Intel® Architecture Instruction Set Extensions Programming Reference Intel Manual

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 1178 [warning: Documents this large are best viewed by clicking the View PDF Link!]

Intel® Architecture
Instruction Set Extensions Programming
Reference
319433-023
AUGUST 2015
ii Ref. # 319433-023
Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn
more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting
from such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica-
tions. Current characterized errata are available on request.
This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or by visiting http://www.intel.com/design/literature.htm.
Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 1997-2015, Intel Corporation. All Rights Reserved.
Ref. # 319433-023 iii
CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS
1.1 About This Document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.2 Intel® AVX-512 Instructions Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.2.1 512-Bit Wide SIMD Register Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
1.2.2 32 SIMD Register Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
1.2.3 Eight Opmask Register Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
1.2.4 Instruction Syntax Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
1.2.5 EVEX Instruction Encoding Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3
CHAPTER 2
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
2.1 Detection of AVX-512 Foundation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.2 Detection of 512-bit Instruction Groups of Intel® AVX-512 Family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2.3 Detection of Intel AVX-512 Instruction Groups Operating at 256 and 128-bit Vector Lengths . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2.4 Accessing XMM, YMM AND ZMM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.5 Enhanced Vector Programming Environment Using EVEX Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.5.1 OPMASK Register to Predicate Vector Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-5
2.5.1.1 Opmask Register K0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-6
2.5.1.2 Example of Opmask Usages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-6
2.5.2 OpMask Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-7
2.5.3 Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-7
2.5.4 STATIC ROUNDING MODE AND SUPPRESS ALL EXCEPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-8
2.5.5 Compressed Disp8*N Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-9
2.6 Memory Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2.7 SIMD Floating-Point Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.8 Instruction Exception Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.9 CPUID Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
CPUID—CPU Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
CHAPTER 3
SYSTEM PROGRAMMING FOR INTEL® AVX-512
3.1 AVX-512 State, EVEX Prefix and Supported Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.2 AVX-512 State Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.2.1 Detection of ZMM and Opmask State Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1
3.2.2 Enabling of ZMM and Opmask Register State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2
3.2.3 Enabling of SIMD Floating-Exception Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3
3.2.4 The Layout of XSAVE Sate Save Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3
3.2.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5
3.2.6 XSAVE/XRSTOR/XSAVEOPT and Managing ZMM and Opmask States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-6
3.3 Reset Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
3.4 Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
3.5 Writing floating-point exception handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
CHAPTER 4
AVX-512 INSTRUCTION ENCODING
4.1 Overview Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.2 Instruction Format and EVEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.3 Register Specifier Encoding and EVEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
4.3.1 Opmask Register Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-4
4.4 MAsking support in EVEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
4.5 Compressed displacement (disp8*N) support in EVEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
4.6 EVEX encoding of broadcast/Rounding/SAE Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
4.6.1 Embedded Broadcast Support in EVEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
4.6.2 Static Rounding Support in EVEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
4.6.3 SAE Support in EVEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7
4.6.4 Vector Length Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7
4.7 #UD equations for EVEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
4.7.1 State Dependent #UD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7
iv Ref. # 319433-023
4.7.2 Opcode Independent #UD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
4.7.3 Opcode Dependent #UD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
4.8 Device Not Available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
4.9 Scalar Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
4.10 Exception Classifications of EVEX-Encoded instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
4.10.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
4.10.2 Exceptions Type E2 of EVEX-Encoded Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
4.10.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
4.10.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
4.10.5 Exceptions Type E5 and E5NF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
4.10.6 Exceptions Type E6 and E6NF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22
4.10.7 Exceptions Type E7NM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
4.10.8 Exceptions Type E9 and E9NF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
4.10.9 Exceptions Type E10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
4.10.10 Exception Type E11 (EVEX-only, mem arg no AC, floating-point exceptions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
4.10.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30
4.11 Exception Classifications of Opmask instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
CHAPTER 5
INSTRUCTION SET REFERENCE, A-Z
5.1 Interpreting InstructIon Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1.1 Instruction Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
ADDPS—Add Packed Single-Precision Floating-Point Values (THIS IS AN EXAMPLE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.1.2 Opcode Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.1.3 Instruction Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
5.1.4 64/32 bit Mode Support column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
5.1.5 CPUID Support column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
5.1.5.1 Operand Encoding Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
5.2 Summary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
5.3 Ternary Bit Vector Logic Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
5.4 Instruction SET Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
ADDPD—Add Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
ADDPS—Add Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
ADDSD—Add Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
ADDSS—Add Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
VALIGND/VALIGNQ—Align Doubleword/Quadword Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
VBLENDMPD/VBLENDMPS—Blend Float64/Float32 Vectors Using an OpMask Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
VPBLENDMB/VPBLENDMW—Blend Byte/Word Vectors Using an Opmask Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
VPBLENDMD/VPBLENDMQ—Blend Int32/Int64 Vectors Using an OpMask Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27
ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29
ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32
ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35
ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38
VBROADCAST—Load with Broadcast Floating-Point Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41
VPBROADCASTB/W/D/Q—Load with Broadcast Integer Data from General Purpose Register. . . . . . . . . . . . . . . . . . . . . . . 5-48
VPBROADCAST—Load Integer and Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-51
CMPPD—Compare Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-60
CMPPS—Compare Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-67
CMPSD—Compare Scalar Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-73
CMPSS—Compare Scalar Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-77
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . 5-82
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . 5-84
DIVPD—Divide Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-86
DIVPS—Divide Packed Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-89
DIVSD—Divide Scalar Double-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-92
DIVSS—Divide Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-94
VCOMPRESSPD—Store Sparse Packed Double-Precision Floating-Point Values into Dense Memory . . . . . . . . . . . . . . . . . 5-96
VCOMPRESSPS—Store Sparse Packed Single-Precision Floating-Point Values into Dense Memory . . . . . . . . . . . . . . . . . . 5-98
CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values . . . . . . . . . . . . .5-100
Ref. # 319433-023 v
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . 5-103
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers . . . . . . . . . . . . . 5-106
CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-110
VCVTPD2QQ—Convert Packed Double-Precision Floating-Point Values to Packed Quadword Integers . . . . . . . . . . . . . 5-114
VCVTPD2UDQ—Convert Packed Double-Precision Floating-Point Values to Packed Unsigned Doubleword Integers 5-116
VCVTPD2UQQ—Convert Packed Double-Precision Floating-Point Values to Packed Unsigned Quadword Integers . . 5-118
VCVTPH2PS—Convert 16-bit FP values to Single-Precision FP values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-120
VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-123
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Signed Doubleword Integer Values. 5-127
VCVTPS2UDQ—Convert Packed Single-Precision Floating-Point Values to Packed Unsigned Doubleword Integer
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-130
VCVTPS2QQ—Convert Packed Single Precision Floating-Point Values to Packed Singed Quadword Integer Values . 5-132
VCVTPS2UQQ—Convert Packed Single Precision Floating-Point Values to Packed Unsigned Quadword Integer
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-134
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-136
VCVTQQ2PD—Convert Packed Quadword Integers to Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . 5-139
VCVTQQ2PS—Convert Packed Quadword Integers to Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . 5-141
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer. . . . . . . . . . . . . . . . . . . . . . . . . 5-143
VCVTSD2USI—Convert Scalar Double-Precision Floating-Point Value to Unsigned Doubleword Integer . . . . . . . . . . . . 5-145
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value . 5-147
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . 5-149
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . 5-151
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value . 5-153
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer. . . . . . . . . . . . . . . . . . . . . . . . . . 5-155
VCVTSS2USI—Convert Scalar Single-Precision Floating-Point Value to Unsigned Doubleword Integer . . . . . . . . . . . . . 5-157
CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword
Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-159
VCVTTPD2QQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Quadword
Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-162
VCVTTPD2UDQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Unsigned
Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-164
VCVTTPD2UQQ—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Unsigned
Quadword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-166
CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Signed Doubleword
Integer Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-168
VCVTTPS2UDQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Unsigned
Doubleword Integer Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-171
VCVTTPS2QQ—Convert with Truncation Packed Single Precision Floating-Point Values to Packed Singed Quadword
Integer Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-173
VCVTTPS2UQQ—Convert with Truncation Packed Single Precision Floating-Point Values to Packed Unsigned
Quadword Integer Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-175
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed Integer. . . . . . . . . . . . . 5-177
VCVTTSD2USI—Convert with Truncation Scalar Double-Precision Floating-Point Value to Unsigned Integer . . . . . . . 5-179
CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to Integer. . . . . . . . . . . . . . . . . . . . . 5-180
VCVTTSS2USI—Convert with Truncation Scalar Single-Precision Floating-Point Value to Unsigned Integer . . . . . . . . 5-182
VCVTUDQ2PD—Convert Packed Unsigned Doubleword Integers to Packed Double-Precision Floating-Point Values 5-184
VCVTUDQ2PS—Convert Packed Unsigned Doubleword Integers to Packed Single-Precision Floating-Point Values . 5-186
VCVTUQQ2PD—Convert Packed Unsigned Quadword Integers to Packed Double-Precision Floating-Point Values . . 5-188
VCVTUQQ2PS—Convert Packed Unsigned Quadword Integers to Packed Single-Precision Floating-Point Values . . . 5-190
VCVTUSI2SD—Convert Unsigned Integer to Scalar Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . 5-192
VCVTUSI2SS—Convert Unsigned Integer to Scalar Single-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . 5-194
VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes . . . . . . . . . . . . . . . . . . . . . . . . 5-196
VEXPANDPD—Load Sparse Packed Double-Precision Floating-Point Values from Dense Memory . . . . . . . . . . . . . . . . . . 5-199
VEXPANDPS—Load Sparse Packed Single-Precision Floating-Point Values from Dense Memory . . . . . . . . . . . . . . . . . . . 5-201
VEXTRACTF128/VEXTRACTF32x4/VEXTRACTF64x2/VEXTRACTF32x8/VEXTRACTF64x4—Extract Packed
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-203
VEXTRACTI128/VEXTRACTI32x4/VEXTRACTI64x2/VEXTRACTI32x8/VEXTRACTI64x4—Extract packed Integer
vi Ref. # 319433-023
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-209
EXTRACTPS—Extract Packed Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-215
VFIXUPIMMPD—Fix Up Special Packed Float64 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-217
VFIXUPIMMPS—Fix Up Special Packed Float32 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-221
VFIXUPIMMSD—Fix Up Special Scalar Float64 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-225
VFIXUPIMMSS—Fix Up Special Scalar Float32 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-228
VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-231
VFMADD132PS/VFMADD213PS/VFMADD231PS—Fused Multiply-Add of Packed Single-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-237
VFMADD132SD/VFMADD213SD/VFMADD231SD—Fused Multiply-Add of Scalar Double-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-243
VFMADD132SS/VFMADD213SS/VFMADD231SS—Fused Multiply-Add of Scalar Single-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-246
VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD—Fused Multiply-Alternating Add/Subtract of Packed
Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-249
VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS—Fused Multiply-Alternating Add/Subtract of Packed
Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-256
VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD—Fused Multiply-Alternating Subtract/Add of Packed
Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-263
VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS—Fused Multiply-Alternating Subtract/Add of Packed
Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-270
VFMSUB132PD/VFMSUB213PD/VFMSUB231PD—Fused Multiply-Subtract of Packed Double-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-277
VFMSUB132PS/VFMSUB213PS/VFMSUB231PS—Fused Multiply-Subtract of Packed Single-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-283
VFMSUB132SD/VFMSUB213SD/VFMSUB231SD—Fused Multiply-Subtract of Scalar Double-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-289
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS—Fused Multiply-Subtract of Scalar Single-Precision Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-292
VFNMADD132PD/VFNMADD213PD/VFNMADD231PD—Fused Negative Multiply-Add of Packed Double-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-295
VFNMADD132PS/VFNMADD213PS/VFNMADD231PS—Fused Negative Multiply-Add of Packed Single-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-302
VFNMADD132SD/VFNMADD213SD/VFNMADD231SD—Fused Negative Multiply-Add of Scalar Double-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-308
VFNMADD132SS/VFNMADD213SS/VFNMADD231SS—Fused Negative Multiply-Add of Scalar Single-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-311
VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD—Fused Negative Multiply-Subtract of Packed Double-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-314
VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS—Fused Negative Multiply-Subtract of Packed Single-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-320
VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD—Fused Negative Multiply-Subtract of Scalar Double-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-326
VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS—Fused Negative Multiply-Subtract of Scalar Single-Precision
Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-329
VFPCLASSPD—Tests Types Of a Packed Float64 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-332
VFPCLASSPS—Tests Types Of a Packed Float32 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-335
VFPCLASSSD—Tests Types Of a Scalar Float64 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-337
VFPCLASSSS—Tests Types Of a Scalar Float32 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-339
VPGATHERDD/VPGATHERDQ—Gather Packed Dword, Packed Qword with Signed Dword Indices. . . . . . . . . . . . . . . . . .5-341
VPGATHERQD/VPGATHERQQ—Gather Packed Dword, Packed Qword with Signed Qword Indices . . . . . . . . . . . . . . . . .5-344
VGATHERDPS/VGATHERDPD—Gather Packed Single, Packed Double with Signed Dword . . . . . . . . . . . . . . . . . . . . . . . . .5-347
VGATHERQPS/VGATHERQPD—Gather Packed Single, Packed Double with Signed Qword Indices . . . . . . . . . . . . . . . . . . 5-350
VGETEXPPD—Convert Exponents of Packed DP FP Values to DP FP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-353
VGETEXPPS—Convert Exponents of Packed SP FP Values to SP FP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-356
VGETEXPSD—Convert Exponents of Scalar DP FP Values to DP FP Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-360
VGETEXPSS—Convert Exponents of Scalar SP FP Values to SP FP Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-362
VGETMANTPD—Extract Float64 Vector of Normalized Mantissas from Float64 Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-364
Ref. # 319433-023 vii
VGETMANTPS—Extract Float32 Vector of Normalized Mantissas from Float32 Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-368
VGETMANTSD—Extract Float64 of Normalized Mantissas from Float64 Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-371
VGETMANTSS—Extract Float32 Vector of Normalized Mantissa from Float32 Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-373
VINSERTF128/VINSERTF32x4/VINSERTF64x2/VINSERTF32x8/VINSERTF64x4—Insert Packed Floating-Point
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-375
VINSERTI128/VINSERTI32x4/VINSERTI64x2/VINSERTI32x8/VINSERTI64x4—Insert Packed Integer Values . . . . . . 5-379
INSERTPS—Insert Scalar Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-383
MAXPD—Maximum of Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-386
MAXPS—Maximum of Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-389
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-392
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-394
MINPD—Minimum of Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-396
MINPS—Minimum of Packed Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-399
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-402
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-404
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-406
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-410
MOVD/MOVQ—Move Doubleword and Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-414
MOVQ—Move Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-417
MOVDDUP—Replicate Double FP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-420
MOVDQA,VMOVDQA32/64—Move Aligned Packed Integer Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-423
MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-428
MOVHLPS—Move Packed Single-Precision Floating-Point Values High to Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-435
MOVHPD—Move High Packed Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-437
MOVHPS—Move High Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-439
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-441
MOVLPD—Move Low Packed Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-443
MOVLPS—Move Low Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-445
MOVNTDQA—Load Double Quadword Non-Temporal Aligned Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-447
MOVNTDQ—Store Packed Integers Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-449
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . 5-451
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . .5-453
MOVSD—Move or Merge Scalar Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-455
MOVSHDUP—Replicate Single FP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-458
MOVSLDUP—Replicate Single FP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-461
MOVSS—Move or Merge Scalar Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-464
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-467
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-471
PSADBW—Compute Sum of Absolute Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-475
MULPD—Multiply Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-478
MULPS—Multiply Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-481
MULSD—Multiply Scalar Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-484
MULSS—Multiply Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-486
ORPD—Bitwise Logical OR of Packed Double Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-488
ORPS—Bitwise Logical OR of Packed Single Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-491
PABSB/PABSW/PABSD/PABSQ—Packed Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-494
PACKSSWB/PACKSSDW—Pack with Signed Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-500
PACKUSDW—Pack with Unsigned Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-508
PACKUSWB—Pack with Unsigned Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-513
PADDB/PADDW/PADDD/PADDQ—Add Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-518
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-525
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-529
PALIGNR—Byte Align . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-533
PAND—Logical AND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-536
PANDN—Logical AND NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-539
PAVGB/PAVGW—Average Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-542
VPBROADCASTM—Broadcast Mask to Vector Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-546
PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ—Compare Packed Integers for Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-548
PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ—Compare Packed Integers for Greater Than . . . . . . . . . . . . . . . . . . . . . . . . . 5-555
viii Ref. # 319433-023
VPCMPB/VPCMPUB—Compare Packed Byte Values Into Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-562
VPCMPD/VPCMPUD—Compare Packed Integer Values into Mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-565
VPCMPQ/VPCMPUQ—Compare Packed Integer Values into Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-568
VPCMPW/VPCMPUW—Compare Packed Word Values Into Mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-571
VPCOMPRESSD—Store Sparse Packed Doubleword Integer Values into Dense Memory/Register . . . . . . . . . . . . . . . . . .5-574
VPCOMPRESSQ—Store Sparse Packed Quadword Integer Values into Dense Memory/Register. . . . . . . . . . . . . . . . . . . .5-576
VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed Dword/Qword Values into Dense Memory/ Register . 5-578
VPERMB—Permute Packed Bytes Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-581
VPERMD/VPERMW—Permute Packed Doublewords/Words Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-583
VPERMI2B—Full Permute of Bytes From Two Tables Overwriting the Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-586
VPERMI2W/D/Q/PS/PD—Full Permute From Two Tables Overwriting the Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-588
VPERMT2B—Full Permute of Bytes From Two Tables Overwriting a Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-594
See Exceptions Type E4NF.nb.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-595
VPERMT2W/D/Q/PS/PD—Full Permute from Two Tables Overwriting one Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-596
VPERMILPD—Permute In-Lane of Pairs of Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-602
VPERMILPS—Permute In-Lane of Quadruples of Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . .5-607
VPERMPD—Permute Double-Precision Floating-Point Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-612
VPERMPS—Permute Single-Precision Floating-Point Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-615
VPERMQ—Qwords Element Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-618
VPEXPANDD—Load Sparse Packed Doubleword Integer Values from Dense Memory / Register . . . . . . . . . . . . . . . . . . .5-621
VPEXPANDQ—Load Sparse Packed Quadword Integer Values from Dense Memory / Register. . . . . . . . . . . . . . . . . . . . .5-623
PEXTRB/PEXTRW/PEXTRD/PEXTRQ—Extract Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-625
VPLZCNTD/Q—Count the Number of Leading Zero Bits for Packed Dword, Packed Qword Values . . . . . . . . . . . . . . . . .5-628
PMADDUBSW—Multiply and Add Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-631
PMADDWD—Multiply and Add Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-633
PINSRB/PINSRW/PINSRD/PINSRQ—Insert Integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-636
VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products to Qword
Accumulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-640
VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit Products to 64-bit
Accumulators’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-642
PMAXSB/PMAXSW/PMAXSD/PMAXSQ—Maximum of Packed Signed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-644
PMAXUB/PMAXUW—Maximum of Packed Unsigned Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-651
PMAXUD/PMAXUQ—Maximum of Packed Unsigned Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-655
PMINSB/PMINSW—Minimum of Packed Signed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-659
PMINSD/PMINSQ—Minimum of Packed Signed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-663
PMINUB/PMINUW—Minimum of Packed Unsigned Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-667
PMINUD/PMINUQ—Minimum of Packed Unsigned Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-671
VPMOVM2B/VPMOVM2W/VPMOVM2D/VPMOVM2Q—Convert a Mask Register to a Vector Register . . . . . . . . . . . . . .5-675
VPMOVB2M/VPMOVW2M/VPMOVD2M/VPMOVQ2M—Convert a Vector Register to a Mask . . . . . . . . . . . . . . . . . . . . . . .5-678
VPMOVQB/VPMOVSQB/VPMOVUSQB—Down Convert QWord to Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-681
VPMOVQW/VPMOVSQW/VPMOVUSQW—Down Convert QWord to Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-685
VPMOVQD/VPMOVSQD/VPMOVUSQD—Down Convert QWord to DWord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-689
VPMOVDB/VPMOVSDB/VPMOVUSDB—Down Convert DWord to Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-693
VPMOVDW/VPMOVSDW/VPMOVUSDW—Down Convert DWord to Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-697
VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-701
PMOVSX—Packed Move with Sign Extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-705
PMOVZX—Packed Move with Zero Extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-715
PMULDQ—Multiply Packed Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-724
PMULHRSW—Multiply Packed Unsigned Integers with Round and Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-727
PMULHUW—Multiply Packed Unsigned Integers and Store High Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-730
PMULHW—Multiply Packed Integers and Store High Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-733
PMULLD/PMULLQ—Multiply Packed Integers and Store Low Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-736
PMULLW—Multiply Packed Integers and Store Low Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-740
VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-743
PMULUDQ—Multiply Packed Unsigned Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-745
POR—Bitwise Logical Or. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-748
PROLD/PROLVD/PROLQ/PROLVQ—Bit Rotate Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-751
PRORD/PRORVD/PRORQ/PRORVQ—Bit Rotate Right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-755
VPSCATTERDD/VPSCATTERDQ/VPSCATTERQD/VPSCATTERQQ—Scatter Packed Dword, Packed Qword with Signed
Ref. # 319433-023 ix
Dword, Signed Qword Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-759
PSHUFB—Packed Shuffle Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-763
PSHUFHW—Shuffle Packed High Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-766
PSHUFLW—Shuffle Packed Low Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-769
PSHUFD—Shuffle Packed Doublewords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-772
PSLLDQ—Byte Shift Left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-776
PSLLW/PSLLD/PSLLQ—Bit Shift Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-778
PSRAW/PSRAD/PSRAQ—Bit Shift Arithmetic Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-789
PSRLDQ—Byte Shift Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-798
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-800
VPSLLVW/VPSLLVD/VPSLLVQ—Variable Bit Shift Left Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-811
VPSRLVW/VPSRLVD/VPSRLVQ—Variable Bit Shift Right Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-816
PSUBB/PSUBW/PSUBD/PSUBQ—Packed Integer Subtract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-821
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-829
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-833
VPTESTNMB/W/D/Q—Logical NAND and Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-837
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—Unpack High Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-840
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-849
SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2—Shuffle Packed Values at 128-bit Granularity . . . . . . . . . . . . . . . . 5-859
SHUFPD—Packed Interleave Shuffle of Pairs of Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . 5-864
SHUFPS—Packed Interleave Shuffle of Quadruplets of Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . .5-869
SQRTPD—Square Root of Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-873
SQRTPS—Square Root of Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-876
SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-879
SQRTSS—Compute Square Root of Scalar Single-Precision Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-881
VPTERNLOGD/VPTERNLOGQ—Bitwise Ternary Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-883
VPTESTMB/VPTESTMW/VPTESTMD/VPTESTMQ—Logical AND and Set Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-886
VPSRAVW/VPSRAVD/VPSRAVQ—Variable Bit Shift Right Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-889
PXOR/PXORD/PXORQ—Exclusive Or. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-894
VRANGEPD—Range Restriction Calculation For Packed Pairs of Float64 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-897
VRANGEPS—Range Restriction Calculation For Packed Pairs of Float32 Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-901
VRANGESD—Range Restriction Calculation From a pair of Scalar Float64 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-904
VRANGESS—Range Restriction Calculation From a Pair of Scalar Float32 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-907
VRCP14PD—Compute Approximate Reciprocals of Packed Float64 Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-910
VRCP14SD—Compute Approximate Reciprocal of Scalar Float64 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-912
VRCP14PS—Compute Approximate Reciprocals of Packed Float32 Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-914
VRCP14SS—Compute Approximate Reciprocal of Scalar Float32 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-916
VREDUCEPD—Perform Reduction Transformation on Packed Float64 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-918
VREDUCESD—Perform a Reduction Transformation on a Scalar Float64 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-921
VREDUCEPS—Perform Reduction Transformation on Packed Float32 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-923
VREDUCESS—Perform a Reduction Transformation on a Scalar Float32 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-925
VRNDSCALEPD—Round Packed Float64 Values To Include A Given Number Of Fraction Bits . . . . . . . . . . . . . . . . . . . . . . 5-927
VRNDSCALESD—Round Scalar Float64 Value To Include A Given Number Of Fraction Bits . . . . . . . . . . . . . . . . . . . . . . . .5-930
VRNDSCALEPS—Round Packed Float32 Values To Include A Given Number Of Fraction Bits . . . . . . . . . . . . . . . . . . . . . . 5-932
VRNDSCALESS—Round Scalar Float32 Value To Include A Given Number Of Fraction Bits . . . . . . . . . . . . . . . . . . . . . . . .5-935
VRSQRT14PD—Compute Approximate Reciprocals of Square Roots of Packed Float64 Values . . . . . . . . . . . . . . . . . . . 5-937
VRSQRT14SD—Compute Approximate Reciprocal of Square Root of Scalar Float64 Value. . . . . . . . . . . . . . . . . . . . . . . . 5-939
VRSQRT14PS—Compute Approximate Reciprocals of Square Roots of Packed Float32 Values. . . . . . . . . . . . . . . . . . . . 5-941
VRSQRT14SS—Compute Approximate Reciprocal of Square Root of Scalar Float32 Value . . . . . . . . . . . . . . . . . . . . . . . . 5-943
VSCALEFPD—Scale Packed Float64 Values With Float64 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-945
VSCALEFSD—Scale Scalar Float64 Values With Float64 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-948
VSCALEFPS—Scale Packed Float32 Values With Float32 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-950
VSCALEFSS—Scale Scalar Float32 Value With Float32 Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-952
VSCATTERDPS/VSCATTERDPD/VSCATTERQPS/VSCATTERQPD—Scatter Packed Single, Packed Double with Signed
Dword and Qword Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-954
SUBPD—Subtract Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-958
SUBPS—Subtract Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-961
SUBSD—Subtract Scalar Double-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-964
SUBSS—Subtract Scalar Single-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-966
xRef. # 319433-023
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS . . . . . . . . . . . . . . . . . . .5-968
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS . . . . . . . . . . . . . . . . . . . .5-970
UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . .5-972
UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . .5-976
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . .5-980
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . .5-984
XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-988
XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-991
CHAPTER 6
INSTRUCTION SET REFERENCE - OPMASK
6.1 MASK INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
KADDW/KADDB/KADDQ/KADDD—ADD Two Masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
KANDW/KANDB/KANDQ/KANDD—Bitwise Logical AND Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
KANDNW/KANDNB/KANDNQ/KANDND—Bitwise Logical AND NOT Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
KMOVW/KMOVB/KMOVQ/KMOVD—Move from and to Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
KUNPCKBW/KUNPCKWD/KUNPCKDQ—Unpack for Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
KNOTW/KNOTB/KNOTQ/KNOTD—NOT Mask Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
KORW/KORB/KORQ/KORD—Bitwise Logical OR Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
KORTESTW/KORTESTB/KORTESTQ/KORTESTD—OR Masks And Set Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
KSHIFTLW/KSHIFTLB/KSHIFTLQ/KSHIFTLD—Shift Left Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
KSHIFTRW/KSHIFTRB/KSHIFTRQ/KSHIFTRD—Shift Right Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14
KXNORW/KXNORB/KXNORQ/KXNORD—Bitwise Logical XNOR Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16
KTESTW/KTESTB/KTESTQ/KTESTD—Packed Bit Test Masks and Set Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17
KXORW/KXORB/KXORQ/KXORD—Bitwise Logical XOR Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19
CHAPTER 7
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
7.1 Detection of 512-bit Instruction Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.2 Instruction SET Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
VEXP2PD—Approximation to the Exponential 2^x of Packed Double-Precision Floating-Point Values with Less Than
2^-23 Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
VEXP2PS—Approximation to the Exponential 2^x of Packed Single-Precision Floating-Point Values with Less Than
2^-23 Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
VRCP28PD—Approximation to the Reciprocal of Packed Double-Precision Floating-Point Values with Less Than 2^-28
Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
VRCP28SD—Approximation to the Reciprocal of Scalar Double-Precision Floating-Point Value with Less Than 2^-28
Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
VRCP28PS—Approximation to the Reciprocal of Packed Single-Precision Floating-Point Values with Less Than 2^-28
Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
VRCP28SS—Approximation to the Reciprocal of Scalar Single-Precision Floating-Point Value with Less Than 2^-28
Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double-Precision Floating-Point Values with
Less Than 2^-28 Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15
VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision Floating-Point Value with
Less Than 2^-28 Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17
VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single-Precision Floating-Point Values with
Less Than 2^-28 Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19
VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-Point Value with Less
Than 2^-28 Relative Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch Packed SP/DP Data
Values with Signed Dword, Signed Qword Indices Using T0 Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23
VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data
Values with Signed Dword, Signed Qword Indices Using T1 Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25
VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch Packed SP/DP Data
Values with Signed Dword, Signed Qword Indices Using T0 Hint with Intent to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data
Values with Signed Dword, Signed Qword Indices Using T1 Hint with Intent to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29
Ref. # 319433-023 xi
CHAPTER 8
INTEL® SHA EXTENSIONS
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.2 Detection of Intel SHA Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.2.1 Common Transformations and Primitive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.3 SHA Extensions Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
SHA1RNDS4—Perform Four Rounds of SHA1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
SHA1NEXTE—Calculate SHA1 State Variable E after Four Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
SHA1MSG1—Perform an Intermediate Calculation for the Next Four SHA1 Message Dwords . . . . . . . . . . . . . . . . . . . . . . . 8-6
SHA1MSG2—Perform a Final Calculation for the Next Four SHA1 Message Dwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7
SHA256RNDS2—Perform Two Rounds of SHA256 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8
SHA256MSG1—Perform an Intermediate Calculation for the Next Four SHA256 Message Dwords . . . . . . . . . . . . . . . . . 8-10
SHA256MSG2—Perform a Final Calculation for the Next Four SHA256 Message Dwords . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11
CHAPTER 9
ADDITIONAL NEW INSTRUCTIONS
9.1 Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
9.2 INSTRUCTION SET REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
CHAPTER 10
MEMORY INSTRUCTIONS
10.1 Detection of New Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10.2 Persistent Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10.2.1 Accessing Persistent Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10.2.2 Managing Persistence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10.3 Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
CLFLUSHOPT — Flush a Cache Line (THIS IS AN EXAMPLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
10.4 INSTRUCTION SET REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
CLFLUSHOPT—Flush a Cache Line Optimized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
CLWB—Cache Line Write Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6
PCOMMIT—Persistent Commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8
10.5 Persistent Memory Configuration and Enumeration of Platform Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
10.6 PCOMMIT — Virtualization Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
10.7 PCOMMIT and SGX Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
xii Ref. # 319433-023
Ref. # 319433-023 xiii
TABLES
PAGE
2-1 512-bit Instruction Groups in the Intel AVX-512 Family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2-2 Feature flag Collection Required of 256/128 Bit Vector Lengths for Each Instruction Group . . . . . . . . . . . . . . . . . . . . . 2-4
2-3 Instruction Mnemonics That Do Not Support EVEX.128 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2-4 Characteristics of Three Rounding Control Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2-5 Static Rounding Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2-6 SIMD Instructions Requiring Explicitly Aligned Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2-7 Instructions Not Requiring Explicit Memory Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2-8 Information Returned by CPUID Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
2-9 Highest CPUID Source Operand for Intel 64 and IA-32 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
2-10 Processor Type Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
2-11 Feature Information Returned in the ECX Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
2-12 More on Feature Information Returned in the EDX Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
2-13 Encoding of Cache and TLB Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
2-14 Structured Extended Feature Leaf, Function 0, EBX Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
2-15 Processor Brand String Returned with Pentium 4 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
2-16 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
3-1 XCR0 Processor State Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3-2 CR4 Bits for AVX-512 Foundation Instructions Technology Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
3-3 Layout of XSAVE Area For Processor Supporting YMM State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3-4 XSAVE Header Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3-5 XSAVE Save Area Layout for YMM_Hi128 State (Ext_Save_Area_2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3-6 XSAVE Save Area Layout for Opmask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
3-7 XSAVE Save Area Layout for ZMM State of the High 256 Bits of ZMM0-ZMM15 Registers . . . . . . . . . . . . . . . . . . . . . . 3-5
3-8 XSAVE Save Area Layout for ZMM State of ZMM16-ZMM31 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
3-9 XRSTOR Action on MXCSR, XMM Registers, YMM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
3-10 XSAVE Action on MXCSR, XMM, YMM Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
3-11 Processor Supplied Init Values XRSTOR May Use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
4-1 EVEX Prefix Bit Field Functional Grouping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4-2 32-Register Support in 64-bit Mode Using EVEX with Embedded REX Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
4-3 EVEX Encoding Register Specifiers in 32-bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
4-4 Opmask Register Specifier Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
4-5 Compressed Displacement (DISP8*N) Affected by Embedded Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
4-6 EVEX DISP8*N For Instructions Not Affected by Embedded Broadcast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
4-7 EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
4-8 OS XSAVE Enabling Requirements of Instruction Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
4-9 Opcode Independent, State Dependent EVEX Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
4-10 #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
4-11 #UD Conditions of Opmask Related Encoding Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
4-12 #UD Conditions Dependent on EVEX.b Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
4-13 EVEX-Encoded Instruction Exception Class Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
4-14 EVEX Instructions in each Exception Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
4-15 Type E1 Class Exception Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
4-16 Type E1NF Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
4-17 Type E2 Class Exception Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
4-18 Type E3 Class Exception Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
4-19 Type E3NF Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17
4-20 Type E4 Class Exception Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18
4-21 Type E4NF Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19
4-22 Type E5 Class Exception Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
4-23 Type E5NF Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
4-24 Type E6 Class Exception Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22
4-25 Type E6NF Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23
4-26 Type E7NM Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
4-27 Type E9 Class Exception Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
4-28 Type E9NF Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
xiv Ref. # 319433-023
4-29 Type E10 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
4-30 Type E10NF Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
4-31 Type E11 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
4-32 Type E12 Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30
4-33 Type E12NP Class Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31
4-34 TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg) . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
4-35 TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory) . . . . . . . . . . . . . . . . . . . . . . . 4-33
5-1 Low 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
5-2 Low 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
5-3 Comparison Predicate for CMPPD and CMPPS Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-61
5-4 Pseudo-Op and CMPPD Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-62
5-5 Pseudo-Op and VCMPPD Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-63
5-6 Pseudo-Op and CMPPS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-68
5-7 Pseudo-Op and VCMPPS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-69
5-8 Pseudo-Op and CMPSD Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-74
5-9 Pseudo-Op and VCMPSD Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-74
5-10 Pseudo-Op and CMPSS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-78
5-11 Pseudo-Op and VCMPSS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-78
5-12 Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-124
5-13 Classifier Operations for VFPCLASSPD/SD/PS/SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-332
5-14 VGETEXPPD/SD Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-353
5-15 VGETEXPPS/SS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-356
5-16 GetMant() Special Float Values Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-365
5-17 Pseudo-Op and VPCMP* Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-563
5-18 Examples of VPTERNLOGD/Q Imm8 Boolean Function and Input Index Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-884
5-19 Signaling of Comparison Operation of One or More NaN Input Values and Effect of Imm8[3:2] . . . . . . . . . . . . . . . . .5-898
5-20 Comparison Result for Opposite-Signed Zero Cases for MIN, MIN_ABS and MAX, MAX_ABS . . . . . . . . . . . . . . . . . . . .5-898
5-21 Comparison Result of Equal-Magnitude Input Cases for MIN_ABS and MAX_ABS, (|a| = |b|, a>0, b<0) . . . . . . . . . . . . 5-898
5-22 VRCP14PD/VRCP14SD Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-910
5-23 VRCP14PS/VRCP14SS Special Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-914
5-24 VREDUCEPD/SD/PS/SS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-919
5-25 VRNDSCALEPD/SD/PS/SS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-928
5-26 VRSQRT14PD Special Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-938
5-27 VRSQRT14SD Special Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-940
5-28 VRSQRT14PS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-942
5-29 VRSQRT14SS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-944
5-30 \VSCALEFPD/SD/PS/SS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-945
5-31 Additional VSCALEFPD/SD Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-946
5-32 Additional VSCALEFPS/SS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-950
7-1 Special Values Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
7-2 Special Values Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
7-3 VRCP28PD Special Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
7-4 VRCP28SD Special Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
7-5 VRCP28PS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
7-6 VRCP28SS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14
7-7 VRSQRT28PD Special Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16
7-8 VRSQRT28SD Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18
7-9 VRSQRT28PS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
7-10 VRSQRT28SS Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22
Ref. # 319433-023 xv
FIGURES
PAGE
Figure 1-1. 512-Bit Wide Vectors and SIMD Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Figure 2-1. Procedural Flow of Application Detection of AVX-512 Foundation Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Figure 2-2. Procedural Flow of Application Detection of 512-bit Instruction Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Figure 2-3. Procedural Flow of Application Detection of Intel AVX-512 Instructions Operating at Vector Lengths < 512. . . . . . 2-3
Figure 2-4. Version Information Returned by CPUID in EAX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Figure 2-5. Feature Information Returned in the ECX Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Figure 2-6. Feature Information Returned in the EDX Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Figure 2-7. Determination of Support for the Processor Brand String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
Figure 2-8. Algorithm for Extracting Maximum Processor Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Figure 3-1. Bit Vector and XCR0 Layout of Extended Processor State Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Figure 4-1. AVX-512 Instruction Format and the EVEX Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Figure 4-2. Bit Field Layout of the EVEX Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Figure 5-1. VBROADCASTSS Operation (VEX.256 encoded version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43
Figure 5-2. VBROADCASTSS Operation (VEX.128-bit version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43
Figure 5-3. VBROADCASTSD Operation (VEX.256-bit version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43
Figure 5-4. VBROADCASTF128 Operation (VEX.256-bit version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43
Figure 5-5. VBROADCASTF64X4 Operation (512-bit version with writemask all 1s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44
Figure 5-6. VPBROADCASTD Operation (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-53
Figure 5-7. VPBROADCASTD Operation (128-bit version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-53
Figure 5-8. VPBROADCASTQ Operation (256-bit version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-54
Figure 5-9. VBROADCASTI128 Operation (256-bit version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-54
Figure 5-10. VBROADCASTI256 Operation (512-bit version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-54
Figure 5-11. CVTDQ2PD (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-101
Figure 5-12. VCVTPD2DQ (VEX.256 encoded version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-107
Figure 5-13. VCVTPD2PS (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-111
Figure 5-14. VCVTPH2PS (128-bit Version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-121
Figure 5-15. VCVTPS2PH (128-bit Version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-123
Figure 5-16. CVTPS2PD (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-137
Figure 5-17. VCVTTPD2DQ (VEX.256 encoded version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-160
Figure 5-18. 64-bit Super Block of SAD Operation in VDBPSADBW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-197
Figure 5-19. VFIXUPIMMPD Immediate Control Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-219
Figure 5-20. VFIXUPIMMPS Immediate Control Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-223
Figure 5-21. VFIXUPIMMSD Immediate Control Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-227
Figure 5-22. VFIXUPIMMSS Immediate Control Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-230
Figure 5-23. Imm8 Byte Specifier of Special Case FP Values for VFPCLASSPD/SD/PS/SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-332
Figure 5-24. VGETEXPPS Functionality On Normal Input values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-357
Figure 5-25. Imm8 Controls for VGETMANTPD/SD/PS/SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-364
Figure 5-26. VMOVDDUP Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-421
Figure 5-27. MOVSHDUP Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-459
Figure 5-28. MOVSLDUP Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-461
Figure 5-29. 256-bit VPALIGN Instruction Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-534
Figure 5-30. VPERMILPD Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-603
Figure 5-31. VPERMILPD Shuffle Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-603
Figure 5-32. VPERMILPS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-608
Figure 5-33. VPERMILPS Shuffle Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-608
Figure 5-34. 256-bit VPSHUFD Instruction Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-773
Figure 5-35. 256-bit VPUNPCKHDQ Instruction Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-842
Figure 5-36. 128-bit PUNPCKLBW Instruction Operation using 64-bit Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-851
Figure 5-37. 256-bit VPUNPCKLDQ Instruction Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-851
Figure 5-38. 256-bit VSHUFPD Operation of Four Pairs of DP FP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-865
Figure 5-39. 256-bit VSHUFPS Operation of Selection from Input Quadruplet and Pair-wise Interleaved Result . . . . . . . . . . . . .5-870
Figure 5-40. Imm8 Controls for VRANGEPD/SD/PS/SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-897
Figure 5-41. Imm8 Controls for VREDUCEPD/SD/PS/SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-918
Figure 5-42. Imm8 Controls for VRNDSCALEPD/SD/PS/SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-928
Figure 5-43. VUNPCKHPS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-977
xvi Ref. # 319433-023
Figure 5-44. VUNPCKLPS Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-985
Figure 7-1. Procedural Flow of Application Detection of 512-bit Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Ref. # 319433-023 1-1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS
CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS
1.1 ABOUT THIS DOCUMENT
This document describes the software programming interfaces of Intel® architecture instruction extensions for
future Intel processor generations. The instruction set extensions cover a diverse range of application domains
and programming usages. There are 512-bit SIMD vector instruction extensions, instruction set extensions tar-
geting memory protection issues such as buffer overruns, and extensions targeting secure hash algorithm (SHA)
accelerations like SHA1 and SHA256.
The 512-bit SIMD vector SIMD extensions, referred to as Intel® Advanced Vector Extensions 512 (Intel® AVX-
512) instructions, deliver comprehensive set of functionality and higher performance than AVX and AVX2 family
of instructions. AVX and AVX2 are covered in Intel® 64 and IA-32 Architectures Software Developer’s Manual
sets. The reader can refer to them for basic and more background information related to various features refer-
enced in this document.
The base of the 512-bit SIMD instruction extensions are referred to as Intel® Intel AVX-512 Foundation instruc-
tions. They include extensions of the AVX and AVX2 family of SIMD instructions but are encoded using a new
encoding scheme with support for 512-bit vector registers, up to 32 vector registers in 64-bit mode, and condi-
tional processing using opmask registers.
Chapters 2 through 6 are devoted to the programming interfaces of the Intel AVX-512 Foundation instruction
set, additional 512-bit instruction extensions in the Intel AVX-512 family targeting broad application domains,
and instruction set extensions encoded using the EVEX prefix encoding scheme to operate at vector lengths
smaller than 512-bits.
Chapter 7 covers additional 512-bit SIMD instruction extensions that targets specific application domain, Intel
AVX-512 Exponential and Reciprocal instructions for certain transcendental mathematical computations, and
Intel AVX-512 Prefetch instructions for specific prefetch operations.
Chapter 8 covers instruction set extensions targeted for SHA acceleration. Chapter 9 describes instruction set
extensions that offer software tools with capability to address memory protection issues such as buffer overruns.
For an overview and detailed descriptions of hardware -accelerated SHA extensions, and Intel® Memory Protec-
tion Extensions (Intel® MPX), see the respective chapters.
Chapter 10 covers instructions operating on general purpose registers in future Intel processors. Chapter 11 de-
scribes the architecture of Intel® Processor Trace, which allows software to capture data packets with low over-
head and to reconstruct detailed control flow information of program execution.
1.2 INTEL® AVX-512 INSTRUCTIONS ARCHITECTURE OVERVIEW
Intel Intel AVX-512 Foundation instructions are a natural extension to AVX and AVX2. It introduces the following
architectural enhancements:
Support for 512-bit wide vectors and SIMD register set. 512-bit register state is managed by the operating
system using XSAVE/XRSTOR instructions introduced in 45 nm Intel 64 processors (see Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, and Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).
Support for 16 new, 512-bit SIMD registers (for a total of 32 SIMD registers, ZMM0 through ZMM31) in 64-bit
mode. The extra 16 registers state is managed by the operating system using XSAVE/XRSTOR/XSAVEOPT.
Support for 8 new opmask registers (k0 through k7) used for conditional execution and efficient merging of
destination operands. Again, the opmask register state is managed by the operating system using
XSAVE/XRSTOR/XSAVEOPT instructions
A new encoding prefix (referred to as EVEX) to support additional vector length encoding up to 512 bits. The
EVEX prefix builds upon the foundations of VEX prefix, to provide compact, efficient encoding for functionality
available to VEX encoding plus the following enhanced vector capabilities:
1-2 Ref. # 319433-023
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS
opmasks
embedded broadcast
instruction prefix-embedded rounding control
compressed address displacements
1.2.1 512-Bit Wide SIMD Register Support
AVX-512 instructions support 512-bit wide SIMD registers (ZMM0-ZMM31). The lower 256-bits of the ZMM regis-
ters are aliased to the respective 256-bit YMM registers and the lower 128-bit are aliased to the respective 128-bit
XMM registers.
1.2.2 32 SIMD Register Support
AVX-512 instructions also support for 32 SIMD registers in 64-bit mode (XMM0-XMM31, YMM0-YMM31 and ZMM0-
ZMM31). The number of available vector registers in 32-bit mode is still 8.
1.2.3 Eight Opmask Register Support
AVX-512 instructions support 8 opmask registers (k0-k7). The width of each opmask register is architecturally
defined of size MAX_KL (64 bits). Seven of the eight opmask registers (k1-k7) can be used in conjunction with
EVEX-encoded Intel AVX-512 Foundation instructions to provide conditional execution and efficient merging of
data elements in the destination operand. The encoding of opmask register k0 is typically used when all data
elements (unconditional processing) are desired. Additionally, the opmask registers are also used as vector
flags/element-level vector sources to introduce novel SIMD functionality as seen in new instructions such as VCOM-
PRESSPS.
1.2.4 Instruction Syntax Enhancement
The architecture of EVEX encoding enhances vector instruction encoding scheme in the following way:
512-bit vector-length, up to 32 ZMM registers, and enhanced vector programming environment are supported
using the enhanced VEX (EVEX).
The EVEX prefix provides more encodable bit fields than VEX prefix. In addition to encoding 32 ZMM registers in 64-
bit mode, instruction encoding using the EVEX can directly encode 7 (out of 8) opmask register operands to provide
Figure 1-1. 512-Bit Wide Vectors and SIMD Register Set
. . .
XMM31
ZMM31
Bit#
0
255
256
511
YMM31
127
128
XMM1
ZMM1
YMM1
XMM0
ZMM0
YMM0
Ref. # 319433-023 1-3
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS
conditional processing in vector instruction programming. The enhanced vector programming environment can be
explicitly expressed in the instruction syntax to include the following elements:
An opmask operand: the opmask registers are expressed using the notation “k1” through “k7”. An EVEX-
encoded instruction supporting conditional vector operation using the opmask register k1 is expressed by
attaching the notation {k1} next to the destination operand. The use of this feature is optional for most instruc-
tions. There are two types of masking (merging and zeroing) differentiated using the EVEX.z bit ({z} in
instruction signature).
Embedded broadcast may be supported for some instructions on the source operand that can be encoded as a
memory vector. Data elements of a memory vector may be conditionally fetched or written to.
For instruction syntax that operates only on floating-point data in SIMD registers with rounding semantics, the
EVEX can provide explicit rounding control within the EVEX bit fields at either scalar or 512-bit vector length.
In AVX-512 instructions, vector addition of all elements of the source operands can be expressed in the same
syntax as AVX instruction:
VADDPS zmm1, zmm2, zmm3
Additionally, the EVEX encoding scheme of Intel AVX-512 Foundation can express conditional vector addition as
VADDPS zmm1 {k1}{z}, zmm2, zmm3
where
conditional processing and updates to destination is expressed with an opmask register,
zeroing behavior of the opmask selected destination element is expressed by the {z} modifier (with merging
as the default if no modifier specified),
Note that some SIMD instructions supporting three-operand syntax but processing only less or equal than 128-bits
of data are considered part of the 512-bit SIMD instruction set extensions, because bits MAX_VL-1:128 of the
destination register are zeroed by the processor. The same rule applies to instructions operating on 256-bits of data
where bits MAX_VL-1:256 of the destination register are zeroed.
1.2.5 EVEX Instruction Encoding Support
Intel AVX-512 instructions employ a new encoding prefix, referred to as EVEX, in the Intel 64 and IA-32 instruction
encoding format. Instruction encoding using the EVEX prefix provides the following capabilities:
Direct encoding of a SIMD register operand within EVEX (similar to VEX). This provides instruction syntax
support for three source operands.
Compaction of REX prefix functionality and extended SIMD register encoding: The equivalent REX-prefix
compaction functionality offered by the VEX prefix is provided within EVEX. Furthermore, EVEX extends the
operand encoding capability to allow direct addressing of up to 32 ZMM registers in 64-bit mode.
Compaction of SIMD prefix functionality and escape byte encoding: The functionality of SIMD prefix (66H, F2H,
F3H) on opcode is equivalent to an opcode extension field to introduce new processing primitives. This
functionality is provided in the VEX prefix encoding scheme and employed within the EVEX prefix. Similarly, the
functionality of the escape opcode byte (0FH) and two-byte escape (0F38H, 0F3AH) are also compacted within
the EVEX prefix encoding.
Most EVEX-encoded SIMD numeric and data processing instruction semantics with memory operand have
relaxed memory alignment requirements than instructions encoded using SIMD prefixes (see Section 2.6,
“Memory Alignment”).
Direct encoding of a opmask operand within the EVEX prefix. This provides instruction syntax support for
conditional vector-element operation and merging of destination operand using an opmask register (k1-k7).
Direct encoding of a broadcast attribute for instructions with a memory operand source. This provides
instruction syntax support for elements broadcasting of the second operand before being used in the actual
operation.
1-4 Ref. # 319433-023
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS
Compressed memory address displacements for a more compact instruction encoding byte sequence.
EVEX encoding applies to SIMD instructions operating on XMM, YMM and ZMM registers. EVEX is not supported for
instructions operating on MMX or x87 registers. Details of EVEX instruction encoding are discussed in Chapter 4.
Ref. # 319433-023 2-1
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
CHAPTER 2
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
The application programming model for AVX-512 Foundation instructions, several member groups of the Intel AVX-
512 family (described in Chapter 5) and other 512-bit instructions (described in Chapter 7) extend from that of
AVX and AVX2 with differences detailed in this chapter.
2.1 DETECTION OF AVX-512 FOUNDATION INSTRUCTIONS
The majority of AVX-512 Foundation instructions are encoded using the EVEX encoding scheme. EVEX-encoded
instructions can operate on the 512-bit ZMM register state plus 8 opmask registers. The opmask instructions in
AVX-512 Foundation instructions operate only on opmask registers or with a general purpose register. System
software requirements to support ZMM state and opmask instructions are described in Chapter 3, “System
Programming For Intel® AVX-512”.
Processor support of AVX-512 Foundation instructions is indicated by CPUID.(EAX=07H, ECX=0):EBX.AVX512F[bit
16] = 1. Detection of AVX-512 Foundation instructions operating on ZMM states and opmask registers need to
follow the general procedural flow in Figure 2-1.
Prior to using AVX-512 Foundation instructions, the application must identify that the operating system supports
the XGETBV instruction, the ZMM register state, in addition to processor’s support for ZMM state management
using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified sequence accomplishes both
and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).
3) Detect CPUID.0x7.0:EBX.AVX512F[bit 16] = 1.
Figure 2-1. Procedural Flow of Application Detection of AVX-512 Foundation Instructions
1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, processor
extended state bit vector XCR0 register. Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSX-
SAVE. XSETBV is a privileged instruction.
Implied HW support for
Check enabled state in
XCR0 via XGETBV
Check AVX512F flag
Check feature flag
CPUID.1H:ECX.OSXSAVE = 1?
OS provides processor
extended state management
States ok to use
XSAVE, XRSTOR, XGETBV, XCR0
enabled Instructions
Yes
YMM,ZMM
Opmask,
2-2 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
2.2 DETECTION OF 512-BIT INSTRUCTION GROUPS OF INTEL® AVX-512
FAMILY
In addition to the Intel AVX-512 Foundation instructions, Intel AVX-512 family provides several additional 512-bit
extensions in groups of instructions, each group is enumerated by a CPUID leaf 7 feature flag and can be encoded
via EVEX.L’L field to support operation at vector lengths smaller than 512 bits. These instruction groups are listed
in Table 2-1.
Software must follow the detection procedure for the 512-bit AVX-512 Foundation instructions as described in
Section 2.1.
Detection of other 512-bit sibling instruction groups listed in Table 2-1 (excluding AVX512F) follows the procedure
described in Figure 2-2:
To illustrated the detection procedure for 512-bit instructions enumerated by AVX512CD, the following sequence is
strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use)
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).
3) Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1.
Table 2-1. 512-bit Instruction Groups in the Intel AVX-512 Family
CPUID Leaf 7 Feature Flag Bit Feature Flag abbreviation of 512-bit Instruction Group SW Detection Flow
CPUID.(EAX=07H, ECX=0):EBX[bit 16] AVX512F (AVX-512 Foundation) Figure 2-1
CPUID.(EAX=07H, ECX=0):EBX[bit 28] AVX512CD Figure 2-2
CPUID.(EAX=07H, ECX=0):EBX[bit 17] AVX512DQ Figure 2-2
CPUID.(EAX=07H, ECX=0):EBX[bit 30] AVX512BW Figure 2-2
CPUID.(EAX=07H, ECX=0):EBX[bit 21] AVX512IFMA Figure 2-2
CPUID.(EAX=07H, ECX=0):ECX[bit 01] AVX512VBMI Figure 2-2
Figure 2-2. Procedural Flow of Application Detection of 512-bit Instruction Groups
Implied HW support for
Check enabled state in
XCR0 via XGETBV
Check AVX512F and
a sibling 512-bit flag
Check feature flag
CPUID.1H:ECX.OXSAVE = 1?
OS provides processor
extended state management
States ok to use
XSAVE, XRSTOR, XGETBV, XCR0
enabled Instructions
Yes
YMM,ZMM
Opmask,
Ref. # 319433-023 2-3
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Similarly, the detection procedure for enumerating 512-bit instructions reported by AVX512DW follows the same
flow.
2.3 DETECTION OF INTEL AVX-512 INSTRUCTION GROUPS OPERATING AT 256
AND 128-BIT VECTOR LENGTHS
For each of the 512-bit instruction groups in the Intel AVX-512 family listed in Table 2-1, EVEX encoding scheme
may support a vast majority of these instructions operating at 256-bit or 128-bit (if applicable) vector lengths. This
encoding support for vector lengths smaller than 512-bits is indicated by CPUID.(EAX=07H, ECX=0):EBX[bit 31],
abbreviated as AVX512VL.
The AVX512VL flag alone is never sufficient to determine a given Intel AVX-512 instruction may be encoded at
vector lengths smaller than 512 bits. Software must use the procedure described in Figure 2-3 and Table 2-2:
To illustrate the procedure described in Figure 2-3 and Table 2-2 for software to use EVEX.256 encoded VPCON-
FLICT, the following sequence is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use)
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).
3) Verify CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1, and
CPUID.0x7.0:EBX.AVX512VL[bit 31] = 1.
Figure 2-3. Procedural Flow of Application Detection of Intel AVX-512 Instructions Operating at Vector Lengths <
512
2-4 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
In some specific cases, AVX512VL may only support EVEX.256 encoding but not EVEX.128. These are listed in
Table 2-3.
2.4 ACCESSING XMM, YMM AND ZMM REGISTERS
The lower 128 bits of a YMM register is aliased to the corresponding XMM register. Legacy SSE instructions (i.e.
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD
instructions) will not access the upper bits (MAX_VL-1:128) of the YMM registers. AVX and FMA instructions with a
VEX prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register.
Upper bits of YMM registers (255:128) can be read and written by many instructions with a VEX.256 prefix.
XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM registers.
The lower 256 bits of a ZMM register are aliased to the corresponding YMM register. Legacy SSE instructions (i.e.
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD
instructions) will not access the upper bits (MAX_VL-1:128) of the ZMM registers, where MAX_VL is maximum
vector length (currently 512 bits). AVX and FMA instructions with a VEX prefix and vector length of 128-bits zero
the upper 384 bits of the ZMM register, while VEX prefix and vector length of 256-bits zeros the upper 256 bits of
the ZMM register.
Upper bits of ZMM registers (511:256) can be read and written by instructions with an EVEX.512 prefix.
2.5 ENHANCED VECTOR PROGRAMMING ENVIRONMENT USING EVEX
ENCODING
EVEX-encoded AVX-512 instructions support an enhanced vector programming environment. The enhanced vector
programming environment uses the combination of EVEX bit-field encodings and a set of eight opmask registers to
provide the following capabilities:
Conditional vector processing of EVEX-encoded instruction. Opmask registers k1 through k7 can be used to
conditionally govern the per-data-element computational operation and the per-element updates to the
Table 2-2. Feature flag Collection Required of 256/128 Bit Vector Lengths for Each Instruction Group
Usage of 256/128 Vector Lengths Feature Flag Collection to Verify
AVX512F AVX512F & AVX512VL
AVX512CD AVX512F & AVX512CD & AVX512VL
AVX512DQ AVX512F & AVX512DQ & AVX512VL
AVX512BW AVX512F & AVX512BW & AVX512VL
AVX512IFMA AVX512F & AVX512IFMA & AVX512VL
AVX512VBMI AVX512F & AVX512VBMI & AVX512VL
Table 2-3. Instruction Mnemonics That Do Not Support EVEX.128 Encoding
Instruction Group Instruction Mnemonics Supporting EVEX.256 Only Using AVX512VL
AVX512F VBROADCASTSD, VBROADCASTF32X4, VEXTRACTI32X4, VINSERTF32X4, VINSERTI32X4, VPERMD,
VPERMPD, VPERMPS, VPERMQ, VSHUFF32X4, VSHUFF64X2, VSHUFI32X4, VSHUFI64X2
AVX512CD
AVX512DQ VBROADCASTF32X2, VBROADCASTF64X2, VBROADCASTI32X4, VBROADCASTI64X2, VEXTRACTI64X2,
VINSERTF64X2, VINSERTI64X2,
AVX512BW
Ref. # 319433-023 2-5
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
destination operand of an AVX-512 Foundation instruction. Each bit of the opmask register governs one vector
element operation (a vector element can be of 32 bits or 64 bits).
In addition to providing predication control on vector instructions via EVEX bit-field encoding, the opmask
registers can also be used similarly to general-purpose registers as source/destination operands using modR/M
encoding for non-mask-related instructions. In this case, an opmask register k0 through k7 can be selected.
In 64-bit mode, 32 vector registers can be encoded using EVEX prefix.
Broadcast may be supported for some instructions on the operand that can be encoded as a memory vector.
The data elements of a memory vector may be conditionally fetched or written to, and the vector size is
dependent on the data transformation function.
Flexible rounding control for register-to-register flavor of EVEX encoded 512-bit and scalar instructions. Four
rounding modes are supported by direct encoding within the EVEX prefix overriding MXCSR settings.
Broadcast of one element to the rest of the destination vector register.
Compressed 8-bit displacement encoding scheme to increase the instruction encoding density for instructions
that normally require disp32 syntax.
2.5.1 OPMASK Register to Predicate Vector Data Processing
AVX-512 instructions using EVEX encodes a predicate operand to conditionally control per-element computational
operation and updating of result to the destination operand. The predicate operand is known as the opmask
register. The opmask is a set of eight architectural registers of size MAX_KL (64-bit). Note that from this set of 8
architectural registers, only k1 through k7 can be addressed as predicate operand. k0 can be used as a regular
source or destination but cannot be encoded as a predicate operand. Note also that a predicate operand can be
used to enable memory fault-suppression for some instructions with a memory operand (source or destination).
As a predicate operand, the opmask registers contain one bit to govern the operation/update to each data element
of a vector register. In general, opmask registers can support instructions with element sizes: single-precision
floating-point (float32), integer doubleword(int32), double-precision floating-point (float64), integer quadword
(int64). The length of a opmask register, MAX_KL, is sufficient to handle up to 64 elements with one bit per
element, i.e. 64 bits. Masking is supported in most of the AVX-512 instructions. For a given vector length, each
instruction accesses only the number of least significant mask bits that are needed based on its data type. For
example, AVX-512 Foundation instructions operating on 64-bit data elements with a 512-bit vector length, only
use the 8 least significant bits of the opmask register.
An opmask register affects an AVX-512 instruction at per-element granularity. So, any numeric or non-numeric
operation of each data element and per-element updates of intermediate results to the destination operand are
predicated on the corresponding bit of the opmask register.
An opmask serving as a predicate operand in AVX-512 obeys the following properties:
The instruction’s operation is not performed for an element if the corresponding opmask bit is not set. This
implies that no exception or violation can be caused by an operation on a masked-off element. Consequently,
no MXCSR exception flag is updated as a result of a masked-off operation.
A destination element is not updated with the result of the operation if the corresponding writemask bit is not
set. Instead, the destination element value must be preserved (merging-masking) or it must be zeroed out
(zeroing-masking).
For some instructions with a memory operand, memory faults are suppressed for elements with a mask bit of
0.
Note that this feature provides a versatile construct to implement control-flow predication as the mask in effect
provides a merging behavior for AVX-512 vector register destinations. As an alternative the masking can be used
for zeroing instead of merging, so that the masked out elements are updated with 0 instead of preserving the old
value. The zeroing behavior is provided to remove the implicit dependency on the old value when it is not needed.
Most instructions with masking enabled accept both forms of masking. Instructions that must have EVEX.aaa bits
different than 0 (gather and scatter) and instructions that write to memory only accept merging-masking.
It’s important to note that the per-element destination update rule also applies when the destination operand is a
memory location. Vectors are written on a per element basis, based on the opmask register used as a predicate
operand.
2-6 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
The value of an opmask register can be:
generated as a result of a vector instruction (e.g. CMP)
loaded from memory
loaded from GPR register
or modified by mask-to-mask operations
Opmask registers can be used for purposes outside of predication. For example, they can be used to manipulate
sparse sets of elements from a vector or used to set the EFLAGS based on the 0/0xFFFFFFFFFFFFFFFF/other status
of the OR of two opmask registers.
2.5.1.1 Opmask Register K0
The only exception to the opmask rules described above is that opmask k0 can not be used as a predicate operand.
Opmask k0 cannot be encoded as a predicate operand for a vector operation; the encoding value that would select
opmask k0 will instead selects an implicit opmask value of 0xFFFFFFFFFFFFFFFF, thereby effectively disabling
masking. Opmask register k0 can still be used for any instruction that takes opmask register(s) as operand(s)
(either source or destination).
Note that certain instructions implicitly use the opmask as an extra destination operand. In such cases, trying to
use the “no mask” feature will translate into a #UD fault being raised.
2.5.1.2 Example of Opmask Usages
The example below illustrates predicated vector add operation and predicated updates of added results into the
destination operand. The initial state of vector registers zmm0, zmm1, and zmm2 and k3 are:
MSB........................................LSB
zmm0 =
[ 0x00000003 0x00000002 0x00000001 0x00000000 ] (bytes 15 through 0)
[ 0x00000007 0x00000006 0x00000005 0x00000004 ] (bytes 31 through 16)
[ 0x0000000B 0x0000000A 0x00000009 0x00000008 ] (bytes 47 through 32)
[ 0x0000000F 0x0000000E 0x0000000D 0x0000000C ] (bytes 63 through 48)
zmm1 =
[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 15 through 0)
[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 31 through 16)
[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 47 through 32)
[ 0x0000000F 0x0000000F 0x0000000F 0x0000000F ] (bytes 63 through 48)
zmm2 =
[ 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA ] (bytes 15 through 0)
[ 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB ] (bytes 31 through 16)
[ 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC ] (bytes 47 through 32)
[ 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD ] (bytes 63 through 48)
k3 = 0x8F03 (1000 1111 0000 0011)
An opmask register serving as a predicate operand is expressed as a curly-braces-enclosed decorator following the
first operand in the Intel assembly syntax. Given this state, we will execute the following instruction:
vpaddd zmm2 {k3}, zmm0, zmm1
Ref. # 319433-023 2-7
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
The vpaddd instruction performs 32-bit integer additions on each data element conditionally based on the corre-
sponding bit value in the predicate operand k3. Since per-element operations are not operated if the corresponding
bit of the predicate mask is not set, the intermediate result is:
[ ********** ********** 0x00000010 0x0000000F ] (bytes 15 through 0)
[ ********** ********** ********** ********** ] (bytes 31 through 16)
[ 0x0000001A 0x00000019 0x00000018 0x00000017 ] (bytes 47 through 32)
[ 0x0000001E ********** ********** ********** ] (bytes 63 through 48)
where ”**********” indicates that no operation is performed.
This intermediate result is then written into the destination vector register, zmm2, using the opmask register k3 as
the writemask, producing the following final result:
zmm2 =
[ 0xAAAAAAAA 0xAAAAAAAA 0x00000010 0x0000000F ] (bytes 15 through 0)
[ 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB ] (bytes 31 through 16)
[ 0x0000001A 0x00000019 0x00000018 0x00000017 ] (bytes 47 through 32)
[ 0x0000001E 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD ] (bytes 63 through 48)
Note that for a 64-bit instruction (say vaddpd), only the 8 LSB of mask k3 (0x03) would be used to identify the
predicate operation on each one of the 8 elements of the source/destination vectors.
2.5.2 OpMask Instructions
AVX-512 Foundation instructions provide a collection of opmask instructions that allow programmers to set, copy,
or operate on the contents of a given opmask register. There are three types of opmask instructions:
Mask read/write instructions: These instructions move data between a general-purpose integer register or
memory and an opmask mask register, or between two opmask registers. For example:
kmovw k1, ebx; move lower 16 bits of ebx to k1.
Flag instructions: This category, consisting of instructions that modify EFLAGS based on the content of
opmask registers.
kortestw k1, k2; OR registers k1 and k2 and updated EFLAGS accordingly.
Mask logical instructions: These instructions perform standard bitwise logical operations between opmask
registers.
kandw k1, k2, k3; AND lowest 16 bits of registers k2 and k3, leaving the result in k1.
2.5.3 Broadcast
EVEX encoding provides a bit-field to encode data broadcast for some load-op instructions, i.e. instructions that
load data from memory and perform some computational or data movement operation. A source element from
memory can be broadcasted (repeated) across all the elements of the effective source operand (up to 16 times for
32-bit data element, up to 8 times for 64-bit data element). The is useful when we want to reuse the same scalar
operand for all the operations in a vector instruction. Broadcast is only enabled on instructions with an element size
of 32 bits or 64 bits. Byte and word instructions do not support embedded broadcast.
The functionality of data broadcast is expressed as a curly-braces-enclosed decorator following the last
register/memory operand in the Intel assembly syntax.
For instance:
vmulps zmm1, zmm2, [rax] {1to16}
2-8 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
The {1to16} primitive loads one float32 (single precision) element from memory, replicates it 16 times to form a
vector of 16 32-bit floating-point elements, multiplies the 16 float32 elements with the corresponding elements in
the first source operand vector, and put each of the 16 results into the destination operand.
AVX-512 instructions with store semantics and pure load instructions do not support broadcast primitives.
vmovaps [rax] {k3}, zmm19
In contrast, the k3 opmask register is used as the predicate operand in the above example. Only the store opera-
tion on data elements corresponding to the non-zero bits in k3 will be performed.
2.5.4 STATIC ROUNDING MODE AND SUPPRESS ALL EXCEPTIONS
In previous SIMD instruction extensions, rounding control is generally specified in MXCSR, with a handful of
instructions providing per-instruction rounding override via encoding fields within the imm8 operand. AVX-512
offers a more flexible encoding attribute to override MXCSR-based rounding control for floating-pointing instruction
with rounding semantic. This rounding attribute embedded in the EVEX prefix is called Static (per instruction)
Rounding Mode or Rounding Mode override. This attribute allows programmers to statically apply a specific arith-
metic rounding mode irrespective of the value of RM bits in MXCSR. It is available only to register-to-register
flavors of EVEX-encoded floating-point instructions with rounding semantic. The differences between these three
rounding control interfaces are summarized in Table 2-4.
The static rounding-mode override in AVX-512 also implies the “suppress-all-exceptions” (SAE) attribute. The SAE
effect is as if all the MXCSR mask bits are set, and none of the MXCSR flags will be updated. Using static rounding-
mode via EVEX without SAE is not supported.
Static Rounding Mode and SAE control can be enabled in the encoding of the instruction by setting the EVEX.b bit
to 1 in a register-register vector instruction. In such a case, vector length is assumed to be MAX_VL (512-bit in
case of AVX-512 packed vector instructions) or 128-bit for scalar instructions. Table 2-5 summarizes the possible
static rounding-mode assignments in AVX-512 instructions.
Note that some instructions already allow to specify the rounding mode statically via immediate bits. In such case,
the immediate bits take precedence over the embedded rounding mode (in the same vein that they take prece-
dence over whatever MXCSR.RM says).
Table 2-4. Characteristics of Three Rounding Control Interfaces
Rounding Interface Static Rounding
Override
Imm8 Embedded Rounding
Override MXCSR Rounding Control
Semantic Requirement FP rounding FP rounding FP rounding
Prefix Requirement EVEX.B = 1 NA NA
Rounding Control EVEX.L’L IMM8[1:0] or MXCSR.RC
(depending on IMM8[2])
MXCSR.RC
Suppress All Exceptions (SAE) Implied no no
SIMD FP Exception #XF All suppressed Can raise #I, #P (unless SPE is set) MXCSR masking controls
MXCSR flag update No yes (except PE if SPE is set) Yes
Precedence Above MXCSR.RC Above EVEX.L’L Default
Scope 512-bit, reg-reg,
Scalar reg-reg
ROUNDPx, ROUNDSx,
VCVTPS2PH, VRNDSCALExx
All SIMD operands, vector lengths
Ref. # 319433-023 2-9
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
An example of use would be in the following instructions:
vaddps zmm7 {k6}, zmm2, zmm4, {rd-sae}
Which would perform the single-precision floating-point addition of vectors zmm2 and zmm4 with round-towards-
minus-infinity, leaving the result in vector zmm7 using k6 as conditional writemask.
Note that MXCSR.RM bits are ignored and unaffected by the outcome of this instruction.
Examples of instructions instances where the static rounding-mode is not allowed would be:
; rounding-mode already specified in the instruction immediate
vrndscaleps zmm7 {k6}, zmm2, 0x00
; instructions with memory operands
vmulps zmm7 {k6}, zmm2,[rax], {rd-sae}
2.5.5 Compressed Disp8*N Encoding
EVEX encoding supports a new displacement representation that allows for a more compact encoding of memory
addressing commonly used in unrolled code, where an 8-bit displacement can address a range exceeding the
dynamic range of an 8-bit value. This compressed displacement encoding is referred to as disp8*N, where N is a
constant implied by the memory operation characteristic of each instruction.
The compressed displacement is based on the assumption that the effective displacement (of a memory operand
occurring in a loop) is a multiple of the granularity of the memory access of each iteration. Since the Base register
in memory addressing already provides byte-granular resolution, the lower bits of the traditional disp8 operand
becomes redundant, and can be implied from the memory operation characteristic.
The memory operation characteristics depend on the following:
The destination operand is updated as a full vector, a single element, or multi-element tuples.
The memory source operand (or vector source operand if the destination operand is memory) is fetched (or
treated) as a full vector, a single element, or multi-element tuples.
For example,
vaddps zmm7, zmm2, disp8[membase + index*8]
The destination zmm7 is updated as a full 512-bit vector, and 64-bytes of data are fetched from memory as a full
vector; the next unrolled iteration may fetch from memory in 64-byte granularity per iteration. There are 6 bits of
lowest address that can be compressed, hence N = 2^6 = 64. The contribution of “disp8” to effective address
calculation is 64*disp8.
vbroadcastf32x4 zmm7, disp8[membase + index*8]
In VBROADCASTF32x4, memory is fetched as a 4tuple of 4 32-bit entities. Hence the common lowest address bits
that can be compressed is 4, corresponding to the 4tuple width of 2^4 = 16 bytes (4x32 bits).Therefore, N = 2^4.
Table 2-5. Static Rounding Mode
Function Description
{rn-sae} Round to nearest (even) + SAE
{rd-sae} Round down (toward -inf) + SAE
{ru-sae} Round up (toward +inf) + SAE
{rz-sae} Round toward zero (Truncate) + SAE
2-10 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
For EVEX encoded instructions that update only one element in the destination, or source element is fetched indi-
vidually, the number of lowest address bits that can be compressed is generally the width in bytes of the data
element, hence N = 2^(width).
2.6 MEMORY ALIGNMENT
Memory alignment requirements on EVEX-encoded SIMD instructions are similar to VEX-encoded SIMD instruc-
tions. Memory alignment applies to EVEX-encoded SIMD instructions in three categories:
Explicitly-aligned SIMD load and store instructions accessing 64 bytes of memory with EVEX prefix encoded
vector length of 512 bits(e.g. VMOVAPD, VMOVAPS, VMOVDQA, etc.). These instructions always require
memory address to be aligned on 64-byte boundary.
Explicitly-unaligned SIMD load and store instructions accessing 64 bytes or less of data from memory (e.g.
VMOVUPD, VMOVUPS, VMOVDQU, VMOVQ, VMOVD, etc.). These instructions do not require memory address
to be aligned on natural vector-length byte boundary.
Most arithmetic and data processing instructions encoded using EVEX support memory access semantics.
When these instructions access from memory, there are no alignment restrictions.
Software may see performance penalties when unaligned accesses cross cacheline boundaries or vector-length
naturally-aligned boundaries, so reasonable attempts to align commonly used data sets should continue to be
pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a subset of memory operand
sizes and alignment scenarios. The guaranteed atomic operations are described in Section 7.1.1 of IA-32 Intel®
Architecture Software Developer’s Manual, Volumes 3A. AVX and FMA instructions do not introduce any new guar-
anteed atomic memory operations.
AVX-512 instructions may generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 when
CR0.AM=1. 16, 32 and 64-byte memory references will not generate #AC(0) fault. See Table 2-7 for details.
Certain AVX-512 Foundation instructions always require 64-byte alignment (see the complete list of VEX and EVEX
encoded instructions in Table 2-6). These instructions will #GP(0) if not aligned to 64-byte boundaries.
Table 2-6. SIMD Instructions Requiring Explicitly Aligned Memory
Require 16-byte alignment Require 32-byte alignment Require 64-byte alignment*
(V)MOVDQA xmm, m128 VMOVDQA ymm, m256 VMOVDQA zmm, m512
(V)MOVDQA m128, xmm VMOVDQA m256, ymm VMOVDQA m512, zmm
(V)MOVAPS xmm, m128 VMOVAPS ymm, m256 VMOVAPS zmm, m512
(V)MOVAPS m128, xmm VMOVAPS m256, ymm VMOVAPS m512, zmm
(V)MOVAPD xmm, m128 VMOVAPD ymm, m256 VMOVAPD zmm, m512
(V)MOVAPD m128, xmm VMOVAPD m256, ymm VMOVAPD m512, zmm
(V)MOVNTDQA xmm, m128 VMOVNTPS m256, ymm VMOVNTPS m512, zmm
(V)MOVNTPS m128, xmm VMOVNTPD m256, ymm VMOVNTPD m512, zmm
(V)MOVNTPD m128, xmm VMOVNTDQ m256, ymm VMOVNTDQ m512, zmm
(V)MOVNTDQ m128, xmm VMOVNTDQA ymm, m256 VMOVNTDQA zmm, m512
Ref. # 319433-023 2-11
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
2.7 SIMD FLOATING-POINT EXCEPTIONS
AVX-512 instructions can generate SIMD floating-point exceptions (#XM) if embedded “suppress all exceptions”
(SAE) in EVEX is not set. When SAE is not set, these instructions will respond to exception masks of MXCSR in the
same way as VEX-encoded AVX instructions. When CR4.OSXMMEXCPT=0 any unmasked FP exceptions generate
an Undefined Opcode exception (#UD).
2.8 INSTRUCTION EXCEPTION SPECIFICATION
Exception behavior of VEX-encoded AVX/AVX2 instructions are described in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A. Exception behavior of AVX-512 Foundation instructions and additional
512-bit extensions are described in Section 4.10, “Exception Classifications of EVEX-Encoded instructions” and
Section 4.11, “Exception Classifications of Opmask instructions”.
Table 2-7. Instructions Not Requiring Explicit Memory Alignment
(V)MOVDQU xmm, m128 VMOVDQU ymm, m256 VMOVDQU zmm, m512
(V)MOVDQU m128, m128 VMOVDQU m256, ymm VMOVDQU m512, zmm
(V)MOVUPS xmm, m128 VMOVUPS ymm, m256 VMOVUPS zmm, m512
(V)MOVUPS m128, xmm VMOVUPS m256, ymm VMOVUPS m512, zmm
(V)MOVUPD xmm, m128 VMOVUPD ymm, m256 VMOVUPD zmm, m512
(V)MOVUPD m128, xmm VMOVUPD m256, ymm VMOVUPD m512, zmm
2-12 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
2.9 CPUID INSTRUCTION
CPUID—CPU Identification
Description
The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction oper-
ates the same in non-64-bit modes and 64-bit mode.
CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:
MOV EAX, 00H
CPUID
Table 2-8 shows information returned, depending on the initial value loaded into the EAX register. Table 2-9 shows
the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is implemented.
Two types of information are returned: basic and extended function information. If a value is entered for
CPUID.EAX is invalid for a particular processor, the data for the highest basic information leaf is returned. For
example, using the Intel Core 2 Duo E6850 processor, the following is true:
CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = 0AH. *)
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0AH. *)
When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.
CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.
See also:
“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A
"Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.
Opcode Instruction 64-Bit Mode Compat/
Leg Mode Description
0F A2 CPUID Valid Valid Returns processor identification and feature information to the EAX,
EBX, ECX, and EDX registers, as determined by input entered in EAX
(in some cases, ECX as well).
1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.
Ref. # 319433-023 2-13
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Table 2-8. Information Returned by CPUID Instruction
Initial EAX
Value Information Provided about the Processor
Basic CPUID Information
0H EAX
EBX
ECX
EDX
Maximum Input Value for Basic CPUID Information (see Table 2-9)
“Genu”
“ntel”
“ineI”
01H EAX
EBX
ECX
EDX
Version Information: Type, Family, Model, and Stepping ID (see Figure 2-4)
Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID
Feature Information (see Figure 2-5 and Table 2-11)
Feature Information (see Figure 2-6 and Table 2-12)
NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the maximum number of
unique initial APIC IDs reserved for addressing different logical processors in a physical package.
02H EAX
EBX
ECX
EDX
Cache and TLB Information (see Table 2-13)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
03H EAX Reserved.
EBX Reserved.
ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)
EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)
NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models,
use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.
See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for
more information on PSN.
CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).
Deterministic Cache Parameters Leaf
04H NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 2-30.
EAX Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved
2-14 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache
Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package*, ***, ****
EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*
ECX Bits 31-00: S = Number of Sets*
EDX Bit 0: WBINVD/INVD behavior on lower level caches
Bit 10: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads
sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads
sharing this cache.
Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bit 2: Complex cache indexing
0 = Direct mapped cache
1 = A complex function is used to index the cache, potentially using
all address bits.
Bits 31-03: Reserved = 0
NOTES:
* Add one to the return value to get the result.
** The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique
initial APIC IDs reserved for addressing different logical processors sharing this cache
*** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of
unique Core_IDs reserved for addressing different processor cores in a physical package. Core ID is
a subset of bits of the initial APIC ID.
****The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.
MONITOR/MWAIT Leaf
05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0
EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0
ECX Bits 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported
Bits 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled
Bits 31 - 02: Reserved
Table 2-8. Information Returned by CPUID Instruction(Continued)
Initial EAX
Value Information Provided about the Processor
Ref. # 319433-023 2-15
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
EDX Bits 03 - 00: Number of C0* sub C-states supported using MWait
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of C0 through C4 states for MWAIT extension are processor-specific C-states, not
ACPI C-states.
Thermal and Power Management Leaf
06H EAX
EBX
Bits 00: Digital temperature sensor is supported if set
Bits 01: Intel Turbo Boost Technology is available
Bits 31 - 02: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved
ECX Bits 00: Hardware Coordination Feedback Capability (Presence of MCNT and ACNT MSRs). The capa-
bility to provide a measure of delivered processor performance (since last reset of the counters), as a
percentage of expected processor performance at frequency specified in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0
EDX Reserved = 0
Structured Extended feature Leaf
07H NOTES:
Leaf 07H main leaf (ECX = 0).
IF leaf 07H is not supported, EAX=EBX=ECX=EDX=0
EAX Bits 31-00: Reports the maximum number sub-leaves that are supported in leaf 07H.
Table 2-8. Information Returned by CPUID Instruction(Continued)
Initial EAX
Value Information Provided about the Processor
2-16 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 06: Reserved
Bit 08: BMI2
Bit 09: ERMS
Bit 10: INVPCID
Bit 11: RTM
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Intel Memory Protection Extensions
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bit 16: AVX512F
Bit 17: AVX512DQ
Bit 18: RDSEED
Bit 19: ADX
Bit 20: SMAP
Bit 21: AVX512IFMA
Bit 22: PCOMMIT
Bit 23: CLFLUSHOPT
Bit 24: CLWB
Bit 25: Intel Processor Trace
Bit 26: AVX512PF
Bit 27: AVX512ER
Bit 28: AVX512CD
Bit 29: SHA
Bit 30: AVX512BW
Bit 31: AVX512VL
ECX Bit 00: PREFETCHWT1
Bit 01: AVX512VBMI
Bits 31-02: Reserved
EDX Bits 31-00: Reserved.
Structured Extended Feature Enumeration Sub-leaves (EAX = 07H, ECX = n, n 1)
07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.
EAX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
EBX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
Direct Cache Access Information Leaf
09H EAX
EBX
ECX
EDX
Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)
Reserved
Reserved
Reserved
Table 2-8. Information Returned by CPUID Instruction(Continued)
Initial EAX
Value Information Provided about the Processor
Ref. # 319433-023 2-17
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Architectural Performance Monitoring Leaf
0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events
EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0
ECX
EDX
Reserved = 0
Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0
Extended Topology Enumeration Leaf
0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that returns an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0
If an input value N in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with
ECX > N also return 0 in ECX[15:8]
EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level
type*. All logical processors with the same next level ID share current level.
Bits 31-5: Reserved.
EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as
shipped by Intel**.
Bits 31- 16: Reserved.
ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.
EDX Bits 31- 00: x2APIC ID the current logical processor.
NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.
** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in
this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical
processors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations.
*** The value of the “level type” field is not related to level numbers in any way, higher “level type”
values do not mean higher levels. Level type field has the following encoding:
0: invalid
1: SMT
2: Core
3-255: Reserved
Table 2-8. Information Returned by CPUID Instruction(Continued)
Initial EAX
Value Information Provided about the Processor
2-18 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)
0DH NOTES:
Leaf 0DH main leaf (ECX = 0).
EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of the XFEATURE_ENABLED_MASK regis-
ter. If a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 04 - 03: MPX state
Bit 07 - 05: AVX-512 state
Bit 08: Used for IA32_XSS
Bit 09: PKRU state
Bits 31-10: Reserved
EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save
area are not enabled.
ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit
fields in XCR0.
EDX Bit 31-0: Reports the valid bit fields of the upper 32 bits of the XCR0 register. If a bit is 0, the corre-
sponding bit field in XCR0 is reserved
Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)
EAX
EBX
ECX
EDX
Bit 00: XSAVEOPT is available;
Bits 31-1: Reserved
Reserved
Reserved
Reserved
Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)
0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.
Each valid sub-leaf index maps to a valid bit in the XCR0 register starting at bit position 2
EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state
feature associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, is
invalid*.
EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of
the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.
ECX Bit 0 is set if the sub-leaf index, n, maps to a valid bit in the IA32_XSS MSR and bit 0 is clear if n maps
to a valid bit in XCR0. Bits 31-1 are reserved. This field reports 0 if the sub-leaf index, n, is invalid*.
EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
*The highest valid sub-leaf index, n, is
(POPCNT(CPUID.(EAX=0D, ECX=0):EAX) + POPCNT(CPUID.(EAX=0D, ECX=0):EDX) - 1)
Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)
14H NOTES:
Leaf 14H main leaf (ECX = 0).
Table 2-8. Information Returned by CPUID Instruction(Continued)
Initial EAX
Value Information Provided about the Processor
Ref. # 319433-023 2-19
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
EAX Bits 31-0: Reports the maximum number sub-leaves that are supported in leaf 14H.
EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that
IA32_RTIT_CR3_MATCH MSR can be accessed.
Bits 31- 01: Reserved
ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the
MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 30:02: Reserved
Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base
component.
EDX Bits 31- 00: Reserved
Processor Frequency Information Leaf
16H EAX
EBX
ECX
EDX
Bits 15:0: Processor Base Frequency (in MHz).
Bits 31:16: Reserved =0
Bits 15:0: Maximum Frequency (in MHz).
Bits 31:16: Reserved = 0
Bits 15:0: Bus (Reference) Frequency (in MHz).
Bits 31:16: Reserved = 0
Reserved
NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not
reflect actual values. Suitable use of this data includes the display of processor information in like
manner to the processor brand string and for determining the appropriate range to use when
displaying processor information e.g. frequency history graphs. The returned information should not
be used for any other purpose as the returned information does not accurately correlate to
information / counters returned by other processor interfaces.
While a processor may support the Processor Frequency Information leaf, fields that return a value
of zero are not supported.
Extended Function CPUID Information
80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 2-9).
EBX
ECX
EDX
Reserved
Reserved
Reserved
80000001H EAX
EBX
ECX
Extended Processor Signature and Feature Bits.
Reserved
Bit 0: LAHF/SAHF available in 64-bit mode
Bits 4-1: Reserved
Bit 5: LZCNT available
Bits 7-6 Reserved
Bit 8: PREFETCHW
Bits 31-9: Reserved
Table 2-8. Information Returned by CPUID Instruction(Continued)
Initial EAX
Value Information Provided about the Processor
2-20 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
EDX Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0
80000002H EAX
EBX
ECX
EDX
Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
80000003H EAX
EBX
ECX
EDX
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
80000004H EAX
EBX
ECX
EDX
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
80000005H EAX
EBX
ECX
EDX
Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0
80000006H EAX
EBX
Reserved = 0
Reserved = 0
ECX
EDX
Bits 7-0: Cache Line size in bytes
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0
NOTES:
* L2 associativity field encodings:
00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative
80000007H EAX
EBX
ECX
EDX
Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0
80000008H EAX Virtual/Physical Address size
Bits 7-0: #Physical Address Bits*
Bits 15-8: #Virtual Address Bits
Bits 31-16: Reserved = 0
Table 2-8. Information Returned by CPUID Instruction(Continued)
Initial EAX
Value Information Provided about the Processor
Ref. # 319433-023 2-21
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
INPUT EAX = 0H: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification
String
When CPUID executes with EAX set to 0H, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register (see Table 2-9) and is processor
specific.
A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
eIntel” and is expressed:
EBX 756e6547h (* "Genu", with G in the low 4 bits of BL *)
EDX 49656e69h (* "ineI", with i in the low 4 bits of DL *)
ECX 6c65746eh (* "ntel", with n in the low 4 bits of CL *)
INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information
When CPUID executes with EAX set to 0H, the processor returns the highest value the processor recognizes for
returning extended processor information. The value is returned in the EAX register (see Table 2-9) and is
processor specific.
EBX
ECX
EDX
Reserved = 0
Reserved = 0
Reserved = 0
NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported
should come from this field.
Table 2-9. Highest CPUID Source Operand for Intel 64 and IA-32 Processors
Intel 64 or IA-32 Processors Highest Value in EAX
Basic Information Extended Function Information
Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented
Later Intel486 Processors and Pentium
Processors
01H Not Implemented
Pentium Pro and Pentium II Processors,
Intel® Celeron® Processors
02H Not Implemented
Pentium III Processors 03H Not Implemented
Pentium 4 Processors 02H 80000004H
Intel Xeon Processors 02H 80000004H
Pentium M Processor 02H 80000004H
Pentium 4 Processor supporting Hyper-
Threading Technology
05H 80000008H
Pentium D Processor (8xx) 05H 80000008H
Pentium D Processor (9xx) 06H 80000008H
Intel Core Duo Processor 0AH 80000008H
Intel Core 2 Duo Processor 0AH 80000008H
Intel Xeon Processor 3000, 5100, 5300
Series
0AH 80000008H
Table 2-8. Information Returned by CPUID Instruction(Continued)
Initial EAX
Value Information Provided about the Processor
2-22 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
IA32_BIOS_SIGN_ID Returns Microcode Update Signature
For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 10 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
INPUT EAX = 01H: Returns Model, Family, Stepping Information
When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 2-4). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
Model — 1111B
Family — 0101B
Processor Type — 00B
See Table 2-10 for available processor type values. Stepping IDs are provided as needed.
Intel Xeon Processor 3000, 5100, 5200,
5300, 5400 Series
0AH 80000008H
Intel Core 2 Duo Processor 8000 Series 0DH 80000008H
Intel Xeon Processor 5200, 5400 Series 0AH 80000008H
Figure 2-4. Version Information Returned by CPUID in EAX
Table 2-10. Processor Type Field
Type Encoding
Original OEM Processor 00B
Intel OverDrive® Processor 01B
Dual processor (not applicable to Intel486 processors) 10B
Intel reserved 11B
Table 2-9. Highest CPUID Source Operand for Intel 64 and IA-32 Processors (Continued)
Intel 64 or IA-32 Processors Highest Value in EAX
Basic Information Extended Function Information
Processor Type
034781112131415161920272831
EAX
Family (0FH for the Pentium 4 Processor Family)
Model
Extended
Family ID Extended
Model ID Family
ID Model Stepping
ID
Extended Family ID (0)
Extended Model ID (0)
Reserved
Ref. # 319433-023 2-23
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
NOTE
See "Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, and Chapter 16 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for information on identifying earlier IA-32
processors.
The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display
using the following rule:
IF Family_ID 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)
FI;
(* Show Display_Family as HEX field. *)
The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a
display using the following rule:
IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;
FI;
(* Show Display_Model as HEX field. *)
INPUT EAX = 01H: Returns Additional Information in EBX
When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:
Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand
strings for IA-32 processors. More information about this field is provided later in this section.
CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line
flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.
Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.
INPUT EAX = 01H: Returns Feature Information in ECX and EDX
When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
Figure 2-5 and Table 2-11 show encodings for ECX.
Figure 2-6 and Table 2-12 show encodings for EDX.
For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.
NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.
2-24 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Figure 2-5. Feature Information Returned in the ECX Register
Table 2-11. Feature Information Returned in the ECX Register
Bit # Mnemonic Description
0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this technology.
1 PCLMULQDQ A value of 1 indicates the processor supports PCLMULQDQ instruction.
2DTES6464-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.
3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.
4 DS-CPL
CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the Debug
Store feature to allow for branch message storage qualified by CPL.
5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.
6SMX
Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 5, “Safer Mode Extensions Reference”.
7 EST
Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this
technology.
8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.
9SSSE3
A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.
CNXT-ID — L1 Context ID
012345678910111213141516171819202122232425262728293031
ECX
TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
PCLMULQDQ — Carryless Multiplication
Reserved
CMPXCHG16B
SMX — Safer Mode Extensions
xTPR Update Control
SSSE3 — SSSE3 Extensions
PDCM — Perf/Debug Capability MSR
VMX — Virtual Machine Extensions
SSE4_1 — SSE4.1
OSXSAVE
SSE4_2 — SSE4.2
DCA — Direct Cache Access
x2APIC
POPCNT
XSAVE
AVX
AES
FMA — Fused Multiply Add
SSE3 — SSE3 Extensions
PCID — Process-context Identifiers
0
DTES64 — 64-bit DS Area
MOVBE
TSC-Deadline
F16C
RDRAND
SDBG
Ref. # 319433-023 2-25
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
10 CNXT-ID
L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or
shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.
11 Reserved Reserved
12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.
13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available.
14 xTPR Update
Control
xTPR Update Control. A value of 1 indicates that the processor supports changing
IA32_MISC_ENABLES[bit 23].
15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance and
debug feature indication MSR IA32_PERF_CAPABILITIES.
16 Reserved Reserved
17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.
18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.
19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.
20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.
21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.
22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.
23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.
24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a TSC
deadline value.
25 AES A value of 1 indicates that the processor supports the AES instruction.
26 XSAVE A value of 1 indicates that the processor supports the XFEATURE_ENABLED_MASK register and
XSAVE/XRSTOR/XSETBV/XGETBV instructions to manage processor extended states.
27 OSXSAVE A value of 1 indicates that the OS has enabled support for using XGETBV/XSETBV instructions to
query processor extended states.
28 AVX A value of 1 indicates that processor supports AVX instructions operating on 256-bit YMM state, and
three-operand encoding of 256-bit and 128-bit SIMD instructions.
29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.
30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.
31 Not Used Always return 0.
Table 2-11. Feature Information Returned in the ECX Register (Continued)
Bit # Mnemonic Description
2-26 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Figure 2-6. Feature Information Returned in the EDX Register
Table 2-12. More on Feature Information Returned in the EDX Register
Bit # Mnemonic Description
0 FPU floating-point Unit On-Chip. The processor contains an x87 FPU.
1
VME
Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.
2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.
3
PSE
Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.
4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.
5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.
PBE–Pend. Brk. EN.
012345678910111213141516171819202122232425262728293031
EDX
TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip
Reserved
Ref. # 319433-023 2-27
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
6
PAE
Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined, and is
implementation specific.
7
MCE
Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check
feature.
8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).
9
APIC
APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some
processors permit the APIC to be relocated).
10 Reserved Reserved
11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.
12
MTRR
Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.
13
PGE
PTE Global Bit. The global bit in page directory entries (PDEs) and page table entries (PTEs) is supported,
indicating TLB entries that are common to different processes and need not be flushed. The CR4.PGE bit
controls this feature.
14
MCA
Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.
15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported
16
PAT
Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory on a 4K granularity through
a linear address.
17
PSE-36
36-Bit Page Size Extension. Extended 4-MByte pages that are capable of addressing physical memory
beyond 4 GBytes are supported. This feature indicates that the upper four bits of the physical address of the
4-MByte page is encoded by bits 13-16 of the page directory entry.
18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.
19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.
20 Reserved Reserved
21
DS
Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 17, “Debug, Branch Profile, TSC, and Quality of Service,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A).
22
ACPI
Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.
23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.
24
FXSR
FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating-point context. Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.
Table 2-12. More on Feature Information Returned in the EDX Register(Continued)
Bit # Mnemonic Description
2-28 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
INPUT EAX = 02H: Cache and TLB Information Returned in EAX, EBX, ECX, EDX
When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal caches
and TLBs in the EAX, EBX, ECX, and EDX registers.
The encoding is as follows:
The least-significant byte in register EAX (register AL) indicates the number of times the CPUID instruction
must be executed with an input value of 02H to get a complete description of the processor’s caches and TLBs.
The first member of the family of Pentium 4 processors will return a 01H.
The most significant bit (bit 31) of each register indicates whether the register contains valid information (set
to 0) or is reserved (set to 1).
If a register contains valid information, the information is contained in 1 byte descriptors. Table 2-13 shows the
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not
defined; that is, specific bytes are not designated to contain descriptors for specific cache or TLB types. The
descriptors may appear in any order.
25 SSE SSE. The processor supports the SSE extensions.
26 SSE2 SSE2. The processor supports the SSE2 extensions.
27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of
its own cache structure for transactions issued to the bus.
28 HTT Multi-Threading. The physical processor package is capable of supporting more than one logical processor.
29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).
30 Reserved Reserved
31
PBE
Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.
Table 2-13. Encoding of Cache and TLB Descriptors
Descriptor Value Cache or TLB Description
00H Null descriptor
01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries
02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries
03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries
04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries
05H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries
06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size
08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size
0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size
0BH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries
0CH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size
22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector
23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size
Table 2-12. More on Feature Information Returned in the EDX Register(Continued)
Bit # Mnemonic Description
Ref. # 319433-023 2-29
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size
40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache
41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size
42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size
43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size
44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size
45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size
46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size
47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size
49H 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H);
2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size
4AH 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size
4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size
4CH 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size
4DH 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size
4EH 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size
50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries
51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries
52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries
56H Data TLB0: 4 MByte pages, 4-way set associative, 16 entries
57H Data TLB0: 4 KByte pages, 4-way associative, 16 entries
5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries
5CH Data TLB: 4 KByte and 4 MByte pages,128 entries
5DH Data TLB: 4 KByte and 4 MByte pages,256 entries
60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size
66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size
67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size
68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size
70H Trace cache: 12 K-μop, 8-way set associative
71H Trace cache: 16 K-μop, 8-way set associative
72H Trace cache: 32 K-μop, 8-way set associative
78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size
79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector
7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size
7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size
82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size
83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size
84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size
Table 2-13. Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
2-30 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Example 2-1. Example of Cache and TLB Interpretation
The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:
EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H
Which means:
The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID needs to be executed
once with an input value of 2 to retrieve complete information about caches and TLBs.
The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register
contains valid 1-byte descriptors.
Bytes 1, 2, and 3 of register EAX indicate that the processor has:
50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.
5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.
66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:
00H - NULL descriptor.
70H - Trace cache: 12 K-μop, 8-way set associative.
7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.
00H - NULL descriptor.
INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level
When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.
Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 2-8.
The CPUID leaf 4 also reports data that can be used to derive the topology of processor cores in a physical package.
This information is constant for all valid index values. Software can query the raw data reported by executing
CPUID with EAX=04H and ECX=0H and use it as part of the topology enumeration algorithm described in Chapter
85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size
86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size
87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size
B0H Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries
B1H Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries
B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries
B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries
F0H 64-Byte prefetching
F1H 128-Byte prefetching
Table 2-13. Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
Ref. # 319433-023 2-31
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.
INPUT EAX = 05H: Returns MONITOR and MWAIT Features
When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 2-8.
INPUT EAX = 06H: Returns Thermal and Power Management Features
When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 2-8.
INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information
When CPUID executes with EAX set to 07H and ECX = 0H, the processor returns information about the maximum
number of sub-leaves that contain extended feature flags. See Table 2-8.
When CPUID executes with EAX set to 07H and ECX = n (n > 1and less than the number of non-zero bits in
CPUID.(EAX=07H, ECX= 0H).EAX, the processor returns information about extended feature flags. See Table
2-8. In sub-leaf 0, only EAX has the number of sub-leaves. In sub-leaf 0, EBX, ECX & EDX all contain extended
feature flags.
INPUT EAX = 09H: Returns Direct Cache Access Information
When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 2-8.
INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features
When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 2-8) is greater than Pn 0. See Table 2-8.
For each version of architectural performance monitoring capability, software must enumerate this leaf to discover
the programming facilities and the architectural performance events available in the processor. The details are
described in Chapter 17, “Debug, Branch Profile, TSC, and Quality of Service,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.
INPUT EAX = 0BH: Returns Extended Topology Information
When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value.
INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information
When CPUID executes with EAX set to 0DH and ECX = 0H, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size requirements
of the XSAVE/XRSTOR area. See Table 2-8.
Table 2-14. Structured Extended Feature Leaf, Function 0, EBX Register
Bit # Mnemonic Description
0 RWFSGSBASE A value of 1 indicates the processor supports RD/WR FSGSBASE instructions
1-31 Reserved Reserved
2-32 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
When CPUID executes with EAX set to 0DH and ECX = n (n > 1and less than the number of non-zero bits in
CPUID.(EAX=0DH, ECX= 0H).EAX and CPUID.(EAX=0DH, ECX= 0H).EDX), the processor returns information
about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area. See Table
2-8.
INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information
When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor
Trace extensions. See Table 2-8.
When CPUID executes with EAX set to 14H and ECX = n (n > 1and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= 0H).EAX and CPUID.(EAX=0DH, ECX= 0H).EDX), the processor returns information
about packet generation in Intel Processor Trace. See Table 2-8.
INPUT EAX = 16H: Returns Processor Frequency Information
When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 2-8.
METHODS FOR RETURNING BRANDING INFORMATION
Use the following techniques to access branding information:
1. Processor brand string method; this method also returns the processor’s maximum operating frequency
2. Processor brand index; this method uses a software supplied brand string table.
These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 16 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.
The Processor Brand String Method
Figure 2-7 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.
This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the maximum
operating frequency of the processor to the EAX, EBX, ECX, and EDX registers.
Ref. # 319433-023 2-33
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
How Brand Strings Work
To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.
Table 2-15 shows the brand string that is returned by the first processor in the Pentium 4 processor family.
Figure 2-7. Determination of Support for the Processor Brand String
Table 2-15. Processor Brand String Returned with Pentium 4 Processor
EAX Input Value Return Values ASCII Equivalent
80000002H EAX = 20202020H
EBX = 20202020H
ECX = 20202020H
EDX = 6E492020H
“ ”
“”
“”
“nI ”
80000003H EAX = 286C6574H
EBX = 50202952H
ECX = 69746E65H
EDX = 52286D75H
“(let”
“P )R”
“itne”
“R(mu”
80000004H EAX = 20342029H
EBX = 20555043H
ECX = 30303531H
EDX = 007A484DH
“ 4 )”
“ UPC”
“0051”
“\0zHM”
IF (EAX & 0x80000000)
CPUID
IF (EAX Return Value
= 0x80000004)
CPUID
Function
Supported
True =
Extended
EAX Return Value =
Max. Extended CPUID
Function Index
Input: EAX=
0x80000000
Processor Brand
String Not
Supported
False
Processor Brand
String Supported
True
2-34 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Extracting the Maximum Processor Frequency from Brand Strings
Figure 2-8 provides an algorithm which software can use to extract the maximum processor operating frequency
from the processor brand string.
NOTE
When a frequency is given in a brand string, it is the maximum qualified frequency of the processor,
not the frequency at which the processor is currently running.
The Processor Brand Index Method
The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-level
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official
Intel family and model number of a processor.
When CPUID executes with EAX set to 01H, the processor returns a brand index to the low byte in EBX. Software
can then use this index to locate the brand identification string for the processor in the brand identification table.
The first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do
not support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H,
brand index method is no longer supported. Use brand string method instead.
Table 2-16 shows brand indices that have identification strings associated with them.
Figure 2-8. Algorithm for Extracting Maximum Processor Frequency
IF Substring Matched
"zHM", or
"zHG", or
"zHT"
True
Determine "Multiplier"
Scan "Brand String" in
Reverse Byte Order
Report Error
False
Scan Digits
Until Blank
Match
Substring
Determine "Freq" Reverse Digits
To Decimal Value
Max. Qualified
Frequency =
"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"
In Reverse Order
If "zHM"
If "zHG"
If "zHT" Multiplier = 1 x 1012
Multiplier = 1 x 109
Multiplier = 1 x 106
Ref. # 319433-023 2-35
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
IA-32 Architecture Compatibility
CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.
Operation
IA32_BIOS_SIGN_ID MSR Update with installed microcode revision number;
CASE (EAX) OF
EAX = 0:
EAX Highest basic function input value understood by CPUID;
EBX Vendor identification string;
EDX Vendor identification string;
ECX Vendor identification string;
BREAK;
EAX = 1H:
EAX[3:0] Stepping ID;
EAX[7:4] Model;
Table 2-16. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings
Brand Index Brand String
00H This processor does not support the brand identification feature
01H Intel(R) Celeron(R) processor1
02H Intel(R) Pentium(R) III processor1
03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor
04H Intel(R) Pentium(R) III processor
06H Mobile Intel(R) Pentium(R) III processor-M
07H Mobile Intel(R) Celeron(R) processor1
08H Intel(R) Pentium(R) 4 processor
09H Intel(R) Pentium(R) 4 processor
0AH Intel(R) Celeron(R) processor1
0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP
0CH Intel(R) Xeon(R) processor MP
0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor
0FH Mobile Intel(R) Celeron(R) processor1
11H Mobile Genuine Intel(R) processor
12H Intel(R) Celeron(R) M processor
13H Mobile Intel(R) Celeron(R) processor1
14H Intel(R) Celeron(R) processor
15H Mobile Genuine Intel(R) processor
16H Intel(R) Pentium(R) M processor
17H Mobile Intel(R) Celeron(R) processor1
18H – 0FFH RESERVED
NOTES:
1.Indicates versions of these processors that were introduced after the Pentium III
2-36 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
EAX[11:8] Family;
EAX[13:12] Processor type;
EAX[15:14] Reserved;
EAX[19:16] Extended Model;
EAX[27:20] Extended Family;
EAX[31:28] Reserved;
EBX[7:0] Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] CLFLUSH Line Size;
EBX[16:23] Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] Initial APIC ID;
ECX Feature flags; (* See Figure 2-5. *)
EDX Feature flags; (* See Figure 2-6. *)
BREAK;
EAX = 2H:
EAX Cache and TLB information;
EBX
Cache and TLB information;
ECX
Cache and TLB information;
EDX Cache and TLB information;
BREAK;
EAX = 3H:
EAX Reserved;
EBX
Reserved;
ECX
ProcessorSerialNumber[31:0];
(* Pentium III processors only, otherwise reserved. *)
EDX ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *
BREAK
EAX = 4H:
EAX Deterministic Cache Parameters Leaf; (* See Table 2-8. *)
EBX Deterministic Cache Parameters Leaf;
ECX
Deterministic Cache Parameters Leaf;
EDX Deterministic Cache Parameters Leaf;
BREAK;
EAX = 5H:
EAX MONITOR/MWAIT Leaf; (* See Table 2-8. *)
EBX
MONITOR/MWAIT Leaf;
ECX
MONITOR/MWAIT Leaf;
EDX MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:
EAX Thermal and Power Management Leaf; (* See Table 2-8. *)
EBX
Thermal and Power Management Leaf;
ECX
Thermal and Power Management Leaf;
EDX Thermal and Power Management Leaf;
BREAK;
EAX = 7H:
EAX Structured Extended Feature Leaf; (* See Table 2-8. *);
EBX
Structured Extended Feature Leaf;
ECX
Structured Extended Feature Leaf;
EDX Structured Extended Feature Leaf;
BREAK;
EAX = 8H:
EAX Reserved = 0;
EBX
Reserved = 0;
Ref. # 319433-023 2-37
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
ECX
Reserved = 0;
EDX Reserved = 0;
BREAK;
EAX = 9H:
EAXDirect Cache Access Information Leaf; (* See Table 2-8. *)
EBX
Direct Cache Access Information Leaf;
ECX
Direct Cache Access Information Leaf;
EDX Direct Cache Access Information Leaf;
BREAK;
EAX = AH:
EAX Architectural Performance Monitoring Leaf; (* See Table 2-8. *)
EBX
Architectural Performance Monitoring Leaf;
ECX
Architectural Performance Monitoring Leaf;
EDX Architectural Performance Monitoring Leaf;
BREAK
EAX = BH:
EAX Extended Topology Enumeration Leaf; (* See Table 2-8. *)
EBX Extended Topology Enumeration Leaf;
ECX
Extended Topology Enumeration Leaf;
EDX Extended Topology Enumeration Leaf;
BREAK;
EAX = CH:
EAX Reserved = 0;
EBX
Reserved = 0;
ECX
Reserved = 0;
EDX Reserved = 0;
BREAK;
EAX = DH:
EAXProcessor Extended State Enumeration Leaf; (* See Table 2-8. *)
EBX
Processor Extended State Enumeration Leaf;
ECX
Processor Extended State Enumeration Leaf;
EDX Processor Extended State Enumeration Leaf;
BREAK;
EAX = 14H:
EAXIntel Processor Trace Enumeration Leaf; (* See Table 2-8. *)
EBX
Intel Processor Trace Enumeration Leaf;
ECX
Intel Processor Trace Enumeration Leaf;
EDX Intel Processor Trace Enumeration Leaf;
BREAK;
EAX = 16H:
EAXProcessor Frequency Information Enumeration Leaf; (* See Table 2-8. *)
EBX
Processor Frequency Information Enumeration Leaf;
ECX
Processor Frequency Information Enumeration Leaf;
EDX Processor Frequency Information Enumeration Leaf;
BREAK;
BREAK;
EAX = 80000000H:
EAX Highest extended function input value understood by CPUID;
EBX Reserved;
ECX Reserved;
EDX Reserved;
BREAK;
EAX = 80000001H:
EAX Reserved;
2-38 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
EBX Reserved;
ECX Extended Feature Bits (* See Table 2-8.*);
EDX Extended Feature Bits (* See Table 2-8. *);
BREAK;
EAX = 80000002H:
EAX Processor Brand String;
EBX Processor Brand String, continued;
ECX Processor Brand String, continued;
EDX Processor Brand String, continued;
BREAK;
EAX = 80000003H:
EAX Processor Brand String, continued;
EBX Processor Brand String, continued;
ECX Processor Brand String, continued;
EDX Processor Brand String, continued;
BREAK;
EAX = 80000004H:
EAX Processor Brand String, continued;
EBX Processor Brand String, continued;
ECX Processor Brand String, continued;
EDX Processor Brand String, continued;
BREAK;
EAX = 80000005H:
EAX Reserved = 0;
EBX Reserved = 0;
ECX Reserved = 0;
EDX Reserved = 0;
BREAK;
EAX = 80000006H:
EAX Reserved = 0;
EBX Reserved = 0;
ECX Cache information;
EDX Reserved = 0;
BREAK;
EAX = 80000007H:
EAX Reserved = 0;
EBX Reserved = 0;
ECX Reserved = 0;
EDX Reserved = 0;
BREAK;
EAX = 80000008H:
EAX Reserved = 0;
EBX Reserved = 0;
ECX Reserved = 0;
EDX Reserved = 0;
BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)
(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX Reserved; (* Information returned for highest basic information leaf. *)
EBX Reserved; (* Information returned for highest basic information leaf. *)
ECX Reserved; (* Information returned for highest basic information leaf. *)
EDX Reserved; (* Information returned for highest basic information leaf. *)
BREAK;
ESAC;
Ref. # 319433-023 2-39
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
Flags Affected
None.
Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruction results in an
invalid opcode (#UD) exception being generated.§
2-40 Ref. # 319433-023
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
This page was
intentionally left
blank.
Ref. # 319433-023 3-1
SYSTEM PROGRAMMING FOR INTEL® AVX-512
CHAPTER 3
SYSTEM PROGRAMMING FOR INTEL® AVX-512
This chapter describes the operating system programming considerations for supporting the following extended
processor states: 512-bit ZMM registers and opmask k-registers. These system programming requirements apply
to AVX-512 Foundation instructions and other 512-bit instructions described in Chapter 7.
The basic requirements for an operating system using XSAVE/XRSTOR to manage processor extended states, e.g.
YMM registers, can be found in Chapter 13 of Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A. This chapter covers additional requirements for OS to support ZMM and opmask register states.
3.1 AVX-512 STATE, EVEX PREFIX AND SUPPORTED OPERATING MODES
AVX-512 instructions are encoded using EVEX prefix. The EVEX encoding scheme can support 512-bit, 256-bit and
128-bit instructions that operate on opmask register, ZMM, YMM and XMM states.
For processors that support AVX-512 family of instructions, the extended processor states (ZMM and opmask
registers) exist in all operating modes. However, the access to those states may vary in different modes. The
processor's support for instruction extensions that employ EVEX prefix encoding is independent of the processor's
support for using XSAVE/XRSTOR/XSAVEOPT to those states.
Instructions requiring EVEX prefix encoding generally are supported in 64-bit, 32-bit modes, and 16-bit protected
mode. They are not supported in Real mode, Virtual-8086 mode or entering into SMM mode.
Note that bits MAX_VL-1:256 (511:256) of ZMM register state are maintained across transitions into and out of
these modes. Because the XSAVE/XRSTOR/XSAVEOPT instruction can operate in all operating modes, it is possible
that the processor's ZMM register state can be modified by software in any operating mode by executing XRSTOR.
The ZMM registers can be updated by XRSTOR using the state information stored in the XSAVE/XRSTOR area
residing in memory.
3.2 AVX-512 STATE MANAGEMENT
Operating systems must use the XSAVE/XRSTOR/XSAVEOPT instructions for ZMM and opmask state management.
An OS must enable its ZMM and opmask state management to support AVX-512 Foundation instructions. Other-
wise, an attempt to execute an instruction in AVX-512 Foundation instructions (including a scalar 128-bit SIMD
instructions using EVEX encoding) will cause a #UD exception. An operating system, which enabled AVX-512 state
to support AVX-512 Foundation instructions, is also sufficient to support the rest of AVX-512 family of instructions.
3.2.1 Detection of ZMM and Opmask State Support
Hardware support of the extended state components for executing AVX-512 Foundation instructions is queried
through the main leaf of CPUID leaf function 0DH with index ECX = 0. Specifically, the return value in EDX:EAX of
CPUID.(EAX=0DH, ECX=0) provides a 64-bit wide bit vector of hardware support of processor state components,
beginning with bit 0 of EAX corresponding to x87 FPU state, CPUID.(EAX=0DH, ECX=0):EAX[1] corresponding to
SSE state (XMM registers and MXCSR), CPUID.(EAX=0DH, ECX=0):EAX[2] corresponding to YMM states.
The ZMM and opmaks states consist of three additional components in the XSAVE/XRSTOR state save area:
The opmask register state component represents eight 64-bit opmask registers. Processor support for this
component state is indicated by CPUID.(EAX=0DH, ECX=0):EAX[5].
The ZMM_Hi256 component represents the high 256 bits of the low 16 ZMM registers, i.e. ZMM0..15[511:256].
Processor support for this component state is indicated by CPUID.(EAX=0DH, ECX=0):EAX[6].
The Hi16_ZMM component represents the full 512 bits of the high 16 ZMM registers, i.e. ZMM16..31[511:0].
Processor support for this component state is indicated by CPUID.(EAX=0DH, ECX=0):EAX[7].
3-2 Ref. # 319433-023
SYSTEM PROGRAMMING FOR INTEL® AVX-512
Each component state has a corresponding enable it in the XCR0 register. Operating system must use XSETBV to
set these three enable bits to enable AVX-512 Foundation instructions to be decoded. The location of bit vector
representing the AVX-512 states, matching the layout of the XCR0 register, is provided in the following figure.
3.2.2 Enabling of ZMM and Opmask Register State
An OS can enable ZMM and opmask register state support with the following steps:
Verify the processor supports XSAVE/XRSTOR/XSETBV/XGETBV instructions and the XCR0 register by checking
CPUID.1.ECX.XSAVE[bit 26]=1.
Verify the processor supports SSE, YMM, ZMM_Hi256, Hi16_ZMM, and opmask states (i.e. bits 2:1 and 7:5 of
XCR0 are valid) by checking CPUID.(EAX=0DH, ECX=0):EAX[7:5].
The OS must determine the buffer size requirement for the XSAVE area that will be used by XSAVE/XRSTOR.
Note that even though ZMM8-ZMM31 are not accessible in 32 bit mode, a 32 bit OS is still required to allocate
the buffer for the entire ZMM state.
Set CR4.OSXSAVE[bit 18]=1 to enable the use of XSETBV/XGETBV instructions to write/read the XCR0 register.
Supply an appropriate mask via EDX:EAX to execute XSETBV to enable the processor state components that
the OS wishes to manage using XSAVE/XRSTOR instruction.
To enable ZMM and opmask register state, system software must use a EDX:EAX mask of 111xx111b when
executing XSETBV.
Figure 3-1. Bit Vector and XCR0 Layout of Extended Processor State Components
Table 3-1. XCR0 Processor State Components
Bit Meaning
0 - x87 This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.
1 - SSE If 1, the processor supports SSE state (MXCSR and XMM registers) management using XSAVE, XSAVEOPT, and
XRSTOR. This bit must be set to ‘1’ to enable AVX-512 Foundation instructions.
2 - YMM_Hi128 If 1, the processor supports YMM_hi128 state management (upper 128 bits of YMM0-15) using XSAVE,
XSAVEOPT, and XRSTOR. This bit must be set to ‘1’ to enable AVX-512 Foundation instructions.
3 - BNDREGS If 1, the processor supports Intel Memory Protection Extensions (Intel MPX) bound register state management
using XSAVE, XSAVEOPT, and XRSTOR. See Section 9.3.2 for system programming requirement to enable Intel
MPX.
4 - BNDCSR If 1, the processor supports Intel MPX bound configuration and status management using XSAVE, XSAVEOPT,
and XRSTOR. See Section 9.3.2 for system programming requirement to enable Intel MPX.
765432 01
63
reserved
Hi16_ZMM: ZMM16..31[511:0]
ZMM_Hi256: ZMM0..15[511:256]
OpMask: k0..7[63:0]
BNDCSR:
BNDREGS: BND0..3[127:0]
YMM_Hi128: YMM0..15[255:128]
SSE: XMM0..15[127:0]
X87:
Ref. # 319433-023 3-3
SYSTEM PROGRAMMING FOR INTEL® AVX-512
3.2.3 Enabling of SIMD Floating-Exception Support
AVX-512 Foundation instructions may generate SIMD floating-point exceptions. An OS must enable SIMD float-
ing-point exception support by setting CR4.OSXMMEXCPT[bit 10]=1.
The effect of CR4 setting that affects AVX-512 Foundation instructions is the same as for AVX and FMA enabling
as listed in Table 3-2
3.2.4 The Layout of XSAVE Sate Save Area
The OS must determine the buffer size requirement by querying CPUID with EAX=0DH, ECX=0. If the OS wishes
to enable all processor extended state components in the XCR0, it can allocate the buffer size according to
CPUID.(EAX=0DH, ECX=0):ECX.
After the memory buffer for XSAVE is allocated, the entire buffer must be cleared prior to executing XSAVE.
The XSAVE area layout currently defined in Intel Architecture is listed in Table 3-3. The register fields of the first
512 byte of the XSAVE area are identical to those of the FXSAVE/FXRSTOR area.
The layout of the XSAVE Area for additional processor components (512-bit ZMM register, 32 ZMM registers,
opmask registers) are to be determined later.
5 - Opmask If 1, the processor supports the opmask state management using XSAVE, XSAVEOPT, and XRSTOR. This bit
must be set to ‘1’ to enable AVX-512 Foundation instructions.
6 - ZMM_Hi256 If 1, the processor supports ZMM_Hi256 state (the upper 256 bits of the low 16 ZMM registers) management
using XSAVE, XSAVEOPT, and XRSTOR. This bit must be set to ‘1’ to enable AVX-512 Foundation instruc-
tions.
7 - Hi16_ZMM If 1, the processor supports Hi16-_ZMM state (the full 512 bits of the high16 ZMM registers) management
using XSAVE, XSAVEOPT, and XRSTOR. This bit must be set to ‘1’ to enable AVX-512 Foundation instruc-
tions.
Table 3-2. CR4 Bits for AVX-512 Foundation Instructions Technology Support
Bit Meaning
CR4.OSXSAVE[bit 18] If set, the OS supports use of XSETBV/XGETBV instruction to access. the XCR0 register,
XSAVE/XRSTOR to manage processor extended states. Must be set to ‘1’ to enable AVX-512 Founda-
tion, AVX2, FMA, and AVX instructions.
CR4.OSXMMEXCPT[bit 10] Must be set to 1 to enable SIMD floating-point exceptions. This applies to SIMD floating-point instruc-
tions across AVX-512 Foundation, AVX and FMA, and legacy 128-bit SIMD floating-point instructions
operating on XMM registers.
CR4.OSFXSR[bit 9] Must be set to 1 to enable legacy 128-bit SIMD instructions operating on XMM state.
Not needed to enable AVX-512 Foundation, AVX2, FMA, and AVX instructions.
Table 3-1. XCR0 Processor State Components
Bit Meaning
3-4 Ref. # 319433-023
SYSTEM PROGRAMMING FOR INTEL® AVX-512
The format of the header is as follows (see Table 3-4):
The layout of the Ext_Save_Area[YMM_Hi128] contains 16 of the upper 128-bits of the YMM registers, it is shown
in Table 3-5.
The layout of the Ext_SAVE_Area_3[BNDREGS] contains bounds register state of the Intel Memory Protection
Extensions (Intel MPX), which is described in Section 9.3.2.
The layout of the Ext_SAVE_Area_4[BNDCSR] contains the processor state of bounds configuration and status of
Intel MPX, which is described in Section 9.3.2.
The layout of the Ext_SAVE_Area_5[Opmask] contains 8 64-bit mask register as shown in Table 3-6.
Table 3-3. Layout of XSAVE Area For Processor Supporting YMM State
Save Areas Offset (Byte) Size (Bytes)
FPU/SSE SaveArea 0 512
Header 512 64
Ext_Save_Area_2 (YMM_Hi128) CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX
Ext_Save_Area_3 (BNDREGS) CPUID.(EAX=0DH, ECX=3):EBX CPUID.(EAX=0DH, ECX=3):EAX
Ext_Save_Area_4 (BNDCSR) CPUID.(EAX=0DH, ECX=4):EBX CPUID.(EAX=0DH, ECX=4):EAX
Ext_Save_Area_5 (OPMASK) CPUID.(EAX=0DH, ECX=5):EBX CPUID.(EAX=0DH, ECX=5):EAX
Ext_Save_Area_6 (ZMM_Hi256) CPUID.(EAX=0DH, ECX=6):EBX CPUID.(EAX=0DH, ECX=6):EAX
Ext_Save_Area_7 (Hi16_ZMM) CPUID.(EAX=0DH, ECX=7):EBX CPUID.(EAX=0DH, ECX=7):EAX
Table 3-4. XSAVE Header Format
15:8 7:0 Byte Offset from Header Byte Offset from XSAVE Area
Reserved (Must be zero) XSTATE_BV 0 512
Reserved Reserved (Must be zero) 16 528
Reserved Reserved 32 544
Reserved Reserved 48 560
Table 3-5. XSAVE Save Area Layout for YMM_Hi128 State (Ext_Save_Area_2)
31 16 15 0 Byte Offset from YMM_Hi128_Save_Area Byte Offset from XSAVE Area
YMM1[255:128] YMM0[255:128] 0 576
YMM3[255:128] YMM2[255:128] 32 608
YMM5[255:128] YMM4[255:128] 64 640
YMM7[255:128] YMM6[255:128] 96 672
YMM9[255:128] YMM8[255:128] 128 704
YMM11[255:128] YMM10[255:128] 160 736
YMM13[255:128] YMM12[255:128] 192 768
YMM15[255:128] YMM14[255:128] 224 800
Ref. # 319433-023 3-5
SYSTEM PROGRAMMING FOR INTEL® AVX-512
The layout of the Ext_SAVE_Area_6[ZMM_Hi256] is shown below in Table 3-7.
The layout of the Ext_SAVE_Area_7[Hi16_ZMM] corresponding to the upper new 16 ZMM registers is shown below
in Table 3-8.
3.2.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
The processor’s actions as a result of executing XRSTOR, on the MXCSR, XMM and YMM registers, are listed in Table
3-9 The XMM registers may be initialized by the processor (See XRSTOR operation in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B). When the MXCSR register is updated from memory, reserved
bit checking is enforced. XSAVE / XRSTOR will save / restore the MXCSR only if the AVX or SSE bits are set in the
EDX:EAX mask.
Table 3-6. XSAVE Save Area Layout for Opmask Registers
15 8 7 0 Byte Offset from OPMASK_Save_Area Byte Offset from XSAVE Area
K1[63:0] K0[63:0] 0 1088
K3[63:0] K2[63:0] 16 1104
K5[63:0] K4[63:0] 32 1120
K7[63:0] K6[63:0] 48 1136
Table 3-7. XSAVE Save Area Layout for ZMM State of the High 256 Bits of ZMM0-ZMM15 Registers
63 32 31 0 Byte Offset from
ZMM_Hi256_Save_Area
Byte Offset from
XSAVE Area
ZMM1[511:256] ZMM0[511:256] 0 1152
ZMM3[511:256] ZMM2[511:256] 64 1216
ZMM5[511:256] ZMM4[511:256] 128 1280
ZMM7[511:256] ZMM6[511:256] 192 1344
ZMM9[511:256] ZMM8[511:256] 256 1408
ZMM11[511:256] ZMM10[511:256] 320 1472
ZMM13[511:256] ZMM12[511:256] 384 1536
ZMM15[511:256] ZMM14[511:256] 448 1600
Table 3-8. XSAVE Save Area Layout for ZMM State of ZMM16-ZMM31 Registers
12764 630 Byte Offset from
Hi16_ZMM_Save_Area
Byte Offset from
XSAVE Area
ZMM17[511:0] ZMM16[511:0] 0 1664
ZMM19[511:0] ZMM18[511:0] 128 1792
ZMM21[511:0] ZMM20[511:0] 256 1920
ZMM23[511:0] ZMM22[511:0] 384 2048
ZMM25[511:0] ZMM24[511:0] 512 2176
ZMM27[511:0] ZMM26[511:0] 640 2304
ZMM29[511:0] ZMM28[511:0] 768 2432
ZMM31[511:0] ZMM30[511:0] 896 2560
3-6 Ref. # 319433-023
SYSTEM PROGRAMMING FOR INTEL® AVX-512
The action of XSAVE for managing YMM and MXCSR is listed in Table 3-10.
3.2.6 XSAVE/XRSTOR/XSAVEOPT and Managing ZMM and Opmask States
The requirements for managing ZMM_Hi256, Hi16_ZMM and Opmask registers using XSAVE/XRSTOR/XSAVEOPT
are simpler than those listed in Section 3.2.5. Because each of the three components (ZMM_Hi256, Hi16_ZMM and
Opmask registers) can be managed independently of one another by XSAVE/XRSTOR/XSAVEOPT according to the
corresponding bits in the bit vectors: EDX:EAX, XSAVE_BV, XCR0_MASK, independent of MXCSR:
For using XSAVE with Opmask/ZMM_Hi256/Hi16_ZMM, XSAVE/XSAVEOPT will save the component to memory
and mark the corresponding bits in the XSTATE_BV of the XSAVE header, if that component is specified in
EDX:EAX as input to XSAVE/XSAVEOPT.
XRSTOR will restore the Opmask/ZMM_Hi256/Hi16_ZMM components by checking the corresponding bits in
both the input bit vector in EDX:EAX of XRSTOR and in XSTATE_BV of the header area in the following ways:
If the corresponding bit in EDX:EAX is set and XSTATE_BV is INIT, that component will be initialized,
If the corresponding bit in EDX:EAX is set and XSTATE_BV is set, that component will be restored from
memory,
If the corresponding bit in EDX:EAX is not set, that component will remain unchanged.
To enable AVX-512 Foundation instructions, all three components (Opmask/ZMM_Hi256/Hi16_ZMM) in XCR0
must be set.
Table 3-9. XRSTOR Action on MXCSR, XMM Registers, YMM Registers
EDX:EAX XSTATE_BV MXCSR YMM_Hi128
Registers XMM Registers
Bit 2 Bit 1 Bit 2 Bit 1
0 0 X X None None None
01 X 0Load/CheckNoneInit by processor
0 1 X 1 Load/Check None Load
1 0 0 X Load/Check Init by processor None
1 0 1 X Load/Check Load None
1 1 0 0 Load/Check Init by processor Init by processor
1 1 0 1 Load/Check Init by processor Load
1 1 1 0 Load/Check Load Init by processor
1 1 1 1 Load/Check Load Load
Table 3-10. XSAVE Action on MXCSR, XMM, YMM Register
EDX:EAX XCR0_MASK MXCSR YMM_H
Registers XMM Registers
Bit 2 Bit 1 Bit 2 Bit 1
0 0 X X None None None
01 X 1 Store None Store
0 1 X 0 None None None
1 0 0 X None None None
10 1 1 Store Store None
1 1 0 0 None None None
11 0 1 Store None Store
11 1 1 Store Store Store
Ref. # 319433-023 3-7
SYSTEM PROGRAMMING FOR INTEL® AVX-512
The processor supplied INIT values for each processor state component used by XRSTOR is listed in Table 3-11.
3.3 RESET BEHAVIOR
At processor reset
YMM0-15 bits[255:0] are set to zero.
ZMM0-15 bits [511:256] are set to zero.
ZMM16-31 are set to zero.
Opmask register K0-7 are set to 0x0H.
XCR0[2:1] is set to zero, XCR0[0] is set to 1.
XCR0[7:6] and is set to zero, XCR0[Opmask] is set to 0.
CR4.OSXSAVE[bit 18] (and its mirror CPUID.1.ECX.OSXSAVE[bit 27]) is set to 0.
3.4 EMULATION
Setting the CR0.EM bit to 1 provides a technique to emulate Legacy SSE floating-point instruction sets in software.
This technique is not supported with AVX instructions, nor FMA instructions.
If an operating system wishes to emulate AVX instructions, set XCR0[2:1] to zero. This will cause AVX instructions
to #UD. Emulation of FMA by operating system can be done similarly as with emulating AVX instructions.
3.5 WRITING FLOATING-POINT EXCEPTION HANDLERS
AVX-512, AVX and FMA floating-point exceptions are handled in an entirely analogous way to Legacy SSE floating-
point exceptions. To handle unmasked SIMD floating-point exceptions, the operating system or executive must
provide an exception handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11,
“Programming with Streaming SIMD Extensions 2 (SSE2),” of the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, describes the SIMD floating-point exception classes and gives suggestions for writing an excep-
tion handler to handle them.
To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the CR4.OSXM-
MEXCPT flag (bit 10) must be set.
Table 3-11. Processor Supplied Init Values XRSTOR May Use
Processor State Component Processor Supplied Register Values
x87 FPU State FCW 037FH; FTW 0FFFFH; FSW 0H; FPU CS 0H; FPU DS 0H; FPU IP 0H; FPU
DP 0; ST0-ST7 0;
SSE State1
NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only be updated by XRSTOR
from state information stored in XSAVE/XRSTOR area.
If 64-bit Mode: XMM0-XMM15 0H;
Else XMM0-XMM7 0H
YMM_Hi128 State1If 64-bit Mode: YMM0_H-YMM15_H 0H;
Else YMM0_H-YMM7_H 0H
OPMASK State1If 64-bit Mode: K0-K7 0H;
ZMM_Hi256 State1If 64-bit Mode: ZMM0_H-ZMM15_H 0H;
Else ZMM0_H-ZMM7_H 0H
Hi16_ZMM State1If 64-bit Mode: ZMM16-ZMM31 0H;
3-8 Ref. # 319433-023
SYSTEM PROGRAMMING FOR INTEL® AVX-512
This page was
intentionally left
blank.
Ref. # 319433-023 4-1
AVX-512 INSTRUCTION ENCODING
CHAPTER 4
AVX-512 INSTRUCTION ENCODING
4.1 OVERVIEW SECTION
This chapter describes the details of AVX-512 instruction encoding system. The AVX-512 Foundation instruction
described in Chapter 5 use a new prefix (called EVEX). Opmask instructions described in Chapter 6 are encoded
using the VEX prefix. The EVEX prefix has some parts resembling the instruction encoding scheme using the VEX
prefix, and many other capabilities not available with the VEX prefix. The EVEX encoding architecture also applies
to other 512-bit instructions described in Chapter 7.
The significant feature differences between EVEX and VEX are summarized below.
EVEX is a 4-Byte prefix (the first byte must be 62H); VEX is either a 2-Byte (C5H is the first byte) or 3-Byte
(C4H is the first byte) prefix.
EVEX prefix can encode 32 vector registers (XMM/YMM/ZMM) in 64-bit mode.
EVEX prefix can encode an opmask register for conditional processing or selection control in EVEX-encoded
vector instructions; opmask instructions, whose source/destination operands are opmask registers and treat
the content of an opmask register as a single value, are encoded using the VEX prefix.
EVEX memory addressing with disp8 form uses a compressed disp8 encoding scheme to improve encoding
density of the instruction byte stream.
EVEX prefix can encode functionality that are specific to instruction classes (e.g. packed instruction with
“load+op” semantic can support embedded broadcast functionality, floating-point instruction with rounding
semantic can support static rounding functionality, floating-point instruction with non-rounding arithmetic
semantic can support “suppress all exceptions” functionality).
4.2 INSTRUCTION FORMAT AND EVEX
The placement of the EVEX prefix in an IA instruction is represented in Figure 4-1:
The EVEX prefix is a 4-byte prefix, with the first two bytes derived from unused encoding form of the 32-bit-mode-
only BOUND instruction. The layout of the EVEX prefix is shown in Figure 4-2. The first byte must be 62H, followed
by three payload bytes, denoted as P0, P1, and P2 individually or collectively as P[23:0] (see Figure 4-2).
Figure 4-1. AVX-512 Instruction Format and the EVEX Prefix
[Immediate][Prefixes] [Disp32][SIB]ModR/MOpcodeEVEX
# of bytes: 4 11141
[Disp8*N]
1
4-2 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
The bit fields in P[23:0] are divided into the following functional groups (Table 4-1 provides a tabular summary):
Reserved bits: P[3:2] must be 0, otherwise #UD.
Fixed-value bit: P[10] must be 1, otherwise #UD.
Compressed legacy prefix/escape bytes: P[1:0] is identical to the lowest 2 bits of VEX.mmmmm; P[9:8] is
identical to VEX.pp.
Operand specifier modifier bits for vector register, general purpose register, memory addressing: P[7:5] allows
access to the next set of 8 registers beyond the low 8 registers when combined with ModR/M register specifiers.
Operand specifier modifier bit for vector register: P[4] (or EVEX.R’) allows access to the high 16 vector register
set when combined with P[7] and ModR/M.reg specifier; P[6] can also provide access to a high 16 vector
register when SIB or VSIB addressing are not needed.
Non-destructive source /vector index operand specifier: P[19] and P[14:11] encode the second source vector
register operand in a non-destructive source syntax, vector index register operand can access an upper 16
vector register using P[19].
Op-mask register specifiers: P[18:16] encodes op-mask register set k0-k7 in instructions operating on vector
registers.
Figure 4-2. Bit Field Layout of the EVEX Prefix
Table 4-1. EVEX Prefix Bit Field Functional Grouping
Notation Bit field Group Position Comment
-- Reserved P[3 : 2] Must be 0
-- Fixed Value P[10] Must be 1
EVEX.mm Compressed legacy escape P[1: 0] Identical to low two bits of VEX.mmmmm
EVEX.pp Compressed legacy prefix P[9 : 8] Identical to VEX.pp
EVEX.RXB Next-8 register specifier modifier P[7 : 5] Combine with ModR/M.reg, ModR/M.rm (base, index/vidx)
EVEXR’ High-16 register specifier modifier P[4] Combine with EVEX.R and ModR/M.reg
EVEXX High-16 register specifier modifier P[6] Combine with EVEX.B and ModR/M.rm, when SIB/VSIB absent
EVEX.vvvv NDS register specifier P[14 : 11] Same as VEX.vvvv
EVEXV’ High-16 NDS/VIDX register specifier P[19] Combine with EVEX.vvvv or when VSIB present
EVEX.aaa Embedded opmask register specifier P[18 : 16]
EVEX.W Osize promotion/Opcode extension P[15]
EVEX.z Zeroing/Merging P[23]
EVEX.b Broadcast/RC/SAE Context P[20]
EVEX.L’L Vector length/RC P[22 : 21]
EVEX 62H P0 P1 P2
P0
765432 01
RXBR0 0 mm
P1
765432 01
Wvvvv1 pp
P2
765432 01
zLLbVa aa
P[7:0]
P[15:8]
P[23:16]
Ref. # 319433-023 4-3
AVX-512 INSTRUCTION ENCODING
EVEX.W: P[15] is similar to VEX.W which serves either as opcode extension bit or operand size promotion to
64-bit in 64-bit mode.
Vector destination merging/zeroing: P[23] encodes the destination result behavior which either zeroes the
masked elements or leave masked element unchanged.
Broadcast/Static-rounding/SAE context bit: P[20] encodes multiple functionality, which differs across different
classes of instructions and can affect the meaning of the remaining field (EVEX.L’L). The functionality for the
following instruction classes are:
Broadcasting a single element across the destination vector register: this applies to the instruction class
with Load+Op semantic where one of the source operand is from memory.
Redirect L’L field (P[22:21]) as static rounding control for floating-point instructions with rounding
semantic. Static rounding control overrides MXCSR.RC field and implies “Suppress all exceptions” (SAE).
Enable SAE for floating -point instructions with arithmetic semantic that is not rounding.
For instruction classes outside of the afore-mentioned three classes, setting EVEX.b will cause #UD.
Vector length/rounding control specifier: P[22:21] can server one of three functionality:
vector length information for packed vector instructions,
ignored for instructions operating on vector register content as a single data element,
rounding control for floating-point instructions that have a rounding semantic and whose source and
destination operands are all vector registers.
4.3 REGISTER SPECIFIER ENCODING AND EVEX
EVEX-encoded instruction can access 8 opmask registers, 16 general-purpose registers and 32 vector registers in
64-bit mode (8 general-purpose registers and 8 vector registers in non-64-bit modes). EVEX-encoding can support
instruction syntax that access up to 4 instruction operands. Normal memory addressing modes and VSIB memory
addressing are supported with EVEX prefix encoding. The mapping of register operands used by various instruction
syntax and memory addressing in 64-bit mode are shown in Table 4-2. Opmask register encoding is described in
Section 4.3.1.
The mapping of register operands used by various instruction syntax and memory addressing in 32-bit modes are
shown in Table 4-3.
Table 4-2. 32-Register Support in 64-bit Mode Using EVEX with Embedded REX Bits
41
NOTES:
1. Not applicable for accessing general purpose registers.
3[2:0] Reg. Type Common Usages
REG EVEX.R’ REX.R modrm.reg GPR, Vector Destination or Source
NDS/NDD EVEX.V’ EVEX.vvvv GPR, Vector 2ndSource or Destination
RM EVEX.X EVEX.B modrm.r/m GPR, Vector !st Source or Destination
BASE 0EVEX.B modrm.r/m GPR memory addressing
INDEX 0EVEX.X sib.index GPR memory addressing
VIDX EVEX.V’ EVEX.X sib.index Vector VSIB memory addressing
IS4 Imm8[3] Imm8[7:4] Vector 3rd Source
Table 4-3. EVEX Encoding Register Specifiers in 32-bit Mode
[2:0] Reg. Type Common Usages
REG modrm.reg GPR, Vector Dest or Source
4-4 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.3.1 Opmask Register Encoding
There are eight opmask registers, k0-k7. Opmask register encoding falls into two categories:
Opmask registers that are the source or destination operands of an instruction treating the content of opmask
register as a scalar value, are encoded using the VEX prefix scheme. It can support up to three operands using
standard modR/M byte’s reg field and rm field and VEX.vvvv. Such a scalar opmask instruction does not support
conditional update of the destination operand.
An opmask register providing conditional processing and/or conditional update of the destination register of a
vector instruction is encoded using EVEX.aaa field (see Section 4.4).
An opmask register serving as the destination or source operand of a vector instruction is encoded using
standard modR/M byte’s reg field and rm fields.
4.4 MASKING SUPPORT IN EVEX
EVEX can encode an opmask register to conditionally control per-element computational operation and updating of
result of an instruction to the destination operand. The predicate operand is known as the opmask register. The
EVEX.aaa field, P[18:16] of the EVEX prefix, is used to encode one out of a set of eight 64-bit architectural regis-
ters. Note that from this set of 8 architectural registers, only k1 through k7 can be addressed as predicate oper-
ands. k0 can be used as a regular source or destination but cannot be encoded as a predicate operand.
AVX-512 instructions support two types of masking with EVEX.z bit (P[23]) controlling the type of masking:
Merging-masking, which is the default type of masking for EVEX-encoded vector instructions, preserves the old
value of each element of the destination where the corresponding mask bit has a 0. It corresponds to the case
of EVEX.z = 0.
Zeroing-masking, is enabled by having the EVEX.z bit set to 1. In this case, an element of the destination is set
to 0 when the corresponding mask bit has a 0 value.
AVX-512 Foundation instructions can be divided in three different groups:
Instructions which support “zeroing-masking”.
Also allow merging-masking.
NDS/NDD EVEX.vvv GPR, Vector 2ndSource or Dest
RM modrm.r/m GPR, Vector !st Source or Dest
BASE modrm.r/m GPR memory addressing
INDEX sib.index GPR memory addressing
VIDX sib.index Vector VSIB memory addressing
IS4 Imm8[7:5] Vector 3rd Source
Table 4-4. Opmask Register Specifier Encoding
[2:0] Register Access Common Usages
REG modrm.reg k0-k7 Source
NDS VEX.vvv k0-k7 2ndSource
RM modrm.r/m k0-7 !st Source
{k1} EVEX.aaa k01-k7
NOTES:
1. instructions that overwrite the conditional mask in opmask do not permit using k0 as
the embedded mask.
Opmask
Table 4-3. EVEX Encoding Register Specifiers in 32-bit Mode
Ref. # 319433-023 4-5
AVX-512 INSTRUCTION ENCODING
Instructions which require aaa = 000.
Do not allow any form of masking.
Instructions which allow merging-masking but do not allow zeroing-masking
Require EVEX.z to be set to 0
This group is mostly composed of instructions that write to memory.
Instructions which require aaa <> 000 do not allow EVEX.z to be set to 1.
Allow merging-masking and do not allow zeroing-masking, e.g., gather instructions.
4.5 COMPRESSED DISPLACEMENT (DISP8*N) SUPPORT IN EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length,
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 4-5 and Table 4-6 below,
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype
is listed based on the vector length (VL) and other factors affecting it.
Table 4-5 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data
element sizes which are either dword or qword (see Section 4.7).
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 4-6. Table 4-6
also includes many broadcast instructions which perform broadcast using a subset of data elements without using
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 4-6. Instruction
classified in Table 4-6 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype abbreviation will be referenced in the instruction operand encoding table in the reference page of
each instruction, providing the cross reference for the scaling factor N to encoding memory addressing operand.
Note that the disp8*N rules still apply when using 16b addressing.
Table 4-5. Compressed Displacement (DISP8*N) Affected by Embedded Broadcast
TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment
Full Vector
(FV)
0 32bit 0 none 16 32 64
Load+Op (Full Vector
Dword/Qword)
1 32bit 0 {1tox} 4 4 4
0 64bit 1 none 16 32 64
1 64bit 1 {1tox} 8 8 8
Half Vector
(HV)
0 32bit 0 none 8 16 32 Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4
Table 4-6. EVEX DISP8*N For Instructions Not Affected by Embedded Broadcast
TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment
Full Vector Mem (FVM) N/A N/A 16 32 64 Load/store or subDword full vector
4-6 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.6 EVEX ENCODING OF BROADCAST/ROUNDING/SAE SUPPORT
EVEX.b can provide three types of encoding context, depending on the instruction classes:
Embedded broadcasting of one data element from a source memory operand to the destination for vector
instructions with “load+op” semantic.
Static rounding control overriding MXCSR.RC for floating-point instructions with rounding semantic.
“Suppress All exceptions” (SAE) overriding MXCSR mask control for floating-point arithmetic instructions that
do not have rounding semantic.
4.6.1 Embedded Broadcast Support in EVEX
EVEX encodes an embedded broadcast functionality that is supported on many vector instructions with 32-bit
(double word or single-precision floating-point) and 64-bit data elements, and when the source operand is from
memory. EVEX.b (P[20]) bit is used to enable broadcast on load-op instructions. When enabled, only one element
is loaded from memory and broadcasted to all other elements instead of loading the full memory size.
The following instruction classes do not support embedded broadcasting:
Instructions with only one scalar result is written to the vector destination.
Instructions with explicit broadcast functionality provided by its opcode.
Instruction semantic is a pure load or a pure store operation.
4.6.2 Static Rounding Support in EVEX
Static rounding control embedded in the EVEX encoding system applies only to register-to-register flavor of
floating-point instructions with rounding semantic at two distinct vector lengths: (i) scalar, (ii) 512-bit. In both
cases, the field EVEX.L’L expresses rounding mode control overriding MXCSR.RC if EVEX.b is set. When EVEX.b is
set, “suppress all exceptions” is implied. The processor behave as if all MXCSR masking controls are set.
Tuple1 Scalar (T1S)
8bit N/A 1 1 1
1Tuple less than Full Vector
16bit N/A 2 2 2
32bit 0 4 4 4
64bit 1 8 8 8
Tuple1 Fixed (T1F) 32bit N/A 4 4 4 1 Tuple memsize not affected by
EVEX.W
64bit N/A 8 8 8
Tuple2 (T2) 32bit 0 8 8 8 Broadcast (2 elements)
64bit 1 NA 16 16
Tuple4 (T4) 32bit 0 NA 16 16 Broadcast (4 elements)
64bit 1 NA NA 32
Tuple8 (T8) 32bit 0 NA NA 32 Broadcast (8 elements)
Half Mem (HVM) N/A N/A 8 16 32 SubQword Conversion
QuarterMem (QVM) N/A N/A 4 8 16 SubDword Conversion
OctMem (OVM) N/A N/A 2 4 8 SubWord Conversion
Mem128 (M128) N/A N/A 16 16 16 Shift count from memory
MOVDDUP (DUP) N/A N/A 8 32 64 VMOVDDUP
Table 4-6. EVEX DISP8*N For Instructions Not Affected by Embedded Broadcast(Continued)
TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment
Ref. # 319433-023 4-7
AVX-512 INSTRUCTION ENCODING
4.6.3 SAE Support in EVEX
The EVEX encoding system allows arithmetic floating-point instructions without rounding semantic to be encoded
with the SAE attribute. This capability applies to scalar and 512-bit vector lengths, register-to-register only, by
setting EVEX.b. When EVEX.b is set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR
masking controls are set.
4.6.4 Vector Length Orthogonality
The architecture of EVEX encoding scheme can support SIMD instructions operating at multiple vector lengths.
Many AVX-512 Foundation instructions operate at 512-bit vector length. The vector length of EVEX encoded vector
instructions are generally determined using the L’L field in EVEX prefix, except for 512-bit floating-point, reg-reg
instructions with rounding semantic. The table below shows the vector length corresponding to various values of
the L’L bits. When EVEX is used to encode scalar instructions, L’L is generally ignored.
When EVEX.b bit is set for a register-register instructions with floating-point rounding semantic, the same two bits
P2[6:5] specifies rounding mode for the instruction, with implied SAE behavior. The mapping of different instruc-
tion classes relative to the embedded broadcast/rounding/SAE control and the EVEX.L’L fields are summarized in
Table 4-7.
4.7 #UD EQUATIONS FOR EVEX
Instructions encoded using EVEX can face three types of UD conditions: state dependent, opcode independent and
opcode dependent.
4.7.1 State Dependent #UD
In general, attempts of execute an instruction, which required OS support for incremental extended state compo-
nent, will #UD if required state components were not enabled by OS. Table 4-8 lists instruction categories with
respect to required processor state components. Attempts to execute a given category of instructions while
enabled states were less than the required bit vector in XCR0 shown in Table 4-8 will cause #UD.
Table 4-7. EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructions
Position P2[4] P2[6:5] P2[6:5]
Broadcast/Rounding/SAE Context EVEX.b EVEX.L’L EVEX.RC
Reg-reg, FP Instructions w/ rounding semantic Enable static rounding
control (SAE implied)
Vector length Implied
(512 bit or scalar)
00b: SAE + RNE
01b: SAE + RD
10b: SAE + RU
11b: SAE + RZ
FP Instructions w/o rounding semantic, can cause #XF SAE control 00b: 128-bit
01b: 256-bit
10b: 512-bit
11b: Reserved (#UD)
NA
Load+op Instructions w/ memory source Broadcast Control NA
Other Instructions (
Explicit Load/Store/Broadcast/Gather/Scatter)
Must be 0 (otherwise
#UD)
NA
Table 4-8. OS XSAVE Enabling Requirements of Instruction Categories
Instruction Categories Vector Register State Access Required XCR0 Bit Vector [7:0]
Legacy SIMD prefix encoded Instructions (e.g SSE) XMM xxxxxx11b
VEX-encoded instructions operating on YMM YMM xxxxx111b
EVEX-encoded 128-bit instructions ZMM 111xx111b
EVEX-encoded 256-bit instructions ZMM 111xx111b
4-8 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.7.2 Opcode Independent #UD
A number of bit fields in EVEX encoded instruction must obey mode-specific but opcode-independent patterns
listed in Table 4-9:
4.7.3 Opcode Dependent #UD
This section describes legal values for the rest of the EVEX bit fields. Table 4-10 lists the #UD conditions of EVEX
prefix bit fields which encodes or modifies register operands.
EVEX-encoded 512-bit instructions ZMM 111xx111b
VEX-encoded instructions operating on opmask k-reg xx1xxx11b
Table 4-9. Opcode Independent, State Dependent EVEX Bit Fields
Position Notation 64-bit #UD Non-64-bit #UD
P[3 : 2] -- if > 0 if > 0
P[10] -- if 0 if 0
P[1: 0] EVEX.mm if 00b if 00b
P[7 : 6] EVEX.RX None (valid) None (BOUND if EVEX.RX != 11b)
Table 4-10. #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields
Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD
EVEX.R P[7] ModRM.reg encodes k-reg if EVEX.R = 0 None (BOUND if
EVEX.RX != 11b)
ModRM.reg is opcode extension None (ignored)
ModRM.reg encodes all other registers None (valid)
EVEX.X P[6] ModRM.r/m encodes ZMM/YMM/XMM None (valid)
ModRM.r/m encodes k-reg or GPR None (ignored)
ModRM.r/m without SIB/VSIB None (ignored)
ModRM.r/m with SIB/VSIB None (valid)
EVEX.B P[5] ModRM.r/m encodes k-reg None (ignored) None (ignored)
ModRM.r/m encodes other registers None (valid)
ModRM.r/m base present None (valid)
ModRM.r/m base not present None (ignored)
EVEXR’ P[4] ModRM.reg encodes k-reg or GPR if 0 None (ignored)
ModRM.reg is opcode extension None (ignored)
ModRM.reg encodes ZMM/YMM/XMM None (valid)
EVEX.vvvv P[14 : 11] vvvv encodes ZMM/YMM/XMM None (valid) None (valid)
P[14] ignored
otherwise if != 1111b if != 1111b
EVEXV’ P[19] encodes ZMM/YMM/XMM None (valid) if 0
otherwise if 0 if 0
Table 4-8. OS XSAVE Enabling Requirements of Instruction Categories
Ref. # 319433-023 4-9
AVX-512 INSTRUCTION ENCODING
Table 4-11 lists the #UD conditions of instruction encoding of opmask register using EVEX.aaa and EVEZ.z
Table 4-12 lists the #UD conditions of EVEX bit fields that depends on the context of EVEX.b.
4.8 DEVICE NOT AVAILABLE
EVEX-encoded instructions follow the same rules when it comes to generating #NM (Device Not Available) excep-
tion. In particular, it is generated when CR0.TS[bit 3]= 1.
4.9 SCALAR INSTRUCTIONS
EVEX-encoded scalar SIMD instructions can access up to 32 registers in 64-bit mode. Scalar instructions support
masking (using the least significant bit of the opmask register), but broadcasting is not supported.
Table 4-11. #UD Conditions of Opmask Related Encoding Field
Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD
EVEX.aaa P[18 : 16] instructions do not use opmask for conditional processing1
NOTES:
1. E.g. VBROADCASTMxxx, VPMOVM2x, VPMOVx2M
if aaa != 000b if aaa != 000b
opmask used as conditional processing mask and updated
at completion2
2. E.g. Gather/Scatter family
if aaa = 000b if aaa = 000b;
opmask used as conditional processing None (valid3)
3. aaa can take any value. A value of 000 indicates that there is no masking on the instruction; in this case, all
elements will be processed as if there was a mask of ‘all ones’ regardless of the actual value in K0.
None (valid1)
EVEX.z P[23] vector instruction using opmask as source or destination4
4. E.g. VFPCLASSPD/PS, VCMPB/D/Q/W family, VPMOVM2x, VPMOVx2M
if EVEX.z != 0 if EVEX.z != 0
store instructions or gather/scatter instructions if EVEX.z != 0 if EVEX.z != 0
instruction supporting conditional processing mask with
EVEX.aaa = 000b
if EVEX.z != 0 if EVEX.z != 0
Table 4-12. #UD Conditions Dependent on EVEX.b Context
Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD
EVEX.L’Lb P[22 : 20] reg-reg, FP instructions with rounding semantic None (valid1)
NOTES:
1. L’L specifies rounding control, see Table 4-7, supports {er} syntax.
None (valid1)
other reg-reg, FP instructions that can cause #XF None (valid2)
2. L’L specifies vector length, see Table 4-7, supports {sae} syntax.
None (valid2)
other reg-mem instructions in Table 4-5 None (valid3)
3. L’L specifies vector length, see Table 4-7, supports embedded broadcast syntax
None (valid3)
other instruction classes4 in Table 4-6
4. L’L specifies either vector length or ignored.
if EVEX.b > 0 if EVEX.b > 0
4-10 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.10 EXCEPTION CLASSIFICATIONS OF EVEX-ENCODED INSTRUCTIONS
The exception behavior of EVEX-encoded instructions can be classified into the classes shown in the rest of this
section. The classification of EVEX-encoded instructions follow a similar framework as those of AVX and AVX2
instructions using the VEX prefix. Exception types for EVEX-encoded instructions are named in the style of
“E##” or with a suffix “E##XX”. The “##” designation generally follows that of AVX/AVX2 instructions. The
majority of EVEX encoded instruction with “Load+op” semantic supports memory fault suppression, which is repre-
sented by E##. The instructions with “Load+op” semantic but do not support fault suppression are named
“E##NF”. A summary table of exception classes by class names are shown below.
Table 4-14 lists EVEX-encoded instruction mnemonic by exception classes.
Table 4-13. EVEX-Encoded Instruction Exception Class Summary
Exception Class Instruction set Mem arg (#XM)
Type E1 Vector Moves/Load/Stores explicitly aligned, w/ fault suppression none
Type E1NF Vector Non-temporal Stores explicitly aligned, no fault suppression none
Type E2 FP Vector Load+op Support fault suppression yes
Type E2NF FP Vector Load+op No fault suppression yes
Type E3 FP Scalar/Partial Vector, Load+Op Support fault suppression yes
Type E3NF FP Scalar/Partial Vector, Load+Op No fault suppression yes
Type E4 Integer Vector Load+op Support fault suppression no
Type E4NF Integer Vector Load+op No fault suppression no
Type E5 Legacy-like Promotion Varies, Support fault suppression no
Type E5NF Legacy-like Promotion Varies, No fault suppression no
Type E6 Post AVX Promotion Varies, w/ fault suppression no
Type E6NF Post AVX Promotion Varies, no fault suppression no
Type E7NM register-to-register op none none
Type E9NF Miscellaneous 128-bit Vector-length Specific, no fault suppression none
Type E10 Non-XF Scalar Vector Length ignored, w/ fault suppression none
Type E10NF Non-XF Scalar Vector Length ignored, no fault suppression none
Type E11 VCVTPH2PS Half Vector Length, w/ fault suppression yes
Type E11NF VCVTPS2PH Half Vector Length, no fault suppression yes
Type E12 Gather and Scatter Family VSIB addressing, w/ fault suppression none
Type E12NP Gather and Scatter Prefetch Family VSIB addressing, w/o page fault none
Table 4-14. EVEX Instructions in each Exception Class
Exception Class Instruction
Type E1 VMOVAPD, VMOVAPS, VMOVDQA32, VMOVDQA64
Type E1NF VMOVNTDQ, VMOVNTDQA, VMOVNTPD, VMOVNTPS
Ref. # 319433-023 4-11
AVX-512 INSTRUCTION ENCODING
Type E2
VADDPD, VADDPS, VCMPPD, VCMPPS, VCVTDQ2PS, VCVTPD2DQ, VCVTPD2PS, VCVTPS2DQ, VCVTTPD2DQ,
VCVTTPS2DQ, VDIVPD, VDIVPS, VFMADDxxxPD, VFMADDxxxPS, VFMSUBADDxxxPD, VFMSUBADDxxxPS,
VFMSUBxxxPD, VFMSUBxxxPS, VFNMADDxxxPD, VFNMADDxxxPS, VFNMSUBxxxPD, VFNMSUBxxxPS, VMAXPD,
VMAXPS, VMINPD, VMINPS, VMULPD, VMULPS, VSQRTPD, VSQRTPS, VSUBPD, VSUBPS
VCVTPD2QQ, VCVTPD2UQQ, VCVTPD2UDQ, VCVTPS2UDQS, VCVTQQ2PD, VCVTQQ2PS, VCVTTPD2DQ,
VCVTTPD2QQ, VCVTTPD2UDQ, VCVTTPD2UQQ, VCVTTPS2DQ, VCVTTPS2UDQ, VCVTUDQ2PS, VCVTUQQ2PD,
VCVTUQQ2PS, VFIXUPIMMPD, VFIXUPIMMPS, VGETEXPPD, VGETEXPPS, VGETMANTPD, VGETMANTPS, VRANGEPD,
VRANGEPS, VREDUCEPD, VREDUCEPS, VRNDSCALEPD, VRNDSCALEPS, VSCALEFPD, VSCALEFPS, VRCP28PD,
VRCP28PS, VRSQRT28PD, VRSQRT28PS
Type E3
VADDSD, VADDSS, VCMPSD, VCMPSS, VCVTPS2PD, VCVTSD2SS, VCVTSS2SD, VDIVSD, VDIVSS, VMAXSD, VMAXSS,
VMINSD, VMINSS, VMULSD, VMULSS, VSQRTSD, VSQRTSS, VSUBSD, VSUBSS
VCVTPS2QQ, VCVTPS2UQQ, VCVTTPS2QQ, VCVTTPS2UQQ, VFMADDxxxSD, VFMADDxxxSS, VFMSUBxxxSD,
VFMSUBxxxSS, VFNMADDxxxSD, VFNMADDxxxSS, VFNMSUBxxxSD, VFNMSUBxxxSS, VFIXUPIMMSD,
VFIXUPIMMSS, VGETEXPSD, VGETEXPSS, VGETMANTSD, VGETMANTSS, VRANGESD, VRANGESS, VREDUCESD,
VREDUCESS, VRNDSCALESD, VRNDSCALESS, VSCALEFSD, VSCALEFSS, VRCP28SD, VRCP28SS, VRSQRT28SD,
VRSQRT28SS
Type E3NF
VCOMISD, VCOMISS, VCVTSD2SI, VCVTSI2SD, VCVTSI2SS, VCVTSS2SI, VCVTTSD2SI, VCVTTSS2SI, VUCOMISD,
VUCOMISS
VCVTSD2USI, VCVTTSD2USI, VCVTSS2USI, VCVTTSS2USI, VCVTUSI2SD, VCVTUSI2SS
Type E4
VANDPD, VANDPS, VANDNPD, VANDNPS, VORPD, VORPS, VPABSD, VPABSQ, VPADDD, VPADDQ, VPANDD, VPANDQ,
VPANDND, VPANDNQ, VPCMPEQD, VPCMPEQQ,VPCMPGTD, VPCMPGTQ, VPMAXSD, VPMAXSQ, VPMAXUD,
VPMAXUQ, VPMINSD, VPMINSQ,VPMINUDVPMINUQ, VPMULLD, VPMULLQ, VPMULUDQ, VPMULDQ, VPORD, VPORQ,
VPSUBD, VPSUBQ, VPXORD, VPXORQ, VXORPD, VXORPS, VPSLLVD, VPSLLVQ,
VBLENDMPD, VBLENDMPS, VPBLENDMD, VPBLENDMQ, VFPCLASSPD, VFPCLASSPSVPCMPD, VPCMPQ,VPCMPUD,
VPCMPUQ, VPLZCNTD, VPLZCNTQ, VPROLD, VPROLQ, (VPSLLD, VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)1,
VPTERNLOGD, VPTERNLOGQ,VPTESTMD, VPTESTMQ,VPTESTNMD, VPTESTNMQ, VRCP14PD, VRCP14PS,
VRSQRT14PD, VRSQRT14PS, VPCONFLICTD, VPCONFLICTQ, VPSRAVW, VPSRAVD, VPSRAVW, VPSRAVQ,
VPMADD52LUQ, VPMADD52HUQ
E4.nb2
VMOVUPD, VMOVUPS, VMOVDQU8, VMOVDQU16, VMOVDQU32, VMOVDQU64, VPCMPB, VPCMPW, VPCMPUB,
VPCMPUW, VEXPANDPD, VEXPANDPS, VPCOMPRESSD, VPCOMPRESSQ, VPEXPANDD, VPEXPANDQ,
VCOMPRESSPD, VCOMPRESSPS, VPABSB, VPABSW, VPADDB, VPADDW, VPADDSB, VPADDSW, VPADDUSB,
VPADDUSW, VPAVGB, VPAVGW, VPCMPEQB, VPCMPEQW, VPCMPGTB, VPCMPGTW, VPMAXSB, VPMAXSW,
VPMAXUB, VPMAXUW, VPMINSB, VPMINSW, VPMINUB, VPMINUW, VPMULHRSW, VPMULHUW, VPMULHW,
VPMULLW, VPSUBB, VPSUBW, VPSUBSB, VPSUBSW, VPTESTMB, VPTESTMW, VPTESTNMB, VPTESTNMW, VPSLLW,
VPSRAW, VPSRLW, VPSLLVW, VPSRLVW
Type E4NF
VPACKSSDW, VPACKUSDW VPSHUFD, VPUNPCKHDQ, VPUNPCKHQDQ, VPUNPCKLDQ, VPUNPCKLQDQ, VSHUFPD,
VSHUFPS, VUNPCKHPD, VUNPCKHPS, VUNPCKLPD, VUNPCKLPS, VPERMD, VPERMPS, VPERMPD, VPERMQ,
VALIGND, VALIGNQ, VPERMI2D, VPERMI2PS, VPERMI2PD, VPERMI2Q, VPERMT2D, VPERMT2PS, VPERMT2Q,
VPERMT2PD, VPERMILPD, VPERMILPS, VSHUFI32X4, VSHUFI64X2, VSHUFF32X4, VSHUFF64X2,
VPMULTISHIFTQB
E4NF.nb2
VDBPSADBW, VPACKSSWB, VPACKUSWB, VPALIGNR, VPMADDWD, VPMADDUBSW, VMOVSHDUP, VMOVSLDUP,
VPSADBW, VPSHUFB, VPSHUFHW, VPSHUFLW, VPSLLDQ, VPSRLDQ, VPSLLW, VPSRAW, VPSRLW, (VPSLLD,
VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)3, VPUNPCKHBW, VPUNPCKHWD, VPUNPCKLBW, VPUNPCKLWD,
VPERMW, VPERMI2W, VPERMT2W, VPERMB, VPERMI2B, VPERMT2B
Type E5
VCVTDQ2PD, PMOVSXBW, PMOVSXBW, PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ,
PMOVZXBW, PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ
VCVTUDQ2PD
Type E5NF VMOVDDUP
Table 4-14. EVEX Instructions in each Exception Class(Continued)
Exception Class Instruction
4-12 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
Type E6
VBROADCASTSS, VBROADCASTSD, VBROADCASTF32X4, VBROADCASTI32X4, VPBROADCASTB, VPBROADCASTD,
VPBROADCASTW, VPBROADCASTQ,
VBROADCASTF32X2, VBROADCASTF32X4, VBROADCASTF64X2, VBROADCASTF32X8, VBROADCASTF64X4,
VBROADCASTI32X2, VBROADCASTI32X4, VBROADCASTI64X2, VBROADCASTI32X8, VBROADCASTI64X4,
VFPCLASSSD, VFPCLASSSS, VPMOVQB, VPMOVSQB, VPMOVUSQB, VPMOVQW, VPMOVSQW, VPMOVUSQW,
VPMOVQD, VPMOVSQD, VPMOVUSQD, VPMOVDB, VPMOVSDB, VPMOVUSDB, VPMOVDW, VPMOVSDW,
VPMOVUSDW
Type E6NF
VEXTRACTF32X4, VEXTRACTF64X2, VEXTRACTF32X8, VINSERTF32X4, VINSERTF64X2, VINSERTF64X4,
VINSERTF32X8, VINSERTI32X4, VINSERTI64X2, VINSERTI64X4, VINSERTI32X8, VEXTRACTI32X4,
VEXTRACTI64X2, VEXTRACTI32X8, VEXTRACTI64X4, VPBROADCASTMB2Q, VPBROADCASTMW2D, VPMOVWB,
VPMOVSWB, VPMOVUSWB
Type
E7NM.1284
VMOVLHPS, VMOVHLPS
Type E7NM. (VPBROADCASTD, VPBROADCASTQ, VPBROADCASTB, VPBROADCASTW)5, VPMOVM2B, VPMOVM2D, VPMOVM2Q,
VPMOVM2W, VPMOVB2M, VPMOVD2M, VPMOVQ2M, VPMOVW2M
Type E9NF VEXTRACTPS, VINSERTPS, VMOVHPD, VMOVHPS, VMOVLPD, VMOVLPS, VMOVD, VMOVQ, VPEXTRB, VPEXTRD,
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, VPINSRQ
Type E10 VMOVSD, VMOVSS, VRCP14SD, VRCP14SS, VRSQRT14SD, VRSQRT14SS,
Type E10NF (VCVTSI2SD, VCVTUSI2SD)6
Type E11 VCVTPH2PS, VCVTPS2PH
Type E12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
VPGATHERQQ, VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQ, VSCATTERDPD, VSCATTERDPS,
VSCATTERQPD, VSCATTERQPS
Type E12NP
VGATHERPF0DPD, VGATHERPF0DPS, VGATHERPF0QPD, VGATHERPF0QPS, VGATHERPF1DPD, VGATHERPF1DPS,
VGATHERPF1QPD, VGATHERPF1QPS, VSCATTERPF0DPD, VSCATTERPF0DPS, VSCATTERPF0QPD,
VSCATTERPF0QPS, VSCATTERPF1DPD, VSCATTERPF1DPS, VSCATTERPF1QPD, VSCATTERPF1QPS
NOTES:
1. Operand encoding FVI tupletype with immediate.
2. Embedded broadcast is not supported with the ".nb" suffix.
3. Operand encoding M128 tupletype.
4. #UD raised if EVEX.L’L !=00b (VL=128).
5. The source operand is a general purpose register.
6. W0 encoding only.
Table 4-14. EVEX Instructions in each Exception Class(Continued)
Exception Class Instruction
Ref. # 319433-023 4-13
AVX-512 INSTRUCTION ENCODING
4.10.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions
EVEX-encoded instructions with memory alignment restrictions, and supporting memory fault suppression follow
exception class E1.
Table 4-15. Type E1 Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode,
#UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0,
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Avail-
able, #NM X X X X If CR0.TS[bit 3]=1.
Stack, SS(0)
X If fault suppression not set, and an illegal address in the SS segment.
XIf fault suppression not set, and a memory address referencing the SS segment is in
a non-canonical form.
General Protection,
#GP(0)
XX
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.
XIf fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
XX If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault
#PF(fault-code) X X X If fault suppression not set, and a page fault.
4-14 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
EVEX-encoded instructions with memory alignment restrictions, but do not support memory fault suppression
follow exception class E1NF.
Table 4-16. Type E1NF Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode,
#UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0,
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Avail-
able, #NM X X X X If CR0.TS[bit 3]=1.
Stack, SS(0) X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection,
#GP(0)
XX
EVEX.512: Memory operand is not 64-byte aligned.
EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.
XFor an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from 0 to FFFFH.
Page Fault
#PF(fault-code) X X X For a page fault.
Ref. # 319433-023 4-15
AVX-512 INSTRUCTION ENCODING
4.10.2 Exceptions Type E2 of EVEX-Encoded Instructions
EVEX-encoded vector instructions with arithmetic semantic follow exception class E2.
Table 4-17. Type E2 Class Exception Conditions
Exception
Real
Virtual 8086
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode,
#UD
X X If EVEX prefix present.
X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Avail-
able, #NM XX XXIf CR0.TS[bit 3]=1.
Stack, SS(0)
X If fault suppression not set, and an illegal address in the SS segment.
XIf fault suppression not set, and a memory address referencing the SS segment is in a
non-canonical form.
General Protec-
tion, #GP(0)
XIf fault suppression not set, and an illegal memory operand effective address in the CS,
DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
XX If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault
#PF(fault-code) X X X If fault suppression not set, and a page fault.
SIMD Floating-
point Exception,
#XM
XX XX
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.
4-16 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.10.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions
EVEX-encoded scalar instructions with arithmetic semantic that support memory fault suppression follow exception
class E3.
Table 4-18. Type E3 Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0.
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM X X X X If CR0.TS[bit 3]=1.
Stack, SS(0)
X If fault suppression not set, and an illegal address in the SS segment.
XIf fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
General Protection,
#GP(0)
XIf fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
XX If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault #PF(fault-
code) X X X If fault suppression not set, and a page fault.
Alignment Check
#AC(0) XXX
If alignment checking is enabled and an unaligned memory reference of 8 bytes
or less is made while the current privilege level is 3.
SIMD Floating-point
Exception, #XM XXXX
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.
Ref. # 319433-023 4-17
AVX-512 INSTRUCTION ENCODING
EVEX-encoded scalar instructions with arithmetic semantic that do not support memory fault suppression follow
exception class E3NF.
Table 4-19. Type E3NF Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X EVEX prefix.
X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0.
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM X X X X If CR0.TS[bit 3]=1.
Stack, SS(0) X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection,
#GP(0)
XFor an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
X If the memory address is in a non-canonical form.
XX If any part of the operand lies outside the effective address space from 0 to
FFFFH.
Page Fault #PF(fault-
code) X X X For a page fault.
Alignment Check
#AC(0) XXX
If alignment checking is enabled and an unaligned memory reference of 8 bytes
or less is made while the current privilege level is 3.
SIMD Floating-point
Exception, #XM XXXX
If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.OSX-
MMEXCPT[bit 10] = 1.
4-18 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.10.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions
EVEX-encoded vector instructions that cause no SIMD FP exception and support memory fault suppression follow
exception class E4.
Table 4-20. Type E4 Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0 and in E4.nb subclass (see E4.nb entries in Table 4-14),
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM X X X X If CR0.TS[bit 3]=1.
Stack, SS(0)
X If fault suppression not set, and an illegal address in the SS segment.
XIf fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
General Protection,
#GP(0)
XIf fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
XX If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault #PF(fault-
code) X X X If fault suppression not set, and a page fault.
Ref. # 319433-023 4-19
AVX-512 INSTRUCTION ENCODING
EVEX-encoded vector instructions that do not cause SIMD FP exception nor support memory fault suppression
follow exception class E4NF.
Table 4-21. Type E4NF Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0 and in E4NF.nb subclass (see E4NF.nb entries in Table 4-14),
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM XXXXIf CR0.TS[bit 3]=1.
Stack, SS(0) X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection,
#GP(0)
XFor an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
X If the memory address is in a non-canonical form.
XX If any part of the operand lies outside the effective address space from 0 to
FFFFH.
Page Fault #PF(fault-
code) X X X For a page fault.
4-20 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.10.5 Exceptions Type E5 and E5NF
EVEX-encoded scalar/partial-vector instructions that cause no SIMD FP exception and support memory fault
suppression follow exception class E5.
Table 4-22. Type E5 Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0,
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM X X X X If CR0.TS[bit 3]=1.
Stack, SS(0)
X If fault suppression not set, and an illegal address in the SS segment.
XIf fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
General Protection,
#GP(0)
XIf fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
XX If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault #PF(fault-
code) X X X If fault suppression not set, and a page fault.
Alignment Check
#AC(0) XXX
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.
Ref. # 319433-023 4-21
AVX-512 INSTRUCTION ENCODING
EVEX-encoded scalar/partial vector instructions that do not cause SIMD FP exception nor support memory fault
suppression follow exception class E5NF.
Table 4-23. Type E5NF Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
•If EVEX.b != 0,
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM XXXXIf CR0.TS[bit 3]=1.
Stack, SS(0) X If an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection,
#GP(0)
X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
X If the memory address is in a non-canonical form.
XX If any part of the operand lies outside the effective address space from 0 to
FFFFH.
Page Fault #PF(fault-
code) X X X For a page fault.
Alignment Check
#AC(0) XXX
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.
4-22 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.10.6 Exceptions Type E6 and E6NF
Table 4-24. Type E6 Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0,
If EVEX.L’L != 10b (VL=512).
X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM XXIf CR0.TS[bit 3]=1.
Stack, SS(0)
X If fault suppression not set, and an illegal address in the SS segment.
XIf fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
General Protection,
#GP(0)
XIf fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
Page Fault #PF(fault-
code) X X If fault suppression not set, and a page fault.
Alignment Check
#AC(0) XX
For 4 or 8 byte memory references if alignment checking is enabled and an
unaligned memory reference of 8 bytes or less is made while the current privilege
level is 3.
Ref. # 319433-023 4-23
AVX-512 INSTRUCTION ENCODING
EVEX-encoded instructions that do not cause SIMD FP exception nor support memory fault suppression follow
exception class E6NF.
Table 4-25. Type E6NF Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0,
If EVEX.L’L != 10b (VL=512).
X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM X X If CR0.TS[bit 3]=1.
Stack, SS(0) X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection,
#GP(0)
XFor an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
X If the memory address is in a non-canonical form.
Page Fault #PF(fault-
code) X X For a page fault.
Alignment Check
#AC(0) XX
For 4 or 8 byte memory references if alignment checking is enabled and an
unaligned memory reference of 8 bytes or less is made while the current privilege
level is 3.
4-24 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.10.7 Exceptions Type E7NM
EVEX-encoded instructions that cause no SIMD FP exception and do not reference memory follow exception class
E7NM.
Table 4-26. Type E7NM Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0,
Instruction specific EVEX.L’L restriction not met.
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM XXIf CR0.TS[bit 3]=1.
Ref. # 319433-023 4-25
AVX-512 INSTRUCTION ENCODING
4.10.8 Exceptions Type E9 and E9NF
EVEX-encoded vector or partial-vector instructions that do not cause no SIMD FP exception and support memory
fault suppression follow exception class E9.
Table 4-27. Type E9 Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
•If EVEX.b != 0,
If EVEX.L’L != 00b (VL=128).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM XXXXIf CR0.TS[bit 3]=1.
Stack, SS(0)
X If fault suppression not set, and an illegal address in the SS segment.
XIf fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
General Protection,
#GP(0)
XIf fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
XX If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault #PF(fault-
code) X X X If fault suppression not set, and a page fault.
Alignment Check
#AC(0) XXX
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.
4-26 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
EVEX-encoded vector or partial-vector instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP
exception nor support memory fault suppression follow exception class E9NF.
Table 4-28. Type E9NF Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0,
If EVEX.L’L != 00b (VL=128).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM X X X X If CR0.TS[bit 3]=1.
Stack, SS(0) X If an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection,
#GP(0)
X If an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
X If the memory address is in a non-canonical form.
XX If any part of the operand lies outside the effective address space from 0 to
FFFFH.
Page Fault #PF(fault-
code) XXXFor a page fault.
Alignment Check
#AC(0) XXX
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.
Ref. # 319433-023 4-27
AVX-512 INSTRUCTION ENCODING
4.10.9 Exceptions Type E10
EVEX-encoded scalar instructions that ignore EVEX.L’L vector length encoding and do not cause no SIMD FP excep-
tion, support memory fault suppression follow exception class E10.
Table 4-29. Type E10 Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
•If EVEX.b != 0.
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM XXXXIf CR0.TS[bit 3]=1.
Stack, SS(0)
X If fault suppression not set, and an illegal address in the SS segment.
XIf fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
General Protection,
#GP(0)
XIf fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
XX If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault #PF(fault-
code) X X X If fault suppression not set, and a page fault.
Alignment Check
#AC(0) XXX
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.
4-28 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
EVEX-encoded scalar instructions that must be encoded with VEX.L’L = 0, do not cause SIMD FP exception nor
support memory fault suppression follow exception class E10NF.
Table 4-30. Type E10NF Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD
X X If EVEX prefix present.
XX
If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0.
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM X X X X If CR0.TS[bit 3]=1.
Stack, SS(0)
X If fault suppression not set, and an illegal address in the SS segment.
XIf fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
General Protection,
#GP(0)
XIf fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
XX If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault #PF(fault-
code) X X X If fault suppression not set, and a page fault.
Alignment Check
#AC(0) XXX
If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.
Ref. # 319433-023 4-29
AVX-512 INSTRUCTION ENCODING
4.10.10 Exception Type E11 (EVEX-only, mem arg no AC, floating-point exceptions)
EVEX-encoded instructions that can cause SIMD FP exception, memory operand support fault suppression but do
not cause #AC follow exception class E11.
Table 4-31. Type E11 Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD X X If EVEX prefix present.
X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
•If EVEX.b != 0,
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X If any corresponding CPUID feature flag is ‘0’.
Device Not Available,
#NM
XX X XIf CR0.TS[bit 3]=1.
Stack, SS(0) X If fault suppression not set, and an illegal address in the SS segment.
X If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
General Protection,
#GP(0)
X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, ES, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault #PF (fault-
code)
X X X If fault suppression not set, and a page fault.
SIMD Floating-Point
Exception, #XM
X X X X If an unmasked SIMD floating-point exception, {sae} not set, and CR4.OSXMMEX-
CPT[bit 10] = 1.
4-30 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.10.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions)
Table 4-32. Type E12 Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD X X If EVEX prefix present.
X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0,
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X X NA If address size attribute is 16 bit.
X X X X If ModR/M.mod = ‘11b’.
X X X X If ModR/M.rm != ‘100b’.
X X X X If any corresponding CPUID feature flag is ‘0’.
X X X X If k0 is used (gather or scatter operation).
X X X X If index = destination register (gather operation).
Device Not Available,
#NM
X X X X If CR0.TS[bit 3]=1.
Stack, SS(0) X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection,
#GP(0)
X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.
Page Fault #PF (fault-
code)
X X X For a page fault.
Ref. # 319433-023 4-31
AVX-512 INSTRUCTION ENCODING
EVEX-encoded prefetch instructions that do not cause #PF follow exception class E12NP.
Table 4-33. Type E12NP Class Exception Conditions
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD X X If EVEX prefix present.
X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10,
Opmask encoding #UD condition of Table 4-11,
If EVEX.b != 0,
If EVEX.L’L != 10b (VL=512).
X X X X If preceded by a LOCK prefix (F0H).
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X X NA If address size attribute is 16 bit.
XX X XIf ModR/M.mod =11b.
X X X X If ModR/M.rm != ‘100b’.
X X X X If any corresponding CPUID feature flag is ‘0’.
X X X X If k0 is used (gather or scatter operation).
Device Not Available,
#NM
XX X XIf CR0.TS[bit 3]=1.
Stack, SS(0) X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection,
#GP(0)
X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.
4-32 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
4.11 EXCEPTION CLASSIFICATIONS OF OPMASK INSTRUCTIONS
The exception behavior of VEX-encoded opmask instructions are listed below.
Exception conditions of Opmask instructions that do not address memory are listed as Type K20.
Table 4-34. TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg)
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.
X X If a VEX prefix is present.
X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10.
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X If ModRM:[7:6] != 11b.
Device Not Available,
#NM X X X X If CR0.TS[bit 3]=1.
Ref. # 319433-023 4-33
AVX-512 INSTRUCTION ENCODING
Exception conditions of Opmask instructions that address memory are listed as Type K21.
Table 4-35. TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory)
Exception
Real
Virtual 80x86
Protected and
Compatibility
64-bit
Cause of Exception
Invalid Opcode, #UD X X X X If relevant CPUID feature flag is ‘0’.
X X If a VEX prefix is present.
X X If CR4.OSXSAVE[bit 18]=0.
If any one of following conditions applies:
State requirement, Table 4-8 not met,
Opcode independent #UD condition in Table 4-9,
Operand encoding #UD conditions in Table 4-10.
Device Not Available,
#NM X X X X If CR0.TS[bit 3]=1.
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
Stack, SS(0) X X X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection,
#GP(0)
X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.
Page Fault #PF(fault-
code)
X X X For a page fault.
Alignment Check
#AC(0)
X X X If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.
4-34 Ref. # 319433-023
AVX-512 INSTRUCTION ENCODING
This page was
intentionally left
blank.
Ref. # 319433-023 5-1
INSTRUCTION SET REFERENCE, A-Z
CHAPTER 5
INSTRUCTION SET REFERENCE, A-Z
Instructions described in this document follow the general documentation convention established in Intel 64 and
IA-32 Architectures Software Developer’s Manual Volume 2A and 2B. Additional notations and conventions
adopted in this document are listed in Section 5.1. Section 5.1.5.1 covers supplemental information that applies to
a specific subset of instructions.
5.1 INTERPRETING INSTRUCTION REFERENCE PAGES
This section describes the format of information contained in the instruction reference pages in this chapter. It
explains notational conventions and abbreviations used in these sections that are outside of those conventions
described in Section 3.1 of the Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A.
5.1.1 Instruction Format
The following is an example of the format used for each instruction description in this chapter. The table below
provides an example summary table:
5-2 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ADDPS—Add Packed Single-Precision Floating-Point Values (THIS IS AN EXAMPLE)
5.1.2 Opcode Column in the Instruction Summary Table
For notation and conventions applicable to instructions that do not use VEX or EVEX prefixes, consult Section 3.1 of
the Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A.
In the Instruction Summary Table, the Opcode column presents each instruction encoded using the VEX prefix in
following form (including the modR/M byte if applicable, the immediate byte if applicable):
VEX.[NDS/NDD/DS].[128,256,L0,L1,LIG].[66,F2,F3].0F/0F3A/0F38.[W0,W1,WIG] opcode [/r]
[ib,/is4]
VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the three-byte
form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte form of VEX only
applies to those instructions that do not require the following fields to be encoded: VEX.mmmmm, VEX.W,
VEX.X, VEX.B.
The encoding of various sub-fields of the VEX prefix is described using the following notations:
NDS, NDD, DDS: implies that VEX.vvvv field is valid for the encoding of an operand. It may specify either
the source register (NDS) or the destination register (NDD). The VEX.vvvv field can be encoded using either
the 2-byte or 3-byte form of the VEX prefix. DDS expresses a syntax where vvvv encodes the second
source register in a three-operand instruction syntax where the content of first source register will be
overwritten by the result. If NDS, NDD and DDS are absent (i.e. VEX.vvvv does not encode an operand),
VEX.vvvv must be 1111b.
128,256,L0,L1: VEX.L fields can be 0 (denoted by VEX.128 or VEX.L0 for mask instructions) or 1 (denoted
by VEX.256 or VEX.L1 for mask instructions). The VEX.L field can be encoded using either the 2-byte or 3-
byte form of the VEX prefix. The presence of the notation VEX.256 or VEX.128 in the opcode column should
be interpreted as follows:
Opcode/
Instruction
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 58 /r V/V SSE Add packed single-precision floating-point values from
xmm2/mem to xmm1 and store result in xmm1.
ADDPS xmm1, xmm2/m128
VEX.NDS.128.0F 58 /r V/V AVX Add packed single-precision floating-point values from
xmm3/mem to xmm2 and store result in xmm1.
VADDPS xmm1,xmm2, xmm3/m128
VEX.NDS.256.0F 58 /r V/V AVX Add packed single-precision floating-point values from
ymm3/mem to ymm2 and store result in ymm1.
VADDPS ymm1, ymm2, ymm3/m256
VEX.L1.0F.W0 41 /r V/V AVX512F Bitwise AND word masks k2 and k3 and place result in k1.
KANDW k1, k2, k3
EVEX.NDS.128.0F.W0 58 /r V/V AVX512VL Add packed single-precision floating-point values from
xmm3/m128/m32bcst to xmm2 and store result in xmm1
with writemask k1.
VADDPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.0F.W0 58 /r V/V AVX512VL Add packed single-precision floating-point values from
ymm3/m256/m32bcst to ymm2 and store result in ymm1
with writemask k1.
VADDPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.0F.W0 58 /r V/V AVX512F Add packed single-precision floating-point values from
zmm3/m512/m32bcst with zmm2 and store result in zmm1
with writemask k1.
VADDPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst {er}
Ref. # 319433-023 5-3
INSTRUCTION SET REFERENCE, A-Z
If VEX.256 is present in the opcode column: The semantics of the instruction must be encoded with
VEX.L = 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a)
if VEX.128 version is defined, the processor will behave according to the defined VEX.128 behavior; (b)
an #UD occurs if there is no VEX.128 version defined.
If VEX.128 is present in the opcode column but there is no VEX.256 version defined for the same
opcode byte: Three situations apply: (a) For VEX-encoded, 128-bit SIMD integer instructions, software
must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with
VEX.L= 1 by causing an #UD exception; (b) For VEX-encoded, 128-bit packed floating-point instruc-
tions, software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte
encoded with VEX.L= 1 by causing an #UD exception (e.g. VMOVLPS); (c) For VEX-encoded, scalar,
SIMD floating-point instructions, software should encode the instruction with VEX.L = 0 to ensure
software compatibility with future processor generations. Scalar SIMD floating-point instruction can be
distinguished from the mnemonic of the instruction. Generally, the last two letters of the instruction
mnemonic would be either “SS”, “SD”, or “SI” for SIMD floating-point conversion instructions, except
VBROADCASTSx are unique cases.
VEX.L0 and VEX.L1 notations are used in the case of masking instructions such as KANDW since the
VEX.L bit is not used to distinguish between the 128-bit and 256-bit forms for these instructions.
Instead, this bit is used to distinguish between the two operand form (VEX.L0) and the three operand
form (VEX.L1) of the same mask instruction.
If VEX.L0 is present in the opcode column: The semantics of the instruction must be encoded with
VEX.L = 0. An attempt to encode this instruction with VEX.L= 1 can result in one of two situations: (a)
if VEX.L1 version is defined, the processor will behave according to the defined VEX.L1 behavior; (b) an
#UD occurs if there is no VEX.L1 version defined.
If VEX.L1 is present in the opcode column: The semantics of the instruction must be encoded with
VEX.L = 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a)
if VEX.L0 version is defined, the processor will behave according to the defined VEX.L1 behavior; (b) an
#UD occurs if there is no VEX.L0 version defined.
LIG: VEX.L bit ignored
66,F2,F3: The presence or absence of these value maps to the VEX.pp field encodings. If absent, this
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the “opcode” byte in the
same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero encoding
of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be encoded using
either the 2-byte or 3-byte form of the VEX prefix.
0F,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm field. Only three encoded
values of VEX.mmmmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH
and 0F38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode byte is the same as if the
corresponding escape byte sequence on the ensuing opcode byte for non-VEX encoded instructions. Thus a
valid encoding of VEX.mmmmm may be considered as an implied escape byte sequence of either 0FH,
0F3AH or 0F38H. The VEX.mmmmm field must be encoded using the 3-byte form of VEX prefix.
0F,0F3A,0F38 and 2-byte/3-byte VEX. The presence of 0F3A and 0F38 in the opcode column implies
that opcode can only be encoded by the three-byte form of VEX. The presence of 0F in the opcode column
does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the opcode does not
require any subfield of VEX not present in the two-byte form of the VEX prefix.
W0: VEX.W=0.
W1: VEX.W=1.
WIG: VEX.W bit ignored
The presence of W0/W1 in the opcode column applies to two situations: (a) it is treated as an extended
opcode bit, (b) the instruction semantics support an operand size promotion to 64-bit of a general-purpose
register operand or a 32-bit memory operand. The presence of W1 in the opcode column implies the opcode
must be encoded using the 3-byte form of the VEX prefix. The presence of W0 in the opcode column does
not preclude the opcode to be encoded using the C5H form of the VEX prefix, if the semantics of the opcode
does not require other VEX subfields not present in the two-byte form of the VEX prefix. If neither W0 or
W1 is present, the instruction may be encoded using either the two-byte form (if the opcode semantic does
5-4 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
not require VEX subfields not present in the two-byte form of VEX) or the three-byte form of VEX. Encoding
an instruction using the two-byte form of VEX is equivalent to W0.
opcode: Instruction opcode.
ib: An 8-bit immediate byte is present and used as one of the instructions operands.
/is4: An 8-bit immediate byte is present containing a source register specifier in imm[7:4] and instruction-
specific payload in imm[3:0].
imz2: Part of the is4 immediate byte provides control functions that apply to two-source permute instructions
In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in the opcode column.
EVEX.[NDS/NDD/DDS].[128,256,512,LIG].[66,F2,F3].0F/0F3A/0F38.[W0,W1,WIG] opcode [/r]
[ib,/is4]
EVEX: The EVEX prefix is encoded using the four-byte form (the first byte is 62H). Refer to Section 4.2 for more
detail on the EVEX prefix.
The encoding of various sub-fields of the EVEX prefix is described using the following notations:
NDS, NDD, DDS: implies that EVEX.vvvv (and EVEX.v’) field is valid for the encoding of an operand. It may
specify either the source register (NDS) or the destination register (NDD). DDS expresses a syntax where
vvvv encodes the second source register in a three-operand instruction syntax where the content of first
source register will be overwritten by the result. If both NDS and NDD absent (i.e. EVEX.vvvv does not
encode an operand), EVEX.vvvv must be 1111b (and EVEX.v’ must be 1b).
128, 256, 512, LIG: This corresponds to the vector length; three values are allowed by EVEX: 512-bit,
256-bit and 128-bit. Alternatively, vector length is ignored (LIG) for certain instructions; this typically
applies to scalar instructions operating on one data element of a vector register.
66,F2,F3: The presence of these value maps to the EVEX.pp field encodings. The corresponding VEX.pp
value affects the “opcode” byte in the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing
opcode byte. Thus a non-zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H prefix.
0F,0F3A,0F38: The presence maps to a valid encoding of the EVEX.mmm field. Only three encoded values
of EVEX.mmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH and 0F38H.
The effect of a valid EVEX.mmm encoding on the ensuing opcode byte is the same as if the corresponding
escape byte sequence on the ensuing opcode byte for non-EVEX encoded instructions. Thus a valid
encoding of EVEX.mmm may be considered as an implied escape byte sequence of either 0FH, 0F3AH or
0F38H.
W0: EVEX.W=0.
W1: EVEX.W=1.
WIG: EVEX.W bit ignored
opcode: Instruction opcode.
/is4: An 8-bit immediate byte is present containing a source register specifier in imm[7:4] and instruction-
specific payload in imm[3:0].
imz2: Part of the is4 immediate byte provides control functions that apply to two-source permute instructions
In general, the encoding of EVEX.R and R, EVEX.X and X’, and EVEX.B and B’ fields are not shown explicitly in
the opcode column.
5.1.3 Instruction Column in the Instruction Summary Table
xmm — an XMM register. The XMM registers are: XMM0 through XMM7; XMM8 through XMM15 are available in
64-bit mode. XMM16 through XMM31 are available in 64-bit mode via EVEX prefix.
ymm — a YMM register. The 256-bit YMM registers are: YMM0 through YMM7; YMM8 through YMM15 are
available in 64-bit mode. YMM16 through YMM31 are available in 64-bit mode via EVEX prefix.
m256 — A 32-byte operand in memory.
ymm/m256 - a YMM register or 256-bit memory operand.
Ref. # 319433-023 5-5
INSTRUCTION SET REFERENCE, A-Z
<YMM0>: indicates use of the YMM0 register as an implicit argument.
zmm — a ZMM register. The 512-bit ZMM registers require EVEX prefix and are: ZMM0 through ZMM7; ZMM8
through ZMM31 are available in 64-bit mode.
m512 — A 64-byte operand in memory.
zmm/m512 — a ZMM register or 512-bit memory operand.
{k1}{z}a mask register used as instruction writemask. The 64-bit k registers are: k1 through k7.
Writemask specification is available exclusively via EVEX prefix. The masking can either be done as a merging-
masking, where the old values are preserved for masked out elements or as a zeroing masking. The type of
masking is determined by using the EVEX.z bit.
{k1} — without {z}: a mask register used as instruction writemask for instructions that do not allow zeroing-
masking but support merging-masking. This corresponds to instructions that require the value of the aaa field
to be different than 0 (e.g., gather) and store-type instructions which allow only merging-masking.
k1 — a mask register used as a regular operand (either destination or source). The 64-bit k registers are: k0
through k7.
mV — a vector memory operand; the operand size is dependent on the instruction.
vm32{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 32-bit index value in an XMM register (vm32x), a YMM register (vm32y) or
a ZMM register (vm32z).
vm64{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 64-bit index value in an XMM register (vm64x), a YMM register (vm64y) or
a ZMM register (vm64z).
zmm/m512/m32bcst — an operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 32-bit memory location.
zmm/m512/m64bcst — an operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 64-bit memory location.
<ZMM0>: indicates use of the ZMM0 register as an implicit argument.
{er} indicates support for embedded rounding control, which is only applicable to the register-register form of
the instruction. This also implies support for SAE (Suppress All Exceptions).
{sae} indicates support for SAE (Suppress All Exceptions). This is used for instructions that support SAE, but
do not support embedded rounding control.
SRC1 - Denotes the first source operand in the instruction syntax of an instruction encoded with the EVEX
prefix and having two or more source operands.
SRC2 - Denotes the second source operand in the instruction syntax of an instruction encoded with the EVEX
prefix and having two or more source operands.
SRC3 - Denotes the third source operand in the instruction syntax of an instruction encoded with the EVEX
prefix and having three source operands.
SRC - The source in a single-source instruction.
DST - the destination in an instruction. This field is encoded by reg_field.
5.1.4 64/32 bit Mode Support column in the Instruction Summary Table
The “64/32 bit Mode Support” column in the Instruction Summary table indicates whether an opcode sequence is
supported in 64-bit or the Compatibility/other IA32 modes.
The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
V — Supported.
I — Not supported.
N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence
5-6 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
of valid instructions in other modes).
N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode.
N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not sup-
ported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior.
The compatibility/Legacy mode support is to the right of the ‘slash’ and has the following notation:
V — Supported.
I — Not supported.
N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable; the opcode sequence is not
applicable as an individual instruction in compatibility mode or IA-32 mode. The opcode may represent a valid
sequence of legacy IA-32 instructions.
5.1.5 CPUID Support column in the Instruction Summary Table
The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bits in CPUID.1:ECX, CPUID.1:EDX for
SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AVX/F16C support; bits in CPUID.(EAX=07H,ECX=0):BCX for
AVX2/AVX512F etc) that indicate processor support for the instruction. If the corresponding flag is ‘0’, the instruc-
tion will #UD.
For entries that reference to CPUID feature flags listed in Table 2-1, software should follow the detection procedure
described in Section 2.1 and Section 2.2.
For entries that reference to CPUID feature flags listed in Table 2-1 and AVX512VL, software should follow the
detection procedure described in Section 2.3.
5.1.5.1 Operand Encoding Column in the Instruction Summary Table
The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction
operand encoding information is provided for each assembly instruction syntax using a letter to cross reference to
a row entry in the operand encoding definition table that follows the instruction summary table. The operand
encoding table in each instruction reference page lists each instruction operand (according to each instruction
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement.
EVEX encoded instructions employ compressed disp8*N encoding of the displacement bytes, where N is defined in
Table 4-5 and Table 4-6, according to tupletypes. The Op/En column of an EVEX encoded instruction uses an abbre-
viation that corresponds to the tupletype abbreviation (and may include an additional abbreviation related to
ModR/M and vvvv encoding). Most EVEX encoded instructions with VEX encoded equivalent have the ModR/M and
vvvv encoding order. In such cases, the Tuple abbreviation is shown and the ModR/M, vvvv encoding abbreviation
may be omitted.
NOTES
The letters in the Op/En column of an instruction apply ONLY to the encoding definition table
immediately following the instruction summary table.
In the encoding definition table, the letter ‘r’ within a pair of parentheses denotes the content of the operand will
be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the content of the operand will be
updated by the processor.
5.2 SUMMARY OF TERMS
“Legacy SSE”: Refers to SSE, SSE2, SSE3, SSSE3, SSE4, and any future instruction sets referencing XMM
registers and encoded without a VEX or EVEX prefix.
Ref. # 319433-023 5-7
INSTRUCTION SET REFERENCE, A-Z
XGETBV, XSETBV, XSAVE, XRSTOR are defined in Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volumes 3A and Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.
VEX: refers to a two-byte or three-byte prefix. AVX and FMA instructions are encoded using a VEX prefix.
EVEX: refers to a four-byte prefix. AVX512F instructions are encoded using an EVEX prefix.
VEX.vvvv. The VEX bit field specifying a source or destination register (in 1’s complement form).
rm_field: shorthand for the ModR/M r/m field and any REX.B
reg_field: shorthand for the ModR/M reg field and any REX.R
5.3 TERNARY BIT VECTOR LOGIC TABLE
VPTERNLOGD/VPTERNLOGQ instructions operate on dword/qword elements and take three bit vectors of the
respective input data elements to form a set of 32/64 indices, where each 3-bit value provides an index into an 8-
bit lookup table represented by the imm8 byte of the instruction. The 256 possible values of the imm8 byte is
constructed as a 16x16 boolean logic table. The 16 rows of the table uses the lower 4 bits of imm8 as row index.
The 16 columns are referenced by imm8[7:4]. The 16 columns of the table are present in two halves, with 8
columns shown in Table 5-1 for the column index value between 0:7, followed by Table 5-2 showing the 8 columns
corresponding to column index 8:15. This section presents the two-halves of the 256-entry table using a short-
hand notation representing simple or compound boolean logic expressions with three input bit source data.
The three input bit source data will be denoted with the capital letters: A, B, C; where A represents a bit from the
first source operand (also the destination operand), B and C represent a bit from the 2nd and 3rd source operands.
Each map entry takes the form of a logic expression consisting of one of more component expressions. Each
component expression consists of either a unary or binary boolean operator and associated operands. Each binary
boolean operator is expressed in lowercase letters, and operands concatenated after the logic operator. The unary
operator ‘not’ is expressed using ‘!. Additionally, the conditional expression “A?B:C” expresses a result returning B
if A is set, returning C otherwise.
A binary boolean operator is followed by two operands, e.g. andAB. For a compound binary expression that contain
commutative components and comprising the same logic operator, the 2nd logic operator is omitted and three
operands can be concatenated in sequence, e.g. andABC. When the 2nd operand of the first binary boolean expres-
sion comes from the result of another boolean expression, the 2nd boolean expression is concatenated after the
uppercase operand of the first logic expression, e.g. norBnandAC. When the result is independent of an operand,
that operand is omitted in the logic expression, e.g. zeros or norCB.
The 3-input expression “majorABC” returns 0 if two or more input bits are 0, returns 1 if two or more input bits are
1. The 3-input expression “minorABC” returns 1 if two or more input bits are 0, returns 0 if two or more input bits
are 1.
The building-block bit logic functions used in Table 5-1 and Table 5-2 include;
Constants: TRUE (1), FALSE (0);
Unary function: Not (!);
Binary functions: and, nand, or, nor, xor, xnor;
Conditional function: Select (?:);
Tertiary functions: major, minor.
5-8 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
:
Table 5-2 shows the half of 256-entry map corresponding to column index values 8:15.
Table 5-1. Low 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations
Imm [7:4]
[3:0] 0H 1H 2H 3H 4H 5H 6H 7H
00H FALSE andAnorBC norBnandAC andA!B norCnandBA andA!C andAxorBC andAnandBC
01H norABC norCB norBxorAC A?!B:norBC norCxorBA A?!C:norBC A?xorBC:norB
C
A?nandBC:no
rBC
02H andCnorBA norBxnorAC andC!B norBnorAC C?norBA:and
BA
C?norBA:A C?!B:andBA C?!B:A
03H norBA norBandAC C?!B:norBA !B C?norBA:xnor
BA
A?!C:!B A?xorBC:!B A?nandBC:!B
04H andBnorAC norCxnorBA B?norAC:and
AC
B?norAC:A andB!C norCnorBA B?!C:andAC B?!C:A
05H norCA norCandBA B?norAC:xnor
AC
A?!B:!C B?!C:norAC !C A?xorBC:!C A?nandBC:!C
06H norAxnorBC A?norBC:xorB
C
B?norAC:C xorBorAC C?norBA:B xorCorBA xorCB B?!C:orAC
07H norAandBC minorABC C?!B:!A nandBorAC B?!C:!A nandCorBA A?xorBC:nan
dBC
nandCB
08H norAnandBC A?norBC:and
BC
andCxorBA A?!B:andBC andBxorAC A?!C:andBC A?xorBC:and
BC
xorAandBC
09H norAxorBC A?norBC:xnor
BC
C?xorBA:norB
A
A?!B:xnorBC B?xorAC:norA
C
A?!C:xnorBC xnorABC A?nandBC:xn
orBC
0AH andC!A A?norBC:C andCnandBA A?!B:C C?!A:andBA xorCA xorCandBA A?nandBC:C
0BH C?!A:norBA C?!A:!B C?nandBA:no
rBA
C?nandBA:!B B?xorAC:!A B?xorAC:nan
dAC
C?nandBA:xn
orBA
nandBxnorAC
0CH andB!A A?norBC:B B?!A:andAC xorBA andBnandAC A?!C:B xorBandAC A?nandBC:B
0DH B?!A:norAC B?!A:!C B?!A:xnorAC C?xorBA:nan
dBA
B?nandAC:no
rAC
B?nandAC:!C B?nandAC:xn
orAC
nandCxnorBA
0EH norAnorBC xorAorBC B?!A:C A?!B:orBC C?!A:B A?!C:orBC B?nandAC:C A?nandBC:or
BC
0FH !A nandAorBC C?nandBA:!A nandBA B?nandAC:!A nandCA nandAxnorBC nandABC
Ref. # 319433-023 5-9
INSTRUCTION SET REFERENCE, A-Z
:
Table 5-1 and Table 5-2 translate each of the possible value of the imm8 byte to a Boolean expression. These tables
can also be used by software to translate Boolean expressions to numerical constants to form the imm8 value
needed to construct the VPTERNLOG syntax. There is a unique set of three byte constants (F0H, CCH, AAH) that
can be used for this purpose as input operands in conjunction with the Boolean expressions defined in those tables.
The reverse mapping can be expressed as:
Result_imm8 = Table_Lookup_Entry( 0F0H, 0CCH, 0AAH)
Table_Lookup_Entry is the Boolean expression defined in Table 5-1 and Table 5-2.
5.4 INSTRUCTION SET REFERENCE
<Only instructions modified by AVX512F are included.>
Table 5-2. Low 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations
Imm [7:4]
[3:0] 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH
00H andABC andAxnorBC andCA B?andAC:A andBA C?andBA:A andAorBC A
01H A?andBC:nor
BC
B?andAC:!C A?C:norBC C?A:!B A?B:norBC B?A:!C xnorAorBC orAnorBC
02H andCxnorBA B?andAC:xor
AC
B?andAC:C B?andAC:orA
C
C?xnorBA:an
dBA
B?A:xorAC B?A:C B?A:orAC
03H A?andBC:!B xnorBandAC A?C:!B nandBnandA
C
xnorBA B?A:nandAC A?orBC:!B orA!B
04H andBxnorAC C?andBA:xor
BA
B?xnorAC:an
dAC
B?xnorAC:A C?andBA:B C?andBA:orB
A
C?A:B C?A:orBA
05H A?andBC:!C xnorCandBA xnorCA C?A:nandBA A?B:!C nandCnandB
A
A?orBC:!C orA!C
06H A?andBC:xor
BC
xorABC A?C:xorBC B?xnorAC:orA
C
A?B:xorBC C?xnorBA:orB
A
A?orBC:xorBC orAxorBC
07H xnorAandBC A?xnorBC:na
ndBC
A?C:nandBC nandBxorAC A?B:nandBC nandCxorBA A?orBCnandB
C
orAnandBC
08H andCB A?xnorBC:an
dBC
andCorAB B?C:A andBorAC C?B:A majorABC orAandBC
09H B?C:norAC xnorCB xnorCorBA C?orBA:!B xnorBorAC B?orAC:!C A?orBC:xnorB
C
orAxnorBC
0AH A?andBC:C A?xnorBC:C C B?C:orAC A?B:C B?orAC:xorAC orCandBA orCA
0BH B?C:!A B?C:nandAC orCnorBA orC!B B?orAC:!A B?orAC:nand
AC
orCxnorBA nandBnorAC
0CH A?andBC:B A?xnorBC:B A?C:B C?orBA:xorBA B C?B:orBA orBandAC orBA
0DH C?B!A C?B:nandBA C?orBA:!A C?orBA:nand
BA
orBnorAC orB!C orBxnorAC nandCnorBA
0EH A?andBC:orB
C
A?xnorBC:orB
C
A?C:orBC orCxorBA A?B:orBC orBxorAC orCB orABC
0FH nandAnandB
C
nandAxorBC orC!A orCnandBA orB!A orBnandAC nandAnorBC TRUE
5-10 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ADDPD—Add Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Add two, four or eight packed double-precision floating-point values from the first source operand to the second
source operand, and stores the packed double-precision floating-point results in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256)
of the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: the first source operand is a XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 58 /r RM V/V SSE2 Add packed double-precision floating-point values from
xmm2/mem to xmm1 and store result in xmm1.
ADDPD xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 58 /r RVM V/V AVX Add packed double-precision floating-point values from
xmm3/mem to xmm2 and store result in xmm1.
VADDPD xmm1,xmm2,
xmm3/m128
VEX.NDS.256.66.0F.WIG 58 /r RVM V/V AVX Add packed double-precision floating-point values from
ymm3/mem to ymm2 and store result in ymm1.
VADDPD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.W1 58 /r FV V/V AVX512VL Add packed double-precision floating-point values from
xmm3/m128/m64bcst to xmm2 and store result in xmm1
with writemask k1.
VADDPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F.W1 58 /r FV V/V AVX512VL Add packed double-precision floating-point values from
ymm3/m256/m64bcst to ymm2 and store result in ymm1
with writemask k1.
VADDPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F.W1 58 /r FV V/V AVX512F Add packed double-precision floating-point values from
zmm3/m512/m64bcst to zmm2 and store result in zmm1
with writemask k1.
VADDPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV-RVM ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-11
INSTRUCTION SET REFERENCE, A-Z
Operation
VADDPD (EVEX encoded versions) when src2 operand is a vector register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC1[i+63:i] + SRC2[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VADDPD (EVEX encoded versions) when src2 operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i] SRC1[i+63:i] + SRC2[63:0]
ELSE
DEST[i+63:i] SRC1[i+63:i] + SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VADDPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] + SRC2[63:0]
DEST[127:64] SRC1[127:64] + SRC2[127:64]
DEST[191:128] SRC1[191:128] + SRC2[191:128]
DEST[255:192] SRC1[255:192] + SRC2[255:192]
DEST[MAX_VL-1:256] 0
.
5-12 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VADDPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] + SRC2[63:0]
DEST[127:64] SRC1[127:64] + SRC2[127:64]
DEST[MAX_VL-1:128] 0
ADDPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] + SRC[63:0]
DEST[127:64] DEST[127:64] + SRC[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VADDPD __m512d _mm512_add_pd (__m512d a, __m512d b);
VADDPD __m512d _mm512_mask_add_pd (__m512d s, __mmask8 k, __m512d a, __m512d b);
VADDPD __m512d _mm512_maskz_add_pd (__mmask8 k, __m512d a, __m512d b);
VADDPD __m256d _mm256_mask_add_pd (__m256d s, __mmask8 k, __m256d a, __m256d b);
VADDPD __m256d _mm256_maskz_add_pd (__mmask8 k, __m256d a, __m256d b);
VADDPD __m128d _mm_mask_add_pd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VADDPD __m128d _mm_maskz_add_pd (__mmask8 k, __m128d a, __m128d b);
VADDPD __m512d _mm512_add_round_pd (__m512d a, __m512d b, int);
VADDPD __m512d _mm512_mask_add_round_pd (__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VADDPD __m512d _mm512_maskz_add_round_pd (__mmask8 k, __m512d a, __m512d b, int);
ADDPD __m256d _mm256_add_pd (__m256d a, __m256d b);
ADDPD __m128d _mm_add_pd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.
Ref. # 319433-023 5-13
INSTRUCTION SET REFERENCE, A-Z
ADDPS—Add Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Add four, eight or sixteen packed single-precision floating-point values from the first source operand with the
second source operand, and stores the packed single-precision floating-point results in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256)
of the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: the first source operand is a XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 58 /r RM V/V SSE Add packed single-precision floating-point values from
xmm2/m128 to xmm1 and store result in xmm1.
ADDPS xmm1, xmm2/m128
VEX.NDS.128.0F.WIG 58 /r RVM V/V AVX Add packed single-precision floating-point values from
xmm3/m128 to xmm2 and store result in xmm1.
VADDPS xmm1,xmm2,
xmm3/m128
VEX.NDS.256.0F.WIG 58 /r RVM V/V AVX Add packed single-precision floating-point values from
ymm3/m256 to ymm2 and store result in ymm1.
VADDPS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.0F.W0 58 /r FV V/V AVX512VL Add packed single-precision floating-point values from
xmm3/m128/m32bcst to xmm2 and store result in xmm1
with writemask k1.
VADDPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.0F.W0 58 /r FV V/V AVX512VL Add packed single-precision floating-point values from
ymm3/m256/m32bcst to ymm2 and store result in ymm1
with writemask k1.
VADDPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.0F.W0 58 /r FV V/V AVX512F Add packed single-precision floating-point values from
zmm3/m512/m32bcst to zmm2 and store result in zmm1
with writemask k1.
VADDPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst {er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV-RVM ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-14 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VADDPS (EVEX encoded versions) when src2 operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC1[i+31:i] + SRC2[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VADDPS (EVEX encoded versions) when src2 operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i] SRC1[i+31:i] + SRC2[31:0]
ELSE
DEST[i+31:i] SRC1[i+31:i] + SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VADDPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] + SRC2[31:0]
DEST[63:32] SRC1[63:32] + SRC2[63:32]
DEST[95:64] SRC1[95:64] + SRC2[95:64]
DEST[127:96] SRC1[127:96] + SRC2[127:96]
DEST[159:128] SRC1[159:128] + SRC2[159:128]
DEST[191:160] SRC1[191:160] + SRC2[191:160]
DEST[223:192] SRC1[223:192] + SRC2[223:192]
Ref. # 319433-023 5-15
INSTRUCTION SET REFERENCE, A-Z
DEST[255:224] SRC1[255:224] + SRC2[255:224].
DEST[MAX_VL-1:256] 0
VADDPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] + SRC2[31:0]
DEST[63:32] SRC1[63:32] + SRC2[63:32]
DEST[95:64] SRC1[95:64] + SRC2[95:64]
DEST[127:96] SRC1[127:96] + SRC2[127:96]
DEST[MAX_VL-1:128] 0
ADDPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] + SRC2[31:0]
DEST[63:32] SRC1[63:32] + SRC2[63:32]
DEST[95:64] SRC1[95:64] + SRC2[95:64]
DEST[127:96] SRC1[127:96] + SRC2[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VADDPS __m512 _mm512_add_ps (__m512 a, __m512 b);
VADDPS __m512 _mm512_mask_add_ps (__m512 s, __mmask16 k, __m512 a, __m512 b);
VADDPS __m512 _mm512_maskz_add_ps (__mmask16 k, __m512 a, __m512 b);
VADDPS __m256 _mm256_mask_add_ps (__m256 s, __mmask8 k, __m256 a, __m256 b);
VADDPS __m256 _mm256_maskz_add_ps (__mmask8 k, __m256 a, __m256 b);
VADDPS __m128 _mm_mask_add_ps (__m128d s, __mmask8 k, __m128 a, __m128 b);
VADDPS __m128 _mm_maskz_add_ps (__mmask8 k, __m128 a, __m128 b);
VADDPS __m512 _mm512_add_round_ps (__m512 a, __m512 b, int);
VADDPS __m512 _mm512_mask_add_round_ps (__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VADDPS __m512 _mm512_maskz_add_round_ps (__mmask16 k, __m512 a, __m512 b, int);
ADDPS __m256 _mm256_add_ps (__m256 a, __m256 b);
ADDPS __m128 _mm_add_ps (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.
5-16 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ADDSD—Add Scalar Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Adds the low double-precision floating-point values from the second source operand and the first source operand
and stores the double-precision floating-point result in the destination operand.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination
operands are XMM registers.
128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAX_VL-1:64) of the
corresponding destination register remain unchanged.
EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:64) of
the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAX_VL-1:128)
of the destination register are zeroed.
EVEX version: The low quadword element of the destination is updated according to the writemask.
Software should ensure VADDSD is encoded with VEX.L=0. Encoding VADDSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Operation
VADDSD (EVEX encoded version)
IF (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] SRC1[63:0] + SRC2[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 58 /r RM V/V SSE2 Add the low double-precision floating-point value from
xmm2/mem to xmm1 and store the result in xmm1.
ADDSD xmm1, xmm2/m64
VEX.NDS.128.F2.0F.WIG 58 /r RVM V/V AVX Add the low double-precision floating-point value from
xmm3/mem to xmm2 and store the result in xmm1.
VADDSD xmm1, xmm2,
xmm3/m64
EVEX.NDS.LIG.F2.0F.W1 58 /r T1S V/V AVX512F Add the low double-precision floating-point value from
xmm3/m64 to xmm2 and store the result in xmm1 with
writemask k1.
VADDSD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S-RVM ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-17
INSTRUCTION SET REFERENCE, A-Z
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VADDSD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] + SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
ADDSD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] + SRC[63:0]
DEST[MAX_VL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VADDSD __m128d _mm_mask_add_sd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VADDSD __m128d _mm_maskz_add_sd (__mmask8 k, __m128d a, __m128d b);
VADDSD __m128d _mm_add_round_sd (__m128d a, __m128d b, int);
VADDSD __m128d _mm_mask_add_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VADDSD __m128d _mm_maskz_add_round_sd (__mmask8 k, __m128d a, __m128d b, int);
ADDSD __m128d _mm_add_sd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
5-18 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ADDSS—Add Scalar Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Adds the low single-precision floating-point values from the second source operand and the first source operand,
and stores the double-precision floating-point result in the destination operand.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination
operands are XMM registers.
128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAX_VL-1:32) of the
corresponding the destination register remain unchanged.
EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:32) of
the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAX_VL-1:128)
of the destination register are zeroed.
EVEX version: The low doubleword element of the destination is updated according to the writemask.
Software should ensure VADDSS is encoded with VEX.L=0. Encoding VADDSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Operation
VADDSS (EVEX encoded versions)
IF (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] SRC1[31:0] + SRC2[31:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 58 /r RM V/V SSE Add the low single-precision floating-point value from
xmm2/mem to xmm1 and store the result in xmm1.
ADDSS xmm1, xmm2/m32
VEX.NDS.128.F3.0F.WIG 58 /r RVM V/V AVX Add the low single-precision floating-point value from
xmm3/mem to xmm2 and store the result in xmm1.
VADDSS xmm1,xmm2,
xmm3/m32
EVEX.NDS.LIG.F3.0F.W0 58 /r T1S V/V AVX512F Add the low single-precision floating-point value from
xmm3/m32 to xmm2 and store the result in xmm1with
writemask k1.
VADDSS xmm1{k1}{z}, xmm2,
xmm3/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-19
INSTRUCTION SET REFERENCE, A-Z
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VADDSS DEST, SRC1, SRC2 (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] + SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
ADDSS DEST, SRC (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] + SRC[31:0]
DEST[MAX_VL-1:32] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VADDSS __m128 _mm_mask_add_ss (__m128 s, __mmask8 k, __m128 a, __m128 b);
VADDSS __m128 _mm_maskz_add_ss (__mmask8 k, __m128 a, __m128 b);
VADDSS __m128 _mm_add_round_ss (__m128 a, __m128 b, int);
VADDSS __m128 _mm_mask_add_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VADDSS __m128 _mm_maskz_add_round_ss (__mmask8 k, __m128 a, __m128 b, int);
ADDSS __m128 _mm_add_ss (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
5-20 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VALIGND/VALIGNQ—Align Doubleword/Quadword Vectors
Instruction Operand Encoding
Description
Concatenates and shifts right doubleword/quadword elements of the first source operand (the second operand)
and the second source operand (the third operand) into a 1024/512/256-bit intermediate vector. The low
512/256/128-bit of the intermediate vector is written to the destination operand (the first operand) using the
writemask k1. The destination and first source operands are ZMM/YMM/XMM registers. The second source operand
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted
from a 32/64-bit memory location.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1
are computed and stored into zmm1. Elements in zmm1 with the corresponding bit clear in k1 retain their previous
values (merging-masking) or are set to 0 (zeroing-masking).
Operation
VALIGND (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (SRC2 *is memory*) (AND EVEX.b = 1)
THEN
FOR j 0 TO KL-1
i j * 32
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W0 03 /r ib FV V/V AVX512VL Shift right and merge vectors xmm2 and
xmm3/m128/m32bcst with double-word granularity
using imm8 as number of elements to shift, and store the
final result in xmm1, under writemask.
VALIGND xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst, imm8
AVX512F
EVEX.NDS.128.66.0F3A.W1 03 /r ib FV V/V AVX512VL Shift right and merge vectors xmm2 and
xmm3/m128/m64bcst with quad-word granularity using
imm8 as number of elements to shift, and store the final
result in xmm1, under writemask.
VALIGNQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst, imm8
AVX512F
EVEX.NDS.256.66.0F3A.W0 03 /r ib FV V/V AVX512VL Shift right and merge vectors ymm2 and
ymm3/m256/m32bcst with double-word granularity
using imm8 as number of elements to shift, and store the
final result in ymm1, under writemask.
VALIGND ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8
AVX512F
EVEX.NDS.256.66.0F3A.W1 03 /r ib FV V/V AVX512VL Shift right and merge vectors ymm2 and
ymm3/m256/m64bcst with quad-word granularity using
imm8 as number of elements to shift, and store the final
result in ymm1, under writemask.
VALIGNQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8
AVX512F
EVEX.NDS.512.66.0F3A.W0 03 /r ib FV V/V AVX512F Shift right and merge vectors zmm2 and
zmm3/m512/m32bcst with double-word granularity
using imm8 as number of elements to shift, and store the
final result in zmm1, under writemask.
VALIGND zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst, imm8
EVEX.NDS.512.66.0F3A.W1 03 /r ib FV V/V AVX512F Shift right and merge vectors zmm2 and
zmm3/m512/m64bcst with quad-word granularity using
imm8 as number of elements to shift, and store the final
result in zmm1, under writemask.
VALIGNQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-21
INSTRUCTION SET REFERENCE, A-Z
src[i+31:i] SRC2[31:0]
ENDFOR;
ELSE src SRC2
FI
; Concatenate sources
tmp[VL-1:0] src[VL-1:0]
tmp[2VL-1:VL] SRC1[VL-1:0]
; Shift right doubleword elements
IF VL = 128
THEN SHIFT = imm8[1:0]
ELSE
IF VL = 256
THEN SHIFT = imm8[2:0]
ELSE SHIFT = imm8[3:0]
FI
FI;
tmp[2VL-1:0] tmp[2VL-1:0] >> (32*SHIFT)
; Apply writemask
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] tmp[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VALIGNQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256),(8, 512)
IF (SRC2 *is memory*) (AND EVEX.b = 1)
THEN
FOR j 0 TO KL-1
i j * 64
src[i+63:i] SRC2[63:0]
ENDFOR;
ELSE src SRC2
FI
; Concatenate sources
tmp[VL-1:0] src[VL-1:0]
tmp[2VL-1:VL] SRC1[VL-1:0]
; Shift right quadword elements
IF VL = 128
THEN SHIFT = imm8[0]
ELSE
IF VL = 256
THEN SHIFT = imm8[1:0]
ELSE SHIFT = imm8[2:0]
FI
FI;
5-22 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
tmp[2VL-1:0] tmp[2VL-1:0] >> (64*SHIFT)
; Apply writemask
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] tmp[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VALIGND __m512i _mm512_alignr_epi32( __m512i a, __m512i b, int cnt);
VALIGND __m512i _mm512_mask_alignr_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b, int cnt);
VALIGND __m512i _mm512_maskz_alignr_epi32( __mmask16 k, __m512i a, __m512i b, int cnt);
VALIGND __m256i _mm256_mask_alignr_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b, int cnt);
VALIGND __m256i _mm256_maskz_alignr_epi32( __mmask8 k, __m256i a, __m256i b, int cnt);
VALIGND __m128i _mm_mask_alignr_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b, int cnt);
VALIGND __m128i _mm_maskz_alignr_epi32( __mmask8 k, __m128i a, __m128i b, int cnt);
VALIGNQ __m512i _mm512_alignr_epi64( __m512i a, __m512i b, int cnt);
VALIGNQ __m512i _mm512_mask_alignr_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b, int cnt);
VALIGNQ __m512i _mm512_maskz_alignr_epi64( __mmask8 k, __m512i a, __m512i b, int cnt);
VALIGNQ __m256i _mm256_mask_alignr_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b, int cnt);
VALIGNQ __m256i _mm256_maskz_alignr_epi64( __mmask8 k, __m256i a, __m256i b, int cnt);
VALIGNQ __m128i _mm_mask_alignr_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b, int cnt);
VALIGNQ __m128i _mm_maskz_alignr_epi64( __mmask8 k, __m128i a, __m128i b, int cnt);
Exceptions
See Exceptions Type E4NF.
