example
Chapter 1 Introduction
Executing
1.3.2
LATTICE
The execution of LATTICE with the input file, TAPE73, is shown below. There are no changes
to the default valuerj (this is designated by typing a).
latticQ
input file name
?type
TM
beginning
of lattice
dump O will
h-magnet
execution
b. eat up for poisoon
teat,
uniform
meoh
4/23/8S
input valuem for con(?)
?type
?g
time
elapaed
Oiteration
elapsed
=
0.4
sec.
converged
time
generation
-
0.7
sec.
completed
dump number Oham baen written
on tape36.
stop
ctma time
lattice
.600
cpuall
●econds
1.006
.336
i/o-
0.70
mem-
done
Executing
:1,3.3
TEKPLOT
after
LATTICE
After execution of LATTICE, we execute TEKPLOT b veri~ that our input and the generated
mesh ]s correct. We make two passes through TEKPLC)T: the first u ploto on the screen the
input geometry
M’ shown in Fig. 1-2; the second ~ plota the mesh with the geometry aa shown
in Fig. 1–3. To exit from TEKPLOT, we need to type ~~ an given below.
?type
input
data-
num, itri,
nphi,
inap,
nmwxy,
?~
input
data
num- O
itri
plott, ing
prob.
7typo
input
- O
data-
nphi - O
name -
Inap-
h-m~gnnt teet,
xmin,
x.mx,
ymin,
nawxy - O
o
uniform
mesh 4/23/86
ymax,
?~
input
data
xmin- 0.009
xmax- 22.000
ymin- 0,000
ymax- 13.000
7typa gn or no
?gQ
1-6
cycle
- 0
1.3 POISSON ExampJe
Chapter 1 Introduction
A carriage return (CR) after gQ clears the ecreen and plots Fig. 1-2. A second CR clears the pint
off the screen and conthmea execution.
typ input data- nun, itri, nphi, inap, nmwxy,
?U.J
input data
nlm- o
itri- 1 nphi- O Inap- O newxy- O
plotting prob. U-O = h-magmt teat, umiiorm ■@oh4/23/86 cycle - ~
typa input dhta- min. xmax, ymin, ymx
t~
input data
xmin- 0.0000
Xmax-22.000
? type BOor no
?gQ
pin-
0.0000
pax-
13.000
A CR after gQ clears the ecreen and plots Fig. 1-3. A eecond CR clearo the mcreen again and
continuee with execution. A negative value for the variable NUM termhatem execution.
?type input data- num, itri,
cpu●ll
.031 i/o-
nphi, Inap, rwxy,
.681 mow
.063
dono
1-7
Chapter 1 Introduction
1.3 POISSON Example
F!g.
1-2: Plot from TEKPLOT of the magnet geometry. This 1s a verification of the input data to
AUTOMESH for the problem %-magnet test, uniform mesh 4/23/86.”
Fig.
1--3:
Plot from TEKPLOT of the me~h generated by LATTI(~13 for the problem “h-mognet ted,
uniform mesh 4/23/85.=
1-8
1.3 POISSON Example
Chapter 1 htroduction
Executing
1.3.4
POISSON
Since the mesh plot output from TEKPLOT looks good, we proceed to execute POISSON. We
choose, by typing M, to input data from the terminal. We then enter:
●6
o
-
O *46 6
-
–1
dump O on TAPE35 generated by LATTICE
to change two of the CON array variables, CON(6) and CON(46),
specifying use of p = finite with use of internal B2 us, 7 and
specifying a symmetrical H-magnet, respectively.
LOterminate POISSON as shown below,
to read
--
vie-a
‘ttyn or input file
type
?W
?type
input
?Q
beginning
value
for dump num
of poimoon execution
prob.
name = h-nagnet
?type
input
●60
values
time
O cycle
0
0
=
teot,
uniform
O
mesh 4/23/85
con(?)
l. Ooec
amin
00
0
for
from dump number
*406a
elapoed
0
name
O. 0000e+OO
60
60
amax
residual-air
eta-air
rhoair
gmax
residual-iron
eta-iron
rhofe
O, 0000e+OO
1. 0000e+OO
1.0000
1.0000
4. 0000e-03
1. 0000e+OO
rhoatr
-4.7296e+04
100
100
optimized
1.000
1.0000
1 ‘0000
0.9903
1.9558
lamMa -9,9976e-01
1.0000
0.0000e+OO
6.7349e-02
0.9903
1.9658
3 .9026e-03
3.4407e-02
1.0039
1.0000
0.9717
1.0578
lambda =9.9978e-01
0,0000e+OO
2.6360e-02
0.9717
1.9678
1.0000
2 .0634e-02
2,0906e-02
0,9834
1.0000
rhoair
-1.0012e+06
xjfact
optimized
0
0
200
200
0.8960
1.9478
lambda = 1.0003e+O0
-1.1968e+06
0.0000e+OO
1.0887e-04
0.8960
1.9478
1,0000
4.6362e-02
7.9336e-05
0.0900
1.0000
0
370
-1. i939e+06
0.0000e+OO
3.73010-07
0.9367
1.9470
1.6136e-07
0.9328
1. OOOG
rhoair
optimized
4.6392e-02
oolution
converged
elapsed
in 370 iteration
time - 3,8 sec.
dump number 1 baa been written
?type
input
value
ontape36
for dump num
?-J
●top
poissonctoo
cpu= 2.B31
time
ilo-
4.427
1/081
aecondo
ream-
.614
●ll done
1-9
1,0000
Chapter 1 Introduction
1.3 POISSON Example
In addition to the output of a binary file, dump 1 of TAPE35, PGISSON generates an ASCII
output file, OUTPOI. All of the group codes produco a similar output file; the name is formed by
“OUT” followed by the first three letters of the program generating the file. That is, AUTO MESH
generates OUTAUT, LATTICE generatee OUTLAT, etc.
The file OUTPOI contains a summary of input dhta, a listing of iteration variables as printed
the terminal, and a table listing the calculated field components and their gradients on axia
(Y=O) for noniron regions only. Thim table, lines 188--228 of OUTPOI, is shown in Fig, 1-4.
at
1-10
Chapter 1 Introduction
1.9 POISSON Example
sulution converged In S70 iterations
elapsed time
=
dump number
4.2
1 has been written ou tape35.
Ieaet squarc~ edit
‘h’ mag
kl
of problem , cycle
symmetry
stored energy =
xJfact=
sec.
370
type
1.4’249c+03
joules / meter or radian
dbyJdy
dbyldx
x
bx(pm)
by(gau~s)
bt (gauss)
(~aus8/cm)
(gauss/cm)
0.00000
0.000
15212.260
16212.260
0.0000e+OO
0.0000e+OO
6.3e-04
0.44808
0.000
16210.826
16210.026
0.000 fJe+OO
-6.46 &3e+O0
.3.3e.OS
0.000
1s206.196
16206,106
0,0000e+OO
-1.4068e+Ol
3.7e-03
0.000
16197.066
16197.066
0.0000e+OO
.’2.7007e+Ol
6,6e-03
6.5e.03
1.000000
a(vector)
Y
32
1
0.00000
0.00000
0.80706
-1.366822e+04
0.00000
1,34694
-2.048305e+04
0.00000
1.79692
.2.73034 Lte+04
0.00000
3.24490
0.00000
-3.41134 !4e+04
!2.ti9388 0.00000
-4,090 .593e+04
3.14286
0.00000
-4.7t3f3697e+04
-6.437198e+04
0.00000
3.69184
0.00000
4.04082
-6.097737e+04
0.00000
4.48980
-6.74129 ie+04
0,00000
-7.3 b822ie+04
4.93878
6.38776
0.00000
-7.938901 eI-04
0.00000
6.00000
-8.057337e+04
0.00000
8.44737
-0.114731C +04
0.00000
-9.618666e+04
6.80474
0.000oo
7,34211
-0.871 101e+04
7.78947
0,00000
-1.01793Z+06
0.00600
-1.044947c+06
8.23684
0.00000
8.68421
-1.068700e+06
0.00000
0.13168
-1.08 W123e+06
0,00000
9,67806
-1.lo8060e+06
0.00000
10.0’2032
-l,124277e+OS
0,00000
10.47308
-l,138487e+06
0.00000
10.92105
-l,160860e+oti
0.00000
.1.1014 O6C+O6 11.36042
O.oocoo
-l,170620e+05
11,81670
0,00000
-1.178000?+ 06 12.20316
0,00000
12.71063
.l,18399fle+06
0.00000
-1.18 a662e+06
13.16780
-1.101702 e+-06 13.1306mt 0,00000
0.00000
14.06263
-1.103473 e-t06
33
1
-1, 1931180e+08
14.6moo
0.00000 0.000
.60,740
60.740
34
1
-1.193675e+m
15.00000
0.00000
0.000
-60.019
00.010
11
O.GOOOOOe+OO
.t,829781e+03
21
31
41
51
61
71
81
91
10
1
11
1
12
1
13
1
14
1
lb
1
16
1
17
1
18
1
19
1
-10
1
21
1
32
1
23
1
24
1
26
1
!46
1
27
1
28
1
20
1
30
1
31
1
0.000
16180.606
15180.606
0.0000e+OO
-4.7087e+Ol
O.oco
16151.761
15161.761
0,0000e*OO
-8.46 SOe+Ol
7. Oe.03
0.000
16100.434
16100.4d4
0,0000e+OO
-1.6084e+@2
0.2e-03
0.000
16008.404
16006.404
0.0000e+OO
.2.7006e+02
1,1 e-02
0.000
14e43.604
14B43.604
0.000oe+oo
-4.8267e K02’
2.4e-02
0.000
14654,676
14664.675
0.0000e+OO
.tl,2000e+02
l.le-01
0.000
14077.744
14077.744
0.000or?+oo
-1. S160e+03
6.le-01
0.000
13360,124
13369.124
0.0000e+OO
-l,0677e+03
l,tle+OO
0.000
12436,710
12436.710
0,0000e+OO
-2.l?82e+03
.7,6e+OC
0.000
10003.018
10003.018
C.0000e+OO
-2.8865e+03
6.7e+O0
0,000
9613.090
0613.000
O,ooooe+oo -2.8434e+03
l,9e+Ol
&le+OO
0.000
0410.633
8416.633
0.0000e+OO
0.000
7364.662
7364.563
0,00C0e+O(l
.!2,’2160e+03
l. Oe+OO
0.000
6430.740
6430.740
0.000or+oo
.l.ao67e+03
9.3e-ol
.1,627 ae+03
6. Ot-01
.2.6G2’Je+03
0,000
6666.367
6666,307
0.0000e+OO
0.000
4978.629
4078.623
L),0000e+OO .1.41 13e-+03
0,000
4387.602
4307.692
0.000oe+oo
.l.2403e+03
l. Oe-01
0.000
3804.200
3864.280
0,0000e+OO
.l,1006e+03
0.6e.02
0,000
3303,020
3303.820
0.0000e+OO
-l,0022e+03
6,0e.02
0.000
2004.660
2064..560
().O()OOe+OU -Oo2000e +02
0.000
!4687,346
2607a34a
0,00J0e+OO
-ll,6778e+02
O.in-io
2105,081
2108.081
0.0000e+OO
.a.08anc+02
9.oe.04
0.000
1042,181
1842.181
O.OOOOe-t
OO -7,7002e+02
.O.6e.03
0.000
1604.265
1604.266
-2. Oe.WJ
1177,824
1177.8!24
0.0000?+00
O,ooo(h+oo
.7,4120e+oa
0,000
.7,1882? +02
.3.4e.02
0.000
800,007
800.007
0,000oe+OO” .7,010 !2e+02
.6.7r.02
0.000
640.874
648.874
0.000
!443.246
(),ooo(k+oo
0.0000?+00
010000-+00
Ooftoooc
+(N
Fig. 1-4: Aaoctlon from the file OUTPOIganmated
4/23/86,
d? t
243.246
2.8e-01
3,0e-02
l,3e.02
.(l,8034e+@2
.O.7e-02
-o,7an4e+02
-2.4e.ol
-tl,6700r+02
.l.6r+O0
o, ()()oor + 00
.l.oe+oo
by POISSON for the H-chapod magnet problem
cyfle = 370.
1-11
Chapter 1 htroduction
Executing
1.3.5
1.3
TEKPLOT
after
POISSON
After a successful execution of POISSON, we execute TEKPLOT
dump 1 of TAPE73 and 20 field lines to generate Fig, 1-5.
3skRldi
?type Input data-
num, itri,
nphi,
POISSON Example
inap,
nmvxy,
O
nswxy - o
again. This time we designate
?Jo 20a
input
dhta
num= 1
itziprob.
plotting
?type
o
input
nphi”
Inap-
20
name = h-magnat
dmtm-
uniforw
totit,
xmin, xnmx, ymin,
mmah 4/23/86
cycle
= 370
yumx,
71
dmtm
xmin= 0.000 xmax= 22.000 ymin= 0.000
input
?type
ymax= 13. 00G
go or ro
?gQ
A CR after gQ cleam the screen and plots Fig, 1-5. A second CR clears the screen and produces
the prompt line. A negative value for the variable NUM terminates execution.
?type
7tekplot
input
data-
ctmm timm
CPU- .037
1/0-
num, Itrl,
nphi,
inap,
nawxy,
.661 ●econdm
.490 mem= s044
●l 1 don.
1 12
Chapter 1 Introduction
1.4 SUPERFISH
\\\il
Examp]e
I
Ill
111111111111
1111111
m
Fig. 1-6: Plot from l’EKPLOT of the magnetic field Ilnas generzted by POISSON for the problem
“h-magnet teat, uniform mesh 4/23/86”,
1.4
SUPERFISH
Example— Modified Pil]hox Cavity
In this section, we use a ahple example to illus~rato the UM of the SUPERFISH Codee to find
the lowest frequancy in a cavity, The atructilre that we consiclor is a pillbox cavity with b~am
pipes entering and exiting the sides, m nhown in Fig. !-6.
A step-by-step rmlution of thie problem ia outlined in the subrcct,ionrr below, In order to avoid
the uae of undefi,~cd SUPERFISH terminology at thin ntage, only briuf explanatiomr of the pr~
ceduren are given. A comple’te detailed rieecription of a SU1’ERFISI1 proi,)lom i~ given in nubne
quont chaptore,
The terminnl output for the cxecutkrr of the programs on a CRAY computor iE also listed, The
uoor only typeo the underlined quantities; thn othm text in goncrmtml hy tho cxocutnble program.
1.4.1
Exocuth]g
AUTOMESH
Tho execution of AU’N.)MIMH requireo nn inpu: fllo in the fm rent. shown below, A nuccennful
AUTOMESH run gelloratc~ an output fllo, ‘I*AI’E73, which in the input fllo for LATTICE.
Taking into account tho nymmetry of tho prohlom, wo nod only ir~put a qum~er of the goomotry
in cylindrical coordinates- -the dnfnult m-mrdinatc nyntmn for S(JI’IVI{F’ISII, Iklow in ~ listing of
this input file, MOlll’l L, c.orrcnponding to tho gcornotric configuration on the right. Tho picturo
1-13
Chapter 1 Introduction
-------
1,4 SUPERFISH
Example
-
Fig. 1-6: Modlfled plllbox cavity.
of the full cmvity M given in Fig, 1-6, can bo visualized by first reflecting the figuro throl]gh the
r-~xie md then rotating it around the z-axie,
MODPIL, Input File for AUTOMES1l:
1 ❑edified
pillbox
cavity
(0,00 60)
v
0/16/08
<(2.6,
6.0)
#rag nrog-2, dx- .26, xmax=7. 6,
ymax-6 .O, npoint-7 ,ndrive-1$
opox-
0.0,
~pnx-o.(),
y- 0.0$
y- 6.09
$p~x= 2.6,
y$pox- 21b, yopo x-7,6,
y$PO%- 7,6, y#pox-
0.0,
oreg
npoint-1:
@pOX- 0,0,
5,0$
2.0$
2.08
n
r
(cm)
O.0#
I
y- 0!00
(7.6,
’261
y- 6,0$
20)
‘~
Rngion
I
1 Air
(7.6,
0.0)
4
[
(Olo, olo)~
2,0)
‘—–
1 14
z (cm)
Chapter 1 Introduction
1.4 SUPER FISH Example
A detailed description of an input NO to AUTOMESH io given in Chapter 2. Here we indicate
that the input file uses two Fortran NAMELIST entries: REG - used to input region parameters, and PO - used to input the physical coordinate of the region. NAMELIST input starts in
column 2.
Specifically, MODPIL ham a title line with entry starting in column 1 indicating a SUPERFISH
run, a first REG entry for an air region followed by PO entries specifying the coordinate of thin
region with all (x, y) entries corresponding to (z, r) entries, and a necond REG entry followed by
one PO entry indicating a drive point region.
The execution lieting of AUTOMESH using the input file MODPIL is given below.
?typ
input
filo
mm.
~m.QdW
region
no.
logical
1
●ogmont ●nd points
boundary
i80g
kb
1
kd
lb
ld
11
a
1
24
10
3
11
24
0
4
11
10
10
6
31
10
0
-1
6
31
1
-1
0
region
no,
ko
01
-1
10
1
24
11
24
11
10
31
10
31
1
11
2
ok
stop
autonr*8h Ctac tine
c pu●ll
1.4.2
,069
.343
i/o-
,328
●conllm
maur
0.67
done
Executing
LATTICE
Tho execution of LATTICE
uoo including the boundary
right-hand boundaries and
for our problem. Therefore,
ueir,g the input file, TAI:R73, in ohown below. All the default vafconditirmo, which npmify perfectly conducting metal for Ilppar- and
axio of nymmotry for bottonl and left-hand boundaries, sre correct
we typa 1 (monning ukip) to ricnignnto 110chnngce in the input.
l--lb
Chapter 1 Introduction
?tvpe input
file
1,4 SUPERFISH
Example
Dame
?$AJWa
beginning
of
lattice
execution
be met up for euperfia
lmodified pillbox cavity9/16/86
?type input valuea for con(?)
?R
dump O will
elapsed time - 0.3 ●ec.
O iteration
converged
elapeed time - 0.3 sec.
generation
completed
dump number Ohao been writtenon
●top
lattice
cpu●ll
ctee time
i/o.137
●econda
. S32
.308
mem-
0.087
done
Executing
1,4.3
tape36.
TEKI’LOT
after
LATTICE
After execution of LATTICE, we execut3 TEKFLOT to verify that our input and the genoratcd
mesh is correct. We make two passes through TEKPLOT: the first ~ plots on the screen the
input geometry ae shown in Fig, 1–7; the secnnd gQ plots the mesh with the geometry aa shown
in Fig. 1-8.
?type input data- nurn, itri,
nphi,
nriwxy,
inap,
?&
input
data
num- O
itri=
plotting
probt
cycle
O
nphi= O
name - modified
nawxy= O
cavity
9/16/86
- 0
?type input data?E
input data
xmin, xmax, ymin, ymax,
xmin- 0.000
xmax- 7,600
?type go or no
? &Q
typo input data.
‘f
inap= O
pillbox
rrum, itri,
ymin- 0,000
nphi,
inapt
ymax- 6,000
nowxy,
Q.A.A
1 16
1.4 SCIPERFISH Example
Chapter 1 Introduction
input data
nphi= O
num= O
itri=
1
plotting
prob.
nama-modifimd
cycle
type
input
dnta-
xmin,
nmwxy= O
inap= O
pillbox
cnvity
Ql16186
- 0
xmax, ymin, yumx,
?Q
input data
xmin”
? type
xmax= 7,600
0.000
goor
ynlax- 6.000
ymin” O.000
no
?gQ
ACRafter
~cleare
the screen and plots Fig. 1-8. Asecond
the prompt
line, A negative
value torthevariable
?type inpu~ data- num, itri,
A
tekplot
ctno
c pu●ll
time
,106 i/o-
1,180
nphi,
NUM termkatee
inmp, nflwxy,
nmcondm
,989 mem-
CR clearethe
.093
don.
I -17
execution.
acreen and generates
1.4 SUPERFISH
Chapter I Introduction
Example
~—
Flg.
1-7: Plot from TEKPLOT of the cavity geouMry. ThIa Is a verlflcatlon
%odltlad plllbox cavity 9/16/86.”
probleto
prob.
● dl~l~
Fig.
1-8: [’lot
from
Plllb
~4.1*
0/10-
#q
.
of the Input
data
!or the
*. m
TKKI’l AIT of thn mesh ~ont?rmttwlby l,ATTI(:R for tho prohlr m “mm-lltled plllbox
Crwlty !)/10/80.’
1 In
1.4 SUPERFISH
Chapter I Introduction
1.4.4
Executing
Exunpfe
SUPERFISH
Since the mesh plot output from TEKPLOT lcoks good, we proceed to execute SUPERFISH
(named FISH). We choose, by typing W, to input data from the ‘errnirml. We then enter:
oto read dump O on TAPE35 generated by LATTICE
●65 2300. a
– to input into CON(65) the starting value for the frequency.
(Any lower value would do, except the run needs more iteration to
converge. )
–1
–
to end the I-.
In the output reproduced below,
the sake of brevity,
?type “tty” or input
results of the second iteration cycle have been omitted for
tile
nama
file
w
?type input value for dump num
tQ
of ●uparfish
●xecution
from dumpnumber
beginning
prob. name = modified pillbox
cavity 9/la/86
?type input valuao for con(?)
●65 ~JQG, 1
elap~ad time - 0.6 ■ ec .
cycle
hmin
hmax
O 0. 0000a+OO 0, 0000e+90
----- --------------------
O
re~idual
1, WOe+OO
-------------------
-----
-----
.--.----
k**2 -2.32370-01
f req -2, 3000e+03
solution
1
-----
4,S19
tima -
sec.
1, 000e+OO
deltal
= 7.7380e-02
0.0000atOO
9.6312e-01
kfix 1 lfix - 24
“----
-----
-
.
------
—
-------------
--------
the following
uming
del
dl(k**2)-
-------
..
3
time *
OaOCOOe+OO
kfix=
. . .. ... ------
1 lfix
------------
3,82S
-...--
improvement
■lopo =
with rlx -0,600
-1 formula
k**2 ‘C$.6623e-03
k+ b2freq
solution
--”-
1.9306a-02
2,4202e-01
- 2.3473e+03
●at.
i , 0009+00
l,l131e*O0
=24
-------
deltai
- -4.2998e-06
----------------—
dwltml(k**2)
dariv,
-S,3643e+O0
2nd dariv,
-2t784!le*01
let
I 10
dl(k**2)= 7.4418e-06
----- ---
—.. ------
dl(k*~2)
-l, oalsd+oo
6,21619e~O0
Chapterl
Introduction
1.4 SUPERFWf
the following
ueing
three
delk**2=
Example
improvement
point
parabola
-7.4290e-06
formu%n
k**2=2.4843s-01
freq=2.3782e+03
soldiion
converged
elapaed
time = 12,9
sec.
dump number lhaebetn
?type
input
value
3 iteration
in
written,
for dump mum
?~
mtop
fish
ctne
cpuall
8.756
i/o-
, 8S0
eeconde
14,443
time
mem-
4.836
done
In addition tothe output ofa binary file, durnplof
TAPE35, SUPERFISH generates an.ASCII
output file, OUTFIS, All the group codes produce aeirnilar output file; tho name is formed by
“OUT” followed by the first three letters of the program generating the file. That is, AUTOMESH
generates OUTAUT, LATTICE generates OUTLAT, etc. Any cf these ASCII files may Le printed
or examined with an editor.
Using dump 1 of TAPE35, the program SFO1 can be executed to calculate auxiliary quantities.
Chapter 7 gives details.
Executing
1.4.5
TEKPLOT
after
SUPEllFISH
After a auccewrful execution of SUPERFISH, we execute TJ3KPLOT again, Thin time we designate dump 1 of ‘T’APE35aa the input file and request 30 field lines, M ohown below; to generate
Fig. 1-.9, From the field pattern rrhown in the figure, it is seen that wc have calc~~lated the d~oired TMOlo mode.
?type
input
data- num, itri,
nphi,
inap,
nmwxy,
?1Q30Q
input
data
num- 1 itriw
plotting
?type
O nphi= 30 inep-
prob.
input
data
name = rnodifiad
xmin,
O l~ewxy= O
pillbox
xmax, ymin,
cavity
9/16/86
cycle=3
ymax,
?fi
input
data
xmin” 0,000
xmax- 7.600 ymjn- 0.000 ymax” 6.000
?typm go or no
?gQ
A CR nftcr gQ cloaro the ocrwn arrd plotsFig. 1-9. A second CR. clomr the ecroon unrl gonoratea
tlio prompt
line. A negative
valuo for the variable
N[JM tmrminatecr exccutirm.
1-20
Chapter 1 Introduction
1.4 SUPERFISH
?type input data- nm . itri , nphi ,
illmp , U8WXy,
?A
tekplot
ctue
CPU=.209 1/0●ll
time
1.093
macondm
.ao7 mom- .077
done
+—”———
Fig.
I-9:
Plot from TEKPLOT
of electrlc
field llneo (r~
1-21
= conot) for TF&lo mode.
Example
1.5 List of the Programs and Their Functic..~
Chapter 1 Inmoduction
1..5
List of the Programs and Their Functions
1. AUTOMESH - prepares the input for LATTICE from geometrical data describing the prob.
Iem; that is, it rxwigns mesh points and generates (x, y) coordinate data for straight lines,
arcs of circles, and segments of hyperm]as,
2. LATTICE - generates an irregular triangular mesh (physical mesh) from input data listing
the mesh points and the physical coordinates describing the problem, calculates the “point
current” term at each mesh po; nt in regions with distributed current density, und sets Up
mesh point relaxation order. l, A’I’TICE writes the information needed to solve the problem
using the codes POISSON, PANDIRA, MIRT or SUPERFISH.
3. POISSON - solves, by “successive point over-relaxation,’ Poisson’s (or Laplace’s) equation
for the vector (scalar) potential with nonlinear isotropic iron (dielectric) and electric current
(charge) distributions for two-dimensional Cartesian or three-dimensional cylindrical symmetry. It calculates the derivatives of the potential, namely, the fields and their gradients,
cal~ulates the stored energy, and performs harmonic (rnultipole) analysis of the potential.
4. PANDIRA – Is similar to POISSON except it solved the system equations by a “direct” method,
i.e., a direct solution of the block tridiagonal system of difference equations. PANDIRA allows anisotropic materials and 13(H) in the second quadrant (negative p), With this P-G
gram, permanent magnet and residual field problems may he solved.
5, TEKPLOT - Plots the physical geometry and meshes generated by LATTICE, and equip~
tential (or field lines) from the output of POISSON, PAND]RA, MIRT, (or SUPERFISH).
6. FORCE - calculates forces and torques on coils and iron regions from POISSON or PANDIRA
solutions for the potential.
7, M!Rr - optimizes magnet profiles, coil shapes, and current densities bared on a Eeld specification defined by the user.
8. SUPERFISII - solves for the TM and TE resonant frequencies and flcld distributions in an
rf cavity with two-dimensional cartcsian or three-dimensional cylindrical symrnctry. Only the
aziinutha]]y symmetric modes arc found for cylindrically symmetric cavities, The modes are
found onc d a time, SUPERl~ISII also solves for cutoff frcqllcncics and Inodc patterns of TE
and TM wavcgukie mcxlcs.
9, SFO1 - calculatco nuxiliary quautitic~ useful in the dc~ign of cavltics from the output of SUPERF’lSII. These quantities include storod energy, power dissipation on the walls ~nd tube
sterna, transit time factors, shunt rcsistancc, the quality f~ctor ~, nnd the maximum elc~tric
field on the boundary.
1 22
1.6 Physical Units Used
Chapter 1 Introduction
1.6
1.6.1
Physical Units Used in the Programs
Units
in AUTOMESH,
LATTICE,
charge
current
derivatives of B
electric field E
field H
force
induction B
coulomb’
Po
length
.4~ gau.9s-cm/amp
gaJAss/cm
volts/cm
oersted
amp-cm-gauss
= 10-8 newtons
gau9s
centimeters
Constants
and
electric field
frequency
magnetic field, }Jo
resistitiity of Cu
-
velocity
–
c
or user-defined
by CON’V in TABLE 2-1 or by CON(9) in TABLE 3-1
Volta
Joules/meter
(Cartesian)
Joules/radian
(cylindrical)
gauss-cm
vector potential A
of light,
PANDIRA,
amperes
scalar potential V
stored energy
1.6.2
POISSON,
Units
in SUPERI?ISH
volts/meter and meg&volt/meter normalized so that:
s; E. dz/ L = 1 mega-volt/metm
where:
E, = electric Iicld on axis
L = length of cavity
megahertz
amp/meter
1.7
10-0 ohm-cm
2.997925
1010 cm/aec
1--23
and
MIRT
Chapter 1 Introduction
1.6 PAysical Units Used
AUTOMESH
LATTICE
I
)
>
TEKPLOT
mesh and geometry
I L—_,
I
L?
PANDIRA
POISSON
?
2-’
FORCE
i
MIRT
\‘
i
w
\
1
TEKPLOT
field, mesh, and
gcomet ry plots
Fig. 1-10: Execution Order of the POISSON/SUPERFISII
Program~
plots
1.7 Acknowledgments
Chapter I Introduction
1.7
Acknowledgments
The complete POISSON/SUPERFISH
Group Codes were developed over a period of 15 years,
by Ronald F, Holsinger, now with Field Effects, Inc., and by Klaus Hal bach, Lawrence Berkeley
National Laboratory. These codes are presently maintained, updated and distributed under the
SUI~ervision and direction of Richard K. Cooper of the Accelerator Theory and Simulation Group,
A’I’-6, Loa A]amoe National Laboratory,
We would like to acknowledge DOBNP and 130BHEP tor their financial support. We would
like to thank and acknowledge our co-authors of the POISSON/SUPERFISH
Refwence Manual:
John L. Warren, Grenfell Boicourt, and Martyn Foss
AT-6, Los Alamos National Laboratory
Bernie Tice
Stanford Lineur Accelerator
We would like tc extend our appreciation to Pat Byrnes who, with assistance from Phyllis Encinias,
did an excellent job typing this manual via uw.
Finally, we would like to thank the many users whn brought “coding bugs” to our attention and
proviclcd many ~’aluable suggestiorw.
1.8
References
The most complete published paper describing the application of finite difference methods for the
magnetostatic and electrostatic problcrm solved by the program POISSON and the amociated
nonuniform triangular mesh generated by the program LATTICE ia given below.
1, AI..,I M. Winslow, “Numericnl Solution of the Quaailinear Poisson Equation in a Nonuniform
‘I’rinr,glllar Me~h,n Journal oj Computational Phys;ca 1 (2) 149-172 (1966),
The reference for the optimizing program MIRT in given below.
2. K. Ilalbach, “A l’ro~ram for Inversion of System Analyaia and ite Application to the Dooign
Con/ercnce on Mugnet Technology ,
of Magllcte,n l+oceeding~ of the Second International
(Jxft]r,l, Erlglmd (July 10 Id, 1967), p. 47.
Tw[~ published pn~mrs dmcriho more or lens completely the theory and pr~.l,ico of t.hc program
S[)l’ERFISII, The rcfcrcnc.es for those pnpcrn aro given hclow,
3, K. Ilnll)mrh HII[lI{,,V, Iltdsingcrl “SUl)Ell,]~lSll, n Corl]put,cr I’rcgrrtrn for the Evftluatiol) 0(
lit’ (;nvitics with Cy]indricri] Synlmctricn.n Particle Acc-lcratora 7 (4) 213222 (1070),
1-25
Chapter 1 Introduction
1.8 References
4. K, Halbach, R.F, Holcinger, W.E. Jule, and D.A. Swen~on, “Properties of the Cylindrical RF
Cavity Evaluation Code SUPERFISH,” F+oceedings OJ the 1976 F+oton Linear Accclcrnfor
Conference, C3alk River Nuclear Laboratory, Ontario, Canada report AECL-5677 (September 14-17, 1976), pp. 122-128.
The following paper describes how to use SUPERFISH to analyze traveling wave structures.
5. G .A, Loew, et al., “Computer Calculations of Traveling-Wave Periodic Structure Pr~pertieal”
IEEE Transactions on Nuclear Science NS-26 (3) 3701-3704 (1979),
Other reference material:
6, R. IIolsinger, “POISSON Group Programa User’o Guide,” LcMAlamcm National Laboratory
document (February 14, 1981).
7. J. Warren, et al,, “POISSON/SUPERFISH
Reference Manual,” La AlamoB National Labor&
tory report LA-UR-87-126 (January 1987).
Chapter
2
AUTOMESH
Contents
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1
The Job AUTOMESHPerforrns
2.2
InputtoAUTOMESH
. .
2.2.1 Title Identification
2.2.2 REG NAMELIST
2,2.3 PO NAMELIST .
2.2.4 Mesh Ske Optiona
2,2.6
Roundary Condition
2.90utput
from AUTOME9H
,,
2-1
. . . . . . . . . . . . . . . . . . . . . . . ...2-2
.,.,
. . . . . . .
,. .,,
. .
...
,..
.
,. .,,
...
. . . . . . .
Optiono .
. . .
. . .
.,
. . .
. . .
. .
. .
,,,
. .
. .
..6..
.
. . .
. . .
. .
. . .
. . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
. .
. .
,!
. .
.
2-2
. . . . . . . 2-3
. . . . . . . 2-3
2-9
. . . . ..!
2-15
. ...!
. . . . . . . 2-10
.
. .
. .
. .
0...
. .
.
.
.
.
.
.
. . . . . . . . . . . . . . . . . . . . . . . . . . . .2-20
2.4
Dia,gnoctic and Error Mauagea . . . . . . .
2.4,1 Errot Memagea . . . . . . . . . . . .
2.4,2 ~oub]e M-agdn . . . . . . . . . . .
2,4.3 Additional Diagnostic Mnuqpa . . .
2,5
Examplee of AUTOMESH Runs . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
2.S.1 AUTOMESH Run—H-Shaped Dipole Mmgnet . . , , . . , . . . , , . , 2-24
2.6.2 AUTOMESH Run—DrifLfibe
Linw Cell . . t . . ~ . . . . . , , . , . 2-26
Figure 2-1
AUTOMESH coordinate oyotem for
ntraight lines and circular arc curves
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
AUTOMI!XH coordinate ayetem for hyperbolic curves,
Figure 2-3
Variable mesh corresponding to REQ d~ta in AUTOMESH.
‘rnblo 2-1
REGNAMELIST
Table 2-2
PO NAMELIST variables,
..,,,
,,
.
.
.
.
.
.
.
.
.
.
.
.
. ...2-21
.,,
.2-21
...
.2-22
, . . . 2--23
. . . . . . . . , . . . . . . . . . . 2--13
l’i~ure 2-2
variablea
.
.
.
,
. i . . . . , , , . 2-14
~ , . . , . . 2-18
, . . . . . . . . . . . . . . ...0.24
. . . . . . . . . . . . . . . . . . . . ...2--11
2-1
Chapter 2 A UTOMESH
2.1
The Job AUTOMESH
2,1 The Job .4 UTOMESH Performs
Performs
AUTOMESH and LATTICE are the meeh generating program in the POISSON/SUPERFISH
Group Codee and are executed prior to any of the other programe. AUTOMESH generatea
the input to LA’M’lCE, reducing and Simplifying the u~r’s work. Basically, the input to
AUTOMESH specifleo the:
.
problem title
●
mesh size and description of the regions that define the problem
Iista of coordinates defining the boui]dary of each region and the type
of line that connects each pair of coordinate to the prior pair,
●
AUTOMESH locatea the path in the m-h geometry that mat accurately describes the
3iven boundary, This is the data, required by L,#TI’ICE, which AUTOMESH writes to the
output file TAPE73,
2,2
Input to AUTOMESH
Moat of the input data k AUTOMESH is read by the Fortrwi NAMELIST routine. For a
full description of this routine, consult a Fortran manual,
NAMELIS’J’, an used in AUTOMESH, is entered in the following format:
1.
2.
3.
4.
5,
A blank in column 1.
A $ to delineate the beginning of the NAMELIST entry,
A name for thin NAMELIST entiy, either REG or PO.
A list, in any order, of the group variablea equated to input cormtants
and mparated by commes,
A $ to delineak the ending of the NAMELIST entry,
An example of a REG NAMELIST entry, beginning in column 2:
$ REC NREG = 2, DX = .6, XMAX = 20.,
YMAX = 30,, NPOINT = 6$
The input to AUTOMESH conaiotn of 3 data groupu deocribcd in %ctions:
2.2.1
2.2,2
2.2.3
Dntn group
Title Identification
REC NAMELIST (dewribee t+e regions)
PO NAMELIST (doocribea pointo in the rugion)
2,2,2 nnd 2.2.3 aro repeated for eack region,
AUTOMES}I aaaignrr meaningful default valuwr to all pmnilda varimblm. Somo of three
default valuee are constant while othorn aro computed by AUTOMWJII from tho given input
data, These latter variablae are denignaterl by “AUTOMl?S1l” in tho rlofault rmlllmn of Tablr 2-1,
2--2
Chapter 2 AUTOMESH
2.2.2 REG NAMELIST
There are variablee which are unique to the particular problem and must be supplied by the
user. The description of theee variables ie preceded by u❑ ” and ‘none” and appears in the
default value columns of ‘Ikble %1 and Table 2-2. The novice user may ignore all but a 0”
input variablee.
2.3,1
Title
Identification
The title is the first line of input to AUTOMESH, Column 1 specifies the type of problem:
Blank in column 1
Q Non-blank in column 1
●
:
:
POISSON/PANDIItA/MIRT
SUPERFISH problem
problem
Columns 2 through 80 can have any alphanumeric characters, Starting in column 2,
AUTOMESH reach by “A FORMAT” 8 computer words (columns 2-65 for a CRAY
computer; columne 2-33 for a VAX computer) and ueea this information only for title
identification in the printed output.
2.2,2
REG
NAMELIST
There are twenty-nine region entry valuee associated with this R.EG NAMEI,IST. Some
variables are only applicable to the POISSON/PANDIRA/MIRT
programe, The user only
enters variable~ that are meaningful to his problem and allows the others to default.
~here me ~me variablea that can only be entered in the first REG NAMELIST input and
not changed in aubaequent REG NAMELISTS or regions. These variablea are deaignatod by
0 before the variable name in Table 2-1. ~
‘Ikble 2-1 lists in alphabetical order all the variables in REG, the default values, and a brief
description of their function.
2-3
%bJe 2-1 REG NAMELIST
Chapter 2 AUTOMESH
Mid21QlMnul$
O
CONV
CUR
Conversion factor for coordinate units.
CONV = (number of centimeters) per (unit), e.g.:
CONV = 1.0 - Centimeters.
= 0.1 - Millimeters.
= 2.54 – Inches,
1,0
0.0
1.0
DEN
❑ 0DX,’
O
Description
0.0
None
- the total current (amperes) in
the region.
Electrostatic problems - the fixed potential value (volts)
on the boundary of the region,
- for drive point regions.
SUPERFISH
Magnet problems
The current density in the region.
Magnet problems
- amps/length2 for area region.
- amps/length for line region
Electrostatic problems
– coulombs/ length2 for area region,
- coulombs/length for lino region.
The mesh increment in the horizontal direction.
DY
The mesh increment in the vertical direction.
For ITRI = O or lTRI = 1. (ITRI described below)
For ITRI = 2.
lBOUND
The region’s special boundary indicator (see Section 2.2,6).
1
-1
0
1
IPIUNT
o
SUPERFISH problems - for ml]but drivo point regions,
SUPERFISH problems - for drive point region,
POISSON/PANDIRA/MIRT
- for firet region,
POISSON/PANIIIRA/MIRT
- for all nuccooding regions.
Special diagnostic printout.
lPRIN’I’ ==O - no diagncwtic printout.,
lPRINT # O - menh coordinsteo printout.
IPRINT -= 1 - spmial diagnostic printout in tho
“path-finding” subroutine, 1,0(;1{;,
2-4
!l’hblc2-1 REG NAMELIST
Chapter 2 AUTOMESH
miAk1912dmllk
Description
IREG
The region number for this region.
The first REG i,lput data.
Incremented by 1 in each succeeding region.
1
+1
o
The type of trianglea for LATTICE to uze in the mesh
generation routine.
ITRI = O - equal weight, equilateral t !angles.
lTRI = 1- equilateral trianglea,
ITRI = 2- right triangleni
O
ITR1
O
KMAX
AUTOMESH
O
KREG1
o
The total number of mesh points from XMIN to XREG 1.
M KREG1 ia given, XREG1 must be given alao, Uzed
for lkat math she change in the horizontal direction,
(See Sdion 2.2.4).
o
KREG2
KREG 1
The total number of mesh pointe from XMIN to XREG2
KREG2 must be > KREG1, If KREG2 is given, XREG2
must be given. Uoed for the second meoh size cl~ange
in horizontal direction. (See Section 2,2.4).
O
LINX
o
A opecial indicakr for vertical line regione.
LINX = O - Line regions are added at mesh size change
(XREG1, XREG2.)
LINX = 1 - No lin+ regions are added at menh uize
change (XREG1, XREC2),
0
LINY
o
A opecial indicator for horizontal line regionn.
LINY := O - Line regionm aro added at mooh oizo chmngo
(YREG1,YRIW2).
LINY =: 1 - No line regions are added at meoh nizo
changa (Y REGI, YRIW2),
0
LMAX
AUTOMESH
Tho total number of maah points from YMIN to YMAX.
The total number of mesh pointa in the horizontal
direction from XMIN to XMAX.
2-6
~ble
Chapter 2 AUTOMESH
2-1 REG NAMELIST
Description
-
0
LREG1
o
The tatal number of mesh pointe from YMIN to YREG1.
If LREG1 is given, YREG1 must deo be given. Ueed for
firet meeh size change in the vertical direction.
(See Section 2.2,4).
o
LREG2
LREG 1
The total number of meeh points from YMIN to YREG2.
LREG2 must be a LREG1. If LREG2 in given, YREG2
must be given alzo. Used for second mesh size dmnge in
the vertical direction. (See Section 2.2.4).
MAT
1
The material code for the region.
MAT = O - All pointa inoide the region are omitted from
the problem, Pointo on the boundary are met
according to IBOUND.
MAT = 1- Air or coil (km = k, = 1).
= 2- Iron/dielectric propertied from user-defined
function or iron with internal permeabdity table.
= 3- Iron/dielectric properties from uoer-defined
function or input table 1.
properties from ueer-defined
function or input table 2.
Iron/dielectric properties from user-dotlnecl
function or input table 3.
= 4- Iron/dielectric
= 5-
= 6- Permanent magnet material with etraight
line B(H) functionu, PANDIR,A only.
—
– 11
r.]
O
NCELL
1
The number of cell cavitiee in SUPERFISII,
0
NDRIVE
0
The indicator for drive point region in SUPERFISH.
NDRIVE = O - AUTOMESH assigns a drive point region,
.= 1- Drive point region input. A region with
only one coordinst.e net (N IJOINT = 1),
AUTOMESII a.eta CUR -1.0 and
lIIOUND = -1 for thim region.
NPOINT
None
The number of coordinate nets #pacifying tho boundary
points of the region.
NPOINT R number of PO ent.rion following thim REC entry
7hble 2-1 REG NAMELIST
Chapter 2 A U’fOMESH
Yuid21Q
Em?@!!
❑
O
NREG
None
The total number of regionn for the problam.
NREG = total number of REG entries,
❑
O
XMAX
None
The maximum
horizontal
dimension
of the problem.
XMAX must be > than any horizontal boundary coordinates
with a PO NAMELIST, In Carteeian coordinataa, XMAX
may have a negative value.
entered
0.0
The minimum horizontal dimengian of the problem.
XMIN must be < than any horizontal bound~ry coordinates
entered with a PO NAMELIST. In Cartesian coordinates, XMIN
may have a negative value,
For POISSON/PANDIRA/MIRT,
if XMIN # O, see Table 5-1.4,
CON(38).
O
XMIN
O
XREG1
XMAX
The location of the firot meoh size change in the horizontal
direction.
KREG1 = O mesh nize to the right of XREC1 will be
approximately doub!e.
KREG 1 # O XREG 1 must be given, Meah size to the
right will be computed aa described in
Section 2.2,4.
O
XREG2
XMAX
The locath of the second meuh nize change in the horizontal
direction.
KREG2 = O mesh nize to the right will double,
KREG2 # 0 XREC2 must be given. Meoh oi~e to the
right will be computed aa deacribod in
Section 2.2,4.
!] O
YMAX
None
Tho maximum vertical dimenuion of the problcrn,
YMA.X must be > than any vertical boundary coordinate
entered with PO NAM EI,IST, In Crsrtmian coordinate, YMAX
may have a negative value,
YMIN
()!0
The mininwm vertical dinwmion of the problem
YMIN l,~unt ho < than nny vwtical boundary co~~rdinmtcw
entered with 1’0 NAM KI,IST, In Cartcnian cr)ordinaton, YMIN
may havo a n~gativn value.
For l’OISSON/l’ANl) ll{A/Mll~l’, if YMIN # O, me~‘Ibble 6 1,4,
CON(39),
O
27
Zbble 2-1 REG NAMELIST
Chapter 2 AUTOMESH
_
=
Description
V
YREG 1
YMAX
The location of the fimt meeh size change in the vertical
direction.
LREG 1 = O meeh size above YREG1 will approximately
double.
LREG1 # O YREG1 must be givsn. Mw h size above
YREG1 will he computed aa deecribed in
Section 2.2.4.
V
YREG2
YMAX
The location of the mcond mesh ~iae in the vertical diruction.
LREG2 = O nmeh size ahove YR,EG2 will be double.
LREG2 # O YREG2 must be given, Mesh size above
YREG2 will be computed M deecribed in
Section 2.2.4.
where:
❑
Quantities the ueer must enter.
0
Quantities that can only be entered in the flrat REG input and
cannot be changed in eubaequent REG input,
2-8
2.2.8 PO NAMELIST
Chapter 2 A UTOMESH
2.2.3
PO
NAMELIST
The variableo for the PO NAMELIST entry specify the boundary pointa of the present
region, The first PO data aet apecifiee the initial point. Each succeeding eet specifies a new
boundary point and the type of curve to be drawn from the previou~ point. The 1A PO
entry must describe the initial point in order b have a closed region. The number of PO
entries must equal NPOINT, a REG NAMELIST variable.
The boundary points of the first region must encompaaa the complete geometry of the
problem. Subsequent regions define sections of this geometry. The properties of each new
region override the previously defined propertied.
AUTOMESH can draw three different curves-straight
line, circular arc, and hyperbolic
segment—between any two points. The points of a otraight line or circular arc may be given
in either Carteaian coordinates, (X’, Y’) polar coordinat.eo, (F, 0’).
The prime coordinates correspond to the coordinate axia (X’, Y’), which haa been
displaced by (XO, Y()) from the “standard” coordinate axia (X, Y), aee Fig. 2-1 and
Fig. 2-2 for an example.
That ia:
X’=x-xo
R’=dm
y’=y-y(l
~1
= tan-’ ;
If (XO, YO) = (0, O.), then (X’, Y’, ) a (X, Y)
When values are amigned ta XO and YO in a PO NAMELIST statement, accompanying
value~ of X and Y or R and 0 are taken to be relative to this ohifted origin.
Circular arcu are defined by
(x - Xo)’ + (Y - Ye)’ =
R’a =
x“ + Y“
where (XO, YO) ia the center and R’ k the radius of the circle.
The two connecting pointn given on the $PO entry must oatiafy thin equation to a relativo
error of 10-s.
2-9
2.2.3 PO IVAMELIST
Chapter 2 AUTOMESH
Hyperbolic Segments
AUTOMESH defines hyperbolic branchea only in the firet quadrant and eymmetric about
the line Y = X in the (X, Y) coordinate system. The hyperbolic curve is drawn from the
previous point to the premnt point and both points muot ~atisfy, to a relative error of 10-s,
the equation
2* X*Y=
R2
where R is the minimum distance from the origin, (O,O), to the hyperbolic branch.
A PO euhy for a hyperbolic segment can only define the Carteeian coordinate (X, Y) and
must specify the value for R.
Hyperbolic area Me largely ueed in defining quadruple
magneti.
