Ecospat Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 98
Download | |
Open PDF In Browser | View PDF |
Package ‘ecospat’ June 14, 2018 Version 3.0 Date 2018-06-013 Title Spatial Ecology Miscellaneous Methods Author Olivier Broennimann [cre,aut,ctb], Valeria Di Cola [aut,ctb], Blaise Petitpierre [ctb], Frank Breiner [ctb], Manuela D`Amen [ctb], Christophe Randin [ctb], Robin Engler [ctb], Wim Hordijk [ctb], Julien Pottier [ctb], Mirko Di Febbraro [ctb], Loic Pellissier [ctb], Dorothea Pio [ctb], Ruben Garcia Mateo [ctb], Anne Dubuis [ctb], Daniel Scherrer [ctb], Luigi Maiorano [ctb], Achilleas Psomas [ctb], Charlotte Ndiribe [ctb], Nicolas Salamin [ctb], Niklaus Zimmermann [ctb], Antoine Guisan [aut] Maintainer Olivier BroennimannVignetteBuilder knitr Depends ade4 (¿= 1.6-2), ape (¿= 3.2), gbm (¿= 2.1.1), sp (¿= 1.0-15) Imports adehabitatHR (¿= 0.4.11), adehabitatMA (¿= 0.3.8), biomod2 (¿= 3.1-64), dismo (¿= 0.9-3), ecodist (¿= 1.2.9), maptools (¿= 0.8-39), randomForest (¿= 4.6-7), spatstat (¿= 1.37-0), raster (¿= 2.5-8), rms (¿= 4.5-0), MigClim (¿= 1.6), gtools (¿= 3.4.1), PresenceAbsence (¿= 1.1.9), methods (¿= 3.1.1), doParallel (¿= 1.0.10), foreach (¿= 1.4.3), iterators (¿= 1.0.8), parallel, classInt (¿= 0.1-23), vegan (¿= 2.4-1), poibin (¿= 1.3), snowfall (¿= 1.61), snow Suggests rgdal (¿= 1.2-15), rJava (¿= 0.9-6), XML (¿= 3.98-1.1), knitr (¿= 1.14) LazyData true 1 2 R topics documented: URL http://www.unil.ch/ecospat/home/menuguid/ecospat-resources/tools.html Description Collection of R functions and data sets for the support of spatial ecology analyses with a focus on pre-, core and post- modelling analyses of species distribution, niche quantification and community assembly. Written by current and former members and collaborators of the ecospat group of Antoine Guisan, Department of Ecology and Evolution (DEE) & Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Switzerland. License GPL BugReports https://github.com/ecospat/ecospat NeedsCompilation no R topics documented: ecospat-package . . . . . . . . . . . . . . ecospat.adj.D2.glm . . . . . . . . . . . . ecospat.binary.model . . . . . . . . . . . ecospat.boyce . . . . . . . . . . . . . . . ecospat.calculate.pd . . . . . . . . . . . ecospat.caleval . . . . . . . . . . . . . . ecospat.CCV.communityEvaluation.bin ecospat.CCV.communityEvaluation.prob ecospat.CCV.createDataSplitTable . . . ecospat.CCV.modeling . . . . . . . . . . ecospat.climan . . . . . . . . . . . . . . ecospat.cohen.kappa . . . . . . . . . . . ecospat.CommunityEval . . . . . . . . . ecospat.cons Cscore . . . . . . . . . . . ecospat.cor.plot . . . . . . . . . . . . . . ecospat.co occurrences . . . . . . . . . . ecospat.Cscore . . . . . . . . . . . . . . ecospat.cv.example . . . . . . . . . . . . ecospat.cv.gbm . . . . . . . . . . . . . . ecospat.cv.glm . . . . . . . . . . . . . . ecospat.cv.me . . . . . . . . . . . . . . . ecospat.cv.rf . . . . . . . . . . . . . . . . ecospat.env . . . . . . . . . . . . . . . . ecospat.Epred . . . . . . . . . . . . . . . ecospat.ESM.EnsembleModeling . . . . ecospat.ESM.EnsembleProjection . . . . ecospat.ESM.Modeling . . . . . . . . . . ecospat.ESM.Projection . . . . . . . . . ecospat.grid.clim.dyn . . . . . . . . . . . ecospat.makeDataFrame . . . . . . . . . ecospat.mantel.correlogram . . . . . . . ecospat.max.kappa . . . . . . . . . . . . ecospat.max.tss . . . . . . . . . . . . . . ecospat.maxentvarimport . . . . . . . . ecospat.mdr . . . . . . . . . . . . . . . . ecospat.mess . . . . . . . . . . . . . . . ecospat.meva.table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 6 7 8 10 11 13 15 17 19 20 21 23 24 25 26 27 28 29 30 31 32 32 33 36 38 41 43 45 47 48 49 50 51 53 54 ecospat-package 3 ecospat.migclim . . . . . . . . . ecospat.mpa . . . . . . . . . . . ecospat.niche.dyn.index . . . . ecospat.niche.dynIndexProjGeo ecospat.niche.equivalency.test . ecospat.niche.overlap . . . . . . ecospat.niche.similarity.test . . ecospat.niche.zProjGeo . . . . . ecospat.npred . . . . . . . . . . ecospat.occ.desaggregation . . . ecospat.occupied.patch . . . . . ecospat.permut.glm . . . . . . . ecospat.plot.contrib . . . . . . . ecospat.plot.kappa . . . . . . . ecospat.plot.mess . . . . . . . . ecospat.plot.niche . . . . . . . . ecospat.plot.niche.dyn . . . . . ecospat.plot.overlap.test . . . . ecospat.plot.tss . . . . . . . . . ecospat.rand.pseudoabsences . . ecospat.rangesize . . . . . . . . ecospat.rcls.grd . . . . . . . . . ecospat.recstrat prop . . . . . . ecospat.recstrat regl . . . . . . ecospat.sample.envar . . . . . . ecospat.SESAM.prr . . . . . . . ecospat.shift.centroids . . . . . ecospat.testData . . . . . . . . ecospat.testEnvRaster . . . . . ecospat.testMdr . . . . . . . . . ecospat.testNiche . . . . . . . . ecospat.testNiche.inv . . . . . . ecospat.testNiche.nat . . . . . . ecospat.testTree . . . . . . . . . ecospat.varpart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index ecospat-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 56 57 58 59 61 62 63 65 65 66 68 69 70 71 72 73 73 74 75 76 79 80 81 82 83 85 86 89 90 91 92 93 94 95 97 Spatial Ecology Miscellaneous Methods Description Collection of methods, utilities and data sets for the support of spatial ecology analyses with a focus on pre-, core and post- modelling analyses of species distribution, niche quantification and community assembly. Specifically, -Pre-modelling: Spatial autocorrelation –¿ ecospat.mantel.correlogram; Variable selection –¿ ecospat.npred; Climate Analalogy –¿ ecospat.climan, ecospat.mess and ecospat.plot.mess; 4 ecospat-package Phylogenetic diversity measures –¿ ecospat.calculate.pd; Biotic Interactions –¿ ecospat.co-occurrences and ecospat.Cscore; Minimum Dispersal routes –¿ ecospat.mdr; Niche Quantification –¿ ecospat.grid.clim.dyn, ecospat.niche.equivalency.test, ecospat.niche.similarity.test, ecospat.plot.niche, ecospat.plot.niche.dyn, ecospat.plot.contrib, ecospat.niche.overlap, ecospat.plot.overlap.test, ecospat.niche.dyn.index and ecospat.shift.centroids; Data Preparation –¿ ecospat.caleval, ecospat.cor.plot, ecospat.makeDataFrame, ecospat.occ.desaggregation, ecospat.rand.pseudoabsences, ecospat.rcls.grd, ecospat.recstrat prop, ecospat.recstrat regl and ecospat.sample.envar; -Core Niche Modelling: Model evaluation –¿ ecospat.cv.glm, ecospat.permut.glm, ecospat.cv.gbm, ecospat.cv.me, ecospat.cv.rf, ecospat.boyce, ecospat.CommunityEval, ecospat.cohen.kappa, ecospat.max.kappa, ecospat.max.tss, ecospat.meva.table, ecospat.plot.kappa, ecospat.plot.tss and ecospat.adj.D2.glm; Spatial predictions and projections –¿ ecospat.ESM.Modeling, ecospat.ESM.EnsembleModeling, ecospat.ESM.Projection, ecospat.ESM.EnsembleProjection, ecospat.SESAM.prr, ecospat.migclim, ecospat.binary.model, ecospat.Epred and ecospat.mpa; Variable Importance –¿ ecospat.maxentvarimport; -Post Modelling: Variance Partition –¿ ecospat.varpart; Spatial predictions of species assemblages –¿ ecospat.cons Cscore; Range size quantification –¿ ecospat.rangesize and ecospat.occupied.patch; The ecospat package was written by current and former members and collaborators of the ecospat group of Antoine Guisan, Department of Ecology and Evolution (DEE) & Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Switzerland. Details Package: Type: Version: Date: License: ecospat Package 2.2.0 2017-11-22 GPL Author(s) Olivier Broennimann [aut], Valeria Di Cola [cre, aut], Blaise Petitpierre [ctb], Frank Breiner [ctb], Manuela D‘Amen [ctb], Christophe Randin [ctb], Robin Engler [ctb], Wim Hordijk ecospat.adj.D2.glm 5 [ctb], Julien Pottier [ctb], Mirko Di Febbraro [ctb], Loic Pellissier [ctb], Dorothea Pio [ctb], Ruben Garcia Mateo [ctb], Anne Dubuis [ctb], Daniel Scherrer [ctb], Luigi Maiorano [ctb], Achilleas Psomas [ctb], Charlotte Ndiribe [ctb] Nicolas Salamin [ctb], Niklaus Zimmermann [ctb], Antoine Guisan [aut] ecospat.adj.D2.glm Calculate An Adjusted D2 Description This function is used for calculating an adjusted D2 from a calibrated GLM object Usage ecospat.adj.D2.glm(glm.obj) Arguments glm.obj Any calibrated GLM object with a binomial error distribution Details This function takes a calibrated GLM object with a binomial error distribution and returns an evaluation of the model fit. The measure of the fit of the models is expressed as the percentage of explained deviance adjusted by the number of degrees of freedom used (similar to the adjusted-R2 in the case of Least-Square regression; see Weisberg 1980) and is called the adjusted-D2 (see guisan and Zimmermann 2000 for details on its calculation). Value Returns an adjusted D square value (proportion of deviance accounted for by the model). Author(s) Christophe Randin and Antoine Guisan References Weisberg, S. 1980. Applied linear regression. Wiley. Guisan, A., S.B. Weiss and A.D. Weiss. 1999. GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 143, 107-122. Guisan, A. and N.E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecol. Model., 135, 147-186. Examples glm.obj<-glm(Achillea_millefolium˜ddeg+mind+srad+slp+topo, family = binomial, data=ecospat.testData) ecospat.adj.D2.glm(glm.obj) 6 ecospat.binary.model ecospat.binary.model Generate Binary Models Description Generate a binary map from a continuous model prediction. Usage ecospat.binary.model (Pred, Threshold) Arguments Pred RasterLayer predicted suitabilities from a SDM prediction. Threshold A threshold to convert continous maps into binary maps (e.g. the output of the function ecospat.mpa() or use the optimal.thresholds from PresenceAbsence R package. Details This function generates a binary model prediction (presence/absence) from an original model applying a threshold. The threshold could be arbitrary, or be based on the maximum acceptable error of false negatives (i.e. percentage of the presence predicted as absences, omission error). Value The binary model prediction (presence/absence). Author(s) Ruben G. Mateo with contributions of Frank Breiner References Fielding, A.H. and J.F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 38-49. Engler, R., A Guisan and L. Rechsteiner. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263-274. Liu, C., Berry, P. M., Dawson, T. P. and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393. Jimenez-Valverde, A. and J.M.Lobo. 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta oecologica, 31, 361-369. Liu, C., White, M. and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr., 40, 778-789. Freeman, E.A. and G.G. Moisen. 2008. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58. ecospat.boyce 7 See Also ecospat.mpa, optimal.thresholds Examples library(dismo) # get predictor variables fnames <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''), pattern='grd', full.names=TRUE ) predictors <- stack(fnames) # file with presence points occurence <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='') occ <- read.table(occurence, header=TRUE, sep=',')[,-1] colnames(occ) <- c("x","y") # fit a domain model, biome is a categorical variable do <- domain(predictors, occ, factors='biome') # predict to entire dataset pred <- predict(do, predictors) plot(pred) points(occ) # use MPA to convert suitability to binary map (90% of occurrences encompass by binary map) mpa.cutoff <- ecospat.mpa(pred,occ) pred.bin.mpa <- ecospat.binary.model(pred,mpa.cutoff) plot(pred.bin.mpa) points(occ) ecospat.boyce Calculate Boyce Index Description Calculate the Boyce index as in Hirzel et al. (2006). The Boyce index is used to assess model performance. Usage ecospat.boyce (fit, obs, nclass=0, window.w="default", res=100, PEplot = TRUE) Arguments fit A vector or Raster-Layer containing the predicted suitability values obs A vector containing the predicted suitability values or xy-coordinates (if ”fit” is a Raster-Layer) of the validation points (presence records) 8 ecospat.calculate.pd nclass The number of classes or vector with class thresholds. If nclass=0, the Boyce index is calculated with a moving window (see next parameters) window.w The width of the moving window (by default 1/10 of the suitability range) res The resolution of the moving window (by default 100 focals) PEplot If true, plot the predicted to expected ratio along the suitability class Details The Boyce index only requires presences and measures how much model predictions differ from random distribution of the observed presences across the prediction gradients (Boyce et al. 2002). It is thus the most appropriate metric in the case of presence-only models. It is continuous and varies between -1 and +1. Positive values indicate a model which present predictions are consistent with the distribution of presences in the evaluation dataset, values close to zero mean that the model is not different from a random model, negative values indicate counter predictions, i.e., predicting poor quality areas where presences are more frequent (Hirzel et al. 2006). Value Returns the predicted-to-expected ratio for each class-interval: F.ratio Returns the Boyce index value: Spearman.cor Creates a graphical plot of the predicted to expected ratio along the suitability class Author(s) Blaise Petitpierre and Frank Breiner References Boyce, M.S., P.R. Vernier, S.E. Nielsen and F.K.A. Schmiegelow. 2002. Evaluating resource selection functions. Ecol. Model., 157, 281-300. Hirzel, A.H., G. Le Lay, V. Helfer, C. Randin and A. Guisan. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model., 199, 142-152. Examples obs <- (ecospat.testData$glm_Saxifraga_oppositifolia [which(ecospat.testData$Saxifraga_oppositifolia==1)]) ecospat.boyce (fit = ecospat.testData$glm_Saxifraga_oppositifolia , obs, nclass=0, window.w="default", res=100, PEplot = TRUE) ecospat.calculate.pd Calculate Phylogenetic Diversity Measures Description Calculate all phylogenetic diversity measures listed in Schweiger et al., 2008 (see full reference below). ecospat.calculate.pd 9 Usage ecospat.calculate.pd (tree, data, method="spanning", type="clade", root=FALSE, average=FALSE, verbose=TRUE) Arguments tree The phylogenetic tree data A presence or absence (binary) matrix for each species (columns) in each location or grid cell (rows) method The method to use. Options are ”pairwise”, ”topology”, and ”spanning”. Default is ”spanning”. type Phylogenetic measure from those listed in Schweiger et al 2008. Options are ”Q”, ”P”, ”W”, ”clade”, ”species”, ”J”, ”F”, ”AvTD”,”TTD”, ”Dd”. Default is ”clade”. root Phylogenetic diversity can either be rooted or unrooted. Details in Schweiger et al 2008. Default is FALSE. average Phylogenetic diversity can either be averaged or not averaged. Details in Schweiger et al 2008. Default is FALSE. verbose Boolean indicating whether to print progress output during calculation. Default is TRUE. Details Given a phylogenetic tree and a presence/absence matrix this script calculates phylogenetic diversity of a group of species across a given set of grid cells or locations. The library ”ape” is required to read the tree in R. Command is ”read.tree” or ”read.nexus”. Options of type: ”P” is a normalized mearure of ”Q”. ”clade” is ”PDnode” when root= FALSE, and is ”PDroot” ehn root =TRUE. ”species” is ”AvPD”. Value This function returns a list of phylogenetic diversity values for each of the grid cells in the presence/absence matrix Author(s) Nicolas Salamin and Dorothea Pio References Schweiger, O., S. Klotz, W. Durka and I. Kuhn. 2008. A comparative test of phylogenetic diversity indices. Oecologia, 157, 485-495. Pio, D.V., O. Broennimann, T.G. Barraclough, G. Reeves, A.G. Rebelo, W. Thuiller, A. Guisan and N. Salamin. 2011. Spatial predictions of phylogenetic diversity in conservation decision making. Conservation Biology, 25, 1229-1239. Pio, D.V., R. Engler, H.P. Linder, A. Monadjem, F.P.D. Cotterill, P.J. Taylor, M.C. Schoeman, B.W. Price, M.H. Villet, G. Eick, N. Salamin and A. Guisan. 2014. Climate change effects on animal and plant phylogenetic diversity in southern Africa. Global Change Biology, 20, 1538-1549. 10 ecospat.caleval Examples fpath <- system.file("extdata", "ecospat.testTree.tre", package="ecospat") tree <-read.tree(fpath) data <- ecospat.testData[9:52] pd <- ecospat.calculate.pd(tree, data, method = "spanning", type = "species", root = FALSE, average = FALSE, verbose = TRUE ) plot(pd) ecospat.caleval Calibration And Evaluation Dataset Description Generate an evaluation and calibration dataset with a desired ratio of disaggregation. Usage ecospat.caleval (data, xy, row.num=1:nrow(data), nrep=1, ratio=0.7, disaggregate=0, pseudoabs=0, npres=0, replace=FALSE) Arguments data A vector with presence-absence (0-1) data for one species. xy The x and y coordinates of the projection dataset. row.num Row original number nrep Number of repetitions ratio Ratio of disaggregation disaggregate Minimum distance of disaggregation (has to be in the same scale as xy) pseudoabs Number of pseudoabsences npres To select a smaller number of presences from the dataset to be subsetted. The maximum number is the total number of presences replace F to replace de pseudoabsences Details This functions generates two list, one with the calibration or training dataset and other list with the evaluation or testing dataset disaggregated with a minimum distance. Value list(”eval”=eval,”cal”=cal)) Author(s) Blaise Petitpierre ecospat.CCV.communityEvaluation.bin 11 Examples data <- ecospat.testData caleval <- ecospat.caleval (data = ecospat.testData[53], xy = data[2:3], row.num = 1:nrow(data), nrep = 2, ratio = 0.7, disaggregate = 0.2, pseudoabs = 100, npres = 10, replace = FALSE) caleval ecospat.CCV.communityEvaluation.bin Calculates a range of community evaluation metrics based on different thresholding techniques. Description The function uses the output of ecospat.CCV.modeling to calculate a range of community evaluation metrics based on a selection of thresholding techniques both for the calibration data and independent evaluation data. Usage ecospat.CCV.communityEvaluation.bin(ccv.modeling.data, thresholds= c('MAX.KAPPA', 'MAX.ROC','PS_SDM'), community.metrics=c('SR.deviation','Sorensen'), parallel=TRUE, cpus=4, fix.threshold=0.5, MCE=5, MEM=NULL) Arguments ccv.modeling.data a 'ccv.modeling.data' object returned by ecospat.CCV.modeling thresholds a selection of thresholds ('FIXED', 'MAX.KAPPA', 'MAX.ACCURACY', 'MAX.TSS', 'SENS SPEC', to be calculated and applied for the model evaluation. community.metrics a selection of community evaluation metrics ('SR.deviation', 'community.AUC', 'community to be calculated for each seleted thresholding technique. parallel should parallel computing be allowed (TRUE/FALSE) cpus number of cpus to use in parallel computing fix.threshold fixed threshold to be used. Only gets used if thresholding technique FIXED is selected. MCE maximum omission error (%) allowed for the thresholding. Only gets used if thresholding technique MCE is selected. MEM a vetor with the species richness prediction of a MEM for each site. Only needed if MEM is selected. 