Guide
User Manual:
Open the PDF directly: View PDF .
Page Count: 7
Download | |
Open PDF In Browser | View PDF |
lab_inheritance Due: Feb 10, 23-59 PM Doxygen Lab handout Insidious Inheritance Assignment Description Lab Insight Getting Set Up Class Hierarchy Assignment Description In this lab you will get experience with some of the implementation issues and conceptual details of inheritance. Inheritance is a mechanism for increasing the reusability and reliability of C++ code. It is worth mentioning that inheritance is a characteristic of all object oriented programming languages. Our goal is to give you a glimpse of the functionality of inheritance, so that you can make informed design decisions in the future. Please read through the entire lab before you begin. Exercise 1: Fix the Virtual Methods Exercise 2: Fix the Destructor Exercise 3: Fix the Constructor Exercise 4: Fix the Pure Virtual Method Exercise 5: Fix the Slicing Testing Your Code Cleaning up files Submitting Your Work Lab Insight This lab teaches some of the characteristics observed in object oriented programming. These characteristics are useful in software design when building code bases for large projects, APIs, and production code bases. Some classes that further extend on these concepts include CS 427, CS 242, and CS 422. This lab will help you build clean code bases where the OOP (Object-Oriented Programming) characteristics help minimize having to rewrite redundant code as well as make use of virtual inheritance to treat custom sub-classes the same way as their base classes without losing the custom functionality of these subclasses. Getting Set Up From your CS 225 git directory, run the following on EWS: $ git fetch release git merge release/lab_inheritance -m "Merging initial lab_inheritance files" If youʼre on your own machine, you may need to run: $ git fetch release git merge --allow-unrelated-histories release/lab_inheritance -m "Merging initial lab_inheritance files" Upon a successful merge, your lab_inheritance files are now in your lab_inheritance directory. The code for this activity resides in the lab_inheritance/ directory. Get there by typing this in your working directory: $ cd lab_inheritance/ ! You will only need to modify the following files: shape.{cpp,h} circle.{cpp,h} truck.{cpp,h} flower.{cpp,h} drawable.h Class Hierarchy To help us understand class hierarchies better here is an example of a simple class hierarchy showing that a Dog is a Animal. The code would look something like the following: class Animal { public: string name; virtual void speak() = 0; /* The = 0 at the end of the method means that the method is a pure virtual method * meaning that it does not have an implementation and it delegates the task * of implementing the method to the classes that is derived from it */ }; class Dog : public Animal { public: string breed; /* Dog inherits speak from Animal */ void speak(); }; void Dog::speak() { cout << "Woof Woof" << endl; } In this example Animals have a name and can speak but since speak is a pure virtual method we CANNOT construct an Animal by itself. That is Animal is an abstract class and it can only be constructed by one of its derived classes. For example, a Dog is a derived class of Animal. This means that a Dog is a Animal, and, therefore, it inherits a name and a speak method from Animal. However, since the Animalʼs speak does not have an implementation, Dog must implement the speak method. Here is an example of how we could use a Dog object: Dog* d = new Dog(); /* Like usual we can access all the public methods and member variables of a * Dog */ d->breed; /* But now since a Dog is an Animal we can also do this too */ d->name; // inherited from Animal d->speak(); // inherited from Animal and since it is a Dog speak() will print // "Woof Woof" /* Additionally we can treat our Dog only like an Animal like this */ Animal* a = d; /* But now we can only do the following */ a->name; a->speak(); // Still prints "Woof Woof" because speak is a virtual method. a->breed // ERROR! This will NOT work since we perceive it as an Animal now /* Additionally, if we try to have our Animal pointer point back to a Dog * pointer this will cause a problem because an Animal Is NOT A Dog. */ Dog* d2 = a; // ERROR! Animal Is NOT A Dog /* Furthermore, since Animal is abstract and has a pure virtual method * we CANNOT construct one! */ Animal a2; // ERROR! Animal is an abstract class Now that we can understand a simple class hierarchy, letʼs look at a more complex one. Here is a diagram depicting the class hierarchy that is used in this lab. (Note: This diagram is missing some information, e.g. methods, member variables, etc.., for demonstration purposes) This means everything is a Drawable and will have a draw method. Code like the following is perfectly acceptable: Drawable* Drawable* Drawable* Drawable* triangle circle rectangle truck Drawable* flower = = = = new new new new Triangle(....); Circle(...); Rectangle(....); Truck(...); = new Flower(....); /* Now the only thing we can use on triangle, circle, rectangle, truck, and * flower is draw but what gets drawn will change depending on what type the * pointer is actually pointing to. This is called polymorphism, the behavior * changes depending on the actual type of the object being pointed to. */ PNG canvas; triangle->draw(&canvas); // draws a Triangle even though triangle is a