DHN 520 Bbm:978 1 4020 2778 9/1

User Manual: DHN-520

Open the PDF directly: View PDF PDF.
Page Count: 69

445
APPENDIX 1
GENERAL CHRONOLOGY OF EVENTS MENTIONED
IN THE TEXT
The following seven appendixes summarize some of the relevant information
appearing in the foregoing chapters. The information contained here has been
gathered from various sources, which are mostly documented in the main text itself.
The most important sources for unpublished material include the manuscripts of
Hilbert’s lecture notes at the Lesezimmer of the mathematical institute in Göttingen
as well as other documents in Hilbert’s Nachlass; miscellaneous announcements in
the JDMV and in the Physikalische Zeitschrift, and source books such as Biermann
1988 or Lorey 1916. I have made the necessary efforts to ensure that the information
appearing here be as comprehensive as possible in the various categories considered,
but it is indeed conceivable that additional sources may add further items to those
appearing here.
1844: Grasmann’s Ausdehnungslehre.
1854: Riemann’s “On the Hypotheses which Lie at the Foundations of
Geometry”.
1859: Kirchhoff’s law of emission and absorption.
1860: Maxwell’s first paper on kinetic theory.
1861: Clebsch and Carl Neumann create the Mathematische Annalen.
1862: January 23 – Hilbert is born in Königsberg.
1867: Boltzmann’s first article on kinetic theory.
1870: Carl Neumann’s inaugural lecture in Leipzig, on the basic principles of
physical theories.
1871: Klein, Privatdozent in Göttingen, publishes his first paper on non-Euclidean
geometry.
1872: Klein’s Erlanger Programm.
Dedekind’s Stetigkeit und irrationale Zahlen.
Boltzmann formulates the Boltzmann Equation.
1876: Lodschmidt publishes his objections on kinetic theory and its reliance on
the atomistic hypothesis.
1877: Boltzmann publishes his statistical interpretation of entropy.
1881: Riecke succeeds Weber in Göttingen.
1882: Pasch’s Vorlesungen über neuere Geometrie.
1883: Voigt arrives in Göttingen as professor for theoretical physics.
1885: Hilbert completes his dissertation under Lindemann. Trip to Paris and Leipzig.
Minkowski moves to Bonn (until 1894).
1886: Felix Klein arrives back in Göttingen.
446 APPENDIX 1
1888: Hilbert proves the finite basis theorem for the general case.
Dedekind’s Was sind und was sollen die Zahlen?
Poincaré’s Sorbonne lectures on electricity and optics (also in 1890-91).
1890: DMV created by initiative of Cantor.
Hertz’s formulation of Maxwell’s electrodynamics.
1891: Hilbert’s first course on geometry in Königsberg.
DMV meeting in Halle. Wiener lectures on the Foundations of Geometry.
Veronese’s work on non-Archimedean geometries.
Peano’s axioms of arithmetic.
1892: Klein’s failed attempt to bring Hilbert to Göttingen. Weber came instead.
October 12 - Hilbert marries Käthe Jarosch.
1893: Hilbert’s summary article on algebraic invariants.
Mach’s Science of Mechanics.
1894: Early discussions on the EMW project - Meyer, Weber, Klein.
Minkowski returns to Königsberg.
Nernst appointed ordinary professor at Göttingen. He heads the newly
created Institute for Physical Chemistry.
Hertz’s Principles of Mechanics.
1895: March - Hilbert arrives in Göttingen.
Cantor’s Beiträge zur Begründung der tranfiniten Mengenlehre, that
summarized and helped spreading his theory.
Dyck and Burkhardt join the editorial committee of the EMW.
Lorentz’s article on the electrodynamics of moving bodies.
1896: Zermelo’s debate with Boltzmann on kinetic theory.
Minkowski moves to Zurich.
Wien’s law of radiation.
1897: Hilbert’s Zahlbericht.
Boltzmann’s Lectures on the Principles of Mechanics.
Wiechert and Zermelo join the Göttingen faculty.
1898: Hilbert’s first course on mechanics in Göttingen.
Schur’s results on projective geometry.
First articles of the EMW published: Schubert on the foundations of
arithmetic, Netto on combinatorics and Pringsheim on irrational numbers
and convergence.
1899: Hilbert elected head of the DMV.
Hilbert’s first course on geometry in Göttingen.
Weber-Gauss monument unveiled. Grundlagen der Geometrie is published.
Riecke establishes the Physikalische Zeitschrift and acts as its first editor.
September - joint meeting of the DMV-GDNA in Munich. Boltzmann’s
popular lecture on recent developments in physics. Hilbert is present in the
audience.
December – Frege and Hilbert start their correspondence on the meaning of
axiomatization.
1900: Hilbert’s Über den Zahlbegriff.
August – ICM in Paris. Hilbert presents his list of twenty-three problems.
Volkmann’s textbook on theoretical physics.
GENERAL CHRONOLOGY 447
Planck’s law of radiation.
1901: September 18 - 150th anniversary of the GWG. In the keynote address,
Hilbert analyzes the conditions of validity of the Dirichlet Principle.
November 18 – Hilbert presents his solution of the fifth problem for the
plane.
Schwarzschild appointed professor of astronomy and director of the
observatory in Göttingen.
Voss’s EMW article on the principles of mechanics.
Husserl comes to Göttingen.
1902: Hilbert refuses an offering to take Fuchs’ chair in Berlin. Minkowski comes
to Göttingen.
Hilbert starts working on linear integral equations.
Moore teaches GdG in Chicago opening the way to postulational analysis in
USA.
1903: Rusell’s paradox published.
1904: ICM in Heidelberg. Hilbert’s “On the Foundations of Logic and
Arithmetic”.
Runge, Prandtl and Herglotz arrive in Göttingen.
Lorentz’s EMW article on electron theory.
1905: Hilbert’s lectures on axiomatization, including physics.
Hilbert and Minkowski’s seminar on electron theory.
Einstein’s annus mirabilis.
1906: January - Poincaré’s article on the dynamics of the electron, including a
section on gravitation.
New building of the physics institute inaugurated in Göttingen.
Planck’s textbook on radiation.
1907: Boltzmann and Nabl’s EMW article on kinetic theory.
Einstein adopts the “equivalence principle” as fundamental for any
relativistic treatment of gravitation.
November - Minkowski’s first talk on electrodynamics at the GMG.
December 21 - Minkowski’s second talk on electrodynamics at the GMG.
Sketch of a relativistic theory of gravitation.
1908: Zermelo’s proof of the well-ordering theorem.
ICM in Rome: Hilbert calls for a “methodologically unified reorganization
of algebra and analysis”, using his theory of integral equations. Lorentz
lectures on black body radiation.
September 21 - GDNA meeting in Köln. Minkowski’s “Space and Time”.
1909: January 12 – Minkowski’s death.
Hilbert’s proof of Waring’s conjecture.
Landau appointed successor of Minkowski.
1910: Hilbert is awarded the second Bolyai Prize.
Born’s articles on rigidity in STR (partly based on Minkowski’s ideas).
Sommerfeld’s two-part article on Minkowski’s four-vectors and relativity.
1911: Hilbert’s first course on kinetic theory.
First Solvay Conference in Brussels.
1912: January 9 - Mie’s theory of matter, first installment.
448 APPENDIX 1
June 7 - Mie’s theory of matter, second installment.
Hilbert publishes his article on kinetic theory.
Paul and Tatyana Ehrenfest’s EMW article on statistical mechanics.
Ewald appointed as Hilbert’s first assistant for physics.
August: Einstein takes his position at the ETH Zurich. Reencounters with
Grossman and starts working seriously on general relativity.
Hilbert’s first course on radiation theory.
September – GDNA meeting in Münster. Hilbert lectures on radiation
theory
November 2 – Mie’s theory of matter, third installment.
December – Born and Carathéodory discuss with Pringsheim the contents
and implications of Hilbert’s work on radiation theory.
1913: Hilbert publishes several versions of his approach to radiation theory.
Pringsheim publishes two critical articles.
April – Hilbert corresponds with Planck on radiation theory.
May-June – Einstein and Grossmann publish their Entwurf theory.
September
85th GDNA meeting in Vienna. Einstein discusses several
existing theories of gravitation.
December 16 – Born’s version of Mie´s theory.
1914: Hilbert’s publishes the final version of his radiation theory.
April – Einstein moves to Berlin.
April – Kinetic theory week in Göttingen. Lectures by Planck, Debye,
Nernst, Von Smoluchowski, Sommerfeld.
August – The Great War breaks out.
October Aufruf an die Kulturwelt - Neither Einstein nor Hilbert among
the signees.
November – Einstein’s “On the Formal Foundations of the General Theory
of Relativity”. An elaborate, comprehensive version of the Entwurf theory.
1915: Spring – Emmy Noether arrives in Göttingen.
June 29 to July 7 – Einstein’s Wolfskehl lectures.
Summer – Einstein corresponds with Paul Hertz on the ‘hole argument’.
July-November – No known contact between Hilbert and Einstein. The two
may have coincided for a short time at Rügen. Over the month of October,
Einstein became increasingly dissatisfied with his theory, and increasingly
convinced of the need to return to generally covariant field equations.
November – In four successive sessions of the Berlin academy Einstein
reads four papers on gravitation and relativity.
November 7 – Beginning of the Hilbert-Einstein correspondence.
November 18 – Einstein’s third Academy talk, with an explanation of
Mercury’s perihelion deviation.
November 20 – Hilbert’s lecture at the GWG on the “Foundations of
Physics”.
November 25 – Einstein present the final version of his gravitational field
equations.
GENERAL CHRONOLOGY 449
December 6 – Hilbert receive the galley proofs of his article on the
proceedings of the GWG.
December 20 – After a brief tension against the background of a possible
priority issue over the formulation of the equation, Einstein writes a
conciliatory letter to Hilbert.
1916: January – First solution of the gravitational field equations of GTR,
formulated by Schwarschild’s for a special case, is communicated by
Einstein at the Berlin Academy.
March – First published version of Hilbert’s communication.
April – Hilbert start corresponding with Russell on foundations of
arithmetic.
May – Einstein’s first systematic presentation of GTR published in Annalen
der Physik.
Hilbert teaches GTR at Göttingen.
October – Einstein publishes his variational derivation of the gravitational
field equations.
December 23 – Hilbert’s second communication at the GWG.
1917: Spring – Einstein publishes the first semi-popular presentation of GTR
Einstein’s first cosmological paper.
Mathematische Zeitschrift created through the efforts of Courant and
Ferdinand Springer.
1918: January – Klein lectures on the status of energy conservation in Hilbert’s
theory and GTR. This is followed by a series of related lectures by Hilbert,
Noether and others.
Easter – Weyl’s Raum-Zeit-Materie.
Bernays arrives in Göttingen to work with Hilbert on the foundations of
arithmetic
December – Discharged soldiers start returning from the front.
1921: Pauli completes his EMW article on GTR and moves to Göttingen to work
with Born.
1922: June – Bohr’s Wolfskehl lectures on atomic structure.
Hilbert’s “New Foundations of Mathematics”.
Hilbert teaches a course on the mathematical foundations of quantum theory.
1923: Heisenberg completes his dissertation under Born in Göttingen.
1924: Hilbert’s GTR papers republished in the Mathematische Annalen.
Hilbert and Courant’s Methoden der mathematischen Physik.
1925: Hilbert contracts pernicious anemia.
1926: Von Neumann arrives in Göttingen.
December – Jordan’s article on the axiomatization of quantum mechanics.
1927: Construction of the new building for the mathematical institute begins.
Hilbert, von Neumann and Nordheim’s paper on the foundations of
quantum mechanics.
1930: Hilbert’s official retirement.
Autumn - Hilbert nominated honorary citizen of Königsberg. Lectures on
Naturerkennen und Logik.
1943: February 14 – Hilbert dies in Göttingen.
450
APPENDIX 2
HILBERT’S GÖTTINGEN COURSES ON PHYSICS
(and related fields): 1895-1927
In compiling the following list I have relied on several documents, mainly the
Nachlassverzeichnisse at the mathematical institute (HLN) and at the
Handschriftenabteilung, SUB Göttingen (DHN). These documents, however, omit
several items registered in the printed version of the Göttingen
Vorlesungsverzeichnisse (GVV) for the years in question. In addition, DHN 520
contains another list of Hilbert’s courses over 46 years, between 1886 and 1932.
This list is complied in Hilbert’s own handwriting until WS 1917-18. It indicates, in
particular, that while at Königsberg, Hilbert taught one course on Hydrodynamics in
SS 1887 (notes preserved in DHN 522). Needless to say, there are also many
additional lectures throughout the years on more purely mathematical topics not
included here, and ranging from geometry, to integral and differential calculus, to
invariants, number theory, set theory and logic.
I have added in parentheses a reference to the existing notes for the lecture notes
of most courses and their locations.
WS 1895/96 Partial Differential Equations (Notes by Nosse - HLN)
SS 1896 Ordinary Differential Equations (GVV)
SS 1898 Mechanics (DHN)
SS 1899 Variational Calculus (DHN)
WS 1900/01 Partial Differential Equations (DHN)
SS 1901 Linear Partial Differential Equations (Notes by A. Andrae - HLN)
WS 1901/02 Potential Theory (Notes by A. Andrae - HLN)
SS 1902 Selected Topics in Potential Theory (Notes by A. Andrae - HLN)
WS 1902/03 Continuum Mechanics - Part I (Notes by Berkowski - HLN)
SS 1903 Continuum Mechanics - Part II (Notes by Berkowski - HLN)
WS 1903/04 Partial Differential Equations (Notes by Prinz & Tieffenbach-
HLN)
WS 1904/05 Variational Calculus (Notes by E. Hellinger - HLN)
SS 1905 Logical Principles of Mathematical Thinking (and of Physics)
(Notes by E. Hellinger – HLN; Notes by Born - DHN)
SS 1905 Integral Equations (Notes by E. Hellinger - HLN)
WS 1905/06 Partial Differential Equations (Notes by E. Hellinger - HLN)
WS 1905/06 Mechanics (Notes by E. Hellinger - HLN)
SS 1906 Integral Equations (Notes by E. Hellinger - HLN)
COURSES ON PHYSICS 451
WS 1906/07 Continuum Mechanics (Notes by E. Hellinger - HLN)
SS 1907 Differential Equations (Notes by E. Hellinger - HLN)
WS 1909/10 Partial Differential Equations (Notes by R. Courant - HLN)
SS 1910 Selected Chapters in the Theory of Partial Differential Equations
(Notes by R. Courant - HLN)
WS 1910/11 Mechanics (Notes by F. Frankfurther, W. Behrens - HLN)
SS 1911 Continuum Mechanics (Notes by E. Hecke - HLN)
WS 1911/12 Statistical Mechanics (Notes by E. Hecke - HLN)
SS 1912 Radiation Theory (HLN)
SS 1912 Ordinary Differential Equations (HLN)
SS 1912 Mathematical Foundations of Physics (GVV)
WS 1912/13 Molecular Theory of Matter (HLN)
WS 1912/13 Partial Differential Equations (Notes by B. Baule - HLN)
WS 1912/13 Mathematical Foundations of Physics (GVV)
SS 1913 Foundations of Mathematics (and the axiomatization of Physics)
(GVV)
Electron Theory (HLN)
WS 1913/14 Electromagnetic Oscillations (HLN)
Analytical Mechanics (GVV)
Exercises in Mechanics (together with H. Weyl) (GVV)
SS 1914 Statistical Mechanics (Notes by L.Lange - HLN)
Differential Equations (GVV)
WS 1914/15 Lectures on the Structure of Matter (GVV)
SS 1915 Structure of Matter (Born’s Theory of Crystals) (HLN)
WS 1915/16 Differential Equations (HLN)
SS 1916 Partial Differential Equations (HLN)
Foundations of Physics I (General Relativity) (HLN)
WS 1916/17 Foundations of Physics II (General Relativity) (Notes by R. Bär –
HLN; Hückel - EHN)
SS 1917 Electron Theory (Notes by H. Humm - HLN)
SS 1918 Ordinary Differential Equations (GVV)
WS 1918/19 Space and Time (Notes by P. Bernays HLN; E. Hückel - EHN)
Partial Differential and Integral Equations (GVV)
HS 1919 Nature and Mathematical Knowledge (Notes by P. Bernays –
HLN. Special Autumn Semester)
WS 1920 Mechanics (GVV)
SS 1920 Higher Mechanics and the New Theory of Gravitation (Notes by
A. Kratzer – HLN; E. Hückel - EHN)
WS 1920-21 Mechanics and the New Theory of Gravitation (Notes by A.
Kratzer – HLN; E. Hückel - EHN)
SS 1921 Einstein’s Gravitation Theory (GVV)
Basic Principles of the Theory of Relativity (Notes by P. Bernays -
HLN) – for students of all faculties
SS 1921 On Geometry and Physics (Partial Notes by E. Hückel EHN)
SS 1922 Statistical Mechanics (Notes by L. Nordheim - HLN)
452 APPENDIX 2
WS 1922/23 Mathematical Foundations of Quantum Theory (Notes by L.
Nordheim, G. Heckhausen - HLN)
Knowledge and Mathematical Thought (Notes by W. Ackermann -
HLN) – for students of all faculties
SS 1923 Our Conception of Gravitation and Electricity (generally
understood) (GVV)
WS 1923/24 On the Unity of Science (HLN)
SS 1924 Mechanics and Relativity Theory (Notes by L. Nordheim - HLN)
WS 1926/27 Mathematical Methods of Quantum Theory (Notes by L.
Nordheim - HLN)
SS 1930 Mathematical Methods of Modern Physics
WS 1930/31 Nature and Thought
WS 1931/32 Philosophical Foundations of Modern Natural Science
453
APPENDIX 3
SEMINARS, MISCELLANEOUS LECTURES
The main sources of information for lists 3.C and 3.D are the periodical
announcements of mathematical courses and activities at the various German
universities reported in the relevant sections of the JDMV. Additional information
concerning these, as well as the other two sections, appears in various documents in
DHN, some journals quoted in the text, and in the Vorlesungsverzeichnisse of the
University of Göttingen.
3.A. ADVANCED SEMINARS TAUGHT BY HILBERT:
1. Mechanics (with Klein) 1896 (?)
2. Stability Theory (with Minkowski) SS 1903
3. Exercises in Mechanics (with Minkowski) SS 1904
4. Mechanics WS 1904-05
5. Electron Theory (with Minkowski et al) SS 1905
6. The Equations of Electrodynamics (with Minkowski) SS 1907
7. Hydrodynamics ???
8. Electrodynamics ???
9. Kinetic Theory of Gases 1912
10. Structure of Matter (with Debye) WS 1914-15 to SS 1920
11. Structure of Matter WS 1920-21
12. Structure of Matter (with Born) SS 1921 to SS 1928
13. Theoretical and Math. Physics (with Born and Herglotz) WS 1927/28
3.B. PUBLIC LECTURES BY HILBERT:
1. Stability Theory (Kassel) 1903
2. Maxwell’s Theory of Gases 1912
3. Statistical Mechanics 1912
4. On Nernst’s Law of Heat 1913
5. Space and Time (Bucharest) 1918
6. On the Laws of Chance 1920
7. Nature and Mathematical Knowledge (Copenhagen) 1921
8. The Knowledge of Nature and Logic (Königsberg) 1930
454 APPENDIX 3
3.C. PHYSICAL LECTURES AT THE GMG AND GWG BY HILBERT:
1. Continuum Mechanics Feb. 24, 1903
2. Continuum Mechanics Aug. 4, 1903
3. The relations between variational principles and the theory of partial
differential equations, with applications to the integral principles of
mechanics. Jan. 18, 1910
4. Kinetic theory of gases Dec 19, 1911
5. Axiomatic Foundations of Physics (Ferienkurs for high-school
teachers) April 15-27, 1912
6. Theory of Radiation July 30, 1912
7. Theory of Radiation Jan. 21, 1913
8. Theory of Radiation July 28, 1914
9. The Fundamental Equations of Physics (General Relativity) Nov. 16, 1915
10. Foundations of Physics – First Part November 20, 1916
11. Foundations of Physics December 4, 1915
12. Theory of Invariants and the Energy Principle Jan. 25, 1916
13. The Causality Principle in Physics Nov. 21 & 28, 1916
14. Foundations of Physics – Second Part Dec. 23, 1916
15. Non-Euclidean Geometry and the new Gravitation Theory Jan. 23, 1917
16. Laue’s Theorem June 12, 1917
17. Reply to Klein’s “On Hilbert’s first note on the
Foundations of Physics” Jan. 29, 1918
18. The Energy Principle for the Motion of Planets in the New
Theory of Gravitation June 4, 1918
19. On Weyl’s Communication (May 2, 1918) to the Berlin
Academy “The Energy Principle in the General Theory of
Relativity” July 15, 1918
3.D. LECTURES ON PHYSICAL ISSUES AT THE GMG BY OTHERS:
1. On the Axioms of Vector Addition (R. Schimmack) June 9, 1903
2. Molecular Theory of Heat Conduction (G. Prasad) June 9, 1903
3. Capillarity (H. Minkowski) June 23, 1903
4. Linear Heat Conduction in Surfaces (G. Prasad) June 23, 1903
5. Maxwell’s Work on Stress Systems (Klein) June 23, 1903
6. Euler’s Equations of Hydrodynamics (Minkowski) June 28, 1903
7. Electromagnetic Quantity of Motion (Abraham) July 14, 1903
8. Gibb’s Thermodynamical Surfaces (H. Happel) Dec. 8, 1903
9. Variational Principles in Electrodynamics (Schwarzschild) Jan. 26, 1904
10. Can the Electron Reach the Speed of Light (P. Hertz) Jan. 26, 1904
11. On a Seminar on Hydrodynamics and Hydraulics (Klein) Feb. 9, 1904
12. Motion of a Material Particle on a Uniformly Moving
Plane (P. Ceresole) May 17, 1904
SEMINARS ON PHYSICS 455
13. On the Elasticity of the Earth (G. Herglotz) June 28, 1904
14. On Sommerfeld’s Works on Electron Theory (G. Herglotz) Dec. 6, 1904
15. Motion of a Fluid with Little Friction (L. Prandtl) Dec. 13, 1904
16. On a Talk by Poincaré on n the Future of Mathematical
Physics (C.H. Müller) Jan. 24, 1905
17. On Gases ans Vapors (L. Prandtl) May 23, 1905
18. On Poincaré’s Published Lectures on Mathematical
Physics (M. Abraham) Feb. 6, 1906
19. Poincaré’s Research on Rotating Fluid Masses (H. Müller) Feb. 13, 1906
20. On Gibb’s Book on Statistical Mechanics (Zermelo) Feb. 20, 1906
21. Graphical Methods in Mechanics and Physics (C. Runge) Feb. 27, 1906
22. On Painlevé’s Work on the Foundations of Mechanics
(Carathéodory) May 28, 1906
23. On W. Nernst’s “On Chemical Equilibrium” (Minkowski) June 26, 1906
24. Problems of Aeronavigation (Prandtl & Wiechert) Oct. 30, 1906
25. The Mathematical Theory of Elasticity (C.H. Müller) Nov. 6, 1906
26. On Botzmann’s H-Theorem (P. Ehrenfest) Nov. 13, 1906
27. The Evolution of the Theory of Radiation through the Works of
Lorentz, Rayleigh, W. Wien and Planck (Minkowski) Dec 1, 1906
28. On H. Witte’s “On the Possibility of a Mechanical
Explanation of Electromagnetic Phenomena” (Abraham) Dec. 18, 1906
29. On the Application of Probability Calculus to Astronomy
(Schwarzschild) Jan. 8, 1907
30. Theories of the Effects of Air Resistance (L. Prandtl) Jan. 22, 1907
31. Seismic Waves (E. Wiechert) Jan. 29, 1907
32. Statistical Stellar Astronomy (Schwarzschild) Feb. 19, 1907
33. Seismic Rays (G. Herglotz) May 14, 1907
34. Solutions of Differential Equations for Gas Spheres
(Gaskügeln) (K. Schwarzschild) July 30, 1907
35. On the Equations of Electrodynamics (Minkowski) Nov. 5, 1907
36. Graphical Methods in Fluid Mechanics (C. Runge) Nov. 26, 1907
37. Applications of Quaternions to Electron Theory (Klein) Dec. 10, 1907
38. A New, Simple General Proof of the Second Law of
Thermodynamics (Carathéodory) Dec. 17, 1907
39. An Overview of Man’s Attempts to Fly (C. Runge) March 3, 1908
40. Report on a Joint Seminar on Hydrodynamics (F. Klein,
L. Prandtl, C. Runge, E. Wiechert) May 5, 1908
41. An Experiment on Stabilization of Air Balloons (L. Prandtl) May 12, 1908
42. On Lanchester’s Book “Aerodynamics” (C. Runge) May 12, 1908
43. On the Equations of Electrodynamics (Minkowski) July 28, 1908
44. On Recent French Research on Aviation (C. Runge) Nov. 3, 1908
45. Recent Works on Earth Pressure (Th. Van Kármán) Nov. 24, 1908
46. Theory of Earth Pressure (A. Haar & Th. Van Kármán) Dec. 8, 1908
47. The New Mechanics (Poincaré, Wolfskehl Lectures) April 22-28, 1909
48. Position Determination from and Air Balloon (Runge) May 11 & 18, 1909
456 APPENDIX 3
49. Defintion of a Rigid Body on the “Einstein-Minkowski”
System of Electrodynamics (M. Born) June 8 & 15, 1909
50. Average Motion in the Theory of Perturbations and
Applications of Probability to Astronomy (F. Bernstein) June 22, 1909
51. On Minkowski’s Nachlass (Electrodynamics) (M. Born) Feb. 8, 1910
52. On the Definition of a Rigid Body (M. Born) Juni 21, 1910
53. Old and New Problems in Physics (Lorentz, Wolfskehl
Lectures) Summer 1910
54. Stable Orderings of Electrons in the Atom
(L. Föppl - PhD Dissertation supervised by Hilbert) Nov. 21, 1911
55. On Herglotz Work on Deformable Bodies in the
Theory of Relativity (M. Born) Dec. 12, 1911
56. The Behavior of Solid Bodies and Hooke’s Law (L. Prandtl) Jan. 16, 1912
57. A Newly Discovered Relation Between Elasticity of
Crystals and Optical Oscillations (M. Born & Th. van
Kármán) Feb. 13, 1912
58. Molecular Oscillations and Specific Heat (Born & van
Kármán) May 14, 1912
59. Theory of Dispersion in Crystals (P.P. Ewald - PhD Diss.) June 4, 1912
60. New Works of Poincaré and Ehrenfest on the Axiomatic
Foundation of Quantum Theory (Th. van Kármán) Juli 16, 1912
61. Statistical Mechanics (P. Hertz) Nov. 26, 1912
62. On Sommerfeld’s Article on the Theory of
Oscillating Equations (H. Weyl) Dec. 10, 1912
63. Mie’s Theory of Matter (M. Born) Dec. 17, 1912
64. Motion of Fluids (L. Prandtl) Feb. 4, 1913
65. Reports on the Solvay Conference, Brussels 1911
(Born & van Kármán) Feb. 25 & March 4, 1913
66. Kinetic Theory Week (Debye, Nernst, Von Smoluchowski,
Lorentz, Sommerfeld, Planck - Wolfskehl Lectures) May 1913
67. An Application of Diophantine Approximations to a
Question in Statistical Mechanics (E. Hecke) May 20, 1913
68. On the Structure of Crystals (M. Born) June 7, 1913
69. Recent Work of J.J. Thomson on Canal Waves
(Kanalstrahlen) (C. Runge) Juni 24, 1913
70. An Application of Quantum Theory to Capillarity
(M. Born & R. Courant) July 1, 1913
71. On a Recent Work of E. Noether on Turbulences in a
Fluid (Th. van Kármán) July 30, 1913
72. On Poincaré’s Book on Cosmogonic Hypotheses (L. Föppl) July 30, 1913
73. Propagation of Light in Transparent Media (W. Behrens) Nov. 4, 1913
74. On Mie’s theory of Matter (M. Born) Nov. 25, 1913
75. The Solution of an Equation of Spectroscopy (C. Runge) Dec. 2, 1913
76. Recent Work of Einstein and Grossmann on
Gravitation (F. Böhm) Dec. 9, 1913
77. On Mie’s Theory of Matter (M. Born) Dec. 16, 1913
SEMINARS ON PHYSICS 457
78. Theoretical Treatment of Phenomena in Diluted Gases
(B. Baule - PhD Dissertation Supervised by Hilbert) Feb 24, 1914
79. Review of Recently Published Works by von
Smoluchowski (Brownian Movement), and Einstein (On
Light Deflection; On the Determination of Molecular
Dimensions) (P. Hertz) Feb. 24, 1914
80. Lattice Theory of Diamonds (M. Born) March 3, 1914
81. Intensity Distribution in Spectral Lines (P. Debye) Dec. 18, 1914
82. Foundation and Problems of Quantum Theory (P. Debye) Feb. 23, 1915
83. Dynamics of Crystal Lattices (M. Born) Feb. 25, 1915
84. Structure of Crystals (F. Klein, with Hilbert and Mügge) May 18, 1915
85. On Herglotz’s Research on Potentials in the Interior of
Attracting Masses (Wiarda) June 1, 1915
86. On Modern Physics (A. Sommerfeld) June 15, 1915
87. On Gravitation (A. Einstein, Wolfskehl Lectures) June 29 – July 7, 1915
88. Theory of Distant Forces (Uhlich-Pirna) July 20, 1915
89. History of Mechanics up until Galileo (C. Müller,
Wolfskehl Lectures) March 2-4, 1916
90. Diffusion, Brownian Movement, Colloidal Particles
91. (Von Smoluchowski, Wolfskehl Lectures) June 20-22, 1916
92. Four-dimensional Vectorial Analysis (C. Runge) Dec. 5, 1916
93. Foundations of a Theory of Matter (G. Mie, Wolfskhel
Lectures) June 5-8, 1917
94. On the Riemannian Curvature (Klein) Oct. 30, 1917
95. On the Riemannian Curvature (Klein) Nov. 6, 1917
96. On G. Herglotz’s Paper on Curvature and Gravitation (Klein) Dec. 4, 1917
97. On Liquid Crystals (M. Born) Dec. 11, 1917
98. On Invariants of Arbitrary Differential Expressions (E.
Noether) Jan. 15, 1918
99. On Hilbert’s First Note on the Foundations of Physics (Klein) Jan. 22, 1918
100. On Einstein’s Cosmological Ideas of 1917 (F. Klein) May 7, 1918
101. On Quantum Theory (M. Planck, Wolfskehl Lectures) May 13-17, 1918
102. On Einstein’s “On Gravitational Waves” (C. Runge) Jun. 31, 1918
103. On Einstein’s Cosmological Ideas of 1917 (Klein) June 11, 1918
104. On the Three-body Problem (C. Carathéodory) June 24, 1918
105. Einstein’s “Energy Principle in General Relatitvity” (Klein) July 4, 1918
106. Hilbert’s Energy Vector (Klein) July 22, 1918
107. Invariant Variational Problems (E. Noether) July 23, 1918
108. Organic Causality (Hans Driesch, Wolfskhel Lectures) Dec. 16-19, 1918
109. On the Structure of the Atom (N. Bohr, Wolfskehl Lectures) June 1922
458
APPENDIX 4
HILBERT’S PHYSICS ASSISTANTS AND DOCTORAL
STUDENTS
4.A. ASSISTANTS FOR PHYSICS:
Some of the persons listed below worked with Hilbert officially under this
denomination (e.g., Ewald and Landé). Others (e.g., Bernays) may be classified as
such simply for having actually fulfilled this role (e.g., by maintaining Hilbert
updated on recent developments on physics, by preparing the notes for his physical
courses, etc.) in the period mentioned.
1. 1912-13: Paul P. Ewald
2. 1913-14: Alfred Landé
3. 1914-16: Louise Lange
4. 1916-17: Richard Bär
5. 1918-19: Paul Bernays
6. 1920-21: Adolf Kratzer
7. 1921-22: Erich Hückel
8. 1922-27: Lothar Nordheim
9. 1927-28: Eugene Wigner
4.B. DOCTORAL STUDENTS ON PHYSICAL TOPICS:
As listed in HGA Vol. 3, 430-432.
1. Ludwig Föppl: “Stabile Anordnungen von Elektronen im Atom” (March 1,
1912)
2. Hans Bolza: “Anwendungen der Theorie der Integralrechnungen auf die
Elektronentheorie und die Theorie der verdünnten Gasen.” (July 2, 1913)
3. Bernhard Baule: “Theoretische Behandlung der Erscheinungen in
verdünnten Gasen.” (Feb. 18, 1914)
4. Kurt Schelenberg: “Anwendungen der Integralgleichung auf die Theories
der Elektrolysie.” (June 24, 1914)
5. Hellmuth Kneser: “Untersuchungen zur Quantentheorie.” (July 22, 1921)
459
APPENDIX 5
LETTERS QUOTED IN THE BOOK
Numbers for each entry indicate the chapter and footnote where a letter is quoted
in the book, and where its exact reference can be found.
1. Abraham to Stark Oct. 10, 1914 (Ch. 6, # 62)
2. Apelt to Grassmann Sept. 3, 1845 (Ch. 1, # 85)
3. Birkhoff to van der Waerden Nov. 1, 1973 (Ch. 9, # 41)
4. Born to Hilbert April 4, 1916 (Ch. 8, # 23)
5. Born to Hilbert Aug. 24, 1916 (Ch. 8, # 26)
6. Born to Hilbert Nov. 23, 1915 (Ch. 7, # 116)
7. Born to Hilbert Aug. 3, 1909 (Ch. 4, # 67)
8. Born to Hilbert Jan. 7, 1913 (Ch. 5, # 94)
9. Born to Hilbert Oct. 28, 1915 (Ch. 7, # 100)
10. Cantor to Hilbert Jan. 1, 1900 (Ch. 2, # 60)
11. Carathéodory to Hilbert Dec. 12, 1912 (Ch. 5, # 91)
12. Carathéodory to Hilbert April 4, 1913 (Ch. 5, # 106)
13. Dedekind to du Bois-Reymond March, 1888 (Ch. 2, # 10)
14. Dingler to Hilbert Jan. 2, 1915 (Ch. 8, # 40)
15. Einstein to Besso Dec. 10, 1915 (Ch. 7, # 50, 94)
16. Einstein to Besso Jan. 1, 1916 (Ch. 4, # 85)
17. Einstein to Besso Jan. 3, 1916 (Ch. 7, # 95)
18. Einstein to Ehrenfest Undated, 1914 (Ch. 6, # 20)
19. Einstein to Ehrenfest April 1, 1914 (Ch. 6, # 26)
20. Einstein to Ehrensfest Dec. 26, 1915 (Ch. 7, # 95)
21. Einstein to Freundlich Aug. 1, 1913 (Ch. 6, # 58)
22. Einstein to Freundlich Jan. 1, 1914 (Ch. 6, # 54)
23. Einstein to Habitch Dec. 24, 1907 (Ch. 6, # 10)
24. Einstein to Hilbert Nov. 7, 1915 (Ch. 7, # 98)
25. Einstein to Hilbert Nov. 12, 1915 (Ch. 7, # 101, 104)
26. Einstein to Hilbert Nov. 14, 1915 (Ch. 7, # 56)
27. Einstein to Hilbert March 16, 1916 (Ch. 7, # 108)
28. Einstein to Hilbert May 30, 1916 (Ch. 8, # 30)
29. Einstein to Hilbert May 30, 1916 (Ch. 8, # 76)
30. Einstein to Hilbert June 2, 1916 (Ch. 8, # 30)
31. Einstein to Hilbert June 2, 1916 (Ch. 8, # 93)
32. Einstein to Hilbert May 19, 1917 (Ch. 8, # 55)
33. Einstein to Hilbert Nov. 15, 1915 (Ch. 7, # 108)
34. Einstein to Hilbert Nov. 18, 1915 (Ch. 7, # 111)
35. Einstein to Klein Dec. 15, 1917 (Ch. 9, # 97)
460 APPENDIX 5
36. Einstein to Klein April 12, 1917 (Ch. 8, # 61)
37. Einstein to Kleiner April 3, 1912 (Ch. 4, # 86)
38. Einstein to Lorentz Aug. 16, 1913 (Ch. 6, # 18)
39. Einstein to Lorentz Oct. 12, 1915 (Ch. 7, # 92)
40. Einstein to Lorentz Jan. 17, 1916 (Ch. 8, # 2)
41. Einstein to Mie May 1, 1917 (Ch. 6, # 58)
42. Einstein to Mie June 1, 1917 (Ch. 6, # 58)
43. Einstein to Sommerfeld July 15, 1915 (Ch. 7, # 17, 89)
44. Einstein to Sommerfeld Nov. 28, 1915 (Ch. 7, # 93, 118)
45. Einstein to Sommerfeld Dec. 9, 1915 (Ch. 7, # 119)
46. Einstein to Sommerfeld Summer 1910 (Ch. 4, # 85)
47. Einstein to Stark Nov. 1, 1907 (Ch. 4, # 58)
48. Einstein to Weyl Nov. 23, 1916 (Ch. 8, # 53)
49. Einstein to Wien Oct. 10, 1915 (Ch. 8, # 42)
50. Einstein to Zangger April, 1915 (Ch. 6, # 1, 30)
51. Einstein to Zannger July 7, 1915 (Ch. 7, # 36)
52. Einstein to Zannger Aug. 7, 1915 (Ch. 7, # 40)
53. Ewald to Hilbert April 11, 1912 (Ch. 5, # 80)
54. Frege to Hilbert Jan. 6, 1900 (Ch. 2, # 95)
55. Hecke to Hilbert March 7, 1916 (Ch. 2, # 86)
56. Hilbert to Einstein Nov. 19, 1915 (Ch. 7, # 114)
57. Hilbert to Einstein May 27, 1916 (Ch. 8, # 40)
58. Hilbert to Einstein Nov. 13, 1915 (Ch. 7, # 106)
59. Hilbert to Einstein May 25, 1916 (Ch. 8, # 93)
60. Hilbert to Einstein March 30, 1912 (Ch. 5, # 77)
61. Hilbert to Einstein Oct. 3, 1912 (Ch. 5, # 145)
62. Hilbert to Frege Jan. 15, 1900 (Ch. 2, # 96)
63. Hilbert to Frege Nov. 7, 1903 (Ch. 3, # 5)
64. Hilbert to Frege Dec. 29, 1899 (Ch.2, 93,94,98, 99)
65. Hilbert to Hurwitz June 6, 1894 (Ch. 2, # 25)
66. Hilbert to Klein May 23, 1893 (Ch. 2, # 12)
67. Hilbert to Klein Nov. 15, 1893 (Ch. 2, # 13)
68. Hilbert to Klein Sept. 14, 1892 (Ch. 1, # 38)
69. Hilbert to Poincaré Nov. 6, 1908 (Ch. 5, # 13)
70. Hilbert to Poincaré Nov. 19, 1908 (Ch. 5, # 13)
71. Hilbert to Poincaré Nov. 25, 1908 (Ch. 5, # 13)
72. Hilbert to Poincaré May 6, 1912 (Ch. 5, # 62)
73. Hilbert to Russell April 12, 1916 (Ch. 8, # 40)
74. Hilbert to Schwarzschild July 17, 1915 (Ch. 7, # 37)
75. Hilbert to Schwarzschild Oct. 23, 1915 (Ch. 7, # 46)
76. Hilbert to Sommerfeld April 5, 1912 (Ch. 5, # 63)
77. Hilbert to Weyl April 22, 1918 (Ch. 9, # 78)
78. Klein to Pauli May 8, 1921 (Ch. 7, # 84, 87)
79. Klein to Pauli May 8, 1921 (Ch. 8, # 129)
80. Klein to Pauli May 8, 1921 (Ch. 8, # 49)
81. Mie to Hilbert Feb. 13, 1916 (Ch. 6, # 66; Ch. 8, # 43)
LETTERS QUOTED 461
82. Mie to Hilbert Feb. 29, 1916 (Ch. 8, # 46)
83. Mie to Hilbert May 8, 1917 (Ch. 8, # 48)
84. Mie to Hilbert May 16, 1917 (Ch. 8, # 48)
85. Mie to Hilbert June 10, 1917 (Ch. 8, # 50)
86. Mie to Hilbert July 2, 1917 (Ch. 8, # 51, 52)
87. Mie to Hilbert Dec. 26, 1917 (Ch. 8, # 50)
88. Mie to Stark Dec. 10, 1913 (Ch. 6, # 62)
89. Mie to Wien Oct, 10, 1915 (Ch. 8, # 42)
90. Mie to Wien Feb. 6, 1916 (Ch. 8, # 42)
91. Minkowski to Einstein Oct. 9, 1907 (Ch. 4, # 5)
92. Minkowski to Hilbert March 31, 1896 (Ch. 1, # 46)
93. Minkowski to Hilbert Dec. 20, 1890 (Ch. 1, # 18)
94. Planck to Hilbert Jan. 12, 1917 (Ch. 8, # 33)
95. Planck to Hilbert Feb. 8, 1917 (Ch. 8, # 31, 33)
96. Planck to Hilbert Jan. 20, 1918 (Ch. 8, # 31)
97. Planck to Hilbert Jan. 27, 1918 (Ch. 8, # 31)
98. Planck to Hilbert April 4, 1913 (Ch. 5, # 108)
99. Planck to Hilbert April 15, 1913 (Ch. 5, # 109)
100. Runge to Hilbert May 8, 1918 (Ch. 8, # 102)
101. Sommerfeld to Hilbert May 4, 1916 (Ch. 8, # 24)
102. Voigt to Lorentz May 19, 1911 (Ch. 5, # 17)
103. Volkmann to Hilbert Jan. 1, 1900 (Ch. 1, # 158)
104. Voss to Hilbert July 19, 1899 (Ch. 1, # 176)
105. Weber to Dedekind End of 1879 (Ch. 1, # 14)
462
APPENDIX 6
ITEMS FROM THE HILBERT NACHLASS REFERRED TO
IN THE BOOK
Numbers for each entry indicate the chapter and footnote where an item is
referred to in the book.
DHN 40A, 1. 1909-
1918.
Correspondence Born-Hilbert Passim.
DHN 55, 4-5. Dec. 12,
1912, Apr. 4, 1913.
Letters Carathéodory to Hilbert Ch. 5, # 91, #106.
DHN 98, 1. April 11,
1912.
Letter Ewald to Hilbert Ch. 5, # 80.
DHN 141, 7. March 7,
1916.
Letter Hecke to HIlbert Ch. 7, #86.
DHN 254. 1913-1917. Correspondence Mie-Hilbert Passim.
DHN 308A, 4. 1912-
1917.
Correspondence Planck-Hilbert Ch. 5, # 108, 109;
Ch. 8, # 31, 33.
DHN 379A. May 14,
1916.
Letter Sommerfeld to Hilbert Ch. 8, # 24.
DHN 416. 1886-1913. Correspondence Hilbert-Volkmann Ch. 1, #158, #163.
DHN 418, 1. July 19,
1899.
Letter Voss to Hilbert Ch. 1, #176.
ITEMS FROM HILBERTS NACHLASS 463
DHN 457, 17. April
22, 1918.
Letter Hilbert to Weyl Ch. 9, # 78.
DHN 504. SS 1882. Lecture notes of a course on
number theory taught by Weber
(Annotated by Hilbert)
Ch 1, #4.
DHN 505-519.
Undated, probably
around 1880.
Hilbert’s student notebooks Ch. 1, # 6-7; 11.
DHN 520. Undated. A list of Hilbert’s courses over 46
years, between 1886 and 1932. This
list is complied in Hilbert’s own
handwriting until WS 1917-18
Ch.1, # 38, Ch. 2, #
30, Ch. 5 # 158.
DHN 522. SS 1887. Hydrodynamics – Lecture Notes Ch. 1, # 20, Ch. 2, #
30.
DHN 535. SS 1891. Projective Geometry – Lecture
Notes
Ch. 2, # 3.
DHN 553. WS 1898-
99.
Mechanics – Lecture Notes Ch. 9, # 44-47.
DHN 558a. SS 1905. Logical Principles of Mathematical
Thought – Lecture Notes
(Annotated by Max Born)
Ch. 3.
DHN 570, 9. 1905. Notes from a seminar on electron
theory taught by Hilbert,
Minkowski, Wiechert, and Herglotz
Ch. 3, # 43.
DHN 570, 1. Undated. Random collection of handwritten
notes related to many different
courses and seminars of Hilbert
Ch. 3, # 36.
464 APPENDIX 6
DHN 570, 5. 1907. Notes by Hermann Mierendorff
from a seminar on electrodynamics
taught by Hilbert and Minkowski,
Ch. 4, #15.
DHN 586. August
1912.
Notes of a talk on radiation theory Ch. 5, # 73, 82.
DHN 590. January
1913.
Notes of a lecture on Nernst’s law
of heat
Ch. 5, #144.
DHN 593. Undated.
Probably 1903.
Notes of a talk on stability theory Ch. 2, #78; Ch. 3, #
37.
DHN 596. July 26, 27,
28, 1923.
Notes on three talks about
“Foundations of Physics”
Ch. 8, #121.
DHN 600. Undated.
Probably before 1900.
Tagebuch Ch. 3, #1.
DHN 634, 15-22.
Undated. Around
1916.
Manuscripts with notes related to
Hilbert 1917
Ch. 8, # 21, # 22.
DHN 634. Before or
on Dec 6, 1915.
Galley proofs of Hilbert 1916 Ch. 7, # 63.
DHN 642. Undated.
Around late 1915-
1916.
Talk on the causality principle Ch. 7, # 65.
DHN 696. Undated. Random collection of handwritten
notes related to many different
courses and seminars of Hilbert
Ch. 3, # 36.
DHN 707. SS 1907. Radiation Heath – Minkowski’s
Lecture Notes
Ch. 4, #3.
DHN 742. June 1915. Lecture of Einstein on GTR Ch. 7, # 33.
465
APPENDIX 7
HILBERT’S AXIOMS FOR RADIATION THEORY
The precise context of Hilbert’s various systems of axioms for radiation theory is
discussed in § 5.3.
1. FIRST VERSION (HILBERT 1913):
Axiom I: In a state of thermal equilibrium of radiation no interchange of energy
among colors takes place for a given portion of matter. Moreover, the radiation of
each color is itself in a state of equilibrium.
Axiom II: The values of the three characteristic magnitudes of any wavelength at a
given temperature (the emission coefficient
K
, the absorption coefficient
D
, and the
speed of light q) are uniquely determined by the physical properties of matter at the
given position in space where that matter is currently found.
Axiom III: There exist substances whose absorptions coefficient
D
and refraction
capacity are such that the quotient
D
/q2 falls short of the wavelength
O
by a function
which is arbitrarily prescribed in advance.
2. SECOND VERSION (HILBERT 1913A):
Axiom 1 (Axiom of the compensation of the total energy): In a state of thermal
equilibrium of radiation the total amount of energy emitted by any given volume
element for all colors equals the amount energy absorbed by it.
Axiom 2 (Axiom of the compensation of energy for each individual color): In a state
of thermal equilibrium of radiation there is no exchange of radiant energy across
different colors at any given region of matter. Moreover, the radiation corresponding
to each color is itself in a state of independent equilibrium.
Axiom 3 (Axiom of the physical nature of the coefficients q,
K
,
D
): The characteristic
magnitudes of radiation for any given wavelength (speed of light q, emission
coefficient
K
, absorption coefficient
D
) are uniquely determined by the physical
conditions of matter in the region where the matter is found, and by them alone.
Axiom 4 (Axiom of the physical nature of the radiation density): In a state of thermal
equilibrium of radiation, the density of the radiant energy for each wavelength for
which matter is not diathermic, is uniquely determined by the physical conditions of
matter in the region where the matter is found, and by them alone.
466 AXIOMS OF RADIATION THEORY
Axiom 5 (Axiom of the existence of certain diversities in matter): There exist
substances whose absorptions coefficient
D
and refraction capacity are such that the
quotient
D
/q2 falls short of the wavelength
O
by a function which is arbitrarily
prescribed in advance.
3. THIRD VERSION (HILBERT 1914):
Axiom A (Axiom of the compensation of the total energy): Every optical system
admits a state of radiation equilibrium. In this state, the total amount of energy
emitted by all colors from any given volume element equals its total absorbed
energy.
Axiom B (Axiom of the compensation of energy for each individual color): Every
optical system admits a state of radiation equilibrium. In this state, there is no
exchange of radiant energy corresponding to different colors at any given region of
matter. Moreover, the radiation corresponding to each color is itself in a state of
independent equilibrium.
Axiom C (Axiom of the physical nature of the radiation density): In the —always
possible— state of equilibrium, the density of the radiation energy of every
wavelength is uniquely determined by the physical conditions of matter in the region
where the matter is found, and by them alone.
Axiom D (Axiom of the existence of certain differences among substances): There
are substances for which the values of D (absorption coefficient) and q (velocity of
propagation of light) are such that the quotient D/q2 equals the value of any
arbitrarily function of O prescribed in advance.
467
REFERENCES
COMMONLY USED ABBREVIATIONS
AHES Archive for History of Exact Sciences
AIHS Archives int. d’histoire des sciences
AJP American Journal of Physics
AM Annals of Mathematics
AMP Archiv für Mathematik und Physik
AMS American Mathematical Society
AP Annalen der Physik
ASN Nachlass Arnold Sommerfeld, Deutsches Museum, Munich.
BSL The Bulletin of Symbolic Logic
BSPS Boston Studies in the Philosophy of Science
CPAE The Collected Papers of Albert Einstein (Princeton, Princeton
University Press).
CRN Nachlass Runge – Du Bois Reymond, Staatsbibliothek Berlin,
Preußischer Kulturbesitz
DHN Nachlass David Hilbert – Niedersächsische Staats- und
Universitätsbibliothek Göttingen, Abteilung Handschriften und Seltene
Drucke, Nachlass Hilbert (Cod. Ms. D. Hilbert).
DMV Deutschen Mathematiker-Vereiningung
DSB Dictionary of Scientific Biography
EHN Nachlass Erich Hückel, Staatsbibliothek Berlin, Preußischer
Kulturbesitz
EMV Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer
Anwendungen
ES Einstein Studies
GdG Grundlagen der Geometrie
GDNA Gesellschaft Deutscher Naturforscher und Ärzte
GMG Göttingen Mathematische Gesellschaft
GN Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu
Göttingen, Mathematische-Physikalische Klasse
GTR General Theory of Relavitity
468 REFERENCES
GWG Königlichen Gesellschaft der Wissenschaften zu Göttingen
HGA David Hilbert – Gesammelte Abhandlungen
HLN Manuscript/Typescript of Hilbert Lecture Notes. Bibliothek des
Mathematisches Insititut, Universität Göttingen
HM Historia Mathematica
HPL History and Philosophy of Logic
HSPS Historical Studies in the Physical Sciences
ICM International Congress of Mathematicians
JDMV Jahresbericht der Deutschen Mathematiker-Vereiningung
JRAM Journal für die reine und angewandte Mathematik
JRE Jahrbuch der Radioaktivität und Elektronik
JSHS Japanese Studies in the History of Science
JSL Journal of Symbolic Logic
JSN Nachlass Johannes Stark – Staatsbibliothek Berlin, Preußischer
Kulturbesitz.
LCP Collected Papers of Hendrik Anton Lorentz
MA Mathematische Annalen
MBN Nachlass Max Born, Staatsbibliothek Berlin, Preußischer Kulturbesitz
MPIWG Max Planck Institut für Wissenschaftgeschichte, Berlin
MZ Mathematische Zeitschrift
PAWS Königlich Preussische Akademie der Wissenchaften (Berlin)
Sitzungsberichte
PB Physikalische Blätter
PiP Physics in Perspective
PZ Physikalische Zeitschrift
SHPMP Studies in History and Philosophy of Modern Physics
SHPS Studies in History and Philosophy of Science
SiC Science in Context
SN Science Networks
STR Special Theory of Relativity
SUB Göttingen Niedersächsische Staats- und Universitätsbibliothek, Göttingen.
Trans. AMS Transactions of the AMS
VDPG Verhandlungen der Deutsche Physikalische Gesellschaft
VGDNA Verhandlungen GDNA
ZMP Zeitschrift für Mathematik und Physik
ZP Zeitschrift für Physik
REFERENCES 469
PUBLISHED AND UNPUBLISHED SOURCES
Abraham, M.
1902 “Dynamik des Elektrons”, GN (1902), 20-41.
1903 “Prinzipien der Dynamik des Elektrons”, AP 10, 105-179.
1912 “Zur Theorie der Gravitation”, PZ 13, 1-14.
1915 “Neuere Gravitationstheorien”, JRE 11, 470-520.
Abrams, L.S.
1989 “Black Holes: the Legacy of Hilbert’s Error”, Can. J. Phys. 67, 919-926.
Alexandrov, P.S. (ed.)
1979 Die Hilbertsche Probleme (German edition of the Russian original), Ostwalds Klassiker
der exakten Wissenschaften, vol. 252, Leipzig.
Anderson, J.W.
1967 Principles of Relativity Physics, New York, Academic Press.
Avelone, M., A. Brigaglia and C. Zapulla
2002 "The Foundations of Projective Geometry in Italy from De Paolis to Pieri, AHES 56, 363-
425.
Arabatzis, T.
1996 “Rethinking the ‘Discovery’ of the Electron”, SHPMP 27, 405-435.
Baird, D. et al. (eds.)
1998 Heinrich Hertz, Classical Physicist, Modern Philosopher (BSPS 198), Boston, Kluwer.
Barbour, J.
1989 Absolute or Relative Motion. A Study from a Machian Point of View of the Discovery and
the Structure of Dynamical Theories, Cambridge, Cambridge University Press.
1992 "Einstein and Mach's Principle", in Eisenstaedt and Kox (eds.) 1992, 125-153.
Barbour, J. and H. Pfister (eds.)
1995 Mach's Principle. From Newton's Bucket to Quantum Relativity, Boston, Birkhäuser (ES
Vol. 6).
Barkan, D.
1993 “The Witches’ Sabbath: The First International Solvay Congress in Physics”, SiC 6, 59-
82.
1999 Walther Nernst and the Transition to Modern Physical Science, Cambridge, Cambridge
University Press.
Baule, B.
1914 “Theoretische Behandlung der Erscheinungen in verdünnten Gasen”, AP 44, 145-176.
Bauschinger, J.
1900 “Ausgleichungsrechnung”, EMW 1, D 2, 768-779.
Behrens, W.
1915 “Lichtfortpflanzung in parallel geschichteten Medien”, MA 76, 380-430.
Becquerel, J.
1922 Le Principe de la Relativité et la Théorie de la Gravitation, Paris, Gauthiers-Vilar.
Belna, J.P.
2002 “Frege et la géometrie projective: La Dissertation Inagurale de 1893”, Revue d'histoire
des sciences 55 (3), 379-410.
