HP 4395A Operation Manual

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 556

DownloadHP 4395A Operation Manual
Open PDF In BrowserView PDF
HP 4395A Network/Spectrum/Impedance Analyzer

Operation Manual
SERIAL NUMBERS

This manual applies directly to instruments which have the serial number pre x JP1KE.
For additional important information about serial numbers,
read \Serial Number" in Appendix D of this Manual.

HP Part No. 04395-90010
Printed in JAPAN September 1998
Second Edition

Notice
The information contained in this document is subject to change without notice.
This document contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of the Hewlett-Packard Company.
Hewlett-Packard Japan, LTD.
Kobe Instrument Division
1-3-2, Murotani, Nishi-ku, Kobe-shi,
Hyogo, 651-2241 Japan

c Copyright 1997,1998 Hewlett-Packard Japan, LTD.

Manual Printing History
The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates that are incorporated
at reprint do not cause the date to change.) The manual part number changes when extensive
technical changes are incorporated.
September 1997 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : First Edition
September 1998 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Second Edition

iii

Certi cation
Hewlett-Packard Company certi es that this product met its published speci cations at the
time of shipment from the factory. Hewlett-Packard further certi es that its calibration
measurements are traceable to the United States National Institute of Standards and
Technology, to the extent allowed by the Institution's calibration facility, or to the calibration
facilities of other International Standards Organization members.

Warranty
This Hewlett-Packard instrument product is warranted against defects in material and
workmanship for a period of one year from the date of shipment, except that in the case of
certain components listed in General Information of this manual, the warranty shall be for the
speci ed period. During the warranty period, Hewlett-Packard Company will, at its option,
either repair or replace products that prove to be defective.
For warranty service or repair, this product must be returned to a service facility designated by
HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country.
HP warrants that its software and rmware designated by HP for use with an instrument will
execute its programming instruction when property installed on that instrument. HP does not
warrant that the operation of the instrument, or software, or rmware will be uninterrupted or
error free.

Limitation Of Warranty
The foregoing warranty shall not apply to defects resulting from improper or inadequate
maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modi cation or
misuse, operation outside the environmental speci cations for the product, or improper site
preparation or maintenance.

No other warranty is expressed or implied. HP speci cally disclaims the implied warranties
of merchantability and tness for a particular purpose.

iv

Exclusive Remedies

The remedies provided herein are buyer's sole and exclusive remedies. HP shall not be liable
for any direct, indirect, special, incidental, or consequential damages, whether based on
contract, tort, or any other legal theory.

Assistance
Product maintenance agreements and other customer assistance agreements are available for
Hewlett-Packard products.
For any assistance, contact your nearest Hewlett-Packard Sales and Service Oce. Addresses
are provided at the back of this manual.

v

Safety Summary
The following general safety precautions must be observed during all phases of operation,
service, and repair of this instrument. Failure to comply with these precautions or with speci c
WARNINGS elsewhere in this manual may impair the protection provided by the equipment.
In addition it violates safety standards of design, manufacture, and intended use of the
instrument.

The Hewlett-Packard Company assumes no liability for the customer's failure to comply with
these requirements.

Note

HP 4395A comply with INSTALLATION CATEGORY II and POLLUTION
DEGREE 2 in IEC1010-1. HP 4395A are INDOOR USE product.

Note

LEDs in this product are Class 1 in accordance with IEC825-1.
CLASS 1 LED PRODUCT

Ground The Instrument
To avoid electric shock hazard, the instrument chassis and cabinet must be connected to a
safety earth ground by the supplied power cable with earth blade.

DO NOT Operate In An Explosive Atmosphere
Do not operate the instrument in the presence of ammable gasses or fumes. Operation of any
electrical instrument in such an environment constitutes a de nite safety hazard.

Keep Away From Live Circuits
Operating personnel must not remove instrument covers. Component replacement and internal
adjustments must be made by quali ed maintenance personnel. Do not replace components
with the power cable connected. Under certain conditions, dangerous voltages may exist even
with the power cable removed. To avoid injuries, always disconnect power and discharge
circuits before touching them.

DO NOT Service Or Adjust Alone
Do not attempt internal service or adjustment unless another person, capable of rendering rst
aid and resuscitation, is present.

DO NOT Substitute Parts Or Modify Instrument
Because of the danger of introducing additional hazards, do not install substitute parts
or perform unauthorized modi cations to the instrument. Return the instrument to a
Hewlett-Packard Sales and Service Oce for service and repair to ensure that safety features
are maintained.

vi

Dangerous Procedure Warnings

Warnings , such as the example below, precede potentially dangerous procedures throughout
this manual. Instructions contained in the warnings must be followed.

Warning

Dangerous voltages, capable of causing death, are present in this
instrument. Use extreme caution when handling, testing, and adjusting
this instrument.

vii

Safety Symbols
General de nitions of safety symbols used on equipment or in manuals are listed below.
Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual.
Alternating current.
Direct current.
On (Supply).
O (Supply).
In position of push-button switch.
Out position of push-button switch.
Frame (or chassis) terminal. A connection to the frame (chassis) of the
equipment which normally include all exposed metal structures.
This Warning sign denotes a hazard. It calls attention to a procedure, practice,
condition or the like, which, if not correctly performed or adhered to, could
result in injury or death to personnel.
This Caution sign denotes a hazard. It calls attention to a procedure, practice,
condition or the like, which, if not correctly performed or adhered to, could
result in damage to or destruction of part or all of the product.
This Note sign denotes important information. It calls attention to a
procedure, practice, condition or the like, which is essential to highlight.
Axed to product containing static sensitive devices use anti-static handling
procedures to prevent electrostatic discharge damage to component.

viii

Typeface Conventions
Bold
Italics

Computer
4HARDKEYS5
NNNNNNNNNNNNNNNNNNNNNNNNNN

SOFTKEYS

Boldface type is used when a term is de ned. For example: icons are
symbols.
Italic type is used for emphasis and for titles of manuals and other
publications.
Italic type is also used for keyboard entries when a name or a variable
must be typed in place of the words in italics. For example: copy
lename means to type the word copy, to type a space, and then to
type the name of a le such as file1.
Computer font is used for on-screen prompts and messages.
Labeled keys on the instrument front panel are enclosed in 4 5.
Softkeys located to the right of the LCD are enclosed in

NNNNN

.

ix

Documentation Map
The following manuals are available for the analyzer.

Operation Manual (HP Part Number 04395-90010)
The Operation Manual describes all function accessed from the front panel keys and
softkeys. It also provides information on options and accessories available, speci cations,
system performance, and some topics about the analyzer's features.

Programming Manual (HP Part Number 04395-90001)
The Programming Manual shows how to write and use BASIC program to control the
analyzer and describes how HP Instrument BASIC works with the analyzer..

HP Instrument BASIC Users Handbook (HP Part Number E2083-90005)
The HP Instrument BASIC User's Handbook introduces you to the HP Instrument BASIC
programming language, provide some helpful hints on getting the most use from it, and
provide a general programming reference. It is divided into three books, HP Instrument
BASIC Programming Techniques, HP Instrument BASIC Interface Techniques, and HP
Instrument BASIC Language Reference.

Service Manual (Option 0BW only), (HP Part Number 04395-90100)
The Service Manual explains how to adjust, troubleshoot, and repair the instrument.
This manual is option 0BW only.

x

Contents
1. Introduction

About the HP 4395A Network/Spectrum/Impedance Analyzer . . . . . . . . .
About This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Document Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Installation Guide

Incoming Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Replacing Fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fuse Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation Environment . . . . . . . . . . . . . . . . . . . . . . . . . .
Ventilation Requirements . . . . . . . . . . . . . . . . . . . . . . . . . .
Instruction for Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . .
Rack/Handle Installation . . . . . . . . . . . . . . . . . . . . . . . . . .
Option 1CN Handle Kit . . . . . . . . . . . . . . . . . . . . . . . . . .
Installing the Handle . . . . . . . . . . . . . . . . . . . . . . . . . .
Option 1CM Rack Mount Kit . . . . . . . . . . . . . . . . . . . . . . .
Mounting the Rack . . . . . . . . . . . . . . . . . . . . . . . . . . .
Option 1CP Rack Mount & Handle Kit . . . . . . . . . . . . . . . . . . .
Mounting the Handle and Rack . . . . . . . . . . . . . . . . . . . . .
Connecting Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting a Test Set for Network Analyzer Mode . . . . . . . . . . . . . .
Connecting an Active Probe . . . . . . . . . . . . . . . . . . . . . . . .
For Spectrum Analyzer Mode . . . . . . . . . . . . . . . . . . . . . . .
For Network Analyzer Mode . . . . . . . . . . . . . . . . . . . . . . .
Connecting an Impedance Test Kit and a Test Fixture for Impedance Analyzer
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting an Impedance Test Kit . . . . . . . . . . . . . . . . . . .
Connecting a Test Fixture to the Impedance Test Kit . . . . . . . . . . .
Connecting a Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting Up a 75 Measurement For Spectrum Analyzer Mode . . . . . . . .

3. Quick Start Guide

Network Analyzer Tour . . . . . . .
Before You Leave On The Tour . . . .
Overview . . . . . . . . . . . . .
Required Equipment . . . . . . . .
Step 1: Preparing for the Measurement
Turning ON the HP 4395A . . . . .
Connecting the DUT . . . . . . . .
Step 2: Setting up the HP 4395A . . .
Setting the Analyzer Type . . . . .
Setting the Active Channel . . . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

1-1
1-1
1-2
2-2

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2-4
2-4
2-4
2-5
2-5
2-7
2-7
2-7
2-8
2-8
2-8
2-9
2-9
2-9
2-9
2-9
2-10
2-12
2-12
2-12

.
.
.
.
.

2-16
2-16
2-16
2-18
2-19

.
.
.
.
.
.
.
.
.
.

3-1
3-1
3-1
3-2
3-3
3-3
3-3
3-5
3-5
3-6

Contents-1

Selecting the Input . . . . . . . . . . . . . . . . . . . .
Setting the Frequency Range . . . . . . . . . . . . . . .
Performing the Automatic Scaling . . . . . . . . . . . . .
Step 3: Making a Calibration . . . . . . . . . . . . . . . .
Step 4: Reading a Measurement Result . . . . . . . . . . .
Reading a Measured Value by Using Marker . . . . . . . .
Step 5: Printing Out the Measurement Result . . . . . . . .
Con guring and Connecting a Printer . . . . . . . . . . .
Making a Hardcopy of the LCD Display . . . . . . . . . .
Spectrum Analyzer Tour . . . . . . . . . . . . . . . . . .
Before You Leave On The Tour . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . .
Required Equipment . . . . . . . . . . . . . . . . . . .
Step 1: Preparing for a Measurement . . . . . . . . . . . .
Turning ON the HP 4395A . . . . . . . . . . . . . . . .
Connecting the DUT . . . . . . . . . . . . . . . . . . .
Step 2: Setting Up the HP 4395A . . . . . . . . . . . . . .
Setting the Analyzer Type . . . . . . . . . . . . . . . .
Setting the Active Channel . . . . . . . . . . . . . . . .
Selecting the Input . . . . . . . . . . . . . . . . . . . .
Setting the Frequency Range . . . . . . . . . . . . . . .
Step 3: Making a Measurement . . . . . . . . . . . . . . .
Reading the Peak Level Using the Marker . . . . . . . . .
Setting the Resolution Bandwidth to See Low Level Signals
Searching for Harmonics Using the Search Function . . . .
Step 4: Saving and Recalling HP 4395A Settings . . . . . . .
Preparing the Disk . . . . . . . . . . . . . . . . . . . .
Saving HP 4395A Settings . . . . . . . . . . . . . . . .
Entering the File Name . . . . . . . . . . . . . . . .
Recalling the HP 4395A Settings . . . . . . . . . . . . .
Impedance Analyzer Tour . . . . . . . . . . . . . . . . .
Before You Leave On The Tour . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . .
Required Equipment . . . . . . . . . . . . . . . . . .
Step 1: Preparing for the Measurement . . . . . . . . . .
Connecting the Impedance Test Kit . . . . . . . . . . .
Turning ON the HP 4395A . . . . . . . . . . . . . . .
Setting Up the HP 4395A . . . . . . . . . . . . . . . . .
Setting the Analyzer Type . . . . . . . . . . . . . . .
Activating Channel 1 . . . . . . . . . . . . . . . . . .
Setting the Sweep Parameters . . . . . . . . . . . . .
Setting the Output Level . . . . . . . . . . . . . . . .
Setting the IF Bandwidth . . . . . . . . . . . . . . . .
Setting the Averaging Factor . . . . . . . . . . . . . .
Step 3: Making a Calibration . . . . . . . . . . . . . . .
OPEN Calibration . . . . . . . . . . . . . . . . . . .
SHORT Calibration . . . . . . . . . . . . . . . . . . .
LOAD Calibration . . . . . . . . . . . . . . . . . . .
Step 4: Connecting and Setting Up a Test Fixture . . . . .
Connecting the xture . . . . . . . . . . . . . . . . .
Setting the Electrical Length . . . . . . . . . . . . . .
Fixture Compensation . . . . . . . . . . . . . . . . .
Step 5: Carrying Out Impedance Measurement . . . . . .
Selecting the Measurement Parameters for Channel 1 . .
Connecting the DUT . . . . . . . . . . . . . . . . . .
Contents-2

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3-6
3-7
3-8
3-10
3-12
3-12
3-14
3-14
3-14
3-15
3-15
3-15
3-16
3-17
3-17
3-17
3-18
3-18
3-19
3-19
3-20
3-22
3-22
3-23
3-25
3-26
3-26
3-27
3-27
3-29
3-31
3-31
3-31
3-32
3-33
3-33
3-33
3-34
3-34
3-35
3-36
3-37
3-38
3-39
3-41
3-41
3-42
3-43
3-45
3-45
3-45
3-47
3-49
3-49
3-50

Performing the Automatic Scaling . . . . . . . . . . . . .
Step 6: Switching from Channel 1 to Channel 2 . . . . . . .
Setting the Averaging Factor for Channel 2 . . . . . . . .
Step 7: Selecting the measurement parameters for Channel 2
Step 8: Dual Channel Display . . . . . . . . . . . . . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

3-50
3-52
3-53
3-54
3-56

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-3

6. Analyzer Input Terminals R, A, and B . . . . . . . . . . . . . . . .
7. RF OUT Connector . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-4
4-4

4. Front and Rear Panels

Features of HP 4395A . . . . . . . . . . . . . . .
Front Panel . . . . . . . . . . . . . . . . . . . .
1. Hardkeys . . . . . . . . . . . . . . . . . . .
ACTIVE CHANNEL Block . . . . . . . . . . .
MEASUREMENT Block . . . . . . . . . . . . .
SWEEP Key Block . . . . . . . . . . . . . . .
MARKER Block . . . . . . . . . . . . . . . .
INSTRUMENT STATE Block . . . . . . . . . .
ENTRY keys . . . . . . . . . . . . . . . . . .
2. Softkeys . . . . . . . . . . . . . . . . . . .
Softkeys that are Joined by Vertical Lines . . . .
Softkeys That Toggle Between On and O States .
Softkeys that Show Status Indications in Brackets
3. HP-IB \REMOTE" Indicator . . . . . . . . . . .
4. 4Preset5 Key . . . . . . . . . . . . . . . . . .
5. PROBE POWER Connector . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

8. DC SOURCE (DC Voltage/Current Output) Connector (Option 001) .
9. Built-in Flexible Disk Drive . . . . . . . . . . . . . . . . . . . . .
10. LINE Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11. Liquid Crystal Display (LCD) . . . . . . . . . . . . . . . . . . . .
Screen Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Active Channel . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Measured Input(s) . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. SCALE/DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . .
6. Marker Data Readout . . . . . . . . . . . . . . . . . . . . . . . .
7. Marker Statistics and Width Value . . . . . . . . . . . . . . . . . .
8. Softkey Labels . . . . . . . . . . . . . . . . . . . . . . . . . . .
9. PASS/FAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10. Sweep Time . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11. Sweep Parameter Span/Stop Value . . . . . . . . . . . . . . . . .
12. Power Level . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13. CW Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . .
14. Video Bandwidth (VBW) . . . . . . . . . . . . . . . . . . . . . .
15. Input Attenuator . . . . . . . . . . . . . . . . . . . . . . . . .
16. Sweep Parameter Center/Start Value . . . . . . . . . . . . . . . .
17. RBW/IFBW . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18. Status Notations . . . . . . . . . . . . . . . . . . . . . . . . . .
19. External Reference . . . . . . . . . . . . . . . . . . . . . . . .
20. Active Entry Area . . . . . . . . . . . . . . . . . . . . . . . . .
21. Message Area . . . . . . . . . . . . . . . . . . . . . . . . . . .
22. Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rear Panel Features and Connectors . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

4-4
4-5
4-5
4-5
4-5
4-6
4-7
4-7
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-8
4-8
4-8
4-8
4-8
4-8
4-9
4-9
4-10
4-10
4-10
4-10
4-11

Contents-3

1. External Reference Input Connector .
2. Internal Reference Output Connector
3. External Program RUN/CONT Input .
4. I/O Port . . . . . . . . . . . . . .
5. Power Cable Receptacle . . . . . . .
6. HP-IB Interface . . . . . . . . . . .
7. External Monitor Terminal . . . . . .
8. Parallel Interface . . . . . . . . . .
9. 24-bit I/O Port . . . . . . . . . . .
10. mini-DIN Keyboard Connector . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

4-11
4-11
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12

11. Test Set I/O Interface . . . . . . .
12. Gate Output (Option 1D6 Only) . . . . .
13. External Trigger Input . . . . . . . . .
14. Reference Oven Output (Option 1D5 Only)

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

4-13
4-13
4-13
4-13

5. Preparations for Measurements

Selecting an appropriate connection of DUT . . . . . . . . . . . . . . . . . .
For Network Measurement . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting DUT for Directional Transmission Characteristic Measurement . .
Connecting DUT for Directional Transmission and Re ection Characteristics
Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting DUT for Bi-directional Transmission and Re ection Characteristics
(Four S Parameters) Measurement . . . . . . . . . . . . . . . . . . .
Connecting DUT for Transmission Characteristic Measurement When the
Output Signal is in a Circuit . . . . . . . . . . . . . . . . . . . . . .
Connecting DUT for Transmission Characteristic Measurement When the Input
and Output Signals are in a Circuit . . . . . . . . . . . . . . . . . .
For Spectrum Measurement . . . . . . . . . . . . . . . . . . . . . . . .
Connecting DUT When Directly Measuring the Signal . . . . . . . . . . .
Connecting DUT When Measuring the Signal in a Circuit . . . . . . . . . .
For Impedance Measurement (Option 010) . . . . . . . . . . . . . . . . . .
Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . .
Presetting HP 4395A . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. Setting and Optimizing Measurement Conditions

Selecting the Analyzer Mode . . . . . . . . . . . . . . . . . . . . .
Selecting the Active Channel . . . . . . . . . . . . . . . . . . . . .
Dual Channel Display . . . . . . . . . . . . . . . . . . . . . . . .
Setting Up the Trigger System . . . . . . . . . . . . . . . . . . . .
Setting Up the Trigger System . . . . . . . . . . . . . . . . . . .
Using the External Trigger . . . . . . . . . . . . . . . . . . . . .
Setting the Trigger Signal Polarity . . . . . . . . . . . . . . . . .
Generating a Trigger Event on Each Measurement Point (NA, ZA Mode)
Setting the Sweep Conditions . . . . . . . . . . . . . . . . . . . . .
Selecting the Sweep Mode . . . . . . . . . . . . . . . . . . . . .
Selecting the Sweep Type . . . . . . . . . . . . . . . . . . . . .
Using the Power Sweep Function (NA, ZA Mode) . . . . . . . . . .
Selecting the Input Port/Measurement Parameter . . . . . . . . . . .
To Select the Input Port in NA Mode . . . . . . . . . . . . . . . .
With the T/R Test Set . . . . . . . . . . . . . . . . . . . . . .
With the S-Parameter Test Set . . . . . . . . . . . . . . . . . .
To Select the Input Port in SA Mode . . . . . . . . . . . . . . . .
To Select the Measurement Parameter in ZA mode . . . . . . . . . .
Selecting the Measurement Format (NA, ZA Mode) . . . . . . . . . . .

Contents-4

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

5-1
5-1
5-1
5-2
5-2
5-3
5-5
5-6
5-6
5-6
5-8
5-8
5-9
6-2
6-2
6-3
6-4
6-4
6-4
6-5
6-5
6-6
6-6
6-6
6-7
6-7
6-7
6-7
6-7
6-8
6-8
6-10

Selecting the Measurement Format in NA Mode . . . . . . . . .
Displaying the Trace as a Smith Chart (NA, ZA Mode) . . . . . .
How To Change Marker Readout Format (NA, ZA Mode) . . . . .
Using the Impedance Conversion Function (NA Mode) . . . . . .
To Display Phase beyond 6180 Degrees (NA, ZA Mode) . . . . .
Using the Complex Plane Format (ZA Mode) . . . . . . . . . . .
Displaying R-X in the Complex Plane . . . . . . . . . . . . .
Using the Marker . . . . . . . . . . . . . . . . . . . . . .
Adjusting the Scale Setting . . . . . . . . . . . . . . . . . .
Selecting the Display Unit . . . . . . . . . . . . . . . . . . . .
Selecting the Display Unit in SA Mode . . . . . . . . . . . . .
Selecting the Phase Unit (NA, ZA Mode) . . . . . . . . . . . .
Setting the Frequency Range . . . . . . . . . . . . . . . . . . .
Setting the Center Frequency . . . . . . . . . . . . . . . . . .
Setting the Marker Position to Center . . . . . . . . . . . . . .
Setting the Maximum Peak to Center . . . . . . . . . . . . . .
Change the Center Frequency by the Speci ed Step Size . . . . .
Example: Displaying Harmonics (SA Mode) . . . . . . . . . .
Setting the Frequency Span . . . . . . . . . . . . . . . . . .
Narrowing the Span Setting (SA Mode) . . . . . . . . . . . . .
Setting the Frequency Range to Full Span . . . . . . . . . .
Setting the Sweep Parameters Using 4Start5 and 4Stop5 . . . . . .
Zooming To a Part of the Trace . . . . . . . . . . . . . . . .
Change the Zooming Factor . . . . . . . . . . . . . . . . .
Displaying a Zoomed Trace on the Other Channel . . . . . .
Adjusting the Scale and Reference . . . . . . . . . . . . . . . .
Automatically Adjusting the Scale and Reference (NA, ZA Mode)
Manually Adjusting the Scale and Reference (NA, ZA Mode) . .
Setting the Reference (SA Mode) . . . . . . . . . . . . . . .
Using the Numeric Keys . . . . . . . . . . . . . . . . . .
Using the Marker . . . . . . . . . . . . . . . . . . . . .
Changing the Scale per Division (SA Mode) . . . . . . . . . .
Setting the IF/Resolution/Video Bandwidth . . . . . . . . . . . .
Setting the IF Bandwidth (NA, ZA Mode) . . . . . . . . . . . .
Setting the IF Bandwidth to Auto Mode . . . . . . . . . . . .
Setting the Resolution Bandwidths (SA Mode) . . . . . . . . . .
Setting the Resolution Bandwidth to Auto Mode . . . . . . . .
Setting the Video Bandwidth (SA Mode) . . . . . . . . . . . . .
Resetting the Video Bandwidth . . . . . . . . . . . . . . .

7. Calibration

Calibration Required for the Network Analyzer Mode
To Select an Appropriate Calibration Method . . .
Performing a Response Calibration . . . . . . . .
Performing a Response & Isolation Calibration . . .
Performing an S11 1-Port Calibration . . . . . . .
Performing an S22 1-Port Calibration . . . . . . .
Performing a Full 2-Port Calibration . . . . . . . .
Performing a 1-Path 2-Port Calibration . . . . . .
Selecting the Calibration Kit . . . . . . . . . . .
Customizing the User De ned Calibration Kit . . .
De ning the Standard De nition . . . . . . . .
Step 1: Preparation . . . . . . . . . . . . .
Step 2: Opening the De ne Standard Menu . .
Step 3: Entering C Parameters . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

6-10
6-10
6-11
6-11
6-12
6-12
6-12
6-13
6-13
6-14
6-14
6-14
6-15
6-15
6-15
6-17
6-17
6-18
6-19
6-20
6-20
6-21
6-22
6-22
6-22
6-23
6-23
6-23
6-24
6-24
6-24
6-25
6-26
6-26
6-26
6-27
6-27
6-28
6-28

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

7-1
7-1
7-2
7-2
7-4
7-5
7-6
7-8
7-10
7-10
7-10
7-10
7-10
7-11

Contents-5

Step 4: Entering OFFSET Parameters . . . . . . . . . . . . .
Step 5: Entering a Standard Class Label . . . . . . . . . . . .
Step 6: Completing the De nition of a Calibration Kit . . . . .
De ning a Class Assignment . . . . . . . . . . . . . . . . . .
Step 1: Preparing for the Class Assignment . . . . . . . . . .
Step 2: Specifying the Standard Class . . . . . . . . . . . . .
Step 3: Creating the Standard Class Label . . . . . . . . . . .
Labeling and Saving Calibration Kit . . . . . . . . . . . . . .
Verifying the De nition of the User-De ned Calibration Kit . . .
Calibration Required for the Impedance Analyzer Mode . . . . . . .
OPEN/SHORT/LOAD Calibration . . . . . . . . . . . . . . . . .
Calibration Procedure . . . . . . . . . . . . . . . . . . . . .
Connecting the Test Fixture . . . . . . . . . . . . . . . . . . .
Setting the Electrical Length of the Test Fixture . . . . . . . . . .
Setting the User De ned Fixture . . . . . . . . . . . . . . . . .
Performing Fixture Compensation . . . . . . . . . . . . . . . . .
Selecting the Calibration Kit . . . . . . . . . . . . . . . . . . .
De ning a Custom Fixture Compensation Kit . . . . . . . . . . .
Step 1: Opening the Fixture Compensation Kit Modi cation Menu
Step 2: Specifying Parameter Values . . . . . . . . . . . . . .
Step 3: Specifying the Standard Label . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

7-11
7-11
7-11
7-12
7-12
7-12
7-13
7-13
7-13
7-14
7-14
7-14
7-15
7-17
7-17
7-18
7-19
7-19
7-19
7-20
7-20

Interpreting the Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To Read a Value Using the Marker . . . . . . . . . . . . . . . . . . . . .
Improving the Readout Resolution (SA Mode) . . . . . . . . . . . . . . .
To Select Marker Readout Unit (SA Nide) . . . . . . . . . . . . . . . . .
To Use the Sub-markers . . . . . . . . . . . . . . . . . . . . . . . . . .
To Use the 1Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To Search for a Point that has the Target Value (NA, SA Mode) . . . . . . . .
To Search for the Peak-to-Peak of Ripples Using the Statistics Function . . . .
Step 1: To Specify the Search Range . . . . . . . . . . . . . . . . . . .
Step 2: To Search For the Ripple . . . . . . . . . . . . . . . . . . . . .
To Search for a Single Peak on the Trace . . . . . . . . . . . . . . . . . .
To Search for Multiple Peaks . . . . . . . . . . . . . . . . . . . . . . . .
To De ne the Peak for Search (To Ignore Unnecessary Peaks) . . . . . . . . .
De ning the Peak Slope to Ignore the Relatively Broad Peaks (NA, ZA Mode)
Entering Directly . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using the Marker . . . . . . . . . . . . . . . . . . . . . . . . . . .
De ning Peak Height (SA Mode) . . . . . . . . . . . . . . . . . . . . .
Specifying the Peak Threshold to Ignore the Absolutely Small Peaks . . . .
Entering Directly . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using the Marker . . . . . . . . . . . . . . . . . . . . . . . . . . .
To Specify the Search Range . . . . . . . . . . . . . . . . . . . . . . . .
Using the Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using the 1Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To Use the Trace Memory . . . . . . . . . . . . . . . . . . . . . . . . . .
To Store the Trace into the Trace Memory . . . . . . . . . . . . . . . . . .
To Display Memory Traces . . . . . . . . . . . . . . . . . . . . . . . . .
To Use the Trace Math Function . . . . . . . . . . . . . . . . . . . . . . .
To Turn O the Data Math Function . . . . . . . . . . . . . . . . . . . .
To Multiply the Trace . . . . . . . . . . . . . . . . . . . . . . . . . . .
To Clear a Multiplied Trace . . . . . . . . . . . . . . . . . . . . . . . . .
To Overlay Multiple Traces . . . . . . . . . . . . . . . . . . . . . . . . . .
To Store the Trace into the Overlay Trace . . . . . . . . . . . . . . . . . .

8-2
8-2
8-3
8-3
8-4
8-5
8-5
8-7
8-7
8-7
8-8
8-9
8-10
8-10
8-10
8-10
8-11
8-11
8-11
8-11
8-12
8-12
8-12
8-14
8-14
8-14
8-15
8-15
8-15
8-15
8-16
8-16

8. Analyzing the Measurement Results

Contents-6

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

To Clear the Overlay Traces . . . . . . . . . . . . . . . . . . .
To Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To Print Out a Display Image . . . . . . . . . . . . . . . . . . .
To See or Print a Measured Value List . . . . . . . . . . . . . . .
To Print an Analyzer Setting . . . . . . . . . . . . . . . . . . .
To Save and Recall the Settings and Data . . . . . . . . . . . . . .
To Save an Analyzer Setting or Measurement Data . . . . . . . . .
Specifying the Data Format . . . . . . . . . . . . . . . . . . .
Specifying a Data Array Type . . . . . . . . . . . . . . . . .
To Recall a Saved Analyzer Setting . . . . . . . . . . . . . . . .
To Save a Display Image to a TIFF File . . . . . . . . . . . . . .
To Save Measured Data for a Spreadsheet . . . . . . . . . . . . .
To Copy a File between Floppy Disk and Memory Disk . . . . . . .
To Initialize a Disk for Use . . . . . . . . . . . . . . . . . . . .
To Initialize the Memory Disk for Use . . . . . . . . . . . . . . .
To Back Up the Memory Disk . . . . . . . . . . . . . . . . . . .
Typical Network Measurement Techniques . . . . . . . . . . . . .
Measuring 3 dB Bandwidth Using the Width Function . . . . . . .
Measuring Electrical Length . . . . . . . . . . . . . . . . . . .
Setting the Velocity Factor of a Cable . . . . . . . . . . . . . .
Measuring Phase Deviation . . . . . . . . . . . . . . . . . . . .
Deviation from the Linear Phase . . . . . . . . . . . . . . . .
Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting the Group Delay Aperture . . . . . . . . . . . . . .
Compensating for the Electrical Delay Caused by an Extension Cable
If the Electrical Delay of the Extension Cable is Known . . . . .
If the Electrical Delay of the Extension Cable is Unknown . . . .
Measuring the Electrical Length of a Cable . . . . . . . . . .
Re ection of a Opened or Shorted Cable . . . . . . . . . . .
Typical Spectrum Measurement Techniques . . . . . . . . . . . . .
Measuring the Noise Level . . . . . . . . . . . . . . . . . . . .
Converting to a Di erent Unit of Equivalent Noise Bandwidth . .
Measuring the Carrier to Noise Ratio . . . . . . . . . . . . . . .
Time Gated Spectrum Analysis . . . . . . . . . . . . . . . . . .
Gate Trigger Mode . . . . . . . . . . . . . . . . . . . . . . .
Edge Mode . . . . . . . . . . . . . . . . . . . . . . . . .
Level Mode . . . . . . . . . . . . . . . . . . . . . . . . .
RBW Filter Response Time . . . . . . . . . . . . . . . . . . .
Performing Time Gated Spectrum Analysis . . . . . . . . . . .
Step 1: Determining the Gate Trigger Parameters . . . . . . .
Step 2: Connecting the Gate Trigger Source . . . . . . . . . .
Step 3: Setting the Center and Span Frequency . . . . . . . .
Step 4: Adjusting the Gate Trigger . . . . . . . . . . . . . .
Setting the RBW/VBW and Using the Averaging Function . . . . .
Setting the Resolution Bandwidth . . . . . . . . . . . . . . .
Setting the Video Bandwidth (VBW) . . . . . . . . . . . . .
Measuring the Spectrum . . . . . . . . . . . . . . . . . . .
Measuring Zero Span . . . . . . . . . . . . . . . . . . . . . . .
Reading Transition Time Using the Marker . . . . . . . . . . .
Tracking Unstable Harmonics Using the Search Track Function . . .
Typical Impedance Measurement Techniques . . . . . . . . . . . .
Applying DC Bias . . . . . . . . . . . . . . . . . . . . . . . .
Setting the Upper Limit for DC Bias . . . . . . . . . . . . . . .
Setting up and Applying Output Voltage/Current . . . . . . . . .
Equivalent Circuit Analysis . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

8-16
8-17
8-17
8-17
8-17
8-19
8-19
8-20
8-20
8-20
8-21
8-21
8-22
8-22
8-23
8-23
8-24
8-25
8-26
8-27
8-28
8-28
8-28
8-29
8-30
8-30
8-31
8-31
8-31
8-33
8-34
8-34
8-36
8-37
8-37
8-37
8-38
8-39
8-40
8-40
8-42
8-42
8-42
8-43
8-43
8-44
8-45
8-46
8-47
8-49
8-50
8-50
8-51
8-51
8-52

Contents-7

Menus Associated with Equivalent Circuit Analysis . . . . . . .
Equivalent Circuit Menu . . . . . . . . . . . . . . . . . . .
Select Equivalent Circuit Menu . . . . . . . . . . . . . . . .
De ne Equivalent Circuit Parameter Menu . . . . . . . . . .
Using the Equivalent Circuit Analysis Function . . . . . . . . .
Calculating Approximate Values of Equivalent Circuit Constants
Simulating a Trace from the Equivalent Circuit Parameters . . .
Determining Q Value Using the Width Search Function . . . . . . .
Widths Menu . . . . . . . . . . . . . . . . . . . . . . . . . .
Width Value Menu . . . . . . . . . . . . . . . . . . . . . . . .
Using the Anti-Resonance Point . . . . . . . . . . . . . . . . .
Using the Resonance Point . . . . . . . . . . . . . . . . . . .
Using the Admittance Chart . . . . . . . . . . . . . . . . . .
Port Extension . . . . . . . . . . . . . . . . . . . . . . . . . .

9. Advanced Techniques for Optimizing Measurements
Reducing Sweep Time (Using List Sweep) . . . . . .
Planning the sweep list . . . . . . . . . . . . .
Editing a Sweep List . . . . . . . . . . . . . . .
To Modify or Delete the Segment . . . . . . . .
Executing the List Sweep . . . . . . . . . . . .
Improving Dynamic Range (NA Mode) . . . . . . . .
Adjusting the IF Bandwidth . . . . . . . . . . .
Using List Sweep . . . . . . . . . . . . . . . .
Performing GO/NO-GO Test of a Filter (using limit line)
Planning the Limit Lime . . . . . . . . . . . . .
Editing a Limit Line Table . . . . . . . . . . . .
To Modify or Delete the Segment . . . . . . . .
Executing a Limit Line Test . . . . . . . . . . .
To Make a Limit Line Test Active . . . . . . . .
To Beep When the Limit Test is Failed . . . . . .
To O set the Limit Line . . . . . . . . . . . . .
Stabilizing the Trace . . . . . . . . . . . . . . . .
To Stop the Sweep . . . . . . . . . . . . . . . .
To Use the Averaging Function . . . . . . . . . .
To Use Maximum or Minimum Hold Function . . .
To Capture an Unstable Signal Using Signal Track .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

8-52
8-52
8-53
8-53
8-55
8-55
8-55
8-56
8-56
8-56
8-57
8-57
8-57
8-58

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

9-2
9-2
9-3
9-4
9-5
9-6
9-6
9-7
9-8
9-9
9-9
9-10
9-10
9-10
9-11
9-12
9-13
9-13
9-13
9-13
9-14

Measuring Transmission Characteristics of a Filter (NA Mode)
Measurement Setup . . . . . . . . . . . . . . . . . . .
Connection . . . . . . . . . . . . . . . . . . . . . .
Analyzer Settings . . . . . . . . . . . . . . . . . . .
Performing Calibration . . . . . . . . . . . . . . . . .
Measurement . . . . . . . . . . . . . . . . . . . . .
Read Out Insertion Loss Using the Marker . . . . . . . . .
6 dB Bandwidth . . . . . . . . . . . . . . . . . . . . .
Ripple . . . . . . . . . . . . . . . . . . . . . . . . . .
Measuring Phase Response . . . . . . . . . . . . . . . .
Using the Expanded Phase Mode . . . . . . . . . . . . .
Re ection Measurement (NA) . . . . . . . . . . . . . . . .
Measurement Setup . . . . . . . . . . . . . . . . . . .
Connection . . . . . . . . . . . . . . . . . . . . . .
Analyzer Settings . . . . . . . . . . . . . . . . . . .
Performing Calibration . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

10-2
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-4
10-5
10-6
10-7
10-8
10-8
10-8
10-8

Contents-8

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

10. Examples of Applications

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Return Loss and Re ection Coecient . . . . . . . . . . . . . . . . .
Standing Wave Ratio (SWR) . . . . . . . . . . . . . . . . . . . . . . .
S-Parameters Measurement . . . . . . . . . . . . . . . . . . . . . . .
Data Readout Using the Marker . . . . . . . . . . . . . . . . . . . .
Impedance Measurement . . . . . . . . . . . . . . . . . . . . . . . .
Admittance Measurement . . . . . . . . . . . . . . . . . . . . . . .
Gain Compression Measurement (NA) . . . . . . . . . . . . . . . . . . .
Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . .
Performing Calibration . . . . . . . . . . . . . . . . . . . . . . . .
Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Output Level Measurement . . . . . . . . . . . . . . . . . .
AM Signal Measurement (SA) . . . . . . . . . . . . . . . . . . . . . . .
Test Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . .
Carrier Amplitude and Frequency Measurement Using the Marker . . . .
Modulating Frequency and Modulation Index Measurement Using 1Marker
FM Signal Measurement (SA) . . . . . . . . . . . . . . . . . . . . . . .
Test Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency Deviation of Wide Band FM Signal . . . . . . . . . . . . . .
Frequency Deviation . . . . . . . . . . . . . . . . . . . . . . . . .
Carrier Level and Modulating Frequency . . . . . . . . . . . . . . .
Evaluation of a Chip Capacitor (ZA Mode) . . . . . . . . . . . . . . . . .
Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . .
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting the Test Fixture . . . . . . . . . . . . . . . . . . . . .
Setting the Electrical Length of the Test Fixture . . . . . . . . . . . .
Fixture Compensation . . . . . . . . . . . . . . . . . . . . . . . .
Capacitance and Dissipation Factor under Swept Frequency . . . . . . .
Setting Measurement Parameters . . . . . . . . . . . . . . . . . . .
Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . .
jZj and (Phase) under Swept Frequency . . . . . . . . . . . . . . . .
Equivalent Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . .
Evaluation of a Crystal Resonator (ZA Mode) . . . . . . . . . . . . . . .
Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . .
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting the Test Fixture . . . . . . . . . . . . . . . . . . . . .
Setting the Electrical Length of the Test Fixture . . . . . . . . . . . .
Fixture Compensation . . . . . . . . . . . . . . . . . . . . . . . .
Setting Measurement Parameters . . . . . . . . . . . . . . . . . . .
Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Readout of Resonance Frequency (Fr ) and Crystal Impedance (CI) . . . .
Equivalent Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . .
Admittance Chart . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

10-9
10-9
10-10
10-11
10-11
10-12
10-13
10-14
10-14
10-14
10-15
10-15
10-15
10-16
10-18
10-18
10-18
10-18
10-18
10-18
10-19
10-21
10-21
10-21
10-21
10-21
10-21
10-21
10-22
10-24
10-24
10-24
10-24
10-25
10-25
10-26
10-26
10-27
10-27
10-27
10-28
10-29
10-31
10-31
10-31
10-31
10-31
10-31
10-31
10-32
10-32
10-32
10-33
10-33
10-35

Contents-9

Using the Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Evaluation of a Varactor Diode - DC Bias Sweep Using List Sweep Function (ZA
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . .
De ning the Sweep List . . . . . . . . . . . . . . . . . . . . . . . .
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting the Test Fixture . . . . . . . . . . . . . . . . . . . . . .
Setting the Electrical Length of the Test Fixture . . . . . . . . . . . . .
Fixture Compensation . . . . . . . . . . . . . . . . . . . . . . . . .
Measuring Capacitance under DC Bias Conditions . . . . . . . . . . . . .

11. Speci cations and Supplemental Characteristics

Network Measurement . . . . . . . . . . . . . . . . . . . . . . . . .
Source Characteristics . . . . . . . . . . . . . . . . . . . . . . . .
Frequency Characteristics . . . . . . . . . . . . . . . . . . . . .
Output Characteristics . . . . . . . . . . . . . . . . . . . . . . .
Receiver Characteristics . . . . . . . . . . . . . . . . . . . . . . .
Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . .
Magnitude Characteristics . . . . . . . . . . . . . . . . . . . . .
Phase Characteristics . . . . . . . . . . . . . . . . . . . . . . .
Group Delay Characteristics . . . . . . . . . . . . . . . . . . . . .
Sweep Characteristics . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Throughput 1 . . . . . . . . . . . . . . . . . . . . . .
Spectrum Measurement . . . . . . . . . . . . . . . . . . . . . . . .
Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . .
Amplitude Characteristics . . . . . . . . . . . . . . . . . . . . . .
Sweep Characteristics . . . . . . . . . . . . . . . . . . . . . . . .
Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .
Speci cations when Option 1D6 Time-Gated spectrum analysis is installed
Speci cations when Option 1D7 50 to 75 Input Impedance Conversion is
installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HP 4395A Option 010 Impedance Measurement . . . . . . . . . . . . .
Measurement Functions . . . . . . . . . . . . . . . . . . . . . . .
Display Formats . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sweep Parameters . . . . . . . . . . . . . . . . . . . . . . . . . .
IF Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Port Type . . . . . . . . . . . . . . . . . . . . . . .
Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Basic Accuracy (Supplemental Performance Characteristics) .
jZj -  Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . .
jYj -  Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . .
R - X Accuracy (Depends on D) . . . . . . . . . . . . . . . . . . . .
G - B Accuracy (Depends on D) . . . . . . . . . . . . . . . . . . . .
D Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L Accuracy (Depends on D) . . . . . . . . . . . . . . . . . . . . . .
C Accuracy (Depends on D) . . . . . . . . . . . . . . . . . . . . . .
Common to Network/Spectrum/Impedance Measurement . . . . . . . . .
Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hard copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contents-10

.

10-35

.
.
.
.
.
.
.
.
.
.