12 ecospat.CCV.communityEvaluation.bin Details The function uses the probability output of the ecospat.CCV.modeling function and creates binary maps based on the selected thresholding methods. These binary maps are then used to calculate the selected community evaluation metrics both for the calibration and evaluation data of each modeling run. Value DataSplitTable a matrix with TRUE/FALSE for each model run (TRUE=Calibration point, FALSE=Evaluation point) CommunityEvaluationMetrics.CalibrationSites a 4-dimensional array containing the community evaluation metrics for the calibartion sites of each run (NA means that the site was used for evaluation) CommunityEvaluationMetrics.EvaluationSites a 4-dimensional array containing the community evaluation metrics for the evaluation sites of each run (NA means that the site was used for calibaration) PA.allSites a 4-dimensional array of the binary prediction for all sites and runs under the different thresholding appraoches. Author(s) Daniel Scherrer ¡daniel.j.a.scherrer@gmail.com¿ References Scherrer, D., D’Amen, M., Mateo, M.R.G., Fernandes, R.F. & Guisan , A. (2018) How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods in Ecology and Evolution, in review See Also ecospat.CCV.createDataSplitTable; ecospat.CCV.communityEvaluation.prob Examples #Loading species occurence data and remove empty communities testData <- ecospat.testData[,c(24,34,43,45,48,53,55:58,60:63,65:66,68:71)] sp.data <- testData[which(rowSums(testData)>0), sort(colnames(testData))] #Loading environmental data env.data <- ecospat.testData[which(rowSums(testData)>0),4:8] #Coordinates for all sites xy <- ecospat.testData[which(rowSums(testData)>0),2:3] #Running all the models for all species myCCV.Models <- ecospat.CCV.modeling(sp.data = sp.data, env.data = env.data, xy = xy, NbRunEval = 5, minNbPredictors = 10, VarImport = 3) ecospat.CCV.communityEvaluation.prob 13 #Thresholding all the predictions and calculating the community evaluation metrics myCCV.communityEvaluation.bin <- ecospat.CCV.communityEvaluation.bin( ccv.modeling.data = myCCV.Models, thresholds = c('MAX.KAPPA', 'MAX.ROC','PS_SDM'), community.metrics= c('SR.deviation','Sorensen'), parallel = FALSE, cpus = 4) ecospat.CCV.communityEvaluation.prob Evaluates community predictions directly on the probabilities (i.e., threshold independent) Description This function generates a number of community evaluation metrics directly based on the probability returned by the individual models. Instead of thresholding the predictions (ecospat.CCV.communityEvaluation.bin this function directly uses the probability and compares its outcome to null models or average expectations.) Usage ecospat.CCV.communityEvaluation.prob( ccv.modeling.data, community.metrics=c('SR.deviation','community.AUC','probabilistic.Sorensen'), se.th=0.01, parallel = TRUE, cpus = 4) Arguments ccv.modeling.data a 'ccv.modeling.data' object returned by ecospat.CCV.modeling community.metrics a selection of community metrics to calculate ('SR.deviation', 'community.AUC', 'probabil se.th the desired precission for the community metrics (standard error of the mean) parallel should parallel computing be allowed (TRUE/FALSE) cpus number of cpus to use in parallel computing Value DataSplitTable a matrix with TRUE/FALSE for each model run (TRUE=Calibration point, FALSE=Evaluation point) CommunityEvaluationMetrics.CalibrationSites a 3-dimensional array containing the community evaluation metrics for the calibartion sites of each run (NA means that the site was used for evaluation) CommunityEvaluationMetrics.EvaluationSites a 3-dimensional array containing the community evaluation metrics for the evaluation sites of each run (NA means that the site was used for calibaration) 14 ecospat.CCV.communityEvaluation.prob Note If the community evaluation metric 'SR.deviation' is selected the returned tables will have the following columns: SR.obs = observed species richness, SR.mean = the predicted species richness (based on the probabilities assuming poission binomial distribution), SR.dev = the deviation of observed and predicted species richness, SR.sd = the standard deviation of the predicted species richness (based on the probabilities assuming poission binomial distribution), SR.prob = the probability that the observed species richness falls within the predicted species richness (based on the probabilities assuming poission binomial distribution), SR.imp.05 = improvement of species richness prediction over null-model 0.5, SR.imp.average.SR = improvement of species richness prediction over null-model average.SR and SR.imp.prevalence = improvement of species richness prediction over null-model prevalence. If the community evalation metric community.AUC is selected the returned tables will have the following colums: Community.AUC = The AUC of ROC of a given site (in this case the ROC plot is community sensitiviy [percentage species predicted corretly present] vs 1 - community specificity [percentage of species predicted correctly absent]) If any of the other community evaluation metrics ('probabilistic.Sorensen', 'probabilistic.Jaccard', 'pr is selected the returned tables will have the follwing colums: METRIC.mean = The average Sorensen/Jaccard/Simpson based on a number of random draws of the probabilities. METRIC.sd = The standard deviation of Sorensen/Jaccard/Simpson based on a number of random draws of the probabilities. METRIC.CI = The 95% confidence intervall of the average Sorensen/Jaccard/Simpson based on the standard deviation and number of draws. Should normally be ¡= se.th. nb.it = number of draws used to estimate all the parameters. The draws stop as soon as the desired precission (se.th) is reached or the limit of allowed iterations (default=10’000). composition.imp.05 = improvement of species compostion prediction over the nullmodel 0.5. composition.imp.average.SR = improvement of the species composition prediction over the null-model average.SR. composition.imp.prevalence = improvement of the species composition prediction over the null-model prevalence. For detailed descriptions of the null models see Scherrer et al. ..... Author(s) Daniel Scherrer ¡daniel.j.a.scherrer@gmail.com¿ ecospat.CCV.createDataSplitTable 15 See Also ecospat.CCV.createDataSplitTable; ecospat.CCV.communityEvaluation.bin; Examples #Loading species occurence data and remove empty communities testData <- ecospat.testData[,c(24,34,43,45,48,53,55:58,60:63,65:66,68:71)] sp.data <- testData[which(rowSums(testData)>0), sort(colnames(testData))] #Loading environmental data env.data <- ecospat.testData[which(rowSums(testData)>0),4:8] #Coordinates for all sites xy <- ecospat.testData[which(rowSums(testData)>0),2:3] #Running all the models for all species myCCV.Models <- ecospat.CCV.modeling(sp.data = sp.data, env.data = env.data, xy = xy, NbRunEval = 5, minNbPredictors = 10, VarImport = 3) #Calculating the probabilistic community metrics myCCV.communityEvaluation.prob <- ecospat.CCV.communityEvaluation.prob( ccv.modeling.data = myCCV.Models, community.metrics = c('SR.deviation','community.AUC','probabilistic.Sorensen'), se.th = 0.02, parallel = FALSE, cpus = 4) ecospat.CCV.createDataSplitTable Creates a DataSplitTable for usage in ecospat.ccv.modeling. Description Creates a DataSplitTable with calibration and evaluation data either for cross-validation or repeated split sampling at the community level (i.e., across all species). Usage ecospat.CCV.createDataSplitTable(NbRunEval, DataSplit, validation.method, NbSites, sp.data=NULL, minNbPresences=NULL, minNbAbsences=NULL, maxNbTry=1000) 16 ecospat.CCV.createDataSplitTable Arguments NbRunEval number of cross-validation or split sample runs DataSplit proportion (%) of sites used for model calibration validation.method the type of DataSplitTable that should be created. 'cross-validation' or 'split-sample' Must be either NbSites number of total sites available. Is ignored if sp.data is provided. sp.data a data.frame where the rows are sites and the columns are species (values 1,0) minNbPresences the desired minimum number of Presences required in each run minNbAbsences the desired minimum number of Absences required in each run maxNbTry number of random tries allowed to create a fitting DataSplitTable Details If a sp.data data.frame with species presences and absences is provided the function tries to create a DataSplitTable which ensures that the maximum possible number of species can be modelled (according to the specified minimum presences and absences.) Value DataSplitTable a matrix with TRUE/FALSE for each model run (TRUE=Calibration point, FALSE=Evaluation point) Author(s) Daniel Scherrer ¡daniel.j.a.scherrer@gmail.com¿ See Also ecospat.CCV.modeling Examples #Creating a DataSplitTable for 200 sites, 25 runs with an #80/20 calibration/evaluation cross-validation DataSplitTable <- ecospat.CCV.createDataSplitTable(NbSites = 200, NbRunEval=25, DataSplit=80, validation.method='cross-validation') #Loading species occurence data and remove empty communities testData <- ecospat.testData[,c(24,34,43,45,48,53,55:58,60:63,65:66,68:71)] sp.data <- testData[which(rowSums(testData)>0), sort(colnames(testData))] #Creating a DataSplitTable based on species data directly DataSplitTable <- ecospat.CCV.createDataSplitTable(NbRunEval = 20, DataSplit = 70, validation.method = "cross-validation", NbSites = NULL, sp.data = sp.data, minNbPresence = 15, ecospat.CCV.modeling 17 minNbAbsences = 15, maxNbTry = 250) ecospat.CCV.modeling Runs indivudual species distribuion models with SDMs or ESMs Description Creates probabilistic prediction for all species based on SDMs or ESMs and returns their evaluation metrics and variable importances. Usage ecospat.CCV.modeling(sp.data, env.data, xy, DataSplitTable=NULL, DataSplit = 70, NbRunEval = 25, minNbPredictors =5, validation.method = "cross-validation", models.sdm = c("GLM","RF"), models.esm = "CTA", modeling.options.sdm = NULL, modeling.options.esm = NULL, ensemble.metric = "AUC", ESM = "YES", parallel = FALSE, cpus = 4, VarImport = 10, modeling.id) Arguments sp.data a data.frame where the rows are sites and the columns are species (values 1,0) env.data either a data.frame where rows are sites and colums are environmental variables or a raster stack of the envrionmental variables xy two column data.frame with X and Y coordinates of the sites (most be same coordinate system as env.data) DataSplitTable a table providing TRUE/FALSE to indicate what points are used for calibration and evaluation. As returned by ecospat.CCV.createDataSplitTable DataSplit percentage of dataset observations retained for the model training (only needed if no DataSplitTable provided) NbRunEval number of cross-validatio/split sample runs (only needed if no DataSplitTable provided) minNbPredictors minimum number of occurences [min(presences/Absences] per predicotors needed to calibrate the models 18 ecospat.CCV.modeling validation.method either ”cross-validation” or ”split-sample” used to validate the communtiy predictions (only needed if no DataSplitTable provided) models.sdm modeling techniques used for the normal SDMs. Vector of models names choosen among 'GLM', 'GBM', 'GAM', 'CTA', 'ANN', 'SRE', 'FDA', 'MARS', 'RF', 'MAXENT models.esm modeling techniques used for the ESMs. Vector of models names choosen among 'GLM', 'GBM', 'GAM', 'CTA', 'ANN', 'SRE', 'FDA', 'MARS', 'RF', 'MAXENT.Phillip modeling.options.sdm modeling options for the normal SDMs. "BIOMOD.models.options"” object returned by BIOMOD ModelingOptions modeling.options.esm modeling options for the ESMs. "BIOMOD.models.options" object returned by BIOMOD ModelingOptions ensemble.metric evaluation score used to weight single models to build ensembles: 'AUC', 'Kappa' or 'TSS' ESM either 'YES' (ESMs allowed), 'NO' (ESMs not allowed) or 'ALL' (ESMs used in any case) parallel should parallel computing be allowed (TRUE/FALSE) cpus number of cpus to use in parallel computing VarImport number of permutation runs to evaluate variable importance modeling.id character, the ID (=name) of modeling procedure. A random number by default Details The basic idea of the community cross-validation (CCV) is to use the same data (sites) for the model calibration/evaluation of all species. This ensures that there is ”independent” cross-validation/split-sample data available not only at the individual species level but also at the community level. This is key to allow an unbiased estimation of the ability to predict species assemblages (Scherrer et al. 2018). The output of the ecospat.CCV.modeling function can then be used to evaluate the species assemblage predictions with the ecospat.CCV.communityEvaluation.bin or ecospat.CCV.communityEvaluation.prob functions. Value modelling.id character, the ID (=name) of modeling procedure output.files vector with the names of the files written to the hard drive speciesData.calibration a 3-dimensional array of presence/absence data of all species for the calibration plots used for each run speciesData.evaluation a 3-dimensional array of presence/absence data of all species for the evaluation plots used for each run speciesData.full a data.frame of presence/absence data of all species (same as sp.data input) DataSplitTable a matrix with TRUE/FALSE for each model run (TRUE=Calibration point, FALSE=Evaluation point) ecospat.climan 19 singleSpecies.ensembleEvaluationScore a 3-dimensional array of single species evaluation metrics ('Max.KAPPA', 'Max.TSS', 'AUC of singleSpecies.ensembleVariableImportance a 3-dimensional array of single species variable importance for all predictors singleSpecies.calibrationSites.ensemblePredictions a 3-dimensional array of the predictions for each species and run at the calibration sites singleSpecies.evaluationSites.ensemblePredictions a 3-dimensional array of the predictions for each species and run at the evaluation sites Author(s) Daniel Scherrer ¡daniel.j.a.scherrer@gmail.com¿ References Scherrer, D., D’Amen, M., Mateo, M.R.G., Fernandes, R.F. & Guisan , A. (2018) How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods in Ecology and Evolution, in review See Also ecospat.CCV.createDataSplitTable; ecospat.CCV.communityEvaluation.bin; ecospat.CCV.communityEvalua Examples #Loading species occurence data and remove empty communities testData <- ecospat.testData[,c(24,34,43,45,48,53,55:58,60:63,65:66,68:71)] sp.data <- testData[which(rowSums(testData)>0), sort(colnames(testData))] #Loading environmental data env.data <- ecospat.testData[which(rowSums(testData)>0),4:8] #Coordinates for all sites xy <- ecospat.testData[which(rowSums(testData)>0),2:3] #Running all the models for all species myCCV.Models <- ecospat.CCV.modeling(sp.data = sp.data, env.data = env.data, xy = xy, NbRunEval = 5, minNbPredictors = 10, VarImport = 3) ecospat.climan A climate analogy setection tool for the modeling of species distributions Description Assess climate analogy between a projection extent (p) and a reference extent (ref, used in general as the background to calibrate SDMs) 20 ecospat.cohen.kappa Usage ecospat.climan (ref, p) Arguments ref A dataframe with the value of the variables (i.e columns) for each point of the reference exent. p A dataframe with the value of the variables (i.e columns) for each point of the projection exent. Value Returns a vector. Values below 0 are novel conditions at the univariate level (similar to the MESS), values between 0 and 1 are analog and values above 1 are novel covariate condtions. For more information see Mesgeran et al. (2014) Author(s) Blaise Petitpierre References Mesgaran, M.B., R.D. Cousens and B.L. Webber. 2014. Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Diversity & Distributions, 20, 1147-1159. Examples x <- ecospat.testData[c(4:8)] p<- x[1:90,] #A projection dataset. ref<- x[91:300,] #A reference dataset ecospat.climan(ref,p) ecospat.cohen.kappa Cohen’s Kappa Description Calculates Cohen’s kappa and variance estimates, within a 95 percent confidence interval. Usage ecospat.cohen.kappa(xtab) Arguments xtab A symmetric agreement table. Details The argument xtab is a contingency table. xtab ¡- table(Pred ¿= th, Sp.occ) ecospat.CommunityEval 21 Value A list with elements ’kap’, ’vark’, ’totn’ and ’ci’ is returned. ’kap’ is the cohen’s kappa, ’vark’ is the variance estimate within a 95 percent confidence interval, ’totn’ is the number of plots and ’ci’ is the confidence interval. Author(s) Christophe Randin with contributions of Niklaus. E. Zimmermann and Valeria Di Cola References Bishop, Y.M.M., S.E. Fienberg and P.W. Holland. 1975. Discrete multivariate analysis: Theory and Practice. Cambridge, MA: MIT Press. pp. 395-397. Pearce, J. and S. Ferrier. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model., 133, 225-245. See Also ecospat.meva.table, ecospat.max.tss, ecospat.plot.tss, ecospat.plot.kappa, ecospat.max.kappa Examples Pred <- ecospat.testData$glm_Agrostis_capillaris Sp.occ <- ecospat.testData$Agrostis_capillaris th <- 0.39 # threshold xtab <- table(Pred >= th, Sp.occ) ecospat.cohen.kappa(xtab) ecospat.CommunityEval Community Evaluation Description Calculate several indices of accuracy of community predictions. Usage ecospat.CommunityEval (eval, pred, proba, ntir) Arguments eval A matrix of observed presence-absence (ideally independent from the dataset used to fit species distribution models) of the species with n rows for the sites and s columns for the species. pred A matrix of predictions for the s species in the n sites. Should have the same dimension as eval. proba Logical variable indicating whether the prediction matrix contains presencesabsences (FALSE) or probabilities (TRUE). ntir Number of trials of presence-absence predictions if pred is a probability matrix. 