TSEA Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 12
Download | ![]() |
Open PDF In Browser | View PDF |
Package ‘TSEA’ August 21, 2018 Type Package Title Tissue-Specific Enrichment Analysis Version 1.0 Date 2018-08-21 Author Guangsheng Pei Maintainer Guangsheng PeiImports pheatmap, RColorBrewer Description Tissue-specific enrichment analysis to assess lists of candidate genes or RNASeq expression profiles. License GPL (>= 2) NeedsCompilation no R topics documented: TSEA-package . . . . . . . tsea.analysis . . . . . . . . . tsea.analysis.multiple . . . . tsea.expression.decode . . . tsea.expression.normalization tsea.plot . . . . . . . . . . . tsea.summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 4 . 6 . 7 . 8 . 9 . 10 Index TSEA-package 12 Tissue-Specific Enrichment Analysis Tissue-Specific Enrichment Analysis Description Tissue-specific enrichment analysis to assess lists of candidate genes and tissue-specific expression decode analysis for RNA-seq data to decode RNA expression matrices tissue heterogeneity. 1 2 TSEA-package Details Since disease and physiological condition are often associated with a specific tissue, understanding the tissue-specific genes (TSG) expression patterns will substantially reduce false discoveries in biomedical research. However, due to cell complexity in human system, heterogeneous tissues are frequently collected. Making it difficult to distinguish gene expression variability and mislead result interpretation. Here, we present TSEA, an R package that conducts Tissue-Specific Enrichment Analysis (TSEA) using two built-in reference panels: the Genotype-Tissue Expression (GTEx) data and the ENCyclopedia Of DNA Elements (ENCODE) data. We implemented two major functions in TSEA to assess lists of candidate genes or expression matrices. The DESCRIPTION file: Package: Type: Title: Version: Date: Author: Maintainer: Imports: Description: License: TSEA Package Tissue-Specific Enrichment Analysis 1.0 2018-08-21 Guangsheng Pei Guangsheng Pei pheatmap, RColorBrewer Tissue-specific enrichment analysis to assess lists of candidate genes or RNA-Seq expression profiles. GPL (>= 2) Index of help topics: TSEA-package tsea.analysis Tissue-Specific Enrichment Analysis Tissue-Specific Enrichment Analysis Tissue-specific enrichment analysis for query gene list tsea.analysis.multiple Tissue-specific enrichment analysis for multi query gene lists tsea.expression.decode Tissue-specific enrichment analysis for RNA-Seq expression profiles tsea.expression.normalization RNA-Seq expression profiles normalization tsea.plot Tissue-specific enrichment analysis result heatmap plot tsea.summary Tissue-specific enrichment analysis result summary Author(s) Guangsheng Pei Maintainer: Guangsheng Pei References Pei G., Dai Y., Zhao Z. Jia P. (2018) Tissue-Specific Enrichment Analysis (TSEA) to decode tissue heterogeneity. Bioinformatics, In submission. TSEA-package 3 See Also https://github.com/bsml320/TSEA/blob/master/README.md Examples #Download the built-in data from https://github.com/bsml320/TSEA/tree/master/data #load("data/GTEx_t_score.rda") #load("data/ENCODE_z_score.rda") #library(pheatmap) #================================================================== #Example 1: Lists of candidate genes for single sample. #load("data/GWAS_gene.rda") #query_gene_list = GWAS_gene #TSEA in GTEx panel #tsea_t = tsea.analysis(query_gene_list, GTEx_t_score, ratio = 0.05, #p.adjust.method = "bonferroni") #write.csv(tsea_t,"1.1.GWAS_TSEA_in_GTEx_panel.csv") #pdf ("1.2.GWAS_TSEA_in_GTEx_panel.pdf", 5, 9, onefile = FALSE) #tsea.plot(tsea_t, threshold = 0.05) #dev.off() #tsea_t_summary = tsea.summary(tsea_t) #write.csv(tsea_t_summary,"1.3.GWAS_summary_in_GTEx_panel.csv") #TSEA in ENCODE panel #tsea_z = tsea.analysis(query_gene_list, ENCODE_z_score, ratio = 0.05, #p.adjust.method = "bonferroni") #write.csv(tsea_z,"1.4.GWAS_TSEA_in_ENCODE_panel.csv") #pdf ("1.5.GWAS_TSEA_in_ENCODE_panel.pdf", 5, 9, onefile = FALSE) #tsea.plot(tsea_z, threshold = 0.05) #dev.off() #tsea_z_summary = tsea.summary(tsea_z) #write.csv(tsea_z_summary,"1.6.GWAS_summary_in_ENCODE_panel.csv") #================================================================== #Example 2: Lists of candidate genes for multiple samples. #load("data/GWAS_gene_multiple.rda") #query_gene_list = GWAS_gene_multiple #TSEA in GTEx panel #tsea_t_multi = tsea.analysis.multiple(query_gene_list, #GTEx_t_score, ratio = 0.05, p.adjust.method = "BH") #write.csv(tsea_t_multi,"2.1.GWAS_multi_TSEA_in_GTEx_panel.csv") #pdf ("2.2.GWAS_multi_TSEA_in_GTEx_panel.pdf", 6, 6, onefile = FALSE) #tsea.plot(tsea_t_multi, threshold = 0.05) #dev.off() #tsea_t_multi_summary = tsea.summary(tsea_t_multi) #write.csv(tsea_t_multi_summary,"2.3.GWAS_multi_summary_in_GTEx_panel.csv") #TSEA in ENCODE panel #tsea_z_multi = tsea.analysis.multiple(query_gene_list, #ENCODE_z_score, ratio = 0.05, p.adjust.method = "BH") #write.csv(tsea_z_multi,"2.4.GWAS_multi_TSEA_in_ENCODE_panel.csv") #pdf ("2.5.GWAS_multi_TSEA_in_ENCODE_panel.pdf", 7, 7, onefile = FALSE) #tsea.plot(tsea_z_multi, threshold = 0.05) 4 tsea.analysis #dev.off() #tsea_z_multi_summary = tsea.summary(tsea_z_multi) #write.csv(tsea_z_multi_summary,"2.6.GWAS_multi_summary_in_ENCODE_panel.csv") #================================================================== #Example 3: RNA expression profiles TSEA in ENCODE panel. #load("data/query_GTEx.rda") #query_matrix = query_GTEx #load("data/correction_factor.rda") #RNA expression profiles z-score normalization #query_mat_zscore_nor = tsea.expression.normalization(query_matrix, #correction_factor, normalization = "z-score") #RNA expression profiles TSEA in ENCODE panel #tseaed_in_ENCODE = tsea.expression.decode(query_mat_zscore_nor, #ENCODE_z_score, ratio = 0.05, p.adjust.method = "BH") #write.csv(tseaed_in_ENCODE,"3.1.RNAseq_TSEA_in_ENCODE_panel.csv") #pdf ("3.2.RNAseq_TSEA_in_ENCODE_panel.pdf", 10, 9, onefile = FALSE) #tsea.plot(tseaed_in_ENCODE, threshold = 0.05) #dev.off() #tseaed_in_ENCODE_summary = tsea.summary(tseaed_in_ENCODE) #write.csv(tseaed_in_ENCODE_summary,"3.3.RNAseq_summary_in_ENCODE_panel.csv") #================================================================== #Example 4: RNA expression profiles TSEA in GTEx panel. #load("data/query_ENCODE.rda") #query_matrix = query_ENCODE #RNA expression profiles abundance normalization #query_mat_abundance_nor = tsea.expression.normalization(query_matrix, #correction_factor, normalization = "abundance") #RNA expression profiles TSEA in GTEx panel #tseaed_in_GTEx = tsea.expression.decode(query_mat_abundance_nor, #GTEx_t_score, ratio = 0.05, p.adjust.method = "BH") #write.csv(tseaed_in_GTEx,"4.1.RNAseq_TSEA_in_GTEx_panel.csv") #pdf ("4.2.RNAseq_TSEA_in_GTEx_panel.pdf", 10, 9, onefile = FALSE) #tsea.plot(tseaed_in_GTEx, threshold = 0.05) #dev.off() #tseaed_in_GTEx_summary = tsea.summary(tseaed_in_GTEx) #write.csv(tseaed_in_GTEx_summary,"4.3.RNAseq_summary_in_GTEx_panel.csv") tsea.analysis Tissue-specific enrichment analysis for query gene list Description Tissue-specific enrichment analysis by Fisher’s Exact Test for given gene list. Usage tsea.analysis(query_gene_list, score, ratio = 0.05, p.adjust.method = "BH") tsea.analysis 5 Arguments query_gene_list a gene symbol list object. score a gene tissue-specific score matrix, c("GTEx_t_score" or "ENCODE_z_score"), can be loaded by data(GTEx) or data(ENCODE), the default value is recommended "GTEx_t_score". the threshold to define tissue-specific genes (with top t-score or z-score), the default value is 0.05. p.adjust.method p.adjust.method, c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") ratio Details Tissue-specific enrichment analysis by Fisher’s Exact Test for given gene list. Value nothing Note nothing Author(s) Guangsheng Pei References Pei G., Dai Y., Zhao Z. Jia P. (2018) Tissue-Specific Enrichment Analysis (TSEA) to decode tissue heterogeneity. Bioinformatics, In submission. See Also https://github.com/bsml320/TSEA/ Examples #load("data/GWAS_gene.rda") #query_gene_list = GWAS_gene #tsea_t = tsea.analysis(query_gene_list, GTEx_t_score, 