Spice 3f3 Users Manual
Spice_3f3_Users_Manual
Spice_3f3_Users_Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 146
Download | |
Open PDF In Browser | View PDF |
SPICE3 Version 3f3 User’s Manual May, 1993 T. Quarles A.R.Newton, D.O.Pederson, A.Sangiovanni-Vincentelli Department of Electrical Engineering and Computer Sciences University of California Berkeley, Ca., 94720 Copyright 1990, 1991, 1992, 1993 Regents of the University of California. All rights reserved. This manual may be reproduced in whole or in part without permission for any purpose other than resale for profit, if this copyright notice is included; personal, educational, or internal business use is specifically permitted as long as the copyright notice is preserved. TABLE OF CONTENTS Release Notes ............................................................................................................................. 1. INTRODUCTION ...................................................................................................................... 1. TYPES OF ANALYSIS ....................................................................................................... 1. DC Analysis ................................................................................................................. 2. AC Small-Signal Analysis ............................................................................................ 3. Transient Analysis ........................................................................................................ 4. Pole-Zero Analysis ....................................................................................................... 5. Small-Signal Distortion Analysis ................................................................................. 6. Sensitivity Analysis ...................................................................................................... 7. Noise Analysis .............................................................................................................. 2. ANALYSIS AT DIFFERENT TEMPERATURES ............................................................. 3. CONVERGENCE ................................................................................................................ 2. CIRCUIT DESCRIPTION ........................................................................................................ 1. GENERAL STRUCTURE AND CONVENTIONS ............................................................ 2. TITLE LINE, COMMENT LINES AND .END LINE ........................................................ 1. Title Line ...................................................................................................................... 2. .END Line .................................................................................................................... 3. Comments ..................................................................................................................... 3. DEVICE MODELS .............................................................................................................. 4. SUBCIRCUITS .................................................................................................................... 1. .SUBCKT Line ............................................................................................................. 2. .ENDS Line .................................................................................................................. 3. Subcircuit Calls ............................................................................................................ 5. COMBINING FILES: .INCLUDE LINES .......................................................................... 3. CIRCUIT ELEMENTS AND MODELS ................................................................................. 1. ELEMENTARY DEVICES ................................................................................................. 1. Resistors ....................................................................................................................... 2. Semiconductor Resistors .............................................................................................. 3. Semiconductor Resistor Model (R) .............................................................................. 4. Capacitors ..................................................................................................................... 5. Semiconductor Capacitors ............................................................................................ 6. Semiconductor Capacitor Model (C) ........................................................................... 7. Inductors ....................................................................................................................... 8. Coupled (Mutual) Inductors ......................................................................................... 9. Switches ....................................................................................................................... 10. Switch Model (SW/CSW) ............................................................................................ 2. VOLTAGE AND CURRENT SOURCES ........................................................................... 1. Independent Sources .................................................................................................... 1. Pulse ..................................................................................................................... ix 1 1 1 2 2 2 2 3 3 4 6 7 7 8 8 8 8 9 10 10 10 11 12 13 13 13 13 14 15 15 16 16 17 17 18 19 19 20 Spice3 User´s Manual 2. Sinusoidal ............................................................................................................. 3. Exponential ........................................................................................................... 4. Piece-Wise Linear ................................................................................................ 5. Single-Frequency FM ........................................................................................... 2. Linear Dependent Sources ........................................................................................... 1. Linear Voltage-Controlled Current Sources ........................................................ 2. Linear Voltage-Controlled Voltage Sources ........................................................ 3. Linear Current-Controlled Current Sources ......................................................... 4. Linear Current-Controlled Voltage Sources ........................................................ 3. Non-linear Dependent Sources .................................................................................... 3. TRANSMISSION LINES .................................................................................................... 1. Lossless Transmission Lines ........................................................................................ 2. Lossy Transmission Lines ............................................................................................ 3. Lossy Transmission Line Model (LTRA) .................................................................... 4. Uniform Distributed RC Lines (Lossy) ........................................................................ 5. Uniform Distributed RC Model (URC) ....................................................................... 4. TRANSISTORS AND DIODES .......................................................................................... 1. Junction Diodes ............................................................................................................ 2. Diode Model (D) .......................................................................................................... 3. Bipolar Junction Transistors (BJTs) ............................................................................. 4. BJT Models (NPN/PNP) .............................................................................................. 5. Junction Field-Effect Transistors (JFETs) ................................................................... 6. JFET Models (NJF/PJF) ............................................................................................... 7. MOSFETs ..................................................................................................................... 8. MOSFET Models (NMOS/PMOS) .............................................................................. 9. MESFETs ..................................................................................................................... 10. MESFET Models (NMF/PMF) .................................................................................... 4. ANALYSES AND OUTPUT CONTROL ................................................................................ 1. SIMULATOR VARIABLES (.OPTIONS) .......................................................................... 2. INITIAL CONDITIONS ...................................................................................................... 1. .NODESET: Specify Initial Node Voltage Guesses ................................................... 2. .IC: Set Initial Conditions ............................................................................................ 3. ANALYSES ......................................................................................................................... 1. .AC: Small-Signal AC Analysis .................................................................................. 2. .DC: DC Transfer Function ......................................................................................... 3. .DISTO: Distortion Analysis ....................................................................................... 4. .NOISE: Noise Analysis .............................................................................................. 5. .OP: Operating Point Analysis .................................................................................... 6. .PZ: Pole-Zero Analysis .............................................................................................. 7. .SENS: DC or Small-Signal AC Sensitivity Analysis ................................................. 8. .TF: Transfer Function Analysis ................................................................................. 9. .TRAN: Transient Analysis ......................................................................................... Spice3f User´s Manual 21 21 22 23 23 24 24 24 25 25 27 27 27 28 29 30 31 31 32 33 33 35 36 37 38 43 43 45 45 49 49 49 50 50 50 51 52 53 53 54 54 55 iii Spice3 User´s Manual 4. BATCH OUTPUT ................................................................................................................ 1. .SAVE Lines ................................................................................................................. 2. .PRINT Lines ............................................................................................................... 3. .PLOT Lines ................................................................................................................. 4. .FOUR: Fourier Analysis of Transient Analysis Output ............................................. 5. INTERACTIVE INTERPRETER ............................................................................................ 1. EXPRESSIONS, FUNCTIONS, AND CONSTANTS ........................................................ 2. COMMAND INTERPRETATION ...................................................................................... 3. COMMANDS ...................................................................................................................... 1. Ac*: Perform an AC, small-signal frequency response analysis ................................. 2. Alias: Create an alias for a command ......................................................................... 3. Alter*: Change a device or model parameter .............................................................. 4. Asciiplot: Plot values using old-style character plots ................................................. 5. Aspice: Asynchronous spice run .................................................................................. 6. Bug: Mail a bug report ................................................................................................ 7. Cd: Change directory ................................................................................................... 8. Destroy: Delete a data set ............................................................................................. 9. Dc*: Perform a DC-sweep analysis ............................................................................. 10. Define: Define a function ............................................................................................ 11. Delete*: Remove a trace or breakpoint ........................................................................ 12. Diff: Compare vectors ................................................................................................. 13. Display: List known vectors and types ....................................................................... 14. Echo: Print text ............................................................................................................ 15. Edit*: Edit the current circuit ....................................................................................... 16. Fourier: Perform a fourier transform ............................................................................ 17. Hardcopy: Save a plot to a file for printing ................................................................. 18. Help: Print summaries of Spice3 commands .............................................................. 19. History: Review previous commands ......................................................................... 20. Iplot*: Incremental plot ................................................................................................ 21. Jobs: List active asynchronous spice runs ................................................................... 22. Let: Assign a value to a vector .................................................................................... 23. Linearize*: Interpolate to a linear scale ...................................................................... 24. Listing*: Print a listing of the current circuit ............................................................... 25. Load: Load rawfile data .............................................................................................. 26. Op*: Perform an operating point analysis .................................................................... 27. Plot: Plot values on the display .................................................................................... 28. Print: Print values ........................................................................................................ 29. Quit: Leave Spice3 or Nutmeg .................................................................................... 30. Rehash: Reset internal hash tables ............................................................................... 31. Reset*: Reset an analysis ............................................................................................. 32. Reshape: Alter the dimensionality or dimensions of a vector ...................................... 33. Resume*: Continue a simulation after a stop ............................................................... iv User´s Manual 56 56 56 57 58 59 60 64 65 65 65 65 66 66 66 66 67 67 67 68 68 68 68 69 69 69 70 70 70 70 70 71 71 71 72 72 72 73 73 73 74 74 Spice3f Spice3 User´s Manual 34. Rspice: Remote spice submission ............................................................................... 35. Run*: Run analysis from the input file ........................................................................ 36. Rusage: Resource usage ............................................................................................... 37. Save*: Save a set of outputs ........................................................................................ 38. Sens*: Run a sensitivity analysis ................................................................................. 39. Set: Set the value of a variable .................................................................................... 40. Setcirc*: Change the current circuit ............................................................................. 41. Setplot: Switch the current set of vectors .................................................................... 42. Settype: Set the type of a vector .................................................................................. 43. Shell: Call the command interpreter ............................................................................ 44. Shift: Alter a list variable ............................................................................................ 45. Show*: List device state ............................................................................................... 46. Showmod*: List model parameter values .................................................................... 47. Source: Read a Spice3 input file ................................................................................. 48. Status*: Display breakpoint information ...................................................................... 49. Step*: Run a fixed number of timepoints .................................................................... 50. Stop*: Set a breakpoint ............................................................................................... 51. Tf*: Run a Transfer Function analysis ......................................................................... 52. Trace*: Trace nodes ..................................................................................................... 53. Tran*: Perform a transient analysis .............................................................................. 54. Transpose: Swap the elements in a multi-dimensional data set ................................... 55. Unalias: Retract an alias .............................................................................................. 56. Undefine: Retract a definition ..................................................................................... 57. Unset: Clear a variable ................................................................................................ 58. Version: Print the version of Spice ............................................................................. 59. Where: Identify troublesome node or device .............................................................. 60. Write: Write data to a file ............................................................................................. 61. Xgraph: use the xgraph(1) program for plotting. ......................................................... 4. CONTROL STRUCTURES ................................................................................................. 1. While — End ................................................................................................................ 2. Repeat — End .............................................................................................................. 3. Dowhile — End ............................................................................................................ 4. Foreach — End ............................................................................................................. 5. If — Then — Else ........................................................................................................ 6. Label ............................................................................................................................. 7. Goto .............................................................................................................................. 8. Continue ....................................................................................................................... 9. Break ............................................................................................................................ 5. VARIABLES ....................................................................................................................... 6. MISCELLANEOUS ............................................................................................................. 7. BUGS ................................................................................................................................... 6. BIBLIOGRAPHY ...................................................................................................................... Spice3f User´s Manual 74 75 76 77 77 77 78 78 78 78 79 79 80 80 80 81 81 81 82 82 82 83 83 83 83 84 84 84 85 85 85 85 86 86 86 87 87 87 88 92 94 97 v Spice3 User´s Manual A. APPENDIX A: EXAMPLE CIRCUITS ................................................................................... 1. Circuit 1: Differential Pair ................................................................................................... 2. Circuit 2: MOSFET Characterization ................................................................................. 3. Circuit 3: RTL Inverter ....................................................................................................... 4. Circuit 4: Four-Bit Binary Adder ........................................................................................ 5. Circuit 5: Transmission-Line Inverter ................................................................................. B. APPENDIX B: MODEL AND DEVICE PARAMETERS ..................................................... 1. URC: Uniform R.C. line ...................................................................................................... 2. ASRC: Arbitrary Source .................................................................................................... 3. BJT: Bipolar Junction Transistor ........................................................................................ 4. BSIM1: Berkeley Short Channel IGFET Model ................................................................. 5. BSIM2: Berkeley Short Channel IGFET Model ................................................................. 6. Capacitor: Fixed capacitor .................................................................................................. 7. CCCS: Current controlled current source ........................................................................... 8. CCVS: Linear current controlled current source ................................................................ 9. CSwitch: Current controlled ideal switch ........................................................................... 10. Diode: Junction Diode model .............................................................................................. 11. Inductor: Inductors .............................................................................................................. 12. mutual: Mutual inductors .................................................................................................... 13. Isource: Independent current source ................................................................................... 14. JFET: Junction Field effect transistor ................................................................................. 15. LTRA: Lossy transmission line ........................................................................................... 16. MES: GaAs MESFET model .............................................................................................. 17. Mos1: Level 1 MOSfet model with Meyer capacitance model .......................................... 18. Mos2: Level 2 MOSfet model with Meyer capacitance model .......................................... 19. Mos3: Level 3 MOSfet model with Meyer capacitance model .......................................... 20. Mos6: Level 6 MOSfet model with Meyer capacitance model .......................................... 21. Resistor: Simple linear resistor ........................................................................................... 22. Switch: Ideal voltage controlled switch .............................................................................. 23. Tranline: Lossless transmission line ................................................................................... 24. VCCS: Voltage controlled current source ........................................................................... 25. VCVS: Voltage controlled voltage source .......................................................................... 26. Vsource: Independent voltage source ................................................................................. 99 99 99 100 100 102 103 104 104 105 108 110 114 115 115 115 116 117 118 118 119 120 121 123 126 129 132 135 135 136 137 137 138 vi Spice3f User´s Manual Spice3 User´s Manual RELEASE NOTES Spice3f is the six major release of Spice3. This release incorporates new features not available in Spice 3c or 3d, as well as several performance improvements. All of the features described here are believed to be fully functional. The development of SPICE and its algorithms is ongoing at Berkeley, and therefore not all of the intended capabilities of the program have been implemented in full yet. Bugs in 3f2 fixed in 3f3: Ascii (printer) plots in spice3f2 did not print bode plots vs log of the frequency by default, as in spice2. You had to explicity request the x-axis to be log; either "plot vdb(2) xlog" (best) or "plot vdb(2) vs log10(frequency)" will do. Now simply "plot vdb(2)" will work. The on-line documentation has been brought up to date by converting this manual into a format readable on-line. Significant problems with AC sensitivities in 3f2 only have been fixed. Multiple analyses and plots in spice2 emulation mode under 3f2 and earlier generated misleading error messages. This no longer happens in 3f3. New features and bug fixes incorporated in Spice3f (the current release of Spice3): Sensitivity analysis. Added a parameter for fitting JFET models (parameter "B"). Fixed a discontinuity problem in MOS level 3 (related to the "kappa" parameter). Working "alter" command. Improved "show" and "showmod" commands for operating point summary tables (like Spice2). Working "trace" command. Interactive "set" variable values now the same as ".options" settings. Improved plotting, including implicitly transforming data for smith plots. Added the function "deriv( )" (derivative) to the front-end. Corrected an error affecting the specified initial conditions for some circuits. Small signal behaviour of non-linear dependant sources fixed. Miscellaneous bug fixes in the front end. New features and bug fixes incorporated in Spice3e (the previous release of Spice3): Lossy Transmission Lines. Proper calculation of sheet resistance in the MOS models. A new command ("where") to aid in debugging troublesome circuits. Smith-chart plots working (see the "plot" command). Arbitrary sources in subcircuits handled correctly. Arbitrary source reciprocal calculations and DC biasing fixed. Minor bug-fixes to the Pole-Zero analysis. Miscellaneous bug fixes in the front end. Some common problems remaining in Spice3f (note that this list is not complete): Models defined within subcircuits are not always handled correctly. If you have trouble, move the model definition outside of ".subckt" and ".ends" lines. Spice3f User´s Manual vii Spice3 User´s Manual Batch run data is not compacted if a "rawspice" data file is generated, resulting in excessively large output files for some difficult inputs. Sufficient detail is sometimes not preserved in transient analysis. Providing a small value for the "TMAX" parameter (the fourth argument) in the transient run command will solve this problem. Convergence problems can sometimes be worked around by relaxing the transient "TMAX" parameter. The substrate node of the bipolar transistor (BJT) is modelled incorrectly (this may actually be due to inherant numerical problems with the model). Do not use the substrate node; use a semiconductor capacitor to model substrate effects. Charge is not conserved in MOS devices based on the Meyer model. Transient simulation of strictly resistive circuits (typical for first runs or tests) allow a time step that is too large (e.g. a sinusoidal source driving a resistor). There is no integration error to restrict the time step. Use the "TMAX" parameter or include reactive elements. Deep nesting of subcircuits may exceed internal static buffers. The PZ analysis can not be interrupted; the sensitivity analysis can not be continued (the interactive "resume" command) once interrupted. There are many other small bugs, particularly in the front end. Bug reporting: Please send bug reports or suggested enhancements to Spice3 via electronic mail to: spice@Berkeley.EDU (Internet) ucbvax!spice (UUCP-net) or by physical mail to "Spice3 Bug Report" at: EECS/ERL Industrial Support Office 205 Cory Hall U.C. Berkeley Berkeley, CA 94720 Information on ordering Spice3 or other software distributed through the EECS/ERL Industrial Support Office should be directed to the above physical mail address or to "ilpsoftware@berkeley.edu" via electronic mail. Include the version of Spice used, the system type and operating system version, the smallest input file demonstrating the problem, and the resulting (incorrect) output. viii User´s Manual Spice3f 1. INTRODUCTION SPICE is a general-purpose circuit simulation program for nonlinear dc, nonlinear transient, and linear ac analyses. Circuits may contain resistors, capacitors, inductors, mutual inductors, independent voltage and current sources, four types of dependent sources, lossless and lossy transmission lines (two separate implementations), switches, uniform distributed RC lines, and the five most common semiconductor devices: diodes, BJTs, JFETs, MESFETs, and MOSFETs. The SPICE3 version is based directly on SPICE 2G.6. While SPICE3 is being developed to include new features, it continues to support those capabilities and models which remain in extensive use in the SPICE2 program. SPICE has built-in models for the semiconductor devices, and the user need specify only the pertinent model parameter values. The model for the BJT is based on the integral-charge model of Gummel and Poon; however, if the Gummel- Poon parameters are not specified, the model reduces to the simpler Ebers-Moll model. In either case, charge-storage effects, ohmic resistances, and a current-dependent output conductance may be included. The diode model can be used for either junction diodes or Schottky barrier diodes. The JFET model is based on the FET model of Shichman and Hodges. Six MOSFET models are implemented: MOS1 is described by a square-law I-V characteristic, MOS2 [1] is an analytical model, while MOS3 [1] is a semi-empirical model; MOS6 [2] is a simple analytic model accurate in the shortchannel region; MOS4 [3, 4] and MOS5 [5] are the BSIM (Berkeley Short-channel IGFET Model) and BSIM2. MOS2, MOS3, and MOS4 include second-order effects such as channel-length modulation, subthreshold conduction, scattering-limited velocity saturation, small-size effects, and charge-controlled capacitances. 