Ref. # 319433-023 5-23
INSTRUCTION SET REFERENCE, A-Z
VBLENDMPD/VBLENDMPS—Blend Float64/Float32 Vectors Using an OpMask Control
Instruction Operand Encoding
Description
Performs an element-by-element blending between float64/float32 elements in the first source operand (the
second operand) with the elements in the second source operand (the third operand) using an opmask register as
select control. The blended result is written to the destination register.
The destination and first source operands are ZMM/YMM/XMM registers. The second source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The opmask register is not used as a writemask for this instruction. Instead, the mask is used as an element
selector: every element of the destination is conditionally selected between first source or second source using the
value of the related mask bit (0 for first source operand, 1 for second source operand).
If EVEX.z is set, the elements with corresponding mask bit value of 0 in the destination operand are zeroed.
Operation
VBLENDMPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no controlmask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F38.W1 65 /r FV V/V AVX512VL Blend double-precision vector xmm2 and double-precision
vector xmm3/m128/m64bcst and store the result in xmm1,
under control mask.
VBLENDMPD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 65 /r FV V/V AVX512VL Blend double-precision vector ymm2 and double-precision
vector ymm3/m256/m64bcst and store the result in ymm1,
under control mask.
VBLENDMPD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 65 /r FV V/V AVX512F Blend double-precision vector zmm2 and double-precision
vector zmm3/m512/m64bcst and store the result in zmm1,
under control mask.
VBLENDMPD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst
EVEX.NDS.128.66.0F38.W0 65 /r FV V/V AVX512VL Blend single-precision vector xmm2 and single-precision
vector xmm3/m128/m32bcst and store the result in xmm1,
under control mask.
VBLENDMPS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 65 /r FV V/V AVX512VL Blend single-precision vector ymm2 and single-precision
vector ymm3/m256/m32bcst and store the result in ymm1,
under control mask.
VBLENDMPS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 65 /r FV V/V AVX512F Blend single-precision vector zmm2 and single-precision
vector zmm3/m512/m32bcst using k1 as select control and
store the result in zmm1.
VBLENDMPS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-24 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[i+63:i] SRC2[63:0]
ELSE
DEST[i+63:i] SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN DEST[i+63:i] SRC1[i+63:i]
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBLENDMPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no controlmask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] SRC2[31:0]
ELSE
DEST[i+31:i] SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN DEST[i+31:i] SRC1[i+31:i]
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VBLENDMPD __m512d _mm512_mask_blend_pd(__mmask8 k, __m512d a, __m512d b);
VBLENDMPD __m256d _mm256_mask_blend_pd(__mmask8 k, __m256d a, __m256d b);
VBLENDMPD __m128d _mm_mask_blend_pd(__mmask8 k, __m128d a, __m128d b);
VBLENDMPS __m512 _mm512_mask_blend_ps(__mmask16 k, __m512 a, __m512 b);
VBLENDMPS __m256 _mm256_mask_blend_ps(__mmask8 k, __m256 a, __m256 b);
VBLENDMPS __m128 _mm_mask_blend_ps(__mmask8 k, __m128 a, __m128 b);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.
Ref. # 319433-023 5-25
INSTRUCTION SET REFERENCE, A-Z
VPBLENDMB/VPBLENDMW—Blend Byte/Word Vectors Using an Opmask Control
Instruction Operand Encoding
Description
Performs an element-by-element blending of byte/word elements between the first source operand byte vector
register and the second source operand byte vector from memory or register, using the instruction mask as
selector. The result is written into the destination byte vector register.
The destination and first source operands are ZMM/YMM/XMM registers. The second source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit memory location.
The mask is not used as a writemask for this instruction. Instead, the mask is used as an element selector: every
element of the destination is conditionally selected between first source or second source using the value of the
related mask bit (0 for first source, 1 for second source).
Operation
VPBLENDMB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SRC2[i+7:i]
ELSE
IF *merging-masking* ; merging-masking
THEN DEST[i+7:i] SRC1[i+7:i]
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F38.W0 66 /r FVM V/V AVX512VL Blend byte integer vector xmm2 and byte vector
xmm3/m128 and store the result in xmm1, under control
mask.
VPBLENDMB xmm1 {k1}{z},
xmm2, xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F38.W0 66 /r FVM V/V AVX512VL Blend byte integer vector ymm2 and byte vector
ymm3/m256 and store the result in ymm1, under control
mask.
VPBLENDMB ymm1 {k1}{z},
ymm2, ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F38.W0 66 /r FVM V/V AVX512BW Blend byte integer vector zmm2 and byte vector
zmm3/m512 and store the result in zmm1, under control
mask.
VPBLENDMB zmm1 {k1}{z},
zmm2, zmm3/m512
EVEX.NDS.128.66.0F38.W1 66 /r FVM V/V AVX512VL Blend word integer vector xmm2 and word vector
xmm3/m128 and store the result in xmm1, under control
mask.
VPBLENDMW xmm1 {k1}{z},
xmm2, xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F38.W1 66 /r FVM V/V AVX512VL Blend word integer vector ymm2 and word vector
ymm3/m256 and store the result in ymm1, under control
mask.
VPBLENDMW ymm1 {k1}{z},
ymm2, ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F38.W1 66 /r FVM V/V AVX512BW Blend word integer vector zmm2 and word vector
zmm3/m512 and store the result in zmm1, under control
mask.
VPBLENDMW zmm1 {k1}{z},
zmm2, zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-26 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ELSE ; zeroing-masking
DEST[i+7:i] 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0;
VPBLENDMW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SRC2[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN DEST[i+15:i] SRC1[i+15:i]
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPBLENDMB __m512i _mm512_mask_blend_epi8(__mmask64 m, __m512i a, __m512i b);
VPBLENDMB __m256i _mm256_mask_blend_epi8(__mmask32 m, __m256i a, __m256i b);
VPBLENDMB __m128i _mm_mask_blend_epi8(__mmask16 m, __m128i a, __m128i b);
VPBLENDMW __m512i _mm512_mask_blend_epi16(__mmask32 m, __m512i a, __m512i b);
VPBLENDMW __m256i _mm256_mask_blend_epi16(__mmask16 m, __m256i a, __m256i b);
VPBLENDMW __m128i _mm_mask_blend_epi16(__mmask8 m, __m128i a, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.
Ref. # 319433-023 5-27
INSTRUCTION SET REFERENCE, A-Z
VPBLENDMD/VPBLENDMQ—Blend Int32/Int64 Vectors Using an OpMask Control
Instruction Operand Encoding
Description
Performs an element-by-element blending of dword/qword elements between the first source operand (the second
operand) and the elements of the second source operand (the third operand) using an opmask register as select
control. The blended result is written into the destination.
The destination and first source operands are ZMM registers. The second source operand can be a ZMM register, a
512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location.
The opmask register is not used as a writemask for this instruction. Instead, the mask is used as an element
selector: every element of the destination is conditionally selected between first source or second source using the
value of the related mask bit (0 for the first source operand, 1 for the second source operand).
If EVEX.z is set, the elements with corresponding mask bit value of 0 in the destination operand are zeroed.
Operation
VPBLENDMD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no controlmask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F38.W0 64 /r FV V/V AVX512VL Blend doubleword integer vector xmm2 and doubleword
vector xmm3/m128/m32bcst and store the result in
xmm1, under control mask.
VPBLENDMD xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 64 /r FV V/V AVX512VL Blend doubleword integer vector ymm2 and doubleword
vector ymm3/m256/m32bcst and store the result in
ymm1, under control mask.
VPBLENDMD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 64 /r FV V/V AVX512F Blend doubleword integer vector zmm2 and doubleword
vector zmm3/m512/m32bcst and store the result in
zmm1, under control mask.
VPBLENDMD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 64 /r FV V/V AVX512VL Blend quadword integer vector xmm2 and quadword
vector xmm3/m128/m64bcst and store the result in
xmm1, under control mask.
VPBLENDMQ xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 64 /r FV V/V AVX512VL Blend quadword integer vector ymm2 and quadword
vector ymm3/m256/m64bcst and store the result in
ymm1, under control mask.
VPBLENDMQ ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 64 /r FV V/V AVX512F Blend quadword integer vector zmm2 and quadword
vector zmm3/m512/m64bcst and store the result in
zmm1, under control mask.
VPBLENDMQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-28 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[i+31:i] SRC2[31:0]
ELSE
DEST[i+31:i] SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN DEST[i+31:i] SRC1[i+31:i]
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0;
VPBLENDMD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no controlmask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] SRC2[31:0]
ELSE
DEST[i+31:i] SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN DEST[i+31:i] SRC1[i+31:i]
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPBLENDMD __m512i _mm512_mask_blend_epi32(__mmask16 k, __m512i a, __m512i b);
VPBLENDMD __m256i _mm256_mask_blend_epi32(__mmask8 m, __m256i a, __m256i b);
VPBLENDMD __m128i _mm_mask_blend_epi32(__mmask8 m, __m128i a, __m128i b);
VPBLENDMQ __m512i _mm512_mask_blend_epi64(__mmask8 k, __m512i a, __m512i b);
VPBLENDMQ __m256i _mm256_mask_blend_epi64(__mmask8 m, __m256i a, __m256i b);
VPBLENDMQ __m128i _mm_mask_blend_epi64(__mmask8 m, __m128i a, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.
Ref. # 319433-023 5-29
INSTRUCTION SET REFERENCE, A-Z
ANDPD—Bitwise Logical AND of Packed Double Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a bitwise logical AND of the two, four or eight packed double-precision floating-point values from the first
source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 54 /r RM V/V SSE2 Return the bitwise logical AND of packed double-precision
floating-point values in xmm1 and xmm2/mem.
ANDPD xmm1, xmm2/m128
VEX.NDS.128.66.0F 54 /r RVM V/V AVX Return the bitwise logical AND of packed double-precision
floating-point values in xmm2 and xmm3/mem.
VANDPD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F 54 /r RVM V/V AVX Return the bitwise logical AND of packed double-precision
floating-point values in ymm2 and ymm3/mem.
VANDPD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.W1 54 /r FV V/V AVX512VL Return the bitwise logical AND of packed double-precision
floating-point values in xmm2 and xmm3/m128/m64bcst
subject to writemask k1.
VANDPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512DQ
EVEX.NDS.256.66.0F.W1 54 /r FV V/V AVX512VL Return the bitwise logical AND of packed double-precision
floating-point values in ymm2 and ymm3/m256/m64bcst
subject to writemask k1.
VANDPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512DQ
EVEX.NDS.512.66.0F.W1 54 /r FV V/V AVX512DQ Return the bitwise logical AND of packed double-precision
floating-point values in zmm2 and zmm3/m512/m64bcst
subject to writemask k1.
VANDPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-30 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VANDPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] SRC1[i+63:i] BITWISE AND SRC2[63:0]
ELSE
DEST[i+63:i] SRC1[i+63:i] BITWISE AND SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] = 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VANDPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[191:128] SRC1[191:128] BITWISE AND SRC2[191:128]
DEST[255:192] SRC1[255:192] BITWISE AND SRC2[255:192]
DEST[MAX_VL-1:256] 0
VANDPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE AND SRC2[127:64]
DEST[MAX_VL-1:128] 0
ANDPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] BITWISE AND SRC[63:0]
DEST[127:64] DEST[127:64] BITWISE AND SRC[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VANDPD __m512d _mm512_and_pd (__m512d a, __m512d b);
VANDPD __m512d _mm512_mask_and_pd (__m512d s, __mmask8 k, __m512d a, __m512d b);
VANDPD __m512d _mm512_maskz_and_pd (__mmask8 k, __m512d a, __m512d b);
VANDPD __m256d _mm256_mask_and_pd (__m256d s, __mmask8 k, __m256d a, __m256d b);
VANDPD __m256d _mm256_maskz_and_pd (__mmask8 k, __m256d a, __m256d b);
VANDPD __m128d _mm_mask_and_pd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VANDPD __m128d _mm_maskz_and_pd (__mmask8 k, __m128d a, __m128d b);
VANDPD __m256d _mm256_and_pd (__m256d a, __m256d b);
ANDPD __m128d _mm_and_pd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
None
Ref. # 319433-023 5-31
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
VEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
5-32 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ANDPS—Bitwise Logical AND of Packed Single Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a bitwise logical AND of the four, eight or sixteen packed single-precision floating-point values from the
first source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 54 /r RM V/V SSE Return the bitwise logical AND of packed single-precision
floating-point values in xmm1 and xmm2/mem.
ANDPS xmm1, xmm2/m128
VEX.NDS.128.0F 54 /r RVM V/V AVX Return the bitwise logical AND of packed single-precision
floating-point values in xmm2 and xmm3/mem.
VANDPS xmm1,xmm2,
xmm3/m128
VEX.NDS.256.0F 54 /r RVM V/V AVX Return the bitwise logical AND of packed single-precision
floating-point values in ymm2 and ymm3/mem.
VANDPS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.0F.W0 54 /r FV V/V AVX512VL Return the bitwise logical AND of packed single-precision
floating-point values in xmm2 and xmm3/m128/m32bcst
subject to writemask k1.
VANDPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512DQ
EVEX.NDS.256.0F.W0 54 /r FV V/V AVX512VL Return the bitwise logical AND of packed single-precision
floating-point values in ymm2 and ymm3/m256/m32bcst
subject to writemask k1.
VANDPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512DQ
EVEX.NDS.512.0F.W0 54 /r FV V/V AVX512DQ Return the bitwise logical AND of packed single-precision
floating-point values in zmm2 and zmm3/m512/m32bcst
subject to writemask k1.
VANDPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-33
INSTRUCTION SET REFERENCE, A-Z
Operation
VANDPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] SRC1[i+31:i] BITWISE AND SRC2[31:0]
ELSE
DEST[i+31:i] SRC1[i+31:i] BITWISE AND SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0;
VANDPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[159:128] SRC1[159:128] BITWISE AND SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE AND SRC2[191:160]
DEST[223:192] SRC1[223:192] BITWISE AND SRC2[223:192]
DEST[255:224] SRC1[255:224] BITWISE AND SRC2[255:224].
DEST[MAX_VL-1:256] 0;
VANDPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE AND SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE AND SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE AND SRC2[127:96]
DEST[MAX_VL-1:128] 0;
ANDPS (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] BITWISE AND SRC[31:0]
DEST[63:32] DEST[63:32] BITWISE AND SRC[63:32]
DEST[95:64] DEST[95:64] BITWISE AND SRC[95:64]
DEST[127:96] DEST[127:96] BITWISE AND SRC[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VANDPS __m512 _mm512_and_ps (__m512 a, __m512 b);
VANDPS __m512 _mm512_mask_and_ps (__m512 s, __mmask16 k, __m512 a, __m512 b);
VANDPS __m512 _mm512_maskz_and_ps (__mmask16 k, __m512 a, __m512 b);
VANDPS __m256 _mm256_mask_and_ps (__m256 s, __mmask8 k, __m256 a, __m256 b);
VANDPS __m256 _mm256_maskz_and_ps (__mmask8 k, __m256 a, __m256 b);
VANDPS __m128 _mm_mask_and_ps (__m128 s, __mmask8 k, __m128 a, __m128 b);
5-34 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VANDPS __m128 _mm_maskz_and_ps (__mmask8 k, __m128 a, __m128 b);
VANDPS __m256 _mm256_and_ps (__m256 a, __m256 b);
ANDPS __m128 _mm_and_ps (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-35
INSTRUCTION SET REFERENCE, A-Z
ANDNPD—Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a bitwise logical AND NOT of the two, four or eight packed double-precision floating-point values from the
first source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 55 /r RM V/V SSE2 Return the bitwise logical AND NOT of packed double-
precision floating-point values in xmm1 and xmm2/mem.
ANDNPD xmm1, xmm2/m128
VEX.NDS.128.66.0F 55 /r RVM V/V AVX Return the bitwise logical AND NOT of packed double-
precision floating-point values in xmm2 and xmm3/mem.
VANDNPD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F 55/r RVM V/V AVX Return the bitwise logical AND NOT of packed double-
precision floating-point values in ymm2 and ymm3/mem.
VANDNPD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.W1 55 /r FV V/V AVX512VL Return the bitwise logical AND NOT of packed double-
precision floating-point values in xmm2 and
xmm3/m128/m64bcst subject to writemask k1.
VANDNPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512DQ
EVEX.NDS.256.66.0F.W1 55 /r FV V/V AVX512VL Return the bitwise logical AND NOT of packed double-
precision floating-point values in ymm2 and
ymm3/m256/m64bcst subject to writemask k1.
VANDNPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512DQ
EVEX.NDS.512.66.0F.W1 55 /r FV V/V AVX512DQ Return the bitwise logical AND NOT of packed double-
precision floating-point values in zmm2 and
zmm3/m512/m64bcst subject to writemask k1.
VANDNPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-36 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VANDNPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] (NOT(SRC1[i+63:i])) BITWISE AND SRC2[63:0]
ELSE
DEST[i+63:i] (NOT(SRC1[i+63:i])) BITWISE AND SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] = 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VANDNPD (VEX.256 encoded version)
DEST[63:0] (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[191:128] (NOT(SRC1[191:128])) BITWISE AND SRC2[191:128]
DEST[255:192] (NOT(SRC1[255:192])) BITWISE AND SRC2[255:192]
DEST[MAX_VL-1:256] 0
VANDNPD (VEX.128 encoded version)
DEST[63:0] (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]
DEST[127:64] (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]
DEST[MAX_VL-1:128] 0
ANDNPD (128-bit Legacy SSE version)
DEST[63:0] (NOT(DEST[63:0])) BITWISE AND SRC[63:0]
DEST[127:64] (NOT(DEST[127:64])) BITWISE AND SRC[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VANDNPD __m512d _mm512_andnot_pd (__m512d a, __m512d b);
VANDNPD __m512d _mm512_mask_andnot_pd (__m512d s, __mmask8 k, __m512d a, __m512d b);
VANDNPD __m512d _mm512_maskz_andnot_pd (__mmask8 k, __m512d a, __m512d b);
VANDNPD __m256d _mm256_mask_andnot_pd (__m256d s, __mmask8 k, __m256d a, __m256d b);
VANDNPD __m256d _mm256_maskz_andnot_pd (__mmask8 k, __m256d a, __m256d b);
VANDNPD __m128d _mm_mask_andnot_pd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VANDNPD __m128d _mm_maskz_andnot_pd (__mmask8 k, __m128d a, __m128d b);
VANDNPD __m256d _mm256_andnot_pd (__m256d a, __m256d b);
ANDNPD __m128d _mm_andnot_pd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
None
Ref. # 319433-023 5-37
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
VEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
5-38 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ANDNPS—Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a bitwise logical AND NOT of the four, eight or sixteen packed single-precision floating-point values from
the first source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 55 /r RM V/V SSE Return the bitwise logical AND NOT of packed single-precision
floating-point values in xmm1 and xmm2/mem.
ANDNPS xmm1, xmm2/m128
VEX.NDS.128.0F 55 /r RVM V/V AVX Return the bitwise logical AND NOT of packed single-precision
floating-point values in xmm2 and xmm3/mem.
VANDNPS xmm1, xmm2,
xmm3/m128
VEX.NDS.256.0F 55 /r RVM V/V AVX Return the bitwise logical AND NOT of packed single-precision
floating-point values in ymm2 and ymm3/mem.
VANDNPS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.0F.W0 54 /r FV V/V AVX512VL Return the bitwise logical AND of packed single-precision
floating-point values in xmm2 and xmm3/m128/m32bcst
subject to writemask k1.
VANDPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512DQ
EVEX.NDS.256.0F.W0 54 /r FV V/V AVX512VL Return the bitwise logical AND of packed single-precision
floating-point values in ymm2 and ymm3/m256/m32bcst
subject to writemask k1.
VANDPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512DQ
EVEX.NDS.512.0F.W0 54 /r FV V/V AVX512DQ Return the bitwise logical AND of packed single-precision
floating-point values in zmm2 and zmm3/m512/m32bcst
subject to writemask k1.
VANDPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-39
INSTRUCTION SET REFERENCE, A-Z
Operation
VANDNPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] (NOT(SRC1[i+31:i])) BITWISE AND SRC2[31:0]
ELSE
DEST[i+31:i] (NOT(SRC1[i+31:i])) BITWISE AND SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] = 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VANDNPS (VEX.256 encoded version)
DEST[31:0] (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96] (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[159:128] (NOT(SRC1[159:128])) BITWISE AND SRC2[159:128]
DEST[191:160] (NOT(SRC1[191:160])) BITWISE AND SRC2[191:160]
DEST[223:192] (NOT(SRC1[223:192])) BITWISE AND SRC2[223:192]
DEST[255:224] (NOT(SRC1[255:224])) BITWISE AND SRC2[255:224].
DEST[MAX_VL-1:256] 0
VANDNPS (VEX.128 encoded version)
DEST[31:0] (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]
DEST[63:32] (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]
DEST[95:64] (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]
DEST[127:96] (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]
DEST[MAX_VL-1:128] 0
ANDNPS (128-bit Legacy SSE version)
DEST[31:0] (NOT(DEST[31:0])) BITWISE AND SRC[31:0]
DEST[63:32] (NOT(DEST[63:32])) BITWISE AND SRC[63:32]
DEST[95:64] (NOT(DEST[95:64])) BITWISE AND SRC[95:64]
DEST[127:96] (NOT(DEST[127:96])) BITWISE AND SRC[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VANDNPS __m512 _mm512_andnot_ps (__m512 a, __m512 b);
VANDNPS __m512 _mm512_mask_andnot_ps (__m512 s, __mmask16 k, __m512 a, __m512 b);
VANDNPS __m512 _mm512_maskz_andnot_ps (__mmask16 k, __m512 a, __m512 b);
VANDNPS __m256 _mm256_mask_andnot_ps (__m256 s, __mmask8 k, __m256 a, __m256 b);
VANDNPS __m256 _mm256_maskz_andnot_ps (__mmask8 k, __m256 a, __m256 b);
VANDNPS __m128 _mm_mask_andnot_ps (__m128 s, __mmask8 k, __m128 a, __m128 b);
5-40 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VANDNPS __m128 _mm_maskz_andnot_ps (__mmask8 k, __m128 a, __m128 b);
VANDNPS __m256 _mm256_andnot_ps (__m256 a, __m256 b);
ANDNPS __m128 _mm_andnot_ps (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-41
INSTRUCTION SET REFERENCE, A-Z
VBROADCAST—Load with Broadcast Floating-Point Data
Opcode/
Instruction
Op /
En
64/32
bit
Mode
Support
CPUID
Feature
Flag
Description
VEX.128.66.0F38.W0 18 /r RM V/V AVX Broadcast single-precision floating-point element in
mem to four locations in xmm1.
VBROADCASTSS xmm1, m32
VEX.256.66.0F38.W0 18 /r RM V/V AVX Broadcast single-precision floating-point element in
mem to eight locations in ymm1.
VBROADCASTSS ymm1, m32
VEX.256.66.0F38.W0 19 /r RM V/V AVX Broadcast double-precision floating-point element in
mem to four locations in ymm1.
VBROADCASTSD ymm1, m64
VEX.256.66.0F38.W0 1A /r RM V/V AVX Broadcast 128 bits of floating-point data in mem to
low and high 128-bits in ymm1.
VBROADCASTF128 ymm1, m128
EVEX.256.66.0F38.W1 19 /r T1S V/V AVX512VL Broadcast low double-precision floating-point element
in xmm2/m64 to four locations in ymm1 using
writemask k1.
VBROADCASTSD ymm1 {k1}{z},
xmm2/m64
AVX512F
EVEX.512.66.0F38.W1 19 /r T1S V/V AVX512F Broadcast low double-precision floating-point element
in xmm2/m64 to eight locations in zmm1 using
writemask k1.
VBROADCASTSD zmm1 {k1}{z},
xmm2/m64
EVEX.256.66.0F38.W0 19 /r T2 V/V AVX512VL Broadcast two single-precision floating-point elements
in xmm2/m64 to locations in ymm1 using writemask
k1.
VBROADCASTF32X2 ymm1 {k1}{z},
xmm2/m64
AVX512DQ
EVEX.512.66.0F38.W0 19 /r T2 V/V AVX512DQ Broadcast two single-precision floating-point elements
in xmm2/m64 to locations in zmm1 using writemask
k1.
VBROADCASTF32X2 zmm1 {k1}{z},
xmm2/m64
EVEX.128.66.0F38.W0 18 /r T1S V/V AVX512VL Broadcast low single-precision floating-point element
in xmm2/m32 to all locations in xmm1 using
writemask k1.
VBROADCASTSS xmm1 {k1}{z},
xmm2/m32
AVX512F
EVEX.256.66.0F38.W0 18 /r T1S V/V AVX512VL Broadcast low single-precision floating-point element
in xmm2/m32 to all locations in ymm1 using
writemask k1.
VBROADCASTSS ymm1 {k1}{z},
xmm2/m32
AVX512F
EVEX.512.66.0F38.W0 18 /r T1S V/V AVX512F Broadcast low single-precision floating-point element
in xmm2/m32 to all locations in zmm1 using
writemask k1.
VBROADCASTSS zmm1 {k1}{z},
xmm2/m32
EVEX.256.66.0F38.W0 1A /r T4 V/V AVX512VL Broadcast 128 bits of 4 single-precision floating-point
data in mem to locations in ymm1 using writemask k1.
VBROADCASTF32X4 ymm1 {k1}{z},
m128
AVX512F
EVEX.512.66.0F38.W0 1A /r T4 V/V AVX512F Broadcast 128 bits of 4 single-precision floating-point
data in mem to locations in zmm1 using writemask k1.
VBROADCASTF32X4 zmm1 {k1}{z},
m128
5-42 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
VBROADCASTSD/VBROADCASTSS/VBROADCASTF128 load floating-point values as one tuple from the source
operand (second operand) in memory and broadcast to all elements of the destination operand (first operand).
VEX256-encoded versions: The destination operand is a YMM register. The source operand is either a 32-bit,
64-bit, or 128-bit memory location. Register source encodings are reserved and will #UD. Bits (MAX_VL-
1:256) of the destination register are zeroed.
EVEX-encoded versions: The destination operand is a ZMM/YMM/XMM register and updated according to the
writemask k1. The source operand is either a 32-bit, 64-bit memory location or the low
doubleword/quadword element of an XMM register.
VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF64X2/VBROADCASTF32X8/VBROADCASTF64X4 load
floating-point values as tuples from the source operand (the second operand) in memory or register and broadcast
to all elements of the destination operand (the first operand). The destination operand is a YMM/ZMM register
updated according to the writemask k1. The source operand is either a register or 64-bit/128-bit/256-bit memory
location.
VBROADCASTSD and VBROADCASTF128,F32x4 and F64x2 are only supported as 256-bit and 512-bit wide
versions and up. VBROADCASTSS is supported in 128-bit, 256-bit and 512-bit wide versions. F32x8 and F64x4 are
only supported as 512-bit wide versions.
VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF32X8 have 32-bit granularity. VBROADCASTF64X2 and
VBROADCASTF64X4 have 64-bit granularity.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
If VBROADCASTSD or VBROADCASTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded
with VEX.L= 0 will cause an #UD exception.
EVEX.256.66.0F38.W1 1A /r T2 V/V AVX512VL Broadcast 128 bits of 2 double-precision floating-point
data in mem to locations in ymm1 using writemask k1.
VBROADCASTF64X2 ymm1 {k1}{z},
m128
AVX512DQ
EVEX.512.66.0F38.W1 1A /r T2 V/V AVX512DQ Broadcast 128 bits of 2 double-precision floating-point
data in mem to locations in zmm1 using writemask k1.
VBROADCASTF64X2 zmm1 {k1}{z},
m128
EVEX.512.66.0F38.W0 1B /r T8 V/V AVX512DQ Broadcast 256 bits of 8 single-precision floating-point
data in mem to locations in zmm1 using writemask k1.
VBROADCASTF32X8 zmm1 {k1}{z},
m256
EVEX.512.66.0F38.W1 1B /r T4 V/V AVX512F Broadcast 256 bits of 4 double-precision floating-point
data in mem to locations in zmm1 using writemask k1.
VBROADCASTF64X4 zmm1 {k1}{z},
m256
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1S, T2, T4, T8 ModRM:reg (w) ModRM:r/m (r) NA NA
Opcode/
Instruction
Op /
En
64/32
bit
Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-43
INSTRUCTION SET REFERENCE, A-Z
Figure 5-1. VBROADCASTSS Operation (VEX.256 encoded version)
Figure 5-2. VBROADCASTSS Operation (VEX.128-bit version)
Figure 5-3. VBROADCASTSD Operation (VEX.256-bit version)
Figure 5-4. VBROADCASTF128 Operation (VEX.256-bit version)
DEST
m32 X0
X0X0 X0X0 X0X0 X0X0
DEST
m32 X0
X0X0 X00X00 00
DEST
m64 X0
X0X0X0X0
DEST
m128 X0
X0X0
5-44 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VBROADCASTSS (128 bit version VEX and legacy)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[MAX_VL-1:128] 0
VBROADCASTSS (VEX.256 encoded version)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[159:128] temp
DEST[191:160] temp
DEST[223:192] temp
DEST[255:224] temp
DEST[MAX_VL-1:256] 0
VBROADCASTSS (EVEX encoded versions)
(KL, VL) (4, 128), (8, 256),= (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[31:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBROADCASTSD (VEX.256 encoded version)
temp SRC[63:0]
DEST[63:0] temp
Figure 5-5. VBROADCASTF64X4 Operation (512-bit version with writemask all 1s)
DEST
m256 X0
X0X0
Ref. # 319433-023 5-45
INSTRUCTION SET REFERENCE, A-Z
DEST[127:64] temp
DEST[191:128] temp
DEST[255:192] temp
DEST[MAX_VL-1:256] 0
VBROADCASTSD (EVEX encoded versions)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBROADCASTF32x2 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
n (j mod 2) * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[n+31:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBROADCASTF128 (VEX.256 encoded version)
temp SRC[127:0]
DEST[127:0] temp
DEST[255:128] temp
DEST[MAX_VL-1:256] 0
VBROADCASTF32X4 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1
i j* 32
n (j modulo 4) * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[n+31:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
5-46 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBROADCASTF64X2 (EVEX encoded versions)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
n (j modulo 2) * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[n+63:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] = 0
FI
FI;
ENDFOR;
VBROADCASTF32X8 (EVEX.U1.512 encoded version)
FOR j 0 TO 15
i j * 32
n (j modulo 8) * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[n+31:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBROADCASTF64X4 (EVEX.512 encoded version)
FOR j 0 TO 7
i j * 64
n (j modulo 4) * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[n+63:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-47
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VBROADCASTF32x2 __m512 _mm512_broadcast_f32x2( __m128 a);
VBROADCASTF32x2 __m512 _mm512_mask_broadcast_f32x2(__m512 s, __mmask16 k, __m128 a);
VBROADCASTF32x2 __m512 _mm512_maskz_broadcast_f32x2( __mmask16 k, __m128 a);
VBROADCASTF32x2 __m256 _mm256_broadcast_f32x2( __m128 a);
VBROADCASTF32x2 __m256 _mm256_mask_broadcast_f32x2(__m256 s, __mmask8 k, __m128 a);
VBROADCASTF32x2 __m256 _mm256_maskz_broadcast_f32x2( __mmask8 k, __m128 a);
VBROADCASTF32x4 __m512 _mm512_broadcast_f32x4( __m128 a);
VBROADCASTF32x4 __m512 _mm512_mask_broadcast_f32x4(__m512 s, __mmask16 k, __m128 a);
VBROADCASTF32x4 __m512 _mm512_maskz_broadcast_f32x4( __mmask16 k, __m128 a);
VBROADCASTF32x4 __m256 _mm256_broadcast_f32x4( __m128 a);
VBROADCASTF32x4 __m256 _mm256_mask_broadcast_f32x4(__m256 s, __mmask8 k, __m128 a);
VBROADCASTF32x4 __m256 _mm256_maskz_broadcast_f32x4( __mmask8 k, __m128 a);
VBROADCASTF32x8 __m512 _mm512_broadcast_f32x8( __m256 a);
VBROADCASTF32x8 __m512 _mm512_mask_broadcast_f32x8(__m512 s, __mmask16 k, __m256 a);
VBROADCASTF32x8 __m512 _mm512_maskz_broadcast_f32x8( __mmask16 k, __m256 a);
VBROADCASTF64x2 __m512d _mm512_broadcast_f64x2( __m128d a);
VBROADCASTF64x2 __m512d _mm512_mask_broadcast_f64x2(__m512d s, __mmask8 k, __m128d a);
VBROADCASTF64x2 __m512d _mm512_maskz_broadcast_f64x2( __mmask8 k, __m128d a);
VBROADCASTF64x2 __m256d _mm256_broadcast_f64x2( __m128d a);
VBROADCASTF64x2 __m256d _mm256_mask_broadcast_f64x2(__m256d s, __mmask8 k, __m128d a);
VBROADCASTF64x2 __m256d _mm256_maskz_broadcast_f64x2( __mmask8 k, __m128d a);
VBROADCASTF64x4 __m512d _mm512_broadcast_f64x4( __m256d a);
VBROADCASTF64x4 __m512d _mm512_mask_broadcast_f64x4(__m512d s, __mmask8 k, __m256d a);
VBROADCASTF64x4 __m512d _mm512_maskz_broadcast_f64x4( __mmask8 k, __m256d a);
VBROADCASTSD __m512d _mm512_broadcastsd_pd( __m128d a);
VBROADCASTSD __m512d _mm512_mask_broadcastsd_pd(__m512d s, __mmask8 k, __m128d a);
VBROADCASTSD __m512d _mm512_maskz_broadcastsd_pd(__mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_broadcastsd_pd(__m128d a);
VBROADCASTSD __m256d _mm256_mask_broadcastsd_pd(__m256d s, __mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_maskz_broadcastsd_pd( __mmask8 k, __m128d a);
VBROADCASTSD __m256d _mm256_broadcast_sd(double *a);
VBROADCASTSS __m512 _mm512_broadcastss_ps( __m128 a);
VBROADCASTSS __m512 _mm512_mask_broadcastss_ps(__m512 s, __mmask16 k, __m128 a);
VBROADCASTSS __m512 _mm512_maskz_broadcastss_ps( __mmask16 k, __m128 a);
VBROADCASTSS __m256 _mm256_broadcastss_ps(__m128 a);
VBROADCASTSS __m256 _mm256_mask_broadcast_ss(__m256 s, __mmask8 k, __m128 a);
VBROADCASTSS __m256 _mm256_maskz_broadcast_ss( __mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_broadcastss_ps(__m128 a);
VBROADCASTSS __m128 _mm_mask_broadcast_ss(__m128 s, __mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_maskz_broadcast_ss( __mmask8 k, __m128 a);
VBROADCASTSS __m128 _mm_broadcast_ss(float *a);
VBROADCASTSS __m256 _mm256_broadcast_ss(float *a);
VBROADCASTF128 __m256 _mm256_broadcast_ps(__m128 * a);
VBROADCASTF128 __m256d _mm256_broadcast_pd(__m128d * a);
Exceptions
VEX-encoded instructions, see Exceptions Type 6;
EVEX-encoded instructions, see Exceptions Type E6.
#UD If VEX.L = 0 for VBROADCASTSD or VBROADCASTF128.
If EVEX.L’L = 0 for VBROADCASTSD/VBROADCASTF32X2/VBROADCASTF32X4/VBROADCASTF64X2.
If EVEX.L’L < 10b for VBROADCASTF32X8/VBROADCASTF64X4.
5-48 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPBROADCASTB/W/D/Q—Load with Broadcast Integer Data from General Purpose Register
Instruction Operand Encoding
Description
Broadcasts a 8-bit, 16-bit, 32-bit or 64-bit value from a general-purpose register (the second operand) to all the
locations in the destination vector register (the first operand) using the writemask k1.
Opcode/
Instruction
Op /
En
64/32
bit
Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 7A /r T1S V/V AVX512VL Broadcast an 8-bit value from a GPR to all bytes in the
128-bit destination subject to writemask k1.
VPBROADCASTB xmm1 {k1}{z}, reg AVX512BW
EVEX.256.66.0F38.W0 7A /r T1S V/V AVX512VL Broadcast an 8-bit value from a GPR to all bytes in the
256-bit destination subject to writemask k1.
VPBROADCASTB ymm1 {k1}{z}, reg AVX512BW
EVEX.512.66.0F38.W0 7A /r T1S V/V AVX512BW Broadcast an 8-bit value from a GPR to all bytes in the
512-bit destination subject to writemask k1.
VPBROADCASTB zmm1 {k1}{z}, reg
EVEX.128.66.0F38.W0 7B /r T1S V/V AVX512VL Broadcast a 16-bit value from a GPR to all words in the
128-bit destination subject to writemask k1.
VPBROADCASTW xmm1 {k1}{z}, reg AVX512BW
EVEX.256.66.0F38.W0 7B /r T1S V/V AVX512VL Broadcast a 16-bit value from a GPR to all words in the
256-bit destination subject to writemask k1.
VPBROADCASTW ymm1 {k1}{z}, reg AVX512BW
EVEX.512.66.0F38.W0 7B /r T1S V/V AVX512BW Broadcast a 16-bit value from a GPR to all words in the
512-bit destination subject to writemask k1.
VPBROADCASTW zmm1 {k1}{z}, reg
EVEX.128.66.0F38.W0 7C /r T1S V/V AVX512VL Broadcast a 32-bit value from a GPR to all double-words
in the 128-bit destination subject to writemask k1.
VPBROADCASTD xmm1 {k1}{z}, r32 AVX512F
EVEX.256.66.0F38.W0 7C /r T1S V/V AVX512VL Broadcast a 32-bit value from a GPR to all double-words
in the 256-bit destination subject to writemask k1.
VPBROADCASTD ymm1 {k1}{z}, r32 AVX512F
EVEX.512.66.0F38.W0 7C /r T1S V/V AVX512F Broadcast a 32-bit value from a GPR to all double-words
in the 512-bit destination subject to writemask k1.
VPBROADCASTD zmm1 {k1}{z}, r32
EVEX.128.66.0F38.W1 7C /r T1S V/N.E.1AVX512VL Broadcast a 64-bit value from a GPR to all quad-words in
the 128-bit destination subject to writemask k1.
VPBROADCASTQ xmm1 {k1}{z}, r64 AVX512F
EVEX.256.66.0F38.W1 7C /r T1S V/N.E.1AVX512VL Broadcast a 64-bit value from a GPR to all quad-words in
the 256-bit destination subject to writemask k1.
VPBROADCASTQ ymm1 {k1}{z}, r64 AVX512F
EVEX.512.66.0F38.W1 7C /r T1S V/N.E.1
NOTES:
1. EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is used.
AVX512F Broadcast a 64-bit value from a GPR to all quad-words in
the 512-bit destination subject to writemask k1.
VPBROADCASTQ zmm1 {k1}{z}, r64
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-49
INSTRUCTION SET REFERENCE, A-Z
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VPBROADCASTB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SRC[7:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPBROADCASTW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SRC[15:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPBROADCASTD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[31:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-50 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPBROADCASTQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPBROADCASTB __m512i _mm512_mask_set1_epi8(__m512i s, __mmask64 k, int a);
VPBROADCASTB __m512i _mm512_maskz_set1_epi8( __mmask64 k, int a);
VPBROADCASTB __m256i _mm256_mask_set1_epi8(__m256i s, __mmask32 k, int a);
VPBROADCASTB __m256i _mm256_maskz_set1_epi8( __mmask32 k, int a);
VPBROADCASTB __m128i _mm_mask_set1_epi8(__m128i s, __mmask16 k, int a);
VPBROADCASTB __m128i _mm_maskz_set1_epi8( __mmask16 k, int a);
VPBROADCASTD __m512i _mm512_mask_set1_epi32(__m512i s, __mmask16 k, int a);
VPBROADCASTD __m512i _mm512_maskz_set1_epi32( __mmask16 k, int a);
VPBROADCASTD __m256i _mm256_mask_set1_epi32(__m256i s, __mmask8 k, int a);
VPBROADCASTD __m256i _mm256_maskz_set1_epi32( __mmask8 k, int a);
VPBROADCASTD __m128i _mm_mask_set1_epi32(__m128i s, __mmask8 k, int a);
VPBROADCASTD __m128i _mm_maskz_set1_epi32( __mmask8 k, int a);
VPBROADCASTQ __m512i _mm512_mask_set1_epi64(__m512i s, __mmask8 k, __int64 a);
VPBROADCASTQ __m512i _mm512_maskz_set1_epi64( __mmask8 k, __int64 a);
VPBROADCASTQ __m256i _mm256_mask_set1_epi64(__m256i s, __mmask8 k, __int64 a);
VPBROADCASTQ __m256i _mm256_maskz_set1_epi64( __mmask8 k, __int64 a);
VPBROADCASTQ __m128i _mm_mask_set1_epi64(__m128i s, __mmask8 k, __int64 a);
VPBROADCASTQ __m128i _mm_maskz_set1_epi64( __mmask8 k, __int64 a);
VPBROADCASTW __m512i _mm512_mask_set1_epi16(__m512i s, __mmask32 k, int a);
VPBROADCASTW __m512i _mm512_maskz_set1_epi16( __mmask32 k, int a);
VPBROADCASTW __m256i _mm256_mask_set1_epi16(__m256i s, __mmask16 k, int a);
VPBROADCASTW __m256i _mm256_maskz_set1_epi16( __mmask16 k, int a);
VPBROADCASTW __m128i _mm_mask_set1_epi16(__m128i s, __mmask8 k, int a);
VPBROADCASTW __m128i _mm_maskz_set1_epi16( __mmask8 k, int a);
Exceptions
EVEX-encoded instructions, see Exceptions Type E7NM.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-51
INSTRUCTION SET REFERENCE, A-Z
VPBROADCAST—Load Integer and Broadcast
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.128.66.0F38.W0 78 /r RM V/V AVX2 Broadcast a byte integer in the source operand
to sixteen locations in xmm1.
VPBROADCASTB xmm1, xmm2/m8
VEX.256.66.0F38.W0 78 /r RM V/V AVX2 Broadcast a byte integer in the source operand
to thirty-two locations in ymm1.
VPBROADCASTB ymm1, xmm2/m8
EVEX.128.66.0F38.W0 78 /r T1S V/V AVX512VL Broadcast a byte integer in the source operand
to locations in xmm1 subject to writemask k1.
VPBROADCASTB xmm1{k1}{z}, xmm2/m8 AVX512BW
EVEX.256.66.0F38.W0 78 /r T1S V/V AVX512VL Broadcast a byte integer in the source operand
to locations in ymm1 subject to writemask k1.
VPBROADCASTB ymm1{k1}{z}, xmm2/m8 AVX512BW
EVEX.512.66.0F38.W0 78 /r T1S V/V AVX512BW Broadcast a byte integer in the source operand
to 64 locations in zmm1 subject to writemask
k1.
VPBROADCASTB zmm1{k1}{z}, xmm2/m8
VEX.128.66.0F38.W0 79 /r RM V/V AVX2 Broadcast a word integer in the source
operand to eight locations in xmm1.
VPBROADCASTW xmm1, xmm2/m16
VEX.256.66.0F38.W0 79 /r RM V/V AVX2 Broadcast a word integer in the source
operand to sixteen locations in ymm1.
VPBROADCASTW ymm1, xmm2/m16
EVEX.128.66.0F38.W0 79 /r T1S V/V AVX512VL Broadcast a word integer in the source
operand to locations in xmm1 subject to
writemask k1.
VPBROADCASTW xmm1{k1}{z}, xmm2/m16 AVX512BW
EVEX.256.66.0F38.W0 79 /r T1S V/V AVX512VL Broadcast a word integer in the source
operand to locations in ymm1 subject to
writemask k1.
VPBROADCASTW ymm1{k1}{z}, xmm2/m16 AVX512BW
EVEX.512.66.0F38.W0 79 /r T1S V/V AVX512BW Broadcast a word integer in the source
operand to 32 locations in zmm1 subject to
writemask k1.
VPBROADCASTW zmm1{k1}{z}, xmm2/m16
VEX.128.66.0F38.W0 58 /r RM V/V AVX2 Broadcast a dword integer in the source
operand to four locations in xmm1.
VPBROADCASTD xmm1, xmm2/m32
VEX.256.66.0F38.W0 58 /r RM V/V AVX2 Broadcast a dword integer in the source
operand to eight locations in ymm1.
VPBROADCASTD ymm1, xmm2/m32
EVEX.128.66.0F38.W0 58 /r T1S V/V AVX512VL Broadcast a dword integer in the source
operand to locations in xmm1 subject to
writemask k1.
VPBROADCASTD xmm1 {k1}{z}, xmm2/m32 AVX512F
EVEX.256.66.0F38.W0 58 /r T1S V/V AVX512VL Broadcast a dword integer in the source
operand to locations in ymm1 subject to
writemask k1.
VPBROADCASTD ymm1 {k1}{z}, xmm2/m32 AVX512F
EVEX.512.66.0F38.W0 58 /r T1S V/V AVX512F Broadcast a dword integer in the source
operand to locations in zmm1 subject to
writemask k1.
VPBROADCASTD zmm1 {k1}{z}, xmm2/m32
VEX.128.66.0F38.W0 59 /r RM V/V AVX2 Broadcast a qword element in source operand
to two locations in xmm1.
VPBROADCASTQ xmm1, xmm2/m64
5-52 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.256.66.0F38.W0 59 /r RM V/V AVX2 Broadcast a qword element in source operand
to four locations in ymm1.
VPBROADCASTQ ymm1, xmm2/m64
EVEX.128.66.0F38.W1 59 /r T1S V/V AVX512VL Broadcast a qword element in source operand
to locations in xmm1 subject to writemask k1.
VPBROADCASTQ xmm1 {k1}{z}, xmm2/m64 AVX512F
EVEX.256.66.0F38.W1 59 /r T1S V/V AVX512VL Broadcast a qword element in source operand
to locations in ymm1 subject to writemask k1.
VPBROADCASTQ ymm1 {k1}{z}, xmm2/m64 AVX512F
EVEX.512.66.0F38.W1 59 /r T1S V/V AVX512F Broadcast a qword element in source operand
to locations in zmm1 subject to writemask k1.
VPBROADCASTQ zmm1 {k1}{z}, xmm2/m64
EVEX.128.66.0F38.W0 59 /r T2 V/V AVX512VL Broadcast two dword elements in source
operand to locations in xmm1 subject to
writemask k1.
VBROADCASTI32x2 xmm1 {k1}{z}, xmm2/m64 AVX512DQ
EVEX.256.66.0F38.W0 59 /r T2 V/V AVX512VL Broadcast two dword elements in source
operand to locations in ymm1 subject to
writemask k1.
VBROADCASTI32x2 ymm1 {k1}{z}, xmm2/m64 AVX512DQ
EVEX.512.66.0F38.W0 59 /r T2 V/V AVX512DQ Broadcast two dword elements in source
operand to locations in zmm1 subject to
writemask k1.
VBROADCASTI32x2 zmm1 {k1}{z}, xmm2/m64
VEX.256.66.0F38.W0 5A /r RM V/V AVX2 Broadcast 128 bits of integer data in mem to
low and high 128-bits in ymm1.
VBROADCASTI128 ymm1, m128
EVEX.256.66.0F38.W0 5A /r T4 V/V AVX512VL Broadcast 128 bits of 4 doubleword integer
data in mem to locations in ymm1 using
writemask k1.
VBROADCASTI32X4 ymm1 {k1}{z}, m128 AVX512F
EVEX.512.66.0F38.W0 5A /r T4 V/V AVX512F Broadcast 128 bits of 4 doubleword integer
data in mem to locations in zmm1 using
writemask k1.
VBROADCASTI32X4 zmm1 {k1}{z}, m128
EVEX.256.66.0F38.W1 5A /r T2 V/V AVX512VL Broadcast 128 bits of 2 quadword integer data
in mem to locations in ymm1 using writemask
k1.
VBROADCASTI64X2 ymm1 {k1}{z}, m128 AVX512DQ
EVEX.512.66.0F38.W1 5A /r T2 V/V AVX512DQ Broadcast 128 bits of 2 quadword integer data
in mem to locations in zmm1 using writemask
k1.
VBROADCASTI64X2 zmm1 {k1}{z}, m128
EVEX.512.66.0F38.W1 5B /r T8 V/V AVX512DQ Broadcast 256 bits of 8 doubleword integer
data in mem to locations in zmm1 using
writemask k1.
VBROADCASTI32X8 zmm1 {k1}{z}, m256
EVEX.512.66.0F38.W1 5B /r T4 V/V AVX512F Broadcast 256 bits of 4 quadword integer data
in mem to locations in zmm1 using writemask
k1.
VBROADCASTI64X4 zmm1 {k1}{z}, m256
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-53
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Load integer data from the source operand (the second operand) and broadcast to all elements of the destination
operand (the first operand).
VEX256-encoded VPBROADCASTB/W/D/Q: The source operand is 8-bit, 16-bit, 32-bit, 64-bit memory location or
the low 8-bit, 16-bit 32-bit, 64-bit data in an XMM register. The destination operand is a YMM register.
VPBROADCASTI128 support the source operand of 128-bit memory location. Register source encodings for
VPBROADCASTI128 is reserved and will #UD. Bits (MAX_VL-1:256) of the destination register are zeroed.
EVEX-encoded VPBROADCASTD/Q: The source operand is a 32-bit, 64-bit memory location or the low 32-bit, 64-
bit data in an XMM register. The destination operand is a ZMM/YMM/XMM register and updated according to the
writemask k1.
VPBROADCASTI32X4 and VPBROADCASTI64X4: The destination operand is a ZMM register and updated according
to the writemask k1. The source operand is 128-bit or 256-bit memory location. Register source encodings for
VBROADCASTI32X4 and VBROADCASTI64X4 are reserved and will #UD.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
If VPBROADCASTI128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will
cause an #UD exception.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1S, T2, T4, T8 ModRM:reg (w) ModRM:r/m (r) NA NA
Figure 5-6. VPBROADCASTD Operation (VEX.256 encoded version)
Figure 5-7. VPBROADCASTD Operation (128-bit version)
DEST
m32 X0
X0X0 X0X0 X0X0 X0X0
DEST
m32 X0
X0X0 X00X00 00
5-54 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPBROADCASTB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SRC[7:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+7:i] 0
FI
Figure 5-8. VPBROADCASTQ Operation (256-bit version)
Figure 5-9. VBROADCASTI128 Operation (256-bit version)
Figure 5-10. VBROADCASTI256 Operation (512-bit version)
DEST
m64 X0
X0X0X0X0
DEST
m128 X0
X0X0
DEST
m256 X0
X0X0
Ref. # 319433-023 5-55
INSTRUCTION SET REFERENCE, A-Z
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPBROADCASTW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SRC[15:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPBROADCASTD (128 bit version)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[MAX_VL-1:128] 0
VPBROADCASTD (VEX.256 encoded version)
temp SRC[31:0]
DEST[31:0] temp
DEST[63:32] temp
DEST[95:64] temp
DEST[127:96] temp
DEST[159:128] temp
DEST[191:160] temp
DEST[223:192] temp
DEST[255:224] temp
DEST[MAX_VL-1:256] 0
VPBROADCASTD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[31:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
5-56 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[MAX_VL-1:VL] 0
VPBROADCASTQ (VEX.256 encoded version)
temp SRC[63:0]
DEST[63:0] temp
DEST[127:64] temp
DEST[191:128] temp
DEST[255:192] temp
DEST[MAX_VL-1:256] 0
VPBROADCASTQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBROADCASTI32x2 (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
n (j mod 2) * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[n+31:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBROADCASTI128 (VEX.256 encoded version)
temp SRC[127:0]
DEST[127:0] temp
DEST[255:128] temp
DEST[MAX_VL-1:256] 0
VBROADCASTI32X4 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1
i j* 32
n (j modulo 4) * 32
IF k1[j] OR *no writemask*
Ref. # 319433-023 5-57
INSTRUCTION SET REFERENCE, A-Z
THEN DEST[i+31:i] SRC[n+31:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBROADCASTI64X2 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 64
n (j modulo 2) * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[n+63:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] = 0
FI
FI;
ENDFOR;
VBROADCASTI32X8 (EVEX.U1.512 encoded version)
FOR j 0 TO 15
i j * 32
n (j modulo 8) * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[n+31:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VBROADCASTI64X4 (EVEX.512 encoded version)
FOR j 0 TO 7
i j * 64
n (j modulo 4) * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[n+63:n]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
5-58 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPBROADCASTB __m512i _mm512_broadcastb_epi8( __m128i a);
VPBROADCASTB __m512i _mm512_mask_broadcastb_epi8(__m512i s, __mmask64 k, __m128i a);
VPBROADCASTB __m512i _mm512_maskz_broadcastb_epi8( __mmask64 k, __m128i a);
VPBROADCASTB __m256i _mm256_broadcastb_epi8(__m128i a);
VPBROADCASTB __m256i _mm256_mask_broadcastb_epi8(__m256i s, __mmask32 k, __m128i a);
VPBROADCASTB __m256i _mm256_maskz_broadcastb_epi8( __mmask32 k, __m128i a);
VPBROADCASTB __m128i _mm_mask_broadcastb_epi8(__m128i s, __mmask16 k, __m128i a);
VPBROADCASTB __m128i _mm_maskz_broadcastb_epi8( __mmask16 k, __m128i a);
VPBROADCASTB __m128i _mm_broadcastb_epi8(__m128i a);
VPBROADCASTD __m512i _mm512_broadcastd_epi32( __m128i a);
VPBROADCASTD __m512i _mm512_mask_broadcastd_epi32(__m512i s, __mmask16 k, __m128i a);
VPBROADCASTD __m512i _mm512_maskz_broadcastd_epi32( __mmask16 k, __m128i a);
VPBROADCASTD __m256i _mm256_broadcastd_epi32( __m128i a);
VPBROADCASTD __m256i _mm256_mask_broadcastd_epi32(__m256i s, __mmask8 k, __m128i a);
VPBROADCASTD __m256i _mm256_maskz_broadcastd_epi32( __mmask8 k, __m128i a);
VPBROADCASTD __m128i _mm_broadcastd_epi32(__m128i a);
VPBROADCASTD __m128i _mm_mask_broadcastd_epi32(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTD __m128i _mm_maskz_broadcastd_epi32( __mmask8 k, __m128i a);
VPBROADCASTQ __m512i _mm512_broadcastq_epi64( __m128i a);
VPBROADCASTQ __m512i _mm512_mask_broadcastq_epi64(__m512i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m512i _mm512_maskz_broadcastq_epi64( __mmask8 k, __m128i a);
VPBROADCASTQ __m256i _mm256_broadcastq_epi64(__m128i a);
VPBROADCASTQ __m256i _mm256_mask_broadcastq_epi64(__m256i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m256i _mm256_maskz_broadcastq_epi64( __mmask8 k, __m128i a);
VPBROADCASTQ __m128i _mm_broadcastq_epi64(__m128i a);
VPBROADCASTQ __m128i _mm_mask_broadcastq_epi64(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m128i _mm_maskz_broadcastq_epi64( __mmask8 k, __m128i a);
VPBROADCASTW __m512i _mm512_broadcastw_epi16(__m128i a);
VPBROADCASTW __m512i _mm512_mask_broadcastw_epi16(__m512i s, __mmask32 k, __m128i a);
VPBROADCASTW __m512i _mm512_maskz_broadcastw_epi16( __mmask32 k, __m128i a);
VPBROADCASTW __m256i _mm256_broadcastw_epi16(__m128i a);
VPBROADCASTW __m256i _mm256_mask_broadcastw_epi16(__m256i s, __mmask16 k, __m128i a);
VPBROADCASTW __m256i _mm256_maskz_broadcastw_epi16( __mmask16 k, __m128i a);
VPBROADCASTW __m128i _mm_broadcastw_epi16(__m128i a);
VPBROADCASTW __m128i _mm_mask_broadcastw_epi16(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTW __m128i _mm_maskz_broadcastw_epi16( __mmask8 k, __m128i a);
VBROADCASTI32x2 __m512i _mm512_broadcast_i32x2( __m128i a);
VBROADCASTI32x2 __m512i _mm512_mask_broadcast_i32x2(__m512i s, __mmask16 k, __m128i a);
VBROADCASTI32x2 __m512i _mm512_maskz_broadcast_i32x2( __mmask16 k, __m128i a);
VBROADCASTI32x2 __m256i _mm256_broadcast_i32x2( __m128i a);
VBROADCASTI32x2 __m256i _mm256_mask_broadcast_i32x2(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI32x2 __m256i _mm256_maskz_broadcast_i32x2( __mmask8 k, __m128i a);
VBROADCASTI32x2 __m128i _mm_broadcastq_i32x2(__m128i a);
VBROADCASTI32x2 __m128i _mm_mask_broadcastq_i32x2(__m128i s, __mmask8 k, __m128i a);
VBROADCASTI32x2 __m128i _mm_maskz_broadcastq_i32x2( __mmask8 k, __m128i a);
VBROADCASTI32x4 __m512i _mm512_broadcast_i32x4( __m128i a);
VBROADCASTI32x4 __m512i _mm512_mask_broadcast_i32x4(__m512i s, __mmask16 k, __m128i a);
VBROADCASTI32x4 __m512i _mm512_maskz_broadcast_i32x4( __mmask16 k, __m128i a);
Ref. # 319433-023 5-59
INSTRUCTION SET REFERENCE, A-Z
VBROADCASTI32x4 __m256i _mm256_broadcast_i32x4( __m128i a);
VBROADCASTI32x4 __m256i _mm256_mask_broadcast_i32x4(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI32x4 __m256i _mm256_maskz_broadcast_i32x4( __mmask8 k, __m128i a);
VBROADCASTI32x8 __m512i _mm512_broadcast_i32x8( __m256i a);
VBROADCASTI32x8 __m512i _mm512_mask_broadcast_i32x8(__m512i s, __mmask16 k, __m256i a);
VBROADCASTI32x8 __m512i _mm512_maskz_broadcast_i32x8( __mmask16 k, __m256i a);
VBROADCASTI64x2 __m512i _mm512_broadcast_i64x2( __m128i a);
VBROADCASTI64x2 __m512i _mm512_mask_broadcast_i64x2(__m512i s, __mmask8 k, __m128i a);
VBROADCASTI64x2 __m512i _mm512_maskz_broadcast_i64x2( __mmask8 k, __m128i a);
VBROADCASTI64x2 __m256i _mm256_broadcast_i64x2( __m128i a);
VBROADCASTI64x2 __m256i _mm256_mask_broadcast_i64x2(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI64x2 __m256i _mm256_maskz_broadcast_i64x2( __mmask8 k, __m128i a);
VBROADCASTI64x4 __m512i _mm512_broadcast_i64x4( __m256i a);
VBROADCASTI64x4 __m512i _mm512_mask_broadcast_i64x4(__m512i s, __mmask8 k, __m256i a);
VBROADCASTI64x4 __m512i _mm512_maskz_broadcast_i64x4( __mmask8 k, __m256i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instructions, see Exceptions Type 6;
EVEX-encoded instructions, syntax with reg/mem operand, see Exceptions Type E6.
#UD If VEX.L = 0 for VPBROADCASTQ, VPBROADCASTI128.
If EVEX.L’L = 0 for VBROADCASTI32X4/VBROADCASTI64X2.
If EVEX.L’L < 10b for VBROADCASTI32X8/VBROADCASTI64X4.
5-60 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
CMPPD—Compare Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed double-precision floating-point values in the second source operand and
the first source operand and returns the results of the comparison to the destination operand. The comparison
predicate operand (immediate byte) specifies the type of comparison performed on each pair of packed values in
the two source operands.
EVEX encoded versions: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand (first operand) is an opmask register.
Comparison results are written to the destination operand under the writemask k2. Each comparison result is a
single mask bit of 1 (comparison true) or 0 (comparison false).
VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source operand
(third operand) can be a YMM register or a 256-bit memory location. The destination operand (first operand) is a
YMM register. Four comparisons are performed with results written to the destination operand. The result of each
comparison is a quadword mask of all 1s (comparison true) or all 0s (comparison false).
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 128-bit memory location. Bits (MAX_VL-
1:128) of the corresponding ZMM destination register remain unchanged. Two comparisons are performed with
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F C2 /r ib RMI V/V SSE2 Compare packed double-precision floating-point values
in xmm2/m128 and xmm1 using bits 2:0 of imm8 as a
comparison predicate.
CMPPD xmm1, xmm2/m128, imm8
VEX.NDS.128.66.0F.WIG C2 /r ib RVMI V/V AVX Compare packed double-precision floating-point values
in xmm3/m128 and xmm2 using bits 4:0 of imm8 as a
comparison predicate.
VCMPPD xmm1, xmm2, xmm3/m128,
imm8
VEX.NDS.256.66.0F.WIG C2 /r ib RVMI V/V AVX Compare packed double-precision floating-point values
in ymm3/m256 and ymm2 using bits 4:0 of imm8 as a
comparison predicate.
VCMPPD ymm1, ymm2, ymm3/m256,
imm8
EVEX.NDS.128.66.0F.W1 C2 /r ib FV V/V AVX512VL Compare packed double-precision floating-point values
in xmm3/m128/m64bcst and xmm2 using bits 4:0 of
imm8 as a comparison predicate with writemask k2
and leave the result in mask register k1.
VCMPPD k1 {k2}, xmm2,
xmm3/m128/m64bcst, imm8
AVX512F
EVEX.NDS.256.66.0F.W1 C2 /r ib FV V/V AVX512VL Compare packed double-precision floating-point values
in ymm3/m256/m64bcst and ymm2 using bits 4:0 of
imm8 as a comparison predicate with writemask k2
and leave the result in mask register k1.
VCMPPD k1 {k2}, ymm2,
ymm3/m256/m64bcst, imm8
AVX512F
EVEX.NDS.512.66.0F.W1 C2 /r ib FV V/V AVX512F Compare packed double-precision floating-point values
in zmm3/m512/m64bcst and zmm2 using bits 4:0 of
imm8 as a comparison predicate with writemask k2
and leave the result in mask register k1.
VCMPPD k1 {k2}, zmm2,
zmm3/m512/m64bcst{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA
RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
Ref. # 319433-023 5-61
INSTRUCTION SET REFERENCE, A-Z
results written to bits 127:0 of the destination operand. The result of each comparison is a quadword mask of all
1s (comparison true) or all 0s (comparison false).
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source
operand (third operand) can be an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the desti-
nation ZMM register are zeroed. Two comparisons are performed with results written to bits 127:0 of the destina-
tion operand.
The comparison predicate operand is an 8-bit immediate:
For instructions encoded using the VEX or EVEX prefix, bits 4:0 define the type of comparison to be performed
(see Table 5-3). Bits 5 through 7 of the immediate are reserved.
For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see
the first 8 rows of Table 5-3). Bits 3 through 7 of the immediate are reserved.
Table 5-3. Comparison Predicate for CMPPD and CMPPS Instructions
Predicate imm8
Value
Description Result: A Is 1st Operand, B Is 2nd Operand Signals
#IA on
QNAN
A >B A < B A = B Unordered1
EQ_OQ (EQ) 0H Equal (ordered, non-signaling) False False True False No
LT_OS (LT) 1H Less-than (ordered, signaling) False True False False Yes
LE_OS (LE) 2H Less-than-or-equal (ordered, signaling) False True True False Yes
UNORD_Q (UNORD) 3H Unordered (non-signaling) False False False True No
NEQ_UQ (NEQ) 4H Not-equal (unordered, non-signaling) True True False True No
NLT_US (NLT) 5H Not-less-than (unordered, signaling) True False True True Yes
NLE_US (NLE) 6H Not-less-than-or-equal (unordered, signaling) True False False True Yes
ORD_Q (ORD) 7H Ordered (non-signaling) True True True False No
EQ_UQ 8H Equal (unordered, non-signaling) False False True True No
NGE_US (NGE) 9H Not-greater-than-or-equal (unordered,
signaling)
False True False True Yes
NGT_US (NGT) AH Not-greater-than (unordered, signaling) False True True True Yes
FALSE_OQ(FALSE) BH False (ordered, non-signaling) False False False False No
NEQ_OQ CH Not-equal (ordered, non-signaling) True True False False No
GE_OS (GE) DH Greater-than-or-equal (ordered, signaling) True False True False Yes
GT_OS (GT) EH Greater-than (ordered, signaling) True False False False Yes
TRUE_UQ(TRUE) FH True (unordered, non-signaling) True True True True No
EQ_OS 10H Equal (ordered, signaling) False False True False Yes
LT_OQ 11H Less-than (ordered, nonsignaling) False True False False No
LE_OQ 12H Less-than-or-equal (ordered, nonsignaling) False True True False No
UNORD_S 13H Unordered (signaling) False False False True Yes
NEQ_US 14H Not-equal (unordered, signaling) True True False True Yes
NLT_UQ 15H Not-less-than (unordered, nonsignaling) True False True True No
NLE_UQ 16H Not-less-than-or-equal (unordered, nonsig-
naling)
True False False True No
ORD_S 17H Ordered (signaling) True True True False Yes
EQ_US 18H Equal (unordered, signaling) False False True True Yes
5-62 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN.
A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask
of all 1s corresponds to a QNaN.
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”,
“not-greater than, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7
(Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A) under the heading Emulation.
Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand
CMPPD instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 5-4. Compiler should treat reserved
Imm8 values as illegal syntax.
:
The greater-than relations that the processor does not implement require more than one instruction to emulate in
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to
the correct destination register and that the source operand is left intact.)
NGE_UQ 19H Not-greater-than-or-equal (unordered, non-
signaling)
False True False True No
NGT_UQ 1AH Not-greater-than (unordered, nonsignaling) False True True True No
FALSE_OS 1BH False (ordered, signaling) False False False False Yes
NEQ_OS 1CH Not-equal (ordered, signaling) True True False False Yes
GE_OQ 1DH Greater-than-or-equal (ordered, nonsignal-
ing)
True False True False No
GT_OQ 1EH Greater-than (ordered, nonsignaling) True False False False No
TRUE_US 1FH True (unordered, signaling) True True True True Yes
NOTES:
1. If either operand A or B is a NAN.
Table 5-4. Pseudo-Op and CMPPD Implementation
Pseudo-Op CMPPD Implementation
CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0
CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1
CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2
CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3
CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4
CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5
CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6
CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7
Table 5-3. Comparison Predicate for CMPPD and CMPPS Instructions (Continued)
Predicate imm8
Value
Description Result: A Is 1st Operand, B Is 2nd Operand Signals
#IA on
QNAN
A >B A < B A = B Unordered1
Ref. # 319433-023 5-63
INSTRUCTION SET REFERENCE, A-Z
Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 5-5, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand
pseudo-ops in addition to the four-operand VCMPPD instruction. See Table 5-5, where the notations of reg1 reg2,
and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPPD instructions
in a similar fashion by extending the syntax listed in Table 5-5.
:Table 5-5. Pseudo-Op and VCMPPD Implementation
Pseudo-Op CMPPD Implementation
VCMPEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0
VCMPLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1
VCMPLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 2
VCMPUNORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 3
VCMPNEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 4
VCMPNLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 5
VCMPNLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 6
VCMPORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 7
VCMPEQ_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 8
VCMPNGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 9
VCMPNGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0AH
VCMPFALSEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0BH
VCMPNEQ_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0CH
VCMPGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0DH
VCMPGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0EH
VCMPTRUEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0FH
VCMPEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 10H
VCMPLT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 11H
VCMPLE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 12H
VCMPUNORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 13H
VCMPNEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 14H
VCMPNLT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 15H
VCMPNLE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 16H
VCMPORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 17H
VCMPEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 18H
VCMPNGE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 19H
VCMPNGT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1AH
VCMPFALSE_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1BH
VCMPNEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1CH
VCMPGE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1DH
VCMPGT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1EH
VCMPTRUE_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1FH
5-64 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
CASE (COMPARISON PREDICATE) OF
0: OP3 EQ_OQ; OP5 EQ_OQ;
1: OP3 LT_OS; OP5 LT_OS;
2: OP3 LE_OS; OP5 LE_OS;
3: OP3 UNORD_Q; OP5 UNORD_Q;
4: OP3 NEQ_UQ; OP5 NEQ_UQ;
5: OP3 NLT_US; OP5 NLT_US;
6: OP3 NLE_US; OP5 NLE_US;
7: OP3 ORD_Q; OP5 ORD_Q;
8: OP5 EQ_UQ;
9: OP5 NGE_US;
10: OP5 NGT_US;
11: OP5 FALSE_OQ;
12: OP5 NEQ_OQ;
13: OP5 GE_OS;
14: OP5 GT_OS;
15: OP5 TRUE_UQ;
16: OP5 EQ_OS;
17: OP5 LT_OQ;
18: OP5 LE_OQ;
19: OP5 UNORD_S;
20: OP5 NEQ_US;
21: OP5 NLT_UQ;
22: OP5 NLE_UQ;
23: OP5 ORD_S;
24: OP5 EQ_US;
25: OP5 NGE_UQ;
26: OP5 NGT_UQ;
27: OP5 FALSE_OS;
28: OP5 NEQ_OS;
29: OP5 GE_OQ;
30: OP5 GT_OQ;
31: OP5 TRUE_US;
DEFAULT: Reserved;
ESAC;
VCMPPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k2[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
CMP SRC1[i+63:i] OP5 SRC2[63:0]
ELSE
CMP SRC1[i+63:i] OP5 SRC2[i+63:i]
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
Ref. # 319433-023 5-65
INSTRUCTION SET REFERENCE, A-Z
ENDFOR
DEST[MAX_KL-1:KL] 0
VCMPPD (VEX.256 encoded version)
CMP0 SRC1[63:0] OP5 SRC2[63:0];
CMP1 SRC1[127:64] OP5 SRC2[127:64];
CMP2 SRC1[191:128] OP5 SRC2[191:128];
CMP3 SRC1[255:192] OP5 SRC2[255:192];
IF CMP0 = TRUE
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] 0000000000000000H; FI;
IF CMP2 = TRUE
THEN DEST[191:128] FFFFFFFFFFFFFFFFH;
ELSE DEST[191:128] 0000000000000000H; FI;
IF CMP3 = TRUE
THEN DEST[255:192] FFFFFFFFFFFFFFFFH;
ELSE DEST[255:192] 0000000000000000H; FI;
DEST[MAX_VL-1:256] 0
VCMPPD (VEX.128 encoded version)
CMP0 SRC1[63:0] OP5 SRC2[63:0];
CMP1 SRC1[127:64] OP5 SRC2[127:64];
IF CMP0 = TRUE
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] 0000000000000000H; FI;
DEST[MAX_VL-1:128] 0
CMPPD (128-bit Legacy SSE version)
CMP0 SRC1[63:0] OP3 SRC2[63:0];
CMP1 SRC1[127:64] OP3 SRC2[127:64];
IF CMP0 = TRUE
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] 0000000000000000H; FI;
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCMPPD __mmask8 _mm512_cmp_pd_mask( __m512d a, __m512d b, int imm);
VCMPPD __mmask8 _mm512_cmp_round_pd_mask( __m512d a, __m512d b, int imm, int sae);
VCMPPD __mmask8 _mm512_mask_cmp_pd_mask( __mmask8 k1, __m512d a, __m512d b, int imm);
VCMPPD __mmask8 _mm512_mask_cmp_round_pd_mask( __mmask8 k1, __m512d a, __m512d b, int imm, int sae);
VCMPPD __mmask8 _mm256_cmp_pd_mask( __m256d a, __m256d b, int imm);
VCMPPD __mmask8 _mm256_mask_cmp_pd_mask( __mmask8 k1, __m256d a, __m256d b, int imm);
VCMPPD __mmask8 _mm_cmp_pd_mask( __m128d a, __m128d b, int imm);
VCMPPD __mmask8 _mm_mask_cmp_pd_mask( __mmask8 k1, __m128d a, __m128d b, int imm);
VCMPPD __m256 _mm256_cmp_pd(__m256d a, __m256d b, int imm)
5-66 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
(V)CMPPD __m128 _mm_cmp_pd(__m128d a, __m128d b, int imm)
SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in Table 5-3.
Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-67
INSTRUCTION SET REFERENCE, A-Z
CMPPS—Compare Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed single-precision floating-point values in the second source operand and
the first source operand and returns the results of the comparison to the destination operand. The comparison
predicate operand (immediate byte) specifies the type of comparison performed on each of the pairs of packed
values.
EVEX encoded versions: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 32-bit memory location. The destination operand (first operand) is an opmask register.
Comparison results are written to the destination operand under the writemask k2. Each comparison result is a
single mask bit of 1 (comparison true) or 0 (comparison false).
VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source
operand (third operand) can be a YMM register or a 256-bit memory location. The destination operand (first
operand) is a YMM register. Eight comparisons are performed with results written to the destination operand. The
result of each comparison is a doubleword mask of all 1s (comparison true) or all 0s (comparison false).
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 128-bit memory location. Bits (MAX_VL-
1:128) of the corresponding ZMM destination register remain unchanged. Four comparisons are performed with
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F C2 /r ib RMI V/V SSE Compare packed single-precision floating-point values in
xmm2/m128 and xmm1 using bits 2:0 of imm8 as a
comparison predicate.
CMPPS xmm1, xmm2/m128,
imm8
VEX.NDS.128.0F.WIG C2 /r ib RVMI V/V AVX Compare packed single-precision floating-point values in
xmm3/m128 and xmm2 using bits 4:0 of imm8 as a
comparison predicate.
VCMPPS xmm1, xmm2,
xmm3/m128, imm8
VEX.NDS.256.0F.WIG C2 /r ib RVMI V/V AVX Compare packed single-precision floating-point values in
ymm3/m256 and ymm2 using bits 4:0 of imm8 as a
comparison predicate.
VCMPPS ymm1, ymm2,
ymm3/m256, imm8
EVEX.NDS.128.0F.W0 C2 /r ib FV V/V AVX512VL Compare packed single-precision floating-point values in
xmm3/m128/m32bcst and xmm2 using bits 4:0 of imm8 as
a comparison predicate with writemask k2 and leave the
result in mask register k1.
VCMPPS k1 {k2}, xmm2,
xmm3/m128/m32bcst, imm8
AVX512F
EVEX.NDS.256.0F.W0 C2 /r ib FV V/V AVX512VL Compare packed single-precision floating-point values in
ymm3/m256/m32bcst and ymm2 using bits 4:0 of imm8 as
a comparison predicate with writemask k2 and leave the
result in mask register k1.
VCMPPS k1 {k2}, ymm2,
ymm3/m256/m32bcst, imm8
AVX512F
EVEX.NDS.512.0F.W0 C2 /r ib FV V/V AVX512F Compare packed single-precision floating-point values in
zmm3/m512/m32bcst and zmm2 using bits 4:0 of imm8 as
a comparison predicate with writemask k2 and leave the
result in mask register k1.
VCMPPS k1 {k2}, zmm2,
zmm3/m512/m32bcst{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA
RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
5-68 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
results written to bits 127:0 of the destination operand. The result of each comparison is a doubleword mask of all
1s (comparison true) or all 0s (comparison false).
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source
operand (third operand) can be an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the desti-
nation ZMM register are zeroed. Four comparisons are performed with results written to bits 127:0 of the destina-
tion operand.
The comparison predicate operand is an 8-bit immediate:
For instructions encoded using the VEX prefix and EVEX prefix, bits 4:0 define the type of comparison to be
performed (see Table 5-3). Bits 5 through 7 of the immediate are reserved.
For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see the
first 8 rows of Table 5-3). Bits 3 through 7 of the immediate are reserved.
The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN.
A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask
of all 1s corresponds to a QNaN.
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”,
“not-greater than, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7
(Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A) under the heading Emulation.
Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand
CMPPS instruction, for processors with “CPUID.1H:ECX.AVX =0. See Table 5-6. Compiler should treat reserved
Imm8 values as illegal syntax.
:
The greater-than relations that the processor does not implement require more than one instruction to emulate in
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to
the correct destination register and that the source operand is left intact.)
Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 5-7, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand
pseudo-ops in addition to the four-operand VCMPPS instruction. See Table 5-7, where the notation of reg1 and reg2
represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal syntax.
Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic interface.
Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPPS instructions in a
similar fashion by extending the syntax listed in Table 5-7.
Table 5-6. Pseudo-Op and CMPPS Implementation
Pseudo-Op CMPPS Implementation
CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 0
CMPLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 1
CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2
CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 3
CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 4
CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5
CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 6
CMPORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 7
Ref. # 319433-023 5-69
INSTRUCTION SET REFERENCE, A-Z
:
Operation
CASE (COMPARISON PREDICATE) OF
0: OP3 EQ_OQ; OP5 EQ_OQ;
1: OP3 LT_OS; OP5 LT_OS;
2: OP3 LE_OS; OP5 LE_OS;
3: OP3 UNORD_Q; OP5 UNORD_Q;
4: OP3 NEQ_UQ; OP5 NEQ_UQ;
5: OP3 NLT_US; OP5 NLT_US;
Table 5-7. Pseudo-Op and VCMPPS Implementation
Pseudo-Op CMPPS Implementation
VCMPEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0
VCMPLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1
VCMPLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 2
VCMPUNORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 3
VCMPNEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 4
VCMPNLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 5
VCMPNLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 6
VCMPORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 7
VCMPEQ_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 8
VCMPNGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 9
VCMPNGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0AH
VCMPFALSEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0BH
VCMPNEQ_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0CH
VCMPGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0DH
VCMPGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0EH
VCMPTRUEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0FH
VCMPEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 10H
VCMPLT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 11H
VCMPLE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 12H
VCMPUNORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 13H
VCMPNEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 14H
VCMPNLT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 15H
VCMPNLE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 16H
VCMPORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 17H
VCMPEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 18H
VCMPNGE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 19H
VCMPNGT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1AH
VCMPFALSE_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1BH
VCMPNEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1CH
VCMPGE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1DH
VCMPGT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1EH
VCMPTRUE_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1FH
5-70 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
6: OP3 NLE_US; OP5 NLE_US;
7: OP3 ORD_Q; OP5 ORD_Q;
8: OP5 EQ_UQ;
9: OP5 NGE_US;
10: OP5 NGT_US;
11: OP5 FALSE_OQ;
12: OP5 NEQ_OQ;
13: OP5 GE_OS;
14: OP5 GT_OS;
15: OP5 TRUE_UQ;
16: OP5 EQ_OS;
17: OP5 LT_OQ;
18: OP5 LE_OQ;
19: OP5 UNORD_S;
20: OP5 NEQ_US;
21: OP5 NLT_UQ;
22: OP5 NLE_UQ;
23: OP5 ORD_S;
24: OP5 EQ_US;
25: OP5 NGE_UQ;
26: OP5 NGT_UQ;
27: OP5 FALSE_OS;
28: OP5 NEQ_OS;
29: OP5 GE_OQ;
30: OP5 GT_OQ;
31: OP5 TRUE_US;
DEFAULT: Reserved
ESAC;
VCMPPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k2[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
CMP SRC1[i+31:i] OP5 SRC2[31:0]
ELSE
CMP SRC1[i+31:i] OP5 SRC2[i+31:i]
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking onlyFI;
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
Ref. # 319433-023 5-71
INSTRUCTION SET REFERENCE, A-Z
VCMPPS (VEX.256 encoded version)
CMP0 SRC1[31:0] OP5 SRC2[31:0];
CMP1 SRC1[63:32] OP5 SRC2[63:32];
CMP2 SRC1[95:64] OP5 SRC2[95:64];
CMP3 SRC1[127:96] OP5 SRC2[127:96];
CMP4 SRC1[159:128] OP5 SRC2[159:128];
CMP5 SRC1[191:160] OP5 SRC2[191:160];
CMP6 SRC1[223:192] OP5 SRC2[223:192];
CMP7 SRC1[255:224] OP5 SRC2[255:224];
IF CMP0 = TRUE
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 000000000H; FI;
IF CMP1 = TRUE
THEN DEST[63:32] FFFFFFFFH;
ELSE DEST[63:32] 000000000H; FI;
IF CMP2 = TRUE
THEN DEST[95:64] FFFFFFFFH;
ELSE DEST[95:64] 000000000H; FI;
IF CMP3 = TRUE
THEN DEST[127:96] FFFFFFFFH;
ELSE DEST[127:96] 000000000H; FI;
IF CMP4 = TRUE
THEN DEST[159:128] FFFFFFFFH;
ELSE DEST[159:128] 000000000H; FI;
IF CMP5 = TRUE
THEN DEST[191:160] FFFFFFFFH;
ELSE DEST[191:160] 000000000H; FI;
IF CMP6 = TRUE
THEN DEST[223:192] FFFFFFFFH;
ELSE DEST[223:192] 000000000H; FI;
IF CMP7 = TRUE
THEN DEST[255:224] FFFFFFFFH;
ELSE DEST[255:224] 000000000H; FI;
DEST[MAX_VL-1:256] 0
VCMPPS (VEX.128 encoded version)
CMP0 SRC1[31:0] OP5 SRC2[31:0];
CMP1 SRC1[63:32] OP5 SRC2[63:32];
CMP2 SRC1[95:64] OP5 SRC2[95:64];
CMP3 SRC1[127:96] OP5 SRC2[127:96];
IF CMP0 = TRUE
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 000000000H; FI;
IF CMP1 = TRUE
THEN DEST[63:32] FFFFFFFFH;
ELSE DEST[63:32] 000000000H; FI;
IF CMP2 = TRUE
THEN DEST[95:64] FFFFFFFFH;
ELSE DEST[95:64] 000000000H; FI;
IF CMP3 = TRUE
THEN DEST[127:96] FFFFFFFFH;
ELSE DEST[127:96] 000000000H; FI;
DEST[MAX_VL-1:128] 0
5-72 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
CMPPS (128-bit Legacy SSE version)
CMP0 SRC1[31:0] OP3 SRC2[31:0];
CMP1 SRC1[63:32] OP3 SRC2[63:32];
CMP2 SRC1[95:64] OP3 SRC2[95:64];
CMP3 SRC1[127:96] OP3 SRC2[127:96];
IF CMP0 = TRUE
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 000000000H; FI;
IF CMP1 = TRUE
THEN DEST[63:32] FFFFFFFFH;
ELSE DEST[63:32] 000000000H; FI;
IF CMP2 = TRUE
THEN DEST[95:64] FFFFFFFFH;
ELSE DEST[95:64] 000000000H; FI;
IF CMP3 = TRUE
THEN DEST[127:96] FFFFFFFFH;
ELSE DEST[127:96] 000000000H; FI;
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCMPPS __mmask16 _mm512_cmp_ps_mask( __m512 a, __m512 b, int imm);
VCMPPS __mmask16 _mm512_cmp_round_ps_mask( __m512 a, __m512 b, int imm, int sae);
VCMPPS __mmask16 _mm512_mask_cmp_ps_mask( __mmask16 k1, __m512 a, __m512 b, int imm);
VCMPPS __mmask16 _mm512_mask_cmp_round_ps_mask( __mmask16 k1, __m512 a, __m512 b, int imm, int sae);
VCMPPD __mmask8 _mm256_cmp_ps_mask( __m256 a, __m256 b, int imm);
VCMPPS __mmask8 _mm256_mask_cmp_ps_mask( __mmask8 k1, __m256 a, __m256 b, int imm);
VCMPPS __mmask8 _mm_cmp_ps_mask( __m128 a, __m128 b, int imm);
VCMPPS __mmask8 _mm_mask_cmp_ps_mask( __mmask8 k1, __m128 a, __m128 b, int imm);
VCMPPS __m256 _mm256_cmp_ps(__m256 a, __m256 b, int imm)
CMPPS __m128 _mm_cmp_ps(__m128 a, __m128 b, int imm)
SIMD Floating-Point Exceptions
Invalid if SNaN operand and invalid if QNaN and predicate as listed in Table 5-3.
Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-73
INSTRUCTION SET REFERENCE, A-Z
CMPSD—Compare Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
Compares the low double-precision floating-point values in the second source operand and the first source operand
and returns the results in of the comparison to the destination operand. The comparison predicate operand (imme-
diate operand) specifies the type of comparison performed.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 64-bit memory location. Bits (MAX_VL-1:64)
of the corresponding YMM destination register remain unchanged. The comparison result is a quadword mask of all
1s (comparison true) or all 0s (comparison false).
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source
operand (third operand) can be an XMM register or a 64-bit memory location. The result is stored in the low quad-
word of the destination operand; the high quadword is filled with the contents of the high quadword of the first
source operand. Bits (MAX_VL-1:128) of the destination ZMM register are zeroed. The comparison result is a quad-
word mask of all 1s (comparison true) or all 0s (comparison false).
EVEX encoded version: The first source operand (second operand) is an XMM register. The second source operand
can be a XMM register or a 64-bit memory location. The destination operand (first operand) is an opmask register.
The comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false), written to the destination
starting from the LSB according to the writemask k2. Bits (MAX_KL-1:128) of the destination register are cleared.
The comparison predicate operand is an 8-bit immediate:
For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see
Table 5-3). Bits 5 through 7 of the immediate are reserved.
For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see
the first 8 rows of Table 5-3). Bits 3 through 7 of the immediate are reserved.
The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN.
A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask
of all 1s corresponds to a QNaN.
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”,
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F C2 /r ib RMI V/V SSE2 Compare low double-precision floating-point value in
xmm2/m64 and xmm1 using bits 2:0 of imm8 as comparison
predicate.
CMPSD xmm1, xmm2/m64, imm8
VEX.NDS.128.F2.0F.WIG C2 /r ib RVMI V/V AVX Compare low double-precision floating-point value in
xmm3/m64 and xmm2 using bits 4:0 of imm8 as comparison
predicate.
VCMPSD xmm1, xmm2,
xmm3/m64, imm8
EVEX.NDS.LIG.F2.0F.W1 C2 /r ib T1S V/V AVX512F Compare low double-precision floating-point value in
xmm3/m64 and xmm2 using bits 4:0 of imm8 as comparison
predicate with writemask k2 and leave the result in mask
register k1.
VCMPSD k1 {k2}, xmm2,
xmm3/m64{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA
RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
5-74 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7
(Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A) under the heading Emulation.
Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand
CMPSD instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 5-8. Compiler should treat reserved
Imm8 values as illegal syntax.
:
The greater-than relations that the processor does not implement require more than one instruction to emulate in
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to
the correct destination register and that the source operand is left intact.)
Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 5-9, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand
pseudo-ops in addition to the four-operand VCMPSD instruction. See Table 5-9, where the notations of reg1 reg2,
and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPSD instructions
in a similar fashion by extending the syntax listed in Table 5-9.
:
Table 5-8. Pseudo-Op and CMPSD Implementation
Pseudo-Op CMPSD Implementation
CMPEQSD xmm1, xmm2 CMPSD xmm1, xmm2, 0
CMPLTSD xmm1, xmm2 CMPSD xmm1, xmm2, 1
CMPLESD xmm1, xmm2 CMPSD xmm1, xmm2, 2
CMPUNORDSD xmm1, xmm2 CMPSD xmm1, xmm2, 3
CMPNEQSD xmm1, xmm2 CMPSD xmm1, xmm2, 4
CMPNLTSD xmm1, xmm2 CMPSD xmm1, xmm2, 5
CMPNLESD xmm1, xmm2 CMPSD xmm1, xmm2, 6
CMPORDSD xmm1, xmm2 CMPSD xmm1, xmm2, 7
Table 5-9. Pseudo-Op and VCMPSD Implementation
Pseudo-Op CMPSD Implementation
VCMPEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0
VCMPLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1
VCMPLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 2
VCMPUNORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 3
VCMPNEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 4
VCMPNLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 5
VCMPNLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 6
VCMPORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 7
VCMPEQ_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 8
VCMPNGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 9
VCMPNGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0AH
VCMPFALSESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0BH
VCMPNEQ_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0CH
VCMPGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0DH
Ref. # 319433-023 5-75
INSTRUCTION SET REFERENCE, A-Z
Software should ensure VCMPSD is encoded with VEX.L=0. Encoding VCMPSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Operation
CASE (COMPARISON PREDICATE) OF
0: OP3 EQ_OQ; OP5 EQ_OQ;
1: OP3 LT_OS; OP5 LT_OS;
2: OP3 LE_OS; OP5 LE_OS;
3: OP3 UNORD_Q; OP5 UNORD_Q;
4: OP3 NEQ_UQ; OP5 NEQ_UQ;
5: OP3 NLT_US; OP5 NLT_US;
6: OP3 NLE_US; OP5 NLE_US;
7: OP3 ORD_Q; OP5 ORD_Q;
8: OP5 EQ_UQ;
9: OP5 NGE_US;
10: OP5 NGT_US;
11: OP5 FALSE_OQ;
12: OP5 NEQ_OQ;
13: OP5 GE_OS;
14: OP5 GT_OS;
15: OP5 TRUE_UQ;
16: OP5 EQ_OS;
17: OP5 LT_OQ;
18: OP5 LE_OQ;
19: OP5 UNORD_S;
20: OP5 NEQ_US;
21: OP5 NLT_UQ;
VCMPGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0EH
VCMPTRUESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0FH
VCMPEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 10H
VCMPLT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 11H
VCMPLE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 12H
VCMPUNORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 13H
VCMPNEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 14H
VCMPNLT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 15H
VCMPNLE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 16H
VCMPORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 17H
VCMPEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 18H
VCMPNGE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 19H
VCMPNGT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1AH
VCMPFALSE_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1BH
VCMPNEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1CH
VCMPGE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1DH
VCMPGT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1EH
VCMPTRUE_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1FH
Table 5-9. Pseudo-Op and VCMPSD Implementation
Pseudo-Op CMPSD Implementation
5-76 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
22: OP5 NLE_UQ;
23: OP5 ORD_S;
24: OP5 EQ_US;
25: OP5 NGE_UQ;
26: OP5 NGT_UQ;
27: OP5 FALSE_OS;
28: OP5 NEQ_OS;
29: OP5 GE_OQ;
30: OP5 GT_OQ;
31: OP5 TRUE_US;
DEFAULT: Reserved
ESAC;
VCMPSD (EVEX encoded version)
CMP0 SRC1[63:0] OP5 SRC2[63:0];
IF k2[0] or *no writemask*
THEN IF CMP0 = TRUE
THEN DEST[0] 1;
ELSE DEST[0] 0; FI;
ELSE DEST[0] 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] 0
CMPSD (128-bit Legacy SSE version)
CMP0 DEST[63:0] OP3 SRC[63:0];
IF CMP0 = TRUE
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;
DEST[MAX_VL-1:64] (Unmodified)
VCMPSD (VEX.128 encoded version)
CMP0 SRC1[63:0] OP5 SRC2[63:0];
IF CMP0 = TRUE
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0000000000000000H; FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCMPSD __mmask8 _mm_cmp_sd_mask( __m128d a, __m128d b, int imm);
VCMPSD __mmask8 _mm_cmp_round_sd_mask( __m128d a, __m128d b, int imm, int sae);
VCMPSD __mmask8 _mm_mask_cmp_sd_mask( __mmask8 k1, __m128d a, __m128d b, int imm);
VCMPSD __mmask8 _mm_mask_cmp_round_sd_mask( __mmask8 k1, __m128d a, __m128d b, int imm, int sae);
(V)CMPSD __m128d _mm_cmp_sd(__m128d a, __m128d b, const int imm)
SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 5-3 Denormal.
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
Ref. # 319433-023 5-77
INSTRUCTION SET REFERENCE, A-Z
CMPSS—Compare Scalar Single-Precision Floating-Point Value
Instruction Operand Encoding
Description
Compares the low single-precision floating-point values in the second source operand and the first source operand
and returns the results of the comparison to the destination operand. The comparison predicate operand (imme-
diate operand) specifies the type of comparison performed.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 32-bit memory location. Bits (MAX_VL-1:32)
of the corresponding YMM destination register remain unchanged. The comparison result is a doubleword mask of
all 1s (comparison true) or all 0s (comparison false).
VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source
operand (third operand) can be an XMM register or a 32-bit memory location. The result is stored in the low 32 bits
of the destination operand; bits 128:32 of the destination operand are copied from the first source operand. Bits
(MAX_VL-1:128) of the destination ZMM register are zeroed. The comparison result is a doubleword mask of all 1s
(comparison true) or all 0s (comparison false).
EVEX encoded version: The first source operand (second operand) is an XMM register. The second source operand
can be a XMM register or a 32-bit memory location. The destination operand (first operand) is an opmask register.
The comparison result is a single mask bit of 1 (comparison true) or 0 (comparison false), written to the destination
starting from the LSB according to the writemask k2. Bits (MAX_KL-1:128) of the destination register are cleared.
The comparison predicate operand is an 8-bit immediate:
For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see
Table 5-3). Bits 5 through 7 of the immediate are reserved.
For instruction encodings that do not use VEX prefix, bits 2:0 define the type of comparison to be made (see
the first 8 rows of Table 5-3). Bits 3 through 7 of the immediate are reserved.
The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN.
A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask
of all 1s corresponds to a QNaN.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F C2 /r ib RMI V/V SSE Compare low single-precision floating-point value in
xmm2/m32 and xmm1 using bits 2:0 of imm8 as
comparison predicate.
CMPSS xmm1, xmm2/m32, imm8
VEX.NDS.128.F3.0F.WIG C2 /r ib RVMI V/V AVX Compare low single-precision floating-point value in
xmm3/m32 and xmm2 using bits 4:0 of imm8 as
comparison predicate.
VCMPSS xmm1, xmm2, xmm3/m32,
imm8
EVEX.NDS.LIG.F3.0F.W0 C2 /r ib T1S V/V AVX512F Compare low single-precision floating-point value in
xmm3/m32 and xmm2 using bits 4:0 of imm8 as
comparison predicate with writemask k2 and leave the
result in mask register k1.
VCMPSS k1 {k2}, xmm2,
xmm3/m32{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA
RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
5-78 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”,
“not-greater than, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison)
or by using software emulation. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and then perform the compare
using a different predicate. The predicate to be used for these emulations is listed in the first 8 rows of Table 3-7
(Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A) under the heading Emulation.
Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand
CMPSS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 5-10. Compiler should treat reserved
Imm8 values as illegal syntax.
:
The greater-than relations that the processor does not implement require more than one instruction to emulate in
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to
the correct destination register and that the source operand is left intact.)
Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 5-9, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand
pseudo-ops in addition to the four-operand VCMPSS instruction. See Table 5-11, where the notations of reg1 reg2,
and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face. Compilers and assemblers may implement three-operand pseudo-ops for EVEX encoded VCMPSS instructions
in a similar fashion by extending the syntax listed in Table 5-11.
:
Table 5-10. Pseudo-Op and CMPSS Implementation
Pseudo-Op CMPSS Implementation
CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0
CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1
CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2
CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3
CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4
CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5
CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6
CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7
Table 5-11. Pseudo-Op and VCMPSS Implementation
Pseudo-Op CMPSS Implementation
VCMPEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0
VCMPLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1
VCMPLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 2
VCMPUNORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 3
VCMPNEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 4
VCMPNLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 5
VCMPNLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 6
VCMPORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 7
VCMPEQ_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 8
VCMPNGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 9
VCMPNGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0AH
VCMPFALSESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0BH
Ref. # 319433-023 5-79
INSTRUCTION SET REFERENCE, A-Z
Software should ensure VCMPSS is encoded with VEX.L=0. Encoding VCMPSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Operation
CASE (COMPARISON PREDICATE) OF
0: OP3 EQ_OQ; OP5 EQ_OQ;
1: OP3 LT_OS; OP5 LT_OS;
2: OP3 LE_OS; OP5 LE_OS;
3: OP3 UNORD_Q; OP5 UNORD_Q;
4: OP3 NEQ_UQ; OP5 NEQ_UQ;
5: OP3 NLT_US; OP5 NLT_US;
6: OP3 NLE_US; OP5 NLE_US;
7: OP3 ORD_Q; OP5 ORD_Q;
8: OP5 EQ_UQ;
9: OP5 NGE_US;
10: OP5 NGT_US;
11: OP5 FALSE_OQ;
12: OP5 NEQ_OQ;
13: OP5 GE_OS;
14: OP5 GT_OS;
15: OP5 TRUE_UQ;
16: OP5 EQ_OS;
17: OP5 LT_OQ;
18: OP5 LE_OQ;
VCMPNEQ_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0CH
VCMPGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0DH
VCMPGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0EH
VCMPTRUESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0FH
VCMPEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 10H
VCMPLT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 11H
VCMPLE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 12H
VCMPUNORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 13H
VCMPNEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 14H
VCMPNLT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 15H
VCMPNLE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 16H
VCMPORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 17H
VCMPEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 18H
VCMPNGE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 19H
VCMPNGT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1AH
VCMPFALSE_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1BH
VCMPNEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1CH
VCMPGE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1DH
VCMPGT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1EH
VCMPTRUE_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1FH
Table 5-11. Pseudo-Op and VCMPSS Implementation
Pseudo-Op CMPSS Implementation
5-80 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
19: OP5 UNORD_S;
20: OP5 NEQ_US;
21: OP5 NLT_UQ;
22: OP5 NLE_UQ;
23: OP5 ORD_S;
24: OP5 EQ_US;
25: OP5 NGE_UQ;
26: OP5 NGT_UQ;
27: OP5 FALSE_OS;
28: OP5 NEQ_OS;
29: OP5 GE_OQ;
30: OP5 GT_OQ;
31: OP5 TRUE_US;
DEFAULT: Reserved
ESAC;
VCMPSS (EVEX encoded version)
CMP0 SRC1[31:0] OP5 SRC2[31:0];
IF k2[0] or *no writemask*
THEN IF CMP0 = TRUE
THEN DEST[0] 1;
ELSE DEST[0] 0; FI;
ELSE DEST[0] 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] 0
CMPSS (128-bit Legacy SSE version)
CMP0 DEST[31:0] OP3 SRC[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 00000000H; FI;
DEST[MAX_VL-1:32] (Unmodified)
VCMPSS (VEX.128 encoded version)
CMP0 SRC1[31:0] OP5 SRC2[31:0];
IF CMP0 = TRUE
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 00000000H; FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCMPSS __mmask8 _mm_cmp_ss_mask( __m128 a, __m128 b, int imm);
VCMPSS __mmask8 _mm_cmp_round_ss_mask( __m128 a, __m128 b, int imm, int sae);
VCMPSS __mmask8 _mm_mask_cmp_ss_mask( __mmask8 k1, __m128 a, __m128 b, int imm);
VCMPSS __mmask8 _mm_mask_cmp_round_ss_mask( __mmask8 k1, __m128 a, __m128 b, int imm, int sae);
(V)CMPSS __m128 _mm_cmp_ss(__m128 a, __m128 b, const int imm)
SIMD Floating-Point Exceptions
Invalid if SNaN operand, Invalid if QNaN and predicate as listed in Table 5-3, Denormal.
Ref. # 319433-023 5-81
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
5-82 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
Instruction Operand Encoding
Description
Compares the double-precision floating-point values in the low quadwords of operand 1 (first operand) and
operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unor-
dered, greater than, less than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory
location. The COMISD instruction differs from the UCOMISD instruction in that it signals a SIMD floating-point
invalid operation exception (#I) when a source operand is either a QNaN or SNaN. The UCOMISD instruction signals
an invalid numeric exception only if a source operand is an SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCOMISD is encoded with VEX.L=0. Encoding VCOMISD with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Operation
COMISD (all versions)
RESULT OrderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF
UNORDERED: ZF,PF,CF 111;
GREATER_THAN: ZF,PF,CF 000;
LESS_THAN: ZF,PF,CF 001;
EQUAL: ZF,PF,CF 100;
ESAC;
OF, AF, SF 0; }
Intel C/C++ Compiler Intrinsic Equivalent
VCOMISD int _mm_comi_round_sd(__m128d a, __m128d b, int imm, int sae);
VCOMISD int _mm_comieq_sd (__m128d a, __m128d b)
VCOMISD int _mm_comilt_sd (__m128d a, __m128d b)
VCOMISD int _mm_comile_sd (__m128d a, __m128d b)
VCOMISD int _mm_comigt_sd (__m128d a, __m128d b)
VCOMISD int _mm_comige_sd (__m128d a, __m128d b)
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 2F /r RM V/V SSE2 Compare low double-precision floating-point values in
xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.
COMISD xmm1, xmm2/m64
VEX.128.66.0F.WIG 2F /r RM V/V AVX Compare low double-precision floating-point values in
xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.
VCOMISD xmm1, xmm2/m64
EVEX.LIG.66.0F.W1 2F /r T1S V/V AVX512F Compare low double-precision floating-point values in
xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.
VCOMISD xmm1, xmm2/m64{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-83
INSTRUCTION SET REFERENCE, A-Z
VCOMISD int _mm_comineq_sd (__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3;
EVEX-encoded instructions, see Exceptions Type E3NF.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
5-84 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
Instruction Operand Encoding
Description
Compares the single-precision floating-point values in the low quadwords of operand 1 (first operand) and operand
2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered,
greater than, less than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unordered result
is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 32 bit memory location.
The COMISS instruction differs from the UCOMISS instruction in that it signals a SIMD floating-point invalid opera-
tion exception (#I) when a source operand is either a QNaN or SNaN. The UCOMISS instruction signals an invalid
numeric exception only if a source operand is an SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCOMISS is encoded with VEX.L=0. Encoding VCOMISS with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Operation
COMISS (all versions)
RESULT OrderedCompare(DEST[31:0] <> SRC[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF
UNORDERED: ZF,PF,CF 111;
GREATER_THAN: ZF,PF,CF 000;
LESS_THAN: ZF,PF,CF 001;
EQUAL: ZF,PF,CF 100;
ESAC;
OF, AF, SF 0; }
Intel C/C++ Compiler Intrinsic Equivalent
VCOMISS int _mm_comi_round_ss(__m128 a, __m128 b, int imm, int sae);
VCOMISS int _mm_comieq_ss (__m128 a, __m128 b)
VCOMISS int _mm_comilt_ss (__m128 a, __m128 b)
VCOMISS int _mm_comile_ss (__m128 a, __m128 b)
VCOMISS int _mm_comigt_ss (__m128 a, __m128 b)
VCOMISS int _mm_comige_ss (__m128 a, __m128 b)
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 2F /r RM V/V SSE Compare low single-precision floating-point values in
xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.
COMISS xmm1, xmm2/m32
VEX.128.0F.WIG 2F /r RM V/V AVX Compare low single-precision floating-point values in
xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.
VCOMISS xmm1, xmm2/m32
EVEX.LIG.0F.W0 2F /r T1S V/V AVX512F Compare low single-precision floating-point values in
xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.
VCOMISS xmm1, xmm2/m32{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-85
INSTRUCTION SET REFERENCE, A-Z
VCOMISS int _mm_comineq_ss (__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3;
EVEX-encoded instructions, see Exceptions Type E3NF.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
5-86 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DIVPD—Divide Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD divide of the double-precision floating-point values in the first source operand by the floating-
point values in the second source operand (the third operand). Results are written to the destination operand (the
first operand).
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
VEX.256 encoded version: The first source operand (the second operand) is a YMM register. The second source
operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper
bits (MAX_VL-1:256) of the corresponding destination are zeroed.
VEX.128 encoded version: The first source operand (the second operand) is a XMM register. The second source
operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper
bits (MAX_VL-1:128) of the corresponding destination are zeroed.
128-bit Legacy SSE version: The second source operand (the second operand) can be an XMM register or an 128-
bit memory location. The destination is the same as the first source operand. The upper bits (MAX_VL-1:128) of the
corresponding destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 5E /r RM V/V SSE2 Divide packed double-precision floating-point values
in xmm1 by packed double-precision floating-point
values in xmm2/mem.
DIVPD xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 5E /r RVM V/V AVX Divide packed double-precision floating-point values
in xmm2 by packed double-precision floating-point
values in xmm3/mem.
VDIVPD xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG 5E /r RVM V/V AVX Divide packed double-precision floating-point values
in ymm2 by packed double-precision floating-point
values in ymm3/mem.
VDIVPD ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W1 5E /r FV V/V AVX512VL Divide packed double-precision floating-point values
in xmm2 by packed double-precision floating-point
values in xmm3/m128/m64bcst and write results to
xmm1 subject to writemask k1.
VDIVPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F.W1 5E /r FV V/V AVX512VL Divide packed double-precision floating-point values
in ymm2 by packed double-precision floating-point
values in ymm3/m256/m64bcst and write results to
ymm1 subject to writemask k1.
VDIVPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F.W1 5E /r FV V/V AVX512F Divide packed double-precision floating-point values
in zmm2 by packed double-precision FP values in
zmm3/m512/m64bcst and write results to zmm1
subject to writemask k1.
VDIVPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-87
INSTRUCTION SET REFERENCE, A-Z
Operation
VDIVPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC); ; refer to Table 2-4
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] SRC1[i+63:i] / SRC2[63:0]
ELSE
DEST[i+63:i] SRC1[i+63:i] / SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VDIVPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] / SRC2[63:0]
DEST[127:64] SRC1[127:64] / SRC2[127:64]
DEST[191:128] SRC1[191:128] / SRC2[191:128]
DEST[255:192] SRC1[255:192] / SRC2[255:192]
DEST[MAX_VL-1:256] 0;
VDIVPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] / SRC2[63:0]
DEST[127:64] SRC1[127:64] / SRC2[127:64]
DEST[MAX_VL-1:128] 0;
DIVPD (128-bit Legacy SSE version)
DEST[63:0] SRC1[63:0] / SRC2[63:0]
DEST[127:64] SRC1[127:64] / SRC2[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VDIVPD __m512d _mm512_div_pd( __m512d a, __m512d b);
VDIVPD __m512d _mm512_mask_div_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VDIVPD __m512d _mm512_maskz_div_pd( __mmask8 k, __m512d a, __m512d b);
VDIVPD __m256d _mm256_mask_div_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VDIVPD __m256d _mm256_maskz_div_pd( __mmask8 k, __m256d a, __m256d b);
VDIVPD __m128d _mm_mask_div_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVPD __m128d _mm_maskz_div_pd( __mmask8 k, __m128d a, __m128d b);
5-88 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VDIVPD __m512d _mm512_div_round_pd( __m512d a, __m512d b, int);
VDIVPD __m512d _mm512_mask_div_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VDIVPD __m512d _mm512_maskz_div_round_pd( __mmask8 k, __m512d a, __m512d b, int);
VDIVPD __m256d _mm256_div_pd (__m256d a, __m256d b);
DIVPD __m128d _mm_div_pd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-89
INSTRUCTION SET REFERENCE, A-Z
DIVPS—Divide Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD divide of the four, eight or sixteen packed single-precision floating-point values in the first source
operand (the second operand) by the four, eight or sixteen packed single-precision floating-point values in the
second source operand (the third operand). Results are written to the destination operand (the first operand).
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 5E /r RM V/V SSE Divide packed single-precision floating-point values
in xmm1 by packed single-precision floating-point
values in xmm2/mem.
DIVPS xmm1, xmm2/m128
VEX.NDS.128.0F.WIG 5E /r RVM V/V AVX Divide packed single-precision floating-point values
in xmm2 by packed single-precision floating-point
values in xmm3/mem.
VDIVPS xmm1, xmm2, xmm3/m128
VEX.NDS.256.0F.WIG 5E /r RVM V/V AVX Divide packed single-precision floating-point values
in ymm2 by packed single-precision floating-point
values in ymm3/mem.
VDIVPS ymm1, ymm2, ymm3/m256
EVEX.NDS.128.0F.W0 5E /r FV V/V AVX512VL Divide packed single-precision floating-point values
in xmm2 by packed single-precision floating-point
values in xmm3/m128/m32bcst and write results to
xmm1 subject to writemask k1.
VDIVPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.0F.W0 5E /r FV V/V AVX512VL Divide packed single-precision floating-point values
in ymm2 by packed single-precision floating-point
values in ymm3/m256/m32bcst and write results to
ymm1 subject to writemask k1.
VDIVPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.0F.W0 5E /r FV V/V AVX512F Divide packed single-precision floating-point values
in zmm2 by packed single-precision floating-point
values in zmm3/m512/m32bcst and write results to
zmm1 subject to writemask k1.
VDIVPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-90 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VDIVPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] SRC1[i+31:i] / SRC2[31:0]
ELSE
DEST[i+31:i] SRC1[i+31:i] / SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VDIVPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] / SRC2[31:0]
DEST[63:32] SRC1[63:32] / SRC2[63:32]
DEST[95:64] SRC1[95:64] / SRC2[95:64]
DEST[127:96] SRC1[127:96] / SRC2[127:96]
DEST[159:128] SRC1[159:128] / SRC2[159:128]
DEST[191:160]SRC1[191:160] / SRC2[191:160]
DEST[223:192] SRC1[223:192] / SRC2[223:192]
DEST[255:224] SRC1[255:224] / SRC2[255:224].
DEST[MAX_VL-1:256] 0;
VDIVPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] / SRC2[31:0]
DEST[63:32] SRC1[63:32] / SRC2[63:32]
DEST[95:64] SRC1[95:64] / SRC2[95:64]
DEST[127:96] SRC1[127:96] / SRC2[127:96]
DEST[MAX_VL-1:128] 0
Ref. # 319433-023 5-91
INSTRUCTION SET REFERENCE, A-Z
DIVPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] / SRC2[31:0]
DEST[63:32] SRC1[63:32] / SRC2[63:32]
DEST[95:64] SRC1[95:64] / SRC2[95:64]
DEST[127:96] SRC1[127:96] / SRC2[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VDIVPS __m512 _mm512_div_ps( __m512 a, __m512 b);
VDIVPS __m512 _mm512_mask_div_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VDIVPS __m512 _mm512_maskz_div_ps(__mmask16 k, __m512 a, __m512 b);
VDIVPD __m256d _mm256_mask_div_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VDIVPD __m256d _mm256_maskz_div_pd( __mmask8 k, __m256d a, __m256d b);
VDIVPD __m128d _mm_mask_div_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVPD __m128d _mm_maskz_div_pd( __mmask8 k, __m128d a, __m128d b);
VDIVPS __m512 _mm512_div_round_ps( __m512 a, __m512 b, int);
VDIVPS __m512 _mm512_mask_div_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VDIVPS __m512 _mm512_maskz_div_round_ps(__mmask16 k, __m512 a, __m512 b, int);
VDIVPS __m256 _mm256_div_ps (__m256 a, __m256 b);
DIVPS __m128 _mm_div_ps (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
5-92 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DIVSD—Divide Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
Divides the low double-precision floating-point value in the first source operand by the low double-precision
floating-point value in the second source operand, and stores the double-precision floating-point result in the desti-
nation operand. The second source operand can be an XMM register or a 64-bit memory location. The first source
and destination are XMM registers.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAX_VL-
1:64) of the corresponding ZMM destination register remain unchanged.
VEX.128 encoded version: The first source operand is an xmm register encoded by VEX.vvvv. The quadword at bits
127:64 of the destination operand is copied from the corresponding quadword of the first source operand. Bits
(MAX_VL-1:128) of the destination register are zeroed.
EVEX.128 encoded version: The first source operand is an xmm register encoded by EVEX.vvvv. The quadword
element of the destination operand at bits 127:64 are copied from the first source operand. Bits (MAX_VL-1:128)
of the destination register are zeroed.
EVEX version: The low quadword element of the destination is updated according to the writemask.
Software should ensure VDIVSD is encoded with VEX.L=0. Encoding VDIVSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 5E /r RM V/V SSE2 Divide low double-precision floating-point value in
xmm1 by low double-precision floating-point value
in xmm2/m64.
DIVSD xmm1, xmm2/m64
VEX.NDS.128.F2.0F.WIG 5E /r RVM V/V AVX Divide low double-precision floating-point value in
xmm2 by low double-precision floating-point value
in xmm3/m64.
VDIVSD xmm1, xmm2, xmm3/m64
EVEX.NDS.LIG.F2.0F.W1 5E /r T1S V/V AVX512F Divide low double-precision floating-point value in
xmm2 by low double-precision floating-point value
in xmm3/m64.
VDIVSD xmm1 {k1}{z}, xmm2,
xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-93
INSTRUCTION SET REFERENCE, A-Z
Operation
VDIVSD (EVEX encoded version)
IF (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] SRC1[63:0] / SRC2[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VDIVSD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] / SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
DIVSD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] / SRC[63:0]
DEST[MAX_VL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VDIVSD __m128d _mm_mask_div_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVSD __m128d _mm_maskz_div_sd( __mmask8 k, __m128d a, __m128d b);
VDIVSD __m128d _mm_div_round_sd( __m128d a, __m128d b, int);
VDIVSD __m128d _mm_mask_div_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VDIVSD __m128d _mm_maskz_div_round_sd( __mmask8 k, __m128d a, __m128d b, int);
DIVSD __m128d _mm_div_sd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
5-94 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DIVSS—Divide Scalar Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Divides the low single-precision floating-point value in the first source operand by the low single-precision floating-
point value in the second source operand, and stores the single-precision floating-point result in the destination
operand. The second source operand can be an XMM register or a 32-bit memory location.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAX_VL-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand is an xmm register encoded by VEX.vvvv. The three high-order
doublewords of the destination operand are copied from the first source operand. Bits (MAX_VL-1:128) of the
destination register are zeroed.
EVEX.128 encoded version: The first source operand is an xmm register encoded by EVEX.vvvv. The doubleword
elements of the destination operand at bits 127:32 are copied from the first source operand. Bits (MAX_VL-1:128)
of the destination register are zeroed.
EVEX version: The low doubleword element of the destination is updated according to the writemask.
Software should ensure VDIVSS is encoded with VEX.L=0. Encoding VDIVSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 5E /r RM V/V SSE Divide low single-precision floating-point value in
xmm1 by low single-precision floating-point value in
xmm2/m32.
DIVSS xmm1, xmm2/m32
VEX.NDS.128.F3.0F.WIG 5E /r RVM V/V AVX Divide low single-precision floating-point value in
xmm2 by low single-precision floating-point value in
xmm3/m32.
VDIVSS xmm1, xmm2, xmm3/m32
EVEX.NDS.LIG.F3.0F.W0 5E /r T1S V/V AVX512F Divide low single-precision floating-point value in
xmm2 by low single-precision floating-point value in
xmm3/m32.
VDIVSS xmm1 {k1}{z}, xmm2,
xmm3/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-95
INSTRUCTION SET REFERENCE, A-Z
Operation
VDIVSS (EVEX encoded version)
IF (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] SRC1[31:0] / SRC2[31:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VDIVSS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] / SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
DIVSS (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] / SRC[31:0]
DEST[MAX_VL-1:32] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VDIVSS __m128 _mm_mask_div_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VDIVSS __m128 _mm_maskz_div_ss( __mmask8 k, __m128 a, __m128 b);
VDIVSS __m128 _mm_div_round_ss( __m128 a, __m128 b, int);
VDIVSS __m128 _mm_mask_div_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VDIVSS __m128 _mm_maskz_div_round_ss( __mmask8 k, __m128 a, __m128 b, int);
DIVSS __m128 _mm_div_ss(__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
5-96 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCOMPRESSPD—Store Sparse Packed Double-Precision Floating-Point Values into Dense
Memory
Instruction Operand Encoding
Description
Compress (store) up to 8 double-precision floating-point values from the source operand (the second operand) as
a contiguous vector to the destination operand (the first operand) The source operand is a ZMM/YMM/XMM register,
the destination operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The opmask register k1 selects the active elements (partial vector or possibly non-contiguous if less than 8 active
elements) from the source operand to compress into a contiguous vector. The contiguous vector is written to the
destination starting from the low element of the destination operand.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper
bits are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.
Operation
VCOMPRESSPD (EVEX encoded versions) store form
(KL, VL) = (2, 128), (4, 256), (8, 512)
SIZE 64
k 0
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
DEST[k+SIZE-1:k] SRC[i+63:i]
k k + SIZE
FI;
ENDFOR
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W1 8A /r T1S V/V AVX512VL Compress packed double-precision floating-point
values from xmm2 to xmm1/m128 using writemask
k1.
VCOMPRESSPD xmm1/m128 {k1}{z},
xmm2
AVX512F
EVEX.256.66.0F38.W1 8A /r T1S V/V AVX512VL Compress packed double-precision floating-point
values from ymm2 to ymm1/m256 using writemask
k1.
VCOMPRESSPD ymm1/m256 {k1}{z},
ymm2
AVX512F
EVEX.512.66.0F38.W1 8A /r T1S V/V AVX512F Compress packed double-precision floating-point
values from zmm2 using control mask k1 to
zmm1/m512.
VCOMPRESSPD zmm1/m512 {k1}{z},
zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:r/m (w) ModRM:reg (r) NA NA
Ref. # 319433-023 5-97
INSTRUCTION SET REFERENCE, A-Z
VCOMPRESSPD (EVEX encoded versions) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
SIZE 64
k 0
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
DEST[k+SIZE-1:k] SRC[i+63:i]
k k + SIZE
FI;
ENDFOR
IF *merging-masking*
THEN *DEST[VL-1:k] remains unchanged*
ELSE DEST[VL-1:k] 0
FI
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCOMPRESSPD __m512d _mm512_mask_compress_pd( __m512d s, __mmask8 k, __m512d a);
VCOMPRESSPD __m512d _mm512_maskz_compress_pd( __mmask8 k, __m512d a);
VCOMPRESSPD void _mm512_mask_compressstoreu_pd( void * d, __mmask8 k, __m512d a);
VCOMPRESSPD __m256d _mm256_mask_compress_pd( __m256d s, __mmask8 k, __m256d a);
VCOMPRESSPD __m256d _mm256_maskz_compress_pd( __mmask8 k, __m256d a);
VCOMPRESSPD void _mm256_mask_compressstoreu_pd( void * d, __mmask8 k, __m256d a);
VCOMPRESSPD __m128d _mm_mask_compress_pd( __m128d s, __mmask8 k, __m128d a);
VCOMPRESSPD __m128d _mm_maskz_compress_pd( __mmask8 k, __m128d a);
VCOMPRESSPD void _mm_mask_compressstoreu_pd( void * d, __mmask8 k, __m128d a);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B.
5-98 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCOMPRESSPS—Store Sparse Packed Single-Precision Floating-Point Values into Dense Memory
Instruction Operand Encoding
Description
Compress (stores) up to 16 single-precision floating-point values from the source operand (the second operand) to
the destination operand (the first operand). The source operand is a ZMM/YMM/XMM register, the destination
operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The opmask register k1 selects the active elements (a partial vector or possibly non-contiguous if less than 16
active elements) from the source operand to compress into a contiguous vector. The contiguous vector is written to
the destination starting from the low element of the destination operand.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper
bits are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.
Operation
VCOMPRESSPS (EVEX encoded versions) store form
(KL, VL) = (4, 128), (8, 256), (16, 512)
SIZE 32
k 0
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
DEST[k+SIZE-1:k] SRC[i+31:i]
k k + SIZE
FI;
ENDFOR;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 8A /r T1S V/V AVX512VL Compress packed single-precision floating-point
values from xmm2 to xmm1/m128 using writemask
k1.
VCOMPRESSPS xmm1/m128 {k1}{z},
xmm2
AVX512F
EVEX.256.66.0F38.W0 8A /r T1S V/V AVX512VL Compress packed single-precision floating-point
values from ymm2 to ymm1/m256 using writemask
k1.
VCOMPRESSPS ymm1/m256 {k1}{z},
ymm2
AVX512F
EVEX.512.66.0F38.W0 8A /r T1S V/V AVX512F Compress packed single-precision floating-point
values from zmm2 using control mask k1 to
zmm1/m512.
VCOMPRESSPS zmm1/m512 {k1}{z},
zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:r/m (w) ModRM:reg (r) NA NA
Ref. # 319433-023 5-99
INSTRUCTION SET REFERENCE, A-Z
VCOMPRESSPS (EVEX encoded versions) reg-reg form
(KL, VL) = (4, 128), (8, 256), (16, 512)
SIZE 32
k 0
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
DEST[k+SIZE-1:k] SRC[i+31:i]
k k + SIZE
FI;
ENDFOR
IF *merging-masking*
THEN *DEST[VL-1:k] remains unchanged*
ELSE DEST[VL-1:k] 0
FI
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCOMPRESSPS __m512 _mm512_mask_compress_ps( __m512 s, __mmask16 k, __m512 a);
VCOMPRESSPS __m512 _mm512_maskz_compress_ps( __mmask16 k, __m512 a);
VCOMPRESSPS void _mm512_mask_compressstoreu_ps( void * d, __mmask16 k, __m512 a);
VCOMPRESSPS __m256 _mm256_mask_compress_ps( __m256 s, __mmask8 k, __m256 a);
VCOMPRESSPS __m256 _mm256_maskz_compress_ps( __mmask8 k, __m256 a);
VCOMPRESSPS void _mm256_mask_compressstoreu_ps( void * d, __mmask8 k, __m256 a);
VCOMPRESSPS __m128 _mm_mask_compress_ps( __m128 s, __mmask8 k, __m128 a);
VCOMPRESSPS __m128 _mm_maskz_compress_ps( __mmask8 k, __m128 a);
VCOMPRESSPS void _mm_mask_compressstoreu_ps( void * d, __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B.
5-100 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point
Values
Instruction Operand Encoding
Description
Converts two, four or eight packed signed doubleword integers in the source operand (the second operand) to two,
four or eight packed double-precision floating-point values in the destination operand (the first operand).
EVEX encoded versions: The source operand can be a YMM/XMM/XMM (low 64 bits) register, a 256/128/64-bit
memory location or a 256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand
is a ZMM/YMM/XMM register conditionally updated with writemask k1. Attempt to encode this instruction with EVEX
embedded rounding is ignored.
VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination
operand is a YMM register.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination
operand is a XMM register. The upper Bits (MAX_VL-1:128) of the corresponding ZMM register destination are
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination
operand is an XMM register. The upper Bits (MAX_VL-1:128) of the corresponding ZMM register destination are
unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F E6 /r RM V/V SSE2 Convert two packed signed doubleword integers from
xmm2/mem to two packed double-precision floating-
point values in xmm1.
CVTDQ2PD xmm1, xmm2/m64
VEX.128.F3.0F.WIG E6 /r RM V/V AVX Convert two packed signed doubleword integers from
xmm2/mem to two packed double-precision floating-
point values in xmm1.
VCVTDQ2PD xmm1, xmm2/m64
VEX.256.F3.0F.WIG E6 /r RM V/V AVX Convert four packed signed doubleword integers from
xmm2/mem to four packed double-precision floating-
point values in ymm1.
VCVTDQ2PD ymm1, xmm2/m128
EVEX.128.F3.0F.W0 E6 /r HV V/V AVX512VL Convert 2 packed signed doubleword integers from
xmm2/m128/m32bcst to eight packed double-precision
floating-point values in xmm1 with writemask k1.
VCVTDQ2PD xmm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.256.F3.0F.W0 E6 /r HV V/V AVX512VL Convert 4 packed signed doubleword integers from
xmm2/m128/m32bcst to 4 packed double-precision
floating-point values in ymm1 with writemask k1.
VCVTDQ2PD ymm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.512.F3.0F.W0 E6 /r HV V/V AVX512F Convert eight packed signed doubleword integers from
ymm2/m256/m32bcst to eight packed double-precision
floating-point values in zmm1 with writemask k1.
VCVTDQ2PD zmm1 {k1}{z},
ymm2/m256/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
HV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-101
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTDQ2PD (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTDQ2PD (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
ELSE
DEST[i+63:i]
Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
Figure 5-11. CVTDQ2PD (VEX.256 encoded version)
DEST
SRC X0X1X2X3
X3 X2
X1 X0
5-102 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTDQ2PD (VEX.256 encoded version)
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96)
DEST[MAX_VL-1:256] 0
VCVTDQ2PD (VEX.128 encoded version)
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAX_VL-1:128] 0
CVTDQ2PD (128-bit Legacy SSE version)
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTDQ2PD __m512d _mm512_cvtepi32_pd( __m256i a);
VCVTDQ2PD __m512d _mm512_mask_cvtepi32_pd( __m512d s, __mmask8 k, __m256i a);
VCVTDQ2PD __m512d _mm512_maskz_cvtepi32_pd( __mmask8 k, __m256i a);
VCVTDQ2PD __m256d _mm256_mask_cvtepi32_pd( __m256d s, __mmask8 k, __m256i a);
VCVTDQ2PD __m256d _mm256_maskz_cvtepi32_pd( __mmask8 k, __m256i a);
VCVTDQ2PD __m128d _mm_mask_cvtepi32_pd( __m128d s, __mmask8 k, __m128i a);
VCVTDQ2PD __m128d _mm_maskz_cvtepi32_pd( __mmask8 k, __m128i a);
CVTDQ2PD __m256d _mm256_cvtepi32_pd (__m128i src)
CVTDQ2PD __m128d _mm_cvtepi32_pd (__m128i src)
Other Exceptions
VEX-encoded instructions, see Exceptions Type 5;
EVEX-encoded instructions, see Exceptions Type E5.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-103
INSTRUCTION SET REFERENCE, A-Z
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point
Values
Instruction Operand Encoding
Description
Converts four, eight or sixteen packed signed doubleword integers in the source operand to four, eight or sixteen
packed single-precision floating-point values in the destination operand.
EVEX encoded versions: The source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a
ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination
operand is a YMM register. Bits (MAX_VL-1:256) of the corresponding register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination
operand is a XMM register. The upper bits (MAX_VL-1:128) of the corresponding register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination
operand is an XMM register. The upper Bits (MAX_VL-1:128) of the corresponding register destination are unmod-
ified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Opcode
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 5B /r RM V/V SSE2 Convert four packed signed doubleword integers from
xmm2/mem to four packed single-precision floating-
point values in xmm1.
CVTDQ2PS xmm1, xmm2/m128
VEX.128.0F.WIG 5B /r RM V/V AVX Convert four packed signed doubleword integers from
xmm2/mem to four packed single-precision floating-
point values in xmm1.
VCVTDQ2PS xmm1, xmm2/m128
VEX.256.0F.WIG 5B /r RM V/V AVX Convert eight packed signed doubleword integers from
ymm2/mem to eight packed single-precision floating-
point values in ymm1.
VCVTDQ2PS ymm1, ymm2/m256
EVEX.128.0F.W0 5B /r FV V/V AVX512VL Convert four packed signed doubleword integers from
xmm2/m128/m32bcst to four packed single-precision
floating-point values in xmm1with writemask k1.
VCVTDQ2PS xmm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.256.0F.W0 5B /r FV V/V AVX512VL Convert eight packed signed doubleword integers from
ymm2/m256/m32bcst to eight packed single-precision
floating-point values in ymm1with writemask k1.
VCVTDQ2PS ymm1 {k1}{z},
ymm2/m256/m32bcst
AVX512F
EVEX.512.0F.W0 5B /r FV V/V AVX512F Convert sixteen packed signed doubleword integers
from zmm2/m512/m32bcst to sixteen packed single-
precision floating-point values in zmm1with writemask
k1.
VCVTDQ2PS zmm1 {k1}{z},
zmm2/m512/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-104 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTDQ2PS (EVEX encoded versions) when SRC operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC); ; refer to Table 2-4
ELSE
SET_RM(MXCSR.RM); ; refer to Table 2-4
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTDQ2PS (EVEX encoded versions) when SRC operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
ELSE
DEST[i+31:i]
Convert_Integer_To_Single_Precision_Floating_Point(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-105
INSTRUCTION SET REFERENCE, A-Z
VCVTDQ2PS (VEX.256 encoded version)
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] Convert_Integer_To_Single_Precision_Floating_Point(SRC[127:96)
DEST[159:128] Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128])
DEST[191:160] Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160])
DEST[223:192] Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192])
DEST[255:224] Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224)
DEST[MAX_VL-1:256] 0
VCVTDQ2PS (VEX.128 encoded version)
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[MAX_VL-1:128] 0
CVTDQ2PS (128-bit Legacy SSE version)
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])
DEST[63:32] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])
DEST[95:64] Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])
DEST[127:96] Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)
DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTDQ2PS __m512 _mm512_cvtepi32_ps( __m512i a);
VCVTDQ2PS __m512 _mm512_mask_cvtepi32_ps( __m512 s, __mmask16 k, __m512i a);
VCVTDQ2PS __m512 _mm512_maskz_cvtepi32_ps( __mmask16 k, __m512i a);
VCVTDQ2PS __m512 _mm512_cvt_roundepi32_ps( __m512i a, int r);
VCVTDQ2PS __m512 _mm512_mask_cvt_roundepi_ps( __m512 s, __mmask16 k, __m512i a, int r);
VCVTDQ2PS __m512 _mm512_maskz_cvt_roundepi32_ps( __mmask16 k, __m512i a, int r);
VCVTDQ2PS __m256 _mm256_mask_cvtepi32_ps( __m256 s, __mmask8 k, __m256i a);
VCVTDQ2PS __m256 _mm256_maskz_cvtepi32_ps( __mmask8 k, __m256i a);
VCVTDQ2PS __m128 _mm_mask_cvtepi32_ps( __m128 s, __mmask8 k, __m128i a);
VCVTDQ2PS __m128 _mm_maskz_cvtepi32_ps( __mmask8 k, __m128i a);
CVTDQ2PS __m256 _mm256_cvtepi32_ps (__m256i src)
CVTDQ2PS __m128 _mm_cvtepi32_ps (__m128i src)
SIMD Floating-Point Exceptions
Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2;
EVEX-encoded instructions, see Exceptions Type E2.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
5-106 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Doubleword
Integers
Instruction Operand Encoding
Description
Converts packed double-precision floating-point values in the source operand (second operand) to packed signed
doubleword integers in the destination operand (first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value
(2w-1, where w represents the number of bits in the destination format) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512-bit memory location, or a 512-bit
vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register condi-
tionally updated with writemask k1. The upper bits (MAX_VL-1:256/128/64) of the corresponding destination are
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination
operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination
operand is a XMM register. The upper bits (MAX_VL-1:64) of the corresponding ZMM register destination are
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination
operand is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper bits
(MAX_VL-1:128) of the corresponding ZMM register destination are unmodified.
Opcode
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F E6 /r RM V/V SSE2 Convert two packed double-precision floating-point
values in xmm2/mem to two signed doubleword
integers in xmm1.
CVTPD2DQ xmm1, xmm2/m128
VEX.128.F2.0F.WIG E6 /r RM V/V AVX Convert two packed double-precision floating-point
values in xmm2/mem to two signed doubleword
integers in xmm1.
VCVTPD2DQ xmm1, xmm2/m128
VEX.256.F2.0F.WIG E6 /r RM V/V AVX Convert four packed double-precision floating-point
values in ymm2/mem to four signed doubleword
integers in xmm1.
VCVTPD2DQ xmm1, ymm2/m256
EVEX.128.F2.0F.W1 E6 /r FV V/V AVX512VL Convert two packed double-precision floating-point
values in xmm2/m128/m64bcst to two signed
doubleword integers in xmm1 subject to writemask k1.
VCVTPD2DQ xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512F
EVEX.256.F2.0F.W1 E6 /r FV V/V AVX512VL Convert four packed double-precision floating-point
values in ymm2/m256/m64bcst to four signed
doubleword integers in xmm1 subject to writemask k1.
VCVTPD2DQ xmm1 {k1}{z},
ymm2/m256/m64bcst
AVX512F
EVEX.512.F2.0F.W1 E6 /r FV V/V AVX512F Convert eight packed double-precision floating-point
values in zmm2/m512/m64bcst to eight signed
doubleword integers in ymm1 subject to writemask k1.
VCVTPD2DQ ymm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-107
INSTRUCTION SET REFERENCE, A-Z
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTPD2DQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
Figure 5-12. VCVTPD2DQ (VEX.256 encoded version)
DEST
SRC
X0X1X2X3
X3 X2
X1 X0
0
5-108 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPD2DQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
ELSE
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
VCVTPD2DQ (VEX.256 encoded version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[95:64] Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128])
DEST[127:96] Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192)
DEST[MAX_VL-1:128]0
VCVTPD2DQ (VEX.128 encoded version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[MAX_VL-1:64]0
CVTPD2DQ (128-bit Legacy SSE version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])
DEST[127:64] 0
DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPD2DQ __m256i _mm512_cvtpd_epi32( __m512d a);
VCVTPD2DQ __m256i _mm512_mask_cvtpd_epi32( __m256i s, __mmask8 k, __m512d a);
VCVTPD2DQ __m256i _mm512_maskz_cvtpd_epi32( __mmask8 k, __m512d a);
VCVTPD2DQ __m256i _mm512_cvt_roundpd_epi32( __m512d a, int r);
VCVTPD2DQ __m256i _mm512_mask_cvt_roundpd_epi32( __m256i s, __mmask8 k, __m512d a, int r);
VCVTPD2DQ __m256i _mm512_maskz_cvt_roundpd_epi32( __mmask8 k, __m512d a, int r);
VCVTPD2DQ __m128i _mm256_mask_cvtpd_epi32( __m128i s, __mmask8 k, __m256d a);
VCVTPD2DQ __m128i _mm256_maskz_cvtpd_epi32( __mmask8 k, __m256d a);
VCVTPD2DQ __m128i _mm_mask_cvtpd_epi32( __m128i s, __mmask8 k, __m128d a);
VCVTPD2DQ __m128i _mm_maskz_cvtpd_epi32( __mmask8 k, __m128d a);
Ref. # 319433-023 5-109
INSTRUCTION SET REFERENCE, A-Z
VCVTPD2DQ __m128i _mm256_cvtpd_epi32 (__m256d src)
CVTPD2DQ __m128i _mm_cvtpd_epi32 (__m128d src)
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
See Exceptions Type 2; additionally
EVEX-encoded instructions, see Exceptions Type E2.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
5-110 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision
Floating-Point Values
Instruction Operand Encoding
Description
Converts two, four or eight packed double-precision floating-point values in the source operand (second operand)
to two, four or eight packed single-precision floating-point values in the destination operand (first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or
a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a
YMM/XMM/XMM (low 64-bits) register conditionally updated with writemask k1. The upper bits (MAX_VL-
1:256/128/64) of the corresponding destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination
operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination
operand is a XMM register. The upper bits (MAX_VL-1:64) of the corresponding ZMM register destination are
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination
operand is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper Bits
(MAX_VL-1:128) of the corresponding ZMM register destination are unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 5A /r RM V/V SSE2 Convert two packed double-precision floating-point
values in xmm2/mem to two single-precision
floating-point values in xmm1.
CVTPD2PS xmm1, xmm2/m128
VEX.128.66.0F.WIG 5A /r RM V/V AVX Convert two packed double-precision floating-point
values in xmm2/mem to two single-precision
floating-point values in xmm1.
VCVTPD2PS xmm1, xmm2/m128
VEX.256.66.0F.WIG 5A /r RM V/V AVX Convert four packed double-precision floating-point
values in ymm2/mem to four single-precision
floating-point values in xmm1.
VCVTPD2PS xmm1, ymm2/m256
EVEX.128.66.0F.W1 5A /r FV V/V AVX512VL Convert two packed double-precision floating-point
values in xmm2/m128/m64bcst to two single-
precision floating-point values in xmm1with
writemask k1.
VCVTPD2PS xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512F
EVEX.256.66.0F.W1 5A /r FV V/V AVX512VL Convert four packed double-precision floating-point
values in ymm2/m256/m64bcst to four single-
precision floating-point values in xmm1with
writemask k1.
VCVTPD2PS xmm1 {k1}{z},
ymm2/m256/m64bcst
AVX512F
EVEX.512.66.0F.W1 5A /r FV V/V AVX512F Convert eight packed double-precision floating-point
values in zmm2/m512/m64bcst to eight single-
precision floating-point values in ymm1with
writemask k1.
VCVTPD2PS ymm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-111
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTPD2PS (EVEX encoded version) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN
DEST[i+31:i] Convert_Double_Precision_Floating_Point_To_Single_Precision_Floating_Point(SRC[k+63:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
Figure 5-13. VCVTPD2PS (VEX.256 encoded version)
DEST
SRC
X0X1X2X3
X3 X2
X1 X0
0
5-112 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPD2PS (EVEX encoded version) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i] Convert_Double_Precision_Floating_Point_To_Single_Precision_Floating_Point(SRC[63:0])
ELSE
DEST[i+31:i] Convert_Double_Precision_Floating_Point_To_Single_Precision_Floating_Point(SRC[k+63:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
VCVTPD2PS (VEX.256 encoded version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[95:64] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[191:128])
DEST[127:96] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[255:192)
DEST[MAX_VL-1:128] 0
VCVTPD2PS (VEX.128 encoded version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[MAX_VL-1:64] 0
CVTPD2PS (128-bit Legacy SSE version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])
DEST[63:32] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])
DEST[127:64] 0
DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPD2PS __m256 _mm512_cvtpd_ps( __m512d a);
VCVTPD2PS __m256 _mm512_mask_cvtpd_ps( __m256 s, __mmask8 k, __m512d a);
VCVTPD2PS __m256 _mm512_maskz_cvtpd_ps( __mmask8 k, __m512d a);
VCVTPD2PS __m256 _mm512_cvt_roundpd_ps( __m512d a, int r);
VCVTPD2PS __m256 _mm512_mask_cvt_roundpd_ps( __m256 s, __mmask8 k, __m512d a, int r);
VCVTPD2PS __m256 _mm512_maskz_cvt_roundpd_ps( __mmask8 k, __m512d a, int r);
VCVTPD2PS __m128 _mm256_mask_cvtpd_ps( __m128 s, __mmask8 k, __m256d a);
VCVTPD2PS __m128 _mm256_maskz_cvtpd_ps( __mmask8 k, __m256d a);
VCVTPD2PS __m128 _mm_mask_cvtpd_ps( __m128 s, __mmask8 k, __m128d a);
VCVTPD2PS __m128 _mm_maskz_cvtpd_ps( __mmask8 k, __m128d a);
VCVTPD2PS __m128 _mm256_cvtpd_ps (__m256d a)
Ref. # 319433-023 5-113
INSTRUCTION SET REFERENCE, A-Z
CVTPD2PS __m128 _mm_cvtpd_ps (__m128d a)
SIMD Floating-Point Exceptions
Invalid, Precision, Underflow, Overflow, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2;
EVEX-encoded instructions, see Exceptions Type E2.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
5-114 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPD2QQ—Convert Packed Double-Precision Floating-Point Values to Packed Quadword
Integers
Instruction Operand Encoding
Description
Converts packed double-precision floating-point values in the source operand (second operand) to packed quad-
word integers in the destination operand (first operand).
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The destination operation is a ZMM/YMM/XMM register conditionally updated with writemask k1.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value
(2w-1, where w represents the number of bits in the destination format) is returned.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTPD2QQ (EVEX encoded version) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Double_Precision_Floating_Point_To_QuadInteger(SRC[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F.W1 7B /r FV V/V AVX512VL Convert two packed double-precision floating-point values from
xmm2/m128/m64bcst to two packed quadword integers in
xmm1 with writemask k1.
VCVTPD2QQ xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512DQ
EVEX.256.66.0F.W1 7B /r FV V/V AVX512VL Convert four packed double-precision floating-point values from
ymm2/m256/m64bcst to four packed quadword integers in
ymm1 with writemask k1.
VCVTPD2QQ ymm1 {k1}{z},
ymm2/m256/m64bcst
AVX512DQ
EVEX.512.66.0F.W1 7B /r FV V/V AVX512DQ Convert eight packed double-precision floating-point values
from zmm2/m512/m64bcst to eight packed quadword integers
in zmm1 with writemask k1.
VCVTPD2QQ zmm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-115
INSTRUCTION SET REFERENCE, A-Z
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTPD2QQ (EVEX encoded version) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i] Convert_Double_Precision_Floating_Point_To_QuadInteger(SRC[63:0])
ELSE
DEST[i+63:i] Convert_Double_Precision_Floating_Point_To_QuadInteger(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPD2QQ __m512i _mm512_cvtpd_epi64( __m512d a);
VCVTPD2QQ __m512i _mm512_mask_cvtpd_epi64( __m512i s, __mmask8 k, __m512d a);
VCVTPD2QQ __m512i _mm512_maskz_cvtpd_epi64( __mmask8 k, __m512d a);
VCVTPD2QQ __m512i _mm512_cvt_roundpd_epi64( __m512d a, int r);
VCVTPD2QQ __m512i _mm512_mask_cvt_roundpd_epi64( __m512i s, __mmask8 k, __m512d a, int r);
VCVTPD2QQ __m512i _mm512_maskz_cvt_roundpd_epi64( __mmask8 k, __m512d a, int r);
VCVTPD2QQ __m256i _mm256_mask_cvtpd_epi64( __m256i s, __mmask8 k, __m256d a);
VCVTPD2QQ __m256i _mm256_maskz_cvtpd_epi64( __mmask8 k, __m256d a);
VCVTPD2QQ __m128i _mm_mask_cvtpd_epi64( __m128i s, __mmask8 k, __m128d a);
VCVTPD2QQ __m128i _mm_maskz_cvtpd_epi64( __mmask8 k, __m128d a);
VCVTPD2QQ __m256i _mm256_cvtpd_epi64 (__m256d src)
VCVTPD2QQ __m128i _mm_cvtpd_epi64 (__m128d src)
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2
#UD If EVEX.vvvv != 1111B.
5-116 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPD2UDQ—Convert Packed Double-Precision Floating-Point Values to Packed Unsigned
Doubleword Integers
Instruction Operand Encoding
Description
Converts packed double-precision floating-point values in the source operand (the second operand) to packed
unsigned doubleword integers in the destination operand (the first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is
returned, where w represents the number of bits in the destination format.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1. The upper bits (MAX_VL-1:256) of the corresponding destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTPD2UDQ (EVEX encoded versions) when src2 operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_UInteger(SRC[k+63:k])
ELSE
Opcode
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.0F.W1 79 /r FV V/V AVX512VL Convert two packed double-precision floating-point
values in xmm2/m128/m64bcst to two unsigned
doubleword integers in xmm1 subject to writemask k1.
VCVTPD2UDQ xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512F
EVEX.256.0F.W1 79 /r FV V/V AVX512VL Convert four packed double-precision floating-point
values in ymm2/m256/m64bcst to four unsigned
doubleword integers in xmm1 subject to writemask k1.
VCVTPD2UDQ xmm1 {k1}{z},
ymm2/m256/m64bcst
AVX512F
EVEX.512.0F.W1 79 /r FV V/V AVX512F Convert eight packed double-precision floating-point
values in zmm2/m512/m64bcst to eight unsigned
doubleword integers in ymm1 subject to writemask k1.
VCVTPD2UDQ ymm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-117
INSTRUCTION SET REFERENCE, A-Z
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
VCVTPD2UDQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_UInteger(SRC[63:0])
ELSE
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_UInteger(SRC[k+63:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPD2UDQ __m256i _mm512_cvtpd_epu32( __m512d a);
VCVTPD2UDQ __m256i _mm512_mask_cvtpd_epu32( __m256i s, __mmask8 k, __m512d a);
VCVTPD2UDQ __m256i _mm512_maskz_cvtpd_epu32( __mmask8 k, __m512d a);
VCVTPD2UDQ __m256i _mm512_cvt_roundpd_epu32( __m512d a, int r);
VCVTPD2UDQ __m256i _mm512_mask_cvt_roundpd_epu32( __m256i s, __mmask8 k, __m512d a, int r);
VCVTPD2UDQ __m256i _mm512_maskz_cvt_roundpd_epu32( __mmask8 k, __m512d a, int r);
VCVTPD2UDQ __m128i _mm256_mask_cvtpd_epu32( __m128i s, __mmask8 k, __m256d a);
VCVTPD2UDQ __m128i _mm256_maskz_cvtpd_epu32( __mmask8 k, __m256d a);
VCVTPD2UDQ __m128i _mm_mask_cvtpd_epu32( __m128i s, __mmask8 k, __m128d a);
VCVTPD2UDQ __m128i _mm_maskz_cvtpd_epu32( __mmask8 k, __m128d a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-118 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPD2UQQ—Convert Packed Double-Precision Floating-Point Values to Packed Unsigned
Quadword Integers
Instruction Operand Encoding
Description
Converts packed double-precision floating-point values in the source operand (second operand) to packed
unsigned quadword integers in the destination operand (first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is
returned, where w represents the number of bits in the destination format.
The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operation
is a ZMM/YMM/XMM register conditionally updated with writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTPD2UQQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Double_Precision_Floating_Point_To_UQuadInteger(SRC[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F.W1 79 /r FV V/V AVX512VL Convert two packed double-precision floating-point values from
xmm2/mem to two packed unsigned quadword integers in
xmm1 with writemask k1.
VCVTPD2UQQ xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512DQ
EVEX.256.66.0F.W1 79 /r FV V/V AVX512VL Convert fourth packed double-precision floating-point values
from ymm2/mem to four packed unsigned quadword integers
in ymm1 with writemask k1.
VCVTPD2UQQ ymm1 {k1}{z},
ymm2/m256/m64bcst
AVX512DQ
EVEX.512.66.0F.W1 79 /r FV V/V AVX512DQ Convert eight packed double-precision floating-point values
from zmm2/mem to eight packed unsigned quadword integers
in zmm1 with writemask k1.
VCVTPD2UQQ zmm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-119
INSTRUCTION SET REFERENCE, A-Z
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTPD2UQQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i]
Convert_Double_Precision_Floating_Point_To_UQuadInteger(SRC[63:0])
ELSE
DEST[i+63:i]
Convert_Double_Precision_Floating_Point_To_UQuadInteger(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPD2UQQ __m512i _mm512_cvtpd_epu64( __m512d a);
VCVTPD2UQQ __m512i _mm512_mask_cvtpd_epu64( __m512i s, __mmask8 k, __m512d a);
VCVTPD2UQQ __m512i _mm512_maskz_cvtpd_epu64( __mmask8 k, __m512d a);
VCVTPD2UQQ __m512i _mm512_cvt_roundpd_epu64( __m512d a, int r);
VCVTPD2UQQ __m512i _mm512_mask_cvt_roundpd_epu64( __m512i s, __mmask8 k, __m512d a, int r);
VCVTPD2UQQ __m512i _mm512_maskz_cvt_roundpd_epu64( __mmask8 k, __m512d a, int r);
VCVTPD2UQQ __m256i _mm256_mask_cvtpd_epu64( __m256i s, __mmask8 k, __m256d a);
VCVTPD2UQQ __m256i _mm256_maskz_cvtpd_epu64( __mmask8 k, __m256d a);
VCVTPD2UQQ __m128i _mm_mask_cvtpd_epu64( __m128i s, __mmask8 k, __m128d a);
VCVTPD2UQQ __m128i _mm_maskz_cvtpd_epu64( __mmask8 k, __m128d a);
VCVTPD2UQQ __m256i _mm256_cvtpd_epu64 (__m256d src)
VCVTPD2UQQ __m128i _mm_cvtpd_epu64 (__m128d src)
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2
#UD If EVEX.vvvv != 1111B.
5-120 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPH2PS—Convert 16-bit FP values to Single-Precision FP values
Instruction Operand Encoding
Description
Converts packed half precision (16-bits) floating-point values in the low-order bits of the source operand (the
second operand) to packed single-precision floating-point values and writes the converted values into the destina-
tion operand (the first operand).
If case of a denormal operand, the correct normal result is returned. MXCSR.DAZ is ignored and is treated as if it
0. No denormal exception is reported on MXCSR.
VEX.128 version: The source operand is a XMM register or 64-bit memory location. The destination operand is a
XMM register. The upper bits (MAX_VL-1:128) of the corresponding destination register are zeroed.
VEX.256 version: The source operand is a XMM register or 128-bit memory location. The destination operand is a
YMM register. Bits (MAX_VL-1:256) of the corresponding destination register are zeroed.
EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64-bits) register or a 256/128/64-bit
memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
The diagram below illustrates how data is converted from four packed half precision (in 64 bits) to four single preci-
sion (in 128 bits) FP values.
Note: VEX.vvvv and EVEX.vvvv are reserved (must be 1111b).
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.128.66.0F38.W0 1313 /r RM V/V F16C Convert four packed half precision (16-bit) floating-
point values in xmm2/m64 to packed single-precision
floating-point value in xmm1.
VCVTPH2PS xmm1, xmm2/m64
VEX.256.66.0F38.W0 1313 /r RM V/V F16C Convert eight packed half precision (16-bit) floating-
point values in xmm2/m128 to packed single-
precision floating-point value in ymm1.
VCVTPH2PS ymm1, xmm2/m128
EVEX.128.66.0F38.W0 1313 /r HVM V/V AVX512VL Convert four packed half precision (16-bit) floating-
point values in xmm2/m64 to packed single-precision
floating-point values in xmm1.
VCVTPH2PS xmm1 {k1}{z}, xmm2/m64 AVX512F
EVEX.256.66.0F38.W0 1313 /r HVM V/V AVX512VL Convert eight packed half precision (16-bit) floating-
point values in xmm2/m128 to packed single-
precision floating-point values in ymm1.
VCVTPH2PS ymm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.512.66.0F38.W0 1313 /r HVM V/V AVX512F Convert sixteen packed half precision (16-bit)
floating-point values in ymm2/m256 to packed
single-precision floating-point values in zmm1.
VCVTPH2PS zmm1 {k1}{z},
ymm2/m256 {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
HVM ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-121
INSTRUCTION SET REFERENCE, A-Z
Operation
vCvt_h2s(SRC1[15:0])
{
RETURN Cvt_Half_Precision_To_Single_Precision(SRC1[15:0]);
}
VCVTPH2PS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
k j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
vCvt_h2s(SRC[k+15:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTPH2PS (VEX.256 encoded version)
DEST[31:0] vCvt_h2s(SRC1[15:0]);
DEST[63:32] vCvt_h2s(SRC1[31:16]);
DEST[95:64] vCvt_h2s(SRC1[47:32]);
DEST[127:96] vCvt_h2s(SRC1[63:48]);
DEST[159:128] vCvt_h2s(SRC1[79:64]);
DEST[191:160] vCvt_h2s(SRC1[95:80]);
DEST[223:192] vCvt_h2s(SRC1[111:96]);
DEST[255:224] vCvt_h2s(SRC1[127:112]);
DEST[MAX_VL-1:256] 0
Figure 5-14. VCVTPH2PS (128-bit Version)
VH0VH1VH2VH3
15 031 1647 3263 4895 64127 96
VS0VS1VS2VS3
31 063 3295 64127 96
convert convert
convertconvert
xmm2/mem64
xmm1
VCVTPH2PS xmm1, xmm2/mem64, imm8
5-122 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPH2PS (VEX.128 encoded version)
DEST[31:0] vCvt_h2s(SRC1[15:0]);
DEST[63:32] vCvt_h2s(SRC1[31:16]);
DEST[95:64] vCvt_h2s(SRC1[47:32]);
DEST[127:96] vCvt_h2s(SRC1[63:48]);
DEST[MAX_VL-1:128] 0
Flags Affected
None
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPH2PS __m512 _mm512_cvtph_ps( __m256i a);
VCVTPH2PS __m512 _mm512_mask_cvtph_ps(__m512 s, __mmask16 k, __m256i a);
VCVTPH2PS __m512 _mm512_maskz_cvtph_ps(__mmask16 k, __m256i a);
VCVTPH2PS __m512 _mm512_cvt_roundph_ps( __m256i a, int sae);
VCVTPH2PS __m512 _mm512_mask_cvt_roundph_ps(__m512 s, __mmask16 k, __m256i a, int sae);
VCVTPH2PS __m512 _mm512_maskz_cvt_roundph_ps( __mmask16 k, __m256i a, int sae);
VCVTPH2PS __m256 _mm256_mask_cvtph_ps(__m256 s, __mmask8 k, __m128i a);
VCVTPH2PS __m256 _mm256_maskz_cvtph_ps(__mmask8 k, __m128i a);
VCVTPH2PS __m128 _mm_mask_cvtph_ps(__m128 s, __mmask8 k, __m128i a);
VCVTPH2PS __m128 _mm_maskz_cvtph_ps(__mmask8 k, __m128i a);
VCVTPH2PS __m128 _mm_cvtph_ps ( __m128i m1);
VCVTPH2PS __m256 _mm256_cvtph_ps ( __m128i m1)
SIMD Floating-Point Exceptions
Invalid
Other Exceptions
VEX-encoded instructions, see Exceptions Type 11 (do not report #AC);
EVEX-encoded instructions, see Exceptions Type E11.
#UD If VEX.W=1.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-123
INSTRUCTION SET REFERENCE, A-Z
VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value
Instruction Operand Encoding
Description
Convert packed single-precision floating values in the source operand to half-precision (16-bit) floating-point
values and store to the destination operand. The rounding mode is specified using the immediate field (imm8).
Underflow results (i.e. tiny results) are converted to denormals. MXCSR.FTZ is ignored. If a source element is
denormal relative to the input format with DM masked and at least one of PM or UM unmasked; a SIMD exception
will be raised with DE, UE and PE set.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.128.66.0F3A.W0 1D 1D/r ib MRI V/V F16C Convert four packed single-precision floating-point values
in xmm2 to packed half-precision (16-bit) floating-point
values in xmm1/m64. Imm8 provides rounding controls.
VCVTPS2PH xmm1/m64, xmm2,
imm8
VEX.256.66.0F3A.W0 1D1D /r ib MRI V/V F16C Convert eight packed single-precision floating-point values
in ymm2 to packed half-precision (16-bit) floating-point
values in xmm1/m128. Imm8 provides rounding controls.
VCVTPS2PH xmm1/m128, ymm2,
imm8
EVEX.128.66.0F3A.W0 1D1D /r ib HVM V/V AVX512VL Convert four packed single-precision floating-point values
in xmm2 to packed half-precision (16-bit) floating-point
values in xmm1/m64. Imm8 provides rounding controls.
VCVTPS2PH xmm1/m64 {k1}{z},
xmm2, imm8
AVX512F
EVEX.256.66.0F3A.W0 1D1D /r ib HVM V/V AVX512VL Convert eight packed single-precision floating-point values
in ymm2 to packed half-precision (16-bit) floating-point
values in xmm1/m128. Imm8 provides rounding controls.
VCVTPS2PH xmm1/m128 {k1}{z},
ymm2, imm8
AVX512F
EVEX.512.66.0F3A.W0 1D1D /r ib HVM V/V AVX512F Convert sixteen packed single-precision floating-point
values in zmm2 to packed half-precision (16-bit) floating-
point values in ymm1/m256. Imm8 provides rounding
controls.
VCVTPS2PH ymm1/m256 {k1}{z},
zmm2{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MRI ModRM:r/m (w) ModRM:reg (r) Imm8 NA
HVM ModRM:r/m (w) ModRM:reg (r) Imm8 NA
Figure 5-15. VCVTPS2PH (128-bit Version)
VH0VH1VH2VH3
15 031 1647 3263 4895 64127 96
VS0VS1VS2VS3
31 063 3295 64127 96
xmm1/mem64
xmm2
VCVTPS2PH xmm1/mem64, xmm2, imm8
convert
convert convert
convert
5-124 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
The immediate byte defines several bit fields that control rounding operation. The effect and encoding of the RC
field are listed in Table 5-12.
VEX.128 version: The source operand is a XMM register. The destination operand is a XMM register or 64-bit
memory location. If the destination operand is a register then the upper bits (MAX_VL-1:64) of corresponding
register are zeroed.
VEX.256 version: The source operand is a YMM register. The destination operand is a XMM register or 128-bit
memory location. If the destination operand is a register, the upper bits (MAX_VL-1:128) of the corresponding
destination register are zeroed.
Note: VEX.vvvv and EVEX.vvvv are reserved (must be 1111b).
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register. The destination operand is a
YMM/XMM/XMM (low 64-bits) register or a 256/128/64-bit memory location, conditionally updated with writemask
k1. Bits (MAX_VL-1:256/128/64) of the corresponding destination register are zeroed.
Operation
vCvt_s2h(SRC1[31:0])
{
IF Imm[2] = 0
THEN ; using Imm[1:0] for rounding control, see Table 5-12
RETURN Cvt_Single_Precision_To_Half_Precision_FP_Imm(SRC1[31:0]);
ELSE ; using MXCSR.RC for rounding control
RETURN Cvt_Single_Precision_To_Half_Precision_FP_Mxcsr(SRC1[31:0]);
FI;
}
VCVTPS2PH (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 16
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+15:i]
vCvt_s2h(SRC[k+31:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
Table 5-12. Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions
Bits Field Name/value Description Comment
Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0
RC=01B Round down
RC=10B Round up
RC=11B Truncate
Imm[2] MS1=0 Use imm[1:0] for rounding Ignore MXCSR.RC
MS1=1 Use MXCSR.RC for rounding
Imm[7:3] Ignored Ignored by processor
Ref. # 319433-023 5-125
INSTRUCTION SET REFERENCE, A-Z
VCVTPS2PH (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 16
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+15:i]
vCvt_s2h(SRC[k+31:k])
ELSE
*DEST[i+15:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VCVTPS2PH (VEX.256 encoded version)
DEST[15:0] vCvt_s2h(SRC1[31:0]);
DEST[31:16] vCvt_s2h(SRC1[63:32]);
DEST[47:32] vCvt_s2h(SRC1[95:64]);
DEST[63:48] vCvt_s2h(SRC1[127:96]);
DEST[79:64] vCvt_s2h(SRC1[159:128]);
DEST[95:80] vCvt_s2h(SRC1[191:160]);
DEST[111:96] vCvt_s2h(SRC1[223:192]);
DEST[127:112] vCvt_s2h(SRC1[255:224]);
DEST[MAX_VL-1:128] 0
VCVTPS2PH (VEX.128 encoded version)
DEST[15:0] vCvt_s2h(SRC1[31:0]);
DEST[31:16] vCvt_s2h(SRC1[63:32]);
DEST[47:32] vCvt_s2h(SRC1[95:64]);
DEST[63:48] vCvt_s2h(SRC1[127:96]);
DEST[MAX_VL-1:64] 0
Flags Affected
None
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPS2PH __m256i _mm512_cvtps_ph(__m512 a);
VCVTPS2PH __m256i _mm512_mask_cvtps_ph(__m256i s, __mmask16 k,__m512 a);
VCVTPS2PH __m256i _mm512_maskz_cvtps_ph(__mmask16 k,__m512 a);
VCVTPS2PH __m256i _mm512_cvt_roundps_ph(__m512 a, const int imm);
VCVTPS2PH __m256i _mm512_mask_cvt_roundps_ph(__m256i s, __mmask16 k,__m512 a, const int imm);
VCVTPS2PH __m256i _mm512_maskz_cvt_roundps_ph(__mmask16 k,__m512 a, const int imm);
VCVTPS2PH __m128i _mm256_mask_cvtps_ph(__m128i s, __mmask8 k,__m256 a);
VCVTPS2PH __m128i _mm256_maskz_cvtps_ph(__mmask8 k,__m256 a);
VCVTPS2PH __m128i _mm_mask_cvtps_ph(__m128i s, __mmask8 k,__m128 a);
VCVTPS2PH __m128i _mm_maskz_cvtps_ph(__mmask8 k,__m128 a);
VCVTPS2PH __m128i _mm_cvtps_ph ( __m128 m1, const int imm);
VCVTPS2PH __m128i _mm256_cvtps_ph(__m256 m1, const int imm);
SIMD Floating-Point Exceptions
Invalid, Underflow, Overflow, Precision, Denormal (if MXCSR.DAZ=0);
Other Exceptions
VEX-encoded instructions, see Exceptions Type 11 (do not report #AC);
5-126 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EVEX-encoded instructions, see Exceptions Type E11.
#UD If VEX.W=1.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-127
INSTRUCTION SET REFERENCE, A-Z
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Signed
Doubleword Integer Values
Instruction Operand Encoding
Description
Converts four, eight or sixteen packed single-precision floating-point values in the source operand to four, eight or
sixteen signed doubleword integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value
(2w-1, where w represents the number of bits in the destination format) is returned.
EVEX encoded versions: The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector
broadcasted from a 32-bit memory location. The destination operand is a ZMM register conditionally updated with
writemask k1.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination
operand is a YMM register. The upper bits (MAX_VL-1:256) of the corresponding ZMM register destination are
zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination
operand is a XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination
operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 5B /r RM V/V SSE2 Convert four packed single-precision floating-point values
from xmm2/mem to four packed signed doubleword
values in xmm1.
CVTPS2DQ xmm1, xmm2/m128
VEX.128.66.0F.WIG 5B /r RM V/V AVX Convert four packed single-precision floating-point values
from xmm2/mem to four packed signed doubleword
values in xmm1.
VCVTPS2DQ xmm1, xmm2/m128
VEX.256.66.0F.WIG 5B /r RM V/V AVX Convert eight packed single-precision floating-point values
from ymm2/mem to eight packed signed doubleword
values in ymm1.
VCVTPS2DQ ymm1, ymm2/m256
EVEX.128.66.0F.W0 5B /r FV V/V AVX512VL Convert four packed single precision floating-point values
from xmm2/m128/m32bcst to four packed signed
doubleword values in xmm1 subject to writemask k1.
VCVTPS2DQ xmm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.256.66.0F.W0 5B /r FV V/V AVX512VL Convert eight packed single precision floating-point values
from ymm2/m256/m32bcst to eight packed signed
doubleword values in ymm1 subject to writemask k1.
VCVTPS2DQ ymm1 {k1}{z},
ymm2/m256/m32bcst
AVX512F
EVEX.512.66.0F.W0 5B /r FV V/V AVX512F Convert sixteen packed single-precision floating-point
values from zmm2/m512/m32bcst to sixteen packed
signed doubleword values in zmm1 subject to writemask
k1.
VCVTPS2DQ zmm1 {k1}{z},
zmm2/m512/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-128 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTPS2DQ (encoded versions) when src operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTPS2DQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO 15
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
ELSE
DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_Integer(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-129
INSTRUCTION SET REFERENCE, A-Z
VCVTPS2DQ (VEX.256 encoded version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96)
DEST[159:128] Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128])
DEST[191:160] Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160])
DEST[223:192] Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192])
DEST[255:224] Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224])
VCVTPS2DQ (VEX.128 encoded version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[MAX_VL-1:128] 0
CVTPS2DQ (128-bit Legacy SSE version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])
DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPS2DQ __m512i _mm512_cvtps_epi32( __m512 a);
VCVTPS2DQ __m512i _mm512_mask_cvtps_epi32( __m512i s, __mmask16 k, __m512 a);
VCVTPS2DQ __m512i _mm512_maskz_cvtps_epi32( __mmask16 k, __m512 a);
VCVTPS2DQ __m512i _mm512_cvt_roundps_epi32( __m512 a, int r);
VCVTPS2DQ __m512i _mm512_mask_cvt_roundps_epi32( __m512i s, __mmask16 k, __m512 a, int r);
VCVTPS2DQ __m512i _mm512_maskz_cvt_roundps_epi32( __mmask16 k, __m512 a, int r);
VCVTPS2DQ __m256i _mm256_mask_cvtps_epi32( __m256i s, __mmask8 k, __m256 a);
VCVTPS2DQ __m256i _mm256_maskz_cvtps_epi32( __mmask8 k, __m256 a);
VCVTPS2DQ __m128i _mm_mask_cvtps_epi32( __m128i s, __mmask8 k, __m128 a);
VCVTPS2DQ __m128i _mm_maskz_cvtps_epi32( __mmask8 k, __m128 a);
VCVTPS2DQ __ m256i _mm256_cvtps_epi32 (__m256 a)
CVTPS2DQ __m128i _mm_cvtps_epi32 (__m128 a)
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2;
EVEX-encoded instructions, see Exceptions Type E2.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
5-130 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPS2UDQ—Convert Packed Single-Precision Floating-Point Values to Packed Unsigned
Doubleword Integer Values
Instruction Operand Encoding
Description
Converts sixteen packed single-precision floating-point values in the source operand to sixteen unsigned double-
word integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is
returned, where w represents the number of bits in the destination format.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTPS2UDQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_UInteger(SRC[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.0F.W0 79 /r FV V/V AVX512VL Convert four packed single precision floating-point
values from xmm2/m128/m32bcst to four packed
unsigned doubleword values in xmm1 subject to
writemask k1.
VCVTPS2UDQ xmm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.256.0F.W0 79 /r FV V/V AVX512VL Convert eight packed single precision floating-point
values from ymm2/m256/m32bcst to eight packed
unsigned doubleword values in ymm1 subject to
writemask k1.
VCVTPS2UDQ ymm1 {k1}{z},
ymm2/m256/m32bcst
AVX512F
EVEX.512.0F.W0 79 /r FV V/V AVX512F Convert sixteen packed single-precision floating-point
values from zmm2/m512/m32bcst to sixteen packed
unsigned doubleword values in zmm1 subject to
writemask k1.
VCVTPS2UDQ zmm1 {k1}{z},
zmm2/m512/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-131
INSTRUCTION SET REFERENCE, A-Z
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTPS2UDQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_UInteger(SRC[31:0])
ELSE
DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_UInteger(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPS2UDQ __m512i _mm512_cvtps_epu32( __m512 a);
VCVTPS2UDQ __m512i _mm512_mask_cvtps_epu32( __m512i s, __mmask16 k, __m512 a);
VCVTPS2UDQ __m512i _mm512_maskz_cvtps_epu32( __mmask16 k, __m512 a);
VCVTPS2UDQ __m512i _mm512_cvt_roundps_epu32( __m512 a, int r);
VCVTPS2UDQ __m512i _mm512_mask_cvt_roundps_epu32( __m512i s, __mmask16 k, __m512 a, int r);
VCVTPS2UDQ __m512i _mm512_maskz_cvt_roundps_epu32( __mmask16 k, __m512 a, int r);
VCVTPS2UDQ __m256i _mm256_cvtps_epu32( __m256d a);
VCVTPS2UDQ __m256i _mm256_mask_cvtps_epu32( __m256i s, __mmask8 k, __m256 a);
VCVTPS2UDQ __m256i _mm256_maskz_cvtps_epu32( __mmask8 k, __m256 a);
VCVTPS2UDQ __m128i _mm_cvtps_epu32( __m128 a);
VCVTPS2UDQ __m128i _mm_mask_cvtps_epu32( __m128i s, __mmask8 k, __m128 a);
VCVTPS2UDQ __m128i _mm_maskz_cvtps_epu32( __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-132 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPS2QQ—Convert Packed Single Precision Floating-Point Values to Packed Singed
Quadword Integer Values
Instruction Operand Encoding
Description
Converts eight packed single-precision floating-point values in the source operand to eight signed quadword inte-
gers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value
(2w-1, where w represents the number of bits in the destination format) is returned.
The source operand is a YMM/XMM/XMM (low 64- bits) register or a 256/128/64-bit memory location. The destina-
tion operation is a ZMM/YMM/XMM register conditionally updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTPS2QQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Single_Precision_To_QuadInteger(SRC[k+31:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F.W0 7B /r HV V/V AVX512VL Convert two packed single precision floating-point values from
xmm2/m64/m32bcst to two packed signed quadword values in
xmm1 subject to writemask k1.
VCVTPS2QQ xmm1 {k1}{z},
xmm2/m64/m32bcst
AVX512DQ
EVEX.256.66.0F.W0 7B /r HV V/V AVX512VL Convert four packed single precision floating-point values from
xmm2/m128/m32bcst to four packed signed quadword values
in ymm1 subject to writemask k1.
VCVTPS2QQ ymm1 {k1}{z},
xmm2/m128/m32bcst
AVX512DQ
EVEX.512.66.0F.W0 7B /r HV V/V AVX512DQ Convert eight packed single precision floating-point values from
ymm2/m256/m32bcst to eight packed signed quadword values
in zmm1 subject to writemask k1.
VCVTPS2QQ zmm1 {k1}{z},
ymm2/m256/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
HV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-133
INSTRUCTION SET REFERENCE, A-Z
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTPS2QQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i]
Convert_Single_Precision_To_QuadInteger(SRC[31:0])
ELSE
DEST[i+63:i]
Convert_Single_Precision_To_QuadInteger(SRC[k+31:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPS2QQ __m512i _mm512_cvtps_epi64( __m512 a);
VCVTPS2QQ __m512i _mm512_mask_cvtps_epi64( __m512i s, __mmask16 k, __m512 a);
VCVTPS2QQ __m512i _mm512_maskz_cvtps_epi64( __mmask16 k, __m512 a);
VCVTPS2QQ __m512i _mm512_cvt_roundps_epi64( __m512 a, int r);
VCVTPS2QQ __m512i _mm512_mask_cvt_roundps_epi64( __m512i s, __mmask16 k, __m512 a, int r);
VCVTPS2QQ __m512i _mm512_maskz_cvt_roundps_epi64( __mmask16 k, __m512 a, int r);
VCVTPS2QQ __m256i _mm256_cvtps_epi64( __m256 a);
VCVTPS2QQ __m256i _mm256_mask_cvtps_epi64( __m256i s, __mmask8 k, __m256 a);
VCVTPS2QQ __m256i _mm256_maskz_cvtps_epi64( __mmask8 k, __m256 a);
VCVTPS2QQ __m128i _mm_cvtps_epi64( __m128 a);
VCVTPS2QQ __m128i _mm_mask_cvtps_epi64( __m128i s, __mmask8 k, __m128 a);
VCVTPS2QQ __m128i _mm_maskz_cvtps_epi64( __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3
#UD If EVEX.vvvv != 1111B.
5-134 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTPS2UQQ—Convert Packed Single Precision Floating-Point Values to Packed Unsigned
Quadword Integer Values
Instruction Operand Encoding
Description
Converts up to eight packed single-precision floating-point values in the source operand to unsigned quadword
integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is
returned, where w represents the number of bits in the destination format.
The source operand is a YMM/XMM/XMM (low 64- bits) register or a 256/128/64-bit memory location. The destina-
tion operation is a ZMM/YMM/XMM register conditionally updated with writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTPS2UQQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Single_Precision_To_UQuadInteger(SRC[k+31:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F.W0 79 /r HV V/V AVX512VL Convert two packed single precision floating-point values from
zmm2/m64/m32bcst to two packed unsigned quadword values
in zmm1 subject to writemask k1.
VCVTPS2UQQ xmm1 {k1}{z},
xmm2/m64/m32bcst
AVX512DQ
EVEX.256.66.0F.W0 79 /r HV V/V AVX512VL Convert four packed single precision floating-point values from
xmm2/m128/m32bcst to four packed unsigned quadword
values in ymm1 subject to writemask k1.
VCVTPS2UQQ ymm1 {k1}{z},
xmm2/m128/m32bcst
AVX512DQ
EVEX.512.66.0F.W0 79 /r HV V/V AVX512DQ Convert eight packed single precision floating-point values from
ymm2/m256/m32bcst to eight packed unsigned quadword
values in zmm1 subject to writemask k1.
VCVTPS2UQQ zmm1 {k1}{z},
ymm2/m256/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
HV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-135
INSTRUCTION SET REFERENCE, A-Z
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTPS2UQQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i]
Convert_Single_Precision_To_UQuadInteger(SRC[31:0])
ELSE
DEST[i+63:i]
Convert_Single_Precision_To_UQuadInteger(SRC[k+31:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPS2UQQ __m512i _mm512_cvtps_epu64( __m512 a);
VCVTPS2UQQ __m512i _mm512_mask_cvtps_epu64( __m512i s, __mmask16 k, __m512 a);
VCVTPS2UQQ __m512i _mm512_maskz_cvtps_epu64( __mmask16 k, __m512 a);
VCVTPS2UQQ __m512i _mm512_cvt_roundps_epu64( __m512 a, int r);
VCVTPS2UQQ __m512i _mm512_mask_cvt_roundps_epu64( __m512i s, __mmask16 k, __m512 a, int r);
VCVTPS2UQQ __m512i _mm512_maskz_cvt_roundps_epu64( __mmask16 k, __m512 a, int r);
VCVTPS2UQQ __m256i _mm256_cvtps_epu64( __m256 a);
VCVTPS2UQQ __m256i _mm256_mask_cvtps_epu64( __m256i s, __mmask8 k, __m256 a);
VCVTPS2UQQ __m256i _mm256_maskz_cvtps_epu64( __mmask8 k, __m256 a);
VCVTPS2UQQ __m128i _mm_cvtps_epu64( __m128 a);
VCVTPS2UQQ __m128i _mm_mask_cvtps_epu64( __m128i s, __mmask8 k, __m128 a);
VCVTPS2UQQ __m128i _mm_maskz_cvtps_epu64( __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3
#UD If EVEX.vvvv != 1111B.
5-136 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision
Floating-Point Values
Instruction Operand Encoding
Description
Converts two, four or eight packed single-precision floating-point values in the source operand (second operand)
to two, four or eight packed double-precision floating-point values in the destination operand (first operand).
EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64-bits) register, a 256/128/64-bit memory
location or a 256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand is a
ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination
operand is a YMM register. Bits (MAX_VL-1:256) of the corresponding destination ZMM register are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination
operand is a XMM register. The upper Bits (MAX_VL-1:128) of the corresponding ZMM register destination are
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination
operand is an XMM register. The upper Bits (MAX_VL-1:128) of the corresponding ZMM register destination are
unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 5A /r RM V/V SSE2 Convert two packed single-precision floating-point values in
xmm2/m64 to two packed double-precision floating-point
values in xmm1.
CVTPS2PD xmm1, xmm2/m64
VEX.128.0F.WIG 5A /r RM V/V AVX Convert two packed single-precision floating-point values in
xmm2/m64 to two packed double-precision floating-point
values in xmm1.
VCVTPS2PD xmm1, xmm2/m64
VEX.256.0F.WIG 5A /r RM V/V AVX Convert four packed single-precision floating-point values
in xmm2/m128 to four packed double-precision floating-
point values in ymm1.
VCVTPS2PD ymm1, xmm2/m128
EVEX.128.0F.W0 5A /r HV V/V AVX512VL Convert two packed single-precision floating-point values in
xmm2/m64/m32bcst to packed double-precision floating-
point values in xmm1 with writemask k1.
VCVTPS2PD xmm1 {k1}{z},
xmm2/m64/m32bcst
AVX512F
EVEX.256.0F.W0 5A /r HV V/V AVX512VL Convert four packed single-precision floating-point values
in xmm2/m128/m32bcst to packed double-precision
floating-point values in ymm1 with writemask k1.
VCVTPS2PD ymm1 {k1}{z},
xmm2/m128/m32bcst
EVEX.512.0F.W0 5A /r HV V/V AVX512F Convert eight packed single-precision floating-point values
in ymm2/m256/b32bcst to eight packed double-precision
floating-point values in zmm1 with writemask k1.
VCVTPS2PD zmm1 {k1}{z},
ymm2/m256/m32bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
HV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-137
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTPS2PD (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[k+31:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTPS2PD (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
ELSE
DEST[i+63:i]
Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[k+31:k])
FI;
ELSE
Figure 5-16. CVTPS2PD (VEX.256 encoded version)
DEST
SRC X0X1X2X3
X3 X2
X1 X0
5-138 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTPS2PD (VEX.256 encoded version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96)
DEST[MAX_VL-1:256] 0
VCVTPS2PD (VEX.128 encoded version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAX_VL-1:128] 0
CVTPS2PD (128-bit Legacy SSE version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTPS2PD __m512d _mm512_cvtps_pd( __m256 a);
VCVTPS2PD __m512d _mm512_mask_cvtps_pd( __m512d s, __mmask8 k, __m256 a);
VCVTPS2PD __m512d _mm512_maskz_cvtps_pd( __mmask8 k, __m256 a);
VCVTPS2PD __m512d _mm512_cvt_roundps_pd( __m256 a, int sae);
VCVTPS2PD __m512d _mm512_mask_cvt_roundps_pd( __m512d s, __mmask8 k, __m256 a, int sae);
VCVTPS2PD __m512d _mm512_maskz_cvt_roundps_pd( __mmask8 k, __m256 a, int sae);
VCVTPS2PD __m256d _mm256_mask_cvtps_pd( __m256d s, __mmask8 k, __m128 a);
VCVTPS2PD __m256d _mm256_maskz_cvtps_pd( __mmask8 k, __m128a);
VCVTPS2PD __m128d _mm_mask_cvtps_pd( __m128d s, __mmask8 k, __m128 a);
VCVTPS2PD __m128d _mm_maskz_cvtps_pd( __mmask8 k, __m128 a);
VCVTPS2PD __m256d _mm256_cvtps_pd (__m128 a)
CVTPS2PD __m128d _mm_cvtps_pd (__m128 a)
SIMD Floating-Point Exceptions
Invalid, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3;
EVEX-encoded instructions, see Exceptions Type E3.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-139
INSTRUCTION SET REFERENCE, A-Z
VCVTQQ2PD—Convert Packed Quadword Integers to Packed Double-Precision Floating-Point
Values
Instruction Operand Encoding
Description
Converts packed quadword integers in the source operand (second operand) to packed double-precision floating-
point values in the destination operand (first operand).
The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operation
is a ZMM/YMM/XMM register conditionally updated with writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTQQ2PD (EVEX2 encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_QuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F.W1 E6 /r FV V/V AVX512VL Convert two packed quadword integers from
xmm2/m128/m64bcst to packed double-precision floating-
point values in xmm1 with writemask k1.
VCVTQQ2PD xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512DQ
EVEX.256.F3.0F.W1 E6 /r FV V/V AVX512VL Convert four packed quadword integers from
ymm2/m256/m64bcst to packed double-precision floating-
point values in ymm1 with writemask k1.
VCVTQQ2PD ymm1 {k1}{z},
ymm2/m256/m64bcst
AVX512DQ
EVEX.512.F3.0F.W1 E6 /r FV V/V AVX512DQ Convert eight packed quadword integers from
zmm2/m512/m64bcst to eight packed double-precision
floating-point values in zmm1 with writemask k1.
VCVTQQ2PD zmm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-140 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[MAX_VL-1:VL] 0
VCVTQQ2PD (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i]
Convert_QuadInteger_To_Double_Precision_Floating_Point(SRC[63:0])
ELSE
DEST[i+63:i]
Convert_QuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTQQ2PD __m512d _mm512_cvtepi64_pd( __m512i a);
VCVTQQ2PD __m512d _mm512_mask_cvtepi64_pd( __m512d s, __mmask16 k, __m512i a);
VCVTQQ2PD __m512d _mm512_maskz_cvtepi64_pd( __mmask16 k, __m512i a);
VCVTQQ2PD __m512d _mm512_cvt_roundepi64_pd( __m512i a, int r);
VCVTQQ2PD __m512d _mm512_mask_cvt_roundepi_ps( __m512d s, __mmask8 k, __m512i a, int r);
VCVTQQ2PD __m512d _mm512_maskz_cvt_roundepi64_pd( __mmask8 k, __m512i a, int r);
VCVTQQ2PD __m256d _mm256_mask_cvtepi64_pd( __m256d s, __mmask8 k, __m256i a);
VCVTQQ2PD __m256d _mm256_maskz_cvtepi64_pd( __mmask8 k, __m256i a);
VCVTQQ2PD __m128d _mm_mask_cvtepi64_pd( __m128d s, __mmask8 k, __m128i a);
VCVTQQ2PD __m128d _mm_maskz_cvtepi64_pd( __mmask8 k, __m128i a);
SIMD Floating-Point Exceptions
Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-141
INSTRUCTION SET REFERENCE, A-Z
VCVTQQ2PS—Convert Packed Quadword Integers to Packed Single-Precision Floating-Point
Values
Instruction Operand Encoding
Description
Converts packed quadword integers in the source operand (second operand) to packed single-precision floating-
point values in the destination operand (first operand).
The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operation
is a YMM/XMM/XMM (lower 64 bits) register conditionally updated with writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTQQ2PS (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[k+31:k]
Convert_QuadInteger_To_Single_Precision_Floating_Point(SRC[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[k+31:k] remains unchanged*
ELSE ; zeroing-masking
DEST[k+31:k] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.0F.W1 5B /r FV V/V AVX512VL Convert two packed quadword integers from xmm2/mem to
packed single-precision floating-point values in xmm1 with
writemask k1.
VCVTQQ2PS xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512DQ
EVEX.256.0F.W1 5B /r FV V/V AVX512VL Convert four packed quadword integers from ymm2/mem to
packed single-precision floating-point values in xmm1 with
writemask k1.
VCVTQQ2PS xmm1 {k1}{z},
ymm2/m256/m64bcst
AVX512DQ
EVEX.512.0F.W1 5B /r FV V/V AVX512DQ Convert eight packed quadword integers from zmm2/mem to
eight packed single-precision floating-point values in ymm1 with
writemask k1.
VCVTQQ2PS ymm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-142 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTQQ2PS (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[k+31:k]
Convert_QuadInteger_To_Single_Precision_Floating_Point(SRC[63:0])
ELSE
DEST[k+31:k]
Convert_QuadInteger_To_Single_Precision_Floating_Point(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[k+31:k] remains unchanged*
ELSE ; zeroing-masking
DEST[k+31:k] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTQQ2PS __m256 _mm512_cvtepi64_ps( __m512i a);
VCVTQQ2PS __m256 _mm512_mask_cvtepi64_ps( __m256 s, __mmask16 k, __m512i a);
VCVTQQ2PS __m256 _mm512_maskz_cvtepi64_ps( __mmask16 k, __m512i a);
VCVTQQ2PS __m256 _mm512_cvt_roundepi64_ps( __m512i a, int r);
VCVTQQ2PS __m256 _mm512_mask_cvt_roundepi_ps( __m256 s, __mmask8 k, __m512i a, int r);
VCVTQQ2PS __m256 _mm512_maskz_cvt_roundepi64_ps( __mmask8 k, __m512i a, int r);
VCVTQQ2PS __m128 _mm256_cvtepi64_ps( __m256i a);
VCVTQQ2PS __m128 _mm256_mask_cvtepi64_ps( __m128 s, __mmask8 k, __m256i a);
VCVTQQ2PS __m128 _mm256_maskz_cvtepi64_ps( __mmask8 k, __m256i a);
VCVTQQ2PS __m128 _mm_cvtepi64_ps( __m128i a);
VCVTQQ2PS __m128 _mm_mask_cvtepi64_ps( __m128 s, __mmask8 k, __m128i a);
VCVTQQ2PS __m128 _mm_maskz_cvtepi64_ps( __mmask8 k, __m128i a);
SIMD Floating-Point Exceptions
Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-143
INSTRUCTION SET REFERENCE, A-Z
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
Instruction Operand Encoding
Description
Converts a double-precision floating-point value in the source operand (the second operand) to a signed double-
word integer in the destination operand (first operand). The source operand can be an XMM register or a 64-bit
memory location. The destination operand is a general-purpose register. When the source operand is an XMM
register, the double-precision floating-point value is contained in the low quadword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register.
If a converted result exceeds the range limits of signed doubleword integer (in non-64-bit modes or 64-bit mode
with REX.W/VEX.W/EVEX.W=0), the floating-point invalid exception is raised, and if this exception is masked, the
indefinite integer value (80000000H) is returned.
If a converted result exceeds the range limits of signed quadword integer (in 64-bit mode and
REX.W/VEX.W/EVEX.W = 1), the floating-point invalid exception is raised, and if this exception is masked, the
indefinite integer value (80000000_00000000H) is returned.
Legacy SSE instruction: Use of the REX.W prefix promotes the instruction to produce 64-bit data in 64-bit mode.
See the summary chart at the beginning of this section for encoding data and limits.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCVTSD2SI is encoded with VEX.L=0. Encoding VCVTSD2SI with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 2D /r RM V/V SSE2 Convert one double-precision floating-point value from
xmm1/m64 to one signed doubleword integer r32.
CVTSD2SI r32, xmm1/m64
F2 REX.W 0F 2D /r RM V/N.E. SSE2 Convert one double-precision floating-point value from
xmm1/m64 to one signed quadword integer sign-
extended into r64.
CVTSD2SI r64, xmm1/m64
VEX.128.F2.0F.W0 2D /r RM V/V AVX Convert one double-precision floating-point value from
xmm1/m64 to one signed doubleword integer r32.
VCVTSD2SI r32, xmm1/m64
VEX.128.F2.0F.W1 2D /r RM V/N.E.1AVX Convert one double-precision floating-point value from
xmm1/m64 to one signed quadword integer sign-
extended into r64.
VCVTSD2SI r64, xmm1/m64
EVEX.LIG.F2.0F.W0 2D /r T1F V/V AVX512F Convert one double-precision floating-point value from
xmm1/m64 to one signed doubleword integer r32.
VCVTSD2SI r32, xmm1/m64{er}
EVEX.LIG.F2.0F.W1 2D /r T1F V/N.E.1
NOTES:
1. VEX.W1/EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.
AVX512F Convert one double-precision floating-point value from
xmm1/m64 to one signed quadword integer sign-
extended into r64.
VCVTSD2SI r64, xmm1/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1F ModRM:reg (w) ModRM:r/m (r) NA NA
5-144 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTSD2SI (EVEX encoded version)
IF SRC *is register* AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF 64-Bit Mode and OperandSize = 64
THEN DEST[63:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
ELSE DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
FI
(V)CVTSD2SI
IF 64-Bit Mode and OperandSize = 64
THEN
DEST[63:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
ELSE
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
FI;
Intel C/C++ Compiler Intrinsic Equivalent
VCVTSD2SI int _mm_cvtsd_i32(__m128d);
VCVTSD2SI int _mm_cvt_roundsd_i32(__m128d, int r);
VCVTSD2SI __int64 _mm_cvtsd_i64(__m128d);
VCVTSD2SI __int64 _mm_cvt_roundsd_i64(__m128d, int r);
CVTSD2SI __int64 _mm_cvtsd_si64(__m128d);
CVTSD2SI int _mm_cvtsd_si32(__m128d a)
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3;
EVEX-encoded instructions, see Exceptions Type E3NF.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-145
INSTRUCTION SET REFERENCE, A-Z
VCVTSD2USI—Convert Scalar Double-Precision Floating-Point Value to Unsigned Doubleword
Integer
Instruction Operand Encoding
Description
Converts a double-precision floating-point value in the source operand (the second operand) to an unsigned
doubleword integer in the destination operand (the first operand). The source operand can be an XMM register or
a 64-bit memory location. The destination operand is a general-purpose register. When the source operand is an
XMM register, the double-precision floating-point value is contained in the low quadword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is
returned, where w represents the number of bits in the destination format.
Operation
VCVTSD2USI (EVEX encoded version)
IF (SRC *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF 64-Bit Mode and OperandSize = 64
THEN DEST[63:0] Convert_Double_Precision_Floating_Point_To_UInteger(SRC[63:0]);
ELSE DEST[31:0] Convert_Double_Precision_Floating_Point_To_UInteger(SRC[63:0]);
FI
Intel C/C++ Compiler Intrinsic Equivalent
VCVTSD2USI unsigned int _mm_cvtsd_u32(__m128d);
VCVTSD2USI unsigned int _mm_cvt_roundsd_u32(__m128d, int r);
VCVTSD2USI unsigned __int64 _mm_cvtsd_u64(__m128d);
VCVTSD2USI unsigned __int64 _mm_cvt_roundsd_u64(__m128d, int r);
SIMD Floating-Point Exceptions
Invalid, Precision
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.LIG.F2.0F.W0 79 /r T1F V/V AVX512F Convert one double-precision floating-point value from
xmm1/m64 to one unsigned doubleword integer r32.
VCVTSD2USI r32, xmm1/m64{er}
EVEX.LIG.F2.0F.W1 79 /r T1F V/N.E.1
NOTES:
1. EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.
AVX512F Convert one double-precision floating-point value from
xmm1/m64 to one unsigned quadword integer zero-
extended into r64.
VCVTSD2USI r64, xmm1/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1F ModRM:reg (w) ModRM:r/m (r) NA NA
5-146 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3NF.
Ref. # 319433-023 5-147
INSTRUCTION SET REFERENCE, A-Z
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision
Floating-Point Value
Instruction Operand Encoding
Description
Converts a double-precision floating-point value in the “convert-from” source operand (the second operand in
SSE2 version, otherwise the third operand) to a single-precision floating-point value in the destination operand.
When the “convert-from” operand is an XMM register, the double-precision floating-point value is contained in the
low quadword of the register. The result is stored in the low doubleword of the destination operand. When the
conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register.
128-bit Legacy SSE version: The “convert-from” source operand (the second operand) is an XMM register or
memory location. Bits (MAX_VL-1:32) of the corresponding destination register remain unchanged. The destina-
tion operand is an XMM register.
VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be an XMM
register or a 64-bit memory location. The first source and destination operands are XMM registers. Bits (127:32) of
the XMM register destination are copied from the corresponding bits in the first source operand. Bits (MAX_VL-
1:128) of the destination register are zeroed.
EVEX encoded version: the converted result in written to the low doubleword element of the destination under the
writemask.
Software should ensure VCVTSD2SS is encoded with VEX.L=0. Encoding VCVTSD2SS with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 5A /r RM V/V SSE2 Convert one double-precision floating-point value in
xmm2/m64 to one single-precision floating-point value
in xmm1.
CVTSD2SS xmm1, xmm2/m64
VEX.NDS.128.F2.0F.WIG 5A /r RVM V/V AVX Convert one double-precision floating-point value in
xmm3/m64 to one single-precision floating-point value
and merge with high bits in xmm2.
VCVTSD2SS xmm1,xmm2,
xmm3/m64
EVEX.NDS.LIG.F2.0F.W1 5A /r T1S V/V AVX512F Convert one double-precision floating-point value in
xmm3/m64 to one single-precision floating-point value
and merge with high bits in xmm2 under writemask k1.
VCVTSD2SS xmm1 {k1}{z}, xmm2,
xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-148 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTSD2SS (EVEX encoded version)
IF (SRC2 *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC2[63:0]);
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VCVTSD2SS (VEX.128 encoded version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC2[63:0]);
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
CVTSD2SS (128-bit Legacy SSE version)
DEST[31:0] Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[MAX_VL-1:32] Unmodified *)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTSD2SS __m128 _mm_mask_cvtsd_ss(__m128 s, __mmask8 k, __m128 a, __m128d b);
VCVTSD2SS __m128 _mm_maskz_cvtsd_ss( __mmask8 k, __m128 a,__m128d b);
VCVTSD2SS __m128 _mm_cvt_roundsd_ss(__m128 a, __m128d b, int r);
VCVTSD2SS __m128 _mm_mask_cvt_roundsd_ss(__m128 s, __mmask8 k, __m128 a, __m128d b, int r);
VCVTSD2SS __m128 _mm_maskz_cvt_roundsd_ss( __mmask8 k, __m128 a,__m128d b, int r);
CVTSD2SS __m128_mm_cvtsd_ss(__m128 a, __m128d b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
Ref. # 319433-023 5-149
INSTRUCTION SET REFERENCE, A-Z
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the “convert-from”
source operand to a double-precision floating-point value in the destination operand. The result is stored in the low
quadword of the destination operand, and the high quadword left unchanged. When conversion is inexact, the
value returned is rounded according to the rounding control bits in the MXCSR register.
The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and
destination operands are XMM registers.
128-bit Legacy SSE version: Use of the REX.W prefix promotes the instruction to 64-bit operands. The “convert-
from” source operand (the second operand) is a general-purpose register or memory location. The destination is
an XMM register Bits (MAX_VL-1:64) of the corresponding destination register remain unchanged.
VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be a general-
purpose register or a memory location. The first source and destination operands are XMM registers. Bits (127:64)
of the XMM register destination are copied from the corresponding bits in the first source operand.Bits (MAX_VL-
1:128) of the destination register are zeroed.
EVEX.W0 version: attempt to encode this instruction with EVEX embedded rounding is ignored.
VEX.W1 and EVEX.W1 versions: promotes the instruction to use 64-bit input value in 64-bit mode.
Software should ensure VCVTSI2SD is encoded with VEX.L=0. Encoding VCVTSI2SD with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 2A /r RM V/V SSE2 Convert one signed doubleword integer from
r32/m32 to one double-precision floating-point
value in xmm1.
CVTSI2SD xmm1, r32/m32
F2 REX.W 0F 2A /r RM V/N.E. SSE2 Convert one signed quadword integer from r/m64
to one double-precision floating-point value in
xmm1.
CVTSI2SD xmm1, r/m64
VEX.NDS.128.F2.0F.W0 2A /r RVM V/V AVX Convert one signed doubleword integer from
r/m32 to one double-precision floating-point
value in xmm1.
VCVTSI2SD xmm1, xmm2, r/m32
VEX.NDS.128.F2.0F.W1 2A /r RVM V/N.E.1AVX Convert one signed quadword integer from r/m64
to one double-precision floating-point value in
xmm1.
VCVTSI2SD xmm1, xmm2, r/m64
EVEX.NDS.LIG.F2.0F.W0 2A /r T1S V/V AVX512F Convert one signed doubleword integer from
r/m32 to one double-precision floating-point
value in xmm1.
VCVTSI2SD xmm1, xmm2, r/m32
EVEX.NDS.LIG.F2.0F.W1 2A /r T1S V/N.E.1
NOTES:
1. VEX.W1/EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.
AVX512F Convert one signed quadword integer from r/m64
to one double-precision floating-point value in
xmm1.
VCVTSI2SD xmm1, xmm2, r/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-150 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTSI2SD (EVEX encoded version)
IF (SRC2 *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VCVTSI2SD (VEX.128 encoded version)
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
CVTSI2SD
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]);
ELSE
DEST[63:0] Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[MAX_VL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTSI2SD __m128d _mm_cvti32_sd(__m128d s, int a);
VCVTSI2SD __m128d _mm_cvt_roundi32_sd(__m128d s, int a, int r);
VCVTSI2SD __m128d _mm_cvti64_sd(__m128d s, __int64 a);
VCVTSI2SD __m128d _mm_cvt_roundi64_sd(__m128d s, __int64 a, int r);
CVTSI2SD __m128d _mm_cvtsi64_sd(__m128d s, __int64 a);
CVTSI2SD __m128d_mm_cvtsi32_sd(__m128d a, int b)
SIMD Floating-Point Exceptions
Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3 if W1, else Type 5.
EVEX-encoded instructions, see Exceptions Type E3NF if W1, else Type E10NF.
Ref. # 319433-023 5-151
INSTRUCTION SET REFERENCE, A-Z
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
Instruction Operand Encoding
Description
Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the “convert-from”
source operand to a single-precision floating-point value in the destination operand (first operand). The “convert-
from” source operand can be a general-purpose register or a memory location. The destination operand is an XMM
register. The result is stored in the low doubleword of the destination operand, and the upper three doublewords
are left unchanged. When a conversion is inexact, the value returned is rounded according to the rounding control
bits in the MXCSR register or the embedded rounding control bits.
128-bit Legacy SSE version: In 64-bit mode, Use of the REX.W prefix promotes the instruction to use 64-bit input
value.The “convert-from” source operand (the second operand) is a general-purpose register or memory location.
Bits (MAX_VL-1:32) of the corresponding destination register remain unchanged.
VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be a general-
purpose register or a memory location. The first source and destination operands are XMM registers. Bits (127:32)
of the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAX_VL-
1:128) of the destination register are zeroed.
EVEX encoded version: the converted result in written to the low doubleword element of the destination under the
writemask.
Software should ensure VCVTSI2SS is encoded with VEX.L=0. Encoding VCVTSI2SS with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 2A /r RM V/V SSE Convert one signed doubleword integer from r/m32
to one single-precision floating-point value in xmm1.
CVTSI2SS xmm1, r/m32
F3 REX.W 0F 2A /r RM V/N.E. SSE Convert one signed quadword integer from r/m64
to one single-precision floating-point value in xmm1.
CVTSI2SS xmm1, r/m64
VEX.NDS.128.F3.0F.W0 2A /r RVM V/V AVX Convert one signed doubleword integer from r/m32
to one single-precision floating-point value in xmm1.
VCVTSI2SS xmm1, xmm2, r/m32
VEX.NDS.128.F3.0F.W1 2A /r RVM V/N.E.1AVX Convert one signed quadword integer from r/m64
to one single-precision floating-point value in xmm1.
VCVTSI2SS xmm1, xmm2, r/m64
EVEX.NDS.LIG.F3.0F.W0 2A /r T1S V/V AVX512F Convert one signed doubleword integer from r/m32
to one single-precision floating-point value in xmm1.
VCVTSI2SS xmm1, xmm2, r/m32{er}
EVEX.NDS.LIG.F3.0F.W1 2A /r T1S V/N.E.1
NOTES:
1. VEX.W1/EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.
AVX512F Convert one signed quadword integer from r/m64
to one single-precision floating-point value in xmm1.
VCVTSI2SS xmm1, xmm2, r/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-152 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTSI2SS (EVEX encoded version)
IF (SRC2 *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VCVTSI2SS (VEX.128 encoded version)
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
CVTSI2SS (128-bit Legacy SSE version)
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE
DEST[31:0] Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[MAX_VL-1:32] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTSI2SS __m128 _mm_cvti32_ss(__m128 s, int a);
VCVTSI2SS __m128 _mm_cvt_roundi32_ss(__m128 s, int a, int r);
VCVTSI2SS __m128 _mm_cvti64_ss(__m128 s, __int64 a);
VCVTSI2SS __m128 _mm_cvt_roundi64_ss(__m128 s, __int64 a, int r);
CVTSI2SS __m128 _mm_cvtsi64_ss(__m128 s, __int64 a);
CVTSI2SS __m128 _mm_cvtsi32_ss(__m128 a, int b);
SIMD Floating-Point Exceptions
Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3NF.
Ref. # 319433-023 5-153
INSTRUCTION SET REFERENCE, A-Z
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision
Floating-Point Value
Instruction Operand Encoding
Description
Converts a single-precision floating-point value in the “convert-from” source operand to a double-precision
floating-point value in the destination operand. When the “convert-from” source operand is an XMM register, the
single-precision floating-point value is contained in the low doubleword of the register. The result is stored in the
low quadword of the destination operand.
128-bit Legacy SSE version: The “convert-from” source operand (the second operand) is an XMM register or
memory location. Bits (MAX_VL-1:64) of the corresponding destination register remain unchanged. The destina-
tion operand is an XMM register.
VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be an XMM
register or a 32-bit memory location. The first source and destination operands are XMM registers. Bits (127:64) of
the XMM register destination are copied from the corresponding bits in the first source operand. Bits (MAX_VL-
1:128) of the destination register are zeroed.
Software should ensure VCVTSS2SD is encoded with VEX.L=0. Encoding VCVTSS2SD with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Operation
VCVTSS2SD (EVEX encoded version)
IF k1[0] or *no writemask*
THEN DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0]);
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] = 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 5A /r RM V/V SSE2 Convert one single-precision floating-point value in
xmm2/m32 to one double-precision floating-point value
in xmm1.
CVTSS2SD xmm1, xmm2/m32
VEX.NDS.128.F3.0F.WIG 5A /r RVM V/V AVX Convert one single-precision floating-point value in
xmm3/m32 to one double-precision floating-point value
and merge with high bits of xmm2.
VCVTSS2SD xmm1, xmm2,
xmm3/m32
EVEX.NDS.LIG.F3.0F.W0 5A /r T1S V/V AVX512F Convert one single-precision floating-point value in
xmm3/m32 to one double-precision floating-point value
and merge with high bits of xmm2 under writemask k1.
VCVTSS2SD xmm1 {k1}{z}, xmm2,
xmm3/m32{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-154 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTSS2SD (VEX.128 encoded version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0])
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
CVTSS2SD (128-bit Legacy SSE version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[MAX_VL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTSS2SD __m128d _mm_cvt_roundss_sd(__m128d a, __m128 b, int r);
VCVTSS2SD __m128d _mm_mask_cvt_roundss_sd(__m128d s, __mmask8 m, __m128d a,__m128 b, int r);
VCVTSS2SD __m128d _mm_maskz_cvt_roundss_sd(__mmask8 k, __m128d a, __m128 a, int r);
VCVTSS2SD __m128d _mm_mask_cvtss_sd(__m128d s, __mmask8 m, __m128d a,__m128 b);
VCVTSS2SD __m128d _mm_maskz_cvtss_sd(__mmask8 m, __m128d a,__m128 b);
CVTSS2SD __m128d_mm_cvtss_sd(__m128d a, __m128 a);
SIMD Floating-Point Exceptions
Invalid, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
Ref. # 319433-023 5-155
INSTRUCTION SET REFERENCE, A-Z
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
Instruction Operand Encoding
Description
Converts a single-precision floating-point value in the source operand (the second operand) to a signed double-
word integer (or signed quadword integer if operand size is 64 bits) in the destination operand (the first operand).
The source operand can be an XMM register or a memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the single-precision floating-point value is contained in the
low doubleword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value
(2w-1, where w represents the number of bits in the destination format) is returned.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to produce 64-bit data.
See the summary chart at the beginning of this section for encoding data and limits.
VEX.W1 and EVEX.W1 versions: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCVTSS2SI is encoded with VEX.L=0. Encoding VCVTSS2SI with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 2D /r RM V/V SSE Convert one single-precision floating-point value from
xmm1/m32 to one signed doubleword integer in r32.
CVTSS2SI r32, xmm1/m32
F3 REX.W 0F 2D /r RM V/N.E. SSE Convert one single-precision floating-point value from
xmm1/m32 to one signed quadword integer in r64.
CVTSS2SI r64, xmm1/m32
VEX.128.F3.0F.W0 2D /r RM V/V AVX Convert one single-precision floating-point value from
xmm1/m32 to one signed doubleword integer in r32.
VCVTSS2SI r32, xmm1/m32
VEX.128.F3.0F.W1 2D /r RM V/N.E.1AVX Convert one single-precision floating-point value from
xmm1/m32 to one signed quadword integer in r64.
VCVTSS2SI r64, xmm1/m32
EVEX.LIG.F3.0F.W0 2D /r T1F V/V AVX512F Convert one single-precision floating-point value from
xmm1/m32 to one signed doubleword integer in r32.
VCVTSS2SI r32, xmm1/m32{er}
EVEX.LIG.F3.0F.W1 2D /r T1F V/N.E.1
NOTES:
1. VEX.W1/EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.
AVX512F Convert one single-precision floating-point value from
xmm1/m32 to one signed quadword integer in r64.
VCVTSS2SI r64, xmm1/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1F ModRM:reg (w) ModRM:r/m (r) NA NA
5-156 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTSS2SI (EVEX encoded version)
IF (SRC *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF 64-bit Mode and OperandSize = 64
THEN
DEST[63:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
ELSE
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
FI;
(V)CVTSS2SI (Legacy and VEX.128 encoded version)
IF 64-bit Mode and OperandSize = 64
THEN
DEST[63:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
ELSE
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
FI;
Intel C/C++ Compiler Intrinsic Equivalent
VCVTSS2SI int _mm_cvtss_i32( __m128 a);
VCVTSS2SI int _mm_cvt_roundss_i32( __m128 a, int r);
VCVTSS2SI __int64 _mm_cvtss_i64( __m128 a);
VCVTSS2SI __int64 _mm_cvt_roundss_i64( __m128 a, int r);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Exceptions Type E3NF.
Ref. # 319433-023 5-157
INSTRUCTION SET REFERENCE, A-Z
VCVTSS2USI—Convert Scalar Single-Precision Floating-Point Value to Unsigned Doubleword
Integer
Instruction Operand Encoding
Description
Converts a single-precision floating-point value in the source operand (the second operand) to an unsigned double-
word integer (or unsigned quadword integer if operand size is 64 bits) in the destination operand (the first
operand). The source operand can be an XMM register or a memory location. The destination operand is a general-
purpose register. When the source operand is an XMM register, the single-precision floating-point value is
contained in the low doubleword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register or the embedded rounding control bits. If a converted result cannot be represented in the destination
format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is
returned, where w represents the number of bits in the destination format.
VEX.W1 and EVEX.W1 versions: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTSS2USI (EVEX encoded version)
IF (SRC *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF 64-bit Mode and OperandSize = 64
THEN
DEST[63:0] Convert_Single_Precision_Floating_Point_To_UInteger(SRC[31:0]);
ELSE
DEST[31:0] Convert_Single_Precision_Floating_Point_To_UInteger(SRC[31:0]);
FI;
Intel C/C++ Compiler Intrinsic Equivalent
VCVTSS2USI unsigned _mm_cvtss_u32( __m128 a);
VCVTSS2USI unsigned _mm_cvt_roundss_u32( __m128 a, int r);
VCVTSS2USI unsigned __int64 _mm_cvtss_u64( __m128 a);
VCVTSS2USI unsigned __int64 _mm_cvt_roundss_u64( __m128 a, int r);
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.LIG.F3.0F.W0 79 /r T1F V/V AVX512F Convert one single-precision floating-point value from
xmm1/m32 to one unsigned doubleword integer in r32.
VCVTSS2USI r32, xmm1/m32{er}
EVEX.LIG.F3.0F.W1 79 /r T1F V/N.E.1
NOTES:
1. EVEX.W1 in non-64 bit is ignored; the instructions behaves as if the W0 version is used.
AVX512F Convert one single-precision floating-point value from
xmm1/m32 to one unsigned quadword integer in r64.
VCVTSS2USI r64, xmm1/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1F ModRM:reg (w) ModRM:r/m (r) NA NA
5-158 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3NF.
Ref. # 319433-023 5-159
INSTRUCTION SET REFERENCE, A-Z
CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers
Instruction Operand Encoding
Description
Converts two, four or eight packed double-precision floating-point values in the source operand (second operand)
to two, four or eight packed signed doubleword integers in the destination operand (first operand).
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result is larger than
the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is
masked, the indefinite integer value (80000000H) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or
a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a
YMM/XMM/XMM (low 64 bits) register conditionally updated with writemask k1. The upper bits (MAX_VL-1:256) of
the corresponding destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination
operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination
operand is a XMM register. The upper bits (MAX_VL-1:64) of the corresponding ZMM register destination are
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination
operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F E6 /r RM V/V SSE2 Convert two packed double-precision floating-point
values in xmm2/mem to two signed doubleword
integers in xmm1 using truncation.
CVTTPD2DQ xmm1, xmm2/m128
VEX.128.66.0F.WIG E6 /r RM V/V AVX Convert two packed double-precision floating-point
values in xmm2/mem to two signed doubleword
integers in xmm1 using truncation.
VCVTTPD2DQ xmm1, xmm2/m128
VEX.256.66.0F.WIG E6 /r RM V/V AVX Convert four packed double-precision floating-point
values in ymm2/mem to four signed doubleword
integers in xmm1 using truncation.
VCVTTPD2DQ xmm1, ymm2/m256
EVEX.128.66.0F.W1 E6 /r FV V/V AVX512VL Convert two packed double-precision floating-point
values in xmm2/m128/m64bcst to two signed
doubleword integers in xmm1 using truncation subject
to writemask k1.
VCVTTPD2DQ xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512F
EVEX.256.66.0F.W1 E6 /r FV V/V AVX512VL Convert four packed double-precision floating-point
values in ymm2/m256/m64bcst to four signed
doubleword integers in xmm1 using truncation subject
to writemask k1.
VCVTTPD2DQ xmm1 {k1}{z},
ymm2/m256/m64bcst
AVX512F
EVEX.512.66.0F.W1 E6 /r FV V/V AVX512F Convert eight packed double-precision floating-point
values in zmm2/m512/m64bcst to eight signed
doubleword integers in ymm1 using truncation subject
to writemask k1.
VCVTTPD2DQ ymm1 {k1}{z},
zmm2/m512/m64bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-160 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTTPD2DQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[k+63:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
VCVTTPD2DQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
ELSE
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[k+63:k])
Figure 5-17. VCVTTPD2DQ (VEX.256 encoded version)
DEST
SRC
X0X1X2X3
X3 X2
X1 X0
0
Ref. # 319433-023 5-161
INSTRUCTION SET REFERENCE, A-Z
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
VCVTTPD2DQ (VEX.256 encoded version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[95:64] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[191:128])
DEST[127:96] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[255:192)
DEST[MAX_VL-1:128]0
VCVTTPD2DQ (VEX.128 encoded version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[MAX_VL-1:64]0
CVTTPD2DQ (128-bit Legacy SSE version)
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])
DEST[63:32] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])
DEST[127:64] 0
DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPD2DQ __m256i _mm512_cvttpd_epi32( __m512d a);
VCVTTPD2DQ __m256i _mm512_mask_cvttpd_epi32( __m256i s, __mmask8 k, __m512d a);
VCVTTPD2DQ __m256i _mm512_maskz_cvttpd_epi32( __mmask8 k, __m512d a);
VCVTTPD2DQ __m256i _mm512_cvtt_roundpd_epi32( __m512d a, int sae);
VCVTTPD2DQ __m256i _mm512_mask_cvtt_roundpd_epi32( __m256i s, __mmask8 k, __m512d a, int sae);
VCVTTPD2DQ __m256i _mm512_maskz_cvtt_roundpd_epi32( __mmask8 k, __m512d a, int sae);
VCVTTPD2DQ __m128i _mm256_mask_cvttpd_epi32( __m128i s, __mmask8 k, __m256d a);
VCVTTPD2DQ __m128i _mm256_maskz_cvttpd_epi32( __mmask8 k, __m256d a);
VCVTTPD2DQ __m128i _mm_mask_cvttpd_epi32( __m128i s, __mmask8 k, __m128d a);
VCVTTPD2DQ __m128i _mm_maskz_cvttpd_epi32( __mmask8 k, __m128d a);
VCVTTPD2DQ __m128i _mm256_cvttpd_epi32 (__m256d src);
CVTTPD2DQ __m128i _mm_cvttpd_epi32 (__m128d src);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2;
EVEX-encoded instructions, see Exceptions Type E2.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
5-162 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTTPD2QQ—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Quadword Integers
Instruction Operand Encoding
Description
Converts with truncation packed double-precision floating-point values in the source operand (second operand) to
packed quadword integers in the destination operand (first operand).
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register. If a converted result cannot be represented in the destination format, the floating-point invalid exception
is raised, and if this exception is masked, the indefinite integer value (2w-1, where w represents the number of bits
in the destination format) is returned.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTTPD2QQ (EVEX encoded version) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Double_Precision_Floating_Point_To_QuadInteger_Truncate(SRC[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F.W1 7A /r FV V/V AVX512VL Convert two packed double-precision floating-point values from
zmm2/m128/m64bcst to two packed quadword integers in
zmm1 using truncation with writemask k1.
VCVTTPD2QQ xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512DQ
EVEX.256.66.0F.W1 7A /r FV V/V AVX512VL Convert four packed double-precision floating-point values
from ymm2/m256/m64bcst to four packed quadword integers
in ymm1 using truncation with writemask k1.
VCVTTPD2QQ ymm1 {k1}{z},
ymm2/m256/m64bcst
AVX512DQ
EVEX.512.66.0F.W1 7A /r FV V/V AVX512DQ Convert eight packed double-precision floating-point values
from zmm2/m512 to eight packed quadword integers in zmm1
using truncation with writemask k1.
VCVTTPD2QQ zmm1 {k1}{z},
zmm2/m512/m64bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-163
INSTRUCTION SET REFERENCE, A-Z
VCVTTPD2QQ (EVEX encoded version) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i] Convert_Double_Precision_Floating_Point_To_QuadInteger_Truncate(SRC[63:0])
ELSE
DEST[i+63:i] Convert_Double_Precision_Floating_Point_To_QuadInteger_Truncate(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPD2QQ __m512i _mm512_cvttpd_epi64( __m512d a);
VCVTTPD2QQ __m512i _mm512_mask_cvttpd_epi64( __m512i s, __mmask8 k, __m512d a);
VCVTTPD2QQ __m512i _mm512_maskz_cvttpd_epi64( __mmask8 k, __m512d a);
VCVTTPD2QQ __m512i _mm512_cvtt_roundpd_epi64( __m512d a, int sae);
VCVTTPD2QQ __m512i _mm512_mask_cvtt_roundpd_epi64( __m512i s, __mmask8 k, __m512d a, int sae);
VCVTTPD2QQ __m512i _mm512_maskz_cvtt_roundpd_epi64( __mmask8 k, __m512d a, int sae);
VCVTTPD2QQ __m256i _mm256_mask_cvttpd_epi64( __m256i s, __mmask8 k, __m256d a);
VCVTTPD2QQ __m256i _mm256_maskz_cvttpd_epi64( __mmask8 k, __m256d a);
VCVTTPD2QQ __m128i _mm_mask_cvttpd_epi64( __m128i s, __mmask8 k, __m128d a);
VCVTTPD2QQ __m128i _mm_maskz_cvttpd_epi64( __mmask8 k, __m128d a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-164 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTTPD2UDQ—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Unsigned Doubleword Integers
Instruction Operand Encoding
Description
Converts with truncation packed double-precision floating-point values in the source operand (the second operand)
to packed unsigned doubleword integers in the destination operand (the first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register. If a converted result cannot be represented in the destination format, the floating-point invalid exception
is raised, and if this exception is masked, the integer value 2w – 1 is returned, where w represents the number of
bits in the destination format.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand is a YMM/XMM/XMM (low 64 bits) register
conditionally updated with writemask k1. The upper bits (MAX_VL-1:256) of the corresponding destination are
zeroed.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTTPD2UDQ (EVEX encoded versions) when src2 operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[k+63:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
Opcode
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.0F.W1 78 /r FV V/V AVX512VL Convert two packed double-precision floating-point values
in xmm2/m128/m64bcst to two unsigned doubleword
integers in xmm1 using truncation subject to writemask
k1.
VCVTTPD2UDQ xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512F
EVEX.256.0F.W1 78 02 /r FV V/V AVX512VL Convert four packed double-precision floating-point
values in ymm2/m256/m64bcst to four unsigned
doubleword integers in xmm1 using truncation subject to
writemask k1.
VCVTTPD2UDQ xmm1 {k1}{z},
ymm2/m256/m64bcst
AVX512F
EVEX.512.0F.W1 78 /r FV V/V AVX512F Convert eight packed double-precision floating-point
values in zmm2/m512/m64bcst to eight unsigned
doubleword integers in ymm1 using truncation subject to
writemask k1.
VCVTTPD2UDQ ymm1 {k1}{z},
zmm2/m512/m64bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-165
INSTRUCTION SET REFERENCE, A-Z
ENDFOR
DEST[MAX_VL-1:VL/2] 0
VCVTTPD2UDQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[63:0])
ELSE
DEST[i+31:i]
Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[k+63:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPD2UDQ __m256i _mm512_cvttpd_epu32( __m512d a);
VCVTTPD2UDQ __m256i _mm512_mask_cvttpd_epu32( __m256i s, __mmask8 k, __m512d a);
VCVTTPD2UDQ __m256i _mm512_maskz_cvttpd_epu32( __mmask8 k, __m512d a);
VCVTTPD2UDQ __m256i _mm512_cvtt_roundpd_epu32( __m512d a, int sae);
VCVTTPD2UDQ __m256i _mm512_mask_cvtt_roundpd_epu32( __m256i s, __mmask8 k, __m512d a, int sae);
VCVTTPD2UDQ __m256i _mm512_maskz_cvtt_roundpd_epu32( __mmask8 k, __m512d a, int sae);
VCVTTPD2UDQ __m128i _mm256_mask_cvttpd_epu32( __m128i s, __mmask8 k, __m256d a);
VCVTTPD2UDQ __m128i _mm256_maskz_cvttpd_epu32( __mmask8 k, __m256d a);
VCVTTPD2UDQ __m128i _mm_mask_cvttpd_epu32( __m128i s, __mmask8 k, __m128d a);
VCVTTPD2UDQ __m128i _mm_maskz_cvttpd_epu32( __mmask8 k, __m128d a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-166 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTTPD2UQQ—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Unsigned Quadword Integers
Instruction Operand Encoding
Description
Converts with truncation packed double-precision floating-point values in the source operand (second operand) to
packed unsigned quadword integers in the destination operand (first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register. If a converted result cannot be represented in the destination format, the floating-point invalid exception
is raised, and if this exception is masked, the integer value 2w – 1 is returned, where w represents the number of
bits in the destination format.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The destination operation is a ZMM/YMM/XMM register conditionally updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTTPD2UQQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Double_Precision_Floating_Point_To_UQuadInteger_Truncate(SRC[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F.W1 78 /r FV V/V AVX512VL Convert two packed double-precision floating-point values
from xmm2/m128/m64bcst to two packed unsigned
quadword integers in xmm1 using truncation with
writemask k1.
VCVTTPD2UQQ xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512DQ
EVEX.256.66.0F.W1 78 /r FV V/V AVX512VL Convert four packed double-precision floating-point values
from ymm2/m256/m64bcst to four packed unsigned
quadword integers in ymm1 using truncation with
writemask k1.
VCVTTPD2UQQ ymm1 {k1}{z},
ymm2/m256/m64bcst
AVX512DQ
EVEX.512.66.0F.W1 78 /r FV V/V AVX512DQ Convert eight packed double-precision floating-point values
from zmm2/mem to eight packed unsigned quadword
integers in zmm1 using truncation with writemask k1.
VCVTTPD2UQQ zmm1 {k1}{z},
zmm2/m512/m64bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-167
INSTRUCTION SET REFERENCE, A-Z
VCVTTPD2UQQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i]
Convert_Double_Precision_Floating_Point_To_UQuadInteger_Truncate(SRC[63:0])
ELSE
DEST[i+63:i]
Convert_Double_Precision_Floating_Point_To_UQuadInteger_Truncate(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPD2UQQ _mm<size>[_mask[z]]_cvtt[_round]pd_epu64
VCVTTPD2UQQ __m512i _mm512_cvttpd_epu64( __m512d a);
VCVTTPD2UQQ __m512i _mm512_mask_cvttpd_epu64( __m512i s, __mmask8 k, __m512d a);
VCVTTPD2UQQ __m512i _mm512_maskz_cvttpd_epu64( __mmask8 k, __m512d a);
VCVTTPD2UQQ __m512i _mm512_cvtt_roundpd_epu64( __m512d a, int sae);
VCVTTPD2UQQ __m512i _mm512_mask_cvtt_roundpd_epu64( __m512i s, __mmask8 k, __m512d a, int sae);
VCVTTPD2UQQ __m512i _mm512_maskz_cvtt_roundpd_epu64( __mmask8 k, __m512d a, int sae);
VCVTTPD2UQQ __m256i _mm256_mask_cvttpd_epu64( __m256i s, __mmask8 k, __m256d a);
VCVTTPD2UQQ __m256i _mm256_maskz_cvttpd_epu64( __mmask8 k, __m256d a);
VCVTTPD2UQQ __m128i _mm_mask_cvttpd_epu64( __m128i s, __mmask8 k, __m128d a);
VCVTTPD2UQQ __m128i _mm_maskz_cvttpd_epu64( __mmask8 k, __m128d a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-168 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Packed
Signed Doubleword Integer Values
Instruction Operand Encoding
Description
Converts four, eight or sixteen packed single-precision floating-point values in the source operand to four, eight or
sixteen signed doubleword integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result is larger than
the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is
masked, the indefinite integer value (80000000H) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or
a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a
ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination
operand is a YMM register. The upper bits (MAX_VL-1:256) of the corresponding ZMM register destination are
zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination
operand is a XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination
operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 5B /r RM V/V SSE2 Convert four packed single-precision floating-point
values from xmm2/mem to four packed signed
doubleword values in xmm1 using truncation.