Cylindrical Coordinate
Cylindrical coordinate
where:
(r, z) are entered M the X, Y variablea in the NAMELIST group,
●
(~ ~ X, r ~ Y) for SUPERFISH
problem
●
(r + X, z + Y) for POISSON/PANDIRA/MIRT
All cylindrical coordinates muot have poeitive values.
Table 2-2 lists the .ig} c i O NAMELIST entri~.
2-lC
problem
l%ble 2-2 PO NAMELIST
Chapter 2 AUTOMESH
mihbkufnlLlk Dcacription
New
O
Ued to force reparation between regions.
NEW = O- The points on the path of this segment
coincide
with points
may
on the path of any previous
region.
NEW =
1- The points 011 the path of this segment
allowed
to coincide
any previous
NEW
NT
OR
o
THETA
= -1-
with points
are NOT
on the path of
region.
The points on the path of this segment are NOT
allowed to coincide with points on the path of
any previous region, EXCEPT for the starting
and end points.
1
The type of curve to be drawn from previous point to this point.
NT = 1- A straight line.
NT = 2- An arc of a circle with a center at (XO, YO), radius of R’,
and defined by: X’a + Y’2 = l?2.
NT = 3 – A hyperbolic curve in the first quadrant, symmetric
about the line Y = XanddeOned by2*X*Y=R.
None
NT = 1- @ - The radial polar coordinate.
NT = 2- R’ - The radiua of circle with center at (XO, YO)
(polar coordinates),
NT = 3- R - The minimum distance from the origin to the
hyperbolic branch in the first quadrant
(Cartesian coordinates). R MUST be entered
None
NT = 1- The 0’ value of the polar coordinate given in
NT = 2 degrees and relative to the X-axis in a cou.nterclockwieu direction.
NT = 3- Not used.
2-11
Chapter 2 AUTOMESH
❑
❑
TabJe 2-2 PO . ‘AMELIST
~
W
Description
x
None
The input coordinates. Cartesian coordinates may have positive
or negative values. In cylindrical coordinates, both r and z must
be >0.
NT = 1- The X’, Y’ values of the Cartesian coordinate system,
(x’, Y’)
NT= 2 or r, z values for cylindrical coordinates. When (XO, YO) # O,
X, Y are defined RELATIVE to the shifted origin,
NT = 3- The X, Y valuea of the Cartesian coordinate system, (X, Y),
R must also be entered.
None
NT = 1- The displacement of the (X’, Y’) axes.
NT = 2- Center of circle.
NT = 3- Not used.
IY
Xo
Yo
where:
u-
Quantities the user must enter for:
NT=
NT=
NT=
1,
2,
3,
(X’, Y’) or (1?, THETA’).
(X’, Y’) or (~, THJ?WA’).
(X, Y) and R.
2 12
Chapter 2 A UTOMESH
2.2.3 The PO NAMELJST
The following two examplee illustrate alternate ways of specifying region points.
Y
Y’
5
4
4
3
3
2
2
1
4*Q
..
1
/ .....W......
0
1
o
2
3
4
5
6
Fig. 2-1. AUTOMESH coordinate sy~tem for otraight lines ud circular arc curves.
Example A --$ PC)entry for Pl to Pa
MPU
The
in
points, F’l (5., 0.) and Pa (3., 4.) of (X, Y) coordinates of Fig. 2-1 may be entered
ANY of the foIlowing PO apecificationo:
two
For initial point 13(5., U.) :
$p~
$Po
$PO
$PO
x ---5,, Y = 0.$
X “ 3., Y --1., Xo =- 2., Yo ==1.9
R ~ 5., T1ii;TA
0.$
-18,4347, Xo -2,,
R
3,1623, TIIETA
WI “ 1,$
go point l’~ (3,4):
3., Y
$1’0 x
9P(I x
$PQ
1{
--
4,, NT
n$
3,, X() - 2., Y(I -L-1., NT :=
l,, Y
5., l’lIETA
= 53,1301, NT = n$
$1’0 R ::3.1623,
TIIETA =- 71.5651, X(I -2.,
whare: NT
11-1
n
2
n,
rl$
YO = 1., NT
n$
ntrmight line curve from PI to 1’1, (dcfrnult vduc),
circular MC with csntm ~t (X(), YO) nnd radium
l{’
2 13
2.2.3 The PO NAMELXST
Chapter 2 AUTOMESH
Y’
Y
P,(X,Y:3..6.
6
5
5
4
)
\
4
3
3
2
2
x’
1
x
o
2
1
3
4
5
6
Fig. 2-2. AUTOMESII coordinate system for hyperbolic curves.
Exmmpk D $ PO entry for P3 to P,
In Fig. 21, my initial point, PS (6., 3.), of a hyperbolic aegmcl]t cnn bo ontored in any of
lIIc following PO opocificat. ionn:
$1)() x
$])(-J x
~,, y
$1’0 R
$1’0 1{
~, $
4,, Y
2,, x(-)
6.7082, Tll E”rA
44721, TllltTA
2,, %
1 $
20.5651 $
m.rilfil ,x(-l
-2.,
‘1’hc cntl point., /’4 (3.,0.), of tlm hypcwbolic mgrncnt
$ 1’()
x
3,,
Y
0,, R
[},, NT
3*
Yo
1. $
can rmly t)a ontmvi
M:
Chapter 2 AUTOMESH
2.2.4
2.2.4 Mesh Size Options
Mesh Size Options
AUTOMESH sets the groundwork for LATTICE to generate a triangular mesh of uniform
size, varied eize, or a combination of uniform and varied mesh sizes.
The user selects the mesh type that is appropriate to the geometry of the problem, keeping
in mind that AUTOMESH aeaigns a new mesh point to two given points, say X1 and X2,
only if the distance between them is greater than on~half i,f the increment DX, That is:
If 1X2– xl] > ~X/2.,
then Xl and Xa are assigned a different mesh point.
For example,
Given coordinate
(2., 4,), (2.3, 4.4), and DX = .5, DY = 1,,
X1 and X2 will have different meeh points, oince IXq - Xl I = ,3 > .5 /2.
Y1 and Yz will have the same mesh point, since I Y2 - Y1 I = .4 < 1,/2.
The typen of mesh sizes and their correapnnding variablea that are entered on the first REG
input are described below.
2-15
2.2.4 Mesh Size Options
Chapter 2 AUTOMESH
~
(Default)
U6ed:
for simple geometries that do not exceed the msximum number of mesh points
defined by the program.
Total number of mesh points = (KMAX + 2) * (LMAX + 2).
Input:
user must enter DX; DY entry is optional as it has a default value.
Mesh:
will generate a uniform triangular mesh of length DX and height DY.
Example:
$ REG ?)X = .5, DY = -5, XMAX = 20., YMAX = 10., ...$
generates uniform triangular mesh of length and height = .5,
aee Fig. 2-3(a).
Doubli,lg Mesh
Used:
if a fine mesh ia desired near the origin and a coarser mesh further away will
suffice.
Input:
user must enter DX.
Enter one or a combination of XREGI, XREG2, YREG 1, YREG2 as long as
XREG2 2 XREGI and YREG2 z YREG1.
Mesh:
Width of triangular mesh ia ●pproximately doubled at XREG 1 and again at
If LINX = O (default), vertical line regions arc added at XREG 1
and XREG2.
XREG2.
Height of triangular mesh m approximately double above YREG 1 and agnln
above YREG2. If I.INY = O (default), horizontal line regions arc added ~t
YREG1 and YREG2.
Example
$REG DX = .5, DY -.5, XMAX = 20, YMAX :- 10, XRK1
XltEG2= 12, YREGl=-7,
. ..$
generatee triangular mmh of mize:
width =
DX
=
2*DX
-:
-.
4.*DX
DY
2 ●DY
height --
=06
--1o
20
OG
1 f)
for
for
H o
o.o~x<
for
fm
8.0
120
0.0
for
70
-- H ,
5X
C X
utirm l) ATIJPS,
3,
---
ERROR---
DATAFOR THIS CIRCLE FROM(Xl, Yl)/ (RI , THETA1) TO
(X2, Y2)/R2 , THETA2) IS INCONSISTENT0. .
13ither one or both coordinates arc not given or the ttw.>points with ccwtcr at
(X(), YO) do not Ii, on the ,arne circle to a relativa accuracy of 10-’, Correct the
input data for the li~ted coordinatco, The user ohould check that the coordinate
are given RELATIVE to (XO, YO), Mcosage from rnubroutino DATUPS,
DATA FOR THIS t{YPERt30LAFROM(Xl ,Yl)
TO (X2, Y2) IS
INCONSISTENT , .
Either onc or both comdinntm nrc not given, R i~ not giwm, or the two point# (It)
not Iio on tho mnrm }Iypcrbolic branch to n rcl~tivo nt-curncy of 10 ‘, Correct
inp~lt. Mwumgo from ~~lhr~mtinc [)A’I’[JI’S,
2 21
Chapter
2.4,2 !!kouble Meusages
2 A UTOMESH
YMAXLIMITS . . .
X/Y IS OUT Xt41N, XMAX/Y?41N,
The X or Y point printed is less or greater than the given minimum or maximum value for X/Y in the first REG input line. Correct input. Message from
DATUPS.
4.
---
ERROR---
s.
---
(KMAX+ 2) * (LMAX+ 2) = (--) IS GRZATERTNANPROGRAM
DIMENSIONSOF (--) o . .
The total number of mesh pointe have exceeded the maximum value dimensioned. Cut mesh size or increaee parameter MXDIM and recompile ae directed,
Message from subroutine SETXY.
8.
-’. -
ERROR--- TROUBLEIN FINDING THE PATH OF A POINT . . ,
AUTOMESH encountered trouble in both “forward” and or ‘backward” paM
in subroutine LOGIC. To correct, decreaoe meeh size near the point and try
again. Meseage from main program,
2,4.2
ERROR---
IRouble Messages
Messages Containing
“TROUBLE”
1,
---
TROUBLE--- DIMENSIONSFOR THE NSEQARRAYS,EXCEEDEDNSG OF ( - -) . . .
AUTOMESH has exceeded the m~ximum number of boundary segments dimcnaioned in the program, lncreeee parameter NSG aad recompile ae dir~cted,
Ueed in SUPERk’lSH problems. Menage from subroutine FISHEG,
2,
---
TROUBLE--- NPOINT = (- -), EXCEEDSDIMENSIONOF (--)
The number of PO entries for this region has exceeded the maxirmwfi number
dimension,
To correct, incrmae parameter NPTX and recompile aa directed.
Meeeage from main program or subroutine INSERT.
3.
---
TROUBLE---
%
Meneage is printed from subroutine LOGIC, The l~t r’ of the memagc print.n
“FORWARD PASS” or “BACKWORD PASS.” AUTOhIrXH exw.uteo subroutine LOG lC twice-flrnt in a “forward” march, end a aacond paM in a “backward”
gearch---to find the path of the current segment, Then the program chomm
the path with tho nmallar number of aegmenta with no tirrors. A fatal error
occurs if IIOTII diroctiono encounter “TROUIILK,” ‘l%correct, docroasc mesh
sise noer thin point and rerun,
THE PROGRAM
FOUNDTHE SAME(K ,L) COORDINATES
FOR THE
FIRST ANDLAST POINT OF THIS CURVE, . ,
Tha program hae aaaigned the mame mesh point in either vertical or horizontal
direction for (.Yl, Yl) and (.X2, Ya), This usually means mesh size ia not fiIM
enough, (See Section 2,2,4.)
2-22
Chapter
4.
2 AUTOME!W
---
TROUBLE---
2,4.3 Additional Diagnostic Messages
PROGRAM
I!I14ENSIONS 1000 FOR THE KL ARRAYSARE
INSUFFICIENT
‘I’he program has difficulty in finding the path for this segment and thus has
exceeded the dimension allocated for storage of the path array. See 3a. above.
6.
6.
7.
---
---
TROUBLE--- LOGICALPATH IS TRAPPEDAT K = (--),
L = (--)
The program cannot find the path for this current segment. See 3a above.
TROUBLE--- CANNOTFIND A FIXED M-PHI POINT
The program haa problems aesigning the default drive point at the upper lefthand corner of the cavity. To correct, input own drive point region by setting
NDRIVE = 1 in the first REG entry and then input a region with one point—
the drive point, (see the example in Sec. 1,3.1)
---
TROUBLE--- TOOMANYENDPOINTR FOUNDFOR THE LINE
The program haa trouble adding a vertical/horizontal line region.
7a.
AUTOMESH could encounter a number of problems in subroutines XLINER/
YLINER while attempting to add vertical/horizontal line regions. To correct,
change mesh size or ad LINX/LINY = 1 in the first REG entry, (This latter
option deletes the addition of all vertical/horizontal line regions at horizontal/
vertical mesh change locations. )
8,
---
TROUBLE---
0,
---
TROUBLE--- ONLYONEENDPOINT FOR THE LINE
The program haa trouble finding an end point for this added line region, Scc 7n,
above.
10
---
TROUBLIi---
A POINT WITH (K - KREQ) HAS X NOT - TO XREG
TROUBLE---
A POINT WITH (L = LREG) HAS Y NOT = TO YREG
---
NO END POINTS FOUNDFOR LINE
‘l’he program haa trouble finding a mesh point for the end point cf the added
line region. See 7a, above.
The program has ditliculty adding a vertical/horizontal
2.4.S
1,
Additional
Mmsages
DIMENSION OF 2000 FOR KR, LR , , ,
The program hw run into difilculty and has tmceedml tho m~ximurn nurnhcr of
pointe dimensioned for a region, Chmge mesh size and try again, Mcsaage from
mbroutine
2.
Diagnostic
line region, Sec 7a, ahovr.
LOGS IN,
INSUFFICIENT FOR KG, LQ , . ,
The program haa run into difficulty and ha# oxcceded the total numhcr of pointH
dimen~ionorl fur ail reginnn, Change monh nirmLVNltry again, MMoago frcml subroutine SAVAGE.
DIMENSION OF 3000
2--23
Chapter 2 ALTTOMESH
2.5
Examples
2.5 ExampJes of AUTOMESH Rum
of AUTOMESH
Runs
Sections 2.5.1 and 2.5.2 list two input files, HMAG and DTL, a POISSON and a
SUPERFISH input respectively. Theee files utilize a number of various options available in
the AUTOMESH input format.
The line numbers listed on the left are not part of the input filee, but are used ae pointers
for the explanation that follows. The terminal output of the execution of AUTOMESH on a
CRAY computer is alao given. (The i,~put file for a VAX/VMS computer is identical except
al! input ie upper caee.)
2.5.1
AUTOMESH
Run
–- 11-$haped
Dipole
Magnet
The file HMAG describes the croaa eection of one-fourth of an H-shaped dipole magnet, the
upper-right quadrant.
Line
ML
1
2
3
4
6
6
7
8
9
10
11
12
13
14
i6
16
17
ill
10
20
21
22
23
24
26
h-napot
to-t, uniform ash
4/23/86
$rog nreg-3 , &t= .46, xmax=22 ., YMX=l~ .,npoint*6@
$po x- 0.0, y- 0.0$
$po X-22.0,
y- 0.0$
8po X-22 .0, y-is. ot
$pO x- 0,0, y-is. o$
*O x- 0.0, y- 0.08
$rog
ret-2 ,npoint-iO$
*o x- 0.0, y- 2.00
*O X- 6.1, y= 2.0$
$po It= 6.6, y- 2.4$
*O X= 6.6, y-6.08
$Po X-16.0, y- 6.0$
*O x-16.0,
y- 0.0$
*o X-24.0, y- 0.0$
*o X-22 .0, y+.oo
$po x- 0.0, y-is. oe
8po X=o. o, y- 2.0$
sat-l ,npoint-6,
$rq
CIW--26466.791$
*O x-6,0,
y-o. $
*O x-14,6,
y- 0.0$
*O x=14.6, y- 6.6$
*O X- 6.0, y- 6.60
@o X-tl. o, y-o. ot
I
~egion
-J ‘
2 Iron
23
24
9,
18
(
Itogion
Lines
11
10
1 Air
3, 7
2---24
R06iOn
3 Coil
4, 16
22
h .
\
i. --,
x (cm)
2.6,1 AUTOMESH Run — H-Shaped Dipole Magnet
Chapter 2 AUTOMESH
Line
M
Line 1:
2:
3-6:
7:
8:
9-18:
19-20:
21-25:
Problem).
Title line, which starts in column 2 (POISSON/PANDIRA/MIRT
3nreg =
number of regions.
First REG entry:
,45 - horizontal meeh size,
dx =
22., 13. - ]problem’s maximum dimensions,
xmax, ymax =
npoint =
5numbor of PO entries that follow.
Coordinate
of points that define the region 1,
Same coordiu~tea aa line 3 to form a cloeed region.
2impliea that the material ia iron.
mat =
REG entry for region 2:
Coordinate of points that define region 2.
mat =
1.
REG entry for region 3:
cur = -25455,791- total number of ampa. (The sign
vpecifiea direction of the current;
negative “into the plane of the
paper”), Theee two entries imply
this ia a coil region.
Coordinate of pointe that define region 3.
Below b a listing of the interactive execution of AUTOMESH on a CRAY computer with
input file HMAG. (User only types underlined quantities,)
?typo
input
filo
naao
?*
region
no.
1
region
ok
no.
2
region
no.
3
ok
ok
stop
automesh
cpu●l
ctsa
,119
time
i/o-
●.c
,630
,308
❑
on=
1 don.
2-2b
ondo
,064
2,5.2 AUTOMESH Run — Drift- Tbbe Linac Cell
Chapter 2 AUTOME.SH
2.5.2
AUTOMESH
Run
— Drift-Tube
Linac
Cell
SUPERFISH EXAMPLE: The file DTL describes the cross section of one-fourth of a
drift-tube linac cell. (The numbered points on the graph correspond h the input file lines,)
L
m)
Line
N$?A
1
2
3
4
6
6
7
8
Q
10
11
12
13
14
16
16
17
Isuperfish
dtl test problem
$reg nreg=l, dx-O. 26, xmax=4. 2843,
ymax=21. 1008, yregl=6.
npoint=ll$
, yreg2=7,
$po
X-o. o
,
y- 0.0
$
, y=21.1008
, y-21,1008
$
$PO
x-O. O
x-4.2843
$Po
x-4.2843
, y“ 4.03026
$
$PO
x-l.
, y-
$
$po nt=2,
r=O.6
x@l,~464
$PO
x-0.93936
4.03026
!
I
1
I
I
21,1008
9
$po
x=4.2843
X-o.o
, y- 0.0
, y= 0,0
8
f!-------------
$
$po nt”2, r=O.326, theta=370.0,
x@lm26376 , yom 0t8~~
$
$po x=4.2843
, y= 0,6
$
$PO
I
$
, theta=176.6,
, yo- 3.63026
~
, y- 0,84484
I
I
,
$Po
60464
~-------------!_-
1
$
$
\Li~es
1:
2-4:
4.03026
6,
17
i6
Thiais the title line with anon-blank in column one,
1 -number of regions
First REG entry: nreg =
dx =
.25 -horizontal mesh size
xmax,ymax
= 4.2843, 21.1008- problem’s maximum dimensions
yrcgl, yrog2 =
5,, 7. - location at which IIMA size doubics
11- number of P() entries that follow,
npoint =
5-9: Lists the coordinateu, (x corresponds to z; ytor), connected by straight lines
10-11: Specifies a circular arc with center at Point A (1 ,60454, 3,53026) and radius (.!),
Thiaarc iedrawn from the point described by line 9totho point dcscribcd hy
linen 10, 11 (176.6 counterclockwise) andiein polar form.
i2: Straight Iinefrom thepointdmcribed
by Iinos 10, 11 tothepoint
descrihedby
line 120
13--14: Acircula rarc,nin~ila rtolines 10-n, with cwlte ratPoint 11,
15-16: Satne aa lines 5-0.
17: Liacethe laatcoordinate, namoasfirst, tocloaa the region,
2-20
Chapter 2 AUTOMESH
2.5,2 AUTOMESH Run — Drift lbbe Liinac CelJ
Below ia a listing of the interactive execution of AUTOMESH on a CRAY computer (user
only typea underlined quantities).
?type
inpnt
f 11.
name
?W
region
no.
logic
al
1
2
3
4
6
6
7
0
Q
lb
11
1
24
129
47
1
10
11
12
13
14
●top
18
18
18
18
7
6
46
83
18
18
automeah
ctms
cpu=
,083
end points
segment
kb
isog
●ll
1
bouxuiary
kd
ld
01
01
01
10
0
o
0
-1
-1
1
1
10
0
-1
47
29
24
20
19
17
3
1
time
i/o”
“1
-1
-1
0
0
-1
-1
-1
0
.620
,443
ke
10
1
1
1
18
18
18
18
7
6
4
e
18
18
1
24
29
47
47
29
24
seconds
me,=
done
2-27
20
10
17
6
3
s
1
1
,094
Chapter
3
LATTICE
Colltellts
3,1
!...,.,,,,.,..
The Jobl,ATTICE
. .!!..............!!..
Performs
. ..3-1
. . . . . . . . . . . . . . . . . . . . . . . . ...3-2
3.21nput
to LATTICE..,,,,,,
,,,
.,.,.,..,,.,,.,.,.,
,.
3,2.1 CON Array Variables for LATTICE . , . , , . . , , . , . , . , , . ,
3,2.2 Format- Free input Routine,,,
,, . ., .,,
, . . . . . . . . . . .
3.2,3 TAPE73.– lnputto LATT1C13 . . . . . . . . . . . . . . . . . . . . .
,3-2
. 3-3
, 8-7
. 39
3.30utput
.3-1’1
3,4
3,5
from Lattice,,,,.,
.,,
,,,
.,,,,,..,,,.,,,,
Diagnostic and Error Memagu~ .,,
,,,
,,,
,,,
.,,,,,.,
3,4,1 Mesaagen Containing “DATA ERRORn , , , , . , , . , , .
3.4.2 Messages Containing “ERIIJ’R EXITn . . . . . . . . . . .
3,4,3
Meeeages Containing “TROUBLE” and “WA RNINCW , . ,
3,4,4 Miscellaneous Moecagos. ,, .,,,,.,,.,,,,.,,,,
,,,
..,314
, . . , , . 3--15
. , . , , , 31(3
, , , , . ,
,.,
3-10
,,3-17
Examplea of LATTICE Runo ,,,
, . ., . .,,
.,.,,..,,
, .,,
,, ,3-18
3,6.1 LATTICE Run — H-Shaped Dipole Magnet , . , , , , i t , i , , , , 9-18
3.6,2 LATTICE Run — Drift-’Ihba Linac Cavity , , , , , , , . , , , , , , , 9-,?0
Figure 3-1
l’liangular meeh configuration in LATTICE for the Ii.nhapod m~gnnt
, 3 10
Figure 3-2
Monh ~oneriwd by LATTICE for drift-tuhc Iillac cavity
, 3 20
Tnble31
CC)Nvariabloo fm LATTICE,,
,,,
3-1
,,,
,,,
,,,
, , , , , , ,
,,,
..,,,
,,34
3.1 The Job Lattice Performs
Chapter 8 &ATTICE
3.1 The Job Lattice Performs
In general, LATTICE reads in input data, ae it is created by AUTOMESH, completes the
mesh denotation proceaa, m well ea computes and writee a binary file of all information
needed for the execution of one of the “equation eolving” programe (t’,e,, POISSON,
PANDIRA, MIRT, or SUPIJRFISH.)
Specifically, LATTICE performs the following t~ks:
3.2
1.
Reada in the properties describing the specific problem, the physical boundary
coordinates specifying the geometry, and the corresponding mesh point numbering of &hecoordinate, for the generation of a regular triangular mesh,
See Fig. S-1(a).
2.
Seta up mesh point relaxation order,
3,
Distorte the sides of the triangles in the regular triangular mesh by iterating
and ‘relaxing” until the sides of the triangles coincide with the given physical
boundaries. See Fig, 9-l(b).
4.
Aaaigns mesh point numbers to ail interior coordinates,
5.
Identifies and sets up all boundary points for the input boundary conditions,
6,
Calculate# point current terms in regions with distributed
7,
Writea dump 0 to a binary file, TAPE35, which contain- all the information
needed for *he execution of any of the programe: POISSON, PAN ill RA, MIRT,
SUPERFISH, nnd TEKPI,OT,
current density,
The Input to LATTICE
All POISSON programe, except AIITOMESII, utilise an internal, format-free input subroutine, FREEI to enter input, The FRICE format uooo q)ecial chnractoro to uhorten input
and cave array apace, A FIIEE entry mquirm all floating point numtmrn to havo a dccitnnl
point, Section 3,2,2 outlines in detail all the fe~turea of thi~ free-fornmt. input mm]~iven nn
example illustrating those fa~tures, I{owever, the beginner or caeunl mwr drm not nm.vi to
know all them options ~ince this manual will give and explain tho individurd fornmt entry
needed for tha specific input,
It in aeaumed that the input to I,ATTICN in TAPI!73, which haa bean gnneratod hy
AUTOMFXH, Thoroforo, the uncr norrnnlly nnod not be conrxwnod about tho contontn or
format of the input file, Ha only needn to oxarnine !$ectinn 3,2,1 which dmwrihw the vnrioun
options and changen thnt can ho input t.n l, AT’I’lCE through the CON nrr~y.
32
Chapter 3 LAZWCE
9.2.1 CON Variables
However, in caae error meaaagw are received in the execution of either AUTOMESH or
LATTICE, it ia helpful to examine TAPE73. Section 3.2.3 briefly explains the contents and
format of TAPE73.
A user, who wishes (or ia forced) to generate hia own input to LATTICE becauae of mesh
point limitations, should consult the POISSON/SLJPERFISH Reference Manual in
Section B.3.2., POISSON/PANDIRA Inputs to LATTICE or Section C.3.2, SUPFHIFISH
Inputs to LATTICE.
3.2.1
The CON Array Variables for LATTICE
The main avenue of communication the user haa with ali the POISSON/SUPERFISH
program, except AUTOMESH, is through the CON array. The CON array is a one
dimensional array of 125 elements specifying varioun parameter and options. Since some of
the variables have different meanings for the POISSON/ PANDIRA/ MIRT codes and
SUPERFISH code, the CON elements with the appropriate variablee are listed both in
Chapter S—POISSON/ PANDIRA and in Chapter &-SUPERFISH.
Pleaae note, there are a number of elements in the CON array that must be changed in
!.ATTICE if they are to have any effect on the problem These specific elements with a
brief dtwcriptlon of their function are hated in Table 3-1
33
~ab]e s-l CON Variablen
Chapter 9 LATTICE
Automesh
rhuntMtNQxnQ lMWlrl
O
CON (2)
NREG
0
CON (9)
CONV
Computed
1.0
Lat &ice
Description
LWlllt
None
1.0
Total number of regions for the problem
1< N~EG ~ 31.
Conversion
factor for coordinate
units.
CONV = (no. of centimeters) per (unit), e.g
CONV = 1.0 - Centimeter.
= 0.1 - Millimeters.
Inches.
= 2.54@ CON(21)
(22)
o
(23)
o
(24)
a
NBSUP
NBSLO
NBSRT
N13SLF
10
0
Oorl
1
10
10
0
0
Indicator foi boundary conditions on the
UPper, LOwer, RighT and LeFt boundaries
of the rectangular region defining the
boundary.
The two AUTOMESH default values
correspond to S[!PERFISH m POISSON/
FANDIRA/MIRT problems.
O - Indlcatea Dirlchlet boundary conditions,
which means electric (for SUP ERFIS1l
TM modes) or magnetic (for POISSON[
PANPIRA/MIRT) field lines are
PARALLEL to the boundary line
1 - Indicates Neumann boundary condltlono.
which moans electric (for SUP EhFISH
TM modes) or magnetic (for I)OISSON:
I’ANDIRA/hfIRr) field linen are PERPENDICUI,AR to the bouridnry lln~
CON(32)
IPRINT
CON(36)
NSG
None
o
l%mt option~ In LATTICE
IPRINT = -1 Prints X, Y rmm]inntrn mf
mesh points
lPRINT ~ [! no l~rlnf [)( mrsh pmrl~~
Cornputod
0
Th@number of Il[lundnry mgitwh~n f!ar
S[!l’ERFISII
3-4
lhble 9-1 CON Variablee
Chapter 8 LATTICE
Automeeh
Mulkst
MxM
CON(37)
MAP
Lattice
Description
Xhf@hfhlllh
None
1
For F’OISSON/MIRT:
A parameter in the conformal transformation
W = x * * MAP/(MAP * RZERO ● * (MAP - 1)),
where: RZERO = CON(125),
MAP # 1- the current density is adjusted
to conform to the transformed
geometry in all cloeed regions.
MAP = 1- no current density adjustment.
Note: if do not want any current density
adjustment (user haa input the correct
density for the transformational geom~
try), MAP should not be input until
execution of POISSON,/PAND1llA.
NCELL
o
1
1
For SUPERFISH:
The number of cello in multicell problems.
Not needed until execution of SFO1, but in
AUTOMESH it defmdtn to 1.
Indicator for type of formula to uae for calculating current density.
1(2AL = O - Use normal area formula.
ICAL = 1- Use angle formula for calculating
the current aaaociated with a
point or when accurate fieldn near
coil boundaries are nocdedi
CON(70)
lCAL
None
o
CON(79)
RI1OXY
None
1,6
NOTE
None
1
CON(M)
3ri
The starting mar-relaxation
irregular mesh gcncr~tirm.
factor for the
An indicator for determining tho order ir
which points arn relaxed,
NOTE = O - the order in air pointn, intcrfnm
points, then iron point~,
MUST be uoed for I’ANII1l{A,
(See PANDIRA examples, Sees,
10,4- 10,6.)
NOTF; z 1- the order io (air t interfarm)
pointm, then iron points,
(For SUPEllFISII CON(81) = RS’I’ItM and
need not be entorwl until running SF’014)
Default in 1,(),
Table 3-1 CON Vkriables
Chapter 3 LATTICE
Automesh
Lattice
Description
Milll&Il!lARU
100E -5
The convergence criterion for mesh generatlm.
lf program hae trouble converging, iricreaaing
EPSO might help
CON(84)
EPSO
None
CON(129)
TNEGC
None
0.0
A parameter used in conformal transformation.
Input the total negative current in original
geometry. LATTICE stores the negative
transformed currents.
CON(124)
TPOSC
None
0.0
A parameter used in conformal transformation.
Input the total positive current in original
geometry. LATTICE stores the positive
transformed currmts.
CON(125)
RZERO
None
1,0
The scaling factor of the conformal transformation.
w
=
x * * MAp\(MAp
where:
where:
Q——quantities which are m-t
frequently input
S-6
●
RZERO ** (MAP-l))
(MAP = CON(37)) and normally,
RZERO = aperture radiua.
Chapter 9 LATTICE
8,2,2 Format-he
In addition to the CON elements listed in Table 9-1, a user may at this time opt to change
the default values of any of the other CON elements listed in Chapters 6 and 6, Even
though these changes will have no effect in LATTICE, the changes will be carried through
to dump O on the. output file, TAPE35, and be availabls to the other programs when needed.
The changes in the CON array are entered in the special free-format input aa described in
Section 3,2,2. The following example illustrates the various options.
W!!@?
@2.64
*466
inpute: CON( 9)
CON(21)
CON(22)
CON(23)
CON(24)
CON(46)
explanation:
*
s
8,2.2
Forrmat-Froo
*211i10
s
= 2.54
= 1
= 1
= 1
= O
= 6
—
--
occurs before the first numbers of element for which subsequent
values will be input, Spacen (or commae) are the delimiters between
all input values and star elements. When eeveral elements in a
row are to be changed, only the initial element need be indicated
by a “*)n ae done abcve for ●21,
designates the end of CON array changee, Since the above input
line will be read into CON array which hoe 125 elements, if an R,
meaning skip the rest, is not given, the program will inquire “?”
for more input uutil an %“iu given,
Input
Routino
The POISSON group programs use the format-frm input routine, FREE, which haa onc of
tho following calling eequonco~:
CALL FREiC (1, RAY1, N1)
CAI,I, FREE (2, llAYl, Nl, RAY2, fW)
CA1.L IJREF; (3, IIAY1, Nl, RAY2, N2, KAY3, N3)
‘1’)w~pecial charactrrn awl their functhn mm] in FREE are Iintnd below,
37
3.2.2 Format-l%e
Chapter 8 LA2WCE
fmudiim
Indicatee the sign of the number (mantiaea or exponenta). The “+” sign is
optional before the mantieea but needed for the exponent,
+
The decimal point is REQUIREI) for all floating point numbers. Floating
point numbem may be entered in either fixed format (i.e., XX.XXX)or
scientific format (i.e., x,xxxxe+xx)
The signed integer number following the letter “E” gives the power of ten
to which the previous floating point number ie raised. No blank before
or after the ‘En is allowed, The sign (“+” or “– n~ of the exponent muet
follow the “E”.
E
*I
Store the number following “I” into the array location CON(I), Succeeaive
input numbere will be stored into array locations: CON(I), CON(I+l),
CON(1+2), etc.
RN
Store the laet input number, ‘N” times into the array Iocatione: CON(I),
CON(I+l), CON(I+2), , ., through (I+ N), A blank separating the
previous input number and the “R” ia optional,
s
Skip the reet of the N1, N2, or N3 va!uee requested in the call and go on
to the next array or return if the current array is the laat array in the
argument W,
c
Skip the rest of the Nl, N2, or N3 values requested in the call, set N1,
N2, or N8 equal to the number of valuebinput into the current array and
go on to the next array or return,
Illank
!
Blank and comma are the only other ,Ion-numeric characters allowed in
the input field, and one of theee characters muet be umd to eeparate
input valuee,
Comments may follow the hat “S,” “C,” or requirnd number of datn on any input line,
The example below iludrat~ all the ●bove foatureo. A and B are dimenoion~d arrays, and
K ia a dngle variable.
Cal]ing eequence:
input line:
In memory:
N91OO
CALLFREE(9, A,6, B, N, K,1)
+5,3 E-~ R2 S *2O ,1R1O C 13 THIS IS AN EXAMPLE
-s,4,
A(1) R -3
A(2) ● 4,0
A(9) ● 0,069
A(4) = 0,0S3
A(6) ● unchanged
t)(l) thru B(19) = unchsng.d
B(20) thru B(20) = 0,1
Nmjo
Kml~
3-8
Chapter 3 LATTICE
9.2,3 TAPE73
T’APE?3 — Input to LATTICE
3.2.3
TAPE73, which is generated in AUTOMESH and written with the special free format, b
deecribed in the preceding section, Sec. 3.2.2. Normally the uoer need not know the contents
or format of TAPE73. However, if the user is unsucceasfui in correcting tho listed errors in
either AUTOMESH or LATTICE, he might gain some insight by examinq TAPE73.
Below are listings, followed by explanations, of the two TAPE73 files generated by
AIJTOMESH in section 2.5,1., using the two input files HMAG and DTL.
The line numbers
listed on the left are not part of TAPE73,
but are used as pointers
explanations that follow,
TAPE73 created by input file HMAG
Llno
N&
Line
m
1 h-nagmt teat, uniform mash 4/23/86
2*2
9,~10100*91,~skip
S1.i
0,0000
0.0000 0 0 rcgio~
4
1
1
0.0000
0.000o
6 60
1 22!OOO0 0,0500
6 60 34 22.0000
13.0000
1 34
7
O.woo 13.0000
ell
9
0,0000
2
10 1
11 1s
12 13
13
14
16
16
17
to
10
20
21
22
23
24
26
78
37
28
2Q
14
13
14
13
14
i.!
14
13
14
35
34
36
34
36
34
96
34
2
9
e
7
8
9
10
11
12
13
14
16
16
16
16
14
1S
i2
it
10
0
O!OOOO
0 ~0000
6.1OOO
6.6000
6.6000
6.6000
6.6000
6.6000
6.6000
6.6000
6.6000
6.6000
6.6000
i6.0000
160000
160000
16.0000
1600~
16 0000
160000
leOooo
30
36
31
32
3s
34
S6
34
0 16.0000
‘7 16.0000
6 16.0000
6 lBOOOO
34
S6
96
37
38
35
34
36
34
tio
4 t6 0000
3 160000
2 t~oooo
1 ih Oooo
i 220000
0.ooOo Cl)u
0.0000 0 1 r~gion
2.0000
a.000o
2.4000
2 ~8000
3 2000
3. 6N0
4,0000
4,4000
4,8000
6.2000
6.6000
60000
eOooo
6.6000
62000
4.8000
4.4000
40000
3. ea)o
s 2000
2.8000
2,4000
1 Oooo
Leooo
1 XMo
0 8000
o 4000
0 Oooo
Oomo
S9
40
4t
42
43
44
46
46
47
48
49
:0
61
62
63
64
S6
66
67
68
60
i
1
3 1
14
33
34
33
34
33
34
33
34
33
S4
33
34
33
34
3Y
69
i4
QO
61
62
es
64
66
66
07
4)0
69
70
71
72
73
16
14
16
14
16
14
16
14
16
14
16
14
16
i4
39
S4 22>OOOC lS.0000
34 0.0000 t3. Oooo
e O.0000 2.0000 Coun
0,0000 0 1 r.gion
-26466.7910
1 6. WOO O!OOOO
1 14,6000
00000
0.3929
2 14.6000
3 14.6000
0.7867
4 14,6000
i l<78e
6 14.6000
1.6714
a 14>6000 1.0643
7 14.6000
2,3571
8 14.6000
2 .760G
0 14,6000
3,1429
10 14.6000
3,6367
11 14. S000 3,028e
12 14,6000
4.a2i4
is 14>6000 4.7143
14 t4 ,6000
6.1071
16 14,6000
66000
16 6,0000
6.6000
14 6.0000
6,1071
13 e. Oooo 47143
12 e,oooo
4 3214
3,9x3e
il
eOooo
tO eOooo
S .5367
9 60000
S>1429
0 Coo(x)
a ,7600
7 6.0000
2,3671
6 6.0000
i .0e4s
16714
e 6.0000
4 6c000
I 178e
07067
3 60000
2 6.00UI
0.3029
i
8 0000 0 0000 coun
for
3,2.3 TAPE73
Chapter 8 LATTICE
Line
b
1:
2:
3:
Title line, with blank in column 1 for POISSON/PANDIRA/MIRT
CON variablea that have been set by AUTOMESH.
[See Table 3-1 CON Variables for LATTICE for more detail.)
- NREG - total number of regions,
- Boundary conditions set up for upper, lower,
right and left boundaries, respectively, of the
rectangular region of the problem,
CON(2)
CON(21)
CGN(22)
CON(23)
CON(24)
CON(9)
skip
=
=
=
=
=
=
9
O
1
O
O
1.000
lREG
MAT
=
=
CUR
DEN
ITRI
=
=
=
IBOUND
=
- The region number.
- The material number for this region,
MAT = 1- air region, when CUR = 0,
O.0000 - The total current, if a coil region,
O.0000 - The current density, if a coil region,
o
-- The type of triangle for the mesh,
ITRI = O - equal weight, isoceles triangle.
O
- The opecial region boundary indicator.
IBOUND = O - Dirichlet boundary for this
region,
A comment, No %“ is required since the
- CONV - coordinates are in centimeters,
The “a” designates end of CON entries; any
comments may follow “s”,
This ia the region entry line. LATTICE expects six entries. The variable
namea are identical to REG NAMELIST variables, no refer to Table 2-1
REC NAMELIST VARIABLES for more detail,
1
1
region
maximum
4-7:
8:
9:
problem,
number,
(6), of entries
iu g;w”
,
Each line Iirts the horizontal and vertical mesh numimra and the corroeponding
coordinate, (r’,e,, line 5: horizontal mesh number = 50 for horizontal coordinate = 22. cm,, vertical mesh lillmber = 1 for vertical coordinate = 0$ cm,)
Mesh poink and coordinates idmtical to line 4, to form a closed region.
- The “c” deeignatea both end of entrien and to
coun
count and atere number of boundary point entriofi
for thie region.
Second region line entry,
IRE(2
= 2
MAT
= 2
l1301JND :
1
Region number 2,
Iron region,
.. Neumnnn boundnry for thin region.
8--10
3.2.3 TAPE73
Chapter S LATTICE
Line
~
10-41:
42:
Lists mesh point numbers and their corresponding coordirmtea for region 2
ae described in lines 4-8.
Third region line entry.
IREG
MAT
CUR
43-73:
= 3
=1
= -25455.7910
- Region number 3,
- Coil Region since CUR #O.
– The total current in amps, The sign indicates the direction of the current vector:
+ ‘into the plane of the paper”;
‘out of the plane of the paper”.
Listrn mesh point numbers and their corresponding coordinates for region 3
aa described in lines 4-8.
3,2,8 TAPE73
Chapter 8 LAZWCE
DTL TAPE73
Line
&
Line
b
1 lmuporfiah
dtl tout
2 *2
4B21i
Oll*91.
3 *36
14 *37 1 ●kip
4
0.000o
11
6
11
0.0000
6
0,0000
1 24
7
1 29
0.0000
8
1 47
0.0000
Q
18 47
4.2843
18 29
4.2843
10
18 24
4.2843
11
18 20
4.2843
12
8 20
1.8482
13
7 19
1.6046
14
6 19
1.3634
16
6 18
1.1821
16
6 17
17
1.1066
6 :6
18
1.0916
6 16
1,0778
lQ
66
0.9632
20
46
21
0.9394
64
22
0.9760
63
1.0966
23
63
24
1 s2637
18
3
4.2843
26
0.0000 0 1
0.0000
4.2843
1
0.0000
0.0000
1
0.0000
0.0000 0 1
26
18
27
1
2821
problem
ooOO
region
0.0000
6.0000
7.0000
21.1000
21!1000
7,0000
s .0000
4.0302
4.0302
4,0302
3.9683
3.7Q77
3.6608
3.3344
3.1081
1,0712
0.8448
0,6741
0.6469
0.6000
0.6000
1
29
30 18
3131
s
32
33 18
24 0.0000
24 4.2843
0.0000
3441
36 18
1.0000
47 4.2843
290!0000
29 4.2843
36 14001
37
1
38
1
1
39
18
40
18
41
18
42
18
43
44
7
6
46
46
4
47
63
48
18
49
18
1
24
29
47
47
29
24
20
19
17
6
3
1
region
6.0000
6.0000 COUXl
0+0000 O 1 region
7.0000
7.0000 COUll
0.0000
21.1000
0 -1 region
COUII
01
1
1
01
10
0
0
0
-1
-1
1
1
i
0
-1
1
18
18
18
18
7
6
46
63
18
18
11
01
-1
-1
-i
0
0
-1
-1
O
-1
0
24
29
47
47
29
24
20
10
17
3
1
Line
&
1:
2:
?“
..
Title line with non-blnnkcharacterincolurnn
1,
Comparable tothe HMAG filcdescrihed proviounly.
.Additiona! CON ‘;ariablen fnr SUPERFISI{ problem.
–Thellumbl~r of Lo\lndaryscgmc,lta whrxw
pmamcteruarelistcd
inlince 36-49.
- ‘I’henumbe rnfcclln.
CON(37)
NCELL =1
file, line 3,deacril)cd praviouHly.
4: ComparaMe totheiIMAG
6..,27: Erich line liste the horizontal and vertical mcoh numbers ami the corrcaponding coordir.atou amdeucribod in l[MAG, Iinc 4-.7,
28-33: Addition of two iine regions at location where vcrticai mesh uizo doubks,
foliowed by their coorJinaten,
34: Drivo point region - IBOIJNII = -1.
35: Drive point coordinator (upper right hand corner, ciof~ult)
CON(36)
NSG
= 14
3-12
3.2.8 TAPE73
Chapter 3 LATTICE
Line
~
36:
First number is NSG x1OO= 14* 100= 1400.
The rezt of this line and the following 13 lines (a table of NSG values) give:
1
..
1
1
101124
24
0
29
0
1
1
1
1
29
47
.
.
.
.
.
.
.
.
.
.
.
.
-1
0
1
1
,.
.
.
.,
18
where:
1
11
Tilt
It
~j[K
L ENDINGPOINT OF SEGMENT
1
It
]
]
[K
L STARTINGPOINT OF SEGMENT
1
iAK
A L FfUX4STARTINGTO 2ND POINT 1
K, L are horizontal, vertical mesh point numbering.
3-13
9.3 Output from LATZYCE
Chapter 3 LATTICE
3.3
Output from LATTICE
LAT’I’ICE generates two output files — TAPE35, dump O and OUTLAT — and, if run
interactively, prints output meaaages at the terminal.
In a suczeeeful run, LATTICE outputs:
To OUTLAT file and to the terminal:
1.
2.
●
no error messages
●
the messages:
iteration
converged
elapsed time = (--)
sec.
generation
completed
dump number O has been written
on tape36
To dump O on TAPE35:
●
binary information needed for the execution of any of the programs POISSON, PANDIRA, MIRT, SUPERFISH, and/or TEXPLOT.
In this caee, the ueer need not be concerned any further with the contente of the output files,
the user may print or examine the ASCII file, OUTLAT, with any editor, but
not the binary file, TAPE35, Most of the relevant information listed in OUTLAT is selfexphmatory, including error and diagnostic rneosagee. The laet part of OUTLAT Iiets the
complete CON array variable names and values. Those elements that have been changed
in the input to LATTICE are flagged by “CONn preceding the element number. For more
information of the contents of files OUTLAT and TAPE35, dump O consult POISSON/
SUPERFISH Reference Manual.
However,
3.4
Diagnostic and Error Me~s~ges
LATTICE lists all of diagrmetic and error rnwwagm to thn output. fi!e, OIJTI, AT, And ntmo
to the terminal if run is interactive. An explanation of the common tcrmino]ogy uwd in
these rneaaagcn is listed below,
1,
K, L
2,
3,
x, Y
J.PRIME, LS’llIMll
4.
(--)
‘1’he rnonh point numbering for the horizfmf..d hnd vw.;cnl
coordinntrnr.
The horizontal, vorticd coordinates, rmpvctivoly.
The mesh point numbering for tho mcond of the two coorciinattw.
Monnn the computer prints out the VUIUO,
3-14
3.4,1 Mesaageo Containing
Chapter $ LATTICE
3.4.1
Messages
Containing ‘DATA
“DATA ERROR”
ERROR~
These messagea are issued whenever LATTICE encounters any errors in reading the input
file. Mostly, such errors occur when a user creates his own input file for LATTICE, If the
input file for LATTICE has been generated by a successful AUTOMESH run, it is unlikely
there v’ould be any errors. In any case, the errors issued are self-explanatory, The user need
only correct the identified error in the output file and rerun,
LATTICE checks for two types of errors — format and content — and takee different
action, accordingly. These two types are described below.
1!
---
INPUT DATAERROR --These typee of error messages are printed from the subroutine FREE whenever
the input data io not in the special free-format entry, These messages, which are
listed both in the file OUTLAT and printed at the terminal, are self-explanatory.
The input line that is in error is also listed. If the run is inter~ctive, the user is
given an opportunity to re-enter the line in error, If the run is non-interactive,
LATTICE abnrts immediately; the user should correct the specific error in the
input file and rerun the program.
2,
---
DATA ERROR ---
Thenc error messagee are writtun to the file, OUTLAT, from subroutine REREC
whenever the routine encounters orrora whilo checking the contents of each input
line, The complete input file is processed and, if any error meoeagc has bocn
written to OU’I’LAT, LATTICE will print the following message at tha tmrninnl
and to OUTLAT before aborting:
the
in
errorn
output
●borted,
file
●nd
in
the
file,
examine
rerun
input
out J ●t,
outlat,
abovo
file
that arc listed
havo caused thi ● run to be
errors in input
corroct
or if dimensional
problem,
recompile.
The user mhould oxarnino all thmm mlf-oxplarmtory error mon~agee in OUTI,A’I’
and maka the rccommendad changan,
3 Ir)
$4.2 Meeaages Containing
Chapt& 3 LATTICE
Messages Containing‘ERROR
3,4.2
10
FRROR EXIT ---
---
‘(ERROR EXIT”
EXIT~
TWGMESHDATA POINTS WITH A DIFFERENT K, L HAVE THE
SAME X, Y COORDINATES
Followed by the printout of two coordinates which have same value but different
mesh point numbering.