10-36
10-36
10-36
10-36
10-36
10-37
10-38
10-38
10-38
10-38

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

11-1
11-1
11-1
11-1
11-3
11-3
11-4
11-5
11-6
11-6
11-6
11-7
11-7
11-8
11-12
11-12
11-13

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

11-13
11-14
11-14
11-14
11-14
11-14
11-14
11-14
11-14
11-16
11-17
11-18
11-18
11-18
11-19
11-19
11-19
11-20
11-20
11-20
11-20
11-20
11-20

Printer parallel port . . . . . . . . . . . . . . . . . . . . . . . .
Option 001 DC Voltage/Current Source . . . . . . . . . . . . . . .
Probe Power . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speci cations When HP Instrument BASIC Is Operated . . . . . . . .
General Characteristics . . . . . . . . . . . . . . . . . . . . . . .
Input and Output Characteristics . . . . . . . . . . . . . . . . .
Internal Clock . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . .
Non-operation Conditions . . . . . . . . . . . . . . . . . . . . .
Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Furnished Accessories . . . . . . . . . . . . . . . . . . . . . . . .
System Performance at Network Measurement . . . . . . . . . . . .
Typical System Performance . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comparison of Typical Error-Corrected Measurement Uncertainty . .
Re ection Uncertainty of a One-Port Device . . . . . . . . . . . . .
Re ection Uncertainty of a Two-Port Device . . . . . . . . . . . .
Transmission Uncertainty of a Low-Loss Device . . . . . . . . . . .
Transmission Uncertainty of a Wide Dynamic Range Device . . . . .
Types of Residual Measurement Errors . . . . . . . . . . . . . . . .
Residual Systematic Errors . . . . . . . . . . . . . . . . . . . . .
Residual Random Errors . . . . . . . . . . . . . . . . . . . . . .
Residual Drift Errors . . . . . . . . . . . . . . . . . . . . . . . .
System Error Model . . . . . . . . . . . . . . . . . . . . . . . . .
Re ection Uncertainty Equations . . . . . . . . . . . . . . . . . . .
Total Re ection Magnitude Uncertainty (Erm ) . . . . . . . . . . . .
Total Re ection Phase Uncertainty (Erp ) . . . . . . . . . . . . . . .
Transmission Uncertainty Equations . . . . . . . . . . . . . . . . .
Total Transmission Magnitude Uncertainty (Etm ) . . . . . . . . . . .
Total Transmission Phase Uncertainty (Etp ) . . . . . . . . . . . . .
Dynamic Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnitude Dynamic Accuracy . . . . . . . . . . . . . . . . . . .
Determining Relative Magnitude Dynamic Accuracy Error Contribution
Phase Dynamic Accuracy . . . . . . . . . . . . . . . . . . . . . .
Determining Relative Phase Dynamic Accuracy Error Contribution . .
Dynamic Accuracy Error Contribution . . . . . . . . . . . . . . . .
Dynamic Accuracy Error Contribution . . . . . . . . . . . . . . . .
Dynamic Accuracy Error Contribution . . . . . . . . . . . . . . . .
E ects of Temperature Drift . . . . . . . . . . . . . . . . . . . . .
Temperature Drift with S11 One-Port Calibration . . . . . . . . . . .
Temperature Drift with Full Two-Port Calibration . . . . . . . . . .
System performance with Di erent Test Sets and Connector Types . . .
Determining Expected System performance . . . . . . . . . . . . . .
Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12. Accessories and Options

Options Available . . . . . . . . . . . . . . . . . .
DC SOURCE (Option 001) . . . . . . . . . . . . . .
High Stability Frequency Reference (Option 1D5) . .
Time-Gated Spectrum Analyzer (Option 1D6) . . . .
50 to 75 Input Impedance Conversion (Option 1D7)
Impedance Measurement Function (Option 010) . . .
Handle Kit (Option 1CN) . . . . . . . . . . . . . .
Rack Mount Kit (Option 1CM) . . . . . . . . . . . .
Rack Mount and Handle Kit (Option 1CP) . . . . . .

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

11-21
11-21
11-21
11-21
11-24
11-24
11-25
11-25
11-26
11-26
11-28
11-29
11-29
11-29
11-29
11-30
11-31
11-32
11-33
11-34
11-34
11-34
11-34
11-35
11-36
11-36
11-36
11-37
11-37
11-37
11-38
11-38
11-38
11-39
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-53
11-53

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

12-1
12-1
12-1
12-1
12-1
12-1
12-1
12-1
12-1

Contents-11

Measurement accessories available . . . . . . . . . . . . .
Test Sets . . . . . . . . . . . . . . . . . . . . . . . .
HP 87511A/B S Parameter Test Set . . . . . . . . . . .
HP 87512A/B Transmission/Re ection Test Set . . . . . .
Active Probes . . . . . . . . . . . . . . . . . . . . . .
HP 41800A Active Probe (5 Hz to 500 MHz) . . . . . . .
HP 41802A 1 M Input Adapter (5 Hz to 100 MHz) . . . .
HP 1141A Di erential Probe . . . . . . . . . . . . . .
Power Splitters . . . . . . . . . . . . . . . . . . . . .
HP 11850C,D Three-way Power Splitters . . . . . . . .
HP 11667A Power Splitter . . . . . . . . . . . . . . .
Calibration Kits . . . . . . . . . . . . . . . . . . . . .
Cables . . . . . . . . . . . . . . . . . . . . . . . . .
HP 11857D 7 mm Test Port Return Cable Set . . . . . .
HP 11857B 75 Type-N Test Port Return Cable Set . . .
HP 11851B 50 Type-N RF Cable Set . . . . . . . . . .
BNC Cables . . . . . . . . . . . . . . . . . . . . . .
Adapters . . . . . . . . . . . . . . . . . . . . . . . .
HP 11852B 50 to 75 Minimum Loss Pad (DC to 2 GHz)
Adapter Kits . . . . . . . . . . . . . . . . . . . . . .
System accessories available . . . . . . . . . . . . . . . .
Printer . . . . . . . . . . . . . . . . . . . . . . . . .
HP-IB cable . . . . . . . . . . . . . . . . . . . . . . .
External Monitors . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-2
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-5
12-5
12-5
12-5

System Overview . . . . . . . . . . . . . . . . . . . . . . . .
Data Processing . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Processing for Network Measurement . . . . . . . . . . .
Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . .
Ratio Calculations . . . . . . . . . . . . . . . . . . . . . .
Frequency Characteristics Correction by Corrective Data Arrays
Averaging . . . . . . . . . . . . . . . . . . . . . . . . . .
Raw Data Arrays . . . . . . . . . . . . . . . . . . . . . .
Calibration Coecient Arrays . . . . . . . . . . . . . . . .
Data Arrays . . . . . . . . . . . . . . . . . . . . . . . . .
Memory Arrays . . . . . . . . . . . . . . . . . . . . . . .
Electrical Delay and Phase O set . . . . . . . . . . . . . . .
Conversion . . . . . . . . . . . . . . . . . . . . . . . . .
Format . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Hold . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Math . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Trace Arrays . . . . . . . . . . . . . . . . . . . . . .
Memory Trace Arrays . . . . . . . . . . . . . . . . . . . .
Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Processing for Spectrum Measurement . . . . . . . . . . .
Decimation Windowing . . . . . . . . . . . . . . . . . . . .
Fast Fourier Transform (fft) . . . . . . . . . . . . . . . . .
Absolute Squared (ABS2 ) . . . . . . . . . . . . . . . . . . .
Video Averaging . . . . . . . . . . . . . . . . . . . . . . .
Detection . . . . . . . . . . . . . . . . . . . . . . . . . .
Attenuator Adjustment . . . . . . . . . . . . . . . . . . . .
Averaging . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency Characteristics Level Correction . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

A-2
A-3
A-3
A-3
A-4
A-4
A-5
A-5
A-5
A-5
A-5
A-5
A-5
A-5
A-6
A-6
A-6
A-6
A-6
A-6
A-7
A-7
A-7
A-8
A-8
A-8
A-8
A-8
A-8

A. Basic Measurement Theory

Contents-12

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Raw Data Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memory Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Format/Unit conversion . . . . . . . . . . . . . . . . . . . . . . . .
Data Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Trace Array . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memory Trace Array . . . . . . . . . . . . . . . . . . . . . . . . . .
Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Processing for Impedance Measurement . . . . . . . . . . . . . . .
Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage/Current Ratio . . . . . . . . . . . . . . . . . . . . . . . . .
I-V to Re ection Coecient Conversion . . . . . . . . . . . . . . . . .
Calibration Coecient Arrays/Calibration . . . . . . . . . . . . . . . .
Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Raw Data Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fixture Compensation Coecient Arrays/Fixture Compensation . . . . .
Data Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memory Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Trace Array . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memory Trace Array . . . . . . . . . . . . . . . . . . . . . . . . . .
Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Network Measurement Basics . . . . . . . . . . . . . . . . . . . . . . . .
S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conversion Function . . . . . . . . . . . . . . . . . . . . . . . . . . .
Smith Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polar Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Averaging (Sweep Averaging) . . . . . . . . . . . . . . . . . . . . . . .
IF Band Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Spectrum Measurement Basics . . . . . . . . . . . . . . . . . . . . . . .
Detection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Positive and Negative Peak Modes . . . . . . . . . . . . . . . . . . .
Sample Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Swept Spectrum Analyzers versus FFT Analyzers . . . . . . . . . . . . .
Selectivity of the RBW . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise measurement . . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise Format and Marker Noise Form . . . . . . . . . . . . . . . . . .
Sample Detection Mode for Noise Measurement . . . . . . . . . . . . .
VBW for Noise Measurement . . . . . . . . . . . . . . . . . . . . . .
Impedance Measurement Basics . . . . . . . . . . . . . . . . . . . . . . .
I-V Measurement Method . . . . . . . . . . . . . . . . . . . . . . . . .
Basic Concept of I-V Method . . . . . . . . . . . . . . . . . . . . . . .
How This Is Di erent From Impedance Conversion in the Network Analyzer
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Impedance Measurement Scheme . . . . . . . . . . . . . . . . . . . . . .
Measurement Block Diagram . . . . . . . . . . . . . . . . . . . . . . .
Test Signal Level at DUT . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Points and Display Points . . . . . . . . . . . . . . . . . . .
Channel Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Limit Line Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

A-8
A-8
A-8
A-8
A-8
A-9
A-9
A-9
A-10
A-10
A-10
A-11
A-11
A-11
A-11
A-11
A-11
A-11
A-11
A-11
A-11
A-12
A-12
A-12
A-12
A-13
A-13
A-14
A-15
A-15
A-15
A-16
A-16
A-16
A-19
A-19
A-19
A-19
A-19
A-21
A-22
A-22
A-22
A-22
A-23
A-23
A-23

.
.
.
.
.
.
.

A-23
A-25
A-25
A-25
A-27
A-28
A-29

Contents-13

How Limit Lines are Entered . . . . . . . . . . . . . . . . . . . . .
Turning ON/OFF Limit Line/Limit Test . . . . . . . . . . . . . . . .
Segments Entering Order Needs Notice . . . . . . . . . . . . . . . .
Saving the Limit Line Table . . . . . . . . . . . . . . . . . . . . . .
O setting the Sweep Parameter or Amplitude of the Limit Lines . . . .
Supported Display Formats . . . . . . . . . . . . . . . . . . . . . .
Use a Sucient Number of Points or Errors May Occur . . . . . . . . .
Displaying, Printing, or Plotting Limit Test Data . . . . . . . . . . . .
Results of Plotting or Printing the Display with Limit Lines ON . . . . .
Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Three Types of Markers . . . . . . . . . . . . . . . . . . . . . . .
Marker Value . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marker Time Mode . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous/Discrete Mode . . . . . . . . . . . . . . . . . . . . . .
Marker on the Data Trace or on the Memory Trace . . . . . . . . . .
1Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marker Search Function . . . . . . . . . . . . . . . . . . . . . . .
Width Function . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peak De nition . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peak De nition for Network Analyzer Mode . . . . . . . . . . . . .
Peak De nition for Spectrum Analyzer Mode . . . . . . . . . . . .
HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How HP-IB Works . . . . . . . . . . . . . . . . . . . . . . . . . .
Talker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Listener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HP-IB Requirements . . . . . . . . . . . . . . . . . . . . . . . . .
HP-IB Capabilities of the HP 4395A . . . . . . . . . . . . . . . . . .
Bus Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting Addresses . . . . . . . . . . . . . . . . . . . . . . . . . .
Calibration for Network Measurement . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Accuracy Enhancement . . . . . . . . . . . . . . . . . . . . . . .
Sources of Measurement Errors . . . . . . . . . . . . . . . . . . . .
Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Source Match . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Load Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Isolation (Crosstalk) . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency Response (Tracking) . . . . . . . . . . . . . . . . . . . .
Compensation for Measurement Errors . . . . . . . . . . . . . . . .
Modifying Calibration Kits . . . . . . . . . . . . . . . . . . . . . .
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
De ning the Standards . . . . . . . . . . . . . . . . . . . . . . .
Standard Types . . . . . . . . . . . . . . . . . . . . . . . . . .
O set and Delay . . . . . . . . . . . . . . . . . . . . . . . . . .
Specifying the Standard Class . . . . . . . . . . . . . . . . . . .
Accuracy Enhancement Fundamentals-Characterizing Systematic Errors
One-Port Error Model . . . . . . . . . . . . . . . . . . . . . . .
Measuring re ection coecient . . . . . . . . . . . . . . . . . .
Directivity Error . . . . . . . . . . . . . . . . . . . . . . . . .
Source match error . . . . . . . . . . . . . . . . . . . . . . .
Frequency response error . . . . . . . . . . . . . . . . . . . .
How calibration standards are used to quantify these error terms . .
Two-Port Error Model . . . . . . . . . . . . . . . . . . . . . . .
Measuring Transmission Coecient . . . . . . . . . . . . . . . .
Contents-14

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

A-29
A-30
A-30
A-31
A-31
A-31
A-31
A-31
A-31
A-32
A-32
A-32
A-32
A-32
A-32
A-33
A-33
A-33
A-35
A-35
A-36
A-37
A-37
A-37
A-37
A-37
A-38
A-38
A-39
A-39
A-40
A-40
A-40
A-40
A-41
A-42
A-43
A-43
A-44
A-44
A-45
A-45
A-45
A-46
A-47
A-47
A-49
A-49
A-49
A-49
A-50
A-50
A-51
A-54
A-54

Load Match Error . . . . . . . . . . . . . . . . . .
Isolation Errors . . . . . . . . . . . . . . . . . . .
Error Terms the HP 4395A Can Reduce . . . . . . . .
Saving and Recalling Instrument States and Data . . . . . .
Storage Devices . . . . . . . . . . . . . . . . . . . . . .
Disk Requirements . . . . . . . . . . . . . . . . . . . .
Disk Formats . . . . . . . . . . . . . . . . . . . . . .
Memory Disk Capacity . . . . . . . . . . . . . . . . . .
Copy Files Between the Memory Disk and the Flexible Disk
File Types And Data Saved . . . . . . . . . . . . . . . . .
Binary Files and ASCII Files . . . . . . . . . . . . . . .
Data Groups . . . . . . . . . . . . . . . . . . . . . . .
Instrument States and Internal Data Arrays (STATE) . . .
Internal Data Arrays (DATA ONLY) . . . . . . . . . . .
Graphics image (GRAPHICS) . . . . . . . . . . . . . .
File Type and Data Group Combinations . . . . . . . . . .
File Names . . . . . . . . . . . . . . . . . . . . . . . .
Auto Recall Function . . . . . . . . . . . . . . . . . . .
File Structure . . . . . . . . . . . . . . . . . . . . . . .
File Structure of Internal Data Arrays File for Binary Files .
File Header . . . . . . . . . . . . . . . . . . . . . .
Data Group . . . . . . . . . . . . . . . . . . . . . .
File Structure of Internal Data Arrays File for ASCII File . .
Status Block and Data Block . . . . . . . . . . . . . .
File Structure for Single Channel and Dual Channel . . .
Data Array Names for the Spectrum Analyzer . . . . . .
Data Array Names for the Network Analyzer . . . . . .
Data Groups of the Spectrum Analyzer . . . . . . . . .
Data Groups of the Network Analyzer . . . . . . . . .
Save Data Format . . . . . . . . . . . . . . . . . . . . .
CAL Data Group . . . . . . . . . . . . . . . . . . . . .

B. Softkey Reference
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

. . . .
4Utility5 . . . . .
4System5 . . . .
4Local5 4Preset5 . .
4Copy5 . . . . .
4Save5 . . . . .
4Recall5 . . . . .

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

4Chan 15 4Chan 25 4Meas5

. . .
4Display5 . . .
4Scale Ref5
. .
4Bw/Avg5 . . .
4Cal5 . . . . .
4Sweep5 . . . .
4Source5
. . .
4Trigger5 . . .
4Format5

4Center5 4Span5 4Start5 4Stop5
4Marker5 4Marker 5 . . . .
4Search5

!

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

A-54
A-55
A-55
A-58
A-58
A-58
A-58
A-58
A-59
A-59
A-59
A-59
A-59
A-59
A-60
A-60
A-61
A-61
A-62
A-62
A-62
A-62
A-66
A-66
A-68
A-68
A-69
A-69
A-69
A-71
A-71

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

B-2
B-5
B-7
B-11
B-14
B-16
B-29
B-32
B-34
B-35
B-36
B-39
B-42
B-44
B-47
B-48
B-52
B-54

Contents-15

C. Input Range and Default Settings

Active Channel Block . . . . . . . . . . . . . . . . . . . . .
4Chan 15 and 4Chan 25 . . . . . . . . . . . . . . . . . . . . . .
Measurement Block . . . . . . . . . . . . . . . . . . . . . .
4Meas5 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Format5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Display5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Scale Ref5
. . . . . . . . . . . . . . . . . . . . . . . . . .
4Bw/Avg5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Cal5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sweep Block . . . . . . . . . . . . . . . . . . . . . . . . .
4Sweep5 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Source5
. . . . . . . . . . . . . . . . . . . . . . . . . . .
4Trigger5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Center5 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Span5 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Start5 & 4Stop5 . . . . . . . . . . . . . . . . . . . . . . . .
Marker Block . . . . . . . . . . . . . . . . . . . . . . . . .
4Marker5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Marker!5
. . . . . . . . . . . . . . . . . . . . . . . . . .
4Search5
. . . . . . . . . . . . . . . . . . . . . . . . . . .
4Utility5 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Instrument State Block . . . . . . . . . . . . . . . . . . . . .
4System5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Copy5 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Save5 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4Local5 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Results of Power Loss to Battery Backup Memory (Factory Setting)
Prede ned Calibration Kits . . . . . . . . . . . . . . . . . . .
Prede ned Standard Class Assignments . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

C-1
C-1
C-2
C-2
C-2
C-3
C-5
C-13
C-13
C-14
C-14
C-15
C-16
C-16
C-16
C-17
C-17
C-17
C-18
C-18
C-19
C-20
C-20
C-20
C-21
C-21
C-21
C-22
C-24

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Manual Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D-1
D-1
D-2

D. Manual Changes

Messages

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Error Messages in Alphabetical Order . . . . . . . . . . . . . . . . . . . .Messages-1
.
Error Messages in Numerical Order . . . . . . . . . . . . . . . . . . . . Messages-15
. .

Index

Contents-16

Figures
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
4-1.
4-2.
4-3.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.

Power Cable Supplied . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rack Mount Kits Installation . . . . . . . . . . . . . . . . . . . . . . . .
Connecting a Transmission/Re ection Test Set . . . . . . . . . . . . . . . .
Connecting an S-parameter Test Set . . . . . . . . . . . . . . . . . . . . .
Spectrum Analyzer Mode (One Active Probe) . . . . . . . . . . . . . . . .
Network Analyzer Mode (One Active Probe) . . . . . . . . . . . . . . . . .
Network Analyzer Mode (Two Active Probes) . . . . . . . . . . . . . . . .
Using a Transmission/Re ection Test Set . . . . . . . . . . . . . . . . . . .
Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . . .
Connecting Test Fixture . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting a Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . .
Required Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmission/Re ection Test Set Setup . . . . . . . . . . . . . . . . . . .
S-Parameter Test Set Setup . . . . . . . . . . . . . . . . . . . . . . . . .
Required Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Required Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . . .
Connecting the test xture . . . . . . . . . . . . . . . . . . . . . . . . .
Front Panel Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Screen Display (Single Channel, Cartesian Format) . . . . . . . . . . . . . .
Rear panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting DUT for Directional Transmission Characteristic Measurement . . .
Connecting DUT for Directional Transmission and Re ection Characteristics
Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting DUT for Bi-directional Transmission and Re ection Characteristics
(Four S Parameters) Measurement . . . . . . . . . . . . . . . . . . . .
Connecting DUT for Transmission Characteristic Measurement When the Output
Signal is in a Circuit . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting DUT for Transmission and Re ection Characteristics Measurement
When the Output Signal is in a Circuit . . . . . . . . . . . . . . . . . .
Connecting DUT for Transmission Characteristic Measurement When the Input
and Output Signals are in a Circuit . . . . . . . . . . . . . . . . . . .
Connecting DUT When Directly Measuring the Signal . . . . . . . . . . . .
Connecting DUT When Measuring the Signal in a Circuit . . . . . . . . . . .
Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . . .
Dual Channel Display . . . . . . . . . . . . . . . . . . . . . . . . . . .
Location of EXT TRIGGER Connector . . . . . . . . . . . . . . . . . . . .
Smith Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Expanded Phase Format . . . . . . . . . . . . . . . . . . . . . . . . . .
Marker Readout of Complex Plane . . . . . . . . . . . . . . . . . . . . .
Marker to Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peak to Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Displaying Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . .
Narrowing Span with Signal Track . . . . . . . . . . . . . . . . . . . . .
Setting the Sweep Parameters . . . . . . . . . . . . . . . . . . . . . . .
Zooming the Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2-6
2-8
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
3-2
3-3
3-4
3-16
3-32
3-33
3-45
4-1
4-6
4-11
5-1
5-2
5-3
5-3
5-4
5-5
5-6
5-7
5-8
6-3
6-5
6-11
6-12
6-13
6-16
6-17
6-18
6-20
6-21
6-22

Contents-17

6-12.
6-13.
6-14.
6-15.
6-16.
6-17.
7-1.
7-2.
7-3.
8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
8-7.
8-8.
8-9.
8-10.
8-11.
8-12.
8-13.
8-14.
8-15.
8-16.
8-17.
8-18.
8-19.
8-20.
8-21.
8-22.
8-23.
8-24.
8-25.
8-26.
8-27.
8-28.
8-29.
8-30.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.
9-12.
9-13.
10-1.
10-2.
10-3.

Autoscale Function . . . . . . . . . . . . . . . . . . . . . .
Marker to Reference . . . . . . . . . . . . . . . . . . . . . .
Changing Scale/Div. . . . . . . . . . . . . . . . . . . . . . .
Setting IF Bandwidth (IFBW) . . . . . . . . . . . . . . . . . .
Setting Resolution Bandwidth (RBW) . . . . . . . . . . . . . .
Setting Video Bandwidth (VBW) . . . . . . . . . . . . . . . .
Connecting Calibration Standards . . . . . . . . . . . . . . . .
Connecting Test Fixture . . . . . . . . . . . . . . . . . . . .
Model of Fixture Compensation Kit . . . . . . . . . . . . . . .
Marker Readout . . . . . . . . . . . . . . . . . . . . . . . .
Sub-marker and Maker List . . . . . . . . . . . . . . . . . . .
1Marker . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ripple Parameters Readout . . . . . . . . . . . . . . . . . . .
Peak Search . . . . . . . . . . . . . . . . . . . . . . . . . .
Searching for Multiple Peaks . . . . . . . . . . . . . . . . . .
Peak De nition . . . . . . . . . . . . . . . . . . . . . . . .
Threshold Function . . . . . . . . . . . . . . . . . . . . . .
Search Range . . . . . . . . . . . . . . . . . . . . . . . . .
Reading Saved Data from Spreadsheet Software . . . . . . . . .
Bandwidth Measurement Using Width Function . . . . . . . . .
Measuring Electrical Length . . . . . . . . . . . . . . . . . .
Deviation from the Linear Phase . . . . . . . . . . . . . . . .
Setting Group Delay Aperture . . . . . . . . . . . . . . . . .
Port Extension With the T/R Test Set . . . . . . . . . . . . . .
Cable Measurement Con guration (Transmission) . . . . . . . .
Cable Measurement Con guration (Re ection) . . . . . . . . . .
Noise Readout . . . . . . . . . . . . . . . . . . . . . . . . .
C/N Measurement . . . . . . . . . . . . . . . . . . . . . . .
Edge Mode . . . . . . . . . . . . . . . . . . . . . . . . . .
Level Mode . . . . . . . . . . . . . . . . . . . . . . . . . .
Time Domain Measurement Con guration . . . . . . . . . . . .
Target and Trigger Signal Timing on the Oscilloscope . . . . . . .
Gate Parameters . . . . . . . . . . . . . . . . . . . . . . . .
Time Gated Measurement Con guration . . . . . . . . . . . . .
Time Gated Spectrum Analysis . . . . . . . . . . . . . . . . .
Marker Time . . . . . . . . . . . . . . . . . . . . . . . . .
Tracking Unstable Harmonics Using Search Track . . . . . . . .
Connecting DC SOURCE to Impedance test kit . . . . . . . . . .
Q Measurement Examples . . . . . . . . . . . . . . . . . . .
Reducing Sweep Time by Optimizing the Number of Display Points
List Sweep Editor . . . . . . . . . . . . . . . . . . . . . . .
Sweep List Edit Display . . . . . . . . . . . . . . . . . . . .
Setting IF Bandwidth (IFBW) . . . . . . . . . . . . . . . . . .
Dynamic Range Enhancement . . . . . . . . . . . . . . . . .
Limit Line Image . . . . . . . . . . . . . . . . . . . . . . .
Frequency, Upper and Lower Limit . . . . . . . . . . . . . . .
Limit Line Editor . . . . . . . . . . . . . . . . . . . . . . .
Limit Line Test . . . . . . . . . . . . . . . . . . . . . . . .
O setting Limit Lines . . . . . . . . . . . . . . . . . . . . .
Maximum Holding the Drifting Signal . . . . . . . . . . . . . .
Display When Starting Signal Track . . . . . . . . . . . . . . .
Display After Signal Has Drifted . . . . . . . . . . . . . . . .
Transmission Measurement Setup . . . . . . . . . . . . . . . .
Response of a SAW Filter . . . . . . . . . . . . . . . . . . . .
Using the Marker to Determine 6 dB Bandwidth . . . . . . . . .

Contents-18

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

6-23
6-24
6-25
6-26
6-27
6-28
7-15
7-16
7-19
8-2
8-4
8-5
8-7
8-8
8-9
8-10
8-11
8-13
8-21
8-25
8-26
8-28
8-29
8-30
8-31
8-32
8-34
8-36
8-37
8-38
8-40
8-41
8-41
8-42
8-45
8-48
8-49
8-50
8-57
9-2
9-3
9-4
9-6
9-7
9-8
9-8
9-9
9-11
9-12
9-14
9-15
9-15
10-2
10-3
10-4

10-4.
10-5.
10-6.
10-7.
10-8.
10-9.
10-10.
10-11.
10-12.
10-13.
10-14.
10-15.
10-16.
10-17.
10-18.
10-19.
10-20.
10-21.
10-22.
10-23.
10-24.
10-25.
10-26.
10-27.
10-28.
10-29.
10-30.
10-31.
10-32.
11-1.
11-2.
11-3.
11-4.
11-5.
11-6.
11-7.
11-8.
11-9.
11-10.
11-11.
11-12.
11-13.
11-14.
11-15.
11-16.
11-17.
11-18.
11-19.
11-20.
11-21.
11-22.
11-23.

Using Peak Search to Determine Ripple . . . . . . . . . . . . . . . . . . .
Amplitude and Phase Response of a SAW Filter . . . . . . . . . . . . . . .
Expanded Phase Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .
Re ection Measurement . . . . . . . . . . . . . . . . . . . . . . . . . .
Re ection Measurement Setup . . . . . . . . . . . . . . . . . . . . . . .
Return Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S11 on Polar Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Impedance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . .
Admittance Measurement . . . . . . . . . . . . . . . . . . . . . . . . .
Gain Compression Measurement Setup . . . . . . . . . . . . . . . . . . .
Gain Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input vs. Output Power Level at the 01 dB Gain Compression Point . . . . .
Carrier Amplitude and Frequency of AM Signal . . . . . . . . . . . . . . .
Modulating Frequency of AM Signal . . . . . . . . . . . . . . . . . . . . .
Wide Band FM Signal Measurement . . . . . . . . . . . . . . . . . . . . .
Zooming Carrier Signal of FM Signal . . . . . . . . . . . . . . . . . . . .
Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . . .
Connecting the Test Fixture . . . . . . . . . . . . . . . . . . . . . . . .
Cs and D Characteristics of a Chip Capacitor under Swept Frequency . . . . .
jZj and  Characteristics of a Chip Capacitor under Swept Frequency . . . . .
Equivalent Circuit Parameters . . . . . . . . . . . . . . . . . . . . . . .
Simulation of Frequency-based Characteristics Using Resulting Equivalent Circuit
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency-based Characteristics of a Crystal Resonator . . . . . . . . . . .
Readout of the Fr and CI Values of a Crystal Resonator . . . . . . . . . . . .
Equivalent Circuit Parameters . . . . . . . . . . . . . . . . . . . . . . .
Simulation of Frequency-based Characteristics Using Resulting Equivalent Circuit
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Admittance Chart for a Crystal Resonator . . . . . . . . . . . . . . . . . .
Characteristics of a Varactor Diode under DC Bias Sweep . . . . . . . . . .
Magnitude Dynamic Accuracy . . . . . . . . . . . . . . . . . . . . . . .
Phase Dynamic Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise Sidebands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Displayed Average Noise Level . . . . . . . . . . . . . . . . . . .
Typical On-screen Dynamic Range (Center: 50 MHz) . . . . . . . . . . . . .
Typical Dynamic Range at Inputs R, A, and B . . . . . . . . . . . . . . . .
Impedance Measurement Accuracy . . . . . . . . . . . . . . . . . . . . .
8 bit I/O Port Pin Assignments . . . . . . . . . . . . . . . . . . . . . . .
24-bit I/O Interface Pin Assignment . . . . . . . . . . . . . . . . . . . . .
Trigger Signal (External trigger input) . . . . . . . . . . . . . . . . . . . .
S-Parameter Test Set Interface Pin Assignments . . . . . . . . . . . . . . .
Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Side View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total Re ection Magnitude Uncertainty of One-Port Device . . . . . . . . . .
Total Re ection Phase Uncertainty of One-Port Device . . . . . . . . . . . .
Total Re ections Magnitude Uncertainty of Two-Port Device . . . . . . . . .
Total Re ection Phase Uncertainty of Two-Port Device . . . . . . . . . . . .
Total Transmission Magnitude Uncertainty of a Low-Loss Device . . . . . . .
Total Transmission Phase Uncertainty of a Low-Loss Device . . . . . . . . .
Total Transmission Magnitude Uncertainty of a Wide Dynamic Range Device .
Total Transmission Phase Uncertainty of a Wide Dynamic Range Device . . . .
HP 4395A/85046A System Error Model . . . . . . . . . . . . . . . . . . .

10-5
10-6
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-16
10-17
10-19
10-19
10-22
10-23
10-24
10-26
10-28
10-29
10-29
10-30
10-32
10-33
10-34
10-34
10-35
10-38
11-4
11-5
11-8
11-9
11-10
11-11
11-17
11-22
11-22
11-24
11-25
11-26
11-27
11-27
11-30
11-30
11-31
11-31
11-32
11-32
11-33
11-33
11-35

Contents-19

11-24. Typical Magnitude Dynamic Accuracy Error
(@Reference Power Level=Full Scale) . . . . . . . . . . . . .
11-25. Typical Phase Dynamic Accuracy Error
(@Reference Power Level=Full Scale) . . . . . . . . . . . . .
11-26. Typical Magnitude Dynamic Accuracy Error
(@Reference Power Level=020 dB from Full Scale) . . . . . .
11-27. Typical Phase Dynamic Accuracy Error
(@Reference Power Level=020 dB from Full Scale) . . . . . .
11-28. Typical Magnitude Dynamic Accuracy Error
(@Reference Power Level=060 dB from Full Scale) . . . . . .
11-29. Typical Phase Dynamic Accuracy Error
(@Reference Power Level=060 dB from Full Scale) . . . . . .
11-30. Total Re ection Magnitude Uncertainty (@One-Port Cal) . . . . . .
11-31. Total Refection Phase Uncertainty (@One-Port Cal) . . . . . . . .
11-32. Total Transmission Magnitude Uncertainty (@Full Two-Port Cal) . .
11-33. Total Transmission Phase Uncertainty (@Full Two-Port Cal) . . . . .
A-1. Schematic block diagram . . . . . . . . . . . . . . . . . . . . .
A-2. Data Processing for Network Measurement . . . . . . . . . . . .
A-3. Data Processing for Spectrum Measurement . . . . . . . . . . . .
A-4. Data Processing for Impedance Measurement . . . . . . . . . . .
A-5. S-Parameters of a Two-Port Device . . . . . . . . . . . . . . . .
A-6. Re ection Impedance and Admittance Conversions . . . . . . . .
A-7. Transmission Impedance and Admittance Conversions . . . . . . .
A-8. Constant Group Delay . . . . . . . . . . . . . . . . . . . . . .
A-9. Higher Order Phase Shift . . . . . . . . . . . . . . . . . . . . .
A-10. Rate of Phase Change Versus Frequency . . . . . . . . . . . . .
A-11. Variations in Frequency Aperture . . . . . . . . . . . . . . . . .
A-12. Swept Spectrum Analyzers versus Step FFT Analyzers . . . . . . .
A-13. Resolving Small Adjacent Signal . . . . . . . . . . . . . . . . .
A-14. I-V Measurement Method . . . . . . . . . . . . . . . . . . . . .
A-15. Impedance Test Kit Block Diagram . . . . . . . . . . . . . . . .
A-16. Test Signal Level . . . . . . . . . . . . . . . . . . . . . . . . .
A-17. Measurement Points and Display Points . . . . . . . . . . . . . .
A-18. The Concept of Segments as a Point between Two Sets of Limit Lines
A-19. Bandwidth Search Example . . . . . . . . . . . . . . . . . . .
A-20. Peak De nition for Network Analyzer Mode . . . . . . . . . . . .
A-21. Peak De nition for Spectrum Analyzer Mode . . . . . . . . . . .
A-22. Analyzer Single Bus Concept . . . . . . . . . . . . . . . . . . .
A-23. Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-24. Source Match . . . . . . . . . . . . . . . . . . . . . . . . . .
A-25. Load Match . . . . . . . . . . . . . . . . . . . . . . . . . . .
A-26. Sources of Error in a Re ection Measurement . . . . . . . . . . .
A-27. Re ection Coecient . . . . . . . . . . . . . . . . . . . . . .
A-28. E ective Directivity EDF . . . . . . . . . . . . . . . . . . . . .
A-29. Source Match ESF . . . . . . . . . . . . . . . . . . . . . . . .
A-30. Re ection Tracking ERF . . . . . . . . . . . . . . . . . . . . .
A-31. \Perfect Load" Termination . . . . . . . . . . . . . . . . . . .
A-32. Measured E ective Directivity . . . . . . . . . . . . . . . . . .
A-33. Short Circuit Termination . . . . . . . . . . . . . . . . . . . .
A-34. Open Circuit Termination . . . . . . . . . . . . . . . . . . . . .
A-35. Measured S11 . . . . . . . . . . . . . . . . . . . . . . . . . .
A-36. Major Sources of Error . . . . . . . . . . . . . . . . . . . . . .
A-37. Transmission Coecient . . . . . . . . . . . . . . . . . . . . .
A-38. Load Match ELF . . . . . . . . . . . . . . . . . . . . . . . . .
A-39. Isolation EXF . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents-20

. . . . .

11-40

. . . . .

11-40

. . . . .

11-41

. . . . .

11-41

. . . . .

11-42

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

11-42
11-44
11-44
11-45
11-45
A-2
A-4
A-7
A-10
A-13
A-14
A-14
A-17
A-17
A-18
A-18
A-20
A-21
A-23
A-25
A-25
A-27
A-29
A-34
A-35
A-36
A-39
A-41
A-42
A-43
A-49
A-49
A-50
A-50
A-51
A-51
A-52
A-52
A-53
A-53
A-54
A-54
A-55
A-55

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

A-40.
A-41.
A-42.
A-43.
A-44.
A-45.
A-46.
A-47.
D-1.

Full Two-Port Error Model . . . . . . . . . . . . . . . . . . . . . . .
File Header Structure . . . . . . . . . . . . . . . . . . . . . . . . .
RAW Data Group Structure for the Network Analyzer . . . . . . . . . .
RAW Data Group Structure for the Spectrum Analyzer . . . . . . . . . .
CAL Data Group Structure for the Network Analyzer . . . . . . . . . .
CAL Data Group Structure for the Spectrum Analyzer . . . . . . . . . .
DATA, MEMORY, DATA TRACE and MEMORY TRACE Data Group Structure
CAL Data Group Structure . . . . . . . . . . . . . . . . . . . . . . .
Serial Number Plate . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

A-56
A-62
A-63
A-63
A-64
A-64
A-65
A-71
D-2

Contents-21

Tables
2-1.
2-2.
2-3.
7-1.
7-2.
7-3.
8-1.
8-2.
8-3.
8-4.
10-1.
11-1.
11-2.
11-3.
11-4.
11-5.
11-6.
11-7.
11-8.
11-9.
11-10.
12-1.
A-1.
A-2.
A-3.
A-4.
A-5.
A-6.
A-7.
A-8.
A-9.
A-10.
C-1.
C-2.
C-3.
C-4.
C-5.
C-6.
C-7.
D-1.

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fuse Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rack Mount Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calibration Method Selection Table . . . . . . . . . . . . . . . . . . . .
Example of the Standard De nitions (HP 85032B 50 Type-N Calibration Kit)
Example: Standard Class Assignment of the HP 85032B . . . . . . . . . .
Allowable RWB Settings and Minimum Gate Length . . . . . . . . . . . .
Default Settings When Switched to Normal Span or Zero Span . . . . . . .
Minimum Time Resolution . . . . . . . . . . . . . . . . . . . . . . . .
Equivalent Circuit Selection Guide . . . . . . . . . . . . . . . . . . . .
Sweep List for Evaluating a Varactor Diode . . . . . . . . . . . . . . . .
Signal Source Assignment . . . . . . . . . . . . . . . . . . . . . . . .
Parameters of System error Model . . . . . . . . . . . . . . . . . . . .
Typical System Performance for Devices with 7 mm Connectors
HP 4395A with HP 87511A Test Set (300 kHz to 500 MHz) . . . . . . . .
Typical System Performance for Devices with 3.5 mm Connectors
HP 4395A with HP 87511A Test Set (300 kHz to 500 MHz) . . . . . . . .
Typical System Performance for Devices with 50 Type-N Connectors
HP 4395A with HP 87511A or 85044A Test Set (300 kHz to 500 MHz) . .
Typical System Performance for Devices with 75 Type-N Connectors
HP 4395A with HP 87511B Test Set (300 kHz to 500 MHz) . . . . . . . .
Typical System Performance for Devices with 50 Type-N Connectors
HP 4395A with HP 87512A Test Set (100 Hz to 500 MHz) . . . . . . . .
Typical System Performance for Devices with 75 Type-N Connectors
HP 4395A with HP 87512B Test Set (100 Hz to 500 MHz) . . . . . . . .
Re ection Measurement Uncertainty Worksheet . . . . . . . . . . . . . .
Transmission Measurement Uncertainty Worksheet . . . . . . . . . . . . .
Supported Printers and Printing Modes . . . . . . . . . . . . . . . . . .
Obtaining Parameters in 1 Marker Mode . . . . . . . . . . . . . . . . . .
Standard De nitions . . . . . . . . . . . . . . . . . . . . . . . . . . .
Standard Class Assignments Table . . . . . . . . . . . . . . . . . . . . .
Valid Characters for File Names . . . . . . . . . . . . . . . . . . . . . .
Suxes and Extensions Added Automatically . . . . . . . . . . . . . . .
Contents of ASCII Files . . . . . . . . . . . . . . . . . . . . . . . . .
Data Groups and Data Array Names for Spectrum Analyzer . . . . . . . .
Data Groups and Data Array Names for the Network Analyzer Mode . . . .
Network Measurement Type Versus Raw Data Saved . . . . . . . . . . . .
Calibration Type for Network Measurement Versus CAL Data Saved . . . .
3.5 mm Standard Cal Kit . . . . . . . . . . . . . . . . . . . . . . . . .
7 mm Standard Cal Kit . . . . . . . . . . . . . . . . . . . . . . . . . .
50 Type-N Standard Cal Kit . . . . . . . . . . . . . . . . . . . . . . .
75 Type-N Standard Cal Kit . . . . . . . . . . . . . . . . . . . . . . .
Standard Class Assignments Table (7 mm and 3.5 mm) . . . . . . . . . . .
Standard Class Assignments Table (50 Type-N) . . . . . . . . . . . . . .
Standard Class Assignments Table (75 Type-N) . . . . . . . . . . . . . .
Manual Changes by Serial Number . . . . . . . . . . . . . . . . . . . .

Contents-22

.
.
.
.
.
.
.
.
.
.
.
.
.

2-3
2-4
2-8
7-2
7-10
7-12
8-44
8-46
8-47
8-54
10-37
11-23
11-35

.

11-47

.

11-48

.

11-49

.

11-50

.

11-51

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

11-52
11-54
11-55
12-5
A-33
A-46
A-47
A-61
A-61
A-67
A-68
A-69
A-70
A-70
C-22
C-22
C-22
C-23
C-24
C-24
C-25
D-1

D-2. Manual Changes by Firmware Version . . . . . . . . . . . . . . . . . . . .

D-1

Contents-23

1
Introduction
About the HP 4395A Network/Spectrum/Impedance Analyzer
The HP 4395A Network/Spectrum/Impedance Analyzer provides excellent vector network
and spectrum measurement performance from 10 Hz to 500 MHz. Providing both network
and spectrum measurement capabilities, the HP 4395A is a cost e ective solution for the
development and production testing of electronic devices.
Optionally, the HP 4395A can serve as an impedance analyzer as well. This requires Option 010
and the HP 43961A Impedance Test Kit.

About This Guide
This guide is the Operation Manual for the HP 4395A. It includes the following
chapters/appendixes:
\Chapter 1 Introduction"
This chapter.
\Chapter 2 Installation
Provides procedures needed to install the HP 4395A.
Guide"
\Chapter 3 Quick Start
Provides a quick-start tutorial which lets you learn the basics of
Guide"
network, spectrum, and impedance analyzer modes.
\Chapter 4 Front and Rear
Illustrates and describes the HP 4395A's front and rear panel
Panels"
features.
\Chapter 5 Preparations for Provides the procedures needed to prepare for a measurement.
Measurement"
\Chapter 6 Setting and
Provides the procedures for setting and optimizing measurement
Optimizing Measurement
conditions of HP 4395A.
Conditions"
\Chapter 7 Calibration"
Provides general procedures for using the HP 4395A as an
impedance analyzer.
\Chapter 8 Analyzing the
Explains how to analyze and process the measurement results
Measurement Results"
obtained in each analyzer mode.
\Chapter 9 Advanced
Provides advanced measurement techniques that can be used to
Techniques for Optimizing
optimize your measurement tasks.
Measurement Tasks"
\Chapter 10 Examples of
Contains example applications of the HP 4395A for each of
Applications"
network, spectrum, and impedance analyzer modes.
\Chapter 11 Speci cations
Provides detailed information on the HP 4395A's speci cations.
and Supplemental
Characteristics"
\Chapter 12 Accessories and Lists options and accessories available with the HP 4395A.
Options"
Introduction 1-1

\Appendix A Analyzer
Features"
\Appendix B Softkey
Reference"
\Appendix C Input Range and
Default Settings"
\Appendix D Manual
Changes"

Document Guide

provides additional information on analyzer features beyond the
basics covered in the previous chapters.
Shows the hierarchy of softkeys that appear on the HP 4395A's
display.
Lists the valid ranges and initial settings of the various functions
of the HP 4395A.
Provides information on changes to the manual and on the
product serial number.

For information on using HP-IB commands to program the HP 4395A, refer to Programming
Manual, which contains a complete command reference with ready-to-use sample programs.

1-2 Introduction

2
Installation Guide
This chapter provides installation and setup instructions. It contains the following information:
Incoming Inspection
Replacing Fuse
Power Requirements
Operation Environment
Ventilation Requirements
Instruction for Cleaning
Rack/Handle Installation
Connecting Cables
Connecting a Test Set for Network Analyzer Mode
Connecting an Active Probe
Connecting an Impedance Test Kit and a Test Fixture
Connecting a Keyboard
Setting Up a 75 Measurement For Spectrum Analyzer Mode

Installation Guide 2-1

Incoming Inspection

Incoming Inspection
Warning

To avoid hazardous electrical shock, do not turn on the HP 4395A when
there are signs of shipping damage to any portion of the outer enclosure
(for example, covers, panel, or display)

Inspect the shipping container for damage. If the shipping container or cushioning material
is damaged, it should be kept until the contents of the shipment have been checked for
completeness and the HP 4395A has been checked mechanically and electrically. The contents
of the shipment should be as listed in Table 2-1. If the contents are incomplete, if there is
mechanical damage or defect, or if the HP 4395A does not pass the power-on selftests, notify
the nearest Hewlett-Packard oce. If the shipping container is damaged, or the cushioning
material shows signs of unusual stress, notify the carrier as well as the Hewlett-Packard oce.
Keep the shipping materials for the carrier's inspection.