22 ecospat.CommunityEval Details This function calculates several indices of accuracy of community predictions based on stacked predictions of species ditribution models. In case proba is set to FALSE the function returns one value per index and per site. In case proba is set to TRUE the function generates presences-absences based on the predicted probabilities and returns one value per index, per site and per trial. Value A list of evaluation metrics calculated for each site (+ each trial if proba is set to TRUE): deviance.rich.pred: the deviation of the predicted species richness to the observed overprediction: the proportion of species predicted as present but not observed among the species predicted as present underprediction: the proportion of species predicted as absent but observed among the species observed as present prediction.success: the proportion of species correctly predicted as present or absent sensitivity: the proportion of species correctly predicted as present among the species observed as present specificity : the proportion of species correctly predicted as absent among the species observed as absent kappa: the proportion of specific agreement TSS: sensitivity+specificity-1 similarity: the similarity of community composition between the observation and the prediction. The calculation is based on the Sorenses index. Jaccard: this index is a widely used metric of community similarity. Author(s) Julien Pottier with contribution of Daniel Scherrer , Anne Dubuis and Manuela D’Amen References Pottier, J., A. Dubuis, L. Pellissier, L. Maiorano, L. Rossier, C.F. Randin, P. Vittoz and A. Guisan. 2013. The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22, 52-63. Examples ## Not run: eval <- Data[c(53,62,58,70,61,66,65,71,69,43,63,56,68,57,55,60,54,67,59,64)] pred <- Data[c(73:92)] ecospat.CommunityEval (eval, pred, proba=TRUE, ntir=10) ## End(Not run) ecospat.cons Cscore 23 ecospat.cons Cscore Constrained Co-Occurrence Analysis. Description Co-occurrence Analysis & Environmentally Constrained Null Models. The function tests for non-random patterns of species co-occurrence in a presence-absence matrix. It calculates the C-score index for the whole community and for each species pair. An environmental constraint is applied during the generation of the null communities. Usage ecospat.cons_Cscore(presence,pred,nperm,outpath) Arguments presence A presence-absence dataframe for each species (columns) in each location or grid cell (rows) Column names (species names) and row names (sampling plots). pred A dataframe object with SDM predictions. Column names (species names SDM) and row names (sampling plots). nperm The number of permutation in the null model. outpath Path to specify where to save the results. Details An environmentally constrained approach to null models will provide a more robust evaluation of species associations by facilitating the distinction between mutually exclusive processes that may shape species distributions and community assembly. The format required for input databases: a plots (rows) x species (columns) matrix. Input matrices should have column names (species names) and row names (sampling plots). NOTE: a SES that is greater than 2 or less than -2 is statistically significant with a tail probability of less than 0.05 (Gotelli & McCabe 2002 - Ecology) Value Returns the C-score index for the observed community (ObsCscoreTot), the mean of Cscore for the simulated communities (SimCscoreTot), p.value (PValTot) and standardized effect size (SES.Tot). It also saves a table in the specified path where the same metrics are calculated for each species pair (only the table with species pairs with significant p.values is saved in this version). Author(s) Anne Dubuis and Manuela D‘Amen References Gotelli, N.J. and D.J. McCabe. 2002. Species co-occurrence: a meta-analysis of JM Diamond‘s assembly rules model. Ecology, 83, 2091-2096. Peres-Neto, P.R., J.D. Olden and D.A. Jackson. 2001. Environmentally constrained null models: site suitability as occupancy criterion. Oikos, 93, 110-120. 24 ecospat.cor.plot Examples ## Not run: presence <- ecospat.testData[c(53,62,58,70,61,66,65,71,69,43,63,56,68,57,55,60,54,67,59,64)] pred <- ecospat.testData[c(73:92)] nperm <- 10000 outpath <- getwd() ecospat.cons_Cscore(presence, pred, nperm, outpath) ## End(Not run) ecospat.cor.plot Correlation Plot Description A scatter plot of matrices, with bivariate scatter plots below the diagonal, histograms on the diagonal, and the Pearson correlation above the diagonal. Useful for descriptive statistics of small data sets (better with less than 10 variables). Usage ecospat.cor.plot(data) Arguments data A dataframe object with environmental variables. Details Adapted from the pairs help page. Uses panel.cor, and panel.hist, all taken from the help pages for pairs. It is a simplifies version of pairs.panels() function of the package psych. Value A scatter plot matrix is drawn in the graphic window. The lower off diagonal draws scatter plots, the diagonal histograms, the upper off diagonal reports the Pearson correlation. Author(s) Adjusted by L. Mathys, 2006, modified by N.E. Zimmermann Examples data <- ecospat.testData[,4:8] ecospat.cor.plot(data) ecospat.co occurrences 25 ecospat.co occurrences Species Co-Occurrences Description Calculate an index of species co-occurrences. Usage ecospat.co_occurrences (data) Arguments data A presence-absence matrix for each species (columns) in each location or grid cell (rows) or a matrix with predicted suitability values. Details Computes an index of co-occurrences ranging from 0 (never co-occurring) to 1 (always co-occuring). Value The species co-occurrence matrix and box-plot of the co-occurrence indices Author(s) Loic Pellissier References Pellissier, L., K.A. Brathen, J. Pottier, C.F. Randin, P. Vittoz, A. Dubuis, N.G. Yoccoz, T. Alm, N.E. Zimmermann and A. Guisan. 2010. Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 33, 1004-1014. Guisan, A. and N. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135:147-186 Examples ## Not run: matrix <- ecospat.testData[c(9:16,54:57)] ecospat.co_occurrences (data=matrix) ## End(Not run) 26 ecospat.Cscore ecospat.Cscore Pairwise co-occurrence Analysis with calculation of the C-score index. Description The function tests for nonrandom patterns of species co-occurrence in a presence-absence matrix. It calculates the C-score index for the whole community and for each species pair. Null communities have column sum fixed. Usage ecospat.Cscore (data, nperm, outpath) Arguments data A presence-absence dataframe for each species (columns) in each location or grid cell (rows). Column names (species names) and row names (sampling plots). nperm The number of permutation in the null model. outpath Path to specify where to save the results. Details This function allows to apply a pairwise null model analysis (Gotelli and Ulrich 2010) to a presence-absence community matrix to determine which species associations are significant across the study area. The strength of associations is quantified by the C-score index (Stone and Roberts 1990) and a ’fixed-equiprobable’ null model algorithm is applied. The format required for input databases: a plots (rows) x species (columns) matrix. Input matrices should have column names (species names) and row names (sampling plots). NOTE: a SES that is greater than 2 or less than -2 is statistically significant with a tail probability of less than 0.05 (Gotelli & McCabe 2002). Value The function returns the C-score index for the observed community (ObsCscoreTot), p.value (PValTot) and standardized effect size (SES.Tot). It saves also a table in the working directory where the same metrics are calculated for each species pair (only the table with species pairs with significant p-values is saved in this version) Author(s) Christophe Randin < christophe.randin@wsl.ch> and Manuela D’Amen ¡manuela.damen@msn.com¿ References Gotelli, N.J. and D.J. McCabe. 2002. Species co-occurrence: a meta-analysis of JM Diamond’s assembly rules model. Ecology, 83, 2091-2096. Gotelli, N.J. and W. Ulrich. 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia, 162, 463-477 Stone, L. and A. Roberts, A. 1990. The checkerboard score and species distributions. Oecologia, 85, 74-79 ecospat.cv.example 27 See Also ecospat.co occurrences and ecospat.cons Cscore Examples ## Not run: data<- ecospat.testData[c(53,62,58,70,61,66,65,71,69,43,63,56,68,57,55,60,54,67,59,64)] nperm <- 10000 outpath <- getwd() ecospat.Cscore(data, nperm, outpath) ## End(Not run) ecospat.cv.example Cross Validation Example Function Description Run the cross validation functions on an example data set. Usage ecospat.cv.example () Details This function takes an example data set, calibrates it for various models, and then runs the cross validation functions on the results. Mainly to show how to use the cross validation functions. Author(s) Christophe Randin < christophe.randin@wsl.ch> and Antoine Guisan Examples ## Not run: ecospat.cv.example () ## End(Not run) 28 ecospat.cv.gbm ecospat.cv.gbm GBM Cross Validation Description K-fold and leave-one-out cross validation for GBM. Usage ecospat.cv.gbm (gbm.obj, data.cv, K=10, cv.lim=10, jack.knife=FALSE) Arguments gbm.obj A calibrated GBM object with a binomial error distribution. Attention: users have to tune model input parameters according to their study! data.cv A dataframe object containing the calibration data set with the same names for response and predictor variables. K Number of folds. 10 is recommended; 5 for small data sets. cv.lim Minimum number of presences required to perform the K-fold crossvalidation. jack.knife If TRUE, then the leave-one-out / jacknife cross-validation is performed instead of the 10-fold cross-validation. Details This function takes a calibrated GBM object with a binomial error distribution and returns predictions from a stratified 10-fold cross-validation or a leave-one-out / jack-knived crossvalidation. Stratified means that the original prevalence of the presences and absences in the full dataset is conserved in each fold. Value Returns a dataframe with the observations (obs) and the corresponding predictions by cross-validation or jacknife. Author(s) Christophe Randin and Antoine Guisan References Randin, C.F., T. Dirnbock, S. Dullinger, N.E. Zimmermann, M. Zappa and A. Guisan. 2006. Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689-1703. Pearman, P.B., C.F. Randin, O. Broennimann, P. Vittoz, W.O. van der Knaap, R. Engler, G. Le Lay, N.E. Zimmermann and A. Guisan. 2008. Prediction of plant species distributions across six millennia. Ecology Letters, 11, 357-369. ecospat.cv.glm 29 Examples ## Not run: gbm <- ecospat.cv.gbm (gbm.obj= get ("gbm.Agrostis_capillaris", envir=ecospat.env), ecospat.testData, K=10, cv.lim=10, jack.knife=FALSE) ## End(Not run) ecospat.cv.glm GLM Cross Validation Description K-fold and leave-one-out cross validation for GLM. Usage ecospat.cv.glm (glm.obj, K=10, cv.lim=10, jack.knife=FALSE) Arguments glm.obj Any calibrated GLM object with a binomial error distribution. K Number of folds. 10 is recommended; 5 for small data sets. cv.lim Minimum number of presences required to perform the K-fold crossvalidation. jack.knife If TRUE, then the leave-one-out / jacknife cross-validation is performed instead of the 10-fold cross-validation. Details This function takes a calibrated GLM object with a binomial error distribution and returns predictions from a stratified 10-fold cross-validation or a leave-one-out / jack-knived crossvalidation. Stratified means that the original prevalence of the presences and absences in the full dataset is conserved in each fold. Value Returns a dataframe with the observations (obs) and the corresponding predictions by cross-validation or jacknife. Author(s) Christophe Randin and Antoine Guisan References Randin, C.F., T. Dirnbock, S. Dullinger, N.E. Zimmermann, M. Zappa and A. Guisan. 2006. Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689-1703. Pearman, P.B., C.F. Randin, O. Broennimann, P. Vittoz, W.O. van der Knaap, R. Engler, G. Le Lay, N.E. Zimmermann and A. Guisan. 2008. Prediction of plant species distributions across six millennia. Ecology Letters, 11, 357-369. 30 ecospat.cv.me Examples ## Not run: glm <- ecospat.cv.glm (glm.obj = get ("glm.Agrostis_capillaris", envir=ecospat.env), K=10, cv.lim=10, jack.knife=FALSE) ## End(Not run) ecospat.cv.me Maxent Cross Validation Description K-fold and leave-one-out cross validation for Maxent. Usage ecospat.cv.me (data.cv.me, name.sp, names.pred, K=10, cv.lim=10, jack.knife=FALSE) Arguments data.cv.me A dataframe object containing the calibration data set of a Maxent object to validate with the same names for response and predictor variables. name.sp Name of the species / response variable. names.pred Names of the predicting variables. K Number of folds. 10 is recommended; 5 for small data sets. cv.lim Minimum number of presences required to perform the K-fold crossvalidation. jack.knife If TRUE, then the leave-one-out / jacknife cross-validation is performed instead of the 10-fold cross-validation. Details This function takes a calibrated Maxent object with a binomial error distribution and returns predictions from a stratified 10-fold cross-validation or a leave-one-out / jack-knived cross-validation. Stratified means that the original prevalence of the presences and absences in the full dataset is conserved in each fold. Value Returns a dataframe with the observations (obs) and the corresponding predictions by cross-validation or jacknife. Author(s) Christophe Randin and Antoine Guisan ecospat.cv.rf 31 References Randin, C.F., T. Dirnbock, S. Dullinger, N.E. Zimmermann, M. Zappa and A. Guisan. 2006. Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689-1703. Pearman, P.B., C.F. Randin, O. Broennimann, P. Vittoz, W.O. van der Knaap, R. Engler, G. Le Lay, N.E. Zimmermann and A. Guisan. 2008. Prediction of plant species distributions across six millennia. Ecology Letters, 11, 357-369. Examples ## Not run: me <- ecospat.cv.me(ecospat.testData, names(ecospat.testData)[53], names(ecospat.testData)[4:8], K = 10, cv.lim = 10, jack.knife = FALSE) ## End(Not run) ecospat.cv.rf RandomForest Cross Validation Description K-fold and leave-one-out cross validation for randomForest. Usage ecospat.cv.rf (rf.obj, data.cv, K=10, cv.lim=10, jack.knife=FALSE) Arguments rf.obj Any calibrated randomForest object with a binomial error distribution. data.cv A dataframe object containing the calibration data set with the same names for response and predictor variables. K Number of folds. 10 is recommended; 5 for small data sets. cv.lim Minimum number of presences required to perform the K-fold crossvalidation. jack.knife If TRUE, then the leave-one-out / jacknife cross-validation is performed instead of the 10-fold cross-validation. Details This function takes a calibrated randomForest object with a binomial error distribution and returns predictions from a stratified 10-fold cross-validation or a leave-one-out / jackknived cross-validation. Stratified means that the original prevalence of the presences and absences in the full dataset is conserved in each fold. Value Returns a dataframe with the observations (obs) and the corresponding predictions by cross-validation or jacknife. 32 ecospat.Epred Author(s) Christophe Randin and Antoine Guisan References Randin, C.F., T. Dirnbock, S. Dullinger, N.E. Zimmermann, M. Zappa and A. Guisan. 2006. Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689-1703. Pearman, P.B., C.F. Randin, O. Broennimann, P. Vittoz, W.O. van der Knaap, R. Engler, G. Le Lay, N.E. Zimmermann and A. Guisan. 2008. Prediction of plant species distributions across six millennia. Ecology Letters, 11, 357-369. Examples ## Not run: rf <- ecospat.cv.rf(get("rf.Agrostis_capillaris", envir = ecospat.env), ecospat.testData[, c(53, 4:8)], K = 10, cv.lim = 10, jack.knife = FALSE) ## End(Not run) ecospat.env Package Environment Description A package environment that is used to contain certain (local) variables and results, especially those in example functions and data sets. Examples ls(envir=ecospat.env) ecospat.Epred Prediction Mean Description Calculate the mean (or weighted mean) of several predictions. Usage ecospat.Epred (x, w=rep(1,ncol(x)), th=0) Arguments x A dataframe object with SDM predictions. w Weight of the model, e.g. AUC. The default is 1. th Threshold used to binarize. ecospat.ESM.EnsembleModeling 33 Details The Weighted Average consensus method utilizes pre-evaluation of the predictive performance of the single-models. In this approach, half (i.e. four) of the eight single-models with highest accuracy are selected first, and then a WA is calculated based on the pre-evaluated AUC of the single-models Value A weighted mean binary transformation of the models. Author(s) Blaise Petitpierre References Boyce, M.S., P.R. Vernier, S.E. Nielsen and F.K.A. Schmiegelow. 2002. Evaluating resource selection functions. Ecol. Model., 157, 281-300. Marmion, M., M. Parviainen, M. Luoto, R.K. Heikkinen andW. Thuiller. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15, 59-69. Examples x <- ecospat.testData[c(92,96)] mean <- ecospat.Epred (x, w=rep(1,ncol(x)), th=0.5) ecospat.ESM.EnsembleModeling Ensamble of Small Models: Evaluates and Averages Simple Bivariate Models To ESMs Description This function evaluates and averages simple bivariate models by weighted means to Ensemble Small Models as in Lomba et al. 2010 and Breiner et al. 2015. Usage ecospat.ESM.EnsembleModeling( ESM.modeling.output, weighting.score, threshold=NULL, models) Arguments ESM.modeling.output a list returned by ecospat.ESM.Modeling 34 ecospat.ESM.EnsembleModeling weighting.score an evaluation score used to weight single models to build ensembles:”AUC”,”TSS”, ”Boyce”,”Kappa”,”SomersD” #the evaluation methods used to evaluate ensemble models ( see "BIOMOD Modeling" models.eval.meth section for more detailed informations ) threshold threshold value of an evaluation score to select the bivariate model(s) included for building the ESMs models vector of models names choosen among ’GLM’, ’GBM’, ’GAM’, ’CTA’, ’ANN’, ’SRE’, ’FDA’, ’MARS’, ’RF’,’MAXENT.Phillips’, ”MAXENT.Tsuruoka” (same as in biomod2) #a character vector (either ’all’ or a sub-selection of model names) that defines the models kept for building the ensemble models (might be useful for removing some non-preferred models) Details The basic idea of ensemble of small models (ESMs) is to model a species distribution based on small, simple models, for example all possible bivariate models (i.e. models that contain only two predictors at a time out of a larger set of predictors), and then combine all possible bivariate models into an ensemble (Lomba et al. 2010; Breiner et al. 2015). The ESM set of functions could be used to build ESMs using simple bivariate models which are averaged using weights based on model performances (e.g. AUC) according to Breiner et al. (2015). They provide full functionality of the approach described in Breiner et al. (2015). Value species: species name ESM.fit: data.frame of the predicted values for the data used to build the models. ESM.evaluations: data.frame with evaluations scores for the ESMs weights: weighting scores used to weight the bivariate models to build the single ESM weights.EF: weighting scores used to weight the single ESM to build the ensemble of ESMs from different modelling techniques (only available if ¿1 modelling techniques were selected). failed: bivariate models which failed because they could not be calibrated. A "BIOMOD.EnsembleModeling.out". This object will be later given to ecospat.ESM.EnsembleProjection if you want to make some projections of this ensemble-models. Author(s) Frank Breiner with contributions of Olivier Broennimann References Lomba, A., L. Pellissier, C.F. Randin, J. Vicente, F. Moreira, J. Honrado and A. Guisan. 2010. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143,2647-2657. Breiner F.T., A. Guisan, A. Bergamini and M.P. Nobis. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6,1210-1218. ecospat.ESM.EnsembleModeling 35 Breiner F.T., Nobis M.P., Bergamini A., Guisan A. 2018. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution. doi: https://doi.org/10.1111/2041210X.12957 See Also ecospat.ESM.Modeling, ecospat.ESM.Projection, ecospat.ESM.EnsembleProjection BIOMOD Modeling, BIOMOD Projection Examples ## Not run: # Loading test data inv <- ecospat.testNiche.inv # species occurrences xy <- inv[,1:2] sp_occ <- inv[11] # env current <- inv[3:10] ### Formating the data with the BIOMOD_FormatingData() function from the package biomod2 sp <- 1 myBiomodData <- BIOMOD_FormatingData( resp.var = as.numeric(sp_occ[,sp]), expl.var = current, resp.xy = xy, resp.name = colnames(sp_occ)[sp]) ### Calibration of simple bivariate models my.ESM <- ecospat.ESM.Modeling( data=myBiomodData, models=c('GLM','RF'), NbRunEval=2, DataSplit=70, weighting.score=c("AUC"), parallel=FALSE) ### Evaluation and average of simple bivariate models to ESMs my.ESM_EF <- ecospat.ESM.EnsembleModeling(my.ESM,weighting.score=c("SomersD"),threshold=0) ### Projection of simple bivariate models into new space my.ESM_proj_current<-ecospat.ESM.Projection(ESM.modeling.output=my.ESM, new.env=current) ### Projection of calibrated ESMs into new space my.ESM_EFproj_current <- ecospat.ESM.EnsembleProjection(ESM.prediction.output=my.ESM_proj_current, ESM.EnsembleModeling.output=my.ESM_EF) ## get the model performance of ESMs my.ESM_EF$ESM.evaluations ## get the weights of the single bivariate models used to build the ESMs my.ESM_EF$weights 36 ecospat.ESM.EnsembleProjection ## End(Not run) ecospat.ESM.EnsembleProjection Ensamble of Small Models: Projects Calibrated ESMs Into New Space Or Time. Description This function projects calibrated ESMs into new space or time. Usage ecospat.ESM.EnsembleProjection( ESM.prediction.output, ESM.EnsembleModeling.output, chosen.models = 'all') Arguments ESM.prediction.output a list object returned by ecospat.ESM.Projection ESM.EnsembleModeling.output a list object returned by ecospat.ESM.EnsembleModeling chosen.models a character vector (either ’all’ or a sub-selection of model names) to remove models from the ensemble (same as in biomod2). Default is ’all’. Details The basic idea of ensemble of small models (ESMs) is to model a species distribution based on small, simple models, for example all possible bivariate models (i.e. models that contain only two predictors at a time out of a larger set of predictors), and then combine all possible bivariate models into an ensemble (Lomba et al. 2010; Breiner et al. 2015). The ESM set of functions could be used to build ESMs using simple bivariate models which are averaged using weights based on model performances (e.g. AUC) according to Breiner et al. (2015). They provide full functionality of the approach described in Breiner et al. (2015). For further details please refer to BIOMOD EnsembleForecasting. Value Returns the projections of ESMs for the selected single models and their ensemble (data frame or raster stack). ESM.projections ‘projection files’ are saved on the hard drive projection folder. This files are either an array or a RasterStack depending the original projections data type. Load these created files to plot and work with them. Author(s) Frank Breiner ecospat.ESM.EnsembleProjection 37 References Lomba, A., L. Pellissier, C.F. Randin, J. Vicente, F. Moreira, J. Honrado and A. Guisan. 2010. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143,2647-2657. Breiner F.T., A. Guisan, A. Bergamini and M.P. Nobis. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6,1210-1218. Breiner F.T., Nobis M.P., Bergamini A., Guisan A. 2018. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution. doi: https://doi.org/10.1111/2041210X.12957 See Also ecospat.ESM.Modeling, ecospat.ESM.Projection, ecospat.ESM.EnsembleModeling BIOMOD Modeling, BIOMOD Projection, BIOMOD EnsembleForecasting, BIOMOD EnsembleModeling Examples ## Not run: # Loading test data for the niche dynamics analysis in the invaded range inv <- ecospat.testNiche.inv # species occurrences xy <- inv[,1:2] sp_occ <- inv[11] # env current <- inv[3:10] ### Formating the data with the BIOMOD_FormatingData() function form the package biomod2 setwd(path.wd) t1 <- Sys.time() sp <- 1 myBiomodData <- BIOMOD_FormatingData( resp.var = as.numeric(sp_occ[,sp]), expl.var = current, resp.xy = xy, resp.name = colnames(sp_occ)[sp]) myBiomodOption <- Print_Default_ModelingOptions() ### Calibration of simple bivariate models my.ESM <- ecospat.ESM.Modeling( data=myBiomodData, models=c('GLM','RF'), models.options=myBiomodOption, NbRunEval=2, DataSplit=70, weighting.score=c("AUC"), parallel=FALSE) ### Evaluation and average of simple bivariate models to ESMs my.ESM_EF <- ecospat.ESM.EnsembleModeling(my.ESM,weighting.score=c("SomersD"),threshold=0) 38 ecospat.ESM.Modeling ### Projection of simple bivariate models into new space my.ESM_proj_current<-ecospat.ESM.Projection(ESM.modeling.output=my.ESM, new.env=current) ### Projection of calibrated ESMs into new space my.ESM_EFproj_current <- ecospat.ESM.EnsembleProjection(ESM.prediction.output=my.ESM_proj_current, ESM.EnsembleModeling.output=my.ESM_EF) ## get the model performance of ESMs my.ESM_EF$ESM.evaluations ## get the weights of the single bivariate models used to build the ESMs my.ESM_EF$weights ## End(Not run) ecospat.ESM.Modeling Ensamble of Small Models: Calibration of Simple Bivariate Models Description This function calibrates simple bivariate models as in Lomba et al. 2010 and Breiner et al. 2015. Usage ecospat.ESM.Modeling( data, NbRunEval, DataSplit, DataSplitTable, Prevalence, weighting.score, models, tune, modeling.id, models.options, which.biva, parallel, cleanup) Arguments data BIOMOD.formated.data object returned by BIOMOD FormatingData NbRunEval number of dataset splitting replicates for the model evaluation (same as in biomod2) DataSplit percentage of dataset observations retained for the model training (same as in biomod2) DataSplitTable a matrix, data.frame or a 3D array filled with TRUE/FALSE to specify which part of data must be used for models calibration (TRUE) and for models validation (FALSE). Each column corresponds to a ’RUN’. If filled, arguments NbRunEval and DataSplit will be ignored. ecospat.ESM.Modeling Prevalence 39 either NULL or a 0-1 numeric used to build ’weighted response weights’. In contrast to Biomod the default is 0.5 (weighting presences equally to the absences). If NULL each observation (presence or absence) has the same weight (independent of the number of presences and absences). weighting.score evaluation score used to weight single models to build ensembles: ’AUC’, ’SomersD’ (2xAUC-1), ’Kappa’, ’TSS’ or ’Boyce’ models vector of models names choosen among ’GLM’, ’GBM’, ’GAM’, ’CTA’, ’ANN’, ’SRE’, ’FDA’, ’MARS’, ’RF’,’MAXENT.Phillips’, ’MAXENT.Tsuruoka’ (same as in biomod2) tune logical. if true model tuning will be used to estimate optimal parameters for the models (Default: False). modeling.id character, the ID (=name) of modeling procedure. A random number by default. models.options BIOMOD.models.options object returned by BIOMOD ModelingOptions (same as in biomod2) which.biva integer. which bivariate combinations should be used for modeling? Default: all parallel logical. If TRUE, the parallel computing is enabled (highly recommended) cleanup numeric. Calls removeTmpFiles() to delete all files from rasterOptions()$tmpdir which are older than the given time (in hours). This might be necessary to prevent running over quota. No cleanup is used by default. Details The basic idea of ensemble of small models (ESMs) is to model a species distribution based on small, simple models, for example all possible bivariate models (i.e. models that contain only two predictors at a time out of a larger set of predictors), and then combine all possible bivariate models into an ensemble (Lomba et al. 2010; Breiner et al. 2015). The ESM set of functions could be used to build ESMs using simple bivariate models which are averaged using weights based on model performances (e.g. AUC) according to Breiner et al. (2015). They provide full functionality of the approach described in Breiner et al. (2015). The argument which.biva allows to split model runs, e.g. if which.biva is 1:3, only the three first bivariate variable combinations will be modeled. This allows to run different biva splits on different computers. However, it is better not to use this option if all models are run on a single computer. Default: running all biva models. NOTE: Make sure to give each of your biva runs a unique modeling.id. Value A BIOMOD.models.out object (same as in biomod2) See "BIOMOD.models.out" for details. Author(s) Frank Breiner and Mirko Di Febbraro with contributions of Olivier Broennimann 40 ecospat.ESM.Modeling References Lomba, A., L. Pellissier, C.F. Randin, J. Vicente, F. Moreira, J. Honrado and A. Guisan. 2010. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143,2647-2657. Breiner F.T., A. Guisan, A. Bergamini and M.P. Nobis. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6,1210-1218. Breiner F.T., Nobis M.P., Bergamini A., Guisan A. 2018. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution. doi: https://doi.org/10.1111/2041210X.12957 See Also ecospat.ESM.EnsembleModeling, ecospat.ESM.Projection, ecospat.ESM.EnsembleProjection BIOMOD FormatingData, BIOMOD ModelingOptions, BIOMOD Modeling,BIOMOD Projection Examples ## Not run: # Loading test data inv <- ecospat.testNiche.inv # species occurrences xy <- inv[,1:2] sp_occ <- inv[11] # env current <- inv[3:10] ### Formating the data with the BIOMOD_FormatingData() function from the package biomod2 sp <- 1 myBiomodData <- BIOMOD_FormatingData( resp.var = as.numeric(sp_occ[,sp]), expl.var = current, resp.xy = xy, resp.name = colnames(sp_occ)[sp]) ### Calibration of simple bivariate models my.ESM <- ecospat.ESM.Modeling( data=myBiomodData, models=c('GLM','RF'), NbRunEval=2, DataSplit=70, Prevalence=0.5 weighting.score=c("AUC"), parallel=FALSE) ### Evaluation and average of simple bivariate models to ESMs my.ESM_EF <- ecospat.ESM.EnsembleModeling(my.ESM,weighting.score=c("SomersD"),threshold=0) ### Projection of simple bivariate models into new space my.ESM_proj_current<-ecospat.ESM.Projection(ESM.modeling.output=my.ESM, new.env=current) ecospat.ESM.Projection 41 ### Projection of calibrated ESMs into new space my.ESM_EFproj_current <- ecospat.ESM.EnsembleProjection(ESM.prediction.output=my.ESM_proj_current, ESM.EnsembleModeling.output=my.ESM_EF) ## get the model performance of ESMs my.ESM_EF$ESM.evaluations ## get the weights of the single bivariate models used to build the ESMs my.ESM_EF$weights ## End(Not run) ecospat.ESM.Projection Ensamble of Small Models: Projects Simple Bivariate Models Into New Space Or Time Description This function projects simple bivariate models on new.env Usage ecospat.ESM.Projection(ESM.modeling.output, new.env, parallel, cleanup) Arguments ESM.modeling.output list object returned by ecospat.ESM.Modeling new.env A set of explanatory variables onto which models will be projected. It could be a data.frame, a matrix, or a rasterStack object. Make sure the column names (data.frame or matrix) or layer Names (rasterStack) perfectly match with the names of variables used to build the models in the previous steps. parallel Logical. If TRUE, the parallel computing is enabled cleanup Numeric. Calls removeTmpFiles() to delete all files from rasterOptions()$tmpdir which are older than the given time (in hours). This might be necessary to prevent running over quota. No cleanup is used by default Details The basic idea of ensemble of small models (ESMs) is to model a species distribution based on small, simple models, for example all possible bivariate models (i.e. models that contain only two predictors at a time out of a larger set of predictors), and then combine all possible bivariate models into an ensemble (Lomba et al. 2010; Breiner et al. 2015). The ESM set of functions could be used to build ESMs using simple bivariate models which are averaged using weights based on model performances (e.g. AUC) accoring to Breiner et al (2015). They provide full functionality of the approach described in Breiner et al. (2015). The name of new.env must be a regular expression (see ?regex) 42 ecospat.ESM.Projection Value Returns the projections for all selected models (same as in biomod2) See "BIOMOD.projection.out" for details. Author(s) Frank Breiner with contributions of Olivier Broennimann References Lomba, A., L. Pellissier, C.F. Randin, J. Vicente, F. Moreira, J. Honrado and A. Guisan. 2010. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143,2647-2657. Breiner F.T., A. Guisan, A. Bergamini and M.P. Nobis. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6,1210-1218. Breiner F.T., Nobis M.P., Bergamini A., Guisan A. 2018. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution. doi: https://doi.org/10.1111/2041210X.12957 See Also ecospat.ESM.EnsembleModeling, ecospat.ESM.Modeling, ecospat.ESM.EnsembleProjection BIOMOD FormatingData, BIOMOD ModelingOptions, BIOMOD Modeling,BIOMOD Projection Examples ## Not run: # Loading test data inv <- ecospat.testNiche.inv # species occurrences xy <- inv[,1:2] sp_occ <- inv[11] # env current <- inv[3:10] ### Formating the data with the BIOMOD_FormatingData() function from the package biomod2 sp <- 1 myBiomodData <- BIOMOD_FormatingData( resp.var = as.numeric(sp_occ[,sp]), expl.var = current, resp.xy = xy, resp.name = colnames(sp_occ)[sp]) ### Calibration of simple bivariate models my.ESM <- ecospat.ESM.Modeling( data=myBiomodData, models=c('GLM','RF'), NbRunEval=2, DataSplit=70, ecospat.grid.clim.dyn 43 weighting.score=c("AUC"), parallel=FALSE) ### Evaluation and average of simple bivariate models to ESMs my.ESM_EF <- ecospat.ESM.EnsembleModeling(my.ESM,weighting.score=c("SomersD"),threshold=0) ### Projection of simple bivariate models into new space my.ESM_proj_current<-ecospat.ESM.Projection(ESM.modeling.output=my.ESM, new.env=current) ### Projection of calibrated ESMs into new space my.ESM_EFproj_current <- ecospat.ESM.EnsembleProjection(ESM.prediction.output=my.ESM_proj_current, ESM.EnsembleModeling.output=my.ESM_EF) ## get the model performance of ESMs my.ESM_EF$ESM.evaluations ## get the weights of the single bivariate models used to build the ESMs my.ESM_EF$weights ## End(Not run) ecospat.grid.clim.dyn Dynamic Occurrence Densities Grid Description Create a grid with occurrence densities along one or two gridded environmental gradients. Usage ecospat.grid.clim.dyn (glob, glob1, sp, R, th.sp, th.env, geomask) Arguments glob A two-column dataframe (or a vector) of the environmental values (in column) for background pixels of the whole study area (in row). glob1 A two-column dataframe (or a vector) of the environmental values (in column) for the background pixels of the species (in row). sp A two-column dataframe (or a vector) of the environmental values (in column) for the occurrences of the species (in row). R The resolution of the grid. th.sp The quantile used to delimit a threshold to exclude low species density values. th.env The quantile used to delimit a threshold to exclude low environmental density values of the study area. geomask A geographical mask to delimit the background extent if the analysis takes place in the geographical space. It can be a SpatialPolygon or a raster object. Note that the CRS should be the same as the one used for the points. 44 ecospat.grid.clim.dyn Details Using the scores of an ordination (or SDM prediction), create a grid z of RxR pixels (or a vector of R pixels when using scores of dimension 1 or SDM predictions) with occurrence densities. Only scores of one, or two dimensions can be used. th.sp is the quantile of the distribution of species density at occurrence sites. For example, if th.sp is set to 0.05, the the species niche is drawn by including 95 percent of the species occurrences, removing the more marginal populations. Similarly, th.env is the quantile of the distribution of the environmental density at all sites of the study area. If th.env is set to 0.05, the delineation of the study area in the environmental space includes 95 percent of the study area, removing the more marginal sites of the study area. By default, these thresholds are set to 0 but can be modified, depending on the importance of some marginal sites in the delineation of the species niche and/or the study area in the environmnental space. It is recommended to check if the shape of the delineated niche and study area corresponds to the shape of the plot of the PCA scores (or any other ordination techniques used to set the environmental space). Visualisation of the gridded environmental space can be done through the functions ecospat.plot.niche or ecospat.plot.niche.dyn If you encounter a problem during your analyses, please first read the FAQ section of ”Niche overlap” in http://www.unil.ch/ecospat/home/menuguid/ecospat-resources/tools.html The argument geomask can be a SpatialPolygon or a raster object. Note that the CRS should be the same as the one used for the points. Value A grid z of RxR pixels (or a vector of R pixels) with z.uncor being the density of occurrence of the species, and z.cor the occupancy of the environment by the species (density of occurrences divided by the desinty of environment in the study area. Author(s) Olivier Broennimann and Blaise Petitpierre References Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M.J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21:481-497. Petitpierre, B., C. Kueffer, O. Broennimann, C. Randin, C. Daehler and A. Guisan. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science, 335:1344-1348. See Also ecospat.plot.niche.dyn Examples ## Not run: spp <- ecospat.testNiche clim <- ecospat.testData[2:8] occ.sp_test <- na.exclude(ecospat.sample.envar(dfsp=spp,colspxy=2:3,colspkept=1:3,dfvar=clim, colvarxy=1:2,colvar="all",resolution=25)) occ.sp<-cbind(occ.sp_test,spp[,4]) #add species names ecospat.makeDataFrame 45 # list of species sp.list<-levels(occ.sp[,1]) sp.nbocc<-c() for (i in 1:length(sp.list)){sp.nbocc<-c(sp.nbocc,length(which(occ.sp[,1] == sp.list[i])))} #calculate the nb of occurences per species sp.list <- sp.list[sp.nbocc>4] # remove species with less than 5 occurences nb.sp <- length(sp.list) #nb of species ls() # selection of variables to include in the analyses # try with all and then try only worldclim Variables Xvar <- c(3:7) nvar <- length(Xvar) #number of interation for the tests of equivalency and similarity iterations <- 100 #resolution of the gridding of the climate space R <- 100 #################################### PCA-ENVIRONMENT ################################## data<-rbind(occ.sp[,Xvar+1],clim[,Xvar]) w <- c(rep(0,nrow(occ.sp)),rep(1,nrow(clim))) pca.cal <- dudi.pca(data, row.w = w, center = TRUE, scale = TRUE, scannf = FALSE, nf = 2) ####### selection of species ###### sp.list sp.combn <- combn(1:2,2) for(i in 1:ncol(sp.combn)) { row.sp1 <- which(occ.sp[,1] == sp.list[sp.combn[1,i]]) # rows in data corresponding to sp1 row.sp2 <- which(occ.sp[,1] == sp.list[sp.combn[2,i]]) # rows in data corresponding to sp2 name.sp1 <- sp.list[sp.combn[1,i]] name.sp2 <- sp.list[sp.combn[2,i]] # predict the scores on the axes scores.clim <- pca.cal$li[(nrow(occ.sp)+1):nrow(data),] #scores for global climate scores.sp1 <- pca.cal$li[row.sp1,] #scores for sp1 scores.sp2 <- pca.cal$li[row.sp2,] #scores for sp2 } # calculation of occurence density and test of niche equivalency and similarity z1 <- ecospat.grid.clim.dyn(scores.clim, scores.clim, scores.sp1,R=100) z2 <- ecospat.grid.clim.dyn(scores.clim, scores.clim, scores.sp2,R=100) ## End(Not run) ecospat.makeDataFrame Make Data Frame Description Create a biomod2-compatible dataframe. The function also enables to remove duplicate presences within a pixel and to set a minimum distance between presence points to avoid autocorrelation. Data from GBIF can be added. 46 ecospat.makeDataFrame Usage ecospat.makeDataFrame (spec.list, expl.var, use.gbif=FALSE, precision=NULL, year=NULL, remdups=TRUE, mindist=NULL, n=1000, type='random', PApoint=NULL, ext=expl.var, tryf=5) Arguments spec.list Data.frame or Character. The species occurrence information must be a data.frame in the form: \’x-coordinates\’ , \’y-coordinates\’ and \’species name\’ (in the same projection/coordinate system as expl.var!). expl.var a RasterStack object of the environmental layers. use.gbif Logical. If TRUE presence data from GBIF will be added. It is also possible to use GBIF data only. Default: FALSE. See ?gbif dismo for more information. Settings: geo=TRUE, removeZeros=TRUE, all subtaxa will be used. \’species name\’ in spec.list must be in the form: \’genus species\’, \’genus species\’ or \’genus.species\’. If there is no species information available on GBIF an error is returned. Try to change species name (maybe there is a synonym) or switch use.gbif off. precision Numeric. Use precision if use.gbif = TRUE to set a minimum precision of the presences which should be added. For precision = 1000 e.g. only presences with precision of at least 1000 meter will be added from GBIF. When precision = NULL all presences from GBIF will be used, also presences where precision information is NA. year Numeric. Latest year of the collected gbif occurrences. If year=1960 only occurrences which were collected since 1960 are used. remdups Logical. If TRUE (Default) duplicated presences within a raster pixel will be removed. You will get only one presence per pixel. mindist Numeric. You can set a minimum distance between presence points to avoid autocorrelation. nndist spatstat is used to calculate the nearest neighbour (nn) for each point. From the pair of the minimum nn, the point is removed of which the second neighbour is closer. Unit is the same as expl.var. n number of Pseudo-Absences. Default 1000. type sampling dessign for selecting Pseudo-Absences. If \’random\’ (default) background points are selected with the function randomPoints dismo. When selecting another sampling type (\’regular\’, \’stratified\’, \’nonaligned\’, \’hexagonal\’, \’clustered\’ or \’Fibonacci\’) spsample sp will be used. This can immensely increase computation time and RAM usage if ext is a raster, especially for big raster layers because it must be converted into a \’SpatialPolygonsDataFrame\’ first. PApoint data.frame or SpatialPoints. You can use your own set of Pseudo-Absences instead of generating new PAs. Two columns with \’x\’ and \’y\’ in the same projection/coordinate system as expl.var! ext a Spatial Object or Raster object. Extent from which PAs should be selected from (Default is expl.var). tryf numeric ¿ 1. Number of trials to create the requested Pseudo-Absences after removing NA points (if type=’random’). See ?randomPoints dismo ecospat.mantel.correlogram 47 Details If you use a raster stack as explanatory variable and you want to model many species in a loop with Biomod, formating data will last very long as presences and PA’s have to be extracted over and over again from the raster stack. To save computation time, it is better to convert the presences and PAs to a data.frame first. Value A data.frame object which can be used for modeling with the Biomod package. Author(s) Frank Breiner Examples ## Not run: files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''), pattern='grd', full.names=TRUE ) predictors <- raster::stack(files[c(9,1:8)]) #file 9 has more NA values than # the other files, this is why we choose it as the first layer (see ?randomPoints) file <- paste(system.file(package="dismo"), "/ex/bradypus.csv", sep="") bradypus <- read.table(file, header=TRUE, sep=',')[,c(2,3,1)] head(bradypus) random.spec <- cbind(as.data.frame(randomPoints(predictors,50,extf=1)),species="randomSpec") colnames(random.spec)[1:2] <- c("lon","lat") spec.list <- rbind(bradypus, random.spec) df <- ecospat.makeDataFrame(spec.list, expl.var=predictors, n=5000) head(df) plot(predictors[[1]]) points(df[df$Bradypus.variegatus==1, c('x','y')]) points(df[df$randomSpec==1, c('x','y')], col="red") ## End(Not run) ecospat.mantel.correlogram Mantel Correlogram Description Investigate spatial autocorrelation of environmental covariables within a set of occurrences as a function of distance. Usage ecospat.mantel.correlogram (dfvar, colxy, n, colvar, max, nclass, nperm) 48 ecospat.max.kappa Arguments dfvar A dataframe object with the environmental variables. colxy The range of columns for x and y in df. n The number of random occurrences used for the test. colvar The range of columns for variables in df. max The maximum distance to be computed in the correlogram. nclass The number of classes of distances to be computed in the correlogram. nperm The number of permutations in the randomization process. Details Requires ecodist library. Note that computation time increase tremendously when using more than 500 occurrences (n¿500) Value Draws a plot with distance vs. the mantel r value. Black circles indicate that the values are significative different from zero. White circles indicate non significant autocorrelation. The selected distance is at the first white circle where values are non significative different from cero. Author(s) Olivier Broennimann References Legendre, P. and M.J. Fortin. 1989. Spatial pattern and ecological analysis. Vegetatio, 80, 107-138. See Also mgram Examples ecospat.mantel.correlogram(dfvar=ecospat.testData[c(2:16)],colxy=1:2, n=100, colvar=3:7, max=1000, nclass=10, nperm=100) ecospat.max.kappa Maximum Kappa Description Calculates values for Cohen’s Kappa along different thresholds, considering this time 0.01 increments (i.e. 99 thresholds). Usage ecospat.max.kappa(Pred, Sp.occ) ecospat.max.tss 49 Arguments Pred A vector of predicted probabilities Sp.occ A vector of binary observations of the species occurrence Value Return values for Cohen’s Kappa for 99 thresholds at 0.01 increments. Author(s) Antoine Guisan with contributions of Luigi Maiorano . References Liu, C., P.M. Berry, T.P. Dawson, and R.G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393. See Also ecospat.meva.table, ecospat.max.tss, ecospat.plot.tss, ecospat.cohen.kappa, ecospat.plot.kappa Examples ## Not run: Pred <- ecospat.testData$glm_Agrostis_capillaris Sp.occ <- ecospat.testData$Agrostis_capillaris kappa100 <- ecospat.max.kappa(Pred, Sp.occ) ## End(Not run) ecospat.max.tss Maximum TSS Description Calculates values for True skill statistic (TSS) along different thresholds, considering this time 0.01 increments (i.e. 99 thresholds). Usage ecospat.max.tss(Pred, Sp.occ) Arguments Pred A vector of predicted probabilities Sp.occ A vector of binary observations of the species occurrence Value Return values for TSS for 99 thresholds at 0.01 increments. 50 ecospat.maxentvarimport Author(s) Luigi Maiorano with contributions of Antoine Guisan Examples ## Not run: model <- get ("me.Achillea_millefolium", envir=ecospat.env) dfvar <- ecospat.testData[4:8] nperm <- 5 ecospat.maxentvarimport (model, cal, nperm) ## End(Not run) ecospat.mdr Minimum Dispersal Routes) Description ecospat.mdr is a function that implement a minimum cost arborescence approach to analyse the invasion routes of a species from dates occurrence data. Usage ecospat.mdr (data, xcol, ycol, datecol, mode, rep, mean.date.error, fixed.sources.rows) Arguments data dataframe with occurence data. Each row correspond to an occurrence. xcol The column in data containing x coordinates. ycol The column in data containing y coordinates. datecol The column in data containing dates. mode ”observed”, ”min” or ”random”. ”observed” calculate routes using real dates. ”min” reorder dates so the the total length of the routes are minimal. ”random” reatribute dates randomly. rep number of iteration of the analyse. if ¿ 1, boostrap support for each route is provided. mean.date.error mean number of years to substract to observed dates. It is the mean of the truncated negative exponential distribution from which the time to be substracted is randomly sampled. fixed.sources.rows the rows in data (as a vector) corresponding to source occurrence(s) that initiated the invasion(s). No incoming routes are not calculated for sources. 52 ecospat.mdr Details The function draws an incoming route to each occurence from the closest occurrence already occupied (with a previous date) and allows to substract a random number of time (years) to the observed dates from a truncated negative exponential distribution. It is possible to run several iterations and to get boostrap support for each route. itexp and rtexp functions are small internal functions to set a truncated negative exponential distribution. Value A list is returned by the function with in positon [[1]], a datafame with each row corresponding to a route (with new/old coordinates, new/old dates, length of the route, timespan, dispersal rate), in position [[2]] the total route length, in position [[3]] the median dispersal rate and in position [[4]] the number of outgoing nodes (index of clustering of the network) Author(s) Olivier Broennimann References Hordijk, W. and O. Broennimann. 2012. Dispersal routes reconstruction and the minimum cost arborescence problem. Journal of theoretical biology, 308, 115-122. Broennimann, O., P. Mraz, B. Petitpierre, A. Guisan, and H. Muller-Scharer. 2014. Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America.Journal of biogeography, 41, 1126-1136. Examples ## Not run: library(maps) data<- ecospat.testMdr fixed.sources.rows<-order(data$date)[1:2] #first introductions #plot observed situation plot(data[,2:1],pch=15,cex=0.5) points(data[fixed.sources.rows,2:1],pch=19,col="red") text(data[,2]+0.5,data[,1]+0.5,data[,3],cex=0.5) map(add=T) # mca obs<-ecospat.mdr(data=data, xcol=2, ycol=1, datecol=3, mode="min", rep=100, mean.date.error=1, fixed.sources.rows) #plot results lwd<-(obs[[1]]$bootstrap.value) x11();plot(obs[[1]][,3:4],type="n",xlab="longitude",ylab="latitude") arrows(obs[[1]][,1],obs[[1]][,2],obs[[1]][,3],obs[[1]][,4],length = 0.05,lwd=lwd*2) map(add=T) ecospat.mess 53 points(data[fixed.sources.rows,2:1],pch=19,col="red") text(data[fixed.sources.rows,2]+0.5,data[fixed.sources.rows,1]+0.5,data[fixed.sources.rows,3], cex=1,col="red") title(paste("total routes length : ", round(obs[[2]],2)," Deg","\n","median dispersal rate : ", round(obs[[3]],2)," Deg/year","\n","number of outcoming nodes : ", obs[[4]])) ## End(Not run) ecospat.mess MESS Description Calculate the MESS (i.e. extrapolation) as in Maxent. Usage ecospat.mess (proj, cal, w="default") Arguments proj A dataframe object with x, y and environmental variables, used as projection dataset. cal A dataframe object with x, y and environmental variables, used as calibration dataset. w The weight for each predictor (e.g. variables importance in SDM). Details Shows the variable that drives the multivariate environmental similarity surface (MESS) value in each grid cell. Value MESS The mess as calculated in Maxent, i.e. the minimal extrapolation values. MESSw The sum of negative MESS values corrected by the total number of predictors. If there are no negative values, MESSw is the mean MESS. MESSneg The number of predictors on which there is extrapolation. Author(s) Blaise Petitpierre . Modified by Daniel Scherrer with contributions of Luigi Maiorano , Wim Hordijk and Loic Pellissier References Engler, R., W. Hordijk and A. Guisan. 2012. The MIGCLIM R package – seamless integration of dispersal constraints into projections of species distribution models. Ecography, 35, 872-878. Engler, R. and A. Guisan. 2009. MIGCLIM: predicting plant distribution and dispersal in a changing climate. Diversity and Distributions, 15, 590-601. Engler, R., C.F. Randin, P. Vittoz, T. Czaka, M. Beniston, N.E. Zimmermann and A. Guisan. 2009. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography, 32, 34-45. Examples ## Not run: ecospat.migclim() ### Some example data files can be downloaded from the following web page: ### http://www.unil.ch/ecospat/page89413.html ### ### Run the example as follows (set the current working directory to the ### folder where the example data files are located): ### data(MigClim.testData) ### Run MigClim with a data frame type input. n <- MigClim.migrate (iniDist=MigClim.testData[,1:3], hsMap=MigClim.testData[,4:8], rcThreshold=500, envChgSteps=5, dispSteps=5, dispKernel=c(1.0,0.4,0.16,0.06,0.03), barrier=MigClim.testData[,9], barrierType="strong", iniMatAge=1, propaguleProd=c(0.01,0.08,0.5,0.92), lddFreq=0.1, lddMinDist=6, lddMaxDist=15, 56 ecospat.mpa simulName="MigClimTest", replicateNb=1, overWrite=TRUE, testMode=FALSE, fullOutput=FALSE, keepTempFiles=FALSE) ## End(Not run) ecospat.mpa Minimal Predicted Area Description Calculate the minimal predicted area. Usage ecospat.mpa (Pred, Sp.occ.xy, perc) Arguments Pred Numeric or RasterLayer predicted suitabilities from a SDM prediction. Sp.occ.xy xy-coordinates of the species (if Pred is a RasterLayer). perc Percentage of Sp.occ.xy that should be encompassed by the binary map. Details The minimal predicted area (MPA) is the minimal surface obtained by considering all pixels with predictions above a defined probability threshold (e.g. 0.7) that still encompasses 90 percent of the species‘ occurrences (Engler et al. 2004). Value Returns the minimal predicted area. Author(s) Frank Breiner References Engler, R., A. Guisan and L. Rechsteiner. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263-274. Examples obs <- (ecospat.testData$glm_Saxifraga_oppositifolia [which(ecospat.testData$Saxifraga_oppositifolia==1)]) ecospat.mpa(obs) ecospat.mpa(obs,perc=1) ## 100 percent of the presences encompassed ecospat.niche.dyn.index 57 ecospat.niche.dyn.index Niche Expansion, Stability, and Unfilling Description Calculate niche expansion, stability and unfilling. Usage ecospat.niche.dyn.index (z1, z2, intersection=NA) Arguments z1 A gridclim object for the native distribution. z2 A gridclim object for the invaded range. intersection The quantile of the environmental density used to remove marginal climates. If intersection=NA, the analysis is performed on the whole environmental extent (native and invaded). If intersection=0, the analysis is performed at the intersection between native and invaded range. If intersection=0.05, the analysis is performed at the intersection of the 5th quantile of both native and invaded environmental densities. Details If you encounter a problem during your analyses, please first read the FAQ section of ”Niche overlap” in http://www.unil.ch/ecospat/home/menuguid/ecospat-resources/tools.html Value A list of dynamic indices: dynamic.index.w [expansion.index.w, stability.index.w, restriction.index.w] Author(s) Blaise Petitpierre See Also ecospat.grid.clim.dyn 58 ecospat.niche.dynIndexProjGeo ecospat.niche.dynIndexProjGeo Projection of niche dynamic indices to the Geography Description Creates a raster in geography with each pixel containing a niche dynamic index (stability, expansion, or unfilling) extracted from 2 niches generated with ecospat.grid.clim.dyn. Usage ecospat.niche.dynIndexProjGeo(z1,z2,env,index) Arguments z1 Species 1 occurrence density grid created by ecospat.grid.clim.dyn. z2 Species 2 occurrence density grid created by ecospat.grid.clim.dyn. env A RasterStack or RasterBrick of environmental variables corresponding to the background (glob in ecospat.grid.clim.dyn). index ”stability”, ”unfilling” or ”expansion” Details extracts the niche dynamic index of objects created by ecospat.niche.dyn.index for each point of the background (glob) using extract (package raster). The values are binded to the geographic coordinates of env and a raster is then recreated using rasterFromXYZ Value raster of class RasterLayer Author(s) Olivier Broennimann References Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M.J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21:481-497. Petitpierre, B., C. Kueffer, O. Broennimann, C. Randin, C. Daehler and A. Guisan. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science, 335:1344-1348. See Also ecospat.plot.niche.dyn,ecospat.niche.dyn.index, ecospat.niche.zProjGeo ecospat.niche.equivalency.test 59 Examples ## Not run: library(raster) spp <- ecospat.testNiche xy.sp1<-subset(spp,species=="sp1")[2:3] #Bromus_erectus xy.sp2<-subset(spp,species=="sp3")[2:3] #Daucus_carota ?ecospat.testEnvRaster load(system.file("extdata", "ecospat.testEnvRaster.Rdata", package="ecospat")) env.sp1<-extract(env,xy.sp1) env.sp2<-extract(env,xy.sp2) env.bkg<-na.exclude(values(env)) #################################### PCA-ENVIRONMENT ################################## pca.cal <- dudi.pca(env.bkg, center = TRUE, scale = TRUE, scannf = FALSE, nf = 2) # predict the scores.bkg with contributions of Blaise Petitpierre References Broennimann, O., M.C. Fitzpatrick, P.B. Pearman,B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M.J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. Warren, D.L., R.E. Glor and M. Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883. See Also ecospat.grid.clim.dyn, ecospat.niche.similarity.test ecospat.niche.overlap 61 ecospat.niche.overlap Calculate Niche Overlap Description Calculate the overlap metrics D and I based on two species occurrence density grids z1 and z2 created by ecospat.grid.clim. Usage ecospat.niche.overlap (z1, z2, cor) Arguments z1 Species 1 occurrence density grid created by ecospat.grid.clim. z2 Species 2 occurrence density grid created by ecospat.grid.clim. cor Correct the occurrence densities of each species by the prevalence of the environments in their range (TRUE = yes, FALSE = no). Details if cor=FALSE, the z$uncor objects created by ecospat.grid.clim are used to calculate the overlap. if cor=TRUE, the z$cor objects are used. If you encounter a problem during your analyses, please first read the FAQ section of ”Niche overlap” in http://www.unil.ch/ecospat/home/menuguid/ecospat-resources/tools.html Value Overlap values D and I. D is Schoener’s overlap metric (Schoener 1970). I is a modified Hellinger metric(Warren et al. 2008) Author(s) Olivier Broennimann References Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M.J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. Schoener, T.W. 1968. Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704-726. Warren, D.L., R.E. Glor and M. Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883. See Also ecospat.grid.clim.dyn 62 ecospat.niche.similarity.test ecospat.niche.similarity.test Niche Similarity Test Description Run a niche similarity test (see Warren et al 2008) based on two species occurrence density grids. Usage ecospat.niche.similarity.test (z1, z2, rep, alternative = "greater", rand.type = 1, ncores= 1) Arguments z1 Species 1 occurrence density grid created by ecospat.grid.clim. z2 Species 2 occurrence density grid created by ecospat.grid.clim. rep The number of replications to perform. alternative To indicate the type of test to be performed. It could be greater or lower. rand.type Type of randomization on the density grids (1 or 2). ncores The number of cores used for parallelisation. Details Compares the observed niche overlap between z1 and z2 to overlaps between z1 and random niches (z2.sim) as available in the range of z2 (z2$Z). z2.sim has the same pattern as z2 but the center is randomly translatated in the availabe z2$Z space and weighted by z2$Z densities. If rand.type = 1, both z1 and z2 are randomly shifted, if rand.type =2, only z2 is randomly shifted. alternative specifies if you want to test for niche conservatism (alternative = ”greater”, i.e. the niche overlap is more equivalent/similar than random) or for niche divergence (alternative = ”lower”, i.e. the niche overlap is less equivalent/similar than random). If you encounter a problem during your analyses, please first read the FAQ section of ”Niche overlap” in http://www.unil.ch/ecospat/home/menuguid/ecospat-resources/tools.html The arguments ncores allows choosing the number of cores used to parallelize the computation. The default value is 1. On multicore computers, the optimal would be ncores = detectCores() - 1. Value a list with $obs = observed overlaps, $sim = simulated overlaps, $p.D = p-value of the test on D, $p.I = p-value of the test on I. Author(s) Olivier Broennimann with contributions of Blaise Petitpierre ecospat.niche.zProjGeo 63 References Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M.J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. Warren, D.L., R.E. Glor and M. Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883. See Also ecospat.grid.clim.dyn, ecospat.niche.equivalency.test ecospat.niche.zProjGeo Projection of Occurrence Densities to the Geography Description Creates a raster in geography with each pixel containing the occurrence densities extracted from a z object generated with ecospat.grid.clim.dyn. Usage ecospat.niche.zProjGeo(z1,env,cor) Arguments z1 Species 1 occurrence density grid created by ecospat.grid.clim.dyn. env A RasterStack or RasterBrick of environmental variables corresponding to the background (glob in ecospat.grid.clim.dyn). cor FALSE by default. If TRUE corrects the occurrence densities of each species by the prevalence of the environments in their range Details extracts the occurrence density of z objects created by ecospat.grid.clim.dyn for each point of the background (glob) using extract (package raster). The values are binded to the geographic coordinates of env and a raster is then recreated using rasterFromXYZ Value raster of class RasterLayer Author(s) Olivier Broennimann 64 ecospat.niche.zProjGeo References Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M.J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21:481-497. Petitpierre, B., C. Kueffer, O. Broennimann, C. Randin, C. Daehler and A. Guisan. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science, 335:1344-1348. See Also ecospat.plot.niche.dyn, ecospat.niche.dynIndexProjGeo Examples ## Not run: library(raster) spp <- ecospat.testNiche xy.sp1<-subset(spp,species=="sp1")[2:3] #Bromus_erectus load(system.file("extdata", "ecospat.testEnvRaster.Rdata", package="ecospat")) #?ecospat.testEnvRaster env.sp1<-extract(env,xy.sp1) env.bkg<-na.exclude(values(env)) #################################### PCA-ENVIRONMENT ################################## pca.cal <- dudi.pca(env.bkg, center = TRUE, scale = TRUE, scannf = FALSE, nf = 2) # predict the scores on the axes scores.bkg <- pca.cal$li #scores for background climate scores.sp1 <- suprow(pca.cal,env.sp1)$lisup #scores for sp1 # calculation of occurence density (niche z) z1 <- ecospat.grid.clim.dyn(scores.bkg, scores.bkg, scores.sp1,R=100) plot(z1$z.uncor) points(scores.sp1) #################################### occurrence density in space ################################## # sp1 geoz1<-ecospat.niche.zProjGeo(z1,env) plot(geoz1,main="z1") points(xy.sp1) ## End(Not run) ecospat.npred 65 ecospat.npred Number Of Predictors Description Calculate the maximum number of predictors to include in the model with a desired correlation between predictors. Usage ecospat.npred (x, th) Arguments x Correlation matrix of the predictors. th Desired threshold of correlation between predictors. Value Returns the number of predictors to use. Author(s) Blaise Petitpierre Examples colvar <- ecospat.testData[c(4:8)] x <- cor(colvar, method="pearson") ecospat.npred (x, th=0.75) ecospat.occ.desaggregation Species Occurrences Desaggregation Description Remove species occurrences in a dataframe which are closer to each other than a specified distance threshold. Usage ecospat.occ.desaggregation (xy, min.dist, by) Arguments xy A dataframe with xy-coordinates (x-column must be named ’x’ and ycolumn ’y’) min.dist The minimun distance between points in the sub-dataframe. by Grouping element in the dataframe (e.g. species, NULL) 66 ecospat.occupied.patch Details This function will desaggregate the original number of occurrences, according to a specified distance. Value A subset of the initial dataframe. The number of points is printed as ”initial”, ”kept” and ”out”. Author(s) Frank Breiner with contributions of Olivier Broennimann Examples ## Not run: spp <- ecospat.testNiche colnames(spp)[2:3] <- c('x','y') sp1 <- spp[1:32,2:3] occ.sp1 <- ecospat.occ.desaggregation(xy=sp1, min.dist=500, by=NULL) occ.all.sp <- ecospat.occ.desaggregation(xy=spp, min.dist=500, by='Spp') ## End(Not run) ecospat.occupied.patch Extract occupied patches of a species in geographic space.) Description This function determines the occupied patch of a species using standard IUCN criteria (AOO, EOO) or predictive binary maps from Species Distribution Models. Usage ecospat.occupied.patch (bin.map, Sp.occ.xy, buffer = 0) Arguments bin.map Binary map (single layer or raster stack) from a Species Distribution Model. Sp.occ.xy xy-coordinates of the species presence. buffer numeric. Calculate occupied patch models from the binary map using a buffer (predicted area occupied by the species or within a buffer around the species, for details see ?extract). ecospat.occupied.patch 67 Details Predictive maps derived from SDMs inform about the potential distribution (or habitat suitability) of a species. Often it is useful to get information about the area of the potential distribution which is occupied by a species, e.g. for Red List assessments. Value a RasterLayer with value 1. Author(s) Frank Breiner References IUCN Standards and Petitions Subcommittee. 2016. Guidelines for Using the IUCN Red List Categories and Criteria. Version 12. Prepared by the Standards and Petitions Subcommittee. Downloadable from http://www.iucnredlist.org/documents/RedListGuidelines.pdf See Also ecospat.rangesize, ecospat.mpa, ecospat.binary.model Examples ## Not run: library(dismo) library(dismo) # only run if the maxent.jar file is available, in the right folder jar <- paste(system.file(package="dismo"), "/java/maxent.jar", sep='') # checking if maxent can be run (normally not part of your script) file.exists(jar) require(rJava)) # get predictor variables fnames <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''), pattern='grd', full.names=TRUE ) predictors <- stack(fnames) #plot(predictors) # file with presence points occurence <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='') occ <- read.table(occurence, header=TRUE, sep=',')[,-1] colnames(occ) <- c("x","y") occ <- ecospat.occ.desaggregation(occ,min.dist=1) # fit model, biome is a categorical variable me <- maxent(predictors, occ, factors='biome') 68 ecospat.permut.glm # predict to entire dataset pred <- predict(me, predictors) plot(pred) points(occ) # use MPA to convert suitability to binary map mpa.cutoff <- ecospat.mpa(pred,occ) pred.bin.mpa <- ecospat.binary.model(pred,mpa.cutoff) names(pred.bin.mpa) <- "me.mpa" pred.bin.arbitrary <- ecospat.binary.model(pred,0.5) names(pred.bin.arbitrary) <- "me.arbitrary" mpa.ocp <- ecospat.occupied.patch(pred.bin.mpa,occ) arbitrary.ocp <- ecospat.occupied.patch(pred.bin.arbitrary,occ) par(mfrow=c(1,2)) plot(mpa.ocp) ## occupied patches: green area points(occ,col="red",cex=0.5,pch=19) plot(arbitrary.ocp) points(occ,col="red",cex=0.5,pch=19) ## with buffer: mpa.ocp <- ecospat.occupied.patch(pred.bin.mpa,occ, buffer=500000) arbitrary.ocp <- ecospat.occupied.patch(pred.bin.arbitrary,occ, buffer=500000) plot(mpa.ocp) ## occupied patches: green area points(occ,col="red",cex=0.5,pch=19) plot(arbitrary.ocp) points(occ,col="red",cex=0.5,pch=19) ## End(Not run) ecospat.permut.glm GLM Permutation Function Description A permutation function to get p-values on GLM coefficients and deviance. Usage ecospat.permut.glm (glm.obj, nperm) Arguments glm.obj Any calibrated GLM or GAM object with a binomial error distribution. nperm The number of permutations in the randomization process. ecospat.plot.contrib 69 Details Rows of the response variable are permuted and a new GLM is calibrated as well as deviance, adjusted deviance and coefficients are calculated. These random parameters are compared to the true parameters in order to derive p-values. Value Return p-values that are how the true parameters of the original model deviate from the disribution of the random parameters. A p-value of zero means that the true parameter is completely outside the random distribution. Author(s) Christophe Randin , Antoine Guisan and Trevor Hastie References Hastie, T., R. Tibshirani and J. Friedman. 2001. Elements of Statistical Learning; Data Mining, Inference, and Prediction, Springer-Verlag, New York. Legendre, P. and L. Legendre. 1998. Numerical Ecology, 2nd English edition. Elsevier Science BV, Amsterdam. Examples ## Not run: ecospat.permut.glm (get ("glm.Achillea_atrata", envir=ecospat.env), 1000) ## End(Not run) ecospat.plot.contrib Plot Variables Contribution Description Plot the contribution of the initial variables to the analysis (i.e. correlation circle). Typically these are the eigen vectors and eigen values in ordinations. Usage ecospat.plot.contrib (contrib, eigen) Arguments contrib A dataframe of the contribution of each original variable on each axis of the analysis, i.e. the eigen vectors. eigen A vector of the importance of the axes in the ordination, i.e. a vector of eigen values. 70 ecospat.plot.kappa Details Requires ade4 library. If using princomp , use $loadings and $sdev of the princomp object. if using dudi.pca, use $li and $eig of the dudi.pca object. Author(s) Olivier Broennimann References Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M.J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. See Also ecospat.plot.niche.dyn,ecospat.plot.overlap.test, ecospat.niche.similarity.test,princomp ecospat.plot.kappa Plot Kappa Description Plots the values for Cohen’s Kappa along different thresholds. Usage ecospat.plot.kappa(Pred, Sp.occ) Arguments Pred A vector of predicted probabilities Sp.occ A vector of binary observations of the species occurrence Value A plot of the Cohen’s Kappa values along different thresholds. Author(s) Luigi Maiorano with contributions of Valeria Di Cola References Elith, J., M. Kearney and S. Phillips. 2010. The art of modelling range-shifting species. Methods in ecology and evolution, 1, 330-342. See Also ecospat.mess Examples ## Not run: x <- ecospat.testData[c(2,3,4:8)] proj <- x[1:90,] #A projection dataset. cal <- x[91:300,] #A calibration dataset #Create a MESS object mess.object <- ecospat.mess (proj, cal, w="default") #Plot MESS ecospat.plot.mess (mess.object, cex=1, pch=15) ## End(Not run) 72 ecospat.plot.niche ecospat.plot.niche Plot Niche Description Plot a niche z created by ecospat.grid.clim.dyn. Usage ecospat.plot.niche (z, title, name.axis1, name.axis2, cor=FALSE) Arguments z A gridclim object for the species distribution created by ecospat.grid.clim.dyn. title A title for the plot. name.axis1 A label for the first axis. name.axis2 A label for the second axis. cor Correct the occurrence densities of the species by the prevalence of the environments in its range (TRUE = yes, FALSE = no). Details if z is bivariate, a bivariate plot of the niche of the species. if z is univariate, a histogram of the niche of the species Author(s) Olivier Broennimann References Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M.J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. See Also ecospat.grid.clim.dyn ecospat.plot.niche.dyn 73 ecospat.plot.niche.dyn Niche Categories and Species Density Description Plot niche categories and species density created by ecospat.grid.clim.dyn. Usage ecospat.plot.niche.dyn (z1, z2, quant, title, name.axis1, name.axis2, interest, colz1, colz2,colinter, colZ1, colZ2) Arguments z1 A gridclim object for the native distribution. z2 A gridclim object for the invaded range. quant The quantile of the environmental density used to delimit marginal climates. title The title of the plot. name.axis1 A label for the first axis. name.axis2 A label for the second axis interest Choose which density to plot: if interest=1, plot native density, if interest=2, plot invasive density. colz1 The color used to depict unfilling area. colz2 The color used to depict expansion area. colinter The color used to depict overlap area. colZ1 The color used to delimit the native extent. colZ2 The color used to delimit the invaded extent. Author(s) Blaise Petitpierre ecospat.plot.overlap.test Plot Overlap Test Description Plot a histogram of observed and randomly simulated overlaps, with p-values of equivalency or similarity tests. Usage ecospat.plot.overlap.test (x, type, title) 74 ecospat.plot.tss Arguments x Object created by ecospat.niche.similarity.test or ecospat.niche.equivalency.test. type Must be either “D” or “I”. title The title for the plot. Author(s) Olivier Broennimann References Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M.J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. See Also ecospat.niche.similarity.test, ecospat.niche.equivalency.test ecospat.plot.tss Plot True skill statistic (TSS) Description Plots the values for True skill statistic (TSS) along different thresholds. Usage ecospat.plot.tss(Pred, Sp.occ) Arguments Pred A vector of predicted probabilities Sp.occ A vector of binary observations of the species occurrence Value A plot of the TSS values along different thresholds. Author(s) Luigi Maiorano References Liu, C., P.M. Berry, T.P. Dawson, and R.G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393. Liu, C., M. White and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778-789. ecospat.rand.pseudoabsences 