Courses Instructions

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 46

UW Courses Instructions
Instructor: Sibelius
Last update: December 24, 2018
Copyright ©2017–2018 Sibelius Peng
Permission is NOT granted to copy, distribute and/or modify this document.
Contents
I. MATH 5
1. Basic Math 7
1.1. Calculus .......................................... 7
1.1.1. other faculties’ calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2. MATH 137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2.2. Final Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3. MATH 138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3.2. Final Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4. MATH 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5. MATH 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5.1. Selected Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2. Algebra........................................... 12
1.2.1. other faculties’ algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2. MATH 135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3. MATH 136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4. MATH 145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2. STAT 15
2.1. STAT 220/230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2. ACTSC........................................... 15
3. AMATH 16
3.1. AMATH231 ....................................... 16
3.1.1. Topics....................................... 16
3.1.2. Selected Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. AMATH251 ....................................... 21
3.2.1. Topics....................................... 21
3.3. AMATH390 ....................................... 30
3.3.1. Topics....................................... 30
3.4. AMATH391 ....................................... 30
3
Contents
4. PMATH 31
5. CO 32
5.1. Overview.......................................... 33
II. CS 34
6. Basic 35
6.1. CS135 ........................................... 35
6.1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2. CS136 ........................................... 35
6.2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7. Major 36
7.1. CS246 ........................................... 36
7.1.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2. CS251 ........................................... 37
7.2.1. Topics....................................... 37
7.2.2. Diary ....................................... 37
8. Minor 38
9. Beyond 39
III. MUSIC 40
10.Music Theory 41
10.1.MUSIC111 ........................................ 41
11.Music Ensemble 42
IV. OTHER 44
12.Science 45
13.Arts 46
4
Part I.
MATH
1. Basic Math 7
1.1. Calculus .......................................... 7
1.1.1. other faculties’ calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2. MATH 137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2.2. Final Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3. MATH 138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3.2. Final Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4. MATH 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5. MATH 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5.1. Selected Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2. Algebra........................................... 12
1.2.1. other faculties’ algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2. MATH 135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3. MATH 136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4. MATH 145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4.1. Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2. STAT 15
2.1. STAT 220/230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2. ACTSC........................................... 15
3. AMATH 16
3.1. AMATH231 ....................................... 16
3.1.1. Topics....................................... 16
3.1.2. Selected Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. AMATH251 ....................................... 21
3.2.1. Topics....................................... 21
TABLE OF CONTENTS
3.3. AMATH390 ....................................... 30
3.3.1. Topics....................................... 30
3.4. AMATH391 ....................................... 30
4. PMATH 31
5. CO 32
5.1. Overview.......................................... 33
6
1
Basic Math
一些一些
这边两个 (Calculus and Algebra)
学完个人专业一下
为了
为一个
1.1. Calculus
math 237 Professor Spiro Karigiannis
了一下 — How things change.
. . . . . .
1.1.1. other faculties’ calculus
uwflow
人上也不. . . . . .
MATH 104 Introductory Calculus for Arts and Social Science
MATH 116 Calculus 1 for Engineering
MATH 117 Calculus 1 for Engineering
116 Open to students in Engineering
excluding Electrical and Computer Eng, Nanotechnology Eng, Software Eng and Systems
Design Eng. 117 Open only to students in Electrical and Computer Engineering or Software
Engineering or Nanotechnology Engineering.
MATH 118 Calculus 2 for Engineering
MATH 119 Calculus 2 for Engineering
118 Open only to students in Engineering excluding
students in Electrical and Computer Eng, Nanotechnology Eng, Software Eng and Systems
Design Eng. 119 Open only to students in Electrical and Computer Engineering or Software
Engineering or Nanotechnology Engineering.
7
1. Basic Math
MATH 124 Calculus and Vector Algebra for Kinesiology.
个专业一个专业一下
MATH 127 Calculus 1 for the Sciences.
for Science, 137127
calendar advisor
MATH 128 Calculus 2 for the Sciences.