LATTICE writes these rneasages to the file OUTLAT if these errors are encountered while the program is calculating the current density in the subroutine
GENOR and functiun ANGLF. The complete current region mesh points are
processed before LATTICE prints to OUTLAT and to the terminal the message
below and then terminates.
la,
listed
above in output file,
outlat,
have
errorn
probably
due to
cauaed this run to abort.
reduce mesh size and rerun,
mesh problems.
errors
2,
---
ERROREXIT ---
IN SUB. ANGLECOST = (--)
AT KO = (--)
LO = (--)
The program has found a cosine value greater than 1.0 at mesh point numbering
(KO, LO), See la, above,
3.
----
9.4.3
1.
DISTENSIONSLJF (--) ,.
NWMAXEXCEEDSPROGRAM
Prints to OUTLAT and the terminal from subroutine PRELIM and aborts immediately; make the recornmcndod chungos and recompile.
ERROREXIT ---
MossageB
---
Ccmtfiin!ng
“TROIJ13LE”
nnd “WARNING”
TROUBLE- --DIMENSIONS FOR NO. 0?’ SE! MENTSEXCEEDEDNSG OF ( --) ~,,
Mcmage from main
Prints to OUTLAT and tcrrninal and irnrncdintely aborts
program; follow instruc.tiono and recmmpilo,
2,
---
WARNING---THE MESHHAS NEGATIVEAND/OR ZERO AREATRIANGLES
I.ATTICE writoa to the file OUT1,AT n mrmmge whc],.vm it oncountnrs a nogntivo
or zero area in eubroutino P lLPOT, followed hy the thrcn coordinate t}lst, rnnkc
up this trianglcr, ‘rho program prorwnsernthe trianglwr of all regions boforn printing
above meannga Lo OtJTI, AT and tmrrninating. Messnge from main progrm; follow
instruction~o
3,
---
WARNING---THE NUMBF’ OF INTERIOR POINTS-O , .,
I&uuqp from uubroutinn sim’rijit i~ frell’-oxptnnatory.
3 1(J
8.4,4 Miacellaneoua Meesages
Chapter S LATTICE
S.4.4
Miscellaneous
Messagem
1.
THE ABOVEREGION IS
Thie meeeage is output
Ueer should check that
region are specified if a
NOT CLOSED.
to OUTLAT from subroutine REREG and is only a warning.
the same valuee for the firstand M coordinates for this
cloeed region with interior points is desired.
a.
-- -MAXIMUMNUMBEROF CYCLESo
ITERATION TERMINATED
This message is output to OUTLAT from subroutine SETTLE and ie only a warning.
The mesh generation did not converge to the required accuracy after 100 iteraiicm
cycles, Run is continued with present mesh. User could try running the problem with
this moeh or cut mesh size and rerun.
3 17
S,S. Examples of LATTICE Runs
Chapter 9 LATTICE
3.6
Examples of LATTICE
Rum
Sections 3.S,1 and 9.5.2 list the execution of LATTICE on the CRAY computer using the
TAPE78 files generated by AUTOMESH from the HMAG and DTL input files, respectively. In both problems, mince no CON variables need to be changed, nns is typed when
LATTICE inquires for CON input.
3.5,1
LATTICE
Run — H-Shaped Dipole Magnet
U~ing the TAPE73 that AUTOMESH generated for HMAG, the user types onlv the
underlined quantities,
?type
input
file
name
t~DOTg
beginning
of lattlce
exacution
dump t) will b. not up for poisaon
h-magnat
test,
uniform
mamh 4/23/86
?type
?&
input
values
for
con(?)
●lapaod timo D O,6 sac.
Oitoration
convergod
●lapsad time = O.8 cmc,
gonoration
complotod
dump nunbar O has boon writtan
on tapo36.
stop
oocondm
1.084
lattico
ctss timo
c pu=
, 6Q4
1/0
,429
mom=
.082
●ll don.
At this point, the uoer can instruct TEKPLO’I’ (inmtructionm in Chnptm 4) to cronto a
graph of LATTICE’O generated mmh rumshown in Fig, 3 -1(h),
3-18
Fig. 3-1 !Mmgukr M-h
Chapter S LATTICE
(a)
(h)
Initial LATTICE regular triangular
Find LA2’TICE “reluwl” imgulw
bound wieo.
Fig. 8-1: TMnngulm me-h configuration
Configuration
mesh,
trimngul~
mah !,ocoincide with th~ physic.ul
in LATTI(:E
for the H-olmpoci mngnet.
Chapter 8 LATTICE
8,5,2 LATTICE Run — Drift-Tbbe Linac Cavity
SUPERFISH
8.5.2
Run — Drift-Tube Linac Cavity
Using the TAPE79 that AUTOMESH generated for the DTL input file, the user types only
the underlined quantitie~ to execute LATTICE.
?type
?
input
f 119 name
tapa73
beginning
of lattice
dump O will ba set
lsuperfish
dtl test
?Lypo input values
?~
elapsed
Oiteration
●lapmad
execution
up for superfia
problem
for con(?)
time
=
0.6
convorged
■
0.6
time
sec.
sec.
generation
completed
dump number O has been written
stop
l&ttica
cpuAll
ctss
.204
time
i/o
.764
.401
on tapeS6
●.condm
mem-
,060
done
s-20
Chapter
4
TEKPLOT
Corlt?rlts,
4.1
l,.
o.!
. . ..o!
The Job TEKPLOT
4.21nput
4,30utput
Performs
to TEKPLOT,
Error Massage,
4.5
Exampleo
,,
.4-1
. . . . . . . . . . . . . . . . . . . . . .,,.,.4-2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
from TEKPLOT
4.4
. . . . . . . . . . . . . !!.!...!.
.,,.,
.,,....
of TEKPLOT
,..
.,,
,,,
,,,
.,i,
.,
i,.,
,,
4-2
.4-5
. . . . . . . . . . . . . . . . . . . . . .,.,.,,4-5
Runs . . . . . . . . . . . . . . . . . . . . . . . . ...4-6
4.5,1
TEKPLOT
Run—II-Shaped
Dipole Magnet . . , , . . , , . . . . . . . 4-6
4,5,2
TEKPLOT
Run—Drift-’lhbe
Linac Cell , . . , , , , , , , , . i , , , , 4-10
Figure 4-1
Geometry outline for tho ILahaped dipole mngnot.
Figuro 4-2
Moeh [or the H-nhaped dipole magnet, , , . , , , , , , , . , , , , , . , 4-7
Figure 4-3
Field Iineo for the 1{.nhaped dipolo magnet.
Figurq 4-4
Ccometry outline for tho drift-tube
Iinac CCII , , , , . , , , , , , , , , 411
Figure 4-S
Menhfor therlrift-tub
elinacccll,.
, , , , , ,.
Figure 4-0
Electric
=
Table 4-1
REGvariablea
field Iineo (r!{t
, . , . . . , . . . . , . . , 4-0
. , , . . . , , . , , . , 4.-II
connt.) for tho driit-tuho
for TEI{l’LiOT,
4-1
,,,
i,
,,,
, , . , , . , , , , . 4-7
,,
Iiunc i-cll. , . , , . 4Llfl
. .,,
. . . . . . . . 4-4
Chapter
4.1
4.1 The Job TE.KPLOT Performs
4 TEKPLOT
The Job TEKPLOT
Performs
TEKPLOT in an interactive program which provides a graphical display of’the data generated by most of the prograrm in the POISSON/SUPERFISH
Group Progrnms. It will
plot the:
. physical boundaries and mesh resulting from a LATTICE run
●
equipotential
lines resu)tinl~ from a POISSON/PANDIRA/MIRT
. field lines resulting from a fNJPERFISH/SFOl
run
run.
TEKPLOT requires access to the graphics package PLCTIO. If PLOTIO is not available on
your system, the 9 calls to this package that are depxribed in the bsginning of the source
file TfiKSO will have to be replacad by calls tc an available package,
4.2
The Input to TEKPLOT
The input to TEKPLOT is read using the format-free input routine described in Cl,apter 3
on LATTICE, in Sccticm 3.2,2, The user is noc required to read this section; tho input to
TEKPLOT is fully explained in th!n section.
Tablc 4-1 contains a list of all vnriables used in ‘rEKPLOT for which thn user can supply
value, These vari&bleo, akmg witti their default values and a brief description, arc Iistod in
alphabetic.d order,
ii
If all the default valuon in Table 4--1 aro eufflcient for your purpoaeu, they do not nocd to bc
entered, lnotead, enter g to eignal that the default valuee are acceptable and you want, to
proceed with execution, However, if you want to change the value of a variable, 011prccw!ing valum must be entered aa well, oven if they aro default valuen, and soparat,od by ~ptwvs,
Arl S. may then be entmcd.
Vnlum for floating point vnriatdm must contain a decimal point,
42
Chapter
4 TEKPLO!i’
4.2 The Input to TEKPLOT
The interactive program TEKPLOT may be viewed as a large loop that createa a desired
plot, This loop ia executed until a negative value iE given to the variable NUM. NUM
represent-e the I)ump Number on TAPE35 containing the data to be used in creating the
plot!
This loop includes 4 prompts: 3 regular and routine, 1 optional:
?type
input
data-
num,
itri,
nphi,
inap,
nuwxy
?
Prompt 1:
concerning the big picture for the current plot.
For example, this ia where the value for the dump number, the exit
from TEKPLOT, the inclusion of the mesh, the receipt of the optional
prompt, and the orientation of the X and Y axon are determined.
solicits information
?typ
input
data-
xmin, xmax, ymln,
ymax
?
Prompt 2:
given the ueer an opportunity to choomewhich section of the larger
The smaller the section, the more the detail,
picture will be plotted.
Optional
Prompt:
?type
input
data-
●rein,
● max
?
allows the user to choose the minimum and maximum valuea
of tho equipotential/field lines, To receive this prompt, tha variable
INAP in Prompt 1 must be net,
?typ
go or no
?
Prompt 3:
provides the uger with the opportunity to correct the given input
for the current plot, A t Iy of ~ will clear thu screen mld erode
the phA, n rop]y of ILQwi]l return the umr to I’rompt 1 to rr!poat
the input procona,
Chapter
Table 4-1 REG Variables
4 T&KPLOT
LOZ
MKi.d2k J2efauh Description
AMIN
o
The minimum
value for the equipotential/field
lines to be plotted,
AMAX
o
The maximum
value for the equipotential/field
lines to be plotted,
INAP
o
This flag indicates whether the additi~nal prompt is desired to
cet the minimum (AMIN) and maximum (AMAX) values for the
equipotential/field
lines to be p!otted. This indicates that the
user is interested in a particular range.
INAP = 1- read in user-defined values for AMIN and AMAX,
INAP = 0- accept default values for AMIN and AMAX,
Values plotted are: (AMIN + DELTA) to
(AIMAX - DELTA) in steps of DELTA
where DELTA = (AMAX - AMIN)/(NPHI + 1),
ITRI
o
Thin flag indicate6 whether the triangular mesh is plotted.
ITRI = O - triangular mesh is not plotted,
ITW = 1- triangular mesh is plotted.
NPH1
0
The value of this variable specifies the number of cquipotential
lines plotted. The program does not plot the minimum or maximum potrmtial values, one of which io usually a point, For mmt
problems, a good number for NPIII in botwqcn 20 and 30,
POISSON/PANDIRA/MIRT
SUPERFISH
NSWXY
0
- cquipotential lines are 2-dimcnuional field lines or flux surfwm.
.. r 11~ =- constant linen which nr~)
proportional to electric field Iinvs.
Thin flag indic~tos whothor an intorchango of tho x nnd y nxrs
on the piot in desired,
NSWXY - O - no intcrchnngo,
NSWXY - 1-- int,crchrmgo,
N(JM
o
XMAX
XMAX
XMIN
YMAX
YMIN
XMIN
YMAX
YMIN
Thirr variable indicates the location (dump nurnhcr on ‘llAI’IIH5),
of tho dnta to ho uacd in creating thn plot.
The valueti for thwrn varinl,lcn oprwify tJw Iimitfl for wwh plot,
which rnriy ho any part of the problcrn. Setting thrvw limit~ iu
TEKPLOT drm not aflect tho prohlom {iollnition ,!7Tthwm
valucmare allowod to dofnlllt, thn rmtiro I)rohlom rwoa will ho IJIIJIJI
II(I,
4-4
Chapter
4.3
4 TEKPLOT
4.3 The Output
from TEK~LOT
The Output from TEKI?LOT
In addition to the generation of plots sent to the user’s terminal, TEKPLOT
creates a file
called OUTTEK. This file ia only created if fieid lines have been drawn and contains a list
of the plotted potential valuee. This file is for the user’s information and is rarely used.
4.4
Error Message
There is only one error message for TEKPLOT. It is sent to the terminal with the current
line of data from the subroutine FREE whenever the input data is not in the special
free-format:
---
INPUT DATA ERROR---
Following this notice, the user is provided with information detailing the nature of the
error. The user is then provided with the opportunity to re-enter the line,
RETYPE LINE
Chapter
4.5
4.5 Examples of TEKPLOT Runs
4 TEKPLOT
Examples of TEKPLOT
Runs
Sections 4,5.1 and 4.5.2 describe the execution of TEKPLOT on a CRAY computer using
the file TAPE35 generated by POISSON Group Progrmma from the original input files to
AUTOMESH, namely HMAG and DTL.
Run — H-Shaped
TEKPLOT’
4.5.1
Dipole! Magnet
After AUTOMESH and LATTICE have been run, the user may check the problem
geometry and the appearance of the triangular mesh.
tekplot
?type
input
data-
num, itri,
nphi,
Inap,
inap=
O
nsuxy,
?&
input data
itri=
num= O
O
nphi=
O
prob. name = h-magnet teat,
plotting
xmin, xrmx, ymin,
?typa input data-
nawxy= O
uniform mewh 4/23/8S
ymax,
cycle
- 0
?S
input data
xmin- 0.0000 xmax- 22.000 ymin- 0.0000 ymax- 13.000
?type
go or no
?U
To check the problem geometry, values for all the variables are allowed to default, A
carriage return after ~ will clear the screen and produce Fig. 4-1,
TEKPLOT will only plot CLOSED regions, If the regicn is not plotted, check the input file
to AUTOMESH to asaure a closed region (first and last point of the region mud be the
name),
When tho uoer io ready to continue, a carriage return will clear the screen and TEKPLOT
will continue with execution,
To produce a graph of the triangular mesh, the following is entered:
?typa
?
input
data-
mum, itri,
nphi,
inap,
inap-
O
nnwxy,
Qu
input d6ta
num= O
itri-
1
plotting
prob.
namo R h-magnet
typo Input data?
,1
input data
xmin= 0.0000
nphi-
xmin,
O
Xmax- 22,000
unlfortm nmmh 4/23/85
taat,
xmax, ymin,
nawxy - O
Cyclo
- 0
ymax
ymin= 0,0000
ymax-
13,000
?typo go or no
TS!!
Although the default value for NUM is O, the vmriahlo I’I’R1nmnt br sot, thcmforr both
valum am entme(i and all othar valuo~ aro rdlowcd to ddrmllt hy ontoring the ~. A carriage
return nftor ~o will clear the acreon and iwoduce Fig, 4 2,
4-6
4 TEKPLOT
Chapter
4.5.1
TEKPLOT Run — H-Shaped Dipole Magnet
.
—.—
I
1-
—
~.
m~-~-m
Fig. d-l:
Ccomctry
outline
for the H-~hapcd
c
dipole
magnet.
Chapter
4.5.1 TEKPLOT Run — H-Shaped Dipole Magnet
4 TEKPLOT
When the ueer is ready to continue, a carriage return will clear the screen and TEKPLOT
will continue with execution To exit TEEPLOT, a negative value i~ aasigned to the
variable NL.IMand E i~ entered to avoid iurther entries.
?type
input
data-
num, itri,
nphi,
inap,
nmwxy,
?Lu
Wrplot
ctua
.031
Cpu”
tine
i/o-
.766
.681
●econd:
maw .063
al 1 done
After the execution of POISSON, the user can plot the field lines.
takplot
?type
input
dmtm- mum, itri,
nphl,
Inap, nmvxy,
7MLZM
input
data
navxy - O
nphi= 20
num- 1
itri=
O
Inap- O
uniform momh 4/23/86
prob. nama - h-magnet teat,
plotting
?Lyp. input data data- Xmin, Xmax, yain, pax,
?Q
input
xmin-
data
0.000
?kypa
go or no
xmax-
22.000
ymin- 0.000
cycle-
370
ymmx- 13.000
?s2
After POISSON haa been run, only dump numbero 1 or greater are of interest. The
mcah in not desired and, for thin example, we chooe to look at 20 field lirms.
triangular
A carriage return after ~ will clear the screen and produce Fig. 4-3.
When the user is re~dy to continue, a carriage return will clear the ocreen and TEKPLO’1’
will continue wi~h execution, To exit TEKPLOT, a negative value in Maigned to the
va~]able NUM and ~ h entered to avoid further entries.
?typc
input
dat~ - “Aun, itrl,
nphi,
Inap,
rmwxy,
7tokplot
Ctan time
Cpu”
i/o,037
●ll done
,661
,400
●acondm
mem.044
48
Chapter
4 TEKPLOT
4.5,1 TEKPLQT Run — H-Shaped Dipole Magnet
m~-~-a
Fig. 4-3:
Flald ILnea for the H-shaped
-O
n
dipole magnet,
4-Q
Chapter
4.5.2
4.5.2 TEXPLOT Run — Drif&Zhbe Linac CeJl
4 TEKPLOT
TEKPLOT
— X)rift-~be
Run
Linac
Ceil
After AUTOMESH and LATTICE have been run, the user may sheck the problem
geometry and the appearance of the triangular mesh.
To check the problem geometry, values for all the variables are allowed to default. A
carriage return after ~ will clear the screen and produce Figure 4-4,
tekplot
?type input data- rum, itri,
?&
input data
nuln- o
itriO nphi= O
nphi,
inap, nmwxy,
hap- o
nmwxy- O
namo = ●
uperfi8h
dtl tast problom
plotting
prob.
xmin,
xmx,
ymin, ymax
?t ypa input data?~
~SX= 4.284 ymin- 0.0000 ylDaX- 21.101
0.0000
xmin?typm go or no
Cyclm -
0
?W
TEKPLOT will only plot CLOSVD regions, If the region ia not plotted, check the input file
to AUTO MESH to aasure a clowd region (first and hat point must be the same).
When the user is ready to continue, a carriage return will clear the screen and TEKPLOT
will continue with execution.
To produce a graph of the triangular mesh, the following is entered:
?typo input
data-
num
itri,
nphi,
inap,
nawxy,
?Qls
input
nun=
data
o
itri-
1
nphi=
O
iaap-
O
nmwxy= O
plotting
prob. narno = nuperf Imh dtl tomt problon
?typa input d~ta data- xmin, xmx, ymi.n, ymax,
?R
input data
xrnin= 0,000
xinax= 4,284
yrnin= 0,000
ymax” 21,101
?typo go or no
Cyclo
- 0
?s.!?
Although the dofnult value for N(JM in O, the variablo ITR1 must be set; therefore both
valuo~ arc ontored nncl all othor valum are allowed to defnult by entering the a,
A carriage return ~ftcr ~o will clca~ the Ncroen and produm Fig, 4 5,
When the umr is rwdy to continue, a ciwriago return wi!l clear the scroon and Tf?K1’l,O’ll
will continue with oxocution, ‘k exit ‘IV’KF’LOT, m nogativo vnluo i~ asnignw! to tho
vmiablo NUM and @io cntorcd to avoid further ontriea,
4-1o
Chapter
4 TEKPLOT
-,
Fig.
4-4:
~la
UL H v
Ccornetry
outline
4.5.2 TEKPLOT Run — Drift-Tbbe Linaz Cell
m
for th
●
mm
drift-tulm
FIR. 4
4 11
llnac call.
Chapter
4 TEKPLOT
?type input
?*
tekplot
cpu-
data-
TEKPLOT Run — Drift-nbe
4.5.2
num, itri,
nphi,
hap,
Linac Cej]
nawxy,
ctmm time
.128
i/o=
1.675 eecondm
1,327 mom= .120
al 1 done
After the execution of SUPERFISH,
the uscv can plot the electric field lines (r~~ = const,),
After SUPERFISH— -.has —---been run,
,———
. .. -o~ly &wip numbers J or greater are of interest. The
mesh is not desired and, for this example, we chose to look at 20 equipotential
triangular
lines.
tekplot
?type
input
data-
num, itri,
nphi,
~nap, nswxy,
?102OQ
input data
num= 1
itri=
O
nphi-
20
inap-
O
nswxy - O
plotting
?type
prob,
name = superfida
dtl tent
input data- xmin, xmsx, ymin, ynax,
problem
cyr;l~
-
3
?l
input data
0,0000
xmin?type
A carriage
XISaXw4.284
0.000o
ymin=
ymax-
21.101
go or no
return
after go willcloa
rtheecree
nandproduce
Fig. 4-0,
When the umr is ready to continue, a carringe return will dear the screen and TEKPLOT
willcontinue with exncution. To exit TEKPLOT, a negative value ie assigned to the
variable NUM and ~ is entered to avoid further cmtrien.
?type input data- num, itri,
nphi, inap, nowxy,
? 4A
tekplot
ctmm time 1,260 mocondm
cpu●ll
.298
i/o-
.840
mem- ,112
done
4-12
Chapter
4 TEKPLOT
4.5.2 TEKPLOT
-.
Flr
Electrlc
Run — Drifi-!llbe
an
field IIncs (rlf6 s conot, ) for tho drift-tube
4.13
IInac cell,
Linac Cell
Clkapter
5
POISSON/PANDIRA
Contents
. . . . . . . . . . . . . . . . . . . . ,,
. . . . . .,,
,.,
. . . . . .
Perform . . . . . . . . . . . . . . . . .
5-1
6,1
The Job POISSON/PANDIRA
5,2
Terminology Used in POISSON/PANDIRA
5,3
Standard Input to POISSON/PANDIRA
. . . . . . . . . . . . . . . .
.,,
. . . . .
S.3.1
NUM Input
. . . . . . . . . . . . . . . ,,
5.3.2 CON Array Input . . . . . . . . ,.
s.3,3
Example of Minimum Input
, . .
S-3
Optional Input.
.
5-13
. . . . . . . . . .
Permeability Function Input . . , . ...,
. . . . . . . . ,.,
.,
Fixed Potential Input . . . . . . .
.,.
. . . . .
Current Filament Input . . , . , . . . . . ,,
5-13
. . . .
. .
0.,
.
5,4
5,4,1
5.4.2
5.4.3
. . . . . . . . . . . . ,.
5,5
PANDIRA Input Summary
5.6
Output from POISSON/PAPJL)lRA
5,7
Error Meaaagea ir. POISSON/PA NDIRA
5.7.1
5.7.2
6.7,3
6.7,4
6.8
6.9
.
.
...
,m
.
.
5-2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
. .
. .
. .
. . . . . . ..
“Inljut Data Error”
.
.
.
.
,
.
.
,
.
.
.
.
,0.
.
.
.
,
.
.
.
.
,,,
.
.
.
.
.
,
.
.
.
.
,
.
.
,
,
,
.
.
,
.
5-3
5-13
5--18
5-19
5-22
5-23
.!
.
.
.
.
5-3
5-20
.,
. , . . . . . . . . . . . . . . . . .
,
Ideamge Starting with “~;rror Exit” , , ,
Meaaage Ending with ‘Errflr Exit” . . .
Meaaage with” Data Errorn. , , . . . .
Meaaage Containing
.
. .
. . . , . . . . . . . . . . . . ,.,
.
.
i
.
623
5--23
b 24
524
. . . . . . . . . , . i . . . . , .
5 24
Meaaagm Starting with “Error Exitn . . . i . . , . . . . . , , ,
s .24
Errm Meesagee in PANDIRA Only.
se.]
.
. .
5-2
Example of POISSON/PANDIRA
Runs , . . . , i , . , , . . i . . . .
525
Executing POISSON Run–.H-Shaped Dipole Magnet . . . .
. .
PANDIRA R,un—lf-Shmped Dipole Magn~t. , , , . , . t . . . ~
Executing TEKPLOT Aftor POISSON/PANIIIRA
. . . . , , . .
625
5 26
Fig urn 5-I
Section of Output from OUTPO1 for if-shaped
, ,
6 2U
Figure 5-2
Section of Output from OUTPAN for H- shaped Magnet
. . . . . .
5 30
5,9,1
6.9,2
6.q3
Figuro 5-3
Plot from TEKPI,OT
byl}OISSON/lDANl]
Tmblo 5-1
Magnet
. . .
6 31
of tho msgnotic fmld linen genorateri
IRA,
, , .
. ,
CON Varinblem for POISSON/PAN13111A
8.1
, ,
. ,
, ,
. . , . . ,
, .
.
.
. .
,
, , , . ~
b 32
55
5.1 Job POISSOA’/PANDlRA
Chapter 5 PCISSON/PANDIRA
5.1
The Job POISSON/PANDIRA
Perform
POISSON and PANIIIRA are two independent programa which solve the Poiaeon equation for
magnetostatic (electrostatic) problems with nonlinear isotropic iron (dielectric) and electric current (charge) distributions for two dimensional Cartesian or three-dimensional cylindrical geometry, POISSON utilizes the successive pcint over-relaxation method for the solution of the equw
tions while PANDIRA directly solves the block tridiagonal system of difference equations. After
solving
and
the equations,
their
gradients
both
programa
and calculate
compute
the stored
the derivatives
of the
potential
to obtain
the
fields
energy,
In addition, these programs have the option to:
. solve fixed potential
problems.
●
use infinite or a fixed conntant
●
read up to three different
permeability
permeability
/permittivity
value.
tables or use internal
table (very low carbon
steel).
analysis of the potential
● do conformal mapping
(POISSON only).
. solve permanent magnet problems (PANDIRA only).
. use anisotropic matmiala (PANDIRA only) for solution of residual field problems,
. perform
harmonic
In goncral, either POISSON or PANDIRA maybe used to calculate any of the above quantities,
If either POISSON
rmwmmond using the other program.
except thoso specifically
identified.
or
PANDIRA haa trouble converging, we
and execution of POISSON and PAN131RA are nearly identical, Thus they will
IN*discumm] together in this chapter and any differences will be clearly identified.
The input,
5.2
output
Terminology Used in POISSON/PANDIRA
“wordl”(”word2° )
mir region
irorl(~li(!l(tctric) region
when describing magnestostatic
and electrostatic
quantities,
“word 1“ refers to ● magnetoatatic quantity; “word2” in
pmmtheuee refero to an electrostatic quantity,
:.? 1,0
-- a region in which the relative pormoability (pormittivity)
a
region
in
which
the
rulativo
permeability
(permittivity)
-in a collutant # 1.0 defined by a !inom function or given by
B nnnlinenr table,
-
6-2
Chapter 5 POISSON/PAND~RA
5.3
5.3 Standard Input
Standard Input to POISSON/PANDIRA
All input,
both standard
and optional,
to PC)lSSON
and PANDIRA
are read in by the internal
subroutine,
FREE, A FREE enl;ry aasumes, according to Fortran conventions, that
variables beginning with I, J, K, L, M, and N are integers and all others are floating point variables; all floating point numbers must be entered with a decimal point. Each particular POISSON/PANDIRA entry will be given and its format explained below, but if more information is
desired for FREE, refer h Sec. 3.2,2, Data may be entered either from an input file by specifying
the name of the file or directly from the terminal by typing “tty,”
format-free
Standard input refers to input data that is required (vs. optional input) for the execution of the
programs, This standard input consists of two groups of input data-the NUM input and the CON
array input.
5.3.1
Input
NUM
NUM is an integer value specifying the dump number of T.APE 35 that the exmuting program
reads and processes if NUM z O,or terminates if NUM < 0, This is the first and last line ontry
for all the POISSON Group Codes, except AUTOMESH and LATTICE.
LATTICE generates dump Oaftw a successful run, POISSON/PANDIRA begin execution with
t}e reading in of NUM (NUM = O, for start of new problem) and at completion generate ~ ncw
file with dump number incremented by one (i,e,, NUM +- 1 + NUM), This feature allows n user to
continue a run that has not converged or to calculate and .>rint out auxiliary quantities that had
not been done in the previous run.
In mummary:
N[JM = O NUM>O
-
N[JM <0
-
start of a new POISSON/PANI)IRA
run.
continue from previous POISSUN/I’ANI.)l RA run,
terminate execution of POISSON/PA ND IRA run,
Since only one Vnlue, NUM, i~ expect.wl for this entry, no “s” is ueedod to indicmto ond of thi~ input,
5.3.2
C(IN
Array Inpllt
The COFI army-–n ono dirnonnional army of 125 elcrncnta npcrifying vnrhmn pnrnmdmrm RIIII (q~ti[ms
in the same CON mrny dinr,uwmdin LATTICE, See, 3,2,1, ‘1’ho(X)N inimt vnlmw to 1’01SS( jN/l)ANIJll\
can chnn~c prcwiody ddl nod CON vnluml which woro road from TA I’E 05 dumI) (‘~ 0), or MIwcify valum which twe uuml only in l’illSSON/}TANl )II{A runN and were not irlput in l,AT’1*1(~1’:
{)rn
previom IWJSFOFJ/PANIIIllA run. [Inlonn all 125 ontrim ar~ giv~n, this entry, which nmy cxm~i~t
5--3
A
5.3 Standard Input
Chapter 5 POISSON/PANDIRA
of more than one line, must end with an ‘s.” (An example of a CON array entry is given at the
end of Sec. 3.2.1.J
complete list of the CON array for POISSON/PANDIRA programs is given in Table 5-1. The
CON elements are grouped according to function to facilitate in identifying all variables that perform a given function, To make the group complete, the CON variables, which must be innut to
LATTICE if they are to have any effect, are also included, but are identified with “LAT’I .CE input OrAly.”
A
A complete numerical and an alphabetical
list of all 125 elements for POISSON/PANDIRA/MIRT
variables are given in Appendix C,
b-4
5.3 Standard Input
Chapter 5 POISSON/PANDIRA
CON VARIABLES
0-
Number
Name
FC)R POISSONIPAND
IRA
denotes quantities most frequently input
Default
Description
~
o
CON(2)
NREG
CON(6)
MODE
–2
The permeability code in iron,
MODE = –2 - p-infinite in iron.
= -1- p-finite, constant and defined by CON( 10)
= FIXGAM, (~ = LO/p).
= 0- Option a function of REG NAMELIST
parameter MAT. (See Table 2-1.)
MAT = 2- p-finite and defined by internal
table (very low-carbon steel) or
user-defined constant permeability/
or
permittivity
user-defined stacking (fill) factor
3 s MAT S 5- H-finitr, tmd defined by
or
tabls 1- tab!et.
user-dcfinod constant permeability/
or
permittivity
user-defined stacking (fill) factor.
6< MAT <11- permanent rnagnct material
with a user-defined B(H) function,
CON(7)
STACK
1.0
Stacking or fill factor for iron regions using MAT=2
(See above CON(6).)
CON(9)
CONV
1,0
LATTICE input only,
CON(10)
FIXGAM
CON (18)
NPERM
LATTICE input only.
SI04
o
The value of 7 (== 1.O/p) used in n p-finito but constmnt mlution, [CON(6) ==MODE ==--1] (See example, See, 10.7.)
Alm used to initialize T for p-finite nnrl variddc ICON(6) ~~~
MODE ~ 0 I
The nuinhr
of permeability functions to be read in as rlntn,
NPERM # O must motCON(6) - MODE = O rind the
first optional input dntn listing tho prrmw
ability /pmmittivity functions and/or
tnbleu munt foliow the CON army entry
(meaSocc
54.1)
Chapter 5 POISSON/PANDIRA
o
5.3
Standard Input
Description
Default
Number
Name
CON( 19)
ICYLIN
o
Coordinate system indicator
ICYLIN = O- Cartesian (x,y) coordinates
= 1 – cylindrical (r, z) coordinates
(horizonta! ~ x -O r)
(vertical -~ y ~ z)
CON(20)
INPUTA
o
The number
of special fixed potential
values to be read in
as data by POISSON/PANDIRA.
INPUTA
second optional input data listing mesh
points and fixed potential values must be
given (see Sec. 5.4.2).
CON(21)
NBSUP
0
LATTICE input only.
CON(22)
NBSLO
1
LATTICE input only.
CON(23)
NBSRT
0
LATTICE input only.
CON(24)
NBSLF
0
LATTICE input only.
CON(50)
IHDL
CON(30)
MAXCY
100000
100000
20
o
>0-
C0N(31)
lPRFQ
o
The nurnbor of cycles between making a quasi-integral
}{ dl calculation
around
the Ilirichlot
boundary
during
POISSON iteration. Decreasing IIIDL sometimes speeds
the convergence, particularly for nonsynlinctric “11” inag-
Maximum rmmber of iteration cyclm,
POISSON. (If not converging, dccreaso MAXCY rd
rerun to @ a dump),
PANDIRA. (If terminator bcforo convcrgcnc.e, incrcnm
MAXCY and cent inuo from currwnt d~imp),
An indicntor for t}m r,~.:la
iteration print frmlucnfy for
I)O!SSON Gldy.
lP!?FQ = 0 l’OJSSOIN doterniinc~ frequency print.
lPRFQ :>0 l’rints ovary IPRI”Q rjclmr,
IPF’RQ rnurrt he R rnultiplo of lVl; ‘ ! C!r’)N@7),
5-6
5.3 Standard Input
Chapter 5 POISSON/PANDIRA
o
Number
Name
CON(32)
IPRINT
Description
Default
o
An indicator for additional printout
IPRINT = -1- LATTICE input only,
=
o- no additional
printout.
=
1- print the vector potential array.
=
2- print the [Bl in iron regions.
=
4- print the B=, By in iron regions
= sum – a combination of any of the above three
clptiona (i.e. lPfilNT = 7 = 1 + 2 + 4
will give all three options),
CON(34)
INACT
-1
An indicator used in interactive
POISSON/PANDIRA
run to allow user interaction.
INACT = –1 - no ‘interaction.
= I - program stops at each iteration cycle,
querien the user and proceeds according to
typed value:
GO - continue~ to next iteration.
IN - inquires for new CON values
before proceeding
NO
to next iteration.
run terminates and results aro
written on TAPE35 and on
OUTPO1/OUTPAN,
CON(35)
NODMP
o
An indicator
to write TAPE35
POISSON/PAINDIRA
dump at completion
run,
NODMP = 1-- do not write dump.
= O - write clump,
57
of
5.3 Standard Input
Chapter 5 POISSON/PANDIRA
Number
Name
Description
Default
3-1,4 Edit OD tione [Field Gradiu
CON(38)
XORG
0.0
The real part of z. used to specify the origin in the
polynomial
expansion
for vector potential.
A(x,y) = Re[~ %(z – Zo)n], the derivatives
give the field and gradient.
XORG = 0.0 for cylindrical
of which
coordinates.
NOTE: For programs PRIOR to 11/10/86 if XMIN # 0.,
user MUST set XORG = XMIN for correct
field calculation. XMIN ia a REG NAMELIST
parameter, (Sec. 2.2.2), and not the XMIN
of CON(54),
CON(39)
YORG
0,0
The imaginary part of z. described in CON(38).
NOTE: For programs PRIOR to 11/10/86 if YMIN # 0.,
user MUST set YORG = YMIN for correct
field calculation. YMIN is a REG NAMELIST
parameter,
(Sec.
2.2,2), md not the YMIN
of CON(55).
CON(42)
KMIN
1
CON(43)
KTOP
LMIN
LTOP
KMAX
1
1
CON(44)
o
CON(45)
The mesh point limits of the region in which the ticld~
and gradients are to ba calculated ml] written on file
OUTPO1/OUTPAN for noniron regions only.
[Uee CON(32) for IRON regions].
Default value writes fields and gradicntu at all mesh
points cm horizontal axin (L = 1). To get va]ucs for all
geometry
set LTOP to value of LMAX [KMAX, LMAX
valuce
liotcd M CON(3),
OUTP@l/OUTPAN.]
CON(4)
Scc example,
in fileo OUTLAT
Sec. 10.2.
and
5.3 Stmdard
Chapter 5 POISSON/PANDIRA
@
Number
Name
De falllt
CON(46)
ITYPE
2
.
Input
Description
A code specifying the problem symmetry,
For Cartesian
ITYPE = 1 –
ITYPE = 2ITYPE = 3ITYPE = 4ITYPE = 5ITYPE = 6 –
symmetry:
no symmetry.
midplane symmetry,
elliptic aperture quadrupcde.
symmetric quadruple.
skew elliptic aperture quadruple.
symmetric “H” magnet or elliptical
aperture sextupole.
ITYPE = 7- symmetric sextupole.
ITYPE = 8 – elliptic aperture octupole.
ITYPE = 9- symmetric octupole.
For all of the above symmetry codes, except ITYPE = 1
or = 5, field lines are perpendicular to the x-axis.
For ITYPE = 5, the x-axis is a field line.
For cylindrical symmetry:
ITYPE = 1- no uymmetry.
ITYPE = 2-- midplane symmetry.
vector problema— field lines perpendicular
to r-axis.
scalar problcma––potential (v) Iincn I -prndicular to r-axis.
ITYPE = 3- midplane oymmctry for scalar probler only,
r-axis is a v=constant Iino.
NOTE: If in doubt to the type of oymmetry, uoe
ITYPH = 1 or = 2 and sot boundnry condi~ions
by CON(21)--CON(24), (me Sec. 2,2,5 and Taljlc
3- l), For further ddnil on problcm syrnmctry,
consult PO ISSON/PANI)l I{A Rcfcrcncc Manunl,
(See, 11,5.3,2).
C0N(47)
W2ND
0.12G
Tho weight factor for thn mc.onci nvarost ncighbor~ UWX1
in dctmrmining the c,, in thr polynmninl cxpanoion
vector potcn~inl A(x,y)
Ilr[}; C,,(z Z,,)n].
S-Q
for the
5.3 Standard Input
Chapter 5 POISSON/PAhTDIRA
Number
Name
— Default
CON(48)
ISECND
1
CON(54)
XMIN
XMAX
YMIN
YMAX
CON(55)
CON(56)
CON(57)
5-1,5
o
0.0
0.0
O.O
0.0
Description
for use of first or second neighbors in determining the % above
ISECND = 1 – first an-1 second
= 0- first neighbors only, (Use this option if a
problem has trouble converging.)
Indicator
The vertical and horizontal limits of the region in which
the fields and the gradienta are calculated for the computed values of (x ,y) or (r}z), (not necessarily on a mesh
point) and written on file OUTPOI or OUTPAN for
noniron regions only, The coordinates are computed by
starting from XMIN, YMIN and incrementing by
DX, DY where:
DX = (XMAX-XMIN)/(KTOp-1)
[KTOP=CON(43)]
DY = (YMAX-YMIN)/(LTOP-1)
[LTOP=CON(45)]
up to XMAX, YMAX (see example, Sec. 10,2).
Gur.KWLAdi@mm$
CON(8)
13DES
CON(40)
CON(41)
KBZERO
LIIZERO
CON(W)
XJFACT
l, OE-+15
1
1
1,0
The value of the field, IBI = BDES at mesh location
[KBzERo = CON(40), LBZERO = CON(41)].
If BDES # l, OE-t15, the current factor, XJFACT =
CON(66) will be adjusted so that IBl = BDES
within a tolerance XJTOL = CON(67) (see example,
Sec. !0.2).
The vertical and horizontal mesh coordinates specifying
the loca~icm of 1311ES[CON(8)] for adjusting the
current factor.
The factor by which ali currcntu and current donoitios
(oxccpt current fil~rrmntn) will bo srmlad,
If 13DES :: CON(8)
adjuetod
CON(67)
XJ’I’01,
1.013-4
is input,
thrm current
will bo
example, Sec. 10.2).
an dcscrihod abovo (MCO
XJFACT = 0. - mscalar potential problcm (no current).
(S00 cxnmple, SOC.10.8.)
The tolerance on tho ficl,!!rlltir~ntit)r~
of XJ FACT ~~
CON(06) for IIDIH -. CON(8),
& 10
5.9 Standard Input
Chapter 5 POISSON/PANDIRA
Number
5-1.6
current
CON(49)
Name
Description
Default
——
ODti
NFIL
o
The number
of current
filaments
to be read in aa
data by POISSON/PANDIRA.
NFIL >0-
third optional
input data listing mesh
points and current filaments must be
given (ace Sec. 5.4.3).
o
CON(70)
ICAL
o
LATTICE input only.
CON(101)
IPERM
o
Indicator for permanent magnet problem in
PAFJI.)IRA Ody.
IPERM = O – not permanent magnet problem.
IPERM = 1- a permanent magnet problem. The
vector potential is initialized by either
a current region or by current filamen@
[CON(49)] which the user MUST
input,
(See PANDIRA
examples,
Sees. 10.5 and 10.6.)
5--1.7 Over ~
CON(74)
RHOPT1
1.9
See CON(7S) = RHOAIR.
CON(75)
RHOAIR
1,9
The over-reluation factor in POISSON for air and
interface points and for iron points with a constant,
but finite permeability.
RHOAIR = RHOPT1 - optimizes RIIOAIR during
iteration,
RHOA]R + R1-iOPTl -- RHOAIR not optimizce;
uaen value Wigneri.
CON(77)
RIIOFE
CON(78)
RIIOGAM
1,0
C,08
The over-rolaxat.ion factor in POISSON for iron
pointo with a finito vmiablo pcrma~hility,
The under-rolax~tion
(“ I ,/p@rmoabllity)
CON(79)
RIIOXY
CON(80)
lSKII’
1.6
I
l, ATTICE
factor in POISSON for v
for flnito vnriablc pcrnmnl~ility,
input only.
The numhor of cycloo botwcrm rocnlclllatillg tho ~
durin~ n fin;ta vmid)lo porlnonhility nolutioll.
6 11
Chapter 5 POISSON/PANDIRA
Number
@
CON(81)
Name
5,3 Standard Input
Default
NOTE
1
Description
LATTICE input only.
For PANDIRA, NOTE must be set to O in
LATTICE.
. .
5-1.8 Con vwgence CU$M.M
CON(84)
EPSO
1.ofL5
LATTICE input only.
CON(85)
EPSILA
5.OE-7
The convergence criterion for the potential solution of
air and interface points and for iron points with a
finite, but constant pcrmeabil;ty.
CON(86)
EPSILI
5,0B7
The convergence criterion for the pcfential solution of
iron points with finite variable permeability.
NOTE:
CON(87)
IVERG
10
For problem to converge, both values printed
under columns:
“residual-air” ‘residual-iron”
in file OUTPOI and the terminal must be less
than EPSILA and EPSILI respectively. If
printed values are near EPSILA/EPSILI and
solution is not convergir~g, increasing EPSIL,4/
EPSILI will force program to converge, with
Ions accuracy.
The number of cycles botwcen convergence teat, The
default value of 10 should not be altered if the option
to optimize the ovtw-relaxation factor CON(, 5) =
RHOAIR is umd.
5 -1,9 Harmvti:
_.—. ddMdMmwc.ul
CON(11O)
NTERM
o
The number of coc~ciont.a to he obtainod in the h~rmonic analyeco of the potcntinl, 0< NTERM s 14.
SOOharmonic analysis oxamplca in Scm, 10.3 ~nd 10.M.
(For comptoto discunnion of harmonic annlyncs, refer
to I>OISSON/SUl)KIIF ISll Rcfercnco hinnual,)
6 12
5.3 Standard Input
Chapter 5 POISSON/PANDIRA
Number
CON(lll)
Name
NPTC
Description
Default
o
The number of equidistant points on the arc of a circle
with its center at the origin, at which points the vector
potential
is to be interpolated.
vector potential
efficient.
number
Fourier analysis of the
at these points yields the harmonic
NPTC should be approximately
of mesh points adjacent
O < NPTC
c-
equal to the
to the arc.
s 101.
CON(112)
RINT
The radius of the arc of a circle at which the vector
potential is to be calculated for harmonic analysis.
RINT should be less than the radius to nearest singularity (pole or coil) by at least one mesh space.
CON(113)
ANGLE
The final angle, in degrees, that defines the arc of the
circle with radius RINT = CON(1 12).
CON(114)
RNORM
The aperture radius or other normalization radius used
in the harmonic analysis.
CON(115)
ANGLZ
The initial angle, in degrees, that defines the arc of the
circle with radius RINT = CON(112). Both ANGLE and
ANGLZ are measured from the x-axis
CON(37)
MAP
CON(123)
TNEGC
0.()
l,ATTICE input only,
(: ON(124)
TPOSC
0s)
LATTICE
CON(125)
12ZEI{()
1,()
I,AT’I’ICE input only,
1
For POISSON:
A parameter in the conformal transformation
MAP/[ MAPo RZERO*O(MAP-1)]
w= s *●
whcro: RZERO = CC)N(125)
MAP = 1 – rm conformal transformation
MAP # 1 - conformal transformation with no current
density djustmcnt if MAP = 1 in
LATTICE [see CON(37) in ‘IWO 3- 1].
input only.
& 13
5.4 OptionaJ Input
Chapter 5 POISSON/PANDIRA
5.3.3
Example
of Minimum
Input
The minimum data required for the execution of a POISSON/PANDIRA
file or a terminal entry with the following three lines:
run consists of either a
o
s
-1
where:
O= NUM
8–
-1 = NUM
5*4
- reads dump Oof TAPE35.
no changes in the CON array.
(If any CON variables need to be input, they are entered here.)
– terminates run after convergence,
Optional Input
There are three sets of optional input data to the POISSON/PANDIRA programs. The particular optional input is designated by a CON array variable and follows the CON array entry in the
following order:
1. Permeability
/permittivity
2, Fixed potential
3. Current
filament
function
input
input
input
if CON(18)
# 0.
if CON(20)
> 0.
if CON(49)
> 0,
These inputs are discuseed in detail irl the sections below,
G.4.1
Perrneabi!!ty/Permittivity
Function Input
The first optional data are designated by NPERM = CON( 18) # Oand allow the permeability
in the iro:i rcrgionoto be defined in several different waye and/or to input constant permittivity valuen, Thim input also permitu, in PANDIRA only, the apeciflcation of aniaotropic materials and the dofini~ion of a straight line B(H) for permmnent magnet problems. These various
fcatlircs ~rc rioecribcd in detail,
functions
A.
The internal table mny h used with up to a maximum of four di~erent shxking factor~,
to define four difforcnt rcgionn. Aloo, thim option dcfinco up to four difTcront
~ ( ~~1.O/(rolativc p)) for problomrr thmt uoe p-finite-but-constant values or up to four different pcrmittiivity (epnilon -- rolativc) for dielectric mntoridt+, Them fcnturcn aro oxcrr,iood by:
1,
Setting tha two variahlwr in CON army:
CO N(18) .: N1’E1tM
-- no. ofatmcking f~torm or
no, of fixed ~ or r valuus to be read in
CON(6) .: MODF; -. 0.
5.4 OptionaJ Input
Chapter 5 POISSON/PA NDIRA
2.
INPERMI lines specifying the values for the three variables:
Entering
MATER
STACK
FXGAM,
where:
- The material code to which the input permeability
function applies (MATER = MAT variable in REG NAMELIST—TA13LE
MATER
2-l).
2<
STACK - Stacking
MATER
<5.
(fill) factor f. r this material.
FXGAM – Fixed -I for p-finite but constant value or fixed c for dielectric
material.
This is FREE routine input entry so uses blank or commas as delimiters and an “s” if less
than three values are entered.
—
wkinuDblnRu.rl
Line
No.
1
●18–2
2
3 0.8
m
3
6 1.0
.004
*60,..8
where:
CON(6) = MOIJE = O
CON(18) = NPERM = -2 - indicating I –21 = 2 stacking and/or
fixed ~/ePsilon will be input.
specifies that regions with material code 3 will use the internal
permeability table with a stacking factor of 0,8. (Note an “a” i~
used to indicate end of line entry since the third input value ig not
given,)
apocifies that regiono with material code s will uqe a fixed gamma
value = .004 for their permeability/permittivity
function.
Line 1:
I.ine 2:
Lino 3:
D,
POISSON/PANDIRA
allow up to
three different permeability tnblee to be read in for u~e
(For exnmp!en, see Seco. 1P,3, 10.4, 10.10, 10,1 1.) In addition,
npccification of miontropic materials. To cxcrciso thcso options:
with rliffcwent iron regirm.