2-2 Installation Guide

Incoming Inspection
Description

Table 2-1. Contents
HP Part Number

Network/Spectrum/Impedance Analyzer

Quantity

HP 4395A

1

Operation Manual

04395-90000

1

Programming Manual

04395-90001

1

HP Instrument BASIC Users
HandBook

E2083-90005

1

Sample Program Disk (2 disks)

04395-18000

1

3.5inch 2HD Disk (blank)

-

1

mini-DIN Keyboard

C3757-60401

1

Power Cable1

-

1

8120-1839

1

04395-90100

1

1250-1859

1

HP 11852B option 004

1

5062-3991

1

5062-3979

1

5062-3985

1

Documents

Option 010 only
BNC(m)-BNC(m) Cable
Option 0BW only
Service Manual
Option 1D5 only
BNC Adapter
Option 1D7 only
50 /75 Minimum Loss Pad
Option 1CN Handle Kit
Handle Kit
Option 1CM Rack Mount Kit
Rack Mount Kit
Option 1CP Rack Mount & Handle Kit
Rack Mount & Handle Kit

1 The power cable depends on where the instrument is used,see Figure 2-1.

Installation Guide 2-3

Replacing Fuse

Replacing Fuse
Fuse Selection
Select proper fuse according to the Table 2-2.

Table 2-2. Fuse Selection
Fuse Rating/Type Fuse Part Number
5A 250Vac
UL/CSA type
Time Delay

2110-0030

For ordering the fuse,contact your nearest Hewlett-Packard Sales and Service Oce.

Procedure

Lever a small minus screwdriver to
dismount the fuse holder above the AC
line receptacle on the rear panel.

Caution

To check or replace the fuse, pull the fuse
holder and remove the fuse. To reinstall
the fuse, insert a fuse with the proper
rating into the fuse holder.

Use the proper fuse for the line voltage selected. Use only fuses with the
required current rating and of the speci ed type as replacements. DO NOT use
a mended fuse or short-circuit the fuse-holder in order to by-pass a blown fuse.
Find out what caused the fuse to blow!

2-4 Installation Guide

Power Requirements

Power Requirements
The HP 4395A requires the following power source:
Voltage : 90 to 132 Vac, 198 to 264 Vac
Frequency : 47 to 63 Hz
Power : 300 VA maximum

Power Cable
In accordance with international safety standards, this instrument is equipped with a
three-wire power cable. When connected to an appropriate ac power outlet, this cable grounds
the instrument frame.
The type of power cable shipped with each instrument depends on the country of destination.
Refer to Figure 2-1 for the part numbers of the power cables available.

Warning

For protection from electrical shock, the power cable ground must not be
defeated.
The power plug must be plugged into an outlet that provides a protective
earth ground connection.

Installation Guide 2-5

Power Requirements

Figure 2-1. Power Cable Supplied

2-6 Installation Guide

Operation Environment

Operation Environment
The HP 4395A must be operated under within the following environment conditions, and
sucient space must be kept behind the HP 4395A to avoid obstructing the air ow of the
cooling fans.
Temperature: 10 C to 40 C
Humidity:
less than 80% RH

Note

The HP 4395A must be protected from temperature extremes which could
cause condensation within the instrument.

Ventilation Requirements
To ensure adequate ventilation, make sure that there is adequate clearance of at least 180mm
behind and 60mm sides.

Instruction for Cleaning
To prevent electrical shock, disconnect the HP 4395A power cable from the receptacle before
cleaning. Wipe with a dry cloth or a soft cloth that is soaked with water and wrung tightly
without undue pressure to clean the casing. Do not attempt to clean the HP 4395A internally.

Installation Guide 2-7

Rack/Handle Installation

Rack/Handle Installation
The HP 4395A can be rack mounted and used as a component in a measurement system.
Figure 2-2 shows how to rack mount the HP 4395A.

Table 2-3. Rack Mount Kits
Description
HP Part Number

Option
1CN
1CM
1CP

Handle Kit
Rack Mount Kit
Rack Mount & Handle Kit

5062-3991
5062-3979
5062-3985

Figure 2-2. Rack Mount Kits Installation

Option 1CN Handle Kit
Option 1CN is a handle kit containing a pair of handles and the necessary hardware to attach
them to the instrument.

Installing the Handle
1. Remove the adhesive-backed trim strips 1 from the left and right front sides of the
HP 4395A.
2. Attach the front handles 3 to the sides using the screws provided.
3. Attach the trim strips 4 to the handles.

2-8 Installation Guide

Rack/Handle Installation

Option 1CM Rack Mount Kit
Option 1CM is a rack mount kit containing a pair of anges and the necessary hardware to
mount them to the instrument in an equipment rack with 482.6 mm (19 inches) horizontal
spacing.

Mounting the Rack
1. Remove the adhesive-backed trim strips 1 from the left and right front sides of the
HP 4395A.
2. Attach the rack mount ange 2 to the left and right front sides of the HP 4395A using the
screws provided.
3. Remove all four feet (lift bar on the inner side of the foot, and slide the foot toward the
bar).

Option 1CP Rack Mount & Handle Kit
Option 1CP is a rack mount kit containing a pair of anges and the necessary hardware to
mount them to an instrument which has handles attached, in an equipment rack with 482.6
mm (19 inches) spacing.

Mounting the Handle and Rack
1. Remove the adhesive-backed trim strips 1 from the left and right front sides of the
HP 4395A.
2. Attach the front handle 3 and the rack mount ange 5 together on the left and right front
sides of the HP 4395A using the screws provided.
3. Remove all four feet (lift bar on the inner side of the foot, and slide the foot toward the
bar).

Connecting Cables
Use shielded cables when you connect the DUT and accessories for testing.
For more information about the cables, see chapter 12.

Installation Guide 2-9

Connecting a Test Set for Network Analyzer Mode

Connecting a Test Set for Network Analyzer Mode
To use the network analyzer mode of the HP 4395A, a test set is required to measure the
transmission and re ection characteristics of the device under test (DUT).
You can use either the HP 87512A/B transmission/re ection (T/R) test set or the HP 87511A/B
S-parameter test set. The HP 87512A/B T/R test set measures re ection and transmission in the
forward direction only. The HP 87511A/B S-parameter test set measures both the forward and
reverse directions without reconnection.
For more information about the test sets, see Chapter 12.

Connecting a Transmission/Re ection Test Set

Figure 2-3. Connecting a Transmission/Re ection Test Set
1. Place the transmission/re ection (T/R) test set in front of the HP 4395A.
2. Connect the R and A ports of the HP 4395A and the T/R test set to each other.
3. Connect the RF OUT port of the HP 4395A and the RF IN port of the T/R test set with a
semi-rigid cable.

Note

When you use the HP 87512B, press 4Cal5 MORE SET Z0 . Then press 475 455 4215
to set the characteristic impedance (Z0 ) to 75 .

2-10 Installation Guide

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN

Connecting a Test Set for Network Analyzer Mode

Connecting an S-parameter Test Set

Figure 2-4. Connecting an S-parameter Test Set
1. Place the HP 4395A on the S-parameter test set.
2. Connect the TEST SET-I/O INTERCONNECT interface on the rear panel of the HP 4395A
and the NETWORK ANALYZER-I/O INTERCONNECT interface of the test set using the cable
furnished with the test set.
3. Connect the RF OUT, R, A, and B inputs of the HP 4395A to the S-parameter test set to each
other.

Note

When you use the HP 87511B, press 4Cal5 MORE SET Z0 . Then press 475 455 4215
to set the characteristic impedance (Z0) to 75 .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN

Installation Guide 2-11

Connecting an Active Probe

Connecting an Active Probe
The active probe allows you to analyze an in-circuit signal or device that has no port for
connecting to the test set. The active probe can be used for both spectrum and network
measurements.
The HP 4395A can use the following active probes:
HP 41800A Active Probe (5 Hz to 500 MHz)
HP 41802A 1 M Input Adapter (5 Hz to 100 MHz)
For more information about these active probes, see Chapter 12.

For Spectrum Analyzer Mode

Figure 2-5. Spectrum Analyzer Mode (One Active Probe)
1. Connect the output connector of the active probe to the R,A,or B port of the HP 4395A.
2. Plug the probe power plug into the PROBE POWER connector.

For Network Analyzer Mode
Using One Active Probe

2-12 Installation Guide

Connecting an Active Probe

Figure 2-6. Network Analyzer Mode (One Active Probe)
1.
2.
3.
4.

Connect the power splitter to the RF OUT port.
Connect one output from the power splitter to the R input.
Connect the other output of the power splitter to the DUT.
Connect the active probe to the B input and plug the probe plug into the PROBE POWER
connector.
5. If necessary, terminate the DUT with a load.

Note

The following power splitters are available for the HP 4395A:
HP 11850C,D Three-way Power Splitter
HP 11667A Two-way Power Splitter

For more information about these power splitters, see Chapter 12.

Installation Guide 2-13

Connecting an Active Probe

Using Two Active Probes

Figure 2-7. Network Analyzer Mode (Two Active Probes)
1.
2.
3.
4.

Connect one active probe to the R input.
Connect the other active probe to the B input.
Connect the RF OUT port to the DUT.
If necessary, terminate the DUT with a load.

2-14 Installation Guide

Connecting an Active Probe

Using a Transmission/Re ection Test Set

Figure 2-8. Using a Transmission/Re ection Test Set
1. Connect the HP 87512A/B T/R test set.
2. Connect the active probe to the B input.
3. If necessary, terminate the DUT with a load.

Installation Guide 2-15

Connecting an Active Probe

Connecting an Impedance Test Kit and a Test Fixture for Impedance
Analyzer Mode
Connecting an Impedance Test Kit
To start the impedance measurement, you need to connect the HP 43961A Impedance Test Kit
to the HP 4395A. See Figure 2-9.
1. Verify the HP 4395A is turned o .
2. Connect the N-cable to the RF OUT port of the HP 4395A.
3. Connect two connectors of the HP 43961A to the R and A ports of the HP 43961A.
4. Connect the other connector of the N-cable to the RF IN port of the HP 43961A.
5. Turn on the HP 4395A.

Figure 2-9. Connecting the Impedance Test Kit

Connecting a Test Fixture to the Impedance Test Kit
To connect the test xture to the impedance test kit, see the applicable test xture manual for
instructions. The following is a general procedure:
1. Turn the APC-7 connector of the impedance test kit OUTPUT port.
2. Verify that the connector sleeve is retracted fully.
3. Set the mounting posts of the test station into the twin locating holes at the corner of the
test xture.
4. Connect the connector on the underside of the test xture to the OUTPUT port of the
impedance test kit.

2-16 Installation Guide

Connecting an Active Probe

Figure 2-10. Connecting Test Fixture

Installation Guide 2-17

Connecting a Keyboard

Connecting a Keyboard
An mini-DIN keyboard can be connected to the mini-DIN connector on the rear panel of the
HP 4395A. The mini-DIN keyboard provides an easier way to enter characters for the le
names, display titles, and Instrument BASIC programs. It can also access the HP 4395A softkey
functions by using keyboard function keys. For more information on the mini-DIN keyboard,
see Programming Manual.

Figure 2-11. Connecting a Keyboard

2-18 Installation Guide

Setting Up a 75 Measurement For Spectrum Analyzer Mode

Setting Up a 75
Note

Measurement For Spectrum Analyzer Mode

This operation requires the option 1D7 50 to 75 Input Impedance
Conversion. For detail information about option 1D7, see Chapter 12.

1. Attach the HP 11852B Option 004 50 N(m)/75
2. Press 4Cal5.
3. Press INPUT Z .

N(f) minimum loss pad to R, A, or B input.

NNNNNNNNNNNNNNNNNNNNNNN

4. Press 4*5 to set the impedance of the source (75 ). Then press 4Entry O 5.
5. Select the input port:

Attached to

Press

Input R
Input A
Input B

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

LVL CAL DATA R
LVL CAL DATA A
LVL CAL DATA B

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Enter the insertion loss of the minimum loss pad in dB and press 4215.

Note

Perform this procedure each time the HP 4395A is preset because the
HP 4395A does not retain this setting in memory.

Installation Guide 2-19

3
Quick Start Guide
Network Analyzer Tour
In this section, you explore the network analyzer mode of operation. Before starting this tour,
verify that the HP 4395A is correctly installed (see chapter 2, \Installation Guide," if you need
additional information).

Before You Leave On The Tour
On this tour, you will learn how to make a basic network analyzer measurement by measuring
the transmission characteristics of a bandpass lter.

Overview
The following is a short summary of the tour:
1. Preparing for a measurement
Turning ON the HP 4395A
Connecting the DUT
2. Setting up the HP 4395A
Selecting the analyzer type
Setting the active channel
Setting the input port
Setting the frequency range
Performing the automatic scaling
3. Making a calibration
4. Reading a measurement result
Reading a measured value by using marker
5. Printing out the measurement result
Con guring and connecting a printer
Making a hardcopy of the display
After you nish this tour, you will understand how to make a basic measurement in the
network analyzer mode of operation.

Quick Start Guide 3-1

Before You Leave On The Tour

Required Equipment
To perform all the steps in this tour, you must have the following equipment:
HP 4395A Network/Spectrum/Impedance Analyzer
Measurement Device:
This tour assumes the device under test (DUT) is a 70 MHz bandpass lter
THRU (BNC female-to-female connector)
Two BNC cables
Test Set (use either of the following)
Transmission/Re ection (T/R) Test Set
Two N-to-BNC adapters
S-Parameter Test Set
Two APC7-to-N adapters
Two N-to-BNC adapters
HP DeskJet Printer *
Parallel Interface Cable *
* If you wish to test some other device, you will need to change particular measuring
conditions, such as the frequency range, according to the general characteristics of the DUT.
* If you do not have an HP DeskJet printer and cable, skip step 5, \Printing Out the
Measurement Results".

Figure 3-1. Required Equipment

3-2 Quick Start Guide

Step 1: Preparing for the Measurement

Step 1: Preparing for the Measurement
You must set up the test set before you turn ON the HP 4395A. The setup procedure for the
test set is described in \Connecting a Test Set for Network Analyzer Mode" in Chapter 2.

Turning ON the HP 4395A

Press the LINE switch.

The HP 4395A performs a power on self-test. About 20 seconds later, the model name, revision
number, and other information should appear on the LCD to indicate that the HP 4395A has
normally started up.

Connecting the DUT
Connect the DUT as shown in Figure 3-2 or Figure 3-3.

Figure 3-2. Transmission/Re ection Test Set Setup

Quick Start Guide 3-3

Step 1: Preparing for the Measurement

Figure 3-3. S-Parameter Test Set Setup

3-4 Quick Start Guide

Step 2: Setting up the HP 4395A

Step 2: Setting up the HP 4395A
Before you start the measurement, you must set up the HP 4395A to t your measurement
requirements. For example, you must set the frequency range of the measurement. In this
step, you will set the following parameters:
Analyzer type
Network analyzer mode
Active channel
Channel 1
Inputs
B/R or S21 (depending on the test set)
Format
Log magnitude (default)
Frequency Range Center 70 MHz, Span 500 kHz

Setting the Analyzer Type
To use the HP 4395A in the network analyzer mode, you must set the analyzer type to the
network analyzer mode after selecting the active channel.

In the MEASUREMENT block, press 4Meas5.

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press ANALYZER TYPE .

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press NETWORK ANALYZER .

Quick Start Guide 3-5

Step 2: Setting up the HP 4395A

Setting the Active Channel
Because the HP 4395A has two measurement channels you can have two di erent
measurement setups at the same time. To change the active channel to channel 1:

In the ACTIVE CHANNEL block, press
4Chan 1 5.

Note

Verify the Chan 1 active channel indicator
lights.

Changing the analyzer type presets the HP 4395A for the active channel.
If you want to keep the current measurement settings when changing the
analyzer type, rst set the other channel to active.

Selecting the Input
The HP 4395A uses three inputs for network measurements (R, A, and B). Usually, the R input
is connected to the RF OUT signal directly, the A input measures the re ected signal from the
DUT, and the B input measures the signal through the DUT.
This example assumes you are using the T/R test set. Therefore, because you are going to
measure the transmission characteristics of the DUT, select B/R to measure the ratio of B and R
inputs.
When you use the S-parameter test set, you can measure the forward and reverse
characteristics of a 2-port device without reconnecting the inputs. In that case, select S21 for a
transmission measurement in the forward direction.

3-6 Quick Start Guide

Step 2: Setting up the HP 4395A

In the MEASUREMENT block, press 4Meas5.

FFFFFFFFF

Press B/R .

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press Trans:FWD S21 [B/R] to select B/R
for the forward direction.

Setting the Frequency Range
To display the transmission characteristics of the 70 MHz bandpass lter, you should specify the
frequency range for the measurement. In this example, set the HP 4395A to a 70 MHz center
frequency with a 500 kHz span.

Quick Start Guide 3-7

Step 2: Setting up the HP 4395A

In the SWEEP block, press 4Center5.

Press 475 405.

Press 4M/5.

In the SWEEP block, press 4Span5.

Press 455 405 405.

Press 4k/m5.

Performing the Automatic Scaling
Often, the trace obtained after specifying the frequency range is too large or too small
vertically for the grid. However, by using the automatic scaling function, you can obtain the
optimum vertical setting automatically.

3-8 Quick Start Guide

Step 2: Setting up the HP 4395A

In the MEASUREMENT block, Press
4Scale Ref5.

FFFFFFFFFFFFFFFFFFFFFFFFFF

Press AUTO SCALE .

The transmission characteristics trace of the lter is displayed as shown below:

All the settings are displayed on the LCD.
1. Active channel is set to channel 1.
2. Inputs are set to B/R.
3. Format is set to log magnitude mode.
4. Center frequency is set to 70 MHz.
5. Frequency span is set to 500 kHz.

Quick Start Guide 3-9

Step 3: Making a Calibration

Step 3: Making a Calibration
To ensure accurate measurement results, calibrate the HP 4395A before making a
measurement. Calibration reduces error factor due to uncertainty. In this example, you
perform the response calibration to cancel a frequency response error. A THRU (BNC
female-to-female connector) is necessary to perform a response calibration for the transmission
measurement.

Performing a Response Calibration (for the Transmission Measurement)

Press 4Cal5.

FFFFFFFFFFFFFFFFFFFFF

Press RESPONSE .

FFFFFFFFFFFF

Press THRU .

3-10 Quick Start Guide

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press CALIBRATE MENU .

Disconnect the DUT then, connect the THRU.

WAIT - MEASURING CAL STANDARD is
displayed.

Step 3: Making a Calibration

FFFFFFFFFFFF

The THRU softkey label is underlined when
the measurement is completed.

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press DONE: RESPONSE .

Disconnect the THRU and reconnect the DUT.

\Cor" is displayed on the left side of the display to show that the frequency response error is
corrected.
The measured value is now corrected for the frequency response error.

Note

If the trace is changed, it requires an adjustment of the scale. Perform the
automatic scaling again by pressing 4Scale Ref5 AUTO SCALE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Quick Start Guide 3-11

Step 4: Reading a Measurement Result

Step 4: Reading a Measurement Result
You may want to readout the measured values on the displayed trace. You can use the marker
function for this purpose. The marker shows the frequency and response value at the marker
point.

Reading a Measured Value by Using Marker

In the MARKER block, press 4Marker5.

Verify a marker appears on the trace.

Turn the knob to the right to move the
marker toward the right.

Read the values at the right top of the display.

The marker has a search function that makes it easier and faster to evaluate the trace results.
For example, to search for the maximum value and its frequency on the trace:

In the MARKER block, press 4Search5.

3-12 Quick Start Guide

FFFFFFFFF

Press MAX .

Step 4: Reading a Measurement Result

The marker immediately moves to the
maximum point on the displayed trace.

Read the frequency and response values
displayed at the upper right of the display.

Quick Start Guide 3-13

Step 5: Printing Out the Measurement Result

Step 5: Printing Out the Measurement Result
You may want a hardcopy of the measured results for a permanent record of the measurement.
The HP 4395A can print out the data as a snapshot of the display or as a list of values without
using any external controller.

Con guring and Connecting a Printer

Locate the parallel interface connector on the back of the HP 4395A.

Caution

Do not connect a printer to \TEST SET - I/O INTERCONNECT". Doing so could
damage the printer.

Note

For more information about printer, see the chapter 12.

Making a Hardcopy of the LCD Display

Press 4Copy5.

3-14 Quick Start Guide

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press PRINT [STANDARD] to execute the
printing.

Spectrum Analyzer Tour

Spectrum Analyzer Tour
In this section, you explore the spectrum analyzer mode of operation. Before starting this tour,
verify the HP 4395A is correctly installed (see chapter 2, \Installation Guide," if you need
additional information).

Before You Leave On The Tour
On this tour, you will learn how to make a basic spectrum analyzer measurement by measuring
the output signal of a signal generator.

Overview
The following is a short summary of the tour:
1. Preparing for a measurement
Turning ON the HP 4395A
Connecting the test signal source
2. Setting up the HP 4395A
Selecting the analyzer type
Setting the active channel
Selecting the input
Setting the frequency range
3. Making a Measurement
Reading the peak level using the marker
Setting the resolution bandwidth to see low level signals
Searching for harmonics using the search function
4. Saving and recalling the HP 4395A settings
Preparing the disk
Saving HP 4395A settings
Entering the le name
Recalling the HP 4395A settings
After you nish this tour, you will understand how to make a basic measurement in the
spectrum analyzer mode of operation.

Quick Start Guide 3-15

Spectrum Analyzer Tour

Required Equipment
To perform all the steps in this tour, you must have the following equipment:
HP 4395A Network/Spectrum/Impedance Analyzer
Test signal source (020dBm, 20MHz, sine wave)**
N to BNC Adapter (50 )
BNC cable
3.5 inch 2HD Blank Disk*
* Furnished with the HP 4395A.
** If you wish to test some other test signal, you will need to change particular measuring
conditions, such as the frequency range, according to the general characteristics of the signal.

Figure 3-4. Required Equipment

3-16 Quick Start Guide

Step 1: Preparing for a Measurement

Step 1: Preparing for a Measurement
Turning ON the HP 4395A
Verify the power line setting is correct before you turning ON the HP 4395A. If necessary, see
chapter 2, \Installation Guide."

Press the LINE switch

The HP 4395A performs a power on self-test. About 20 seconds later, the model name, revision
number, and other information should appear on the LCD to indicate that the HP 4395A has
normally started up.

Connecting the DUT

Connect the test signal source (020 dBm, 20 MHz) to Input R of the HP 4395A.

Quick Start Guide 3-17

Step 2: Setting Up the HP 4395A

Step 2: Setting Up the HP 4395A
In this step, you will set the following parameters:
Active channel
Channel 2
Analyzer type
Spectrum analyzer mode
Input
R input
Frequency Range 0 Hz to 80 MHz

Setting the Analyzer Type
To use the spectrum analyzer mode, you must set the analyzer type to the spectrum analyzer
mode after selecting an active channel.

In the MEASUREMENT block, press 4Meas5.

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press ANALYZER TYPE .

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press SPECTRUM ANALYZER .

Note

Changing the analyzer type presets the HP 4395A for the active channel.
If you want to keep the current measurement settings when changing the
analyzer type, rst set the other channel to active.

3-18 Quick Start Guide

Step 2: Setting Up the HP 4395A

Setting the Active Channel
The HP 4395A has two measurement channels. This allows you to have two di erent
measurement setups. Other selections you make on the front panel a ect only the active
channel. To set the active channel to channel 2:

In the ACTIVE CHANNEL block, press
4Chan 25.

Note

Verify the Chan 2 active channel indicator
lights.

All selected settings are stored separately for each channel. You must select an
active channel (1 or 2) before you can change the measurement setup for that
channel.

Selecting the Input
The HP 4395A has three inputs; R, A, and B. Any of the inputs (R, A, or B) can be used for a
spectrum measurement.
In the spectrum analyzer mode, the R input is selected by default. In the following steps, you
verify the R input is selected.

In the MEASUREMENT block, press 4Meas5.

FFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Verify the R in SPECTRUM: R is underlined.
(This shows that the R input is selected for a
spectrum analyzer measurement.)

Quick Start Guide 3-19

Step 2: Setting Up the HP 4395A

Setting the Frequency Range
The CAL OUT signal (20 MHz at 020 dBm) is connected as test signal source.

To see this signal
on display, you must set the appropriate frequency range (in this case, 0 to 80 MHz):

In the SWEEP block, press 4Start5.

Press 405.

Press 4215.

Press 4Stop5.

Press 485 405.

Press 4M/5.

Verify the 20 MHz signal is displayed as shown below:

3-20 Quick Start Guide

Step 2: Setting Up the HP 4395A

Quick Start Guide 3-21

Step 3: Making a Measurement

Step 3: Making a Measurement
Reading the Peak Level Using the Marker
Let's try to read peak signal level by using the marker:

Press 4Search5.

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press SEARCH:PEAK .

Read the marker value shown at the upper
right of grid.

3-22 Quick Start Guide

Marker appears on trace.

Marker moves to the top of the CAL OUT
signal.

Step 3: Making a Measurement

Setting the Resolution Bandwidth to See Low Level Signals
To see lower level signals that are approximately the same level as the noise oor, use a narrow
resolution bandwidth (rbw) setting.
Before you set the RBW, set the maximum peak level as the reference level. This increases the
visibility of the lower level signal. This technique is useful when you are measuring two signals
and one is very close to the noise level.

Press 4Marker!5.

Press MKR!REFERENCE .
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

The trace moves upward to place the tip of the maximum peak at the top line of the grid.

Quick Start Guide 3-23

Step 3: Making a Measurement

Press 4Bw/Avg5.

Press 4+5 to narrow RBW setting to 3 kHz.

Now, with the noise oor level lowered by narrowing the resolution bandwidth, the second and
third harmonics can be seen as shown below:

3-24 Quick Start Guide

Step 3: Making a Measurement

Searching for Harmonics Using the Search Function
You can easily readout a harmonics' frequency and level by using the peak search function:

Press 4Search5.

FFFFFFFFFFFFFFFFFFFFFFFF

Press NEXT PEAK .

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press SEARCH:PEAK .

The marker moves to the third (or second)
harmonic.

To move the marker
to the second (or third)
FFFFFFFFFFFFFFFFFFFFFFFF
harmonic, press NEXT PEAK again.

Quick Start Guide 3-25

Step 4: Saving and Recalling HP 4395A Settings

Step 4: Saving and Recalling HP 4395A Settings
You can store the settings or measurement data on a 3.5 inch disk using the HP 4395A's disk
drive. In this tour, you save and recall the settings that you selected previously in this tour.

Preparing the Disk
To use a disk, you must rst initialize it by performing the following steps:

Verify the disk is not write protected.

Insert the disk into the disk drive

Press 4Save5.

Press FILE UTILITIES .

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFF

Toggle STOR DEV [MEMORY] to [DISK] , and Toggle FORMAT [DOS] to [LIF] .
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
press INITIALIZE DISK

3-26 Quick Start Guide

Step 4: Saving and Recalling HP 4395A Settings

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Press INIT DISK: YES .

The message, \INITIALIZE DISK In Progress,"
is displayed. After the disk is initialized, this
message is turned o .

Note

The HP 4395A can use either a LIF (Logical Interchange Format) or a MS-DOS
(Disk Operating System) format disk.

Note

The HP 4395A can initialize a 1.44 MB 3.5 inch exible disk only.

Saving HP 4395A Settings
In the following example, use \SATOUR" as the le name of the HP 4395A settings you want to
save.

Press 4Save5.

FFFFFFFFFFFFFF

Press STATE .

The HP 4395A requests the le name you want to use for the saved settings.

Entering the File Name

Note

If a keyboard is connected, you can use it for le name entry. If not, use the
front-panel controls as described in the following steps.

Quick Start Guide 3-27

Step 4: Saving and Recalling HP 4395A Settings

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Turn the rotary knob to move the arrow
below the rst character, S.

Press SELECT LETTER .

Keep entering characters until SATOUR is
entered.

If
you enter a wrong character, press
FFFFFFFFFFFFFFFFFFFFFFFFFF
BACK SPACE to erase the character.

FFFFFFFFFFFF

To complete the le name entry, press DONE . Verify the disk access indicator lights (this
shows that the HP 4395A is saving the
settings to the disk).

Note

The le name for a LIF format can be up to 10 characters long. However, with
the HP 4395A, the last 2 characters are reserved for a sux. Therefore, you
can enter a le name of up to 8 characters. Either upper or lower case is
recognized in the LIF format.
A le name for a MS-DOS(DOS) format consists of a le name and an extension.
The le name can be up to 8 characters long and the extension contains up to 3
characters. A period separates the extension from the le name. The extension

3-28 Quick Start Guide

Step 4: Saving and Recalling HP 4395A Settings
part reserved by the HP 4395A. Therefore, you can enter a le name of up to 8
characters. The le name is not case sensitive in the DOS format.

Recalling the HP 4395A Settings
You can recall the le containing the saved HP 4395A settings anytime you want. This is
true, even if you change the current HP 4395A settings. In this example, you will preset the
HP 4395A and then recall the settings in the SATOUR le.

Presetting

Press 4Preset5.

The HP 4395A is set to the preset conditions. However, the HP 4395A settings from the
previous examples are stored in the SATOUR le on the disk.

Quick Start Guide 3-29

Step 4: Saving and Recalling HP 4395A Settings

Recalling the SATOUR le.

Press 4Recall5.

The disk access lamp lights.

The stored FFFFFFFFFFFFFFFFFFFFF
le is listed in the softkey label
area. Press SATOUR_S to recall the HP 4395A
settings that you saved.

Note

Sux, \_S," means the HP 4395A settings are saved. If you save the HP 4395A
settings in a DOS format, an extension, \.sta," is appended to the le name.

After the disk access lamp goes out, all HP 4395A settings that you set are recalled. You can
verify them on the display. If you want to know what settings are saved, see chapter 8.

3-30 Quick Start Guide

Impedance Analyzer Tour

Impedance Analyzer Tour
In this section, you explore the impedance analyzer mode of operation. Before starting this
tour, make sure that your HP 4395A is correctly installed (see chapter 1, \Installation and
Setup Guide," if you need additional information).

Note

Your HP 4395A must be equipped with option 010 to serve as an impedance
analyzer. Otherwise, impedance analyzer mode is not available.

Before You Leave On The Tour
Through this tour, you will learn how to make a basic impedance analyzer measurement by
measuring the impedance characteristics of a chip capacitor.

Overview
The following is a short summary of the tour:
1. Preparing for a measurement
Connecting the impedance test kit
Turning ON the HP 4395A
2. Setting up the HP 4395A
Selecting the analyzer type
Activating Channel 1
Setting the sweep parameters
Setting the output level
Setting the IF bandwidth
3. Calibrating the HP 4395A
OPEN calibration
SHORT calibration
LOAD calibration
4. Connecting and setting up a test xture
Connecting the xture
Setting the electrical length
Fixture compensation
5. Carrying out impedance measurement
Selecting the measurement parameters for Channel 1
Connecting the DUT
Performing the Automatic Scaling
6. Switching from Channel 1 to Channel 2
7. Selecting the measurement parameters for Channel 2
8. Dual channel display
Quick Start Guide 3-31

Impedance Analyzer Tour
After you nish this tour, you will understand how to make a basic measurement in impedance
analyzer mode. If you want to learn how to perform more complex tasks, refer to Chapters 5
through 9.

Required Equipment
To perform all the steps in this tour, you must have the following equipment:

Figure 3-5. Required Equipment
1. HP 4395A Network/Spectrum/Impedance Analyzer with Option 010 equipped
2. HP 43961A Impedance Test Kit
3. Calibration kit (included in the HP 43961A)
4. Test xture of your choice
5. Short device for the test xture
6. DUT (chip capacitor)*
If you wish to test some other device instead of a chip capacitor, you will need to change
particular measuring conditions, such as the frequency range, according to the general
characteristics of the DUT.

3-32 Quick Start Guide

Impedance Analyzer Tour

Step 1: Preparing for the Measurement
Connecting the Impedance Test Kit
The HP 4395A requires the HP 43961A Impedance Test Kit to apply signals to, and measure the
impedance characteristics of, a DUT (see Figure 3-6). To connect the HP 43961A Impedance
Test Kit, follow these steps:

Figure 3-6. Connecting the Impedance Test Kit
1.
2.
3.
4.

Make sure that the power to the HP 4395A is OFF.
Connect the N-N cable to the HP 4395A's RF OUT port.
Make sure that the 43961A's APC7 connector sleeve is completely exposed.
Connect the two connectors of the HP 43961A to the R and A ports of the HP 4395A, by
tightening the two connectors little by little alternately while holding the test kit.
5. Connect the other end of the N-N cable to the RF IN port of the HP 43961A.

Turning ON the HP 4395A
Before turning ON the power, make sure that the supply voltage selector is in the appropriate
position and that the HP 4395A is properly grounded. For power supply requirements, refer to
Chapter 2 in this manual.

Quick Start Guide 3-33

Impedance Analyzer Tour

Press the power switch.
The HP 4395A performs a power on self-test. About 20 seconds later, the model name, revision
number, and other information should appear on the LCD to indicate that the HP 4395A has
normally started up.

Setting Up the HP 4395A
Setting the Analyzer Type

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Available analyzer modes are listed in the menu under the ANALYZER TYPE softkey. You can
use the HP 4395A as an impedance analyzer by selecting the corresponding analyzer mode from
that menu. Follow these steps:

Press the 4Meas5 key in the
MEASRUREMENT block.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose IMPEDANCE ANALYZER .

3-34 Quick Start Guide

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose ANALYZER TYPE .

Impedance Analyzer Tour

Activating Channel 1
The HP 4395A has two channels, each of which can retain di erent measuring conditions.
To demonstrate how e ectively you can use these two channels to perform impedance
measurement, this tour uses the following scenario:
1. Activate Channel 1, and set the parameters that apply to Channel 1
2. Switch to Channel 2, and set the parameters that apply to Channel 2 (see \Step 6: Switching
from Channel 1 to Channel 2")
3. Display both channels in parallel (see \Step 8: Dual Channel Display")
First, activate Channel 1 through these steps:

Press the 4Chan 15 key in the
ACTIVE CHANNEL block.

Make sure that the indicator lamp
beside the 4Chan 15 key is ON.

Quick Start Guide 3-35

Impedance Analyzer Tour

Setting the Sweep Parameters
This tour assumes that the frequency is being swept from 100 kHz to 500 MHz.
Follow these steps:

Press the 4Sweep5 key.

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose SWEEP TYPE MENU to
access the sweep type menu.

Choose LOG FREQ to have the
HP 4395A accept log frequency
settings.

Press the 4Start5 key.

To specify the frequency at which
to start the sweep, enter 415 405 405
using the numeric keys.

Press the 4k/m5 key to indicate that
the unit is kHz.

3-36 Quick Start Guide

Impedance Analyzer Tour

Press the 4STOP5 key.

To specify the frequency at which
to stop the sweep, enter 455 405 405
using the numeric keys.

Press the 4M/5 key to indicate
that the unit is MHz.

Setting the Output Level
This tour assumes an output level of +0.5 dBm.
Follow these steps:

Quick Start Guide 3-37

Impedance Analyzer Tour

NNNNNNNNNNNNNNNNN

Press the 4Source5 key.

Choose POWER .

Enter 405 4.5 455 using the numeric
keys.

Press the 4x15 key.

Setting the IF Bandwidth
This tour assumes an IF bandwidth of 300 Hz.
Follow these steps:

3-38 Quick Start Guide

Impedance Analyzer Tour

Note

NNNNNNNNNNNNNNNNN

Press the 4Bw/Avg5 key.

Choose IF BW .

Enter 435 405 405 using the numeric
key.

Press the 4215 key.

A smaller IF bandwidth reduces trace noise, but increases measuring time.

Setting the Averaging Factor
This tour assumes the averaging factor of 8.
Follow these steps:

Quick Start Guide 3-39

Impedance Analyzer Tour

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press the 4Bw/Avg5 key.

Choose AVERAGING FACTOR .

Enter 485 using the numeric key.

Press the 4215 key.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Toggle AVERAGING on OFF to
ON off .
NNNNNNNNNNNNNNNNNNNN

Note

When you perform impedance measurement with the HP 43961A, you must
set IF bandwidth equal to or less than 300 Hz and averaging factor equal to or
greater than 8.

3-40 Quick Start Guide

Impedance Analyzer Tour

Step 3: Making a Calibration
Calibrating the HP 4395A in impedance analyzer mode requires that the HP 4395A be
connected with the HP 43961A impedance test kit. A proper calibration is required for the
HP 4395A to perform measurements within the guaranteed accuracy range.
For impedance analyzer mode, the HP 4395A must be calibrated for each of the following three
circuit states:
OPEN (0 S termination)
SHORT (0 termination)
LOAD (50 termination)
To calibrate the HP 4395A, access the calibration menu through these steps:

Press the 4Cal5 key.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose CALIBRATE MENU .

With the calibration menu displayed on the LCD screen, calibrate the HP 4395A for the OPEN,
SHORT, and LOAD states in order.

Note

Be sure to use the calibration kit included in the HP 43961A package.

OPEN Calibration
Follow these steps:

Quick Start Guide 3-41

Impedance Analyzer Tour

Connect the 0 S termination to the
43961A's OUTPUT port.

Remove the 0 S termination.

SHORT Calibration
Follow these steps:

3-42 Quick Start Guide

NNNNNNNNNNNNNN

Choose OPEN .
Wait until the OPEN softkey's
label is underlined to indicate that
the OPEN calibration is complete.
NNNNNNNNNNNNNN

Impedance Analyzer Tour

Connect the 0 termination to the
43961A's OUTPUT port.

Remove the 0

NNNNNNNNNNNNNNNNN

Press SHORT .
Wait until the SHORT softkey's
label is underlined to indicate that
the SHORT calibration is complete.
NNNNNNNNNNNNNNNNN

termination.

LOAD Calibration
Follow these steps:

Quick Start Guide 3-43

Impedance Analyzer Tour

Connect the 50 termination to
the 43961A's OUTPUT port.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose DONE: CAL .

Remove the 50 termination.

3-44 Quick Start Guide

NNNNNNNNNNNNNN

Press LOAD .
Wait until the LOAD softkey's
label is underlined to indicate that
the LOAD calibration is complete.
NNNNNNNNNNNNNN

Make sure that a \Cor" marker is
displayed at the left-hand edge of
the screen.

Impedance Analyzer Tour

Step 4: Connecting and Setting Up a Test Fixture
Connecting the xture
This tour does not assume any speci c test xture. You can use a test xture of your choice.
For how to connect your test xture to the impedance test kit, refer to the documentation that
comes with the test xture. A typical test xture can be installed in such a procedure as shown
below:
1. Turn the OUTPUT port APC-7 connector of the impedance test kit.
2. Make sure that the connecting sleeve is completely retracted.
3. Set the test station's mount post to the pair of holes located at one corner of the test xture.
4. Turn the xing ring counterclockwise until it is fully tightened.
5. Connect the impedance test kit's OUTPUT port to the connector located on the back side of
the test xture.

Figure 3-7. Connecting the test xture

Setting the Electrical Length
Connecting a test xture adds an extra electrical length to the test circuit. This electrical
length, which is speci c to the test xture you use, must be known to the HP 4395A so that it
can compensate for the extra electrical length and eliminate errors due to phase shifts.
The HP 4395A incorporates a database of HP test xtures with their own electrical lengths.
For example, if the model number of your test xture is 16192, you would set the electrical
length as follows:

Quick Start Guide 3-45

Impedance Analyzer Tour

Press the 4Meas5 key.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose SELECT FIXTURE .

NNNNNNNNNNNNNNNNNNNN

Press RETURN twice.

3-46 Quick Start Guide

NNNNNNNNNNNNNNNNNNNNNNN

Choose FIXTURE .

NNNNNNNNNNNNNNNNN

Select 16192 .

Make sure that the FIXTURE label
on the screen is followed by your
selected model number (16192, in
this case).

Impedance Analyzer Tour

Fixture Compensation
Fixture compensation is a process that calibrates the HP 4395A with a test xture installed,
thereby eliminating errors produced between the test xture electrode and the impedance test
kit's OUTPUT port. Normally, the HP 4395A must be xture-compensated for the OPEN and
SHORT circuit states. It can optionally be xture-compensated for the LOAD state.

Note

For how to connect standards, refer to the documentation that comes with the
test xture you use.

Quick Start Guide 3-47

Impedance Analyzer Tour

Connect the appropriate short
device to the xture.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose COMPEN MENU .

NNNNNNNNNNNNNNNNN

Remove the short device to put
the circuit into the OPEN state.

Choose FIXTURE COMPEN .

Choose SHORT .
Wait until the SHORT softkey's
label is underlined to indicate that
the SHORT compensation is
complete.
NNNNNNNNNNNNNNNNN

3-48 Quick Start Guide

Press the 4Cal5 key.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Impedance Analyzer Tour

NNNNNNNNNNNNNN

Choose OPEN .
Wait until the OPEN softkey's label
is underlined to indicate that the
OPEN compensation is complete.
NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose DONE: COMPEN .

Make sure that a \Cmp" marker is
displayed in place of the \Cor"
marker.

Step 5: Carrying Out Impedance Measurement
Selecting the Measurement Parameters for Channel 1
To begin impedance measurement, the HP 4395A must know which characteristics it should
measure and how it should report the measured values. This tour assumes that the following
measurement parameters are speci ed for Channel 1.
Characteristic Absolute value of impedance (jZj)
value
Format
Log
To set the parameters listed above, follow these steps:

Quick Start Guide 3-49

Impedance Analyzer Tour

Press the 4Meas5 key.

Choose IMPEDACE: MAG (jZj) .

Press the 4Format5 key.

Choose LOG Y-AXIS .

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

These settings are applied to Channel 1, which has been the active channel in the scenario of
this tour. Note that, in Steps 6 and 7, you will switch from Channel 1 to Channel 2, and assign
di erent settings to Channel 2.

Connecting the DUT
How to connect a DUT di ers depending on which test xture you use. For more information,
refer to the documentation that comes with your test xture.
As soon as you have connected the DUT, the HP 4395A will measure and display the
impedance characteristics.

Performing the Automatic Scaling
Often, the trace obtained after specifying the frequency range is too large or too small
vertically for the grid. However, by using the automatic scaling function, you can obtain the
optimum vertical setting automatically.
Follow these steps:

3-50 Quick Start Guide

Impedance Analyzer Tour

Press the 4Scale Ref5 key.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose AUTO SCALE .

Quick Start Guide 3-51

Impedance Analyzer Tour

Step 6: Switching from Channel 1 to Channel 2
All the settings you have made so far are assigned to Channel 1. Now, activate Channel 2
instead of Channel 1.

Press the 4Chan 25 key in the
ACTIVE CHANNEL block.

3-52 Quick Start Guide

Make sure that the indicator lamp
beside the 4Chan 25 key is ON.

Impedance Analyzer Tour

Setting the Averaging Factor for Channel 2
This tour assumes the averaging factor of 8.
Follow these steps:

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press the 4Bw/Avg5 key.

Choose AVERAGING FACTOR .

Enter 485 using the numeric key.

Press the 4215 key.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Toggle AVERAGING on OFF to
ON off .
NNNNNNNNNNNNNNNNNNNN

Quick Start Guide 3-53

Impedance Analyzer Tour

Step 7: Selecting the measurement parameters for Channel 2
This tour assumes that the following measurement parameters be speci ed for Channel 2.
Characteristic Phase (z )
value
Format
Linear
To set the parameters listed above, follow these steps:

NNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press the 4Meas5 key.

Choose PHASE: z .

Press the 4Format5 key.

Choose LIN Y-AXIS .