137 failed 138
太大
math major
1.1.2. MATH 137
好好
什么好多过还一下
也一2017 fall proof
math1472018 fall weekly quiz
quiz的目的
1.1.2.1. Topics
Absolute Values
Sequence and their limits
Squeeze Theorem, Induction, MCT
Function and Limits
Infinite Limits, Continuity
IVT, EVT, Instantaneous Velocity
Derivatives, Differentiation Rules
Tangent Lines, Newton’s Method, IFT
Implicit Differentiation, Extrema, MVT
Application of MVT, l’Hopital’s Rule
Curve Sketching
Taylor Polynomials and Taylor’s Theorem
profbig O notation
Jordan很快些不
本来
8
1. Basic Math
1.1.2.2. Final Note
profelasprof
JordanJordan
enrollID
IDprofEddie
Jordanreview session果有机
一下
一个physics-based section上了
些人专业也不
1.1.3. MATH 138
137了不1137138
series
说说
1.1.3.1. Topics
Area Under Curves, Riemann Sums, Definite Integrals
Definite Integrals, Average Value, FTC I, FTC II
Change of Variable, Trigonometric Substitution, Integration By Parts (IBP)
Partial Fractions, Improper Integrals
Areas, Volumes, Arclength
DEs, IVPs
Qualitative Solutions
Series
Convergence
Integral Test
Ratio Test
Alternating Series
Positive Series
Binomial Series
Taylor Series
Power Series
Curves
Parametrization
themeIntegrals & Series. DE
introseries
1人也
9
1. Basic Math
1.1.3.2. Final Note
general cs
线cscscomputer graphics
math237cs370Numerical Computationcs488(computer
graphics)preqcs370
久以cs4amath2312cscs
computer graphics
pmath365differential geome-
try一个subjectpreqamath231/math247
math137/138 amath等等
3pmath467Algebraic Topol-
ogy),preqpmath347/351
real/complex analysis, 137/138
pmath333一下pmath351/352pmath331/332
amathreal/complex analysisbaby ver-
sion 便pmathenthusiasts 351/352
1.1.4. MATH 147
1.1.4.1. Topics
The real numbers
Sequences and limits
Logarithms, exponentials and other important functions
Functions, limits and continuity
Intermediate Value and Extreme Value Theorems
Derivatives and curve sketching
The Mean Value Theorem and applications
Taylor’s theorem
1.1.5. MATH 237
1.1.5.1. Selected Proofs
Theorem 1.1.1
Suppose fis in C1at
a, then fis differentiable at
a.
Proof
(for n=2, but the proof is identical for any n.)
Denote the function by f(x, y), and the point
a=(a, b).
2一个amath prof......
3有机[]
10
1. Basic Math
Our hypothesis: fx, fyboth exist near (a, b)and are continuous at (a, b)
The linear approximation is
L(x, y)=f(
a)+(f)(
a)(
x
a)=f(a, b)+fx(a, b)(xa)+fy(a, b)(yb)
We want to show
lim
(x,y)(a,b)f(x, y)L(x, y)
(xa)2+(yb)2=0
f(x, y)L(x, y)=f(x, y)f(a, b)fx(a, b)(xa)fy(a, b)(yb)
=f(x, y)f(a, y)

fx(x0,y)(xa)by (2) +f(a, y)f(a, b)

fy(a,y0)(yb)by (3) fx(a, b)(xa)fy(a, b)(yb)(1)
Consider the function
h(t)=f(t, y)on [a, x] (yis fixed )
h(t)=fx(t, y). By hypothesis, fxexists near (a, b), so his differentiable on [a.x]fo xclose
to a.
Apply MVT to this situation: there exists x0between aand xsuch that
h(x
t2)h(a
t1)=h(x0
t0)(xa
t2t1)
f(x, y)f(a, y)=fx(x0, y)(xa)(2)
Consider the function
k(s)=f(a, s)on [y, b] (ais fixed )
k(s)=fy(a, s)exists near (a, b), so kis differentiable on [y, b]for yclose to b.
Let s1=y, s2=b. Apply MVT, there exist y0between band ysuch that
k(s0)k(s1)=k(y0)(s2s1)
f(a, y)f(a, b)=fy(a, y0)(yb)(3)
We’ve shown that: there exists x0between aand xand there exists y0between band ysuch
that
f(x, y)L(x, y)
(xa)2+(yb)2=(xa)[fx(x0, y)fx(a, b)]
(xa)2+(yb)2+(yb)[fy(a, y0)fy(a, b)]
(xa)2+(yb)2
We want to show this 0as (x, y)(a, b).
A+BA+Balso
xa
(xa)2+(yb)21yb
(xa)2+(yb)21
11
1. Basic Math
Then f(x, y)L(x, y)
(xa)2+(yb)2fx(x0, y)fx(a, b)

0as (x,y)(a,b)
since fxis continuous
at (a,b)
+fy(a, y0)fy(a, b)

0as (x,y)(a,b)
since fyis continuous
at (a,b)
So by Squeeze Theorem
lim
(x,y)(a,b)
f(x, y)L(x, y)
(xa)2+(yb)2=0
So fis differentiable at (a, b)
Example Prove that ˆ
0
ex2dx converges, and find the value N.