PANDIRA
1.
pormita
Set tho two wwinbles in tho CON array:
C0N(18)
~(}N(6)
2,
- NPERM
n, MOf)E
- no. of input permeability tablco (] s N1’I?RM s 3)
~~~mllnt bn oct to zero.
Enter va!ur?mfor ~hc thrco variablcn:
MATER
!;TACK
MTYI’I?
whcro:
5-15
Chapter S POISSON/PANDIRA
6,4
Optional Input
MATER - The material code to which the input permeability tables
apply (MATER E MAT variable in REG NAMELIST—
TABLE 2-l). 3 s MATER s 6.
STACK - The otacking (fill) factor for this material.
MTYPE - The type of input table valuea.
MTYPE =+1 - input table values are (B,7).
= +2 - input table valuee are (B~).
= +3 - input table value are (B, H).
MTYPE >0- SKIP to data group 4,
MTYPE <0- anisotropic material, input
data group 3.
3.
Input valuee into the five v~iablee
which define the anieotropic properties:
ANISO GAMPER
XOA YOA PHAXIS,
where:
ANISO – The direction angle (in degrees) of the “eaay axis” relative to the
horizontal axie in the counterclockwise direction (default = 0.0).
GAMPER - The 7(= l.O/P) perpendicular to the “easy axis” (default = 1.0).
XOA - Theee three variables are u~d when the “eaay axis” cannot
XOB be defined by ANISO. (XOA, XOB) is the center of a circular
PHAXIS arc and PHAXIS is the angle between the rdius vector and “easy
axis,” (For more detail consult Reference Manual.) (Default XOA
= XOB = .80; PHAXIS = 1111.0.)
4.
Input table valuee, a maximum of 50 entries per table, which define the permeability function for regions with this material code (MATER). Them valuee are entered
a pair per line, according to NiTYPE npeciflcation, with a ‘c” (a FREE symbol to
deaignah a hat entry and to “count” the number of entries) following the hot pair.
ln order to ensure convergence, the input values should generate a Sinocth function
of 7(B).
Entries 2-5 are repeated INPERMI times.
Below is an example of input permeability tnbleo. The lineo listed on the left are not
part of the example, but are used m pointcm for the explanations that follow.
Lin8
No s
1
*182
S60 .,.8
2
3 0.96
3
0.0
0,000260
4
Q.0E+3
0.000260
1
5-16
5.4 OptionaJ Input
Chapter 5 POISSON/PANDIRA
7. 6E+4
6
6
4 1.0
7
0.0
2 .4E+3
8
o .7142s0 c
2
1236.0
1232.0
2. 26E+4
11.3C
where:
Line
Line
1: NPERM = CON(18) = 2
MODE = CON(6) = o
E=
-
MATER = 3
-
2:
two tablea to read in.
end of CON array entry.
the material
code to which the
first read in permeability
table
applies.
STACK = 0.95-
Line 3-5:
Line
6:
Line 7- on:
C.
B(H)
and
10.6, ) To
1,
input
factor for the fir~t rend
in table.
MTYPE = 1
- table will be given M (B, ~).
lists the (B, ~) values, B in gauam The “c” denigrates hat entry of
this table.
MATER = 4 - the material code to which 2nd input
permeability table applies.
STACK = 1.0- no stacking.
MTYPE = 2 - 2nd table will be given aa (B, p).
Similar to linen 3-8, except now input (B, p) pairs.
PANDIRA permits the specification of aniaotropic
line
stacking
for solution
of permanent
magnet
materials
problems.
and
the definition
(For exarnplea,
of a straight
see Sees.
10,5
exercise this option:
Set the thres vr.riables in the CON array:
CON(18) = NPERM
- no, of straight line B(H) input. (O < NPERM S 6).
CON(6) = MODE = O
CON(lf)l) = IPERM = 1- indicator for permanent magnet problem,
(Note: CON(81)
2,
= O in LATTICE
for PANDIRA run).
Enter values for the three variables:
MATER STACK MTYPE
where:
MATER - The material code to which the input straight line B(H) (MATER
~ MAT variable in REG NAMELIST—TABLE 2 –l). 6 ~ MATER
~ 11,
STACK - The stacking (fill) factor for this materinl.
6-17
5.4 Optional Input
Chapter 6 POISSON/PANDIRA
MTYPE - Indicator for permanent magnet. It MUST be negative (numerical
value insignificant).
3.
Input valueo into the five variables which define the anieotropic properties:
ANISO GAMPER
XO,\ YOA PHAX!S,
where:
ANISO - The direction angle (in degreec) of the “eaay axio” rel.ctive to the
horizontal axie in the counterclockwise direction (default = 0.0).
GAMPER - The 7(= I.O/p) perpendicular to the “easy axis” (default = 1.0).
XOA - These three variables are used when the ‘eaey axis” cannot be
XOB defined by ANISO. (XOA, XOB) is the center of a circular arc and
PHAXIS PHAXIS is the angle between the radius vector and “eaay axis”
(For more detail consult Reference Manual,) (default XOB =
XOB = 0.90; PHAXIS = 1111.0).
4.
Input values into the two variablea
which define straight
line B(H) function
for this
material
HCEPT’
BCEPT
where:
HCEPT - the H-axis intercept in the second quadrant given in oersted; HCEPT
in a negative number with the value of “H-coercive. ”
BCEPT - the B-axis intercept is gaum; BCEPT is the ‘residual induction,”
Line
No.
1
•ls~tcotlol
2
6
3
4
90.
-Woo .
6
6
7
~ ,,.
1.0
-1
1.0
●
woo.
8
13s .
-9000.
c
1.0
-1
1.0
●
Qooo .
where:
Line
1: NPERM = CON(18) =
CON(6) =
MODE =
IPERM = CON(101) =
8
Line
2:
MATER :
STACK =
5-1$
2o
1-
two permeability functions to read in.
permanent magnet,
end of CON array.
6the material code to which the first
read in permeability function applica,
Since 6 s MATER s 11, deaignatce
permanent magnetic material.
1,0 - no stacking factor.
5.4 Optional Input
Chapter 5 FOISSOIV/PANDIRA
An exrmple of this option:
*203
...
●
[permeability function input, if CON(M)=
NPERM # O, followo]
1 3 1.0E+5
1 9 2.OE+S
4 2
1.6E+5
where:
CON(20) = INPUTA =
The list of mesh points
NPERM
5.4.3
(K, L) and their fixed potential
# 0, after permeability
Current
Filament
3- three fixed potential values are input.
s - designates end of CON array entry.
function
values
follow
after CON
array or if
entries.
input
Current filaments may be input to POISSON/PANDIRA by setting the CON array variable NFIL
= CON(49) = not of current filaments. This is the last optional input and precedes the second
NUM entry line. (See Sec. 5.3,1.) A list of NFIL lines for the following three variables per line is
entered:
K
L
CFIL
where:
K, L - are the mesh numbers
for the horizontal
(K) and vertical
(L) coordinates.
CFIL - the current in amperes at the (K,L) mesh coordinate.
If the (K,L) for the particular (X,Y) are unknown, executing LATTICE with CON(32) = IPRINT
==– 1, will list in output file, OUTLAT, the complete list of the coordinates with their corresponding (K,L) mesh,
An example of this option:
*492
,..
n
~permeability function input, if CON(18) = NPERM # O and/or fixed
potential
input, if CON(20)
10
26
16
18 –100.0
=
lNPUTA # 0]
100.0
where:
CON(49) = NFIL =
2 - two current filaments are input
a - designates end of CON array entry.
5-20
5,5 PANDIRA Input
Chapter 5 POISSOIV/PANDIRA
summary
The list of mesh points (K,L) and the current, in amperes, are the laat entries to PC)ISSON/PANDIRA just prior to the second NUM line entry (Sec. 5.3.1).
5.5
PANI)IRA
Input Summary
As haa been pointed out, PANDIRA input is similar to POISSON except for a few changes which
are summarized below,
A. PANDIRA runs for all types of POISSON problems, the ueer needs only to set in:
LATTICE - CON(W) = C
B. PANDIRA runs for permanent magnet problems, the user needs to set in:
1. AUTOMESH
- a current
line region.
The locacion of line and the value of current
immaterial.
2. LATTICE
- CON(M)
= O
3. PANLJIRA CON array variables:
CON(
6) = 0CON(101)
CON(
rr.ust be set to zero.
= 1- indicator
18) = no. of straight
Followed by B(H) parameters
For example of P.4N DIRA permanent
for permanent
magnet
problem,
line B(H) input
that hte defined in Sec. 5.4, l-C.
magnet
runs, see Sees, 10.5 and 10.6.
5--21
are
5.6 POISSON/PANDIRA
Chapter 6 POISSON/PAI’JDIRA
5.6
Output
Output from POISSON/PANDIRA
POISSON/PANDIRA generate two types of output files—TAPE 35 with dump numbers >0, and
OUTPOI (from POISSON) /O UTPAN (from PANDIRA). In addition, if run interactively, the
programs print out meaaages and iteration cycle data at the terminal.
In a successful run POISSON/PANDIRA
1, To OUTPOI/OUTPAN
output:
and to the terminal—
. no error messages
● the message:
solution
●lapmd
converRed in (--) itorationo
time - (--)
aoc.
dump number 1 has baen written
on tape3S.
dump no. (no, 2 1) binary information that is needed to execute TEKPLOT
to plot flux linoa or to continue a PoISSON/PANDIRA
run. (Note: even though POISSON
and PAN131RA gene: ate files of the same names, these files cannot be used interchangeably
by the other program).
2, To TAPE35,
OUTPOI/OUTPAN
are ASCII files and mxy be printed or examined with any editor. Most of
the information listed in these files, including the error mesages, if any, are self-explanatory. Both
OU1’POI and OUTPAN have similar default output listings which contain:
. a complete list of the CON array variable names cnd values. T+ose element~ that
have been changed in input to either LATTICE or POISSON/PANDIRA are flagged
by “CON” preceding the element number,
●
a list of all permeability tables, including the interred table if it is uDed or not,, stacking factora, and/or other pormoability/permittivity
functiom that wore input,
e tho iteration cycle data aa printed cn the terminal,
●
s tablo linting (sea Fig, 5 1 or Fig. 5 2) for nmh pointK on nxis (1= 1) for nonirnn
regions:
k,]
a(vcctor)
~~mesh point coordinntm
-- vector potmntialn
xl Y- the phy~icd coordinrntm (in umr input unit8)
1?
bx, by ‘- field compontmts, I~@,
bt
c!by/dy, dby/dx
afit
- total field = Ifll -
&
- the field gradionto, 81’?w/8y,8BV/19X
- the diflmmce of the solved vector potential,
a(voctor) -columnti, and the vector potential
5-22
Chapter 5 POISSON/PANDIRA
5.7 Error Messages
computed from the leaat equare fit polynomial
that is used to obtain the field components, B.
and Bv and the gradients, ilBu/8y and 8Bv/8z.
afitvalues ohow the accuracy of the fit which
theoretically should be = 0,
.
The user haa options, through the CON array, to specify additional output to OUTPOI/OUTPAN.
(See example in Chapter 10,)
5.7
Error Messages in POISSON/PANDIRA
POISSON/PANDIRA list all their error messages, with recommended correctional instructions,
to the output file OUTPOI/OUTPAN and some to the terminal, if the run i$ interactive, The mm
jority of these error mcseageo are identical to both programs since these programs uae some of the
same or similar subroutine,
These messages are listed below with the notation ‘word 1“/ “word 2“
where “word 1“ refers to POISSON and ‘word 2“ refma to PANDIRA,
Message Containing ‘Input Data Error”
6.7.1
--- INPUTDATAERROR ---
1.
These types of error messages are printed from the subroutine FREE whenever the input data is not in the special free-format entry, These messages which are lieted both in
the file, OUTPO1/OUTPAN, and printed at the terminal are self-explanatory, A print of
the input line that is in error is also Iiated. If run is interactive, FREE prints “retype line”
and gives the user &heopportunity to enter the line that wae in error, If noninteractive,
POISSON/PANDIRA
immediately abort, The user should correct the specific error in
the input file and rerun,
6.7.2
1.
---
Message Start!ng with “Error Exit”
ERROR
EXIT---
(KNM
+ 2)
* (LNAX
SIONS
OF (--)
+ 2) = (--)
IS
GREATER
THAN PROORAM DIMEN-
...
The total number of mesh pointe have oxceecied the maximum vrdue dimensioned, Cut
rnenh size or increaae parameter MXDIM and racompile aa directed, Meaaage from subroutine RDUMP/PDUMP.
2,
--”
ERROR EXIT---
NWMAX
EXCEEDS
PROORAN DINENRION
OF (--)
.0,
NWMAX haa exceodod MAXlllM/2,
Cut meoh mizaor incrcam parameter MXDIM ad
recornpilo an directed. Mossnge from mbrrmtino RDIJM~’/l)DIJMP,
3.
---
ERROR EXIT---
THE MESH HA8 NEOATIWS
ANO/OR
ZERO AREA TRIAN(JLE
.,,
This error rnomage WM iw,ued in LATTICE also, Follow rvcomlnondmi
urngefrom subroutine RDUMP/PDUMP,
4,
---
ERROR EXIT---
MATERIAL
CODE, OT,6.. ,
6-23
prorwdu rc, Men-
6,8 Error Messagee in PANDIRA OnJy
Chbpter 6 POISSON/PANDIRA
The user hamerroneously input stacking factor [NPERM = CON(18) = neg. value] with
material code greater than six. Check Sec. 5.4.1 for limitations on MATER. Message
from subroutine TABLE/PTABLE.
Message Ending with ‘Nrror Exitfl
5.7.3
All these meaoages come from the common subroutine TABIN.
1.
NAMEOF HATERIALIS LESS TH},N OR EQUALTO1, OR OREATER
THAN11 .,----
ERROREXIT ---
The material code, MATER must be input M 2 S MATER s 11. Check Sec. 5.4.1.
2.
THENUNBER
OFINPUTTAELESIS GREATER THAN FOUR ---
ERROR
EXIT ---
In addition to the internal table, three or more tables may be input for a total maximum
of four tables, User haa tried to input more than three.
3,
GAMMA =H/B,
ANDB
=0.0
. -----
ERROR EXIT
---
The user haa input an H vs. B table with a B value of 0.0. Correct element of the given
table and rerun,
4.
YOU HAVE EXCEEDED
---ERROR
THE
NAXINUM
DIMENSIONS
ALLOWED
FOR THEGAKNA
VS B TABLES
EXIT---
user has exceeded the maximum of 50 entries per table for the given table. Eliminate one or more of the retries for the table and rerun,
The
5.7.4
1.
---
Message with ‘Data ErrorH
DATA ERROR ---
ITYPE
= CON(46)
= (--)
CANNOT BE ZERO OR NEG . . .
Follow recommended procedure. (See Table 5- 1.)
6.8
Error Messages in PANDIRA
Only
In ddition to the common error mcmages in both POISSON and PANf)lRA, given in See, 5,6,
PANDIRA haa the following additional error mesnagen,
5.8,1
1.
---
Massagou Starting
ERROR EXIT
PANDIRA
---
with
NOTE =CON(t3~)
‘Error
Exit”
-1
requires CON(81) to be sot to 0 in LATTICE. Rerun 1.AT7’ICE with this
correction. Mcasnge from main program,
2.
---” ERROREXIT --- NO. INTERFACE CURRENT POINTS ,G~, DIKEN810NEDARRAY
OF (-=) . ~o
I’resent dimenuion = 400, Increaae parameter velue INMX in l)ANDIRA only and recompile, Error rneusage from subroutine RI{ANDS,
6-24
chapter
3.
---
6,9 Example of POISSON/PANDIRA
5 POISSON/PANDIRA
ERROR EXIT ---
Runs
W?4 OF INTER. AND IRUN A’S IS ZERO
Thu program haa found that the sum of the vector potentials for the interfac~ and iron
pointa is zero for this iteration. This will result in division by zero, so the run is aborted.
Error meaaage from subroutine RHANDS. To correct: try cutting mesh size, check that
the iron region is a closed region in input file to AUTOMESH or if running permanent
magnet problem check that have included a current line region (eee example 10.5 and
10,6).
4.
---
ERROR EXIT “--
NA14AX
EXCEEDSPROGRANDIMENSIONS
OF (--)
NAMAX hna exceeded MAXDIM/2.
parameter MXDIM and recompile
6.
---
ERROR EXIT ---
NROW - MINO
M
(KMAX, LIUX)
...
Cut dowil on the number of mesh points or increase
directed. Meaaage from subroutine SWIND,
- (--:
e.xcnos
MATRIX
01 MEN810N8 OF (--)
The etorage needed for the matrix inversion haa exceeded the dimensioned arrays. Cut
down the mesh pointo m increase parameter IMX and recompile POILIB and PANDIRA
as directed. Message from subroutine TRIBES.
5.9
Example of POISSON/PANDIRA
Sectionn 5,9.1 and 5.9.2 list the execution of POISSON
Runs
and PANDIRA
on the CRAY computer
for the H-shaped Dipole Magnet, The solution output of OUTPOI/OUTPAN
giving the table
listing of the calculated field components and their gradientm on axirnare shown in Fig. S-1 for
POISSON run and in Fig, 5-2 for PANDIRA. As can be neon from these two figures, there is excellent agreement of the vector potentials [A(vector)] and the B fiolclsin the region of intereet–near the origin —between theoe runs,
The umr only typos the underlined quantitim for tho oxor,ution of tho programs
Excmuting POISSON
6.Q.1
Run---Shapadad
M
given below,
D!po10 Nlagnot
We uoo the LATTICE generated dump O of TAP133 and only the “uhmdard” input to axocute
POISSON, WtI choose, by typing U, to input daln from the terminnl, Wn than enter:
(-)
-
to read dump nurnbor (NUM) = 0 on TA1)E36 genrtrmtod by LATTICE
to chango two of the CON army vnriablos, CON(6) RIICICO N(40),
060*46t3
.- 1
specifying
une of p -f finite with uno of internal
specifying
a symmc.rical
ronda NIJM < 0 to torminato run.
a9!iM.Rn
?typo
“tty”
or inpt
film
name
? My
?typo
input
valuo
for
II’ us. -1 mnd
11-m~gnat, renpoctivoly,
dump nun
70
5- 2n
Chapter 5 POISSON/PANDIRA
of polamon execution from dump number
beginning
prob.
name = h-magnet
?type
input
o
*6
valu.s
=
o
1,0
0.00000+00
memh 4/23/8S
●ec
●max
remidual-air
eta-air
rhoair
gmax
remidual-iron
●ta-iron
1.0000
1, Ocoo
rhofe
0,0000e+OO
1. Ooooe+oo
4,0000a-03
1.000oa+oo
rhoair
0
60
0
60-4,7296e+04
0
100
0
100-1.0012e+06
optimized
0.00000+00
6.7349e-02
3.9026a-03
3.4407Q-02
200
0
200-l,lQ68e+06
370-1.19390+06
1,0000
xjfact
1.000
1,0000
0,9903
1.9668
lambda =Q.9976e-01
0.9903
1.9668
1,0000
1. 003Q
1.0000
0.9717
1,9S78
lambda =9.9978e-Oi
0,0717
1,9678
1.0000
0.9034
1,0000
optimized
0.6960
1,9478
lambda=
0.00009+00
i.8887e-04
0,8960
1,9478
1.0000
4.63628-02
7.9336e-06
0.0000
1,0000
0.000oe+oo
3.73018-07
0.9367
1,9478
4,63920-02
1.6i36e-07
0.9328
1,0000
rhoair optitnized
2.6380e-02
0,0000e+OO
2,0906e-02
2,0634e-02
rhoair
0
0
uniform
O
for con(?)
amin
cycle
0
teat,
Runs
*4660
elapmdtirne
o
5.9 ExarnpJe of POISSON/PANDIRA
l,0003e+O0
1,0000
converged in 370 iter~tionm
uolution
●lapaod time = 3,6 sec.
dump numb.r 1 taebe.n
?type
written
ontape36
input valuo fordumpnum
●top
poi8son
ctamtime
cpu- 2,831
4.427
meconda
mem- ,614
i/o-l/081
●ll dono
PANDIRA
6,(I*2
I)AN[)112A
Run---shapmlpml Dlpolo Magnet
rllr~rnunt havo C0N(8
1) .: NOTFj=O,
SiI]cethi~
CON vnri~lJluie(Jno
changacl in LAT’I’lCE, we rerun l)ATTICEI mm! input thin value M nhown,
Wk.s
?type input
filename
?~~~
beflinningof
lattice
h-magnet
untformnleeh
value for con(T)
teat,
?type input
r WQ
exacutinn
●et up forpoianon
dump Owillba
4/23/86
& 26
that rnustho
Chapter 5 POL5SON,/PANDIRA
●lapsed
timo =
gonermtion
~OC.
0.780C.
completed
number O ham bean written
dump
Rum
convorgod
Oitoration
olapsod
0.6
timo =
5.9 Example of POISSON/PANDIRA
on tmpo36.
●top
lmttico
ctmm time
CDU=
G03
.
mmcondm
1.020
mom=
.341
i/o-
,094
●ll dons
To execute
PAN DIRA, we use the same input as in POISSON
to inp:lt data from the tarminal,
●6
o
-
O*466
-
-1
-
We then enter:
to read dump number
(NIJM) = O cm TAPE3S generated by LATTICE,
to change two of the CON array variables, CON(6) and CON(46),
specifyir~g uae of P = finite with use of internal B’ w. 7 and
specifying a symmetrical H-magnet, roapectively.
reads NUM < 0 to terminate run.
?typo ‘ ‘tty ’ ‘ or input file
nenie
$j~
?typo
valuo for clumpnum
input
~Q
of panciira .xacutien
beginning
prob,
name = h-mqnot
?typ. hpt
ValUOO
from dump number
tmflt, unifmm
menh
O
4/23/85
for ~On(fr)
sLQ_*4!m
●ltpa~d
Cycl?
tilno
-
1,0
amin
● *C.
&max
bmas
0. Ooooc +00
o
1
tires
-
-1.18720”06
2.1
2
-i .22600 +06
3
tillo
-
-1. 2oe3~+oF
l.OOOOO+OO
1,0000
000000+00
2.7770-02
1,0000
2.490,-02
0.9107
1.801o-O2
0.7191
X.loot,
O.wo+oo
2 b76449+04
●olutioll
●t.a-fo
ramiduml-fa
SOCI
6,1937P+04
oolut. ion tf, mo -
ramidual
0, moom+oo
0, 0000* +00
nolutior.
and ag~in we choose, by typing tty,
a,omoc,
o ,moo+uo
2 n4B03m+04
627
Chapter 6 POISSON/PANDIRA
8olution
4
2.omcc,
time =
o. 00009+00
2.2386,+04
-1, 19680+05
aolutio=
6
0.00000+00
2.2243,+04
-1. 19390+05
7
0.00000+00
2.2244e+04
-1,1WDO+06
tine
nolution
9
0. Ooooo+oo
2.2244,+04
molutionconvmrgod
in
olapsodtimo
oec,
- 21,0
3,3819-06
0.1046
2.773e-10
0.0001
Q lteratiiona
durnpnumbar lham boon written
valwf
0.0818
0.000oa+oo
2.22448+04
input
3.234a-OB
2.oaec.
time =
-1.10399+05
?typo
0,2332
2.08ec.
=
-1,193%+0s
8
6.236a-04
2.080C.
tima =
Ilolution
0,3068
2.omec.
timo u
●olution
0.4207
O,CWOO+OO
2.346a-03
2.2261e+04
-i . lQ43e+05
6
7,691a-03
2.laoc!
tinlo -
molution
5,9 ExamplecfPOISSON/PAIVDIRARune
ordump
ontape36,
num
7 :L
stop
ctmn time
puidira
c pu●ll
6,164
i/o-
ueconda
22.618
12096G
m9m-
4, 39Q
done
5-28
Chapter 6 POISSON/PANDIRA
solut
ion convarged
elapoed
time
dump number
lleast
squares
=
in
370
4.2
SOC.
xjfact.=
joulen
1,000000
a(vect,or)
0.00000f3e+O0
-6,829781e+03
-1.366822e+04
-2.04t3306e+t)4
-2.73034qe+04
-3,4113429+04
-4.0606B30+c4
Y
3.142Ef6
3,69i84
0.00000
0,00000
4,04002
4,4RW0
4.ff:9117H
5.38776
0.09000
0,00000
0.00000
0,00000
14 1 -E1.667337e*04
16 1 -9.114731W+04
16 J -9.Klt36t16m+04
17 1 -0,871101e+04
6.00000
0.44737
0.Hf)474
7,:14211
().00000
0.00000
0.00000
0,00000
18 1 “.1 .01793.!4)+05
19 1 -1 .044U47C?+OFJ
20 1 ln09f1700e+06
7,713947
H,23(184
8.60421
0,00000
0.00000
0,00000
8 1 -4.7t36t197e+04
Q 1 ..!i.43719fle+)4
iU
11
12
13
21
7?
23
1
1
1
1
-6.0977379+04
-9.7412919+04
-7.36tf221e+04
-7.L13f1901tI+04
1 -110tf9C23e+06
9.131G3
1 -1 .1OI3O69Q+I)6 9,b789G
1 -1,1242770105
10,02632
24 1 -1.13M137M+06
:?1, 1 -t, lrjo860w+ob
0,00000
0.00000
0.00000
10 473(!H 0.00000
IJ,R21OG 0.00000
1
1
31
1
32
1
33 I
:14 1
ar.lien
c]
bt
by
(gaumn)
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
(g~UHs)
lb212.2S0
1S210.82S
15206,196
15197.050
16180.665
1S161. 701
1S100.434
!bO08.4i)4
14B43.h04
141i54.F17b
14077,?44
133(39124
!?43ti,7!fl
0.000
1089.3,018
() ()()1) !161x09fl
0, of-lo
0.000
u“{,6m+i)0
iOB93.OiO
9613.098
COOOOtI+OO -2,0BLibe+03
0,00000+00
-2.wi34*403
6.70+00
1.6nlol
(100000+00
O.0000~1*00
-2.M22Q+03
-2.21f19eL03
f3,10+O(_I
l.oa~no
1.8!1670+0.l
- 1.627tle4(l:~
1.41130403
1.2403a~03
0,30 01
!I.oe-c,l
2P* 01
lloQ-ol
64.30.740 0 00000+00
G6bb,307 0.0000e+Ol)
497M. IY23 o Oooon+oo
4387,brl:? 0,00000!00
643!?’/40
3Hf34,;!O0
3H64.’JHO
f),0000e+O()
1.lo6Lq+03
9 aqwj
0,000
33f13 1120
3393,820
rl,ooooc!~!)o
1.00220+03
L.[~n-02
0,000
29a~ ::50
26{;7.:!16
7P04.!lb0
o.oo(mkoo
2UJ67 340 OGIU(~~IIOO
21wl nu[ f),fHIoofi4~)0
9.2ow3_402
fl,b77Ro+02
o.onriHm O:
‘7.70(12q!o~
7,4120~~n2
J,oqo2
I.lm
o,fh
~,!,,!
2 ~)tl
(),()0000
1:!
0,00000”
r) non
II(IO
()
000
1,4fi,R74
()
000”
24:!
o.000no
O,(lflooo
-2.17!32et03
0.0000e+OO
0.0000e+OO
0,0000o+OO
0.0000e+OO
0.0000e+OO
0.0000e~OO
0.0000m+OO
0.00fWe+OO
0000Oe+OO
0.0000n+OO
0.0000e+OO
0.000oe+CO
0,0000e+OL)
56SG,.367
4978,1,23
43H’(r)92
i2.’/lo!;:3
1, In:wlwmlt)l,
14, f,oooo
1. 1}).II17LO+W) Ih,()()wo
afit
b.3e-04
-3,Je-03
3,7e-oJ
6.S--03
6.6e-03
7,8e-03
9.2e-03
I,IQ-02
2.4e-02
1.10-01
6.te-01
1 .Re+oo
15212.250
1S210026
16206,19S
15197.0613
15180.8tlb
15151.761
1S100.434
16008.404
14843604
14fi54.67F
14G77.744
13369.124
1243FI.718
().(~()0
Llll:lo!)oq$(w;
i,iBi702e+or1
I.I OWIXI 0,00000
1. 10:14’13W+O!, 14,0!,X:!
() 00000”
dby/dx
(gauMs/cm)
0,0000e+w
-13,4f136e+O0
-i.4f160e+i)l
-2.7097e+Ol
-4.7f387e+Ol
-8.463fje+l.l
--1.S084.+02
-z.7n06.+02
-.4.02f17e+02
--R. 21?09e~02
-1.31f39e+9.3
-1.(J577a+03
0.000
0.000
0000
() 000
1. lHflhl}2ri~Oh
lL/1111
dhy/dy
(gauOs/cm)
(gnllsO)
0410.G.)3
U410,5.,!3
73L4 bK]2 7:~S4,tiG2
0.000
o.000
o 000
0. (’)00
0.000
20 1 .1,16140ha40fi
11,30847
o,oonoo
27 1 1.1’?Ob20m+Ob
ll,RlL7fl
0,00000
2H 1
1. 17flLIOor410h 1’2, >!!1310 (1,00000
29
30
/ meter
bx
x
0.00000
0,00000
0.00000
0.00000
0.00000
0,00000
0.00000
2
3
4
6
6
7
1
1
1
1
1
1
1
iterations
0.00000
0.44098
0.80796
1,34694
1.79692
2,24490
2,693B8
1
R uns
1 ham been written
cm tape35.
edit
of problem
, cycle
370
‘h’
mag aymnetry type
ntorecl energy = 1.421%+03
kl
S.9 ExampJe of POISSON/PANL)lRA
zlur,,of)t
1114’1, ltll
IH42,
I[io’1 21,[.
11’/’/n;!4
1!104,2!;!}
117/,H’)4
0!17
“)41}
!If)o,
Ifll
()!)l
(),0(
()(1)’10()
I),o(IJOUIOO”
(),()()r)()nl()()
‘r. l!ltlyn~()>
.1,411 !/)
(), (l()(i()n
‘/,Ol!)~nlo~
11,’?n
o.flo:14nlo2
!)’/n
0.!
f),7111,4nlop
;!,4”
oj
1174 o. f~l)()(!nl()o
‘,!4.! 241i (Lof)~lom$oo
!, fl,’/4\l
1)!1.’/4!1
()
()
00 ,1) 1!)
flo, ol!l”
(), t)()()()n!(;
6 20
+()()
f)411
1) ()(){)
{)()[)
0,!
{)4
(;,1
I);I
O()()()n
()()
()
()/
fl, (l”/()!)nl();J
I .111!100”
()
I .onloi)”
()()()()0
100”
Chapter5
squares
least
5.9 Example of PCRWUN/PANDIRA
POISSON/PANDIRA
edit
of problem
‘h’ mag ~ymmetry typo
unergy
=
stored
1.4249e+03
, cyclm
joulaa
9
/ mater
xjfact=
1.000000
a(vactmr]
x
kl
I 1 O,OQOOOOe+OfJ 0.00000
21
-6.iK!9730e+03
0.4489U
-1 .36!i812e+Ct4
0,8!)796
31
v
0.00000
0.00000
0,00000
(gauss)
0.000
0.000
0.000
4 1 -2.0483SOe+04
5 1 2.73032Bu+04
1.34694
1.795!)2
0.00000
0,00000
6 I -3.41!317eI04
7 1 -4.090553n+04
2.24490
2.693WI
E 1 -11.7titMt13n+(M
L.4371!iOe~04
!)1
10 I -6,W17fj931J+f)4
II 1 -6.7412411a+04
l:! I 7,31iH170n’@4
i:! I 7.won4711}04
14 1 fl,w172No~i+M
i!l I 9. 11.16’?11?104
ICI 1 !l,Fj]O!;:)Sutu4
1“1 I -{1.R711:?UO}04
Ill I . I .olmf!)2611*o!)
19 1 -1 .oflqwl(h!lo!i
x-l 1
I .ORII(;!~:!n~O!,
I
I!i If;~401
()!)
ciby~dy
dby/dx
(gaums/cm)
0.0000e+OO
0.90>OO+WI
0.0000e+W
0s000
0.000
15196.946
IL180.557
15196.946
16180,S67
0.0000a+UO
0.0000e+OO
-2.7106e+Ol
-4.7B97e+Ol
7.10-03
8.Se-03
0.00000
(1.01)000
0.000
0,000
1S!51 .664
15100.328
15161.654
16100.320
0.0000e+OO
0.00CJa+OO
-B.4547e+Ol
-1.6085e+02
1.Oe-02
l,2e-,02
3,142flti
3,501R4
1.04082
0,00000
0.00000
0.00000
0.000
0.000
0.000
16000.300
14843.406
14S54.603
lliOOfl.300
141343.405
14F164.liB3
0.0000a+OO
0.0000e+OO
0.0000e+CKl
-2.70D70+02
--4.f326fle+02
-8.290Ra+02
1.40-02
2.7e-02
l.le-01
4.4R9110
4.93R78
5.3877G
13000nw
C.44/37
G,IJTI174
7.34211
7,7[)s17
0.00000
O.(JOOOO
0.00000
0.00000
().0000()
0,00000
0.00000
0,()()00()
0,000
0.000
0.000
0.000
(),()00
O.COO
0.000
().00(1
0.000
o.(100
14077.fM33
1:~367.065
IM43.430
10!)07. 134
fM41, tOG
B444.Oflfl
7374,3[2
tMf5G,3hl
14077,663
133(97.056
12443.430
10007,134
9041.106
8444,068
7374,312
0.000IM+OO
0.00008+00
0.000CM+OO
0.0000-+00
0,0000a+OO
0.0000;+00
0.00o0e+OO
-1.31~9e+03
-!.8L66e+03
-2.2157e+03
-2.fi91(hJ+03
-2,4917a+03
-2,276Ele+03
-j.0000a+93
6.2a-01
1.70+00
-7.4e+O0
-3.6n+Ol
-2.6e+OI
-3,6a+01
-3.Ba+C,l
t14S6.3fiI 0,0000a+OO
fi(l13E1.19EI 0.0000e+OO
40119.374
o,Oooom*OO
-1.6776m+03
-1.3034**0.3
-1,08370+03
-4.00+01
-4,0*+01
-4.Oe+Ol
:).2:4(jF14
11.wowl
tt.Gn4:!l
o.ot)ono
13. fII)T1211
o,(I()(M)o
14,0! ,20;!
0,00000
O.[10 (11)0
[ , l!),l~fl!,mlol,
.!,1 I
I , lll!lllllll$~oll
14! IJ(WO0
34
I . l!l,!!lG’/w$o!i
l! I. W)(N)() (),01)()00
M6B. 190
4nt10,.374
(gaumm/cm)
0.00U0e+OO
-6.4tlb3a+O0
-1.4962a+Ol
●ftt
4.69-04
-2.6e-03
4.9e-03
(gallon)
15212.137
16210,712
15206.083
:\;! I
I
bt
Fly
{Rkmns)
1G212. 137
1S210.712
lLi206.0R3
%!.!l!.11
0,000(10
I
1.(JHq616~,+O!i
V.! J7tlf)!;
0.0001)0
I I . l(MlOfiYa+()!i
1 I I l’J427011~05 Ir).:);?fi.l’.-! 0.00001)”
1 -1 .l:wf17!hl+o!l
t~)47:lfJ[J 0.000w)
?!i I -l,150H43m+O!J
1().ni?ll)!> 0.00000
0.00U0I)
1, l[i14tlllm~Ol} 11,MB47
26 I
27 1 1. 170!,l’.?fllo!, 11.HI!;7!I O,(M-!(WO
711 I
1.177!~~2n40f9
12.2H3113 o.000~)o
w] 1 I lH:\UHlhIIOIJ 1.?.710! ):1 O,(J( JOIN)
.!() I
1. lHtll,44n~wl 13,1b7H!) 0.00000”
I
or radian
b%
?1
:!2
?3
2.1
:!1
Runs
0.000
4:4!M,IV11
0.000
71)7z.5’fo
4396,9E11
3H7~,570
0,0000a+OO
o,ooooe+uo
-9.1060a+02
-7m7fj2fIR+02
-4.l@*(Jl
-.4,1g+ol
0,000
0,000
0.000
.YIO1.X13
~1171,404
34f’)l,2R3
~f)71,404
0,0000a+OO
o,~oo~g+o~
-6,6f10be+02
-6,R774e+02
-4. la~Ol
-.4.l~+ol
2!173.7713
2673.778
0.000W+OO
-5.2380a+02
-4.
0
~~~1
s~ol.zaa
o,oooog+oo
.-a,7~990402
-4.19+~1
()(~17
~{~:~
la+nl
0.(100
IM4D.21MI
1848,2tJtl
0,0000m~OO
-4,3620e+02
-4.
la+Ol
O.()()0
0,(1~111
lh10,4112
I61O,492
0,00W%IWO
-4,04Q7a+02
-4.
ln+Ol
IIH4.!Kw)
11~4.hOO
0,0000u*OO
-3.I1121NI+02
-4.1-101
lW1’/,R?7
lW17,f177
!I!J!I f;,!!,
:%!) . HII[;
lilI1l.fi.\fl 0.00(Jf)ll~(Kl
Zfih uwi 0.00o[JmOn
().()[1()
0,000
0, 000
0,000
0,000
34. ;W!l
:y),flq~
34.2[lh
3!L444
().()()()(MIIO(I
O. OfJ()(VI~O()
tl,fwoofllo(l
:~.a20Hnln2
:1.432!im~ol
;!,wlodnio;!
llll!)71m~02
i?. lflllllo~ol
4.ln~ol
4 091101
;4.%1101
2.oOl*(’)1
2, 1?}0(3
5.9 Example of POISSON/PANDIRA
Chapter 5 POISSON/PANDIRA
6.9.3
Executing
after
TEKPIK)T
RurIa
POISSOIN/PANDIRA
of POISSON/PANDIRA, we execute TEKPLOT again, Thin time
we designate dump 1 of TAPE35 and 20 field lines, u shown below, to generate Fig. 5-3. (Either
POISSON or PANDIRA run produces identical plote.)
After a successful
execution
input da~m- mum,~tr~, nphi, ~nap, n8wxy,
?Jo 20&
input data
nmwxy- O
inap= O
num- 1 itrl- O nphi= 20
?type
plotting
?type
name = h-magnet
prob.
input
data-
taut,
uniform
momh 4/23/85
cycle
“ 370
xmi.n, xmax, ymin, ymax,
?6
input
da t ●
xmin- 0.000
Max= 22.000
?type
no
go or
ymin- 0.000
ymax= 13.000
?gQ
A CR after ~
the prompt
?typa
clears
the screen
and plots
Fig. 5-3. A accond CR dears the screen and produces
line.
input data- num, itri,
nphi, inap, nmwxy,
?A
tdrplot
ctea
Cpu- ,037 1/0”
all
time
. IMl ●eccndm
. 480 mow B044
done
6-.3 I
Chapter 5 POISSON/PANDIRA
Fig,
5-3:
5.9 ExampJe of POISSON/PANZ)IRA
Plot from TEKP1.OT
of the magnetic
field lIneo generated
for the problem “h-magnet teat, uniform rmmh 4/2 S/85”.
532
Runs
by POISSC)N/PANDIRA
Chapter
10
l?C)ISSON/PANDITtA
Contents..
Examples
. . . . . . . . . . .
10.1 Introduction.
. . . . . . . . . . . . . . . . . . . . . ...
--H-Magnetwith
10,3 POISSON
-- Quadrupole
10.4 PANIIIRA
-- Quadruple
10.5 PANDIRA
-- A Ring Dipole Permanent
10.6 PANDIRA
-- Cylindrical
Options
. . . . . . . . . . . . . . . . . . . . . . . .
Magr@with
Magnet
aHyperbolic
Pole Tip
Permanent
Magnet
,
10-17
. . . . . . . . , .
. . . . . . . .
. .
. . . . .
. .
. .
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . ,.
10.10 POISSON -- Dipole Magnet,
Center
Field Calculation
-- Dipole Magnet, End Field Calculation
lot
10-10
. . . . . . . . . . . . . . . .
10,9 POISSON .SeptumMngnet
llOJSSON
. . , . ,
10-16
MBgnet Problem
-- Vector Potential Problem
.
10-4
Pole Tip . . . . . , . . . .
with Hyperbolic
10.8 POISSON -- Eltxtroatat,ic Problem
10.11
10-3
. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . .
10.2 POISSON
10.7 I’OISSON
.10-1
. .
. . .
.,,.,,
10 22
l(_l 28
10-37
1[)42
. . . .
. . .
10 4!!
. , . .
. , .
10 7)3
CHAPTER
10.1
10
10.1 Introduction
Examj)ks
Introduction
examples in this chapter utilize various option8 that are available in the POISSON/
PANDIW programs. The input to all problems are defined by both a COSMOS file for the
Cray and a parallel command procedure for the VAX. Assuming that the programs specified
in the procedural files are in the user’s directory (if not, eee Appendix A), the user should
enter
The
for CIUIY:
cmmm
9
where: filename - the name of COSMOS
file
for VAX:
ULEIUME
where: FILENAME - the name of VAX command file
Section 10,2, we give a line-by-line description of all files used. In subsequent sections, we
will only comment on the specific options used. Tlie numbere in the figures correspond to
selected line numbers of the input file.
In
The examples
used are actual work problems that have either originated here
were sent to us for solution by outside usem.
All
entries
must
at
LANL or
be in lower caae for CRAY and upper caee for VAX.
All the field line plots are generated by executing TEKPLOT using dump 1 of TAPE35 and
Examples of ‘TEKPLOT Runs.
20 field lines exactly aa done in Sec. 4.5-
CHAPTER
10.2
10
10.2 POISSON -- If-lkfagnet
Exan7@8
H-.s]IcLped rmgnet
The
with Options
-- H-Magnet
POISSON
M rltwwribed k
●
calculates
fields and gradients
●
continue~
from
●
adjusta current
●
calculates
fields and gradient~
●
calculates
the field cotnpcments
previous
See,
with the following options:
in a region on mesh points
POISSON
to produce
executed
1,3 is
dump
number
a given field
in a region on apecifed increments
crf X and Y
and the total fields in iron
Given the input file, HMAG, to AUTOMESI1,
specifies the above optiorm, the user types
and the COSMOS/VAX
file CHMAG
which
for CRAY
common i=chma~
.—
for VAX
For compl(ltenesa
we include the IlhlAC
l’hc file IIMAG describes
upper-right quadrant..
file and the }1-megnct gu.ometry aq givcrl in SW., 2.5.1.
the cross section of one-fourth
of an 11-shaped dipole magnut,
tht
HM.AG
Line
N()
—,
1
2
3
4
~
h-magnet
6
“!
!.eat,
uniform
n.rag-3,
$po x- 0.0,
dx-.4b,
xmax-22.
y- 00$
$po X-22,0,
SW X-220,
y“ 0.0s
V-13.0$
$po x- 0.0,
$po Xm 0.0,
y-13 0$
y- 0.0$
H
9
lG
$reg mat-2, npoint-iO$
$pfl x- f., o, y- 2 0$
11
12
13
$[10 .x-
14
~~
16
17
18
mesh
$rati
$po x-
tpv
bl,
6,b,
x- s 6,
x-lb 0,
$po
X-IL
$po
0,
X=22,0,
$po K-2’J.0,
$po x- 0.0,
$po
$po
x-
0.0,
mat-i
4/23/86
,ymax-13.
6,17
,npoint~5$
~
y- 2,0$
y- 2,4$
y- 60$
y- 6 O*
y-
Reg.
19
$reg
20
21
22
23
24
2fi
cur-- 2G4Ei6.79l$
$po x- 6.0, y“
oG$y
12
yyy-
Opo x“ 6,0,
y-
s 6$
b.b$
00$
10
..— . . .
9
Reg.
3
23
’24
1 1,
2<0$
0,$
0.0$
13
r“
. .—
,npoiut-b,
$po X-14 6,
opo X-14 5,
$po x- 6,0,
..
_.
..‘--”
1
2
Iron
y- 0.0$
y-130$
y-l Jo$
y-
6,16
—-——--- ..—
. . ..———
..—.—. ..— ——.
—--- ..——
\ 1[’
~]
‘---”
R9Q.
1 -Air
-.. .
. ..—
21
-.. .—
3 Coil
. .. . .. .. ..
_.. _.— —....
)(
22
14
4,16
CHAPTER
Line 1:
2:
3-6:
7:
8“
9-18:
19-20:
10
10.2 POISSON -- H-Magnet
~XU?@?S
Title
line, which
in column 2 (POISSON/PANDIRA/MIRT
Problem),
nreg =
3number of regions.
& =
.45 - horizontal meeh size.
xm~x, ymax =
22., 13. - problem’s maximum dimension.
npoint =
5rmmber of PO entries that follow.
atarta
First REG entry:
Coordinates of points that define the region 1,
Same coordinates aa line 3 to form a closed region,
mat =
implies that the mutorial
2REG entry for region 2:
Coordinates
REC entry
of pointe that define region 2,
for region 3:
mat =
1.
cur = -25455.791-
iE iron.
total number of amps. (The sign
specilieu direction of the urrent;
negative ‘out of the plane of the
paper” ), Theee two entrieo imply
this is a coil region,
21–25:
Coordinates of pointu that define region 3.
The procedural
file, CHMAG,
with explanation
is given below,
COSMOS File, chrnnr
—.
VAX File. CHMAG.COM
*automemh
$RUN AUTOMESH
WAG
$RUN LATTICE
TAPE73
8
QRUNPOISSON
TTY
0
*60*466*
43413S
1
●8 IO(X)O.●4O 3 2 S
1
*43 O 1 6 ●ljfi 2,b ●57 G, 032 G S
hmag
*lattice
tape73
a
*po~anon
t.ty
()
*60*46
t) *43413
1
*!! 1(M)(M),*4O 3 2 e
●
1
*43 6 I 6 *55 2,5 ●57 G, ●326
B
-1
.EKIT
1
●/
oxcc~ltm AIJTOMESII
with the input flla IIMAG.
mmcut.rtn LATTICE with ‘1’AI’1373 thht WM gcnmntod
clinn~u~ in thf~ CON array (danignatml hy “an ),
U)(OCIIICR
by AUTO MESII, atld no
.
I)OISSON,
‘1’TY lrmnt Iwgin in colun~n I, TTY {Icnignnton that datm frw POISSON
followo,
the 0 imlicntem thd I)OISSON will raml in hinnry dntn frrwn duml~ 0 cm TAl)lt3fi
Lhdj WI produrrxl hy llArTICHl
10 4
CHAPTER
10
Line 9:
CON
10.2 POISSON -- H-Magnet
~XAIll@U
array
column
CON ( 6) = 0CON (46) = 6CON- (43) = 4-
use internal permeability
table for MAT = 2.
symmetric H-magnet.
calculates fields and auxiliary data in a rectangular non-iron
region on mesh coordinatefl (K, L) where K and L are the
vertical and horizontal mesh point~ with K from 1 (the
default value for CON(42)) to 4 nnd I, from 1 to 3.
designntea the end of CON array entries.
CON (44) = 1
CON (45) = 3
B
-
Completion
specified
Line 10:
Note that for a COSMOS file, this must NOT begin in
entries.
1.
of this run generate~,
above
aa
h the output
file OUTPO1,
the values
shown in Fig, 10.2-1,
the 1 indicates that POISSON w ill rend in dump 1 which wm writtmn after
of the above run, to continue with new CON parameter
changes that follow,
the completion
Line 11:
CON euray entry specifying
current
adjustment,
CON ( 8) = 16U(X),- The current factor XJFACT in to be adjusted to
produce a field of 16000 gauan at mesh point (3, 2)
CON (40) = 3
CON (41) = 2
M
- deoignatos
the ond of CON array entries,
Completion of thin run generaton the output in OUTPO1 nhown in Fig, 10.2-2,
where lf3[ := ld = 15999,267 at mcwh coordinate (3, 2) and XJFACT =
1.079816. The iuput current is multiplied by thiu factor to produce the
roquircd current:
Now Currant
I,inc 12:
= -25455.791
●
1079810
-..