CVTTPS2DQ xmm1, xmm2/m128
VEX.128.F3.0F.WIG 5B /r RM V/V AVX Convert four packed single-precision floating-point
values from xmm2/mem to four packed signed
doubleword values in xmm1 using truncation.
VCVTTPS2DQ xmm1, xmm2/m128
VEX.256.F3.0F.WIG 5B /r RM V/V AVX Convert eight packed single-precision floating-point
values from ymm2/mem to eight packed signed
doubleword values in ymm1 using truncation.
VCVTTPS2DQ ymm1, ymm2/m256
EVEX.128.F3.0F.W0 5B /r FV V/V AVX512VL Convert four packed single precision floating-point
values from xmm2/m128/m32bcst to four packed
signed doubleword values in xmm1 using truncation
subject to writemask k1.
VCVTTPS2DQ xmm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.256.F3.0F.W0 5B /r FV V/V AVX512VL Convert eight packed single precision floating-point
values from ymm2/m256/m32bcst to eight packed
signed doubleword values in ymm1 using truncation
subject to writemask k1.
VCVTTPS2DQ ymm1 {k1}{z},
ymm2/m256/m32bcst
AVX512F
EVEX.512.F3.0F.W0 5B /r FV V/V AVX512F Convert sixteen packed single-precision floating-point
values from zmm2/m512/m32bcst to sixteen packed
signed doubleword values in zmm1 using truncation
subject to writemask k1.
VCVTTPS2DQ zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-169
INSTRUCTION SET REFERENCE, A-Z
Operation
VCVTTPS2DQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTTPS2DQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO 15
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
ELSE
DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTTPS2DQ (VEX.256 encoded version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96)
DEST[159:128] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128])
DEST[191:160] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160])
DEST[223:192] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192])
DEST[255:224] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224])
5-170 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTTPS2DQ (VEX.128 encoded version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[MAX_VL-1:128] 0
CVTTPS2DQ (128-bit Legacy SSE version)
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])
DEST[63:32] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])
DEST[95:64] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])
DEST[127:96] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])
DEST[MAX_VL-1:128] (unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPS2DQ __m512i _mm512_cvttps_epi32( __m512 a);
VCVTTPS2DQ __m512i _mm512_mask_cvttps_epi32( __m512i s, __mmask16 k, __m512 a);
VCVTTPS2DQ __m512i _mm512_maskz_cvttps_epi32( __mmask16 k, __m512 a);
VCVTTPS2DQ __m512i _mm512_cvtt_roundps_epi32( __m512 a, int sae);
VCVTTPS2DQ __m512i _mm512_mask_cvtt_roundps_epi32( __m512i s, __mmask16 k, __m512 a, int sae);
VCVTTPS2DQ __m512i _mm512_maskz_cvtt_roundps_epi32( __mmask16 k, __m512 a, int sae);
VCVTTPS2DQ __m256i _mm256_mask_cvttps_epi32( __m256i s, __mmask8 k, __m256 a);
VCVTTPS2DQ __m256i _mm256_maskz_cvttps_epi32( __mmask8 k, __m256 a);
VCVTTPS2DQ __m128i _mm_mask_cvttps_epi32( __m128i s, __mmask8 k, __m128 a);
VCVTTPS2DQ __m128i _mm_maskz_cvttps_epi32( __mmask8 k, __m128 a);
VCVTTPS2DQ __m256i _mm256_cvttps_epi32 (__m256 a)
CVTTPS2DQ __m128i _mm_cvttps_epi32 (__m128 a)
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2; additionally
EVEX-encoded instructions, see Exceptions Type E2.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-171
INSTRUCTION SET REFERENCE, A-Z
VCVTTPS2UDQ—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Unsigned Doubleword Integer Values
Instruction Operand Encoding
Description
Converts with truncation packed single-precision floating-point values in the source operand to sixteen unsigned
doubleword integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR.
If a converted result cannot be represented in the destination format, the floating-point invalid exception is raised,
and if this exception is masked, the integer value 2w – 1 is returned, where w represents the number of bits in the
destination format.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or
a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a
ZMM/YMM/XMM register conditionally updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTTPS2UDQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.0F.W0 78 /r FV V/V AVX512VL Convert four packed single precision floating-point
values from xmm2/m128/m32bcst to four packed
unsigned doubleword values in xmm1 using
truncation subject to writemask k1.
VCVTTPS2UDQ xmm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.256.0F.W0 78 /r FV V/V AVX512VL Convert eight packed single precision floating-point
values from ymm2/m256/m32bcst to eight packed
unsigned doubleword values in ymm1 using
truncation subject to writemask k1.
VCVTTPS2UDQ ymm1 {k1}{z},
ymm2/m256/m32bcst
AVX512F
EVEX.512.0F.W0 78 /r FV V/V AVX512F Convert sixteen packed single-precision floating-
point values from zmm2/m512/m32bcst to sixteen
packed unsigned doubleword values in zmm1 using
truncation subject to writemask k1.
VCVTTPS2UDQ zmm1 {k1}{z},
zmm2/m512/m32bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-172 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTTPS2UDQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[31:0])
ELSE
DEST[i+31:i]
Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPS2UDQ __m512i _mm512_cvttps_epu32( __m512 a);
VCVTTPS2UDQ __m512i _mm512_mask_cvttps_epu32( __m512i s, __mmask16 k, __m512 a);
VCVTTPS2UDQ __m512i _mm512_maskz_cvttps_epu32( __mmask16 k, __m512 a);
VCVTTPS2UDQ __m512i _mm512_cvtt_roundps_epu32( __m512 a, int sae);
VCVTTPS2UDQ __m512i _mm512_mask_cvtt_roundps_epu32( __m512i s, __mmask16 k, __m512 a, int sae);
VCVTTPS2UDQ __m512i _mm512_maskz_cvtt_roundps_epu32( __mmask16 k, __m512 a, int sae);
VCVTTPS2UDQ __m256i _mm256_mask_cvttps_epu32( __m256i s, __mmask8 k, __m256 a);
VCVTTPS2UDQ __m256i _mm256_maskz_cvttps_epu32( __mmask8 k, __m256 a);
VCVTTPS2UDQ __m128i _mm_mask_cvttps_epu32( __m128i s, __mmask8 k, __m128 a);
VCVTTPS2UDQ __m128i _mm_maskz_cvttps_epu32( __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-173
INSTRUCTION SET REFERENCE, A-Z
VCVTTPS2QQ—Convert with Truncation Packed Single Precision Floating-Point Values to
Packed Singed Quadword Integer Values
Instruction Operand Encoding
Description
Converts with truncation packed single-precision floating-point values in the source operand to eight signed quad-
word integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register. If a converted result cannot be represented in the destination format, the floating-point invalid exception
is raised, and if this exception is masked, the indefinite integer value (2w-1, where w represents the number of bits
in the destination format) is returned.
EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64 bits) register or a 256/128/64-bit
memory location. The destination operation is a vector register conditionally updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTTPS2QQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Single_Precision_To_QuadInteger_Truncate(SRC[k+31:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F.W0 7A /r HV V/V AVX512VL Convert two packed single precision floating-point values from
xmm2/m64/m32bcst to two packed signed quadword values in
xmm1 using truncation subject to writemask k1.
VCVTTPS2QQ xmm1 {k1}{z},
xmm2/m64/m32bcst
AVX512DQ
EVEX.256.66.0F.W0 7A /r HV V/V AVX512VL Convert four packed single precision floating-point values from
xmm2/m128/m32bcst to four packed signed quadword values
in ymm1 using truncation subject to writemask k1.
VCVTTPS2QQ ymm1 {k1}{z},
xmm2/m128/m32bcst
AVX512DQ
EVEX.512.66.0F.W0 7A /r HV V/V AVX512DQ Convert eight packed single precision floating-point values from
ymm2/m256/m32bcst to eight packed signed quadword values
in zmm1 using truncation subject to writemask k1.
VCVTTPS2QQ zmm1 {k1}{z},
ymm2/m256/m32bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
HV ModRM:reg (w) ModRM:r/m (r) NA NA
5-174 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTTPS2QQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i]
Convert_Single_Precision_To_QuadInteger_Truncate(SRC[31:0])
ELSE
DEST[i+63:i]
Convert_Single_Precision_To_QuadInteger_Truncate(SRC[k+31:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPS2QQ __m512i _mm512_cvttps_epi64( __m256 a);
VCVTTPS2QQ __m512i _mm512_mask_cvttps_epi64( __m512i s, __mmask16 k, __m256 a);
VCVTTPS2QQ __m512i _mm512_maskz_cvttps_epi64( __mmask16 k, __m256 a);
VCVTTPS2QQ __m512i _mm512_cvtt_roundps_epi64( __m256 a, int sae);
VCVTTPS2QQ __m512i _mm512_mask_cvtt_roundps_epi64( __m512i s, __mmask16 k, __m256 a, int sae);
VCVTTPS2QQ __m512i _mm512_maskz_cvtt_roundps_epi64( __mmask16 k, __m256 a, int sae);
VCVTTPS2QQ __m256i _mm256_mask_cvttps_epi64( __m256i s, __mmask8 k, __m128 a);
VCVTTPS2QQ __m256i _mm256_maskz_cvttps_epi64( __mmask8 k, __m128 a);
VCVTTPS2QQ __m128i _mm_mask_cvttps_epi64( __m128i s, __mmask8 k, __m128 a);
VCVTTPS2QQ __m128i _mm_maskz_cvttps_epi64( __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-175
INSTRUCTION SET REFERENCE, A-Z
VCVTTPS2UQQ—Convert with Truncation Packed Single Precision Floating-Point Values to
Packed Unsigned Quadword Integer Values
Instruction Operand Encoding
Description
Converts with truncation up to eight packed single-precision floating-point values in the source operand to
unsigned quadword integers in the destination operand.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register. If a converted result cannot be represented in the destination format, the floating-point invalid exception
is raised, and if this exception is masked, the integer value 2w – 1 is returned, where w represents the number of
bits in the destination format.
EVEX encoded versions: The source operand is a YMM/XMM/XMM (low 64 bits) register or a 256/128/64-bit
memory location. The destination operation is a vector register conditionally updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VCVTTPS2UQQ (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_Single_Precision_To_UQuadInteger_Truncate(SRC[k+31:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F.W0 78 /r HV V/V AVX512VL Convert two packed single precision floating-point values
from zmm2/m64/m32bcst to two packed unsigned quadword
values in zmm1 using truncation subject to writemask k1.
VCVTTPS2UQQ xmm1 {k1}{z},
xmm2/m64/m32bcst
AVX512DQ
EVEX.256.66.0F.W0 78 /r HV V/V AVX512VL Convert four packed single precision floating-point values
from xmm2/m128/m32bcst to four packed unsigned
quadword values in ymm1 using truncation subject to
writemask k1.
VCVTTPS2UQQ ymm1 {k1}{z},
xmm2/m128/m32bcst
AVX512DQ
EVEX.512.66.0F.W0 78 /r HV V/V AVX512DQ Convert eight packed single precision floating-point values
from ymm2/m256/m32bcst to eight packed unsigned
quadword values in zmm1 using truncation subject to
writemask k1.
VCVTTPS2UQQ zmm1 {k1}{z},
ymm2/m256/m32bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
HV ModRM:reg (w) ModRM:r/m (r) NA NA
5-176 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTTPS2UQQ (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i]
Convert_Single_Precision_To_UQuadInteger_Truncate(SRC[31:0])
ELSE
DEST[i+63:i]
Convert_Single_Precision_To_UQuadInteger_Truncate(SRC[k+31:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTPS2UQQ _mm<size>[_mask[z]]_cvtt[_round]ps_epu64
VCVTTPS2UQQ __m512i _mm512_cvttps_epu64( __m256 a);
VCVTTPS2UQQ __m512i _mm512_mask_cvttps_epu64( __m512i s, __mmask16 k, __m256 a);
VCVTTPS2UQQ __m512i _mm512_maskz_cvttps_epu64( __mmask16 k, __m256 a);
VCVTTPS2UQQ __m512i _mm512_cvtt_roundps_epu64( __m256 a, int sae);
VCVTTPS2UQQ __m512i _mm512_mask_cvtt_roundps_epu64( __m512i s, __mmask16 k, __m256 a, int sae);
VCVTTPS2UQQ __m512i _mm512_maskz_cvtt_roundps_epu64( __mmask16 k, __m256 a, int sae);
VCVTTPS2UQQ __m256i _mm256_mask_cvttps_epu64( __m256i s, __mmask8 k, __m128 a);
VCVTTPS2UQQ __m256i _mm256_maskz_cvttps_epu64( __mmask8 k, __m128 a);
VCVTTPS2UQQ __m128i _mm_mask_cvttps_epu64( __m128i s, __mmask8 k, __m128 a);
VCVTTPS2UQQ __m128i _mm_maskz_cvttps_epu64( __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-177
INSTRUCTION SET REFERENCE, A-Z
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed
Integer
Instruction Operand Encoding
Description
Converts a double-precision floating-point value in the source operand (the second operand) to a signed double-
word integer (or signed quadword integer if operand size is 64 bits) in the destination operand (the first operand).
The source operand can be an XMM register or a 64-bit memory location. The destination operand is a general
purpose register. When the source operand is an XMM register, the double-precision floating-point value is
contained in the low quadword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register.
If a converted result exceeds the range limits of signed doubleword integer (in non-64-bit modes or 64-bit mode
with REX.W/VEX.W/EVEX.W=0), the floating-point invalid exception is raised, and if this exception is masked, the
indefinite integer value (80000000H) is returned.
If a converted result exceeds the range limits of signed quadword integer (in 64-bit mode and
REX.W/VEX.W/EVEX.W = 1), the floating-point invalid exception is raised, and if this exception is masked, the
indefinite integer value (80000000_00000000H) is returned.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to 64-bit operation. See
the summary chart at the beginning of this section for encoding data and limits.
VEX.W1 and EVEX.W1 versions: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 2C /r RM V/V SSE2 Convert one double-precision floating-point value from
xmm1/m64 to one signed doubleword integer in r32
using truncation.
CVTTSD2SI r32, xmm1/m64
F2 REX.W 0F 2C /r RM V/N.E. SSE2 Convert one double-precision floating-point value from
xmm1/m64 to one signed quadword integer in r64
using truncation.
CVTTSD2SI r64, xmm1/m64
VEX.128.F2.0F.W0 2C /r RM V/V AVX Convert one double-precision floating-point value from
xmm1/m64 to one signed doubleword integer in r32
using truncation.
VCVTTSD2SI r32, xmm1/m64
VEX.128.F2.0F.W1 2C /r T1F V/N.E.1AVX Convert one double-precision floating-point value from
xmm1/m64 to one signed quadword integer in r64
using truncation.
VCVTTSD2SI r64, xmm1/m64
EVEX.LIG.F2.0F.W0 2C /r T1F V/V AVX512F Convert one double-precision floating-point value from
xmm1/m64 to one signed doubleword integer in r32
using truncation.
VCVTTSD2SI r32, xmm1/m64{sae}
EVEX.LIG.F2.0F.W1 2C /r T1F V/N.E.1
NOTES:
1. For this specific instruction, VEX.W/EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 ver-
sion is used.
AVX512F Convert one double-precision floating-point value from
xmm1/m64 to one signed quadword integer in r64
using truncation.
VCVTTSD2SI r64, xmm1/m64{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1F ModRM:reg (w) ModRM:r/m (r) NA NA
5-178 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Software should ensure VCVTTSD2SI is encoded with VEX.L=0. Encoding VCVTTSD2SI with VEX.L=1 may
encounter unpredictable behavior across different processor generations.
Operation
(V)CVTTSD2SI (All versions)
IF 64-Bit Mode and OperandSize = 64
THEN
DEST[63:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
ELSE
DEST[31:0] Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
FI;
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTSD2SI int _mm_cvttsd_i32( __m128d a);
VCVTTSD2SI int _mm_cvtt_roundsd_i32( __m128d a, int sae);
VCVTTSD2SI __int64 _mm_cvttsd_i64( __m128d a);
VCVTTSD2SI __int64 _mm_cvtt_roundsd_i64( __m128d a, int sae);
CVTTSD2SI int _mm_cvttsd_si32( __m128d a);
CVTTSD2SI __int64 _mm_cvttsd_si64( __m128d a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Exceptions Type E3NF.
Ref. # 319433-023 5-179
INSTRUCTION SET REFERENCE, A-Z
VCVTTSD2USI—Convert with Truncation Scalar Double-Precision Floating-Point Value to
Unsigned Integer
Instruction Operand Encoding
Description
Converts with truncation a double-precision floating-point value in the source operand (the second operand) to an
unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the destination operand
(the first operand). The source operand can be an XMM register or a 64-bit memory location. The destination
operand is a general-purpose register. When the source operand is an XMM register, the double-precision floating-
point value is contained in the low quadword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register. If a converted result cannot be represented in the destination format, the floating-point invalid exception
is raised, and if this exception is masked, the integer value 2w – 1 is returned, where w represents the number of
bits in the destination format.
EVEX.W1 version: promotes the instruction to produce 64-bit data in 64-bit mode.
Operation
VCVTTSD2USI (EVEX encoded version)
IF 64-Bit Mode and OperandSize = 64
THEN DEST[63:0] Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[63:0]);
ELSE DEST[31:0] Convert_Double_Precision_Floating_Point_To_UInteger_Truncate(SRC[63:0]);
FI
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTSD2USI unsigned int _mm_cvttsd_u32(__m128d);
VCVTTSD2USI unsigned int _mm_cvtt_roundsd_u32(__m128d, int sae);
VCVTTSD2USI unsigned __int64 _mm_cvttsd_u64(__m128d);
VCVTTSD2USI unsigned __int64 _mm_cvtt_roundsd_u64(__m128d, int sae);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3NF.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.LIG.F2.0F.W0 78 /r T1F V/V AVX512F Convert one double-precision floating-point value from
xmm1/m64 to one unsigned doubleword integer r32
using truncation.
VCVTTSD2USI r32, xmm1/m64{sae}
EVEX.LIG.F2.0F.W1 78 /r T1F V/N.E.1
NOTES:
1. For this specific instruction, EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is
used.
AVX512F Convert one double-precision floating-point value from
xmm1/m64 to one unsigned quadword integer zero-
extended into r64 using truncation.
VCVTTSD2USI r64, xmm1/m64{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1F ModRM:reg (w) ModRM:r/m (r) NA NA
5-180 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to Integer
Instruction Operand Encoding
Description
Converts a single-precision floating-point value in the source operand (the second operand) to a signed doubleword
integer (or signed quadword integer if operand size is 64 bits) in the destination operand (the first operand). The
source operand can be an XMM register or a 32-bit memory location. The destination operand is a general purpose
register. When the source operand is an XMM register, the single-precision floating-point value is contained in the
low doubleword of the register.
When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger than
the maximum signed doubleword integer, the floating-point invalid exception is raised. If this exception is masked,
the indefinite integer value (80000000H or 80000000_00000000H if operand size is 64 bits) is returned.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to 64-bit operation. See
the summary chart at the beginning of this section for encoding data and limits.
VEX.W1 and EVEX.W1 versions: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCVTTSS2SI is encoded with VEX.L=0. Encoding VCVTTSS2SI with VEX.L=1 may
encounter unpredictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 2C /r RM V/V SSE Convert one single-precision floating-point value from
xmm1/m32 to one signed doubleword integer in r32
using truncation.
CVTTSS2SI r32, xmm1/m32
F3 REX.W 0F 2C /r RM V/N.E. SSE Convert one single-precision floating-point value from
xmm1/m32 to one signed quadword integer in r64
using truncation.
CVTTSS2SI r64, xmm1/m32
VEX.128.F3.0F.W0 2C /r RM V/V AVX Convert one single-precision floating-point value from
xmm1/m32 to one signed doubleword integer in r32
using truncation.
VCVTTSS2SI r32, xmm1/m32
VEX.128.F3.0F.W1 2C /r RM V/N.E.1AVX Convert one single-precision floating-point value from
xmm1/m32 to one signed quadword integer in r64
using truncation.
VCVTTSS2SI r64, xmm1/m32
EVEX.LIG.F3.0F.W0 2C /r T1F V/V AVX512F Convert one single-precision floating-point value from
xmm1/m32 to one signed doubleword integer in r32
using truncation.
VCVTTSS2SI r32, xmm1/m32{sae}
EVEX.LIG.F3.0F.W1 2C /r T1F V/N.E.1
NOTES:
1. For this specific instruction, VEX.W/EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 ver-
sion is used.
AVX512F Convert one single-precision floating-point value from
xmm1/m32 to one signed quadword integer in r64
using truncation.
VCVTTSS2SI r64, xmm1/m32{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1F ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-181
INSTRUCTION SET REFERENCE, A-Z
Operation
(V)CVTTSS2SI (All versions)
IF 64-Bit Mode and OperandSize = 64
THEN
DEST[63:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
ELSE
DEST[31:0] Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
FI;
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTSS2SI int _mm_cvttss_i32( __m128 a);
VCVTTSS2SI int _mm_cvtt_roundss_i32( __m128 a, int sae);
VCVTTSS2SI __int64 _mm_cvttss_i64( __m128 a);
VCVTTSS2SI __int64 _mm_cvtt_roundss_i64( __m128 a, int sae);
CVTTSS2SI int _mm_cvttss_si32( __m128 a);
CVTTSS2SI __int64 _mm_cvttss_si64( __m128 a);
SIMD Floating-Point Exceptions
Invalid, Precision
Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Exceptions Type E3NF.
5-182 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTTSS2USI—Convert with Truncation Scalar Single-Precision Floating-Point Value to
Unsigned Integer
Instruction Operand Encoding
Description
Converts with truncation a single-precision floating-point value in the source operand (the second operand) to an
unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the destination operand
(the first operand). The source operand can be an XMM register or a memory location. The destination operand is
a general-purpose register. When the source operand is an XMM register, the single-precision floating-point value
is contained in the low doubleword of the register.
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register. If a converted result cannot be represented in the destination format, the floating-point invalid exception
is raised, and if this exception is masked, the integer value 2w – 1 is returned, where w represents the number of
bits in the destination format.
EVEX.W1 version: promotes the instruction to produce 64-bit data in 64-bit mode.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTTSS2USI (EVEX encoded version)
IF 64-bit Mode and OperandSize = 64
THEN
DEST[63:0] Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[31:0]);
ELSE
DEST[31:0] Convert_Single_Precision_Floating_Point_To_UInteger_Truncate(SRC[31:0]);
FI;
Intel C/C++ Compiler Intrinsic Equivalent
VCVTTSS2USI unsigned int _mm_cvttss_u32( __m128 a);
VCVTTSS2USI unsigned int _mm_cvtt_roundss_u32( __m128 a, int sae);
VCVTTSS2USI unsigned __int64 _mm_cvttss_u64( __m128 a);
VCVTTSS2USI unsigned __int64 _mm_cvtt_roundss_u64( __m128 a, int sae);
SIMD Floating-Point Exceptions
Invalid, Precision
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.LIG.F3.0F.W0 78 /r T1F V/V AVX512F Convert one single-precision floating-point value from
xmm1/m32 to one unsigned doubleword integer in
r32 using truncation.
VCVTTSS2USI r32, xmm1/m32{sae}
EVEX.LIG.F3.0F.W1 78 /r T1F V/N.E.1
NOTES:
1. For this specific instruction, EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is
used.
AVX512F Convert one single-precision floating-point value from
xmm1/m32 to one unsigned quadword integer in r64
using truncation.
VCVTTSS2USI r64, xmm1/m32{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1F ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-183
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E3NF.
5-184 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTUDQ2PD—Convert Packed Unsigned Doubleword Integers to Packed Double-Precision
Floating-Point Values
Instruction Operand Encoding
Description
Converts packed unsigned doubleword integers in the source operand (second operand) to packed double-preci-
sion floating-point values in the destination operand (first operand).
The source operand is a YMM/XMM/XMM (low 64 bits) register, a 256/128/64-bit memory location or a
256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM
register conditionally updated with writemask k1.
Attempt to encode this instruction with EVEX embedded rounding is ignored.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTUDQ2PD (EVEX encoded versions) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_UInteger_To_Double_Precision_Floating_Point(SRC[k+31:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F.W0 7A /r HV V/V AVX512VL Convert two packed unsigned doubleword integers
from ymm2/m64/m32bcst to packed double-precision
floating-point values in zmm1 with writemask k1.
VCVTUDQ2PD xmm1 {k1}{z},
xmm2/m64/m32bcst
AVX512F
EVEX.256.F3.0F.W0 7A /r HV V/V AVX512VL Convert four packed unsigned doubleword integers
from xmm2/m128/m32bcst to packed double-
precision floating-point values in zmm1 with
writemask k1.
VCVTUDQ2PD ymm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.512.F3.0F.W0 7A /r HV V/V AVX512F Convert eight packed unsigned doubleword integers
from ymm2/m256/m32bcst to eight packed double-
precision floating-point values in zmm1 with
writemask k1.
VCVTUDQ2PD zmm1 {k1}{z},
ymm2/m256/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
HV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-185
INSTRUCTION SET REFERENCE, A-Z
VCVTUDQ2PD (EVEX encoded versions) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
Convert_UInteger_To_Double_Precision_Floating_Point(SRC[31:0])
ELSE
DEST[i+63:i]
Convert_UInteger_To_Double_Precision_Floating_Point(SRC[k+31:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTUDQ2PD __m512d _mm512_cvtepu32_pd( __m256i a);
VCVTUDQ2PD __m512d _mm512_mask_cvtepu32_pd( __m512d s, __mmask8 k, __m256i a);
VCVTUDQ2PD __m512d _mm512_maskz_cvtepu32_pd( __mmask8 k, __m256i a);
VCVTUDQ2PD __m256d _mm256_cvtepu32_pd( __m128i a);
VCVTUDQ2PD __m256d _mm256_mask_cvtepu32_pd( __m256d s, __mmask8 k, __m128i a);
VCVTUDQ2PD __m256d _mm256_maskz_cvtepu32_pd( __mmask8 k, __m128i a);
VCVTUDQ2PD __m128d _mm_cvtepu32_pd( __m128i a);
VCVTUDQ2PD __m128d _mm_mask_cvtepu32_pd( __m128d s, __mmask8 k, __m128i a);
VCVTUDQ2PD __m128d _mm_maskz_cvtepu32_pd( __mmask8 k, __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E5.
#UD If EVEX.vvvv != 1111B.
5-186 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTUDQ2PS—Convert Packed Unsigned Doubleword Integers to Packed Single-Precision
Floating-Point Values
Instruction Operand Encoding
Description
Converts packed unsigned doubleword integers in the source operand (second operand) to single-precision
floating-point values in the destination operand (first operand).
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTUDQ2PS (EVEX encoded version) when src operand is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
Convert_UInteger_To_Single_Precision_Floating_Point(SRC[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F2.0F.W0 7A /r FV V/V AVX512VL Convert four packed unsigned doubleword integers from
xmm2/m128/m32bcst to packed single-precision
floating-point values in xmm1 with writemask k1.
VCVTUDQ2PS xmm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.256.F2.0F.W0 7A /r FV V/V AVX512VL Convert eight packed unsigned doubleword integers
from ymm2/m256/m32bcst to packed single-precision
floating-point values in zmm1 with writemask k1.
VCVTUDQ2PS ymm1 {k1}{z},
ymm2/m256/m32bcst
AVX512F
EVEX.512.F2.0F.W0 7A /r FV V/V AVX512F Convert sixteen packed unsigned doubleword integers
from zmm2/m512/m32bcst to sixteen packed single-
precision floating-point values in zmm1 with writemask
k1.
VCVTUDQ2PS zmm1 {k1}{z},
zmm2/m512/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-187
INSTRUCTION SET REFERENCE, A-Z
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTUDQ2PS (EVEX encoded version) when src operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_UInteger_To_Single_Precision_Floating_Point(SRC[31:0])
ELSE
DEST[i+31:i]
Convert_UInteger_To_Single_Precision_Floating_Point(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTUDQ2PS __m512 _mm512_cvtepu32_ps( __m512i a);
VCVTUDQ2PS __m512 _mm512_mask_cvtepu32_ps( __m512 s, __mmask16 k, __m512i a);
VCVTUDQ2PS __m512 _mm512_maskz_cvtepu32_ps( __mmask16 k, __m512i a);
VCVTUDQ2PS __m512 _mm512_cvt_roundepu32_ps( __m512i a, int r);
VCVTUDQ2PS __m512 _mm512_mask_cvt_roundepu32_ps( __m512 s, __mmask16 k, __m512i a, int r);
VCVTUDQ2PS __m512 _mm512_maskz_cvt_roundepu32_ps( __mmask16 k, __m512i a, int r);
VCVTUDQ2PS __m256 _mm256_cvtepu32_ps( __m256i a);
VCVTUDQ2PS __m256 _mm256_mask_cvtepu32_ps( __m256 s, __mmask8 k, __m256i a);
VCVTUDQ2PS __m256 _mm256_maskz_cvtepu32_ps( __mmask8 k, __m256i a);
VCVTUDQ2PS __m128 _mm_cvtepu32_ps( __m128i a);
VCVTUDQ2PS __m128 _mm_mask_cvtepu32_ps( __m128 s, __mmask8 k, __m128i a);
VCVTUDQ2PS __m128 _mm_maskz_cvtepu32_ps( __mmask8 k, __m128i a);
SIMD Floating-Point Exceptions
Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-188 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTUQQ2PD—Convert Packed Unsigned Quadword Integers to Packed Double-Precision
Floating-Point Values
Instruction Operand Encoding
Description
Converts packed unsigned quadword integers in the source operand (second operand) to packed double-precision
floating-point values in the destination operand (first operand).
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTUQQ2PD (EVEX encoded version) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL == 512) AND (EVEX.b == 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
Convert_UQuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F.W1 7A /r FV V/V AVX512VL Convert two packed unsigned quadword integers from
xmm2/m128/m64bcst to two packed double-precision
floating-point values in xmm1 with writemask k1.
VCVTUQQ2PD xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512DQ
EVEX.256.F3.0F.W1 7A /r FV V/V AVX512VL Convert four packed unsigned quadword integers from
ymm2/m256/m64bcst to packed double-precision floating-
point values in ymm1 with writemask k1.
VCVTUQQ2PD ymm1 {k1}{z},
ymm2/m256/m64bcst
AVX512DQ
EVEX.512.F3.0F.W1 7A /r FV V/V AVX512DQ Convert eight packed unsigned quadword integers from
zmm2/m512/m64bcst to eight packed double-precision
floating-point values in zmm1 with writemask k1.
VCVTUQQ2PD zmm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-189
INSTRUCTION SET REFERENCE, A-Z
ENDFOR
DEST[MAX_VL-1:VL] 0
VCVTUQQ2PD (EVEX encoded version) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1)
THEN
DEST[i+63:i]
Convert_UQuadInteger_To_Double_Precision_Floating_Point(SRC[63:0])
ELSE
DEST[i+63:i]
Convert_UQuadInteger_To_Double_Precision_Floating_Point(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTUQQ2PD __m512d _mm512_cvtepu64_ps( __m512i a);
VCVTUQQ2PD __m512d _mm512_mask_cvtepu64_ps( __m512d s, __mmask8 k, __m512i a);
VCVTUQQ2PD __m512d _mm512_maskz_cvtepu64_ps( __mmask8 k, __m512i a);
VCVTUQQ2PD __m512d _mm512_cvt_roundepu64_ps( __m512i a, int r);
VCVTUQQ2PD __m512d _mm512_mask_cvt_roundepu64_ps( __m512d s, __mmask8 k, __m512i a, int r);
VCVTUQQ2PD __m512d _mm512_maskz_cvt_roundepu64_ps( __mmask8 k, __m512i a, int r);
VCVTUQQ2PD __m256d _mm256_cvtepu64_ps( __m256i a);
VCVTUQQ2PD __m256d _mm256_mask_cvtepu64_ps( __m256d s, __mmask8 k, __m256i a);
VCVTUQQ2PD __m256d _mm256_maskz_cvtepu64_ps( __mmask8 k, __m256i a);
VCVTUQQ2PD __m128d _mm_cvtepu64_ps( __m128i a);
VCVTUQQ2PD __m128d _mm_mask_cvtepu64_ps( __m128d s, __mmask8 k, __m128i a);
VCVTUQQ2PD __m128d _mm_maskz_cvtepu64_ps( __mmask8 k, __m128i a);
SIMD Floating-Point Exceptions
Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-190 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTUQQ2PS—Convert Packed Unsigned Quadword Integers to Packed Single-Precision
Floating-Point Values
Instruction Operand Encoding
Description
Converts packed unsigned quadword integers in the source operand (second operand) to single-precision floating-
point values in the destination operand (first operand).
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The destination operand is a YMM/XMM/XMM (low 64 bits) register conditionally updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
VCVTUQQ2PS (EVEX encoded version) when src operand is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
Convert_UQuadInteger_To_Single_Precision_Floating_Point(SRC[k+63:k])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F2.0F.W1 7A /r FV V/V AVX512VL Convert two packed unsigned quadword integers from
xmm2/m128/m64bcst to packed single-precision floating-
point values in zmm1 with writemask k1.
VCVTUQQ2PS xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512DQ
EVEX.256.F2.0F.W1 7A /r FV V/V AVX512VL Convert four packed unsigned quadword integers from
ymm2/m256/m64bcst to packed single-precision floating-
point values in xmm1 with writemask k1.
VCVTUQQ2PS xmm1 {k1}{z},
ymm2/m256/m64bcst
AVX512DQ
EVEX.512.F2.0F.W1 7A /r FV V/V AVX512DQ Convert eight packed unsigned quadword integers from
zmm2/m512/m64bcst to eight packed single-precision
floating-point values in zmm1 with writemask k1.
VCVTUQQ2PS ymm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-191
INSTRUCTION SET REFERENCE, A-Z
ENDFOR
DEST[MAX_VL-1:VL/2] 0
VCVTUQQ2PS (EVEX encoded version) when src operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
Convert_UQuadInteger_To_Single_Precision_Floating_Point(SRC[63:0])
ELSE
DEST[i+31:i]
Convert_UQuadInteger_To_Single_Precision_Floating_Point(SRC[k+63:k])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTUQQ2PS __m256 _mm512_cvtepu64_ps( __m512i a);
VCVTUQQ2PS __m256 _mm512_mask_cvtepu64_ps( __m256 s, __mmask8 k, __m512i a);
VCVTUQQ2PS __m256 _mm512_maskz_cvtepu64_ps( __mmask8 k, __m512i a);
VCVTUQQ2PS __m256 _mm512_cvt_roundepu64_ps( __m512i a, int r);
VCVTUQQ2PS __m256 _mm512_mask_cvt_roundepu64_ps( __m256 s, __mmask8 k, __m512i a, int r);
VCVTUQQ2PS __m256 _mm512_maskz_cvt_roundepu64_ps( __mmask8 k, __m512i a, int r);
VCVTUQQ2PS __m128 _mm256_cvtepu64_ps( __m256i a);
VCVTUQQ2PS __m128 _mm256_mask_cvtepu64_ps( __m128 s, __mmask8 k, __m256i a);
VCVTUQQ2PS __m128 _mm256_maskz_cvtepu64_ps( __mmask8 k, __m256i a);
VCVTUQQ2PS __m128 _mm_cvtepu64_ps( __m128i a);
VCVTUQQ2PS __m128 _mm_mask_cvtepu64_ps( __m128 s, __mmask8 k, __m128i a);
VCVTUQQ2PS __m128 _mm_maskz_cvtepu64_ps( __mmask8 k, __m128i a);
SIMD Floating-Point Exceptions
Precision
Other Exceptions
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-192 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTUSI2SD—Convert Unsigned Integer to Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
Converts an unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the second
source operand to a double-precision floating-point value in the destination operand. The result is stored in the low
quadword of the destination operand. When conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register.
The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and
destination operands are XMM registers. Bits (127:64) of the XMM register destination are copied from corre-
sponding bits in the first source operand. Bits (MAX_VL-1:128) of the destination register are zeroed.
EVEX.W1 version: promotes the instruction to use 64-bit input value in 64-bit mode.
EVEX.W0 version: attempt to encode this instruction with EVEX embedded rounding is ignored.
Operation
VCVTUSI2SD (EVEX encoded version)
IF (SRC2 *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[63:0] Convert_UInteger_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE
DEST[63:0] Convert_UInteger_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTUSI2SD __m128d _mm_cvtu32_sd( __m128d s, unsigned a);
VCVTUSI2SD __m128d _mm_cvtu64_sd( __m128d s, unsigned __int64 a);
VCVTUSI2SD __m128d _mm_cvt_roundu64_sd( __m128d s, unsigned __int64 a, int r);
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.F2.0F.W0 7B /r T1S V/V AVX512F Convert one unsigned doubleword integer from
r/m32 to one double-precision floating-point value in
xmm1.
VCVTUSI2SD xmm1, xmm2, r/m32
EVEX.NDS.LIG.F2.0F.W1 7B /r T1S V/N.E.1
NOTES:
1. For this specific instruction, EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is
used.
AVX512F Convert one unsigned quadword integer from r/m64
to one double-precision floating-point value in xmm1.
VCVTUSI2SD xmm1, xmm2, r/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-193
INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions
Precision
Other Exceptions
See Exceptions Type E3NF if W1, else type E10NF.
5-194 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VCVTUSI2SS—Convert Unsigned Integer to Scalar Single-Precision Floating-Point Value
Instruction Operand Encoding
Description
Converts a unsigned doubleword integer (or unsigned quadword integer if operand size is 64 bits) in the source
operand (second operand) to a single-precision floating-point value in the destination operand (first operand). The
source operand can be a general-purpose register or a memory location. The destination operand is an XMM
register. The result is stored in the low doubleword of the destination operand. When a conversion is inexact, the
value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding
control bits.
The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and
destination operands are XMM registers. Bits (127:32) of the XMM register destination are copied from corre-
sponding bits in the first source operand. Bits (MAX_VL-1:128) of the destination register are zeroed.
EVEX.W1 version: promotes the instruction to use 64-bit input value in 64-bit mode.
Operation
VCVTUSI2SS (EVEX encoded version)
IF (SRC2 *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF 64-Bit Mode And OperandSize = 64
THEN
DEST[31:0] Convert_UInteger_To_Single_Precision_Floating_Point(SRC[63:0]);
ELSE
DEST[31:0] Convert_UInteger_To_Single_Precision_Floating_Point(SRC[31:0]);
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VCVTUSI2SS __m128 _mm_cvtu32_ss( __m128 s, unsigned a);
VCVTUSI2SS __m128 _mm_cvt_roundu32_ss( __m128 s, unsigned a, int r);
VCVTUSI2SS __m128 _mm_cvtu64_ss( __m128 s, unsigned __int64 a);
VCVTUSI2SS __m128 _mm_cvt_roundu64_ss( __m128 s, unsigned __int64 a, int r);
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.F3.0F.W0 7B /r T1S V/V AVX512F Convert one signed doubleword integer from r/m32 to
one single-precision floating-point value in xmm1.
VCVTUSI2SS xmm1, xmm2, r/m32{er}
EVEX.NDS.LIG.F3.0F.W1 7B /r T1S V/N.E.1
NOTES:
1. For this specific instruction, EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is
used.
AVX512F Convert one signed quadword integer from r/m64 to
one single-precision floating-point value in xmm1.
VCVTUSI2SS xmm1, xmm2, r/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-195
INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions
Precision
Other Exceptions
See Exceptions Type E3NF.
5-196 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VDBPSADBW—Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes
Instruction Operand Encoding
Description
Compute packed SAD (sum of absolute differences) word results of unsigned bytes from two 32-bit dword
elements. Packed SAD word results are calculated in multiples of qword superblocks, producing 4 SAD word results
in each 64-bit superblock of the destination register.
Within each super block of packed word results, the SAD results from two 32-bit dword elements are calculated as
follows:
The lower two word results are calculated each from the SAD operation between a sliding dword element within
a qword superblock from an intermediate vector with a stationary dword element in the corresponding qword
superblock of the first source operand. The intermediate vector, see “Tmp1” in Figure 5-18, is constructed from
the second source operand the imm8 byte as shuffle control to select dword elements within a 128-bit lane of
the second source operand. The two sliding dword elements in a qword superblock of Tmp1 are located at byte
offset 0 and 1 within the superblock, respectively. The stationary dword element in the qword superblock from
the first source operand is located at byte offset 0.
The next two word results are calculated each from the SAD operation between a sliding dword element within
a qword superblock from the intermediate vector Tmp1 with a second stationary dword element in the corre-
sponding qword superblock of the first source operand. The two sliding dword elements in a qword superblock
of Tmp1 are located at byte offset 2and 3 within the superblock, respectively. The stationary dword element in
the qword superblock from the first source operand is located at byte offset 4.
The intermediate vector is constructed in 128-bits lanes. Within each 128-bit lane, each dword element of the
intermediate vector is selected by a two-bit field within the imm8 byte on the corresponding 128-bits of the
second source operand. The imm8 byte serves as dword shuffle control within each 128-bit lanes of the inter-
mediate vector and the second source operand, similarly to PSHUFD.
The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, or
a 512/256/128-bit memory location. The destination operand is conditionally updated based on writemask k1 at
16-bit word granularity.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W0 42 /r ib FVM V/V AVX512VL Compute packed SAD word results of unsigned bytes in
dword block from xmm2 with unsigned bytes of dword
blocks transformed from xmm3/m128 using the shuffle
controls in imm8. Results are written to xmm1 under the
writemask k1.
VDBPSADBW xmm1 {k1}{z}, xmm2,
xmm3/m128, imm8
AVX512BW
EVEX.NDS.256.66.0F3A.W0 42 /r ib FVM V/V AVX512VL Compute packed SAD word results of unsigned bytes in
dword block from ymm2 with unsigned bytes of dword
blocks transformed from ymm3/m256 using the shuffle
controls in imm8. Results are written to ymm1 under the
writemask k1.
VDBPSADBW ymm1 {k1}{z}, ymm2,
ymm3/m256, imm8
AVX512BW
EVEX.NDS.512.66.0F3A.W0 42 /r ib FVM V/V AVX512BW Compute packed SAD word results of unsigned bytes in
dword block from zmm2 with unsigned bytes of dword
blocks transformed from zmm3/m512 using the shuffle
controls in imm8. Results are written to zmm1 under the
writemask k1.
VDBPSADBW zmm1 {k1}{z}, zmm2,
zmm3/m512, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
Ref. # 319433-023 5-197
INSTRUCTION SET REFERENCE, A-Z
Operation
VDBPSADBW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
Selection of quadruplets:
FOR I = 0 to VL step 128
TMP1[I+31:I] select (SRC2[I+127: I], imm8[1:0])
TMP1[I+63: I+32] select (SRC2[I+127: I], imm8[3:2])
TMP1[I+95: I+64] select (SRC2[I+127: I], imm8[5:4])
TMP1[I+127: I+96] select (SRC2[I+127: I], imm8[7:6])
END FOR
SAD of quadruplets:
FOR I =0 to VL step 64
TMP_DEST[I+15:I] ABS(SRC1[I+7: I] - TMP1[I+7: I]) +
ABS(SRC1[I+15: I+8]- TMP1[I+15: I+8]) +
Figure 5-18. 64-bit Super Block of SAD Operation in VDBPSADBW
63 0153147
Src1 stationary dword 0
Tmp1 sliding dword
+
_
abs
_
abs
_
abs
_
abs
+
01531
Src1 stationary dword 0
Tmp1 sliding dword
_
abs
_
abs
_
abs
_
abs
Src1 stationary dword 1
Tmp1 sliding dword
_
abs
_
abs
_
abs
_
abs
Src1 stationary dword 1
Tmp1 sliding dword
_
abs
_
abs
_
abs
_
abs
+
+
Destination qword superblock
723
01531 723
82339 1531
01531 723
324763 3955
243955 3147
324763 3955
163147 2339
127+128*n 128*n31+128*n63+128*n95+128*n
128-bit Lane of Src2
03715
00B: DW0
01B: DW1
10B: DW2
11B: DW3
DW3 DW2 DW1 DW0
127+128*n 128*n31+128*n63+128*n95+128*n
128-bit Lane of Tmp1
imm8 shuffle control
Tmp1 qword superblock
5-198 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ABS(SRC1[I+23: I+16]- TMP1[I+23: I+16]) +
ABS(SRC1[I+31: I+24]- TMP1[I+31: I+24])
TMP_DEST[I+31: I+16] ABS(SRC1[I+7: I] - TMP1[I+15: I+8]) +
ABS(SRC1[I+15: I+8]- TMP1[I+23: I+16]) +
ABS(SRC1[I+23: I+16]- TMP1[I+31: I+24]) +
ABS(SRC1[I+31: I+24]- TMP1[I+39: I+32])
TMP_DEST[I+47: I+32] ABS(SRC1[I+39: I+32] - TMP1[I+23: I+16]) +
ABS(SRC1[I+47: I+40]- TMP1[I+31: I+24]) +
ABS(SRC1[I+55: I+48]- TMP1[I+39: I+32]) +
ABS(SRC1[I+63: I+56]- TMP1[I+47: I+40])
TMP_DEST[I+63: I+48] ABS(SRC1[I+39: I+32] - TMP1[I+31: I+24]) +
ABS(SRC1[I+47: I+40] - TMP1[I+39: I+32]) +
ABS(SRC1[I+55: I+48] - TMP1[I+47: I+40]) +
ABS(SRC1[I+63: I+56] - TMP1[I+55: I+48])
ENDFOR
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VDBPSADBW __m512i _mm512_dbsad_epu8(__m512i a, __m512i b);
VDBPSADBW __m512i _mm512_mask_dbsad_epu8(__m512i s, __mmask32 m, __m512i a, __m512i b);
VDBPSADBW __m512i _mm512_maskz_dbsad_epu8(__mmask32 m, __m512i a, __m512i b);
VDBPSADBW __m256i _mm256_dbsad_epu8(__m256i a, __m256i b);
VDBPSADBW __m256i _mm256_mask_dbsad_epu8(__m256i s, __mmask16 m, __m256i a, __m256i b);
VDBPSADBW __m256i _mm256_maskz_dbsad_epu8(__mmask16 m, __m256i a, __m256i b);
VDBPSADBW __m128i _mm_dbsad_epu8(__m128i a, __m128i b);
VDBPSADBW __m128i _mm_mask_dbsad_epu8(__m128i s, __mmask8 m, __m128i a, __m128i b);
VDBPSADBW __m128i _mm_maskz_dbsad_epu8(__mmask8 m, __m128i a, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4NF.nb.
Ref. # 319433-023 5-199
INSTRUCTION SET REFERENCE, A-Z
VEXPANDPD—Load Sparse Packed Double-Precision Floating-Point Values from Dense Memory
Instruction Operand Encoding
Description
Expand (load) up to 8/4/2, contiguous, double-precision floating-point values of the input vector in the source
operand (the second operand) to sparse elements in the destination operand (the first operand) selected by the
writemask k1.
The destination operand is a ZMM/YMM/XMM register, the source operand can be a ZMM/YMM/XMM register or a
512/256/128-bit memory location.
The input vector starts from the lowest element in the source operand. The writemask register k1 selects the desti-
nation elements (a partial vector or sparse elements if less than 8 elements) to be replaced by the ascending
elements in the input vector. Destination elements not selected by the writemask k1 are either unmodified or
zeroed, depending on EVEX.z.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.
Operation
VEXPANDPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
k 0
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
DEST[i+63:i] SRC[k+63:k];
k k + 64
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W1 88 /r T1S V/V AVX512VL Expand packed double-precision floating-point values
from xmm2/m128 to xmm1 using writemask k1.
VEXPANDPD xmm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.256.66.0F38.W1 88 /r T1S V/V AVX512VL Expand packed double-precision floating-point values
from ymm2/m256 to ymm1 using writemask k1.
VEXPANDPD ymm1 {k1}{z}, ymm2/m256 AVX512F
EVEX.512.66.0F38.W1 88 /r T1S V/V AVX512F Expand packed double-precision floating-point values
from zmm2/m512 to zmm1 using writemask k1.
VEXPANDPD zmm1 {k1}{z}, zmm2/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
5-200 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VEXPANDPD __m512d _mm512_mask_expand_pd( __m512d s, __mmask8 k, __m512d a);
VEXPANDPD __m512d _mm512_maskz_expand_pd( __mmask8 k, __m512d a);
VEXPANDPD __m512d _mm512_mask_expandloadu_pd( __m512d s, __mmask8 k, void * a);
VEXPANDPD __m512d _mm512_maskz_expandloadu_pd( __mmask8 k, void * a);
VEXPANDPD __m256d _mm256_mask_expand_pd( __m256d s, __mmask8 k, __m256d a);
VEXPANDPD __m256d _mm256_maskz_expand_pd( __mmask8 k, __m256d a);
VEXPANDPD __m256d _mm256_mask_expandloadu_pd( __m256d s, __mmask8 k, void * a);
VEXPANDPD __m256d _mm256_maskz_expandloadu_pd( __mmask8 k, void * a);
VEXPANDPD __m128d _mm_mask_expand_pd( __m128d s, __mmask8 k, __m128d a);
VEXPANDPD __m128d _mm_maskz_expand_pd( __mmask8 k, __m128d a);
VEXPANDPD __m128d _mm_mask_expandloadu_pd( __m128d s, __mmask8 k, void * a);
VEXPANDPD __m128d _mm_maskz_expandloadu_pd( __mmask8 k, void * a);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-201
INSTRUCTION SET REFERENCE, A-Z
VEXPANDPS—Load Sparse Packed Single-Precision Floating-Point Values from Dense Memory
Instruction Operand Encoding
Description
Expand (load) up to 16/8/4, contiguous, single-precision floating-point values of the input vector in the source
operand (the second operand) to sparse elements of the destination operand (the first operand) selected by the
writemask k1.
The destination operand is a ZMM/YMM/XMM register, the source operand can be a ZMM/YMM/XMM register or a
512/256/128-bit memory location.
The input vector starts from the lowest element in the source operand. The writemask k1 selects the destination
elements (a partial vector or sparse elements if less than 16 elements) to be replaced by the ascending elements
in the input vector. Destination elements not selected by the writemask k1 are either unmodified or zeroed,
depending on EVEX.z.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.
Operation
VEXPANDPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
k 0
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
DEST[i+31:i] SRC[k+31:k];
k k + 32
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 88 /r T1S V/V AVX512VL Expand packed single-precision floating-point values
from xmm2/m128 to xmm1 using writemask k1.
VEXPANDPS xmm1 {k1}{z}, xmm2/m128 AVX512F
EVEX.256.66.0F38.W0 88 /r T1S V/V AVX512VL Expand packed single-precision floating-point values
from ymm2/m256 to ymm1 using writemask k1.
VEXPANDPS ymm1 {k1}{z}, ymm2/m256 AVX512F
EVEX.512.66.0F38.W0 88 /r T1S V/V AVX512F Expand packed single-precision floating-point values
from zmm2/m512 to zmm1 using writemask k1.
VEXPANDPS zmm1 {k1}{z}, zmm2/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
5-202 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VEXPANDPS __m512 _mm512_mask_expand_ps( __m512 s, __mmask16 k, __m512 a);
VEXPANDPS __m512 _mm512_maskz_expand_ps( __mmask16 k, __m512 a);
VEXPANDPS __m512 _mm512_mask_expandloadu_ps( __m512 s, __mmask16 k, void * a);
VEXPANDPS __m512 _mm512_maskz_expandloadu_ps( __mmask16 k, void * a);
VEXPANDPD __m256 _mm256_mask_expand_ps( __m256 s, __mmask8 k, __m256 a);
VEXPANDPD __m256 _mm256_maskz_expand_ps( __mmask8 k, __m256 a);
VEXPANDPD __m256 _mm256_mask_expandloadu_ps( __m256 s, __mmask8 k, void * a);
VEXPANDPD __m256 _mm256_maskz_expandloadu_ps( __mmask8 k, void * a);
VEXPANDPD __m128 _mm_mask_expand_ps( __m128 s, __mmask8 k, __m128 a);
VEXPANDPD __m128 _mm_maskz_expand_ps( __mmask8 k, __m128 a);
VEXPANDPD __m128 _mm_mask_expandloadu_ps( __m128 s, __mmask8 k, void * a);
VEXPANDPD __m128 _mm_maskz_expandloadu_ps( __mmask8 k, void * a);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-203
INSTRUCTION SET REFERENCE, A-Z
VEXTRACTF128/VEXTRACTF32x4/VEXTRACTF64x2/VEXTRACTF32x8/VEXTRACTF64x4—Extr
act Packed Floating-Point Values
Instruction Operand Encoding
Description
VEXTRACTF128/VEXTRACTF32x4 and VEXTRACTF64x2 extract 128-bits of single-precision floating-point values
from the source operand (the second operand) and store to the low 128-bit of the destination operand (the first
operand). The 128-bit data extraction occurs at an 128-bit granular offset specified by imm8[0] (256-bit) or
imm8[1:0] as the multiply factor. The destination may be either a vector register or an 128-bit memory location.
VEXTRACTF32x4: The low 128-bit of the destination operand is updated at 32-bit granularity according to the
writemask.
VEXTRACTF32x8 and VEXTRACTF64x4 extract 256-bits of double-precision floating-point values from the source
operand (second operand) and store to the low 256-bit of the destination operand (the first operand). The 256-bit
data extraction occurs at an 256-bit granular offset specified by imm8[0] (256-bit) or imm8[0] as the multiply
factor The destination may be either a vector register or a 256-bit memory location.
VEXTRACTF64x4: The low 256-bit of the destination operand is updated at 64-bit granularity according to the
writemask.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.256.66.0F3A.W0 19 /r ib RMI V/V AVX Extract 128 bits of packed floating-point values
from ymm2 and store results in xmm1/m128.
VEXTRACTF128 xmm1/m128, ymm2,
imm8
EVEX.256.66.0F3A.W0 19 /r ib T4 V/V AVX512VL Extract 128 bits of packed single-precision floating-
point values from ymm2 and store results in
xmm1/m128 subject to writemask k1.
VEXTRACTF32X4 xmm1/m128 {k1}{z},
ymm2, imm8
AVX512F
EVEX.512.66.0F3A.W0 19 /r ib T4 V/V AVX512F Extract 128 bits of packed single-precision floating-
point values from zmm2 and store results in
xmm1/m128 subject to writemask k1.
VEXTRACTF32x4 xmm1/m128 {k1}{z},
zmm2, imm8
EVEX.256.66.0F3A.W1 19 /r ib T2 V/V AVX512VL Extract 128 bits of packed double-precision
floating-point values from ymm2 and store results
in xmm1/m128 subject to writemask k1.
VEXTRACTF64X2 xmm1/m128 {k1}{z},
ymm2, imm8
AVX512DQ
EVEX.512.66.0F3A.W1 19 /r ib T2 V/V AVX512DQ Extract 128 bits of packed double-precision
floating-point values from zmm2 and store results
in xmm1/m128 subject to writemask k1.
VEXTRACTF64X2 xmm1/m128 {k1}{z},
zmm2, imm8
EVEX.512.66.0F3A.W0 1B /r ib T8 V/V AVX512DQ Extract 256 bits of packed single-precision floating-
point values from zmm2 and store results in
ymm1/m256 subject to writemask k1.
VEXTRACTF32X8 ymm1/m256 {k1}{z},
zmm2, imm8
EVEX.512.66.0F3A.W1 1B /r ib T4 V/V AVX512F Extract 256 bits of packed double-precision
floating-point values from zmm2 and store results
in ymm1/m256 subject to writemask k1.
VEXTRACTF64x4 ymm1/m256 {k1}{z},
zmm2, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:r/m (w) ModRM:reg (r) Imm8 NA
T2, T4, T8 ModRM:r/m (w) ModRM:reg (r) Imm8 NA
5-204 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The high 6 bits of the immediate are ignored.
If VEXTRACTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will
cause an #UD exception.
Operation
VEXTRACTF32x4 (EVEX encoded versions) when destination is a register
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC1[127:0]
1: TMP_DEST[127:0] SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC1[127:0]
01: TMP_DEST[127:0] SRC1[255:128]
10: TMP_DEST[127:0] SRC1[383:256]
11: TMP_DEST[127:0] SRC1[511:384]
ESAC.
FI;
FOR j 0 TO 3
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:128] 0
VEXTRACTF32x4 (EVEX encoded versions) when destination is memory
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC1[127:0]
1: TMP_DEST[127:0] SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC1[127:0]
01: TMP_DEST[127:0] SRC1[255:128]
10: TMP_DEST[127:0] SRC1[383:256]
11: TMP_DEST[127:0] SRC1[511:384]
ESAC.
FI;
Ref. # 319433-023 5-205
INSTRUCTION SET REFERENCE, A-Z
FOR j 0 TO 3
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VEXTRACTF64x2 (EVEX encoded versions) when destination is a register
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC1[127:0]
1: TMP_DEST[127:0] SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC1[127:0]
01: TMP_DEST[127:0] SRC1[255:128]
10: TMP_DEST[127:0] SRC1[383:256]
11: TMP_DEST[127:0] SRC1[511:384]
ESAC.
FI;
FOR j 0 TO 1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:128] 0
VEXTRACTF64x2 (EVEX encoded versions) when destination is memory
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC1[127:0]
1: TMP_DEST[127:0] SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC1[127:0]
01: TMP_DEST[127:0] SRC1[255:128]
10: TMP_DEST[127:0] SRC1[383:256]
11: TMP_DEST[127:0] SRC1[511:384]
ESAC.
5-206 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI;
FOR j 0 TO 1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VEXTRACTF32x8 (EVEX.U1.512 encoded version) when destination is a register
VL = 512
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC1[255:0]
1: TMP_DEST[255:0] SRC1[511:256]
ESAC.
FOR j 0 TO 7
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:256] 0
VEXTRACTF32x8 (EVEX.U1.512 encoded version) when destination is memory
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC1[255:0]
1: TMP_DEST[255:0] SRC1[511:256]
ESAC.
FOR j 0 TO 7
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VEXTRACTF64x4 (EVEX.512 encoded version) when destination is a register
VL = 512
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC1[255:0]
1: TMP_DEST[255:0] SRC1[511:256]
ESAC.
FOR j 0 TO 3
i j * 64
Ref. # 319433-023 5-207
INSTRUCTION SET REFERENCE, A-Z
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:256] 0
VEXTRACTF64x4 (EVEX.512 encoded version) when destination is memory
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC1[255:0]
1: TMP_DEST[255:0] SRC1[511:256]
ESAC.
FOR j 0 TO 3
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE ; merging-masking
*DEST[i+63:i] remains unchanged*
FI;
ENDFOR
VEXTRACTF128 (memory destination form)
CASE (imm8[0]) OF
0: DEST[127:0] SRC1[127:0]
1: DEST[127:0] SRC1[255:128]
ESAC.
VEXTRACTF128 (register destination form)
CASE (imm8[0]) OF
0: DEST[127:0] SRC1[127:0]
1: DEST[127:0] SRC1[255:128]
ESAC.
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VEXTRACTF32x4 __m128 _mm512_extractf32x4_ps(__m512 a, const int nidx);
VEXTRACTF32x4 __m128 _mm512_mask_extractf32x4_ps(__m128 s, __mmask8 k, __m512 a, const int nidx);
VEXTRACTF32x4 __m128 _mm512_maskz_extractf32x4_ps( __mmask8 k, __m512 a, const int nidx);
VEXTRACTF32x4 __m128 _mm256_extractf32x4_ps(__m256 a, const int nidx);
VEXTRACTF32x4 __m128 _mm256_mask_extractf32x4_ps(__m128 s, __mmask8 k, __m256 a, const int nidx);
VEXTRACTF32x4 __m128 _mm256_maskz_extractf32x4_ps( __mmask8 k, __m256 a, const int nidx);
VEXTRACTF32x8 __m256 _mm512_extractf32x8_ps(__m512 a, const int nidx);
VEXTRACTF32x8 __m256 _mm512_mask_extractf32x8_ps(__m256 s, __mmask8 k, __m512 a, const int nidx);
VEXTRACTF32x8 __m256 _mm512_maskz_extractf32x8_ps( __mmask8 k, __m512 a, const int nidx);
VEXTRACTF64x2 __m128d _mm512_extractf64x2_pd(__m512d a, const int nidx);
VEXTRACTF64x2 __m128d _mm512_mask_extractf64x2_pd(__m128d s, __mmask8 k, __m512d a, const int nidx);
VEXTRACTF64x2 __m128d _mm512_maskz_extractf64x2_pd( __mmask8 k, __m512d a, const int nidx);
VEXTRACTF64x2 __m128d _mm256_extractf64x2_pd(__m256d a, const int nidx);
5-208 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEXTRACTF64x2 __m128d _mm256_mask_extractf64x2_pd(__m128d s, __mmask8 k, __m256d a, const int nidx);
VEXTRACTF64x2 __m128d _mm256_maskz_extractf64x2_pd( __mmask8 k, __m256d a, const int nidx);
VEXTRACTF64x4 __m256d _mm512_extractf64x4_pd( __m512d a, const int nidx);
VEXTRACTF64x4 __m256d _mm512_mask_extractf64x4_pd(__m256d s, __mmask8 k, __m512d a, const int nidx);
VEXTRACTF64x4 __m256d _mm512_maskz_extractf64x4_pd( __mmask8 k, __m512d a, const int nidx);
VEXTRACTF128 __m128 _mm256_extractf128_ps (__m256 a, int offset);
VEXTRACTF128 __m128d _mm256_extractf128_pd (__m256d a, int offset);
VEXTRACTF128 __m128i_mm256_extractf128_si256(__m256i a, int offset);
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instructions, see Exceptions Type 6;
EVEX-encoded instructions, see Exceptions Type E6NF.
#UD IF VEX.L = 0.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-209
INSTRUCTION SET REFERENCE, A-Z
VEXTRACTI128/VEXTRACTI32x4/VEXTRACTI64x2/VEXTRACTI32x8/VEXTRACTI64x4—Extract
packed Integer Values
Instruction Operand Encoding
Description
VEXTRACTI128/VEXTRACTI32x4 and VEXTRACTI64x2 extract 128-bits of doubleword integer values from the
source operand (the second operand) and store to the low 128-bit of the destination operand (the first operand).
The 128-bit data extraction occurs at an 128-bit granular offset specified by imm8[0] (256-bit) or imm8[1:0] as
the multiply factor. The destination may be either a vector register or an 128-bit memory location.
VEXTRACTI32x4: The low 128-bit of the destination operand is updated at 32-bit granularity according to the
writemask.
VEXTRACTI64x2: The low 128-bit of the destination operand is updated at 64-bit granularity according to the
writemask.
VEXTRACTI32x8 and VEXTRACTI64x4 extract 256-bits of quadword integer values from the source operand (the
second operand) and store to the low 256-bit of the destination operand (the first operand). The 256-bit data
extraction occurs at an 256-bit granular offset specified by imm8[0] (256-bit) or imm8[0] as the multiply factor
The destination may be either a vector register or a 256-bit memory location.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.256.66.0F3A.W0 39 /r ib RMI V/V AVX2 Extract 128 bits of integer data from ymm2 and
store results in xmm1/m128.
VEXTRACTI128 xmm1/m128, ymm2,
imm8
EVEX.256.66.0F3A.W0 39 /r ib T4 V/V AVX512VL Extract 128 bits of double-word integer values
from ymm2 and store results in xmm1/m128
subject to writemask k1.
VEXTRACTI32X4 xmm1/m128 {k1}{z},
ymm2, imm8
AVX512F
EVEX.512.66.0F3A.W0 39 /r ib T4 V/V AVX512F Extract 128 bits of double-word integer values
from zmm2 and store results in xmm1/m128
subject to writemask k1.
VEXTRACTI32x4 xmm1/m128 {k1}{z},
zmm2, imm8
EVEX.256.66.0F3A.W1 39 /r ib T2 V/V AVX512VL Extract 128 bits of quad-word integer values from
ymm2 and store results in xmm1/m128 subject to
writemask k1.
VEXTRACTI64X2 xmm1/m128 {k1}{z},
ymm2, imm8
AVX512DQ
EVEX.512.66.0F3A.W1 39 /r ib T2 V/V AVX512DQ Extract 128 bits of quad-word integer values from
zmm2 and store results in xmm1/m128 subject to
writemask k1.
VEXTRACTI64X2 xmm1/m128 {k1}{z},
zmm2, imm8
EVEX.512.66.0F3A.W0 3B /r ib T8 V/V AVX512DQ Extract 256 bits of double-word integer values
from zmm2 and store results in ymm1/m256
subject to writemask k1.
VEXTRACTI32X8 ymm1/m256 {k1}{z},
zmm2, imm8
EVEX.512.66.0F3A.W1 3B /r ib T4 V/V AVX512F Extract 256 bits of quad-word integer values from
zmm2 and store results in ymm1/m256 subject to
writemask k1.
VEXTRACTI64x4 ymm1/m256 {k1}{z},
zmm2, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:r/m (w) ModRM:reg (r) Imm8 NA
T2, T4, T8 ModRM:r/m (w) ModRM:reg (r) Imm8 NA
5-210 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEXTRACTI32x8: The low 256-bit of the destination operand is updated at 32-bit granularity according to the
writemask.
VEXTRACTI64x4: The low 256-bit of the destination operand is updated at 64-bit granularity according to the
writemask.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits (6 bits in EVEX.512) of the immediate are ignored.
If VEXTRACTI128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will
cause an #UD exception.
Operation
VEXTRACTI32x4 (EVEX encoded versions) when destination is a register
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC1[127:0]
1: TMP_DEST[127:0] SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC1[127:0]
01: TMP_DEST[127:0] SRC1[255:128]
10: TMP_DEST[127:0] SRC1[383:256]
11: TMP_DEST[127:0] SRC1[511:384]
ESAC.
FI;
FOR j 0 TO 3
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:128] 0
VEXTRACTI32x4 (EVEX encoded versions) when destination is memory
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC1[127:0]
1: TMP_DEST[127:0] SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC1[127:0]
01: TMP_DEST[127:0] SRC1[255:128]
10: TMP_DEST[127:0] SRC1[383:256]
Ref. # 319433-023 5-211
INSTRUCTION SET REFERENCE, A-Z
11: TMP_DEST[127:0] SRC1[511:384]
ESAC.
FI;
FOR j 0 TO 3
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VEXTRACTI64x2 (EVEX encoded versions) when destination is a register
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC1[127:0]
1: TMP_DEST[127:0] SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC1[127:0]
01: TMP_DEST[127:0] SRC1[255:128]
10: TMP_DEST[127:0] SRC1[383:256]
11: TMP_DEST[127:0] SRC1[511:384]
ESAC.
FI;
FOR j 0 TO 1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:128] 0
VEXTRACTI64x2 (EVEX encoded versions) when destination is memory
VL = 256, 512
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC1[127:0]
1: TMP_DEST[127:0] SRC1[255:128]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC1[127:0]
5-212 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
01: TMP_DEST[127:0] SRC1[255:128]
10: TMP_DEST[127:0] SRC1[383:256]
11: TMP_DEST[127:0] SRC1[511:384]
ESAC.
FI;
FOR j 0 TO 1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VEXTRACTI32x8 (EVEX.U1.512 encoded version) when destination is a register
VL = 512
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC1[255:0]
1: TMP_DEST[255:0] SRC1[511:256]
ESAC.
FOR j 0 TO 7
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:256] 0
VEXTRACTI32x8 (EVEX.U1.512 encoded version) when destination is memory
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC1[255:0]
1: TMP_DEST[255:0] SRC1[511:256]
ESAC.
FOR j 0 TO 7
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VEXTRACTI64x4 (EVEX.512 encoded version) when destination is a register
VL = 512
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC1[255:0]
1: TMP_DEST[255:0] SRC1[511:256]
Ref. # 319433-023 5-213
INSTRUCTION SET REFERENCE, A-Z
ESAC.
FOR j 0 TO 3
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:256] 0
VEXTRACTI64x4 (EVEX.512 encoded version) when destination is memory
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC1[255:0]
1: TMP_DEST[255:0] SRC1[511:256]
ESAC.
FOR j 0 TO 3
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VEXTRACTI128 (memory destination form)
CASE (imm8[0]) OF
0: DEST[127:0] SRC1[127:0]
1: DEST[127:0] SRC1[255:128]
ESAC.
VEXTRACTI128 (register destination form)
CASE (imm8[0]) OF
0: DEST[127:0] SRC1[127:0]
1: DEST[127:0] SRC1[255:128]
ESAC.
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VEXTRACTI32x4 __m128i _mm512_extracti32x4_epi32(__m512i a, const int nidx);
VEXTRACTI32x4 __m128i _mm512_mask_extracti32x4_epi32(__m128i s, __mmask8 k, __m512i a, const int nidx);
VEXTRACTI32x4 __m128i _mm512_maskz_extracti32x4_epi32( __mmask8 k, __m512i a, const int nidx);
VEXTRACTI32x4 __m128i _mm256_extracti32x4_epi32(__m256i a, const int nidx);
VEXTRACTI32x4 __m128i _mm256_mask_extracti32x4_epi32(__m128i s, __mmask8 k, __m256i a, const int nidx);
VEXTRACTI32x4 __m128i _mm256_maskz_extracti32x4_epi32( __mmask8 k, __m256i a, const int nidx);
VEXTRACTI32x8 __m256i _mm512_extracti32x8_epi32(__m512i a, const int nidx);
VEXTRACTI32x8 __m256i _mm512_mask_extracti32x8_epi32(__m256i s, __mmask8 k, __m512i a, const int nidx);
VEXTRACTI32x8 __m256i _mm512_maskz_extracti32x8_epi32( __mmask8 k, __m512i a, const int nidx);
VEXTRACTI64x2 __m128i _mm512_extracti64x2_epi64(__m512i a, const int nidx);
VEXTRACTI64x2 __m128i _mm512_mask_extracti64x2_epi64(__m128i s, __mmask8 k, __m512i a, const int nidx);
5-214 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEXTRACTI64x2 __m128i _mm512_maskz_extracti64x2_epi64( __mmask8 k, __m512i a, const int nidx);
VEXTRACTI64x2 __m128i _mm256_extracti64x2_epi64(__m256i a, const int nidx);
VEXTRACTI64x2 __m128i _mm256_mask_extracti64x2_epi64(__m128i s, __mmask8 k, __m256i a, const int nidx);
VEXTRACTI64x2 __m128i _mm256_maskz_extracti64x2_epi64( __mmask8 k, __m256i a, const int nidx);
VEXTRACTI64x4 __m256i _mm512_extracti64x4_epi64(__m512i a, const int nidx);
VEXTRACTI64x4 __m256i _mm512_mask_extracti64x4_epi64(__m256i s, __mmask8 k, __m512i a, const int nidx);
VEXTRACTI64x4 __m256i _mm512_maskz_extracti64x4_epi64( __mmask8 k, __m512i a, const int nidx);
VEXTRACTI128 __m128i _mm256_extracti128_si256(__m256i a, int offset);
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instructions, see Exceptions Type 6;
EVEX-encoded instructions, see Exceptions Type E6NF.
#UD IF VEX.L = 0.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-215
INSTRUCTION SET REFERENCE, A-Z
EXTRACTPS—Extract Packed Floating-Point Values
Instruction Operand Encoding
Description
Extracts a single-precision floating-point value from the source operand (second operand) at the 32-bit offset spec-
ified from imm8. Immediate bits higher than the most significant offset for the vector length are ignored.
The extracted single-precision floating-point value is stored in the low 32-bits of the destination operand
In 64-bit mode, destination register operand has default operand size of 64 bits. The upper 32-bits of the register
are filled with zero. REX.W is ignored.
VEX.128 and EVEX encoded version: When VEX.W1 or EVEX.W1 form is used in 64-bit mode with a general
purpose register (GPR) as a destination operand, the packed single quantity is zero extended to 64 bits.
VEX.vvvv/EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
128-bit Legacy SSE version: When a REX.W prefix is used in 64-bit mode with a general purpose register (GPR) as
a destination operand, the packed single quantity is zero extended to 64 bits.
The source register is an XMM register. Imm8[1:0] determine the starting DWORD offset from which to extract the
32-bit floating-point value.
If VEXTRACTPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause
an #UD exception.
Operation
VEXTRACTPS (EVEX and VEX.128 encoded version)
SRC_OFFSET IMM8[1:0]
IF (64-Bit Mode and DEST is register)
DEST[31:0] (SRC[127:0] >> (SRC_OFFSET*32)) AND 0FFFFFFFFh
DEST[63:32] 0
ELSE
DEST[31:0] (SRC[127:0] >> (SRC_OFFSET*32)) AND 0FFFFFFFFh
FI
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 3A 17 /r ib RMI VV SSE4_1 Extract one single-precision floating-point value
from xmm1 at the offset specified by imm8 and
store the result in reg or m32. Zero extend the
results in 64-bit register if applicable.
EXTRACTPS reg/m32, xmm1, imm8
VEX.128.66.0F3A.WIG 17 /r ib RMI V/V AVX Extract one single-precision floating-point value
from xmm1 at the offset specified by imm8 and
store the result in reg or m32. Zero extend the
results in 64-bit register if applicable.
VEXTRACTPS reg/m32, xmm1, imm8
EVEX.128.66.0F3A.WIG 17 /r ib T1S V/V AVX512F Extract one single-precision floating-point value
from xmm1 at the offset specified by imm8 and
store the result in reg or m32. Zero extend the
results in 64-bit register if applicable.
VEXTRACTPS reg/m32, xmm1, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:r/m (w) ModRM:reg (r) Imm8 NA
T1S ModRM:r/m (w) ModRM:reg (r) Imm8 NA
5-216 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EXTRACTPS (128-bit Legacy SSE version)
SRC_OFFSET IMM8[1:0]
IF (64-Bit Mode and DEST is register)
DEST[31:0] (SRC[127:0] >> (SRC_OFFSET*32)) AND 0FFFFFFFFh
DEST[63:32] 0
ELSE
DEST[31:0] (SRC[127:0] >> (SRC_OFFSET*32)) AND 0FFFFFFFFh
FI
Intel C/C++ Compiler Intrinsic Equivalent
EXTRACTPS int _mm_extract_ps (__m128 a, const int nidx);
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instructions, see Exceptions Type 5; Additionally
EVEX-encoded instructions, see Exceptions Type E9NF.
#UD IF VEX.L = 0.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-217
INSTRUCTION SET REFERENCE, A-Z
VFIXUPIMMPD—Fix Up Special Packed Float64 Values
Instruction Operand Encoding
Description
Perform fix-up of quad-word elements encoded in double-precision floating-point format in the first source operand
(the second operand) using a 32-bit, two-level look-up table specified in the corresponding quadword element of
the second source operand (the third operand) with exception reporting specifier imm8. The elements that are
fixed-up are selected by mask bits of 1 specified in the opmask k1. Mask bits of 0 in the opmask k1 or table
response action of 0000b preserves the corresponding element of the first operand. The fixed-up elements from
the first source operand and the preserved element in the first operand are combined as the final results in the
destination operand (the first operand).
The destination and the first source operands are ZMM/YMM/XMM registers. The second source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The two-level look-up table perform a fix-up of each DP FP input data in the first source operand by decoding the
input data encoding into 8 token types. A response table is defined for each token type that converts the input
encoding in the first source operand with one of 16 response actions.
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one
source so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPD can be used after the N-R reciprocal sequence to set the result to the
correct value (i.e. INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1
are computed and stored into zmm1. Elements in the destination with the corresponding bit clear in k1 retain their
previous values or are set to 0.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W1 54 /r ib FV V/V AVX512VL Fix up special numbers in float64 vector xmm1, float64
vector xmm2 and int64 vector xmm3/m128/m64bcst
and store the result in xmm1, under writemask.
VFIXUPIMMPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst, imm8
AVX512F
EVEX.NDS.256.66.0F3A.W1 54 /r ib FV V/V AVX512VL Fix up special numbers in float64 vector ymm1, float64
vector ymm2 and int64 vector ymm3/m256/m64bcst
and store the result in ymm1, under writemask.
VFIXUPIMMPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8
AVX512F
EVEX.NDS.512.66.0F3A.W1 54 /r ib FV V/V AVX512F Fix up elements of float64 vector in zmm2 using int64
vector table in zmm3/m512/m64bcst, combine with
preserved elements from zmm1, and store the result in
zmm1.
VFIXUPIMMPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) Imm8
5-218 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
enum TOKEN_TYPE
{
QNAN_TOKEN 0,
SNAN_TOKEN 1,
ZERO_VALUE_TOKEN 2,
POS_ONE_VALUE_TOKEN 3,
NEG_INF_TOKEN 4,
POS_INF_TOKEN 5,
NEG_VALUE_TOKEN 6,
POS_VALUE_TOKEN 7
}
FIXUPIMM_DP (dest[63:0], src1[63:0],tbl3[63:0], imm8 [7:0]){
tsrc[63:0] ((src1[62:52] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[63:0]
CASE(tsrc[63:0] of TOKEN_TYPE) {
QNAN_TOKEN: j 0;
SNAN_TOKEN: j 1;
ZERO_VALUE_TOKEN: j 2;
POS_ONE_VALUE_TOKEN: j 3;
NEG_INF_TOKEN: j 4;
POS_INF_TOKEN: j 5;
NEG_VALUE_TOKEN: j 6;
POS_VALUE_TOKEN: j 7;
} ; end source special CASE(tsrc…)
; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];
CASE(token_response[3:0]) {
0000: dest[63:0] dest[63:0] ; ; preserve content of DEST
0001: dest[63:0] tsrc[63:0]; ; pass through src1 normal input value, denormal as zero
0010: dest[63:0] QNaN(tsrc[63:0]);
0011: dest[63:0] QNAN_Indefinite;
0100: dest[63:0] -INF;
0101: dest[63:0] +INF;
0110: dest[63:0] tsrc.sign? –INF : +INF;
0111: dest[63:0] -0;
1000: dest[63:0] +0;
1001: dest[63:0] -1;
1010: dest[63:0] +1;
1011: dest[63:0] ½;
1100: dest[63:0] 90.0;
1101: dest[63:0] PI/2;
1110: dest[63:0] MAX_FLOAT;
1111: dest[63:0] -MAX_FLOAT;
} ; end of token_response CASE
; The required fault reporting from imm8 is extracted
; TOKENs are mutually exclusive and TOKENs priority defines the order.
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
Ref. # 319433-023 5-219
INSTRUCTION SET REFERENCE, A-Z
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;
; end fault reporting
return dest[63:0];
} ; end of FIXUPIMM_DP()
VFIXUPIMMPD
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] FIXUPIMM_DP(DEST[i+63:i], SRC1[i+63:i], SRC2[63:0], imm8 [7:0])
ELSE
DEST[i+63:i] FIXUPIMM_DP(DEST[i+63:i], SRC1[i+63:i], SRC2[i+63:i], imm8 [7:0])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Immediate Control Description:
Figure 5-19. VFIXUPIMMPD Immediate Control Description
76543210
+ INF #IE
- INF #IE
SNaN #IE
- VE #IE
ONE
#IE
ONE #ZE
ZERO #IE
ZERO #ZE
5-220 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VFIXUPIMMPD __m512d _mm512_fixupimm_pd( __m512d a, __m512i tbl, int imm);
VFIXUPIMMPD __m512d _mm512_mask_fixupimm_pd(__m512d s, __mmask8 k, __m512d a, __m512i tbl, int imm);
VFIXUPIMMPD __m512d _mm512_maskz_fixupimm_pd( __mmask8 k, __m512d a, __m512i tbl, int imm);
VFIXUPIMMPD __m512d _mm512_fixupimm_round_pd( __m512d a, __m512i tbl, int imm, int sae);
VFIXUPIMMPD __m512d _mm512_mask_fixupimm_round_pd(__m512d s, __mmask8 k, __m512d a, __m512i tbl, int imm, int sae);
VFIXUPIMMPD __m512d _mm512_maskz_fixupimm_round_pd( __mmask8 k, __m512d a, __m512i tbl, int imm, int sae);
VFIXUPIMMPD __m256d _mm256_fixupimm_pd( __m256d a, __m256i tbl, int imm);
VFIXUPIMMPD __m256d _mm256_mask_fixupimm_pd(__m256d s, __mmask8 k, __m256d a, __m256i tbl, int imm);
VFIXUPIMMPD __m256d _mm256_maskz_fixupimm_pd( __mmask8 k, __m256d a, __m256i tbl, int imm);
VFIXUPIMMPD __m128d _mm_fixupimm_pd( __m128d a, __m128i tbl, int imm);
VFIXUPIMMPD __m128d _mm_mask_fixupimm_pd(__m128d s, __mmask8 k, __m128d a, __m128i tbl, int imm);
VFIXUPIMMPD __m128d _mm_maskz_fixupimm_pd( __mmask8 k, __m128d a, __m128i tbl, int imm);
SIMD Floating-Point Exceptions
Zero, Invalid
Other Exceptions
See Exceptions Type E2.
Ref. # 319433-023 5-221
INSTRUCTION SET REFERENCE, A-Z
VFIXUPIMMPS—Fix Up Special Packed Float32 Values
Instruction Operand Encoding
Description
Perform fix-up of doubleword elements encoded in single-precision floating-point format in the first source operand
(the second operand) using a 32-bit, two-level look-up table specified in the corresponding doubleword element of
the second source operand (the third operand) with exception reporting specifier imm8. The elements that are
fixed-up are selected by mask bits of 1 specified in the opmask k1. Mask bits of 0 in the opmask k1 or table
response action of 0000b preserves the corresponding element of the first operand. The fixed-up elements from
the first source operand and the preserved element in the first operand are combined as the final results in the
destination operand (the first operand).
The destination and the first source operands are ZMM/YMM/XMM registers. The second source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
The two-level look-up table perform a fix-up of each SP FP input data in the first source operand by decoding the
input data encoding into 8 token types. A response table is defined for each token type that converts the input
encoding in the first source operand with one of 16 response actions.
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one
source so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPS can be used after the N-R reciprocal sequence to set the result to the
correct value (i.e. INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR.DAZ is used and refer to zmm2 only (i.e. zmm1 is not considered as zero in case MXCSR.DAZ is set).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W0 54 /r FV V/V AVX512VL Fix up special numbers in float32 vector xmm1, float32
vector xmm2 and int32 vector xmm3/m128/m32bcst
and store the result in xmm1, under writemask.
VFIXUPIMMPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst, imm8
AVX512F
EVEX.NDS.256.66.0F3A.W0 54 /r FV V/V AVX512VL Fix up special numbers in float32 vector ymm1, float32
vector ymm2 and int32 vector ymm3/m256/m32bcst
and store the result in ymm1, under writemask.
VFIXUPIMMPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8
AVX512F
EVEX.NDS.512.66.0F3A.W0 54 /r ib FV V/V AVX512F Fix up elements of float32 vector in zmm2 using int32
vector table in zmm3/m512/m32bcst, combine with
preserved elements from zmm1, and store the result in
zmm1.
VFIXUPIMMPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) Imm8
5-222 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
enum TOKEN_TYPE
{
QNAN_TOKEN 0,
SNAN_TOKEN 1,
ZERO_VALUE_TOKEN 2,
POS_ONE_VALUE_TOKEN 3,
NEG_INF_TOKEN 4,
POS_INF_TOKEN 5,
NEG_VALUE_TOKEN 6,
POS_VALUE_TOKEN 7
}
FIXUPIMM_SP ( dest[31:0], src1[31:0],tbl3[31:0], imm8 [7:0]){
tsrc[31:0] ((src1[30:23] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[31:0]
CASE(tsrc[63:0] of TOKEN_TYPE) {
QNAN_TOKEN: j 0;
SNAN_TOKEN: j 1;
ZERO_VALUE_TOKEN: j 2;
POS_ONE_VALUE_TOKEN: j 3;
NEG_INF_TOKEN: j 4;
POS_INF_TOKEN: j 5;
NEG_VALUE_TOKEN: j 6;
POS_VALUE_TOKEN: j 7;
} ; end source special CASE(tsrc…)
; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];
CASE(token_response[3:0]) {
0000: dest[31:0] dest[31:0]; ; preserve content of DEST
0001: dest[31:0] tsrc[31:0]; ; pass through src1 normal input value, denormal as zero
0010: dest[31:0] QNaN(tsrc[31:0]);
0011: dest[31:0] QNAN_Indefinite;
0100: dest[31:0] -INF;
0101: dest[31:0] +INF;
0110: dest[31:0] tsrc.sign? –INF : +INF;
0111: dest[31:0] -0;
1000: dest[31:0] +0;
1001: dest[31:0] -1;
1010: dest[31:0] +1;
1011: dest[31:0] ½;
1100: dest[31:0] 90.0;
1101: dest[31:0] PI/2;
1110: dest[31:0] MAX_FLOAT;
1111: dest[31:0] -MAX_FLOAT;
} ; end of token_response CASE
; The required fault reporting from imm8 is extracted
; TOKENs are mutually exclusive and TOKENs priority defines the order.
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
Ref. # 319433-023 5-223
INSTRUCTION SET REFERENCE, A-Z
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;
; end fault reporting
return dest[31:0];
} ; end of FIXUPIMM_SP()
VFIXUPIMMPS (EVEX)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] FIXUPIMM_SP(DEST[i+31:i], SRC1[i+31:i], SRC2[31:0], imm8 [7:0])
ELSE
DEST[i+31:i] FIXUPIMM_SP(DEST[i+31:i], SRC1[i+31:i], SRC2[i+31:i], imm8 [7:0])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Immediate Control Description:
Figure 5-20. VFIXUPIMMPS Immediate Control Description
76543210
+ INF #IE
- INF #IE
SNaN #IE
- VE #IE
ONE
#IE
ONE #ZE
ZERO #IE
ZERO #ZE
5-224 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VFIXUPIMMPS __m512 _mm512_fixupimm_ps( __m512 a, __m512i tbl, int imm);
VFIXUPIMMPS __m512 _mm512_mask_fixupimm_ps(__m512 s, __mmask16 k, __m512 a, __m512i tbl, int imm);
VFIXUPIMMPS __m512 _mm512_maskz_fixupimm_ps( __mmask16 k, __m512 a, __m512i tbl, int imm);
VFIXUPIMMPS __m512 _mm512_fixupimm_round_ps( __m512 a, __m512i tbl, int imm, int sae);
VFIXUPIMMPS __m512 _mm512_mask_fixupimm_round_ps(__m512 s, __mmask16 k, __m512 a, __m512i tbl, int imm, int sae);
VFIXUPIMMPS __m512 _mm512_maskz_fixupimm_round_ps( __mmask16 k, __m512 a, __m512i tbl, int imm, int sae);
VFIXUPIMMPS __m256 _mm256_fixupimm_ps( __m256 a, __m256i tbl, int imm);
VFIXUPIMMPS __m256 _mm256_mask_fixupimm_ps(__m256 s, __mmask8 k, __m256 a, __m256i tbl, int imm);
VFIXUPIMMPS __m256 _mm256_maskz_fixupimm_ps( __mmask8 k, __m256 a, __m256i tbl, int imm);
VFIXUPIMMPS __m128 _mm_fixupimm_ps( __m128 a, __m128i tbl, int imm);
VFIXUPIMMPS __m128 _mm_mask_fixupimm_ps(__m128 s, __mmask8 k, __m128 a, __m128i tbl, int imm);
VFIXUPIMMPS __m128 _mm_maskz_fixupimm_ps( __mmask8 k, __m128 a, __m128i tbl, int imm);
SIMD Floating-Point Exceptions
Zero, Invalid
Other Exceptions
See Exceptions Type E2.
Ref. # 319433-023 5-225
INSTRUCTION SET REFERENCE, A-Z
VFIXUPIMMSD—Fix Up Special Scalar Float64 Value
Instruction Operand Encoding
Description
Perform a fix-up of the low quadword element encoded in double-precision floating-point format in the first source
operand (the second operand) using a 32-bit, two-level look-up table specified in the low quadword element of the
second source operand (the third operand) with exception reporting specifier imm8. The element that is fixed-up
is selected by mask bit of 1 specified in the opmask k1. Mask bit of 0 in the opmask k1 or table response action of
0000b preserves the corresponding element of the first operand. The fixed-up element from the first source
operand or the preserved element in the first operand becomes the low quadword element of the destination
operand (the first operand). Bits 127:64 of the destination operand is copied from the corresponding bits of the
first source operand. The destination and first source operands are XMM registers. The second source operand can
be a XMM register or a 64- bit memory location.
The two-level look-up table perform a fix-up of each DP FP input data in the first source operand by decoding the
input data encoding into 8 token types. A response table is defined for each token type that converts the input
encoding in the first source operand with one of 16 response actions.
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one
source so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPD can be used after the N-R reciprocal sequence to set the result to the
correct value (i.e. INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR.DAZ is used and refer to zmm2 only (i.e. zmm1 is not considered as zero in case MXCSR.DAZ is set).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.
Operation
enum TOKEN_TYPE
{
QNAN_TOKEN 0,
SNAN_TOKEN 1,
ZERO_VALUE_TOKEN 2,
POS_ONE_VALUE_TOKEN 3,
NEG_INF_TOKEN 4,
POS_INF_TOKEN 5,
NEG_VALUE_TOKEN 6,
POS_VALUE_TOKEN 7
}
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W1 55 /r ib T1S V/V AVX512F Fix up a float64 number in the low quadword element of
xmm2 using scalar int32 table in xmm3/m64 and store the
result in xmm1.
VFIXUPIMMSD xmm1 {k1}{z},
xmm2, xmm3/m64{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) Imm8
5-226 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FIXUPIMM_DP (dest[63:0], src1[63:0],tbl3[63:0], imm8 [7:0]){
tsrc[63:0] ((src1[62:52] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[63:0]
CASE(tsrc[63:0] of TOKEN_TYPE) {
QNAN_TOKEN: j 0;
SNAN_TOKEN: j 1;
ZERO_VALUE_TOKEN: j 2;
POS_ONE_VALUE_TOKEN: j 3;
NEG_INF_TOKEN: j 4;
POS_INF_TOKEN: j 5;
NEG_VALUE_TOKEN: j 6;
POS_VALUE_TOKEN: j 7;
} ; end source special CASE(tsrc…)
; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];
CASE(token_response[3:0]) {
0000: dest[63:0] dest[63:0] ; preserve content of DEST
0001: dest[63:0] tsrc[63:0]; ; pass through src1 normal input value, denormal as zero
0010: dest[63:0] QNaN(tsrc[63:0]);
0011: dest[63:0] QNAN_Indefinite;
0100:dest[63:0] -INF;
0101: dest[63:0] +INF;
0110: dest[63:0] tsrc.sign? –INF : +INF;
0111: dest[63:0] -0;
1000: dest[63:0] +0;
1001: dest[63:0] -1;
1010: dest[63:0] +1;
1011: dest[63:0] ½;
1100: dest[63:0] 90.0;
1101: dest[63:0] PI/2;
1110: dest[63:0] MAX_FLOAT;
1111: dest[63:0] -MAX_FLOAT;
} ; end of token_response CASE
; The required fault reporting from imm8 is extracted
; TOKENs are mutually exclusive and TOKENs priority defines the order.
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
IF (tsrc[63:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[63:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;
; end fault reporting
return dest[63:0];
} ; end of FIXUPIMM_DP()
Ref. # 319433-023 5-227
INSTRUCTION SET REFERENCE, A-Z
VFIXUPIMMSD (EVEX encoded version)
IF k1[0] OR *no writemask*
THEN DEST[63:0] FIXUPIMM_DP(DEST[63:0], SRC1[63:0], SRC2[63:0], imm8 [7:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE DEST[63:0] 0 ; zeroing-masking
FI
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Immediate Control Description:
Intel C/C++ Compiler Intrinsic Equivalent
VFIXUPIMMSD __m128d _mm_fixupimm_sd( __m128d a, __m128i tbl, int imm);
VFIXUPIMMSD __m128d _mm_mask_fixupimm_sd(__m128d s, __mmask8 k, __m128d a, __m128i tbl, int imm);
VFIXUPIMMSD __m128d _mm_maskz_fixupimm_sd( __mmask8 k, __m128d a, __m128i tbl, int imm);
VFIXUPIMMSD __m128d _mm_fixupimm_round_sd( __m128d a, __m128i tbl, int imm, int sae);
VFIXUPIMMSD __m128d _mm_mask_fixupimm_round_sd(__m128d s, __mmask8 k, __m128d a, __m128i tbl, int imm, int sae);
VFIXUPIMMSD __m128d _mm_maskz_fixupimm_round_sd( __mmask8 k, __m128d a, __m128i tbl, int imm, int sae);
SIMD Floating-Point Exceptions
Zero, Invalid
Other Exceptions
See Exceptions Type E3.
Figure 5-21. VFIXUPIMMSD Immediate Control Description
76543210
+ INF #IE
- INF #IE
SNaN #IE
- VE #IE
ONE
#IE
ONE #ZE
ZERO #IE
ZERO #ZE
5-228 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFIXUPIMMSS—Fix Up Special Scalar Float32 Value
Instruction Operand Encoding
Description
Perform a fix-up of the low doubleword element encoded in single-precision floating-point format in the first source
operand (the second operand) using a 32-bit, two-level look-up table specified in the low doubleword element of
the second source operand (the third operand) with exception reporting specifier imm8. The element that is fixed-
up is selected by mask bit of 1 specified in the opmask k1. Mask bit of 0 in the opmask k1 or table response action
of 0000b preserves the corresponding element of the first operand. The fixed-up element from the first source
operand or the preserved element in the first operand becomes the low doubleword element of the destination
operand (the first operand) Bits 127:32 of the destination operand is copied from the corresponding bits of the first
source operand. The destination and first source operands are XMM registers. The second source operand can be a
XMM register or a 32-bit memory location.
The two-level look-up table perform a fix-up of each SP FP input data in the first source operand by decoding the
input data encoding into 8 token types. A response table is defined for each token type that converts the input
encoding in the first source operand with one of 16 response actions.
This instruction is specifically intended for use in fixing up the results of arithmetic calculations involving one source
so that they match the spec, although it is generally useful for fixing up the results of multiple-instruction
sequences to reflect special-number inputs. For example, consider rcp(0). Input 0 to rcp, and you should get INF
according to the DX10 spec. However, evaluating rcp via Newton-Raphson, where x=approx(1/0), yields an incor-
rect result. To deal with this, VFIXUPIMMPD can be used after the N-R reciprocal sequence to set the result to the
correct value (i.e. INF when the input is 0).
If MXCSR.DAZ is not set, denormal input elements in the first source operand are considered as normal inputs and
do not trigger any fixup nor fault reporting.
Imm8 is used to set the required flags reporting. It supports #ZE and #IE fault reporting (see details below).
MXCSR.DAZ is used and refer to zmm2 only (i.e. zmm1 is not considered as zero in case MXCSR.DAZ is set).
MXCSR mask bits are ignored and are treated as if all mask bits are set to masked response). If any of the imm8
bits is set and the condition met for fault reporting, MXCSR.IE or MXCSR.ZE might be updated.
Operation
enum TOKEN_TYPE
{
QNAN_TOKEN 0,
SNAN_TOKEN 1,
ZERO_VALUE_TOKEN 2,
POS_ONE_VALUE_TOKEN 3,
NEG_INF_TOKEN 4,
POS_INF_TOKEN 5,
NEG_VALUE_TOKEN 6,
POS_VALUE_TOKEN 7
}
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W0 55 /r ib T1S V/V AVX512F Fix up a float32 number in the low doubleword element
in xmm2 using scalar int32 table in xmm3/m32 and store
the result in xmm1.
VFIXUPIMMSS xmm1 {k1}{z}, xmm2,
xmm3/m32{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) Imm8
Ref. # 319433-023 5-229
INSTRUCTION SET REFERENCE, A-Z
FIXUPIMM_SP (dest[31:0], src1[31:0],tbl3[31:0], imm8 [7:0]){
tsrc[31:0] ((src1[30:23] = 0) AND (MXCSR.DAZ =1)) ? 0.0 : src1[31:0]
CASE(tsrc[63:0] of TOKEN_TYPE) {
QNAN_TOKEN: j 0;
SNAN_TOKEN: j 1;
ZERO_VALUE_TOKEN: j 2;
POS_ONE_VALUE_TOKEN: j 3;
NEG_INF_TOKEN: j 4;
POS_INF_TOKEN: j 5;
NEG_VALUE_TOKEN: j 6;
POS_VALUE_TOKEN: j = 7;
} ; end source special CASE(tsrc…)
; The required response from src3 table is extracted
token_response[3:0] = tbl3[3+4*j:4*j];
CASE(token_response[3:0]) {
0000: dest[31:0] dest[31:0]; ; preserve content of DEST
0001: dest[31:0] tsrc[31:0]; ; pass through src1 normal input value, denormal as zero
0010: dest[31:0] QNaN(tsrc[31:0]);
0011: dest[31:0] QNAN_Indefinite;
0100: dest[31:0] -INF;
0101: dest[31:0] +INF;
0110: dest[31:0] tsrc.sign? –INF : +INF;
0111: dest[31:0] -0;
1000: dest[31:0] +0;
1001: dest[31:0] -1;
1010: dest[31:0] +1;
1011: dest[31:0] ½;
1100: dest[31:0] 90.0;
1101: dest[31:0] PI/2;
1110: dest[31:0] MAX_FLOAT;
1111: dest[31:0] -MAX_FLOAT;
} ; end of token_response CASE
; The required fault reporting from imm8 is extracted
; TOKENs are mutually exclusive and TOKENs priority defines the order.
; Multiple faults related to a single token can occur simultaneously.
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[0] then set #ZE;
IF (tsrc[31:0] of TOKEN_TYPE: ZERO_VALUE_TOKEN) AND imm8[1] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[2] then set #ZE;
IF (tsrc[31:0] of TOKEN_TYPE: ONE_VALUE_TOKEN) AND imm8[3] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: SNAN_TOKEN) AND imm8[4] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_INF_TOKEN) AND imm8[5] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: NEG_VALUE_TOKEN) AND imm8[6] then set #IE;
IF (tsrc[31:0] of TOKEN_TYPE: POS_INF_TOKEN) AND imm8[7] then set #IE;
; end fault reporting
return dest[31:0];
} ; end of FIXUPIMM_SP()
5-230 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFIXUPIMMSS (EVEX encoded version)
IF k1[0] OR *no writemask*
THEN DEST[31:0] FIXUPIMM_SP(DEST[31:0], SRC1[31:0], SRC2[31:0], imm8 [7:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE DEST[31:0] 0 ; zeroing-masking
FI
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
Immediate Control Description:
Intel C/C++ Compiler Intrinsic Equivalent
VFIXUPIMMSS __m128 _mm_fixupimm_ss( __m128 a, __m128i tbl, int imm);
VFIXUPIMMSS __m128 _mm_mask_fixupimm_ss(__m128 s, __mmask8 k, __m128 a, __m128i tbl, int imm);
VFIXUPIMMSS __m128 _mm_maskz_fixupimm_ss( __mmask8 k, __m128 a, __m128i tbl, int imm);
VFIXUPIMMSS __m128 _mm_fixupimm_round_ss( __m128 a, __m128i tbl, int imm, int sae);
VFIXUPIMMSS __m128 _mm_mask_fixupimm_round_ss(__m128 s, __mmask8 k, __m128 a, __m128i tbl, int imm, int sae);
VFIXUPIMMSS __m128 _mm_maskz_fixupimm_round_ss( __mmask8 k, __m128 a, __m128i tbl, int imm, int sae);
SIMD Floating-Point Exceptions
Zero, Invalid
Other Exceptions
See Exceptions Type E3.
Figure 5-22. VFIXUPIMMSS Immediate Control Description
76543210
+INF #IE
-INF #IE
SNaN #IE
- VE #IE
ONE
#IE
ONE #ZE
ZERO #IE
ZERO #ZE
Ref. # 319433-023 5-231
INSTRUCTION SET REFERENCE, A-Z
VFMADD132PD/VFMADD213PD/VFMADD231PD—Fused Multiply-Add of Packed Double-
Precision Floating-Point Values
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W1 98 /r RVM V/V FMA Multiply packed double-precision floating-point
values from xmm1 and xmm3/mem, add to xmm2
and put result in xmm1.
VFMADD132PD xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W1 A8 /r RVM V/V FMA Multiply packed double-precision floating-point
values from xmm1 and xmm2, add to xmm3/mem
and put result in xmm1.
VFMADD213PD xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W1 B8 /r RVM V/V FMA Multiply packed double-precision floating-point
values from xmm2 and xmm3/mem, add to xmm1
and put result in xmm1.
VFMADD231PD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.W1 98 /r RVM V/V FMA Multiply packed double-precision floating-point
values from ymm1 and ymm3/mem, add to ymm2
and put result in ymm1.
VFMADD132PD ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W1 A8 /r RVM V/V FMA Multiply packed double-precision floating-point
values from ymm1 and ymm2, add to ymm3/mem
and put result in ymm1.
VFMADD213PD ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W1 B8 /r RVM V/V FMA Multiply packed double-precision floating-point
values from ymm2 and ymm3/mem, add to ymm1
and put result in ymm1.
VFMADD231PD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W1 98 /r RVM V/V AVX512VL Multiply packed double-precision floating-point
values from xmm1 and xmm3/m128/m64bcst, add
to xmm2 and put result in xmm1.
VFMADD132PD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.128.66.0F38.W1 A8 /r FV V/V AVX512VL Multiply packed double-precision floating-point
values from xmm1 and xmm2, add to
xmm3/m128/m64bcst and put result in xmm1.
VFMADD213PD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.128.66.0F38.W1 B8 /r FV V/V AVX512VL Multiply packed double-precision floating-point
values from xmm2 and xmm3/m128/m64bcst, add
to xmm1 and put result in xmm1.
VFMADD231PD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 98 /r FV V/V AVX512VL Multiply packed double-precision floating-point
values from ymm1 and ymm3/m256/m64bcst, add
to ymm2 and put result in ymm1.
VFMADD132PD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 A8 /r FV V/V AVX512VL Multiply packed double-precision floating-point
values from ymm1 and ymm2, add to
ymm3/m256/m64bcst and put result in ymm1.
VFMADD213PD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 B8 /r FV V/V AVX512VL Multiply packed double-precision floating-point
values from ymm2 and ymm3/m256/m64bcst, add
to ymm1 and put result in ymm1.
VFMADD231PD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 98 /r FV V/V AVX512F Multiply packed double-precision floating-point
values from zmm1 and zmm3/m512/m64bcst, add
to zmm2 and put result in zmm1.
VFMADD132PD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}
EVEX.NDS.512.66.0F38.W1 A8 /r FV V/V AVX512F Multiply packed double-precision floating-point
values from zmm1 and zmm2, add to
zmm3/m512/m64bcst and put result in zmm1.
VFMADD213PD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}
EVEX.NDS.512.66.0F38.W1 B8 /r FV V/V AVX512F Multiply packed double-precision floating-point
values from zmm2 and zmm3/m512/m64bcst, add
to zmm1 and put result in zmm1.
VFMADD231PD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}
5-232 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Performs a set of SIMD multiply-add computation on packed double-precision floating-point values using three
source operands and writes the multiply-add results in the destination operand. The destination operand is also the
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD
register or a memory location.
VFMADD132PD: Multiplies the two, four or eight packed double-precision floating-point values from the first source
operand to the two, four or eight packed double-precision floating-point values in the third source operand, adds
the infinite precision intermediate result to the two, four or eight packed double-precision floating-point values in
the second source operand, performs rounding and stores the resulting two, four or eight packed double-precision
floating-point values to the destination operand (first source operand).
VFMADD213PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source operand to the two, four or eight packed double-precision floating-point values in the first source operand,
adds the infinite precision intermediate result to the two, four or eight packed double-precision floating-point
values in the third source operand, performs rounding and stores the resulting two, four or eight packed double-
precision floating-point values to the destination operand (first source operand).
VFMADD231PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source to the two, four or eight packed double-precision floating-point values in the third source operand, adds the
infinite precision intermediate result to the two, four or eight packed double-precision floating-point values in the
first source operand, performs rounding and stores the resulting two, four or eight packed double-precision
floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) is a ZMM register and encoded in
reg_field. The second source operand is a ZMM register and encoded in EVEX.vvvv. The third source operand is a
ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The
destination operand is conditionally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFMADD132PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] + SRC2[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-233
INSTRUCTION SET REFERENCE, A-Z
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMADD213PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] + SRC3[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMADD231PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] + DEST[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
5-234 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] + SRC2[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-235
INSTRUCTION SET REFERENCE, A-Z
VFMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[63:0])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
5-236 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] + DEST[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMADDxxxPD __m512d _mm512_fmadd_pd(__m512d a, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_fmadd_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_mask_fmadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_maskz_fmadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMADDxxxPD __m512d _mm512_mask3_fmadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMADDxxxPD __m512d _mm512_mask_fmadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_maskz_fmadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMADDxxxPD __m512d _mm512_mask3_fmadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMADDxxxPD __m256d _mm256_mask_fmadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMADDxxxPD __m256d _mm256_maskz_fmadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMADDxxxPD __m256d _mm256_mask3_fmadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMADDxxxPD __m128d _mm_mask_fmadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMADDxxxPD __m128d _mm_maskz_fmadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMADDxxxPD __m128d _mm_mask3_fmadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMADDxxxPD __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);
VFMADDxxxPD __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-237
INSTRUCTION SET REFERENCE, A-Z
VFMADD132PS/VFMADD213PS/VFMADD231PS—Fused Multiply-Add of Packed Single-
Precision Floating-Point Values
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W0 98 /r RVM V/V FMA Multiply packed single-precision floating-point values
from xmm1 and xmm3/mem, add to xmm2 and put
result in xmm1.
VFMADD132PS xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W0 A8 /r RVM V/V FMA Multiply packed single-precision floating-point values
from xmm1 and xmm2, add to xmm3/mem and put
result in xmm1.
VFMADD213PS xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W0 B8 /r RVM V/V FMA Multiply packed single-precision floating-point values
from xmm2 and xmm3/mem, add to xmm1 and put
result in xmm1.
VFMADD231PS xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.W0 98 /r RVM V/V FMA Multiply packed single-precision floating-point values
from ymm1 and ymm3/mem, add to ymm2 and put
result in ymm1.
VFMADD132PS ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W0 A8 /r RVM V/V FMA Multiply packed single-precision floating-point values
from ymm1 and ymm2, add to ymm3/mem and put
result in ymm1.
VFMADD213PS ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.0 B8 /r RVM V/V FMA Multiply packed single-precision floating-point values
from ymm2 and ymm3/mem, add to ymm1 and put
result in ymm1.
VFMADD231PS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W0 98 /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from xmm1 and xmm3/m128/m32bcst, add to
xmm2 and put result in xmm1.
VFMADD132PS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.128.66.0F38.W0 A8 /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from xmm1 and xmm2, add to
xmm3/m128/m32bcst and put result in xmm1.
VFMADD213PS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.128.66.0F38.W0 B8 /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from xmm2 and xmm3/m128/m32bcst, add to
xmm1 and put result in xmm1.
VFMADD231PS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 98 /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from ymm1 and ymm3/m256/m32bcst, add to
ymm2 and put result in ymm1.
VFMADD132PS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 A8 /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from ymm1 and ymm2, add to
ymm3/m256/m32bcst and put result in ymm1.
VFMADD213PS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 B8 /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from ymm2 and ymm3/m256/m32bcst, add to
ymm1 and put result in ymm1.
VFMADD231PS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 98 /r FV V/V AVX512F Multiply packed single-precision floating-point values
from zmm1 and zmm3/m512/m32bcst, add to
zmm2 and put result in zmm1.
VFMADD132PS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{er}
EVEX.NDS.512.66.0F38.W0 A8 /r FV V/V AVX512F Multiply packed single-precision floating-point values
from zmm1 and zmm2, add to
zmm3/m512/m32bcst and put result in zmm1.
VFMADD213PS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{er}
EVEX.NDS.512.66.0F38.W0 B8 /r FV V/V AVX512F Multiply packed single-precision floating-point values
from zmm2 and zmm3/m512/m32bcst, add to
zmm1 and put result in zmm1.
VFMADD231PS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{er}
5-238 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Performs a set of SIMD multiply-add computation on packed single-precision floating-point values using three
source operands and writes the multiply-add results in the destination operand. The destination operand is also the
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD
register or a memory location.
VFMADD132PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the first
source operand to the four, eight or sixteen packed single-precision floating-point values in the third source
operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single-precision
floating-point values in the second source operand, performs rounding and stores the resulting four, eight or
sixteen packed single-precision floating-point values to the destination operand (first source operand).
VFMADD213PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second
source operand to the four, eight or sixteen packed single-precision floating-point values in the first source
operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single-precision
floating-point values in the third source operand, performs rounding and stores the resulting the four, eight or
sixteen packed single-precision floating-point values to the destination operand (first source operand).
VFMADD231PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second
source operand to the four, eight or sixteen packed single-precision floating-point values in the third source
operand, adds the infinite precision intermediate result to the four, eight or sixteen packed single-precision
floating-point values in the first source operand, performs rounding and stores the resulting four, eight or sixteen
packed single-precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) is a ZMM register and encoded in
reg_field. The second source operand is a ZMM register and encoded in EVEX.vvvv. The third source operand is a
ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The
destination operand is conditionally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFMADD132PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXNUM 4
ELSEIF (VEX.256)
MAXNUM 8
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-239
INSTRUCTION SET REFERENCE, A-Z
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMADD213PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXNUM 4
ELSEIF (VEX.256)
MAXNUM 8
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] + SRC3[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMADD231PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXNUM 4
ELSEIF (VEX.256)
MAXNUM 8
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
5-240 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] + SRC2[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-241
INSTRUCTION SET REFERENCE, A-Z
VFMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[31:0])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
5-242 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] + DEST[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMADDxxxPS __m512 _mm512_fmadd_ps(__m512 a, __m512 b, __m512 c);
VFMADDxxxPS __m512 _mm512_fmadd_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFMADDxxxPS __m512 _mm512_mask_fmadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFMADDxxxPS __m512 _mm512_maskz_fmadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFMADDxxxPS __m512 _mm512_mask3_fmadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFMADDxxxPS __m512 _mm512_mask_fmadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFMADDxxxPS __m512 _mm512_maskz_fmadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFMADDxxxPS __m512 _mm512_mask3_fmadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFMADDxxxPS __m256 _mm256_mask_fmadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFMADDxxxPS __m256 _mm256_maskz_fmadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFMADDxxxPS __m256 _mm256_mask3_fmadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFMADDxxxPS __m128 _mm_mask_fmadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMADDxxxPS __m128 _mm_maskz_fmadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMADDxxxPS __m128 _mm_mask3_fmadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMADDxxxPS __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c);
VFMADDxxxPS __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-243
INSTRUCTION SET REFERENCE, A-Z
VFMADD132SD/VFMADD213SD/VFMADD231SD—Fused Multiply-Add of Scalar Double-
Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD multiply-add computation on the low double-precision floating-point values using three source
operands and writes the multiply-add result in the destination operand. The destination operand is also the first
source operand. The first and second operand are XMM registers. The third source operand can be an XMM register
or a 64-bit memory location.
VFMADD132SD: Multiplies the low double-precision floating-point value from the first source operand to the low
double-precision floating-point value in the third source operand, adds the infinite precision intermediate result to
the low double-precision floating-point values in the second source operand, performs rounding and stores the
resulting double-precision floating-point value to the destination operand (first source operand).
VFMADD213SD: Multiplies the low double-precision floating-point value from the second source operand to the low
double-precision floating-point value in the first source operand, adds the infinite precision intermediate result to
the low double-precision floating-point value in the third source operand, performs rounding and stores the
resulting double-precision floating-point value to the destination operand (first source operand).
VFMADD231SD: Multiplies the low double-precision floating-point value from the second source to the low double-
precision floating-point value in the third source operand, adds the infinite precision intermediate result to the low
double-precision floating-point value in the first source operand, performs rounding and stores the resulting
double-precision floating-point value to the destination operand (first source operand).
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.LIG.66.0F38.W1 99 /r RVM V/V FMA Multiply scalar double-precision floating-point value
from xmm1 and xmm3/m64, add to xmm2 and put
result in xmm1.
VFMADD132SD xmm1, xmm2,
xmm3/m64
VEX.DDS.LIG.66.0F38.W1 A9 /r RVM V/V FMA Multiply scalar double-precision floating-point value
from xmm1 and xmm2, add to xmm3/m64 and put
result in xmm1.
VFMADD213SD xmm1, xmm2,
xmm3/m64
VEX.DDS.LIG.66.0F38.W1 B9 /r RVM V/V FMA Multiply scalar double-precision floating-point value
from xmm2 and xmm3/m64, add to xmm1 and put
result in xmm1.
VFMADD231SD xmm1, xmm2,
xmm3/m64
EVEX.DDS.LIG.66.0F38.W1 99 /r T1S V/V AVX512F Multiply scalar double-precision floating-point value
from xmm1 and xmm3/m64, add to xmm2 and put
result in xmm1.
VFMADD132SD xmm1 {k1}{z}, xmm2,
xmm3/m64{er}
EVEX.DDS.LIG.66.0F38.W1 A9 /r T1S V/V AVX512F Multiply scalar double-precision floating-point value
from xmm1 and xmm2, add to xmm3/m64 and put
result in xmm1.
VFMADD213SD xmm1 {k1}{z}, xmm2,
xmm3/m64{er}
EVEX.DDS.LIG.66.0F38.W1 B9 /r T1S V/V AVX512F Multiply scalar double-precision floating-point value
from xmm2 and xmm3/m64, add to xmm1 and put
result in xmm1.
VFMADD231SD xmm1 {k1}{z}, xmm2,
xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-244 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field.
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field.
Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination is updated according to the writemask.
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFMADD132SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFMADD213SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFMADD231SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
Ref. # 319433-023 5-245
INSTRUCTION SET REFERENCE, A-Z
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFMADD132SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] MAX_VL-1:128RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:63] DEST[127:63]
DEST[MAX_VL-1:128] 0
VFMADD213SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:63] DEST[127:63]
DEST[MAX_VL-1:128] 0
VFMADD231SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:63] DEST[127:63]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMADDxxxSD __m128d _mm_fmadd_round_sd(__m128d a, __m128d b, __m128d c, int r);
VFMADDxxxSD __m128d _mm_mask_fmadd_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMADDxxxSD __m128d _mm_maskz_fmadd_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMADDxxxSD __m128d _mm_mask3_fmadd_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMADDxxxSD __m128d _mm_mask_fmadd_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int r);
VFMADDxxxSD __m128d _mm_maskz_fmadd_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int r);
VFMADDxxxSD __m128d _mm_mask3_fmadd_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int r);
VFMADDxxxSD __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
5-246 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFMADD132SS/VFMADD213SS/VFMADD231SS—Fused Multiply-Add of Scalar Single-Precision
Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD multiply-add computation on single-precision floating-point values using three source operands
and writes the multiply-add results in the destination operand. The destination operand is also the first source
operand. The first and second operands are XMM registers. The third source operand can be a XMM register or a
32-bit memory location.
VFMADD132SS: Multiplies the low single-precision floating-point value from the first source operand to the low
single-precision floating-point value in the third source operand, adds the infinite precision intermediate result to
the low single-precision floating-point value in the second source operand, performs rounding and stores the
resulting single-precision floating-point value to the destination operand (first source operand).
VFMADD213SS: Multiplies the low single-precision floating-point value from the second source operand to the low
single-precision floating-point value in the first source operand, adds the infinite precision intermediate result to
the low single-precision floating-point value in the third source operand, performs rounding and stores the
resulting single-precision floating-point value to the destination operand (first source operand).
VFMADD231SS: Multiplies the low single-precision floating-point value from the second source operand to the low
single-precision floating-point value in the third source operand, adds the infinite precision intermediate result to
the low single-precision floating-point value in the first source operand, performs rounding and stores the resulting
single-precision floating-point value to the destination operand (first source operand).
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.LIG.66.0F38.W0 99 /r RVM V/V FMA Multiply scalar single-precision floating-point value
from xmm1 and xmm3/m32, add to xmm2 and put
result in xmm1.
VFMADD132SS xmm1, xmm2,
xmm3/m32
VEX.DDS.LIG.66.0F38.W0 A9 /r RVM V/V FMA Multiply scalar single-precision floating-point value
from xmm1 and xmm2, add to xmm3/m32 and put
result in xmm1.
VFMADD213SS xmm1, xmm2,
xmm3/m32
VEX.DDS.LIG.66.0F38.W0 B9 /r RVM V/V FMA Multiply scalar single-precision floating-point value
from xmm2 and xmm3/m32, add to xmm1 and put
result in xmm1.
VFMADD231SS xmm1, xmm2,
xmm3/m32
EVEX.DDS.LIG.66.0F38.W0 99 /r T1S V/V AVX512F Multiply scalar single-precision floating-point value
from xmm1 and xmm3/m32, add to xmm2 and put
result in xmm1.
VFMADD132SS xmm1 {k1}{z}, xmm2,
xmm3/m32{er}
EVEX.DDS.LIG.66.0F38.W0 A9 /r T1S V/V AVX512F Multiply scalar single-precision floating-point value
from xmm1 and xmm2, add to xmm3/m32 and put
result in xmm1.
VFMADD213SS xmm1 {k1}{z}, xmm2,
xmm3/m32{er}
EVEX.DDS.LIG.66.0F38.W0 B9 /r T1S V/V AVX512F Multiply scalar single-precision floating-point value
from xmm2 an.d xmm3/m32, add to xmm1 and put
result in xmm1.
VFMADD231SS xmm1 {k1}{z}, xmm2,
xmm3/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-247
INSTRUCTION SET REFERENCE, A-Z
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field.
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field.
Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFMADD132SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(DEST[31:0]*SRC3[31:0] + SRC2[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFMADD213SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(SRC2[31:0]*DEST[31:0] + SRC3[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
5-248 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFMADD231SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(SRC2[31:0]*SRC3[31:0] + DEST[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0]] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFMADD132SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] + SRC2[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFMADD213SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] + SRC3[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFMADD231SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(SRC2[31:0]*SRC3[31:0] + DEST[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMADDxxxSS __m128 _mm_fmadd_round_ss(__m128 a, __m128 b, __m128 c, int r);
VFMADDxxxSS __m128 _mm_mask_fmadd_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMADDxxxSS __m128 _mm_maskz_fmadd_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMADDxxxSS __m128 _mm_mask3_fmadd_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMADDxxxSS __m128 _mm_mask_fmadd_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);
VFMADDxxxSS __m128 _mm_maskz_fmadd_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);
VFMADDxxxSS __m128 _mm_mask3_fmadd_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);
VFMADDxxxSS __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
Ref. # 319433-023 5-249
INSTRUCTION SET REFERENCE, A-Z
VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD—Fused Multiply-Alternating
Add/Subtract of Packed Double-Precision Floating-Point Values
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.128.66.0F38.W1 96 /r RVM V/V FMA Multiply packed double-precision floating-point values
from xmm1 and xmm3/mem, add/subtract elements in
xmm2 and put result in xmm1.
VFMADDSUB132PD xmm1, xmm2,
xmm3/m128
VEX.DDS.128.66.0F38.W1 A6 /r RVM V/V FMA Multiply packed double-precision floating-point values
from xmm1 and xmm2, add/subtract elements in
xmm3/mem and put result in xmm1.
VFMADDSUB213PD xmm1, xmm2,
xmm3/m128
VEX.DDS.128.66.0F38.W1 B6 /r RVM V/V FMA Multiply packed double-precision floating-point values
from xmm2 and xmm3/mem, add/subtract elements in
xmm1 and put result in xmm1.
VFMADDSUB231PD xmm1, xmm2,
xmm3/m128
VEX.DDS.256.66.0F38.W1 96 /r RVM V/V FMA Multiply packed double-precision floating-point values
from ymm1 and ymm3/mem, add/subtract elements in
ymm2 and put result in ymm1.
VFMADDSUB132PD ymm1, ymm2,
ymm3/m256
VEX.DDS.256.66.0F38.W1 A6 /r RVM V/V FMA Multiply packed double-precision floating-point values
from ymm1 and ymm2, add/subtract elements in
ymm3/mem and put result in ymm1.
VFMADDSUB213PD ymm1, ymm2,
ymm3/m256
VEX.DDS.256.66.0F38.W1 B6 /r RVM V/V FMA Multiply packed double-precision floating-point values
from ymm2 and ymm3/mem, add/subtract elements in
ymm1 and put result in ymm1.
VFMADDSUB231PD ymm1, ymm2,
ymm3/m256
EVEX.DDS.128.66.0F38.W1 A6 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm1 and xmm2, add/subtract elements in
xmm3/m128/m64bcst and put result in xmm1 subject to
writemask k1.
VFMADDSUB213PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.DDS.128.66.0F38.W1 B6 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm2 and xmm3/m128/m64bcst, add/subtract
elements in xmm1 and put result in xmm1 subject to
writemask k1.
VFMADDSUB231PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.DDS.128.66.0F38.W1 96 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm1 and xmm3/m128/m64bcst, add/subtract
elements in xmm2 and put result in xmm1 subject to
writemask k1.
VFMADDSUB132PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 A6 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm1 and ymm2, add/subtract elements in
ymm3/m256/m64bcst and put result in ymm1 subject to
writemask k1.
VFMADDSUB213PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 B6 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm2 and ymm3/m256/m64bcst, add/subtract
elements in ymm1 and put result in ymm1 subject to
writemask k1.
VFMADDSUB231PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 96 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm1 and ymm3/m256/m64bcst, add/subtract
elements in ymm2 and put result in ymm1 subject to
writemask k1.
VFMADDSUB132PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.DDS.512.66.0F38.W1 A6 /r FV V/V AVX512F Multiply packed double-precision floating-point values
from zmm1and zmm2, add/subtract elements in
zmm3/m512/m64bcst and put result in zmm1 subject to
writemask k1.
VFMADDSUB213PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
5-250 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
VFMADDSUB132PD: Multiplies the two, four, or eight packed double-precision floating-point values from the first
source operand to the two or four packed double-precision floating-point values in the third source operand. From
the infinite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the
even double-precision floating-point values in the second source operand, performs rounding and stores the
resulting two or four packed double-precision floating-point values to the destination operand (first source
operand).
VFMADDSUB213PD: Multiplies the two, four, or eight packed double-precision floating-point values from the
second source operand to the two or four packed double-precision floating-point values in the first source operand.
From the infinite precision intermediate result, adds the odd double-precision floating-point elements and
subtracts the even double-precision floating-point values in the third source operand, performs rounding and
stores the resulting two or four packed double-precision floating-point values to the destination operand (first
source operand).
VFMADDSUB231PD: Multiplies the two, four, or eight packed double-precision floating-point values from the
second source operand to the two or four packed double-precision floating-point values in the third source operand.
From the infinite precision intermediate result, adds the odd double-precision floating-point elements and
subtracts the even double-precision floating-point values in the first source operand, performs rounding and stores
the resulting two or four packed double-precision floating-point values to the destination operand (first source
operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
EVEX.DDS.512.66.0F38.W1 B6 /r FV V/V AVX512F Multiply packed double-precision floating-point values
from zmm2 and zmm3/m512/m64bcst, add/subtract
elements in zmm1 and put result in zmm1 subject to
writemask k1.
VFMADDSUB231PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
EVEX.DDS.512.66.0F38.W1 96 /r FV V/V AVX512F Multiply packed double-precision floating-point values
from zmm1 and zmm3/m512/m64bcst, add/subtract
elements in zmm2 and put result in zmm1 subject to
writemask k1.
VFMADDSUB132PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-251
INSTRUCTION SET REFERENCE, A-Z
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
VFMADDSUB132PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[63:0] RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
DEST[191:128] RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] - SRC2[191:128])
DEST[255:192] RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] + SRC2[255:192]
FI
VFMADDSUB213PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
DEST[191:128] RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] - SRC3[191:128])
DEST[255:192] RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] + SRC3[255:192]
FI
VFMADDSUB231PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
DEST[191:128] RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] - DEST[191:128])
DEST[255:192] RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] + DEST[255:192]
FI
VFMADDSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+63:i]
5-252 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
ELSE DEST[i+63:i]
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADDSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] - SRC2[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] + SRC2[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
FI;
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-253
INSTRUCTION SET REFERENCE, A-Z
VFMADDSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
ELSE DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADDSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[63:0])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[63:0])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
FI;
5-254 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADDSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
ELSE DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADDSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] - DEST[i+63:i])
ELSE
DEST[i+63:i]
Ref. # 319433-023 5-255
INSTRUCTION SET REFERENCE, A-Z
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] + DEST[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
FI;
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMADDSUBxxxPD __m512d _mm512_fmaddsub_pd(__m512d a, __m512d b, __m512d c);
VFMADDSUBxxxPD __m512d _mm512_fmaddsub_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMADDSUBxxxPD __m512d _mm512_mask_fmaddsub_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMADDSUBxxxPD __m512d _mm512_maskz_fmaddsub_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMADDSUBxxxPD __m512d _mm512_mask3_fmaddsub_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMADDSUBxxxPD __m512d _mm512_mask_fmaddsub_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMADDSUBxxxPD __m512d _mm512_maskz_fmaddsub_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMADDSUBxxxPD __m512d _mm512_mask3_fmaddsub_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMADDSUBxxxPD __m256d _mm256_mask_fmaddsub_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMADDSUBxxxPD __m256d _mm256_maskz_fmaddsub_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMADDSUBxxxPD __m256d _mm256_mask3_fmaddsub_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMADDSUBxxxPD __m128d _mm_mask_fmaddsub_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMADDSUBxxxPD __m128d _mm_maskz_fmaddsub_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMADDSUBxxxPD __m128d _mm_mask3_fmaddsub_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMADDSUBxxxPD __m128d _mm_fmaddsub_pd (__m128d a, __m128d b, __m128d c);
VFMADDSUBxxxPD __m256d _mm256_fmaddsub_pd (__m256d a, __m256d b, __m256d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
5-256 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS—Fused Multiply-Alternating
Add/Subtract of Packed Single-Precision Floating-Point Values
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.128.66.0F38.W0 96 /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm1 and xmm3/mem, add/subtract elements in xmm2
and put result in xmm1.
VFMADDSUB132PS xmm1, xmm2,
xmm3/m128
VEX.DDS.128.66.0F38.W0 A6 /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm1 and xmm2, add/subtract elements in xmm3/mem
and put result in xmm1.
VFMADDSUB213PS xmm1, xmm2,
xmm3/m128
VEX.DDS.128.66.0F38.W0 B6 /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm2 and xmm3/mem, add/subtract elements in xmm1
and put result in xmm1.
VFMADDSUB231PS xmm1, xmm2,
xmm3/m128
VEX.DDS.256.66.0F38.W0 96 /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm1 and ymm3/mem, add/subtract elements in ymm2
and put result in ymm1.
VFMADDSUB132PS ymm1, ymm2,
ymm3/m256
VEX.DDS.256.66.0F38.W0 A6 /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm1 and ymm2, add/subtract elements in ymm3/mem
and put result in ymm1.
VFMADDSUB213PS ymm1, ymm2,
ymm3/m256
VEX.DDS.256.66.0F38.W0 B6 /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm2 and ymm3/mem, add/subtract elements in ymm1
and put result in ymm1.
VFMADDSUB231PS ymm1, ymm2,
ymm3/m256
EVEX.DDS.128.66.0F38.W0 A6 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm1 and xmm2, add/subtract elements in
xmm3/m128/m32bcst and put result in xmm1 subject to
writemask k1.
VFMADDSUB213PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.DDS.128.66.0F38.W0 B6 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm2 and xmm3/m128/m32bcst, add/subtract elements
in xmm1 and put result in xmm1 subject to writemask k1.
VFMADDSUB231PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.DDS.128.66.0F38.W0 96 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm1 and xmm3/m128/m32bcst, add/subtract elements
in zmm2 and put result in xmm1 subject to writemask k1.
VFMADDSUB132PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 A6 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm1 and ymm2, add/subtract elements in
ymm3/m256/m32bcst and put result in ymm1 subject to
writemask k1.
VFMADDSUB213PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 B6 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm2 and ymm3/m256/m32bcst, add/subtract elements
in ymm1 and put result in ymm1 subject to writemask k1.
VFMADDSUB231PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 96 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm1 and ymm3/m256/m32bcst, add/subtract elements
in ymm2 and put result in ymm1 subject to writemask k1.
VFMADDSUB132PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.DDS.512.66.0F38.W0 A6 /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm1 and zmm2, add/subtract elements in
zmm3/m512/m32bcst and put result in zmm1 subject to
writemask k1.
VFMADDSUB213PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
EVEX.DDS.512.66.0F38.W0 B6 /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm2 and zmm3/m512/m32bcst, add/subtract elements
in zmm1 and put result in zmm1 subject to writemask k1.
VFMADDSUB231PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
EVEX.DDS.512.66.0F38.W0 96 /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm1 and zmm3/m512/m32bcst, add/subtract elements
in zmm2 and put result in zmm1 subject to writemask k1.
VFMADDSUB132PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
Ref. # 319433-023 5-257
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
VFMADDSUB132PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the first
source operand to the corresponding packed single-precision floating-point values in the third source operand.
From the infinite precision intermediate result, adds the odd single-precision floating-point elements and subtracts
the even single-precision floating-point values in the second source operand, performs rounding and stores the
resulting packed single-precision floating-point values to the destination operand (first source operand).
VFMADDSUB213PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the
second source operand to the corresponding packed single-precision floating-point values in the first source
operand. From the infinite precision intermediate result, adds the odd single-precision floating-point elements and
subtracts the even single-precision floating-point values in the third source operand, performs rounding and stores
the resulting packed single-precision floating-point values to the destination operand (first source operand).
VFMADDSUB231PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the
second source operand to the corresponding packed single-precision floating-point values in the third source
operand. From the infinite precision intermediate result, adds the odd single-precision floating-point elements and
subtracts the even single-precision floating-point values in the first source operand, performs rounding and stores
the resulting packed single-precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFMADDSUB132PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM -1{
n 64*i;
DEST[n+31:n] RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])
DEST[n+63:n+32] RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] + SRC2[n+63:n+32])
}
IF (VEX.128) THEN
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-258 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMADDSUB213PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM -1{
n 64*i;
DEST[n+31:n] RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])
DEST[n+63:n+32] RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] + SRC3[n+63:n+32])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMADDSUB231PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM -1{
n 64*i;
DEST[n+31:n] RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])
DEST[n+63:n+32] RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] + DEST[n+63:n+32])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMADDSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) (4, 128), (8, 256),= (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+31:i]
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
Ref. # 319433-023 5-259
INSTRUCTION SET REFERENCE, A-Z
ELSE DEST[i+31:i]
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADDSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] - SRC2[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] + SRC2[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
FI;
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-260 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFMADDSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
ELSE DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADDSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[31:0])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[31:0])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
FI;
Ref. # 319433-023 5-261
INSTRUCTION SET REFERENCE, A-Z
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADDSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
ELSE DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMADDSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] - DEST[i+31:i])
ELSE
DEST[i+31:i]
5-262 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] + DEST[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
FI;
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMADDSUBxxxPS __m512 _mm512_fmaddsub_ps(__m512 a, __m512 b, __m512 c);
VFMADDSUBxxxPS __m512 _mm512_fmaddsub_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFMADDSUBxxxPS __m512 _mm512_mask_fmaddsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFMADDSUBxxxPS __m512 _mm512_maskz_fmaddsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFMADDSUBxxxPS __m512 _mm512_mask3_fmaddsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFMADDSUBxxxPS __m512 _mm512_mask_fmaddsub_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFMADDSUBxxxPS __m512 _mm512_maskz_fmaddsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFMADDSUBxxxPS __m512 _mm512_mask3_fmaddsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFMADDSUBxxxPS __m256 _mm256_mask_fmaddsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFMADDSUBxxxPS __m256 _mm256_maskz_fmaddsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFMADDSUBxxxPS __m256 _mm256_mask3_fmaddsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFMADDSUBxxxPS __m128 _mm_mask_fmaddsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMADDSUBxxxPS __m128 _mm_maskz_fmaddsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMADDSUBxxxPS __m128 _mm_mask3_fmaddsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMADDSUBxxxPS __m128 _mm_fmaddsub_ps (__m128 a, __m128 b, __m128 c);
VFMADDSUBxxxPS __m256 _mm256_fmaddsub_ps (__m256 a, __m256 b, __m256 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-263
INSTRUCTION SET REFERENCE, A-Z
VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD—Fused Multiply-Alternating
Subtract/Add of Packed Double-Precision Floating-Point Values
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.128.66.0F38.W1 97 /r RVM V/V FMA Multiply packed double-precision floating-point values
from xmm1 and xmm3/mem, subtract/add elements
in xmm2 and put result in xmm1.
VFMSUBADD132PD xmm1, xmm2,
xmm3/m128
VEX.DDS.128.66.0F38.W1 A7 /r RVM V/V FMA Multiply packed double-precision floating-point values
from xmm1 and xmm2, subtract/add elements in
xmm3/mem and put result in xmm1.
VFMSUBADD213PD xmm1, xmm2,
xmm3/m128
VEX.DDS.128.66.0F38.W1 B7 /r RVM V/V FMA Multiply packed double-precision floating-point values
from xmm2 and xmm3/mem, subtract/add elements
in xmm1 and put result in xmm1.
VFMSUBADD231PD xmm1, xmm2,
xmm3/m128
VEX.DDS.256.66.0F38.W1 97 /r RVM V/V FMA Multiply packed double-precision floating-point values
from ymm1 and ymm3/mem, subtract/add elements
in ymm2 and put result in ymm1.
VFMSUBADD132PD ymm1, ymm2,
ymm3/m256
VEX.DDS.256.66.0F38.W1 A7 /r RVM V/V FMA Multiply packed double-precision floating-point values
from ymm1 and ymm2, subtract/add elements in
ymm3/mem and put result in ymm1.
VFMSUBADD213PD ymm1, ymm2,
ymm3/m256
VEX.DDS.256.66.0F38.W1 B7 /r RVM V/V FMA Multiply packed double-precision floating-point values
from ymm2 and ymm3/mem, subtract/add elements
in ymm1 and put result in ymm1.
VFMSUBADD231PD ymm1, ymm2,
ymm3/m256
EVEX.DDS.128.66.0F38.W1 97 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm1 and xmm3/m128/m64bcst, subtract/add
elements in xmm2 and put result in xmm1 subject to
writemask k1.
VFMSUBADD132PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.DDS.128.66.0F38.W1 A7 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm1 and xmm2, subtract/add elements in
xmm3/m128/m64bcst and put result in xmm1
subject to writemask k1.
VFMSUBADD213PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.DDS.128.66.0F38.W1 B7 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm2 and xmm3/m128/m64bcst, subtract/add
elements in xmm1 and put result in xmm1 subject to
writemask k1.
VFMSUBADD231PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 97 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm1 and ymm3/m256/m64bcst, subtract/add
elements in ymm2 and put result in ymm1 subject to
writemask k1.
VFMSUBADD132PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 A7 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm1 and ymm2, subtract/add elements in
ymm3/m256/m64bcst and put result in ymm1
subject to writemask k1.
VFMSUBADD213PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 B7 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm2 and ymm3/m256/m64bcst, subtract/add
elements in ymm1 and put result in ymm1 subject to
writemask k1.
VFMSUBADD231PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.DDS.512.66.0F38.W1 97 /r FV V/V AVX512F Multiply packed double-precision floating-point values
from zmm1 and zmm3/m512/m64bcst, subtract/add
elements in zmm2 and put result in zmm1 subject to
writemask k1.
VFMSUBADD132PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
5-264 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
VFMSUBADD132PD: Multiplies the two, four, or eight packed double-precision floating-point values from the first
source operand to the two or four packed double-precision floating-point values in the third source operand. From
the infinite precision intermediate result, subtracts the odd double-precision floating-point elements and adds the
even double-precision floating-point values in the second source operand, performs rounding and stores the
resulting two or four packed double-precision floating-point values to the destination operand (first source
operand).
VFMSUBADD213PD: Multiplies the two, four, or eight packed double-precision floating-point values from the
second source operand to the two or four packed double-precision floating-point values in the first source operand.
From the infinite precision intermediate result, subtracts the odd double-precision floating-point elements and
adds the even double-precision floating-point values in the third source operand, performs rounding and stores the
resulting two or four packed double-precision floating-point values to the destination operand (first source
operand).
VFMSUBADD231PD: Multiplies the two, four, or eight packed double-precision floating-point values from the
second source operand to the two or four packed double-precision floating-point values in the third source operand.
From the infinite precision intermediate result, subtracts the odd double-precision floating-point elements and
adds the even double-precision floating-point values in the first source operand, performs rounding and stores the
resulting two or four packed double-precision floating-point values to the destination operand (first source
operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
EVEX.DDS.512.66.0F38.W1 A7 /r FV V/V AVX512F Multiply packed double-precision floating-point values
from zmm1 and zmm2, subtract/add elements in
zmm3/m512/m64bcst and put result in zmm1 subject
to writemask k1.
VFMSUBADD213PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
EVEX.DDS.512.66.0F38.W1 B7 /r FV V/V AVX512F Multiply packed double-precision floating-point values
from zmm2 and zmm3/m512/m64bcst, subtract/add
elements in zmm1 and put result in zmm1 subject to
writemask k1.
VFMSUBADD231PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-265
INSTRUCTION SET REFERENCE, A-Z
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFMSUBADD132PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[63:0] RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])
DEST[191:128] RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] + SRC2[191:128])
DEST[255:192] RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] - SRC2[255:192]
FI
VFMSUBADD213PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])
DEST[191:128] RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] + SRC3[191:128])
DEST[255:192] RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] - SRC3[255:192]
FI
VFMSUBADD231PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])
DEST[191:128] RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] + DEST[191:128])
DEST[255:192] RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] - DEST[255:192]
FI
VFMSUBADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+63:i]
5-266 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
ELSE DEST[i+63:i]
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUBADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] + SRC2[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] - SRC2[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
FI;
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-267
INSTRUCTION SET REFERENCE, A-Z
VFMSUBADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
ELSE DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUBADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[63:0])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[63:0])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
FI;
5-268 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUBADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
ELSE DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUBADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] + DEST[i+63:i])
ELSE
DEST[i+63:i]
Ref. # 319433-023 5-269
INSTRUCTION SET REFERENCE, A-Z
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] - DEST[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
FI;
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMSUBADDxxxPD __m512d _mm512_fmsubadd_pd(__m512d a, __m512d b, __m512d c);
VFMSUBADDxxxPD __m512d _mm512_fmsubadd_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMSUBADDxxxPD __m512d _mm512_mask_fmsubadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMSUBADDxxxPD __m512d _mm512_maskz_fmsubadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMSUBADDxxxPD __m512d _mm512_mask3_fmsubadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMSUBADDxxxPD __m512d _mm512_mask_fmsubadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMSUBADDxxxPD __m512d _mm512_maskz_fmsubadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMSUBADDxxxPD __m512d _mm512_mask3_fmsubadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMSUBADDxxxPD __m256d _mm256_mask_fmsubadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMSUBADDxxxPD __m256d _mm256_maskz_fmsubadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMSUBADDxxxPD __m256d _mm256_mask3_fmsubadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMSUBADDxxxPD __m128d _mm_mask_fmsubadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMSUBADDxxxPD __m128d _mm_maskz_fmsubadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMSUBADDxxxPD __m128d _mm_mask3_fmsubadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMSUBADDxxxPD __m128d _mm_fmsubadd_pd (__m128d a, __m128d b, __m128d c);
VFMSUBADDxxxPD __m256d _mm256_fmsubadd_pd (__m256d a, __m256d b, __m256d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
5-270 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS—Fused Multiply-Alternating
Subtract/Add of Packed Single-Precision Floating-Point Values
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.128.66.0F38.W0 97 /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm1 and xmm3/mem, subtract/add elements in xmm2
and put result in xmm1.
VFMSUBADD132PS xmm1, xmm2,
xmm3/m128
VEX.DDS.128.66.0F38.W0 A7 /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm1 and xmm2, subtract/add elements in xmm3/mem
and put result in xmm1.
VFMSUBADD213PS xmm1, xmm2,
xmm3/m128
VEX.DDS.128.66.0F38.W0 B7 /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm2 and xmm3/mem, subtract/add elements in xmm1
and put result in xmm1.
VFMSUBADD231PS xmm1, xmm2,
xmm3/m128
VEX.DDS.256.66.0F38.W0 97 /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm1 and ymm3/mem, subtract/add elements in ymm2
and put result in ymm1.
VFMSUBADD132PS ymm1, ymm2,
ymm3/m256
VEX.DDS.256.66.0F38.W0 A7 /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm1 and ymm2, subtract/add elements in ymm3/mem
and put result in ymm1.
VFMSUBADD213PS ymm1, ymm2,
ymm3/m256
VEX.DDS.256.66.0F38.W0 B7 /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm2 and ymm3/mem, subtract/add elements in ymm1
and put result in ymm1.
VFMSUBADD231PS ymm1, ymm2,
ymm3/m256
EVEX.DDS.128.66.0F38.W0 97 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm1 and xmm3/m128/m32bcst, subtract/add elements
in xmm2 and put result in xmm1 subject to writemask k1.
VFMSUBADD132PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.DDS.128.66.0F38.W0 A7 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm1 and xmm2, subtract/add elements in
xmm3/m128/m32bcst and put result in xmm1 subject to
writemask k1.
VFMSUBADD213PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.DDS.128.66.0F38.W0 B7 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm2 and xmm3/m128/m32bcst, subtract/add elements
in xmm1 and put result in xmm1 subject to writemask k1.
VFMSUBADD231PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 97 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm1 and ymm3/m256/m32bcst, subtract/add elements
in ymm2 and put result in ymm1 subject to writemask k1.
VFMSUBADD132PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 A7 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm1 and ymm2, subtract/add elements in
ymm3/m256/m32bcst and put result in ymm1 subject to
writemask k1.
VFMSUBADD213PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 B7 /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm2 and ymm3/m256/m32bcst, subtract/add elements
in ymm1 and put result in ymm1 subject to writemask k1.
VFMSUBADD231PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.DDS.512.66.0F38.W0 97 /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm1 and zmm3/m512/m32bcst, subtract/add elements
in zmm2 and put result in zmm1 subject to writemask k1.
VFMSUBADD132PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
EVEX.DDS.512.66.0F38.W0 A7 /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm1 and zmm2, subtract/add elements in
zmm3/m512/m32bcst and put result in zmm1 subject to
writemask k1.
VFMSUBADD213PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
EVEX.DDS.512.66.0F38.W0 B7 /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm2 and zmm3/m512/m32bcst, subtract/add elements
in zmm1 and put result in zmm1 subject to writemask k1.
VFMSUBADD231PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
Ref. # 319433-023 5-271
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
VFMSUBADD132PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the first
source operand to the corresponding packed single-precision floating-point values in the third source operand.
From the infinite precision intermediate result, subtracts the odd single-precision floating-point elements and adds
the even single-precision floating-point values in the second source operand, performs rounding and stores the
resulting packed single-precision floating-point values to the destination operand (first source operand).
VFMSUBADD213PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the
second source operand to the corresponding packed single-precision floating-point values in the first source
operand. From the infinite precision intermediate result, subtracts the odd single-precision floating-point elements
and adds the even single-precision floating-point values in the third source operand, performs rounding and stores
the resulting packed single-precision floating-point values to the destination operand (first source operand).
VFMSUBADD231PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the
second source operand to the corresponding packed single-precision floating-point values in the third source
operand. From the infinite precision intermediate result, subtracts the odd single-precision floating-point elements
and adds the even single-precision floating-point values in the first source operand, performs rounding and stores
the resulting packed single-precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFMSUBADD132PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM -1{
n 64*i;
DEST[n+31:n] RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])
DEST[n+63:n+32] RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] -SRC2[n+63:n+32])
}
IF (VEX.128) THEN
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-272 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMSUBADD213PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM -1{
n 64*i;
DEST[n+31:n] RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] +SRC3[n+31:n])
DEST[n+63:n+32] RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] -SRC3[n+63:n+32])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMSUBADD231PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM -1{
n 64*i;
DEST[n+31:n] RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])
DEST[n+63:n+32] RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] -DEST[n+63:n+32])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMSUBADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+31:i]
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
Ref. # 319433-023 5-273
INSTRUCTION SET REFERENCE, A-Z
ELSE DEST[i+31:i]
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUBADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] + SRC2[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] + SRC2[i+31:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] - SRC2[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
FI;
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-274 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFMSUBADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
ELSE DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUBADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[31:0])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] + SRC3[i+31:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[31:0])
FI;
Ref. # 319433-023 5-275
INSTRUCTION SET REFERENCE, A-Z
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUBADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
ELSE DEST[i+31:i]
RoundFPControl(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUBADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF j *is even*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] + DEST[i+31:i])
ELSE
DEST[i+31:i]
5-276 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] + DEST[i+31:i])
FI;
ELSE
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] - DEST[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
FI;
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMSUBADDxxxPS __m512 _mm512_fmsubadd_ps(__m512 a, __m512 b, __m512 c);
VFMSUBADDxxxPS __m512 _mm512_fmsubadd_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFMSUBADDxxxPS __m512 _mm512_mask_fmsubadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFMSUBADDxxxPS __m512 _mm512_maskz_fmsubadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFMSUBADDxxxPS __m512 _mm512_mask3_fmsubadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFMSUBADDxxxPS __m512 _mm512_mask_fmsubadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFMSUBADDxxxPS __m512 _mm512_maskz_fmsubadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFMSUBADDxxxPS __m512 _mm512_mask3_fmsubadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFMSUBADDxxxPS __m256 _mm256_mask_fmsubadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFMSUBADDxxxPS __m256 _mm256_maskz_fmsubadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFMSUBADDxxxPS __m256 _mm256_mask3_fmsubadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFMSUBADDxxxPS __m128 _mm_mask_fmsubadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMSUBADDxxxPS __m128 _mm_maskz_fmsubadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMSUBADDxxxPS __m128 _mm_mask3_fmsubadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMSUBADDxxxPS __m128 _mm_fmsubadd_ps (__m128 a, __m128 b, __m128 c);
VFMSUBADDxxxPS __m256 _mm256_fmsubadd_ps (__m256 a, __m256 b, __m256 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-277
INSTRUCTION SET REFERENCE, A-Z
VFMSUB132PD/VFMSUB213PD/VFMSUB231PD—Fused Multiply-Subtract of Packed Double-
Precision Floating-Point Values
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W1 9A /r RVM V/V FMA Multiply packed double-precision floating-point values
from xmm1 and xmm3/mem, subtract xmm2 and put
result in xmm1.
VFMSUB132PD xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W1 AA /r RVM V/V FMA Multiply packed double-precision floating-point values
from xmm1 and xmm2, subtract xmm3/mem and put
result in xmm1.
VFMSUB213PD xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W1 BA /r RVM V/V FMA Multiply packed double-precision floating-point values
from xmm2 and xmm3/mem, subtract xmm1 and put
result in xmm1.
VFMSUB231PD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.W1 9A /r RVM V/V FMA Multiply packed double-precision floating-point values
from ymm1 and ymm3/mem, subtract ymm2 and put
result in ymm1.
VFMSUB132PD ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W1 AA /r RVM V/V FMA Multiply packed double-precision floating-point values
from ymm1 and ymm2, subtract ymm3/mem and put
result in ymm1.
VFMSUB213PD ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W1 BA /r RVM V/V FMA Multiply packed double-precision floating-point values
from ymm2 and ymm3/mem, subtract ymm1 and put
result in ymm1.S
VFMSUB231PD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W1 9A /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm1 and xmm3/m128/m64bcst, subtract xmm2
and put result in xmm1 subject to writemask k1.
VFMSUB132PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.NDS.128.66.0F38.W1 AA /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm1 and xmm2, subtract xmm3/m128/m64bcst
and put result in xmm1 subject to writemask k1.
VFMSUB213PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.NDS.128.66.0F38.W1 BA /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm2 and xmm3/m128/m64bcst, subtract xmm1
and put result in xmm1 subject to writemask k1.
VFMSUB231PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 9A /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm1 and ymm3/m256/m64bcst, subtract ymm2
and put result in ymm1 subject to writemask k1.
VFMSUB132PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 AA /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm1 and ymm2, subtract ymm3/m256/m64bcst
and put result in ymm1 subject to writemask k1.
VFMSUB213PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 BA /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm2 and ymm3/m256/m64bcst, subtract ymm1
and put result in ymm1 subject to writemask k1.
VFMSUB231PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 9A /r FV V/V AVX512F Multiply packed double-precision floating-point values
from zmm1 and zmm3/m512/m64bcst, subtract zmm2
and put result in zmm1 subject to writemask k1.
VFMSUB132PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
EVEX.NDS.512.66.0F38.W1 AA /r FV V/V AVX512F Multiply packed double-precision floating-point values
from zmm1 and zmm2, subtract zmm3/m512/m64bcst
and put result in zmm1 subject to writemask k1.
VFMSUB213PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
EVEX.NDS.512.66.0F38.W1 BA /r FV V/V AVX512F Multiply packed double-precision floating-point values
from zmm2 and zmm3/m512/m64bcst, subtract zmm1
and put result in zmm1 subject to writemask k1.
VFMSUB231PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
5-278 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Performs a set of SIMD multiply-subtract computation on packed double-precision floating-point values using three
source operands and writes the multiply-subtract results in the destination operand. The destination operand is
also the first source operand. The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.
VFMSUB132PD: Multiplies the two, four or eight packed double-precision floating-point values from the first source
operand to the two, four or eight packed double-precision floating-point values in the third source operand. From
the infinite precision intermediate result, subtracts the two, four or eight packed double-precision floating-point
values in the second source operand, performs rounding and stores the resulting two, four or eight packed double-
precision floating-point values to the destination operand (first source operand).
VFMSUB213PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source operand to the two, four or eight packed double-precision floating-point values in the first source operand.
From the infinite precision intermediate result, subtracts the two, four or eight packed double-precision floating-
point values in the third source operand, performs rounding and stores the resulting two, four or eight packed
double-precision floating-point values to the destination operand (first source operand).
VFMSUB231PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source to the two, four or eight packed double-precision floating-point values in the third source operand. From the
infinite precision intermediate result, subtracts the two, four or eight packed double-precision floating-point values
in the first source operand, performs rounding and stores the resulting two, four or eight packed double-precision
floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
VFMSUB132PD DEST, SRC2, SRC3 (VEX encoded versions)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] - SRC2[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-279
INSTRUCTION SET REFERENCE, A-Z
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMSUB213PD DEST, SRC2, SRC3 (VEX encoded versions)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] - SRC3[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMSUB231PD DEST, SRC2, SRC3 (VEX encoded versions)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] - DEST[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMSUB132PD DEST, SRC2, SRC3 (EVEX encoded versions, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
5-280 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUB132PD DEST, SRC2, SRC3 (EVEX encoded versions, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] - SRC2[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUB213PD DEST, SRC2, SRC3 (EVEX encoded versions, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-281
INSTRUCTION SET REFERENCE, A-Z
VFMSUB213PD DEST, SRC2, SRC3 (EVEX encoded versions, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[63:0])
+31:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUB231PD DEST, SRC2, SRC3 (EVEX encoded versions, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-282 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFMSUB231PD DEST, SRC2, SRC3 (EVEX encoded versions, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] - DEST[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMSUBxxxPD __m512d _mm512_fmsub_pd(__m512d a, __m512d b, __m512d c);
VFMSUBxxxPD __m512d _mm512_fmsub_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFMSUBxxxPD __m512d _mm512_mask_fmsub_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFMSUBxxxPD __m512d _mm512_maskz_fmsub_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFMSUBxxxPD __m512d _mm512_mask3_fmsub_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFMSUBxxxPD __m512d _mm512_mask_fmsub_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFMSUBxxxPD __m512d _mm512_maskz_fmsub_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFMSUBxxxPD __m512d _mm512_mask3_fmsub_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFMSUBxxxPD __m256d _mm256_mask_fmsub_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFMSUBxxxPD __m256d _mm256_maskz_fmsub_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFMSUBxxxPD __m256d _mm256_mask3_fmsub_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFMSUBxxxPD __m128d _mm_mask_fmsub_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMSUBxxxPD __m128d _mm_maskz_fmsub_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMSUBxxxPD __m128d _mm_mask3_fmsub_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMSUBxxxPD __m128d _mm_fmsub_pd (__m128d a, __m128d b, __m128d c);
VFMSUBxxxPD __m256d _mm256_fmsub_pd (__m256d a, __m256d b, __m256d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-283
INSTRUCTION SET REFERENCE, A-Z
VFMSUB132PS/VFMSUB213PS/VFMSUB231PS—Fused Multiply-Subtract of Packed Single-
Precision Floating-Point Values
Opcode/
Instruction
Op/E
n
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W0 9A /r RVM V/V FMA Multiply packed single-precision floating-point values
from xmm1 and xmm3/mem, subtract xmm2 and put
result in xmm1.
VFMSUB132PS xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W0 AA /r RVM V/V FMA Multiply packed single-precision floating-point values
from xmm1 and xmm2, subtract xmm3/mem and put
result in xmm1.
VFMSUB213PS xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W0 BA /r RVM V/V FMA Multiply packed single-precision floating-point values
from xmm2 and xmm3/mem, subtract xmm1 and put
result in xmm1.
VFMSUB231PS xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.W0 9A /r RVM V/V FMA Multiply packed single-precision floating-point values
from ymm1 and ymm3/mem, subtract ymm2 and put
result in ymm1.
VFMSUB132PS ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W0 AA /r RVM V/V FMA Multiply packed single-precision floating-point values
from ymm1 and ymm2, subtract ymm3/mem and put
result in ymm1.
VFMSUB213PS ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.0 BA /r RVM V/V FMA Multiply packed single-precision floating-point values
from ymm2 and ymm3/mem, subtract ymm1 and put
result in ymm1.
VFMSUB231PS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W0 9A /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from xmm1 and xmm3/m128/m32bcst, subtract
xmm2 and put result in xmm1.
VFMSUB132PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.128.66.0F38.W0 AA /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from xmm1 and xmm2, subtract
xmm3/m128/m32bcst and put result in xmm1.
VFMSUB213PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.128.66.0F38.W0 BA /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from xmm2 and xmm3/m128/m32bcst, subtract
xmm1 and put result in xmm1.
VFMSUB231PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 9A /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from ymm1 and ymm3/m256/m32bcst, subtract
ymm2 and put result in ymm1.
VFMSUB132PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 AA /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from ymm1 and ymm2, subtract
ymm3/m256/m32bcst and put result in ymm1.
VFMSUB213PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 BA /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from ymm2 and ymm3/m256/m32bcst, subtract
ymm1 and put result in ymm1.
VFMSUB231PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 9A /r FV V/V AVX512F Multiply packed single-precision floating-point values
from zmm1 and zmm3/m512/m32bcst, subtract zmm2
and put result in zmm1.
VFMSUB132PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
EVEX.NDS.512.66.0F38.W0 AA /r FV V/V AVX512F Multiply packed single-precision floating-point values
from zmm1 and zmm2, subtract zmm3/m512/m32bcst
and put result in zmm1.
VFMSUB213PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
EVEX.NDS.512.66.0F38.W0 BA /r FV V/V AVX512F Multiply packed single-precision floating-point values
from zmm2 and zmm3/m512/m32bcst, subtract zmm1
and put result in zmm1.
VFMSUB231PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
5-284 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Performs a set of SIMD multiply-subtract computation on packed single-precision floating-point values using three
source operands and writes the multiply-subtract results in the destination operand. The destination operand is
also the first source operand. The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.
VFMSUB132PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the first
source operand to the four, eight or sixteen packed single-precision floating-point values in the third source
operand. From the infinite precision intermediate result, subtracts the four, eight or sixteen packed single-precision
floating-point values in the second source operand, performs rounding and stores the resulting four, eight or
sixteen packed single-precision floating-point values to the destination operand (first source operand).
VFMSUB213PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second
source operand to the four, eight or sixteen packed single-precision floating-point values in the first source
operand. From the infinite precision intermediate result, subtracts the four, eight or sixteen packed single-precision
floating-point values in the third source operand, performs rounding and stores the resulting four, eight or sixteen
packed single-precision floating-point values to the destination operand (first source operand).
VFMSUB231PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second
source to the four, eight or sixteen packed single-precision floating-point values in the third source operand. From
the infinite precision intermediate result, subtracts the four, eight or sixteen packed single-precision floating-point
values in the first source operand, performs rounding and stores the resulting four, eight or sixteen packed single-
precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
VFMSUB132PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-285
INSTRUCTION SET REFERENCE, A-Z
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMSUB213PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMSUB231PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
5-286 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] - SRC2[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-287
INSTRUCTION SET REFERENCE, A-Z
VFMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[31:0])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
5-288 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] - DEST[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMSUBxxxPS __m512 _mm512_fmsub_ps(__m512 a, __m512 b, __m512 c);
VFMSUBxxxPS __m512 _mm512_fmsub_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFMSUBxxxPS __m512 _mm512_mask_fmsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFMSUBxxxPS __m512 _mm512_maskz_fmsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFMSUBxxxPS __m512 _mm512_mask3_fmsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFMSUBxxxPS __m512 _mm512_mask_fmsub_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFMSUBxxxPS __m512 _mm512_maskz_fmsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFMSUBxxxPS __m512 _mm512_mask3_fmsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFMSUBxxxPS __m256 _mm256_mask_fmsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFMSUBxxxPS __m256 _mm256_maskz_fmsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFMSUBxxxPS __m256 _mm256_mask3_fmsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFMSUBxxxPS __m128 _mm_mask_fmsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMSUBxxxPS __m128 _mm_maskz_fmsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMSUBxxxPS __m128 _mm_mask3_fmsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMSUBxxxPS __m128 _mm_fmsub_ps (__m128 a, __m128 b, __m128 c);
VFMSUBxxxPS __m256 _mm256_fmsub_ps (__m256 a, __m256 b, __m256 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-289
INSTRUCTION SET REFERENCE, A-Z
VFMSUB132SD/VFMSUB213SD/VFMSUB231SD—Fused Multiply-Subtract of Scalar Double-
Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD multiply-subtract computation on the low packed double-precision floating-point values using
three source operands and writes the multiply-subtract result in the destination operand. The destination operand
is also the first source operand. The second operand must be a XMM register. The third source operand can be a
XMM register or a 64-bit memory location.
VFMSUB132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand. From the infinite precision inter-
mediate result, subtracts the low packed double-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand
(first source operand).
VFMSUB213SD: Multiplies the low packed double-precision floating-point value from the second source operand to
the low packed double-precision floating-point value in the first source operand. From the infinite precision inter-
mediate result, subtracts the low packed double-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand
(first source operand).
VFMSUB231SD: Multiplies the low packed double-precision floating-point value from the second source to the low
packed double-precision floating-point value in the third source operand. From the infinite precision intermediate
result, subtracts the low packed double-precision floating-point value in the first source operand, performs
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.LIG.66.0F38.W1 9B /r RVM V/V FMA Multiply scalar double-precision floating-point value from
xmm1 and xmm3/m64, subtract xmm2 and put result in
xmm1.
VFMSUB132SD xmm1, xmm2,
xmm3/m64
VEX.DDS.LIG.66.0F38.W1 AB /r RVM V/V FMA Multiply scalar double-precision floating-point value from
xmm1 and xmm2, subtract xmm3/m64 and put result in
xmm1.
VFMSUB213SD xmm1, xmm2,
xmm3/m64
VEX.DDS.LIG.66.0F38.W1 BB /r RVM V/V FMA Multiply scalar double-precision floating-point value from
xmm2 and xmm3/m64, subtract xmm1 and put result in
xmm1.
VFMSUB231SD xmm1, xmm2,
xmm3/m64
EVEX.DDS.LIG.66.0F38.W1 9B /r T1S V/V AVX512F Multiply scalar double-precision floating-point value from
xmm1 and xmm3/m64, subtract xmm2 and put result in
xmm1.
VFMSUB132SD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
EVEX.DDS.LIG.66.0F38.W1 AB /r T1S V/V AVX512F Multiply scalar double-precision floating-point value from
xmm1 and xmm2, subtract xmm3/m64 and put result in
xmm1.
VFMSUB213SD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
EVEX.DDS.LIG.66.0F38.W1 BB /r T1S V/V AVX512F Multiply scalar double-precision floating-point value from
xmm2 and xmm3/m64, subtract xmm1 and put result in
xmm1.
VFMSUB231SD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-290 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field.
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field.
Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
VFMSUB132SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFMSUB213SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
Ref. # 319433-023 5-291
INSTRUCTION SET REFERENCE, A-Z
VFMSUB231SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFMSUB132SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFMSUB213SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFMSUB231SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMSUBxxxSD __m128d _mm_fmsub_round_sd(__m128d a, __m128d b, __m128d c, int r);
VFMSUBxxxSD __m128d _mm_mask_fmsub_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFMSUBxxxSD __m128d _mm_maskz_fmsub_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFMSUBxxxSD __m128d _mm_mask3_fmsub_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFMSUBxxxSD __m128d _mm_mask_fmsub_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int r);
VFMSUBxxxSD __m128d _mm_maskz_fmsub_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int r);
VFMSUBxxxSD __m128d _mm_mask3_fmsub_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int r);
VFMSUBxxxSD __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
5-292 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS—Fused Multiply-Subtract of Scalar Single-
Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD multiply-subtract computation on the low packed single-precision floating-point values using
three source operands and writes the multiply-subtract result in the destination operand. The destination operand
is also the first source operand. The second operand must be a XMM register. The third source operand can be a
XMM register or a 32-bit memory location.
VFMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to the
low packed single-precision floating-point value in the third source operand. From the infinite precision interme-
diate result, subtracts the low packed single-precision floating-point values in the second source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).
VFMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the first source operand. From the infinite precision interme-
diate result, subtracts the low packed single-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).
VFMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low
packed single-precision floating-point value in the third source operand. From the infinite precision intermediate
result, subtracts the low packed single-precision floating-point value in the first source operand, performs rounding
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.LIG.66.0F38.W0 9B /r RVM V/V FMA Multiply scalar single-precision floating-point value from
xmm1 and xmm3/m32, subtract xmm2 and put result in
xmm1.
VFMSUB132SS xmm1, xmm2,
xmm3/m32
VEX.DDS.LIG.66.0F38.W0 AB /r RVM V/V FMA Multiply scalar single-precision floating-point value from
xmm1 and xmm2, subtract xmm3/m32 and put result in
xmm1.
VFMSUB213SS xmm1, xmm2,
xmm3/m32
VEX.DDS.LIG.66.0F38.W0 BB /r RVM V/V FMA Multiply scalar single-precision floating-point value from
xmm2 and xmm3/m32, subtract xmm1 and put result in
xmm1.
VFMSUB231SS xmm1, xmm2,
xmm3/m32
EVEX.DDS.LIG.66.0F38.W0 9B /r T1S V/V AVX512F Multiply scalar single-precision floating-point value from
xmm1 and xmm3/m32, subtract xmm2 and put result in
xmm1.
VFMSUB132SS xmm1 {k1}{z},
xmm2, xmm3/m32{er}
EVEX.DDS.LIG.66.0F38.W0 AB /r T1S V/V AVX512F Multiply scalar single-precision floating-point value from
xmm1 and xmm2, subtract xmm3/m32 and put result in
xmm1.
VFMSUB213SS xmm1 {k1}{z},
xmm2, xmm3/m32{er}
EVEX.DDS.LIG.66.0F38.W0 BB /r T1S V/V AVX512F Multiply scalar single-precision floating-point value from
xmm2 and xmm3/m32, subtract xmm1 and put result in
xmm1.
VFMSUB231SS xmm1 {k1}{z},
xmm2, xmm3/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-293
INSTRUCTION SET REFERENCE, A-Z
and stores the resulting packed single-precision floating-point value to the destination operand (first source
operand).
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field.
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field.
Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
VFMSUB132SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(DEST[31:0]*SRC3[31:0] - SRC2[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFMSUB213SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(SRC2[31:0]*DEST[31:0] - SRC3[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
5-294 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFMSUB231SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(SRC2[31:0]*SRC3[63:0] - DEST[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFMSUB132SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] - SRC2[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFMSUB213SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] - SRC3[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFMSUB231SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(SRC2[31:0]*SRC3[31:0] - DEST[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFMSUBxxxSS __m128 _mm_fmsub_round_ss(__m128 a, __m128 b, __m128 c, int r);
VFMSUBxxxSS __m128 _mm_mask_fmsub_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMSUBxxxSS __m128 _mm_maskz_fmsub_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMSUBxxxSS __m128 _mm_mask3_fmsub_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMSUBxxxSS __m128 _mm_mask_fmsub_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);
VFMSUBxxxSS __m128 _mm_maskz_fmsub_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);
VFMSUBxxxSS __m128 _mm_mask3_fmsub_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);
VFMSUBxxxSS __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
Ref. # 319433-023 5-295
INSTRUCTION SET REFERENCE, A-Z
VFNMADD132PD/VFNMADD213PD/VFNMADD231PD—Fused Negative Multiply-Add of Packed
Double-Precision Floating-Point Values
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W1 9C /r RVM V/V FMA Multiply packed double-precision floating-point values from
xmm1 and xmm3/mem, negate the multiplication result
and add to xmm2 and put result in xmm1.
VFNMADD132PD xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W1 AC /r RVM V/V FMA Multiply packed double-precision floating-point values from
xmm1 and xmm2, negate the multiplication result and add
to xmm3/mem and put result in xmm1.
VFNMADD213PD xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W1 BC /r RVM V/V FMA Multiply packed double-precision floating-point values from
xmm2 and xmm3/mem, negate the multiplication result
and add to xmm1 and put result in xmm1.
VFNMADD231PD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.W1 9C /r RVM V/V FMA Multiply packed double-precision floating-point values from
ymm1 and ymm3/mem, negate the multiplication result and
add to ymm2 and put result in ymm1.
VFNMADD132PD ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W1 AC /r RVM V/V FMA Multiply packed double-precision floating-point values from
ymm1 and ymm2, negate the multiplication result and add
to ymm3/mem and put result in ymm1.
VFNMADD213PD ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W1 BC /r RVM V/V FMA Multiply packed double-precision floating-point values from
ymm2 and ymm3/mem, negate the multiplication result and
add to ymm1 and put result in ymm1.
VFNMADD231PD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W1 9C /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
xmm1 and xmm3/m128/m64bcst, negate the
multiplication result and add to xmm2 and put result in
xmm1.
VFNMADD132PD xmm0 {k1}{z},
xmm1, xmm2/m128/m64bcst
AVX512F
EVEX.NDS.128.66.0F38.W1 AC /r FV V/V AVX512VL
AVX512F
Multiply packed double-precision floating-point values from
xmm1 and xmm2, negate the multiplication result and add
to xmm3/m128/m64bcst and put result in xmm1.
VFNMADD213PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
EVEX.NDS.128.66.0F38.W1 BC /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
xmm2 and xmm3/m128/m64bcst, negate the
multiplication result and add to xmm1 and put result in
xmm1.
VFNMADD231PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 9C /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
ymm1 and ymm3/m256/m64bcst, negate the
multiplication result and add to ymm2 and put result in
ymm1.
VFNMADD132PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 AC /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
ymm1 and ymm2, negate the multiplication result and add
to ymm3/m256/m64bcst and put result in ymm1.
VFNMADD213PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 BC /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
ymm2 and ymm3/m256/m64bcst, negate the
multiplication result and add to ymm1 and put result in
ymm1.
VFNMADD231PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 9C /r FV V/V AVX512F Multiply packed double-precision floating-point values from
zmm1 and zmm3/m512/m64bcst, negate the multiplication
result and add to zmm2 and put result in zmm1.
VFNMADD132PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
5-296 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
VFNMADD132PD: Multiplies the two, four or eight packed double-precision floating-point values from the first
source operand to the two, four or eight packed double-precision floating-point values in the third source operand,
adds the negated infinite precision intermediate result to the two, four or eight packed double-precision floating-
point values in the second source operand, performs rounding and stores the resulting two, four or eight packed
double-precision floating-point values to the destination operand (first source operand).
VFNMADD213PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source operand to the two, four or eight packed double-precision floating-point values in the first source operand,
adds the negated infinite precision intermediate result to the two, four or eight packed double-precision floating-
point values in the third source operand, performs rounding and stores the resulting two, four or eight packed
double-precision floating-point values to the destination operand (first source operand).
VFNMADD231PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source to the two, four or eight packed double-precision floating-point values in the third source operand, the
negated infinite precision intermediate result to the two, four or eight packed double-precision floating-point values
in the first source operand, performs rounding and stores the resulting two, four or eight packed double-precision
floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
EVEX.NDS.512.66.0F38.W1 AC /r FV V/V AVX512F Multiply packed double-precision floating-point values from
zmm1 and zmm2, negate the multiplication result and add
to zmm3/m512/m64bcst and put result in zmm1.
VFNMADD213PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
EVEX.NDS.512.66.0F38.W1 BC /r FV V/V AVX512F Multiply packed double-precision floating-point values from
zmm2 and zmm3/m512/m64bcst, negate the multiplication
result and add to zmm1 and put result in zmm1.
VFNMADD231PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-297
INSTRUCTION SET REFERENCE, A-Z
VFNMADD132PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR(-(DEST[n+63:n]*SRC3[n+63:n]) + SRC2[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFNMADD213PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR(-(SRC2[n+63:n]*DEST[n+63:n]) + SRC3[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFNMADD231PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR(-(SRC2[n+63:n]*SRC3[n+63:n]) + DEST[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
5-298 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(-(DEST[i+63:i]*SRC3[i+63:i]) + SRC2[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMADD132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(-(DEST[i+63:i]*SRC3[63:0]) + SRC2[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(-(DEST[i+63:i]*SRC3[i+63:i]) + SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-299
INSTRUCTION SET REFERENCE, A-Z
VFNMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(-(SRC2[i+63:i]*DEST[i+63:i]) + SRC3[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMADD213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(-(SRC2[i+63:i]*DEST[i+63:i]) + SRC3[63:0])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(-(SRC2[i+63:i]*DEST[i+63:i]) + SRC3[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-300 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(-(SRC2[i+63:i]*SRC3[i+63:i]) + DEST[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMADD231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(-(SRC2[i+63:i]*SRC3[63:0]) + DEST[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(-(SRC2[i+63:i]*SRC3[i+63:i]) + DEST[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFNMADDxxxPD __m512d _mm512_fnmadd_pd(__m512d a, __m512d b, __m512d c);
VFNMADDxxxPD __m512d _mm512_fnmadd_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFNMADDxxxPD __m512d _mm512_mask_fnmadd_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFNMADDxxxPD __m512d _mm512_maskz_fnmadd_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFNMADDxxxPD __m512d _mm512_mask3_fnmadd_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
Ref. # 319433-023 5-301
INSTRUCTION SET REFERENCE, A-Z
VFNMADDxxxPD __m512d _mm512_mask_fnmadd_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFNMADDxxxPD __m512d _mm512_maskz_fnmadd_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFNMADDxxxPD __m512d _mm512_mask3_fnmadd_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFNMADDxxxPD __m256d _mm256_mask_fnmadd_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFNMADDxxxPD __m256d _mm256_maskz_fnmadd_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFNMADDxxxPD __m256d _mm256_mask3_fnmadd_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFNMADDxxxPD __m128d _mm_mask_fnmadd_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFNMADDxxxPD __m128d _mm_maskz_fnmadd_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFNMADDxxxPD __m128d _mm_mask3_fnmadd_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFNMADDxxxPD __m128d _mm_fnmadd_pd (__m128d a, __m128d b, __m128d c);
VFNMADDxxxPD __m256d _mm256_fnmadd_pd (__m256d a, __m256d b, __m256d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
5-302 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMADD132PS/VFNMADD213PS/VFNMADD231PS—Fused Negative Multiply-Add of Packed
Single-Precision Floating-Point Values
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W0 9C /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm1 and xmm3/mem, negate the multiplication result
and add to xmm2 and put result in xmm1.
VFNMADD132PS xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W0 AC /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm1 and xmm2, negate the multiplication result and add
to xmm3/mem and put result in xmm1.
VFNMADD213PS xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W0 BC /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm2 and xmm3/mem, negate the multiplication result
and add to xmm1 and put result in xmm1.
VFNMADD231PS xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.W0 9C /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm1 and ymm3/mem, negate the multiplication result
and add to ymm2 and put result in ymm1.
VFNMADD132PS ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W0 AC /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm1 and ymm2, negate the multiplication result and add
to ymm3/mem and put result in ymm1.
VFNMADD213PS ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.0 BC /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm2 and ymm3/mem, negate the multiplication result and
add to ymm1 and put result in ymm1.
VFNMADD231PS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W0 9C /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm1 and xmm3/m128/m32bcst, negate the multiplication
result and add to xmm2 and put result in xmm1.
VFNMADD132PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.128.66.0F38.W0 AC /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm1 and xmm2, negate the multiplication result and add
to xmm3/m128/m32bcst and put result in xmm1.
VFNMADD213PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.128.66.0F38.W0 BC /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm2 and xmm3/m128/m32bcst, negate the multiplication
result and add to xmm1 and put result in xmm1.
VFNMADD231PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 9C /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm1 and ymm3/m256/m32bcst, negate the multiplication
result and add to ymm2 and put result in ymm1.
VFNMADD132PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 AC /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm1 and ymm2, negate the multiplication result and add
to ymm3/m256/m32bcst and put result in ymm1.
VFNMADD213PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 BC /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm2 and ymm3/m256/m32bcst, negate the multiplication
result and add to ymm1 and put result in ymm1.
VFNMADD231PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 9C /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
zmm1 and zmm3/m512/m32bcst, negate the multiplication
result and add to zmm2 and put result in zmm1.
VFNMADD132PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
AVX512F
EVEX.NDS.512.66.0F38.W0 AC /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm1 and zmm2, negate the multiplication result and add
to zmm3/m512/m32bcst and put result in zmm1.
VFNMADD213PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
EVEX.NDS.512.66.0F38.W0 BC /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm2 and zmm3/m512/m32bcst, negate the multiplication
result and add to zmm1 and put result in zmm1.
VFNMADD231PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
Ref. # 319433-023 5-303
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
VFNMADD132PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the first
source operand to the four, eight or sixteen packed single-precision floating-point values in the third source
operand, adds the negated infinite precision intermediate result to the four, eight or sixteen packed single-preci-
sion floating-point values in the second source operand, performs rounding and stores the resulting four, eight or
sixteen packed single-precision floating-point values to the destination operand (first source operand).
VFNMADD213PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second
source operand to the four, eight or sixteen packed single-precision floating-point values in the first source
operand, adds the negated infinite precision intermediate result to the four, eight or sixteen packed single-preci-
sion floating-point values in the third source operand, performs rounding and stores the resulting the four, eight or
sixteen packed single-precision floating-point values to the destination operand (first source operand).
VFNMADD231PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second
source operand to the four, eight or sixteen packed single-precision floating-point values in the third source
operand, adds the negated infinite precision intermediate result to the four, eight or sixteen packed single-preci-
sion floating-point values in the first source operand, performs rounding and stores the resulting four, eight or
sixteen packed single-precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFNMADD132PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR(- (DEST[n+31:n]*SRC3[n+31:n]) + SRC2[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-304 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMADD213PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR(- (SRC2[n+31:n]*DEST[n+31:n]) + SRC3[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFNMADD231PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR(- (SRC2[n+31:n]*SRC3[n+31:n]) + DEST[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFNMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl(-(DEST[i+31:i]*SRC3[i+31:i]) + SRC2[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-305
INSTRUCTION SET REFERENCE, A-Z
VFNMADD132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(-(DEST[i+31:i]*SRC3[31:0]) + SRC2[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(-(DEST[i+31:i]*SRC3[i+31:i]) + SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl(-(SRC2[i+31:i]*DEST[i+31:i]) + SRC3[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-306 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMADD213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) + SRC3[31:0])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) + SRC3[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl(-(SRC2[i+31:i]*SRC3[i+31:i]) + DEST[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-307
INSTRUCTION SET REFERENCE, A-Z
VFNMADD231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[31:0]) + DEST[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[i+31:i]) + DEST[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFNMADDxxxPS __m512 _mm512_fnmadd_ps(__m512 a, __m512 b, __m512 c);
VFNMADDxxxPS __m512 _mm512_fnmadd_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFNMADDxxxPS __m512 _mm512_mask_fnmadd_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFNMADDxxxPS __m512 _mm512_maskz_fnmadd_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFNMADDxxxPS __m512 _mm512_mask3_fnmadd_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFNMADDxxxPS __m512 _mm512_mask_fnmadd_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFNMADDxxxPS __m512 _mm512_maskz_fnmadd_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFNMADDxxxPS __m512 _mm512_mask3_fnmadd_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFNMADDxxxPS __m256 _mm256_mask_fnmadd_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFNMADDxxxPS __m256 _mm256_maskz_fnmadd_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFNMADDxxxPS __m256 _mm256_mask3_fnmadd_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFNMADDxxxPS __m128 _mm_mask_fnmadd_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFNMADDxxxPS __m128 _mm_maskz_fnmadd_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFNMADDxxxPS __m128 _mm_mask3_fnmadd_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFNMADDxxxPS __m128 _mm_fnmadd_ps (__m128 a, __m128 b, __m128 c);
VFNMADDxxxPS __m256 _mm256_fnmadd_ps (__m256 a, __m256 b, __m256 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
5-308 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMADD132SD/VFNMADD213SD/VFNMADD231SD—Fused Negative Multiply-Add of Scalar
Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
VFNMADD132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand, adds the negated infinite preci-
sion intermediate result to the low packed double-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand
(first source operand).
VFNMADD213SD: Multiplies the low packed double-precision floating-point value from the second source operand
to the low packed double-precision floating-point value in the first source operand, adds the negated infinite preci-
sion intermediate result to the low packed double-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand
(first source operand).
VFNMADD231SD: Multiplies the low packed double-precision floating-point value from the second source to the low
packed double-precision floating-point value in the third source operand, adds the negated infinite precision inter-
mediate result to the low packed double-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.LIG.66.0F38.W1 9D /r RVM V/V FMA Multiply scalar double-precision floating-point value from
xmm1 and xmm3/mem, negate the multiplication result and
add to xmm2 and put result in xmm1.
VFNMADD132SD xmm1, xmm2,
xmm3/m64
VEX.DDS.LIG.66.0F38.W1 AD /r RVM V/V FMA Multiply scalar double-precision floating-point value from
xmm1 and xmm2, negate the multiplication result and add to
xmm3/mem and put result in xmm1.
VFNMADD213SD xmm1, xmm2,
xmm3/m64
VEX.DDS.LIG.66.0F38.W1 BD /r RVM V/V FMA Multiply scalar double-precision floating-point value from
xmm2 and xmm3/mem, negate the multiplication result and
add to xmm1 and put result in xmm1.
VFNMADD231SD xmm1, xmm2,
xmm3/m64
EVEX.DDS.LIG.66.0F38.W1 9D /r T1S V/V AVX512F Multiply scalar double-precision floating-point value from
xmm1 and xmm3/m64, negate the multiplication result and
add to xmm2 and put result in xmm1.
VFNMADD132SD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
EVEX.DDS.LIG.66.0F38.W1 AD /r T1S V/V AVX512F Multiply scalar double-precision floating-point value from
xmm1 and xmm2, negate the multiplication result and add to
xmm3/m64 and put result in xmm1.
VFNMADD213SD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
EVEX.DDS.LIG.66.0F38.W1 BD /r T1S V/V AVX512F Multiply scalar double-precision floating-point value from
xmm2 and xmm3/m64, negate the multiplication result and
add to xmm1 and put result in xmm1.
VFNMADD231SD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-309
INSTRUCTION SET REFERENCE, A-Z
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field.
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field.
Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFNMADD132SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(-(DEST[63:0]*SRC3[63:0]) + SRC2[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFNMADD213SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(-(SRC2[63:0]*DEST[63:0]) + SRC3[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
5-310 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMADD231SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(-(SRC2[63:0]*SRC3[63:0]) + DEST[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFNMADD132SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) + SRC2[63:0])
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFNMADD213SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) + SRC3[63:0])
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFNMADD231SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) + DEST[63:0])
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFNMADDxxxSD __m128d _mm_fnmadd_round_sd(__m128d a, __m128d b, __m128d c, int r);
VFNMADDxxxSD __m128d _mm_mask_fnmadd_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFNMADDxxxSD __m128d _mm_maskz_fnmadd_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFNMADDxxxSD __m128d _mm_mask3_fnmadd_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFNMADDxxxSD __m128d _mm_mask_fnmadd_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int r);
VFNMADDxxxSD __m128d _mm_maskz_fnmadd_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int r);
VFNMADDxxxSD __m128d _mm_mask3_fnmadd_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int r);
VFNMADDxxxSD __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
Ref. # 319433-023 5-311
INSTRUCTION SET REFERENCE, A-Z
VFNMADD132SS/VFNMADD213SS/VFNMADD231SS—Fused Negative Multiply-Add of Scalar
Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
VFNMADD132SS: Multiplies the low packed single-precision floating-point value from the first source operand to
the low packed single-precision floating-point value in the third source operand, adds the negated infinite precision
intermediate result to the low packed single-precision floating-point value in the second source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).
VFNMADD213SS: Multiplies the low packed single-precision floating-point value from the second source operand
to the low packed single-precision floating-point value in the first source operand, adds the negated infinite preci-
sion intermediate result to the low packed single-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed single-precision floating-point value to the destination operand
(first source operand).
VFNMADD231SS: Multiplies the low packed single-precision floating-point value from the second source operand
to the low packed single-precision floating-point value in the third source operand, adds the negated infinite preci-
sion intermediate result to the low packed single-precision floating-point value in the first source operand,
performs rounding and stores the resulting packed single-precision floating-point value to the destination operand
(first source operand).
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.LIG.66.0F38.W0 9D /r RVM V/V FMA Multiply scalar single-precision floating-point value from
xmm1 and xmm3/m32, negate the multiplication result
and add to xmm2 and put result in xmm1.
VFNMADD132SS xmm1, xmm2,
xmm3/m32
VEX.DDS.LIG.66.0F38.W0 AD /r RVM V/V FMA Multiply scalar single-precision floating-point value from
xmm1 and xmm2, negate the multiplication result and
add to xmm3/m32 and put result in xmm1.
VFNMADD213SS xmm1, xmm2,
xmm3/m32
VEX.DDS.LIG.66.0F38.W0 BD /r RVM V/V FMA Multiply scalar single-precision floating-point value from
xmm2 and xmm3/m32, negate the multiplication result
and add to xmm1 and put result in xmm1.
VFNMADD231SS xmm1, xmm2,
xmm3/m32
EVEX.DDS.LIG.66.0F38.W0 9D /r T1S V/V AVX512F Multiply scalar single-precision floating-point value from
xmm1 and xmm3/m32, negate the multiplication result
and add to xmm2 and put result in xmm1.
VFNMADD132SS xmm1 {k1}{z},
xmm2, xmm3/m32{er}
EVEX.DDS.LIG.66.0F38.W0 AD /r T1S V/V AVX512F Multiply scalar single-precision floating-point value from
xmm1 and xmm2, negate the multiplication result and
add to xmm3/m32 and put result in xmm1.
VFNMADD213SS xmm1 {k1}{z},
xmm2, xmm3/m32{er}
EVEX.DDS.LIG.66.0F38.W0 BD /r T1S V/V AVX512F Multiply scalar single-precision floating-point value from
xmm2 and xmm3/m32, negate the multiplication result
and add to xmm1 and put result in xmm1.
VFNMADD231SS xmm1 {k1}{z},
xmm2, xmm3/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-312 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field.
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field.
Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
Operation
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no
rounding).
VFNMADD132SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(-(DEST[31:0]*SRC3[31:0]) + SRC2[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFNMADD213SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(-(SRC2[31:0]*DEST[31:0]) + SRC3[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
Ref. # 319433-023 5-313
INSTRUCTION SET REFERENCE, A-Z
VFNMADD231SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(-(SRC2[31:0]*SRC3[63:0]) + DEST[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFNMADD132SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) + SRC2[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFNMADD213SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) + SRC3[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFNMADD231SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[31:0]) + DEST[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFNMADDxxxSS __m128 _mm_fnmadd_round_ss(__m128 a, __m128 b, __m128 c, int r);
VFNMADDxxxSS __m128 _mm_mask_fnmadd_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFNMADDxxxSS __m128 _mm_maskz_fnmadd_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFNMADDxxxSS __m128 _mm_mask3_fnmadd_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFNMADDxxxSS __m128 _mm_mask_fnmadd_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);
VFNMADDxxxSS __m128 _mm_maskz_fnmadd_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);
VFNMADDxxxSS __m128 _mm_mask3_fnmadd_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);
VFNMADDxxxSS __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
5-314 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD—Fused Negative Multiply-Subtract of
Packed Double-Precision Floating-Point Values
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W1 9E /r RVM V/V FMA Multiply packed double-precision floating-point values from
xmm1 and xmm3/mem, negate the multiplication result
and subtract xmm2 and put result in xmm1.
VFNMSUB132PD xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W1 AE /r RVM V/V FMA Multiply packed double-precision floating-point values from
xmm1 and xmm2, negate the multiplication result and
subtract xmm3/mem and put result in xmm1.
VFNMSUB213PD xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W1 BE /r RVM V/V FMA Multiply packed double-precision floating-point values from
xmm2 and xmm3/mem, negate the multiplication result
and subtract xmm1 and put result in xmm1.
VFNMSUB231PD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.W1 9E /r RVM V/V FMA Multiply packed double-precision floating-point values from
ymm1 and ymm3/mem, negate the multiplication result and
subtract ymm2 and put result in ymm1.
VFNMSUB132PD ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W1 AE /r RVM V/V FMA Multiply packed double-precision floating-point values from
ymm1 and ymm2, negate the multiplication result and
subtract ymm3/mem and put result in ymm1.
VFNMSUB213PD ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W1 BE /r RVM V/V FMA Multiply packed double-precision floating-point values from
ymm2 and ymm3/mem, negate the multiplication result and
subtract ymm1 and put result in ymm1.
VFNMSUB231PD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W1 9E /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
xmm1 and xmm3/m128/m64bcst, negate the
multiplication result and subtract xmm2 and put result in
xmm1.
VFNMSUB132PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.NDS.128.66.0F38.W1 AE /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
xmm1 and xmm2, negate the multiplication result and
subtract xmm3/m128/m64bcst and put result in xmm1.
VFNMSUB213PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.NDS.128.66.0F38.W1 BE /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
xmm2 and xmm3/m128/m64bcst, negate the
multiplication result and subtract xmm1 and put result in
xmm1.
VFNMSUB231PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 9E /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
ymm1 and ymm3/m256/m64bcst, negate the
multiplication result and subtract ymm2 and put result in
ymm1.
VFNMSUB132PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 AE /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
ymm1 and ymm2, negate the multiplication result and
subtract ymm3/m256/m64bcst and put result in ymm1.
VFNMSUB213PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 BE /r FV V/V AVX512VL Multiply packed double-precision floating-point values from
ymm2 and ymm3/m256/m64bcst, negate the
multiplication result and subtract ymm1 and put result in
ymm1.
VFNMSUB231PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 9E /r FV V/V AVX512F Multiply packed double-precision floating-point values from
zmm1 and zmm3/m512/m64bcst, negate the multiplication
result and subtract zmm2 and put result in zmm1.
VFNMSUB132PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
EVEX.NDS.512.66.0F38.W1 AE /r FV V/V AVX512F Multiply packed double-precision floating-point values from
zmm1 and zmm2, negate the multiplication result and
subtract zmm3/m512/m64bcst and put result in zmm1.
VFNMSUB213PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
EVEX.NDS.512.66.0F38.W1 BE /r FV V/V AVX512F Multiply packed double-precision floating-point values from
zmm2 and zmm3/m512/m64bcst, negate the multiplication
result and subtract zmm1 and put result in zmm1.
VFNMSUB231PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst{er}
Ref. # 319433-023 5-315
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
VFNMSUB132PD: Multiplies the two, four or eight packed double-precision floating-point values from the first
source operand to the two, four or eight packed double-precision floating-point values in the third source operand.
From negated infinite precision intermediate results, subtracts the two, four or eight packed double-precision
floating-point values in the second source operand, performs rounding and stores the resulting two, four or eight
packed double-precision floating-point values to the destination operand (first source operand).
VFNMSUB213PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source operand to the two, four or eight packed double-precision floating-point values in the first source operand.
From negated infinite precision intermediate results, subtracts the two, four or eight packed double-precision
floating-point values in the third source operand, performs rounding and stores the resulting two, four or eight
packed double-precision floating-point values to the destination operand (first source operand).
VFNMSUB231PD: Multiplies the two, four or eight packed double-precision floating-point values from the second
source to the two, four or eight packed double-precision floating-point values in the third source operand. From
negated infinite precision intermediate results, subtracts the two, four or eight packed double-precision floating-
point values in the first source operand, performs rounding and stores the resulting two, four or eight packed
double-precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
VFNMSUB132PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR( - (DEST[n+63:n]*SRC3[n+63:n]) - SRC2[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-316 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB213PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR( - (SRC2[n+63:n]*DEST[n+63:n]) - SRC3[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFNMSUB231PD DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 64*i;
DEST[n+63:n] RoundFPControl_MXCSR( - (SRC2[n+63:n]*SRC3[n+63:n]) - DEST[n+63:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFNMSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(-(DEST[i+63:i]*SRC3[i+63:i]) - SRC2[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-317
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(-(DEST[i+63:i]*SRC3[63:0]) - SRC2[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(-(DEST[i+63:i]*SRC3[i+63:i]) - SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(-(SRC2[i+63:i]*DEST[i+63:i]) - SRC3[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-318 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(-(SRC2[i+63:i]*DEST[i+63:i]) - SRC3[63:0])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(-(SRC2[i+63:i]*DEST[i+63:i]) - SRC3[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]
RoundFPControl(-(SRC2[i+63:i]*SRC3[i+63:i]) - DEST[i+63:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-319
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+63:i]
RoundFPControl_MXCSR(-(SRC2[i+63:i]*SRC3[63:0]) - DEST[i+63:i])
ELSE
DEST[i+63:i]
RoundFPControl_MXCSR(-(SRC2[i+63:i]*SRC3[i+63:i]) - DEST[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFNMSUBxxxPD __m512d _mm512_fnmsub_pd(__m512d a, __m512d b, __m512d c);
VFNMSUBxxxPD __m512d _mm512_fnmsub_round_pd(__m512d a, __m512d b, __m512d c, int r);
VFNMSUBxxxPD __m512d _mm512_mask_fnmsub_pd(__m512d a, __mmask8 k, __m512d b, __m512d c);
VFNMSUBxxxPD __m512d _mm512_maskz_fnmsub_pd(__mmask8 k, __m512d a, __m512d b, __m512d c);
VFNMSUBxxxPD __m512d _mm512_mask3_fnmsub_pd(__m512d a, __m512d b, __m512d c, __mmask8 k);
VFNMSUBxxxPD __m512d _mm512_mask_fnmsub_round_pd(__m512d a, __mmask8 k, __m512d b, __m512d c, int r);
VFNMSUBxxxPD __m512d _mm512_maskz_fnmsub_round_pd(__mmask8 k, __m512d a, __m512d b, __m512d c, int r);
VFNMSUBxxxPD __m512d _mm512_mask3_fnmsub_round_pd(__m512d a, __m512d b, __m512d c, __mmask8 k, int r);
VFNMSUBxxxPD __m256d _mm256_mask_fnmsub_pd(__m256d a, __mmask8 k, __m256d b, __m256d c);
VFNMSUBxxxPD __m256d _mm256_maskz_fnmsub_pd(__mmask8 k, __m256d a, __m256d b, __m256d c);
VFNMSUBxxxPD __m256d _mm256_mask3_fnmsub_pd(__m256d a, __m256d b, __m256d c, __mmask8 k);
VFNMSUBxxxPD __m128d _mm_mask_fnmsub_pd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFNMSUBxxxPD __m128d _mm_maskz_fnmsub_pd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFNMSUBxxxPD __m128d _mm_mask3_fnmsub_pd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFNMSUBxxxPD __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);
VFNMSUBxxxPD __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
5-320 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS—Fused Negative Multiply-Subtract of
Packed Single-Precision Floating-Point Values
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W0 9E /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm1 and xmm3/mem, negate the multiplication result and
subtract xmm2 and put result in xmm1.
VFNMSUB132PS xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W0 AE /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm1 and xmm2, negate the multiplication result and
subtract xmm3/mem and put result in xmm1.
VFNMSUB213PS xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F38.W0 BE /r RVM V/V FMA Multiply packed single-precision floating-point values from
xmm2 and xmm3/mem, negate the multiplication result and
subtract xmm1 and put result in xmm1.
VFNMSUB231PS xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.W0 9E /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm1 and ymm3/mem, negate the multiplication result and
subtract ymm2 and put result in ymm1.
VFNMSUB132PS ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.W0 AE /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm1 and ymm2, negate the multiplication result and
subtract ymm3/mem and put result in ymm1.
VFNMSUB213PS ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F38.0 BE /r RVM V/V FMA Multiply packed single-precision floating-point values from
ymm2 and ymm3/mem, negate the multiplication result and
subtract ymm1 and put result in ymm1.
VFNMSUB231PS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W0 9E /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm1 and xmm3/m128/m32bcst, negate the multiplication
result and subtract xmm2 and put result in xmm1.
VFNMSUB132PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.128.66.0F38.W0 AE /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm1 and xmm2, negate the multiplication result and
subtract xmm3/m128/m32bcst and put result in xmm1.
VFNMSUB213PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.128.66.0F38.W0 BE /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
xmm2 and xmm3/m128/m32bcst, negate the multiplication
result subtract add to xmm1 and put result in xmm1.
VFNMSUB231PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 9E /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm1 and ymm3/m256/m32bcst, negate the multiplication
result and subtract ymm2 and put result in ymm1.
VFNMSUB132PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 AE /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm1 and ymm2, negate the multiplication result and
subtract ymm3/m256/m32bcst and put result in ymm1.
VFNMSUB213PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 BE /r FV V/V AVX512VL Multiply packed single-precision floating-point values from
ymm2 and ymm3/m256/m32bcst, negate the multiplication
result subtract add to ymm1 and put result in ymm1.
VFNMSUB231PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 9E /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm1 and zmm3/m512/m32bcst, negate the multiplication
result and subtract zmm2 and put result in zmm1.
VFNMSUB132PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
EVEX.NDS.512.66.0F38.W0 AE /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm1 and zmm2, negate the multiplication result and
subtract zmm3/m512/m32bcst and put result in zmm1.
VFNMSUB213PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
EVEX.NDS.512.66.0F38.W0 BE /r FV V/V AVX512F Multiply packed single-precision floating-point values from
zmm2 and zmm3/m512/m32bcst, negate the multiplication
result subtract add to zmm1 and put result in zmm1.
VFNMSUB231PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst{er}
Ref. # 319433-023 5-321
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
VFNMSUB132PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the first
source operand to the four, eight or sixteen packed single-precision floating-point values in the third source
operand. From negated infinite precision intermediate results, subtracts the four, eight or sixteen packed single-
precision floating-point values in the second source operand, performs rounding and stores the resulting four, eight
or sixteen packed single-precision floating-point values to the destination operand (first source operand).
VFNMSUB213PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second
source operand to the four, eight or sixteen packed single-precision floating-point values in the first source
operand. From negated infinite precision intermediate results, subtracts the four, eight or sixteen packed single-
precision floating-point values in the third source operand, performs rounding and stores the resulting four, eight
or sixteen packed single-precision floating-point values to the destination operand (first source operand).
VFNMSUB231PS: Multiplies the four, eight or sixteen packed single-precision floating-point values from the second
source to the four, eight or sixteen packed single-precision floating-point values in the third source operand. From
negated infinite precision intermediate results, subtracts the four, eight or sixteen packed single-precision floating-
point values in the first source operand, performs rounding and stores the resulting four, eight or sixteen packed
single-precision floating-point values to the destination operand (first source operand).
EVEX encoded versions: The destination operand (also first source operand) and the second source operand are
ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is condition-
ally updated with write mask k1.
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
VFNMSUB132PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR( - (DEST[n+31:n]*SRC3[n+31:n]) - SRC2[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-322 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB213PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR( - (SRC2[n+31:n]*DEST[n+31:n]) - SRC3[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFNMSUB231PS DEST, SRC2, SRC3 (VEX encoded version)
IF (VEX.128) THEN
MAXNUM 2
ELSEIF (VEX.256)
MAXNUM 4
FI
For i = 0 to MAXNUM-1 {
n 32*i;
DEST[n+31:n] RoundFPControl_MXCSR( - (SRC2[n+31:n]*SRC3[n+31:n]) - DEST[n+31:n])
}
IF (VEX.128) THEN
DEST[MAX_VL-1:128] 0
ELSEIF (VEX.256)
DEST[MAX_VL-1:256] 0
FI
VFNMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl(-(DEST[i+31:i]*SRC3[i+31:i]) - SRC2[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-323
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(-(DEST[i+31:i]*SRC3[31:0]) - SRC2[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(-(DEST[i+31:i]*SRC3[i+31:i]) - SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) - SRC3[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-324 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) - SRC3[31:0])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*DEST[i+31:i]) - SRC3[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[i+31:i]) - DEST[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VFNMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
Ref. # 319433-023 5-325
INSTRUCTION SET REFERENCE, A-Z
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[31:0]) - DEST[i+31:i])
ELSE
DEST[i+31:i]
RoundFPControl_MXCSR(-(SRC2[i+31:i]*SRC3[i+31:i]) - DEST[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFNMSUBxxxPS __m512 _mm512_fnmsub_ps(__m512 a, __m512 b, __m512 c);
VFNMSUBxxxPS __m512 _mm512_fnmsub_round_ps(__m512 a, __m512 b, __m512 c, int r);
VFNMSUBxxxPS __m512 _mm512_mask_fnmsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
VFNMSUBxxxPS __m512 _mm512_maskz_fnmsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
VFNMSUBxxxPS __m512 _mm512_mask3_fnmsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
VFNMSUBxxxPS __m512 _mm512_mask_fnmsub_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
VFNMSUBxxxPS __m512 _mm512_maskz_fnmsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
VFNMSUBxxxPS __m512 _mm512_mask3_fnmsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
VFNMSUBxxxPS __m256 _mm256_mask_fnmsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
VFNMSUBxxxPS __m256 _mm256_maskz_fnmsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
VFNMSUBxxxPS __m256 _mm256_mask3_fnmsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
VFNMSUBxxxPS __m128 _mm_mask_fnmsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFNMSUBxxxPS __m128 _mm_maskz_fnmsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFNMSUBxxxPS __m128 _mm_mask3_fnmsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFNMSUBxxxPS __m128 _mm_fnmsub_ps (__m128 a, __m128 b, __m128 c);
VFNMSUBxxxPS __m256 _mm256_fnmsub_ps (__m256 a, __m256 b, __m256 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
5-326 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD—Fused Negative Multiply-Subtract of
Scalar Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
VFNMSUB132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand. From negated infinite precision
intermediate result, subtracts the low double-precision floating-point value in the second source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
VFNMSUB213SD: Multiplies the low packed double-precision floating-point value from the second source operand
to the low packed double-precision floating-point value in the first source operand. From negated infinite precision
intermediate result, subtracts the low double-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
VFNMSUB231SD: Multiplies the low packed double-precision floating-point value from the second source to the low
packed double-precision floating-point value in the third source operand. From negated infinite precision interme-
diate result, subtracts the low double-precision floating-point value in the first source operand, performs rounding
and stores the resulting packed double-precision floating-point value to the destination operand (first source
operand).
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.LIG.66.0F38.W1 9F /r RVM V/V FMA Multiply scalar double-precision floating-point value from
xmm1 and xmm3/mem, negate the multiplication result and
subtract xmm2 and put result in xmm1.
VFNMSUB132SD xmm1, xmm2,
xmm3/m64
VEX.DDS.LIG.66.0F38.W1 AF /r RVM V/V FMA Multiply scalar double-precision floating-point value from
xmm1 and xmm2, negate the multiplication result and
subtract xmm3/mem and put result in xmm1.
VFNMSUB213SD xmm1, xmm2,
xmm3/m64
VEX.DDS.LIG.66.0F38.W1 BF /r RVM V/V FMA Multiply scalar double-precision floating-point value from
xmm2 and xmm3/mem, negate the multiplication result and
subtract xmm1 and put result in xmm1.
VFNMSUB231SD xmm1, xmm2,
xmm3/m64
EVEX.DDS.LIG.66.0F38.W1 9F /r T1S V/V AVX512F Multiply scalar double-precision floating-point value from
xmm1 and xmm3/m64, negate the multiplication result and
subtract xmm2 and put result in xmm1.
VFNMSUB132SD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
EVEX.DDS.LIG.66.0F38.W1 AF /r T1S V/V AVX512F Multiply scalar double-precision floating-point value from
xmm1 and xmm2, negate the multiplication result and
subtract xmm3/m64 and put result in xmm1.
VFNMSUB213SD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
EVEX.DDS.LIG.66.0F38.W1 BF /r T1S V/V AVX512F Multiply scalar double-precision floating-point value from
xmm2 and xmm3/m64, negate the multiplication result and
subtract xmm1 and put result in xmm1.
VFNMSUB231SD xmm1 {k1}{z},
xmm2, xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-327
INSTRUCTION SET REFERENCE, A-Z
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field.
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field.
Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
VFNMSUB132SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(-(DEST[63:0]*SRC3[63:0]) - SRC2[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFNMSUB213SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(-(SRC2[63:0]*DEST[63:0]) - SRC3[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
5-328 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB231SD DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundFPControl(-(SRC2[63:0]*SRC3[63:0]) - DEST[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFNMSUB132SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) - SRC2[63:0])
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFNMSUB213SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) - SRC3[63:0])
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
VFNMSUB231SD DEST, SRC2, SRC3 (VEX encoded version)
DEST[63:0] RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) - DEST[63:0])
DEST[127:64] DEST[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFNMSUBxxxSD __m128d _mm_fnmsub_round_sd(__m128d a, __m128d b, __m128d c, int r);
VFNMSUBxxxSD __m128d _mm_mask_fnmsub_sd(__m128d a, __mmask8 k, __m128d b, __m128d c);
VFNMSUBxxxSD __m128d _mm_maskz_fnmsub_sd(__mmask8 k, __m128d a, __m128d b, __m128d c);
VFNMSUBxxxSD __m128d _mm_mask3_fnmsub_sd(__m128d a, __m128d b, __m128d c, __mmask8 k);
VFNMSUBxxxSD __m128d _mm_mask_fnmsub_round_sd(__m128d a, __mmask8 k, __m128d b, __m128d c, int r);
VFNMSUBxxxSD __m128d _mm_maskz_fnmsub_round_sd(__mmask8 k, __m128d a, __m128d b, __m128d c, int r);
VFNMSUBxxxSD __m128d _mm_mask3_fnmsub_round_sd(__m128d a, __m128d b, __m128d c, __mmask8 k, int r);
VFNMSUBxxxSD __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
Ref. # 319433-023 5-329
INSTRUCTION SET REFERENCE, A-Z
VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS—Fused Negative Multiply-Subtract of
Scalar Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
VFNMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to
the low packed single-precision floating-point value in the third source operand. From negated infinite precision
intermediate result, the low single-precision floating-point value in the second source operand, performs rounding
and stores the resulting packed single-precision floating-point value to the destination operand (first source
operand).
VFNMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the first source operand. From negated infinite precision
intermediate result, the low single-precision floating-point value in the third source operand, performs rounding
and stores the resulting packed single-precision floating-point value to the destination operand (first source
operand).
VFNMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low
packed single-precision floating-point value in the third source operand. From negated infinite precision interme-
diate result, the low single-precision floating-point value in the first source operand, performs rounding and stores
the resulting packed single-precision floating-point value to the destination operand (first source operand).
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field.
The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field.
Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.DDS.LIG.66.0F38.W0 9F /r RVM V/V FMA Multiply scalar single-precision floating-point value from
xmm1 and xmm3/m32, negate the multiplication result and
subtract xmm2 and put result in xmm1.
VFNMSUB132SS xmm1, xmm2,
xmm3/m32
VEX.DDS.LIG.66.0F38.W0 AF /r RVM V/V FMA Multiply scalar single-precision floating-point value from
xmm1 and xmm2, negate the multiplication result and
subtract xmm3/m32 and put result in xmm1.
VFNMSUB213SS xmm1, xmm2,
xmm3/m32
VEX.DDS.LIG.66.0F38.W0 BF /r RVM V/V FMA Multiply scalar single-precision floating-point value from
xmm2 and xmm3/m32, negate the multiplication result and
subtract xmm1 and put result in xmm1.
VFNMSUB231SS xmm1, xmm2,
xmm3/m32
EVEX.DDS.LIG.66.0F38.W0 9F /r T1S V/V AVX512F Multiply scalar single-precision floating-point value from
xmm1 and xmm3/m32, negate the multiplication result and
subtract xmm2 and put result in xmm1.
VFNMSUB132SS xmm1 {k1}{z},
xmm2, xmm3/m32{er}
EVEX.DDS.LIG.66.0F38.W0 AF /r T1S V/V AVX512F Multiply scalar single-precision floating-point value from
xmm1 and xmm2, negate the multiplication result and
subtract xmm3/m32 and put result in xmm1.
VFNMSUB213SS xmm1 {k1}{z},
xmm2, xmm3/m32{er}
EVEX.DDS.LIG.66.0F38.W0 BF /r T1S V/V AVX512F Multiply scalar single-precision floating-point value from
xmm2 and xmm3/m32, negate the multiplication result and
subtract xmm1 and put result in xmm1.
VFNMSUB231SS xmm1 {k1}{z},
xmm2, xmm3/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-330 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column.
Operation
In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
VFNMSUB132SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(-(DEST[31:0]*SRC3[31:0]) - SRC2[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFNMSUB213SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(-(SRC2[31:0]*DEST[31:0]) - SRC3[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFNMSUB231SS DEST, SRC2, SRC3 (EVEX encoded version)
IF (EVEX.b = 1) and SRC3 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
Ref. # 319433-023 5-331
INSTRUCTION SET REFERENCE, A-Z
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundFPControl(-(SRC2[31:0]*SRC3[63:0]) - DEST[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFNMSUB132SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) - SRC2[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFNMSUB213SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) - SRC3[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
VFNMSUB231SS DEST, SRC2, SRC3 (VEX encoded version)
DEST[31:0] RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[31:0]) - DEST[31:0])
DEST[127:32] DEST[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFNMSUBxxxSS __m128 _mm_fnmsub_round_ss(__m128 a, __m128 b, __m128 c, int r);
VFNMSUBxxxSS __m128 _mm_mask_fnmsub_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFNMSUBxxxSS __m128 _mm_maskz_fnmsub_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFNMSUBxxxSS __m128 _mm_mask3_fnmsub_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFNMSUBxxxSS __m128 _mm_mask_fnmsub_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);
VFNMSUBxxxSS __m128 _mm_maskz_fnmsub_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);
VFNMSUBxxxSS __m128 _mm_mask3_fnmsub_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);
VFNMSUBxxxSS __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
5-332 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFPCLASSPD—Tests Types Of a Packed Float64 Values
Instruction Operand Encoding
Description
The FPCLASSPD instruction checks the packed double precision floating point values for special categories, speci-
fied by the set bits in the imm8 byte. Each set bit in imm8 specifies a category of floating-point values that the
input data element is classified against. The classified results of all specified categories of an input value are ORed
together to form the final boolean result for the input element. The result of each element is written to the corre-
sponding bit in a mask register k2 according to the writemask k1. Bits [MAX_KL-1:8/4/2] of the destination are
cleared.
The classification categories specified by imm8 are shown in Figure 5-23. The classification test for each category
is listed in Table 5-13.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector
broadcasted from a 64-bit memory location.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F3A.W1 66 /r ib FV V/V AVX512VL Tests the input for the following categories: NaN, +0, -0,
+Infinity, -Infinity, denormal, finite negative. The immediate
field provides a mask bit for each of these category tests. The
masked test results are OR-ed together to form a mask result.
VFPCLASSPD k2 {k1},
xmm2/m128/m64bcst, imm8
AVX512DQ
EVEX.256.66.0F3A.W1 66 /r ib FV V/V AVX512VL Tests the input for the following categories: NaN, +0, -0,
+Infinity, -Infinity, denormal, finite negative. The immediate
field provides a mask bit for each of these category tests. The
masked test results are OR-ed together to form a mask result.
VFPCLASSPD k2 {k1},
ymm2/m256/m64bcst, imm8
AVX512DQ
EVEX.512.66.0F3A.W1 66 /r ib FV V/V AVX512DQ Tests the input for the following categories: NaN, +0, -0,
+Infinity, -Infinity, denormal, finite negative. The immediate
field provides a mask bit for each of these category tests. The
masked test results are OR-ed together to form a mask result.
VFPCLASSPD k2 {k1},
zmm2/m512/m64bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Figure 5-23. Imm8 Byte Specifier of Special Case FP Values for VFPCLASSPD/SD/PS/SS
Table 5-13. Classifier Operations for VFPCLASSPD/SD/PS/SS
Bits Imm8[0] Imm8[1] Imm8[2] Imm8[3] Imm8[4] Imm8[5] Imm8[6] Imm8[7]
Category QNAN PosZero NegZero PosINF NegINF Denormal Negative SNAN
Classifier Checks for
QNaN
Checks for
+0
Checks for -
0
Checks for
+INF
Checks for -
INF
Checks for
Denormal
Checks for
Negative finite
Checks for
SNaN
7 0246 531
QNaN
SNaN Neg. Finite Denormal Neg. INF +INF Neg. 0 +0
Ref. # 319433-023 5-333
INSTRUCTION SET REFERENCE, A-Z
Operation
CheckFPClassDP (tsrc[63:0], imm8[7:0]){
//* Start checking the source operand for special type *//
NegNum tsrc[63];
IF (tsrc[62:52]=07FFh) Then ExpAllOnes 1; FI;
IF (tsrc[62:52]=0h) Then ExpAllZeros 1;
IF (ExpAllZeros AND MXCSR.DAZ) Then
MantAllZeros 1;
ELSIF (tsrc[51:0]=0h) Then
MantAllZeros 1;
FI;
ZeroNumber ExpAllZeros AND MantAllZeros
SignalingBit tsrc[51];
sNaN_res ExpAllOnes AND NOT(MantAllZeros) AND NOT(SignalingBit) ; // sNaN
qNaN_res ExpAllOnes AND NOT(MantAllZeros) AND SignalingBit;; // qNaN
Pzero_res NOT(NegNum) AND ExpAllZeros AND MantAllZeros;; // +0
Nzero_res NegNum AND ExpAllZeros AND MantAllZeros;; // -0
PInf_res NOT(NegNum) AND ExpAllOnes AND MantAllZeros;; // +Inf
NInf_res NegNum AND ExpAllOnes AND MantAllZeros;; // -Inf
Denorm_res ExpAllZeros AND NOT(MantAllZeros);; // denorm
FinNeg_res NegNum AND NOT(ExpAllOnes) AND NOT(ZeroNumber);; // -finite
bResult = ( imm8[0] AND qNaN_res ) OR (imm8[1] AND Pzero_res ) OR
( imm8[2] AND Nzero_res ) OR ( imm8[3] AND PInf_res ) OR
( imm8[4] AND NInf_res ) OR ( imm8[5] AND Denorm_res ) OR
( imm8[6] AND FinNeg_res ) OR ( imm8[7] AND sNaN_res ) ;
Return bResult;
} //* end of CheckFPClassDP() *//
VFPCLASSPD (EVEX Encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1) AND (SRC *is memory*)
THEN
DEST[j] CheckFPClassDP(SRC1[63:0], imm8[7:0]);
ELSE
DEST[j] CheckFPClassDP(SRC1[i+63:i], imm8[7:0]);
FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFPCLASSPD __mmask8 _mm512_fpclass_pd_mask( __m512d a, int c);
VFPCLASSPD __mmask8 _mm512_mask_fpclass_pd_mask( __mmask8 m, __m512d a, int c)
VFPCLASSPD __mmask8 _mm256_fpclass_pd_mask( __m256d a, int c)
VFPCLASSPD __mmask8 _mm256_mask_fpclass_pd_mask( __mmask8 m, __m256d a, int c)
VFPCLASSPD __mmask8 _mm_fpclass_pd_mask( __m128d a, int c)
5-334 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFPCLASSPD __mmask8 _mm_mask_fpclass_pd_mask( __mmask8 m, __m128d a, int c)
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-335
INSTRUCTION SET REFERENCE, A-Z
VFPCLASSPS—Tests Types Of a Packed Float32 Values
Instruction Operand Encoding
Description
The FPCLASSPS instruction checks the packed single-precision floating point values for special categories, specified
by the set bits in the imm8 byte. Each set bit in imm8 specifies a category of floating-point values that the input
data element is classified against. The classified results of all specified categories of an input value are ORed
together to form the final boolean result for the input element. The result of each element is written to the corre-
sponding bit in a mask register k2 according to the writemask k1. Bits [MAX_KL-1:16/8/4] of the destination are
cleared.
The classification categories specified by imm8 are shown in Figure 5-23. The classification test for each category
is listed in Table 5-13.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector
broadcasted from a 32-bit memory location.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
CheckFPClassSP (tsrc[31:0], imm8[7:0]){
//* Start checking the source operand for special type *//
NegNum tsrc[31];
IF (tsrc[30:23]=0FFh) Then ExpAllOnes 1; FI;
IF (tsrc[30:23]=0h) Then ExpAllZeros 1;
IF (ExpAllZeros AND MXCSR.DAZ) Then
MantAllZeros 1;
ELSIF (tsrc[22:0]=0h) Then
MantAllZeros 1;
FI;
ZeroNumber= ExpAllZeros AND MantAllZeros
SignalingBit= tsrc[22];
sNaN_res ExpAllOnes AND NOT(MantAllZeros) AND NOT(SignalingBit) ; // sNaN
qNaN_res ExpAllOnes AND NOT(MantAllZeros) AND SignalingBit;; // qNaN
Pzero_res NOT(NegNum) AND ExpAllZeros AND MantAllZeros;; // +0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F3A.W0 66 /r ib FV V/V AVX512VL Tests the input for the following categories: NaN, +0, -0,
+Infinity, -Infinity, denormal, finite negative. The immediate
field provides a mask bit for each of these category tests. The
masked test results are OR-ed together to form a mask result.
VFPCLASSPS k2 {k1},
xmm2/m128/m32bcst, imm8
AVX512DQ
EVEX.256.66.0F3A.W0 66 /r ib FV V/V AVX512VL Tests the input for the following categories: NaN, +0, -0,
+Infinity, -Infinity, denormal, finite negative. The immediate
field provides a mask bit for each of these category tests. The
masked test results are OR-ed together to form a mask result.
VFPCLASSPS k2 {k1},
ymm2/m256/m32bcst, imm8
AVX512DQ
EVEX.512.66.0F3A.W0 66 /r ib FV V/V AVX512DQ Tests the input for the following categories: NaN, +0, -0,
+Infinity, -Infinity, denormal, finite negative. The immediate
field provides a mask bit for each of these category tests. The
masked test results are OR-ed together to form a mask result.
VFPCLASSPS k2 {k1},
zmm2/m512/m32bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-336 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Nzero_res NegNum AND ExpAllZeros AND MantAllZeros;; // -0
PInf_res NOT(NegNum) AND ExpAllOnes AND MantAllZeros;; // +Inf
NInf_res NegNum AND ExpAllOnes AND MantAllZeros;; // -Inf
Denorm_res ExpAllZeros AND NOT(MantAllZeros);; // denorm
FinNeg_res NegNum AND NOT(ExpAllOnes) AND NOT(ZeroNumber);; // -finite
bResult = ( imm8[0] AND qNaN_res ) OR (imm8[1] AND Pzero_res ) OR
( imm8[2] AND Nzero_res ) OR ( imm8[3] AND PInf_res ) OR
( imm8[4] AND NInf_res ) OR ( imm8[5] AND Denorm_res ) OR
( imm8[6] AND FinNeg_res ) OR ( imm8[7] AND sNaN_res ) ;
Return bResult;
} //* end of CheckSPClassSP() *//
VFPCLASSPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1) AND (SRC *is memory*)
THEN
DEST[j] CheckFPClassDP(SRC1[31:0], imm8[7:0]);
ELSE
DEST[j] CheckFPClassDP(SRC1[i+31:i], imm8[7:0]);
FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFPCLASSPS __mmask16 _mm512_fpclass_ps_mask( __m512 a, int c);
VFPCLASSPS __mmask16 _mm512_mask_fpclass_ps_mask( __mmask16 m, __m512 a, int c)
VFPCLASSPS __mmask8 _mm256_fpclass_ps_mask( __m256 a, int c)
VFPCLASSPS __mmask8 _mm256_mask_fpclass_ps_mask( __mmask8 m, __m256 a, int c)
VFPCLASSPS __mmask8 _mm_fpclass_ps_mask( __m128 a, int c)
VFPCLASSPS __mmask8 _mm_mask_fpclass_ps_mask( __mmask8 m, __m128 a, int c)
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-337
INSTRUCTION SET REFERENCE, A-Z
VFPCLASSSD—Tests Types Of a Scalar Float64 Values
Instruction Operand Encoding
Description
The FPCLASSSD instruction checks the low double precision floating point value in the source operand for special
categories, specified by the set bits in the imm8 byte. Each set bit in imm8 specifies a category of floating-point
values that the input data element is classified against. The classified results of all specified categories of an input
value are ORed together to form the final boolean result for the input element. The result is written to the low bit
in a mask register k2 according to the writemask k1. Bits MAX_KL-1: 1 of the destination are cleared.
The classification categories specified by imm8 are shown in Figure 5-23. The classification test for each category
is listed in Table 5-13.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
CheckFPClassDP (tsrc[63:0], imm8[7:0]){
NegNum tsrc[63];
IF (tsrc[62:52]=07FFh) Then ExpAllOnes 1; FI;
IF (tsrc[62:52]=0h) Then ExpAllZeros 1;
IF (ExpAllZeros AND MXCSR.DAZ) Then
MantAllZeros 1;
ELSIF (tsrc[51:0]=0h) Then
MantAllZeros 1;
FI;
ZeroNumber ExpAllZeros AND MantAllZeros
SignalingBit tsrc[51];
sNaN_res ExpAllOnes AND NOT(MantAllZeros) AND NOT(SignalingBit) ; // sNaN
qNaN_res ExpAllOnes AND NOT(MantAllZeros) AND SignalingBit;; // qNaN
Pzero_res NOT(NegNum) AND ExpAllZeros AND MantAllZeros;; // +0
Nzero_res NegNum AND ExpAllZeros AND MantAllZeros;; // -0
PInf_res NOT(NegNum) AND ExpAllOnes AND MantAllZeros;; // +Inf
NInf_res NegNum AND ExpAllOnes AND MantAllZeros;; // -Inf
Denorm_res ExpAllZeros AND NOT(MantAllZeros);; // denorm
FinNeg_res NegNum AND NOT(ExpAllOnes) AND NOT(ZeroNumber);; // -finite
bResult = ( imm8[0] AND qNaN_res ) OR (imm8[1] AND Pzero_res ) OR
( imm8[2] AND Nzero_res ) OR ( imm8[3] AND PInf_res ) OR
( imm8[4] AND NInf_res ) OR ( imm8[5] AND Denorm_res ) OR
( imm8[6] AND FinNeg_res ) OR ( imm8[7] AND sNaN_res ) ;
Return bResult;
} //* end of CheckFPClassDP() *//
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.LIG.66.0F3A.W1 67 /r ib T1S V/V AVX512DQ Tests the input for the following categories: NaN, +0, -0,
+Infinity, -Infinity, denormal, finite negative. The immediate
field provides a mask bit for each of these category tests. The
masked test results are OR-ed together to form a mask result.