0.05, #p.adjust.method = "bonferroni") 6 tsea.analysis.multiple tsea.analysis.multiple Tissue-specific enrichment analysis for multi query gene lists Description Tissue-specific enrichment analysis by Fisher’s Exact Test for multiple gene list. Usage tsea.analysis.multiple(query_gene_list, score, ratio = 0.05, p.adjust.method = "BH") Arguments query_gene_list a 0~1 gene~sample table object, row should be gene symbol, column should be sample name. In the table, gene labeled with 1 indicated it is target gene for a given sample, while 0 indicated it is not target in a given sample. score a gene tissue-specific score matrix, c("GTEx_t_score" or "ENCODE_z_score"), can be loaded by data(GTEx) or data(ENCODE), the default value is recommended "GTEx_t_score". the threshold to define tissue-specific genes (with top t-score or z-score), the default value is 0.05. p.adjust.method p.adjust.method, c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") ratio Details Tissue-specific enrichment analysis by Fisher’s Exact Test for multiple gene list. Value nothing Note nothing Author(s) Guangsheng Pei References Pei G., Dai Y., Zhao Z. Jia P. (2018) Tissue-Specific Enrichment Analysis (TSEA) to decode tissue heterogeneity. Bioinformatics, In submission. See Also https://github.com/bsml320/TSEA/ tsea.expression.decode 7 Examples #load("data/GWAS_gene_multiple.rda") #query_gene_list = GWAS_gene_multiple #tsea_t_multi = tsea.analysis.multiple(query_gene_list, #GTEx_t_score, 0.05, p.adjust.method = "BH") tsea.expression.decode Tissue-specific enrichment analysis for RNA-Seq expression profiles Description Tissue-specific enrichment analysis to decode whether a given RNA-seq sample (RPKM) with potential confounding effects based on expression profiles. Usage tsea.expression.decode(query_mat_normalized_score, score, ratio = 0.05, p.adjust.method = "BH") Arguments query_mat_normalized_score a normalized RNA-seq RPKM object, which produced by "tsea.expression.normalization". score a gene tissue-specific score matrix, c("GTEx_t_score" or "ENCODE_z_score"), can be loaded by data(GTEx) or data(ENCODE), the default value is recommended "GTEx_t_score". the threshold to define tissue-specific genes (with top t-score or z-score), the default value is 0.05. p.adjust.method p.adjust.method, c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") ratio Details Tissue-specific enrichment analysis for RNA-Seq expression profiles. Value nothing Note nothing Author(s) Guangsheng Pei 8 tsea.expression.normalization References Pei G., Dai Y., Zhao Z. Jia P. (2018) Tissue-Specific Enrichment Analysis (TSEA) to decode tissue heterogeneity. Bioinformatics, In submission. See Also https://github.com/bsml320/TSEA/ Examples #load("data/query_GTEx.rda") #query_matrix = query_GTEx #load("data/correction_factor.rda") #RNA expression profiles z-score normalization #query_mat_zscore_nor = tsea.expression.normalization(query_matrix, #correction_factor, normalization = "z-score") #RNA expression profiles TSEA in ENCODE panel #tseaed_in_ENCODE = tsea.expression.decode(query_mat_zscore_nor, #ENCODE_z_score, 0.05, p.adjust.method = "BH") tsea.expression.normalization RNA-Seq expression profiles normalization Description To avoid the data bias and adapt better data heterogeneity, before tsea.expression.decode() analysis, the raw discrete RPKM value have to normalized to continuous variable meet the normal distribution before t-test. Usage tsea.expression.normalization(query_mat, correction_factor, normalization = "abundance") Arguments a RNA-seq RPKM object, row name should be gene symbol, and column name should be sample name. correction_factor correction_factor, a gene table object contain genes average expression level and standard variance in GTEx database, can be loaded by data(correction_factor). normalization normalization methods, c("z-score", "abundance") query_mat Details As RNA-Seq samples are often heterogeneous, before in-depth analysis, it is necessary to decode tissue heterogeneity to avoid samples with confounding effects. However, the