Proof
2N=ˆ
−∞
ex2dx =ˆ
−∞
ey2dy
4N2=ˆ
−∞
ex2dx ˆ
−∞
ey2dy
=ˆ
−∞ ˆ
−∞
ex2dxey2dy
=ˆ
−∞ ˆ
−∞
e(x2+y2)dA
=¨R2
e(x2+y2)dA
Change to polar coordinates 0r
0θ2π
4N2=ˆ2π
0ˆ
0
er2r dr

dA
=2πˆ
0
er2r dr =2π1
2er2
0=π
Hence N=π
2
1.2. Algebra
1.2.1. other faculties’ algebra
uwflow
人上也不. . . . . .
MATH 103 Introductory Algebra for Arts and Social Science
MATH 106 Applied Linear Algebra 1
MATH 114 Linear Algebra for Science
12
1. Basic Math
MATH 115 Linear Algebra for Engineering
1.2.2. MATH 135
1.2.2.1. Topics
To develop the vocabulary, techniques and analytical skills associated with reading and
writing proofs, and to gain practice in formulating conjectures and discovering proofs. Em-
phasis will be placed on understanding basic logical structures, recognition and command over
common proof techniques, and precision in language. These skills will be developed through
working with number theory, complex numbers and polynomials.
1.2.3. MATH 136
1.2.3.1. Topics
Vectors in Rn, Spanning
Linear Independence, Bases, Subspaces
Dot/ Cross Product, Projections
Matrix
Linear Mappings
Vector Spaces
Dimension
Matrix Inverse
Determinants
Cramer’s Rule
Similar Matrices
Eigenvalues, Diagonalization
Power of Matrices
1.2.4. MATH 145
1.2.4.1. Topics
Chap 1. Sets and Mathematical Statements
Chap 2. Mathematical Proof
Chap 3. Rings, Fields and Orders
Chap 4. Recursion and Induction
Chap 5. Factorization of Integers
Chap 6. Congruence and Modular Arithmetic
Chap 7. Cryptography
13
1. Basic Math
Chap 8. Complex Numbers
Chap 9. Cardinality
Chap 10. Factorization in Rings.
14
2
STAT
......stat
stat
以了什么什么
多好课讲西
2.1. STAT 220/230
太 大 220 230
stat18winter
不一
2.2. ACTSC
也不有机上了
15
3
AMATH
3.1. AMATH 231
3.1.1. Topics
Before you brush your teeth,
parametrize your curves.
Edward R. Vrscay
Vector Calculus
gradient vector field
Conservation in physics
line (path) integral
ˆC
f ds =ˆb
a
f(g(t))g(t)dt
W=ˆC
Fdx=ˆb
a
F(g(t))g(t)dt
Path-independence and the Fundamental Theorems of Calculus for Line Integrals
ˆCAB
Fdx=ˆCAB
fdx=f(B)f(A)
First Fundamental Theorem for Line Integrals
f(x)=ˆx
x0
FdyÔ
f(x)=F(x)
over closed curves C
Fdx
C
Fdx=ˆb
a
F(g(t))g(t)dt =f ds
where the scalar valued function f(g(t))=F(g(t))̂
T(t)
16
3. AMATH
Green’s Theorem
ˆD
Fdx=¨DF2
x F1
y dA =¨D(∇ × F)zdA
divergence
divF=
F=F1
x +F2
y +F3
z
divergence of position vector
1
r3r=0(x, y, z)0
curl
curlF=∇ × F=
×F=F2
x F1
y k
∇ × F=0ÔFis gradient
vorticity
v(x, y)=(v1(x, y), v2(x, y)), then vorticity is
(x, y)=v2
x v1
y
Mean value theorem for (double) integrals
f(x, y)=fD=1
A(D)¨D
f(x, y)dA
[curlF(p1, p2)]z=(p1, p2)=lim
ε0
1
πε2Cε
Fdx
Total outward flux
C
F̂
Nds =ˆb
a
F(g(t))̂
N(t)ds =ˆb
a
F(g(t))̂
N(t)g(t)dt
Divergence Theorem
C
F̂
Nds =¨DF1
x +F2
y dA =¨D
FdA
F(p)=lim
ε0
1
πε2Cε
F̂
Nds
F(p)=lim
ε0
1
4
3πε3¨Sε
F̂
Nds
Circulation integrals/Outward flux integrals around singularities
Surface integration
Surface parametrizations
Normal vectors to surfaces from parameterizations
N(u0, v0)=±Tu(u0, v0)×Tv(u0, v0)
where Tu=g(u,v)
u .
17
3. AMATH
surface integrals of scalar functions
ˆS
f dS =¨u,v
f(g(u, v))N(u, v)dudv
surface area
S=¨Duv g
u ×g
v dudv
flux integral
¨S
F̂
NdS =¨Duv
F(g(u, v))N(u, v)dA
Gauss Divergence Theorem in R3
¨S
F̂
NdS

surface integral =˚D
divFdV

volume integral
Let U(t)denote the total amount of substance X in region Dat time t.u(x, t)
denote the concentration of substance X at a point xRR3.