1.1. TYPES OF ANALYSIS 1.1.1. DC Analysis The dc analysis portion of SPICE determines the dc operating point of the circuit with inductors shorted and capacitors opened. The dc analysis options are specified on the .DC, .TF, and .OP control lines. A dc analysis is automatically performed prior to a transient analysis to determine the transient initial conditions, and prior to an ac small-signal analysis to determine the linearized, small-signal models for nonlinear devices. If requested, the dc small-signal value of a transfer function (ratio of output variable to input source), input resistance, and output resistance is also computed as a part of the dc solution. The dc analysis can also be used to generate dc transfer curves: a specified independent voltage or current source is stepped over a user-specified range and the dc output variables are stored for each sequential source value. §1.1.1 INTRODUCTION: TYPES OF ANALYSIS 1.1.2. AC Small-Signal Analysis The ac small-signal portion of SPICE computes the ac output variables as a function of frequency. The program first computes the dc operating point of the circuit and determines linearized, small-signal models for all of the nonlinear devices in the circuit. The resultant linear circuit is then analyzed over a user-specified range of frequencies. The desired output of an ac small- signal analysis is usually a transfer function (voltage gain, transimpedance, etc). If the circuit has only one ac input, it is convenient to set that input to unity and zero phase, so that output variables have the same value as the transfer function of the output variable with respect to the input. 1.1.3. Transient Analysis The transient analysis portion of SPICE computes the transient output variables as a function of time over a user-specified time interval. The initial conditions are automatically determined by a dc analysis. All sources which are not time dependent (for example, power supplies) are set to their dc value. The transient time interval is specified on a .TRAN control line. 1.1.4. Pole-Zero Analysis The pole-zero analysis portion of SPICE computes the poles and/or zeros in the small-signal ac transfer function. The program first computes the dc operating point and then determines the linearized, small-signal models for all the nonlinear devices in the circuit. This circuit is then used to find the poles and zeros of the transfer function. Two types of transfer functions are allowed : one of the form (output voltage)/(input voltage) and the other of the form (output voltage)/(input current). These two types of transfer functions cover all the cases and one can find the poles/zeros of functions like input/output impedance and voltage gain. The input and output ports are specified as two pairs of nodes. The pole-zero analysis works with resistors, capacitors, inductors, linear-controlled sources, independent sources, BJTs, MOSFETs, JFETs and diodes. Transmission lines are not supported. The method used in the analysis is a sub-optimal numerical search. For large circuits it may take a considerable time or fail to find all poles and zeros. For some circuits, the method becomes "lost" and finds an excessive number of poles or zeros. 1.1.5. Small-Signal Distortion Analysis The distortion analysis portion of SPICE computes steady-state harmonic and intermodulation products for small input signal magnitudes. If signals of a single frequency are specified as the input to the 2 User´s Manual Spice3f INTRODUCTION: TYPES OF ANALYSIS §1.1.5 circuit, the complex values of the second and third harmonics are determined at every point in the circuit. If there are signals of two frequencies input to the circuit, the analysis finds out the complex values of the circuit variables at the sum and difference of the input frequencies, and at the difference of the smaller frequency from the second harmonic of the larger frequency. Distortion analysis is supported for the following nonlinear devices: diodes (DIO), BJT, JFET, MOSFETs (levels 1, 2, 3, 4/BSIM1, 5/BSIM2, and 6) and MESFETS. All linear devices are automatically supported by distortion analysis. If there are switches present in the circuit, the analysis continues to be accurate provided the switches do not change state under the small excitations used for distortion calculations. 1.1.6. Sensitivity Analysis Spice3 will calculate either the DC operating-point sensitivity or the AC small-signal sensitivity of an output variable with respect to all circuit variables, including model parameters. Spice calculates the difference in an output variable (either a node voltage or a branch current) by perturbing each parameter of each device independently. Since the method is a numerical approximation, the results may demonstrate second order affects in highly sensitive parameters, or may fail to show very low but non-zero sensitivity. Further, since each variable is perturb by a small fraction of its value, zero-valued parameters are not analyized (this has the benefit of reducing what is usually a very large amount of data). 1.1.7. Noise Analysis The noise analysis portion of SPICE does analysis device-generated noise for the given circuit. When provided with an input source and an output port, the analysis calculates the noise contributions of each device (and each noise generator within the device) to the output port voltage. It also calculates the input noise to the circuit, equivalent to the output noise referred to the specified input source. This is done for every frequency point in a specified range - the calculated value of the noise corresponds to the spectral density of the circuit variable viewed as a stationary gaussian stochastic process. After calculating the spectral densities, noise analysis integrates these values over the specified frequency range to arrive at the total noise voltage/current (over this frequency range). This calculated value corresponds to the variance of the circuit variable viewed as a stationary gaussian process. Spice3f User´s Manual 3 §1.2 INTRODUCTION: ANALYSIS AT DIFFERENT TEMPERATURES 1.2. ANALYSIS AT DIFFERENT TEMPERATURES All input data for SPICE is assumed to have been measured at a nominal temperature of 27°C, which can be changed by use of the TNOM parameter on the .OPTION control line. This value can further be overridden for any device which models temperature effects by specifying the TNOM parameter on the model itself. The circuit simulation is performed at a temperature of 27°C, unless overridden by a TEMP parameter on the .OPTION control line. Individual instances may further override the circuit temperature through the specification of a TEMP parameter on the instance. Temperature dependent support is provided for resistors, diodes, JFETs, BJTs, and level 1, 2, and 3 MOSFETs. BSIM (levels 4 and 5) MOSFETs have an alternate temperature dependency scheme which adjusts all of the model parameters before input to SPICE. For details of the BSIM temperature adjustment, see [6] and [7]. Temperature appears explicitly in the exponential terms of the BJT and diode model equations. In addition, saturation currents have a built-in temperature dependence. The temperature dependence of the saturation current in the BJT models is determined by: IS(T1) = IS(T0) I J L T1 T0 hhh M XTI I E q(T T ) M g 1 0 exp J hhhhhhhhhh J k (T − T0) O 1 L J O where k is Boltzmann’s constant, q is the electronic charge, EG is the energy gap which is a model parameter, and XTI is the saturation current temperature exponent (also a model parameter, and usually equal to 3). The temperature dependence of forward and reverse beta is according to the formula: β(T1) = β(T0) I J L T1 T0 hhh M XTB J O where T1 and T0 are in degrees Kelvin, and XTB is a user-supplied model parameter. Temperature effects on beta are carried out by appropriate adjustment to the values of βF, ISE, βR, and ISC (spice model parameters BF, ISE, BR, and ISC, respectively). Temperature dependence of the saturation current in the junction diode model is determined by: IS(T1) = IS(T0) I J L T1 T0 hhh M J O XTI N hhhh I Egq(T1 T0) M exp J hhhhhhhhhhhh J N k (T1 − T0) O L where N is the emission coefficient, which is a model parameter, and the other symbols have the same meaning as above. Note that for Schottky barrier diodes, the value of the saturation current temperature exponent, XTI, is usually 2. 4 User´s Manual Spice3f INTRODUCTION: ANALYSIS AT DIFFERENT TEMPERATURES §1.2 Temperature appears explicitly in the value of junction potential, φ (in spice PHI), for all the device models. The temperature dependence is determined by: φ(T) = I N N kT a d loge J hhhhhh2 q N (T) L i hhh M J O where k is Boltzmann’s constant, q is the electronic charge, Na is the acceptor impurity density, Nd is the donor impurity density, Ni is the intrinsic carrier concentration, and Eg is the energy gap. Temperature appears explicitly in the value of surface mobility, µ0 (or UO), for the MOSFET model. The temperature dependence is determined by: µ0(T) = µ0(T0) hhhhhhhh I J L T T0 hhh M 1.5 J O The effects of temperature on resistors is modeled by the formula: R(T) = R(T0) [1 + TC1 (T − T0) + TC2 (T − T0)2] where T is the circuit temperature, T0 is the nominal temperature, and TC1 and TC2 are the first- and second-order temperature coefficients. Spice3f User´s Manual 5 §1.3 INTRODUCTION: CONVERGENCE 1.3. CONVERGENCE Both dc and transient solutions are obtained by an iterative process which is terminated when both of the following conditions hold: 1) The nonlinear branch currents converge to within a tolerance of 0.1% or 1 picoamp (1.0e-12 Amp), whichever is larger. 2) The node voltages converge to within a tolerance of 0.1% or 1 microvolt (1.0e-6 Volt), whichever is larger. Although the algorithm used in SPICE has been found to be very reliable, in some cases it fails to converge to a solution. When this failure occurs, the program terminates the job. Failure to converge in dc analysis is usually due to an error in specifying circuit connections, element values, or model parameter values. Regenerative switching circuits or circuits with positive feedback probably will not converge in the dc analysis unless the OFF option is used for some of the devices in the feedback path, or the .NODESET control line is used to force the circuit to converge to the desired state. 6 User´s Manual Spice3f 2. CIRCUIT DESCRIPTION 2.1. GENERAL STRUCTURE AND CONVENTIONS The circuit to be analyzed is described to SPICE by a set of element lines, which define the circuit topology and element values, and a set of control lines, which define the model parameters and the run controls. The first line in the input file must be the title, and the last line must be ".END". The order of the remaining lines is arbitrary (except, of course, that continuation lines must immediately follow the line being continued). Each element in the circuit is specified by an element line that contains the element name, the circuit nodes to which the element is connected, and the values of the parameters that determine the electrical characteristics of the element. The first letter of the element name specifies the element type. The format for the SPICE element types is given in what follows. The strings XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary alphanumeric strings. For example, a resistor name must begin with the letter R and can contain one or more characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Details of each type of device are supplied in a following section. Fields on a line are separated by one or more blanks, a comma, an equal (’=’) sign, or a left or right parenthesis; extra spaces are ignored. A line may be continued by entering a ’+’ (plus) in column 1 of the following line; SPICE continues reading beginning with column 2. A name field must begin with a letter (A through Z) and cannot contain any delimiters. A number field may be an integer field (12, -44), a floating point field (3.14159), either an integer or floating point number followed by an integer exponent (1e-14, 2.65e3), or either an integer or a floating point number followed by one of the following scale factors: T = 1012 m = 10−3 G = 109 u (or µ) = 10−6 Meg = 106 n = 10−9 K = 103 p = 10−12 mil = 25.4−6 f = 10−15 Letters immediately following a number that are not scale factors are ignored, and letters immediately following a scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz all represent the same number, and M, MA, MSec, and MMhos all represent the same scale factor. Note that 1000, 1000.0, 1000Hz, 1e3, 1.0e3, 1KHz, and 1K all represent the same number. Nodes names may be arbitrary character strings. The datum (ground) node must be named ’0’. Note the difference in SPICE3 where the nodes are treated as character strings and not evaluated as numbers, thus ’0’ and ’00’ are distinct nodes in SPICE3 but not in SPICE2. The circuit cannot contain a loop of voltage sources and/or inductors and cannot contain a cut-set of current sources and/or capacitors. Each node in the circuit must have a dc path to ground. Every node must have at least two connections except for transmission line nodes (to permit unterminated transmission lines) and MOSFET substrate nodes (which have two internal connections anyway). Spice3f User´s Manual 7 §2.1 CIRCUIT DESCRIPTION: GENERAL STRUCTURE AND CONVENTIONS 2.2. TITLE LINE, COMMENT LINES AND .END LINE 2.2.1. Title Line Examples: POWER AMPLIFIER CIRCUIT TEST OF CAM CELL The title line must be the first in the input file. Its contents are printed verbatim as the heading for each section of output. 2.2.2. .END Line Examples: .END The "End" line must always be the last in the input file. Note that the period is an integral part of the name. 2.2.3. Comments General Form: *Examples: * RF=1K Gain should be 100 * Check open-loop gain and phase margin The asterisk in the first column indicates that this line is a comment line. Comment lines may be placed anywhere in the circuit description. Note that SPICE3 also considers any line with leading white space to be a comment. 8 User´s Manual Spice3f CIRCUIT DESCRIPTION: DEVICE MODELS §2.3 2.3. DEVICE MODELS General form: .MODEL MNAME TYPE(PNAME1=PVAL1 PNAME2=PVAL2 ... ) Examples: .MODEL MOD1 NPN (BF=50 IS=1E-13 VBF=50) Most simple circuit elements typically require only a few parameter values. However, some devices (semiconductor devices in particular) that are included in SPICE require many parameter values. Often, many devices in a circuit are defined by the same set of device model parameters. For these reasons, a set of device model parameters is defined on a separate .MODEL line and assigned a unique model name. The device element lines in SPICE then refer to the model name. For these more complex device types, each device element line contains the device name, the nodes to which the device is connected, and the device model name. In addition, other optional parameters may be specified for some devices: geometric factors and an initial condition (see the following section on Transistors and Diodes for more details). MNAME in the above is the model name, and type is one of the following fifteen types: R C SW CSW URC LTRA D NPN PNP NJF PJF NMOS PMOS NMF PMF Semiconductor resistor model Semiconductor capacitor model Voltage controlled switch Current controlled switch Uniform distributed RC model Lossy transmission line model Diode model NPN BJT model PNP BJT model N-channel JFET model P-channel JFET model N-channel MOSFET model P-channel MOSFET model N-channel MESFET model P-channel MESFET model Parameter values are defined by appending the parameter name followed by an equal sign and the parameter value. Model parameters that are not given a value are assigned the default values given below for each model type. Models, model parameters, and default values are listed in the next section along with the description of device element lines. Spice3f User´s Manual 9 §2.4 CIRCUIT DESCRIPTION: SUBCIRCUITS 2.4. SUBCIRCUITS A subcircuit that consists of SPICE elements can be defined and referenced in a fashion similar to device models. The subcircuit is defined in the input file by a grouping of element lines; the program then automatically inserts the group of elements wherever the subcircuit is referenced. There is no limit on the size or complexity of subcircuits, and subcircuits may contain other subcircuits. An example of subcircuit usage is given in Appendix A. 2.4.1. .SUBCKT Line General form: .SUBCKT subnam N1 Examples: .SUBCKT OPAMP 1 2 3 4 A circuit definition is begun with a .SUBCKT line. SUBNAM is the subcircuit name, and N1, N2, ... are the external nodes, which cannot be zero. The group of element lines which immediately follow the .SUBCKT line define the subcircuit. The last line in a subcircuit definition is the .ENDS line (see below). Control lines may not appear within a subcircuit definition; however, subcircuit definitions may contain anything else, including other subcircuit definitions, device models, and subcircuit calls (see below). Note that any device models or subcircuit definitions included as part of a subcircuit definition are strictly local (i.e., such models and definitions are not known outside the subcircuit definition). Also, any element nodes not included on the .SUBCKT line are strictly local, with the exception of 0 (ground) which is always global. 2.4.2. .ENDS Line General form: .ENDS Examples: .ENDS OPAMP The "Ends" line must be the last one for any subcircuit definition. The subcircuit name, if included, indicates which subcircuit definition is being terminated; if omitted, all subcircuits being defined are terminated. The name is needed only when nested subcircuit definitions are being made. 10 User´s Manual Spice3f CIRCUIT DESCRIPTION: SUBCIRCUITS §2.4.3 2.4.3. Subcircuit Calls General form: XYYYYYYY N1 SUBNAM Examples: X1 2 4 17 3 1 MULTI Subcircuits are used in SPICE by specifying pseudo-elements beginning with the letter X, followed by the circuit nodes to be used in expanding the subcircuit. Spice3f User´s Manual 11 §2.5 CIRCUIT DESCRIPTION: COMBINING FILES: .INCLUDE LINES 2.5. COMBINING FILES: .INCLUDE LINES General form: .INCLUDE filename Examples: .INCLUDE /users/spice/common/wattmeter.cir Frequently, portions of circuit descriptions will be reused in several input files, particularly with common models and subcircuits. In any spice input file, the ".include" line may be used to copy some other file as if that second file appeared in place of the ".include" line in the original file. There is no restriction on the file name imposed by spice beyond those imposed by the local operating system. 12 User´s Manual Spice3f 3. CIRCUIT ELEMENTS AND MODELS Data fields that are enclosed in less-than and greater-than signs (’< >’) are optional. All indicated punctuation (parentheses, equal signs, etc.) is optional but indicate the presence of any delimiter. Further, future implementations may require the punctuation as stated. A consistent style adhering to the punctuation shown here makes the input easier to understand. With respect to branch voltages and currents, SPICE uniformly uses the associated reference convention (current flows in the direction of voltage drop). 3.1. ELEMENTARY DEVICES 3.1.1. Resistors General form: RXXXXXXX N1 N2 VALUE Examples: R1 1 2 100 RC1 12 17 1K N1 and N2 are the two element nodes. VALUE is the resistance (in ohms) and may be positive or negative but not zero. 3.1.2. Semiconductor Resistors General form: RXXXXXXX N1 N2 Examples: RLOAD 2 10 10K RMOD 3 7 RMODEL L=10u W=1u This is the more general form of the resistor presented in section 6.1, and allows the modeling of temperature effects and for the calculation of the actual resistance value from strictly geometric information and the specifications of the process. If VALUE is specified, it overrides the geometric information and defines the resistance. If MNAME is specified, then the resistance may be calculated from the process information in the model MNAME and the given LENGTH and WIDTH. If VALUE is not specified, then MNAME and LENGTH must be specified. If WIDTH is not specified, then it is taken from the default Spice3f User´s Manual 13 §3.1.2 CIRCUIT ELEMENTS AND MODELS: ELEMENTARY DEVICES width given in the model. The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line. 3.1.3. Semiconductor Resistor Model (R) The resistor model consists of process-related device data that allow the resistance to be calculated from geometric information and to be corrected for temperature. The parameters available are: name parameter units default example TC1 TC2 RSH DEFW NARROW TNOM first order temperature coeff. second order temperature coeff. sheet resistance default width narrowing due to side etching parameter measurement temperature Ω/°C Ω/°C2 Ω/` meters meters °C 0.0 0.0 1e-6 0.0 27 50 2e-6 1e-7 50 The sheet resistance is used with the narrowing parameter and L and W from the resistor device to determine the nominal resistance by the formula L − NARROW R = RSH hhhhhhhhhhhhhh W − NARROW DEFW is used to supply a default value for W if one is not specified for the device. If either RSH or L is not specified, then the standard default resistance value of 1k Ω is used. TNOM is used to override the circuit-wide value given on the .OPTIONS control line where the parameters of this model have been measured at a different temperature. After the nominal resistance is calculated, it is adjusted for temperature by the formula: R(T) = R(T0) [1 + TC1 (T − T0) + TC2 (T−T0)2] 14 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: ELEMENTARY DEVICES §3.1.4 3.1.4. Capacitors General form: CXXXXXXX N+ N- VALUE Examples: CBYP 13 0 1UF COSC 17 23 10U IC=3V N+ and N- are the positive and negative element nodes, respectively. VALUE is the capacitance in Farads. The (optional) initial condition is the initial (time-zero) value of capacitor voltage (in Volts). Note that the initial conditions (if any) apply ’only’ if the UIC option is specified on the .TRAN control line. 3.1.5. Semiconductor Capacitors General form: CXXXXXXX N1 N2 Examples: CLOAD 2 10 10P CMOD 3 7 CMODEL L=10u W=1u This is the more general form of the Capacitor presented in section 6.2, and allows for the calculation of the actual capacitance value from strictly geometric information and the specifications of the process. If VALUE is specified, it defines the capacitance. If MNAME is specified, then the capacitance is calculated from the process information in the model MNAME and the given LENGTH and WIDTH. If VALUE is not specified, then MNAME and LENGTH must be specified. If WIDTH is not specified, then it is taken from the default width given in the model. Either VALUE or MNAME, LENGTH, and WIDTH may be specified, but not both sets. Spice3f User´s Manual 15 §3.1.6 CIRCUIT ELEMENTS AND MODELS: ELEMENTARY DEVICES 3.1.6. Semiconductor Capacitor Model (C) The capacitor model contains process information that may be used to compute the capacitance from strictly geometric information. name parameter units default example CJ CJSW DEFW NARROW junction bottom capacitance junction sidewall capacitance default device width narrowing due to side etching F/meters2 F/meters meters meters 1e-6 0.0 5e-5 2e-11 2e-6 1e-7 The capacitor has a capacitance computed as CAP = CJ (LENGTH − NARROW) (WIDTH − NARROW) + 2 CJSW (LENGTH + WIDTH − 2 NARROW) 3.1.7. Inductors General form: LYYYYYYY N+ N- VALUE Examples: LLINK 42 69 1UH LSHUNT 23 51 10U IC=15.7MA N+ and N- are the positive and negative element nodes, respectively. VALUE is the inductance in Henries. The (optional) initial condition is the initial (time-zero) value of inductor current (in Amps) that flows from N+, through the inductor, to N-. Note that the initial conditions (if any) apply only if the UIC option is specified on the .TRAN analysis line. 16 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: ELEMENTARY DEVICES §3.1.8 3.1.8. Coupled (Mutual) Inductors General form: KXXXXXXX LYYYYYYY LZZZZZZZ VALUE Examples: K43 LAA LBB 0.999 KXFRMR L1 L2 0.87 LYYYYYYY and LZZZZZZZ are the names of the two coupled inductors, and VALUE is the coefficient of coupling, K, which must be greater than 0 and less than or equal to 1. Using the ’dot’ convention, place a ’dot’ on the first node of each inductor. 3.1.9. Switches General form: SXXXXXXX N+ N- NC+ NC- MODEL WYYYYYYY N+ N- VNAM MODEL Examples: s1 1 2 3 4 switch1 ON s2 5 6 3 0 sm2 off Switch1 1 2 10 0 smodel1 w1 1 2 vclock switchmod1 W2 3 0 vramp sm1 ON wreset 5 6 vclck lossyswitch OFF Nodes 1 and 2 are the nodes between which the switch terminals are connected. The model name is mandatory while the initial conditions are optional. For the voltage controlled switch, nodes 3 and 4 are the positive and negative controlling nodes respectively. For the current controlled switch, the controlling current is that through the specified voltage source. The direction of positive controlling current flow is from the positive node, through the source, to the negative node. Spice3f User´s Manual 17 §3.1.10 CIRCUIT ELEMENTS AND MODELS: ELEMENTARY DEVICES 3.1.10. Switch Model (SW/CSW) The switch model allows an almost ideal switch to be described in SPICE. The switch is not quite ideal, in that the resistance can not change from 0 to infinity, but must always have a finite positive value. By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements. The parameters available are: name parameter units default switch VT IT VH IH RON ROFF threshold voltage threshold current hysteresis voltage hysteresis current on resistance off resistance Volts Amps Volts Amps Ω Ω 0.0 0.0 0.0 0.0 1.0 1/GMIN* S W S W both both *(See the .OPTIONS control line for a description of GMIN, its default value results in an offresistance of 1.0e+12 ohms.) The use of an ideal element that is highly nonlinear such as a switch can cause large discontinuities to occur in the circuit node voltages. A rapid change such as that associated with a switch changing state can cause numerical roundoff or tolerance problems leading to erroneous results or timestep difficulties. The user of switches can improve the situation by taking the following steps: First, it is wise to set ideal switch impedances just high or low enough to be negligible with respect to other circuit elements. Using switch impedances that are close to "ideal" in all cases aggravates the problem of discontinuities mentioned above. Of course, when modeling real devices such as MOSFETS, the on resistance should be adjusted to a realistic level depending on the size of the device being modeled. If a wide range of ON to OFF resistance must be used in the switches (ROFF/RON >1e+12), then the tolerance on errors allowed during transient analysis should be decreased by using the .OPTIONS control line and specifying TRTOL to be less than the default value of 7.0. When switches are placed around capacitors, then the option CHGTOL should also be reduced. Suggested values for these two options are 1.0 and 1e-16 respectively. These changes inform SPICE3 to be more careful around the switch points so that no errors are made due to the rapid change in the circuit. 18 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: VOLTAGE AND CURRENT SOURCES §3.2 3.2. VOLTAGE AND CURRENT SOURCES 3.2.1. Independent Sources General form: VXXXXXXX N+ N+ DC/TRAN VALUE> >> >> >> < DC/TRAN VALUE> >> >> >> Examples: VCC 10 0 DC 6 VIN 13 2 0.001 AC 1 SIN(0 1 1MEG) ISRC 23 21 AC 0.333 45.0 SFFM(0 1 10K 5 1K) VMEAS 12 9 VCARRIER 1 0 DISTOF1 0.1 -90.0 VMODULATOR 2 0 DISTOF2 0.01 IIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001 N+ and N- are the positive and negative nodes, respectively. Note that voltage sources need not be grounded. Positive current is assumed to flow from the positive node, through the source, to the negative node. A current source of positive value forces current to flow out of the N+ node, through the source, and into the N- node. Voltage sources, in addition to being used for circuit excitation, are the ’ammeters’ for SPICE, that is, zero valued voltage sources may be inserted into the circuit for the purpose of measuring current. They of course have no effect on circuit operation since they represent short-circuits. DC/TRAN is the dc and transient analysis value of the source. If the source value is zero both for dc and transient analyses, this value may be omitted. If the source value is time-invariant (e.g., a power supply), then the value may optionally be preceded by the letters DC. ACMAG is the ac magnitude and ACPHASE is the ac phase. The source is set to this value in the ac analysis. If ACMAG is omitted following the keyword AC, a value of unity is assumed. If ACPHASE is omitted, a value of zero is assumed. If the source is not an ac small-signal input, the keyword AC and the ac values are omitted. DISTOF1 and DISTOF2 are the keywords that specify that the independent source has distortion inputs at the frequencies F1 and F2 respectively (see the description of the .DISTO control line). The keywords may be followed by an optional magnitude and phase. The default values of the magnitude and phase are 1.0 and 0.0 respectively. Any independent source can be assigned a time-dependent value for transient analysis. If a source is assigned a time-dependent value, the time-zero value is used for dc analysis. There are five independent source functions: pulse, exponential, sinusoidal, piece-wise linear, and single-frequency FM. If parameters other than source values are omitted or set to zero, the default values shown are assumed. (TSTEP is Spice3f User´s Manual 19 §3.2.1 CIRCUIT ELEMENTS AND MODELS: VOLTAGE AND CURRENT SOURCES the printing increment and TSTOP is the final time (see the .TRAN control line for explanation)). 3.2.1.1. Pulse General form: PULSE(V1 V2 TD TR TF PW PER) Examples: VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS) parameter default value units i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii V1 (initial value) V2 (pulsed value) TD (delay time) TR (rise time) TF (fall time) PW (pulse width) PER(period) 0.0 TSTEP TSTEP TSTOP TSTOP Volts or Amps Volts or Amps seconds seconds seconds seconds seconds A single pulse so specified is described by the following table: time value i iiiiiiiiiiiiiiiiiiiii 0 TD TD+TR TD+TR+PW TD+TR+PW+TF TSTOP V1 V1 V2 V2 V1 V1 Intermediate points are determined by linear interpolation. 20 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: VOLTAGE AND CURRENT SOURCES §3.2.1.2 3.2.1.2. Sinusoidal General form: SIN(VO VA FREQ TD THETA) Examples: VIN 3 0 SIN(0 1 100MEG 1NS 1E10) parameters default value units i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii VO (offset) VA (amplitude) FREQ (frequency) TD (delay) THETA (damping factor) Volts or Amps Volts or Amps Hz seconds 1/seconds 1/TSTOP 0.0 0.0 The shape of the waveform is described by the following table: time value i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 0 to TD TD to TSTOP VO VO + VA e−(t − TD)THETA sin(2 π FREQ (t + TD)) 3.2.1.3. Exponential General Form: EXP(V1 V2 TD1 TAU1 TD2 TAU2) Examples: VIN 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS) Spice3f User´s Manual 21 §3.2.1.3 CIRCUIT ELEMENTS AND MODELS: VOLTAGE AND CURRENT SOURCES parameter default value units iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii V1 (initial value) V2 (pulsed value) TD1 (rise delay time) TAU1 (rise time constant) TD2 (fall delay time) TAU2 (fall time constant) 0.0 TSTEP TD1+TSTEP TSTEP Volts or Amps Volts or Amps seconds seconds seconds seconds The shape of the waveform is described by the following table: time value iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 0 to TD1 V1 TD1 to TD2 V1 + (V2 − V1) IL 1 − e TD2 to TSTOP V1 + (V2 − V1) I L −e − (t − TD1) TAU1 h hhhhhhhhhh −(t − TD1) TAU1 M O h hhhhhhhhh M O + (V1 − V2) IL 1 − e −(t − TD2) TAU2 h hhhhhhhhh M O 3.2.1.4. Piece-Wise Linear General Form: PWL(T1 V1 ) Examples: VCLOCK 7 5 PWL(0 -7 10NS -7 11NS -3 17NS -3 18NS -7 50NS -7) Each pair of values (Ti, Vi) specifies that the value of the source is Vi (in Volts or Amps) at time=Ti. The value of the source at intermediate values of time is determined by using linear interpolation on the input values. 