Bergia, S. and L. Mazzoni
1999 “Genesis and Evolution of Weyl's Reflections on De Sitter's Universe”, in Goenner et al.
(eds.) 1999, 325-342.
Bernays, P.
1913 Über die Bedenklichkeiten der neueren Relativitätstheorie, Göttingen, Vandenhoeck &
Ruprecht.
Bierhalter, G.
1993 “Helmholtz’s Mechanical Foundation of Thermodynamics”, in Cahan 1993 (ed.), 432-458.
Blackmore, J.T.
1972 Ernst Mach. His Work, Life and Influence, London, University of California Press.
470 REFERENCES
Blaschke, W
1916 “Räumliche Variationsprobleme mit symmetrische Tranversalitätsbedingung”, Leipziger
Berichte, Math.-phys. Kl. 68, 50-.
Blum, P.
1994 Die Bedeutung von Variationsprinzipien in der Physik für David Hilbert, Unpublished
Staatsexamensarbeit, Johannes Gutenberg-Universität Mainz.
Blumenthal, O.
1922 “David Hilbert”, Die Naturwissenschaften 10, 67-72.
1935 “Lebensgeschichte”, HGA Vol. 3, 387-429.
Bohlmann, G.
1900 “Ueber Versicherungsmathematik”, in F. Klein & E. Riecke (eds.) 1900, 114-145.
1901 “Lebensversicherungsmathematik”, EMW 1, D 4b, 852-917.
1909 “Die Grundbegriffe der Wahrscheinlichkeitsrechnung in ihrer Anwendung auf die Lebens-
versicherung”, in G. Castelnuovo (ed.) Atti del IV congresso internazionale dei
mathematici (1909), Roma, Academia dei Lincei, 244-278.
Boi, L.
1990 “The Influence of the Erlangen Program on Italian Geometry, 1880-1890 : n-dimensional
Geometry in the Works of D'Ovidio, Veronese, Segre and Fano, AIHS 40 (124), 30-75
Boltzmann, L.
PS Populäre Schriften, Leipzig, J.A. Barth (1905).
WA Wissenschaftliche Abhandlungen, 3 Vols., Leipzig (1909). (Chelsea reprint, New York,
1968.)
1872 “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen”, Sitzungsberichte
Akad. Wiss. Vienna 66, 275-370. (WA Vol. 1, 316-402. English transl. in S.G. Brush (ed.)
Kinetic Theory Vol. 2, Irreversible Processes, Oxford, Pergamon Press (1966), 88-175.)
1877 “Bemerkungen über einige Probleme der mechanischen Wärmetheorie”, Wiener Ber. 2,
62-100. (WA Vol. 2, 112-140.)
1897 Vorlesungen ueber die Principien der Mechanik, Leipzig, Verlag von Ambrosius Barth.
(English transl. of the Introduction in Boltzmann 1974, 223-254.)
1899 “Über die Entwicklung der Methoden der theoretischen Physik in neuerer Zeit", in
Boltzmann PS, 198-277. (English transl. In Boltzmann 1974, 77-100.)
1899a “Über die Grundprinzipien und Grundgleichungen der Mechanik", in Boltzmann PS, 253-
307 (English transl. in Boltzmann 1974, 101-128).
1900 “Die Druckkräfte in der Hydrodynamik und die Hertzsche Mechanik”, AP 1, 673-677.
(WA Vol. 3, 665-669.)
1974 Theoretical Physics and Philosophical Problems. Selected Writings (Translated by Paul
Foulkes, Edited by Brian McGuiness, Foreword by S.R. de Groot), Dordrecht, Reidel.
Boltzmann, L. and J. Nabl
1907 “Kinetische Theorie der Materie", EMW V,1, 493-557.
Bolza, H.
1913 Anwendung der Theorie der Integralgleichungen auf die Elektronentheorie und die
Theorie der verdünnten Gase, Dietrich, Göttingen.
Bolza, H., M. Born and Th v. Kármán
1913 “Molekularströmung und Temperatursprung”, GN (1913), 220-235.
Boos, W.
1985 “'The True' in Gottlob Frege’s „Über die Grundlagen der Geometrie”“, AHES 34, 141-
192.
Borga, M. et al.
1985 I contributi fondazionali della scuola di Peano, Milano, F. Angeli.
Boring, E.G.
1929 A History of Experimental Psychology, New York, D. Appleton-Century Company.
Born, M.
1909 “Die träge Masse und das Relativitätsprinzip”, AP 28, 571-584.
1909a “Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzip”, AP 30, 1-56.
1913 “Zur kinetische Theorie der Materie. Einführung zum Kongreß in Göttingen”, Die
Naturwissenschaften 1, 297-299.
1914 “Der Impuls-Energie-Satz in der Elektrodynamik von Gustav Mie”, GN (1914), 23-36.
REFERENCES 471
1916 “Einsteins Theorie der Gravitation und der allgemeinen Relativität”, PZ 17, 51-59.
1921 “Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik”, PZ 22,
218-224; 249-254; 282-286.
1922 “Hilbert und die Physik”, Die Naturwissenschaften 10, 88-93. (Repr. in M. Born
Ausgewählte Abhandlungen, Göttingen, Vandenhoek & Ruprecht (1963), Vol. 2, 584-
598.)
1925 Vorlesungen über Atommechanik, Berlin, Springer.
1938 “Théorie non-linéaire du champ électromagnètique”, Ann. Inst. Poincaré, 155-265.
1978 My Life: Recollections of a Nobel Laureate, New York, Scribner’s.
Born, M., W. Heisenberg and P. Jordan
1926 "Zur Quantenmechanik, II", ZP 35 557-615.
Born, M. and R. Ladenburg
1911 “Über das Verhaltnis von Emissions- und Absorptionsvermögen bei stark Absorbierenden
Körpern”, PZ 12, 198-202.
Born, M. and N. Wiener
1926 "Einen neue Formulierung der Quntengesetze für periodische und aperiodische Vorgänge,
ZP 36, 174-187.
von Bortkiewicz, L.
1901 “Anwendungen der Wahrscheinlichkeitsrechnung auf Statistik”, EMW 1, D 4a, 821-851.
Bottazzini, U. and A. Dahan-Dalmedico (eds.)
2001 Changing Images in Mathematics. From the French Revolution to the New Millennium,
London and New York, Routledge.
Breitenberg, E.
1984 “Gauss’s Geodesy and the Axiom of Parallels”, AHES 31, 273-289.
Brigaglia, A.
1996 “The Influence of H. Grassmann on Italian Projective n-dimensional Geometry”, in
Schubring (ed.) (1996), 155-163.
Brotherus, H.V.
1912 “Das Emissions- und Absorptionsvermögen einer inhomogene Lichtquelle”, PZ 13, 540-
544.
Browder, F.E.
1976 Mathematical Developments Arising from Hilbert Problems, Symposia in Pure
Mathematics, Vol. 28, Providence, AMS.
Brush, S.G.
1976 The Kind of Motion we Call Heat - A History of the Kinetic Theory of Gases in the 19th
Century, Amsterdam-New York-Oxford, North Holland Publishing House.
Bucherer, A.H.
1903 Elemente der Vektor-Analysis. Mit Beispielen aus der theroretischen Physik, Leipzig,
Teubner.
Budde, E.
1890 Allgemeine Mechanik der Punkte und starren Systeme. Ein Lehrbuch für Hochschulen. I.
Bd. Mechanik der Punkte und Punktsysteme. II. Bd. Mechanische Summen und starre
Gebilde, Berlin, G. Reimer.
Burali-Forti, C.
1896 “La classi finite”, Accademia delle Scienze di Torino 32, 34-52.
1896a “Sopra un teorema del Sig. G. Cantor”, Accademia delle Scienze di Torino 32, 229-237.
Cahan, D. (ed.)
1993 Hermann von Helmholtz and the Foundations of Nineteenth-Century Science, Berkeley
and Los Angeles, University of California Press.
Caneva, K.
1978 “From Galvanism to Electrodynamics: The Transformation of German Physics in its
Social Context”, HSPS 9, 63-159.
Carathéodory, C.
MS Gesammelte Mathematische Schriften, München, Beck'sche Verlagsbuchhandlung (1955).
1909 “Untersuchung über die Grundlagen der Thermodynamik”, MA 67, 355-386. (GMS Vol. 2,
131-166.)
472 REFERENCES
1925 “Über die Bestimmung der Energie und der absoluten Temperaturen mit Hilfe von
reversiblen Prozessen”, PAWS 39-47. (GMS Vol. 2. 167-177.)
Cattani, C. and M. di María
1989a “Max Abraham and the Reception of Relativity in Italy: His 1912 and 1914 Controversies
with Einstein”, in Howard & Stachel (eds.) 1989, 160-174.
1989 “The 1915 epistolary controversy between Einstein and Tullio Levi-Civita”, in Howard &
Stachel (eds.) 1989, 175-200.
Cercignani , C.
1989a Ludwig Boltzmann. The Man who Trusted Atoms, Oxford, Oxford University Press.
Chapman, S. and T. G. Cowling.
1970 The Mathematical Theory of Non-Uniform Gases, Cambridge, Cambridge University
Press.
Christiansen, M. et al
1992 “Julius Petersen. Annotated Bibliography“, Discrete Mathematics 100, 83-97.
Cohn, E.
1902 “Über die Gleichungen des electromagnetischen Feldes für bewegte Körper”, AP 7, 29-56.
Contro, W.
1976 “Von Pasch bis Hilbert”, AHES 15, 283-295.
1985 “Eine schwedische Axiomatik der Geometrie vor Hilbert. Torsten Brodens Om
Geometriens Principer von 1890”, in M. Folkerts & U. Lindgren (eds.) 1985, 625-636.
Corry, L.
1997 “The Origins of Eternal Truth in Modern Mathematics: Hilbert to Bourbaki and Beyond”,
SiC 10 (2), 253-295.
1997a “David Hilbert and the Axiomatization of Physics (1895-1905)”, AHES 51, 83-198.
1997b “Hermann Minkowski and the Postulate of Relativity”, AHES 51, 273-314.
1998 “The Influence of David Hilbert and Hermann Minkowski on Einstein's Views over the
Interrelation between Physics and Mathematics”, Endeavour 22(3): 95-97.
1998a “Hilbert on Kinetic Theory and Radiation Theory”, MI 20 (3), 52-58.
1999 “From Mie's Electromagnetic Theory of Matter to Hilbert's Unified Foundations of
Physics”, SHPMP 30 B (2), 159-183.
1999a “David Hilbert between Mechanical and Electromagnetic Reductionism (1910-1915)”,
AHES 53, 489-527.
1999b “Hilbert and Physics (1900-1915)”, in J. Gray (ed.) 1999, 145-187.
2003 Modern Algebra and the Rise of Mathematical Structures , Basel and Boston, Birkhäuser,
2d revised edition. (1st ed.: SN Vol. 17 - 1996)
Corry, L., J. Renn and J. Stachel
1997 “Belated Decision in the Hilbert-Einstein Priority Dispute”, Science 278 (14 Nov. 1997),
1270-1273.
Crilly, A.
1986 "The Rise of Cayley's Invariant Theory" (1841-1862), HM 13, 241-254.
Crowe, M.
1967 A History of Vector Analysis. The Evolution of the Idea of a Vectorial System, University
of Notre Dame Press.
Czuber, E.
1899 “Entwicklung der Wahrscheinlichkeitstheorie und ihre Anwendungen”, JDMV 7, 1-279.
1900 “Wahrscheinlichkeitsrechnung”, EMW 1, D 1, 733-767.
D'Agostino, S.
2000 A History of the Ideas of Theoretical Physics. Essays on the Nineteenth and Twentieth
Century Physics, Dordrecht, Kluwer. (BSPS 213.)
van Dalen, D.
1990 “The War of the Frogs and the Mice, or the Crisis of the Mathematische Annalen”, MI 12
(4), 17-31.
Darboux, G.
1875 Sur la composition des forces en statique”, Bull. Sci. Math. Astr. 18, 281-288.
REFERENCES 473
Darrigol, O.
1993 “The Electrodynamic Revolution in Germany as Documented by Early German
Expositions of ‘Maxwell’s Theory’”, AHES 45, 189-280.
2000 Electrodynamics form Ampère to Einstein, Chicago, The University of Chicago Press.
Despeyrous, Th.
1884 Cours de mécanique, (with notes by G. Darboux). 2 Vols., Paris
Dedekind, R.
Werke Gesammelte mathematische Werke, 3 vols. (ed. by R. Fricke, E. Noether und O. Ore),
Braunschweig (1930-1932). (Chelsea reprint, New York, 1969.)
Dedekind, R.
1854 “Über die Einführung neuer Funktionen in der Mathematik“, Werke Vol. 3, 428-438.
1888 Was sind und was sollen die Zahlen?, Braunschweig. (Werke Vol. 3, 335-391.)
De Sitter, W.
1911 “On the Bearing of the Principle of Relativity on Gravitational Astronomy”, Monthly
Notices Royal Astr. Soc. 71, 388-415.
1916 “On Einstein's Theory of Gravitation and its Astronomical Consequences. Second Paper",
Monthly Notices Royal Astr. Soc. 77, 155-184.
Dickson, L.E.
1903 “Definition of a Field by Independent Postulates”, Trans. AMS 4, 13-20.
1903a “Definition of a Linear Associative Algebra by Independent Postulates”, Trans. AMS 4,
21-27.
1905 “Definition of a Group and a Field by Independent Postulates”, Trans. AMS 6, 198-204.
Dieudonné, J.
1962 “Les méthodes axiomatiques modernes et les fondements des mathématiques”, in F. Le
Lionnais (ed.) Les grands Courants de la Pensée Mathématique (Second, enlarged
edition), Paris, Blanchard, 443-555.
1981 History of Functional Analysis, Amsterdam, North Holland.
Dieudonné, J. and Carrell
1971 Invariant Theory, Old and New, New York, Academic Press.
DiSalle, R.
1993 “Carl Gottfried Neumann”, SiC 6, 345-354.
Dirac, P.A.M.
1925 “The Fundamental Equations of Quantum Mechanics”, Proc. Roy. Soc. London (A) 109,
642-653.
Dorier, J.L.
1995 “A General Outline of the Genesis of Vector Space Theory”, HM 22, 227-261.
Du Bois-reymond, E.
1872 Ueber die Grenzen des Naturerkennens, Vortrag in der 2. öffentlichen Sitzung der 45.
Versammlung deutscher Naturforscher und Arzte, Leipzig am 14. August 1872, Leipzig.
Dugac, P.
1976 Richard Dedekind et les fondements des mathématiques, Paris, Vrin.
Duhamel, J.M.C.
1853-54 Cours de mécanique de l'École polytechnique, 2d.ed., Paris, Mallet-Bachelier.
Dühring , E.
1886 Neue Grundgesetze zur rationellen Physik und Chemie, Leipzig, Fues.
van Dyck, W.
1904 “Einleitender Bericht über das Unternehmen der Herausgabe der Encyklopädie der
mathematischen Wissenschaften”, EMW 1, iii-xx.
Earman, J. and C. Glymour
1978 “Einstein and Hilbert: Two Months in the History of General Relativity”, AHES 19, 291-
308.
1980 “Relativity and Eclipses: The British Eclipse Expeditions fo 1919 and their Predecesors”,
HSPS 11, 49-85.
1980a “The Gravitational Red Shift as a Test of General Relativity: History and Analysis”, SPHS
11, 175-214.
474 REFERENCES
Earman, J. M. Janssen and J.D. Norton (eds.)
1993 The Attraction of Gravitation: New Studies in the History of General Relativity, Boston,
Birkhäuser. (ES Vol. 5.)
Earman, J. and M. Janssen
1993 “Einstein's Explanation of the Motion of Mercury”, in Earman et al. (eds.) 1993, 129-172.
Eckert, M.
1993 Die Atomphysiker. Eine Geschichte der theoretischen Physik am Beispiel der
Sommerfeldschule, Braunschweig/Wiesbaden, Vieweg.
Eddington, A.S.
1923 The Mathematical Theory of Relativity, Cambridge, The University Press.
Edwards, H.
1975 “Background of Kummer's Proof of Fermat's Last Theorem for Regular Primes”, AHES
14, 219-236.
1977 Fermat's Last Theorem. A Genetic Introduction to Algebraic Number Theory, New York,
Springer.
1980 “The Genesis of Ideal Theory”, AHES 23, 321-378.
1987 “An Appreciation of Kronecker”, MI 9, 28-35.
Edwards, M.R. (ed.)
2002 Pushing Gravity. New Perspectives on Le Sage’s Theory of Gravitation, Montréal,
Apeiron.
Ehrenfest, P.
1904 “Die Bewegung Starrer Körper in Flüssigkeiten und die Mechanik von Hertz”, in M.
Klein (ed.) Paul Ehrenfest. Collected Scientific Papers, Amsterdam, North Holland
(1959), 1-75.
1911 “Welche Züge der Lichtquantenhypothese spielen in der Theorie der Wärmestrahlung eine
wesentliche Rolle?”, AP 36, 91-118.
Ehrenfest, Paul and Tatyana
1912 “Begriffliche Grundlagen der statistischen Auffassung in der Mechanik”, EMW Vol. IV, 2
(Part 32).
1959 The Conceptual Foundations of the Statistical Approach in Mechanics, Ithaca, Cornell
University Press. (English translation by Michael J. Moravcsik of P. & T. Ehrenfest
1912.)
Einstein, A.
1902 “Kinetischen Theorie der Wärmegleichgewichts und des zweiten Haupsatzes der
Thermodynamik”, AP 9, 417-433. (CPAE 2, Doc. 3)
1905 “Zur Elektrodynamik bewegter Körper”, AP 17, 891-921. (CPAE 2, Doc. 23)
1907 “Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen”, JRE 4,
411-462. (CPAE 2, Doc. 47.)
1907a “Bemerkungen zu der Notiz von Hrn. Paul Ehrenfest: 'Die Translation deformierbarer
Elektronen und der Flächensatz'”, AP 23, 206-208. (CPAE 2, Doc. 44.)
1909 “Zum gegenwärtigen Stande des Strahlungstheorie”, PZ 10, 185-193. (CPAE 2, Doc. 56.)
1911 “Das Relativitätstheorie”, Naturforschende Ges. Zürich. Vierteljahrsschirft 56. (CPAE 3,
Doc. 17.)
1913 “Zum gegenwärtigen Stande des Gravitationsproblems”, PZ 14, 1249-1266. (CPAE 4,
Doc. 17.)
1914 “Prinzipielles zur verallgemeinerten Relativitätstheorie und Gravitationstheorie”, PZ 15
(1914), 176-180. (CPAE 4, Doc. 25.)
1914a “Die formale Grundlagen der allgemeinerten Relativitätstheorie”, PAWS (1914), 1030-
1085. (CPAE 6, Doc. 9.)
1915 “Zur allgemeinen Relativitätstheorie”, PAWS (1915), 778-786. (CPAE 6, Doc. 21.)
1915a “Zur allgemeinen Relativitätstheorie (Nachtrag) ”, PAWS (1915), 799-801. (CPAE 6, Doc.
22.)
1915b “Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie”,
PAWS (1915), 831-839. (CPAE 6, Doc. 24.)
1915c “Die Feldgleichung der Gravitation”, PAWS (1915), 844-847. (CPAE 6, Doc. 25.)
1916 "Die Grundlage der allgemeinen Relativitätstheorie”, AP 49, 769-822. (CPAE 6, Doc. 30.)
REFERENCES 475
1916a “Anhang. Darstellung der Theorie ausgehend von einem Variationsprinzip”, CPAE 6,
Doc. 31.
1916b “Hamiltonsches Prinzip und allgemeine Relativitätstheorie”, PAWS (1916), 1111-1116.
(CPAE 6, Doc. 41. English transl. in A. Sommerfeld (ed.) 1952, 165-173.)
1916c Die Grundlage der allgemeinen Relativitätstheorie, Leipzig, Barth.
1916d “Näherungsweise Integration der Feldgleichungen der Gravitation”, PAWS (1916), 688-
696. (CPAE 6, Doc. 32.)
1917 Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich),
Braunschweig, Vieweg.
1917a “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie”, PAWS (1917), 142-
152. (CPAE 6, Doc. 43.)
1918 “Prinzipielles zur allgemeinen Relativitätstheorie”, AP 55, 241-244. (CPAE 7, Doc. 4.)
1919 “Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine
Wesentliche Rolle?” PAWS (1919), 349-356. (CPAE 7, Doc. 17.)
1920 “Grundgedanken und Methoden der Relativitätstheorie, in ihrer Entwicklung dargestellt”,
CPAE 7, Doc 31.
1921 Geometrie und Erfahrung, erweiterte Fassung des Festvortrages gehalten an der
Preussischen Akademie der Wissenschaften zu Berlin, am 27. Januar 1921, Berlin,
Springer. (CPAE 7, Doc 52.)
1921a “Über eine naheliegende Ergänzung des Fundamentes der allgemeinen
Relativitätstheorie”, PAWS (1921), 261-264. (CPAE 7, Doc. 54.)
1922 Vier Vorlesungen über Relativitätstheorie, gehalten im Mai 1921 an der Universität
Princeton, Braunschweig, Vieweg. (CPAE 7, Doc. 71.)
1954 Ideas and Opinions, New York, Bonanza Books.
1979 Autobiographical Notes: A Centennial Edition, New York, Open Court.
Einstein, A. and J. Laub
1908 “Über die elektromagnetischen Grundgleichungen für bewegte Körpern”, AP 26, 532-540.
(CPAE 2, Doc. 51.)
1908a “Über die im elektromagnetischen Felde auf ruhende Körper ausgeübten
ponderomotorischen Kräfte”, AP 26, 541-550. (CPAE 2, Doc. 52.)
Einstein, A. and L. Hopf
1910 “Statistische Untersuchungen der Bewegung eines Resonators in einem Strahlungsfeld”,
AP 33, 1105-1115. (CPAE 3, Doc. 8)
Einstein, A. and M. Grossmann
1913 Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation,
Leipzig, Teubner, 1913. (Repr. with added “Bemerkungen” in ZMP 62 (1914), 225-261.
CPAE 4, Doc. 13.)
1914 “Kovarianzeigenschaften der Feldglechungen der auf die verallgemeinerte
Relativitätstheorie gegründeten Gravitationstheorie”, ZMP 63, 215-225. (CPAE 6, Doc. 2.)
Eisenstaedt, J.
1989 “The Early Interpretation of the Schwarzschild Solution”, in Howard and Stachel (eds.)
1989, 213-233.
1993 “Lemaître and the Schwarzschild Solution” in J. Earman et al (eds.) 1993, 353-389.
Eisenstaedt, J. and A.J. Kox (eds.)
1992 Studies in the History of General Relativity, Boston, Birkhäuser. (ES Vol. 3.)
Ellison, W. and F. Ellison
1978 „Théorie des Nombres”, in J. Dieudonné (ed.) (1978), Abrégé d'histoire des
mathématiques, 1700-1900, 2 vols., Paris, Hermann, 151-236.
Enriques, F.
1903 Vorlesungen über projektive Geometrie (German translation of the Italian original (1898)
by H. Fleischer. With an introduction by F. Klein), Leipzig, Teubner.
Ewald, W. (ed.)
1999 From Kant to Hilbert. A source Book in the Foundations of Mathematics, 2 Vols., Oxford,
Clarendon Press.
Fano, G.
1907 “Kontinuerliche geometrische Gruppen. Die Gruppentheorie als Enteilungsprinzip”, EMW
Vol. III 4b, 289-388.
476 REFERENCES
Ferreiros, J.
1999 Labyriths of Thought. A History of Set Theory and its Role in Modern Mathematics,
Boston, Birkhäuser. (SN, Vol. 23.)
Fisch, M.
1999 “The Making of Peacock’s Treatise on Algebra: a Case of Creative Indecision”, AHES 54,
137-179.
Fischer, C.S.
1966 “The Death of a Mathematical Theory: A Study in the Sociology of Knowledge”, AHES 3,
137-159.
Folkerts, M. and U. Lindgren (eds.)
1985 Mathemata. Festschrift für Helmut Gericke, Weisbaden, Franz Steiner Verlag.
Fölsing, A.
1997 Albert Einstein. A Biography, Viking (Translation from the German original (1993) by
Ewald Osers).
1997a Heinrich Hertz. Eine Biographie, Hamburg, Hoffmann u. C..
Föppl, A.
1901 Vorlesungen über technische Mechanik, 2d. ed., Leipzig, Teubner.
Frege, G.
1903 Grundgesetze der Arithmetik, Vol. 2, Jena, Pohle.
1903a “Über die Grundlagen der Geometrie”, JDMV 12, 319-324, 368-375.
Frei, G. (ed.)
1985 Der Briefwechsel David Hilbert-Felix Klein (1996-1919), Göttingen, Vandenhoeck &
Ruprecht.
Freudenthal, H.
1957 “Zur Geschichte der Grundlagen der Geometrie. Zugleich eine Bespreschung der 8.
Auflage von Hilberts ‘Grudlagen der Geometrie’”, Nieuw Archief voor Wiskunde 4, 105-
142.
1974 “The Impact of von Staudt’s Foundations of Geometry”, in R. Cohen et al. (eds.) For Dirk
Struik, Dordrecht, Reidel, 189-200.
Friedmann, M.
1992 Kant and the Exact Sciences, Cambridge, MA, Harvard University Press.
Gabriel, G. et al. (eds.)
1976 Gottlob Frege - Wissenschaftlische Briefwechsel, Hamburg, Felix Meiner.
1980 Gottlob Frege - Philosophical and Mathematical Correspondence, Chicago, The
University of Chicago Press. (Abridged from the German edition by Brian McGuiness and
translated by Hans Kaal.)
Galison, P.L.
1979 “Minkowski’s Space-Time: From Visual Thinking to the Absolute World”, HSPS 10, 85-
121.
Gans, R.
1905 Einführung in die Vektoranalysis. Mit Anwendungen auf die mathematische Physik,
Leipzig, Teubner.
Giannetto, E.
1999 “The Rise of Special Relativity: Henri Poincaré’s Work before Einstein’s”, in P. Tucci
(ed.) Atti del XVIII Congresso Nazionale di Storia della Fisica e dell'Astronomia, (Como
15-16 maggio 1998), Milano, 1999, 171-207
Gibbs, J.W.
1902 Elementary Principles of Satistical Mechanics, New York.
Gispert, H.
1999 “Les débuts de l’histoire des mathématiques sur les scènes internationales et le cas de
l’enterprise encyclopédique de Felix Klein et Jules Molk”, HM 26, 344-360.
2001 “The German and French Editions of the Klein-Molk Encyclopedia: Contrasted Images",
in Bottazzini & Dahan (eds.) 2001, 93-112.
Gleason, A.
1952 “Groups without Small Subgroups”, AM 56, 193-212.
REFERENCES 477
Gnedenko, J.
1979 “Zum sechsten Hilbertschen Problem”, in P.S. Alexandrov (ed.) 1979, 144-147.
Goenner, H.
2001 “Weyl's Contributions to Cosmology”, in E. Scholz (ed.) 2001, 105-137.
Goenner, H., et al (eds.)
1999 The Expanding Worlds of General Relativity, Boston, Birkhäuser. (ES Vol. 7.)
Goldberg, S.
1970 “The Abraham Theory of the Electron: The Symbiosis of Experiment and Theory”, AHES
7, 7-25.
Goodstein, J.
1983 “The Italian Mathematicians of Relativity”, Centaurus 26, 241-261.
Gordan, P.
1868 “Beweis, dass jede Covariante und Invariante einer binären Form eine Ganze Function mit
numerische Coefficienten einer endlichen Anzahl solchen Formen ist”, JRAM 69, 323-
354.