VFPCLASSSD k2 {k1},
xmm2/m64, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
5-338 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VFPCLASSSD (EVEX encoded version)
IF k1[0] OR *no writemask*
THEN DEST[0]
CheckFPClassDP(SRC1[63:0], imm8[7:0])
ELSE DEST[0] 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFPCLASSSD __mmask8 _mm_fpclass_sd_mask( __m128d a, int c)
VFPCLASSSD __mmask8 _mm_mask_fpclass_sd_mask( __mmask8 m, __m128d a, int c)
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E6
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-339
INSTRUCTION SET REFERENCE, A-Z
VFPCLASSSS—Tests Types Of a Scalar Float32 Values
Instruction Operand Encoding
Description
The FPCLASSSS instruction checks the low single-precision floating point value in the source operand for special
categories, specified by the set bits in the imm8 byte. Each set bit in imm8 specifies a category of floating-point
values that the input data element is classified against. The classified results of all specified categories of an input
value are ORed together to form the final boolean result for the input element. The result is written to the low bit
in a mask register k2 according to the writemask k1. Bits MAX_KL-1: 1 of the destination are cleared.
The classification categories specified by imm8 are shown in Figure 5-23. The classification test for each category
is listed in Table 5-13.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
CheckFPClassSP (tsrc[31:0], imm8[7:0]){
//* Start checking the source operand for special type *//
NegNum tsrc[31];
IF (tsrc[30:23]=0FFh) Then ExpAllOnes 1; FI;
IF (tsrc[30:23]=0h) Then ExpAllZeros 1;
IF (ExpAllZeros AND MXCSR.DAZ) Then
MantAllZeros 1;
ELSIF (tsrc[22:0]=0h) Then
MantAllZeros 1;
FI;
ZeroNumber= ExpAllZeros AND MantAllZeros
SignalingBit= tsrc[22];
sNaN_res ExpAllOnes AND NOT(MantAllZeros) AND NOT(SignalingBit) ; // sNaN
qNaN_res ExpAllOnes AND NOT(MantAllZeros) AND SignalingBit;; // qNaN
Pzero_res NOT(NegNum) AND ExpAllZeros AND MantAllZeros;; // +0
Nzero_res NegNum AND ExpAllZeros AND MantAllZeros;; // -0
PInf_res NOT(NegNum) AND ExpAllOnes AND MantAllZeros;; // +Inf
NInf_res NegNum AND ExpAllOnes AND MantAllZeros;; // -Inf
Denorm_res ExpAllZeros AND NOT(MantAllZeros);; // denorm
FinNeg_res NegNum AND NOT(ExpAllOnes) AND NOT(ZeroNumber);; // -finite
bResult = ( imm8[0] AND qNaN_res ) OR (imm8[1] AND Pzero_res ) OR
( imm8[2] AND Nzero_res ) OR ( imm8[3] AND PInf_res ) OR
( imm8[4] AND NInf_res ) OR ( imm8[5] AND Denorm_res ) OR
( imm8[6] AND FinNeg_res ) OR ( imm8[7] AND sNaN_res ) ;
Return bResult;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.LIG.66.0F3A.W0 67 /r T1S V/V AVX512DQ Tests the input for the following categories: NaN, +0, -0,
+Infinity, -Infinity, denormal, finite negative. The immediate
field provides a mask bit for each of these category tests. The
masked test results are OR-ed together to form a mask result.
VFPCLASSSS k2 {k1},
xmm2/m32, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
5-340 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
} //* end of CheckSPClassSP() *//
VFPCLASSSS (EVEX encoded version)
IF k1[0] OR *no writemask*
THEN DEST[0]
CheckFPClassSP(SRC1[31:0], imm8[7:0])
ELSE DEST[0] 0 ; zeroing-masking only
FI;
DEST[MAX_KL-1:1] 0
Intel C/C++ Compiler Intrinsic Equivalent
VFPCLASSSS __mmask8 _mm_fpclass_ss_mask( __m128 a, int c)
VFPCLASSSS __mmask8 _mm_mask_fpclass_ss_mask( __mmask8 m, __m128 a, int c)
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E6
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-341
INSTRUCTION SET REFERENCE, A-Z
VPGATHERDD/VPGATHERDQ—Gather Packed Dword, Packed Qword with Signed Dword Indices
Instruction Operand Encoding
Description
A set of 16 or 8 doubleword/quadword memory locations pointed to by base address BASE_ADDR and index vector
VINDEX with scale SCALE are gathered. The result is written into vector zmm1. The elements are specified via the
VSIB (i.e., the index register is a zmm, holding packed indices). Elements will only be loaded if their corresponding
mask bit is one. If an elements mask bit is not set, the corresponding element of the destination register (zmm1)
is left unchanged. The entire mask register will be set to zero by this instruction unless it triggers an exception.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask register (k1) are partially updated; those elements that have been gathered are placed into
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruc-
tion breakpoint is not re-triggered when the instruction is continued.
If the data element size is less than the index element size, the higher part of the destination register and the mask
register do not correspond to any elements being gathered. This instruction sets those higher parts to zero. It may
update these unused elements to one or both of those registers even if the instruction triggers an exception, and
even if the instruction triggers the exception before gathering any elements.
Note that:
The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-
64 memory-ordering model.
Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination zmm will be completed (and non-faulting). Individual elements
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered
in the conventional order.
Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 90 /vsib T1S V/V AVX512VL Using signed dword indices, gather dword values from
memory using writemask k1 for merging-masking.
VPGATHERDD xmm1 {k1}, vm32x AVX512F
EVEX.256.66.0F38.W0 90 /vsib T1S V/V AVX512VL Using signed dword indices, gather dword values from
memory using writemask k1 for merging-masking.
VPGATHERDD ymm1 {k1}, vm32y AVX512F
EVEX.512.66.0F38.W0 90 /vsib T1S V/V AVX512F Using signed dword indices, gather dword values from
memory using writemask k1 for merging-masking.
VPGATHERDD zmm1 {k1}, vm32z
EVEX.128.66.0F38.W1 90 /vsib T1S V/V AVX512VL Using signed dword indices, gather quadword values from
memory using writemask k1 for merging-masking.
VPGATHERDQ xmm1 {k1}, vm32x AVX512F
EVEX.256.66.0F38.W1 90 /vsib T1S V/V AVX512VL Using signed dword indices, gather quadword values from
memory using writemask k1 for merging-masking.
VPGATHERDQ ymm1 {k1}, vm32x AVX512F
EVEX.512.66.0F38.W1 90 /vsib T1S V/V AVX512F Using signed dword indices, gather quadword values from
memory using writemask k1 for merging-masking.
VPGATHERDQ zmm1 {k1}, vm32y
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index NA NA
5-342 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.
This instruction does not perform AC checks, and so will never deliver an AC fault.
Not valid with 16-bit effective addresses. Will deliver a #UD fault.
These instructions do not accept zeroing-masking since the 0 values in k1 are used to determine completion.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if
ModRM.rm is different than 100b.
This instruction has the same disp8*N and alignment rules as for scalar instructions (Tuple 1).
The instruction will #UD fault if the destination vector zmm1 is the same as index vector VINDEX. The instruction
will #UD fault if the k0 mask register is specified.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are
ignored.
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
VPGATHERDD (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j]
THEN DEST[i+31:i] MEM[BASE_ADDR +
SignExtend(VINDEX[i+31:i]) * SCALE + DISP]), 1)
k1[j] 0
ELSE *DEST[i+31:i] remains unchanged* ; Only merging masking is allowed
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
DEST[MAX_VL-1:VL] 0
VPGATHERDQ (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j]
THEN DEST[i+63:i]
MEM[BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP])
k1[j] 0
ELSE *DEST[i+63:i] remains unchanged* ; Only merging masking is allowed
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-343
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPGATHERDD __m512i _mm512_i32gather_epi32( __m512i vdx, void * base, int scale);
VPGATHERDD __m512i _mm512_mask_i32gather_epi32(__m512i s, __mmask16 k, __m512i vdx, void * base, int scale);
VPGATHERDD __m256i _mm256_mmask_i32gather_epi32(__m256i s, __mmask8 k, __m256i vdx, void * base, int scale);
VPGATHERDD __m128i _mm_mmask_i32gather_epi32(__m128i s, __mmask8 k, __m128i vdx, void * base, int scale);
VPGATHERDQ __m512i _mm512_i32logather_epi64( __m256i vdx, void * base, int scale);
VPGATHERDQ __m512i _mm512_mask_i32logather_epi64(__m512i s, __mmask8 k, __m256i vdx, void * base, int scale);
VPGATHERDQ __m256i _mm256_mmask_i32logather_epi64(__m256i s, __mmask8 k, __m128i vdx, void * base, int scale);
VPGATHERDQ __m128i _mm_mmask_i32gather_epi64(__m128i s, __mmask8 k, __m128i vdx, void * base, int scale);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12.
5-344 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPGATHERQD/VPGATHERQQ—Gather Packed Dword, Packed Qword with Signed Qword Indices
Instruction Operand Encoding
Description
A set of 8 doubleword/quadword memory locations pointed to by base address BASE_ADDR and index vector
VINDEX with scale SCALE are gathered. The result is written into a vector register. The elements are specified via
the VSIB (i.e., the index register is a vector register, holding packed indices). Elements will only be loaded if their
corresponding mask bit is one. If an element’s mask bit is not set, the corresponding element of the destination
register is left unchanged. The entire mask register will be set to zero by this instruction unless it triggers an excep-
tion.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask register (k1) are partially updated; those elements that have been gathered are placed into
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruc-
tion breakpoint is not re-triggered when the instruction is continued.
If the data element size is less than the index element size, the higher part of the destination register and the mask
register do not correspond to any elements being gathered. This instruction sets those higher parts to zero. It may
update these unused elements to one or both of those registers even if the instruction triggers an exception, and
even if the instruction triggers the exception before gathering any elements.
Note that:
The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-
64 memory-ordering model.
Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination zmm will be completed (and non-faulting). Individual elements
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered
in the conventional order.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 91 /vsib T1S V/V AVX512VL Using signed qword indices, gather dword values from
memory using writemask k1 for merging-masking.
VPGATHERQD xmm1 {k1}, vm64x AVX512F
EVEX.256.66.0F38.W0 91 /vsib T1S V/V AVX512VL Using signed qword indices, gather dword values from
memory using writemask k1 for merging-masking.
VPGATHERQD xmm1 {k1}, vm64y AVX512F
EVEX.512.66.0F38.W0 91 /vsib T1S V/V AVX512F Using signed qword indices, gather dword values from
memory using writemask k1 for merging-masking.
VPGATHERQD ymm1 {k1}, vm64z
EVEX.128.66.0F38.W1 91 /vsib T1S V/V AVX512VL Using signed qword indices, gather quadword values from
memory using writemask k1 for merging-masking.
VPGATHERQQ xmm1 {k1}, vm64x AVX512F
EVEX.256.66.0F38.W1 91 /vsib T1S V/V AVX512VL Using signed qword indices, gather quadword values from
memory using writemask k1 for merging-masking.
VPGATHERQQ ymm1 {k1}, vm64y AVX512F
EVEX.512.66.0F38.W1 91 /vsib T1S V/V AVX512F Using signed qword indices, gather quadword values from
memory using writemask k1 for merging-masking.
VPGATHERQQ zmm1 {k1}, vm64z
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index NA NA
Ref. # 319433-023 5-345
INSTRUCTION SET REFERENCE, A-Z
Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.
This instruction does not perform AC checks, and so will never deliver an AC fault.
Not valid with 16-bit effective addresses. Will deliver a #UD fault.
These instructions do not accept zeroing-masking since the 0 values in k1 are used to determine completion.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if
ModRM.rm is different than 100b.
This instruction has the same disp8*N and alignment rules as for scalar instructions (Tuple 1).
The instruction will #UD fault if the destination vector zmm1 is the same as index vector VINDEX. The instruction
will #UD fault if the k0 mask register is specified.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits
are ignored.
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
VPGATHERQD (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j]
THEN DEST[i+31:i] MEM[BASE_ADDR + (VINDEX[k+63:k]) * SCALE + DISP]), 1)
k1[j] 0
ELSE *DEST[i+31:i] remains unchanged* ; Only merging masking is allowed
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
DEST[MAX_VL-1:VL/2] 0
VPGATHERQQ (EVEX encoded version)
(KL, VL) = (2, 64), (4, 128), (8, 256)
FOR j 0 TO KL-1
i j * 64
IF k1[j]
THEN DEST[i+63:i]
MEM[BASE_ADDR + (VINDEX[i+63:i]) * SCALE + DISP])
k1[j] 0
ELSE *DEST[i+63:i] remains unchanged* ; Only merging masking is allowed
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
DEST[MAX_VL-1:VL] 0
5-346 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPGATHERQD __m256i _mm512_i64gather_epi32(__m512i vdx, void * base, int scale);
VPGATHERQD __m256i _mm512_mask_i64gather_epi32lo(__m256i s, __mmask8 k, __m512i vdx, void * base, int scale);
VPGATHERQD __m128i _mm256_mask_i64gather_epi32lo(__m128i s, __mmask8 k, __m256i vdx, void * base, int scale);
VPGATHERQD __m128i _mm_mask_i64gather_epi32(__m128i s, __mmask8 k, __m128i vdx, void * base, int scale);
VPGATHERQQ __m512i _mm512_i64gather_epi64( __m512i vdx, void * base, int scale);
VPGATHERQQ __m512i _mm512_mask_i64gather_epi64(__m512i s, __mmask8 k, __m512i vdx, void * base, int scale);
VPGATHERQQ __m256i _mm256_mask_i64gather_epi64(__m256i s, __mmask8 k, __m256i vdx, void * base, int scale);
VPGATHERQQ __m128i _mm_mask_i64gather_epi64(__m128i s, __mmask8 k, __m128i vdx, void * base, int scale);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12.
Ref. # 319433-023 5-347
INSTRUCTION SET REFERENCE, A-Z
VGATHERDPS/VGATHERDPD—Gather Packed Single, Packed Double with Signed Dword
Instruction Operand Encoding
Description
A set of single-precision/double-precision faulting-point memory locations pointed by base address BASE_ADDR
and index vector V_INDEX with scale SCALE are gathered. The result is written into a vector register. The elements
are specified via the VSIB (i.e., the index register is a vector register, holding packed indices). Elements will only
be loaded if their corresponding mask bit is one. If an element’s mask bit is not set, the corresponding element of
the destination register is left unchanged. The entire mask register will be set to zero by this instruction unless it
triggers an exception.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the right most one with its mask bit set). When this happens, the destination
register and the mask register (k1) are partially updated; those elements that have been gathered are placed into
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruc-
tion breakpoint is not re-triggered when the instruction is continued.
If the data element size is less than the index element size, the higher part of the destination register and the mask
register do not correspond to any elements being gathered. This instruction sets those higher parts to zero. It may
update these unused elements to one or both of those registers even if the instruction triggers an exception, and
even if the instruction triggers the exception before gathering any elements.
Note that:
The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-
64 memory-ordering model.
Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination zmm will be completed (and non-faulting). Individual elements
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 92 /vsib T1S V/V AVX512VL Using signed dword indices, gather single-precision floating-
point values from memory using k1 as completion mask.
VGATHERDPS xmm1 {k1}, vm32x AVX512F
EVEX.256.66.0F38.W0 92 /vsib T1S V/V AVX512VL Using signed dword indices, gather single-precision floating-
point values from memory using k1 as completion mask.
VGATHERDPS ymm1 {k1}, vm32y AVX512F
EVEX.512.66.0F38.W0 92 /vsib T1S V/V AVX512F Using signed dword indices, gather single-precision floating-
point values from memory using k1 as completion mask.
VGATHERDPS zmm1 {k1}, vm32z
EVEX.128.66.0F38.W1 92 /vsib T1S V/V AVX512VL Using signed dword indices, gather float64 vector into
float64 vector xmm1 using k1 as completion mask.
VGATHERDPD xmm1 {k1},
vm32x
AVX512F
EVEX.256.66.0F38.W1 92 /vsib T1S V/V AVX512VL Using signed dword indices, gather float64 vector into
float64 vector ymm1 using k1 as completion mask.
VGATHERDPD ymm1 {k1},
vm32x
AVX512F
EVEX.512.66.0F38.W1 92 /vsib T1S V/V AVX512F Using signed dword indices, gather float64 vector into
float64 vector zmm1 using k1 as completion mask.
VGATHERDPD zmm1 {k1}, vm32y
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index NA NA
5-348 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered
in the conventional order.
Elements may be gathered in any order, but faults must be delivered in a right-to left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.
This instruction does not perform AC checks, and so will never deliver an AC fault.
Not valid with 16-bit effective addresses. Will deliver a #UD fault.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if
ModRM.rm is different than 100b.
This instruction has special disp8*N and alignment rules. N is considered to be the size of a single vector element.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are
ignored.
The instruction will #UD fault if the destination vector zmm1 is the same as index vector VINDEX. The instruction
will #UD fault if the k0 mask register is specified.
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
VGATHERDPS (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j]
THEN DEST[i+31:i]
MEM[BASE_ADDR +
SignExtend(VINDEX[i+31:i]) * SCALE + DISP]
k1[j] 0
ELSE *DEST[i+31:i] remains unchanged*
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
DEST[MAX_VL-1:VL] 0
VGATHERDPD (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j]
THEN DEST[i+63:i] MEM[BASE_ADDR +
SignExtend(VINDEX[k+31:k]) * SCALE + DISP]
k1[j] 0
ELSE *DEST[i+63:i] remains unchanged*
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-349
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VGATHERDPD __m512d _mm512_i32gather_pd( __m256i vdx, void * base, int scale);
VGATHERDPD __m512d _mm512_mask_i32gather_pd(__m512d s, __mmask8 k, __m256i vdx, void * base, int scale);
VGATHERDPD __m256d _mm256_mmask_i32gather_pd(__m256d s, __mmask8 k, __m128i vdx, void * base, int scale);
VGATHERDPD __m128d _mm_mmask_i32gather_pd(__m128d s, __mmask8 k, __m128i vdx, void * base, int scale);
VGATHERDPS __m512 _mm512_i32gather_ps( __m512i vdx, void * base, int scale);
VGATHERDPS __m512 _mm512_mask_i32gather_ps(__m512 s, __mmask16 k, __m512i vdx, void * base, int scale);
VGATHERDPS __m256 _mm256_mmask_i32gather_ps(__m256 s, __mmask8 k, __m256i vdx, void * base, int scale);
GATHERDPS __m128 _mm_mmask_i32gather_ps(__m128 s, __mmask8 k, __m128i vdx, void * base, int scale);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12.
5-350 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VGATHERQPS/VGATHERQPD—Gather Packed Single, Packed Double with Signed Qword Indices
Instruction Operand Encoding
Description
A set of 8 single-precision/double-precision faulting-point memory locations pointed by base address BASE_ADDR
and index vector V_INDEX with scale SCALE are gathered. The result is written into vector a register. The elements
are specified via the VSIB (i.e., the index register is a vector register, holding packed indices). Elements will only be
loaded if their corresponding mask bit is one. If an element’s mask bit is not set, the corresponding element of the
destination register is left unchanged. The entire mask register will be set to zero by this instruction unless it trig-
gers an exception.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask register (k1) are partially updated; those elements that have been gathered are placed into
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruc-
tion breakpoint is not re-triggered when the instruction is continued.
If the data element size is less than the index element size, the higher part of the destination register and the mask
register do not correspond to any elements being gathered. This instruction sets those higher parts to zero. It may
update these unused elements to one or both of those registers even if the instruction triggers an exception, and
even if the instruction triggers the exception before gathering any elements.
Note that:
The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-
64 memory-ordering model.
Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination zmm will be completed (and non-faulting). Individual elements
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered
in the conventional order.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 93 /vsib T1S V/V AVX512VL Using signed qword indices, gather single-precision
floating-point values from memory using k1 as completion
mask.
VGATHERQPS xmm1 {k1}, vm64x AVX512F
EVEX.256.66.0F38.W0 93 /vsib T1S V/V AVX512VL Using signed qword indices, gather single-precision
floating-point values from memory using k1 as completion
mask.
VGATHERQPS xmm1 {k1}, vm64y AVX512F
EVEX.512.66.0F38.W0 93 /vsib T1S V/V AVX512F Using signed qword indices, gather single-precision
floating-point values from memory using k1 as completion
mask.
VGATHERQPS ymm1 {k1}, vm64z
EVEX.128.66.0F38.W1 93 /vsib T1S V/V AVX512VL Using signed qword indices, gather float64 vector into
float64 vector xmm1 using k1 as completion mask.
VGATHERQPD xmm1 {k1}, vm64x AVX512F
EVEX.256.66.0F38.W1 93 /vsib T1S V/V AVX512VL Using signed qword indices, gather float64 vector into
float64 vector ymm1 using k1 as completion mask.
VGATHERQPD ymm1 {k1}, vm64y AVX512F
EVEX.512.66.0F38.W1 93 /vsib T1S V/V AVX512F Using signed qword indices, gather float64 vector into
float64 vector zmm1 using k1 as completion mask.
VGATHERQPD zmm1 {k1}, vm64z
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index NA NA
Ref. # 319433-023 5-351
INSTRUCTION SET REFERENCE, A-Z
Elements may be gathered in any order, but faults must be delivered in a right-to left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.
This instruction does not perform AC checks, and so will never deliver an AC fault.
Not valid with 16-bit effective addresses. Will deliver a #UD fault.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if
ModRM.rm is different than 100b.
This instruction has special disp8*N and alignment rules. N is considered to be the size of a single vector element.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits
are ignored.
The instruction will #UD fault if the destination vector zmm1 is the same as index vector VINDEX. The instruction
will #UD fault if the k0 mask register is specified.
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
VGATHERQPS (EVEX encoded version)
(KL, VL) = (2, 64), (4, 128), (8, 256)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
MEM[BASE_ADDR + (VINDEX[k+63:k]) * SCALE + DISP]
k1[j] 0
ELSE *DEST[i+31:i] remains unchanged*
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
DEST[MAX_VL-1:VL/2] 0
VGATHERQPD (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] MEM[BASE_ADDR + (VINDEX[i+63:i]) * SCALE + DISP]
k1[j] 0
ELSE *DEST[i+63:i] remains unchanged*
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
DEST[MAX_VL-1:VL] 0
5-352 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VGATHERQPD __m512d _mm512_i64gather_pd( __m512i vdx, void * base, int scale);
VGATHERQPD __m512d _mm512_mask_i64gather_pd(__m512d s, __mmask8 k, __m512i vdx, void * base, int scale);
VGATHERQPD __m256d _mm256_mask_i64gather_pd(__m256d s, __mmask8 k, __m256i vdx, void * base, int scale);
VGATHERQPD __m128d _mm_mask_i64gather_pd(__m128d s, __mmask8 k, __m128i vdx, void * base, int scale);
VGATHERQPS __m256 _mm512_i64gather_ps( __m512i vdx, void * base, int scale);
VGATHERQPS __m256 _mm512_mask_i64gather_ps(__m256 s, __mmask16 k, __m512i vdx, void * base, int scale);
VGATHERQPS __m128 _mm256_mask_i64gather_ps(__m128 s, __mmask8 k, __m256i vdx, void * base, int scale);
VGATHERQPS __m128 _mm_mask_i64gather_ps(__m128 s, __mmask8 k, __m128i vdx, void * base, int scale);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12.
Ref. # 319433-023 5-353
INSTRUCTION SET REFERENCE, A-Z
VGETEXPPD—Convert Exponents of Packed DP FP Values to DP FP Values
Instruction Operand Encoding
Description
Extracts the biased exponents from the normalized DP FP representation of each qword data element of the source
operand (the second operand) as unbiased signed integer value, or convert the denormal representation of input
data to unbiased negative integer values. Each integer value of the unbiased exponent is converted to double-
precision FP value and written to the corresponding qword elements of the destination operand (the first operand)
as DP FP numbers.
The destination operand is a ZMM/YMM/XMM register and updated under the writemask. The source operand can
be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from
a 64-bit memory location.
EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Each GETEXP operation converts the exponent value into a FP number (permitting input value in denormal repre-
sentation). Special cases of input values are listed in Table 5-14.
The formula is:
GETEXP(x) = floor(log2(|x|))
Notation floor(x) stands for the greatest integer not exceeding real number x.
Operation
NormalizeExpTinyDPFP(SRC[63:0])
{
// Jbit is the hidden integral bit of a FP number. In case of denormal number it has the value of ZERO.
Src.Jbit 0;
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W1 42 /r FV V/V AVX512VL Convert the exponent of packed double-precision floating-point
values in the source operand to DP FP results representing
unbiased integer exponents and stores the results in the
destination register.
VGETEXPPD xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512F
EVEX.256.66.0F38.W1 42 /r FV V/V AVX512VL Convert the exponent of packed double-precision floating-point
values in the source operand to DP FP results representing
unbiased integer exponents and stores the results in the
destination register.
VGETEXPPD ymm1 {k1}{z},
ymm2/m256/m64bcst
AVX512F
EVEX.512.66.0F38.W1 42 /r FV V/V AVX512F Convert the exponent of packed double-precision floating-point
values in the source operand to DP FP results representing
unbiased integer exponents and stores the results in the
destination under writemask k1.
VGETEXPPD zmm1 {k1}{z},
zmm2/m512/m64bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Table 5-14. VGETEXPPD/SD Special Cases
Input Operand Result Comments
src1 = NaN QNaN(src1) No Exceptions
0 < |src1| < INF floor(log2(|src1|))
| src1| = +INF +INF
| src1| = 0 -INF
5-354 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Dst.exp 1;
Dst.fraction SRC[51:0];
WHILE(Src.Jbit = 0)
{
Src.Jbit Dst.fraction[51]; // Get the fraction MSB
Dst.fraction Dst.fraction << 1 ; // One bit shift left
Dst.exp-- ; // Decrement the exponent
}
Dst.fraction 0; // zero out fraction bits
Dst.sign 1; // Return negative sign
TMP[63:0] MXCSR.DAZ? 0 : (Dst.sign << 63) OR (Dst.exp << 52) OR (Dst.fraction) ;
Return (TMP[63:0]);
}
ConvertExpDPFP(SRC[63:0])
{
Src.sign 0; // Zero out sign bit
Src.exp SRC[62:52];
Src.fraction SRC[51:0];
// Check for NaN
IF (SRC = NaN)
{
IF ( SRC = SNAN ) SET IE;
Return QNAN(SRC);
}
// Check for +INF
IF (SRC = +INF) Return (SRC);
// check if zero operand
IF ((Src.exp = 0) AND ((Src.fraction = 0) OR (MXCSR.DAZ = 1))) Return (-INF);
}
ELSE // check if denormal operand (notice that MXCSR.DAZ = 0)
{
IF ((Src.exp = 0) AND (Src.fraction != 0))
{
TMP[63:0] NormalizeExpTinyDPFP(SRC[63:0]) ; // Get Normalized Exponent
Set #DE
}
ELSE // exponent value is correct
{
Dst.fraction 0; // zero out fraction bits
TMP[63:0] (Src.sign << 63) OR (Src.exp << 52) OR (Src.fraction) ;
}
TMP SAR(TMP, 52) ; // Shift Arithmetic Right
TMP TMP – 1023; // Subtract Bias
Return CvtI2D(TMP) ; // Convert INT to Double-Precision FP number
}
}
VGETEXPPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
Ref. # 319433-023 5-355
INSTRUCTION SET REFERENCE, A-Z
THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN
DEST[i+63:i]
ConvertExpDPFP(SRC[63:0])
ELSE
DEST[i+63:i]
ConvertExpDPFP(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VGETEXPPD __m512d _mm512_getexp_pd(__m512d a);
VGETEXPPD __m512d _mm512_mask_getexp_pd(__m512d s, __mmask8 k, __m512d a);
VGETEXPPD __m512d _mm512_maskz_getexp_pd( __mmask8 k, __m512d a);
VGETEXPPD __m512d _mm512_getexp_round_pd(__m512d a, int sae);
VGETEXPPD __m512d _mm512_mask_getexp_round_pd(__m512d s, __mmask8 k, __m512d a, int sae);
VGETEXPPD __m512d _mm512_maskz_getexp_round_pd( __mmask8 k, __m512d a, int sae);
VGETEXPPD __m256d _mm256_getexp_pd(__m256d a);
VGETEXPPD __m256d _mm256_mask_getexp_pd(__m256d s, __mmask8 k, __m256d a);
VGETEXPPD __m256d _mm256_maskz_getexp_pd( __mmask8 k, __m256d a);
VGETEXPPD __m128d _mm_getexp_pd(__m128d a);
VGETEXPPD __m128d _mm_mask_getexp_pd(__m128d s, __mmask8 k, __m128d a);
VGETEXPPD __m128d _mm_maskz_getexp_pd( __mmask8 k, __m128d a);
SIMD Floating-Point Exceptions
Invalid, Denormal
Other Exceptions
See Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-356 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VGETEXPPS—Convert Exponents of Packed SP FP Values to SP FP Values
Instruction Operand Encoding
Description
Extracts the biased exponents from the normalized SP FP representation of each dword element of the source
operand (the second operand) as unbiased signed integer value, or convert the denormal representation of input
data to unbiased negative integer values. Each integer value of the unbiased exponent is converted to single-preci-
sion FP value and written to the corresponding dword elements of the destination operand (the first operand) as SP
FP numbers.
The destination operand is a ZMM/YMM/XMM register and updated under the writemask. The source operand can
be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from
a 32-bit memory location.
EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Each GETEXP operation converts the exponent value into a FP number (permitting input value in denormal repre-
sentation). Special cases of input values are listed in Table 5-15.
The formula is:
GETEXP(x) = floor(log2(|x|))
Notation floor(x) stands for maximal integer not exceeding real number x.
Software usage of VGETEXPxx and VGETMANTxx instructions generally involve a combination of GETEXP operation
and GETMANT operation (see VGETMANTPD). Thus VGETEXPxx instruction do not require software to handle SIMD
FP exceptions.
Figure 5-24 illustrates the VGETEXPPS functionality on input values with normalized representation.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 42 /r FV V/V AVX512VL Convert the exponent of packed single-precision floating-point
values in the source operand to SP FP results representing
unbiased integer exponents and stores the results in the
destination register.
VGETEXPPS xmm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
EVEX.256.66.0F38.W0 42 /r FV V/V AVX512VL Convert the exponent of packed single-precision floating-point
values in the source operand to SP FP results representing
unbiased integer exponents and stores the results in the
destination register.
VGETEXPPS ymm1 {k1}{z},
ymm2/m256/m32bcst
AVX512F
EVEX.512.66.0F38.W0 42 /r FV V/V AVX512F Convert the exponent of packed single-precision floating-point
values in the source operand to SP FP results representing
unbiased integer exponents and stores the results in the
destination register.
VGETEXPPS zmm1 {k1}{z},
zmm2/m512/m32bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Table 5-15. VGETEXPPS/SS Special Cases
Input Operand Result Comments
src1 = NaN QNaN(src1) No Exceptions
0 < |src1| < INF floor(log2(|src1|))
| src1| = +INF +INF
| src1| = 0 -INF
Ref. # 319433-023 5-357
INSTRUCTION SET REFERENCE, A-Z
Operation
NormalizeExpTinySPFP(SRC[31:0])
{
// Jbit is the hidden integral bit of a FP number. In case of denormal number it has the value of ZERO.
Src.Jbit 0;
Dst.exp 1;
Dst.fraction SRC[22:0];
WHILE(Src.Jbit = 0)
{
Src.Jbit Dst.fraction[22]; // Get the fraction MSB
Dst.fraction Dst.fraction << 1 ; // One bit shift left
Dst.exp-- ; // Decrement the exponent
}
Dst.fraction 0; // zero out fraction bits
Dst.sign 1; // Return negative sign
TMP[31:0] MXCSR.DAZ? 0 : (Dst.sign << 31) OR (Dst.exp << 23) OR (Dst.fraction) ;
Return (TMP[31:0]);
}
ConvertExpSPFP(SRC[31:0])
{
Src.sign 0; // Zero out sign bit
Src.exp SRC[30:23];
Src.fraction SRC[22:0];
// Check for NaN
IF (SRC = NaN)
{
IF ( SRC = SNAN ) SET IE;
Return QNAN(SRC);
}
// Check for +INF
IF (SRC = +INF) Return (SRC);
// check if zero operand
IF ((Src.exp = 0) AND ((Src.fraction = 0) OR (MXCSR.DAZ = 1))) Return (-INF);
}
ELSE // check if denormal operand (notice that MXCSR.DAZ = 0)
{
IF ((Src.exp = 0) AND (Src.fraction != 0))
{
Figure 5-24. VGETEXPPS Functionality On Normal Input values
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
s
Src = 2^1 01000000000000000000000000000000
SAR Src, 23 = 080h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
-Bias 11111111111111111111111110000001
Tmp - Bias = 1 00000000000000000000000000000001
Cvt_PI2PS(01h) = 2^0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
exp Fraction
5-358 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TMP[31:0] NormalizeExpTinySPFP(SRC[31:0]) ; // Get Normalized Exponent
Set #DE
}
ELSE // exponent value is correct
{
Dst.fraction 0; // zero out fraction bits
TMP[31:0] (Src.sign << 31) OR (Src.exp << 23) OR (Src.fraction) ;
}
TMP SAR(TMP, 23) ; // Shift Arithmetic Right
TMP TMP – 127; // Subtract Bias
Return CvtI2D(TMP) ; // Convert INT to Single-Precision FP number
}
}
VGETEXPPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN
DEST[i+31:i]
ConvertExpSPFP(SRC[31:0])
ELSE
DEST[i+31:i]
ConvertExpSPFP(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VGETEXPPS __m512 _mm512_getexp_ps( __m512 a);
VGETEXPPS __m512 _mm512_mask_getexp_ps(__m512 s, __mmask16 k, __m512 a);
VGETEXPPS __m512 _mm512_maskz_getexp_ps( __mmask16 k, __m512 a);
VGETEXPPS __m512 _mm512_getexp_round_ps( __m512 a, int sae);
VGETEXPPS __m512 _mm512_mask_getexp_round_ps(__m512 s, __mmask16 k, __m512 a, int sae);
VGETEXPPS __m512 _mm512_maskz_getexp_round_ps( __mmask16 k, __m512 a, int sae);
VGETEXPPS __m256 _mm256_getexp_ps(__m256 a);
VGETEXPPS __m256 _mm256_mask_getexp_ps(__m256 s, __mmask8 k, __m256 a);
VGETEXPPS __m256 _mm256_maskz_getexp_ps( __mmask8 k, __m256 a);
VGETEXPPS __m128 _mm_getexp_ps(__m128 a);
VGETEXPPS __m128 _mm_mask_getexp_ps(__m128 s, __mmask8 k, __m128 a);
VGETEXPPS __m128 _mm_maskz_getexp_ps( __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
Invalid, Denormal
Ref. # 319433-023 5-359
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
See Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-360 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VGETEXPSD—Convert Exponents of Scalar DP FP Values to DP FP Value
Instruction Operand Encoding
Description
Extracts the biased exponent from the normalized DP FP representation of the low qword data element of the
source operand (the third operand) as unbiased signed integer value, or convert the denormal representation of
input data to unbiased negative integer values. The integer value of the unbiased exponent is converted to double-
precision FP value and written to the destination operand (the first operand) as DP FP numbers. Bits (127:64) of
the XMM register destination are copied from corresponding bits in the first source operand.
The destination must be a XMM register, the source operand can be a XMM register or a float64 memory location.
The low quadword element of the destination operand is conditionally updated with writemask k1.
Each GETEXP operation converts the exponent value into a FP number (permitting input value in denormal repre-
sentation). Special cases of input values are listed in Table 5-14.
The formula is:
GETEXP(x) = floor(log2(|x|))
Notation floor(x) stands for maximal integer not exceeding real number x.
Operation
// NormalizeExpTinyDPFP(SRC[63:0]) is defined in the Operation section of VGETEXPPD
// ConvertExpDPFP(SRC[63:0]) is defined in the Operation section of VGETEXPPD
VGETEXPSD (EVEX encoded version)
IF k1[0] OR *no writemask*
THEN DEST[63:0]
ConvertExpDPFP(SRC2[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] 0
FI
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W1 43 /r T1S V/V AVX512F Convert the biased exponent (bits 62:52) of the low double-
precision floating-point value in xmm3/m64 to a DP FP value
representing unbiased integer exponent. Stores the result to
the low 64-bit of xmm1 under the writemask k1 and merge
with the other elements of xmm2.
VGETEXPSD xmm1 {k1}{z},
xmm2, xmm3/m64{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-361
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VGETEXPSD __m128d _mm_getexp_sd( __m128d a, __m128d b);
VGETEXPSD __m128d _mm_mask_getexp_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VGETEXPSD __m128d _mm_maskz_getexp_sd( __mmask8 k, __m128d a, __m128d b);
VGETEXPSD __m128d _mm_getexp_round_sd( __m128d a, __m128d b, int sae);
VGETEXPSD __m128d _mm_mask_getexp_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int sae);
VGETEXPSD __m128d _mm_maskz_getexp_round_sd( __mmask8 k, __m128d a, __m128d b, int sae);
SIMD Floating-Point Exceptions
Invalid, Denormal
Other Exceptions
See Exceptions Type E3.
5-362 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VGETEXPSS—Convert Exponents of Scalar SP FP Values to SP FP Value
Instruction Operand Encoding
Description
Extracts the biased exponent from the normalized SP FP representation of the low doubleword data element of the
source operand (the third operand) as unbiased signed integer value, or convert the denormal representation of
input data to unbiased negative integer values. The integer value of the unbiased exponent is converted to single-
precision FP value and written to the destination operand (the first operand) as SP FP numbers. Bits (127:32) of the
XMM register destination are copied from corresponding bits in the first source operand.
The destination must be a XMM register, the source operand can be a XMM register or a float32 memory location.
The the low doubleword element of the destination operand is conditionally updated with writemask k1.
Each GETEXP operation converts the exponent value into a FP number (permitting input value in denormal repre-
sentation). Special cases of input values are listed in Table 5-15.
The formula is:
GETEXP(x) = floor(log2(|x|))
Notation floor(x) stands for maximal integer not exceeding real number x.
Software usage of VGETEXPxx and VGETMANTxx instructions generally involve a combination of GETEXP operation
and GETMANT operation (see VGETMANTPD). Thus VGETEXPxx instruction do not require software to handle SIMD
FP exceptions.
Operation
// NormalizeExpTinySPFP(SRC[31:0]) is defined in the Operation section of VGETEXPPS
// ConvertExpSPFP(SRC[31:0]) is defined in the Operation section of VGETEXPPS
VGETEXPSS (EVEX encoded version)
IF k1[0] OR *no writemask*
THEN DEST[31:0]
ConvertExpDPFP(SRC2[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0] 0
FI
FI;
ENDFOR
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W0 43 /r T1S V/V AVX512F Convert the biased exponent (bits 30:23) of the low single-
precision floating-point value in xmm3/m32 to a SP FP
value representing unbiased integer exponent. Stores the
result to xmm1 under the writemask k1 and merge with the
other elements of xmm2.
VGETEXPSS xmm1 {k1}{z}, xmm2,
xmm3/m32{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-363
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VGETEXPSS __m128 _mm_getexp_ss( __m128 a, __m128 b);
VGETEXPSS __m128 _mm_mask_getexp_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VGETEXPSS __m128 _mm_maskz_getexp_ss( __mmask8 k, __m128 a, __m128 b);
VGETEXPSS __m128 _mm_getexp_round_ss( __m128 a, __m128 b, int sae);
VGETEXPSS __m128 _mm_mask_getexp_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int sae);
VGETEXPSS __m128 _mm_maskz_getexp_round_ss( __mmask8 k, __m128 a, __m128 b, int sae);
SIMD Floating-Point Exceptions
Invalid, Denormal
Other Exceptions
See Exceptions Type E3.
5-364 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VGETMANTPD—Extract Float64 Vector of Normalized Mantissas from Float64 Vector
Instruction Operand Encoding
Description
Convert double-precision floating values in the source operand (the second operand) to DP FP values with the
mantissa normalization and sign control specified by the imm8 byte, see Figure 5-25. The converted results are
written to the destination operand (the first operand) using writemask k1. The normalized mantissa is specified by
interv (imm8[1:0]) and the sign control (sc) is specified by bits 3:2 of the immediate byte.
The destination operand is a ZMM/YMM/XMM register updated under the writemask. The source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 64-
bit memory location.
For each input DP FP value x, The conversion operation is:
GetMant(x) = ±2k|x.significand|
where:
1 <= |x.significand| < 2
Unbiased exponent k depends on the interval range defined by interv and whether the exponent of the source is
even or odd. The sign of the final result is determined by sc and the source sign.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F3A.W1 26 /r ib FV V/V AVX512VL Get Normalized Mantissa from float64 vector
xmm2/m128/m64bcst and store the result in xmm1, using
imm8 for sign control and mantissa interval normalization,
under writemask.
VGETMANTPD xmm1 {k1}{z},
xmm2/m128/m64bcst, imm8
AVX512F
EVEX.256.66.0F3A.W1 26 /r ib FV V/V AVX512VL Get Normalized Mantissa from float64 vector
ymm2/m256/m64bcst and store the result in ymm1, using
imm8 for sign control and mantissa interval normalization,
under writemask.
VGETMANTPD ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
AVX512F
EVEX.512.66.0F3A.W1 26 /r ib FV V/V AVX512F Get Normalized Mantissa from float64 vector
zmm2/m512/m64bcst and store the result in zmm1, using
imm8 for sign control and mantissa interval normalization,
under writemask.
VGETMANTPD zmm1 {k1}{z},
zmm2/m512/m64bcst{sae},
imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
Figure 5-25. Imm8 Controls for VGETMANTPD/SD/PS/SS
7 02465 3 1
Normaiization IntervalMust Be Zero
Imm8[3:2] = 00b : sign(SRC)
Sign Control (SC)
Imm8[3:2] = 01b : 0
Imm8[3] = 1b : qNan_Indefinite if sign(SRC) != 0, regardless of imm8[2].
Imm8[1:0] = 00b : Interval is [ 1, 2)
Imm8[1:0] = 01b : Interval is [1/2, 2)
Imm8[1:0] = 10b : Interval is [ 1/2, 1)
Imm8[1:0] = 11b : Interval is [3/4, 3/2)
imm8
Ref. # 319433-023 5-365
INSTRUCTION SET REFERENCE, A-Z
If interv != 0 then k = -1, otherwise K = 0. The encoded value of imm8[1:0] and sign control are shown in
Figure 5-25.
Each converted DP FP result is encoded according to the sign control, the unbiased exponent k (adding bias) and a
mantissa normalized to the range specified by interv.
The GetMant() function follows Table 5-16 when dealing with floating-point special numbers.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1
are computed and stored into the destination. Elements in zmm1 with the corresponding bit clear in k1 retain their
previous values.
Note: EVEX.vvvv is reserved and must be 1111b; otherwise instructions will #UD.
Operation
GetNormalizeMantissaDP(SRC[63:0], SignCtrl[1:0], Interv[1:0])
{
// Extracting the SRC sign, exponent and mantissa fields
Dst.sign SignCtrl[0] ? 0 : Src[63]; // Get sign bit
Dst.exp SRC[62:52]; ; Get original exponent value
Dst.fraction SRC[51:0];; Get original fraction value
ZeroOperand (Dst.exp = 0) AND (Dst.fraction = 0);
DenormOperand (Dst.exp = 0h) AND (Dst.fraction != 0);
InfiniteOperand (Dst.exp = 07FFh) AND (Dst.fraction = 0);
NaNOperand (Dst.exp = 07FFh) AND (Dst.fraction != 0);
// Check for NAN operand
IF (NaNOperand)
{ IF (SRC = SNaN) {Set #IE;}
Return QNAN(SRC);
}
// Check for Zero and Infinite operands
IF ((ZeroOperand) OR (InfiniteOperand)
{Dst.exp 03FFh; // Override exponent with BIAS
Return ((Dst.sign<<63) | (Dst.exp<<52) | (Dst.fraction));
}
// Check for negative operand (including -0.0)
IF ((Src[63] = 1) AND SignCtrl[1])
{Set #IE;
Return QNaN_Indefinite;
}
Table 5-16. GetMant() Special Float Values Behavior
Input Result Exceptions / Comments
NaN QNaN(SRC) Ignore interv
If (SRC = SNaN) then #IE
+1.0 Ignore interv
+0 1.0 Ignore interv
-0 IF (SC[0]) THEN +1.0
ELSE -1.0
Ignore interv
-IF (SC[1]) THEN {QNaN_Indefinite}
ELSE {
IF (SC[0]) THEN +1.0
ELSE -1.0
Ignore interv
If (SC[1]) then #IE
negative SC[1] ? QNaN_Indefinite : Getmant(SRC) If (SC[1]) then #IE
5-366 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
// Checking for denormal operands
IF (DenormOperand)
{ IF (MXCSR.DAZ=1) Dst.fraction 0;// Zero out fraction
ELSE
{ // Jbit is the hidden integral bit. Zero in case of denormal operand.
Src.Jbit 0; // Zero Src Jbit
Dst.exp 03FFh; // Override exponent with BIAS
WHILE (Src.Jbit = 0) { // normalize mantissa
Src.Jbit Dst.fraction[51]; // Get the fraction MSB
Dst.fraction (Dst.fraction << 1); // Start normalizing the mantissa
Dst.exp-- ; // Adjust the exponent
}
SET #DE; // Set DE bit
}
} // At this point, Dst.fraction is normalized.
// Checking for exponent response
Unbiased.exp Dst.exp – 03FFh; // subtract the bias from exponent
IsOddExp Unbiased.exp[0]; // recognized unbiased ODD exponent
SignalingBit Dst.fraction[51];
CASE (interv[1:0])
00: Dst.exp 03FFh; // This is the bias
01: Dst.exp (IsOddExp) ? 03FEh : 03FFh; // either bias-1, or bias
10: Dst.exp 03FEh; // bias-1
11: Dst.exp (SignalingBit) ? 03FEh : 03FFh; // either bias-1, or bias
ESCA
// At this point Dst.exp has the correct result. Form the final destination
DEST[63:0] (Dst.sign << 63) OR (Dst.exp << 52) OR (Dst.fraction);
Return (DEST);
}
SignCtrl[1:0] IMM8[3:2];
Interv[1:0] IMM8[1:0];
VGETMANTPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN
DEST[i+63:i] GetNormalizedMantissaDP(SRC[63:0], sc, interv)
ELSE
DEST[i+63:i] GetNormalizedMantissaDP(SRC[i+63:i], sc, interv)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-367
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VGETMANTPD __m512d _mm512_getmant_pd( __m512d a, enum intv, enum sgn);
VGETMANTPD __m512d _mm512_mask_getmant_pd(__m512d s, __mmask8 k, __m512d a, enum intv, enum sgn);
VGETMANTPD __m512d _mm512_maskz_getmant_pd( __mmask8 k, __m512d a, enum intv, enum sgn);
VGETMANTPD __m512d _mm512_getmant_round_pd( __m512d a, enum intv, enum sgn, int r);
VGETMANTPD __m512d _mm512_mask_getmant_round_pd(__m512d s, __mmask8 k, __m512d a, enum intv, enum sgn, int r);
VGETMANTPD __m512d _mm512_maskz_getmant_round_pd( __mmask8 k, __m512d a, enum intv, enum sgn, int r);
VGETMANTPD __m256d _mm256_getmant_pd( __m256d a, enum intv, enum sgn);
VGETMANTPD __m256d _mm256_mask_getmant_pd(__m256d s, __mmask8 k, __m256d a, enum intv, enum sgn);
VGETMANTPD __m256d _mm256_maskz_getmant_pd( __mmask8 k, __m256d a, enum intv, enum sgn);
VGETMANTPD __m128d _mm_getmant_pd( __m128d a, enum intv, enum sgn);
VGETMANTPD __m128d _mm_mask_getmant_pd(__m128d s, __mmask8 k, __m128d a, enum intv, enum sgn);
VGETMANTPD __m128d _mm_maskz_getmant_pd( __mmask8 k, __m128d a, enum intv, enum sgn);
SIMD Floating-Point Exceptions
Denormal, Invalid
Other Exceptions
See Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-368 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VGETMANTPS—Extract Float32 Vector of Normalized Mantissas from Float32 Vector
Instruction Operand Encoding
Description
Convert single-precision floating values in the source operand (the second operand) to SP FP values with the
mantissa normalization and sign control specified by the imm8 byte, see Figure 5-25. The converted results are
written to the destination operand (the first operand) using writemask k1. The normalized mantissa is specified by
interv (imm8[1:0]) and the sign control (sc) is specified by bits 3:2 of the immediate byte.
The destination operand is a ZMM/YMM/XMM register updated under the writemask. The source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-
bit memory location.
For each input SP FP value x, The conversion operation is:
GetMant(x) = ±2k|x.significand|
where:
1 <= |x.significand| < 2
Unbiased exponent k depends on the interval range defined by interv and whether the exponent of the source is
even or odd. The sign of the final result is determined by sc and the source sign.
if interv != 0 then k = -1, otherwise K = 0. The encoded value of imm8[1:0] and sign control are shown
in Figure 5-25.
Each converted SP FP result is encoded according to the sign control, the unbiased exponent k (adding bias) and a
mantissa normalized to the range specified by interv.
The GetMant() function follows Table 5-16 when dealing with floating-point special numbers.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1
are computed and stored into the destination. Elements in zmm1 with the corresponding bit clear in k1 retain their
previous values.
Note: EVEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instructions will #UD.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F3A.W0 26 /r ib FV V/V AVX512VL Get normalized mantissa from float32 vector
xmm2/m128/m32bcst and store the result in xmm1, using
imm8 for sign control and mantissa interval normalization,
under writemask.
VGETMANTPS xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
AVX512F
EVEX.256.66.0F3A.W0 26 /r ib FV V/V AVX512VL Get normalized mantissa from float32 vector
ymm2/m256/m32bcst and store the result in ymm1, using
imm8 for sign control and mantissa interval normalization,
under writemask.
VGETMANTPS ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
AVX512F
EVEX.512.66.0F3A.W0 26 /r ib FV V/V AVX512F Get normalized mantissa from float32 vector
zmm2/m512/m32bcst and store the result in zmm1, using
imm8 for sign control and mantissa interval normalization,
under writemask.
VGETMANTPS zmm1 {k1}{z},
zmm2/m512/m32bcst{sae},
imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
Ref. # 319433-023 5-369
INSTRUCTION SET REFERENCE, A-Z
Operation
GetNormalizeMantissaSP(SRC[31:0] , SignCtrl[1:0], Interv[1:0])
{
// Extracting the SRC sign, exponent and mantissa fields
Dst.sign SignCtrl[0] ? 0 : Src[31]; // Get sign bit
Dst.exp SRC[30:23]; ; Get original exponent value
Dst.fraction SRC[22:0];; Get original fraction value
ZeroOperand (Dst.exp = 0) AND (Dst.fraction = 0);
DenormOperand (Dst.exp = 0h) AND (Dst.fraction != 0);
InfiniteOperand (Dst.exp = 0FFh) AND (Dst.fraction = 0);
NaNOperand (Dst.exp = 0FFh) AND (Dst.fraction != 0);
// Check for NAN operand
IF (NaNOperand)
{ IF (SRC = SNaN) {Set #IE;}
Return QNAN(SRC);
}
// Check for Zero and Infinite operands
IF ((ZeroOperand) OR (InfiniteOperand)
{Dst.exp 07Fh; // Override exponent with BIAS
Return ((Dst.sign<<31) | (Dst.exp<<23) | (Dst.fraction));
}
// Check for negative operand (including -0.0)
IF ((Src[31] = 1) AND SignCtrl[1])
{Set #IE;
Return QNaN_Indefinite;
}
// Checking for denormal operands
IF (DenormOperand)
{ IF (MXCSR.DAZ=1) Dst.fraction 0;// Zero out fraction
ELSE
{ // Jbit is the hidden integral bit. Zero in case of denormal operand.
Src.Jbit 0; // Zero Src Jbit
Dst.exp 07Fh; // Override exponent with BIAS
WHILE (Src.Jbit = 0) { // normalize mantissa
Src.Jbit Dst.fraction[22]; // Get the fraction MSB
Dst.fraction (Dst.fraction << 1); // Start normalizing the mantissa
Dst.exp-- ; // Adjust the exponent
}
SET #DE; // Set DE bit
}
} // At this point, Dst.fraction is normalized.
// Checking for exponent response
Unbiased.exp Dst.exp – 07Fh; // subtract the bias from exponent
IsOddExp Unbiased.exp[0]; // recognized unbiased ODD exponent
SignalingBit Dst.fraction[22];
CASE (interv[1:0])
00: Dst.exp 07Fh; // This is the bias
01: Dst.exp (IsOddExp) ? 07Eh : 07Fh; // either bias-1, or bias
10: Dst.exp 07Eh; // bias-1
11: Dst.exp (SignalingBit) ? 07Eh : 07Fh; // either bias-1, or bias
ESCA
// Form the final destination
DEST[31:0] (Dst.sign << 31) OR (Dst.exp << 23) OR (Dst.fraction);
5-370 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Return (DEST);
}
SignCtrl[1:0] IMM8[3:2];
Interv[1:0] IMM8[1:0];
VGETMANTPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN
DEST[i+31:i] GetNormalizedMantissaSP(SRC[31:0], sc, interv)
ELSE
DEST[i+31:i] GetNormalizedMantissaSP(SRC[i+31:i], sc, interv)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VGETMANTPS __m512 _mm512_getmant_ps( __m512 a, enum intv, enum sgn);
VGETMANTPS __m512 _mm512_mask_getmant_ps(__m512 s, __mmask16 k, __m512 a, enum intv, enum sgn;
VGETMANTPS __m512 _mm512_maskz_getmant_ps(__mmask16 k, __m512 a, enum intv, enum sgn);
VGETMANTPS __m512 _mm512_getmant_round_ps( __m512 a, enum intv, enum sgn, int r);
VGETMANTPS __m512 _mm512_mask_getmant_round_ps(__m512 s, __mmask16 k, __m512 a, enum intv, enum sgn, int r);
VGETMANTPS __m512 _mm512_maskz_getmant_round_ps(__mmask16 k, __m512 a, enum intv, enum sgn, int r);
VGETMANTPS __m256 _mm256_getmant_ps( __m256 a, enum intv, enum sgn);
VGETMANTPS __m256 _mm256_mask_getmant_ps(__m256 s, __mmask8 k, __m256 a, enum intv, enum sgn);
VGETMANTPS __m256 _mm256_maskz_getmant_ps( __mmask8 k, __m256 a, enum intv, enum sgn);
VGETMANTPS __m128 _mm_getmant_ps( __m128 a, enum intv, enum sgn);
VGETMANTPS __m128 _mm_mask_getmant_ps(__m128 s, __mmask8 k, __m128 a, enum intv, enum sgn);
VGETMANTPS __m128 _mm_maskz_getmant_ps( __mmask8 k, __m128 a, enum intv, enum sgn);
SIMD Floating-Point Exceptions
Denormal, Invalid
Other Exceptions
See Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-371
INSTRUCTION SET REFERENCE, A-Z
VGETMANTSD—Extract Float64 of Normalized Mantissas from Float64 Scalar
Instruction Operand Encoding
Description
Convert the double-precision floating values in the low quadword element of the second source operand (the third
operand) to DP FP value with the mantissa normalization and sign control specified by the imm8 byte, see
Figure 5-25. The converted result is written to the low quadword element of the destination operand (the first
operand) using writemask k1. Bits (127:64) of the XMM register destination are copied from corresponding
bits in the first source operand. The normalized mantissa is specified by interv (imm8[1:0]) and the sign control
(sc) is specified by bits 3:2 of the immediate byte.
The conversion operation is:
GetMant(x) = ±2k|x.significand|
where:
1 <= |x.significand| < 2
Unbiased exponent k depends on the interval range defined by interv and whether the exponent of the source is
even or odd. The sign of the final result is determined by sc and the source sign.
If interv != 0 then k = -1, otherwise K = 0. The encoded value of imm8[1:0] and sign control are shown in
Figure 5-25.
The converted DP FP result is encoded according to the sign control, the unbiased exponent k (adding bias) and a
mantissa normalized to the range specified by interv.
The GetMant() function follows Table 5-16 when dealing with floating-point special numbers.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1
are computed and stored into zmm1. Elements in zmm1 with the corresponding bit clear in k1 retain their previous
values.
Operation
// GetNormalizeMantissaDP(SRC[63:0], SignCtrl[1:0], Interv[1:0]) is defined in the operation section of VGETMANTPD
SignCtrl[1:0] IMM8[3:2];
Interv[1:0] IMM8[1:0];
VGETMANTSD (EVEX encoded version)
IF k1[0] OR *no writemask*
THEN DEST[63:0]
GetNormalizedMantissaDP(SRC2[63:0], sc, interv)
ELSE
IF *merging-masking* ; merging-masking
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W1 27 /r ib T1S V/V AVX512F Extract the normalized mantissa of the low float64
element in xmm3/m64 using imm8 for sign control and
mantissa interval normalization. Store the mantissa to
xmm1 under the writemask k1 and merge with the
other elements of xmm2.
VGETMANTSD xmm1 {k1}{z}, xmm2,
xmm3/m64{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-372 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] 0
FI
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VGETMANTSD __m128d _mm_getmant_sd( __m128d a, __m128 b, enum intv, enum sgn);
VGETMANTSD __m128d _mm_mask_getmant_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, enum intv, enum sgn);
VGETMANTSD __m128d _mm_maskz_getmant_sd( __mmask8 k, __m128 a, __m128d b, enum intv, enum sgn);
VGETMANTSD __m128d _mm_getmant_round_sd( __m128d a, __m128 b, enum intv, enum sgn, int r);
VGETMANTSD __m128d _mm_mask_getmant_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, enum intv, enum sgn, int r);
VGETMANTSD __m128d _mm_maskz_getmant_round_sd( __mmask8 k, __m128d a, __m128d b, enum intv, enum sgn, int r);
SIMD Floating-Point Exceptions
Denormal, Invalid
Other Exceptions
See Exceptions Type E3.
Ref. # 319433-023 5-373
INSTRUCTION SET REFERENCE, A-Z
VGETMANTSS—Extract Float32 Vector of Normalized Mantissa from Float32 Vector
Instruction Operand Encoding
Description
Convert the single-precision floating values in the low doubleword element of the second source operand (the third
operand) to SP FP value with the mantissa normalization and sign control specified by the imm8 byte, see
Figure 5-25. The converted result is written to the low doubleword element of the destination operand (the first
operand) using writemask k1. Bits (127:32) of the XMM register destination are copied from corresponding
bits in the first source operand. The normalized mantissa is specified by interv (imm8[1:0]) and the sign control
(sc) is specified by bits 3:2 of the immediate byte.
The conversion operation is:
GetMant(x) = ±2k|x.significand|
where:
1 <= |x.significand| < 2
Unbiased exponent k depends on the interval range defined by interv and whether the exponent of the source is
even or odd. The sign of the final result is determined by sc and the source sign.
if interv != 0 then k = -1, otherwise K = 0. The encoded value of imm8[1:0] and sign control are shown
in Figure 5-25.
The converted SP FP result is encoded according to the sign control, the unbiased exponent k (adding bias) and a
mantissa normalized to the range specified by interv.
The GetMant() function follows Table 5-16 when dealing with floating-point special numbers.
This instruction is writemasked, so only those elements with the corresponding bit set in vector mask register k1
are computed and stored into zmm1. Elements in zmm1 with the corresponding bit clear in k1 retain their previous
values.
Operation
// GetNormalizeMantissaSP(SRC[31:0], SignCtrl[1:0], Interv[1:0]) is defined in the operation section of VGETMANTPD
SignCtrl[1:0] IMM8[3:2];
Interv[1:0] IMM8[1:0];
VGETMANTSS (EVEX encoded version)
IF k1[0] OR *no writemask*
THEN DEST[31:0]
GetNormalizedMantissaSP(SRC2[31:0], sc, interv)
ELSE
IF *merging-masking* ; merging-masking
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W0 27 /r ib T1S V/V AVX512F Extract the normalized mantissa from the low float32
element of xmm3/m32 using imm8 for sign control and
mantissa interval normalization, store the mantissa to
xmm1 under the writemask k1 and merge with the
other elements of xmm2.
VGETMANTSS xmm1 {k1}{z}, xmm2,
xmm3/m32{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-374 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0] 0
FI
FI;
DEST[127:32] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VGETMANTSS __m128 _mm_getmant_ss( __m128 a, __m128 b, enum intv, enum sgn);
VGETMANTSS __m128 _mm_mask_getmant_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, enum intv, enum sgn);
VGETMANTSS __m128 _mm_maskz_getmant_ss( __mmask8 k, __m128 a, __m128 b, enum intv, enum sgn);
VGETMANTSS __m128 _mm_getmant_round_ss( __m128 a, __m128 b, enum intv, enum sgn, int r);
VGETMANTSS __m128 _mm_mask_getmant_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, enum intv, enum sgn, int r);
VGETMANTSS __m128 _mm_maskz_getmant_round_ss( __mmask8 k, __m128 a, __m128 b, enum intv, enum sgn, int r);
SIMD Floating-Point Exceptions
Denormal, Invalid
Other Exceptions
See Exceptions Type E3.
Ref. # 319433-023 5-375
INSTRUCTION SET REFERENCE, A-Z
VINSERTF128/VINSERTF32x4/VINSERTF64x2/VINSERTF32x8/VINSERTF64x4—Insert Packed
Floating-Point Values
Instruction Operand Encoding
Description
VINSERTF128/VINSERTF32x4 and VINSERTF64x2 insert 128-bits of packed floating-point values from the second
source operand (the third operand) into the destination operand (the first operand) at an 128-bit granularity offset
multiplied by imm8[0] (256-bit) or imm8[1:0]. The remaining portions of the destination operand are copied from
the corresponding fields of the first source operand (the second operand). The second source operand can be either
an XMM register or a 128-bit memory location. The destination and first source operands are vector registers.
VINSERTF32x4: The destination operand is a ZMM/YMM register and updated at 32-bit granularity according to the
writemask. The high 6/7 bits of the immediate are ignored.
VINSERTF64x2: The destination operand is a ZMM/YMM register and updated at 64-bit granularity according to the
writemask. The high 6/7 bits of the immediate are ignored.
VINSERTF32x8 and VINSERTF64x4 inserts 256-bits of packed floating-point values from the second source operand
(the third operand) into the destination operand (the first operand) at a 256-bit granular offset multiplied by
imm8[0]. The remaining portions of the destination are copied from the corresponding fields of the first source
operand (the second operand). The second source operand can be either an YMM register or a 256-bit memory
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.256.66.0F3A.W0 18 /r ib RVMI V/V AVX Insert 128 bits of packed floating-point values from
xmm3/m128 and the remaining values from ymm2
into ymm1.
VINSERTF128 ymm1, ymm2,
xmm3/m128, imm8
EVEX.NDS.256.66.0F3A.W0 18 /r ib T4 V/V AVX512VL Insert 128 bits of packed single-precision floating-
point values from xmm3/m128 and the remaining
values from ymm2 into ymm1 under writemask k1.
VINSERTF32X4 ymm1 {k1}{z}, ymm2,
xmm3/m128, imm8
AVX512F
EVEX.NDS.512.66.0F3A.W0 18 /r ib T4 V/V AVX512F Insert 128 bits of packed single-precision floating-
point values from xmm3/m128 and the remaining
values from zmm2 into zmm1 under writemask k1.
VINSERTF32X4 zmm1 {k1}{z}, zmm2,
xmm3/m128, imm8
EVEX.NDS.256.66.0F3A.W1 18 /r ib T2 V/V AVX512VL Insert 128 bits of packed double-precision floating-
point values from xmm3/m128 and the remaining
values from ymm2 into ymm1 under writemask k1.
VINSERTF64X2 ymm1 {k1}{z}, ymm2,
xmm3/m128, imm8
AVX512DQ
EVEX.NDS.512.66.0F3A.W1 18 /r ib T2 V/V AVX512DQ Insert 128 bits of packed double-precision floating-
point values from xmm3/m128 and the remaining
values from zmm2 into zmm1 under writemask k1.
VINSERTF64X2 zmm1 {k1}{z}, zmm2,
xmm3/m128, imm8
EVEX.NDS.512.66.0F3A.W0 1A /r ib T8 V/V AVX512DQ Insert 256 bits of packed single-precision floating-
point values from ymm3/m256 and the remaining
values from zmm2 into zmm1 under writemask k1.
VINSERTF32X8 zmm1 {k1}{z}, zmm2,
ymm3/m256, imm8
EVEX.NDS.512.66.0F3A.W1 1A /r ib T4 V/V AVX512F Insert 256 bits of packed double-precision floating-
point values from ymm3/m256 and the remaining
values from zmm2 into zmm1 under writemask k1.
VINSERTF64X4 zmm1 {k1}{z}, zmm2,
ymm3/m256, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8
T2, T4, T8 ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
5-376 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
location. The high 7 bits of the immediate are ignored. The destination operand is a ZMM register and updated at
32/64-bit granularity according to the writemask.
Operation
VINSERTF32x4 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
TEMP_DEST[VL-1:0] SRC1[VL-1:0]
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC2[127:0]
1: TMP_DEST[255:128] SRC2[127:0]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC2[127:0]
01: TMP_DEST[255:128] SRC2[127:0]
10: TMP_DEST[383:256] SRC2[127:0]
11: TMP_DEST[511:384] SRC2[127:0]
ESAC.
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VINSERTF64x2 (EVEX encoded versions)
(KL, VL) = (4, 256), (8, 512)
TEMP_DEST[VL-1:0] SRC1[VL-1:0]
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC2[127:0]
1: TMP_DEST[255:128] SRC2[127:0]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC2[127:0]
01: TMP_DEST[255:128] SRC2[127:0]
10: TMP_DEST[383:256] SRC2[127:0]
11: TMP_DEST[511:384] SRC2[127:0]
ESAC.
FI;
FOR j 0 TO KL-1
i j * 64
Ref. # 319433-023 5-377
INSTRUCTION SET REFERENCE, A-Z
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VINSERTF32x8 (EVEX.U1.512 encoded version)
TEMP_DEST[VL-1:0] SRC1[VL-1:0]
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC2[255:0]
1: TMP_DEST[511:256] SRC2[255:0]
ESAC.
FOR j 0 TO 15
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VINSERTF64x4 (EVEX.512 encoded version)
VL = 512
TEMP_DEST[VL-1:0] SRC1[VL-1:0]
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC2[255:0]
1: TMP_DEST[511:256] SRC2[255:0]
ESAC.
FOR j 0 TO 7
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-378 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VINSERTF128 (VEX encoded version)
TEMP[255:0] SRC1[255:0]
CASE (imm8[0]) OF
0: TEMP[127:0] SRC2[127:0]
1: TEMP[255:128] SRC2[127:0]
ESAC
DEST TEMP
Intel C/C++ Compiler Intrinsic Equivalent
VINSERTF32x4 __m512 _mm512_insertf32x4( __m512 a, __m128 b, int imm);
VINSERTF32x4 __m512 _mm512_mask_insertf32x4(__m512 s, __mmask16 k, __m512 a, __m128 b, int imm);
VINSERTF32x4 __m512 _mm512_maskz_insertf32x4( __mmask16 k, __m512 a, __m128 b, int imm);
VINSERTF32x4 __m256 _mm256_insertf32x4( __m256 a, __m128 b, int imm);
VINSERTF32x4 __m256 _mm256_mask_insertf32x4(__m256 s, __mmask8 k, __m256 a, __m128 b, int imm);
VINSERTF32x4 __m256 _mm256_maskz_insertf32x4( __mmask8 k, __m256 a, __m128 b, int imm);
VINSERTF32x8 __m512 _mm512_insertf32x8( __m512 a, __m256 b, int imm);
VINSERTF32x8 __m512 _mm512_mask_insertf32x8(__m512 s, __mmask16 k, __m512 a, __m256 b, int imm);
VINSERTF32x8 __m512 _mm512_maskz_insertf32x8( __mmask16 k, __m512 a, __m256 b, int imm);
VINSERTF64x2 __m512d _mm512_insertf64x2( __m512d a, __m128d b, int imm);
VINSERTF64x2 __m512d _mm512_mask_insertf64x2(__m512d s, __mmask8 k, __m512d a, __m128d b, int imm);
VINSERTF64x2 __m512d _mm512_maskz_insertf64x2( __mmask8 k, __m512d a, __m128d b, int imm);
VINSERTF64x2 __m256d _mm256_insertf64x2( __m256d a, __m128d b, int imm);
VINSERTF64x2 __m256d _mm256_mask_insertf64x2(__m256d s, __mmask8 k, __m256d a, __m128d b, int imm);
VINSERTF64x2 __m256d _mm256_maskz_insertf64x2( __mmask8 k, __m256d a, __m128d b, int imm);
VINSERTF64x4 __m512d _mm512_insertf64x4( __m512d a, __m256d b, int imm);
VINSERTF64x4 __m512d _mm512_mask_insertf64x4(__m512d s, __mmask8 k, __m512d a, __m256d b, int imm);
VINSERTF64x4 __m512d _mm512_maskz_insertf64x4( __mmask8 k, __m512d a, __m256d b, int imm);
VINSERTF128 __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);
VINSERTF128 __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);
VINSERTF128 __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instruction, see Exceptions Type 6; additionally
#UD If VEX.L = 0.
EVEX-encoded instruction, see Exceptions Type E6NF.
Ref. # 319433-023 5-379
INSTRUCTION SET REFERENCE, A-Z
VINSERTI128/VINSERTI32x4/VINSERTI64x2/VINSERTI32x8/VINSERTI64x4—Insert Packed
Integer Values
Instruction Operand Encoding
Description
VINSERTI32x4 and VINSERTI64x2 inserts 128-bits of packed integer values from the second source operand (the
third operand) into the destination operand (the first operand) at an 128-bit granular offset multiplied by imm8[0]
(256-bit) or imm8[1:0]. The remaining portions of the destination are copied from the corresponding fields of the
first source operand (the second operand). The second source operand can be either an XMM register or a 128-bit
memory location. The high 6/7bits of the immediate are ignored. The destination operand is a ZMM/YMM register
and updated at 32 and 64-bit granularity according to the writemask.
VINSERTI32x8 and VINSERTI64x4 inserts 256-bits of packed integer values from the second source operand (the
third operand) into the destination operand (the first operand) at a 256-bit granular offset multiplied by imm8[0].
The remaining portions of the destination are copied from the corresponding fields of the first source operand (the
second operand). The second source operand can be either an YMM register or a 256-bit memory location. The
upper bits of the immediate are ignored. The destination operand is a ZMM register and updated at 32 and 64-bit
granularity according to the writemask.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.256.66.0F3A.W0 38 /r ib RVMI V/V AVX2 Insert 128 bits of integer data from xmm3/m128 and
the remaining values from ymm2 into ymm1.
VINSERTI128 ymm1, ymm2,
xmm3/m128, imm8
EVEX.NDS.256.66.0F3A.W0 38 /r ib T4 V/V AVX512VL Insert 128 bits of packed doubleword integer values
from xmm3/m128 and the remaining values from
ymm2 into ymm1 under writemask k1.
VINSERTI32X4 ymm1 {k1}{z}, ymm2,
xmm3/m128, imm8
AVX512F
EVEX.NDS.512.66.0F3A.W0 38 /r ib T4 V/V AVX512F Insert 128 bits of packed doubleword integer values
from xmm3/m128 and the remaining values from
zmm2 into zmm1 under writemask k1.
VINSERTI32X4 zmm1 {k1}{z}, zmm2,
xmm3/m128, imm8
EVEX.NDS.256.66.0F3A.W1 38 /r ib T2 V/V AVX512VL Insert 128 bits of packed quadword integer values
from xmm3/m128 and the remaining values from
ymm2 into ymm1 under writemask k1.
VINSERTI64X2 ymm1 {k1}{z}, ymm2,
xmm3/m128, imm8
AVX512DQ
EVEX.NDS.512.66.0F3A.W1 38 /r ib T2 V/V AVX512DQ Insert 128 bits of packed quadword integer values
from xmm3/m128 and the remaining values from
zmm2 into zmm1 under writemask k1.
VINSERTI64X2 zmm1 {k1}{z}, zmm2,
xmm3/m128, imm8
EVEX.NDS.512.66.0F3A.W0 3A /r ib T8 V/V AVX512DQ Insert 256 bits of packed doubleword integer values
from ymm3/m256 and the remaining values from
zmm2 into zmm1 under writemask k1.
VINSERTI32X8 zmm1 {k1}{z}, zmm2,
ymm3/m256, imm8
EVEX.NDS.512.66.0F3A.W1 3A /r ib T4 V/V AVX512F Insert 256 bits of packed quadword integer values
from ymm3/m256 and the remaining values from
zmm2 into zmm1 under writemask k1.
VINSERTI64X4 zmm1 {k1}{z}, zmm2,
ymm3/m256, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8
T2, T4, T8 ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
5-380 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VINSERTI128 inserts 128-bits of packed integer data from the second source operand (the third operand) into the
destination operand (the first operand) at a 128-bit granular offset multiplied by imm8[0]. The remaining portions
of the destination are copied from the corresponding fields of the first source operand (the second operand). The
second source operand can be either an XMM register or a 128-bit memory location. The high 7 bits of the imme-
diate are ignored. VEX.L must be 1, otherwise attempt to execute this instruction with VEX.L=0 will cause #UD.
Operation
VINSERTI32x4 (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
TEMP_DEST[VL-1:0] SRC1[VL-1:0]
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC2[127:0]
1: TMP_DEST[255:128] SRC2[127:0]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC2[127:0]
01: TMP_DEST[255:128] SRC2[127:0]
10: TMP_DEST[383:256] SRC2[127:0]
11: TMP_DEST[511:384] SRC2[127:0]
ESAC.
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VINSERTI64x2 (EVEX encoded versions)
(KL, VL) = (4, 256), (8, 512)
TEMP_DEST[VL-1:0] SRC1[VL-1:0]
IF VL = 256
CASE (imm8[0]) OF
0: TMP_DEST[127:0] SRC2[127:0]
1: TMP_DEST[255:128] SRC2[127:0]
ESAC.
FI;
IF VL = 512
CASE (imm8[1:0]) OF
00: TMP_DEST[127:0] SRC2[127:0]
01: TMP_DEST[255:128] SRC2[127:0]
10: TMP_DEST[383:256] SRC2[127:0]
11: TMP_DEST[511:384] SRC2[127:0]
ESAC.
Ref. # 319433-023 5-381
INSTRUCTION SET REFERENCE, A-Z
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VINSERTI32x8 (EVEX.U1.512 encoded version)
TEMP_DEST[VL-1:0] SRC1[VL-1:0]
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC2[255:0]
1: TMP_DEST[511:256] SRC2[255:0]
ESAC.
FOR j 0 TO 15
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VINSERTI64x4 (EVEX.512 encoded version)
VL = 512
TEMP_DEST[VL-1:0] SRC1[VL-1:0]
CASE (imm8[0]) OF
0: TMP_DEST[255:0] SRC2[255:0]
1: TMP_DEST[511:256] SRC2[255:0]
ESAC.
FOR j 0 TO 7
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
5-382 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VINSERTI128
TEMP[255:0] SRC1[255:0]
CASE (imm8[0]) OF
0: TEMP[127:0] SRC2[127:0]
1: TEMP[255:128] SRC2[127:0]
ESAC
DEST TEMP
Intel C/C++ Compiler Intrinsic Equivalent
VINSERTI32x4 _mm512i _inserti32x4( __m512i a, __m128i b, int imm);
VINSERTI32x4 _mm512i _mask_inserti32x4(__m512i s, __mmask16 k, __m512i a, __m128i b, int imm);
VINSERTI32x4 _mm512i _maskz_inserti32x4( __mmask16 k, __m512i a, __m128i b, int imm);
VINSERTI32x4 __m256i _mm256_inserti32x4( __m256i a, __m128i b, int imm);
VINSERTI32x4 __m256i _mm256_mask_inserti32x4(__m256i s, __mmask8 k, __m256i a, __m128i b, int imm);
VINSERTI32x4 __m256i _mm256_maskz_inserti32x4( __mmask8 k, __m256i a, __m128i b, int imm);
VINSERTI32x8 __m512i _mm512_inserti32x8( __m512i a, __m256i b, int imm);
VINSERTI32x8 __m512i _mm512_mask_inserti32x8(__m512i s, __mmask16 k, __m512i a, __m256i b, int imm);
VINSERTI32x8 __m512i _mm512_maskz_inserti32x8( __mmask16 k, __m512i a, __m256i b, int imm);
VINSERTI64x2 __m512i _mm512_inserti64x2( __m512i a, __m128i b, int imm);
VINSERTI64x2 __m512i _mm512_mask_inserti64x2(__m512i s, __mmask8 k, __m512i a, __m128i b, int imm);
VINSERTI64x2 __m512i _mm512_maskz_inserti64x2( __mmask8 k, __m512i a, __m128i b, int imm);
VINSERTI64x2 __m256i _mm256_inserti64x2( __m256i a, __m128i b, int imm);
VINSERTI64x2 __m256i _mm256_mask_inserti64x2(__m256i s, __mmask8 k, __m256i a, __m128i b, int imm);
VINSERTI64x2 __m256i _mm256_maskz_inserti64x2( __mmask8 k, __m256i a, __m128i b, int imm);
VINSERTI64x4 _mm512_inserti64x4( __m512i a, __m256i b, int imm);
VINSERTI64x4 _mm512_mask_inserti64x4(__m512i s, __mmask8 k, __m512i a, __m256i b, int imm);
VINSERTI64x4 _mm512_maskz_inserti64x4( __mmask m, __m512i a, __m256i b, int imm);
VINSERTI128 __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instruction, see Exceptions Type 6; additionally
#UD If VEX.L = 0.
EVEX-encoded instruction, see Exceptions Type E6NF.
Ref. # 319433-023 5-383
INSTRUCTION SET REFERENCE, A-Z
INSERTPS—Insert Scalar Single-Precision Floating-Point Value
Instruction Operand Encoding
Description
(register source form)
Select a single-precision floating-point element from second source as indicated by Count_S bits of the immediate
operand and destination operand it into the first source at the location indicated by the Count_D bits of the imme-
diate operand. Store in the destination and zero out destination elements based on the ZMask bits of the imme-
diate operand.
(memory source form)
Load a floating-point element from a 32-bit memory location and destination operand it into the first source at the
location indicated by the Count_D bits of the immediate operand. Store in the destination and zero out destination
elements based on the ZMask bits of the immediate operand.
128-bit Legacy SSE version: The first source register is an XMM register. The second source operand is either an
XMM register or a 32-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding register destination are unmodified.
VEX.128 and EVEX encoded version: The destination and first source register is an XMM register. The second
source operand is either an XMM register or a 32-bit memory location. The upper bits (MAX_VL-1:128) of the
corresponding register destination are zeroed.
If VINSERTPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause
an #UD exception.
Operation
VINSERTPS (VEX.128 and EVEX encoded version)
IF (SRC = REG) THEN COUNT_S imm8[7:6]
ELSE COUNT_S 0
COUNT_D imm8[5:4]
ZMASK imm8[3:0]
CASE (COUNT_S) OF
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 3A 21 /r ib RMI V/V SSE4_1 Insert a single-precision floating-point value selected
by imm8 from xmm2/m32 into xmm1 at the specified
destination element specified by imm8 and zero out
destination elements in xmm1 as indicated in imm8.
INSERTPS xmm1, xmm2/m32, imm8
VEX.NDS.128.66.0F3A.WIG 21 /r ib RVMI V/V AVX Insert a single-precision floating-point value selected
by imm8 from xmm3/m32 and merge with values in
xmm2 at the specified destination element specified
by imm8 and write out the result and zero out
destination elements in xmm1 as indicated in imm8.
VINSERTPS xmm1, xmm2,
xmm3/m32, imm8
EVEX.NDS.128.66.0F3A.W0 21 /r ib T1S V/V AVX512F Insert a single-precision floating-point value selected
by imm8 from xmm3/m32 and merge with values in
xmm2 at the specified destination element specified
by imm8 and write out the result and zero out
destination elements in xmm1 as indicated in imm8.
VINSERTPS xmm1, xmm2,
xmm3/m32, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA
RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) Imm8
5-384 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
0: TMP SRC2[31:0]
1: TMP SRC2[63:32]
2: TMP SRC2[95:64]
3: TMP SRC2[127:96]
ESAC;
CASE (COUNT_D) OF
0: TMP2[31:0] TMP
TMP2[127:32] SRC1[127:32]
1: TMP2[63:32] TMP
TMP2[31:0] SRC1[31:0]
TMP2[127:64] SRC1[127:64]
2: TMP2[95:64] TMP
TMP2[63:0] SRC1[63:0]
TMP2[127:96] SRC1[127:96]
3: TMP2[127:96] TMP
TMP2[95:0] SRC1[95:0]
ESAC;
IF (ZMASK[0] = 1) THEN DEST[31:0] 00000000H
ELSE DEST[31:0] TMP2[31:0]
IF (ZMASK[1] = 1) THEN DEST[63:32] 00000000H
ELSE DEST[63:32] TMP2[63:32]
IF (ZMASK[2] = 1) THEN DEST[95:64] 00000000H
ELSE DEST[95:64] TMP2[95:64]
IF (ZMASK[3] = 1) THEN DEST[127:96] 00000000H
ELSE DEST[127:96] TMP2[127:96]
DEST[MAX_VL-1:128] 0
INSERTPS (128-bit Legacy SSE version)
IF (SRC = REG) THEN COUNT_S imm8[7:6]
ELSE COUNT_S 0
COUNT_D imm8[5:4]
ZMASK imm8[3:0]
CASE (COUNT_S) OF
0: TMP SRC[31:0]
1: TMP SRC[63:32]
2: TMP SRC[95:64]
3: TMP SRC[127:96]
ESAC;
CASE (COUNT_D) OF
0: TMP2[31:0] TMP
TMP2[127:32] DEST[127:32]
1: TMP2[63:32] TMP
TMP2[31:0] DEST[31:0]
TMP2[127:64] DEST[127:64]
2: TMP2[95:64] TMP
TMP2[63:0] DEST[63:0]
TMP2[127:96] DEST[127:96]
3: TMP2[127:96] TMP
TMP2[95:0] DEST[95:0]
ESAC;
IF (ZMASK[0] = 1) THEN DEST[31:0] 00000000H
Ref. # 319433-023 5-385
INSTRUCTION SET REFERENCE, A-Z
ELSE DEST[31:0] TMP2[31:0]
IF (ZMASK[1] = 1) THEN DEST[63:32] 00000000H
ELSE DEST[63:32] TMP2[63:32]
IF (ZMASK[2] = 1) THEN DEST[95:64] 00000000H
ELSE DEST[95:64] TMP2[95:64]
IF (ZMASK[3] = 1) THEN DEST[127:96] 00000000H
ELSE DEST[127:96] TMP2[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VINSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int nidx);
INSETRTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int nidx);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5; additionally
#UD If VEX.L = 0.
EVEX-encoded instruction, see Exceptions Type E9NF.
5-386 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MAXPD—Maximum of Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed double-precision floating-point values in the first source operand and the
second source operand and returns the maximum value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that
is, a QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source
operand (from either the first or second operand) be returned, the action of MAXPD can be emulated using a
sequence of instructions, such as a comparison followed by AND, ANDN and OR.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256)
of the corresponding ZMM register destination are zeroed.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 5F /r RM V/V SSE2 Return the maximum double-precision floating-point values
between xmm1 and xmm2/m128.
MAXPD xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 5F /r RVM V/V AVX Return the maximum double-precision floating-point values
between xmm2 and xmm3/m128.
VMAXPD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F.WIG 5F /r RVM V/V AVX Return the maximum packed double-precision floating-point
values between ymm2 and ymm3/m256.
VMAXPD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.W1 5F /r FV V/V AVX512VL Return the maximum packed double-precision floating-point
values between xmm2 and xmm3/m128/m64bcst and store
result in xmm1 subject to writemask k1.
VMAXPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F.W1 5F /r FV V/V AVX512VL Return the maximum packed double-precision floating-point
values between ymm2 and ymm3/m256/m64bcst and store
result in ymm1 subject to writemask k1.
VMAXPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F.W1 5F /r FV V/V AVX512F Return the maximum packed double-precision floating-point
values between zmm2 and zmm3/m512/m64bcst and store
result in zmm1 subject to writemask k1.
VMAXPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-387
INSTRUCTION SET REFERENCE, A-Z
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Operation
MAX(SRC1, SRC2)
{
IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST SRC1;
ELSE DEST SRC2;
FI;
}
VMAXPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] MAX(SRC1[i+63:i], SRC2[63:0])
ELSE
DEST[i+63:i] MAX(SRC1[i+63:i], SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMAXPD (VEX.256 encoded version)
DEST[63:0] MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] MAX(SRC1[127:64], SRC2[127:64])
DEST[191:128] MAX(SRC1[191:128], SRC2[191:128])
DEST[255:192] MAX(SRC1[255:192], SRC2[255:192])
DEST[MAX_VL-1:256] 0
VMAXPD (VEX.128 encoded version)
DEST[63:0] MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] MAX(SRC1[127:64], SRC2[127:64])
DEST[MAX_VL-1:128] 0
5-388 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MAXPD (128-bit Legacy SSE version)
DEST[63:0] MAX(DEST[63:0], SRC[63:0])
DEST[127:64] MAX(DEST[127:64], SRC[127:64])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMAXPD __m512d _mm512_max_pd( __m512d a, __m512d b);
VMAXPD __m512d _mm512_mask_max_pd(__m512d s, __mmask8 k, __m512d a, __m512d b,);
VMAXPD __m512d _mm512_maskz_max_pd( __mmask8 k, __m512d a, __m512d b);
VMAXPD __m512d _mm512_max_round_pd( __m512d a, __m512d b, int);
VMAXPD __m512d _mm512_mask_max_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VMAXPD __m512d _mm512_maskz_max_round_pd( __mmask8 k, __m512d a, __m512d b, int);
VMAXPD __m256d _mm256_mask_max_pd(__m5256d s, __mmask8 k, __m256d a, __m256d b);
VMAXPD __m256d _mm256_maskz_max_pd( __mmask8 k, __m256d a, __m256d b);
VMAXPD __m128d _mm_mask_max_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VMAXPD __m128d _mm_maskz_max_pd( __mmask8 k, __m128d a, __m128d b);
VMAXPD __m256d _mm256_max_pd (__m256d a, __m256d b);
(V)MAXPD __m128d _mm_max_pd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.
Ref. # 319433-023 5-389
INSTRUCTION SET REFERENCE, A-Z
MAXPS—Maximum of Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed single-precision floating-point values in the first source operand and the
second source operand and returns the maximum value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that
is, a QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source
operand (from either the first or second operand) be returned, the action of MAXPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256)
of the corresponding ZMM register destination are zeroed.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 5F /r RM V/V SSE Return the maximum single-precision floating-point values
between xmm1 and xmm2/mem.
MAXPS xmm1, xmm2/m128
VEX.NDS.128.0F.WIG 5F /r RVM V/V AVX Return the maximum single-precision floating-point values
between xmm2 and xmm3/mem.
VMAXPS xmm1, xmm2,
xmm3/m128
VEX.NDS.256.0F.WIG 5F /r RVM V/V AVX Return the maximum single-precision floating-point values
between ymm2 and ymm3/mem.
VMAXPS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.0F.W0 5F /r FV V/V AVX512VL Return the maximum packed single-precision floating-point
values between xmm2 and xmm3/m128/m32bcst and store
result in xmm1 subject to writemask k1.
VMAXPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.0F.W0 5F /r FV V/V AVX512VL Return the maximum packed single-precision floating-point
values between ymm2 and ymm3/m256/m32bcst and store
result in ymm1 subject to writemask k1.
VMAXPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.0F.W0 5F /r FV V/V AVX512F Return the maximum packed single-precision floating-point
values between zmm2 and zmm3/m512/m32bcst and store
result in zmm1 subject to writemask k1.
VMAXPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-390 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Operation
MAX(SRC1, SRC2)
{
IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST SRC1;
ELSE DEST SRC2;
FI;
}
VMAXPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] MAX(SRC1[i+31:i], SRC2[31:0])
ELSE
DEST[i+31:i] MAX(SRC1[i+31:i], SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMAXPS (VEX.256 encoded version)
DEST[31:0] MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32] MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64] MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96] MAX(SRC1[127:96], SRC2[127:96])
DEST[159:128] MAX(SRC1[159:128], SRC2[159:128])
DEST[191:160] MAX(SRC1[191:160], SRC2[191:160])
DEST[223:192] MAX(SRC1[223:192], SRC2[223:192])
DEST[255:224] MAX(SRC1[255:224], SRC2[255:224])
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-391
INSTRUCTION SET REFERENCE, A-Z
VMAXPS (VEX.128 encoded version)
DEST[31:0] MAX(SRC1[31:0], SRC2[31:0])
DEST[63:32] MAX(SRC1[63:32], SRC2[63:32])
DEST[95:64] MAX(SRC1[95:64], SRC2[95:64])
DEST[127:96] MAX(SRC1[127:96], SRC2[127:96])
DEST[MAX_VL-1:128] 0
MAXPS (128-bit Legacy SSE version)
DEST[31:0] MAX(DEST[31:0], SRC[31:0])
DEST[63:32] MAX(DEST[63:32], SRC[63:32])
DEST[95:64] MAX(DEST[95:64], SRC[95:64])
DEST[127:96] MAX(DEST[127:96], SRC[127:96])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMAXPS __m512 _mm512_max_ps( __m512 a, __m512 b);
VMAXPS __m512 _mm512_mask_max_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VMAXPS __m512 _mm512_maskz_max_ps( __mmask16 k, __m512 a, __m512 b);
VMAXPS __m512 _mm512_max_round_ps( __m512 a, __m512 b, int);
VMAXPS __m512 _mm512_mask_max_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VMAXPS __m512 _mm512_maskz_max_round_ps( __mmask16 k, __m512 a, __m512 b, int);
VMAXPS __m256 _mm256_mask_max_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VMAXPS __m256 _mm256_maskz_max_ps( __mmask8 k, __m256 a, __m256 b);
VMAXPS __m128 _mm_mask_max_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VMAXPS __m128 _mm_maskz_max_ps( __mmask8 k, __m128 a, __m128 b);
VMAXPS __m256 _mm256_max_ps (__m256 a, __m256 b);
MAXPS __m128 _mm_max_ps (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.
5-392 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
Compares the low double-precision floating-point values in the first source operand and second the source
operand, and returns the maximum value to the low quadword of the destination operand. The second source
operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM
registers. When the second source operand is a memory operand, only 64 bits are accessed.
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If
a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a
QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN of either source
operand be returned, the action of MAXSD can be emulated using a sequence of instructions, such as, a comparison
followed by AND, ANDN and OR.
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAX_VL-1:64) of the
corresponding destination register remain unchanged.
VEX.128 and EVEX encoded version: Bits (127:64) of the XMM register destination are copied from corresponding
bits in the first source operand. Bits (MAX_VL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the
writemask.
Software should ensure VMAXSD is encoded with VEX.L=0. Encoding VMAXSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 5F /r RM V/V SSE2 Return the maximum scalar double-precision floating-point
value between xmm2/m64 and xmm1.
MAXSD xmm1, xmm2/m64
VEX.NDS.128.F2.0F.WIG 5F /r RVM V/V AVX Return the maximum scalar double-precision floating-point
value between xmm3/m64 and xmm2.
VMAXSD xmm1, xmm2,
xmm3/m64
EVEX.NDS.LIG.F2.0F.W1 5F /r T1S V/V AVX512F Return the maximum scalar double-precision floating-point
value between xmm3/m64 and xmm2.
VMAXSD xmm1 {k1}{z}, xmm2,
xmm3/m64{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-393
INSTRUCTION SET REFERENCE, A-Z
Operation
MAX(SRC1, SRC2)
{
IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST SRC1;
ELSE DEST SRC2;
FI;
}
VMAXSD (EVEX encoded version)
IF k1[0] or *no writemask*
THEN DEST[63:0] MAX(SRC1[63:0], SRC2[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VMAXSD (VEX.128 encoded version)
DEST[63:0] MAX(SRC1[63:0], SRC2[63:0])
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
MAXSD (128-bit Legacy SSE version)
DEST[63:0] MAX(DEST[63:0], SRC[63:0])
DEST[MAX_VL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMAXSD __m128d _mm_max_round_sd( __m128d a, __m128d b, int);
VMAXSD __m128d _mm_mask_max_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VMAXSD __m128d _mm_maskz_max_round_sd( __mmask8 k, __m128d a, __m128d b, int);
MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (Including QNaN Source Operand), Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
5-394 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value
Instruction Operand Encoding
Description
Compares the low single-precision floating-point values in the first source operand and the second source operand,
and returns the maximum value to the low doubleword of the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If
a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a
QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN from either source
operand be returned, the action of MAXSS can be emulated using a sequence of instructions, such as, a comparison
followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 32-bit memory location. The first source and destination
operands are XMM registers.
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAX_VL:32) of the corre-
sponding destination register remain unchanged.
VEX.128 and EVEX encoded version: The first source operand is an xmm register encoded by VEX.vvvv. Bits
(127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits
(MAX_VL:128) of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the
writemask.
Software should ensure VMAXSS is encoded with VEX.L=0. Encoding VMAXSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 5F /r RM V/V SSE Return the maximum scalar single-precision floating-point value
between xmm2/m32 and xmm1.
MAXSS xmm1, xmm2/m32
VEX.NDS.128.F3.0F.WIG 5F /r RVM V/V AVX Return the maximum scalar single-precision floating-point value
between xmm3/m32 and xmm2.
VMAXSS xmm1, xmm2,
xmm3/m32
EVEX.NDS.LIG.F3.0F.W0 5F /r T1S V/V AVX512F Return the maximum scalar single-precision floating-point value
between xmm3/m32 and xmm2.
VMAXSS xmm1 {k1}{z},
xmm2, xmm3/m32{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-395
INSTRUCTION SET REFERENCE, A-Z
Operation
MAX(SRC1, SRC2)
{
IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 > SRC2) THEN DEST SRC1;
ELSE DEST SRC2;
FI;
}
VMAXSS (EVEX encoded version)
IF k1[0] or *no writemask*
THEN DEST[31:0] MAX(SRC1[31:0], SRC2[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VMAXSS (VEX.128 encoded version)
DEST[31:0] MAX(SRC1[31:0], SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
MAXSS (128-bit Legacy SSE version)
DEST[31:0] MAX(DEST[31:0], SRC[31:0])
DEST[MAX_VL-1:32] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMAXSS __m128 _mm_max_round_ss( __m128 a, __m128 b, int);
VMAXSS __m128 _mm_mask_max_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VMAXSS __m128 _mm_maskz_max_round_ss( __mmask8 k, __m128 a, __m128 b, int);
MAXSS __m128 _mm_max_ss(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Invalid (Including QNaN Source Operand), Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
5-396 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MINPD—Minimum of Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed double-precision floating-point values in the first source operand and the
second source operand and returns the minimum value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that
is, a QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source
operand (from either the first or second operand) be returned, the action of MINPD can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256)
of the corresponding ZMM register destination are zeroed.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 5D /r RM V/V SSE2 Return the minimum double-precision floating-point values
between xmm1 and xmm2/mem
MINPD xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 5D /r RVM V/V AVX Return the minimum double-precision floating-point values
between xmm2 and xmm3/mem.
VMINPD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F.WIG 5D /r RVM V/V AVX Return the minimum packed double-precision floating-point
values between ymm2 and ymm3/mem.
VMINPD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.W1 5D /r FV V/V AVX512VL Return the minimum packed double-precision floating-point
values between xmm2 and xmm3/m128/m64bcst and store
result in xmm1 subject to writemask k1.
VMINPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F.W1 5D /r FV V/V AVX512VL Return the minimum packed double-precision floating-point
values between ymm2 and ymm3/m256/m64bcst and store
result in ymm1 subject to writemask k1.
VMINPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F.W1 5D /r FV V/V AVX512F Return the minimum packed double-precision floating-point
values between zmm2 and zmm3/m512/m64bcst and store
result in zmm1 subject to writemask k1.
VMINPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-397
INSTRUCTION SET REFERENCE, A-Z
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Operation
MIN(SRC1, SRC2)
{
IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST SRC1;
ELSE DEST SRC2;
FI;
}
VMINPD (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] MIN(SRC1[i+63:i], SRC2[63:0])
ELSE
DEST[i+63:i] MIN(SRC1[i+63:i], SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMINPD (VEX.256 encoded version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] MIN(SRC1[127:64], SRC2[127:64])
DEST[191:128] MIN(SRC1[191:128], SRC2[191:128])
DEST[255:192] MIN(SRC1[255:192], SRC2[255:192])
VMINPD (VEX.128 encoded version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] MIN(SRC1[127:64], SRC2[127:64])
DEST[MAX_VL-1:128] 0
5-398 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MINPD (128-bit Legacy SSE version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] MIN(SRC1[127:64], SRC2[127:64])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMINPD __m512d _mm512_min_pd( __m512d a, __m512d b);
VMINPD __m512d _mm512_mask_min_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VMINPD __m512d _mm512_maskz_min_pd( __mmask8 k, __m512d a, __m512d b);
VMINPD __m512d _mm512_min_round_pd( __m512d a, __m512d b, int);
VMINPD __m512d _mm512_mask_min_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VMINPD __m512d _mm512_maskz_min_round_pd( __mmask8 k, __m512d a, __m512d b, int);
VMINPD __m256d _mm256_mask_min_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VMINPD __m256d _mm256_maskz_min_pd( __mmask8 k, __m256d a, __m256d b);
VMINPD __m128d _mm_mask_min_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VMINPD __m128d _mm_maskz_min_pd( __mmask8 k, __m128d a, __m128d b);
VMINPD __m256d _mm256_min_pd (__m256d a, __m256d b);
MINPD __m128d _mm_min_pd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.
Ref. # 319433-023 5-399
INSTRUCTION SET REFERENCE, A-Z
MINPS—Minimum of Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed single-precision floating-point values in the first source operand and the
second source operand and returns the minimum value for each pair of values to the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is
returned. If a value in the second operand is an SNaN, then SNaN is forwarded unchanged to the destination (that
is, a QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source
operand (from either the first or second operand) be returned, the action of MINPS can be emulated using a
sequence of instructions, such as, a comparison followed by AND, ANDN and OR.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256)
of the corresponding ZMM register destination are zeroed.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 5D /r RM V/V SSE Return the minimum single-precision floating-point values
between xmm1 and xmm2/mem.
MINPS xmm1, xmm2/m128
VEX.NDS.128.0F.WIG 5D /r RVM V/V AVX Return the minimum single-precision floating-point values
between xmm2 and xmm3/mem.
VMINPS xmm1, xmm2,
xmm3/m128
VEX.NDS.256.0F.WIG 5D /r RVM V/V AVX Return the minimum single double-precision floating-point
values between ymm2 and ymm3/mem.
VMINPS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.0F.W0 5D /r FV V/V AVX512VL Return the minimum packed single-precision floating-point
values between xmm2 and xmm3/m128/m32bcst and store
result in xmm1 subject to writemask k1.
VMINPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.0F.W0 5D /r FV V/V AVX512VL Return the minimum packed single-precision floating-point
values between ymm2 and ymm3/m256/m32bcst and store
result in ymm1 subject to writemask k1.
VMINPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.0F.W0 5D /r FV V/V AVX512F Return the minimum packed single-precision floating-point
values between zmm2 and zmm3/m512/m32bcst and store
result in zmm1 subject to writemask k1.
VMINPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-400 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Operation
MIN(SRC1, SRC2)
{
IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST SRC1;
ELSE DEST SRC2;
FI;
}
VMINPS (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] MIN(SRC1[i+31:i], SRC2[31:0])
ELSE
DEST[i+31:i] MIN(SRC1[i+31:i], SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMINPS (VEX.256 encoded version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] MIN(SRC1[127:96], SRC2[127:96])
DEST[159:128] MIN(SRC1[159:128], SRC2[159:128])
DEST[191:160] MIN(SRC1[191:160], SRC2[191:160])
DEST[223:192] MIN(SRC1[223:192], SRC2[223:192])
DEST[255:224] MIN(SRC1[255:224], SRC2[255:224])
Ref. # 319433-023 5-401
INSTRUCTION SET REFERENCE, A-Z
VMINPS (VEX.128 encoded version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] MIN(SRC1[127:96], SRC2[127:96])
DEST[MAX_VL-1:128] 0
MINPS (128-bit Legacy SSE version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[63:32] MIN(SRC1[63:32], SRC2[63:32])
DEST[95:64] MIN(SRC1[95:64], SRC2[95:64])
DEST[127:96] MIN(SRC1[127:96], SRC2[127:96])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMINPS __m512 _mm512_min_ps( __m512 a, __m512 b);
VMINPS __m512 _mm512_mask_min_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VMINPS __m512 _mm512_maskz_min_ps( __mmask16 k, __m512 a, __m512 b);
VMINPS __m512 _mm512_min_round_ps( __m512 a, __m512 b, int);
VMINPS __m512 _mm512_mask_min_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VMINPS __m512 _mm512_maskz_min_round_ps( __mmask16 k, __m512 a, __m512 b, int);
VMINPS __m256 _mm256_mask_min_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VMINPS __m256 _mm256_maskz_min_ps( __mmask8 k, __m256 a, __m25 b);
VMINPS __m128 _mm_mask_min_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VMINPS __m128 _mm_maskz_min_ps( __mmask8 k, __m128 a, __m128 b);
VMINPS __m256 _mm256_min_ps (__m256 a, __m256 b);
MINPS __m128 _mm_min_ps (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.
5-402 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
Compares the low double-precision floating-point values in the first source operand and the second source
operand, and returns the minimum value to the low quadword of the destination operand. When the source
operand is a memory operand, only the 64 bits are accessed.
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If
a value in the second source operand is an SNaN, then SNaN is returned unchanged to the destination (that is, a
QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source operand
(from either the first or second source) be returned, the action of MINSD can be emulated using a sequence of
instructions, such as, a comparison followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination
operands are XMM registers.
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAX_VL-1:64) of the
corresponding destination register remain unchanged.
VEX.128 and EVEX encoded version: Bits (127:64) of the XMM register destination are copied from corresponding
bits in the first source operand. Bits (MAX_VL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the
writemask.
Software should ensure VMINSD is encoded with VEX.L=0. Encoding VMINSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 5D /r RM V/V SSE2 Return the minimum scalar double-precision floating-
point value between xmm2/m64 and xmm1.
MINSD xmm1, xmm2/m64
VEX.NDS.128.F2.0F.WIG 5D /r RVM V/V AVX Return the minimum scalar double-precision floating-
point value between xmm3/m64 and xmm2.
VMINSD xmm1, xmm2, xmm3/m64
EVEX.NDS.LIG.F2.0F.W1 5D /r T1S V/V AVX512F Return the minimum scalar double-precision floating-
point value between xmm3/m64 and xmm2.
VMINSD xmm1 {k1}{z}, xmm2,
xmm3/m64{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-403
INSTRUCTION SET REFERENCE, A-Z
Operation
MIN(SRC1, SRC2)
{
IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST SRC1;
ELSE DEST SRC2;
FI;
}
MINSD (EVEX encoded version)
IF k1[0] or *no writemask*
THEN DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
MINSD (VEX.128 encoded version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
MINSD (128-bit Legacy SSE version)
DEST[63:0] MIN(SRC1[63:0], SRC2[63:0])
DEST[MAX_VL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMINSD __m128d _mm_min_round_sd(__m128d a, __m128d b, int);
VMINSD __m128d _mm_mask_min_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VMINSD __m128d _mm_maskz_min_round_sd( __mmask8 k, __m128d a, __m128d b, int);
MINSD __m128d _mm_min_sd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (including QNaN Source Operand), Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
5-404 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value
Instruction Operand Encoding
Description
Compares the low single-precision floating-point values in the first source operand and the second source operand
and returns the minimum value to the low doubleword of the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If
a value in the second operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a QNaN
version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN in either source
operand be returned, the action of MINSD can be emulated using a sequence of instructions, such as, a comparison
followed by AND, ANDN and OR.
The second source operand can be an XMM register or a 32-bit memory location. The first source and destination
operands are XMM registers.
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAX_VL:32) of the corre-
sponding destination register remain unchanged.
VEX.128 and EVEX encoded version: The first source operand is an xmm register encoded by (E)VEX.vvvv. Bits
(127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits
(MAX_VL-1:128) of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the
writemask.
Software should ensure VMINSS is encoded with VEX.L=0. Encoding VMINSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 5D /r RM V/V SSE Return the minimum scalar single-precision floating-
point value between xmm2/m32 and xmm1.
MINSS xmm1,xmm2/m32
VEX.NDS.128.F3.0F.WIG 5D /r RVM V/V AVX Return the minimum scalar single-precision floating-
point value between xmm3/m32 and xmm2.
VMINSS xmm1,xmm2, xmm3/m32
EVEX.NDS.LIG.F3.0F.W0 5D /r T1S V/V AVX512F Return the minimum scalar single-precision floating-
point value between xmm3/m32 and xmm2.
VMINSS xmm1 {k1}{z}, xmm2,
xmm3/m32{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-405
INSTRUCTION SET REFERENCE, A-Z
Operation
MIN(SRC1, SRC2)
{
IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST SRC2;
ELSE IF (SRC1 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC2 = SNaN) THEN DEST SRC2; FI;
ELSE IF (SRC1 < SRC2) THEN DEST SRC1;
ELSE DEST SRC2;
FI;
}
MINSS (EVEX encoded version)
IF k1[0] or *no writemask*
THEN DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VMINSS (VEX.128 encoded version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
MINSS (128-bit Legacy SSE version)
DEST[31:0] MIN(SRC1[31:0], SRC2[31:0])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMINSS __m128 _mm_min_round_ss( __m128 a, __m128 b, int);
VMINSS __m128 _mm_mask_min_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VMINSS __m128 _mm_maskz_min_round_ss( __mmask8 k, __m128 a, __m128 b, int);
MINSS __m128 _mm_min_ss(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Invalid (Including QNaN Source Operand), Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.
5-406 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 28 /r RM V/V SSE2 Move aligned packed double-precision floating-
point values from xmm2/mem to xmm1.
MOVAPD xmm1, xmm2/m128
66 0F 29 /r MR V/V SSE2 Move aligned packed double-precision floating-
point values from xmm1 to xmm2/mem.
MOVAPD xmm2/m128, xmm1
VEX.128.66.0F.WIG 28 /r RM V/V AVX Move aligned packed double-precision floating-
point values from xmm2/mem to xmm1.
VMOVAPD xmm1, xmm2/m128
VEX.128.66.0F.WIG 29 /r MR V/V AVX Move aligned packed double-precision floating-
point values from xmm1 to xmm2/mem.
VMOVAPD xmm2/m128, xmm1
VEX.256.66.0F.WIG 28 /r RM V/V AVX Move aligned packed double-precision floating-
point values from ymm2/mem to ymm1.
VMOVAPD ymm1, ymm2/m256
VEX.256.66.0F.WIG 29 /r MR V/V AVX Move aligned packed double-precision floating-
point values from ymm1 to ymm2/mem.
VMOVAPD ymm2/m256, ymm1
EVEX.128.66.0F.W1 28 /r FVM-RM V/V AVX512VL Move aligned packed double-precision floating-
point values from xmm2/m128 to xmm1 using
writemask k1.
VMOVAPD xmm1 {k1}{z}, xmm2/m128 AVX512F
EVEX.256.66.0F.W1 28 /r FVM-RM V/V AVX512VL Move aligned packed double-precision floating-
point values from ymm2/m256 to ymm1 using
writemask k1.
VMOVAPD ymm1 {k1}{z}, ymm2/m256 AVX512F
EVEX.512.66.0F.W1 28 /r FVM-RM V/V AVX512F Move aligned packed double-precision floating-
point values from zmm2/m512 to zmm1 using
writemask k1.
VMOVAPD zmm1 {k1}{z}, zmm2/m512
EVEX.128.66.0F.W1 29 /r FVM-MR V/V AVX512VL Move aligned packed double-precision floating-
point values from xmm1 to xmm2/m128 using
writemask k1.
VMOVAPD xmm2/m128 {k1}{z}, xmm1 AVX512F
EVEX.256.66.0F.W1 29 /r FVM-MR V/V AVX512VL Move aligned packed double-precision floating-
point values from ymm1 to ymm2/m256 using
writemask k1.
VMOVAPD ymm2/m256 {k1}{z}, ymm1 AVX512F
EVEX.512.66.0F.W1 29 /r FVM-MR V/V AVX512F Move aligned packed double-precision floating-
point values from zmm1 to zmm2/m512 using
writemask k1.
VMOVAPD zmm2/m512 {k1}{z}, zmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
FVM-RM ModRM:reg (w) ModRM:r/m (r) NA NA
FVM-MR ModRM:r/m (w) ModRM:reg (r) NA NA
Ref. # 319433-023 5-407
INSTRUCTION SET REFERENCE, A-Z
Description
Moves 2, 4 or 8 double-precision floating-point values from the source operand (second operand) to the destination
operand (first operand). This instruction can be used to load an XMM, YMM or ZMM register from an 128-bit, 256-
bit or 512-bit memory location, to store the contents of an XMM, YMM or ZMM register into a 128-bit, 256-bit or
512-bit memory location, or to move data between two XMM, two YMM or two ZMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte (128-bit
versions), 32-byte (256-bit version) or 64-byte (EVEX.512 encoded version) boundary or a general-protection
exception (#GP) will be generated. For EVEX encoded versions, the operand must be aligned to the size of the
memory operand. To move double-precision floating-point values to and from unaligned memory locations, use the
VMOVUPD instruction.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX.512 encoded version:
Moves 512 bits of packed double-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float64
memory location, to store the contents of a ZMM register into a 512-bit float64 memory location, or to move data
between two ZMM registers. When the source or destination operand is a memory operand, the operand must be
aligned on a 64-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision
floating-point values to and from unaligned memory locations, use the VMOVUPD instruction.
VEX.256 and EVEX.256 encoded versions:
Moves 256 bits of packed double-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory
location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM
registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte
boundary or a general-protection exception (#GP) will be generated. To move double-precision floating-point
values to and from unaligned memory locations, use the VMOVUPD instruction.
128-bit versions:
Moves 128 bits of packed double-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory
location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two
XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-
point values to and from unaligned memory locations, use the VMOVUPD instruction.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding ZMM destination register remain
unchanged.
(E)VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination ZMM register destination are zeroed.
Operation
VMOVAPD (EVEX encoded versions, register-copy form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-408 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VMOVAPD (EVEX encoded versions, store-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
VMOVAPD (EVEX encoded versions, load-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVAPD (VEX.256 encoded version, load - and register copy)
DEST[255:0] SRC[255:0]
DEST[MAX_VL-1:256] 0
VMOVAPD (VEX.256 encoded version, store-form)
DEST[255:0] SRC[255:0]
VMOVAPD (VEX.128 encoded version, load - and register copy)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] 0
MOVAPD (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] (Unmodified)
(V)MOVAPD (128-bit store-form version)
DEST[127:0] SRC[127:0]
Intel C/C++ Compiler Intrinsic Equivalent
VMOVAPD __m512d _mm512_load_pd( void * m);
VMOVAPD __m512d _mm512_mask_load_pd(__m512d s, __mmask8 k, void * m);
VMOVAPD __m512d _mm512_maskz_load_pd( __mmask8 k, void * m);
VMOVAPD void _mm512_store_pd( void * d, __m512d a);
VMOVAPD void _mm512_mask_store_pd( void * d, __mmask8 k, __m512d a);
VMOVAPD __m256d _mm256_mask_load_pd(__m256d s, __mmask8 k, void * m);
VMOVAPD __m256d _mm256_maskz_load_pd( __mmask8 k, void * m);
VMOVAPD void _mm256_mask_store_pd( void * d, __mmask8 k, __m256d a);
Ref. # 319433-023 5-409
INSTRUCTION SET REFERENCE, A-Z
VMOVAPD __m128d _mm_mask_load_pd(__m128d s, __mmask8 k, void * m);
VMOVAPD __m128d _mm_maskz_load_pd( __mmask8 k, void * m);
VMOVAPD void _mm_mask_store_pd( void * d, __mmask8 k, __m128d a);
MOVAPD __m256d _mm256_load_pd (double * p);
MOVAPD void _mm256_store_pd(double * p, __m256d a);
MOVAPD __m128d _mm_load_pd (double * p);
MOVAPD void _mm_store_pd(double * p, __m128d a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE2;
EVEX-encoded instruction, see Exceptions Type E1.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
5-410 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Moves 4, 8 or 16 single-precision floating-point values from the source operand (second operand) to the destina-
tion operand (first operand). This instruction can be used to load an XMM, YMM or ZMM register from an 128-bit,
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 28 /r RM V/V SSE Move aligned packed single-precision floating-point
values from xmm2/mem to xmm1.
MOVAPS xmm1, xmm2/m128
0F 29 /r MR V/V SSE Move aligned packed single-precision floating-point
values from xmm1 to xmm2/mem.
MOVAPS xmm2/m128, xmm1
VEX.128.0F.WIG 28 /r RM V/V AVX Move aligned packed single-precision floating-point
values from xmm2/mem to xmm1.
VMOVAPS xmm1, xmm2/m128
VEX.128.0F.WIG 29 /r MR V/V AVX Move aligned packed single-precision floating-point
values from xmm1 to xmm2/mem.
VMOVAPS xmm2/m128, xmm1
VEX.256.0F.WIG 28 /r RM V/V AVX Move aligned packed single-precision floating-point
values from ymm2/mem to ymm1.
VMOVAPS ymm1, ymm2/m256
VEX.256.0F.WIG 29 /r MR V/V AVX Move aligned packed single-precision floating-point
values from ymm1 to ymm2/mem.
VMOVAPS ymm2/m256, ymm1
EVEX.128.0F.W0 28 /r FVM-RM V/V AVX512VL Move aligned packed single-precision floating-point
values from xmm2/m128 to xmm1 using
writemask k1.
VMOVAPS xmm1 {k1}{z}, xmm2/m128 AVX512F
EVEX.256.0F.W0 28 /r FVM-RM V/V AVX512VL Move aligned packed single-precision floating-point
values from ymm2/m256 to ymm1 using
writemask k1.
VMOVAPS ymm1 {k1}{z}, ymm2/m256 AVX512F
EVEX.512.0F.W0 28 /r FVM-RM V/V AVX512F Move aligned packed single-precision floating-point
values from zmm2/m512 to zmm1 using
writemask k1.
VMOVAPS zmm1 {k1}{z}, zmm2/m512
EVEX.128.0F.W0 29 /r FVM-MR V/V AVX512VL Move aligned packed single-precision floating-point
values from xmm1 to xmm2/m128 using
writemask k1.
VMOVAPS xmm2/m128 {k1}{z}, xmm1 AVX512F
EVEX.256.0F.W0 29 /r FVM-MR V/V AVX512VL Move aligned packed single-precision floating-point
values from ymm1 to ymm2/m256 using
writemask k1.
VMOVAPS ymm2/m256 {k1}{z}, ymm1 AVX512F
EVEX.512.0F.W0 29 /r FVM-MR V/V AVX512F Move aligned packed single-precision floating-point
values from zmm1 to zmm2/m512 using
writemask k1.
VMOVAPS zmm2/m512 {k1}{z}, zmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
FVM-RM ModRM:reg (w) ModRM:r/m (r) NA NA
FVM-MR ModRM:r/m (w) ModRM:reg (r) NA NA
Ref. # 319433-023 5-411
INSTRUCTION SET REFERENCE, A-Z
256-bit or 512-bit memory location, to store the contents of an XMM, YMM or ZMM register into a 128-bit, 256-bit
or 512-bit memory location, or to move data between two XMM, two YMM or two ZMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte (128-bit
version), 32-byte (VEX.256 encoded version) or 64-byte (EVEX.512 encoded version) boundary or a general-
protection exception (#GP) will be generated. For EVEX.512 encoded versions, the operand must be aligned to the
size of the memory operand. To move single-precision floating-point values to and from unaligned memory loca-
tions, use the VMOVUPS instruction.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX.512 encoded version:
Moves 512 bits of packed single-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float32
memory location, to store the contents of a ZMM register into a float32 memory location, or to move data between
two ZMM registers. When the source or destination operand is a memory operand, the operand must be aligned on
a 64-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-
point values to and from unaligned memory locations, use the VMOVUPS instruction.
VEX.256 and EVEX.256 encoded version:
Moves 256 bits of packed single-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory
location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM
registers. When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte
boundary or a general-protection exception (#GP) will be generated.
128-bit versions:
Moves 128 bits of packed single-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory
location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two
XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-
point values to and from unaligned memory locations, use the VMOVUPS instruction.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding ZMM destination register remain
unchanged.
(E)VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination ZMM register are zeroed.
Operation
VMOVAPS (EVEX encoded versions, register-copy form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-412 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VMOVAPS (EVEX encoded versions, store-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
SRC[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
VMOVAPS (EVEX encoded versions, load-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVAPS (VEX.256 encoded version, load - and register copy)
DEST[255:0] SRC[255:0]
DEST[MAX_VL-1:256] 0
VMOVAPS (VEX.256 encoded version, store-form)
DEST[255:0] SRC[255:0]
VMOVAPS (VEX.128 encoded version, load - and register copy)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] 0
MOVAPS (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] (Unmodified)
(V)MOVAPS (128-bit store-form version)
DEST[127:0] SRC[127:0]
Intel C/C++ Compiler Intrinsic Equivalent
VMOVAPS __m512 _mm512_load_ps( void * m);
VMOVAPS __m512 _mm512_mask_load_ps(__m512 s, __mmask16 k, void * m);
VMOVAPS __m512 _mm512_maskz_load_ps( __mmask16 k, void * m);
VMOVAPS void _mm512_store_ps( void * d, __m512 a);
VMOVAPS void _mm512_mask_store_ps( void * d, __mmask16 k, __m512 a);
VMOVAPS __m256 _mm256_mask_load_ps(__m256 a, __mmask8 k, void * s);
VMOVAPS __m256 _mm256_maskz_load_ps( __mmask8 k, void * s);
VMOVAPS void _mm256_mask_store_ps( void * d, __mmask8 k, __m256 a);
VMOVAPS __m128 _mm_mask_load_ps(__m128 a, __mmask8 k, void * s);
Ref. # 319433-023 5-413
INSTRUCTION SET REFERENCE, A-Z
VMOVAPS __m128 _mm_maskz_load_ps( __mmask8 k, void * s);
VMOVAPS void _mm_mask_store_ps( void * d, __mmask8 k, __m128 a);
MOVAPS __m256 _mm256_load_ps (float * p);
MOVAPS void _mm256_store_ps(float * p, __m256 a);
MOVAPS __m128 _mm_load_ps (float * p);
MOVAPS void _mm_store_ps(float * p, __m128 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E1.
5-414 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MOVD/MOVQ—Move Doubleword and Quadword
Instruction Operand Encoding
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 6E /r MR V/V SSE2 Move doubleword from r/m32 to xmm1.
MOVD xmm1, r32/m32
66 REX.W 0F 6E /r MR V/N.E. SSE2 Move quadword from r/m64 to xmm1.
MOVQ xmm1, r64/m64
VEX.128.66.0F.W0 6E /r MR V/V AVX Move doubleword from r/m32 to xmm1.
VMOVD xmm1, r32/m32
VEX.128.66.0F.W1 6E /r MR V/N.E.1AVX Move quadword from r/m64 to xmm1.
VMOVQ xmm1, r64/m64
EVEX.128.66.0F.W0 6E /r T1S-RM V/V AVX512F Move doubleword from r/m32 to xmm1.
VMOVD xmm1, r32/m32
EVEX.128.66.0F.W1 6E /r T1S-RM V/N.E.1
NOTES:
1. For this specific instruction, VEX.W/EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 ver-
sion is used.
AVX512F Move quadword from r/m64 to xmm1.
VMOVQ xmm1, r64/m64
66 0F 7E /r MR V/V SSE2 Move doubleword from xmm1 register to r/m32.
MOVD r32/m32, xmm1
66 REX.W 0F 7E /r MR V/N.E. SSE2 Move quadword from xmm1 register to r/m64.
MOVQ r64/m64, xmm1
VEX.128.66.0F.W0 7E /r MR V/V AVX Move doubleword from xmm1 register to r/m32.
VMOVD r32/m32, xmm1
VEX.128.66.0F.W1 7E /r MR V/N.E.1AVX Move quadword from xmm1 register to r/m64.
VMOVQ r64/m64, xmm1
EVEX.128.66.0F.W0 7E /r T1S-MR V/V AVX512F Move doubleword from xmm1 register to r/m32.
VMOVD r32/m32, xmm1
EVEX.128.66.0F.W1 7E /r T1S-MR V/N.E.1AVX512F Move quadword from xmm1 register to r/m64.
VMOVQ r64/m64, xmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
T1S-RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1S-MR ModRM:r/m (w) ModRM:reg (r) NA NA
Ref. # 319433-023 5-415
INSTRUCTION SET REFERENCE, A-Z
Description
MOVD/Q with XMM destination:
Moves a dword/qword integer from the source operand and stores it in the low 32/64-bits of the destination XMM
register. The upper bits of the destination are zeroed. The source operand can be a 32/64-bit register or 32/64-bit
memory location.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding YMM destination register remain
unchanged. Qword operation requires the use of REX.W=1.
VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination register are zeroed. Qword operation requires
the use of VEX.W=1.
EVEX.128 encoded version: Bits (MAX_VL-1:128) of the destination register are zeroed. Qword operation requires
the use of EVEX.W=1.
MOVD/Q with 32/64 reg/mem destination:
Stores the low dword/qword of the source XMM register to 32/64-bit memory location or general-purpose register.
Qword operation requires the use of REX.W=1, VEX.W=1, or EVEX.W=1.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
If VMOVD or VMOVQ is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will
cause an #UD exception.
Operation
MOVD (Legacy SSE version when destination is an XMM register)
DEST[31:0] SRC[31:0]
DEST[127:32] 0H
DEST[MAX_VL-1:128] (Unmodified)
VMOVD (VEX-encoded version when destination is an XMM register)
DEST[31:0] SRC[31:0]
DEST[MAX_VL-1:32] 0H
VMOVD (EVEX-encoded version when destination is an XMM register)
DEST[31:0] SRC[31:0]
DEST[511:32] 0H
MOVQ (Legacy SSE version when destination is an XMM register)
DEST[63:0] SRC[63:0]
DEST[127:64] 0H
DEST[MAX_VL-1:128] (Unmodified)
VMOVQ (VEX-encoded version when destination is an XMM register)
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] 0H
VMOVQ (EVEX-encoded version when destination is an XMM register)
DEST[63:0] SRC[63:0]
DEST[511:64] 0H
MOVD / VMOVD (when destination is not an XMM register)
DEST[31:0] SRC[31:0]
MOVQ / VMOVQ (when destination is not an XMM register)
DEST[63:0] SRC[63:0]
5-416 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VMOVD __m128i _mm_cvtsi32_si128( int);
VMOVD int _mm_cvtsi128_si32( __m128i );
VMOVQ __m128i _mm_cvtsi64_si128 (__int64);
VMOVQ __int64 _mm_cvtsi128_si64(__m128i );
VMOVQ __m128i _mm_loadl_epi64( __m128i * s);
VMOVQ void _mm_storel_epi64( __m128i * d, __m128i s);
MOVD __m128i _mm_cvtsi32_si128(int a)
MOVD int _mm_cvtsi128_si32(__m128i a)
MOVQ __m128i _mm_cvtsi64_si128(__int64 a)
MOVQ __int64 _mm_cvtsi128_si64(__m128i a)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5.
EVEX-encoded instruction, see Exceptions Type E9NF.
#UD If VEX.L = 1.
If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-417
INSTRUCTION SET REFERENCE, A-Z
MOVQ—Move Quadword
Instruction Operand Encoding
Description
Copies a quadword from the source operand (second operand) to the destination operand (first operand). The
source and destination operands can be an XMM register or a 64-bit memory locations. This instruction can be used
to move data between two XMM registers or between an XMM register and a 64-bit memory location. The instruc-
tion cannot be used to transfer data between memory locations.
When the source operand is an XMM register, the low quadword is moved; when the destination operand is an XMM
register, the quadword is stored to the low quadword of the register, and the high quadword is cleared to all 0s.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
If VMOVQ is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an
#UD exception.
Opcode
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 7E /r RM V/V SSE2 Move quadword from xmm2/m64 to xmm1.
MOVQ xmm1, xmm2/m64
VEX.128.F3.0F.WIG 7E /r RM V/V AVX Move quadword from xmm2/m64 to xmm1.
VMOVQ xmm1, xmm2/m64
EVEX.128.F3.0F.W1 7E /r T1S-RM V/V AVX512F Move quadword from xmm2/m64 to xmm1.
VMOVQ xmm1, xmm2/m64
66 0F D6 /r MR V/V SSE2 Move quadword from xmm2 register to xmm1/m64.
MOVQ xmm1/m64, xmm2
VEX.128.66.0F.WIG D6 /r MR V/V AVX Move quadword from xmm2 register to xmm1/m64.
VMOVQ xmm1/m64, xmm2
EVEX.128.66.0F.W1 D6 /r T1S-MR V/V AVX512F Move quadword from xmm2 register to xmm1/m64.
VMOVQ xmm1/m64, xmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
T1S-RM ModRM:reg (w) ModRM:r/m (r) NA NA
T1S-MR ModRM:r/m (w) ModRM:reg (r) NA NA
5-418 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
MOVQ (F3 0F 7E and 66 0F D6) with XMM register source and destination:
DEST[63:0] SRC[63:0]
DEST[127:64] 0
DEST[MAX_VL-1:128] (Unmodified)
VMOVQ (VEX.NDS.128.F3.0F 7E) with XMM register source and destination:
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] 0
VMOVQ (VEX.128.66.0F D6) with XMM register source and destination:
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] 0
VMOVQ (7E - EVEX encoded version) with XMM register source and destination:
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] 0
VMOVQ (D6 - EVEX encoded version) with XMM register source and destination:
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] 0
MOVQ (7E) with memory source:
DEST[63:0] SRC[63:0]
DEST[127:64] 0
DEST[MAX_VL-1:128] (Unmodified)
VMOVQ (7E - VEX.128 encoded version) with memory source:
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] 0
VMOVQ (7E - EVEX encoded version) with memory source:
DEST[63:0] SRC[63:0]
DEST[:MAX_VL-1:64] 0
MOVQ (D6) with memory dest:
DEST[63:0] SRC[63:0]
VMOVQ (D6) with memory dest:
DEST[63:0] SRC2[63:0]
Intel C/C++ Compiler Intrinsic Equivalent
VMOVQ __m128i _mm_loadu_si64( void * s);
VMOVQ void _mm_storeu_si64( void * d, __m128i s);
MOVQ __m128i _mm_move_epi64(__m128i a);
SIMD Floating-Point Exceptions
None
Ref. # 319433-023 5-419
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5;
EVEX-encoded instruction, see Exceptions Type E9NF.
#UD If VEX.L = 1.
If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
5-420 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MOVDDUP—Replicate Double FP Values
Instruction Operand Encoding
Description
For 256-bit or higher versions: Duplicates even-indexed double-precision floating-point values from the source
operand (the second operand) and into adjacent pair and store to the destination operand (the first operand).
For 128-bit versions: Duplicates the low double-precision floating-point value from the source operand (the second
operand) and store to the destination operand (the first operand).
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding destination register are unchanged. The
source operand is XMM register or a 64-bit memory location.
VEX.128 and EVEX.128 encoded version: Bits (MAX_VL-1:128) of the destination register are zeroed. The source
operand is XMM register or a 64-bit memory location. The destination is updated conditionally under the writemask
for EVEX version.
VEX.256 and EVEX.256 encoded version: Bits (MAX_VL-1:256) of the destination register are zeroed. The source
operand is YMM register or a 256-bit memory location. The destination is updated conditionally under the
writemask for EVEX version.
EVEX.512 encoded version: The destination is updated according to the writemask. The source operand is ZMM
register or a 512-bit memory location.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 12 /r RM V/V SSE3 Move double-precision floating-point value from
xmm2/m64 and duplicate into xmm1.
MOVDDUP xmm1, xmm2/m64
VEX.128.F2.0F.WIG 12 /r RM V/V AVX Move double-precision floating-point value from
xmm2/m64 and duplicate into xmm1.
VMOVDDUP xmm1, xmm2/m64
VEX.256.F2.0F.WIG 12 /r RM V/V AVX Move even index double-precision floating-point
values from ymm2/mem and duplicate each element
into ymm1.
VMOVDDUP ymm1, ymm2/m256
EVEX.128.F2.0F.W1 12 /r DUP-RM V/V AVX512VL Move double-precision floating-point value from
xmm2/m64 and duplicate each element into xmm1
subject to writemask k1.
VMOVDDUP xmm1 {k1}{z},
xmm2/m64
AVX512F
EVEX.256.F2.0F.W1 12 /r DUP-RM V/V AVX512VL Move even index double-precision floating-point
values from ymm2/m256 and duplicate each element
into ymm1 subject to writemask k1.
VMOVDDUP ymm1 {k1}{z},
ymm2/m256
AVX512F
EVEX.512.F2.0F.W1 12 /r DUP-RM V/V AVX512F Move even index double-precision floating-point
values from zmm2/m512 and duplicate each element
into zmm1 subject to writemask k1.
VMOVDDUP zmm1 {k1}{z},
zmm2/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
DUP-RM ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-421
INSTRUCTION SET REFERENCE, A-Z
Operation
VMOVDDUP (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_SRC[63:0] SRC[63:0]
TMP_SRC[127:64] SRC[63:0]
IF VL >= 256
TMP_SRC[191:128] SRC[191:128]
TMP_SRC[255:192] SRC[191:128]
FI;
IF VL >= 512
TMP_SRC[319:256] SRC[319:256]
TMP_SRC[383:320] SRC[319:256]
TMP_SRC[477:384] SRC[477:384]
TMP_SRC[511:484] SRC[477:384]
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_SRC[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDDUP (VEX.256 encoded version)
DEST[63:0] SRC[63:0]
DEST[127:64] SRC[63:0]
DEST[191:128] SRC[191:128]
DEST[255:192] SRC[191:128]
DEST[MAX_VL-1:256] 0
VMOVDDUP (VEX.128 encoded version)
DEST[63:0] SRC[63:0]
DEST[127:64] SRC[63:0]
DEST[MAX_VL-1:128] 0
Figure 5-26. VMOVDDUP Operation
X2 X2 X0 X0DEST
X3 X2
SRC X1 X0
5-422 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MOVDDUP (128-bit Legacy SSE version)
DEST[63:0] SRC[63:0]
DEST[127:64] SRC[63:0]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMOVDDUP __m512d _mm512_movedup_pd( __m512d a);
VMOVDDUP __m512d _mm512_mask_movedup_pd(__m512d s, __mmask8 k, __m512d a);
VMOVDDUP __m512d _mm512_maskz_movedup_pd( __mmask8 k, __m512d a);
VMOVDDUP __m256d _mm256_mask_movedup_pd(__m256d s, __mmask8 k, __m256d a);
VMOVDDUP __m256d _mm256_maskz_movedup_pd( __mmask8 k, __m256d a);
VMOVDDUP __m128d _mm_mask_movedup_pd(__m128d s, __mmask8 k, __m128d a);
VMOVDDUP __m128d _mm_maskz_movedup_pd( __mmask8 k, __m128d a);
MOVDDUP __m256d _mm256_movedup_pd (__m256d a);
MOVDDUP __m128d _mm_movedup_pd (__m128d a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5;
EVEX-encoded instruction, see Exceptions Type E5NF.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
Ref. # 319433-023 5-423
INSTRUCTION SET REFERENCE, A-Z
MOVDQA,VMOVDQA32/64—Move Aligned Packed Integer Values
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 6F /r RM V/V SSE2 Move aligned packed integer values from
xmm2/mem to xmm1.
MOVDQA xmm1, xmm2/m128
66 0F 7F /r MR V/V SSE2 Move aligned packed integer values from xmm1
to xmm2/mem.
MOVDQA xmm2/m128, xmm1
VEX.128.66.0F.WIG 6F /r RM V/V AVX Move aligned packed integer values from
xmm2/mem to xmm1.
VMOVDQA xmm1, xmm2/m128
VEX.128.66.0F.WIG 7F /r MR V/V AVX Move aligned packed integer values from xmm1
to xmm2/mem.
VMOVDQA xmm2/m128, xmm1
VEX.256.66.0F.WIG 6F /r RM V/V AVX Move aligned packed integer values from
ymm2/mem to ymm1.
VMOVDQA ymm1, ymm2/m256
VEX.256.66.0F.WIG 7F /r MR V/V AVX Move aligned packed integer values from ymm1
to ymm2/mem.
VMOVDQA ymm2/m256, ymm1
EVEX.128.66.0F.W0 6F /r FVM-RM V/V AVX512VL Move aligned packed doubleword integer values
from xmm2/m128 to xmm1 using writemask
k1.
VMOVDQA32 xmm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.256.66.0F.W0 6F /r FVM-RM V/V AVX512VL Move aligned packed doubleword integer values
from ymm2/m256 to ymm1 using writemask
k1.
VMOVDQA32 ymm1 {k1}{z},
ymm2/m256
AVX512F
EVEX.512.66.0F.W0 6F /r FVM-RM V/V AVX512F Move aligned packed doubleword integer values
from zmm2/m512 to zmm1 using writemask k1.
VMOVDQA32 zmm1 {k1}{z},
zmm2/m512
EVEX.128.66.0F.W0 7F /r FVM-MR V/V AVX512VL Move aligned packed doubleword integer values
from xmm1 to xmm2/m128 using writemask
k1.
VMOVDQA32 xmm2/m128 {k1}{z},
xmm1
AVX512F
EVEX.256.66.0F.W0 7F /r FVM-MR V/V AVX512VL Move aligned packed doubleword integer values
from ymm1 to ymm2/m256 using writemask
k1.
VMOVDQA32 ymm2/m256 {k1}{z},
ymm1
AVX512F
EVEX.512.66.0F.W0 7F /r FVM-MR V/V AVX512F Move aligned packed doubleword integer values
from zmm1 to zmm2/m512 using writemask k1.
VMOVDQA32 zmm2/m512 {k1}{z},
zmm1
EVEX.128.66.0F.W1 6F /r FVM-RM V/V AVX512VL Move aligned quadword integer values from
xmm2/m128 to xmm1 using writemask k1.
VMOVDQA64 xmm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.256.66.0F.W1 6F /r FVM-RM V/V AVX512VL Move aligned quadword integer values from
ymm2/m256 to ymm1 using writemask k1.
VMOVDQA64 ymm1 {k1}{z},
ymm2/m256
AVX512F
5-424 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX encoded versions:
Moves 128, 256 or 512 bits of packed doubleword/quadword integer values from the source operand (the second
operand) to the destination operand (the first operand). This instruction can be used to load a vector register from
an int32/int64 memory location, to store the contents of a vector register into an int32/int64 memory location, or
to move data between two ZMM registers. When the source or destination operand is a memory operand, the
operand must be aligned on a 16 (EVEX.128)/32(EVEX.256)/64(EVEX.512)-byte boundary or a general-protection
exception (#GP) will be generated. To move integer data to and from unaligned memory locations, use the
VMOVDQU instruction.
The destination operand is updated at 32-bit (VMOVDQA32) or 64-bit (VMOVDQA64) granularity according to the
writemask.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers.
When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary
or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory
locations, use the VMOVDQU instruction. Bits (MAX_VL-1:256) of the destination register are zeroed.
128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers.
EVEX.512.66.0F.W1 6F /r FVM-RM V/V AVX512F Move aligned packed quadword integer values
from zmm2/m512 to zmm1 using writemask k1.
VMOVDQA64 zmm1 {k1}{z},
zmm2/m512
EVEX.128.66.0F.W1 7F /r FVM-MR V/V AVX512VL Move aligned packed quadword integer values
from xmm1 to xmm2/m128 using writemask
k1.
VMOVDQA64 xmm2/m128 {k1}{z},
xmm1
AVX512F
EVEX.256.66.0F.W1 7F /r FVM-MR V/V AVX512VL Move aligned packed quadword integer values
from ymm1 to ymm2/m256 using writemask
k1.
VMOVDQA64 ymm2/m256 {k1}{z},
ymm1
AVX512F
EVEX.512.66.0F.W1 7F /r FVM-MR V/V AVX512F Move aligned packed quadword integer values
from zmm1 to zmm2/m512 using writemask k1.
VMOVDQA64 zmm2/m512 {k1}{z},
zmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
FVM-RM ModRM:reg (w) ModRM:r/m (r) NA NA
FVM-MR ModRM:r/m (w) ModRM:reg (r) NA NA
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-425
INSTRUCTION SET REFERENCE, A-Z
When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary
or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory
locations, use the VMOVDQU instruction.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding ZMM destination register remain
unchanged.
VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination register are zeroed.
Operation
VMOVDQA32 (EVEX encoded versions, register-copy form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQA32 (EVEX encoded versions, store-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
VMOVDQA32 (EVEX encoded versions, load-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-426 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VMOVDQA64 (EVEX encoded versions, register-copy form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQA64 (EVEX encoded versions, store-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
VMOVDQA64 (EVEX encoded versions, load-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQA (VEX.256 encoded version, load - and register copy)
DEST[255:0] SRC[255:0]
DEST[MAX_VL-1:256] 0
VMOVDQA (VEX.256 encoded version, store-form)
DEST[255:0] SRC[255:0]
VMOVDQA (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] 0
VMOVDQA (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] (Unmodified)
Ref. # 319433-023 5-427
INSTRUCTION SET REFERENCE, A-Z
(V)MOVDQA (128-bit store-form version)
DEST[127:0] SRC[127:0]
Intel C/C++ Compiler Intrinsic Equivalent
VMOVDQA32 __m512i _mm512_load_epi32( void * sa);
VMOVDQA32 __m512i _mm512_mask_load_epi32(__m512i s, __mmask16 k, void * sa);
VMOVDQA32 __m512i _mm512_maskz_load_epi32( __mmask16 k, void * sa);
VMOVDQA32 void _mm512_store_epi32(void * d, __m512i a);
VMOVDQA32 void _mm512_mask_store_epi32(void * d, __mmask16 k, __m512i a);
VMOVDQA32 __m256i _mm256_mask_load_epi32(__m256i s, __mmask8 k, void * sa);
VMOVDQA32 __m256i _mm256_maskz_load_epi32( __mmask8 k, void * sa);
VMOVDQA32 void _mm256_store_epi32(void * d, __m256i a);
VMOVDQA32 void _mm256_mask_store_epi32(void * d, __mmask8 k, __m256i a);
VMOVDQA32 __m128i _mm_mask_load_epi32(__m128i s, __mmask8 k, void * sa);
VMOVDQA32 __m128i _mm_maskz_load_epi32( __mmask8 k, void * sa);
VMOVDQA32 void _mm_store_epi32(void * d, __m128i a);
VMOVDQA32 void _mm_mask_store_epi32(void * d, __mmask8 k, __m128i a);
VMOVDQA64 __m512i _mm512_load_epi64( void * sa);
VMOVDQA64 __m512i _mm512_mask_load_epi64(__m512i s, __mmask8 k, void * sa);
VMOVDQA64 __m512i _mm512_maskz_load_epi64( __mmask8 k, void * sa);
VMOVDQA64 void _mm512_store_epi64(void * d, __m512i a);
VMOVDQA64 void _mm512_mask_store_epi64(void * d, __mmask8 k, __m512i a);
VMOVDQA64 __m256i _mm256_mask_load_epi64(__m256i s, __mmask8 k, void * sa);
VMOVDQA64 __m256i _mm256_maskz_load_epi64( __mmask8 k, void * sa);
VMOVDQA64 void _mm256_store_epi64(void * d, __m256i a);
VMOVDQA64 void _mm256_mask_store_epi64(void * d, __mmask8 k, __m256i a);
VMOVDQA64 __m128i _mm_mask_load_epi64(__m128i s, __mmask8 k, void * sa);
VMOVDQA64 __m128i _mm_maskz_load_epi64( __mmask8 k, void * sa);
VMOVDQA64 void _mm_store_epi64(void * d, __m128i a);
VMOVDQA64 void _mm_mask_store_epi64(void * d, __mmask8 k, __m128i a);
MOVDQA void __m256i _mm256_load_si256 (__m256i * p);
MOVDQA _mm256_store_si256(_m256i *p, __m256i a);
MOVDQA __m128i _mm_load_si128 (__m128i * p);
MOVDQA void _mm_store_si128(__m128i *p, __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE2;
EVEX-encoded instruction, see Exceptions Type E1.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
5-428 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MOVDQU,VMOVDQU8/16/32/64—Move Unaligned Packed Integer Values
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 6F /r RM V/V SSE2 Move unaligned packed integer values from
xmm2/m128 to xmm1.
MOVDQU xmm1, xmm2/m128
F3 0F 7F /r MR V/V SSE2 Move unaligned packed integer values from
xmm1 to xmm2/m128.
MOVDQU xmm2/m128, xmm1
VEX.128.F3.0F.WIG 6F /r RM V/V AVX Move unaligned packed integer values from
xmm2/m128 to xmm1.
VMOVDQU xmm1, xmm2/m128
VEX.128.F3.0F.WIG 7F /r MR V/V AVX Move unaligned packed integer values from
xmm1 to xmm2/m128.
VMOVDQU xmm2/m128, xmm1
VEX.256.F3.0F.WIG 6F /r RM V/V AVX Move unaligned packed integer values from
ymm2/m256 to ymm1.
VMOVDQU ymm1, ymm2/m256
VEX.256.F3.0F.WIG 7F /r MR V/V AVX Move unaligned packed integer values from
ymm1 to ymm2/m256.
VMOVDQU ymm2/m256, ymm1
EVEX.128.F2.0F.W0 6F /r FVM-RM V/V AVX512VL Move unaligned packed byte integer values
from xmm2/m128 to xmm1 using writemask
k1.
VMOVDQU8 xmm1 {k1}{z}, xmm2/m128 AVX512BW
EVEX.256.F2.0F.W0 6F /r FVM-RM V/V AVX512VL Move unaligned packed byte integer values
from ymm2/m256 to ymm1 using writemask
k1.
VMOVDQU8 ymm1 {k1}{z}, ymm2/m256 AVX512BW
EVEX.512.F2.0F.W0 6F /r FVM-RM V/V AVX512BW Move unaligned packed byte integer values
from zmm2/m512 to zmm1 using writemask
k1.
VMOVDQU8 zmm1 {k1}{z}, zmm2/m512
EVEX.128.F2.0F.W0 7F /r FVM-MR V/V AVX512VL Move unaligned packed byte integer values
from xmm1 to xmm2/m128 using writemask
k1.
VMOVDQU8 xmm2/m128 {k1}{z}, xmm1 AVX512BW
EVEX.256.F2.0F.W0 7F /r FVM-MR V/V AVX512VL Move unaligned packed byte integer values
from ymm1 to ymm2/m256 using writemask
k1.
VMOVDQU8 ymm2/m256 {k1}{z}, ymm1 AVX512BW
EVEX.512.F2.0F.W0 7F /r FVM-MR V/V AVX512BW Move unaligned packed byte integer values
from zmm1 to zmm2/m512 using writemask
k1.
VMOVDQU8 zmm2/m512 {k1}{z}, zmm1
EVEX.128.F2.0F.W1 6F /r FVM-RM V/V AVX512VL Move unaligned packed word integer values
from xmm2/m128 to xmm1 using writemask
k1.
VMOVDQU16 xmm1 {k1}{z}, xmm2/m128 AVX512BW
EVEX.256.F2.0F.W1 6F /r FVM-RM V/V AVX512VL Move unaligned packed word integer values
from ymm2/m256 to ymm1 using writemask
k1.
VMOVDQU16 ymm1 {k1}{z}, ymm2/m256 AVX512BW
EVEX.512.F2.0F.W1 6F /r FVM-RM V/V AVX512BW Move unaligned packed word integer values
from zmm2/m512 to zmm1 using writemask
k1.
VMOVDQU16 zmm1 {k1}{z}, zmm2/m512
EVEX.128.F2.0F.W1 7F /r FVM-MR V/V AVX512VL Move unaligned packed word integer values
from xmm1 to xmm2/m128 using writemask
k1.
VMOVDQU16 xmm2/m128 {k1}{z}, xmm1 AVX512BW
EVEX.256.F2.0F.W1 7F /r FVM-MR V/V AVX512VL Move unaligned packed word integer values
from ymm1 to ymm2/m256 using writemask
k1.
VMOVDQU16 ymm2/m256 {k1}{z}, ymm1 AVX512BW
EVEX.512.F2.0F.W1 7F /r FVM-MR V/V AVX512BW Move unaligned packed word integer values
from zmm1 to zmm2/m512 using writemask
k1.
VMOVDQU16 zmm2/m512 {k1}{z}, zmm1
Ref. # 319433-023 5-429
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX encoded versions:
Moves 128, 256 or 512 bits of packed byte/word/doubleword/quadword integer values from the source operand
(the second operand) to the destination operand (first operand). This instruction can be used to load a vector
EVEX.128.F3.0F.W0 6F /r FVM-RM V/V AVX512VL Move unaligned packed doubleword integer
values from xmm2/m128 to xmm1 using
writemask k1.
VMOVDQU32 xmm1 {k1}{z},
xmm2/mm128
AVX512F
EVEX.256.F3.0F.W0 6F /r FVM-RM V/V AVX512VL Move unaligned packed doubleword integer
values from ymm2/m256 to ymm1 using
writemask k1.
VMOVDQU32 ymm1 {k1}{z}, ymm2/m256 AVX512F
EVEX.512.F3.0F.W0 6F /r FVM-RM V/V AVX512F Move unaligned packed doubleword integer
values from zmm2/m512 to zmm1 using
writemask k1.
VMOVDQU32 zmm1 {k1}{z}, zmm2/m512
EVEX.128.F3.0F.W0 7F /r FVM-MR V/V AVX512VL Move unaligned packed doubleword integer
values from xmm1 to xmm2/m128 using
writemask k1.
VMOVDQU32 xmm2/m128 {k1}{z}, xmm1 AVX512F
EVEX.256.F3.0F.W0 7F /r FVM-MR V/V AVX512VL Move unaligned packed doubleword integer
values from ymm1 to ymm2/m256 using
writemask k1.
VMOVDQU32 ymm2/m256 {k1}{z}, ymm1 AVX512F
EVEX.512.F3.0F.W0 7F /r FVM-MR V/V AVX512F Move unaligned packed doubleword integer
values from zmm1 to zmm2/m512 using
writemask k1.
VMOVDQU32 zmm2/m512 {k1}{z}, zmm1
EVEX.128.F3.0F.W1 6F /r FVM-RM V/V AVX512VL Move unaligned packed quadword integer
values from xmm2/m128 to xmm1 using
writemask k1.
VMOVDQU64 xmm1 {k1}{z}, xmm2/m128 AVX512F
EVEX.256.F3.0F.W1 6F /r FVM-RM V/V AVX512VL Move unaligned packed quadword integer
values from ymm2/m256 to ymm1 using
writemask k1.
VMOVDQU64 ymm1 {k1}{z}, ymm2/m256 AVX512F
EVEX.512.F3.0F.W1 6F /r FVM-RM V/V AVX512F Move unaligned packed quadword integer
values from zmm2/m512 to zmm1 using
writemask k1.
VMOVDQU64 zmm1 {k1}{z}, zmm2/m512
EVEX.128.F3.0F.W1 7F /r FVM-MR V/V AVX512VL Move unaligned packed quadword integer
values from xmm1 to xmm2/m128 using
writemask k1.
VMOVDQU64 xmm2/m128 {k1}{z}, xmm1 AVX512F
EVEX.256.F3.0F.W1 7F /r FVM-MR V/V AVX512VL Move unaligned packed quadword integer
values from ymm1 to ymm2/m256 using
writemask k1.
VMOVDQU64 ymm2/m256 {k1}{z}, ymm1 AVX512F
EVEX.512.F3.0F.W1 7F /r FVM-MR V/V AVX512F Move unaligned packed quadword integer
values from zmm1 to zmm2/m512 using
writemask k1.
VMOVDQU64 zmm2/m512 {k1}{z}, zmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
FVM-RM ModRM:reg (w) ModRM:r/m (r) NA NA
FVM-MR ModRM:r/m (w) ModRM:reg (r) NA NA
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-430 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
register from a memory location, to store the contents of a vector register into a memory location, or to move data
between two vector registers.
The destination operand is updated at 8-bit (VMOVDQU8), 16-bit (VMOVDQU16), 32-bit (VMOVDQU32), or 64-bit
(VMOVDQU64) granularity according to the writemask.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the
contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers.
Bits (MAX_VL-1:256) of the destination register are zeroed.
128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand
(first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the
contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned to any alignment
without causing a general-protection exception (#GP) to be generated
VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination register are zeroed.
Operation
VMOVDQU8 (EVEX encoded versions, register-copy form)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SRC[i+7:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE DEST[i+7:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQU8 (EVEX encoded versions, store-form)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i]
SRC[i+7:i]
ELSE *DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
VMOVDQU8 (EVEX encoded versions, load-form)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SRC[i+7:i]
Ref. # 319433-023 5-431
INSTRUCTION SET REFERENCE, A-Z
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE DEST[i+7:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQU16 (EVEX encoded versions, register-copy form)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SRC[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE DEST[i+15:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQU16 (EVEX encoded versions, store-form)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i]
SRC[i+15:i]
ELSE *DEST[i+15:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
VMOVDQU16 (EVEX encoded versions, load-form)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SRC[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE DEST[i+15:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQU32 (EVEX encoded versions, register-copy form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
5-432 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQU32 (EVEX encoded versions, store-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]
SRC[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
VMOVDQU32 (EVEX encoded versions, load-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQU64 (EVEX encoded versions, register-copy form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQU64 (EVEX encoded versions, store-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Ref. # 319433-023 5-433
INSTRUCTION SET REFERENCE, A-Z
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
VMOVDQU64 (EVEX encoded versions, load-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVDQU (VEX.256 encoded version, load - and register copy)
DEST[255:0] SRC[255:0]
DEST[MAX_VL-1:256] 0
VMOVDQU (VEX.256 encoded version, store-form)
DEST[255:0] SRC[255:0]
VMOVDQU (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] 0
VMOVDQU (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] (Unmodified)
(V)MOVDQU (128-bit store-form version)
DEST[127:0] SRC[127:0]
Intel C/C++ Compiler Intrinsic Equivalent
VMOVDQU16 __m512i _mm512_mask_loadu_epi16(__m512i s, __mmask32 k, void * sa);
VMOVDQU16 __m512i _mm512_maskz_loadu_epi16( __mmask32 k, void * sa);
VMOVDQU16 void _mm512_mask_storeu_epi16(void * d, __mmask32 k, __m512i a);
VMOVDQU16 __m256i _mm256_mask_loadu_epi16(__m256i s, __mmask16 k, void * sa);
VMOVDQU16 __m256i _mm256_maskz_loadu_epi16( __mmask16 k, void * sa);
VMOVDQU16 void _mm256_mask_storeu_epi16(void * d, __mmask16 k, __m256i a);
VMOVDQU16 void _mm256_maskz_storeu_epi16(void * d, __mmask16 k);
VMOVDQU16 __m128i _mm_mask_loadu_epi16(__m128i s, __mmask8 k, void * sa);
VMOVDQU16 __m128i _mm_maskz_loadu_epi16( __mmask8 k, void * sa);
VMOVDQU16 void _mm_mask_storeu_epi16(void * d, __mmask8 k, __m128i a);
VMOVDQU32 __m512i _mm512_loadu_epi32( void * sa);
5-434 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VMOVDQU32 __m512i _mm512_mask_loadu_epi32(__m512i s, __mmask16 k, void * sa);
VMOVDQU32 __m512i _mm512_maskz_loadu_epi32( __mmask16 k, void * sa);
VMOVDQU32 void _mm512_storeu_epi32(void * d, __m512i a);
VMOVDQU32 void _mm512_mask_storeu_epi32(void * d, __mmask16 k, __m512i a);
VMOVDQU32 __m256i _mm256_mask_loadu_epi32(__m256i s, __mmask8 k, void * sa);
VMOVDQU32 __m256i _mm256_maskz_loadu_epi32( __mmask8 k, void * sa);
VMOVDQU32 void _mm256_storeu_epi32(void * d, __m256i a);
VMOVDQU32 void _mm256_mask_storeu_epi32(void * d, __mmask8 k, __m256i a);
VMOVDQU32 __m128i _mm_mask_loadu_epi32(__m128i s, __mmask8 k, void * sa);
VMOVDQU32 __m128i _mm_maskz_loadu_epi32( __mmask8 k, void * sa);
VMOVDQU32 void _mm_storeu_epi32(void * d, __m128i a);
VMOVDQU32 void _mm_mask_storeu_epi32(void * d, __mmask8 k, __m128i a);
VMOVDQU64 __m512i _mm512_loadu_epi64( void * sa);
VMOVDQU64 __m512i _mm512_mask_loadu_epi64(__m512i s, __mmask8 k, void * sa);
VMOVDQU64 __m512i _mm512_maskz_loadu_epi64( __mmask8 k, void * sa);
VMOVDQU64 void _mm512_storeu_epi64(void * d, __m512i a);
VMOVDQU64 void _mm512_mask_storeu_epi64(void * d, __mmask8 k, __m512i a);
VMOVDQU64 __m256i _mm256_mask_loadu_epi64(__m256i s, __mmask8 k, void * sa);
VMOVDQU64 __m256i _mm256_maskz_loadu_epi64( __mmask8 k, void * sa);
VMOVDQU64 void _mm256_storeu_epi64(void * d, __m256i a);
VMOVDQU64 void _mm256_mask_storeu_epi64(void * d, __mmask8 k, __m256i a);
VMOVDQU64 __m128i _mm_mask_loadu_epi64(__m128i s, __mmask8 k, void * sa);
VMOVDQU64 __m128i _mm_maskz_loadu_epi64( __mmask8 k, void * sa);
VMOVDQU64 void _mm_storeu_epi64(void * d, __m128i a);
VMOVDQU64 void _mm_mask_storeu_epi64(void * d, __mmask8 k, __m128i a);
VMOVDQU8 __m512i _mm512_mask_loadu_epi8(__m512i s, __mmask64 k, void * sa);
VMOVDQU8 __m512i _mm512_maskz_loadu_epi8( __mmask64 k, void * sa);
VMOVDQU8 void _mm512_mask_storeu_epi8(void * d, __mmask64 k, __m512i a);
VMOVDQU8 __m256i _mm256_mask_loadu_epi8(__m256i s, __mmask32 k, void * sa);
VMOVDQU8 __m256i _mm256_maskz_loadu_epi8( __mmask32 k, void * sa);
VMOVDQU8 void _mm256_mask_storeu_epi8(void * d, __mmask32 k, __m256i a);
VMOVDQU8 void _mm256_maskz_storeu_epi8(void * d, __mmask32 k);
VMOVDQU8 __m128i _mm_mask_loadu_epi8(__m128i s, __mmask16 k, void * sa);
VMOVDQU8 __m128i _mm_maskz_loadu_epi8( __mmask16 k, void * sa);
VMOVDQU8 void _mm_mask_storeu_epi8(void * d, __mmask16 k, __m128i a);
MOVDQU __m256i _mm256_loadu_si256 (__m256i * p);
MOVDQU _mm256_storeu_si256(_m256i *p, __m256i a);
MOVDQU __m128i _mm_loadu_si128 (__m128i * p);
MOVDQU _mm_storeu_si128(__m128i *p, __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4;
EVEX-encoded instruction, see Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
Ref. # 319433-023 5-435
INSTRUCTION SET REFERENCE, A-Z
MOVHLPS—Move Packed Single-Precision Floating-Point Values High to Low
Instruction Operand Encoding1
Description
This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single-precision floating-point values from the high quadword of the second XMM argument
(second operand) to the low quadword of the first XMM register (first argument). The quadword at bits 127:64 of
the destination operand is left unchanged. Bits (MAX_VL-1:128) of the corresponding destination register remain
unchanged.
128-bit and EVEX three-argument form
Moves two packed single-precision floating-point values from the high quadword of the third XMM argument (third
operand) to the low quadword of the destination (first operand). Copies the high quadword from the second XMM
argument (second operand) to the high quadword of the destination (first operand). Bits (MAX_VL-1:128) of the
corresponding destination register are zeroed.
If VMOVHLPS is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or
EVEX.L’L= 1 will cause an #UD exception.
Operation
MOVHLPS (128-bit two-argument form)
DEST[63:0] SRC[127:64]
DEST[MAX_VL-1:64] (Unmodified)
VMOVHLPS (128-bit three-argument form - VEX & EVEX)
DEST[63:0] SRC2[127:64]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
None
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 12 /r RM V/V SSE Move two packed single-precision floating-point values
from high quadword of xmm2 to low quadword of xmm1.
MOVHLPS xmm1, xmm2
VEX.NDS.128.0F.WIG 12 /r RVM V/V AVX Merge two packed single-precision floating-point values
from high quadword of xmm3 and low quadword of xmm2.
VMOVHLPS xmm1, xmm2, xmm3
EVEX.NDS.128.0F.W0 12 /r RVM V/V AVX512F Merge two packed single-precision floating-point values
from high quadword of xmm3 and low quadword of xmm2.
VMOVHLPS xmm1, xmm2, xmm3
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) vvvv (r) ModRM:r/m (r) NA
1. ModRM.MOD = 011B required
5-436 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 7; additionally
#UD If VEX.L = 1.
EVEX-encoded instruction, see Exceptions Type E7NM.128.
Ref. # 319433-023 5-437
INSTRUCTION SET REFERENCE, A-Z
MOVHPD—Move High Packed Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double-precision floating-point value from the source 64-bit memory operand and stores it in the high 64-
bits of the destination XMM register. The lower 64bits of the XMM register are preserved. Bits (MAX_VL-1:128) of
the corresponding destination register are preserved.
VEX.128 & EVEX encoded load:
Loads a double-precision floating-point value from the source 64-bit memory operand (the third operand) and
stores it in the upper 64-bits of the destination XMM register (first operand). The low 64-bits from the first source
operand (second operand) are copied to the low 64-bits of the destination. Bits (MAX_VL-1:128) of the corre-
sponding destination register are zeroed.
128-bit store:
Stores a double-precision floating-point value from the high 64-bits of the XMM register source (second operand)
to the 64-bit memory location (first operand).
Note: VMOVHPD (store) (VEX.128.66.0F 17 /r) is legal and has the same behavior as the existing 66 0F 17 store.
For VMOVHPD (store) VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.
If VMOVHPD is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or
EVEX.L’L= 1 will cause an #UD exception.
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 16 /r RM V/V SSE2 Move double-precision floating-point value from m64
to high quadword of xmm1.
MOVHPD xmm1, m64
VEX.NDS.128.66.0F.WIG 16 /r RVM V/V AVX Merge double-precision floating-point value from m64
and the low quadword of xmm1.
VMOVHPD xmm2, xmm1, m64
EVEX.NDS.128.66.0F.W1 16 /r T1S V/V AVX512F Merge double-precision floating-point value from m64
and the low quadword of xmm1.
VMOVHPD xmm2, xmm1, m64
66 0F 17 /r MR V/V SSE2 Move double-precision floating-point value from high
quadword of xmm1 to m64.
MOVHPD m64, xmm1
VEX.128.66.0F.WIG 17 /r MR V/V AVX Move double-precision floating-point value from high
quadword of xmm1 to m64.
VMOVHPD m64, xmm1
EVEX.128.66.0F.W1 17 /r T1S-MR V/V AVX512F Move double-precision floating-point value from high
quadword of xmm1 to m64.
VMOVHPD m64, xmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
T1S-MR ModRM:r/m (w) ModRM:reg (r) NA NA
5-438 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
MOVHPD (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64] SRC[63:0]
DEST[MAX_VL-1:128] (Unmodified)
VMOVHPD (VEX.128 & EVEX encoded load)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[MAX_VL-1:128] 0
VMOVHPD (store)
DEST[63:0] SRC[127:64]
Intel C/C++ Compiler Intrinsic Equivalent
MOVHPD __m128d _mm_loadh_pd ( __m128d a, double *p)
MOVHPD void _mm_storeh_pd (double *p, __m128d a)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5; additionally
#UD If VEX.L = 1.
EVEX-encoded instruction, see Exceptions Type E9NF.
Ref. # 319433-023 5-439
INSTRUCTION SET REFERENCE, A-Z
MOVHPS—Move High Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single-precision floating-point values from the source 64-bit memory operand and stores them
in the high 64-bits of the destination XMM register. The lower 64bits of the XMM register are preserved. Bits
(MAX_VL-1:128) of the corresponding destination register are preserved.
VEX.128 & EVEX encoded load:
Loads two single-precision floating-point values from the source 64-bit memory operand (the third operand) and
stores it in the upper 64-bits of the destination XMM register (first operand). The low 64-bits from the first source
operand (the second operand) are copied to the lower 64-bits of the destination. Bits (MAX_VL-1:128) of the corre-
sponding destination register are zeroed.
128-bit store:
Stores two packed single-precision floating-point values from the high 64-bits of the XMM register source (second
operand) to the 64-bit memory location (first operand).
Note: VMOVHPS (store) (VEX.NDS.128.0F 17 /r) is legal and has the same behavior as the existing 0F 17 store.
For VMOVHPS (store) VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.
If VMOVHPS is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or
EVEX.L’L= 1 will cause an #UD exception.
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 16 /r RM V/V SSE Move two packed single-precision floating-point values
from m64 to high quadword of xmm1.
MOVHPS xmm1, m64
VEX.NDS.128.0F.WIG 16 /r RVM V/V AVX Merge two packed single-precision floating-point values
from m64 and the low quadword of xmm1.
VMOVHPS xmm2, xmm1, m64
EVEX.NDS.128.0F.W0 16 /r T2 V/V AVX512F Merge two packed single-precision floating-point values
from m64 and the low quadword of xmm1.
VMOVHPS xmm2, xmm1, m64
0F 17 /r MR V/V SSE Move two packed single-precision floating-point values
from high quadword of xmm1 to m64.
MOVHPS m64, xmm1
VEX.128.0F.WIG 17 /r MR V/V AVX Move two packed single-precision floating-point values
from high quadword of xmm1 to m64.
VMOVHPS m64, xmm1
EVEX.128.0F.W0 17 /r T2-MR V/V AVX512F Move two packed single-precision floating-point values
from high quadword of xmm1 to m64.
VMOVHPS m64, xmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
T2 ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
T2-MR ModRM:r/m (w) ModRM:reg (r) NA NA
5-440 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
MOVHPS (128-bit Legacy SSE load)
DEST[63:0] (Unmodified)
DEST[127:64] SRC[63:0]
DEST[MAX_VL-1:128] (Unmodified)
VMOVHPS (VEX.128 and EVEX encoded load)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[MAX_VL-1:128] 0
VMOVHPS (store)
DEST[63:0] SRC[127:64]
Intel C/C++ Compiler Intrinsic Equivalent
MOVHPS __m128 _mm_loadh_pi ( __m128 a, __m64 *p)
MOVHPS void _mm_storeh_pi (__m64 *p, __m128 a)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5; additionally
#UD If VEX.L = 1.
EVEX-encoded instruction, see Exceptions Type E9NF.
Ref. # 319433-023 5-441
INSTRUCTION SET REFERENCE, A-Z
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High
Instruction Operand Encoding1
Description
This instruction cannot be used for memory to register moves.
128-bit two-argument form:
Moves two packed single-precision floating-point values from the low quadword of the second XMM argument
(second operand) to the high quadword of the first XMM register (first argument). The low quadword of the desti-
nation operand is left unchanged. Bits (MAX_VL-1:128) of the corresponding destination register are unmodified.
128-bit three-argument forms:
Moves two packed single-precision floating-point values from the low quadword of the third XMM argument (third
operand) to the high quadword of the destination (first operand). Copies the low quadword from the second XMM
argument (second operand) to the low quadword of the destination (first operand). Bits (MAX_VL-1:128) of the
corresponding destination register are zeroed.
If VMOVLHPS is encoded with VEX.Lor EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or
EVEX.L’L= 1 will cause an #UD exception.
Operation
MOVLHPS (128-bit two-argument form)
DEST[63:0] (Unmodified)
DEST[127:64] SRC[63:0]
DEST[MAX_VL-1:128] (Unmodified)
VMOVLHPS (128-bit three-argument form - VEX & EVEX)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
None
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 16 /r RM V/V SSE Move two packed single-precision floating-point values from
low quadword of xmm2 to high quadword of xmm1.
MOVLHPS xmm1, xmm2
VEX.NDS.128.0F.WIG 16 /r RVM V/V AVX Merge two packed single-precision floating-point values
from low quadword of xmm3 and low quadword of xmm2.
VMOVLHPS xmm1, xmm2, xmm3
EVEX.NDS.128.0F.W0 16 /r RVM V/V AVX512F Merge two packed single-precision floating-point values
from low quadword of xmm3 and low quadword of xmm2.
VMOVLHPS xmm1, xmm2, xmm3
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) vvvv (r) ModRM:r/m (r) NA
1. ModRM.MOD = 011B required
5-442 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 7; additionally
#UD If VEX.L = 1.
EVEX-encoded instruction, see Exceptions Type E7NM.128.
Ref. # 319433-023 5-443
INSTRUCTION SET REFERENCE, A-Z
MOVLPD—Move Low Packed Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves a double-precision floating-point value from the source 64-bit memory operand and stores it in the low 64-
bits of the destination XMM register. The upper 64bits of the XMM register are preserved. Bits (MAX_VL-1:128) of
the corresponding destination register are preserved.
VEX.128 & EVEX encoded load:
Loads a double-precision floating-point value from the source 64-bit memory operand (third operand), merges it
with the upper 64-bits of the first source XMM register (second operand), and stores it in the low 128-bits of the
destination XMM register (first operand). Bits (MAX_VL-1:128) of the corresponding destination register are
zeroed.
128-bit store:
Stores a double-precision floating-point value from the low 64-bits of the XMM register source (second operand) to
the 64-bit memory location (first operand).
Note: VMOVLPD (store) (VEX.128.66.0F 13 /r) is legal and has the same behavior as the existing 66 0F 13 store.
For VMOVLPD (store) VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.
If VMOVLPD is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or
EVEX.L’L= 1 will cause an #UD exception.
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 12 /r RM V/V SSE2 Move double-precision floating-point value from m64 to
low quadword of xmm1.
MOVLPD xmm1, m64
VEX.NDS.128.66.0F.WIG 12 /r RVM V/V AVX Merge double-precision floating-point value from m64
and the high quadword of xmm1.
VMOVLPD xmm2, xmm1, m64
EVEX.NDS.128.66.0F.W1 12 /r T1S V/V AVX512F Merge double-precision floating-point value from m64
and the high quadword of xmm1.
VMOVLPD xmm2, xmm1, m64
66 0F 13/r MR V/V SSE2 Move double-precision floating-point value from low
quadword of xmm1 to m64.
MOVLPD m64, xmm1
VEX.128.66.0F.WIG 13/r MR V/V AVX Move double-precision floating-point value from low
quadword of xmm1 to m64.
VMOVLPD m64, xmm1
EVEX.128.66.0F.W1 13/r T1S-MR V/V AVX512F Move double-precision floating-point value from low
quadword of xmm1 to m64.
VMOVLPD m64, xmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:r/m (r) VEX.vvvv ModRM:r/m (r) NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
T1S-MR ModRM:r/m (w) ModRM:reg (r) NA NA
5-444 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
MOVLPD (128-bit Legacy SSE load)
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] (Unmodified)
VMOVLPD (VEX.128 & EVEX encoded load)
DEST[63:0] SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VMOVLPD (store)
DEST[63:0] SRC[63:0]
Intel C/C++ Compiler Intrinsic Equivalent
MOVLPD __m128d _mm_loadl_pd ( __m128d a, double *p)
MOVLPD void _mm_storel_pd (double *p, __m128d a)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5; additionally
#UD If VEX.L = 1.
EVEX-encoded instruction, see Exceptions Type E9NF.
Ref. # 319433-023 5-445
INSTRUCTION SET REFERENCE, A-Z
MOVLPS—Move Low Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:
Moves two packed single-precision floating-point values from the source 64-bit memory operand and stores them
in the low 64-bits of the destination XMM register. The upper 64bits of the XMM register are preserved. Bits
(MAX_VL-1:128) of the corresponding destination register are preserved.
VEX.128 & EVEX encoded load:
Loads two packed single-precision floating-point values from the source 64-bit memory operand (the third
operand), merges them with the upper 64-bits of the first source operand (the second operand), and stores them
in the low 128-bits of the destination register (the first operand). Bits (MAX_VL-1:128) of the corresponding desti-
nation register are zeroed.
128-bit store:
Loads two packed single-precision floating-point values from the low 64-bits of the XMM register source (second
operand) to the 64-bit memory location (first operand).
Note: VMOVLPS (store) (VEX.128.0F 13 /r) is legal and has the same behavior as the existing 0F 13 store. For
VMOVLPS (store) VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.
If VMOVLPS is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or
EVEX.L’L= 1 will cause an #UD exception.
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 12 /r RM V/V SSE Move two packed single-precision floating-point values
from m64 to low quadword of xmm1.
MOVLPS xmm1, m64
VEX.NDS.128.0F.WIG 12 /r RVM V/V AVX Merge two packed single-precision floating-point values
from m64 and the high quadword of xmm1.
VMOVLPS xmm2, xmm1, m64
EVEX.NDS.128.0F.W0 12 /r T2 V/V AVX512F Merge two packed single-precision floating-point values
from m64 and the high quadword of xmm1.
VMOVLPS xmm2, xmm1, m64
0F 13/r MR V/V SSE Move two packed single-precision floating-point values
from low quadword of xmm1 to m64.
MOVLPS m64, xmm1
VEX.128.0F.WIG 13/r MR V/V AVX Move two packed single-precision floating-point values
from low quadword of xmm1 to m64.
VMOVLPS m64, xmm1
EVEX.128.0F.W0 13/r T2-MR V/V AVX512F Move two packed single-precision floating-point values
from low quadword of xmm1 to m64.
VMOVLPS m64, xmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
T2 ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
T2-MR ModRM:r/m (w) ModRM:reg (r) NA NA
5-446 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
MOVLPS (128-bit Legacy SSE load)
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] (Unmodified)
VMOVLPS (VEX.128 & EVEX encoded load)
DEST[63:0] SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VMOVLPS (store)
DEST[63:0] SRC[63:0]
Intel C/C++ Compiler Intrinsic Equivalent
MOVLPS __m128 _mm_loadl_pi ( __m128 a, __m64 *p)
MOVLPS void _mm_storel_pi (__m64 *p, __m128 a)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5; additionally
#UD If VEX.L = 1.
EVEX-encoded instruction, see Exceptions Type E9NF.
Ref. # 319433-023 5-447
INSTRUCTION SET REFERENCE, A-Z
MOVNTDQA—Load Double Quadword Non-Temporal Aligned Hint
Instruction Operand Encoding1
Description
MOVNTDQA loads a double quadword from the source operand (second operand) to the destination operand (first
operand) using a non-temporal hint if the memory source is WC (write combining) memory type. For WC memory
type, the nontemporal hint may be implemented by loading a temporary internal buffer with the equivalent of an
aligned cache line without filling this data to the cache. Any memory-type aliased lines in the cache will be snooped
and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line will receive data from the
temporary internal buffer if data is available. The temporary internal buffer may be flushed by the processor at any
time for any reason, for example:
• A load operation other than a MOVNTDQA which references memory already resident in a temporary internal
buffer.
• A non-WC reference to memory already resident in a temporary internal buffer.
• Interleaving of reads and writes to a single temporary internal buffer.
• Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.
• Certain micro-architectural conditions including resource shortages, detection of
a mis-speculation condition, and various fault conditions
The non-temporal hint is implemented by using a write combining (WC) memory type protocol when reading the
data from memory. Using this protocol, the processor
does not read the data into the cache hierarchy, nor does it fetch the corresponding cache line from memory into
the cache hierarchy. The memory type of the region being read can override the non-temporal hint, if the memory
address specified for the non-temporal read is not a WC memory region. Information on non-temporal reads and
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature Flag
Description
66 0F 38 2A /r RM V/V SSE4_1 Move double quadword from m128 to xmm1 using non-
temporal hint if WC memory type.
MOVNTDQA xmm1, m128
VEX.128.66.0F38.WIG 2A /r RM V/V AVX Move double quadword from m128 to xmm using non-
temporal hint if WC memory type.
VMOVNTDQA xmm1, m128
VEX.256.66.0F38.WIG 2A /r RM V/V AVX2 Move 256-bit data from m256 to ymm using non-temporal
hint if WC memory type.
VMOVNTDQA ymm1, m256
EVEX.128.66.0F38 2A /r FVM V/V AVX512VL Move 128-bit data from m128 to xmm using non-temporal
hint if WC memory type.
VMOVNTDQA xmm1, m128 AVX512F
EVEX.256.66.0F38 2A /r FVM V/V AVX512VL Move 256-bit data from m256 to ymm using non-temporal
hint if WC memory type.
VMOVNTDQA ymm1, m256 AVX512F
EVEX.512.66.0F38.W0 2A /r FVM V/V AVX512F Move 512-bit data from m512 to zmm using non-temporal
hint if WC memory type.
VMOVNTDQA zmm1, m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FVM ModRM:reg (w) ModRM:r/m (r) NA NA
1. ModRM.MOD = 011B required
5-448 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
writes can be found in “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32
Architecture Software Developer’s Manual, Volume 3A.
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented with
a MFENCE instruction should be used in conjunction with MOVNTDQA instructions if multiple processors might use
different memory types for the referenced memory locations or to synchronize reads of a processor with writes by
other agents in the system. A processor’s implementation of the streaming load hint does not override the effective
memory type, but the implementation of the hint is processor dependent. For example, a processor implementa-
tion may choose to ignore the hint and process the instruction as a normal MOVDQA for any memory type. Alter-
natively, another implementation may optimize cache reads generated by MOVNTDQA on WB memory type to
reduce cache evictions.
The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will cause a #GP.
The 256-bit VMOVNTDQA addresses must be 32-byte aligned or the instruction will cause a #GP.
The 512-bit VMOVNTDQA addresses must be 64-byte aligned or the instruction will cause a #GP.
Operation
MOVNTDQA (128bit- Legacy SSE form)
DEST SRC
DEST[MAX_VL-1:128] (Unmodified)
VMOVNTDQA (VEX.128 and EVEX.128 encoded form)
DEST SRC
DEST[MAX_VL-1:128] 0
VMOVNTDQA (VEX.256 and EVEX.256 encoded forms)
DEST[255:0] SRC[255:0]
DEST[MAX_VL-1:256] 0
VMOVNTDQA (EVEX.512 encoded form)
DEST[511:0] SRC[511:0]
Intel C/C++ Compiler Intrinsic Equivalent
VMOVNTDQA __m512i _mm512_stream_load_si512(void * p);
MOVNTDQA __m128i _mm_stream_load_si128 (__m128i *p);
VMOVNTDQA __m256i _mm_stream_load_si256 (__m256i *p);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1;
EVEX-encoded instruction, see Exceptions Type E1NF.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-449
INSTRUCTION SET REFERENCE, A-Z
MOVNTDQ—Store Packed Integers Using Non-Temporal Hint
Instruction Operand Encoding1
Description
Moves the packed integers in the source operand (second operand) to the destination operand (first operand) using
a non-temporal hint to prevent caching of the data during the write to memory. The source operand is an XMM
register, YMM register or ZMM register, which is assumed to contain integer data (packed bytes, words, double-
words, or quadwords). The destination operand is a 128-bit, 256-bit or 512-bit memory location. The memory
operand must be aligned on a 16-byte (128-bit version), 32-byte (VEX.256 encoded version) or 64-byte (512-bit
version) boundary otherwise a general-protection exception (#GP) will be generated.
The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented
with the SFENCE or MFENCE instruction should be used in conjunction with VMOVNTDQ instructions if multiple
processors might use different memory types to read/write the destination memory locations.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, VEX.L must be 0; otherwise instructions will
#UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature Flag
Description
66 0F E7 /r MR V/V SSE2 Move packed integer values in xmm1 to m128 using non-
temporal hint.
MOVNTDQ m128, xmm1
VEX.128.66.0F.WIG E7 /r MR V/V AVX Move packed integer values in xmm1 to m128 using non-
temporal hint.
VMOVNTDQ m128, xmm1
VEX.256.66.0F.WIG E7 /r
VMOVNTDQ m256, ymm1
MR V/V AVX Move packed integer values in ymm1 to m256 using non-
temporal hint.
EVEX.128.66.0F E7 /r
VMOVNTDQ m128, xmm1
FVM V/V AVX512VL
AVX512F
Move packed integer values in xmm1 to m128 using non-
temporal hint.
EVEX.256.66.0F E7 /r
VMOVNTDQ m256, ymm1
FVM V/V AVX512VL
AVX512F
Move packed integer values in zmm1 to m256 using non-
temporal hint.
EVEX.512.66.0F.W0 E7 /r
VMOVNTDQ m512, zmm1
FVM V/V AVX512F Move packed integer values in zmm1 to m512 using non-
temporal hint.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (w) ModRM:reg (r) NA NA
FVM ModRM:r/m (w) ModRM:reg (r) NA NA
1. ModRM.MOD = 011B required
5-450 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VMOVNTDQ(EVEX encoded versions)
VL = 128, 256, 512
DEST[VL-1:0] SRC[VL-1:0]
DEST[MAX_VL-1:VL] 0
MOVNTDQ (Legacy and VEX versions)
DEST SRC
Intel C/C++ Compiler Intrinsic Equivalent
VMOVNTDQ void _mm512_stream_si512(void * p, __m512i a);
VMOVNTDQ void _mm256_stream_si256 (__m256i * p, __m256i a);
MOVNTDQ void _mm_stream_si128 (__m128i * p, __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE2;
EVEX-encoded instruction, see Exceptions Type E1NF.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-451
INSTRUCTION SET REFERENCE, A-Z
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
Instruction Operand Encoding1
Description
Moves the packed double-precision floating-point values in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to prevent caching of the data during the write to memory. The
source operand is an XMM register, YMM register or ZMM register, which is assumed to contain packed double-
precision, floating-pointing data. The destination operand is a 128-bit, 256-bit or 512-bit memory location. The
memory operand must be aligned on a 16-byte (128-bit version), 32-byte (VEX.256 encoded version) or 64-byte
(EVEX.512 encoded version) boundary otherwise a general-protection exception (#GP) will be generated.
The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented
with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTPD instructions if multiple
processors might use different memory types to read/write the destination memory locations.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, VEX.L must be 0; otherwise instructions will
#UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 2B /r MR V/V SSE2 Move packed double-precision values in xmm1 to m128 using
non-temporal hint.
MOVNTPD m128, xmm1
VEX.128.66.0F.WIG 2B /r MR V/V AVX Move packed double-precision values in xmm1 to m128 using
non-temporal hint.
VMOVNTPD m128, xmm1
VEX.256.66.0F.WIG 2B /r
VMOVNTPD m256, ymm1
MR V/V AVX Move packed double-precision values in ymm1 to m256 using
non-temporal hint.
EVEX.128.66.0F.W1 2B /r
VMOVNTPD m128, xmm1
FVM V/V AVX512VL
AVX512F
Move packed double-precision values in xmm1 to m128 using
non-temporal hint.
EVEX.256.66.0F.W1 2B /r
VMOVNTPD m256, ymm1
FVM V/V AVX512VL
AVX512F
Move packed double-precision values in ymm1 to m256 using
non-temporal hint.
EVEX.512.66.0F.W1 2B /r
VMOVNTPD m512, zmm1
FVM V/V AVX512F Move packed double-precision values in zmm1 to m512 using
non-temporal hint.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (w) ModRM:reg (r) NA NA
FVM ModRM:r/m (w) ModRM:reg (r) NA NA
1. ModRM.MOD = 011B required
5-452 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VMOVNTPD (EVEX encoded versions)
VL = 128, 256, 512
DEST[VL-1:0] SRC[VL-1:0]
DEST[MAX_VL-1:VL] 0
MOVNTPD (Legacy and VEX versions)
DEST SRC
Intel C/C++ Compiler Intrinsic Equivalent
VMOVNTPD void _mm512_stream_pd(double * p, __m512d a);
VMOVNTPD void _mm256_stream_pd (double * p, __m256d a);
MOVNTPD void _mm_stream_pd (double * p, __m128d a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE2;
EVEX-encoded instruction, see Exceptions Type E1NF.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-453
INSTRUCTION SET REFERENCE, A-Z
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
Instruction Operand Encoding1
Description
Moves the packed single-precision floating-point values in the source operand (second operand) to the destination
operand (first operand) using a non-temporal hint to prevent caching of the data during the write to memory. The
source operand is an XMM register, YMM register or ZMM register, which is assumed to contain packed single-preci-
sion, floating-pointing. The destination operand is a 128-bit, 256-bit or 512-bit memory location. The memory
operand must be aligned on a 16-byte (128-bit version), 32-byte (VEX.256 encoded version) or 64-byte
(EVEX.512 encoded version) boundary otherwise a general-protection exception (#GP) will be generated.
The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1.
Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented
with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTPS instructions if multiple
processors might use different memory types to read/write the destination memory locations.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 2B /r MR V/V SSE Move packed single-precision values xmm1 to mem using
non-temporal hint.
MOVNTPS m128, xmm1
VEX.128.0F.WIG 2B /r MR V/V AVX Move packed single-precision values xmm1 to mem using
non-temporal hint.
VMOVNTPS m128, xmm1
VEX.256.0F.WIG 2B /r
VMOVNTPS m256, ymm1
MR V/V AVX Move packed single-precision values ymm1 to mem using
non-temporal hint.
EVEX.128.66.0F.W0 2B /r
VMOVNTPS m128, xmm1
FVM V/V AVX512VL
AVX512F
Move packed single-precision values in xmm1 to m128
using non-temporal hint.
EVEX.256.66.0F.W0 2B /r
VMOVNTPS m256, ymm1
FVM V/V AVX512VL
AVX512F
Move packed single-precision values in ymm1 to m256
using non-temporal hint.
EVEX.512.0F.W0 2B /r
VMOVNTPS m512, zmm1
FVM V/V AVX512F Move packed single-precision values in zmm1 to m512
using non-temporal hint.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (w) ModRM:reg (r) NA NA
FVM ModRM:r/m (w) ModRM:reg (r) NA NA
1. ModRM.MOD = 011B required
5-454 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VMOVNTPS (EVEX encoded versions)
VL = 128, 256, 512
DEST[VL-1:0] SRC[VL-1:0]
DEST[MAX_VL-1:VL] 0
MOVNTPS
DEST SRC
Intel C/C++ Compiler Intrinsic Equivalent
VMOVNTPS void _mm512_stream_ps(float * p, __m512d a);
MOVNTPS void _mm_stream_ps (float * p, __m128d a);
VMOVNTPS void _mm256_stream_ps (float * p, __m256 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type1.SSE; additionally
EVEX-encoded instruction, see Exceptions Type E1NF.
#UD If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-455
INSTRUCTION SET REFERENCE, A-Z
MOVSD—Move or Merge Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 10 /r RM V/V SSE2 Move scalar double-precision floating-point value
from xmm2 to xmm1 register.
MOVSD xmm1, xmm2
F2 0F 10 /r RM V/V SSE2 Load scalar double-precision floating-point value
from m64 to xmm1 register.
MOVSD xmm1, m64
F2 0F 11 /r MR V/V SSE2 Move scalar double-precision floating-point value
from xmm2 register to xmm1/m64.
MOVSD xmm1/m64, xmm2
VEX.NDS.LIG.F2.0F.WIG 10 /r RVM V/V AVX Merge scalar double-precision floating-point value
from xmm2 and xmm3 to xmm1 register.
VMOVSD xmm1, xmm2, xmm3
VEX.LIG.F2.0F.WIG 10 /r XM V/V AVX Load scalar double-precision floating-point value
from m64 to xmm1 register.
VMOVSD xmm1, m64
VEX.NDS.LIG.F2.0F.WIG 11 /r MVR V/V AVX Merge scalar double-precision floating-point value
from xmm2 and xmm3 registers to xmm1.
VMOVSD xmm1, xmm2, xmm3
VEX.LIG.F2.0F.WIG 11 /r MR V/V AVX Store scalar double-precision floating-point value
from xmm1 register to m64.
VMOVSD m64, xmm1
EVEX.NDS.LIG.F2.0F.W1 10 /r RVM V/V AVX512F Merge scalar double-precision floating-point value
from xmm2 and xmm3 registers to xmm1 under
writemask k1.
VMOVSD xmm1 {k1}{z}, xmm2, xmm3
EVEX.LIG.F2.0F.W1 10 /r T1S-RM V/V AVX512F Load scalar double-precision floating-point value
from m64 to xmm1 register under writemask k1.
VMOVSD xmm1 {k1}{z}, m64
EVEX.NDS.LIG.F2.0F.W1 11 /r MVR V/V AVX512F Merge scalar double-precision floating-point value
from xmm2 and xmm3 registers to xmm1 under
writemask k1.
VMOVSD xmm1 {k1}{z}, xmm2, xmm3
EVEX.LIG.F2.0F.W1 11 /r T1S-MR V/V AVX512F Store scalar double-precision floating-point value
from xmm1 register to m64 under writemask k1.
VMOVSD m64 {k1}, xmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
XM ModRM:reg (w) ModRM:r/m (r) NA NA
MVR ModRM:r/m (w) vvvv (r) ModRM:reg (r) NA
T1S-RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
T1S-MR ModRM:r/m (w) ModRM:reg (r) NA NA
5-456 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Description
Moves a scalar double-precision floating-point value from the source operand (second operand) to the destination
operand (first operand). The source and destination operands can be XMM registers or 64-bit memory locations.
This instruction can be used to move a double-precision floating-point value to and from the low quadword of an
XMM register and a 64-bit memory location, or to move a double-precision floating-point value between the low
quadwords of two XMM registers. The instruction cannot be used to transfer data between memory locations.
Legacy version: When the source and destination operands are XMM registers, bits MAX_VL:64 of the destination
operand remains unchanged. When the source operand is a memory location and destination operand is an XMM
registers, the quadword at bits 127:64 of the destination operand is cleared to all 0s, bits MAX_VL:128 of the desti-
nation operand remains unchanged.
VEX and EVEX encoded register-register syntax: Moves a scalar double-precision floating-point value from the
second source operand (the third operand) to the low quadword element of the destination operand (the first
operand). Bits 127:64 of the destination operand are copied from the first source operand (the second operand).
Bits (MAX_VL-1:128) of the corresponding destination register are zeroed.
VEX and EVEX encoded memory store syntax: When the source operand is a memory location and destination
operand is an XMM registers, bits MAX_VL:64 of the destination operand is cleared to all 0s.
EVEX encoded versions: The low quadword of the destination is updated according to the writemask.
Note: For VMOVSD (memory store and load forms), VEX.vvvv and EVEX.vvvv are reserved and must be 1111b,
otherwise instruction will #UD.
Operation
VMOVSD (EVEX.NDS.LIG.F2.0F 10 /r: VMOVSD xmm1, m64 with support for 32 registers)
IF k1[0] or *no writemask*
THEN DEST[63:0] SRC[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[511:64] 0
VMOVSD (EVEX.NDS.LIG.F2.0F 11 /r: VMOVSD m64, xmm1 with support for 32 registers)
IF k1[0] or *no writemask*
THEN DEST[63:0] SRC[63:0]
ELSE *DEST[63:0] remains unchanged* ; merging-masking
FI;
VMOVSD (EVEX.NDS.LIG.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3)
IF k1[0] or *no writemask*
THEN DEST[63:0] SRC2[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Ref. # 319433-023 5-457
INSTRUCTION SET REFERENCE, A-Z
MOVSD (128-bit Legacy SSE version: MOVSD XMM1, XMM2)
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] (Unmodified)
VMOVSD (VEX.NDS.128.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0] SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, xmm2, xmm3)
DEST[63:0] SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, m64)
DEST[63:0] SRC[63:0]
DEST[MAX_VL-1:64] 0
MOVSD/VMOVSD (128-bit versions: MOVSD m64, xmm1 or VMOVSD m64, xmm1)
DEST[63:0] SRC[63:0]
MOVSD (128-bit Legacy SSE version: MOVSD XMM1, m64)
DEST[63:0] SRC[63:0]
DEST[127:64] 0
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMOVSD __m128d _mm_mask_load_sd(__m128d s, __mmask8 k, double * p);
VMOVSD __m128d _mm_maskz_load_sd( __mmask8 k, double * p);
VMOVSD __m128d _mm_mask_move_sd(__m128d sh, __mmask8 k, __m128d sl, __m128d a);
VMOVSD __m128d _mm_maskz_move_sd( __mmask8 k, __m128d s, __m128d a);
VMOVSD void _mm_mask_store_sd(double * p, __mmask8 k, __m128d s);
MOVSD __m128d _mm_load_sd (double *p)
MOVSD void _mm_store_sd (double *p, __m128d a)
MOVSD __m128d _mm_move_sd ( __m128d a, __m128d b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E10.
5-458 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MOVSHDUP—Replicate Single FP Values
Instruction Operand Encoding
Description
Duplicates odd-indexed single-precision floating-point values from the source operand (the second operand) to
adjacent element pair in the destination operand (the first operand). See Figure 5-27. The source operand is an
XMM, YMM or ZMM register or 128, 256 or 512-bit memory location and the destination operand is an XMM, YMM
or ZMM register.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination register are zeroed.
VEX.256 encoded version: Bits (MAX_VL-1:256) of the destination register are zeroed.
EVEX encoded version: The destination operand is updated at 32-bit granularity according to the writemask.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 16 /r RM V/V SSE3 Move odd index single-precision floating-point values from
xmm2/mem and duplicate each element into xmm1.
MOVSHDUP xmm1, xmm2/m128
VEX.128.F3.0F.WIG 16 /r RM V/V AVX Move odd index single-precision floating-point values from
xmm2/mem and duplicate each element into xmm1.
VMOVSHDUP xmm1, xmm2/m128
VEX.256.F3.0F.WIG 16 /r RM V/V AVX Move odd index single-precision floating-point values from
ymm2/mem and duplicate each element into ymm1.
VMOVSHDUP ymm1, ymm2/m256
EVEX.128.F3.0F.W0 16 /r FVM V/V AVX512VL Move odd index single-precision floating-point values from
xmm2/m128 and duplicate each element into xmm1 under
writemask.
VMOVSHDUP xmm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.256.F3.0F.W0 16 /r FVM V/V AVX512VL Move odd index single-precision floating-point values from
ymm2/m256 and duplicate each element into ymm1 under
writemask.
VMOVSHDUP ymm1 {k1}{z},
ymm2/m256
AVX512F
EVEX.512.F3.0F.W0 16 /r FVM V/V AVX512F Move odd index single-precision floating-point values from
zmm2/m512 and duplicate each element into zmm1 under
writemask.
VMOVSHDUP zmm1 {k1}{z},
zmm2/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FVM ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-459
INSTRUCTION SET REFERENCE, A-Z
Operation
VMOVSHDUP (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
TMP_SRC[31:0] SRC[63:32]
TMP_SRC[63:32] SRC[63:32]
TMP_SRC[95:64] SRC[127:96]
TMP_SRC[127:96] SRC[127:96]
IF VL >= 256
TMP_SRC[159:128] SRC[191:160]
TMP_SRC[191:160] SRC[191:160]
TMP_SRC[223:192] SRC[255:224]
TMP_SRC[255:224] SRC[255:224]
FI;
IF VL >= 512
TMP_SRC[287:256] SRC[319:288]
TMP_SRC[319:288] SRC[319:288]
TMP_SRC[351:320] SRC[383:352]
TMP_SRC[383:352] SRC[383:352]
TMP_SRC[415:384] SRC[447:416]
TMP_SRC[447:416] SRC[447:416]
TMP_SRC[479:448] SRC[511:480]
TMP_SRC[511:480] SRC[511:480]
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Figure 5-27. MOVSHDUP Operation
DEST
SRC X4X5X6X7
X1X1X3X3X5X5X7X7
X0X1X2X3
5-460 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VMOVSHDUP (VEX.256 encoded version)
DEST[31:0] SRC[63:32]
DEST[63:32] SRC[63:32]
DEST[95:64] SRC[127:96]
DEST[127:96] SRC[127:96]
DEST[159:128] SRC[191:160]
DEST[191:160] SRC[191:160]
DEST[223:192] SRC[255:224]
DEST[255:224] SRC[255:224]
DEST[MAX_VL-1:256] 0
VMOVSHDUP (VEX.128 encoded version)
DEST[31:0] SRC[63:32]
DEST[63:32] SRC[63:32]
DEST[95:64] SRC[127:96]
DEST[127:96] SRC[127:96]
DEST[MAX_VL-1:128] 0
MOVSHDUP (128-bit Legacy SSE version)
DEST[31:0] SRC[63:32]
DEST[63:32] SRC[63:32]
DEST[95:64] SRC[127:96]
DEST[127:96] SRC[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMOVSHDUP __m512 _mm512_movehdup_ps( __m512 a);
VMOVSHDUP __m512 _mm512_mask_movehdup_ps(__m512 s, __mmask16 k, __m512 a);
VMOVSHDUP __m512 _mm512_maskz_movehdup_ps( __mmask16 k, __m512 a);
VMOVSHDUP __m256 _mm256_mask_movehdup_ps(__m256 s, __mmask8 k, __m256 a);
VMOVSHDUP __m256 _mm256_maskz_movehdup_ps( __mmask8 k, __m256 a);
VMOVSHDUP __m128 _mm_mask_movehdup_ps(__m128 s, __mmask8 k, __m128 a);
VMOVSHDUP __m128 _mm_maskz_movehdup_ps( __mmask8 k, __m128 a);
VMOVSHDUP __m256 _mm256_movehdup_ps (__m256 a);
VMOVSHDUP __m128 _mm_movehdup_ps (__m128 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4;
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
Ref. # 319433-023 5-461
INSTRUCTION SET REFERENCE, A-Z
MOVSLDUP—Replicate Single FP Values
Instruction Operand Encoding
Description
Duplicates even-indexed single-precision floating-point values from the source operand (the second operand). See
Figure 5-28. The source operand is an XMM, YMM or ZMM register or 128, 256 or 512-bit memory location and the
destination operand is an XMM, YMM or ZMM register.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination register are zeroed.
VEX.256 encoded version: Bits (MAX_VL-1:256) of the destination register are zeroed.
EVEX encoded version: The destination operand is updated at 32-bit granularity according to the writemask.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 12 /r A V/V SSE3 Move even index single-precision floating-point values from
xmm2/mem and duplicate each element into xmm1.
MOVSLDUP xmm1, xmm2/m128
VEX.128.F3.0F.WIG 12 /r RM V/V AVX Move even index single-precision floating-point values from
xmm2/mem and duplicate each element into xmm1.
VMOVSLDUP xmm1, xmm2/m128
VEX.256.F3.0F.WIG 12 /r RM V/V AVX Move even index single-precision floating-point values from
ymm2/mem and duplicate each element into ymm1.
VMOVSLDUP ymm1, ymm2/m256
EVEX.128.F3.0F.W0 12 /r FVM V/V AVX512VL Move even index single-precision floating-point values from
xmm2/m128 and duplicate each element into xmm1 under
writemask.
VMOVSLDUP xmm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.256.F3.0F.W0 12 /r FVM V/V AVX512VL Move even index single-precision floating-point values from
ymm2/m256 and duplicate each element into ymm1 under
writemask.
VMOVSLDUP ymm1 {k1}{z},
ymm2/m256
AVX512F
EVEX.512.F3.0F.W0 12 /r FVM V/V AVX512F Move even index single-precision floating-point values from
zmm2/m512 and duplicate each element into zmm1 under
writemask.
VMOVSLDUP zmm1 {k1}{z},
zmm2/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FVM ModRM:reg (w) ModRM:r/m (r) NA NA
Figure 5-28. MOVSLDUP Operation
DEST
SRC X4X5X6X7
X0X0X2X2X4X4X6X6
X0X1X2X3
5-462 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VMOVSLDUP (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
TMP_SRC[31:0] SRC[31:0]
TMP_SRC[63:32] SRC[31:0]
TMP_SRC[95:64] SRC[95:64]
TMP_SRC[127:96] SRC[95:64]
IF VL >= 256
TMP_SRC[159:128] SRC[159:128]
TMP_SRC[191:160] SRC[159:128]
TMP_SRC[223:192] SRC[223:192]
TMP_SRC[255:224] SRC[223:192]
FI;
IF VL >= 512
TMP_SRC[287:256] SRC[287:256]
TMP_SRC[319:288] SRC[287:256]
TMP_SRC[351:320] SRC[351:320]
TMP_SRC[383:352] SRC[351:320]
TMP_SRC[415:384] SRC[415:384]
TMP_SRC[447:416] SRC[415:384]
TMP_SRC[479:448] SRC[479:448]
TMP_SRC[511:480] SRC[479:448]
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVSLDUP (VEX.256 encoded version)
DEST[31:0] SRC[31:0]
DEST[63:32] SRC[31:0]
DEST[95:64] SRC[95:64]
DEST[127:96] SRC[95:64]
DEST[159:128] SRC[159:128]
DEST[191:160] SRC[159:128]
DEST[223:192] SRC[223:192]
DEST[255:224] SRC[223:192]
DEST[MAX_VL-1:256] 0
VMOVSLDUP (VEX.128 encoded version)
DEST[31:0] SRC[31:0]
DEST[63:32] SRC[31:0]
DEST[95:64] SRC[95:64]
DEST[127:96] SRC[95:64]
DEST[MAX_VL-1:128] 0
Ref. # 319433-023 5-463
INSTRUCTION SET REFERENCE, A-Z
MOVSLDUP (128-bit Legacy SSE version)
DEST[31:0] SRC[31:0]
DEST[63:32] SRC[31:0]
DEST[95:64] SRC[95:64]
DEST[127:96] SRC[95:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMOVSLDUP __m512 _mm512_moveldup_ps( __m512 a);
VMOVSLDUP __m512 _mm512_mask_moveldup_ps(__m512 s, __mmask16 k, __m512 a);
VMOVSLDUP __m512 _mm512_maskz_moveldup_ps( __mmask16 k, __m512 a);
VMOVSLDUP __m256 _mm256_mask_moveldup_ps(__m256 s, __mmask8 k, __m256 a);
VMOVSLDUP __m256 _mm256_maskz_moveldup_ps( __mmask8 k, __m256 a);
VMOVSLDUP __m128 _mm_mask_moveldup_ps(__m128 s, __mmask8 k, __m128 a);
VMOVSLDUP __m128 _mm_maskz_moveldup_ps( __mmask8 k, __m128 a);
VMOVSLDUP __m256 _mm256_moveldup_ps (__m256 a);
VMOVSLDUP __m128 _mm_moveldup_ps (__m128 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4;
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
5-464 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MOVSS—Move or Merge Scalar Single-Precision Floating-Point Value
Instruction Operand Encoding
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 10 /r RM V/V SSE Merge scalar single-precision floating-point value
from xmm2 to xmm1 register.
MOVSS xmm1, xmm2
F3 0F 10 /r RM V/V SSE Load scalar single-precision floating-point value from
m32 to xmm1 register.
MOVSS xmm1, m32
VEX.NDS.LIG.F3.0F.WIG 10 /r RVM V/V AVX Merge scalar single-precision floating-point value
from xmm2 and xmm3 to xmm1 register
VMOVSS xmm1, xmm2, xmm3
VEX.LIG.F3.0F.WIG 10 /r XM V/V AVX Load scalar single-precision floating-point value from
m32 to xmm1 register.
VMOVSS xmm1, m32
F3 0F 11 /r MR V/V SSE Move scalar single-precision floating-point value
from xmm1 register to xmm2/m32.
MOVSS xmm2/m32, xmm1
VEX.NDS.LIG.F3.0F.WIG 11 /r MVR V/V AVX Move scalar single-precision floating-point value
from xmm2 and xmm3 to xmm1 register.
VMOVSS xmm1, xmm2, xmm3
VEX.LIG.F3.0F.WIG 11 /r MR V/V AVX Move scalar single-precision floating-point value
from xmm1 register to m32.
VMOVSS m32, xmm1
EVEX.NDS.LIG.F3.0F.W0 10 /r RVM V/V AVX512F Move scalar single-precision floating-point value
from xmm2 and xmm3 to xmm1 register under
writemask k1.
VMOVSS xmm1 {k1}{z}, xmm2, xmm3
EVEX.LIG.F3.0F.W0 10 /r T1S-RM V/V AVX512F Move scalar single-precision floating-point values
from m32 to xmm1 under writemask k1.
VMOVSS xmm1 {k1}{z}, m32
EVEX.NDS.LIG.F3.0F.W0 11 /r MVR V/V AVX512F Move scalar single-precision floating-point value
from xmm2 and xmm3 to xmm1 register under
writemask k1.
VMOVSS xmm1 {k1}{z}, xmm2, xmm3
EVEX.LIG.F3.0F.W0 11 /r T1S-MR V/V AVX512F Move scalar single-precision floating-point values
from xmm1 to m32 under writemask k1.
VMOVSS m32 {k1}, xmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
XM ModRM:reg (w) ModRM:r/m (r) NA NA
MVR ModRM:r/m (w) vvvv (r) ModRM:reg (r) NA
T1S-RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
T1S-MR ModRM:r/m (w) ModRM:reg (r) NA NA
Ref. # 319433-023 5-465
INSTRUCTION SET REFERENCE, A-Z
Description
Moves a scalar single-precision floating-point value from the source operand (second operand) to the destination
operand (first operand). The source and destination operands can be XMM registers or 32-bit memory locations.
This instruction can be used to move a single-precision floating-point value to and from the low doubleword of an
XMM register and a 32-bit memory location, or to move a single-precision floating-point value between the low
doublewords of two XMM registers. The instruction cannot be used to transfer data between memory locations.
Legacy version: When the source and destination operands are XMM registers, bits (MAX_VL-1:32) of the corre-
sponding destination register are unmodified. When the source operand is a memory location and destination
operand is an XMM registers, Bits (127:32) of the destination operand is cleared to all 0s, bits MAX_VL:128 of the
destination operand remains unchanged.
VEX and EVEX encoded register-register syntax: Moves a scalar single-precision floating-point value from the
second source operand (the third operand) to the low doubleword element of the destination operand (the first
operand). Bits 127:32 of the destination operand are copied from the first source operand (the second operand).
Bits (MAX_VL-1:128) of the corresponding destination register are zeroed.
VEX and EVEX encoded memory load syntax: When the source operand is a memory location and destination
operand is an XMM registers, bits MAX_VL:32 of the destination operand is cleared to all 0s.
EVEX encoded versions: The low doubleword of the destination is updated according to the writemask.
Note: For memory store form instruction “VMOVSS m32, xmm1”, VEX.vvvv is reserved and must be 1111b other-
wise instruction will #UD. For memory store form instruction “VMOVSS mv {k1}, xmm1”, EVEX.vvvv is reserved
and must be 1111b otherwise instruction will #UD.
Software should ensure VMOVSS is encoded with VEX.L=0. Encoding VMOVSS with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Operation
VMOVSS (EVEX.NDS.LIG.F3.0F.W0 11 /r when the source operand is memory and the destination is an XMM register)
IF k1[0] or *no writemask*
THEN DEST[31:0] SRC[31:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[511:32] 0
VMOVSS (EVEX.NDS.LIG.F3.0F.W0 10 /r when the source operand is an XMM register and the destination is memory)
IF k1[0] or *no writemask*
THEN DEST[31:0] SRC[31:0]
ELSE *DEST[31:0] remains unchanged* ; merging-masking
FI;
VMOVSS (EVEX.NDS.LIG.F3.0F.W0 10/11 /r where the source and destination are XMM registers)
IF k1[0] or *no writemask*
THEN DEST[31:0] SRC2[31:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] SRC1[127:32]
5-466 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[MAX_VL-1:128] 0
MOVSS (Legacy SSE version when the source and destination operands are both XMM registers)
DEST[31:0] SRC[31:0]
DEST[MAX_VL-1:32] (Unmodified)
VMOVSS (VEX.NDS.128.F3.0F 11 /r where the destination is an XMM register)
DEST[31:0] SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VMOVSS (VEX.NDS.128.F3.0F 10 /r where the source and destination are XMM registers)
DEST[31:0] SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VMOVSS (VEX.NDS.128.F3.0F 10 /r when the source operand is memory and the destination is an XMM register)
DEST[31:0] SRC[31:0]
DEST[MAX_VL-1:32] 0
MOVSS/VMOVSS (when the source operand is an XMM register and the destination is memory)
DEST[31:0] SRC[31:0]
MOVSS (Legacy SSE version when the source operand is memory and the destination is an XMM register)
DEST[31:0] SRC[31:0]
DEST[127:32] 0
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMOVSS __m128 _mm_mask_load_ss(__m128 s, __mmask8 k, float * p);
VMOVSS __m128 _mm_maskz_load_ss( __mmask8 k, float * p);
VMOVSS __m128 _mm_mask_move_ss(__m128 sh, __mmask8 k, __m128 sl, __m128 a);
VMOVSS __m128 _mm_maskz_move_ss( __mmask8 k, __m128 s, __m128 a);
VMOVSS void _mm_mask_store_ss(float * p, __mmask8 k, __m128 a);
MOVSS __m128 _mm_load_ss(float * p)
MOVSS void_mm_store_ss(float * p, __m128 a)
MOVSS __m128 _mm_move_ss(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E10.
Ref. # 319433-023 5-467
INSTRUCTION SET REFERENCE, A-Z
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Note: VEX.vvvv and EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 10 /r RM V/V SSE2 Move unaligned packed double-precision floating-
point from xmm2/mem to xmm1.
MOVUPD xmm1, xmm2/m128
66 0F 11 /r MR V/V SSE2 Move unaligned packed double-precision floating-
point from xmm1 to xmm2/mem.
MOVUPD xmm2/m128, xmm1
VEX.128.66.0F.WIG 10 /r RM V/V AVX Move unaligned packed double-precision floating-
point from xmm2/mem to xmm1.
VMOVUPD xmm1, xmm2/m128
VEX.128.66.0F.WIG 11 /r MR V/V AVX Move unaligned packed double-precision floating-
point from xmm1 to xmm2/mem.
VMOVUPD xmm2/m128, xmm1
VEX.256.66.0F.WIG 10 /r RM V/V AVX Move unaligned packed double-precision floating-
point from ymm2/mem to ymm1.
VMOVUPD ymm1, ymm2/m256
VEX.256.66.0F.WIG 11 /r MR V/V AVX Move unaligned packed double-precision floating-
point from ymm1 to ymm2/mem.
VMOVUPD ymm2/m256, ymm1
EVEX.128.66.0F.W1 10 /r FVM-RM V/V AVX512VL Move unaligned packed double-precision floating-
point from xmm2/m128 to xmm1 using
writemask k1.
VMOVUPD xmm1 {k1}{z}, xmm2/m128 AVX512F
EVEX.128.66.0F.W1 11 /r FVM-MR V/V AVX512VL Move unaligned packed double-precision floating-
point from xmm1 to xmm2/m128 using
writemask k1.
VMOVUPD xmm2/m128 {k1}{z}, xmm1 AVX512F
EVEX.256.66.0F.W1 10 /r FVM-RM V/V AVX512VL Move unaligned packed double-precision floating-
point from ymm2/m256 to ymm1 using
writemask k1.
VMOVUPD ymm1 {k1}{z}, ymm2/m256 AVX512F
EVEX.256.66.0F.W1 11 /r FVM-MR V/V AVX512VL Move unaligned packed double-precision floating-
point from ymm1 to ymm2/m256 using
writemask k1.
VMOVUPD ymm2/m256 {k1}{z}, ymm1 AVX512F
EVEX.512.66.0F.W1 10 /r FVM-RM V/V AVX512F Move unaligned packed double-precision floating-
point values from zmm2/m512 to zmm1 using
writemask k1.
VMOVUPD zmm1 {k1}{z}, zmm2/m512
EVEX.512.66.0F.W1 11 /r FVM-MR V/V AVX512F Move unaligned packed double-precision floating-
point values from zmm1 to zmm2/m512 using
writemask k1.
VMOVUPD zmm2/m512 {k1}{z}, zmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
FVM-RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM-MR ModRM:r/m (w) ModRM:reg (r) NA NA
5-468 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EVEX.512 encoded version:
Moves 512 bits of packed double-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load a ZMM register from a float64 memory
location, to store the contents of a ZMM register into a memory. The destination operand is updated according to
the writemask.
VEX.256 encoded version:
Moves 256 bits of packed double-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory
location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM
registers. Bits (MAX_VL-1:256) of the destination register are zeroed.
128-bit versions:
Moves 128 bits of packed double-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory
location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two
XMM registers.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned on a 16-byte
boundary without causing a general-protection exception (#GP) to be generated
VEX.128 and EVEX.128 encoded versions: Bits (MAX_VL-1:128) of the destination register are zeroed.
Operation
VMOVUPD (EVEX encoded versions, register-copy form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVUPD (EVEX encoded versions, store-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE *DEST[i+63:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
Ref. # 319433-023 5-469
INSTRUCTION SET REFERENCE, A-Z
VMOVUPD (EVEX encoded versions, load-form)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVUPD (VEX.256 encoded version, load - and register copy)
DEST[255:0] SRC[255:0]
DEST[MAX_VL-1:256] 0
VMOVUPD (VEX.256 encoded version, store-form)
DEST[255:0] SRC[255:0]
VMOVUPD (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] 0
MOVUPD (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] (Unmodified)
(V)MOVUPD (128-bit store-form version)
DEST[127:0] SRC[127:0]
Intel C/C++ Compiler Intrinsic Equivalent
VMOVUPD __m512d _mm512_loadu_pd( void * s);
VMOVUPD __m512d _mm512_mask_loadu_pd(__m512d a, __mmask8 k, void * s);
VMOVUPD __m512d _mm512_maskz_loadu_pd( __mmask8 k, void * s);
VMOVUPD void _mm512_storeu_pd( void * d, __m512d a);
VMOVUPD void _mm512_mask_storeu_pd( void * d, __mmask8 k, __m512d a);
VMOVUPD __m256d _mm256_mask_loadu_pd(__m256d s, __mmask8 k, void * m);
VMOVUPD __m256d _mm256_maskz_loadu_pd( __mmask8 k, void * m);
VMOVUPD void _mm256_mask_storeu_pd( void * d, __mmask8 k, __m256d a);
VMOVUPD __m128d _mm_mask_loadu_pd(__m128d s, __mmask8 k, void * m);
VMOVUPD __m128d _mm_maskz_loadu_pd( __mmask8 k, void * m);
VMOVUPD void _mm_mask_storeu_pd( void * d, __mmask8 k, __m128d a);
MOVUPD __m256d _mm256_loadu_pd (double * p);
MOVUPD void _mm256_storeu_pd( double *p, __m256d a);
MOVUPD __m128d _mm_loadu_pd (double * p);
MOVUPD void _mm_storeu_pd( double *p, __m128d a);
SIMD Floating-Point Exceptions
None
5-470 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
Note treatment of #AC varies; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-471
INSTRUCTION SET REFERENCE, A-Z
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Note: VEX.vvvv and EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 10 /r RM V/V SSE Move unaligned packed single-precision
floating-point from xmm2/mem to xmm1.
MOVUPS xmm1, xmm2/m128
0F 11 /r MR V/V SSE Move unaligned packed single-precision
floating-point from xmm1 to xmm2/mem.
MOVUPS xmm2/m128, xmm1
VEX.128.0F.WIG 10 /r RM V/V AVX Move unaligned packed single-precision
floating-point from xmm2/mem to xmm1.
VMOVUPS xmm1, xmm2/m128
VEX.128.0F 11.WIG /r MR V/V AVX Move unaligned packed single-precision
floating-point from xmm1 to xmm2/mem.
VMOVUPS xmm2/m128, xmm1
VEX.256.0F 10.WIG /r RM V/V AVX Move unaligned packed single-precision
floating-point from ymm2/mem to ymm1.
VMOVUPS ymm1, ymm2/m256
VEX.256.0F 11.WIG /r MR V/V AVX Move unaligned packed single-precision
floating-point from ymm1 to ymm2/mem.
VMOVUPS ymm2/m256, ymm1
EVEX.128.0F.W0 10 /r FVM-RM V/V AVX512VL Move unaligned packed single-precision
floating-point values from xmm2/m128 to
xmm1 using writemask k1.
VMOVUPS xmm1 {k1}{z}, xmm2/m128 AVX512F
EVEX.256.0F.W0 10 /r FVM-RM V/V AVX512VL Move unaligned packed single-precision
floating-point values from ymm2/m256 to
ymm1 using writemask k1.
VMOVUPS ymm1 {k1}{z}, ymm2/m256 AVX512F
EVEX.512.0F.W0 10 /r FVM-RM V/V AVX512F Move unaligned packed single-precision
floating-point values from zmm2/m512 to
zmm1 using writemask k1.
VMOVUPS zmm1 {k1}{z}, zmm2/m512
EVEX.128.0F.W0 11 /r FVM-MR V/V AVX512VL Move unaligned packed single-precision
floating-point values from xmm1 to
xmm2/m128 using writemask k1.
VMOVUPS xmm2/m128 {k1}{z}, xmm1 AVX512F
EVEX.256.0F.W0 11 /r FVM-MR V/V AVX512VL Move unaligned packed single-precision
floating-point values from ymm1 to
ymm2/m256 using writemask k1.
VMOVUPS ymm2/m256 {k1}{z}, ymm1 AVX512F
EVEX.512.0F.W0 11 /r FVM-MR V/V AVX512F Move unaligned packed single-precision
floating-point values from zmm1 to
zmm2/m512 using writemask k1.
VMOVUPS zmm2/m512 {k1}{z}, zmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
FVM-RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM-MR ModRM:r/m (w) ModRM:reg (r) NA NA
5-472 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EVEX.512 encoded version:
Moves 512 bits of packed single-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float32
memory location, to store the contents of a ZMM register into memory. The destination operand is updated
according to the writemask.
VEX.256 and EVEX.256 encoded versions:
Moves 256 bits of packed single-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory
location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM
registers. Bits (MAX_VL-1:256) of the destination register are zeroed.
128-bit versions:
Moves 128 bits of packed single-precision floating-point values from the source operand (second operand) to the
destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory
location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two
XMM registers.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned without causing a
general-protection exception (#GP) to be generated.
VEX.128 and EVEX.128 encoded versions: Bits (MAX_VL-1:128) of the destination register are zeroed.
Operation
VMOVUPS (EVEX encoded versions, register-copy form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVUPS (EVEX encoded versions, store-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR;
Ref. # 319433-023 5-473
INSTRUCTION SET REFERENCE, A-Z
VMOVUPS (EVEX encoded versions, load-form)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMOVUPS (VEX.256 encoded version, load - and register copy)
DEST[255:0] SRC[255:0]
DEST[MAX_VL-1:256] 0
VMOVUPS (VEX.256 encoded version, store-form)
DEST[255:0] SRC[255:0]
VMOVUPS (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] 0
MOVUPS (128-bit load- and register-copy- form Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[MAX_VL-1:128] (Unmodified)
(V)MOVUPS (128-bit store-form version)
DEST[127:0] SRC[127:0]
Intel C/C++ Compiler Intrinsic Equivalent
VMOVUPS __m512 _mm512_loadu_ps( void * s);
VMOVUPS __m512 _mm512_mask_loadu_ps(__m512 a, __mmask16 k, void * s);
VMOVUPS __m512 _mm512_maskz_loadu_ps( __mmask16 k, void * s);
VMOVUPS void _mm512_storeu_ps( void * d, __m512 a);
VMOVUPS void _mm512_mask_storeu_ps( void * d, __mmask8 k, __m512 a);
VMOVUPS __m256 _mm256_mask_loadu_ps(__m256 a, __mmask8 k, void * s);
VMOVUPS __m256 _mm256_maskz_loadu_ps( __mmask8 k, void * s);
VMOVUPS void _mm256_mask_storeu_ps( void * d, __mmask8 k, __m256 a);
VMOVUPS __m128 _mm_mask_loadu_ps(__m128 a, __mmask8 k, void * s);
VMOVUPS __m128 _mm_maskz_loadu_ps( __mmask8 k, void * s);
VMOVUPS void _mm_mask_storeu_ps( void * d, __mmask8 k, __m128 a);
MOVUPS __m256 _mm256_loadu_ps ( float * p);
MOVUPS void _mm256 _storeu_ps( float *p, __m256 a);
MOVUPS __m128 _mm_loadu_ps ( float * p);
MOVUPS void _mm_storeu_ps( float *p, __m128 a);
SIMD Floating-Point Exceptions
None
5-474 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
Note treatment of #AC varies;
EVEX-encoded instruction, see Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
Ref. # 319433-023 5-475
INSTRUCTION SET REFERENCE, A-Z
PSADBW—Compute Sum of Absolute Differences
Instruction Operand Encoding
Description
Computes the absolute value of the difference of packed groups of 8 unsigned byte integers from the second
source operand and from the first source operand. The first 8 differences are summed to produce an unsigned word
integer that is stored in the low word of the destination; the second 8 differences are summed to produce an
unsigned word in bits 79:64 of the destination.
For 256-bit version, the third group of 8 differences are summed to produce an unsigned word in bits[143:128] of
the destination register and the fourth group of 8 differences are summed to produce an unsigned word in
bits[207:192] of the destination register. The remaining words of the destination are set to 0.
For 512-bit version, the fifth group result is stored in bits [271:256] of the destination. The result from the sixth
group is stored in bits [335:320]. The results for the seventh and eighth group are stored respectively in bits
[399:384] and bits [463:447], respectively. The remaining bits in the destination are set to 0.
128-bit Legacy SSE version: The first source operand and destination register are XMM registers. The second
source operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding ZMM
destination register remain unchanged.
VEX.128 and EVEX.128 encoded versions: The first source operand and destination register are XMM registers. The
second source operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corre-
sponding ZMM register are zeroed.
Opcode/
Instruction
Op /
En
Mode
Support
CPUID
Feature
Flag
Description
66 0F F6 /r RM V/V SSE2 Computes the absolute differences of the packed unsigned
byte integers from xmm2 /m128 and xmm1; the 8 low
differences and 8 high differences are then summed
separately to produce two unsigned word integer results.