22 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: VOLTAGE AND CURRENT SOURCES §3.2.1.5 3.2.1.5. Single-Frequency FM General Form: SFFM(VO VA FC MDI FS) Examples: V1 12 0 SFFM(0 1M 20K 5 1K) parameter default value units iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii VO (offset) VA (amplitude) FC (carrier frequency) MDI (modulation index) FS (signal frequency) 1/TSTOP Volts or Amps Volts or Amps Hz 1/TSTOP Hz The shape of the waveform is described by the following equation: V(t)=VO + VA sin IL 2 π FC t + MDI sin(2 π FS t) MO 3.2.2. Linear Dependent Sources SPICE allows circuits to contain linear dependent sources characterized by any of the four equations i=gv v=ev i=fi v=hi where g, e, f, and h are constants representing transconductance, voltage gain, current gain, and transresistance, respectively. Spice3f User´s Manual 23 §3.2.2.1 CIRCUIT ELEMENTS AND MODELS: VOLTAGE AND CURRENT SOURCES 3.2.2.1. Linear Voltage-Controlled Current Sources General form: GXXXXXXX N+ N- NC+ NC- VALUE Examples: G1 2 0 5 0 0.1MMHO N+ and N- are the positive and negative nodes, respectively. Current flow is from the positive node, through the source, to the negative node. NC+ and NC- are the positive and negative controlling nodes, respectively. VALUE is the transconductance (in mhos). 3.2.2.2. Linear Voltage-Controlled Voltage Sources General form: EXXXXXXX N+ N- NC+ NC- VALUE Examples: E1 2 3 14 1 2.0 N+ is the positive node, and N- is the negative node. NC+ and NC- are the positive and negative controlling nodes, respectively. VALUE is the voltage gain. 3.2.2.3. Linear Current-Controlled Current Sources General form: FXXXXXXX N+ N- VNAM VALUE Examples: F1 13 5 VSENS 5 N+ and N- are the positive and negative nodes, respectively. Current flow is from the positive node, through the source, to the negative node. VNAM is the name of a voltage source through which the controlling current flows. The direction of positive controlling current flow is from the positive node, through the source, to the negative node of VNAM. VALUE is the current gain. 24 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: VOLTAGE AND CURRENT SOURCES §3.2.2.4 3.2.2.4. Linear Current-Controlled Voltage Sources General form: HXXXXXXX N+ N- VNAM VALUE Examples: HX 5 17 VZ 0.5K N+ and N- are the positive and negative nodes, respectively. VNAM is the name of a voltage source through which the controlling current flows. The direction of positive controlling current flow is from the positive node, through the source, to the negative node of VNAM. VALUE is the transresistance (in ohms). 3.2.3. Non-linear Dependent Sources General form: BXXXXXXX N+ N- Examples: B1 B1 B1 B1 0 0 3 3 1 1 4 4 I=cos(v(1))+sin(v(2)) V=ln(cos(log(v(1,2)ˆ2)))-v(3)ˆ4+v(2)ˆv(1) I=17 V=exp(piˆi(vdd)) N+ is the positive node, and N- is the negative node. The values of the V and I parameters determine the voltages and currents across and through the device, respectively. If I is given then the device is a current source, and if V is given the device is a voltage source. One and only one of these parameters must be given. The small-signal AC behavior of the nonlinear source is a linear dependent source (or sources) with a proportionality constant equal to the derivative (or derivatives) of the source at the DC operating point. The expressions given for V and I may be any function of voltages and currents through voltage sources in the system. The following functions of real variables are defined: abs acos acosh asin asinh atan atanh cos cosh exp ln log sin sinh sqrt tan The function "u" is the unit step function, with a value of one for arguments greater than one and a value of zero for arguments less than zero. The function "uramp" is the integral of the unit step: for an Spice3f User´s Manual 25 §3.2.3 CIRCUIT ELEMENTS AND MODELS: VOLTAGE AND CURRENT SOURCES input x, the value is zero if x is less than zero, or if x is greater than zero the value is x. These two functions are useful in sythesizing piece-wise non-linear functions, though convergence may be adversely affected. The following standard operators are defined: + - * / ˆ unary - If the argument of log, ln, or sqrt becomes less than zero, the absolute value of the argument is used. If a divisor becomes zero or the argument of log or ln becomes zero, an error will result. Other problems may occur when the argument for a function in a partial derivative enters a region where that function is undefined. To get time into the expression you can integrate the current from a constant current source with a capacitor and use the resulting voltage (don’t forget to set the initial voltage across the capacitor). Nonlinear resistors, capacitors, and inductors may be synthesized with the nonlinear dependent source. Nonlinear resistors are obvious. Non-linear capacitors and inductors are implemented with their linear counterparts by a change of variables implemented with the nonlinear dependent source. The following subcircuit will implement a nonlinear capacitor: .Subckt nlcap pos neg * Bx: calculate f(input voltage) Bx 1 0 v = f(v(pos,neg)) * Cx: linear capacitance Cx 2 0 1 * Vx: Ammeter to measure current into the capacitor Vx 2 1 DC 0Volts * Drive the current through Cx back into the circuit Fx pos neg Vx 1 .ends Non-linear inductors are similar. 26 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: TRANSMISSION LINES §3.3 3.3. TRANSMISSION LINES 3.3.1. Lossless Transmission Lines General form: TXXXXXXX N1 N2 N3 N4 Z0=VALUE > + Examples: T1 1 0 2 0 Z0=50 TD=10NS N1 and N2 are the nodes at port 1; N3 and N4 are the nodes at port 2. Z0 is the characteristic impedance. The length of the line may be expressed in either of two forms. The transmission delay, TD, may be specified directly (as TD=10ns, for example). Alternatively, a frequency F may be given, together with NL, the normalized electrical length of the transmission line with respect to the wavelength in the line at the frequency F. If a frequency is specified but NL is omitted, 0.25 is assumed (that is, the frequency is assumed to be the quarter-wave frequency). Note that although both forms for expressing the line length are indicated as optional, one of the two must be specified. Note that this element models only one propagating mode. If all four nodes are distinct in the actual circuit, then two modes may be excited. To simulate such a situation, two transmission-line elements are required. (see the example in Appendix A for further clarification.) The (optional) initial condition specification consists of the voltage and current at each of the transmission line ports. Note that the initial conditions (if any) apply ’only’ if the UIC option is specified on the .TRAN control line. Note that a lossy transmission line (see below) with zero loss may be more accurate than than the lossless transmission line due to implementation details. 3.3.2. Lossy Transmission Lines General form: OXXXXXXX N1 N2 N3 N4 MNAME Examples: O23 1 0 2 0 LOSSYMOD OCONNECT 10 5 20 5 INTERCONNECT This is a two-port convolution model for single-conductor lossy transmission lines. N1 and N2 are the nodes at port 1; N3 and N4 are the nodes at port 2. Note that a lossy transmission line with zero loss may be more accurate than than the lossless transmission line due to implementation details. Spice3f User´s Manual 27 §3.3.2 CIRCUIT ELEMENTS AND MODELS: TRANSMISSION LINES 3.3.3. Lossy Transmission Line Model (LTRA) The uniform RLC/RC/LC/RG transmission line model (referred to as the LTRA model henceforth) models a uniform constant-parameter distributed transmission line. The RC and LC cases may also be modeled using the URC and TRA models; however, the newer LTRA model is usually faster and more accurate than the others. The operation of the LTRA model is based on the convolution of the transmission line’s impulse responses with its inputs (see [8]). The LTRA model takes a number of parameters, some of which must be given and some of which are optional. name parameter units/type default example R L G C LEN REL ABS NOSTEPLIMIT resistance/length inductance/length conductance/length capacitance/length length of line breakpoint control breakpoint control don’t limit timestep to less than line delay don’t do complex timestep control use linear interpolation use linear when quadratic seems bad special reltol for history compaction special abstol for history compaction use Newton-Raphson method for timestep control don’t limit timestep to keep impulse-response errors low Ω/unit henrys/unit mhos/unit farads/unit 0.0 0.0 0.0 0.0 no default 1 1 not set 0.2 9.13e-9 0.0 3.65e-12 1.0 0.5 5 set flag not set not set not set RELTOL ABSTOL not set set set set 1.0e-3 1.0e-9 set flag not set set NOCONTROL LININTERP MIXEDINTERP COMPACTREL COMPACTABS TRUNCNR TRUNCDONTCUT arbitrary unit flag flag flag flag The following types of lines have been implemented so far: RLC (uniform transmission line with series loss only), RC (uniform RC line), LC (lossless transmission line), and RG (distributed series resistance and parallel conductance only). Any other combination will yield erroneous results and should not be tried. The length LEN of the line must be specified. NOSTEPLIMIT is a flag that will remove the default restriction of limiting time-steps to less than the line delay in the RLC case. NOCONTROL is a flag that prevents the default limiting of the time-step based on convolution error criteria in the RLC and RC cases. This speeds up simulation but may in some cases reduce the accuracy of results. LININTERP is a flag that, when specified, will use linear interpolation instead of the default quadratic interpolation for calculating delayed signals. MIXEDINTERP is a flag that, when specified, uses a metric for judging whether quadratic interpolation is not applicable and if so 28 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: TRANSMISSION LINES §3.3.3 uses linear interpolation; otherwise it uses the default quadratic interpolation. TRUNCDONTCUT is a flag that removes the default cutting of the time-step to limit errors in the actual calculation of impulse-response related quantities. COMPACTREL and COMPACTABS are quantities that control the compaction of the past history of values stored for convolution. Larger values of these lower accuracy but usually increase simulation speed. These are to be used with the TRYTOCOMPACT option, described in the .OPTIONS section. TRUNCNR is a flag that turns on the use of Newton-Raphson iterations to determine an appropriate timestep in the timestep control routines. The default is a trial and error procedure by cutting the previous timestep in half. REL and ABS are quantities that control the setting of breakpoints. The option most worth experimenting with for increasing the speed of simulation is REL. The default value of 1 is usually safe from the point of view of accuracy but occasionally increases computation time. A value greater than 2 eliminates all breakpoints and may be worth trying depending on the nature of the rest of the circuit, keeping in mind that it might not be safe from the viewpoint of accuracy. Breakpoints may usually be entirely eliminated if it is expected the circuit will not display sharp discontinuities. Values between 0 and 1 are usually not required but may be used for setting many breakpoints. COMPACTREL may also be experimented with when the option TRYTOCOMPACT is specified in a .OPTIONS card. The legal range is between 0 and 1. Larger values usually decrease the accuracy of the simulation but in some cases improve speed. If TRYTOCOMPACT is not specified on a .OPTIONS card, history compaction is not attempted and accuracy is high. NOCONTROL, TRUNCDONTCUT and NOSTEPLIMIT also tend to increase speed at the expense of accuracy. 3.3.4. Uniform Distributed RC Lines (Lossy) General form: UXXXXXXX N1 N2 N3 MNAME L=LEN Examples: U1 1 2 0 URCMOD L=50U URC2 1 12 2 UMODL l=1MIL N=6 N1 and N2 are the two element nodes the RC line connects, while N3 is the node to which the capacitances are connected. MNAME is the model name, LEN is the length of the RC line in meters. LUMPS, if specified, is the number of lumped segments to use in modeling the RC line (see the model description for the action taken if this parameter is omitted). Spice3f User´s Manual 29 §3.3.5 CIRCUIT ELEMENTS AND MODELS: TRANSMISSION LINES 3.3.5. Uniform Distributed RC Model (URC) The URC model is derived from a model proposed by L. Gertzberrg in 1974. The model is accomplished by a subcircuit type expansion of the URC line into a network of lumped RC segments with internally generated nodes. The RC segments are in a geometric progression, increasing toward the middle of the URC line, with K as a proportionality constant. The number of lumped segments used, if not specified for the URC line device, is determined by the following formula: R log J Fmax N= R C 2 π L2 L L hh hh I J (K−1) K h hhhhh M J 2 H J Q L O P h hhhhhhhhhhhhhhhhhhhhhhhhhhhhh log K The URC line is made up strictly of resistor and capacitor segments unless the ISPERL parameter is given a non-zero value, in which case the capacitors are replaced with reverse biased diodes with a zerobias junction capacitance equivalent to the capacitance replaced, and with a saturation current of ISPERL amps per meter of transmission line and an optional series resistance equivalent to RSPERL ohms per meter. 1 2 3 4 5 6 30 name parameter units default example area K FMAX RPERL CPERL ISPERL RSPERL Propagation Constant Maximum Frequency of interest Resistance per unit length Capacitance per unit length Saturation Current per unit length Diode Resistance per unit length Hz Ω/m F/m A/m Ω/m 2.0 1.0G 1000 1.0e-15 0 0 1.2 6.5Meg 10 1pF - - User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES §3.4 3.4. TRANSISTORS AND DIODES The area factor used on the diode, BJT, JFET, and MESFET devices determines the number of equivalent parallel devices of a specified model. The affected parameters are marked with an asterisk under the heading ’area’ in the model descriptions below. Several geometric factors associated with the channel and the drain and source diffusions can be specified on the MOSFET device line. Two different forms of initial conditions may be specified for some devices. The first form is included to improve the dc convergence for circuits that contain more than one stable state. If a device is specified OFF, the dc operating point is determined with the terminal voltages for that device set to zero. After convergence is obtained, the program continues to iterate to obtain the exact value for the terminal voltages. If a circuit has more than one dc stable state, the OFF option can be used to force the solution to correspond to a desired state. If a device is specified OFF when in reality the device is conducting, the program still obtains the correct solution (assuming the solutions converge) but more iterations are required since the program must independently converge to two separate solutions. The .NODESET control line serves a similar purpose as the OFF option. The .NODESET option is easier to apply and is the preferred means to aid convergence. The second form of initial conditions are specified for use with the transient analysis. These are true ’initial conditions’ as opposed to the convergence aids above. See the description of the .IC control line and the .TRAN control line for a detailed explanation of initial conditions. 3.4.1. Junction Diodes General form: DXXXXXXX N+ N- MNAME Examples: DBRIDGE 2 10 DIODE1 DCLMP 3 7 DMOD 3.0 IC=0.2 N+ and N- are the positive and negative nodes, respectively. MNAME is the model name, AREA is the area factor, and OFF indicates an (optional) starting condition on the device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional) initial condition specification using IC=VD is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point. The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line. Spice3f User´s Manual 31 §3.4.2 CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES 3.4.2. Diode Model (D) The dc characteristics of the diode are determined by the parameters IS and N. An ohmic resistance, RS, is included. Charge storage effects are modeled by a transit time, TT, and a nonlinear depletion layer capacitance which is determined by the parameters CJO, VJ, and M. The temperature dependence of the saturation current is defined by the parameters EG, the energy and XTI, the saturation current temperature exponent. The nominal temperature at which these parameters were measured is TNOM, which defaults to the circuit-wide value specified on the .OPTIONS control line. Reverse breakdown is modeled by an exponential increase in the reverse diode current and is determined by the parameters BV and IBV (both of which are positive numbers). 32 name parameter units default example area 1 2 3 4 IS RS N TT saturation current ohmic resistance emission coefficient transit-time A Ω sec 1.0e-14 0 1 0 1.0e-14 10 1.0 0.1ns * * 5 6 7 8 CJO VJ M EG zero-bias junction capacitance junction potential grading coefficient activation energy F V eV 0 1 0.5 1.11 * 9 XTI saturation-current temp. exp - 3.0 2pF 0.6 0.5 1.11 Si 0.69 Sbd 0.67 Ge 3.0 jn 2.0 Sbd 10 11 12 KF AF FC - 0 1 0.5 13 14 15 BV IBV TNOM flicker noise coefficient flicker noise exponent coefficient for forward-bias depletion capacitance formula reverse breakdown voltage current at breakdown voltage parameter measurement temperature V A °C infinite 1.0e-3 27 User´s Manual 40.0 50 Spice3f CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES §3.4.3 3.4.3. Bipolar Junction Transistors (BJTs) General form: QXXXXXXX NC NB NE MNAME Examples: Q23 10 24 13 QMOD IC=0.6, 5.0 Q50A 11 26 4 20 MOD1 NC, NB, and NE are the collector, base, and emitter nodes, respectively. NS is the (optional) substrate node. If unspecified, ground is used. MNAME is the model name, AREA is the area factor, and OFF indicates an (optional) initial condition on the device for the dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional) initial condition specification using IC=VBE, VCE is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point. See the .IC control line description for a better way to set transient initial conditions. The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line. 3.4.4. BJT Models (NPN/PNP) The bipolar junction transistor model in SPICE is an adaptation of the integral charge control model of Gummel and Poon. This modified Gummel-Poon model extends the original model to include several effects at high bias levels. The model automatically simplifies to the simpler Ebers-Moll model when certain parameters are not specified. The parameter names used in the modified Gummel-Poon model have been chosen to be more easily understood by the program user, and to reflect better both physical and circuit design thinking. The dc model is defined by the parameters IS, BF, NF, ISE, IKF, and NE which determine the forward current gain characteristics, IS, BR, NR, ISC, IKR, and NC which determine the reverse current gain characteristics, and VAF and VAR which determine the output conductance for forward and reverse regions. Three ohmic resistances RB, RC, and RE are included, where RB can be high current dependent. Base charge storage is modeled by forward and reverse transit times, TF and TR, the forward transit time TF being bias dependent if desired, and nonlinear depletion layer capacitances which are determined by CJE, VJE, and MJE for the B-E junction , CJC, VJC, and MJC for the B-C junction and CJS, VJS, and MJS for the C-S (Collector-Substrate) junction. The temperature dependence of the saturation current, IS, is determined by the energy-gap, EG, and the saturation current temperature exponent, XTI. Additionally base current temperature dependence is modeled by the beta temperature exponent XTB in the new model. The values specified are assumed to have been measured at the temperature TNOM, which can be specified on the .OPTIONS control line or overridden by a specification on the .MODEL line. Spice3f User´s Manual 33 §3.4.4 CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES The BJT parameters used in the modified Gummel-Poon model are listed below. The parameter names used in earlier versions of SPICE2 are still accepted. Modified Gummel-Poon BJT Parameters. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 34 name parameter units default example area IS BF NF VAF IKF transport saturation current ideal maximum forward beta forward current emission coefficient forward Early voltage corner for forward beta high current roll-off B-E leakage saturation current B-E leakage emission coefficient ideal maximum reverse beta reverse current emission coefficient reverse Early voltage corner for reverse beta high current roll-off B-C leakage saturation current B-C leakage emission coefficient zero bias base resistance current where base resistance falls halfway to its min value minimum base resistance at high currents emitter resistance collector resistance B-E zero-bias depletion capacitance B-E built-in potential B-E junction exponential factor ideal forward transit time coefficient for bias dependence of TF voltage describing VBC dependence of TF high-current parameter for effect on TF excess phase at freq=1.0/(TF*2PI) Hz B-C zero-bias depletion capacitance B-C built-in potential A V 1.0e-16 100 1.0 infinite 1.0e-15 100 1 200 * A A V infinite 0 1.5 1 1 infinite 0.01 1.0e-13 2 0.1 1 200 * * A A Ω infinite 0 2 0 0.01 1.0e-13 1.5 100 * * A infinite 0.1 * Ω Ω Ω F V sec - RB 0 0 0 0.75 0.33 0 0 10 1 10 2pF 0.6 0.33 0.1ns * * * * V infinite A deg F V 0 0 0 0.75 ISE NE BR NR VAR IKR ISC NC RB IRB RBM RE RC CJE VJE MJE TF XTF VTF 25 ITF 26 27 28 PTF CJC VJC User´s Manual * * 2pF 0.5 * Spice3f CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES name parameter units default example 29 30 MJC XCJC - 0.33 1 0.5 31 32 TR CJS B-C junction exponential factor fraction of B-C depletion capacitance connected to internal base node ideal reverse transit time zero-bias collector-substrate capacitance substrate junction built-in potential substrate junction exponential factor forward and reverse beta temperature exponent energy gap for temperature effect on IS temperature exponent for effect on IS flicker-noise coefficient flicker-noise exponent coefficient for forward-bias depletion capacitance formula Parameter measurement temperature sec 0 10ns F V - 0 0.75 0 2pF - 0 eV - 1.11 3 0 1 °C 0.5 27 33 34 35 36 VJS MJS XTB EG 37 38 39 40 XTI KF AF FC 41 TNOM §3.4.4 area * 0.5 50 3.4.5. Junction Field-Effect Transistors (JFETs) General form: JXXXXXXX ND NG NS MNAME Examples: J1 7 2 3 JM1 OFF ND, NG, and NS are the drain, gate, and source nodes, respectively. MNAME is the model name, AREA is the area factor, and OFF indicates an (optional) initial condition on the device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional) initial condition specification, using IC=VDS, VGS is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point. See the .IC control line for a better way to set initial conditions. The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line. Spice3f User´s Manual 35 §3.4.6 CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES 3.4.6. JFET Models (NJF/PJF) The JFET model is derived from the FET model of Shichman and Hodges. The dc characteristics are defined by the parameters VTO and BETA, which determine the variation of drain current with gate voltage, LAMBDA, which determines the output conductance, and IS, the saturation current of the two gate junctions. Two ohmic resistances, RD and RS, are included. Charge storage is modeled by nonlinear depletion layer capacitances for both gate junctions which vary as the -1/2 power of junction voltage and are defined by the parameters CGS, CGD, and PB. Note that in Spice3f and later, a fitting parameter B has been added. For details, see [9]. 1 2 3 36 name parameter units default example area VTO BETA LAMBDA threshold voltage (VTO transconductance parameter (β) channel-length modulation parameter (λ) drain ohmic resistance source ohmic resistance zero-bias G-S junction capacitance (Cgs) zero-bias G-D junction capacitance (Cgs) gate junction potential gate junction saturation current (IS) doping tail parameter flicker noise coefficient flicker noise exponent coefficient for forward-bias depletion capacitance formula parameter measurement temperature V A/V2 -2.0 1.0e-4 -2.0 1.0e-3 * 1/V Ω Ω F F V A - 0 0 0 0 0 1 1.0e-14 1 0 1 0.5 1.0e-4 100 100 5pF 1pF 0.6 1.0e-14 1.1 °C 27 50 4 5 6 7 8 9 10 11 12 13 RD RS CGS CGD PB IS B KF AF FC 14 TNOM User´s Manual * * * * * Spice3f CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES §3.4.7 3.4.7. MOSFETs General form: MXXXXXXX ND NG NS NB MNAME + + Examples: M1 24 2 0 20 TYPE1 M31 2 17 6 10 MODM L=5U W=2U M1 2 9 3 0 MOD1 L=10U W=5U AD=100P AS=100P PD=40U PS=40U ND, NG, NS, and NB are the drain, gate, source, and bulk (substrate) nodes, respectively. MNAME is the model name. L and W are the channel length and width, in meters. AD and AS are the areas of the drain and source diffusions, in meters2. Note that the suffix U specifies microns (1e-6 m) and P sq-microns (1e12 m2). If any of L, W, AD, or AS are not specified, default values are used. The use of defaults simplifies input file preparation, as well as the editing required if device geometries are to be changed. PD and PS are the perimeters of the drain and source junctions, in meters. NRD and NRS designate the equivalent number of squares of the drain and source diffusions; these values multiply the sheet resistance RSH specified on the .MODEL control line for an accurate representation of the parasitic series drain and source resistance of each transistor. PD and PS default to 0.0 while NRD and NRS to 1.0. OFF indicates an (optional) initial condition on the device for dc analysis. The (optional) initial condition specification using IC=VDS, VGS, VBS is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point. See the .IC control line for a better and more convenient way to specify transient initial conditions. The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line. The temperature specification is ONLY valid for level 1, 2, 3, and 6 MOSFETs, not for level 4 or 5 (BSIM) devices. Spice3f User´s Manual 37 §3.4.8 CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES 3.4.8. MOSFET Models (NMOS/PMOS) SPICE provides four MOSFET device models, which differ in the formulation of the I-V characteristic. The variable LEVEL specifies the model to be used: LEVEL=1 -> LEVEL=2 -> LEVEL=3 -> LEVEL=4 -> LEVEL=5 -> LEVEL=6 -> Shichman-Hodges MOS2 (as described in [1]) MOS3, a semi-empirical model(see [1]) BSIM (as described in [3]) new BSIM (BSIM2; as described in [5]) MOS6 (as described in [2]) The dc characteristics of the level 1 through level 3 MOSFETs are defined by the device parameters VTO, KP, LAMBDA, PHI and GAMMA. These parameters are computed by SPICE if process parameters (NSUB, TOX, ...) are given, but user-specified values always override. VTO is positive (negative) for enhancement mode and negative (positive) for depletion mode N-channel (P-channel) devices. Charge storage is modeled by three constant capacitors, CGSO, CGDO, and CGBO which represent overlap capacitances, by the nonlinear thin-oxide capacitance which is distributed among the gate, source, drain, and bulk regions, and by the nonlinear depletion-layer capacitances for both substrate junctions divided into bottom and periphery, which vary as the MJ and MJSW power of junction voltage respectively, and are determined by the parameters CBD, CBS, CJ, CJSW, MJ, MJSW and PB. Charge storage effects are modeled by the piecewise linear voltages-dependent capacitance model proposed by Meyer. The thinoxide charge-storage effects are treated slightly different for the LEVEL=1 model. These voltagedependent capacitances are included only if TOX is specified in the input description and they are represented using Meyer’s formulation. There is some overlap among the parameters describing the junctions, e.g. the reverse current can be input either as IS (in A) or as JS (in A/m2). Whereas the first is an absolute value the second is multiplied by AD and AS to give the reverse current of the drain and source junctions respectively. This methodology has been chosen since there is no sense in relating always junction characteristics with AD and AS entered on the device line; the areas can be defaulted. The same idea applies also to the zero-bias junction capacitances CBD and CBS (in F) on one hand, and CJ (in F/m2) on the other. The parasitic drain and source series resistance can be expressed as either RD and RS (in ohms) or RSH (in ohms/sq.), the latter being multiplied by the number of squares NRD and NRS input on the device line. A discontinuity in the MOS level 3 model with respect to the KAPPA parameter has been detected (see [10]). The supplied fix has been implemented in Spice3f2 and later. Since this fix may affect parameter fitting, the option "BADMOS3" may be set to use the old implementation (see the section on simulation variables and the ".OPTIONS" line). 