1893 “Über einen Satz von Hilbert”, MA 42, 132-142.
Grassmann, H.G.
1844 Die Lineale Ausdehnungslehre, Lepizig, Teubner.
1995 A New Branch of Mathematics: The Ausdehnungslehre of 1944 and Other Works, Ed. by
Lloyd C. Kannenberg, Foreword by Albert C. Lewis, Chicago and La Salle, Ill., Open
Court.
Grattan-Guinness, I.
2000 The Search for Mathematical Roots, 1970-1940. Logics, Set Theories and the Foundations
of Mathematics from Cantor through Russell to Gödel, Princeton and Oxford, Princeton
University Press.
2000a “A Sideways Look at Hilbert's Twenty-three Problems of 1900”, Notices AMS 47 (7),
752-757.
Gray, J.J. (ed.)
1999 The Symbolic Universe: Geometry and Physics (1990-1930), New York, Oxford
University Press.
1999a Geometry: Formalisms and Intuitions”, in Gray (ed.) 1999, 58-83.
2000 The Hilbert Challenge, New York, Oxford Universit Press.
Grelling, K.
1910 Die Axiome der Arithmetik mit besonderer Berücksichtigung der Beziehungen zur
Mengenlehre, Göttingen, Dieterichsche Universitäts-Buchdruckerei.
Greffe, J.L., et al. (eds.)
1996 Henri Poincaré : Science et Philosophie. Berlin/Paris, Akademie Verlag/Blanchard.
Guth, E.
1970 “Contribution to the History of Einstein’s Geometry as a Branch of Physics”, in M.
Carmeli et al. (eds.) Relativity, Plenum Press, New York-London, 161-207.
Hamel, G.
1905 “Über die Zusammensetzung von Vektoren”, ZMP 49, 363-371.
1909 “Über Raum, Zeit und Kraft als apriorische Formen der Mechanik”, JDMV 18, 357-385.
1927 “Die Axiome der Mechanik”, in H. Geiger and K. Scheel Handbuch der Physik Vol. 5
(Grundlagen der Mechanik, Mechanik der Punkte und Starren Korper), Berlin, Springer,
1-130.
Hardy, G. H. and Littlewood, J. E.
1925 “Some Problems of Partitio Numerorum (VI): Further Researches in Waring's Problem”,
MZ 23, 1-37.
Harman, P.M.
1982 Energy, Force, and Matter: The Conceptual Development of Nineteenth-Century Physics,
Cambridge, Cambridge University Press.
Hashagen, U.
2003 Walther von Dyck (1956-1934). Mathematik, Technik und Wissenschaftsorganisation and
der TH München, Stuttgart, Franz Steiner Verlag.
Hasse, H.
1932 “Zu Hilberts algebraisch-zahlentheoretischen Arbeiten”, HGA Vol. 1, 528-535.
478 REFERENCES
Hawkins, T.
1984 “The Erlanger Programm of Felix Klein: Reflections on Its Place in the History of
Mathematics”, HM 11, 442-470.
1989 “Line Geometry, Differential Equations and the Birth of Lie’s Theories of Groups”, in in
Rowe and McClearly (eds.) (1989), Vol. 1, 275-327.
2000 Emergence of the Theory of Lie Groups. An Essay in the History of Mathematics: 1969-
1926 (Sources and Studies in the History of Mathematics and Physical Sciences), New
York, Springer,
van Heijenoort, J. (ed.)
1967 From Frege to Godel. A Source Book in Mathematical Logic, 1979-1931,
Cambridge/London, Harvard University Press.
Hecke, E.
1918 “Über orthogonal-invariante Integralgleichungen”, MA 78, 398-404.
1922 “Über die Integralgleichung der kinetischen Gastheorie”, MZ 12, 274-286.
Heilbron, J.
1982 “Fin-de-Siècle Physics”, in C.G. Bernhard et al. Science, Technology and Society in the
Time of Alfred Nobel, Oxford, Pergamon Press, 51-73
2000 The Dilemmas of an Upright Man. Max Planck and the Fortunes of German Science (with
new afterword), Cambridge, Harvrad University Press.
Heisenberg, W.
1925 „Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen“,
ZP 33, 879-893.
Hellinger, E.
1927 “Integralgleichungen und Gleichungen mit unendlichvielen Unbekannten”, EMW II, 3,
1340-1602.
1935 “Hilberts Arbeiten über die Integralgleichungssysteme und unendliche
Gleichungssysteme”, HGA Vol. 3, 94-145.
Hendricks, V.F. et al. (eds.)
2000 Proof Theory. History and Philosophical Significance, Dordrecht, Kluwer.
Hentschel, K.
1990 Interpretationen und Fehlinterpretationen der speziellen und der allgemeinen
Relativitätstheorie durch Zeitgenossen Albert Einsteins, Basel and Boston, Birkhäuser.
(SN Vol. 6.)
Hentschel, K.
1992 “Einstein’s Attitude towards Experiments: Testing Relativity Theory, 1907-1927”, SHPS
23, 593-624.
Herglotz, G.
1903 “Zur Elektronentheorie”, GN (1903), 357-382.
1911 “Über die Mechanik des deformierbaren Körpers vom Standpunkte der
Relativitätstheorie”, AP 36, 493-533.
Hermann, A. Et al (eds.)
1979 Wolfgang Pauli. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a.,
Vol. 1, New York, Springer.
Hertz, H.
1890 “Ueber die Grundgleichcungen der Elektroodynamic für ruhende Körper”, GN (1890).
(Repr. In H. Hertz Gesammelte Abhandlungen Vol. 2, 208-255.)
1894 Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt, Leipzig.
1956 The Principles of Mechanics Presented in a New Form, New York, Dover. (English
translation of Hertz 1894.)
Hertz, P.
1904 Untersuchungen über unstetige Bewegungen eines Elektrons, PhD Diss., Universität
Göttingen.
Hessenberg, G.
1905 “Beweis des Desarguesschen Satzes aus dem Pascalschen”, MA 61, 161-172.
Hiebert, E.N.
1968 The Conception of Thermodynamics in the Scientific Thought of Mach and Planck,
Freiburg, Ernst Mach Institut.
REFERENCES 479
1971 “The Energetics Controversy and the New Thermodynamics”, in D.H.D Roller (ed.)
Perspectives in the History of Science and Technology, Norman, University of Oklahoma
Press.
Hilbert, D.
HGA Gesammelte Abhandlungen, 3 vols., Berlin, Springer, (1932-1935; 2d ed. 1970).
1891 Projective Geometry (DHN 535).
1893-94 Die Grundlagen der Geometrie (DHN 541).
1888-89 “Zur Theorie der algebraischen Gebilde”, GN I (1888), 450-457; II (1889), 25-34; III
(1889) 423-430. (HGA Vol. 2, 176-198.)
1889 “Über die Endlichkeit des Invariantensystems für binäre Grundformen”, MA 33, 223-226.
(HGA Vol. 2, 162-164.)
1890 „Über die Theorie der algebraischen Formen”, MA 36, 473-534. (HGA Vol. 2, 199-257.)
1893 “Über die vollen Invariantensysteme”, MA 42, 313-373. (HGA Vol. 2, 287-344.)
1896 “Über die Theorie der algebraischen Invarianten”, in Mathematical Papers read at the
International Mathematical Congress, Chicago 1893, 116-124. (HGA Vol. 2, 376-383.)
1897 “Die Theorie der algebraischen Zahlkörper (Zahlbericht)”, JDMV 4, 175-546. (HGA Vol.
1, 63-363.)
1898 “Über die Theorie der relativ-Abelschen Zahlkörper”, GN (1898) 370-399. (Repr. In Acta
Mathematica 26, 99-132, & HGA Vol. 1, 483-500.)
1898-99 Mechanik (DHN 553).
1898-99a Elemente der Euklidischen geometrie (HLN WS 1898-99, annotated by H. Von Schaper).
1899 Grundlagen der Geometrie (Festschrift zur Feier der Enthüllung des Gauss-Weber-
Denkmals in Göttingen), Leipzig, Teubner.
1899a Über die Theorie der relativquadratischen Zahlkörper”, MA 51, 1-127. (HGA Vol. 1, 370-
482.)
1900 “Über den Zahlbegriff”, JDMV 8, 180-184. (English translation in Ewald (ed.) 1996,
1089-1095.)
1900a “Theorie der algebraischen Zahlen”, EMW I, 675-698.
1901 “Mathematische Probleme”, AMP 1, 213-237. (HGA Vol. 3, 290-329.)
1902 “Mathematical Problems”, Bull. AMS 8, 437-479. (English transl. by M. Newson of
Hilbert 1901.)
1902a “Über die Grundlagen der Geometrie”, GN (1902), 233-241 (Repr. MA 56. Added as
Supplement IV to Hilbert 1903.)
1902-03 Mechanik der Continua I (HLN WS 1902-03, annotated by Berkovski).
1903 Grundlagen der Geometrie (2d, revised edition – with five supplements), Leipzig,
Teubner.
1903a Mechanik der Continua II (HLN SS 1903, annotated by Berkovski).
1904 “Über das Dirichletsche Prinzip”, MA 59, 161-186. (HGA Vol. 3, 15-37. Repr. from
Festschrift zur Feier des 150jährigen Bestehens der Königl. Gesellschaft der
Wissenschaften zu Göttingen, 1901.)
1905 Logische Principien des mathematischen Denkens (HLN SS 1905, annotated by E.
Hellinger).
1905a Logische Principien des mathematischen Denkens (DHN 558a, annotated by Max Born).
1905b “Über die Grundlagen der Logik und der Arithmetik”, in A. Kneser (ed.) Verhandlungen
aus der Dritten Internationalen Mathematiker-Kongresses in Heidelberg, 1904, Teubner,
Leipzig, 174-185. (English translation by G.B. Halsted: “On the Foundations of Logic and
Arithmetic”, The Monist 15, 338-352. Repr. in van Heijenoort (ed.) 1967, 129-138.)
1905c “Über das Dirichletsche Prinzip”, JRAM 129, 63-67. (HGA Vol. 3, 10-14. Repr. from
JDMV 8, 1900, 184-188.)
1905-06 Mechanik (HLN WS 1905-06, annotated by E. Hellinger).
1906 Mechanik der Kontinua (HLN SS 1906).
1908 Zahlbegirff und Prinzipienfragen der Mathematik (HLN SS 1908).
1909 “Hermann Minkowski”, GN (1909) 72-101. (Repr. In MA 68 (1910), 445-471.)
1909a “Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen
(Waringsches Problem)”, GN (1909) 17-36; MA 67 (1909) 281-305. (HGA Vol. 2, 510-
527.)
480 REFERENCES
1909b “Wesen und Ziele einer Analysis der unendlichvielen unabhängigen Variablen”,
Rendiconto del circolo mat. Di Palermo 27, 59-74. (HGA Vol. 3, 56-72.)
1910 Elemente und Prinzipienfragen in der Mathematik (HLN SS 1910, annotated by R.
Courant).
1910-11 Mechanik (HLN WS 1910-11, annotated by F. Frankfurther).
1911-12 Kinetische Gastheorie (HLN WS 1911-12, annotated by E. Hecke).
1912 Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Leipzig,
Teubner.
1912a “Begründung der kinetischen Gastheorie”, MA 72, 562-577.
1912b “Begründung der elementaren Strahlungstheorie”, GN (1912), 773-789; PZ. 13, 1056-
1064. (HGA Vol. 3, 217-230.)
1912c Strahlungstheorie (HLN SS 1912, annotated by E. Hecke).
1912-13 Molekulartheorie der Materie (HLN WS 1912-13).
1913 “Begründung der elementaren Strahlungstheorie”, JDMV 22, 1-20.
1913a “Bemerkungen zur Begründung der elementaren Strahlungstheorie”, GN (1913), 409-416;
PZ 14, 592-595. (HGA Vol. 3, 231-237.)
1913b Elektronentheorie (HLN SS 1913).
1913c Elemente und Prinzipien der Mathematik (SS 1913, Private Collection, Peter Damerow,
Berlin).
1913-14 Elektromagnetische Schwingungen (HLN WS 1913-14).
1914 “Zur Begründung der elementaren Strahlungstheorie. Dritte Mitteilung”, GN (1914), 275-
298; PZ 15, 878-889. (HGA Vol. 3, 231-257.)
1914-15 Probleme und Prinzipien der Mathematik (HLN WS 1914-15).
1915 Vorlesung ueber Struktur der Materie (HLN SS 1915).
1916 “Die Grundlagen der Physik (Erste Mitteilung)”, GN (1916), 395-407.
1916a Die Grundlagen der Physik, I (HLN SS 1916).
1916-17 Die Grundlagen der Physik, II (HLN WS 1916-17, annotated by R. Bär).
1917 “Die Grundlagen der Physik (Zweite Mitteilung)”, GN (1917), 53-76.
1917a Mengenlehre (HLN SS 1917).
1917-18 Prinzipien der Mathematik (HLN WS 1917-18).
1917-18a Elektronentheorie (HLN WS 1917-18, annotated by R. Humm).
1918 “Axiomatisches Denken”, MA 78, 405-415. (HGA Vol. 3, 146-156. Repr. In Ewald (ed.)
1999, Vol. 2, 1107-1115.)
1918-19 Raum und Zeit, (HLN WS 1918-19, annotated by P. Bernays).
1919 Denkmethoden der Mathematik (SS 1919, EHN 2.16).
1919-20 Natur und Mathematisches Erkennen: Vorlesungen, gehalten 1919-1920 in Göttingen.
Nach der Ausarbeitung von Paul Bernays (Edited and with an English introduction by
David E. Rowe), Basel, Birkhäuser (1992). (Original in HLN for the special semester in
autumn 1919.)
1920 Mechanik und neue Gravitationstheorie, (HLN SS 1920, annotated by A. Kratzer).
1920a “Adolf Hurwitz. Gedächtnisrede”, GN (1920), 75-83. (Repr. in Mathematische Werke von
Adolf Hurwitz, Abteilung fur Mathematik und Physik der Eidgenossischen Technischen
Hochschule in Zurich (eds.), Basel, Birkhäuser (1932-33), xiii–xx.)
1921 Grundgedanken der Relavitätstheorie, (HLN SS 1921, annotated by P. Bernays).
1921a Über Geometrie und Physik (SS 1921 – Fragments, EHN 2.14; Bl. 0-114).
1921-22 Grundlagen der Mathematik, (HLN WS 1921-22, annotated by P. Bernays).
1922 “Neubegründung der Mathematik. Erste Mitteilung”, Abhandlungen aus dem
mathematischen Seminar der Hamburgischen Universität 1, 157-177. (HGA Vol. 3, 157-
177. English translation in W. Ewald (ed.) 1996, 1134-1148.)
1922-23 Wissen und mathematisches Denken (HLN WS 1922-23, annotated by W. Ackermann,
edited by C.F. Bödinger – 1988).
1922-23a Mathematische Grundlagen der Quantentheorie (HLN WS 1922-23, annotated by L.
Nordheim and G. Heckhausen).
1923-24 Über die Einheit der Naturerkenntnis (HLN WS 1923-24).
1924 “Die Grundlagen der Physik”, MA 92, 1-32. (HGA 3, 258-289.)
1926-27 Mathematische Methoden der Quantentheorie (HLN WS 1926-27, annotated by L.
Nordheim).
REFERENCES 481
1930 “Naturerkennen und Logik”, Die Naturwissenschaften 9, 59-63. (HGA Vol. 3, 378-387.
English translation in W. Ewald (ed.) 1996, 1157-1165.)
1971 “Über meine Tätigkeit in Göttingen”, in K. Reidemeister (ed.) Hilbert – Gedenkenband,
Berlin/ Heidelberg/New York, Springer Verlag, 79-82.
1998 The Theory of Algebraic Number Fields, Berlin, Springer. (English translation of Hilbert
1879 by F. Lemmermeyer and N. Schappacher.)
Hirosige, T.
1966 “Electrodynamics before the Theory of Relativity”, JSHS 5, 1-49.
1976 “The Ether Problem, the Mechanistic Worldview, and the Origins of the Theory of
Relativity”, SHPS 7, 3-82.
Hochkirchen, T.
1999 Die Axiomatisierung der Wahrscheinlichkeitsrechnung und ihre Kontexte. Von Hilberts
sechstem Problem zu Kolmogoroffs Grundbegriffen, Göttingen,Vandenhoeck & Ruprecht.
Holton, G.
1988 Thematic Origins of Scientific Thought: Kepler to Einstein, Cambridge, MA, Harvard
University Press.
Hon, G.
1995 “Is the Identification of an Experimental Error Contextually Dependent? The Case of
Kaufmann’s Experiment and its Varied Reception” in Buchwald, J. (ed.), Scientific
Practice: Theories and Stories of Doing Physics, Chicago, Chicago University Press
(1995), 170-223.
Höhnl. H.
1953 “Gustav Mie”, PB 9, 508-511.
1968 “Intensitäts- und Quantitätsgrößen – In memoriam Gustav Mie zu seinem hundertsten
Geburtstag”, PB 24, 498-502.
Hopmann, J.
1934 “Nachruf auf Julius Bauschinger”, Ber. Säch. Akad. Wiss. 86, 299-306.
Howard, D. and J.D. Norton
1993 “Out of the Labyrinth? Einstein, Hertz, and the Göttingen Answer to the Hole Argument”,
in J. Earman et al (eds.) (1993), 30-62.
Howard, D. and J. Stachel (eds.)
1989 Einstein and The History of General Relativity, Boston, Birkhäuser. (ES Vol. 1.)
Hückel, E.
1975 Ein Gelehrtenleben: Ernst und Satire. Weinheim: Verlag Chemie
Huntington, E.V.
1902 “Simplified Definition of a Group”, Bull. AMS 8, 296-300.
1902a “A Second Definition of a Group”, Bull. AMS 8, 388-391.
Ingrao, B. & G. Israel
1985 “General Economic Equilibrium Theory. A History of Ineffectual Paradigmatic Shifts
(Part I)”, Fundamenta Scientiae 6, 1-45.
Israel, G.
1981 “’Rigor’ and ‘Axiomatics’ in Modern Mathematics”, Fundamenta Scientiae 2, 205-219.
Janssen, M.
1999 “Rotation as the Nemesis of Einstein’s Entwurf Theory”, in Goenner et al. (eds.) 1999,
127-157.
2002 “Reconsidering a Scientific Revolution: The Case of Einstein versus Lorentz”, PiP 4, 421-
446.
Jordan, C.
1870 Traité des substitutions et des emester algébriques, Paris.
Jordan, P.
1926 „Ueber eine neue Begründung der Quantenmechanik“, GN (1926), 161-169.
1927 „Ueber eine neue Begründung der Quantenmechanik“, ZP 40, 809-838 & 1-25.
1952 Schwerkraft und Weltall, Braunschweig, Vieweg.
Jungnickel, C. and R. McCormmach
1986 Intellectual Mastery of Nature – Theoretical Physics form Ohm to Einstein, 2 Vols.,
Chicago, Chicago University Press.
482 REFERENCES
Karachalios, A.
2003 Erich Hückel (1896-1980): Von der Physik zur Quantenchemie, Unpublished PhD
Dissertation, Universität Mainz.
Kast, W.
1957 “Gustav Mie”, PB 13, 128-131.
Kaufmann, W.
1906 “Über die Konstitution des Elektrons”, AP 19, 487-553.
Katzir, S.
2003 “From Explanation to Description: Molecular and Phenomenological Theories of
Piezoelectricity”, HSPS 34.
2004 “Poincaré’s Relativistic Physics and Its Origins”, PiP 6. (Forthcoming)
Kennedy, H.
1980 Peano. Life and Work of Giuseppe Peano, Dordrecht, Reidel.
1981 “Giuseppe Peano”, DSB 10, 441-444.
Kerszberg, P.
1989 The Invented Universe: The Einstein-De Sitter Controversy (1916-17) and the Rise fo
Relativistic Cosmology, Oxford, Clarendon Press.
Khinchin, A. Y.
1952 “An Elementary Solution of Waring’s Problem”, in Three Pearls of Number Theory,
Baltimore, Graylock Press, pp. 37-64.
Kirchhoff, G.
1860 “Ueber das Verhältnis zwischen dem Emissionsvermogen und dem Absorptionsvermogen
der Körper für Wärme un Licht, AP 109, 275-301.
Klein, F.
GMA Gesammelte Mathematische Abhandlungen, 3 Vols., ed. By R. Fricke and A. Ostrowski,
Berlin, Springer (1921).
1871 “Über die sogennante Nicht-Euklidische Geometrie”, MA 4, 573-625. (GMA Vol. 1, 254-
305.)
1873 “Über die sogennante Nicht-Euklidische Geometrie”, MA 6, 112-145. (GMA Vol. 1, 311-
343.)
1874 “Nachtrag zu dem ‚zweiten Aufsatze’ über Nicht-Euklidische Geometrie”, MA 7, 531-
537. (GMA Vol. 1, 344-350.)
1880 “Ueber die geometrische Definition der Projectivität auf den Grundgebilden erster Stufe”,
MA 17, 52-54. (GMA Vol.1, 352-354.)
1898 “Gutachten, betreffend den dritten Band der Theorie der Transformationsgruppen von S.
Lie anlässlich der ersten Verteilung des Lobatschewsky-Preises erstattet”, MA 55, 583-
600. (GMA Vol. 1, 384-401.)
1910 “Über die geometrischen Grundlagen der Lorentzgruppe”, JDMV 19, 281-300. (GMA,
Vol. 1, 533-552.)
1918 “Zu Hilberts erster Note über die Grundlagen der Physik”, GN (1918) 469-482. (In GMA
Vol. 1, 553-567)
1926-27 Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, 2 Vols., ed. By R.
Courant and O. Neugebauer, Berlin, Springer. (Chelsea Repr., New York, 1948.)
Klein, F. & E. Riecke (eds.)
1900 Über angewandte Mathematik und Physik in ihrer Bedeutung für den Unterricht an der
höheren Schulen, Leipzig, Teubner.
1904 Neue Beiträge zur Frage des mathematischen und physikalischen Unterrichts an den
höheren Schulen, Vorträge gehalten bei Gelegenheit des Feriencurses für Oberlehrer der
Mathematik und Physik, Göttingen, Ostern 1904. Leipizg/Berlin, Teubner.
Klein, M.
1970 Paul Ehrenfest: The Making of a Theoretical Physicist, Amsterdam, North Holland.
1972 Mathematical Thought from Ancient to Modern Times, New York, Oxford University
Press.
Kneser, H.
1922 “Untersuchungen zur Quantentheorie”, MA 84, 277-302.
Kohl, G.
2002 “Relativität in der Schwebe: Die Rolle von Gustav Mie”, MPIWG- Berlin, Prerpint 209.
REFERENCES 483
Köthe, G.
1982 “Toeplitz and the Theory of Sequence Spaces, in I. Gohberg (ed.) Toeplitz Centennial, Tel
Aviv, 1991, Basel & Boston, Birkhäuser.
Kox, A.
1992 “General Relativity in the Netherlands, 1915–1920”, in Eisenstaedt & Kox (eds.) 1992,
39–56.
Kragh, H.
1982 “Erwin Schrödinger and the Wave Equation: the Crucial Phase”, Centaurus 26, 154-197.
1999 Quantum Generations. A History of Physics in the Twentieth Century, Princeton,
Princeton University Press.
Kremer, R.L.
1993 “Innovation through Synthesis: Helmholtz and Color Research”, in Cahan 1993 (ed.),
205-258.
Kuhn, T.S.
1978 Black-Body Theory and the Quantum Discontinuity, 1994-1912, New York, Oxford
University Press.
Lacki, J.
2000 “The Early Axiomatizations of Quantum Mechanics: Jordan, von Neumann, and the
Continuation of Hilbert’s Program”, AHES 54, 279-318.
Lamb, H.
1895 Hydrodynamics (2d ed.), Cambridge, Cambridge University Press.
Lanczos, C.
1962 The Variational Principles of Mechanics (2d Ed.), Toronto, University of Toronto Press.
Larmor, J.
1900 Aether and Matter, Cambridge, Cambridge University Press.
Von Laue, M.
1911 Das Relativitätsprinzip, Braunschweig, Vieweg.
1921 Das Relativitätsprinzip, Braunschweig, Vieweg.
Laugwitz, D.
1999 Bernhard Riemann, 1926-1966: Turning points in the Conception of Mathematics,
Boston, Birkhäuser. (English translation from the German original by Abe Shenitzer.)
Leibniz, G.W.
S Mathematische Schriften (ed. By C. I. Gerhardt), 7 vols., Berlin (vol. 1-2) and Halle (vol.
3-7), 1849-1863.
Lewis, G.N. and R.C. Tolman
1909 “The Principle of Relativity, and Non-Newtonian Mechanics”, Philosophical Magazine
18, 510-523.
Lorentz, H.A.
LCP Collected Papers, 9 Vols., The Hague, Martinus Nijhoff (1934-39).
1895 Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten
Körpern, Leiden. (LCP Vol. 5, 1-137.)
1898 “Die Fragen, welche die translatorische Bewegung des Lichtäthers betreffen”, VGDNA 70
(2. Teil, 1. Hälfte), 56-65. (LCP 7, 101-115.)
1900 “Considérations sur la Pesanteur”, Archives néerlandaises 7 (1902), 325-338. Translated
from Versl. K. Akad. Wet. Amsterdam 8 (1900), 325. (LCP 5, 198-215.)
1904 “Weiterbildung der Maxwellschen Theorie. Elektronentheorie”, EMW V, 2 – 14, 145-280.
1904a “Electromagnetic Phenomena in a System Moving with Velocity Smaller than that of
Light”, Versl. Kon. Akad. Wet. Amst. 6, 809-831. (Repr. In A. Einstein et al. The Principle
of Relativity, New York, Dover, 11-34.)
1909 “Le partage de l’energie entre la matière pondérable et l’éther”, in G. Castelnuovo (ed.)
Atti del IV congresso internazionale dei matematici (Roma, 6-11 aprile 1909), Roma,
Tipografia della R. Accademia dei Lincei, Vol. 1, 145-165. (Repr. With revisions in
Nuovo Cimento 16 (1908), 5-34.)
1910 “Alte und neue Fragen der Physik”, PZ 11, 1234-1257. (LCP 7, 205-207.)
484 REFERENCES
Lorentz, H.A., et al.
1911 Das Relativitätsprinzip. Eine Sammlung von Abhandlungen mit Anmerkungen von A.
Sommerfeld und Vorwort von O. Blumenthal, Leipzig, Teubner (2d ed.: 1913; 3d ed.:
1919; 4th ed.: 1921; 5th. Ed.: 1923). Engl. Translation of 4th edition, by W. Perrett and
G.B. Jeffery, New York Dover (1923). Reprint 1958.
Lorey, W.
1916 Das Studium der Mathematik an den deutschen Universitäten seit Anfang des 19.
Jahrhunderts, Leipzig and Berlin, Teubner.
Love, A.E.H.
1901 “Hydrodynamik”, EMW 4-3, 48-149.
Lützen, J.
1998 “Hertz and the Geometrization of Mechanics”, in Baird et al (eds.) 1998, 103-122.
2004 Mechanistic Images in Geometric Form: Heinrich Hertz’s Principles of Mechanics
(Forthcoming).
Lützen, J., G. Sabidussi and B. Toft
1992 “Julius Petersen: 1839–1910. A Biography”, Discrete Mathematics 100, 9-82.
Mach, E.
1893 The Science of Mechanics. A Critical and Historical Exposition of Its Principles (English
translation from the 2d. Ed. Of the German original (1893), by T.J. McCormack),
Chicago. (First German ed.: 1883.)