75 See Also ecospat.meva.table, ecospat.max.tss, ecospat.plot.kappa, ecospat.cohen.kappa, ecospat.max.kappa Examples Pred <- ecospat.testData$glm_Agrostis_capillaris Sp.occ <- ecospat.testData$Agrostis_capillaris ecospat.plot.tss(Pred, Sp.occ) ecospat.rand.pseudoabsences Sample Pseudo-Absences Description Randomly sample pseudoabsences from an environmental dataframe covering the study area. Usage ecospat.rand.pseudoabsences (nbabsences, glob, colxyglob, colvar="all", presence, colxypresence, mindist) Arguments nbabsences glob colxyglob colvar presence colxypresence mindist The number of pseudoabsences desired. A two-column dataframe (or a vector) of the environmental values (in column) for background pixels of the whole study area (in row). The range of columns for x and y in glob. The range of columns for the environmental variables in glob. colvar=”all” keeps all the variables in glob in the final dataframe. colvar=NULL keeps only x and y. A presence-absence dataframe for each species (columns) in each location or grid cell (rows). The range of columns for x and y in presence. The minimum distance from presences within wich pseudoabsences should not be drawn (buffer distance around presences). Value A dataframe of random absences. Author(s) Olivier Broennimann Examples glob <- ecospat.testData[2:8] presence <- ecospat.testData[c(2:3,9)] presence <- presence[presence[,3]==1,1:2] ecospat.rand.pseudoabsences (nbabsences=10, glob=glob, colxyglob=1:2, colvar = "all", presence= presence, colxypresence=1:2, mindist=20) 76 ecospat.rangesize ecospat.rangesize Quantification of the range size of a species using habitat suitability maps and IUCN criteria) Description This function quantifies the range size of a species using standard IUCN criteria (Area of Occupancy AOO, Extent of Occurence EOO) or binary maps derived from Species Distribution Models. Usage ecospat.rangesize (bin.map, ocp, buffer, eoo.around.model, eoo.around.modelocp, xy, EOO, Model.within.eoo, AOO, resol, AOO.circles, d, lonlat, return.obj, save.obj, save.rangesize, directory) ecospat.rangesize (bin.map = NULL, ocp = TRUE, buffer = 0, eoo.around.model = TRUE, eoo.around.modelocp = FALSE, xy = NULL, EOO = TRUE, Model.within.eoo = TRUE, AOO = TRUE, resol = c(2000, 2000), AOO.circles = FALSE, d = sqrt((2000 * 2)/pi), lonlat = FALSE, return.obj = TRUE, save.obj = FALSE, save.rangesize = FALSE, directory = getwd()) Arguments bin.map Binary map (single layer or raster stack) from a Species Distribution Model. ocp logical. Calculate occupied patch models from the binary map (predicted area occupied by the species) buffer numeric. Calculate occupied patch models from the binary map using a buffer (predicted area occupied by the species or within a buffer around the species, for details see ?extract). eoo.around.model logical. The EOO around all positive predicted values from the binary map. ecospat.rangesize 77 eoo.around.modelocp logical. EOO around all positive predicted values of occupied patches. xy xy-coordinates of the species presence EOO logical. Extent of Occurrence. Convex Polygon around occurrences. Model.within.eoo logical. Area predicted as suitable by the model within EOO. AOO logical. Area of Occupancy ddervied by the occurrences. resol Resolution of the grid frame at which AOO should be calculated. AOO.circles logical. AOO calculated by circles around the occurrences instead of using a grid frame. d Radius of the AOO.circles around the occurrences. lonlat Are these longitude/latidue coordinates? (Default = FALSE). return.obj logical. should the objects created to estimate range size be returned (rasterfiles and spatial polygons). Default: TRUE save.obj logical. should objects be saved on hard drive? save.rangesize logical. should range size estimations be saved on hard drive . directory directory in which objects should be saved (Default = getwd()) Details The range size of a species is important for many conservation purposes, e.g. to assess the status of threat for IUCN Red Lists. This function quantifies the range size using different IUCN measures, i.e. the Area Of Occupancy (AOO), the Extent Of Occurrence (EOO) and from binary maps derived from Species Distribution Models (SDMs). Different ways to extract range size from SDMs are available, e.g. using occupied patches, the suitable habitat within EOO or a convex hull around the suitable habitat. Value A list with the values of range size quantification and the stored objects used for quantification (of class RasterLayers, ahull, ConvexHull). Author(s) Frank Breiner References IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1. Second edition. Gland, Switzerland and Cambridge, UK: IUCN. iv + 32pp. IUCN Standards and Petitions Subcommittee. 2016. Guidelines for Using the IUCN Red List Categories and Criteria. Version 12. Prepared by the Standards and Petitions Subcommittee. Downloadable from http://www.iucnredlist.org/documents/RedListGuidelines.pdf Pateiro-Lopez, B., and A. Rodriguez-Casal. 2010. Generalizing the Convex Hull of a Sample: The R Package alphahull. Journal of Statistical software, 34, 1-28. See Also ecospat.occupied.patch, ecospat.mpa, ecospat.binary.model 78 ecospat.rangesize Examples library(dismo) # get predictor variables fnames <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''), pattern='grd', full.names=TRUE ) predictors <- stack(fnames) #plot(predictors) # file with presence points occurence <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='') occ <- read.table(occurence, header=TRUE, sep=',')[,-1] colnames(occ) <- c("x","y") occ <- ecospat.occ.desaggregation(occ,min.dist=1) # fit a domain model, biome is a categorical variable do <- domain(predictors, occ, factors='biome') # predict to entire dataset pred <- predict(do, predictors) plot(pred) points(occ) # use MPA to convert suitability to binary map mpa.cutoff <- ecospat.mpa(pred,occ) # use Boyce index to convert suitability to binary map boyce <- ecospat.boyce(pred, occ) ### use the boyce index to find a threshold pred.bin.arbitrary <- ecospat.binary.model(pred,0.5) pred.bin.mpa <- ecospat.binary.model(pred,mpa.cutoff) names(pred.bin.mpa) <- "me.mpa" pred.bin.arbitrary <- ecospat.binary.model(pred,0.5) names(pred.bin.arbitrary) <- "me.arbitrary" rangesize <- ecospat.rangesize(stack(pred.bin.mpa,pred.bin.arbitrary), xy=occ, resol=c(1,1), eoo.around.modelocp =TRUE, AOO.circles = TRUE, d=200000, lonlat =TRUE) ## Range size quantification rangesize$RangeSize names(rangesize$RangeObjects) par(mfrow=c(1,3)) ecospat.rcls.grd 79 plot(ecospat.binary.model(pred,0),legend=FALSE, main="IUCN criteria") ## IUCN criteria & derivates # plot AOO plot(rangesize$RangeObjects$AOO,add=TRUE, col="red",legend=FALSE) # plot EOO plot(rangesize$RangeObjects$EOO@polygons,add=TRUE, border="red", lwd=2) # plot circles around occurrences plot(rangesize$RangeObjects$AOO.circle@polygons,add=TRUE,border="blue") for(i in 1:2){ ## plot the occupied patches of the model plot(rangesize$RangeObjects$models.ocp[[i]],col=c("grey","blue","darkgreen"), main=names(rangesize$RangeObjects$models.ocp[[i]]),legend=FALSE) points(occ,col="red",cex=0.5,pch=19) ## plot EOO around model plot(rangesize$RangeObjects$eoo.around.model[[i]]@polygons,add=TRUE,border="blue",lwd=2) ## plot EOO around occupied patches plot(rangesize$RangeObjects$eoo.around.mo.ocp[[i]]@polygons,add=TRUE,border="darkgreen", lwd=2) ## plot the modeled area within EOO #plot(rangesize$RangeObjects$model.within.eoo[[i]],col=c("grey","blue","darkgreen"),legend=FALSE) #points(occ,col="red",cex=0.5,pch=19) #plot(rangesize$RangeObjects$EOO@polygons,add=TRUE, border="red", lwd=2) } ### Alpha-hulls are not included in the function yet because of Licence limitations. ### However, alpha-hulls can easily be included manually (see also the help file of ### the alpha hull package): # # require(alphahull) alpha = 2 # alpha value of 2 recommended by IUCN # del<-delvor(occ) # dv<-del$mesh # mn <- mean(sqrt(abs(del$mesh[,3]-del$mesh[,5])ˆ2+abs(del$mesh[,4]-del$mesh[,6])ˆ2))*alpha # alpha.hull<-ahull(del,alpha=mn) # # #Size of alpha-hulls areaahull(h) # plot alphahulls # plot(rangesize$RangeObjects$models.ocp[[i]],col=c("grey","blue","darkgreen"), # main=names(rangesize$RangeObjects$models.ocp[[i]]),legend=FALSE) # plot(alpha.hull,add=TRUE,lwd=1) ecospat.rcls.grd Reclassifying grids function Description Function for reclassifying grid files to get a combined statification from more than one grid 80 ecospat.recstrat prop Usage ecospat.rcls.grd(in_grid,no.classes) Arguments in grid The grid to be reclassified. no.classes The number of desired new classes. Details This function reclassifies the input grid into a number of new classes that the user defines. The boundaries of each class are decided automatically by splitting the range of values of the input grid into the user defined number of classes. Value Returns a reclassified Raster object Author(s) Achilleas Psomas and Niklaus E. Zimmermann Examples ## Not run: bio3<- raster(system.file("external/bioclim/current/bio3.grd",package="biomod2")) bio12<- raster(system.file("external/bioclim/current/bio12.grd",package="biomod2")) B3.rcl<-ecospat.rcls.grd(bio3,9) B12.rcl<-ecospat.rcls.grd(bio12,9) B3B12.comb <- B12.rcl+B3.rcl*10 # Plotting a histogram of the classes hist(B3B12.comb,breaks=100,col=heat.colors(88)) # Plotting the new RasterLayer (9x9 classes) plot(B3B12.comb,col=rev(rainbow(88)),main="Stratified map") ## End(Not run) ecospat.recstrat prop Random Ecologically Stratified Sampling of propotional numbers Description This function randomly collects a user-defined total number of samples from the stratification layer. Usage ecospat.recstrat_prop(in_grid, sample_no) ecospat.recstrat regl 81 Arguments in grid The stratification grid to be sampled. sample no The total number of pixels to be sampled. Details The number of samples per class are determined proportional to the abundance of each class. The number of classes in the stratification layer are determined automatically from the integer input map. If the proportion of samples for a certain class is below one then no samples are collected for this class. Value Returns a dataframe with the selected sampling locations their coordinates and the strata they belong in. Author(s) Achilleas Psomas and Niklaus E. Zimmermann See Also ecospat.recstrat regl ecospat.rcls.grd Examples ## Not run: bio3<- raster(system.file("external/bioclim/current/bio3.grd",package="biomod2")) bio12<- raster(system.file("external/bioclim/current/bio12.grd",package="biomod2")) B3.rcl<-ecospat.rcls.grd(bio3,9) B12.rcl<-ecospat.rcls.grd(bio12,9) B3B12.comb <- B12.rcl+B3.rcl*10 B3B12.prop_samples <- ecospat.recstrat_prop(B3B12.comb,100) plot(B3B12.comb) points(B3B12.prop_samples$x,B3B12.prop_samples$y,pch=16,cex=0.6,col=B3B12.prop_samples$class) ## End(Not run) ecospat.recstrat regl Random Ecologically Stratified Sampling of equal numbers Description This function randomly takes an equal number of samples per class in the stratification layer. Usage ecospat.recstrat_regl(in_grid, sample_no) 82 ecospat.sample.envar Arguments in grid The stratification grid to be sampled. sample no The total number of pixels to be sampled. Details The number of classes in the stratification layer is determined automatically from the integer input map. If the number of pixels in a class is higher than the number of samples, then a random selection without re-substitution is performed, otherwise all pixels of that class are selected. Value Returns a dataframe with the selected sampling locations their coordinates and the strata they belong in. Author(s) Achilleas Psomas and Niklaus E. Zimmermann See Also ecospat.recstrat prop ecospat.rcls.grd Examples ## Not run: bio3<- raster(system.file("external/bioclim/current/bio3.grd",package="biomod2")) bio12<- raster(system.file("external/bioclim/current/bio12.grd",package="biomod2")) B3.rcl<-ecospat.rcls.grd(bio3,9) B12.rcl<-ecospat.rcls.grd(bio12,9) B3B12.comb <- B12.rcl+B3.rcl*10 B3B12.regl_samples <- ecospat.recstrat_prop(B3B12.comb,100) plot(B3B12.comb) points(B3B12.regl_samples$x,B3B12.regl_samples$y,pch=16,cex=0.6,col=B3B12.regl_samples$class) ## End(Not run) ecospat.sample.envar Sample Environmental Variables Description Add environmental values to a species dataframe. Usage ecospat.sample.envar (dfsp, colspxy, colspkept = "xy", dfvar, colvarxy, colvar = "all", resolution) ecospat.SESAM.prr 83 Arguments dfsp A species dataframe with x (long), y (lat) and optional other variables. colspxy The range of columns for x (long) and y (lat) in dfsp. colspkept The columns of dfsp that should be kept in the final dataframe (default: xy). dfvar A dataframe object with x, y and environmental variables. colvarxy The range of columns for x and y in dfvar. colvar The range of enviromental variable columns in dfvar (default: all except xy). resolution The distance between x,y of species and environmental datafreme beyond which values shouldn’t be added. Details The xy (lat/long) coordinates of the species occurrences are compared to those of the environment dataframe and the value of the closest pixel is added to the species dataframe. When the closest environment pixel is more distant than the given resolution, NA is added instead of the value. This function is similar to sample() in ArcGIS. Value A Dataframe with the same rows as dfsp, with environmental values from dfvar in column. Author(s) Olivier Broennimann Examples ## Not run: spp <- ecospat.testNiche sp1 <- spp[1:32,1:3] occ.sp1 <- ecospat.occ.desaggregation(dfvar=sp1,colxy=2:3,colvar=NULL, min.dist=500,plot=TRUE) clim <- ecospat.testData[2:8] occ_sp1 <- na.exclude(ecospat.sample.envar(dfsp=occ.sp1,colspxy=1:2,colspkept=1:2,dfvar=clim, colvarxy=1:2,colvar="all",resolution=25)) ## End(Not run) ecospat.SESAM.prr SESAM Probability Ranking Rule Description Implement the SESAM framework to predict community composition using a ‘probability ranking‘ rule. Usage ecospat.SESAM.prr(proba, sr) 84 ecospat.SESAM.prr Arguments proba A data frame object of SDMs probabilities (or other sources) for all species. Column names (species names SDM) and row name (sampling sites) (need to have defined row names). sr A data frame object with species richness value in the first column. Sites should be arranged in the same order as in the ‘prob‘ argument. Details The SESAM framework implemented in ecospat is based on 1) probabilities of individual species presence for each site - these can be obtained for example by fitting SDMs. This step represents the application of an environmental filter to the community assembly, 2) richness predictions for each site - the richness prediction can be derived in different ways, for instance by summing probabilities from individual species presence for each site or by fitting direct richness models. This step represents the application of a macroecological constraint to the number of species that can coexist in the considered unit, 3) a biotic rule to decide which species potentially present in the site are retained in the final prediction to match the richness value predicted. The biotic rule applied here is called ‘probability ranking‘ rule: the community composition in each site is determined by ranking the species in decreasing order of their predicted probability of presence from SDMs up to a richness prediction. Value Returns a ‘.txt‘ file saved in the working directory that contains the community prediction by the SESAM framework, i.e. binary predictions for all species (columns) for each site (rows). Author(s) Manuela D‘Amen and Anne Dubuis References D‘Amen, M., A. Dubuis, R.F. Fernandes, J. Pottier, L. Pellissier and A. Guisan. 2015. Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models. J. Biogeogr., 42, 1255-1266. Guisan, A. and C. Rahbek. 