Drawable* circle->draw(&canvas); rectangle->draw(&canvas); // draws a Circle even though circle is a Drawable* // draws a Rectangle even though rectangle is a Drawable* truck->draw(&canvas); // draws a Truck even though truck is a Drawable* flower->draw(&canvas); // draws a Flower even though flower is a Drawable* Look at main.cpp for a working example executable in action. main.cpp gets compiled and linked into an executable named lab_inheritance. Follow the instructions below to build, run, and view the output: The Makefile provided for this MP will create an executable when you run make. It will generate lab_inheritance. For example when you run $ ./lab_inheritance You could also run Valgrind on the normal executable: $ valgrind --leak-check=full ./lab_inheritance This lab will use all of these objects in interesting ways but as you will quickly see they are not working the way the should. Your objective for this lab is to go through the 5 test executables and fix the code to work correctly by modifying how the classes in the hierarchy declare and implement their methods. Once you have fixed all the Valgrind errors, you can test your program output following the directions below. Exercise 1: Fix the Virtual Methods Please build and run test_virtual: $ make test_virtual valgrind ./test_virtual # compile to produce test_virtual executeble # run test_virtual with valgrind As you will see when you run test_virtual, the output will say: The Perimeters are NOT the same. The Areas are NOT the same. However, if you look closely at the code they should be the same because both of the pointers in test_virtual.cpp point to the same object! ! Exercise Investigate and fix the code so that the areas and the perimeters are the same. To fix this problem you should only need to modify shape.cpp and/or shape.h. Exercise 2: Fix the Destructor Please build and run test_destructor: $ make test_destructor # compile to produce test_destructor executeble valgrind --leak-check=full ./test_destructor # run test_destructor in valgrind When you run test_destructor in Valgrind you will see that test_destructor is leaking memory. However, if you look closely, Triangle does have a valid destructor and it is being called in test_destructor! ! Exercise Investigate and fix the code so that the there is no more memory leak inside of test_destructor. To fix this problem you should only need to modify drawable.h and shape.h. Exercise 3: Fix the Constructor Please build and run test_constructor: $ make test_constructor # make test_constructor ./test_constructor # run test_constructor When you run test_constructor you will see the following output: Circle's color is NOT correct! Circle's center is NOT correct! If you look closely, we are constructing a Circle with a valid center and color. However, when it is being drawn and when we ask for the Circleʼs center and color they are not the same! ! Exercise Investigate and fix the code so that the Circle is being constructed with the proper center and color. To fix this problem you should only need to modify circle.cpp The correct test_constructor.png should look like the following: Exercise 4: Fix the Pure Virtual Method Please build and run test_pure_virtual. $ make test_pure_virtual # make test_pure_virtual ./test_pure_virtual # run test_pure_virtual When you try to make test_pure_virtual you will see that it does not compile. However, if you look at the truck.{h,cpp} it is a fully featured class! Why is it not compiling? ! Exercise Investigate and fix the code so that test_pure_virtual compiles, runs, and outputs a Truck. To fix this problem you should only need to modify truck.h and truck.cpp. In order to have the Truck draw properly you will first need to have Exercise 3 completed. The correct test_pure_virtual.png should look like the following: Exercise 5: Fix the Slicing Please build and run test_slicing with: $ make test_slicing # make test_slicing ./test_slicing # run test_slicing After you run test_slicing open up its output test_slicing.png. You will see that a Flower has NOT been drawn. For some reason just a bunch of Xʼs has been drawn and a red circle. If you look at flower.h and flower.cpp, we have all of the proper member variables set up. However, when we try to draw them they are drawn incorrectly. ! Exercise Investigate and fix the code so that test_slicing outputs a Flower. To fix this problem you should only need to modify flower.h and flower.cpp. You must use polymorphism! The correct test_slicing.png output should look like the following: Testing Your Code Run the Catch tests as follows (this requires your code to compile when run simply as make): $ make test ./test Cleaning up files To clean up your working repository and remove the test images produced by your program, you can type the following command: $ make clean Submitting Your Work The following files are used to grade this assignment: shape.cpp shape.h circle.cpp circle.h truck.cpp truck.h flower.cpp flower.h drawable.h All other files including any testing files you have added will not be used for grading. " Guide: How to submit CS 225 work using git
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf Linearized : No Page Count : 7 PDF Version : 1.4 Title : lab_inheritance | CS 225 Author : DYT Subject : Producer : Mac OS X 10.12.6 Quartz PDFContext Creator : Safari Create Date : 2019:02:09 03:37:58Z Modify Date : 2019:02:09 03:37:58Z Apple Keywords :EXIF Metadata provided by EXIF.tools