Madelung, E.
1912 “Die ponderomotorischen Kräfte zwischen Punktladungen in einem mit diffuser
electromagnetischer Starhlung erfüllten Raume und die molekularen Kräfte”, PZ 13, 489-
495.
Maltese, G. and L. Orlando
1995 “The Definition of Rigidity in the Special Theory of Relativity and the Genesis of the
General Theory of Relativity”, SHPMP 26B, 263-306.
Majer, U.
1995 “Geometry, Intuition and Experience: From Kant to Husserl”, Erkenntnis 42, 261-285.
1998 “Heinrich Hertz’s Picture-Conception of Theories: its Elaboration by Hilbert, Weyl, and
Ramsey” in D. Baird et al. (eds.), 225-242.
Majer, U. and T. Sauer
2005 “Hilbert's 'World Equations' and His Vision of a Unified Science”, in J. Eisenstaedt and
A.J. Kox (eds.) Einstein Studies Vol. 10 (Forthcoming).
Mancosu, P.
1999 “Between Russell and Hilbert: Behmann on the Foundations of Mathematics”, BSL 5 (3),
303-330.
Manegold, K.H.
1970 Universität, Technische Hochschule und Industrie. Ein Beitrag zur Emanzipation der
Technik im 19. Jahrhundert unter besonderer Berücksichtigung der Bestrebungen Felix
Kleins, Berlin, Duncker Humblot.
Marchisoto, E.A.
1993 “Mario Pieri : His Contributions to Geometry and Foundations of Mathematics”, HM 20 ,
285-303
1995 “In the Shadow of Giants: The Work of Mario Pieri in the Foundations of Mathematics”,
HPL 65, 107-119.
Masani, P.R.
1990 Norbert Wiener. 1994-1964, Basel, Birkhäuser.
Maxwell, J.C.
1860 “Illustrations of the Dynamical Theory of Gases”, Philosophical Magazine, series 4, 19
(1860), 19-32; 21 (1860), 21-37.
1867 “On the Dynamical Theory of Gases”, Philosophical Transactions of the Royal Society
157, 49-88
McCormmach, R.
1970 “H.A. Lorentz and the Electromagnetic View of Nature”, Isis 61, 457-497.
Medicus, H.
1984 “A Comment on the Relations between Einstein and Hilbert”, AJP 52, 206-208.
REFERENCES 485
Mehra, J.
1973 The Physicist’s Conception of Nature, Boston, Reidel.
1974 Einstein, Hilbert, and the Theory of Gravitation, Dordrecht, Reidel.
Mehra, J. And H. Rechenberg
1982 The Historical Development of Quantum Theory (Vol. 1, Part1). The Quantum Theory of
Planck, Bohr and Sommerfeld: Its Foundations and the Rise of its Difficulties. 19201-
1925, New York, Springer.
1982a The Historical Development of Quantum Theory (Vol. 2). The Discovery of Quantum
Mechanics, 1925, New York, Springer.
2000 The Historical Development of Quantum Theory (Vol. 6, Part1). The Completion of
Quantum Mechanics, 1926-1941, New York, Springer.
Mehrtens, H.
1990 Moderne – Sprache – Mathematik, Frankfurt, Suhrkamp.
Mertens, F.
1986 “Beweis, dass alle Invarianten und Covarianten eines System binären Formen ganze
Functionen einer endlichen Anzahl von Gebilden dieser Art sind”, JRAM 100, 223-230.
Meschkowski, H. & W. Nicol (eds.)
1991 Georg Cantor: Briefe, Berlin, Springer.
Meyer, E.
1941 “Richard Bär (1892-1940)”, Vierteljahrschrift der Naturf. Ges. Zürich 86, 356-366.
Meyer, F.
1890 “Bericht über den gegenwärtigen Stand der Invariantentheorie”, JDMV 1, 79-292.
Mie, G.
1908 “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen”, AP 25, 378-445.
1910 Lehrbuch der Elektrizität und des Magnetismus (2d. Ed. 1941, 1948), Stuttgart.
1912 “Grundlagen einer Theorie der Materie”, AP 37, 511-534;
1912a “Grundlagen einer Theorie der Materie. Zweite Mitteilung”, AP 39, 1-40;
1913 “Grundlagen einer Theorie der Materie. Dritte Mitteilung”, AP 40, 1-66.
1914 “Bemerkungen zu der Einsteinschen Gravitationstheorie”, PZ 15, 115-176; 169-176.
1915 “Das Prinzip von der Relativitäts des Gravitationspotentials”, in Arbeiten aus den
Gebieten der Physik, Mathematik, Chemie. Festschrift Julius Elster und Hans Geitel,
Braunschweig, Vieweg, 251-268.
1917 “Die Einstensche Gravitationstheorie und das Probleme der Materie”, PZ, 18, 551-556;
574-580; 596-602.
1921 Die Einsteinsche Gravitationstheorie, Versuch einer allgemein verständlichen
Darstellung der Theorie, Leipzig, Verlag von S. Hirzel.
1948 “Aus meinem Leben”, Zeitwende 19, 733-743.
Miller, A.I.
1972 “On the Myth of Gauss’s Experiment on the Physical Nature of Space”, Isis 63, 345-348.
1997 Albert Einstein’s Special Theory of Relativity: Emergence (1905) and Early
Interpretation, (1905-1911), New York, Springer.
Minkowski, H.
GA Gesammelte Abhandlungen, ed. By D. Hilbert, 2 Vols. Leipzig 1911. (Chelsea reprint,
New York 1967.)
1888 “Ueber die Bewegung eines festes Körpers in einer Flüsigkeit”, PAWS 1888, 1095-1110.
1905 “Peter Gustav Lejeune Dirichlet und seine Bedeutung für die heutige Mathematik”, JDMV
14, 149-163.
1906 “Kapillarität”, in EMW V, 558-613.
1907 Wärmestrahlung, DHN 707.
1908 “Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern”, GN
(1908), 53-111. (GA Vol. 2, 352-404.)
1909 “Raum und Zeit”, PZ 10, 104-111. (GA Vol. 2, 431-444.)
1910 “Eine Ableitung der Grundgleichungen für die elektromagnetischen Vorgänge in
bewegten Körpern vom Standpunkte der Elektronentheorie (aus dem Nachalaß von
Hermann Minkowski, bearbeitet von Max Born)”, MA 68, 526-556. (GA Vol. 2, 405-430.)
1915 “Das Relativitätsprinzip”, AP 47, 927-938.
486 REFERENCES
1952 “Space and Time” (English transl. by W. Perrett and G.B. Jeffery of Minkowski 1909), in
Lorentz et al. The Principle of Relativity, New York, Dover, 73-91.
Von Mises, R.
1924 “Felix Klein zum 75. Geburtstag”, Zeit. Ang. Math und Mechanik 4, 87-88.
Montgomery, D. and L. Zippin
1952 “Small groups of finite-dimensional groups”, AM 56, 213-241.
Moore, E.H.
1902 “Projective Axioms of Geometry”, Trans. AMS 3, 142-158.
1902a “A Definition of Abstract Groups”, Trans. AMS 3, 485-492.
Moore, G.H.
1982 Zermelo’s Axiom of Choice – Its Origins, Development, and Influence, New York,
Springer.
1987 “A House Divided Against Itself: the Emergence of First-Order Logic as the Basis for
Mathematics”, in E.R. Phillips (ed.) Studies in the History of Mathematics, MAA Studies
in Mathematics, 98-136.
1995 “The Axiomatization of Linear Algebra: 1875-1940”, HM 22, 262-303.
2002 “Hilbert on the Infinite: The Role of Set Theory in the Evolution of Hilbert’s Thought”,
HM 29, 40-64.
Murray, D. and C.A. Bandomir
2000 “G. E. Müller (1911, 1913, 1917) on Memory”, Psychologie et Histoire 1, 208-232.
Nagel, E.
1939 “The Formation of Modern Conceptions of Formal Logic in the Development of
Geometry”, Osiris 7, 142-224.
Netto, E.
1898 “Kombinatorik”, EMW I-1, 29-47.
Neumann, C.G.
1870 Ueber die Principien der Galilei-Newton’schen Theorie, Leipzig, Teubner.
1993 “On the Principles of the Galilean-Newtonian”, SiC 6, 355-368. (English translation by
Gideon Freudenthal of Neumann 1870.)
von Neumann, J.
1923 “Zur Einführung der transfiniten Zahlen”, Acta Szeged. 1, 199-208.
1925 “Eine Axiomatisierung der Mengenlehre”, JRAM 154, 219-240. (English translation in
van Heijenoort (ed.) 1967, 393-413.)
1932 Mathematische Grundlagen der Quantenmechanik, Berlin, Springer.
Nernst, W.
1912 “Der Energieinhalt der Gase”, PZ 13, 1064-1069.
Noether, E.
1918 “Invariante Variationsprobleme”, GN (1918), 235-257.
Noether M. & A. Brill
1992-93 “Die Entwicklung der Theorie der algebraischen Functionen in älterer und neuerer Zeit“,
JDMV 3, 197-566.
Noll, W.
1959 “The Foundations of Classical Mechanics in the Light of Recent Advances in Continuum
Mechanics”, in The Axiomatic Method with Special Reference to Geometry and Physics,
Amsterdam, North Holland, 266-281. (Repr. In W. Noll The Foundations of Mechanics
and Thermodynamics, New York/ Heidelberg/ Berlin, Springer (1974), 32-47.)
North, J.
1965 The Measure of the Universe, Oxford, Clarendon Press.
Norton, J.D.
1984 “How Einstein Found his Field Equations: 1912-1915”, Historical Studies in the Physical
Sciences 14, 251-316. (Repr. In Howard & Stachel (eds.) 1989, 101-159.)
1985 “What was Einstein’s Principle of Equivalence?”, SHPS 16, 203-246 (Repr. In Howard &
Stachel (eds.) 1989, 5-47).
1992 “Einstein, Nordström and the Early Demise of Scalar, Lorentz-Covariant Theories of
Gravitation”, AHES 45, 17-94.
1992a “The Physical Content of General Covariance”, in J. Eisenstaedt & A. Kox (eds.) 1992,
281-315.
REFERENCES 487
1993 “General Covariance and the Foundations of General Relativity”, Reports on Progress in
Physics 56, 791-858.
1995 “Mach’s Principle before Einstein”, in Barbour and Pfister (eds.) 1995, 9-57.
Olesko, K.M.
1991 Physics as a Calling. Discipline and Practice in the Königsberg Seminar for Physics,
Ithaca, Cornell University Press.
Oppolzer, E.R. von
1902-3 “Grundzüge einer Farbentheorie”, Zeitschrift für Psychologie und Physiologie der
Sinnesorgane 29, 183-203; 33, 321-354.
Osterbrock, D.
2001 Walter Baade: A Life in Astrophysics, Princeton, Princeton University Press.
Padoa, A.
1899 “Note di logica matematica”, emeste di Matematica 6, 105-121.
1903 “Le problème Nº 2 de M. David Hilbert”, L’Enseignement Mathématique 5, 85-91.
Pais, A.
1982 Subtle is the Lord. The Science and the Life of Albert Einstein, New York, Oxford
University Press.
Pareto, W.
1911 “Economie mathématique”, EMW (French Edition) I 4 (26), 591-640.
Parshall, K.H.
1989 “Towards a History of Nineteenth-Century Invariant Theory”, in D.E. Rowe & J.
McCleary (eds.) (1989), Vol. 1, 157-206.
1990 “The One-Hundredth Anniversary of the Death of Invariant Theory?”, MI 12, 10-16.
Parshall, K.H. and D.E. Rowe
1994 The Emergence of the American Mathematical Research Community, 1976-1900: J.J.
Sylvester, Felix Klein, and E.H. Moore, Providence, AMS/LMS.
Pasch, M.
1882 Vorlesungen über neuere Geometrie, Leipzig, Teubner.
1887 “Über die projektive Geometrie und die analytische Darstellung der geometrischen
Gebilde”, MA 30, 127-131.
Pasch, M. And M. Dehn
1926 Vorlesungen über neuere Geometrie, 2. aufl., mit einem Anhang: Die Grundlegung der
Geometrie in historischer Entwicklung, von Max Dehn. Mit Insgesamt 115 abbildungen,
Leipzig, Teubner.
Pauli, W.
1921 “Relativitätstheorie”, EMW VI,2, 539-775.
1958 Theory of Relativity, (English Translation by G. Field of Pauli 1921), Pergamon Press.
(Dover Reprint, New York, 1981.)
Peckhaus, V.
1990 Hilbertprogramm und Kritische Philosophie.Der Göttinger Modell interdisziplinärer
Zusammenarbeit zwischen Mathematik und Philosophie, Göttingen, Vandenhoeck &
Ruprecht.
Peckhaus, V. And R. Kahle
2002 “Hilbert’s Paradox”, HM 29, 157-175.
Perron, O.
1952 “Alfred Pringsheim”, JDMV 56, 1-6.
Petersen, J.
1882 Lehrbuch der Statik fester Körper. Deutsche Ausgabe, unter mitwirkung des verfassers
besorgt von R. Von Fischer-Benzon, Kopenhagen, A.F. Host & Sohn.
1884 Lehrbuch der Kinematik fester Körper. Deutsche Ausgabe, unter mitwirkung des
verfassers besorgt von R. Von Fischer-Benzon, Kopenhagen, A.F. Host & Sohn.
1887 Lehrbuch der Dynamik fester Körper. Deutsche Ausgabe, unter mitwirkung des verfassers
besorgt von R. Von Fischer-Benzon, Kopenhagen, A.F. Host & Sohn.
Pieri, M.
1906 “Sur la compabilité des axiomes de l’artihemtique”, Revue de métaphysique et de morale
14, 196-207.
488 REFERENCES
Planck, M.
1899 “Über irreversible Strahlungsvorgänge. Dritte Mitteilung (Schluss)”, PAWS (1899) 440-
480.
1900 “Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum”, VDPG 2, 237-
245.
1906 Vorlesungen über die Theoire der Wärmestrahlung, Leipzig.
1906a “Das Prinzip der Relativität und die Grundgleichungen der Mechanik”, VDPG 8, 136-141.
1907 “Zur Dynamik der bewegter Systeme”, Berl. Ber. 13, 542-570. (Repr. In AP 26 (1908), 1-
34.)
1908 “Die Einheit des Physkalischen Weltbildes”, in Planck 1949, 28-51.
1919 “Das Wesen des Lichts”, in Planck 1949, 112-124.
1949 Vorträge und Errinerungen, Leipzig, S. Hirzel Verlag (4th ed.).
Planck, M. et al
1914 Vorträge uber die kinetische Theorie der Materie und der Elektrizität. Gehalten in
Göttingen auf Einladung der Komission der Wolfskehlstiftung, Leipzig and Berlin,
Teubner.
Von Plato, J.
1994 Creating Modern Probability. Its Mathematics, Physics and Philosophy in Historical
Perspective, New York, Cambridge University Press.
Poncelet, J.V.
1822 Traité des propriétés projectives des figures (2d ed., 2 vol., 1865–66), Paris.
Poincaré, H.
1896 Calcul des Probabilités. Leçons profesées pendant le deuxiéme semester 1993-1994, (Ed.
By A. Quiquet.), Paris, Georges Carré.
1901 Electricité et optique: La lumière et les théories électrodynamiques. Leçons professées à
la Sorbonne en 1999, 1990, et 1990 (ed. J. Blondin & E. Néculcéa), Paris.
1905 La valeur de la science, Paris.
1906 “Sur la dynamique de l’électron”, Rendiconti del Circolo matimatico di Palermo 21, 129-
176.
1908 Science et méthode, Paris. (English translation: Science and Method, New York, Dover –
n.d.)
1910 Sechs Vorträge über ausgewählte Gegenstände aus der reinen Mathematik und
mathematischen Physik (Göttingen, 22-29 IV 1909), Leipzig, Teubner.
1912 “Rapport sur le Prix Bolyai”, Acta Mathematica 35, 1-28.
1912a “Sur la théorie des quanta”, Journal Phys. Théor. Et Appl. 2, 5-34.
Prandtl, L.
1904 “Über Flüssigkeitbewegung bei sehr kleiner Reibung”, in A. Kneser (ed.) Verhandlungen
aus der Dritten Internationalen Mathematiker-Kongresses in Heidelberg, 1904, Teubner,
Leipzig, 484-491.
Pringsheim, A.
1898 “Irrationalzahlen und Konvergenz unendlicher Prozesse”, EMW I-1, 49-147.
Pringsheim, E.
1901 “Einfache Herleitung des Kirchhoff’schen Gesetzes”, VDPG 77, 81-84.
1903 “Herleitung des Kirchhoffschen Gesetzes”, Zeitschrift für wissenschaftliche Photographie
1, 360-364.
1913 “Bemerkungen zu der Abhandlung des Herrn D. Hilbert: Bemerkungen zur Begründung
der elementaren Strahlungstheorie”, PZ 14, 589-591.
1913a “Über Herrn Hilberts axiomatische Darstellung der elementaren Strahlungstheorie”, PZ
14, 847-850.
Purkert, W.
2002 “Grundzüge der Mengenlehre. Historische Einführung” in W. Purkert et al. (eds.) Felix
Hausdorff, Gesammelte Werke, Vol. 2, Berlin, Springer, 1-89.
Pycior, E.
1981 “George Peacock and the British Origins of Symbolical Algebra”, HM 8, 23-45.
REFERENCES 489
Pyenson, L.R.
1974 The Goettingen Reception of Einstein’s General Theory of Relativity, Unpublished PhD
Dissertation, Johns Hopkins University.
1977 “Hermann Minkowski and Einstein’s Special Theory of Relativity”, AHES 17, 71-95.
(Repr. In Pyenson 1985, 80-100.)
1979 “Physics in the Shadows of Mathematics: the Göttingen Electron-theory Seminar of
1905”, AHES 21, 55-89. (Repr. In Pyenson 1985, 101-136.)
1979a “Mathematics, Education, and the Göttingen Approach to Physical Reality, 1890-1914”,
Europa: A Journal of Interdisciplinary Studies 2, 91-127. (Repr. In Pyenson 1985, 158-
193.)
1982 “Relativity in Late Wilhelmian Germany: the Appeal to a Pre-established Harmony
Between Mathematics and Physics”, AHES 138-155. (Repr. In Pyenson 1985, 137-157.)
1985 The Young Einstein – The Advent of Relativity, Bristol and Boston, Adam Hilger Ltd.
Rademacher, H. and Toeplitz, O.
1957 The Enjoyment of Mathematics: Selections from Mathematics for the Amateur, Princeton,
Princeton University Press
Ramser, L.
1974 “Paul Oskar Eduard Volkmann”, DSB 14, 67-68.
Rausenberg, O.
1988 Lehrbuch der analytischen Mechanik. Erster Band: Mechanik der materiellen Punkte.
Zweiter Band: Mechanik der zusammenhngenden Körper, Leipzig, Teubner.
Reich, K.
1985 “Aurel Voss: Verschiedenes zu seinem Leben und Werk”, in Folkerts & Lindgren (eds.)
1985, 674-699.
1994 Die Entwicklung des Tensorkalküls. Vom absoluten Differentialkalkül zur
Relativitätstheorie, Basel and Boston, Birkhäuser. (SN 11.)
Reid, C.
1970 Hilbert, Berlin/New York, Springer.
1976 Courant in Göttingen and New York: The Story of an Improbable Mathematician, New
York, Springer.
Reiff, R.
1900 “Die Druckkräfte in der Hydrodynamik und die Hertzsche Mechanik”, AP 1, 225-231.
Renn, J. et al
Forthcoming The Genesis of General Relativity: Documents and Interpretations, Vol. 1. General
Relativity in the Making: Einstein’s Zurich Notebook, Dordrecht, Kluwer.
Renn, J. and T. Sauer
1996 “Einsteins Züricher Notizbuch”, PB 52, 865-872.
1999 “Heuristics and Mathematical Representation in Einstein’s Search for a Gravitational
Field Equation”, in Goenner et al. (eds.) 1999, 87-126.
Renn, J. And Stachel, J.
1999 “Hilbert’s Foundation of Physics: From a Theory of Everything to a Constituent of
General Relativity”, MPIWG- Berlin, Preprint 118.
Resnik, M.
1974 “The Frege-Hilbert Controversy”, Philosophy and Phenomenological Research 34, 386-
403.
Reye, T.
1886 Geometrie der Lage (3d. Edition), Leipzig.
Richards, J.L.
1988 Mathematical Visions: The Pursuit of Geometry in Victorian England, Boston, Harcourt-
Brace-Jovanovitch.
Riecke, E.
1896 Lehrbuch der Experimental-Physik zu eigenem Studium und zum Gebrauch bei
Vorlesugen, 2 Vols., Leipzig.
Riemann, B.
Werke Gesammelte mathematische Werke und wissenschaftlicher Nachlass, ed. By H. Weber
(1892), Lepzig, Teubner. (Dover Reprint, New York, 1958.)
490 REFERENCES
1868 “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen”, Abhandlungen der
GWG 13. (English translation by William Kindon Clifford, Nature 7, 14-17, 36, 37, 183-
84. Repr. In Ewald (ed.) 1999, Vol. 2, 652-661.)
Roseveare, N.T.
1982 Mercury’s Perihelion from Le Verrier to Einstein, Oxford, Clarendon Press.
Röhle, S.
2002 “Mathematische Probleme in der Einstein – de Sitter Kontroverse”, MPIWG- Berlin,
Prerpint 210.
Routh, E.J.
1891 A Treatise on Analytical Statics, Cambridge, Cambridge Universtiy Press.
1892 The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, Macmillan
and Co., London.
1897 A Treatise on the Dynamics of a System of Rigid Bodies, (6th. Ed.), Macmillan and Co.,
London.
1898 Die Dynamik der Systeme starrer Körper. In zwei Bänden, mit zahlreichen Beispielen.
Autorisirte deutsche Ausgabe von Adolf Schepp. Mit Anmerkungen von Prof. Dr. Felix
Klein zu Göttingen. Zweiter Band: Die höhere Dynamik. Mit 39 Figuren im Text, Leipzig,
Teubner.
1898a A Treatise on the Dynamics of a Particle, Cambridge, Cambridge Universtiy Press.
Rowe, D.E.
1989 “Klein, Hilbert, and the Göttingen Mathematical Tradition”, Osiris 5, 186-213.
1989a “The Early Geometrical Works of Sophus Lie and Felix Klein”, in D.E. Rowe & J.
McCleary (eds.) (1989), Vol. 1, 209-273.
1989b “An Interview with Dirk Jan Struik”, MI 11(1): 14-26.
1994 “The Philosophical Views of Klein and Hilbert”, in Sasaki et al. (eds.) The Intersection of
History and Mathematics, Basel/Berlin/Boston, Birkhäuser, 187-202.
1996 “I 23 problemi de Hilbert: la matematica agli albori di un nuovo secolo”, Storia del XX
Secolo: Matematica-Logica-Informatica, Rome, Enciclopedia Italiana.
1996a “The Reception of Grassmann’s Work in Germany during the 1870s”, in G. Schubring
(ed.) (1996), 131-146.
1999 “Perspective on Hilbert” (Review of Mehrtens 1990, Peckhaus 1990, and Toepell 1986),
Perspectives on Science, 5 (4), 533-570.
1999a “The Göttingen Response to General Relativity and Emmy Noether’s Theorems”, in J.J.
Gray (ed.) 1999, 189-233.
2000 "The Calm before the Storm: Hilbert's Early Views on Foundations", in V. F. Hendricks et
al. (eds.) 2000, 55-94.
2001 "Felix Klein as Wissenschaftspolitiker" in Bottazzini & Dahan (eds.) 2001, 69-92.
2001a "Einstein Meets Hilbert: At the Crossroads of Physics and Mathematics", PiP 3, 379-424.
2002 “Einstein's Gravitational Field Equations and the Bianchi Identities”, MI 24 (4), 57-66.
2003 "Hermann Weyl, the Reluctant Revolutionary", MI 25 (2), 61-70.
2003a "From Königsberg to Göttingen: A Sketch of Hilbert's Early Career”, MI 25 (2), 44-50.
2004 "Making Mathematics in an Oral Culture: Göttingen in the Era of Klein and Hilbert", SiC
17 (1). (Forthcoming)
2004a “The Mathematicians' Happy Hunting Ground: Einstein's General Theory of Relativity”,
MI 26 (2). (Forthcoming)
Rowe, D.E. and J. McClearly (eds.)
1989 History of Modern Mathematics, 2 Vols., San Diego, Academic Press.
Rüdenberg, L. and H. Zassenhaus (eds.)
1973 Hermann Minkowski - Briefe an David Hilbert, Berlin/New York, Springer.
Rynasiewicsz, R.
1999 “Kretschmann's Analysis of Covariance and Relativity Principles”, in Goenner et al. (eds.)
1999, 431-462.
Sabidussi, G.
1992 “Correspondence between Sylvester, Petersen, Hilbert and Klein on Invariants and the
Factorisation of Graphs. 1889–1891”, Discrete Mathematics 100, 99-115.
Sackur, O.
1912 Lehrbuch der Thermochemie und Thermodynamik, Berlin, Springer.
REFERENCES 491
Sánchez-Ron, J.M.
1992 “The Reception of General Relativity among British Physcists and Mathematicians", in
Eisenstaedt and Kox (eds.) 1992, 57-88.
Sarkowski, H.
1992 Der Springer Verlag. Stationen seiner Geschichte, Teil I: 1942-1945, Berlin, Springer.
Sauer, T.
1999 “The Relativity of Discovery: Hilbert's First Note on the Foundations of Physics”, AHES
53, 529-575.
2000 “Hilberts Ruf nach Bern”, Gesnerus 57, 182-205 .
Scanlan, W.
1991 “Who were the American Postulate Theorists?”, JSL 50, 981-1002.
Schappacher, N. and K. Volkert
1991 “Heinrich Weber; un mathématicien à Strasbourg, 1895-1913”, L'Ouvert (Journal de
l'A.P.M.E.P. d'Alsace et de l'I.R.E.M. de Strasbourg) 89, 1-18 (preprint).
Schell, W. (ed.)
1979 Theorie der Bewegung und der Krafte: ein Lehrbuch der theoretischen Mechanik, mit
besonderer Rücksicht auf auf das wissenschaftliche Bedürfniss technicher Hochschulen
(2d. ed.) , Leipzig, Teubner
Schellenberg, K.
1915 “Anwendung der Integralgleichungen auf die Theorie der Electrolyse”, AP 47, 81-127.
Schemmel, M.
2002 An Astronomical Road to General Relativity. The Continuity between Classical and
Relativistic Cosmology as Exemplified by the Work of Karl Schwarzschild, MPIWG-
Berlin, Preprint 217.
Schirrmacher, A.
2001 “Experimenting Theory: The Proofs of Kirchhoff's Radiation Law before and after
Planck”, Working Paper, Münchner Zentrum für Wissenschafts- und Technikgeschichte.
2002 “The Establishment of Quantum Physics in Göttingen 1900-24. Conceptual Preconditions
– Resources – Resrach Politics”, in H. Kragh et al (eds.) History of Modern Physics.
Proceedings of the XXth International Congress of History of Science, vol. XIV,
Turnhout: Brepols, 295-309.
2003 “Experimenting Theory: The Proofs of Kirchhoff's Radiation Law before and after
Planck”, HSPS 33 (2), 299-335.
2003a “Planting in his Neighbor’s Garden: David Hilbert and Early Göttingen Quantum
Physics”, PiP 5 (3), 4-20.
Schmidt, A.