3-54 Quick Start Guide

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Impedance Analyzer Tour

Now both Channels 1 and 2 are assigned speci c settings. You can not only have one of the
two channels displayed at a time, but also have both channels displayed in parallel, as you will
learn in the next step.

Quick Start Guide 3-55

Impedance Analyzer Tour

Step 8: Dual Channel Display
The HP 4395A provides a feature that displays the measurement results for both channels at
the same time. This feature is called \dual channel display."
Follow these steps:

Press the 4Display5 key.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose DUAL CHAN on OFF so
that the label changes to
DUAL CHAN ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The screen is split into upper and lower halves. The upper half shows the absolute impedance
value while the lower half shows the phase.

3-56 Quick Start Guide

Impedance Analyzer Tour

NNNNNNNNNNNNNN

Choose MORE .

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose SPLIT DISP ON off so
that the label changes to
SPLIT DISP on OFF .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Two graphs are merged into a single coordinate plane.

Quick Start Guide 3-57

4
Front and Rear Panels
Features of HP 4395A
This chapter describes the features of the front and rear panels of HP 4395A. It provides
illustrations and descriptions of the front panel features, the LCD display and its labels, and the
rear panel features and connectors.

Front Panel
The front panel provides a number of hardkeys (physical keys) and softkeys (menu items
displayed on the LCD), which allow you to activate various analyzer functions (Figure 4-1).

Figure 4-1. Front Panel Layout

Front and Rear Panels 4-1

Front Panel

1. Hardkeys
The hardkeys (physical keys) located on the front panel are divided into 6 blocks|- labeled
\ACTIVE CHANNEL", \MEASUREMENT", \SWEEP", \MARKER", \INSTRUMENT STATE", and
\ENTRY", respectively. Some of the front panel hardkeys control instrument functions directly
while others provide access to softkey menus.

ACTIVE CHANNEL Block
The ACTIVE CHANNEL block contains two hardkeys: 4Chan 15 and 4Chan 25. By pressing either of
these two keys, you can make the channel 1 or 2 active.
All measuring conditions you specify through the front panel, such as sweep settings, are
assigned to the currently active channel. Once you have assigned your desired settings to each
channel, you can instantly switch between the two di erent sets of measuring conditions by
simply pressing the 4Chan 15 or 4Chan 25 key.

MEASUREMENT Block
The MEASUREMENT block contains hardkeys associated with measuring parameters, display
formats, and calibration.

SWEEP Key Block
The SWEEP block contains hardkeys associated with sweep settings.

MARKER Block
The MARKER block contains hardkeys associated with the marker function that facilitates
reading values on the measurement trace.

INSTRUMENT STATE Block
The INSTRUMENT block contains hardkeys that a ect the instrument state of HP 4395A.

ENTRY keys
The ENTRY block contains the following:
numeric keys
a rotary knob
step keys for incrementing or decrementing your entered values
edit keys
unit terminator keys
You can use the rotary knob to change the value of the currently active parameter.

2. Softkeys
Softkey menus are lists of up to eight related functions that can be displayed in the softkey
label area at the right-hand side of the display. The eight keys to the right of the LCD are the
softkeys. Pressing one of the softkeys selects the adjacent menu function. This either executes
the labeled function and makes it the active function, causes instrument status information to
be displayed, or presents another softkey menu.
Some of the softkey menus are accessed directly from front panel keys and some from
other menus. For example, the sweep menu accessed by pressing the 4Sweep5 key presents
all the sweep functions such as sweep type, number of points, and sweep time. Pressing
4-2 Front and Rear Panels

Front Panel
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NUMBER of POINTS allows the required number of points displayed per sweep to be entered
directly from the number pad. RETURN softkeys return to previous menus. DONE indicates
completion of a speci c procedure and then returns to an earlier menu.
NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

Softkeys that are Joined by Vertical Lines
When several possible choices are available for a function, the softkeys are joined by vertical
lines. For example, in the spectrum input port menu under the 4Meas5 key, the available inputs
are listed: R , A , B with a vertical line between them. Note that only one softkey can be
selected at a time. When a selection has been made from the listed alternatives, that selection
is underlined until another selection is made.
NNNNN

NNNNN

NNNNN

Softkeys That Toggle Between On and O States

Some softkey functions can be toggled on or off, for example averaging. This is indicated in
the softkey label. The current state, on or off, is capitalized in the softkey label.
Example:
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

AVERAGING ON off

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

AVERAGING on OFF

The word on is capitalized, showing that averaging is currently on.
The word o is capitalized, showing that averaging is currently o .

Softkeys that Show Status Indications in Brackets
Some softkey labels show the current status of a function in brackets. These include
simple toggle functions and status-only indicators. An example of a toggled function is the
PRINT [STANDARD] or PRINT [COLOR] softkey. The DATA MATH[ ] softkey is an example
of a status-only indicator, where the selected equation of the data math function is shown in
brackets in the softkey label.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. HP-IB \REMOTE" Indicator
The \REMOTE" Indicator turns on when the analyzer is in the remote state.

4.

4Preset5

Key

This key returns the instrument to a known standard preset state from any step of any manual
procedure. A complete listing of the instrument preset conditions is provided in Appendix C.

5. PROBE POWER Connector
This connector (fused inside the instrument) supplies power to an active probe for in-circuit
measurements of AC circuits. Applicable active probes are described in Chapter 12.

Front and Rear Panels 4-3

Front Panel

6. Analyzer Input Terminals R, A, and B
These are input terminals through which the HP 4395A receives signals output from the RF
OUT terminal and then fed through the test circuit. How to use these input terminals di ers
depending on which analyzer mode you use:
In network analyzer mode, use the A and B terminals to receive signals output from the RF
OUT terminal and then fed through the device under test (DUT), and use the R terminal to
directly feed back the signal output from the RF OUT terminal to provide the reference input
signal. You may want to use a power splitter to split the RF OUT signal among the input
terminals.
In spectrum analyzer mode, you can use any of these three terminals to monitor the spectrum
of the input signals.
In impedance analyzer mode, which is available with option 010, use the R and A terminals to
monitor the voltage and current across the DUT being fed with the signals output from the RF
OUT terminal.
These terminals comply with INSTALLATION CATEGORY I of IEC 1010-1.

Note

Do not exceed the operating input power, voltage, and current level
and signal type appropriate for the instrument being used, refer to your
instrument's operation manual.

Note

Electrostatic discharge(ESD) can damage the highly sensitive
microcircuits in your instrument. ESD damage is most likely to occur as the
test xtures are being connected or disconnected. Protect them from ESD
damage by wearing a grounding strap that provides a high resistance path to
ground. Alternatively, ground yourself to discharge any static charge built-up
by touching the outer shell of any grounded instrument chassis before touching
the test port connectors.

7. RF OUT Connector
Connects the RF output signal from the analyzer's internal source to a test set or power
splitter. The output impedance at this connector is 50 .
Note that, in spectrum analyzer mode, the RF output is disabled by default. When you perform
zero span measurement in spectrum analyzer mode, you can turn the RF output on.

8. DC SOURCE (DC Voltage/Current Output) Connector (Option 001)
This connector, located on the front panel, supplies up to 640 V / 6100 mA of DC

voltage/current.

4-4 Front and Rear Panels

Screen Display

9. Built-in Flexible Disk Drive
You can use this disk drive to store your measurement data, instrument , list sweep tables, and
HP Instrument BASIC programs. Supported data formats include the LIF (logical interchange
format) and DOS (disk operating system) format.

10. LINE Switch
Turns on/o the power to the HP 4395A.

11. Liquid Crystal Display (LCD)
Displays measurement results, softkey menus, instrument settings, system or error messages

Screen Display
The LCD displays a grid on which the measurement data is plotted, the currently selected
measurement traces, and other information describing the measurement. Figure 4-2 shows the
locations of the di erent information labels.
In addition to the full-screen display shown in Figure 4-2, a split display is available (see \Dual
Channel Display" in Chapter 6). In this case, information labels are provided for each half of
the display.
The screen can also be used as the HP Instrument BASIC display. HP Instrument BASIC uses
either a full-screen display or a half-screen display below the graphic display as a text screen.

Front and Rear Panels 4-5

Screen Display

Figure 4-2. Screen Display (Single Channel, Cartesian Format)

1. Active Channel
Displays either \CH1" or \CH2" to indicate the number of the currently active channel (one that
was selected keys in the ACTIVE CHANNEL block). When the dual channel function is enabled
and traces for the two channels are overlaid, both \CH1" and \CH2" appear in this area.

4-6 Front and Rear Panels

Screen Display

2. Measured Input(s)
Shows the input terminals currently in use, the values of the S parameters, or ratio of inputs
(such as A/R ratio). Use the 4Meas5 key to select the item to appear in this area.

3. Format
Shows the currently selected display format. Use the 4Format5 key to select your desired display
format.

4. SCALE/DIV
Shows the currently selected scale in the unit appropriate to the ongoing measurement. Use
the 4Scale Ref5 key to select your desired scale.

5. Reference Level
Displays the value of a reference line in Cartesian formats or the outer circle in polar formats.
It is selected using the 4Scale Ref5 key. However, the reference line is invisible (it is indicated by
a small triangle adjacent to the graticule at the left). The position of the reference line for the
spectrum analyzer is xed at the top of the Cartesian format.

6. Marker Data Readout
Displays the values of the marker in the unit appropriate to the current measurement (see
Chapter 8). The status of the marker is also displayed under the marker values. The following
status notations are used:
Cpl
Xch
Sgnl
Peak
Max
Min
Targ
PksA
PksL
PksR

Marker couple is tuned on. (When single channel is displayed, this notation is not displayed even if
the marker couple is on.)
Cross channel is turned on.
Signal tracking is turned on. (When both signal tracking and search tracking are turned on, only
Sgnl is displayed because search tracking is not allowed in this case.)
PEAK search tracking is turned on.
MAX search tracking is turned on.
MIN search tracking is turned on.
TARGET search tracking is turned on.
PEAK ALL search tracking is turned on.
PEAK LEFT ALL search tracking is turned on.
PEAK RIGHT ALL search tracking is turned on.

7. Marker Statistics and Width Value
Displays the statistical marker values determined by using the menus accessed with the 4Utility5
key, and the width value determined by using the menus accessed with the 4Search5 key. See
Chapter 8.

Front and Rear Panels 4-7

Screen Display

8. Softkey Labels
Displays the menu labels that de ne the function of the softkeys immediately to the right of
the label.

9. PASS/FAIL
Indicates the values used for limit testing using limit lines.

10. Sweep Time
Displays the sweep time. When sweep time is manually changed, # is displayed between SWP
and the sweep time value.

11. Sweep Parameter Span/Stop Value
Displays the stop frequency of the sweep range in frequency domain measurements or the
upper limit of a power sweep if HP 4395A is in network analyzer mode or impedance analyzer
mode. When the sweep parameter is in center/span mode, however, this area indicates the span
instead. You can suppress the display of the sweep parameter values (see Chapter 6).

12. Power Level
Displays the power level of RF output if the HP 4395A is in network analyzer mode or
impedance analyzer mode and frequency sweep is selected. When power sweep is selected or
the HP 4395A is in another mode, this area is blank.

13. CW Frequency
Displays the measured frequency if the HP 4395A is in network analyzer mode or impedance
analyzer mode and power sweep is being performed. When frequency sweep is selected or the
HP 4395A is in another mode, this area is blank.

14. Video Bandwidth (VBW)
Displays the video bandwidth if the HP 4395A is in spectrum analyzer mode.

15. Input Attenuator
Displays the input attenuator value at the inputs R, A, B if the HP 4395A is in spectrum
analyzer mode.

16. Sweep Parameter Center/Start Value
Displays the start frequency of the sweep range in frequency domain measurements or the
lower power value in power sweep if the HP 4395A is in network analyzer mode or impedance
analyzer mode. When the sweep parameter is in center/span mode, this area shows the sweep
center value instead.

4-8 Front and Rear Panels

Screen Display

17. RBW/IFBW
Displays the RBW (in spectrum analyzer mode) or IFBW (in network analyzer mode or
impedance analyzer mode). When RBW or IFBW is manually changed, a sharp sign (#) is
displayed between RBW or IFBW and the value.

18. Status Notations
Displays the current status of various functions for the active channel. The following notations
are used:

3

P
Cor
C2
Cmp
C?
C2?
Cm?
C!
C2!
Cm!
Cm*
Del
Neg
Smp
Avg
Max
Min
G3
0O
G&O
D0M
D+M
D/M
Hld

"

ext
man
bus
Svc

Sweep parameters changed: measured data in doubt until a complete fresh sweep has been taken.
RF output is ON (zero span in spectrum analyzer mode only).
Error correction is ON (network analyzer mode and impedance analyzer mode).
Level correction is ON (spectrum analyzer mode only).
Two-port error correction is ON (network analyzer mode only).
Fixture compensation is ON(impedance analyzer mode only).
Sweep parameters have changed1 and interpolated error correction is ON (network analyzer mode
and impedance analyzer mode).
Sweep parameters have changed1 and interpolated two-port correction is ON (network analyzer
mode only).
Sweep parameters have changed1 and interpolated xture compensation is ON (impedance analyzer
mode only).
Sweep parameters have changed2 and extrapolated error correction is ON (network analyzer mode
and impedance analyzer mode).
Sweep parameters have changed2 and extrapolated two-port correction is ON (network analyzer
mode only).
Sweep parameters have changed2 and extrapolated xture compensation is ON (impedance analyzer
mode only).
Fixture compensation is ON when error correction is C? or C! (impedance analyzer mode only).
Electrical delay, port extension, or phase o set has been added or subtracted (network analyzer
mode and impedance analyzer mode).
Negative peak detection is ON (spectrum analyzer mode only).
Sample detection is ON (spectrum analyzer mode only).
Sweep-by-sweep averaging is ON. The averaging count is shown below.
Maximum hold is ON.
Minimum hold is ON.
Data math Gain is ON.
Data math O set is ON.
Data math Gain is ON and data math O set is ON.
Data math ( Data Trace 0 Memory Trace ) is ON.
Data math ( Data Trace + Memory Trace ) is ON.
Data math ( Data Trace / Memory Trace ) is ON.
Hold sweep.
Sweep indicator. (When sweep time is longer than 2 seconds, it appears on the trace).
Waiting for external trigger (BNC in rear panel).
Waiting for manual trigger.
Waiting for HP-IB trigger.
A service mode is turned on. If this notation is shown, the measurement data will be out of
speci cations. (See Service Manual.)

1 Frequency span reduced, etc.
2 Frequency span expanded, etc.

Note

No status notation is displayed when Gate trigger is used.

Front and Rear Panels 4-9

Screen Display

19. External Reference
ExtRef is displayed when an external reference signal is connected to the external reference
input on the rear panel. This applies even if the phase is not locked to the external reference
signal.

20. Active Entry Area
Displays the name of the currently active input parameter with its current value.

21. Message Area
Displays prompts or error messages. See \Error Messages" for more information on error
messages.

22. Title
Displays a user-de ned title which can consist of alphanumeric characters.

4-10 Front and Rear Panels

Rear Panel Features and Connectors

Rear Panel Features and Connectors
Figure 4-3 shows the features and connectors on the rear panel. Requirements for the input
signals to the rear panel connectors are provided in Chapter 11.

Figure 4-3. Rear panel

1. External Reference Input Connector
Connects an external frequency reference signal to the analyzer that is used to phase lock the
analyzer for increased accuracy in frequency.
When the HP 4395A is equipped with the external oven (Option 1D5), this connector must
be connected to REF OVEN connector (14). The external frequency reference function is
automatically enabled when a signal is connected to this input. When the signal is removed,
the analyzer automatically switches back to its internal frequency reference.

2. Internal Reference Output Connector
Connects to the frequency reference input of an external instrument to phase lock it to the
HP 4395A for stable synchronization with the internal frequency of the HP 4395A.

Front and Rear Panels 4-11

Rear Panel Features and Connectors

3. External Program RUN/CONT Input

Externally triggers run or cont of the HP Instrument BASIC program. The positive edge of
a pulse whose width is 20 s or larger in the low state triggers run or cont. The signal is
TTL-compatible.

4. I/O Port
This is a 12-bit data communications port that connects to external devices such as a handler
on a production line. It can communicate 8 bits of output data and 4 bits of input data at a
time. For more information, see Chapter 11 and Programming Manual.

5. Power Cable Receptacle
This receptacle accommodates the main power cable. Insert the main-power cable plug only
into a socket outlet that has a protective ground contact. Note that the fuse that protects the
power line is located inside the rear panel cover.

6. HP-IB Interface
Connects the analyzer to an external controller and other instruments to con gure an
automated system. This connector is also used when the analyzer itself serves as the controller
of compatible peripherals. For more information, see Programming Guide.

7. External Monitor Terminal
This terminal outputs measurement results to an external color monitor. Color monitors
supporting VGA (scan rate of 31.5 kHz) can be connected to this terminal.

8. Parallel Interface
This interface can be used to redirect the displayed results to a printer. It complies with the
Centronics parallel interface standard. See \Printer" in Chapter 12 for supported printers.

9. 24-bit I/O Port
In addition to the 12-bit I/O port (described in item 4 above), the HP 4395A is equipped with
a 24-bit data communications port that connects to external devices such as a handler on
a production line. This port can communicate 2 sets of 8-bit output data and 2 sets of 4-bit
bidirectional data at a time. For more information, see Programming Guide.

10. mini-DIN Keyboard Connector
Connect a mini-DIN keyboard to this connector usually when using Instrument BASIC.

Note

Be sure to use the speci ed PS/2, 101 keyboard. Using any other keyboard can
cause failure.

4-12 Front and Rear Panels

Rear Panel Features and Connectors

11. Test Set I/O Interface
You can use this interface to establish a connection between the HP 4395A and the test set
using the cable included in the S-parameter test set package to control the test set from the
HP 4395A. See Chapter 12 for the test set that can be connected. This interface is not used for
the HP 87512A/B transmission/re ection test set.

Caution

Do not connect a printer to this interface. Doing so could damage the printer.

12. Gate Output (Option 1D6 Only)
Outputs a signal that indicates the status of the gate when the HP 4395A is performing gate
trigger in EDGE mode. The signal is TTL-compatible; high indicates gate on, low indicates gate
off.

13. External Trigger Input

Triggers a measurement sweep. The positive (or negative) edge of a signal in the low (or high
state) starts a measurement. The signal is TTL-compatible. To use this connector, set the trigger
mode to external using softkey functions.

14. Reference Oven Output (Option 1D5 Only)
Connects to the EXT REF INPUT connector when Option 1D5 is installed. Option 1D5 improves
the frequency accuracy and stability of the HP 4395A.

Front and Rear Panels 4-13

5
Preparations for Measurements
This chapter provides the each procedure needed to prepare for network , spectrum, and
impedance (with Option 010) measurements. The procedures are:
Selecting an appropriate connection of DUT
Presetting HP 4395A
If you are using the HP 4395A for the rst time, it is recommended to get started by reading
Chapter 1 through Chapter 3 of this manual.

Selecting an appropriate connection of DUT
For Network Measurement
Connections of DUT in the network measurement varies depending upon your measurement
parameters as described in this section.

Connecting DUT for Directional Transmission Characteristic Measurement
When you measure the transmission characteristic supplying a signal to your DUT from one
direction, connect the DUT to the analyzer with the power splitter and the cables as shown in
Figure 5-1.
You should manually change cabling when measuring the characteristic for reverse direction.

Figure 5-1. Connecting DUT for Directional Transmission Characteristic Measurement
Preparations for Measurements 5-1

Selecting an appropriate connection of DUT

Connecting DUT for Directional Transmission and Re ection Characteristics
Measurement
When you measure the transmission and re ection characteristics supplying a signal to your
DUT from one direction, connect the DUT to the analyzer with the transmission/re ection test
set.
You should manually change cabling when measuring the characteristics for reverse direction.

Figure 5-2.
Connecting DUT for Directional Transmission and Re ection Characteristics
Measurement

Connecting DUT for Bi-directional Transmission and Re ection Characteristics
(Four S Parameters) Measurement
Bi-directional transmission and re ection characteristics, or all four S parameters, can be
measured e ectively with the S parameter set.
The device allows you to measure all the four parameters without changing cable connection
manually at each measurement.

5-2 Preparations for Measurements

Selecting an appropriate connection of DUT

Figure 5-3.
Connecting DUT for Bi-directional Transmission and Re ection Characteristics (Four S
Parameters) Measurement

Connecting DUT for Transmission Characteristic Measurement When the Output
Signal is in a Circuit

If the output signal of DUT is in a circuit, use the active probe to capture a signal from the test
channel as shown in Figure 5-4.

Figure 5-4.
Connecting DUT for Transmission Characteristic Measurement When the Output Signal is
in a Circuit
Use the transmission/re ection test set with the active probe, when measuring the re ection
characteristic at the input lead simultaneously. See Figure 5-5.
Preparations for Measurements 5-3

Selecting an appropriate connection of DUT

Figure 5-5.
Connecting DUT for Transmission and Re ection Characteristics Measurement When the
Output Signal is in a Circuit

5-4 Preparations for Measurements

Selecting an appropriate connection of DUT

Connecting DUT for Transmission Characteristic Measurement When the Input
and Output Signals are in a Circuit
If both of the input and output signals of DUT are in a circuit, attach the active probes to both
of the reference channel and the test channel, as shown in Figure 5-6.

Figure 5-6.
Connecting DUT for Transmission Characteristic Measurement When the Input and
Output Signals are in a Circuit

Preparations for Measurements 5-5

Selecting an appropriate connection of DUT

For Spectrum Measurement
Connections of DUT in the spectrum measurement varies depending upon how the
measurement signal can be obtained as described in this section.

Connecting DUT When Directly Measuring the Signal
When you measure a signal which is directly supplied from the DUT to HP 4395A, connect the
DUT as shown in Figure 5-7.

Figure 5-7. Connecting DUT When Directly Measuring the Signal

Connecting DUT When Measuring the Signal in a Circuit
Use the active probe to capture the measurement signal which is in a circuit as shown in
Figure 5-8.

5-6 Preparations for Measurements

Selecting an appropriate connection of DUT

Figure 5-8. Connecting DUT When Measuring the Signal in a Circuit

Preparations for Measurements 5-7

Selecting an appropriate connection of DUT

For Impedance Measurement (Option 010)
Connecting the Impedance Test Kit
In the impedance measurement, the HP 43961A Impedance Test Kit is required to connect your
DUT to the analyzer. See Figure 5-9.
1. Verify the HP 4395A is turned o .
2. Connect the N-cable to the RF OUT port of the analyzer.
3. Connect two connectors of the HP 43961A to the R and A ports of the HP 43961A.
4. Connect the other connector of the N-cable to the RF IN port of the HP 43961A.
5. Turn on the HP 4395A.

Note

Figure 5-9. Connecting the Impedance Test Kit
The connection between DUT and the analyzer is accomplished when a test
xture is mounted on the impedance test kit. Note that all the measurement
settings and calibrations should be completed before your mount the test
xture. Follow the steps described in Chapter 6 and Chapter 7.

5-8 Preparations for Measurements

Presetting HP 4395A

Presetting HP 4395A
Before starting measurement, press the green 4Preset5 key in the INSTRUMENT STATE block to
set the HP 4395A to the preset state.
For additional information about the preset state, see Appendix C.

Preparations for Measurements 5-9

6
Setting and Optimizing Measurement Conditions
This chapter provides following procedures for setting and optimizing measurement conditions:
Select the analyzer mode
Select the active channel
Set up the trigger system
Set the sweep conditions
Select the input port/measurement parameter
Select the measurement format
Select the display unit
Set the frequency range
Set the vertical scale
Set the IF/resolution/video bandwidth (IFBW/RBW/VBW)

Setting and Optimizing Measurement Conditions

6-1

Selecting the Active Channel

Selecting the Analyzer Mode
1. Press 4Meas5.
2. Press ANALYZER TYPE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select one of the following analyzer modes:

Analyzer Mode

Softkey

Network Analyzer
Spectrum Analyzer
Impedance Analyzer1

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NETWORK ANALYZER
SPECTRUM ANALYZER
IMPEDANCE ANALYZER

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

1 Option 010 only.

Note

When you change the analyzer mode (operating mode), the analyzer is set to
the preset state. So, when you want to change the analyzer mode, you must
select it before you set up the other settings.

Note

In this manual, the following abbreviations are used:
NA mode: Network analyzer mode
SA mode: Spectrum analyzer mode
ZA mode: Impedance analyzer mode

Selecting the Active Channel
In the ACTIVE CHANNEL block, press 4Chan 15 (channel 1) or 4Chan 25 (channel 2) to select the
active channel.
The HP 4395A has two independent channels. You can assign a di erent set of measurement
conditions to each channel and switch between the two channels with just a single keystroke,
provided that you use both channels for the same analyzer mode. By switching between the
channels, you can e ectively evaluate the DUT's characteristics under di erent measurement
conditions.

Note

Be sure to select the active channel before you set measurement conditions.
Once you have activated either channel, all the settings you make are
assigned to the active channel.
These two channels can only be assigned di erent measurement
conditions within the same analyzer mode. You cannot use them across
two di erent analyzer modes. For example, it is not possible to assign
network measurement conditions to one channel while assigning spectrum
measurement conditions to the other channel.

6-2 Setting and Optimizing Measurement Conditions

Dual Channel Display

Dual Channel Display
1. Press 4Display5.
2. Toggle DUAL CHAN on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

3. Press MORE .
NNNNNNNNNNNNNN

4. Select one of the following options:

Display Mode

Toggle

Split the screen into the two
channels
Merge the channels into one
screen

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SPLIT CHAN on OFF

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SPLIT CHAN ON off

Split the screen into the two channels

!
!

NNNNNNNNNNNNNNNNNNNN

ON off

NNNNNNNNNNNNNNNNNNNN

on OFF

Merge the channels into one screen

Figure 6-1. Dual Channel Display

Setting and Optimizing Measurement Conditions

6-3

Setting Up the Trigger System

Setting Up the Trigger System
This section provides procedures for setting the trigger system.
Setting up the trigger system
Using the external trigger

Setting Up the Trigger System
1. Press 4Trigger5.
2. Press TRIGGER: [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select one of the following options:

Trigger Mode

Softkey

Internal trigger source
External trigger source1
Manual trigger
Gate trigger2

NNNNNNNNNNNNNNNNNNNNNNNNNN

FREE RUN
EXTERNAL
MANUAL
GATE [ ]

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

1 See \Using the External Trigger" that follows.
2 Option 1D6 and SA (spectrum analyzer) mode only. Chapter 8 describes how to use
this trigger mode.

Using the External Trigger
1. Connect the trigger source to the EXT TRIGGER connector on the rear panel of the
HP 4395A.
2. Press 4Trigger5.
3. Press TRIGGER: [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press EXTERNAL .
NNNNNNNNNNNNNNNNNNNNNNNNNN

5. Input a trigger signal to the analyzer.
The external trigger signal level must be TTL Level.

6-4 Setting and Optimizing Measurement Conditions

Setting Up the Trigger System

Figure 6-2. Location of EXT TRIGGER Connector

Setting the Trigger Signal Polarity
1. Press 4Trigger5.
2. Press TRIGGER: [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Toggle TRIG PLRTY POS neg to pos NEG to turn the trigger polarity to the negative logic.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNN

Generating a Trigger Event on Each Measurement Point (NA, ZA Mode)
1. Press 4Trigger5.
2. Press TRIGGER: [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select one of the following options:

Trigger Source

Softkey

Manual
External

Press MANUAL .
Press EXTERNAL .

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Toggle TRIG EVENT [ON SWEEP] to [ON POINT] .
5. To generate a trigger event, press MANUAL (for manual) or input the external trigger signal
(for external).
NNNNNNNNNNNNNNNNNNNN

Setting and Optimizing Measurement Conditions

6-5

Setting the Sweep Conditions
The sweep indicator (\"") moves to each point every time a trigger event is generated. You
can select this mode only after you have selected MANUAL or EXTERNAL as the trigger source,
or activated the bus trigger mode. For more information about the bus trigger mode, see the
Programming Manual.
NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

Setting the Sweep Conditions
The HP 4395A controls the sweep process based on the following conditions:
Sweep mode
Sweep type
Sweep parameters
This section describes how to select the sweep mode and sweep type. For how to set the sweep
parameters, see \Setting the Frequency Range". For how to use the power sweep function, see
\Using the Power Sweep Function (NA, ZA Mode)".
In addition, the HP 4395A is capable of automatically controlling the sweep process in
accordance with a user-speci ed sweep list. For more information on the list sweep function,
refer to Chapter 9 of this manual.

Selecting the Sweep Mode
Select one of the following options

Sweep Mode

Keystrokes

Continuous
Single
Speci ed times

Press 4Trigger5, then choose CONTINUOUS .
Press 4Trigger5, then choose SINGLE .
Press 4Trigger5, choose NUMBER of GROUPS , enter
the number of times, and then press 4215.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Selecting the Sweep Type
1. Press 4Sweep5 and choose SWEEP TYPE MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Select one of the following options:

Sweep Type

Softkey

Linear Frequency
Log Frequency1
List Frequency

Press LIN FREQ .
Press LOG FREQ .
Press LIST FREQ (See \Reducing Sweep
Time (Using List Sweep)" in Chapter 9).
Press POWER SWEEP . See \Using the
Power Sweep Function (NA, ZA Mode)"
that follows.

Power Sweep1

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

1 NA, ZA mode.

6-6 Setting and Optimizing Measurement Conditions

Selecting the Input Port/Measurement Parameter

Using the Power Sweep Function (NA, ZA Mode)
1. Press 4Source5 CW FREQ . Then enter the CW frequency.
NNNNNNNNNNNNNNNNNNNNNNN

2. Press 4Sweep5.
3. Press SWEEP TYPE MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press POWER SWEEP .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Enter the start and stop power levels.
For example, to sweep from 05 dBm to +15 dBm, press 4Start5 405 455 4215, 4Stop5 415 455 4215.

Note

You can set the sweep power in increments of 0.1 dB.
Maximum power sweep range (start to stop) is 20 dB within range of 050
dBm to +15 dBm.

Selecting the Input Port/Measurement Parameter
This step provides following procedures:
To select the input port in NA mode
To select the input port in SA mode
To select the measurement parameter in ZA mode

To Select the Input Port in NA Mode
With the T/R Test Set
Press 4Meas5.

To measure

Type

Press

Re ection
Transmission
A port/B port

Ratio
Ratio
Ratio

NNNNNNNNNNN

Re ection
Transmission
Source

Absolute
Absolute
Absolute

NNNNNNNNNNNNNN NNNNN

A/R
B/R
A/B

NNNNNNNNNNN

NNNNNNNNNNN

MORE A
MORE B
MORE R

NNNNNNNNNNNNNN NNNNN

NNNNNNNNNNNNNN NNNNN

With the S-Parameter Test Set
Press 4Meas5.

Setting and Optimizing Measurement Conditions

6-7

Selecting the Input Port/Measurement Parameter
To measure
Direction
Press
Re ection

Forward

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Transmission

Forward

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Transmission

Reverse

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Re ection

Reverse

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

S-PARAMETERS
Refl:FWD S11 [A/R]
S-PARAMETERS
Trans:FWD S21 [B/R]
S-PARAMETERS
Trans:REV S12 [B/R]
S-PARAMETERS
Refl:REV S22 [A/R]

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To Select the Input Port in SA Mode
The HP 4395A has three input ports: R, A, and B. You can use any of these input ports for
spectrum measurements.
In the preset state, the HP 4395A uses the R input port for spectrum measurements. To
explicitly specify the input port, choose one of the following softkeys:

To select

Softkey

R input port
B input port
A input port

NNNNN

R
B
A

NNNNN

NNNNN

To Select the Measurement Parameter in ZA mode

6-8 Setting and Optimizing Measurement Conditions

Selecting the Measurement Format (NA,ZA Mode)
To measure

Press

Absolute magnitude value of
impedance
Phase value of impedance
Resistance value
Reactance value
Absolute magnitude value of
admittance

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Phase value of admittance
Conductance value
Susceptance value
Absolute magnitude value of
re ection coecient
Phase value of re ection
coecient
Real part of re ection coecient
Imaginary part of re ection
coecient
Parallel capacitance

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNN

IMPEDANCE: MAG(|Z|)

NNNNNNNNNNNNNNNNNNNNNNNNNNNN

PHASE(z)
RESIST(R)
REACT(X)
MORE 1/5
ADMITTNCE: MAG(|Y|)
MORE 1/5 y
MORE 1/5 CONDUCT(G)
MORE 1/5 SUSCEPT(B)
MORE 1/5 MORE 2/5 MAG(|0|)

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

MORE 1/5 MORE 2/5 PHASE(0 )

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

MORE 1/5 MORE 2/5 REAL(0x)
MORE 1/5 MORE 2/5 IMAG(0y)

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

MORE 1/5 MORE 2/5 MORE 3/5
CAPCITNCE: PRL(Cp)
MORE 1/5 MORE 2/5 MORE 3/5
SER(Cs)
MORE 1/5 MORE 2/5 MORE 3/5
INDUCTNCE: PRL(Lp)
MORE 1/5 MORE 2/5 MORE 3/5
SER(Ls)
MORE 1/5 MORE 2/5 MORE 3/5
MORE 4/5 RESISTNCE: PRL(Rp)
MORE 1/5 MORE 2/5 MORE 3/5
MORE 4/5 SER(Rs)
MORE 1/5 MORE 2/5 MORE 3/5
MORE 4/5 D FACTOR: (D)
MORE 1/5 MORE 2/5 MORE 3/5
MORE 4/5 Q FACTOR: (Q)

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Series capacitance

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNN

Parallel inductance

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Series inductance

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNN

Parallel resistance

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Series resistance

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

Dissipation factor

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Quality factor

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Setting and Optimizing Measurement Conditions

6-9

Selecting the Measurement Format (NA,ZA Mode)

Selecting the Measurement Format (NA, ZA Mode)
Selecting the Measurement Format in NA Mode
1. Press 4Format5.
2. Select one of the following options:

Measurement Format

Softkey

LOG Magnitude
Phase
Group Delay1
Smith Chart2
Polar Chart
Liner Magnitude
Standing Wave Ratio (SWR)
Real Part Only
Imaginary Part Only
Admittance Chart
Phase Unit
(degree or radian)
Expanded Phase

NNNNNNNNNNNNNNNNNNNNNNN

LOG MAG
PHASE
DELAY
SMITH CHART
POLAR CHART
MORE LIN MAG
MORE SWR
MORE REAL
MORE IMAGINARY
MORE ADMITTANCE CHART
PHASE UNIT [ ]
( [DEG] or [RAD] )
EXP PHASE on OFF (toggle to ON off )

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

1 See \Group Delay" in Chapter 8.
2 See \Displaying the Trace as a Smith Chart (NA, ZA Mode)".

Displaying the Trace as a Smith Chart (NA, ZA Mode)
1. Press 4Format5.
2. Press SMITH CHART to display the trace as a smith chart.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3.

Use the marker to read a measured value, by pressing 4Marker5 and turning

6-10 Setting and Optimizing Measurement Conditions

.

Selecting the Measurement Format (NA,ZA Mode)

Note

Figure 6-3. Smith Chart
To display the Smith Chart in the ZA mode, set the measurement parameter to
MAG(|0|) in the measurement menu.
NNNNNNNNNNNNNNNNNNNNNNNNNN

To change the marker readout format, use the following procedure:

How To Change Marker Readout Format (NA, ZA Mode)
1. Press 4Utility5 SMTH/POLAR MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Select one of the following options by pressing the corresponding softkey:

Format

Softkey

Real and Imaginary
Linear Magnitude and Phase
Log Magnitude and Phase
Impedance
Admittance
SWR and Phase

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

REAL IMAG
LIN MAG PHASE
LOG MAG PHASE
R+jX
G+jB
SWR PHASE

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Using the Impedance Conversion Function (NA Mode)
1. Press 4Meas5.
2. Press CONVERSION [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select one of the following options:

Setting and Optimizing Measurement Conditions

6-11

Selecting the Measurement Format (NA,ZA Mode)
Convert To
Selected Port
Softkey
Impedance
Admittance

A/R, S11, S12
B/R, S21, S22

NNNNNNNNNNNNNNNNNNNN

A/R, S11, S12
B/R, S21, S22

NNNNNNNNNNNNNNNNNNNN

Z:Refl
Z:Trans

NNNNNNNNNNNNNNNNNNNNNNN

Y:Refl
Y:Trans

NNNNNNNNNNNNNNNNNNNNNNN

The marker readout value is a linear impedance or admittance value even if the LOG MAG
format is selected.

To Display Phase beyond 6180 Degrees (NA, ZA Mode)
By default, the HP 4395A wraps the trace around at 6180 degree phases. However, there are
occasions when it is more convenient to display the trace without 6180 degree wrap-around. If
this is the case, you can use the Expanded Phase Format, which displays phases beyond 6180

degrees as shown in Figure 10-6.
To select the expanded phase format, follow these steps:
1. Press 4Format5.
2. Toggle EXP PHASE on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Figure 6-4. Expanded Phase Format

Using the Complex Plane Format (ZA Mode)
Displaying R-X in the Complex Plane
1. Press 4Meas5 and choose IMPEDANCE: MAG(|Z|) .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press 4Format5 and choose COMPLEX PLANE to select the complex plane format.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press 4Scale Ref5 and choose AUTO SCALE to adjust the scale.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

In the complex plane, the measurement parameter is always a complex number even if you
select a scalar parameter (such as jZj).
6-12 Setting and Optimizing Measurement Conditions

Selecting the Display Unit (SA, ZA Mode)

Using the Marker
1. Press 4Marker5. Then move the marker using the rotary knob.
The marker displays the real and imaginary value of the marker position at the upper-right
corner of the grid as shown in Figure 6-5.

Figure 6-5. Marker Readout of Complex Plane

Adjusting the Scale Setting
1. Press 4Scale Ref5.
2. Change the following settings to adjust the scale of the complex plane:

Scale Setting

Keystrokes

Scale/Div

Choose SCALE/DIV . Then enter the scale per
division value.
Choose REFERENCE X VALUE . Then enter the
reference X value.
Choose REFERENCE Y VALUE . Then enter the
reference Y value.

Reference X Value
Reference Y Value

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The reference position of the complex plane is always at the center of the grid. You can adjust
the scale by changing the scale per division setting or the reference coordinate value.

Setting and Optimizing Measurement Conditions

6-13

Selecting the Display Unit (SA, ZA Mode)

Selecting the Display Unit
Selecting the Display Unit in SA Mode
1. Press 4Format5.
2. Select one of the following options by choosing the corresponding softkey:

Display Format

Unit

Softkey

Power

dBm
W

NNNNNNNNNNN

dBV
dBV
V

NNNNNNNNNNN

Voltage

dBm
WATT

NNNNNNNNNNNNNN

dBV
dBuV
VOLT

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

You can change the unit of a displayed value anytime you want. The HP 4395A automatically
converts values into your speci ed format (unit) using the internally stored data. This
eliminate the need of re-sweeping. Also, the HP 4395A can convert values even when it is in
the held state.
In spectrum analyzer mode, marker readout unit can be selected apart from the display unit.
See \To Select Marker Readout Unit (SA Nide)" in Chapter 8 for details.
If you want to perform a noise measurement instead of a spectrum measurement, see
\Measuring the Noise Level" in Chapter 8.

Selecting the Phase Unit (NA, ZA Mode)
You can display the phase in either degrees or radians. To switch between the two units, follow
these steps:
1. Press 4Format5.
2. Do one of the following:
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

To switch from degrees to radians, toggle PHASE UNIT [DEG] to [RAD] .
To switch from radians to degrees, toggle PHASE UNIT [RAD] to [DEG] .

6-14 Setting and Optimizing Measurement Conditions

Setting the Frequency Range

Setting the Frequency Range
The HP 4395A has some useful features for setting the frequency range. This section provides
the following procedures that are related to setting the frequency range.
Setting the center frequency
Setting the marker position to center
Setting the maximum peak to center
Changing the center with the speci ed step size
Setting the frequency span
Narrowing the span setting (SA mode)
Setting the frequency range to full span
Setting the sweep parameters using 4Start5 and 4Stop5
Zooming to a part of the trace
Changing the zooming factor
Displaying a zoomed trace on the other channel
Zooming between the marker and the 1marker

Setting the Center Frequency
1. Press 4Center5 to activate the center frequency function.
2. Change the center frequency to place the target signal in the center of the grid by using the
following keys:

To

Use

Set directly
Change continuously
Change with 1-2-5 steps1

405

. . . 495 and units terminator keys

* +

4 5 4 5

1 You can change the step size of 4*5 4+5. See \Change the Center Frequency by the
Speci ed Step Size" in this section.

Setting the Marker Position to Center
1. Press 4Marker!5. A reverse-triangle shaped marker appears.
2. Place the marker on the position you want to set to the center by using the rotary knob.
3. Press MKR!CENTER .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 4Entry O 5.
The above procedure causes the HP 4395A to immediately use the marker-pointed frequency as
the center frequency. If you are measuring an unknown signal, display the signal in full span
rst. Then move the signal to the center using this function.

Setting and Optimizing Measurement Conditions

6-15

Setting the Frequency Range

Press MKR!CENTER

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Move the marker

Figure 6-6. Marker to Center

6-16 Setting and Optimizing Measurement Conditions

Setting the Frequency Range

Setting the Maximum Peak to Center
1. Press 4Marker!5.
2. Press PEAK!CENTER .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press 4Entry O 5.
This function changes the center frequency to display the maximum peak at the center of the
grid.

Note

A large frequency span may prevent the peak from appearing accurately at the
center of the grid. If this is the case, press PEAK!CENTER again so that the
peak is redisplayed in the middle.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Display the peak

at the center of the screen

Figure 6-7. Peak to Center

Change the Center Frequency by the Speci ed Step Size
1. Do one of the following:
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose 4Center5 CENTER STEP SIZE . Then directly enter your desired step size using
405 . . . 495 and the units terminator keys.
Press 4Marker5 and move the marker to the point you want to use as the step size frequency.
Then choose 4Center5 MKR!CNTR STEP .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Toggle STEP SIZE AUTO man to auto MAN .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press 4Center5.
4. Press 4*5 to increment (or 4+5 to decrement) the center frequency setting by the speci ed
step size.
This function is useful to display peaks that have a constant interval (such as harmonics) one
after another. The following is an example of using this function to display harmonics .
Setting and Optimizing Measurement Conditions

6-17

Setting the Frequency Range

Example: Displaying Harmonics (SA Mode)
To display the fundamental and harmonics of a 100 MHz signal, follow these steps:
1. Press 4Center5 100 4M/5. Then set the span to display the fundamental at the center of the
grid.
2. Press 4Span5 150 4M/5.
3. Press 4Search5 and toggle SEARCH TRK on OFF to ON off to enable the search track
function.
4. Choose SEARCH: PEAK to move the marker on the fundamental.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Press 4Center5 and choose MKR!CNTR STEP . Enter 100 MHz (so the step size matches the
fundamental frequency).
6. Toggle STEP SIZE AUTO man to auto MAN to enable the speci ed step size.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

7. Press 4Center5. Then press 4*5 to display the second harmonic.
8. To display higher order harmonics, press 4*5 as required.
The marker searches for the next harmonic each time you change the center frequency using
the search track function.

Fundamental

Second Harmonics

Figure 6-8. Displaying Harmonics

6-18 Setting and Optimizing Measurement Conditions

Setting the Frequency Range

Setting the Frequency Span
1. Press 4Span5.
2. Enter the frequency span to display the target peak in the optimum grid setting.