38 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES §3.4.8 SPICE level 1, 2, 3 and 6 parameters: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 name parameter units default example LEVEL VTO KP GAMMA PHI LAMBDA model index zero-bias threshold voltage (VTO) transconductance parameter bulk threshold parameter (γ) surface potential (φ) channel-length modulation (MOS1 and MOS2 only) (λ) drain ohmic resistance source ohmic resistance zero-bias B-D junction capacitance zero-bias B-S junction capacitance bulk junction saturation current (IS) bulk junction potential gate-source overlap capacitance per meter channel width gate-drain overlap capacitance per meter channel width gate-bulk overlap capacitance per meter channel length drain and source diffusion sheet resistance zero-bias bulk junction bottom cap. per sq-meter of junction area bulk junction bottom grading coeff. zero-bias bulk junction sidewall cap. per meter of junction perimeter bulk junction sidewall grading coeff. V A/V2 V1/2 V 1 0.0 2.0e-5 0.0 0.6 1.0 3.1e-5 0.37 0.65 1/V Ω Ω F F A V 0.0 0.0 0.0 0.0 0.0 1.0e-14 0.8 0.02 1.0 1.0 20fF 20fF 1.0e-15 0.87 F/m 0.0 4.0e-11 F/m 0.0 4.0e-11 F/m 0.0 2.0e-10 Ω/` 0.0 10.0 F/m2 - 0.0 0.5 2.0e-4 0.5 F/m - 0.0 0.50(level1) 0.33(level2, 3) 1.0e-9 RD RS CBD CBS IS PB CGSO CGDO CGBO RSH CJ 18 19 MJ CJSW 20 MJSW 21 JS 22 23 24 25 TOX NSUB NSS NFS bulk junction saturation current per sq-meter of junction area oxide thickness substrate doping surface state density fast surface state density A/m2 meter 1/cm3 1/cm2 1/cm2 1.0e-7 0.0 0.0 0.0 1.0e-8 1.0e-7 4.0e15 1.0e10 1.0e10 continued Spice3f User´s Manual 39 §3.4.8 CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES name parameter units default 26 TPG - 1.0 27 28 29 30 XJ LD UO UCRIT meter meter cm2/Vs 0.0 0.0 600 1µ 0.8µ 700 V/cm 1.0e4 1.0e4 31 UEXP type of gate material: +1 opp. to substrate -1 same as substrate 0 Al gate metallurgical junction depth lateral diffusion surface mobility critical field for mobility degradation (MOS2 only) critical field exponent in mobility degradation (MOS2 only) transverse field coeff. (mobility) (deleted for MOS2) maximum drift velocity of carriers total channel-charge (fixed and mobile) coefficient (MOS2 only) flicker noise coefficient flicker noise exponent coefficient for forward-bias depletion capacitance formula width effect on threshold voltage (MOS2 and MOS3) mobility modulation (MOS3 only) static feedback (MOS3 only) saturation field factor (MOS3 only) parameter measurement temperature - 0.0 0.1 m/s 0.0 0.0 0.3 5.0e4 - 1.0 0.0 1.0 5.0 1.0e-26 1.2 - 0.5 1/V °C 0.0 0.0 0.0 0.2 27 32 UTRA 33 34 VMAX NEFF 35 36 37 38 39 40 41 42 40 KF AF FC DELTA THETA ETA KAPPA TNOM User´s Manual example 1.0 0.1 1.0 0.5 50 Spice3f CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES §3.4.8 The level 4 and level 5 (BSIM1 and BSIM2) parameters are all values obtained from process characterization, and can be generated automatically. J. Pierret [4] describes a means of generating a ’process’ file, and the program Proc2Mod provided with SPICE3 converts this file into a sequence of BSIM1 ".MODEL" lines suitable for inclusion in a SPICE input file. Parameters marked below with an * in the l/w column also have corresponding parameters with a length and width dependency. For example, VFB is the basic parameter with units of Volts, and LVFB and WVFB also exist and have units of Volt-µmeter The formula P = P0 + PL PW + hhhhhhhh Leffective Weffective hhhhhhh is used to evaluate the parameter for the actual device specified with Leffective = Linput − DL and Weffective = Winput − DW Note that unlike the other models in SPICE, the BSIM model is designed for use with a process characterization system that provides all the parameters, thus there are no defaults for the parameters, and leaving one out is considered an error. For an example set of parameters and the format of a process file, see the SPICE2 implementation notes[3]. For more information on BSIM2, see reference [5]. SPICE BSIM (level 4) parameters. name parameter units l/w VFB PHI K1 K2 ETA MUZ DL DW U0 U1 X2MZ X2E X3E X2U0 X2U1 flat-band voltage surface inversion potential body effect coefficient drain/source depletion charge-sharing coefficient zero-bias drain-induced barrier-lowering coefficient zero-bias mobility shortening of channel narrowing of channel zero-bias transverse-field mobility degradation coefficient zero-bias velocity saturation coefficient sens. of mobility to substrate bias at vds=0 sens. of drain-induced barrier lowering effect to substrate bias sens. of drain-induced barrier lowering effect to drain bias at Vds=Vdd sens. of transverse field mobility degradation effect to substrate bias sens. of velocity saturation effect to substrate bias V V V1/2 cm2/V−s µm µm V−1 µm/V cm2/V2−s V−1 V−1 V−2 µmV−2 * * * * * Spice3f User´s Manual * * * * * * * 41 §3.4.8 CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES name parameter units MUS X2MS X3MS X3U1 TOX TEMP VDD CGDO CGSO CGBO XPART N0 NB ND RSH JS PB MJ PBSW MJSW CJ CJSW WDF DELL mobility at zero substrate bias and at Vds=Vdd sens. of mobility to substrate bias at Vds=Vdd sens. of mobility to drain bias at Vds=Vdd sens. of velocity saturation effect on drain bias at Vds=Vdd gate oxide thickness temperature at which parameters were measured measurement bias range gate-drain overlap capacitance per meter channel width gate-source overlap capacitance per meter channel width gate-bulk overlap capacitance per meter channel length gate-oxide capacitance-charge model flag zero-bias subthreshold slope coefficient sens. of subthreshold slope to substrate bias sens. of subthreshold slope to drain bias drain and source diffusion sheet resistance source drain junction current density built in potential of source drain junction Grading coefficient of source drain junction built in potential of source, drain junction sidewall grading coefficient of source drain junction sidewall Source drain junction capacitance per unit area source drain junction sidewall capacitance per unit length source drain junction default width Source drain junction length reduction cm2/V2−s cm2/V2−s cm2/V2−s µmV−2 µm °C V F/m F/m F/m Ω/` A/m2 V V F/m2 F/m m m l/w * * * * * * XPART = 0 selects a 40/60 drain/source charge partition in saturation, while XPART=1 selects a 0/100 drain/source charge partition. ND, NG, and NS are the drain, gate, and source nodes, respectively. MNAME is the model name, AREA is the area factor, and OFF indicates an (optional) initial condition on the device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional) initial condition specification, using IC=VDS, VGS is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point. See the .IC control line for a better way to set initial conditions. 42 User´s Manual Spice3f CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES §3.4.9 3.4.9. MESFETs General form: ZXXXXXXX ND NG NS MNAME Examples: Z1 7 2 3 ZM1 OFF 3.4.10. MESFET Models (NMF/PMF) The MESFET model is derived from the GaAs FET model of Statz et al. as described in [11]. The dc characteristics are defined by the parameters VTO, B, and BETA, which determine the variation of drain current with gate voltage, ALPHA, which determines saturation voltage, and LAMBDA, which determines the output conductance. The formula are given by: Id = β (Vgs−VT)2 1 + b(Vgs − VT) h hhhhhhhhhhhhh Id = R Vds H 1 − J 1−α hhhh J 3 P Q Q R J 3 H J (1 + λ Vds) for 0 < Vds < P β (Vgs−VT)2 (1 + λ Vds) 1 + b(Vgs − VT) h hhhhhhhhhhhhh for Vds > 3 α hh 3 α hh Two ohmic resistances, RD and RS, are included. Charge storage is modeled by total gate charge as a function of gate-drain and gate-source voltages and is defined by the parameters CGS, CGD, and PB. name parameter units default example area 1 2 3 4 5 VTO BETA B ALPHA LAMBDA V A/V2 1/V 1/V -2.0 1.0e-4 0.3 2 -2.0 1.0e-3 0.3 2 * * * 6 7 8 9 10 11 12 13 RD RS CGS CGD PB KF AF FC pinch-off voltage transconductance parameter doping tail extending parameter saturation voltage parameter channel-length modulation parameter drain ohmic resistance source ohmic resistance zero-bias G-S junction capacitance zero-bias G-D junction capacitance gate junction potential flicker noise coefficient flicker noise exponent coefficient for forward-bias depletion capacitance formula 1/V Ω Ω F F V - 0 0 0 0 0 1 0 1 0.5 1.0e-4 100 100 5pF 1pF 0.6 Spice3f User´s Manual * * * * 43 §3.4.10 44 CIRCUIT ELEMENTS AND MODELS: TRANSISTORS AND DIODES User´s Manual Spice3f 4. ANALYSES AND OUTPUT CONTROL The following command lines are for specifying analyses or plots within the circuit description file. Parallel commands exist in the interactive command interpreter (detailed in the following section). Specifying analyses and plots (or tables) in the input file is useful for batch runs. Batch mode is entered when either the -b option is given or when the default input source is redirected from a file. In batch mode, the analyses specified by the control lines in the input file (e.g. ".ac", ".tran", etc.) are immediately executed (unless ".control" lines exists; see the section on the interactive command interpretor). If the -r rawfile option is given then all data generated is written to a Spice3 rawfile. The rawfile may be read by either the interactive mode of Spice3 or by nutmeg; see the previous section for details. In this case, the .SAVE line (see below) may be used to record the value of internal device variables (see Appendix B). If a rawfile is not specified, then output plots (in "line-printer" form) and tables can be printed according to the .PRINT, .PLOT, and .FOUR control lines, described next. .PLOT, .PRINT, and .FOUR lines are meant for compatibility with Spice2. 4.1. SIMULATOR VARIABLES (.OPTIONS) Various parameters of the simulations available in Spice3 can be altered to control the accuracy, speed, or default values for some devices. These parameters may be changed via the "set" command (described later in the section on the interactive front-end) or via the ".OPTIONS" line: General form: .OPTIONS OPT1 OPT2 ... (or OPT=OPTVAL ...) Examples: .OPTIONS RELTOL=.005 TRTOL=8 Spice3f User´s Manual 45 §4.1 ANALYSES AND OUTPUT CONTROL: SIMULATOR VARIABLES (.OPTIONS) The options line allows the user to reset program control and user options for specific simulation purposes. Additional options for Nutmeg may be specified as well and take effect when Nutmeg reads the input file. Options specified to Nutmeg via the ’set’ command are also passed on to SPICE3 as if specified on a .OPTIONS line. See the following section on the interactive command interpreter for the parameters which may be set with a .OPTIONS line and the format of the ’set’ command. Any combination of the following options may be included, in any order. ’x’ (below) represents some positive number. option effect ABSTOL=x resets the absolute current error tolerance of the program. The default value is 1 picoamp. Use the older version of the MOS3 model with the "kappa" discontinuity. resets the charge tolerance of the program. The default value is 1.0e-14. resets the value for MOS drain diffusion area; the default is 0.0. resets the value for MOS source diffusion area; the default is 0.0. resets the value for MOS channel length; the default is 100.0 micrometer. resets the value for MOS channel width; the default is 100.0 micrometer. resets the value of GMIN, the minimum conductance allowed by the program. The default value is 1.0e-12. resets the dc iteration limit. The default is 100. resets the dc transfer curve iteration limit. The default is 50. resets the lower transient analysis iteration limit. the default value is 4. (Note: not implemented in Spice3). resets the transient analysis timepoint iteration limit. the default is 10. resets the transient analysis total iteration limit. the default is 5000. Set ITL5=0 to omit this test. (Note: not implemented in Spice3). Retain the operating point information when either an AC, Distortion, or Pole-Zero analysis is run. This is particularly useful if the circuit is large and you do not want to run a (redundant) ".OP" analysis. BADMOS3 CHGTOL=x DEFAD=x DEFAS=x DEFL=x DEFW=x GMIN=x ITL1=x ITL2=x ITL3=x ITL4=x ITL5=x KEEPOPINFO 46 User´s Manual Spice3f ANALYSES AND OUTPUT CONTROL: SIMULATOR VARIABLES (.OPTIONS) option METHOD=name PIVREL=x PIVTOL=x RELTOL=x TEMP=x TNOM=x TRTOL=x TRYTOCOMPACT VNTOL=x §4.1 effect sets the numerical integration method used by SPICE. Possible names are "Gear" or "trapezoidal" (or just "trap"). The default is trapezoidal. resets the relative ratio between the largest column entry and an acceptable pivot value. The default value is 1.0e-3. In the numerical pivoting algorithm the allowed minimum pivot value is determined by EPSREL=AMAX1(PIVREL*MAXVAL, PIVTOL) where MAXVAL is the maximum element in the column where a pivot is sought (partial pivoting). resets the absolute minimum value for a matrix entry to be accepted as a pivot. The default value is 1.0e-13. resets the relative error tolerance of the program. The default value is 0.001 (0.1%). Resets the operating temperature of the circuit. The default value is 27 deg C (300 deg K). TEMP can be overridden by a temperature specification on any temperature dependent instance. resets the nominal temperature at which device parameters are measured. The default value is 27 deg C (300 deg K). TNOM can be overridden by a specification on any temperature dependent device model. resets the transient error tolerance. The default value is 7.0. This parameter is an estimate of the factor by which SPICE overestimates the actual truncation error. Applicable only to the LTRA model. When specified, the simulator tries to condense LTRA transmission lines’ past history of input voltages and currents. resets the absolute voltage error tolerance of the program. The default value is 1 microvolt. In addition, the following options have the listed effect when operating in spice2 emulation mode: Spice3f option effect option ACCT LIST NOMOD NOPAGE NODE effect causes accounting and run time statistics to be printed causes the summary listing of the input data to be printed suppresses the printout of the model parameters suppresses page ejects causes the printing of the node table. User´s Manual 47 §4.1 ANALYSES AND OUTPUT CONTROL: SIMULATOR VARIABLES (.OPTIONS) option OPTS 48 effect causes the option values to be printed. User´s Manual Spice3f ANALYSES AND OUTPUT CONTROL: INITIAL CONDITIONS §4.2 4.2. INITIAL CONDITIONS 4.2.1. .NODESET: Specify Initial Node Voltage Guesses General form: .NODESET V(NODNUM)=VAL V(NODNUM)=VAL ... Examples: .NODESET V(12)=4.5 V(4)=2.23 The Nodeset line helps the program find the dc or initial transient solution by making a preliminary pass with the specified nodes held to the given voltages. The restriction is then released and the iteration continues to the true solution. The .NODESET line may be necessary for convergence on bistable or astable circuits. In general, this line should not be necessary. 4.2.2. .IC: Set Initial Conditions General form: .IC V(NODNUM)=VAL V(NODNUM)=VAL ... Examples: .IC V(11)=5 V(4)=-5 V(2)=2.2 The IC line is for setting transient initial conditions. It has two different interpretations, depending on whether the UIC parameter is specified on the .TRAN control line. Also, one should not confuse this line with the .NODESET line. The .NODESET line is only to help dc convergence, and does not affect final bias solution (except for multi-stable circuits). The two interpretations of this line are as follows: 1. When the UIC parameter is specified on the .TRAN line, then the node voltages specified on the .IC control line are used to compute the capacitor, diode, BJT, JFET, and MOSFET initial conditions. This is equivalent to specifying the IC=... parameter on each device line, but is much more convenient. The IC=... parameter can still be specified and takes precedence over the .IC values. Since no dc bias (initial transient) solution is computed before the transient analysis, one should take care to specify all dc source voltages on the .IC control line if they are to be used to compute device initial conditions. 2. When the UIC parameter is not specified on the .TRAN control line, the dc bias (initial transient) solution is computed before the transient analysis. In this case, the node voltages specified on the .IC control line is forced to the desired initial values during the bias solution. During transient analysis, the constraint on these node voltages is removed. This is the preferred method since it allows SPICE to compute a consistent dc solution. Spice3f User´s Manual 49 §4.2.2 ANALYSES AND OUTPUT CONTROL: INITIAL CONDITIONS 4.3. ANALYSES 4.3.1. .AC: Small-Signal AC Analysis General form: .AC DEC ND FSTART FSTOP .AC OCT NO FSTART FSTOP .AC LIN NP FSTART FSTOP Examples: .AC DEC 10 1 10K .AC DEC 10 1K 100MEG .AC LIN 100 1 100HZ DEC stands for decade variation, and ND is the number of points per decade. OCT stands for octave variation, and NO is the number of points per octave. LIN stands for linear variation, and NP is the number of points. FSTART is the starting frequency, and FSTOP is the final frequency. If this line is included in the input file, SPICE performs an AC analysis of the circuit over the specified frequency range. Note that in order for this analysis to be meaningful, at least one independent source must have been specified with an ac value. 4.3.2. .DC: DC Transfer Function General form: .DC SRCNAM VSTART VSTOP VINCR [SRC2 START2 STOP2 INCR2] Examples: .DC VIN 0.25 5.0 0.25 .DC VDS 0 10 .5 VGS 0 5 1 .DC VCE 0 10 .25 IB 0 10U 1U The DC line defines the dc transfer curve source and sweep limits (again with capacitors open and inductors shorted). SRCNAM is the name of an independent voltage or current source. VSTART, VSTOP, and VINCR are the starting, final, and incrementing values respectively. The first example causes the value of the voltage source VIN to be swept from 0.25 Volts to 5.0 Volts in increments of 0.25 Volts. A second source (SRC2) may optionally be specified with associated sweep parameters. In this case, the first source is swept over its range for each value of the second source. This option can be useful for obtaining semiconductor device output characteristics. See the second example circuit description in Appendix A. 50 User´s Manual Spice3f ANALYSES AND OUTPUT CONTROL: ANALYSES §4.3.2 4.3.3. .DISTO: Distortion Analysis General form: .DISTO DEC ND FSTART FSTOP .DISTO OCT NO FSTART FSTOP .DISTO LIN NP FSTART FSTOP Examples: .DISTO DEC 10 1kHz 100Mhz .DISTO DEC 10 1kHz 100Mhz 0.9 The Disto line does a small-signal distortion analysis of the circuit. A multi-dimensional Volterra series analysis is done using multi-dimensional Taylor series to represent the nonlinearities at the operating point. Terms of up to third order are used in the series expansions. If the optional parameter F2OVERF1 is not specified, .DISTO does a harmonic analysis - i.e., it analyses distortion in the circuit using only a single input frequency F1, which is swept as specified by arguments of the .DISTO command exactly as in the .AC command. Inputs at this frequency may be present at more than one input source, and their magnitudes and phases are specified by the arguments of the DISTOF1 keyword in the input file lines for the input sources (see the description for independent sources). (The arguments of the DISTOF2 keyword are not relevant in this case). The analysis produces information about the A.C. values of all node voltages and branch currents at the harmonic frequencies 2F1 and 3F1, vs. the input frequency F1 as it is swept. (A value of 1 (as a complex distortion output) signifies cos(2π(2F1)t) at 2F1 and cos(2π(3F1)t) at 3F1, using the convention that 1 at the input fundamental frequency is equivalent to cos(2πF1t).) The distortion component desired (2F1 or 3F1) can be selected using commands in nutmeg, and then printed or plotted. (Normally, one is interested primarily in the magnitude of the harmonic components, so the magnitude of the AC distortion value is looked at). It should be noted that these are the A.C. values of the actual harmonic components, and are not equal to HD2 and HD3. To obtain HD2 and HD3, one must divide by the corresponding A.C. values at F1, obtained from an .AC line. This division can be done using nutmeg commands. If the optional F2OVERF1 parameter is specified, it should be a real number between (and not equal to) 0.0 and 1.0; in this case, .DISTO does a spectral analysis. It considers the circuit with sinusoidal inputs at two different frequencies F1 and F2. F1 is swept according to the .DISTO control line options exactly as in the .AC control line. F2 is kept fixed at a single frequency as F1 sweeps - the value at which it is kept fixed is equal to F2OVERF1 times FSTART. Each independent source in the circuit may potentially have two (superimposed) sinusoidal inputs for distortion, at the frequencies F1 and F2. The magnitude and phase of the F1 component are specified by the arguments of the DISTOF1 keyword in the source’s input line (see the description of independent sources); the magnitude and phase of the F2 component are specified by the arguments of the DISTOF2 keyword. The analysis produces plots of all node voltages/branch currents at the intermodulation product frequencies F1 + F2, F1 - F2, and (2 F1) - F2, vs the swept frequency F1. The IM product of interest may be selected using the setplot command, and displayed with the print and plot commands. It is to be noted as in the harmonic analysis case, the results are the actual AC Spice3f User´s Manual 51 §4.3.3 ANALYSES AND OUTPUT CONTROL: ANALYSES voltages and currents at the intermodulation frequencies, and need to be normalized with respect to .AC values to obtain the IM parameters. If the DISTOF1 or DISTOF2 keywords are missing from the description of an independent source, then that source is assumed to have no input at the corresponding frequency. The default values of the magnitude and phase are 1.0 and 0.0 respectively. The phase should be specified in degrees. It should be carefully noted that the number F2OVERF1 should ideally be an irrational number, and that since this is not possible in practice, efforts should be made to keep the denominator in its fractional representation as large as possible, certainly above 3, for accurate results (i.e., if F2OVERF1 is represented as a fraction A/B, where A and B are integers with no common factors, B should be as large as possible; note that A < B because F2OVERF1 is constrained to be < 1). To illustrate why, consider the cases where F2OVERF1 is 49/100 and 1/2. In a spectral analysis, the outputs produced are at F1 + F2, F1 - F2 and 2 F1 - F2. In the latter case, F1 - F2 = F2, so the result at the F1-F2 component is erroneous because there is the strong fundamental F2 component at the same frequency. Also, F1 + F2 = 2 F1 - F2 in the latter case, and each result is erroneous individually. This problem is not there in the case where F2OVERF1 = 49/100, because F1-F2 = 51/100 F1 < > 49/100 F1 = F2. In this case, there are two very closely spaced frequency components at F2 and F1 - F2. One of the advantages of the Volterra series technique is that it computes distortions at mix frequencies expressed symbolically (i.e. n F1 ± m F2), therefore one is able to obtain the strengths of distortion components accurately even if the separation between them is very small, as opposed to transient analysis for example. The disadvantage is of course that if two of the mix frequencies coincide, the results are not merged together and presented (though this could presumably be done as a postprocessing step). Currently, the interested user should keep track of the mix frequencies himself or herself and add the distortions at coinciding mix frequencies together should it be necessary. 4.3.4. .NOISE: Noise Analysis General form: .NOISE V(OUTPUT <,REF>) SRC ( DEC | LIN | + OCT ) PTS FSTART FSTOP Examples: .NOISE V(5) VIN DEC 10 1kHZ 100Mhz .NOISE V(5,3) V1 OCT 8 1.0 1.0e6 1 The Noise line does a noise analysis of the circuit. OUTPUT is the node at which the total output noise is desired; if REF is specified, then the noise voltage V(OUTPUT) - V(REF) is calculated. By default, REF is assumed to be ground. SRC is the name of an independent source to which input noise is referred. PTS, FSTART and FSTOP are .AC type parameters that specify the frequency range over which plots are desired. PTS_PER_SUMMARY is an optional integer; if specified, the noise contributions of each noise generator is produced every PTS_PER_SUMMARY frequency points. 52 User´s Manual Spice3f ANALYSES AND OUTPUT CONTROL: ANALYSES §4.3.4 The .NOISE control line produces two plots - one for the Noise Spectral Density curves and one for the total Integrated Noise over the specified frequency range. All noise voltages/currents are in squared units (V2/Hz and A2/Hz for spectral density, V2 and A2 for integrated noise). 4.3.5. .OP: Operating Point Analysis General form: .OP The inclusion of this line in an input file directs SPICE to determine the dc operating point of the circuit with inductors shorted and capacitors opened. Note: a DC analysis is automatically performed prior to a transient analysis to determine the transient initial conditions, and prior to an AC small-signal, Noise, and Pole-Zero analysis to determine the linearized, small-signal models for nonlinear devices (see the KEEPOPINFO variable above). 4.3.6. .PZ: Pole-Zero Analysis General form: .PZ .PZ .PZ .PZ .PZ .PZ NODE1 NODE1 NODE1 NODE1 NODE1 NODE1 NODE2 NODE2 NODE2 NODE2 NODE2 NODE2 NODE3 NODE3 NODE3 NODE3 NODE3 NODE3 NODE4 NODE4 NODE4 NODE4 NODE4 NODE4 CUR CUR CUR VOL VOL VOL POL ZER PZ POL ZER PZ Examples: .PZ 1 0 3 0 CUR POL .PZ 2 3 5 0 VOL ZER .PZ 4 1 4 1 CUR PZ CUR stands for a transfer function of the type (output voltage)/(input current) while VOL stands for a transfer function of the type (output voltage)/(input voltage). POL stands for pole analysis only, ZER for zero analysis only and PZ for both. This feature is provided mainly because if there is a nonconvergence in finding poles or zeros, then, at least the other can be found. Finally, NODE1 and NODE2 are the two input nodes and NODE3 and NODE4 are the two output nodes. Thus, there is complete freedom regarding the output and input ports and the type of transfer function. In interactive mode, the command syntax is the same except that the first field is PZ instead of .PZ. To print the results, one should use the command ’print all’. Spice3f User´s Manual 53 §4.3.6 ANALYSES AND OUTPUT CONTROL: ANALYSES 4.3.7. .SENS: DC or Small-Signal AC Sensitivity Analysis General form: .SENS .SENS .SENS .SENS OUTVAR OUTVAR AC DEC ND FSTART FSTOP OUTVAR AC OCT NO FSTART FSTOP OUTVAR AC LIN NP FSTART FSTOP Examples: .SENS V(1,OUT) .SENS V(OUT) AC DEC 10 100 100k .SENS I(VTEST) The sensitivity of OUTVAR to all non-zero device parameters is calculated when the SENS analysis is specified. OUTVAR is a circuit variable (node voltage or voltage-source branch current). The first form calculates sensitivity of the DC operating-point value of OUTVAR. The second form calculates sensitivity of the AC values of OUTVAR. The parameters listed for AC sensitivity are the same as in an AC analysis (see ".AC" above). The output values are in dimensions of change in output per unit change of input (as opposed to percent change in output or per percent change of input). 4.3.8. .TF: Transfer Function Analysis General form: .TF OUTVAR INSRC Examples: .TF V(5, 3) VIN .TF I(VLOAD) VIN The TF line defines the small-signal output and input for the dc small-signal analysis. OUTVAR is the small-signal output variable and INSRC is the small-signal input source. If this line is included, SPICE computes the dc small-signal value of the transfer function (output/input), input resistance, and output resistance. For the first example, SPICE would compute the ratio of V(5, 3) to VIN, the small-signal input resistance at VIN, and the small-signal output resistance measured across nodes 5 and 3. 54 User´s Manual Spice3f ANALYSES AND OUTPUT CONTROL: ANALYSES §4.3.9 4.3.9. .TRAN: Transient Analysis General form: .TRAN TSTEP TSTOP > Examples: .TRAN 1NS 100NS .TRAN 1NS 1000NS 500NS .TRAN 10NS 1US TSTEP is the printing or plotting increment for line-printer output. For use with the post-processor, TSTEP is the suggested computing increment. TSTOP is the final time, and TSTART is the initial time. If TSTART is omitted, it is assumed to be zero. The transient analysis always begins at time zero. In the interval , the circuit is analyzed (to reach a steady state), but no outputs are stored. In the interval , the circuit is analyzed and outputs are stored. TMAX is the maximum stepsize that SPICE uses; for default, the program chooses either TSTEP or (TSTOP-TSTART)/50.0, whichever is smaller. TMAX is useful when one wishes to guarantee a computing interval which is smaller than the printer increment, TSTEP. UIC (use initial conditions) is an optional keyword which indicates that the user does not want SPICE to solve for the quiescent operating point before beginning the transient analysis. If this keyword is specified, SPICE uses the values specified using IC=... on the various elements as the initial transient condition and proceeds with the analysis. If the .IC control line has been specified, then the node voltages on the .IC line are used to compute the initial conditions for the devices. Look at the description on the .IC control line for its interpretation when UIC is not specified. Spice3f User´s Manual 55 §4.4 ANALYSES AND OUTPUT CONTROL: BATCH OUTPUT 4.4. BATCH OUTPUT 4.4.1. .SAVE Lines General form: .SAVE vector vector vector ... Examples: .SAVE i(vin) input output .SAVE @m1[id] The vectors listed on the .SAVE line are recorded in the rawfile for use later with spice3 or nutmeg (nutmeg is just the data-analysis half of spice3, without the ability to simulate). The standard vector names are accepted. If no .SAVE line is given, then the default set of vectors are saved (node voltages and voltage source branch currents). If .SAVE lines are given, only those vectors specified are saved. For more discussion on internal device data, see Appendix B. See also the section on the interactive command interpretor for information on how to use the rawfile. 4.4.2. .PRINT Lines General form: .PRINT PRTYPE OV1 Examples: .PRINT TRAN V(4) I(VIN) .PRINT DC V(2) I(VSRC) V(23, 17) .PRINT AC VM(4, 2) VR(7) VP(8, 3) The Print line defines the contents of a tabular listing of one to eight output variables. PRTYPE is the type of the analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs are desired. The form for voltage or current output variables is the same as given in the previous section for the print command; Spice2 restricts the output variable to the following forms (though this restriction is not enforced by Spice3): V(N1<,N2>) specifies the voltage difference between nodes N1 and N2. If N2 (and the preceding comma) is omitted, ground (0) is assumed. See the print command in the previous section for more details. For compatibility with spice2, the following five additional values can be accessed for the ac analysis by replacing the "V" in V(N1,N2) with: VR VI VM VP VDB - real part imaginary part magnitude phase 20 log10(magnitude) ANALYSES AND OUTPUT CONTROL: BATCH OUTPUT §4.4 I(VXXXXXXX) specifies the current flowing in the independent voltage source named VXXXXXXX. Positive current flows from the positive node, through the source, to the negative node. For the ac analysis, the corresponding replacements for the letter I may be made in the same way as described for voltage outputs. Output variables for the noise and distortion analyses have a different general form from that of the other analyses. There is no limit on the number of .PRINT lines for each type of analysis. 4.4.3. .PLOT Lines General form: .PLOT PLTYPE OV1 <(PLO1, PHI1)> ... OV8> Examples: .PLOT .PLOT .PLOT .PLOT .PLOT DC V(4) V(5) V(1) TRAN V(17, 5) (2, 5) I(VIN) V(17) (1, 9) AC VM(5) VM(31, 24) VDB(5) VP(5) DISTO HD2 HD3(R) SIM2 TRAN V(5, 3) V(4) (0, 5) V(7) (0, 10) The Plot line defines the contents of one plot of from one to eight output variables. PLTYPE is the type of analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs are desired. The syntax for the OVI is identical to that for the .PRINT line and for the plot command in the interactive mode. The overlap of two or more traces on any plot is indicated by the letter X. When more than one output variable appears on the same plot, the first variable specified is printed as well as plotted. If a printout of all variables is desired, then a companion .PRINT line should be included. There is no limit on the number of .PLOT lines specified for each type of analysis. Spice3f User´s Manual 57 §4.4.4 ANALYSES AND OUTPUT CONTROL: BATCH OUTPUT 4.4.4. .FOUR: Fourier Analysis of Transient Analysis Output General form: .FOUR FREQ OV1 Examples: .FOUR 100K V(5) The Four (or Fourier) line controls whether SPICE performs a Fourier analysis as a part of the transient analysis. FREQ is the fundamental frequency, and OV1, ..., are the output variables for which the analysis is desired. The Fourier analysis is performed over the interval , where TSTOP is the final time specified for the transient analysis, and period is one period of the fundamental frequency. The dc component and the first nine harmonics are determined. For maximum accuracy, TMAX (see the .TRAN line) should be set to period/100.0 (or less for very highQ circuits). 