U(t)=˚D
u(x, t)dV ÔU(t)=˚D
u
t (x, t)dV
The flow of X is defined by the flux density vector j(x, t). The net outward sub-
stance Xthrough an infinitesimal element of surface area dS centered at point
xD is given by j(x, t)̂
N(x)dS. The total outward flux: ¨D
j(x, t)̂
N(x)dS.
By Divergence Theorem, we have
¨D
j(x, t)̂
N(x)dS =˚D
j(x, t)dV
and U(t)=˚D
j(x, t)dV , then integral form of the conservation law
for substance X: ˚Du
t (x, t)+
j(x, t)dV =0
operator
×F=
i j k
x
y
z
F1F2F3
u
v1=u
x
x
v1+u
y
y
v1=ux
v1
in polar/cylindrical/spherical coordinates in R3
Stoke’s Theorem ˆC
Fdx=¨S(∇ × F)̂
NdS
final calculation (using spherical polar coordinate is easiest)
F=1
rnr=1
(x2+y2+z2)n/2[xi+yj+zk]Ô
F=3n
rn
18
3. AMATH
Fourier Series
f(x)=a0
2+
n=1
ancos nx +
n=1
bnsin nx, x [π, π]
piecewise C1
pointwise convergence for a Fourier series (2π-period and piecewise C1)
even & odd extension of a function defined on (0, π)
fn, fn=a2
0
2π+π
n
k=1[a2
k+b2
k]f2
2
{fn}converges pointwise to f:lim
nfn(x)f(x)=0,for all x[a, b].
Series
k=1
akin C[a, b]converges uniformly to fmeans that the sequence {Sn}of
partial sums converges uniformly to f
lim
nf
k=1
ak=0
Series
k=1
akin C[a, b]converges in the mean to fmeans that the sequence {Sn}
of partial sums converges in the mean to f
lim
nf
k=1
ak2=0
Weierstrass M-test (also covered in MATH 148): If an(x)<Mn,x[a, b],
n=1
Mnconverges, then
n=1
an(x)converges absolutely for each x[a, b], with sum
f(x), it converges uniformly to f(x)on [a, b].
fppiecewise continuous Ôconverges in the mean to fpon any finite interval
fppiecewise C1Ôconverges pointwise to fpfor all xR
fppiecewise C1and continuous Ôconverges uniformly to fpon any finite
interval
Complex Fourier series of a τ-periodic function
Parseval’s formula: f, f =f2
2=ˆ
τ
2
τ
2
f(t)2dt =τ
−∞ cn2
Fourier Transform: F{f(t)}=F(ω)=ˆ
−∞
f(t)etdt
3.1.2. Selected Proof
Conservation of Energy Assumptions: FRnRnis conservative.
Proof
E(t)=1
2mv(t)2+V(x(t))
19
3. AMATH
E(t)=m
2
d
dt[v(t)v(t)]+d
dtV(x1(t),...,xn(t))
d
dt[v(t)v(t)]=v(t)v(t)+v(t)v(t)=2a(t)v(t)
By chain rule:
d
dtV(x1(t),...,xn(t))=V
x1
dx1
dt +...+V
xn
dxn
dt =
Vv
Put together,
E(t)=v(t)[ma(t)]+v(t)
V=v(t)[ma(t)+
V]=v(t)[ma(t)F(x(t))]=v(t)0=0
Work Integrals
F=
V
Proof
W=ˆCAB
Fdx=ˆCAB
Vdx=[V(B)V(A)]=V(A)V(B)=V
Second Fundamental Theorem of Line Integrals Let FURnbe a continuous vector
field on a connected open set URn, and let x1,x2be two points in U. If F=f, where
fURis a C1scalar field, and Cis any curve in Ujoining x1to x2, then
ˆC
Fdx=f(x2)f(x1)
Proof
Let Cbe given by x=g(t), t1tt2, so that x1=g(t1),x2=g(t2). Bt the hypothesis,
ˆC
Fdx=ˆC(f)dx
=ˆt2
t1f(g(t))g(t)dt by definition of line integral
=ˆt2
t1
d
dt[f(g(t))]dt Chain rule
=f(g(t2))f(g(t1)) second FTC
=f(x2)f(x1)
Proposition 5.1
f2
2=ˆb
a
f(x)2dx
max
axb[f(x)]2(ba)
=max
axbf(x)2(ba)
=(ba)f2
20
3. AMATH
Proposition 5.2 If fnconverges uniformly in piecewise continuous [a, b], then converges in
(i) mean and (ii) pointwise. Proof
For (i), use prop 5.1 and squeeze theorem. For (ii) by definition, fn(x)f(x)fnf,
then...