To

Use

Set directly
Change continuously
Change with 1-2-5 steps

405

. . . 495 and units terminator keys

* +

4 5 4 5

Setting and Optimizing Measurement Conditions

6-19

Setting the Frequency Range

Narrowing the Span Setting (SA Mode)
1. Press 4Search5.
2. Choose SEARCH: PEAK to place the marker on the carrier.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Toggle SIGNAL TRK on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

4. Narrow the span setting. See the \Setting the Frequency Span" procedure.
An extremely small span setting may cause the test signal to disappear from display. This
happens because of the di erence between the displayed and actual frequencies. For example,
when the span setting is set to full span, the displayed test signal frequency has an error of
approximately 600 kHz because of its resolution (500 MHz/800). A span setting smaller than the
error frequency can cause the test signal to disappear from the screen depending on the error
range.
The signal track function allows you to avoid this situation. When signal track is enabled,
the analyzer narrows the span setting while centering the test signal as you narrow the span
setting. Therefore, the test signal is placed at the center of the grid.
The following gure shows an example of narrowing the span with the signal track function.
The actual signal frequency is 250.100025 MHz. When the center is xed and the span is 10
kHz, the signal is out of display. The signal track function tracks the signal by changing the
center frequency, and keeps displaying the signal at the center of the display.

Span 500MHz

Span 10kHz

Figure 6-9. Narrowing Span with Signal Track
Setting the Frequency Range to Full Span.
1. Press 4Span5.
2. Press FULL SPAN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

This function is useful when you want to get a general view of the spectrum after you have
obtained the detailed view of a speci c signal.

6-20 Setting and Optimizing Measurement Conditions

Setting the Frequency Range

Setting the Sweep Parameters Using 4Start5 and 4Stop5
You can set the sweep parameters using 4Start5 and 4Stop5 instead of 4Center5 and 4Span5:
1. Press 4Start5 to put the HP 4395A into a mode where it accepts your entered value as the
frequency at which to start the sweep process.
2. Set the start frequency using the following keys:

To

Use

Set directly

405

Change continuously
Change with 1-2-5 steps

4 5 4 5

. . . 495 and units terminator
keys

* +

3. Press 4Stop5 to put the HP 4395A into a mode where it accepts your entered value as the
frequency at which to stop the sweep process.
4. Set the stop frequency using the keys listed in the previous table.

Figure 6-10. Setting the Sweep Parameters

Setting and Optimizing Measurement Conditions

6-21

Setting the Frequency Range

Zooming To a Part of the Trace
1. Move the marker to the point where you want to observe the signal details.
2. Press 4Marker!5.
3. Press MKR ZOOM .
NNNNNNNNNNNNNNNNNNNNNNNNNN

4. To zoom more, press MKR ZOOM again.
NNNNNNNNNNNNNNNNNNNNNNNNNN

Change the Zooming Factor.
1. Press 4Marker!5 ZOOMING APERTURE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Enter your desired zooming aperture as a percentage of the span.
If you want to obtain a 20-fold zoom, for example, enter 5% for as the zooming factor.

Displaying a Zoomed Trace on the Other Channel.
1. Press 4Display5 and toggle DUAL CHAN on OFF to ON off to display two channels on the LCD.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

2. Move the marker to the point where you want to observe the signal details.
3. Press 4Marker!5.
4. Choose MKR!XCH MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Choose MKR XCH ZOOM .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The other channel displays the zoomed trace.

Figure 6-11. Zooming the Trace

6-22 Setting and Optimizing Measurement Conditions

Adjusting the Scale and Reference

Adjusting the Scale and Reference
The HP 4395A provides you with several means to adjust the scale and reference of the trace
so that the entire trance is displayed within the grid area. For example, when the trace is out
of the grid or is too at to see the required characteristics, you can adjust the trace settings by
adjusting the reference or the scale.
Automatically adjusting the scale and reference
Manually adjusting the scale and reference
Setting the reference
Changing the scale per division

Automatically Adjusting the Scale and Reference (NA, ZA Mode)
1. Press 4Scale Ref5.
2. Press AUTO SCALE to t the trace within the grid.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The scale and reference settings are automatically adjusted to provide an optimum trace
display.

Before Auto Scale

After Auto Scale

Figure 6-12. Autoscale Function

Manually Adjusting the Scale and Reference (NA, ZA Mode)
If you want to manually adjust the scale and reference settings, the following functions are
available:
To change the scale per division setting, press SCALE/DIV .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To change the reference position that is shown as \ 7", use REFERENCE POSITION and 4*5 4+5
keys.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To change the reference value, use REFERENCE VALUE .
If you are displaying a data trace and a memory trace together, you need to consider whether
you want to change the scale for one or both traces. You can change the traces as follows:
Setting and Optimizing Measurement Conditions

6-23

Adjusting the Scale and Reference
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

If you want to change the scale setting for the data trace only, set SCALE FOR [DATA] and
D&M SCALE [UNCOUPLE] under 4Scale Ref5 key.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

If you want to change the scale setting for the memory trace only, set SCALE FOR [MEMORY]
and D&M SCALE [UNCOUPLE] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

If you want to change the scale settings for the both traces, set D&M SCALE [COUPLE] .

Setting the Reference (SA Mode)
Using the Numeric Keys.
1. Press 4Scale Ref5.
2. Choose REFERENCE VALUE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To

Use
or 4+5

Move trace upward
Move trace downward
Set reference value directly

or 4*5
405 . . . 495 and unit keys

Using the Marker.
1. Press 4Search5 and choose SEARCH: PEAK to move the marker to the peak.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press 4Scale Ref5.
3. Choose MKR!REFERENCE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Move the marker to the top of the peak

Press 4Scale Ref5 MKR!REFERENCE

Figure 6-13. Marker to Reference

6-24 Setting and Optimizing Measurement Conditions

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Adjusting the Scale and Reference

Changing the Scale per Division (SA Mode)
1. Set the reference level to the peak level of the target signal. See the \Using the Marker"
procedure.
2. Press 4Scale Ref5.
3. Choose SCALE/DIV .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Change the scale/division setting to display additional details using the following keys:

To

Use

Change continuously
Change by 1-2-5 steps
Set Scale/Div directly

4 5 4 5

+ *

405

. . . 495 and unit keys

This function can be used to display a small peak on a full grid.

Scale 10 dB/Div

Scale 3 dB/Div

Figure 6-14. Changing Scale/Div.

Setting and Optimizing Measurement Conditions

6-25

Setting the IF/Resolution/Video Bandwidth

Setting the IF/Resolution/Video Bandwidth
Setting the IF Bandwidth (NA, ZA Mode)
1. Press 4Bw/Avg5.
2. Choose IF BW .
NNNNNNNNNNNNNNNNN

3. Press 4*5 or 4+5, or enter an IF bandwidth value directly from the numeric keypad.
A smaller IF bandwidth increases the dynamic range but slows down the sweep process.

IF Bandwidth 30 kHz

IF Bandwidth 100 Hz

Figure 6-15. Setting IF Bandwidth (IFBW)

Note

The IF bandwidth should be set equal to or less than 1/5 of the measurement
frequency.
When making impedance measurements with the HP 43961A, you must set
the IF bandwidth equal to or less than 300 Hz and set the averaging factor
equal to or greater than 8.

Setting the IF Bandwidth to Auto Mode
If the sweep type is log frequency, the IF bandwidth can be set to auto mode.
1. Press 4Bw/Avg5.
2. Toggle IF BW auto MAN to AUTO man .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

In auto mode, the IF bandwidth is automatically set equal to or less than 1/5 of each
measurement frequency. If you want to set an upper limit of IF bandwidth in auto mode, press
AUTO IFBW LIMIT and enter the upper limit with entry keys.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6-26 Setting and Optimizing Measurement Conditions

Setting the IF/Resolution/Video Bandwidth

Setting the Resolution Bandwidths (SA Mode)
Adjusting the RBW can improve the resolution of the frequency and lower the displayed noise
oor.
1. Press 4Bw/Avg5.
2. Choose RES BW .
NNNNNNNNNNNNNNNNNNNN

3.

Change the RBW setting using 4*5, 4+5, or the

.

Measuring two or more mutually adjusting signals requires special considerations on the
width of the HP 4395A's internal IF lter. If the internal IF lter is wider than the di erence
between the signals, the analyzer cannot separate them. To avoid this problem, you must
provide a resolution bandwidth (RBW) small enough for the HP 4395A to identify the
respective signals.
A small RBW can reduce the noise power per display point, thereby lowering the displayed
noise oor and making it possible to display lower level signals.
For example, the trace of a 400 Hz amplitude modulated signal conceals sidebands in the
skirt of the carrier trace when the RBW is 300 Hz. In this case, you can split the carrier and
sidebands completely and lower the displayed noise oor by setting the RBW to 10 Hz.

RBW 300 Hz

RBW 10 Hz

Figure 6-16. Setting Resolution Bandwidth (RBW)

Setting the Resolution Bandwidth to Auto Mode
You can automatically set the resolution bandwidth in accordance with the percentage of the
sweep span.
1. Press 4Bw/Avg5.
2. Press RBW/SPAN RATIO and enter the percentage of the sweep span with entry keys.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Toggle to AUTO man .
NNNNNNNNNNNNNNNNNNNNNNNNNN

Setting and Optimizing Measurement Conditions

6-27

Setting the IF/Resolution/Video Bandwidth

Setting the Video Bandwidth (SA Mode)
1. Press 4Bw/Avg5.
2. Choose VIDEO BW .
NNNNNNNNNNNNNNNNNNNNNNNNNN

3. Set the video bandwidth using the following keys:

To

Use

Lower noise level

4 5,

Shorten sweep time
Set bandwidth directly

405

+ or
4*5, or

. . . 495 and unit keys

When the target signal and the noise are hard to distinguish because of noise variation, narrow
the video bandwidth. This reduces the noise variations and makes the signal clearly visible.
Note, however, that reducing the video bandwidth slows down the sweep process.
You can set the VBW to a value that is 1/1, 1/3, 1/10, 1/30, 1/100, or 1/300 of the RBW setting
currently in e ect.

Resetting the Video Bandwidth.
1. Press 4Bw/Avg5 VIDEO BW .
NNNNNNNNNNNNNNNNNNNNNNNNNN

2. Enter the same value as the RBW setting.

Video BW 30 kHz

Video BW 300 Hz

Figure 6-17. Setting Video Bandwidth (VBW)

6-28 Setting and Optimizing Measurement Conditions

7
Calibration
This chapter describes calibration procedures required for measurement in the network
analyzer mode and the impedance analyzer mode. For details about calibration procedures, see
Appendix A.
In the spectrum analyzer mode, the HP 4395A requires no calibration procedure in the
measurement.

Note

When performing the 75 measurement in the spectrum analyzer mode, see
Chapter 2 to set the HP 4395A properly.

Calibration Required for the Network Analyzer Mode
This section provide procedures for performing calibration. The calibration eliminates the
errors and improves the measurement accuracy. The analyzer has six di erent methods of
calibration. You can select the method that ts your measurement requirement by reading \To
Select an Appropriate Calibration Method" procedure. This section also contains a procedure to
customize a calibration kit.
Selecting an appropriate calibration method
Performing a response calibration
Performing a response & isolation calibration
Performing an S11 1-port calibration
Performing an S22 1-port calibration
Performing a full 2-port calibration
Performing a 1-path 2-port calibration
Selecting the calibration kit
Customizing the user de ned calibration kit

To Select an Appropriate Calibration Method
The analyzer has six calibration methods. You can choose the appropriate calibration method to
t your measurement by using Table 7-1.

Calibration 7-1

Calibration Required for the Network Analyzer Mode
Table 7-1. Calibration Method Selection Table
Measurement Type
Calibration Complexity
Method
Transmission or re ection measurement
when the highest accuracy is not required.

Response

See

simple

\Performing a Response
Calibration"

Transmission of high insertion loss devices Response &
or re ection of high return loss devices. Not isolation
as accurate as 1-port or 2-port calibration.

simple

\To Perform a Response
& Isolation Calibration"

Re ection of any one-port device or well
terminated two-port device.

S11 1-port

slightly
complex

\Performing an S11
1-Port Calibration"

Re ection of any one-port device or well
terminated two-port device.

S22 1-port

slightly
complex

\Performing an S22
1-Port Calibration"

Transmission or re ection of highest
Full 2-port
accuracy for two-port devices. S-parameter
Test Set is required.

complex

\Performing a Full
2-Port Calibration"

Transmission or re ection of highest
One-path
accuracy for two-port devices. (Reverse test 2-port
device between forward and reverse
measurements.)

complex

\Performing a 1-Path
2-Port Calibration"

Performing a Response Calibration
1. Press 4Cal5 CALIBRATE MENU RESPONSE to display the response calibration menu.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

2. Connect one of following standards. Then press the corresponding key.

Measurement Type

Connect Standard Press

Transmission
Measurement

THRU

NNNNNNNNNNNNNN

Re ection
Measurement

OPEN

NNNNNNNNNNNNNN

SHORT

NNNNNNNNNNNNNNNNN

THRU
OPEN

SHORT

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press DONE: RESPONSE .

Performing a Response & Isolation Calibration
1. Press 4Cal5 CALIBRATE MENU RESPONSE & ISOL'N to display the response and isolation
calibration menu.
2. Press RESPONSE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

3. See 2 of the \Performing a Response Calibration" procedure.
4. Press DONE: RESPONSE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Connect isolation standard (LOAD).
7-2 Calibration

Calibration Required for the Network Analyzer Mode
6. Press ISOL'N .
NNNNNNNNNNNNNNNNNNNN

7. Press DONE RESP ISOL'N CAL .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Calibration 7-3

Calibration Required for the Network Analyzer Mode

Performing an S11 1-Port Calibration
Step 1: Opening the S-11 1-Port Calibration Menu
1. Press 4Cal5.
2. Select the proper calibration kit. If the connector type or calibration kit name shown in the
CAL KIT softkey label is not the same as the calibration you are going to use, follow the
\Selecting the Calibration Kit" procedure.
3. Press CALIBRATE MENU S11 1-PORT .
NNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 2: Measuring the OPEN
1. Connect OPEN standard to port 1.
2. Press (S11): OPEN (for the 7 mm or 3.5 mm cal kit) or (S11): OPENS (for the type-N cal
kit).
When the 7 mm or 3.5 mm calibration kit is selected, the message \WAIT - MEASURING CAL
STANDARD" is displayed while the OPEN data is measured. The softkey label OPEN is then
underlined. Skip to step 3.
3. If the type-N calibration kit is selected, do the following:
a. Press OPEN [M] (for a male port connector) or press OPEN [F] (for a female port
connector).
The OPEN data is measured and the softkey label is then underlined.
b. Press DONE: OPENS .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 3: Measuring the SHORT
1. Disconnect the OPEN. Then connect a SHORT standard to port 1.
2. Press SHORT (for the 7 mm or 3.5 mm calibration kit) or SHORTS (for the type-N calibration
kit).
When the 7 mm or 3.5 mm calibration kit is selected, the SHORT data is measured and the
softkey label is underlined.
3. If the type-N calibration kit is selected, do the following:
a. Press SHORT [M] (for a male port connector) or press SHORT [F] (for a female port
connector).
The SHORT data is measured and the softkey label is then underlined.
b. Press DONE: SHORTS .
NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 4: Measuring the LOAD
1. Disconnect the SHORT, and connect an impedance-matched LOAD (usually 50 or 75 ) at
port 1.
2. Press LOAD . Then wait the LOAD is measured and the LOAD softkey is underlined.
NNNNNNNNNNNNNN

7-4 Calibration

NNNNNNNNNNNNNN

Calibration Required for the Network Analyzer Mode

Step 5: Completing the Calibration
1. Press DONE 1-PORT CAL to complete the calibration.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The HP 4395A calculates the error coecients, and then redisplays the correction menu with a
CORRECTION ON off label. A corrected S11 trace is displayed, and \Cor" appears at the left
side of the screen.
If you press DONE without measuring all the required standards, the message \CAUTION:
ADDITIONAL STANDARDS NEEDED" is displayed.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

Performing an S22 1-Port Calibration
This calibration is similar to the S11 1-port calibration except that S22 is selected automatically.
It is used only with an S-parameter test set.
For S-parameter measurements in the reverse direction with a transmission/re ection test kit,
use the S11 1-port or 1-path 2-port calibration and reverse the DUT between measurement
sweeps.

Calibration 7-5

Calibration Required for the Network Analyzer Mode

Performing a Full 2-Port Calibration
Step 1: Opening the Full 2-Port Calibration Menu
1. Press 4Cal5.
2. Select the proper calibration kit. If the connector type or calibration kit name shown in the
CAL KIT softkey label is not the same as the calibration kit to be used, see the \Selecting
the Calibration Kit" procedure.
3. Press CALIBRATE MENU FULL 2-PORT REFLECT'N .
NNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 2: Measuring the Re ection
1. Connect a shielded OPEN to port 1.
2. Press (S11): OPEN (for the 7 mm or 3.5 mm calibration kit) or (S11): OPENS (for the
type-N calibration kit).
When the 7 mm or 3.5 mm calibration kit is selected in step 1, the OPEN data is measured
and the softkey label OPEN is underlined.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

3. If the type-N calibration kit is selected, do the following:
a. Press OPEN [M] (for a male port connector) or press OPEN [F] (for a female port
connector).
The OPEN data is measured. The softkey label is then underlined.
b. Press DONE: OPENS .
NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Disconnect the OPEN and connect the SHORT to port 1.
5. Press (S11): SHORT (for the 7 mm or 3.5 mm calibration kit) or (S11): SHORTS (for the
type-N calibration kit).
When the 7 mm or 3.5 mm calibration kit is selected, the SHORT data is measured and the
softkey label SHORT is underlined.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

6. If the type-N calibration kit is selected, do the following:
a. Press SHORT [M] (for a male port connector) or press SHORT [F] (for a female port
connector).
The SHORT data is measured and the softkey label is then underlined.
b. Press DONE: SHORTS
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Disconnect the SHORT and connect an impedance-matched LOAD (usually 50 or 75 ) at
port 1.
8. Press (S11): LOAD . Then con rm the LOAD softkey label is underlined.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

9. Repeat the OPEN-SHORT-LOAD measurements described above, connecting the devices in
turn to port 2 and using the (S22) softkeys.
10. Press REFLECT'N DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The re ection calibration coecients are computed and stored. The two-port calibration menu
is displayed (with the REFLECT'N softkey underlined).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7-6 Calibration

Calibration Required for the Network Analyzer Mode

Step 3: Measuring the Transmission
1. Press TRANSMISSION .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Connect a THRU connection between port 1 and port 2 at the points where the test device is
connected.
3. When the trace settles, press FWD. TRANS. THRU . Then wait S21 frequency response is
measured and the softkey label is underlined.
4. Press FWD. MATCH THRU . Then wait the S11 load match is measured and the softkey label is
underlined.
5. Press REV. TRANS. THRU . Then wait the S12 frequency response is measured and the
softkey label is underlined.
6. Press REV. MATCH THRU . Then wait the S22 load match is measured and the softkey label is
underlined.
7. Press TRANS. DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The transmission coecients are computed and stored. The two-port calibration menu is
displayed (with the TRANSMISSION softkey underlined).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 4: Measuring the Isolation
1. If correction for isolation is not required, press ISOLATION OMIT ISOLATION
ISOLATION DONE . Then skip to step 5.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. If correction for isolation is required, connect impedance-matched LOADs to port 1 and port
2.
3. Press FWD ISOL'N ISOL'N STD . Then wait the S21 isolation is measured and the softkey
label is underlined.
4. Press REV ISOL'N ISOL'N STD . Then wait the S12 isolation is measured and the softkey
label is underlined.
5. Press ISOLATION DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The isolation error coecients are stored. The two-port calibration menu is displayed (with the
ISOLATION softkey underlined).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 5: Completing the Calibration
1. Press DONE: 2-PORT CAL to complete the calibration.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The error coecients are computed and stored. The correction menu is displayed (with
CORRECTION ON off ). A corrected trace is displayed. The notation \C2" at the left of the
screen indicates that two-port error correction is ON.
Now the test device can be connected and measured. Save the calibration data on the built-in
disk drive.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Calibration 7-7

Calibration Required for the Network Analyzer Mode

Performing a 1-Path 2-Port Calibration
Step 1: Opening the 1-Path 2-Port Calibration Menu
1. Press 4Cal5.
2. Select the proper calibration kit. If the connector type or calibration kit name shown in the
CAL KIT softkey label is not the same as the calibration kit to be used, see the \Selecting
the Calibration Kit" procedure.
3. Press CALIBRATE MENU ONE-PATH 2-PORT REFLECT'N .
NNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 2: Measuring the Re ection
1. Connect a shielded OPEN to the test port.
2. Press (S11): OPEN (for the 7 mm calibration kit) or (S11): OPENS (for the type-N
calibration kit).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

The OPEN data is measured, and the softkey label OPEN is underlined.
3. If the type-N calibration kit is selected, do the following:
a. Press OPEN [M] (for a male port connector) or press OPEN [F] (for a female port
connector).
The OPEN data is measured and the softkey label is then underlined.
b. Press DONE: OPENS .
NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Disconnect the OPEN and connect a SHORT to the test port.
5. Press SHORT (for the 7 mm or 3.5 mm calibration kit) or SHORTS (for the type-N calibration
kit).
When the 7 mm or 3.5 mm calibration kit is selected, the SHORT data is measured and the
softkey label SHORT is underlined.
NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

6. If the type-N calibration kit is selected, do the following:
a. Press SHORT [M] (for a male port connector) or press SHORT [F] (for a female port
connector).
The SHORT data is measured and the softkey label is then underlined.
b. Press DONE: SHORTS .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Disconnect the SHORT and connect an impedance-matched LOAD (50 or 75 ) to the test
port.
8. Press LOAD . Then wait the LOAD is measured and the softkey label LOAD is underlined.
NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

9. Press REFLECT'N DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The re ection calibration coecients are computed and stored. The two-port calibration menu
is displayed (with the REFLECT'N softkey underlined).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7-8 Calibration

Calibration Required for the Network Analyzer Mode

Step 3: Measuring the Transmission
1. Connect a THRU between the test port and the return cable to the analyzer (connect to the
points at which the test device is connected).
2. Press TRANSMISSION .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press FWD. TRANS. THRU . Then wait the S21 frequency response is measured and the
softkey label is underlined.
4. Press FWD. MATCH THRU . Then wait the S11 load match is measured and the softkey label is
underlined.
5. Press TRANS. DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The transmission coecients are computed and stored. The two-port calibration menu is
displayed (with the TRANSMISSION softkey underlined).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 4: Measuring the Isolation
1. If correction for isolation is not required, press ISOLATION OMIT ISOLATION
ISOLATION DONE . Skip to step 5.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. If correction for isolation is required, connect impedance-matched LOADs to the test port
and the return port.
3. Press FWD ISOL'N ISOL'N STD . Then wait the S21 isolation is measured and the softkey
label is underlined.
4. Press ISOLATION DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The isolation error coecients are stored. The two-port calibration menu is displayed (with the
ISOLATION softkey underlined).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 5: Completing the Calibration
1. Press DONE 2-PORT CAL to complete the calibration.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The error coecients are computed and stored. The correction menu is displayed with
CORRECTION ON off . A corrected trace is displayed. The notation \C2" at the left of the
screen indicates that 2-port error correction is ON.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 6: Performing the Measurement
1. Connect the test device in the reverse direction. Then press PRESS to CONTINUE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Reconnect the test device in the forward direction. Then press PRESS to CONTINUE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Now the error corrected trace is displayed. If you measure the other test device, press 4Trigger5
MEASUREMENT RESTART . Then perform the procedure of step 6.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Save the calibration data on a oppy disk or memory disk.
For additional information about calibration, see Appendix A.

Calibration 7-9

Calibration Required for the Network Analyzer Mode

Selecting the Calibration Kit
1. Press 4Cal5.
2. Press CAL KIT [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select one of the following options by pressing the corresponding key:

Calibration Kit

Softkey

7 mm calibration kit
3.5 mm calibration kit
50 N type
75 N type
User de ned calibration kit

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

CAL KIT: 7mm
3.5mm
N 50
N 75
USER KIT

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

Customizing the User De ned Calibration Kit
De ning the Standard De nition
Step 1: Preparation.
1. Prepare the \Standard De nitions" table of the standard kit you want to use.
Table 7-2 is an example of a standard de nition table.

Table 7-2.
Example of the Standard De nitions (HP 85032B 50 Type-N
Calibration Kit)
STANDARD

C0
NO. TYPE 210-15 F
1

SHORT

2

OPEN

3

LOAD

4

OFFSET
FREQ. (GHz)
C1
C2210-36 C3210-45 FIXED OR
COAX or
STANDARD
-27
210 F F/Hz
F/Hz
SLIDING DELAY LOSS Z0 MIN. MAX. WAVEGUIDE
LABEL
ps
M /s
0

700

50

0

999

COAX

SHORT (M)

0

700

50

0

999

COAX

OPEN (M)

0

700

50

0

999

COAX

BROADBAND

DELAY/
THRU

0

700

50

0

999

COAX

THRU

7

SHORT

17.544

700

50

0

999

COAX

SHORT (F)

8

OPEN

17.544

700

50

0

999

COAX

OPEN (F)

108

55

130

0
FIXED

5
6
62

17

28

0

Step 2: Opening the De ne Standard Menu.
1. Press 4Cal5.
2. Press CAL KIT [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press MODIFY [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press DEFINE STANDARD .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7-10 Calibration

Calibration Required for the Network Analyzer Mode
5. Select standard number.
6. Select standard type.
If you did not select standard type as OPEN in step 2, skip to step 4.

Step 3: Entering C Parameters.
1. Press C0 . Then enter C0 (210-15 F).
NNNNNNNN

2. Press C1 . Then enter C1 (210-27 F/Hz).
NNNNNNNN

3. Press C2 . Then enter C2 (210-36 F/Hz2 ).
NNNNNNNN

Step 4: Entering OFFSET Parameters.
1. Press SPECIFY OFFSET .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press OFFSET DELAY . Then enter the o set delay value.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press OFFSET LOSS . Then enter the o set loss value.
Press OFFSET Z0 . Then enter Z0 .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press STD OFFSET DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 5: Entering a Standard Class Label.
1. Press LABEL STD .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Enter a standard label (up to 10 characters).
3. Press DONE .
NNNNNNNNNNNNNN

Step 6: Completing the De nition of a Calibration Kit.
1. Press STD DONE (DEFINED) .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press KIT DONE (MODIFIED) .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Calibration 7-11

Calibration Required for the Network Analyzer Mode

De ning a Class Assignment

Step 1: Preparing for the Class Assignment.
1. Prepare the standard class assignment table for your calibration kit.

Table 7-3. Example: Standard Class Assignment of the HP 85032B
A

B

C

D

E

F

G

STANDARD
CLASS LABEL

S11 A

2

8

OPENS

S11 B

1

7

SHORTS

S11 C

3

S22 A

2

8

OPENS

S22 B

1

7

SHORTS

S22 C

3

LOAD

Forward Transmission

4

Fwd. Trans Thru

Reverse Transmission

4

Rev. Trans Thru

Forward Match

4

Fwd. Match Thru

Reverse Match

4

Rev. Match Thru

Response

1

7

2

8

4

RESPONSE

Response & Isolation

1

7

2

8

4

Response & Isol'n

LOAD

Step 2: Specifying the Standard Class.
1. Press SPECIFY CLASS .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Select standard class.

To Select

Press

S11 A
S11 B
S11 C
S22 A
S22 B
S22 C
Forward Transmission
Reverse Transmission
Forward Match
Reverse Match
Response
Response & Isolation

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SPECIFY: S11A
S11B
S11C
SPECIFY: S22A
S22B
S22C
MORE SPECIFY: FWD. TRANS.
MORE REV.TRANS.
MORE FWD. MATCH
MORE REV.MATCH
MORE RESPONSE
MORE RESPONSE & ISOL'N

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Enter the standard number from A to G.
4. Press CLASS DONE (SPEC'D) .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7-12 Calibration

Calibration Required for the Network Analyzer Mode
Step 3: Creating the Standard Class Label.
1. Press LABEL CLASS to label the standard class.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Select the standard class.
See 2 of Step 2.
3. Enter or modify the correspondent standard class label.
4. Press LABEL DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Labeling and Saving Calibration Kit.
1. Press LABEL KIT .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Enter label.
3. Press DONE KIT DONE (MODIFIED) .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press CAL KIT [ ] SAVE USER KIT USER KIT .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

5. Press RETURN .
NNNNNNNNNNNNNNNNNNNN

Once you have de ned your own calibration kit, you can verify the de nition using the copy
function that lists standard parameters and class assignment.

Verifying the De nition of the User-De ned Calibration Kit.
1. Press 4Cal5 CAL KIT [ ] USER KIT to specify the calibration kit as a user-de ned kit.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press 4Copy5 MORE CAL KIT DEFINITION .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To display the standard parameters de ned, press STANDARD DEFINITON . Then press the
softkey whose label corresponds to the standard number if you want to list the de ned
parameters.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To display the de ned class assignment, press CLASS ASSIGNMENT .
3. To make a hardcopy, press PRINT [STANDARD] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. To return to the normal display, press RESTORE DISPLAY .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Calibration 7-13

Calibration Required for the Impedance Analyzer Mode

Calibration Required for the Impedance Analyzer Mode
This section provide procedures for performing the calibration when measuring in the
impedance analyzer mode. This section also covers how to customize the user de ned
calibration kit.

OPEN/SHORT/LOAD Calibration
In the impedance analyzer mode, HP 4395A should be calibrated with the HP 43961A
impedance test kit attached. Calibration de nes the measurement accuracy at the OUTPUT
port on the impedance test kit. After calibration, the analyzer can measure within its speci ed
measurement accuracy.
The calibration is performed in terms of the three items:
OPEN (using 0 S termination)
SHORT (using 0 termination)
LOAD (using 50 termination)

Note

You must use the calibration kit that is furnished to the HP 43961A for the
standard calibration kit.

Calibration Procedure
Follow the steps below to perform the OPEN/SHORT/LOAD calibrations.
1. Press 4Cal5.
2. Press CALIBRATE MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Connect the 0 S termination to the OUTPUT port.
4. Press OPEN .
After an open calibration sequence is completed, the OPEN softkey label is underlined.
NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

5. Disconnect the 0 S termination, then connect the 0 termination to the OUTPUT port.
6. Press SHORT .
After a short calibration sequence is completed, the SHORT softkey label is underlined.
NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

7. Disconnect the 0 termination, then connect the 50 termination.
8. Press LOAD .
After a load calibration sequence is completed, the LOAD softkey label is underlined.
NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

9. Press DONE: CAL .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

10. Verify the \Cor" notation is displayed on the left of the screen.

7-14 Calibration

Calibration Required for the Impedance Analyzer Mode

Note

Figure 7-1. Connecting Calibration Standards
The OUTPUT port of the impedance test kit and the calibration standards have
APC-7 connectors. The APC-7 connector is very sensitive to damage and dirt.
You need to do the following when handling and storing APC-7 connectors:
Keep the connectors clean.
Do not touch the mating plane surfaces.
Do not set the connectors contact-end down.
Before storing, extend the sleeve or connector nut.
Use end caps over the mating plane surfaces.
Never store connectors loose in a box or a drawer.

Connecting the Test Fixture
To connect the test xture to the impedance test kit, see the applicable test xture manual for
instructions. The following is a general procedure:
1. Turn the APC-7 connector of the impedance test kit OUTPUT port.
2. Verify that the connector sleeve is retracted fully.
3. Set the mounting posts of the test station into the twin locating holes at the corner of the
test xture.
4. Connect the connector on the underside of the test xture to the OUTPUT port of the
impedance test kit.

Calibration 7-15

Calibration Required for the Impedance Analyzer Mode

Figure 7-2. Connecting Test Fixture

7-16 Calibration

Calibration Required for the Impedance Analyzer Mode

Setting the Electrical Length of the Test Fixture
After connecting the test xture, you need to enter the extended electrical length of the
xture. This is required to eliminate a phase shift error caused by the extended electrical
length.
The analyzer has electrical length data for some xtures as preset data.
1. Press 4Meas5.
2. Press FIXTURE SELECT FIXTURE .
NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select the xture model number that you are using.
4. Press RETURN .
NNNNNNNNNNNNNNNNNNNN

5. Verify that \Del" notation appears on the left side of the display.
If your xture is not listed on the softkey label in the xture selection menu, use the user
xture setting menu. (See \Setting the User De ned Fixture ".)

Setting the User De ned Fixture
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Selecting FIXTURE [NONE] SELECT FIXTURE under 4Meas5 displays the list containing HP
xtures. To use a xture that is not listed in the xture list, perform the following procedure:
1. Determine the following parameters before de ning the user xture:
Port Extension
The equivalent electrical length of the xture [m].
Label
The xture identi cation that is displayed in the softkey label.
2. Press 4Meas5 FIXTURE [NONE] MODIFY [NONE] to display the user xture setting menu.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press DEFINE EXTENSION . Then enter an equivalent electrical length by using the
numerical keys.
4. Press LABEL FIXTURE . Enter a label by using the rotary knob and then press DONE .
Pressing 4*5 4+5 changes the character set for entry. Up to 8 characters are allowed.
5. Press KIT DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

6. To store the setting data into the non-volatile memory, press SAVE USER FXTR KIT .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To use the user xture setting, select USER under 4Meas5 FIXTURE [NONE] SELECT FIXTURE .

Calibration 7-17

Calibration Required for the Impedance Analyzer Mode

Performing Fixture Compensation
Fixture compensation reduces the parasitic error existing between the test xture electrode
and the impedance test kit OUTPUT port. Fixture compensation consists of OPEN, SHORT
and LOAD compensations. For basic measurements, the OPEN and SHORT compensations are
required.

Note

For the instructions on how to connect the standards, see the applicable test
xture manual.

1. Connect the SHORT bar to the xture.
2. Press 4Cal5 FIXTURE COMPEN COMPEN MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press SHORT .
After the short compensation sequence is done, the SHORT softkey label is underlined.
NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

4. Remove the SHORT bar and set the OPEN condition.
5. Press OPEN .
After the open compensation sequence is done, the OPEN softkey label is underlined.
NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

6. Press DONE: COMPEN .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Verify that \Cor" changes to \Cmp" notation.

7-18 Calibration

Calibration Required for the Impedance Analyzer Mode

Selecting the Calibration Kit
See \Selecting the Calibration Kit" in \Calibration Required for the Network Analyzer Mode"
for selecting the calibration kit.

De ning a Custom Fixture Compensation Kit
This section explains how to de ne a custom xture compensation kit.
The HP 4395A incorporates a database of HP's genuine test xtures and their speci c
compensation coecients. Therefore, as long as you use an HP's genuine test xture, you can
use the xture without de ning an associated compensation kit.
If you use your custom test xture to meet your actual needs, however, you must de ne the
compensation kit associated with the xture before you can use your custom test xture. Once
you have de ned a xture compensation kit, the HP 4395A preserves the de nitions so you can
select the compensation kit whenever you need to use it.
The HP 4395A uses the following equivalent circuit to perform xture compensation for each
of the OPEN, SHORT, and LOAD circuit states:

Figure 7-3. Model of Fixture Compensation Kit
De ning a xture compensation kit involves the following steps:
1. Opening the xture compensation kit modi cation menu
2. Specifying parameter values
3. Specifying the standard label
The above steps are described in the following subsections in order.

Step 1: Opening the Fixture Compensation Kit Modi cation Menu
To open the xture compensation kit modi cation menu, do the following:
1. Press 4Cal5.
2. Choose COMPEN KIT [USER] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Choose MODIFY [USER] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Choose DEFINE STANDARD .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Calibration 7-19

Calibration Required for the Impedance Analyzer Mode

Step 2: Specifying Parameter Values
In this step, you specify 2 parameters for each of the OPEN, SHORT, and LOAD circuit states;
thus 6 parameters in all. While the parameters for OPEN and SHORT are required, those for
LOAD are optional.
To specify the parameter values, do the following:
1. Choose OPEN: CONDUCT(G) , and enter the conductance value (G) for OPEN.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Choose CAP. (C) , and enter the capacitance value (C) for OPEN.
NNNNNNNNNNNNNNNNNNNNNNNNNN

3. Choose SHORT: RESIST. (R) , and enter the resistance value (R) for SHORT.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Choose INDUCT. (L) , and enter the inductance value (L) for SHORT.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Choose LOAD: RESIST. (R) , and enter the resistance value (R) for LOAD.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Choose INDUCT. (L) , and enter the reactance value (L) for LOAD.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Choose STD DONE (DEFINED) .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 3: Specifying the Standard Label
1. Choose LABEL KIT .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Enter the standard label (up to 10 characters).
3. Choose DONE .
NNNNNNNNNNNNNN

4. Choose KIT DONE (MODIFIED) .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7-20 Calibration

8
Analyzing the Measurement Results
The HP 4395A provides various analyzer functions that allow you to output, save, or further
analyze measurement results obtained through the HP 4395A's measurement functions. The
rst half of this chapter provides these analyzer functions which are not dependent on a
particular analyzer mode. In the latter half, typical measurement techniques for each analyzer
mode are described.
Topics covered include:
Interpreting the trace
Storing the trace data in memory
Using the trace math functions
Overlaying traces
Outputting the data to a printer
Saving and recalling the settings and data
Typical network measurement techniques
Typical spectrum measurement techniques
Typical Impedance measurement techniques

Analyzing the Measurement Results 8-1

Interpreting the Trace

Interpreting the Trace
Once you have successfully displayed the correct trace on the screen, you can use the marker
to interpret the trace. The HP 4395A provides you with powerful search functions that allow
you to search for speci c points (like peaks or ripples). This section provides procedures for
reading values using the marker and the marker search functions.
To read a value using the marker
To use the sub-markers
To use the 1marker
To search for a point that has a target value
To search for the peak-to-peak of ripples using the statistics function
To search for a single peak on the trace
To search for multiple peaks
To de ne the peak for search (to ignore unnecessary peaks)
To specify the search range

To Read a Value Using the Marker
1. Press 4Marker5.
2. Move the marker by performing the following steps:
Turn the rotary knob until the marker moves to the point where you want to read the
measured value.
Enter the target frequency by using numerical keys.
3. Read the marker value displayed on the upper right of the display.

Figure 8-1. Marker Readout

8-2 Analyzing the Measurement Results

Interpreting the Trace

Improving the Readout Resolution (SA Mode)
If you want a more accurate frequency reading of the target signal, set the span and the RBW
as narrow as possible.

Note

The readout resolution of the frequency is determined by the setting of the
frequency span, the number of points (NOP), and the resolution bandwidth
(RBW). The resolution is the sum value of SPAN/(NOP01) and RBW. For
example, when the frequency span is 10 MHz, the NOP is 801, and the RBW is
10 kHz, the readout resolution is approximately 22.5 kHz.

To Select Marker Readout Unit (SA Nide)
Maker readout unit can be selected as follows:
1. press 4Utility5.
2. Press MKR UNIT { g.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select one of the following options:

Format
Power
Voltage

Unit

Softkey

dBm
W

NNNNNNNNNNN

dBV
dBV
V

NNNNNNNNNNN

dBm
WATT

NNNNNNNNNNNNNN

dBV
dBuV
VOLT

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

Analyzing the Measurement Results 8-3

Interpreting the Trace

To Use the Sub-markers
1. Press 4Marker5.
2. Move the marker to the point where you want to set the sub-marker.
3. Press SUB MKR .
NNNNNNNNNNNNNNNNNNNNNNN

4. Select the sub-marker from SUB MKR 1 to 7 .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNN

5. Press 4Utility5.
6. Toggle MKR LIST on OFF to ON off to display the marker list on the bottom of the display.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

The sub-marker appears at the point of that the marker is displayed. Sub-markers are xed
horizontally and you cannot move them.
The sub-marker value can only be displayed by using the marker list.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To clear a sub-marker, press 4Marker5 CLEAR SUB MKR . Then press the sub-marker number that
you want to erase from the display.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To clear all of the markers, press 4Marker5 PRESET MKRS .

Figure 8-2. Sub-marker and Maker List

8-4 Analyzing the Measurement Results

Interpreting the Trace

To Use the 1Marker
1. Press 4Marker5.
2. Place the marker at the point you want use as the reference point by using the

.

3. Press 1MODE MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 1MKR .
NNNNNNNNNNNNNN

5. The reference marker appears at the marker point.
6. To move the marker:
Enter an o set frequency by using the numerical keys.
Turn the rotary knob until the marker moves to the point you want to read the value.
7. Read the level and the frequency di erences from the reference marker that are displayed
on the upper right of the grid.
The marker value on the upper right of the grid shows the frequency and the level di erences
between the reference marker and the marker.
When you use the sub-markers, use the marker list to display the di erence between reference
the marker and the sub-markers. (Press 4Utility5 and then toggle MKR LIST on OFF to ON off .)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Figure 8-3. 1Marker

To Search for a Point that has the Target Value (NA, SA Mode)
1. Press 4Search5.
2. Press TARGET .
NNNNNNNNNNNNNNNNNNNN

3. Enter the target value using 405 . . . 495 and the unit terminator keys.

Analyzing the Measurement Results 8-5

Interpreting the Trace
To search for a target on
All of the display
Left side of the marker
Right side of the marker

Press
NNNNNNNNNNNNNNNNNNNN

TARGET
SEARCH LEFT
SEARCH RIGHT

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

When the 1marker is active, the target value becomes the di erence from the reference
marker, not an absolute value. For example, you can search for the 03 dB cuto point of a
lter by mixing the 1marker and the target search function.

8-6 Analyzing the Measurement Results

Interpreting the Trace

To Search for the Peak-to-Peak of Ripples Using the Statistics Function
Step 1: To Specify the Search Range
1. Press 4Marker5. Then move the marker to the start point of the range.
2. Press 1MODE MENU 1MKR to place the reference marker on the start point of the range.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

3. Move the marker to the end point of the range.
4. Press 4Search5 SEARCH RANGE MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Toggle PART SRCH on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

6. Press MKR1!SEARCH RNG to set the range de ned by the reference marker and the marker
as the search range.
Triangle-shaped indicator (4) at the bottom of the grid shows current search range.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Step 2: To Search For the Ripple
1. Press 4Utility5.
2. Toggle STATISTICS on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

STATISTICS displays the mean value (mean), the standard deviation (s.dev), and the
peak-to-peak value (p-p) of the ripple within the speci ed range of the active channel. This
information is displayed on the upper right of the display (see Figure 8-4). If you did not
specify the search range, the analyzer searches within the displayed area.

Figure 8-4. Ripple Parameters Readout

Analyzing the Measurement Results 8-7

Interpreting the Trace

To Search for a Single Peak on the Trace
1. Press 4Search5.
2. Press SEARCH: PEAK to search a maximum peak.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. If you want to search for another peak:

To search next peak for

Press

2nd highest peak
Peak just to the left
Peak just to the right

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NEXT PEAK
NEXT PEAK LEFT
NEXT PEAK RIGHT

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 8-5. Peak Search

8-8 Analyzing the Measurement Results

Interpreting the Trace

To Search for Multiple Peaks
1. Press 4Search5 MULTIPLE PEAKS .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Do any of following:

To search for peaks

Press

For the all peaks
For peaks on the right
For peaks on the left

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SEARCH: PEAKS ALL
PEAKS RIGHT
PEAKS LEFT

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

3. Press 4Utility5. Toggle MKR LIST on OFF to ON off to list all marker values.
When this function is enabled, the marker is placed on the maximum peak and the sub-markers
are placed on up to seven other peaks. PEAKS ALL searches for all the peaks and places the
sub-markers in the order of peak level.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

PEAKS RIGHT and PEAKS LEFT search only to the right or left side of the peak and place the
sub-markers on peaks in the order found.

If the marker is to search for peaks other than harmonics, specify the peak threshold for the
search function. This makes the search function ignore the peaks that have a lower level than
the threshold level. See the \To De ne the Peak for Search (To Ignore Unnecessary Peaks)"
procedure.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

PEAKS ALL

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

PEAKS RIGHT

Figure 8-6. Searching for Multiple Peaks

Analyzing the Measurement Results 8-9

Interpreting the Trace

To De ne the Peak for Search (To Ignore Unnecessary Peaks)
You can de ne the target peak for the search function using the following techniques:
De ning the peak slope to ignore the relatively broad peaks.
Specifying the peak threshold to ignore the absolutely small peaks.

De ning the Peak Slope to Ignore the Relatively Broad Peaks (NA, ZA Mode)

Entering Directly.