1932 “Die Herleitung der Spiegelung aus der ebenen Bewegung”, MA 109, 538-571.
1933 “Zu Hilberts Grundlegung der Geometrie”, HGA Vol. 2, 404-414.
Schneider, I. (ed.)
1988 Die Entwicklung der Wahrscheinlichkeitstheorie von den Anfängen bis 1933, Darmstadt,
Wissenschaftliche Buchgesellschaft.
Schoenflies, A.M.
1891 Kristallsysteme und Kristallstruktur, Leipzig, Teubner.
1900 “Die Entwicklung der Lehre von den Punktmannigfaltigkeit”, JDMV 8, 1-251.
Scholz, E.
1980 Geschichte des Manigfaltigkeitsbegirffs von Riemann bis Poincaré,
Boston/Basel/Stuttgart, Birkhäuser.
1989 Symmetrie, Gruppe, Dualität, Basel, Birkhäuser.
1992 “Gauss und die Begründung der ‘höhere’ Geodäsie” in M. Folkerts et al. (eds.) Amphora -
Festschrift für Hans Wussing zu seinem 65 Geburtstag, Berlin, Birkhäuser, 631-648.
2003 “C.F. Gauß’ Präzisionsmessungen terrestrischer Dreicke und seine Überlegungen zur
empirischen Fundierung der Geometrie in den 1820er Jahren“, in R. Seising and M.
Folkerts (eds.) Grenzgänger - Grenzprozese - Grenzgebiete. Historische Betrachtungen zu
Mathematik, Wissenschaft und Technik. Festschrift zum 65. Geburtstag von Ivo Schneider.
(Forthcoming.)
492 REFERENCES
Scholz, E. (ed.)
2001 Hermann Weyl's "Raum-Zeit-Materie" and a General Introduction to His Scientific Work,
Basel, Birkhäuser.
Schrödinger, E.
1926 “Quantisierung als Eigenwertproblem", AP I: 79, 361-376; II: 79, 489-527; III: 80, 437-
490; IV: 81, 109-139.
Schubert, H.
1898 “Grundlagen der Arithmetic”, EMW I-1, 1-28.
Schubring, G.
1989 “Pure and Applied Mathematics in Divergent Institutional Settings in Germany: The Role
and Impact of Felix Klein”, in Rowe and McClearly (eds.) (1989), Vol. 2, 171-222.
Schubring, G. (ed.)
1996 Hermann Günther Grassmann (1909-1977): Visionary Mathematician, Scientist and
Neohumanist Scholar (BSPS 187), Dordrecht, Kluwer.
Schuman, K.
1977 Husserl-Chronik. Denk- und Lebensweg Edmund Huseerls, Den Haag, Martinus Nijhoff.
Schur, F.
1898 “Über den Fundamentalsatz der projektiven Geometrie”, MA 51, 401-409.
1901 “Über die Grundlagen der Geometrie”, MA 55, 265-292.
1903 “Über die Zusammensetzung von Vektoren”, ZMP 49, 352-361.
1909 Grundlagen der Geometrie, Leipzig, Teubner.
Schwarzschild, K.
1903 “Zur Elektrodynamik: III. Ueber die Bewegung des Elektrons”, GN (1903), 245-278.
1916 “Über das Gravitationsfeld eines Massenpunktes nach der Einstenschen Theorie”, PAWS
(1916), 189-196.
1916a “Über das Gravitationsfeld einer Kugel aus inkompressibler Flüsigkeit nach der
Einstenschen Theorie”, PAWS (1916), 424-434.
Schwermer, J.
1991 “Räumliche Anschauung und Minima postiv definiter quadratischen Formen”, JDMV 93,
49-105.
2003 “Hilbert, Hurwitz and Minkowski in Königsberg 1880-1887: Formation of Mathematical
Knowledge”, Unpublished Manuscript (Forthcoming).
Seelig, C.
1954 Albert Einstein, Zürich, Europa Verlag.
Segre, M.
1994 “Peano’s Axioms in their Historical Context”, AHES 48, 201-342.
Shimmack, R.
1903 “Ueber die axiomatische Begründung der Vektoraddition”, GN (1903), 317-325.
Siebert, H.
1966 “Leben und Werk der Königsberger Mathematiker”, Jahrbuch der Albertus-Universität zu
Königsberg 16, 137-170.
Sieg, W.
1999 “Hilbert’s Programs: 1917-1922”, BSL 5(1), 1-44.
Siegmund-Schultze, R.
1998 Mathematiker auf der Flucht von Hitler, Wiesbaden/Braunschweig, Vieweg.
2001 Rockefeller and the Intenationalization of Mathematics Between the Two World Wars,
Basel and Boston, Birkhäuser . (SN Vol. 25)
2003 “The Origins of Analysis”,in H.N. Jahnke (ed.) A History of Analysis, Providence,
AMS/LMS, 385-408.
Sigurdsson, S.
1991 Hermann Weyl, Mathematics and Physics, 1900-1927, Unpublished Ph.D. Dissertation,
Harvard University.
1994 “Unification, Geometry and Ambivalence: Hilbert, Weyl and the Göttingen Community”,
in K. Gavroglu et al. (eds.) Trends in the Historiography of Science, Dordrecht, Kluwer,
355-367.
REFERENCES 493
Sinaceur, H.
1984 “De D. Hilbert á E. Artin: les différents aspects du dix-septième problème et les filiations
conceptuelles de la théorie des corps reels clos”, AHES 29, 267-287.
1991 Corps et Modèles, Paris, Vrin.
Von Smoluchowski, M
1916 “Drei Vortäge über Diffusion, Brownsche Molekularbewegung und Koagulation von
Kolloidteilchen”, PZ 17, 557-571, 585-599
Sommer, K.
2002 “Wie ich den Schatz fand, verlor und wiederfand. Die Entdeckung vergessener Briefe des
Jahrhundertgenies David Hilbert war keine simple Sache ”, Feuilleton - Frankfurter
Allgemeine Zeitung 223 (25.09.2002), 44.
Sommerfeld, A.
GS Gesammelte Schriften, 4 Vols., ed. By F. Sauter (1968), Braunschweig, Teubner.
1904 “Zur Elektronentheorie: I. Allgemeine Untersuchung des Feldes eines beliebig bewegten
Elektrons”, GN (1904), 99-130.
1904a “Zur Elektronentheorie:“II. Grundlagen für eine allgemeine Dynamik des Elektrons”, GN
(1904), 363-439.
1905 “Zur Elektronentheorie: III. Ueber Lichtgeschwindichkeits- und
Ueberlichtgeschwindichkeits-Elektronen”, GN (1904), 99-130; “II. Grundlagen für eine
allgemeine Dynamik des Elektrons”, GN (1905), 201-235.
1910 “Zur Relativitätstheorie. I. Vierdimensionale Vektoralgebra”, AP 32, 749-776; “II. Vier-
dimensionale Vektoranalysis”, AP 33, 649-689.
1951 „Autobiograpische Skizze“, in GS Vol. 4, 673-682
Spehl, H.
1990 “Gustav Adolf Mie”, in B. Ottand (ed.) Badischen Biographien, Vol. 3 (Neue Folge), 186-
190.
Springer, T.A.
1977 Invariant Theory, Berlin/Heidelberg, Springer.
Stachel, J.
1982 “Einstein and Michelson: The Context of Discovery and the Context of Justification”,
Astronomische Nachrichten 303, 47-53.
1989 “Einstein’s Search for General Covariance”, in Howard & Stachel (eds.) 1989, 63-100.
(Repr. In Stachel 2002, 301-338.)
1989a “The Rigidly Rotating Disk as the ‘Missing Link’ in the History of General Relativity”, in
Howard &Stachel (eds.) 1989, 48-62. (Repr. In Stachel 2002, 245-260.)
2002 Einstein from ‚B’ to ‚Z’, Boston, Birkhäuser. (ES Vol. 9.)
Staley, R.
1995 “Relativity, Rigidity and Rotation: or the Tortoise and the Hare in the History of
Relativity”, Unpublished Manuscript.
1998 “On the Histories of Relativity: The Propagation and Elaboration of Relativity Theory in
Participant Histories in Germany, 1905-1911”, Isis 89, 263-299.
Stölzner, M.
2001 “Opportunistic Axiomatics – von Neumann on the Methodology of Mathematical
Physics”, in M. Redei and M. Stölzner (eds.) John Von Neumann and the Foundations of
Quantum Physics (Vienna Circle Institute Yearbook [2000], Vol. 8), Dordrecht, Kluwer,
35-62.
Strobl, W.
1985 “Aus den wissenschaftlichen Anfängen Hermann Minkowskis”, HM 12, 142-156.
Study, E.
1933 Einleitung in die Theorie der Invarianten, Braunschweig, Vieweg.
Szanton, A.
1992 The Recollections of Eugene P. Wigner as Told to Andrew Szanton, New York, Plenum.
Tazziolli, R.
1994 "Ether and Theory of Elasticity in Beltrami's Work", AHES 46, 1-38.
Thiele, R.
2003 “Hilbert’s Twenty-Fourth Problem”, American Mathematical Monthly 110 (1), 1-24.
494 REFERENCES
Thorn, K.
1994 Black Holes and Time Warps: Einstein's Outrageous Legacy, New York, Norton.
Tobies, R.
1994 "Mathematik als Bestandteil der Kultur - Zur Geschichte des Unternehmens 'Encyklopädie
der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'", Mitteilungen
der Österreichischen Gesellschaft für Wissenschaftsgeschichte 14, 1-90.
1996 “The Reception of Grassmann’s Mathematical Achievements by A. Clebsch and his
School”, in G. Schubring (ed.) (1996), 117-130.
Tobies, R. and D.E. Rowe (eds.)
1990 Korrespondenz Felix Klein-Adolph Mayer. Auswahl aus den Jahren 1971-1907, Leipzig,
Teubner.
Toepell, M.M.
1986 Über die Entstehung von David Hilberts „Grundlagen der Geometrie”, Göttingen,
Vandenhoeck & Ruprecht.
1996 Mathematiker und Mathematik an der Universitat Munchen : 500 Jahre Lehre und
Forschung, München, Institut fur Geschichte der Naturwissenschaften. (Algorismus -
Studien zur Geschichte der Mathematik und der Naturwissenschaften, Band 19.)
Toeplitz, O.
1922 “Der Algebraiker Hilbert”, Die Naturwissenschaften 10, 73-77.
Tollmien, C.
1991 “Die Habilitation von Emmy Noether an der Universität Göttingen”, NTM 28, 13-32.
Torretti, R.
1978 Philosophy of Geometry from Riemann to Poincaré, Dordrecht, Reidel.
Truesdell, C.
1968 Essays in the History of Mechanics, New York, Springer.
Turner, R.S.
1987 “Paradigms and Productivity: The Case of Physiological Optics, 1840-94”, Social Studies
of Science 17, 35-68.
Urbantke, H.
1992 “Schrödinger and Cosmology”, in Eisenstaedt and Kox (eds.) 1992, 453-459.
Veblen, O.
1904 “A System of Axioms for Geometry”, Trans. AMS 5, 343-384.
Vermeil, H.
1917 “Notiz über das mittlere Krümmungsmass einer n-fach ausgedehnten Reimann’schen
Mannigfaltigkeit“, GN (1917), 334-344.
Veronese, G.
1891 Fondamenti di geometria a piu dimensioni e a piu specie di unitá rettilinee, esposti in
forma elementare, Padova, Tipografia del Seminario.
Vizgin, V.
1972 Razvitie Vzaimosvyazi Printsipov Invariantnosti s Zakonami Sokhraneniya v
Klassichsekoi Fizike, (Development of the Interconnection between the Principles of
Invariance and the Laws of Conservation in Classical Physics) Moscow, Nauka.
1994 Unified Field Theories in the First Third of the 20th Century (Transl. From the Russian
original (1985) by Julian Barbour), Basel, Birkhäuser. (SN Vol. 13.)
2001 “On the Discovery of the Gravitational Field Equations by Einstein and Hilbert: New
Materials”, Physics - Uspekhi 44 (12), 1283-1298.
Vizgin, V. and V. Frenkel
2002 "Vsevolodk Frederiks, Pioneer of Relativism and Liquid Crystal Physics" in Y. Balashkov
and V. Vizgin, Einstein Studies in Russia, Boston, Birkhäuser. (ES Vol. 10.)
Voigt, W.
1889 Elementare Mechanik als Einleitung in das Studium der theoretischen Physik, Leipzig,
Veit (2d ed. 1901)
1895-96 Kompendium der theoretischen Physik, Leipzig, Veit.
1899 “Über die Proportionalität von Emissions- und Absorptionsvermögen”, AP 67, 366-387.
1911 “Allgemeines über Emission und Absorption in Zusammenhang mit der Frage der
Intensitätsmessungen beim Zeeman-Effekt”, GN (1911), 71-89.
REFERENCES 495
1912 “Versagen des kirchhoffschen Satzes über Emissions- und Absorptionsvermögen bei
inhömogenen Körpern”, PZ 13, 848-852.
1915 “Phänomenologische und atomistische Betrachtungsweise”, in E. Warburg (ed.) Die
Kultur der Gegenwart. Ihre Entwicklung und ihre Ziele.Ser. 3, : Mathematik,
Naturwissenschaften, Medizin, Vol. 3, Teil 1, Leipzig/Berlin, 714-731.
Volk, O.
1967 “Die Albertus-Universität in Königsberg und die exakten Naturwissenschaften im 18. u.
19. Jahrhundert”, in F. Mayer (ed.) Staat und Gesellschaft. Festgabe für G. Küchenhoff,
Göttingen, 281-292.
Volkmann, P.
1892 “Ueber Gesetze und Aufgaben der Naturwissenschaften, insbesondere der Physik in
formalen Hinsicht”, Himmel und Erde 4, 441-461.
1894 “Hat die Physik Axiome?” (April 5, 1894), Schriften der physikalisch-ökonomischen
Gesellschaft zu Königsberg 35, 13-22.
1900 Einführung in das Studium der theoretischen Physik, insbesondere das der analytischen
Mechanik mit einer Einleitung in die Theorie der Physikalischen Erkentniss, Teubner,
Leipzig.
Vollrath, H.J.
1993 “Über die Berufung von Aurel Voss nach Würzburg”, Würzburger medizinhistorisch
Mitteilungen 11, 133-151.
Voss, A.
1899 “Differential- und Integralcalcuclus”, EMW II-1, 54-134.
1901 “Die Principien der rationellen Mechanik”, EMW IV-1, 3-121.
1903 “Abbildung on Abwickelung zweier Flächen auf einander”, EMW III-3, 355-440.
1908 Über das Wesen der Mathematik. Rede. Leipzig.
1913 Über das Wesen der Mathematik. Rede. (2d. ed.) Erweitert und mit Anmerkungen
versehen. Leipzig.
1914 “Die Beziehungen der Mathematik zur Kultur der Gegenwart”, in F. Klein (ed.) Die
Kultur der Gegenwart. Ihre Entwicklung und ihre Ziele. 3 Teil: Mathematik,
Naturwissenschaften, Medizin. Leipzig/Berlin, 1-49.
Waerden, B.L. van der
1930 Moderne Algebra (2 vols.), Berlin, Springer.
Walter, S.
1999 “Minkowski, Mathematicians and the Mathematical Theory of Relativity”, in H. Goenner
et al (eds.) 1999, 45-86.
1999a “The non-Euclidean Style of Minkowskian Relativity”, in J.J. Gray (ed.) 1999, 91-127.
2004 “Breaking the 4-Vectors: Breaking in the 4-vectors: Lorentz-covariant gravitation theory,
1905-1910”, in J. Renn and M. Schemmel (eds.) Alternative Approaches to Gravitation,
1990-1920, Kluwer (forthcoming). (BSPS 201/202.)
Warwick, A. C.
1991 “On the Role of the FizGerald-Lorentz Contraction Hypothesis in the Development of of
Joseph Larmo’s Theory of Matter”, AHES 43- 29-91.
2003 Masters of Theory. Cambridge and the Rise of Mathematical Physics, Chicago, The
University of Chicago Press.
Weyl, H.
1918 “Gravitation und Elektrizität”, PAWS (1918), 465-480.
1918a Raum-Zeit-Materie, 1st. Edition, Berlin, Springer
1918b Das Kontinuum. Kritische Untersuschungen über die Grundlagen der Analysis, Viet,
Lepizig.
1919 Raum-Zeit-Materie, 3d Revised Edition, Berlin, Springer
1923 Raum-Zeit-Materie, 5th Revised Edition, Berlin, Springer
1939 The Classical Groups: Their Invariants and Representations, Princeton, Princeton
University Press.
1944 “David Hilbert and his Mathematical Work”, Bull. AMS 50, 612-654.
496 REFERENCES
Wiechert, E.
1899 Grundlagen der Elektrodynamik. Festschrift zur Feier der Enthüllung des Gauß-Weber-
Denkmals in Göttingen, Teubner, Leipzig.
1901 “Elektrodynamische Elementargesetze”, AP 4, 667-689.
Wien, W.
1900 “Ueber die Möglichkeit einer elektromagnetischen Begründung der Mechanik”, Archives
néerlandaises 5, 96-104. (Repr. in Phys. Chem. Ann. 5 (1901), 501-513.)
1909 “Theorie der Strahlung”, EMW Vol. 5, 3 (23), 356-387.
Wiener, H.
1891 “Über Grundlagen und Aufbau der Geometrie”, JDMV 1, 45-48.
1893 “Weiteres über Grundlagen und Aufbau der Geometrie”, JDMV 3, 70-80.
Wigner, E.
1927 “Über nichtkombinierende Terme in der neuen Quantentheorie”, ZP 40, 492-500, 883-
892.
Wightman, A.S.
1976 “Hilbert’s Sixth Problem: Mathematical Treatment of the Axioms of Physics”, in F.E.
Browder (ed.) 1976.
Wise, N.
1979 “The Mutual Embrace of Electricity and Magnetism”, Science 203, 1310-1317.
Wüllner, A.
1870 Lehrbuch der Experimentalphysik, 2d ed., 3 Vols., Leipzig, Teubner. (Vol. 4: 1874-75).
Yandell, B.H.
2002 The Honors Class: Hilbert's Problems and Their Solvers, Natick, MA, AK Peters.
Yavetz, I.
1995 From Obscurity to Enigma. The Work of Oliver Heaviside, 1872-1889, Boston,
Birkhäuser. (SN, Vol. 16.)
Zach, R.
1999 “Completeness before Post: Bernays, Hilbert, and the Development of Propositional
Logic“, BSL 5 (3), 331-365.
Zassenhaus, H.
1973 “Zur Vorgeschichte des Zahlberichts”, in Rüdenberg & Zassenhaus (eds.) (1973), 22-26.
Zermelo, E.
1908 “Untersuchungen über die Grundlagen der Mengenlehre”, MA 65, 261-281.
Ziegler, R.
1985 Die Geschichte der geometrischen Mechanik im 19. Jahrhundert : eine historisch -
systematische Untersuchung von Möbius und Plücker bis zu Klein und Lindemann,
Stuttgart.
497
INDEX
A
Aachen, 136
Abraham, Max (1875-1922), 8, 49, 133-
136, 174, 215-219, 273, 297, 299, 305,
306-308, 328, 419, 454-455, 459
Abrams, Len, 381
absolute differential calculus, 292, 295
absorption capacity (coefficient), 239,
242, 247-250, 255, 259-261, 417, 445,
465-466
Ackermann, Wilhelm (186-1962), 438
action and reaction principle, 305
action at a distance, 69, 150, 296, 377,
387
adiabatic process, 156, 161
aerodynamics, 73
Alexandrov, Pavel (1896-1982), 109
algebraic invariants, 3, 17, 19, 25, 89,
112, 359, 437, 446
algebraic number fields, 3, 20-21, 85, 89,
96, 227, 438
Althoff, Friedrich (1839-1922), 72
Ambronn, Leopold Friedrich Anton
(1854-1930), 81
Ampère, André Marie (1775-1836), 70
Annalen der Physik, 229, 304, 310, 363,
374, 449
Anschauung, 36, 62, 69, 83-84, 117, 118,
124, 399, 423-425
anthropomorphism, 9, 379, 393, 399, 423
Apelt, Ernst Friedrich (1812-1859), 36
Appell, Paul (1855-1930), 92
applied mathematics, 47, 69, 73-78, 321
Arabatzis, Theodor, 131
Archimedean axiom, 41, 86, 97, 123, 141
Archiv der Mathematik und Physik, 74
arithmetic, 7, 22-27, 35-43, 51-52, 66, 94-
106, 113-115, 121-125, 183, 229, 255,
281, 370, 396-397, 424-428, 446
consistency, 97, 101-104, 121-122,
426
foundations, 36, 75, 102, 104, 120-
123, 296, 318, 369, 396, 409, 413,
427, 434, 438, 446, 449
Aronhold, Siegfried (1819-1884), 17
Ascoli, Giulio (1843-1896), 228
astronomy, 81, 123, 130, 149-151, 166-
168, 175, 186, 447
atomic theory, 50, 65, 246, 412-415
atomistic conceptions/atomistic
hypothesis, 46-49, 55, 62-63, 69, 80,
92, 106, 148, 151, 169, 198, 219, 231,
234, 267-268, 282, 284, 377, 445
Aufruf an die Kulturwelt, 325, 448
Ausdehnungslehre, 36
axiom of completeness (Vollständigkeits-
axiom), 97, 100, 121
498 INDEX
axiom of parallels, 29
axiom systems
completeness, 95-100, 111, 114, 164,
165, 181, 274, 426, 438
consistency, 56, 96-100, 104, 111-114,
122-124, 165-166, 176, 181, 183,
397, 415
ordinal independence, 44
relative consistency, 111
simplicity, 57, 59, 66, 95, 98, 114, 164
independence, 43-44, 56-58, 87, 95-104,
111-115, 121-126, 140, 164-165, 176,
181, 183, 216-217, 260, 264, 267, 276,
325, 376, 384, 397, 402, 413, 416,
424-425, 430, 436,
axiomatic approach, 3, 6, 20, 24-25, 38,
50, 59, 65, 83-85, 88, 93-98, 101, 104,
119, 142, 151, 157, 174-176, 179, 221,
262, 289, 372, 374, 396, 426, 431
axiomatic method, 3, 7, 11, 20, 54, 88,
90, 110, 118, 121-126, 157, 162, 177-
178, 198, 230, 239, 262, 266-278, 334,
344, 350-351, 357, 373-374, 397, 403,
418, 442
B
Baade, Walter (1893-1960), 322, 353
Babbage, Charles (1791-1871), 35
Baird, D., 55
Baltic Sea, 326
Bandomir, C.A., 178
Bär, Richard (1892-1940), 369, 440, 451,
458
Barbour, Julian, 51, 53, 145, 290
Bargmann, Valentin (1908-1989), 224
Barkan, Diana, 81, 244
Basel, 51, 472, 478, 480--484, 489-494
Baule, Bernhard (1891-1976), 265, 274,
317, 451, 457-458
Bauschinger, Julius (1860-1934), 168
Becquerel rays, 133
Becquerel, Jean (1878-1953), 133, 437
Behmann, Heinrich (1891-1970), 319,
369, 370, 427, 438
Behrens, Wilhelm, 263, 451, 456
Belna, J.P., 111
Bergia, Silvio, 364
Berlin, v, vi, viii, 2, 8, 13-15, 30, 34, 47,
72-73, 76, 81, 102, 119, 133, 168, 215,
289, 296-297, 320, 326-330, 345-346,
348, 351-353, 364-369, 413, 414, 428,
447-449, 454
Berlin Academy, 8, 15, 289, 296, 330,
345, 351, 364, 428, 449, 454
Bernays, Paul (1888-1977), 295, 296,
370, 427, 436, 449, 451, 458
Bernstein, Felix (1878-1956), 121, 319,
321, 326, 369, 456
Bertrand’s principle, 146-147
Besso, Michele (1873-1955), 225, 295,
328, 347, 363, 364, 459
Bianchi identities, 341
Bibliotheca Mathematica, 73
Bierhalter, G., 154
binary quadratic forms, 17
Birkhoff, Garrett (1911-1996), 420
black-body radiation, 242-246
Blackmore, J.T., 50, 55
Blaschke, Wilhelm (1885-1962), 385
Blasius, Paul Heinrich (1883-1970), 130
Blum, P., 109, 149
Blumenthal, Otto (1876-1944), 3, 18, 20,
21-24, 85, 89, 345
body alpha, 52
Bohlmann, Georg (1869-1928), 107, 164-
166, 171, 176
Böhm, Friedrich (1885-1965), 323, 456
Bohr Festspiele, 412
Bohr, Harald (1887-1951), 409
Bohr, Nilels (1885-1962), 412-413, 442
Boi, L., 45
Boltzmann distribution, 48, 238
Boltzmann equation, 2, 171, 229, 237,
238, 441
Boltzmann, Ludwig (1844-1906), 2, 46-
50, 60-65, 76, 77, 80, 92, 106-107,
129, 140, 141, 148-153, 168-171, 179-
180, 229, 235-251, 276-277, 441-447
Bolyai, Janos (1802-1860), 26-30, 227,
447
Bolza, Hans, 265, 458
Bonn, 14, 15, 30, 86, 129, 160, 445
Boole, George (1815-1864), 17
Boolean algebra, 116
Boos, W., 112
Borga, M., 44
Boring, E.G., 175
INDEX 499
Born, Max (1882-1970), viii, 4, 130, 134,
161-163, 183-189, 214-219, 225, 227,
238, 241, 246-248, 253, 263-271, 282,
287, 291, 309-326, 333, 335, 341-354,
366-368, 376, 377, 411-421, 440, 447-
463
Born-Wiener operator method, 415
Bortkiewicz, Ladislaus von (1868-1931),
164
Bosworth, Anne Lucy (1868-?), 120
Bougoslawski, S., 263
Brendel, Martin (1862-1939), 81
Breslau, 214, 215, 241, 252, 434
Brest-Litovsk, 322
Brigaglia, Aldo, 36, 122
Brill, Alexander von (1842-1935), 21, 30,
150, 278
Broggi, Ugo (1880-1965), 166
Brotherus, Hjalmar V. (1885-1962), 248
Brouwer, Luitzen E.J. (1881-1960), 396,
434
Browder, Felix E., 109
Brownian motion, 241
Brush, Stephen G., 2, 46, 47, 237, 265
Brussels, 161, 244, 447, 456
Bucherer, Alfred H. (1863-1927), 153
Budde, Emil (1842-1921), 92, 129
Burali-Forti, Cesare, 45
Burkhardt, Heinrich (1861-1914), 74
C
Cambridge, 75, 130, 161, 214
Caneva, Keneth, 36, 45