274 H7.570
~mps.
the 1 indicntcs that POISSON will read in dump 1 ngain oincc wc win}) to
go back to previoue run (other th~.rl continuo from nbovc run which wrutw
dump 2),
I,ino 13:
C~N array entry,
CON
CON
CON
CON
CON
(43) := 6
(44)
I
(45)
6
(56)
2,5
(57) -5,0
dfvwritml in ldnc 0
oxccpt iL is c~lculatml in m rmt.nhgulmr region of (X, Y)
coordinatrm where X goon from 0,0 to 2,5 RIId Y g(IPFI
from 0,0 to 5,0 ill incrclnontfl 0(:
cahlulatrw
AX
the RwIIe quantiticn
2.F) (),
______
(1 I
‘5
AY
an
r,,0 0.
_ . ... —01
1.0
M mm in Fig, 10.2 3, 1110nchh nrc prilltml only ill
non-iron rngionri, l!vcn though it, WM npwikl
thd Y
would tlnvO valucn up U) h.(), thr priiltollt only gcJas
up to 2.() since mu irori rcgi(m nlmrtn nt Y ~2,0,
10 5
CHAPTER
10 Exan@a
CON (92) = 6
10.2 POISSON -- H-Magnet
- calculate
and prints Bm, Bw, and IB! in iron region
Figure 10.2+ ohows the first part of the output for lBl.
Two valuea of the 6e1dn are printed at each mesh point,
ona using upper (u) and one ths lower (1) trmngle in
computing the field at that point. Taking an average
of the two is a good approximation of the field at any
given point (for more detail, aee the Referencd Manual)
- deeignatea the end of CON array entries.
Line 14
Line 15:
-1
“/
$EXIT
- dosignatee the end of the POISSON execution.
- end of COSMOS file.
- end of VAX command file
I(M
CHAPTER
least
squkres
●dlt
“h” BXg quotry
storml ●norgy =
m(mctor)
11
2 1
3 1
4:
1 a
2 2
9 2
4 2
1 3
2 3
S 3
4 3
of
typo
1.4249s+03
, cycla
]OU1OS /
10.2--l:
‘h” Bag cyuotry
mtorml ●nmrgy 1
xjfact-
O
0 00000
0
O OOOM O
0
0 00000
0 !)9304
O
-1
0 30633
0 9Q718 -4
0 39848
-8
0
0 78788
0 70299
-4
0 79628 -10
-19
0 79811
H-m~gnet
Nocurrmt
jouloa
o Ooooo
-7
1843766-03
0 44898
oOOooo
-1
-2
0
-4
-1
4366WIO*04
16466W*04
Ooooooa”oo
3Q8362a*03
O
1
o
O
1247!8?!=04
0 7028!5
oOOooo
0 Ooooo
0 3Q3Q4
o 3953s
o Solln
-1
836876a*04
1 14807
L 3904S
o 00000
0 78700
Q6!17Q4,-03
O 49720
0 7Q2Q9
5206610.04
!) 91m07
o 79620
1 30619
c1 79811
1 3
2 3
0 (’o@oooe*uo
-7
3 3 -1
4 3
Z 234363e*04
(gmlls)
260
826
196
066
902
892
16212
16210
16206
161!27
1621S
16212
260
826
196
069
302
832
dbyldy
dby/dx
(gmm/cm)
(gauss/cm)
0000a*OO O
OOOOe*OO-6
00000*00 -1
OOOOG-00-2
2684,+00
O
62S9a-00 -3
00000+00
4636,-00
466Eo+01
70970+01
00~a*OO
4631a*O0
6
-s
3
6
2
-1
3,-04
38-03
7,-03
60-03
60-04
7,-03
090Ba-(M)
0746a*Ol
4?I12a*O0
0986m*Ol
66620”01
63649-00
86489-01
0000e-00
4442,+00
4604vO0
64670-01
6
9
4
-1
-d
-1
70-03
7,-03
09-04
26-02
1*-03
10-03
16210 091 16210 092
16209 981 16203 983
16216 242 16216 242
1621b 1~ 16216 196
16212 i92 16212 136
7
1
Q
1
1
620
16206
2 4666w*01
481
region
16206
494
tilt
0
0
0
0
6
6
124
000
000
960
861
80796
34604
00000
27484
I cstar
o Ooo
2 I
1
2
2
2
2
bt
CQO 16212
000 16216
000 1620u
~
16197
~
16219
471 16212
bx
(gws)
x
3 1
4
1
2
3
4
by
(gauss)
output iualr
ad@stmcnt.
079816
n Ooooooa.oo
or rsdlkn
-9
-1
O
-4
-9
-1
on mcshcoordinatea
(K,L).
t~pa
1 6148a-09
●(fsctor)
kl
●atar
(gmm)
Y
POISSON -- 11-hfagnet
970
bx
x
Oooooooa-ooooomooooow
-6 829781a+03 O 44890
-1 366822c*04
O 8Q796
-2 043366,-04
1 34694
o 0000000-00
0 00ooo
-4 181176a*03 O 27484
-1 060108,+04
O 70286
-1 7462691w04 1 14007
0 oOooooa-oo o 00000
-7 G66413Q*03 O 49720
-1 44ti626a*04 O 96007
-2 124061,*04
1 99610
Figure
11
problu
1 000ooo
X]fmct-
kl
J0.2
10 Exmnpks
0
0
0
0
‘1
-B
-10
Ooo
000
000
000
960
4S8
2d0
0 MO
-6
723
-14
974
25 103
or rficllw
81
(gwlsa)
16002 1s2
16000 209
16994 221
16002 641
16003 600
16002 Q62
16909 266
6991 220
~7
671
bt
(UM8)
10002 182
16000 289
16904 221
1LWE12641
16003 600
16002 063
16900 26”/
16991 224
1~(37 b71
dbyldy
dby/dx
(gwa/cm)
(gauss/cm)
o 00009*00
o COO09*O0
o ooooa*oo -8 66960*00
o oooom*oo -1 90220*01
o 0000O*CO -3 417W”01
7 06029.00
“1 36349*OO
9 OfWOm*OO
1
1
6006 037 16006 039
1
6001 @20 104)01 634
1
6003 730 16903 “?60 2
10 7
3123a*Ol
●flt
6 20-04
-4 20-03
4 99-03
6 6m-03
0 00009*00
3 lm-o~
-4 6W4a*O0
I m-03
-1 2B67G*01 Q 39-03
-2
2nQlla*ol o
4842m*Ol -6
9602a*Ol -i
0771a*Ol -2
4114a*Ol
00000”00
4742,*OO
3444-*OI
2630a*Ol
4 0--03
a
-1
-6
-1
29-OA
6c-02
0a03
E. G.!
CIfAPTER
l~tst
10 Exampleq
aquuau
‘h’ -g
10.2 POISSON -- If-Magnet
of problem
.dit
synmotry tw
@torod ●nmrgy = 1. 424 Qe+03 joulas
Xjfact1.000000
a(~octor)
kl
x
Y
1 1 -4. Q276TIo-O4 O.00000 0.00000
2 1 -7.60W200+03
0.600000.00000
3 1 -i,620077e*04
i .000000.00000
4 1 -2.2800369+04
1.60000 0.00000
6 1 -S.04~46a+04
2.00000 C.00000
7 1 -9.7976640+04
2.60000 0,00000
1 4 1.3180730-06
0.00000
1.OMOO
2 3 -7.60U0680+M
0.60000
1.000(10
3 9 -1.621736,+04
1,00000 i,000CK)
4 3 -2.2W2WW+04
1.60000 1,00000
6 4 -3,042740a+04
2.00000
I.00000
7 4 -9,8028S09+04
2.60000
1,00000
i 6 6.4271Q6m-02
O.00000 2.00000
2 6 -7,616107c+O3
0.60000 2,3 6 -1.6X912W+04
i ,000002,00000
6 0 -2,284061a+04
1.60000 2,00000
6 8 -S.047228s+04
2.00000 2.00000
7 6 -3.810420s+04
2,60000 2.00000
Figure
lthe
10.2-3:
following
H-mngnet
la
●
/ meter
by
(a
/b/(kg)
bt
(gauss)
(gQusm)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
-6.777
-13,S76
-26,413
-40.687
-86.474
0.000
-6,1S9
-11.800
-21,200
-34.024
-60,200
output
46P of /b/(kg)
or radian
t6212.226
16210,461
16204.668
16tQ2,461
16169,600
16126,270
162i8.S9i
16217,623
16216,109
16210,618
16203.100
16i91.2Wl
16230,846
16230.866
16234,000
16240,176
16261,904
16278,01S
i6212.22G
16210.461
16204,668
16192,461
16169.LW
16126.270
16218,391
16217.624
16216.196
16210.6S9
16203.177
16101.616
162S0.846
16230.866
16234.005
16240,101
16261,942
lti278,006
inairr~g!ono~
uppar ---cycle
low-r
dby/dy
(gUIss/cn)
o.Ooooa+oo
0.0000,+00
0,00009+00
0.00C4M+O0
0.000oe+oo
0000Oe+OO
1.0Q40c+01
i.2700c+Oi
1.86669+01
9,11310+Ol
6,6637,+01
1.0Q24e+02
1,SO030+01
1.12309+01
1.67600+01
2.2601o+O1
2.7893e+Oi
3.4383a+Ol
dby/dx
(gmlBs/cm)
tilt
0,00009+00
4,0a-04
-7.2718a+O0
7.80+02
-1.70039+01
1,69+03
-S.2067.+01
2.3e+03
-8,10440+01
3.1Q+03
-1.1731*+02
-2.Qu+03
0.0000-+00
-1,38-06
-3.OO1OO+OO 4.40+01
-8.77WO+O0
7.ea+02
-l,1766a+01
1,0*+03
-i.8742a+Ol
-1,2,+03
-2.9722a+Ol
-2.8a+02
0.C4)OOa*O0 -6.4e-02
8.9043e*oo
i.lo+os
8,61300+00
2,3a+03
1.63400+01
-3.0a+03
S.2344a+Ol .1. 90+03
7.Q107a+Ol -7.09+02
coordinateu(X,Y).
1180
01
k,.,..
,,,
!)4
u
33
u
32
1
u
1
91
u
30
u
29
U
28
u
1
1
1
1
1
1
2
3
4
6
e
7
8
000
237
2.04
S.17
3.17
4 M
4.96
6.42
6.42
0,10
819
977
077
2.35
302
303
3,98
X86
576
6,71
6,77
677
8.66
862
Q 02
088
430
668
637
634
6,2i
6,97
6,03
769
74B9
Q.38
0.23
1028
10 17
6.12
726
7.11
6,80
6TI
836
8.34
868
8 66
iooo
O.uo
io,67
1068
7.86
8.87
8 el
B43
U.S8
0.63
9.64
062
068
1070
10,06
1118
1110
040
10.30
10,23
077
076
)065
10,68
10.63
io.62
1160
11 61
11 ‘?6
11611
10.86
11.62
ii 4’?
11.02
10.W
11 72
11.70
11.61
11.54
12,t7
12.26
12 26
222
12.01
12,62
12.61
12,07
12 12
1267
1263
12,28
12,39
12,79
1289
12,7i
1278
108
20
,..
,,,
,,,
,,,
,,,
,,
,,.
,,,
,,
lti.86
16!02
16.01
16 86
16.84
1691
16.90
1604
1$82
15.00
~U 88
1662
ifi 80
i6.98
1806
16 04
16>90
16.07
18.04
1803
iti Q7
16 CM
19.03
1602
1696
16 W
CHAPTER
10 ExamphM
10,2 POISSON
-- H-Magnet
I
I
/
II
\
\
P
..
H-nhpd
d!polo
magnet,
CHAPTER
10 Exarrqdes
POISSON
10.3
10.s POISSON
--Quadruple
--
@d
Magnet with a Hyperbolic
Pole Tip
The magnetic fields and their gradients are calculated for mquadruple
following
magnet
utilizing
the
options:
●
quadruple
●
symmetry
REG parameters:
●
input of a permeability
●
output fields on specified linen
NT = 3, NEW and lBOUND
table
Taking into account the nym.metry of a quadruple
mtignet. Elcdow is the AUTOMESH
on the right.
configuration
we need only calculate one-eighth of the
file, QUAD, corresponding
to the geometrical
input
QUAD
1
2
3
4
6
e
7
8
Q
10
11
12
13
14
16
16
17
18
19
20
21
22
23
24
26
26
27
qutd with hyperbolic
cm.,
input tablo 9/12/06
$rsg nreg-4, dx+. 36, dym0, 36, xamx-33.6, yaax=33. 6,
npoint-6#
$po x- O.000, y“ O.wo $
*po X-17.444, y- Osooo t
$po X“X!.080,y- O.000 $
$PO X-33 .ObO, y=33 .080 $
$po x- O.000,
y- o-m
o
$rog mat-3, npo:nt=Q8
$po X- 6.837,
y= 6eR37 $
$po at-3,
x=13.607,
y- 2.623,
$po X-14.214,
$po X-22. 470,
$PO xm26.700,
$po X-26.700,
#PO x=33qoeo,
yy-l
yy-
7,17,27
r=8. 2b6$
3,230 *
1.488 0
8.256 0
O.WO t
Y- o+ouo t
R.g.4-Llno
R.g.
Hog.
--\
opo X-33.080, y-33. oeo o
$PCIx- 6.837, y= 6,037 t
$r*g Bat-l, cur-11416.4,
npolnt-b$
Opo %-14s214, y- 3,230 0
y- O.wo,
new--lo
$po X-178444,
$~o
@O
$po
$ren
$po
X-26.700,
x-22.470,
x-~4.2i4,
npoint-2,
X“O.000,
$po %-33s080,
Y
13,23
y- 8.266 ,
y-il.486
o
y- Ss230 @
ibound-Oo
y-
O.000
0
y-33a080
$
14,22
flog.
Coil
12,20
10
3
11\
/’
4,26’-
2 iron
Hog.
~~
21
l-Alr
——. ——.
.—
‘“– “--
6
x
[0’10
—
16
—,16
CXAPZ’ER ] ~
10.9 POISSON -- Quad
Exarnphs
where:
Line 9:
Line 11:
MAT = 3
the
NT = 3
designate
code for region 2 will be a uler-defined
permeability /permittivity function. In this cue it will be
an input permeability table.
materkd
that the hyperbola
will be drawn from previous
point (13.607, 2.523).
Line 21:
NEW = -1
2 * X * Y = R2 = 8,2552
point (5.837, 5.837) to this
— wu
added after a first run produced a gliich on the bo~ndary
line from (14.214, 3.230) to (17.444, 0.0) by picking up a
mesh point from the horizontal boundary of region 1.
Fly Hetting NEW = -1, it ensures
dary
do not cnincid(~ with
boundary
that
any points
region except for starting
point,~ on tho bounon previously
and end points.
Region 4 imused to define the boundary
condition on tho 45°
boundary from (0.0, 0,0) to (33.08, 33,08) M Dirichlot boundtiry
region.
(magnetic field lines ara parnllul). In a non-rectangular
one must use IDC)UND to dcfirw boui]dary conditions,
(See
Sec. 2,2.5- Houndary Condition Options.)
Line 25-27:
that POISSON will bo cxccutod
PQUAD, Given the filen, QUAD, CQUAI) and I’Q[)AD, the uncr typau:
Thn procedural
~
file, CQUAD,
7
H
designator
commom i . = cquad
——
fur CRAY
@CQUAD
for VAX
COSMOS
1
2
3
4
G
6
dcfinm-1
VAX
---..-. — FilnL
File, cquml
+automen)
(lQ_l
J~l-?L[~(jM
$RL’N AUTOMESI{
QUAI)
$RUN [iATTICK
IAPE73
R
$RUN POISSON
PWAU
quad
●lattic@
tape73
s
●poi 0s011
pqund
●/
$KXIT
In II
with inpuL (roli)
CHAPTER
10 Examples
J().S POISSON
PQUA12
Line
k
-- Quad
FILE
Line
h
1 0
*60*464u
2 *181
3 3 1.0 1
0. ooOOooo9+oo
4
6
0. ii42000a+04
6
0. 29630000+04
7
0,61 t4000e+04
0.8478000,+04
8
Q
0. 9667000e+04
0. 1067800e+06
10
0. I1319W,+06
11
0> 11940000+06
12
O.12461O(X+O6
13
0. 12912000+06
14
0, 13313000+06
16
0. 1366400a *06
16
o 13936000+06
17
0.1421600a+06
18
10
0. 14447009+06
20
0.1461WXX+06
01478WXM+06
21
0,160NO09+06
22
O 161S1000+05
23
0.001761S1S6
0.0017613136
0.0010169604
0.00078’21W6
0.0007078644
0.0007241130
0.0007662680
0.000796i022
0, 0003 S76209
0.0008834i03
0. 000929W60
o ! 0009764671
O. OO1O26M66
0. OO1O7642C33
0.001 t264924
0.0011767476
0,0012.319603
0,001284tV3t36
0.001SS16679
0.001!)870261
24
26
26
27
28
29
30
31
32
33
34
36
36
37
90
30
40
41
42
43
44
46
46
0.162620CW06
0.16423Wa+06
0.1669400s+06
0.1670600s+06
0.16180000+06
0.1684000e+06
0.17160000+06
0,17M000e+06
0.1762000a+06
0.178LOOOe+06
0,18X3000a+06
0.18960000+06
o.iQ60uoo9+06
0,202CQOOO+06
0.20660000+06
0,20U60000+06
0.216CWOO+06
0,21WOOOO+06
O 230CWOa+06
.&
0.0014429770
o.oo149i20iQ
o.ooi63W361
0.0016918497
0.0018642656
0.0023762969
0.0029164619
0,0034666194
0.00S9729837
0.0044862167
0.0064W5066
o.oo70176&a4
O.O1O26Q41O3
0.0i48688410
O.O1O37Q8U6G
0.0236663484
0.03’T0370370
O 0466621006
count
0,0869666217
*18 O *9O O ●42 19 lQ 1 68
*1101O1O1,
90. 14 8
-1
where:
Linu
1:
0
-to
road durnpnumbcr(NUM)
l,ATTICK, ’rl~isis thafirst
Lillc 2;
CON array istheoecod
required POISSON r*\try w}Icrc;
CON(18)V= 1 ~~~
oncpermcahility
table tot;- wad in.
CON( 6):x0
--must, bcmt tozcro if
#. 0,
(X>N(40)1
4
n
Linm4
42:
thovaluoflof(}l,
td)le.
lJino 43:
.:: 00]lTAPE35ge]lcr~tr(ll~y
rc(l\lirc(i PC)lSSC?lmtry,
I
~~Nylnmctricnl quadrupolo.
dcrngnatcs cnd of(;ON army cntrim.
?) with lNHt vnllmhfivin~
n“c”
(Collnt)
tr)
irdicnto
Phil
of
(s{!0 Sk?c.tl,.i.l IJ ft]rlr}{)rc(iol,nil,)
I’OISSON will road in
II II IIIj)
1, whirl) wrm writtoll
nftorr(ltrl
plctinn {}ftho nbovo run, to continur witt, ncw (~(>N r~~tri(w
tl)nt follow,”
10 12
CHAPTER
Line 44:
10.3 POISSON -- Quad
10 Exarnpk8
CON array entries:
CON(18) = o
CON(30) = O
CON(42)
CON(43)
CON(44)
CON(45)
=
=
=
=
19
19
1
68
- no new table to reed in, (The read in table from
previous run is in.)
- no further iteration (since problem converged in
previous run).
- calculate fields and auxiliary data on all non-iron
points of the vertical line from mesh coordinates
(19, 1) to (19, 68). These are listed in Fig. 10.3-2,
Uptol=
13. T:I the OUTPO1
only up to 1 = 17 since
Line 45:
Line 46:
CON(11O)
(111)
(112)
(113)
(114)
-1
=
=
=
=
=
10
10
1.
90.
1,
file the fields
iron region
begins
are given
after that.
in Table 5-1.9,
analysis parameters
aa described
here we request:
10 coefficients and 10 points on the arc of circle starting
at 0°, (Default CON(115)), up to 00° with radius = 1,0
harmonic
(CON(112)).
1. - CON(1 14) - normalization
- designates
radius.
the end of POISSON
execution.
Fig. 10,3-1 lists the output harmonic values from the file OUTPOf, Ae seen, the coefficients
begin At n = 2 and go up in depo of 4. The miming coefficients are zero due to the
quadruple symmetry. For complete detail on harmonic analysio see Reference Manual
%ction J3,13.3+
10-1s
CHAPTER
10..? POISSON -- Quad
10 Exam@s
humonic anmlysis
integration
radiua table for intorpolatad
n
angle
i. 00000
points
x coord
y coord
kf
If
Voc pot
0.0000
1.0000
0.00CW
4
i
2, 08094#+02
1
10. OOOO 0.9848
0.1736
.4
i
1. W5709+02
2
20.0000
0. QSQ7
i . 69487a+02
3
0.3420
4
2
4
30. o@30
0.8680
0.60(W
4
2
i .04268e+02
6
40. OCQO
0.7660
0.6428
3
3
9.68i400+Ol
0.6428
0.7660
3
3
-3.669940+01
6
60.0000
7
0.8660
3
!3
-1.02283e+02
60.0000
0.6000
-1.67878e+02
8
70.0000
0.3420
0,9397
3
3
0,9848
S
2
-1,06636.+02
Q
80.0000
0.1736
0,oooo
1.0000
3
2
-2.otW43e+02
10
90.0000
ltabl.
for vector potantial
coafficiantm
Onormalization
radius =
1.00000
●(x,y) - ra( sum (an + i bn) * 6429w-01
18
-1.8328,400
0 0000O+W
1.8328e+O0
22
6,7246a-Oi
o Ooooo+oo
67246e-01
26
Lo778a400
o.oOooe*oo
lQ778e+O0
30
2 1208e+ol
0. Cx”)ooo
+00
2i206e+O!
34
706309+03
000004?*(XI
70639e+03
7,8Q4Q@lfio3
38
o Ooo(la+oo
7 fJ94Qe+03
CHAPTER
lommt mqumom edit
●P
Wm
storsd
●ymmtry
●nergy
of prohlom
, cycle
-- Quad
1760
typa
= 3.2644=+02
l.OcmOcQ
xjf~ct=
k
1 a(v~ctor)
1S
10,;1 POISSON
10 Exampb
joulem
x
/ motor
?
0. CK2000
or rmdirm
bx(smusm)
by(guuoo
0. CKF3 -2607.309
) hl
dby/dy (gnu#lrn/cm) dby/dz(gmuns/cm)
nflt
0, 00000+(10
-4, 1484e+02
1,70-02
(gnu-a)
19
1
2
0. 189 LoI%+c13
7 ,7271049+03
0.27984
0, 11021
9,3s3s8
-i40.
-2637.033
2641.278
-t
19
3
0.l13162t+CH
8.29040
0,70’Tf17
-293.610
‘2611 ,846
2028.286
‘4.43009-IJ1
-4. t4e’4b+oa
1 .e9-04
19
4
7.6439310+03
O.tleel
l.oelw
-440.442
-2641.312
a679.
-6.2101--(11
‘4.1481,+02
1. 1*-03
19
s
7.829el%+03
fl. ?lot18
t.4i
-EE7.
-2016.723
2681.786
‘8,
19
6
7.
6.12984
1 ,7YCN2
-734.263
-2546.863
2849,022
-0,4311
1S
7
7. 3392@
!9
8
w6S6027a+03
19
9
6.042720
163326,*O3
3a+03
m+(J3
F.e3
S26
140
2607.309
le7
.701! O+-111
E6136,
-131
D-CJ1
7693--01
-4.
‘4
1473*+02
i493cI+02
2.60-03
-4.1626,+02
3.ea-03
6,31247
2.12403
-881.117
-’2021.906
2766,000
-0
0,t40i8
2,47815
-1C12B .297
-2660687
27 S0.071
-573700-01
-4.
16309+02
G. 19-03
0.32467
1,83280
-1176.431
-2827.3131
2.97.3.328
-4.6120,-01
-4.
16360+02
7.4*-U3
19
10
6.7614
0,16112
3,1!M11
-1322.336
-2 S6G .474
2.977.328
-3.98730-01
-4,1618*+02
11
S.74166Sa+03
0,33831
3,64110
-14e9.137t3
-2@33
3015,
-3.16
-4.
19
12
4
8. 102?3
3.89237
-161
-2560,61.3
3027
19
13
4.642707a+03
0,36446
4.24741
-!70?
-2tJ39.781
3174.074
7437839+03
Fijglu{! 10.3-2:
A sectioli
of
lis~hlg
S.389
.460
.226
(Jf OUTPOI
fw
S%9
.4S0
Me-02
‘2.64340.01
J,6b28=-01
(.]Iv (IIIH(INI]MJIF
lt!l
/
/
/
/’
1.79-03
-4,1510,+02
19
!36m+03
7 .e9-04
i495*+02
i .09--02
1 .s0-02
-4.1421-+02
2.7.-02
-4.1346,+02
9.10-02
II In~IICt
ll~oIJ-
CHAPTER
10 Exam@a
10.4 PANDIRA
-- Quad
10.4 P,4NDIRA
--
Quadruple
Magnet with Hyperbolic
Pole T!p
This is the same problem as 10.3, but now we use PANDIRA to solve for the magnetic
fields am-l auxiliary quantities. The fi]ee QUAD and F QUAD are identical. The procedural
file, CQUAD2,
kkKMA
differs only in line 5 as listed below.
VAX File, CQ[JAD2.COM
——
File, cquac12
COSMOS
xauto~esh
$RUN AUTOMESH
2
quad
IWAD
3
*lattice
$RUN LATTICE
4
tape73
TAPE73
*81 O S
1
●8I
6
o s
e
*panddru
$RUIi PANDIRA
7
pquad
PquAD
0
*/
$EXIT
For PANDIRA
= O. please note that in the COSMOS file “*” must not be in
an executable file to COSMOS. Given the files
and CQIJAD2, t,he user types:
run CON(81)
column 1 since a “*” in column 1 designhtee
Q[JA13, PQUAD
cOs”O’
i.:wx?
for CRAY
~CqUAD2
for VAX
PAN131RA produces almcr8t identical rcsultn. Thig is seen by comparing listings of
Fig 10.4 1 cf PAN131RA to Fig. 10,3--2 of POISSON,
1,000000
zjfact-
R1
I&l 1
10 2
t(voctor)
x
lJ.19016a**03 637984
Y
0,00000
7
727 SOOO*OJ
6
11021
0.
20040
bx
by
bt
dby/dy
(Cmmnc)
[gauss)
(gau, a)
t#av#m/ld
0000
S6.W8
-140
BrI
-2007
614
-2637.333
2007
616
2b41478
dby/dx
o.000oo~oo
-1.7114--01
(canma/cm)
●fit
-4.
14e79~02
1 ,7a-03
-4,
147ae*02
7.79-04
19
3
8 11Y7060*03
e
0.70707
-293,6S3
-2012,061
2070
492
-4437
e9-o!
-4,
14070401
I ,8e-04
lB
lU
d
t,
7 64462 Q**03
7 B302409*03
O.llwl
1.00197
-440,476
-264161S
1G7U
400
-622@
89-01
-4,
14060*02
1. !,-b3
030110
1.41583
-687
-2610.030
2enl.
ou7
-e
8818s01
4
14006+02
1 7C-03
19
@
7 163893c*03
6.12904
1.77002
-734,309
-2b4a.
”66
2040 031
-0
44709-01
-4.
16130+02
2
Fo-03
IQ
7
733D877#*o J
8.51347
112403
-8s1.1s4
-2aa2.
lis
2700218
-0.79040-01
-4,
16211a~02
3
0s-03
t~
J
0 564J1490*03
19
9
d.643261@~03
43.14018 2.47016
632487
2.83280
0 16ti2 3 l~dll
-1020 376
-1176621
-1322,,
-2660,700
2007602
-26f16 070
2760 280
287s 667
2877 668
h 7679001
4. G3600-01
-3 08800.01
-4. 1S330*02 Ii It 03
-4. 16399*O2 7 4903
1 0,.02
-4 lfi22s*02
-S
S71O--O2
-4,
14960*u2
1 b,-02
6010001
-4
1414a
2
7m02
-4.
13 J06$02
O
la
G7619470*03
184
10
10
19
11
6 7d20100*03
O, JJOSi
S
64110
-1400
792
-24!SS
3016
839
19
12
4 7441d6#*03
0.10273
3
002S7
-1016
616
-2 K60,726
3027
739
2
10
Is
4 0430asa*03
0. M446
4 ,1474i
1782
807
-M3U
3174
320
3.6473--01
l“i~ill(’
1! ’111,
1 (1..1
1:
A
sc’t[i{)il
II”
li~iil)~
(II’
438
006
(111’I’I’AN
liII
t II<’
(lIIIItlIIIIItIl{.
@02
IIIitKIi~*l
02
l}It~lJ-
Jt15 ~A iVl?IRA -- Ring
(VI AF“TF;R JO k-mph
10.5
PA~{DIRA
-- A Ring Dipole Permanent Magnet
Figlt.re 10,5-1 shows a vert
lion of& ri]lg (liprh
it-al
cross soc-
1
of
(I’M )
lllAglld
colllpowrl
eiglll idelll iC’itlI}ernmntmt lmguet
sldls, We wish to calcldate the fiPl(ls at
tlw
td
cmmr
wl)iclI fwcordillg
10 cxperimen-
IIIWWUrrIIK*IIIq SIIOUI(I be % Ill kg~uss.
I
PM
‘1’nkill~ nrlvallt nge of tIw syiml]etry, we
onl,y Iwwl ~u cm~lpute mm-qucu’l.w Of tllu
lmqgllet .
Figllre
LIIC rhlg
10.6-1:
dil)ule
Vcrt.irnl mono section
[mrllm]lellt
Ilmgllet.
of
J]rliJw is fhv Al ~’N)hll?SII illpu( file I)IPM, aml t hr gwwlwt.ric colfigu.raticm WIUCII
quwlrallt. or Fig, 10.5-1.
COI”I”W41)UIKIN
If) I Iw upper riglll-lmd
DIPM
1
10 kg ring dlpala
2
6rag
xregl*7.
Spn
x-
spu
X-12.00
x-
*prl x$rag
, y,
00
0.00
,
y= 0.00
9
, y-12.00
S
0.00
, ynlz.ock,
0,00
, y- 0,00 #
mat.,6,npoint-t3
2,6000
, y-
o 00 c
8po
x-
7.moo
, y-
0,00s
I,ezes
epo
1= 7.3000
, y=
r- 4.6000
m~ 2.hooo
r- 2.s000
, y= I,82BR W
, y- 1,00 0
, yll 0,00 0
,pa
x= 0.00
1.013
. y= 2.5000
, y- 2,6000
,y~
opo
1*
l.nMli
x-
1.828!1 ,y-
Cpn
r-
o 00
, y-7,30009
0.00
,
Slog
$pll
y,
mmt-@,npOinL.*7
x“
I-
$p[l 1-
Goof)
2,FItJO0
, y-
1.R2flh
0
17
c
#
, y-
6
II
Orq
6po E- “1.!000
6pn X- 4 ~,noo
mat-l,
Y
,
l.OXlh
‘1,%
Rog.
Alr
,npnlnt-2
, y-q 1.00
,
y-
1
I
, y- 2.fiooo @
@
, y- 1,00
CUI-20
3
s
0
6
12
33
Reg.
@
3.02
1.00
$pt, z+ 2.fiooll
10,28
0
, y- 3,92
, y-6,47
Sp(, x-
1 Alr
27
$
X.fi(loo , y,, 1,00
6pn m= 4.11000
6pIJ s- ft.47
q}n
d
7..WJO
Rag.
20
#
@
qlrl
6po r-
l--
21
6po
Opo
spo
6[=g
mat-?,npoint-a
I
I
:
6
npn x-
9P(J x-
G,npoht-6,
3,yrsgi=7.3B
G.00
Spo x=12
spa
parman-t mmgnot 9/6/B6
l,mnax_12 0,ymax=12.
N_13=5. dx-. I,dy=,
4
I
1
10
11
x
$
@
l,f12uK0
1{)
Ii
-----
CHAPTER
10
10.5 PANDIRA
~XAJ?lPbS
Line 3:
XREG1
= 7.3
YREG1 = 7.3
MAT >5
I.ines 9, 16, 23:
-- Ring
eize will double in the x direction
~tarting after x = 7.3 and in the y direction
after y = 7.3 (see Fig. 10.5-3).
- the mesh
- defines these regionn aa permnnent magnetic
material with the permeability
a straight line B(H).
Lines 31-33:
functionn
input
by
- added region defining a current line region that
MUST be given 10 initialize PANDIRA. The value
of current (CUR) and the location of current line
region are immatnrid,
The procedural file, CDIPM, and the input file, PDIPM, for PANDIRA
Given these three files - D]PM, CDIPM and PDIPM the uoer types:
we listed below.
for C!RAY
b
VAX
COSMOS file, cdipm
VAX fiIJXXPM.COM.—.——
1
mautom.-h
2
3
4
6
e
‘f
8
dipm
*l~ttic.
tRUN AUTOMESH
DIPM
$RUk4IATTICE
TAPE73
●81 o ●101 t s
$RUN PANDIRA
PDIP14
$EXIT
~.,
“*
tap973
*81 o *101
~ s
●pandira
pdipm
●/
where:
I,ino 5;
CON( 81)= O
for PANDIRA
CON(101)
permwmnt
= 1
PDIPM
O duap
*103
*8OB
61-1
10B
w
IOUOC, Ilaoo
7 1 -1
-90. 1.0-Ioem
limo
al-l
100 loti
10MM
11600
1
10 In
runs thio MUST 110nut to zcr~l in I. A’I’’I’I(‘It;
magnet
problaml
CHAPTER
10 ~X&lTl@S
Line 2:
Line 3:
4:
- munt he aet to zero if CON(18)
CC)N(18) # o
6
- material
- indicatem
line B(H)
optional
-- Ring
inputs.
# O.
input:
code for which this input B(H) applies,
-. stacking factor.
must be a negative no. (value irrmaterial).
90.
the direction
1,0
relative b the horizontal axin in the counterclockwise direction,
the 7(= l/p) value perpendicular to the “eaey axis”,
skip rest of entriee.
,-15000
0
Line 5:
- no. of straight
CON(18) = 3
CON(6) = O
1.
-1
Line
10.6 PANDIRA
-10800.
116CM3
angle (in deg.) of the “eaay axis”
I
the H-axin and B-uis intercept
for the B(H) straight line m
(0,11600)
ehown on the right,
10000
/
/
/
m
c1
5000
o
c
(-llldoo,o)
..— — 1
-15000
-— -
--ICOOO
-.5(IGO
o
H(oersted)
Line 0-12:
same m 3-5, except for nlattirial code 7 ‘eaay
and for material code II, 180° (to the loft).
axis”,
--90”
(downward),
(Seo Sec. 5,4, 1-C - Pe~mcnbility/Parlrlit. tivity Function Input for moro detail.)
Fig, 10.5--2 nhown pnrta of tho output from file O(JTI’)AN that PAN I)lRA gcimrntm, l’irwl
part lintn the Input 1)(11) curvm (noto that VRIUOB noi input nuch M 1#, havo clcfmult valum).
‘1’hoaccrmd part Iints tho fields on nxin, An can bo oootl the vnluo of IIll - N
kgausa at origin which ie cl~e to the mcanured field.
10 IQ
10,01087!)
CHAPTER
material
10
●tack=l .000,
6,
no,
1O,5PANDIRA--
~XLW@W
aniso = 90.000
f ixganw 0.004
gamper
hcept = -0.108e+OS
bcopt
1
material
no.
7, s+wkM1. 000,
aiao
=
hcmpt =
1.000
-
0.1160+05
180.000
1.000
0.000
0,000
phi
Xo -
0.000
0.000
phi =1111.000
Xo -
0.000
0.000
phi =1111.000
=1111.000
o.l16a+oEi
=
fixgun=
gamper =
-O.1O84I+O6
Xo =
fixgwn= 0.004
bcq-)t
hcept = -O.1O8*+O5
1
material
no.
8, stack=l.000,
UiSO
=
gampmr -
- 270.000
Ring
bcept
w
0.004
1.000
0.li6e+OS
.
.
.
●
●
●
.
“
●
l-ant
midplen.
cqunr.a
●dit
●ynnwtry
of
probl~m
,
cyclo
x
typo
b~
x
dybldy
be
by
(gnu-m) (puma)
Y
0.00000 o>ooCOOOooo
0.000
O.1OOOCL.00ooo
O,xmoo o,Ooono Oooo
0.000
O,moofl 000000
0, moon o,Oooofl
Ooon
n moca ooOnoO O,(HI
mm
o.moQn O,onnoo
n ,Too(wi o noonn ncoo
o (Wnoo
O,m
●❆❉▼
-lnoio.w7
0,00000400
0,0000S*I-)0
o.000oo~oo
-1 OO1O9K1
O.0000**00
ice
-Iooil
O,ooon”$no
2.00
0, OooOa+m
0, Ofxxb ●WJ
2
10010879
-looto
MS
owl
100I1.1OI
-10011361
.1001!
-1(M312
030
(1 OOOW}
(1,~
(), non
r) ,000
10013923
l(mla,
O.WXM*+OO
r).OoooO*oo
,847
riot
*,49-CM!
-1 ,Oc”oa
*,2*-US
OB
cm
60-06
2.70-06
a .20
,0s
6,s0-06
(),00000+00
-2
o 00000400
-8.6*-OS
00-06
Ooo(-xw
n ,000
tOf)t3
6t0
l~131t10
O. fNWOO*OO
.-1 ,ae-04
2m)nfl
f),oonnn
()
(y)(l
Iof)il
797
lno137W
o
noon*+on
-3,40.04
mono
n
n
Ooo
100!3
fm7
tfMl17.6oT
o
[)oOOa*nrl
IOO~2,kOZ
Iot>la,knx
(),(moo~~m)
lfwmw
N:!2
f)
llN)04
no,l
(l, (M)OOO$
(M)
?04
(1
.iOooo
OnOOo
,4(M)(X)
(-,l)oono
,ro)oo
O,ooom)
o
O(W
lofKvJ
,WnW)
()
n
()(M)
I(NW4,L-W!3
,’r(mx)()
(),00WX)
000t-m
(),(m)
(> (KM!
twwi
nna
7(}4
WX?R,
(MI()(l.41WI
(h)(l(la+()(~
R
nm
04
-0,30-04
1.40
03
210
n,!
04
3 la
4 7* 4’),7
7 !* ().
!
; In (’2
1 Pa 112
,1 N. 1)’J
* .30 OJ
4 II* ()!
C’HAPTER 1(1 Examples
10.5
PANDIRA -- Ring
—
llln~lwt
,
CHAPTER
10.6 PANDIRA
10 Exampka
10.6 PANDIRA
-- Cylindrical
-- Cylindrical Permanent Magnet Problem
Given four cylinders of specified dimensions and composed of permanent magnetic (PM)
material, we find that a geometric arrangement of the cylinders u shown in Fig. 10,6
produced the deaireL maximum IL field in the plane z = O of * 270 gnuss.
r
I
m-
Fig. 10.6--1
Four permanent
I’ANI)lRA
calculation
●
cylindrical
coordinates
●
vnrinblo rneeh in both r and z direct.ions
●
input of 13(11) curve
The
magnetic
cylkders
is done using tho following optiorm:
I I,,rr ngnin, tnking
1)1 III(I
advantage of the nymrnatry we only need coliipule ollr-(~llrrrLor
groltlrlry,
thlow in the AIJTOMEXII
input fil~ CYPM, ctjrrmpcrnding t.(~I,hv gcnm[trir
ci)]~ligl]rntiorr on tho right, It nhould IM rmtod tllnt x -—--+ r mrId y ----~ x
10 22
CHAPTER
10 Exarq)b
10,6PA.WDIRA -- CyJinifrical
l—----l’
I
CYPM
1 Cyli,atiical
2
3
4
6
6
7
8
9
10
11
12
13
14
16
16
17
18
ig
00
21
22
23
24
26
pormnmt
magnet 9/4/86
t
$reg nro~4,
-&-0,26, xmax&.
,ymax=160,
xrogl=7.
,xrog2-20,
,yragl=l!3.
,yrog2-16,
hogl=8,hog2=71,bw=101,
lregl=17,1reg2=27,hax=47@
$po y-oooo,
x“ 0.00$
$pO y-160.0,
x=o.~$
$pO y-160,0,
x-60,tX)$
$po y- 0.00,
X*.00$
$po y- 0,00,
%-0.00$
$rog mat_6,apoint-6$
$po y-lo.ao,
x- 0.00$
$po Y-1OS,O, x- O.OO$
$po yW33,0,
x- 7.8!2$
$po y40.20,
x- 7.62$
$PO y-10,20,
X- 0.008
,npoint=2@
$r~g nat=l,cw-lW.
,npoint=6,
,
$PO ~103,0,
X- 0.00$
$PO y-lt)?l,f), X- 7,(J2$
$regmat-7,npoint=6$
$po x- 000, y- 3.00*
:PO X= 7.62, y= 3.00$
$PO Xm 7.82, y=lt).zo$
$PO X- 0.00, y-10.20$
$po x- O.OO, y- 3.00$
3-Current
Line Region
Reg.
‘
[
13
4
2
12,24
16,23
4-
Rog,
21
Lines&8:
-variaMe meeh-3cIiffertmt
meoh sizesin
tho horizontal and vertical dimension:
?
t
r
r)
6
- definec thesaregione
aapermanont, mngnrtit: mntrrinl
with the permeability funct,ionn will bo iq}ltl I)y n
straight line B(H).
added region defining a curimt region lhd II IIIrIt I)r
given toinittdize PANDIRA. The vnlmof ttw (Qllrr!llt
(CUR) and the location of thv currw)t lint, ro~i,,l,
are immdtwid,
1O-!M
CHAPTER
10.6 PAAWIRA -- Cylindrical
10 ExamphM
The procedural file, CCYPM, and the input file, PCYPM,
Given these three files - CYPM,
cowaos
i
-
CCYPM,
for PANDIRA are listed below,
and PCYPM - the user types:
for CRAY
ccypm
for VAX
VAX File, CCYPM.COM
—.
$RUN AIJTOMES!I
cYPt4
$MJN LATTICE
TAPE73
*22 o *8 I O S
COSMOS File, ccypm
Limr?k&
1
eau~~~emh,
2
3
4
6
6
7
8
c ypal
*~atticg
tape’T3
*22 () *81
c) g
*pandira
pcypnl
/*
8RUN PANDIRA
PCYPM
$EXIT
where:
CON(22) ==o -- Boundary conditions (if changed) MUST be set in LATTICE.
CON(81) = O - PANI)IRA run. This MIJST be set to zero in LATTICE,
Line 5:
PCYPM
1
~
3
4
6
6
7
8
o
0 dump
●191*1011
*6 C)*lB 2*481
6 1.0 -1 mat ntack type
-90.0 1,0 0
-Ioooo, 10000. hcmpt bcopt
7 1.0 -1
90!0
1,0
mat ●tmk
●
type
●
-10000,
10000,
-1 dump
hcopt
bcopt
10-24
CHAPTER
10,6 PANDIRA
10 ExarrI@w
-- Cyh’ndricaJ
(Note that for identification, we chose to put comments after all values are given for each
line)
1
1
O
2
1
CON( 19) =
CON(101) =
CON( 6) =
CON( 18) =
CON( 46) =
Line 3:
if CON(18) # O - indicates optional input:
material codes for which this input B(H] applim.
stack ing factor.
must be a negative no. (value immaterial).
6
1.0
-1
Line 4:
the direction angle (in deg.) of the “eaey axis” relative
to the horizontal axis in the clockwise (negative angle)
direction,
the 7(= l/p) value perpendicular to the “easy axis”.
- skip rest of entrieu.
-90.
1.0
s
-10000,
-
cylindrical coordinates.
permanent magnet problem.
must be set to zero if CON(i8) # O.
no. of straight line B(H) input.
cylindrical, ITYPE, no symmetry. Specified boundary
condition in LATTICE (CON(22) = O) that field lines
arc parallel to the r-axis.
Line 2:
10000.
- the H-axis and B-axis intercept
for the B(H) straight
line au shown,
[
10000
/
5000
/’
I.-.. J
-15000
-.— .- I(looo”
t-
. _..,_____
1
--5000
H(oersted)
I,I?M6-8:
name an 35,
except for material
(SQOSee, 5,4,1- C - Pormenhility/Pernlittiv
cock
7 “ofky axial” 90 (upward),
ity Function Input - for more detail. )
l’i~. 10.6-2 Iifitu the part of the output frorrl file OUT
PAN
B, :-.270.434 gauml at rwordinntem (21.29032, 00)
10 2!!
thnt showu mnxinmm
0
m
g
c
(n
VI
L./
f0,6 P,\ NPl17J\ --
(’tf,! PTE1i J(l Ihmphw
l.aat
non.
xjf4ctkl
1 1
2 1
3 1
4 1
64
66
66
67
68
69
70
71
\’a
73
74
76
76
●quar.s .dit of problam , cycl.
●ynmn.try typo
1.000000
ra(voctor)
O.00000*+00
0.000009+00
0.000000+00
0.000000+00
r
z
O.OOOOO0.00000
1.00000
2.00000
3.00000
0.00000
0.00000
0,00000
CyuJldf’ic/d
2
br
(gauss)
0.000
-244.739
-606.336
-794.332
bx
(gausc)
-4.416
0.062
0.476
1.934
bt
(gauss)
4.416
244.739
606.336
794.334
dbsldr
(gauaa/cm)
0.00009+00
-3.7999e-02
1.85!3*+O0
2.0C09Q+O0
n=r;ba*bs/dr,
O.oodoe+oo
.7.30098-01
7.7902w+O0
3.lo44@’oo
●
●
●
.
●
☛
.
●
✎
1
1
1
1
1
1
1
1
1
1
1
1
1
0.0000OC+OO 18474194
0.00000.+00
18.95161
0.000009+00
19.16129
0.000ooe+oo
19.37097
0.000ooe+oo
19.58065
O.OCOOOO+OO19.79032
0.000000+00
20.00000
O.00000*+00
21.29032
0.000000+00
22068066
23.37097
0,000000+00
26.16129
0.000ooe+oo
26.45161
0.00000,+00
27.74194
0,0000O@OO
Figlnw
1{).0
2:
A porti(}ll
0,00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
000000
0.00000
0.00000
0.00000
0.00000
261.031
2S4.733
257.971
260.771
293.161
266.272
267.269
270.434
266.964
!2MI.638
247.336
234.388
220.673
~~f tlN* otltpIit,
-0,009
-0.006
-0.004
-0.003
-0.006
-0.460
.1.409
0.026
0.063
0. 0?3
0,069
0.069
0. 04e
251.031
264.733
267.971
260.771
263.161
265.273
267.263
270.434
266.964
268.636
247.335
234.386
220.673
(W OUTPAN
0.3798++00
7,69!O*+O0
6.8714e+Otl
6.2241h+C0
S.66619+00
4.9275e*O0
3.3662m+O0
6.45180-01
1.04740-01
-1.12460-01
-2.4I361o-O1
-3.2236P-Oi
-3.’~4eo-oi
sh(}wi}lH
]M’OMWIIO
-1.7871*+04
-2.342!e+04
.3,1~~9~+04
-3.6673.+04
-1.98810+04
-.2.03030+02
-4.77?)78401
4.4816e+02
4.44800+01
-3.66520+01
-9.I016c+OI
-1.4512M+02
-2.0633Q+U?
~~lnxili]~nlt
If,.
rafit
-2.79-01
1.30-01
! . 60+00
2. 7e+oo
3. Oe+oo
2. 09+00
2. 6,+00
2. 30+00
2. 20+00
1. 90+00
3.Ga+co
6. 30+00
1. 4*+00
-2.09+00
-4.4e+oo
-6aOe+O0
-6.9*+00
C1fAPT *ER
t7J.linckicnf
Ik=
8
XMAX
= YMAX=
25.
fOr the
mlrirnl
lm--
CHAPTER
10 Exam@a
10.7 POISSON
10.7 Vbctor Potential
Problem
--Vector Potential Problem
The problem here is to calculate the effect a 2 mm-thick metal enclosure haa in reducing the
earth’a magnetic fields inside the region. This calculation is done using:
●
input file to
LATTICE
directly
e input fixed vector potential cm boundaries
●
a constant fixed permeability value
13ecause the metal region ie very small in cornparincan to the ovtwall dirnermione, we ran into
prokdernp ~sing AUTOMESH. Aleo since additional variations of this problem will require
more than the maximum of three mesh sizes, in each direction, (that AUTOME!3H allows),
we opt to input the problem directly into LATTICE,
Again we take advantage of the symmetry and use only one-quarter of the geometry. The
input file, VECP, with the corresponding configuration is given below.
vector potential
1
2*28*31
l)oll*46i
31!