1. Press 4Search5 SEARCH: PEAK .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press PEAK DEF MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press PEAK DEF: 1X . Then enter a width of the peak.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Peak PEAK DEF: 1Y . Then enter a height of the peak.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Using the Marker.
1. Press 4Marker5. Then move the marker on the local maximum you want to search.
2. Press 1MODE MENU 1MKR
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

3. Press 4Search5 SEARCH: PEAK PEAK DEF MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Move the marker to the foot of the peak.
5. Press MKR!PEAK DELTA .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

This parameter de nes the slope of the peak. The de nition is made by de ning 1X and 1Y as
shown in Figure 8-7. The search function searches only for peaks that are steeper than the
speci ed slope. Use this function when the search function searches for a peak that has a
gentle slope.

Figure 8-7. Peak De nition
8-10 Analyzing the Measurement Results

Interpreting the Trace

De ning Peak Height (SA Mode)
1. Press 4Search5.
2. Press SEARCH: PEAK PEAK DEF MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press PEAK DEF: 1Y .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Enter a peak height using the numerical keys and the units terminator keys.
5. Press RETURN .
NNNNNNNNNNNNNNNNNNNN

Specifying the Peak Threshold to Ignore the Absolutely Small Peaks
Entering Directly.
1. Press 4Search5 SEARCH: PEAK PEAK DEF MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press THRESHOLD VALUE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Enter a threshold value.
4. Toggle THRESHOLD on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

The red threshold line is displayed. The all search function searches for only the upper side of
the threshold line.

Using the Marker.
1. Press 4Search5.
2. Press SEARCH: PEAK PEAK DEF MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Move the marker to the point you want to set as the threshold value.
4. Press MKR!THRESHOLD .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Toggle THRESHOLD on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Before De ning the Threshold

After De ning the Threshold

Figure 8-8. Threshold Function
Analyzing the Measurement Results 8-11

Interpreting the Trace

To Specify the Search Range
You can set the search function to search within a speci ed range. To specify the search range,
use one of the following two procedures:
Using the marker
Using the 1marker

Using the Marker
1. Press 4Search5.
2. Press SEARCH RANGE MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Toggle PART SRCH on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

4. Move the marker to the start point of the search range.
5. Press MKR!LEFT RNG to set the marker position as the left edge of the range.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Move the marker to the end point of the search range.
7. Press MKR!RIGHT RNG to set the marker position to the right edge of the range.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8. Press RETURN

NNNNNNNNNNNNNNNNNNNN

Using the 1Marker
1. Press 4Marker5.
2. Move the marker to the start point of the search range.
3. Press 1MODE MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 1MKR .
NNNNNNNNNNNNNN

5. Move the marker to the end point of the search range.
6. Press 4Search5.
7. Press SEARCH RANGE MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8. Toggle PART SRCH on OFF to ON off to enable the search range.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

9. Press MKR1!SEARCH RNG .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

All the search functions search within a speci ed search range. You can specify the search
range for each channel individually. The triangle-shaped indicator at the bottom of the grid
shows the current search range (see Figure 8-9). In this gure, 4Search5 SEARCH: PEAK searches
for the highest peak within the speci ed range. It does not search all of the grid.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8-12 Analyzing the Measurement Results

Interpreting the Trace

Figure 8-9. Search Range
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To turn o the part search, press 4Search5 SEARCH RANGE MENU , and then toggle
PART SRCH ON off to on OFF .

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Analyzing the Measurement Results 8-13

To Use the Trace Memory

To Use the Trace Memory
To Store the Trace into the Trace Memory
1. Display the trace you want to store into the trace memory.
2. Press 4Display5.
3. Press DATA!MEMORY .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

This operation only stores the digitized trace data into the trace memory (not the display on
LCD). You can store the trace data for the trace memory of each channel individually. The
stored trace data is retained until new data is stored, the HP 4395A is preset, or power is
turned o .

To Display Memory Traces
1. Press 4Display5 DISPLAY [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Select the display trace:

To display

Press

Memory trace
Data and memory trace together
Data trace

NNNNNNNNNNNNNNNNNNNN

MEMORY
DATA and MEMORY
DISPLAY: DATA

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Memory traces are displayed as green (channel 1) or red (channel 2) to distinguish between the
two traces. You can change this color by using the modify colors menu under 4Display5 MORE
ADJUST DISPLAY .
NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

If the trace memory of the active channel is empty, the error message (CAUTION: NO VALID
MEMORY TRACE) is displayed.

Notes
The scale of the memory trace is coupling with the data trace. If you want to change the
scale setting for only the data or memory trace, toggle 4Scale Ref5 D&M SCALE [COUPLE] to
[UNCOUPLE] . Then toggle SCALE FOR [DATA] or [MEMORY] before you change the settings.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8-14 Analyzing the Measurement Results

NNNNNNNNNNNNNNNNNNNNNNNNNN

To Overlay Multiple Traces

To Use the Trace Math Function
1. Press 4Display5.
2. Press DATA MATH [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Do one of the following:

To

Press

Add Trace with Memory Trace
Subtract Trace with Memory Trace
Divide Trace with Memory Trace

NNNNNNNNNNNNNNNNNNNNNNNNNN

DATA+MEM
DATA-MEM
DATA/MEM

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

To Turn O the Data Math Function
1. Press 4Display5.
2. Press DATA MATH [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press DATA MATH: DATA .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To Multiply the Trace
1. Press 4Display5.
2. Press DATA MATH [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press GAIN . Then enter a multiplication factor:
NNNNNNNNNNNNNN

To

Use

Change value continuously
Change value with 1-2-5 steps
Enter value directly

4 5 4 5

Note

* +

405

. . . 495 and unit keys

For more information about the settings of gain and o set value, see
Appendix B.

To Clear a Multiplied Trace
1. Press 4Display5.
2. Press DATA MATH [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press DEFAULT GAIN & OFS .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Analyzing the Measurement Results 8-15

To Overlay Multiple Traces

To Overlay Multiple Traces
To Store the Trace into the Overlay Trace
1. Press 4Display5.
2. Press OVERLAY TRACES .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press SELECT PEN COLOR and select one of the colors:
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Overlay Trace Color1

Press

White
Red
Yellow
Green
Light Blue
Blue

NNNNNNNNNNNNNNNNN

PEN
PEN
PEN
PEN
PEN
PEN

1
2
3
4
5
6

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

1 Power ON default.

4. Press DATA!OVERLAY .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Repeat steps 1 through 4 above to store di erent traces.

Note

You cannot change the scale setting for the overlay traces. It is also impossible
to read the overlay trace data with markers or to save the data into a oppy
disk or memory disk. For those applications, use the data trace or memory
trace.

To Clear the Overlay Traces
1. Press 4Display5.
2. Press OVERLAY TRACES .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press CLEAR GRAPHICS .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8-16 Analyzing the Measurement Results

To Print

To Print
This step provides the following procedures for printing:
To print out a display image
To see or print a measured value list
To print an analyzer setting

To Print Out a Display Image
1. Connect the printer to the analyzer with a cable.
2. Press 4Copy5 PRINT [STANDARD] to print out a display image.
To abort printing, press 4Copy5 COPY ABORT .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To See or Print a Measured Value List
1. Press 4Copy5.
2. Press MORE LIST VALUES to display the measured value list.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To see all of the measured value list, press NEXT PAGE or PREV PAGE to turn the pages.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To print out the measured value list, press PRINT [STANDARD] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To return to the measurement display, press RESTORE DISPLAY .

To Print an Analyzer Setting
1. Press 4Copy5.
2. Press MORE OPERATING PARAMETERS to display the analyzer setting table as shown below.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press PRINT [STANDARD] to print out the settings.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. To return to the measurement display, press RESTORE DISPLAY .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Analyzing the Measurement Results 8-17

To Print
Analyzer Setting Table
OPERATING PARAMETER
ANALYZER TYPE

CH1
NA

CH2
NA

SWEEP TYPE
NUMBER of POINTS
PORT 1 ATTEN.
PORT 2 ATTEN.
INPUT R ATTEN.
INPUT A ATTEN.
INPUT B ATTEN.
GROUP DELAY APERTURE
PHASE OFFSET

LIN FREQ
201
0 dB
0 dB
20 dB
20 dB
20 dB
1 % SPAN
0

LIN FREQ
201
0 dB
0 dB
20 dB
20 dB
20 dB
1 % SPAN
0

PORT
PORT
INPUT
INPUT
INPUT

VELOCITY FACTOR

0 s
0 s
0 s
0 s
0 s
OFF
1

0 s
0 s
0 s
0 s
0 s
OFF
1

CAL KIT

7mm

7mm

Z0
CAL TYPE

50 ohm
NONE

50 ohm
NONE

1
2
R
A
B

EXTENSION
EXTENSION
EXTENSION
EXTENSION
EXTENSION

8-18 Analyzing the Measurement Results

To Save and Recall

To Save and Recall the Settings and Data
This step provides the following procedures for saving and recalling:
To save an analyzer setting or measurement data
To recall a saved analyzer setting
To save a display image to a TIFF le
To save measured data for a spreadsheet
To copy a le between oppy disk and memory disk
To initialize a disk for use
To initialize the memory disk for use
To back up the memory disk

To Save an Analyzer Setting or Measurement Data
The HP 4395A supports two storage devices, a built-in exible disk drive and a 512KB memory
disk. The exible disk drive should be used to store large numbers of les and for long term
data storage. Memory disk should be used for temporary data and instrument states and to
store or get data quickly.

Note

When you store important data into the memory disk, perform the memory
disk backup operation described in \To Back Up the Memory Disk". Otherwise,
the memory disk data is lost when the power is turned o .

1. Insert a LIF or DOS formatted 3.5 inch disk into the built-in disk drive (if you are recalling
an instrument state le from the memory disk, skip this step).
2. Press 4Save5.
3. Select a save data type:

Save Data Type

Press

Instrument states only
Measurement data only1

NNNNNNNNNNNNNNNNN

STATE
DATA ONLY (binary)

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

1 You can specify a data array type. See the \Specifying a Data Array Type"
procedure.

4. Select where the le is stored by pressing either STOR DEV [DISK] (for the built-in disk
drive) or STOR DEV [MEMORY] (for the memory disk).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Enter a lename. Then press DONE .
NNNNNNNNNNNNNN

The analyzer automatically detects the disk format as either the LIF (Logical Interchange
Format) or DOS (Disk Operating System). If you insert an any other format type disk, an error
message is displayed.
For more information, Appendix A provides a complete list of the instrument state to be saved.

Analyzing the Measurement Results 8-19

To Save and Recall

Specifying the Data Format
To save only the measurement data in the ASCII or binary format, follow these steps:
1. Press 4Save5.
2. Choose DATA ONLY . Then select one of the following options by choosing the corresponding
softkey:
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Data Format

Softkey

ASCII
Binary

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SAVE ASCII
SAVE BINARY

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Specifying a Data Array Type
To save only the measurement data by specifying the data array to save, follow these steps:
1. Press 4Save5.
2. Choose DATA ONLY .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press DEFINE SAVE DATA

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Choose the softkey associated with the data array to save so that the last two words of the
key label are toggle from on OFF to ON off .
NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Data Array

Toggle

Raw data array
Calibration data array
Data array
Memory array
Data Trace array
Memory Trace array

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

RAW on OFF to ON off
CAL on OFF to ON off
DATA on OFF to ON off
MEM on OFF to ON off
DATA TRACE on OFF to ON off
MEM TRACE on OFF to ON off

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

5. Choose RETURN to return to the top menu.
See Appendix A for the de nition of each array.

To Recall a Saved Analyzer Setting
1. Insert a disk (if you are recalling an instrument state le from the memory disk, skip this
step).
2. Press 4Recall5.
3. Select where the le is stored by pressing either STOR DEV [DISK] (for a built-in disk
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

drive) or STOR DEV [MEMORY] (for a memory disk).
4. Search for the lename you want to recall (the les are listed on the softkey label).
5. If a target le is not listed on the softkey label, turn the label page by pressing PREV FILES
or NEXT FILES .

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8-20 Analyzing the Measurement Results

To Save and Recall
6. Press the softkey corresponding to the lename label.

To Save a Display Image to a TIFF File
1. Press 4Save5 GRAPHICS .
NNNNNNNNNNNNNNNNNNNNNNNNNN

2. Select where to store the le by pressing either STOR DEV [DISK] (for a built-in disk drive)
or STOR DEV [MEMORY] (for a memory disk).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Enter lename. Then press DONE .
NNNNNNNNNNNNNN

The analyzer saves a TIFF le with an extension, \.TIF" for a DOS format, or a sux, \_T" for
a LIF format.
If there is a le that has the same name you entered on the disk, the error message, \ lename
error" will be displayed. To save the le, use the other lename to save or purge the old le.
To purge a le, press 4Save5 FILE UTILITIES PURGE FILE then select the displayed lename
by pressing the associated softkey.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To Save Measured Data for a Spreadsheet
1. Insert a DOS format disk into the built-in disk drive.
2. Press 4Save5 DATA ONLY .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press SAVE ASCII .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Select the built-in disk drive as the storage device by toggling to STOR DEV [DISK] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Enter a lename. Then press DONE .
NNNNNNNNNNNNNN

The analyzer saves an ASCII le with a \.TXT" extension.
The measured data is saved as ASCII text. Each value is separated by a tab. When you
open this le from the spreadsheet software, specify the le format as the \TEXT with TAB
delimiter".

Figure 8-10. Reading Saved Data from Spreadsheet Software

Analyzing the Measurement Results 8-21

To Save and Recall

To Copy a File between Floppy Disk and Memory Disk
1. Press 4Save5 FILE UTILITIES .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press COPY FILE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select a storage device where the le is stored by toggling either STOR DEV [DISK] (for the
build-in disk drive) or STOR DEV [MEMORY] (for the memory disk).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Search for the lename you want to recall (the les are listed on the softkey label).
5. If a target le is not listed on the softkey labels, turn the label page by pressing
PREV FILES or NEXT FILES .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Press the softkey corresponding to the lename label.
7. Enter the lename of the target le.
8. Select the target storage device by toggling STOR DEV [DISK] or [MEMORY] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

9. Press DONE to copy the le.
NNNNNNNNNNNNNN

You cannot copy a le between the LIF and DOS formats. When you want to copy a le on
a DOS formatted disk to the memory disk, you must initialize the memory disk to the DOS
format.

To Initialize a Disk for Use
Note
1.
2.
3.
4.

Initializing the disk erases all data on the disk.
The HP 4395A can initialize a 1.44 MB 3.5 inch exible disk only.

Verify that the disk is not write protected.
Insert the disk.
Press 4Save5.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Choose FILE UTILITIES .

5. Choose INITIALIZE DISK .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Select the disk format (either DOS or LIF) by toggling FORMAT [DOS] or [LIF] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Toggle to STOR DEV [DISK] to select the disk drive.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8. Press INIT DISK: YES to initialize the disk.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8-22 Analyzing the Measurement Results

NNNNNNNNNNNNNNNNN

To Save and Recall

To Initialize the Memory Disk for Use
Note

Initializing the memory disk erases all data on the memory disk. Copy
important les on the memory disk to a exible disk before initializing the
memory disk.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

1. Press 4Save5 FILE UTILITIES .
2. Press INITIALIZE DISK .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select the disk format (either DOS or LIF) by toggling FORMAT [DOS] or [LIF] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

4. Toggle to STOR DEV [MEMORY] to select the memory disk.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Press INIT DISK: YES .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The les on the memory disk are lost when the HP 4395A is turned o unless the memory disk
is backed up using BACK UP MEMO DISK .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To Back Up the Memory Disk
The data ( les and disk format) on the memory disk can be copied to a non-volatile memory
( ash memory) by memory disk backup operation. The backup copy data is recalled to the
memory disk every time the HP 4395A is turned on.
1. Press 4Save5.
2. Press BACK UP MEMO DISK .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Note

When you store important data into the memory disk, You must back up
the memory disk using BACK UP MEMO DISK . Otherwise, the data on the
memory disk is lost when the HP 4395A is turned o .
Backup is also important as a means of recovering your precious data in the
event of a power interruption or misoperation. For example, even if you
inadvertently formatted the memory disk while using the HP 4395A, you
could easily recover the data ( les and disk format) from the backup copy; all
you have to do is turn OFF and ON the HP 4395A.
The memory disk can endure approximately 100,000 cycles of backup
operation.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Analyzing the Measurement Results 8-23

Typical Network Measurement Techniques

Typical Network Measurement Techniques
This section provides the following typical measurement techniques using the network analyzer
mode of operation:
Measuring 3 dB bandwidth using the width function
Measuring electrical length
Measuring phase deviation
Compensating for the electrical delay caused by an extension cable

8-24 Analyzing the Measurement Results

Measuring 3 dB Bandwidth Using the Width Function

Measuring 3 dB Bandwidth Using the Width Function
1. Do one of the following:

Reference Point

Keystrokes

Maximum value
Nominal frequency

Press 4Search5 MAX .
Press 4Marker5 and enter the
nominal frequency through the
numerical keypad.

NNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

2. Press 4Marker5 1MODE MENU 1MKR to make the marker a reference.
3. Press 4Search5 WIDTH [OFF] WIDTH VALUE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 405 435 4215 to enter 03 dB.
5. Toggle WIDTH on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

As shown in Figure 8-11, a pair of sub-markers appear on both sides of the reference marker,
being lowered by the speci ed number of levels; also, another sub-maker is displayed in the
middle between the two sub-markers. The bandwidth (BW), center frequency (cent), Q factor
(Q), insertion loss (loss), and left and right hand bandwidth from the center frequency (1L.F
and 1R.F) are displayed at the upper right corner of the grid.
You can move the reference marker using the rotary knob. When you enable the width
function, the reference marker automatically turns into a tracking 1marker that allows you to
move the reference marker.
For more information about the width function, see Appendix A.

Figure 8-11. Bandwidth Measurement Using Width Function

Analyzing the Measurement Results 8-25

Measuring Electrical Length

Measuring Electrical Length
1. Press 4Format5 PHASE , and then select the desired phase format.
NNNNNNNNNNNNNNNNN

2. Do one of the following procedures:
Using the marker:
a. Press 4Marker5.
b. Turn the rotary knob to move the marker to the center of the display.
c. Press 4Cal5 MORE ELEC DELAY MENU .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

d. Press MKR!DELAY .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Using the rotary knob:
a. Press 4cal5 MORE ELEC DELAY MENU

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

b. Press ELECTRICAL DELAY .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

c. Turn the rotary knob until the trace becomes at at the speci ed frequency.
3. Press ELECTRICAL DELAY . Then read the electrical length that is displayed under the
electrical delay time.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Before Adding the Electrical Length

After Adding the Electrical Length

Figure 8-12. Measuring Electrical Length
If the average relative permittivity ("R ) of the DUT is known over the frequency span, the
length calculation can be adjusted to better indicate the actual length of the DUT. This can be
done by entering the relative velocity factor for the DUT.

8-26 Analyzing the Measurement Results

Measuring Electrical Length

Setting the Velocity Factor of a Cable
1. Press 4Cal5.
2. Press MORE .
NNNNNNNNNNNNNN

3. Press VELOCITY FACTOR .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Enter a new value. Then press 4215.
The relative velocity factor for a given dielectric can be calculated by:
1
Vf = p
"R

The velocity factor defaults to 1.

Analyzing the Measurement Results 8-27

Measuring Phase Deviation

Measuring Phase Deviation
Deviation from the Linear Phase
1. Specify the frequency range.
2. Display the phase trace by pressing 4Format5 PHASE .
NNNNNNNNNNNNNNNNN

3. Adjust the scale settings by pressing 4Scale Ref5 AUTO SCALE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 4Marker5. Then move the marker to any of the points where the sloping trace crosses
the center (place the marker on the sloping portion of the trace, not the vertical phase
\wrap-around").
5. Press 4cal5 MORE ELEC DELAY MENU MKR!DELAY to add enough electrical length to match
the phase slope present at the marker frequency.
6. Read the phase value as a deviation from the linear phase.
By adding the electrical length to atten the phase response, the linear phase shift caused by
the DUT is removed. The displayed response is the deviation from the linear phase.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To turn o the electrical length function, press 4cal5 MORE ELEC DELAY MENU
ELECTRICAL DELAY 405 4215.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 8-13. Deviation from the Linear Phase

Group Delay
The phase linearity of many devices is speci ed in terms of group delay or envelope delay. This
is especially true of telecommunications components and systems.
Group delay is the di erence in propagation time through a device as a function of frequency.
It is measured as a ratio of phase change over a sample delta frequency as follows:
1
Group Delay = 0
3601F
Where:

1 is phase change [deg]
1F (commonly called the \aperture") is the frequency di erence that gives 1
1. Press 4Format5.
8-28 Analyzing the Measurement Results

Measuring Phase Deviation
2. Press DELAY .
NNNNNNNNNNNNNNNNN

3. Press 4Scale Ref5 AUTO SCALE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The group delay format displays the phase deviation to the group delay aperture. Therefore,
setting the group delay aperture a ects the trace shape. Setting a wider aperture makes the
trace smoother. The aperture defaults to 1% of the span.

Setting the Group Delay Aperture.
1. Press 4Bw/Avg5.
2. Press GROUP DELAY APERTURE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Enter group delay aperture value as a percentage of the span.
The group delay aperture is based on the number of points, not the real aperture. For example,
if the number of points is 201, a 1% group delay aperture causes the HP 4395A to calculate the
group delay using the adjacent measurement points on both sides. Therefore, the group delay
trace may di er depending on the speci ed number of points.

Aperture 1%

Aperture 5%

Figure 8-14. Setting Group Delay Aperture

Analyzing the Measurement Results 8-29

Compensating for the Electrical Delay Caused by an Extension Cable

Compensating for the Electrical Delay Caused by an Extension Cable
If the Electrical Delay of the Extension Cable is Known
1. Press 4Cal5 MORE PORT EXTENSIONS to open the port extension menu.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Enter the electrical delay values for the respective input ports.
If you do not use the S-parameter test set, follow these steps:
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press EXTENSION INPUT R . Then enter the electrical delay of the cable that is
connected to the R input.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press EXTENSION INPUT A . Then enter the electrical delay of the A input.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press EXTENSION INPUT B . Then enter the electrical delay of the B input.
If you use the transmission/re ection (T/R) test set, enter the electrical delay of the cable
that is connected to the TEST PORT (for the R and A inputs).

Figure 8-15. Port Extension With the T/R Test Set
If you use the S-parameter test set, follow these steps:
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Enter \0" for EXTENSION INPUT R , EXTENSION INPUT A and EXTENSION INPUT B to
clear the port extension of the R, A and B inputs.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press EXTENSION PORT 1 . Then enter the electrical delay of the PORT 1.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press EXTENSION PORT 2 . Then enter the electrical delay of the PORT 2.
3. Toggle EXTENSION on OFF to ON off to enable the port extension.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

8-30 Analyzing the Measurement Results

Compensating for the Electrical Delay Caused by an Extension Cable

If the Electrical Delay of the Extension Cable is Unknown
You can determine the electrical delay of the extension cable by:
Measuring the electrical delay of the cable
Measuring the cable's re ection in the OPEN or SHORT circuit state.

Measuring the Electrical Length of a Cable.
1. Connect the cable as shown in Figure 8-16.
2. De ne the frequency range according to the measurement conditions.
3. Press 4Meas5 B/R (or S PARAMETERS Trans: FWD S21 [B/R] ) to select the transmission
measurement.
4. Press 4Format5 PHASE to select the phase format.
NNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

5. Press 4Marker5. Then move the marker to the sloping trace that crosses the center of the
display.
6. Press 4Cal5 MORE ELEC DELAY MENU MKR!DELAY ELECTRICAL DELAY , then read the
electrical delay of the cable.
7. Press 405 4215 to clear the electrical delay o set.
8. Enter a measured electrical delay as described in the \If the Electrical Delay of the
Extension Cable is Known" procedure.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 8-16. Cable Measurement Con guration (Transmission)
Re ection of a Opened or Shorted Cable.
1. Connect the cable as shown in Figure 8-17.
2. De ne the frequency range according to the measurement conditions.
3. Press 4Meas5 A/R (or S PARAMETERS Refl:FWD S11 [A/R] ) to select the re ection
measurement.
4. Press 4Format5 PHASE to select the phase format.
NNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

Analyzing the Measurement Results 8-31

Compensating for the Electrical Delay Caused by an Extension Cable
5. Press 4Marker5. Then move the marker to the sloping trace that crosses the center of the
display.
6. Press 4Cal5 MORE ELEC DELAY MENU MKR!DELAY ELECTRICAL DELAY , then read the
electrical delay of the cable.
Note that this value is twice the real delay because there are both output and return paths.
7. Press 405 4215 to clear the electrical delay o set.
8. Enter half the value of the measured electrical delay as described in the \If the Electrical
Delay of the Extension Cable is Known" procedure.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 8-17. Cable Measurement Con guration (Re ection)

8-32 Analyzing the Measurement Results

Typical Spectrum Measurement Techniques

Typical Spectrum Measurement Techniques
This section describes typical spectrum measurement techniques. The topics covered include:
Measuring the noise level
Measuring the carrier to noise ratio
Performing the time gated spectrum analysis
Measuring zero span (time domain measurement)
Tracking unstable harmonics using the search track function

Analyzing the Measurement Results 8-33

Measuring the Noise Level

Measuring the Noise Level
1. Press 4Format5.
2. Choose NOISE .
NNNNNNNNNNNNNNNNN

3. Press 4Scale Ref5. Then press 4+5 until the noise trace gets close to the reference level.
4. Press 4Bw/Avg5. Then press VIDEO BW .
NNNNNNNNNNNNNNNNNNNNNNNNNN

5. Press 4+5 to atten the noise trace.
6. Press 4
and read the normalized noise level.
Marker5. Then turn the
The marker readout unit becomes \dBm/Hz" and is normalized by the 1 Hz equivalent
noise bandwidth (ENBW). To convert the ENBW, see the \Converting to a Di erent Unit of
Equivalent Noise Bandwidth" procedure.

Note

Figure 8-18. Noise Readout
Switching the display to a noise format causes the HP 4395A to perform
detection in sample detection mode. Subsequently returning the format to
4Format5 SPECTRUM causes the HP 4395A to perform detection in positive peak
detection mode. This is true even if you have selected the negative detection
mode before switching to the noise format.
NNNNNNNNNNNNNNNNNNNNNNNNNN

Converting to a Di erent Unit of Equivalent Noise Bandwidth
1. Calculate the conversion factor using the following equations with displayed units:

Unit

Use

dBm=Hz

p

p

K = 10logBW

dBV = Hz , dBV = Hz

K = 10logBW

W=Hz

K = 1=BW

V = Hz

K = 1= BW

p

p

2. Where, BW is the target equivalent noise bandwidth.
8-34 Analyzing the Measurement Results

Measuring the Noise Level
3. Press 4Display5 and choose DATA MATH [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

p

NNNNNNNNNNNNNNNNNNNN

p

Choose OFFSET for dBm=Hz , dBV = Hz , and dBV = Hz .
NNNNNNNNNNNNNN

p

Choose GAIN for V = Hz and W=Hz .
4. Enter K, then press 4215.

Note

p

p

p

The HP 4395A displays dBV = Hz , dBV = Hz , V = Hz as dBV/Hz, dBV/Hz,
V/Hz respectively.

Analyzing the Measurement Results 8-35

Measuring the Carrier to Noise Ratio

Measuring the Carrier to Noise Ratio
1. Set up the frequency range within which to measure a carrier signal.
2. Press 4Marker5 to place the marker on the trace.
3. Press 4Scale Ref5 and choose PEAK!REFERENCE to set the reference level to the carrier signal
level.
4. Adjust the scale/div to display the carrier and noise oor. Use 4Scale Ref5 SCALE/DIV .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Press 4Marker5 and choose 1MODE MENU 1MKR to place the reference marker on the carrier
signal.
6. Press 4Bw/Avg5. Then choose VIDEO BW .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

7. Enter an appropriate video bandwidth to reduce the variation.
8. Press 4Marker5. Then do either of the following:
Enter the o set frequency using the numeric keys.
Move the marker into the noise level of the trace using the rotary knob.
9. If you want to normalize the marker readout with the RBW lter, press 4Utility5 and toggle
NOISE FORM on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

10. Read the di erence from the reference marker.

Figure 8-19. C/N Measurement

8-36 Analyzing the Measurement Results

Measuring the Carrier to Noise Ratio

Time Gated Spectrum Analysis
The time gated spectrum analysis function can be used to measure any one of several signals
separated in time (for example, burst modulated, pulsed RF, and time multiplexed). Using the
gated sweep function allows the analyzer to measure the spectrum of a speci c part of the
signal or separate signals, and mask out interfering or transient signals. In the gated sweep
mode, the analyzer is triggered to start and interrupt sweep selectively by an external trigger
signal. By controlling the external trigger signal, the analyzer measures only the signals that
are present when the analyzer sweeps.
The gate sweep is controlled by the following factors:
Trigger polarity, which determines which positive or negative edge (level) causes triggering
Gate trigger mode, which selects one of two modes (EDGE or LEVEL)
Gate Delay, which determines how long after the trigger signal the gate actuarially becomes
active.
Gate Length, which determines how long the gate is on.

Gate Trigger Mode
Two gate trigger modes (EDGE and LEVEL) are provided for the gate trigger to match the
trigger signal used.
Edge Mode. The edge mode allows you to position the gate relative to either the rising or
falling edge of a TTL trigger signal. The edge initiates the gate delay. For the edge mode, the
gate sweep is controlled by the following factors:
Trigger polarity, which selects the edge (positive or negative) to initiate the start point of the
gate sweep. At the start point, the edge initiates the gate delay.
Gate Delay, which determines how long after the trigger signal the gate actuarially becomes
active.
Gate Length, which determines how long the gate is on.

Figure 8-20. Edge Mode

Analyzing the Measurement Results 8-37

Measuring the Carrier to Noise Ratio
Level Mode. The level mode allows the external trigger signal to open and close the gate

directly, without a programmed gate length. The level mode also provides the gate delay. For
the level mode, the gate sweep is controlled by the following factors:
Trigger polarity, which selects the polarity of TTL the level (+5 V or 0 V) to open gate.
Gate Delay, which determines how long after the trigger signal the gate becomes active.

Figure 8-21. Level Mode

8-38 Analyzing the Measurement Results

Measuring the Carrier to Noise Ratio

RBW Filter Response Time
You don't need to care about the setting time for the RBW lter because the HP 4395A
implements the RBW lter using digital processing.
Video bandwidth (VBW) can be set without concern for the gate length setting. The analyzer
implements the video lter using digital processing. The video lter of the analyzer requires no
settling time for normal operation. Therefore, it is not a ected by the gate length setting.

Analyzing the Measurement Results 8-39

Performing Time Gated Spectrum Analysis

Performing Time Gated Spectrum Analysis
Time gated spectrum analysis involves the following steps:
1. Determining the Gate Trigger Parameters
2. Connecting the Gate Trigger Source
3. Setting the Center and Span Frequency
4. Adjusting the Gate Trigger
5. Setting the RBW/VBW and Using the Averaging Function
6. Measuring the Spectrum

Note

Performing this measurement requires Option 1D6.

Step 1: Determining the Gate Trigger Parameters.
1. Connect the target signal and the trigger signal to the input port of an oscilloscope (see
Figure 8-22).

Figure 8-22. Time Domain Measurement Con guration
2. Adjust the oscilloscope to display the two signals.
3. Using the oscilloscope, check the following parameters:
For the target signal:
Pulse repetition width (PRI)
Signal width ( )
Signal delay (SD)
For the trigger signal:
Pulse width (if you use the level trigger mode)
8-40 Analyzing the Measurement Results

Performing Time Gated Spectrum Analysis
The signal delay (SD) is the delay inherent in the signal (that is, SD is the length of time after
the trigger, but before the signal of interest occurs and becomes stable).

Figure 8-23. Target and Trigger Signal Timing on the Oscilloscope
4. Determine the gate parameters using the following equations:
Gate delay = SUT + SD
Figure 8-24 shows the scheme of these parameters.
Open the \gate" during the time the signal is in a stable condition. The time from the start
time of a signal and the open time of a gate is the \set up time" (SUT).

Figure 8-24. Gate Parameters
Analyzing the Measurement Results 8-41

Performing Time Gated Spectrum Analysis
Step 2: Connecting the Gate Trigger Source.
1. Connect the RF signal source to the R input of the HP 4395A.
2. Connect the trigger output from the signal source to the EXT TRIGGER connector on the
rear panel of the HP 4395A.

Figure 8-25. Time Gated Measurement Con guration
Step 3: Setting the Center and Span Frequency.
Set up the center and span frequency of the HP 4395A to display the target signal.

Step 4: Adjusting the Gate Trigger.
1. Press 4Trigger5 CONTINUOUS to activate a gate trigger.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Choose TRIGGER: [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Choose GATE [ ] .
NNNNNNNNNNNNNNNNNNNNNNNNNN

4. Select the gate control mode. Select LEVEL or EDGE by toggling GATE CTL: LEVEL and
EDGE to the required mode.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

5. If you have selected the LEVEL trigger mode, set the trigger polarity for starting the gate.
Press RETURN . And then toggle TRIG PLRTY to POS neg (positive) or pos NEG (negative).
NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNN

6. Choose GATE [ ] GATE DELAY .
NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Set a gate delay time.
8. If you have selected the EDGE trigger mode, choose GATE LENGTH . Then set the gate open
length.
You can see the gate trigger status by monitoring the GATE Output terminal using an
oscilloscope. The GATE Output terminal is located on the HP 4395A's rear panel.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8-42 Analyzing the Measurement Results

Performing Time Gated Spectrum Analysis

Setting the RBW/VBW and Using the Averaging Function
Setting the Resolution Bandwidth.

1. Press 4Bw/Avg5.
2. Press RES BW and set the resolution bandwidth in accordance with Table 8-1.
NNNNNNNNNNNNNNNNNNNN

Analyzing the Measurement Results 8-43

Performing Time Gated Spectrum Analysis
You must specify a gate length longer than the minimum gate length listed in Table 8-1.
Otherwise, the sweep does not start.

Table 8-1. Allowable RWB Settings and Minimum Gate Length
RBW

Minimum Gate Length1

1 MHz

6 sec

300 kHz

22 sec

100 kHz

44 sec

30 kHz

170 sec

10 kHz

660 sec

3 kHz

1.4 msec

1 kHz

5.3 msec

300 Hz

22 msec

100 Hz

43 msec

30 Hz

170 msec

10 Hz

680 msec

3 Hz

1.4 sec

1 Hz

Gated sweep is not available.2

1 If the gate control mode is \level", add the gate delay setting
to the listed value.
2 5.5 sec when the gate control mode is \level".

Setting the Video Bandwidth (VBW).
1. Choose VIDEO BW .
NNNNNNNNNNNNNNNNNNNNNNNNNN

2. Set the video bandwidth.
You can set any video bandwidth (VBW) without concern for the gate length setting. The
HP 4395A implements the video lter using digital processing. The video lter of the HP 4395A
requires no settling time for normal operation. Therefore, it is not a ected by the gate length
setting.
You can also use the averaging function to reduce the variation of the trace.

8-44 Analyzing the Measurement Results

Performing Time Gated Spectrum Analysis
Measuring the Spectrum.
1. Adjust the span setting to t the trace to your requirement.
2. Perform your measurement.

Before Time Gating (VBW = 30 kHz)

After Time Gating (VBW = 300 Hz)

Figure 8-26. Time Gated Spectrum Analysis

Analyzing the Measurement Results 8-45

Measuring Zero Span

Measuring Zero Span
1. Determine the following parameters:
Sweep Time
Number of Display Points (NOP)
2. Press 4Center5. Then enter the frequency of the target signal.
3. Press 4Span5 and choose ZERO SPAN to set the frequency span to 0 Hz.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 4Sweep5.
5. Press 4Sweep5 and choose SWEEP TIME , and then enter the sweep time.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Press 4Sweep5 and choose NUMBER of POINTS . Then enter your desired number of points
(NOP).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Note

Table 8-2 lists default settings when the span is switched to normal span or
zero span in spectrum analyzer mode.

Table 8-2.
Default Settings When Switched to Normal Span or Zero
Span
Switched to Normal
Span

Switched to Zero Span

RBW mode

Auto

Manual

RBW

Automatically
determined

3 MHz

Sweep time mode

Auto (Fixed1 )

Manual (Fixed1 )

Sweep time

Automatically
determined

32 sec

NOP2

Automatically
determined

801

Detection mode

Positive peak

Sample

1 Sweep time mode can not be changed in spectrum analyzer mode.
2 Number of display points

You must specify an RBW equal to or greater than 3 kHz. If your speci ed
value is smaller than 3 kHz, the HP 4395A automatically sets the RBW to 3
kHz.
When you change the sweep time in zero span measurement of spectrum
analyzer mode, the sweep time is limited by the number of display points. If
you want to set a shorter sweep time than the limited sweep time, reduce
the number of display points with 4Sweep5 NUMBER of POINTS , and then set a
desired sweep time with SWEEP . If you want to set a longer sweep time than
the limited sweep time, increase the number of display points, and then set a
desired sweep time.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

8-46 Analyzing the Measurement Results

Measuring Zero Span
The minimum time resolution and maximum sweep time in measuring zero
span are listed in Table 8-3.

Table 8-3. Minimum Time Resolution
RBW
Min. Time
Max. Sweep Time
Resolution
(NOP=801)
5 MHz

40 nsec

1.28 msec

3 MHz

40 nsec

2.56 msec

1.5 MHz

80 nsec

5.12 msec

800 kHz

160 nsec

10.24 msec

400 kHz

320 nsec

20.48 msec

200 kHz

640 nsec

40.96 msec

100 kHz

1.28 sec

81.9 msec

40 kHz

2.56 sec

163.8 msec

20 kHz

5.12 sec

327.7 msec

10 kHz

10.24 sec

655.4 msec

5 kHz

20.48 sec

1.311 sec

3 kHz

40.96 sec

2.621 sec

The HP 4395A uses an exclusive lter for 5 MHz resolution bandwidth to
improve the response time. Accurate measurements with a 5 MHz RBW
require the center frequency to be equal to the signal frequency.

Reading Transition Time Using the Marker
1. Press 4Utility5.
2. Toggle MKR TIME on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3.

Move the marker using the

NNNNNNNNNNNNNNNNNNNN

.

4. Read the transition time that is displayed on the upper right of the grid.
When you are measuring the zero span, the marker displays the same frequency on every point
of trace. Using the marker time function, you can change have the HP 4395A display time
values instead of frequency. The marker displays transition time from the left end of the grid.

Analyzing the Measurement Results 8-47

Measuring Zero Span

Figure 8-27. Marker Time

8-48 Analyzing the Measurement Results

Tracking Unstable Harmonics Using the Search Track Function

Tracking Unstable Harmonics Using the Search Track Function
1. Set the frequency range to display the carrier and the harmonics.
2. Press 4Search5 and choose SEARCH: PEAK to move the marker to the peak.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press 4Marker5 and choose 1MODE MENU TRACKING 1MKR to set up the marker as a reference
1marker that can move with the carrier.
4. Press 4Search5 and toggle SEARCH TRK on OFF to ON off to cause the search function to be
activated every time the HP 4395A performs a sweep process.
5. Choose MULTIPLE PEAKS PEAKS RIGHT to search for the carrier and harmonics under the
search track.
6. Press 4Utility5. Then toggle MKR LIST on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Even if the frequency of a carrier changes, the HP 4395A automatically tracks the carrier and
the harmonics at the end of the sweep. Then the analyzer lists the di erence between the
carrier and the harmonics in the lower half of the screen.
If you wish to ignore the peaks other than the harmonics, you can use the peak threshold. For
more information, See \To De ne the Peak for Search (To Ignore Unnecessary Peaks)".

Carrier Frequency: 50 MHz

55 MHz

Figure 8-28. Tracking Unstable Harmonics Using Search Track

Analyzing the Measurement Results 8-49

Typical Impedance Measurement Techniques

Typical Impedance Measurement Techniques
This section describes typical impedance measurement techniques. The topics covered include:
Applying DC bias
Equivalent circuit analysis
Determining Q value using the width search function
Port extension

Applying DC Bias

The HP 4395A option 001 DC source can be used to supply up to 640 V / 6100 mA of DC
voltage/current to external circuit or DUT through the DC SOURCE port on the front panel.
This section explains how to supply DC bias to the DUT on impedance measurement mode.
1. Make sure that the HP 4395A's DC SOURCE port is inactive. (The softkey label under 4Source5
should be DC OUT on OFF .)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Connect a BNC cable between the DC SOURCE port and the impedance test kit's DC
SOURCE INPUT port (see Figure 8-29).
The HP 4395A can apply DC voltage bias up to 640V or dc current bias up to 620 mA.

Caution

Figure 8-29. Connecting DC SOURCE to Impedance test kit
Do not attempt to perform calibration or xture compensation while the
HP 4395A is applying DC bias. Doing so could damage the calibration or xture
compensation standard.

8-50 Analyzing the Measurement Results

Typical Impedance Measurement Techniques

Setting the Upper Limit for DC Bias
The HP 4395A can control DC bias so that a user-speci ed upper limit (current or voltage) is
not exceeded. This feature ensures that the device under DC bias is protected from excessively
high voltage or current.
DC bias can be applied in one of two modes: current control and voltage control. You can set
the upper limit voltage for current control mode, or the upper limit current for voltage control
mode.

Caution

Before applying DC bias, you must set the upper limit to protect the DUT.

To set the DC bias upper limit, follow these steps:
1. Press 4Source5.
2. Select one of the following two options:
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To apply DC bias in voltage control mode, toggle DC SRC [CURRENT] to
DC SRC [VOLTAGE] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To apply DC bias in current control mode, toggle DC SRC [VOLTAGE] to
DC SRC [CURRENT] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Set the upper limit voltage or current.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

For voltage control mode, choose DC CURRENT LIMIT and enter the upper limit current
using the numeric keys.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

For current control mode, choose DC VOLTAGE LIMIT and enter the upper limit voltage
using the numeric keys.

Setting up and Applying Output Voltage/Current
1. Press 4Source5.
2. Press DC VOLTAGE (for voltage control mode) or DC CURRENT (for current control mode),
and enter output DC voltage or current using the numeric keys.
3. Toggle DC OUT on OFF to ON off to apply the DC voltage or current to the DUT.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Analyzing the Measurement Results 8-51

Typical Impedance Measurement Techniques

Equivalent Circuit Analysis
The HP 4395A provides a function that automatically calculates approximate values of
speci c parameters of an equivalent circuit that corresponds to a DUT. This function supports
ve circuit models. In addition, the resulting parameter values can be used to simulate the
frequency-based characteristics of the equivalent circuit; this allows you to compare the
simulated characteristics with the actually measured characteristics.

Menus Associated with Equivalent Circuit Analysis
To use the equivalent circuit analysis function, open the Equivalent Circuit Menu by pressing
4Display5 and choosing EQUIV KIT MENU . The Equivalent Circuit Menu provides access to two
submenus: Select Equivalent Circuit Menu and De ne Equivalent Circuit Parameter Menu.
These three menus are described in this section.
Equivalent Circuit Menu. You can open the equivalent circuit analysis menu by
pressing 4Display5 and choosing MORE EQUIV KIT MENU . This menu provides such options
as for calculating the equivalent circuit parameters or simulating the equivalent circuit's
characteristics under swept frequency.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Softkey Label

Description
SELECT EQV CKT [ ] Opens the Select Equivalent Circuit Menu, which

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

DISP EQV PARM [ ]
DEFINE EQV PARAMS

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

CALCULATE EQV PARAMS

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SIMULATE F-CHRST

NNNNNNNNNNNNNNNNNNNN

RETURN

lets you to select one of the ve supported circuit
models.
Shows or hides the equivalent circuit constants.
Opens the De ne Equivalent Circuit Parameter
Menu, which lets you enter the equivalent circuit
parameter values.
Calculates the equivalent circuit parameters. While
the calculation is being performed, a message
Calculating EQV parameters is displayed. After
the calculation is completed, the values of the
equivalent parameters are displayed.
Simulates the frequency characteristics by using the
current equivalent circuit parameters and shows
simulation results on the screen using memory trace.
In other words, simulation results are stored into the
memory trace.
Returns to the previous menu.