2011. SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J. Biogeogr., 38, 1433-1444. Examples proba <- ecospat.testData[,73:92] sr <- as.data.frame(rowSums(proba)) ecospat.SESAM.prr(proba, sr) ecospat.shift.centroids 85 ecospat.shift.centroids Draw Centroid Arrows Description Draw arrows linking the centroid of the native and exotic (non-native) distribution (continuous line) and between native and invaded extent (dashed line). Usage ecospat.shift.centroids(sp1, sp2, clim1, clim2,col) Arguments sp1 The scores of the species native distribution along the the two first axes of the PCA. sp2 The scores of the species invasive distribution along the the two first axes of the PCA. clim1 The scores of the entire native extent along the the two first axes of the PCA. clim2 The scores of the entire invaded extent along the the two first axes of the PCA. col Colour of the arrow. Details Allows to visualize the shift of the niche centroids of the species and the centroids of the climatic conditions in the study area. To compare invasive species niche, the arrow links the centroid of the native and inasive distribution (continuous line) and between native and invaded extent (dashed line). Value Arrow on the overlap test plot Author(s) Blaise Petitpierre 86 ecospat.testData ecospat.testData Test Data For The Ecospat package Description Data frame that contains vegetation plots data: presence records of 50 species, a set of environmental variables (topo-climatic) and SDM predictions for some species in the Western Swiss Alps (Canton de Vaud, Switzerland). Usage data("ecospat.testData") Format A data frame with 300 observations on the following 96 variables. numplots Number of the vegetation plot. long Longitude, in Swiss plane coordinate system of the vegetation plot. lat Latitude, in Swiss plane coordinate system of the vegetation plot. ddeg Growing degree days (with a 0 degrees Celsius threshold). mind Moisture index over the growing season (average values for June to August in mm day-1). srad The annual sum of radiation (in kJ m-2 year-1). slp Slope (in degrees) calculated from the DEM25. topo Topographic position (an integrated and unitless measure of topographic exposure. Achillea atrata Achillea millefolium Acinos alpinus Adenostyles glabra Aposeris foetida Arnica montana Aster bellidiastrum Bartsia alpina Bellis perennis Campanula rotundifolia Centaurea montana Cerastium latifolium Cruciata laevipes Doronicum grandiflorum Galium album Galium anisophyllon Galium megalospermum Gentiana bavarica ecospat.testData Gentiana lutea Gentiana purpurea Gentiana verna Globularia cordifolia Globularia nudicaulis Gypsophila repens Hieracium lactucella Homogyne alpina Hypochaeris radicata Leontodon autumnalis Leontodon helveticus Myosotis alpestris Myosotis arvensis Phyteuma orbiculare Phyteuma spicatum Plantago alpina Plantago lanceolata Polygonum bistorta Polygonum viviparum Prunella grandiflora Rhinanthus alectorolophus Rumex acetosa Rumex crispus Vaccinium gaultherioides Veronica alpina Veronica aphylla Agrostis capillaris Bromus erectus sstr Campanula scheuchzeri Carex sempervirens Cynosurus cristatus Dactylis glomerata Daucus carota Festuca pratensis sl Geranium sylvaticum Leontodon hispidus sl Potentilla erecta Pritzelago alpina sstr Prunella vulgaris Ranunculus acris sl 87 88 ecospat.testData Saxifraga oppositifolia Soldanella alpina Taraxacum officinale aggr Trifolium repens sstr Veronica chamaedrys Parnassia palustris glm Agrostis capillaris GLM model for the species Agrostis capillaris. glm Leontodon hispidus sl GLM model for the species Leontodon hispidus sl. glm Dactylis glomerata GLM model for the species Dactylis glomerata. glm Trifolium repens sstr GLM model for the species Trifolium repens sstr. glm Geranium sylvaticum GLM model for the species Geranium sylvaticum. glm Ranunculus acris sl GLM model for the species Ranunculus acris sl. glm Prunella vulgaris GLM model for the species Prunella vulgaris. glm Veronica chamaedrys GLM model for the species Veronica chamaedrys. glm Taraxacum officinale aggr GLM model for the species Taraxacum officinale aggr. glm Plantago lanceolata GLM model for the species Plantago lanceolata. glm Potentilla erecta GLM model for the species Potentilla erecta. glm Carex sempervirens GLM model for the species Carex sempervirens. glm Soldanella alpina GLM model for the species Soldanella alpina. glm Cynosurus cristatus GLM model for the species Cynosurus cristatus. glm Campanula scheuchzeri GLM model for the species Campanula scheuchzeri. glm Festuca pratensis sl GLM model for the species Festuca pratensis sl. gbm Bromus erectus sstr GBM model for the species Bromus erectus sstr. glm Saxifraga oppositifolia GLM model for the species Saxifraga oppositifolia. glm Daucus carota GLM model for the species Daucus carota. glm Pritzelago alpina sstr GLM model for the species Pritzelago alpina sstr. glm Bromus erectus sstr GLM model for the species Bromus erectus sstr. gbm Saxifraga oppositifolia GBM model for the species Saxifraga oppositifolia. gbm Daucus carota GBM model for the species Daucus carota. gbm Pritzelago alpina sstr GBM model for the species Pritzelago alpina sstr. Details The study area is the Western Swiss Alps of Canton de Vaud, Switzerland. Five topo-climatic explanatory variables to calibrate the SDMs: growing degree days (with a 0 degrees Celsius threshold); moisture index over the growing season (average values for June to August in mm day-1); slope (in degrees); topographic position (an integrated and unitless measure of topographic exposure; Zimmermann et al., 2007); and the annual sum of radiation (in kJ m-2 year-1). The spatial resolution of the predictor is 25 m x 25 m so that the models could capture most of the small-scale variations of the climatic factors in the mountainous areas. Two modelling techniques were used to produce the SDMs: generalized linear models (GLM; McCullagh & Nelder, 1989; R library ’glm’) and generalized boosted models (GBM; Friedman, 2001; R library ’gbm’). The SDMs correpond to 20 species: Agrostis capillaris, ecospat.testEnvRaster 89 Leontodon hispidus sl, Dactylis glomerata, Trifolium repens sstr, Geranium sylvaticum, Ranunculus acris sl, Prunella vulgaris, Veronica chamaedrys, Taraxacum officinale aggr, Plantago lanceolata, Potentilla erecta, Carex sempervirens, Soldanella alpina, Cynosurus cristatus, Campanula scheuchzeri, Festuca pratensis sl, Daucus carota, Pritzelago alpina sstr, Bromus erectus sstr and Saxifraga oppositifolia. Author(s) Antoine Guisan , Anne Dubuis and Valeria Di Cola References Guisan, A. 1997. Distribution de taxons vegetaux dans un environnement alpin: Application de modelisations statistiques dans un systeme d’information geographique. PhD Thesis, University of Geneva, Switzerland. Guisan, A., J.P. Theurillat. and F. Kienast. 1998. Predicting the potential distribution of plant species in an alpine environment. Journal of Vegetation Science, 9, 65-74. Guisan, A. and J.P. Theurillat. 2000. Assessing alpine plant vulnerability to climate change: A modeling perspective. Integrated Assessment, 1, 307-320. Guisan, A. and J.P. Theurillat. 2000. Equilibrium modeling of alpine plant distribution and climate change : How far can we go? Phytocoenologia, 30(3-4), 353-384. Dubuis A., J. Pottier, V. Rion, L. Pellissier, J.P. Theurillat and A. Guisan. 2011. Predicting spatial patterns of plant species richness: A comparison of direct macroecological and species stacking approaches. Diversity and Distributions, 17, 1122-1131. Zimmermann, N.E., T.C. Edwards, G.G Moisen, T.S. Frescino and J.A. Blackard. 2007. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. Journal of Applied Ecology 44, 1057-1067. Examples data(ecospat.testData) str(ecospat.testData) dim(ecospat.testData) names(ecospat.testData) ecospat.testEnvRaster Test Environmental Rasters for The Ecospat package Description A stack of 5 topoclimatic rasters at 250m resolution for the Western Swiss Alps. It includes ”ddeg0” (growing degree-days above 0C), ”mind68” (moisture index for month June to August), ”srad68” (solar radiation for month June to August), ”slope25” (average of slopes at 25m resolution) and ”topos25” (average of topographic positions at 25m resolution) Format ecospat.testEnvRaster is a RasterBrick encapsulated in a .Rdata that contains the following rasters: [1] ”ddeg0” [2] ”mind68” [3] ”srad68” [4] ”slope25” [5] ”topos25” 90 ecospat.testMdr Author(s) Olivier Broennimann References Zimmermann, N.E., F. Kienast. 2009. Predictive mapping of alpine grasslands in Switzerland: Species versus community approach. Journal of Vegetation Science, 10, 469-482. Examples fpath <- system.file("extdata", "ecospat.testEnvRaster.RData", package="ecospat") load(fpath) plot(env) ecospat.testMdr Test Data For The ecospat.mdr function Description Data frame that contains presence records the species Centaurea stoebe along years in North America. Usage data("ecospat.testMdr") Format A data frame with 102 observations of Centaurea stoebe. latitude Latitude, in WGS coordinate system. longitude Longitude, in WGS coordinate system. date Year of the presence record. Details Simplified dataset to exemplify the use of the ecospat.mdr function to calculate minimum dispersal routes. Author(s) Olivier Broennimann References Broennimann, O., P. Mraz, B. Petitpierre, A. Guisan, and H. Muller-Scharer. 2014. Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America.Journal of biogeography, 41, 1126-1136. Hordijk, W. and O. Broennimann. 2012. Dispersal routes reconstruction and the minimum cost arborescence problem. Journal of theoretical biology, 308, 115-122. ecospat.testNiche 91 Examples data(ecospat.testMdr) str(ecospat.testMdr) dim(ecospat.testMdr) ecospat.testNiche Test Data For The Niche Overlap Analysis Description Data frame that contains occurrence sites for each species, long, lat and the name of the species at each site. Usage data(ecospat.testNiche) Format ecospat.testNiche is a data frame with the following columns: species sp1, sp2, sp3 and sp4. long Longitude, in Swiss plane coordinate system of the vegetation plot. lat Latitude, in Swiss plane coordinate system of the vegetation plot. Spp Scientific name of the species used in the exmaple: Bromus erectus sstr, Saxifraga oppositifolia, Daucus carota and Pritzelago alpina sstr. Details List of occurence sites for the species. Author(s) Antoine Guisan , Anne Dubuis and Valeria Di Cola See Also ecospat.testData Examples data(ecospat.testNiche) dim(ecospat.testNiche) names(ecospat.testNiche) 92 ecospat.testNiche.inv ecospat.testNiche.inv Test Data For The Niche Dynamics Analysis In The Invaded Range Of A Hypothetical Species Description Data frame that contains geographical coordinates, environmental variables, occurrence sites for the studied species and the prediction of its distribution in the invaded range. These predictions are provided by SDM calibrated on the native range. Usage data(ecospat.testNiche.inv) Format ecospat.testNiche.inv is a data frame with the following columns: x Longitude, in WGS84 coordinate system of the species occurrence. y Latitude, in WGS84 coordinate system of the species occurrence. aetpet Ratio of actual to potential evapotranspiration. gdd Growing degree-days above 5 degrees C. p Annual amount of precipitations. pet Potential evapotranspiration. stdp Annual variation of precipitations. tmax Maximum temperature of the warmest month. tmin Minimum temperature of the coldest month. tmp Annual mean temperature. species occ Presence records of the species occurrence. predictions Species Distribution Model predictions of the studied species. Details The study area is Australia, which is the invaded range of the hypothetical species. Eight topo-climatic explanatory variables to quantify niche differences: ratio of the actual potential evapotranspiration; growing degree days; precipitation; potential evapotranspiration; annual variation of precipitations; maximum temperature of the warmest month; minimum temperature of the coldest month; and annual mean temperature. Author(s) Blaise Petitpierre and Valeria Di Cola References Petitpierre, B., C. Kueffer, O. Broennimann, C. Randin, C. Daehler and A. Guisan. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348. ecospat.testNiche.nat 93 See Also ecospat.testNiche.nat Examples data(ecospat.testNiche.inv) str(ecospat.testNiche.inv) dim(ecospat.testNiche.inv) names(ecospat.testNiche.inv) ecospat.testNiche.nat Test Data For The Niche Dynamics Analysis In The Native Range Of A Hypothetical Species Description Data frame that contains geographical coordinates, environmental variables, occurrence sites for the studied species and the prediction of its distribution in the native range. These predictions are provided by SDM calibrated on the native range. Usage data(ecospat.testNiche.nat) Format ecospat.testNiche.nat is a data frame with the following columns: x Longitude, in WGS84 coordinate system of the species occurrence. y Latitude, in WGS84 coordinate system of the species occurrence. aetpet Ratio of actual to potential evapotranspiration. gdd Growing degree-days above 5 degrees C. p Annual amount of precipitations. pet Potential evapotranspiration. stdp Annual variation of precipitations. tmax Maximum temperature of the warmest month. tmin Minimum temperature of the coldest month. tmp Annual mean temperature. species occ Presence records of the species occurrence. predictions Species Distribution Model predictions of the studied species. Details The study area is North America, which is the native range of the hypothetical species. Eight topo-climatic explanatory variables to quantify niche differences: ratio of the actual potential evapotranspiration; growing degree days; precipitation; potential evapotranspiration; annual variation of precipitations; maximum temperature of the warmest month; minimum temperature of the coldest month; and annual mean temperature. 94 ecospat.testTree Author(s) Blaise Petitpierre and Valeria Di Cola References Petitpierre, B., C. Kueffer, O. Broennimann, C. Randin, C. Daehler and A. Guisan. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348. See Also ecospat.testNiche.inv Examples data(ecospat.testNiche.nat) str(ecospat.testNiche.nat) dim(ecospat.testNiche.nat) names(ecospat.testNiche.nat) ecospat.testTree Test Tree For The Ecospat package Description The tree object is a phylogenetic tree of class ’phylo’ (see read.tree) that contains data of 50 angiosperm species from the Western Swiss Alps. Format ecospat.testTree is a tree contains the following species: [1] ”Rumex acetosa” [2] ”Polygonum bistorta” [3] ”Polygonum viviparum” [4] ”Rumex crispus” [5] ”Cerastium latifolium” [6] ”Silene acaulis” [7] ”Gypsophila repens” [8] ”Vaccinium gaultherioides” [9] ”Soldanella alpina” [10] ”Cruciata laevipes” [11] ”Galium album” [12] ”Galium anisophyllon” [13] ”Galium megalospermum” [14] ”Gentiana verna” [15] ”Gentiana bavarica” [16] ”Gentiana purpurea” [17] ”Gentiana lutea” [18] ”Bartsia alpina” [19] ”Rhinanthus alectorolophus” [20] ”Prunella grandiflora” [21] ”Acinos alpinus” [22] ”Plantago alpina” [23] ”Plantago lanceolata” [24] ”Veronica officinalis” [25] ”Veronica aphylla” [26] ”Veronica alpina” [27] ”Veronica chamaedrys” [28] ”Veronica persica” [29] ”Globularia cordifolia” [30] ”Globularia nudicaulis” [31] ”Myosotis alpestris” [32] ”Myosotis arvensis” [33] ”Aposeris foetida” [34] ”Centaurea montana” [35] ”Hieracium lactucella” [36] ”Leontodon helveticus” [37] ”Leontodon autumnalis” [38] ”Hypochaeris radicata” [39] ”Achillea atrata” [40] ”Achillea millefolium” [41] ”Homogyne alpina” [42] ”Senecio doronicum” [43] ”Adenostyles glabra” [44] ”Arnica montana” [45] ”Aster bellidiastrum” [46] ”Bellis perennis” [47] ”Doronicum grandiflorum” [48] ”Phyteuma orbiculare” [49] ”Phyteuma spicatum” [50] ”Campanula rotundifolia” Author(s) Charlotte Ndiribe , Nicolas Salamin and Antoine Guisan ecospat.varpart 95 References Ndiribe, C., L. Pellissier, S. Antonelli, A. Dubuis, J. Pottier, P. Vittoz, A. Guisan and N. Salamin. 2013. Phylogenetic plant community structure along elevation is lineage specific. Ecology and Evolution, 3, 4925-4939. Examples fpath <- system.file("extdata", "ecospat.testTree.tre", package="ecospat") tree <- read.tree(fpath) plot(tree) ecospat.varpart Variation Partitioning For GLM Or GAM Description Perform variance partitioning for binomial GLM or GAM based on the deviance of two groups or predicting variables. Usage ecospat.varpart (model.1, model.2, model.12) Arguments model.1 GLM / GAM calibrated on the first group of variables. model.2 GLM / GAM calibrated on the second group of variables. model.12 GLM / GAM calibrated on all variables from the two groups. Details The deviance is calculated with the adjusted geometric mean squared improvement rescaled for a maximum of 1. Value Return the four fractions of deviance as in Randin et al. 2009: partial deviance of model 1 and 2, joined deviance and unexplained deviance. Author(s) Christophe Randin , Helene Jaccard and Nigel Gilles Yoccoz References Randin, C.F., H. Jaccard, P. Vittoz, N.G. Yoccoz and A. Guisan. 2009. Land use improves spatial predictions of mountain plant abundance but not presence-absence. Journal of Vegetation Science, 20, 996-1008. 96 ecospat.varpart Examples ## Not run: ecospat.cv.example() ecospat.varpart (model.1= get ("glm.Achillea_atrata", envir=ecospat.env), model.2= get ("glm.Achillea_millefolium", envir=ecospat.env), model.12= get ("glm.Achillea_millefolium", envir=ecospat.env)) ## End(Not run) Index ∗Topic \textasciitildekwd1 ecospat.CCV.communityEvaluation.bin, 11 ecospat.CCV.communityEvaluation.prob, 13 ecospat.CCV.createDataSplitTable, 15 ecospat.CCV.modeling, 17 ∗Topic \textasciitildekwd2 ecospat.CCV.communityEvaluation.bin, 11 ecospat.CCV.communityEvaluation.prob, 13 ecospat.CCV.createDataSplitTable, 15 ecospat.CCV.modeling, 17 ∗Topic file ecospat.max.tss, 49 ecospat.meva.table, 54 ecospat.occupied.patch, 66 ecospat.plot.kappa, 70 ecospat.plot.tss, 74 ecospat.rangesize, 76 ∗Topic package ecospat-package, 3 BIOMOD.EnsembleModeling.out, 34 BIOMOD.models.out, 39 BIOMOD.projection.out, 42 BIOMOD EnsembleForecasting, 36, 37 BIOMOD EnsembleModeling, 37 BIOMOD FormatingData, 38, 40, 42 BIOMOD Modeling, 34, 35, 37, 40, 42 BIOMOD ModelingOptions, 18, 40, 42 BIOMOD Projection, 35, 37, 40, 42 dudi.pca, 70 ecospat ( ecospat-package), 3 ecospat-package, 3 ecospat.adj.D2.glm, 5 ecospat.binary.model, 6, 67, 77 ecospat.boyce, 7 ecospat.calculate.pd, 8 97 ecospat.caleval, 10 ecospat.CCV.communityEvaluation.bin, 11, 13, 15, 18, 19 ecospat.CCV.communityEvaluation.prob, 12, 13, 18, 19 ecospat.CCV.createDataSplitTable, 12, 15, 15, 17, 19 ecospat.CCV.modeling, 11–13, 16, 17 ecospat.climan, 19 ecospat.co occurrences, 25, 27 ecospat.cohen.kappa, 20, 49, 50, 54, 70, 75 ecospat.CommunityEval, 21 ecospat.cons Cscore, 23, 27 ecospat.cor.plot, 24 ecospat.Cscore, 26 ecospat.cv.example, 27 ecospat.cv.gbm, 28 ecospat.cv.glm, 29 ecospat.cv.me, 30 ecospat.cv.rf, 31 ecospat.env, 32 ecospat.Epred, 32 ecospat.ESM.EnsembleModeling, 33, 36, 37, 40, 42 ecospat.ESM.EnsembleProjection, 34, 35, 36, 40, 42 ecospat.ESM.Modeling, 33, 35, 37, 38, 41, 42 ecospat.ESM.Projection, 35–37, 40, 41 ecospat.grid.clim.dyn, 43, 57, 60, 61, 63, 72 ecospat.makeDataFrame, 45 ecospat.mantel.correlogram, 47 ecospat.max.kappa, 21, 48, 50, 54, 70, 75 ecospat.max.tss, 21, 49, 49, 54, 70, 75 ecospat.maxentvarimport, 50 ecospat.mdr, 51 ecospat.mess, 53, 71 ecospat.meva.table, 21, 49, 50, 54, 70, 75 ecospat.migclim, 55 ecospat.mpa, 7, 56, 67, 77 ecospat.niche.dyn.index, 57, 58 98 ecospat.niche.dynIndexProjGeo, 58, 64 ecospat.niche.equivalency.test, 59, 63, 74 ecospat.niche.overlap, 61 ecospat.niche.similarity.test, 60, 62, 70, 74 ecospat.niche.zProjGeo, 58, 63 ecospat.npred, 65 ecospat.occ.desaggregation, 65 ecospat.occupied.patch, 66, 77 ecospat.permut.glm, 68 ecospat.plot.contrib, 69 ecospat.plot.kappa, 21, 49, 50, 54, 70, 75 ecospat.plot.mess, 53, 71 ecospat.plot.niche, 44, 72 ecospat.plot.niche.dyn, 44, 58, 64, 70, 73 ecospat.plot.overlap.test, 70, 73 ecospat.plot.tss, 21, 49, 50, 54, 70, 74 ecospat.rand.pseudoabsences, 75 ecospat.rangesize, 67, 76 ecospat.rcls.grd, 79, 81, 82 ecospat.recstrat prop, 80, 82 ecospat.recstrat regl, 81, 81 ecospat.sample.envar, 82 ecospat.SESAM.prr, 83 ecospat.shift.centroids, 85 ecospat.testData, 86, 91 ecospat.testEnvRaster, 89 ecospat.testMdr, 90 ecospat.testNiche, 91 ecospat.testNiche.inv, 92, 94 ecospat.testNiche.nat, 93, 93 ecospat.testTree, 94 ecospat.varpart, 95 mgram, 48 optimal.thresholds, 7 princomp, 70 INDEX
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 98 Page Mode : UseOutlines Author : Title : Subject : Creator : LaTeX with hyperref package Producer : pdfTeX-1.40.19 Create Date : 2018:06:14 18:01:34+02:00 Modify Date : 2018:06:14 18:01:34+02:00 Trapped : False PTEX Fullbanner : This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018/W32TeX) kpathsea version 6.3.0EXIF Metadata provided by EXIF.tools