raw discrete RPKM value have to normalized to continuous variable meet the normal distribution before t-test. tsea.plot 9 Value nothing Note nothing Author(s) Guangsheng Pei References Pei G., Dai Y., Zhao Z. Jia P. (2018) Tissue-Specific Enrichment Analysis (TSEA) to decode tissue heterogeneity. Bioinformatics, In submission. See Also https://github.com/bsml320/TSEA/ Examples #load("data/query_GTEx.rda") #query_matrix = query_GTEx #load("data/correction_factor.rda") #RNA expression profiles z-score normalization #query_mat_zscore_nor = tsea.expression.normalization(query_matrix, #correction_factor, normalization = "z-score") #RNA expression profiles TSEA in ENCODE panel #tseaed_in_ENCODE = tsea.expression.decode(query_mat_zscore_nor, #ENCODE_z_score, 0.05, p.adjust.method = "BH") tsea.plot Tissue-specific enrichment analysis result heatmap plot Description Heat map plot for tissue-specific enrichment analysis result. Usage tsea.plot(tsea_result, threshold = 0.05) Arguments tsea_result the result of tissue-specific enrichment analysis, which produced by "tsea.analysis", "tsea.analysis.multiple" or "tsea.expression.decode". threshold the p-value threshold to define if the gene list or RNA-seq data enriched in a given tissue, p-value greater than threshold will not be labeled in the plot. The default value is 0.05. 10 tsea.summary Details Heat map plot for tissue-specific enrichment analysis result Value nothing Note nothing Author(s) Guangsheng Pei References Pei G., Dai Y., Zhao Z. Jia P. (2018) Tissue-Specific Enrichment Analysis (TSEA) to decode tissue heterogeneity. Bioinformatics, In submission. See Also https://github.com/bsml320/TSEA/ Examples #load("data/GWAS_gene_multiple.rda") #query_gene_list = GWAS_gene_multiple #TSEA in GTEx panel #tsea_t_multi = tsea.analysis.multiple(query_gene_list, #GTEx_t_score, 0.05, p.adjust.method = "BH") #tsea.plot(tsea_t_multi, 0.05) tsea.summary Tissue-specific enrichment analysis result summary Description Tissue-specific enrichment analysis result summary (list the top 3 most enriched tissues) from the given gene list or RNA-seq expression profiles. Usage tsea.summary(tsea_result) Arguments tsea_result the result of tissue-specific enrichment analysis, which produced by "tsea.analysis", "tsea.analysis.multiple" or "tsea.expression.decode". tsea.summary 11 Details Tissue-specific enrichment analysis result summary Value nothing Note nothing Author(s) Guangsheng Pei References Pei G., Dai Y., Zhao Z. Jia P. (2018) Tissue-Specific Enrichment Analysis (TSEA) to decode tissue heterogeneity. Bioinformatics, In submission. See Also https://github.com/bsml320/TSEA/ Examples #load("data/query_GTEx.rda") #query_matrix = query_GTEx #load("data/correction_factor.rda") #RNA expression profiles z-score normalization #query_mat_zscore_nor = tsea.expression.normalization(query_matrix, #correction_factor, normalization = "z-score") #RNA expression profiles TSEA in ENCODE panel #tseaed_in_ENCODE = tsea.expression.decode(query_mat_zscore_nor, #ENCODE_z_score, 0.05, p.adjust.method = "BH") #tseaed_in_ENCODE_summary = tsea.summary(tseaed_in_ENCODE) Index ∗Topic TSEA TSEA-package, 1 ∗Topic \textasciitildekwd1 tsea.analysis, 4 tsea.analysis.multiple, 6 tsea.expression.decode, 7 tsea.expression.normalization, 8 tsea.plot, 9 tsea.summary, 10 ∗Topic \textasciitildekwd2 tsea.analysis, 4 tsea.analysis.multiple, 6 tsea.expression.decode, 7 tsea.expression.normalization, 8 tsea.plot, 9 tsea.summary, 10 TSEA (TSEA-package), 1 TSEA-package, 1 tsea.analysis, 4 tsea.analysis.multiple, 6 tsea.expression.decode, 7 tsea.expression.normalization, 8 tsea.plot, 9 tsea.summary, 10 12
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 12 Page Mode : UseOutlines Author : Title : Subject : Creator : LaTeX with hyperref package Producer : pdfTeX-1.40.14 Create Date : 2018:08:21 14:13:06-05:00 Modify Date : 2018:08:21 14:13:06-05:00 Trapped : False PTEX Fullbanner : This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013) kpathsea version 6.1.1EXIF Metadata provided by EXIF.tools