8-52 Analyzing the Measurement Results

Typical Impedance Measurement Techniques
Select Equivalent Circuit Menu. This menu lets you to select one of the ve supported circuit
models. The HP 4395A calculates the parameter values within the range you speci ed using
the marker search function.

Softkey Label

Description

NNNNNNNNNNNNNNNNN

CKT A Selects equivalent circuit A, which is used to
simulate inductors with high core loss.
B Selects equivalent circuit B, which is used to
simulate inductors in general and resisters.
C Selects equivalent circuit C, which is used to
simulate high-value resistors.
D Selects equivalent circuit D, which is used to
simulate capacitors.
E Selects equivalent circuit E, which is used to
simulate resonators.
CALCULATE EQV PARAMS Same as CALCULATE EQV PARAMS in the Equivalent
Circuit Menu.
SIMULATE F-CHRST Same as SIMULATE F-CHRST in the Equivalent
Circuit Menu.
RETURN Returns to the Equivalent Circuit Menu.
NNNNN

NNNNN

NNNNN

NNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

De ne Equivalent Circuit Parameter Menu. This menu lets you enter the equivalent circuit

parameter values.

Softkey Label

Description

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Sets R1 value.
Sets C1 value.
Sets L1 value.
Sets C0 value.
Same as SIMULATE F-CHRST in the Equivalent
Circuit Menu.
RETURN Returns to the Equivalent Circuit Menu.

PARAMETER R1
C1
L1
C0
SIMULATE F-CHRST

NNNNNNNN

NNNNNNNN

NNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

As shown in Table 8-4, each equivalent circuit model is suitable for analyzing speci c type(s) of
device.

Analyzing the Measurement Results 8-53

Typical Impedance Measurement Techniques
Table 8-4. Equivalent Circuit Selection Guide
Equivalent Circuit

Type of Devices

A

Inductors with high core loss

B

Inductors and resisters

C

High-value resistors

D

Capacitors

E

Resonators

8-54 Analyzing the Measurement Results

Typical Frequency
Characteristics

Typical Impedance Measurement Techniques

Using the Equivalent Circuit Analysis Function

Calculating Approximate Values of Equivalent Circuit Constants.
1. Press 4Display5 and choose MORE EQUIV CKT MENU to display the equivalent circuit menu.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Choose SELECT CKT [ ] to display the equivalent circuit models.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select one of the following:

Type of DUT

Softkey

Coils with high core loss
Coils in general / Resistors
High-value resistors
Capacitors
Resonators

NNNNNNNNNNNNNNNNN

CKT A
B
C
D
E

NNNNN

NNNNN

NNNNN

NNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Choose CALCULATE EQV PARAM to calculate the equivalent circuit parameters.
After a beep, the calculated equivalent parameters are displayed on the screen. To hide
the equivalent parameters, press 4Display5 and choose MORE EQUIV CKT MENU . Then toggle
DISP EQV PARM [ON] to [OFF] .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

You can simulate a frequency characteristic trace from the equivalent circuit parameters
obtained and compare it with the measured trace.
5. Press 4Display5 MORE EQUIV CKT MENU .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Choose SIMULATE F-CHRST .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

After a beep, the simulated trace is displayed. The simulated trace is stored in the memory
trace. To turn o the simulated trace, press 4Display5 and choose DISPLAY [ ] DISPLAY: DATA .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Simulating a Trace from the Equivalent Circuit Parameters. You can also simulate the

frequency characteristics of an equivalent circuit by entering its parameters.
1. Press 4Display5 and choose MORE EQUIV CKT MENU to display the equivalent circuit menu.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Choose SELECT EQV CKT [ ] to display the equivalent circuit models.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Select the equivalent circuit model. Then choose RETURN .
NNNNNNNNNNNNNNNNNNNN

4. Choose DEFINE EQV PARAMS .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Enter the equivalent circuit parameter value for the activated parameters.
6. Choose SIMULATE F-CHRST to simulate the frequency characteristics.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

After a beep, the simulated frequency characteristics are displayed.

Analyzing the Measurement Results 8-55

Typical Impedance Measurement Techniques

Determining Q Value Using the Width Search Function
The width search function analyzes a resonator and displays the center point, width, and
quality factor (Q) for the speci ed bandwidth.
To use the width search function, open the Widths Menu by pressing 4Search5 and choosing
WIDTH [ ] . The Widths Menu provides access to a submenu called Width Value Menu, which
lets you specify the bandwidth search criteria.
These two menus are described in this section.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Widths Menu
This menu controls the width search function.

Softkey Label

Description

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SEARCH IN Searches for the cut-o point on the trace that is
within the current cut-o points.
SEARCH OUT Searches for the cut-o point on the trace outside
the current cut-o points.
WIDTHS on OFF Turns on the width search feature and calculates the
center frequency of a lobe on the trace, width, Q,
and cut-o point deviation from the center stimulus
value. The cut-o point that de nes the width
parameters is set using the WIDTH VALUE softkey.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The 1marker is automatically changed to the
tracking 1marker when WIDTHS is turned on. When
WIDTHS is ON, the (normal) 1marker cannot be
selected.
WIDTH VALUE Sets a measurement value of a cut-o point that
de nes the start and stop points for a width search.
The width search feature analyzes the center point
and the width between the trace down from (or up
to) the anti-resonance point or resonance point and
the quality factor (Q) for the resonator. Width units
are in the units of the current format.
RETURN Returns to the Search Menu.
NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Width Value Menu
This menu lets you specify the search criteria for the width search function.

8-56 Analyzing the Measurement Results

Softkey Label

Typical Impedance Measurement Techniques
Description

p

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

MKRVAL/( 2) Sets the width value to the value that equals the
marker value divided by square root of 2.
p
MKRVAL*( 2) Sets the width value to the value that equals the
marker value multiplied by square root of 2.
MKRVAL/2 Sets the width value to the value that equals the
marker value divided by 2.
FIXD VALUE Makes the width value the active function and sets
the width value to the value speci ed by this
softkey.
RETURN Returns to the Widths Menu.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Figure 8-30 shows an example of using the bandwidth search function.

Figure 8-30. Q Measurement Examples

Using the Anti-Resonance Point
1. Press 4Search5 to make the marker active.
2. Toggle SEARCH TRK on OFF to ON off . Then choose MAX to move the marker to the
anti-resonance point on the trace.
3. Press 4Search5 and choose WIDTH [ ] WIDTH VALUE MKRVAL/(p2) RETURN .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN

4. Toggle WIDTH on OFF to ON off . The width value, Q factor, and several parameters are
displayed on the screen.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Using the Resonance Point
1. Press 4Search5 to make the marker active.
2. Toggle SEARCH TRK on off to ON off . Then choose MIN to move the marker to the
resonance point on the trace.
3. Press 4Search5 and choose WIDTH [ ] WIDTH VALUE MKRVAL3(p2) RETURN .
4. Toggle WIDTH on OFF to ON off . The width value, Q factor, and several parameters are
displayed on the screen.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Using the Admittance Chart
1. Press 4Utility5 to make the marker active. Then choose SMTH/POLAR MENU G+jB to read
conductance and susceptance (assuming that the admittance circle has been displayed on
the admittance chart).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

Analyzing the Measurement Results 8-57

Typical Impedance Measurement Techniques
2. Press 4Search5 and toggle SEARCH TRK on OFF to ON off . Then choose MAX to move the
marker to the point where the G value is maximum on the trace (resonance point).
3. Press 4Search5 and choose WIDTH [ ] WIDTH VALUE MKRVAL/2 RETURN
4. Toggle WIDTH on OFF to ON off . The width value, Q factor, and several parameters are
displayed on the screen.
The HP 4395A searches half of the maximum conductance points on the admittance circle.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Port Extension
The HP 43961A impedance test kit has ACP-7 connectors that are intended for direct
connection with a test xture. However, you can use the HP 4395A's port extension feature to
connect an extension cable between the test kit and xture.

Note

You must determine the electrical length of the extension cable before using it
with the aid of the port extension feature.

Follow these steps:
1. Connect the cable to the APC-7 connector of the HP 43961A impedance test kit.
2. Press 4Cal5 and choose MORE PORT EXTENSION
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Choose EXTENSION VALUE and enter the equivalent electrical length using the numeric
keys.
4. Toggle EXTENSION on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

5. If the cable's velocity factor is known, you can set the cable length more accurately. To set
the velocity factor, press 4Cal5 and choose MORE VELOCITY FACTOR .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8-58 Analyzing the Measurement Results

Advanced Techniques for Optimizing
Measurements

9

This chapter introduces you to advanced measurement techniques on using the HP 4395A that
have not been covered in the previous chapters. It explains how to use these techniques to
optimize your measurement tasks.
Topics covered include:
Reducing sweep time (using list sweep)
Improving dynamic range
Adjusting the IF bandwidth
Using list sweep function
Performing GO/NO-GO test of a lter (using limit line)
Simultaneous measurement with di erent settings (using dual channel)
Stabilizing the trace

Advanced Techniques for Optimizing Measurements 9-1

Reducing Sweep Time (Using List Sweep)

Reducing Sweep Time (Using List Sweep)
The analyzer has a list sweep function that can sweep frequency according to a prede ned
sweep segment list. Each sweep segment is independent. For the network/impedance analyzer
mode, each segment can have a di erent number of sweep points, power level, and IF
bandwidth value. For the spectrum analyzer mode, each segment can have a di erent number
of points and RBW. Furthermore, the output voltage or current at DC SOURCE port can be set
for each segment in all analyzer modes (option 001 only). This section covers:
Planning the sweep list
Editing a sweep list
Executing the List Sweep

Planning the sweep list
1. Specify sweep segments.
A segment looks like a normal sweep setting. The list sweep function can combine up to 51
segments settings for network or impedance analyzer mode and 15 segments settings for
spectrum analyzer mode into 1 sweep.
You may want to use the list sweep function primarily to reduce the time required for the
sweep process. The HP 4395A does not require that the sweep segments be contiguous.
Therefore, you can speed up the sweep process using the following strategy:
Di erentiate the sweep range of interest from other sweep ranges in terms of the number
of points (Figure 9-1).

Figure 9-1. Reducing Sweep Time by Optimizing the Number of Display Points
2. Determine the following parameters before editing the sweep list.

Parameter

Description

Sweep Parameter

Frequency of each segment. Each segment cannot be continuous.
Zero span can be set.
Number of display points. You can adjust the display area for each
segment by setting this parameter. Total number of points for all
segments is 801 points maximum.

Number of points

9-2 Advanced Techniques for Optimizing Measurements

Reducing Sweep Time (Using List Sweep)
RBW
IF BW

Output Power
DC Voltage or
Current(Option 001)

This parameter is for the spectrum analyzer mode. You can set the
resolution bandwidth for the each segment individually. This is useful
if you want to display higher resolution only for the speci c segment.
This parameter for the network analyzer and impedance analyzer
mode. You can set the IF bandwidth for each segment individually.
This is useful if you want to display higher dynamic range only for
the speci c segment.
Output power from the RF OUT port of each segment. The allowable
range is 050 dBm to +15 dBm. (NA, ZA mode only)
DC output voltage or current from the DC SOURCE port on the front
panel.

Editing a Sweep List
1. Press 4Sweep5 SWEEP TYPE MENU EDIT LIST to call the sweep list editor.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press EDIT to edit the sweep list.
NNNNNNNNNNNNNN

Figure 9-2. List Sweep Editor
3. Enter the frequency range of the segment.
Move the marker to the start point. Then press SEGMENT: MKR!START .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Move the marker to the stopping point. Then press MKR!STOP .
NNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press 4Start5 to enter the start sweep parameter. Then press 4Stop5 to enter the stop sweep
parameter.
4. Press MORE NUMBER of POINTS . Then enter the number of points for the segment.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Press POWER . Then enter the output power level for the segment. (NA, ZA mode only)
NNNNNNNNNNNNNNNNN

6. Set the internal lter bandwidth:
When in spectrum analyzer mode, press RES BW to set the resolution bandwidth.
NNNNNNNNNNNNNNNNNNNN

Advanced Techniques for Optimizing Measurements 9-3

Reducing Sweep Time (Using List Sweep)
NNNNNNNNNNNNNNNNN

When in network or impedance analyzer mode, press IF BW to set the IF bandwidth.
7. Press DC VOLTAGE or DC CURRENT and enter DC output voltage or current.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8. Press RETURN SEGMENT DONE to complete editing the segment.
NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

9. Press ADD to edit the next segment.
NNNNNNNNNNN

10. Repeat steps 3 through 9 until you complete editing of all required segments.
11. When you nish editing all the segments, press LIST DONE to complete the sweep list.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The segments do not have to be entered in any particular order. The analyzer automatically sorts them in increasing
order of sweep parameter value.

Figure 9-3. Sweep List Edit Display

To Modify or Delete the Segment
1. Press 4Sweep5 SWEEP TYPE MENU EDIT LIST SEGMENT .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

2. Select the segment you want to delete or modify:
Enter the segment number you want to modify. Then press 4215.
Move the cursor, \>", to the segment you want to modify by using the 4*5, the 4+5, or the
.
3. Do either of the following:

To

Press

Modify speci ed segment
Delete speci ed segment

NNNNNNNNNNNNNN

EDIT
DELETE

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. When you nish editing, press LIST DONE .

9-4 Advanced Techniques for Optimizing Measurements

Reducing Sweep Time (Using List Sweep)

Executing the List Sweep
1. Press 4Sweep5.
2. Press SWEEP TYPE MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press LIST FREQ .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. If you use the DC output, press 4Source5. Then toggle DC OUT on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Notes
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

If you want to delete an edited sweep list, press 4Sweep5 SWEEP TYPE MENU EDIT LIST
CLEAR LIST CLEAR LIST YES LIST DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

You can save and recall the edited sweep list with all other instrument settings by pressing
4Save5 STATE . See \To Save an Analyzer Setting or Measurement Data" in Chapter 8 for more
information.
NNNNNNNNNNNNNNNNN

Advanced Techniques for Optimizing Measurements 9-5

Improving Dynamic Range (NA Mode)

Improving Dynamic Range (NA Mode)
This section introduces you two techniques for enhancing the dynamic range of HP 4395A.
These are:
Adjusting the IF Bandwidth
Using List Sweep
You can increase the dynamic range by applying the highest allowable power. The output
power can be set by pressing 4Source5 POWER .
NNNNNNNNNNNNNNNNN

Averaging can also enhance the dynamic range. See \To Use the Averaging Function" for
further information.

Adjusting the IF Bandwidth
Adjusting the IF bandwidth can lower the noise ower. For example, if you changed the IF
bandwidth to 1/10 of the current setting (say, 100 Hz instead of 1 kHz), the measurement noise
oor would lower by approximately 10 dB. This technique increases the dynamic range, but
slows down the sweep process.
1. Press 4Bw/Avg5.
2. Press IF BW .
NNNNNNNNNNNNNNNNN

3. Press 4*5 or 4+5, or enter an IF bandwidth value directly from the numeric keypad.

IF Bandwidth 30 kHz

IF Bandwidth 100 Hz

Figure 9-4. Setting IF Bandwidth (IFBW)

9-6 Advanced Techniques for Optimizing Measurements

Improving Dynamic Range (NA Mode)

Using List Sweep
Figure 9-5 shows the sweep list modi ed from the list of the previous example(Figure 9-3) to
improve dynamic range. Segments 1 and 3 have a narrow IF bandwidth and a higher power
level for the stopband of the lter. Segment 2 has a wide IF bandwidth and lower power level
for passband.
1. Press 4Sweep5 SWEEP TYPE MENU EDIT LIST .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. To modify segment 1, press SEGMENT 415 4215 EDIT .
NNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

3. Press POWER 15 4215 IFBW 30 4215 SEGMENT DONE .
NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. To modify segments 2 and 3, see Figure 9-5 for the values and modify them in a manner
similar to steps 2 and 3.
5. Press LIST DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Press LIST FREQ .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 9-5. Dynamic Range Enhancement

Advanced Techniques for Optimizing Measurements 9-7

Performing GO/NO-GO Test of a Filter (using limit line)

Performing GO/NO-GO Test of a Filter (using limit line)
The limit line is constructed by connecting the segment points as shown in Figure 9-6.

Figure 9-6. Limit Line Image
For example, if you want to specify four points for the limit test, the limit line image is as
shown in Figure 9-7. Each point has frequency information and an upper and a lower limit
value. Enter these values as described in the \Editing a Limit Line Table" procedure.

Figure 9-7. Frequency, Upper and Lower Limit
In this example, the limit line connects four limit points. If a measured trace exceeds the upper
or lower limit line, the limit test fails.
9-8 Advanced Techniques for Optimizing Measurements

Performing GO/NO-GO Test of a Filter (using limit line)
This section covers:
Planning the Limit Lime
Editing a Limit Line Table
Executing a Limit Line Test
To O set the Limit Line

Planning the Limit Lime
1. Determine the following parameters before editing the limit line:

Parameter

Description

Sweep Parameter
Upper Limit
Lower Limit

Frequency of each segment.
Upper limit level of each segment.
Lower limit level of each segment.

Editing a Limit Line Table
1.
2.
3.
4.

Set up the frequency range of the grid before starting the limit line edit.
If you want to use marker to set the segment, press 4Marker5.
Press 4System5.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNN

Press LIMIT MENU . Then toggle LIMIT LINE on OFF to ON . This makes it easier to
understand the status of the limit line while you are editing it.

5. Press EDIT LIMIT LINE to call the limit line editor.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. If an old limit line table is still in the limit line editor, press CLEAR LIST CLEAR LIST YES
to clear it.
7. Press EDIT to edit the rst segment.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

Figure 9-8. Limit Line Editor
8. Enter the frequency of the segment in one of the following ways:
Advanced Techniques for Optimizing Measurements 9-9

Performing GO/NO-GO Test of a Filter (using limit line)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press SWP PARAM . Then enter the frequency of the segment.
Move the marker to the point you want to use as the frequency of the segment. Then
press MKR!SWP PARAM .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

9. Press UPPER LIMIT . Then enter a upper limit value.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

10. Press LOWER LIMIT . Then enter a lower limit value.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

11. Press DONE to end editing the segment.
NNNNNNNNNNNNNN

12. Press ADD to edit the next segment.
NNNNNNNNNNN

13. Repeat steps 7 through 11 until all segments are de ned.
14. When you nish editing all segments, press DONE to complete editing the limit line table.
NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

You can enter the limit value using the middle and width method by pressing MIDDLE VALUE
and DELTA LIMIT . You then enter the amplitude value as a middle amplitude value with a
delta limit. The upper and lower limit lines appear at an equal positive and negative distance
from the speci ed middle amplitude.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To Modify or Delete the Segment
1. Press 4System5 LIMIT MENU EDIT LIMIT LINE SEGMENT .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

2. Select the segment you want to delete or modify:
Enter the segment number you want to modify. Then press 4215.
Move cursor, \>", to the segment you want to modify by using the 4*5, the 4+5, or the
3. Do either of the following:

To

Press

Modify speci ed segment
Delete speci ed segment

NNNNNNNNNNNNNN

EDIT
DELETE

NNNNNNNNNNNNNNNNNNNN

Executing a Limit Line Test
To Make a Limit Line Test Active
1. Press 4System5.
2. Press LIMIT MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Toggle LIMIT TEST on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

If the limit line test passes, a green PASS message appears on the right of the grid. If it fails, a
red FAIL message is displayed. You can set the analyzer to beep if the limit line test fails. (See
the \To Beep When the Limit Test is Failed" procedure.)

9-10 Advanced Techniques for Optimizing Measurements

.

Performing GO/NO-GO Test of a Filter (using limit line)

Figure 9-9. Limit Line Test

To Beep When the Limit Test is Failed
1. Press 4System5.
2. Press LIMIT MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Toggle BEEP FAIL on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Advanced Techniques for Optimizing Measurements 9-11

To O set the Limit Line

To O set the Limit Line
1. Press 4System5 LIMIT MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press LIMIT LINE OFFSETS .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press the following keys:

To move line

Press

Horizontally
Vertically

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SWP PARAM OFFSET
AMPLITUDE OFFSET

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Then move the limit line by entering an o set value using one of the following:

To

Use

Move continuously
Move with steps
Enter o set value directly

4 5 4 5

* +

405

. . . 495 and unit keys

5. To move the limit line vertically to the marker position:
a. Press 4Marker5 Then move the marker to the point you want to set as the o set value.
b. Press 4System5 LIMIT MENU LIMIT LINE OFFSETS MKR! AMP. OFS. .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. When you are nished o setting the limit line, press RETURN .
NNNNNNNNNNNNNNNNNNNN

Before O set

After O set

Figure 9-10. O setting Limit Lines
To clear the o set, enter 0 for all the o set values.
9-12 Advanced Techniques for Optimizing Measurements

Stabilizing the Trace

Stabilizing the Trace
When the trace is not stable and the marker value changes frequently, it is dicult to read the
measured value. You can use the following techniques to stabilize the trace:
Stop the sweep.
Use the averaging function.
Use the maximum or minimum hold function.
Capture the unstable signal using signal track.

To Stop the Sweep
1. Press 4Trigger5.
2. Press SWEEP: HOLD .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The sweep is stopped immediately (even if the sweep is in progress). If you want to restart the
sweep, press CONTINUOUS to start a free-run sweep or press SINGLE to make a single sweep.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

To Use the Averaging Function
1. Press 4Bw/Avg5.
2. Press AVERAGING FACTOR .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. If needed, enter the averaging factor (number of times). Then press the 4215. Default
averaging factor is 16.
4. Toggle AVERAGING on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

The averaging notation (Avg) appears on left side of the grid when averaging is turned on.
The averaging notation indicates the number of times averaging has been performed. When
averaging is completed, the counter stops incrementing. However, the trace continues updating
with each sweep.
Averaging requires a sweep with a speci ed number of times that is enough for an averaging
factor to complete the averaging. You can set the number of sweeps by using the number of
groups function.
If you want to change the setting of any parameter when averaging, you can restart averaging
from the 0 count.
To restart the averaging, press 4Bw/Avg5 AVERAGING RESTART . This resets averaging counter to
0.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To Use Maximum or Minimum Hold Function
1. Press 4Display5.
2. Press DATA HOLD [OFF] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To Hold

Press

Maximum Level
Minimum Level

NNNNNNNNNNN

MAX
MIN

NNNNNNNNNNN

Advanced Techniques for Optimizing Measurements 9-13

Stabilizing the Trace
\Max" (or \Min") appears on the right of the grid when the maximum (minimum) hold function
is activated.
To turn o the maximum or minimum hold, press 4Display5 DATA HOLD [ ] HOLD: OFF .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 9-11. Maximum Holding the Drifting Signal

To Capture an Unstable Signal Using Signal Track
1. Press 4Display5 DUAL CHAN on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

2. Press 4Chan 15.
3. Press 4Search5.
4. Press SEARCH: PEAK to move the marker to the peak of the drifting test signal.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Toggle SIGNAL TRK on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

The signal track function captures the peak that is indicated by the marker and places it in the
center of the grid for each sweep. If the peak is unstable horizontally, use this function. The
analyzer automatically changes the center frequency to keep the peak in the center of the grid.
Figure 9-12 shows a display when signal track is ON at channel 1. Figure 9-13 shows a display
after the analyzer sweeps a few times. At channel 1, the center frequency has been changed to
maintain the drifting signal at the center of the display. Channel 2 shows that signal frequency
has drifted to a higher frequency.

9-14 Advanced Techniques for Optimizing Measurements

Stabilizing the Trace

Figure 9-12. Display When Starting Signal Track

Figure 9-13. Display After Signal Has Drifted

Advanced Techniques for Optimizing Measurements 9-15

10
Examples of Applications
This chapter contains example applications of the HP 4395A for each of network, spectrum,
and impedance analyzer modes.

Note

In this manual, the following abbreviations are used:
NA mode: Network analyzer mode
SA mode: Spectrum analyzer mode
ZA mode: Impedance analyzer mode

Network Measurement (NA Mode)
Filter transmission measurement
6 dB bandwidth
Ripple
Magnitude and phase characteristics
Expanded phase characteristics
Re ection measurement
Return loss and re ection coecient
Standing wave ratio (SWR)
S-parameters measurement
Impedance measurement
Admittance measurement
Gain compression measurement
Absolute output level measurement

Spectrum Measurement (SA Mode)
AM signal measurement
Carrier amplitude and frequency measurement using the marker
Modulating frequency and modulation index measurement using 1Marker
FM Signal Measurement
Frequency deviation of wide band FM signal

Impedance Measurement (ZA Mode)
Evaluation of a chip capacitor
Capacitance (C) and dissipation factor (D) under swept frequency
jZj and  (Phase) under swept frequency
Equivalent circuit analysis
Evaluation of a crystal resonator
Readout of resonance frequency (Fr ) and crystal impedance (CI)
Equivalent circuit analysis
Admittance chart
Using the marker
Evaluation of a varactor diode - DC bias sweep using list sweep function
Measuring capacitance under DC bias conditions
Examples of Applications

10-1

Measuring Transmission Characteristics of a Filter (NA Mode)

Measuring Transmission Characteristics of a Filter (NA Mode)
Insertion loss and gain are ratios of the output to input signals. The following procedure
measures the insertion loss and gain of a 83.16 MHz SAW bandpass lter. This measurement can
be used to obtain the key lter parameters.

Measurement Setup
Connection
Set up the HP 4395A as shown in Figure 10-1.

Figure 10-1. Transmission Measurement Setup

Analyzer Settings
Press 4Preset5. Then set the analyzer's controls as follows:
Desired Settings

Key Strokes
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MEASUREMENT block

Select Network Analyzer

4Meas5 ANALYZER TYPE NETWORK ANALYZER

ACTIVE CHANNEL block

Select channel 1

4Chan 1 5(default)

MEASUREMENT block

Select S21 (or B/R) measurement 4Meas5 S-PARAMETERS
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Trans:FWD S21 [B/R]

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

4Format5 FORMAT:LOG MAG

SWEEP block

10-2 Examples of Applications

(default)

IF BW 3 kHz

4Bw/Avg5 435 4k/m5

Center frequency 83.16 MHz

4Center5 485 435 4.5 415 465 4M/5

Span frequency 500 MHz

4Span5 455 405 405 4k/m5

Measuring Transmission Characteristics of a Filter (NA Mode)

Performing Calibration
Perform a frequency response calibration for this measurement as follows:
1. Press 4Cal5 CALIBRATE MENU RESPONSE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

2. Connect a THRU calibration standard between the measurement cables in place of the DUT.
3. Press THRU to perform a frequency response calibration data measurement.
NNNNNNNNNNNNNN

4. Press DONE: RESPONSE . ( CORRECTION on OFF is automatically set to ON off .)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Measurement
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Replace the THRU standard with the DUT. Press 4Scale Ref5 AUTO SCALE if the trace needs to be
rescaled. Note that the display shows the complete response of the bandpass lter under test.

Read Out Insertion Loss Using the Marker
1. Press 4Search5 MAX to move the marker to the maximum value of trace. The marker reads out
the insertion loss and displays it at the upper right of the display.
2. Press 4Marker5 1MODE MENU 1MKR to turn on the 1Marker (at the position of the marker).
NNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

3. Enter 415 455 405 4k/m5 to move the marker to the point o set from the 1marker. The 1marker
value shows the relative attenuation at the o set position (see Figure 10-2).

Figure 10-2. Response of a SAW Filter

6 dB Bandwidth
The analyzer calculates the bandwidth of the DUT between two equal power levels. In this
example, it calculates the 06 dB bandwidth relative to the lter center frequency.
1. Press 4Search5 MAX to move the marker to the maximum value of the trace.
NNNNNNNNNNN

2. Press WIDTHS [OFF]

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

0

215.

4 5 465 4

3. Press WIDTHS on OFF to ON off . The analyzer calculates the 06 dB bandwidth, center
frequency, Q (Quality Factor), insertion loss, and di erences between the center frequency
and the cuto frequencies of the DUT. It then lists the results at the upper right hand of the
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Examples of Applications

10-3

Measuring Transmission Characteristics of a Filter (NA Mode)
display. Sub-marker 1 on the trace shows the passband center frequency while sub-markers
2 and 3 show the location of the 06 dB cuto points.

Figure 10-3. Using the Marker to Determine 6 dB Bandwidth
To have the HP 4395A calculate the bandwidth between other power levels, select
WIDTH VALUE and enter the number (for example, enter 03 4215 for 03 dB).

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press 4Marker5 PRESET MKRS when you are nished with this measurement.

Ripple
Passband ripple is the variation in insertion loss over a speci ed portion of the passband.
1. Press 4Display5 DUAL CHAN on OFF to ON off to display channel 2 below channel 1.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

2. Press 4Sweep5 COUPLED CH ON off to on OFF .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

3. Press 4Marker5 485 435 4.5 415 465 4M/5.
4. Press 4Marker!5 MKR!XCH MENU ZOOMING APERTURE 415 405 4215.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Press MKR XCH ZOOM .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Press 4Chan 25 4Search5 MAX . Then press 4Marker!5 MKR!REFERENCE 4Scale Ref5 SCALE/DEV 415
4215 to magnify the trace and resolve the ripple.
7. Press 4Search5 SEARCH: PEAK . Then press 4Marker5 1MODE MENU 1MKR .
NNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

8. Press 4Search5 SEARCH: PEAK PEAK DEF MENU PEAK PLRTY POS neg to pos NEG . Then
press RETURN RETURN SEARCH: PEAK . The passband ripple is automatically given as the
peak-to-peak variation between the markers. The ripple value is displayed at the upper
right of the display. Depending on the peak size, you may need to de ne the peak size using
the peak de nition feature of the HP 4395A.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

10-4 Examples of Applications

NNNNNNNNNNNNNNNNNNNNNNN

Measuring Transmission Characteristics of a Filter (NA Mode)

Figure 10-4. Using Peak Search to Determine Ripple
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press 4Chan 15 4Marker5 PRESET MKRS , and 4Chan 25 4Marker5 PRESET MKRS when you are nished
with this measurement.

Measuring Phase Response
A two input ratio measurement can also provide information about the phase shift of a
network. The analyzer can translate this information into a related parameter, group delay.
With the same connection, instrument settings, and calibration used in the previous example
(see \Measurement Setup" in \Measuring Transmission Characteristics of a Filter (NA Mode)"),
make the following changes:
1. Press 4Chan 15 4Sweep5 COUPLED CH on OFF to ON off to couple sweep parameters of channel
2 to channel 1.
2. Press 4Chan 25 4Format5 PHASE to display the phase response on channel 2.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

If the trace needs to be rescaled, press 4Scale Ref5 and AUTO SCALE .
Figure 10-5 shows the phase response of the bandpass lter. Notice the linear phase shift
through the passband and the rapid uctuations that occur outside this region. The random
phase of the broadband noise oor causes the spurious out-of-band response.
This format displays phase over the range of 0180 to +180 degrees. As phase increases beyond
these values, a sharp 360 degree transition occurs in the display as the trace \wraps" between
+180 and 0180 degrees. This wrap causes the characteristic \sawtooth" display usually seen
on devices with linearly increasing (or decreasing) phase responses.

Examples of Applications

10-5

Measuring Transmission Characteristics of a Filter (NA Mode)

Figure 10-5. Amplitude and Phase Response of a SAW Filter

Using the Expanded Phase Mode
The HP 4395A can display phase beyond 6180 degrees.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press 4Format5 EXP PHASE on OFF
to ON off . Then press 4Scale Ref5 AUTO SCALE . The phase is displayed with \no wrap" (see
Figure 10-6).
NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 10-6. Expanded Phase Mode
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Press 4Format5 EXP PHASE ON off to on OFF to turn o the expanded phase mode.

10-6 Examples of Applications

Re ection Measurement (NA)

Re ection Measurement (NA)
When making a re ection measurement, the HP 4395A monitors the signal going to the DUT
and uses it as the reference. It compares the re ected signal from the DUT to the reference
signal. The ratio of the incident and re ected signals is the re ection coecient of the DUT or,
when expressed in decibels, the return loss.
Re ection measurements require the connection of a directional device, such as a directional
coupler, to separate the power re ected from the DUT. This separation is necessary so that it
can be measured independently of the incident power (see Figure 10-7).

Figure 10-7. Re ection Measurement
Multi-Port Test Devices
When the device has more than one port, connect high-quality terminations (loads) to all unused DUT ports to
terminate them into their characteristic impedance (usually 50 or 75 ). If this is not done, re ections o the unused
ports will cause measurement errors.
The S-parameter test set automatically switches the termination at the unused port for each S-parameter
measurement. When using a transmission/re ection test set, terminate the unused input port of the analyzer with a
high quality load.

The signal re ected from the DUT is measured as a ratio with the incident signal. It can
be expressed as a re ection coecient, a return loss, or as SWR. These measurements are
mathematically de ned as:

Examples of Applications

10-7

Re ection Measurement (NA)
return loss(dB) = 020 log()
re ected power
re ection coecient =
incident power
=  (magnitude only)
= 0 (magnitude and phase)
= S11 or S22 (magnitude and phase)
1+
SWR =
10

Measurement Setup
Connection
Set up the HP 4395A as shown in Figure 10-8.

Figure 10-8. Re ection Measurement Setup

Analyzer Settings
Press 4Preset5. Then set the HP 4395A's controls as follows:
Desired Setting

Key Strokes
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MEASUREMENT block

Select network analyzer

4Meas5 ANALYZER TYPE NETWORK ANALYZER

ACTIVE CHANNEL block

Select channel 1

4Chan 1 5

MEASUREMENT block

SWEEP block

(default)

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Select S11

4Meas5 S-PARAMETERS Refl:FWD S11 [A/R]

Select LOG MAG format

4Format5 FORMAT: LOG MAG

Center frequency 70 MHz

4Center5 475 405 4M/5

Span frequency 100 kHz

4Span5 415 405 405 4k/m5

(default)

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

(default)

Performing Calibration
Perform an S11 , 1-port calibration for this measurement. The following procedure is for using 7
mm standards.
10-8 Examples of Applications

Re ection Measurement (NA)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

1. Press 4Cal5 CALIBRATE MENU S11 1-PORT .
2. Connect the OPEN standard to port 1. Then press [S11]: OPEN . (The softkey label OPEN
is underlined when the measurement is complete.)
3. Connect the SHORT standard to port 1. Then press SHORT . (The softkey label SHORT is
underlined when the measurement is complete.)
4. Connect the LOAD standard to port 1. Then press LOAD . (The softkey label LOAD is
underlined when the measurement is complete.)
5. Press DONE: 1-PORT CAL . ( CORRECTION on OFF is automatically set to ON off .)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Note

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

The next example \S-Parameters Measurement" uses the calibration corrections
you just completed. Do not change the calibration settings before doing the
example.

Measurement
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Connect the DUT to the test set. Press 4Scale Ref5 AUTO SCALE if the trace needs to be rescaled.

Return Loss and Re ection Coecient
The return loss characteristics are displayed in the Log Mag format in Figure 10-9. The
value inside the passband is greater than outside the passband. A large value for return loss
corresponds to a small re ected signal just as a large value for insertion loss corresponds to a
small transmitted signal.

Figure 10-9. Return Loss
NNNNNNNNNNNNNN

To display the same data in terms of re ection coecient, press 4Format5 MORE
FORMAT: LIN MAG . This redisplays the existing measurement in a linear magnitude format
that varies from 0=1.00 at the top of the display (100% re ection) to 0.00 at the bottom of the
display (perfect match).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Examples of Applications

10-9

Re ection Measurement (NA)

Standing Wave Ratio (SWR)

To display the re ection measurement data as standing wave ratio (swr), press 4Format5 MORE
SWR . The analyzer reformats the display in the non-unit measure of SWR (with SWR = 1, a
perfect match, at the bottom of the display).

NNNNNNNNNNNNNN

NNNNNNNNNNN

Figure 10-10. SWR

10-10 Examples of Applications

Re ection Measurement (NA)

S-Parameters Measurement
S-parameters S11 and S22 are no di erent from the measurements made in the previous section.
S11 is the complex re ection coecient of the DUT's input. S22 is the complex re ection
coecient of the DUT's output. In both cases, all unused ports must be properly terminated.
To display the trace on the polar chart, press 4Format5 POLAR CHART . The results of a typical
S11 measurement is shown in Figure 10-11. Each point on the polar trace corresponds to a
particular value of both magnitude and phase.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Polar Chart Shows Magnitude and Phase
Magnitude
The center of the circle represents a re ection coecient 0 of 0, that is, a perfect match or no re ected signal.
The outermost circumference of the scale represents a 0 = 1.00, or 100 % re ection.
Phase
The 3 o'clock position corresponds to zero phase angle, that is, the re ected signal is at the same phase as the
incident signal.
Phase di erences of 90, 180, and 270 degrees correspond to the 12, 9, and 6 o'clock positions on the polar
display, respectively.

Figure 10-11. S11 on Polar Chart

Data Readout Using the Marker
Press 4Marker5 and use the knob to position the marker at any desired point on the trace. Then
read the frequency, magnitude, and phase in the upper right hand corner of the display. Or,
enter the frequency of interest from the data entry key pad to read the magnitude and phase
at that point.
To read the marker data in logarithmic, linear, real/imaginary, impedance (R+jX), admittance
(G+jB), or SWR/phase formats, press 4Utility5 SMTH/POLAR MENU and select the desired format.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Examples of Applications

10-11

Re ection Measurement (NA)

Impedance Measurement
The amount of power re ection from a device is directly related to the impedance values of
both the device and the measuring system. In fact, each value of the re ection coecient (0)
uniquely de nes a device impedance. For example:
0=0 occurs when the device and test set impedance are the same.
A short circuit has a re ection coecient of 0=1 6 180  (=01).
An open circuit has a re ection coecient of 0=1 6 0  (=1).
Every other value for 0 also corresponds uniquely to a complex device impedance, according to
the equation:
1+0
Zn =
100
Where Zn is the DUT impedance normalized to (that is, divided by) the measuring system's
characteristic impedance (usually 50 or 75 ). The network analyzer has a default impedance
of 50 . To set the impedance to 75 , press 4Cal5 MORE SET Z0 . The network analyzer uses
the formula above to convert the re ection coecient measurement data to impedance data.
1. Press 4Format5 SMITH CHART . The display shows the complex impedance of the DUT over the
frequency range selected.
2. Press 4Marker5 to turn on the marker. Then use the knob to read the resistive and reactive
components of the complex impedance at any point along the trace. The maker displays a
complex impedance readout.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 10-12. Impedance Measurement

10-12 Examples of Applications

Re ection Measurement (NA)

Admittance Measurement
1. Press 4Format5 MORE ADMITTANCE CHART . The display shows the complex impedance of the
DUT over the frequency range selected.
2. Use the knob to read the resistive and reactive components of the complex impedance at
any point along the trace. The maker displays complex impedance readout.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 10-13. Admittance Measurement

Examples of Applications

10-13

Gain Compression Measurement (NA)

Gain Compression Measurement (NA)
An important measure of active circuits is how well they handle a signal frequency with a
varying input amplitude. By using the power sweep function in the network analyzer mode,
measurements such as gain compression or automatic gain control slope can be made.

Measurement Setup
Connection
Set up the HP 4395A as shown in Figure 10-14.

Figure 10-14. Gain Compression Measurement Setup

10-14 Examples of Applications

Gain Compression Measurement (NA)

Analyzer Settings
Press 4Preset5. Then set the HP 4395A's controls as follows:
Desired Settings

Key Strokes
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MEASUREMENT block

Select network analyzer

4Meas5 ANALYZER TYPE NETWORK ANALYZER

ACTIVE CHANNEL block

Select channel 1

4Chan 15

(default)

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MEASUREMENT block

Select S21 (or B/R) measurement 4Meas5 S-PARAMETERS
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Trans:FWD S21 [B/R]

SWEEP block

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Select LOG MAG format

4Format5 FORMAT: LOG MAG

IF BW 1 kHz

4Bw/Avg5 415 4k/m5

Select power sweep

4Sweep5 SWEEP TYPE MENU POWER SWEEP

CW frequency 250 MHz

4Source5 CW FREQ 425 455 405 4M/5

Start power 05 dBm

4Start5 4 5 455 4

Stop power 15 dBm

(default)

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFF

0

215
4Stop5 415 455 4215

Performing Calibration
Perform a power response calibration for this measurement as follows:
1. Press 4Cal5 CALIBRATION MENU RESPONSE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

2. Connect a THRU calibration standard between the measurement cables in place of the DUT
(see Figure 10-14).
3. Press THRU to perform a power response calibration data measurement.
NNNNNNNNNNNNNN

4. Press DONE: RESPONSE . ( CORRECTION on OFF is automatically set to ON off .)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Measurement
5. Replace the THRU standard with the DUT.
6. Press 4Scale Ref5 AUTO SCALE if the trace needs rescaling.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Press 4Search5 MAX to move the marker to the maximum point on the trace.
NNNNNNNNNNN

8. Press 4Marker5 1MODE MENU 1MKR to set the 1marker to the maximum point.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

9. Press 4Search5 TARGET
Figure 10-15.)

NNNNNNNNNNNNNNNNNNNN

0

215 to search for the point of the gain compression.

4 5 415 4

(See

Examples of Applications

10-15

Gain Compression Measurement (NA)

Figure 10-15. Gain Compression

Absolute Output Level Measurement
The analyzer can show the characteristics input level versus output level by using the absolute
measurement capability in the network analyzer mode.
1. Press 4Sweep5 COUPLED CH on OFF to ON off to couple the sweep parameters of both
channels.
2. Press 4Marker5 MKR [UNCOUPLE] to MKR [COUPLE] to couple the marker between both
channels.
3. Press 4Chan 25 4Meas5 MORE B to select the absolute measurement at the B input.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN NNNNN

4. Press 4Display5 DATA MATH [DATA] OFFSET . Then input the value of the attenuator that
is connected between the DUT and the B input. In this example measurement, a 30 dB
attenuator is used. Therefore, enter 30 4215.
5. The HP 4395A displays the input versus output power levels. The marker shows the input
and output power levels at the 01 dB gain compression point.
6. Press 4Display5 DUAL CHAN on OFF to ON off to display both channel (see Figure 10-16).
Note that you must subtract 6 dB from the input value readout. This is necessary because
the input signal is attenuated by the power splitter that is between the RF OUT and the
DUT.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

10-16 Examples of Applications

NNNNNNNNNNNNNNNNNNNN

Gain Compression Measurement (NA)

Figure 10-16.
Input vs. Output Power Level at the 01 dB Gain Compression Point

Examples of Applications

10-17

AM Signal Measurement (SA)

AM Signal Measurement (SA)
In this example, the following parameters for AM signal measurement are derived:
Carrier amplitude (Ec ) and frequency (fc )
Modulating frequency (fm ) and modulation index (m)

Test Signal
The following test signal is used in this example:
AM Signal
Frequency (fc ): 100 MHz
Modulating signal frequency (fm ): 10 kHz

Measurement Setup
Connection
Connect the test signal source to the R input port.

Analyzer Settings
Press 4Preset5. Then set the HP 4395A's controls as follows:
Desired Setting

Key Strokes
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MEASUREMENT block

Select Spectrum Analyzer

4Meas5 ANALYZER TYPE SPECTRUM ANALYZER

ACTIVE CHANNEL block

Select channel 1

4Chan 1 5(default)

MEASUREMENT block

Select R input port

4Meas5 SPECTRUM: R

SWEEP block

Center frequency 100 MHz

4Center5 415 405 405 4M/5

Span frequency 200 kHz

4Span5 425 405 405 4k/m5

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

(default)

Carrier Amplitude and Frequency Measurement Using the Marker
Press 4Scale Ref5 and enter the reference value if the trace needs rescaling.
1. Press 4Search5 to turn the marker on.
2. Press MAX to search for the carrier signal. The carrier amplitude and frequency are
displayed in the upper right corner as shown in Figure 10-17.
NNNNNNNNNNN

10-18 Examples of Applications

AM Signal Measurement (SA)

Figure 10-17. Carrier Amplitude and Frequency of AM Signal
The marker shows that the carrier amplitude (Ec ) is 020.305 dBm and frequency (fc ) is 100
MHz.