PSADBW xmm1, xmm2/m128
VEX.NDS.128.66.0F F6 /r RVM V/V AVX Computes the absolute differences of the packed unsigned
byte integers from xmm3 /m128 and xmm2; the 8 low
differences and 8 high differences are then summed
separately to produce two unsigned word integer results.
VPSADBW xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F F6 /r RVM V/V AVX2 Computes the absolute differences of the packed unsigned
byte integers from ymm3 /m256 and ymm2; then each
consecutive 8 differences are summed separately to produce
four unsigned word integer results.
VPSADBW ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.WIG F6 /r FVM V/V AVX512VL Computes the absolute differences of the packed unsigned
byte integers from xmm3 /m128 and xmm2; then each
consecutive 8 differences are summed separately to produce
four unsigned word integer results.
VPSADBW xmm1, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG F6 /r FVM V/V AVX512VL Computes the absolute differences of the packed unsigned
byte integers from ymm3 /m256 and ymm2; then each
consecutive 8 differences are summed separately to produce
four unsigned word integer results.
VPSADBW ymm1, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F.WIG F6 /r FVM V/V AVX512BW Computes the absolute differences of the packed unsigned
byte integers from zmm3 /m512 and zmm2; then each
consecutive 8 differences are summed separately to produce
four unsigned word integer results.
VPSADBW zmm1, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-476 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.256 and EVEX.256 encoded versions: The first source operand and destination register are YMM registers. The
second source operand is an YMM register or a 256-bit memory location. Bits (MAX_VL-1:256) of the corresponding
ZMM register are zeroed.
EVEX.512 encoded version: The first source operand and destination register are ZMM registers. The second source
operand is a ZMM register or a 512-bit memory location.
Operation
VPSADBW (EVEX encoded versions)
VL = 128, 256, 512
TEMP0 ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 1 through 15 *)
TEMP15 ABS(SRC1[127:120] - SRC2[127:120])
DEST[15:0] SUM(TEMP0:TEMP7)
DEST[63:16] 000000000000H
DEST[79:64] SUM(TEMP8:TEMP15)
DEST[127:80] 00000000000H
IF VL >= 256
(* Repeat operation for bytes 16 through 31*)
TEMP31 ABS(SRC1[255:248] - SRC2[255:248])
DEST[143:128] SUM(TEMP16:TEMP23)
DEST[191:144] 000000000000H
DEST[207:192] SUM(TEMP24:TEMP31)
DEST[223:208] 00000000000H
FI;
IF VL >= 512
(* Repeat operation for bytes 32 through 63*)
TEMP63 ABS(SRC1[511:504] - SRC2[511:504])
DEST[271:256] SUM(TEMP0:TEMP7)
DEST[319:272] 000000000000H
DEST[335:320] SUM(TEMP8:TEMP15)
DEST[383:336] 00000000000H
DEST[399:384] SUM(TEMP16:TEMP23)
DEST[447:400] 000000000000H
DEST[463:448] SUM(TEMP24:TEMP31)
DEST[511:464] 00000000000H
FI;
DEST[MAX_VL-1:VL] 0
VPSADBW (VEX.256 encoded version)
TEMP0 ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 2 through 30*)
TEMP31 ABS(SRC1[255:248] - SRC2[255:248])
DEST[15:0] SUM(TEMP0:TEMP7)
DEST[63:16] 000000000000H
DEST[79:64] SUM(TEMP8:TEMP15)
DEST[127:80] 00000000000H
DEST[143:128] SUM(TEMP16:TEMP23)
DEST[191:144] 000000000000H
DEST[207:192] SUM(TEMP24:TEMP31)
DEST[223:208] 00000000000H
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-477
INSTRUCTION SET REFERENCE, A-Z
VPSADBW (VEX.128 encoded version)
TEMP0 ABS(SRC1[7:0] - SRC2[7:0])
(* Repeat operation for bytes 2 through 14 *)
TEMP15 ABS(SRC1[127:120] - SRC2[127:120])
DEST[15:0] SUM(TEMP0:TEMP7)
DEST[63:16] 000000000000H
DEST[79:64] SUM(TEMP8:TEMP15)
DEST[127:80] 00000000000H
DEST[MAX_VL-1:128] 0
PSADBW (128-bit Legacy SSE version)
TEMP0 ABS(DEST[7:0] - SRC[7:0])
(* Repeat operation for bytes 2 through 14 *)
TEMP15 ABS(DEST[127:120] - SRC[127:120])
DEST[15:0] SUM(TEMP0:TEMP7)
DEST[63:16] 000000000000H
DEST[79:64] SUM(TEMP8:TEMP15)
DEST[127:80] 00000000000
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPSADBW __m512i _mm512_sad_epu8( __m512i a, __m512i b)
(V)PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)
VPSADBW __m256i _mm256_sad_epu8( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
5-478 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MULPD—Multiply Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Multiply packed double-precision floating-point values from the first source operand with corresponding values in
the second source operand, and stores the packed double-precision floating-point results in the destination
operand.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. Bits (MAX_VL-1:256) of the
corresponding destination ZMM register are zeroed.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the destination YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 59 /r RM V/V SSE2 Multiply packed double-precision floating-point values
in xmm2/m128 with xmm1 and store result in xmm1.
MULPD xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 59 /r RVM V/V AVX Multiply packed double-precision floating-point values
in xmm3/m128 with xmm2 and store result in xmm1.
VMULPD xmm1,xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG 59 /r RVM V/V AVX Multiply packed double-precision floating-point values
in ymm3/m256 with ymm2 and store result in ymm1.
VMULPD ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W1 59 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from xmm3/m128/m64bcst to xmm2 and store result
in xmm1.
VMULPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F.W1 59 /r FV V/V AVX512VL Multiply packed double-precision floating-point values
from ymm3/m256/m64bcst to ymm2 and store result
in ymm1.
VMULPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F.W1 59 /r FV V/V AVX512F Multiply packed double-precision floating-point values
in zmm3/m512/m64bcst with zmm2 and store result
in zmm1.
VMULPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-479
INSTRUCTION SET REFERENCE, A-Z
Operation
VMULPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] SRC1[i+63:i] * SRC2[63:0]
ELSE
DEST[i+63:i] SRC1[i+63:i] * SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMULPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] * SRC2[63:0]
DEST[127:64] SRC1[127:64] * SRC2[127:64]
DEST[191:128] SRC1[191:128] * SRC2[191:128]
DEST[255:192] SRC1[255:192] * SRC2[255:192]
DEST[MAX_VL-1:256] 0;
.
VMULPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] * SRC2[63:0]
DEST[127:64] SRC1[127:64] * SRC2[127:64]
DEST[MAX_VL-1:128] 0
MULPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] * SRC[63:0]
DEST[127:64] DEST[127:64] * SRC[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMULPD __m512d _mm512_mul_pd( __m512d a, __m512d b);
VMULPD __m512d _mm512_mask_mul_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VMULPD __m512d _mm512_maskz_mul_pd( __mmask8 k, __m512d a, __m512d b);
VMULPD __m512d _mm512_mul_round_pd( __m512d a, __m512d b, int);
VMULPD __m512d _mm512_mask_mul_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VMULPD __m512d _mm512_maskz_mul_round_pd( __mmask8 k, __m512d a, __m512d b, int);
VMULPD __m256d _mm256_mul_pd (__m256d a, __m256d b);
5-480 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MULPD __m128d _mm_mul_pd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.
Ref. # 319433-023 5-481
INSTRUCTION SET REFERENCE, A-Z
MULPS—Multiply Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Multiply the packed single-precision floating-point values from the first source operand with the corresponding
values in the second source operand, and stores the packed double-precision floating-point results in the destina-
tion operand.
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally
updated with writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. Bits (MAX_VL-1:256) of the
corresponding destination ZMM register are zeroed.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the destination YMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 59 /r RM V/V SSE Multiply packed single-precision floating-point values in
xmm2/m128 with xmm1 and store result in xmm1.
MULPS xmm1, xmm2/m128
VEX.NDS.128.0F.WIG 59 /r RVM V/V AVX Multiply packed single-precision floating-point values in
xmm3/m128 with xmm2 and store result in xmm1.
VMULPS xmm1,xmm2, xmm3/m128
VEX.NDS.256.0F.WIG 59 /r RVM V/V AVX Multiply packed single-precision floating-point values in
ymm3/m256 with ymm2 and store result in ymm1.
VMULPS ymm1, ymm2, ymm3/m256
EVEX.NDS.128.0F.W0 59 /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from xmm3/m128/m32bcst to xmm2 and store result in
xmm1.
VMULPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.0F.W0 59 /r FV V/V AVX512VL Multiply packed single-precision floating-point values
from ymm3/m256/m32bcst to ymm2 and store result in
ymm1.
VMULPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.0F.W0 59 /r FV V/V AVX512F Multiply packed single-precision floating-point values in
zmm3/m512/m32bcst with zmm2 and store result in
zmm1.
VMULPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst {er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-482 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VMULPS (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] SRC1[i+31:i] * SRC2[31:0]
ELSE
DEST[i+31:i] SRC1[i+31:i] * SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VMULPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] * SRC2[31:0]
DEST[63:32] SRC1[63:32] * SRC2[63:32]
DEST[95:64] SRC1[95:64] * SRC2[95:64]
DEST[127:96] SRC1[127:96] * SRC2[127:96]
DEST[159:128] SRC1[159:128] * SRC2[159:128]
DEST[191:160]SRC1[191:160] * SRC2[191:160]
DEST[223:192] SRC1[223:192] * SRC2[223:192]
DEST[255:224] SRC1[255:224] * SRC2[255:224].
DEST[MAX_VL-1:256] 0;
VMULPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] * SRC2[31:0]
DEST[63:32] SRC1[63:32] * SRC2[63:32]
DEST[95:64] SRC1[95:64] * SRC2[95:64]
DEST[127:96] SRC1[127:96] * SRC2[127:96]
DEST[MAX_VL-1:128] 0
MULPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] * SRC2[31:0]
DEST[63:32] SRC1[63:32] * SRC2[63:32]
DEST[95:64] SRC1[95:64] * SRC2[95:64]
DEST[127:96] SRC1[127:96] * SRC2[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Ref. # 319433-023 5-483
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VMULPS __m512 _mm512_mul_ps( __m512 a, __m512 b);
VMULPS __m512 _mm512_mask_mul_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VMULPS __m512 _mm512_maskz_mul_ps(__mmask16 k, __m512 a, __m512 b);
VMULPS __m512 _mm512_mul_round_ps( __m512 a, __m512 b, int);
VMULPS __m512 _mm512_mask_mul_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VMULPS __m512 _mm512_maskz_mul_round_ps(__mmask16 k, __m512 a, __m512 b, int);
VMULPS __m256 _mm256_mask_mul_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VMULPS __m256 _mm256_maskz_mul_ps(__mmask8 k, __m256 a, __m256 b);
VMULPS __m128 _mm_mask_mul_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VMULPS __m128 _mm_maskz_mul_ps(__mmask8 k, __m128 a, __m128 b);
VMULPS __m256 _mm256_mul_ps (__m256 a, __m256 b);
MULPS __m128 _mm_mul_ps (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2.
EVEX-encoded instruction, see Exceptions Type E2.
5-484 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MULSD—Multiply Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
Multiplies the low double-precision floating-point value in the second source operand by the low double-precision
floating-point value in the first source operand, and stores the double-precision floating-point result in the destina-
tion operand. The second source operand can be an XMM register or a 64-bit memory location. The first source
operand and the destination operands are XMM registers.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAX_VL-
1:64) of the corresponding destination register remain unchanged.
VEX.128 and EVEX encoded version: The quadword at bits 127:64 of the destination operand is copied from the
same bits of the first source operand. Bits (MAX_VL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the
writemask.
Software should ensure VMULSD is encoded with VEX.L=0. Encoding VMULSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 59 /r RM V/V SSE2 Multiply the low double-precision floating-point value in
xmm2/m64 by low double-precision floating-point
value in xmm1.
MULSD xmm1,xmm2/m64
VEX.NDS.128.F2.0F.WIG 59 /r RVM V/V AVX Multiply the low double-precision floating-point value in
xmm3/m64 by low double-precision floating-point
value in xmm2.
VMULSD xmm1,xmm2, xmm3/m64
EVEX.NDS.LIG.F2.0F.W1 59 /r T1S V/V AVX512F Multiply the low double-precision floating-point value in
xmm3/m64 by low double-precision floating-point
value in xmm2.
VMULSD xmm1 {k1}{z}, xmm2,
xmm3/m64 {er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-485
INSTRUCTION SET REFERENCE, A-Z
Operation
VMULSD (EVEX encoded version)
IF (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] SRC1[63:0] * SRC2[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI
FI;
ENDFOR
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VMULSD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] * SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
MULSD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] * SRC[63:0]
DEST[MAX_VL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMULSD __m128d _mm_mask_mul_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VMULSD __m128d _mm_maskz_mul_sd( __mmask8 k, __m128d a, __m128d b);
VMULSD __m128d _mm_mul_round_sd( __m128d a, __m128d b, int);
VMULSD __m128d _mm_mask_mul_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VMULSD __m128d _mm_maskz_mul_round_sd( __mmask8 k, __m128d a, __m128d b, int);
MULSD __m128d _mm_mul_sd (__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
5-486 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
MULSS—Multiply Scalar Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Multiplies the low single-precision floating-point value from the second source operand by the low single-precision
floating-point value in the first source operand, and stores the single-precision floating-point result in the destina-
tion operand. The second source operand can be an XMM register or a 32-bit memory location. The first source
operand and the destination operands are XMM registers.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAX_VL-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 and EVEX encoded version: The first source operand is an xmm register encoded by VEX.vvvv. The three
high-order doublewords of the destination operand are copied from the first source operand. Bits (MAX_VL-1:128)
of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the
writemask.
Software should ensure VMULSS is encoded with VEX.L=0. Encoding VMULSS with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 59 /r RM V/V SSE Multiply the low single-precision floating-point value in
xmm2/m32 by the low single-precision floating-point
value in xmm1.
MULSS xmm1,xmm2/m32
VEX.NDS.128.F3.0F.WIG 59 /r RVM V/V AVX Multiply the low single-precision floating-point value in
xmm3/m32 by the low single-precision floating-point
value in xmm2.
VMULSS xmm1,xmm2, xmm3/m32
EVEX.NDS.LIG.F3.0F.W0 59 /r T1S V/V AVX512F Multiply the low single-precision floating-point value in
xmm3/m32 by the low single-precision floating-point
value in xmm2.
VMULSS xmm1 {k1}{z}, xmm2,
xmm3/m32 {er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-487
INSTRUCTION SET REFERENCE, A-Z
Operation
VMULSS (EVEX encoded version)
IF (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] SRC1[31:0] * SRC2[31:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI
FI;
ENDFOR
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VMULSS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] * SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
MULSS (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] * SRC[31:0]
DEST[MAX_VL-1:32] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VMULSS __m128 _mm_mask_mul_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VMULSS __m128 _mm_maskz_mul_ss( __mmask8 k, __m128 a, __m128 b);
VMULSS __m128 _mm_mul_round_ss( __m128 a, __m128 b, int);
VMULSS __m128 _mm_mask_mul_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VMULSS __m128 _mm_maskz_mul_round_ss( __mmask8 k, __m128 a, __m128 b, int);
MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)
SIMD Floating-Point Exceptions
Underflow, Overflow, Invalid, Precision, Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
5-488 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ORPD—Bitwise Logical OR of Packed Double Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a bitwise logical OR of the two, four or eight packed double-precision floating-point values from the first
source operand and the second source operand, and stores the result in the destination operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
register destination are unmodified.
Operation
VORPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 56/r RM V/V SSE2 Return the bitwise logical OR of packed double-precision
floating-point values in xmm1 and xmm2/mem
ORPD xmm1, xmm2/m128
VEX.NDS.128.66.0F 56 /r RVM V/V AVX Return the bitwise logical OR of packed double-precision
floating-point values in xmm2 and xmm3/mem
VORPD xmm1,xmm2, xmm3/m128
VEX.NDS.256.66.0F 56 /r RVM V/V AVX Return the bitwise logical OR of packed double-precision
floating-point values in ymm2 and ymm3/mem
VORPD ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W1 56 /r FV V/V AVX512VL Return the bitwise logical OR of packed double-precision
floating-point values in xmm2 and xmm3/m128/m64bcst
subject to writemask k1.
VORPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512DQ
EVEX.NDS.256.66.0F.W1 56 /r FV V/V AVX512VL Return the bitwise logical OR of packed double-precision
floating-point values in ymm2 and ymm3/m256/m64bcst
subject to writemask k1.
VORPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512DQ
EVEX.NDS.512.66.0F.W1 56 /r FV V/V AVX512DQ Return the bitwise logical OR of packed double-precision
floating-point values in zmm2 and zmm3/m512/m64bcst
subject to writemask k1.
VORPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-489
INSTRUCTION SET REFERENCE, A-Z
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] SRC1[i+63:i] BITWISE OR SRC2[63:0]
ELSE
DEST[i+63:i] SRC1[i+63:i] BITWISE OR SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VORPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[191:128] SRC1[191:128] BITWISE OR SRC2[191:128]
DEST[255:192] SRC1[255:192] BITWISE OR SRC2[255:192]
DEST[MAX_VL-1:256] 0
VORPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE OR SRC2[127:64]
DEST[MAX_VL-1:128] 0
ORPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] BITWISE OR SRC[63:0]
DEST[127:64] DEST[127:64] BITWISE OR SRC[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VORPD __m512d _mm512_or_pd ( __m512d a, __m512d b);
VORPD __m512d _mm512_mask_or_pd ( __m512d s, __mmask8 k, __m512d a, __m512d b);
VORPD __m512d _mm512_maskz_or_pd (__mmask8 k, __m512d a, __m512d b);
VORPD __m256d _mm256_mask_or_pd (__m256d s, ___mmask8 k, __m256d a, __m256d b);
VORPD __m256d _mm256_maskz_or_pd (__mmask8 k, __m256d a, __m256d b);
VORPD __m128d _mm_mask_or_pd ( __m128d s, __mmask8 k, __m128d a, __m128d b);
VORPD __m128d _mm_maskz_or_pd (__mmask8 k, __m128d a, __m128d b);
VORPD __m256d _mm256_or_pd (__m256d a, __m256d b);
ORPD __m128d _mm_or_pd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
None
5-490 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-491
INSTRUCTION SET REFERENCE, A-Z
ORPS—Bitwise Logical OR of Packed Single Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a bitwise logical OR of the four, eight or sixteen packed single-precision floating-point values from the
first source operand and the second source operand, and stores the result in the destination operand
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a
32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
register destination are unmodified.
Operation
VORPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 56 /r RM V/V SSE Return the bitwise logical OR of packed single-precision
floating-point values in xmm1 and xmm2/mem
ORPS xmm1, xmm2/m128
VEX.NDS.128.0F 56 /r RVM V/V AVX Return the bitwise logical OR of packed single-precision
floating-point values in xmm2 and xmm3/mem
VORPS xmm1,xmm2, xmm3/m128
VEX.NDS.256.0F 56 /r RVM V/V AVX Return the bitwise logical OR of packed single-precision
floating-point values in ymm2 and ymm3/mem
VORPS ymm1, ymm2, ymm3/m256
EVEX.NDS.128.0F.W0 56 /r FV V/V AVX512VL Return the bitwise logical OR of packed single-precision
floating-point values in xmm2 and xmm3/m128/m32bcst
subject to writemask k1.
VORPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512DQ
EVEX.NDS.256.0F.W0 56 /r FV V/V AVX512VL Return the bitwise logical OR of packed single-precision
floating-point values in ymm2 and ymm3/m256/m32bcst
subject to writemask k1.
VORPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512DQ
EVEX.NDS.512.0F.W0 56 /r FV V/V AVX512DQ Return the bitwise logical OR of packed single-precision
floating-point values in zmm2 and zmm3/m512/m32bcst
subject to writemask k1.
VORPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-492 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] SRC1[i+31:i] BITWISE OR SRC2[31:0]
ELSE
DEST[i+31:i] SRC1[i+31:i] BITWISE OR SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VORPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[159:128] SRC1[159:128] BITWISE OR SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE OR SRC2[191:160]
DEST[223:192] SRC1[223:192] BITWISE OR SRC2[223:192]
DEST[255:224] SRC1[255:224] BITWISE OR SRC2[255:224].
DEST[MAX_VL-1:256] 0
VORPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[MAX_VL-1:128] 0
ORPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE OR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE OR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE OR SRC2[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VORPS __m512 _mm512_or_ps ( __m512 a, __m512 b);
VORPS __m512 _mm512_mask_or_ps ( __m512 s, __mmask16 k, __m512 a, __m512 b);
VORPS __m512 _mm512_maskz_or_ps (__mmask16 k, __m512 a, __m512 b);
VORPS __m256 _mm256_mask_or_ps (__m256 s, ___mmask8 k, __m256 a, __m256 b);
VORPS __m256 _mm256_maskz_or_ps (__mmask8 k, __m256 a, __m256 b);
VORPS __m128 _mm_mask_or_ps ( __m128 s, __mmask8 k, __m128 a, __m128 b);
VORPS __m128 _mm_maskz_or_ps (__mmask8 k, __m128 a, __m128 b);
VORPS __m256 _mm256_or_ps (__m256 a, __m256 b);
Ref. # 319433-023 5-493
INSTRUCTION SET REFERENCE, A-Z
ORPS __m128 _mm_or_ps (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
5-494 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PABSB/PABSW/PABSD/PABSQ—Packed Absolute Value
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature Flag
Description
66 0F 38 1C /r RM V/V SSSE3 Compute the absolute value of bytes in xmm2/m128
and store UNSIGNED result in xmm1.
PABSB xmm1, xmm2/m128
66 0F 38 1D /r RM V/V SSSE3 Compute the absolute value of 16-bit integers in
xmm2/m128 and store UNSIGNED result in xmm1.
PABSW xmm1, xmm2/m128
66 0F 38 1E /r RM V/V SSSE3 Compute the absolute value of 32-bit integers in
xmm2/m128 and store UNSIGNED result in xmm1.
PABSD xmm1, xmm2/m128
VEX.128.66.0F38.WIG 1C /r RM V/V AVX Compute the absolute value of bytes in xmm2/m128
and store UNSIGNED result in xmm1.
VPABSB xmm1, xmm2/m128
VEX.128.66.0F38.WIG 1D /r RM V/V AVX Compute the absolute value of 16-bit integers in
xmm2/m128 and store UNSIGNED result in xmm1.
VPABSW xmm1, xmm2/m128
VEX.128.66.0F38.WIG 1E /r RM V/V AVX Compute the absolute value of 32-bit integers in
xmm2/m128 and store UNSIGNED result in xmm1.
VPABSD xmm1, xmm2/m128
VEX.256.66.0F38.WIG 1C /r RM V/V AVX2 Compute the absolute value of bytes in ymm2/m256
and store UNSIGNED result in ymm1.
VPABSB ymm1, ymm2/m256
VEX.256.66.0F38.WIG 1D /r RM V/V AVX2 Compute the absolute value of 16-bit integers in
ymm2/m256 and store UNSIGNED result in ymm1.
VPABSW ymm1, ymm2/m256
VEX.256.66.0F38.WIG 1E /r RM V/V AVX2 Compute the absolute value of 32-bit integers in
ymm2/m256 and store UNSIGNED result in ymm1.
VPABSD ymm1, ymm2/m256
EVEX.128.66.0F 38 1C /r FVM V/V AVX512VL Compute the absolute value of bytes in xmm2/m128
and store UNSIGNED result in xmm1 using writemask
k1.
VPABSB xmm1 {k1}{z}, xmm2/m128 AVX512BW
EVEX.256.66.0F 38 1C /r FVM V/V AVX512VL Compute the absolute value of bytes in ymm2/m256
and store UNSIGNED result in ymm1 using writemask
k1.
VPABSB ymm1 {k1}{z}, ymm2/m256 AVX512BW
EVEX.512.66.0F 38 1C /r FVM V/V AVX512BW Compute the absolute value of bytes in zmm2/m512
and store UNSIGNED result in zmm1 using writemask
k1.
VPABSB zmm1 {k1}{z}, zmm2/m512
EVEX.128.66.0F 38 1D /r FVM V/V AVX512VL Compute the absolute value of 16-bit integers in
xmm2/m128 and store UNSIGNED result in xmm1
using writemask k1.
VPABSW xmm1 {k1}{z}, xmm2/m128 AVX512BW
EVEX.256.66.0F 38 1D /r FVM V/V AVX512VL Compute the absolute value of 16-bit integers in
ymm2/m256 and store UNSIGNED result in ymm1
using writemask k1.
VPABSW ymm1 {k1}{z}, ymm2/m256 AVX512BW
EVEX.512.66.0F 38 1D /r FVM V/V AVX512BW Compute the absolute value of 16-bit integers in
zmm2/m512 and store UNSIGNED result in zmm1
using writemask k1.
VPABSW zmm1 {k1}{z}, zmm2/m512
EVEX.128.66.0F.W0 38 1E /r FV V/V AVX512VL Compute the absolute value of 32-bit integers in
xmm2/m128/m32bcst and store UNSIGNED result in
xmm1 using writemask k1.
VPABSD xmm1 {k1}{z},
xmm2/m128/m32bcst
AVX512F
Ref. # 319433-023 5-495
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
PABSB/W/D computes the absolute value of each data element of the source operand (the second operand) and
stores the UNSIGNED results in the destination operand (the first operand). PABSB operates on signed bytes,
PABSW operates on signed 16-bit words, and PABSD operates on signed 32-bit integers.
EVEX encoded VPABSD/Q: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location,
or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a
ZMM/YMM/XMM register updated according to the writemask.
EVEX encoded VPABSB/W: The source operand is a ZMM/YMM/XMM register, or a 512/256/128-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register updated according to the writemask.
VEX.256 encoded versions: The source operand is a YMM register or a 256-bit memory location. The destination
operand is a YMM register. The upper bits (MAX_VL-1:256) of the corresponding register destination are zeroed.
VEX.128 encoded versions: The source operand is an XMM register or 128-bit memory location. The destination
operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding register destination are zeroed.
128-bit Legacy SSE version: The source operand can be an XMM register or an 128-bit memory location. The desti-
nation is an XMM register. The upper bits (VL_MAX-1:128) of the corresponding register destination are unmodi-
fied.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Operation
PABSB with 128 bit operands:
Unsigned DEST[7:0] ABS(SRC[7: 0])
EVEX.256.66.0F.W0 38 1E /r FV V/V AVX512VL Compute the absolute value of 32-bit integers in
ymm2/m256/m32bcst and store UNSIGNED result in
ymm1 using writemask k1.
VPABSD ymm1 {k1}{z},
ymm2/m256/m32bcst
AVX512F
EVEX.512.66.0F38.W0 1E /r FV V/V AVX512F Compute the absolute value of 32-bit integers in
zmm2/m512/m32bcst and store UNSIGNED result in
zmm1 using writemask k1.
VPABSD zmm1 {k1}{z},
zmm2/m512/m32bcst
EVEX.128.66.0F.W1 38 1F /r FV V/V AVX512VL Compute the absolute value of 64-bit integers in
xmm2/m128/m64bcst and store UNSIGNED result in
xmm1 using writemask k1.
VPABSQ xmm1 {k1}{z},
xmm2/m128/m64bcst
AVX512F
EVEX.256.66.0F.W1 38 1F /r FV V/V AVX512VL Compute the absolute value of 64-bit integers in
ymm2/m256/m64bcst and store UNSIGNED result in
ymm1 using writemask k1.
VPABSQ ymm1 {k1}{z},
ymm2/m256/m64bcst
AVX512F
EVEX.512.66.0F38.W1 1F /r FV V/V AVX512F Compute the absolute value of 64-bit integers in
zmm2/m512/m64bcst and store UNSIGNED result in
zmm1 using writemask k1.
VPABSQ zmm1 {k1}{z},
zmm2/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FVM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature Flag
Description
5-496 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Repeat operation for 2nd through 15th bytes
Unsigned DEST[127:120] ABS(SRC[127:120])
VPABSB with 128 bit operands:
Unsigned DEST[7:0] ABS(SRC[7: 0])
Repeat operation for 2nd through 15th bytes
Unsigned DEST[127:120]ABS(SRC[127:120])
VPABSB with 256 bit operands:
Unsigned DEST[7:0]ABS(SRC[7: 0])
Repeat operation for 2nd through 31st bytes
Unsigned DEST[255:248]ABS(SRC[255:248])
VPABSB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN
Unsigned DEST[i+7:i] ABS(SRC[i+7:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
PABSW with 128 bit operands:
Unsigned DEST[15:0]ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112]ABS(SRC[127:112])
VPABSW with 128 bit operands:
Unsigned DEST[15:0] ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112]ABS(SRC[127:112])
VPABSW with 256 bit operands:
Unsigned DEST[15:0]ABS(SRC[15:0])
Repeat operation for 2nd through 15th 16-bit words
Unsigned DEST[255:240] ABS(SRC[255:240])
VPABSW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN
Unsigned DEST[i+15:i] ABS(SRC[i+15:i])
ELSE
Ref. # 319433-023 5-497
INSTRUCTION SET REFERENCE, A-Z
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
PABSD with 128 bit operands:
Unsigned DEST[31:0]ABS(SRC[31:0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127:96]ABS(SRC[127:96])
VPABSD with 128 bit operands:
Unsigned DEST[31:0]ABS(SRC[31:0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127:96]ABS(SRC[127:96])
VPABSD with 256 bit operands:
Unsigned DEST[31:0] ABS(SRC[31:0])
Repeat operation for 2nd through 7th 32-bit double words
Unsigned DEST[255:224] ABS(SRC[255:224])
VPABSD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN
Unsigned DEST[i+31:i] ABS(SRC[31:0])
ELSE
Unsigned DEST[i+31:i] ABS(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPABSQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN
5-498 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Unsigned DEST[i+63:i] ABS(SRC[63:0])
ELSE
Unsigned DEST[i+63:i] ABS(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPABSB__m512i _mm512_abs_epi8 ( __m512i a)
VPABSW__m512i _mm512_abs_epi16 ( __m512i a)
VPABSB__m512i _mm512_mask_abs_epi8 ( __m512i s, __mmask64 m, __m512i a)
VPABSW__m512i _mm512_mask_abs_epi16 ( __m512i s, __mmask32 m, __m512i a)
VPABSB__m512i _mm512_maskz_abs_epi8 (__mmask64 m, __m512i a)
VPABSW__m512i _mm512_maskz_abs_epi16 (__mmask32 m, __m512i a)
VPABSB__m256i _mm256_mask_abs_epi8 (__m256i s, __mmask32 m, __m256i a)
VPABSW__m256i _mm256_mask_abs_epi16 (__m256i s, __mmask16 m, __m256i a)
VPABSB__m256i _mm256_maskz_abs_epi8 (__mmask32 m, __m256i a)
VPABSW__m256i _mm256_maskz_abs_epi16 (__mmask16 m, __m256i a)
VPABSB__m128i _mm_mask_abs_epi8 (__m128i s, __mmask16 m, __m128i a)
VPABSW__m128i _mm_mask_abs_epi16 (__m128i s, __mmask8 m, __m128i a)
VPABSB__m128i _mm_maskz_abs_epi8 (__mmask16 m, __m128i a)
VPABSW__m128i _mm_maskz_abs_epi16 (__mmask8 m, __m128i a)
VPABSD __m256i _mm256_mask_abs_epi32(__m256i s, __mmask8 k, __m256i a);
VPABSD __m256i _mm256_maskz_abs_epi32( __mmask8 k, __m256i a);
VPABSD __m128i _mm_mask_abs_epi32(__m128i s, __mmask8 k, __m128i a);
VPABSD __m128i _mm_maskz_abs_epi32( __mmask8 k, __m128i a);
VPABSD __m512i _mm512_abs_epi32( __m512i a);
VPABSD __m512i _mm512_mask_abs_epi32(__m512i s, __mmask16 k, __m512i a);
VPABSD __m512i _mm512_maskz_abs_epi32( __mmask16 k, __m512i a);
VPABSQ __m512i _mm512_abs_epi64( __m512i a);
VPABSQ __m512i _mm512_mask_abs_epi64(__m512i s, __mmask8 k, __m512i a);
VPABSQ __m512i _mm512_maskz_abs_epi64( __mmask8 k, __m512i a);
VPABSQ __m256i _mm256_mask_abs_epi64(__m256i s, __mmask8 k, __m256i a);
VPABSQ __m256i _mm256_maskz_abs_epi64( __mmask8 k, __m256i a);
VPABSQ __m128i _mm_mask_abs_epi64(__m128i s, __mmask8 k, __m128i a);
VPABSQ __m128i _mm_maskz_abs_epi64( __mmask8 k, __m128i a);
PABSB __m128i _mm_abs_epi8 (__m128i a)
VPABSB __m128i _mm_abs_epi8 (__m128i a)
VPABSB __m256i _mm256_abs_epi8 (__m256i a)
PABSW __m128i _mm_abs_epi16 (__m128i a)
VPABSW __m128i _mm_abs_epi16 (__m128i a)
VPABSW __m256i _mm256_abs_epi16 (__m256i a)
PABSD __m128i _mm_abs_epi32 (__m128i a)
VPABSD __m128i _mm_abs_epi32 (__m128i a)
VPABSD __m256i _mm256_abs_epi32 (__m256i a)
Ref. # 319433-023 5-499
INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPABSD/Q, see Exceptions Type E4.
EVEX-encoded VPABSB/W, see Exceptions Type E4.nb.
5-500 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PACKSSWB/PACKSSDW—Pack with Signed Saturation
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 63 /rRM V/V SSE2 Converts 8 packed signed word integers from xmm1 and
from xxm2/m128 into 16 packed signed byte integers in
xmm1 using signed saturation.
PACKSSWB xmm1, xmm2/m128
66 0F 6B /rRM V/V SSE2 Converts 4 packed signed doubleword integers from
xmm1 and from xmm2/m128 into 8 packed signed word
integers in xmm1 using signed saturation.
PACKSSDW xmm1, xmm2/m128
VEX.NDS.128.66.0F 63 /rRVM V/V AVX Converts 8 packed signed word integers from xmm2 and
from xmm3/m128 into 16 packed signed byte integers in
xmm1 using signed saturation.
VPACKSSWB xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F 6B /rRVM V/V AVX Converts 4 packed signed doubleword integers from
xmm2 and from xmm3/m128 into 8 packed signed word
integers in xmm1 using signed saturation.
VPACKSSDW xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F 63 /rRVM V/V AVX2 Converts 16 packed signed word integers from ymm2
and from ymm3/m256 into 32 packed signed byte
integers in ymm1 using signed saturation.
VPACKSSWB ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F 6B /rRVM V/V AVX2 Converts 8 packed signed doubleword integers from
ymm2 and from ymm3/m256 into 16 packed signed
word integers in ymm1 using signed saturation.
VPACKSSDW ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.WIG 63 /rFVM V/V AVX512VL Converts packed signed word integers from xmm2 and
from xmm3/m128 into packed signed byte integers in
xmm1 using signed saturation under writemask k1.
VPACKSSWB xmm1 {k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG 63 /rFVM V/V AVX512VL Converts packed signed word integers from ymm2 and
from ymm3/m256 into packed signed byte integers in
ymm1 using signed saturation under writemask k1.
VPACKSSWB ymm1 {k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F.WIG 63 /rFVM V/V AVX512BW Converts packed signed word integers from zmm2 and
from zmm3/m512 into packed signed byte integers in
zmm1 using signed saturation under writemask k1.
VPACKSSWB zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F.W0 6B /rFV V/V AVX512VL Converts packed signed doubleword integers from xmm2
and from xmm3/m128/m32bcst into packed signed word
integers in xmm1 using signed saturation under
writemask k1.
VPACKSSDW xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512BW
EVEX.NDS.256.66.0F.W0 6B /r FV V/V AVX512VL Converts packed signed doubleword integers from ymm2
and from ymm3/m256/m32bcst into packed signed word
integers in ymm1 using signed saturation under
writemask k1.
VPACKSSDW ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512BW
EVEX.NDS.512.66.0F.W0 6B /r FV V/V AVX512BW Converts packed signed doubleword integers from zmm2
and from zmm3/m512/m32bcst into packed signed word
integers in zmm1 using signed saturation under
writemask k1.
VPACKSSDW zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
Ref. # 319433-023 5-501
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
PACKSSWB converts packed signed word integers in the first and second source operands into packed signed byte
integers using signed saturation to handle overflow conditions beyond the range of signed byte integers. If the
signed doubleword value is beyond the range of an unsigned word (i.e. greater than 7FH or less than 80H), the
saturated signed byte integer value of 7FH or 80H, respectively, is stored in the destination. PACKSSDW converts
packed signed doubleword integers in the first and second source operands into packed signed word integers using
signed saturation to handle overflow conditions beyond 7FFFH and 8000H.
EVEX encoded PACKSSWB: The first source operand is a ZMM/YMM/XMM register. The second source operand is a
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM
register, updated conditional under the writemask k1.
EVEX encoded PACKSSDW: The first source operand is a ZMM/YMM/XMM register. The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-
bit memory location. The destination operand is a ZMM/YMM/XMM register, updated conditional under the
writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding ZMM destination register destination are unmodified.
Operation
PACKSSWB instruction (128-bit Legacy SSE version)
DEST[7:0] SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] SaturateSignedWordToSignedByte (DEST[79:64]);
DEST[47:40] SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] SaturateSignedWordToSignedByte (DEST[127:112]);
DEST[71:64] SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] SaturateSignedWordToSignedByte (SRC[127:112]);
DEST[MAX_VL-1:128] (Unmodified)
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-502 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PACKSSDW instruction (128-bit Legacy SSE version)
DEST[15:0] SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] SaturateSignedDwordToSignedWord (SRC[127:96]);
DEST[MAX_VL-1:128] (Unmodified)
VPACKSSWB instruction (VEX.128 encoded version)
DEST[7:0] SaturateSignedWordToSignedByte (SRC1[15:0]);
DEST[15:8] SaturateSignedWordToSignedByte (SRC1[31:16]);
DEST[23:16] SaturateSignedWordToSignedByte (SRC1[47:32]);
DEST[31:24] SaturateSignedWordToSignedByte (SRC1[63:48]);
DEST[39:32] SaturateSignedWordToSignedByte (SRC1[79:64]);
DEST[47:40] SaturateSignedWordToSignedByte (SRC1[95:80]);
DEST[55:48] SaturateSignedWordToSignedByte (SRC1[111:96]);
DEST[63:56] SaturateSignedWordToSignedByte (SRC1[127:112]);
DEST[71:64] SaturateSignedWordToSignedByte (SRC2[15:0]);
DEST[79:72] SaturateSignedWordToSignedByte (SRC2[31:16]);
DEST[87:80] SaturateSignedWordToSignedByte (SRC2[47:32]);
DEST[95:88] SaturateSignedWordToSignedByte (SRC2[63:48]);
DEST[103:96] SaturateSignedWordToSignedByte (SRC2[79:64]);
DEST[111:104] SaturateSignedWordToSignedByte (SRC2[95:80]);
DEST[119:112] SaturateSignedWordToSignedByte (SRC2[111:96]);
DEST[127:120] SaturateSignedWordToSignedByte (SRC2[127:112]);
DEST[MAX_VL-1:128] 0;
VPACKSSDW instruction (VEX.128 encoded version)
DEST[15:0] SaturateSignedDwordToSignedWord (SRC1[31:0]);
DEST[31:16] SaturateSignedDwordToSignedWord (SRC1[63:32]);
DEST[47:32] SaturateSignedDwordToSignedWord (SRC1[95:64]);
DEST[63:48] SaturateSignedDwordToSignedWord (SRC1[127:96]);
DEST[79:64] SaturateSignedDwordToSignedWord (SRC2[31:0]);
DEST[95:80] SaturateSignedDwordToSignedWord (SRC2[63:32]);
DEST[111:96] SaturateSignedDwordToSignedWord (SRC2[95:64]);
DEST[127:112] SaturateSignedDwordToSignedWord (SRC2[127:96]);
DEST[MAX_VL-1:128] 0;
VPACKSSWB instruction (VEX.256 encoded version)
DEST[7:0] SaturateSignedWordToSignedByte (SRC1[15:0]);
DEST[15:8] SaturateSignedWordToSignedByte (SRC1[31:16]);
DEST[23:16] SaturateSignedWordToSignedByte (SRC1[47:32]);
DEST[31:24] SaturateSignedWordToSignedByte (SRC1[63:48]);
DEST[39:32] SaturateSignedWordToSignedByte (SRC1[79:64]);
DEST[47:40] SaturateSignedWordToSignedByte (SRC1[95:80]);
DEST[55:48] SaturateSignedWordToSignedByte (SRC1[111:96]);
DEST[63:56] SaturateSignedWordToSignedByte (SRC1[127:112]);
DEST[71:64] SaturateSignedWordToSignedByte (SRC2[15:0]);
DEST[79:72] SaturateSignedWordToSignedByte (SRC2[31:16]);
DEST[87:80] SaturateSignedWordToSignedByte (SRC2[47:32]);
DEST[95:88] SaturateSignedWordToSignedByte (SRC2[63:48]);
Ref. # 319433-023 5-503
INSTRUCTION SET REFERENCE, A-Z
DEST[103:96] SaturateSignedWordToSignedByte (SRC2[79:64]);
DEST[111:104] SaturateSignedWordToSignedByte (SRC2[95:80]);
DEST[119:112] SaturateSignedWordToSignedByte (SRC2[111:96]);
DEST[127:120] SaturateSignedWordToSignedByte (SRC2[127:112]);
DEST[135:128] SaturateSignedWordToSignedByte (SRC1[143:128]);
DEST[143:136] SaturateSignedWordToSignedByte (SRC1[159:144]);
DEST[151:144] SaturateSignedWordToSignedByte (SRC1[175:160]);
DEST[159:152] SaturateSignedWordToSignedByte (SRC1[191:176]);
DEST[167:160] SaturateSignedWordToSignedByte (SRC1[207:192]);
DEST[175:168] SaturateSignedWordToSignedByte (SRC1[223:208]);
DEST[183:176] SaturateSignedWordToSignedByte (SRC1[239:224]);
DEST[191:184] SaturateSignedWordToSignedByte (SRC1[255:240]);
DEST[199:192] SaturateSignedWordToSignedByte (SRC2[143:128]);
DEST[207:200] SaturateSignedWordToSignedByte (SRC2[159:144]);
DEST[215:208] SaturateSignedWordToSignedByte (SRC2[175:160]);
DEST[223:216] SaturateSignedWordToSignedByte (SRC2[191:176]);
DEST[231:224] SaturateSignedWordToSignedByte (SRC2[207:192]);
DEST[239:232] SaturateSignedWordToSignedByte (SRC2[223:208]);
DEST[247:240] SaturateSignedWordToSignedByte (SRC2[239:224]);
DEST[255:248] SaturateSignedWordToSignedByte (SRC2[255:240]);
DEST[MAX_VL-1:256] 0;
VPACKSSDW instruction (VEX.256 encoded version)
DEST[15:0] SaturateSignedDwordToSignedWord (SRC1[31:0]);
DEST[31:16] SaturateSignedDwordToSignedWord (SRC1[63:32]);
DEST[47:32] SaturateSignedDwordToSignedWord (SRC1[95:64]);
DEST[63:48] SaturateSignedDwordToSignedWord (SRC1[127:96]);
DEST[79:64] SaturateSignedDwordToSignedWord (SRC2[31:0]);
DEST[95:80] SaturateSignedDwordToSignedWord (SRC2[63:32]);
DEST[111:96] SaturateSignedDwordToSignedWord (SRC2[95:64]);
DEST[127:112] SaturateSignedDwordToSignedWord (SRC2[127:96]);
DEST[143:128] SaturateSignedDwordToSignedWord (SRC1[159:128]);
DEST[159:144] SaturateSignedDwordToSignedWord (SRC1[191:160]);
DEST[175:160] SaturateSignedDwordToSignedWord (SRC1[223:192]);
DEST[191:176] SaturateSignedDwordToSignedWord (SRC1[255:224]);
DEST[207:192] SaturateSignedDwordToSignedWord (SRC2[159:128]);
DEST[223:208] SaturateSignedDwordToSignedWord (SRC2[191:160]);
DEST[239:224] SaturateSignedDwordToSignedWord (SRC2[223:192]);
DEST[255:240] SaturateSignedDwordToSignedWord (SRC2[255:224]);
DEST[MAX_VL-1:256] 0;
VPACKSSWB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
TMP_DEST[7:0] SaturateSignedWordToSignedByte (SRC1[15:0]);
TMP_DEST[15:8] SaturateSignedWordToSignedByte (SRC1[31:16]);
TMP_DEST[23:16] SaturateSignedWordToSignedByte (SRC1[47:32]);
TMP_DEST[31:24] SaturateSignedWordToSignedByte (SRC1[63:48]);
TMP_DEST[39:32] SaturateSignedWordToSignedByte (SRC1[79:64]);
TMP_DEST[47:40] SaturateSignedWordToSignedByte (SRC1[95:80]);
TMP_DEST[55:48] SaturateSignedWordToSignedByte (SRC1[111:96]);
TMP_DEST[63:56] SaturateSignedWordToSignedByte (SRC1[127:112]);
TMP_DEST[71:64] SaturateSignedWordToSignedByte (SRC2[15:0]);
TMP_DEST[79:72] SaturateSignedWordToSignedByte (SRC2[31:16]);
TMP_DEST[87:80] SaturateSignedWordToSignedByte (SRC2[47:32]);
5-504 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TMP_DEST[95:88] SaturateSignedWordToSignedByte (SRC2[63:48]);
TMP_DEST[103:96] SaturateSignedWordToSignedByte (SRC2[79:64]);
TMP_DEST[111:104] SaturateSignedWordToSignedByte (SRC2[95:80]);
TMP_DEST[119:112] SaturateSignedWordToSignedByte (SRC2[111:96]);
TMP_DEST[127:120] SaturateSignedWordToSignedByte (SRC2[127:112]);
IF VL >= 256
TMP_DEST[135:128] SaturateSignedWordToSignedByte (SRC1[143:128]);
TMP_DEST[143:136] SaturateSignedWordToSignedByte (SRC1[159:144]);
TMP_DEST[151:144] SaturateSignedWordToSignedByte (SRC1[175:160]);
TMP_DEST[159:152] SaturateSignedWordToSignedByte (SRC1[191:176]);
TMP_DEST[167:160] SaturateSignedWordToSignedByte (SRC1[207:192]);
TMP_DEST[175:168] SaturateSignedWordToSignedByte (SRC1[223:208]);
TMP_DEST[183:176] SaturateSignedWordToSignedByte (SRC1[239:224]);
TMP_DEST[191:184] SaturateSignedWordToSignedByte (SRC1[255:240]);
TMP_DEST[199:192] SaturateSignedWordToSignedByte (SRC2[143:128]);
TMP_DEST[207:200] SaturateSignedWordToSignedByte (SRC2[159:144]);
TMP_DEST[215:208] SaturateSignedWordToSignedByte (SRC2[175:160]);
TMP_DEST[223:216] SaturateSignedWordToSignedByte (SRC2[191:176]);
TMP_DEST[231:224] SaturateSignedWordToSignedByte (SRC2[207:192]);
TMP_DEST[239:232] SaturateSignedWordToSignedByte (SRC2[223:208]);
TMP_DEST[247:240] SaturateSignedWordToSignedByte (SRC2[239:224]);
TMP_DEST[255:248] SaturateSignedWordToSignedByte (SRC2[255:240]);
FI;
IF VL >= 512
TMP_DEST[263:256] SaturateSignedWordToSignedByte (SRC1[271:256]);
TMP_DEST[271:264] SaturateSignedWordToSignedByte (SRC1[287:272]);
TMP_DEST[279:272] SaturateSignedWordToSignedByte (SRC1[303:288]);
TMP_DEST[287:280] SaturateSignedWordToSignedByte (SRC1[319:304]);
TMP_DEST[295:288] SaturateSignedWordToSignedByte (SRC1[335:320]);
TMP_DEST[303:296] SaturateSignedWordToSignedByte (SRC1[351:336]);
TMP_DEST[311:304] SaturateSignedWordToSignedByte (SRC1[367:352]);
TMP_DEST[319:312] SaturateSignedWordToSignedByte (SRC1[383:368]);
TMP_DEST[327:320] SaturateSignedWordToSignedByte (SRC2[271:256]);
TMP_DEST[335:328] SaturateSignedWordToSignedByte (SRC2[287:272]);
TMP_DEST[343:336] SaturateSignedWordToSignedByte (SRC2[303:288]);
TMP_DEST[351:344] SaturateSignedWordToSignedByte (SRC2[319:304]);
TMP_DEST[359:352] SaturateSignedWordToSignedByte (SRC2[335:320]);
TMP_DEST[367:360] SaturateSignedWordToSignedByte (SRC2[351:336]);
TMP_DEST[375:368] SaturateSignedWordToSignedByte (SRC2[367:352]);
TMP_DEST[383:376] SaturateSignedWordToSignedByte (SRC2[383:368]);
TMP_DEST[391:384] SaturateSignedWordToSignedByte (SRC1[399:384]);
TMP_DEST[399:392] SaturateSignedWordToSignedByte (SRC1[415:400]);
TMP_DEST[407:400] SaturateSignedWordToSignedByte (SRC1[431:416]);
TMP_DEST[415:408] SaturateSignedWordToSignedByte (SRC1[447:432]);
TMP_DEST[423:416] SaturateSignedWordToSignedByte (SRC1[463:448]);
TMP_DEST[431:424] SaturateSignedWordToSignedByte (SRC1[479:464]);
TMP_DEST[439:432] SaturateSignedWordToSignedByte (SRC1[495:480]);
TMP_DEST[447:440] SaturateSignedWordToSignedByte (SRC1[511:496]);
TMP_DEST[455:448] SaturateSignedWordToSignedByte (SRC2[399:384]);
TMP_DEST[463:456] SaturateSignedWordToSignedByte (SRC2[415:400]);
TMP_DEST[471:464] SaturateSignedWordToSignedByte (SRC2[431:416]);
Ref. # 319433-023 5-505
INSTRUCTION SET REFERENCE, A-Z
TMP_DEST[479:472] SaturateSignedWordToSignedByte (SRC2[447:432]);
TMP_DEST[487:480] SaturateSignedWordToSignedByte (SRC2[463:448]);
TMP_DEST[495:488] SaturateSignedWordToSignedByte (SRC2[479:464]);
TMP_DEST[503:496] SaturateSignedWordToSignedByte (SRC2[495:480]);
TMP_DEST[511:504] SaturateSignedWordToSignedByte (SRC2[511:496]);
FI;
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN
DEST[i+7:i] TMP_DEST[i+7:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPACKSSDW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO ((KL/2) - 1)
i j * 32
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
TMP_SRC2[i+31:i] SRC2[31:0]
ELSE
TMP_SRC2[i+31:i] SRC2[i+31:i]
FI;
ENDFOR;
TMP_DEST[15:0] SaturateSignedDwordToSignedWord (SRC1[31:0]);
TMP_DEST[31:16] SaturateSignedDwordToSignedWord (SRC1[63:32]);
TMP_DEST[47:32] SaturateSignedDwordToSignedWord (SRC1[95:64]);
TMP_DEST[63:48] SaturateSignedDwordToSignedWord (SRC1[127:96]);
TMP_DEST[79:64] SaturateSignedDwordToSignedWord (TMP_SRC2[31:0]);
TMP_DEST[95:80] SaturateSignedDwordToSignedWord (TMP_SRC2[63:32]);
TMP_DEST[111:96] SaturateSignedDwordToSignedWord (TMP_SRC2[95:64]);
TMP_DEST[127:112] SaturateSignedDwordToSignedWord (TMP_SRC2[127:96]);
IF VL >= 256
TMP_DEST[143:128] SaturateSignedDwordToSignedWord (SRC1[159:128]);
TMP_DEST[159:144] SaturateSignedDwordToSignedWord (SRC1[191:160]);
TMP_DEST[175:160] SaturateSignedDwordToSignedWord (SRC1[223:192]);
TMP_DEST[191:176] SaturateSignedDwordToSignedWord (SRC1[255:224]);
TMP_DEST[207:192] SaturateSignedDwordToSignedWord (TMP_SRC2[159:128]);
TMP_DEST[223:208] SaturateSignedDwordToSignedWord (TMP_SRC2[191:160]);
TMP_DEST[239:224] SaturateSignedDwordToSignedWord (TMP_SRC2[223:192]);
TMP_DEST[255:240] SaturateSignedDwordToSignedWord (TMP_SRC2[255:224]);
FI;
IF VL >= 512
TMP_DEST[271:256] SaturateSignedDwordToSignedWord (SRC1[287:256]);
5-506 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TMP_DEST[287:272] SaturateSignedDwordToSignedWord (SRC1[319:288]);
TMP_DEST[303:288] SaturateSignedDwordToSignedWord (SRC1[351:320]);
TMP_DEST[319:304] SaturateSignedDwordToSignedWord (SRC1[383:352]);
TMP_DEST[335:320] SaturateSignedDwordToSignedWord (TMP_SRC2[287:256]);
TMP_DEST[351:336] SaturateSignedDwordToSignedWord (TMP_SRC2[319:288]);
TMP_DEST[367:352] SaturateSignedDwordToSignedWord (TMP_SRC2[351:320]);
TMP_DEST[383:368] SaturateSignedDwordToSignedWord (TMP_SRC2[383:352]);
TMP_DEST[399:384] SaturateSignedDwordToSignedWord (SRC1[415:384]);
TMP_DEST[415:400] SaturateSignedDwordToSignedWord (SRC1[447:416]);
TMP_DEST[431:416] SaturateSignedDwordToSignedWord (SRC1[479:448]);
TMP_DEST[447:432] SaturateSignedDwordToSignedWord (SRC1[511:480]);
TMP_DEST[463:448] SaturateSignedDwordToSignedWord (TMP_SRC2[415:384]);
TMP_DEST[479:464] SaturateSignedDwordToSignedWord (TMP_SRC2[447:416]);
TMP_DEST[495:480] SaturateSignedDwordToSignedWord (TMP_SRC2[479:448]);
TMP_DEST[511:496] SaturateSignedDwordToSignedWord (TMP_SRC2[511:480]);
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPACKSSDW__m512i _mm512_packs_epi32(__m512i m1, __m512i m2);
VPACKSSDW__m512i _mm512_mask_packs_epi32(__m512i s, __mmask32 k, __m512i m1, __m512i m2);
VPACKSSDW__m512i _mm512_maskz_packs_epi32( __mmask32 k, __m512i m1, __m512i m2);
VPACKSSDW__m256i _mm256_mask_packs_epi32( __m256i s, __mmask16 k, __m256i m1, __m256i m2);
VPACKSSDW__m256i _mm256_maskz_packs_epi32( __mmask16 k, __m256i m1, __m256i m2);
VPACKSSDW__m128i _mm_mask_packs_epi32( __m128i s, __mmask8 k, __m128i m1, __m128i m2);
VPACKSSDW__m128i _mm_maskz_packs_epi32( __mmask8 k, __m128i m1, __m128i m2);
VPACKSSWB__m512i _mm512_packs_epi16(__m512i m1, __m512i m2);
VPACKSSWB__m512i _mm512_mask_packs_epi16(__m512i s, __mmask32 k, __m512i m1, __m512i m2);
VPACKSSWB__m512i _mm512_maskz_packs_epi16( __mmask32 k, __m512i m1, __m512i m2);
VPACKSSWB__m256i _mm256_mask_packs_epi16( __m256i s, __mmask16 k, __m256i m1, __m256i m2);
VPACKSSWB__m256i _mm256_maskz_packs_epi16( __mmask16 k, __m256i m1, __m256i m2);
VPACKSSWB__m128i _mm_mask_packs_epi16( __m128i s, __mmask8 k, __m128i m1, __m128i m2);
VPACKSSWB__m128i _mm_maskz_packs_epi16( __mmask8 k, __m128i m1, __m128i m2);
PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)
PACKSSDW __m128i _mm_packs_epi32(__m128i m1, __m128i m2)
VPACKSSWB __m256i _mm256_packs_epi16(__m256i m1, __m256i m2)
VPACKSSDW __m256i _mm256_packs_epi32(__m256i m1, __m256i m2)
SIMD Floating-Point Exceptions
None
Ref. # 319433-023 5-507
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPACKSSDW, see Exceptions Type E4NF.
EVEX-encoded VPACKSSWB, see Exceptions Type E4NF.nb.
5-508 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PACKUSDW—Pack with Unsigned Saturation
Instruction Operand Encoding
Description
Converts packed signed doubleword integers in the first and second source operands into packed unsigned word
integers using unsigned saturation to handle overflow conditions. If the signed doubleword value is beyond the
range of an unsigned word (that is, greater than FFFFH or less than 0000H), the saturated unsigned word integer
value of FFFFH or 0000H, respectively, is stored in the destination.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-
bit memory location. The destination operand is a ZMM register, updated conditionally under the writemask k1.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding destination register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 2B /r RM V/V SSE4_1 Convert 4 packed signed doubleword integers from xmm1
and 4 packed signed doubleword integers from
xmm2/m128 into 8 packed unsigned word integers in
xmm1 using unsigned saturation.
PACKUSDW xmm1, xmm2/m128
VEX.NDS.128.66.0F38 2B /r RVM V/V AVX Convert 4 packed signed doubleword integers from xmm2
and 4 packed signed doubleword integers from
xmm3/m128 into 8 packed unsigned word integers in
xmm1 using unsigned saturation.
VPACKUSDW xmm1,xmm2,
xmm3/m128
VEX.NDS.256.66.0F38 2B /r RVM V/V AVX2 Convert 8 packed signed doubleword integers from ymm2
and 8 packed signed doubleword integers from
ymm3/m256 into 16 packed unsigned word integers in
ymm1 using unsigned saturation.
VPACKUSDW ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W0 2B /r FV V/V AVX512VL Convert packed signed doubleword integers from xmm2
and packed signed doubleword integers from
xmm3/m128/m32bcst into packed unsigned word integers
in xmm1 using unsigned saturation under writemask k1.
VPACKUSDW xmm1{k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512BW
EVEX.NDS.256.66.0F38.W0 2B /r FV V/V AVX512VL Convert packed signed doubleword integers from ymm2
and packed signed doubleword integers from
ymm3/m256/m32bcst into packed unsigned word integers
in ymm1 using unsigned saturation under writemask k1.
VPACKUSDW ymm1{k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512BW
EVEX.NDS.512.66.0F38.W0 2B /r FV V/V AVX512BW Convert packed signed doubleword integers from zmm2
and packed signed doubleword integers from
zmm3/m512/m32bcst into packed unsigned word integers
in zmm1 using unsigned saturation under writemask k1.
VPACKUSDW zmm1{k1}{z},
zmm2, zmm3/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-509
INSTRUCTION SET REFERENCE, A-Z
Operation
PACKUSDW (Legacy SSE instruction)
TMP[15:0] (DEST[31:0] < 0) ? 0 : DEST[15:0];
DEST[15:0] (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] (DEST[63:32] < 0) ? 0 : DEST[47:32];
DEST[31:16] (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] (DEST[95:64] < 0) ? 0 : DEST[79:64];
DEST[47:32] (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48] (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] (SRC[31:0] < 0) ? 0 : SRC[15:0];
DEST[79:64] (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] (SRC[63:32] < 0) ? 0 : SRC[47:32];
DEST[95:80] (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96] (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] (SRC[127:96] < 0) ? 0 : SRC[111:96];
DEST[127:112] (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
DEST[MAX_VL-1:128] (Unmodified)
PACKUSDW (VEX.128 encoded version)
TMP[15:0] (SRC1[31:0] < 0) ? 0 : SRC1[15:0];
DEST[15:0] (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] (SRC1[63:32] < 0) ? 0 : SRC1[47:32];
DEST[31:16] (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] (SRC1[95:64] < 0) ? 0 : SRC1[79:64];
DEST[47:32] (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] (SRC1[127:96] < 0) ? 0 : SRC1[111:96];
DEST[63:48] (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] (SRC2[31:0] < 0) ? 0 : SRC2[15:0];
DEST[79:64] (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] (SRC2[63:32] < 0) ? 0 : SRC2[47:32];
DEST[95:80] (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] (SRC2[95:64] < 0) ? 0 : SRC2[79:64];
DEST[111:96] (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] (SRC2[127:96] < 0) ? 0 : SRC2[111:96];
DEST[127:112] (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112];
DEST[MAX_VL-1:128] 0;
VPACKUSDW (VEX.256 encoded version)
TMP[15:0] (SRC1[31:0] < 0) ? 0 : SRC1[15:0];
DEST[15:0] (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] (SRC1[63:32] < 0) ? 0 : SRC1[47:32];
DEST[31:16] (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] (SRC1[95:64] < 0) ? 0 : SRC1[79:64];
DEST[47:32] (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] (SRC1[127:96] < 0) ? 0 : SRC1[111:96];
DEST[63:48] (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] (SRC2[31:0] < 0) ? 0 : SRC2[15:0];
DEST[79:64] (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] (SRC2[63:32] < 0) ? 0 : SRC2[47:32];
DEST[95:80] (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] (SRC2[95:64] < 0) ? 0 : SRC2[79:64];
DEST[111:96] (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
5-510 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TMP[127:112] (SRC2[127:96] < 0) ? 0 : SRC2[111:96];
DEST[127:112] (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
TMP[143:128] (SRC1[159:128] < 0) ? 0 : SRC1[143:128];
DEST[143:128] (SRC1[159:128] > FFFFH) ? FFFFH : TMP[143:128] ;
TMP[159:144] (SRC1[191:160] < 0) ? 0 : SRC1[175:160];
DEST[159:144] (SRC1[191:160] > FFFFH) ? FFFFH : TMP[159:144] ;
TMP[175:160] (SRC1[223:192] < 0) ? 0 : SRC1[207:192];
DEST[175:160] (SRC1[223:192] > FFFFH) ? FFFFH : TMP[175:160] ;
TMP[191:176] (SRC1[255:224] < 0) ? 0 : SRC1[239:224];
DEST[191:176] (SRC1[255:224] > FFFFH) ? FFFFH : TMP[191:176] ;
TMP[207:192] (SRC2[159:128] < 0) ? 0 : SRC2[143:128];
DEST[207:192] (SRC2[159:128] > FFFFH) ? FFFFH : TMP[207:192] ;
TMP[223:208] (SRC2[191:160] < 0) ? 0 : SRC2[175:160];
DEST[223:208] (SRC2[191:160] > FFFFH) ? FFFFH : TMP[223:208] ;
TMP[239:224] (SRC2[223:192] < 0) ? 0 : SRC2[207:192];
DEST[239:224] (SRC2[223:192] > FFFFH) ? FFFFH : TMP[239:224] ;
TMP[255:240] (SRC2[255:224] < 0) ? 0 : SRC2[239:224];
DEST[255:240] (SRC2[255:224] > FFFFH) ? FFFFH : TMP[255:240] ;
DEST[MAX_VL-1:256] 0;
VPACKUSDW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO ((KL/2) - 1)
i j * 32
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN
TMP_SRC2[i+31:i] SRC2[31:0]
ELSE
TMP_SRC2[i+31:i] SRC2[i+31:i]
FI;
ENDFOR;
TMP[15:0] (SRC1[31:0] < 0) ? 0 : SRC1[15:0];
DEST[15:0] (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] (SRC1[63:32] < 0) ? 0 : SRC1[47:32];
DEST[31:16] (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] (SRC1[95:64] < 0) ? 0 : SRC1[79:64];
DEST[47:32] (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] (SRC1[127:96] < 0) ? 0 : SRC1[111:96];
DEST[63:48] (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] (TMP_SRC2[31:0] < 0) ? 0 : TMP_SRC2[15:0];
DEST[79:64] (TMP_SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] (TMP_SRC2[63:32] < 0) ? 0 : TMP_SRC2[47:32];
DEST[95:80] (TMP_SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] (TMP_SRC2[95:64] < 0) ? 0 : TMP_SRC2[79:64];
DEST[111:96] (TMP_SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] (TMP_SRC2[127:96] < 0) ? 0 : TMP_SRC2[111:96];
DEST[127:112] (TMP_SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
IF VL >= 256
TMP[143:128] (SRC1[159:128] < 0) ? 0 : SRC1[143:128];
DEST[143:128] (SRC1[159:128] > FFFFH) ? FFFFH : TMP[143:128] ;
TMP[159:144] (SRC1[191:160] < 0) ? 0 : SRC1[175:160];
DEST[159:144] (SRC1[191:160] > FFFFH) ? FFFFH : TMP[159:144] ;
Ref. # 319433-023 5-511
INSTRUCTION SET REFERENCE, A-Z
TMP[175:160] (SRC1[223:192] < 0) ? 0 : SRC1[207:192];
DEST[175:160] (SRC1[223:192] > FFFFH) ? FFFFH : TMP[175:160] ;
TMP[191:176] (SRC1[255:224] < 0) ? 0 : SRC1[239:224];
DEST[191:176] (SRC1[255:224] > FFFFH) ? FFFFH : TMP[191:176] ;
TMP[207:192] (TMP_SRC2[159:128] < 0) ? 0 : TMP_SRC2[143:128];
DEST[207:192] (TMP_SRC2[159:128] > FFFFH) ? FFFFH : TMP[207:192] ;
TMP[223:208] (TMP_SRC2[191:160] < 0) ? 0 : TMP_SRC2[175:160];
DEST[223:208] (TMP_SRC2[191:160] > FFFFH) ? FFFFH : TMP[223:208] ;
TMP[239:224] (TMP_SRC2[223:192] < 0) ? 0 : TMP_SRC2[207:192];
DEST[239:224] (TMP_SRC2[223:192] > FFFFH) ? FFFFH : TMP[239:224] ;
TMP[255:240] (TMP_SRC2[255:224] < 0) ? 0 : TMP_SRC2[239:224];
DEST[255:240] (TMP_SRC2[255:224] > FFFFH) ? FFFFH : TMP[255:240] ;
FI;
IF VL >= 512
TMP[271:256] (SRC1[287:256] < 0) ? 0 : SRC1[271:256];
DEST[271:256] (SRC1[287:256] > FFFFH) ? FFFFH : TMP[271:256] ;
TMP[287:272] (SRC1[319:288] < 0) ? 0 : SRC1[303:288];
DEST[287:272] (SRC1[319:288] > FFFFH) ? FFFFH : TMP[287:272] ;
TMP[303:288] (SRC1[351:320] < 0) ? 0 : SRC1[335:320];
DEST[303:288] (SRC1[351:320] > FFFFH) ? FFFFH : TMP[303:288] ;
TMP[319:304] (SRC1[383:352] < 0) ? 0 : SRC1[367:352];
DEST[319:304] (SRC1[383:352] > FFFFH) ? FFFFH : TMP[319:304] ;
TMP[335:320] (TMP_SRC2[287:256] < 0) ? 0 : TMP_SRC2[271:256];
DEST[335:304] (TMP_SRC2[287:256] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[351:336] (TMP_SRC2[319:288] < 0) ? 0 : TMP_SRC2[303:288];
DEST[351:336] (TMP_SRC2[319:288] > FFFFH) ? FFFFH : TMP[351:336] ;
TMP[367:352] (TMP_SRC2[351:320] < 0) ? 0 : TMP_SRC2[315:320];
DEST[367:352] (TMP_SRC2[351:320] > FFFFH) ? FFFFH : TMP[367:352] ;
TMP[383:368] (TMP_SRC2[383:352] < 0) ? 0 : TMP_SRC2[367:352];
DEST[383:368] (TMP_SRC2[383:352] > FFFFH) ? FFFFH : TMP[383:368] ;
TMP[399:384] (SRC1[415:384] < 0) ? 0 : SRC1[399:384];
DEST[399:384] (SRC1[415:384] > FFFFH) ? FFFFH : TMP[399:384] ;
TMP[415:400] (SRC1[447:416] < 0) ? 0 : SRC1[431:416];
DEST[415:400] (SRC1[447:416] > FFFFH) ? FFFFH : TMP[415:400] ;
TMP[431:416] (SRC1[479:448] < 0) ? 0 : SRC1[463:448];
DEST[431:416] (SRC1[479:448] > FFFFH) ? FFFFH : TMP[431:416] ;
TMP[447:432] (SRC1[511:480] < 0) ? 0 : SRC1[495:480];
DEST[447:432] (SRC1[511:480] > FFFFH) ? FFFFH : TMP[447:432] ;
TMP[463:448] (TMP_SRC2[415:384] < 0) ? 0 : TMP_SRC2[399:384];
DEST[463:448] (TMP_SRC2[415:384] > FFFFH) ? FFFFH : TMP[463:448] ;
TMP[475:464] (TMP_SRC2[447:416] < 0) ? 0 : TMP_SRC2[431:416];
DEST[475:464] (TMP_SRC2[447:416] > FFFFH) ? FFFFH : TMP[475:464] ;
TMP[491:476] (TMP_SRC2[479:448] < 0) ? 0 : TMP_SRC2[463:448];
DEST[491:476] (TMP_SRC2[479:448] > FFFFH) ? FFFFH : TMP[491:476] ;
TMP[511:492] (TMP_SRC2[511:480] < 0) ? 0 : TMP_SRC2[495:480];
DEST[511:492] (TMP_SRC2[511:480] > FFFFH) ? FFFFH : TMP[511:492] ;
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN
DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
5-512 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPACKUSDW__m512i _mm512_packus_epi32(__m512i m1, __m512i m2);
VPACKUSDW__m512i _mm512_mask_packus_epi32(__m512i s, __mmask32 k, __m512i m1, __m512i m2);
VPACKUSDW__m512i _mm512_maskz_packus_epi32( __mmask32 k, __m512i m1, __m512i m2);
VPACKUSDW__m256i _mm256_mask_packus_epi32( __m256i s, __mmask16 k, __m256i m1, __m256i m2);
VPACKUSDW__m256i _mm256_maskz_packus_epi32( __mmask16 k, __m256i m1, __m256i m2);
VPACKUSDW__m128i _mm_mask_packus_epi32( __m128i s, __mmask8 k, __m128i m1, __m128i m2);
VPACKUSDW__m128i _mm_maskz_packus_epi32( __mmask8 k, __m128i m1, __m128i m2);
PACKUSDW__m128i _mm_packus_epi32(__m128i m1, __m128i m2);
VPACKUSDW__m256i _mm256_packus_epi32(__m256i m1, __m256i m2);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.
Ref. # 319433-023 5-513
INSTRUCTION SET REFERENCE, A-Z
PACKUSWB—Pack with Unsigned Saturation
Instruction Operand Encoding
Description
Converts 8, 16 or 32 signed word integers from the first source operand and 8, 16 or 32 signed word integers from
the second source operand into 16, 32 or 64 unsigned byte integers and stores the result in the destination
operand. If a signed word integer value is beyond the range of an unsigned byte integer (that is, greater than FFH
or less than 00H), the saturated unsigned byte integer value of FFH or 00H, respectively, is stored in the destina-
tion.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM
register or a 512-bit memory location. The destination operand is a ZMM register.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand
is a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits
(MAX_VL-1:256) of the corresponding ZMM register destination are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand
is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits
(MAX_VL-1:128) of the corresponding register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 67 /r RM V/V SSE2 Converts 8 signed word integers from xmm1 and 8 signed
word integers from xmm2/m128 into 16 unsigned byte
integers in xmm1 using unsigned saturation.
PACKUSWB xmm1, xmm2/m128
VEX.NDS.128.66.0F 67 /r RVM V/V AVX Converts 8 signed word integers from xmm2 and 8 signed
word integers from xmm3/m128 into 16 unsigned byte
integers in xmm1 using unsigned saturation.
VPACKUSWB xmm1,xmm2,
xmm3/m128
VEX.NDS.256.66.0F 67 /r RVM V/V AVX2 Converts 16 signed word integers from ymm2 and 16
signed word integers from ymm3/m256 into 32 unsigned
byte integers in ymm1 using unsigned saturation.
VPACKUSWB ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.WIG 67 /r FVM V/V AVX512VL Converts signed word integers from xmm2 and signed
word integers from xmm3/m128 into unsigned byte
integers in xmm1 using unsigned saturation under
writemask k1.
VPACKUSWB xmm1{k1}{z},
xmm2, xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG 67 /r FVM V/V AVX512VL Converts signed word integers from ymm2 and signed
word integers from ymm3/m256 into unsigned byte
integers in ymm1 using unsigned saturation under
writemask k1.
VPACKUSWB ymm1{k1}{z},
ymm2, ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F.WIG 67 /r FVM V/V AVX512BW Converts signed word integers from zmm2 and signed
word integers from zmm3/m512 into unsigned byte
integers in zmm1 using unsigned saturation under
writemask k1.
VPACKUSWB zmm1{k1}{z},
zmm2, zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-514 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
PACKUSWB (Legacy SSE instruction)
DEST[7:0] SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] SaturateSignedWordToUnsignedByte (DEST[47:32]);
DEST[31:24] SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96] SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] SaturateSignedWordToUnsignedByte (SRC[127:112]);
DEST[MAX_VL-1:128] (Unmodified)
PACKUSWB (VEX.128 encoded version)
DEST[7:0] SaturateSignedWordToUnsignedByte (SRC1[15:0]);
DEST[15:8] SaturateSignedWordToUnsignedByte (SRC1[31:16]);
DEST[23:16] SaturateSignedWordToUnsignedByte (SRC1[47:32]);
DEST[31:24] SaturateSignedWordToUnsignedByte (SRC1[63:48]);
DEST[39:32] SaturateSignedWordToUnsignedByte (SRC1[79:64]);
DEST[47:40] SaturateSignedWordToUnsignedByte (SRC1[95:80]);
DEST[55:48] SaturateSignedWordToUnsignedByte (SRC1[111:96]);
DEST[63:56] SaturateSignedWordToUnsignedByte (SRC1[127:112]);
DEST[71:64] SaturateSignedWordToUnsignedByte (SRC2[15:0]);
DEST[79:72] SaturateSignedWordToUnsignedByte (SRC2[31:16]);
DEST[87:80] SaturateSignedWordToUnsignedByte (SRC2[47:32]);
DEST[95:88] SaturateSignedWordToUnsignedByte (SRC2[63:48]);
DEST[103:96] SaturateSignedWordToUnsignedByte (SRC2[79:64]);
DEST[111:104] SaturateSignedWordToUnsignedByte (SRC2[95:80]);
DEST[119:112] SaturateSignedWordToUnsignedByte (SRC2[111:96]);
DEST[127:120] SaturateSignedWordToUnsignedByte (SRC2[127:112]);
DEST[MAX_VL-1:128] 0;
VPACKUSWB (VEX.256 encoded version)
DEST[7:0] SaturateSignedWordToUnsignedByte (SRC1[15:0]);
DEST[15:8] SaturateSignedWordToUnsignedByte (SRC1[31:16]);
DEST[23:16] SaturateSignedWordToUnsignedByte (SRC1[47:32]);
DEST[31:24] SaturateSignedWordToUnsignedByte (SRC1[63:48]);
DEST[39:32] SaturateSignedWordToUnsignedByte (SRC1[79:64]);
DEST[47:40] SaturateSignedWordToUnsignedByte (SRC1[95:80]);
DEST[55:48] SaturateSignedWordToUnsignedByte (SRC1[111:96]);
DEST[63:56] SaturateSignedWordToUnsignedByte (SRC1[127:112]);
DEST[71:64] SaturateSignedWordToUnsignedByte (SRC2[15:0]);
DEST[79:72] SaturateSignedWordToUnsignedByte (SRC2[31:16]);
DEST[87:80] SaturateSignedWordToUnsignedByte (SRC2[47:32]);
DEST[95:88] SaturateSignedWordToUnsignedByte (SRC2[63:48]);
DEST[103:96] SaturateSignedWordToUnsignedByte (SRC2[79:64]);
DEST[111:104] SaturateSignedWordToUnsignedByte (SRC2[95:80]);
Ref. # 319433-023 5-515
INSTRUCTION SET REFERENCE, A-Z
DEST[119:112] SaturateSignedWordToUnsignedByte (SRC2[111:96]);
DEST[127:120] SaturateSignedWordToUnsignedByte (SRC2[127:112]);
DEST[135:128] SaturateSignedWordToUnsignedByte (SRC1[143:128]);
DEST[143:136] SaturateSignedWordToUnsignedByte (SRC1[159:144]);
DEST[151:144] SaturateSignedWordToUnsignedByte (SRC1[175:160]);
DEST[159:152] SaturateSignedWordToUnsignedByte (SRC1[191:176]);
DEST[167:160] SaturateSignedWordToUnsignedByte (SRC1[207:192]);
DEST[175:168] SaturateSignedWordToUnsignedByte (SRC1[223:208]);
DEST[183:176] SaturateSignedWordToUnsignedByte (SRC1[239:224]);
DEST[191:184] SaturateSignedWordToUnsignedByte (SRC1[255:240]);
DEST[199:192] SaturateSignedWordToUnsignedByte (SRC2[143:128]);
DEST[207:200] SaturateSignedWordToUnsignedByte (SRC2[159:144]);
DEST[215:208] SaturateSignedWordToUnsignedByte (SRC2[175:160]);
DEST[223:216] SaturateSignedWordToUnsignedByte (SRC2[191:176]);
DEST[231:224] SaturateSignedWordToUnsignedByte (SRC2[207:192]);
DEST[239:232] SaturateSignedWordToUnsignedByte (SRC2[223:208]);
DEST[247:240] SaturateSignedWordToUnsignedByte (SRC2[239:224]);
DEST[255:248] SaturateSignedWordToUnsignedByte (SRC2[255:240]);
DEST[MAX_VL-1:256] 0;
VPACKUSWB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
TMP_DEST[7:0] SaturateSignedWordToUnsignedByte (SRC1[15:0]);
TMP_DEST[15:8] SaturateSignedWordToUnsignedByte (SRC1[31:16]);
TMP_DEST[23:16] SaturateSignedWordToUnsignedByte (SRC1[47:32]);
TMP_DEST[31:24] SaturateSignedWordToUnsignedByte (SRC1[63:48]);
TMP_DEST[39:32] SaturateSignedWordToUnsignedByte (SRC1[79:64]);
TMP_DEST[47:40] SaturateSignedWordToUnsignedByte (SRC1[95:80]);
TMP_DEST[55:48] SaturateSignedWordToUnsignedByte (SRC1[111:96]);
TMP_DEST[63:56] SaturateSignedWordToUnsignedByte (SRC1[127:112]);
TMP_DEST[71:64] SaturateSignedWordToUnsignedByte (SRC2[15:0]);
TMP_DEST[79:72] SaturateSignedWordToUnsignedByte (SRC2[31:16]);
TMP_DEST[87:80] SaturateSignedWordToUnsignedByte (SRC2[47:32]);
TMP_DEST[95:88] SaturateSignedWordToUnsignedByte (SRC2[63:48]);
TMP_DEST[103:96] SaturateSignedWordToUnsignedByte (SRC2[79:64]);
TMP_DEST[111:104] SaturateSignedWordToUnsignedByte (SRC2[95:80]);
TMP_DEST[119:112] SaturateSignedWordToUnsignedByte (SRC2[111:96]);
TMP_DEST[127:120] SaturateSignedWordToUnsignedByte (SRC2[127:112]);
IF VL >= 256
TMP_DEST[135:128] SaturateSignedWordToUnsignedByte (SRC1[143:128]);
TMP_DEST[143:136] SaturateSignedWordToUnsignedByte (SRC1[159:144]);
TMP_DEST[151:144] SaturateSignedWordToUnsignedByte (SRC1[175:160]);
TMP_DEST[159:152] SaturateSignedWordToUnsignedByte (SRC1[191:176]);
TMP_DEST[167:160] SaturateSignedWordToUnsignedByte (SRC1[207:192]);
TMP_DEST[175:168] SaturateSignedWordToUnsignedByte (SRC1[223:208]);
TMP_DEST[183:176] SaturateSignedWordToUnsignedByte (SRC1[239:224]);
TMP_DEST[191:184] SaturateSignedWordToUnsignedByte (SRC1[255:240]);
TMP_DEST[199:192] SaturateSignedWordToUnsignedByte (SRC2[143:128]);
TMP_DEST[207:200] SaturateSignedWordToUnsignedByte (SRC2[159:144]);
TMP_DEST[215:208] SaturateSignedWordToUnsignedByte (SRC2[175:160]);
TMP_DEST[223:216] SaturateSignedWordToUnsignedByte (SRC2[191:176]);
TMP_DEST[231:224] SaturateSignedWordToUnsignedByte (SRC2[207:192]);
TMP_DEST[239:232] SaturateSignedWordToUnsignedByte (SRC2[223:208]);
TMP_DEST[247:240] SaturateSignedWordToUnsignedByte (SRC2[239:224]);
5-516 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TMP_DEST[255:248] SaturateSignedWordToUnsignedByte (SRC2[255:240]);
FI;
IF VL >= 512
TMP_DEST[263:256] SaturateSignedWordToUnsignedByte (SRC1[271:256]);
TMP_DEST[271:264] SaturateSignedWordToUnsignedByte (SRC1[287:272]);
TMP_DEST[279:272] SaturateSignedWordToUnsignedByte (SRC1[303:288]);
TMP_DEST[287:280] SaturateSignedWordToUnsignedByte (SRC1[319:304]);
TMP_DEST[295:288] SaturateSignedWordToUnsignedByte (SRC1[335:320]);
TMP_DEST[303:296] SaturateSignedWordToUnsignedByte (SRC1[351:336]);
TMP_DEST[311:304] SaturateSignedWordToUnsignedByte (SRC1[367:352]);
TMP_DEST[319:312] SaturateSignedWordToUnsignedByte (SRC1[383:368]);
TMP_DEST[327:320] SaturateSignedWordToUnsignedByte (SRC2[271:256]);
TMP_DEST[335:328] SaturateSignedWordToUnsignedByte (SRC2[287:272]);
TMP_DEST[343:336] SaturateSignedWordToUnsignedByte (SRC2[303:288]);
TMP_DEST[351:344] SaturateSignedWordToUnsignedByte (SRC2[319:304]);
TMP_DEST[359:352] SaturateSignedWordToUnsignedByte (SRC2[335:320]);
TMP_DEST[367:360] SaturateSignedWordToUnsignedByte (SRC2[351:336]);
TMP_DEST[375:368] SaturateSignedWordToUnsignedByte (SRC2[367:352]);
TMP_DEST[383:376] SaturateSignedWordToUnsignedByte (SRC2[383:368]);
TMP_DEST[391:384] SaturateSignedWordToUnsignedByte (SRC1[399:384]);
TMP_DEST[399:392] SaturateSignedWordToUnsignedByte (SRC1[415:400]);
TMP_DEST[407:400] SaturateSignedWordToUnsignedByte (SRC1[431:416]);
TMP_DEST[415:408] SaturateSignedWordToUnsignedByte (SRC1[447:432]);
TMP_DEST[423:416] SaturateSignedWordToUnsignedByte (SRC1[463:448]);
TMP_DEST[431:424] SaturateSignedWordToUnsignedByte (SRC1[479:464]);
TMP_DEST[439:432] SaturateSignedWordToUnsignedByte (SRC1[495:480]);
TMP_DEST[447:440] SaturateSignedWordToUnsignedByte (SRC1[511:496]);
TMP_DEST[455:448] SaturateSignedWordToUnsignedByte (SRC2[399:384]);
TMP_DEST[463:456] SaturateSignedWordToUnsignedByte (SRC2[415:400]);
TMP_DEST[471:464] SaturateSignedWordToUnsignedByte (SRC2[431:416]);
TMP_DEST[479:472] SaturateSignedWordToUnsignedByte (SRC2[447:432]);
TMP_DEST[487:480] SaturateSignedWordToUnsignedByte (SRC2[463:448]);
TMP_DEST[495:488] SaturateSignedWordToUnsignedByte (SRC2[479:464]);
TMP_DEST[503:496] SaturateSignedWordToUnsignedByte (SRC2[495:480]);
TMP_DEST[511:504] SaturateSignedWordToUnsignedByte (SRC2[511:496]);
FI;
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN
DEST[i+7:i] TMP_DEST[i+7:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-517
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalents
VPACKUSWB__m512i _mm512_packus_epi16(__m512i m1, __m512i m2);
VPACKUSWB__m512i _mm512_mask_packus_epi16(__m512i s, __mmask64 k, __m512i m1, __m512i m2);
VPACKUSWB__m512i _mm512_maskz_packus_epi16(__mmask64 k, __m512i m1, __m512i m2);
VPACKUSWB__m256i _mm256_mask_packus_epi16(__m256i s, __mmask32 k, __m256i m1, __m256i m2);
VPACKUSWB__m256i _mm256_maskz_packus_epi16(__mmask32 k, __m256i m1, __m256i m2);
VPACKUSWB__m128i _mm_mask_packus_epi16(__m128i s, __mmask16 k, __m128i m1, __m128i m2);
VPACKUSWB__m128i _mm_maskz_packus_epi16(__mmask16 k, __m128i m1, __m128i m2);
PACKUSWB__m128i _mm_packus_epi16(__m128i m1, __m128i m2);
VPACKUSWB__m256i _mm256_packus_epi16(__m256i m1, __m256i m2);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
5-518 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PADDB/PADDW/PADDD/PADDQ—Add Packed Integers
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F FC /rRM V/V SSE2 Add packed byte integers from xmm2/m128 and
xmm1.
PADDB xmm1, xmm2/m128
66 0F FD /rRM V/V SSE2 Add packed word integers from xmm2/m128 and
xmm1.
PADDW xmm1, xmm2/m128
66 0F FE /rRM V/V SSE2 Add packed doubleword integers from xmm2/m128
and xmm1.
PADDD xmm1, xmm2/m128
66 0F D4 /rRM V/V SSE2 Add packed quadword integers from xmm2/m128
and xmm1.
PADDQ xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG FC /rRVM V/V AVX Add packed byte integers from xmm2, and
xmm3/m128 and store in xmm1.
VPADDB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG FD /rRVM V/V AVX Add packed word integers from xmm2, xmm3/m128
and store in xmm1.
VPADDW xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG FE /rRVM V/V AVX Add packed doubleword integers from xmm2,
xmm3/m128 and store in xmm1.
VPADDD xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG D4 /rRVM V/V AVX Add packed quadword integers from xmm2,
xmm3/m128 and store in xmm1.
VPADDQ xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG FC /rRVM V/V AVX2 Add packed byte integers from ymm2, and
ymm3/m256 and store in ymm1.
VPADDB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG FD /rRVM V/V AVX2 Add packed word integers from ymm2, ymm3/m256
and store in ymm1.
VPADDW ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG FE /rRVM V/V AVX2 Add packed doubleword integers from ymm2,
ymm3/m256 and store in ymm1.
VPADDD ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG D4 /rRVM V/V AVX2 Add packed quadword integers from ymm2,
ymm3/m256 and store in ymm1.
VPADDQ ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.WIG FC /r FVM V/V AVX512VL
AVX512BW
Add packed byte integers from xmm2, and
xmm3/m128 and store in xmm1 using writemask k1.
VPADDB xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.128.66.0F.WIG FD /r FVM V/V AVX512VL
AVX512BW
Add packed word integers from xmm2, and
xmm3/m128 and store in xmm1 using writemask k1.
VPADDW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.128.66.0F.W0 FE /r FV V/V AVX512VL
AVX512F
Add packed doubleword integers from xmm2, and
xmm3/m128/m32bcst and store in xmm1 using
writemask k1.
VPADDD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
Ref. # 319433-023 5-519
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
The PADDB and VPADDB instructions add packed byte integers from the first source operand and second source
operand and store the packed integer results in the destination operand. When an individual result is too large to
be represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written to the destination
operand (that is, the carry is ignored).
EVEX.NDS.128.66.0F.W1 D4 /r FV V/V AVX512VL
AVX512F
Add packed quadword integers from xmm2, and
xmm3/m128/m64bcst and store in xmm1 using
writemask k1.
VPADDQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.WIG FC /r FVM V/V AVX512VL
AVX512BW
Add packed byte integers from ymm2, and
ymm3/m256 and store in ymm1 using writemask k1.
VPADDB ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.256.66.0F.WIG FD /r FVM V/V AVX512VL
AVX512BW
Add packed word integers from ymm2, and
ymm3/m256 and store in ymm1 using writemask k1.
VPADDW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.256.66.0F.W0 FE /r FV V/V AVX512VL
AVX512F
Add packed doubleword integers from ymm2,
ymm3/m256/m32bcst and store in ymm1 using
writemask k1.
VPADDD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.256.66.0F.W1 D4 /r FV V/V AVX512VL
AVX512F
Add packed quadword integers from ymm2,
ymm3/m256/m64bcst and store in ymm1 using
writemask k1.
VPADDQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.WIG FC /r FVM V/V AVX512BW Add packed byte integers from zmm2, and
zmm3/m512 and store in zmm1 using writemask k1.
VPADDB zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.512.66.0F.WIG FD /r FVM V/V AVX512BW Add packed word integers from zmm2, and
zmm3/m512 and store in zmm1 using writemask k1.
VPADDW zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.512.66.0F.W0 FE /rFV V/V AVX512F Add packed doubleword integers from zmm2,
zmm3/m512/m32bcst and store in zmm1 using
writemask k1.
VPADDD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.512.66.0F.W1 D4 /rFV V/V AVX512F Add packed quadword integers from zmm2,
zmm3/m512/m64bcst and store in zmm1 using
writemask k1.
VPADDQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-520 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
The PADDW and VPADDW instructions add packed word integers from the first source operand and second source
operand and store the packed integer results in the destination operand. When an individual result is too large to
be represented in 16 bits (overflow), the result is wrapped around and the low 16 bits are written to the destination
operand (that is, the carry is ignored).
The PADDD and VPADDD instructions add packed doubleword integers from the first source operand and second
source operand and store the packed integer results in the destination operand. When an individual result is too
large to be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits are written to the
destination operand (that is, the carry is ignored).
The PADDQ and VPADDQ instructions add packed quadword integers from the first source operand and second
source operand and store the packed integer results in the destination operand. When a quadword result is too
large to be represented in 64 bits (overflow), the result is wrapped around and the low 64 bits are written to the
destination operand (that is, the carry is ignored).
Note that the (V)PADDB, (V)PADDW, (V)PADDD and (V)PADDQ instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not set bits in the EFLAGS register to indi-
cate overflow and/or a carry. To prevent undetected overflow conditions, software must control the ranges of
values operated on.
EVEX encoded VPADDD/Q: The first source operand is a ZMM/YMM/XMM register. The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the
writemask.
EVEX encoded VPADDB/W: The first source operand is a ZMM/YMM/XMM register. The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM
register updated according to the writemask.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. the upper bits (MAX_VL-1:256) of the
destination are cleared.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are unmodified.
Operation
PADDB (Legacy SSE instruction)
DEST[7:0] DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 15th byte *)
DEST[127:120] DEST[127:120] + SRC[127:120];
DEST[MAX_VL-1:128] (Unmodified)
PADDW (Legacy SSE instruction)
DEST[15:0] DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] DEST[127:112] + SRC[127:112];
DEST[MAX_VL-1:128] (Unmodified)
PADDD (Legacy SSE instruction)
DEST[31:0] DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96]DEST[127:96] + SRC[127:96];
DEST[MAX_VL-1:128] (Unmodified)
PADDQ (Legacy SSE instruction)
DEST[63:0] DEST[63:0] + SRC[63:0];
Ref. # 319433-023 5-521
INSTRUCTION SET REFERENCE, A-Z
DEST[127:64]DEST[127:64] + SRC[127:64];
DEST[MAX_VL-1:128] (Unmodified)
VPADDB (VEX.128 encoded instruction)
DEST[7:0]SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 15th byte *)
DEST[127:120] SRC1[127:120] + SRC2[127:120];
DEST[MAX_VL-1:128] ← 0;
VPADDW (VEX.128 encoded instruction)
DEST[15:0] SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] SRC1[127:112] + SRC2[127:112];
DEST[MAX_VL-1:128] ← 0;
VPADDD (VEX.128 encoded instruction)
DEST[31:0] SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] SRC1[127:96] + SRC2[127:96];
DEST[MAX_VL-1:128] ← 0;
VPADDQ (VEX.128 encoded instruction)
DEST[63:0] SRC1[63:0] + SRC2[63:0];
DEST[127:64] SRC1[127:64] + SRC2[127:64];
DEST[MAX_VL-1:128] ← 0;
VPADDB (VEX.256 encoded instruction)
DEST[7:0]SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 31th byte *)
DEST[255:248] SRC1[255:248] + SRC2[255:248];
VPADDW (VEX.256 encoded instruction)
DEST[15:0] SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 15th word *)
DEST[255:240] SRC1[255:240] + SRC2[255:240];
VPADDD (VEX.256 encoded instruction)
DEST[31:0] SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 7th doubleword *)
DEST[255:224] SRC1[255:224] + SRC2[255:224];
VPADDQ (VEX.256 encoded instruction)
DEST[63:0] SRC1[63:0] + SRC2[63:0];
DEST[127:64] SRC1[127:64] + SRC2[127:64];
DEST[191:128] SRC1[191:128] + SRC2[191:128];
DEST[255:192] SRC1[255:192] + SRC2[255:192];
VPADDB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SRC1[i+7:i] + SRC2[i+7:i]
5-522 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPADDW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SRC1[i+15:i] + SRC2[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPADDD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] SRC1[i+31:i] + SRC2[31:0]
ELSE DEST[i+31:i] SRC1[i+31:i] + SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-523
INSTRUCTION SET REFERENCE, A-Z
VPADDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] SRC1[i+63:i] + SRC2[63:0]
ELSE DEST[i+63:i] SRC1[i+63:i] + SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPADDB__m512i _mm512_add_epi8 ( __m512i a, __m512i b)
VPADDW__m512i _mm512_add_epi16 ( __m512i a, __m512i b)
VPADDB__m512i _mm512_mask_add_epi8 ( __m512i s, __mmask64 m, __m512i a, __m512i b)
VPADDW__m512i _mm512_mask_add_epi16 ( __m512i s, __mmask32 m, __m512i a, __m512i b)
VPADDB__m512i _mm512_maskz_add_epi8 (__mmask64 m, __m512i a, __m512i b)
VPADDW__m512i _mm512_maskz_add_epi16 (__mmask32 m, __m512i a, __m512i b)
VPADDB__m256i _mm256_mask_add_epi8 (__m256i s, __mmask32 m, __m256i a, __m256i b)
VPADDW__m256i _mm256_mask_add_epi16 (__m256i s, __mmask16 m, __m256i a, __m256i b)
VPADDB__m256i _mm256_maskz_add_epi8 (__mmask32 m, __m256i a, __m256i b)
VPADDW__m256i _mm256_maskz_add_epi16 (__mmask16 m, __m256i a, __m256i b)
VPADDB__m128i _mm_mask_add_epi8 (__m128i s, __mmask16 m, __m128i a, __m128i b)
VPADDW__m128i _mm_mask_add_epi16 (__m128i s, __mmask8 m, __m128i a, __m128i b)
VPADDB__m128i _mm_maskz_add_epi8 (__mmask16 m, __m128i a, __m128i b)
VPADDW__m128i _mm_maskz_add_epi16 (__mmask8 m, __m128i a, __m128i b)
VPADDD __m512i _mm512_add_epi32( __m512i a, __m512i b);
VPADDD __m512i _mm512_mask_add_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPADDD __m512i _mm512_maskz_add_epi32( __mmask16 k, __m512i a, __m512i b);
VPADDD __m256i _mm256_mask_add_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPADDD __m256i _mm256_maskz_add_epi32( __mmask8 k, __m256i a, __m256i b);
VPADDD __m128i _mm_mask_add_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPADDD __m128i _mm_maskz_add_epi32( __mmask8 k, __m128i a, __m128i b);
VPADDQ __m512i _mm512_add_epi64( __m512i a, __m512i b);
VPADDQ __m512i _mm512_mask_add_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPADDQ __m512i _mm512_maskz_add_epi64( __mmask8 k, __m512i a, __m512i b);
VPADDQ __m256i _mm256_mask_add_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPADDQ __m256i _mm256_maskz_add_epi64( __mmask8 k, __m256i a, __m256i b);
VPADDQ __m128i _mm_mask_add_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPADDQ __m128i _mm_maskz_add_epi64( __mmask8 k, __m128i a, __m128i b);
PADDB __m128i _mm_add_epi8 (__m128i a,__m128i b )
PADDW __m128i _mm_add_epi16 ( __m128i a, __m128i b)
PADDD __m128i _mm_add_epi32 ( __m128i a, __m128i b)
PADDQ __m128i _mm_add_epi64 ( __m128i a, __m128i b)
VPADDB __m256i _mm256_add_epi8 (__m256ia,__m256i b )
5-524 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPADDW __m256i _mm256_add_epi16 ( __m256i a, __m256i b)
VPADDD __m256i _mm256_add_epi32 ( __m256i a, __m256i b)
VPADDQ __m256i _mm256_add_epi64 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPADDD/Q, see Exceptions Type E4.
EVEX-encoded VPADDB/W, see Exceptions Type E4.nb.
Ref. # 319433-023 5-525
INSTRUCTION SET REFERENCE, A-Z
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation
Instruction Operand Encoding
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F EC /rRM V/V SSE2 Add packed signed byte integers from xmm2/m128
and xmm1 and saturate the results.
PADDSB xmm1, xmm2/m128
66 0F ED /rRM V/V SSE2 Add packed signed word integers from xmm2/m128
and xmm1 and saturate the results.
PADDSW xmm1, xmm2/m128
VEX.NDS.128.66.0F EC RVM V/V AVX Add packed signed byte integers from xmm2, and
xmm3/m128 and store the saturated results in
xmm1.
VPADDSB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F ED RVM V/V AVX Add packed signed word integers from xmm2, and
xmm3/m128 and store the saturated results in
xmm1.
VPADDSW xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F EC RVM V/V AVX2 Add packed signed byte integers from ymm2, and
ymm3/m256 and store the saturated results in
ymm1.
VPADDSB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F ED RVM V/V AVX2 Add packed signed word integers from ymm2, and
ymm3/m256 and store the saturated results in
ymm1.
VPADDSW ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.WIG EC /r FVM V/V AVX512VL
AVX512BW
Add packed signed byte integers from xmm2, and
xmm3/m128 and store the saturated results in
xmm1 under writemask k1.
VPADDSB xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG EC /r FVM V/V AVX512VL
AVX512BW
Add packed signed byte integers from ymm2, and
ymm3/m256 and store the saturated results in
ymm1 under writemask k1.
VPADDSB ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG EC /r FVM V/V AVX512BW Add packed signed byte integers from zmm2, and
zmm3/m512 and store the saturated results in zmm1
under writemask k1.
VPADDSB zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F.WIG ED /r FVM V/V AVX512VL
AVX512BW
Add packed signed word integers from xmm2, and
xmm3/m128 and store the saturated results in
xmm1 under writemask k1.
VPADDSW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG ED /r FVM V/V AVX512VL
AVX512BW
Add packed signed word integers from ymm2, and
ymm3/m256 and store the saturated results in
ymm1 under writemask k1.
VPADDSW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG ED /r FVM V/V AVX512BW Add packed signed word integers from zmm2, and
zmm3/m512 and store the saturated results in zmm1
under writemask k1.
VPADDSW zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-526 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Description
(V)PADDSB performs a SIMD add of the packed signed integers with saturation from the first source operand and
second source operand and stores the packed integer results in the destination operand. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the saturated value
of 7FH or 80H, respectively, is written to the destination operand.
(V)PADDSW performs a SIMD add of the packed signed word integers with saturation from the first source operand
and second source operand and stores the packed integer results in the destination operand. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the satu-
rated value of 7FFFH or 8000H, respectively, is written to the destination operand.
EVEX encoded versions: The first source operand is an ZMM/YMM/XMM register. The second source operand is an
ZMM/YMM/XMM register or a memory location. The destination operand is an ZMM/YMM/XMM register.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128) of
the corresponding register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding register destination are unmodified.
Operation
PADDSB (Legacy SSE instruction)
DEST[7:0] SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 15th bytes *)
DEST[127:120] SaturateToSignedByte (DEST[127:120] + SRC[127:120]);
DEST[MAX_VL-1:128] (Unmodified)
PADDSW (Legacy SSE instruction)
DEST[15:0] SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] SaturateToSignedWord (DEST[127:112] + SRC[127:112])
DEST[MAX_VL-1:128] (Unmodified)
VPADDSB (VEX.128 encoded version)
DEST[7:0] SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 15th bytes *)
DEST[127:120] SaturateToSignedByte (SRC1[127:120] + SRC2[127:120]);
DEST[MAX_VL-1:128]← 0
VPADDSW (VEX.128 encoded version)
DEST[15:0] SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] SaturateToSignedWord (SRC1[127:112] + SRC2[127:112])
DEST[MAX_VL-1:128]← 0
VPADDSB (VEX.256 encoded version)
DEST[7:0] SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 31st bytes *)
DEST[255:248] SaturateToSignedByte (SRC1[255:248] + SRC2[255:248]);
DEST[MAX_VL-1:256]← 0
VPADDSW (VEX.256 encoded version)
DEST[15:0] SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);
Ref. # 319433-023 5-527
INSTRUCTION SET REFERENCE, A-Z
(* Repeat add operation for 2nd through 15th words *)
DEST[255:240] SaturateToSignedWord (SRC1[255:240] + SRC2[255:240])
DEST[MAX_VL-1:256]← 0
VPADDSB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateToSignedByte (SRC1[i+7:i] + SRC2[i+7:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPADDSW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateToSignedWord (SRC1[i+15:i] + SRC2[i+15:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPADDSB__m512i _mm512_adds_epi8 ( __m512i a, __m512i b)
VPADDSW__m512i _mm512_adds_epi16 ( __m512i a, __m512i b)
VPADDSB__m512i _mm512_mask_adds_epi8 ( __m512i s, __mmask64 m, __m512i a, __m512i b)
VPADDSW__m512i _mm512_mask_adds_epi16 ( __m512i s, __mmask32 m, __m512i a, __m512i b)
VPADDSB__m512i _mm512_maskz_adds_epi8 (__mmask64 m, __m512i a, __m512i b)
VPADDSW__m512i _mm512_maskz_adds_epi16 (__mmask32 m, __m512i a, __m512i b)
VPADDSB__m256i _mm256_mask_adds_epi8 (__m256i s, __mmask32 m, __m256i a, __m256i b)
VPADDSW__m256i _mm256_mask_adds_epi16 (__m256i s, __mmask16 m, __m256i a, __m256i b)
VPADDSB__m256i _mm256_maskz_adds_epi8 (__mmask32 m, __m256i a, __m256i b)
VPADDSW__m256i _mm256_maskz_adds_epi16 (__mmask16 m, __m256i a, __m256i b)
VPADDSB__m128i _mm_mask_adds_epi8 (__m128i s, __mmask16 m, __m128i a, __m128i b)
VPADDSW__m128i _mm_mask_adds_epi16 (__m128i s, __mmask8 m, __m128i a, __m128i b)
VPADDSB__m128i _mm_maskz_adds_epi8 (__mmask16 m, __m128i a, __m128i b)
VPADDSW__m128i _mm_maskz_adds_epi16 (__mmask8 m, __m128i a, __m128i b)
PADDSB__m128i _mm_adds_epi8 ( __m128i a, __m128i b)
5-528 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PADDSW__m128i _mm_adds_epi16 ( __m128i a, __m128i b)
VPADDSB__m128i _mm_adds_epi8 ( __m128i a, __m128i b)
VPADDSW__m128i _mm_adds_epi16 ( __m128i a, __m128i b)
VPADDSB__m256i _mm256_adds_epi8 ( __m256i a, __m256i b)
VPADDSW__m256i _mm256_adds_epi16 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-529
INSTRUCTION SET REFERENCE, A-Z
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation
Instruction Operand Encoding
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F DC /rRM V/V SSE2 Add packed unsigned byte integers from
xmm2/m128 and xmm1 and saturate the
results.
PADDUSB xmm1, xmm2/m128
66 0F DD /rRM V/V SSE2 Add packed unsigned word integers from
xmm2/m128 and xmm1 and saturate the
results.
PADDUSW xmm1, xmm2/m128
VEX.NDS.128.66.0F DC RVM V/V AVX Add packed unsigned byte integers from xmm2,
and xmm3/m128 and store the saturated
results in xmm1.
VPADDUSB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F DD RVM V/V AVX Add packed unsigned word integers from xmm2,
and xmm3/m128 and store the saturated
results in xmm1.
VPADDUSW xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F DC RVM V/V AVX2 Add packed unsigned byte integers from ymm2,
and ymm3/m256 and store the saturated
results in ymm1.
VPADDUSB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F DD RVM V/V AVX2 Add packed unsigned word integers from ymm2,
and ymm3/m256 and store the saturated
results in ymm1.
VPADDUSW ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.WIG DC /r FVM V/V AVX512VL
AVX512BW
Add packed unsigned byte integers from xmm2,
and xmm3/m128 and store the saturated
results in xmm1 under writemask k1.
VPADDUSB xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG DC /r FVM V/V AVX512VL
AVX512BW
Add packed unsigned byte integers from ymm2,
and ymm3/m256 and store the saturated
results in ymm1 under writemask k1.
VPADDUSB ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG DC /r FVM V/V AVX512BW Add packed unsigned byte integers from zmm2,
and zmm3/m512 and store the saturated
results in zmm1 under writemask k1.
VPADDUSB zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F.WIG DD /r FVM V/V AVX512VL
AVX512BW
Add packed unsigned word integers from xmm2,
and xmm3/m128 and store the saturated
results in xmm1 under writemask k1.
VPADDUSW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG DD /r FVM V/V AVX512VL
AVX512BW
Add packed unsigned word integers from ymm2,
and ymm3/m256 and store the saturated
results in ymm1 under writemask k1.
VPADDUSW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG DD /r FVM V/V AVX512BW Add packed unsigned word integers from zmm2,
and zmm3/m512 and store the saturated
results in zmm1 under writemask k1.
VPADDUSW zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-530 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Description
(V)PADDUSB performs a SIMD add of the packed unsigned integers with saturation from the first source operand
and second source operand and stores the packed integer results in the destination operand. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than FFH), the saturated value of FFH
is written to the destination operand.
(V)PADDUSW performs a SIMD add of the packed unsigned word integers with saturation from the first source
operand and second source operand and stores the packed integer results in the destination operand. When an
individual word result is beyond the range of an unsigned word integer (that is, greater than FFFFH), the saturated
value of FFFFH is written to the destination operand.
EVEX encoded versions: The first source operand is an ZMM/YMM/XMM register. The second source operand is an
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination is an ZMM/YMM/XMM register.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding destination register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding register destination are unmodified.
Operation
PADDUSB (Legacy SSE instruction)
DEST[7:0] SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 15th bytes *)
DEST[127:120] SaturateToUnsignedByte (DEST[127:120] + SRC[127:120]);
DEST[MAX_VL-1:128] (Unmodified)
PADDUSW (Legacy SSE instruction)
DEST[15:0] SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] SaturateToUnsignedWord (DEST[127:112] + SRC[127:112])
DEST[MAX_VL-1:128] (Unmodified)
VPADDUSB (VEX.128 encoded version)
DEST[7:0] SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 15th bytes *)
DEST[127:120] SaturateToUnsignedByte (SRC1[127:120] + SRC2[127:120]);
DEST[MAX_VL-1:128]← 0
VPADDUSW (VEX.128 encoded version)
DEST[15:0] SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] SaturateToUnsignedWord (SRC1[127:112] + SRC2[127:112])
DEST[MAX_VL-1:128]← 0
VPADDUSB (VEX.256 encoded version)
DEST[7:0] SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 31st bytes *)
DEST[255:248] SaturateToUnsignedByte (SRC1[255:248] + SRC2[255:248]);
DEST[MAX_VL-1:256]← 0
VPADDUSW (VEX.256 encoded version)
DEST[15:0] SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
Ref. # 319433-023 5-531
INSTRUCTION SET REFERENCE, A-Z
(* Repeat add operation for 2nd through 15th words *)
DEST[255:240] SaturateToUnsignedWord (SRC1[255:240] + SRC2[255:240])
DEST[MAX_VL-1:256]← 0
VPADDUSB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateToUnsignedByte (SRC1[i+7:i] + SRC2[i+7:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPADDUSW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateToUnsignedWord (SRC1[i+15:i] + SRC2[i+15:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPADDUSB__m512i _mm512_adds_epu8 ( __m512i a, __m512i b)
VPADDUSW__m512i _mm512_adds_epu16 ( __m512i a, __m512i b)
VPADDUSB__m512i _mm512_mask_adds_epu8 ( __m512i s, __mmask64 m, __m512i a, __m512i b)
VPADDUSW__m512i _mm512_mask_adds_epu16 ( __m512i s, __mmask32 m, __m512i a, __m512i b)
VPADDUSB__m512i _mm512_maskz_adds_epu8 (__mmask64 m, __m512i a, __m512i b)
VPADDUSW__m512i _mm512_maskz_adds_epu16 (__mmask32 m, __m512i a, __m512i b)
VPADDUSB__m256i _mm256_mask_adds_epu8 (__m256i s, __mmask32 m, __m256i a, __m256i b)
VPADDUSW__m256i _mm256_mask_adds_epu16 (__m256i s, __mmask16 m, __m256i a, __m256i b)
VPADDUSB__m256i _mm256_maskz_adds_epu8 (__mmask32 m, __m256i a, __m256i b)
VPADDUSW__m256i _mm256_maskz_adds_epu16 (__mmask16 m, __m256i a, __m256i b)
VPADDUSB__m128i _mm_mask_adds_epu8 (__m128i s, __mmask16 m, __m128i a, __m128i b)
VPADDUSW__m128i _mm_mask_adds_epu16 (__m128i s, __mmask8 m, __m128i a, __m128i b)
VPADDUSB__m128i _mm_maskz_adds_epu8 (__mmask16 m, __m128i a, __m128i b)
VPADDUSW__m128i _mm_maskz_adds_epu16 (__mmask8 m, __m128i a, __m128i b)
PADDUSB__m128i _mm_adds_epu8 ( __m128i a, __m128i b)
5-532 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PADDUSW__m128i _mm_adds_epu16 ( __m128i a, __m128i b)
VPADDUSB__m256i _mm256_adds_epu8 ( __m256i a, __m256i b)
VPADDUSW__m256i _mm256_adds_epu16 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-533
INSTRUCTION SET REFERENCE, A-Z
PALIGNR—Byte Align
Instruction Operand Encoding
Description
PALIGNR concatenates the first source operand and the second source operand into an intermediate composite,
shifts the composite at byte granularity to the right by a constant immediate, and extracts the right aligned result
into the destination. The immediate value is considered unsigned. Immediate shift counts larger than 32 for 128-
bit operands produces a zero result.
Legacy SSE instructions: In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding YMM destination register remain
unchanged.
EVEX.512 encoded version: The first source operand is a ZMM register and contains four 16-byte blocks. The
second source operand is a ZMM register or a 512-bit memory location containing four 16-byte block. The destina-
tion operand is a ZMM register and contain four 16-byte results. The imm8[7:0] is the common shift count
used for each of the four successive 16-byte block sources. The low 16-byte block of the two source operands
produce the low 16-byte result of the destination operand, the high 16-byte block of the two source operands
produce the high 16-byte result of the destination operand and so on for the blocks in the middle.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 3A 0F /r ib RM V/V SSSE3 Concatenate destination and source operands, extract
byte aligned result shifted to the right by constant value
in imm8 and result is stored in xmm1.
PALIGNR xmm1, xmm2/m128, imm8
VEX.NDS.128.66.0F3A 0F /r ib RVM V/V AVX Concatenate xmm2 and xmm3/m128 into a 32-byte
intermediate result, extract byte aligned result shifted
to the right by constant value in imm8 and result is
stored in xmm1.
VPALIGNR xmm1, xmm2,
xmm3/m128, imm8
VEX.NDS.256.66.0F3A 0F /r ib RVM V/V AVX2 Concatenate pairs of 16 bytes in ymm2 and
ymm3/m256 into 32-byte intermediate result, extract
byte-aligned, 16-byte result shifted to the right by
constant values in imm8 from each intermediate result,
and two 16-byte results are stored in ymm1.
VPALIGNR ymm1, ymm2,
ymm3/m256, imm8
EVEX.NDS.128.66.0F3A.WIG 0F /r ib FVM V/V AVX512VL
AVX512BW
Concatenate xmm2 and xmm3/m128 into a 32-byte
intermediate result, extract byte aligned result shifted
to the right by constant value in imm8 and result is
stored in xmm1.
VPALIGNR xmm1 {k1}{z}, xmm2,
xmm3/m128, imm8
EVEX.NDS.256.66.0F3A.WIG 0F /r ib FVM V/V AVX512VL
AVX512BW
Concatenate pairs of 16 bytes in ymm2 and
ymm3/m256 into 32-byte intermediate result, extract
byte-aligned, 16-byte result shifted to the right by
constant values in imm8 from each intermediate result,
and two 16-byte results are stored in ymm1.
VPALIGNR ymm1 {k1}{z}, ymm2,
ymm3/m256, imm8
EVEX.NDS.512.66.0F3A.WIG 0F /r ib FVM V/V AVX512BW Concatenate pairs of 16 bytes in zmm2 and
zmm3/m512 into 32-byte intermediate result, extract
byte-aligned, 16-byte result shifted to the right by
constant values in imm8 from each intermediate result,
and four 16-byte results are stored in zmm1.
VPALIGNR zmm1 {k1}{z}, zmm2,
zmm3/m512, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-534 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register and contains two 16-byte
blocks. The second source operand is a YMM register or a 256-bit memory location containing two 16-byte block.
The destination operand is a YMM register and contain two 16-byte results. The imm8[7:0] is the common shift
count used for the two lower 16-byte block sources and the two upper 16-byte block sources. The low 16-byte
block of the two source operands produce the low 16-byte result of the destination operand, the high 16-byte block
of the two source operands produce the high 16-byte result of the destination operand. The upper bits (MAX_VL-
1:256) of the corresponding ZMM register destination are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand
is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits
(MAX_VL-1:128) of the corresponding ZMM register destination are zeroed.
Concatenation is done with 128-bit data in the first and second source operand for both 128-bit and 256-bit
instructions. The high 128-bit of the intermediate composite 256-bit result came from the 128-bit data from the
first source operand, the low 128-bit of the intermediate result came from the 128-bit data of the second source
operand. In the same way, the 512-bit encoded version produces results on a block of 16-byte basis.
Operation
PALIGNR
temp1[255:0] ((DEST[127:0] << 128) OR SRC[127:0])>>(imm8*8);
DEST[127:0] temp1[127:0]
DEST[MAX_VL-1:128] (Unmodified)
VPALIGNR (VEX.128 encoded versions)
temp1[255:0] ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8*8);
DEST[127:0] temp1[127:0]
DEST[MAX_VL-1:128] 0
VPALIGNR (VEX.256 encoded version)
temp1[255:0] ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8[7:0]*8);
DEST[127:0] temp1[127:0]
temp1[255:0] ((SRC1[255:128] << 128) OR SRC2[255:128])>>(imm8[7:0]*8);
DEST[255:128] temp1[127:0]
DEST[MAX_VL-1:256] 0
Figure 5-29. 256-bit VPALIGN Instruction Operation
127 0
SRC1
Imm8[7:0]*8
Imm8[7:0]*8
127 0
SRC2
255 128
SRC1
255 128
SRC2
255 128
DEST
127 0
DEST
Ref. # 319433-023 5-535
INSTRUCTION SET REFERENCE, A-Z
VPALIGNR (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR l 0 TO VL-1 with increments of 128
temp1[255:0] ((SRC1[l+127:l] << 128) OR SRC2[l+127:l])>>(imm8[7:0]*8);
TMP_DEST[l+127:l] temp1[127:0]
ENDFOR;
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] TMP_DEST[i+7:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPALIGNR __m512i _mm512_alignr_epi8 (__m512i a, __m512i b, const int n)
VPALIGNR __m512i _mm512_mask_alignr_epi8 (__m512i s, __mmask64 m, __m512i a, __m512i b, const int n)
VPALIGNR __m512i _mm512_maskz_alignr_epi8 ( __mmask64 m, __m512i a, __m512i b, const int n)
VPALIGNR __m256i _mm256_mask_alignr_epi8 (__m256i s, __mmask32 m, __m256i a, __m256i b, const int n)
VPALIGNR __m256i _mm256_maskz_alignr_epi8 (__mmask32 m, __m256i a, __m256i b, const int n)
VPALIGNR __m128i _mm_mask_alignr_epi8 (__m128i s, __mmask16 m, __m128i a, __m128i b, const int n)
VPALIGNR __m128i _mm_maskz_alignr_epi8 (__mmask16 m, __m128i a, __m128i b, const int n)
PALIGNR __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)
VPALIGNR __m256i _mm256_alignr_epi8 (__m256i a, __m256i b, const int n)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
5-536 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PAND—Logical AND
Instruction Operand Encoding
Description
Performs a bitwise logical AND operation on the first source operand and second source operand and stores the
result in the destination operand. Each bit of the result is set to 1 if the corresponding bits of the first and second
operands are 1; otherwise, it is set to 0.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1 at 32/64-bit granularity.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F DB /r RM V/V SSE2 Bitwise AND of xmm2/m128 and xmm1.
PAND xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG DB /rRVM V/V AVX Bitwise AND of xmm2, and xmm3/m128 and store
result in xmm1.
VPAND xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG DB /rRVM V/V AVX2 Bitwise AND of ymm2, and ymm3/m256 and store
result in ymm1.
VPAND ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W0 DB /r FV V/V AVX512VL
AVX512F
Bitwise AND of packed doubleword integers in xmm2
and xmm3/m128/m32bcst and store result in xmm1
using writemask k1.
VPANDD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F.W0 DB /r FV V/V AVX512VL
AVX512F
Bitwise AND of packed doubleword integers in ymm2
and ymm3/m256/m32bcst and store result in ymm1
using writemask k1.
VPANDD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F.W0 DB /rFV V/V AVX512F Bitwise AND of packed doubleword integers in zmm2
and zmm3/m512/m32bcst and store result in zmm1
using writemask k1.
VPANDD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F.W1 DB /r FV V/V AVX512VL
AVX512F
Bitwise AND of packed quadword integers in xmm2
and xmm3/m128/m64bcst and store result in xmm1
using writemask k1.
VPANDQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 DB /r FV V/V AVX512VL
AVX512F
Bitwise AND of packed quadword integers in ymm2
and ymm3/m256/m64bcst and store result in ymm1
using writemask k1.
VPANDQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 DB /rFV V/V AVX512F Bitwise AND of packed quadword integers in zmm2
and zmm3/m512/m64bcst and store result in zmm1
using writemask k1.
VPANDQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-537
INSTRUCTION SET REFERENCE, A-Z
VEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256)
of the corresponding ZMM register destination are zeroed.
VEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are unmodified.
Operation
PAND (Legacy SSE instruction)
DEST[127:0] ← (DEST[127:0] BITWISE AND SRC[127:0])
VPAND (VEX.128 encoded instruction)
DEST[127:0] ← (SRC1[127:0] AND SRC2[127:0])
DEST[MAX_VL-1:128] ← 0
VPAND (VEX.256 encoded instruction)
DEST[255:0] ← (SRC1[255:0] AND SRC2[255:0])
DEST[MAX_VL-1:256] ← 0
VPANDD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] SRC1[i+31:i] BITWISE AND SRC2[31:0]
ELSE DEST[i+31:i] SRC1[i+31:i] BITWISE AND SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-538 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPANDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] SRC1[i+63:i] BITWISE AND SRC2[63:0]
ELSE DEST[i+63:i] SRC1[i+63:i] BITWISE AND SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPANDD __m512i _mm512_and_epi32( __m512i a, __m512i b);
VPANDD __m512i _mm512_mask_and_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPANDD __m512i _mm512_maskz_and_epi32( __mmask16 k, __m512i a, __m512i b);
VPANDQ __m512i _mm512_and_epi64( __m512i a, __m512i b);
VPANDQ __m512i _mm512_mask_and_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPANDQ __m512i _mm512_maskz_and_epi64( __mmask8 k, __m512i a, __m512i b);
VPANDND __m256i _mm256_mask_and_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPANDND __m256i _mm256_maskz_and_epi32( __mmask8 k, __m256i a, __m256i b);
VPANDND __m128i _mm_mask_and_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDND __m128i _mm_maskz_and_epi32( __mmask8 k, __m128i a, __m128i b);
VPANDNQ __m256i _mm256_mask_and_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPANDNQ __m256i _mm256_maskz_and_epi64( __mmask8 k, __m256i a, __m256i b);
VPANDNQ __m128i _mm_mask_and_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDNQ __m128i _mm_maskz_and_epi64( __mmask8 k, __m128i a, __m128i b);
PAND __m128i _mm_and_si128 ( __m128i a, __m128i b)
VPAND __m256i _mm256_and_si256 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-539
INSTRUCTION SET REFERENCE, A-Z
PANDN—Logical AND NOT
Instruction Operand Encoding
Description
Performs a bitwise logical NOT operation on the first source operand, then performs bitwise AND with second
source operand and stores the result in the destination operand. Each bit of the result is set to 1 if the corre-
sponding bit in the first operand is 0 and the corresponding bit in the second operand is 1; otherwise, it is set to 0.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1 at 32/64-bit granularity.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F DF /r RM V/V SSE2 Bitwise AND NOT of xmm2/m128 and xmm1.
PANDN xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG DF /r RVM V/V AVX Bitwise AND NOT of xmm2, and xmm3/m128 and store
result in xmm1.
VPANDN xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG DF /r RVM V/V AVX2 Bitwise AND NOT of ymm2, and ymm3/m256 and store
result in ymm1.
VPANDN ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W0 DF /r FV V/V AVX512VL
AVX512F
Bitwise AND NOT of packed doubleword integers in
xmm2 and xmm3/m128/m32bcst and store result in
xmm1 using writemask k1.
VPANDND xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F.W0 DF /r FV V/V AVX512VL
AVX512F
Bitwise AND NOT of packed doubleword integers in
ymm2 and ymm3/m256/m32bcst and store result in
ymm1 using writemask k1.
VPANDND ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F.W0 DF /r FV V/V AVX512F Bitwise AND NOT of packed doubleword integers in
zmm2 and zmm3/m512/m32bcst and store result in
zmm1 using writemask k1.
VPANDND zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F.W1 DF /r FV V/V AVX512VL
AVX512F
Bitwise AND NOT of packed quadword integers in
xmm2 and xmm3/m128/m64bcst and store result in
xmm1 using writemask k1.
VPANDNQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 DF /r FV V/V AVX512VL
AVX512F
Bitwise AND NOT of packed quadword integers in
ymm2 and ymm3/m256/m64bcst and store result in
ymm1 using writemask k1.
VPANDNQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 DF /r FV V/V AVX512F Bitwise AND NOT of packed quadword integers in
zmm2 and zmm3/m512/m64bcst and store result in
zmm1 using writemask k1.
VPANDNQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-540 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256)
of the corresponding ZMM register destination are zeroed.
VEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are unmodified.
Operation
PANDN (Legacy SSE instruction)
DEST[127:0] ← ((NOT DEST[127:0]) AND SRC[127:0])
VPANDN (VEX.128 encoded instruction)
DEST[127:0] ← (( NOT SRC1[127:0]) AND SRC2[127:0])
DEST[MAX_VL-1:128] ← 0
VPANDN (VEX.256 encoded instruction)
DEST[255:0] ← ((NOT SRC1[255:0]) AND SRC2[255:0])
DEST[MAX_VL-1:256] ← 0
VPANDND (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] ((NOT SRC1[i+31:i]) AND SRC2[31:0])
ELSE DEST[i+31:i] ((NOT SRC1[i+31:i]) AND SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-541
INSTRUCTION SET REFERENCE, A-Z
VPANDNQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] ((NOT SRC1[i+63:i]) AND SRC2[63:0])
ELSE DEST[i+63:i] ((NOT SRC1[i+63:i]) AND SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPANDND __m512i _mm512_andnot_epi32( __m512i a, __m512i b);
VPANDND __m512i _mm512_mask_andnot_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPANDND __m512i _mm512_maskz_andnot_epi32( __mmask16 k, __m512i a, __m512i b);
VPANDND __m256i _mm256_mask_andnot_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPANDND __m256i _mm256_maskz_andnot_epi32( __mmask8 k, __m256i a, __m256i b);
VPANDND __m128i _mm_mask_andnot_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDND __m128i _mm_maskz_andnot_epi32( __mmask8 k, __m128i a, __m128i b);
VPANDNQ __m512i _mm512_andnot_epi64( __m512i a, __m512i b);
VPANDNQ __m512i _mm512_mask_andnot_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPANDNQ __m512i _mm512_maskz_andnot_epi64( __mmask8 k, __m512i a, __m512i b);
VPANDNQ __m256i _mm256_mask_andnot_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPANDNQ __m256i _mm256_maskz_andnot_epi64( __mmask8 k, __m256i a, __m256i b);
VPANDNQ __m128i _mm_mask_andnot_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPANDNQ __m128i _mm_maskz_andnot_epi64( __mmask8 k, __m128i a, __m128i b);
PANDN __m128i _mm_andnot_si128 ( __m128i a, __m128i b)
VPANDN __m256i _mm256_andnot_si256 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
5-542 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PAVGB/PAVGW—Average Packed Integers
Instruction Operand Encoding
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F E0, /rRM V/V SSE2 Average packed unsigned byte integers from
xmm2/m128 and xmm1 with rounding.
PAVGB xmm1, xmm2/m128
66 0F E3, /rRM V/V SSE2 Average packed unsigned word integers from
xmm2/m128 and xmm1 with rounding.
PAVGW xmm1, xmm2/m128
VEX.NDS.128.66.0F E0 RVM V/V AVX Average packed unsigned byte integers from xmm2,
and xmm3/m128 with rounding and store to xmm1.
VPAVGB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F E3 RVM V/V AVX Average packed unsigned word integers from
xmm2, xmm3/m128 with rounding to xmm1.
VPAVGW xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F E0 RVM V/V AVX2 Average packed unsigned byte integers from ymm2,
and ymm3/m256 with rounding and store to ymm1.
VPAVGB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F E3 RVM V/V AVX2 Average packed unsigned word integers from
ymm2, ymm3/m256 with rounding to ymm1.
VPAVGW ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.WIG E0 /r FVM V/V AVX512VL
AVX512BW
Average packed unsigned byte integers from xmm2,
and xmm3/m128 with rounding and store to xmm1
under writemask k1.
VPAVGB xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG E0 /r FVM V/V AVX512VL
AVX512BW
Average packed unsigned byte integers from ymm2,
and ymm3/m256 with rounding and store to ymm1
under writemask k1.
VPAVGB ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG E0 /r FVM V/V AVX512BW Average packed unsigned byte integers from zmm2,
and zmm3/m512 with rounding and store to zmm1
under writemask k1.
VPAVGB zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F.WIG E3 /r FVM V/V AVX512VL
AVX512BW
Average packed unsigned word integers from
xmm2, xmm3/m128 with rounding to xmm1 under
writemask k1.
VPAVGW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG E3 /r FVM V/V AVX512VL
AVX512BW
Average packed unsigned word integers from
ymm2, ymm3/m256 with rounding to ymm1 under
writemask k1.
VPAVGW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG E3 /r FVM V/V AVX512BW Average packed unsigned word integers from
zmm2, zmm3/m512 with rounding to zmm1 under
writemask k1.
VPAVGW zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-543
INSTRUCTION SET REFERENCE, A-Z
Description
Performs a SIMD average of the packed unsigned integers from the second source operand and the first operand,
and stores the results in the destination operand. For each corresponding pair of data elements in the first and
second operands, the elements are added together, a 1 is added to the temporary sum, and that result is shifted
right one bit position.
The (V)PAVGB instruction operates on packed unsigned bytes and the (V)PAVGW instruction operates on packed
unsigned words.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM
register or a 512-bit memory location. The destination operand is a ZMM register.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand
is a YMM register or a 256-bit memory location. The destination operand is a YMM register.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand
is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits
(MAX_VL-1:128) of the corresponding register destination are zeroed.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (MAX_VL-1:128) of the corresponding register destination are unmodified.
Operation
PAVGB (Legacy SSE instruction)
DEST[7:0] (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 15 )
DEST[127:120] (SRC[127:120] + DEST[127:120)] + 1) >> 1;
DEST[MAX_VL-1:128] unmodified;
PAVGW (Legacy SSE instruction)
SRC[15:0] (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 7)
DEST[127:48] (SRC[127:112] + DEST[127:112] + 1) >> 1;
DEST[MAX_VL-1:128] unmodified;
VPAVGB (VEX.128 encoded instruction)
DEST[7:0] (SRC1[7:0] + SRC2[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 15)
DEST[127:48] (SRC1[127:112] + SRC2[127:112] + 1) >> 1;
DEST[MAX_VL-1:128] 0
VPAVGW (VEX.128 encoded instruction)
DEST[15:0] (SRC1[15:0] + SRC2[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 7)
DEST[127:4] (SRC1[127:112] + SRC2[127:112] + 1) >> 1;
DEST[MAX_VL-1:128] 0
VPAVGB (VEX.256 encoded instruction)
DEST[7:0] (SRC1[7:0] + SRC2[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 31)
DEST[255:248] (SRC1[255:248] + SRC2[255:248] + 1) >> 1;
DEST[MAX_VL-1:256] 0
VPAVGW (VEX.256 encoded instruction)
DEST[15:0] (SRC1[15:0] + SRC2[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 15)
DEST[255:14]) (SRC1[255:240] + SRC2[255:240] + 1) >> 1;
5-544 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[MAX_VL-1:256] 0
VPAVGB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] (SRC1[i+7:i] + SRC2[i+7:i] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPAVGW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] (SRC1[i+15:i] + SRC2[i+15:i] + 1) >> 1
; (* Temp sum before shifting is 17 bits *)
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPAVGB __m512i _mm512_avg_epu8( __m512i a, __m512i b);
VPAVGW __m512i _mm512_avg_epu16( __m512i a, __m512i b);
VPAVGB __m512i _mm512_mask_avg_epu8(__m512i s, __mmask64 m, __m512i a, __m512i b);
VPAVGW __m512i _mm512_mask_avg_epu16(__m512i s, __mmask32 m, __m512i a, __m512i b);
VPAVGB __m512i _mm512_maskz_avg_epu8( __mmask64 m, __m512i a, __m512i b);
VPAVGW __m512i _mm512_maskz_avg_epu16( __mmask32 m, __m512i a, __m512i b);
VPAVGB __m256i _mm256_mask_avg_epu8(__m256i s, __mmask32 m, __m256i a, __m256i b);
VPAVGW __m256i _mm256_mask_avg_epu16(__m256i s, __mmask16 m, __m256i a, __m256i b);
VPAVGB __m256i _mm256_maskz_avg_epu8( __mmask32 m, __m256i a, __m256i b);
VPAVGW __m256i _mm256_maskz_avg_epu16( __mmask16 m, __m256i a, __m256i b);
VPAVGB __m128i _mm_mask_avg_epu8(__m128i s, __mmask16 m, __m128i a, __m128i b);
VPAVGW __m128i _mm_mask_avg_epu16(__m128i s, __mmask8 m, __m128i a, __m128i b);
VPAVGB __m128i _mm_maskz_avg_epu8( __mmask16 m, __m128i a, __m128i b);
VPAVGW __m128i _mm_maskz_avg_epu16( __mmask8 m, __m128i a, __m128i b);
PAVGB__m128i _mm_avg_epu8 ( __m128i a, __m128i b)
PAVGW__m128i _mm_avg_epu16 ( __m128i a, __m128i b)
VPAVGB__m256i _mm256_avg_epu8 ( __m256i a, __m256i b)
VPAVGW__m256i _mm256_avg_epu16 ( __m256i a, __m256i b)
Ref. # 319433-023 5-545
INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
5-546 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPBROADCASTM—Broadcast Mask to Vector Register
Instruction Operand Encoding
Description
Broadcasts the zero-extended 64/32 bit value of the low byte/word of the source operand (the second operand) to
each 64/32 bit element of the destination operand (the first operand). The source operand is an opmask register.
The destination operand is a ZMM register (EVEX.512), YMM register (EVEX.256), or XMM register (EVEX.128).
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VPBROADCASTMB2Q
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j*64
DEST[i+63:i] ZeroExtend(SRC[7:0])
ENDFOR
DEST[MAX_VL-1:VL] 0
VPBROADCASTMW2D
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j*32
DEST[i+31:i] ZeroExtend(SRC[15:0])
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPBROADCASTMB2Q __m512i _mm512_broadcastmb_epi64( __mmask8);
VPBROADCASTMW2D __m512i _mm512_broadcastmw_epi32( __mmask16);
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F38.W1 2A /r
VPBROADCASTMB2Q xmm1, k1
RM V/V AVX512VL
AVX512CD
Broadcast low byte value in k1 to two locations in xmm1.
EVEX.256.F3.0F38.W1 2A /r
VPBROADCASTMB2Q ymm1, k1
RM V/V AVX512VL
AVX512CD
Broadcast low byte value in k1 to four locations in ymm1.
EVEX.512.F3.0F38.W1 2A /r
VPBROADCASTMB2Q zmm1, k1
RM V/V AVX512CD Broadcast low byte value in k1 to eight locations in zmm1.
EVEX.128.F3.0F38.W0 3A /r
VPBROADCASTMW2D xmm1, k1
RM V/V AVX512VL
AVX512CD
Broadcast low word value in k1 to four locations in xmm1.
EVEX.256.F3.0F38.W0 3A /r
VPBROADCASTMW2D ymm1, k1
RM V/V AVX512VL
AVX512CD
Broadcast low word value in k1 to eight locations in ymm1.
EVEX.512.F3.0F38.W0 3A /r
VPBROADCASTMW2D zmm1, k1
RM V/V AVX512CD Broadcast low word value in k1 to sixteen locations in
zmm1.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-547
INSTRUCTION SET REFERENCE, A-Z
VPBROADCASTMB2Q __m256i _mm256_broadcastmb_epi64( __mmask8);
VPBROADCASTMW2D __m256i _mm256_broadcastmw_epi32( __mmask8);
VPBROADCASTMB2Q __m128i _mm_broadcastmb_epi64( __mmask8);
VPBROADCASTMW2D __m128i _mm_broadcastmw_epi32( __mmask8);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E6NF.
5-548 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ—Compare Packed Integers for Equality
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 74 /r RM V/V SSE2 Compare packed bytes in xmm2/m128 and xmm1
for equality.
PCMPEQB xmm1, xmm2/m128
66 0F 75 /r RM V/V SSE2 Compare packed words in xmm2/m128 and xmm1
for equality.
PCMPEQW xmm1, xmm2/m128
66 0F 76 /r RM V/V SSE2 Compare packed doublewords in xmm2/m128 and
xmm1 for equality.
PCMPEQD xmm1, xmm2/m128
66 0F 38 29 /r RM V/V SSE4_1 Compare packed quadwords in xmm2/m128 and
xmm1 for equality.
PCMPEQQ xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 74 /r RVM V/V AVX Compare packed bytes in xmm3/m128 and xmm2
for equality.
VPCMPEQB xmm1, xmm2, xmm3 /m128
VEX.NDS.128.66.0F.WIG 75 /r RVM V/V AVX Compare packed words in xmm3/m128 and xmm2
for equality.
VPCMPEQW xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG 76 /r RVM V/V AVX Compare packed doublewords in xmm3/m128 and
xmm2 for equality.
VPCMPEQD xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F38.WIG 29 /r RVM V/V AVX Compare packed quadwords in xmm3/m128 and
xmm2 for equality.
VPCMPEQQ xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG 74 /r RVM V/V AVX2 Compare packed bytes in ymm3/m256 and ymm2
for equality.
VPCMPEQB ymm1, ymm2, ymm3 /m256
VEX.NDS.256.66.0F.WIG 75 /r RVM V/V AVX2 Compare packed words in ymm3/m256 and ymm2
for equality.
VPCMPEQW ymm1, ymm2, ymm3 /m256
VEX.NDS.256.66.0F.WIG 76 /r RVM V/V AVX2 Compare packed doublewords in ymm3/m256 and
ymm2 for equality.
VPCMPEQD ymm1, ymm2, ymm3 /m256
VEX.NDS.256.66.0F38.WIG 29 /r RVM V/V AVX2 Compare packed quadwords in ymm3/m256 and
ymm2 for equality.
VPCMPEQQ ymm1, ymm2, ymm3 /m256
EVEX.NDS.128.66.0F.W0 76 /r FV V/V AVX512VL Compare Equal between int32 vector xmm2 and
int32 vector xmm3/m128/m32bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPEQD k1 {k2}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F.W0 76 /r FV V/V AVX512VL Compare Equal between int32 vector ymm2 and
int32 vector ymm3/m256/m32bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPEQD k1 {k2}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F.W0 76 /r FV V/V AVX512F Compare Equal between int32 vectors in zmm2 and
zmm3/m512/m32bcst, and set destination k1
according to the comparison results under
writemask k2,
VPCMPEQD k1 {k2}, zmm2,
zmm3/m512/m32bcst
Ref. # 319433-023 5-549
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Performs a SIMD compare for equality of the packed bytes, words, doublewords, or quadwords in the first source
operand and the second source operand. If a pair of data elements is equal, the corresponding data element in the
destination operand is set to all 1s; otherwise, it is set to all 0s.
EVEX.NDS.128.66.0F38.W1 29 /r FV V/V AVX512VL Compare Equal between int64 vector xmm2 and
int64 vector xmm3/m128/m64bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPEQQ k1 {k2}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 29 /r FV V/V AVX512VL Compare Equal between int64 vector ymm2 and
int64 vector ymm3/m256/m64bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPEQQ k1 {k2}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 29 /r FV V/V AVX512F Compare Equal between int64 vector zmm2 and
int64 vector zmm3/m512/m64bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPEQQ k1 {k2}, zmm2,
zmm3/m512/m64bcst
EVEX.NDS.128.66.0F.WIG 74 /r FVM V/V AVX512VL
AVX512BW
Compare packed bytes in xmm3/m128 and xmm2
for equality and set vector mask k1 to reflect the
zero/nonzero status of each element of the result,
under writemask.
VPCMPEQB k1 {k2}, xmm2, xmm3 /m128
EVEX.NDS.256.66.0F.WIG 74 /r FVM V/V AVX512VL
AVX512BW
Compare packed bytes in ymm3/m256 and ymm2
for equality and set vector mask k1 to reflect the
zero/nonzero status of each element of the result,
under writemask.
VPCMPEQB k1 {k2}, ymm2, ymm3 /m256
EVEX.NDS.512.66.0F.WIG 74 /r FVM V/V AVX512BW Compare packed bytes in zmm3/m512 and zmm2
for equality and set vector mask k1 to reflect the
zero/nonzero status of each element of the result,
under writemask.
VPCMPEQB k1 {k2}, zmm2, zmm3 /m512
EVEX.NDS.128.66.0F.WIG 75 /r FVM V/V AVX512VL
AVX512BW
Compare packed words in xmm3/m128 and xmm2
for equality and set vector mask k1 to reflect the
zero/nonzero status of each element of the result,
under writemask.
VPCMPEQW k1 {k2}, xmm2, xmm3 /m128
EVEX.NDS.256.66.0F.WIG 75 /r FVM V/V AVX512VL
AVX512BW
Compare packed words in ymm3/m256 and ymm2
for equality and set vector mask k1 to reflect the
zero/nonzero status of each element of the result,
under writemask.
VPCMPEQW k1 {k2}, ymm2, ymm3 /m256
EVEX.NDS.512.66.0F.WIG 75 /r FVM V/V AVX512BW Compare packed words in zmm3/m512 and zmm2
for equality and set vector mask k1 to reflect the
zero/nonzero status of each element of the result,
under writemask.
VPCMPEQW k1 {k2}, zmm2, zmm3 /m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-550 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
The PCMPEQB instruction compares the corresponding bytes in the destination and source operands; the
PCMPEQW instruction compares the corresponding words in the destination and source operands; the PCMPEQD
instruction compares the corresponding doublewords in the destination and source operands, and the PCMPEQQ
instruction compares the corresponding quadwords in the destination and source operands.
Legacy SSE instructions: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. In 64-bit mode, using a REX prefix in the form of REX.R
permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding YMM register
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.
EVEX encoded VPCMPEQD/Q: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 32/64-bit memory location. The destination operand (first operand) is a mask register updated
according to the writemask k2.
EVEX encoded VPCMPEQB/W: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand
(first operand) is a mask register updated according to the writemask k2.
Operation
COMPARE_BYTES_EQUAL (SRC1, SRC2)
IF SRC1[7:0] = SRC2[7:0]
THEN DEST[7:0] FFH;
ELSE DEST[7:0] 0; FI;
(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
IF SRC1[127:120] = SRC2[127:120]
THEN DEST[127:120] FFH;
ELSE DEST[127:120] 0; FI;
COMPARE_WORDS_EQUAL (SRC1, SRC2)
IF SRC1[15:0] = SRC2[15:0]
THEN DEST[15:0] FFFFH;
ELSE DEST[15:0] 0; FI;
(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
IF SRC1[127:112] = SRC2[127:112]
THEN DEST[127:112] FFFFH;
ELSE DEST[127:112] 0; FI;
COMPARE_DWORDS_EQUAL (SRC1, SRC2)
IF SRC1[31:0] = SRC2[31:0]
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 0; FI;
(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
IF SRC1[127:96] = SRC2[127:96]
THEN DEST[127:96] FFFFFFFFH;
ELSE DEST[127:96] 0; FI;
Ref. # 319433-023 5-551
INSTRUCTION SET REFERENCE, A-Z
COMPARE_QWORDS_EQUAL (SRC1, SRC2)
IF SRC1[63:0] = SRC2[63:0]
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0; FI;
IF SRC1[127:64] = SRC2[127:64]
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] 0; FI;
VPCMPEQB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k2[j] OR *no writemask*
THEN
/* signed comparison */
CMP SRC1[i+7:i] == SRC2[i+7:i];
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking onlyFI;
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPEQB (VEX.256 encoded version)
DEST[127:0] COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_BYTES_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[MAX_VL-1:256] 0
VPCMPEQB (VEX.128 encoded version)
DEST[127:0] COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[MAX_VL-1:128] 0
PCMPEQB (128-bit Legacy SSE version)
DEST[127:0] COMPARE_BYTES_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
VPCMPEQW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k2[j] OR *no writemask*
THEN
/* signed comparison */
CMP SRC1[i+15:i] == SRC2[i+15:i];
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking onlyFI;
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
5-552 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPCMPEQW (VEX.256 encoded version)
DEST[127:0] COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_WORDS_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[MAX_VL-1:256] 0
VPCMPEQW (VEX.128 encoded version)
DEST[127:0] COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[MAX_VL-1:128] 0
PCMPEQW (128-bit Legacy SSE version)
DEST[127:0] COMPARE_WORDS_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
VPCMPEQD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k2[j] OR *no writemask*
THEN
/* signed comparison */
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN CMP SRC1[i+31:i] = SRC2[31:0];
ELSE CMP SRC1[i+31:i] = SRC2[i+31:i];
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPEQD (VEX.256 encoded version)
DEST[127:0] COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_DWORDS_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[MAX_VL-1:256] 0
VPCMPEQD (VEX.128 encoded version)
DEST[127:0] COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[MAX_VL-1:128] 0
PCMPEQD (128-bit Legacy SSE version)
DEST[127:0] COMPARE_DWORDS_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
Ref. # 319433-023 5-553
INSTRUCTION SET REFERENCE, A-Z
VPCMPEQQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k2[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN CMP SRC1[i+63:i] = SRC2[63:0];
ELSE CMP SRC1[i+63:i] = SRC2[i+63:i];
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPEQQ (VEX.256 encoded version)
DEST[127:0] COMPARE_QWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_QWORDS_EQUAL(SRC1[255:128],SRC2[255:128])
DEST[MAX_VL-1:256] 0
VPCMPEQQ (VEX.128 encoded version)
DEST[127:0] COMPARE_QWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[MAX_VL-1:128] 0
PCMPEQQ (128-bit Legacy SSE version)
DEST[127:0] COMPARE_QWORDS_EQUAL(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPCMPEQB __mmask64 _mm512_cmpeq_epi8_mask(__m512i a, __m512i b);
VPCMPEQB __mmask64 _mm512_mask_cmpeq_epi8_mask(__mmask64 k, __m512i a, __m512i b);
VPCMPEQB __mmask32 _mm256_cmpeq_epi8_mask(__m256i a, __m256i b);
VPCMPEQB __mmask32 _mm256_mask_cmpeq_epi8_mask(__mmask32 k, __m256i a, __m256i b);
VPCMPEQB __mmask16 _mm_cmpeq_epi8_mask(__m128i a, __m128i b);
VPCMPEQB __mmask16 _mm_mask_cmpeq_epi8_mask(__mmask16 k, __m128i a, __m128i b);
VPCMPEQD __mmask16 _mm512_cmpeq_epi32_mask( __m512i a, __m512i b);
VPCMPEQD __mmask16 _mm512_mask_cmpeq_epi32_mask(__mmask16 k, __m512i a, __m512i b);
VPCMPEQQ __mmask8 _mm512_cmpeq_epi64_mask( __m512i a, __m512i b);
VPCMPEQQ __mmask8 _mm512_mask_cmpeq_epi64_mask(__mmask8 k, __m512i a, __m512i b);
VPCMPEQD __mmask8 _mm256_cmpeq_epi32_mask(__m256i a, __m256i b);
VPCMPEQD __mmask8 _mm256_mask_cmpeq_epi32_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPEQQ __mmask8 _mm256_cmpeq_epi64_mask( __m256i a, __m256i b);
VPCMPEQQ __mmask8 _mm256_mask_cmpeq_epi64_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPEQD __mmask8 _mm_cmpeq_epi32_mask(__m128i a, __m128i b);
VPCMPEQD __mmask8 _mm_mask_cmpeq_epi32_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPEQQ __mmask8 _mm_cmpeq_epi64_mask( __m128i a, __m128i b);
VPCMPEQQ __mmask8 _mm_mask_cmpeq_epi64_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPEQW __mmask32 _mm512_cmpeq_epi16_mask(__m512i a, __m512i b);
VPCMPEQW __mmask32 _mm512_mask_cmpeq_epi16_mask(__mmask32 k, __m512i a, __m512i b);
VPCMPEQW __mmask16 _mm256_cmpeq_epi16_mask(__m256i a, __m256i b);
VPCMPEQW __mmask16 _mm256_mask_cmpeq_epi16_mask(__mmask16 k, __m256i a, __m256i b);
5-554 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPCMPEQW __mmask8 _mm_cmpeq_epi16_mask(__m128i a, __m128i b);
VPCMPEQW __mmask8 _mm_mask_cmpeq_epi16_mask(__mmask8 k, __m128i a, __m128i b);
PCMPEQB __m128i _mm_cmpeq_epi8 ( __m128i a, __m128i b)
PCMPEQW __m128i _mm_cmpeq_epi16 ( __m128i a, __m128i b)
PCMPEQD __m128i _mm_cmpeq_epi32 ( __m128i a, __m128i b)
PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b);
PCMPEQB __m256i _mm256_cmpeq_epi8 ( __m256i a, __m256i b)
PCMPEQW __m256i _mm256_cmpeq_epi16 ( __m256i a, __m256i b)
PCMPEQD __m256i _mm256_cmpeq_epi32 ( __m256i a, __m256i b)
PCMPEQQ __m256i _mm256_cmpeq_epi64( __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPCMPEQD/Q, see Exceptions Type E4.
EVEX-encoded VPCMPEQB/W, see Exceptions Type E4.nb.
Ref. # 319433-023 5-555
INSTRUCTION SET REFERENCE, A-Z
PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ—Compare Packed Integers for Greater Than
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 64 /r RM V/V SSE2 Compare packed signed byte integers in xmm1 and
xmm2/m128 for greater than.
PCMPGTB xmm1, xmm2/m128
66 0F 65 /r RM V/V SSE2 Compare packed signed word integers in xmm1 and
xmm2/m128 for greater than.
PCMPGTW xmm1, xmm2/m128
66 0F 66 /r RM V/V SSE2 Compare packed signed doubleword integers in
xmm1 and xmm2/m128 for greater than.
PCMPGTD xmm1, xmm2/m128
66 0F 38 37 /r RM V/V SSE4_2 Compare packed qwords in xmm2/m128 and xmm1
for greater than.
PCMPGTQ xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 64 /r RVM V/V AVX Compare packed signed byte integers in xmm2 and
xmm3/m128 for greater than.
VPCMPGTB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG 65 /r RVM V/V AVX Compare packed signed word integers in xmm2 and
xmm3/m128 for greater than.
VPCMPGTW xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG 66 /r RVM V/V AVX Compare packed signed doubleword integers in
xmm2 and xmm3/m128 for greater than.
VPCMPGTD xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F38.WIG 37 /r RVM V/V AVX Compare packed signed qwords in xmm2 and
xmm3/m128 for greater than.
VPCMPGTQ xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG 64 /r RVM V/V AVX2 Compare packed signed byte integers in ymm2 and
ymm3/m256 for greater than.
VPCMPGTB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG 65 /r RVM V/V AVX2 Compare packed signed word integers in ymm2 and
ymm3/m256 for greater than.
VPCMPGTW ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG 66 /r RVM V/V AVX2 Compare packed signed doubleword integers in
ymm2 and ymm3/m256 for greater than.
VPCMPGTD ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F38.WIG 37 /r RVM V/V AVX2 Compare packed signed qwords in ymm2 and
ymm3/m256 for greater than.
VPCMPGTQ ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W0 66 /r FV V/V AVX512VL Compare Greater between int32 vector xmm2 and
int32 vector xmm3/m128/m32bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTD k1 {k2}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F.W0 66 /r FV V/V AVX512VL Compare Greater between int32 vector ymm2 and
int32 vector ymm3/m256/m32bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTD k1 {k2}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F.W0 66 /r FV V/V AVX512F Compare Greater between int32 elements in zmm2
and zmm3/m512/m32bcst, and set destination k1
according to the comparison results under writemask.
k2.
VPCMPGTD k1 {k2}, zmm2,
zmm3/m512/m32bcst
5-556 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Performs a SIMD signed compare for the greater value of the packed byte, word, doubleword, or quadword integers
in the first source operand and the second source operand. If a data element in the first source operand is greater
than the corresponding date element in the second source operand, the corresponding data element in the desti-
nation operand is set to all 1s; otherwise, it is set to all 0s.
EVEX.NDS.128.66.0F38.W1 37 /r FV V/V AVX512VL Compare Greater between int64 vector xmm2 and
int64 vector xmm3/m128/m64bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTQ k1 {k2}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 37 /r FV V/V AVX512VL Compare Greater between int64 vector ymm2 and
int64 vector ymm3/m256/m64bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTQ k1 {k2}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 37 /r FV V/V AVX512F Compare Greater between int64 vector zmm2 and
int64 vector zmm3/m512/m64bcst, and set vector
mask k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTQ k1 {k2}, zmm2,
zmm3/m512/m64bcst
EVEX.NDS.128.66.0F.WIG 64 /r FVM V/V AVX512VL
AVX512BW
Compare packed signed byte integers in xmm2 and
xmm3/m128 for greater than, and set vector mask
k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTB k1 {k2}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG 64 /r FVM V/V AVX512VL
AVX512BW
Compare packed signed byte integers in ymm2 and
ymm3/m256 for greater than, and set vector mask
k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTB k1 {k2}, ymm2, ymm3/m256
EVEX.NDS.512.66.0F.WIG 64 /r FVM V/V AVX512BW Compare packed signed byte integers in zmm2 and
zmm3/m512 for greater than, and set vector mask
k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTB k1 {k2}, zmm2, zmm3/m512
EVEX.NDS.128.66.0F.WIG 65 /r FVM V/V AVX512VL
AVX512BW
Compare packed signed word integers in xmm2 and
xmm3/m128 for greater than, and set vector mask
k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTW k1 {k2}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG 65 /r FVM V/V AVX512VL
AVX512BW
Compare packed signed word integers in ymm2 and
ymm3/m256 for greater than, and set vector mask
k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTW k1 {k2}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG 65 /r FVM V/V AVX512BW Compare packed signed word integers in zmm2 and
zmm3/m512 for greater than, and set vector mask
k1 to reflect the zero/nonzero status of each
element of the result, under writemask.
VPCMPGTW k1 {k2}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-557
INSTRUCTION SET REFERENCE, A-Z
The PCMPGTB instruction compares the corresponding signed byte integers in the first and second source oper-
ands; the PCMPGTW instruction compares the corresponding signed word integers in the first and second source
operands; the PCMPGTD instruction compares the corresponding signed doubleword integers in the first and
second source operands, and the PCMPGTQ instruction compares the corresponding signed qword integers in the
first and second source operands.
Legacy SSE instructions: In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15). The second source operand can be an XMM register or a 128-bit memory loca-
tion. The first source operand and destination operand are XMM registers.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The
first source operand and destination operand are XMM registers. Bits (MAX_VL-1:128) of the corresponding YMM
destination register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The
first source operand and destination operand are XMM registers. Bits (MAX_VL-1:128) of the corresponding YMM
register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.
EVEX encoded VPCMPGTD/Q: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector
broadcasted from a 32/64-bit memory location. The destination operand (first operand) is a mask register updated
according to the writemask k2.
EVEX encoded VPCMPGTB/W: The first source operand (second operand) is a ZMM/YMM/XMM register. The second
source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand
(first operand) is a mask register updated according to the writemask k2.
Operation
COMPARE_BYTES_GREATER (SRC1, SRC2)
IF SRC1[7:0] > SRC2[7:0]
THEN DEST[7:0] FFH;
ELSE DEST[7:0] 0; FI;
(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
IF SRC1[127:120] > SRC2[127:120]
THEN DEST[127:120] FFH;
ELSE DEST[127:120] 0; FI;
COMPARE_WORDS_GREATER (SRC1, SRC2)
IF SRC1[15:0] > SRC2[15:0]
THEN DEST[15:0] FFFFH;
ELSE DEST[15:0] 0; FI;
(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
IF SRC1[127:112] > SRC2[127:112]
THEN DEST[127:112] FFFFH;
ELSE DEST[127:112] 0; FI;
COMPARE_DWORDS_GREATER (SRC1, SRC2)
IF SRC1[31:0] > SRC2[31:0]
THEN DEST[31:0] FFFFFFFFH;
ELSE DEST[31:0] 0; FI;
(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
IF SRC1[127:96] > SRC2[127:96]
THEN DEST[127:96] FFFFFFFFH;
ELSE DEST[127:96] 0; FI;
5-558 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
COMPARE_QWORDS_GREATER (SRC1, SRC2)
IF SRC1[63:0] > SRC2[63:0]
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0; FI;
IF SRC1[127:64] > SRC2[127:64]
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] 0; FI;
VPCMPGTB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k2[j] OR *no writemask*
THEN
/* signed comparison */
CMP SRC1[i+7:i] > SRC2[i+7:i];
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking onlyFI;
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPGTB (VEX.256 encoded version)
DEST[127:0] COMPARE_BYTES_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_BYTES_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAX_VL-1:256] 0
VPCMPGTB (VEX.128 encoded version)
DEST[127:0] COMPARE_BYTES_GREATER(SRC1[127:0],SRC2[127:0])
DEST[MAX_VL-1:128] 0
PCMPGTB (128-bit Legacy SSE version)
DEST[127:0] COMPARE_BYTES_GREATER(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
VPCMPGTW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k2[j] OR *no writemask*
THEN
/* signed comparison */
CMP SRC1[i+15:i] > SRC2[i+15:i];
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking onlyFI;
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
Ref. # 319433-023 5-559
INSTRUCTION SET REFERENCE, A-Z
VPCMPGTW (VEX.256 encoded version)
DEST[127:0] COMPARE_WORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_WORDS_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAX_VL-1:256] 0
VPCMPGTW (VEX.128 encoded version)
DEST[127:0] COMPARE_WORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[MAX_VL-1:128] 0
PCMPGTW (128-bit Legacy SSE version)
DEST[127:0] COMPARE_WORDS_GREATER(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
VPCMPGTD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
IF k2[j] OR *no writemask*
THEN
/* signed comparison */
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN CMP SRC1[i+31:i] > SRC2[31:0];
ELSE CMP SRC1[i+31:i] > SRC2[i+31:i];
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPGTD (VEX.256 encoded version)
DEST[127:0] COMPARE_DWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_DWORDS_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAX_VL-1:256] 0
VPCMPGTD (VEX.128 encoded version)
DEST[127:0] COMPARE_DWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[MAX_VL-1:128] 0
PCMPGTD (128-bit Legacy SSE version)
DEST[127:0] COMPARE_DWORDS_GREATER(DEST[127:0],SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
5-560 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPCMPGTQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k2[j] OR *no writemask*
THEN
/* signed comparison */
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN CMP SRC1[i+63:i] > SRC2[63:0];
ELSE CMP SRC1[i+63:i] > SRC2[i+63:i];
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPGTQ (VEX.256 encoded version)
DEST[127:0] COMPARE_QWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] COMPARE_QWORDS_GREATER(SRC1[255:128],SRC2[255:128])
DEST[MAX_VL-1:256] 0
VPCMPGTQ (VEX.128 encoded version)
DEST[127:0] COMPARE_QWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[MAX_VL-1:128] 0
PCMPGTQ (128-bit Legacy SSE version)
DEST[127:0] COMPARE_QWORDS_GREATER(DEST[127:0],SRC2[127:0])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPCMPGTB __mmask64 _mm512_cmpgt_epi8_mask(__m512i a, __m512i b);
VPCMPGTB __mmask64 _mm512_mask_cmpgt_epi8_mask(__mmask64 k, __m512i a, __m512i b);
VPCMPGTB __mmask32 _mm256_cmpgt_epi8_mask(__m256i a, __m256i b);
VPCMPGTB __mmask32 _mm256_mask_cmpgt_epi8_mask(__mmask32 k, __m256i a, __m256i b);
VPCMPGTB __mmask16 _mm_cmpgt_epi8_mask(__m128i a, __m128i b);
VPCMPGTB __mmask16 _mm_mask_cmpgt_epi8_mask(__mmask16 k, __m128i a, __m128i b);
VPCMPGTD __mmask16 _mm512_cmpgt_epi32_mask(__m512i a, __m512i b);
VPCMPGTD __mmask16 _mm512_mask_cmpgt_epi32_mask(__mmask16 k, __m512i a, __m512i b);
VPCMPGTQ __mmask8 _mm512_cmpgt_epi64_mask( __m512i a, __m512i b);
VPCMPGTQ __mmask8 _mm512_mask_cmpgt_epi64_mask(__mmask8 k, __m512i a, __m512i b);
VPCMPGTD __mmask8 _mm256_cmpgt_epi32_mask(__m256i a, __m256i b);
VPCMPGTD __mmask8 _mm256_mask_cmpgt_epi32_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPGTQ __mmask8 _mm256_cmpgt_epi64_mask( __m256i a, __m256i b);
VPCMPGTQ __mmask8 _mm256_mask_cmpgt_epi64_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPGTD __mmask8 _mm_cmpgt_epi32_mask(__m128i a, __m128i b);
VPCMPGTD __mmask8 _mm_mask_cmpgt_epi32_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPGTQ __mmask8 _mm_cmpgt_epi64_mask( __m128i a, __m128i b);
VPCMPGTQ __mmask8 _mm_mask_cmpgt_epi64_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPGTW __mmask32 _mm512_cmpgt_epi16_mask(__m512i a, __m512i b);
VPCMPGTW __mmask32 _mm512_mask_cmpgt_epi16_mask(__mmask32 k, __m512i a, __m512i b);
VPCMPGTW __mmask16 _mm256_cmpgt_epi16_mask(__m256i a, __m256i b);
Ref. # 319433-023 5-561
INSTRUCTION SET REFERENCE, A-Z
VPCMPGTW __mmask16 _mm256_mask_cmpgt_epi16_mask(__mmask16 k, __m256i a, __m256i b);
VPCMPGTW __mmask8 _mm_cmpgt_epi16_mask(__m128i a, __m128i b);
VPCMPGTW __mmask8 _mm_mask_cmpgt_epi16_mask(__mmask8 k, __m128i a, __m128i b);
PCMPGTB __m128i _mm_cmpgt_epi8 ( __m128i a, __m128i b)
PCMPGTW __m128i _mm_cmpgt_epi16 ( __m128i a, __m128i b)
PCMPGTD __m128i _mm_cmpgt_epi32 ( __m128i a, __m128i b)
PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b);
PCMPGTB __m256i _mm256_cmpgt_epi8 ( __m256i a, __m256i b)
PCMPGTW __m256i _mm256_cmpgt_epi16 ( __m256i a, __m256i b)
PCMPGTD __m256i _mm256_cmpgt_epi32 ( __m256i a, __m256i b)
PCMPGTQ __m256i _mm256_cmpgt_epi64( __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPCMPGTD/Q, see Exceptions Type E4.
EVEX-encoded VPCMPGTB/W, see Exceptions Type E4.nb.
5-562 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPCMPB/VPCMPUB—Compare Packed Byte Values Into Mask
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed byte values in the second source operand and the first source operand and
returns the results of the comparison to the mask destination operand. The comparison predicate operand (imme-
diate byte) specifies the type of comparison performed on each pair of packed values in the two source operands.
The result of each comparison is a single mask bit result of 1 (comparison true) or 0 (comparison false).
VPCMPB performs a comparison between pairs of signed byte values.
VPCMPUB performs a comparison between pairs of unsigned byte values.
The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand (first operand) is a mask
register k1. Up to 64/32/16 comparisons are performed with results written to the destination operand under the
writemask k2.
The comparison predicate operand is an 8-bit immediate: bits 2:0 define the type of comparison to be performed.
Bits 3 through 7 of the immediate are reserved. Compiler can implement the pseudo-op mnemonic listed in Table
5-17.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W0 3F /r ib FVM V/V AVX512VL
AVX512BW
Compare packed signed byte values in xmm3/m128 and
xmm2 using bits 2:0 of imm8 as a comparison predicate
with writemask k2 and leave the result in mask register
k1.
VPCMPB k1 {k2}, xmm2,
xmm3/m128, imm8
EVEX.NDS.256.66.0F3A.W0 3F /r ib FVM V/V AVX512VL
AVX512BW
Compare packed signed byte values in ymm3/m256 and
ymm2 using bits 2:0 of imm8 as a comparison predicate
with writemask k2 and leave the result in mask register
k1.
VPCMPB k1 {k2}, ymm2,
ymm3/m256, imm8
EVEX.NDS.512.66.0F3A.W0 3F /r ib FVM V/V AVX512BW Compare packed signed byte values in zmm3/m512 and
zmm2 using bits 2:0 of imm8 as a comparison predicate
with writemask k2 and leave the result in mask register
k1.
VPCMPB k1 {k2}, zmm2,
zmm3/m512, imm8
EVEX.NDS.128.66.0F3A.W0 3E /r ib FVM V/V AVX512VL
AVX512BW
Compare packed unsigned byte values in xmm3/m128
and xmm2 using bits 2:0 of imm8 as a comparison
predicate with writemask k2 and leave the result in mask
register k1.
VPCMPUB k1 {k2}, xmm2,
xmm3/m128, imm8
EVEX.NDS.256.66.0F3A.W0 3E /r ib FVM V/V AVX512VL
AVX512BW
Compare packed unsigned byte values in ymm3/m256
and ymm2 using bits 2:0 of imm8 as a comparison
predicate with writemask k2 and leave the result in mask
register k1.
VPCMPUB k1 {k2}, ymm2,
ymm3/m256, imm8
EVEX.NDS.512.66.0F3A.W0 3E /r ib FVM V/V AVX512BW Compare packed unsigned byte values in zmm3/m512
and zmm2 using bits 2:0 of imm8 as a comparison
predicate with writemask k2 and leave the result in mask
register k1.
VPCMPUB k1 {k2}, zmm2,
zmm3/m512, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (w) vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-563
INSTRUCTION SET REFERENCE, A-Z
:
Operation
CASE (COMPARISON PREDICATE) OF
0: OP EQ;
1: OP LT;
2: OP LE;
3: OP FALSE;
4: OP NEQ ;
5: OP NLT;
6: OP NLE;
7: OP TRUE;
ESAC;
VPCMPB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k2[j] OR *no writemask*
THEN
CMP SRC1[i+7:i] OP SRC2[i+7:i];
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] = 0 ; zeroing-masking onlyFI;
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPUB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k2[j] OR *no writemask*
THEN
CMP SRC1[i+7:i] OP SRC2[i+7:i];
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] = 0 ; zeroing-masking onlyFI;
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
Table 5-17. Pseudo-Op and VPCMP* Implementation
Pseudo-Op PCMPM Implementation
VPCMPEQ* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 0
VPCMPLT* reg1, reg2, reg3 VPCMP*reg1, reg2, reg3, 1
VPCMPLE* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 2
VPCMPNEQ* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 4
VPPCMPNLT* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 5
VPCMPNLE* reg1, reg2, reg3 VPCMP* reg1, reg2, reg3, 6
5-564 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPCMPB __mmask64 _mm512_cmp_epi8_mask( __m512i a, __m512i b, int cmp);
VPCMPB __mmask64 _mm512_mask_cmp_epi8_mask( __mmask64 m, __m512i a, __m512i b, int cmp);
VPCMPB __mmask32 _mm256_cmp_epi8_mask( __m256i a, __m256i b, int cmp);
VPCMPB __mmask32 _mm256_mask_cmp_epi8_mask( __mmask32 m, __m256i a, __m256i b, int cmp);
VPCMPB __mmask16 _mm_cmp_epi8_mask( __m128i a, __m128i b, int cmp);
VPCMPB __mmask16 _mm_mask_cmp_epi8_mask( __mmask16 m, __m128i a, __m128i b, int cmp);
VPCMPB __mmask64 _mm512_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __m512i a, __m512i b);
VPCMPB __mmask64 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __mmask64 m, __m512i a, __m512i b);
VPCMPB __mmask32 _mm256_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __m256i a, __m256i b);
VPCMPB __mmask32 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __mmask32 m, __m256i a, __m256i b);
VPCMPB __mmask16 _mm_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __m128i a, __m128i b);
VPCMPB __mmask16 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epi8_mask( __mmask16 m, __m128i a, __m128i b);
VPCMPUB __mmask64 _mm512_cmp_epu8_mask( __m512i a, __m512i b, int cmp);
VPCMPUB __mmask64 _mm512_mask_cmp_epu8_mask( __mmask64 m, __m512i a, __m512i b, int cmp);
VPCMPUB __mmask32 _mm256_cmp_epu8_mask( __m256i a, __m256i b, int cmp);
VPCMPUB __mmask32 _mm256_mask_cmp_epu8_mask( __mmask32 m, __m256i a, __m256i b, int cmp);
VPCMPUB __mmask16 _mm_cmp_epu8_mask( __m128i a, __m128i b, int cmp);
VPCMPUB __mmask16 _mm_mask_cmp_epu8_mask( __mmask16 m, __m128i a, __m128i b, int cmp);
VPCMPUB __mmask64 _mm512_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __m512i a, __m512i b, int cmp);
VPCMPUB __mmask64 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __mmask64 m, __m512i a, __m512i b, int cmp);
VPCMPUB __mmask32 _mm256_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __m256i a, __m256i b, int cmp);
VPCMPUB __mmask32 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __mmask32 m, __m256i a, __m256i b, int cmp);
VPCMPUB __mmask16 _mm_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __m128i a, __m128i b, int cmp);
VPCMPUB __mmask16 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epu8_mask( __mmask16 m, __m128i a, __m128i b, int cmp);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-565
INSTRUCTION SET REFERENCE, A-Z
VPCMPD/VPCMPUD—Compare Packed Integer Values into Mask
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed integer values in the second source operand and the first source operand
and returns the results of the comparison to the mask destination operand. The comparison predicate operand
(immediate byte) specifies the type of comparison performed on each pair of packed values in the two source oper-
ands. The result of each comparison is a single mask bit result of 1 (comparison true) or 0 (comparison false).
VPCMPD/VPCMPUD performs a comparison between pairs of signed/unsigned doubleword integer values.
The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a
ZMM/YMM/XMM register or a 512/256/128-bit memory location or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand (first operand) is a mask register k1. Up to 16/8/4 comparisons are
performed with results written to the destination operand under the writemask k2.
The comparison predicate operand is an 8-bit immediate: bits 2:0 define the type of comparison to be performed.
Bits 3 through 7 of the immediate are reserved. Compiler can implement the pseudo-op mnemonic listed in Table
5-17.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W0 1F /r ib FV V/V AVX512VL Compare packed signed doubleword integer values in
xmm3/m128/m32bcst and xmm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPD k1 {k2}, xmm2,
xmm3/m128/m32bcst, imm8
AVX512F
EVEX.NDS.256.66.0F3A.W0 1F /r ib FV V/V AVX512VL Compare packed signed doubleword integer values in
ymm3/m256/m32bcst and ymm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPD k1 {k2}, ymm2,
ymm3/m256/m32bcst, imm8
AVX512F
EVEX.NDS.512.66.0F3A.W0 1F /r ib FV V/V AVX512F Compare packed signed doubleword integer values in
zmm2 and zmm3/m512/m32bcst using bits 2:0 of imm8
as a comparison predicate. The comparison results are
written to the destination k1 under writemask k2.
VPCMPD k1 {k2}, zmm2,
zmm3/m512/m32bcst, imm8
EVEX.NDS.128.66.0F3A.W0 1E /r ib FV V/V AVX512VL Compare packed unsigned doubleword integer values in
xmm3/m128/m32bcst and xmm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPUD k1 {k2}, xmm2,
xmm3/m128/m32bcst, imm8
AVX512F
EVEX.NDS.256.66.0F3A.W0 1E /r ib FV V/V AVX512VL Compare packed unsigned doubleword integer values in
ymm3/m256/m32bcst and ymm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPUD k1 {k2}, ymm2,
ymm3/m256/m32bcst, imm8
AVX512F
EVEX.NDS.512.66.0F3A.W0 1E /r ib FV V/V AVX512F Compare packed unsigned doubleword integer values in
zmm2 and zmm3/m512/m32bcst using bits 2:0 of imm8
as a comparison predicate. The comparison results are
written to the destination k1 under writemask k2.
VPCMPUD k1 {k2}, zmm2,
zmm3/m512/m32bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
5-566 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
CASE (COMPARISON PREDICATE) OF
0: OP EQ;
1: OP LT;
2: OP LE;
3: OP FALSE;
4: OP NEQ;
5: OP NLT;
6: OP NLE;
7: OP TRUE;
ESAC;
VPCMPD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k2[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN CMP SRC1[i+31:i] OP SRC2[31:0];
ELSE CMP SRC1[i+31:i] OP SRC2[i+31:i];
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking onlyFI;
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPUD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k2[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN CMP SRC1[i+31:i] OP SRC2[31:0];
ELSE CMP SRC1[i+31:i] OP SRC2[i+31:i];
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking onlyFI;
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPCMPD __mmask16 _mm512_cmp_epi32_mask( __m512i a, __m512i b, int imm);
VPCMPD __mmask16 _mm512_mask_cmp_epi32_mask(__mmask16 k, __m512i a, __m512i b, int imm);
VPCMPD __mmask16 _mm512_cmp[eq|ge|gt|le|lt|neq]_epi32_mask( __m512i a, __m512i b);
VPCMPD __mmask16 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epi32_mask(__mmask16 k, __m512i a, __m512i b);
VPCMPUD __mmask16 _mm512_cmp_epu32_mask( __m512i a, __m512i b, int imm);
Ref. # 319433-023 5-567
INSTRUCTION SET REFERENCE, A-Z
VPCMPUD __mmask16 _mm512_mask_cmp_epu32_mask(__mmask16 k, __m512i a, __m512i b, int imm);
VPCMPUD __mmask16 _mm512_cmp[eq|ge|gt|le|lt|neq]_epu32_mask( __m512i a, __m512i b);
VPCMPUD __mmask16 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epu32_mask(__mmask16 k, __m512i a, __m512i b);
VPCMPD __mmask8 _mm256_cmp_epi32_mask( __m256i a, __m256i b, int imm);
VPCMPD __mmask8 _mm256_mask_cmp_epi32_mask(__mmask8 k, __m256i a, __m256i b, int imm);
VPCMPD __mmask8 _mm256_cmp[eq|ge|gt|le|lt|neq]_epi32_mask( __m256i a, __m256i b);
VPCMPD __mmask8 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epi32_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPUD __mmask8 _mm256_cmp_epu32_mask( __m256i a, __m256i b, int imm);
VPCMPUD __mmask8 _mm256_mask_cmp_epu32_mask(__mmask8 k, __m256i a, __m256i b, int imm);
VPCMPUD __mmask8 _mm256_cmp[eq|ge|gt|le|lt|neq]_epu32_mask( __m256i a, __m256i b);
VPCMPUD __mmask8 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epu32_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPD __mmask8 _mm_cmp_epi32_mask( __m128i a, __m128i b, int imm);
VPCMPD __mmask8 _mm_mask_cmp_epi32_mask(__mmask8 k, __m128i a, __m128i b, int imm);
VPCMPD __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epi32_mask( __m128i a, __m128i b);
VPCMPD __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epi32_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPUD __mmask8 _mm_cmp_epu32_mask( __m128i a, __m128i b, int imm);
VPCMPUD __mmask8 _mm_mask_cmp_epu32_mask(__mmask8 k, __m128i a, __m128i b, int imm);
VPCMPUD __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epu32_mask( __m128i a, __m128i b);
VPCMPUD __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epu32_mask(__mmask8 k, __m128i a, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.
5-568 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPCMPQ/VPCMPUQ—Compare Packed Integer Values into Mask
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed integer values in the second source operand and the first source operand
and returns the results of the comparison to the mask destination operand. The comparison predicate operand
(immediate byte) specifies the type of comparison performed on each pair of packed values in the two source oper-
ands. The result of each comparison is a single mask bit result of 1 (comparison true) or 0 (comparison false).
VPCMPQ/VPCMPUQ performs a comparison between pairs of signed/unsigned quadword integer values.
The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a
ZMM/YMM/XMM register or a 512/256/128-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand (first operand) is a mask register k1. Up to 8/4/2 comparisons are
performed with results written to the destination operand under the writemask k2.
The comparison predicate operand is an 8-bit immediate: bits 2:0 define the type of comparison to be performed.
Bits 3 through 7 of the immediate are reserved. Compiler can implement the pseudo-op mnemonic listed in Table
5-17.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W1 1F /r ib FV V/V AVX512VL Compare packed signed quadword integer values in
xmm3/m128/m64bcst and xmm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPQ k1 {k2}, xmm2,
xmm3/m128/m64bcst, imm8
AVX512F
EVEX.NDS.256.66.0F3A.W1 1F /r ib FV V/V AVX512VL Compare packed signed quadword integer values in
ymm3/m256/m64bcst and ymm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPQ k1 {k2}, ymm2,
ymm3/m256/m64bcst, imm8
AVX512F
EVEX.NDS.512.66.0F3A.W1 1F /r ib FV V/V AVX512F Compare packed signed quadword integer values in
zmm3/m512/m64bcst and zmm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPQ k1 {k2}, zmm2,
zmm3/m512/m64bcst, imm8
EVEX.NDS.128.66.0F3A.W1 1E /r ib FV V/V AVX512VL Compare packed unsigned quadword integer values in
xmm3/m128/m64bcst and xmm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPUQ k1 {k2}, xmm2,
xmm3/m128/m64bcst, imm8
AVX512F
EVEX.NDS.256.66.0F3A.W1 1E /r ib FV V/V AVX512VL Compare packed unsigned quadword integer values in
ymm3/m256/m64bcst and ymm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPUQ k1 {k2}, ymm2,
ymm3/m256/m64bcst, imm8
AVX512F
EVEX.NDS.512.66.0F3A.W1 1E /r ib FV V/V AVX512F Compare packed unsigned quadword integer values in
zmm3/m512/m64bcst and zmm2 using bits 2:0 of imm8
as a comparison predicate with writemask k2 and leave
the result in mask register k1.
VPCMPUQ k1 {k2}, zmm2,
zmm3/m512/m64bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
Ref. # 319433-023 5-569
INSTRUCTION SET REFERENCE, A-Z
Operation
CASE (COMPARISON PREDICATE) OF
0: OP EQ;
1: OP LT;
2: OP LE;
3: OP FALSE;
4: OP NEQ;
5: OP NLT;
6: OP NLE;
7: OP TRUE;
ESAC;
VPCMPQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k2[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN CMP SRC1[i+63:i] OP SRC2[63:0];
ELSE CMP SRC1[i+63:i] OP SRC2[i+63:i];
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPUQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k2[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN CMP SRC1[i+63:i] OP SRC2[63:0];
ELSE CMP SRC1[i+63:i] OP SRC2[i+63:i];
FI;
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPCMPQ __mmask8 _mm512_cmp_epi64_mask( __m512i a, __m512i b, int imm);
VPCMPQ __mmask8 _mm512_mask_cmp_epi64_mask(__mmask8 k, __m512i a, __m512i b, int imm);
VPCMPQ __mmask8 _mm512_cmp[eq|ge|gt|le|lt|neq]_epi64_mask( __m512i a, __m512i b);
VPCMPQ __mmask8 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epi64_mask(__mmask8 k, __m512i a, __m512i b);
VPCMPUQ __mmask8 _mm512_cmp_epu64_mask( __m512i a, __m512i b, int imm);
5-570 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPCMPUQ __mmask8 _mm512_mask_cmp_epu64_mask(__mmask8 k, __m512i a, __m512i b, int imm);
VPCMPUQ __mmask8 _mm512_cmp[eq|ge|gt|le|lt|neq]_epu64_mask( __m512i a, __m512i b);
VPCMPUQ __mmask8 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epu64_mask(__mmask8 k, __m512i a, __m512i b);
VPCMPQ __mmask8 _mm256_cmp_epi64_mask( __m256i a, __m256i b, int imm);
VPCMPQ __mmask8 _mm256_mask_cmp_epi64_mask(__mmask8 k, __m256i a, __m256i b, int imm);
VPCMPQ __mmask8 _mm256_cmp[eq|ge|gt|le|lt|neq]_epi64_mask( __m256i a, __m256i b);
VPCMPQ __mmask8 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epi64_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPUQ __mmask8 _mm256_cmp_epu64_mask( __m256i a, __m256i b, int imm);
VPCMPUQ __mmask8 _mm256_mask_cmp_epu64_mask(__mmask8 k, __m256i a, __m256i b, int imm);
VPCMPUQ __mmask8 _mm256_cmp[eq|ge|gt|le|lt|neq]_epu64_mask( __m256i a, __m256i b);
VPCMPUQ __mmask8 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epu64_mask(__mmask8 k, __m256i a, __m256i b);
VPCMPQ __mmask8 _mm_cmp_epi64_mask( __m128i a, __m128i b, int imm);
VPCMPQ __mmask8 _mm_mask_cmp_epi64_mask(__mmask8 k, __m128i a, __m128i b, int imm);
VPCMPQ __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epi64_mask( __m128i a, __m128i b);
VPCMPQ __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epi64_mask(__mmask8 k, __m128i a, __m128i b);
VPCMPUQ __mmask8 _mm_cmp_epu64_mask( __m128i a, __m128i b, int imm);
VPCMPUQ __mmask8 _mm_mask_cmp_epu64_mask(__mmask8 k, __m128i a, __m128i b, int imm);
VPCMPUQ __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epu64_mask( __m128i a, __m128i b);
VPCMPUQ __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epu64_mask(__mmask8 k, __m128i a, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-571
INSTRUCTION SET REFERENCE, A-Z
VPCMPW/VPCMPUW—Compare Packed Word Values Into Mask
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed integer word in the second source operand and the first source operand
and returns the results of the comparison to the mask destination operand. The comparison predicate operand
(immediate byte) specifies the type of comparison performed on each pair of packed values in the two source oper-
ands. The result of each comparison is a single mask bit result of 1 (comparison true) or 0 (comparison false).
VPCMPW performs a comparison between pairs of signed word values.
VPCMPUW performs a comparison between pairs of unsigned word values.
The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand (first operand) is a mask
register k1. Up to 32/16/8 comparisons are performed with results written to the destination operand under the
writemask k2.
The comparison predicate operand is an 8-bit immediate: bits 2:0 define the type of comparison to be performed.
Bits 3 through 7 of the immediate are reserved. Compiler can implement the pseudo-op mnemonic listed in Table
5-17.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W1 3F /r ib FVM V/V AVX512VL
AVX512BW
Compare packed signed word integers in xmm3/m128
and xmm2 using bits 2:0 of imm8 as a comparison
predicate with writemask k2 and leave the result in
mask register k1.
VPCMPW k1 {k2}, xmm2,
xmm3/m128, imm8
EVEX.NDS.256.66.0F3A.W1 3F /r ib FVM V/V AVX512VL
AVX512BW
Compare packed signed word integers in ymm3/m256
and ymm2 using bits 2:0 of imm8 as a comparison
predicate with writemask k2 and leave the result in
mask register k1.
VPCMPW k1 {k2}, ymm2,
ymm3/m256, imm8
EVEX.NDS.512.66.0F3A.W1 3F /r ib FVM V/V AVX512BW Compare packed signed word integers in zmm3/m512
and zmm2 using bits 2:0 of imm8 as a comparison
predicate with writemask k2 and leave the result in
mask register k1.
VPCMPW k1 {k2}, zmm2,
zmm3/m512, imm8
EVEX.NDS.128.66.0F3A.W1 3E /r ib FVM V/V AVX512VL
AVX512BW
Compare packed unsigned word integers in xmm3/m128
and xmm2 using bits 2:0 of imm8 as a comparison
predicate with writemask k2 and leave the result in
mask register k1.
VPCMPUW k1 {k2}, xmm2,
xmm3/m128, imm8
EVEX.NDS.256.66.0F3A.W1 3E /r ib FVM V/V AVX512VL
AVX512BW
Compare packed unsigned word integers in ymm3/m256
and ymm2 using bits 2:0 of imm8 as a comparison
predicate with writemask k2 and leave the result in
mask register k1.
VPCMPUW k1 {k2}, ymm2,
ymm3/m256, imm8
EVEX.NDS.512.66.0F3A.W1 3E /r ib FVM V/V AVX512BW Compare packed unsigned word integers in zmm3/m512
and zmm2 using bits 2:0 of imm8 as a comparison
predicate with writemask k2 and leave the result in
mask register k1.
VPCMPUW k1 {k2}, zmm2,
zmm3/m512, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (w) vvvv (r) ModRM:r/m (r) NA
5-572 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
CASE (COMPARISON PREDICATE) OF
0: OP EQ;
1: OP LT;
2: OP LE;
3: OP FALSE;
4: OP NEQ ;
5: OP NLT;
6: OP NLE;
7: OP TRUE;
ESAC;
VPCMPW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k2[j] OR *no writemask*
THEN
ICMP SRC1[i+15:i] OP SRC2[i+15:i];
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] = 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPCMPUW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k2[j] OR *no writemask*
THEN
CMP SRC1[i+15:i] OP SRC2[i+15:i];
IF CMP = TRUE
THEN DEST[j] 1;
ELSE DEST[j] 0; FI;
ELSE DEST[j] = 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPCMPW __mmask32 _mm512_cmp_epi16_mask( __m512i a, __m512i b, int cmp);
VPCMPW __mmask32 _mm512_mask_cmp_epi16_mask( __mmask32 m, __m512i a, __m512i b, int cmp);
VPCMPW __mmask16 _mm256_cmp_epi16_mask( __m256i a, __m256i b, int cmp);
VPCMPW __mmask16 _mm256_mask_cmp_epi16_mask( __mmask16 m, __m256i a, __m256i b, int cmp);
VPCMPW __mmask8 _mm_cmp_epi16_mask( __m128i a, __m128i b, int cmp);
VPCMPW __mmask8 _mm_mask_cmp_epi16_mask( __mmask8 m, __m128i a, __m128i b, int cmp);
VPCMPW __mmask32 _mm512_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __m512i a, __m512i b);
VPCMPW __mmask32 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __mmask32 m, __m512i a, __m512i b);
VPCMPW __mmask16 _mm256_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __m256i a, __m256i b);
VPCMPW __mmask16 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __mmask16 m, __m256i a, __m256i b);
VPCMPW __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __m128i a, __m128i b);
Ref. # 319433-023 5-573
INSTRUCTION SET REFERENCE, A-Z
VPCMPW __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epi16_mask( __mmask8 m, __m128i a, __m128i b);
VPCMPUW __mmask32 _mm512_cmp_epu16_mask( __m512i a, __m512i b, int cmp);
VPCMPUW __mmask32 _mm512_mask_cmp_epu16_mask( __mmask32 m, __m512i a, __m512i b, int cmp);
VPCMPUW __mmask16 _mm256_cmp_epu16_mask( __m256i a, __m256i b, int cmp);
VPCMPUW __mmask16 _mm256_mask_cmp_epu16_mask( __mmask16 m, __m256i a, __m256i b, int cmp);
VPCMPUW __mmask8 _mm_cmp_epu16_mask( __m128i a, __m128i b, int cmp);
VPCMPUW __mmask8 _mm_mask_cmp_epu16_mask( __mmask8 m, __m128i a, __m128i b, int cmp);
VPCMPUW __mmask32 _mm512_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __m512i a, __m512i b, int cmp);
VPCMPUW __mmask32 _mm512_mask_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __mmask32 m, __m512i a, __m512i b, int cmp);
VPCMPUW __mmask16 _mm256_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __m256i a, __m256i b, int cmp);
VPCMPUW __mmask16 _mm256_mask_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __mmask16 m, __m256i a, __m256i b, int cmp);
VPCMPUW __mmask8 _mm_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __m128i a, __m128i b, int cmp);
VPCMPUW __mmask8 _mm_mask_cmp[eq|ge|gt|le|lt|neq]_epu16_mask( __mmask8 m, __m128i a, __m128i b, int cmp);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.nb.
5-574 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPCOMPRESSD—Store Sparse Packed Doubleword Integer Values into Dense Memory/Register
Instruction Operand Encoding
Description
Compress (store) up to 16/8/4 doubleword integer values from the source operand (second operand) to the desti-
nation operand (first operand).The source operand is a ZMM/YMM/XMM register, the destination operand can be a
ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The opmask register k1 selects the active elements (partial vector or possibly non-contiguous if less than 16 active
elements) from the source operand to compress into a contiguous vector. The contiguous vector is written to the
destination starting from the low element of the destination operand.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper
bits are zeroed.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.
Operation
VPCOMPRESSD (EVEX encoded versions) store form
(KL, VL) = (4, 128), (8, 256), (16, 512)
SIZE 32
k 0
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no controlmask*
THEN
DEST[k+SIZE-1:k] SRC[i+31:i]
k k + SIZE
FI;
ENDFOR;
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 8B /r T1S V/V AVX512VL Compress packed doubleword integer values from
xmm2 to xmm1/m128 using controlmask k1.
VPCOMPRESSD xmm1/m128 {k1}{z}, xmm2 AVX512F
EVEX.256.66.0F38.W0 8B /r T1S V/V AVX512VL Compress packed doubleword integer values from
ymm2 to ymm1/m256 using controlmask k1.
VPCOMPRESSD ymm1/m256 {k1}{z}, ymm2 AVX512F
EVEX.512.66.0F38.W0 8B /r T1S V/V AVX512F Compress packed doubleword integer values from
zmm2 to zmm1/m512 using controlmask k1.
VPCOMPRESSD zmm1/m512 {k1}{z}, zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:r/m (w) ModRM:reg (r) NA NA
Ref. # 319433-023 5-575
INSTRUCTION SET REFERENCE, A-Z
VPCOMPRESSD (EVEX encoded versions) reg-reg form
(KL, VL) = (4, 128), (8, 256), (16, 512)
SIZE 32
k 0
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no controlmask*
THEN
DEST[k+SIZE-1:k] SRC[i+31:i]
k k + SIZE
FI;
ENDFOR
IF *merging-masking*
THEN *DEST[VL-1:k] remains unchanged*
ELSE DEST[VL-1:k] 0
FI
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPCOMPRESSD __m512i _mm512_mask_compress_epi32(__m512i s, __mmask16 c, __m512i a);
VPCOMPRESSD __m512i _mm512_maskz_compress_epi32( __mmask16 c, __m512i a);
VPCOMPRESSD void _mm512_mask_compressstoreu_epi32(void * a, __mmask16 c, __m512i s);
VPCOMPRESSD __m256i _mm256_mask_compress_epi32(__m256i s, __mmask8 c, __m256i a);
VPCOMPRESSD __m256i _mm256_maskz_compress_epi32( __mmask8 c, __m256i a);
VPCOMPRESSD void _mm256_mask_compressstoreu_epi32(void * a, __mmask8 c, __m256i s);
VPCOMPRESSD __m128i _mm_mask_compress_epi32(__m128i s, __mmask8 c, __m128i a);
VPCOMPRESSD __m128i _mm_maskz_compress_epi32( __mmask8 c, __m128i a);
VPCOMPRESSD void _mm_mask_compressstoreu_epi32(void * a, __mmask8 c, __m128i s);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.nb.
5-576 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPCOMPRESSQ—Store Sparse Packed Quadword Integer Values into Dense Memory/Register
Instruction Operand Encoding
Description
Compress (stores) up to 8/4/2 quadword integer values from the source operand (second operand) to the destina-
tion operand (first operand). The source operand is a ZMM/YMM/XMM register, the destination operand can be a
ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The opmask register k1 selects the active elements (partial vector or possibly non-contiguous if less than 8 active
elements) from the source operand to compress into a contiguous vector. The contiguous vector is written to the
destination starting from the low element of the destination operand.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper
bits are zeroed.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.
Operation
VPCOMPRESSQ (EVEX encoded versions) store form
(KL, VL) = (2, 128), (4, 256), (8, 512)
SIZE 64
k 0
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no controlmask*
THEN
DEST[k+SIZE-1:k] SRC[i+63:i]
k k + SIZE
FI;
ENFOR
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W1 8B /r T1S V/V AVX512VL Compress packed quadword integer values from
xmm2 to xmm1/m128 using controlmask k1.
VPCOMPRESSQ xmm1/m128 {k1}{z}, xmm2 AVX512F
EVEX.256.66.0F38.W1 8B /r T1S V/V AVX512VL Compress packed quadword integer values from
ymm2 to ymm1/m256 using controlmask k1.
VPCOMPRESSQ ymm1/m256 {k1}{z}, ymm2 AVX512F
EVEX.512.66.0F38.W1 8B /r T1S V/V AVX512F Compress packed quadword integer values from
zmm2 to zmm1/m512 using controlmask k1.
VPCOMPRESSQ zmm1/m512 {k1}{z}, zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:r/m (w) ModRM:reg (r) NA NA
Ref. # 319433-023 5-577
INSTRUCTION SET REFERENCE, A-Z
VPCOMPRESSQ (EVEX encoded versions) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
SIZE 64
k 0
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no controlmask*
THEN
DEST[k+SIZE-1:k] SRC[i+63:i]
k k + SIZE
FI;
ENDFOR
IF *merging-masking*
THEN *DEST[VL-1:k] remains unchanged*
ELSE DEST[VL-1:k] 0
FI
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPCOMPRESSQ __m512i _mm512_mask_compress_epi64(__m512i s, __mmask8 c, __m512i a);
VPCOMPRESSQ __m512i _mm512_maskz_compress_epi64( __mmask8 c, __m512i a);
VPCOMPRESSQ void _mm512_mask_compressstoreu_epi64(void * a, __mmask8 c, __m512i s);
VPCOMPRESSQ __m256i _mm256_mask_compress_epi64(__m256i s, __mmask8 c, __m256i a);
VPCOMPRESSQ __m256i _mm256_maskz_compress_epi64( __mmask8 c, __m256i a);
VPCOMPRESSQ void _mm256_mask_compressstoreu_epi64(void * a, __mmask8 c, __m256i s);
VPCOMPRESSQ __m128i _mm_mask_compress_epi64(__m128i s, __mmask8 c, __m128i a);
VPCOMPRESSQ __m128i _mm_maskz_compress_epi64( __mmask8 c, __m128i a);
VPCOMPRESSQ void _mm_mask_compressstoreu_epi64(void * a, __mmask8 c, __m128i s);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.nb.
5-578 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPCONFLICTD/Q—Detect Conflicts Within a Vector of Packed Dword/Qword Values into Dense
Memory/ Register
Instruction Operand Encoding
Description
Test each dword/qword element of the source operand (the second operand) for equality with all other elements in
the source operand closer to the least significant element. Each element’s comparison results form a bit vector,
which is then zero extended and written to the destination according to the writemask.
EVEX.512 encoded version: The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector
broadcasted from a 32/64-bit memory location. The destination operand is a ZMM register, conditionally updated
using writemask k1.
EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector
broadcasted from a 32/64-bit memory location. The destination operand is a YMM register, conditionally updated
using writemask k1.
EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector
broadcasted from a 32/64-bit memory location. The destination operand is a XMM register, conditionally updated
using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 C4 /r
VPCONFLICTD xmm1 {k1}{z},
xmm2/m128/m32bcst
FV V/V AVX512VL
AVX512CD
Detect duplicate double-word values in
xmm2/m128/m32bcst using writemask k1.
EVEX.256.66.0F38.W0 C4 /r
VPCONFLICTD ymm1 {k1}{z},
ymm2/m256/m32bcst
FV V/V AVX512VL
AVX512CD
Detect duplicate double-word values in
ymm2/m256/m32bcst using writemask k1.
EVEX.512.66.0F38.W0 C4 /r
VPCONFLICTD zmm1 {k1}{z},
zmm2/m512/m32bcst
FV V/V AVX512CD Detect duplicate double-word values in
zmm2/m512/m32bcst using writemask k1.
EVEX.128.66.0F38.W1 C4 /r
VPCONFLICTQ xmm1 {k1}{z},
xmm2/m128/m64bcst
FV V/V AVX512VL
AVX512CD
Detect duplicate quad-word values in
xmm2/m128/m64bcst using writemask k1.
EVEX.256.66.0F38.W1 C4 /r
VPCONFLICTQ ymm1 {k1}{z},
ymm2/m256/m64bcst
FV V/V AVX512VL
AVX512CD
Detect duplicate quad-word values in
ymm2/m256/m64bcst using writemask k1.
EVEX.512.66.0F38.W1 C4 /r
VPCONFLICTQ zmm1 {k1}{z},
zmm2/m512/m64bcst
FV V/V AVX512CD Detect duplicate quad-word values in
zmm2/m512/m64bcst using writemask k1.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-579
INSTRUCTION SET REFERENCE, A-Z
Operation
VPCONFLICTD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j*32
IF MaskBit(j) OR *no writemask*THEN
FOR k 0 TO j-1
m k*32
IF ((SRC[i+31:i] = SRC[m+31:m])) THEN
DEST[i+k] 1
ELSE
DEST[i+k] 0
FI
ENDFOR
DEST[i+31:i+j] 0
ELSE
IF *merging-masking* THEN
*DEST[i+31:i] remains unchanged*
ELSE
DEST[i+31:i] 0
FI
FI
ENDFOR
DEST[MAX_VL-1:VL] 0
VPCONFLICTQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j*64
IF MaskBit(j) OR *no writemask*THEN
FOR k 0 TO j-1
m k*64
IF ((SRC[i+63:i] = SRC[m+63:m])) THEN
DEST[i+k] 1
ELSE
DEST[i+k] 0
FI
ENDFOR
DEST[i+63:i+j] 0
ELSE
IF *merging-masking* THEN
*DEST[i+63:i] remains unchanged*
ELSE
DEST[i+63:i] 0
FI
FI
ENDFOR
DEST[MAX_VL-1:VL] 0
5-580 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPCONFLICTD __m512i _mm512_conflict_epi32( __m512i a);
VPCONFLICTD __m512i _mm512_mask_conflict_epi32(__m512i s, __mmask16 m, __m512i a);
VPCONFLICTD __m512i _mm512_maskz_conflict_epi32(__mmask16 m, __m512i a);
VPCONFLICTQ __m512i _mm512_conflict_epi64( __m512i a);
VPCONFLICTQ __m512i _mm512_mask_conflict_epi64(__m512i s, __mmask8 m, __m512i a);
VPCONFLICTQ __m512i _mm512_maskz_conflict_epi64(__mmask8 m, __m512i a);
VPCONFLICTD __m256i _mm256_conflict_epi32( __m256i a);
VPCONFLICTD __m256i _mm256_mask_conflict_epi32(__m256i s, __mmask8 m, __m256i a);
VPCONFLICTD __m256i _mm256_maskz_conflict_epi32(__mmask8 m, __m256i a);
VPCONFLICTQ __m256i _mm256_conflict_epi64( __m256i a);
VPCONFLICTQ __m256i _mm256_mask_conflict_epi64(__m256i s, __mmask8 m, __m256i a);
VPCONFLICTQ __m256i _mm256_maskz_conflict_epi64(__mmask8 m, __m256i a);
VPCONFLICTD __m128i _mm_conflict_epi32( __m128i a);
VPCONFLICTD __m128i _mm_mask_conflict_epi32(__m128i s, __mmask8 m, __m128i a);
VPCONFLICTD __m128i _mm_maskz_conflict_epi32(__mmask8 m, __m128i a);
VPCONFLICTQ __m128i _mm_conflict_epi64( __m128i a);
VPCONFLICTQ __m128i _mm_mask_conflict_epi64(__m128i s, __mmask8 m, __m128i a);
VPCONFLICTQ __m128i _mm_maskz_conflict_epi64(__mmask8 m, __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-581
INSTRUCTION SET REFERENCE, A-Z
VPERMB—Permute Packed Bytes Elements
Instruction Operand Encoding
Description
Copies bytes from the second source operand (the third operand) to the destination operand (the first operand) according to the byte
indices in the first source operand (the second operand). Note that this instruction permits a byte in the source operand to be copied to
more than one location in the destination operand.
Only the low 6(EVEX.512)/5(EVEX.256)/4(EVEX.128) bits of each byte index is used to select the location of the
source byte from the second source operand.
The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register updated at byte
granularity by the writemask k1.
Operation
VPERMB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128:
n 3;
ELSE IF VL = 256:
n 4;
ELSE IF VL = 512:
n 5;
FI;
FOR j 0 TO KL-1:
id SRC1[j*8 + n : j*8] ; // location of the source byte
IF k1[j] OR *no writemask* THEN
DEST[j*8 + 7: j*8] SRC2[id*8 +7: id*8];
ELSE IF zeroing-masking THEN
DEST[j*8 + 7: j*8] 0;
*ELSE
DEST[j*8 + 7: j*8] remains unchanged*
FI
ENDFOR
DEST[MAX_VL-1:VL] 0;
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature Flag
Description
EVEX.NDS.128.66.0F38.W0 8D /r FVM V/V AVX512VL
AVX512VBMI
Permute bytes in xmm3/m128 using byte indexes in
xmm2 and store the result in xmm1 using writemask
k1.
VPERMB xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F38.W0 8D /r FVM V/V AVX512VL
AVX512VBMI
Permute bytes in ymm3/m256 using byte indexes in
ymm2 and store the result in ymm1 using writemask
k1.
VPERMB ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F38.W0 8D /r FVM V/V AVX512VBMI Permute bytes in zmm3/m512 using byte indexes in
zmm2 and store the result in zmm1 using writemask
k1.
VPERMB zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-582 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPERMB __m512i _mm512_permutexvar_epi8( __m512i idx, __m512i a);
VPERMB __m512i _mm512_mask_permutexvar_epi8(__m512i s, __mmask64 k, __m512i idx, __m512i a);
VPERMB __m512i _mm512_maskz_permutexvar_epi8( __mmask64 k, __m512i idx, __m512i a);
VPERMB __m256i _mm256_permutexvar_epi8( __m256i idx, __m256i a);
VPERMB __m256i _mm256_mask_permutexvar_epi8(__m256i s, __mmask32 k, __m256i idx, __m256i a);
VPERMB __m256i _mm256_maskz_permutexvar_epi8( __mmask32 k, __m256i idx, __m256i a);
VPERMB __m128i _mm_permutexvar_epi8( __m128i idx, __m128i a);
VPERMB __m128i _mm_mask_permutexvar_epi8(__m128i s, __mmask16 k, __m128i idx, __m128i a);
VPERMB __m128i _mm_maskz_permutexvar_epi8( __mmask16 k, __m128i idx, __m128i a);
SIMD Floating-Point Exceptions
None.
Other Exceptions
See Exceptions Type E4NF.nb.
Ref. # 319433-023 5-583
INSTRUCTION SET REFERENCE, A-Z
VPERMD/VPERMW—Permute Packed Doublewords/Words Elements
Instruction Operand Encoding
Description
Copies doublewords (or words) from the second source operand (the third operand) to the destination operand
(the first operand) according to the indices in the first source operand (the second operand). Note that this instruc-
tion permits a doubleword (word) in the source operand to be copied to more than one location in the destination
operand.
VEX.256 encoded VPERMD: The first and second operands are YMM registers, the third operand can be a YMM
register or memory location. Bits (MAX_VL-1:256) of the corresponding destination register are zeroed.
EVEX encoded VPERMD: The first and second operands are ZMM/YMM registers, the third operand can be a
ZMM/YMM register, a 512/256-bit memory location or a 512/256-bit vector broadcasted from a 32-bit memory
location. The elements in the destination are updated using the writemask k1.
VPERMW: first and second operands are ZMM/YMM/XMM registers, the third operand can be a ZMM/YMM/XMM
register, or a 512/256/128-bit memory location. The destination is updated using the writemask k1.
EVEX.128 encoded versions: Bits (MAX_VL-1:128) of the corresponding ZMM register are zeroed.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.256.66.0F38.W0 36 /r RVM V/V AVX2 Permute doublewords in ymm3/m256 using indices in
ymm2 and store the result in ymm1.
VPERMD ymm1, ymm2, ymm3/m256
EVEX.NDS.256.66.0F38.W0 36 /r FV V/V AVX512VL Permute doublewords in ymm3/m256/m32bcst using
indexes in ymm2 and store the result in ymm1 using
writemask k1.
VPERMD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 36 /r FV V/V AVX512F Permute doublewords in zmm3/m512/m32bcst using
indices in zmm2 and store the result in zmm1 using
writemask k1.
VPERMD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 8D /r FVM V/V AVX512VL
AVX512BW
Permute word integers in xmm3/m128 using indexes
in xmm2 and store the result in xmm1 using writemask
k1.
VPERMW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F38.W1 8D /r FVM V/V AVX512VL
AVX512BW
Permute word integers in ymm3/m256 using indexes
in ymm2 and store the result in ymm1 using writemask
k1.
VPERMW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F38.W1 8D /r FVM V/V AVX512BW Permute word integers in zmm3/m512 using indexes
in zmm2 and store the result in zmm1 using writemask
k1.
VPERMW zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
FVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
5-584 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPERMD (EVEX encoded versions)
(KL, VL) = (8, 256), (16, 512)
IF VL = 256 THEN n 2; FI;
IF VL = 512 THEN n 3; FI;
FOR j 0 TO KL-1
i j * 32
id 32*SRC1[i+n:i]
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] SRC2[31:0];
ELSE DEST[i+31:i] SRC2[id+31:id];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMD (VEX.256 encoded version)
DEST[31:0] (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];
DEST[63:32] (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];
DEST[95:64] (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
DEST[127:96] (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
DEST[159:128] (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
DEST[191:160] (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
DEST[223:192] (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];
DEST[255:224] (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];
DEST[MAX_VL-1:256] 0
VPERMW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128 THEN n 2; FI;
IF VL = 256 THEN n 3; FI;
IF VL = 512 THEN n 4; FI;
FOR j 0 TO KL-1
i j * 16
id 16*SRC1[i+n:i]
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SRC2[id+15:id]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-585
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPERMD __m512i _mm512_permutexvar_epi32( __m512i idx, __m512i a);
VPERMD __m512i _mm512_mask_permutexvar_epi32(__m512i s, __mmask16 k, __m512i idx, __m512i a);
VPERMD __m512i _mm512_maskz_permutexvar_epi32( __mmask16 k, __m512i idx, __m512i a);
VPERMD __m256i _mm256_permutexvar_epi32( __m256i idx, __m256i a);
VPERMD __m256i _mm256_mask_permutexvar_epi32(__m256i s, __mmask8 k, __m256i idx, __m256i a);
VPERMD __m256i _mm256_maskz_permutexvar_epi32( __mmask8 k, __m256i idx, __m256i a);
VPERMW __m512i _mm512_permutexvar_epi16( __m512i idx, __m512i a);
VPERMW __m512i _mm512_mask_permutexvar_epi16(__m512i s, __mmask32 k, __m512i idx, __m512i a);
VPERMW __m512i _mm512_maskz_permutexvar_epi16( __mmask32 k, __m512i idx, __m512i a);
VPERMW __m256i _mm256_permutexvar_epi16( __m256i idx, __m256i a);
VPERMW __m256i _mm256_mask_permutexvar_epi16(__m256i s, __mmask16 k, __m256i idx, __m256i a);
VPERMW __m256i _mm256_maskz_permutexvar_epi16( __mmask16 k, __m256i idx, __m256i a);
VPERMW __m128i _mm_permutexvar_epi16( __m128i idx, __m128i a);
VPERMW __m128i _mm_mask_permutexvar_epi16(__m128i s, __mmask8 k, __m128i idx, __m128i a);
VPERMW __m128i _mm_maskz_permutexvar_epi16( __mmask8 k, __m128i idx, __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPERMD, see Exceptions Type E4NF.
EVEX-encoded VPERMW, see Exceptions Type E4NF.nb.
#UD If VEX.L = 0.
If EVEX.L’L = 0 for VPERMD.
5-586 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMI2B—Full Permute of Bytes From Two Tables Overwriting the Index
Instruction Operand Encoding
Description
Permutes byte values in the second operand (the first source operand) and the third operand (the second source operand) using the byte
indices in the first operand (the destination operand) to select byte elements from the second or third source operands. The selected byte
elements are written to the destination at byte granularity under the writemask k1.
The first and second operands are ZMM/YMM/XMM registers. The first operand contains input indices to select
elements from the two input tables in the 2nd and 3rd operands. The first operand is also the destination of the
result. The third operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. In each index
byte, the id bit for table selection is bit 6/5/4, and bits [5:0]/[4:0]/[3:0] selects element within each input table.
Note that these instructions permit a byte value in the source operands to be copied to more than one location in
the destination operand. Also, the same tables can be reused in subsequent iterations, but the index elements are
overwritten.
Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID Feature
Flag
Description
EVEX.DDS.128.66.0F38.W0 75 /r FVM V/V AVX512VL
AVX512VBMI
Permute bytes in xmm3/m128 and xmm2 using
byte indexes in xmm1 and store the byte results
in xmm1 using writemask k1.
VPERMI2B xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.DDS.256.66.0F38.W0 75 /r FVM V/V AVX512VL
AVX512VBMI
Permute bytes in ymm3/m256 and ymm2 using
byte indexes in ymm1 and store the byte results
in ymm1 using writemask k1.
VPERMI2B ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.DDS.512.66.0F38.W0 75 /r FVM V/V AVX512VBMI Permute bytes in zmm3/m512 and zmm2 using
byte indexes in zmm1 and store the byte results
in zmm1 using writemask k1.
VPERMI2B zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-587
INSTRUCTION SET REFERENCE, A-Z
Operation
VPERMI2B (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128:
id 3;
ELSE IF VL = 256:
id 4;
ELSE IF VL = 512:
id 5;
FI;
TMP_DEST[VL-1:0] DEST[VL-1:0];
FOR j 0 TO KL-1
off 8*SRC1[j*8 + id: j*8] ;
IF k1[j] OR *no writemask*:
DEST[j*8 + 7: j*8] TMP_DEST[j*8+id+1]? SRC2[off+7:off] : SRC1[off+7:off];
ELSE IF *zeroing-masking*
DEST[j*8 + 7: j*8] 0;
*ELSE
DEST[j*8 + 7: j*8] remains unchanged*
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0;
Intel C/C++ Compiler Intrinsic Equivalent
VPERMI2B __m512i _mm512_permutex2var_epi8(__m512i a, __m512i idx, __m512i b);
VPERMI2B __m512i _mm512_mask2_permutex2var_epi8(__m512i a, __m512i idx, __mmask64 k, __m512i b);
VPERMI2B __m512i _mm512_maskz_permutex2var_epi8(__mmask64 k, __m512i a, __m512i idx, __m512i b);
VPERMI2B __m256i _mm256_permutex2var_epi8(__m256i a, __m256i idx, __m256i b);
VPERMI2B __m256i _mm256_mask2_permutex2var_epi8(__m256i a, __m256i idx, __mmask32 k, __m256i b);
VPERMI2B __m256i _mm256_maskz_permutex2var_epi8(__mmask32 k, __m256i a, __m256i idx, __m256i b);
VPERMI2B __m128i _mm_permutex2var_epi8(__m128i a, __m128i idx, __m128i b);
VPERMI2B __m128i _mm_mask2_permutex2var_epi8(__m128i a, __m128i idx, __mmask16 k, __m128i b);
VPERMI2B __m128i _mm_maskz_permutex2var_epi8(__mmask16 k, __m128i a, __m128i idx, __m128i b);
SIMD Floating-Point Exceptions
None.
Other Exceptions
See Exceptions Type E4NF.nb.
5-588 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMI2W/D/Q/PS/PD—Full Permute From Two Tables Overwriting the Index
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.DDS.128.66.0F38.W1 75 /r FVM V/V AVX512VL
AVX512BW
Permute word integers from two tables in
xmm3/m128 and xmm2 using indexes in xmm1 and
store the result in xmm1 using writemask k1.
VPERMI2W xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.DDS.256.66.0F38.W1 75 /r FVM V/V AVX512VL
AVX512BW
Permute word integers from two tables in
ymm3/m256 and ymm2 using indexes in ymm1 and
store the result in ymm1 using writemask k1.
VPERMI2W ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.DDS.512.66.0F38.W1 75 /r FVM V/V AVX512BW Permute word integers from two tables in
zmm3/m512 and zmm2 using indexes in zmm1 and
store the result in zmm1 using writemask k1.
VPERMI2W zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.DDS.128.66.0F38.W0 76 /r FV V/V AVX512VL Permute double-words from two tables in
xmm3/m128/m32bcst and xmm2 using indexes in
xmm1 and store the result in xmm1 using writemask
k1.
VPERMI2D xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 76 /r FV V/V AVX512VL Permute double-words from two tables in
ymm3/m256/m32bcst and ymm2 using indexes in
ymm1 and store the result in ymm1 using writemask
k1.
VPERMI2D ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.DDS.512.66.0F38.W0 76 /r FV V/V AVX512F Permute double-words from two tables in
zmm3/m512/m32bcst and zmm2 using indices in
zmm1 and store the result in zmm1 using writemask
k1.
VPERMI2D zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.DDS.128.66.0F38.W1 76 /r FV V/V AVX512VL Permute quad-words from two tables in
xmm3/m128/m64bcst and xmm2 using indexes in
xmm1 and store the result in xmm1 using writemask
k1.
VPERMI2Q xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 76 /r FV V/V AVX512VL Permute quad-words from two tables in
ymm3/m256/m64bcst and ymm2 using indexes in
ymm1 and store the result in ymm1 using writemask
k1.
VPERMI2Q ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.DDS.512.66.0F38.W1 76 /r FV V/V AVX512F Permute quad-words from two tables in
zmm3/m512/m64bcst and zmm2 using indices in
zmm1 and store the result in zmm1 using writemask
k1.
VPERMI2Q zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
EVEX.DDS.128.66.0F38.W0 77 /r FV V/V AVX512VL Permute single-precision FP values from two tables in
xmm3/m128/m32bcst and xmm2 using indexes in
xmm1 and store the result in xmm1 using writemask
k1.
VPERMI2PS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 77 /r FV V/V AVX512VL Permute single-precision FP values from two tables in
ymm3/m256/m32bcst and ymm2 using indexes in
ymm1 and store the result in ymm1 using writemask
k1.
VPERMI2PS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.DDS.512.66.0F38.W0 77 /r FV V/V AVX512F Permute single-precision FP values from two tables in
zmm3/m512/m32bcst and zmm2 using indices in
zmm1 and store the result in zmm1 using writemask
k1.
VPERMI2PS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
Ref. # 319433-023 5-589
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Permutes 16-bit/32-bit/64-bit values in the second operand (the first source operand) and the third operand (the
second source operand) using indices in the first operand to select elements from the second and third operands.
The selected elements are written to the destination operand (the first operand) according to the writemask k1.
The first and second operands are ZMM/YMM/XMM registers. The first operand contains input indices to select
elements from the two input tables in the 2nd and 3rd operands. The first operand is also the destination of the
result.
D/Q/PS/PD element versions: The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. Broadcast from the
low 32/64-bit memory location is performed if EVEX.b and the id bit for table selection are set (selecting table_2).
Dword/PS versions: The id bit for table selection is bit 4/3/2, depending on VL=512, 256, 128. Bits
[3:0]/[2:0]/[1:0] of each element in the input index vector select an element within the two source operands, If
the id bit is 0, table_1 (the first source) is selected; otherwise the second source operand is selected.
Qword/PD versions: The id bit for table selection is bit 3/2/1, and bits [2:0]/[1:0] /bit 0 selects element within each
input table.
Word element versions: The second source operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit
memory location. The id bit for table selection is bit 5/4/3, and bits [4:0]/[3:0]/[2:0] selects element within each
input table.
Note that these instructions permit a 16-bit/32-bit/64-bit value in the source operands to be copied to more than
one location in the destination operand. Note also that in this case, the same table can be reused for example for
a second iteration, while the index elements are overwritten.
Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.
EVEX.DDS.128.66.0F38.W1 77 /r FV V/V AVX512VL Permute double-precision FP values from two tables in
xmm3/m128/m64bcst and xmm2 using indexes in
xmm1 and store the result in xmm1 using writemask
k1.
VPERMI2PD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 77 /r FV V/V AVX512VL Permute double-precision FP values from two tables in
ymm3/m256/m64bcst and ymm2 using indexes in
ymm1 and store the result in ymm1 using writemask
k1.
VPERMI2PD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.DDS.512.66.0F38.W1 77 /r FV V/V AVX512F Permute double-precision FP values from two tables in
zmm3/m512/m64bcst and zmm2 using indices in
zmm1 and store the result in zmm1 using writemask
k1.
VPERMI2PD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (r,w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-590 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPERMI2W (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
id 2
FI;
IF VL = 256
id 3
FI;
IF VL = 512
id 4
FI;
TMP_DEST DEST
FOR j 0 TO KL-1
i j * 16
off 16*TMP_DEST[i+id:i]
IF k1[j] OR *no writemask*
THEN
DEST[i+15:i]=TMP_DEST[i+id+1] ? SRC2[off+15:off]
: SRC1[off+15:off]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMI2D/VPERMI2PS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128
id 1
FI;
IF VL = 256
id 2
FI;
IF VL = 512
id 3
FI;
TMP_DEST DEST
FOR j 0 TO KL-1
i j * 32
off 32*TMP_DEST[i+id:i]
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] TMP_DEST[i+id+1] ? SRC2[31:0]
: SRC1[off+31:off]
ELSE
DEST[i+31:i] TMP_DEST[i+id+1] ? SRC2[off+31:off]
: SRC1[off+31:off]
Ref. # 319433-023 5-591
INSTRUCTION SET REFERENCE, A-Z
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMI2Q/VPERMI2PD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8 512)
IF VL = 128
id 0
FI;
IF VL = 256
id 1
FI;
IF VL = 512
id 2
FI;
TMP_DEST DEST
FOR j 0 TO KL-1
i j * 64
off 64*TMP_DEST[i+id:i]
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] TMP_DEST[i+id+1] ? SRC2[63:0]
: SRC1[off+63:off]
ELSE
DEST[i+63:i] TMP_DEST[i+id+1] ? SRC2[off+63:off]
: SRC1[off+63:off]
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMI2D __m512i _mm512_permutex2var_epi32(__m512i a, __m512i idx, __m512i b);
VPERMI2D __m512i _mm512_mask_permutex2var_epi32(__m512i a, __mmask16 k, __m512i idx, __m512i b);
VPERMI2D __m512i _mm512_mask2_permutex2var_epi32(__m512i a, __m512i idx, __mmask16 k, __m512i b);
VPERMI2D __m512i _mm512_maskz_permutex2var_epi32(__mmask16 k, __m512i a, __m512i idx, __m512i b);
VPERMI __m256i _mm256_permutex2var_epi32(__m256i a, __m256i idx, __m256i b);
VPERMI2D __m256i _mm256_mask_permutex2var_epi32(__m256i a, __mmask8 k, __m256i idx, __m256i b);
5-592 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMI2D __m256i _mm256_mask2_permutex2var_epi32(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMI2D __m256i _mm256_maskz_permutex2var_epi32(__mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMI2D __m128i _mm_permutex2var_epi32(__m128i a, __m128i idx, __m128i b);
VPERMI2D __m128i _mm_mask_permutex2var_epi32(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMI2D __m128i _mm_mask2_permutex2var_epi32(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMI2D __m128i _mm_maskz_permutex2var_epi32(__mmask8 k, __m128i a, __m128i idx, __m128i b);
VPERMI2PD __m512d _mm512_permutex2var_pd(__m512d a, __m512i idx, __m512d b);
VPERMI2PD __m512d _mm512_mask_permutex2var_pd(__m512d a, __mmask8 k, __m512i idx, __m512d b);
VPERMI2PD __m512d _mm512_mask2_permutex2var_pd(__m512d a, __m512i idx, __mmask8 k, __m512d b);
VPERMI2PD __m512d _mm512_maskz_permutex2var_pd(__mmask8 k, __m512d a, __m512i idx, __m512d b);
VPERMI2PD __m256d _mm256_permutex2var_pd(__m256d a, __m256i idx, __m256d b);
VPERMI2PD __m256d _mm256_mask_permutex2var_pd(__m256d a, __mmask8 k, __m256i idx, __m256d b);
VPERMI2PD __m256d _mm256_mask2_permutex2var_pd(__m256d a, __m256i idx, __mmask8 k, __m256d b);
VPERMI2PD __m256d _mm256_maskz_permutex2var_pd(__mmask8 k, __m256d a, __m256i idx, __m256d b);
VPERMI2PD __m128d _mm_permutex2var_pd(__m128d a, __m128i idx, __m128d b);
VPERMI2PD __m128d _mm_mask_permutex2var_pd(__m128d a, __mmask8 k, __m128i idx, __m128d b);
VPERMI2PD __m128d _mm_mask2_permutex2var_pd(__m128d a, __m128i idx, __mmask8 k, __m128d b);
VPERMI2PD __m128d _mm_maskz_permutex2var_pd(__mmask8 k, __m128d a, __m128i idx, __m128d b);
VPERMI2PS __m512 _mm512_permutex2var_ps(__m512 a, __m512i idx, __m512 b);
VPERMI2PS __m512 _mm512_mask_permutex2var_ps(__m512 a, __mmask16 k, __m512i idx, __m512 b);
VPERMI2PS __m512 _mm512_mask2_permutex2var_ps(__m512 a, __m512i idx, __mmask16 k, __m512 b);
VPERMI2PS __m512 _mm512_maskz_permutex2var_ps(__mmask16 k, __m512 a, __m512i idx, __m512 b);
VPERMI2PS __m256 _mm256_permutex2var_ps(__m256 a, __m256i idx, __m256 b);
VPERMI2PS __m256 _mm256_mask_permutex2var_ps(__m256 a, __mmask8 k, __m256i idx, __m256 b);
VPERMI2PS __m256 _mm256_mask2_permutex2var_ps(__m256 a, __m256i idx, __mmask8 k, __m256 b);
VPERMI2PS __m256 _mm256_maskz_permutex2var_ps(__mmask8 k, __m256 a, __m256i idx, __m256 b);
VPERMI2PS __m128 _mm_permutex2var_ps(__m128 a, __m128i idx, __m128 b);
VPERMI2PS __m128 _mm_mask_permutex2var_ps(__m128 a, __mmask8 k, __m128i idx, __m128 b);
VPERMI2PS __m128 _mm_mask2_permutex2var_ps(__m128 a, __m128i idx, __mmask8 k, __m128 b);
VPERMI2PS __m128 _mm_maskz_permutex2var_ps(__mmask8 k, __m128 a, __m128i idx, __m128 b);
VPERMI2Q __m512i _mm512_permutex2var_epi64(__m512i a, __m512i idx, __m512i b);
VPERMI2Q __m512i _mm512_mask_permutex2var_epi64(__m512i a, __mmask8 k, __m512i idx, __m512i b);
VPERMI2Q __m512i _mm512_mask2_permutex2var_epi64(__m512i a, __m512i idx, __mmask8 k, __m512i b);
VPERMI2Q __m512i _mm512_maskz_permutex2var_epi64(__mmask8 k, __m512i a, __m512i idx, __m512i b);
VPERMI2Q __m256i _mm256_permutex2var_epi64(__m256i a, __m256i idx, __m256i b);
VPERMI2Q __m256i _mm256_mask_permutex2var_epi64(__m256i a, __mmask8 k, __m256i idx, __m256i b);
VPERMI2Q __m256i _mm256_mask2_permutex2var_epi64(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMI2Q __m256i _mm256_maskz_permutex2var_epi64(__mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMI2Q __m128i _mm_permutex2var_epi64(__m128i a, __m128i idx, __m128i b);
VPERMI2Q __m128i _mm_mask_permutex2var_epi64(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMI2Q __m128i _mm_mask2_permutex2var_epi64(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMI2Q __m128i _mm_maskz_permutex2var_epi64(__mmask8 k, __m128i a, __m128i idx, __m128i b);
VPERMI2W __m512i _mm512_permutex2var_epi16(__m512i a, __m512i idx, __m512i b);
VPERMI2W __m512i _mm512_mask_permutex2var_epi16(__m512i a, __mmask32 k, __m512i idx, __m512i b);
VPERMI2W __m512i _mm512_mask2_permutex2var_epi16(__m512i a, __m512i idx, __mmask32 k, __m512i b);
VPERMI2W __m512i _mm512_maskz_permutex2var_epi16(__mmask32 k, __m512i a, __m512i idx, __m512i b);
VPERMI2W __m256i _mm256_permutex2var_epi16(__m256i a, __m256i idx, __m256i b);
VPERMI2W __m256i _mm256_mask_permutex2var_epi16(__m256i a, __mmask16 k, __m256i idx, __m256i b);
VPERMI2W __m256i _mm256_mask2_permutex2var_epi16(__m256i a, __m256i idx, __mmask16 k, __m256i b);
Ref. # 319433-023 5-593
INSTRUCTION SET REFERENCE, A-Z
VPERMI2W __m256i _mm256_maskz_permutex2var_epi16(__mmask16 k, __m256i a, __m256i idx, __m256i b);
VPERMI2W __m128i _mm_permutex2var_epi16(__m128i a, __m128i idx, __m128i b);
VPERMI2W __m128i _mm_mask_permutex2var_epi16(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMI2W __m128i _mm_mask2_permutex2var_epi16(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMI2W __m128i _mm_maskz_permutex2var_epi16(__mmask8 k, __m128i a, __m128i idx, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
VPERMI2D/Q/PS/PD: See Exceptions Type E4NF.