3.2. AMATH 251
3.2.1. Topics
First-order DEs
An equation relating an unknown function and one or more of its derivatives is
called a differential equation.
The order of a differential equation is the order of the highest derivative that
appears in it.
IVP & IC
Ordinary differential equations: the unknown function (dependent variable) de-
pends on only a single independent variable.
If the dependent variable is a function of two or more independent variables, then
partial derivatives are likely to be involved; if they are, the equation is called a
partial differential equation.
general & particular solution
Slope fields & solution curves
– Theorem Existence and Uniqueness of Solutions
dy
dx =f(x, y), y(a)=b. has only one solution is defined on I, if f(x, y)&f
y are
continuous on some rectangle Rin the xy-plane that contains the point (a, b)in
its interior.
Separable Equations
Linear First-Order dy
dx +P(x)y=Q(x), y(x0)=y0
Integrating factor: ρ(x)=e´P(x)dx
Theorem Unique solution for linear first-order equation
P(x)and Q(x)are continuous on the open interval Icontaining x0
Substitution Methods
dy
dx =Fy
xÐv=y
x
Bernoulli Equation
dy
dx +P(x)y=Q(x)ynÐv(x)=y1n
Exactness (will not be tested on the final)
M(x, y)+N(x.y)dy
dx =0M
y =N
x exact in an open rectangle R
Reducible Second-Order Equations
21
3. AMATH
Dependent variable ymissing
Independent variable xmissing
Models in Chapter 1
Natural Growth and Decay dx
dt =kx
Newton’s Cooling dT
dt =k[A(t)T]
Torricelli’s Law
Suppose that a water tank has a hole with area aat its bottom, from which water
is leaking. Denote by y(t)the depth of water in the tank at time t, and by V(t)the
volume of water in the tank then. It is plausible – and true, under ideal conditions
– that the velocity of water exiting through the hole is v=2gy, which is the
velocity a drop of water would acquire in falling freely from the surface of the
water to the hole. As a consequence,
dV
dt =av =a2gy ÐdV
dt =kywhere k=a2g
Alternatively, Let A(y)denote the horizontal cross-sectional area of the tank at
height y.
dV
dt =dV
dy dy
dt =A(y)dy
dt ÔA(y)dy
dt =a2gy =ky
Mixture Problem:
dp
dt =Rate of change of pin time = rate pollution in rate pollution out
= (rate water in)(concentration pollutions in) (rate water out) (concentration
pollution out)
Mathematical Models and Numerical Methods
Population Models:
β(t)δ(t)- # of births/deaths per unit of per population per unit time at time t
dP
dt =[β(t)δ(t)]P
Logistic equation dP
dt =kP (MP), P (0)=P0
ÔP(t)=MP0
P0+(MP0)ekM t lim
t+∞ P(t)=MP0
P0+0=M
M: limiting population / carrying capacity
A constant solution of a differential equation is sometimes called an equilib-
rium solution.
the critical point cis stable if, for each ε>0, there exists δ>0such that
x0c<δÔx(t)c<ε
for all t>0. Otherwise it is unstable.
Logistic Population with Harvest dx
dt =kx(Mx)h
22
3. AMATH
Acceleration-Velocity Models
Resistance Proportional to Velocity
FR=kv.mdv
dt =kv mg.vτ=mg
k.
Resistance Proportional to Square of Velocity
FR=kvv.mdv
dt =mg kvv.vτ=v=mg
k
Newton’s Law of Gravitation: F=GMm
r2
dv
dt =d2r
dt2=GM
(R+y)2=GM
r2
d2r
dt2=dv
dt =dv
dr
dr
dt =vdv
dr
Ôvdv
dr =GM
r2Ôv=v2
0+2GM 1
r1
R
Consider the interval of existence, we must have the radicand >0. Thus we can
find the escape velocity v=2GM
R.
Numerical Approximation
dy
dx =f(x, y), y(x0)=y0. Step size h.yn+1=yn+hf(xn, yn).
Improved Euler Method
k1=f(xn, yn)
un+1=yn+hk1predictor
k2=f(xn+1, un+1)
yn+1=y+h1
2(k1+k2)corrector
Dimensional Analysis
Two principles
1. One can only add, subtract or equate physical quantities with the same physical
dimensions.
2. Quantities with different dimensions may be combined by multiplication with
dimensions.
Dimensionless Variables
Buckingham-πTheorem
Qn=f(Q1,...,Qn1)is equivalent to πk=h(π1,...,πk1)
rindependent fundamental physical dimensions. k=nr.
Pendulum Model
Linear Equations of Higher order
boundary value problem / initial value problem
Theorem Principle of Superposition for Homogeneous Equations: y=c1y1+c2y2
is also a solution on I.