0.0000
411
O.oow)
5
3C
1 176.2000
40
8
i 175,4000
7
tM
1 400.4000
M 26 400,4000
8
9
131i 30 4(%.4000
86 76 400 4000
10
40 76
176,4000
11
36 76 176 2000
12
13
1 76
0.0000
14
1 .30
00000
16
1 26
0.0000
(loom
It!
1
i
1721
0,oooo
1 I 76,2000
18
36
19
96 20 1“~6 200(.I
38 30
20
‘ 75 2000
21 ~8 76 17b 2CO0
2231
0 woo
23
40
24
40
40
16
40
26
2741
1
29
29
SO
40
30
ah
S1
3261
33
3d
!
w
76
Xl
28
20
26
1 .30
30
;76
4000
:16 176 4000
SO
i76 4000
176.4000
0,0000
00000
176.2(MO
176,4000
4w,4000
().0000
0 CQoo
176,2000
problem 9/1 1/86
*Ql, oooomkip
00000
0 0 ragion
O.0000
0,0000
O! OOOO
0.0000
lao, Woo
!20,7000
964,7000
964,7000
S64 7000
S64 ,7000
129.7000
1206000
Y
0.0000 cowl
0,0000
0 i r.aion
0,0000
14,43
129 5000
t 20,7000
364 ‘?000 COW
16,44’
o 0000 0 1 legion
(1 0000
12Q 6000
12* 7000
3B4 7000 cuun
0 0000
0 1 rogiou
i29.6000
129 6000
120 CWO
12u IWOOCOWI
0,0000
0 1 roglon
129. ‘1OOO
120,7000
11
\,,
. . .... ...-%/,_.—..--T___
12
1
-..
I
I
ROU.
Reg.
R!4Q.
... .
_ fo
I
O
1
2+.—--F?C9.
3
,@
‘\l,,’
,/
I
.
\
‘4 o
45
..
<.,
1
Ro~.
I
8
4
I
‘7
x
Reg.
2- Roo.
6- Llno
f?eolono
CHAPTER
10
1(3.7 Vector .Potentid Problem
Exam#s
40 so 175.4000
96
66 SO 400.4000
36
O.0000
3702
38
36
1 t76.2000
39
40
I 176.4000
40 26 176.4000
40
40 so 176.4000
41
S6 SO 176.2000
42
0.0000
43130
O.CWO
44
1 29
39 26 176.2000
46
46
36
1 176.2000
1O.(MOO
47
7 1
0,0000
48
1
t
49
36
1 176.2000
50
40
1 i76.4000
61
E5
1 4m .4000
188.0000
6281
0.0000
63
1 76
64
36 76 176.2000
40 76 176.4000
66
66
8b 76 400.4000
t29.7QQQ
i29.7ooo
Coun
0.0tY30 O 1 ragion
Q.OQQQ
O.OQQQ
129.61Y.M
i29.7C00
129.7000
129.7000
129.6000
129.6000
0.0000 cowl
O.o(w
o -1 X’ogion
0.000Q
Q.OQOQ
O.0000
O.(XX)O Coun
O.OCW O -1 ragiou
964.WOO
S64.7000
S64.7000
!164.70M coun
Line 1:
Title line, with blank incolumnlforPOISSON/PAhlDIRA/MIRT
Line 2:
CON variables that have been set by AUTOMESH.
See ‘I’able 3-1 CON Variables for LATTICE for more detail.
CON( 2)
CON(21)
CON(22)
CON[23)
CON(24)
CON(46)
CON( 9)
nkip
=
=
==
=
=
=
=
8
O
O
1
1
- NREG - total number of regions.
– boundary conditions net up for upper, Iowcr,
right and left boundaries! respectively, of tho
rectangular region of the problem.
1
symmetry type is norm
-- CONV - coordinate~ are in centimeters,
. the “s” deeignatea end of CON cntrica;
1.000
comments
r.hlQ 3:
problem.
my
may follow ‘%”.
This i~ the region entry line. LATTICE oxpwia ax witricu. ‘I’he variable nmnm
are identical to REG NAM ELIST vmiabhm, m refer to TADLE 2--1
REC NAMELIST VARIADLNS for more detail.
mm
-
MAT
=
C(JR
DHN
ITR1
1
- the region number,
thn material nurnl)er for thin region.
MAT H 1 nir region, when (;IJI{
0.
‘- 0.[)000
- the total current, if a coil r~gion.
=. (),(WW
tho current density, if a coil vagirm,
the type of triangle for the nwsh.
“ O
ITR1 - 0 equnl weight, equilatmal trinnglc,
1
CHAPTER
10,7 Vsctor Potential J%-oMem
10 Exarn@s
IB(IUNJ3
=
O
- the special region boundary indicator.
IBOUND = O - Dirichlet boundary for this region.
- a comment. No “s” is required since the maximum
region
number,
Lines 4-15:
(6), of entriee is given.
Each line lisks the horizontal and vertical mesh numbers and the correspond(i. e., line 5: horizontal mesh number = 36 for horizontal
coordinate = 175.2 cm., vertic~ mesh number = 1 for vertical coordinate
ing coordinates.
= O. cm.; this determines a mesh size of dZ = 175.2/(36 – 1) = 5,006 cm.
line 6: dz = (175.4 – 175.2)/(40 - 36) = .05 cm. for z from 175.2 cm. to
175.4 cm.) Notice that we specify points that are not needed to define
region 1, but will be used to define subsequent regions. This sssures that the
given coordinate points are assigned mesh points and thus avoids LATTICE
problems in subsequent regions.
Line 16:
Mesh points and coordinates identical to line 4, to form a closed region.
coun
- the
‘c”
designates
both
count and store number
entries for this region,
Line 17-3G:
Line 37:
Line 47:
Lines 48-85:
Lino 52:
Lines 53-%6:
of boundary
and to
point
Are four line regions used to make: dz = .05 for z = 175.2 to 175.4 and
dy = .05 for y = 129.5 to 129.7.
Sixth region line entry.
= 6
IREG
=-. 2
MAT
lBOUND
Lines 38-46:
cnd of entries
=
1
- region number
- iron region,
6.
- Neumann boundary
for this region,
Lists mesh point nun~hers and their corresponding
as described in lines 4-16.
Region 7 dcdinea a line region with a fixed potential
(CUR) = 10. V for the lower boundary line
Ligts mesh point numbern and their corresponding
w dmcribcd in lines 4-16.
Region 8 defines a line region with a fixed potw)tittl
(CUR) = 188. V for the t]ppm boundary line,
Listn mesh poiut nunibers and their corresponding
se deMcritmi in Iincs 4-16.
1030
coordinates
(IBOUND
coordinates
for region 6
= -I)
value
for region 7
(!lKIUNI> : - ] ) valuv
coordinrit{w for regi{)u 8
CHAPTER
10.7 Vector Potential
10 Examples
Probkm
First, we want to calculate the mngnetic field lines without the 2 mm enclosure. In fact, wc
adjusted the vector potential values so that the program would generate fields of O.S gauw
which correspond
b the ehrth’s magnetic
fields at, this geographic location. The input file,
VECM, is identica] to VECP except region 6 is omitted (]ines 37.-.56) and ]ine 2 ~.jfVECN4
The file VECM, input to
haa *2 7 (instead of 8 of VECP since now one region ia omitted).
LATTICE, and the procedural file are listed.
1 vector
2
3
4
6
6
7
8
9
10
11
12
13
14
16
16
●2
potential
7 ●21
problom
o 0 1 1 *46
o.m
11
1
1
0.0000
36
1
1
40
1
85
86 26
8Ei 30
ab 76
40 76
36 7h
1 76
1 30
i 26
1
1
176.2~
176.4000
400.4000
faoo.4m
400.4000
400,4000
176.4~
175.2000
0.0000
0.0000
O.woo
0. moo
i
O.aloo
175, 2W3
!721
9/11/86
1 ●9 1.0000
0.0000
O.moo
0
0.0000
0
1
region
1
xcgion
1
region
1
7e~~0n
(1
I
rORluu
1
rrglon
0.000(?
26
176.2000
129.6000
20
21
22
3CJ
36
30
75
176.2000
l’/& 2ool)
129 7CW
364, 7CMI0 Coun
23
40
176, 4WM3
24
40
1
26
!T6.4000
129. GOOO
26
40
30
t76,4W
129,7000
76
176.4000
3b4.7~
19
3
1
’28
40
27
?
O.wo
i
O.WXI
0 Woo
0.0000
0. woo
0,0000
1296000
0
COIUl
0
i
26
29
36
26
17 b. WOO
12 Q. bOOO
30
40
26
176 4000
12’) 51W0
~1
13b
26
32
33
b
400. 4CKI0
0 woo
1
30
O.oow
30
30
t-b
120. bOOO cmn
O 0000
0
129.7000
129.7000
36
40
tlb
30
30
17ti.4mo
40il 4000
37
7
28
34
Ob
1
2C 3
I0,0000
I
coun
39
36
1
17[>.2000
40
40
41
Eb
1
1
17 b’ loo)
400 4000
iEe. OCvo
0,0000
Cuull
O 0000
0
4281
0. W)(:O
1297000
129 7000
0,0000
0,0000
i) woo
S8
11
region
o Oooo
0.0000
0.0000
129. SOOO
129.7000
364.7000
364.7~
3S4. 7000
364.7000
129 7000
129.6000
coun
0.0000
36
35
18
skip
0
0.0000
10 :11
CHAPTER
1
43
10 Ex&mpkuI
Oqoom
10,7 Vector Potential
3s4.7000
44
36
7s
76
176.2UI0
364.7W
45
46
40
76
176.4000
364.7W0
B5 76
400,4000
364.7000
COU
VAX File, CVECM.CC)M
COSMOS File, cvec~
—
1 •~~tt~cg
1 $RUN LATTICE
2 VECM
38
4 *RUN poIssoN
2 Vecm
30
4 ●poimmoll
6 TN
60
7s
8 -1
9 *EXIT
6 tty
60
7n
8
g
Problem
-1
●/
‘b ~xecute,
uoing tha above two fi]es — VECM and CVECM — tho mior types:
1
m cva~
[or
CRAY
for VAX
Wm
Fig 10.7-1 liets a few linen of the output from OIJTPOI mhowing the fielt-h or, axis to bc
.S03 gauss and uniform evorywherc M men by TEKPLOT
plot of field linen in Fig. 10.7 5,
lla~st
squarss
mono
cdlt
syamtry
0 torod •nar~
-
of problos
, CYC1O S270
type
0 0000.+00 Joulas / aoi. or or
Xjfact= ltOmOm
rdian
J
0,00ooo
0 m
O,owoo
O,owoo
oo#oo
OW?IX
c1 ‘7 1 1 oWcUlo+ol
W,03420
O,omoo
0602
Oooo
0 d
s6,04m
Oowoo
o eo2
Oooo
k 1
1
2
3
4
5
0
1
I
1
1
1
I
I
m(w :1,”)
l#OwocQa*ol
l,om0009+ol
l~a+ol
1 ,olXMUle*oi
I ocQcm**ol
I (VX3WO+01
1000OOW+OI
Flgurn
Adjuutwl
lo.7+l\
J’ortlm
wrtorpntcmtla]
of outpf
dby/d~
(uwm/L’m)
-l,6R71a
00
-240070-00
-1 06340-08
-2 10110-00
-2 Mt)79,~)m
-2.621M0 M
dby/dx
(gnumdcn)
lW81a-OE
4s716a-09
-B 717 Ba-il
-669219.11
-6 64626-11
Oeoa
-2n66n0-m
-4
732h
II
n 0900
0,802
-S
.4
6440s
!1
3 70-00
by
bt.
bx
(gmm)
(gmmm) (gauss)
0,801
0.000
0602
0602
O.a)o
0602
Oboa
Oooo
0 602
onoq
0,602
0030
o Boa Omo
0002
O 602 0 MO O D02
x
O,8.00871
10,0114s
18.01714
20,02206
2601i167
O
o
o
o
0
o
u
fr[)m
on Imllndnrlm
OUOIQOII
OIJTPOr
for vmtor
to pr{tduco un!form
10-32
-fit
7.i*-Ol!
-0 law
3 3000
s 4s-08
3 bcOt3
3 OWon
4W19QC.11
potont!hl
l~rol}loll).
flol(ln of -- .5 WIII~~
CHAPTER
IO
10.7 Vector Potential
~XAll@Cl
Problem
To run our original problam we use input file, VECP, that wae listed and described initially,
with the procedural file, CVECP, listed below,
VAX File, CVECP,COM
COSMOS, File cveq
i
30
4
5
1
3
4
6
6
7
8
9
*poi880n
tty
60
7
8
9
i
*lllttice
Vwp
2
*6
-~
*1Q
,~~
~
-1
●1
Line 7:
CON(6) = -1
CON(10) = .ms
To execute
co@uloa
—.—
$RUNLATTICE
VECF
B
*RUN Foxssoit
TTY
o
*6 -1 ●10 .ms
g
;kT
- the permeability (y) for region 2 ia finiti, constant, and
defined by q = l.0/p in CON(lO).
- q value which means p = 20000.
with the two files, VECP and C VECP user types:
i
~
Cv(rcp
for CRAY
for VAX
Figure
10,7-2, which limts a portion
region have decreaeed by
a
of tho fields cm axie, shows that the fleldm inside the
f&ctor of’x14.
The mesh plots of TEKPLO’I’, Figs. 10,7-3 and 10.7-4, show the full goornetry rnmh and
tho menh at the upper right-h~nd corner clf the metal, rtqmctivcly. Since the meeh size in
the metal ia 100 timw wrmller than outside, the moah ineide “nn not be seen in full
geomotry mesh plot. To g*t a plot of the mesh ●t the upper corner of the metal wo run
TEKV1,OT with:
XMIN * 170,
Y141N = 124.
XMAX= l’/6o4
YMAX- 129.?’
1033
~’lf,l
I’7’Eh’
10
ILwwnples
cquaxos edit
11.ast
of problom,
●ymnmtry typo
non*
Omtorod energy = 0.0000a+OO
1.000000
Xjfnct=
kl
●(vector)
1 1 1.0000009+01
2 1 1,0000009+01
3 1 1,0000000+01
4 1 I.000000*+01
5 1 1.0000000+01
6 1 1.0000000+01
7 1 1,0000000+01
8 ~ i.000ouoe+ol
9 i I.000oooe+ol
10 1 1.0000OOU)O1
il
1 1.000oooa+ol
12 1 1,0000000+01
13 1 !.000oooa+ol
14 1 1.006000a+Gl
its 1 t.000oooa+ol
16 1 t.000oooe+oi
17 1 1.0000000+01
10 I I.000oooe+ol
tf) i 1.0000000+01
20
1 1.0000000+01
’21 1 1.0000000+01
22
I !,0000000+01
23 1 LOO(M)OOa+Ol
24
i 1>0000000+01
2% 1 l(oooooon$ot
’28 1 1!0000004$01
27
1 t,0001)OOe+Ol
2n 1 ! 0000000+01
29
1 laooooooa+ol
PO 1 110000000+01
31
1 1$0000000+01
32
1 f,oooooon+ol
33
1 I,ooooooo+ui
34
1 l,nooooo~+ol
36
1 140000000401
40
1 Ilooooooa+ol
tt
I 1.000nooa~ol”
42
I l!ooooooo+ol
4:J I l,ooooooaloi
44
I I,ooonooo+ol
4rl
I
Loooooon+ol
4f{
47
48
49
ho
I
I
I
t
1
1
t,noooooa~ol
l!ooooooo~ol
l!ooooooo~oi
i.000ooo**o\
61
t,nooooo0401
1!0000000401
cyclo
6160
/ meter or radian
joulen
b%
x
0.00000
5.00671
10.01143
16.01714
20.02286
26.02067
30.03429
36.04000
40.04571
46.06143
60.06714
55.06286
60.06867
6S,07429
70.00000
76,08671
00,09143
86.09714
90.10286
95, io8G7
100. 1!429
106. 1’2000
110.12671
116> 13!43
120,13714
126. !4286
130. 14nfi7
13K.1K429
140. 100i)O
14fio16F171
lKO!I’1143
lhh. 17714
160, 1n2n6
lil!l. lfleh7
170,19420
17h140000
18040000
inh,fioooo
looltonno
191>!4(1000
200 40000
20!, ,40000
2to#4uouo
‘JIl).dnwo
220,40000
‘12K40000
2,!0,40000
Y
o 00000
!
0,00000
(),00000
0,00000
0.00000
0,00000
0.00000
0,00000
0,00000
0.00000
0.00000
0.00000
0,00000
0.00000
0.00000
0,00000
0,00000
0,00000
0,00000
O,o(woo
0,00000
0,00000
0,000(-)0
0,00000
0.00000
0,00000
0,00000
0,00000
0!00000
o 00000”
0,00000
o,onoon
0,00000
0, 0!?000
0,00000
0,00000”
0.00000
0 00000
0,00000
(7,00000
()!00000
0.00000
000000
0!00000
o 00000
0.00000
0,00000
(gauss)
0,038
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0,037
0,037
0.037
0,037
0,037
0.037
0.038
0.038
0,038
0,039
0.039
(),~39
by
(gawa)
0.000
bt
(6WS)
0.036
dby/dy
(Swto/cm)
-1.20340-06
-1.81620-06
-3.74940-06
-6,6814e-06
-7.0450s-06
-9.84319a-06
-1.1748.-06
-1.39180-06
-1.61U7n-06
-1.8567s-Ob
-2.1073*-O6
-2,3718,-06
-2.8617e-06
-2.9481e-06
-3.2624,-05
-3,69680-06
-3>9493.-06
-43240,-06
-47206--05
-6, j400s-06
-6.6827.-06
-6,048w06
-tl,fi386Q-05
-7,0617.-06
-7,6876s-05
-8!14F40-OG
-8.72380-05
-9,3213aOL
-9.9360-.06
.~,oqfi~.-o4
0,000
0.000
0.036
0.000
0,000
0.036
0.036
0.000
0.000
0.036
0,000
0.036
0.000
0.000
0.000
0.000
0.036
0.000
0.036
0,000
0.037
0.000
0.037
c1,000
(), 000
oqo37
0.037
0,000
0.037
0.000
0,037
0,000
0.033
0.000
0.038
0,000
0.038
0,000
0.039
0,000
0,039
0. Poo
0.039
0,040
0,040
‘)>041
0<041
0,O42
0,042
n,043
OIrol
o 044
0,04[$
o 624
0,117!I
O,fi.?b
o,ow$
0.H24
0LIJ24
0,621
U!(J2I
0,000
0,040
08000
0,040
0,000
0,000
0.041
0,000
0.042
0.000
n,ooo
0,042
(-1,000
0,043
0,000
0.000
(),044
() , 04L
04000
0,624
0,000
(),02ti
0,000
0,62A
0 000
O,e?!i
0,000
0.824
(7, 000
0624
0,000
n.ilirl
llot73a
II,00II(IQ
I 37flrla
n n2w0
1 11.!6*
i.llool!a
22:476*
0.000
(1,021
2.7tvrlm 04
1)620
0,000
0.620
3 163Lhlo4
O,fttn
0,000
0,618
.l!ih640
0!(!!0
0 000
O,ot(l
04
3,({96!J0 04
(}
(), 0(10
0,6)4
4.1Rh2n .04
fil,l
0.036
0,036
0.036
0.036
0.036
0,041
0.043
11210004
l!lnor4*
t,2h40a
t,.30!,2m
1,334~”
04
04
04
o~
04
OK
()!1
OK
04
04
04
dby/dx
(gauss/cm)
●flt
-1.43t57a-06
-4.Oe-fJ6
-3.2701,-08
i ,4e-07
-1.3198n-09
-8.0*-09
-6.9283w1O
6, 10-09
-6,3219a-10
6,60-09
-5.2olle-lo
6,00-09
-6.378GQJ-1O
6.79-09
-6.6262o-1O
6,50-09
-6,9013s--10
ci.60-09
-6.1896o-1O
6.60-09
-6,4828o-1O
6.nb-09
-6.76.98,-10
8,00-09
-7,0414*-10
6.2e-09
-7,2866s-10
6.4a-09
-7,49260-10
6.7.-(.J9
-7,6466M-1O
6.9a-09
-7,7376e-10
7 .2*-OQ
-7,75000-10
7,40-09
-.7,67400-10
“7.58-09
-7.4968,-10
7.6,-00
.7,2078.-10
7,6e-.O9
-6.8023o-1O
7.49-09
-6.2748.-10
7,10-09
-6,63I1o-1O
tl,6c-09
6,7*-09
-4.9636a-10
-4.0672,-.!0
4.3V-09
-3,26170-10
2.19-09
-1 3n-09
-2,673G*-1O
-7.oe-oo
2,9174*-10
S.69896-10
-l,no-on
- 1.9936s-09
-4.0.-08
-“I,3FJ76*-09
l#ln-07
2.2617n08
.O.floo’t
!l.3920e 00
4)30
06
-1!;,0[,
!.87K2* 06
rl, l’Jlla Ofi 14* 04
7,1;* 06
1.4nl:l@ (la
7,*8TI 07
I.72?1O 09
1.9tl:lK* 011
l.imoY
7 la on
J,4427*orl
2,Jxflfla 08
0,11* 00
1,()” 07
‘)$onoinuH
l,70tlf)q Ott
1.2a 07
l>!iio4sfltr
1,26 07
1,230!)0 00
130 07
9 69070-09
l,ha 07
-7,3122.
09
1.3007
CHAPTER
10 ExiunpJee
,..,
..,!,
. .
“$0.{+,
10.7 Vector PotentialProbJem
,.otl.l Of,,za
,,,1s .
0
Figure
10.7.9:
Mesh plot of TEKPLOT
euckwure.
The 6dotW Is the mesh blown
for the vector
up below.
auro swwd
129.7).
k on (170,,
124.)
tO (17K,4,
10 35
potential
problem
with
ExampJee
10,7 Vector PotentiaJ ProbJem
—.
.—. —.
..——
——
—_.
.. ..- ——
_,_
.- —..
..
———
________
—.
— . .--—.
-——_ .—
—...._. —
———..
—
PO** ....*** #9t**t4*l ,,,bb” @#lt#a
*I*
.
urn
Field lines TEKPLOT for the vector potential problm-n
Figure
10.7,5:
unlfm+rn field l!nes.
-.
———--~-—”——
~—”
.__~~”z--——--_~—
//.——————
,.----’
—-—
/-””
//./.---—----–--1----”
.-’--’ /’./~”””---
_------””
...-.‘--/“’
/’H ,/
.=”-:::Z-==””’
/-” ---””
/’/’/.//-” ,-....-._.
---/----”-- ------‘“:: .-. “--”-”
./”
/’ .
-J’’’lfi
.—-- . . .
J
,_—,
-----.
---”
/“./---------”--’”- “–”’“’”-”’
“
#--------“-----h_- ...--. —-..’ ., “-” “
— -----
..4
- .. ..—-----
. .. .. ---
—’ -“-
-----
-r. .
.
-“- ‘. .. _-— ------.. .. .. .. .. —- - -_ ...-.. .. .
_____,.--, .....-.--.—--- ---- .. . ...
. .. -.”,.--.
—---------,.
.. ......-.....-.
.
P*6. . ...10? $8s.- 191?.,s1-. Ullla
10.7.6! l?iold lkos TEKPLO’1’
nn-th!ck n~etalenclosure.
Flguro
-
. .. . . .. .. . . ..
.
,,,1, . *19$
for t?.ie vortor
potnnt!nl
showing
CHAPTER 10 ~X~Ph8
10,8 POISSON -- Electrostatic
ProbJern
1008 POISSC)N --Electrostatic Problem
‘l’he electric fields are calculated for an electrostatic
problem consisting of two plates at
fixed potential inside aninf’mite pipe aashowri in Fig. 10.8-1.
Figure
10.t3-1: Twoplatea lnddoinflnitep!pc.
Wcauae of the aymmetly, we need only calculate one-quarter
of the geometry but we here
opt to do one-half of the configuration. A vertical crotw section of the upper half of Vig.
10,8-1 with the corresponding AUTOMESH input file, EI,EC, i~ given below.
1037
CHAPTER
10 Exam@!uI
10.8 PGR3SON -- Electrostatic
1 alectromtmtic
--i.ufillite
pipe, 2 platam 9/20/8(3
2 $reg nre~2,
dx=. f)ti25, dy=,0626, xmax”6. ,ymax=2,6,
npoint=7$
3
y-o. Oooo*
4 $po X-0,0000,
6 $pO X-4.J5CK)0, y-o.Oooo$
6 $po X-4,MMI,
y-1.7M100
9
7 $po nt=2, xO=4.0,yO=l .76,r=0. 6,theta~90.8
8 opo x-O.6000,
yM2.2600$
9
$po nt-2,xO=0.6,y0-l
.76,r=0. 6,theta=:80.$
y“o.Oooo*
10
$po X-O.0000,
v
❑at-O,cu.r-UXl.,
11
$reg
12
$po x-1.0000,
$pO x-3.6000,
$pO x-3.6000,
13
14
16
16
$pO X-i.-,
*pa X-1.0000,
ibouud=-l,
npoint=6@
a—— .—.—
Rog.
16
, 2~-
2-Flxod
On Boundary
-A
l\
●
J“
Roe.
l-Alr
----- .- --- -—
4
x
iuputa the geometry of region 1 which in given by straight
circular mca as nhown in the figure.
LincM 4-12:
IJinP 13:
region entries
,MAT.Y=O
for region 2,
-a llpointai
nsidctheregionnre
t’ointaon the Loundaryaraaet
lfJOUNDI =-1
CUR = 600,
Linen 1216:
Givvll th
inputs
abovofilcl
-indicaten
geornetryofrcgion
EI,EC,
f500,
1
2
3
4
b
6
7
8
e
2,
ar~d tl~eljrcccdural
tile, CkOI,EC, which isli~tod
to
11
12
U2ucrmkck
fur
KELEG
for VAX
COSMOS
-—
VA XFile
CEI,IW,U)A1
.–.-—.....-L–
—___
*automoch
91ec
●lQttice
tape73
●9 2,64
●22 o *6*
●46 34 1 8
●poiamon
tty
o
●
-1
●/
0.
omitted (Suo Fig. 10.8 3.)
according toCl!R,
volta,
type:
F’ilotreler
—-.
—
linen and
fixed potential whine value isgivcn by CUR
-f ixodpotentialo
CNAY
$RUN AUTOMELIH
Klm
ORUNLATTICR
TAPE73
●9 a.ba ●22 O ●fJ60.
●46 34 1 N
$RIJN POISSON
T7Y
o
s
-i
tFXIY
10-38
—. —- e
13
“
Y-1.4376$
y“I. 4376$
y=l.6626$
y=l .6626$
y“l .43764
7
——
Potontlal
.1
Problem
balow, the unar
6
CHAPTER
Line: 4-10:
10 Exampha
10.8
POISSON
-- Wectrostat
ic Problem
Con array entries:
CON( 9) = 2,S4 - input coordinsteo are in inches.
CON(22) = O
- aet lower boundary for potential lines parallel
(The other 3 boundaries have default vrdues sot = O.).
CON(M)
= 0.
CON(45)
= 34
CON(46) = 1
- indicates an electrostatic
- prints electric
problom.
field values up to KMAX
= 34
(default, prints only values on x-axis).
- no symmetry.
Fig. 10.8–2 shows part of the output from file OUTPOI that lists tha fields on x-axis.
that headings are “ex,” “ey,” and “et” which indicate an olectroetatic computation,
10 3(I
N(]1c
CHAPTER
10 Exarnple~
typo
non9
synoixy
kl
Timcalu)
0. 00oooo*+oo
0, 000ooom+oo
11
21
31
0,0000OOe+OO
41
o.ooOOOo9+oo
0.0000009+00
o.oeooo09+oo
0. Ooouooa+oo
0.000oofm+oo
0. 0000008+00
o. 0000009+00
0.0000009+00
o,oOOooo*+oo
o.ooOOOoa+oo
o.ooOOOoo+oo
o.ooOOOo*+oo
o.owOoOa+oo
o Ooooooc+oo
o,ooOOOo8+oo
o.ooOOOo*+oo
51
61
71
81
91
10
11
12
1s
14
16
16
i7
18
19
20
21
22
2s
24
26
28
27
2il
20
30
St
32
Xi
34
.36
36
37
38
3Q
40
4!
42
43
44
46
46
1
1
1
i
i
1
1
1
1
1
1
1
o.ooOOOo*400
0, Oooooos+ou
1
o O@Ooooa*oo
1
1
1
1
t
1
1
1
1
1
1
1
1
1
t
1
t
1
1
1
t
1
1
1
00000009+Q9
0, 000ooom+oo
o Ooooou$l+oo
o 000000*+00
o 0000009+00
0.000me+oo
o,ooOOOo,
10.8 POXSSON -- Electrostatic
+oo
o 000oooe+oo
o.ooOOOoe400
oooOOOo*@o
oooOOOo9+oo
oooOOOo9+oo
o Omm+oo
o 000oooa+oo
0, 0000oOa+oo
o owooO*+oo
o 000CQOO*OO
o 000oooa+oo
o ooOOOoa*oo
o OcmoOoo+oo
o ooOOOo9+oo
o 000oooa+oo
o ooOOOo9~oo
o Oooooootoo
x
o.00ooo
0 ! 06260
0.12600
0.18760
0.26000
0.31260
0.37600
0.43760
0.60000
0.66260
0.62600
0.68760
0.76000
0.81260
0.87600
0. 0S760
l.wow
1.06260
1 12600
1 18760
1. Mom
1 31260
1 ~37600
i .43760
160000
i .60260
1. 626fX)
1. 68”fiio
1 woi)
1.81260
1 ~87600
1.93760
200000
2.06260
2 12600
210760
2.26000
2 31260
2 37600
2 4s760
2 60M0
2 60260
2. 626~
2 68760
2 76000
2 81260
●x( T/cD)
Y
o.00ooo
0.00ooo
0,00ooo
-0.002
-0.001
0.00000
0,ooooo
0,00000
0,OOcoo
o. OooOO
0>OooOO
o.cIOooo
o.00ooo
o.oocoO
o,00ooo
0.00ooo
0. OooOO
0.00000
0.00ooo
0.00ooo
oOOooo
0,oOoOO
0.00ooo
0. OooOO
oOOooo
oOooOO
oOOooo
o,m
o,oOOoo
QoOwo
O,m
oOOooo
oOooOO
00Q0OO
oOoot)o
oOOooo
oOoO(lo
oOOooo
oOOooo
000000
0,00ooo
oOOooo
oOOooo
ooOooO
oOOooo
oOooOO
oOooOO
000000
-0,001
-0.001
-0.001
-0.001
-0.002
-0.002
-0.002
-0.003
-0.003
-0.003
-0.003
-0.003
-0.003
-0,003
-0.002
-0.002
-0001
-0001
Oooo
0.000
0.000
0001
0.001
0,001
0,001
0.001
O.ml
Oooi
0001
0,001
0001
0001
Oot)o
Om
Oooo
Oooo
Oooo
-o 001
-o 001
-0001
-0 001
-0001
-(l ml
0001
10 4(1
q
(T/d
0.002
-6,777
-1S .648
-17,312
-23,063
-28.793
-34,494
-40,164
-46.761
-61,300
-66,762
-62,099
-67.321
-72,396
77,304
-82.023
-86.636
-W.824
-a4 ,874
-08>676
-102,220
-:06,604
-108.626
-111 286
-11s.790
-116.046
-118.068
-119.839
-121.308
-122 746
-12s880
-124 840
-126,806
-126,194
-120,609
-128,867
-126938
-120.866
-120606
-t26 188
.-126 600
-124 8S0
-i23 077
-taa 781
-121382
-119 821
et(v/cm)
0.001
6.777
11.648
17312
23. 06s
28.703
34.494
40164
46.76A
61.300
66.762
82.099
67 321
72.396
77,304
82.023
86.636
90.024
94.874
Q8.676
102 220
i06 604
108.526
111 286
113.790
116.046
118 068
119.839
121.398
122.746
123.889
124,840
126.606
126.194
126.609
126 867
120 038
126.066
126 606
126.186
125,698
114 830
123 877
1227LII
121 382
119 02t
Problem
Hit
-8.49-06
:..2e-O4
li.60-06
~ .69-06
-2.3e-06
1.69-06
“1.09-06
-1.20-06
2.49-06
-1.0,-06
-1.1s-06
7.8e-08
-4.69-06
-9.6s-00
-i .7a-od
-4.4e-oe
-1.88-08
-0.60-08
-1.oa-oe
9.6a-07
-26Q-07
6. 3e-07
7.6ti-07
-4.08-07
4.60-00
-610-07
190-06
2.99-06
-96Q-06
4.09-07
8 7@-07
1 3s-06
-3.9s-07
-1 .6s-06
11s06
-21,-(M
-1 SO-M
-4 7e-07
-1 7e.od
1 70-06
2 ae-os
.1 20-06
3 66-06
-2 Ia-od
-1 bo-od
.3 Oaoa
CHAPTER
10.8 POISSON
JO ExAMpks
Figure
10A--3:
Mesh plot of TEKPLOT
for the
th; t pol.ntn hmlde plate region are omitted.
—.
-- Electrostatic
electroatat!c
problcm
Problem
nhow!ng
.—
‘+-—–—————
—
-~.
—
‘-—______
——.
..—
—
..~~
-..—
——— .
.-. ——
CHAPTER
1(I Examph?a
10.9 POISSON
-- Septum Magnet
POISSC)N --Septum Magnet
10.9
Fig. 10.9-1 shows a vertical
cr~section
picture
of a nepturn
magnet
that
ia used for beam
extraction.
Iv
1,
..
km
‘ ‘-
—
—
–g––
.- x
I.-2
Iron ‘
L _3
I
.— ..- —_______
.—, —--
.. -..,
.
- -%--
----
-—–
I
Flgurc
10.9-1:
A vcrtlcnl
and alr reglonn.
‘1’hc magnetic
opf,ion~:
cross-mctlou
of a acptum
frclfin an(l their grnrlientn are calculated
magnet
showing
for this magriot utilizing
km,
coil,
thr folowing
. ucgati vc c.oordiuatu
●
full geometry
●
off-contcr
input
hulnonic
ana!y His
l)OISSON pwfurmo hkrrnonic nndynio only af t.hr origin, Sinm wu nood to do tho hmrrmnic
nnalynio at the center of the lower air gap, wc me forced to put the origin there, Ahm
hccmuso POISSON hru no harmonic nymmotry type for this mmfi guratirm wo muot uno the
full geometry. I]cluw is thri AUTOKIIHII
input file, Sl?PT, corrrmponding to thr flguro nn
the right,
IO-42
CHAPTER
1
2
3
4
6
e
7
IO Exam@s
10.9 PI~ISSON
Septum ■aglwt 11/17/86
$rog ar*@,
&-. 26, xMx= 7., yllu’npointm~ ,7mln=-4. 6,
mat-2, rnln=-7. Q
$po x--7. W. y--4.6O@
$po x- 7.00,
7--4.60$
*PO r7.
m, J-a. C@
a tpo X--7. M, y- E.*
e *p x=-7. m, y--4 .s002
10 $r.g mat-l, npuint=69
y--l,6ot
11 gpo X--4.00,
12 Opox= 4.OQ, y--l.6O0
is
~po x- 4,00,
y= 1.60*
*o 1=-4.00,
y 1 60:
14
$po x=-4 ,00, r-l
.60$
16
19 #ring matml, npoint-6@
$pO X=-4,00,
y= 3.IX)*
17
$po x= 4.00,
y= 2.M$
18
19
ho x- 4.00,
J= 6!000
20 *PO x--4. LM, P 6.00$
21 #po x“”~. oo, J= a.oo*
$rog mat-l,cu~l 1097. ,npoAnt=6~
la
23 $PO X- 3,00,
7--1,600
y=-l. w$
24 ho x- 4,00,
y~ A,64)0
26 $po x- 4.00.
28 Opo x- S!ooi ~ 1.60$
27 $pO X- S.00, 7--160$
20 ~rW Mt-l ,HP-11937.
,BpOint-6$
p 2.OM
20 Opo x- 3.00,
w
@pO A= 4.00,
~ 2.~#
y= 600ti
St $pa x= 4.00,
s~ ~o K- 3,00,
p Limo
8
M $po x- 3.00,
y- 2.m*
34 grog Ut-1 ,CUF-11W17 ,npolnt-5t
y--l.6o0
36 $PO X--4,09,
36 epo X--3 m, p-l ,604
~ 1.60$
37 $pO 1--3.00,
90 Opo X--4.00, p 1.600
30 tpo .=-400,
P-1.50.
40 *W m~t~l ,cuI’-119S7
,npoint=6$
$po %--4,00,
~ 2.CU30
4i
42 Opo X--SW,
~- a 000
43 #po x--SW,
y- BOO.
Y- 6.K)t
44 ~pO x=-4,00,
45 $po X-”41WI y- 2.(X3O
40 trcg mt=l, ibouud-O, np@int”20
J--4.6
o
47 $~o m- 000,
J= B.(X)*
4B $po x- 000,
Line 46-48:
The procedural
-- Septum Magnet
8.0,
7
ReQ.
1
I
I
‘:’TEy31’;
11,36
3e
23
12,24
-–---–------–-–-+–--–---—-–-–
e
47
x
- A Iin@ reg’on waa added to not bound~ry condiLi[mM (IIK)[JN1)
O)
to Dirichlet
in o[dar LOIMnurr thnt fiol{!n nre lilnrnll(tl nt the c(’ntvt,
(Without this extra lina rngio,,, l’{IIssc~N bna trOIIIJIC I ollvrrKil]g, )
Illo, CSEP1’,
in given below
1043
CHAPTER
10 Exampks
~
10.9 POLSSON -- Septum Magnet
~t
~OSMOS File, inept
VAX File, CSEPT.COM
1
●automgsh
1
2
sept
●lattice
2
~
4
6
6
7
tape73
*6 o ●22 o *46 1 *I1O 14
*poisson
8
tty
37 1. 380.
1.
*45 59 a
90
3
4
6
$RUN AUTOMESH
SEPT
$RUN LATTICE
TAM73
*6 o *22 () ●4r3 1 *11O 14
6
37 1.
7
$RUN POISSON
8
TTY
3130. 1.
*4669S
90
10
8
10
s
11
-1
11
-1
12
*/
12
$EXIT
Line 6-7:
array entries.
CON( 6) = O
CON( 22) = O
CON
CON(
46) = 1
CON(11O) = 14
CON(I 11) ~= 37
CON(112) =- 1.
CON(l 13) = 360.
CON(114) .= 1.
CON(45) = 59
table for region Z.
to bc a Dirichlet boundary
-- vector
potential lines parallel. (’The c~ther 3 boundaries have
default value = O.)
- no symmetry.
- harmonic
analye.h parrunetera:
na deqcribed
in Table [)--1.9
hem we request: 14 cm-ficiento, 37 points on the arc of
at 0° (default CO AN(lIS) up to 3600
a circle starting
with radius =- 1.0 -= C0N(l12)
~d llormalization
rmdiurn = 1.0::- CON(114)).
prilits
fields
and gradienti in non-iron rwgions for all
horizontal mesh (default CON(43)) lip to mmh 59
vertical. (Notice tha[ defcmlt value of C0N(45)
~~~1
will Ilot print any values for that ip an iron rrgion, )
– use internal
permeability
-. set Iowur boundary
10 44
CHAPTER
h
10 ~X&ITlJJb8
a check, we calculated
10,9 POISSON
the vectir
potential
-- Septum
Magnet
A(z, y) using the aeriea expansion
14
A(z, y) = ~(an
+ ibn)(z/r)”
(10.1)
n=o
where:
an, bn
lhe
z
r
-z+i~
computed
(we cornpukl
vector potential
(MJ,ho)
coefficient
‘an” and “bn”
- 1.
Fig. 10,9-3 ahowa the vector pokntial
calulated
m. iea (“verger” ) and the ratio of vec.aer/vec.pot
good.
10 45
by POISSON
(“vet.pot”)
and by the abc-’e
(“ration ). AS eeen, agreement is quite
CHAPTER
10 Examples
hmaonic
armlyais
Intagmt.ion
rediua R
tabla for intorpol~tsd
n
Ulglo
1
2
3
4
6
6
7
e
Q
10
0.000o
lC Oow
20.0000
30.0000
40,0000
60.0000
60.0000
70.0000
80.0000
Qo.000o
1.00000
puinta
x coord
10.9 POISSON
y coord
i.Oooo
0,Q848
0.9397
0.8660
0,7660
0,6428
O,sooo
0.3420
0.1736
0,0000
Ou)oo
0. 173s
0.3420
0,6000
0.6428
0,7660
0.8660
0,D3Q7
o.904f
i.0000
-- Septum Magnet
Vec.pot.
kf
12
39
33
3s
M
32
32
S1
9i
so
29
22
23
ad
24
26
26
26
!46
26
27
2.946106+03
3.86234a+OS
2.6wioe+os
2.464409+03
2.160109+03
1.79111*+OS
i.S6We+OS
9.44s489+02
4.760Q2e+02
3.18333e-02
33
33
21
22
2.038130+03
2.9461OO+O3
9
●
.
S6
37
for
S60.0000
360.0000
o.Q840
1.0000
.
-0,1736
0.0000
vactor pot.ntial
coafficiontc
tabl.
i Oocoo
normalization radium =
●(x,y) -
n
1
2
3
4
6
a
7
a
Q
10
11
12
13
14
t~blo for fisld
nomaliz~tlon
(bx -
ro( -M (m + i bn) ● (r/r)*$u
)
bn
aba(cn)
an
1,16160-02
2.Qstxh+03
240wKm+03
fa.71i76+ol
-o,71i7e(oi
l,S716m-02
6 0219a~W
6 O21OO+OO
383D1*-09
961!83s+O0
6 99429-04
-6.6N130+W
E4wla6e-ol
8.93a3a-ol
-6.26720-03
6 ti3S6wOi
.6 6367,-01
-36326a-03
1.407ae-ol
3.62660-03
1,44NSTU-01
1 21849-01
377ili19-03
aal~lo-oi
106648-02
6.!N320-OS
-i.6840e-02
-7.92479-o’s
79247e-02
-1 88Q30-04
l1681rn-02
2> 14148-03
.li3nla-oa
-b,3281e-C13
!I.7246Q-(M
37624,-02
9,66Xk-OS
2.18640-03
9.41209-03
2m46e3m-02
1,22438-02
-2.1204a-02
cosfficiontc
radius M
1400000
i uy) * t * sum n*(mu + 1 bn)/r * (x/r)**(n-1)
n
u(m)/r
t
2
2 9300s402
2 74s2902
3
I nomn+oi
n(bn)/r
I 16100.02
-1 ,94230+02
1 nil’? am.!
mbm(n(cn)/r)
29s900+03
1,94230+02
i 806.%+01
.
●
.
t$l~ttr(!
1 Ubloe 01
t27sQo.ol
4 40940
01
4 5149@ol
01
ii
12
2 36bfl@ 02
c1 3V37S 02
13
2 t1423u 02
1 2236*
14
171400
2 flwl tool
111.!J
ol
I 2W1O-O;
!) 4N’4om 01
2: llnrIl~(}iilc nI~lllyn{n t]llt~}tltfi(}itl
Jiot prol)hl.
10 ‘m
fil~!(JT~TPOIf ortl](’ao ~)ttllll]lin~-”
CI{APTER 10 Eialnpks
1
●o-
6.63290000-02
i~tcgrmtion
j
x
radium=
coord
1
1.0000
2
0.9s48
0,9397
0, B6&J
0.7680
O 8428
0 6000
03420
0.1736
0 ~O(J
3
4
6
e
7
B
0
10
10,9 POISSON
bO= 0. 0000OOOa+OO
1 ,00000 normalization
y coord
0.0000
0.1736
Voc.poc
2 9460989,+03
2. 86233088+03
0.3420
2 6Q61036o+O3
0. 6CO0 2.4643984,+03
0.6428
2. 16009670+03
0, r~o
I 7Q11OQ8O+O3
0. E680 1.3E69W60+U3
0. C4W7 Q.443483’la+02
0.9840
47EI091960+02
1 ,0000
3 lWi234a-02
radium=
rac.ssr.
2.94610709+03
2.030J204a*03
1,834021?M*03
2.63440160+03
23461042a*03
f .97666180+03
1 .642104OO+O3
1 06’123220+03
6.37772fM3m+02
9,7448620a-03
-- Septum
1.00000
ratio
1.0000027Q+M
1.0264778n+O0
l,0616446a+CQ
1.07333WO+M
l,ooooo7ea+oo
t,10363470*CM2
1,11263206+00
l,l196963@+O0
I.1248311o*OO
9,06116700-01
I
I
. -.. ,
- —-,, . .--—---,-. ...—...—.———.—._
,,*I,
.
I)r(d)lvln,
10 47
,1,
-— —- -
I
I
Magnet
CHAPTER
10 ~XiWR@S
10.10 POISSON
10.10 POISSON -- DipoJe Center FieJcJ
--Dipole Magnet, Center Field
Calculations
We are interested in computing the magnetic fields at the center of a dipole magnet and the
fringe fields at the end, Since POISSON is a tw~dimensional program, this problem is
solved by two separate POISSON runs using:
o a front vertical cross-section geometry
●
a side view cross-section geometry with a
In this section
sectional
we calculate
geometry
with
the standmrd
infinite
length.
type
return
yoke
geometry
- that
is, a front
vertical
c.ross-
In Sec. 10.11 we compute the end effects of the
magnet.
pole of this dipole magnet was “trimmed” by the program MIRT to produce uniform
field in a circular region of 4 cm radiufl at the center of the magnet. We incorporated the
pnle gconwt,ry generated by M!RT into the input file for AUTC)MESH. 13~lowis the
AU’I’OMIMI1 input file, IIPF R corrc~ponding to the geometrical configuration on the right,
‘l’ho
DPFR.
1
2
diapale front view 10/2]06
brcg IIMUIW9,dx= 30, dy=.60, xr.gl-16,8,
xrog+=43,
,
2
Reg.
4$.
.
,1
L~’15 --Reg.
44
●
3-iron
f
/12
19
3’r
ReQ.
x
CHAPTER
34
96
M
97
38
so
40
41
42
43
44
46
$POX= 8.m~9,
*O
x=
8,4976,
8.0011,
OpO x- 9.=8,
OpO x- 0.7114,
~0
10.10 POISSON -- DipoJe Center Field
10 Exa,rqh
X-
$pO X-lo.llel,
y= 6.23330
y= 6.i146t
y= 6.0129$
y= 4.9470$
y- 4.97034
~- 4,08608
x-10.6207,
Y- 6.03600
x=1O,Q264, J= B.1OOOO
$pO x-11.~300,
J- 6.2400.
$po nt-2,xO=10.6,y0-Q.3,~2,7067.y--9
OPO
X14.7000,
P 7.26@
*O
~0
.1424,nmw=l@
$PO
X-14.0000,7=14.0600e
.W,x*.
46 $po nt=l, ti=16.26,yO=14
47
40
49
60
61
y=16.SSOOO
@o nt=2, xO-S6.0,yO=14.08,x-l
Opo X=40.0709,
y- O.oaw
$po X4$7.1600,
y-o.Ooooo
OPO
xd57,1600,
62
*O
x=
63
OpO X-
:PO
,yml .27,nw=10
X-~t?6000,
J-g2.4~#
0,0000,
y-92.4ooot
00000,
Y=
In line number
defined
.27,y-O .,nmw-lg
6.2400$
17, MAT=3de:~gnatesth
permeability/permittivi~y
attho
function.
material
In thiecaeeit
code
for region
2wiilbe
auaer-
will bean input permeability
table,
Thcprocduralfilo
PDPFR
C13PFR, designates that POISSON will be executed
Given the fllen DPFR,
conmon
i = cd~fr
-—
-
COSMOS File,c!l!!
—-.-—.