VPERMI2W: See Exceptions Type E4NF.nb.
5-594 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMT2B—Full Permute of Bytes From Two Tables Overwriting a Table
Instruction Operand Encoding
Description
Permutes byte values from two tables, comprising of the first operand (also the destination operand) and the third operand (the second
source operand). The second operand (the first source operand) provides byte indices to select byte results from the two tables. The
selected byte elements are written to the destination at byte granularity under the writemask k1.
The first and second operands are ZMM/YMM/XMM registers. The second operand contains input indices to select
elements from the two input tables in the 1st and 3rd operands. The first operand is also the destination of the
result. The second source operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. In
each index byte, the id bit for table selection is bit 6/5/4, and bits [5:0]/[4:0]/[3:0] selects element within each
input table.
Note that these instructions permit a byte value in the source operands to be copied to more than one location in
the destination operand. Also, the second table and the indices can be reused in subsequent iterations, but the first
table is overwritten.
Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID Feature
Flag
Description
EVEX.DDS.128.66.0F38.W0 7D /r FVM V/V AVX512VL
AVX512VBMI
Permute bytes in xmm3/m128 and xmm1 using byte
indexes in xmm2 and store the byte results in xmm1
using writemask k1.
VPERMT2B xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F38.W0 7D /r FVM V/V AVX512VL
AVX512VBMI
Permute bytes in ymm3/m256 and ymm1 using byte
indexes in ymm2 and store the byte results in ymm1
using writemask k1.
VPERMT2B ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F38.W0 7D /r FVM V/V AVX512VBMI Permute bytes in zmm3/m512 and zmm1 using byte
indexes in zmm2 and store the byte results in zmm1
using writemask k1.
VPERMT2B zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-023 5-595
INSTRUCTION SET REFERENCE, A-Z
Operation
VPERMT2B (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128:
id 3;
ELSE IF VL = 256:
id 4;
ELSE IF VL = 512:
id 5;
FI;
TMP_DEST[VL-1:0] DEST[VL-1:0];
FOR j 0 TO KL-1
off 8*SRC1[j*8 + id: j*8] ;
IF k1[j] OR *no writemask*:
DEST[j*8 + 7: j*8] SRC1[j*8+id+1]? SRC2[off+7:off] : TMP_DEST[off+7:off];
ELSE IF *zeroing-masking*
DEST[j*8 + 7: j*8] 0;
*ELSE
DEST[j*8 + 7: j*8] remains unchanged*
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0;
Intel C/C++ Compiler Intrinsic Equivalent
VPERMT2B __m512i _mm512_permutex2var_epi8(__m512i a, __m512i idx, __m512i b);
VPERMT2B __m512i _mm512_mask_permutex2var_epi8(__m512i a, __mmask64 k, __m512i idx, __m512i b);
VPERMT2B __m512i _mm512_maskz_permutex2var_epi8(__mmask64 k, __m512i a, __m512i idx, __m512i b);
VPERMT2B __m256i _mm256_permutex2var_epi8(__m256i a, __m256i idx, __m256i b);
VPERMT2B __m256i _mm256_mask_permutex2var_epi8(__m256i a, __mmask32 k, __m256i idx, __m256i b);
VPERMT2B __m256i _mm256_maskz_permutex2var_epi8(__mmask32 k, __m256i a, __m256i idx, __m256i b);
VPERMT2B __m128i _mm_permutex2var_epi8(__m128i a, __m128i idx, __m128i b);
VPERMT2B __m128i _mm_mask_permutex2var_epi8(__m128i a, __mmask16 k, __m128i idx, __m128i b);
VPERMT2B __m128i _mm_maskz_permutex2var_epi8(__mmask16 k, __m128i a, __m128i idx, __m128i b);
SIMD Floating-Point Exceptions
None.
Other Exceptions
See Exceptions Type E4NF.nb.
5-596 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMT2W/D/Q/PS/PD—Full Permute from Two Tables Overwriting one Table
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.DDS.128.66.0F38.W1 7D /r FVM V/V AVX512VL
AVX512BW
Permute word integers from two tables in xmm3/m128
and xmm1 using indexes in xmm2 and store the result in
xmm1 using writemask k1.
VPERMT2W xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.DDS.256.66.0F38.W1 7D /r FVM V/V AVX512VL
AVX512BW
Permute word integers from two tables in ymm3/m256
and ymm1 using indexes in ymm2 and store the result in
ymm1 using writemask k1.
VPERMT2W ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.DDS.512.66.0F38.W1 7D /r FVM V/V AVX512BW Permute word integers from two tables in zmm3/m512
and zmm1 using indexes in zmm2 and store the result in
zmm1 using writemask k1.
VPERMT2W zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.DDS.128.66.0F38.W0 7E /r FV V/V AVX512VL Permute double-words from two tables in
xmm3/m128/m32bcst and xmm1 using indexes in xmm2
and store the result in xmm1 using writemask k1.
VPERMT2D xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 7E /r FV V/V AVX512VL Permute double-words from two tables in
ymm3/m256/m32bcst and ymm1 using indexes in ymm2
and store the result in ymm1 using writemask k1.
VPERMT2D ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.DDS.512.66.0F38.W0 7E /r FV V/V AVX512F Permute double-words from two tables in
zmm3/m512/m32bcst and zmm1 using indices in zmm2
and store the result in zmm1 using writemask k1.
VPERMT2D zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.DDS.128.66.0F38.W1 7E /r FV V/V AVX512VL Permute quad-words from two tables in
xmm3/m128/m64bcst and xmm1 using indexes in xmm2
and store the result in xmm1 using writemask k1.
VPERMT2Q xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 7E /r FV V/V AVX512VL Permute quad-words from two tables in
ymm3/m256/m64bcst and ymm1 using indexes in ymm2
and store the result in ymm1 using writemask k1.
VPERMT2Q ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.DDS.512.66.0F38.W1 7E /r FV V/V AVX512F Permute quad-words from two tables in
zmm3/m512/m64bcst and zmm1 using indices in zmm2
and store the result in zmm1 using writemask k1.
VPERMT2Q zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
EVEX.DDS.128.66.0F38.W0 7F /r FV V/V AVX512VL Permute single-precision FP values from two tables in
xmm3/m128/m32bcst and xmm1 using indexes in xmm2
and store the result in xmm1 using writemask k1.
VPERMT2PS xmm1 {k1}{z},
xmm2, xmm3/m128/m32bcst
AVX512F
EVEX.DDS.256.66.0F38.W0 7F /r FV V/V AVX512VL Permute single-precision FP values from two tables in
ymm3/m256/m32bcst and ymm1 using indexes in ymm2
and store the result in ymm1 using writemask k1.
VPERMT2PS ymm1 {k1}{z},
ymm2, ymm3/m256/m32bcst
AVX512F
EVEX.DDS.512.66.0F38.W0 7F /r FV V/V AVX512F Permute single-precision FP values from two tables in
zmm3/m512/m32bcst and zmm1 using indices in zmm2
and store the result in zmm1 using writemask k1.
VPERMT2PS zmm1 {k1}{z},
zmm2, zmm3/m512/m32bcst
Ref. # 319433-023 5-597
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Permutes 16-bit/32-bit/64-bit values in the first operand and the third operand (the second source operand) using
indices in the second operand (the first source operand) to select elements from the first and third operands. The
selected elements are written to the destination operand (the first operand) according to the writemask k1.
The first and second operands are ZMM/YMM/XMM registers. The second operand contains input indices to select
elements from the two input tables in the 1st and 3rd operands. The first operand is also the destination of the
result.
D/Q/PS/PD element versions: The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. Broadcast from the
low 32/64-bit memory location is performed if EVEX.b and the id bit for table selection are set (selecting table_2).
Dword/PS versions: The id bit for table selection is bit 4/3/2, depending on VL=512, 256, 128. Bits
[3:0]/[2:0]/[1:0] of each element in the input index vector select an element within the two source operands, If
the id bit is 0, table_1 (the first source) is selected; otherwise the second source operand is selected.
Qword/PD versions: The id bit for table selection is bit 3/2/1, and bits [2:0]/[1:0] /bit 0 selects element within each
input table.
Word element versions: The second source operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit
memory location. The id bit for table selection is bit 5/4/3, and bits [4:0]/[3:0]/[2:0] selects element within each
input table.
Note that these instructions permit a 16-bit/32-bit/64-bit value in the source operands to be copied to more than
one location in the destination operand. Note also that in this case, the same index can be reused for example for
a second iteration, while the table elements being permuted are overwritten.
Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.
EVEX.DDS.128.66.0F38.W1 7F /r FV V/V AVX512VL Permute double-precision FP values from two tables in
xmm3/m128/m64bcst and xmm1 using indexes in xmm2
and store the result in xmm1 using writemask k1.
VPERMT2PD xmm1 {k1}{z},
xmm2, xmm3/m128/m64bcst
AVX512F
EVEX.DDS.256.66.0F38.W1 7F /r FV V/V AVX512VL Permute double-precision FP values from two tables in
ymm3/m256/m64bcst and ymm1 using indexes in ymm2
and store the result in ymm1 using writemask k1.
VPERMT2PD ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
AVX512F
EVEX.DDS.512.66.0F38.W1 7F /r FV V/V AVX512F Permute double-precision FP values from two tables in
zmm3/m512/m64bcst and zmm1 using indices in zmm2
and store the result in zmm1 using writemask k1.
VPERMT2PD zmm1 {k1}{z},
zmm2, zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (r,w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-598 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPERMT2W (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
id 2
FI;
IF VL = 256
id 3
FI;
IF VL = 512
id 4
FI;
TMP_DEST DEST
FOR j 0 TO KL-1
i j * 16
off 16*SRC1[i+id:i]
IF k1[j] OR *no writemask*
THEN
DEST[i+15:i]=SRC1[i+id+1] ? SRC2[off+15:off]
: TMP_DEST[off+15:off]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMT2D/VPERMT2PS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128
id 1
FI;
IF VL = 256
id 2
FI;
IF VL = 512
id 3
FI;
TMP_DEST DEST
FOR j 0 TO KL-1
i j * 32
off 32*SRC1[i+id:i]
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+31:i] SRC1[i+id+1] ? SRC2[31:0]
: TMP_DEST[off+31:off]
ELSE
DEST[i+31:i] SRC1[i+id+1] ? SRC2[off+31:off]
: TMP_DEST[off+31:off]
Ref. # 319433-023 5-599
INSTRUCTION SET REFERENCE, A-Z
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMT2Q/VPERMT2PD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8 512)
IF VL = 128
id 0
FI;
IF VL = 256
id 1
FI;
IF VL = 512
id 2
FI;
TMP_DEST DEST
FOR j 0 TO KL-1
i j * 64
off 64*SRC1[i+id:i]
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] SRC1[i+id+1] ? SRC2[63:0]
: TMP_DEST[off+63:off]
ELSE
DEST[i+63:i] SRC1[i+id+1] ? SRC2[off+63:off]
: TMP_DEST[off+63:off]
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMT2D __m512i _mm512_permutex2var_epi32(__m512i a, __m512i idx, __m512i b);
VPERMT2D __m512i _mm512_mask_permutex2var_epi32(__m512i a, __mmask16 k, __m512i idx, __m512i b);
VPERMT2D __m512i _mm512_mask2_permutex2var_epi32(__m512i a, __m512i idx, __mmask16 k, __m512i b);
VPERMT2D __m512i _mm512_maskz_permutex2var_epi32(__mmask16 k, __m512i a, __m512i idx, __m512i b);
VPERMT2D __m256i _mm256_permutex2var_epi32(__m256i a, __m256i idx, __m256i b);
VPERMT2D __m256i _mm256_mask_permutex2var_epi32(__m256i a, __mmask8 k, __m256i idx, __m256i b);
5-600 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMT2D __m256i _mm256_mask2_permutex2var_epi32(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMT2D __m256i _mm256_maskz_permutex2var_epi32(__mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMT2D __m128i _mm_permutex2var_epi32(__m128i a, __m128i idx, __m128i b);
VPERMT2D __m128i _mm_mask_permutex2var_epi32(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMT2D __m128i _mm_mask2_permutex2var_epi32(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMT2D __m128i _mm_maskz_permutex2var_epi32(__mmask8 k, __m128i a, __m128i idx, __m128i b);
VPERMT2PD __m512d _mm512_permutex2var_pd(__m512d a, __m512i idx, __m512d b);
VPERMT2PD __m512d _mm512_mask_permutex2var_pd(__m512d a, __mmask8 k, __m512i idx, __m512d b);
VPERMT2PD __m512d _mm512_mask2_permutex2var_pd(__m512d a, __m512i idx, __mmask8 k, __m512d b);
VPERMT2PD __m512d _mm512_maskz_permutex2var_pd(__mmask8 k, __m512d a, __m512i idx, __m512d b);
VPERMT2PD __m256d _mm256_permutex2var_pd(__m256d a, __m256i idx, __m256d b);
VPERMT2PD __m256d _mm256_mask_permutex2var_pd(__m256d a, __mmask8 k, __m256i idx, __m256d b);
VPERMT2PD __m256d _mm256_mask2_permutex2var_pd(__m256d a, __m256i idx, __mmask8 k, __m256d b);
VPERMT2PD __m256d _mm256_maskz_permutex2var_pd(__mmask8 k, __m256d a, __m256i idx, __m256d b);
VPERMT2PD __m128d _mm_permutex2var_pd(__m128d a, __m128i idx, __m128d b);
VPERMT2PD __m128d _mm_mask_permutex2var_pd(__m128d a, __mmask8 k, __m128i idx, __m128d b);
VPERMT2PD __m128d _mm_mask2_permutex2var_pd(__m128d a, __m128i idx, __mmask8 k, __m128d b);
VPERMT2PD __m128d _mm_maskz_permutex2var_pd(__mmask8 k, __m128d a, __m128i idx, __m128d b);
VPERMT2PS __m512 _mm512_permutex2var_ps(__m512 a, __m512i idx, __m512 b);
VPERMT2PS __m512 _mm512_mask_permutex2var_ps(__m512 a, __mmask16 k, __m512i idx, __m512 b);
VPERMT2PS __m512 _mm512_mask2_permutex2var_ps(__m512 a, __m512i idx, __mmask16 k, __m512 b);
VPERMT2PS __m512 _mm512_maskz_permutex2var_ps(__mmask16 k, __m512 a, __m512i idx, __m512 b);
VPERMT2PS __m256 _mm256_permutex2var_ps(__m256 a, __m256i idx, __m256 b);
VPERMT2PS __m256 _mm256_mask_permutex2var_ps(__m256 a, __mmask8 k, __m256i idx, __m256 b);
VPERMT2PS __m256 _mm256_mask2_permutex2var_ps(__m256 a, __m256i idx, __mmask8 k, __m256 b);
VPERMT2PS __m256 _mm256_maskz_permutex2var_ps(__mmask8 k, __m256 a, __m256i idx, __m256 b);
VPERMT2PS __m128 _mm_permutex2var_ps(__m128 a, __m128i idx, __m128 b);
VPERMT2PS __m128 _mm_mask_permutex2var_ps(__m128 a, __mmask8 k, __m128i idx, __m128 b);
VPERMT2PS __m128 _mm_mask2_permutex2var_ps(__m128 a, __m128i idx, __mmask8 k, __m128 b);
VPERMT2PS __m128 _mm_maskz_permutex2var_ps(__mmask8 k, __m128 a, __m128i idx, __m128 b);
VPERMT2Q __m512i _mm512_permutex2var_epi64(__m512i a, __m512i idx, __m512i b);
VPERMT2Q __m512i _mm512_mask_permutex2var_epi64(__m512i a, __mmask8 k, __m512i idx, __m512i b);
VPERMT2Q __m512i _mm512_mask2_permutex2var_epi64(__m512i a, __m512i idx, __mmask8 k, __m512i b);
VPERMT2Q __m512i _mm512_maskz_permutex2var_epi64(__mmask8 k, __m512i a, __m512i idx, __m512i b);
VPERMT2Q __m256i _mm256_permutex2var_epi64(__m256i a, __m256i idx, __m256i b);
VPERMT2Q __m256i _mm256_mask_permutex2var_epi64(__m256i a, __mmask8 k, __m256i idx, __m256i b);
VPERMT2Q __m256i _mm256_mask2_permutex2var_epi64(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMT2Q __m256i _mm256_maskz_permutex2var_epi64(__mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMT2Q __m128i _mm_permutex2var_epi64(__m128i a, __m128i idx, __m128i b);
VPERMT2Q __m128i _mm_mask_permutex2var_epi64(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMT2Q __m128i _mm_mask2_permutex2var_epi64(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMT2Q __m128i _mm_maskz_permutex2var_epi64(__mmask8 k, __m128i a, __m128i idx, __m128i b);
VPERMT2W __m512i _mm512_permutex2var_epi16(__m512i a, __m512i idx, __m512i b);
VPERMT2W __m512i _mm512_mask_permutex2var_epi16(__m512i a, __mmask32 k, __m512i idx, __m512i b);
VPERMT2W __m512i _mm512_mask2_permutex2var_epi16(__m512i a, __m512i idx, __mmask32 k, __m512i b);
VPERMT2W __m512i _mm512_maskz_permutex2var_epi16(__mmask32 k, __m512i a, __m512i idx, __m512i b);
VPERMT2W __m256i _mm256_permutex2var_epi16(__m256i a, __m256i idx, __m256i b);
VPERMT2W __m256i _mm256_mask_permutex2var_epi16(__m256i a, __mmask16 k, __m256i idx, __m256i b);
VPERMT2W __m256i _mm256_mask2_permutex2var_epi16(__m256i a, __m256i idx, __mmask16 k, __m256i b);
Ref. # 319433-023 5-601
INSTRUCTION SET REFERENCE, A-Z
VPERMT2W __m256i _mm256_maskz_permutex2var_epi16(__mmask16 k, __m256i a, __m256i idx, __m256i b);
VPERMT2W __m128i _mm_permutex2var_epi16(__m128i a, __m128i idx, __m128i b);
VPERMT2W __m128i _mm_mask_permutex2var_epi16(__m128i a, __mmask8 k, __m128i idx, __m128i b);
VPERMT2W __m128i _mm_mask2_permutex2var_epi16(__m128i a, __m128i idx, __mmask8 k, __m128i b);
VPERMT2W __m128i _mm_maskz_permutex2var_epi16(__mmask8 k, __m128i a, __m128i idx, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
VPERMT2D/Q/PS/PD: See Exceptions Type E4NF.
VPERMT2W: See Exceptions Type E4NF.nb.
5-602 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMILPD—Permute In-Lane of Pairs of Double-Precision Floating-Point Values
Instruction Operand Encoding
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W0 0D /r RVM V/V AVX Permute double-precision floating-point values in
xmm2 using controls from xmm3/m128 and store
result in xmm1.
VPERMILPD xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38.W0 0D /r RVM V/V AVX Permute double-precision floating-point values in
ymm2 using controls from ymm3/m256 and store
result in ymm1.
VPERMILPD ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.W1 0D /r FV-RVM V/V AVX512VL Permute double-precision floating-point values in
xmm2 using control from xmm3/m128/m64bcst
and store the result in xmm1 using writemask k1.
VPERMILPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 0D /r FV-RVM V/V AVX512VL Permute double-precision floating-point values in
ymm2 using control from ymm3/m256/m64bcst
and store the result in ymm1 using writemask k1.
VPERMILPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 0D /r FV-RVM V/V AVX512F Permute double-precision floating-point values in
zmm2 using control from zmm3/m512/m64bcst
and store the result in zmm1 using writemask k1.
VPERMILPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
VEX.128.66.0F3A.W0 05 /r ib RM V/V AVX Permute double-precision floating-point values in
xmm2/m128 using controls from imm8.
VPERMILPD xmm1, xmm2/m128, imm8
VEX.256.66.0F3A.W0 05 /r ib RM V/V AVX Permute double-precision floating-point values in
ymm2/m256 using controls from imm8.
VPERMILPD ymm1, ymm2/m256, imm8
EVEX.128.66.0F3A.W1 05 /r ib FV-RM V/V AVX512VL Permute double-precision floating-point values in
xmm2/m128/m64bcst using controls from imm8
and store the result in xmm1 using writemask k1.
VPERMILPD xmm1 {k1}{z},
xmm2/m128/m64bcst, imm8
AVX512F
EVEX.256.66.0F3A.W1 05 /r ib FV-RM V/V AVX512VL Permute double-precision floating-point values in
ymm2/m256/m64bcst using controls from imm8
and store the result in ymm1 using writemask k1.
VPERMILPD ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
AVX512F
EVEX.512.66.0F3A.W1 05 /r ib FV-RM V/V AVX512F Permute double-precision floating-point values in
zmm2/m512/m64bcst using controls from imm8
and store the result in zmm1 using writemask k1.
VPERMILPD zmm1 {k1}{z},
zmm2/m512/m64bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV-RVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV-RM ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-603
INSTRUCTION SET REFERENCE, A-Z
Description
(variable control version)
Permute pairs of double-precision floating-point values in the first source operand (second operand), each using a
1-bit control field residing in the corresponding quadword element of the second source operand (third operand).
Permuted results are stored in the destination operand (first operand).
The control bits are located at bit 0 of each quadword element (see Figure 5-31). Each control determines which of
the source element in an input pair is selected for the destination element. Each pair of source elements must lie
in the same 128-bit region as the destination.
EVEX version: The second source operand (third operand) is a ZMM/YMM/XMM register, a 512/256/128-bit
memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. Permuted results are
written to the destination under the writemask.
VEX.256 encoded version: Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed.
(immediate control version)
Permute pairs of double-precision floating-point values in the first source operand (second operand), each pair
using a 1-bit control field in the imm8 byte. Each element in the destination operand (first operand) use a separate
control bit of the imm8 byte.
VEX version: The source operand is a YMM/XMM register or a 256/128-bit memory location and the destination
operand is a YMM/XMM register. Imm8 byte provides the lower 4/2 bit as permute control fields.
EVEX version: The source operand (second operand) is a ZMM/YMM/XMM register, a 512/256/128-bit memory
location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. Permuted results are written to
the destination under the writemask. Imm8 byte provides the lower 8/4/2 bit as permute control fields.
Note: For the imm8 versions, VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will
#UD.
Figure 5-30. VPERMILPD Operation
Figure 5-31. VPERMILPD Shuffle Control
X2..X3 X2..X3 X0..X1 X0..X1DEST
X3 X2
SRC1 X1 X0
1
sel
Bit
. . .
ignored
Control Field1Control Field 2Control Field 4
ignored
65
sel
ignored
194 193
sel
ignored
255
ignored
66
127
ignored
2
63
5-604 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPERMILPD (EVEX immediate versions)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN TMP_SRC1[i+63:i] SRC1[63:0];
ELSE TMP_SRC1[i+63:i] SRC1[i+63:i];
FI;
ENDFOR;
IF (imm8[0] = 0) THEN TMP_DEST[63:0] SRC1[63:0]; FI;
IF (imm8[0] = 1) THEN TMP_DEST[63:0] TMP_SRC1[127:64]; FI;
IF (imm8[1] = 0) THEN TMP_DEST[127:64] TMP_SRC1[63:0]; FI;
IF (imm8[1] = 1) THEN TMP_DEST[127:64] TMP_SRC1[127:64]; FI;
IF VL >= 256
IF (imm8[2] = 0) THEN TMP_DEST[191:128] TMP_SRC1[191:128]; FI;
IF (imm8[2] = 1) THEN TMP_DEST[191:128] TMP_SRC1[255:192]; FI;
IF (imm8[3] = 0) THEN TMP_DEST[255:192] TMP_SRC1[191:128]; FI;
IF (imm8[3] = 1) THEN TMP_DEST[255:192] TMP_SRC1[255:192]; FI;
FI;
IF VL >= 512
IF (imm8[4] = 0) THEN TMP_DEST[319:256] TMP_SRC1[319:256]; FI;
IF (imm8[4] = 1) THEN TMP_DEST[319:256] TMP_SRC1[383:320]; FI;
IF (imm8[5] = 0) THEN TMP_DEST[383:320] TMP_SRC1[319:256]; FI;
IF (imm8[5] = 1) THEN TMP_DEST[383:320] TMP_SRC1[383:320]; FI;
IF (imm8[6] = 0) THEN TMP_DEST[447:384] TMP_SRC1[447:384]; FI;
IF (imm8[6] = 1) THEN TMP_DEST[447:384] TMP_SRC1[511:448]; FI;
IF (imm8[7] = 0) THEN TMP_DEST[511:448] TMP_SRC1[447:384]; FI;
IF (imm8[7] = 1) THEN TMP_DEST[511:448] TMP_SRC1[511:448]; FI;
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMILPD (256-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]SRC1[127:64]
IF (imm8[2] = 0) THEN DEST[191:128]SRC1[191:128]
IF (imm8[2] = 1) THEN DEST[191:128]SRC1[255:192]
IF (imm8[3] = 0) THEN DEST[255:192]SRC1[191:128]
IF (imm8[3] = 1) THEN DEST[255:192]SRC1[255:192]
DEST[MAX_VL-1:256]0
Ref. # 319433-023 5-605
INSTRUCTION SET REFERENCE, A-Z
VPERMILPD (128-bit immediate version)
IF (imm8[0] = 0) THEN DEST[63:0]SRC1[63:0]
IF (imm8[0] = 1) THEN DEST[63:0]SRC1[127:64]
IF (imm8[1] = 0) THEN DEST[127:64]SRC1[63:0]
IF (imm8[1] = 1) THEN DEST[127:64]SRC1[127:64]
DEST[MAX_VL-1:128]0
VPERMILPD (EVEX variable versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+63:i] SRC2[63:0];
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i];
FI;
ENDFOR;
IF (TMP_SRC2[1] = 0) THEN TMP_DEST[63:0] SRC1[63:0]; FI;
IF (TMP_SRC2[1] = 1) THEN TMP_DEST[63:0] SRC1[127:64]; FI;
IF (TMP_SRC2[65] = 0) THEN TMP_DEST[127:64] SRC1[63:0]; FI;
IF (TMP_SRC2[65] = 1) THEN TMP_DEST[127:64] SRC1[127:64]; FI;
IF VL >= 256
IF (TMP_SRC2[129] = 0) THEN TMP_DEST[191:128] SRC1[191:128]; FI;
IF (TMP_SRC2[129] = 1) THEN TMP_DEST[191:128] SRC1[255:192]; FI;
IF (TMP_SRC2[193] = 0) THEN TMP_DEST[255:192] SRC1[191:128]; FI;
IF (TMP_SRC2[193] = 1) THEN TMP_DEST[255:192] SRC1[255:192]; FI;
FI;
IF VL >= 512
IF (TMP_SRC2[257] = 0) THEN TMP_DEST[319:256] SRC1[319:256]; FI;
IF (TMP_SRC2[257] = 1) THEN TMP_DEST[319:256] SRC1[383:320]; FI;
IF (TMP_SRC2[321] = 0) THEN TMP_DEST[383:320] SRC1[319:256]; FI;
IF (TMP_SRC2[321] = 1) THEN TMP_DEST[383:320] SRC1[383:320]; FI;
IF (TMP_SRC2[385] = 0) THEN TMP_DEST[447:384] SRC1[447:384]; FI;
IF (TMP_SRC2[385] = 1) THEN TMP_DEST[447:384] SRC1[511:448]; FI;
IF (TMP_SRC2[449] = 0) THEN TMP_DEST[511:448] SRC1[447:384]; FI;
IF (TMP_SRC2[449] = 1) THEN TMP_DEST[511:448] SRC1[511:448]; FI;
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-606 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMILPD (256-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]SRC1[127:64]
IF (SRC2[129] = 0) THEN DEST[191:128]SRC1[191:128]
IF (SRC2[129] = 1) THEN DEST[191:128]SRC1[255:192]
IF (SRC2[193] = 0) THEN DEST[255:192]SRC1[191:128]
IF (SRC2[193] = 1) THEN DEST[255:192]SRC1[255:192]
DEST[MAX_VL-1:256]0
VPERMILPD (128-bit variable version)
IF (SRC2[1] = 0) THEN DEST[63:0]SRC1[63:0]
IF (SRC2[1] = 1) THEN DEST[63:0]SRC1[127:64]
IF (SRC2[65] = 0) THEN DEST[127:64]SRC1[63:0]
IF (SRC2[65] = 1) THEN DEST[127:64]SRC1[127:64]
DEST[MAX_VL-1:128]0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMILPD __m512d _mm512_permute_pd( __m512d a, int imm);
VPERMILPD __m512d _mm512_mask_permute_pd(__m512d s, __mmask8 k, __m512d a, int imm);
VPERMILPD __m512d _mm512_maskz_permute_pd( __mmask8 k, __m512d a, int imm);
VPERMILPD __m256d _mm256_mask_permute_pd(__m256d s, __mmask8 k, __m256d a, int imm);
VPERMILPD __m256d _mm256_maskz_permute_pd( __mmask8 k, __m256d a, int imm);
VPERMILPD __m128d _mm_mask_permute_pd(__m128d s, __mmask8 k, __m128d a, int imm);
VPERMILPD __m128d _mm_maskz_permute_pd( __mmask8 k, __m128d a, int imm);
VPERMILPD __m512d _mm512_permutevar_pd( __m512i i, __m512d a);
VPERMILPD __m512d _mm512_mask_permutevar_pd(__m512d s, __mmask8 k, __m512i i, __m512d a);
VPERMILPD __m512d _mm512_maskz_permutevar_pd( __mmask8 k, __m512i i, __m512d a);
VPERMILPD __m256d _mm256_mask_permutevar_pd(__m256d s, __mmask8 k, __m256d i, __m256d a);
VPERMILPD __m256d _mm256_maskz_permutevar_pd( __mmask8 k, __m256d i, __m256d a);
VPERMILPD __m128d _mm_mask_permutevar_pd(__m128d s, __mmask8 k, __m128d i, __m128d a);
VPERMILPD __m128d _mm_maskz_permutevar_pd( __mmask8 k, __m128d i, __m128d a);
VPERMILPD __m128d _mm_permute_pd (__m128d a, int control)
VPERMILPD __m256d _mm256_permute_pd (__m256d a, int control)
VPERMILPD __m128d _mm_permutevar_pd (__m128d a, __m128i control);
VPERMILPD __m256d _mm256_permutevar_pd (__m256d a, __m256i control);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4; additionally
#UD If VEX.W = 1.
EVEX-encoded instruction, see Exceptions Type E4NF.
#UD If either (E)VEX.vvvv != 1111B and with imm8.
Ref. # 319433-023 5-607
INSTRUCTION SET REFERENCE, A-Z
VPERMILPS—Permute In-Lane of Quadruples of Single-Precision Floating-Point Values
Instruction Operand Encoding
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W0 0C /r RVM V/V AVX Permute single-precision floating-point values in
xmm2 using controls from xmm3/m128 and
store result in xmm1.
VPERMILPS xmm1, xmm2, xmm3/m128
VEX.128.66.0F3A.W0 04 /r ib RM V/V AVX Permute single-precision floating-point values in
xmm2/m128 using controls from imm8 and store
result in xmm1.
VPERMILPS xmm1, xmm2/m128, imm8
VEX.NDS.256.66.0F38.W0 0C /r RVM V/V AVX Permute single-precision floating-point values in
ymm2 using controls from ymm3/m256 and
store result in ymm1.
VPERMILPS ymm1, ymm2, ymm3/m256
VEX.256.66.0F3A.W0 04 /r ib RM V/V AVX Permute single-precision floating-point values in
ymm2/m256 using controls from imm8 and store
result in ymm1.
VPERMILPS ymm1, ymm2/m256, imm8
EVEX.NDS.128.66.0F38.W0 0C /r FV-RVM V/V AVX512VL Permute single-precision floating-point values
xmm2 using control from xmm3/m128/m32bcst
and store the result in xmm1 using writemask k1.
VPERMILPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 0C /r FV-RVM V/V AVX512VL Permute single-precision floating-point values
ymm2 using control from ymm3/m256/m32bcst
and store the result in ymm1 using writemask k1.
VPERMILPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 0C /r FV-RVM V/V AVX512F Permute single-precision floating-point values
zmm2 using control from zmm3/m512/m32bcst
and store the result in zmm1 using writemask k1.
VPERMILPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.128.66.0F3A.W0 04 /r ib FV-RM V/V AVX512VL Permute single-precision floating-point values
xmm2/m128/m32bcst using controls from imm8
and store the result in xmm1 using writemask k1.
VPERMILPS xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
AVX512F
EVEX.256.66.0F3A.W0 04 /r ib FV-RM V/V AVX512VL Permute single-precision floating-point values
ymm2/m256/m32bcst using controls from imm8
and store the result in ymm1 using writemask k1.
VPERMILPS ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
AVX512F
EVEX.512.66.0F3A.W0 04 /r ib FV-RM V/V AVX512F Permute single-precision floating-point values
zmm2/m512/m32bcst using controls from imm8
and store the result in zmm1 using writemask k1.
VPERMILPS zmm1 {k1}{z},
zmm2/m512/m32bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV-RVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV-RM ModRM:reg (w) ModRM:r/m (r) NA NA
5-608 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Description
(variable control version)
Permute quadruples of single-precision floating-point values in the first source operand (second operand), each
quadruplet using a 2-bit control field in the corresponding dword element of the second source operand. Permuted
results are stored in the destination operand (first operand).
The 2-bit control fields are located at the low two bits of each dword element (see Figure 5-33). Each control deter-
mines which of the source element in an input quadruple is selected for the destination element. Each quadruple of
source elements must lie in the same 128-bit region as the destination.
EVEX version: The second source operand (third operand) is a ZMM/YMM/XMM register, a 512/256/128-bit
memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. Permuted results are
written to the destination under the writemask.
(immediate control version)
Permute quadruples of single-precision floating-point values in the first source operand (second operand), each
quadruplet using a 2-bit control field in the imm8 byte. Each 128-bit lane in the destination operand (first operand)
use the four control fields of the same imm8 byte.
VEX version: The source operand is a YMM/XMM register or a 256/128-bit memory location and the destination
operand is a YMM/XMM register.
EVEX version: The source operand (second operand) is a ZMM/YMM/XMM register, a 512/256/128-bit memory
location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. Permuted results are written to
the destination under the writemask.
Note: For the imm8 version, VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will
#UD.
Figure 5-32. VPERMILPS Operation
Figure 5-33. VPERMILPS Shuffle Control
X7 .. X4 X7 .. X4
X3 ..X0
X3 .. X0
DEST
SRC1 X0X1X2X3X4X5X6X7
X3 .. X0
X7 .. X4 X7 .. X4
X3 ..X0
sel
Bit
34
33 32
sel
. . .
226 225 224
sel
ignored
Control Field 1Control Field 2Control Field 7
10
255
ignored ignored
63 31
Ref. # 319433-023 5-609
INSTRUCTION SET REFERENCE, A-Z
Operation
Select4(SRC, control) {
CASE (control[1:0]) OF
0: TMP SRC[31:0];
1: TMP SRC[63:32];
2: TMP SRC[95:64];
3: TMP SRC[127:96];
ESAC;
RETURN TMP
}
VPERMILPS (EVEX immediate versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN TMP_SRC1[i+31:i] SRC1[31:0];
ELSE TMP_SRC1[i+31:i] SRC1[i+31:i];
FI;
ENDFOR;
TMP_DEST[31:0] Select4(TMP_SRC1[127:0], imm8[1:0]);
TMP_DEST[63:32] Select4(TMP_SRC1[127:0], imm8[3:2]);
TMP_DEST[95:64] Select4(TMP_SRC1[127:0], imm8[5:4]);
TMP_DEST[127:96] Select4(TMP_SRC1[127:0], imm8[7:6]); FI;
IF VL >= 256
TMP_DEST[159:128] Select4(TMP_SRC1[255:128], imm8[1:0]); FI;
TMP_DEST[191:160] Select4(TMP_SRC1[255:128], imm8[3:2]); FI;
TMP_DEST[223:192] Select4(TMP_SRC1[255:128], imm8[5:4]); FI;
TMP_DEST[255:224] Select4(TMP_SRC1[255:128], imm8[7:6]); FI;
FI;
IF VL >= 512
TMP_DEST[287:256] Select4(TMP_SRC1[383:256], imm8[1:0]); FI;
TMP_DEST[319:288] Select4(TMP_SRC1[383:256], imm8[3:2]); FI;
TMP_DEST[351:320] Select4(TMP_SRC1[383:256], imm8[5:4]); FI;
TMP_DEST[383:352] Select4(TMP_SRC1[383:256], imm8[7:6]); FI;
TMP_DEST[415:384] Select4(TMP_SRC1[511:384], imm8[1:0]); FI;
TMP_DEST[447:416] Select4(TMP_SRC1[511:384], imm8[3:2]); FI;
TMP_DEST[479:448] Select4(TMP_SRC1[511:384], imm8[5:4]); FI;
TMP_DEST[511:480] Select4(TMP_SRC1[511:384], imm8[7:6]); FI;
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking*
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ;zeroing-masking
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-610 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMILPS (256-bit immediate version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC1[127:0], imm8[7:6]);
DEST[159:128] Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] Select4(SRC1[255:128], imm8[5:4]);
DEST[255:224] Select4(SRC1[255:128], imm8[7:6]);
VPERMILPS (128-bit immediate version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC1[127:0], imm8[7:6]);
DEST[MAX_VL-1:128]0
VPERMILPS (EVEX variable versions)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1
i j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+31:i] SRC2[31:0];
ELSE TMP_SRC2[i+31:i] SRC2[i+31:i];
FI;
ENDFOR;
TMP_DEST[31:0] Select4(SRC1[127:0], TMP_SRC2[1:0]);
TMP_DEST[63:32] Select4(SRC1[127:0], TMP_SRC2[33:32]);
TMP_DEST[95:64] Select4(SRC1[127:0], TMP_SRC2[65:64]);
TMP_DEST[127:96] Select4(SRC1[127:0], TMP_SRC2[97:96]);
IF VL >= 256
TMP_DEST[159:128] Select4(SRC1[255:128], TMP_SRC2[129:128]);
TMP_DEST[191:160] Select4(SRC1[255:128], TMP_SRC2[161:160]);
TMP_DEST[223:192] Select4(SRC1[255:128], TMP_SRC2[193:192]);
TMP_DEST[255:224] Select4(SRC1[255:128], TMP_SRC2[225:224]);
FI;
IF VL >= 512
TMP_DEST[287:256] Select4(SRC1[383:256], TMP_SRC2[257:256]);
TMP_DEST[319:288] Select4(SRC1[383:256], TMP_SRC2[289:288]);
TMP_DEST[351:320] Select4(SRC1[383:256], TMP_SRC2[321:320]);
TMP_DEST[383:352] Select4(SRC1[383:256], TMP_SRC2[353:352]);
TMP_DEST[415:384] Select4(SRC1[511:384], TMP_SRC2[385:384]);
TMP_DEST[447:416] Select4(SRC1[511:384], TMP_SRC2[417:416]);
TMP_DEST[479:448] Select4(SRC1[511:384], TMP_SRC2[449:448]);
TMP_DEST[511:480] Select4(SRC1[511:384], TMP_SRC2[481:480]);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking*
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ;zeroing-masking
Ref. # 319433-023 5-611
INSTRUCTION SET REFERENCE, A-Z
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMILPS (256-bit variable version)
DEST[31:0] Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] Select4(SRC1[127:0], SRC2[97:96]);
DEST[159:128] Select4(SRC1[255:128], SRC2[129:128]);
DEST[191:160] Select4(SRC1[255:128], SRC2[161:160]);
DEST[223:192] Select4(SRC1[255:128], SRC2[193:192]);
DEST[255:224] Select4(SRC1[255:128], SRC2[225:224]);
DEST[MAX_VL-1:256]0
VPERMILPS (128-bit variable version)
DEST[31:0] Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] Select4(SRC1[127:0], SRC2[97:96]);
DEST[MAX_VL-1:128]0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMILPS __m512 _mm512_permute_ps( __m512 a, int imm);
VPERMILPS __m512 _mm512_mask_permute_ps(__m512 s, __mmask16 k, __m512 a, int imm);
VPERMILPS __m512 _mm512_maskz_permute_ps( __mmask16 k, __m512 a, int imm);
VPERMILPS __m256 _mm256_mask_permute_ps(__m256 s, __mmask8 k, __m256 a, int imm);
VPERMILPS __m256 _mm256_maskz_permute_ps( __mmask8 k, __m256 a, int imm);
VPERMILPS __m128 _mm_mask_permute_ps(__m128 s, __mmask8 k, __m128 a, int imm);
VPERMILPS __m128 _mm_maskz_permute_ps( __mmask8 k, __m128 a, int imm);
VPERMILPS __m512 _mm512_permutevar_ps( __m512i i, __m512 a);
VPERMILPS __m512 _mm512_mask_permutevar_ps(__m512 s, __mmask16 k, __m512i i, __m512 a);
VPERMILPS __m512 _mm512_maskz_permutevar_ps( __mmask16 k, __m512i i, __m512 a);
VPERMILPS __m256 _mm256_mask_permutevar_ps(__m256 s, __mmask8 k, __m256 i, __m256 a);
VPERMILPS __m256 _mm256_maskz_permutevar_ps( __mmask8 k, __m256 i, __m256 a);
VPERMILPS __m128 _mm_mask_permutevar_ps(__m128 s, __mmask8 k, __m128 i, __m128 a);
VPERMILPS __m128 _mm_maskz_permutevar_ps( __mmask8 k, __m128 i, __m128 a);
VPERMILPS __m128 _mm_permute_ps (__m128 a, int control);
VPERMILPS __m256 _mm256_permute_ps (__m256 a, int control);
VPERMILPS __m128 _mm_permutevar_ps (__m128 a, __m128i control);
VPERMILPS __m256 _mm256_permutevar_ps (__m256 a, __m256i control);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4;
#UD If VEX.W = 1.
EVEX-encoded instruction, see Exceptions Type E4NF.
#UD If either (E)VEX.vvvv != 1111B and with imm8.
5-612 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMPD—Permute Double-Precision Floating-Point Elements
Instruction Operand Encoding
Description
The imm8 version: Copies quadword elements of double-precision floating-point values from the source operand
(the second operand) to the destination operand (the first operand) according to the indices specified by the imme-
diate operand (the third operand). Each two-bit value in the immediate byte selects a qword element in the source
operand.
VEX version: The source operand can be a YMM register or a memory location. Bits (MAX_VL-1:256) of the corre-
sponding destination register are zeroed.
In EVEX.512 encoded version, The elements in the destination are updated using the writemask k1 and the imm8
bits are reused as control bits for the upper 256-bit half when the control bits are coming from immediate. The
source operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location.
The imm8 versions: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The vector control version: Copies quadword elements of double-precision floating-point values from the second
source operand (the third operand) to the destination operand (the first operand) according to the indices in the
first source operand (the second operand). The first 3 bits of each 64 bit element in the index operand selects which
quadword in the second source operand to copy. The first and second operands are ZMM registers, the third
operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit memory
location. The elements in the destination are updated using the writemask k1.
Note that this instruction permits a qword in the source operand to be copied to multiple locations in the destination
operand.
If VPERMPD is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an
#UD exception.
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.256.66.0F3A.W1 01 /r ib RMI V/V AVX2 Permute double-precision floating-point elements in
ymm2/m256 using indices in imm8 and store the
result in ymm1.
VPERMPD ymm1, ymm2/m256, imm8
EVEX.256.66.0F3A.W1 01 /r ib FV-RM V/V AVX512VL Permute double-precision floating-point elements in
ymm2/m256/m64bcst using indexes in imm8 and
store the result in ymm1 subject to writemask k1.
VPERMPD ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
AVX512F
EVEX.512.66.0F3A.W1 01 /r ib FV-RMI V/V AVX512F Permute double-precision floating-point elements in
zmm2/m512/m64bcst using indices in imm8 and
store the result in zmm1 subject to writemask k1.
VPERMPD zmm1 {k1}{z},
zmm2/m512/m64bcst, imm8
EVEX.NDS.256.66.0F38.W1 16 /r FV-RVM V/V AVX512VL Permute double-precision floating-point elements in
ymm3/m256/m64bcst using indexes in ymm2 and
store the result in ymm1 subject to writemask k1.
VPERMPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 16 /r FV-RVM V/V AVX512F Permute double-precision floating-point elements in
zmm3/m512/m64bcst using indices in zmm2 and
store the result in zmm1 subject to writemask k1.
VPERMPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
FV-RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
FV-RVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-613
INSTRUCTION SET REFERENCE, A-Z
Operation
VPERMPD (EVEX - imm8 control forms)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN TMP_SRC[i+63:i] SRC[63:0];
ELSE TMP_SRC[i+63:i] SRC[i+63:i];
FI;
ENDFOR;
TMP_DEST[63:0] (TMP_SRC[256:0] >> (IMM8[1:0] * 64))[63:0];
TMP_DEST[127:64] (TMP_SRC[256:0] >> (IMM8[3:2] * 64))[63:0];
TMP_DEST[191:128] (TMP_SRC[256:0] >> (IMM8[5:4] * 64))[63:0];
TMP_DEST[255:192] (TMP_SRC[256:0] >> (IMM8[7:6] * 64))[63:0];
IF VL >= 512
TMP_DEST[319:256] (TMP_SRC[511:256] >> (IMM8[1:0] * 64))[63:0];
TMP_DEST[383:320] (TMP_SRC[511:256] >> (IMM8[3:2] * 64))[63:0];
TMP_DEST[447:384] (TMP_SRC[511:256] >> (IMM8[5:4] * 64))[63:0];
TMP_DEST[511:448] (TMP_SRC[511:256] >> (IMM8[7:6] * 64))[63:0];
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0 ;zeroing-masking
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMPD (EVEX - vector control forms)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+63:i] SRC2[63:0];
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i];
FI;
ENDFOR;
IF VL = 256
TMP_DEST[63:0] (TMP_SRC2[255:0] >> (SRC1[1:0] * 64))[63:0];
TMP_DEST[127:64] (TMP_SRC2[255:0] >> (SRC1[65:64] * 64))[63:0];
TMP_DEST[191:128] (TMP_SRC2[255:0] >> (SRC1[129:128] * 64))[63:0];
TMP_DEST[255:192] (TMP_SRC2[255:0] >> (SRC1[193:192] * 64))[63:0];
FI;
IF VL = 512
TMP_DEST[63:0] (TMP_SRC2[511:0] >> (SRC1[2:0] * 64))[63:0];
5-614 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TMP_DEST[127:64] (TMP_SRC2[511:0] >> (SRC1[66:64] * 64))[63:0];
TMP_DEST[191:128] (TMP_SRC2[511:0] >> (SRC1[130:128] * 64))[63:0];
TMP_DEST[255:192] (TMP_SRC2[511:0] >> (SRC1[194:192] * 64))[63:0];
TMP_DEST[319:256] (TMP_SRC2[511:0] >> (SRC1[258:256] * 64))[63:0];
TMP_DEST[383:320] (TMP_SRC2[511:0] >> (SRC1[322:320] * 64))[63:0];
TMP_DEST[447:384] (TMP_SRC2[511:0] >> (SRC1[386:384] * 64))[63:0];
TMP_DEST[511:448] (TMP_SRC2[511:0] >> (SRC1[450:448] * 64))[63:0];
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0 ;zeroing-masking
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMPD (VEX.256 encoded version)
DEST[63:0] (SRC[255:0] >> (IMM8[1:0] * 64))[63:0];
DEST[127:64] (SRC[255:0] >> (IMM8[3:2] * 64))[63:0];
DEST[191:128] (SRC[255:0] >> (IMM8[5:4] * 64))[63:0];
DEST[255:192] (SRC[255:0] >> (IMM8[7:6] * 64))[63:0];
DEST[MAX_VL-1:256] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMPD __m512d _mm512_permutex_pd( __m512d a, int imm);
VPERMPD __m512d _mm512_mask_permutex_pd(__m512d s, __mmask16 k, __m512d a, int imm);
VPERMPD __m512d _mm512_maskz_permutex_pd( __mmask16 k, __m512d a, int imm);
VPERMPD __m512d _mm512_permutexvar_pd( __m512i i, __m512d a);
VPERMPD __m512d _mm512_mask_permutexvar_pd(__m512d s, __mmask16 k, __m512i i, __m512d a);
VPERMPD __m512d _mm512_maskz_permutexvar_pd( __mmask16 k, __m512i i, __m512d a);
VPERMPD __m256d _mm256_permutex_epi64( __m256d a, int imm);
VPERMPD __m256d _mm256_mask_permutex_epi64(__m256i s, __mmask8 k, __m256d a, int imm);
VPERMPD __m256d _mm256_maskz_permutex_epi64( __mmask8 k, __m256d a, int imm);
VPERMPD __m256d _mm256_permutexvar_epi64( __m256i i, __m256d a);
VPERMPD __m256d _mm256_mask_permutexvar_epi64(__m256i s, __mmask8 k, __m256i i, __m256d a);
VPERMPD __m256d _mm256_maskz_permutexvar_epi64( __mmask8 k, __m256i i, __m256d a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4; additionally
#UD If VEX.L = 0.
If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E4NF.
#UD If encoded with EVEX.128.
If EVEX.vvvv != 1111B and with imm8.
Ref. # 319433-023 5-615
INSTRUCTION SET REFERENCE, A-Z
VPERMPS—Permute Single-Precision Floating-Point Elements
Instruction Operand Encoding
Description
Copies doubleword elements of single-precision floating-point values from the second source operand (the third
operand) to the destination operand (the first operand) according to the indices in the first source operand (the
second operand). Note that this instruction permits a doubleword in the source operand to be copied to more than
one location in the destination operand.
VEX.256 versions: The first and second operands are YMM registers, the third operand can be a YMM register or
memory location. Bits (MAX_VL-1:256) of the corresponding destination register are zeroed.
EVEX encoded version: The first and second operands are ZMM registers, the third operand can be a ZMM register,
a 512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location. The elements in the
destination are updated using the writemask k1.
If VPERMPS is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an
#UD exception.
Operation
VPERMPS (EVEX forms)
(KL, VL) (8, 256),= (16, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+31:i] SRC2[31:0];
ELSE TMP_SRC2[i+31:i] SRC2[i+31:i];
FI;
ENDFOR;
IF VL = 256
TMP_DEST[31:0] (TMP_SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];
TMP_DEST[63:32] (TMP_SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];
TMP_DEST[95:64] (TMP_SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
TMP_DEST[127:96] (TMP_SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
TMP_DEST[159:128] (TMP_SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.256.66.0F38.W0 16 /r RVM V/V AVX2 Permute single-precision floating-point elements in
ymm3/m256 using indices in ymm2 and store the result in
ymm1.
VPERMPS ymm1, ymm2,
ymm3/m256
EVEX.NDS.256.66.0F38.W0 16 /r FV V/V AVX512VL Permute single-precision floating-point elements in
ymm3/m256/m32bcst using indexes in ymm2 and store
the result in ymm1 subject to write mask k1.
VPERMPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 16 /r FV V/V AVX512F Permute single-precision floating-point values in
zmm3/m512/m32bcst using indices in zmm2 and store the
result in zmm1 subject to write mask k1.
VPERMPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-616 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TMP_DEST[191:160] (TMP_SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
TMP_DEST[223:192] (TMP_SRC2[255:0] >> (SRC1[193:192] * 32))[31:0];
TMP_DEST[255:224] (TMP_SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];
FI;
IF VL = 512
TMP_DEST[31:0] (TMP_SRC2[511:0] >> (SRC1[3:0] * 32))[31:0];
TMP_DEST[63:32] (TMP_SRC2[511:0] >> (SRC1[35:32] * 32))[31:0];
TMP_DEST[95:64] (TMP_SRC2[511:0] >> (SRC1[67:64] * 32))[31:0];
TMP_DEST[127:96] (TMP_SRC2[511:0] >> (SRC1[99:96] * 32))[31:0];
TMP_DEST[159:128] (TMP_SRC2[511:0] >> (SRC1[131:128] * 32))[31:0];
TMP_DEST[191:160] (TMP_SRC2[511:0] >> (SRC1[163:160] * 32))[31:0];
TMP_DEST[223:192] (TMP_SRC2[511:0] >> (SRC1[195:192] * 32))[31:0];
TMP_DEST[255:224] (TMP_SRC2[511:0] >> (SRC1[227:224] * 32))[31:0];
TMP_DEST[287:256] (TMP_SRC2[511:0] >> (SRC1[259:256] * 32))[31:0];
TMP_DEST[319:288] (TMP_SRC2[511:0] >> (SRC1[291:288] * 32))[31:0];
TMP_DEST[351:320] (TMP_SRC2[511:0] >> (SRC1[323:320] * 32))[31:0];
TMP_DEST[383:352] (TMP_SRC2[511:0] >> (SRC1[355:352] * 32))[31:0];
TMP_DEST[415:384] (TMP_SRC2[511:0] >> (SRC1[387:384] * 32))[31:0];
TMP_DEST[447:416] (TMP_SRC2[511:0] >> (SRC1[419:416] * 32))[31:0];
TMP_DEST[479:448] (TMP_SRC2[511:0] >> (SRC1[451:448] * 32))[31:0];
TMP_DEST[511:480] (TMP_SRC2[511:0] >> (SRC1[483:480] * 32))[31:0];
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0 ;zeroing-masking
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMPS (VEX.256 encoded version)
DEST[31:0] (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];
DEST[63:32] (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];
DEST[95:64] (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
DEST[127:96] (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
DEST[159:128] (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
DEST[191:160] (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
DEST[223:192] (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];
DEST[255:224] (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];
DEST[MAX_VL-1:256] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMPS __m512 _mm512_permutexvar_ps(__m512i i, __m512 a);
VPERMPS __m512 _mm512_mask_permutexvar_ps(__m512 s, __mmask16 k, __m512i i, __m512 a);
VPERMPS __m512 _mm512_maskz_permutexvar_ps( __mmask16 k, __m512i i, __m512 a);
VPERMPS __m256 _mm256_permutexvar_ps(__m256 i, __m256 a);
VPERMPS __m256 _mm256_mask_permutexvar_ps(__m256 s, __mmask8 k, __m256 i, __m256 a);
VPERMPS __m256 _mm256_maskz_permutexvar_ps( __mmask8 k, __m256 i, __m256 a);
Ref. # 319433-023 5-617
INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4; additionally
#UD If VEX.L = 0.
EVEX-encoded instruction, see Exceptions Type E4NF.
5-618 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPERMQ—Qwords Element Permutation
Instruction Operand Encoding
Description
The imm8 version: Copies quadwords from the source operand (the second operand) to the destination operand
(the first operand) according to the indices specified by the immediate operand (the third operand). Each two-bit
value in the immediate byte selects a qword element in the source operand.
VEX version: The source operand can be a YMM register or a memory location. Bits (MAX_VL-1:256) of the corre-
sponding destination register are zeroed.
In EVEX.512 encoded version, The elements in the destination are updated using the writemask k1 and the imm8
bits are reused as control bits for the upper 256-bit half when the control bits are coming from immediate. The
source operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location.
Immediate control versions: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will
#UD.
The vector control version: Copies quadwords from the second source operand (the third operand) to the destina-
tion operand (the first operand) according to the indices in the first source operand (the second operand). The first
3 bits of each 64 bit element in the index operand selects which quadword in the second source operand to copy.
The first and second operands are ZMM registers, the third operand can be a ZMM register, a 512-bit memory loca-
tion or a 512-bit vector broadcasted from a 64-bit memory location. The elements in the destination are updated
using the writemask k1.
Note that this instruction permits a qword in the source operand to be copied to multiple locations in the destination
operand.
If VPERMPQ is encoded with VEX.L= 0 or EVEX.128, an attempt to execute the instruction will cause an #UD excep-
tion.
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.256.66.0F3A.W1 00 /r ib RMI V/V AVX2 Permute qwords in ymm2/m256 using indices in
imm8 and store the result in ymm1.
VPERMQ ymm1, ymm2/m256, imm8
EVEX.256.66.0F3A.W1 00 /r ib FV-RM V/V AVX512VL Permute qwords in ymm2/m256/m64bcst using
indexes in imm8 and store the result in ymm1.
VPERMQ ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
AVX512F
EVEX.512.66.0F3A.W1 00 /r ib FV-RMI V/V AVX512F Permute qwords in zmm2/m512/m64bcst using
indices in imm8 and store the result in zmm1.
VPERMQ zmm1 {k1}{z},
zmm2/m512/m64bcst, imm8
EVEX.NDS.256.66.0F38.W1 36 /r FV-RVM V/V AVX512VL Permute qwords in ymm3/m256/m64bcst using
indexes in ymm2 and store the result in ymm1.
VPERMQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 36 /r FV-RVM V/V AVX512F Permute qwords in zmm3/m512/m64bcst using
indices in zmm2 and store the result in zmm1.
VPERMQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
FV-RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
FV-RVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-619
INSTRUCTION SET REFERENCE, A-Z
Operation
VPERMQ (EVEX - imm8 control forms)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN TMP_SRC[i+63:i] SRC[63:0];
ELSE TMP_SRC[i+63:i] SRC[i+63:i];
FI;
ENDFOR;
TMP_DEST[63:0] (TMP_SRC[255:0] >> (IMM8[1:0] * 64))[63:0];
TMP_DEST[127:64] (TMP_SRC[255:0] >> (IMM8[3:2] * 64))[63:0];
TMP_DEST[191:128] (TMP_SRC[255:0] >> (IMM8[5:4] * 64))[63:0];
TMP_DEST[255:192] (TMP_SRC[255:0] >> (IMM8[7:6] * 64))[63:0];
IF VL >= 512
TMP_DEST[319:256] (TMP_SRC[511:256] >> (IMM8[1:0] * 64))[63:0];
TMP_DEST[383:320] (TMP_SRC[511:256] >> (IMM8[3:2] * 64))[63:0];
TMP_DEST[447:384] (TMP_SRC[511:256] >> (IMM8[5:4] * 64))[63:0];
TMP_DEST[511:448] (TMP_SRC[511:256] >> (IMM8[7:6] * 64))[63:0];
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0 ;zeroing-masking
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMQ (EVEX - vector control forms)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+63:i] SRC2[63:0];
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i];
FI;
ENDFOR;
IF VL = 256
TMP_DEST[63:0] (TMP_SRC2[255:0] >> (SRC1[1:0] * 64))[63:0];
TMP_DEST[127:64] (TMP_SRC2[255:0] >> (SRC1[65:64] * 64))[63:0];
TMP_DEST[191:128] (TMP_SRC2[255:0] >> (SRC1[129:128] * 64))[63:0];
TMP_DEST[255:192] (TMP_SRC2[255:0] >> (SRC1[193:192] * 64))[63:0];
FI;
IF VL = 512
TMP_DEST[63:0] (TMP_SRC2[511:0] >> (SRC1[2:0] * 64))[63:0];
TMP_DEST[127:64] (TMP_SRC2[511:0] >> (SRC1[66:64] * 64))[63:0];
TMP_DEST[191:128] (TMP_SRC2[511:0] >> (SRC1[130:128] * 64))[63:0];
TMP_DEST[255:192] (TMP_SRC2[511:0] >> (SRC1[194:192] * 64))[63:0];
5-620 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TMP_DEST[319:256] (TMP_SRC2[511:0] >> (SRC1[258:256] * 64))[63:0];
TMP_DEST[383:320] (TMP_SRC2[511:0] >> (SRC1[322:320] * 64))[63:0];
TMP_DEST[447:384] (TMP_SRC2[511:0] >> (SRC1[386:384] * 64))[63:0];
TMP_DEST[511:448] (TMP_SRC2[511:0] >> (SRC1[450:448] * 64))[63:0];
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0 ;zeroing-masking
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPERMQ (VEX.256 encoded version)
DEST[63:0] (SRC[255:0] >> (IMM8[1:0] * 64))[63:0];
DEST[127:64] (SRC[255:0] >> (IMM8[3:2] * 64))[63:0];
DEST[191:128] (SRC[255:0] >> (IMM8[5:4] * 64))[63:0];
DEST[255:192] (SRC[255:0] >> (IMM8[7:6] * 64))[63:0];
DEST[MAX_VL-1:256] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMQ __m512i _mm512_permutex_epi64( __m512i a, int imm);
VPERMQ __m512i _mm512_mask_permutex_epi64(__m512i s, __mmask8 k, __m512i a, int imm);
VPERMQ __m512i _mm512_maskz_permutex_epi64( __mmask8 k, __m512i a, int imm);
VPERMQ __m512i _mm512_permutexvar_epi64( __m512i a, __m512i b);
VPERMQ __m512i _mm512_mask_permutexvar_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPERMQ __m512i _mm512_maskz_permutexvar_epi64( __mmask8 k, __m512i a, __m512i b);
VPERMQ __m256i _mm256_permutex_epi64( __m256i a, int imm);
VPERMQ __m256i _mm256_mask_permutex_epi64(__m256i s, __mmask8 k, __m256i a, int imm);
VPERMQ __m256i _mm256_maskz_permutex_epi64( __mmask8 k, __m256i a, int imm);
VPERMQ __m256i _mm256_permutexvar_epi64( __m256i a, __m256i b);
VPERMQ __m256i _mm256_mask_permutexvar_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPERMQ __m256i _mm256_maskz_permutexvar_epi64( __mmask8 k, __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4; additionally
#UD If VEX.L = 0.
If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E4NF.
#UD If encoded with EVEX.128.
If EVEX.vvvv != 1111B and with imm8.
Ref. # 319433-023 5-621
INSTRUCTION SET REFERENCE, A-Z
VPEXPANDD—Load Sparse Packed Doubleword Integer Values from Dense Memory / Register
Instruction Operand Encoding
Description
Expand (load) up to 16 contiguous doubleword integer values of the input vector in the source operand (the second
operand) to sparse elements in the destination operand (the first operand), selected by the writemask k1. The
destination operand is a ZMM register, the source operand can be a ZMM register or memory location.
The input vector starts from the lowest element in the source operand. The opmask register k1 selects the desti-
nation elements (a partial vector or sparse elements if less than 8 elements) to be replaced by the ascending
elements in the input vector. Destination elements not selected by the writemask k1 are either unmodified or
zeroed, depending on EVEX.z.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.
Operation
VPEXPANDD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
k 0
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
DEST[i+31:i] SRC[k+31:k];
k k + 32
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 89 /r T1S V/V AVX512VL Expand packed double-word integer values from
xmm2/m128 to xmm1 using writemask k1.
VPEXPANDD xmm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.256.66.0F38.W0 89 /r T1S V/V AVX512VL Expand packed double-word integer values from
ymm2/m256 to ymm1 using writemask k1.
VPEXPANDD ymm1 {k1}{z},
ymm2/m256
AVX512F
EVEX.512.66.0F38.W0 89 /r T1S V/V AVX512F Expand packed double-word integer values from
zmm2/m512 to zmm1 using writemask k1.
VPEXPANDD zmm1 {k1}{z},
zmm2/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
5-622 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPEXPANDD __m512i _mm512_mask_expandloadu_epi32(__m512i s, __mmask16 k, void * a);
VPEXPANDD __m512i _mm512_maskz_expandloadu_epi32( __mmask16 k, void * a);
VPEXPANDD __m512i _mm512_mask_expand_epi32(__m512i s, __mmask16 k, __m512i a);
VPEXPANDD __m512i _mm512_maskz_expand_epi32( __mmask16 k, __m512i a);
VPEXPANDD __m256i _mm256_mask_expandloadu_epi32(__m256i s, __mmask8 k, void * a);
VPEXPANDD __m256i _mm256_maskz_expandloadu_epi32( __mmask8 k, void * a);
VPEXPANDD __m256i _mm256_mask_expand_epi32(__m256i s, __mmask8 k, __m256i a);
VPEXPANDD __m256i _mm256_maskz_expand_epi32( __mmask8 k, __m256i a);
VPEXPANDD __m128i _mm_mask_expandloadu_epi32(__m128i s, __mmask8 k, void * a);
VPEXPANDD __m128i _mm_maskz_expandloadu_epi32( __mmask8 k, void * a);
VPEXPANDD __m128i _mm_mask_expand_epi32(__m128i s, __mmask8 k, __m128i a);
VPEXPANDD __m128i _mm_maskz_expand_epi32( __mmask8 k, __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-623
INSTRUCTION SET REFERENCE, A-Z
VPEXPANDQ—Load Sparse Packed Quadword Integer Values from Dense Memory / Register
Instruction Operand Encoding
Description
Expand (load) up to 8 quadword integer values from the source operand (the second operand) to sparse elements
in the destination operand (the first operand), selected by the writemask k1. The destination operand is a ZMM
register, the source operand can be a ZMM register or memory location.
The input vector starts from the lowest element in the source operand. The opmask register k1 selects the desti-
nation elements (a partial vector or sparse elements if less than 8 elements) to be replaced by the ascending
elements in the input vector. Destination elements not selected by the writemask k1 are either unmodified or
zeroed, depending on EVEX.z.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.
Operation
VPEXPANDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
k 0
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
DEST[i+63:i] SRC[k+63:k];
k k + 64
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W1 89 /r T1S V/V AVX512VL Expand packed quad-word integer values from
xmm2/m128 to xmm1 using writemask k1.
VPEXPANDQ xmm1 {k1}{z}, xmm2/m128 AVX512F
EVEX.256.66.0F38.W1 89 /r T1S V/V AVX512VL Expand packed quad-word integer values from
ymm2/m256 to ymm1 using writemask k1.
VPEXPANDQ ymm1 {k1}{z}, ymm2/m256 AVX512F
EVEX.512.66.0F38.W1 89 /r T1S V/V AVX512F Expand packed quad-word integer values from
zmm2/m512 to zmm1 using writemask k1.
VPEXPANDQ zmm1 {k1}{z}, zmm2/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
5-624 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPEXPANDQ __m512i _mm512_mask_expandloadu_epi64(__m512i s, __mmask8 k, void * a);
VPEXPANDQ __m512i _mm512_maskz_expandloadu_epi64( __mmask8 k, void * a);
VPEXPANDQ __m512i _mm512_mask_expand_epi64(__m512i s, __mmask8 k, __m512i a);
VPEXPANDQ __m512i _mm512_maskz_expand_epi64( __mmask8 k, __m512i a);
VPEXPANDQ __m256i _mm256_mask_expandloadu_epi64(__m256i s, __mmask8 k, void * a);
VPEXPANDQ __m256i _mm256_maskz_expandloadu_epi64( __mmask8 k, void * a);
VPEXPANDQ __m256i _mm256_mask_expand_epi64(__m256i s, __mmask8 k, __m256i a);
VPEXPANDQ __m256i _mm256_maskz_expand_epi64( __mmask8 k, __m256i a);
VPEXPANDQ __m128i _mm_mask_expandloadu_epi64(__m128i s, __mmask8 k, void * a);
VPEXPANDQ __m128i _mm_maskz_expandloadu_epi64( __mmask8 k, void * a);
VPEXPANDQ __m128i _mm_mask_expand_epi64(__m128i s, __mmask8 k, __m128i a);
VPEXPANDQ __m128i _mm_maskz_expand_epi64( __mmask8 k, __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-625
INSTRUCTION SET REFERENCE, A-Z
PEXTRB/PEXTRW/PEXTRD/PEXTRQ—Extract Integer
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 3A 14 /r ib MRI V/V SSE4_1 Extract a byte integer value from xmm2 at the source
byte offset specified by imm8 into reg or m8. The upper
bits of r64/r32 is filled with zeros.
PEXTRB reg/m8, xmm2, imm8
66 0F C5 /r ib RMI V/V SSE2 Extract the word specified by imm8 from xmm1 and
move it to reg, bits 15:0. The upper bits of r64/r32 is
filled with zeros.
PEXTRW reg, xmm1, imm8
66 0F 3A 15 /r ib MRI V/V SSE4_1 Extract a word integer value from xmm2 at the source
word offset specified by imm8 into reg or m16. The
upper bits of r64/r32 is filled with zeros.
PEXTRW reg/m16, xmm2, imm8
66 0F 3A 16 /r ib MRI V/V SSE4_1 Extract a dword integer value from xmm2 at the source
dword offset specified by imm8 into r32/m32.
PEXTRD r32/m32, xmm2, imm8
66 REX.W 0F 3A 16 /r ib MRI V/N.E. SSE4_1 Extract a qword integer value from xmm2 at the source
dword offset specified by imm8 into r64/m64.
PEXTRQ r64/m64, xmm2, imm8
VEX.128.66.0F3A 14 /r ib MRI V/V AVX Extract a byte integer value from xmm2 at the source
byte offset specified by imm8 into reg or m8. The upper
bits of r64/r32 is filled with zeros.
VPEXTRB reg/m8, xmm2, imm8
VEX.128.66.0F C5 /r ib RMI V/V AVX Extract the word specified by imm8 from xmm1 and
move it to reg, bits 15:0. Zero-extend the result. The
upper bits of r64/r32 is filled with zeros.
VPEXTRW reg, xmm1, imm8
VEX.128.66.0F3A 15 /r ib MRI V/V AVX Extract a word integer value from xmm2 at the source
word offset specified by imm8 into reg or m16. The
upper bits of r64/r32 is filled with zeros.
VPEXTRW reg/m16, xmm2, imm8
VEX.128.66.0F3A.W0 16 /r ib MRI V/V AVX Extract a dword integer value from xmm2 at the source
dword offset specified by imm8 into r32/m32.
VPEXTRD r32/m32, xmm2, imm8
VEX.128.66.0F3A.W1 16 /r ib MRI V/N.E. AVX Extract a qword integer value from xmm2 at the source
dword offset specified by imm8 into r64/m64.
VPEXTRQ r64/m64, xmm2, imm8
EVEX.128.66.0F3A.WIG 14 /r ib T1S-MRI V/V AVX512BW Extract a byte integer value from xmm2 at the source
byte offset specified by imm8 into reg or m8. The upper
bits of r64/r32 is filled with zeros.
VPEXTRB reg/m8, xmm2, imm8
EVEX.128.66.0F.WIG C5 /r ib RMI V/V AVX512BW Extract the word specified by imm8 from xmm1 and
move it to reg, bits 15:0. Zero-extend the result. The
upper bits of r64/r32 is filled with zeros.
VPEXTRW reg, xmm1, imm8
EVEX.128.66.0F3A.WIG 15 /r ib T1S-MRI V/V AVX512BW Extract a word integer value from xmm2 at the source
word offset specified by imm8 into reg or m16. The
upper bits of r64/r32 is filled with zeros.
VPEXTRW reg/m16, xmm2, imm8
EVEX.128.66.0F3A.W0 16 /r ib T1S-MRI V/V AVX512DQ Extract a dword integer value from xmm2 at the source
dword offset specified by imm8 into r32/m32.
VPEXTRD r32/m32, xmm2, imm8
EVEX.128.66.0F3A.W1 16 /r ib T1S-MRI V/N.E.1
NOTES:
1. VEX.W/EVEX.W in non-64 bit is ignored; the instructions behaves as if the W0 version is used.
AVX512DQ Extract a qword integer value from xmm2 at the source
dword offset specified by imm8 into r64/m64.
VPEXTRQ r64/m64, xmm2, imm8
5-626 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Extract a byte/word/dword/qword integer value from the source XMM register at a byte/word/dword/qword offset
determined from imm8[3:0]. The destination can be a register or byte/word/dword/qword memory location. If the
destination is a register, the upper bits of the register are zero extended.
In 64-bit mode, if the destination operand is a register, default operand size is 64 bits. The bits above the least
significant dword/word/byte data element are filled with zeros
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.
Operation
(V)PEXTRTD/(V)PEXTRQ
IF (64-Bit Mode and 64-bit dest operand)
THEN
Src_Offset Imm8[0]
r64/m64 (Src >> Src_Offset * 64)
ELSE
Src_Offset Imm8[1:0]
r32/m32 ((Src >> Src_Offset *32) AND 0FFFFFFFFh);
FI
(V)PEXTRW ( dest=m16)
SRC_Offset Imm8[2:0]
Mem16 (Src >> Src_Offset*16)
(V)PEXTRW ( dest=reg)
IF (64-Bit Mode )
THEN
SRC_Offset Imm8[2:0]
DEST[15:0] ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[63:16] ZERO_FILL;
ELSE
SRC_Offset Imm8[2:0]
DEST[15:0] ((Src >> Src_Offset*16) AND 0FFFFh)
DEST[31:16] ZERO_FILL;
FI
(V)PEXTRB ( dest=m8)
SRC_Offset Imm8[3:0]
Mem8 (Src >> Src_Offset*8)
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MRI ModRM:r/m (w) ModRM:reg (r) Imm8 NA
RMI ModRM:reg (w) ModRM:r/m(r) Imm8 NA
T1S-MRI ModRM:r/m (w) ModRM:reg (r) Imm8 NA
Ref. # 319433-023 5-627
INSTRUCTION SET REFERENCE, A-Z
(V)PEXTRB ( dest=reg)
IF (64-Bit Mode )
THEN
SRC_Offset Imm8[3:0]
DEST[7:0] ((Src >> Src_Offset*8) AND 0FFh)
DEST[63:8] ZERO_FILL;
ELSE
SRC_Offset Imm8[3:0];
DEST[7:0] ((Src >> Src_Offset*8) AND 0FFh);
DEST[31:8] ZERO_FILL;
FI
Intel C/C++ Compiler Intrinsic Equivalent
PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx);
PEXTRW int _mm_extract_epi16 (__m128i src, int ndx);
PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx);
PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5;
EVEX-encoded instruction, see Exceptions Type E9NF.
#UD If VEX.L = 1 or EVEX.L’L > 0.
If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.
5-628 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPLZCNTD/Q—Count the Number of Leading Zero Bits for Packed Dword, Packed Qword Values
Instruction Operand Encoding
Description
Counts the number of leading most significant zero bits in each dword or qword element of the source operand (the
second operand) and stores the results in the destination register (the first operand) according to the writemask.
If an element is zero, the result for that element is the operand size of the element.
EVEX.512 encoded version: The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector
broadcasted from a 32/64-bit memory location. The destination operand is a ZMM register, conditionally updated
using writemask k1.
EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector
broadcasted from a 32/64-bit memory location. The destination operand is a YMM register, conditionally updated
using writemask k1.
EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector
broadcasted from a 32/64-bit memory location. The destination operand is a XMM register, conditionally updated
using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 44 /r
VPLZCNTD xmm1 {k1}{z},
xmm2/m128/m32bcst
FV V/V AVX512VL
AVX512CD
Count the number of leading zero bits in each dword
element of xmm2/m128/m32bcst using writemask k1.
EVEX.256.66.0F38.W0 44 /r
VPLZCNTD ymm1 {k1}{z},
ymm2/m256/m32bcst
FV V/V AVX512VL
AVX512CD
Count the number of leading zero bits in each dword
element of ymm2/m256/m32bcst using writemask k1.
EVEX.512.66.0F38.W0 44 /r
VPLZCNTD zmm1 {k1}{z},
zmm2/m512/m32bcst
FV V/V AVX512CD Count the number of leading zero bits in each dword
element of zmm2/m512/m32bcst using writemask k1.
EVEX.128.66.0F38.W1 44 /r
VPLZCNTQ xmm1 {k1}{z},
xmm2/m128/m64bcst
FV V/V AVX512VL
AVX512CD
Count the number of leading zero bits in each qword
element of xmm2/m128/m64bcst using writemask k1.
EVEX.256.66.0F38.W1 44 /r
VPLZCNTQ ymm1 {k1}{z},
ymm2/m256/m64bcst
FV V/V AVX512VL
AVX512CD
Count the number of leading zero bits in each qword
element of ymm2/m256/m64bcst using writemask k1.
EVEX.512.66.0F38.W1 44 /r
VPLZCNTQ zmm1 {k1}{z},
zmm2/m512/m64bcst
FV V/V AVX512CD Count the number of leading zero bits in each qword
element of zmm2/m512/m64bcst using writemask k1.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-629
INSTRUCTION SET REFERENCE, A-Z
Operation
VPLZCNTD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j*32
IF MaskBit(j) OR *no writemask*
THEN
temp 32
DEST[i+31:i] 0
WHILE (temp > 0) AND (SRC[i+temp-1] = 0)
DO
temp temp – 1
DEST[i+31:i] DEST[i+31:i] + 1
OD
ELSE
IF *merging-masking*
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0
FI
FI
ENDFOR
DEST[MAX_VL-1:VL] 0
VPLZCNTQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j*64
IF MaskBit(j) OR *no writemask*
THEN
temp 64
DEST[i+63:i] 0
WHILE (temp > 0) AND (SRC[i+temp-1] = 0)
DO
temp temp – 1
DEST[i+63:i] DEST[i+63:i] + 1
OD
ELSE
IF *merging-masking*
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] 0
FI
FI
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPLZCNTD __m512i _mm512_lzcnt_epi32(__m512i a);
VPLZCNTD __m512i _mm512_mask_lzcnt_epi32(__m512i s, __mmask16 m, __m512i a);
VPLZCNTD __m512i _mm512_maskz_lzcnt_epi32( __mmask16 m, __m512i a);
VPLZCNTQ __m512i _mm512_lzcnt_epi64(__m512i a);
VPLZCNTQ __m512i _mm512_mask_lzcnt_epi64(__m512i s, __mmask8 m, __m512i a);
VPLZCNTQ __m512i _mm512_maskz_lzcnt_epi64(__mmask8 m, __m512i a);
VPLZCNTD __m256i _mm256_lzcnt_epi32(__m256i a);
5-630 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPLZCNTD __m256i _mm256_mask_lzcnt_epi32(__m256i s, __mmask8 m, __m256i a);
VPLZCNTD __m256i _mm256_maskz_lzcnt_epi32( __mmask8 m, __m256i a);
VPLZCNTQ __m256i _mm256_lzcnt_epi64(__m256i a);
VPLZCNTQ __m256i _mm256_mask_lzcnt_epi64(__m256i s, __mmask8 m, __m256i a);
VPLZCNTQ __m256i _mm256_maskz_lzcnt_epi64(__mmask8 m, __m256i a);
VPLZCNTD __m128i _mm_lzcnt_epi32(__m128i a);
VPLZCNTD __m128i _mm_mask_lzcnt_epi32(__m128i s, __mmask8 m, __m128i a);
VPLZCNTD __m128i _mm_maskz_lzcnt_epi32( __mmask8 m, __m128i a);
VPLZCNTQ __m128i _mm_lzcnt_epi64(__m128i a);
VPLZCNTQ __m128i _mm_mask_lzcnt_epi64(__m128i s, __mmask8 m, __m128i a);
VPLZCNTQ __m128i _mm_maskz_lzcnt_epi64(__mmask8 m, __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-631
INSTRUCTION SET REFERENCE, A-Z
PMADDUBSW—Multiply and Add Packed Integers
Instruction Operand Encoding
Description
PMADDUBSW multiplies vertically each unsigned byte of the first source operand with the corresponding signed
byte of the second source operand, producing intermediate signed 16-bit integers. Each adjacent pair of signed
words is added and the saturated result is packed to the destination operand. For example, the lowest-order bytes
(bits 7:0) in the first source and second source operands are multiplied and the intermediate signed word result is
added with the corresponding intermediate result from the 2nd lowest-order bytes (bits 15:8) of the operands; the
sign-saturated result is stored in the lowest word of the destination register (15:0). The same operation is
performed on the other pairs of adjacent bytes.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 and EVEX.128 encoded versions: The first source and destination operands are XMM registers. The
second source operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corre-
sponding destination register are zeroed.
VEX.256 and EVEX.256 encoded versions: The second source operand can be an YMM register or a 256-bit memory
location. The first source and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corresponding
ZMM register are zeroed.
EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The
first source and destination operands are ZMM registers.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 04 /r RM V/V SSSE3 Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack saturated
signed-words to xmm1.
PMADDUBSW xmm1, xmm2/m128
VEX.NDS.128.66.0F38 04 /r RVM V/V AVX Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack saturated
signed-words to xmm1.
VPMADDUBSW xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38 04 /r RVM V/V AVX2 Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack saturated
signed-words to xmm1.
VPMADDUBSW ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.WIG 04 /r FVM V/V AVX512VL Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack saturated
signed-words to xmm1 under writemask k1.
VPMADDUBSW xmm1 {k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F38.WIG 04 /r FVM V/V AVX512VL Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack saturated
signed-words to ymm1 under writemask k1.
VPMADDUBSW ymm1 {k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F38.WIG 04 /r FVM V/V AVX512BW Multiply signed and unsigned bytes, add
horizontal pair of signed words, pack saturated
signed-words to zmm1 under writemask k1.
VPMADDUBSW zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-632 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPMADDUBSW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateToSignedWord(SRC2[i+15:i+8]* SRC1[i+15:i+8] + SRC2[i+7:i]*SRC1[i+7:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPMADDUBSW (VEX.256 encoded version)
DEST[15:0] SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 15th word
DEST[255:240] SaturateToSignedWord(SRC2[255:248]*SRC1[255:248]+ SRC2[247:240]* SRC1[247:240])
DEST[MAX_VL-1:256] 0
VPMADDUBSW (VEX.128 encoded version)
DEST[15:0] SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])
// Repeat operation for 2nd through 7th word
DEST[127:112] SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]* SRC1[119:112])
DEST[MAX_VL-1:128] 0
PMADDUBSW (128-bit Legacy SSE version)
DEST[15:0] SaturateToSignedWord(SRC[15:8]* DEST[15:8]+SRC[7:0]*DEST[7:0]);
// Repeat operation for 2nd through 7th word
DEST[127:112] SaturateToSignedWord(SRC[127:120]*DEST[127:120]+ SRC[119:112]* DEST[119:112]);
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMADDUBSW __m512i _mm512_mddubs_epi16( __m512i a, __m512i b);
VPMADDUBSW __m512i _mm512_mask_mddubs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMADDUBSW __m512i _mm512_maskz_mddubs_epi16( __mmask32 k, __m512i a, __m512i b);
VPMADDUBSW __m256i _mm256_mask_mddubs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMADDUBSW __m256i _mm256_maskz_mddubs_epi16( __mmask16 k, __m256i a, __m256i b);
VPMADDUBSW __m128i _mm_mask_mddubs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMADDUBSW __m128i _mm_maskz_maddubs_epi16( __mmask8 k, __m128i a, __m128i b);
(V)PMADDUBSW __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)
VPMADDUBSW __m256i _mm256_maddubs_epi16 (__m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
Ref. # 319433-023 5-633
INSTRUCTION SET REFERENCE, A-Z
PMADDWD—Multiply and Add Packed Integers
Instruction Operand Encoding
Description
Multiplies the individual signed words of the first source operand by the corresponding signed words of the second
source operand, producing temporary signed, doubleword results. The adjacent doubleword results are then
summed and stored in the destination operand. For example, the corresponding low-order words (15:0) and (31-
16) in the second source and first source operands are multiplied by one another and the doubleword results are
added together and stored in the low doubleword of the destination register (31-0). The same operation is
performed on the other pairs of adjacent words.
The PMADDWD instruction wraps around only in one situation: when the 2 pairs of words being operated on in a
group are all 8000H. In this case, the result wraps around to 80000000H.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 and EVEX.128 encoded versions: The first source and destination operands are XMM registers. The
second source operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corre-
sponding destination register are zeroed.
VEX.256 and EVEX.256 encoded versions: The second source operand can be an YMM register or a 256-bit memory
location. The first source and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corresponding
ZMM register are zeroed.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F F5 /r RM V/V SSE2 Multiply the packed word integers in xmm1 by the packed
word integers in xmm2/m128, add adjacent doubleword
results, and store in xmm1.
PMADDWD xmm1, xmm2/m128
VEX.NDS.128.66.0F F5 /r RVM V/V AVX Multiply the packed word integers in xmm2 by the packed
word integers in xmm3/m128, add adjacent doubleword
results, and store in xmm1.
VPMADDWD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F F5 /r RVM V/V AVX2 Multiply the packed word integers in ymm2 by the packed
word integers in ymm3/m256, add adjacent doubleword
results, and store in ymm1.
VPMADDWD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.WIG F5 /r FVM V/V AVX512VL Multiply the packed word integers in xmm2 by the packed
word integers in xmm3/m128, add adjacent doubleword
results, and store in xmm1 under writemask k1.
VPMADDWD xmm1 {k1}{z},
xmm2, xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG F5 /r FVM V/V AVX512VL Multiply the packed word integers in ymm2 by the packed
word integers in ymm3/m256, add adjacent doubleword
results, and store in ymm1 under writemask k1.
VPMADDWD ymm1 {k1}{z},
ymm2, ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F.WIG F5 /r FVM V/V AVX512BW Multiply the packed word integers in zmm2 by the packed
word integers in zmm3/m512, add adjacent doubleword
results, and store in zmm1 under writemask k1.
VPMADDWD zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-634 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The
first source and destination operands are ZMM registers.
Operation
VPMADDWD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] (SRC2[i+31:i+16]* SRC1[i+31:i+16]) + (SRC2[i+15:i]*SRC1[i+15:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPMADDWD (VEX.256 encoded version)
DEST[31:0] (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32] (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[159:128] (SRC1[143:128] * SRC2[143:128]) + (SRC1[159:144] * SRC2[159:144])
DEST[191:160] (SRC1[175:160] * SRC2[175:160]) + (SRC1[191:176] * SRC2[191:176])
DEST[223:192] (SRC1[207:192] * SRC2[207:192]) + (SRC1[223:208] * SRC2[223:208])
DEST[255:224] (SRC1[239:224] * SRC2[239:224]) + (SRC1[255:240] * SRC2[255:240])
DEST[MAX_VL-1:256] 0
VPMADDWD (VEX.128 encoded version)
DEST[31:0] (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])
DEST[63:32] (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[MAX_VL-1:128] 0
PMADDWD (128-bit Legacy SSE version)
DEST[31:0] (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16])
DEST[63:32] (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48])
DEST[95:64] (DEST[79:64] * SRC[79:64]) + (DEST[95:80] * SRC[95:80])
DEST[127:96] (DEST[111:96] * SRC[111:96]) + (DEST[127:112] * SRC[127:112])
DEST[MAX_VL-1:128] (Unmodified)
Ref. # 319433-023 5-635
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPMADDWD __m512i _mm512_mdd_epi16( __m512i a, __m512i b);
VPMADDWD __m512i _mm512_mask_mdd_epi16(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMADDWD __m512i _mm512_maskz_mdd_epi16( __mmask16 k, __m512i a, __m512i b);
VPMADDWD __m256i _mm256_mask_mdd_epi16(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMADDWD __m256i _mm256_maskz_mdd_epi16( __mmask8 k, __m256i a, __m256i b);
VPMADDWD __m128i _mm_mask_mdd_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMADDWD __m128i _mm_maskz_madd_epi16( __mmask8 k, __m128i a, __m128i b);
(V)PMADDWD __m128i _mm_madd_epi16 ( __m128i a, __m128i b)
VPMADDWD __m256i _mm256_madd_epi16 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
5-636 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PINSRB/PINSRW/PINSRD/PINSRQ—Insert Integer
Instruction Operand Encoding
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 3A 20 /r ib RMI V/V SSE4_1 Insert a byte integer value from r32/m8 into
xmm1 at the byte offset in imm8.
PINSRB xmm1, r32/m8, imm8
66 0F C4 /r ib RMI V/V SSE2 Insert a word integer value from r32/m16 into
xmm1 at the word offset in imm8.
PINSRW xmm1, r32/m16, imm8
66 0F 3A 22 /r ib RMI V/V SSE4_1 Insert a dword integer value from r32/m32
into xmm1 at the dword offset in imm8.
PINSRD xmm1, r32/m32, imm8
66 REX.W 0F 3A 22 /r ib RMI V/N.E. SSE4_1 Insert a qword integer value from r64/m64
into xmm1 at the qword offset in imm8.
PINSRQ xmm1, r64/m64, imm8
VEX.NDS.128.66.0F3A 20 /r ib RVMI V/V AVX Merge a byte integer value from r32/m8 and
rest from xmm2 into xmm1 at the byte offset
in imm8.
VPINSRB xmm1, xmm2, r32/m8, imm8
VEX.NDS.128.66.0F C4 /r ib RVMI V/V AVX Insert a word integer value from r32/m16 and
rest from xmm2 into xmm1 at the word offset
in imm8.
VPINSRW xmm1, xmm2, r32/m16, imm8
VEX.NDS.128.66.0F3A.W0 22 /r ib RVMI V/V AVX Insert a dword integer value from r32/m32
and rest from xmm2 into xmm1 at the dword
offset in imm8.
VPINSRD xmm1, xmm2, r32/m32, imm8
VEX.NDS.128.66.0F3A.W1 22 /r ib RVMI V/N.E.1
NOTES:
1. For this specific instruction, VEX.W/EVEX.W in non-64 bit is ignored; the instruction behaves as if the W0 ver-
sion is used.
AVX Insert a qword integer value from r64/m64
and rest from xmm2 into xmm1 at the qword
offset in imm8.
VPINSRQ xmm1, xmm2, r64/m64, imm8
EVEX.NDS.128.66.0F3A.WIG 20 /r ib T1S V/V AVX512BW Merge a byte integer value from r32/m8 and
rest from xmm2 into xmm1 at the byte offset
in imm8.
VPINSRB xmm1, xmm2, r32/m8, imm8
EVEX.NDS.128.66.0F.WIG C4 /r ib T1S V/V AVX512BW Insert a word integer value from r32/m16 and
rest from xmm2 into xmm1 at the word offset
in imm8.
VPINSRW xmm1, xmm2, r32/m16, imm8
EVEX.NDS.128.66.0F3A.W0 22 /r ib T1S V/V AVX512DQ Insert a dword integer value from r32/m32
and rest from xmm2 into xmm1 at the dword
offset in imm8.
VPINSRD xmm1, xmm2, r32/m32, imm8
EVEX.NDS.128.66.0F3A.W1 22 /r ib T1S V/N.E.1AVX512DQ Insert a qword integer value from r64/m64
and rest from xmm2 into xmm1 at the qword
offset in imm8.
VPINSRQ xmm1, xmm2, r64/m64, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA
RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
Ref. # 319433-023 5-637
INSTRUCTION SET REFERENCE, A-Z
Description
Copies a byte/word/dword/qword from the second source operand and inserts it into the destination operand at the
byte/word/dword/qword offset specified with the immediate operand (third operand). The other
bytes/words/dwords/qwords in the destination register are copied from the first source operand. The byte select is
specified by the 4/3/2/1 least-significant bits of the immediate.
The first source operand and destination operands are XMM registers. The second source operand is a r32 register
or an 8-/16-/32-/ or 64-bit memory location. For PINSRW, REX.W causes the source to be an r64 instead of an r32.
REX.W distinguishes between PINSRD and PINSRQ (PINSRQ is not encodable in 32-bit modes).
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination register are zeroed. VEX.L must be 0, otherwise
the instruction will #UD.
Operation
write_q_element(position, val, src)
{
TEMP SRC
CASE (position)
0: TEMP[63:0] val
1: TEMP[127:64] val
ESAC
return TEMP
}
write_d_element(position, val, src)
{
TEMP SRC
CASE (position)
0: TEMP[31:0] val
1: TEMP[63:32] val
2: TEMP[95:64] val
3: TEMP[127:96] val
ESAC
return TEMP
}
write_w_element(position, val, src)
{
TEMP SRC
CASE (position)
0: TEMP[15:0] val
1: TEMP[31:16] val
2: TEMP[47:32] val
3: TEMP[63:48] val
4: TEMP[79:64] val
5: TEMP[95:80] val
6: TEMP[111:96] val
7: TEMP[127:112] val
ESAC
return TEMP
}
5-638 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
write_b_element(position, val, src)
{
TEMP SRC
CASE (position)
0: TEMP[7:0] val
1: TEMP[15:8] val
2: TEMP[23:16] val
3: TEMP[31:24] val
4: TEMP[39:32] val
5: TEMP[47:40] val
6: TEMP[55:48] val
7: TEMP[63:56] val
8: TEMP[71:64] val
9: TEMP[79:72] val
10: TEMP[87:80] val
11: TEMP[95:88] val
12: TEMP[103:96] val
13: TEMP[111:104] val
14: TEMP[119:112] val
15: TEMP[127:120] val
ESAC
return TEMP
}
VPINSRQ (EVEX encoded version)
SEL imm8[0]
DEST[127:0] write_q_element(SEL, SRC2, SRC1)
DEST[MAX_VL-1:128] 0
VPINSRD (EVEX encoded version)
SEL imm8[1:0]
DEST[127:0] write_d_element(SEL, SRC2, SRC1)
DEST[MAX_VL-1:128] 0
VPINSRW (EVEX encoded version)
SEL imm8[2:0]
DEST[127:0] write_w_element(SEL, SRC2, SRC1)
DEST[MAX_VL-1:128] 0
VPINSRB (EVEX encoded version)
SEL imm8[3:0]
DEST[127:0] write_b_element(SEL, SRC2, SRC1)
DEST[MAX_VL-1:128] 0
VPINSRQ (VEX.128 encoded version)
SEL imm8[0]
DEST[127:0] write_q_element(SEL, SRC2, SRC1)
DEST[MAX_VL-1:128] 0
VPINSRD (VEX.128 encoded version)
SEL imm8[1:0]
DEST[127:0] write_d_element(SEL, SRC2, SRC1)
DEST[MAX_VL-1:128] 0
Ref. # 319433-023 5-639
INSTRUCTION SET REFERENCE, A-Z
VPINSRW (VEX.128 encoded version)
SEL imm8[2:0]
DEST[127:0] write_w_element(SEL, SRC2, SRC1)
DEST[MAX_VL-1:128] 0
VPINSRB (VEX.128 encoded version)
SEL imm8[3:0]
DEST[127:0] write_b_element(SEL, SRC2, SRC1)
DEST[MAX_VL-1:128] 0
PINSRQ (Legacy SSE version)
SEL imm8[0]
DEST[127:0] write_q_element(SEL, SRC, DEST)
DEST[MAX_VL-1:128] (Unmodified)
PINSRD (Legacy SSE version)
SEL imm8[1:0]
DEST[127:0] write_d_element(SEL, SRC, DEST)
DEST[MAX_VL-1:128] (Unmodified)
PINSRW (Legacy SSE version)
SEL imm8[2:0]
DEST[127:0] write_w_element(SEL, SRC, DEST)
DEST[MAX_VL-1:128] (Unmodified)
PINSRB (Legacy SSE version)
SEL imm8[3:0]
DEST[127:0] write_b_element(SEL, SRC, DEST)
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
PINSRB __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);
PINSRW __m128i _mm_insert_epi16 ( __m128i a, int b, int imm)
PINSRD __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);
PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type 5;
EVEX-encoded instruction, see Exceptions Type E9NF.
#UD If VEX.L = 1 or EVEX.L’L > 0.
5-640 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products
to Qword Accumulators
Instruction Operand Encoding
Description
Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second oper-
and) with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the
third operand) to form packed 104-bit intermediate results. The low 52-bit, unsigned integer of each 104-bit
product is added to the corresponding qword unsigned integer of the destination operand (the first operand)
under the writemask k1.
The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 64-bit
granularity.
Opcode/
Instruction
Op/En 32/64
bit Mode
Support
CPUID Description
EVEX.DDS.128.66.0F38.W1 B4 /r
VPMADD52LUQ xmm1 {k1}{z},
xmm2,xmm3/m128/m64bcst
FV V/V AVX512IFMA
AVX512VL
Multiply unsigned 52-bit integers in xmm2 and
xmm3/m128 and add the low 52 bits of the 104-bit
product to the qword unsigned integers in xmm1
using writemask k1.
EVEX.DDS.256.66.0F38.W1 B4 /r
VPMADD52LUQ ymm1 {k1}{z},
ymm2, ymm3/m256/m64bcst
FV V/V AVX512IFMA
AVX512VL
Multiply unsigned 52-bit integers in ymm2 and
ymm3/m128 and add the low 52 bits of the 104-bit
product to the qword unsigned integers in ymm1
using writemask k1.
EVEX.DDS.512.66.0F38.W1 B4 /r
VPMADD52LUQ zmm1 {k1}{z},
zmm2,zmm3/m512/m64bcst
FV V/V AVX512IFMA Multiply unsigned 52-bit integers in zmm2 and
zmm3/m128 and add the low 52 bits of the 104-bit
product to the qword unsigned integers in zmm1
using writemask k1.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM.r/m(r) NA
Ref. # 319433-023 5-641
INSTRUCTION SET REFERENCE, A-Z
Operation
VPMADD52LUQ (EVEX encoded)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64;
IF k1[j] OR *no writemask* THEN
IF src2 is Memory AND EVEX.b=1 THEN
tsrc2[63:0] ZeroExtend64(src2[51:0]);
ELSE
tsrc2[63:0] ZeroExtend64(src2[i+51:i];
FI;
Temp128[127:0] ZeroExtend64(src1[i+51:i]) * tsrc2[63:0];
Temp2[63:0] DEST[i+63:i] + ZeroExtend64(temp128[51:0]) ;
DEST[i+63:i] Temp2[63:0];
ELSE
IF *zeroing-masking* THEN
DEST[i+63:i] 0;
ELSE *merge-masking*
DEST[i+63:i] is unchanged;
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0;
Intel C/C++ Compiler Intrinsic Equivalent
VPMADD52LUQ __m512i _mm512_madd52lo_epu64( __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m512i _mm512_mask_madd52lo_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m512i _mm512_maskz_madd52lo_epu64( __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m256i _mm256_madd52lo_epu64( __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m256i _mm256_mask_madd52lo_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m256i _mm256_maskz_madd52lo_epu64( __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m128i _mm_madd52lo_epu64( __m128i a, __m128i b, __m128i c);
VPMADD52LUQ __m128i _mm_mask_madd52lo_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b, __m128i c);
VPMADD52LUQ __m128i _mm_maskz_madd52lo_epu64( __mmask8 k, __m128i a, __m128i b, __m128i c);
Flags Affected
None.
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.
5-642 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit
Products to 64-bit Accumulators’
Instruction Operand Encoding
Description
Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second oper-
and) with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the
third operand) to form packed 104-bit intermediate results. The high 52-bit, unsigned integer of each 104-bit
product is added to the corresponding qword unsigned integer of the destination operand (the first operand)
under the writemask k1.
The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 64-bit
granularity.
Opcode/
Instruction
Op/En 32/64
bit Mode
Support
CPUID Description
EVEX.DDS.128.66.0F38.W1 B5 /r
VPMADD52HUQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
FV V/V AVX512IFMA
AVX512VL
Multiply unsigned 52-bit integers in xmm2 and
xmm3/m128 and add the high 52 bits of the 104-
bit product to the qword unsigned integers in
xmm1 using writemask k1.
EVEX.DDS.256.66.0F38.W1 B5 /r
VPMADD52HUQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
FV V/V AVX512IFMA
AVX512VL
Multiply unsigned 52-bit integers in ymm2 and
ymm3/m128 and add the high 52 bits of the 104-
bit product to the qword unsigned integers in
ymm1 using writemask k1.
EVEX.DDS.512.66.0F38.W1 B5 /r
VPMADD52HUQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
FV V/V AVX512IFMA Multiply unsigned 52-bit integers in zmm2 and
zmm3/m128 and add the high 52 bits of the 104-
bit product to the qword unsigned integers in
zmm1 using writemask k1.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM.r/m(r) NA
Ref. # 319433-023 5-643
INSTRUCTION SET REFERENCE, A-Z
Operation
VPMADD52HUQ (EVEX encoded)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64;
IF k1[j] OR *no writemask* THEN
IF src2 is Memory AND EVEX.b=1 THEN
tsrc2[63:0] ZeroExtend64(src2[51:0]);
ELSE
tsrc2[63:0] ZeroExtend64(src2[i+51:i];
FI;
Temp128[127:0] ZeroExtend64(src1[i+51:i]) * tsrc2[63:0];
Temp2[63:0] DEST[i+63:i] + ZeroExtend64(temp128[103:52]) ;
DEST[i+63:i] Temp2[63:0];
ELSE
IF *zeroing-masking* THEN
DEST[i+63:i] 0;
ELSE *merge-masking*
DEST[i+63:i] is unchanged;
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPMADD52HUQ __m512i _mm512_madd52hi_epu64( __m512i a, __m512i b, __m512i c);
VPMADD52HUQ __m512i _mm512_mask_madd52hi_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52HUQ __m512i _mm512_maskz_madd52hi_epu64( __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52HUQ __m256i _mm256_madd52hi_epu64( __m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m256i _mm256_mask_madd52hi_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m256i _mm256_maskz_madd52hi_epu64( __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m128i _mm_madd52hi_epu64( __m128i a, __m128i b, __m128i c);
VPMADD52HUQ __m128i _mm_mask_madd52hi_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b, __m128i c);
VPMADD52HUQ __m128i _mm_maskz_madd52hi_epu64( __mmask8 k, __m128i a, __m128i b, __m128i c);
Flags Affected
None.
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.
5-644 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PMAXSB/PMAXSW/PMAXSD/PMAXSQ—Maximum of Packed Signed Integers
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 3C /r RM V/V SSE4_1 Compare packed signed byte integers in xmm1 and
xmm2/m128 and store packed maximum values in
xmm1.
PMAXSB xmm1, xmm2/m128
66 0F EE /r RM V/V SSE2 Compare packed signed word integers in
xmm2/m128 and xmm1 and stores maximum
packed values in xmm1.
PMAXSW xmm1, xmm2/m128
66 0F 38 3D /r RM V/V SSE4_1 Compare packed signed dword integers in xmm1
and xmm2/m128 and store packed maximum values
in xmm1.
PMAXSD xmm1, xmm2/m128
VEX.NDS.128.66.0F38.WIG 3C /r RVM V/V AVX Compare packed signed byte integers in xmm2 and
xmm3/m128 and store packed maximum values in
xmm1.
VPMAXSB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG EE /r RVM V/V AVX Compare packed signed word integers in
xmm3/m128 and xmm2 and store packed maximum
values in xmm1.
VPMAXSW xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F38.WIG 3D /r RVM V/V AVX Compare packed signed dword integers in xmm2
and xmm3/m128 and store packed maximum values
in xmm1.
VPMAXSD xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38.WIG 3C /r RVM V/V AVX2 Compare packed signed byte integers in ymm2 and
ymm3/m256 and store packed maximum values in
ymm1.
VPMAXSB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG EE /r RVM V/V AVX2 Compare packed signed word integers in
ymm3/m256 and ymm2 and store packed maximum
values in ymm1.
VPMAXSW ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F38.WIG 3D /r RVM V/V AVX2 Compare packed signed dword integers in ymm2
and ymm3/m256 and store packed maximum values
in ymm1.
VPMAXSD ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.WIG 3C /r FVM V/V AVX512VL Compare packed signed byte integers in xmm2 and
xmm3/m128 and store packed maximum values in
xmm1 under writemask k1.
VPMAXSB xmm1{k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F38.WIG 3C /r FVM V/V AVX512VL Compare packed signed byte integers in ymm2 and
ymm3/m256 and store packed maximum values in
ymm1 under writemask k1.
VPMAXSB ymm1{k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F38.WIG 3C /r FVM V/V AVX512BW Compare packed signed byte integers in zmm2 and
zmm3/m512 and store packed maximum values in
zmm1 under writemask k1.
VPMAXSB zmm1{k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F.WIG EE /r FVM V/V AVX512VL Compare packed signed word integers in xmm2 and
xmm3/m128 and store packed maximum values in
xmm1 under writemask k1.
VPMAXSW xmm1{k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG EE /r FVM V/V AVX512VL Compare packed signed word integers in ymm2 and
ymm3/m256 and store packed maximum values in
ymm1 under writemask k1.
VPMAXSW ymm1{k1}{z}, ymm2,
ymm3/m256
AVX512BW
Ref. # 319433-023 5-645
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed signed byte, word, dword or qword integers in the second source operand
and the first source operand and returns the maximum value for each pair of integers to the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corresponding destination
register are zeroed.
EVEX.NDS.512.66.0F.WIG EE /r FVM V/V AVX512BW Compare packed signed word integers in zmm2 and
zmm3/m512 and store packed maximum values in
zmm1 under writemask k1.
VPMAXSW zmm1{k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F38.W0 3D /r FV V/V AVX512VL Compare packed signed dword integers in xmm2
and xmm3/m128/m32bcst and store packed
maximum values in xmm1 using writemask k1.
VPMAXSD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 3D /r FV V/V AVX512VL Compare packed signed dword integers in ymm2
and ymm3/m256/m32bcst and store packed
maximum values in ymm1 using writemask k1.
VPMAXSD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 3D /r FV V/V AVX512F Compare packed signed dword integers in zmm2 and
zmm3/m512/m32bcst and store packed maximum
values in zmm1 using writemask k1.
VPMAXSD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 3D /r FV V/V AVX512VL Compare packed signed qword integers in xmm2
and xmm3/m128/m64bcst and store packed
maximum values in xmm1 using writemask k1.
VPMAXSQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 3D /r FV V/V AVX512VL Compare packed signed qword integers in ymm2
and ymm3/m256/m64bcst and store packed
maximum values in ymm1 using writemask k1.
VPMAXSQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 3D /r FV V/V AVX512F Compare packed signed qword integers in zmm2 and
zmm3/m512/m64bcst and store packed maximum
values in zmm1 using writemask k1.
VPMAXSQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-646 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EVEX encoded VPMAXSD/Q: The first source operand is a ZMM/YMM/XMM register; The second source operand is
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.
EVEX encoded VPMAXSB/W: The first source operand is a ZMM/YMM/XMM register; The second source operand is
a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is conditionally updated
based on writemask k1.
Operation
PMAXSB (128-bit Legacy SSE version)
IF DEST[7:0] >SRC[7:0] THEN
DEST[7:0] DEST[7:0];
ELSE
DEST[7:0] SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] >SRC[127:120] THEN
DEST[127:120] DEST[127:120];
ELSE
DEST[127:120] SRC[127:120]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMAXSB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN
DEST[7:0] SRC1[7:0];
ELSE
DEST[7:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN
DEST[127:120] SRC1[127:120];
ELSE
DEST[127:120] SRC2[127:120]; FI;
DEST[MAX_VL-1:128] 0
VPMAXSB (VEX.256 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN
DEST[7:0] SRC1[7:0];
ELSE
DEST[7:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] >SRC2[255:248] THEN
DEST[255:248] SRC1[255:248];
ELSE
DEST[255:248] SRC2[255:248]; FI;
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-647
INSTRUCTION SET REFERENCE, A-Z
VPMAXSB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask* THEN
IF SRC1[i+7:i] > SRC2[i+7:i]
THEN DEST[i+7:i] SRC1[i+7:i];
ELSE DEST[i+7:i] SRC2[i+7:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
PMAXSW (128-bit Legacy SSE version)
IF DEST[15:0] >SRC[15:0] THEN
DEST[15:0] DEST[15:0];
ELSE
DEST[15:0] SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] >SRC[127:112] THEN
DEST[127:112] DEST[127:112];
ELSE
DEST[127:112] SRC[127:112]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMAXSW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN
DEST[15:0] SRC1[15:0];
ELSE
DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN
DEST[127:112] SRC1[127:112];
ELSE
DEST[127:112] SRC2[127:112]; FI;
DEST[MAX_VL-1:128] 0
VPMAXSW (VEX.256 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN
DEST[15:0] SRC1[15:0];
ELSE
DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] >SRC2[255:240] THEN
DEST[255:240] SRC1[255:240];
ELSE
DEST[255:240] SRC2[255:240]; FI;
DEST[MAX_VL-1:256] 0
5-648 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMAXSW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask* THEN
IF SRC1[i+15:i] > SRC2[i+15:i]
THEN DEST[i+15:i] SRC1[i+15:i];
ELSE DEST[i+15:i] SRC2[i+15:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
PMAXSD (128-bit Legacy SSE version)
IF DEST[31:0] >SRC[31:0] THEN
DEST[31:0] DEST[31:0];
ELSE
DEST[31:0] SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:96] >SRC[127:96] THEN
DEST[127:96] DEST[127:96];
ELSE
DEST[127:96] SRC[127:96]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMAXSD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN
DEST[31:0] SRC1[31:0];
ELSE
DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:96] > SRC2[127:96] THEN
DEST[127:96] SRC1[127:96];
ELSE
DEST[127:96] SRC2[127:96]; FI;
DEST[MAX_VL-1:128] 0
VPMAXSD (VEX.256 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN
DEST[31:0] SRC1[31:0];
ELSE
DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] > SRC2[255:224] THEN
DEST[255:224] SRC1[255:224];
ELSE
DEST[255:224] SRC2[255:224]; FI;
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-649
INSTRUCTION SET REFERENCE, A-Z
VPMAXSD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+31:i] > SRC2[31:0]
THEN DEST[i+31:i] SRC1[i+31:i];
ELSE DEST[i+31:i] SRC2[31:0];
FI;
ELSE
IF SRC1[i+31:i] > SRC2[i+31:i]
THEN DEST[i+31:i] SRC1[i+31:i];
ELSE DEST[i+31:i] SRC2[i+31:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] 0 ; zeroing-masking
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMAXSQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+63:i] > SRC2[63:0]
THEN DEST[i+63:i] SRC1[i+63:i];
ELSE DEST[i+63:i] SRC2[63:0];
FI;
ELSE
IF SRC1[i+63:i] > SRC2[i+63:i]
THEN DEST[i+63:i] SRC1[i+63:i];
ELSE DEST[i+63:i] SRC2[i+63:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
5-650 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPMAXSB __m512i _mm512_max_epi8( __m512i a, __m512i b);
VPMAXSB __m512i _mm512_mask_max_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMAXSB __m512i _mm512_maskz_max_epi8( __mmask64 k, __m512i a, __m512i b);
VPMAXSW __m512i _mm512_max_epi16( __m512i a, __m512i b);
VPMAXSW __m512i _mm512_mask_max_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMAXSW __m512i _mm512_maskz_max_epi16( __mmask32 k, __m512i a, __m512i b);
VPMAXSB __m256i _mm256_mask_max_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMAXSB __m256i _mm256_maskz_max_epi8( __mmask32 k, __m256i a, __m256i b);
VPMAXSW __m256i _mm256_mask_max_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMAXSW __m256i _mm256_maskz_max_epi16( __mmask16 k, __m256i a, __m256i b);
VPMAXSB __m128i _mm_mask_max_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPMAXSB __m128i _mm_maskz_max_epi8( __mmask16 k, __m128i a, __m128i b);
VPMAXSW __m128i _mm_mask_max_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXSW __m128i _mm_maskz_max_epi16( __mmask8 k, __m128i a, __m128i b);
VPMAXSD __m256i _mm256_mask_max_epi32(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMAXSD __m256i _mm256_maskz_max_epi32( __mmask16 k, __m256i a, __m256i b);
VPMAXSQ __m256i _mm256_mask_max_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMAXSQ __m256i _mm256_maskz_max_epi64( __mmask8 k, __m256i a, __m256i b);
VPMAXSD __m128i _mm_mask_max_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXSD __m128i _mm_maskz_max_epi32( __mmask8 k, __m128i a, __m128i b);
VPMAXSQ __m128i _mm_mask_max_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXSQ __m128i _mm_maskz_max_epu64( __mmask8 k, __m128i a, __m128i b);
VPMAXSD __m512i _mm512_max_epi32( __m512i a, __m512i b);
VPMAXSD __m512i _mm512_mask_max_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMAXSD __m512i _mm512_maskz_max_epi32( __mmask16 k, __m512i a, __m512i b);
VPMAXSQ __m512i _mm512_max_epi64( __m512i a, __m512i b);
VPMAXSQ __m512i _mm512_mask_max_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMAXSQ __m512i _mm512_maskz_max_epi64( __mmask8 k, __m512i a, __m512i b);
(V)PMAXSB __m128i _mm_max_epi8 ( __m128i a, __m128i b);
(V)PMAXSW __m128i _mm_max_epi16 ( __m128i a, __m128i b)
(V)PMAXSD __m128i _mm_max_epi32 ( __m128i a, __m128i b);
VPMAXSB __m256i _mm256_max_epi8 ( __m256i a, __m256i b);
VPMAXSW __m256i _mm256_max_epi16 ( __m256i a, __m256i b)
VPMAXSD __m256i _mm256_max_epi32 ( __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPMAXSD/Q, see Exceptions Type E4.
EVEX-encoded VPMAXSB/W, see Exceptions Type E4.nb.
Ref. # 319433-023 5-651
INSTRUCTION SET REFERENCE, A-Z
PMAXUB/PMAXUW—Maximum of Packed Unsigned Integers
Instruction Operand Encoding
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F DE /r RM V/V SSE2 Compare packed unsigned byte integers in xmm1
and xmm2/m128 and store packed maximum
values in xmm1.
PMAXUB xmm1, xmm2/m128
66 0F 38 3E/r RM V/V SSE4_1 Compare packed unsigned word integers in
xmm2/m128 and xmm1 and stores maximum
packed values in xmm1.
PMAXUW xmm1, xmm2/m128
VEX.NDS.128.66.0F DE /r RVM V/V AVX Compare packed unsigned byte integers in xmm2
and xmm3/m128 and store packed maximum
values in xmm1.
VPMAXUB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F38 3E/r RVM V/V AVX Compare packed unsigned word integers in
xmm3/m128 and xmm2 and store maximum
packed values in xmm1.
VPMAXUW xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F DE /r RVM V/V AVX2 Compare packed unsigned byte integers in ymm2
and ymm3/m256 and store packed maximum
values in ymm1.
VPMAXUB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F38 3E/r RVM V/V AVX2 Compare packed unsigned word integers in
ymm3/m256 and ymm2 and store maximum
packed values in ymm1.
VPMAXUW ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.WIG DE /r FVM V/V AVX512VL Compare packed unsigned byte integers in xmm2
and xmm3/m128 and store packed maximum
values in xmm1 under writemask k1.
VPMAXUB xmm1{k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG DE /r FVM V/V AVX512VL Compare packed unsigned byte integers in ymm2
and ymm3/m256 and store packed maximum
values in ymm1 under writemask k1.
VPMAXUB ymm1{k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F.WIG DE /r FVM V/V AVX512BW Compare packed unsigned byte integers in zmm2
and zmm3/m512 and store packed maximum
values in zmm1 under writemask k1.
VPMAXUB zmm1{k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F38.WIG 3E /r FVM V/V AVX512VL Compare packed unsigned word integers in xmm2
and xmm3/m128 and store packed maximum
values in xmm1 under writemask k1.
VPMAXUW xmm1{k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F38.WIG 3E /r FVM V/V AVX512VL Compare packed unsigned word integers in ymm2
and ymm3/m256 and store packed maximum
values in ymm1 under writemask k1.
VPMAXUW ymm1{k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F38.WIG 3E /r FVM V/V AVX512BW Compare packed unsigned word integers in zmm2
and zmm3/m512 and store packed maximum
values in zmm1 under writemask k1.
VPMAXUW zmm1{k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-652 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Description
Performs a SIMD compare of the packed unsigned byte, word integers in the second source operand and the first
source operand and returns the maximum value for each pair of integers to the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is conditionally updated
based on writemask k1.
Operation
PMAXUB (128-bit Legacy SSE version)
IF DEST[7:0] >SRC[7:0] THEN
DEST[7:0] DEST[7:0];
ELSE
DEST[15:0] SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] >SRC[127:120] THEN
DEST[127:120] DEST[127:120];
ELSE
DEST[127:120] SRC[127:120]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMAXUB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN
DEST[7:0] SRC1[7:0];
ELSE
DEST[7:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN
DEST[127:120] SRC1[127:120];
ELSE
DEST[127:120] SRC2[127:120]; FI;
DEST[MAX_VL-1:128] 0
VPMAXUB (VEX.256 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN
DEST[7:0] SRC1[7:0];
ELSE
DEST[15:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] >SRC2[255:248] THEN
DEST[255:248] SRC1[255:248];
ELSE
DEST[255:248] SRC2[255:248]; FI;
DEST[MAX_VL-1:128] 0
Ref. # 319433-023 5-653
INSTRUCTION SET REFERENCE, A-Z
VPMAXUB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask* THEN
IF SRC1[i+7:i] > SRC2[i+7:i]
THEN DEST[i+7:i] SRC1[i+7:i];
ELSE DEST[i+7:i] SRC2[i+7:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
PMAXUW (128-bit Legacy SSE version)
IF DEST[15:0] >SRC[15:0] THEN
DEST[15:0] DEST[15:0];
ELSE
DEST[15:0] SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] >SRC[127:112] THEN
DEST[127:112] DEST[127:112];
ELSE
DEST[127:112] SRC[127:112]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMAXUW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN
DEST[15:0] SRC1[15:0];
ELSE
DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN
DEST[127:112] SRC1[127:112];
ELSE
DEST[127:112] SRC2[127:112]; FI;
DEST[MAX_VL-1:128] 0
VPMAXUW (VEX.256 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN
DEST[15:0] SRC1[15:0];
ELSE
DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] >SRC2[255:240] THEN
DEST[255:240] SRC1[255:240];
ELSE
DEST[255:240] SRC2[255:240]; FI;
DEST[MAX_VL-1:128] 0
5-654 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMAXUW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask* THEN
IF SRC1[i+15:i] > SRC2[i+15:i]
THEN DEST[i+15:i] SRC1[i+15:i];
ELSE DEST[i+15:i] SRC2[i+15:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPMAXUB __m512i _mm512_max_epu8( __m512i a, __m512i b);
VPMAXUB __m512i _mm512_mask_max_epu8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMAXUB __m512i _mm512_maskz_max_epu8( __mmask64 k, __m512i a, __m512i b);
VPMAXUW __m512i _mm512_max_epu16( __m512i a, __m512i b);
VPMAXUW __m512i _mm512_mask_max_epu16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMAXUW __m512i _mm512_maskz_max_epu16( __mmask32 k, __m512i a, __m512i b);
VPMAXUB __m256i _mm256_mask_max_epu8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMAXUB __m256i _mm256_maskz_max_epu8( __mmask32 k, __m256i a, __m256i b);
VPMAXUW __m256i _mm256_mask_max_epu16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMAXUW __m256i _mm256_maskz_max_epu16( __mmask16 k, __m256i a, __m256i b);
VPMAXUB __m128i _mm_mask_max_epu8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPMAXUB __m128i _mm_maskz_max_epu8( __mmask16 k, __m128i a, __m128i b);
VPMAXUW __m128i _mm_mask_max_epu16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXUW __m128i _mm_maskz_max_epu16( __mmask8 k, __m128i a, __m128i b);
(V)PMAXUB __m128i _mm_max_epu8 ( __m128i a, __m128i b);
(V)PMAXUW __m128i _mm_max_epu16 ( __m128i a, __m128i b)
VPMAXUB __m256i _mm256_max_epu8 ( __m256i a, __m256i b);
VPMAXUW __m256i _mm256_max_epu16 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-655
INSTRUCTION SET REFERENCE, A-Z
PMAXUD/PMAXUQ—Maximum of Packed Unsigned Integers
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed unsigned dword or qword integers in the second source operand and the
first source operand and returns the maximum value for each pair of integers to the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 3F /r RM V/V SSE4_1 Compare packed unsigned dword integers in xmm1
and xmm2/m128 and store packed maximum values in
xmm1.
PMAXUD xmm1, xmm2/m128
VEX.NDS.128.66.0F38.WIG 3F /r RVM V/V AVX Compare packed unsigned dword integers in xmm2
and xmm3/m128 and store packed maximum values in
xmm1.
VPMAXUD xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38.WIG 3F /r RVM V/V AVX2 Compare packed unsigned dword integers in ymm2
and ymm3/m256 and store packed maximum values in
ymm1.
VPMAXUD ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.W0 3F /r FV V/V AVX512VL Compare packed unsigned dword integers in xmm2
and xmm3/m128/m32bcst and store packed
maximum values in xmm1 under writemask k1.
VPMAXUD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 3F /r FV V/V AVX512VL Compare packed unsigned dword integers in ymm2
and ymm3/m256/m32bcst and store packed
maximum values in ymm1 under writemask k1.
VPMAXUD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 3F /r FV V/V AVX512F Compare packed unsigned dword integers in zmm2
and zmm3/m512/m32bcst and store packed maximum
values in zmm1 under writemask k1.
VPMAXUD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 3F /r FV V/V AVX512VL Compare packed unsigned qword integers in xmm2
and xmm3/m128/m64bcst and store packed
maximum values in xmm1 under writemask k1.
VPMAXUQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 3F /r FV V/V AVX512VL Compare packed unsigned qword integers in ymm2
and ymm3/m256/m64bcst and store packed
maximum values in ymm1 under writemask k1.
VPMAXUQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 3F /r FV V/V AVX512F Compare packed unsigned qword integers in zmm2
and zmm3/m512/m64bcst and store packed maximum
values in zmm1 under writemask k1.
VPMAXUQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-656 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register; The second source operand is a YMM register
or 256-bit memory location. Bits (MAX_VL-1:256) of the corresponding destination register are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.
Operation
PMAXUD (128-bit Legacy SSE version)
IF DEST[31:0] >SRC[31:0] THEN
DEST[31:0] DEST[31:0];
ELSE
DEST[31:0] SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:96] >SRC[127:96] THEN
DEST[127:96] DEST[127:96];
ELSE
DEST[127:96] SRC[127:96]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMAXUD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN
DEST[31:0] SRC1[31:0];
ELSE
DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:96] > SRC2[127:96] THEN
DEST[127:96] SRC1[127:96];
ELSE
DEST[127:96] SRC2[127:96]; FI;
DEST[MAX_VL-1:128] 0
VPMAXUD (VEX.256 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN
DEST[31:0] SRC1[31:0];
ELSE
DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] > SRC2[255:224] THEN
DEST[255:224] SRC1[255:224];
ELSE
DEST[255:224] SRC2[255:224]; FI;
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-657
INSTRUCTION SET REFERENCE, A-Z
VPMAXUD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+31:i] > SRC2[31:0]
THEN DEST[i+31:i] SRC1[i+31:i];
ELSE DEST[i+31:i] SRC2[31:0];
FI;
ELSE
IF SRC1[i+31:i] > SRC2[i+31:i]
THEN DEST[i+31:i] SRC1[i+31:i];
ELSE DEST[i+31:i] SRC2[i+31:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPMAXUQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+63:i] > SRC2[63:0]
THEN DEST[i+63:i] SRC1[i+63:i];
ELSE DEST[i+63:i] SRC2[63:0];
FI;
ELSE
IF SRC1[i+31:i] > SRC2[i+31:i]
THEN DEST[i+63:i] SRC1[i+63:i];
ELSE DEST[i+63:i] SRC2[i+63:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
5-658 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPMAXUD __m512i _mm512_max_epu32( __m512i a, __m512i b);
VPMAXUD __m512i _mm512_mask_max_epu32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMAXUD __m512i _mm512_maskz_max_epu32( __mmask16 k, __m512i a, __m512i b);
VPMAXUQ __m512i _mm512_max_epu64( __m512i a, __m512i b);
VPMAXUQ __m512i _mm512_mask_max_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMAXUQ __m512i _mm512_maskz_max_epu64( __mmask8 k, __m512i a, __m512i b);
VPMAXUD __m256i _mm256_mask_max_epu32(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMAXUD __m256i _mm256_maskz_max_epu32( __mmask16 k, __m256i a, __m256i b);
VPMAXUQ __m256i _mm256_mask_max_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMAXUQ __m256i _mm256_maskz_max_epu64( __mmask8 k, __m256i a, __m256i b);
VPMAXUD __m128i _mm_mask_max_epu32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXUD __m128i _mm_maskz_max_epu32( __mmask8 k, __m128i a, __m128i b);
VPMAXUQ __m128i _mm_mask_max_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMAXUQ __m128i _mm_maskz_max_epu64( __mmask8 k, __m128i a, __m128i b);
(V)PMAXUD __m128i _mm_max_epu32 ( __m128i a, __m128i b);
VPMAXUD __m256i _mm256_max_epu32 ( __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-659
INSTRUCTION SET REFERENCE, A-Z
PMINSB/PMINSW—Minimum of Packed Signed Integers
Instruction Operand Encoding
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 38 /r RM V/V SSE4_1 Compare packed signed byte integers in xmm1 and
xmm2/m128 and store packed minimum values in
xmm1.
PMINSB xmm1, xmm2/m128
66 0F EA /r RM V/V SSE2 Compare packed signed word integers in xmm2/m128
and xmm1 and store packed minimum values in xmm1.
PMINSW xmm1, xmm2/m128
VEX.NDS.128.66.0F38 38 /r RVM V/V AVX Compare packed signed byte integers in xmm2 and
xmm3/m128 and store packed minimum values in
xmm1.
VPMINSB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F EA /r RVM V/V AVX Compare packed signed word integers in xmm3/m128
and xmm2 and return packed minimum values in
xmm1.
VPMINSW xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38 38 /r RVM V/V AVX2 Compare packed signed byte integers in ymm2 and
ymm3/m256 and store packed minimum values in
ymm1.
VPMINSB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F EA /r RVM V/V AVX2 Compare packed signed word integers in ymm3/m256
and ymm2 and return packed minimum values in
ymm1.
VPMINSW ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.WIG 38 /r FVM V/V AVX512VL Compare packed signed byte integers in xmm2 and
xmm3/m128 and store packed minimum values in
xmm1 under writemask k1.
VPMINSB xmm1{k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F38.WIG 38 /r FVM V/V AVX512VL Compare packed signed byte integers in ymm2 and
ymm3/m256 and store packed minimum values in
ymm1 under writemask k1.
VPMINSB ymm1{k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F38.WIG 38 /r FVM V/V AVX512BW Compare packed signed byte integers in zmm2 and
zmm3/m512 and store packed minimum values in
zmm1 under writemask k1.
VPMINSB zmm1{k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F.WIG EA /r FVM V/V AVX512VL Compare packed signed word integers in xmm2 and
xmm3/m128 and store packed minimum values in
xmm1 under writemask k1.
VPMINSW xmm1{k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG EA /r FVM V/V AVX512VL Compare packed signed word integers in ymm2 and
ymm3/m256 and store packed minimum values in
ymm1 under writemask k1.
VPMINSW ymm1{k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F.WIG EA /r FVM V/V AVX512BW Compare packed signed word integers in zmm2 and
zmm3/m512 and store packed minimum values in
zmm1 under writemask k1.
VPMINSW zmm1{k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-660 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Description
Performs a SIMD compare of the packed signed byte, word, or dword integers in the second source operand and
the first source operand and returns the minimum value for each pair of integers to the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is conditionally updated
based on writemask k1.
Operation
PMINSB (128-bit Legacy SSE version)
IF DEST[7:0] < SRC[7:0] THEN
DEST[7:0] DEST[7:0];
ELSE
DEST[15:0] SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] DEST[127:120];
ELSE
DEST[127:120] SRC[127:120]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMINSB (VEX.128 encoded version)
IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] SRC1[7:0];
ELSE
DEST[7:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN
DEST[127:120] SRC1[127:120];
ELSE
DEST[127:120] SRC2[127:120]; FI;
DEST[MAX_VL-1:128] 0
VPMINSB (VEX.256 encoded version)
IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] SRC1[7:0];
ELSE
DEST[15:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] < SRC2[255:248] THEN
DEST[255:248] SRC1[255:248];
ELSE
DEST[255:248] SRC2[255:248]; FI;
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-661
INSTRUCTION SET REFERENCE, A-Z
VPMINSB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask* THEN
IF SRC1[i+7:i] < SRC2[i+7:i]
THEN DEST[i+7:i] SRC1[i+7:i];
ELSE DEST[i+7:i] SRC2[i+7:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
PMINSW (128-bit Legacy SSE version)
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] DEST[15:0];
ELSE
DEST[15:0] SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC[127:112] THEN
DEST[127:112] DEST[127:112];
ELSE
DEST[127:112] SRC[127:112]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMINSW (VEX.128 encoded version)
IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] SRC1[15:0];
ELSE
DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN
DEST[127:112] SRC1[127:112];
ELSE
DEST[127:112] SRC2[127:112]; FI;
DEST[MAX_VL-1:128] 0
VPMINSW (VEX.256 encoded version)
IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] SRC1[15:0];
ELSE
DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] < SRC2[255:240] THEN
DEST[255:240] SRC1[255:240];
ELSE
DEST[255:240] SRC2[255:240]; FI;
DEST[MAX_VL-1:256] 0
5-662 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMINSW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask* THEN
IF SRC1[i+15:i] < SRC2[i+15:i]
THEN DEST[i+15:i] SRC1[i+15:i];
ELSE DEST[i+15:i] SRC2[i+15:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPMINSB __m512i _mm512_min_epi8( __m512i a, __m512i b);
VPMINSB __m512i _mm512_mask_min_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMINSB __m512i _mm512_maskz_min_epi8( __mmask64 k, __m512i a, __m512i b);
VPMINSW __m512i _mm512_min_epi16( __m512i a, __m512i b);
VPMINSW __m512i _mm512_mask_min_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMINSW __m512i _mm512_maskz_min_epi16( __mmask32 k, __m512i a, __m512i b);
VPMINSB __m256i _mm256_mask_min_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMINSB __m256i _mm256_maskz_min_epi8( __mmask32 k, __m256i a, __m256i b);
VPMINSW __m256i _mm256_mask_min_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMINSW __m256i _mm256_maskz_min_epi16( __mmask16 k, __m256i a, __m256i b);
VPMINSB __m128i _mm_mask_min_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPMINSB __m128i _mm_maskz_min_epi8( __mmask16 k, __m128i a, __m128i b);
VPMINSW __m128i _mm_mask_min_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINSW __m128i _mm_maskz_min_epi16( __mmask8 k, __m128i a, __m128i b);
(V)PMINSB __m128i _mm_min_epi8 ( __m128i a, __m128i b);
(V)PMINSW __m128i _mm_min_epi16 ( __m128i a, __m128i b)
VPMINSB __m256i _mm256_min_epi8 ( __m256i a, __m256i b);
VPMINSW __m256i _mm256_min_epi16 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-663
INSTRUCTION SET REFERENCE, A-Z
PMINSD/PMINSQ—Minimum of Packed Signed Integers
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed signed dword or qword integers in the second source operand and the first
source operand and returns the minimum value for each pair of integers to the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 39 /r RM V/V SSE4_1 Compare packed signed dword integers in xmm1 and
xmm2/m128 and store packed minimum values in
xmm1.
PMINSD xmm1, xmm2/m128
VEX.NDS.128.66.0F38.WIG 39 /r RVM V/V AVX Compare packed signed dword integers in xmm2 and
xmm3/m128 and store packed minimum values in
xmm1.
VPMINSD xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38.WIG 39 /r RVM V/V AVX2 Compare packed signed dword integers in ymm2 and
ymm3/m128 and store packed minimum values in
ymm1.
VPMINSD ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.W0 39 /r FV V/V AVX512VL Compare packed signed dword integers in xmm2 and
xmm3/m128 and store packed minimum values in
xmm1 under writemask k1.
VPMINSD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 39 /r FV V/V AVX512VL Compare packed signed dword integers in ymm2 and
ymm3/m256 and store packed minimum values in
ymm1 under writemask k1.
VPMINSD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 39 /r FV V/V AVX512F Compare packed signed dword integers in zmm2 and
zmm3/m512/m32bcst and store packed minimum
values in zmm1 under writemask k1.
VPMINSD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 39 /r FV V/V AVX512VL Compare packed signed qword integers in xmm2 and
xmm3/m128 and store packed minimum values in
xmm1 under writemask k1.
VPMINSQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 39 /r FV V/V AVX512VL Compare packed signed qword integers in ymm2 and
ymm3/m256 and store packed minimum values in
ymm1 under writemask k1.
VPMINSQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 39 /r FV V/V AVX512F Compare packed signed qword integers in zmm2 and
zmm3/m512/m64bcst and store packed minimum
values in zmm1 under writemask k1.
VPMINSQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-664 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.Bits (MAX_VL-1:256) of the corresponding destination
register are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.
Operation
PMINSD (128-bit Legacy SSE version)
IF DEST[31:0] < SRC[31:0] THEN
DEST[31:0] DEST[31:0];
ELSE
DEST[31:0] SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:96] < SRC[127:96] THEN
DEST[127:96] DEST[127:96];
ELSE
DEST[127:96] SRC[127:96]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMINSD (VEX.128 encoded version)
IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] SRC1[31:0];
ELSE
DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:96] < SRC2[127:96] THEN
DEST[127:96] SRC1[127:96];
ELSE
DEST[127:96] SRC2[127:96]; FI;
DEST[MAX_VL-1:128] 0
VPMINSD (VEX.256 encoded version)
IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] SRC1[31:0];
ELSE
DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] < SRC2[255:224] THEN
DEST[255:224] SRC1[255:224];
ELSE
DEST[255:224] SRC2[255:224]; FI;
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-665
INSTRUCTION SET REFERENCE, A-Z
VPMINSD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+31:i] < SRC2[31:0]
THEN DEST[i+31:i] SRC1[i+31:i];
ELSE DEST[i+31:i] SRC2[31:0];
FI;
ELSE
IF SRC1[i+31:i] < SRC2[i+31:i]
THEN DEST[i+31:i] SRC1[i+31:i];
ELSE DEST[i+31:i] SRC2[i+31:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPMINSQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+63:i] < SRC2[63:0]
THEN DEST[i+63:i] SRC1[i+63:i];
ELSE DEST[i+63:i] SRC2[63:0];
FI;
ELSE
IF SRC1[i+63:i] < SRC2[i+63:i]
THEN DEST[i+63:i] SRC1[i+63:i];
ELSE DEST[i+63:i] SRC2[i+63:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
5-666 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPMINSD __m512i _mm512_min_epi32( __m512i a, __m512i b);
VPMINSD __m512i _mm512_mask_min_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMINSD __m512i _mm512_maskz_min_epi32( __mmask16 k, __m512i a, __m512i b);
VPMINSQ __m512i _mm512_min_epi64( __m512i a, __m512i b);
VPMINSQ __m512i _mm512_mask_min_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMINSQ __m512i _mm512_maskz_min_epi64( __mmask8 k, __m512i a, __m512i b);
VPMINSD __m256i _mm256_mask_min_epi32(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMINSD __m256i _mm256_maskz_min_epi32( __mmask16 k, __m256i a, __m256i b);
VPMINSQ __m256i _mm256_mask_min_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMINSQ __m256i _mm256_maskz_min_epi64( __mmask8 k, __m256i a, __m256i b);
VPMINSD __m128i _mm_mask_min_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINSD __m128i _mm_maskz_min_epi32( __mmask8 k, __m128i a, __m128i b);
VPMINSQ __m128i _mm_mask_min_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINSQ __m128i _mm_maskz_min_epu64( __mmask8 k, __m128i a, __m128i b);
(V)PMINSD __m128i _mm_min_epi32 ( __m128i a, __m128i b);
VPMINSD __m256i _mm256_min_epi32 (__m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-667
INSTRUCTION SET REFERENCE, A-Z
PMINUB/PMINUW—Minimum of Packed Unsigned Integers
Instruction Operand Encoding
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F DA /r RM V/V SSE2 Compare packed unsigned byte integers in xmm1
and xmm2/m128 and store packed minimum values
in xmm1.
PMINUB xmm1, xmm2/m128
66 0F 38 3A/r RM V/V SSE4_1 Compare packed unsigned word integers in
xmm2/m128 and xmm1 and store packed minimum
values in xmm1.
PMINUW xmm1, xmm2/m128
VEX.NDS.128.66.0F DA /r RVM V/V AVX Compare packed unsigned byte integers in xmm2
and xmm3/m128 and store packed minimum values
in xmm1.
VPMINUB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F38 3A/r RVM V/V AVX Compare packed unsigned word integers in
xmm3/m128 and xmm2 and return packed
minimum values in xmm1.
VPMINUW xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F DA /r RVM V/V AVX2 Compare packed unsigned byte integers in ymm2
and ymm3/m256 and store packed minimum values
in ymm1.
VPMINUB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F38 3A/r RVM V/V AVX2 Compare packed unsigned word integers in
ymm3/m256 and ymm2 and return packed
minimum values in ymm1.
VPMINUW ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F DA /r FVM V/V AVX512VL Compare packed unsigned byte integers in xmm2
and xmm3/m128 and store packed minimum values
in xmm1 under writemask k1.
VPMINUB xmm1 {k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F DA /r FVM V/V AVX512VL Compare packed unsigned byte integers in ymm2
and ymm3/m256 and store packed minimum values
in ymm1 under writemask k1.
VPMINUB ymm1 {k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F DA /r FVM V/V AVX512BW Compare packed unsigned byte integers in zmm2
and zmm3/m512 and store packed minimum values
in zmm1 under writemask k1.
VPMINUB zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F38 3A/r FVM V/V AVX512VL Compare packed unsigned word integers in
xmm3/m128 and xmm2 and return packed
minimum values in xmm1 under writemask k1.
VPMINUW xmm1{k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F38 3A/r FVM V/V AVX512VL Compare packed unsigned word integers in
ymm3/m256 and ymm2 and return packed
minimum values in ymm1 under writemask k1.
VPMINUW ymm1{k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F38 3A/r FVM V/V AVX512BW Compare packed unsigned word integers in
zmm3/m512 and zmm2 and return packed
minimum values in zmm1 under writemask k1.
VPMINUW zmm1{k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-668 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Description
Performs a SIMD compare of the packed unsigned byte or word integers in the second source operand and the first
source operand and returns the minimum value for each pair of integers to the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is conditionally updated
based on writemask k1.
Operation
PMINUB (128-bit Legacy SSE version)
PMINUB instruction for 128-bit operands:
IF DEST[7:0] < SRC[7:0] THEN
DEST[7:0] DEST[7:0];
ELSE
DEST[15:0] SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] DEST[127:120];
ELSE
DEST[127:120] SRC[127:120]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMINUB (VEX.128 encoded version)
VPMINUB instruction for 128-bit operands:
IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] SRC1[7:0];
ELSE
DEST[7:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN
DEST[127:120] SRC1[127:120];
ELSE
DEST[127:120] SRC2[127:120]; FI;
DEST[MAX_VL-1:128] 0
VPMINUB (VEX.256 encoded version)
VPMINUB instruction for 256-bit operands:
IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] SRC1[7:0];
ELSE
DEST[15:0] SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] < SRC2[255:248] THEN
DEST[255:248] SRC1[255:248];
ELSE
DEST[255:248] SRC2[255:248]; FI;
Ref. # 319433-023 5-669
INSTRUCTION SET REFERENCE, A-Z
DEST[MAX_VL-1:256] 0
VPMINUB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask* THEN
IF SRC1[i+7:i] < SRC2[i+7:i]
THEN DEST[i+7:i] SRC1[i+7:i];
ELSE DEST[i+7:i] SRC2[i+7:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
PMINUW (128-bit Legacy SSE version)
PMINUW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] DEST[15:0];
ELSE
DEST[15:0] SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC[127:112] THEN
DEST[127:112] DEST[127:112];
ELSE
DEST[127:112] SRC[127:112]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMINUW (VEX.128 encoded version)
VPMINUW instruction for 128-bit operands:
IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] SRC1[15:0];
ELSE
DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN
DEST[127:112] SRC1[127:112];
ELSE
DEST[127:112] SRC2[127:112]; FI;
DEST[MAX_VL-1:128] 0
VPMINUW (VEX.256 encoded version)
VPMINUW instruction for 128-bit operands:
IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] SRC1[15:0];
ELSE
DEST[15:0] SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
5-670 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
IF SRC1[255:240] < SRC2[255:240] THEN
DEST[255:240] SRC1[255:240];
ELSE
DEST[255:240] SRC2[255:240]; FI;
DEST[MAX_VL-1:256] 0
VPMINUW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask* THEN
IF SRC1[i+15:i] < SRC2[i+15:i]
THEN DEST[i+15:i] SRC1[i+15:i];
ELSE DEST[i+15:i] SRC2[i+15:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPMINUB __m512i _mm512_min_epu8( __m512i a, __m512i b);
VPMINUB __m512i _mm512_mask_min_epu8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMINUB __m512i _mm512_maskz_min_epu8( __mmask64 k, __m512i a, __m512i b);
VPMINUW __m512i _mm512_min_epu16( __m512i a, __m512i b);
VPMINUW __m512i _mm512_mask_min_epu16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMINUW __m512i _mm512_maskz_min_epu16( __mmask32 k, __m512i a, __m512i b);
VPMINUB __m256i _mm256_mask_min_epu8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMINUB __m256i _mm256_maskz_min_epu8( __mmask32 k, __m256i a, __m256i b);
VPMINUW __m256i _mm256_mask_min_epu16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMINUW __m256i _mm256_maskz_min_epu16( __mmask16 k, __m256i a, __m256i b);
VPMINUB __m128i _mm_mask_min_epu8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPMINUB __m128i _mm_maskz_min_epu8( __mmask16 k, __m128i a, __m128i b);
VPMINUW __m128i _mm_mask_min_epu16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINUW __m128i _mm_maskz_min_epu16( __mmask8 k, __m128i a, __m128i b);
(V)PMINUB __m128i _mm_min_epu8 ( __m128i a, __m128i b)
(V)PMINUW __m128i _mm_min_epu16 ( __m128i a, __m128i b);
VPMINUB __m256i _mm256_min_epu8 ( __m256i a, __m256i b)
VPMINUW __m256i _mm256_min_epu16 ( __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-671
INSTRUCTION SET REFERENCE, A-Z
PMINUD/PMINUQ—Minimum of Packed Unsigned Integers
Instruction Operand Encoding
Description
Performs a SIMD compare of the packed unsigned dword/qword integers in the second source operand and the first
source operand and returns the minimum value for each pair of integers to the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 3B /r RM V/V SSE4_1 Compare packed unsigned dword integers in xmm1 and
xmm2/m128 and store packed minimum values in xmm1.
PMINUD xmm1, xmm2/m128
VEX.NDS.128.66.0F38.WIG 3B /r RVM V/V AVX Compare packed unsigned dword integers in xmm2 and
xmm3/m128 and store packed minimum values in xmm1.
VPMINUD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.WIG 3B /r RVM V/V AVX2 Compare packed unsigned dword integers in ymm2 and
ymm3/m256 and store packed minimum values in ymm1.
VPMINUD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W0 3B /r FV V/V AVX512VL Compare packed unsigned dword integers in xmm2 and
xmm3/m128/m32bcst and store packed minimum values
in xmm1 under writemask k1.
VPMINUD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
AVX512F
EVEX.NDS.256.66.0F38.W0 3B /r FV V/V AVX512VL Compare packed unsigned dword integers in ymm2 and
ymm3/m256/m32bcst and store packed minimum values
in ymm1 under writemask k1.
VPMINUD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
AVX512F
EVEX.NDS.512.66.0F38.W0 3B /r FV V/V AVX512F Compare packed unsigned dword integers in zmm2 and
zmm3/m512/m32bcst and store packed minimum values
in zmm1 under writemask k1.
VPMINUD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 3B /r FV V/V AVX512VL Compare packed unsigned qword integers in xmm2 and
xmm3/m128/m64bcst and store packed minimum values
in xmm1 under writemask k1.
VPMINUQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 3B /r FV V/V AVX512VL Compare packed unsigned qword integers in ymm2 and
ymm3/m256/m64bcst and store packed minimum values
in ymm1 under writemask k1.
VPMINUQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 3B /r FV V/V AVX512F Compare packed unsigned qword integers in zmm2 and
zmm3/m512/m64bcst and store packed minimum values
in zmm1 under writemask k1.
VPMINUQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-672 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.Bits (MAX_VL-1:256) of the corresponding destination
register are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.
Operation
PMINUD (128-bit Legacy SSE version)
PMINUD instruction for 128-bit operands:
IF DEST[31:0] < SRC[31:0] THEN
DEST[31:0] DEST[31:0];
ELSE
DEST[31:0] SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:96] < SRC[127:96] THEN
DEST[127:96] DEST[127:96];
ELSE
DEST[127:96] SRC[127:96]; FI;
DEST[MAX_VL-1:128] (Unmodified)
VPMINUD (VEX.128 encoded version)
VPMINUD instruction for 128-bit operands:
IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] SRC1[31:0];
ELSE
DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:96] < SRC2[127:96] THEN
DEST[127:96] SRC1[127:96];
ELSE
DEST[127:96] SRC2[127:96]; FI;
DEST[MAX_VL-1:128] 0
VPMINUD (VEX.256 encoded version)
VPMINUD instruction for 128-bit operands:
IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] SRC1[31:0];
ELSE
DEST[31:0] SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] < SRC2[255:224] THEN
DEST[255:224] SRC1[255:224];
ELSE
DEST[255:224] SRC2[255:224]; FI;
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-673
INSTRUCTION SET REFERENCE, A-Z
VPMINUD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+31:i] < SRC2[31:0]
THEN DEST[i+31:i] SRC1[i+31:i];
ELSE DEST[i+31:i] SRC2[31:0];
FI;
ELSE
IF SRC1[i+31:i] < SRC2[i+31:i]
THEN DEST[i+31:i] SRC1[i+31:i];
ELSE DEST[i+31:i] SRC2[i+31:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPMINUQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+63:i] < SRC2[63:0]
THEN DEST[i+63:i] SRC1[i+63:i];
ELSE DEST[i+63:i] SRC2[63:0];
FI;
ELSE
IF SRC1[i+63:i] < SRC2[i+63:i]
THEN DEST[i+63:i] SRC1[i+63:i];
ELSE DEST[i+63:i] SRC2[i+63:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
5-674 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPMINUD __m512i _mm512_min_epu32( __m512i a, __m512i b);
VPMINUD __m512i _mm512_mask_min_epu32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMINUD __m512i _mm512_maskz_min_epu32( __mmask16 k, __m512i a, __m512i b);
VPMINUQ __m512i _mm512_min_epu64( __m512i a, __m512i b);
VPMINUQ __m512i _mm512_mask_min_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMINUQ __m512i _mm512_maskz_min_epu64( __mmask8 k, __m512i a, __m512i b);
VPMINUD __m256i _mm256_mask_min_epu32(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMINUD __m256i _mm256_maskz_min_epu32( __mmask16 k, __m256i a, __m256i b);
VPMINUQ __m256i _mm256_mask_min_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMINUQ __m256i _mm256_maskz_min_epu64( __mmask8 k, __m256i a, __m256i b);
VPMINUD __m128i _mm_mask_min_epu32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINUD __m128i _mm_maskz_min_epu32( __mmask8 k, __m128i a, __m128i b);
VPMINUQ __m128i _mm_mask_min_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMINUQ __m128i _mm_maskz_min_epu64( __mmask8 k, __m128i a, __m128i b);
(V)PMINUD __m128i _mm_min_epu32 ( __m128i a, __m128i b);
VPMINUD __m256i _mm256_min_epu32 ( __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-675
INSTRUCTION SET REFERENCE, A-Z
VPMOVM2B/VPMOVM2W/VPMOVM2D/VPMOVM2Q—Convert a Mask Register to a Vector
Register
Instruction Operand Encoding
Description
Converts a mask register to a vector register. Each element in the destination register is set to all 1’s or all 0’s
depending on the value of the corresponding bit in the source mask register.
The source operand is a mask register. The destination operand is a ZMM/YMM/XMM register.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F38.W0 28 /r RM V/V AVX512VL Sets each byte in XMM1 to all 1’s or all 0’s based on the value
of the corresponding bit in k1.
VPMOVM2B xmm1, k1 AVX512BW
EVEX.256.F3.0F38.W0 28 /r RM V/V AVX512VL Sets each byte in YMM1 to all 1’s or all 0’s based on the value
of the corresponding bit in k1.
VPMOVM2B ymm1, k1 AVX512BW
EVEX.512.F3.0F38.W0 28 /r RM V/V AVX512BW Sets each byte in ZMM1 to all 1’s or all 0’s based on the value
of the corresponding bit in k1.
VPMOVM2B zmm1, k1
EVEX.128.F3.0F38.W1 28 /r RM V/V AVX512VL Sets each word in XMM1 to all 1’s or all 0’s based on the value
of the corresponding bit in k1.
VPMOVM2W xmm1, k1 AVX512BW
EVEX.256.F3.0F38.W1 28 /r RM V/V AVX512VL Sets each word in YMM1 to all 1’s or all 0’s based on the value
of the corresponding bit in k1.
VPMOVM2W ymm1, k1 AVX512BW
EVEX.512.F3.0F38.W1 28 /r RM V/V AVX512BW Sets each word in ZMM1 to all 1’s or all 0’s based on the value
of the corresponding bit in k1.
VPMOVM2W zmm1, k1
EVEX.128.F3.0F38.W0 38 /r RM V/V AVX512VL Sets each doubleword in XMM1 to all 1’s or all 0’s based on the
value of the corresponding bit in k1.
VPMOVM2D xmm1, k1 AVX512DQ
EVEX.256.F3.0F38.W0 38 /r RM V/V AVX512VL Sets each doubleword in YMM1 to all 1’s or all 0’s based on the
value of the corresponding bit in k1.
VPMOVM2D ymm1, k1 AVX512DQ
EVEX.512.F3.0F38.W0 38 /r RM V/V AVX512DQ Sets each doubleword in ZMM1 to all 1’s or all 0’s based on the
value of the corresponding bit in k1.
VPMOVM2D zmm1, k1
EVEX.128.F3.0F38.W1 38 /r RM V/V AVX512VL Sets each quadword in XMM1 to all 1’s or all 0’s based on the
value of the corresponding bit in k1.
VPMOVM2Q xmm1, k1 AVX512DQ
EVEX.256.F3.0F38.W1 38 /r RM V/V AVX512VL Sets each quadword in YMM1 to all 1’s or all 0’s based on the
value of the corresponding bit in k1.
VPMOVM2Q ymm1, k1 AVX512DQ
EVEX.512.F3.0F38.W1 38 /r RM V/V AVX512DQ Sets each quadword in ZMM1 to all 1’s or all 0’s based on the
value of the corresponding bit in k1.
VPMOVM2Q zmm1, k1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
5-676 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPMOVM2B (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF SRC[j]
THEN DEST[i+7:i] -1
ELSE DEST[i+7:i] 0
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVM2W (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF SRC[j]
THEN DEST[i+15:i] -1
ELSE DEST[i+15:i] 0
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVM2D (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF SRC[j]
THEN DEST[i+31:i] -1
ELSE DEST[i+31:i] 0
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVM2Q (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF SRC[j]
THEN DEST[i+63:i] -1
ELSE DEST[i+63:i] 0
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-677
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalents
VPMOVM2B __m512i _mm512_movm_epi8(__mmask64 );
VPMOVM2D __m512i _mm512_movm_epi32(__mmask8 );
VPMOVM2Q __m512i _mm512_movm_epi64(__mmask16 );
VPMOVM2W __m512i _mm512_movm_epi16(__mmask32 );
VPMOVM2B __m256i _mm256_movm_epi8(__mmask32 );
VPMOVM2D __m256i _mm256_movm_epi32(__mmask8 );
VPMOVM2Q __m256i _mm256_movm_epi64(__mmask8 );
VPMOVM2W __m256i _mm256_movm_epi16(__mmask16 );
VPMOVM2B __m128i _mm_movm_epi8(__mmask16 );
VPMOVM2D __m128i _mm_movm_epi32(__mmask8 );
VPMOVM2Q __m128i _mm_movm_epi64(__mmask8 );
VPMOVM2W __m128i _mm_movm_epi16(__mmask8 );
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E7NM
#UD If EVEX.vvvv != 1111B.
5-678 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVB2M/VPMOVW2M/VPMOVD2M/VPMOVQ2M—Convert a Vector Register to a Mask
Instruction Operand Encoding
Description
Converts a vector register to a mask register. Each element in the destination register is set to 1 or 0 depending on
the value of most significant bit of the corresponding element in the source register.
The source operand is a ZMM/YMM/XMM register. The destination operand is a mask register.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F38.W0 29 /r RM V/V AVX512VL Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding byte in XMM1.
VPMOVB2M k1, xmm1 AVX512BW
EVEX.256.F3.0F38.W0 29 /r RM V/V AVX512VL Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding byte in YMM1.
VPMOVB2M k1, ymm1 AVX512BW
EVEX.512.F3.0F38.W0 29 /r RM V/V AVX512BW Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding byte in ZMM1.
VPMOVB2M k1, zmm1
EVEX.128.F3.0F38.W1 29 /r RM V/V AVX512VL Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding word in XMM1.
VPMOVW2M k1, xmm1 AVX512BW
EVEX.256.F3.0F38.W1 29 /r RM V/V AVX512VL Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding word in YMM1.
VPMOVW2M k1, ymm1 AVX512BW
EVEX.512.F3.0F38.W1 29 /r RM V/V AVX512BW Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding word in ZMM1.
VPMOVW2M k1, zmm1
EVEX.128.F3.0F38.W0 39 /r RM V/V AVX512VL Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding doubleword in XMM1.
VPMOVD2M k1, xmm1 AVX512DQ
EVEX.256.F3.0F38.W0 39 /r RM V/V AVX512VL Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding doubleword in YMM1.
VPMOVD2M k1, ymm1 AVX512DQ
EVEX.512.F3.0F38.W0 39 /r RM V/V AVX512DQ Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding doubleword in ZMM1.
VPMOVD2M k1, zmm1
EVEX.128.F3.0F38.W1 39 /r RM V/V AVX512VL Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding quadword in XMM1.
VPMOVQ2M k1, xmm1 AVX512DQ
EVEX.256.F3.0F38.W1 39 /r RM V/V AVX512VL Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding quadword in YMM1.
VPMOVQ2M k1, ymm1 AVX512DQ
EVEX.512.F3.0F38.W1 39 /r RM V/V AVX512DQ Sets each bit in k1 to 1 or 0 based on the value of the most
significant bit of the corresponding quadword in ZMM1.
VPMOVQ2M k1, zmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-679
INSTRUCTION SET REFERENCE, A-Z
Operation
VPMOVB2M (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF SRC[i+7]
THEN DEST[j] 1
ELSE DEST[j] 0
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPMOVW2M (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF SRC[i+15]
THEN DEST[j] 1
ELSE DEST[j] 0
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPMOVD2M (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF SRC[i+31]
THEN DEST[j] 1
ELSE DEST[j] 0
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPMOVQ2M (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF SRC[i+63]
THEN DEST[j] 1
ELSE DEST[j] 0
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
5-680 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalents
VPMPOVB2M __mmask64 _mm512_movepi8_mask( __m512i );
VPMPOVD2M __mmask16 _mm512_movepi32_mask( __m512i );
VPMPOVQ2M __mmask8 _mm512_movepi64_mask( __m512i );
VPMPOVW2M __mmask32 _mm512_movepi16_mask( __m512i );
VPMPOVB2M __mmask32 _mm256_movepi8_mask( __m256i );
VPMPOVD2M __mmask8 _mm256_movepi32_mask( __m256i );
VPMPOVQ2M __mmask8 _mm256_movepi64_mask( __m256i );
VPMPOVW2M __mmask16 _mm256_movepi16_mask( __m256i );
VPMPOVB2M __mmask16 _mm_movepi8_mask( __m128i );
VPMPOVD2M __mmask8 _mm_movepi32_mask( __m128i );
VPMPOVQ2M __mmask8 _mm_movepi64_mask( __m128i );
VPMPOVW2M __mmask8 _mm_movepi16_mask( __m128i );
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E7NM
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-681
INSTRUCTION SET REFERENCE, A-Z
VPMOVQB/VPMOVSQB/VPMOVUSQB—Down Convert QWord to Byte
Instruction Operand Encoding
Description
VPMOVQB down converts 64-bit integer elements in the source operand (the second operand) into packed byte
elements using truncation. VPMOVSQB converts signed 64-bit integers into packed signed bytes using signed satu-
ration. VPMOVUSQB convert unsigned quad-word values into unsigned byte values using unsigned saturation. The
source operand is a vector register. The destination operand is an XMM register or a memory location.
Down-converted byte elements are written to the destination operand (the first operand) from the least-significant
byte. Byte elements of the destination operand are updated according to the writemask. Bits (MAX_VL-1:64) of the
destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F38.W0 32 /rOVM V/V AVX512VL Converts 2 packed quad-word integers from xmm2
into 2 packed byte integers in xmm1/m16 with
truncation under writemask k1.
VPMOVQB xmm1/m16 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 22 /rOVM V/V AVX512VL Converts 2 packed signed quad-word integers from
xmm2 into 2 packed signed byte integers in
xmm1/m16 using signed saturation under writemask
k1.
VPMOVSQB xmm1/m16 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 12 /rOVM V/V AVX512VL Converts 2 packed unsigned quad-word integers
from xmm2 into 2 packed unsigned byte integers in
xmm1/m16 using unsigned saturation under
writemask k1.
VPMOVUSQB xmm1/m16 {k1}{z}, xmm2 AVX512F
EVEX.256.F3.0F38.W0 32 /rOVM V/V AVX512VL Converts 4 packed quad-word integers from ymm2
into 4 packed byte integers in xmm1/m32 with
truncation under writemask k1.
VPMOVQB xmm1/m32 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 22 /rOVM V/V AVX512VL Converts 4 packed signed quad-word integers from
ymm2 into 4 packed signed byte integers in
xmm1/m32 using signed saturation under writemask
k1.
VPMOVSQB xmm1/m32 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 12 /rOVM V/V AVX512VL Converts 4 packed unsigned quad-word integers
from ymm2 into 4 packed unsigned byte integers in
xmm1/m32 using unsigned saturation under
writemask k1.
VPMOVUSQB xmm1/m32 {k1}{z}, ymm2 AVX512F
EVEX.512.F3.0F38.W0 32 /rOVM V/V AVX512F Converts 8 packed quad-word integers from zmm2
into 8 packed byte integers in xmm1/m64 with
truncation under writemask k1.
VPMOVQB xmm1/m64 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 22 /rOVM V/V AVX512F Converts 8 packed signed quad-word integers from
zmm2 into 8 packed signed byte integers in
xmm1/m64 using signed saturation under writemask
k1.
VPMOVSQB xmm1/m64 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 12 /rOVM V/V AVX512F Converts 8 packed unsigned quad-word integers
from zmm2 into 8 packed unsigned byte integers in
xmm1/m64 using unsigned saturation under
writemask k1.
VPMOVUSQB xmm1/m64 {k1}{z}, zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
OVM ModRM:r/m (w) ModRM:reg (r) NA NA
5-682 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPMOVQB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 8
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] TruncateQuadWordToByte (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/8] 0;
VPMOVQB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 8
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] TruncateQuadWordToByte (SRC[m+63:m])
ELSE
*DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVSQB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 8
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateSignedQuadWordToByte (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/8] 0;
Ref. # 319433-023 5-683
INSTRUCTION SET REFERENCE, A-Z
VPMOVSQB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 8
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateSignedQuadWordToByte (SRC[m+63:m])
ELSE
*DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVUSQB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 8
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateUnsignedQuadWordToByte (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/8] 0;
VPMOVUSQB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 8
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateUnsignedQuadWordToByte (SRC[m+63:m])
ELSE
*DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalents
VPMOVQB __m128i _mm512_cvtepi64_epi8( __m512i a);
VPMOVQB __m128i _mm512_mask_cvtepi64_epi8(__m128i s, __mmask8 k, __m512i a);
VPMOVQB __m128i _mm512_maskz_cvtepi64_epi8( __mmask8 k, __m512i a);
VPMOVQB void _mm512_mask_cvtepi64_storeu_epi8(void * d, __mmask8 k, __m512i a);
VPMOVSQB __m128i _mm512_cvtsepi64_epi8( __m512i a);
VPMOVSQB __m128i _mm512_mask_cvtsepi64_epi8(__m128i s, __mmask8 k, __m512i a);
VPMOVSQB __m128i _mm512_maskz_cvtsepi64_epi8( __mmask8 k, __m512i a);
VPMOVSQB void _mm512_mask_cvtsepi64_storeu_epi8(void * d, __mmask8 k, __m512i a);
VPMOVUSQB __m128i _mm512_cvtusepi64_epi8( __m512i a);
VPMOVUSQB __m128i _mm512_mask_cvtusepi64_epi8(__m128i s, __mmask8 k, __m512i a);
VPMOVUSQB __m128i _mm512_maskz_cvtusepi64_epi8( __mmask8 k, __m512i a);
VPMOVUSQB void _mm512_mask_cvtusepi64_storeu_epi8(void * d, __mmask8 k, __m512i a);
5-684 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVUSQB __m128i _mm256_cvtusepi64_epi8(__m256i a);
VPMOVUSQB __m128i _mm256_mask_cvtusepi64_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVUSQB __m128i _mm256_maskz_cvtusepi64_epi8( __mmask8 k, __m256i b);
VPMOVUSQB void _mm256_mask_cvtusepi64_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVUSQB __m128i _mm_cvtusepi64_epi8(__m128i a);
VPMOVUSQB __m128i _mm_mask_cvtusepi64_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQB __m128i _mm_maskz_cvtusepi64_epi8( __mmask8 k, __m128i b);
VPMOVUSQB void _mm_mask_cvtusepi64_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVSQB __m128i _mm256_cvtsepi64_epi8(__m256i a);
VPMOVSQB __m128i _mm256_mask_cvtsepi64_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVSQB __m128i _mm256_maskz_cvtsepi64_epi8( __mmask8 k, __m256i b);
VPMOVSQB void _mm256_mask_cvtsepi64_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVSQB __m128i _mm_cvtsepi64_epi8(__m128i a);
VPMOVSQB __m128i _mm_mask_cvtsepi64_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVSQB __m128i _mm_maskz_cvtsepi64_epi8( __mmask8 k, __m128i b);
VPMOVSQB void _mm_mask_cvtsepi64_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVQB __m128i _mm256_cvtepi64_epi8(__m256i a);
VPMOVQB __m128i _mm256_mask_cvtepi64_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVQB __m128i _mm256_maskz_cvtepi64_epi8( __mmask8 k, __m256i b);
VPMOVQB void _mm256_mask_cvtepi64_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVQB __m128i _mm_cvtepi64_epi8(__m128i a);
VPMOVQB __m128i _mm_mask_cvtepi64_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVQB __m128i _mm_maskz_cvtepi64_epi8( __mmask8 k, __m128i b);
VPMOVQB void _mm_mask_cvtepi64_storeu_epi8(void * , __mmask8 k, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E6.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-685
INSTRUCTION SET REFERENCE, A-Z
VPMOVQW/VPMOVSQW/VPMOVUSQW—Down Convert QWord to Word
Instruction Operand Encoding
Description
VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed words
using truncation. VPMOVSQW converts signed 64-bit integers into packed signed words using signed saturation.
VPMOVUSQW convert unsigned quad-word values into unsigned word values using unsigned saturation.
The source operand is a ZMM/YMM/XMM register. The destination operand is a XMM register or a 128/64/32-bit
memory location.
Down-converted word elements are written to the destination operand (the first operand) from the least-significant
word. Word elements of the destination operand are updated according to the writemask. Bits (MAX_VL-
1:128/64/32) of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F38.W0 34 /rQVM V/V AVX512VL Converts 2 packed quad-word integers from xmm2
into 2 packed word integers in xmm1/m32 with
truncation under writemask k1.
VPMOVQW xmm1/m32 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 24 /rQVM V/V AVX512VL Converts 8 packed signed quad-word integers from
zmm2 into 8 packed signed word integers in
xmm1/m32 using signed saturation under writemask
k1.
VPMOVSQW xmm1/m32 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 14 /rQVM V/V AVX512VL Converts 2 packed unsigned quad-word integers from
xmm2 into 2 packed unsigned word integers in
xmm1/m32 using unsigned saturation under
writemask k1.
VPMOVUSQW xmm1/m32 {k1}{z}, xmm2 AVX512F
EVEX.256.F3.0F38.W0 34 /rQVM V/V AVX512VL Converts 4 packed quad-word integers from ymm2
into 4 packed word integers in xmm1/m64 with
truncation under writemask k1.
VPMOVQW xmm1/m64 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 24 /rQVM V/V AVX512VL Converts 4 packed signed quad-word integers from
ymm2 into 4 packed signed word integers in
xmm1/m64 using signed saturation under writemask
k1.
VPMOVSQW xmm1/m64 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 14 /rQVM V/V AVX512VL Converts 4 packed unsigned quad-word integers from
ymm2 into 4 packed unsigned word integers in
xmm1/m64 using unsigned saturation under
writemask k1.
VPMOVUSQW xmm1/m64 {k1}{z}, ymm2 AVX512F
EVEX.512.F3.0F38.W0 34 /rQVM V/V AVX512F Converts 8 packed quad-word integers from zmm2
into 8 packed word integers in xmm1/m128 with
truncation under writemask k1.
VPMOVQW xmm1/m128 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 24 /rQVM V/V AVX512F Converts 8 packed signed quad-word integers from
zmm2 into 8 packed signed word integers in
xmm1/m128 using signed saturation under
writemask k1.
VPMOVSQW xmm1/m128 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 14 /rQVM V/V AVX512F Converts 8 packed unsigned quad-word integers from
zmm2 into 8 packed unsigned word integers in
xmm1/m128 using unsigned saturation under
writemask k1.
VPMOVUSQW xmm1/m128 {k1}{z},
zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
QVM ModRM:r/m (w) ModRM:reg (r) NA NA
5-686 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPMOVQW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 16
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TruncateQuadWordToWord (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/4] 0;
VPMOVQW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 16
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TruncateQuadWordToWord (SRC[m+63:m])
ELSE
*DEST[i+15:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVSQW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 16
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateSignedQuadWordToWord (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/4] 0;
Ref. # 319433-023 5-687
INSTRUCTION SET REFERENCE, A-Z
VPMOVSQW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 16
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateSignedQuadWordToWord (SRC[m+63:m])
ELSE
*DEST[i+15:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVUSQW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 16
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateUnsignedQuadWordToWord (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/4] 0;
VPMOVUSQW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 16
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateUnsignedQuadWordToWord (SRC[m+63:m])
ELSE
*DEST[i+15:i] remains unchanged* ; merging-masking
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalents
VPMOVQW __m128i _mm512_cvtepi64_epi16( __m512i a);
VPMOVQW __m128i _mm512_mask_cvtepi64_epi16(__m128i s, __mmask8 k, __m512i a);
VPMOVQW __m128i _mm512_maskz_cvtepi64_epi16( __mmask8 k, __m512i a);
VPMOVQW void _mm512_mask_cvtepi64_storeu_epi16(void * d, __mmask8 k, __m512i a);
VPMOVSQW __m128i _mm512_cvtsepi64_epi16( __m512i a);
VPMOVSQW __m128i _mm512_mask_cvtsepi64_epi16(__m128i s, __mmask8 k, __m512i a);
VPMOVSQW __m128i _mm512_maskz_cvtsepi64_epi16( __mmask8 k, __m512i a);
VPMOVSQW void _mm512_mask_cvtsepi64_storeu_epi16(void * d, __mmask8 k, __m512i a);
VPMOVUSQW __m128i _mm512_cvtusepi64_epi16( __m512i a);
VPMOVUSQW __m128i _mm512_mask_cvtusepi64_epi16(__m128i s, __mmask8 k, __m512i a);
VPMOVUSQW __m128i _mm512_maskz_cvtusepi64_epi16( __mmask8 k, __m512i a);
VPMOVUSQW void _mm512_mask_cvtusepi64_storeu_epi16(void * d, __mmask8 k, __m512i a);
5-688 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a);
VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b);
VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a);
VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b);
VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a);
VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b);
VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a);
VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b);
VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a);
VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b);
VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a);
VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b);
VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E6.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-689
INSTRUCTION SET REFERENCE, A-Z
VPMOVQD/VPMOVSQD/VPMOVUSQD—Down Convert QWord to DWord
Instruction Operand Encoding
Description
VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed double-
words using truncation. VPMOVSQW converts signed 64-bit integers into packed signed doublewords using signed
saturation. VPMOVUSQW convert unsigned quad-word values into unsigned double-word values using unsigned
saturation.
The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a
256/128/64-bit memory location.
Down-converted doubleword elements are written to the destination operand (the first operand) from the least-
significant doubleword. Doubleword elements of the destination operand are updated according to the writemask.
Bits (MAX_VL-1:256/128/64) of the register destination are zeroed.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F38.W0 35 /rA V/V AVX512VL Converts 2 packed quad-word integers from xmm2
into 2 packed double-word integers in xmm1/m128
with truncation subject to writemask k1.
VPMOVQD xmm1/m128 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 25 /rA V/V AVX512VL Converts 2 packed signed quad-word integers from
xmm2 into 2 packed signed double-word integers
in xmm1/m64 using signed saturation subject to
writemask k1.
VPMOVSQD xmm1/m64 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 15 /rA V/V AVX512VL Converts 2 packed unsigned quad-word integers
from xmm2 into 2 packed unsigned double-word
integers in xmm1/m64 using unsigned saturation
subject to writemask k1.
VPMOVUSQD xmm1/m64 {k1}{z}, xmm2 AVX512F
EVEX.256.F3.0F38.W0 35 /rA V/V AVX512VL Converts 4 packed quad-word integers from ymm2
into 4 packed double-word integers in xmm1/m128
with truncation subject to writemask k1.
VPMOVQD xmm1/m128 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 25 /rA V/V AVX512VL Converts 4 packed signed quad-word integers from
ymm2 into 4 packed signed double-word integers in
xmm1/m128 using signed saturation subject to
writemask k1.
VPMOVSQD xmm1/m128 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 15 /rA V/V AVX512VL Converts 4 packed unsigned quad-word integers
from ymm2 into 4 packed unsigned double-word
integers in xmm1/m128 using unsigned saturation
subject to writemask k1.
VPMOVUSQD xmm1/m128 {k1}{z}, ymm2 AVX512F
EVEX.512.F3.0F38.W0 35 /rHVM V/V AVX512F Converts 8 packed quad-word integers from zmm2
into 8 packed double-word integers in ymm1/m256
with truncation subject to writemask k1.
VPMOVQD ymm1/m256 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 25 /rHVM V/V AVX512F Converts 8 packed signed quad-word integers from
zmm2 into 8 packed signed double-word integers in
ymm1/m256 using signed saturation subject to
writemask k1.
VPMOVSQD ymm1/m256 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 15 /rHVM V/V AVX512F Converts 8 packed unsigned quad-word integers
from zmm2 into 8 packed unsigned double-word
integers in ymm1/m256 using unsigned saturation
subject to writemask k1.
VPMOVUSQD ymm1/m256 {k1}{z}, zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
HVM ModRM:r/m (w) ModRM:reg (r) NA NA
5-690 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VPMOVQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TruncateQuadWordToDWord (SRC[m+63:m])
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0;
VPMOVQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TruncateQuadWordToDWord (SRC[m+63:m])
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SaturateSignedQuadWordToDWord (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0;
Ref. # 319433-023 5-691
INSTRUCTION SET REFERENCE, A-Z
VPMOVSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SaturateSignedQuadWordToDWord (SRC[m+63:m])
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVUSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0;
VPMOVUSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
m j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalents
VPMOVQD __m256i _mm512_cvtepi64_epi32( __m512i a);
VPMOVQD __m256i _mm512_mask_cvtepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVQD __m256i _mm512_maskz_cvtepi64_epi32( __mmask8 k, __m512i a);
VPMOVQD void _mm512_mask_cvtepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_cvtsepi64_epi32( __m512i a);
VPMOVSQD __m256i _mm512_mask_cvtsepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_maskz_cvtsepi64_epi32( __mmask8 k, __m512i a);
VPMOVSQD void _mm512_mask_cvtsepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_cvtusepi64_epi32( __m512i a);
VPMOVUSQD __m256i _mm512_mask_cvtusepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_maskz_cvtusepi64_epi32( __mmask8 k, __m512i a);
VPMOVUSQD void _mm512_mask_cvtusepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a);
VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b);
5-692 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b);
VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a);
VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b);
VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a);
VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b);
VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a);
VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b);
VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a);
VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b);
VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a);
VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b);
VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E6.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-693
INSTRUCTION SET REFERENCE, A-Z
VPMOVDB/VPMOVSDB/VPMOVUSDB—Down Convert DWord to Byte
Instruction Operand Encoding
Description
VPMOVDB down converts 32-bit integer elements in the source operand (the second operand) into packed bytes
using truncation. VPMOVSDB converts signed 32-bit integers into packed signed bytes using signed saturation.
VPMOVUSDB convert unsigned double-word values into unsigned byte values using unsigned saturation.
The source operand is a ZMM/YMM/XMM register. The destination operand is a XMM register or a 128/64/32-bit
memory location.
Down-converted byte elements are written to the destination operand (the first operand) from the least-significant
byte. Byte elements of the destination operand are updated according to the writemask. Bits (MAX_VL-
1:128/64/32) of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F38.W0 31 /rQVM V/V AVX512VL Converts 4 packed double-word integers from xmm2
into 4 packed byte integers in xmm1/m32 with
truncation under writemask k1.
VPMOVDB xmm1/m32 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 21 /rQVM V/V AVX512VL Converts 4 packed signed double-word integers from
xmm2 into 4 packed signed byte integers in
xmm1/m32 using signed saturation under writemask
k1.
VPMOVSDB xmm1/m32 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 11 /rQVM V/V AVX512VL Converts 4 packed unsigned double-word integers
from xmm2 into 4 packed unsigned byte integers in
xmm1/m32 using unsigned saturation under
writemask k1.
VPMOVUSDB xmm1/m32 {k1}{z},
xmm2
AVX512F
EVEX.256.F3.0F38.W0 31 /rQVM V/V AVX512VL Converts 8 packed double-word integers from ymm2
into 8 packed byte integers in xmm1/m64 with
truncation under writemask k1.
VPMOVDB xmm1/m64 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 21 /rQVM V/V AVX512VL Converts 8 packed signed double-word integers from
ymm2 into 8 packed signed byte integers in
xmm1/m64 using signed saturation under writemask
k1.
VPMOVSDB xmm1/m64 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 11 /rQVM V/V AVX512VL Converts 8 packed unsigned double-word integers
from ymm2 into 8 packed unsigned byte integers in
xmm1/m64 using unsigned saturation under
writemask k1.
VPMOVUSDB xmm1/m64 {k1}{z}, ymm2 AVX512F
EVEX.512.F3.0F38.W0 31 /rQVM V/V AVX512F Converts 16 packed double-word integers from zmm2
into 16 packed byte integers in xmm1/m128 with
truncation under writemask k1.
VPMOVDB xmm1/m128 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 21 /rQVM V/V AVX512F Converts 16 packed signed double-word integers
from zmm2 into 16 packed signed byte integers in
xmm1/m128 using signed saturation under
writemask k1.
VPMOVSDB xmm1/m128 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 11 /rQVM V/V AVX512F Converts 16 packed unsigned double-word integers
from zmm2 into 16 packed unsigned byte integers in
xmm1/m128 using unsigned saturation under
writemask k1.
VPMOVUSDB xmm1/m128 {k1}{z},
zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
QVM ModRM:r/m (w) ModRM:reg (r) NA NA
5-694 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPMOVDB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 8
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] TruncateDoubleWordToByte (SRC[m+31:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/4] 0;
VPMOVDB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 8
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] TruncateDoubleWordToByte (SRC[m+31:m])
ELSE *DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVSDB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 8
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateSignedDoubleWordToByte (SRC[m+31:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/4] 0;
Ref. # 319433-023 5-695
INSTRUCTION SET REFERENCE, A-Z
VPMOVSDB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 8
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateSignedDoubleWordToByte (SRC[m+31:m])
ELSE *DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVUSDB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 8
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateUnsignedDoubleWordToByte (SRC[m+31:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/4] 0;
VPMOVUSDB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 8
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateUnsignedDoubleWordToByte (SRC[m+31:m])
ELSE *DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalents
VPMOVDB __m128i _mm512_cvtepi32_epi8( __m512i a);
VPMOVDB __m128i _mm512_mask_cvtepi32_epi8(__m128i s, __mmask16 k, __m512i a);
VPMOVDB __m128i _mm512_maskz_cvtepi32_epi8( __mmask16 k, __m512i a);
VPMOVDB void _mm512_mask_cvtepi32_storeu_epi8(void * d, __mmask16 k, __m512i a);
VPMOVSDB __m128i _mm512_cvtsepi32_epi8( __m512i a);
VPMOVSDB __m128i _mm512_mask_cvtsepi32_epi8(__m128i s, __mmask16 k, __m512i a);
VPMOVSDB __m128i _mm512_maskz_cvtsepi32_epi8( __mmask16 k, __m512i a);
VPMOVSDB void _mm512_mask_cvtsepi32_storeu_epi8(void * d, __mmask16 k, __m512i a);
VPMOVUSDB __m128i _mm512_cvtusepi32_epi8( __m512i a);
VPMOVUSDB __m128i _mm512_mask_cvtusepi32_epi8(__m128i s, __mmask16 k, __m512i a);
VPMOVUSDB __m128i _mm512_maskz_cvtusepi32_epi8( __mmask16 k, __m512i a);
VPMOVUSDB void _mm512_mask_cvtusepi32_storeu_epi8(void * d, __mmask16 k, __m512i a);
VPMOVUSDB __m128i _mm256_cvtusepi32_epi8(__m256i a);
VPMOVUSDB __m128i _mm256_mask_cvtusepi32_epi8(__m128i a, __mmask8 k, __m256i b);
5-696 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVUSDB __m128i _mm256_maskz_cvtusepi32_epi8( __mmask8 k, __m256i b);
VPMOVUSDB void _mm256_mask_cvtusepi32_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVUSDB __m128i _mm_cvtusepi32_epi8(__m128i a);
VPMOVUSDB __m128i _mm_mask_cvtusepi32_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVUSDB __m128i _mm_maskz_cvtusepi32_epi8( __mmask8 k, __m128i b);
VPMOVUSDB void _mm_mask_cvtusepi32_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVSDB __m128i _mm256_cvtsepi32_epi8(__m256i a);
VPMOVSDB __m128i _mm256_mask_cvtsepi32_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVSDB __m128i _mm256_maskz_cvtsepi32_epi8( __mmask8 k, __m256i b);
VPMOVSDB void _mm256_mask_cvtsepi32_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVSDB __m128i _mm_cvtsepi32_epi8(__m128i a);
VPMOVSDB __m128i _mm_mask_cvtsepi32_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVSDB __m128i _mm_maskz_cvtsepi32_epi8( __mmask8 k, __m128i b);
VPMOVSDB void _mm_mask_cvtsepi32_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVDB __m128i _mm256_cvtepi32_epi8(__m256i a);
VPMOVDB __m128i _mm256_mask_cvtepi32_epi8(__m128i a, __mmask8 k, __m256i b);
VPMOVDB __m128i _mm256_maskz_cvtepi32_epi8( __mmask8 k, __m256i b);
VPMOVDB void _mm256_mask_cvtepi32_storeu_epi8(void * , __mmask8 k, __m256i b);
VPMOVDB __m128i _mm_cvtepi32_epi8(__m128i a);
VPMOVDB __m128i _mm_mask_cvtepi32_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVDB __m128i _mm_maskz_cvtepi32_epi8( __mmask8 k, __m128i b);
VPMOVDB void _mm_mask_cvtepi32_storeu_epi8(void * , __mmask8 k, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E6.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-697
INSTRUCTION SET REFERENCE, A-Z
VPMOVDW/VPMOVSDW/VPMOVUSDW—Down Convert DWord to Word
Instruction Operand Encoding
Description
VPMOVDW down converts 32-bit integer elements in the source operand (the second operand) into packed words
using truncation. VPMOVSDW converts signed 32-bit integers into packed signed words using signed saturation.
VPMOVUSDW convert unsigned double-word values into unsigned word values using unsigned saturation.
The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a
256/128/64-bit memory location.
Down-converted word elements are written to the destination operand (the first operand) from the least-significant
word. Word elements of the destination operand are updated according to the writemask. Bits (MAX_VL-
1:256/128/64) of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F38.W0 33 /rHVM V/V AVX512VL Converts 4 packed double-word integers from
xmm2 into 4 packed word integers in xmm1/m64
with truncation under writemask k1.
VPMOVDW xmm1/m64 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 23 /rHVM V/V AVX512VL Converts 4 packed signed double-word integers
from xmm2 into 4 packed signed word integers in
ymm1/m64 using signed saturation under
writemask k1.
VPMOVSDW xmm1/m64 {k1}{z}, xmm2 AVX512F
EVEX.128.F3.0F38.W0 13 /rHVM V/V AVX512VL Converts 4 packed unsigned double-word integers
from xmm2 into 4 packed unsigned word integers
in xmm1/m64 using unsigned saturation under
writemask k1.
VPMOVUSDW xmm1/m64 {k1}{z}, xmm2 AVX512F
EVEX.256.F3.0F38.W0 33 /rHVM V/V AVX512VL Converts 8 packed double-word integers from
ymm2 into 8 packed word integers in xmm1/m128
with truncation under writemask k1.
VPMOVDW xmm1/m128 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 23 /rHVM V/V AVX512VL Converts 8 packed signed double-word integers
from ymm2 into 8 packed signed word integers in
xmm1/m128 using signed saturation under
writemask k1.
VPMOVSDW xmm1/m128 {k1}{z}, ymm2 AVX512F
EVEX.256.F3.0F38.W0 13 /rHVM V/V AVX512VL Converts 8 packed unsigned double-word integers
from ymm2 into 8 packed unsigned word integers
in xmm1/m128 using unsigned saturation under
writemask k1.
VPMOVUSDW xmm1/m128 {k1}{z},
ymm2
AVX512F
EVEX.512.F3.0F38.W0 33 /rHVM V/V AVX512F Converts 16 packed double-word integers from
zmm2 into 16 packed word integers in
ymm1/m256 with truncation under writemask k1.
VPMOVDW ymm1/m256 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 23 /rHVM V/V AVX512F Converts 16 packed signed double-word integers
from zmm2 into 16 packed signed word integers in
ymm1/m256 using signed saturation under
writemask k1.
VPMOVSDW ymm1/m256 {k1}{z}, zmm2
EVEX.512.F3.0F38.W0 13 /rHVM V/V AVX512F Converts 16 packed unsigned double-word integers
from zmm2 into 16 packed unsigned word integers
in ymm1/m256 using unsigned saturation under
writemask k1.
VPMOVUSDW ymm1/m256 {k1}{z},
zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
HVM ModRM:r/m (w) ModRM:reg (r) NA NA
5-698 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPMOVDW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 16
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TruncateDoubleWordToWord (SRC[m+31:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0;
VPMOVDW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 16
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TruncateDoubleWordToWord (SRC[m+31:m])
ELSE
*DEST[i+15:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVSDW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 16
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateSignedDoubleWordToWord (SRC[m+31:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0;
Ref. # 319433-023 5-699
INSTRUCTION SET REFERENCE, A-Z
VPMOVSDW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 16
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateSignedDoubleWordToWord (SRC[m+31:m])
ELSE
*DEST[i+15:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVUSDW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 16
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateUnsignedDoubleWordToWord (SRC[m+31:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0;
VPMOVUSDW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 16
m j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateUnsignedDoubleWordToWord (SRC[m+31:m])
ELSE
*DEST[i+15:i] remains unchanged* ; merging-masking
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalents
VPMOVDW __m256i _mm512_cvtepi32_epi16( __m512i a);
VPMOVDW __m256i _mm512_mask_cvtepi32_epi16(__m256i s, __mmask16 k, __m512i a);
VPMOVDW __m256i _mm512_maskz_cvtepi32_epi16( __mmask16 k, __m512i a);
VPMOVDW void _mm512_mask_cvtepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);
VPMOVSDW __m256i _mm512_cvtsepi32_epi16( __m512i a);
VPMOVSDW __m256i _mm512_mask_cvtsepi32_epi16(__m256i s, __mmask16 k, __m512i a);
VPMOVSDW __m256i _mm512_maskz_cvtsepi32_epi16( __mmask16 k, __m512i a);
VPMOVSDW void _mm512_mask_cvtsepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);
VPMOVUSDW __m256i _mm512_cvtusepi32_epi16 __m512i a);
VPMOVUSDW __m256i _mm512_mask_cvtusepi32_epi16(__m256i s, __mmask16 k, __m512i a);
VPMOVUSDW __m256i _mm512_maskz_cvtusepi32_epi16( __mmask16 k, __m512i a);
VPMOVUSDW void _mm512_mask_cvtusepi32_storeu_epi16(void * d, __mmask16 k, __m512i a);
5-700 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVUSDW __m128i _mm256_cvtusepi32_epi16(__m256i a);
VPMOVUSDW __m128i _mm256_mask_cvtusepi32_epi16(__m128i a, __mmask8 k, __m256i b);
VPMOVUSDW __m128i _mm256_maskz_cvtusepi32_epi16( __mmask8 k, __m256i b);
VPMOVUSDW void _mm256_mask_cvtusepi32_storeu_epi16(void * , __mmask8 k, __m256i b);
VPMOVUSDW __m128i _mm_cvtusepi32_epi16(__m128i a);
VPMOVUSDW __m128i _mm_mask_cvtusepi32_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVUSDW __m128i _mm_maskz_cvtusepi32_epi16( __mmask8 k, __m128i b);
VPMOVUSDW void _mm_mask_cvtusepi32_storeu_epi16(void * , __mmask8 k, __m128i b);
VPMOVSDW __m128i _mm256_cvtsepi32_epi16(__m256i a);
VPMOVSDW __m128i _mm256_mask_cvtsepi32_epi16(__m128i a, __mmask8 k, __m256i b);
VPMOVSDW __m128i _mm256_maskz_cvtsepi32_epi16( __mmask8 k, __m256i b);
VPMOVSDW void _mm256_mask_cvtsepi32_storeu_epi16(void * , __mmask8 k, __m256i b);
VPMOVSDW __m128i _mm_cvtsepi32_epi16(__m128i a);
VPMOVSDW __m128i _mm_mask_cvtsepi32_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVSDW __m128i _mm_maskz_cvtsepi32_epi16( __mmask8 k, __m128i b);
VPMOVSDW void _mm_mask_cvtsepi32_storeu_epi16(void * , __mmask8 k, __m128i b);
VPMOVDW __m128i _mm256_cvtepi32_epi16(__m256i a);
VPMOVDW __m128i _mm256_mask_cvtepi32_epi16(__m128i a, __mmask8 k, __m256i b);
VPMOVDW __m128i _mm256_maskz_cvtepi32_epi16( __mmask8 k, __m256i b);
VPMOVDW void _mm256_mask_cvtepi32_storeu_epi16(void * , __mmask8 k, __m256i b);
VPMOVDW __m128i _mm_cvtepi32_epi16(__m128i a);
VPMOVDW __m128i _mm_mask_cvtepi32_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVDW __m128i _mm_maskz_cvtepi32_epi16( __mmask8 k, __m128i b);
VPMOVDW void _mm_mask_cvtepi32_storeu_epi16(void * , __mmask8 k, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E6.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-701
INSTRUCTION SET REFERENCE, A-Z
VPMOVWB/VPMOVSWB/VPMOVUSWB—Down Convert Word to Byte
Instruction Operand Encoding
Description
VPMOVWB down converts 16-bit integers into packed bytes using truncation. VPMOVSWB converts signed 16-bit
integers into packed signed bytes using signed saturation. VPMOVUSWB convert unsigned word values into
unsigned byte values using unsigned saturation.
The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a
256/128/64-bit memory location.
Down-converted byte elements are written to the destination operand (the first operand) from the least-significant
byte. Byte elements of the destination operand are updated according to the writemask. Bits (MAX_VL-
1:256/128/64) of the register destination are zeroed.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.F3.0F38.W0 30 /rHVM V/V AVX512VL Converts 8 packed word integers from xmm2 into 8
packed bytes in xmm1/m64 with truncation under
writemask k1.
VPMOVWB xmm1/m64 {k1}{z}, xmm2 AVX512BW
EVEX.128.F3.0F38.W0 20 /rHVM V/V AVX512VL Converts 8 packed signed word integers from xmm2
into 8 packed signed bytes in xmm1/m64 using
signed saturation under writemask k1.
VPMOVSWB xmm1/m64 {k1}{z},
xmm2
AVX512BW
EVEX.128.F3.0F38.W0 10 /rHVM V/V AVX512VL Converts 8 packed unsigned word integers from
xmm2 into 8 packed unsigned bytes in 8mm1/m64
using unsigned saturation under writemask k1.
VPMOVUSWB xmm1/m64 {k1}{z},
xmm2
AVX512BW
EVEX.256.F3.0F38.W0 30 /rHVM V/V AVX512VL Converts 16 packed word integers from ymm2 into
16 packed bytes in xmm1/m128 with truncation
under writemask k1.
VPMOVWB xmm1/m128 {k1}{z},
ymm2
AVX512BW
EVEX.256.F3.0F38.W0 20 /rHVM V/V AVX512VL Converts 16 packed signed word integers from ymm2
into 16 packed signed bytes in xmm1/m128 using
signed saturation under writemask k1.
VPMOVSWB xmm1/m128 {k1}{z},
ymm2
AVX512BW
EVEX.256.F3.0F38.W0 10 /rHVM V/V AVX512VL Converts 16 packed unsigned word integers from
ymm2 into 16 packed unsigned bytes in xmm1/m128
using unsigned saturation under writemask k1.
VPMOVUSWB xmm1/m128 {k1}{z},
ymm2
AVX512BW
EVEX.512.F3.0F38.W0 30 /rHVM V/V AVX512BW Converts 32 packed word integers from zmm2 into
32 packed bytes in ymm1/m256 with truncation
under writemask k1.
VPMOVWB ymm1/m256 {k1}{z},
zmm2
EVEX.512.F3.0F38.W0 20 /rHVM V/V AVX512BW Converts 32 packed signed word integers from zmm2
into 32 packed signed bytes in ymm1/m256 using
signed saturation under writemask k1.
VPMOVSWB ymm1/m256 {k1}{z},
zmm2
EVEX.512.F3.0F38.W0 10 /rHVM V/V AVX512BW Converts 32 packed unsigned word integers from
zmm2 into 32 packed unsigned bytes in ymm1/m256
using unsigned saturation under writemask k1.
VPMOVUSWB ymm1/m256 {k1}{z},
zmm2
Op/En Operand 1 Operand 2 Operand 3 Operand 4
HVM ModRM:r/m (w) ModRM:reg (r) NA NA
5-702 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VPMOVWB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1
i j * 8
m j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] TruncateWordToByte (SRC[m+15:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0;
VPMOVWB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1
i j * 8
m j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] TruncateWordToByte (SRC[m+15:m])
ELSE
*DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVSWB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1
i j * 8
m j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateSignedWordToByte (SRC[m+15:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0;
Ref. # 319433-023 5-703
INSTRUCTION SET REFERENCE, A-Z
VPMOVSWB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1
i j * 8
m j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateSignedWordToByte (SRC[m+15:m])
ELSE
*DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR
VPMOVUSWB instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1
i j * 8
m j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateUnsignedWordToByte (SRC[m+15:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL/2] 0;
VPMOVUSWB instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO Kl-1
i j * 8
m j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateUnsignedWordToByte (SRC[m+15:m])
ELSE
*DEST[i+7:i] remains unchanged* ; merging-masking
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalents
VPMOVUSWB __m256i _mm512_cvtusepi16_epi8(__m512i a);
VPMOVUSWB __m256i _mm512_mask_cvtusepi16_epi8(__m256i a, __mmask32 k, __m512i b);
VPMOVUSWB __m256i _mm512_maskz_cvtusepi16_epi8( __mmask32 k, __m512i b);
VPMOVUSWB void _mm512_mask_cvtusepi16_storeu_epi8(void * , __mmask32 k, __m512i b);
VPMOVSWB __m256i _mm512_cvtsepi16_epi8(__m512i a);
VPMOVSWB __m256i _mm512_mask_cvtsepi16_epi8(__m256i a, __mmask32 k, __m512i b);
VPMOVSWB __m256i _mm512_maskz_cvtsepi16_epi8( __mmask32 k, __m512i b);
VPMOVSWB void _mm512_mask_cvtsepi16_storeu_epi8(void * , __mmask32 k, __m512i b);
VPMOVWB __m256i _mm512_cvtepi16_epi8(__m512i a);
VPMOVWB __m256i _mm512_mask_cvtepi16_epi8(__m256i a, __mmask32 k, __m512i b);
VPMOVWB __m256i _mm512_maskz_cvtepi16_epi8( __mmask32 k, __m512i b);
VPMOVWB void _mm512_mask_cvtepi16_storeu_epi8(void * , __mmask32 k, __m512i b);
5-704 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVUSWB __m128i _mm256_cvtusepi16_epi8(__m256i a);
VPMOVUSWB __m128i _mm256_mask_cvtusepi16_epi8(__m128i a, __mmask16 k, __m256i b);
VPMOVUSWB __m128i _mm256_maskz_cvtusepi16_epi8( __mmask16 k, __m256i b);
VPMOVUSWB void _mm256_mask_cvtusepi16_storeu_epi8(void * , __mmask16 k, __m256i b);
VPMOVUSWB __m128i _mm_cvtusepi16_epi8(__m128i a);
VPMOVUSWB __m128i _mm_mask_cvtusepi16_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVUSWB __m128i _mm_maskz_cvtusepi16_epi8( __mmask8 k, __m128i b);
VPMOVUSWB void _mm_mask_cvtusepi16_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVSWB __m128i _mm256_cvtsepi16_epi8(__m256i a);
VPMOVSWB __m128i _mm256_mask_cvtsepi16_epi8(__m128i a, __mmask16 k, __m256i b);
VPMOVSWB __m128i _mm256_maskz_cvtsepi16_epi8( __mmask16 k, __m256i b);
VPMOVSWB void _mm256_mask_cvtsepi16_storeu_epi8(void * , __mmask16 k, __m256i b);
VPMOVSWB __m128i _mm_cvtsepi16_epi8(__m128i a);
VPMOVSWB __m128i _mm_mask_cvtsepi16_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVSWB __m128i _mm_maskz_cvtsepi16_epi8( __mmask8 k, __m128i b);
VPMOVSWB void _mm_mask_cvtsepi16_storeu_epi8(void * , __mmask8 k, __m128i b);
VPMOVWB __m128i _mm256_cvtepi16_epi8(__m256i a);
VPMOVWB __m128i _mm256_mask_cvtepi16_epi8(__m128i a, __mmask16 k, __m256i b);
VPMOVWB __m128i _mm256_maskz_cvtepi16_epi8( __mmask16 k, __m256i b);
VPMOVWB void _mm256_mask_cvtepi16_storeu_epi8(void * , __mmask16 k, __m256i b);
VPMOVWB __m128i _mm_cvtepi16_epi8(__m128i a);
VPMOVWB __m128i _mm_mask_cvtepi16_epi8(__m128i a, __mmask8 k, __m128i b);
VPMOVWB __m128i _mm_maskz_cvtepi16_epi8( __mmask8 k, __m128i b);
VPMOVWB void _mm_mask_cvtepi16_storeu_epi8(void * , __mmask8 k, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E6NF
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-705
INSTRUCTION SET REFERENCE, A-Z
PMOVSX—Packed Move with Sign Extend
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0f 38 20 /r RM V/V SSE4_1 Sign extend 8 packed 8-bit integers in the low 8 bytes
of xmm2/m64 to 8 packed 16-bit integers in xmm1.
PMOVSXBW xmm1, xmm2/m64
66 0f 38 21 /r RM V/V SSE4_1 Sign extend 4 packed 8-bit integers in the low 4 bytes
of xmm2/m32 to 4 packed 32-bit integers in xmm1.
PMOVSXBD xmm1, xmm2/m32
66 0f 38 22 /r RM V/V SSE4_1 Sign extend 2 packed 8-bit integers in the low 2 bytes
of xmm2/m16 to 2 packed 64-bit integers in xmm1.
PMOVSXBQ xmm1, xmm2/m16
66 0f 38 23/r RM V/V SSE4_1 Sign extend 4 packed 16-bit integers in the low 8 bytes
of xmm2/m64 to 4 packed 32-bit integers in xmm1.
PMOVSXWD xmm1, xmm2/m64
66 0f 38 24 /r RM V/V SSE4_1 Sign extend 2 packed 16-bit integers in the low 4 bytes
of xmm2/m32 to 2 packed 64-bit integers in xmm1.
PMOVSXWQ xmm1, xmm2/m32
66 0f 38 25 /r RM V/V SSE4_1 Sign extend 2 packed 32-bit integers in the low 8 bytes
of xmm2/m64 to 2 packed 64-bit integers in xmm1.
PMOVSXDQ xmm1, xmm2/m64
VEX.128.66.0F38.WIG 20 /r RM V/V AVX Sign extend 8 packed 8-bit integers in the low 8 bytes
of xmm2/m64 to 8 packed 16-bit integers in xmm1.
VPMOVSXBW xmm1, xmm2/m64
VEX.128.66.0F38.WIG 21 /r RM V/V AVX Sign extend 4 packed 8-bit integers in the low 4 bytes
of xmm2/m32 to 4 packed 32-bit integers in xmm1.
VPMOVSXBD xmm1, xmm2/m32
VEX.128.66.0F38.WIG 22 /r RM V/V AVX Sign extend 2 packed 8-bit integers in the low 2 bytes
of xmm2/m16 to 2 packed 64-bit integers in xmm1.
VPMOVSXBQ xmm1, xmm2/m16
VEX.128.66.0F38.WIG 23 /r RM V/V AVX Sign extend 4 packed 16-bit integers in the low 8 bytes
of xmm2/m64 to 4 packed 32-bit integers in xmm1.
VPMOVSXWD xmm1, xmm2/m64
VEX.128.66.0F38.WIG 24 /r RM V/V AVX Sign extend 2 packed 16-bit integers in the low 4 bytes
of xmm2/m32 to 2 packed 64-bit integers in xmm1.
VPMOVSXWQ xmm1, xmm2/m32
VEX.128.66.0F38.WIG 25 /r RM V/V AVX Sign extend 2 packed 32-bit integers in the low 8 bytes
of xmm2/m64 to 2 packed 64-bit integers in xmm1.
VPMOVSXDQ xmm1, xmm2/m64
VEX.256.66.0F38.WIG 20 /r RM V/V AVX2 Sign extend 16 packed 8-bit integers in xmm2/m128 to
16 packed 16-bit integers in ymm1.
VPMOVSXBW ymm1, xmm2/m128
VEX.256.66.0F38.WIG 21 /r RM V/V AVX2 Sign extend 8 packed 8-bit integers in the low 8 bytes
of xmm2/m64 to 8 packed 32-bit integers in ymm1.
VPMOVSXBD ymm1, xmm2/m64
VEX.256.66.0F38.WIG 22 /r RM V/V AVX2 Sign extend 4 packed 8-bit integers in the low 4 bytes
of xmm2/m32 to 4 packed 64-bit integers in ymm1.
VPMOVSXBQ ymm1, xmm2/m32
VEX.256.66.0F38.WIG 23 /r RM V/V AVX2 Sign extend 8 packed 16-bit integers in the low 16
bytes of xmm2/m128 to 8 packed 32-bit integers in
ymm1.
VPMOVSXWD ymm1, xmm2/m128
5-706 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.256.66.0F38.WIG 24 /r RM V/V AVX2 Sign extend 4 packed 16-bit integers in the low 8 bytes
of xmm2/m64 to 4 packed 64-bit integers in ymm1.
VPMOVSXWQ ymm1, xmm2/m64
VEX.256.66.0F38.WIG 25 /r RM V/V AVX2 Sign extend 4 packed 32-bit integers in the low 16
bytes of xmm2/m128 to 4 packed 64-bit integers in
ymm1.
VPMOVSXDQ ymm1, xmm2/m128
EVEX.128.66.0F38.WIG 20 /r HVM V/V AVX512VL Sign extend 8 packed 8-bit integers in xmm2/m64 to 8
packed 16-bit integers in zmm1.
VPMOVSXBW xmm1 {k1}{z},
xmm2/m64
AVX512BW
EVEX.256.66.0F38.WIG 20 /r HVM V/V AVX512VL Sign extend 16 packed 8-bit integers in xmm2/m128 to
16 packed 16-bit integers in ymm1.
VPMOVSXBW ymm1 {k1}{z},
xmm2/m128
AVX512BW
EVEX.512.66.0F38.WIG 20 /r HVM V/V AVX512BW Sign extend 32 packed 8-bit integers in ymm2/m256 to
32 packed 16-bit integers in zmm1.
VPMOVSXBW zmm1 {k1}{z},
ymm2/m256
EVEX.128.66.0F38.WIG 21 /r QVM V/V AVX512VL Sign extend 4 packed 8-bit integers in the low 4 bytes
of xmm2/m32 to 4 packed 32-bit integers in xmm1
subject to writemask k1.
VPMOVSXBD xmm1 {k1}{z},
xmm2/m32
AVX512F
EVEX.256.66.0F38.WIG 21 /r QVM V/V AVX512VL Sign extend 8 packed 8-bit integers in the low 8 bytes
of xmm2/m64 to 8 packed 32-bit integers in ymm1
subject to writemask k1.
VPMOVSXBD ymm1 {k1}{z},
xmm2/m64
AVX512F
EVEX.512.66.0F38.WIG 21 /r QVM V/V AVX512F Sign extend 16 packed 8-bit integers in the low 16
bytes of xmm2/m128 to 16 packed 32-bit integers in
zmm1 subject to writemask k1.
VPMOVSXBD zmm1 {k1}{z},
xmm2/m128
EVEX.128.66.0F38.WIG 22 /r OVM V/V AVX512VL Sign extend 2 packed 8-bit integers in the low 2 bytes
of xmm2/m16 to 2 packed 64-bit integers in xmm1
subject to writemask k1.
VPMOVSXBQ xmm1 {k1}{z},
xmm2/m16
AVX512F
EVEX.256.66.0F38.WIG 22 /r OVM V/V AVX512VL Sign extend 4 packed 8-bit integers in the low 4 bytes
of xmm2/m32 to 4 packed 64-bit integers in ymm1
subject to writemask k1.
VPMOVSXBQ ymm1 {k1}{z},
xmm2/m32
AVX512F
EVEX.512.66.0F38.WIG 22 /r OVM V/V AVX512F Sign extend 8 packed 8-bit integers in the low 8 bytes
of xmm2/m64 to 8 packed 64-bit integers in zmm1
subject to writemask k1.
VPMOVSXBQ zmm1 {k1}{z},
xmm2/m64
EVEX.128.66.0F38.WIG 23 /r HVM V/V AVX512VL Sign extend 4 packed 16-bit integers in the low 8 bytes
of ymm2/mem to 4 packed 32-bit integers in xmm1
subject to writemask k1.
VPMOVSXWD xmm1 {k1}{z},
xmm2/m64
AVX512F
EVEX.256.66.0F38.WIG 23 /r HVM V/V AVX512VL Sign extend 8 packed 16-bit integers in the low 16
bytes of ymm2/m128 to 8 packed 32-bit integers in
ymm1 subject to writemask k1.
VPMOVSXWD ymm1 {k1}{z},
xmm2/m128
AVX512F
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-707
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Legacy and VEX encoded versions: Packed byte, word, or dword integers in the low bytes of the source operand
(second operand) are sign extended to word, dword, or quadword integers and stored in packed signed bytes the
destination operand.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
VEX.128 and EVEX.128 encoded versions: Bits (MAX_VL-1:128) of the corresponding destination register are
zeroed.
VEX.256 and EVEX.256 encoded versions: Bits (MAX_VL-1:256) of the corresponding destination register are
zeroed.
EVEX encoded versions: Packed byte, word or dword integers starting from the low bytes of the source operand
(second operand) are sign extended to word, dword or quadword integers and stored to the destination operand
under the writemask. The destination register is XMM, YMM or ZMM Register.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
EVEX.512.66.0F38.WIG 23 /r HVM V/V AVX512F Sign extend 16 packed 16-bit integers in the low 32
bytes of ymm2/m256 to 16 packed 32-bit integers in
zmm1 subject to writemask k1.
VPMOVSXWD zmm1 {k1}{z},
ymm2/m256
EVEX.128.66.0F38.WIG 24 /r QVM V/V AVX512VL Sign extend 2 packed 16-bit integers in the low 4 bytes
of xmm2/m32 to 2 packed 64-bit integers in xmm1
subject to writemask k1.
VPMOVSXWQ xmm1 {k1}{z},
xmm2/m32
AVX512F
EVEX.256.66.0F38.WIG 24 /r QVM V/V AVX512VL Sign extend 4 packed 16-bit integers in the low 8 bytes
of xmm2/m64 to 4 packed 64-bit integers in ymm1
subject to writemask k1.
VPMOVSXWQ ymm1 {k1}{z},
xmm2/m64
AVX512F
EVEX.512.66.0F38.WIG 24 /r QVM V/V AVX512F Sign extend 8 packed 16-bit integers in the low 16
bytes of xmm2/m128 to 8 packed 64-bit integers in
zmm1 subject to writemask k1.
VPMOVSXWQ zmm1 {k1}{z},
xmm2/m128
EVEX.128.66.0F38.W0 25 /r HVM V/V AVX512VL Sign extend 2 packed 32-bit integers in the low 8 bytes
of xmm2/m64 to 2 packed 64-bit integers in zmm1
using writemask k1.
VPMOVSXDQ xmm1 {k1}{z},
xmm2/m64
AVX512F
EVEX.256.66.0F38.W0 25 /r HVM V/V AVX512VL Sign extend 4 packed 32-bit integers in the low 16
bytes of xmm2/m128 to 4 packed 64-bit integers in
zmm1 using writemask k1.
VPMOVSXDQ ymm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.512.66.0F38.W0 25 /r HVM V/V AVX512F Sign extend 8 packed 32-bit integers in the low 32
bytes of ymm2/m256 to 8 packed 64-bit integers in
zmm1 using writemask k1.
VPMOVSXDQ zmm1 {k1}{z},
ymm2/m256
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
HVM, QVM, OVM ModRM:reg (w) ModRM:r/m (r) NA NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-708 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
Packed_Sign_Extend_BYTE_to_WORD(DEST, SRC)
DEST[15:0] SignExtend(SRC[7:0]);
DEST[31:16] SignExtend(SRC[15:8]);
DEST[47:32] SignExtend(SRC[23:16]);
DEST[63:48] SignExtend(SRC[31:24]);
DEST[79:64] SignExtend(SRC[39:32]);
DEST[95:80] SignExtend(SRC[47:40]);
DEST[111:96] SignExtend(SRC[55:48]);
DEST[127:112] SignExtend(SRC[63:56]);
Packed_Sign_Extend_BYTE_to_DWORD(DEST, SRC)
DEST[31:0] SignExtend(SRC[7:0]);
DEST[63:32] SignExtend(SRC[15:8]);
DEST[95:64] SignExtend(SRC[23:16]);
DEST[127:96] SignExtend(SRC[31:24]);
Packed_Sign_Extend_BYTE_to_QWORD(DEST, SRC)
DEST[63:0] SignExtend(SRC[7:0]);
DEST[127:64] SignExtend(SRC[15:8]);
Packed_Sign_Extend_WORD_to_DWORD(DEST, SRC)
DEST[31:0] SignExtend(SRC[15:0]);
DEST[63:32] SignExtend(SRC[31:16]);
DEST[95:64] SignExtend(SRC[47:32]);
DEST[127:96] SignExtend(SRC[63:48]);
Packed_Sign_Extend_WORD_to_QWORD(DEST, SRC)
DEST[63:0] SignExtend(SRC[15:0]);
DEST[127:64] SignExtend(SRC[31:16]);
Packed_Sign_Extend_DWORD_to_QWORD(DEST, SRC)
DEST[63:0] SignExtend(SRC[31:0]);
DEST[127:64] SignExtend(SRC[63:32]);
VPMOVSXBW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
Packed_Sign_Extend_BYTE_to_WORD(TMP_DEST[127:0], SRC[63:0])
IF VL >= 256
Packed_Sign_Extend_BYTE_to_WORD(TMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512
Packed_Sign_Extend_BYTE_to_WORD(TMP_DEST[383:256], SRC[191:128])
Packed_Sign_Extend_BYTE_to_WORD(TMP_DEST[511:384], SRC[255:192])
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TEMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
Ref. # 319433-023 5-709
INSTRUCTION SET REFERENCE, A-Z
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVSXBD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
Packed_Sign_Extend_BYTE_to_DWORD(TMP_DEST[127:0], SRC[31:0])
IF VL >= 256
Packed_Sign_Extend_BYTE_to_DWORD(TMP_DEST[255:128], SRC[63:32])
FI;
IF VL >= 512
Packed_Sign_Extend_BYTE_to_DWORD(TMP_DEST[383:256], SRC[95:64])
Packed_Sign_Extend_BYTE_to_DWORD(TMP_DEST[511:384], SRC[127:96])
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TEMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVSXBQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Sign_Extend_BYTE_to_QWORD(TMP_DEST[127:0], SRC[15:0])
IF VL >= 256
Packed_Sign_Extend_BYTE_to_QWORD(TMP_DEST[255:128], SRC[31:16])
FI;
IF VL >= 512
Packed_Sign_Extend_BYTE_to_QWORD(TMP_DEST[383:256], SRC[47:32])
Packed_Sign_Extend_BYTE_to_QWORD(TMP_DEST[511:384], SRC[63:48])
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TEMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-710 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVSXWD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
Packed_Sign_Extend_WORD_to_DWORD(TMP_DEST[127:0], SRC[63:0])
IF VL >= 256
Packed_Sign_Extend_WORD_to_DWORD(TMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512
Packed_Sign_Extend_WORD_to_DWORD(TMP_DEST[383:256], SRC[191:128])
Packed_Sign_Extend_WORD_to_DWORD(TMP_DEST[511:384], SRC[256:192])
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TEMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVSXWQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Sign_Extend_WORD_to_QWORD(TMP_DEST[127:0], SRC[31:0])
IF VL >= 256
Packed_Sign_Extend_WORD_to_QWORD(TMP_DEST[255:128], SRC[63:32])
FI;
IF VL >= 512
Packed_Sign_Extend_WORD_to_QWORD(TMP_DEST[383:256], SRC[95:64])
Packed_Sign_Extend_WORD_to_QWORD(TMP_DEST[511:384], SRC[127:96])
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TEMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-711
INSTRUCTION SET REFERENCE, A-Z
VPMOVSXDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Sign_Extend_DWORD_to_QWORD(TEMP_DEST[127:0], SRC[63:0])
IF VL >= 256
Packed_Sign_Extend_DWORD_to_QWORD(TEMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512
Packed_Sign_Extend_DWORD_to_QWORD(TEMP_DEST[383:256], SRC[191:128])
Packed_Sign_Extend_DWORD_to_QWORD(TEMP_DEST[511:384], SRC[255:192])
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TEMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVSXBW (VEX.256 encoded version)
Packed_Sign_Extend_BYTE_to_WORD(DEST[127:0], SRC[63:0])
Packed_Sign_Extend_BYTE_to_WORD(DEST[255:128], SRC[127:64])
DEST[MAX_VL-1:256] 0
VPMOVSXBD (VEX.256 encoded version)
Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[31:0])
Packed_Sign_Extend_BYTE_to_DWORD(DEST[255:128], SRC[63:32])
DEST[MAX_VL-1:256] 0
VPMOVSXBQ (VEX.256 encoded version)
Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[15:0])
Packed_Sign_Extend_BYTE_to_QWORD(DEST[255:128], SRC[31:16])
DEST[MAX_VL-1:256] 0
VPMOVSXWD (VEX.256 encoded version)
Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[63:0])
Packed_Sign_Extend_WORD_to_DWORD(DEST[255:128], SRC[127:64])
DEST[MAX_VL-1:256] 0
VPMOVSXWQ (VEX.256 encoded version)
Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[31:0])
Packed_Sign_Extend_WORD_to_QWORD(DEST[255:128], SRC[63:32])
DEST[MAX_VL-1:256] 0
VPMOVSXDQ (VEX.256 encoded version)
Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[63:0])
Packed_Sign_Extend_DWORD_to_QWORD(DEST[255:128], SRC[127:64])
DEST[MAX_VL-1:256] 0
5-712 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVSXBW (VEX.128 encoded version)
Packed_Sign_Extend_BYTE_to_WORDDEST[127:0], SRC[127:0]()
DEST[MAX_VL-1:128] 0
VPMOVSXBD (VEX.128 encoded version)
Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] 0
VPMOVSXBQ (VEX.128 encoded version)
Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] 0
VPMOVSXWD (VEX.128 encoded version)
Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] 0
VPMOVSXWQ (VEX.128 encoded version)
Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] 0
VPMOVSXDQ (VEX.128 encoded version)
Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] 0
PMOVSXBW
Packed_Sign_Extend_BYTE_to_WORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
PMOVSXBD
Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
PMOVSXBQ
Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
PMOVSXWD
Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
PMOVSXWQ
Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
PMOVSXDQ
Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMOVSXBW __m512i _mm512_cvtepi8_epi16(__m512i a);
VPMOVSXBW __m512i _mm512_mask_cvtepi8_epi16(__m512i a, __mmask32 k, __m512i b);
VPMOVSXBW __m512i _mm512_maskz_cvtepi8_epi16( __mmask32 k, __m512i b);
VPMOVSXBD __m512i _mm512_cvtepi8_epi32(__m512i a);
VPMOVSXBD __m512i _mm512_mask_cvtepi8_epi32(__m512i a, __mmask16 k, __m512i b);
Ref. # 319433-023 5-713
INSTRUCTION SET REFERENCE, A-Z
VPMOVSXBD __m512i _mm512_maskz_cvtepi8_epi32( __mmask16 k, __m512i b);
VPMOVSXBQ __m512i _mm512_cvtepi8_epi64(__m512i a);
VPMOVSXBQ __m512i _mm512_mask_cvtepi8_epi64(__m512i a, __mmask8 k, __m512i b);
VPMOVSXBQ __m512i _mm512_maskz_cvtepi8_epi64( __mmask8 k, __m512i a);
VPMOVSXDQ __m512i _mm512_cvtepi32_epi64(__m512i a);
VPMOVSXDQ __m512i _mm512_mask_cvtepi32_epi64(__m512i a, __mmask8 k, __m512i b);
VPMOVSXDQ __m512i _mm512_maskz_cvtepi32_epi64( __mmask8 k, __m512i a);
VPMOVSXWD __m512i _mm512_cvtepi16_epi32(__m512i a);
VPMOVSXWD __m512i _mm512_mask_cvtepi16_epi32(__m512i a, __mmask16 k, __m512i b);
VPMOVSXWD __m512i _mm512_maskz_cvtepi16_epi32(__mmask16 k, __m512i a);
VPMOVSXWQ __m512i _mm512_cvtepi16_epi64(__m512i a);
VPMOVSXWQ __m512i _mm512_mask_cvtepi16_epi64(__m512i a, __mmask8 k, __m512i b);
VPMOVSXWQ __m512i _mm512_maskz_cvtepi16_epi64( __mmask8 k, __m512i a);
VPMOVSXBW __m256i _mm256_cvtepi8_epi16(__m256i a);
VPMOVSXBW __m256i _mm256_mask_cvtepi8_epi16(__m256i a, __mmask16 k, __m256i b);
VPMOVSXBW __m256i _mm256_maskz_cvtepi8_epi16( __mmask16 k, __m256i b);
VPMOVSXBD __m256i _mm256_cvtepi8_epi32(__m256i a);
VPMOVSXBD __m256i _mm256_mask_cvtepi8_epi32(__m256i a, __mmask8 k, __m256i b);
VPMOVSXBD __m256i _mm256_maskz_cvtepi8_epi32( __mmask8 k, __m256i b);
VPMOVSXBQ __m256i _mm256_cvtepi8_epi64(__m256i a);
VPMOVSXBQ __m256i _mm256_mask_cvtepi8_epi64(__m256i a, __mmask8 k, __m256i b);
VPMOVSXBQ __m256i _mm256_maskz_cvtepi8_epi64( __mmask8 k, __m256i a);
VPMOVSXDQ __m256i _mm256_cvtepi32_epi64(__m256i a);
VPMOVSXDQ __m256i _mm256_mask_cvtepi32_epi64(__m256i a, __mmask8 k, __m256i b);
VPMOVSXDQ __m256i _mm256_maskz_cvtepi32_epi64( __mmask8 k, __m256i a);
VPMOVSXWD __m256i _mm256_cvtepi16_epi32(__m256i a);
VPMOVSXWD __m256i _mm256_mask_cvtepi16_epi32(__m256i a, __mmask16 k, __m256i b);
VPMOVSXWD __m256i _mm256_maskz_cvtepi16_epi32(__mmask16 k, __m256i a);
VPMOVSXWQ __m256i _mm256_cvtepi16_epi64(__m256i a);
VPMOVSXWQ __m256i _mm256_mask_cvtepi16_epi64(__m256i a, __mmask8 k, __m256i b);
VPMOVSXWQ __m256i _mm256_maskz_cvtepi16_epi64( __mmask8 k, __m256i a);
VPMOVSXBW __m128i _mm_mask_cvtepi8_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVSXBW __m128i _mm_maskz_cvtepi8_epi16( __mmask8 k, __m128i b);
VPMOVSXBD __m128i _mm_mask_cvtepi8_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSXBD __m128i _mm_maskz_cvtepi8_epi32( __mmask8 k, __m128i b);
VPMOVSXBQ __m128i _mm_mask_cvtepi8_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVSXBQ __m128i _mm_maskz_cvtepi8_epi64( __mmask8 k, __m128i a);
VPMOVSXDQ __m128i _mm_mask_cvtepi32_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVSXDQ __m128i _mm_maskz_cvtepi32_epi64( __mmask8 k, __m128i a);
VPMOVSXWD __m128i _mm_mask_cvtepi16_epi32(__m128i a, __mmask16 k, __m128i b);
VPMOVSXWD __m128i _mm_maskz_cvtepi16_epi32(__mmask16 k, __m128i a);
VPMOVSXWQ __m128i _mm_mask_cvtepi16_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVSXWQ __m128i _mm_maskz_cvtepi16_epi64( __mmask8 k, __m128i a);
PMOVSXBW __m128i _mm_ cvtepi8_epi16 ( __m128i a);
PMOVSXBD __m128i _mm_ cvtepi8_epi32 ( __m128i a);
PMOVSXBQ __m128i _mm_ cvtepi8_epi64 ( __m128i a);
PMOVSXWD __m128i _mm_ cvtepi16_epi32 ( __m128i a);
PMOVSXWQ __m128i _mm_ cvtepi16_epi64 ( __m128i a);
PMOVSXDQ __m128i _mm_ cvtepi32_epi64 ( __m128i a);
SIMD Floating-Point Exceptions
None
5-714 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5.