Modulating Frequency and Modulation Index Measurement Using 1Marker
3. Press 4Marker5 1MODE MENU 1MKR .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

4. Press 4Search5 SEARCH: PEAK NEXT PEAK to search for a sideband. The o set value from the
carrier is displayed as the marker sweep parameter value shown in Figure 10-18. This value
is the modulation frequency.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 10-18. Modulating Frequency of AM Signal
The 1marker shows that the sideband amplitude value relative to the carrier is 019.708 dB (see
Figure 10-18). The modulation index (m) can be derived from the following equation:
20
m = 2 2 10 1Mkr

= 20:68%

Examples of Applications

10-19

AM Signal Measurement (SA)
where 1Mkr is the 1marker value shown in Figure 10-18.

10-20 Examples of Applications

FM Signal Measurement (SA)

FM Signal Measurement (SA)
This example describes how to derive the frequency deviation (1fpeak ) value.

Test Signal
The following test signal is used in this example:

Wide band FM Signal

Carrier frequency: 100 MHz.
Modulating frequency: 1 kHz.
Frequency deviation: 1 MHz.

Measurement Setup
Connection
Connect the test signal to the R input port.

Analyzer Settings
Press 4Preset5. Then set the HP 4395A's controls as follows:
Desired Setting

Key Strokes
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MEASUREMENT block

Select Spectrum Analyzer

4Meas5 ANALYZER TYPE SPECTRUM ANALYZER

ACTIVE CHANNEL block

Select channel 1

4Chan 15(default)

MEASUREMENT block

Select R input port

4Meas5 SPECTRUM: R

Reference scale level 010 dBm

4Scale/Ref5 4 5 415 405 4

Center frequency 100 MHz

4Center5 415 405 405 4M/5

Span frequency 5 MHz

4Span5 455 4M/5

RBW 300 Hz

4Bw/Avg5 435 405 405 4

SWEEP block

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

0

(default)

215

215

Frequency Deviation of Wide Band FM Signal
Press 4Scale Ref5 and enter reference value if the trace needs rescaling.

Frequency Deviation
1. Press 4Search5 SEARCH: PEAK .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Press 4Marker5 1MODE MENU 1MKR .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

3. Press 4Search5 SEARCH: PEAK NEXT PEAK .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Examples of Applications

10-21

FM Signal Measurement (SA)

Figure 10-19. Wide Band FM Signal Measurement
The frequency deviation (1fpeak ) can be derived roughly from the following equation:
j1M krj
1fpeak =
2
where 1Mkr is the marker sweep parameter value shown in Figure 10-19. In this example, the
frequency deviation is about 987.5 kHz.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Press 4Marker5 PRESET MKRS when you are nished with this measurement.

Carrier Level and Modulating Frequency
The carrier level and modulating frequency can be derived using a method similar to the AM
signal measurement. In this example, the zooming function is used to measure the carrier and
the adjacent signal.
1. Press 4Marker5 415 405 405 4M/5 to put the maker on the carrier frequency.
2. Press 4Marker!5 ZOOMING APERTURE 405 4.5 425 4215.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press MKR ZOOM to zoom up to the carrier signal.
NNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 4Bw/Avg5 415 405 4215.
5. Press 4Scale Ref5 and enter reference vale if the trace needs rescaling.
6. Press 4Marker5 415 405 405 4M/5 to move the marker to the career frequency. The carrier
amplitude can be read as the marker value.
7. Press 4Marker5 1MODE MENU 1MKR to put the 1maker on the carrier.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN

8. Press 4Search5 SEARCH: PEAK NEXT PEAK LEFT (or NEXT PEAK RIGHT ) to move the marker
to the sideband.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

10-22 Examples of Applications

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

FM Signal Measurement (SA)

Figure 10-20. Zooming Carrier Signal of FM Signal

Examples of Applications

10-23

Evaluation of a Chip Capacitor (ZA Mode)

Evaluation of a Chip Capacitor (ZA Mode)
As a typical application of impedance analyzer mode, this example shows how to evaluate the
impedance characteristics of a chip under swept frequency. Also, it shows how to determine
the equivalent circuit parameters of a chip capacitor using the equivalent circuit analysis
function of the HP 4395A. Note that using the HP 4395A as an impedance analyzer requires
the HP 43961A Impedance Test Kit as well as Option 010.

Measurement Setup
Connection
Set up the HP 4395A as shown in Figure 10-21.

Figure 10-21. Connecting the Impedance Test Kit

Analyzer Settings
Press 4Preset5. Then set the HP 4395A's controls as follows:

10-24 Examples of Applications

Evaluation of a Chip Capacitor (ZA Mode)
Desired Settings

Key Strokes
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MEASUREMENTblock

Select impedance analyzer mode 4Meas5 ANALYZER TYPE
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
IMPEDANCE ANALYZER

ACTIVE CHANNELblock

Select channel 1

4Chan 15(default)

SWEEPblock

Select LOG FREQ mode.

4Sweep5 SWEEP TYPE MENU

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

SWEEP TYPE: LOG FREQ

Sweep start frequency 100 kHz

4Start5 415 405 405 4k/m5

Sweep stop frequency 500 MHz

4Stop5 455 405 405 4M/5

Output level 0.5 dBm

4Source5 POWER 4.5 455 4

IF bandwidth 300 Hz
Averaging factor 8

FFFFFFFFFFFFFF

FFFFFFFFFFFFFF

215

215

4Bw/Avg5 IF BW 435 405 405 4

AVERAGING FACTOR 485 4215

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

AVERAGING on OFF (to ON off )

Calibration
A proper calibration is requisite for the HP 4395A to perform measurements within the
guaranteed accuracy range. Calibrating the HP 4395A for impedance analyzer mode requires
three di erent terminations: 0 S (OPEN), 0 (SHORT), and 50 (LOAD).

Note

Be sure to use the calibration kit included in the HP 43961A package.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

1. Press 4Cal5 and choose CALIBRATE MENU .
2. Connect the 0S termination to the OUTPUT port, and choose OPEN . Wait until the OPEN
softkey's label is underlined to indicate that the OPEN calibration is complete.
3. Remove the 0S termination.
4. Connect the 0 termination to the OUTPUT port, and choose SHORT . Wait until the SHORT
softkey's label is underlined to indicate that the SHORT calibration is complete.
5. Remove the 0 termination.
6. Connect the 50 termination to the OUTPUT port, and choose LOAD . Wait until the LOAD
softkey's label is underlined to indicate that the LOAD calibration is complete.
7. Choose DONE: CORRECTION .
NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8. Make sure that a \Cor" marker is displayed at the left-hand edge of the screen.

Connecting the Test Fixture
The test xture used in this example is the HP 16192A Parallel Electrode SMD Test Fixture.
Connect the test xture to the test kit referring to the documentation for the HP 16192A
Parallel Electrode SMD Test Fixture.

Examples of Applications

10-25

Evaluation of a Chip Capacitor (ZA Mode)

Figure 10-22. Connecting the Test Fixture

Setting the Electrical Length of the Test Fixture
Connecting a test xture adds an extra electrical length to the test circuit. This electrical
length, which is speci c to the test xture you use, must be known to the HP 4395A so that it
can compensate for the extra electrical length and eliminate errors due to phase shifts.
The HP 4395A incorporates a database of HP test xtures with their own electrical lengths.
This database contains the electrical length of the HP 16192A test xture.
To set the electrical length of the test xture, follow these steps:
1. Press 4Meas5.
2. Choose FIXTURE [NONE] SELECT FIXTURE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. As the model number for the test xture you are going to use, select 16192 .
NNNNNNNNNNNNNNNNN

4. Choose RETURN .
NNNNNNNNNNNNNNNNNNNN

5. A \Del" marker appears at the left edge of the screen.

Fixture Compensation
Fixture compensation is a process that calibrates the HP 4395A with a test xture installed,
thereby eliminating errors produced between the test xture electrode and the impedance test
kit's OUTPUT port.
Normally, the HP 4395A must be xture-compensated for the OPEN and SHORT circuit states.
It can optionally be xture-compensated for the LOAD state.

Note

For how to connect standard devices, refer to the documentation that comes
with the test xture you use.

To carry out xture compensation, follow these steps:
10-26 Examples of Applications

Evaluation of a Chip Capacitor (ZA Mode)
1. Press 4Cal5 and choose FIXTURE COMPEN COMPEN MENU .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Make sure that the test circuit is in the open state.
3. Choose OPEN . Wait until the OPEN softkey's label is underlined to indicate that the OPEN
compensation is complete.
4. Connect the appropriate short device to the test xture.
5. Choose SHORT . Wait until the SHORT softkey's label is underlined to indicate that the
SHORT compensation is complete.
6. Choose DONE: COMPEN .
NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Check that a \Cmp" marker is displayed in place of the \Cor" marker.

Capacitance and Dissipation Factor under Swept Frequency
Setting Measurement Parameters
To begin impedance measurement, the HP 4395A must know which characteristics it should
measure and how it should report the measured values.
1. Press 4Chan 15 to activate Channel 1.
2. Press 4Meas5 and choose MORE 1/5 MORE 2/5 MORE 3/5 SER(Cs) to instruct the HP 4395A
to measure Cs (serial capacitance) for Channel 1.
3. Press 4Chan 25 to activate Channel 2.
4. Press 4Meas5 and choose MORE 4/5 D FACTOR(D) to instruct the HP 4395A to measure D
(dissipation factor) for Channel 2.
5. Press 4Bw/Avg5 AVERAGING FACTOR 485 4215.
NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. Toggle AVERAGING on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

7. Press 4Display5 and toggle DUAL CHAN on OFF to ON off to turn ON the dual channel
function.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Measurement
Connect the DUT to the test xture referring to the documentation that comes with the HP
16192A test xture.
Press 4Chan 15 4Scale Ref5 AUTO SCALE , 4Chan 25 4Scale Ref5 AUTO SCALE if the trace needs rescaling.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Examples of Applications

10-27

Evaluation of a Chip Capacitor (ZA Mode)

Figure 10-23.
Cs and D Characteristics of a Chip Capacitor under Swept Frequency

jZj and (Phase) under Swept Frequency

Follow these steps:
1. Press 4Chan 15 to activate Channel 1.
2. Press 4Meas5 and choose MORE 5/5 IMPEDANCE: |Z| to instruct the HP 4395A to measure
jZj for Channel 1.
3. Press 4Format5 and choose FORMAT: LOG Y-AXIS .
NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 4Scale Ref5 and choose AUTO SCALE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Press 4Chan 25 to activate Channel 2.
6. Press 4Meas5 and choose z .
NNNNNNN

7. Press 4Scale Ref5 and choose AUTO SCALE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

The HP 4395A displays the jZj and  characteristics under swept frequency, as shown in
Figure 10-24.

10-28 Examples of Applications

Evaluation of a Chip Capacitor (ZA Mode)

Figure 10-24.

jZj and  Characteristics of a Chip Capacitor under Swept Frequency

Equivalent Circuit Analysis
The HP 4395A provides a function that automatically calculates approximate values of
speci c parameters of an equivalent circuit that corresponds to a DUT. This function supports
ve circuit models. In addition, the resulting parameter values can be used to simulate the
frequency-based characteristics of the equivalent circuit; this allows you to compare the
simulated characteristics with the actually measured characteristics.
To analyze equivalent circuit parameters, follow these steps:
1. Press 4Display5 and choose MORE EQUIV CKT MENU to access the equivalent circuit menu.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Choose SELECT EQV CKT [A] and select D as the equivalent circuit model to use.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNN

3. Choose CALCULATE EQV PARAMS to calculate the parameters of the equivalent circuit.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Preceded by a beep, the values of the equivalent circuit parameters appear at the bottom of
the screen.

Figure 10-25. Equivalent Circuit Parameters
Examples of Applications

10-29

Evaluation of a Chip Capacitor (ZA Mode)
NNNNNNNNNNNNNN

To hide the equivalent circuit parameters from the screen, press 4Display5, choose MORE
EQUIV CKT MENU . Then choose DISP EQV PARM [ON] so that the softkey label changes to
[OFF] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

You may wish to use the resulting parameter values to simulate the frequency-based
characteristics of the equivalent circuit and compare them with the actually measured
characteristics. To do so, follow these steps:
4. Press 4Display5.
5. Choose MORE EQUIV CKT MENU SIMULATE F-CHRST .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Preceded by a beep, the simulation results appear on the screen. They are also stored in the
trace memory.

Figure 10-26.
Simulation of Frequency-based Characteristics Using Resulting
Equivalent Circuit Parameters
You can simulate the frequency-based characteristics with desired parameter values you
de ned. Press 4Display5 MORE EQUIV CKT MENU DEFINE EQV PARAMS , enter each parameter
values using R1 , C1 , L1 ,and C0 ,and then press SIMULATE F-CHRST .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNN NNNNNNNN NNNNNNNN

NNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To hide the simulation results from the screen, press 4Display5 and choose DISPLAY [DATA&MEM]
DISPLAY: DATA for both 4Chan 15 and 4Chan 25.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

10-30 Examples of Applications

Evaluation of a Crystal Resonator (ZA Mode)

Evaluation of a Crystal Resonator (ZA Mode)
Measurement Setup
Connection
Connect the HP 4395A with the HP 43961A Impedance Test Kit in the same procedure as
described in \Evaluation of a Chip Capacitor (ZA Mode)".

Analyzer Settings
Press 4Preset5. Then set the HP 4395A's controls as follows:
Desired Settings

Key Strokes
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MEASUREMENT block

Select impedance analyzer mode 4Meas5 ANALYZER TYPE
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
IMPEDANCE ANALYZER

ACTIVE CHANNEL block

Select channel 1

4Chan 15(default)

SWEEP block

Center frequency 24 MHz

4Center5 425 445 4M/5

Span frequency 200 kHz

4Span5 425 405 405 4k/m5

Output level 0.5 dBm

4Source5 POWER 4.5 455 4x15

IF bandwidth 300 Hz

4Bw/Avg5 IF BW 435 405 405 4

Averaging factor 8

FFFFFFFFFFFFFF

FFFFFFFFFFFFFF

215

AVERAGING FACTOR 485 4215
FFFFFFFFFFFFFFFF
AVERAGING on OFF (to ON off )

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Calibration
Calibrate the HP 4395A as described in \Evaluation of a Chip Capacitor (ZA Mode)".

Connecting the Test Fixture
The test xture used in this example is the HP 16092A Spring Clip Test Fixture. Connect the
test xture to the test kit referring to the documentation for the HP 16092A Spring Clip Test
Fixture.

Setting the Electrical Length of the Test Fixture
Connecting a test xture adds an extra electrical length to the test circuit. This electrical
length, which is speci c to the test xture you use, must be known to the HP 4395A so that it
can compensate for the extra electrical length and eliminate errors due to phase shifts.
Although the HP 4395A incorporates a database of HP test xtures with their own electrical
lengths, the HP16092A test xture is not contained in this database. Therefore, you need to
manually set its electrical length.
Follow these steps:
1. Press 4Meas5.
2. Choose FIXTURE [NONE] MODIFY [NONE] DEFINE EXTENSION .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. The HP16092A test xture has an electrical length of 0.0034 m. To enter this electrical
length, press 4.5 405 405 435 445 4215.
Examples of Applications

10-31

Evaluation of a Crystal Resonator (ZA Mode)
4. Choose LABEL FIXTURE ERASE TITLE . Press 415 465 405 495 425, and then choose DONE .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNN

5. Choose KIT DONE (MODIFIED) .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

6. A \Del" marker appears at the left edge of the screen.

Fixture Compensation
Carry out xture compensation as described in \Evaluation of a Chip Capacitor (ZA Mode)".

Setting Measurement Parameters
1. Press 4Chan 15 to activate Channel 1.
2. Press 4Meas5 and check that IMPEDANCE: MAG(|Z|) is currently selected.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press 4Format5 and choose LOG Y-AXIS .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 4Chan 25 to activate Channel 2.
5. Press 4Meas5 and check that z is currently selected.
NNNNNNN

6. Press 4Format5 and check that FORMAT: LIN Y-AXIS is currently selected.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Press 4Bw/Avg5 AVERAGING FACTOR 485 4215.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8. Toggle AVERAGING on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

9. Press 4Display5 and toggle DUAL CHAN on OFF to ON off to turn OFF the dual channel
display.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Measurement
Connect the DUT to the test xture referring to the documentation that comes with the HP
16092A Spring Clip Test Fixture.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

If the trace needs rescaling, press 4Scale Ref5 and choose enter AUTO SCALE after activating
Channel 1 with 4Chan 15 key.

Figure 10-27. Frequency-based Characteristics of a Crystal Resonator
10-32 Examples of Applications

Evaluation of a Crystal Resonator (ZA Mode)

Readout of Resonance Frequency (Fr ) and Crystal Impedance (CI)
1. Press 4Chan 25 to activate Channel 2.
2. Press 4Search5 and toggle SEARCH TRK on OFF to ON off to turn ON the search track
function.
3. Choose TARGET .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

4. Press 405 4215 and choose SEARCH LEFT .
The marker moves to the zero phase (0 ) point on the lower-frequency side. This is the point
at which the resonance frequency (Fr ) and crystal impedance (CI) occur.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 10-28. Readout of the Fr and CI Values of a Crystal Resonator

Equivalent Circuit Analysis
The HP 4395A supports the 4-element equivalent circuit model, which is suitable for evaluating
crystal resonator.
1. Press 4Display5 and choose MORE EQUIV CKT MENU to access the equivalent circuit menu.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Choose SELECT EQV CKT [A] and select E as the equivalent circuit model to use.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNN

3. Choose CALCULATE EQV PARAMS to calculate the parameters of the equivalent circuit.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Preceded by a beep, the values of the equivalent circuit parameters appear at the bottom of
the screen.

Examples of Applications

10-33

Evaluation of a Crystal Resonator (ZA Mode)

Figure 10-29. Equivalent Circuit Parameters
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To hide the equivalent circuit parameters from the screen, press 4Display5 MORE EQV CKT MENU
and toggle DISP EQV PARM [ON] to [OFF] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

You may wish to use the resulting parameter values to simulate the frequency-based
characteristics of the equivalent circuit and compare them with the actually measured
characteristics. To do so, follow these steps:
4. Press 4Display5 and choose MORE EQUIV CKT MENU SIMULATE F-CHRST .
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

To hide the simulation results from the screen, press 4Display5 and choose DISPLAY [DATA&MEM]
DISPLAY: DATA for both channels.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 10-30.
Simulation of Frequency-based Characteristics Using Resulting
Equivalent Circuit Parameters

10-34 Examples of Applications

Evaluation of a Crystal Resonator (ZA Mode)

Admittance Chart
1. If the results of equivalent circuit simulation are currently displayed for Channel 1, hide the
results by pressing 4Chan 15 4Display5 and choosing DISPLAY [DATA&MEM] DISPLAY: DATA
RETURN MORE EQUIV CKT MENU DISP EQV PARM [ON] .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. With the marker located at the resonance frequency (Fr ) point, press 4Marker!5 and choose
MKR!CENTER to set the sweep center frequency to the resonance frequency.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Press 4Chan 15 4Meas5 and choose MORE [1/5] ADMITTNCE: MAG(|Y|) .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4. Press 4Format5 and choose COMPLEX PLANE to select the complex plane format.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

5. Press 4Display5 and choose DUAL CHAN ON off to on OFF to turn OFF the dual channel
display.
6. Press 4Scale Ref5 and choose AUTO SCALE to rescale the trace.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7. Adjust the span by pressing 4Span5 and then 4+5 or 4*5. If the number of sweep points is
so small that the admittance chart does not form a circular shape, increase the number of
sweep points by pressing 4Sweep5 and choosing NUMBER OF POINTS then pressing 4*5. (Press
4Scale Ref5 AUTO SCALE if required.)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

On a complex plane, the measurement parameters are always expressed as complex numbers
even if you have selected a scalar parameter such as jYj.

Figure 10-31. Admittance Chart for a Crystal Resonator

Using the Marker
1. To move the marker, press 4Marker5 and turn the rotary knob.
The real and imaginary parts of the complex number that corresponds to the marker position
are shown at the upper left corner of the grid area (see Figure 10-31).
If necessary, press 4Scale Ref5 and rescale the trace.

Examples of Applications

10-35

Evaluation of a Varactor Diode - DC Bias Sweep Using List Sweep Function (ZA Mode)

Evaluation of a Varactor Diode - DC Bias Sweep Using List
Sweep Function (ZA Mode)
This section provides an example application of impedance analyzer mode in which the
HP 4395A's internal DC source (Option 001) is controlled through the list sweep function to
evaluate the characteristics of a varactor diode under DC bias conditions.

Measurement Setup
Connection
Connect the HP 4395A with the HP 43961A Impedance Test Kit in the same procedure as
described in \Evaluation of a Chip Capacitor (ZA Mode)". Connect the BNC(m)-BNC(m) cable
included in the HP 43961A package between the HP 4395A's DC SOURCE connector and the
HP 43961A's DC SOURCE Input connector.

Analyzer Settings
Press 4Preset5. Then set the HP 4395A's controls as follows:
Desired Settings

Key Strokes
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

MEASUREMENT block

Select impedance analyzer mode 4Meas5 ANALYZER TYPE
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
IMPEDANCE ANALYZER

ACTIVE CHANNEL block

Select channel 1

4Chan 1 5(default)

MEASUREMENT block

Cp (parallel capacitance)

4Meas5 MORE 1/5 MORE 2/5 MORE 3/5

FFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

CAPACITANCE: PRL(C p)

Averaging factor 8

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

215

4Bw/Avg5 AVERAGING FACTOR 485 4
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

AVERAGING on OFF (to ON off )

SWEEP block

Hold trigger

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

4Trigger5 SWEEP: HOLD

De ning the Sweep List
The list sweep function controls the sweep process in accordance with a user-de ned sweep
list. To de ne the sweep list, follow these steps:
1. Press 4Source5 and check that DC source output is turned o . (Softkey label must be
DC OUT on OFF ).
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2. Check that DC SRC [VOLTAGE] (voltage mode) is currently selected.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3. Choose DC CURRENT LIMIT and press 415 405 4k/m5 to set the upper limit current to 10
mA . (Note that you may need to specify a greater or smaller value depending on the
speci cations of the actual DUT).
4. Press 4Sweep5 and choose SWEEP TYPE MENU EDIT LIST to begin editing the sweep list.
First, you de ne segment 1 of the sweep list.
5. Choose ADD SEGMENT: START and press 435 405 405 4M/5. This de nes both start and stop
frequency for segment 1 to be 300 MHz, and instructs the HP 4395A to keep the frequency
for segment 1 constant at 300 MHz.
6. Do not change the number of points. (default value is 2)
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

10-36 Examples of Applications

Evaluation of a Varactor Diode - DC Bias Sweep Using List Sweep Function (ZA Mode)
7. Choose MORE POWER and press 405 415 435 4215 to set the power for segment 1 to 013 dBm.
NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN

8. Choose DC VOLTAGE and press 405 425 485 4215 to set the DC bias voltage for segment 1 to
028 V.
9. Choose RETURN SEGMENT DONE to nish de ning segment 1.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

10. Repeat steps 4 through 8 above for each of segments 2 through 15, increasing the DC bias
voltage in 2 V increments from one segment to another. Note that, when you add a new
segment by choosing ADD , the new segment inherits the de nitions for the immediately
preceding segment. Therefore, you can create the sweep list by just changing the DC
SOURCE setting for each subsequent segment.
NNNNNNNNNNN

Table 10-1. Sweep List for Evaluating a Varactor Diode
Segment Number Start Frequency Stop Frequency Measuring Point Power IF Bandwidth DC Bias Voltage
1

300 MHz

300 MHz

2

2

300 MHz

300 MHz

2

3

300 MHz

300 MHz

2

4

300 MHz

300 MHz

2

5

300 MHz

300 MHz

2

6

300 MHz

300 MHz

2

7

300 MHz

300 MHz

2

8

300 MHz

300 MHz

2

9

300 MHz

300 MHz

2

10

300 MHz

300 MHz

2

11

300 MHz

300 MHz

2

12

300 MHz

300 MHz

2

13

300 MHz

300 MHz

2

14

300 MHz

300 MHz

2

15

300 MHz

300 MHz

2

013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm
013 dBm

2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz
2 Hz

028 V
026 V
024 V
022 V
020 V
018 V
016 V
014 V
012 V
010 V
08 V
06 V
04 V
02 V
00 V

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

11. When you have nished de ning segment 15, choose LIST DONE to exit from edit mode.
12. Choose LIST FREQ to set the sweep mode to list sweep.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Calibration
Calibrate the HP 4395A as described in \Evaluation of a Chip Capacitor (ZA Mode)".

Caution

Do not attempt to perform calibration or xture compensation while the
HP 4395A is applying external DC bias. Doing so could damage the calibration
or xture compensation standard.

Examples of Applications

10-37

Evaluation of a Varactor Diode - DC Bias Sweep Using List Sweep Function (ZA Mode)

Connecting the Test Fixture
Connect the HP 4395A with the HP 16192A Test Fixture as described in \Evaluation of a Chip
Capacitor (ZA Mode)".

Setting the Electrical Length of the Test Fixture
Set the electrical length of the HP 16192A Test Fixture as described in \Evaluation of a Chip
Capacitor (ZA Mode)".

Fixture Compensation
Carry out xture compensation as described in \Evaluation of a Chip Capacitor (ZA Mode)".

Measuring Capacitance under DC Bias Conditions
1. Connect the DUT.
2. Press 4Source5 and toggle DC OUT on OFF to ON off .
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNN

Figure 10-32. Characteristics of a Varactor Diode under DC Bias Sweep
In this example, you learned how to evaluate the capacitance characteristics of a varactor
diode under DC voltage bias conditions using the list sweep function. Other possible
applications of the list sweep function include evaluating the capacitance of a capacitor under
DC voltage bias conditions and evaluating the characteristics of a coil under DC current bias
conditions.

10-38 Examples of Applications

11
Speci cations and Supplemental Characteristics
These speci cations are the performance standards or limits against which the instrument is
tested. When shipped from the factory, the HP 4395A meets the speci cations listed in this
section. The performance test procedures are covered in the HP 4395A Service Manual.
Speci cations describe the instrument's warranted performance over the temperature range
of 0 C to 40 C (except as noted). Supplemental characteristics are intended to provide
information that is useful in applying the instrument by giving non-warranted performance
parameters. These are denoted as SPC (supplemental performance characteristics), typical or
nominal . Warm up time must be greater than or equal to 30 minutes after power on for all
speci cations.

Network Measurement
Source Characteristics
Frequency Characteristics
Range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 Hz to 500 MHz
Resolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 mHz
Frequency reference
Accuracy

at 2365 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <65.5 ppm
Aging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62.5 ppm/year (SPC)
Initial achievable accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.0 ppm (SPC)

Temperature stability

at 2365 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62ppm (SPC)

Precision frequency reference (option 1D5)
Accuracy

at 0 C to 40 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.13 ppm
Aging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.1 ppm/year (SPC)
Initial achievable accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.02 ppm (SPC)

Temperature stability

at 0 C to 40 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.01 ppm (SPC)

Output Characteristics

Power range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 050 dBm to +15 dBm
Level accuracy
at 0 dBm output, 50 MHz, 2365 C, : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61.0 dB

Level linearity

Speci cations and Supplemental Characteristics

11-1

Network Measurement
Output Power

 040 dBm
< 040 dBm

Linearity1

61.0 dB
61.5 dB

1 at relative to 0 dBm output, 50 MHz, 2365 C

Flatness

at 0 dBm output, relative to 50 MHz, 2365 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62 dB
Resolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0.1 dB

Spectral Purity Characteristics
Harmonics

at +10 dBm output : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <030 dBc

Non-harmonics spurious

at +10 dBm output : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <030 dBc

Noise sidebands

at 10 kHz o set from carrier : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <095 dBc/Hz

Power sweep range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20 dB max.
Power sweep linearity
deviation from linear power referenced to the stop power level : : : : : : : : : : : : : : : : : : : : : 60.5 dB
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal

Impedance
Return loss

frequency  200 MHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : >15 dB (SPC)
frequency > 200 MHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : >7 dB (SPC)
Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Type N female

11-2 Speci cations and Supplemental Characteristics

Network Measurement

Receiver Characteristics
Input Characteristics

Frequency range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 Hz to 500 MHz
Input attenuator : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 to 50 dB, 10 dB step
Full scale input level (R,A,B)
Attenuator setting [dB]

Full scale input level1 [dBm]

0
10
20
30
40
50

0
+10
+20
+30
+30

010

1 Note that it is di erent from the full scale input level in
spectrum measurement.

IF bandwidth (IFBW)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2, 10, 30, 100, 300, 1 k, 3 k, 10 k, 30 kHz

Note: The IFBW should be set equal to or less than 1/5 of the lowest frequency in the sweep
range.
Noise level (referenced to full scale input level, 2365 C)

at 10 Hz  frequency < 100 Hz, IFBW=2 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 085 dB (SPC)
at 100 Hz  frequency < 100 kHz, IFBW=10 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 085 dB
at 100 kHz  frequency, IFBW=10 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : (0115 + f/100 MHz)dB

Input crosstalk

for input R . . . +10 dBm input, input attenuator: 20 dB
for input A, B . . . input attenuator: 0 dB
at frequency<100 kHz
R through A, B : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0100 dB
others : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0100 dB (SPC)
at frequency100 kHz
R through A, B : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0120 dB
others : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0120 dB (SPC)

Source Crosstalk (for input A, B)(typical for input R)

at +10 dBm output, <100 kHz , input attenuator: 0 dB : : : : : : : : : : : : : : : : : : : : : : : : : : <0100 dB
at +10 dBm output, 100 kHz , Input attenuator: 0 dB : : : : : : : : : : : : : : : : : : : : : : : : : : : <0120 dB

Impedance change by multiplexer switching

at Input attenuator 0 dB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0.5 % (SPC)
at Input attenuator 10 dB and above : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0.1 % (SPC)
Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Type N female
Impedance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal

Return loss

10 Hz  frequency < 100 kHz
100 kHz  frequency  100 MHz
100 MHz < frequency

0 dB

25 dB1
25 dB1
15 dB1

Input attenuator
10 dB
20 dB to 50 dB
25 dB1
25 dB
15 dB

25 dB1
25 dB1
15 dB1

1 SPC

Maximum input level

: : : : : : : : : : : : : : : : : : : : : : : : +30 dBm (at input attenuator: 40 dB or 50 dB)

Speci cations and Supplemental Characteristics

11-3

Network Measurement
Maximum safe input level

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : +30 dBm or

67 Vdc (SPC)

Magnitude Characteristics
Absolute amplitude accuracy (R, A, B)

at 010 dBm input, input attenuator: 10 dB, frequency 100 Hz, IFBW3 kHz, 2365 C,
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.5 dB

Ratio accuracy (A/R, B/R) (typical for A/B)

at 010 dBm input, input attenuator: 10 dB, IFBW3 kHz, 2365 C,

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62 dB

Dynamic accuracy (A/R, B/R) (typical for A/B)
Input Level
(relative to full scale input level)
0 dB  input level > 010 dB
010 dB  input Level  060 dB
060 dB > input level  080 dB
080 dB > input level  0100 dB

Dynamic Accuracy1
frequency  100 Hz

60.4 dB
60.05 dB
60.3 dB
63 dB
1 A input level (B input level for B/R)= full scale input level 010 dB, R input
level (B input level for A/B)= full scale input level 010 dB, IFBW = 10 Hz,
2365 C
At the following points, measurement error may exceed the speci cations:
124.0 MHz, 136.0 MHz, 415.0 MHz

Figure 11-1. Magnitude Dynamic Accuracy

11-4 Speci cations and Supplemental Characteristics

Network Measurement
Residual responses : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <080 dB full scale input level (SPC)
Trace noise (A/R, B/R, A/B)

at 50 MHz, 020 dBm input, both inputs: full scale input level 010 dB, IFBW=300 Hz
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0.005 dB rms (SPC)
Stability (A/R, B/R, A/B) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : < 60.01 dB/ C (SPC)

Phase Characteristics

Measurements format : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Standard format, Expanded phase format
Frequency response (deviation from linear phase) (A/R, B/R) (SPC for A/B)
at 010 dBm input, input attenuator: 10 dB, IFBW3 kHz, 2365 C

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::<

Dynamic accuracy (A/R, B/R) (SPC for A/B)
Input Level
(relative to full scale input level)
0 dB  input level > 010 dB
010 dB  input level  060 dB
060 dB > input level  080 dB
080 dB > input level  0100 dB

612

Dynamic Accuracy1
frequency  100 Hz

63
60.3
61.8
618
1 A input level (B input level for B/R) = full scale input level 010 dB, R input
level (B input level for A/B) = full scale input level 010 dB, IFBW = 10 Hz,
2365 C
At the following points, measurement error may exceed the speci cations:
124.0 MHz, 136.0 MHz, 415.0 MHz

Figure 11-2. Phase Dynamic Accuracy
Trace noise (A/R, B/R, A/B)

at 50 MHz, 020 dBm input, both inputs: full scale input level 010 dB, IFBW=300 Hz
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0.04 rms (SPC)
Stability (A/R, B/R, A/B) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : < 60.1  / C (SPC)
Speci cations and Supplemental Characteristics

11-5

Network Measurement

Group Delay Characteristics
Aperture [Hz]
Accuracy

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0.25 % to 20 % of span

In general, the following formula can be used to determine the accuracy, in seconds, of a
speci c group delay measurement:
P haseAccuracy [degree]
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Aperture
[Hz ]2360[ degree]

Sweep Characteristics
Sweep type : : : : : : : : : : : : : : : : : : : : : : : : : : Linear frequency, Log frequency, Power, List frequency
Trigger type : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Hold, Single, Number of groups, Continuous
Trigger source : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Internal (free run), External, Manual, HP-IB (bus)
Event trigger : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : On point, On sweep
NOP(Number of Points) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 to 801

Measurement Throughput 1
(msec, SPC, IFBW=30 kHz, after through calibration)
Measurement points
Amplitude
Amplitude/Phase

51
75
75

201
165
215

401
305
400

801
580
770

Includes system retrace time and RF switching time. Add 80 msec at start frequency < 5
MHz.
1

11-6 Speci cations and Supplemental Characteristics

Spectrum Measurement

Spectrum Measurement
Frequency Characteristics
Frequency range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 Hz to 500 MHz
Frequency readout accuracy

AN [H z ]
: : : : : : : : : : : : : : : : : : : : : : : : : 6((freq readout[Hz ]) 2 (freq ref accuracy) + RBW [Hz ] + SP
))
(NOP 01)
where NOP means number of display points

Frequency reference
Accuracy

at 2365 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <65.5 ppm
Aging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62.5 ppm/year (SPC)
Initial achievable accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.0 ppm (SPC)

Temperature stability

at 2365 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62 ppm (SPC)

Precision frequency reference (option 1D5)
Accuracy

at 0 C to 40 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.13 ppm
Aging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.1 ppm/year (SPC)
Initial achievable accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.02 ppm (SPC)

Temperature stability

at 0 C to 40 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.01 ppm (SPC)

Resolution bandwidth (RBW)
Range

3 dB RBW at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 Hz to 1 MHz, 1-3 step
3 dB RBW at span = 0
: : : : : : : : : : : : : : : : : : : : : : : : 3k, 5k, 10k, 20k, 40k, 100k, 200k, 400k, 800k, 1.5M, 3M, 5MHz
Selectivity (60 dB BW / 3 dB BW)
at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <3
Mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Auto or Manual

Accuracy

at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <610%
at span = 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <630%

Video bandwidth (VBW)
Range

at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 mHz to 3 MHz, 1-3 step, 0.003  VBW/RBW  1

Noise sidebands

O set from Carrier

1 kHz
100 kHz

Noise Sidebands

097 dBc/Hz
0110 dBc/Hz

<
<

Speci cations and Supplemental Characteristics

11-7

Spectrum Measurement

Figure 11-3. Noise Sidebands

Amplitude Characteristics
Amplitude range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : displayed average noise level to +30 dBm
Reference value setting range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0100 dBm to +30 dBm
Level accuracy
at 020 dBm input, 50MHz, input attenuator: 10 dB, 2365 C : : : : : : : : : : : : : : : : : : : : : : <60.8 dB

Frequency response

at 020 dBm input, input attenuator: 10 dB, referenced to level at 50 MHz, 2365 C
frequency  100 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.3 dB
frequency < 100 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <63.0 dB

Amplitude delity1
Log scale2

Input level
(dB to full scale input level)
0 to 030 dB
030 to 040 dB
040 to 050 dB
050 to 060 dB
060 to 070 dB
070 to 080 dB

11-8 Speci cations and Supplemental Characteristics

Amplitude Fidelity

60.05 dB
60.07 dB
60.15 dB
60.35 dB
60.8 dB
61.8 dB

Spectrum Measurement
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <63%
Amplitude delity shows an extent of nonlinearity referenced to the full scale input level
010 dB.
2
RBW=10 Hz, 020 dBm  reference value  +30 dBm, referenced to full scale input
level010 dB, 2365 C
Note: Refer to Input attenuator part for the de nition of full scale input level.

Linear scale2
1

Displayed average noise level

at reference value040 dBm, input attenuator: auto or 0 dB
at frequency1 kHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0120 dBm/Hz
at 100 kHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0133 dBm/Hz
at 10 MHz1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : (0145 + frequency/100 MHz) dBm/Hz
1

at start frequency  10 MHz

Figure 11-4. Typical Displayed Average Noise Level
On-screen dynamic range

Speci cations and Supplemental Characteristics

11-9

Spectrum Measurement

Figure 11-5. Typical On-screen Dynamic Range (Center: 50 MHz)
Spurious responses
Second harmonic distortion (2365 C)

at single tone input with full scale input level010 dB, input signal frequency  100 kHz
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <070 dBc
Third order inter-modulation distortion (2365 C)
at two tones input with full scale input level016 dB, separation  100 kHz
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <070 dBc
Other spurious (2365 C)
at single tone input with full scale input level010 dB, input signal frequency  500 MHz,
RBW  100 kHz, 1KHz  frequency o set  300MHz
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <070 dBc
(<060 dBc (SPC) if there are input signals in the following frequency range:
14.7 MHz to 15.9 MHz, 29.5 MHz to 31.7 MHz, 414.7 MHz to 415.9 MHz)

Residual response

at reference value setting 040 dBm, input attenuator: auto or 0 dB : : : : : : : : : : <0108 dBm
See \EMC" under \Others" in \Common to Network/Spectrum/Impedance Measurement".

Typical dynamic range

11-10 Speci cations and Supplemental Characteristics

Spectrum Measurement

Figure 11-6. Typical Dynamic Range at Inputs R, A, and B
Input attenuator
Setting range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 dB to 50 dB, 10 dB step
Attenuator Setting

Full Scale Input Level1

0 dB
10 dB
20 dB
30 dB
40 dB
50 dB

0 dBm
+10 dBm
+20 dBm
+30 dBm

020 dBm
010 dBm

1 Note that it is di erent from the full scale input level in
network measurement.

Mode

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Auto or Manual
(In auto mode, the attenuator is set to minimum value which ensures full scale input level
 reference level)

Input attenuator switching uncertainty

 30 dB, referenced to 10 dB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.0 dB
40 dB, referenced to 10 dB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.5 dB
Temperature drift : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.05 dB/ C (SPC)
at attenuator:
at attenuator:

Speci cations and Supplemental Characteristics

11-11

Spectrum Measurement
Scale
Log : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0.1 dB/div to 20 dB/div
Linear

at watt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1.0 2 10012 W/div
at volt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1.0 2 1009 V/div
Measurement format : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Spectrum or Noise (/Hz)
Display unit : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : dBm, dBV, dBV, V, W

Sweep Characteristics
Sweep type : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Linear frequency, List frequency
Trigger type : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Hold, Single, Number of groups, Continuous,
Trigger source : : : : : : : : : Internal (free run), External, Manual, Level gate(Option 1D6), Edge
gate(Option 1D6), HP-IB (bus)
Sweep time (excluding each sweep setup time)
RBW

SPAN

Typical Sweep Time

1 MHz
100 kHz
10 kHz
1 kHz
100 Hz
10 Hz
1 Hz
|

500 MHz
100 MHz
10 MHz
1 MHz
100 kHz
10 kHz
1 kHz
Zero Span

180 ms
300 ms
240 ms
190 ms
270 ms
2.0 s
11 s
|1

1 See the next item for sweep time at zero span

Zero span
RBW

Minimum Resolution

Maximum Sweep Time

5 MHz
100 kHz
3 k Hz

40 ns
1.28 s
40.96 s

1.28 ms
81.92 ms
2.62 s

Number of display points

at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 to 801 points (automatically set)
at span = 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 to 801 points (selectable)

Input Characteristics
Input Port
Crosstalk

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : R, A, B

from any input to other inputs, at the same input attenuator settings

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :<

0100 dB (SPC)

Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Type N female
Impedance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal
Return Loss
10 Hz  frequency < 100 kHz
100 kHz  frequency  100 MHz
100 MHz < frequency

1 (SPC)

11-12 Speci cations and Supplemental Characteristics

0 dB

25 dB1
25 dB1
15 dB1

Input Attenuator
10 dB
20 dB to 50 dB
25 dB1
25 dB
15 dB

25 dB1
25 dB1
15 dB1

Spectrum Measurement
Input Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : +30 dBm max. at input attenuator: 50 dB
Maximum safe input level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : +30 dBm or 67 Vdc (SPC)

Speci cations when Option 1D6 Time-Gated spectrum analysis is installed
All speci cations are identical to the standard HP 4395A except the following items.

Gate length
Range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 s to 3.2 s
Resolution
Range of Gate Length(Tl )
6 sTl 25 ms
25 ms 30 minutes
Ambient temperature
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23 C 6 5 C,
within 61 C from the temperature at which calibration is performed
Signal level (setting) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 to +15 dBm
Correction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ON
IFBW (for calibration and measurement) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  300 Hz
Averaging factor (for calibration and measurement) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  8
1
At the following points, measurement error may exceed the performance described in this
section:
124.0 MHz, 136.0 MHz, 415.0 MHz

11-16 Speci cations and Supplemental Characteristics

Measurement Basic Accuracy (Supplemental Performance Characteristics)

Figure 11-7. Impedance Measurement Accuracy

jZj -  Accuracy

jZj accuracy
 accuracy

Za = A + (B=jZm j + C 2 jZm j) 2 100 [%]

a = sin01 (Za =100)

Where, jZm j is jZj measured. A, B, and C are obtained from Figure 11-7.

Speci cations and Supplemental Characteristics

11-17

Measurement Basic Accuracy (Supplemental Performance Characteristics)

jYj -  Accuracy
jYj accuracy

Ya = A + (B 2 jYm j + C=jYmj) 2 100 [%]
a = sin01 (Ya =100)

 accuracy

Where, jYm j is jYj measured. A, B, and C are obtained from Figure 11-7.

R - X Accuracy (Depends on D)
Accuracy
Ra

D  0.2

6Xm 2 Xa =100 [

]

Xa [%]

Xa

Where,
D can be calculated as:

5

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.2
Linearized                      : Yes
Create Date                     : 1998:10:20 10:25:34Z
Modify Date                     : 2003:06:18 10:32:43-06:00
Keywords                        : HP, 4395A
Page Count                      : 556
Page Mode                       : UseOutlines
Creation Date                   : 1998:10:20 10:25:34Z
Producer                        : Acrobat Distiller 3.0J (Windows 版)
Mod Date                        : 2003:06:18 10:32:43-06:00
Author                          : Hewlett-Packard Company
Metadata Date                   : 2003:06:18 10:32:43-06:00
Title                           : HP 4395A Operation Manual
Creator                         : Hewlett-Packard Company
EXIF Metadata provided by EXIF.tools

Navigation menu