2
3
4
b
6
‘1
8
and PDPFR,
the user typea:
for (:R AY
for VAX
!WLllWl
1
CIIPFR
*autorneah
dpfr
*]atticfj
tnpe73
e
*pojeson
pdpfr
*/
File~CDPFR,COM
.VAX
———
OhUN AUTOMESN
DPFR
$RUd LATTICE
TAPE73
s
ORUNPOISSON
PDI’KR
WXIT
1049
with input [de,
CHAPTER
10
10.10 POISSON
Ex&n’J@s
-- Dipole Center Field
PDPFR
1
2
3
4
6
6
7
8
9
10
Ii
12
19
14
15
16
1“r
18
19
20
0
*181
*60n
31.019
0. 0000oooo+oo
0. 1142me+04
0. 2963000a+04
0.6114000e+04
0, 84760WO+04
o .D6670000+04
0. 1057800a+06
0. 1131me+oE
0, 11D40WO+06
0.1246iU)a+06
0.12012Wa+06
0.13313WS+06
0.13664~0+06
o.i3Q36we+06
0.14216CKM+06
014447008+06
0.1461800eI06
0.1478000a*06
0.1602004M*06
O.16I31OO*+O6
o.i6a6200a+06
0.16423000+06
0,16604W*+06
01670bCOo+06
0,0017613135
0.00175191S6
O OO1O16Q6O4
040007821666
0.0007078644
o.0007241t30
0.0007662680
0.0007961022
0.0W8376209
0.000689470S
0. 00092W660
0.0CW764671
0.0010263266
0>0010764263
0,0011264924
0.0011767476
0,0012s1s603
0.0012846886
0.001S216679
o 001!)879261
0.0014423770
0.00i49i20t9
00016389351
00016Q184Q7
000196426b6
o.t6180wo+05
016040000+06
O 002376!W6Q
01716000a+05
0.00291b4610
0.0034W6104
0.1’?660009+06
017820000+06
0.0039729837
0.17EWOOO+06
0,0044863167
011)200000+06
0.0064046066
O.1O9MIOOO*O6 0.0079176664
O,1OROOOOO+O6 0.0102664103
O 2020000,+06
0.0i486W1410
020660000+06
0.010!)7WJ460
0.2099000e+06
o.0238e6.q484
o,~~#oooa+06
o 0370370370
0.046062iW)6
0.21900000+06
0086966621’/
t!tI\lnt
oXKXmrMo+05
21
22
23
24
26
28
27
28
29
30
31
32
?3
34
36
36
.37
38
34?
40
41
42
43 -1
where:
tormd dump numher (NOM)
om
TAPI?35 gorwrntmi h:y
!,ATTICE. ‘~liinin tltoflrn!, r~t~tlirod l}OISSON entry,
Lino 1:
()
I,inr 2:
CONnrray itithornecor~(l re<~\tire{ll’OISS{)N entmywhmm:
one pmmaahility tdda to ha road in.
CWN(18) -1
CON(O)
1
mmt hnmt tmmroif C0N(18) # 0,
a
dodfinde~ d ofCON nrr~y ontrim,
10 Ml
CHAPTER
10,10 POISSON
10 ExamphIJ
Line 3:
CON(18) # o
3
1.0
1
Lines 4-42:
Line 43:
-- Dipole CerAer Field
- indicateo optional input:
- material code for which input permeability
- stacking factor.
- input table given as (B,?).
the values of (B, 7) with last value having a “c” (count)
table. (see See, 5.4,1 -B for more detail.)
-1
applies.
to indicate
md of
- deaignateg the end of POISSON execution.
Fig. 10.10-1 lists the part of the output from POISSON that
on axis to be uniform at ~ 12 kgauas,
10 01
shows the field at the center
I 0.10 Pf.)1.WON -- Dipole (-’rlttcr Fickl
(-’il..\ l-’’rF;R If) I?.w-llllplcs
nquaran alit
least
midpl
an.
stor.d
kl
6.13490+03
a(vector)
11
21
31
41
Si
431
71
81
91
10
11
12
13
-
joules
/ meter or radian
1.000000
xjfnct-
1
1
1
i
——-—
tx
_—
dby/dy
ht
hy
dby/dx
0,000
12001.230
0.00000
0.000
12001.264
12001)264
●fit
(gauam/cm)
-1,31080-04-8.80-06
O.00000+00 1.2060s-01 1.6a-04
0.00000
0.000
12001,327
12001.327
0.0000m+OO
i .20000
0.00000
0.000
12001.466
12001 .4K6
0.00000+00
0.00000+00
0.0000mtOO
0.0000-+00
O.00000+00
0.00000+00
0.0000OtOO
O.00000+00
0.000oa+oo
0.0000-+00
x
0.0000000+00
-4.800496e*03
-9.6010090+03
-1.4401660+04
-1.9202180+04
-2.400289,+04
-2.BwJ3730+04
-3,3604728+04
-3.840594e+04
-4.32074’2s+04
-4.8o0924a+04
-6.281147.+04
s.7ij141!)e+04
-—
1010
typ.
synwnetry
.nergy
of problem , cycle
0.00000
Y
0.00000
0.40000
0.80000
(gauso) (gauas)
(gau~~)
(gaums/cm)
0.0000n+OO
12001.230
1,60000
0.00000
0.000
12001.647
12001,847
2.00000
0.00000
0.000
12001.914
12001914
2.40000
0.00000
0,000
12002,273
12002s273
2.00000
0.00000
0.000
12002.742
12002.742
3.20000
0.00000
0.000
12003.343
~2003.343
3,60000
0.00000
0,000
12004.090
12004.098
4.00000
0.00000
0.000
1200S.031
12006.031
4.40000
0.00000
0.00000
0.000
0.000
12006.166
12007.406
12006! 165
12007.IU3K
4.80000
2.4063a-01
3.9474*-01
6.6769--01
7,7663e-01
1.0267-+00
1,32866+00
1.68640+00
2.1020a+OCI
2.F16132c+O0
3,04590+00
3.4687m+oo
____——-.
.—-_
_ _--———.—
----- _——
—.-——-—.—
-——-.-.,
-—
———
-——-—
-_— — . ..—.. ————. ———.
,——- .——. —
—--—----=._—.=---_.,——
-.
~~.
-__—-——---—~–~1<’>
---- ,
—--<_-=---—-—...—-~---——--’~>’
\
—-”-,~.”~——_——:=~—————
~—
—-
‘\
.>
‘-.
--
——~
..__-——---—”- ——---
-“
\
‘-..
\
h
‘\
\
\
\
\
\
\
1.19-04
8.60-06
6,90-06
6.60-U6
4.4,-06
3.6a-06
4.1o-O6
8.7a-06
2.4.-04
6.4e-04
1,60-03
CHAPTER
10
10,11 POISSON
Exam#?s
-- Dipole End Field
10.11 POISSC)N --Dipole Magnet, End Field Calculation
In this aoction we compute the fringe fields at the end of the dipole magnet that wae solved
in Sec. 10.10, We now take a vertical croea-section of tho side (length view) of the magnet
aa our input geometry and add a return leg of infinite permeability. In addition we must:
s
adjust
tho length of the magnet to generate the same fields
at the center aa waa obtained in the run in SOC, 10,10,
.
put the return leg far enough m that this addition won ‘t
affect the fields at the area of interest,
We set up and modified the input file to AUTOMESH to meet these two conditions. First
we choose the end of the magnet to be at coordinate X = 0,, so wo could m~just the length
by changing only the initial value, We found that a length of 25 cm (initial value set to X =
-25,), produced the same uniform field of ~ 12 kgauee aa waa obtained in run of Sec. 10.10.
(see Figs, 10,10-1 and 10,11-1,)
Second, we adjusted the location and width of the return leg until the field at X =
and the
w 10. cm. changed by only one gauee, The final input file, DPED, to AUTOMESH
corresponding
geometrical configuration is given below,
DPED
1 dipolo
sido
TiOW-@ti fields
10/0/06
2 $rq arOg-4, min=-28 ,000, mu=71 . ,yain=o, ,yaax=71 . ,npoint=i4,
3
xrogi=26, 707, krogi=7W,xrog2-66,,krog2=101, kmax-1011,
4
S,dy-, S.
yr@gi=iO, ,lr@gl-37, 1M,x=61 ,dX@,
s $p(
6
X-”n!ooo,
y-
O!OOOOO
$~0 X= ().0000, y= 0,00004
96-. -.. iA
O*.
.“ .
18,41
--II””
,40
---- —-—-.- —64--—.-..---.—.... .———. —-.-..
! I
ROU, 4-iron (In flnlto Pormoablllly)
30 ... ----- .- —.- .... . ...- .-.. —-. ..-. —.
---11
34
/
---- . .. -----.,—.
30,36
37
‘
7
*o x- 2!0710, ;= o, Oooot
o *O X=6S.0000,
y- 000000
e *O X-71> 0000,
10 *o x.7i,0000,
y- 0,00000
y=l~. osooo ,731
11
J-SC OOOOOO ‘
y-7i,00000
7-71 !-0
y-71a Ooooo
7-71$ Oooo@
7971.00000
y@a. Ooooo
y= 0,00000
la
13
14
16
16
17
18
10
20
21
22
m
24
2s
26
27
20
20
80
$pO
@o
opo
opo
Opo
*O
$po
@o
x=7i10000,
X=71 ,Oooo,
X-6610000,
x- ate710,
X* O,owo,
X*-26,000,
X--26,000,
X--2 B,000,
flog.
3 iron
~eg,
l-Alr
Y
$ro8 -W,
aur=-CIOOO ,0, aPoinW4
a,67to,
y- 7,MOO0
Opo X-so ,7070, 7-7, auooo
.pa X-se .7070, ~-ia. oacoo
*p@ x- 2,6710,
y-is, Oeoo*
*O-X-
2, OTIO, ~= 7,8s000
amt-, aur-04 , npeia*9170
*o
Z--au,
ooo,
7- 6,2s000
$po X--7, S71O, ~= 6,2ss00
*O w-i, 1900, y=io, ea400
*O
20
28 -\
9?-
x-
rag
*O
x-
Opo
x-
0,0000,
O,OUM,
\
-\ \.
?3
\
\/
ae
m
22
I
Rof), 2 -Coil
2i)”””2t
..
..
~.
$..
I !...7
.
x
pi~, aoo$
y-so, moo
1O-M
.
to
CHAPTER
10.11 POISSON
10 Exarnphw
31
8P0
32
$J)O x=-26.000,
x=-26.0004
-- Dipole End Field
y-80.Oooo~
y=
6.%!90$
$rqj 8at-4, npoint+$
$pO x=-26.000, y-60._$
34
$pO x- O!OOOO,y-ao.000o$
36
se $pO X= 0.0000, y-t16.00008
37
$po x=66.0000, 7=66.0000$
9a $pO x456.0000, y= 0.00008
39
*QOX-71.0000, y- O.0000*
OpOx-7i.Oooo* y-71. Oooot
40
$PO x=-26.000, y-71 .-$
41
aa
42
$pO x=-26.000,
T=60.0000$
MAT = 3 in line number 25 and MAT = 4 in line number 33 designate that the material
code for region 3 and 4 will be user-defined permeability /permittivity functions. In this
caae it will be two input permeability ta~les.
The procedural file, CDPED, given below deignatos that POISSON will be executed with
an input file, PDPED. Given the files DPED, CDPED, and PDPED, the user types:
COSMOS
LiIAd!h
File, cdped
1
Kautom.ah
2
dped
*lattice
3
4
6
0
7
8
Lapo73
II
*poi8fion
pdpoci
#l/
VAX Filel CDP12D.COM
8RUN AUTOMESN
DPED
8RUN LATTICE
TAPE79
6
*RUN POISSON
PDPED
8EXIT
I
10 ti4
I
CHAPTER
10,11 POISSON
10 Exarnpks
PDPED
to
a
blga~er)ae~
ois
s9i.
4
6
8
7
8
9
10
11
12
13
14
16
10
17
la
lQ
20
21
22
23
24
26
20
27
28
2Q
90
3t
82
3s
S4
S6
36
37
WI
39
40
41
42
43
o,ooOooOOo+oo
0.001761S136
0. 11420009+04
0.00176131S6
0. 2Q6WO0,+04
0.0010169604
0.61 l@oOe+04
o.000782i666
0. 84760009+04
o.00070m644
0, 9667000e+od
0.0007241130
0, 1.0678009+06
0.0007562680
0. 1131 QOW+06 0.0007961022
0.0006376209
0. l104000@36
0. 124S1OOO+O6 0.0006834709
0 0009293660
0. 12912000+06
0.13S19W*+06
0.0000764671
0.0010263266
0.13664000+06
0,0010764263
0.13096008+06
0,00i1264Q24
0.14216006+06
0.0011707476
0,1444700W+06
0.0012313603
0.14618C00+06
0.0012R46FM6
0.1478WXM+06
0.0013916670
0.16020000+Oii
0.0013079261
0,1613100a+06
0.0014423770
0.162620W+06
0.001491201Q
0m1642300a+06
0.0016389361
0.166Q4000+06
0.0016016407
0.16706000+06
0.W18642666
0s16180000+06
O 0023762960
0.16840000+06
00020154619
0.!716000M+OR
o !17.MOOOO+OR 0,0034666104
0.0039729037
O202cloooe*o15 0.01406M410
0.010s708460
020aWooo+06
o,oa38M34m
0XN6000*406
o 0370370370
0 21000000+06
o.046cie2\oo6
0 21Q00000406
o,23000000+m
4 Lo
44
0 000oo(x)otoo
46
t ,00000mo*02
40
i
47
48
49
o.olM9606ai7
t!oullt
I
ooooo009+oa
i 00MOOOa+06
i ,oo000cma*07
-1
o Oooolmooo
o 0000!OOOOO
o.oowtOOooo
o 0ooolc4moo
o oooo100ooo
Coun
10 M
1
-- Dipole End Field
CHAPTER
10
JO.11 POISSON -- Dipole End Field
Exam@
where:
Lirie 1:
0
Line 2:
CON array
CON(18) =
CON( 6) =
CON( 8) =
-
is the second required POISSON entry where:
2
- two permeability tables to be read in.
0
- must be set to zero if CON(18) # O.
12000. - the current factor XJF’ACT is to be adjusted to pro-
s
Line 3:
CON(18) # ()
3
1.0
1
I,ines 4-42:
read dump number (NUM) = (1on TAPIiR5
generated by LATTICE. This is the first required
POISSON entry.
to
duce a field of 12000 gausa at mesh point (O, O).
(the default values of CON(40) and CON(41).)
- designates the end of CON array antries.
- indicates optional input’
- material code for which input permeability applies,
.. stacking factor.
- input table given as (B, 7).
the values of (I?, 7) with hat value having a “c” (count) to indicate end of
table, (see Sec. 5,4. 1-B for more detni].)
Line 43:
Lines 44-48:
I,inc 43
eimilar to line 3, except the input permeability tuble
II,
to the region with material code (MAT)
which
folh)w~ npp]ic~
to indicate
cn(i of
the valuea of (B,~) with hwt vaiuc hmving a “c” lw]r~t)
‘ .
table. Here all 7 ‘s NC equal to 10-”5 w’hich implim p
10fi for n cormtnnt
infinito porrmxsbility.
Note that if CON(18) .>0, then the user must mppiy input permc~bility
tableo foi ALL mritcrhl CO(1CS (MAT) for 2< MAT .-: h. (If CON(18) -.0,
for MAT .2 by CON( 6)
2 (default
can define infinite pwmcabillty
value. )
-1
dmignnten
10 Ml
the end of }’OISS(JN excr~lt,irm.
I.aat
square-
●ymnetry
midpla.na
● korad
.dit
.norgy =
xjfact=
of problam
●(v.ctor)
0.000oooa+oo
8,1O’6762O+O3
-I .621749a+04
-2.4326180+04
-3.2434820+04
-4.i164336a+04
-4.e6s17g0+04
-6.e76994a+04
31
41
61
el
71
01
joul-s
/ motor
x
Y
-26.000000:00000
-24.32432
0.00000
-23.64066
0.00000
-22.97297 0.00000
-22.297300,00000
-2i.e21e2
0.00000
-20.946860.00000
-20.27027
0.00000
.
ae
1
1
1
1
1
-2.0067640+06
-2.07977h+06
-2.1603WO+06
-2.21e2960+06
-2.345141m+06
32
1
1
33
1
-2.4696H90+06
34
A
-2.6124@7a~06
36
I
-2.fie24613s+06
3a
1
37
1
-2.eo97420+06
-2,064483c+06
3e
1
-2.eeen220+06
39
1
40
1
-.2,730437s+06
-2.773961,+06
41
1
-2.13m60em+05
42
1
-2.ti4nia3~+ob
43
1
2a
29
3(I
31
44
46
4(I
47
4n
40
50
bl
62
K?
64
or radian
b%
by
(gauss)
(gauas)
0:000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
bt
dby/dy
(gausn)
(gnusn/cm)
dbyldx
(gausn/cm)
120~0.967
12600.8.57
O:OOOOe+OO 1.1812s-04
12000.944
12000.944
12000.906
12000.906
i2000.e32
12000,13:12
12000.71e
12000.545
12000.290
li999.917
12000.718
12GO0.646
12000,2!I0
l19q!l.917
O,ooooe+oo-3.0!)008-02
O,ooooe+oo -e.29960-02
0.000oe+oo -i.3e070-ol
O,ooooe+oo-2.11260-01
0.00000+00 -3.13010-01
0.000oe+oo -4.68GOa-01
0.00000+00 -6,7009e-01
afit
-1.9n-U6
3.2e-04
en90-04
9.9e-04
1.30-03
1.69-03
1.0s-03
2.Om-03
●
●
27
2240
tiypa
0.2475.+03
0.992466
kl
11
21
, cycla
‘~.~e~2tioQ+ok
-2.4039390+06
-2,974239,+06
1 -2.9037030+orJ
1 -2.9JlfihOe+OK
1 -2,9681620+06
2,9e327n~40ti
I
-:t.ooloela~ob
I
1 -3.02a662alo6
1 -3 0G1016@I06
3.0712370+ob
1
3 0903e49+06
1
1 .3. 1094469406
3.12R$23c40G
1
●
.
●
.
-R, loaJ1 0.00000
lo9e7.9fm
to967,9ei)
-’i.-l3243
-e,76e76
-e,onloe
-6.40541
-4,72973
-4,0640S
-3,37e3e
-2,70270
-2.02703
-1.36136
-o,e76ee
0.00000
0,66776
1,33660
2.003’M
2.e7100
3,320e2
3,97024
~,619ue
6,28949
6.91911
e.lmn?n
‘f,alaob
7.0G797
U,61769
9,1a722
q,titOd4
lo,4e646
10630.430
10030.430
0.000
0.000
0.00000
0.000
0.00000
0.000
0.00000
0.000
0,00000
0.000
0.00000
0. Of!o
0.00000
0.000
0.00000
0,000
0.00000
0000
0.00000
0,000
0,50000
0,000
0.00000
0.000
0.00000
0,000
0.00000
0, 000
0.00000
0,00(-)00 0.000
0,000
0.00000
(J ,000
0,00000
II,000I?O 0.000
0,000
0.00000
0,000
0.00000
0,00(2
0.00000
O,ooocw 0.000
0,00000
0 000
(-l (m
0,00000
0.000
O 00000
0,000
0,00000
0.00000
0,000
(),0[)0
0.00000
0.000on+oo 4.4640-+02
0.000oe+oo -G.2S41a+02
lo2he.9Go
I021W.9W
9836.326
9836.32C
7601.496
7601.496
0.00000400
7193.277
7i93.277
r).000oe~oo
6Hob.i!Ho
fi440,[,0k
6806.2H0
6.140,bOG
oloooon4110
o,ol)oonloo
6096.2”/0
609fi.
f177.i.
6773.110
0.0000m800
6468,’700
%40FJ,700
0.00000+00
KlH0,f)76
51(10,6’f6
o,oooo~)oo
4907.LIKI
4P07.9J6
o,oonu~loo
-3.20-02
-I.1o-O2
-6.9771o+O2
e,3m-03
-e.46134a+02
2.10-02
-6.7301o*O2
2.2w02
--6.7tl132a+02
1,40-02
6.68570+02
G.19-04
-6.-272l*~O2
-1.tln-02
.G.1939e$02
-3.Jno2
-fi.flt)4em~02 -6.16-02
li,!i674a+02
-7.Gn02
!i,2L67a~02
1.2-.01
4.L?a26e+02
4.3* 02
.4,0a81a+02
2.2a-02
4,4311.+02
-4.ow-02
-4,19470+02
1,00-01
‘4,97713m+02 3oa-02
4666.1OO
46M,1OC
0,0000Q*OO
-3.78109+02
44!e700
44111.7FICI
00000010(1
3,fi’36Em+U2
L?a
01
4i8a>999
41BD.9W
Uloor)on$(!o
3,4239n+02
a.l=it?
02
3912.007
3g72.1JO’1
l-or)oom$oo
37qh,141
3711h,14!
O,oooom!oo”
TiGf17,7Wi
311(IK71!C
(),r)ooon!oo
:\,2a2ch+02
3,i!14a402
y,l)f19:)al(-)2
7,1n (I2
6,2~-02
I;,t;” (-)J
33’lnh374
3379,’17/:
71W.J77
319V.37i’
o.noof)m40rl
o.000(ln400
0.00000+1)0
O,oooon+oo
0.00000+00
9380.261
P39e.204
e9301b79
F1930.!i7u 0.00000+00
0.00000+00
43474.IwfI e474.666
0.00000+00
8029.686
8029.686
l)o
270
L?.000oaioo
1.70-0)
2,F13!.7ndO2
111-
~Ll!n 02?
02
:1027,299
3017, 79!1 0,00000100
), ’/1009$1))
y l,~)17@+(I)
,1,(4-
()?
21M2.6’10
2@11’J.w(l
2,4110!!m+02
4,4m
02
2701,.047
21;bJ.~Wl
27011.04:1 (},l)ooomlotl
!) (Jorlom 400”
‘)6b3.9wl
).371;10![)2
2.2779nlo;,
4.?U
41=
02
0:!
0.000o-$ofl
CHAPTER
10.11 POLSSOJV -- Dipole End Field
10 Ex8.fnph%
Figure 10.11–2:
Flcld
hen
TEKPLOT
for the dipolo
magnet
, t!ncl field fiolutlmm.
A
Appendix
Access
to the Codes
Corltents,
A1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . .,,
lnCencral
Al,l
.,...,..
Copyright
A1.2Supportcd
A2
A3.
Versiorls
A‘, Los Alamos Nation.d
Common
. . . . . . . . . . . . . . . .
,.
. . . . . . . . . . . . . .
...2-2
A-2
,.,
,A--2
Laboratory
O[lthe
A2,2
On the Data Analysis
File System
. . . . . . . . . . . . . . .
Center’s
VAX
Outside
o{ Los Alamos Nmtionul Laboratory
A3.11n
General.,..,..
A3,20n
Netwmks,
A–1;
.,
. . . . . . . . . . . . . . . .,.
A2.1
A3.30n
l~i~ur~
Notice...
.A-l
Cluster
on
XNfilT
. . A–4
, . . . , , A-5
. . . . . . . . . . . . . . . . . ..
.,.,.
. .,.,,,.,..,.,,,
,.
A-6
A-6
A-f3
Ma~neticTapc~,
. .
. . . . . . . . . . .
. . . . ,..
A3.3.1 V.AX/VMS Machines
. .
.
, . , , . . . , , . , . . A-6
A3.3.2CNllcr
Mflchinen,
. . . , . . . . . . . . . . . . . . ,A-7
CFS Map of tho I’OISSON/SU
Al
F)EllIJIS1i
Group
COdcn
,
.
.
, A.-3
APPENDIX A — ACCESS TO THE POISSON/SUPERFISH
GROUP CODES
Al. IN GENER.AL
There are several versions of the POISSON/SUPERFISJ{
Group Codes at various
locations around the world. As a service to the u~cr community, Lca Alamos National
Laboratory’s
Group AT-6 hsa undertaken the maintenance
and distribution
of a
‘~tandard” version of these codes,
All
Copyright
Notice
We have received firiancial support from two o~cea in the Department
of Energy for this
purpose. Therefore, to protect the inLerests and liabiliticH of the United States Government
and the University of California, we make the following ~tatement:
Copyright
1965. The Regents of the University
of California.
contract
This software was produced under a U.S. Government
lames National Laboratory,
which is
(W-7405-ENG-36)
by IJL
operated by the University of California for the U.S, Department
of Energy, The U.S. Cover nmcnt is licensed to use, tcproduce, end
distribute this softwaro, Permission i~ granted to the public to copy
and usc this software without charge, provided thnt this notice and
of
authorallip
are
reproduced
on
all copies, Neither
any statement
the Covcrnment
nor the University makes any warranty, express
or implied, or awumca any litibility or rmponsibility
for the use of
this software.
A2.1
Supporkl
Vcrahms
Group Cndef are written in Fmttnn 77 using the Tektronix
grnl)hics pwktigc
l)l,OTIO.
If this pmknge i~ not uupportcd on the umr’s systcm, tho
conversion
to another
package is an cm+y job, One only }Irw to chang~ the nine calls t,c
I’1.C)TI() (li~ted and defined at the bvginning of thu nource file TEKSO) to tho equivalent
calls in tllc u.wr’~ supported package,
The l’OISSON/SU I’l’;ItFISI1
urc lwo supl)ortml ver~ionn of the codes: H VAX/VMS version and MCRAY version,
Ilt)[,l) vcr~iomq ~rc ctmtair~ml ill the ~nmc film; linc~ of codu which only pertain to n npcrifw
vrrsi(nl nrc Iul)olc[l, fncilitrd, ing the trim}litilln from onc ver~ion to nrlothcr:
‘1’here
‘I’])(*VA X~VMS vcr~ion, whictl in in u~)pcr-cnw , i~ shown with numhcr:d
2 4 0 8(1)2
CRAY
4 6 8(2)2
4 6 8(3)2
4 6 8(4)2
4 0 8(6)2
ccJlunllln:
4 6 8(0)2
4 6 8(7)2
CRAY
PARAMETER (IMX” IOI)
PARAMETER (IMX-71)
2 4 0 0(1)2
4 n 8(2)2
pnrnmntor
cwnx
4 0 8(8)
VAX
4 0 8(3)2
4 6 8(4)2
(lmx-101)
J,hrama Lor
4 0 C(b)a
4 0 [1((-))2
4 0 0(7)2
4 6 8(8)
Crny
Vax
( lmx-71)
A2
APPENDIX
A -- ACCESS
Fig, A-1
?
:
}
.
Flgtlrc
A 1:
Map of the coelea on the CFS (MASS)
A2. At LANL
APPENDIX A — ACCESS
A2.
AT LC)S ALAMOS
A2.1
On the
Common
File
NATIONAL
System
LABORATORY
(CFS)
Source code, executable code, and example files for both the VAX/VMS and CRAY
versions arc on the CFS. Figure A-1 is a map of the available files and where these files
arc located.
MASS is a utility available on al] machines connected to the Integrated Computer Network
(lCN) to communicate with the CFS. Information on the use of this utility is available
from t,}ic Complltcr Information Center (CIC) upon request, Therefore, we will not go into
detail but we will present some information from their ‘Quick-Reference”,
CIC document
number 809, or their “MASS Primern, CIC document number 389, to facilitate the access
of these files.
To use this utility, a user simply enters the name of the utili~’. If no parameter
enl,cred, the user is given a ? aa a prompt.
are
maa.9
7
In this ccmlmxt, there are twrI verbs the uoer needs to know: lint and get. Civen
f~r h)cntion aq a parameter,
list provides information on specified files
(Iircc.torim while get provides copierr of specified files in the user’n local filti space,
put, tirltirnc
A
])nthr~nrn(:
I)cf;i])rlirlg
10 a directory
w’ilh
the
root
or
directory
a
and
file beginning with a slash fully dcfillc~ tllo nor!e’s location,
mn(l nalriing all tho subdirectories
encountered in
runr. hing tllc node.
A l)iil]lr~nrnc that
not l)~pin with rAdtwh ia apprrrclcd to tl~o existing !~rirnary path
{lircc~ivc, w]lich is set by thu nystcrn to /usernumbor
and may ho dcfaultod 10 other
srlllings by the user, (lncc the prilnary path dirrcf,iw! Ilaa bccl) ricl, by the defauit
the c~lrrcnt cxccutir)u of tllti hIiASS Iltility
rnll~r]]~~ll[l, this sutting rcrllnine fIXWi throughout
IIlll,il rwwt by n ncw default
couirmd.
iloCy
I;[jr wnll)l)lo, a umr cmr rench tha directory
riillvt of tho following,
7 lint
rlirm/lucc
containing
/poicodem/tray/xeq
or
? default
‘t 1 III!
dir=/lace/poicoden/tray
(lir~xeq
7 lint
dir=xoq
? lIRL dir=xoq
lo=g
10-g
automnnh
A4
tlie exocl)tnhlo
tilcn by ontrring
A2.2 On DAC’rJ VAX Cluster (XNET)
APPENDIX A — ACCESS
To extrnct
a tile(s) from MASS, the get command
? g~t dir=/lncc/poicodea/t
? get
dir=/lace/poicode
ray/xeq
is used:
automtrmh
a/crayhmp/poi
lattlce
tekplot
polaeon
hmag
or
? default
dir*/lace/poicodes/tray
? get dir=xeq
automeah
lattice
? get dlr~xmp/poi
lmag
tekplot,
poisson
or
mas~
get
MaEs
maae
reams
mama
get
get
get
get
/lace/poicodem/crny/xaq/automaah
/lace/poicode8/tray/xeq/lAttice!
/lace/poicodea/tray/xeq/tekplot
/lace/poicodea/tray/xeq/poinmon
/lace/poicodes/tray/xmp/poi/hmag
To cn[ltheexccution
A2.2
ofthc
On tho D~ta
utility MASS, enter end at the prompt.
Ax~alysis
Cmtor’sVAX
Cluster
on}LNET
‘I’hcsourcc codo~, cxucutablecodm,
nndsa]llple fileoarl; nvailnl.leon the Data Analysis
Center’s VAX Cllunter, Mmon Phy~icsl~ac.ility. The msctlines in thirj VAXclustcr
are
on XNEYI’
can be
Ml)X(lal~dMPXl,nu~le~
140 and 141, re~}~cctivcly, on XNF~T, Ariynode
acccssd hy a~ly otllor II(U1O(mmchine) on the network, It ki not necessary to be vnlidat,ed
valklation
forms nrc avai!al)lo
at tho Datn Anrdydin
On MPX() and MI’ X1, however,
Conler’o
I)ullctin
board, TA 63, MPF ~d, MS H81O. Files rn~y he copied to the user’s
locmtinn nnd c“xvrllthle fileq cnrr he run from their Iocationrn on MPXO mm-l MPX1.
q,’hofilce 01) lllnrlli~lcu
hfiPXO and M 1’)( 1 we located in th{l (olk)wing dircr,tory,
ATOOWISK:
[ATOmS. VAXFILESI
If the umr in on N1l’XO or NI1)XI, to copy th~ nourm file AUTSO, FOR frulll I,llu
AT8HKS, VAXFJI,ES ~llrcc,tury to tho ~lircclc)ry t]la umr is c!]rrcnl]y in, cIIt.vr the fo]]owlllg,
$ Cw’v
AwoSDIsK:
[hT13i{Ks.VAXFII,ES]
AUTSO,
FUR
x
If tlla unvr io 011mnol,)lcr XNE’ll I)m]c, to copy t,ho murca fi]a AUT!3fl FOR fr(Jln the
10 the (Iirrw,tory the ~)nor is cllrrclltly ii), cll(cr tho following:
ATCIIKS, VAXF 11.iiG directory
$ C~lPY MPXO: : ATOO$DIGK: [AT8HKR .VAX} ILEs]
“lb copy RII tho film froln the ATOHKS ,VAXFIL,iiH
clllnr tho followi)ig,
AWfNj,
dirwh)ty
$ COPY ATOOtDISK: [ATOHK!4 ,VAXFI[,E,SJ * , ●
F[]R
to t)tc
●
or
$ cul’Y
MPxo:: ATOO$DISK ~[ATOHIiS ,YAXFIIIEFH T.
A-K
●
+
●
dirrwtnry
Lho uncr
iw
ir ,
A3. Outside LA’NL
APPENDIX A — ACCESS
Copying file~ into your space is not required; all fileg, except input files, can be used from
the user’s current directory. The following are two exrtmples.
$ RUN ATOO$DISK : ~ATt3HKS.VAXFILES] AUTOMESH
or
$
A.3
A.3.1
RUN ~xo:
: ATOO$DISK: [AT13HKs. VAXFILES] AuTomsH
OUTSIDE
OF LOS ALAMOS
NATIONAL
LABORATORY
In General
The complete aet of POISSON/SUPERFISH
Gtoup Codes source files pluo sample input
and output for both a magnet problem (POISSON) and a radio-frequency
cavity problem
(SUPERFISH)
are available to individuals m well aa institutions
upon request. Pleeae let
us know which version (VAX/VMS or CRAY) is desired and your primary area of interest.
A3.2
On Networks
We tire located on ARPANET which is
networks. Our addreaa is the following.
hks@lnnl
A3.3
OrI
avai!dde
through
BITNET,
UUCP, WIwell aa other
arpa
Magnetic
Tapes
Wc roque~t that the user ncnd us a tape (a seven iri~.h reel in ~ufficient) and information
III each of the following
that would facilitate installation of the codes on tho target ayotem,
sub~actiono, we haw roughly outlined tile type of information that might be ho]pful, Your
nyetem manager rdmuhl be abie to provide thin information if there arc any quoetiona,
A.3.3.l
‘hpco
VA”
nrc aw
Mlchhlen
with the utiliticn COPY
nnd lIACKUP.
Plaase specify which ie
prcformblc.
COPY me: 9 track, 1600 hiln pcr inh, 80 ASUII charnctws
.Ity
Talws IIIIi(~c with
pcr Iirw , and 512 l)ytcs pet block, l’o copy IIICOfrolli tnpc to disk, filat Ilmul)t tho tnpr on
tho tq)o-rrmdcr unit, th’. n ontcr tho following,
$ ALLOCATEUnitNamc
$ UI.)U!ITUnitName : Label
O COPY Uni LNmma:[ ]*, * *
‘1’hc fl~rlllmLfor tapcn mm(lo with the utility lIA(;KIII) nro Rlwaym tlln omnr, Trr copy fllen
froIn lnpc to disk, flrrrt Irmunt tha tnpo rm thrr tnpn-roador ~lllil., t,hr~) nnt, crtho following,
$ ALLOCATE UnitNamn
$ t40UNT/FOWI~N Unit. Name: 1.nbal
$ UACKIJPUnltNamo :HavoSetNnme DiokNam:
[DirnctoryNnmol
/OWNER.UIC-(lRIGINAl.,
A3.3.3 Outside
APPENDIX A — ACCESS
.A3.3.2
Other Machines
Please supply the
following
information:
1. Target Machine and Operating
2.
System
Choice of 1: 0 unlabeled, 9 track, 1600 bits per inch
80 ASCII characters per record
48 records per block
o unlabeled,
9 track,
16Ml bite per inch
80 EBCDIC characters
48 records per block
A7
per record
LANI, — Other
Machines
Appendix
Program
Contents
B
Construction
. . . . . . . . . . .
El,
VAX/VMS Vmion
..
B2.
Cray Version,
. . . . . . . . . . . . . . . . .
. . . . .
..
B-l
. . . . . . . . . . . . . . . . .B-2
. . . . . . . . . . . . . . . . . . . .
.
. ..
B-3
APPENDIX
B — PROGRAM CONSTRUCTION
B1. VAXIVMS
Version
These codes use 2 libraries that
contain common subroutines used by tte programs. The libraries must be created
and in your local file space before an object file which calls it is linked,
o The order in which the files are linked is important,
POILIB — This library is created from the object file LIBSO. It contains subroutines used by all She programs
except
AUTOMESH,
MIRLIB — This library is created from the object file~ LIBSO and POISO,
containo subroutines used by the program MIRT,
It
file, enter RUN followed by the name of the file,
o TO run an executable
RUN AUTOMESH
IKm.t&:
XhLhlLw:
POILIB
FORT
LIBR/CREATE
AUTOMESH
FORT
LIBSO
POILIB LIBSO
AUTSO
LINK/EX EC= AUTOMESH
—.....—
.—
FORT
LATTICE
LINK/EXEC=LATTICE
—.—
———
—... .. . ————
PAND[RA
FORT
LINK/EXBC=PANIXRA
POISSON
.
..—
—
.—
-.-—
—.—
..—
.——
SUP ERFISI1
—-. .-—
‘l’EK1)I,CYI’
-“
PolL113/lJIR
—.. . -—. ..—
]Jfl]so
—
—.—
MI Rl,IU/1,111
——.
—-..
SFISO
LINK/WWC=SFO1
——. —
POILIB/LIB
o
MIKSO,
.—. .-— ,—
mm
SFO1
———
MI rts
~
—
—
PANSO
PANSO,
.
l, INK/ltxEC=M]}lT
.—
——
MIRI,I13 POISO,
.——
FOllT
MIRT
LATSO
LATSO, POILID/LIi3
1’01s0,
L113R/CItEATE
MIRLIII
.—-.
Polso
FORT
LINK/EXEC.=POISSON
——
—
.-— —
-—
AUTSO
—.—
——.
SFISO,
——.—.- .- .-.-—
l’OILlll/LIll
—-
—... ..——
.—
FORT
Flsso
I,lNK/EXEC--SIJl) ERFISll
F’ISS(), POILID/1,11)
———..
.- .—......----.——.
—— -—._
——---FORT
‘J*EKSO
1,1NK/EXF;C ‘IWK1’I,OT
TEKSO, PO1l.ll\/1,111, {JSII;]{$ol,ll: I’1,O’r10 /1,111
——————-—,
.-,--—----- -.. --------- .—----—
——.-. . .. “,— —-----.-—.-. —--—,.—. .——
II 2
—
APPENDIX
B –- PROGRAM CONSTRUCTION
B2. Cray Version
o The order in which the files are compiled is important.
These codes use two librarien that
contain common subroutines used by the programn. The libraries must bo crcatcd and
in your local file space before a binary filo which calls it ia loaded.
POIL113 — Thio library is created from the source file LIBSO, It contains
subroutines
used by all the prograrna except AUTOMESH.
MIRLIB
–- This library is created from the source files LIBSO and
POISO. lt contains subroutines used by the program MIRT.
SOURCF
FILE
——
BINARY
FILE
——
EXIKXJTABLE
FILE
automesh
fish
lattice
lrwro
likl
pOilit)
rnirt
poiso
rnirli~~
poimon
Sflao
Mfo1
(mkuo
tckplot
o Tho first 2 linen of RII murca Film contl~in input dnta for the Cray job control
Innguago utility
XlIQ, which pmdurcs
hinnry nnd cxccutr.blo
rode,
“1’hcargurmmt of mUlMIIto Iho utility XI’;Q pro(llicrn l\II! rxorutRl)lfI
rll)l AU’!’C)MII;SII, clllrr the (ollowing.
automoah
cmlc
A (1’I’CJMKX511.‘R)
Appendix
C
Complete
List of CON
Variables
for POISSON/PANDIRA/MIRT
Contents
.
. . . .
Table C--l
Numeric
Table C-2
Alphnbctic.
Complete
. . . . . . . . . . . . ,,,
Order of CON Variables
the POISSON/PANDIRA/hlIRT
table~ correspond
,.,
[’ 1
. . . . . . . . . , . . . , . , . , . C-2
C)rder of CON Variables
tables of the 125 CON array variables,
.,.,.,..,
. . .
. . , , , , , . . . . . ,
both in numerical
and alphabetical
C-16
order, for
programs are given in this section, The dcfnult values in these
to the valueo aasigned by tho execution
program
if there were no user input
changes of the CON army in LATTICE.
There we a number
has no control,
of variables
Tholo variables
ementm th&t must be changud
which are used internally
mro deoignatcd
in J.ATTICE,
by the program
by w preceding
the element.
and over which the user
in addition,
if they me to hnvo an efTect on tha
ce~d ml by m t.
c-l
Probh?m,
those clare pre-
Appendix C — Complete
list of CON Variables
C-1
TABLE
NUMERIC
FOR
ORDER
OF CON
VARIABLES
POISSON/PANDIRA/MIRT
where:
Number
Name
CON(1)
KPROB
Q used
internally
t must
be. changed
in
LATTICE
Default
O
Description
Set by LATTICE
KPHOf3 = 0-
to differentiate type of problem.
POISSON/PANDIRA/MIR’To
= 1- SIJPERFISH.
t
CON (2)
NREG
None
Totaf number
CON(3)
CON(4)
LMAX
KMAX
None
None
Total numbnr of rnmh points in the verticaf
and horizontal
(LMAX)
or computed
9
CON(5)
IMAX
None
CON(6)
MOUE
-2
of regions for the problem.
(KMAX) direction.
either hy AUTOMESH
lMAX = KMAX t 2
The pcr~nuahilily
MODE = .-2= -1-
complltcd
Input
m by LATTICE,
by LAT’1’’lCE.
coda in iron.
p-infinite
in iron.
p-finitw, conetant
and dcfinml by CCN(10)
=
FIXGAM, (~ ~. l. O/P).
=
O - Option a
fullctiorl
parameter
MAT = 2-
MAT,
of IIF;(I
(SCO
p-flnita
NAM ELIST
‘I”ablu2 1.)
nrd
by intvrnd
ddlncd
tnble (very low-carbon
user-dcfinmf
pcrn]ittlvlty
conutani
user-dotlnrxl
st-~king
parlncnbility/
(fill) factor,
Alinc(!
hy
tnl)lo3,
user-defined
or
or
3 s MA’r < b - p-finito nnd
f,nt)]ol
steel)
or
conntmnt
pormittivlty
~wrllwnbility/
or
Ilncr-drfinml ntacking ([ill) f~ctor
n < ~[A’1’ >: I I ~Jorlll~l]cllt Illagn(!t r!tatcrln]
with n Iwr-lldllld
C2
//( //) fumtiml.
Appendix
C — Complete List of CON Variablea
Number
.—
CON(7)
Name
.—
Description
Default
1.0
STACK
Stacking
factor for iron regions using MAT = 2
or fill
(Table 2-l).
t
CON(8)
13DES
CON(9)
CONV
1.0E+15
1.0
The value of the field, IBI = BDES at mesh location
[KBZERO = CON(4CI), L13ZER0 = CON(41)].
If BDES # 1.0E+15, the current factor,
XJFACT = CON(66) will be adjusted so that
IBI = BDES within & tolerance XJTOI. = CON(67)
(eee example, Sec. 10i2).
Conversion factor for coordinate unibm
CONV = (no. of centimeters) per (unit), e.g.:
CONV = 1.0 - Contimctera.
= 0.1
-- Millimeters.
= 2.54 -- Irichea,
CON(lO)
FIX(;AM
The value of q (= 1.O/p) used
.004
in a p-finite
hut
conntant
[(30N(6) = MODE = -1] (See tixample, Sec.
10.7.) Also used to initialize y for p-finite and variable
[CON(6) = MOJ3E = O].
solution.
@
CON(ll)
NAIR
0
Total number
@
CON(12)
NFE
0
iron
()
Total number
of meeh pointn in the air (NAIR) and
(NFE) rcgionn. Colnputcd
in LrfTTICE.
o{ interface points, An inLerfnce point
in a point whcwc nearest ncighlmrs arc a crrmbiuation
0( air nnd iron poir’ts.
CX)N(14)
@
C0N(15)
NPINl}
N[)flc
Not
Nonc
‘rotnl
USCd.
NPINP
(-l
nurnbc’r d
:= N,All?
pnints
}
NFE
in l,hc
prOMcln
} NINT1:R
+ NfJN1) +- NSP1,.
Tu~nl numlwr of I)irichlct boundnry pnin~s cmnput,cd
in LATT1 (;!:,
o
CON(17)
NSPL
o
The nurnlmr of pnintn held nt npocial fixed potcntird
computed in LATTICE and USC(Iin 1’O!SSON/
l]ANDIRA/MlltT,
c 3
Appendix C — Complete Lizt of CON Variables
l{umber
CON (18)
Name
Default
NPERM
o
Description
The number of permeability
functions to be read in ee
data.
NPERM # 0-
must zet CON(6) = MODE = O and the
first optional input dat~ listing the permeability/permittivity
functions and/or
tables must follow the CON array entry
(ace Sec. 5.4.1).
CON(19)
lCYLIN
o
Coordinate
ICYLIN
nystem indicator
= O – Carteaian
(x, y) coordinates
= 1- cylindrical
(r, z) coordinates
(horizontal
(vertical
CON(20)
INPUTA
0
~ x + r)
-+ y + z)
The number of apccial fixed potential
values
to
be
read in aa data by PO LSSON/PANDIRA.
lNPUTA >0-
t
CON(21)
t
t
t
CON(22)
CON(23)
CON(24)
NBSUP
NBSLO
N13SRT
N13SLF
0
1
0
second optional input data listing
mesh points and fixed potential values
must be given (see Sec. 5.4.2).
Indicator for boundary conditions on the UPpcr,
LOwer, RighT and LeFt boundaries of the rectangular region defining the boundary.
0
O - Indicatca 13irichlc& boundnry
conditiorm,
which
means magne~ic field lines nre PA11A1~L13L
to the boundary Iiflc.
tmundnry
conclitions, which
moans magnetic field Iimw wc PER1’lUNDlCU LAR to the hounclnry Iinc.
I - InclicatcM Ncurnann
@
CON(25)
NAMAX
(1
The nund.mr of clcmcnt.s in the GTV LA GT14 nrr:ly~.
w
CON(26)
NWMAX
o
NGMAX
o
The numlmr of points for rccnlrulnting coupliilgn
(NWMAX) nml gnmnmn (NCh4A i).
@) C0N(27)
c 4
Appendix
@
C — Complete
List of CON Variables
Default
Description
Number
Name
CON(28)
NGSAM
o
The number of points for recalculating
CON(29)
LIMTIM
o
The amount of time remaining in the run. At present
deactivat~d by a comment.
CON(30)
MAXCY
1000OO
20
g~mmas.
Maximum number of iteration cycles.
POISSON, (If not converging, decreaae MAXCY and
rerun to get a dump~.
PANDIRA. (If problem tcrmirmtes before converging,
incrc~c MAXCY and continue from current dump),
CON(31)
IPRFQ
o
An indicator for the cycle iteration print {rcquency
for POISSON only.
lPRFI’Q = O - POISSON determines frequency print..
IPRFQ > 0- Print~ every lPRFQ cycles.
IPRFQ must bc a rnultiplc of IV13RG = CON(87).
CON(32)
IPRINT
o
Indicator for additional printout
IPRINT == – 1- LATTICE input only.
=
O – no addi~ional printout,
—
I - print the vector potential array.
.2- print the IBI in irrm rcgiona.
—
4- print the f]=, J?v in iron rcgionn.
t
-- sum - a combination
of nny of the above
three options
(i,c. IPRINT = 7 = 1 +
? -1-4 will give nll three rrptiom),
CON(33)
CON(M)
Nom!
INACT
-1
Not
U!4C(! .
AtI illdicnl,or ustId in inl,vrnclivr l){ JISSflN/I)ANl)lItA
run to nllow uwr int,crhcl.ion,
. I no itlt,(!rnctif)rl
lNACT
I
I)rogrurti
st(q)~
qucricn
LIIC
10 lypo(l
uwr
lit
CUA
IUI(I
ilcrnlion
lmmxxl~
cycle,
ricc(mliug
Vnlllo:
(Jf)
Cr)fltiiill(vi
IN
imluirm
to
fIox L it[~rnti{Jn.
for ncw CON vnlum
Iwforr I)r(wm!(lillg 1,0 next ilcrntion,
N()
Crr
run trrlllill:ttm nllrl rrwultn nrc
wrilh~ll (It) ‘1’AI)N35MI(I(MI
oll’I’I’(ll/OIITIJAN.
Appendix C — Complete List of CON Variables
Number
Name
Default
CON(35)
NODMP
o
Description
Indicator
to write TAPE35
POISSON/PANDIRA
dump at completion
of
run.
= 1 – do not write dump.
NODMP
= O – write dump.
CON(36)
IRNDMP
o
An indicator
IRNDMP
used in MIRT only.