EVEX-encoded instruction, see Exceptions Type E5.
#UD If VEX.vvvv != 1111B, or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-715
INSTRUCTION SET REFERENCE, A-Z
PMOVZX—Packed Move with Zero Extend
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0f 38 30 /r RM V/V SSE4_1 Zero extend 8 packed 8-bit integers in the low 8
bytes of xmm2/m64 to 8 packed 16-bit integers in
xmm1.
PMOVZXBW xmm1, xmm2/m64
66 0f 38 31 /r RM V/V SSE4_1 Zero extend 4 packed 8-bit integers in the low 4
bytes of xmm2/m32 to 4 packed 32-bit integers in
xmm1.
PMOVZXBD xmm1, xmm2/m32
66 0f 38 32 /r RM V/V SSE4_1 Zero extend 2 packed 8-bit integers in the low 2
bytes of xmm2/m16 to 2 packed 64-bit integers in
xmm1.
PMOVZXBQ xmm1, xmm2/m16
66 0f 38 33 /r RM V/V SSE4_1 Zero extend 4 packed 16-bit integers in the low 8
bytes of xmm2/m64 to 4 packed 32-bit integers in
xmm1.
PMOVZXWD xmm1, xmm2/m64
66 0f 38 34 /r RM V/V SSE4_1 Zero extend 2 packed 16-bit integers in the low 4
bytes of xmm2/m32 to 2 packed 64-bit integers in
xmm1.
PMOVZXWQ xmm1, xmm2/m32
66 0f 38 35 /r RM V/V SSE4_1 Zero extend 2 packed 32-bit integers in the low 8
bytes of xmm2/m64 to 2 packed 64-bit integers in
xmm1.
PMOVZXDQ xmm1, xmm2/m64
VEX.128.66.0F38.WIG 30 /r RM V/V AVX Zero extend 8 packed 8-bit integers in the low 8
bytes of xmm2/m64 to 8 packed 16-bit integers in
xmm1.
VPMOVZXBW xmm1, xmm2/m64
VEX.128.66.0F38.WIG 31 /r RM V/V AVX Zero extend 4 packed 8-bit integers in the low 4
bytes of xmm2/m32 to 4 packed 32-bit integers in
xmm1.
VPMOVZXBD xmm1, xmm2/m32
VEX.128.66.0F38.WIG 32 /r RM V/V AVX Zero extend 2 packed 8-bit integers in the low 2
bytes of xmm2/m16 to 2 packed 64-bit integers in
xmm1.
VPMOVZXBQ xmm1, xmm2/m16
VEX.128.66.0F38.WIG 33 /r RM V/V AVX Zero extend 4 packed 16-bit integers in the low 8
bytes of xmm2/m64 to 4 packed 32-bit integers in
xmm1.
VPMOVZXWD xmm1, xmm2/m64
VEX.128.66.0F38.WIG 34 /r RM V/V AVX Zero extend 2 packed 16-bit integers in the low 4
bytes of xmm2/m32 to 2 packed 64-bit integers in
xmm1.
VPMOVZXWQ xmm1, xmm2/m32
VEX.128.66.0F 38.WIG 35 /r RM V/V AVX Zero extend 2 packed 32-bit integers in the low 8
bytes of xmm2/m64 to 2 packed 64-bit integers in
xmm1.
VPMOVZXDQ xmm1, xmm2/m64
VEX.256.66.0F38.WIG 30 /r RM V/V AVX2 Zero extend 16 packed 8-bit integers in
xmm2/m128 to 16 packed 16-bit integers in ymm1.
VPMOVZXBW ymm1, xmm2/m128
VEX.256.66.0F38.WIG 31 /r RM V/V AVX2 Zero extend 8 packed 8-bit integers in the low 8
bytes of xmm2/m64 to 8 packed 32-bit integers in
ymm1.
VPMOVZXBD ymm1, xmm2/m64
VEX.256.66.0F38.WIG 32 /r RM V/V AVX2 Zero extend 4 packed 8-bit integers in the low 4
bytes of xmm2/m32 to 4 packed 64-bit integers in
ymm1.
VPMOVZXBQ ymm1, xmm2/m32
VEX.256.66.0F38.WIG 33 /r RM V/V AVX2 Zero extend 8 packed 16-bit integers xmm2/m128
to 8 packed 32-bit integers in ymm1.
VPMOVZXWD ymm1, xmm2/m128
5-716 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VEX.256.66.0F38.WIG 34 /r RM V/V AVX2 Zero extend 4 packed 16-bit integers in the low 8
bytes of xmm2/m64 to 4 packed 64-bit integers in
xmm1.
VPMOVZXWQ ymm1, xmm2/m64
VEX.256.66.0F38.WIG 35 /r RM V/V AVX2 Zero extend 4 packed 32-bit integers in
xmm2/m128 to 4 packed 64-bit integers in ymm1.
VPMOVZXDQ ymm1, xmm2/m128
EVEX.128.66.0F38 30.WIG /r HVM V/V AVX512VL Zero extend 8 packed 8-bit integers in the low 8
bytes of xmm2/m64 to 8 packed 16-bit integers in
xmm1.
VPMOVZXBW xmm1 {k1}{z}, xmm2/m64 AVX512BW
EVEX.256.66.0F38.WIG 30 /r HVM V/V AVX512VL Zero extend 16 packed 8-bit integers in
xmm2/m128 to 16 packed 16-bit integers in ymm1.
VPMOVZXBW ymm1 {k1}{z},
xmm2/m128
AVX512BW
EVEX.512.66.0F38.WIG 30 /r HVM V/V AVX512BW Zero extend 32 packed 8-bit integers in
ymm2/m256 to 32 packed 16-bit integers in zmm1.
VPMOVZXBW zmm1 {k1}{z},
ymm2/m256
EVEX.128.66.0F38.WIG 31 /r QVM V/V AVX512VL Zero extend 4 packed 8-bit integers in the low 4
bytes of xmm2/m32 to 4 packed 32-bit integers in
xmm1 subject to writemask k1.
VPMOVZXBD xmm1 {k1}{z}, xmm2/m32 AVX512F
EVEX.256.66.0F38.WIG 31 /r QVM V/V AVX512VL Zero extend 8 packed 8-bit integers in the low 8
bytes of xmm2/m64 to 8 packed 32-bit integers in
ymm1 subject to writemask k1.
VPMOVZXBD ymm1 {k1}{z}, xmm2/m64 AVX512F
EVEX.512.66.0F38.WIG 31 /r QVM V/V AVX512F Zero extend 16 packed 8-bit integers in
xmm2/m128 to 16 packed 32-bit integers in zmm1
subject to writemask k1.
VPMOVZXBD zmm1 {k1}{z},
xmm2/m128
EVEX.128.66.0F38.WIG 32 /r OVM V/V AVX512VL Zero extend 2 packed 8-bit integers in the low 2
bytes of xmm2/m16 to 2 packed 64-bit integers in
xmm1 subject to writemask k1.
VPMOVZXBQ xmm1 {k1}{z}, xmm2/m16 AVX512F
EVEX.256.66.0F38.WIG 32 /r OVM V/V AVX512VL Zero extend 4 packed 8-bit integers in the low 4
bytes of xmm2/m32 to 4 packed 64-bit integers in
ymm1 subject to writemask k1.
VPMOVZXBQ ymm1 {k1}{z}, xmm2/m32 AVX512F
EVEX.512.66.0F38.WIG 32 /r OVM V/V AVX512F Zero extend 8 packed 8-bit integers in the low 8
bytes of xmm2/m64 to 8 packed 64-bit integers in
zmm1 subject to writemask k1.
VPMOVZXBQ zmm1 {k1}{z}, xmm2/m64
EVEX.128.66.0F38.WIG 33 /r HVM V/V AVX512VL Zero extend 4 packed 16-bit integers in the low 8
bytes of xmm2/m64 to 4 packed 32-bit integers in
xmm1 subject to writemask k1.
VPMOVZXWD xmm1 {k1}{z}, xmm2/m64 AVX512F
EVEX.256.66.0F38.WIG 33 /r HVM V/V AVX512VL Zero extend 8 packed 16-bit integers in
xmm2/m128 to 8 packed 32-bit integers in zmm1
subject to writemask k1.
VPMOVZXWD ymm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.512.66.0F38.WIG 33 /r HVM V/V AVX512F Zero extend 16 packed 16-bit integers in
ymm2/m256 to 16 packed 32-bit integers in zmm1
subject to writemask k1.
VPMOVZXWD zmm1 {k1}{z},
ymm2/m256
EVEX.128.66.0F38.WIG 34 /r QVM V/V AVX512VL Zero extend 2 packed 16-bit integers in the low 4
bytes of xmm2/m32 to 2 packed 64-bit integers in
xmm1 subject to writemask k1.
VPMOVZXWQ xmm1 {k1}{z}, xmm2/m32 AVX512F
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-717
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Legacy, VEX and EVEX encoded versions: Packed byte, word, or dword integers starting from the low bytes of the
source operand (second operand) are zero extended to word, dword, or quadword integers and stored in packed
signed bytes the destination operand.
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAX_VL-1:128) of the corresponding destination register are zeroed.
VEX.256 encoded version: Bits (MAX_VL-1:256) of the corresponding destination register are zeroed.
EVEX encoded versions: Packed dword integers starting from the low bytes of the source operand (second
operand) are zero extended to quadword integers and stored to the destination operand under the writemask.The
destination register is XMM, YMM or ZMM Register.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Operation
Packed_Zero_Extend_BYTE_to_WORD(DEST, SRC)
DEST[15:0] ZeroExtend(SRC[7:0]);
DEST[31:16] ZeroExtend(SRC[15:8]);
DEST[47:32] ZeroExtend(SRC[23:16]);
DEST[63:48] ZeroExtend(SRC[31:24]);
DEST[79:64] ZeroExtend(SRC[39:32]);
DEST[95:80] ZeroExtend(SRC[47:40]);
DEST[111:96] ZeroExtend(SRC[55:48]);
DEST[127:112] ZeroExtend(SRC[63:56]);
Packed_Zero_Extend_BYTE_to_DWORD(DEST, SRC)
DEST[31:0] ZeroExtend(SRC[7:0]);
EVEX.256.66.0F38.WIG 34 /r QVM V/V AVX512VL Zero extend 4 packed 16-bit integers in the low 8
bytes of xmm2/m64 to 4 packed 64-bit integers in
ymm1 subject to writemask k1.
VPMOVZXWQ ymm1 {k1}{z}, xmm2/m64 AVX512F
EVEX.512.66.0F38.WIG 34 /r QVM V/V AVX512F Zero extend 8 packed 16-bit integers in
xmm2/m128 to 8 packed 64-bit integers in zmm1
subject to writemask k1.
VPMOVZXWQ zmm1 {k1}{z},
xmm2/m128
EVEX.128.66.0F38.W0 35 /r HVM V/V AVX512VL Zero extend 2 packed 32-bit integers in the low 8
bytes of xmm2/m64 to 2 packed 64-bit integers in
zmm1 using writemask k1.
VPMOVZXDQ xmm1 {k1}{z}, xmm2/m64 AVX512F
EVEX.256.66.0F38.W0 35 /r HVM V/V AVX512VL Zero extend 4 packed 32-bit integers in
xmm2/m128 to 4 packed 64-bit integers in zmm1
using writemask k1.
VPMOVZXDQ ymm1 {k1}{z},
xmm2/m128
AVX512F
EVEX.512.66.0F38.W0 35 /r HVM V/V AVX512F Zero extend 8 packed 32-bit integers in
ymm2/m256 to 8 packed 64-bit integers in zmm1
using writemask k1.
VPMOVZXDQ zmm1 {k1}{z},
ymm2/m256
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
HVM, QVM, OVM ModRM:reg (w) ModRM:r/m (r) NA NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-718 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[63:32] ZeroExtend(SRC[15:8]);
DEST[95:64] ZeroExtend(SRC[23:16]);
DEST[127:96] ZeroExtend(SRC[31:24]);
Packed_Zero_Extend_BYTE_to_QWORD(DEST, SRC)
DEST[63:0] ZeroExtend(SRC[7:0]);
DEST[127:64] ZeroExtend(SRC[15:8]);
Packed_Zero_Extend_WORD_to_DWORD(DEST, SRC)
DEST[31:0] ZeroExtend(SRC[15:0]);
DEST[63:32] ZeroExtend(SRC[31:16]);
DEST[95:64] ZeroExtend(SRC[47:32]);
DEST[127:96] ZeroExtend(SRC[63:48]);
Packed_Zero_Extend_WORD_to_QWORD(DEST, SRC)
DEST[63:0] ZeroExtend(SRC[15:0]);
DEST[127:64] ZeroExtend(SRC[31:16]);
Packed_Zero_Extend_DWORD_to_QWORD(DEST, SRC)
DEST[63:0] ZeroExtend(SRC[31:0]);
DEST[127:64] ZeroExtend(SRC[63:32]);
VPMOVZXBW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
Packed_Zero_Extend_BYTE_to_WORD(TMP_DEST[127:0], SRC[63:0])
IF VL >= 256
Packed_Zero_Extend_BYTE_to_WORD(TMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512
Packed_Zero_Extend_BYTE_to_WORD(TMP_DEST[383:256], SRC[191:128])
Packed_Zero_Extend_BYTE_to_WORD(TMP_DEST[511:384], SRC[255:192])
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TEMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVZXBD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
Packed_Zero_Extend_BYTE_to_DWORD(TMP_DEST[127:0], SRC[31:0])
IF VL >= 256
Packed_Zero_Extend_BYTE_to_DWORD(TMP_DEST[255:128], SRC[63:32])
FI;
IF VL >= 512
Packed_Zero_Extend_BYTE_to_DWORD(TMP_DEST[383:256], SRC[95:64])
Ref. # 319433-023 5-719
INSTRUCTION SET REFERENCE, A-Z
Packed_Zero_Extend_BYTE_to_DWORD(TMP_DEST[511:384], SRC[127:96])
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TEMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVZXBQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Zero_Extend_BYTE_to_QWORD(TMP_DEST[127:0], SRC[15:0])
IF VL >= 256
Packed_Zero_Extend_BYTE_to_QWORD(TMP_DEST[255:128], SRC[31:16])
FI;
IF VL >= 512
Packed_Zero_Extend_BYTE_to_QWORD(TMP_DEST[383:256], SRC[47:32])
Packed_Zero_Extend_BYTE_to_QWORD(TMP_DEST[511:384], SRC[63:48])
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TEMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVZXWD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
Packed_Zero_Extend_WORD_to_DWORD(TMP_DEST[127:0], SRC[63:0])
IF VL >= 256
Packed_Zero_Extend_WORD_to_DWORD(TMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512
Packed_Zero_Extend_WORD_to_DWORD(TMP_DEST[383:256], SRC[191:128])
Packed_Zero_Extend_WORD_to_DWORD(TMP_DEST[511:384], SRC[256:192])
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TEMP_DEST[i+31:i]
5-720 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVZXWQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Zero_Extend_WORD_to_QWORD(TMP_DEST[127:0], SRC[31:0])
IF VL >= 256
Packed_Zero_Extend_WORD_to_QWORD(TMP_DEST[255:128], SRC[63:32])
FI;
IF VL >= 512
Packed_Zero_Extend_WORD_to_QWORD(TMP_DEST[383:256], SRC[95:64])
Packed_Zero_Extend_WORD_to_QWORD(TMP_DEST[511:384], SRC[127:96])
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TEMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVZXDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
Packed_Zero_Extend_DWORD_to_QWORD(TEMP_DEST[127:0], SRC[63:0])
IF VL >= 256
Packed_Zero_Extend_DWORD_to_QWORD(TEMP_DEST[255:128], SRC[127:64])
FI;
IF VL >= 512
Packed_Zero_Extend_DWORD_to_QWORD(TEMP_DEST[383:256], SRC[191:128])
Packed_Zero_Extend_DWORD_to_QWORD(TEMP_DEST[511:384], SRC[255:192])
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TEMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
Ref. # 319433-023 5-721
INSTRUCTION SET REFERENCE, A-Z
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMOVZXBW (VEX.256 encoded version)
Packed_Zero_Extend_BYTE_to_WORD(DEST[127:0], SRC[63:0])
Packed_Zero_Extend_BYTE_to_WORD(DEST[255:128], SRC[127:64])
DEST[MAX_VL-1:256] 0
VPMOVZXBD (VEX.256 encoded version)
Packed_Zero_Extend_BYTE_to_DWORD(DEST[127:0], SRC[31:0])
Packed_Zero_Extend_BYTE_to_DWORD(DEST[255:128], SRC[63:32])
DEST[MAX_VL-1:256] 0
VPMOVZXBQ (VEX.256 encoded version)
Packed_Zero_Extend_BYTE_to_QWORD(DEST[127:0], SRC[15:0])
Packed_Zero_Extend_BYTE_to_QWORD(DEST[255:128], SRC[31:16])
DEST[MAX_VL-1:256] 0
VPMOVZXWD (VEX.256 encoded version)
Packed_Zero_Extend_WORD_to_DWORD(DEST[127:0], SRC[63:0])
Packed_Zero_Extend_WORD_to_DWORD(DEST[255:128], SRC[127:64])
DEST[MAX_VL-1:256] 0
VPMOVZXWQ (VEX.256 encoded version)
Packed_Zero_Extend_WORD_to_QWORD(DEST[127:0], SRC[31:0])
Packed_Zero_Extend_WORD_to_QWORD(DEST[255:128], SRC[63:32])
DEST[MAX_VL-1:256] 0
VPMOVZXDQ (VEX.256 encoded version)
Packed_Zero_Extend_DWORD_to_QWORD(DEST[127:0], SRC[63:0])
Packed_Zero_Extend_DWORD_to_QWORD(DEST[255:128], SRC[127:64])
DEST[MAX_VL-1:256] 0
VPMOVZXBW (VEX.128 encoded version)
Packed_Zero_Extend_BYTE_to_WORD()
DEST[MAX_VL-1:128] 0
VPMOVZXBD (VEX.128 encoded version)
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[MAX_VL-1:128] 0
VPMOVZXBQ (VEX.128 encoded version)
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[MAX_VL-1:128] 0
VPMOVZXWD (VEX.128 encoded version)
Packed_Zero_Extend_WORD_to_DWORD()
DEST[MAX_VL-1:128] 0
VPMOVZXWQ (VEX.128 encoded version)
Packed_Zero_Extend_WORD_to_QWORD()
DEST[MAX_VL-1:128] 0
5-722 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMOVZXDQ (VEX.128 encoded version)
Packed_Zero_Extend_DWORD_to_QWORD()
DEST[MAX_VL-1:128] 0
PMOVZXBW
Packed_Zero_Extend_BYTE_to_WORD()
DEST[MAX_VL-1:128] (Unmodified)
PMOVZXBD
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[MAX_VL-1:128] (Unmodified)
PMOVZXBQ
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[MAX_VL-1:128] (Unmodified)
PMOVZXWD
Packed_Zero_Extend_WORD_to_DWORD()
DEST[MAX_VL-1:128] (Unmodified)
PMOVZXWQ
Packed_Zero_Extend_WORD_to_QWORD()
DEST[MAX_VL-1:128] (Unmodified)
PMOVZXDQ
Packed_Zero_Extend_DWORD_to_QWORD()
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMOVZXBW __m512i _mm512_cvtepu8_epi16(__m256i a);
VPMOVZXBW __m512i _mm512_mask_cvtepu8_epi16(__m512i a, __mmask32 k, __m256i b);
VPMOVZXBW __m512i _mm512_maskz_cvtepu8_epi16( __mmask32 k, __m256i b);
VPMOVZXBD __m512i _mm512_cvtepu8_epi32(__m128i a);
VPMOVZXBD __m512i _mm512_mask_cvtepu8_epi32(__m512i a, __mmask16 k, __m128i b);
VPMOVZXBD __m512i _mm512_maskz_cvtepu8_epi32( __mmask16 k, __m128i b);
VPMOVZXBQ __m512i _mm512_cvtepu8_epi64(__m128i a);
VPMOVZXBQ __m512i _mm512_mask_cvtepu8_epi64(__m512i a, __mmask8 k, __m128i b);
VPMOVZXBQ __m512i _mm512_maskz_cvtepu8_epi64( __mmask8 k, __m128i a);
VPMOVZXDQ __m512i _mm512_cvtepu32_epi64(__m256i a);
VPMOVZXDQ __m512i _mm512_mask_cvtepu32_epi64(__m512i a, __mmask8 k, __m256i b);
VPMOVZXDQ __m512i _mm512_maskz_cvtepu32_epi64( __mmask8 k, __m256i a);
VPMOVZXWD __m512i _mm512_cvtepu16_epi32(__m128i a);
VPMOVZXWD __m512i _mm512_mask_cvtepu16_epi32(__m512i a, __mmask16 k, __m128i b);
VPMOVZXWD __m512i _mm512_maskz_cvtepu16_epi32(__mmask16 k, __m128i a);
VPMOVZXWQ __m512i _mm512_cvtepu16_epi64(__m256i a);
VPMOVZXWQ __m512i _mm512_mask_cvtepu16_epi64(__m512i a, __mmask8 k, __m256i b);
VPMOVZXWQ __m512i _mm512_maskz_cvtepu16_epi64( __mmask8 k, __m256i a);
VPMOVZXBW __m256i _mm256_cvtepu8_epi16(__m256i a);
VPMOVZXBW __m256i _mm256_mask_cvtepu8_epi16(__m256i a, __mmask16 k, __m128i b);
VPMOVZXBW __m256i _mm256_maskz_cvtepu8_epi16( __mmask16 k, __m128i b);
VPMOVZXBD __m256i _mm256_cvtepu8_epi32(__m128i a);
VPMOVZXBD __m256i _mm256_mask_cvtepu8_epi32(__m256i a, __mmask8 k, __m128i b);
VPMOVZXBD __m256i _mm256_maskz_cvtepu8_epi32( __mmask8 k, __m128i b);
VPMOVZXBQ __m256i _mm256_cvtepu8_epi64(__m128i a);
Ref. # 319433-023 5-723
INSTRUCTION SET REFERENCE, A-Z
VPMOVZXBQ __m256i _mm256_mask_cvtepu8_epi64(__m256i a, __mmask8 k, __m128i b);
VPMOVZXBQ __m256i _mm256_maskz_cvtepu8_epi64( __mmask8 k, __m128i a);
VPMOVZXDQ __m256i _mm256_cvtepu32_epi64(__m128i a);
VPMOVZXDQ __m256i _mm256_mask_cvtepu32_epi64(__m256i a, __mmask8 k, __m128i b);
VPMOVZXDQ __m256i _mm256_maskz_cvtepu32_epi64( __mmask8 k, __m128i a);
VPMOVZXWD __m256i _mm256_cvtepu16_epi32(__m128i a);
VPMOVZXWD __m256i _mm256_mask_cvtepu16_epi32(__m256i a, __mmask16 k, __m128i b);
VPMOVZXWD __m256i _mm256_maskz_cvtepu16_epi32(__mmask16 k, __m128i a);
VPMOVZXWQ __m256i _mm256_cvtepu16_epi64(__m128i a);
VPMOVZXWQ __m256i _mm256_mask_cvtepu16_epi64(__m256i a, __mmask8 k, __m128i b);
VPMOVZXWQ __m256i _mm256_maskz_cvtepu16_epi64( __mmask8 k, __m128i a);
VPMOVZXBW __m128i _mm_mask_cvtepu8_epi16(__m128i a, __mmask8 k, __m128i b);
VPMOVZXBW __m128i _mm_maskz_cvtepu8_epi16( __mmask8 k, __m128i b);
VPMOVZXBD __m128i _mm_mask_cvtepu8_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVZXBD __m128i _mm_maskz_cvtepu8_epi32( __mmask8 k, __m128i b);
VPMOVZXBQ __m128i _mm_mask_cvtepu8_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVZXBQ __m128i _mm_maskz_cvtepu8_epi64( __mmask8 k, __m128i a);
VPMOVZXDQ __m128i _mm_mask_cvtepu32_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVZXDQ __m128i _mm_maskz_cvtepu32_epi64( __mmask8 k, __m128i a);
VPMOVZXWD __m128i _mm_mask_cvtepu16_epi32(__m128i a, __mmask16 k, __m128i b);
VPMOVZXWD __m128i _mm_maskz_cvtepu16_epi32(__mmask8 k, __m128i a);
VPMOVZXWQ __m128i _mm_mask_cvtepu16_epi64(__m128i a, __mmask8 k, __m128i b);
VPMOVZXWQ __m128i _mm_maskz_cvtepu16_epi64( __mmask8 k, __m128i a);
PMOVZXBW __m128i _mm_ cvtepu8_epi16 ( __m128i a);
PMOVZXBD __m128i _mm_ cvtepu8_epi32 ( __m128i a);
PMOVZXBQ __m128i _mm_ cvtepu8_epi64 ( __m128i a);
PMOVZXWD __m128i _mm_ cvtepu16_epi32 ( __m128i a);
PMOVZXWQ __m128i _mm_ cvtepu16_epi64 ( __m128i a);
PMOVZXDQ __m128i _mm_ cvtepu32_epi64 ( __m128i a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 5.
EVEX-encoded instruction, see Exceptions Type E5.
#UD If VEX.vvvv != 1111B, or EVEX.vvvv != 1111B.
5-724 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PMULDQ—Multiply Packed Doubleword Integers
Instruction Operand Encoding
Description
Multiplies packed signed doubleword integers in the even-numbered (zero-based reference) elements of the first
source operand with the packed signed doubleword integers in the corresponding elements of the second source
operand and stores packed signed quadword results in the destination operand.
128-bit Legacy SSE version: The input signed doubleword integers are taken from the even-numbered elements of
the source operands, i.e. the first (low) and third doubleword element. For 128-bit memory operands, 128 bits are
fetched from memory, but only the first and third doublewords are used in the computation.The first source
operand and the destination XMM operand is the same. The second source operand can be an XMM register or 128-
bit memory location. Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: The input signed doubleword integers are taken from the even-numbered elements of
the source operands, i.e. the first (low) and third doubleword element. For 128-bit memory operands, 128 bits are
fetched from memory, but only the first and third doublewords are used in the computation.The first source
operand and the destination operand are XMM registers. The second source operand can be an XMM register or
128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination register are zeroed.
VEX.256 encoded version: The input signed doubleword integers are taken from the even-numbered elements of
the source operands, i.e. the first, 3rd, 5th, 7th doubleword element. For 256-bit memory operands, 256 bits are
fetched from memory, but only the four even-numbered doublewords are used in the computation.The first source
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 28 /r RM V/V SSE4_1 Multiply packed signed doubleword integers in xmm1 by
packed signed doubleword integers in xmm2/m128, and
store the quadword results in xmm1.
PMULDQ xmm1, xmm2/m128
VEX.NDS.128.66.0F38.WIG 28 /r RVM V/V AVX Multiply packed signed doubleword integers in xmm2 by
packed signed doubleword integers in xmm3/m128, and
store the quadword results in xmm1.
VPMULDQ xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.WIG 28 /r RVM V/V AVX2 Multiply packed signed doubleword integers in ymm2 by
packed signed doubleword integers in ymm3/m256, and
store the quadword results in ymm1.
VPMULDQ ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W1 28 /r FV V/V AVX512VL Multiply packed signed doubleword integers in xmm2 by
packed signed doubleword integers in
xmm3/m128/m64bcst, and store the quadword results in
xmm1 using writemask k1.
VPMULDQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
AVX512F
EVEX.NDS.256.66.0F38.W1 28 /r FV V/V AVX512VL Multiply packed signed doubleword integers in ymm2 by
packed signed doubleword integers in
ymm3/m256/m64bcst, and store the quadword results in
ymm1 using writemask k1.
VPMULDQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
AVX512F
EVEX.NDS.512.66.0F38.W1 28 /r FV V/V AVX512F Multiply packed signed doubleword integers in zmm2 by
packed signed doubleword integers in
zmm3/m512/m64bcst, and store the quadword results in
zmm1 using writemask k1.
VPMULDQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-725
INSTRUCTION SET REFERENCE, A-Z
operand and the destination operand are YMM registers. The second source operand can be a YMM register or 256-
bit memory location. Bits (MAX_VL-1:256) of the corresponding destination ZMM register are zeroed.
EVEX encoded version: The input signed doubleword integers are taken from the even-numbered elements of the
source operands. The first source operand is a ZMM/YMM/XMM registers. The second source operand can be an
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location. The destination is a ZMM/YMM/XMM register, and updated according to the writemask at 64-
bit granularity.
Operation
VPMULDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] SignExtend64( SRC1[i+31:i]) * SignExtend64( SRC2[31:0])
ELSE DEST[i+63:i] SignExtend64( SRC1[i+31:i]) * SignExtend64( SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMULDQ (VEX.256 encoded version)
DEST[63:0] SignExtend64( SRC1[31:0]) * SignExtend64( SRC2[31:0])
DEST[127:64] SignExtend64( SRC1[95:64]) * SignExtend64( SRC2[95:64])
DEST[191:128] SignExtend64( SRC1[159:128]) * SignExtend64( SRC2[159:128])
DEST[255:192] SignExtend64( SRC1[223:192]) * SignExtend64( SRC2[223:192])
DEST[MAX_VL-1:256] 0
VPMULDQ (VEX.128 encoded version)
DEST[63:0] SignExtend64( SRC1[31:0]) * SignExtend64( SRC2[31:0])
DEST[127:64] SignExtend64( SRC1[95:64]) * SignExtend64( SRC2[95:64])
DEST[MAX_VL-1:128] 0
PMULDQ (128-bit Legacy SSE version)
DEST[63:0] SignExtend64( DEST[31:0]) * SignExtend64( SRC[31:0])
DEST[127:64] SignExtend64( DEST[95:64]) * SignExtend64( SRC[95:64])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMULDQ __m512i _mm512_mul_epi32(__m512i a, __m512i b);
VPMULDQ __m512i _mm512_mask_mul_epi32(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMULDQ __m512i _mm512_maskz_mul_epi32( __mmask8 k, __m512i a, __m512i b);
VPMULDQ __m256i _mm256_mask_mul_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMULDQ __m256i _mm256_mask_mul_epi32( __mmask8 k, __m256i a, __m256i b);
VPMULDQ __m128i _mm_mask_mul_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULDQ __m128i _mm_mask_mul_epi32( __mmask8 k, __m128i a, __m128i b);
5-726 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
(V)PMULDQ __m128i _mm_mul_epi32( __m128i a, __m128i b);
VPMULDQ __m256i _mm256_mul_epi32( __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-727
INSTRUCTION SET REFERENCE, A-Z
PMULHRSW—Multiply Packed Unsigned Integers with Round and Scale
Instruction Operand Encoding
Description
PMULHRSW multiplies vertically each signed 16-bit integer from the first source operand with the corresponding
signed 16-bit integer of the second source operand, producing intermediate, signed 32-bit integers. Each interme-
diate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 1 to the
least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits immedi-
ately to the right of the most significant bit of each 18-bit intermediate result and packed to the destination
operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.
EVEX encoded versions: The second source operand can be a vector register or a memory location. The first source
and destination operands are vector registers.
Operation
VPMULHRSW (EVEX encoded version)
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 0B /r RM V/V SSSE3 Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to xmm1.
PMULHRSW xmm1, xmm2/m128
VEX.NDS.128.66.0F38 0B /r RVM V/V AVX Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to xmm1.
VPMULHRSW xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38 0B /r RVM V/V AVX2 Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to ymm1.
VPMULHRSW ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.WIG 0B /r FVM V/V AVX512VL Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to xmm1
under writemask k1.
VPMULHRSW xmm1 {k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F38.WIG 0B /r FVM V/V AVX512VL Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to ymm1
under writemask k1.
VPMULHRSW ymm1 {k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F38.WIG 0B /r FVM V/V AVX512BW Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to zmm1
under writemask k1.
VPMULHRSW zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-728 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN
temp[31:0] ((SRC1[i+15:i] * SRC2[i+15:i]) >>14) + 1
DEST[i+15:i] tmp[16:1]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMULHRSW (VEX.256 encoded version)
temp0[31:0] INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
temp8[31:0] INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1
temp9[31:0] INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1
temp10[31:0] INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1
temp11[31:0] INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1
temp12[31:0] INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1
temp13[31:0] INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1
temp14[31:0] INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1
temp15[31:0] INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1
DEST[15:0] temp0[16:1]
DEST[31:16] temp1[16:1]
DEST[47:32] temp2[16:1]
DEST[63:48] temp3[16:1]
DEST[79:64] temp4[16:1]
DEST[95:80] temp5[16:1]
DEST[111:96] temp6[16:1]
DEST[127:112] temp7[16:1]
DEST[143:128] temp8[16:1]
DEST[159:144] temp9[16:1]
DEST[175:160] temp10[16:1]
DEST[191:176] temp11[16:1]
DEST[207:192] temp12[16:1]
DEST[223:208] temp13[16:1]
DEST[239:224] temp14[16:1]
DEST[255:240] temp15[16:1]
DEST[MAX_VL-1:256] 0
VPMULHRSW (VEX.128 encoded version)
temp0[31:0] INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
Ref. # 319433-023 5-729
INSTRUCTION SET REFERENCE, A-Z
temp1[31:0] INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0] temp0[16:1]
DEST[31:16] temp1[16:1]
DEST[47:32] temp2[16:1]
DEST[63:48] temp3[16:1]
DEST[79:64] temp4[16:1]
DEST[95:80] temp5[16:1]
DEST[111:96] temp6[16:1]
DEST[127:112] temp7[16:1]
DEST[MAX_VL-1:128] 0
PMULHRSW (128-bit Legacy SSE version)
temp0[31:0] INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1
temp1[31:0] INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1
temp2[31:0] INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1
temp3[31:0] INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1
temp4[31:0] INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1
temp5[31:0] INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1
temp6[31:0] INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1
temp7[31:0] INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1
DEST[15:0] temp0[16:1]
DEST[31:16] temp1[16:1]
DEST[47:32] temp2[16:1]
DEST[63:48] temp3[16:1]
DEST[79:64] temp4[16:1]
DEST[95:80] temp5[16:1]
DEST[111:96] temp6[16:1]
DEST[127:112] temp7[16:1]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMULHRSW __m512i _mm512_mulhrs_epi16(__m512i a, __m512i b);
VPMULHRSW __m512i _mm512_mask_mulhrs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMULHRSW __m512i _mm512_maskz_mulhrs_epi16( __mmask32 k, __m512i a, __m512i b);
VPMULHRSW __m256i _mm256_mask_mulhrs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMULHRSW __m256i _mm256_maskz_mulhrs_epi16( __mmask16 k, __m256i a, __m256i b);
VPMULHRSW __m128i _mm_mask_mulhrs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULHRSW __m128i _mm_maskz_mulhrs_epi16( __mmask8 k, __m128i a, __m128i b);
(V)PMULHRSW __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)
VPMULHRSW __m256i _mm256_mulhrs_epi16 (__m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
5-730 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PMULHUW—Multiply Packed Unsigned Integers and Store High Result
Instruction Operand Encoding
Description
Performs a SIMD unsigned multiply of the packed unsigned word integers in the first source operand and the
second source operand, and stores the high 16 bits of each 32-bit intermediate results in the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.
EVEX encoded versions: The second source operand can be a vector register or a memory location. The first source
and destination operands are vector registers.
Operation
PMULHUW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F E4 /r RM V/V SSE2 Multiply the packed unsigned word integers in xmm1 and
xmm2/m128, and store the high 16 bits of the results in
xmm1.
PMULHUW xmm1, xmm2/m128
VEX.NDS.128.66.0F E4 /r RVM V/V AVX Multiply the packed unsigned word integers in xmm2 and
xmm3/m128, and store the high 16 bits of the results in
xmm1.
VPMULHUW xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F E4 /r RVM V/V AVX2 Multiply the packed unsigned word integers in ymm2 and
ymm3/m256, and store the high 16 bits of the results in
ymm1.
VPMULHUW ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.WIG E4 /r FVM V/V AVX512VL Multiply the packed unsigned word integers in xmm2 and
xmm3/m128, and store the high 16 bits of the results in
xmm1 under writemask k1.
VPMULHUW xmm1 {k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG E4 /r FVM V/V AVX512VL Multiply the packed unsigned word integers in ymm2 and
ymm3/m256, and store the high 16 bits of the results in
ymm1 under writemask k1.
VPMULHUW ymm1 {k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F.WIG E4 /r FVM V/V AVX512BW Multiply the packed unsigned word integers in zmm2 and
zmm3/m512, and store the high 16 bits of the results in
zmm1 under writemask k1.
VPMULHUW zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-731
INSTRUCTION SET REFERENCE, A-Z
i j * 16
IF k1[j] OR *no writemask*
THEN
temp[31:0] SRC1[i+15:i] * SRC2[i+15:i]
DEST[i+15:i] tmp[31:16]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
PMULHUW (VEX.256 encoded version)
TEMP0[31:0] SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] SRC1[127:112] * SRC2[127:112]
TEMP8[31:0] SRC1[143:128] * SRC2[143:128]
TEMP9[31:0] SRC1[159:144] * SRC2[159:144]
TEMP10[31:0] SRC1[175:160] * SRC2[175:160]
TEMP11[31:0] SRC1[191:176] * SRC2[191:176]
TEMP12[31:0] SRC1[207:192] * SRC2[207:192]
TEMP13[31:0] SRC1[223:208] * SRC2[223:208]
TEMP14[31:0] SRC1[239:224] * SRC2[239:224]
TEMP15[31:0] SRC1[255:240] * SRC2[255:240]
DEST[15:0] TEMP0[31:16]
DEST[31:16] TEMP1[31:16]
DEST[47:32] TEMP2[31:16]
DEST[63:48] TEMP3[31:16]
DEST[79:64] TEMP4[31:16]
DEST[95:80] TEMP5[31:16]
DEST[111:96] TEMP6[31:16]
DEST[127:112] TEMP7[31:16]
DEST[143:128] TEMP8[31:16]
DEST[159:144] TEMP9[31:16]
DEST[175:160] TEMP10[31:16]
DEST[191:176] TEMP11[31:16]
DEST[207:192] TEMP12[31:16]
DEST[223:208] TEMP13[31:16]
DEST[239:224] TEMP14[31:16]
DEST[255:240] TEMP15[31:16]
DEST[MAX_VL-1:256] 0
PMULHUW (VEX.128 encoded version)
TEMP0[31:0] SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] SRC1[47:32] * SRC2[47:32]
5-732 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TEMP3[31:0] SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] SRC1[127:112] * SRC2[127:112]
DEST[15:0] TEMP0[31:16]
DEST[31:16] TEMP1[31:16]
DEST[47:32] TEMP2[31:16]
DEST[63:48] TEMP3[31:16]
DEST[79:64] TEMP4[31:16]
DEST[95:80] TEMP5[31:16]
DEST[111:96] TEMP6[31:16]
DEST[127:112] TEMP7[31:16]
DEST[MAX_VL-1:128] 0
PMULHUW (128-bit Legacy SSE version)
TEMP0[31:0] DEST[15:0] * SRC[15:0]
TEMP1[31:0] DEST[31:16] * SRC[31:16]
TEMP2[31:0] DEST[47:32] * SRC[47:32]
TEMP3[31:0] DEST[63:48] * SRC[63:48]
TEMP4[31:0] DEST[79:64] * SRC[79:64]
TEMP5[31:0] DEST[95:80] * SRC[95:80]
TEMP6[31:0] DEST[111:96] * SRC[111:96]
TEMP7[31:0] DEST[127:112] * SRC[127:112]
DEST[15:0] TEMP0[31:16]
DEST[31:16] TEMP1[31:16]
DEST[47:32] TEMP2[31:16]
DEST[63:48] TEMP3[31:16]
DEST[79:64] TEMP4[31:16]
DEST[95:80] TEMP5[31:16]
DEST[111:96] TEMP6[31:16]
DEST[127:112] TEMP7[31:16]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMULHUW __m512i _mm512_mulhi_epu16(__m512i a, __m512i b);
VPMULHUW __m512i _mm512_mask_mulhi_epu16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMULHUW __m512i _mm512_maskz_mulhi_epu16( __mmask32 k, __m512i a, __m512i b);
VPMULHUW __m256i _mm256_mask_mulhi_epu16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMULHUW __m256i _mm256_maskz_mulhi_epu16( __mmask16 k, __m256i a, __m256i b);
VPMULHUW __m128i _mm_mask_mulhi_epu16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULHUW __m128i _mm_maskz_mulhi_epu16( __mmask8 k, __m128i a, __m128i b);
PMULHUW __m128i _mm_mulhi_epu16 ( __m128i a, __m128i b)
VPMULHUW __m256i _mm256_mulhi_epu16 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-733
INSTRUCTION SET REFERENCE, A-Z
PMULHW—Multiply Packed Integers and Store High Result
Instruction Operand Encoding
Description
Performs a SIMD signed multiply of the packed signed word integers in the first source operand and the second
source operand, and stores the high 16 bits of each intermediate 32-bit result in the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.
EVEX encoded versions: The second source operand can be a vector register or a memory location. The first source
and destination operands are vector registers.
Operation
PMULHW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F E5 /r RM V/V SSE2 Multiply the packed signed word integers in xmm1 and
xmm2/m128, and store the high 16 bits of the results
in xmm1.
PMULHW xmm1, xmm2/m128
VEX.NDS.128.66.0F E5 /r RVM V/V AVX Multiply the packed signed word integers in xmm2 and
xmm3/m128, and store the high 16 bits of the results
in xmm1.
VPMULHW xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F E5 /r RVM V/V AVX2 Multiply the packed signed word integers in ymm2 and
ymm3/m256, and store the high 16 bits of the results
in ymm1.
VPMULHW ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.WIG E5 /r FVM V/V AVX512VL Multiply the packed signed word integers in xmm2 and
xmm3/m128, and store the high 16 bits of the results
in xmm1 under writemask k1.
VPMULHW xmm1 {k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG E5 /r FVM V/V AVX512VL Multiply the packed signed word integers in ymm2 and
ymm3/m256, and store the high 16 bits of the results
in ymm1 under writemask k1.
VPMULHW ymm1 {k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F.WIG E5 /r FVM V/V AVX512BW Multiply the packed signed word integers in zmm2 and
zmm3/m512, and store the high 16 bits of the results
in zmm1 under writemask k1.
VPMULHW zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-734 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
i j * 16
IF k1[j] OR *no writemask*
THEN
temp[31:0] SRC1[i+15:i] * SRC2[i+15:i]
DEST[i+15:i] tmp[31:16]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
PMULHW (VEX.256 encoded version)
TEMP0[31:0] SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)
TEMP1[31:0] SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] SRC1[127:112] * SRC2[127:112]
TEMP8[31:0] SRC1[143:128] * SRC2[143:128]
TEMP9[31:0] SRC1[159:144] * SRC2[159:144]
TEMP10[31:0] SRC1[175:160] * SRC2[175:160]
TEMP11[31:0] SRC1[191:176] * SRC2[191:176]
TEMP12[31:0] SRC1[207:192] * SRC2[207:192]
TEMP13[31:0] SRC1[223:208] * SRC2[223:208]
TEMP14[31:0] SRC1[239:224] * SRC2[239:224]
TEMP15[31:0] SRC1[255:240] * SRC2[255:240]
DEST[15:0] TEMP0[31:16]
DEST[31:16] TEMP1[31:16]
DEST[47:32] TEMP2[31:16]
DEST[63:48] TEMP3[31:16]
DEST[79:64] TEMP4[31:16]
DEST[95:80] TEMP5[31:16]
DEST[111:96] TEMP6[31:16]
DEST[127:112] TEMP7[31:16]
DEST[143:128] TEMP8[31:16]
DEST[159:144] TEMP9[31:16]
DEST[175:160] TEMP10[31:16]
DEST[191:176] TEMP11[31:16]
DEST[207:192] TEMP12[31:16]
DEST[223:208] TEMP13[31:16]
DEST[239:224] TEMP14[31:16]
DEST[255:240] TEMP15[31:16]
DEST[MAX_VL-1:256] 0
PMULHW (VEX.128 encoded version)
TEMP0[31:0] SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)
TEMP1[31:0] SRC1[31:16] * SRC2[31:16]
Ref. # 319433-023 5-735
INSTRUCTION SET REFERENCE, A-Z
TEMP2[31:0] SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] SRC1[127:112] * SRC2[127:112]
DEST[15:0] TEMP0[31:16]
DEST[31:16] TEMP1[31:16]
DEST[47:32] TEMP2[31:16]
DEST[63:48] TEMP3[31:16]
DEST[79:64] TEMP4[31:16]
DEST[95:80] TEMP5[31:16]
DEST[111:96] TEMP6[31:16]
DEST[127:112] TEMP7[31:16]
DEST[MAX_VL-1:128] 0
PMULHW (128-bit Legacy SSE version)
TEMP0[31:0] DEST[15:0] * SRC[15:0] (*Signed Multiplication*)
TEMP1[31:0] DEST[31:16] * SRC[31:16]
TEMP2[31:0] DEST[47:32] * SRC[47:32]
TEMP3[31:0] DEST[63:48] * SRC[63:48]
TEMP4[31:0] DEST[79:64] * SRC[79:64]
TEMP5[31:0] DEST[95:80] * SRC[95:80]
TEMP6[31:0] DEST[111:96] * SRC[111:96]
TEMP7[31:0] DEST[127:112] * SRC[127:112]
DEST[15:0] TEMP0[31:16]
DEST[31:16] TEMP1[31:16]
DEST[47:32] TEMP2[31:16]
DEST[63:48] TEMP3[31:16]
DEST[79:64] TEMP4[31:16]
DEST[95:80] TEMP5[31:16]
DEST[111:96] TEMP6[31:16]
DEST[127:112] TEMP7[31:16]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMULHW __m512i _mm512_mulhi_epi16(__m512i a, __m512i b);
VPMULHW __m512i _mm512_mask_mulhi_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMULHW __m512i _mm512_maskz_mulhi_epi16( __mmask32 k, __m512i a, __m512i b);
VPMULHW __m256i _mm256_mask_mulhi_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMULHW __m256i _mm256_maskz_mulhi_epi16( __mmask16 k, __m256i a, __m256i b);
VPMULHW __m128i _mm_mask_mulhi_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULHW __m128i _mm_maskz_mulhi_epi16( __mmask8 k, __m128i a, __m128i b);
(V)PMULHW __m128i _mm_mulhi_epi16 ( __m128i a, __m128i b)
VPMULHW __m256i _mm256_mulhi_epi16 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
5-736 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PMULLD/PMULLQ—Multiply Packed Integers and Store Low Result
Instruction Operand Encoding
Description
Performs a SIMD signed multiply of the packed signed dword/qword integers from each element of the first source
operand with the corresponding element in the second source operand. The low 32/64 bits of each 64/128-bit
intermediate results are stored to the destination operand.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 40 /r RM V/V SSE4_1 Multiply the packed dword signed integers in xmm1 and
xmm2/m128 and store the low 32 bits of each product in
xmm1.
PMULLD xmm1, xmm2/m128
VEX.NDS.128.66.0F38.WIG 40 /r RVM V/V AVX Multiply the packed dword signed integers in xmm2 and
xmm3/m128 and store the low 32 bits of each product in
xmm1.
VPMULLD xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F38.WIG 40 /r RVM V/V AVX2 Multiply the packed dword signed integers in ymm2 and
ymm3/m256 and store the low 32 bits of each product in
ymm1.
VPMULLD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F38.W0 40 /r FV V/V AVX512VL
AVX512F
Multiply the packed dword signed integers in xmm2 and
xmm3/m128/m32bcst and store the low 32 bits of each
product in xmm1 under writemask k1.
VPMULLD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F38.W0 40 /r FV V/V AVX512VL
AVX512F
Multiply the packed dword signed integers in ymm2 and
ymm3/m256/m32bcst and store the low 32 bits of each
product in ymm1 under writemask k1.
VPMULLD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F38.W0 40 /r FV V/V AVX512F Multiply the packed dword signed integers in zmm2 and
zmm3/m512/m32bcst and store the low 32 bits of each
product in zmm1 under writemask k1.
VPMULLD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 40 /r FV V/V AVX512VL
AVX512DQ
Multiply the packed qword signed integers in xmm2 and
xmm3/m128/m64bcst and store the low 64 bits of each
product in xmm1 under writemask k1.
VPMULLQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F38.W1 40 /r FV V/V AVX512VL
AVX512DQ
Multiply the packed qword signed integers in ymm2 and
ymm3/m256/m64bcst and store the low 64 bits of each
product in ymm1 under writemask k1.
VPMULLQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F38.W1 40 /r FV V/V AVX512DQ Multiply the packed qword signed integers in zmm2 and
zmm3/m512/m64bcst and store the low 64 bits of each
product in zmm1 under writemask k1.
VPMULLQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-737
INSTRUCTION SET REFERENCE, A-Z
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding ZMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding ZMM register
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register; The second source operand is a YMM register
or 256-bit memory location. Bits (MAX_VL-1:256) of the corresponding destination ZMM register are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.
Operation
VPMULLQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN Temp[127:0] SRC1[i+63:i] * SRC2[63:0]
ELSE Temp[127:0] SRC1[i+63:i] * SRC2[i+63:i]
FI;
DEST[i+63:i] Temp[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMULLD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN Temp[63:0] SRC1[i+31:i] * SRC2[31:0]
ELSE Temp[63:0] SRC1[i+31:i] * SRC2[i+31:i]
FI;
DEST[i+31:i] Temp[31:0]
ELSE
IF *merging-masking* ; merging-masking
*DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-738 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPMULLD (VEX.256 encoded version)
Temp0[63:0] SRC1[31:0] * SRC2[31:0]
Temp1[63:0] SRC1[63:32] * SRC2[63:32]
Temp2[63:0] SRC1[95:64] * SRC2[95:64]
Temp3[63:0] SRC1[127:96] * SRC2[127:96]
Temp4[63:0] SRC1[159:128] * SRC2[159:128]
Temp5[63:0] SRC1[191:160] * SRC2[191:160]
Temp6[63:0] SRC1[223:192] * SRC2[223:192]
Temp7[63:0] SRC1[255:224] * SRC2[255:224]
DEST[31:0] Temp0[31:0]
DEST[63:32] Temp1[31:0]
DEST[95:64] Temp2[31:0]
DEST[127:96] Temp3[31:0]
DEST[159:128] Temp4[31:0]
DEST[191:160] Temp5[31:0]
DEST[223:192] Temp6[31:0]
DEST[255:224] Temp7[31:0]
DEST[MAX_VL-1:256] 0
VPMULLD (VEX.128 encoded version)
Temp0[63:0] SRC1[31:0] * SRC2[31:0]
Temp1[63:0] SRC1[63:32] * SRC2[63:32]
Temp2[63:0] SRC1[95:64] * SRC2[95:64]
Temp3[63:0] SRC1[127:96] * SRC2[127:96]
DEST[31:0] Temp0[31:0]
DEST[63:32] Temp1[31:0]
DEST[95:64] Temp2[31:0]
DEST[127:96] Temp3[31:0]
DEST[MAX_VL-1:128] 0
PMULLD (128-bit Legacy SSE version)
Temp0[63:0] DEST[31:0] * SRC[31:0]
Temp1[63:0] DEST[63:32] * SRC[63:32]
Temp2[63:0] DEST[95:64] * SRC[95:64]
Temp3[63:0] DEST[127:96] * SRC[127:96]
DEST[31:0] Temp0[31:0]
DEST[63:32] Temp1[31:0]
DEST[95:64] Temp2[31:0]
DEST[127:96] Temp3[31:0]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMULLD __m512i _mm512_mullo_epi32(__m512i a, __m512i b);
VPMULLD __m512i _mm512_mask_mullo_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPMULLD __m512i _mm512_maskz_mullo_epi32( __mmask16 k, __m512i a, __m512i b);
VPMULLD __m256i _mm256_mask_mullo_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMULLD __m256i _mm256_maskz_mullo_epi32( __mmask8 k, __m256i a, __m256i b);
VPMULLD __m128i _mm_mask_mullo_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULLD __m128i _mm_maskz_mullo_epi32( __mmask8 k, __m128i a, __m128i b);
VPMULLD __m256i _mm256_mullo_epi32(__m256i a, __m256i b);
PMULLD __m128i _mm_mullo_epi32(__m128i a, __m128i b);
VPMULLQ __m512i _mm512_mullo_epi64(__m512i a, __m512i b);
VPMULLQ __m512i _mm512_mask_mullo_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
Ref. # 319433-023 5-739
INSTRUCTION SET REFERENCE, A-Z
VPMULLQ __m512i _mm512_maskz_mullo_epi64( __mmask8 k, __m512i a, __m512i b);
VPMULLQ __m256i _mm256_mullo_epi64(__m256i a, __m256i b);
VPMULLQ __m256i _mm256_mask_mullo_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMULLQ __m256i _mm256_maskz_mullo_epi64( __mmask8 k, __m256i a, __m256i b);
VPMULLQ __m128i _mm_mullo_epi64(__m128i a, __m128i b);
VPMULLQ __m128i _mm_mask_mullo_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULLQ __m128i _mm_maskz_mullo_epi64( __mmask8 k, __m128i a, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
5-740 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PMULLW—Multiply Packed Integers and Store Low Result
Instruction Operand Encoding
Description
Performs a SIMD signed multiply of the packed signed word (dword) integers in the first source operand and the
second source operand and stores the low 16 bits of each intermediate 32-bit result in the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.
EVEX encoded versions: The second source operand can be a ZMM/YMM/XMM register or a 512/256/128-bit
memory location. The first source and destination operands are ZMM/YMM/XMM registers.
Operation
PMULLW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F D5 /r RM V/V SSE2 Multiply the packed signed word integers in xmm1 and
xmm2/m128, and store the low 16 bits of the results in
xmm1.
PMULLW xmm1, xmm2/m128
VEX.NDS.128.66.0F D5 /r RVM V/V AVX Multiply the packed signed word integers in xmm2 and
xmm3/m128, and store the low 16 bits of the results in
xmm1.
VPMULLW xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F D5 /r RVM V/V AVX2 Multiply the packed signed word integers in ymm2 and
ymm3/m256, and store the low 16 bits of the results in
ymm1.
VPMULLW ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.WIG D5 /r FVM V/V AVX512VL Multiply the packed signed word integers in xmm2 and
xmm3/m128, and store the low 16 bits of the results in
xmm1 under writemask k1.
VPMULLW xmm1 {k1}{z}, xmm2,
xmm3/m128
AVX512BW
EVEX.NDS.256.66.0F.WIG D5 /r FVM V/V AVX512VL Multiply the packed signed word integers in ymm2 and
ymm3/m256, and store the low 16 bits of the results in
ymm1 under writemask k1.
VPMULLW ymm1 {k1}{z}, ymm2,
ymm3/m256
AVX512BW
EVEX.NDS.512.66.0F.WIG D5 /r FVM V/V AVX512BW Multiply the packed signed word integers in zmm2 and
zmm3/m512, and store the low 16 bits of the results in
zmm1 under writemask k1.
VPMULLW zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-741
INSTRUCTION SET REFERENCE, A-Z
i j * 16
IF k1[j] OR *no writemask*
THEN
temp[31:0] SRC1[i+15:i] * SRC2[i+15:i]
DEST[i+15:i] temp[15:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMULLW (VEX.256 encoded version)
Temp0[31:0] SRC1[15:0] * SRC2[15:0]
Temp1[31:0] SRC1[31:16] * SRC2[31:16]
Temp2[31:0] SRC1[47:32] * SRC2[47:32]
Temp3[31:0] SRC1[63:48] * SRC2[63:48]
Temp4[31:0] SRC1[79:64] * SRC2[79:64]
Temp5[31:0] SRC1[95:80] * SRC2[95:80]
Temp6[31:0] SRC1[111:96] * SRC2[111:96]
Temp7[31:0] SRC1[127:112] * SRC2[127:112]
Temp8[31:0] SRC1[143:128] * SRC2[143:128]
Temp9[31:0] SRC1[159:144] * SRC2[159:144]
Temp10[31:0] SRC1[175:160] * SRC2[175:160]
Temp11[31:0] SRC1[191:176] * SRC2[191:176]
Temp12[31:0] SRC1[207:192] * SRC2[207:192]
Temp13[31:0] SRC1[223:208] * SRC2[223:208]
Temp14[31:0] SRC1[239:224] * SRC2[239:224]
Temp15[31:0] SRC1[255:240] * SRC2[255:240]
DEST[15:0] Temp0[15:0]
DEST[31:16] Temp1[15:0]
DEST[47:32] Temp2[15:0]
DEST[63:48] Temp3[15:0]
DEST[79:64] Temp4[15:0]
DEST[95:80] Temp5[15:0]
DEST[111:96] Temp6[15:0]
DEST[127:112] Temp7[15:0]
DEST[143:128] Temp8[15:0]
DEST[159:144] Temp9[15:0]
DEST[175:160] Temp10[15:0]
DEST[191:176] Temp11[15:0]
DEST[207:192] TEMP12[15:0]
DEST[223:208] Temp13[15:0]
DEST[239:224] Temp14[15:0]
DEST[255:240] Temp15[15:0]
DEST[MAX_VL-1:256] 0
VPMULLW (VEX.128 encoded version)
Temp0[31:0] SRC1[15:0] * SRC2[15:0]
Temp1[31:0] SRC1[31:16] * SRC2[31:16]
Temp2[31:0] SRC1[47:32] * SRC2[47:32]
5-742 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Temp3[31:0] SRC1[63:48] * SRC2[63:48]
Temp4[31:0] SRC1[79:64] * SRC2[79:64]
Temp5[31:0] SRC1[95:80] * SRC2[95:80]
Temp6[31:0] SRC1[111:96] * SRC2[111:96]
Temp7[31:0] SRC1[127:112] * SRC2[127:112]
DEST[15:0] Temp0[15:0]
DEST[31:16] Temp1[15:0]
DEST[47:32] Temp2[15:0]
DEST[63:48] Temp3[15:0]
DEST[79:64] Temp4[15:0]
DEST[95:80] Temp5[15:0]
DEST[111:96] Temp6[15:0]
DEST[127:112] Temp7[15:0]
DEST[MAX_VL-1:128] 0
PMULLW (128-bit Legacy SSE version)
Temp0[31:0] DEST[15:0] * SRC[15:0]
Temp1[31:0] DEST[31:16] * SRC[31:16]
Temp2[31:0] DEST[47:32] * SRC[47:32]
Temp3[31:0] DEST[63:48] * SRC[63:48]
Temp4[31:0] DEST[79:64] * SRC[79:64]
Temp5[31:0] DEST[95:80] * SRC[95:80]
Temp6[31:0] DEST[111:96] * SRC[111:96]
Temp7[31:0] DEST[127:112] * SRC[127:112]
DEST[15:0] Temp0[15:0]
DEST[31:16] Temp1[15:0]
DEST[47:32] Temp2[15:0]
DEST[63:48] Temp3[15:0]
DEST[79:64] Temp4[15:0]
DEST[95:80] Temp5[15:0]
DEST[111:96] Temp6[15:0]
DEST[127:112] Temp7[15:0]
DEST[127:96] Temp3[31:0];
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMULLW __m512i _mm512_mullo_epi16(__m512i a, __m512i b);
VPMULLW __m512i _mm512_mask_mullo_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMULLW __m512i _mm512_maskz_mullo_epi16( __mmask32 k, __m512i a, __m512i b);
VPMULLW __m256i _mm256_mask_mullo_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMULLW __m256i _mm256_maskz_mullo_epi16( __mmask16 k, __m256i a, __m256i b);
VPMULLW __m128i _mm_mask_mullo_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULLW __m128i _mm_maskz_mullo_epi16( __mmask8 k, __m128i a, __m128i b);
(V)PMULLW __m128i _mm_mullo_epi16 ( __m128i a, __m128i b);
VPMULLW __m256i _mm256_mullo_epi16 ( __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-743
INSTRUCTION SET REFERENCE, A-Z
VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources
Instruction Operand Encoding
Description
This instruction selects eight unaligned bytes from each input qword element of the second source operand (the
third operand) and writes eight assembled bytes for each qword element in the destination operand (the first
operand). Each byte result is selected using a byte-granular shift control within the corresponding qword element
of the first source operand (the second operand). Each byte result in the destination operand is updated under the
writemask k1.
Only the low 6 bits of each control byte are used to select an 8-bit slot to extract the output byte from the qword
data in the second source operand. The starting bit of the 8-bit slot can be unaligned relative to any byte boundary
and is left-shifted from the beginning of the input qword source by the amount specified in the low 6-bit of the
control byte. If the 8-bit slot would exceed the qword boundary, the out-of-bound portion of the 8-bit slot is
wrapped back to start from bit 0 of the input qword element.
The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register.
Operation
VPMULTISHIFTQB DEST, SRC1, SRC2 (EVEX encoded version)
(KL, VL) = (2, 128),(4, 256), (8, 512)
FOR i 0 TO KL-1
q i * 64;
IF src2 is Memory AND EVEX.b=1 THEN
tcur64[63:0] src2[63:0];
ELSE
tcur64[63:0] src2[ q+63:q];
FI;
FOR j 0 to 7 // iterate each byte in qword
ctrl src1[q+j*8+7:q+j*8] & 63;
FOR k 0 to 7 // iterate each bit in byte
tmp8[k] tcur64[ ((ctrl+k) & 63 )];
ENDFOR
IF k1[i*8+j] or no writemask THEN
dst[ q+ j*8 + 7: q + j*8] tmp8[7:0];
Opcode /
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature Flag
Description
EVEX.NDS.128.66.0F38.W1 83 /r
VPMULTISHIFTQB xmm1 {k1}{z},
xmm2,xmm3/m128/m64bcst
FV V/V AVX512VBMI
AVX512VL
Select unaligned bytes from qwords in
xmm3/m128/m64bcst using control bytes in
xmm2, write byte results to xmm1 under k1.
EVEX.NDS.256.66.0F38.W1 83 /r
VPMULTISHIFTQB ymm1 {k1}{z},
ymm2,ymm3/m256/m64bcst
FV V/V AVX512VBMI
AVX512VL
Select unaligned bytes from qwords in
ymm3/m256/m64bcst using control bytes in
ymm2, write byte results to ymm1 under k1.
EVEX.NDS.512.66.0F38.W1 83 /r
VPMULTISHIFTQB zmm1 {k1}{z},
zmm2,zmm3/m512/m64bcst
FV V/V AVX512VBMI Select unaligned bytes from qwords in
zmm3/m512/m64bcst using control bytes in
zmm2, write byte results to zmm1 under k1.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-744 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ELSE IF zeroing-masking THEN
dst[ q+ j*8 + 7: q + j*8] 0;
ENDFOR
ENDFOR
DEST[MAX_VL-1:VL] 0;
Intel C/C++ Compiler Intrinsic Equivalent
VPMULTISHIFTQB __m512i _mm512_multishift_epi64_epi8( __m512i a, __m512i b);
VPMULTISHIFTQB __m512i _mm512_mask_multishift_epi64_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPMULTISHIFTQB __m512i _mm512_maskz_multishift_epi64_epi8( __mmask64 k, __m512i a, __m512i b);
VPMULTISHIFTQB __m256i _mm256_multishift_epi64_epi8( __m256i a, __m256i b);
VPMULTISHIFTQB __m256i _mm256_mask_multishift_epi64_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB __m256i _mm256_maskz_multishift_epi64_epi8( __mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB __m128i _mm_multishift_epi64_epi8( __m128i a, __m128i b);
VPMULTISHIFTQB __m128i _mm_mask_multishift_epi64_epi8(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULTISHIFTQB __m128i _mm_maskz_multishift_epi64_epi8( __mmask8 k, __m128i a, __m128i b);
SIMD Floating-Point Exceptions
None.
Other Exceptions
See Exceptions Type E4NF.
Ref. # 319433-023 5-745
INSTRUCTION SET REFERENCE, A-Z
PMULUDQ—Multiply Packed Unsigned Doubleword Integers
Instruction Operand Encoding
Description
Multiplies packed unsigned doubleword integers in the even-numbered (zero-based reference) elements of the
first source operand with the packed unsigned doubleword integers in the corresponding elements of the second
source operand and stores packed unsigned quadword results in the destination operand.
128-bit Legacy SSE version: The input unsigned doubleword integers are taken from the even-numbered elements
of the source operands, i.e. the first (low) and third doubleword element. For 128-bit memory operands, 128 bits
are fetched from memory, but only the first and third doublewords are used in the computation.The first source
operand and the destination XMM operand is the same. The second source operand can be an XMM register or 128-
bit memory location. Bits (MAX_VL-1:128) of the corresponding destination register remain unchanged.
VEX.128 encoded version: The input unsigned doubleword integers are taken from the even-numbered elements
of the source operands, i.e. the first (low) and third doubleword element. For 128-bit memory operands, 128 bits
are fetched from memory, but only the first and third doublewords are used in the computation.The first source
operand and the destination operand are XMM registers. The second source operand can be an XMM register or
128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination register are zeroed.
VEX.256 encoded version: The input unsigned doubleword integers are taken from the even-numbered elements
of the source operands, i.e. the first, 3rd, 5th, 7th doubleword element. For 256-bit memory operands, 256 bits are
fetched from memory, but only the four even-numbered doublewords are used in the computation.The first source
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F F4 /r RM V/V SSE4_1 Multiply packed unsigned doubleword integers in
xmm1 by packed unsigned doubleword integers in
xmm2/m128, and store the quadword results in
xmm1.
PMULUDQ xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG F4 /r RVM V/V AVX Multiply packed unsigned doubleword integers in
xmm2 by packed unsigned doubleword integers in
xmm3/m128, and store the quadword results in
xmm1.
VPMULUDQ xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG F4 /r RVM V/V AVX2 Multiply packed unsigned doubleword integers in
ymm2 by packed unsigned doubleword integers in
ymm3/m256, and store the quadword results in
ymm1.
VPMULUDQ ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W1 F4 /r FV V/V AVX512VL
AVX512F
Multiply packed unsigned doubleword integers in
xmm2 by packed unsigned doubleword integers in
xmm3/m128/m64bcst, and store the quadword
results in xmm1 under writemask k1.
VPMULUDQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 F4 /r FV V/V AVX512VL
AVX512F
Multiply packed unsigned doubleword integers in
ymm2 by packed unsigned doubleword integers in
ymm3/m256/m64bcst, and store the quadword
results in ymm1 under writemask k1.
VPMULUDQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 F4 /r FV V/V AVX512F Multiply packed unsigned doubleword integers in
zmm2 by packed unsigned doubleword integers in
zmm3/m512/m64bcst, and store the quadword
results in zmm1 under writemask k1.
VPMULUDQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-746 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
operand and the destination operand are YMM registers. The second source operand can be a YMM register or 256-
bit memory location. Bits (MAX_VL-1:256) of the corresponding destination ZMM register are zeroed.
EVEX encoded version: The input unsigned doubleword integers are taken from the even-numbered elements of
the source operands. The first source operand is a ZMM/YMM/XMM registers. The second source operand can be an
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-
bit memory location. The destination is a ZMM/YMM/XMM register, and updated according to the writemask at 64-
bit granularity.
Operation
VPMULUDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] ZeroExtend64( SRC1[i+31:i]) * ZeroExtend64( SRC2[31:0] )
ELSE DEST[i+63:i] ZeroExtend64( SRC1[i+31:i]) * ZeroExtend64( SRC2[i+31:i] )
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPMULUDQ (VEX.256 encoded version)
DEST[63:0] ZeroExtend64( SRC1[31:0] )* ZeroExtend64( SRC2[31:0])
DEST[127:64] ZeroExtend64( SRC1[95:64] )* ZeroExtend64( SRC2[95:64])
DEST[191:128] ZeroExtend64( SRC1[159:128]) * ZeroExtend64( SRC2[159:128])
DEST[255:192] ZeroExtend64( SRC1[223:192]) * ZeroExtend64( SRC2[223:192])
DEST[MAX_VL-1:256] 0
VPMULUDQ (VEX.128 encoded version)
DEST[63:0] ZeroExtend64( SRC1[31:0]) * ZeroExtend64( SRC2[31:0])
DEST[127:64] ZeroExtend64( SRC1[95:64]) * ZeroExtend64( SRC2[95:64])
DEST[MAX_VL-1:128] 0
PMULUDQ (128-bit Legacy SSE version)
DEST[63:0] DEST[31:0] * SRC[31:0]
DEST[127:64] DEST[95:64] * SRC[95:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPMULUDQ __m512i _mm512_mul_epu32(__m512i a, __m512i b);
VPMULUDQ __m512i _mm512_mask_mul_epu32(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPMULUDQ __m512i _mm512_maskz_mul_epu32( __mmask8 k, __m512i a, __m512i b);
VPMULUDQ __m256i _mm256_mask_mul_epu32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPMULUDQ __m256i _mm256_maskz_mul_epu32( __mmask8 k, __m256i a, __m256i b);
VPMULUDQ __m128i _mm_mask_mul_epu32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULUDQ __m128i _mm_maskz_mul_epu32( __mmask8 k, __m128i a, __m128i b);
(V)PMULUDQ __m128i _mm_mul_epu32( __m128i a, __m128i b);
Ref. # 319433-023 5-747
INSTRUCTION SET REFERENCE, A-Z
VPMULUDQ __m256i _mm256_mul_epu32( __m256i a, __m256i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
5-748 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
POR—Bitwise Logical Or
Instruction Operand Encoding
Description
Performs a bitwise logical OR operation on the second source operand and the first source operand and stores the
result in the destination operand. Each bit of the result is set to 0 if the corresponding bits of the first and second
operands are 0; otherwise, it is set to 1.
EVEX encoded version: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1 at 32/64-bit granularity.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F EB /r RM V/V SSE2 Bitwise OR of xmm2/m128 and xmm1.
POR xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG EB /r RVM V/V AVX Bitwise OR of xmm2/m128 and xmm3.
VPOR xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG EB /r RVM V/V AVX2 Bitwise OR of ymm2/m256 and ymm3.
VPOR ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W0 EB /r FV V/V AVX512VL
AVX512F
Bitwise OR of packed doubleword integers in
xmm2 and xmm3/m128/m32bcst using
writemask k1.
VPORD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F.W0 EB /r FV V/V AVX512VL
AVX512F
Bitwise OR of packed doubleword integers in
ymm2 and ymm3/m256/m32bcst using
writemask k1.
VPORD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F.W0 EB /r FV V/V AVX512F Bitwise OR of packed doubleword integers in
zmm2 and zmm3/m512/m32bcst using
writemask k1.
VPORD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F.W1 EB /r FV V/V AVX512VL
AVX512F
Bitwise OR of packed quadword integers in
xmm2 and xmm3/m128/m64bcst using
writemask k1.
VPORQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 EB /r FV V/V AVX512VL
AVX512F
Bitwise OR of packed quadword integers in
ymm2 and ymm3/m256/m64bcst using
writemask k1.
VPORQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 EB /r FV V/V AVX512F Bitwise OR of packed quadword integers in
zmm2 and zmm3/m512/m64bcst using
writemask k1.
VPORQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-749
INSTRUCTION SET REFERENCE, A-Z
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding register destination are zeroed.
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first
source and destination operands can be XMM registers. Bits (MAX_VL-1:128) of the corresponding destination
register remain unchanged.
Operation
VPORD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] SRC1[i+31:i] BITWISE OR SRC2[31:0]
ELSE DEST[i+31:i] SRC1[i+31:i] BITWISE OR SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
*DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPORQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] SRC1[i+63:i] BITWISE OR SRC2[63:0]
ELSE DEST[i+63:i] SRC1[i+63:i] BITWISE OR SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
*DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPOR (VEX.256 encoded version)
DEST[255:0] SRC1 OR SRC2
DEST[MAX_VL-1:256] 0
VPOR (VEX.128 encoded version)
5-750 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[127:0] (SRC[127:0] OR SRC2[127:0])
DEST[MAX_VL-1:128] 0
POR (128-bit Legacy SSE version)
DEST[127:0] (SRC[127:0] OR SRC2[127:0])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPORD __m512i _mm512_or_epi32(__m512i a, __m512i b);
VPORD __m512i _mm512_mask_or_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPORD __m512i _mm512_maskz_or_epi32( __mmask16 k, __m512i a, __m512i b);
VPORD __m256i _mm256_or_epi32(__m256i a, __m256i b);
VPORD __m256i _mm256_mask_or_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b,);
VPORD __m256i _mm256_maskz_or_epi32( __mmask8 k, __m256i a, __m256i b);
VPORD __m128i _mm_or_epi32(__m128i a, __m128i b);
VPORD __m128i _mm_mask_or_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPORD __m128i _mm_maskz_or_epi32( __mmask8 k, __m128i a, __m128i b);
VPORQ __m512i _mm512_or_epi64(__m512i a, __m512i b);
VPORQ __m512i _mm512_mask_or_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPORQ __m512i _mm512_maskz_or_epi64(__mmask8 k, __m512i a, __m512i b);
VPORQ __m256i _mm256_or_epi64(__m256i a, int imm);
VPORQ __m256i _mm256_mask_or_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPORQ __m256i _mm256_maskz_or_epi64( __mmask8 k, __m256i a, __m256i b);
VPORQ __m128i _mm_or_epi64(__m128i a, __m128i b);
VPORQ __m128i _mm_mask_or_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPORQ __m128i _mm_maskz_or_epi64( __mmask8 k, __m128i a, __m128i b);
(V)POR __m128i _mm_or_si128 ( __m128i a, __m128i b)
VPOR __m256i _mm256_or_si256 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
none
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-751
INSTRUCTION SET REFERENCE, A-Z
PROLD/PROLVD/PROLQ/PROLVQ—Bit Rotate Left
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F38.W0 15 /r FV-RVM V/V AVX512VL
AVX512F
Rotate doublewords in xmm2 left by count in the
corresponding element of xmm3/m128/m32bcst.
Result written to xmm1 under writemask k1.
VPROLVD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDD.128.66.0F.W0 72 /1 ib FV-VMI V/V AVX512VL
AVX512F
Rotate doublewords in xmm2/m128/m32bcst left
by imm8. Result written to xmm1 using
writemask k1.
VPROLD xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
EVEX.NDS.128.66.0F38.W1 15 /r FV-RVM V/V AVX512VL
AVX512F
Rotate quadwords in xmm2 left by count in the
corresponding element of xmm3/m128/m64bcst.
Result written to xmm1 under writemask k1.
VPROLVQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDD.128.66.0F.W1 72 /1 ib FV-VMI V/V AVX512VL
AVX512F
Rotate quadwords in xmm2/m128/m64bcst left
by imm8. Result written to xmm1 using
writemask k1.
VPROLQ xmm1 {k1}{z},
xmm2/m128/m64bcst, imm8
EVEX.NDS.256.66.0F38.W0 15 /r FV-RVM V/V AVX512VL
AVX512F
Rotate doublewords in ymm2 left by count in the
corresponding element of ymm3/m256/m32bcst.
Result written to ymm1 under writemask k1.
VPROLVD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDD.256.66.0F.W0 72 /1 ib FV-VMI V/V AVX512VL
AVX512F
Rotate doublewords in ymm2/m256/m32bcst left
by imm8. Result written to ymm1 using
writemask k1.
VPROLD ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
EVEX.NDS.256.66.0F38.W1 15 /r FV-RVM V/V AVX512VL
AVX512F
Rotate quadwords in ymm2 left by count in the
corresponding element of ymm3/m256/m64bcst.
Result written to ymm1 under writemask k1.
VPROLVQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDD.256.66.0F.W1 72 /1 ib FV-VMI V/V AVX512VL
AVX512F
Rotate quadwords in ymm2/m256/m64bcst left
by imm8. Result written to ymm1 using
writemask k1.
VPROLQ ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
EVEX.NDS.512.66.0F38.W0 15 /r FV-RVM V/V AVX512F Rotate left of doublewords in zmm2 by count in
the corresponding element of
zmm3/m512/m32bcst. Result written to zmm1
using writemask k1.
VPROLVD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDD.512.66.0F.W0 72 /1 ib FV-VMI V/V AVX512F Rotate left of doublewords in
zmm3/m512/m32bcst by imm8. Result written to
zmm1 using writemask k1.
VPROLD zmm1 {k1}{z},
zmm2/m512/m32bcst, imm8
EVEX.NDS.512.66.0F38.W1 15 /r FV-RVM V/V AVX512F Rotate quadwords in zmm2 left by count in the
corresponding element of zmm3/m512/m64bcst.
Result written to zmm1under writemask k1.
VPROLVQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
EVEX.NDD.512.66.0F.W1 72 /1 ib FV-VMI V/V AVX512F Rotate quadwords in zmm2/m512/m64bcst left
by imm8. Result written to zmm1 using
writemask k1.
VPROLQ zmm1 {k1}{z},
zmm2/m512/m64bcst, imm8
5-752 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Rotates the bits in the individual data elements (doublewords, or quadword) in the first source operand to the left
by the number of bits specified in the count operand. If the value specified by the count operand is greater than 31
(for doublewords), or 63 (for a quadword), then the count operand modulo the data size (32 or 64) is used.
EVEX.128 encoded version: The destination operand is a XMM register. The source operand is a XMM register or a
memory location (for immediate form). The count operand can come either from an XMM register or a memory
location or an 8-bit immediate. Bits (MAX_VL-1:128) of the corresponding ZMM register are zeroed.
EVEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a
memory location (for immediate form). The count operand can come either from an XMM register or a memory
location or an 8-bit immediate. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed.
EVEX.512 encoded version: The destination operand is a ZMM register updated according to the writemask. For the
count operand in immediate form, the source operand can be a ZMM register, a 512-bit memory location or a 512-
bit vector broadcasted from a 32/64-bit memory location, the count operand is an 8-bit immediate. For the count
operand in variable form, the first source operand (the second operand) is a ZMM register and the counter operand
(the third operand) is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit
memory location.
Operation
LEFT_ROTATE_DWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC modulo 32;
DEST[31:0] (SRC << COUNT) | (SRC >> (32 - COUNT));
LEFT_ROTATE_QWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC modulo 64;
DEST[63:0] (SRC << COUNT) | (SRC >> (64 - COUNT));
VPROLD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] LEFT_ROTATE_DWORDS(SRC1[31:0], imm8)
ELSE DEST[i+31:i] LEFT_ROTATE_DWORDS(SRC1[i+31:i], imm8)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV-VMI VEX.vvvv (w) ModRM:r/m (R) Imm8 NA
FV-RVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-753
INSTRUCTION SET REFERENCE, A-Z
VPROLVD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] LEFT_ROTATE_DWORDS(SRC1[i+31:i], SRC2[31:0])
ELSE DEST[i+31:i] LEFT_ROTATE_DWORDS(SRC1[i+31:i], SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPROLQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] LEFT_ROTATE_QWORDS(SRC1[63:0], imm8)
ELSE DEST[i+63:i] LEFT_ROTATE_QWORDS(SRC1[i+63:i], imm8)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPROLVQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] LEFT_ROTATE_QWORDS(SRC1[i+63:i], SRC2[63:0])
ELSE DEST[i+63:i] LEFT_ROTATE_QWORDS(SRC1[i+63:i], SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
5-754 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPROLD __m512i _mm512_rol_epi32(__m512i a, int imm);
VPROLD __m512i _mm512_mask_rol_epi32(__m512i a, __mmask16 k, __m512i b, int imm);
VPROLD __m512i _mm512_maskz_rol_epi32( __mmask16 k, __m512i a, int imm);
VPROLD __m256i _mm256_rol_epi32(__m256i a, int imm);
VPROLD __m256i _mm256_mask_rol_epi32(__m256i a, __mmask8 k, __m256i b, int imm);
VPROLD __m256i _mm256_maskz_rol_epi32( __mmask8 k, __m256i a, int imm);
VPROLD __m128i _mm_rol_epi32(__m128i a, int imm);
VPROLD __m128i _mm_mask_rol_epi32(__m128i a, __mmask8 k, __m128i b, int imm);
VPROLD __m128i _mm_maskz_rol_epi32( __mmask8 k, __m128i a, int imm);
VPROLQ __m512i _mm512_rol_epi64(__m512i a, int imm);
VPROLQ __m512i _mm512_mask_rol_epi64(__m512i a, __mmask8 k, __m512i b, int imm);
VPROLQ __m512i _mm512_maskz_rol_epi64(__mmask8 k, __m512i a, int imm);
VPROLQ __m256i _mm256_rol_epi64(__m256i a, int imm);
VPROLQ __m256i _mm256_mask_rol_epi64(__m256i a, __mmask8 k, __m256i b, int imm);
VPROLQ __m256i _mm256_maskz_rol_epi64( __mmask8 k, __m256i a, int imm);
VPROLQ __m128i _mm_rol_epi64(__m128i a, int imm);
VPROLQ __m128i _mm_mask_rol_epi64(__m128i a, __mmask8 k, __m128i b, int imm);
VPROLQ __m128i _mm_maskz_rol_epi64( __mmask8 k, __m128i a, int imm);
VPROLVD __m512i _mm512_rolv_epi32(__m512i a, __m512i cnt);
VPROLVD __m512i _mm512_mask_rolv_epi32(__m512i a, __mmask16 k, __m512i b, __m512i cnt);
VPROLVD __m512i _mm512_maskz_rolv_epi32(__mmask16 k, __m512i a, __m512i cnt);
VPROLVD __m256i _mm256_rolv_epi32(__m256i a, __m256i cnt);
VPROLVD __m256i _mm256_mask_rolv_epi32(__m256i a, __mmask8 k, __m256i b, __m256i cnt);
VPROLVD __m256i _mm256_maskz_rolv_epi32(__mmask8 k, __m256i a, __m256i cnt);
VPROLVD __m128i _mm_rolv_epi32(__m128i a, __m128i cnt);
VPROLVD __m128i _mm_mask_rolv_epi32(__m128i a, __mmask8 k, __m128i b, __m128i cnt);
VPROLVD __m128i _mm_maskz_rolv_epi32(__mmask8 k, __m128i a, __m128i cnt);
VPROLVQ __m512i _mm512_rolv_epi64(__m512i a, __m512i cnt);
VPROLVQ __m512i _mm512_mask_rolv_epi64(__m512i a, __mmask8 k, __m512i b, __m512i cnt);
VPROLVQ __m512i _mm512_maskz_rolv_epi64( __mmask8 k, __m512i a, __m512i cnt);
VPROLVQ __m256i _mm256_rolv_epi64(__m256i a, __m256i cnt);
VPROLVQ __m256i _mm256_mask_rolv_epi64(__m256i a, __mmask8 k, __m256i b, __m256i cnt);
VPROLVQ __m256i _mm256_maskz_rolv_epi64(__mmask8 k, __m256i a, __m256i cnt);
VPROLVQ __m128i _mm_rolv_epi64(__m128i a, __m128i cnt);
VPROLVQ __m128i _mm_mask_rolv_epi64(__m128i a, __mmask8 k, __m128i b, __m128i cnt);
VPROLVQ __m128i _mm_maskz_rolv_epi64(__mmask8 k, __m128i a, __m128i cnt);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-755
INSTRUCTION SET REFERENCE, A-Z
PRORD/PRORVD/PRORQ/PRORVQ—Bit Rotate Right
Opcode/
Instruction
Op / En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F38.W0 14 /r FV-RVM V/V AVX512VL
AVX512F
Rotate doublewords in xmm2 right by count in
the corresponding element of
xmm3/m128/m32bcst, store result using
writemask k1.
VPRORVD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDD.128.66.0F.W0 72 /0 ib FV-VMI V/V AVX512VL
AVX512F
Rotate doublewords in xmm2/m128/m32bcst
right by imm8, store result using writemask k1.
VPRORD xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
EVEX.NDS.128.66.0F38.W1 14 /r FV-RVM V/V AVX512VL
AVX512F
Rotate quadwords in xmm2 right by count in the
corresponding element of xmm3/m128/m64bcst,
store result using writemask k1.
VPRORVQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDD.128.66.0F.W1 72 /0 ib FV-VMI V/V AVX512VL
AVX512F
Rotate quadwords in xmm2/m128/m64bcst right
by imm8, store result using writemask k1.
VPRORQ xmm1 {k1}{z},
xmm2/m128/m64bcst, imm8
EVEX.NDS.256.66.0F38.W0 14 /r FV-RVM V/V AVX512VL
AVX512F
Rotate doublewords in ymm2 right by count in
the corresponding element of
ymm3/m256/m32bcst, store using result
writemask k1.
VPRORVD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDD.256.66.0F.W0 72 /0 ib FV-VMI V/V AVX512VL
AVX512F
Rotate doublewords in ymm2/m256/m32bcst
right by imm8, store result using writemask k1.
VPRORD ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
EVEX.NDS.256.66.0F38.W1 14 /r FV-RVM V/V AVX512VL
AVX512F
Rotate quadwords in ymm2 right by count in the
corresponding element of ymm3/m256/m64bcst,
store result using writemask k1.
VPRORVQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDD.256.66.0F.W1 72 /0 ib FV-VMI V/V AVX512VL
AVX512F
Rotate quadwords in ymm2/m256/m64bcst right
by imm8, store result using writemask k1.
VPRORQ ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
EVEX.NDS.512.66.0F38.W0 14 /r FV-RVM V/V AVX512F Rotate doublewords in zmm2 right by count in
the corresponding element of
zmm3/m512/m32bcst, store result using
writemask k1.
VPRORVD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDD.512.66.0F.W0 72 /0 ib FV-VMI V/V AVX512F Rotate doublewords in zmm2/m512/m32bcst
right by imm8, store result using writemask k1.
VPRORD zmm1 {k1}{z},
zmm2/m512/m32bcst, imm8
EVEX.NDS.512.66.0F38.W1 14 /r FV-RVM V/V AVX512F Rotate quadwords in zmm2 right by count in the
corresponding element of zmm3/m512/m64bcst,
store result using writemask k1.
VPRORVQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
EVEX.NDD.512.66.0F.W1 72 /0 ib FV-VMI V/V AVX512F Rotate quadwords in zmm2/m512/m64bcst right
by imm8, store result using writemask k1.
VPRORQ zmm1 {k1}{z},
zmm2/m512/m64bcst, imm8
5-756 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Rotates the bits in the individual data elements (doublewords, or quadword) in the first source operand to the right
by the number of bits specified in the count operand. If the value specified by the count operand is greater than 31
(for doublewords), or 63 (for a quadword), then the count operand modulo the data size (32 or 64) is used.
EVEX.128 encoded version: The destination operand is a XMM register. The source operand is a XMM register or a
memory location (for immediate form). The count operand can come either from an XMM register or a memory
location or an 8-bit immediate. Bits (MAX_VL-1:128) of the corresponding ZMM register are zeroed.
EVEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a
memory location (for immediate form). The count operand can come either from an XMM register or a memory
location or an 8-bit immediate. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed.
EVEX.512 encoded version: The destination operand is a ZMM register updated according to the writemask. For the
count operand in immediate form, the source operand can be a ZMM register, a 512-bit memory location or a 512-
bit vector broadcasted from a 32/64-bit memory location, the count operand is an 8-bit immediate. For the count
operand in variable form, the first source operand (the second operand) is a ZMM register and the counter operand
(the third operand) is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit
memory location.
Operation
RIGHT_ROTATE_DWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC modulo 32;
DEST[31:0] (SRC >> COUNT) | (SRC << (32 - COUNT));
RIGHT_ROTATE_QWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC modulo 64;
DEST[63:0] (SRC >> COUNT) | (SRC << (64 - COUNT));
VPRORD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] RIGHT_ROTATE_DWORDS( SRC1[31:0], imm8)
ELSE DEST[i+31:i] RIGHT_ROTATE_DWORDS(SRC1[i+31:i], imm8)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV-VMI VEX.vvvv (w) ModRM:r/m (R) Imm8 NA
FV-RVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-757
INSTRUCTION SET REFERENCE, A-Z
VPRORVD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] RIGHT_ROTATE_DWORDS(SRC1[i+31:i], SRC2[31:0])
ELSE DEST[i+31:i] RIGHT_ROTATE_DWORDS(SRC1[i+31:i], SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPRORQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] RIGHT_ROTATE_QWORDS(SRC1[63:0], imm8)
ELSE DEST[i+63:i] RIGHT_ROTATE_QWORDS(SRC1[i+63:i], imm8])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPRORVQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] RIGHT_ROTATE_QWORDS(SRC1[i+63:i], SRC2[63:0])
ELSE DEST[i+63:i] RIGHT_ROTATE_QWORDS(SRC1[i+63:i], SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
5-758 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPRORD __m512i _mm512_ror_epi32(__m512i a, int imm);
VPRORD __m512i _mm512_mask_ror_epi32(__m512i a, __mmask16 k, __m512i b, int imm);
VPRORD __m512i _mm512_maskz_ror_epi32( __mmask16 k, __m512i a, int imm);
VPRORD __m256i _mm256_ror_epi32(__m256i a, int imm);
VPRORD __m256i _mm256_mask_ror_epi32(__m256i a, __mmask8 k, __m256i b, int imm);
VPRORD __m256i _mm256_maskz_ror_epi32( __mmask8 k, __m256i a, int imm);
VPRORD __m128i _mm_ror_epi32(__m128i a, int imm);
VPRORD __m128i _mm_mask_ror_epi32(__m128i a, __mmask8 k, __m128i b, int imm);
VPRORD __m128i _mm_maskz_ror_epi32( __mmask8 k, __m128i a, int imm);
VPRORQ __m512i _mm512_ror_epi64(__m512i a, int imm);
VPRORQ __m512i _mm512_mask_ror_epi64(__m512i a, __mmask8 k, __m512i b, int imm);
VPRORQ __m512i _mm512_maskz_ror_epi64(__mmask8 k, __m512i a, int imm);
VPRORQ __m256i _mm256_ror_epi64(__m256i a, int imm);
VPRORQ __m256i _mm256_mask_ror_epi64(__m256i a, __mmask8 k, __m256i b, int imm);
VPRORQ __m256i _mm256_maskz_ror_epi64( __mmask8 k, __m256i a, int imm);
VPRORQ __m128i _mm_ror_epi64(__m128i a, int imm);
VPRORQ __m128i _mm_mask_ror_epi64(__m128i a, __mmask8 k, __m128i b, int imm);
VPRORQ __m128i _mm_maskz_ror_epi64( __mmask8 k, __m128i a, int imm);
VPRORVD __m512i _mm512_rorv_epi32(__m512i a, __m512i cnt);
VPRORVD __m512i _mm512_mask_rorv_epi32(__m512i a, __mmask16 k, __m512i b, __m512i cnt);
VPRORVD __m512i _mm512_maskz_rorv_epi32(__mmask16 k, __m512i a, __m512i cnt);
VPRORVD __m256i _mm256_rorv_epi32(__m256i a, __m256i cnt);
VPRORVD __m256i _mm256_mask_rorv_epi32(__m256i a, __mmask8 k, __m256i b, __m256i cnt);
VPRORVD __m256i _mm256_maskz_rorv_epi32(__mmask8 k, __m256i a, __m256i cnt);
VPRORVD __m128i _mm_rorv_epi32(__m128i a, __m128i cnt);
VPRORVD __m128i _mm_mask_rorv_epi32(__m128i a, __mmask8 k, __m128i b, __m128i cnt);
VPRORVD __m128i _mm_maskz_rorv_epi32(__mmask8 k, __m128i a, __m128i cnt);
VPRORVQ __m512i _mm512_rorv_epi64(__m512i a, __m512i cnt);
VPRORVQ __m512i _mm512_mask_rorv_epi64(__m512i a, __mmask8 k, __m512i b, __m512i cnt);
VPRORVQ __m512i _mm512_maskz_rorv_epi64( __mmask8 k, __m512i a, __m512i cnt);
VPRORVQ __m256i _mm256_rorv_epi64(__m256i a, __m256i cnt);
VPRORVQ __m256i _mm256_mask_rorv_epi64(__m256i a, __mmask8 k, __m256i b, __m256i cnt);
VPRORVQ __m256i _mm256_maskz_rorv_epi64(__mmask8 k, __m256i a, __m256i cnt);
VPRORVQ __m128i _mm_rorv_epi64(__m128i a, __m128i cnt);
VPRORVQ __m128i _mm_mask_rorv_epi64(__m128i a, __mmask8 k, __m128i b, __m128i cnt);
VPRORVQ __m128i _mm_maskz_rorv_epi64(__mmask8 k, __m128i a, __m128i cnt);
SIMD Floating-Point Exceptions
None
Other Exceptions
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-759
INSTRUCTION SET REFERENCE, A-Z
VPSCATTERDD/VPSCATTERDQ/VPSCATTERQD/VPSCATTERQQ—Scatter Packed Dword, Packed
Qword with Signed Dword, Signed Qword Indices
Instruction Operand Encoding
Description
Stores up to 16 elements (8 elements for qword indices) in doubleword vector or 8 elements in quadword vector to
the memory locations pointed by base address BASE_ADDR and index vector VINDEX, with scale SCALE. The
elements are specified via the VSIB (i.e., the index register is a vector register, holding packed indices). Elements
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 A0 /vsib T1S V/V AVX512VL
AVX512F
Using signed dword indices, scatter dword values to
memory using writemask k1.
VPSCATTERDD vm32x {k1}, xmm1
EVEX.256.66.0F38.W0 A0 /vsib T1S V/V AVX512VL
AVX512F
Using signed dword indices, scatter dword values to
memory using writemask k1.
VPSCATTERDD vm32y {k1}, ymm1
EVEX.512.66.0F38.W0 A0 /vsib T1S V/V AVX512F Using signed dword indices, scatter dword values to
memory using writemask k1.
VPSCATTERDD vm32z {k1}, zmm1
EVEX.128.66.0F38.W1 A0 /vsib T1S V/V AVX512VL
AVX512F
Using signed dword indices, scatter qword values to
memory using writemask k1.
VPSCATTERDQ vm32x {k1}, xmm1
EVEX.256.66.0F38.W1 A0 /vsib T1S V/V AVX512VL
AVX512F
Using signed dword indices, scatter qword values to
memory using writemask k1.
VPSCATTERDQ vm32x {k1}, ymm1
EVEX.512.66.0F38.W1 A0 /vsib T1S V/V AVX512F Using signed dword indices, scatter qword values to
memory using writemask k1.
VPSCATTERDQ vm32y {k1}, zmm1
EVEX.128.66.0F38.W0 A1 /vsib T1S V/V AVX512VL
AVX512F
Using signed qword indices, scatter dword values to
memory using writemask k1.
VPSCATTERQD vm64x {k1}, xmm1
EVEX.256.66.0F38.W0 A1 /vsib T1S V/V AVX512VL
AVX512F
Using signed qword indices, scatter dword values to
memory using writemask k1.
VPSCATTERQD vm64y {k1}, xmm1
EVEX.512.66.0F38.W0 A1 /vsib T1S V/V AVX512F Using signed qword indices, scatter dword values to
memory using writemask k1.
VPSCATTERQD vm64z {k1}, ymm1
EVEX.128.66.0F38.W1 A1 /vsib T1S V/V AVX512VL
AVX512F
Using signed qword indices, scatter qword values to
memory using writemask k1.
VPSCATTERQQ vm64x {k1}, xmm1
EVEX.256.66.0F38.W1 A1 /vsib T1S V/V AVX512VL
AVX512F
Using signed qword indices, scatter qword values to
memory using writemask k1.
VPSCATTERQQ vm64y {k1}, ymm1
EVEX.512.66.0F38.W1 A1 /vsib T1S V/V AVX512F Using signed qword indices, scatter qword values to
memory using writemask k1.
VPSCATTERQQ vm64z {k1}, zmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index ModRM:reg (r) NA NA
5-760 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
will only be stored if their corresponding mask bit is one. The entire mask register will be set to zero by this instruc-
tion unless it triggers an exception.
This instruction can be suspended by an exception if at least one element is already scattered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask register are partially updated. If any traps or interrupts are pending from already scattered
elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction break-
point is not re-triggered when the instruction is continued.
Note that:
Only writes to overlapping vector indices are guaranteed to be ordered with respect to each other (from LSB to
MSB of the source registers). Note that this also include partially overlapping vector indices. Writes that are not
overlapped may happen in any order. Memory ordering with other instructions follows the Intel-64 memory
ordering model. Note that this does not account for non-overlapping indices that map into the same physical
address locations.
If two or more destination indices completely overlap, the “earlier” write(s) may be skipped.
Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination ZMM will be completed (and non-faulting). Individual elements
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered
in the conventional order.
Elements may be scattered in any order, but faults must be delivered in a right-to left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.
This instruction does not perform AC checks, and so will never deliver an AC fault.
Not valid with 16-bit effective addresses. Will deliver a #UD fault.
If this instruction overwrites itself and then takes a fault, only a subset of elements may be completed before
the fault is delivered (as described above). If the fault handler completes and attempts to re-execute this
instruction, the new instruction will be executed, and the scatter will not complete.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if
ModRM.rm is different than 100b.
This instruction has special disp8*N and alignment rules. N is considered to be the size of a single vector element.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits are
ignored.
The instruction will #UD fault if the k0 mask register is specified.
The instruction will #UD fault if EVEX.Z = 1.
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
Ref. # 319433-023 5-761
INSTRUCTION SET REFERENCE, A-Z
VPSCATTERDD (EVEX encoded versions)
(KL, VL)= (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN MEM[BASE_ADDR +SignExtend(VINDEX[i+31:i]) * SCALE + DISP] SRC[i+31:i]
k1[j] 0
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
VPSCATTERDQ (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN MEM[BASE_ADDR +SignExtend(VINDEX[k+31:k]) * SCALE + DISP] SRC[i+63:i]
k1[j] 0
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
VPSCATTERQD (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN MEM[BASE_ADDR + (VINDEX[k+63:k]) * SCALE + DISP] SRC[i+31:i]
k1[j] 0
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
VPSCATTERQQ (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN MEM[BASE_ADDR + (VINDEX[j+63:j]) * SCALE + DISP] SRC[i+63:i]
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
5-762 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPSCATTERDD void _mm512_i32scatter_epi32(void * base, __m512i vdx, __m512i a, int scale);
VPSCATTERDD void _mm256_i32scatter_epi32(void * base, __m256i vdx, __m256i a, int scale);
VPSCATTERDD void _mm_i32scatter_epi32(void * base, __m128i vdx, __m128i a, int scale);
VPSCATTERDD void _mm512_mask_i32scatter_epi32(void * base, __mmask16 k, __m512i vdx, __m512i a, int scale);
VPSCATTERDD void _mm256_mask_i32scatter_epi32(void * base, __mmask8 k, __m256i vdx, __m256i a, int scale);
VPSCATTERDD void _mm_mask_i32scatter_epi32(void * base, __mmask8 k, __m128i vdx, __m128i a, int scale);
VPSCATTERDQ void _mm512_i32scatter_epi64(void * base, __m256i vdx, __m512i a, int scale);
VPSCATTERDQ void _mm256_i32scatter_epi64(void * base, __m128i vdx, __m256i a, int scale);
VPSCATTERDQ void _mm_i32scatter_epi64(void * base, __m128i vdx, __m128i a, int scale);
VPSCATTERDQ void _mm512_mask_i32scatter_epi64(void * base, __mmask8 k, __m256i vdx, __m512i a, int scale);
VPSCATTERDQ void _mm256_mask_i32scatter_epi64(void * base, __mmask8 k, __m128i vdx, __m256i a, int scale);
VPSCATTERDQ void _mm_mask_i32scatter_epi64(void * base, __mmask8 k, __m128i vdx, __m128i a, int scale);
VPSCATTERQD void _mm512_i64scatter_epi32(void * base, __m512i vdx, __m256i a, int scale);
VPSCATTERQD void _mm256_i64scatter_epi32(void * base, __m256i vdx, __m128i a, int scale);
VPSCATTERQD void _mm_i64scatter_epi32(void * base, __m128i vdx, __m128i a, int scale);
VPSCATTERQD void _mm512_mask_i64scatter_epi32(void * base, __mmask8 k, __m512i vdx, __m256i a, int scale);
VPSCATTERQD void _mm256_mask_i64scatter_epi32(void * base, __mmask8 k, __m256i vdx, __m128i a, int scale);
VPSCATTERQD void _mm_mask_i64scatter_epi32(void * base, __mmask8 k, __m128i vdx, __m128i a, int scale);
VPSCATTERQQ void _mm512_i64scatter_epi64(void * base, __m512i vdx, __m512i a, int scale);
VPSCATTERQQ void _mm256_i64scatter_epi64(void * base, __m256i vdx, __m256i a, int scale);
VPSCATTERQQ void _mm_i64scatter_epi64(void * base, __m128i vdx, __m128i a, int scale);
VPSCATTERQQ void _mm512_mask_i64scatter_epi64(void * base, __mmask8 k, __m512i vdx, __m512i a, int scale);
VPSCATTERQQ void _mm256_mask_i64scatter_epi64(void * base, __mmask8 k, __m256i vdx, __m256i a, int scale);
VPSCATTERQQ void _mm_mask_i64scatter_epi64(void * base, __mmask8 k, __m128i vdx, __m128i a, int scale);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12.
Ref. # 319433-023 5-763
INSTRUCTION SET REFERENCE, A-Z
PSHUFB—Packed Shuffle Bytes
Instruction Operand Encoding
Description
PSHUFB performs in-place shuffles of bytes in the first source operand according to the shuffle control mask in the
second source operand. The instruction permutes the data in the first source operand, leaving the shuffle mask
unaffected. If the most significant bit (bit[7]) of each byte of the shuffle control mask is set, then constant zero is
written in the result byte. Each byte in the shuffle control mask forms an index to permute the corresponding byte
in the first source operand. The value of each index is the least significant 4 bits of the shuffle control byte. The first
source and destination operands are vector registers. The second source is either a vector register or a memory
location.
128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAX_VL-1:128) of the
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (MAX_VL-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: Bits (MAX_VL-1:128) of the destination register stores the 16-byte shuffle result of the
upper 16 bytes of the first source operand, using the upper 16-bytes of the second source operand as control
mask.
EVEX encoded version: The second source operand is an ZMM/YMM/XMM register or an 512/256/128-bit memory
location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination is condi-
tionally updated with writemask k1.
EVEX and VEX encoded version: Four in-lane 128-bit shuffles.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 38 00 /r RM V/V SSSE3 Shuffle bytes in xmm1 according to contents of
xmm2/m128.
PSHUFB xmm1, xmm2/m128
VEX.NDS.128.66.0F38 00 /r RVM V/V AVX Shuffle bytes in xmm2 according to contents of
xmm3/m128.
VPSHUFB xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38 00 /r RVM V/V AVX2 Shuffle bytes in ymm2 according to contents of
ymm3/m256.
VPSHUFB ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.WIG 00 /r FVM V/V AVX512VL
AVX512BW
Shuffle bytes in xmm2 according to contents of
xmm3/m128 under write mask k1.
VPSHUFB xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F38.WIG 00 /r FVM V/V AVX512VL
AVX512BW
Shuffle bytes in ymm2 according to contents of
ymm3/m256 under write mask k1.
VPSHUFB ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F38.WIG 00 /r FVM V/V AVX512BW Shuffle bytes in zmm2 according to contents of
zmm3/m512 under write mask k1.
VPSHUFB zmm1 {k1}{z}, zmm2,
zmm3/m512
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-764 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VPSHUFB (EVEX.512 encoded version)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN
IF (SRC2[(i * 8)+7] = 1 ) then
THEN DEST[i+7:i] 0;
ELSE
index[3:0] SRC2[i+3:i];
OFFSET = j MODULO 128
DEST[i+7:i] SRC1[OFFSET + index*8+7:OFFSET + index*8];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSHUFB (VEX.256 encoded version)
for i = 0 to 15 {
if (SRC2[(i * 8)+7] = 1 ) then
DEST[(i*8)+7:(i*8)+0] 0;
else
index[3:0] SRC2[(i*8)+3 : (i*8)+0];
DEST[(i*8)+7:(i*8)+0] SRC1[(index*8+7):(index*8+0)];
endif
if (SRC2[128 + (i * 8)+7] = 1 ) then
DEST[128 + (i*8)+7:(i*8)+0] 0;
else
index[3:0] SRC2[128 + (i*8)+3 : (i*8)+0];
DEST[128 + (i*8)+7:(i*8)+0] SRC1[128 + (index*8+7):(index*8+0)];
endif
}
DEST[MAX_VL-1:256] 0 ;
VPSHUFB (VEX.128 encoded version)
for i = 0 to 15 {
if (SRC2[(i * 8)+7] = 1 ) then
DEST[(i*8)+7:(i*8)+0] 0;
else
index[3:0] SRC2[(i*8)+3 : (i*8)+0];
DEST[(i*8)+7:(i*8)+0] SRC1[(index*8+7):(index*8+0)];
endif
}
DEST[MAX_VL-1:128] 0
Ref. # 319433-023 5-765
INSTRUCTION SET REFERENCE, A-Z
PSHUFB (128-bit Legacy SSE version)
for i = 0 to 15 {
if (SRC[(i * 8)+7] = 1 ) then
DEST[(i*8)+7:(i*8)+0] 0;
else
index[3:0] SRC[(i*8)+3 : (i*8)+0];
DEST[(i*8)+7:(i*8)+0] DEST[(index*8+7):(index*8+0)];
endif
}
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPSHUFB __m512i _mm512_shuffle_epi8(__m512i a, __m512i b);
VPSHUFB __m512i _mm512_mask_shuffle_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPSHUFB __m512i _mm512_maskz_shuffle_epi8( __mmask64 k, __m512i a, __m512i b);
VPSHUFB __m256i _mm256_mask_shuffle_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPSHUFB __m256i _mm256_maskz_shuffle_epi8( __mmask32 k, __m256i a, __m256i b);
VPSHUFB __m128i _mm_mask_shuffle_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPSHUFB __m128i _mm_maskz_shuffle_epi8( __mmask16 k, __m128i a, __m128i b);
(V)PSHUFB __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
VPSHUFB __m256i _mm256_shuffle_epi8(__m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
5-766 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PSHUFHW—Shuffle Packed High Words
Instruction Operand Encoding
Description
Copies words from the high quadword of the source operand and inserts them in the high quadword of the destina-
tion operand at word locations selected with the immediate operand. This operation is similar to the operation used
by the PSHUFD instruction, which is illustrated in Figure F-1. For the PSHUFHW instruction, each 2-bit field in the
immediate operand selects the contents of one word location in the high quadword of the destination operand. The
binary encodings of the immediate operand fields select words (0, 1, 2 or 3) from the high quadword of the source
operand to be copied to the destination operand. The low quadword of the source operand is copied to the low
quadword of the destination operand.
Note that this instruction permits a word in the high quadword of the source operand to be copied to more than one
word location in the high quadword of the destination operand.
Legacy SSE instructions: In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM
register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding YMM destination register remain
unchanged.
VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register
or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding YMM register are zeroed.
VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register
or a 256-bit memory location.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 70 /r ib RMI V/V SSE2 Shuffle the high words in xmm2/m128 based on the
encoding in imm8 and store the result in xmm1.
PSHUFHW xmm1, xmm2/m128, imm8
VEX.128.F3.0F 70 /r ib RMI V/V AVX Shuffle the high words in xmm2/m128 based on the
encoding in imm8 and store the result in xmm1.
VPSHUFHW xmm1, xmm2/m128, imm8
VEX.256.F3.0F 70 /r ib RMI V/V AVX2 Shuffle the high words in ymm2/m256 based on the
encoding in imm8 and store the result in ymm1.
VPSHUFHW ymm1, ymm2/m256, imm8
EVEX.128.F3.0F.WIG 70 /r ib FVM V/V AVX512VL
AVX512BW
Shuffle the high words in xmm2/m128 based on the
encoding in imm8 and store the result in xmm1 under
write mask k1.
VPSHUFHW xmm1 {k1}{z},
xmm2/m128, imm8
EVEX.256.F3.0F.WIG 70 /r ib FVM V/V AVX512VL
AVX512BW
Shuffle the high words in ymm2/m256 based on the
encoding in imm8 and store the result in ymm1 under
write mask k1.
VPSHUFHW ymm1 {k1}{z},
ymm2/m256, imm8
EVEX.512.F3.0F.WIG 70 /r ib FVM V/V AVX512BW Shuffle the high words in zmm2/m512 based on the
encoding in imm8 and store the result in zmm1 under
write mask k1.
VPSHUFHW zmm1 {k1}{z},
zmm2/m512, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
FVM ModRM:reg (w) ModRM:r/m (r) Imm8 NA
Ref. # 319433-023 5-767
INSTRUCTION SET REFERENCE, A-Z
EVEX encoded version: The destination operand is a ZMM/YMM/XMM registers. The source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is updated according to the
writemask.
Note: In VEX encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VPSHUFHW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL >= 128
TMP_DEST[63:0] SRC1[63:0]
TMP_DEST[79:64] (SRC1 >> (imm[1:0] *16))[79:64]
TMP_DEST[95:80] (SRC1 >> (imm[3:2] * 16))[79:64]
TMP_DEST[111:96] (SRC1 >> (imm[5:4] * 16))[79:64]
TMP_DEST[127:112] (SRC1 >> (imm[7:6] * 16))[79:64]
FI;
IF VL >= 256
TMP_DEST[191:128] SRC1[191:128]
TMP_DEST[207:192] (SRC1 >> (imm[1:0] *16))[207:192]
TMP_DEST[223:208] (SRC1 >> (imm[3:2] * 16))[207:192]
TMP_DEST[239:224] (SRC1 >> (imm[5:4] * 16))[207:192]
TMP_DEST[255:240] (SRC1 >> (imm[7:6] * 16))[207:192]
FI;
IF VL >= 512
TMP_DEST[319:256] SRC1[319:256]
TMP_DEST[335:320] (SRC1 >> (imm[1:0] *16))[335:320]
TMP_DEST[351:336] (SRC1 >> (imm[3:2] * 16))[335:320]
TMP_DEST[367:352] (SRC1 >> (imm[5:4] * 16))[335:320]
TMP_DEST[383:368] (SRC1 >> (imm[7:6] * 16))[335:320]
TMP_DEST[447:384] SRC1[447:384]
TMP_DEST[463:448] (SRC1 >> (imm[1:0] *16))[463:448]
TMP_DEST[479:464] (SRC1 >> (imm[3:2] * 16))[463:448]
TMP_DEST[495:480] (SRC1 >> (imm[5:4] * 16))[463:448]
TMP_DEST[511:496] (SRC1 >> (imm[7:6] * 16))[463:448]
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i];
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-768 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSHUFHW (VEX.256 encoded version)
DEST[63:0] SRC1[63:0]
DEST[79:64] (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80] (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96] (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112] (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[191:128] SRC1[191:128]
DEST[207192] (SRC1 >> (imm[1:0] *16))[207:192]
DEST[223:208] (SRC1 >> (imm[3:2] * 16))[207:192]
DEST[239:224] (SRC1 >> (imm[5:4] * 16))[207:192]
DEST[255:240] (SRC1 >> (imm[7:6] * 16))[207:192]
DEST[MAX_VL-1:256] 0 ;
VPSHUFHW (VEX.128 encoded version)
DEST[63:0] SRC1[63:0]
DEST[79:64] (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80] (SRC1 >> (imm[3:2] * 16))[79:64]
DEST[111:96] (SRC1 >> (imm[5:4] * 16))[79:64]
DEST[127:112] (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[MAX_VL-1:128] 0
PSHUFHW (128-bit Legacy SSE version)
DEST[63:0] SRC[63:0]
DEST[79:64] (SRC >> (imm[1:0] *16))[79:64]
DEST[95:80] (SRC >> (imm[3:2] * 16))[79:64]
DEST[111:96] (SRC >> (imm[5:4] * 16))[79:64]
DEST[127:112] (SRC >> (imm[7:6] * 16))[79:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPSHUFHW __m512i _mm512_shufflehi_epi16(__m512i a, int n);
VPSHUFHW __m512i _mm512_mask_shufflehi_epi16(__m512i s, __mmask16 k, __m512i a, int n );
VPSHUFHW __m512i _mm512_maskz_shufflehi_epi16( __mmask16 k, __m512i a, int n );
VPSHUFHW __m256i _mm256_mask_shufflehi_epi16(__m256i s, __mmask8 k, __m256i a, int n );
VPSHUFHW __m256i _mm256_maskz_shufflehi_epi16( __mmask8 k, __m256i a, int n );
VPSHUFHW __m128i _mm_mask_shufflehi_epi16(__m128i s, __mmask8 k, __m128i a, int n );
VPSHUFHW __m128i _mm_maskz_shufflehi_epi16( __mmask8 k, __m128i a, int n );
(V)PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)
VPSHUFHW __m256i _mm256_shufflehi_epi16(__m256i a, int n)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4;
EVEX-encoded instruction, see Exceptions Type E4NF.nb
#UD If VEX.vvvv != 1111B, or EVEX.vvvv != 1111B.
Ref. # 319433-023 5-769
INSTRUCTION SET REFERENCE, A-Z
PSHUFLW—Shuffle Packed Low Words
Instruction Operand Encoding
Description
Copies words from the low quadword of the source operand and inserts them in the low quadword of the destina-
tion operand at word locations selected with the immediate operand. This operation is similar to the operation used
by the PSHUFD instruction, which is illustrated in Figure F-1. For the PSHUFLW instruction, each 2-bit field in the
immediate operand selects the contents of one word location in the low quadword of the destination operand. The
binary encodings of the immediate operand fields select words (0, 1, 2 or 3) from the low quadword of the source
operand to be copied to the destination operand. The high quadword of the source operand is copied to the high
quadword of the destination operand.
Note that this instruction permits a word in the low quadword of the source operand to be copied to more than one
word location in the low quadword of the destination operand.
Legacy SSE instructions: In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM
register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination register remain
unchanged.
VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register
or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding register destination are zeroed.
VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register
or a 256-bit memory location.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 70 /r ib RMI V/V SSE2 Shuffle the low words in xmm2/m128 based on the
encoding in imm8 and store the result in xmm1.
PSHUFLW xmm1, xmm2/m128, imm8
VEX.128.F2.0F 70 /r ib RMI V/V AVX Shuffle the low words in xmm2/m128 based on the
encoding in imm8 and store the result in xmm1.
VPSHUFLW xmm1, xmm2/m128, imm8
VEX.256.F2.0F 70 /r ib RMI V/V AVX2 Shuffle the low words in ymm2/m256 based on the
encoding in imm8 and store the result in ymm1.
VPSHUFLW ymm1, ymm2/m256, imm8
EVEX.128.F2.0F.WIG 70 /r ib FVM V/V AVX512VL
AVX512BW
Shuffle the low words in xmm2/m128 based on the
encoding in imm8 and store the result in xmm1 under
write mask k1.
VPSHUFLW xmm1 {k1}{z},
xmm2/m128, imm8
EVEX.256.F2.0F.WIG 70 /r ib FVM V/V AVX512VL
AVX512BW
Shuffle the low words in ymm2/m256 based on the
encoding in imm8 and store the result in ymm1 under
write mask k1.
VPSHUFLW ymm1 {k1}{z},
ymm2/m256, imm8
EVEX.512.F2.0F.WIG 70 /r ib FVM V/V AVX512BW Shuffle the low words in zmm2/m512 based on the
encoding in imm8 and store the result in zmm1 under
write mask k1.
VPSHUFLW zmm1 {k1}{z},
zmm2/m512, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
FVM ModRM:reg (w) ModRM:r/m (r) Imm8 NA
5-770 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EVEX encoded version: The destination operand is a ZMM/YMM/XMM registers. The source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is updated according to the
writemask.
Note: In VEX encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VPSHUFLW (EVEX.U1.512 encoded version)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL >= 128
TMP_DEST[15:0] (SRC1 >> (imm[1:0] *16))[15:0]
TMP_DEST[31:16] (SRC1 >> (imm[3:2] * 16))[15:0]
TMP_DEST[47:32] (SRC1 >> (imm[5:4] * 16))[15:0]
TMP_DEST[63:48] (SRC1 >> (imm[7:6] * 16))[15:0]
TMP_DEST[127:64] SRC1[127:64]
FI;
IF VL >= 256
TMP_DEST[143:128] (SRC1 >> (imm[1:0] *16))[143:128]
TMP_DEST[159:144] (SRC1 >> (imm[3:2] * 16))[143:128]
TMP_DEST[175:160] (SRC1 >> (imm[5:4] * 16))[143:128]
TMP_DEST[191:176] (SRC1 >> (imm[7:6] * 16))[143:128]
TMP_DEST[255:192] SRC1[255:192]
FI;
IF VL >= 512
TMP_DEST[271:256] (SRC1 >> (imm[1:0] *16))[271:256]
TMP_DEST[287:272] (SRC1 >> (imm[3:2] * 16))[271:256]
TMP_DEST[303:288] (SRC1 >> (imm[5:4] * 16))[271:256]
TMP_DEST[319:304] (SRC1 >> (imm[7:6] * 16))[271:256]
TMP_DEST[383:320] SRC1[383:320]
TMP_DEST[399:384] (SRC1 >> (imm[1:0] *16))[399:384]
TMP_DEST[415:400] (SRC1 >> (imm[3:2] * 16))[399:384]
TMP_DEST[431:416] (SRC1 >> (imm[5:4] * 16))[399:384]
TMP_DEST[447:432] (SRC1 >> (imm[7:6] * 16))[399:384]
TMP_DEST[511:448] SRC1[511:448]
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i];
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-771
INSTRUCTION SET REFERENCE, A-Z
VPSHUFLW (VEX.256 encoded version)
DEST[15:0] (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16] (SRC1 >> (imm[3:2] * 16))[15:0]
DEST[47:32] (SRC1 >> (imm[5:4] * 16))[15:0]
DEST[63:48] (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64] SRC1[127:64]
DEST[143:128] (SRC1 >> (imm[1:0] *16))[143:128]
DEST[159:144] (SRC1 >> (imm[3:2] * 16))[143:128]
DEST[175:160] (SRC1 >> (imm[5:4] * 16))[143:128]
DEST[191:176] (SRC1 >> (imm[7:6] * 16))[143:128]
DEST[255:192] SRC1[255:192]
DEST[MAX_VL-1:256] 0 ;
VPSHUFLW (VEX.128 encoded version)
DEST[15:0] (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16] (SRC1 >> (imm[3:2] * 16))[15:0]
DEST[47:32] (SRC1 >> (imm[5:4] * 16))[15:0]
DEST[63:48] (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
PSHUFLW (128-bit Legacy SSE version)
DEST[15:0] (SRC >> (imm[1:0] *16))[15:0]
DEST[31:16] (SRC >> (imm[3:2] * 16))[15:0]
DEST[47:32] (SRC >> (imm[5:4] * 16))[15:0]
DEST[63:48] (SRC >> (imm[7:6] * 16))[15:0]
DEST[127:64] SRC[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPSHUFLW __m512i _mm512_shufflelo_epi16(__m512i a, int n);
VPSHUFLW __m512i _mm512_mask_shufflelo_epi16(__m512i s, __mmask16 k, __m512i a, int n );
VPSHUFLW __m512i _mm512_maskz_shufflelo_epi16( __mmask16 k, __m512i a, int n );
VPSHUFLW __m256i _mm256_mask_shufflelo_epi16(__m256i s, __mmask8 k, __m256i a, int n );
VPSHUFLW __m256i _mm256_maskz_shufflelo_epi16( __mmask8 k, __m256i a, int n );
VPSHUFLW __m128i _mm_mask_shufflelo_epi16(__m128i s, __mmask8 k, __m128i a, int n );
VPSHUFLW __m128i _mm_maskz_shufflelo_epi16( __mmask8 k, __m128i a, int n );
( V)PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)
VPSHUFLW __m256i _mm_shufflelo_epi16(__m256i a, int n)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4;
EVEX-encoded instruction, see Exceptions Type E4NF.nb
#UD If VEX.vvvv != 1111B, or EVEX.vvvv != 1111B.
5-772 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PSHUFD—Shuffle Packed Doublewords
Instruction Operand Encoding
Description
Copies doublewords from the source operand (the second operand) and inserts them in the destination operand
(the first operand) at the locations selected with the immediate operand (third operand). Figure 5-34 shows the
operation of the 256-bit VPSHUFD instruction and the encoding of the order operand imm8. Each 2-bit field in the
order operand selects the contents of one doubleword location within a 128-bit lane and copy to the target element
in the destination operand. For example, bits 0 and 1 of the order operand targets the first doubleword element in
the low and high 128-bit lane of the destination operand for 256-bit VPSHUFD. The encoding of bits 0 and 1 of the
order operand (see the field encoding in Figure 5-34) determines which doubleword (from the respective 128-bit
lane) of the source operand will be copied to doubleword 0 of the destination operand.
For 128-bit operation, only the low 128-bit lane are operative. Note that this instruction permits a doubleword in
the source operand to be copied to more than one doubleword location in the destination operand.
128-bit Legacy SSE version: The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. Bits (MAX_VL-1:128) of the corresponding ZMM destination register remain
unchanged.
VEX.128 encoded version: The source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. Bits (MAX_VL-1:128) of the corresponding ZMM register are zeroed.
VEX.256 encoded version: The source operand can be an YMM register or a 256-bit memory location. The destina-
tion operand is an YMM register. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed. Bits (255-
1:128) of the destination stores the shuffled results of the upper 16 bytes of the source operand using the imme-
diate byte as the order operand.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 70 /r ib RMI V/V SSE2 Shuffle the doublewords in xmm2/m128 based on
the encoding in imm8 and store the result in xmm1.
PSHUFD xmm1, xmm2/m128, imm8
VEX.128.66.0F.WIG 70 /r ib RMI V/V AVX Shuffle the doublewords in xmm2/m128 based on
the encoding in imm8 and store the result in xmm1.
VPSHUFD xmm1, xmm2/m128, imm8
VEX.256.66.0F.WIG 70 /r ib RMI V/V AVX2 Shuffle the doublewords in ymm2/m256 based on
the encoding in imm8 and store the result in ymm1.
VPSHUFD ymm1, ymm2/m256, imm8
EVEX.128.66.0F.W0 70 /r ib FV V/V AVX512VL
AVX512F
Shuffle the doublewords in xmm2/m128/m32bcst
based on the encoding in imm8 and store the result
in xmm1 using writemask k1.
VPSHUFD xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
EVEX.256.66.0F.W0 70 /r ib FV V/V AVX512VL
AVX512F
Shuffle the doublewords in ymm2/m256/m32bcst
based on the encoding in imm8 and store the result
in ymm1 using writemask k1.
VPSHUFD ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
EVEX.512.66.0F.W0 70 /r ib FV V/V AVX512F Shuffle the doublewords in zmm2/m512/m32bcst
based on the encoding in imm8 and store the result
in zmm1 using writemask k1.
VPSHUFD zmm1 {k1}{z},
zmm2/m512/m32bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
FV ModRM:reg (w) ModRM:r/m (r) Imm8 NA
Ref. # 319433-023 5-773
INSTRUCTION SET REFERENCE, A-Z
EVEX encoded version: The source operand can be an ZMM/YMM/XMM register, a 512/256/128-bit memory loca-
tion, or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a
ZMM/YMM/XMM register updated according to the writemask.
Each 128-bit lane of the destination stores the shuffled results of the respective lane of the source operand using
the immediate byte as the order operand.
Note: EVEX.vvvv and VEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Operation
VPSHUFD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN TMP_SRC[i+31:i] SRC[31:0]
ELSE TMP_SRC[i+31:i] SRC[i+31:i]
FI;
ENDFOR;
IF VL >= 128
TMP_DEST[31:0] (TMP_SRC[127:0] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[63:32] (TMP_SRC[127:0] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[95:64] (TMP_SRC[127:0] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[127:96] (TMP_SRC[127:0] >> (ORDER[7:6] * 32))[31:0];
FI;
IF VL >= 256
TMP_DEST[159:128] (TMP_SRC[255:128] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[191:160] (TMP_SRC[255:128] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[223:192] (TMP_SRC[255:128] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[255:224] (TMP_SRC[255:128] >> (ORDER[7:6] * 32))[31:0];
FI;
IF VL >= 512
TMP_DEST[287:256] (TMP_SRC[383:256] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[319:288] (TMP_SRC[383:256] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[351:320] (TMP_SRC[383:256] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[383:352] (TMP_SRC[383:256] >> (ORDER[7:6] * 32))[31:0];
TMP_DEST[415:384] (TMP_SRC[511:384] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[447:416] (TMP_SRC[511:384] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[479:448] (TMP_SRC[511:384] >> (ORDER[5:4] * 32))[31:0];
Figure 5-34. 256-bit VPSHUFD Instruction Operation
X7 X6 X5 X4
SRC
DEST Y7 Y6 Y5 Y4
ORDER 00B - X0
01B - X1
10B - X2
11B - X3
Encoding
of Fields in
ORDER
01234567 Operand
Y3 Y2 Y1 Y0
X3 X2 X1 X0
00B - X4
01B - X5
10B - X6
11B - X7
Encoding
of Fields in
ORDER
Operand
5-774 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
TMP_DEST[511:480] (TMP_SRC[511:384] >> (ORDER[7:6] * 32))[31:0];
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSHUFD (VEX.256 encoded version)
DEST[31:0] (SRC[127:0] >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] (SRC[127:0] >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] (SRC[127:0] >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] (SRC[127:0] >> (ORDER[7:6] * 32))[31:0];
DEST[159:128] (SRC[255:128] >> (ORDER[1:0] * 32))[31:0];
DEST[191:160] (SRC[255:128] >> (ORDER[3:2] * 32))[31:0];
DEST[223:192] (SRC[255:128] >> (ORDER[5:4] * 32))[31:0];
DEST[255:224] (SRC[255:128] >> (ORDER[7:6] * 32))[31:0];
DEST[MAX_VL-1:256] 0
VPSHUFD (VEX.128 encoded version)
DEST[31:0] (SRC[127:0] >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] (SRC[127:0] >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] (SRC[127:0] >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] (SRC[127:0] >> (ORDER[7:6] * 32))[31:0];
DEST[MAX_VL-1:128] 0
PSHUFD (128-bit Legacy SSE version)
DEST[31:0] (SRC[127:0] >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] (SRC[127:0] >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] (SRC[127:0] >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] (SRC[127:0] >> (ORDER[7:6] * 32))[31:0];
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPSHUFD __m512i _mm512_shuffle_epi32(__m512i a, int n );
VPSHUFD __m512i _mm512_mask_shuffle_epi32(__m512i s, __mmask16 k, __m512i a, int n );
VPSHUFD __m512i _mm512_maskz_shuffle_epi32( __mmask16 k, __m512i a, int n );
VPSHUFD __m256i _mm256_mask_shuffle_epi32(__m256i s, __mmask8 k, __m256i a, int n );
VPSHUFD __m256i _mm256_maskz_shuffle_epi32( __mmask8 k, __m256i a, int n );
VPSHUFD __m128i _mm_mask_shuffle_epi32(__m128i s, __mmask8 k, __m128i a, int n );
VPSHUFD __m128i _mm_maskz_shuffle_epi32( __mmask8 k, __m128i a, int n );
(V)PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n);
VPSHUFD __m256i _mm256_shuffle_epi32(__m256i a, int n);
SIMD Floating-Point Exceptions
None
Ref. # 319433-023 5-775
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.
5-776 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PSLLDQ—Byte Shift Left
Instruction Operand Encoding
Description
Shifts the source operand to the left by the number of bytes specified in the count operand. The empty low-order
bytes are cleared (set to all 0s). If the value specified by the count operand is greater than 15, the destination
operand is set to all 0s.
The source and destination operands are XMM registers. The count operand is an 8-bit immediate.
128-bit Legacy SSE version: The source and destination operands are the same. Bits (MAX_VL-1:128) of the corre-
sponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAX_VL-1:128) of the corresponding YMM register are zeroed.
VEX.256 encoded version: The source operand is YMM register. The destination operand is an YMM register.
EVEX encoded versions: The source operand is a vector register or a memory location. The destination operand is
a vector register.
Note: In VEX encoded versions, VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes the
source register.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 73 /7 ib MI V/V SSE2 Shift xmm1 left by imm8 bytes while shifting in 0s
and store result in xmm1.
PSLLDQ xmm1, imm8
VEX.NDD.128.66.0F 73 /7 ib VMI V/V AVX Shift xmm2 left by imm8 bytes while shifting in 0s
and store result in xmm1.
VPSLLDQ xmm1, xmm2, imm8
VEX.NDD.256.66.0F 73 /7 ib VMI V/V AVX2 Shift ymm2 left by imm8 bytes while shifting in 0s
and store result in ymm1.
VPSLLDQ ymm1, ymm2, imm8
EVEX.NDD.128.66.0F 73 /7 ib FVM V/V AVX512VL
AVX512BW
Shift xmm2/m128 left by imm8 bytes while shifting
in 0s and store result in xmm1.
VPSLLDQ xmm1,xmm2/ m128, imm8
EVEX.NDD.256.66.0F 73 /7 ib FVM V/V AVX512VL
AVX512BW
Shift ymm2/m256 left by imm8 bytes while shifting
in 0s and store result in ymm1.
VPSLLDQ ymm1, ymm2/m256, imm8
EVEX.NDD.512.66.0F 73 /7 ib FVM V/V AVX512BW Shift zmm2/m512 left by imm8 bytes while shifting
in 0s and store result in zmm1.
VPSLLDQ zmm1, zmm2/m512, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MI ModRM:r/m (r, w) Imm8 NA NA
VMI VEX.vvvv (w) ModRM:r/m (R) Imm8 NA
FVM EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
Ref. # 319433-023 5-777
INSTRUCTION SET REFERENCE, A-Z
Operation
VPSLLDQ (EVEX.U1.512 encoded version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST[127:0] SRC[127:0] << (TEMP * 8)
DEST[255:128] SRC[255:128] << (TEMP * 8)
DEST[383:256] SRC[383:256] << (TEMP * 8)
DEST[511:384] SRC[511:384] << (TEMP * 8)
DEST[MAX_VL-1:512] 0
VPSLLDQ (VEX.256 and EVEX.U1.256 encoded version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST[127:0] SRC[127:0] << (TEMP * 8)
DEST[255:128] SRC[255:128] << (TEMP * 8)
DEST[MAX_VL-1:256] 0
VPSLLDQ (VEX.128 and EVEX.U1.128 encoded version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST SRC << (TEMP * 8)
DEST[MAX_VL-1:128] 0
PSLLDQ(128-bit Legacy SSE version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST DEST << (TEMP * 8)
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
(V)PSLLDQ __m128i _mm_bslli_epi128 ( __m128i a, int imm)
VPSLLDQ __m256i _mm256_bslli_epi128 ( __m256i a, const int imm)
VPSLLDQ __m512i _mm512_bslli_epi128 ( __m512i a, const int imm)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 7.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
5-778 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PSLLW/PSLLD/PSLLQ—Bit Shift Left
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F F1/r RM V/V SSE2 Shift words in xmm1 left by amount specified in
xmm2/m128 while shifting in 0s.
PSLLW xmm1, xmm2/m128
66 0F 71 /6 ib MI V/V SSE2 Shift words in xmm1 left by imm8 while shifting in
0s.
PSLLW xmm1, imm8
66 0F 72 /6 ib MI V/V SSE2 Shift doublewords in xmm1 left by imm8 while
shifting in 0s.
PSLLD xmm1, imm8
66 0F 73 /6 ib MI V/V SSE2 Shift quadwords in xmm1 left by imm8 while shifting
in 0s.
PSLLQ xmm1, imm8
VEX.NDS.128.66.0F.WIG F1 /r RVM V/V AVX Shift words in xmm2 left by amount specified in
xmm3/m128 while shifting in 0s.
VPSLLW xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 71 /6 ib VMI V/V AVX Shift words in xmm2 left by imm8 while shifting in
0s.
VPSLLW xmm1, xmm2, imm8
VEX.NDS.128.66.0F.WIG F2 /r RVM V/V AVX Shift doublewords in xmm2 left by amount specified
in xmm3/m128 while shifting in 0s.
VPSLLD xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 72 /6 ib VMI V/V AVX Shift doublewords in xmm2 left by imm8 while
shifting in 0s.
VPSLLD xmm1, xmm2, imm8
VEX.NDS.128.66.0F.WIG F3 /r RVM V/V AVX Shift quadwords in xmm2 left by amount specified in
xmm3/m128 while shifting in 0s.
VPSLLQ xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 73 /6 ib VMI V/V AVX Shift quadwords in xmm2 left by imm8 while shifting
in 0s.
VPSLLQ xmm1, xmm2, imm8
VEX.NDS.256.66.0F.WIG F1 /r RVM V/V AVX2 Shift words in ymm2 left by amount specified in
xmm3/m128 while shifting in 0s.
VPSLLW ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 71 /6 ib VMI V/V AVX2 Shift words in ymm2 left by imm8 while shifting in
0s.
VPSLLW ymm1, ymm2, imm8
VEX.NDS.256.66.0F.WIG F2 /r RVM V/V AVX2 Shift doublewords in ymm2 left by amount specified
in xmm3/m128 while shifting in 0s.
VPSLLD ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 72 /6 ib VMI V/V AVX2 Shift doublewords in ymm2 left by imm8 while
shifting in 0s.
VPSLLD ymm1, ymm2, imm8
VEX.NDS.256.66.0F.WIG F3 /r RVM V/V AVX2 Shift quadwords in ymm2 left by amount specified in
xmm3/m128 while shifting in 0s.
VPSLLQ ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 73 /6 ib VMI V/V AVX2 Shift quadwords in ymm2 left by imm8 while shifting
in 0s.
VPSLLQ ymm1, ymm2, imm8
Ref. # 319433-023 5-779
INSTRUCTION SET REFERENCE, A-Z
EVEX.NDS.128.66.0F.WIG F1 /r M128 V/V AVX512VL
AVX512BW
Shift words in xmm2 left by amount specified in
xmm3/m128 while shifting in 0s using writemask k1.
VPSLLW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG F1 /r M128 V/V AVX512VL
AVX512BW
Shift words in ymm2 left by amount specified in
xmm3/m128 while shifting in 0s using writemask k1.
VPSLLW ymm1 {k1}{z}, ymm2,
xmm3/m128
EVEX.NDS.512.66.0F.WIG F1 /r M128 V/V AVX512BW Shift words in zmm2 left by amount specified in
xmm3/m128 while shifting in 0s using writemask k1.
VPSLLW zmm1 {k1}{z}, zmm2,
xmm3/m128
EVEX.NDD.128.66.0F.WIG 71 /6 ib FVM V/V AVX512VL
AVX512BW
Shift words in xmm2/m128 left by imm8 while
shifting in 0s using writemask k1.
VPSLLW xmm1 {k1}{z}, xmm2/m128,
imm8
EVEX.NDD.256.66.0F.WIG 71 /6 ib FVM V/V AVX512VL
AVX512BW
Shift words in ymm2/m256 left by imm8 while
shifting in 0s using writemask k1.
VPSLLW ymm1 {k1}{z}, ymm2/m256,
imm8
EVEX.NDD.512.66.0F.WIG 71 /6 ib FVM V/V AVX512BW Shift words in zmm2/m512 left by imm8 while
shifting in 0 using writemask k1.
VPSLLW zmm1 {k1}{z}, zmm2/m512,
imm8
EVEX.NDS.128.66.0F.W0 F2 /r M128 V/V AVX512VL
AVX512F
Shift doublewords in xmm2 left by amount specified
in xmm3/m128 while shifting in 0s under writemask
k1.
VPSLLD xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.W0 F2 /r M128 V/V AVX512VL
AVX512F
Shift doublewords in ymm2 left by amount specified
in xmm3/m128 while shifting in 0s under writemask
k1.
VPSLLD ymm1 {k1}{z}, ymm2,
xmm3/m128
EVEX.NDS.512.66.0F.W0 F2 /r M128 V/V AVX512F Shift doublewords in zmm2 left by amount specified
in xmm3/m128 while shifting in 0s under writemask
k1.
VPSLLD zmm1 {k1}{z}, zmm2,
xmm3/m128
EVEX.NDD.128.66.0F.W0 72 /6 ib FVI V/V AVX512VL
AVX512F
Shift doublewords in xmm2/m128/m32bcst left by
imm8 while shifting in 0s using writemask k1.
VPSLLD xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
EVEX.NDD.256.66.0F.W0 72 /6 ib FVI V/V AVX512VL
AVX512F
Shift doublewords in ymm2/m256/m32bcst left by
imm8 while shifting in 0s using writemask k1.
VPSLLD ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
EVEX.NDD.512.66.0F.W0 72 /6 ib FVI V/V AVX512F Shift doublewords in zmm2/m512/m32bcst left by
imm8 while shifting in 0s using writemask k1.
VPSLLD zmm1 {k1}{z},
zmm2/m512/m32bcst, imm8
EVEX.NDS.128.66.0F.W1 F3 /r M128 V/V AVX512VL
AVX512F
Shift quadwords in xmm2 left by amount specified in
xmm3/m128 while shifting in 0s using writemask k1.
VPSLLQ xmm1 {k1}{z}, xmm2,
xmm3/m128
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-780 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Shifts the bits in the individual data elements (words, doublewords, or quadword) in the first source operand to the
left by the number of bits specified in the count operand. As the bits in the data elements are shifted left, the empty
low-order bits are cleared (set to 0). If the value specified by the count operand is greater than 15 (for words), 31
(for doublewords), or 63 (for a quadword), then the destination operand is set to all 0s.
Note that only the first 64-bits of a 128-bit count operand are checked to compute the count. If the second source
operand is a memory address, 128 bits are loaded.
The PSLLW instruction shifts each of the words in the first source operand to the left by the number of bits specified
in the count operand; the PSLLD instruction shifts each of the doublewords in the first source operand; and the
PSLLQ instruction shifts the quadword (or quadwords) in the first source operand.
Legacy SSE instructions: In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operands are XMM registers. The count operand can
be either an XMM register or a 128-bit memory location or an 8-bit immediate. Bits (MAX_VL-1:128) of the corre-
sponding YMM destination register remain unchanged.
EVEX.NDS.256.66.0F.W1 F3 /r M128 V/V AVX512VL
AVX512F
Shift quadwords in ymm2 left by amount specified in
xmm3/m128 while shifting in 0s using writemask k1.
VPSLLQ ymm1 {k1}{z}, ymm2,
xmm3/m128
EVEX.NDS.512.66.0F.W1 F3 /r M128 V/V AVX512F Shift quadwords in zmm2 left by amount specified in
xmm3/m128 while shifting in 0s using writemask k1.
VPSLLQ zmm1 {k1}{z}, zmm2,
xmm3/m128
EVEX.NDD.128.66.0F.W1 73 /6 ib FVI V/V AVX512VL
AVX512F
Shift quadwords in xmm2/m128/m64bcst left by
imm8 while shifting in 0s using writemask k1.
VPSLLQ xmm1 {k1}{z},
xmm2/m128/m64bcst, imm8
EVEX.NDD.256.66.0F.W1 73 /6 ib FVI V/V AVX512VL
AVX512F
Shift quadwords in ymm2/m256/m64bcst left by
imm8 while shifting in 0s using writemask k1.
VPSLLQ ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
EVEX.NDD.512.66.0F.W1 73 /6 ib FVI V/V AVX512F Shift quadwords in zmm2/m512/m64bcst left by
imm8 while shifting in 0s using writemask k1.
VPSLLQ zmm1 {k1}{z},
zmm2/m512/m64bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MI ModRM:r/m (r, w) Imm8 NA NA
RM ModRM:reg (w) ModRM:r/m (r) NA NA
VMI VEX.vvvv (w) ModRM:r/m (R) Imm8 NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
FVI EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
M128 ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-781
INSTRUCTION SET REFERENCE, A-Z
VEX.128 encoded version: The destination operand is a XMM register. The source operand is a XMM register. The
count operand can come either from an XMM register or a memory location or an 8-bit immediate. Bits (MAX_VL-
1:128) of the corresponding ZMM register are zeroed.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit
immediate. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a
memory location (the variable count version). For the immediate count version, the source operand (the second
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register,
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.
Operation
LOGICAL_LEFT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 15)
THEN
DEST[127:0] 00000000000000000000000000000000H
ELSE
DEST[15:0] ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ZeroExtend(SRC[127:112] << COUNT);
FI;
LOGICAL_LEFT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[31:0] 0
ELSE
DEST[31:0] ZeroExtend(SRC[31:0] << COUNT);
FI;
LOGICAL_LEFT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[127:0] 00000000000000000000000000000000H
ELSE
DEST[31:0] ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] ZeroExtend(SRC[127:96] << COUNT);
FI;
LOGICAL_LEFT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
DEST[63:0] 0
ELSE
DEST[63:0] ZeroExtend(SRC[63:0] << COUNT);
5-782 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI;
LOGICAL_LEFT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
DEST[127:0] 00000000000000000000000000000000H
ELSE
DEST[63:0] ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] ZeroExtend(SRC[127:64] << COUNT);
FI;
LOGICAL_LEFT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 15)
THEN
DEST[127:0] 00000000000000000000000000000000H
DEST[255:128] 00000000000000000000000000000000H
ELSE
DEST[15:0] ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] ZeroExtend(SRC[255:240] << COUNT);
FI;
LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[127:0] 00000000000000000000000000000000H
DEST[255:128] 00000000000000000000000000000000H
ELSE
DEST[31:0] ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] ZeroExtend(SRC[255:224] << COUNT);
FI;
LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
DEST[127:0] 00000000000000000000000000000000H
DEST[255:128] 00000000000000000000000000000000H
ELSE
DEST[63:0] ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] ZeroExtend(SRC[127:64] << COUNT)
DEST[191:128] ZeroExtend(SRC[191:128] << COUNT);
DEST[255:192] ZeroExtend(SRC[255:192] << COUNT);
FI;
Ref. # 319433-023 5-783
INSTRUCTION SET REFERENCE, A-Z
VPSLLW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
TMP_DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSLLW (EVEX versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
TMP_DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512
TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1[511:256], imm8)
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-784 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSLLW (ymm, ymm, xmm/m128) - VEX
DEST[255:0] LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0;
VPSLLW (ymm, imm8) - VEX
DEST[255:0] LOGICAL_LEFT_SHIFT_WORD_256b(SRC1, imm8)
DEST[MAX_VL-1:256] 0;
VPSLLW (xmm, xmm, xmm/m128) - VEX
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPSLLW (xmm, imm8) - VEX
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[MAX_VL-1:128] 0
PSLLW (xmm, xmm, xmm/m128) - VEX
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
PSLLW (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)
VPSLLD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] LOGICAL_LEFT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSLLD (EVEX versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128
TMP_DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)
Ref. # 319433-023 5-785
INSTRUCTION SET REFERENCE, A-Z
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSLLD (ymm, ymm, xmm/m128) - VEX
DEST[255:0] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0;
VPSLLD (ymm, imm8) - VEX
DEST[255:0] LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAX_VL-1:256] 0;
VPSLLD (xmm, xmm, xmm/m128) - VEX
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPSLLD (xmm, imm8) - VEX
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAX_VL-1:128] 0
PSLLD (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
PSLLD (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)
VPSLLQ (EVEX versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] LOGICAL_LEFT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
5-786 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI
FI;
ENDFOR
VPSLLQ (EVEX versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL = 128
TMP_DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
TMP_DEST[255:0] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSLLQ (ymm, ymm, xmm/m128) - VEX
DEST[255:0] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0;
VPSLLQ (ymm, imm8) - VEX
DEST[255:0] LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAX_VL-1:256] 0;
VPSLLQ (xmm, xmm, xmm/m128) - VEX
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPSLLQ (xmm, imm8) - VEX
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAX_VL-1:128] 0
PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
PSLLQ (xmm, imm8)
DEST[127:0] LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)
Ref. # 319433-023 5-787
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPSLLD __m512i _mm512_slli_epi32(__m512i a, unsigned int imm);
VPSLLD __m512i _mm512_mask_slli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m512i _mm512_maskz_slli_epi32( __mmask16 k, __m512i a, unsigned int imm);
VPSLLD __m256i _mm256_mask_slli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLD __m256i _mm256_maskz_slli_epi32( __mmask8 k, __m256i a, unsigned int imm);
VPSLLD __m128i _mm_mask_slli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m128i _mm_maskz_slli_epi32( __mmask8 k, __m128i a, unsigned int imm);
VPSLLD __m512i _mm512_sll_epi32(__m512i a, __m128i cnt);
VPSLLD __m512i _mm512_mask_sll_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m512i _mm512_maskz_sll_epi32( __mmask16 k, __m512i a, __m128i cnt);
VPSLLD __m256i _mm256_mask_sll_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m256i _mm256_maskz_sll_epi32( __mmask8 k, __m256i a, __m128i cnt);
VPSLLD __m128i _mm_mask_sll_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLD __m128i _mm_maskz_sll_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_slli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m512i _mm512_maskz_slli_epi64( __mmask8 k, __m512i a, unsigned int imm);
VPSLLQ __m256i _mm256_mask_slli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m256i _mm256_maskz_slli_epi64( __mmask8 k, __m256i a, unsigned int imm);
VPSLLQ __m128i _mm_mask_slli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m128i _mm_maskz_slli_epi64( __mmask8 k, __m128i a, unsigned int imm);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_mask_sll_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m512i _mm512_maskz_sll_epi64( __mmask8 k, __m512i a, __m128i cnt);
VPSLLQ __m256i _mm256_mask_sll_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m256i _mm256_maskz_sll_epi64( __mmask8 k, __m256i a, __m128i cnt);
VPSLLQ __m128i _mm_mask_sll_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLQ __m128i _mm_maskz_sll_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m512i _mm512_slli_epi16(__m512i a, unsigned int imm);
VPSLLW __m512i _mm512_mask_slli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m512i _mm512_maskz_slli_epi16( __mmask32 k, __m512i a, unsigned int imm);
VPSLLW __m256i _mm256_mask_sllii_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m256i _mm256_maskz_slli_epi16( __mmask16 k, __m256i a, unsigned int imm);
VPSLLW __m128i _mm_mask_slli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m128i _mm_maskz_slli_epi16( __mmask8 k, __m128i a, unsigned int imm);
VPSLLW __m512i _mm512_sll_epi16(__m512i a, __m128i cnt);
VPSLLW __m512i _mm512_mask_sll_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m512i _mm512_maskz_sll_epi16( __mmask32 k, __m512i a, __m128i cnt);
VPSLLW __m256i _mm256_mask_sll_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m256i _mm256_maskz_sll_epi16( __mmask16 k, __m256i a, __m128i cnt);
VPSLLW __m128i _mm_mask_sll_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLW __m128i _mm_maskz_sll_epi16( __mmask8 k, __m128i a, __m128i cnt);
PSLLW __m128i _mm_slli_epi16 (__m128i m, int count)
PSLLW __m128i _mm_sll_epi16 (__m128i m, __m128i count)
PSLLD __m128i _mm_slli_epi32 (__m128i m, int count)
PSLLD __m128i _mm_sll_epi32 (__m128i m, __m128i count)
PSLLQ __m128i _mm_slli_epi64 (__m128i m, int count)
PSLLQ __m128i _mm_sll_epi64 (__m128i m, __m128i count)
VPSLLW __m256i _mm256_slli_epi16 (__m256i m, int count)
VPSLLW __m256i _mm256_sll_epi16 (__m256i m, __m128i count)
VPSLLD __m256i _mm256_slli_epi32 (__m256i m, int count)
VPSLLD __m256i _mm256_sll_epi32 (__m256i m, __m128i count)
VPSLLQ __m256i _mm256_slli_epi64 (__m256i m, int count)
5-788 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSLLQ __m256i _mm256_sll_epi64 (__m256i m, __m128i count)
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instructions:
Syntax with RM/RVM operand encoding, see Exceptions Type 4.
Syntax with MI/VMI operand encoding, see Exceptions Type 7.
EVEX-encoded VPSLLW, see Exceptions Type E4NF.nb.
EVEX-encoded VPSLLD/Q:
Syntax with M128 operand encoding, see Exceptions Type E4NF.nb.
Syntax with FVI operand encoding, see Exceptions Type E4.
Ref. # 319433-023 5-789
INSTRUCTION SET REFERENCE, A-Z
PSRAW/PSRAD/PSRAQ—Bit Shift Arithmetic Right
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F E1/r RM V/V SSE2 Shift words in xmm1 right by amount specified
in xmm2/m128 while shifting in sign bits.
PSRAW xmm1, xmm2/m128
66 0F 71 /4 ib MI V/V SSE2 Shift words in xmm1 right by imm8 while
shifting in sign bits.
PSRAW xmm1, imm8
66 0F E2 /r RM V/V SSE2 Shift doublewords in xmm1 right by amount
specified in xmm2/m128 while shifting in sign
bits.
PSRAD xmm1, xmm2/m128
66 0F 72 /4 ib MI V/V SSE2 Shift doublewords in xmm1 right by imm8
while shifting in sign bits.
PSRAD xmm1, imm8
VEX.NDS.128.66.0F.WIG E1 /r RVM V/V AVX Shift words in xmm2 right by amount specified
in xmm3/m128 while shifting in sign bits.
VPSRAW xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 71 /4 ib VMI V/V AVX Shift words in xmm2 right by imm8 while
shifting in sign bits.
VPSRAW xmm1, xmm2, imm8
VEX.NDS.128.66.0F.WIG E2 /r RVM V/V AVX Shift doublewords in xmm2 right by amount
specified in xmm3/m128 while shifting in sign
bits.
VPSRAD xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 72 /4 ib VMI V/V AVX Shift doublewords in xmm2 right by imm8
while shifting in sign bits.
VPSRAD xmm1, xmm2, imm8
VEX.NDS.256.66.0F.WIG E1 /r RVM V/V AVX2 Shift words in ymm2 right by amount specified
in ymm3/m128 while shifting in sign bits.
VPSRAW ymm1, ymm2, ymm3/m128
VEX.NDD.256.66.0F.WIG 71 /4 ib VMI V/V AVX2 Shift words in ymm2 right by imm8 while
shifting in sign bits.
VPSRAW ymm1, ymm2, imm8
VEX.NDS.256.66.0F.WIG E2 /r RVM V/V AVX2 Shift doublewords in ymm2 right by amount
specified in ymm3/m128 while shifting in sign
bits.
VPSRAD ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 72 /4 ib VMI V/V AVX2 Shift doublewords in ymm2 right by imm8
while shifting in sign bits.
VPSRAD ymm1, ymm2, imm8
EVEX.NDS.128.66.0F.WIG E1 /r M128 V/V AVX512VL
AVX512BW
Shift words in xmm2 right by amount specified
in xmm3/m128 while shifting in sign bits using
writemask k1.
VPSRAW xmm1 {k1}{z}, xmm2, xmm3/m128
EVEX.NDS.256.66.0F.WIG E1 /r M128 V/V AVX512VL
AVX512BW
Shift words in ymm2 right by amount specified
in xmm3/m128 while shifting in sign bits using
writemask k1.
VPSRAW ymm1 {k1}{z}, ymm2, xmm3/m128
EVEX.NDS.512.66.0F.WIG E1 /r M128 V/V AVX512BW Shift words in zmm2 right by amount specified
in xmm3/m128 while shifting in sign bits using
writemask k1.
VPSRAW zmm1 {k1}{z}, zmm2, xmm3/m128
EVEX.NDD.128.66.0F.WIG 71 /4 ib FVM V/V AVX512VL
AVX512BW
Shift words in xmm2/m128 right by imm8
while shifting in sign bits using writemask k1.
VPSRAW xmm1 {k1}{z}, xmm2/m128, imm8
5-790 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
EVEX.NDD.256.66.0F.WIG 71 /4 ib FVM V/V AVX512VL
AVX512BW
Shift words in ymm2/m256 right by imm8
while shifting in sign bits using writemask k1.
VPSRAW ymm1 {k1}{z}, ymm2/m256, imm8
EVEX.NDD.512.66.0F.WIG 71 /4 ib FVM V/V AVX512BW Shift words in zmm2/m512 right by imm8
while shifting in sign bits using writemask k1.
VPSRAW zmm1 {k1}{z}, zmm2/m512, imm8
EVEX.NDS.128.66.0F.W0 E2 /r M128 V/V AVX512VL
AVX512F
Shift doublewords in xmm2 right by amount
specified in xmm3/m128 while shifting in sign
bits using writemask k1.
VPSRAD xmm1 {k1}{z}, xmm2, xmm3/m128
EVEX.NDS.256.66.0F.W0 E2 /r M128 V/V AVX512VL
AVX512F
Shift doublewords in ymm2 right by amount
specified in xmm3/m128 while shifting in sign
bits using writemask k1.
VPSRAD ymm1 {k1}{z}, ymm2, xmm3/m128
EVEX.NDS.512.66.0F.W0 E2 /r M128 V/V AVX512F Shift doublewords in zmm2 right by amount
specified in xmm3/m128 while shifting in sign
bits using writemask k1.
VPSRAD zmm1 {k1}{z}, zmm2, xmm3/m128
EVEX.NDD.128.66.0F.W0 72 /4 ib FVI V/V AVX512VL
AVX512F
Shift doublewords in xmm2/m128/m32bcst
right by imm8 while shifting in sign bits using
writemask k1.
VPSRAD xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
EVEX.NDD.256.66.0F.W0 72 /4 ib FVI V/V AVX512VL
AVX512F
Shift doublewords in ymm2/m256/m32bcst
right by imm8 while shifting in sign bits using
writemask k1.
VPSRAD ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
EVEX.NDD.512.66.0F.W0 72 /4 ib FVI V/V AVX512F Shift doublewords in zmm2/m512/m32bcst
right by imm8 while shifting in sign bits using
writemask k1.
VPSRAD zmm1 {k1}{z},
zmm2/m512/m32bcst, imm8
EVEX.NDS.128.66.0F.W1 E2 /r M128 V/V AVX512VL
AVX512F
Shift quadwords in xmm2 right by amount
specified in xmm3/m128 while shifting in sign
bits using writemask k1.
VPSRAQ xmm1 {k1}{z}, xmm2, xmm3/m128
EVEX.NDS.256.66.0F.W1 E2 /r M128 V/V AVX512VL
AVX512F
Shift quadwords in ymm2 right by amount
specified in xmm3/m128 while shifting in sign
bits using writemask k1.
VPSRAQ ymm1 {k1}{z}, ymm2, xmm3/m128
EVEX.NDS.512.66.0F.W1 E2 /r M128 V/V AVX512F Shift quadwords in zmm2 right by amount
specified in xmm3/m128 while shifting in sign
bits using writemask k1.
VPSRAQ zmm1 {k1}{z}, zmm2, xmm3/m128
EVEX.NDD.128.66.0F.W1 72 /4 ib FVI V/V AVX512VL
AVX512F
Shift quadwords in xmm2/m128/m64bcst
right by imm8 while shifting in sign bits using
writemask k1.
VPSRAQ xmm1 {k1}{z},
xmm2/m128/m64bcst, imm8
EVEX.NDD.256.66.0F.W1 72 /4 ib FVI V/V AVX512VL
AVX512F
Shift quadwords in ymm2/m256/m64bcst right
by imm8 while shifting in sign bits using
writemask k1.
VPSRAQ ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
EVEX.NDD.512.66.0F.W1 72 /4 ib FVI V/V AVX512F Shift quadwords in zmm2/m512/m64bcst right
by imm8 while shifting in sign bits using
writemask k1.
VPSRAQ zmm1 {k1}{z},
zmm2/m512/m64bcst, imm8
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-791
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Shifts the bits in the individual data elements (words, doublewords, or quadword) in the first source operand to the
right by the number of bits specified in the count operand. As the bits in the data elements are shifted right, the
empty high-order bits are filled with the initial value of the sign bit of the data. If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand
is filled with the initial value of the sign bit.
Note that only the first 64-bits of a 128-bit count operand are checked to compute the count. If the second source
operand is a memory address, 128 bits are loaded.
The (V)PSRAW instruction shifts each of the words in the first source operand to the right by the number of bits
specified in the count operand.
Legacy SSE instructions: In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operands are XMM registers. The count operand can
be either an XMM register or a 128-bit memory location or an 8-bit immediate. Bits (MAX_VL-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The destination operand is a XMM register. The source operand is a XMM register. The
count operand can come either from an XMM register or a memory location or an 8-bit immediate. Bits (MAX_VL-
1:128) of the corresponding destination register are zeroed.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit
immediate. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a
memory location (the variable count version). For the immediate count version, the source operand (the second
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register,
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Operation
ARITHMETIC_RIGHT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[31:0] SignBit
ELSE
DEST[31:0] SignExtend(SRC[31:0] >> COUNT);
FI;
ARITHMETIC_RIGHT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MI ModRM:r/m (r, w) Imm8 NA NA
RM ModRM:reg (w) ModRM:r/m (r) NA NA
VMI VEX.vvvv (w) ModRM:r/m (R) Imm8 NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
FVI EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
M128 ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-792 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
THEN
DEST[63:0] SignBit
ELSE
DEST[63:0] SignExtend(SRC[63:0] >> COUNT);
FI;
ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 15)
THEN COUNT 16;
FI;
DEST[15:0] SignExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] SignExtend(SRC[255:240] >> COUNT);
ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN COUNT 32;
FI;
DEST[31:0] SignExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] SignExtend(SRC[255:224] >> COUNT);
ARITHMETIC_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC, VL) ; VL: 128b, 256b or 512b
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN COUNT 64;
FI;
DEST[63:0] SignExtend(SRC[63:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[VL-1:VL-64] SignExtend(SRC[VL-1:VL-64] >> COUNT);
ARITHMETIC_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 15)
THEN COUNT 16;
FI;
DEST[15:0] SignExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] SignExtend(SRC[127:112] >> COUNT);
ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN COUNT 32;
FI;
DEST[31:0] SignExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] SignExtend(SRC[127:96] >> COUNT);
Ref. # 319433-023 5-793
INSTRUCTION SET REFERENCE, A-Z
VPSRAW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
TMP_DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
TMP_DEST[255:0] ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
TMP_DEST[255:0] ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSRAW (EVEX versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
TMP_DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256
TMP_DEST[255:0] ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512
TMP_DEST[255:0] ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], imm8)
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-794 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSRAW (ymm, ymm, xmm/m128) - VEX
DEST[255:0] ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
VPSRAW (ymm, imm8) - VEX
DEST[255:0] ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
DEST[MAX_VL-1:256] 0
VPSRAW (xmm, xmm, xmm/m128) - VEX
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPSRAW (xmm, imm8) - VEX
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[MAX_VL-1:128] 0
PSRAW (xmm, xmm, xmm/m128)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
PSRAW (xmm, imm8)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)
VPSRAD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] ARITHMETIC_RIGHT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] ARITHMETIC_RIGHT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-795
INSTRUCTION SET REFERENCE, A-Z
VPSRAD (EVEX versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128
TMP_DEST[127:0] ARITHMETIC_RIGHT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
TMP_DEST[255:0] ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
TMP_DEST[255:0] ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSRAD (ymm, ymm, xmm/m128) - VEX
DEST[255:0] ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
VPSRAD (ymm, imm8) - VEX
DEST[255:0] ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAX_VL-1:256] 0
VPSRAD (xmm, xmm, xmm/m128) - VEX
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPSRAD (xmm, imm8) - VEX
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAX_VL-1:128] 0
PSRAD (xmm, xmm, xmm/m128)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
PSRAD (xmm, imm8)
DEST[127:0] ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)
5-796 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSRAQ (EVEX versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] ARITHMETIC_RIGHT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] ARITHMETIC_RIGHT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSRAQ (EVEX versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_DEST[VL-1:0] ARITHMETIC_RIGHT_SHIFT_QWORDS(SRC1[VL-1:0], SRC2, VL)
FOR j 0 TO 7
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPSRAD __m512i _mm512_srai_epi32(__m512i a, unsigned int imm);
VPSRAD __m512i _mm512_mask_srai_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSRAD __m512i _mm512_maskz_srai_epi32( __mmask16 k, __m512i a, unsigned int imm);
VPSRAD __m256i _mm256_mask_srai_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRAD __m256i _mm256_maskz_srai_epi32( __mmask8 k, __m256i a, unsigned int imm);
VPSRAD __m128i _mm_mask_srai_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRAD __m128i _mm_maskz_srai_epi32( __mmask8 k, __m128i a, unsigned int imm);
VPSRAD __m512i _mm512_sra_epi32(__m512i a, __m128i cnt);
VPSRAD __m512i _mm512_mask_sra_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRAD __m512i _mm512_maskz_sra_epi32( __mmask16 k, __m512i a, __m128i cnt);
VPSRAD __m256i _mm256_mask_sra_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRAD __m256i _mm256_maskz_sra_epi32( __mmask8 k, __m256i a, __m128i cnt);
VPSRAD __m128i _mm_mask_sra_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRAD __m128i _mm_maskz_sra_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSRAQ __m512i _mm512_srai_epi64(__m512i a, unsigned int imm);
VPSRAQ __m512i _mm512_mask_srai_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm)
Ref. # 319433-023 5-797
INSTRUCTION SET REFERENCE, A-Z
VPSRAQ __m512i _mm512_maskz_srai_epi64( __mmask8 k, __m512i a, unsigned int imm)
VPSRAQ __m256i _mm256_mask_srai_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRAQ __m256i _mm256_maskz_srai_epi64( __mmask8 k, __m256i a, unsigned int imm);
VPSRAQ __m128i _mm_mask_srai_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRAQ __m128i _mm_maskz_srai_epi64( __mmask8 k, __m128i a, unsigned int imm);
VPSRAQ __m512i _mm512_sra_epi64(__m512i a, __m128i cnt);
VPSRAQ __m512i _mm512_mask_sra_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt)
VPSRAQ __m512i _mm512_maskz_sra_epi64( __mmask8 k, __m512i a, __m128i cnt)
VPSRAQ __m256i _mm256_mask_sra_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRAQ __m256i _mm256_maskz_sra_epi64( __mmask8 k, __m256i a, __m128i cnt);
VPSRAQ __m128i _mm_mask_sra_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRAQ __m128i _mm_maskz_sra_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSRAW __m512i _mm512_srai_epi16(__m512i a, unsigned int imm);
VPSRAW __m512i _mm512_mask_srai_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSRAW __m512i _mm512_maskz_srai_epi16( __mmask32 k, __m512i a, unsigned int imm);
VPSRAW __m256i _mm256_mask_srai_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSRAW __m256i _mm256_maskz_srai_epi16( __mmask16 k, __m256i a, unsigned int imm);
VPSRAW __m128i _mm_mask_srai_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRAW __m128i _mm_maskz_srai_epi16( __mmask8 k, __m128i a, unsigned int imm);
VPSRAW __m512i _mm512_sra_epi16(__m512i a, __m128i cnt);
VPSRAW __m512i _mm512_mask_sra_epi16(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRAW __m512i _mm512_maskz_sra_epi16( __mmask16 k, __m512i a, __m128i cnt);
VPSRAW __m256i _mm256_mask_sra_epi16(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRAW __m256i _mm256_maskz_sra_epi16( __mmask8 k, __m256i a, __m128i cnt);
VPSRAW __m128i _mm_mask_sra_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRAW __m128i _mm_maskz_sra_epi16( __mmask8 k, __m128i a, __m128i cnt);
PSRAW __m128i _mm_srai_epi16 (__m128i m, int count)
PSRAW __m128i _mm_sra_epi16 (__m128i m, __m128i count)
VPSRAW __m256i _mm256_sra_epi16 (__m256i m, __m128i count)
PSRAD __m128i _mm_srai_epi32 (__m128i m, int count)
PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)
VPSRAD __m256i _mm256_sra_epi32 (__m256i m, __m128i count)
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instructions:
Syntax with RM/RVM operand encoding, see Exceptions Type 4.
Syntax with MI/VMI operand encoding, see Exceptions Type 7.
EVEX-encoded VPSRAW, see Exceptions Type E4NF.nb.
EVEX-encoded VPSRAD/Q:
Syntax with M128 operand encoding, see Exceptions Type E4NF.nb.
Syntax with FVI operand encoding, see Exceptions Type E4.
5-798 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PSRLDQ—Byte Shift Right
Instruction Operand Encoding
Description
Shifts the source operand to the right by the number of bytes specified in the count operand. The empty high-order
bytes are cleared (set to all 0s). If the value specified by the count operand is greater than 15, the destination
operand is set to all 0s.
The source and destination operands are XMM registers. The count operand is an 8-bit immediate.
128-bit Legacy SSE version: The source and destination operands are the same. Bits (MAX_VL-1:128) of the corre-
sponding destination register remain unchanged.
VEX.128 encoded version: Bits (MAX_VL-1:128) of the corresponding register destination are zeroed.
VEX.256 encoded version: The source operand is YMM register. The destination operand is an YMM register. Bits
(MAX_VL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location.
The destination operand is a ZMM/YMM/XMM register.
Operation
VPSRLDQ (EVEX.U1.512 encoded version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST[127:0] SRC[127:0] >> (TEMP * 8)
DEST[255:128] SRC[255:128] >> (TEMP * 8)
DEST[383:256] SRC[383:256] >> (TEMP * 8)
DEST[511:384] SRC[511:384] >> (TEMP * 8)
DEST[MAX_VL-1:512] 0;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 73 /3 ib MI V/V SSE2 Shift xmm1 right by imm8 bytes while shifting in 0s
and store result in xmm1.
PSRLDQ xmm1, imm8
VEX.NDD.128.66.0F 73 /3 ib VMI V/V AVX Shift xmm2 right by imm8 bytes while shifting in 0s
and store result in xmm1.
VPSRLDQ xmm1, xmm2, imm8
VEX.NDD.256.66.0F 73 /3 ib VMI V/V AVX2 Shift ymm2 right by imm8 bytes while shifting in 0s
and store result in ymm1.
VPSRLDQ ymm1, ymm2, imm8
EVEX.NDD.128.66.0F.WIG 73 /3 ib FVM V/V AVX512VL
AVX512BW
Shift xmm2/m128 right by imm8 bytes while shifting
in 0s and store result in xmm1.
VPSRLDQ xmm1, xmm2/m128, imm8
EVEX.NDD.256.66.0F.WIG 73 /3 ib FVM V/V AVX512VL
AVX512BW
Shift ymm2/m256 right by imm8 bytes while shifting
in 0s and store result in ymm1.
VPSRLDQ ymm1, ymm2/m256, imm8
EVEX.NDD.512.66.0F.WIG 73 /3 ib FVM V/V AVX512BW Shift zmm2/m512 right by imm8 bytes while shifting
in 0s and store result in zmm1.
VPSRLDQ zmm1, zmm2/m512, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MI ModRM:r/m (r, w) Imm8 NA NA
VMI VEX.vvvv (w) ModRM:r/m (R) Imm8 NA
FVM EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
Ref. # 319433-023 5-799
INSTRUCTION SET REFERENCE, A-Z
VPSRLDQ (VEX.256 and EVEX.256 encoded version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST[127:0] SRC[127:0] >> (TEMP * 8)
DEST[255:128] SRC[255:128] >> (TEMP * 8)
DEST[MAX_VL-1:256] 0;
VPSRLDQ (VEX.128 and EVEX.128 encoded version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST SRC >> (TEMP * 8)
DEST[MAX_VL-1:128] 0;
PSRLDQ(128-bit Legacy SSE version)
TEMP COUNT
IF (TEMP > 15) THEN TEMP 16; FI
DEST DEST >> (TEMP * 8)
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
(V)PSRLDQ __m128i _mm_srli_si128 ( __m128i a, int imm)
VPSRLDQ __m256i _mm256_bsrli_epi128 ( __m256i, const int)
VPSRLDQ __m512i _mm512_bsrli_epi128 ( __m512i, int)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 7.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.
5-800 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F D1 /r RM V/V SSE2 Shift words in xmm1 right by amount specified in
xmm2/m128 while shifting in 0s.
PSRLW xmm1, xmm2/m128
66 0F 71 /2 ib MI V/V SSE2 Shift words in xmm1 right by imm8 while shifting
in 0s.
PSRLW xmm1, imm8
66 0F D2 /r RM V/V SSE2 Shift doublewords in xmm1 right by amount
specified in xmm2/m128 while shifting in 0s.
PSRLD xmm1, xmm2/m128
66 0F 72 /2 ib MI V/V SSE2 Shift doublewords in xmm1 right by imm8 while
shifting in 0s.
PSRLD xmm1, imm8
66 0F D3 /r RM V/V SSE2 Shift quadwords in xmm1 right by amount
specified in xmm2/m128 while shifting in 0s.
PSRLQ xmm1, xmm2/m128
66 0F 73 /2 ib MI V/V SSE2 Shift quadwords in xmm1 right by imm8 while
shifting in 0s.
PSRLQ xmm1, imm8
VEX.NDS.128.66.0F.WIG D1 /r RVM V/V AVX Shift words in xmm2 right by amount specified in
xmm3/m128 while shifting in 0s.
VPSRLW xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 71 /2 ib VMI V/V AVX Shift words in xmm2 right by imm8 while shifting
in 0s.
VPSRLW xmm1, xmm2, imm8
VEX.NDS.128.66.0F.WIG D2 /r RVM V/V AVX Shift doublewords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s.
VPSRLD xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 72 /2 ib VMI V/V AVX Shift doublewords in xmm2 right by imm8 while
shifting in 0s.
VPSRLD xmm1, xmm2, imm8
VEX.NDS.128.66.0F.WIG D3 /r RVM V/V AVX Shift quadwords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s.
VPSRLQ xmm1, xmm2, xmm3/m128
VEX.NDD.128.66.0F.WIG 73 /2 ib VMI V/V AVX Shift quadwords in xmm2 right by imm8 while
shifting in 0s.
VPSRLQ xmm1, xmm2, imm8
VEX.NDS.256.66.0F.WIG D1 /r RVM V/V AVX2 Shift words in ymm2 right by amount specified in
xmm3/m128 while shifting in 0s.
VPSRLW ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 71 /2 ib VMI V/V AVX2 Shift words in ymm2 right by imm8 while shifting
in 0s.
VPSRLW ymm1, ymm2, imm8
VEX.NDS.256.66.0F.WIG D2 /r RVM V/V AVX2 Shift doublewords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s.
VPSRLD ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 72 /2 ib VMI V/V AVX2 Shift doublewords in ymm2 right by imm8 while
shifting in 0s.
VPSRLD ymm1, ymm2, imm8
Ref. # 319433-023 5-801
INSTRUCTION SET REFERENCE, A-Z
VEX.NDS.256.66.0F.WIG D3 /r RVM V/V AVX2 Shift quadwords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s.
VPSRLQ ymm1, ymm2, xmm3/m128
VEX.NDD.256.66.0F.WIG 73 /2 ib VMI V/V AVX2 Shift quadwords in ymm2 right by imm8 while
shifting in 0s.
VPSRLQ ymm1, ymm2, imm8
EVEX.NDS.128.66.0F.WIG D1 /r M128 V/V AVX512VL
AVX512BW
Shift words in xmm2 right by amount specified in
xmm3/m128 while shifting in 0s using writemask
k1.
VPSRLW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG D1 /r M128 V/V AVX512VL
AVX512BW
Shift words in ymm2 right by amount specified in
xmm3/m128 while shifting in 0s using writemask
k1.
VPSRLW ymm1 {k1}{z}, ymm2,
xmm3/m128
EVEX.NDS.512.66.0F.WIG D1 /r M128 V/V AVX512BW Shift words in zmm2 right by amount specified in
xmm3/m128 while shifting in 0s using writemask
k1.
VPSRLW zmm1 {k1}{z}, zmm2,
xmm3/m128
EVEX.NDD.128.66.0F.WIG 71 /2 ib FVM V/V AVX512VL
AVX512BW
Shift words in xmm2/m128 right by imm8 while
shifting in 0s using writemask k1.
VPSRLW xmm1 {k1}{z}, xmm2/m128,
imm8
EVEX.NDD.256.66.0F.WIG 71 /2 ib FVM V/V AVX512VL
AVX512BW
Shift words in ymm2/m256 right by imm8 while
shifting in 0s using writemask k1.
VPSRLW ymm1 {k1}{z}, ymm2/m256,
imm8
EVEX.NDD.512.66.0F.WIG 71 /2 ib FVM V/V AVX512BW Shift words in zmm2/m512 right by imm8 while
shifting in 0s using writemask k1.
VPSRLW zmm1 {k1}{z}, zmm2/m512,
imm8
EVEX.NDS.128.66.0F.W0 D2 /r M128 V/V AVX512VL
AVX512F
Shift doublewords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s using
writemask k1.
VPSRLD xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.W0 D2 /r M128 V/V AVX512VL
AVX512F
Shift doublewords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s using
writemask k1.
VPSRLD ymm1 {k1}{z}, ymm2,
xmm3/m128
EVEX.NDS.512.66.0F.W0 D2 /r M128 V/V AVX512F Shift doublewords in zmm2 right by amount
specified in xmm3/m128 while shifting in 0s using
writemask k1.
VPSRLD zmm1 {k1}{z}, zmm2,
xmm3/m128
EVEX.NDD.128.66.0F.W0 72 /2 ib FV V/V AVX512VL
AVX512F
Shift doublewords in xmm2/m128/m32bcst right
by imm8 while shifting in 0s using writemask k1.
VPSRLD xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
EVEX.NDD.256.66.0F.W0 72 /2 ib FV V/V AVX512VL
AVX512F
Shift doublewords in ymm2/m256/m32bcst right
by imm8 while shifting in 0s using writemask k1.
VPSRLD ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-802 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Shifts the bits in the individual data elements (words, doublewords, or quadword) in the first source operand to the
right by the number of bits specified in the count operand. As the bits in the data elements are shifted right, the
empty high-order bits are cleared (set to 0). If the value specified by the count operand is greater than 15 (for
words), 31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all 0s.
The destination and first source operands are XMM registers. The count operand can be either an XMM register or
a 128-bit memory location or an 8-bit immediate. If the second source operand is a memory address, 128 bits are
loaded. Note that only the first 64-bits of a 128-bit count operand are checked to compute the count.
EVEX.NDD.512.66.0F.W0 72 /2 ib FVI V/V AVX512F Shift doublewords in zmm2/m512/m32bcst right
by imm8 while shifting in 0s using writemask k1.
VPSRLD zmm1 {k1}{z},
zmm2/m512/m32bcst, imm8
EVEX.NDS.128.66.0F.W1 D3 /r M128 V/V AVX512VL
AVX512F
Shift quadwords in xmm2 right by amount
specified in xmm3/m128 while shifting in 0s using
writemask k1.
VPSRLQ xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.W1 D3 /r M128 V/V AVX512VL
AVX512F
Shift quadwords in ymm2 right by amount
specified in xmm3/m128 while shifting in 0s using
writemask k1.
VPSRLQ ymm1 {k1}{z}, ymm2,
xmm3/m128
EVEX.NDS.512.66.0F.W1 D3 /r M128 V/V AVX512F Shift quadwords in zmm2 right by amount
specified in xmm3/m128 while shifting in 0s using
writemask k1.
VPSRLQ zmm1 {k1}{z}, zmm2,
xmm3/m128
EVEX.NDD.128.66.0F.W1 73 /2 ib FV V/V AVX512VL
AVX512F
Shift quadwords in xmm2/m128/m64bcst right by
imm8 while shifting in 0s using writemask k1.
VPSRLQ xmm1 {k1}{z},
xmm2/m128/m64bcst, imm8
EVEX.NDD.256.66.0F.W1 73 /2 ib FV V/V AVX512VL
AVX512F
Shift quadwords in ymm2/m256/m64bcst right by
imm8 while shifting in 0s using writemask k1.
VPSRLQ ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
EVEX.NDD.512.66.0F.W1 73 /2 ib FVI V/V AVX512F Shift quadwords in zmm2/m512/m64bcst right by
imm8 while shifting in 0s using writemask k1.
VPSRLQ zmm1 {k1}{z},
zmm2/m512/m64bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MI ModRM:r/m (r, w) Imm8 NA NA
RM ModRM:reg (w) ModRM:r/m (r) NA NA
VMI VEX.vvvv (w) ModRM:r/m (R) Imm8 NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
FVI EVEX.vvvv (w) ModRM:r/m (R) Imm8 NA
M128 ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-803
INSTRUCTION SET REFERENCE, A-Z
The PSRLW instruction shifts each of the words in the first source operand to the right by the number of bits spec-
ified in the count operand; the PSRLD instruction shifts each of the doublewords in the first source operand; and
the PSRLQ instruction shifts the quadword (or quadwords) in the first source operand.
Legacy SSE instructions: In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (MAX_VL-1:128) of the corresponding YMM destination register remain
unchanged.
VEX.128 encoded version: The destination operand is a XMM register. The source operand is a XMM register. The
count operand can come either from an XMM register or a memory location or an 8-bit immediate. Bits (MAX_VL-
1:128) of the corresponding destination register are zeroed.
VEX.256 encoded version: The destination operand is a YMM register. The source operand is a YMM register or a
memory location. The count operand can come either from an XMM register or a memory location or an 8-bit
immediate. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded versions: The destination operand is a ZMM register updated according to the writemask. The count
operand is either an 8-bit immediate (the immediate count version) or an 8-bit value from an XMM register or a
memory location (the variable count version). For the immediate count version, the source operand (the second
operand) can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit
memory location. For the variable count version, the first source operand (the second operand) is a ZMM register,
the second source operand (the third operand, 8-bit variable count) can be an XMM register or a memory location.
Note: In VEX/EVEX encoded versions of shifts with an immediate count, vvvv of VEX/EVEX encode the destination
register, and VEX.B/EVEX.B + ModRM.r/m encodes the source register.
Operation
LOGICAL_RIGHT_SHIFT_DWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[31:0] 0
ELSE
DEST[31:0] ZeroExtend(SRC[31:0] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_QWORDS1(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
DEST[63:0] 0
ELSE
DEST[63:0] ZeroExtend(SRC[63:0] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 15)
THEN
DEST[255:0] 0
ELSE
DEST[15:0] ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] ZeroExtend(SRC[255:240] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
5-804 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
IF (COUNT > 15)
THEN
DEST[127:0] 00000000000000000000000000000000H
ELSE
DEST[15:0] ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ZeroExtend(SRC[127:112] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[255:0] 0
ELSE
DEST[31:0] ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[255:224] ZeroExtend(SRC[255:224] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[127:0] 00000000000000000000000000000000H
ELSE
DEST[31:0] ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] ZeroExtend(SRC[127:96] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
DEST[255:0] 0
ELSE
DEST[63:0] ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] ZeroExtend(SRC[127:64] >> COUNT);
DEST[191:128] ZeroExtend(SRC[191:128] >> COUNT);
DEST[255:192] ZeroExtend(SRC[255:192] >> COUNT);
FI;
LOGICAL_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
DEST[127:0] 00000000000000000000000000000000H
ELSE
DEST[63:0] ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] ZeroExtend(SRC[127:64] >> COUNT);
FI;
Ref. # 319433-023 5-805
INSTRUCTION SET REFERENCE, A-Z
VPSRLW (EVEX versions, xmm/m128)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
TMP_DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSRLW (EVEX versions, imm8)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
TMP_DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS_128b(SRC1[127:0], imm8)
FI;
IF VL = 256
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
FI;
IF VL = 512
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[255:0], imm8)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1[511:256], imm8)
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-806 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSRLW (ymm, ymm, xmm/m128) - VEX
DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0;
VPSRLW (ymm, imm8) - VEX
DEST[255:0] LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)
DEST[MAX_VL-1:256] 0;
VPSRLW (xmm, xmm, xmm/m128) - VEX
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPSRLW (xmm, imm8) - VEX
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[MAX_VL-1:128] 0
PSRLW (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
PSRLW (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)
VPSRLD (EVEX versions, xmm/m128)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL = 128
TMP_DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Ref. # 319433-023 5-807
INSTRUCTION SET REFERENCE, A-Z
VPSRLD (EVEX versions, imm8)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+31:i] LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[31:0], imm8)
ELSE DEST[i+31:i] LOGICAL_RIGHT_SHIFT_DWORDS1(SRC1[i+31:i], imm8)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSRLD (ymm, ymm, xmm/m128) - VEX
DEST[255:0] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0;
VPSRLD (ymm, imm8) - VEX
DEST[255:0] LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)
DEST[MAX_VL-1:256] 0;
VPSRLD (xmm, xmm, xmm/m128) - VEX
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPSRLD (xmm, imm8) - VEX
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[MAX_VL-1:128] 0
PSRLD (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
PSRLD (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)
5-808 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSRLQ (EVEX versions, xmm/m128)
(KL, VL) = (2, 128), (4, 256), (8, 512)
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)
IF VL = 128
TMP_DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS_128b(SRC1[127:0], SRC2)
FI;
IF VL = 256
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
FI;
IF VL = 512
TMP_DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[255:0], SRC2)
TMP_DEST[511:256] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1[511:256], SRC2)
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSRLQ (EVEX versions, imm8)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN DEST[i+63:i] LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[63:0], imm8)
ELSE DEST[i+63:i] LOGICAL_RIGHT_SHIFT_QWORDS1(SRC1[i+63:i], imm8)
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSRLQ (ymm, ymm, xmm/m128) - VEX
DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0;
VPSRLQ (ymm, imm8) - VEX
DEST[255:0] LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, imm8)
DEST[MAX_VL-1:256] 0;
Ref. # 319433-023 5-809
INSTRUCTION SET REFERENCE, A-Z
VPSRLQ (xmm, xmm, xmm/m128) - VEX
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPSRLQ (xmm, imm8) - VEX
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)
DEST[MAX_VL-1:128] 0
PSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
PSRLQ (xmm, imm8)
DEST[127:0] LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPSRLD __m512i _mm512_srli_epi32(__m512i a, unsigned int imm);
VPSRLD __m512i _mm512_mask_srli_epi32(__m512i s, __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m512i _mm512_maskz_srli_epi32( __mmask16 k, __m512i a, unsigned int imm);
VPSRLD __m256i _mm256_mask_srli_epi32(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m256i _mm256_maskz_srli_epi32( __mmask8 k, __m256i a, unsigned int imm);
VPSRLD __m128i _mm_mask_srli_epi32(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m128i _mm_maskz_srli_epi32( __mmask8 k, __m128i a, unsigned int imm);
VPSRLD __m512i _mm512_srl_epi32(__m512i a, __m128i cnt);
VPSRLD __m512i _mm512_mask_srl_epi32(__m512i s, __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m512i _mm512_maskz_srl_epi32( __mmask16 k, __m512i a, __m128i cnt);
VPSRLD __m256i _mm256_mask_srl_epi32(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRLD __m256i _mm256_maskz_srl_epi32( __mmask8 k, __m256i a, __m128i cnt);
VPSRLD __m128i _mm_mask_srl_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLD __m128i _mm_maskz_srl_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m512i _mm512_srli_epi64(__m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64(__m512i s, __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m512i _mm512_mask_srli_epi64( __mmask8 k, __m512i a, unsigned int imm);
VPSRLQ __m256i _mm256_mask_srli_epi64(__m256i s, __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m256i _mm256_maskz_srli_epi64( __mmask8 k, __m256i a, unsigned int imm);
VPSRLQ __m128i _mm_mask_srli_epi64(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m128i _mm_maskz_srli_epi64( __mmask8 k, __m128i a, unsigned int imm);
VPSRLQ __m512i _mm512_srl_epi64(__m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64(__m512i s, __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m512i _mm512_mask_srl_epi64( __mmask8 k, __m512i a, __m128i cnt);
VPSRLQ __m256i _mm256_mask_srl_epi64(__m256i s, __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m256i _mm256_maskz_srl_epi64( __mmask8 k, __m256i a, __m128i cnt);
VPSRLQ __m128i _mm_mask_srl_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLQ __m128i _mm_maskz_srl_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m512i _mm512_srli_epi16(__m512i a, unsigned int imm);
VPSRLW __m512i _mm512_mask_srli_epi16(__m512i s, __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m512i _mm512_maskz_srli_epi16( __mmask32 k, __m512i a, unsigned int imm);
VPSRLW __m256i _mm256_mask_srlii_epi16(__m256i s, __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m256i _mm256_maskz_srli_epi16( __mmask16 k, __m256i a, unsigned int imm);
VPSRLW __m128i _mm_mask_srli_epi16(__m128i s, __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m128i _mm_maskz_srli_epi16( __mmask8 k, __m128i a, unsigned int imm);
VPSRLW __m512i _mm512_srl_epi16(__m512i a, __m128i cnt);
VPSRLW __m512i _mm512_mask_srl_epi16(__m512i s, __mmask32 k, __m512i a, __m128i cnt);
5-810 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSRLW __m512i _mm512_maskz_srl_epi16( __mmask32 k, __m512i a, __m128i cnt);
VPSRLW __m256i _mm256_mask_srl_epi16(__m256i s, __mmask16 k, __m256i a, __m128i cnt);
VPSRLW __m256i _mm256_maskz_srl_epi16( __mmask8 k, __mmask16 a, __m128i cnt);
VPSRLW __m128i _mm_mask_srl_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLW __m128i _mm_maskz_srl_epi16( __mmask8 k, __m128i a, __m128i cnt);
PSRLW __m128i _mm_srli_epi16 (__m128i m, int count)
PSRLW __m128i _mm_srl_epi16 (__m128i m, __m128i count)
VPSRLW __m256i _mm256_srl_epi16 (__m256i m, __m128i count)
PSRLD __m128i _mm_srli_epi32 (__m128i m, int count)
PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)
VPSRLD __m256i _mm256_srl_epi32 (__m256i m, __m128i count)
PSRLQ __m128i _mm_srli_epi64 (__m128i m, int count)
PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)
VPSRLQ __m256i _mm256_srl_epi64 (__m256i m, __m128i count)
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instructions:
Syntax with RM/RVM operand encoding, see Exceptions Type 4.
Syntax with MI/VMI operand encoding, see Exceptions Type 7.
EVEX-encoded VPSRLW, see Exceptions Type E4NF.nb.
EVEX-encoded VPSRLD/Q:
Syntax with M128 operand encoding, see Exceptions Type E4NF.nb.
Syntax with FVI operand encoding, see Exceptions Type E4.
Ref. # 319433-023 5-811
INSTRUCTION SET REFERENCE, A-Z
VPSLLVW/VPSLLVD/VPSLLVQ—Variable Bit Shift Left Logical
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W0 47 /r RVM V/V AVX2 Shift doublewords in xmm2 left by amount specified in
the corresponding element of xmm3/m128 while
shifting in 0s.
VPSLLVD xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F38.W1 47 /r RVM V/V AVX2 Shift quadwords in xmm2 left by amount specified in
the corresponding element of xmm3/m128 while
shifting in 0s.
VPSLLVQ xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38.W0 47 /r RVM V/V AVX2 Shift doublewords in ymm2 left by amount specified in
the corresponding element of ymm3/m256 while
shifting in 0s.
VPSLLVD ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F38.W1 47 /r RVM V/V AVX2 Shift quadwords in ymm2 left by amount specified in
the corresponding element of ymm3/m256 while
shifting in 0s.
VPSLLVQ ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.W1 12 /r FVM V/V AVX512VL
AVX512BW
Shift words in xmm2 left by amount specified in the
corresponding element of xmm3/m128 while shifting
in 0s using writemask k1.
VPSLLVW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F38.W1 12 /r FVM V/V AVX512VL
AVX512BW
Shift words in ymm2 left by amount specified in the
corresponding element of ymm3/m256 while shifting
in 0s using writemask k1.
VPSLLVW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F38.W1 12 /r FVM V/V AVX512BW Shift words in zmm2 left by amount specified in the
corresponding element of zmm3/m512 while shifting
in 0s using writemask k1.
VPSLLVW zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F38.W0 47 /r FV V/V AVX512VL
AVX512F
Shift doublewords in xmm2 left by amount specified in
the corresponding element of xmm3/m128/m32bcst
while shifting in 0s using writemask k1.
VPSLLVD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F38.W0 47 /r FV V/V AVX512VL
AVX512F
Shift doublewords in ymm2 left by amount specified in
the corresponding element of ymm3/m256/m32bcst
while shifting in 0s using writemask k1.
VPSLLVD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F38.W0 47 /r FV V/V AVX512F Shift doublewords in zmm2 left by amount specified in
the corresponding element of zmm3/m512/m32bcst
while shifting in 0s using writemask k1.
VPSLLVD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 47 /r FV V/V AVX512VL
AVX512F
Shift quadwords in xmm2 left by amount specified in
the corresponding element of xmm3/m128/m64bcst
while shifting in 0s using writemask k1.
VPSLLVQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F38.W1 47 /r FV V/V AVX512VL
AVX512F
Shift quadwords in ymm2 left by amount specified in
the corresponding element of ymm3/m256/m64bcst
while shifting in 0s using writemask k1.
VPSLLVQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F38.W1 47 /r FV V/V AVX512F Shift quadwords in zmm2 left by amount specified in
the corresponding element of zmm3/m512/m64bcst
while shifting in 0s using writemask k1.
VPSLLVQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
5-812 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Shifts the bits in the individual data elements (words, doublewords or quadword) in the first source operand to the
left by the count value of respective data elements in the second source operand. As the bits in the data elements
are shifted left, the empty low-order bits are cleared (set to 0).
The count values are specified individually in each data element of the second source operand. If the unsigned
integer value specified in the respective data element of the second source operand is greater than 15 (for word),
31 (for doublewords), or 63 (for a quadword), then the destination data element are written with 0.
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be
either an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be
either an YMM register or a 256-bit memory. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded VPSLLVD/Q: The destination and first source operands are ZMM/YMM/XMM registers. The count
operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512-bit vector broad-
casted from a 32/64-bit memory location. The destination is conditionally updated with writemask k1.
EVEX encoded VPSLLVW: The destination and first source operands are ZMM/YMM/XMM registers. The count
operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is condition-
ally updated with writemask k1.
Operation
VPSLLVW (EVEX encoded version)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] ZeroExtend(SRC1[i+15:i] << SRC2[i+15:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-813
INSTRUCTION SET REFERENCE, A-Z
VPSLLVD (VEX.128 version)
COUNT_0 SRC2[31 : 0]
(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 SRC2[100 : 96];
IF COUNT_0 < 32 THEN
DEST[31:0] ZeroExtend(SRC1[31:0] << COUNT_0);
ELSE
DEST[31:0] 0;
(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 32 THEN
DEST[127:96] ZeroExtend(SRC1[127:96] << COUNT_3);
ELSE
DEST[127:96] 0;
DEST[MAX_VL-1:128] 0;
VPSLLVD (VEX.256 version)
COUNT_0 SRC2[31 : 0];
(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)
COUNT_7 SRC2[228 : 224];
IF COUNT_0 < 32 THEN
DEST[31:0] ZeroExtend(SRC1[31:0] << COUNT_0);
ELSE
DEST[31:0] 0;
(* Repeat shift operation for 2nd through 7th dwords *)
IF COUNT_7 < 32 THEN
DEST[255:224] ZeroExtend(SRC1[255:224] << COUNT_7);
ELSE
DEST[255:224] 0;
DEST[MAX_VL-1:256] 0;
VPSLLVD (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] ZeroExtend(SRC1[i+31:i] << SRC2[31:0])
ELSE DEST[i+31:i] ZeroExtend(SRC1[i+31:i] << SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
5-814 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSLLVQ (VEX.128 version)
COUNT_0 SRC2[63 : 0];
COUNT_1 SRC2[127 : 64];
IF COUNT_0 < 64THEN
DEST[63:0] ZeroExtend(SRC1[63:0] << COUNT_0);
ELSE
DEST[63:0] 0;
IF COUNT_1 < 64 THEN
DEST[127:64] ZeroExtend(SRC1[127:64] << COUNT_1);
ELSE
DEST[127:96] 0;
DEST[MAX_VL-1:128] 0;
VPSLLVQ (VEX.256 version)
COUNT_0 SRC2[63 : 0];
(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 SRC2[197 : 192];
IF COUNT_0 < 64THEN
DEST[63:0] ZeroExtend(SRC1[63:0] << COUNT_0);
ELSE
DEST[63:0] 0;
(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 64 THEN
DEST[255:192] ZeroExtend(SRC1[255:192] << COUNT_3);
ELSE
DEST[255:192] 0;
DEST[MAX_VL-1:256] 0;
VPSLLVQ (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] ZeroExtend(SRC1[i+63:i] << SRC2[63:0])
ELSE DEST[i+63:i] ZeroExtend(SRC1[i+63:i] << SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
Intel C/C++ Compiler Intrinsic Equivalent
VPSLLVW __m512i _mm512_sllv_epi16(__m512i a, __m512i cnt);
VPSLLVW __m512i _mm512_mask_sllv_epi16(__m512i s, __mmask32 k, __m512i a, __m512i cnt);
VPSLLVW __m512i _mm512_maskz_sllv_epi16( __mmask32 k, __m512i a, __m512i cnt);
VPSLLVW __m256i _mm256_mask_sllv_epi16(__m256i s, __mmask16 k, __m256i a, __m256i cnt);
VPSLLVW __m256i _mm256_maskz_sllv_epi16( __mmask16 k, __m256i a, __m256i cnt);
VPSLLVW __m128i _mm_mask_sllv_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
Ref. # 319433-023 5-815
INSTRUCTION SET REFERENCE, A-Z
VPSLLVW __m128i _mm_maskz_sllv_epi16( __mmask8 k, __m128i a, __m128i cnt);
VPSLLVD __m512i _mm512_sllv_epi32(__m512i a, __m512i cnt);
VPSLLVD __m512i _mm512_mask_sllv_epi32(__m512i s, __mmask16 k, __m512i a, __m512i cnt);
VPSLLVD __m512i _mm512_maskz_sllv_epi32( __mmask16 k, __m512i a, __m512i cnt);
VPSLLVD __m256i _mm256_mask_sllv_epi32(__m256i s, __mmask8 k, __m256i a, __m256i cnt);
VPSLLVD __m256i _mm256_maskz_sllv_epi32( __mmask8 k, __m256i a, __m256i cnt);
VPSLLVD __m128i _mm_mask_sllv_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLVD __m128i _mm_maskz_sllv_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSLLVQ __m512i _mm512_sllv_epi64(__m512i a, __m512i cnt);
VPSLLVQ __m512i _mm512_mask_sllv_epi64(__m512i s, __mmask8 k, __m512i a, __m512i cnt);
VPSLLVQ __m512i _mm512_maskz_sllv_epi64( __mmask8 k, __m512i a, __m512i cnt);
VPSLLVD __m256i _mm256_mask_sllv_epi64(__m256i s, __mmask8 k, __m256i a, __m256i cnt);
VPSLLVD __m256i _mm256_maskz_sllv_epi64( __mmask8 k, __m256i a, __m256i cnt);
VPSLLVD __m128i _mm_mask_sllv_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSLLVD __m128i _mm_maskz_sllv_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSLLVD __m256i _mm256_sllv_epi32 (__m256i m, __m256i count)
VPSLLVQ __m256i _mm256_sllv_epi64 (__m256i m, __m256i count)
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instructions, see Exceptions Type 4.
EVEX-encoded VPSLLVD/VPSLLVQ, see Exceptions Type E4.
EVEX-encoded VPSLLVW, see Exceptions Type E4.nb.
5-816 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSRLVW/VPSRLVD/VPSRLVQ—Variable Bit Shift Right Logical
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W0 45 /r RVM V/V AVX2 Shift doublewords in xmm2 right by amount specified
in the corresponding element of xmm3/m128 while
shifting in 0s.
VPSRLVD xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F38.W1 45 /r RVM V/V AVX2 Shift quadwords in xmm2 right by amount specified in
the corresponding element of xmm3/m128 while
shifting in 0s.
VPSRLVQ xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38.W0 45 /r RVM V/V AVX2 Shift doublewords in ymm2 right by amount specified
in the corresponding element of ymm3/m256 while
shifting in 0s.
VPSRLVD ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F38.W1 45 /r RVM V/V AVX2 Shift quadwords in ymm2 right by amount specified in
the corresponding element of ymm3/m256 while
shifting in 0s.
VPSRLVQ ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.W1 10 /r FVM V/V AVX512VL
AVX512BW
Shift words in xmm2 right by amount specified in the
corresponding element of xmm3/m128 while shifting
in 0s using writemask k1.
VPSRLVW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F38.W1 10 /r FVM V/V AVX512VL
AVX512BW
Shift words in ymm2 right by amount specified in the
corresponding element of ymm3/m256 while shifting
in 0s using writemask k1.
VPSRLVW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F38.W1 10 /r FVM V/V AVX512BW Shift words in zmm2 right by amount specified in the
corresponding element of zmm3/m512 while shifting
in 0s using writemask k1.
VPSRLVW zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F38.W0 45 /r FV V/V AVX512VL
AVX512F
Shift doublewords in xmm2 right by amount specified
in the corresponding element of xmm3/m128/m32bcst
while shifting in 0s using writemask k1.
VPSRLVD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F38.W0 45 /r FV V/V AVX512VL
AVX512F
Shift doublewords in ymm2 right by amount specified
in the corresponding element of ymm3/m256/m32bcst
while shifting in 0s using writemask k1.
VPSRLVD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F38.W0 45 /r FV V/V AVX512F Shift doublewords in zmm2 right by amount specified
in the corresponding element of zmm3/m512/m32bcst
while shifting in 0s using writemask k1.
VPSRLVD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 45 /r FV V/V AVX512VL
AVX512F
Shift quadwords in xmm2 right by amount specified in
the corresponding element of xmm3/m128/m64bcst
while shifting in 0s using writemask k1.
VPSRLVQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F38.W1 45 /r FV V/V AVX512VL
AVX512F
Shift quadwords in ymm2 right by amount specified in
the corresponding element of ymm3/m256/m64bcst
while shifting in 0s using writemask k1.
VPSRLVQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F38.W1 45 /r FV V/V AVX512F Shift quadwords in zmm2 right by amount specified in
the corresponding element of zmm3/m512/m64bcst
while shifting in 0s using writemask k1.
VPSRLVQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Ref. # 319433-023 5-817
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Shifts the bits in the individual data elements (words, doublewords or quadword) in the first source operand to the
right by the count value of respective data elements in the second source operand. As the bits in the data elements
are shifted right, the empty high-order bits are cleared (set to 0).
The count values are specified individually in each data element of the second source operand. If the unsigned
integer value specified in the respective data element of the second source operand is greater than 15 (for word),
31 (for doublewords), or 63 (for a quadword), then the destination data element are written with 0.
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be
either an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be
either an YMM register or a 256-bit memory. Bits (MAX_VL-1:256) of the corresponding ZMM register are zeroed.
EVEX encoded VPSRLVD/Q: The destination and first source operands are ZMM/YMM/XMM registers. The count
operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512-bit vector broad-
casted from a 32/64-bit memory location. The destination is conditionally updated with writemask k1.
EVEX encoded VPSRLVW: The destination and first source operands are ZMM/YMM/XMM registers. The count
operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is condition-
ally updated with writemask k1.
Operation
VPSRLVW (EVEX encoded version)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] ZeroExtend(SRC1[i+15:i] >> SRC2[i+15:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-818 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSRLVD (VEX.128 version)
COUNT_0 SRC2[31 : 0]
(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 SRC2[127 : 96];
IF COUNT_0 < 32 THEN
DEST[31:0] ZeroExtend(SRC1[31:0] >> COUNT_0);
ELSE
DEST[31:0] 0;
(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 32 THEN
DEST[127:96] ZeroExtend(SRC1[127:96] >> COUNT_3);
ELSE
DEST[127:96] 0;
DEST[MAX_VL-1:128] 0;
VPSRLVD (VEX.256 version)
COUNT_0 SRC2[31 : 0];
(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)
COUNT_7 SRC2[255 : 224];
IF COUNT_0 < 32 THEN
DEST[31:0] ZeroExtend(SRC1[31:0] >> COUNT_0);
ELSE
DEST[31:0] 0;
(* Repeat shift operation for 2nd through 7th dwords *)
IF COUNT_7 < 32 THEN
DEST[255:224] ZeroExtend(SRC1[255:224] >> COUNT_7);
ELSE
DEST[255:224] 0;
DEST[MAX_VL-1:256] 0;
VPSRLVD (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] ZeroExtend(SRC1[i+31:i] >> SRC2[31:0])
ELSE DEST[i+31:i] ZeroExtend(SRC1[i+31:i] >> SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
Ref. # 319433-023 5-819
INSTRUCTION SET REFERENCE, A-Z
VPSRLVQ (VEX.128 version)
COUNT_0 SRC2[63 : 0];
COUNT_1 SRC2[127 : 64];
IF COUNT_0 < 64 THEN
DEST[63:0] ZeroExtend(SRC1[63:0] >> COUNT_0);
ELSE
DEST[63:0] 0;
IF COUNT_1 < 64 THEN
DEST[127:64] ZeroExtend(SRC1[127:64] >> COUNT_1);
ELSE
DEST[127:64] 0;
DEST[MAX_VL-1:128] 0;
VPSRLVQ (VEX.256 version)
COUNT_0 SRC2[63 : 0];
(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 SRC2[255 : 192];
IF COUNT_0 < 64 THEN
DEST[63:0] ZeroExtend(SRC1[63:0] >> COUNT_0);
ELSE
DEST[63:0] 0;
(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 64 THEN
DEST[255:192] ZeroExtend(SRC1[255:192] >> COUNT_3);
ELSE
DEST[255:192] 0;
DEST[MAX_VL-1:256] 0;
VPSRLVQ (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] ZeroExtend(SRC1[i+63:i] >> SRC2[63:0])
ELSE DEST[i+63:i] ZeroExtend(SRC1[i+63:i] >> SRC2[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
Intel C/C++ Compiler Intrinsic Equivalent
VPSRLVW __m512i _mm512_srlv_epi16(__m512i a, __m512i cnt);
VPSRLVW __m512i _mm512_mask_srlv_epi16(__m512i s, __mmask32 k, __m512i a, __m512i cnt);
VPSRLVW __m512i _mm512_maskz_srlv_epi16( __mmask32 k, __m512i a, __m512i cnt);
VPSRLVW __m256i _mm256_mask_srlv_epi16(__m256i s, __mmask16 k, __m256i a, __m256i cnt);
VPSRLVW __m256i _mm256_maskz_srlv_epi16( __mmask16 k, __m256i a, __m256i cnt);
VPSRLVW __m128i _mm_mask_srlv_epi16(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
5-820 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSRLVW __m128i _mm_maskz_srlv_epi16( __mmask8 k, __m128i a, __m128i cnt);
VPSRLVW __m256i _mm256_srlv_epi32 (__m256i m, __m256i count)
VPSRLVD __m512i _mm512_srlv_epi32(__m512i a, __m512i cnt);
VPSRLVD __m512i _mm512_mask_srlv_epi32(__m512i s, __mmask16 k, __m512i a, __m512i cnt);
VPSRLVD __m512i _mm512_maskz_srlv_epi32( __mmask16 k, __m512i a, __m512i cnt);
VPSRLVD __m256i _mm256_mask_srlv_epi32(__m256i s, __mmask8 k, __m256i a, __m256i cnt);
VPSRLVD __m256i _mm256_maskz_srlv_epi32( __mmask8 k, __m256i a, __m256i cnt);
VPSRLVD __m128i _mm_mask_srlv_epi32(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLVD __m128i _mm_maskz_srlv_epi32( __mmask8 k, __m128i a, __m128i cnt);
VPSRLVQ __m512i _mm512_srlv_epi64(__m512i a, __m512i cnt);
VPSRLVQ __m512i _mm512_mask_srlv_epi64(__m512i s, __mmask8 k, __m512i a, __m512i cnt);
VPSRLVQ __m512i _mm512_maskz_srlv_epi64( __mmask8 k, __m512i a, __m512i cnt);
VPSRLVQ __m256i _mm256_mask_srlv_epi64(__m256i s, __mmask8 k, __m256i a, __m256i cnt);
VPSRLVQ __m256i _mm256_maskz_srlv_epi64( __mmask8 k, __m256i a, __m256i cnt);
VPSRLVQ __m128i _mm_mask_srlv_epi64(__m128i s, __mmask8 k, __m128i a, __m128i cnt);
VPSRLVQ __m128i _mm_maskz_srlv_epi64( __mmask8 k, __m128i a, __m128i cnt);
VPSRLVQ __m256i _mm256_srlv_epi64 (__m256i m, __m256i count)
VPSRLVD __m128i _mm_srlv_epi32( __m128i a, __m128i cnt);
VPSRLVQ __m128i _mm_srlv_epi64( __m128i a, __m128i cnt);
SIMD Floating-Point Exceptions
None
Other Exceptions
VEX-encoded instructions, see Exceptions Type 4.
EVEX-encoded VPSRLVD/Q, see Exceptions Type E4.
EVEX-encoded VPSRLVW, see Exceptions Type E4.nb.
Ref. # 319433-023 5-821
INSTRUCTION SET REFERENCE, A-Z
PSUBB/PSUBW/PSUBD/PSUBQ—Packed Integer Subtract
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F F8 /r RM V/V SSE2 Subtract packed byte integers in xmm2/m128 from
xmm1.
PSUBB xmm1, xmm2/m128
66 0F F9 /r RM V/V SSE2 Subtract packed word integers in xmm2/m128 from
xmm1.
PSUBW xmm1, xmm2/m128
66 0F FA /r RM V/V SSE2 Subtract packed doubleword integers in xmm2/m128
from xmm1.
PSUBD xmm1, xmm2/m128
66 0F FB/r RM V/V SSE2 Subtract packed quadword integers in xmm2/m128
from xmm1.
PSUBQ xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG F8 /r RVM V/V AVX Subtract packed byte integers in xmm3/m128 from
xmm2.
VPSUBB xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG F9 /r RVM V/V AVX Subtract packed word integers in xmm3/m128 from
xmm2.
VPSUBW xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG FA /r RVM V/V AVX Subtract packed doubleword integers in xmm3/m128
from xmm2.
VPSUBD xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG FB/r RVM V/V AVX Subtract packed quadword integers in xmm3/m128
from xmm2.
VPSUBQ xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG F8 /r RVM V/V AVX2 Subtract packed byte integers in ymm3/m256 from
ymm2.
VPSUBB ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG F9 /r RVM V/V AVX2 Subtract packed word integers in ymm3/m256 from
ymm2.
VPSUBW ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG FA /r RVM V/V AVX2 Subtract packed doubleword integers in ymm3/m256
from ymm2.
VPSUBD ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG FB/r RVM V/V AVX2 Subtract packed quadword integers in ymm3/m256
from ymm2.
VPSUBQ ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.WIG F8 /r FVM V/V AVX512VL
AVX512BW
Subtract packed byte integers in xmm3/m128 from
xmm2 and store in xmm1 using writemask k1.
VPSUBB xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG F8 /r FVM V/V AVX512VL
AVX512BW
Subtract packed byte integers in ymm3/m256 from
ymm2 and store in ymm1 using writemask k1.
VPSUBB ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG F8 /r FVM V/V AVX512BW Subtract packed byte integers in zmm3/m512 from
zmm2 and store in zmm1 using writemask k1.
VPSUBB zmm1 {k1}{z}, zmm2,
zmm3/m512
5-822 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Subtracts the packed byte, word, doubleword, or quadword integers in the second source operand from the first
source operand and stores the result in the destination operand. When a result is too large to be represented in the
8/16/32/64 integer (overflow), the result is wrapped around and the low bits are written to the destination element
(that is, the carry is ignored).
EVEX.NDS.128.66.0F.WIG F9 /r FVM V/V AVX512VL
AVX512BW
Subtract packed word integers in xmm3/m128 from
xmm2 and store in xmm1 using writemask k1.
VPSUBW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG F9 /r FVM V/V AVX512VL
AVX512BW
Subtract packed word integers in ymm3/m256 from
ymm2 and store in ymm1 using writemask k1.
VPSUBW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG F9 /r FVM V/V AVX512BW Subtract packed word integers in zmm3/m512 from
zmm2 and store in zmm1 using writemask k1.
VPSUBW zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F.W0 FA /r FV V/V AVX512VL
AVX512F
Subtract packed doubleword integers in
xmm3/m128/m32bcst from xmm2 and store in xmm1
using writemask k1.
VPSUBD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F.W0 FA /r FV V/V AVX512VL
AVX512F
Subtract packed doubleword integers in
ymm3/m256/m32bcst from ymm2 and store in ymm1
using writemask k1.
VPSUBD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F.W0 FA /r FV V/V AVX512F Subtract packed doubleword integers in
zmm3/m512/m32bcst from zmm2 and store in zmm1
using writemask k1
VPSUBD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F.W1 FB /r FV V/V AVX512VL
AVX512F
Subtract packed quadword integers in
xmm3/m128/m64bcst from xmm2 and store in xmm1
using writemask k1.
VPSUBQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 FB /r FV V/V AVX512VL
AVX512F
Subtract packed quadword integers in
ymm3/m256/m64bcst from ymm2 and store in ymm1
using writemask k1.
VPSUBQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 FB/r FV V/V AVX512F Subtract packed quadword integers in
zmm3/m512/m64bcst from zmm2 and store in zmm1
using writemask k1.
VPSUBQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-823
INSTRUCTION SET REFERENCE, A-Z
Note that these instructions can operate on either unsigned or signed (two’s complement notation) integers;
however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected
overflow conditions, software must control the ranges on which the values are operated.
128-bit Legacy SSE version: The second source operand is an XMM register or an 128-bit memory location. The
first source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding YMM
destination register remain unchanged.
VEX.128 encoded versions: The second source operand is an XMM register or an 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding destina-
tion register are zeroed.
VEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory location. The first
source operand and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corresponding ZMM
register are zeroed.
EVEX encoded VPSUBD/Q: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory
location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The first source operand and
destination operands are ZMM/YMM/XMM registers. The destination is conditionally updated with writemask k1.
EVEX encoded VPSUBB/W: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory
location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination is condi-
tionally updated with writemask k1.
Operation
VPSUBB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SRC1[i+7:i] - SRC2[i+7:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPSUBW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SRC1[i+15:i] - SRC2[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] = 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
5-824 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSUBD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] SRC1[i+31:i] - SRC2[31:0]
ELSE DEST[i+31:i] SRC1[i+31:i] - SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPSUBQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] SRC1[i+63:i] - SRC2[63:0]
ELSE DEST[i+63:i] SRC1[i+63:i] - SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VPSUBB (VEX.256 encoded version)
DEST[7:0] SRC1[7:0]-SRC2[7:0]
DEST[15:8] SRC1[15:8]-SRC2[15:8]
DEST[23:16] SRC1[23:16]-SRC2[23:16]
DEST[31:24] SRC1[31:24]-SRC2[31:24]
DEST[39:32] SRC1[39:32]-SRC2[39:32]
DEST[47:40] SRC1[47:40]-SRC2[47:40]
DEST[55:48] SRC1[55:48]-SRC2[55:48]
DEST[63:56] SRC1[63:56]-SRC2[63:56]
DEST[71:64] SRC1[71:64]-SRC2[71:64]
DEST[79:72] SRC1[79:72]-SRC2[79:72]
DEST[87:80] SRC1[87:80]-SRC2[87:80]
DEST[95:88] SRC1[95:88]-SRC2[95:88]
DEST[103:96] SRC1[103:96]-SRC2[103:96]
DEST[111:104] SRC1[111:104]-SRC2[111:104]
DEST[119:112] SRC1[119:112]-SRC2[119:112]
Ref. # 319433-023 5-825
INSTRUCTION SET REFERENCE, A-Z
DEST[127:120] SRC1[127:120]-SRC2[127:120]
DEST[135:128] SRC1[135:128]-SRC2[135:128]
DEST[143:136] SRC1[143:136]-SRC2[143:136]
DEST[151:144] SRC1[151:144]-SRC2[151:144]
DEST[159:152] SRC1[159:152]-SRC2[159:152]
DEST[167:160] SRC1[167:160]-SRC2[167:160]
DEST[175:168] SRC1[175:168]-SRC2[175:168]
DEST[183:176] SRC1[183:176]-SRC2[183:176]
DEST[191:184] SRC1[191:184]-SRC2[191:184]
DEST[199:192] SRC1[199:192]-SRC2[199:192]
DEST[207:200] SRC1[207:200]-SRC2[207:200]
DEST[215:208] SRC1[215:208]-SRC2[215:208]
DEST[223:216] SRC1[223:216]-SRC2[223:216]
DEST[231:224] SRC1[231:224]-SRC2[231:224]
DEST[239:232] SRC1[239:232]-SRC2[239:232]
DEST[247:240] SRC1[247:240]-SRC2[247:240]
DEST[255:248] SRC1[255:248]-SRC2[255:248]
DEST[MAX_VL-1:256] 0
VPSUBB (VEX.128 encoded version)
DEST[7:0] SRC1[7:0]-SRC2[7:0]
DEST[15:8] SRC1[15:8]-SRC2[15:8]
DEST[23:16] SRC1[23:16]-SRC2[23:16]
DEST[31:24] SRC1[31:24]-SRC2[31:24]
DEST[39:32] SRC1[39:32]-SRC2[39:32]
DEST[47:40] SRC1[47:40]-SRC2[47:40]
DEST[55:48] SRC1[55:48]-SRC2[55:48]
DEST[63:56] SRC1[63:56]-SRC2[63:56]
DEST[71:64] SRC1[71:64]-SRC2[71:64]
DEST[79:72] SRC1[79:72]-SRC2[79:72]
DEST[87:80] SRC1[87:80]-SRC2[87:80]
DEST[95:88] SRC1[95:88]-SRC2[95:88]
DEST[103:96] SRC1[103:96]-SRC2[103:96]
DEST[111:104] SRC1[111:104]-SRC2[111:104]
DEST[119:112] SRC1[119:112]-SRC2[119:112]
DEST[127:120] SRC1[127:120]-SRC2[127:120]
DEST[MAX_VL-1:128] 0
PSUBB (128-bit Legacy SSE version)
DEST[7:0] DEST[7:0]-SRC[7:0]
DEST[15:8] DEST[15:8]-SRC[15:8]
DEST[23:16] DEST[23:16]-SRC[23:16]
DEST[31:24] DEST[31:24]-SRC[31:24]
DEST[39:32] DEST[39:32]-SRC[39:32]
DEST[47:40] DEST[47:40]-SRC[47:40]
DEST[55:48] DEST[55:48]-SRC[55:48]
DEST[63:56] DEST[63:56]-SRC[63:56]
DEST[71:64] DEST[71:64]-SRC[71:64]
DEST[79:72] DEST[79:72]-SRC[79:72]
DEST[87:80] DEST[87:80]-SRC[87:80]
DEST[95:88] DEST[95:88]-SRC[95:88]
DEST[103:96] DEST[103:96]-SRC[103:96]
DEST[111:104] DEST[111:104]-SRC[111:104]
DEST[119:112] DEST[119:112]-SRC[119:112]
5-826 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[127:120] DEST[127:120]-SRC[127:120]
DEST[MAX_VL-1:128] (Unmodified)
VPSUBW (VEX.256 encoded version)
DEST[15:0] SRC1[15:0]-SRC2[15:0]
DEST[31:16] SRC1[31:16]-SRC2[31:16]
DEST[47:32] SRC1[47:32]-SRC2[47:32]
DEST[63:48] SRC1[63:48]-SRC2[63:48]
DEST[79:64] SRC1[79:64]-SRC2[79:64]
DEST[95:80] SRC1[95:80]-SRC2[95:80]
DEST[111:96] SRC1[111:96]-SRC2[111:96]
DEST[127:112] SRC1[127:112]-SRC2[127:112]
DEST[143:128] SRC1[143:128]-SRC2[143:128]
DEST[159:144] SRC1[159:144]-SRC2[159:144]
DEST[175:160] SRC1[175:160]-SRC2[175:160]
DEST[191:176] SRC1[191:176]-SRC2[191:176]
DEST[207:192] SRC1207:192]-SRC2[207:192]
DEST[223:208] SRC1[223:208]-SRC2[223:208]
DEST[239:224] SRC1[239:224]-SRC2[239:224]
DEST[255:240] SRC1[255:240]-SRC2[255:240]
DEST[MAX_VL-1:256] 0
VPSUBW (VEX.128 encoded version)
DEST[15:0] SRC1[15:0]-SRC2[15:0]
DEST[31:16] SRC1[31:16]-SRC2[31:16]
DEST[47:32] SRC1[47:32]-SRC2[47:32]
DEST[63:48] SRC1[63:48]-SRC2[63:48]
DEST[79:64] SRC1[79:64]-SRC2[79:64]
DEST[95:80] SRC1[95:80]-SRC2[95:80]
DEST[111:96] SRC1[111:96]-SRC2[111:96]
DEST[127:112] SRC1[127:112]-SRC2[127:112]
DEST[MAX_VL-1:128] 0
PSUBW (128-bit Legacy SSE version)
DEST[15:0] DEST[15:0]-SRC[15:0]
DEST[31:16] DEST[31:16]-SRC[31:16]
DEST[47:32] DEST[47:32]-SRC[47:32]
DEST[63:48] DEST[63:48]-SRC[63:48]
DEST[79:64] DEST[79:64]-SRC[79:64]
DEST[95:80] DEST[95:80]-SRC[95:80]
DEST[111:96] DEST[111:96]-SRC[111:96]
DEST[127:112] DEST[127:112]-SRC[127:112]
DEST[MAX_VL-1:128] (Unmodified)
VPSUBD (VEX.256 encoded version)
DEST[31:0] SRC1[31:0]-SRC2[31:0]
DEST[63:32] SRC1[63:32]-SRC2[63:32]
DEST[95:64] SRC1[95:64]-SRC2[95:64]
DEST[127:96] SRC1[127:96]-SRC2[127:96]
DEST[159:128] SRC1[159:128]-SRC2[159:128]
DEST[191:160] SRC1[191:160]-SRC2[191:160]
DEST[223:192] SRC1[223:192]-SRC2[223:192]
DEST[255:224] SRC1[255:224]-SRC2[255:224]
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-827
INSTRUCTION SET REFERENCE, A-Z
VPSUBD (VEX.128 encoded version)
DEST[31:0] SRC1[31:0]-SRC2[31:0]
DEST[63:32] SRC1[63:32]-SRC2[63:32]
DEST[95:64] SRC1[95:64]-SRC2[95:64]
DEST[127:96] SRC1[127:96]-SRC2[127:96]
DEST[MAX_VL-1:128] 0
PSUBD (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0]-SRC[31:0]
DEST[63:32] DEST[63:32]-SRC[63:32]
DEST[95:64] DEST[95:64]-SRC[95:64]
DEST[127:96] DEST[127:96]-SRC[127:96]
DEST[MAX_VL-1:128] (Unmodified)
VPSUBQ (VEX.256 encoded version)
DEST[63:0] SRC1[63:0]-SRC2[63:0]
DEST[127:64] SRC1[127:64]-SRC2[127:64]
DEST[191:128] SRC1[191:128]-SRC2[191:128]
DEST[255:192] SRC1[255:192]-SRC2[255:192]
DEST[MAX_VL-1:256] 0
VPSUBQ (VEX.128 encoded version)
DEST[63:0] SRC1[63:0]-SRC2[63:0]
DEST[127:64] SRC1[127:64]-SRC2[127:64]
DEST[MAX_VL-1:128] 0
PSUBQ (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0]-SRC[63:0]
DEST[127:64] DEST[127:64]-SRC[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VPSUBB __m512i _mm512_sub_epi8(__m512i a, __m512i b);
VPSUBB __m512i _mm512_mask_sub_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPSUBB __m512i _mm512_maskz_sub_epi8( __mmask64 k, __m512i a, __m512i b);
VPSUBB __m256i _mm256_mask_sub_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPSUBB __m256i _mm256_maskz_sub_epi8( __mmask32 k, __m256i a, __m256i b);
VPSUBB __m128i _mm_mask_sub_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPSUBB __m128i _mm_maskz_sub_epi8( __mmask16 k, __m128i a, __m128i b);
VPSUBW __m512i _mm512_sub_epi16(__m512i a, __m512i b);
VPSUBW __m512i _mm512_mask_sub_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPSUBW __m512i _mm512_maskz_sub_epi16( __mmask32 k, __m512i a, __m512i b);
VPSUBW __m256i _mm256_mask_sub_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPSUBW __m256i _mm256_maskz_sub_epi16( __mmask16 k, __m256i a, __m256i b);
VPSUBW __m128i _mm_mask_sub_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBW __m128i _mm_maskz_sub_epi16( __mmask8 k, __m128i a, __m128i b);
VPSUBD __m512i _mm512_sub_epi32(__m512i a, __m512i b);
VPSUBD __m512i _mm512_mask_sub_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPSUBD __m512i _mm512_maskz_sub_epi32( __mmask16 k, __m512i a, __m512i b);
VPSUBD __m256i _mm256_mask_sub_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPSUBD __m256i _mm256_maskz_sub_epi32( __mmask8 k, __m256i a, __m256i b);
VPSUBD __m128i _mm_mask_sub_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBD __m128i _mm_maskz_sub_epi32( __mmask8 k, __m128i a, __m128i b);
VPSUBQ __m512i _mm512_sub_epi64(__m512i a, __m512i b);
5-828 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSUBQ __m512i _mm512_mask_sub_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPSUBQ __m512i _mm512_maskz_sub_epi64( __mmask8 k, __m512i a, __m512i b);
VPSUBQ __m256i _mm256_mask_sub_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPSUBQ __m256i _mm256_maskz_sub_epi64( __mmask8 k, __m256i a, __m256i b);
VPSUBQ __m128i _mm_mask_sub_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBQ __m128i _mm_maskz_sub_epi64( __mmask8 k, __m128i a, __m128i b);
PSUBB __m128i _mm_sub_epi8 ( __m128i a, __m128i b)
PSUBW __m128i _mm_sub_epi16 ( __m128i a, __m128i b)
PSUBD __m128i _mm_sub_epi32 ( __m128i a, __m128i b)
PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)
VPSUBB __m256i _mm256_sub_epi8 ( __m256i a, __m256i b)
VPSUBW __m256i _mm256_sub_epi16 ( __m256i a, __m256i b)
VPSUBD __m256i _mm256_sub_epi32 ( __m256i a, __m256i b)
VPSUBQ __m256i _mm256_sub_epi64(__m256i m1, __m256i m2)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPSUBD/Q, see Exceptions Type E4.