58 User´s Manual Spice3f 5. INTERACTIVE INTERPRETER Spice3 consists of a simulator and a front-end for data analysis and plotting. The front-end may be run as a separate "stand-alone" program under the name Nutmeg. Nutmeg will read in the "raw" data output file created by spice -r or with the write command in an interactive Spice3 session. Nutmeg or interactive Spice3 can plot data from a simulation on a graphics terminal or a workstation display. Most of the commands available in the interactive Spice3 front end are available in nutmeg; where this is not the case, Spice-only commands have been marked with an asterisk ("*"). Note that the raw output file is different from the data that Spice2 writes to the standard output, which may also be produced by spice3 with the "-b" command line option. Spice and Nutmeg use the X Window System for plotting if they find the environment variable DISPLAY. Otherwise, a graphics-terminal independent interface (MFB) is used. If you are using X on a workstation, the DISPLAY variable should already be set; if you want to display graphics on a system different from the one you are running Spice3 or Nutmeg on, DISPLAY should be of the form "machine:0.0". See the appropriate documentation on the X Window Sytem for more details. Command Synopsis spice [ -n ] [ -t term ] [ -r rawfile] [ -b ] [ -i ] [ input file ... ] nutmeg [ - ] [ -n ] [ -t term ] [ datafile ... ] Options are: - Don’t try to load the default data file ("rawspice.raw") if no other files are given. Nutmeg only. -n (or -N) Don’t try to source the file ".spiceinit" upon startup. Normally spice and nutmeg try to find the file in the current directory, and if it is not found then in the user’s home directory. -t term (or -T term) The program is being run on a terminal with mfb name term. -b (or -B) Run in batch mode. Spice3 reads the default input source (e.g. keyboard) or reads the given input file and performs the analyses specified; output is either Spice2-like line-printer plots ("ascii plots") or a spice rawfile. See the following section for details. Note that if the input source is not a terminal (e.g. using the IO redirection notation of "<") Spice3 defaults to batch mode (-i overrides). This option is valid for Spice3 only. -s (or -S) Run in server mode. This is like batch mode, except that a temporary rawfile is used and then written to the standard output, preceded by a line with a single "@", after the simulation is done. This mode is used by the spice daemon. This option is valid for Spice3 only. Spice3f User´s Manual 59 §5 INTERACTIVE INTERPRETER -i (or -I) Run in interactive mode. This is useful if the standard input is not a terminal but interactive mode is desired. Command completion is not available unless the standard input is a terminal, however. This option is valid for Spice3 only. -r rawfile (or -P rawfile) Use rawfile as the default file into which the results of the simulation are saved. This option is valid for Spice3 only. Further arguments to spice are taken to be Spice3 input files, which are read and saved (if running in batch mode then they are run immediately). Spice3 accepts most Spice2 input file, and output ascii plots, fourier analyses, and node printouts as specified in .plot, .four, and .print cards. If an out parameter is given on a .width card, the effect is the same as set width = .... Since Spice3 ascii plots do not use multiple ranges, however, if vectors together on a .plot card have different ranges they are not provide as much information as they would in Spice2. The output of Spice3 is also much less verbose than Spice2, in that the only data printed is that requested by the above cards. For nutmeg, further arguments are taken to be data files in binary or ascii format (see sconvert(1)) which are loaded into nutmeg. If the file is in binary format, it may be only partially completed (useful for examining Spice2 output before the simulation is finished). One file may contain any number of data sets from different analyses. 5.1. EXPRESSIONS, FUNCTIONS, AND CONSTANTS Spice and Nutmeg data is in the form of vectors: time, voltage, etc. Each vector has a type, and vectors can be operated on and combined algebraicly in ways consistent with their types. Vectors are normally created when a data file is read in (see the load command below), and when the initial datafile is loaded. They can also be created with the let command. An expression is an algebraic formula involving vectors and scalars (a scalar is a vector of length 1) and the following operations: + - * / ˆ % % is the modulo operator, and the comma operator has two meanings: if it is present in the argument list of a user-definable function, it serves to separate the arguments. Otherwise, the term x , y is synonymous with x + j(y). 60 User´s Manual Spice3f INTERACTIVE INTERPRETER: EXPRESSIONS, FUNCTIONS, AND CONSTANTS §5.1 Also available are the logical operations & (and), | (or), ! (not), and the relational operations <, >, >=, <=, =, and <> (not equal). If used in an algebraic expression they work like they would in C, producing values of 0 or 1. The relational operators have the following synonyms: gt lt ge le ne eq and or not > < >= <= <> = & | ! These are useful when < and > might be confused with IO redirection (which is almost always). The following functions are available: mag(vector) ph(vector) j(vector) real(vector) imag(vector) db(vector) log(vector) ln(vector) exp(vector) abs(vector) sqrt(vector) sin(vector) cos(vector) tan(vector) atan(vector) norm(vector) rnd(vector) mean(vector) Spice3f The magnitude of vector The phase of vector i (sqrt(-1)) times vector The real component of vector The imaginary part of vector 20 log10(mag(vector)) The logarithm (base 10) of vector The natural logarithm (base e) of vector e to the vector power The absolute value of vector. The square root of vector. The sine of vector. The cosine of vector. The tangent of vector. The inverse tangent of vector. The vector normalized to 1 (i.e, the largest magnitude of any component is 1). A vector with each component a random integer between 0 and the absolute value of the vectors’s corresponding component. The result is a scalar (a length 1 vector) that is the mean of the elements of vector. User´s Manual 61 §5.1 INTERACTIVE INTERPRETER: EXPRESSIONS, FUNCTIONS, AND CONSTANTS vector(number) length(vector) interpolate(plot.vector) deriv(vector) The result is a vector of length number, with elements 0, 1, ... number - 1. If number is a vector then just the first element is taken, and if it isn’t an integer then the floor of the magnitude is used. The length of vector. The result of interpolating the named vector onto the scale of the current plot. This function uses the variable polydegree to determine the degree of interpolation. Calculates the derivative of the given vector. This uses numeric differentiation by interpolating a polynomial and may not produce satisfactory results (particularly with iterated differentiation). The implementation only caculates the dirivative with respect to the real componant of that vector’s scale. A vector may be either the name of a vector already defined or a floating-point number (a scalar). A number may be written in any format acceptable to SPICE, such as 14.6Meg or -1.231e-4. Note that you can either use scientific notation or one of the abbreviations like MEG or G, but not both. As with SPICE, a number may have trailing alphabetic characters after it. The notation expr [num] denotes the num’th element of expr. For multi-dimensional vectors, a vector of one less dimension is returned. Also for multi-dimensional vectors, the notation expr[m][n] will return the nth element of the mth subvector. To get a subrange of a vector, use the form expr[lower, upper]. To reference vectors in a plot that is not the current plot (see the setplot command, below), the notation plotname.vecname can be used. Either a plotname or a vector name may be the wildcard all. If the plotname is all, matching vectors from all plots are specified, and if the vector name is all, all vectors in the specified plots are referenced. Note that you may not use binary operations on expressions involving wildcards − it is not obvious what all + all should denote, for instance. Thus some (contrived) examples of expressions are: cos(TIME) + db(v(3)) sin(cos(log([1 2 3 4 5 6 7 8 9 10]))) TIME * rnd(v(9)) - 15 * cos(vin#branch) ˆ [7.9e5 8] not ((ac3.FREQ[32] & tran1.TIME[10]) gt 3) Vector names in spice may have a name such as @name[param], where name is either the name of a device instance or model. This denotes the value of the param parameter of the device or model. See Appendix B for details of what parameters are available. The value is a vector of length 1. This function is also available with the show command, and is available with variables for convenience for command scripts. 62 User´s Manual Spice3f INTERACTIVE INTERPRETER: EXPRESSIONS, FUNCTIONS, AND CONSTANTS §5.1 There are a number of pre-defined constants in nutmeg. They are: pi e c i kelvin echarge boltz planck π (3.14159...) The base of natural logarithms (2.71828...) The speed of light (299,792,500 m/sec) The square root of -1 Absolute 0 in Centigrade (-273.15 °C) The charge on an electron (1.6021918e-19 C) Boltzman’s constant (1.3806226e-23) Planck’s constant (h = 6.626200e-34) These are all in MKS units. If you have another variable with a name that conflicts with one of these then it takes precedence. Spice3f User´s Manual 63 §5.2 INTERACTIVE INTERPRETER: COMMAND INTERPRETATION 5.2. COMMAND INTERPRETATION If a word is typed as a command, and there is no built-in command with that name, the directories in the sourcepath list are searched in order for the file. If it is found, it is read in as a command file (as if it were sourced). Before it is read, however, the variables argc and argv are set to the number of words following the filename on the command line, and a list of those words respectively. After the file is finished, these variables are unset. Note that if a command file calls another, it must save its argv and argc since they are altered. Also, command files may not be re-entrant since there are no local variables. (Of course, the procedures may explicitly manipulate a stack...) This way one can write scripts analogous to shell scripts for nutmeg and Spice3. Note that for the script to work with Spice3, it must begin with a blank line (or whatever else, since it is thrown away) and then a line with .control on it. This is an unfortunate result of the source command being used for both circuit input and command file execution. Note also that this allows the user to merely type the name of a circuit file as a command and it is automatically run. The commands are executed immediately, without running any analyses that may be spicified in the circuit (to execute the analyses before the script executes, include a "run" command in the script). There are various command scripts installed in /usr/local/lib/spice/scripts (or whatever the path is on your machine), and the default sourcepath includes this directory, so you can use these command files (almost) like builtin commands. 64 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3 5.3. COMMANDS 5.3.1. Ac*: Perform an AC, small-signal frequency response analysis General Form ac ( DEC | OCT | LIN ) N Fstart Fstop Do an ac analysis. See the previous sections of this manual for more details. 5.3.2. Alias: Create an alias for a command General Form alias [word] [text ...] Causes word to be aliased to text. History substitutions may be used, as in C-shell aliases. 5.3.3. Alter*: Change a device or model parameter General Form alter device value alter device parameter value [ parameter value ] Alter changes the value for a device or a specified parameter of a device or model. The first form is used by simple devices which have one principal value (resistors, capacitors, etc.) where the second form is for more complex devices (bjt’s, etc.). Model parameters can be changed with the second form if the name contains a "#". For specifying vectors as values, start the vector with "[", followed by the values in the vector, and end with "]". Be sure to place a space between each of the values and before and after the "[" and "]". Spice3f User´s Manual 65 §5.3.4 INTERACTIVE INTERPRETER: COMMANDS 5.3.4. Asciiplot: Plot values using old-style character plots General Form asciiplot plotargs Produce a line printer plot of the vectors. The plot is sent to the standard output, so you can put it into a file with asciiplot args ... > file. The set options width, height, and nobreak determine the width and height of the plot, and whether there are page breaks, respectively. Note that you will have problems if you try to asciiplot something with an X-scale that isn’t monotonic (i.e, something like sin(TIME) ), because asciiplot uses a simple-minded linear interpolation. 5.3.5. Aspice: Asynchronous spice run General Form aspice input-file [output-file] Start a SPICE-3 run, and when it is finished load the resulting data. The raw data is kept in a temporary file. If output-file is specified then the diagnostic output is directed into that file, otherwise it is thrown away. 5.3.6. Bug: Mail a bug report General Form bug Send a bug report. Please include a short summary of the problem, the version number and name of the operating system that you are running, the version of Spice that you are running, and the relevant spice input file. (If you have defined BUGADDR, the mail is delivered to there.) 5.3.7. Cd: Change directory General Form cd [directory] Change the current working directory to directory, or to the user’s home directory if none is given. 66 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.8 5.3.8. Destroy: Delete a data set General Form destroy [plotnames | all] Release the memory holding the data for the specified runs. 5.3.9. Dc*: Perform a DC-sweep analysis General Form dc Source-Name Vstart Vstop Vincr [ Source2 Vstart2 Vstop2 Vincr2 ] Do a dc transfer curve analysis. See the previous sections of this manual for more details. 5.3.10. Define: Define a function General Form define function(arg1, arg2, ...) expression Define the user-definable function with the name function and arguments arg1, arg2, ... to be expression, which may involve the arguments. When the function is later used, the arguments it is given are substituted for the formal arguments when it is parsed. If expression is not present, any definition for function is printed, and if there are no arguments to define then all currently active definitions are printed. Note that you may have different functions defined with the same name but different arities. Some useful definitions are: define max(x,y) (x > y) * x + (x <= y) * y define min(x,y) (x < y) * x + (x >= y) * y 5.3.11. Delete*: Remove a trace or breakpoint General Form delete [ debug-number ... ] Delete the specified breakpoints and traces. The debug numbers are those shown by the status command (unless you do status > file, in which case the debug numbers are not printed). Spice3f User´s Manual 67 §5.3.11 INTERACTIVE INTERPRETER: COMMANDS 5.3.12. Diff: Compare vectors General Form diff plot1 plot2 [vec ...] Compare all the vectors in the specified plots, or only the named vectors if any are given. There are different vectors in the two plots, or any values in the vectors differ significantly the difference is reported. The variable diff_abstol, diff_reltol, and diff_vntol are used to determine a significant difference. 5.3.13. Display: List known vectors and types General Form display [varname ...] Prints a summary of currently defined vectors, or of the names specified. The vectors are sorted by name unless the variable nosort is set. The information given is the name of the vector, the length, the type of the vector, and whether it is real or complex data. Additionally, one vector is labeled [scale]. When a command such as plot is given without a vs argument, this scale is used for the Xaxis. It is always the first vector in a rawfile, or the first vector defined in a new plot. If you undefine the scale (i.e, let TIME = []), one of the remaining vectors becomes the new scale (which is undetermined). 5.3.14. Echo: Print text General Form echo [text...] Echos the given text to the screen. 68 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.15 5.3.15. Edit*: Edit the current circuit General Form edit [ file ] Print the current Spice3 input file into a file, call up the editor on that file and allow the user to modify it, and then read it back in, replacing the original file. If a filename is given, then edit that file and load it, making the circuit the current one. 5.3.16. Fourier: Perform a fourier transform General Form fourier fundamental_frequency [value ...] Does a fourier analysis of each of the given values, using the first 10 multiples of the fundamental frequency (or the first nfreqs, if that variable is set − see below). The output is like that of the .four Spice3 line. The values may be any valid expression. The values are interpolated onto a fixedspace grid with the number of points given by the fourgridsize variable, or 200 if it is not set. The interpolation is of degree polydegree if that variable is set, or 1. If polydegree is 0, then no interpolation is done. This is likely to give erroneous results if the time scale is not monotonic, though. 5.3.17. Hardcopy: Save a plot to a file for printing General Form hardcopy file plotargs Just like plot, except creates a file called file containing the plot. The file is an image in plot(5) format, and can be printed by either the plot(1) program or lpr with the -g flag. 5.3.18. Help: Print summaries of Spice3 commands General Form help [all] [command ...] Prints help. If the argument all is given, a short description of everything you could possibly type is printed. If commands are given, descriptions of those commands are printed. Otherwise help for only a few major commands is printed. Spice3f User´s Manual 69 §5.3.18 INTERACTIVE INTERPRETER: COMMANDS 5.3.19. History: Review previous commands General Form history [number] Print out the history, or the last number commands typed at the keyboard. Note: in Spice3 version 3a7 and earlier, all commands (including ones read from files) were saved. 5.3.20. Iplot*: Incremental plot General Form iplot [ node ...] Incrementally plot the values of the nodes while Spice3 runs. The iplot command can be used with the where command to find trouble spots in a transient simulation. 5.3.21. Jobs: List active asynchronous spice runs General Form jobs Report on the asynchronous SPICE-3 jobs currently running. Nutmeg checks to see if the jobs are finished every time you execute a command. If it is done then the data is loaded and becomes available. 5.3.22. Let: Assign a value to a vector General Form let name = expr Creates a new vector called name with the value specified by expr, an expression as described above. If expr is [] (a zero-length vector) then the vector becomes undefined. Individual elements of a vector may be modified by appending a subscript to name (ex. name[0]). If there are no arguments, let is the same as display. 70 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.23 5.3.23. Linearize*: Interpolate to a linear scale General Form linearize vec ... Create a new plot with all of the vectors in the current plot, or only those mentioned if arguments are given. The new vectors are interpolated onto a linear time scale, which is determined by the values of tstep, tstart, and tstop in the currently active transient analysis. The currently loaded input file must include a transient analysis (a tran command may be run interactively before the last reset, alternately), and the current plot must be from this transient analysis. This command is needed because Spice3 doesn’t output the results from a transient analysis in the same manner that Spice2 did. 5.3.24. Listing*: Print a listing of the current circuit General Form listing [logical] [physical] [deck] [expand] If the logical argument is given, the listing is with all continuation lines collapsed into one line, and if the physical argument is given the lines are printed out as they were found in the file. The default is logical. A deck listing is just like the physical listing, except without the line numbers it recreates the input file verbatim (except that it does not preserve case). If the word expand is present, the circuit is printed with all subcircuits expanded. 5.3.25. Load: Load rawfile data General Form load [filename] ... Loads either binary or ascii format rawfile data from the files named. The default filename is rawspice.raw, or the argument to the -r flag if there was one. 5.3.26. Op*: Perform an operating point analysis General Form op Do an operating point analysis. See the previous sections of this manual for more details. Spice3f User´s Manual 71 §5.3.26 INTERACTIVE INTERPRETER: COMMANDS 5.3.27. Plot: Plot values on the display General Form plot exprs [ylimit ylo yhi] [xlimit xlo xhi] [xindices xilo xihi] [xcompress comp] [xdelta xdel] [ydelta ydel] [xlog] [ylog] [loglog] [vs xname] [xlabel word] [ylabel word] [title word] [samep] [linear] Plot the given exprs on the screen (if you are on a graphics terminal). The xlimit and ylimit arguments determine the high and low x- and y-limits of the axes, respectively. The xindices arguments determine what range of points are to be plotted − everything between the xilo’th point and the xihi’th point is plotted. The xcompress argument specifies that only one out of every comp points should be plotted. If an xdelta or a ydelta parameter is present, it specifies the spacing between grid lines on the X- and Y-axis. These parameter names may be abbreviated to xl, yl, xind, xcomp, xdel, and ydel respectively. The xname argument is an expression to use as the scale on the x-axis. If xlog or ylog are present then the X or Y scale, respectively, is logarithmic (loglog is the same as specifying both). The xlabel and ylabel arguments cause the specified labels to be used for the X and Y axes, respectively. If samep is given, the values of the other parameters (other than xname) from the previous plot, hardcopy, or asciiplot command is used unless re-defined on the command line. The title argument is used in the place of the plot name at the bottom of the graph. The linear keyword is used to override a default log-scale plot (as in the output for an AC analysis). Finally, the keyword polar to generate a polar plot. To produce a smith plot, use the keyword smith. Note that the data is transformed, so for smith plots you will see the data transformed by the function (x−1)/(x+1). To produce a polar plot with a smith grid but without performing the smith transform, use the keyword smithgrid. 5.3.28. Print: Print values General Form print [col] [line] expr ... Prints the vector described by the expression expr. If the col argument is present, print the vectors named side by side. If line is given, the vectors are printed horizontally. col is the default, unless all the vectors named have a length of one, in which case line is the default. The options width, length, and nobreak are effective for this command (see asciiplot). If the expression is all, all of the vectors available are printed. Thus print col all > file prints everything in the file in SPICE2 format. The scale vector (time, frequency) is always in the first column unless the variable noprintscale is true. 72 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.29 5.3.29. Quit: Leave Spice3 or Nutmeg General Form quit Quit nutmeg or spice. 5.3.30. Rehash: Reset internal hash tables General Form rehash Recalculate the internal hash tables used when looking up UNIX commands, and make all UNIX commands in the user’s PATH available for command completion. This is useless unless you have set unixcom first (see above). 5.3.31. Reset*: Reset an analysis General Form reset Throw out any intermediate data in the circuit (e.g, after a breakpoint or after one or more analyses have been done already), and re-parse the input file. The circuit can then be re-run from it’s initial state, overriding the affect of any set or alter commands. In Spice-3e and earlier versions this was done automatically by the run command. Spice3f User´s Manual 73 §5.3.32 INTERACTIVE INTERPRETER: COMMANDS 5.3.32. Reshape: Alter the dimensionality or dimensions of a vector General Form reshape vector vector ... or reshape vector vector ... [ dimension, dimension, ... ] or reshape vector vector ... [ dimension ][ dimension ] ... This command changes the dimensions of a vector or a set of vectors. The final dimension may be left off and it will be filled in automatically. If no dimensions are specified, then the dimensions of the first vector are copied to the other vectors. An error message of the form ’dimensions of x were inconsistent’ can be ignored. 5.3.33. Resume*: Continue a simulation after a stop General Form resume Resume a simulation after a stop or interruption (control-C). 5.3.34. Rspice: Remote spice submission General Form rspice input file Runs a SPICE-3 remotely taking the input file as a SPICE-3 input file, or the current circuit if no argument is given. Nutmeg or Spice3 waits for the job to complete, and passes output from the remote job to the user’s standard output. When the job is finished the data is loaded in as with aspice. If the variable rhost is set, nutmeg connects to this host instead of the default remote Spice3 server machine. This command uses the "rsh" command and thereby requires authentication via a ".rhosts" file or other equivalent method. Note that "rsh" refers to the "remote shell" program, which may be "remsh" on your system; to override the default name of "rsh", set the variable remote_shell. If the variable rprogram is set, then rspice uses this as the pathname to the program to run on the remote system. Note: rspice will not acknowledge elements that have been changed via the "alter" or "altermod" commands. 74 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.35 5.3.35. Run*: Run analysis from the input file General Form run [rawfile] Run the simulation as specified in the input file. If there were any of the control lines .ac, .op, able interactively. In Spice-3e and earlier versions, the input file would be re-read and any affects of the set or alter commands would be reversed. This is no longer the affect. Spice3f User´s Manual 75 §5.3.36 INTERACTIVE INTERPRETER: COMMANDS 5.3.36. Rusage: Resource usage General Form rusage [resource ...] Print resource usage statistics. If any resources are given, just print the usage of that resource. Most resources require that a circuit be loaded. Currently valid resources are: elapsed faults space time The amount of time elapsed since the last rusage elaped call. Number of page faults and context switches (BSD only). Data space used. CPU time used so far. temp tnom equations Operating temperature. Temperature at which device parameters were measured. Circuit Equations time totiter accept rejected Total Analysis Time Total iterations Accepted timepoints Rejected timepoints loadtime reordertime lutime solvetime Time spent loading the circuit matrix and RHS. Matrix reordering time L-U decomposition time Matrix solve time trantime tranpoints traniter trancuriters tranlutime transolvetime Transient analysis time Transient timepoints Transient iterations Transient iterations for the last time point* Transient L-U decomposition time Transient matrix solve time everything All of the above. * listed incorrectly as "Transient iterations per point". 76 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.37 5.3.37. Save*: Save a set of outputs General Form save [all | output ...] .save [all | output ...] Save a set of outputs, discarding the rest. If a node has been mentioned in a save command, it appears in the working plot after a run has completed, or in the rawfile if spice is run in batch mode. If a node is traced or plotted (see below) it is also saved. For backward compatibility, if there are no save commands given, all outputs are saved. When the keyword "all" appears in the save command, all default values (node voltages and voltage source currents) are saved in addition to any other values listed. 5.3.38. Sens*: Run a sensitivity analysis General Form sens output_variable sens output_variable ac ( DEC | OCT | LIN ) N Fstart Fstop Perform a Sensitivity analysis. output_variable is either a node voltage (ex. "v(1)" or "v(A,out)") or a current through a voltage source (ex. "i(vtest)"). The first form calculates DC sensitivities, the second form calculates AC sensitivies. The output values are in dimensions of change in output per unit change of input (as opposed to percent change in output or per percent change of input). 5.3.39. Set: Set the value of a variable General Form set [word] set [word = value] ... Set the value of word to be value, if it is present. You can set any word to be any value, numeric or string. If no value is given then the value is the boolean ’true’. The value of word may be inserted into a command by writing $word. If a variable is set to a list of values that are enclosed in parentheses (which must be separated from their values by white space), the value of the variable is the list. The variables used by nutmeg are listed in the following section. Spice3f User´s Manual 77 §5.3.40 INTERACTIVE INTERPRETER: COMMANDS 5.3.40. Setcirc*: Change the current circuit General Form setcirc [circuit name] The current circuit is the one that is used for the simulation commands below. When a circuit is loaded with the source command (see below) it becomes the current circuit. 5.3.41. Setplot: Switch the current set of vectors General Form setplot [plotname] Set the current plot to the plot with the given name, or if no name is given, prompt the user with a menu. (Note that the plots are named as they are loaded, with names like tran1 or op2. These names are shown by the setplot and display commands and are used by diff, below.) If the "New plot" item is selected, the current plot becomes one with no vectors defined. Note that here the word "plot" refers to a group of vectors that are the result of one SPICE run. When more than one file is loaded in, or more than one plot is present in one file, nutmeg keeps them separate and only shows you the vectors in the current plot. 5.3.42. Settype: Set the type of a vector General Form settype type vector ... Change the type of the named vectors to type. Type names can be found in the manual page for sconvert. 5.3.43. Shell: Call the command interpreter General Form shell [ command ] Call the operating system’s command interpreter; execute the specified command or call for interactive use. 78 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.44 5.3.44. Shift: Alter a list variable General Form shift [varname] [number] If varname is the name of a list variable, it is shifted to the left by number elements (i.e, the number leftmost elements are removed). The default varname is argv, and the default number is 1. 