Theorem Existence and Uniqueness for Linear Equations: y′′ +p(x)y+q(x)y=
f(x)has unique solution on Ithat satisfies y(a)=b0, y(a)=b1.
23
3. AMATH
homogeneous & nonhomogeneous (associated homogeneous)
linear independence of functions
Wronskian. Suppose the functions f1,...,fnare n1times differentiable on some
interval I:
W(f1,...,fn)=det
f1. . . fn
⋮⋱⋮
f(n1)
1. . . f(n1)
n
f1,...,fnlinearly independent ÔW(f1,...,fn)0on I.
Theorem General Solution for a Linear Homogeneous Equation.
y(n)+P1(x)y(n1)+...+Pn(x)y=0(3.1)
Let φ(x)be any solution of (3.1), y1,...,ynbe linearly independent solutions on
I, then there exists c1,...,cnsuch that
φ(x)=n
i=1
ciyi(x),xI
Note the difference from Superposition Theorem... I got no marks on proving this
in midterm...
Proof (n=2) Let φ(x)be a solution of (3.1) on I. Let aI. Consider the linear
system.
() y1(a)y2(a)
y
1(a)y
2(a)c1
c2=φ(a)
φ(a)
Since y1, y2are linearly independent on I,W(y1, y2)0on I. Thus det(M)0
and ()has a solution c1
c2=M1φ(a)
φ(a)
Using these values of c1, c2define
y(x)=c1y1(x)+c2y2(x)
Then y(x)satisfies the IVP on Iconsisting of (3.1) and y(a)=φ(a), y(a)=φ(a).
But φ(a)also satisfies this IVP on I. So by E/U we must have:
φ(x)=y(x)=c1y1(x)+c2y2(x)xI
In other words, given y1,...,ynlinearly independent solutions of (3.1), and arbi-
trary constants c1,...,cn
c1y1(x)+...+cnyn(x)
is a general solution of (3.1).
General Solution for a Linear Non-Homogeneous Equation.
Homogeneous, linear ODEs with constant coefficients
characteristic equation/polynomial: anrn+...+a1r+a0=0
Three cases: (ciare arbitrary constants)
- Linear independence verification uses Wronskian.
- Proofs of the last two involve differential operator D
1. distinct real roots: y=c1er1x+...+cnernx
24
3. AMATH
2. repeated real roots (multiplicity k): erx, xerx,...,xk1erx
3. complex roots (α±): eαx cos(βx), eαx sin(βx)
2 & 3. Repeated complex roots:
eαx cos(βx), eαx sin(βx),...,xk1eαx cos(βx), xk1eαx sin(βx)
Application
Mass spring damp: mx′′ +cx+kx =0
pendulum: s=,mlθ′′ =mg sin(θ)
Two models are of the same form y′′ +b1y+b0y=0
b1=0simple harmonic motion
b2
14b0<0two complex root underdamped oscillatory with amplitude decaying
b2
14b0=0one real repeated root critically damped not oscillatory
b2
14b0>0two real roots overdamped not oscillatory
Non-homogeneous DE
Undetermined Coefficients
Variation of Parameters
Application
·Forced, undamped motion: resonance and beating
·Forced, damped motion: practical resonance
Linear Systems of DEs
definition x=P(t)
coefficient
matrix
x+f(t),x(t0)=x0
E/U: P(t),f(t)are continuous on an open interval Icontaining point t0, then there
exists a unique solution on I.
Superposition
Wronskian of x1,...,xn(which are solutions of x=P(t)x) is
W(x1,...,xn)=det(M)=det x1(t)... xn(t)=det
x11(t). . . xn1(t)
⋮ ⋱
x1n(t). . . xnn(t)
dependent, W0; independent, W0,tI.
General Solution of Homogeneous/Non-Homogeneous Linear Systems
x=P(t)
x(3.2)
Proof of Homogeneous one (responsible for final)
Proof
Let
x(t)be any solution on Iof (3.2). Let t0I, and M(t)be as in the definition
of the Wronskian. Since
x1,...,
xnare linearly independent on I,
det(M(t0))=W(
x1(t0),...,
xn(t0))0
Thus the linear system M(t0)
c=
x(t0) ()
has a unique solution
c=M1(t0)
x(t0)=
c1
c2
cn
25
3. AMATH
Define
y(t)=c1
x1(t)+...+cn
xn(t). This is a solution of (3.2) by the Superposition
Principle and satisfies the initial condition
y(t0)=
x(t0). But
x(t)is also a solution
of (3.2) satisfying the same IC. By the E/U Theorem we must have
x(t)=
y(t)=c1
x1(t)+...+cn
xn(t)tI
Eigenvalue Method 1
λ1, λ2Rv1,v2c1eλ1tv1+c2eλ2tv2
λv,uc1eλtv+c2eλtu+teλtv
λ1,2=α±v1,2=u±iwc1eαt (cos(βt)usin(βt)w)+c2eαt (sin(βt)u+cos(βt)w)
solution curves
saddle point: nonzero distinct eigenvalues of opposite sign
Nodes (sink): distinct negative eigenvalues. Origin: improper nodal sink
Nodes (source): distinct positive eigenvalues. Origin: improper nodal source
1(AλI)u=v,uis a generalized eigenvector of λ
26
3. AMATH
Repeated positive eigenvalue.