Cantor, Georg (1845-1918), 18, 23, 35,
37, 42, 68, 100, 101, 104, 166, 446,
459
Cantor’s continuum hypothesis, 104
capillarity theory, 12, 129, 186, 454
Carathéodory, Constantin (1873-1950),
160-163, 183, 252-257, 262, 321, 440,
448, 455-459, 462
Cario, Günther (1897-1984), 411
Carnot processes, 163
Castelnuovo, Guido (1865-1952), 75
Cattani, Carlo, 8, 297, 307
Cauchy problem, 338, 340, 362, 385
causality principle, 68, 294-296, 304,
331, 338, 340, 346, 360, 362, 377, 378,
385-386, 400-403, 435-436, 464
Cayley, Arthur (1821-1895), 17, 20, 32
Celestial Mechanics (Laplace), 173
Cercignani , Carlo, 2, 46
Chapman, Sidney (1888-1970), 265
Chasles, Michel (1793-1880), 30
Chicago, 19, 20, 115, 323, 447
Christiansen, M., 91
Christoffel symbol, 340
Christoffel, Elwin Bruno (1829-1900),
29, 292
civilian war prisoner, 322, 409
Clausius, Rudolf (1822-1888), 154, 161
Clifford, William Kingdon (1845-1879),
28, 29, 33
Cohn, Emil (1854-1944), 197
Compton, Karl Taylor (1887-1954), 411
Condon, Edward U. (1902-1974), 411
conductivity, 79, 196, 272
conservation laws, 204, 355, 391
conservation of mass principle, 199
continuity equation, 152, 239
contraction hypothesis, 132, 194, 211
Contro, Walter, 40, 41, 45
coordinate conditions, 295, 337, 339, 348,
352-361, 386, 405, 436
coordinate systems, 202, 273, 294, 346,
346, 385-386
coordinate transformations, 292, 309,
380-381
rotating, 294, 345
Corry, Leo, 6, 12, 21, 25, 30, 36, 37, 95,
116, 117, 118, 142, 189, 307, 322, 330,
352, 409, 420, 442
cosmology, 29, 322, 364, 388, 449
Coulomb’s law, 62, 300
Courant, Richard (1888-1972), 409, 411,
413, 414, 420, 440
covariance/invariance
Galilean, 132, 173, 174
general, 2, 7, 214, 225, 292-294, 296,
309, 316, 328, 329, 332-361, 381-
386, 391-394, 401, 403, 423, 433,
436, 448
limited, 307, 345, 357
Lorentz, 132, 191, 194, 196, 198, 200,
204, 205, 217, 218, 220, 222-223,
226, 235, 271, 289-292, 300-303,
333, 377, 433
Cremona, Luigi (1830-1903), 30
Crilly, Anthony, 17
cross-ratio, 32, 33, 41
Crowe, Michael, 138, 153
500 INDEX
crystal physics, 232, 234, 322
Cyclotomic fields, 19
Czuber, Emanuel (1851-1925), 21, 164-
167, 171
D
d’Alembert principle, 93, 146
Darboux, Gaston (1842-1917), 30, 91,
138, 140
Darrigol, Olivier, vi, 49, 71, 134, 136,
197
De Finetti, Bruno (1906-1985), 166
De Sitter, Willem (1872-1934), 364
Debye, Peter (1884-1966), 271, 317, 318,
321, 366, 411, 448, 453, 456-457
Dedekind, Richard (1831-1916), 12, 13,
21-23, 36-43, 85, 99, 100, 101, 166,
379, 380, 421, 445-446, 459-461
Dedekind's theory of cuts, 39, 99
Dehn, Max (1878-1952), 41, 120
density
charge, 189, 300
current, 189
electricity, 196, 216
energy, 302
mass, 152, 199, 290
optical, 147
radiation, 258, 261, 465, 466
Desargues, Girard (1591-1661), 30
Desargues’s theorem, 30, 32, 42, 89, 96,
97, 98
Despeyrous, Th., 91
Deutschen Mathematiker-Vereiningung,
21-22, 42, 64, 66, 72, 74, 85, 86, 99,
112, 132, 167, 189, 446
Dickson, Leonard Eugene (1847-1952),
116
dielectric constant, 196
Dieudonné, Jean (1906-1992), 6, 17, 77,
118, 228
differentiability conditions, 28, 105
differential equations, 12, 15, 19, 35, 59,
109, 151-152, 162-163, 169-170, 185-
186, 189, 199, 228-229, 235-236, 280,
336-338, 375, 385, 410, 427, 434, 454
Encyklopädie article, 76
dilute gases, 241, 317, 319
Dirac, Paul A.M. (1902-1984), 412- 415
Dirichlet principle, 22, 109, 127, 445
Dirichlet, Gustav Lejeune (1805-1859),
22, 37, 109, 127, 447
DiSalle, Robert, 51, 53
divergence, 211, 338-339, 355, 360, 390
covariant, 355
Dolezalek, Friedrich (1873-1920), 81
Doppler effect, 79-80
Dorier, J.L., 141
Droste, Johannes (1886-1963), 364
Du Bois-Reymond, Emil (1818-1896),
102
Dugac, Paul, 85
Duhamel, Jean-Marie C. (1797-1872),
129
Duhem, Pierre (1861-1916), 47
Dühring , Eugene (1833–1921), 92
E
Earman, John, 189, 290, 295, 330, 430
Eckert, Michael, 232
Eddington, Arthur S. (1882-1944), 394,
437
Edwards, Harold, 21
Edwards, M.R., 284
Ehrenfest, Paul (1880-1993), 47, 76, 77,
150, 179, 183, 220, 243, 246, 265,
291-295, 348, 364, 440, 448, 455- 459
Ehrenfest-Afanaseva, Tatyana (1876-
1964), 47, 76, 77, 150, 179, 265, 440,
448
Einstein, Albert (1879-1956), v, vii, 2, 7,
8, 81, 132, 136, 149, 168, 182, 186-
195, 205-206, 211-226, 235-236, 243,
249, 271, 284-297, 300, 302-317, 320-
462
Einstein's 1915 Prussian Academy
communications, 375
first, 348, 351, 353
fourth, 328, 354, 356, 358, 363
fourth, 360
second, 349, 355
third, 352, 363, 375
Einstein 1915 visit to Göttingen, 320,
333, 405
Eisenstaedt, Jean, 364, 381
elasticity, 93, 214, 234, 287, 301, 311,
390
electric current, 196
INDEX 501
electricity, 12, 45, 56, 64, 88, 114, 125,
133, 134, 135, 189, 191, 194, 198, 208,
216, 217, 219, 246, 272, 301, 388, 446
electrodynamic potentials, 387
electrodynamics, 7, 15, 49, 54-55, 79-81,
107, 128-136, 149, 152-153, 172, 178-
200, 205, 210-225, 239, 246-248, 272-
281, 300, 304-305, 311-316, 324, 333-
337, 342-345, 350, 356-357, 362, 367,
375-376, 387, 390-391, 397, 401, 432-
434, 440, 444-447, 464
of moving bodies, 136, 149, 186-190,
194-198, 210, 213, 446
electrolysis, 317
electromagnetic field, 136, 216, 283, 310,
337
electromagnetic mass, 310
electromagnetic oscillations, 228, 280,
316, 317
electromagnetic potentials, 335, 341, 374,
377
electromagnetic reductionism, 231
electromagnetic view of nature, 49, 132-
134, 182, 191, 195, 206, 213, 219, 299,
311-315, 377
electromagnetism, 153, 198, 236, 242,
267, 278, 299, 337, 351, 378, 391, 430
electron
deformable, 132
high-speed, 133
rigid, 133, 216, 218
electron theory, 49, 79-81, 130-137, 149,
174, 187, 193, 198, 213, 216, 219, 228,
241, 244, 271-272, 277, 281, 300, 309,
312, 314, 317, 368, 377, 447, 463
conduction electrons, 216, 283
magnetization electrons, 216, 283
polarization electrons, 216, 283
electro-technology, 130
Ellison, W. and F., 22
emission capacity (coefficient), 239, 242,
247, 248, 255, 445, 465
Encyklopädie der mathematischen
Wissenschaften mit Einschluss ihrer
Anwendungen, 54, 66, 67, 74-77, 92,
107, 129, 135, 144, 153, 164, 168, 174,
179, 183, 197, 249, 252, 326, 436,
446-449
French version, 76
enduring core, 400, 402
energy, 302, 465-466
absorbed and emmited, 242
conservation principle, 46
current vector, 302
density, 282, 304
elements, 243
equal energy elements, 243
equilibrium, 253
kinetic, 146, 147, 172, 276, 277
magnetic, 133
momentum, 315
potential, 46, 149, 151, 173, 234
quanta, 244
radiant, 261, 294
self-energy, 217, 218, 300, 310
total energy density, 250
energy conservation principle, 45, 62, 93,
145-147, 156, 194, 199, 200, 214, 220,
264, 276, 293, 294, 301-302, 305-306,
311-315, 338-340, 356, 359-360, 369,
377, 384-388, 407, 435, 449
Enriques, Federigo (1871-1946), 34, 42,
75, 122
Enskog, David (1884-1947), 265, 436
entropy, 46-48, 154-161, 163, 168-169,
178, 239, 242-243, 257, 268, 270, 397,
445
Entwurf Theory (Einstein-Grossmann),
289-297, 306-307, 311, 323-333, 337,
346-349, 354, 371, 448
equation of state, 268, 270, 271
equilibrium, 48, 142, 144, 146, 155, 161,
216, 251, 253, 255, 257, 259, 262, 264,
269, 313, 465-466
chemical, 241
thermal, 154-155, 242-243, 250, 254-
257, 465
equivalence principle, 205, 289, 290, 291,
294, 307, 323, 373, 447
ergodic hypothesis, 241
Erlangen, 66, 222, 321, 436
Erlanger Programm, 33-35, 44, 75, 445
ether, 45, 56, 70, 130- 136, 189-191, 195,
198, 208, 216-217, 233, 273, 299-304,
311, 371
Euclid’s Elements, 37, 39
Euler equations, 129, 152, 153, 454
evangelist church, 299
Ewald, Paul P. (1888-1985), 232, 241,
249, 253, 317, 321, 440, 448, 456, 458,
460, 462
502 INDEX
Ewald, William, 26, 28, 39, 40, 398
F
Fachwerk von Begriffen, 123, 124, 393,
396, 425
Fano, Gino (1871-1952), 34, 44, 75, 77,
86
faster-than-light motion, 136
Fechner, Gustav (1801-1887), 175
Fermat’s theorem, 102, 231
Fisch, Menachem, 35
Fokker, Adriaan (1887-1968), 364
Fölsing, Albrecht, vi, 54, 55, 325, 328
Föppl, A., 129, 454, 456
Fortschritte der Physik, 252
Fowler, Ralph H. (1889-1944), 163
Franck, James (1882-1964), 411
Franco-Prussian war, 31
Frankfurt, 215, 485
Frederiks, Vsevolodk F. (1885-1943),
322, 408, 440
Fredholm, Ivar (1866-1927), 228
Frege, Gottlob (1846-1925), 86, 107,
111-114, 121, 143, 165, 446, 460
Frei, Gunther, 11, 18, 20, 72, 85, 86
Frenkel, V., 322
Fresnel, Augustine J. (1788-1827), 52,
265
Freudenthal, Hans (1905-1990), 30, 98
Freundlich, Erwin Finlay (1885-1964),
306, 307, 346, 354, 459
Friedmann, Alexander (1888-1925), 322
Friedmann, Michael, 430
Frobenius, Georg Ferdinand (1849-1917),
76, 297
Fuchs, Lazarus (1833-1902), 76, 447
G
Gabriel, G., 112-114, 121, 143, 165
Galison, Peter L., 187, 189, 191
Galois theory, 15
Gans, Richard (1880-1954), 153
Gauss, Carl Friederich (1777-1855), 11,
17, 21-27, 68, 81, 87, 88, 107, 126,
134, 145-148, 167-168, 279, 292, 324,
378-379, 387, 427, 446
Disquisitiones Arithmeticae, 23
error theorem, 167
square law, 168
three mountain peaks experiment, 87,
126, 279, 378-379, 387, 427
Gaussian coordinates, 386, 403
Gaussian integers, 21
Gauss-Weber Festschrift, 81, 107, 134
genetic approach, 99-100, 123-124, 424,
425
geodesics, 292, 384
geometry
analysis situs, 83, 116
analytic, 32, 39, 42, 48, 83-86, 98, 109,
182, 265
consistency, 96, 104
continuity assumptions, 32, 38-43, 85-
89, 94-101, 105, 426
differential, 29, 292, 324, 378, 380,
385
Euclidean, 26-43, 58, 86-98, 104, 113,
125, 139, 148, 209, 278-279, 290-
291, 296, 306, 378-388, 396, 423-
427, 454
foundations, 1, 3, 6, 7, 11, 19- 25, 28-
29, 36-44, 50, 58, 65, 84, 85-86, 90,
93, 105-106, 115, 120-123, 277,
292, 413, 417, 423, 428, 437-438
hyperbolic, 28, 33, 202
metrization, 42, 87, 98
non-Archimedean, 44, 87, 99,125, 446
non-Euclidean, 23-33, 40, 85-86, 96,
125, 190, 195, 387, 391, 445, 495
parallel postulate, 32, 87, 88, 96, 112,
427
projective, 25, 29-36, 40-44, 58, 83,
84-89, 95, 97, 111, 116, 446
pseudo-geometry, 387
Riemannian, 30, 404
spherical, 12, 28, 33, 299, 381
unification, 30-31
variable curvature spaces, 28, 33
geophysics, 81
Gesellschaft Deutscher Naturforscher
und Ärzte, 64, 128, 132, 189, 206, 249,
271, 306, 310, 446-448
Giannetto, E., 187
Gibbs, Josiah Willard (1839-1903), 138,
153, 161, 168
Gispert, Helène, vi, 76, 78
Gleason, Andrew, 106
Glymour, Clark, 189, 290, 330, 432
Gnedenko, J., 1
INDEX 503
Goenner, Hubert, 364
Goethe, Johann Wolfgang von (1749-
1832), 176, 409
Goldberg, Stanley, 133
Goodstein, Judith, 297
Gordan, Paul (1837-1912), 17-20, 30,
227, 326
Gordan’s basis theorem, 17
Göttingen Mathematische Gesellschaft
(GMG), 20, 73, 120, 128-130, 179,
186, 187, 189, 193, 214-217, 222, 237,
271, 310- 311, 316, 319, 323, 324,
330-331, 352, 356, 369, 388-390, 447,
454
Göttingen Nachrichten, 366, 390, 400,
434, 467
Göttinger Vereinigung zur Förderung der
Angewandten Physik, 74
Grand Prix des Sciences Mathématiques,
13
Grassmann, Hermann Gunther (1809-
1877), 35-36, 42-44, 86, 177, 459
Grattan-Guinness, Ivor, 101, 109, 111
gravitation, 63, 84, 132-133, 153, 172,
187-205, 220, 225, 235, 273, 283-289,
289, 293, 302-404, 434, 437, 442, 447,
448
Euler-Lagrange equations, 340
Euler-Lagrange equations, 375
geometrical interpretation, 292
Mie’s theory, 300-306
Minkowski’s theory, 200-204, 212
Newtonian, 149, 200, 289, 293
Newtonian limit, 355
Nordström’s theory, 307
gravitational field, 152, 289, 290, 292,
293, 294, 304, 307, 342, 346, 356, 357,
362, 364, 375, 381, 382, 384, 430, 433,
435, 437, 441, 442, 448, 449
non-static, 407
static, 293
gravitational field equations, 8, 168, 289-
302, 320-329, 333, 337, 340, 342, 345,
346-362, 373-380, 383, 387, 402-404,
421, 427, 435, 436, 442, 448
first exact solution, 363
Schwarzschild solution, 380- 385, 435
trace term, 355, 358-359, 406
gravitational light rays bending, 290, 306,
307
gravitational mass, 289, 305-306, 383
gravitational potentials, 225, 290, 292,
305, 306-307, 335-342, 351, 357, 380,
386
gravitational red shift, 290, 306, 384, 394
Gray, Jeremy, vi, 45, 102-106
Greffe, J.L., 71
Greifswald, 299, 371
Grelling , Kurt (1886-1942), 121, 319,
326
Grommer, Jakob (1879-1933), 322, 364,
408, 436
Grossmann, Marcel (1878-1936), 289-
295, 311, 323-324, 348, 352, 359, 374,
448, 456
Grotrian, Walter (1890-1954), 411
group theory, 25, 29-34, 41, 73, 94, 95,
96, 98, 115-116, 126, 164, 206-210,
222, 223, 319, 391, 392
groups
continuous geometrical, 77
invariance, 291, 293, 333
transformations, 29, 32, 33, 348
Grundlagen der Geometrie (Hilbert), 11,
23, 25, 29, 32, 35, 63, 66, 69, 81-107,
114-120, 124-127, 164-166, 179-183,
257, 421, 423, 424-426, 447
Guth, E., 329, 432
GWG, see König. Ges. Wiss. Gött.
H
Halle, 42, 51, 85, 299, 370, 446
Hamel, Georg (1877-1954), 120, 138,
140, 142, 178, 183, 440
Hamilton principle, 57, 68, 93, 147, 173,
199, 218, 244, 312, 335, 373, 387, 427,
434, 436
Hamiltonian function, 147, 173, 218-219,
295, 297, 302, 312, 334-340, 346, 371-
374, 383, 387, 391, 403, 427, 434-435
Hardy, Godfrey H. (1877-1947), 227, 409
Harman, P.M., 45
Harvard, 420
Hashagen, Ulf, vi, 74-76
Hasse, Helmut (1898-1979), 22-23
Hausdorff, Felix (1868-1942), 117
Hawkins, Tom, vi, 29-35, 77
Heaviside, Oliver (1850-1925), 138
504 INDEX
Hecke, Erich (1887-1947), 241, 265, 344,
440, 451, 456, 460, 462
Heidelberg, 12, 121, 122, 153, 299, 318,
447
Heilbron, John, 45, 47, 195, 393
Heisenberg, Werner (1901-1976), 411,
413-417, 440, 449
Hellinger, Ernst (1883-1950), 77, 215,
228, 326, 450-451
Helm, Georg Ferdinand (1881-1923), 49
Helmholtz, Hermann von (1821-1894),
15, 25-29, 42, 53, 105, 128, 129, 154,
176, 270
Helmholtz-Lie space problem, 29, 105
Hentschel, Klaus, 212, 309, 323
Herglotz, Gustav (1881-1953), 130, 136,
215, 311, 411, 447, 453-457, 463
Hermite, Charles (1822-1901), 12
Hershel, John (1792-1871), 35
Hertz, Heinrich (1857-1894), 54- 71, 86-
96, 106-107, 113, 136, 140-144, 147-
150, 153-154, 179-181, 221, 235, 273,
277-278, 299, 321, 326, 424-446, 454-
457
Hertz, Paul (1881-1940), 136, 241, 321,
326, 345, 346, 448
Hesse, Otto (1811-1874), 17
Hessenberg, Gerhard (1874-1925), 89
Hiebert, Erwin N., vi, 47, 50, 154
Hilbert, David (1862-1943)
1900 list of problems, 1, 3, 6, 83, 91,
92, 104, 109-111, 120, 129, 421,
426
courses on mechanics, 83, 91, 93, 129,
172, 185, 228, 234-235, 367
sixth problem, 1, 3, 6, 104, 106-110,
119, 137, 164, 178, 220, 239
theory of infinite determinants, 25
unified theory, 7, 8, 284-287, 295, 307,
309, 316, 329, 330-362, 374, 382,
391, 404-407, 415, 422
1924 version, 340, 357, 359, 392,
399, 402-404, 408
Axiom of Space and Time, 339-
340, 360, 402
energy concept, 338, 342-344, 351,
356, 360, 389, 422
first communication, 352
first printed version, 343, 353, 355,
361, 402-405
Proofs version, 330, 334-345, 357-
361, 371, 383, 386, 400-404, 489
Proofs version, missing lines, 340
second communication, 8, 329, 340,
350, 356, 360, 366, 368, 376,
377, 379, 381, 383-388, 397,
423, 426, 431, 434-436, 449
Theorem I, 336-338, 350, 358, 386,
391, 392, 403, 422
Hirosige, Tetu, 133, 197
Hochkirchen, Thomas, 110, 164, 166
Höhnl. H., 299, 301
Holton, Gerald, 212
homogeneous bodies, 154, 248, 268
Hon, Giora, 133
Hopf, Ludwig (1884-1939), 284
Hopmann, J., 168
Howard, Don, 321, 324, 326
Hückel, Erich (1896-1980), viii, 413, 451,
458
Hund, Friederich (1896-1997), 411
Huntington, Edward V. (1847-1952), 95,
115, 116
Hurwitz, Adolf (1859-1919), 13, 15, 21,
88, 227, 460
Husserl, Edmund (1859-1938), 110, 121,
323, 447
hydrodynamics, 15-16, 47, 75, 79, 90, 93,
129, 153, 239, 287, 448, 451-453, 463
hydrogen atom, 354
I
ideal oscillator, 242
Immanuel Kant (1724-1804), 12, 57, 69-
70, 94, 117, 299, 429-431
incompressible fluids, 150
inertia
of a charge flow, 219
principle, 70
relativity of, 364
transverse, 133
inertia (principle of), 208, 290, 323, 430
Carl Neumann’s criticism, 51, 52, 53,
54
Hertz’s discussion, 59
Hilbert’s discussion, 143
Minkowski’s discussion, 191
inertial fields, 292
inertial mass, 218, 289, 303-306, 384
inertial motion, 143, 204
INDEX 505
inertial properties of matter, 49, 213
infinite matrices, 414
infinitesimal element, 27, 201
Ingrao, Bruna, 75
insurance mathematics, 107, 164, 171-
173, 177, 323
integral equations, 2, 3, 21, 25, 77, 109,
127, 171, 228-230, 238-239, 246-261,
265, 267, 285, 317, 377, 414, 417, 438,
447
intensity magnitudes, 301-303
International Congress of Mathematicians
(ICM), 1, 20, 101, 121-122, 153, 166,
228, 244, 325, 446, 447
intuitionism, 396, 434
invariant theory, 15, 17, 20, 93, 321, 339,
389
isothermal, 157-158
Israel, Giorgio, 35, 75
J
Jacobi principle, 12, 91, 93
Jacobi, Carl Gustav (1804-1851), 12
Jahrbuch der Radioaktivität und
Elektronik, 211, 308
Jahresbericht der Deutschen
Mathematiker-Vereiningung, 20, 21,
22, 64, 75, 86, 109, 128, 129, 130, 179,
186, 193, 214, 215, 237, 253, 254, 257,
259, 261, 262, 271, 296, 310, 311, 319,
323, 324, 330, 331, 352, 356, 368, 369,
388, 390, 445, 453
Janssen, Michel, vi, 132, 287, 291, 293,
294, 295, 346
Jeans, James (1877-1946), 243-244
Johann Georg Rosenhain (1816-1887), 12
Jordan, Camille (1838-1921), 30
Jordan, Pascual (1902-1980), 411, 414-
418, 437, 440
Jungnickel, Christa, 13, 45, 48, 49, 51,
54, 61, 79, 92, 132, 134, 232, 234, 297,
317, 321
K
Kahle, R., 104, 121
Karachalios, Andreas, 411
Kármán, Theodor von (1881-1963), 241,
265, 455, 456
Kassel, 129, 453
Kast, W., 299
Katzir, Shaul, vi, 187, 232
Kaufmann, Walter (1871-1947), 49, 130,
133-134, 196, 211-212, 299
Kennedy, H., 43-44
Kepler’s law, 204, 213, 382
Kerszberg, Pierre, 364
Khinchin, Aleksandr Y. (1894-1959),
227
Killing , Wilhelm (1847-1923), 29, 33,
34, 42
kinetic theory, 2, 3, 7, 12, 46-49, 64, 76,
107, 168-171, 179, 214, 226, 229-250,
265, 267-274, 284, 301, 310, 317, 320,
382, 397, 417, 445-448
equipartition theorem, 48, 252
H-curve, 48
Stossanzahlansatz, 179
Umkehreinwand, 47
Wiederkehreinwand, 47, 179
Wiederkehreinwand, 179
Kirchhoff, Gustav (1824-188), 51, 55, 64,
91, 129, 239, 242, 247-264, 445
Kirchhoff’s laws, 239-264, 445
Klein, Felix (1849-1925), 4, 11, 12-14,
18-47, 54, 58, 66, 72-97, 119, 130,
193, 214-224, 263, 266, 321-326, 338,
359, 365, 366, 369, 376, 388-392, 399,
407-409, 419, 431, 435-450
Klein, Martin, 46, 150, 152, 179, 266
Kneser, Adolf (1862-1930), 76
Kneser, Hellmuth (1898-1973), 413, 416
Koebe, Paul (1882-1945), 251
Kohl, G., 306
Kohlschütter, Arnold (1883-1969), 130
Kolmogorov, Andrei N. (1903-1987), 166
Köln, 199, 206, 223, 447
Königlichen Gesellschaft der
Wissenschaften zu Göttingen (GWG),
127, 138, 193, 249, 263, 320, 329-330,
334, 354, 357, 361, 366, 384, 390, 417,
447-449, 457
Königsberg, 4, 12-20, 51, 58, 61, 73, 78-
83, 89, 90, 129, 166, 180, 227, 416,
429, 447-453
Köthe, G., 77
Kox, Anne J., 364
Kragh, Helge, 13, 134, 243, 414
Krakow, 271
Kratzer, Adolf (1893-1983), 451, 458
506 INDEX
Kremer, R.L., 176
Kretschmann, Erich (1887-1973), 365
Kronecker, Leopold (1823-1891), 18, 21-
24, 72, 102-104, 123, 379, 417
Kuhn, Thomas .S., 46-48, 79, 154, 168,
242-247
Kummer, Edward E. (1810-1893), 21-24
L
Lacki, J., 412, 413
Ladenburg, Rudolf (1882-1952), 248,
253, 263-264
Laemmel, Rudolf (1879-1962), 166
Lagrange, Joshep-Louis (1736-1813), 17,
70, 91, 128, 129, 277-278, 312, 315,
324, 336, 340, 375
Lagrangian equations, 109, 145-147, 277,
278, 312, 377, 390, 391
Lagrangian function, 133, 152, 174, 235,
278, 312-316, 335, 342-346, 358
Lamb, Horace (1849-1934), 75, 153
Lanczos, Cornelius, 145, 335
Landau, Edmund (1877-1938), 215, 409,
447
Landé, Alfred (1888-1975), 232, 321,
368, 440, 458
Lange, Louise, 323
Lange, Ludwig, 53, 145
Laplacian operator, 152, 290
Larmor, Joseph (1857-1942), 69, 130,
132, 143-144
Laub, Jakob (1882 – 1962), 224
Laue, Max von (1879-1960), 130, 224,
225, 243, 278, 359, 381, 440, 454
Laugwitz, Detlef, 28
Le Sage, Georges L. (1724-1803), 283
least action principle, 68, 133
least squares principle, 145, 167
Leibniz, Gottfried W. (1646-1716), 52
Leiden, 130, 271, 364
Leipzig, 12-13, 44, 51, 54, 74, 175, 411,
445
Leopold Infeld (1893-1968), 310
Lesezimmer, 4, 91, 129, 445
Levi-Civita, Tulio (1873-1941), 8, 292,
297, 320, 328, 365
Lewis, Gilbert .N., 136, 187, 276
Lewy, Hans (1904-1988), 420
Lexis, Wilhelm (1837-1914), 171
Lie , Sophus (1842-1899), 25-34, 86, 105,
106, 391, 445
light-cone, 212
Lindemann, Ferdinand (1852-1939), 13
line element, 27, 225
linear associative algebras, 116
Liouville's theorem, 48, 178-179
Lipschitz , Rudolf (1832-1903), 29, 37,