5.3.45. Show*: List device state General Form show devices [ : parameters ] , ... Old Form show -v @device [ [ name ] ] The show command prints out tables summarizing the operating condition of selected devices (much like the spice2 operation point summary). If device is missing, a default set of devices are listed, if device is a single letter, devices of that type are listed; if device is a subcircuit name (beginning and ending in ":") only devices in that subcircuit are shown (end the name in a double-":" to get devices within sub-subcircuits recursively). The second and third forms may be combined ("letter:subcircuit:") or "letter:subcircuit::") to select a specific type of device from a subcircuit. A device’s full name may be specified to list only that device. Finally, devices may be selected by model by using the form "#modelname" or ":subcircuit#modelname" or "letter:subcircuit#modelname". If no parameters are specified, the values for a standard set of parameters are listed. If the list of parameters contains a "+", the default set of parameters is listed along with any other specified parameters. For both devices and parameters, the word "all" has the obvious meaning. Note: there must be spaces separating the ":" that divides the device list from the parameter list. The "old form" (with "-v") prints the data in a older, more verbose pre-spice3f format. Spice3f User´s Manual 79 §5.3.46 INTERACTIVE INTERPRETER: COMMANDS 5.3.46. Showmod*: List model parameter values General Form showmod models [ : parameters ] , ... The showmod command operates like the show command (above) but prints out model parameter values. The applicable forms for models are a single letter specifying the device type letter, "letter:subckt:", "modelname", ":subckt:modelname", or "letter:subcircuit:modelname". 5.3.47. Source: Read a Spice3 input file General Form source file For Spice3: Read the Spice3 input file file. Nutmeg and Spice3 commands may be included in the file, and must be enclosed between the lines .control and .endc. These commands are executed immediately after the circuit is loaded, so a control line of ac ... works the same as the corresponding the circuit. The exception to this rule is the file .spiceinit. Thus, a Spice3 command script must begin with a blank line and then with a .control line. Also, any line beginning with the characters *# is considered a control line. This makes it possible to imbed commands in Spice3 input files that are ignored by earlier versions of Spice2 For Nutmeg: Reads commands from the file filename. Lines beginning with the character * are considered comments and ignored. 5.3.48. Status*: Display breakpoint information General Form status Display all of the traces and breakpoints currently in effect. 80 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.49 5.3.49. Step*: Run a fixed number of timepoints General Form step [number] Iterate number times, or once, and then stop. 5.3.50. Stop*: Set a breakpoint General Form stop [ after n] [ when value cond value ] ... Set a breakpoint. The argument after n means stop after n iteration number n, and the argument when value cond value means stop when the first value is in the given relation with the second value, the possible relations being eq ne gt lt ge le or or or or or or = <> > < >= <= equal to not equal to greater than less than greater than or equal to less than or equal to IO redirection is disabled for the stop command, since the relational operations conflict with it (it doesn’t produce any output anyway). The values above may be node names in the running circuit, or real values. If more than one condition is given, e.g. stop after 4 when v(1) > 4 when v(2) < 2, the conjunction of the conditions is implied. 5.3.51. Tf*: Run a Transfer Function analysis General Form tf output_node input_source The tf command performs a transfer function analysis, returning the transfer function (output/input), output resistance, and input resistance between the given output node and the given input source. The analysis assumes a small-signal DC (slowly varying) input. Spice3f User´s Manual 81 §5.3.52 INTERACTIVE INTERPRETER: COMMANDS 5.3.52. Trace*: Trace nodes General Form trace [ node ...] For every step of an analysis, the value of the node is printed. Several traces may be active at once. Tracing is not applicable for all analyses. To remove a trace, use the delete command. 5.3.53. Tran*: Perform a transient analysis General Form tran Tstep Tstop [ Tstart [ Tmax ] ] [ UIC ] Perform a transient analysis. See the previous sections of this manual for more details. 5.3.54. Transpose: Swap the elements in a multi-dimensional data set General Form transpose vector vector ... This command transposes a multidimensional vector. No analysis in Spice3 produces multidimensional vectors, although the DC transfer curve may be run with two varying sources. You must use the "reshape" command to reform the one-dimensional vectors into two dimensional vectors. In addition, the default scale is incorrect for plotting. You must plot versus the vector corresponding to the second source, but you must also refer only to the first segment of this second source vector. For example (circuit to produce the tranfer characteristic of a MOS transistor): spice3 spice3 spice3 spice3 spice3 82 > > > > > dc vgg 0 5 1 vdd 0 5 1 plot i(vdd) reshape all [6,6] transpose i(vdd) v(drain) plot i(vdd) vs v(drain)[0] User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.55 5.3.55. Unalias: Retract an alias General Form unalias [word ...] Removes any aliases present for the words. 5.3.56. Undefine: Retract a definition General Form undefine function Definitions for the named user-defined functions are deleted. 5.3.57. Unset: Clear a variable General Form unset [word ...] Clear the value of the specified variable(s) (word). 5.3.58. Version: Print the version of Spice General Form version [version id] Print out the version of nutmeg that is running. If there are arguments, it checks to make sure that the arguments match the current version of SPICE. (This is mainly used as a Command: line in rawfiles.) Spice3f User´s Manual 83 §5.3.59 INTERACTIVE INTERPRETER: COMMANDS 5.3.59. Where: Identify troublesome node or device General Form where When performing a transient or operating point analysis, the name of the last node or device to cause non-convergence is saved. The where command prints out this information so that you can examine the circuit and either correct the problem or make a bug report. You may do this either in the middle of a run or after the simulator has given up on the analysis. For transient simulation, the iplot command can be used to monitor the progress of the analysis. When the analysis slows down severly or hangs, interrupt the simulator (with control-C) and issue the where command. Note that only one node or device is printed; there may be problems with more than one node. 5.3.60. Write: Write data to a file General Form write [file] [exprs] Writes out the expressions to file. First vectors are grouped together by plots, and written out as such (i.e, if the expression list contained three vectors from one plot and two from another, then two plots are written, one with three vectors and one with two). Additionally, if the scale for a vector isn’t present, it is automatically written out as well. The default format is ascii, but this can be changed with the set filetype command. The default filename is rawspice.raw, or the argument to the -r flag on the command line, if there was one, and the default expression list is all. 5.3.61. Xgraph: use the xgraph(1) program for plotting. General Form xgraph file [exprs] [plot options] The spice3/nutmeg xgraph command plots data like the plot command but via xgraph, a popular X11 plotting program. If file is either "temp" or "tmp" a temporary file is used to hold the data while being plotted. For available plot options, see the plot command. All options except for polar or smith plots are supported. 84 User´s Manual Spice3f INTERACTIVE INTERPRETER: COMMANDS §5.3.61 5.4. CONTROL STRUCTURES 5.4.1. While — End General Form while condition statement ... end While condition, an arbitrary algebraic expression, is true, execute the statements. 5.4.2. Repeat — End General Form repeat [number] statement ... end Execute the statements number times, or forever if no argument is given. 5.4.3. Dowhile — End General Form dowhile condition statement ... end The same as while, except that the condition is tested after the statements are executed. Spice3f User´s Manual 85 §5.4.4 INTERACTIVE INTERPRETER: CONTROL STRUCTURES 5.4.4. Foreach — End General Form foreach var value ... statement ... end The statements are executed once for each of the values, each time with the variable var set to the current one. (var can be accessed by the $var notation − see below). 5.4.5. If — Then — Else General Form if condition statement ... else statement ... end If the condition is non-zero then the first set of statements are executed, otherwise the second set. The else and the second set of statements may be omitted. 5.4.6. Label General Form label word If a statement of the form goto word is encountered, control is transferred to this point, otherwise this is a no-op. 86 User´s Manual Spice3f INTERACTIVE INTERPRETER: CONTROL STRUCTURES §5.4.7 5.4.7. Goto General Form goto word If a statement of the form label word is present in the block or an enclosing block, control is transferred there. Note that if the label is at the top level, it must be before the goto statement (i.e, a forward goto may occur only within a block). 5.4.8. Continue General Form continue If there is a while, dowhile, or foreach block enclosing this statement, control passes to the test, or in the case of foreach, the next value is taken. Otherwise an error results. 5.4.9. Break General Form break If there is a while, dowhile, or foreach block enclosing this statement, control passes out of the block. Otherwise an error results. Of course, control structures may be nested. When a block is entered and the input is the terminal, the prompt becomes a number of >’s corresponding to the number of blocks the user has entered. The current control structures may be examined with the debugging command cdump. Spice3f User´s Manual 87 §5.4.9 INTERACTIVE INTERPRETER: CONTROL STRUCTURES 5.5. VARIABLES The operation of both Nutmeg and Spice3 may be affected by setting variables with the "set" command. In addition to the variables mentioned below, the set command in Spice3 also affect the behaviour of the simulator via the options previously described under the section on ".OPTIONS". The variables meaningful to nutmeg which may be altered by the set command are: diff_abstol appendwrite colorN combplot cpdebug debug device echo filetype fourgridsize gridsize hcopydev hcopyfont hcopyfontsize The absolute tolerance used by the diff command. Append to the file when a write command is issued, if one already exists. These variables determine the colors used, if X is being run on a color display. N may be between 0 and 15. Color 0 is the background, color 1 is the grid and text color, and colors 2 through 15 are used in order for vectors plotted. The value of the color variables should be names of colors, which may be found in the file /usr/lib/rgb.txt. Plot vectors by drawing a vertical line from each point to the X-axis, as opposed to joining the points. Note that this option is subsumed in the plottype option, below. Print cshpar debugging information (must be complied with the -DCPDEBUG flag). Unsupported in the current release. If set then a lot of debugging information is printed (must be compiled with the -DFTEDEBUG flag). Unsupported in the current release. The name (/dev/tty??) of the graphics device. If this variable isn’t set then the user’s terminal is used. To do plotting on another monitor you probably have to set both the device and term variables. (If device is set to the name of a file, nutmeg dumps the graphics control codes into this file -- this is useful for saving plots.) Print out each command before it is executed. This can be either ascii or binary, and determines what format are. The default is ascii. How many points to use for interpolating into when doing fourier analysis. If this variable is set to an integer, this number is used as the number of equally spaced points to use for the Y-axis when plotting. Otherwise the current scale is used (which may not have equally spaced points). If the current scale isn’t strictly monotonic, then this option has no effect. If this is set, when the hardcopy command is run the resulting file is automatically printed on the printer named hcopydev with the command lpr -Phcopydev -g file. This variable specifies the font name for hardcopy output plots. The value is device dependent. This is a scaling factor for the font used in hardcopy plots. INTERACTIVE INTERPRETER: CONTROL STRUCTURES hcopydevtype height history lprplot5 lprps nfreqs nobreak noasciiplotvalue noclobber noglob nogrid nomoremode nonomatch nosort noprintscale Spice3f §5.4.9 This variable specifies the type of the printer output to use in the hardcopy command. If hcopydevtype is not set, plot (5) format is assumed. The standard distribution currently recognizes postscript as an alternative output format. When used in conjunction with hcopydev, hcopydevtype should specify a format supported by the printer. The length of the page for asciiplot and print col. The number of events to save in the history list. This is a printf(3s) style format string used to specify the command to use for sending plot(5)-style plots to a printer or plotter. The first parameter supplied is the printer name, the second parameter supplied is a file name containing the plot. Both parameters are strings. It is trivial to cause Spice3 to abort by supplying a unreasonable format string. This is a printf(3s) style format string used to specify the command to use for sending PostScript plots to a printer or plotter. The first parameter supplied is the printer name, the second parameter supplied is a file name containing the plot. Both parameters are strings. It is trivial to cause Spice3 to abort by supplying a unreasonable format string. The number of frequencies to compute in the fourier command. (Defaults to 10.) Don’t have asciiplot and print col break between pages. Don’t print the first vector plotted to the left when doing an asciiplot. Don’t overwrite existing files when doing IO redirection. Don’t expand the global characters ‘*’, ‘?’, ‘[’, and ‘]’. This is the default. Don’t plot a grid when graphing curves (but do label the axes). If nomoremode is not set, whenever a large amount of data is being printed to the screen (e.g, the print or asciiplot commands), the output is stopped every screenful and continues when a carriage return is typed. If nomoremode is set then data scrolls off the screen without check. If noglob is unset and a global expression cannot be matched, use the global characters literally instead of complaining. Don’t have display sort the variable names. Don’t print the scale in the leftmost column when a print col command is given. User´s Manual 89 §5.5 numdgt plottype polydegree polysteps program prompt rawfile diff_reltol remote_shell rhost rprogram slowplot sourcepath spicepath term units 90 INTERACTIVE INTERPRETER: VARIABLES The number of digits to print when printing tables of data (fourier, print col). The default precision is 6 digits. On the VAX, approximately 16 decimal digits are available using double precision, so numdgt should not be more than 16. If the number is negative, one fewer digit is printed to ensure constant widths in tables. This should be one of normal, comb, or point:chars. normal, the default, causes points to be plotted as parts of connected lines. comb causes a comb plot to be done (see the description of the combplot variable above). point causes each point to be plotted separately − the chars are a list of characters that are used for each vector plotted. If they are omitted then a default set is used. The degree of the polynomial that the plot command should fit to the data. If polydegree is N, then nutmeg fits a degree N polynomial to every set of N points and draw 10 intermediate points in between each endpoint. If the points aren’t monotonic, then it tries rotating the curve and reducing the degree until a fit is achieved. The number of points to interpolate between every pair of points available when doing curve fitting. The default is 10. The name of the current program (argv[0]). The prompt, with the character ‘!’ replaced by the current event number. The default name for rawfiles created. The relative tolerance used by the diff command. Overrides the name used for generating rspice runs (default is "rsh"). The machine to use for remote SPICE-3 runs, instead of the default one (see the description of the rspice command, below). The name of the remote program to use in the rspice command. Stop between each graph plotted and wait for the user to type return before continuing. A list of the directories to search when a source command is given. The default is the current directory and the standard spice library (/usr/local/lib/spice, or whatever LIBPATH is #defined to in the Spice3 source. The program to use for the aspice command. The default is /cad/bin/spice. The mfb name of the current terminal. If this is degrees, then all the trig functions will use degrees instead of radians. User´s Manual Spice3f INTERACTIVE INTERPRETER: VARIABLES unixcom verbose diff_vntol width x11lineararcs xbrushheight xbrushwidth xfont §5.5 If a command isn’t defined, try to execute it as a UNIX command. Setting this option has the effect of giving a rehash command, below. This is useful for people who want to use nutmeg as a login shell. Be verbose. This is midway between echo and debug / cpdebug. The absolute voltage tolerance used by the diff command. The width of the page for asciiplot and print col. Some X11 implementations have poor arc drawing. If you set this option, Spice3 will plot using an approximation to the curve using straight lines. The height of the brush to use if X is being run. The width of the brush to use if X is being run. The name of the X font to use when plotting data and entering labels. The plot may not look good if this is a variable-width font. There are several set variables that Spice3 uses but Nutmeg does not. They are: editor modelcard noaskquit nobjthack noparse nosubckt renumber subend subinvoke substart Spice3f The editor to use for the edit command. The name of the model card (normally .model). Do not check to make sure that there are no circuits suspended and no plots unsaved. Normally Spice3 warns the user when he tries to quit if this is the case. Assume that BJTs have 4 nodes. Don’t attempt to parse input files when they are read in (useful for debugging). Of course, they cannot be run if they are not parsed. Don’t expand subcircuits. Renumber input lines when an input file has .include’s. The card to end subcircuits (normally .ends). The prefix to invoke subcircuits (normally x). The card to begin subcircuits (normally .subckt). User´s Manual 91 §5.6 INTERACTIVE INTERPRETER: MISCELLANEOUS 5.6. MISCELLANEOUS If there are subcircuits in the input file, Spice3 expands instances of them. A subcircuit is delimited by the cards .subckt and .ends, or whatever the value of the variables substart and subend is, respectively. An instance of a subcircuit is created by specifying a device with type ’x’ − the device line is written xname node1 node2 ... subcktname where the nodes are the node names that replace the formal parameters on the .subckt line. All nodes that are not formal parameters are prepended with the name given to the instance and a ’:’, as are the names of the devices in the subcircuit. If there are several nested subcircuits, node and device names look like subckt1:subckt2:...:name. If the variable subinvoke is set, then it is used as the prefix that specifies instances of subcircuits, instead of ’x’. Nutmeg occasionally checks to see if it is getting close to running out of space, and warns the user if this is the case. (This is more likely to be useful with the SPICE front end.) C-shell type quoting with "" and ’’, and backquote substitution may be used. Within single quotes, no further substitution (like history substitution) is done, and within double quotes, the words are kept together but further substitution is done. Any text between backquotes is replaced by the result of executing the text as a command to the shell. Tenex-style (’set filec’ in the 4.3 C-shell) command, filename, and keyword completion is possible: If EOF (control-D) is typed after the first character on the line, a list of the commands or possible arguments is printed (If it is alone on the line it exits nutmeg). If escape is typed, then nutmeg trys to complete what the user has already typed. To get a list of all commands, the user should type ˆD. The values of variables may be used in commands by writing $varname where the value of the variable is to appear. The special variables $$ and $< refer to the process ID of the program and a line of input which is read from the terminal when the variable is evaluated, respectively. If a variable has a name of the form $&word, then word is considered a vector (see above), and its value is taken to be the value of the variable. If $foo is a valid variable, and is of type list, then the expression $foo[low-high] represents a range of elements. Either the upper index or the lower may be left out, and the reverse of a list may be obtained with $foo[len-0]. Also, the notation $?foo evaluates to 1 if the variable foo is defined, 0 otherwise, and $#foo evaluates to the number of elements in foo if it is a list, 1 if it is a number or string, and 0 if it is a boolean variable. History substitutions, similar to C-shell history substitutions, are also available − see the C-shell manual page for all of the details. The characters ˜, {, and } have the same effects as they do in the C-Shell, i.e., home directory and alternative expansion. It is possible to use the wildcard characters *, ?, [, and ] also, but only if you unset noglob first. This makes them rather useless for typing algebraic expressions, so you should set noglob again after you are done with wildcard expansion. Note that the pattern [ˆabc] matchs all characters except a, b, and c. IO redirection is available − the symbols >, >>, >&, >>&, and < have the same effects as in the Cshell. 92 User´s Manual Spice3f INTERACTIVE INTERPRETER: MISCELLANEOUS §5.6 You may type multiple commands on one line, separated by semicolons. If you want to use a different mfbcap file than the default (usually ˜cad/lib/mfbcap), you have to set the environment variable SPICE_MFBCAP before you start nutmeg or spice. The -m option and the mfbcap variable no longer work. If X is being used, the cursor may be positioned at any point on the screen when the window is up and characters typed at the keyboard are added to the window at that point. The window may then be sent to a printer using the xpr(1) program. Nutmeg can be run under VAX/VMS, as well as several other operating systems. Some features like command completion, expansion of *, ?, and [], backquote substitution, the shell command, and so forth do not work. On some systems you have to respond to the -more- prompt during plot with a carriage return instead of any key as you can do on UNIX. Spice3f User´s Manual 93 §5.7 INTERACTIVE INTERPRETER: BUGS 5.7. BUGS The label entry facilities are primitive. You must be careful to type slowly when entering labels -nutmeg checks for input once every second, and can get confused if characters arrive faster. If you redefine colors after creating a plot window with X, and then cause the window to be redrawn, it does not redraw in the correct colors. When defining aliases like alias pdb plot db( ’!:1’ - ’!:2’ ) you must be careful to quote the argument list substitutions in this manner. If you quote the whole argument it might not work properly. In a user-defined function, the arguments cannot be part of a name that uses the plot.vec syntax. For example: define check(v(1)) cos(tran1.v(1)) does not work. If you type plot all all, or otherwise use a wildcard reference for one plot twice in a command, the effect is unpredictable. The asciiplot command doesn’t deal with log scales or the delta keywords. Often the names of terminals recognized by MFB are different from those in /etc/termcap. Thus you may have to reset your terminal type with the command set term = termname where termname is the name in the mfbcap file. The hardcopy command is useless on VMS and other systems without the plot command, unless the user has a program that understands plot(5) format. Spice3 recognizes all the notations used in SPICE2 .plot cards, and translates vp(1) into ph(v(1)), and so forth. However, if there are spaces in these names it won’t work. Hence v(1, 2) and (-.5, .5) aren’t recognized. BJTs can have either 3 or 4 nodes, which makes it difficult for the subcircuit expansion routines to decide what to rename. If the fourth parameter has been declared as a model name, then it is assumed that there are 3 nodes, otherwise it is considered a node. To disable this, you can set the variable "nobjthack" which forces BJTs to have 4 nodes (for the purposes of subcircuit expansion, at least). The @name[param] notation might not work with trace, iplot, etc. yet. The first line of a command file (except for the .spiceinit file) should be a comment, otherwise SPICE may create an empty circuit. Files specified on the command line are read before .spiceinit is read. 94 User´s Manual Spice3f INTERACTIVE INTERPRETER: BUGS Spice3f User´s Manual §5.7 95 96 User´s Manual Spice3f 6. BIBLIOGRAPHY [1] A. Vladimirescu and S. Liu, The Simulation of MOS Integrated Circuits Using SPICE2 ERL Memo No. ERL M80/7, Electronics Research Laboratory University of California, Berkeley, October 1980 [2] T. Sakurai and A. R. Newton, A Simple MOSFET Model for Circuit Analysis and its application to CMOS gate delay analysis and series-connected MOSFET Structure ERL Memo No. ERL M90/19, Electronics Research Laboratory, University of California, Berkeley, March 1990 [3] B. J. Sheu, D. L. Scharfetter, and P. K. Ko, SPICE2 Implementation of BSIM ERL Memo No. ERL M85/42, Electronics Research Laboratory University of California, Berkeley, May 1985 [4] J. R. Pierret, A MOS Parameter Extraction Program for the BSIM Model ERL Memo Nos. ERL M84/99 and M84/100, Electronics Research Laboratory University of California, Berkeley, November 1984 [5] Min-Chie Jeng, Design and Modeling of Deep-Submicrometer MOSFETSs ERL Memo Nos. ERL M90/90, Electronics Research Laboratory University of California, Berkeley, October 1990 [6] Soyeon Park, Analysis and SPICE implementation of High Temperature Effects on MOSFET, Master’s thesis, University of California, Berkeley, December 1986. [7] Clement Szeto, Simulator of Temperature Effects in MOSFETs (STEIM), Master’s thesis, University of California, Berkeley, May 1988. [8] J.S. Roychowdhury and D.O. Pederson, Efficient Transient Simulation of Lossy Interconnect, Proc. of the 28th ACM/IEEE Design Automation Conference, June 17-21 1991, San Francisco [9] A. E. Parker and D. J. Skellern, An Improved FET Model for Computer Simulators, IEEE Trans CAD, vol. 9, no. 5, pp. 551-553, May 1990. [10] R. Saleh and A. Yang, Editors, Simulation and Modeling, IEEE Circuits and Devices, vol. 8, no. 3, pp. 7-8 and 49, May 1992 [11] H.Statz et al., GaAs FET Device and Circuit Simulation in SPICE, IEEE Transactions on Electron Devices, V34, Number 2, February, 1987 pp160-169. Spice3f User´s Manual 97 98 User´s Manual Spice3f A. APPENDIX A: EXAMPLE CIRCUITS A.1. Circuit 1: Differential Pair The following deck determines the dc operating point of a simple differential pair. In addition, the ac small-signal response is computed over the frequency range 1Hz to 100MEGHz. SIMPLE DIFFERENTIAL PAIR VCC 7 0 12 VEE 8 0 -12 VIN 1 0 AC 1 RS1 1 2 1K RS2 6 0 1K Q1 3 2 4 MOD1 Q2 5 6 4 MOD1 RC1 7 3 10K RC2 7 5 10K RE 4 8 10K .MODEL MOD1 NPN BF=50 VAF=50 IS=1.E-12 RB=100 CJC=.5PF TF=.6NS .TF V(5) VIN .AC DEC 10 1 100MEG .END A.2. Circuit 2: MOSFET Characterization The following deck computes the output characteristics of a MOSFET device over the range 0-10V for VDS and 0-5V for VGS. MOS OUTPUT CHARACTERISTICS .OPTIONS NODE NOPAGE VDS 3 0 VGS 2 0 M1 1 2 0 0 MOD1 L=4U W=6U AD=10P AS=10P * VIDS MEASURES ID, WE COULD HAVE USED VDS, BUT ID WOULD BE NEGATIVE VIDS 3 1 .MODEL MOD1 NMOS VTO=-2 NSUB=1.0E15 UO=550 .DC VDS 0 10 .5 VGS 0 5 1 .END Spice3f User´s Manual 99 APPENDIX A: EXAMPLE CIRCUITS A.3. Circuit 3: RTL Inverter The following deck determines the dc transfer curve and the transient pulse response of a simple RTL inverter. The input is a pulse from 0 to 5 Volts with delay, rise, and fall times of 2ns and a pulse width of 30ns. The transient interval is 0 to 100ns, with printing to be done every nanosecond. SIMPLE RTL INVERTER VCC 4 0 5 VIN 1 0 PULSE 0 5 2NS 2NS 2NS 30NS RB 1 2 10K Q1 3 2 0 Q1 RC 3 4 1K .MODEL Q1 NPN BF 20 RB 100 TF .1NS CJC 2PF .DC VIN 0 5 0.1 .TRAN 1NS 100NS .END A.4. Circuit 4: Four-Bit Binary Adder The following deck simulates a four-bit binary adder, using several subcircuits to describe various pieces of the overall circuit. ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER *** SUBCIRCUIT DEFINITIONS .SUBCKT NAND 1 2 3 4 * NODES: INPUT(2), OUTPUT, VCC Q1 9 5 1 QMOD D1CLAMP 0 1 DMOD Q2 9 5 2 QMOD D2CLAMP 0 2 DMOD RB 4 5 4K R1 4 6 1.6K Q3 6 9 8 QMOD R2 8 0 1K RC 4 7 130 Q4 7 6 10 QMOD DVBEDROP 10 3 DMOD Q5 3 8 0 QMOD .ENDS NAND .SUBCKT ONEBIT 1 2 3 4 5 6 * NODES: INPUT(2), CARRY-IN, OUTPUT, CARRY-OUT, VCC X1 1 2 7 6 NAND X2 1 7 8 6 NAND X3 2 7 9 6 NAND X4 8 9 10 6 NAND X5 3 10 11 6 NAND 100 User´s Manual Spice3f APPENDIX A: EXAMPLE CIRCUITS X6 3 11 12 X7 10 11 13 X8 12 13 4 X9 11 7 5 .ENDS ONEBIT 6 6 6 6 NAND NAND NAND NAND .SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9 * NODES: INPUT - BIT0(2) / BIT1(2), OUTPUT - BIT0 / BIT1, * CARRY-IN, CARRY-OUT, VCC X1 1 2 7 5 10 9 ONEBIT X2 3 4 10 6 8 9 ONEBIT .ENDS TWOBIT .SUBCKT FOURBIT 1 2 3 4 5 6 * NODES: INPUT - BIT0(2) * OUTPUT - BIT0 / X1 1 2 3 4 9 10 13 16 X2 5 6 7 8 11 12 16 14 .ENDS FOURBIT 7 8 9 10 11 12 13 14 15 / BIT1(2) / BIT2(2) / BIT3(2), BIT1 / BIT2 / BIT3, CARRY-IN, CARRY-OUT, VCC 15 TWOBIT 15 TWOBIT *** DEFINE NOMINAL CIRCUIT .MODEL DMOD D .MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF) VCC 99 0 DC 5V VIN1A 1 0 PULSE(0 3 0 10NS 10NS 10NS 50NS) VIN1B 2 0 PULSE(0 3 0 10NS 10NS 20NS 100NS) VIN2A 3 0 PULSE(0 3 0 10NS 10NS 40NS 200NS) VIN2B 4 0 PULSE(0 3 0 10NS 10NS 80NS 400NS) VIN3A 5 0 PULSE(0 3 0 10NS 10NS 160NS 800NS) VIN3B 6 0 PULSE(0 3 0 10NS 10NS 320NS 1600NS) VIN4A 7 0 PULSE(0 3 0 10NS 10NS 640NS 3200NS) VIN4B 8 0 PULSE(0 3 0 10NS 10NS 1280NS 6400NS) X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT RBIT0 9 0 1K RBIT1 10 0 1K RBIT2 11 0 1K RBIT3 12 0 1K RCOUT 13 0 1K *** (FOR THOSE WITH MONEY (AND MEMORY) TO BURN) .TRAN 1NS 6400NS .END Spice3f User´s Manual 101 APPENDIX A: EXAMPLE CIRCUITS A.5. Circuit 5: Transmission-Line Inverter The following deck simulates a transmission-line inverter. Two transmission-line elements are required since two propagation modes are excited. In the case of a coaxial line, the first line (T1) models the inner conductor with respect to the shield, and the second line (T2) models the shield with respect to the outside world. TRANSMISSION-LINE V1 1 0 R1 1 2 X1 2 0 0 4 R2 4 0 INVERTER PULSE(0 1 0 0.1N) 50 TLINE 50 .SUBCKT TLINE 1 2 3 4 T1 1 2 3 4 Z0=50 TD=1.5NS T2 2 0 4 0 Z0=100 TD=1NS .ENDS TLINE .TRAN 0.1NS 20NS .END 102 User´s Manual Spice3f B. APPENDIX B: MODEL AND DEVICE PARAMETERS The following tables summarize the parameters available on each of the devices and models in (note that for some systems with limited memory, output parameters are not available). There are several tables for each type of device supported by . Input parameters to instances and models are parameters that can occur on an instance or model definition line in the form ‘‘keyword=value’’ where ‘‘keyword’’ is the parameter name as given in the tables. Default input parameters (such as the resistance of a resistor or the capacitance of a capacitor) obviously do not need the keyword specified. Output parameters are those additional parameters which are available for many types of instances for the output of operating point and debugging information. These parameters are specified as ‘‘@device[keyword]’’ and are available for the most recent point computed or, if specified in a ‘‘.save’’ statement, for an entire simulation as a normal output vector. Thus, to monitor the gate-to-source capacitance of a MOSFET, a command save @m1[cgs] given before a transient simulation causes the specified capacitance value to be saved at each timepoint, and a subsequent command such as plot @m1[cgs] produces the desired plot. (Note that the show command does not use this format). Some variables are listed as both input and output, and their output simply returns the previously input value, or the default value after the simulation has been run. Some parameter are input only because the output system can not handle variables of the given type yet, or the need for them as output variables has not been apparent. Many such input variables are available as output variables in a different format, such as the initial condition vectors that can be retrieved as individual initial condition values. Finally, internally derived values are output only and are provided for debugging and operating point output purposes. Please note that these tables do not provide the detailed information available about the parameters provided in the section on each device and model, but are provided as a quick reference guide. Spice3f User´s Manual 103 APPENDIX B: MODEL AND DEVICE PARAMETERS B.1. URC: Uniform R.C. line i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c URC — instance parameters (input-output) c l Length of transmission line c c c n Number of lumps c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c URC — instance parameters (output-only) c pos_node Positive node of URC c c c neg_node Negative node of URC c c c gnd Ground node of URC ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c URC — model parameters (input-only) c urc Uniform R.C. line model ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c URC — model parameters (input-output) c k Propagation constant c c c fmax Maximum frequency of interest c c c rperl Resistance per unit length c c cperl Capacitance per unit length c c isperl Saturation current per length c c c rsperl Diode resistance per length c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.2. ASRC: Arbitrary Source i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c ASRC — instance parameters (input-only) c i Current source c c c v Voltage source c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c ASRC — instance parameters (output-only) c i Current through source c c c v Voltage across source c c c pos_node Positive Node c c neg_node Negative Node ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 104 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS B.3. BJT: Bipolar Junction Transistor i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BJT — instance parameters (input-only) c ic Initial condition vector ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BJT — instance parameters (input-output) c off Device initially off c c c icvbe Initial B-E voltage c c c icvce Initial C-E voltage c c area Area factor c c temp instance temperature ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c BJT — instance parameters (output-only) c colnode Number of collector node c c c basenode Number of base node c c c emitnode Number of emitter node c c substnode Number of substrate node i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c colprimenode Internal collector node c c c baseprimenode Internal base node c c emitprimenode Internal emitter node c c ic Current at collector node ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c ib Current at base node c c ie Emitter current c c is Substrate current c c c vbe B-E voltage c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c vbc B-C voltage c c gm Small signal transconductance c c c gpi Small signal input conductance - pi c c c gmu Small signal conductance - mu i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c gx Conductance from base to internal base c c c go Small signal output conductance c c c geqcb d(Ibe)/d(Vbc) c c gccs Internal C-S cap. equiv. cond. i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c geqbx Internal C-B-base cap. equiv. cond. c c c cpi Internal base to emitter capactance c c cmu Internal base to collector capactiance c c cbx Base to collector capacitance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c ccs Collector to substrate capacitance c c cqbe Cap. due to charge storage in B-E jct. c c cqbc Cap. due to charge storage in B-C jct. c c c cqcs Cap. due to charge storage in C-S jct. c c c cqbx Cap. due to charge storage in B-X jct. c c continued ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 105 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BJT — instance output-only parameters — continued c cexbc Total Capacitance in B-X junction c c c qbe Charge storage B-E junction c c c qbc Charge storage B-C junction c c qcs Charge storage C-S junction c c qbx Charge storage B-X junction c c c p Power dissipation c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c BJT — model parameters (input-output) c npn NPN type device c c c pnp PNP type device c c c is Saturation Current c c bf Ideal forward beta i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c nf Forward emission coefficient c c c vaf Forward Early voltage c c va (null) c c ikf Forward beta roll-off corner current ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c ik (null) c c ise B-E leakage saturation current c c ne B-E leakage emission coefficient c c c br Ideal reverse beta c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c nr Reverse emission coefficient c c var Reverse Early voltage c c c vb (null) c c c ikr reverse beta roll-off corner current i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c isc B-C leakage saturation current c c c nc B-C leakage emission coefficient c c c rb Zero bias base resistance c c irb Current for base resistance=(rb+rbm)/2 i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c rbm Minimum base resistance c c c re Emitter resistance c c rc Collector resistance c c cje Zero bias B-E depletion capacitance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c vje B-E built in potential c c pe (null) c c mje B-E junction grading coefficient c c c me (null) c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c tf Ideal forward transit time c c xtf Coefficient for bias dependence of TF c c c vtf Voltage giving VBC dependence of TF c c c itf High current dependence of TF i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c ptf Excess phase c c c cjc Zero bias B-C depletion capacitance c c c vjc B-C built in potential c c continued ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 106 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BJT — model input-output parameters — continued c pc (null) c c c mjc B-C junction grading coefficient c c c mc (null) c c xcjc Fraction of B-C cap to internal base i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c tr Ideal reverse transit time c c c cjs Zero bias C-S capacitance c c ccs Zero bias C-S capacitance c c vjs Substrate junction built in potential ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c ps (null) c c mjs Substrate junction grading coefficient c c ms (null) c c c xtb Forward and reverse beta temp. exp. c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c eg Energy gap for IS temp. dependency c c xti Temp. exponent for IS c c c fc Forward bias junction fit parameter c c c tnom Parameter measurement temperature c c kf Flicker Noise Coefficient c c af Flicker Noise Exponent ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BJT — model parameters (output-only) c type NPN or PNP c c c invearlyvoltf Inverse early voltage:forward c c c invearlyvoltr Inverse early voltage:reverse c c invrollofff Inverse roll off - forward i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c invrolloffr Inverse roll off - reverse c c c collectorconduct Collector conductance c c emitterconduct Emitter conductance c c transtimevbcfact Transit time VBC factor c c c excessphasefactor Excess phase fact. c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 107 APPENDIX B: MODEL AND DEVICE PARAMETERS B.4. BSIM1: Berkeley Short Channel IGFET Model i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BSIM1 — instance parameters (input-only) c ic Vector of DS,GS,BS initial voltages ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BSIM1 — instance parameters (input-output) c l Length c c c w Width c c c ad Drain area c c as Source area i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pd Drain perimeter c c c ps Source perimeter c c nrd Number of squares in drain c c nrs Number of squares in source ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c off Device is initially off c c vds Initial D-S voltage c c vgs Initial G-S voltage c c c vbs Initial B-S voltage c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BSIM1 — model parameters (input-only) c nmos Flag to indicate NMOS c c c pmos Flag to indicate PMOS c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c BSIM1 — model parameters (input-output) c vfb Flat band voltage c c c lvfb Length dependence of vfb c c c wvfb Width dependence of vfb c c phi Strong inversion surface potential i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c lphi Length dependence of phi c c c wphi Width dependence of phi c c k1 Bulk effect coefficient 1 c c lk1 Length dependence of k1 ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c wk1 Width dependence of k1 c c k2 Bulk effect coefficient 2 c c lk2 Length dependence of k2 c c c wk2 Width dependence of k2 c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c eta VDS dependence of threshold voltage c c leta Length dependence of eta c c c weta Width dependence of eta c c c x2e VBS dependence of eta c c lx2e Length dependence of x2e c c continued ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 108 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c BSIM1 — model input-output parameters — continued c wx2e Width dependence of x2e c c c x3e VDS dependence of eta c c c lx3e Length dependence of x3e c c wx3e Width dependence of x3e i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c dl Channel length reduction in um c c c dw Channel width reduction in um c c muz Zero field mobility at VDS=0 VGS=VTH c c x2mz VBS dependence of muz ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c lx2mz Length dependence of x2mz c c wx2mz Width dependence of x2mz c c mus Mobility at VDS=VDD VGS=VTH, channel length modulation c c c lmus Length dependence of mus c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c wmus Width dependence of mus c c x2ms VBS dependence of mus c c c lx2ms Length dependence of x2ms c c c wx2ms Width dependence of x2ms i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c x3ms VDS dependence of mus c c c lx3ms Length dependence of x3ms c c c wx3ms Width dependence of x3ms c c u0 VGS dependence of mobility i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c lu0 Length dependence of u0 c c c wu0 Width dependence of u0 c c x2u0 VBS dependence of u0 c c lx2u0 Length dependence of x2u0 ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c wx2u0 Width dependence of x2u0 c c u1 VDS depence of mobility, velocity saturation c c lu1 Length dependence of u1 c c c wu1 Width dependence of u1 c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c x2u1 VBS depence of u1 c c lx2u1 Length depence of x2u1 c c c wx2u1 Width depence of x2u1 c c c x3u1 VDS depence of u1 i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c lx3u1 Length dependence of x3u1 c c c wx3u1 Width depence of x3u1 c c c n0 Subthreshold slope c c ln0 Length dependence of n0 i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c wn0 Width dependence of n0 c c c nb VBS dependence of subthreshold slope c c lnb Length dependence of nb c c wnb Width dependence of nb ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c nd VDS dependence of subthreshold slope c c lnd Length dependence of nd c c wnd Width dependence of nd c c c continued c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Spice3f User´s Manual 109 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BSIM1 — model input-output parameters — continued c tox Gate oxide thickness in um c c c temp Temperature in degree Celcius c c c vdd Supply voltage to specify mus c c cgso Gate source overlap capacitance per unit channel width(m) i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cgdo Gate drain overlap capacitance per unit channel width(m) c c c cgbo Gate bulk overlap capacitance per unit channel length(m) c c xpart Flag for channel charge partitioning c c rsh Source drain diffusion sheet resistance in ohm per square ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c js Source drain junction saturation current per unit area c c pb Source drain junction built in potential c c mj Source drain bottom junction capacitance grading coefficient c c c pbsw Source drain side junction capacitance built in potential c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c mjsw Source drain side junction capacitance grading coefficient c c cj Source drain bottom junction capacitance per unit area c c c cjsw Source drain side junction capacitance per unit area c c c wdf Default width of source drain diffusion in um c c dell Length reduction of source drain diffusion ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.5. BSIM2: Berkeley Short Channel IGFET Model i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BSIM2 — instance parameters (input-only) c ic Vector of DS,GS,BS initial voltages ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BSIM2 — instance parameters (input-output) c l Length c c c w Width c c c ad Drain area c c as Source area i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pd Drain perimeter c c c ps Source perimeter c c nrd Number of squares in drain c c nrs Number of squares in source ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c off Device is initially off c c vds Initial D-S voltage c c vgs Initial G-S voltage c c c vbs Initial B-S voltage c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 110 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BSIM2 — model parameters (input-only) c nmos Flag to indicate NMOS c c c pmos Flag to indicate PMOS c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BSIM2 — model parameters (input-output) c vfb Flat band voltage c c c lvfb Length dependence of vfb c c c wvfb Width dependence of vfb c c phi Strong inversion surface potential i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c lphi Length dependence of phi c c c wphi Width dependence of phi c c k1 Bulk effect coefficient 1 c c lk1 Length dependence of k1 ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c wk1 Width dependence of k1 c c k2 Bulk effect coefficient 2 c c lk2 Length dependence of k2 c c c wk2 Width dependence of k2 c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c eta0 VDS dependence of threshold voltage at VDD=0 c c leta0 Length dependence of eta0 c c c weta0 Width dependence of eta0 c c c etab VBS dependence of eta i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c letab Length dependence of etab c c c wetab Width dependence of etab c c c dl Channel length reduction in um c c dw Channel width reduction in um i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c mu0 Low-field mobility, at VDS=0 VGS=VTH c c c mu0b VBS dependence of low-field mobility c c lmu0b Length dependence of mu0b c c wmu0b Width dependence of mu0b ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c mus0 Mobility at VDS=VDD VGS=VTH c c lmus0 Length dependence of mus0 c c wmus0 Width dependence of mus c c c musb VBS dependence of mus c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c lmusb Length dependence of musb c c wmusb Width dependence of musb c c c mu20 VDS dependence of mu in tanh term c c c lmu20 Length dependence of mu20 i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c wmu20 Width dependence of mu20 c c c mu2b VBS dependence of mu2 c c c lmu2b Length dependence of mu2b c c wmu2b Width dependence of mu2b i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c mu2g VGS dependence of mu2 c c c continued ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Spice3f User´s Manual 111 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c BSIM2 — model input-output parameters — continued c lmu2g Length dependence of mu2g c c c wmu2g Width dependence of mu2g c c c mu30 VDS dependence of mu in linear term c c lmu30 Length dependence of mu30 i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c wmu30 Width dependence of mu30 c c c mu3b VBS dependence of mu3 c c lmu3b Length dependence of mu3b c c wmu3b Width dependence of mu3b ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c mu3g VGS dependence of mu3 c c lmu3g Length dependence of mu3g c c wmu3g Width dependence of mu3g c c c mu40 VDS dependence of mu in linear term c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c lmu40 Length dependence of mu40 c c wmu40 Width dependence of mu40 c c c mu4b VBS dependence of mu4 c c c lmu4b Length dependence of mu4b i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c wmu4b Width dependence of mu4b c c c mu4g VGS dependence of mu4 c c c lmu4g Length dependence of mu4g c c wmu4g Width dependence of mu4g i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c ua0 Linear VGS dependence of mobility c c c lua0 Length dependence of ua0 c c wua0 Width dependence of ua0 c c uab VBS dependence of ua ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c luab Length dependence of uab c c wuab Width dependence of uab c c ub0 Quadratic VGS dependence of mobility c c c lub0 Length dependence of ub0 c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c wub0 Width dependence of ub0 c c ubb VBS dependence of ub c c c lubb Length dependence of ubb c c c wubb Width dependence of ubb i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c u10 VDS depence of mobility c c c lu10 Length dependence of u10 c c c wu10 Width dependence of u10 c c u1b VBS depence of u1 i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c lu1b Length depence of u1b c c c wu1b Width depence of u1b c c u1d VDS depence of u1 c c lu1d Length depence of u1d ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c wu1d Width depence of u1d c c n0 Subthreshold slope at VDS=0 VBS=0 c c ln0 Length dependence of n0 c c c continued c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 112 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c BSIM2 — model input-output parameters — continued c wn0 Width dependence of n0 c c c nb VBS dependence of n c c c lnb Length dependence of nb c c wnb Width dependence of nb i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c nd VDS dependence of n c c c lnd Length dependence of nd c c wnd Width dependence of nd c c vof0 Threshold voltage offset AT VDS=0 VBS=0 ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c lvof0 Length dependence of vof0 c c wvof0 Width dependence of vof0 c c vofb VBS dependence of vof c c c lvofb Length dependence of vofb c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c wvofb Width dependence of vofb c c vofd VDS dependence of vof c c c lvofd Length dependence of vofd c c c wvofd Width dependence of vofd i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c ai0 Pre-factor of hot-electron effect. c c c lai0 Length dependence of ai0 c c c wai0 Width dependence of ai0 c c aib VBS dependence of ai i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c laib Length dependence of aib c c c waib Width dependence of aib c c bi0 Exponential factor of hot-electron effect. c c lbi0 Length dependence of bi0 ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c wbi0 Width dependence of bi0 c c bib VBS dependence of bi c c lbib Length dependence of bib c c c wbib Width dependence of bib c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c vghigh Upper bound of the cubic spline function. c c lvghigh Length dependence of vghigh c c c wvghigh Width dependence of vghigh c c c vglow Lower bound of the cubic spline function. i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c lvglow Length dependence of vglow c c c wvglow Width dependence of vglow c c c tox Gate oxide thickness in um c c temp Temperature in degree Celcius i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c vdd Maximum Vds c c c vgg Maximum Vgs c c vbb Maximum Vbs c c cgso Gate source overlap capacitance per unit channel width(m) ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cgdo Gate drain overlap capacitance per unit channel width(m) c c cgbo Gate bulk overlap capacitance per unit channel length(m) c c xpart Flag for channel charge partitioning c c c continued c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Spice3f User´s Manual 113 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c BSIM2 — model input-output parameters — continued c rsh Source drain diffusion sheet resistance in ohm per square c c c js Source drain junction saturation current per unit area c c c pb Source drain junction built in potential c c mj Source drain bottom junction capacitance grading coefficient i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pbsw Source drain side junction capacitance built in potential c c c mjsw Source drain side junction capacitance grading coefficient c c cj Source drain bottom junction capacitance per unit area c c cjsw Source drain side junction capacitance per unit area c c c wdf Default width of source drain diffusion in um c c c dell Length reduction of source drain diffusion ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.6. Capacitor: Fixed capacitor i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Capacitor — instance parameters (input-output) c capacitance Device capacitance c c c ic Initial capacitor voltage c c c w Device width c c l Device length ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Capacitor — instance parameters (output-only) c i Device current c c c p Instantaneous device power c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Capacitor — model parameters (input-only) c c Capacitor model ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Capacitor — model parameters (input-output) c cj Bottom Capacitance per area c c c cjsw Sidewall capacitance per meter c c c defw Default width c c narrow width correction factor ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 114 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS B.7. CCCS: Current controlled current source i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c CCCS — instance parameters (input-output) c gain Gain of source c c c control Name of controlling source c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c CCCS — instance parameters (output-only) c neg_node Negative node of source c c c pos_node Positive node of source c c c i CCCS output current c c v CCCS voltage at output c c p CCCS power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.8. CCVS: Linear current controlled current source i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c CCVS — instance parameters (input-output) c gain Transresistance (gain) c c c control Controlling voltage source c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c CCVS — instance parameters (output-only) c pos_node Positive node of source c c Negative node of source c neg_node c c c i CCVS output current c c v CCVS output voltage c c p CCVS power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.9. CSwitch: Current controlled ideal switch i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c CSwitch — instance parameters (input-only) c on Initially closed c c c off Initially open c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 115 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c CSwitch — instance parameters (input-output) c control Name of controlling source ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c CSwitch — instance parameters (output-only) c pos_node Positive node of switch c c c neg_node Negative node of switch c c c i Switch current c c p Instantaneous power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c CSwitch — model parameters (input-output) c csw Current controlled switch model c c c it Threshold current c c c ih Hysterisis current c c ron Closed resistance c c roff Open resistance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c CSwitch — model parameters (output-only) c gon Closed conductance c c c goff Open conductance c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.10. Diode: Junction Diode model i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Diode — instance parameters (input-output) c off Initially off c c c temp Instance temperature c c c ic Initial device voltage c c area Area factor ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Diode — instance parameters (output-only) c vd Diode voltage c c c id Diode current c c c c Diode current c c gd Diode conductance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cd Diode capacitance c c c charge Diode capacitor charge c c capcur Diode capacitor current c c p Diode power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 116 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Diode — model parameters (input-only) c d Diode model ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Diode — model parameters (input-output) c is Saturation current c c c tnom Parameter measurement temperature c c c rs Ohmic resistance c c n Emission Coefficient i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c tt Transit Time c c c cjo Junction capacitance c c cj0 (null) c c vj Junction potential ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c m Grading coefficient c c eg Activation energy c c xti Saturation current temperature exp. c c c kf flicker noise coefficient c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c af flicker noise exponent c c fc Forward bias junction fit parameter c c c bv Reverse breakdown voltage c c c ibv Current at reverse breakdown voltage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Diode — model parameters (output-only) c cond Ohmic conductance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.11. Inductor: Inductors i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Inductor — instance parameters (input-output) c inductance Inductance of inductor c c c ic Initial current through inductor c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Inductor — instance parameters (output-only) Flux through inductor Terminal voltage of inductor c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c flux c c v c c c volt c c i Current through the inductor c c current c c c p instantaneous power dissipated by the inductor c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Spice3f User´s Manual 117 APPENDIX B: MODEL AND DEVICE PARAMETERS B.12. mutual: Mutual inductors i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c mutual — instance parameters (input-output) c k Mutual inductance c c c coefficient (null) c c c inductor1 First coupled inductor c c inductor2 Second coupled inductor ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.13. Isource: Independent current source i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Isource — instance parameters (input-only) c pulse Pulse description c c c sine Sinusoidal source description c c c sin Sinusoidal source description c c exp Exponential source description i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pwl Piecewise linear description c c c sffm single freq. FM description c c ac AC magnitude,phase vector c c c Current through current source c c c distof1 f1 input for distortion c c c distof2 f2 input for distortion ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Isource — instance parameters (input-output) c dc DC value of source c c c acmag AC magnitude c c c acphase AC phase ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Isource — instance parameters (output-only) c neg_node Negative node of source c c c pos_node Positive node of source c c c acreal AC real part c c acimag AC imaginary part i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c function Function of the source c c c order Order of the source function c c coeffs Coefficients of the source c c v Voltage across the supply c c c p Power supplied by the source c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 118 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS B.14. JFET: Junction Field effect transistor i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c JFET — instance parameters (input-output) c off Device initially off c c c ic Initial VDS,VGS vector c c c area Area factor c c ic-vds Initial D-S voltage c c ic-vgs Initial G-S volrage c c c temp Instance temperature c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c JFET — instance parameters (output-only) c drain-node Number of drain node c c c gate-node Number of gate node c c c source-node Number of source node c c drain-prime-node Internal drain node i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c source-prime-node Internal source node c c c vgs Voltage G-S c c vgd Voltage G-D c c ig Current at gate node ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c id Current at drain node c c is Source current c c igd Current G-D c c c gm Transconductance c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c gds Conductance D-S c c ggs Conductance G-S c c c ggd Conductance G-D c c c qgs Charge storage G-S junction i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c qgd Charge storage G-D junction c c c cqgs Capacitance due to charge storage G-S junction c c c cqgd Capacitance due to charge storage G-D junction c c p Power dissipated by the JFET ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c JFET — model parameters (input-output) c njf N type JFET model c c c pjf P type JFET model c c c vt0 Threshold voltage c c vto (null) i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c beta Transconductance parameter c c c lambda Channel length modulation param. c c rd Drain ohmic resistance c c rs Source ohmic resistance c c c cgs G-S junction capactance c c c continued ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 119 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c JFET — model input-output parameters — continued c cgd G-D junction cap c c c pb Gate junction potential c c c is Gate junction saturation current c c fc Forward bias junction fit parm. i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c b Doping tail parameter c c c tnom parameter measurement temperature c c kf Flicker Noise Coefficient c c af Flicker Noise Exponent ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c JFET — model parameters (output-only) c type N-type or P-type JFET model c c c gd Drain conductance c c c gs Source conductance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.15. LTRA: Lossy transmission line i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c LTRA — instance parameters (input-only) c ic Initial condition vector:v1,i1,v2,i2 ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c LTRA — instance parameters (input-output) c v1 Initial voltage at end 1 c c c v2 Initial voltage at end 2 c c c i1 Initial current at end 1 c c i2 Initial current at end 2 ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c LTRA — instance parameters (output-only) c pos_node1 Positive node of end 1 of t-line c c c neg_node1 Negative node of end 1 of t.line c c c