·with two independent eigenvectors. Origin: proper nodal source
·without two independent eigenvectors. Origin: improper nodal source
Repeated negative eigenvalue.
·with two independent eigenvectors. Origin: proper nodal sink (5.3.8)
27
3. AMATH
·without two independent eigenvectors. Origin: improper nodal sink (5.3.9)
Complex conjugate eigenvalues and eigenvectors
·pure imaginary: center
·negative real part: spiral sink
·positive real part: spiral source
Fundamental Matrix: Φ(t)=x1(t)... xn(t), where x1,...,xnRnare n
linearly independent solutions of x=P(t)xon I.
Propositions
Every solution x(t)can be written x(t)=Φ(t)cwhere cRn.
invertible
Φ(t)=P(t)Φ(t)
Theorem (Fundamental Matrix Solution)
x=P(t)x,x(t0)=x0unique solution is x(t)=Φ(t)Φ1(t0)x0, t I
Nonhomogeneous Linear Systems: Variation of Parameters. x=P(t)x+f(t)
x(t)=xh(t)+xp(t)=Φ(t)c+Φ(t)ˆΦ(t)1f(t)dt
Laplace Transforms
28
3. AMATH
Definitions: F(s)=L{f(t)}=ˆ
0
estf(t)dt
Unit step: ua(t)=u(ta)=
0t<a
1ta
exponential order: f(t)M ect,for tT(2)
Existence of the Laplace Transform (responsible for final): If fis piecewise con-
tinuous on t0and of exponential order as twith constant cin eq(2), then
L{f(t)}=F(s)exists for s>c.
converge absolutely Ôconverges Ôexists for s>c
Proof
Since fis piecewise continuous on t0, we can find M0such that (2)is
satisfied with T=0. i.e.
f(t)M ect,for t0
´
0Mectestdt converges if s>c. Thus using a comparison theorem ´
0f(t)estdt
converges for s>c.
It follows that ´
0f(t)estdt converges.
Gamma function
Uniqueness of the Inverse Laplace Transform
Transform of Derivatives L{f(t)}=sL{f(t)}f(0)=sF (s)f(0)
Corollary
Lf(n)(t)=snL{f(t)}sn1f(0)sn2f(0)...f(n1)(0)=F(s)
Theorem (Laplace Transform of Integrals) responsible for final
If f(t)is piecewise continuous on t0and is of exponential order as t(with
constants c, T, M) then
Lˆt
0
f(τ)dτ=1
sL{f(t)}=F(s)
sfor s>c
equivalently:
L1F(s)
s=ˆt
0
f(τ)dτ
Proof
Since fis piecewise continuous, on t0.g(t)=´t
0f(t)dt is continuous on t0,
gis piecewise continuous on t0.
Further,
g(t)=ˆt
0
f(τ)dτˆt
0f(τ)dτˆt
0
Mecτdτ=M
c(ect 1)M
cect t0
So g(t)is of exponential order as tand we can apply the Theorem on Laplace
Transform of Derivatives.
L{f(t)}=Lg(t)=sL{g(t)}g(0)=sL{g(t)} for s>c
ÔLˆt
0
f(τ)dτ=L{g(t)}=1
sL{f(t)} for s>c
29
3. AMATH
Translation: Leatf(t)=F(sa), s >a+c
differentiation of transforms: L{tf(t)}=F(s)
convolution: L{f(t)g(t)}=F(s)G(s)
translation: L{u(ta)f(ta)}=easF(s)for s>c
Appendix
Method of Successive Approximations: dy
dx =f(x, y), then yn(x)=y0+ˆx
x0
f(t, yn1(t))dt.
Existence for Linear Systems. The IVP has a solution on the entire interval I.
x=P(t)x+f(t),x(a)=b
3.3. AMATH 390
3.3.1. Topics
This course provides an introduction to some of the deep connections between mathemat-
ics and music; mathematics will be used to provide insights into several important aspects of
music. Topics covered include: modelling the acoustics of string, wind and percussion instru-
ments with 1D and 2D partial differential equations, pitch and harmonics, frequency response
and signal sampling with Fourier transforms, and the advantages and disadvantages of various
scales and tuning systems (Pythagorean and just intonation, equal and well temperament).