38, 292
Listing, Johann Benedikt (1808-1882), 78
Littlewood, John E. (1885-1977), 227
Lobatchevskii, Nikolai (1792-1856), 26-30
logic
foundations, 37, 47, 51-52, 57, 97,
100-111, 116-122, 125, 183, 296,
318-319, 370, 398, 426, 429, 450
symbolic, 66
longitudinal mass, 133
Lord Kelvin, 150, 161
Lorentz, Hendrik Anton (1853-1928), 49,
76, 77, 79, 129-136, 153, 174, 187-
235, 243, 244, 271-273, 280-289, 291-
293, 300-306, 312, 314, 333, 345, 346,
363-364, 375-377, 432-435, 446-447,
455-456, 460-461
Lorey, Wilhelm, 91, 92, 241, 445
Loria, Gino (1862-1954), 75
Loschmidt, Josef (1821-1895)., 47
Love, Augustus E.H. (1863-1940), 75,
153
Lübeck, 86
Lützen, Jesper, vi, 58, 60, 91, 148
M
Mach, Ernst (1838-1916), 47-51, 55, 57,
64, 68, 92, 106, 129, 145, 251, 290,
323, 446
Madelung, Erwin (1881-1972), 241, 284,
440
magnetic permeability, 196
Majer, Ulrich, vi, 54, 87, 111, 400, 428,
464
Maltese, Giulio, 218, 377
Mancosu, Paolo, vi, 319, 326, 370
Manegold, Karl-Heinz, 74
Marburg, 91, 409
Marxsen, Sophus, 20
Masani, P.R., 414
INDEX 507
Mathematische Annalen, 18, 34, 54, 73,
102, 163, 215-216, 229, 331, 340, 357,
359, 399-403, 445, 449
Mathematische Zeitschrift, 410, 449
matrix calculus, 190, 414
matrix mechanics, 414-417
Maxwell equations, 191, 193, 216, 273,
282-284, 299-304, 312, 341, 351, 362,
432
Maxwell, James Clerk (1831-1879), 46,
48, 54, 55, 64, 114, 131, 134, 153, 169,
170, 191, 193, 195, 216, 237-240, 248,
264, 273, 282-284, 296-304, 310-312,
314, 341, 344, 351, 362, 394, 430, 432,
433, 445, 446, 453, 454
Maxwell’s electromagnetic theory, 54,
55, 64, 114, 134, 248, 264, 300, 310,
394, 430
Mazzoni, L., 364
McCormmach, Russell, 13, 45, 48, 49,
51, 54, 61, 79, 92, 132, 134, 232, 234,
284, 297, 317, 321
mechanical models, 49, 50, 65
mechanical world view of nature, 50
mechanics
analytical, 93, 129, 311
applied, 263
axiomatic approach, 93
Boltzmann’s presentation, 63, 148
celestial, 411
classical, 92, 173, 174, 191, 198, 208,
218, 235, 278, 281, 290, 390, 391
fluid, 130
foundations, 54-58, 69-71, 86, 100,
147, 148, 277, 405, 424
Hertz’s presentation, 55-59, 64, 69,
144
Hilbert’s presentation, 147
history, 368
Lagrangian, 312
lectures, 73
Newtonian, 51, 132, 199, 204, 206,
209, 217, 272, 276, 297
non-Galilean, 144
non-Lagrangian, 276
non-Newtonian, 276
of a mass-point, 92
of continua, 127, 128, 129, 149, 150,
151, 185, 228, 234, 236
of continua (Euler’s approach), 150
of continua (Lagrange’s approach),
150
principles, 67-71, 142, 145, 148, 178,
199, 447
rational, 70, 75, 251
relativistic, 280, 287
statics, 142, 397
statistical, 76, 179, 183, 228, 266, 268,
270, 284, 287, 323, 417, 448
Medicus, Hermann, 329
Mehra, Jagdish, 189, 265, 399, 411, 412,
413, 415, 419, 432
Mehrtens, Herbert, 112, 118
Mercury
anomalous perihelion motion, 291,
294, 346, 352-355, 384, 407, 448
Mertens, Franz (1840-1927), 17
Methoden der mathematischen Physik
(Hilbert-Courant), 410-411, 440
Michelson-Morley experiment, 187, 191,
210, 212, 279, 323, 430
Mie effect, 299
Mie, Gustav (1868-1957), vi, viii, 7, 182,
234, 251, 271-273, 280-285, 287, 298-
319, 324, 333-382, 404-407, 421, 433-
436, 447-448, 456-462
Mie’s electromagnetic theory of matter,
234, 298-319, 333-382, 405, 421, 435-
436, 447, 448, 456
Born’s version, 311, 315, 316, 335,
341, 344, 448
Milan, 297
Miller, Arthur I., 88, 133, 189, 191, 197,
218
minimal constraint principle, 68, 93, 145,
148
Minkowski metric, 380, 427
Minkowski, Hermann (1864-1909), viii,
ix, 7, 13-15, 20-23, 73, 86-87, 101,
105, 110-111, 119, 128-136, 149, 152,
175, 182-228, 231, 235-236, 239, 242,
247, 250, 265, 268, 271, 278, 289-305,
309, 313, 318, 324, 333-34, 345, 361,
367, 380, 388, 402, 405, 411, 421, 427,
433, 436, 440-447, 453-456, 461-464
Minkowskian limit, 382
Möbius, August Ferdinand (1790-1868),
30, 32, 36
Molk, Jules (1857-1914), 76
Montgomery, D., 106
508 INDEX
Moore, Eliakim H. (1862-1932), 95, 115,
116, 447
Moore, G.H., 45, 47, 97, 100, 121, 141
Müller, Conrad, 215, 368
Müller, Georg Elias (1850-1934), 178
Munich, 64, 74, 99, 232, 271, 317, 323,
326, 411, 446
Münster, 249, 251, 253, 257, 261, 262,
271, 310, 448
Murray, D., 178
N
Nabl, J., 77, 447
Nagel, Ernst, 40
natural numbers, 37-39, 43, 169
n-body problem, 102, 281
n-electron problem, 273, 281, 282
Nelson, Leonard (1882-1927), 121, 319,
323
Nernst, Walter (1864-1941), 81, 129, 160,
241, 249, 252, 271, 317, 446, 448,
453-456, 464
Netto, Eugene (1848-1919), 75-76, 446
Neumann, Carl G. (1832-1925), 8, 51-53,
70, 73, 84, 143, 145, 179, 445
Neumann, Franz Ernst (1798-1895), 12,
51, 79, 166
Newtonian physics, 51, 57, 62, 63, 131,
132, 145-151, 162, 176, 200, 235-236,
272, 289-290, 295, 341, 352, 382, 393,
394, 430-431, 483, 486
n-manifold, 26
Noether, Emmy (1882-1935), 21, 38, 321,
326, 337, 356, 362, 369, 376, 388,
390-392, 403-409, 420, 441, 448-449,
456, 457
Noether, Max (1844-1921), 30
Noether’s invariance theorems, 337, 362
Noll, W., 178
non-holonomic systems, 150
Nordheim, Lothar (1899-1985), 8, 413-
418, 440, 449-452, 458
Nordström, Gunnar (1881-1923), 289,
306, 307, 364
Norlund, Niels E. (1885-1969), 76
North, J., 284
Norton, John D., vi, 192, 206, 222, 287,
289, 290, 291, 294, 306, 321, 324, 326,
349
nostrifizierung, 8, 99, 328, 406
number theory, 12, 13, 15, 20-25, 37, 78,
84, 86, 89, 93, 101, 104, 136, 169, 170,
222, 227, 396, 409, 429, 437, 450, 463
O
observational errors, 166
Olesko, Katheryn M., 13, 61, 79, 92, 166
Oppenheimer, Robert (1904-1967), 411
Oppolzer, Egon Ritter von (1869-1907),
175-176
optics, 12, 15, 88, 135, 147, 176, 215,
232, 246, 262, 264, 265, 322, 446
Orlando, L., 218, 377
Osterbrock, Don, vi, 322
Ostrowski, Alexandre (1892-1986), 409
Ostwald, Wilhelm (1853-1932), 47, 49,
50
Oxford, England, 13, 441
Oxford, Ohio, 323
P
Padoa, Alessandro (1868-1937), 111-112
Padova, 297
Pais, Abraham, 189, 224, 307, 322, 329,
432
Pappus’s theorem, 42, 89, 96-98
parallelogram law, 138, 140, 209, 396
Pareto, Vilfredo (1848-1923), 75
Paris, 1, 12, 13, 30, 35, 62, 65, 101, 105,
111, 122, 128, 149, 220, 445, 446
Paris Academy, 13
Parshall, Karen H., 17, 20, 31, 115
Pasch, Moritz (1843-1930), 25, 40-44, 57,
84, 85, 113, 115, 445
Pauli, Wolfgang (1900-1958), 77, 195,
306, 326, 375, 406, 411, 415, 416, 431,
436, 437, 449, 460
Peacock, George (1791-1858), 35
Peano ,Giuseppe (1858-1930), 36, 43, 44,
45, 86, 92, 111, 115, 446
Peckhaus, Volker, 47, 97, 104, 112, 121,
123, 319
perpetuum mobile, 145, 146, 154, 270
Perron, Oskar (1880-1975), 76
perturbation theory, 411
Petersen, Julius (1839-1910), 91, 129
Petrograd, 322
INDEX 509
phenomenology, 49, 64, 66, 79, 80, 195,
234-239, 251, 268, 273, 285
mathematical, 65
physics
continuity assumptions, 59, 68, 69,
139, 140-147, 156, 172, 177-178,
182, 214, 220, 418
foundations, 3, 6, 7, 11, 28, 49, 63, 71,
246, 267, 278, 290, 316, 331-334,
357, 366, 368, 380, 390, 396, 399,
403, 428, 432, 434, 438
Newtonian, 46, 47, 51, 131, 144-153,
173, 192, 203-205, 218, 235, 272,
276-277, 287, 290, 291, 294, 323,
380, 383, 394, 404, 405, 431
non-Archimedean, 141, 416
physics
theoretical, 237, 373
Physikalische Zeitschrift, 76, 241, 249,
250, 251, 252, 262, 271, 307, 310
Physikalische Zeitung, 76
Picard, Émile (1856-1941), 12
Pieri, Mario (1860-1913), 44, 45, 111
piezoelectricity, 232, 319, 322
plagiarism, 417
Planck, Max (1858-1947), v, 46, 47, 64,
81, 129, 130, 154, 162, 168, 178, 179,
190, 191, 195, 212, 231-233, 242-257,
261-266, 271, 278, 284, 326, 369, 393,
423, 447-448, 455-457, 461-462
Planck’s law, 447
Planck’s radiation law, 232, 244, 447
Plücker , Julius (1801-1868), 30, 33
Pohl, Robert Wichard (1884-1976), 411
Poincaré, Henri (1854-1912), 12, 29, 34,
47, 71, 102, 135, 136, 149, 164, 165,
174, 186, 187, 190, 191, 194, 205, 212,
220, 223, 224, 227, 231, 244, 246, 289,
446, 447, 455, 456, 460
Poisson equation, 152, 162, 290, 293, 362
Poncelet, Jean Victor (1788-1867), 30
postulational analysis, 111-116
potential theory, 12, 15, 51, 73, 93, 127
Prandtl , Ludwig (1875-1953), 73, 119,
130, 153, 215, 411, 447, 455, 456
pre-established harmony, 103, 186, 213,
214, 252, 394, 423, 429
pressure, 58, 152, 155, 161, 169, 267,
268, 301, 397
Principia Mathematica (Russell -
Withehead), 319
mechanics, 66
Principles of Mechanics (Hertz), 221
Pringsheim, Alfred (1850-1941), 75-76
Pringsheim, Ernst (1859-1917), 75, 247-
266, 373, 446, 448
priority, 8, 134, 187, 280, 328, 350, 353,
362, 407, 408, 436, 449
probabilistic arguments, 170
probability calculus, 21, 47, 81, 107, 164,
166, 168, 169, 170, 171, 229, 267, 276
proper time, 199, 200, 204, 213, 385
propositional logic, 123
pseudo-geometry, 385, 387
psychophysics, 175-177, 276, 397
Purkert, Walter, vi, 117
Pycior, Elena, 35
Pyenson, Lewis, 103, 129, 130, 136, 174,
186, 187, 188, 189, 198, 324, 394, 432
Pythagoras, 393
Q
q-calculus, 414
q-numbers, 415, 417
quantity magnitudes, 301-302
quantum discontinuity, 243, 244
quantum hypothesis, 231, 268-271
quantum mechanics, 8, 214, 413-419,
440, 449
quantum theory, 49, 79, 178, 179, 232,
243, 246, 284, 300, 317, 369, 377, 393,
397, 411-418, 449
quaternions, 193
R
Rademacher, Hans (1892-1969), 227
radiation
diffuse, 283, 284
monochromatic, 259
thermal, 231, 242
radiation theory, 7, 129, 154, 226-255,
256, 261, 264-268, 273, 276, 310, 317,
329, 358, 373, 397, 403, 408, 415, 417,
421, 438, 448, 464, 465
radioactivity, 49
Ramser, L., 61
Raum und Zeit (Minkowski), ix, 143, 205,
206, 209, 217, 222, 278, 279, 313, 345,
399, 402, 442, 451, 453, 480, 485
510 INDEX
Raum-Zeit-Materie (Weyl), 364, 433-435,
449
Rausenberg, Otto, 92, 129
Rayleigh-Jeans law, 243
real numbers, 35-39, 96-104, 121, 138
continuity assumptions, 96, 101
Rechenberg, H., 410, 411, 413, 415, 419
reductionism
electromagnetic, 7, 231, 285, 310, 313,
316, 333, 384
energicist, 49, 64
mechanical, 7, 46, 49, 50, 69, 221,
231, 235, 268, 285, 313
reference frame, 212, 292
accelerated, 187, 289, 293
inertial, 205, 235, 290
Reich, Karin, 29, 66, 190, 292
Reid, Constance, 3, 8, 22, 118, 185, 227,
232, 241, 325, 369, 409, 416, 420, 440,
442
Reiff, Richard (1855-1908), 149, 152
relativity
of the gravitational potential principle,
305
postulate, 152, 187, 193, 198-216, 220-
221, 236
principle, 7, 8, 130, 185, 186, 187,
190-223, 239, 268, 274, 278, 285,
287, 290, 300-307, 321, 364
general theory, 2, 3, 7, 8, 77, 81, 106,
141, 152-153, 168, 182, 189, 206,
214, 225, 246, 284-287, 290-297,
302, 304, 309, 311, 320-333, 341,
345, 353, 356, 361-449, 464
eclipse expedition, 365-394
gravitational field-equations, 2, 225,
403, 441
Renn, Jürgen, vi, 287, 294, 330, 331, 337,
338, 340, 341, 345, 353, 380, 386, 387,
404, 405, 437
Resnik, Michael, 112, 118
reversible processes, 47, 156
Reye, Theodor (1838-1919), 83, 84
Ricci-Curbastro, Gregorio (1853-1925),
292
Richards, Joan L., 29
Riecke, Eduard (1845-1915), 72, 78, 79,
81, 232, 297, 307, 321, 411, 445, 446
Riemann curvature scalar, 341, 353
Riemann, Bernhard (1826-1866), 22-29,
33, 36, 37, 42, 44, 70, 84, 87, 105, 251,
292-293, 309, 324, 337, 341, 346, 352-
353, 359, 445
rigid body, 29, 133, 142, 150, 210, 217,
218, 219, 246, 272-273, 291, 312, 368,
376, 377, 447
free mobility of, 27, 28, 105
Rockefeller Foundation, 410
Rodriguez, Laura, 229
Röhle, S., 365
Rome, 166, 228, 244, 447
Röntgen, Wilhelm Conrad (1845-1932),
49
Rostock, 299
rotating disk, 291
Routh, Edward J. (1831-1907), 92, 129
Rowe, David E., v, 12, 17, 18, 22, 23, 24,
31, 32, 33, 35, 54, 72, 73, 74, 76, 85,
104, 112, 115, 296, 322, 341, 359, 364,
374, 375, 389, 390, 391, 421, 429, 434,
440, 441
Rüdenberg, L., 15, 20, 22, 105, 129
Rudolf Alfred Clebsch (1833-1872), 17,
20, 30, 54, 66, 73, 445
Rügen, 326, 448
Runge, Carl (1856-1914), 73, 119, 130,
142, 214-215, 321, 322, 391, 411, 447,
455-457, 461
Russell, Bertrand (1872-1970), 121, 319,
369, 370, 398, 427, 449, 460
S
Saalschütz, Louis (1835-1913), 12
Sabidussi, G., 91
Sackur, Otto (1880-1914), 241
Sánchez-Ron, José M., 364
Sarkowski, H., 410
Sauer, Tilman, vi, 287, 294, 314, 325,
326, 329, 330, 339, 340, 345, 349, 351,
355, 356, 358, 360, 366, 369, 400
Scanlan, W., 97, 116
Schell, Wilhelm (1826-1904), 91
Schellenberg, Kurt, 265
Schemmel, Matthias, 321
Scherrer, Paul (1890-1966), 317, 321,
411
Schirrmacher, Arne, xii, 79, 129, 186,
230, 232, 234, 247, 249, 250, 251, 253,
257, 317
INDEX 511
Schlömilch, Oscar Xavier (1823-1901),
142
Schmidt, Arnold (1902-1967), 95, 413
Schmidt, Erhard (1856-1959), 414
Schmidt, Friderich, 322
Schneider, Ivo, 166
Schoenflies. Arthur M. (1853-1928), 21,
61, 73, 89
Scholz, Erhard, vi, 28, 73, 88, 434
Schottky, Heinrich (1851-1935), 76, 297
Schrödinger equation, 415
Schrödinger, Erwin (1887-1961), 365,
414-416
Schubert, H.A. (1848-1911), 74, 75, 446
Schubring, Gert, 78
Schur, Friedrich (1856-1932), 42-43, 87-
90, 95, 97-99, 115, 138, 140-142, 297,
446
Schur, Issai (1875-1941), 297
Schwarz, Hermann Amandus (1843-
1921), 47, 297
Schwarzschild, Karl (1873-1916), 72, 81,
130, 136, 174, 215, 321-326, 363, 364,
380-385, 435, 447, 454-455, 460
Schwermer, Joachim, 13-15, 61, 222
Seelig, Carl, 224
segments arithmetic (Streckenrechnung),
98
Segre, Michael, 34-36, 43, 75
set theory, 21, 45, 47, 101-102, 104, 120-
122, 229, 274, 321, 369, 379-398, 413,
450
axiomatization, 319
well-ordering axiom, 121, 369
Shimmack, Rudolf (1881-1912), 138
Siebert, H., 12
Sieg, Wilfried, 319, 370
Siegel, Carl Ludwig (1896-1981), 409
Siegmund-Schultze, Reinhard, 228, 410,
420
Sigurdsson, Skuli, 324, 442
Simon, Hermann Theodor (1870-1918),
130, 146, 321, 366, 372
Sinaceur, Houria, 89
Smith, Henry J.S (1826-1883), 13
sodium flames, 248
Solvay conference, 244
Sommer, Klaus, viii, 257, 326
Sommerfeld, Arnold (1868-1951), 73, 76,
129, 136, 187, 190, 205, 218, 224, 225,
232, 247, 250-251, 271, 302, 317, 320,
321, 324, 327, 345-349, 351, 356, 364,
368, 374, 41, 413, 416, 436, 447, 448,
455-462
Sommerfeld-Bohr atomic model, 416
space
absolute, 52, 178, 187
space-time manifold, 224, 347
space-times coordinates, 339
spatial intuitions (Raumanschauungen),
36
Spehl, Helmut, vi, 299
Speiser, Andreas, (1885-1970), 20, 216
Springer, Ferdinand (1881-1965), 408
Springer’s Grundlehre Yellow Series,
410, 440
St. Petersburg, 150, 164, 266
stability theory, 128, 464
Stachel, John, vi, 212, 287, 291, 292, 294,
330, 331, 337-345, 353, 380, 386, 387,
403-405, 437
Staley, Richard, vi, 189, 195, 198, 212,
216, 225, 432
Stark, Johannes (1874-1957), viii, 211,
212, 277, 308, 459-461
Steiner, Jacob (1796-1863), 30
Stern , Otto (1888-1969), 284
Stoltz, Otto (1842-1905), 30
Stölzner, Michael, 419
straightest path principle, 93, 148
Strasbourg, 72
Strobl, W., 13
structural algebra, 25, 37, 116, 321, 409,
420
structure of matter, 7, 148, 168, 216, 231,
234, 267, 283, 284, 285, 315-319, 333,
344, 350-368, 403-405, 411
Struik, Dirk (1894-2000), 421
Strutt, John William - Lord Rayleigh
(1842-1919), 243
Study, Eduard (1862-1930), 17
Swiss Mathematical Society, 396
Sylvester, James Joseph (1814-1897), 17,
20
symmetric function, 149, 228
Szanton, A., 411
T
tensor
contravariant, 335
gravitational, 293
512 INDEX
metric, 291, 293, 294, 316, 333, 335,
344, 378, 385, 387, 407
Ricci, 293, 341, 348, 349, 355, 359,
375
Riemann, 293, 352, 359
second-rank, 407
stress-energy, 293, 294, 315, 316, 342,
344, 349, 355, 383, 390, 404, 435
stress-energy, 315
theology, 18, 299
theoretical physics, 13, 47, 49, 51, 78, 79,
81, 251, 280, 281, 299, 317, 411, 441,
445, 446
theory of bilinear forms, 66
theory of invariants, 12, 19, 20, 23, 91,
101, 228, 344, 361, 376
theory of matter, 8, 182, 191, 194, 226-
228, 237, 246, 249, 268, 271-272, 285,
287, 299-302, 308-309, 315- 319, 407,
435, 447, 448
thermochemistry, 241
thermodynamics, 15, 49, 79, 128, 129,
154-163, 171, 173, 181, 183, 212, 234,
241-249, 270, 271, 276, 397
continuity axiom, 159
relativistic, 191, 287
second law, 46, 47, 220, 239, 270, 271,
393
third law (Nernst law of heat), 241,
270, 317
Thiele, Rüdiger, 109
Thirring, Hans (1888-1976), 365
Thomson, Joseph James (1856-1940), 15,
91, 129, 130, 150, 284, 456
Tobies, Renate, 35, 54
Toepell, Michael Markus, 32, 44, 66, 83,
84-90, 93-99, 118, 323, 423
Toeplitz, Otto (1881-1940), 24, 77, 215,
227, 228, 436
Tollmien, Cordulla, 356
Tolman, Robert C., 276
Torretti, Roberto, 28, 29, 32, 40, 43, 44,
95
Traktoren, 190
transcendence of S, 13
transfinite cardinals, 100
transformations
Galilean, 132, 207, 208, 210
Lorentz, 79, 132, 174, 190-197, 208,
235, 271, 272, 280, 306, 432
Truesdell, Clifford, 178
Tübingen, 51
Turner, R.S., 176
U
Über den Zahlbegriff (Hilbert), 104, 123,
426, 479
ultraviolet catastrophe, 243
unification
gravitation and electrodynamics, 172
mechanics and electrodynamics, 153
optics and electromagnetism, 134
unified foundations of physics, 231, 309,
331-333, 351, 397
unimodularity, 348
Urbantke, 365
USSR, 322
V
van Dalen, Dirk, 396
van der Waerden, Bartel L. (1903-1996),
420, 459
van Dyck, Walther (1856-1934), 74, 75,
76, 77, 446
variational calculus, 47, 102, 104, 109,
214, 339, 344, 361, 391
variational derivation, 152, 295, 313, 373,
374, 375, 449
variational methods, 295, 353, 404, 414,
436
variational principles, 7, 109, 128, 133,
150, 182, 295, 312-314, 326, 336, 362,
373, 404, 436, 454
Veblen, Oswald (1880-1960), 97, 116
vector, 79, 138-151, 156-157, 178, 181,
189-191, 196-205, 224, 246, 283, 292,
301, 304, 314, 339, 360, 374, 390
contravariant, 360
four-vector, 190-194, 204-205, 301,
447
six-vector, 301
vectorial notation, 153
Veronese, Giusseppe (1854-1917), 25,
44, 86-87, 93, 99, 111, 419, 444
Vienna, 47, 74, 150, 306, 307-308, 316,
323, 448, 470
virtual velocities principle, 93
Voigt, Woldemar (1850-1919), 15, 61,
72, 78-81, 92, 121, 129, 215, 232-234,
INDEX 513
248-249, 297, 317, 319, 321-322, 41,
445, 461
Volkert, Klaus, 12
Volkmann, Paul (1856-1938), 15, 61-63,
68, 81, 103, 106, 126, 180, 182, 446,
461, 462
Vollrath, Hans-Joachim, vi, 66
Volterra, Vito (1860-1940), 228
von Neumann, John (1903-1957), 412,
417-419, 449
von Smoluchowski, Marian (1872-1917),
249-262, 271, 369, 448, 456, 457
von Staudt , Christian (1798-1867), 30,
32, 40, 42, 43, 83-84, 97
Voss, Aurel (1845-1931), 66-71, 75, 92,
129, 132, 138, 143-144, 180, 447, 461-
462
W
Walter, Scott, vi, 49, 133, 189, 192, 205,
211, 212, 224, 322, 411
Waring’s problem, 227-228
Warwick, Andrew C., 75, 92, 130, 132,
364
Was sind und was sollen die Zahlen?
(Dedekind), 38, 39, 47, 85, 100, 446
wavelength, 176-177, 242-243, 252-262,
283, 463, 466
wave-mechanics, 414
Weber, Ernst Heinrich (1795-1878), 175
Weber, Heinrich (1842-1913), 12-13, 72-
74, 175, 446, 461, 463
Weber-Fechner law, 175-176
Weierstrass , Karl (1815-1897), 34, 35,
72, 102, 123, 379
Weyl, Hermann (1885-1955), 3, 4, 17, 20,
22, 89, 183, 215, 324, 359, 364, 373,
374, 392, 395, 431-436, 439, 442, 449,
451-463
Whittaker, Edmund (1873-1956), 75
Wiechert, Emil (1861-1928), 72, 81, 107,
130, 134, 136, 215, 321, 411, 446, 455,
463
Wien, Wilhelm (1864-1928), 49, 70, 129-
132, 153, 242-252, 299, 363, 369, 371,
446, 455, 460-461
Wiener, Hermann L. (1857-1939), 42, 43,
85, 87, 97, 99, 414-415, 446
Wien's formula, 243
Wightman, A.S., 1
Wigner, Eugene (1902-1995), 413, 458
Wilhelm Weber (1804-1891), 11, 78-79,
445-446
Wilkens, Alexander (1881-1968), 130
Wise, Norton, 301
Wolfskehl lectures, 231, 244, 271, 317,
320, 368, 371-372, 411-413, 448-449,
455-457
Wolfskehl, Paul (1856-1906), 231
Woodrow Wilson College, 323
World War I, 75, 319, 322, 370, 409
world-function, 7, 152, 302-303, 313, 315
world-lines, 201-204, 208, 300
world-parameters, 335, 339
world-points, 335
world-postulate, 152, 193, 199, 200, 206,
211-213, 223-225, 235, 402
Wüllner, Adolph (1835-1908), 12
Würzburg, 66, 369
Y
Yandell, B.H., 1
Yavetz, Ido, 138
Young, Thomas (1773-1829), 52, 119,
176, 489
Z
Zach, Richard, 370
Zahlbericht (Hilbert), 22-24, 71, 418, 446
Zahlkörpersspaziergängen, 89
Zangger, Heinrich (1874-1957), 287, 297,
324-325, 328, 355, 407, 419, 460
Zassenhaus, Hans, 15, 20-22, 105, 129
Zeeman effect, 79, 136
Zeeman, Pieter (1865-1943), 79, 130, 136
Zeitschrift für Mathematik und Physik,
73, 142
Zermelo, Ernst (1871-1953), 2, 47-48,
120-121, 215, 296, 319, 369, 398, 446-
447, 455
Ziegler, R., 30
Zippin, L., 106
Zsigmondy, Richard A. (1865-1927), 369
Zurich, 12-15, 129, 289, 297, 317, 318,
324, 369, 370, 406, 446, 448

Navigation menu