pos_node2 Positive node of end 2 of t-line c c neg_node2 Negative node of end 2 of t-line ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c LTRA — model parameters (input-output) c ltra LTRA model c c c r Resistance per metre c c c l Inductance per metre c c g (null) i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c c Capacitance per metre c c c len length of line c c nocontrol No timestep control c c steplimit always limit timestep to 0.8*(delay of line) c c c continued c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 120 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c LTRA — model input-output parameters — continued c nosteplimit don’t always limit timestep to 0.8*(delay of line) c c c lininterp use linear interpolation c c c quadinterp use quadratic interpolation c c mixedinterp use linear interpolation if quadratic results look unacceptable i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c truncnr use N-R iterations for step calculation in LTRAtrunc c c c truncdontcut don’t limit timestep to keep impulse response calculation errors low c c compactrel special reltol for straight line checking c c compactabs special abstol for straight line checking ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c LTRA — model parameters (output-only) c rel Rel. rate of change of deriv. for bkpt c c c abs Abs. rate of change of deriv. for bkpt c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.16. MES: GaAs MESFET model i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c MES — instance parameters (input-output) c area Area factor c c c icvds Initial D-S voltage c c c icvgs Initial G-S voltage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c MES — instance parameters (output-only) c off Device initially off c c c dnode Number of drain node c c c gnode Number of gate node c c snode Number of source node i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c dprimenode Number of internal drain node c c c sprimenode Number of internal source node c c vgs Gate-Source voltage c c vgd Gate-Drain voltage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cg Gate capacitance c c cd Drain capacitance c c cgd Gate-Drain capacitance c c c gm Transconductance c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c gds Drain-Source conductance c c ggs Gate-Source conductance c c c ggd Gate-Drain conductance c c c cqgs Capacitance due to gate-source charge storage i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cqgd Capacitance due to gate-drain charge storage c c c qgs Gate-Source charge storage c c c qgd Gate-Drain charge storage c c is Source current c c continued ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 121 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c MES — instance output-only parameters — continued c p Power dissipated by the mesfet ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c MES — model parameters (input-only) c nmf N type MESfet model c c c pmf P type MESfet model c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c MES — model parameters (input-output) c vt0 Pinch-off voltage c c c vto (null) c c c alpha Saturation voltage parameter c c beta Transconductance parameter i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c lambda Channel length modulation parm. c c c b Doping tail extending parameter c c rd Drain ohmic resistance c c rs Source ohmic resistance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cgs G-S junction capacitance c c cgd G-D junction capacitance c c pb Gate junction potential c c c is Junction saturation current c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c fc Forward bias junction fit parm. c c kf Flicker noise coefficient c c c af Flicker noise exponent c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c MES — model parameters (output-only) c type N-type or P-type MESfet model c c c gd Drain conductance c c c gs Source conductance c c depl_cap Depletion capacitance c c vcrit Critical voltage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 122 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS B.17. Mos1: Level 1 MOSfet model with Meyer capacitance model i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos1 — instance parameters (input-only) c off Device initially off c c c ic Vector of D-S, G-S, B-S voltages c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos1 — instance parameters (input-output) c l Length c c c w Width c c c ad Drain area c c as Source area i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pd Drain perimeter c c c ps Source perimeter c c nrd Drain squares c c nrs Source squares ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c icvds Initial D-S voltage c c icvgs Initial G-S voltage c c icvbs Initial B-S voltage c c c temp Instance temperature c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Mos1 — instance parameters (output-only) c id Drain current c c c is Source current c c c ig Gate current c c ib Bulk current i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c ibd B-D junction current c c c ibs B-S junction current c c vgs Gate-Source voltage c c vds Drain-Source voltage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c vbs Bulk-Source voltage c c vbd Bulk-Drain voltage c c dnode Number of the drain node c c c gnode Number of the gate node c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c snode Number of the source node c c bnode Number of the node c c c dnodeprime Number of int. drain node c c c snodeprime Number of int. source node i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c von c c c vdsat Saturation drain voltage c c c sourcevcrit Critical source voltage c c drainvcrit Critical drain voltage c c rs Source resistance c c c continued c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Spice3f User´s Manual 123 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos1 — instance output-only parameters — continued c sourceconductance Conductance of source c c c rd Drain conductance c c c drainconductance Conductance of drain c c gm Transconductance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c gds Drain-Source conductance c c c gmb Bulk-Source transconductance c c gmbs c c gbd Bulk-Drain conductance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c gbs Bulk-Source conductance c c cbd Bulk-Drain capacitance c c cbs Bulk-Source capacitance c c c cgs Gate-Source capacitance c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cgd Gate-Drain capacitance c c cgb Gate-Bulk capacitance c c c cqgs Capacitance due to gate-source charge storage c c c cqgd Capacitance due to gate-drain charge storage i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cqgb Capacitance due to gate-bulk charge storage c c c cqbd Capacitance due to bulk-drain charge storage c c c cqbs Capacitance due to bulk-source charge storage c c cbd0 Zero-Bias B-D junction capacitance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cbdsw0 c c c cbs0 Zero-Bias B-S junction capacitance c c cbssw0 c c qgs Gate-Source charge storage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c qgd Gate-Drain charge storage c c qgb Gate-Bulk charge storage c c qbd Bulk-Drain charge storage c c c qbs Bulk-Source charge storage c c c p Instaneous power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos1 — model parameters (input-only) c nmos N type MOSfet model c c c pmos P type MOSfet model c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Mos1 — model parameters (input-output) c vto Threshold voltage c c c vt0 (null) c c c kp Transconductance parameter c c gamma Bulk threshold parameter i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c phi Surface potential c c c lambda Channel length modulation c c rd Drain ohmic resistance c c continued ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 124 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos1 — model input-output parameters — continued c rs Source ohmic resistance c c c cbd B-D junction capacitance c c c cbs B-S junction capacitance c c is Bulk junction sat. current i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pb Bulk junction potential c c c cgso Gate-source overlap cap. c c cgdo Gate-drain overlap cap. c c cgbo Gate-bulk overlap cap. ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c rsh Sheet resistance c c cj Bottom junction cap per area c c mj Bottom grading coefficient c c c cjsw Side junction cap per area c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c mjsw Side grading coefficient c c js Bulk jct. sat. current density c c c tox Oxide thickness c c c ld Lateral diffusion i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c u0 Surface mobility c c c uo (null) c c c fc Forward bias jct. fit parm. c c nsub Substrate doping i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c tpg Gate type c c c nss Surface state density c c tnom Parameter measurement temperature c c kf Flicker noise coefficient c c c af Flicker noise exponent c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos1 — model parameters (output-only) c type N-channel or P-channel MOS ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 125 APPENDIX B: MODEL AND DEVICE PARAMETERS B.18. Mos2: Level 2 MOSfet model with Meyer capacitance model i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos2 — instance parameters (input-only) c off Device initially off c c c ic Vector of D-S, G-S, B-S voltages c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos2 — instance parameters (input-output) c l Length c c c w Width c c c ad Drain area c c as Source area i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pd Drain perimeter c c c ps Source perimeter c c nrd Drain squares c c nrs Source squares ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c icvds Initial D-S voltage c c icvgs Initial G-S voltage c c icvbs Initial B-S voltage c c c temp Instance operating temperature c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Mos2 — instance parameters (output-only) Drain current c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c id c c cd c c c ibd B-D junction current c c ibs B-S junction current i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c is Source current c c c ig Gate current c c ib Bulk current c c vgs Gate-Source voltage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c vds Drain-Source voltage c c vbs Bulk-Source voltage c c vbd Bulk-Drain voltage c c c dnode Number of drain node c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c gnode Number of gate node c c snode Number of source node c c c bnode Number of bulk node c c c dnodeprime Number of internal drain node i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c snodeprime Number of internal source node c c c von c c c vdsat Saturation drain voltage c c sourcevcrit Critical source voltage c c drainvcrit Critical drain voltage c c c continued c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c 126 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos2 — instance output-only parameters — continued c rs Source resistance c c c sourceconductance Source conductance c c c rd Drain resistance c c drainconductance Drain conductance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c gm Transconductance c c c gds Drain-Source conductance c c gmb Bulk-Source transconductance c c gmbs ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c gbd Bulk-Drain conductance c c gbs Bulk-Source conductance c c cbd Bulk-Drain capacitance c c c cbs Bulk-Source capacitance c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cgs Gate-Source capacitance c c cgd Gate-Drain capacitance c c c cgb Gate-Bulk capacitance c c c cbd0 Zero-Bias B-D junction capacitance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cbdsw0 c c c cbs0 Zero-Bias B-S junction capacitance c c c cbssw0 c c cqgs Capacitance due to gate-source charge storage i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cqgd Capacitance due to gate-drain charge storage c c c cqgb Capacitance due to gate-bulk charge storage c c cqbd Capacitance due to bulk-drain charge storage c c cqbs Capacitance due to bulk-source charge storage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c qgs Gate-Source charge storage c c qgd Gate-Drain charge storage c c qgb Gate-Bulk charge storage c c c qbd Bulk-Drain charge storage c c c qbs Bulk-Source charge storage c c p Instantaneous power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos2 — model parameters (input-only) c nmos N type MOSfet model c c c pmos P type MOSfet model c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 127 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos2 — model parameters (input-output) c vto Threshold voltage c c c vt0 (null) c c c kp Transconductance parameter c c gamma Bulk threshold parameter i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c phi Surface potential c c c lambda Channel length modulation c c rd Drain ohmic resistance c c rs Source ohmic resistance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cbd B-D junction capacitance c c cbs B-S junction capacitance c c is Bulk junction sat. current c c c pb Bulk junction potential c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cgso Gate-source overlap cap. c c cgdo Gate-drain overlap cap. c c c cgbo Gate-bulk overlap cap. c c c rsh Sheet resistance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cj Bottom junction cap per area c c c mj Bottom grading coefficient c c c cjsw Side junction cap per area c c mjsw Side grading coefficient i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c js Bulk jct. sat. current density c c c tox Oxide thickness c c ld Lateral diffusion c c u0 Surface mobility ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c uo (null) c c fc Forward bias jct. fit parm. c c nsub Substrate doping c c c tpg Gate type c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c nss Surface state density c c delta Width effect on threshold c c c uexp Crit. field exp for mob. deg. c c c ucrit Crit. field for mob. degradation i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c vmax Maximum carrier drift velocity c c c xj Junction depth c c c neff Total channel charge coeff. c c nfs Fast surface state density i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c tnom Parameter measurement temperature c c c kf Flicker noise coefficient c c af Flicker noise exponent ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 128 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos2 — model parameters (output-only) c type N-channel or P-channel MOS ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.19. Mos3: Level 3 MOSfet model with Meyer capacitance model i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos3 — instance parameters (input-only) c off Device initially off ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos3 — instance parameters (input-output) c l Length c c c w Width c c c ad Drain area c c as Source area i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pd Drain perimeter c c c ps Source perimeter c c nrd Drain squares c c nrs Source squares ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c icvds Initial D-S voltage c c icvgs Initial G-S voltage c c icvbs Initial B-S voltage c c c ic Vector of D-S, G-S, B-S voltages c c c temp Instance operating temperature ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Mos3 — instance parameters (output-only) c id Drain current c c c cd Drain current c c c ibd B-D junction current c c ibs B-S junction current i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c is Source current c c c ig Gate current c c ib Bulk current c c vgs Gate-Source voltage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c vds Drain-Source voltage c c vbs Bulk-Source voltage c c vbd Bulk-Drain voltage c c c dnode Number of drain node c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c gnode Number of gate node c c snode Number of source node c c c bnode Number of bulk node c c c dnodeprime Number of internal drain node c c snodeprime Number of internal source node c c continued ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Spice3f User´s Manual 129 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos3 — instance output-only parameters — continued c von Turn-on voltage c c c vdsat Saturation drain voltage c c c sourcevcrit Critical source voltage c c drainvcrit Critical drain voltage i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c rs Source resistance c c c sourceconductance Source conductance c c rd Drain resistance c c drainconductance Drain conductance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c gm Transconductance c c gds Drain-Source conductance c c gmb Bulk-Source transconductance c c c gmbs Bulk-Source transconductance c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c gbd Bulk-Drain conductance c c gbs Bulk-Source conductance c c c cbd Bulk-Drain capacitance c c c cbs Bulk-Source capacitance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cgs Gate-Source capacitance c c c cgd Gate-Drain capacitance c c c cgb Gate-Bulk capacitance c c cqgs Capacitance due to gate-source charge storage i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cqgd Capacitance due to gate-drain charge storage c c c cqgb Capacitance due to gate-bulk charge storage c c cqbd Capacitance due to bulk-drain charge storage c c cqbs Capacitance due to bulk-source charge storage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cbd0 Zero-Bias B-D junction capacitance c c cbdsw0 Zero-Bias B-D sidewall capacitance c c cbs0 Zero-Bias B-S junction capacitance c c c cbssw0 Zero-Bias B-S sidewall capacitance c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c qbs Bulk-Source charge storage c c qgs Gate-Source charge storage c c c qgd Gate-Drain charge storage c c c qgb Gate-Bulk charge storage c c qbd Bulk-Drain charge storage c c p Instantaneous power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos3 — model parameters (input-only) c nmos N type MOSfet model c c c pmos P type MOSfet model c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 130 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos3 — model parameters (input-output) c vto Threshold voltage c c c vt0 (null) c c c kp Transconductance parameter c c gamma Bulk threshold parameter i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c phi Surface potential c c c rd Drain ohmic resistance c c rs Source ohmic resistance c c cbd B-D junction capacitance ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cbs B-S junction capacitance c c is Bulk junction sat. current c c pb Bulk junction potential c c c cgso Gate-source overlap cap. c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cgdo Gate-drain overlap cap. c c cgbo Gate-bulk overlap cap. c c c rsh Sheet resistance c c c cj Bottom junction cap per area i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c mj Bottom grading coefficient c c c cjsw Side junction cap per area c c c mjsw Side grading coefficient c c js Bulk jct. sat. current density i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c tox Oxide thickness c c c ld Lateral diffusion c c u0 Surface mobility c c uo (null) ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c fc Forward bias jct. fit parm. c c nsub Substrate doping c c tpg Gate type c c c nss Surface state density c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c vmax Maximum carrier drift velocity c c xj Junction depth c c c nfs Fast surface state density c c c xd Depletion layer width i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c alpha Alpha c c c eta Vds dependence of threshold voltage c c c delta Width effect on threshold c c input_delta (null) i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c theta Vgs dependence on mobility c c c kappa Kappa c c tnom Parameter measurement temperature c c kf Flicker noise coefficient c c c af Flicker noise exponent c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 131 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos3 — model parameters (output-only) c type N-channel or P-channel MOS ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.20. Mos6: Level 6 MOSfet model with Meyer capacitance model i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos6 — instance parameters (input-only) c off Device initially off c c c ic Vector of D-S, G-S, B-S voltages c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos6 — instance parameters (input-output) c l Length c c c w Width c c c ad Drain area c c as Source area i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pd Drain perimeter c c c ps Source perimeter c c nrd Drain squares c c nrs Source squares ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c icvds Initial D-S voltage c c icvgs Initial G-S voltage c c icvbs Initial B-S voltage c c c temp Instance temperature c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Mos6 — instance parameters (output-only) c id Drain current c c c cd Drain current c c c is Source current c c ig Gate current i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c ib Bulk current c c c ibs B-S junction capacitance c c ibd B-D junction capacitance c c vgs Gate-Source voltage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c vds Drain-Source voltage c c vbs Bulk-Source voltage c c vbd Bulk-Drain voltage c c c dnode Number of the drain node c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c gnode Number of the gate node c c snode Number of the source node c c c bnode Number of the node c c c dnodeprime Number of int. drain node c c snodeprime Number of int. source node c c continued ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 132 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos6 — instance output-only parameters — continued c rs Source resistance c c c sourceconductance Source conductance c c c rd Drain resistance c c drainconductance Drain conductance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c von Turn-on voltage c c c vdsat Saturation drain voltage c c sourcevcrit Critical source voltage c c drainvcrit Critical drain voltage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c gmbs Bulk-Source transconductance c c gm Transconductance c c gds Drain-Source conductance c c c gbd Bulk-Drain conductance c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c gbs Bulk-Source conductance c c cgs Gate-Source capacitance c c c cgd Gate-Drain capacitance c c c cgb Gate-Bulk capacitance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c cbd Bulk-Drain capacitance c c c cbs Bulk-Source capacitance c c c cbd0 Zero-Bias B-D junction capacitance c c cbdsw0 i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cbs0 Zero-Bias B-S junction capacitance c c c cbssw0 c c cqgs Capacitance due to gate-source charge storage c c cqgd Capacitance due to gate-drain charge storage ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c cqgb Capacitance due to gate-bulk charge storage c c cqbd Capacitance due to bulk-drain charge storage c c cqbs Capacitance due to bulk-source charge storage c c c qgs Gate-Source charge storage c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c qgd Gate-Drain charge storage c c qgb Gate-Bulk charge storage c c c qbd Bulk-Drain charge storage c c c qbs Bulk-Source charge storage c c p Instaneous power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos6 — model parameters (input-only) c nmos N type MOSfet model c c c pmos P type MOSfet model c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 133 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos6 — model parameters (input-output) c vto Threshold voltage c c c vt0 (null) c c c kv Saturation voltage factor c c nv Saturation voltage coeff. i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c kc Saturation current factor c c c nc Saturation current coeff. c c nvth Threshold voltage coeff. c c ps Sat. current modification par. ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c gamma Bulk threshold parameter c c gamma1 Bulk threshold parameter 1 c c sigma Static feedback effect par. c c c phi Surface potential c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c lambda Channel length modulation param. c c lambda0 Channel length modulation param. 0 c c c lambda1 Channel length modulation param. 1 c c c rd Drain ohmic resistance i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c rs Source ohmic resistance c c c cbd B-D junction capacitance c c c cbs B-S junction capacitance c c is Bulk junction sat. current i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pb Bulk junction potential c c c cgso Gate-source overlap cap. c c cgdo Gate-drain overlap cap. c c cgbo Gate-bulk overlap cap. ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c rsh Sheet resistance c c cj Bottom junction cap per area c c mj Bottom grading coefficient c c c cjsw Side junction cap per area c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c mjsw Side grading coefficient c c js Bulk jct. sat. current density c c c ld Lateral diffusion c c c tox Oxide thickness i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c u0 Surface mobility c c c uo (null) c c c fc Forward bias jct. fit parm. c c tpg Gate type i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c nsub Substrate doping c c c nss Surface state density c c tnom Parameter measurement temperature ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 134 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Mos6 — model parameters (output-only) c type N-channel or P-channel MOS ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.21. Resistor: Simple linear resistor i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Resistor — instance parameters (input-output) c resistance Resistance c c c temp Instance operating temperature c c c l Length c c w Width ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Resistor — instance parameters (output-only) c i Current c c c p Power c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Resistor — model parameters (input-only) c r Device is a resistor model ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Resistor — model parameters (input-output) c rsh Sheet resistance c c c narrow c Narrowing of resistor c c tc1 First order temp. coefficient c c tc2 Second order temp. coefficient c c defw Default device width c c c tnom Parameter measurement temperature c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.22. Switch: Ideal voltage controlled switch i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Switch — instance parameters (input-only) c on Switch initially closed c c c off Switch initially open c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 135 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Switch — instance parameters (input-output) c pos_node Positive node of switch c c c neg_node Negative node of switch c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Switch — instance parameters (output-only) c cont_p_node Positive contr. node of switch c c c cont_n_node Positive contr. node of switch c c c i Switch current c c p Switch power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Switch — model parameters (input-output) c sw Switch model c c c vt Threshold voltage c c c vh Hysteresis voltage c c ron Resistance when closed c c roff Resistance when open ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Switch — model parameters (output-only) c gon Conductance when closed c c c goff Conductance when open c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.23. Tranline: Lossless transmission line i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Tranline — instance parameters (input-only) c ic Initial condition vector:v1,i1,v2,i2 ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Tranline — instance parameters (input-output) c z0 Characteristic impedance c c c zo (null) c c c f Frequency c c td Transmission delay i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c nl Normalized length at frequency given c c c v1 Initial voltage at end 1 c c v2 Initial voltage at end 2 c c i1 Initial current at end 1 c c c i2 Initial current at end 2 c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 136 User´s Manual Spice3f APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Tranline — instance parameters (output-only) c rel Rel. rate of change of deriv. for bkpt c c c abs Abs. rate of change of deriv. for bkpt c c c pos_node1 Positive node of end 1 of t. line c c neg_node1 Negative node of end 1 of t. line i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pos_node2 Positive node of end 2 of t. line c c c neg_node2 Negative node of end 2 of t. line c c delays Delayed values of excitation ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.24. VCCS: Voltage controlled current source i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c VCCS — instance parameters (input-only) c ic Initial condition of controlling source ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c VCCS — instance parameters (input-output) c gain Transconductance of source (gain) ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c VCCS — instance parameters (output-only) c pos_node Positive node of source c c c neg_node Negative node of source c c c cont_p_node Positive node of contr. source c c cont_n_node Negative node of contr. source i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i Output current c c c v Voltage across output c c p Power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.25. VCVS: Voltage controlled voltage source i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c VCVS — instance parameters (input-only) c ic Initial condition of controlling source ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c VCVS — instance parameters (input-output) c gain Voltage gain ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c Spice3f User´s Manual 137 APPENDIX B: MODEL AND DEVICE PARAMETERS i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c VCVS — instance parameters (output-only) c pos_node Positive node of source c c c neg_node Negative node of source c c c cont_p_node Positive node of contr. source c c cont_n_node Negative node of contr. source i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c i Output current c c c v Output voltage c c p Power ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c B.26. Vsource: Independent voltage source i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Vsource — instance parameters (input-only) c pulse Pulse description c c c sine Sinusoidal source description c c c sin Sinusoidal source description c c exp Exponential source description i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c pwl Piecewise linear description c c c sffm Single freq. FM descripton c c ac AC magnitude, phase vector c c distof1 f1 input for distortion c c c distof2 f2 input for distortion c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Vsource — instance parameters (input-output) c dc D.C. source value c c c acmag A.C. Magnitude c c c acphase A.C. Phase ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c Vsource — instance parameters (output-only) c pos_node Positive node of source c c c neg_node Negative node of source c c c function Function of the source c c order Order of the source function i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c c c coeffs Coefficients for the function c c c acreal AC real part c c acimag AC imaginary part c c i Voltage source current c c c p Instantaneous power c ci iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c 138 User´s Manual Spice3f
Source Exif Data:File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 146 Modify Date : 2001:10:03 15:05:20+03:00 Producer : Acrobat Distiller 4.05 for Macintosh Create Date : 2001:05:18 10:07:38EXIF Metadata provided by EXIF.tools