= O – uses one dump of TAPE35,
= 1- uses two dumps of TAPE35
continuing
simultaneous
a
p-finite/p-infinite
t
CON(37)
MAP
1
when
optimization,
For POISSON/MIRT:
A parameter
in the conformal
MAP/[MAP
[w= z * ●
where:
RZERO
transformation
* RZERO
●
* (MAP-l)]
= CO N(125)
MAP # 1- the current
conform
density
is adjusted
to the transformed
in all closed
MAP = 1- no current
to
geometry
regions.
density
adjustrncnt.
Note: if no current density adjustmcot
is
wanted (user has input tho corl ..ct density
for the transformed
geometry),
no’, be input until cxocution
MAP should
of POISSON/
PANf)lRA,
C0N(38)
XORG
(),0
Thn real
polynomial
A(x,y)
of z,, used to specify the origin in the
part
expanqimr for wrctor potonlial
:-. llc[~
q(z
-
z,, )’1],
the dcrivativue
of which
give thv field and grn~lient,
Xoll(”:
(),() for cylindricni
N(J’I’II;: For progrnrm
coortlinntcfl
1’1{101{ t{) I 1/10/80
XMIN # o,, umr MIJS’I’
Bet XOltG
for m}rrcrt fiohl t.nlclllnt.il)ll
if
XM[N
XMi N is n
Ilh;(; NA;.411;1,1S’I’l)nrnllw~cr,
nnfl rlol IrllIIXMIN of (XJN(54),
(Sec. 2.,2,2),
Appendix
Number
CON(39)
C .— Complete
Name
YORG
List of CON Variables
Default
0.0
Description
‘?’he imaginary
NOTE:
of ZOdescribed
part
For programs
PRIOR
in CON(38).
to 11/10/86
if YMIN # O.,
user MUST set YORG = YMJN for correct
field calculation.
parameter,
YMIN is a REG NAMELIST
(Sec. 2.2.2), and not the YMIN
of C0N(55).
CON(40)
KBZERO
1
The vertical
CON(41)
LBZERO
1
cifying the location
the current
and horizontal
mesh coordinates
spe-
of’ 13DES [CON(8)] for adjusting
factor,
CON(42)
KMIN
1
CON(43)
KTOP
KMAX
C0N(44]
LMIN
1
on
CON(45)
LTOP
1
mrly. [Use C0N(32)
The mesh point limits of the region in which the
frclds and gradients
Lhc
files
are
to bc calculated
OIJTF’01/OUTPAN
and written
for non-iron
regions
for IRON rcgicms], Default value
writes 13clds nncl gradients at all mesh points on horizontal axis (L = 1). To get vulucs for cd] geometry
set i.’J’0P to value of I,MAX [K MAX, LMAX v~llics
listed
M
CON(3),
()[JTl)OI/
C0N(4)
OUTI’AN.]
(See
in !ilcs OU’1’l,AT nnd
cxnln~)lc,
S(!c,
10.’2,
)
Appendix
C
—
Complete
Number
Name
CON(46)
I’TYPE
List of CON
VariaLles
Description
Default
2
A code
specifying
the
problem
For Cartesian
symmetry:
no symmetry.
—
symmetry.
ITYPE
= 1-
ITYPE
= 2- midplane
ITYPE
= 3- elliptic aperture
symmetry.
quaclrupole.
ITYPE
= 4- symmetric
ITYPE
= 5- skew elliptic aperture
quadruple.
ITYPE
= 6-
ITYPE
= 7- symmetric
symmetric
“II”
aperture
quadrupolc.
magnet
or
elliptical
.w2xtupolc.
sextupole.
lTYPJI = 8- elliptic aperture octupole.
lTYPE
= 9- symmetric
octupole.
For all of the above symmetry
codes, except
ITYP13 = 1 or = 5, field Iincs arc perpendicular
x-axis.
For
For lTYPE
cylindrical
lTYPE
= 5, the x-axis is a field line.
symmetry:
= 1 - no symmetry.
I’TYP13 = 2- midplanc
vector
nymmetry.
linoo perpendicular
to r-nxis,
problems-–ficld
scalmr problems–-potential
(v) lines
perpendicular
Iwr’u
NOTE:
= 3-
l).
I)[)r
I:[)IIs IIlt
(S(w
0,12.7
orlly
If in doubt os to thu tyl)c 0( symrnctry, usc I’I’YI’I’;
-. 1 or
2 ut)d scl I]olill(lnry colldit.ion~ I)y
3
W’2N1)
to r-axis.
midplanc symmetry for scfdar probl(’ns
r-axis is R v:. consthnt Iillc,
U) N(21)
(X) N(Ii7)
to the
(X)
f’llrtll(?r
N(24),(m
(Ictlhil
Sm:s. 2,’2.5
1)11 ~)rol)lvlll
l) OIS,SON/l)ANl)ll{A
RI)(I
‘I%t)lu
Myfllll)ctry,
Ilcfurull(c
hlIir)Ilnl,
11,5,:1,2).
‘1’IIcwuiglll fucttjr f’tm{,11(’
~oc{)ll(l lluurc~t Ilriglll]t)rfl llso[l
in dctrrrlliuing
Ill{’ c,, ill tllr ]Jolyllolllinl rxpnll~ifn) for
t,llo vector llot(’ntinl
A(x,y)
1{(’[>:
C,, (2
~(1)”1
Appendix
C — Complete
Number
CON(48)
List of CON Variables
Name
Description
Default —
1
ISECND
Indicator
for use of first or second neighbors
in deter-
mining the c. above
ISECND
= 1- first and second
= O -- first neighbors
if a problem
CON(49)
o
NFIL
The number
of current
only. (Use this option
haa trouble
filaments
converging.)
to be read in u
data by POISSON/PANDIRA.
NFIL >0-
third optional input data listing mesh
points and current filamer, ts must be
given (see Sec. 5.4.3).
CON(50)
The number
100000
lHI.)L
H
dl
of cycles between making a
calculation
ing POISSON
around
iteration.
speeds the conwcrgcnce,
metric
@
CON(51)
o
NPONTS
quaai-integral
the Dirichlet boundary durIncreasing IIIDL sometimes
particularly
for nonsyrrl-
“11” magnets.
LATTICE
- the no. of points in the relaxation
mesh
in POISSON/PANDIRA.
- N = NAIRICON(ll)]
NPONTS
= N ;( MC)DE[CON(6)]
s -2
NPONTS
= N +- NFE [CON(12)]
if
MODE[CON(6)]
C(l N(5Z)
OMEGA(I
or
,001
CON(53)
lRMAX
An overrelnxrilion
<-2.
parrtmcter
used only in I, ATTI(; I’1
and POISSON,
OMEGA
@
+ NINTER(CON(13)]
25
Used in LAT’1’lcE {or optirrlizatir)n
rclnxntion
of the ovcr-
factors.
CON(54)
XMIN
(),0
‘1’110vertical and Ilrrrizt}ntnl lilrlits of tl]c rcgit)n ill
CO N(55)
Xhf AX
().0
whicil t.hc frcl(ls ~nd LIICgrwlicnt,s ~rc
calc
(1.()
the
(rlf)t
0.()
011 a Irlcsh
(X)
N(M;) YMIN
C0N(5’1)
YMAX
c.orrlplltr(l
vnll)w
point,)
C)[J’I’I]AN for Alit
roll)plltml
of
(xly)
or
(r,z),
for
IIlatc(l
[Icc(’ssurily
nrld wriltvll flrl filo ()[J’l’l’(l]
or
rcgiolls (Irlly. ‘1’llcctx)rdirlntc~
hy ~tnrting
nru
fr(]ll~ XM IN, YMIN nrl[l illcrr -
Ilwrlt,illg by 1)X, I)Y wllvrr:
1)X
(XMAX-XMIN)/(l<
’l’ol)-l)
I)Y
(YMAX-YMIN)/(l;
l’01’-l)
[Ii’1’ol”
[1:1’01’
ill) to XM AX, YMAX (WC (Ixnri)l)lu,
(x)
N(58) II] OIJI’I’
()
I’rofrontly riot UWV1,I)rnctivntwl
(: 9
SIT
(; ON(d:!)]
(X)
1(1,’.2),
I)y n c[]llllrlolltl
N(45)]
Appendix
C
—
Corr plete
Name
Number
List
of CON
Variables
Default
Description
@
CON(59)
PI
@
CON(60)
SPOSG
0.0
The total positive
@
CON(61)
SNEGG
0.0
and total (STOTG)
@
CON(62)
STOTG
0.0
@
@
CON(63)
CON(64)
SPOSA
SNEGA
0.0
The total positive
0.0
and
@
CON(65)
STOTA
0.0
XJFACT
1.0
3,141592
...
T given to machine
total
accuracy,
(SPOSG),
current
current
The factor by which
sities (except current
BDES = CON(8)
negative
and current
filamenta)
ia input,
(See example,
CON(67)
XJTOL
1.OE-4
then current
CON(W)
CON(68)
AFACT
1.0
@
CON(69)
RATIO
0,0
CON(70)
ICAL
0
problem
(no
Sec. 10,5.)
on the determination
of XJFACT
when XJFACT
= CON(66)
in POISSON/PA
Indicator
are
= 0.0.
for air region
The ratio lBZERO1/(XJFACT)
current
=
for BDES = CON(8).
solution
t
will be
M!RT – the factor by which scalar potentials
scaled
If
Sec. 10.2,)
(See example,
The tolerance
den-
will be scaled.
XJF,ACT = O. - a scalar potential
current),
(SNEGA)
at solution.
currents
all
(SNEGG),
at generation.
(SPOSA),
(STOTG)
adjusted.
negative
NDIRA,
for type of formula
to use for calculating
density,
ICAL = O - Uso normal
area formula.
ICAL = 1- Une anglo fmrnuln for
current
aaeociatcd
when accurato
calculating
with
fioldo
a
ncnr
point
the
or
coil boun -
darice ~re needed,
e
CON(71)
NEGAT
0
An indicator
for
a
in me-h Ccnerntion
NEGAT
zero or negativo
ill l, A’H’ICI?.
= O - no nc~~tivc or zcrc arcM,
+ (1 - ucgat.ivo or zero mm,
outl)uts n (Iiiign(mtic
@
CON(72)
SNOI,DA
@
CON(73)
SNOLDI
().()
The old surll of ((lcltn)2 for
iron (S NO Ll)l) points.
(:-10
nrcn trianglo
nir
IIl(IHsIig(!,
(S NO1,I)A)
md
Appendix
C — Complete
List of CON Variables
Name
Default
CON(74)
RHOPT1
1.9
See CON(75)
CON(75)
RHOAIR
1,9
The over-relaxation
Number
Description
interface
= RHOAIR.
factor in POISSON
air and
for
points and for iron points with a constant,
but finite permeability.
RHOAIR
= RHOPT1
- optimizer
RHOAIR
during
# RHOPT1
– RHOAIR
does not optimize;
iteration,
RHOAIR
uses value assigned.
@
CON(76)
RHOM1
RHOM1 = RHOGAM
None
[RHoGAM
CON(77)
RIIOFE
= coN(78)].
The over-relaxation
1.0
-1.
factor in POISSON
points with a finite variable
CON(78)
RHOGAM
The under-relaxation
0.08
(= l./pcrrncability)
t
CON(79)
IIIiOXY
1.6
The starting
for iron
permeability,
factor ~n POISSON
for finite variable
over-relaxation
for gamma
permeability.
factor fol the irrcgul;ir
rncsh generation.
CON(M))
ISKIP
1
The number
during
t
CO; J(81)
NOTE
1
}.n
of cyclcs
a finite,
indicator
recalculating
bctwccn
variable
pcrmeabiliLy
for determining
the v
solution.
the order in which
points are relaxed.
NOTE = O - the ordc; is air points, intcrfocc poirlts,
then iron points. MIJST I)c usmf for
i)ANllllt A. (SCC 1’ANl)IIIA
SCH.
10.4
106.)
N()’[’E T 1
(! XILIIII)]CSI
lIIC t]rdcr is (nir + intcr[;~cc~ points,
tlItIII iron IJoirlljs.
NOHC
o
1’ANl)lllA
An indicritor
- rrluxirt~~]lll vnluc t~f 11,
t)f nn rrror in [,A’l’r~l(;l; nrld
l’olSSCJN/l’AN lllltA/hill
{’r.
lAIKlll’1’
(1
no crr~lr~,
lAIN-)ltr
1
{Irrl)r l~r rrr(,rti.
(lingnostlir
Cll
l)rogr~lrl
Illc!+sngcs
nnA
outlJIIls
nl)[)rl,s.
Appendix
C — Complete
Number
t
CON(84)
Name
EPSO
List of CON Variables
Description
Default
l.OE -5
The convergence
program
criterion
has trouble
for mesh generation.
converging,
incre~ing
If
EPSO
might help.
CON(85)
CON(86)
EPSILA
EPSILI
5.OE -7
5.OE -7
The convergence
criterion
for the potential
solution
of air and interface
points and for iron point~ with a
finite, but constant
permeability.
The convergence
criterion
for the potential
of iron points with finite, variable
permeability.
For pl,~filem to converge,
NOTE:
solution
both values printed
under columns:
“residual-air”
in file OUTPO1
less
EPSILA
than
If printed
lVERC
@
CON(88)
CON(89)
is not converging,
El%lLA/
EPSILI
converge,
with Icss accuracy,
incre~sing
will force program
of cycles between convergence
The default
vnlue of 10 d!lould not bc altered
lhu over-relaxation
to optimize
RESIDA
1.0
POISSON
RESIII1
1.(-)
nnrl irrm (R f% Illl)
- the residual
fnctor
of the rtir (ftESIDA)
FIt cnch IV ERG cycle.
[l\ ’El/c = CON(87)]
8
CON(W))
ICYC1,E
(1
The prcscrtt iternlion
cycle nlirnhcr.
l, AT’rlCl’; nnd I)OISSCN/l)ANlllll.
c% CON(91)
C0N(!)2)
NIJMllM1’
o
(;urrvllt
dlllrlp I)llllll)cr ft,r
‘]’his
of
set
(light,
words
sl(]rl
writing
.I tllc
Umd in
A/M IR’r.
L() ‘[ ’Al)lt35.
titl(!
;~rol)lcln wllirll wns rcml I)y !, A’1’TiCll,
CON(X))
(;
12
of
to
test.
= RI1OA1R is used,
CO N(75)
be
respectively.
The number
option
@
and EPSILI
must
values are near EPSILA/EPSILI
and solution
CON(87)
“residual-iron”
and the terminal
tlIc
if the
Appendix
C — Complete
Number
CON(1OO)
List of CON Variables
Name
Default
iTERM
o
Description
A print indicator
cylindrical
ITERM
used in POISSON/PANDIRA
problems
when XJFACT[CON(66)]
= 0- prints
dbzdr,
ITERM
CON(101)
IPERM
o
for
# O.
(to OUTPOI/OUTPAN)
xm, afit
# O - no print of above quantities
Indicator
for permanent
problem
IPERM
= O - not permanent
IPERM
= 1- a permanent
in PANDIRA
magnet
magnet
only.
problem.
problem.
The
vector potential
is initialized
either a current
region or by current
filaments
[CON(49)]
MUST input.
by
which the user
(See PANDIRA. exam-
ples, Sees. 10.5OOOg An octal word used w a m~k
10.6.)
to isolate bite in
@
CON(102)
lAMASK
600000
@
CON(103)
ISCAT
2000000008
certain
@
CON(104)
IFILT
4000000008
IMASK, IFILT - used in LATTICE
@
CON(105)
IDIRT
index words.
1000008
and POISSON/
PANDIRA/MIRT,
ISCAT, IDIRT - used in LATTICE.
@
CON(106)
ETAAIR
1.0
The rate of convergence
@
C0N(107)
ETAFE
1.0
(ETAFE)
regions in the current
CON(108)
AROTAT
Presently
not used,
ICYSEN
s
CON(109)
ITOT
o
An indicator
N’f’13RM
O -
no
print
and iron
cycle,
in POISSON.
ICYSEN
=
ICYSEN
# O - print boundary
of
boundary
integrals,
integrals.
The total nllmber of mesh points in the problcm.
None
ITOT
CON(11O)
for output
in air (ETAAIR)
o
= (KMAX
The number
+ 2)*(LMAX
of coefficients
monic analyses
+ 2).
to be obtaincrl
of tlIc potcntinl,
O < NT ERM < 14,
Sce harmonic
analysim uxarnplcs
(For cornplctc
discussion
of hnrrnonic
to PO ISSON/SUPI!lRFISll
Rcfcrcncc
(313
in the hnr-
in SCCCI,
10,3 ~nd 10.9,
an~lysis, refer
Manual.)
Appendix
C — Complete
Nurr.ber
CON(lll)
Name
NPTC
List of CON Variables
Default
Description
o
The number
of equidistant
—-
points on the arc of a circle
with its center at the origin, at which points the vector
potential
is to be interpolated.
vector potential
coefficients.
Fourier analysis of the
at these points yields the harmonic
NPTC should be approximately
the number of mesh points adjacent
0<
CON(112)
NPTC
equal to
to the arc.
<101,
The radius of the arc of a circle at which the vector
RIPJT
potential
is to be calculated
for harmonic
analysis,
RINT should be less than the radius to nearest
gularity
cON(113)
(pole or coil) by at least one mesh space.
The final angle, in degrees, that defines the arc of the
ANQLE
circle that is given iri CON(l12)
CON(114)
The aperture
RNORM
that defines the arc o! the
circle with radius RINT = CON(l12).
and ANGLZ
CON(116)
MASK37
378
CON(117)
M.M5K5
777778
are
measured
Octal words used to isolate bits in certain
MASK5
None
index
words.
PANDIRA,
MAXDIM
Both ANGLE
from the x-axis
MASK37 - used in LATTICE
CON(118)
radius
analysis.
The initial angle, in degrees,
ANGLZ
= RINT.
radius or other normalization
used in the harmonic
CON(115)
sin-
and POISSON/
MIRT.
- used in POISSON/PANDIRA/,MIRT.
The maximum
number
of mesh points allowed.
lTOT = C’ON(109) < MAXDIM.
(MAXDIM
MXDlh4,
@
CON(119)
is computed internally
NW DIM ==MAXDIM/2.
NW DIM
and depends on
User may change parameter
User call change by changing
MXDIM.)
.
parameter
MXDIM
and rccolnpiling.
CON(
12(I)
MASKC1
3778
CON(lz])
MASKC2
177 4(K)”
CON(122)
TSTART
Nmc
octal
-words ~scd cq masks to isolate bits in certain
index
wor(ls.
‘1’l)cstarting
C-14
time (wall clock) for execution
of a run,
Appendix
C — Complete
Number
t
CON(123)
List of CON Variables
Name
— Default
TNEGC
O.(J
Description
A parameter
used in conformal
Input the total negative
geometry.
LATTICE
current
transformation.
in original
stores the negative
trans
formed currents.
t
C0N(124)
TPOSC
0.0
A parameter
used in conformal
Input the total positive current
geomet. y. LATTICE
transformation.
in original
stmes the positive
trana-
formed currents.
t
CON(125)
RZERO
1.(J
The scaling factor of the confcmmal transformation.
lU=
Z t
where:
●
MAP/[ MAP * RZERO ** (MAP-l)]
[MAP= CON(37)]
and normally,
RZER.O = aperture radius.
C--15
Appendix
C — Compiete
List of CON Variablea
AI,PHABETIC
TABLE C-2
ORDER OF CON VARIA13LF’$
FOR POISSON/PANDIRA/MIRT
Name
Number
AFACT
CON(68)
KBZERO
CON(40)
N-ame
Number
Name
FTSPL
Number
——
CON(17)
ANGLE
CON(113)
KMAX
CON(4)
NTERM
CON(11O)
ANGLZ
CON(115)
KMIN
CON(42)
NUMDMP
CON(91)
AROTAT
CON(108)
KPROB
CON(1)
NWDIM
CON(119)
BDES
CON(8)
KTOP
CON(43)
NWMAX
CON(26)
OMEGA
CON(52)
BMAX
CON(82)
LBZERO
CON(41)
CONV
CON(9)
LIMTIM
CON(29)
OMEGAO
CON(52)
EpsD.A
CON(85)
LMAX
CON(3)
PI
CON(59)
CON(69)
EPSILI
CON(86)
LMIN
CON(44)
RATIO
EPSO
CON(84)
LTOP
CON(45)
RESIDA
CON(88)
ETAAIR
CON(106)
MAP
CON(37)
RESIDI
CON(80)
ETAFE
CON(107:
MASK37
CON(:16)
RHOAIR
CON(75)
FIXC.AM
CON(10)
MASK 5
CON(117)
RHOFE
CON(77j
IABORT
CON(83)
MASKC1
CON(120)
RHO(IAM
CON(78)
CON(76)
IAMASK
CON(102:
MASKC2
CON(121)
RHOM1
IBO~JT
CON(58)
MAXCY
CON(30)
RHOPT1
CON(74)
ICAL
CON(70)
h4AXDIM
CON(118)
RHOXY
CON(79)
ICYCLE
CON(90)
MODE
CON(6)
RINT
CON(112)
ICYLIN
CON(19)
NAIR
CON(ll)
RNORM
CON(!14)
lCYSEN
CON(108)
N.4MAX
CON(25)
RZERO
CON(125)
IDIRT
CON(105)
NBND
CON(16)
SNEGA
CO N(64)
IFILT
CON(104)
NBSLF
CON(24)
SNEGG
CON(61]
lHDL
CON(50)
N13SL@
CON(22)
SNOLDA
CO,. (72)
IMASK
CON(102)
NBSRT
CON(73)
CON(5)
NBSUP
CON(23)
CON(21)
SNOLD1
IMAX
SPOSA
CON(63)
[NACT
CON(M)
NEGAT
CON(71)
CON(60)
INPUTA
CON(20)
NFE
IPERM
CON(!O1)
NFIL
CON(12)
CON(49)
SPOSG
STAcK
STOTA
CON(65)
IPRFO
CON(31)
NGMAX
CON(27)
STOTG
IPRINT
CON(32)
NGSAM
CON(28)
TNEGC
CON(63)
copJ(l~3)
CON(7)
lRhfAX
CON(53)
NINTER
CON(13)
TPOSC
CON(124)
IRNDMP
CON(36)
NODMP
CON(35)
TSTART
CON(J22)
[SCAT
CON(103)
NOTE
CON(81)
W2NI)
CON(47)
lSECND
CON(M)
xJFAc’r
CON(66)
CON(N))
NPERM
N1)lNP
CON(18)
ISKIP
CON(15)
XJTOI,
CON(67)
ITEllM
CON(1OO)
NI’ONTS
C(9N(51)
XMAX
CON(55)
mm
CXIN(I09)
NP’rc
CON(l II)
XMIN
CON(W)
lTYPE
CON(46)
NRI;C
CON(I)
YMAX
CON(57)
IVERG
CON(87)
YMIN
CON(S6)
C-16
User
for POLSSON/SUPERFISH
Guide
INDE.Y
Group Codes
:
Index
Each entry is followed by the number of the chapter (letter for Appendices A, B and C),
a daah, and the page number(s) where the entry occurs. Entry with “(CON)” following
entry with “(REG)” or “(PO)” following designates a
designates a CON array parameter;
REG or PO — FORTRAN Namelist parameter.
AFACT (CON) . . . . . . . . . . . . . . . . . . . . .. C-10
Afit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...5-22
AMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...4-4
AMIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...4-4
ANGLE (CON) . . . . . . . . . . . . . . ..5-13 .C-14
ANGLZ (CON) . . . . . . . . . . . . . . ..5-13 .C-14
ANISO . ...,,.....................5-16,18
Anisotropic material . . . . . . . . . ..5-14, 15, 17
AROTAT (CON) . . . . . . . . . . . . . . . . . . . . .C-13
AUTOMESH,
. . . . . . . . . . . . . ...1-22.24.
2-1
BC13PT
. . . . . . . . . . . . . . . . . ...5-18)19
, .10-19,25
BDES (CON) . . . . . . . . . . . . . . . . . ..5-10. C-3
BMAX (CON) . . . . . . . . . . . . . . . . . . . . . .. C-11
input
Boundary
CFIL
.,,..,
.,
. ., . . . . . . . . . . . . . . . . .
condition
., , .. 2-4,
19, 3-J,
C-4
. . . . . . . ..5 . . . . . . . . . . . . . . . . . . . . ..5-2O
Circular arco , . . . . . . . . . . . . . . . . . . . ...2-9.13
CON array tablea, . . . . . . . . . . . 3-4, 5-5, C-2
Conformal transformation
., , . . . . 5-13, C-6
CONV . .,, . . . . . . . . . . . . . . . . . . . . . . . ...10-29
CONV (CON) ..,. 3-4, 5-5, lo-2~, 30, c-;
CONV(REG)
, . . . . . . . . . . . . . . . . . . . . . . ...2-4
, , , , ., , , ., , ,5-12, C-12
Convergence criteria
CUR (REG) ,, ..2-4, 3-10, 10-4, 10, 18, 23,
10-29, 38
Current
adjuatmcnt
.,, ,. ,,, , , ,, 5-10, l&5, 56
filarr,ent , . . .. I . . . . . . . . . . . . .. M.. J..’3-M
for permanent magncta . . . . ., , , ., ,5-21
option~ . .,, ,,, ,,, ,. .,,.,,
.,, ,,, .,,5-11
Cylindrical
coordinates
, . , , . . . . , , .2–10, 5-6, C-4
problems . . . . . . . . . . . . . . 1-14.15 .10-22
symmetry
,1.1 . . . . . . . . ..0. C.. .5–0. C-8
CYPM, file . . . . . . . . . . . . . . . . . . . . . .10-23.24
DEN(REG)
.,, . . . . . . . . . ..2-4 . 3-10. 10-29
Dielectric constant ([) . . . . . . . . . . ...5-14.
15
DIPM, file, ,., . . . . . . . . . . . . . . . . . ..lO-l7.
18
Dipole magnet , ., ., , .. 1-3, 10-3, 17, 48, 53
Dirichlet ,.2-9, 19, 3-4, 10, 5-6, 10-43, c-4
DPED, file, ... . . . ..l.. .53 . . ..m...lo-53.
54
DPFR, file,. ,.,.. ,,, ..10 . . . . . . . ..lO-48. 49
Drift tubclipac
. . . . . . . . . . . . . . . . . . . . ...2-26
DTL)file ..,.,....,,.....,..,,.....2-26,
27
Dump number , , 3-14, 5-3, 22, 1&4, 12, 50
DX(REG),.,
. . . . . . . . . . . . . . . . . . . . . . . . . ,2-4
DO .,,, ,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
DY(REG),
. ., ., . . . . . . . . . . . . . . . . . . . . . ,.2-4
Edit option~ , .,,.,.,.,,,....,,....,..,.5-8
ELEC, file ,. ..,,,,.,....,.,,,,.,.10-38,39
Electroeta~ic ., , . . . . , , , ., ., , , , ..2-19, 1O-38
End field calculation
., ., , ., , . . . , . . ...10-53
EPSILA (CON) .,,,,..
.,5 . . . . ..1212 .C-I2
YPSILI (CON) ,,, ., . . . . . ..12 .C.1212. C–I2
EPSO (CON) ,,. , ,.,,. ,.,, 3-6, 5-12, C-12
Error mcmagcs
AuToMEsl{
..o..,.,.
,,, ,1,,, ,2..2-21
LATTICE,,
. . . . . . . ..3 . . . . . . . . . ...3-14
PANDIRA . . . . . ..! . . . . ..5. 23.24 -23.24
POISSON,
., . . . . . . . . . . . . . . . .. 23..5-23
TEKI’IJo”r
. . ..!. .! . . . . ..11 .4. ..ll .4-5
ETAAIR (CON) ,,..,,,,,,,,,,..,,,
,, I:JI:J
ETAFE (CON) .,,.,,.
..,, ,.,,,,,
,C,13-13
Executable, files ,., ,, . . . . . . .. A-4.5. D 2,4
Filue, input
A[J’I’UMESII
,,, , 1-5, 14, 10:1, 10, 17,
10-23, Ml, 43, 46, 53
COSMOS
,., . 10-4, 11, lo, 10, 24, :{2,
10 3R, 44, 40, 54
LATTICE
,,. .,. ,,, ,:19, 12, l028,31
PAN I) IRA .,,, ,,., ... ,.,, 10-lt\, lH,24
POISSON
,.. ,,,,
,,,.,
...
Io12,
co,G3
User Guide !or POISSOfV/SUPERFISH
. . . . . . .10--4, 11, 16, 18, 24, 32, 38,
VAX
10-44, 49, 54
Files, Output
OUTAUT ..,...,
. . . . . .. 1-11) 20.2-20
OUTFIS .,..,,,,,,...,,
. . . . . . . ...1-20
OUTLAS T...... .1-10, 20, 3-14, 15, 17,
5-8, 19, 20
OUTPAN . . S-22, 23, 30, 10-16, 20, 26
OUTPOI . . . 1-11, 5-2, 3, 9, 20, 21, 27,
10-7, 8, 14, 15, 32, 34, 40,
10-46, 52, 57
OUTTl?K . . . . . . . . . . . . . . . . . . . . . . ...4--5
Files, summary
. . . . . . . ...1-22.
A-3, B-2, 3
FIXGAM (CON) ,,,,,,,,.,,
,,,,..5-5,
C-4
Fixed gamma ,, , . . . . . . ...5-5.
14, 15, 10-33
. . . . ...2-19.
5-19, 10-30, 38
Fixed potential
~amma
(y)
. . . . . . 5-5, 14, 15, 16, 17, 10-19,
l&25, 33
. . . . . . . . . . . . . . . . . . . . . . .. S-16.18
CAMPER
Geometry
CarLcMinn , ., . . . 1-2, 22, 2-lo, 6-6, c-4
cylindrical
... ., 1-2, 22, 2-10, 5-6, c-4
lIarmrmic
analyses
., 1012,
examphw
parrmcl.cr~
lICI!PT
13, 14, ’44, 45, 46, 47
.,, ,., , ,, 5-12,
13, C-13,
14
., ... ,., ., . . . . . . . . . . . . . . . . .15-.18, 19
ifll)llt,
llMAG,
,,, , . .,, .,, ,, .,,,.,.
,,mlo
1!1,25
lilc . .,,,..,,,,,,1-5,2--24,25,
,,. ,,, ,,. ... .,, ,,, ,,,1,
fl,l,
Iiypcrlmlic
nt!gnmllls
.2
IAIIORT((X IN)
lIKIUNI)
,,,,
., , , , , , , ., .,
,.,,.,,,
,,,..,,,
(1{11:(:) ..2
,,,,
,,,,,,,,
,.,,,
10:1
10, 14
,(:11
. . . . ..(.
U
4,19,310,1010,11,
10 :10, WI, 43
KAL((X)N)
K: YC:I,II:((X)N)
ICY LIN (CON)
l(; YSEN((:(lN),
ll)llVI’
[f:ON),
111’
II;I’((:(IN)
,,, ,,,..,,
,. ..3
..,.,,,
,,..,
.,..,,,.
,.,,
,,, ,,, ,,,,,
!i,5
lNACT (CON) . . . . . . . . . . . ..5 . . . ..5-7. C-5
INAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,4-4
INPUTA (CON) . . . . . . . . . . . . . . . . ..5-6. C-5
Internal perme~bility table . . . . ...1-9. 2-6,
5-5:22, 10-5
WERM(CON). , . . . . . . . . . . . . . ..5-11 .C -13
IPRFQ (CON) . . . . . . . . . . . . . ..6. C.5-6. C-5
IPRINT (CON) . . . . . . . ..2-4 .3-4. 5-7, C-5
IREG (REG) . . . . . . . ...2-5.3-10.
10-2S, 30
lRMAX (CON) . . . . . . . . . . . . . . . . . . . . . .. C-9
IRNDMP (CON) . . . . . . . . . . . . . . . . . . . . .. C-6
lSCAT (CON) . . . . . . . . . . . . . . . . . . . . . .. C-13
ISECND (CON) . . . . . . . . . . . . . . . ..5-10. C-9
ISKIP (CON) ..,...,,,..,..,..,5-11,
C-11
. . . . . . . . . . . . . . . . . C-13
ITEI?M (CON)
ITOT (CON) ..:::::
. . . . . . . . . . . . . . .. C-13
ITR1 . . . . . . . . . . . . ... . . . . . . . . . .. 44.10-29
ITRI(REG)
. . . . . . . . . . . . . . . . . . . .. 2-5.3-10
10-25, C-8
ITYPE (CON) ,......,....5-9,
lVERC (CON) . . . ..m . . . . ..m . . ..5-12. C-l2
K13ZER0 (CON) ... . . . . . ..m.. mm.7-10. C-7
KMAX (CON) ., . . . . . . . . . . . . . ..1 O-3!3. C-2
KMAX (REC) . . . 2-5, 16, 17, Ill, 10.-23, 48
KMIN (CON) ,,.,.,
. . . . . . . . ..5.8 .C78. C7
KPROD( CON)
. . . . . . . . . . . . . . . . . . . . . .. C--2
K1lltCl (RUG) ,. .2-5, 17, Ill, 10-23, 48, 53
KRIIX12 (IU?C) ,., 2-5, 17, 18, 10-23, 48, 53
.,. .,, , . . . . . . . . . . . . .58.(.--7
KTOP(CON)
l, A’~TIC:~;
... ... ,., ,,, ,,, ,,1, ,l
1[)
12
,,.,. .5[;, (;,1
..,, ,.., ,,(:l:l
. . . . . . . ..(.
. . . . . . . . . . . . . . . . . . . . . . ..(.
!22,24,31
(CON) .,, ,,.,,,
,,,,.,,5-Io,C-7
l,l\Zltlto
LIMTIM(CCN)
.,. ..,, . . . . . . . . . . . . . .. C-5
LINX(RHG)
,,, .,,,.,,,,..,,,,..,,,,.,2-5
I,IN Y(I{EG)
, .,.,.,,,.,.,.,,.,..,.,,,.2-5
IAIAX(C;ON)
.,, ,,, . . . . . . . . . . . . . . . . .. (.--2
I, MA X( I{ I!(;)
11,(:
... ,,, .,, ,.. ,,. ,(! . . . ..(!
1111)1, ((: ON),,,,,,.,,,,,,,,,,,.,..,,,
2
103
ll-mngrict,
III(IUIT(UIN)
INDEX
Group Cod&~
, ...,,,.....,,25,
LMIN (CON),,.,,,.
10, 10 4t!
.,,,,,,..,,,
,fiH,(:7
1,111’;
(:1 (NW:)
, . . . . . . ...2
6, 17, 10 2:I,4H
1,1{1’:(;2 (1{1’:(:)
,, .,,.
(1, 17, 10 2:I,4H
I; I’OI’((X IN)
,,.2
,., ,,. .,, ,,. ,,. ,,,,
.fi H, (:7
1:1
l:{
.(!()
IAMAS!{((X)N)
, . . . . . . . . . . . . . . . . . . ..(. 13
lMAX (CON) ,,,,,,,,,..
,.., ,,,.,,,,,
(;2
MA I’((X)N)
,, . . . . . . . . . . . ...15.5
1:1, (:[1
klASlic:l
((: ON), ,,, ,,, ,,, ,,, ,,,,
MASl{(:2((:0
N). ,., .,. ,,, ,.. ,.,,
,,,, (:l,l
. . ..(.l~t
MASI{5((Y)N)
,,.,
,,, ,,, ,,, ,,, ,,,,.
,(;
14
User Guide for POISSON/S
UPERFL3H
Group
MASK37 (CON) . . . . . . . . . . . . . . . . . . . .. C-14
MAT (REG) . . . . .2-6, 3-lo, 10-4, 5, 11, 18,
10-23, 29, 30, 38, 49, 54,
10-56
MATER . . . . . . . . . . . . . . . . ...5-15.16.17.
18
MAXCY (CON) . . . . . . . . . . . . . . . . ..5-6. C-5
MAXDIM (CON) . . . . . . . . . . . . . . . . . . .. C-14
Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...2-15
doubling
uniform
... . . . . . . . . . . . . .2-16 .18.3-20
. . . . . . . ...2-16.
18, 3-19,
10-41
variable . . . . .2-17, 18, 10-23, 27, 30, 35
MIRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...1-22
MODE (CON) . . . . . S-5, 14, 15, 17, 18, C-2
Modified pillbox cavity . . . . . . . . . . . . ...1-13
M012PIL, file . . . . . . . . . . . . . . . . . . . . . . . ..l-l3
MTYPE ,,,, . . . . . . . . . . . . . . . . .. 5-15. 16.17
NGMAX (CON) ,.,,,
.,,.,
.,, . . . . . . .. C-4
NGSAM(CON)
., . . . . . . . . . . . . . . .. C-5
NINTER (CON) ..)...
) . . ..) . . . . . . .. C-3
NO1)MP(CON)
. . . . ..0.. !5!. )..65--7.C-6
NOTI?( CON)
,.., . . . . . . . . ..I-115-12.C -11
NPERM (CON) 5-5, 14, 15, 16, 17, 18, C-4
NPINP (CON) ,,, . . . . . . . . . . . . . . . . .. C-3
NPOIN’I’(REG)
., .,,,,,,,,,,,,,,,,2-6,25
NPOINrr
. . . . . . . ..o . . . . ..i . . . . . . . . . . . . 10-4
NPONTS (CON) ,, ,,! .4,.,.!,
. . . . . . . . . C-9
NI’’I’C (CON) , .,, ,. .,.,. . . . . . . . 5-13, c--lo
NRWI (CON) . . . . . ...3-4.
h--h, l\J-20, C-2
NREG(REG)
.,.. ,... ,.2, . ..2-7 .2 fi,l04
NSC(IUW)
., ,1.,,.,,.,......,,..,.,,.3-4
NS1)L (CON) ,,,,.,,,,.,,.,,,.,,,,,,,,C-3
3
NSWXY,.
.,.........,,..........,,.,.,4-4
NT (PO) . . . . . . .,2-11, 12, 13, 26, 10-11, 38
NTERM (CON) . . . . . . . . . . . . . . ..5-113 C-13
NUM . . . . . . . . . . . . . . .4-4, 5-3, 14, 25, l&12
NUMDMP (CON) . . . . . . . . . . . . . . . . . .. C-12
NWDIM(CON)
0..,..0 . . . . . . . ..0. !.. C-14
NWMAX (CON) , . . . . . . . . . . . . . . . . . . . .. C-4
OMEGA (CON) . . . . . . . . . . . . . . . . . . . . .. C-9
OMEGAO (CON) . . . . . . . . . . . . . . . . . . . .. C-9
Over-relaxation
pa:.ameters
. . . . . . . . . . . 5-11
PANDIRA
Permanent
,...,
. . . . . . . . . . . ...1-22.24.5-1
magnet
. ..1-2.
22, 2-6, 21, 3-5,
5-2, 5, 11, 21, 10-17,
10-22, C-.13
,., 24, 5-2, 11, 12, 13, 16, 17,
2-20, 22, 1G5, 10, 11, 12,
10-18, 19, 23, 25, 38, 44,
10-49, 50, 53, 54, 56
p-finite constant . . . . . ...5-6.
14, 10-33
p-finite variable ,,, . . . . . . . . . . ...5-5.
15
p-infinite ., . . . . . . . . . . . . . . ...5-5.
l&56
10-12, 48, 55
Table input . . . . . ...5-15.
Permeability
NAIR (CON) . . . . . . . . . . . . . . . . . . . . . . .. C-3
NAMAX (CON) . . . . . . . . . . . . . . . . . . . . ,. c-4
NBND(CON) . . . . . . . .. C... I. . ..!.O . . .. C-3
NBSLF (CON) ,., . . . . . . . . . ..4-4 .5-6. C-4
NBSLO (CON) . . . . . . . . . . . . ..3-4 .5-6. C-4
NBSRT (CON) ... . . . . ..o . . ..34.
6+.&4
NBSUP (CON) . . . . . . . . . . . . ..3+.
5+. C-4
NCELL(REG)
,..,,,
, . . . . ..0 . . . .. 2+.3-5
NDRIVE(REG)
. . . . . . . . . . . . . . ...1-14.2-6
NEGAT(CON)
..,,,..,
o,.,,..,
C.lO., C-lO
Neumann ., ., . . . . . . ...2-9.
3-4, 10-30, C-4
NEW (PO) . . . . . . . . . . . . . . . . 2-11. 10-10.11
NFE (CON), ,...,,,,,
. . . . . . . . . . . . . .. C-4
NFIL (CON) ..,.,..,
. . ..11.20 .C1920, C--9
INDEX
Codes
Permitt.ivity
, , . 5-2,
5, 14, 15, 22,
10-11,
19
, . . . . . . .. S. . . . . . . . . . . . .. S-16.
18
10-25,
P} IAXIS.,
49, 54
P] (CON)
. . . . . . . . . . . . . . . . . . . . . . . . . . ..C-10
POISSON
.,,,
l’ONamclint
Po’r
..,,
... ,,,,,
.,. i-22,24iS-i
.,,....,,.,......,..
.,, .,2-9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,5-19
P~intopciona
QUAD,
,,, .,,,,,.,,,,,.,.,,.,,.,5-0
file,,,,
Quadrupolc
),,..,,
magnet
,..,,lO,lO,ll,
,.,
ll, 16
., . . . . . . . . . 10-10,
]6
R.(PO),
, .,.,,,,,..,,,,,...,,,,,,,,2.,211
RATIO (CON) ,.. , . . . . . . . . . . . . . . . . .. C-lfl
REGNamclint
.,, , . .,, ., ., .,,.,.,,
. ...,2-3
RESIDA(CON)
!. I,! . . . . . . . . . . . .. LC-12
RESllll
. . . . . . . ..4...
(CON)
ltoBi(iual -air
.,. .. l . . . . . . . . . . . . . . . . ...5-12
Rcoidual- iron
ltllOAIR
(CON)
R11OF’E(CON)
l{ IIOCAM(CC)N)
l{ IIOMI((X)N)
C.. C-12
. ., ., . . . . . . . . . . . . . . . ...5-12
... . . . . . . . . .. U.ll. (.(1111
,,, ,,.
,,,,
.,,,,,,,,,,
. . . . . . . .. L-11.C
.,.,
. .. 511.(:
,,,,,,,,,,,
11
II
(;11
User Guide for POISSON/S
RHOPT1
(CON)
RHOXY
RINT
(CON)
(CON)
C-11
.C-14
. . . . . . . . . . . . . ..5-114
C-14
... . . . . . . ...3-6.5-13.
C-15
file . . . . . . . . . . . . . . . . . . . . . . .10-43.44
Septum
SFOI
Group
5-11, C-n
. . . . . . . . . . . . . . . . ..5-13
(CON)
RZERO
SEPT,
. . . . . . . . . . . . . ..5-n.
..0 . . . . . ...3-5.
(CON)
RNORM
UPERFISH
magnet
. . . . . . . . . .. t.....
. . . . . . . . . . . . . . . . . . . . ..))
. . ...10-42
S. S..l -22.24
SNEGA
(CON)
. . . ..o...
SNEGG
(CON)
. . . . . . . . . . . . . ..o . . . . .. C-l0
SNOLDA(CON),,
SNOLDI
C. . . . . . . . . .. C-l0
. . . . . . . . . . . . . . . . . ..C-1O
(CON)
. . . . . . . . . . . . . . . . . . . .. C-10
Source, files . . . . . . . . . . . . . . . .. A-4. 5, D-2,4
SPOSA (CON) . . . . . . . . . . . . . . . . . . . . . .. C--1O
SPOS(3 (CON) . . . . . . . . . . . . . . . . . . . . . ..C-10
STACK . . . . . . . . . . . . . . . . . . ...5-5.15.16.
17
STACK (CON) . . . . . . . . . . . . . . ..5-5 .C-1O
. . . . . . . . . 5–14, 15, 10-19,
Stacking factor
STOTA
(CON)
STOTG
ICON)
SUPERFIS1l
Symmetry
25
. . . . . . . . . . . . . . . . . . .. C--1O
, . . . . . . . . . . . . . . . . . . .. C-10
. . . ..l.
o. . . . ..l.
..o ..1--22.
24
,. 1-6,9,
TAPE35
10,11,
16,19,20,3-2,7,
3-14,20,4-4,5--3,
14,22,
5-25,26,27,28,31,
10--2,4,
10-12, 56
TAl~E73
,, ,. 1-4, 6, 12, 13, 15, 2-2, 20, 3 2,
3-0, 0, 12, 17, Ill, 20, 4 3, 4,
4-6,5-26,
10-4,
11, 1013,
16,
1()-it!, 24, 38, 44, 40, 50, 54
TII;KI’1,l)’I’
..,..,.,...,...,111-22,
24,4
1
TII1(;TA(PO)
. ., . . . . . . . . . . . . . . ...2
11
13, C 15
TN13GC( CON)
... ,., ,,8 [1,5
TPOSC
(CON)
‘I’S’I’A it’l’([~fJN)
. . . . . . . . . ...00.5
13,(:15
. . . . . . . . ..(.
[Jllitn .l . . . . . . ..q. l.llll
14
. . ..l.
l
. ...1
23
VIH;M, filt! ,,, .,, ,,, ,,, , . . . . . . ..1 [101.33
VI’;(; l’,lilo
,,. ,., ,,l.
Vector l)rhnlinl
.,. l., ..).
prohhl
)()
, , , ~, ~, ., ~ 10 28
W2NIl(t:I)N)
. . . . . . . ..!)
x(l’o)l
!#l. ..l.
.!!...
,102 H,:\(
.l.l.
U.(~
!...
~
!2
12
4
XO (PO) . . . . . . . . . . . . . . . . . . . . . . . ..s.2 -12
XJFAC’i’ (CON) 2-19, 5-10, 10-5, 56, C-10
XJTOL (CON) , . . . . . . . . . . . . . . ..5-10. C-l0
XMAX ,., . . . . . . . . . . . . . . . . . . . . ..4-4 .lk33
XMAX (CON) . . . . . . . . . . . . . . . . ..5-10. C-9
XMAX (REG) . . . . . . ..2-7, 16, 17, 18, 10-4
XMIN 0. . . . . . . . . . . . . . . . . . . . . . . ..44.
10-33
XMIN (CON) ., . . . . . . . . . . . . . . . ..5-10. C-9
XMIN(REG)
,.., . . . . . . . . . ..2-7 .17.10-43
XOA. .,. ,.,, ... . . . . . . . . . . . . . . . . . ..5-i6.
18
XORG (CON) . . . . . . . . . . . . . . . . . . ..5-86 C-6
XREG1 (REC) ..2-7, 16, 17, 18, 10-17, 18,
10-23, 48, 53
XREG2 (REG) ..2-7, 16, 17, l!, 10-23, 48,
10-53
Y(Po)
. . ..m! . . . . . . . ..m . . ..o . . . . . . ..l.2-12
Yo(r~o)
l..l . . . . . . . . ..o.l . . . . . . . . . . . ..2-12
YMAX,.
,..,...
I.,., !.!, . . . ..4-4 .10-3. 33
YMAX (CON)
.,,. ),, . . . . ..2-8 .$-1 O. C-9
YMAX(REG)
, . . . . . . . . . . ..2-15 .16.17.18
YMIN
., . . . . . . . . . . . . . . . . . . . . . . ..44.
1K33
., . . . . . . . . . . . ..9-10.
ll. C-9
YMIN(REG)
. .,. ..,.. .,.. ,.2-7,17,10-43
YOA ,,, . . . . . . . . . . . . . . . . . . . . . . . ...516.18
YORG (CON) .,, . . . . . . . . . . . . . . . ..5-8 .f~-7
YREGl
., . . . . . . . . . . . . . . . . . . . . . . . . ...10
Is
YRECI (m(l)
,. 2-7, 16, 17, 18, 10-17, 18,
10-23, 48, 53
YRIW2 (m(:)
,. ,2-7, 16, 17, 10--23, 48, 53
YMIN
., .,,..................,..8.5-9
INDEX
Codes
(CON)
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.2 Linearized : Yes Creator : cvd2012.tmp Create Date : 1998:09:15 21:34:01 Producer : Acrobat PDFWriter 2.01 for Windows Title : Author : LANL Research Library LWW Project Keywords : LA-UR-87-115 Subject : Modify Date : 1998:09:24 10:40:56 Page Count : 207 Page Mode : UseThumbsEXIF Metadata provided by EXIF.tools