3.4. AMATH 391
30
4
PMATH
31
5
CO
之一. . . . . . math 2x9 basic math
CO两个Combinatorics and Optimization, 合和两个
math229/239/249 introduction to combinatorics
co227/250/255 introduction to optimization两个慢慢
上了intro1
1......2018.10.22math249introduction to graph theoryco255
totally unimodular matrixbipartite graphadvanced250
. . . . . . anyway习一下什么matching and perfect matching10.23cover
32
5. CO
5.1. Overview
linear
algebra
math 239/249
Intro Comb.
co 255 (adv)
co 250
Intro Optim.
330
comb.
enum
Intro Optim.
342
intro
graph
331
coding
351
network
flow
353
discrete
optim.
367
non-
linear
430
algebra
enum
439
topic:
enum
440
topic:
graph
442
graph
444
algebra
graph
446
matroid 450
combin-
atorial
optim.
pmath
346/347
452
int.
optim.
math239/249
co250/255
459
topic:
optim.
453
network
design
454
schdul-
ing
456
intro
game
theory
463
convex
optim.
pmath
351
466
cont.
optim.
471
semi-
definite
optim.
485
Public-Key
Cryptography
487
Applied
Cryptography
33
Part II.
CS
6. Basic 35
6.1. CS135 ........................................... 35
6.1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2. CS136 ........................................... 35
6.2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7. Major 36
7.1. CS246 ........................................... 36
7.1.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2. CS251 ........................................... 37
7.2.1. Topics....................................... 37
7.2.2. Diary ....................................... 37
8. Minor 38
9. Beyond 39
6
Basic
6.1. CS 135
6.1.1. Overview
CS 135
syntax &
semantics
design recipe
struct
list
recursion
sort
tree
bst
local
lambda
generative
recursion
Graph Theory
(just joking...)
CS history
(will be tested)
6.2. CS 136
6.2.1. Overview
Dave’s CS 136 (before Nomair)
RacketC
imperative
Model
control
flow
memory
pointers modular-
ization !arrays!
efficiency
time space
strings Heap
ADT
linked
list
ADT:
stack
sequence
queue
tree
bst
dictionary
35
7
Major
CSbig three452444compiler488graphics
442Principles of Programming Languages
246241350349
big three341466(666)761
666761超越一个. . . . . .
7.1. CS 246
7.1.1. Summary
Note that it is NOT guaranteed that all the topics covered in class are listed here.
linux shell (bash)
commands
globbing
script
C++
basic
stream
reference
overloading
include guard
Classes
Big 5
MIL
copy-and-
swap
rvalue and
lvalue
linked lists
encapsulations
inheritance
Design patterns
UML
factory
observer
singeleton
tempalte
decorator
visitor
iterator
bridge
STL
vector
stack
queue
set
maps
idiom
NVI
RAII
piml
MVC
Other
makefile
debugging
gdb
valgrind
exception
smart ptrs
vtable, vptr
cast
forward declara-
tion
template
STL algorithms
for each
transform
lambda
36
7. Major
7.2. CS 251
7.2.1. Topics
A mess
7.2.2. Diary
Midterm
2018.10.22
fsm14
好好多复习一
12. . . . . .
乎什么phys111
44
付了typesetting L
A
T
EX. . . . . .
Midterm
2018.10.23
git push2一下.
After mid, . . . . . . 西
stat231 mid1
251一个
slide
什么
prof过这
个人
slidecs135/136划分
明显ppt
course coordinator
盖的西丢上
slide变化
After Mid
2018.10.25
期期. . . . . . single
cycleslide乱了. . . . . .
1......
2cs246(e)
37
8
Minor
38
9
Beyond
39
Part III.
MUSIC
10. Music Theory 41
10.1.MUSIC111 ........................................ 41
11. Music Ensemble 42
10
Music Theory
之一
pmath
太大. . . . . .
10.1. MUSIC 111
titleFundamentals of Music Theoryrudiment
人上线3
一些些从
. . . . . .
41
11
Music Ensemble
一个
MUSIC 116 117 216 217 316 317上下一
enrollFAQ
一些
Answer: 以下
Chamber Choir
Chapel Choir
University Choir UW Choir
Vocal Techniques
Instrumental Chamber Ensembles
orchestra@uwaterlo
Jazz Ensemble
World Music Ensemble: Balinese Gamelan 乐乐1
些乐?
audition
instructor意愿
!!!!!???
0.25100
course load 不上去可
advisorenrollaudition
0.25!!
instructor
个乐chapter
好好
太多
duemidquiz
3-4
1西历史
42
11. Music Ensemble
. . . . . . 组织Renison
—Conrad Grebel College.
Laurier
43
Part IV.
OTHER
12. Science 45
13. Arts 46
12
Science
45
13
Arts
46

Navigation menu