EVEX-encoded VPSUBB/W, see Exceptions Type E4.nb.
Ref. # 319433-023 5-829
INSTRUCTION SET REFERENCE, A-Z
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F E8 /r RM V/V SSE2 Subtract packed signed byte integers in xmm2/m128 from
packed signed byte integers in xmm1 and saturate results.
PSUBSB xmm1, xmm2/m128
66 0F E9 /r RM V/V SSE2 Subtract packed signed word integers in xmm2/m128 from
packed signed word integers in xmm1 and saturate results.
PSUBSW xmm1, xmm2/m128
VEX.NDS.128.66.0F E8 /r RVM V/V AVX Subtract packed signed byte integers in xmm3/m128 from
packed signed byte integers in xmm2 and saturate results.
VPSUBSB xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F E9 /r RVM V/V AVX Subtract packed signed word integers in xmm3/m128 from
packed signed word integers in xmm2 and saturate results.
VPSUBSW xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F E8 /r RVM V/V AVX2 Subtract packed signed byte integers in ymm3/m256 from
packed signed byte integers in ymm2 and saturate results.
VPSUBSB ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F E9 /r RVM V/V AVX2 Subtract packed signed word integers in ymm3/m256 from
packed signed word integers in ymm2 and saturate results.
VPSUBSW ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.WIG E8 /r FVM V/V AVX512VL
AVX512BW
Subtract packed signed byte integers in xmm3/m128 from
packed signed byte integers in xmm2 and saturate results
and store in xmm1 using writemask k1.
VPSUBSB xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG E8 /r FVM V/V AVX512VL
AVX512BW
Subtract packed signed byte integers in ymm3/m256 from
packed signed byte integers in ymm2 and saturate results
and store in ymm1 using writemask k1.
VPSUBSB ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG E8 /r FVM V/V AVX512BW Subtract packed signed byte integers in zmm3/m512 from
packed signed byte integers in zmm2 and saturate results
and store in zmm1 using writemask k1.
VPSUBSB zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F.WIG E9 /r FVM V/V AVX512VL
AVX512BW
Subtract packed signed word integers in xmm3/m128 from
packed signed word integers in xmm2 and saturate results
and store in xmm1 using writemask k1.
VPSUBSW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F.WIG E9 /r FVM V/V AVX512VL
AVX512BW
Subtract packed signed word integers in ymm3/m256 from
packed signed word integers in ymm2 and saturate results
and store in ymm1 using writemask k1.
VPSUBSW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F.WIG E9 /r FVM V/V AVX512BW Subtract packed signed word integers in zmm3/m512 from
packed signed word integers in zmm2 and saturate results
and store in zmm1 using writemask k1.
VPSUBSW zmm1 {k1}{z}, zmm2,
zmm3/m512
5-830 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Subtract packed signed byte/word integers of the second source operand from the packed signed byte/word inte-
gers of the first source operand, and stores the packed integer results in the destination operand. An overflowed
result larger than byte/word size is handled with signed saturation, as described in the following paragraphs.
The (V)PSUBSB instruction subtracts packed signed byte integers. When an individual byte result is beyond the
range of a signed byte integer (that is, greater than 7FH or less than 80H), the saturated value of 7FH or 80H,
respectively, is written to the destination operand.
The (V)PSUBSW instruction subtracts packed signed word integers. When an individual word result is beyond the
range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the saturated value of 7FFFH or
8000H, respectively, is written to the destination operand.
128-bit Legacy SSE version: The second source operand is an XMM register or an 128-bit memory location. The
first source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding YMM
destination register remain unchanged.
VEX.128 encoded versions: The second source operand is an XMM register or an 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding destina-
tion register are zeroed.
VEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory location. The first
source operand and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corresponding ZMM
register are zeroed.
EVEX encoded version: The second source operand is an ZMM/YMM/XMM register or an 512/256/128-bit memory
location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination is condi-
tionally updated with writemask k1.
Operation
VPSUBSB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8;
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateToSignedByte (SRC1[i+7:i] - SRC2[i+7:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0;
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-831
INSTRUCTION SET REFERENCE, A-Z
VPSUBSW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateToSignedWord (SRC1[i+15:i] - SRC2[i+15:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0;
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
VPSUBSB (VEX.256 encoded version)
DEST[7:0] SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 31th bytes *)
DEST[255:248] SaturateToSignedByte (SRC1[255:248] - SRC2[255:248]);
DEST[MAX_VL-1:256] 0;
VPSUBSB (VEX.128 encoded version)
DEST[7:0] SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] SaturateToSignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[MAX_VL-1:128] 0;
PSUBSB (128-bit Legacy SSE Version)
DEST[7:0] SaturateToSignedByte (DEST[7:0] - SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] SaturateToSignedByte (DEST[127:120] - SRC[127:120]);
DEST[MAX_VL-1:128] (Unmodified);
VPSUBSW (VEX.256 encoded version)
DEST[15:0] SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 15th words *)
DEST[255:240] SaturateToSignedWord (SRC1[255:240] - SRC2[255:240]);
DEST[MAX_VL-1:256] 0;
VPSUBSW (VEX.128 encoded version)
DEST[15:0] SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] SaturateToSignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[MAX_VL-1:128] 0;
PSUBSW (128-bit Legacy SSE Version)
DEST[15:0] SaturateToSignedWord (DEST[15:0] - SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] SaturateToSignedWord (DEST[127:112] - SRC[127:112]);
DEST[MAX_VL-1:128] (Unmodified);
5-832 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPSUBSB __m512i _mm512_subs_epi8(__m512i a, __m512i b);
VPSUBSB __m512i _mm512_mask_subs_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPSUBSB __m512i _mm512_maskz_subs_epi8( __mmask64 k, __m512i a, __m512i b);
VPSUBSB __m256i _mm256_mask_subs_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPSUBSB __m256i _mm256_maskz_subs_epi8( __mmask32 k, __m256i a, __m256i b);
VPSUBSB __m128i _mm_mask_subs_epi8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPSUBSB __m128i _mm_maskz_subs_epi8( __mmask16 k, __m128i a, __m128i b);
VPSUBSW __m512i _mm512_subs_epi16(__m512i a, __m512i b);
VPSUBSW __m512i _mm512_mask_subs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPSUBSW __m512i _mm512_maskz_subs_epi16( __mmask32 k, __m512i a, __m512i b);
VPSUBSW __m256i _mm256_mask_subs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPSUBSW __m256i _mm256_maskz_subs_epi16( __mmask16 k, __m256i a, __m256i b);
VPSUBSW __m128i _mm_mask_subs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBSW __m128i _mm_maskz_subs_epi16( __mmask8 k, __m128i a, __m128i b);
PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)
PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)
VPSUBSB __m256i _mm_subs_epi8(__m256i m1, __m256i m2)
VPSUBSW __m256i _mm_subs_epi16(__m256i m1, __m256i m2)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.nb.
Ref. # 319433-023 5-833
INSTRUCTION SET REFERENCE, A-Z
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F D8 /r RM V/V SSE2 Subtract packed unsigned byte integers in xmm2/m128 from
packed unsigned byte integers in xmm1 and saturate result.
PSUBUSB xmm1, xmm2/m128
66 0F D9 /r RM V/V SSE2 Subtract packed unsigned word integers in xmm2/m128
from packed unsigned word integers in xmm1 and saturate
result.
PSUBUSW xmm1, xmm2/m128
VEX.NDS.128.66.0F D8 /r RVM V/V AVX Subtract packed unsigned byte integers in xmm3/m128 from
packed unsigned byte integers in xmm2 and saturate result.
VPSUBUSB xmm1, xmm2,
xmm3/m128
VEX.NDS.128.66.0F D9 /r RVM V/V AVX Subtract packed unsigned word integers in xmm3/m128
from packed unsigned word integers in xmm2 and saturate
result.
VPSUBUSW xmm1, xmm2,
xmm3/m128
VEX.NDS.256.66.0F D8 /r RVM V/V AVX2 Subtract packed unsigned byte integers in ymm3/m256 from
packed unsigned byte integers in ymm2 and saturate result.
VPSUBUSB ymm1, ymm2,
ymm3/m256
VEX.NDS.256.66.0F D9 /r RVM V/V AVX2 Subtract packed unsigned word integers in ymm3/m256
from packed unsigned word integers in ymm2 and saturate
result.
VPSUBUSW ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.WIG D8 /r FVM V/V AVX512VL
AVX512BW
Subtract packed unsigned byte integers in xmm3/m128 from
packed unsigned byte integers in xmm2, saturate results and
store in xmm1 using writemask k1.
VPSUBUSB xmm1 {k1}{z},
xmm2, xmm3/m128
EVEX.NDS.256.66.0F.WIG D8 /r FVM V/V AVX512VL
AVX512BW
Subtract packed unsigned byte integers in ymm3/m256 from
packed unsigned byte integers in ymm2, saturate results and
store in ymm1 using writemask k1.
VPSUBUSB ymm1 {k1}{z},
ymm2, ymm3/m256
EVEX.NDS.512.66.0F.WIG D8 /r FVM V/V AVX512BW Subtract packed unsigned byte integers in zmm3/m512 from
packed unsigned byte integers in zmm2, saturate results and
store in zmm1 using writemask k1.
VPSUBUSB zmm1 {k1}{z},
zmm2, zmm3/m512
EVEX.NDS.128.66.0F.WIG D9 /r FVM V/V AVX512VL
AVX512BW
Subtract packed unsigned word integers in xmm3/m128
from packed unsigned word integers in xmm2 and saturate
results and store in xmm1 using writemask k1.
VPSUBUSW xmm1 {k1}{z},
xmm2, xmm3/m128
EVEX.NDS.256.66.0F.WIG D9 /r FVM V/V AVX512VL
AVX512BW
Subtract packed unsigned word integers in ymm3/m256
from packed unsigned word integers in ymm2, saturate
results and store in ymm1 using writemask k1.
VPSUBUSW ymm1 {k1}{z},
ymm2, ymm3/m256
EVEX.NDS.512.66.0F.WIG D9 /r FVM V/V AVX512BW Subtract packed unsigned word integers in zmm3/m512
from packed unsigned word integers in zmm2, saturate
results and store in zmm1 using writemask k1.
VPSUBUSW zmm1 {k1}{z},
zmm2, zmm3/m512
5-834 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Subtract packed unsigned byte/word integers of the second source operand from the packed unsigned byte/word
integers of the first source operand and stores the packed unsigned integer results in the destination operand. An
overflowed result larger than byte/word size is handled with unsigned saturation, as described in the following
paragraphs.
The (V)PSUBUSB instruction subtracts packed unsigned byte integers. When an individual byte result is less than
zero, the saturated value of 00H is written to the destination operand.
The (V)PSUBUSW instruction subtracts packed unsigned word integers. When an individual word result is less than
zero, the saturated value of 0000H is written to the destination operand.
128-bit Legacy SSE version: The second source operand is an XMM register or an 128-bit memory location. The
first source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding desti-
nation register remain unchanged.
VEX.128 encoded versions: The second source operand is an XMM register or an 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding destina-
tion register are zeroed.
VEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory location. The first
source operand and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corresponding ZMM
register are zeroed.
EVEX encoded version: The second source operand is an ZMM/YMM/XMM register or an 512/256/128-bit memory
location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination is condi-
tionally updated with writemask k1.
Operation
VPSUBUSB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8;
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] SaturateToUnsignedByte (SRC1[i+7:i] - SRC2[i+7:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0;
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-835
INSTRUCTION SET REFERENCE, A-Z
VPSUBUSW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16;
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] SaturateToUnsignedWord (SRC1[i+15:i] - SRC2[i+15:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0;
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
VPSUBUSB (VEX.256 encoded version)
DEST[7:0] SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 31st bytes *)
DEST[255:148] SaturateToUnsignedByte (SRC1[255:248] - SRC2[255:248]);
DEST[MAX_VL-1:256] 0;
VPSUBUSB (VEX.128 encoded version)
DEST[7:0] SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] SaturateToUnsignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[MAX_VL-1:128] 0
PSUBUSB (128-bit Legacy SSE Version)
DEST[7:0] SaturateToUnsignedByte (DEST[7:0] - SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] SaturateToUnsignedByte (DEST[127:120] - SRC[127:120]);
DEST[MAX_VL-1:128] (Unmodified)
VPSUBUSW (VEX.256 encoded version)
DEST[15:0] SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 15th words *)
DEST[255:240] SaturateToUnsignedWord (SRC1[255:240] - SRC2[255:240]);
DEST[MAX_VL-1:256] 0;
VPSUBUSW (VEX.128 encoded version)
DEST[15:0] SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] SaturateToUnsignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[MAX_VL-1:128] 0
PSUBUSW (128-bit Legacy SSE Version)
DEST[15:0] SaturateToUnsignedWord (DEST[15:0] - SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] SaturateToUnsignedWord (DEST[127:112] - SRC[127:112]);
DEST[MAX_VL-1:128] (Unmodified)
5-836 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPSUBUSB __m512i _mm512_subs_epu8(__m512i a, __m512i b);
VPSUBUSB __m512i _mm512_mask_subs_epu8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPSUBUSB __m512i _mm512_maskz_subs_epu8( __mmask64 k, __m512i a, __m512i b);
VPSUBUSB __m256i _mm256_mask_subs_epu8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPSUBUSB __m256i _mm256_maskz_subs_epu8( __mmask32 k, __m256i a, __m256i b);
VPSUBUSB __m128i _mm_mask_subs_epu8(__m128i s, __mmask16 k, __m128i a, __m128i b);
VPSUBUSB __m128i _mm_maskz_subs_epu8( __mmask16 k, __m128i a, __m128i b);
VPSUBUSW __m512i _mm512_subs_epu16(__m512i a, __m512i b);
VPSUBUSW __m512i _mm512_mask_subs_epu16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPSUBUSW __m512i _mm512_maskz_subs_epu16( __mmask32 k, __m512i a, __m512i b);
VPSUBUSW __m256i _mm256_mask_subs_epu16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPSUBUSW __m256i _mm256_maskz_subs_epu16( __mmask16 k, __m256i a, __m256i b);
VPSUBUSW __m128i _mm_mask_subs_epu16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPSUBUSW __m128i _mm_maskz_subs_epu16( __mmask8 k, __m128i a, __m128i b);
PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)
PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)
PSUBUSB __m256i _mm256_subs_epu8(__m256i m1, __m256i m2)
PSUBUSW __m256i _mm256_subs_epu16(__m256i m1, __m256i m2)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-837
INSTRUCTION SET REFERENCE, A-Z
VPTESTNMB/W/D/Q—Logical NAND and Set
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID Description
EVEX.NDS.128.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, xmm2,
xmm3/m128
FVM V/V AVX512VL
AVX512BW
Bitwise NAND of packed byte integers in xmm2 and
xmm3/m128 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
EVEX.NDS.256.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, ymm2,
ymm3/m256
FVM V/V AVX512VL
AVX512BW
Bitwise NAND of packed byte integers in ymm2 and
ymm3/m256 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
EVEX.NDS.512.F3.0F38.W0 26 /r
VPTESTNMB k2 {k1}, zmm2,
zmm3/m512
FVM V/V AVX512F
AVX512BW
Bitwise NAND of packed byte integers in zmm2 and
zmm3/m512 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
EVEX.NDS.128.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, xmm2,
xmm3/m128
FVM V/V AVX512VL
AVX512BW
Bitwise NAND of packed word integers in xmm2 and
xmm3/m128 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
EVEX.NDS.256.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, ymm2,
ymm3/m256
FVM V/V AVX512VL
AVX512BW
Bitwise NAND of packed word integers in ymm2 and
ymm3/m256 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
EVEX.NDS.512.F3.0F38.W1 26 /r
VPTESTNMW k2 {k1}, zmm2,
zmm3/m512
FVM V/V AVX512F
AVX512BW
Bitwise NAND of packed word integers in zmm2 and
zmm3/m512 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
EVEX.NDS.128.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, xmm2,
xmm3/m128/m32bcst
FV V/V AVX512VL
AVX512F
Bitwise NAND of packed doubleword integers in xmm2 and
xmm3/m128/m32bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
EVEX.NDS.256.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, ymm2,
ymm3/m256/m32bcst
FV V/V AVX512VL
AVX512F
Bitwise NAND of packed doubleword integers in ymm2 and
ymm3/m256/m32bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
EVEX.NDS.512.F3.0F38.W0 27 /r
VPTESTNMD k2 {k1}, zmm2,
zmm3/m512/m32bcst
FV V/V AVX512F Bitwise NAND of packed doubleword integers in zmm2 and
zmm3/m512/m32bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
EVEX.NDS.128.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, xmm2,
xmm3/m128/m64bcst
FV V/V AVX512VL
AVX512F
Bitwise NAND of packed quadword integers in xmm2 and
xmm3/m128/m64bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
EVEX.NDS.256.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, ymm2,
ymm3/m256/m64bcst
FV V/V AVX512VL
AVX512F
Bitwise NAND of packed quadword integers in ymm2 and
ymm3/m256/m64bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
EVEX.NDS.512.F3.0F38.W1 27 /r
VPTESTNMQ k2 {k1}, zmm2,
zmm3/m512/m64bcst
FV V/V AVX512F Bitwise NAND of packed quadword integers in zmm2 and
zmm3/m512/m64bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
5-838 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Performs a bitwise logical NAND operation on the byte/word/doubleword/quadword element of the first source
operand (the second operand) with the corresponding element of the second source operand (the third operand)
and stores the logical comparison result into each bit of the destination operand (the first operand) according to the
writemask k1. Each bit of the result is set to 1 if the bitwise AND of the corresponding elements of the first and
second src operands is zero; otherwise it is set to 0.
EVEX encoded VPTESTNMD/Q: The first source operand is a ZMM/YMM/XMM registers. The second source operand
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted
from a 32/64-bit memory location. The destination is updated according to the writemask.
EVEX encoded VPTESTNMB/W: The first source operand is a ZMM/YMM/XMM registers. The second source operand
can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination is updated according to the
writemask.
Operation
VPTESTNMB
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j*8
IF MaskBit(j) OR *no writemask*
THEN
DEST[j] (SRC1[i+7:i] BITWISE AND SRC2[i+7:i] == 0)? 1 : 0
ELSE DEST[j] 0; zeroing masking only
FI
ENDFOR
DEST[MAX_KL-1:KL] 0
VPTESTNMW
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j*16
IF MaskBit(j) OR *no writemask*
THEN
DEST[j] (SRC1[i+15:i] BITWISE AND SRC2[i+15:i] == 0)? 1 : 0
ELSE DEST[j] 0; zeroing masking only
FI
ENDFOR
DEST[MAX_KL-1:KL] 0
VPTESTNMD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j*32
IF MaskBit(j) OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] (SRC1[i+31:i] BITWISE AND SRC2[31:0] == 0)? 1 : 0
ELSE DEST[j] (SRC1[i+31:i] BITWISE AND SRC2[i+31:i] == 0)? 1 : 0
FI
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-839
INSTRUCTION SET REFERENCE, A-Z
ELSE DEST[j] 0; zeroing masking only
FI
ENDFOR
DEST[MAX_KL-1:KL] 0
VPTESTNMQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j*64
IF MaskBit(j) OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[j] (SRC1[i+63:i] BITWISE AND SRC2[63:0] != 0)? 1 : 0;
ELSE DEST[j] (SRC1[i+63:i] BITWISE AND SRC2[i+63:i] != 0)? 1 : 0;
FI;
ELSE DEST[j] 0; zeroing masking only
FI
ENDFOR
DEST[MAX_KL-1:KL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPTESTNMB __mmask64 _mm512_testn_epi8_mask( __m512i a, __m512i b);
VPTESTNMB __mmask64 _mm512_mask_testn_epi8_mask(__mmask64, __m512i a, __m512i b);
VPTESTNMB __mmask32 _mm256_testn_epi8_mask(__m256i a, __m256i b);
VPTESTNMB __mmask32 _mm256_mask_testn_epi8_mask(__mmask32, __m256i a, __m256i b);
VPTESTNMB __mmask16 _mm_testn_epi8_mask(__m128i a, __m128i b);
VPTESTNMB __mmask16 _mm_mask_testn_epi8_mask(__mmask16, __m128i a, __m128i b);
VPTESTNMW __mmask32 _mm512_testn_epi16_mask( __m512i a, __m512i b);
VPTESTNMW __mmask32 _mm512_mask_testn_epi16_mask(__mmask32, __m512i a, __m512i b);
VPTESTNMW __mmask16 _mm256_testn_epi16_mask(__m256i a, __m256i b);
VPTESTNMW __mmask16 _mm256_mask_testn_epi16_mask(__mmask16, __m256i a, __m256i b);
VPTESTNMW __mmask8 _mm_testn_epi16_mask(__m128i a, __m128i b);
VPTESTNMW __mmask8 _mm_mask_testn_epi16_mask(__mmask8, __m128i a, __m128i b);
VPTESTNMD __mmask16 _mm512_testn_epi32_mask( __m512i a, __m512i b);
VPTESTNMD __mmask16 _mm512_mask_testn_epi32_mask(__mmask16, __m512i a, __m512i b);
VPTESTNMD __mmask8 _mm256_testn_epi32_mask(__m256i a, __m256i b);
VPTESTNMD __mmask8 _mm256_mask_testn_epi32_mask(__mmask8, __m256i a, __m256i b);
VPTESTNMD __mmask8 _mm_testn_epi32_mask(__m128i a, __m128i b);
VPTESTNMD __mmask8 _mm_mask_testn_epi32_mask(__mmask8, __m128i a, __m128i b);
VPTESTNMQ __mmask8 _mm512_testn_epi64_mask(__m512i a, __m512i b);
VPTESTNMQ __mmask8 _mm512_mask_testn_epi64_mask(__mmask8, __m512i a, __m512i b);
VPTESTNMQ __mmask8 _mm256_testn_epi64_mask(__m256i a, __m256i b);
VPTESTNMQ __mmask8 _mm256_mask_testn_epi64_mask(__mmask8, __m256i a, __m256i b);
VPTESTNMQ __mmask8 _mm_testn_epi64_mask(__m128i a, __m128i b);
VPTESTNMQ __mmask8 _mm_mask_testn_epi64_mask(__mmask8, __m128i a, __m128i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
VPTESTNMD/VPTESTNMQ: See Exceptions Type E4.
VPTESTNMB/VPTESTNMW: See Exceptions Type E4.nb.
5-840 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—Unpack High Data
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 68 /r RM V/V SSE2 Interleave high-order bytes from xmm1 and
xmm2/m128 into xmm1.
PUNPCKHBW xmm1,xmm2/m128
66 0F 69 /r RM V/V SSE2 Interleave high-order words from xmm1
and xmm2/m128 into xmm1.
PUNPCKHWD xmm1,xmm2/m128
66 0F 6A /r RM V/V SSE2 Interleave high-order doublewords from
xmm1 and xmm2/m128 into xmm1.
PUNPCKHDQ xmm1, xmm2/m128
66 0F 6D /r RM V/V SSE2 Interleave high-order quadword from
xmm1 and xmm2/m128 into xmm1
register.
PUNPCKHQDQ xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 68 /r RVM V/V AVX Interleave high-order bytes from xmm2 and
xmm3/m128 into xmm1.
VPUNPCKHBW xmm1,xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG 69 /r RVM V/V AVX Interleave high-order words from xmm2
and xmm3/m128 into xmm1.
VPUNPCKHWD xmm1,xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG 6A /r RVM V/V AVX Interleave high-order doublewords from
xmm2 and xmm3/m128 into xmm1.
VPUNPCKHDQ xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG 6D /r RVM V/V AVX Interleave high-order quadword from
xmm2 and xmm3/m128 into xmm1
register.
VPUNPCKHQDQ xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG 68 /r RVM V/V AVX2 Interleave high-order bytes from ymm2 and
ymm3/m256 into ymm1 register.
VPUNPCKHBW ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG 69 /r RVM V/V AVX2 Interleave high-order words from ymm2
and ymm3/m256 into ymm1 register.
VPUNPCKHWD ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG 6A /r RVM V/V AVX2 Interleave high-order doublewords from
ymm2 and ymm3/m256 into ymm1
register.
VPUNPCKHDQ ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG 6D /r RVM V/V AVX2 Interleave high-order quadword from
ymm2 and ymm3/m256 into ymm1
register.
VPUNPCKHQDQ ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.WIG 68 /r FVM V/V AVX512VL
AVX512BW
Interleave high-order bytes from xmm2 and
xmm3/m128 into xmm1 register using k1
write mask.
VPUNPCKHBW xmm1 {k1}{z}, xmm2, xmm3/m128
EVEX.NDS.128.66.0F.WIG 69 /r FVM V/V AVX512VL
AVX512BW
Interleave high-order words from xmm2
and xmm3/m128 into xmm1 register using
k1 write mask.
VPUNPCKHWD xmm1 {k1}{z}, xmm2, xmm3/m128
EVEX.NDS.128.66.0F.W0 6A /r FV V/V AVX512VL
AVX512F
Interleave high-order doublewords from
xmm2 and xmm3/m128/m32bcst into
xmm1 register using k1 write mask.
VPUNPCKHDQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
Ref. # 319433-023 5-841
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Unpacks and interleaves the high-order data elements (bytes, words, doublewords, and quadwords) of the first
source operand and second source operand into the destination operand. (Figure 5-35 shows the unpack operation
for bytes in 64-bit operands.). The low-order data elements are ignored.
EVEX.NDS.128.66.0F.W1 6D /r FV V/V AVX512VL
AVX512F
Interleave high-order quadword from
xmm2 and xmm3/m128/m64bcst into
xmm1 register using k1 write mask.
VPUNPCKHQDQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.WIG 68 /r FVM V/V AVX512VL
AVX512BW
Interleave high-order bytes from ymm2 and
ymm3/m256 into ymm1 register using k1
write mask.
VPUNPCKHBW ymm1 {k1}{z}, ymm2, ymm3/m256
EVEX.NDS.256.66.0F.WIG 69 /r FVM V/V AVX512VL
AVX512BW
Interleave high-order words from ymm2
and ymm3/m256 into ymm1 register using
k1 write mask.
VPUNPCKHWD ymm1 {k1}{z}, ymm2, ymm3/m256
EVEX.NDS.256.66.0F.W0 6A /r FV V/V AVX512VL
AVX512F
Interleave high-order doublewords from
ymm2 and ymm3/m256/m32bcst into
ymm1 register using k1 write mask.
VPUNPCKHDQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.256.66.0F.W1 6D /r FV V/V AVX512VL
AVX512F
Interleave high-order quadword from
ymm2 and ymm3/m256/m64bcst into
ymm1 register using k1 write mask.
VPUNPCKHQDQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F 68/r FVM V/V AVX512BW Interleave high-order bytes from zmm2 and
zmm3/m512 into zmm1 register.
VPUNPCKHBW zmm1 {k1}{z}, zmm2, zmm3/m512
EVEX.NDS.512.66.0F 69/r FVM V/V AVX512BW Interleave high-order words from zmm2
and zmm3/m512 into zmm1 register.
VPUNPCKHWD zmm1 {k1}{z}, zmm2, zmm3/m512
EVEX.NDS.512.66.0F.W0 6A /r FV V/V AVX512F Interleave high-order doublewords from
zmm2 and zmm3/m512/m32bcst into
zmm1 register using k1 write mask.
VPUNPCKHDQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.512.66.0F.W1 6D /r FV V/V AVX512F Interleave high-order quadword from zmm2
and zmm3/m512/m64bcst into zmm1
register using k1 write mask.
VPUNPCKHQDQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
5-842 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
When the source data comes from a memory operand, an implementation may fetch only the appropriate half of
the bits (e.g., 64 bits in 128-bit case); however, alignment rules and normal segment checking will still be enforced.
The PUNPCKHBW instruction interleaves the high-order bytes of the source and destination operands, the
PUNPCKHWD instruction interleaves the high-order words of the source and destination operands, the PUNPCKHDQ
instruction interleaves the high order doubleword (or doublewords) of the source and destination operands, and
the PUNPCKHQDQ instruction interleaves the high-order quadwords of the source and destination operands.
128-bit Legacy SSE version: The second source operand is an XMM register or an 128-bit memory location. The
first source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding YMM
destination register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or an 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding destina-
tion register are zeroed.
VEX.256 encoded version: The second source operand is an YMM register or an 256-bit memory location. The first
source operand and destination operands are YMM registers.
EVEX encoded VPUNPCKHDQ/QDQ: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The first source
operand and destination operands are ZMM/YMM/XMM registers. The destination is conditionally updated with
writemask k1.
EVEX encoded VPUNPCKHWD/BW: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit
memory location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination
is conditionally updated with writemask k1.
Operation
INTERLEAVE_HIGH_BYTES_512b (SRC1, SRC2)
TMP_DEST[255:0] INTERLEAVE_HIGH_BYTES_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] INTERLEAVE_HIGH_BYTES_256b(SRC1[511:256], SRC[511:256])
INTERLEAVE_HIGH_BYTES_256b (SRC1, SRC2)
DEST[7:0] SRC1[71:64]
DEST[15:8] SRC2[71:64]
DEST[23:16] SRC1[79:72]
DEST[31:24] SRC2[79:72]
DEST[39:32] SRC1[87:80]
DEST[47:40] SRC2[87:80]
DEST[55:48] SRC1[95:88]
DEST[63:56] SRC2[95:88]
DEST[71:64] SRC1[103:96]
DEST[79:72] SRC2[103:96]
DEST[87:80] SRC1[111:104]
DEST[95:88] SRC2[111:104]
Figure 5-35. 256-bit VPUNPCKHDQ Instruction Operation
X2X7 X6 X3 Y2Y7 Y6 Y3
X0X3 X2 X1
Y0Y3 Y2 Y1 X4X7 X6 X5
Y4Y7 Y6 Y5
SRC
DEST
0
255 31
0
0
255
255
31
Ref. # 319433-023 5-843
INSTRUCTION SET REFERENCE, A-Z
DEST[103:96] SRC1[119:112]
DEST[111:104] SRC2[119:112]
DEST[119:112] SRC1[127:120]
DEST[127:120] SRC2[127:120]
DEST[135:128] SRC1[199:192]
DEST[143:136] SRC2[199:192]
DEST[151:144] SRC1[207:200]
DEST[159:152] SRC2[207:200]
DEST[167:160] SRC1[215:208]
DEST[175:168] SRC2[215:208]
DEST[183:176] SRC1[223:216]
DEST[191:184] SRC2[223:216]
DEST[199:192] SRC1[231:224]
DEST[207:200] SRC2[231:224]
DEST[215:208] SRC1[239:232]
DEST[223:216] SRC2[239:232]
DEST[231:224] SRC1[247:240]
DEST[239:232] SRC2[247:240]
DEST[247:240] SRC1[255:248]
DEST[255:248] SRC2[255:248]
INTERLEAVE_HIGH_BYTES (SRC1, SRC2)
DEST[7:0] SRC1[71:64]
DEST[15:8] SRC2[71:64]
DEST[23:16] SRC1[79:72]
DEST[31:24] SRC2[79:72]
DEST[39:32] SRC1[87:80]
DEST[47:40] SRC2[87:80]
DEST[55:48] SRC1[95:88]
DEST[63:56] SRC2[95:88]
DEST[71:64] SRC1[103:96]
DEST[79:72] SRC2[103:96]
DEST[87:80] SRC1[111:104]
DEST[95:88] SRC2[111:104]
DEST[103:96] SRC1[119:112]
DEST[111:104] SRC2[119:112]
DEST[119:112] SRC1[127:120]
DEST[127:120] SRC2[127:120]
INTERLEAVE_HIGH_WORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] INTERLEAVE_HIGH_WORDS_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] INTERLEAVE_HIGH_WORDS_256b(SRC1[511:256], SRC[511:256])
INTERLEAVE_HIGH_WORDS_256b(SRC1, SRC2)
DEST[15:0] SRC1[79:64]
DEST[31:16] SRC2[79:64]
DEST[47:32] SRC1[95:80]
DEST[63:48] SRC2[95:80]
DEST[79:64] SRC1[111:96]
DEST[95:80] SRC2[111:96]
DEST[111:96] SRC1[127:112]
DEST[127:112] SRC2[127:112]
DEST[143:128] SRC1[207:192]
DEST[159:144] SRC2[207:192]
5-844 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[175:160] SRC1[223:208]
DEST[191:176] SRC2[223:208]
DEST[207:192] SRC1[239:224]
DEST[223:208] SRC2[239:224]
DEST[239:224] SRC1[255:240]
DEST[255:240] SRC2[255:240]
INTERLEAVE_HIGH_WORDS (SRC1, SRC2)
DEST[15:0] SRC1[79:64]
DEST[31:16] SRC2[79:64]
DEST[47:32] SRC1[95:80]
DEST[63:48] SRC2[95:80]
DEST[79:64] SRC1[111:96]
DEST[95:80] SRC2[111:96]
DEST[111:96] SRC1[127:112]
DEST[127:112] SRC2[127:112]
INTERLEAVE_HIGH_DWORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] INTERLEAVE_HIGH_DWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] INTERLEAVE_HIGH_DWORDS_256b(SRC1[511:256], SRC2[511:256])
INTERLEAVE_HIGH_DWORDS_256b(SRC1, SRC2)
DEST[31:0] SRC1[95:64]
DEST[63:32] SRC2[95:64]
DEST[95:64] SRC1[127:96]
DEST[127:96] SRC2[127:96]
DEST[159:128] SRC1[223:192]
DEST[191:160] SRC2[223:192]
DEST[223:192] SRC1[255:224]
DEST[255:224] SRC2[255:224]
INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[31:0] SRC1[95:64]
DEST[63:32] SRC2[95:64]
DEST[95:64] SRC1[127:96]
DEST[127:96] SRC2[127:96]
INTERLEAVE_HIGH_QWORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] INTERLEAVE_HIGH_QWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] INTERLEAVE_HIGH_QWORDS_256b(SRC1[511:256], SRC2[511:256])
INTERLEAVE_HIGH_QWORDS_256b(SRC1, SRC2)
DEST[63:0] SRC1[127:64]
DEST[127:64] SRC2[127:64]
DEST[191:128] SRC1[255:192]
DEST[255:192] SRC2[255:192]
INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)
DEST[63:0] SRC1[127:64]
DEST[127:64] SRC2[127:64]
PUNPCKHBW (128-bit Legacy SSE Version)
DEST[127:0] INTERLEAVE_HIGH_BYTES(DEST, SRC)
DEST[255:127] (Unmodified)
Ref. # 319433-023 5-845
INSTRUCTION SET REFERENCE, A-Z
VPUNPCKHBW (VEX.128 encoded version)
DEST[127:0] INTERLEAVE_HIGH_BYTES(SRC1, SRC2)
DEST[511:127] 0
VPUNPCKHBW (VEX.256 encoded version)
DEST[255:0] INTERLEAVE_HIGH_BYTES_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
VPUNPCKHBW (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_BYTES(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 256
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_BYTES_256b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 512
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_BYTES_512b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] TMP_DEST[i+7:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
PUNPCKHWD (128-bit Legacy SSE Version)
DEST[127:0] INTERLEAVE_HIGH_WORDS(DEST, SRC)
DEST[255:127] (Unmodified)
VPUNPCKHWD (VEX.128 encoded version)
DEST[127:0] INTERLEAVE_HIGH_WORDS(SRC1, SRC2)
DEST[511:127] 0
VPUNPCKHWD (VEX.256 encoded version)
DEST[255:0] INTERLEAVE_HIGH_WORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
VPUNPCKHWD (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_WORDS(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 256
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_WORDS_256b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
5-846 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
IF VL = 512
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_WORDS_512b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
PUNPCKHDQ (128-bit Legacy SSE Version)
DEST[127:0] INTERLEAVE_HIGH_DWORDS(DEST, SRC)
DEST[255:127] (Unmodified)
VPUNPCKHDQ (VEX.128 encoded version)
DEST[127:0] INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[511:127] 0
VPUNPCKHDQ (VEX.256 encoded version)
DEST[255:0] INTERLEAVE_HIGH_DWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
VPUNPCKHDQ (EVEX.512 encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+31:i] SRC2[31:0]
ELSE TMP_SRC2[i+31:i] SRC2[i+31:i]
FI;
ENDFOR;
IF VL = 128
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_DWORDS(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 256
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_DWORDS_256b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 512
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_DWORDS_512b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
Ref. # 319433-023 5-847
INSTRUCTION SET REFERENCE, A-Z
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
PUNPCKHQDQ (128-bit Legacy SSE Version)
DEST[127:0] INTERLEAVE_HIGH_QWORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
VPUNPCKHQDQ (VEX.128 encoded version)
DEST[127:0] INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPUNPCKHQDQ (VEX.256 encoded version)
DEST[255:0] INTERLEAVE_HIGH_QWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
VPUNPCKHQDQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+63:i] SRC2[63:0]
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i]
FI;
ENDFOR;
IF VL = 128
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_QWORDS(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 256
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_QWORDS_256b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 512
TMP_DEST[VL-1:0] INTERLEAVE_HIGH_QWORDS_512b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-848 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VPUNPCKHBW __m512i _mm512_unpackhi_epi8(__m512i a, __m512i b);
VPUNPCKHBW __m512i _mm512_mask_unpackhi_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPUNPCKHBW __m512i _mm512_maskz_unpackhi_epi8( __mmask64 k, __m512i a, __m512i b);
VPUNPCKHBW __m256i _mm256_mask_unpackhi_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPUNPCKHBW __m256i _mm256_maskz_unpackhi_epi8( __mmask32 k, __m256i a, __m256i b);
VPUNPCKHBW __m128i _mm_mask_unpackhi_epi8(v s, __mmask16 k, __m128i a, __m128i b);
VPUNPCKHBW __m128i _mm_maskz_unpackhi_epi8( __mmask16 k, __m128i a, __m128i b);
VPUNPCKHWD __m512i _mm512_unpackhi_epi16(__m512i a, __m512i b);
VPUNPCKHWD __m512i _mm512_mask_unpackhi_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPUNPCKHWD __m512i _mm512_maskz_unpackhi_epi16( __mmask32 k, __m512i a, __m512i b);
VPUNPCKHWD __m256i _mm256_mask_unpackhi_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPUNPCKHWD __m256i _mm256_maskz_unpackhi_epi16( __mmask16 k, __m256i a, __m256i b);
VPUNPCKHWD __m128i _mm_mask_unpackhi_epi16(v s, __mmask8 k, __m128i a, __m128i b);
VPUNPCKHWD __m128i _mm_maskz_unpackhi_epi16( __mmask8 k, __m128i a, __m128i b);
VPUNPCKHDQ __m512i _mm512_unpackhi_epi32(__m512i a, __m512i b);
VPUNPCKHDQ __m512i _mm512_mask_unpackhi_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPUNPCKHDQ __m512i _mm512_maskz_unpackhi_epi32( __mmask16 k, __m512i a, __m512i b);
VPUNPCKHDQ __m256i _mm256_mask_unpackhi_epi32(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHDQ __m256i _mm256_maskz_unpackhi_epi32( __mmask8 k, __m512i a, __m512i b);
VPUNPCKHDQ __m128i _mm_mask_unpackhi_epi32(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHDQ __m128i _mm_maskz_unpackhi_epi32( __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m512i _mm512_unpackhi_epi64(__m512i a, __m512i b);
VPUNPCKHQDQ __m512i _mm512_mask_unpackhi_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m512i _mm512_maskz_unpackhi_epi64( __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m256i _mm256_mask_unpackhi_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m256i _mm256_maskz_unpackhi_epi64( __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m128i _mm_mask_unpackhi_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKHQDQ __m128i _mm_maskz_unpackhi_epi64( __mmask8 k, __m512i a, __m512i b);
(V)PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)
VPUNPCKHBW __m256i _mm256_unpackhi_epi8(__m256i m1, __m256i m2)
(V)PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1,__m128i m2)
VPUNPCKHWD __m256i _mm256_unpackhi_epi16(__m256i m1,__m256i m2)
(V)PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)
VPUNPCKHDQ __m256i _mm256_unpackhi_epi32(__m256i m1, __m256i m2)
(V)PUNPCKHQDQ __m128i _mm_unpackhi_epi64 ( __m128i a, __m128i b)
VPUNPCKHQDQ __m256i _mm256_unpackhi_epi64 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPUNPCKHQDQ/QDQ, see Exceptions Type E4NF.
EVEX-encoded VPUNPCKHBW/WD, see Exceptions Type E4NF.nb.
Ref. # 319433-023 5-849
INSTRUCTION SET REFERENCE, A-Z
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 60 /r RM V/V SSE2 Interleave low-order bytes from xmm1 and
xmm2/m128 into xmm1.
PUNPCKLBW xmm1,xmm2/m128
66 0F 61 /r RM V/V SSE2 Interleave low-order words from xmm1 and
xmm2/m128 into xmm1.
PUNPCKLWD xmm1,xmm2/m128
66 0F 62 /r RM V/V SSE2 Interleave low-order doublewords from xmm1
and xmm2/m128 into xmm1.
PUNPCKLDQ xmm1, xmm2/m128
66 0F 6C /r RM V/V SSE2 Interleave low-order quadword from xmm1 and
xmm2/m128 into xmm1 register.
PUNPCKLQDQ xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 60 /r RVM V/V AVX Interleave low-order bytes from xmm2 and
xmm3/m128 into xmm1.
VPUNPCKLBW xmm1,xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG 61 /r RVM V/V AVX Interleave low-order words from xmm2 and
xmm3/m128 into xmm1.
VPUNPCKLWD xmm1,xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG 62 /r RVM V/V AVX Interleave low-order doublewords from xmm2
and xmm3/m128 into xmm1.
VPUNPCKLDQ xmm1, xmm2, xmm3/m128
VEX.NDS.128.66.0F.WIG 6C /r RVM V/V AVX Interleave low-order quadword from xmm2 and
xmm3/m128 into xmm1 register.
VPUNPCKLQDQ xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG 60 /r RVM V/V AVX2 Interleave low-order bytes from ymm2 and
ymm3/m256 into ymm1 register.
VPUNPCKLBW ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG 61 /r RVM V/V AVX2 Interleave low-order words from ymm2 and
ymm3/m256 into ymm1 register.
VPUNPCKLWD ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG 62 /r RVM V/V AVX2 Interleave low-order doublewords from ymm2
and ymm3/m256 into ymm1 register.
VPUNPCKLDQ ymm1, ymm2, ymm3/m256
VEX.NDS.256.66.0F.WIG 6C /r RVM V/V AVX2 Interleave low-order quadword from ymm2 and
ymm3/m256 into ymm1 register.
VPUNPCKLQDQ ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.WIG 60 /r FVM V/V AVX512VL
AVX512BW
Interleave low-order bytes from xmm2 and
xmm3/m128 into xmm1 register subject to write
mask k1.
VPUNPCKLBW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.128.66.0F.WIG 61 /r FVM V/V AVX512VL
AVX512BW
Interleave low-order words from xmm2 and
xmm3/m128 into xmm1 register subject to write
mask k1.
VPUNPCKLWD xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.128.66.0F.W0 62 /r FV V/V AVX512VL
AVX512F
Interleave low-order doublewords from xmm2
and xmm3/m128/m32bcst into xmm1 register
subject to write mask k1.
VPUNPCKLDQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
5-850 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Unpacks and interleaves the low-order data elements (bytes, words, doublewords, and quadwords) of the first
source operand and second source operand into the destination operand. (Figure 5-36 shows the unpack operation
for bytes in 64-bit operands.). The high-order data elements are ignored.
EVEX.NDS.128.66.0F.W1 6C /r FV V/V AVX512VL
AVX512F
Interleave low-order quadword from zmm2 and
zmm3/m512/m64bcst into zmm1 register
subject to write mask k1.
VPUNPCKLQDQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.WIG 60 /r FVM V/V AVX512VL
AVX512BW
Interleave low-order bytes from ymm2 and
ymm3/m256 into ymm1 register subject to write
mask k1.
VPUNPCKLBW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.256.66.0F.WIG 61 /r FVM V/V AVX512VL
AVX512BW
Interleave low-order words from ymm2 and
ymm3/m256 into ymm1 register subject to write
mask k1.
VPUNPCKLWD ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.256.66.0F.W0 62 /r FV V/V AVX512VL
AVX512F
Interleave low-order doublewords from ymm2
and ymm3/m256/m32bcst into ymm1 register
subject to write mask k1.
VPUNPCKLDQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.256.66.0F.W1 6C /r FV V/V AVX512VL
AVX512F
Interleave low-order quadword from ymm2 and
ymm3/m256/m64bcst into ymm1 register
subject to write mask k1.
VPUNPCKLQDQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F 60/r FVM V/V AVX512BW Interleave low-order bytes from zmm2 and
zmm3/m512 into zmm1 register subject to write
mask k1.
VPUNPCKLBW zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.512.66.0F 61/r FVM V/V AVX512BW Interleave low-order words from zmm2 and
zmm3/m512 into zmm1 register subject to write
mask k1.
VPUNPCKLWD zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.512.66.0F.W0 62 /r FV V/V AVX512F Interleave low-order doublewords from zmm2
and zmm3/m512/m32bcst into zmm1 register
subject to write mask k1.
VPUNPCKLDQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.512.66.0F.W1 6C /r FV V/V AVX512F Interleave low-order quadword from zmm2 and
zmm3/m512/m64bcst into zmm1 register
subject to write mask k1.
VPUNPCKLQDQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
Ref. # 319433-023 5-851
INSTRUCTION SET REFERENCE, A-Z
When the source data comes from a memory operand, an implementation may fetch only the appropriate half of
the bits (e.g., 64 bits in 128-bit case); however, alignment rules and normal segment checking will still be
enforced.
The PUNPCKLBW instruction interleaves the low-order bytes of the source and destination operands, the
PUNPCKLWD instruction interleaves the low-order words of the source and destination operands, the PUNPCKLDQ
instruction interleaves the low order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and destination operands.
Legacy SSE instructions: In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source operand is an XMM register or an 128-bit memory location. The
first source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding YMM
destination register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or an 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding YMM
register are zeroed.
VEX.256 encoded version: The second source operand is an YMM register or an 256-bit memory location. The first
source operand and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corresponding ZMM
register are zeroed.
EVEX encoded VPUNPCKLDQ/QDQ: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The first source
operand and destination operands are ZMM/YMM/XMM registers. The destination is conditionally updated with
writemask k1.
EVEX encoded VPUNPCKLWD/BW: The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit
memory location. The first source operand and destination operands are ZMM/YMM/XMM registers. The destination
is conditionally updated with writemask k1.
Figure 5-36. 128-bit PUNPCKLBW Instruction Operation using 64-bit Operands
Figure 5-37. 256-bit VPUNPCKLDQ Instruction Operation
X0X3 X2 X1 Y0Y3 Y2 Y1
X0X3 X2 X1
Y0Y3 Y2 Y1 X4X7 X6 X5
Y4Y7 Y6 Y5
SRC DEST
DEST
X0X5 X4 X1 Y0Y5 Y4 Y1
X0X3 X2 X1
Y0Y3 Y2 Y1 X4X7 X6 X5
Y4Y7 Y6 Y5
SRC
DEST
0
255 31
0
0
255
255
31
5-852 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
INTERLEAVE_BYTES_512b (SRC1, SRC2)
TMP_DEST[255:0] INTERLEAVE_BYTES_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] INTERLEAVE_BYTES_256b(SRC1[511:256], SRC[511:256])
INTERLEAVE_BYTES_256b (SRC1, SRC2)
DEST[7:0] SRC1[7:0]
DEST[15:8] SRC2[7:0]
DEST[23:16] SRC1[15:8]
DEST[31:24] SRC2[15:8]
DEST[39:32] SRC1[23:16]
DEST[47:40] SRC2[23:16]
DEST[55:48] SRC1[31:24]
DEST[63:56] SRC2[31:24]
DEST[71:64] SRC1[39:32]
DEST[79:72] SRC2[39:32]
DEST[87:80] SRC1[47:40]
DEST[95:88] SRC2[47:40]
DEST[103:96] SRC1[55:48]
DEST[111:104] SRC2[55:48]
DEST[119:112] SRC1[63:56]
DEST[127:120] SRC2[63:56]
DEST[135:128] SRC1[135:128]
DEST[143:136] SRC2[135:128]
DEST[151:144] SRC1[143:136]
DEST[159:152] SRC2[143:136]
DEST[167:160] SRC1[151:144]
DEST[175:168] SRC2[151:144]
DEST[183:176] SRC1[159:152]
DEST[191:184] SRC2[159:152]
DEST[199:192] SRC1[167:160]
DEST[207:200] SRC2[167:160]
DEST[215:208] SRC1[175:168]
DEST[223:216] SRC2[175:168]
DEST[231:224] SRC1[183:176]
DEST[239:232] SRC2[183:176]
DEST[247:240] SRC1[191:184]
DEST[255:248] SRC2[191:184]
INTERLEAVE_BYTES (SRC1, SRC2)
DEST[7:0] SRC1[7:0]
DEST[15:8] SRC2[7:0]
DEST[23:16] SRC2[15:8]
DEST[31:24] SRC2[15:8]
DEST[39:32] SRC1[23:16]
DEST[47:40] SRC2[23:16]
DEST[55:48] SRC1[31:24]
DEST[63:56] SRC2[31:24]
DEST[71:64] SRC1[39:32]
DEST[79:72] SRC2[39:32]
DEST[87:80] SRC1[47:40]
DEST[95:88] SRC2[47:40]
DEST[103:96] SRC1[55:48]
DEST[111:104] SRC2[55:48]
Ref. # 319433-023 5-853
INSTRUCTION SET REFERENCE, A-Z
DEST[119:112] SRC1[63:56]
DEST[127:120] SRC2[63:56]
INTERLEAVE_WORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] INTERLEAVE_WORDS_256b(SRC1[255:0], SRC[255:0])
TMP_DEST[511:256] INTERLEAVE_WORDS_256b(SRC1[511:256], SRC[511:256])
INTERLEAVE_WORDS_256b(SRC1, SRC2)
DEST[15:0] SRC1[15:0]
DEST[31:16] SRC2[15:0]
DEST[47:32] SRC1[31:16]
DEST[63:48] SRC2[31:16]
DEST[79:64] SRC1[47:32]
DEST[95:80] SRC2[47:32]
DEST[111:96] SRC1[63:48]
DEST[127:112] SRC2[63:48]
DEST[143:128] SRC1[143:128]
DEST[159:144] SRC2[143:128]
DEST[175:160] SRC1[159:144]
DEST[191:176] SRC2[159:144]
DEST[207:192] SRC1[175:160]
DEST[223:208] SRC2[175:160]
DEST[239:224] SRC1[191:176]
DEST[255:240] SRC2[191:176]
INTERLEAVE_WORDS (SRC1, SRC2)
DEST[15:0] SRC1[15:0]
DEST[31:16] SRC2[15:0]
DEST[47:32] SRC1[31:16]
DEST[63:48] SRC2[31:16]
DEST[79:64] SRC1[47:32]
DEST[95:80] SRC2[47:32]
DEST[111:96] SRC1[63:48]
DEST[127:112] SRC2[63:48]
INTERLEAVE_DWORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] INTERLEAVE_DWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] INTERLEAVE_DWORDS_256b(SRC1[511:256], SRC2[511:256])
INTERLEAVE_DWORDS_256b(SRC1, SRC2)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
DEST[159:128] SRC1[159:128]
DEST[191:160] SRC2[159:128]
DEST[223:192] SRC1[191:160]
DEST[255:224] SRC2[191:160]
INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
5-854 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
INTERLEAVE_QWORDS_512b (SRC1, SRC2)
TMP_DEST[255:0] INTERLEAVE_QWORDS_256b(SRC1[255:0], SRC2[255:0])
TMP_DEST[511:256] INTERLEAVE_QWORDS_256b(SRC1[511:256], SRC2[511:256])
INTERLEAVE_QWORDS_256b(SRC1, SRC2)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[191:128] SRC1[191:128]
DEST[255:192] SRC2[191:128]
INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
PUNPCKLBW
DEST[127:0] INTERLEAVE_BYTES(DEST, SRC)
DEST[255:127] (Unmodified)
VPUNPCKLBW (VEX.128 encoded instruction)
DEST[127:0] INTERLEAVE_BYTES(SRC1, SRC2)
DEST[511:127] 0
VPUNPCKLBW (VEX.256 encoded instruction)
DEST[255:0] INTERLEAVE_BYTES_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
VPUNPCKLBW (EVEX.512 encoded instruction)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IF VL = 128
TMP_DEST[VL-1:0] INTERLEAVE_BYTES(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 256
TMP_DEST[VL-1:0] INTERLEAVE_BYTES_256b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 512
TMP_DEST[VL-1:0] INTERLEAVE_BYTES_512b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] TMP_DEST[i+7:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+7:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
DEST[511:0] INTERLEAVE_BYTES_512b(SRC1, SRC2)
Ref. # 319433-023 5-855
INSTRUCTION SET REFERENCE, A-Z
PUNPCKLWD
DEST[127:0] INTERLEAVE_WORDS(DEST, SRC)
DEST[255:127] (Unmodified)
VPUNPCKLWD (VEX.128 encoded instruction)
DEST[127:0] INTERLEAVE_WORDS(SRC1, SRC2)
DEST[511:127] 0
VPUNPCKLWD (VEX.256 encoded instruction)
DEST[255:0] INTERLEAVE_WORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
VPUNPCKLWD (EVEX.512 encoded instruction)
(KL, VL) = (8, 128), (16, 256), (32, 512)
IF VL = 128
TMP_DEST[VL-1:0] INTERLEAVE_WORDS(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 256
TMP_DEST[VL-1:0] INTERLEAVE_WORDS_256b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
IF VL = 512
TMP_DEST[VL-1:0] INTERLEAVE_WORDS_512b(SRC1[VL-1:0], SRC2[VL-1:0])
FI;
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] TMP_DEST[i+15:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
DEST[511:0] INTERLEAVE_WORDS_512b(SRC1, SRC2)
PUNPCKLDQ
DEST[127:0] INTERLEAVE_DWORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
VPUNPCKLDQ (VEX.128 encoded instruction)
DEST[127:0] INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPUNPCKLDQ (VEX.256 encoded instruction)
DEST[255:0] INTERLEAVE_DWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
5-856 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPUNPCKLDQ (EVEX encoded instructions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+31:i] SRC2[31:0]
ELSE TMP_SRC2[i+31:i] SRC2[i+31:i]
FI;
ENDFOR;
IF VL = 128
TMP_DEST[VL-1:0] INTERLEAVE_DWORDS(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 256
TMP_DEST[VL-1:0] INTERLEAVE_DWORDS_256b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 512
TMP_DEST[VL-1:0] INTERLEAVE_DWORDS_512b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST511:0] INTERLEAVE_DWORDS_512b(SRC1, SRC2)
DEST[MAX_VL-1:VL] 0
PUNPCKLQDQ
DEST[127:0] INTERLEAVE_QWORDS(DEST, SRC)
DEST[MAX_VL-1:128] (Unmodified)
VPUNPCKLQDQ (VEX.128 encoded instruction)
DEST[127:0] INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[MAX_VL-1:128] 0
VPUNPCKLQDQ (VEX.256 encoded instruction)
DEST[255:0] INTERLEAVE_QWORDS_256b(SRC1, SRC2)
DEST[MAX_VL-1:256] 0
VPUNPCKLQDQ (EVEX encoded instructions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+63:i] SRC2[63:0]
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i]
FI;
Ref. # 319433-023 5-857
INSTRUCTION SET REFERENCE, A-Z
ENDFOR;
IF VL = 128
TMP_DEST[VL-1:0] INTERLEAVE_QWORDS(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 256
TMP_DEST[VL-1:0] INTERLEAVE_QWORDS_256b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
IF VL = 512
TMP_DEST[VL-1:0] INTERLEAVE_QWORDS_512b(SRC1[VL-1:0], TMP_SRC2[VL-1:0])
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPUNPCKLBW __m512i _mm512_unpacklo_epi8(__m512i a, __m512i b);
VPUNPCKLBW __m512i _mm512_mask_unpacklo_epi8(__m512i s, __mmask64 k, __m512i a, __m512i b);
VPUNPCKLBW __m512i _mm512_maskz_unpacklo_epi8( __mmask64 k, __m512i a, __m512i b);
VPUNPCKLBW __m256i _mm256_mask_unpacklo_epi8(__m256i s, __mmask32 k, __m256i a, __m256i b);
VPUNPCKLBW __m256i _mm256_maskz_unpacklo_epi8( __mmask32 k, __m256i a, __m256i b);
VPUNPCKLBW __m128i _mm_mask_unpacklo_epi8(v s, __mmask16 k, __m128i a, __m128i b);
VPUNPCKLBW __m128i _mm_maskz_unpacklo_epi8( __mmask16 k, __m128i a, __m128i b);
VPUNPCKLWD __m512i _mm512_unpacklo_epi16(__m512i a, __m512i b);
VPUNPCKLWD __m512i _mm512_mask_unpacklo_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPUNPCKLWD __m512i _mm512_maskz_unpacklo_epi16( __mmask32 k, __m512i a, __m512i b);
VPUNPCKLWD __m256i _mm256_mask_unpacklo_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPUNPCKLWD __m256i _mm256_maskz_unpacklo_epi16( __mmask16 k, __m256i a, __m256i b);
VPUNPCKLWD __m128i _mm_mask_unpacklo_epi16(v s, __mmask8 k, __m128i a, __m128i b);
VPUNPCKLWD __m128i _mm_maskz_unpacklo_epi16( __mmask8 k, __m128i a, __m128i b);
VPUNPCKLDQ __m512i _mm512_unpacklo_epi32(__m512i a, __m512i b);
VPUNPCKLDQ __m512i _mm512_mask_unpacklo_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b);
VPUNPCKLDQ __m512i _mm512_maskz_unpacklo_epi32( __mmask16 k, __m512i a, __m512i b);
VPUNPCKLDQ __m256i _mm256_mask_unpacklo_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPUNPCKLDQ __m256i _mm256_maskz_unpacklo_epi32( __mmask8 k, __m256i a, __m256i b);
VPUNPCKLDQ __m128i _mm_mask_unpacklo_epi32(v s, __mmask8 k, __m128i a, __m128i b);
VPUNPCKLDQ __m128i _mm_maskz_unpacklo_epi32( __mmask8 k, __m128i a, __m128i b);
VPUNPCKLQDQ __m512i _mm512_unpacklo_epi64(__m512i a, __m512i b);
VPUNPCKLQDQ __m512i _mm512_mask_unpacklo_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b);
VPUNPCKLQDQ __m512i _mm512_maskz_unpacklo_epi64( __mmask8 k, __m512i a, __m512i b);
VPUNPCKLQDQ __m256i _mm256_mask_unpacklo_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b);
VPUNPCKLQDQ __m256i _mm256_maskz_unpacklo_epi64( __mmask8 k, __m256i a, __m256i b);
VPUNPCKLQDQ __m128i _mm_mask_unpacklo_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPUNPCKLQDQ __m128i _mm_maskz_unpacklo_epi64( __mmask8 k, __m128i a, __m128i b);
5-858 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
(V)PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)
VPUNPCKLBW __m256i _mm256_unpacklo_epi8 (__m256i m1, __m256i m2)
(V)PUNPCKLWD __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)
VPUNPCKLWD __m256i _mm256_unpacklo_epi16 (__m256i m1, __m256i m2)
(V)PUNPCKLDQ __m128i _mm_unpacklo_epi32 (__m128i m1, __m128i m2)
VPUNPCKLDQ __m256i _mm256_unpacklo_epi32 (__m256i m1, __m256i m2)
(V)PUNPCKLQDQ __m128i _mm_unpacklo_epi64 (__m128i m1, __m128i m2)
VPUNPCKLQDQ __m256i _mm256_unpacklo_epi64 (__m256i m1, __m256i m2)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded VPUNPCKLDQ/QDQ, see Exceptions Type E4NF.
EVEX-encoded VPUNPCKLBW/WD, see Exceptions Type E4NF.nb.
Ref. # 319433-023 5-859
INSTRUCTION SET REFERENCE, A-Z
SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2—Shuffle Packed Values at 128-bit
Granularity
Instruction Operand Encoding
Description
256-bit Version: Moves one of the two 128-bit packed single-precision floating-point values from the first source
operand (second operand) into the low 128-bit of the destination operand (first operand); moves one of the two
packed 128-bit floating-point values from the second source operand (third operand) into the high 128-bit of the
destination operand. The selector operand (third operand) determines which values are moved to the destination
operand.
512-bit Version: Moves two of the four 128-bit packed single-precision floating-point values from the first source
operand (second operand) into the low 256-bit of each double qword of the destination operand (first operand);
moves two of the four packed 128-bit floating-point values from the second source operand (third operand) into
the high 256-bit of the destination operand. The selector operand (third operand) determines which values are
moved to the destination operand.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.256.66.0F3A.W0 23 /r ib FV V/V AVX512VL
AVX512F
Shuffle 128-bit packed single-precision floating-point
values selected by imm8 from ymm2 and
ymm3/m256/m32bcst and place results in ymm1
subject to writemask k1.
VSHUFF32X4 ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8
EVEX.NDS.512.66.0F3A.W0 23 /r ib FV V/V AVX512F Shuffle 128-bit packed single-precision floating-point
values selected by imm8 from zmm2 and
zmm3/m512/m32bcst and place results in zmm1
subject to writemask k1.
VSHUFF32x4 zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst, imm8
EVEX.NDS.256.66.0F3A.W1 23 /r ib FV V/V AVX512VL
AVX512F
Shuffle 128-bit packed double-precision floating-point
values selected by imm8 from ymm2 and
ymm3/m256/m64bcst and place results in ymm1
subject to writemask k1.
VSHUFF64X2 ymm1{k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8
EVEX.NDS.512.66.0F3A.W1 23 /r ib FV V/V AVX512F Shuffle 128-bit packed double-precision floating-point
values selected by imm8 from zmm2 and
zmm3/m512/m64bcst and place results in zmm1
subject to writemask k1.
VSHUFF64x2 zmm1{k1}{z}, zmm2,
zmm3/m512/m64bcst, imm8
EVEX.NDS.256.66.0F3A.W0 43 /r ib FV V/V AVX512VL
AVX512F
Shuffle 128-bit packed double-word values selected by
imm8 from ymm2 and ymm3/m256/m32bcst and place
results in ymm1 subject to writemask k1.
VSHUFI32X4 ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8
EVEX.NDS.512.66.0F3A.W0 43 /r ib FV V/V AVX512F Shuffle 128-bit packed double-word values selected by
imm8 from zmm2 and zmm3/m512/m32bcst and place
results in zmm1 subject to writemask k1.
VSHUFI32x4 zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst, imm8
EVEX.NDS.256.66.0F3A.W1 43 /r ib FV V/V AVX512VL
AVX512F
Shuffle 128-bit packed quad-word values selected by
imm8 from ymm2 and ymm3/m256/m64bcst and place
results in ymm1 subject to writemask k1.
VSHUFI64X2 ymm1{k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8
EVEX.NDS.512.66.0F3A.W1 43 /r ib FV V/V AVX512F Shuffle 128-bit packed quad-word values selected by
imm8 from zmm2 and zmm3/m512/m64bcst and place
results in zmm1 subject to writemask k1.
VSHUFI64x2 zmm1{k1}{z}, zmm2,
zmm3/m512/m64bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-860 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
The first source operand is a vector register. The second source operand can be a ZMM register, a 512-bit memory
location or a 512-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a vector
register.
The writemask updates the destination operand with the granularity of 32/64-bit data elements.
Operation
Select2(SRC, control) {
CASE (control[0]) OF
0: TMP SRC[127:0];
1: TMP SRC[255:128];
ESAC;
RETURN TMP
}
Select4(SRC, control) {
CASE (control[1:0]) OF
0: TMP SRC[127:0];
1: TMP SRC[255:128];
2: TMP SRC[383:256];
3: TMP SRC[511:384];
ESAC;
RETURN TMP
}
VSHUFF32x4 (EVEX versions)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+31:i] SRC2[31:0]
ELSE TMP_SRC2[i+31:i] SRC2[i+31:i]
FI;
ENDFOR;
IF VL = 256
TMP_DEST[127:0] Select2(SRC1[255:0], imm8[0]);
TMP_DEST[255:128] Select2(SRC2[255:0], imm8[1]);
FI;
IF VL = 512
TMP_DEST[127:0] Select4(SRC1[511:0], imm8[1:0]);
TMP_DEST[255:128] Select4(SRC1[511:0], imm8[3:2]);
TMP_DEST[383:256] Select4(TMP_SRC2[511:0], imm8[5:4]);
TMP_DEST[511:384] Select4(TMP_SRC2[511:0], imm8[7:6]);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
THEN DEST[i+31:i] 0
FI;
FI;
Ref. # 319433-023 5-861
INSTRUCTION SET REFERENCE, A-Z
ENDFOR
DEST[MAX_VL-1:VL] 0
VSHUFF64x2 (EVEX 512-bit version)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+63:i] SRC2[63:0]
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i]
FI;
ENDFOR;
IF VL = 256
TMP_DEST[127:0] Select2(SRC1[255:0], imm8[0]);
TMP_DEST[255:128] Select2(SRC2[255:0], imm8[1]);
FI;
IF VL = 512
TMP_DEST[127:0] Select4(SRC1[511:0], imm8[1:0]);
TMP_DEST[255:128] Select4(SRC1[511:0], imm8[3:2]);
TMP_DEST[383:256] Select4(TMP_SRC2[511:0], imm8[5:4]);
TMP_DEST[511:384] Select4(TMP_SRC2[511:0], imm8[7:6]);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
THEN DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VSHUFI32x4 (EVEX 512-bit version)
(KL, VL) = (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+31:i] SRC2[31:0]
ELSE TMP_SRC2[i+31:i] SRC2[i+31:i]
FI;
ENDFOR;
IF VL = 256
TMP_DEST[127:0] Select2(SRC1[255:0], imm8[0]);
TMP_DEST[255:128] Select2(SRC2[255:0], imm8[1]);
FI;
IF VL = 512
TMP_DEST[127:0] Select4(SRC1[511:0], imm8[1:0]);
TMP_DEST[255:128] Select4(SRC1[511:0], imm8[3:2]);
TMP_DEST[383:256] Select4(TMP_SRC2[511:0], imm8[5:4]);
TMP_DEST[511:384] Select4(TMP_SRC2[511:0], imm8[7:6]);
5-862 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
THEN DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VSHUFI64x2 (EVEX 512-bit version)
(KL, VL) = (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+63:i] SRC2[63:0]
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i]
FI;
ENDFOR;
IF VL = 256
TMP_DEST[127:0] Select2(SRC1[255:0], imm8[0]);
TMP_DEST[255:128] Select2(SRC2[255:0], imm8[1]);
FI;
IF VL = 512
TMP_DEST[127:0] Select4(SRC1[511:0], imm8[1:0]);
TMP_DEST[255:128] Select4(SRC1[511:0], imm8[3:2]);
TMP_DEST[383:256] Select4(TMP_SRC2[511:0], imm8[5:4]);
TMP_DEST[511:384] Select4(TMP_SRC2[511:0], imm8[7:6]);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
THEN DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VSHUFI32x4 __m512i _mm512_shuffle_i32x4(__m512i a, __m512i b, int imm);
VSHUFI32x4 __m512i _mm512_mask_shuffle_i32x4(__m512i s, __mmask16 k, __m512i a, __m512i b, int imm);
VSHUFI32x4 __m512i _mm512_maskz_shuffle_i32x4( __mmask16 k, __m512i a, __m512i b, int imm);
VSHUFI32x4 __m256i _mm256_shuffle_i32x4(__m256i a, __m256i b, int imm);
VSHUFI32x4 __m256i _mm256_mask_shuffle_i32x4(__m256i s, __mmask8 k, __m256i a, __m256i b, int imm);
Ref. # 319433-023 5-863
INSTRUCTION SET REFERENCE, A-Z
VSHUFI32x4 __m256i _mm256_maskz_shuffle_i32x4( __mmask8 k, __m256i a, __m256i b, int imm);
VSHUFF32x4 __m512 _mm512_shuffle_f32x4(__m512 a, __m512 b, int imm);
VSHUFF32x4 __m512 _mm512_mask_shuffle_f32x4(__m512 s, __mmask16 k, __m512 a, __m512 b, int imm);
VSHUFF32x4 __m512 _mm512_maskz_shuffle_f32x4( __mmask16 k, __m512 a, __m512 b, int imm);
VSHUFI64x2 __m512i _mm512_shuffle_i64x2(__m512i a, __m512i b, int imm);
VSHUFI64x2 __m512i _mm512_mask_shuffle_i64x2(__m512i s, __mmask8 k, __m512i b, __m512i b, int imm);
VSHUFI64x2 __m512i _mm512_maskz_shuffle_i64x2( __mmask8 k, __m512i a, __m512i b, int imm);
VSHUFF64x2 __m512d _mm512_shuffle_f64x2(__m512d a, __m512d b, int imm);
VSHUFF64x2 __m512d _mm512_mask_shuffle_f64x2(__m512d s, __mmask8 k, __m512d a, __m512d b, int imm);
VSHUFF64x2 __m512d _mm512_maskz_shuffle_f64x2( __mmask8 k, __m512d a, __m512d b, int imm);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4NF.
#UD If EVEX.L’L = 0 for VSHUFF32x4/VSHUFF64x2.
5-864 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
SHUFPD—Packed Interleave Shuffle of Pairs of Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Selects a double-precision floating-point value of an input pair using a bit control and move to a designated
element of the destination operand. The low-to-high order of double-precision element of the destination operand
is interleaved between the first source operand and the second source operand at the granularity of input pair of
128 bits. Each bit in the imm8 byte, starting from bit 0, is the select control of the corresponding element of the
destination to received the shuffled result of an input pair.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
64-bit memory location The destination operand is a ZMM/YMM/XMM register updated according to the writemask.
The select controls are the lower 8/4/2 bits of the imm8 byte.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. The select controls are the bit 3:0
of the imm8 byte, imm8[7:4) are ignored.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed. The select controls are the bit 1:0 of the imm8 byte,
imm8[7:2) are ignored.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F C6 /r ib RMI V/V SSE2 Shuffle two pairs of double-precision floating-point
values from xmm1 and xmm2/m128 using imm8 to
select from each pair, interleaved result is stored in
xmm1.
SHUFPD xmm1, xmm2/m128, imm8
VEX.NDS.128.66.0F.WIG C6 /r ib RVMI V/V AVX Shuffle two pairs of double-precision floating-point
values from xmm2 and xmm3/m128 using imm8 to
select from each pair, interleaved result is stored in
xmm1.
VSHUFPD xmm1, xmm2, xmm3/m128,
imm8
VEX.NDS.256.66.0F.WIG C6 /r ib RVMI V/V AVX Shuffle four pairs of double-precision floating-point
values from ymm2 and ymm3/m256 using imm8 to
select from each pair, interleaved result is stored in
xmm1.
VSHUFPD ymm1, ymm2, ymm3/m256,
imm8
EVEX.NDS.128.0F.W1 C6 /r ib FV V/V AVX512VL
AVX512F
Shuffle two paris of double-precision floating-point
values from xmm2 and xmm3/m128/m64bcst using
imm8 to select from each pair. store interleaved
results in xmm1 subject to writemask k1.
VSHUFPD xmm1{k1}{z}, xmm2,
xmm3/m128/m64bcst, imm8
EVEX.NDS.256.0F.W1 C6 /r ib FV V/V AVX512VL
AVX512F
Shuffle four paris of double-precision floating-point
values from ymm2 and ymm3/m256/m64bcst using
imm8 to select from each pair. store interleaved
results in ymm1 subject to writemask k1.
VSHUFPD ymm1{k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8
EVEX.NDS.512.66.0F.W1 C6 /r ib FV V/V AVX512F Shuffle eight paris of double-precision floating-point
values from zmm2 and zmm3/m512/m64bcst using
imm8 to select from each pair. store interleaved
results in zmm1 subject to writemask k1.
VSHUFPD zmm1{k1}{z}, zmm2,
zmm3/m512/m64bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA
RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
Ref. # 319433-023 5-865
INSTRUCTION SET REFERENCE, A-Z
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation operand and the first source operand is the same and is an XMM register. The upper bits (MAX_VL-1:128) of
the corresponding ZMM register destination are unmodified. The select controls are the bit 1:0 of the imm8 byte,
imm8[7:2) are ignored.
Operation
VSHUFPD (EVEX encoded versions when SRC2 is a vector register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF IMM0[0] = 0
THEN TMP_DEST[63:0] SRC1[63:0]
ELSE TMP_DEST[63:0] SRC1[127:64] FI;
IF IMM0[1] = 0
THEN TMP_DEST[127:64] SRC2[63:0]
ELSE TMP_DEST[127:64] SRC2[127:64] FI;
IF VL >= 256
IF IMM0[2] = 0
THEN TMP_DEST[191:128] SRC1[191:128]
ELSE TMP_DEST[191:128] SRC1[255:192] FI;
IF IMM0[3] = 0
THEN TMP_DEST[255:192] SRC2[191:128]
ELSE TMP_DEST[255:192] SRC2[255:192] FI;
FI;
IF VL >= 512
IF IMM0[4] = 0
THEN TMP_DEST[319:256] SRC1[319:256]
ELSE TMP_DEST[319:256] SRC1[383:320] FI;
IF IMM0[5] = 0
THEN TMP_DEST[383:320] SRC2[319:256]
ELSE TMP_DEST[383:320] SRC2[383:320] FI;
IF IMM0[6] = 0
THEN TMP_DEST[447:384] SRC1[447:384]
ELSE TMP_DEST[447:384] SRC1[511:448] FI;
IF IMM0[7] = 0
THEN TMP_DEST[511:448] SRC2[447:384]
ELSE TMP_DEST[511:448] SRC2[511:448] FI;
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
Figure 5-38. 256-bit VSHUFPD Operation of Four Pairs of DP FP Values
Y2 or Y3 X2 or X3 Y0 or Y1 X0 or X1DEST
X3 X2
SRC1 X1 X0
Y3 Y2 Y1 Y0
SRC2
5-866 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VSHUFPD (EVEX encoded versions when SRC2 is memory)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1)
THEN TMP_SRC2[i+63:i] SRC2[63:0]
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i]
FI;
ENDFOR;
IF IMM0[0] = 0
THEN TMP_DEST[63:0] SRC1[63:0]
ELSE TMP_DEST[63:0] SRC1[127:64] FI;
IF IMM0[1] = 0
THEN TMP_DEST[127:64] TMP_SRC2[63:0]
ELSE TMP_DEST[127:64] TMP_SRC2[127:64] FI;
IF VL >= 256
IF IMM0[2] = 0
THEN TMP_DEST[191:128] SRC1[191:128]
ELSE TMP_DEST[191:128] SRC1[255:192] FI;
IF IMM0[3] = 0
THEN TMP_DEST[255:192] TMP_SRC2[191:128]
ELSE TMP_DEST[255:192] TMP_SRC2[255:192] FI;
FI;
IF VL >= 512
IF IMM0[4] = 0
THEN TMP_DEST[319:256] SRC1[319:256]
ELSE TMP_DEST[319:256] SRC1[383:320] FI;
IF IMM0[5] = 0
THEN TMP_DEST[383:320] TMP_SRC2[319:256]
ELSE TMP_DEST[383:320] TMP_SRC2[383:320] FI;
IF IMM0[6] = 0
THEN TMP_DEST[447:384] SRC1[447:384]
ELSE TMP_DEST[447:384] SRC1[511:448] FI;
IF IMM0[7] = 0
THEN TMP_DEST[511:448] TMP_SRC2[447:384]
ELSE TMP_DEST[511:448] TMP_SRC2[511:448] FI;
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
Ref. # 319433-023 5-867
INSTRUCTION SET REFERENCE, A-Z
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VSHUFPD (VEX.256 encoded version)
IF IMM0[0] = 0
THEN DEST[63:0] SRC1[63:0]
ELSE DEST[63:0] SRC1[127:64] FI;
IF IMM0[1] = 0
THEN DEST[127:64] SRC2[63:0]
ELSE DEST[127:64] SRC2[127:64] FI;
IF IMM0[2] = 0
THEN DEST[191:128] SRC1[191:128]
ELSE DEST[191:128] SRC1[255:192] FI;
IF IMM0[3] = 0
THEN DEST[255:192] SRC2[191:128]
ELSE DEST[255:192] SRC2[255:192] FI;
DEST[MAX_VL-1:256] (Unmodified)
VSHUFPD (VEX.128 encoded version)
IF IMM0[0] = 0
THEN DEST[63:0] SRC1[63:0]
ELSE DEST[63:0] SRC1[127:64] FI;
IF IMM0[1] = 0
THEN DEST[127:64] SRC2[63:0]
ELSE DEST[127:64] SRC2[127:64] FI;
DEST[MAX_VL-1:128] 0
VSHUFPD (128-bit Legacy SSE version)
IF IMM0[0] = 0
THEN DEST[63:0] SRC1[63:0]
ELSE DEST[63:0] SRC1[127:64] FI;
IF IMM0[1] = 0
THEN DEST[127:64] SRC2[63:0]
ELSE DEST[127:64] SRC2[127:64] FI;
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VSHUFPD __m512d _mm512_shuffle_pd(__m512d a, __m512d b, int imm);
VSHUFPD __m512d _mm512_mask_shuffle_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int imm);
VSHUFPD __m512d _mm512_maskz_shuffle_pd( __mmask8 k, __m512d a, __m512d b, int imm);
VSHUFPD __m256d _mm256_shuffle_pd (__m256d a, __m256d b, const int select);
VSHUFPD __m256d _mm256_mask_shuffle_pd(__m256d s, __mmask8 k, __m256d a, __m256d b, int imm);
VSHUFPD __m256d _mm256_maskz_shuffle_pd( __mmask8 k, __m256d a, __m256d b, int imm);
SHUFPD __m128d _mm_shuffle_pd (__m128d a, __m128d b, const int select);
VSHUFPD __m128d _mm_mask_shuffle_pd(__m128d s, __mmask8 k, __m128d a, __m128d b, int imm);
VSHUFPD __m128d _mm_maskz_shuffle_pd( __mmask8 k, __m128d a, __m128d b, int imm);
SIMD Floating-Point Exceptions
None
5-868 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.
Ref. # 319433-023 5-869
INSTRUCTION SET REFERENCE, A-Z
SHUFPS—Packed Interleave Shuffle of Quadruplets of Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Selects a single-precision floating-point value of an input quadruplet using a two-bit control and move to a desig-
nated element of the destination operand. Each 64-bit element-pair of a 128-bit lane of the destination operand is
interleaved between the corresponding lane of the first source operand and the second source operand at the gran-
ularity 128 bits. Each two bits in the imm8 byte, starting from bit 0, is the select control of the corresponding
element of a 128-bit lane of the destination to received the shuffled result of an input quadruplet. The two lower
elements of a 128-bit lane in the destination receives shuffle results from the quadruple of the first source operand.
The next two elements of the destination receives shuffle results from the quadruple of the second source operand.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the writemask.
Imm8[7:0] provides 4 select controls for each applicable 128-bit lane of the destination.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register. Imm8[7:0] provides 4 select
controls for the high and low 128-bit of the destination.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F C6 /r ib RMI V/V SSE Select from quadruplet of single-precision floating-
point values in xmm1 and xmm2/m128 using imm8,
interleaved result pairs are stored in xmm1.
SHUFPS xmm1, xmm3/m128, imm8
VEX.NDS.128.0F.WIG C6 /r ib RVMI V/V AVX Select from quadruplet of single-precision floating-
point values in xmm1 and xmm2/m128 using imm8,
interleaved result pairs are stored in xmm1.
VSHUFPS xmm1, xmm2,
xmm3/m128, imm8
VEX.NDS.256.0F.WIG C6 /r ib RVMI V/V AVX Select from quadruplet of single-precision floating-
point values in ymm2 and ymm3/m256 using imm8,
interleaved result pairs are stored in ymm1.
VSHUFPS ymm1, ymm2,
ymm3/m256, imm8
EVEX.NDS.128.0F.W0 C6 /r ib FV V/V AVX512VL
AVX512F
Select from quadruplet of single-precision floating-
point values in xmm1 and xmm2/m128 using imm8,
interleaved result pairs are stored in xmm1, subject to
writemask k1.
VSHUFPS xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst, imm8
EVEX.NDS.256.0F.W0 C6 /r ib FV V/V AVX512VL
AVX512F
Select from quadruplet of single-precision floating-
point values in ymm2 and ymm3/m256 using imm8,
interleaved result pairs are stored in ymm1, subject to
writemask k1.
VSHUFPS ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8
EVEX.NDS.512.0F.W0 C6 /r ib FV V/V AVX512F Select from quadruplet of single-precision floating-
point values in zmm2 and zmm3/m512 using imm8,
interleaved result pairs are stored in zmm1, subject to
writemask k1.
VSHUFPS zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8 NA
RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) Imm8
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
5-870 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
of the corresponding ZMM register destination are zeroed. Imm8[7:0] provides 4 select controls for each element
of the destination.
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit memory location. The destination is
not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding ZMM
register destination are unmodified. Imm8[7:0] provides 4 select controls for each element of the destination.
Operation
Select4(SRC, control) {
CASE (control[1:0]) OF
0: TMP SRC[31:0];
1: TMP SRC[63:32];
2: TMP SRC[95:64];
3: TMP SRC[127:96];
ESAC;
RETURN TMP
}
VPSHUFPS (EVEX encoded versions when SRC2 is a vector register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
TMP_DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
TMP_DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
TMP_DEST[95:64] Select4(SRC2[127:0], imm8[5:4]);
TMP_DEST[127:96] Select4(SRC2[127:0], imm8[7:6]);
IF VL >= 256
TMP_DEST[159:128] Select4(SRC1[255:128], imm8[1:0]);
TMP_DEST[191:160] Select4(SRC1[255:128], imm8[3:2]);
TMP_DEST[223:192] Select4(SRC2[255:128], imm8[5:4]);
TMP_DEST[255:224] Select4(SRC2[255:128], imm8[7:6]);
FI;
IF VL >= 512
TMP_DEST[287:256] Select4(SRC1[383:256], imm8[1:0]);
TMP_DEST[319:288] Select4(SRC1[383:256], imm8[3:2]);
TMP_DEST[351:320] Select4(SRC2[383:256], imm8[5:4]);
TMP_DEST[383:352] Select4(SRC2[383:256], imm8[7:6]);
TMP_DEST[415:384] Select4(SRC1[511:384], imm8[1:0]);
TMP_DEST[447:416] Select4(SRC1[511:384], imm8[3:2]);
TMP_DEST[479:448] Select4(SRC2[511:384], imm8[5:4]);
TMP_DEST[511:480] Select4(SRC2[511:384], imm8[7:6]);
Figure 5-39. 256-bit VSHUFPS Operation of Selection from Input Quadruplet and Pair-wise Interleaved Result
Y7 .. Y4 X7 .. X4
Y3 ..Y0
X3 .. X0
DEST
SRC1 X0
SRC2
X1X2X3X4X5X6X7
Y0Y1Y2Y3Y4Y5Y6Y7
X3 .. X0
Y7 .. Y4 X7 .. X4
Y3 ..Y0
Ref. # 319433-023 5-871
INSTRUCTION SET REFERENCE, A-Z
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VPSHUFPS (EVEX encoded versions when SRC2 is memory)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF (EVEX.b = 1)
THEN TMP_SRC2[i+31:i] SRC2[31:0]
ELSE TMP_SRC2[i+31:i] SRC2[i+31:i]
FI;
ENDFOR;
TMP_DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
TMP_DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
TMP_DEST[95:64] Select4(TMP_SRC2[127:0], imm8[5:4]);
TMP_DEST[127:96] Select4(TMP_SRC2[127:0], imm8[7:6]);
IF VL >= 256
TMP_DEST[159:128] Select4(SRC1[255:128], imm8[1:0]);
TMP_DEST[191:160] Select4(SRC1[255:128], imm8[3:2]);
TMP_DEST[223:192] Select4(TMP_SRC2[255:128], imm8[5:4]);
TMP_DEST[255:224] Select4(TMP_SRC2[255:128], imm8[7:6]);
FI;
IF VL >= 512
TMP_DEST[287:256] Select4(SRC1[383:256], imm8[1:0]);
TMP_DEST[319:288] Select4(SRC1[383:256], imm8[3:2]);
TMP_DEST[351:320] Select4(TMP_SRC2[383:256], imm8[5:4]);
TMP_DEST[383:352] Select4(TMP_SRC2[383:256], imm8[7:6]);
TMP_DEST[415:384] Select4(SRC1[511:384], imm8[1:0]);
TMP_DEST[447:416] Select4(SRC1[511:384], imm8[3:2]);
TMP_DEST[479:448] Select4(TMP_SRC2[511:384], imm8[5:4]);
TMP_DEST[511:480] Select4(TMP_SRC2[511:384], imm8[7:6]);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
5-872 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VSHUFPS (VEX.256 encoded version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC2[127:0], imm8[7:6]);
DEST[159:128] Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] Select4(SRC2[255:128], imm8[5:4]);
DEST[255:224] Select4(SRC2[255:128], imm8[7:6]);
DEST[MAX_VL-1:256] 0
VSHUFPS (VEX.128 encoded version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC2[127:0], imm8[7:6]);
DEST[MAX_VL-1:128] 0
SHUFPS (128-bit Legacy SSE version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC2[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC2[127:0], imm8[7:6]);
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VSHUFPS __m512 _mm512_shuffle_ps(__m512 a, __m512 b, int imm);
VSHUFPS __m512 _mm512_mask_shuffle_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int imm);
VSHUFPS __m512 _mm512_maskz_shuffle_ps(__mmask16 k, __m512 a, __m512 b, int imm);
VSHUFPS __m256 _mm256_shuffle_ps (__m256 a, __m256 b, const int select);
VSHUFPS __m256 _mm256_mask_shuffle_ps(__m256 s, __mmask8 k, __m256 a, __m256 b, int imm);
VSHUFPS __m256 _mm256_maskz_shuffle_ps(__mmask8 k, __m256 a, __m256 b, int imm);
SHUFPS __m128 _mm_shuffle_ps (__m128 a, __m128 b, const int select);
VSHUFPS __m128 _mm_mask_shuffle_ps(__m128 s, __mmask8 k, __m128 a, __m128 b, int imm);
VSHUFPS __m128 _mm_maskz_shuffle_ps(__mmask8 k, __m128 a, __m128 b, int imm);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.
Ref. # 319433-023 5-873
INSTRUCTION SET REFERENCE, A-Z
SQRTPD—Square Root of Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD computation of the square roots of the two, four or eight packed double-precision floating-point
values in the source operand (the second operand) stores the packed double-precision floating-point results in the
destination operand (the first operand).
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or
a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a
ZMM/YMM/XMM register updated according to the writemask.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination
operand is a YMM register. The upper bits (MAX_VL-1:256) of the corresponding ZMM register destination are
zeroed.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding ZMM
register destination are unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 51 /r RM V/V SSE2 Computes Square Roots of the packed double-precision
floating-point values in xmm2/m128 and stores the result
in xmm1.
SQRTPD xmm1, xmm2/m128
VEX.128.66.0F.WIG 51 /r RM V/V AVX Computes Square Roots of the packed double-precision
floating-point values in xmm2/m128 and stores the result
in xmm1.
VSQRTPD xmm1, xmm2/m128
VEX.256.66.0F.WIG 51 /r RM V/V AVX Computes Square Roots of the packed double-precision
floating-point values in ymm2/m256 and stores the result
in ymm1.
VSQRTPD ymm1, ymm2/m256
EVEX.128.0F.W1 51 /r FV V/V AVX512VL
AVX512F
Computes Square Roots of the packed double-precision
floating-point values in xmm2/m128/m64bcst and stores
the result in xmm1 subject to writemask k1.
VSQRTPD xmm1 {k1}{z},
xmm2/m128/m32bcst
EVEX.256.0F.W1 51 /r FV V/V AVX512VL
AVX512F
Computes Square Roots of the packed double-precision
floating-point values in ymm2/m256/m64bcst and stores
the result in ymm1 subject to writemask k1.
VSQRTPD ymm1 {k1}{z},
ymm2/m256/m32bcst
EVEX.512.66.0F.W1 51 /r FV V/V AVX512F Computes Square Roots of the packed double-precision
floating-point values in zmm2/m512/m64bcst and stores
the result in zmm1 subject to writemask k1.
VSQRTPD zmm1 {k1}{z},
zmm2/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-874 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VSQRTPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC *is register*)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] SQRT(SRC[63:0])
ELSE DEST[i+63:i] SQRT(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VSQRTPD (VEX.256 encoded version)
DEST[63:0] SQRT(SRC[63:0])
DEST[127:64] SQRT(SRC[127:64])
DEST[191:128] SQRT(SRC[191:128])
DEST[255:192] SQRT(SRC[255:192])
DEST[MAX_VL-1:256] 0
.
VSQRTPD (VEX.128 encoded version)
DEST[63:0] SQRT(SRC[63:0])
DEST[127:64] SQRT(SRC[127:64])
DEST[MAX_VL-1:128] 0
SQRTPD (128-bit Legacy SSE version)
DEST[63:0] SQRT(SRC[63:0])
DEST[127:64] SQRT(SRC[127:64])
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VSQRTPD __m512d _mm512_sqrt_round_pd(__m512d a, int r);
VSQRTPD __m512d _mm512_mask_sqrt_round_pd(__m512d s, __mmask8 k, __m512d a, int r);
VSQRTPD __m512d _mm512_maskz_sqrt_round_pd( __mmask8 k, __m512d a, int r);
VSQRTPD __m256d _mm256_sqrt_pd (__m256d a);
VSQRTPD __m256d _mm256_mask_sqrt_pd(__m256d s, __mmask8 k, __m256d a, int r);
VSQRTPD __m256d _mm256_maskz_sqrt_pd( __mmask8 k, __m256d a, int r);
SQRTPD __m128d _mm_sqrt_pd (__m128d a);
VSQRTPD __m128d _mm_mask_sqrt_pd(__m128d s, __mmask8 k, __m128d a, int r);
VSQRTPD __m128d _mm_maskz_sqrt_pd( __mmask8 k, __m128d a, int r);
Ref. # 319433-023 5-875
INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions
Invalid, Precision, Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
5-876 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
SQRTPS—Square Root of Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD computation of the square roots of the four, eight or sixteen packed single-precision floating-point
values in the source operand (second operand) stores the packed single-precision floating-point results in the
destination operand.
EVEX.512 encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location
or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a
ZMM/YMM/XMM register updated according to the writemask.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination
operand is a YMM register. The upper bits (MAX_VL-1:256) of the corresponding ZMM register destination are
zeroed.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination are
zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding ZMM
register destination are unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 51 /r RM V/V SSE Computes Square Roots of the packed single-precision
floating-point values in xmm2/m128 and stores the result in
xmm1.
SQRTPS xmm1, xmm2/m128
VEX.128.0F.WIG 51 /r RM V/V AVX Computes Square Roots of the packed single-precision
floating-point values in xmm2/m128 and stores the result in
xmm1.
VSQRTPS xmm1, xmm2/m128
VEX.256.0F.WIG 51/r RM V/V AVX Computes Square Roots of the packed single-precision
floating-point values in ymm2/m256 and stores the result in
ymm1.
VSQRTPS ymm1, ymm2/m256
EVEX.128.0F.W0 51 /r FV V/V AVX512VL
AVX512F
Computes Square Roots of the packed single-precision
floating-point values in xmm2/m128/m32bcst and stores
the result in xmm1 subject to writemask k1.
VSQRTPS xmm1 {k1}{z},
xmm2/m128/m32bcst
EVEX.256.0F.W0 51 /r FV V/V AVX512VL
AVX512F
Computes Square Roots of the packed single-precision
floating-point values in ymm2/m256/m32bcst and stores
the result in ymm1 subject to writemask k1.
VSQRTPS ymm1 {k1}{z},
ymm2/m256/m32bcst
EVEX.512.0F.W0 51/r FV V/V AVX512F Computes Square Roots of the packed single-precision
floating-point values in zmm2/m512/m32bcst and stores
the result in zmm1 subject to writemask k1.
VSQRTPS zmm1 {k1}{z},
zmm2/m512/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-877
INSTRUCTION SET REFERENCE, A-Z
Operation
VSQRTPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC *is register*)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] SQRT(SRC[31:0])
ELSE DEST[i+31:i] SQRT(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VSQRTPS (VEX.256 encoded version)
DEST[31:0] SQRT(SRC[31:0])
DEST[63:32] SQRT(SRC[63:32])
DEST[95:64] SQRT(SRC[95:64])
DEST[127:96] SQRT(SRC[127:96])
DEST[159:128] SQRT(SRC[159:128])
DEST[191:160] SQRT(SRC[191:160])
DEST[223:192] SQRT(SRC[223:192])
DEST[255:224] SQRT(SRC[255:224])
VSQRTPS (VEX.128 encoded version)
DEST[31:0] SQRT(SRC[31:0])
DEST[63:32] SQRT(SRC[63:32])
DEST[95:64] SQRT(SRC[95:64])
DEST[127:96] SQRT(SRC[127:96])
DEST[MAX_VL-1:128] 0
SQRTPS (128-bit Legacy SSE version)
DEST[31:0] SQRT(SRC[31:0])
DEST[63:32] SQRT(SRC[63:32])
DEST[95:64] SQRT(SRC[95:64])
DEST[127:96] SQRT(SRC[127:96])
DEST[MAX_VL-1:128] (Unmodified)
5-878 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VSQRTPS __m512 _mm512_sqrt_round_ps(__m512 a, int r);
VSQRTPS __m512 _mm512_mask_sqrt_round_ps(__m512 s, __mmask16 k, __m512 a, int r);
VSQRTPS __m512 _mm512_maskz_sqrt_round_ps( __mmask16 k, __m512 a, int r);
VSQRTPS __m256 _mm256_sqrt_ps (__m256 a);
VSQRTPS __m256 _mm256_mask_sqrt_ps(__m256 s, __mmask8 k, __m256 a, int r);
VSQRTPS __m256 _mm256_maskz_sqrt_ps( __mmask8 k, __m256 a, int r);
SQRTPS __m128 _mm_sqrt_ps (__m128 a);
VSQRTPS __m128 _mm_mask_sqrt_ps(__m128 s, __mmask8 k, __m128 a, int r);
VSQRTPS __m128 _mm_maskz_sqrt_ps( __mmask8 k, __m128 a, int r);
SIMD Floating-Point Exceptions
Invalid, Precision, Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instruction, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-879
INSTRUCTION SET REFERENCE, A-Z
SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
Computes the square root of the low double-precision floating-point value in the second source operand and stores
the double-precision floating-point result in the destination operand. The second source operand can be an XMM
register or a 64-bit memory location. The first source and destination operands are XMM registers.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. The quadword at
bits 127:64 of the destination operand remains unchanged. Bits (MAX_VL-1:64) of the corresponding destination
register remain unchanged.
VEX.128 and EVEX encoded versions: Bits 127:64 of the destination operand are copied from the corresponding
bits of the first source operand. Bits (MAX_VL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the
writemask.
Software should ensure VSQRTSD is encoded with VEX.L=0. Encoding VSQRTSD with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 51/r RM V/V SSE2 Computes square root of the low double-precision floating-
point value in xmm2/m64 and stores the results in xmm1.
SQRTSD xmm1,xmm2/m64
VEX.NDS.128.F2.0F.WIG 51/r RVM V/V AVX Computes square root of the low double-precision floating-
point value in xmm3/m64 and stores the results in xmm1.
Also, upper double-precision floating-point value
(bits[127:64]) from xmm2 is copied to xmm1[127:64].
VSQRTSD xmm1,xmm2,
xmm3/m64
EVEX.NDS.LIG.F2.0F.W1 51/r T1S V/V AVX512F Computes square root of the low double-precision floating-
point value in xmm3/m64 and stores the results in xmm1
under writemask k1. Also, upper double-precision floating-
point value (bits[127:64]) from xmm2 is copied to
xmm1[127:64].
VSQRTSD xmm1 {k1}{z}, xmm2,
xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-880 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VSQRTSD (EVEX encoded version)
IF (EVEX.b = 1) AND (SRC2 *is register*)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] SQRT(SRC2[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VSQRTSD (VEX.128 encoded version)
DEST[63:0] SQRT(SRC2[63:0])
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
SQRTSD (128-bit Legacy SSE version)
DEST[63:0] SQRT(SRC[63:0])
DEST[MAX_VL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VSQRTSD __m128d _mm_sqrt_round_sd(__m128d a, __m128d b, int r);
VSQRTSD __m128d _mm_mask_sqrt_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int r);
VSQRTSD __m128d _mm_maskz_sqrt_round_sd(__mmask8 k, __m128d a, __m128d b, int r);
SQRTSD __m128d _mm_sqrt_sd (__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid, Precision, Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
Ref. # 319433-023 5-881
INSTRUCTION SET REFERENCE, A-Z
SQRTSS—Compute Square Root of Scalar Single-Precision Value
Instruction Operand Encoding
Description
Computes the square root of the low single-precision floating-point value in the second source operand and stores
the single-precision floating-point result in the destination operand. The second source operand can be an XMM
register or a 32-bit memory location. The first source and destination operands is an XMM register.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAX_VL-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 and EVEX encoded versions: Bits 127:32 of the destination operand are copied from the corresponding
bits of the first source operand. Bits (MAX_VL-1:128) of the destination ZMM register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the
writemask.
Software should ensure VSQRTSS is encoded with VEX.L=0. Encoding VSQRTSS with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 51 /r RM V/V SSE Computes square root of the low single-precision floating-point
value in xmm2/m32 and stores the results in xmm1.
SQRTSS xmm1, xmm2/m32
VEX.NDS.128.F3.0F.WIG 51 /r RVM V/V AVX Computes square root of the low single-precision floating-point
value in xmm3/m32 and stores the results in xmm1. Also,
upper single-precision floating-point values (bits[127:32]) from
xmm2 are copied to xmm1[127:32].
VSQRTSS xmm1, xmm2,
xmm3/m32
EVEX.NDS.LIG.F3.0F.W0 51 /r T1S V/V AVX512F Computes square root of the low single-precision floating-point
value in xmm3/m32 and stores the results in xmm1 under
writemask k1. Also, upper single-precision floating-point values
(bits[127:32]) from xmm2 are copied to xmm1[127:32].
VSQRTSS xmm1 {k1}{z}, xmm2,
xmm3/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-882 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VSQRTSS (EVEX encoded version)
IF (EVEX.b = 1) AND (SRC2 *is register*)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] SQRT(SRC2[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0] 0
FI;
FI;
DEST[127:31] SRC1[127:31]
DEST[MAX_VL-1:128] 0
VSQRTSS (VEX.128 encoded version)
DEST[31:0] SQRT(SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
SQRTSS (128-bit Legacy SSE version)
DEST[31:0] SQRT(SRC2[31:0])
DEST[MAX_VL-1:32] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VSQRTSS __m128 _mm_sqrt_round_ss(__m128 a, __m128 b, int r);
VSQRTSS __m128 _mm_mask_sqrt_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int r);
VSQRTSS __m128 _mm_maskz_sqrt_round_ss( __mmask8 k, __m128 a, __m128 b, int r);
SQRTSS __m128 _mm_sqrt_ss(__m128 a)
SIMD Floating-Point Exceptions
Invalid, Precision, Denormal
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 3.
EVEX-encoded instruction, see Exceptions Type E3.
Ref. # 319433-023 5-883
INSTRUCTION SET REFERENCE, A-Z
VPTERNLOGD/VPTERNLOGQ—Bitwise Ternary Logic
Instruction Operand Encoding
Description
VPTERNLOGD/Q takes three bit vectors of 512-bit length (in the first, second and third operand) as input data to
form a set of 512 indices, each index is comprised of one bit from each input vector. The imm8 byte specifies a
boolean logic table producing a binary value for each 3-bit index value. The final 512-bit boolean result is written
to the destination operand (the first operand) using the writemask k1 with the granularity of doubleword element
or quadword element into the destination.
The destination operand is a ZMM (EVEX.512)/YMM (EVEX.256)/XMM (EVEX.128) register. The first source
operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a
512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location The
destination operand is a ZMM register conditionally updated with writemask k1.
Table 5-18 shows two examples of Boolean functions specified by immediate values 0xE2 and 0xE4, with the look
up result listed in the fourth column following the three columns containing all possible values of the 3-bit index.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.DDS.128.66.0F3A.W0 25 /r ib FV V/V AVX512VL
AVX512F
Bitwise ternary logic taking xmm1, xmm2 and
xmm3/m128/m32bcst as source operands and writing
the result to xmm1 under writemask k1 with dword
granularity. The immediate value determines the specific
binary function being implemented.
VPTERNLOGD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst, imm8
EVEX.DDS.256.66.0F3A.W0 25 /r ib FV V/V AVX512VL
AVX512F
Bitwise ternary logic taking ymm1, ymm2 and
ymm3/m256/m32bcst as source operands and writing
the result to ymm1 under writemask k1 with dword
granularity. The immediate value determines the specific
binary function being implemented.
VPTERNLOGD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8
EVEX.DDS.512.66.0F3A.W0 25 /r ib FV V/V AVX512F Bitwise ternary logic taking zmm1, zmm2 and
zmm3/m512/m32bcst as source operands and writing
the result to zmm1 under writemask k1 with dword
granularity. The immediate value determines the specific
binary function being implemented.
VPTERNLOGD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst, imm8
EVEX.DDS.128.66.0F3A.W1 25 /r ib FV V/V AVX512VL
AVX512F
Bitwise ternary logic taking xmm1, xmm2 and
xmm3/m128/m64bcst as source operands and writing
the result to xmm1 under writemask k1 with qword
granularity. The immediate value determines the specific
binary function being implemented.
VPTERNLOGQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst, imm8
EVEX.DDS.256.66.0F3A.W1 25 /r ib FV V/V AVX512VL
AVX512F
Bitwise ternary logic taking ymm1, ymm2 and
ymm3/m256/m64bcst as source operands and writing
the result to ymm1 under writemask k1 with qword
granularity. The immediate value determines the specific
binary function being implemented.
VPTERNLOGQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8
EVEX.DDS.512.66.0F3A.W1 25 /r ib FV V/V AVX512F Bitwise ternary logic taking zmm1, zmm2 and
zmm3/m512/m64bcst as source operands and writing
the result to zmm1 under writemask k1 with qword
granularity. The immediate value determines the specific
binary function being implemented.
VPTERNLOGQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
5-884 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Specifying different values in imm8 will allow any arbitrary three-input Boolean functions to be implemented in
software using VPTERNLOGD/Q. Table 5-1 and Table 5-2 provide a mapping of all 256 possible imm8 values to
various Boolean expressions.
Operation
VPTERNLOGD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
FOR k 0 TO 31
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[j][k] imm[(DEST[i+k] << 2) + (SRC1[ i+k ] << 1) + SRC2[ k ]]
ELSE DEST[j][k] imm[(DEST[i+k] << 2) + (SRC1[ i+k ] << 1) + SRC2[ i+k ]]
FI;
; table lookup of immediate bellow;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31+i:i] remains unchanged*
ELSE ; zeroing-masking
DEST[31+i:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Table 5-18. Examples of VPTERNLOGD/Q Imm8 Boolean Function and Input Index Values
VPTERNLOGD reg1, reg2, src3, 0xE2 Bit Result with
Imm8=0xE2
VPTERNLOGD reg1, reg2, src3, 0xE4 Bit Result with
Imm8=0xE4
Bit(reg1) Bit(reg2) Bit(src3) Bit(reg1) Bit(reg2) Bit(src3)
0000 0000
0011 0010
0100 0101
0110 0110
1000 1000
1011 1011
1101 1101
1111 1111
Ref. # 319433-023 5-885
INSTRUCTION SET REFERENCE, A-Z
VPTERNLOGQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
FOR k 0 TO 63
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[j][k] imm[(DEST[i+k] << 2) + (SRC1[ i+k ] << 1) + SRC2[ k ]]
ELSE DEST[j][k] imm[(DEST[i+k] << 2) + (SRC1[ i+k ] << 1) + SRC2[ i+k ]]
FI; ; table lookup of immediate bellow;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63+i:i] remains unchanged*
ELSE ; zeroing-masking
DEST[63+i:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPTERNLOGD __m512i _mm512_ternarylogic_epi32(__m512i a, __m512i b, int imm);
VPTERNLOGD __m512i _mm512_mask_ternarylogic_epi32(__m512i s, __mmask16 m, __m512i a, __m512i b, int imm);
VPTERNLOGD __m512i _mm512_maskz_ternarylogic_epi32(__mmask m, __m512i a, __m512i b, int imm);
VPTERNLOGD __m256i _mm256_ternarylogic_epi32(__m256i a, __m256i b, int imm);
VPTERNLOGD __m256i _mm256_mask_ternarylogic_epi32(__m256i s, __mmask8 m, __m256i a, __m256i b, int imm);
VPTERNLOGD __m256i _mm256_maskz_ternarylogic_epi32( __mmask8 m, __m256i a, __m256i b, int imm);
VPTERNLOGD __m128i _mm_ternarylogic_epi32(__m128i a, __m128i b, int imm);
VPTERNLOGD __m128i _mm_mask_ternarylogic_epi32(__m128i s, __mmask8 m, __m128i a, __m128i b, int imm);
VPTERNLOGD __m128i _mm_maskz_ternarylogic_epi32( __mmask8 m, __m128i a, __m128i b, int imm);
VPTERNLOGQ __m512i _mm512_ternarylogic_epi64(__m512i a, __m512i b, int imm);
VPTERNLOGQ __m512i _mm512_mask_ternarylogic_epi64(__m512i s, __mmask8 m, __m512i a, __m512i b, int imm);
VPTERNLOGQ __m512i _mm512_maskz_ternarylogic_epi64( __mmask8 m, __m512i a, __m512i b, int imm);
VPTERNLOGQ __m256i _mm256_ternarylogic_epi64(__m256i a, __m256i b, int imm);
VPTERNLOGQ __m256i _mm256_mask_ternarylogic_epi64(__m256i s, __mmask8 m, __m256i a, __m256i b, int imm);
VPTERNLOGQ __m256i _mm256_maskz_ternarylogic_epi64( __mmask8 m, __m256i a, __m256i b, int imm);
VPTERNLOGQ __m128i _mm_ternarylogic_epi64(__m128i a, __m128i b, int imm);
VPTERNLOGQ __m128i _mm_mask_ternarylogic_epi64(__m128i s, __mmask8 m, __m128i a, __m128i b, int imm);
VPTERNLOGQ __m128i _mm_maskz_ternarylogic_epi64( __mmask8 m, __m128i a, __m128i b, int imm);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.
5-886 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPTESTMB/VPTESTMW/VPTESTMD/VPTESTMQ—Logical AND and Set Mask
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F38.W0 26 /r FVM V/V AVX512VL
AVX512BW
Bitwise AND of packed byte integers in xmm2 and
xmm3/m128 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
VPTESTMB k2 {k1}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F38.W0 26 /r FVM V/V AVX512VL
AVX512BW
Bitwise AND of packed byte integers in ymm2 and
ymm3/m256 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
VPTESTMB k2 {k1}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F38.W0 26 /r FVM V/V AVX512BW Bitwise AND of packed byte integers in zmm2 and
zmm3/m512 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
VPTESTMB k2 {k1}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F38.W1 26 /r FVM V/V AVX512VL
AVX512BW
Bitwise AND of packed word integers in xmm2 and
xmm3/m128 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
VPTESTMW k2 {k1}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F38.W1 26 /r FVM V/V AVX512VL
AVX512BW
Bitwise AND of packed word integers in ymm2 and
ymm3/m256 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
VPTESTMW k2 {k1}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F38.W1 26 /r FVM V/V AVX512BW Bitwise AND of packed word integers in zmm2 and
zmm3/m512 and set mask k2 to reflect the zero/non-zero
status of each element of the result, under writemask k1.
VPTESTMW k2 {k1}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F38.W0 27 /r FV V/V AVX512VL
AVX512F
Bitwise AND of packed doubleword integers in xmm2 and
xmm3/m128/m32bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
VPTESTMD k2 {k1}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F38.W0 27 /r FV V/V AVX512VL
AVX512F
Bitwise AND of packed doubleword integers in ymm2 and
ymm3/m256/m32bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
VPTESTMD k2 {k1}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F38.W0 27 /r FV V/V AVX512F Bitwise AND of packed doubleword integers in zmm2 and
zmm3/m512/m32bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
VPTESTMD k2 {k1}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 27 /r FV V/V AVX512VL
AVX512F
Bitwise AND of packed quadword integers in xmm2 and
xmm3/m128/m64bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
VPTESTMQ k2 {k1}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F38.W1 27 /r FV V/V AVX512VL
AVX512F
Bitwise AND of packed quadword integers in ymm2 and
ymm3/m256/m64bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
VPTESTMQ k2 {k1}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F38.W1 27 /r FV V/V AVX512F Bitwise AND of packed quadword integers in zmm2 and
zmm3/m512/m64bcst and set mask k2 to reflect the
zero/non-zero status of each element of the result, under
writemask k1.
VPTESTMQ k2 {k1}, zmm2,
zmm3/m512/m64bcst
Ref. # 319433-023 5-887
INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding
Description
Performs a bitwise logical AND operation on the first source operand (the second operand) and second source
operand (the third operand) and stores the result in the destination operand (the first operand) under the
writemask. Each bit of the result is set to 1 if the bitwise AND of the corresponding elements of the first and second
src operands is non-zero; otherwise it is set to 0.
VPTESTMD/VPTESTMQ: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a
ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is a mask register updated under the writemask.
VPTESTMB/VPTESTMW: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a
ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is a mask register
updated under the writemask.
Operation
VPTESTMB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j 0 TO KL-1
i j * 8
IF k1[j] OR *no writemask*
THEN DEST[j] (SRC1[i+7:i] BITWISE AND SRC2[i+7:i] != 0)? 1 : 0;
ELSE DEST[j] = 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPTESTMW (EVEX encoded versions)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN DEST[j] (SRC1[i+15:i] BITWISE AND SRC2[i+15:i] != 0)? 1 : 0;
ELSE DEST[j] = 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
VPTESTMD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[j] (SRC1[i+31:i] BITWISE AND SRC2[31:0] != 0)? 1 : 0;
ELSE DEST[j] (SRC1[i+31:i] BITWISE AND SRC2[i+31:i] != 0)? 1 : 0;
FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-888 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
DEST[MAX_KL-1:KL] 0
VPTESTMQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[j] (SRC1[i+63:i] BITWISE AND SRC2[63:0] != 0)? 1 : 0;
ELSE DEST[j] (SRC1[i+63:i] BITWISE AND SRC2[i+63:i] != 0)? 1 : 0;
FI;
ELSE DEST[j] 0 ; zeroing-masking only
FI;
ENDFOR
DEST[MAX_KL-1:KL] 0
Intel C/C++ Compiler Intrinsic Equivalents
VPTESTMB __mmask64 _mm512_test_epi8_mask( __m512i a, __m512i b);
VPTESTMB __mmask64 _mm512_mask_test_epi8_mask(__mmask64, __m512i a, __m512i b);
VPTESTMW __mmask32 _mm512_test_epi16_mask( __m512i a, __m512i b);
VPTESTMW __mmask32 _mm512_mask_test_epi16_mask(__mmask32, __m512i a, __m512i b);
VPTESTMD __mmask16 _mm512_test_epi32_mask( __m512i a, __m512i b);
VPTESTMD __mmask16 _mm512_mask_test_epi32_mask(__mmask16, __m512i a, __m512i b);
VPTESTMQ __mmask8 _mm512_test_epi64_mask(__m512i a, __m512i b);
VPTESTMQ __mmask8 _mm512_mask_test_epi64_mask(__mmask8, __m512i a, __m512i b);
SIMD Floating-Point Exceptions
None
Other Exceptions
VPTESTMD/Q: See Exceptions Type E4.
VPTESTMB/W: See Exceptions Type E4.nb.
Ref. # 319433-023 5-889
INSTRUCTION SET REFERENCE, A-Z
VPSRAVW/VPSRAVD/VPSRAVQ—Variable Bit Shift Right Arithmetic
Instruction Operand Encoding
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.128.66.0F38.W0 46 /r RVM V/V AVX2 Shift doublewords in xmm2 right by amount specified
in the corresponding element of xmm3/m128 while
shifting in sign bits.
VPSRAVD xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F38.W0 46 /r RVM V/V AVX2 Shift doublewords in ymm2 right by amount specified
in the corresponding element of ymm3/m256 while
shifting in sign bits.
VPSRAVD ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F38.W1 11 /r FVM V/V AVX512VL
AVX512BW
Shift words in xmm2 right by amount specified in the
corresponding element of xmm3/m128 while shifting
in sign bits using writemask k1.
VPSRAVW xmm1 {k1}{z}, xmm2,
xmm3/m128
EVEX.NDS.256.66.0F38.W1 11 /r FVM V/V AVX512VL
AVX512BW
Shift words in ymm2 right by amount specified in the
corresponding element of ymm3/m256 while shifting
in sign bits using writemask k1.
VPSRAVW ymm1 {k1}{z}, ymm2,
ymm3/m256
EVEX.NDS.512.66.0F38.W1 11 /r FVM V/V AVX512BW Shift words in zmm2 right by amount specified in the
corresponding element of zmm3/m512 while shifting
in sign bits using writemask k1.
VPSRAVW zmm1 {k1}{z}, zmm2,
zmm3/m512
EVEX.NDS.128.66.0F38.W0 46 /r FV V/V AVX512VL
AVX512F
Shift doublewords in xmm2 right by amount specified
in the corresponding element of
xmm3/m128/m32bcst while shifting in sign bits
using writemask k1.
VPSRAVD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F38.W0 46 /r FV V/V AVX512VL
AVX512F
Shift doublewords in ymm2 right by amount specified
in the corresponding element of
ymm3/m256/m32bcst while shifting in sign bits
using writemask k1.
VPSRAVD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F38.W0 46 /r FV V/V AVX512F Shift doublewords in zmm2 right by amount specified
in the corresponding element of
zmm3/m512/m32bcst while shifting in sign bits using
writemask k1.
VPSRAVD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F38.W1 46 /r FV V/V AVX512VL
AVX512F
Shift quadwords in xmm2 right by amount specified
in the corresponding element of
xmm3/m128/m64bcst while shifting in sign bits
using writemask k1.
VPSRAVQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F38.W1 46 /r FV V/V AVX512VL
AVX512F
Shift quadwords in ymm2 right by amount specified
in the corresponding element of
ymm3/m256/m64bcst while shifting in sign bits
using writemask k1.
VPSRAVQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F38.W1 46 /r FV V/V AVX512F Shift quadwords in zmm2 right by amount specified in
the corresponding element of zmm3/m512/m64bcst
while shifting in sign bits using writemask k1.
VPSRAVQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FVM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-890 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Description
Shifts the bits in the individual data elements (word/doublewords/quadword) in the first source operand (the
second operand) to the right by the number of bits specified in the count value of respective data elements in the
second source operand (the third operand). As the bits in the data elements are shifted right, the empty high-order
bits are set to the MSB (sign extension).
The count values are specified individually in each data element of the second source operand. If the unsigned
integer value specified in the respective data element of the second source operand is greater than 15 (for words),
31 (for doublewords), or 63 (for a quadword), then the destination data element are filled with the corresponding
sign bit of the source element.
The count values are specified individually in each data element of the second source operand. If the unsigned
integer value specified in the respective data element of the second source operand is greater than 16 (for word),
31 (for doublewords), or 63 (for a quadword), then the destination data element are written with 0.
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be
either an XMM register or a 128-bit memory location. Bits (MAX_VL-1:128) of the corresponding destination
register are zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be
either an YMM register or a 256-bit memory. Bits (MAX_VL-1:256) of the corresponding destination register are
zeroed.
EVEX.512/256/128 encoded VPSRAVD/W: The destination and first source operands are ZMM/YMM/XMM registers.
The count operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-
bit vector broadcasted from a 32/64-bit memory location. The destination is conditionally updated with writemask
k1.
EVEX.512/256/128 encoded VPSRAVQ: The destination and first source operands are ZMM/YMM/XMM registers.
The count operand can be either a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination
is conditionally updated with writemask k1.
Operation
VPSRAVW (EVEX encoded version)
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j 0 TO KL-1
i j * 16
IF k1[j] OR *no writemask*
THEN
COUNT SRC2[i+3:i]
IF COUNT < 16
THEN DEST[i+15:i] SignExtend(SRC1[i+15:i] >> COUNT)
ELSE
FOR k 0 TO 15
DEST[i+k] SRC1[i+15]
ENDFOR;
FI
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+15:i] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
Ref. # 319433-023 5-891
INSTRUCTION SET REFERENCE, A-Z
VPSRAVD (VEX.128 version)
COUNT_0 SRC2[31 : 0]
(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 SRC2[100 : 96];
DEST[31:0] SignExtend(SRC1[31:0] >> COUNT_0);
(* Repeat shift operation for 2nd through 4th dwords *)
DEST[127:96] SignExtend(SRC1[127:96] >> COUNT_3);
DEST[MAX_VL-1:128] 0;
VPSRAVD (VEX.256 version)
COUNT_0 SRC2[31 : 0];
(* Repeat Each COUNT_i for the 2nd through 8th dwords of SRC2*)
COUNT_7 SRC2[228 : 224];
DEST[31:0] SignExtend(SRC1[31:0] >> COUNT_0);
(* Repeat shift operation for 2nd through 7th dwords *)
DEST[255:224] SignExtend(SRC1[255:224] >> COUNT_7);
DEST[MAX_VL-1:256] 0;
VPSRAVD (EVEX encoded version)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
COUNT SRC2[4:0]
IF COUNT < 32
THEN DEST[i+31:i] SignExtend(SRC1[i+31:i] >> COUNT)
ELSE
FOR k 0 TO 31
DEST[i+k] SRC1[i+31]
ENDFOR;
FI
ELSE
COUNT SRC2[i+4:i]
IF COUNT < 32
THEN DEST[i+31:i] SignExtend(SRC1[i+31:i] >> COUNT)
ELSE
FOR k 0 TO 31
DEST[i+k] SRC1[i+31]
ENDFOR;
FI
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
5-892 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPSRAVQ (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
COUNT SRC2[5:0]
IF COUNT < 64
THEN DEST[i+63:i] SignExtend(SRC1[i+63:i] >> COUNT)
ELSE
FOR k 0 TO 63
DEST[i+k] SRC1[i+63]
ENDFOR;
FI
ELSE
COUNT SRC2[i+5:i]
IF COUNT < 64
THEN DEST[i+63:i] SignExtend(SRC1[i+63:i] >> COUNT)
ELSE
FOR k 0 TO 63
DEST[i+k] SRC1[i+63]
ENDFOR;
FI
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] 0
FI
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0;
Intel C/C++ Compiler Intrinsic Equivalent
VPSRAVD __m512i _mm512_srav_epi32(__m512i a, __m512i cnt);
VPSRAVD __m512i _mm512_mask_srav_epi32(__m512i s, __mmask16 m, __m512i a, __m512i cnt);
VPSRAVD __m512i _mm512_maskz_srav_epi32(__mmask16 m, __m512i a, __m512i cnt);
VPSRAVD __m256i _mm256_srav_epi32(__m256i a, __m256i cnt);
VPSRAVD __m256i _mm256_mask_srav_epi32(__m256i s, __mmask8 m, __m256i a, __m256i cnt);
VPSRAVD __m256i _mm256_maskz_srav_epi32(__mmask8 m, __m256i a, __m256i cnt);
VPSRAVD __m128i _mm_srav_epi32(__m128i a, __m128i cnt);
VPSRAVD __m128i _mm_mask_srav_epi32(__m128i s, __mmask8 m, __m128i a, __m128i cnt);
VPSRAVD __m128i _mm_maskz_srav_epi32(__mmask8 m, __m128i a, __m128i cnt);
VPSRAVQ __m512i _mm512_srav_epi64(__m512i a, __m512i cnt);
VPSRAVQ __m512i _mm512_mask_srav_epi64(__m512i s, __mmask8 m, __m512i a, __m512i cnt);
VPSRAVQ __m512i _mm512_maskz_srav_epi64( __mmask8 m, __m512i a, __m512i cnt);
VPSRAVQ __m256i _mm256_srav_epi64(__m256i a, __m256i cnt);
VPSRAVQ __m256i _mm256_mask_srav_epi64(__m256i s, __mmask8 m, __m256i a, __m256i cnt);
VPSRAVQ __m256i _mm256_maskz_srav_epi64( __mmask8 m, __m256i a, __m256i cnt);
VPSRAVQ __m128i _mm_srav_epi64(__m128i a, __m128i cnt);
VPSRAVQ __m128i _mm_mask_srav_epi64(__m128i s, __mmask8 m, __m128i a, __m128i cnt);
VPSRAVQ __m128i _mm_maskz_srav_epi64( __mmask8 m, __m128i a, __m128i cnt);
Ref. # 319433-023 5-893
INSTRUCTION SET REFERENCE, A-Z
VPSRAVW __m512i _mm512_srav_epi16(__m512i a, __m512i cnt);
VPSRAVW __m512i _mm512_mask_srav_epi16(__m512i s, __mmask32 m, __m512i a, __m512i cnt);
VPSRAVW __m512i _mm512_maskz_srav_epi16(__mmask32 m, __m512i a, __m512i cnt);
VPSRAVW __m256i _mm256_srav_epi16(__m256i a, __m256i cnt);
VPSRAVW __m256i _mm256_mask_srav_epi16(__m256i s, __mmask16 m, __m256i a, __m256i cnt);
VPSRAVW __m256i _mm256_maskz_srav_epi16(__mmask16 m, __m256i a, __m256i cnt);
VPSRAVW __m128i _mm_srav_epi16(__m128i a, __m128i cnt);
VPSRAVW __m128i _mm_mask_srav_epi16(__m128i s, __mmask8 m, __m128i a, __m128i cnt);
VPSRAVW __m128i _mm_maskz_srav_epi32(__mmask8 m, __m128i a, __m128i cnt);
VPSRAVD __m256i _mm256_srav_epi32 (__m256i m, __m256i count)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
5-894 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
PXOR/PXORD/PXORQ—Exclusive Or
Instruction Operand Encoding
Description
Performs a bitwise logical XOR operation on the second source operand and the first source operand and stores the
result in the destination operand. Each bit of the result is set to 0 if the corresponding bits of the first and second
operands are identical; otherwise, it is set to 0.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be
a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a
32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with
writemask k1.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F EF /r RM V/V SSE2 Bitwise XOR of xmm2/m128 and xmm1.
PXOR xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG EF /r RVM V/V AVX Bitwise XOR of xmm3/m128 and xmm2.
VPXOR xmm1, xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG EF /r RVM V/V AVX2 Bitwise XOR of ymm3/m256 and ymm2.
VPXOR ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W0 EF /r FV V/V AVX512VL
AVX512F
Bitwise XOR of packed doubleword integers in xmm2
and xmm3/m128 using writemask k1.
VPXORD xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F.W0 EF /r FV V/V AVX512VL
AVX512F
Bitwise XOR of packed doubleword integers in ymm2
and ymm3/m256 using writemask k1.
VPXORD ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F.W0 EF /r FV V/V AVX512F Bitwise XOR of packed doubleword integers in zmm2
and zmm3/m512/m32bcst using writemask k1.
VPXORD zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
EVEX.NDS.128.66.0F.W1 EF /r FV V/V AVX512VL
AVX512F
Bitwise XOR of packed quadword integers in xmm2
and xmm3/m128 using writemask k1.
VPXORQ xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 EF /r FV V/V AVX512VL
AVX512F
Bitwise XOR of packed quadword integers in ymm2
and ymm3/m256 using writemask k1.
VPXORQ ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 EF /r FV V/V AVX512F Bitwise XOR of packed quadword integers in zmm2
and zmm3/m512/m64bcst using writemask k1.
VPXORQ zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-895
INSTRUCTION SET REFERENCE, A-Z
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAX_VL-1:256) of the
corresponding register destination are zeroed.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAX_VL-1:128)
of the corresponding register destination are zeroed.
Legacy SSE instructions: In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source operand is an XMM register or an 128-bit memory location. The
first source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corresponding ZMM
destination register remain unchanged.
Operation
PXOR (Legacy SSE instruction)
DEST[127:0] ← (DEST[127:0] BITWISE XOR SRC[127:0])
VPXOR (VEX.128 encoded instruction)
DEST[127:0] ← (SRC1[127:0] BITWISE XOR SRC2[127:0])
DEST[MAX_VL-1:128] ← 0
VPXOR (VEX.256 encoded instruction)
DEST[255:0] ← (SRC1[255:0] BITWISE XOR SRC2[255:0])
DEST[MAX_VL-1:256] ← 0
VPXORD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] SRC1[i+31:i] BITWISE XOR SRC2[31:0]
ELSE DEST[i+31:i] SRC1[i+31:i] BITWISE XOR SRC2[i+31:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
5-896 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VPXORQ (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] SRC1[i+63:i] BITWISE XOR SRC2[63:0]
ELSE DEST[i+63:i] SRC1[i+63:i] BITWISE XOR SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VPXORD __m512i _mm512_xor_epi32(__m512i a, __m512i b)
VPXORD __m512i _mm512_mask_xor_epi32(__m512i s, __mmask16 m, __m512i a, __m512i b)
VPXORD __m512i _mm512_maskz_xor_epi32( __mmask16 m, __m512i a, __m512i b)
VPXORD __m256i _mm256_xor_epi32(__m256i a, __m256i b)
VPXORD __m256i _mm256_mask_xor_epi32(__m256i s, __mmask8 m, __m256i a, __m256i b)
VPXORD __m256i _mm256_maskz_xor_epi32( __mmask8 m, __m256i a, __m256i b)
VPXORD __m128i _mm_xor_epi32(__m128i a, __m128i b)
VPXORD __m128i _mm_mask_xor_epi32(__m128i s, __mmask8 m, __m128i a, __m128i b)
VPXORD __m128i _mm_maskz_xor_epi32( __mmask16 m, __m128i a, __m128i b)
VPXORQ __m512i _mm512_xor_epi64( __m512i a, __m512i b);
VPXORQ __m512i _mm512_mask_xor_epi64(__m512i s, __mmask8 m, __m512i a, __m512i b);
VPXORQ __m512i _mm512_maskz_xor_epi64(__mmask8 m, __m512i a, __m512i b);
VPXORQ __m256i _mm256_xor_epi64( __m256i a, __m256i b);
VPXORQ __m256i _mm256_mask_xor_epi64(__m256i s, __mmask8 m, __m256i a, __m256i b);
VPXORQ __m256i _mm256_maskz_xor_epi64(__mmask8 m, __m256i a, __m256i b);
VPXORQ __m128i _mm_xor_epi64( __m128i a, __m128i b);
VPXORQ __m128i _mm_mask_xor_epi64(__m128i s, __mmask8 m, __m128i a, __m128i b);
VPXORQ __m128i _mm_maskz_xor_epi64(__mmask8 m, __m128i a, __m128i b);
PXOR __m128i _mm_xor_si128 ( __m128i a, __m128i b)
VPXOR __m256i _mm256_xor_si256 ( __m256i a, __m256i b)
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4.
Ref. # 319433-023 5-897
INSTRUCTION SET REFERENCE, A-Z
VRANGEPD—Range Restriction Calculation For Packed Pairs of Float64 Values
Instruction Operand Encoding
Description
This instruction calculates 2/4/8 range operation outputs from two sets of packed input double-precision FP values
in the first source operand (the second operand) and the second source operand (the third operand). The range
outputs are written to the destination operand (the first operand) under the writemask k1.
Bits7:4 of imm8 byte must be zero. The range operation output is performed in two parts, each configured by a
two-bit control field within imm8[3:0]:
Imm8[1:0] specifies the initial comparison operation to be one of max, min, max absolute value or min
absolute value of the input value pair. Each comparison of two input values produces an intermediate result
that combines with the sign selection control (Imm8[3:2]) to determine the final range operation output.
Imm8[3:2] specifies the sign of the range operation output to be one of the following: from the first input
value, from the comparison result, set or clear.
The encodings of Imm8[1:0] and Imm8[3:2] are shown in Figure 5-40.
When one or more of the input value is a NAN, the comparison operation may signal invalid exception (IE). Details
with one of more input value is NAN is listed in Table 5-19. If the comparison raises an IE, the sign select control
(Imm8[3:2] has no effect to the range operation output, this is indicated also in Table 5-19.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W1 50 /r ib FV V/V AVX512VL
AVX512DQ
Calculate two RANGE operation output value from 2 pairs
of double-precision floating-point values in xmm2 and
xmm3/m128/m32bcst, store the results to xmm1 under
the writemask k1. Imm8 specifies the comparison and sign
of the range operation.
VRANGEPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst, imm8
EVEX.NDS.256.66.0F3A.W1 50 /r ib FV V/V AVX512VL
AVX512DQ
Calculate four RANGE operation output value from 4pairs
of double-precision floating-point values in ymm2 and
ymm3/m256/m32bcst, store the results to ymm1 under
the writemask k1. Imm8 specifies the comparison and sign
of the range operation.
VRANGEPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8
EVEX.NDS.512.66.0F3A.W1 50 /r ib FV V/V AVX512DQ Calculate eight RANGE operation output value from 8
pairs of double-precision floating-point values in zmm2
and zmm3/m512/m32bcst, store the results to zmm1
under the writemask k1. Imm8 specifies the comparison
and sign of the range operation.
VRANGEPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
Figure 5-40. Imm8 Controls for VRANGEPD/SD/PS/SS
7 02465 3 1
Compare Operation SelectMust Be Zero
Imm8[3:2] = 00b : Select sign(SRC1)
Sign Control (SC)
Imm8[3:2] = 01b : Select sign(Compare_Result)
Imm8[3:2] = 10b : Set sign to 0
Imm8[1:0] = 00b : Select Min value
Imm8[1:0] = 01b : Select Max value
Imm8[1:0] = 10b : Select Min-Abs value
Imm8[1:0] = 11b : Select Max-Abs value
imm8
Imm8[3:2] = 11b : Set sign to 1
5-898 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
When both input values are zeros of opposite signs, the comparison operation of MIN/MAX in the range compare
operation is slightly different from the conceptually similar FP MIN/MAX operation that are found in the instructions
VMAXPD/VMINPD. The details of MIN/MAX/MIN_ABS/MAX_ABS operation for VRANGEPD/PS/SD/SS for magni-
tude-0, opposite-signed input cases are listed in Table 5-20.
Additionally, non-zero, equal-magnitude with opposite-sign input values perform MIN_ABS or MAX_ABS compar-
ison operation with result listed in Table 5-21.
Operation
RangeDP(SRC1[63:0], SRC2[63:0], CmpOpCtl[1:0], SignSelCtl[1:0])
{
// Check if SNAN and report IE, see also Table 5-19
IF (SRC1 = SNAN) THEN RETURN (QNAN(SRC1), set IE);
IF (SRC2 = SNAN) THEN RETURN (QNAN(SRC2), set IE);
Src1.exp SRC1[62:52];
Src1.fraction SRC1[51:0];
IF ((Src1.exp = 0 ) and (Src1.fraction != 0)) THEN// Src1 is a denormal number
IF DAZ THEN Src1.fraction 0;
ELSE IF (SRC2 <> QNAN) Set DE; FI;
FI;
Src2.exp SRC2[62:52];
Src2.fraction SRC2[51:0];
Table 5-19. Signaling of Comparison Operation of One or More NaN Input Values and Effect of Imm8[3:2]
Src1 Src2 Result IE Signaling Due to Comparison Imm8[3:2] Effect to Range Output
sNaN1 sNaN2 Quiet(sNaN1) Yes Ignored
sNaN1 qNaN2 Quiet(sNaN1) Yes Ignored
sNaN1 Norm2 Quiet(sNaN1) Yes Ignored
qNaN1 sNaN2 Quiet(sNaN2) Yes Ignored
qNaN1 qNaN2 qNaN1 No Applicable
qNaN1 Norm2 Norm2 No Applicable
Norm1 sNaN2 Quiet(sNaN2) Yes Ignored
Norm1 qNaN2 Norm1 No Applicable
Table 5-20. Comparison Result for Opposite-Signed Zero Cases for MIN, MIN_ABS and MAX, MAX_ABS
MIN and MIN_ABS MAX and MAX_ABS
Src1 Src2 Result Src1 Src2 Result
+0 -0 -0 +0 -0 +0
-0 +0 -0 -0 +0 +0
Table 5-21. Comparison Result of Equal-Magnitude Input Cases for MIN_ABS and MAX_ABS, (|a| = |b|, a>0, b<0)
MIN_ABS (|a| = |b|, a>0, b<0) MAX_ABS (|a| = |b|, a>0, b<0)
Src1 Src2 Result Src1 Src2 Result
ab b ab a
ba b ba a
Ref. # 319433-023 5-899
INSTRUCTION SET REFERENCE, A-Z
IF ((Src2.exp = 0) and (Src2.fraction !=0 )) THEN// Src2 is a denormal number
IF DAZ THEN Src2.fraction 0;
ELSE IF (SRC1 <> QNAN) Set DE; FI;
FI;
IF (SRC2 = QNAN) THEN{TMP[63:0] SRC1[63:0]}
ELSE IF(SRC1 = QNAN) THEN{TMP[63:0] SRC2[63:0]}
ELSE IF (Both SRC1, SRC2 are magnitude-0 and opposite-signed) TMP[63:0] from Table 5-20
ELSE IF (Both SRC1, SRC2 are magnitude-equal and opposite-signed and CmpOpCtl[1:0] > 01) TMP[63:0] from Table 5-21
ELSE
Case(CmpOpCtl[1:0])
00: TMP[63:0] (SRC1[63:0] SRC2[63:0]) ? SRC1[63:0] : SRC2[63:0];
01: TMP[63:0] (SRC1[63:0] SRC2[63:0]) ? SRC2[63:0] : SRC1[63:0];
10: TMP[63:0] (ABS(SRC1[63:0]) ABS(SRC2[63:0])) ? SRC1[63:0] : SRC2[63:0];
11: TMP[63:0] (ABS(SRC1[63:0]) ABS(SRC2[63:0])) ? SRC2[63:0] : SRC1[63:0];
ESAC;
FI;
Case(SignSelCtl[1:0])
00: dest (SRC1[63] << 63) OR (TMP[62:0]);// Preserve Src1 sign bit
01: dest TMP[63:0];// Preserve sign of compare result
10: dest (0 << 63) OR (TMP[62:0]);// Zero out sign bit
11: dest (1 << 63) OR (TMP[62:0]);// Set the sign bit
ESAC;
RETURN dest[63:0];
}
CmpOpCtl[1:0]= imm8[1:0];
SignSelCtl[1:0]=imm8[3:2];
VRANGEPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] RangeDP (SRC1[i+63:i], SRC2[63:0], CmpOpCtl[1:0], SignSelCtl[1:0]);
ELSE DEST[i+63:i] RangeDP (SRC1[i+63:i], SRC2[i+63:i], DAZ, CmpOpCtl[1:0], SignSelCtl[1:0]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] = 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
The following example describes a common usage of this instruction for checking that the input operand is
bounded between ±1023.
VRANGEPD zmm_dst, zmm_src, zmm_1023, 02h;
5-900 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Where:
zmm_dst is the destination operand.
zmm_src is the input operand to compare against ±1023 (this is SRC1).
zmm_1023 is the reference operand, contains the value of 1023 (and this is SRC2).
IMM=02(imm8[1:0]='10) selects the Min Absolute value operation with selection of SRC1.sign.
In case |zmm_src| < 1023 (i.e. SRC1 is smaller than 1023 in magnitude), then its value will be written into
zmm_dst. Otherwise, the value stored in zmm_dst will get the value of 1023 (received on zmm_1023, which is
SRC2).
However, the sign control (imm8[3:2]='00) instructs to select the sign of SRC1 received from zmm_src. So, even
in the case of |zmm_src| 1023, the selected sign of SRC1 is kept.
Thus, if zmm_src < -1023, the result of VRANGEPD will be the minimal value of -1023 while if zmm_src > +1023,
the result of VRANGE will be the maximal value of +1023.
Intel C/C++ Compiler Intrinsic Equivalent
VRANGEPD __m512d _mm512_range_pd ( __m512d a, __m512d b, int imm);
VRANGEPD __m512d _mm512_range_round_pd ( __m512d a, __m512d b, int imm, int sae);
VRANGEPD __m512d _mm512_mask_range_pd (__m512 ds, __mmask8 k, __m512d a, __m512d b, int imm);
VRANGEPD __m512d _mm512_mask_range_round_pd (__m512d s, __mmask8 k, __m512d a, __m512d b, int imm, int sae);
VRANGEPD __m512d _mm512_maskz_range_pd ( __mmask8 k, __m512d a, __m512d b, int imm);
VRANGEPD __m512d _mm512_maskz_range_round_pd ( __mmask8 k, __m512d a, __m512d b, int imm, int sae);
VRANGEPD __m256d _mm256_range_pd ( __m256d a, __m256d b, int imm);
VRANGEPD __m256d _mm256_mask_range_pd (__m256d s, __mmask8 k, __m256d a, __m256d b, int imm);
VRANGEPD __m256d _mm256_maskz_range_pd ( __mmask8 k, __m256d a, __m256d b, int imm);
VRANGEPD __m128d _mm_range_pd ( __m128 a, __m128d b, int imm);
VRANGEPD __m128d _mm_mask_range_pd (__m128 s, __mmask8 k, __m128d a, __m128d b, int imm);
VRANGEPD __m128d _mm_maskz_range_pd ( __mmask8 k, __m128d a, __m128d b, int imm);
SIMD Floating-Point Exceptions
Invalid, Denormal
Other Exceptions
See Exceptions Type E2.
Ref. # 319433-023 5-901
INSTRUCTION SET REFERENCE, A-Z
VRANGEPS—Range Restriction Calculation For Packed Pairs of Float32 Values
Instruction Operand Encoding
Description
This instruction calculates 4/8/16 range operation outputs from two sets of packed input single-precision FP values
in the first source operand (the second operand) and the second source operand (the third operand). The range
outputs are written to the destination operand (the first operand) under the writemask k1.
Bits7:4 of imm8 byte must be zero. The range operation output is performed in two parts, each configured by a
two-bit control field within imm8[3:0]:
Imm8[1:0] specifies the initial comparison operation to be one of max, min, max absolute value or min
absolute value of the input value pair. Each comparison of two input values produces an intermediate result
that combines with the sign selection control (Imm8[3:2]) to determine the final range operation output.
Imm8[3:2] specifies the sign of the range operation output to be one of the following: from the first input
value, from the comparison result, set or clear.
The encodings of Imm8[1:0] and Imm8[3:2] are shown in Figure 5-40.
When one or more of the input value is a NAN, the comparison operation may signal invalid exception (IE). Details
with one of more input value is NAN is listed in Table 5-19. If the comparison raises an IE, the sign select control
(Imm8[3:2]) has no effect to the range operation output, this is indicated also in Table 5-19.
When both input values are zeros of opposite signs, the comparison operation of MIN/MAX in the range compare
operation is slightly different from the conceptually similar FP MIN/MAX operation that are found in the instructions
VMAXPD/VMINPD. The details of MIN/MAX/MIN_ABS/MAX_ABS operation for VRANGEPD/PS/SD/SS for magni-
tude-0, opposite-signed input cases are listed in Table 5-20.
Additionally, non-zero, equal-magnitude with opposite-sign input values perform MIN_ABS or MAX_ABS compar-
ison operation with result listed in Table 5-21.
Operation
RangeSP(SRC1[31:0], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0])
{
// Check if SNAN and report IE, see also Table 5-19
IF (SRC1=SNAN) THEN RETURN (QNAN(SRC1), set IE);
IF (SRC2=SNAN) THEN RETURN (QNAN(SRC2), set IE);
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F3A.W0 50 /r ib FV V/V AVX512VL
AVX512DQ
Calculate four RANGE operation output value from 4 pairs
of single-precision floating-point values in xmm2 and
xmm3/m128/m32bcst, store the results to xmm1 under
the writemask k1. Imm8 specifies the comparison and sign
of the range operation.
VRANGEPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst, imm8
EVEX.NDS.256.66.0F3A.W0 50 /r ib FV V/V AVX512VL
AVX512DQ
Calculate eight RANGE operation output value from 8 pairs
of single-precision floating-point values in ymm2 and
ymm3/m256/m32bcst, store the results to ymm1 under
the writemask k1. Imm8 specifies the comparison and sign
of the range operation.
VRANGEPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8
EVEX.NDS.512.66.0F3A.W0 50 /r ib FV V/V AVX512DQ Calculate 16 RANGE operation output value from 16 pairs
of single-precision floating-point values in zmm2 and
zmm3/m512/m32bcst, store the results to zmm1 under
the writemask k1. Imm8 specifies the comparison and sign
of the range operation.
VRANGEPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
5-902 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Src1.exp SRC1[30:23];
Src1.fraction SRC1[22:0];
IF ((Src1.exp = 0 ) and (Src1.fraction != 0 )) THEN// Src1 is a denormal number
IF DAZ THEN Src1.fraction 0;
ELSE IF (SRC2 <> QNAN) Set DE; FI;
FI;
Src2.exp SRC2[30:23];
Src2.fraction SRC2[22:0];
IF ((Src2.exp = 0 ) and (Src2.fraction != 0 )) THEN// Src2 is a denormal number
IF DAZ THEN Src2.fraction 0;
ELSE IF (SRC1 <> QNAN) Set DE; FI;
FI;
IF (SRC2 = QNAN) THEN{TMP[31:0] SRC1[31:0]}
ELSE IF(SRC1 = QNAN) THEN{TMP[31:0] SRC2[31:0]}
ELSE IF (Both SRC1, SRC2 are magnitude-0 and opposite-signed) TMP[31:0] from Table 5-20
ELSE IF (Both SRC1, SRC2 are magnitude-equal and opposite-signed and CmpOpCtl[1:0] > 01) TMP[31:0] from Table 5-21
ELSE
Case(CmpOpCtl[1:0])
00: TMP[31:0] (SRC1[31:0] SRC2[31:0]) ? SRC1[31:0] : SRC2[31:0];
01: TMP[31:0] (SRC1[31:0] SRC2[31:0]) ? SRC2[31:0] : SRC1[31:0];
10: TMP[31:0] (ABS(SRC1[31:0]) ABS(SRC2[31:0])) ? SRC1[31:0] : SRC2[31:0];
11: TMP[31:0] (ABS(SRC1[31:0]) ABS(SRC2[31:0])) ? SRC2[31:0] : SRC1[31:0];
ESAC;
FI;
Case(SignSelCtl[1:0])
00: dest (SRC1[31] << 31) OR (TMP[30:0]);// Preserve Src1 sign bit
01: dest TMP[31:0];// Preserve sign of compare result
10: dest (0 << 31) OR (TMP[30:0]);// Zero out sign bit
11: dest (1 << 31) OR (TMP[30:0]);// Set the sign bit
ESAC;
RETURN dest[31:0];
}
CmpOpCtl[1:0]= imm8[1:0];
SignSelCtl[1:0]=imm8[3:2];
VRANGEPS
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] RangeSP (SRC1[i+31:i], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0]);
ELSE DEST[i+31:i] RangeSP (SRC1[i+31:i], SRC2[i+31:i], DAZ, CmpOpCtl[1:0], SignSelCtl[1:0]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] = 0
FI;
FI;
Ref. # 319433-023 5-903
INSTRUCTION SET REFERENCE, A-Z
ENDFOR;
DEST[MAX_VL-1:VL] 0
The following example describes a common usage of this instruction for checking that the input operand is
bounded between ±150.
VRANGEPS zmm_dst, zmm_src, zmm_150, 02h;
Where:
zmm_dst is the destination operand.
zmm_src is the input operand to compare against ±150.
zmm_150 is the reference operand, contains the value of 150.
IMM=02(imm8[1:0]=’10) selects the Min Absolute value operation with selection of src1.sign.
In case |zmm_src| < 150, then its value will be written into zmm_dst. Otherwise, the value stored in zmm_dst
will get the value of 150 (received on zmm_150).
However, the sign control (imm8[3:2]=’00) instructs to select the sign of SRC1 received from zmm_src. So, even
in the case of |zmm_src| 150, the selected sign of SRC1 is kept.
Thus, if zmm_src < -150, the result of VRANGEPS will be the minimal value of -150 while if zmm_src > +150,
the result of VRANGE will be the maximal value of +150.
Intel C/C++ Compiler Intrinsic Equivalent
VRANGEPS __m512 _mm512_range_ps ( __m512 a, __m512 b, int imm);
VRANGEPS __m512 _mm512_range_round_ps ( __m512 a, __m512 b, int imm, int sae);
VRANGEPS __m512 _mm512_mask_range_ps (__m512 s, __mmask16 k, __m512 a, __m512 b, int imm);
VRANGEPS __m512 _mm512_mask_range_round_ps (__m512 s, __mmask16 k, __m512 a, __m512 b, int imm, int sae);
VRANGEPS __m512 _mm512_maskz_range_ps ( __mmask16 k, __m512 a, __m512 b, int imm);
VRANGEPS __m512 _mm512_maskz_range_round_ps ( __mmask16 k, __m512 a, __m512 b, int imm, int sae);
VRANGEPS __m256 _mm256_range_ps ( __m256 a, __m256 b, int imm);
VRANGEPS __m256 _mm256_mask_range_ps (__m256 s, __mmask8 k, __m256 a, __m256 b, int imm);
VRANGEPS __m256 _mm256_maskz_range_ps ( __mmask8 k, __m256 a, __m256 b, int imm);
VRANGEPS __m128 _mm_range_ps ( __m128 a, __m128 b, int imm);
VRANGEPS __m128 _mm_mask_range_ps (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm);
VRANGEPS __m128 _mm_maskz_range_ps ( __mmask8 k, __m128 a, __m128 b, int imm);
SIMD Floating-Point Exceptions
Invalid, Denormal
Other Exceptions
See Exceptions Type E2.
5-904 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VRANGESD—Range Restriction Calculation From a pair of Scalar Float64 Values
Instruction Operand Encoding
Description
This instruction calculates a range operation output from two input double-precision FP values in the low qword
element of the first source operand (the second operand) and second source operand (the third operand). The
range output is written to the low qword element of the destination operand (the first operand) under the
writemask k1.
Bits7:4 of imm8 byte must be zero. The range operation output is performed in two parts, each configured by a
two-bit control field within imm8[3:0]:
Imm8[1:0] specifies the initial comparison operation to be one of max, min, max absolute value or min
absolute value of the input value pair. Each comparison of two input values produces an intermediate result that
combines with the sign selection control (Imm8[3:2]) to determine the final range operation output.
Imm8[3:2] specifies the sign of the range operation output to be one of the following: from the first input
value, from the comparison result, set or clear.
The encodings of Imm8[1:0] and Imm8[3:2] are shown in Figure 5-40.
Bits 128:63 of the destination operand are copied from the respective element of the first source operand.
When one or more of the input value is a NAN, the comparison operation may signal invalid exception (IE). Details
with one of more input value is NAN is listed in Table 5-19. If the comparison raises an IE, the sign select control
(Imm8[3:2] has no effect to the range operation output, this is indicated also in Table 5-19.
When both input values are zeros of opposite signs, the comparison operation of MIN/MAX in the range compare
operation is slightly different from the conceptually similar FP MIN/MAX operation that are found in the instructions
VMAXPD/VMINPD. The details of MIN/MAX/MIN_ABS/MAX_ABS operation for VRANGEPD/PS/SD/SS for magni-
tude-0, opposite-signed input cases are listed in Table 5-20.
Additionally, non-zero, equal-magnitude with opposite-sign input values perform MIN_ABS or MAX_ABS compar-
ison operation with result listed in Table 5-21.
Operation
RangeDP(SRC1[63:0], SRC2[63:0], CmpOpCtl[1:0], SignSelCtl[1:0])
{
// Check if SNAN and report IE, see also Table 5-19
IF (SRC1 = SNAN) THEN RETURN (QNAN(SRC1), set IE);
IF (SRC2 = SNAN) THEN RETURN (QNAN(SRC2), set IE);
Src1.exp SRC1[62:52];
Src1.fraction SRC1[51:0];
IF ((Src1.exp = 0 ) and (Src1.fraction != 0)) THEN// Src1 is a denormal number
IF DAZ THEN Src1.fraction 0;
ELSE IF (SRC2 <> QNAN) Set DE; FI;
FI;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W1 51 /r T1S V/V AVX512DQ Calculate a RANGE operation output value from 2 double-
precision floating-point values in xmm2 and xmm3/m64,
store the output to xmm1 under writemask. Imm8 specifies
the comparison and sign of the range operation.
VRANGESD xmm1 {k1}{z},
xmm2, xmm3/m64{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
Ref. # 319433-023 5-905
INSTRUCTION SET REFERENCE, A-Z
Src2.exp SRC2[62:52];
Src2.fraction SRC2[51:0];
IF ((Src2.exp = 0) and (Src2.fraction !=0 )) THEN// Src2 is a denormal number
IF DAZ THEN Src2.fraction 0;
ELSE IF (SRC1 <> QNAN) Set DE; FI;
FI;
IF (SRC2 = QNAN) THEN{TMP[63:0] SRC1[63:0]}
ELSE IF(SRC1 = QNAN) THEN{TMP[63:0] SRC2[63:0]}
ELSE IF (Both SRC1, SRC2 are magnitude-0 and opposite-signed) TMP[63:0] from Table 5-20
ELSE IF (Both SRC1, SRC2 are magnitude-equal and opposite-signed and CmpOpCtl[1:0] > 01) TMP[63:0] from Table 5-21
ELSE
Case(CmpOpCtl[1:0])
00: TMP[63:0] (SRC1[63:0] SRC2[63:0]) ? SRC1[63:0] : SRC2[63:0];
01: TMP[63:0] (SRC1[63:0] SRC2[63:0]) ? SRC2[63:0] : SRC1[63:0];
10: TMP[63:0] (ABS(SRC1[63:0]) ABS(SRC2[63:0])) ? SRC1[63:0] : SRC2[63:0];
11: TMP[63:0] (ABS(SRC1[63:0]) ABS(SRC2[63:0])) ? SRC2[63:0] : SRC1[63:0];
ESAC;
FI;
Case(SignSelCtl[1:0])
00: dest (SRC1[63] << 63) OR (TMP[62:0]);// Preserve Src1 sign bit
01: dest TMP[63:0];// Preserve sign of compare result
10: dest (0 << 63) OR (TMP[62:0]);// Zero out sign bit
11: dest (1 << 63) OR (TMP[62:0]);// Set the sign bit
ESAC;
RETURN dest[63:0];
}
CmpOpCtl[1:0]= imm8[1:0];
SignSelCtl[1:0]=imm8[3:2];
VRANGESD
IF k1[0] OR *no writemask*
THEN DEST[63:0] RangeDP (SRC1[63:0], SRC2[63:0], CmpOpCtl[1:0], SignSelCtl[1:0]);
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] = 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
The following example describes a common usage of this instruction for checking that the input operand is
bounded between ±1023.
VRANGESD xmm_dst, xmm_src, xmm_1023, 02h;
Where:
xmm_dst is the destination operand.
xmm_src is the input operand to compare against ±1023.
5-906 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
xmm_1023 is the reference operand, contains the value of 1023.
IMM=02(imm8[1:0]=’10) selects the Min Absolute value operation with selection of src1.sign.
In case |xmm_src| < 1023, then its value will be written into xmm_dst. Otherwise, the value stored in xmm_dst
will get the value of 1023 (received on xmm_1023).
However, the sign control (imm8[3:2]=’00) instructs to select the sign of SRC1 received from xmm_src. So, even
in the case of |xmm_src| 1023, the selected sign of SRC1 is kept.
Thus, if xmm_src < -1023, the result of VRANGEPD will be the minimal value of -1023while if xmm_src > +1023,
the result of VRANGE will be the maximal value of +1023.
Intel C/C++ Compiler Intrinsic Equivalent
VRANGESD __m128d _mm_range_sd ( __m128d a, __m128d b, int imm);
VRANGESD __m128d _mm_range_round_sd ( __m128d a, __m128d b, int imm, int sae);
VRANGESD __m128d _mm_mask_range_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int imm);
VRANGESD __m128d _mm_mask_range_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int imm, int sae);
VRANGESD __m128d _mm_maskz_range_sd ( __mmask8 k, __m128d a, __m128d b, int imm);
VRANGESD __m128d _mm_maskz_range_round_sd ( __mmask8 k, __m128d a, __m128d b, int imm, int sae);
SIMD Floating-Point Exceptions
Invalid, Denormal
Other Exceptions
See Exceptions Type E3.
Ref. # 319433-023 5-907
INSTRUCTION SET REFERENCE, A-Z
VRANGESS—Range Restriction Calculation From a Pair of Scalar Float32 Values
Instruction Operand Encoding
Description
This instruction calculates a range operation output from two input single-precision FP values in the low dword
element of the first source operand (the second operand) and second source operand (the third operand). The
range output is written to the low dword element of the destination operand (the first operand) under the
writemask k1.
Bits7:4 of imm8 byte must be zero. The range operation output is performed in two parts, each configured by a
two-bit control field within imm8[3:0]:
Imm8[1:0] specifies the initial comparison operation to be one of max, min, max absolute value or min
absolute value of the input value pair. Each comparison of two input values produces an intermediate result
that combines with the sign selection control (Imm8[3:2]) to determine the final range operation output.
Imm8[3:2] specifies the sign of the range operation output to be one of the following: from the first input
value, from the comparison result, set or clear.
The encodings of Imm8[1:0] and Imm8[3:2] are shown in Figure 5-40.
Bits 128:31 of the destination operand are copied from the respective elements of the first source operand.
When one or more of the input value is a NAN, the comparison operation may signal invalid exception (IE). Details
with one of more input value is NAN is listed in Table 5-19. If the comparison raises an IE, the sign select control
(Imm8[3:2]) has no effect to the range operation output, this is indicated also in Table 5-19.
When both input values are zeros of opposite signs, the comparison operation of MIN/MAX in the range compare
operation is slightly different from the conceptually similar FP MIN/MAX operation that are found in the instructions
VMAXPD/VMINPD. The details of MIN/MAX/MIN_ABS/MAX_ABS operation for VRANGEPD/PS/SD/SS for magni-
tude-0, opposite-signed input cases are listed in Table 5-20.
Additionally, non-zero, equal-magnitude with opposite-sign input values perform MIN_ABS or MAX_ABS compar-
ison operation with result listed in Table 5-21.
Operation
RangeSP(SRC1[31:0], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0])
{
// Check if SNAN and report IE, see also Table 5-19
IF (SRC1=SNAN) THEN RETURN (QNAN(SRC1), set IE);
IF (SRC2=SNAN) THEN RETURN (QNAN(SRC2), set IE);
Src1.exp SRC1[30:23];
Src1.fraction SRC1[22:0];
IF ((Src1.exp = 0 ) and (Src1.fraction != 0 )) THEN// Src1 is a denormal number
IF DAZ THEN Src1.fraction 0;
ELSE IF (SRC2 <> QNAN) Set DE; FI;
FI;
Src2.exp SRC2[30:23];
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W0 51 /r T1S V/V AVX512DQ Calculate a RANGE operation output value from 2 single-
precision floating-point values in xmm2 and xmm3/m32,
store the output to xmm1 under writemask. Imm8 specifies
the comparison and sign of the range operation.
VRANGESS xmm1 {k1}{z},
xmm2, xmm3/m32{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-908 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Src2.fraction SRC2[22:0];
IF ((Src2.exp = 0 ) and (Src2.fraction != 0 )) THEN// Src2 is a denormal number
IF DAZ THEN Src2.fraction 0;
ELSE IF (SRC1 <> QNAN) Set DE; FI;
FI;
IF (SRC2 = QNAN) THEN{TMP[31:0] SRC1[31:0]}
ELSE IF(SRC1 = QNAN) THEN{TMP[31:0] SRC2[31:0]}
ELSE IF (Both SRC1, SRC2 are magnitude-0 and opposite-signed) TMP[31:0] from Table 5-20
ELSE IF (Both SRC1, SRC2 are magnitude-equal and opposite-signed and CmpOpCtl[1:0] > 01) TMP[31:0] from Table 5-21
ELSE
Case(CmpOpCtl[1:0])
00: TMP[31:0] (SRC1[31:0] SRC2[31:0]) ? SRC1[31:0] : SRC2[31:0];
01: TMP[31:0] (SRC1[31:0] SRC2[31:0]) ? SRC2[31:0] : SRC1[31:0];
10: TMP[31:0] (ABS(SRC1[31:0]) ABS(SRC2[31:0])) ? SRC1[31:0] : SRC2[31:0];
11: TMP[31:0] (ABS(SRC1[31:0]) ABS(SRC2[31:0])) ? SRC2[31:0] : SRC1[31:0];
ESAC;
FI;
Case(SignSelCtl[1:0])
00: dest (SRC1[31] << 31) OR (TMP[30:0]);// Preserve Src1 sign bit
01: dest TMP[31:0];// Preserve sign of compare result
10: dest (0 << 31) OR (TMP[30:0]);// Zero out sign bit
11: dest (1 << 31) OR (TMP[30:0]);// Set the sign bit
ESAC;
RETURN dest[31:0];
}
CmpOpCtl[1:0]= imm8[1:0];
SignSelCtl[1:0]=imm8[3:2];
VRANGESS
IF k1[0] OR *no writemask*
THEN DEST[31:0] RangeSP (SRC1[31:0], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0]);
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0] = 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
The following example describes a common usage of this instruction for checking that the input operand is bound-
ed between ±150.
VRANGESS zmm_dst, zmm_src, zmm_150, 02h;
Where:
xmm_dst is the destination operand.
xmm_src is the input operand to compare against ±150.
xmm_150 is the reference operand, contains the value of 150.
IMM=02(imm8[1:0]=’10) selects the Min Absolute value operation with selection of src1.sign.
Ref. # 319433-023 5-909
INSTRUCTION SET REFERENCE, A-Z
In case |xmm_src| < 150, then its value will be written into zmm_dst. Otherwise, the value stored in xmm_dst
will get the value of 150 (received on zmm_150).
However, the sign control (imm8[3:2]=’00) instructs to select the sign of SRC1 received from xmm_src. So, even
in the case of |xmm_src| 150, the selected sign of SRC1 is kept.
Thus, if xmm_src < -150, the result of VRANGESS will be the minimal value of -150 while if xmm_src > +150,
the result of VRANGE will be the maximal value of +150.
Intel C/C++ Compiler Intrinsic Equivalent
VRANGESS __m128 _mm_range_ss ( __m128 a, __m128 b, int imm);
VRANGESS __m128 _mm_range_round_ss ( __m128 a, __m128 b, int imm, int sae);
VRANGESS __m128 _mm_mask_range_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm);
VRANGESS __m128 _mm_mask_range_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm, int sae);
VRANGESS __m128 _mm_maskz_range_ss ( __mmask8 k, __m128 a, __m128 b, int imm);
VRANGESS __m128 _mm_maskz_range_round_ss ( __mmask8 k, __m128 a, __m128 b, int imm, int sae);
SIMD Floating-Point Exceptions
Invalid, Denormal
Other Exceptions
See Exceptions Type E3.
5-910 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VRCP14PD—Compute Approximate Reciprocals of Packed Float64 Values
Instruction Operand Encoding
Description
This instruction performs a SIMD computation of the approximate reciprocals of eight/four/two packed double-
precision floating-point values in the source operand (the second operand) and stores the packed double-precision
floating-point results in the destination operand. The maximum relative error for this approximation is less than 2-
14.
The source operand can be a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-
bit memory location. The destination operand is a ZMM register conditionally updated according to the writemask.
The VRCP14PD instruction is not affected by the rounding control bits in the MXCSR register. When a source value
is a 0.0, an with the sign of the source value is returned. A denormal source value will be treated as zero only in
case of DAZ bit set in MXCSR. Otherwise it is treated correctly (i.e. not as a 0.0). Underflow results are flushed to
zero only in case of FTZ bit set in MXCSR. Otherwise it will be treated correctly (i.e. correct underflow result is
written) with the sign of the operand. When a source value is a SNaN or QNaN, the SNaN is converted to a QNaN or
the source QNaN is returned.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
* in this case the mantissa is shifted right by one or two bits
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W1 4C /r FV V/V AVX512VL
AVX512F
Computes the approximate reciprocals of the packed double-
precision floating-point values in xmm2/m128/m64bcst and
stores the results in xmm1. Under writemask.
VRCP14PD xmm1 {k1}{z},
xmm2/m128/m64bcst
EVEX.256.66.0F38.W1 4C /r FV V/V AVX512VL
AVX512F
Computes the approximate reciprocals of the packed double-
precision floating-point values in ymm2/m256/m64bcst and
stores the results in ymm1. Under writemask.
VRCP14PD ymm1 {k1}{z},
ymm2/m256/m64bcst
EVEX.512.66.0F38.W1 4C /r FV V/V AVX512F Computes the approximate reciprocals of the packed double-
precision floating-point values in zmm2/m512/m64bcst and
stores the results in zmm1. Under writemask.
VRCP14PD zmm1 {k1}{z},
zmm2/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Table 5-22. VRCP14PD/VRCP14SD Special Cases
Input value Result value Comments
0 X 2-1024 INF Very small denormal
-2-1024 X -0 -INF Very small denormal
X > 21022 Underflow Up to 18 bits of fractions are returned*
X < -21022 -Underflow Up to 18 bits of fractions are returned*
X = 2-n 2n
X = -2-n -2n
Ref. # 319433-023 5-911
INSTRUCTION SET REFERENCE, A-Z
Operation
VRCP14PD ((EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] APPROXIMATE(1.0/SRC[63:0]);
ELSE DEST[i+63:i] APPROXIMATE(1.0/SRC[i+63:i]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VRCP14PD __m512d _mm512_rcp14_pd( __m512d a);
VRCP14PD __m512d _mm512_mask_rcp14_pd(__m512d s, __mmask8 k, __m512d a);
VRCP14PD __m512d _mm512_maskz_rcp14_pd( __mmask8 k, __m512d a);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.
5-912 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VRCP14SD—Compute Approximate Reciprocal of Scalar Float64 Value
Instruction Operand Encoding
Description
This instruction performs a SIMD computation of the approximate reciprocal of the low double-precision floating-
point value in the second source operand (the third operand) stores the result in the low quadword element of the
destination operand (the first operand) according to the writemask k1. Bits (127:64) of the XMM register destina-
tion are copied from corresponding bits in the first source operand (the second operand). The maximum relative
error for this approximation is less than 2-14. The source operand can be an XMM register or a 64-bit memory loca-
tion. The destination operand is an XMM register.
The VRCP14SD instruction is not affected by the rounding control bits in the MXCSR register. When a source value
is a 0.0, an with the sign of the source value is returned. A denormal source value will be treated as zero only in
case of DAZ bit set in MXCSR. Otherwise it is treated correctly (i.e. not as a 0.0). Underflow results are flushed to
zero only in case of FTZ bit set in MXCSR. Otherwise it will be treated correctly (i.e. correct underflow result is
written) with the sign of the operand. When a source value is a SNaN or QNaN, the SNaN is converted to a QNaN or
the source QNaN is returned. See Table 5-22 for special-case input values.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
Operation
VRCP14SD (EVEX version)
IF k1[0] OR *no writemask*
THEN DEST[63:0] APPROXIMATE(1.0/SRC2[63:0]);
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VRCP14SD __m128d _mm_rcp14_sd( __m128d a, __m128d b);
VRCP14SD __m128d _mm_mask_rcp14_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VRCP14SD __m128d _mm_maskz_rcp14_sd( __mmask8 k, __m128d a, __m128d b);
SIMD Floating-Point Exceptions
None
Opcode/
Instruction
Op
/ En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W1 4D /r T1S V/V AVX512F Computes the approximate reciprocal of the scalar double-
precision floating-point value in xmm3/m64 and stores the
result in xmm1 using writemask k1. Also, upper double-precision
floating-point value (bits[127:64]) from xmm2 is copied to
xmm1[127:64].
VRCP14SD xmm1 {k1}{z}, xmm2,
xmm3/m64
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-913
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
See Exceptions Type E5.
5-914 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VRCP14PS—Compute Approximate Reciprocals of Packed Float32 Values
Instruction Operand Encoding
Description
This instruction performs a SIMD computation of the approximate reciprocals of the packed single-precision
floating-point values in the source operand (the second operand) and stores the packed single-precision floating-
point results in the destination operand (the first operand). The maximum relative error for this approximation is
less than 2-14.
The source operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32-
bit memory location. The destination operand is a ZMM register conditionally updated according to the writemask.
The VRCP14PS instruction is not affected by the rounding control bits in the MXCSR register. When a source value
is a 0.0, an with the sign of the source value is returned. A denormal source value will be treated as zero only in
case of DAZ bit set in MXCSR. Otherwise it is treated correctly (i.e. not as a 0.0). Underflow results are flushed to
zero only in case of FTZ bit set in MXCSR. Otherwise it will be treated correctly (i.e. correct underflow result is
written) with the sign of the operand. When a source value is a SNaN or QNaN, the SNaN is converted to a QNaN or
the source QNaN is returned.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
* in this case the mantissa is shifted right by one or two bits
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 4C /r FV V/V AVX512VL
AVX512F
Computes the approximate reciprocals of the packed single-
precision floating-point values in xmm2/m128/m32bcst and
stores the results in xmm1. Under writemask.
VRCP14PS xmm1 {k1}{z},
xmm2/m128/m32bcst
EVEX.256.66.0F38.W0 4C /r FV V/V AVX512VL
AVX512F
Computes the approximate reciprocals of the packed single-
precision floating-point values in ymm2/m256/m32bcst and
stores the results in ymm1. Under writemask.
VRCP14PS ymm1 {k1}{z},
ymm2/m256/m32bcst
EVEX.512.66.0F38.W0 4C /r FV V/V AVX512F Computes the approximate reciprocals of the packed single-
precision floating-point values in zmm2/m512/m32bcst and
stores the results in zmm1. Under writemask.
VRCP14PS zmm1 {k1}{z},
zmm2/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
Table 5-23. VRCP14PS/VRCP14SS Special Cases
Input value Result value Comments
0 X 2-128 INF Very small denormal
-2-128 X -0 -INF Very small denormal
X > 2126 Underflow Up to 18 bits of fractions are returned*
X < -2126 -Underflow Up to 18 bits of fractions are returned*
X = 2-n 2n
X = -2-n -2n
Ref. # 319433-023 5-915
INSTRUCTION SET REFERENCE, A-Z
Operation
VRCP14PS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] APPROXIMATE(1.0/SRC[31:0]);
ELSE DEST[i+31:i] APPROXIMATE(1.0/SRC[i+31:i]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VRCP14PS __m512 _mm512_rcp14_ps( __m512 a);
VRCP14PS __m512 _mm512_mask_rcp14_ps(__m512 s, __mmask16 k, __m512 a);
VRCP14PS __m512 _mm512_maskz_rcp14_ps( __mmask16 k, __m512 a);
VRCP14PS __m256 _mm256_rcp14_ps( __m256 a);
VRCP14PS __m256 _mm512_mask_rcp14_ps(__m256 s, __mmask8 k, __m256 a);
VRCP14PS __m256 _mm512_maskz_rcp14_ps( __mmask8 k, __m256 a);
VRCP14PS __m128 _mm_rcp14_ps( __m128 a);
VRCP14PS __m128 _mm_mask_rcp14_ps(__m128 s, __mmask8 k, __m128 a);
VRCP14PS __m128 _mm_maskz_rcp14_ps( __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.
5-916 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VRCP14SS—Compute Approximate Reciprocal of Scalar Float32 Value
Instruction Operand Encoding
Description
This instruction performs a SIMD computation of the approximate reciprocal of the low single-precision floating-
point value in the second source operand (the third operand) and stores the result in the low quadword element of
the destination operand (the first operand) according to the writemask k1. Bits (127:32) of the XMM register desti-
nation are copied from corresponding bits in the first source operand (the second operand). The maximum relative
error for this approximation is less than 2-14. The source operand can be an XMM register or a 32-bit memory loca-
tion. The destination operand is an XMM register.
The VRCP14SS instruction is not affected by the rounding control bits in the MXCSR register. When a source value
is a 0.0, an with the sign of the source value is returned. A denormal source value will be treated as zero only in
case of DAZ bit set in MXCSR. Otherwise it is treated correctly (i.e. not as a 0.0). Underflow results are flushed to
zero only in case of FTZ bit set in MXCSR. Otherwise it will be treated correctly (i.e. correct underflow result is
written) with the sign of the operand. When a source value is a SNaN or QNaN, the SNaN is converted to a QNaN or
the source QNaN is returned. See Table 5-23 for special-case input values.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
Operation
VRCP14SS (EVEX version)
IF k1[0] OR *no writemask*
THEN DEST[31:0] APPROXIMATE(1.0/SRC2[31:0]);
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0] 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VRCP14SS __m128 _mm_rcp14_ss( __m128 a, __m128 b);
VRCP14SS __m128 _mm_mask_rcp14_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VRCP14SS __m128 _mm_maskz_rcp14_ss( __mmask8 k, __m128 a, __m128 b);
SIMD Floating-Point Exceptions
None
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W0 4D /r T1S V/V AVX512F Computes the approximate reciprocal of the scalar single-
precision floating-point value in xmm3/m32 and stores the
results in xmm1 using writemask k1. Also, upper double-
precision floating-point value (bits[127:32]) from xmm2 is
copied to xmm1[127:32].
VRCP14SS xmm1 {k1}{z}, xmm2,
xmm3/m32
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-917
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
See Exceptions Type E5.
5-918 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VREDUCEPD—Perform Reduction Transformation on Packed Float64 Values
Instruction Operand Encoding
Description
Perform reduction transformation of the packed binary encoded double-precision FP values in the source operand
(the second operand) and store the reduced results in binary FP format to the destination operand (the first
operand) under the writemask k1.
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary FP source
value, where M is a unsigned integer specified by imm8[7:4], see Figure 5-41. Specifically, the reduction transfor-
mation can be expressed as:
dest = src – (ROUND(2M*src))*2-M;
where “Round()” treats “src”, “2M”, and their product as binary FP numbers with normalized significand and bi-
ased exponents.
The magnitude of the reduced result can be expressed by considering src= 2p*man2,
where ‘man2’ is the normalized significand and ‘p’ is the unbiased exponent
Then if RC = RNE: 0<=|Reduced Result|<=2p-M-1
Then if RC RNE: 0<=|Reduced Result|<2p-M
This instruction might end up with a precision exception set. However, in case of SPE set (i.e. Suppress Precision
Exception, which is imm8[3]=1), no precision exception is reported.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F3A.W1 56 /r ib FV V/V AVX512VL
AVX512DQ
Perform reduction transformation on packed double-precision
floating point values in xmm2/m128/m32bcst by subtracting
a number of fraction bits specified by the imm8 field. Stores
the result in xmm1 register under writemask k1.
VREDUCEPD xmm1 {k1}{z},
xmm2/m128/m64bcst, imm8
EVEX.256.66.0F3A.W1 56 /r ib FV V/V AVX512VL
AVX512DQ
Perform reduction transformation on packed double-precision
floating point values in ymm2/m256/m32bcst by subtracting
a number of fraction bits specified by the imm8 field. Stores
the result in ymm1 register under writemask k1.
VREDUCEPD ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
EVEX.512.66.0F3A.W1 56 /r ib FV V/V AVX512DQ Perform reduction transformation on double-precision floating
point values in zmm2/m512/m32bcst by subtracting a
number of fraction bits specified by the imm8 field. Stores the
result in zmm1 register under writemask k1.
VREDUCEPD zmm1 {k1}{z},
zmm2/m512/m64bcst{sae},
imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) Imm8 NA
Figure 5-41. Imm8 Controls for VREDUCEPD/SD/PS/SS
7 02465 3 1
Round Control OverrideFixed point length
Imm8[7:4] : Number of fixed points to subtract
RS
Imm8[1:0] = 00b : Round nearest even
Imm8[1:0] = 01b : Round down
Imm8[1:0] = 10b : Round up
Imm8[1:0] = 11b : Truncate
imm8 SPE
Round Select: Imm8[2]
Imm8[2] = 0b : Use Imm8[1:0]
Imm8[2] = 1b : Use MXCSR
Suppress Precision Exception: Imm8[3]
Imm8[3] = 0b : Use MXCSR exception mask
Imm8[3] = 1b : Suppress
Ref. # 319433-023 5-919
INSTRUCTION SET REFERENCE, A-Z
Handling of special case of input values are listed in Table 5-24.
* Round control = (imm8.MS1)? MXCSR.RC: imm8.RC
Operation
ReduceArgumentDP(SRC[63:0], imm8[7:0])
{
// Check for NaN
IF (SRC [63:0] = NAN) THEN
RETURN (Convert SRC[63:0] to QNaN); FI;
M imm8[7:4]; // Number of fraction bits of the normalized significand to be subtracted
RC imm8[1:0];// Round Control for ROUND() operation
RC source imm[2];
SPE 0;// Suppress Precision Exception
TMP[63:0] 2-M *{ROUND(2M*SRC[63:0], SPE, RC_source, RC)}; // ROUND() treats SRC and 2M as standard binary FP values
TMP[63:0] SRC[63:0] – TMP[63:0]; // subtraction under the same RC,SPE controls
RETURN TMP[63:0]; // binary encoded FP with biased exponent and normalized significand
}
VREDUCEPD
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC *is memory*)
THEN DEST[i+63:i] ReduceArgumentDP(SRC[63:0], imm8[7:0]);
ELSE DEST[i+63:i] ReduceArgumentDP(SRC[i+63:i], imm8[7:0]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] = 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Table 5-24. VREDUCEPD/SD/PS/SS Special Cases
Round Mode Returned value
|Src1| < 2-M-1 RNE Src1
|Src1| < 2-M
RPI, Src1 > 0 Round (Src1-2-M) *
RPI, Src1 0Src1
RNI, Src1 0Src1
RNI, Src1 < 0 Round (Src1+2-M) *
Src1 = ±0, or
Dest = ±0 (Src1!=INF)
NOT RNI +0.0
RNI -0.0
Src1 = ±INF any +0.0
Src1= ±NAN n/a QNaN(Src1)
5-920 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VREDUCEPD __m512d _mm512_mask_reduce_pd( __m512d a, int imm, int sae)
VREDUCEPD __m512d _mm512_mask_reduce_pd(__m512d s, __mmask8 k, __m512d a, int imm, int sae)
VREDUCEPD __m512d _mm512_maskz_reduce_pd(__mmask8 k, __m512d a, int imm, int sae)
VREDUCEPD __m256d _mm256_mask_reduce_pd( __m256d a, int imm)
VREDUCEPD __m256d _mm256_mask_reduce_pd(__m256d s, __mmask8 k, __m256d a, int imm)
VREDUCEPD __m256d _mm256_maskz_reduce_pd(__mmask8 k, __m256d a, int imm)
VREDUCEPD __m128d _mm_mask_reduce_pd( __m128d a, int imm)
VREDUCEPD __m128d _mm_mask_reduce_pd(__m128d s, __mmask8 k, __m128d a, int imm)
VREDUCEPD __m128d _mm_maskz_reduce_pd(__mmask8 k, __m128d a, int imm)
SIMD Floating-Point Exceptions
Invalid, Precision
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
Other Exceptions
See Exceptions Type E2, additionally
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-921
INSTRUCTION SET REFERENCE, A-Z
VREDUCESD—Perform a Reduction Transformation on a Scalar Float64 Value
Instruction Operand Encoding
Description
Perform a reduction transformation of the binary encoded double-precision FP value in the low qword element of
the second source operand (the third operand) and store the reduced result in binary FP format to the low qword
element of the destination operand (the first operand) under the writemask k1. Bits 127:64 of the destination
operand are copied from respective qword elements of the first source operand (the second operand).
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary FP source
value, where M is a unsigned integer specified by imm8[7:4], see Figure 5-41. Specifically, the reduction transfor-
mation can be expressed as:
dest = src – (ROUND(2M*src))*2-M;
where “Round()” treats “src”, “2M”, and their product as binary FP numbers with normalized significand and bi-
ased exponents.
The magnitude of the reduced result can be expressed by considering src= 2p*man2,
where ‘man2’ is the normalized significand and ‘p’ is the unbiased exponent
Then if RC = RNE: 0<=|Reduced Result|<=2p-M-1
Then if RC RNE: 0<=|Reduced Result|<2p-M
This instruction might end up with a precision exception set. However, in case of SPE set (i.e. Suppress Precision
Exception, which is imm8[3]=1), no precision exception is reported.
The operation is write masked.
Handling of special case of input values are listed in Table 5-24.
Operation
ReduceArgumentDP(SRC[63:0], imm8[7:0])
{
// Check for NaN
IF (SRC [63:0] = NAN) THEN
RETURN (Convert SRC[63:0] to QNaN); FI;
M imm8[7:4]; // Number of fraction bits of the normalized significand to be subtracted
RC imm8[1:0];// Round Control for ROUND() operation
RC source imm[2];
SPE 0;// Suppress Precision Exception
TMP[63:0] 2-M *{ROUND(2M*SRC[63:0], SPE, RC_source, RC)}; // ROUND() treats SRC and 2M as standard binary FP values
TMP[63:0] SRC[63:0] – TMP[63:0]; // subtraction under the same RC,SPE controls
RETURN TMP[63:0]; // binary encoded FP with biased exponent and normalized significand
}
Opcode/
Instruction
Op /
En
64/32 bit
Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W1 57
/r
T1S V/V AVX512D
Q
Perform a reduction transformation on a scalar double-precision
floating point value in xmm3/m64 by subtracting a number of
fraction bits specified by the imm8 field. Also, upper double
precision floating-point value (bits[127:64]) from xmm2 are
copied to xmm1[127:64]. Stores the result in xmm1 register.
VREDUCESD xmm1 {k1}{z},
xmm2, xmm3/m64{sae},
imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-922 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VREDUCESD
IF k1[0] or *no writemask*
THEN DEST[63:0] ReduceArgumentDP(SRC2[63:0], imm8[7:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] = 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VREDUCESD __m128d _mm_mask_reduce_sd( __m128d a, __m128d b, int imm, int sae)
VREDUCESD __m128d _mm_mask_reduce_sd(__m128d s, __mmask16 k, __m128d a, __m128d b, int imm, int sae)
VREDUCESD __m128d _mm_maskz_reduce_sd(__mmask16 k, __m128d a, __m128d b, int imm, int sae)
SIMD Floating-Point Exceptions
Invalid, Precision
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
Other Exceptions
See Exceptions Type E3.
Ref. # 319433-023 5-923
INSTRUCTION SET REFERENCE, A-Z
VREDUCEPS—Perform Reduction Transformation on Packed Float32 Values
Instruction Operand Encoding
Description
Perform reduction transformation of the packed binary encoded single-precision FP values in the source operand
(the second operand) and store the reduced results in binary FP format to the destination operand (the first
operand) under the writemask k1.
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary FP source
value, where M is a unsigned integer specified by imm8[7:4], see Figure 5-41. Specifically, the reduction transfor-
mation can be expressed as:
dest = src – (ROUND(2M*src))*2-M;
where “Round()” treats “src”, “2M”, and their product as binary FP numbers with normalized significand and bi-
ased exponents.
The magnitude of the reduced result can be expressed by considering src= 2p*man2,
where ‘man2’ is the normalized significand and ‘p’ is the unbiased exponent
Then if RC = RNE: 0<=|Reduced Result|<=2p-M-1
Then if RC RNE: 0<=|Reduced Result|<2p-M
This instruction might end up with a precision exception set. However, in case of SPE set (i.e. Suppress Precision
Exception, which is imm8[3]=1), no precision exception is reported.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Handling of special case of input values are listed in Table 5-24.
Operation
ReduceArgumentSP(SRC[31:0], imm8[7:0])
{
// Check for NaN
IF (SRC [31:0] = NAN) THEN
RETURN (Convert SRC[31:0] to QNaN); FI
M imm8[7:4]; // Number of fraction bits of the normalized significand to be subtracted
RC imm8[1:0];// Round Control for ROUND() operation
RC source imm[2];
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F3A.W0 56 /r ib FV V/V AVX512VL
AVX512DQ
Perform reduction transformation on packed single-precision
floating point values in xmm2/m128/m32bcst by subtracting
a number of fraction bits specified by the imm8 field. Stores
the result in xmm1 register under writemask k1.
VREDUCEPS xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
EVEX.256.66.0F3A.W0 56 /r ib FV V/V AVX512VL
AVX512DQ
Perform reduction transformation on packed single-precision
floating point values in ymm2/m256/m32bcst by subtracting
a number of fraction bits specified by the imm8 field. Stores
the result in ymm1 register under writemask k1.
VREDUCEPS ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
EVEX.512.66.0F3A.W0 56 /r ib FV V/V AVX512DQ Perform reduction transformation on packed single-precision
floating point values in zmm2/m512/m32bcst by subtracting
a number of fraction bits specified by the imm8 field. Stores
the result in zmm1 register under writemask k1.
VREDUCEPS zmm1 {k1}{z},
zmm2/m512/m32bcst{sae},
imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) Imm8 NA
5-924 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
SPE 0;// Suppress Precision Exception
TMP[31:0] 2-M *{ROUND(2M*SRC[31:0], SPE, RC_source, RC)}; // ROUND() treats SRC and 2M as standard binary FP values
TMP[31:0] SRC[31:0] – TMP[31:0]; // subtraction under the same RC,SPE controls
RETURN TMP[31:0]; // binary encoded FP with biased exponent and normalized significand
}
VREDUCEPS
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC *is memory*)
THEN DEST[i+31:i] ReduceArgumentSP(SRC[31:0], imm8[7:0]);
ELSE DEST[i+31:i] ReduceArgumentSP(SRC[i+31:i], imm8[7:0]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] = 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VREDUCEPS __m512 _mm512_mask_reduce_ps( __m512 a, int imm, int sae)
VREDUCEPS __m512 _mm512_mask_reduce_ps(__m512 s, __mmask16 k, __m512 a, int imm, int sae)
VREDUCEPS __m512 _mm512_maskz_reduce_ps(__mmask16 k, __m512 a, int imm, int sae)
VREDUCEPS __m256 _mm256_mask_reduce_ps( __m256 a, int imm)
VREDUCEPS __m256 _mm256_mask_reduce_ps(__m256 s, __mmask8 k, __m256 a, int imm)
VREDUCEPS __m256 _mm256_maskz_reduce_ps(__mmask8 k, __m256 a, int imm)
VREDUCEPS __m128 _mm_mask_reduce_ps( __m128 a, int imm)
VREDUCEPS __m128 _mm_mask_reduce_ps(__m128 s, __mmask8 k, __m128 a, int imm)
VREDUCEPS __m128 _mm_maskz_reduce_ps(__mmask8 k, __m128 a, int imm)
SIMD Floating-Point Exceptions
Invalid, Precision
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
Other Exceptions
See Exceptions Type E2, additionally
#UD If EVEX.vvvv != 1111B.
Ref. # 319433-023 5-925
INSTRUCTION SET REFERENCE, A-Z
VREDUCESS—Perform a Reduction Transformation on a Scalar Float32 Value
Instruction Operand Encoding
Description
Perform a reduction transformation of the binary encoded single-precision FP value in the low dword element of the
second source operand (the third operand) and store the reduced result in binary FP format to the low dword
element of the destination operand (the first operand) under the writemask k1. Bits 127:32 of the destination
operand are copied from respective dword elements of the first source operand (the second operand).
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary FP source
value, where M is a unsigned integer specified by imm8[7:4], see Figure 5-41. Specifically, the reduction transfor-
mation can be expressed as:
dest = src – (ROUND(2M*src))*2-M;
where “Round()” treats “src”, “2M”, and their product as binary FP numbers with normalized significand and bi-
ased exponents.
The magnitude of the reduced result can be expressed by considering src= 2p*man2,
where ‘man2’ is the normalized significand and ‘p’ is the unbiased exponent
Then if RC = RNE: 0<=|Reduced Result|<=2p-M-1
Then if RC RNE: 0<=|Reduced Result|<2p-M
This instruction might end up with a precision exception set. However, in case of SPE set (i.e. Suppress Precision
Exception, which is imm8[3]=1), no precision exception is reported.
Handling of special case of input values are listed in Table 5-24.
Operation
ReduceArgumentSP(SRC[31:0], imm8[7:0])
{
// Check for NaN
IF (SRC [31:0] = NAN) THEN
RETURN (Convert SRC[31:0] to QNaN); FI
M imm8[7:4]; // Number of fraction bits of the normalized significand to be subtracted
RC imm8[1:0];// Round Control for ROUND() operation
RC source imm[2];
SPE 0;// Suppress Precision Exception
TMP[31:0] 2-M *{ROUND(2M*SRC[31:0], SPE, RC_source, RC)}; // ROUND() treats SRC and 2M as standard binary FP values
TMP[31:0] SRC[31:0] – TMP[31:0]; // subtraction under the same RC,SPE controls
RETURN TMP[31:0]; // binary encoded FP with biased exponent and normalized significand
}
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W0 57
/r /ib
T1S V/V AVX512DQ Perform a reduction transformation on a scalar single-precision
floating point value in xmm3/m32 by subtracting a number of
fraction bits specified by the imm8 field. Also, upper single
precision floating-point values (bits[127:32]) from xmm2 are
copied to xmm1[127:32]. Stores the result in xmm1 register.
VREDUCESS xmm1 {k1}{z},
xmm2, xmm3/m32{sae},
imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-926 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VREDUCESS
IF k1[0] or *no writemask*
THEN DEST[31:0] ReduceArgumentSP(SRC2[31:0], imm8[7:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] = 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VREDUCESS __m128 _mm_mask_reduce_ss( __m128 a, __m128 b, int imm, int sae)
VREDUCESS __m128 _mm_mask_reduce_ss(__m128 s, __mmask16 k, __m128 a, __m128 b, int imm, int sae)
VREDUCESS __m128 _mm_maskz_reduce_ss(__mmask16 k, __m128 a, __m128 b, int imm, int sae)
SIMD Floating-Point Exceptions
Invalid, Precision
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
Other Exceptions
See Exceptions Type E3.
Ref. # 319433-023 5-927
INSTRUCTION SET REFERENCE, A-Z
VRNDSCALEPD—Round Packed Float64 Values To Include A Given Number Of Fraction Bits
Instruction Operand Encoding
Description
Round the double-precision floating-point values in the source operand by the rounding mode specified in the
immediate operand (see Figure 5-42) and places the result in the destination operand.
The destination operand (the first operand) is a ZMM/YMM/XMM register conditionally updated according to the
writemask. The source operand (the second operand) can be a ZMM/YMM/XMM register, a 512/256/128-bit
memory location, or a 512/256/128-bit vector broadcasted from a 64-bit memory location.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by
imm8[7:4] (to be included in the result) and returns the result as a double-precision floating-point value.
It should be noticed that no overflow is induced while executing this instruction (although the source is scaled by
the imm8[7:4] value).
The immediate operand also specifies control fields for the rounding operation, three bit fields are defined and
shown in the “Immediate Control Description” figure below. Bit 3 of the immediate byte controls the processor
behavior for a precision exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky
rounding-mode value (Immediate control table below lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before
rounding.
The sign of the result of this instruction is preserved, including the sign of zero.
The formula of the operation on each data element for VRNDSCALEPD is
ROUND(x) = 2-M*Round_to_INT(x*2M, round_ctrl),
round_ctrl = imm[3:0];
M=imm[7:4];
The operation of x*2M is computed as if the exponent range is unlimited (i.e. no overflow ever occurs).
VRNDSCALEPD is a more general form of the VEX-encoded VROUNDPD instruction. In VROUNDPD, the formula of
the operation on each element is
ROUND(x) = Round_to_INT(x, round_ctrl),
round_ctrl = imm[3:0];
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F3A.W1 09 /r ib FV V/V AVX512VL
AVX512F
Rounds packed double-precision floating point values in
xmm2/m128/m64bcst to a number of fraction bits
specified by the imm8 field. Stores the result in xmm1
register. Under writemask.
VRNDSCALEPD xmm1 {k1}{z},
xmm2/m128/m64bcst, imm8
EVEX.256.66.0F3A.W1 09 /r ib FV V/V AVX512VL
AVX512F
Rounds packed double-precision floating point values in
ymm2/m256/m64bcst to a number of fraction bits
specified by the imm8 field. Stores the result in ymm1
register. Under writemask.
VRNDSCALEPD ymm1 {k1}{z},
ymm2/m256/m64bcst, imm8
EVEX.512.66.0F3A.W1 09 /r ib FV V/V AVX512F Rounds packed double-precision floating-point values in
zmm2/m512/m64bcst to a number of fraction bits
specified by the imm8 field. Stores the result in zmm1
register using writemask k1.
VRNDSCALEPD zmm1 {k1}{z},
zmm2/m512/m64bcst{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) Imm8 NA
5-928 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Handling of special case of input values are listed in Table 5-25.
Operation
RoundToIntegerDP(SRC[63:0], imm8[7:0]) {
if (imm8[2] = 1)
rounding_direction MXCSR:RC ; get round control from MXCSR
else
rounding_direction imm8[1:0] ; get round control from imm8[1:0]
FI
M imm8[7:4] ; get the scaling factor
case (rounding_direction)
00: TMP[63:0] round_to_nearest_even_integer(2M*SRC[63:0])
01: TMP[63:0] round_to_equal_or_smaller_integer(2M*SRC[63:0])
10: TMP[63:0] round_to_equal_or_larger_integer(2M*SRC[63:0])
11: TMP[63:0] round_to_nearest_smallest_magnitude_integer(2M*SRC[63:0])
ESAC
Dest[63:0] 2-M* TMP[63:0] ; scale down back to 2-M
if (imm8[3] = 0) Then ; check SPE
if (SRC[63:0] != Dest[63:0]) Then ; check precision lost
set_precision() ; set #PE
FI;
FI;
return(Dest[63:0])
}
Figure 5-42. Imm8 Controls for VRNDSCALEPD/SD/PS/SS
Table 5-25. VRNDSCALEPD/SD/PS/SS Special Cases
Returned value
Src1=±inf Src1
Src1=±NAN Src1 converted to QNAN
Src1=±0 Src1
7 02465 3 1
Round Control OverrideFixed point length
Imm8[7:4] : Number of fixed points to preserve
RS
Imm8[1:0] = 00b : Round nearest even
Imm8[1:0] = 01b : Round down
Imm8[1:0] = 10b : Round up
Imm8[1:0] = 11b : Truncate
imm8 SPE
Round Select: Imm8[2]
Imm8[2] = 0b : Use Imm8[1:0]
Imm8[2] = 1b : Use MXCSR
Suppress Precision Exception: Imm8[3]
Imm8[3] = 0b : Use MXCSR exception mask
Imm8[3] = 1b : Suppress
Ref. # 319433-023 5-929
INSTRUCTION SET REFERENCE, A-Z
VRNDSCALEPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF *src is a memory operand*
THEN TMP_SRC BROADCAST64(SRC, VL, k1)
ELSE TMP_SRC SRC
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] RoundToIntegerDP((TMP_SRC[i+63:i], imm8[7:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VRNDSCALEPD __m512d _mm512_roundscale_pd( __m512d a, int imm);
VRNDSCALEPD __m512d _mm512_roundscale_round_pd( __m512d a, int imm, int sae);
VRNDSCALEPD __m512d _mm512_mask_roundscale_pd(__m512d s, __mmask8 k, __m512d a, int imm);
VRNDSCALEPD __m512d _mm512_mask_roundscale_round_pd(__m512d s, __mmask8 k, __m512d a, int imm, int sae);
VRNDSCALEPD __m512d _mm512_maskz_roundscale_pd( __mmask8 k, __m512d a, int imm);
VRNDSCALEPD __m512d _mm512_maskz_roundscale_round_pd( __mmask8 k, __m512d a, int imm, int sae);
VRNDSCALEPD __m256d _mm256_roundscale_pd( __m256d a, int imm);
VRNDSCALEPD __m256d _mm256_mask_roundscale_pd(__m256d s, __mmask8 k, __m256d a, int imm);
VRNDSCALEPD __m256d _mm256_maskz_roundscale_pd( __mmask8 k, __m256d a, int imm);
VRNDSCALEPD __m128d _mm_roundscale_pd( __m128d a, int imm);
VRNDSCALEPD __m128d _mm_mask_roundscale_pd(__m128d s, __mmask8 k, __m128d a, int imm);
VRNDSCALEPD __m128d _mm_maskz_roundscale_pd( __mmask8 k, __m128d a, int imm);
SIMD Floating-Point Exceptions
Invalid, Precision
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
Other Exceptions
See Exceptions Type E2.
5-930 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VRNDSCALESD—Round Scalar Float64 Value To Include A Given Number Of Fraction Bits
Instruction Operand Encoding
Description
Rounds a double-precision floating-point value in the low quadword (see Figure 5-42) element the second source
operand (the third operand) by the rounding mode specified in the immediate operand and places the result in the
corresponding element of the destination operand (the third operand) according to the writemask. The quadword
element at bits 127:64 of the destination is copied from the first source operand (the second operand).
The destination and first source operands are XMM registers, the 2nd source operand can be an XMM register or
memory location. Bits MAX_VL-1:128 of the destination register are cleared.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by
imm8[7:4] (to be included in the result) and returns the result as a double-precision floating-point value.
It should be noticed that no overflow is induced while executing this instruction (although the source is scaled by
the imm8[7:4] value).
The immediate operand also specifies control fields for the rounding operation, three bit fields are defined and
shown in the “Immediate Control Description” figure below. Bit 3 of the immediate byte controls the processor
behavior for a precision exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky
rounding-mode value (Immediate control table below lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before
rounding.
The sign of the result of this instruction is preserved, including the sign of zero.
The formula of the operation for VRNDSCALESD is
ROUND(x) = 2-M*Round_to_INT(x*2M, round_ctrl),
round_ctrl = imm[3:0];
M=imm[7:4];
The operation of x*2M is computed as if the exponent range is unlimited (i.e. no overflow ever occurs).
VRNDSCALESD is a more general form of the VEX-encoded VROUNDSD instruction. In VROUNDSD, the formula of
the operation is
ROUND(x) = Round_to_INT(x, round_ctrl),
round_ctrl = imm[3:0];
EVEX encoded version: The source operand is a XMM register or a 64-bit memory location. The destination operand
is a XMM register.
Handling of special case of input values are listed in Table 5-25.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W1 0B /r ib T1S V/V AVX512F Rounds scalar double-precision floating-point value in
xmm3/m64 to a number of fraction bits specified by the
imm8 field. Stores the result in xmm1 register.
VRNDSCALESD xmm1 {k1}{z}, xmm2,
xmm3/m64{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) Imm8
Ref. # 319433-023 5-931
INSTRUCTION SET REFERENCE, A-Z
Operation
RoundToIntegerDP(SRC[63:0], imm8[7:0]) {
if (imm8[2] = 1)
rounding_direction MXCSR:RC ; get round control from MXCSR
else
rounding_direction imm8[1:0] ; get round control from imm8[1:0]
FI
M imm8[7:4] ; get the scaling factor
case (rounding_direction)
00: TMP[63:0] round_to_nearest_even_integer(2M*SRC[63:0])
01: TMP[63:0] round_to_equal_or_smaller_integer(2M*SRC[63:0])
10: TMP[63:0] round_to_equal_or_larger_integer(2M*SRC[63:0])
11: TMP[63:0] round_to_nearest_smallest_magnitude_integer(2M*SRC[63:0])
ESAC
Dest[63:0] 2-M* TMP[63:0] ; scale down back to 2-M
if (imm8[3] = 0) Then ; check SPE
if (SRC[63:0] != Dest[63:0]) Then ; check precision lost
set_precision() ; set #PE
FI;
FI;
return(Dest[63:0])
}
VRNDSCALESD (EVEX encoded version)
IF k1[0] or *no writemask*
THEN DEST[63:0] RoundToIntegerDP(SRC2[63:0], Zero_upper_imm[7:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VRNDSCALESD __m128d _mm_roundscale_sd ( __m128d a, __m128d b, int imm);
VRNDSCALESD __m128d _mm_roundscale_round_sd ( __m128d a, __m128d b, int imm, int sae);
VRNDSCALESD __m128d _mm_mask_roundscale_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int imm);
VRNDSCALESD __m128d _mm_mask_roundscale_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int imm, int sae);
VRNDSCALESD __m128d _mm_maskz_roundscale_sd ( __mmask8 k, __m128d a, __m128d b, int imm);
VRNDSCALESD __m128d _mm_maskz_roundscale_round_sd ( __mmask8 k, __m128d a, __m128d b, int imm, int sae);
SIMD Floating-Point Exceptions
Invalid, Precision
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
Other Exceptions
See Exceptions Type E3.
5-932 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VRNDSCALEPS—Round Packed Float32 Values To Include A Given Number Of Fraction Bits
Instruction Operand Encoding
Description
Round the single-precision floating-point values in the source operand by the rounding mode specified in the imme-
diate operand (see Figure 5-42) and places the result in the destination operand.
The destination operand (the first operand) is a ZMM register conditionally updated according to the writemask.
The source operand (the second operand) can be a ZMM register, a 512-bit memory location, or a 512-bit vector
broadcasted from a 32-bit memory location.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by
imm8[7:4] (to be included in the result) and returns the result as a single-precision floating-point value.
It should be noticed that no overflow is induced while executing this instruction (although the source is scaled by
the imm8[7:4] value).
The immediate operand also specifies control fields for the rounding operation, three bit fields are defined and
shown in the “Immediate Control Description” figure below. Bit 3 of the immediate byte controls the processor
behavior for a precision exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky
rounding-mode value (Immediate control table below lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before
rounding.
The sign of the result of this instruction is preserved, including the sign of zero.
The formula of the operation on each data element for VRNDSCALEPS is
ROUND(x) = 2-M*Round_to_INT(x*2M, round_ctrl),
round_ctrl = imm[3:0];
M=imm[7:4];
The operation of x*2M is computed as if the exponent range is unlimited (i.e. no overflow ever occurs).
VRNDSCALEPS is a more general form of the VEX-encoded VROUNDPS instruction. In VROUNDPS, the formula of
the operation on each element is
ROUND(x) = Round_to_INT(x, round_ctrl),
round_ctrl = imm[3:0];
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F3A.W0 08 /r ib FV V/V AVX512VL
AVX512F
Rounds packed single-precision floating point values in
xmm2/m128/m32bcst to a number of fraction bits
specified by the imm8 field. Stores the result in xmm1
register. Under writemask.
VRNDSCALEPS xmm1 {k1}{z},
xmm2/m128/m32bcst, imm8
EVEX.256.66.0F3A.W0 08 /r ib FV V/V AVX512VL
AVX512F
Rounds packed single-precision floating point values in
ymm2/m256/m32bcst to a number of fraction bits
specified by the imm8 field. Stores the result in ymm1
register. Under writemask.
VRNDSCALEPS ymm1 {k1}{z},
ymm2/m256/m32bcst, imm8
EVEX.512.66.0F3A.W0 08 /r ib FV V/V AVX512F Rounds packed single-precision floating-point values in
zmm2/m512/m32bcst to a number of fraction bits
specified by the imm8 field. Stores the result in zmm1
register using writemask.
VRNDSCALEPS zmm1 {k1}{z},
zmm2/m512/m32bcst{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) Imm8 NA
Ref. # 319433-023 5-933
INSTRUCTION SET REFERENCE, A-Z
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Handling of special case of input values are listed in Table 5-25.
Operation
RoundToIntegerSP(SRC[31:0], imm8[7:0]) {
if (imm8[2] = 1)
rounding_direction MXCSR:RC ; get round control from MXCSR
else
rounding_direction imm8[1:0] ; get round control from imm8[1:0]
FI
M imm8[7:4] ; get the scaling factor
case (rounding_direction)
00: TMP[31:0] round_to_nearest_even_integer(2M*SRC[31:0])
01: TMP[31:0] round_to_equal_or_smaller_integer(2M*SRC[31:0])
10: TMP[31:0] round_to_equal_or_larger_integer(2M*SRC[31:0])
11: TMP[31:0] round_to_nearest_smallest_magnitude_integer(2M*SRC[31:0])
ESAC;
Dest[31:0] 2-M* TMP[31:0] ; scale down back to 2-M
if (imm8[3] = 0) Then ; check SPE
if (SRC[31:0] != Dest[31:0]) Then ; check precision lost
set_precision() ; set #PE
FI;
FI;
return(Dest[31:0])
}
VRNDSCALEPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF *src is a memory operand*
THEN TMP_SRC BROADCAST32(SRC, VL, k1)
ELSE TMP_SRC SRC
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] RoundToIntegerSP(TMP_SRC[i+31:i]), imm8[7:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
5-934 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VRNDSCALEPS __m512 _mm512_roundscale_ps( __m512 a, int imm);
VRNDSCALEPS __m512 _mm512_roundscale_round_ps( __m512 a, int imm, int sae);
VRNDSCALEPS __m512 _mm512_mask_roundscale_ps(__m512 s, __mmask16 k, __m512 a, int imm);
VRNDSCALEPS __m512 _mm512_mask_roundscale_round_ps(__m512 s, __mmask16 k, __m512 a, int imm, int sae);
VRNDSCALEPS __m512 _mm512_maskz_roundscale_ps( __mmask16 k, __m512 a, int imm);
VRNDSCALEPS __m512 _mm512_maskz_roundscale_round_ps( __mmask16 k, __m512 a, int imm, int sae);
VRNDSCALEPS __m256 _mm256_roundscale_ps( __m256 a, int imm);
VRNDSCALEPS __m256 _mm256_mask_roundscale_ps(__m256 s, __mmask8 k, __m256 a, int imm);
VRNDSCALEPS __m256 _mm256_maskz_roundscale_ps( __mmask8 k, __m256 a, int imm);
VRNDSCALEPS __m128 _mm_roundscale_ps( __m256 a, int imm);
VRNDSCALEPS __m128 _mm_mask_roundscale_ps(__m128 s, __mmask8 k, __m128 a, int imm);
VRNDSCALEPS __m128 _mm_maskz_roundscale_ps( __mmask8 k, __m128 a, int imm);
SIMD Floating-Point Exceptions
Invalid, Precision
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
Other Exceptions
See Exceptions Type E2.
Ref. # 319433-023 5-935
INSTRUCTION SET REFERENCE, A-Z
VRNDSCALESS—Round Scalar Float32 Value To Include A Given Number Of Fraction Bits
Instruction Operand Encoding
Description
Rounds the single-precision floating-point value in the low doubleword element of the second source operand (the
third operand) by the rounding mode specified in the immediate operand (see Figure 5-42) and places the result in
the corresponding element of the destination operand (the first operand) according to the writemask. The double-
word elements at bits 127:32 of the destination are copied from the first source operand (the second operand).
The destination and first source operands are XMM registers, the 2nd source operand can be an XMM register or
memory location. Bits MAX_VL-1:128 of the destination register are cleared.
The rounding process rounds the input to an integral value, plus number bits of fraction that are specified by
imm8[7:4] (to be included in the result) and returns the result as a single-precision floating-point value.
It should be noticed that no overflow is induced while executing this instruction (although the source is scaled by
the imm8[7:4] value).
The immediate operand also specifies control fields for the rounding operation, three bit fields are defined and
shown in the “Immediate Control Description” figure below. Bit 3 of the immediate byte controls the processor
behavior for a precision exception, bit 2 selects the source of rounding mode control. Bits 1:0 specify a non-sticky
rounding-mode value (Immediate control tables below lists the encoded values for rounding-mode field).
The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before
rounding.
The sign of the result of this instruction is preserved, including the sign of zero.
The formula of the operation for VRNDSCALESS is
ROUND(x) = 2-M*Round_to_INT(x*2M, round_ctrl),
round_ctrl = imm[3:0];
M=imm[7:4];
The operation of x*2M is computed as if the exponent range is unlimited (i.e. no overflow ever occurs).
VRNDSCALESS is a more general form of the VEX-encoded VROUNDSS instruction. In VROUNDSS, the formula of
the operation on each element is
ROUND(x) = Round_to_INT(x, round_ctrl),
round_ctrl = imm[3:0];
EVEX encoded version: The source operand is a XMM register or a 32-bit memory location. The destination operand
is a XMM register.
Handling of special case of input values are listed in Table 5-25.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F3A.W0 0A /r ib T1S V/V AVX512F Rounds scalar single-precision floating-point value in
xmm3/m32 to a number of fraction bits specified by the
imm8 field. Stores the result in xmm1 register under
writemask.
VRNDSCALESS xmm1 {k1}{z}, xmm2,
xmm3/m32{sae}, imm8
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-936 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
RoundToIntegerSP(SRC[31:0], imm8[7:0]) {
if (imm8[2] = 1)
rounding_direction MXCSR:RC ; get round control from MXCSR
else
rounding_direction imm8[1:0] ; get round control from imm8[1:0]
FI
M imm8[7:4] ; get the scaling factor
case (rounding_direction)
00: TMP[31:0] round_to_nearest_even_integer(2M*SRC[31:0])
01: TMP[31:0] round_to_equal_or_smaller_integer(2M*SRC[31:0])
10: TMP[31:0] round_to_equal_or_larger_integer(2M*SRC[31:0])
11: TMP[31:0] round_to_nearest_smallest_magnitude_integer(2M*SRC[31:0])
ESAC;
Dest[31:0] 2-M* TMP[31:0] ; scale down back to 2-M
if (imm8[3] = 0) Then ; check SPE
if (SRC[31:0] != Dest[31:0]) Then ; check precision lost
set_precision() ; set #PE
FI;
FI;
return(Dest[31:0])
}
VRNDSCALESS (EVEX encoded version)
IF k1[0] or *no writemask*
THEN DEST[31:0] RoundToIntegerSP(SRC2[31:0], Zero_upper_imm[7:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VRNDSCALESS __m128 _mm_roundscale_ss ( __m128 a, __m128 b, int imm);
VRNDSCALESS __m128 _mm_roundscale_round_ss ( __m128 a, __m128 b, int imm, int sae);
VRNDSCALESS __m128 _mm_mask_roundscale_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm);
VRNDSCALESS __m128 _mm_mask_roundscale_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm, int sae);
VRNDSCALESS __m128 _mm_maskz_roundscale_ss ( __mmask8 k, __m128 a, __m128 b, int imm);
VRNDSCALESS __m128 _mm_maskz_roundscale_round_ss ( __mmask8 k, __m128 a, __m128 b, int imm, int sae);
SIMD Floating-Point Exceptions
Invalid, Precision
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
Other Exceptions
See Exceptions Type E3.
Ref. # 319433-023 5-937
INSTRUCTION SET REFERENCE, A-Z
VRSQRT14PD—Compute Approximate Reciprocals of Square Roots of Packed Float64 Values
Instruction Operand Encoding
Description
This instruction performs a SIMD computation of the approximate reciprocals of the square roots of the eight
packed double-precision floating-point values in the source operand (the second operand) and stores the packed
double-precision floating-point results in the destination operand (the first operand) according to the writemask.
The maximum relative error for this approximation is less than 2-14.
EVEX.512 encoded version: The source operand can be a ZMM register, a 512-bit memory location, or a 512-bit
vector broadcasted from a 64-bit memory location. The destination operand is a ZMM register, conditionally
updated using writemask k1.
EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector
broadcasted from a 64-bit memory location. The destination operand is a YMM register, conditionally updated using
writemask k1.
EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector
broadcasted from a 64-bit memory location. The destination operand is a XMM register, conditionally updated using
writemask k1.
The VRSQRT14PD instruction is not affected by the rounding control bits in the MXCSR register. When a source
value is a 0.0, an with the sign of the source value is returned. When the source operand is an + then +ZERO
value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR. Otherwise it is treated
correctly and performs the approximation with the specified masked response. When a source value is a negative
value (other than 0.0) a floating-point QNaN_indefinite is returned. When a source value is an SNaN or QNaN, the
SNaN is converted to a QNaN or the source QNaN is returned.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W1 4E /r FV V/V AVX512VL
AVX512F
Computes the approximate reciprocal square roots of the
packed double-precision floating-point values in
xmm2/m128/m64bcst and stores the results in xmm1.
Under writemask.
VRSQRT14PD xmm1 {k1}{z},
xmm2/m128/m64bcst
EVEX.256.66.0F38.W1 4E /r FV V/V AVX512VL
AVX512F
Computes the approximate reciprocal square roots of the
packed double-precision floating-point values in
ymm2/m256/m64bcst and stores the results in ymm1.
Under writemask.
VRSQRT14PD ymm1 {k1}{z},
ymm2/m256/m64bcst
EVEX.512.66.0F38.W1 4E /r FV V/V AVX512F Computes the approximate reciprocal square roots of the
packed double-precision floating-point values in
zmm2/m512/m64bcst and stores the results in zmm1
under writemask.
VRSQRT14PD zmm1 {k1}{z},
zmm2/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-938 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VRSQRT14PD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] APPROXIMATE(1.0/ SQRT(SRC[63:0]));
ELSE DEST[i+63:i] APPROXIMATE(1.0/ SQRT(SRC[i+63:i]));
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VRSQRT14PD __m512d _mm512_rsqrt14_pd( __m512d a);
VRSQRT14PD __m512d _mm512_mask_rsqrt14_pd(__m512d s, __mmask8 k, __m512d a);
VRSQRT14PD __m512d _mm512_maskz_rsqrt14_pd( __mmask8 k, __m512d a);
VRSQRT14PD __m256d _mm256_rsqrt14_pd( __m256d a);
VRSQRT14PD __m256d _mm512_mask_rsqrt14_pd(__m256d s, __mmask8 k, __m256d a);
VRSQRT14PD __m256d _mm512_maskz_rsqrt14_pd( __mmask8 k, __m256d a);
VRSQRT14PD __m128d _mm_rsqrt14_pd( __m128d a);
VRSQRT14PD __m128d _mm_mask_rsqrt14_pd(__m128d s, __mmask8 k, __m128d a);
VRSQRT14PD __m128d _mm_maskz_rsqrt14_pd( __mmask8 k, __m128d a);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E4.
Table 5-26. VRSQRT14PD Special Cases
Input value Result value Comments
Any denormal Normal Cannot generate overflow
X = 2-2n 2n
X < 0 QNaN_Indefinite Including -INF
X = -0 -INF
X = +0 +INF
X = +INF +0
Ref. # 319433-023 5-939
INSTRUCTION SET REFERENCE, A-Z
VRSQRT14SD—Compute Approximate Reciprocal of Square Root of Scalar Float64 Value
Instruction Operand Encoding
Description
Computes the approximate reciprocal of the square roots of the scalar double-precision floating-point value in the
low quadword element of the source operand (the second operand) and stores the result in the low quadword
element of the destination operand (the first operand) according to the writemask. The maximum relative error for
this approximation is less than 2-14. The source operand can be an XMM register or a 32-bit memory location. The
destination operand is an XMM register.
Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits
(MAX_VL-1:128) of the destination register are zeroed.
The VRSQRT14SD instruction is not affected by the rounding control bits in the MXCSR register. When a source
value is a 0.0, an with the sign of the source value is returned. When the source operand is an + then +ZERO
value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR. Otherwise it is treated
correctly and performs the approximation with the specified masked response. When a source value is a negative
value (other than 0.0) a floating-point QNaN_indefinite is returned. When a source value is an SNaN or QNaN, the
SNaN is converted to a QNaN or the source QNaN is returned.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
Operation
VRSQRT14SD (EVEX version)
IF k1[0] or *no writemask*
THEN DEST[63:0] APPROXIMATE(1.0/ SQRT(SRC2[63:0]))
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W1 4F /r T1S V/V AVX512F Computes the approximate reciprocal square root of the
scalar double-precision floating-point value in xmm3/m64
and stores the result in the low quadword element of xmm1
using writemask k1. Bits[127:64] of xmm2 is copied to
xmm1[127:64].
VRSQRT14SD xmm1 {k1}{z},
xmm2, xmm3/m64
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-940 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VRSQRT14SD __m128d _mm_rsqrt14_sd( __m128d a, __m128d b);
VRSQRT14SD __m128d _mm_mask_rsqrt14_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VRSQRT14SD __m128d _mm_maskz_rsqrt14_sd( __mmask8d m, __m128d a, __m128d b);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E5.
Table 5-27. VRSQRT14SD Special Cases
Input value Result value Comments
Any denormal Normal Cannot generate overflow
X = 2-2n 2n
X < 0 QNaN_Indefinite Including -INF
X = -0 -INF
X = +0 +INF
X = +INF +0
Ref. # 319433-023 5-941
INSTRUCTION SET REFERENCE, A-Z
VRSQRT14PS—Compute Approximate Reciprocals of Square Roots of Packed Float32 Values
Instruction Operand Encoding
Description
This instruction performs a SIMD computation of the approximate reciprocals of the square roots of 16 packed
single-precision floating-point values in the source operand (the second operand) and stores the packed single-
precision floating-point results in the destination operand (the first operand) according to the writemask. The
maximum relative error for this approximation is less than 2-14.
EVEX.512 encoded version: The source operand can be a ZMM register, a 512-bit memory location or a 512-bit
vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register, conditionally
updated using writemask k1.
EVEX.256 encoded version: The source operand is a YMM register, a 256-bit memory location, or a 256-bit vector
broadcasted from a 32-bit memory location. The destination operand is a YMM register, conditionally updated using
writemask k1.
EVEX.128 encoded version: The source operand is a XMM register, a 128-bit memory location, or a 128-bit vector
broadcasted from a 32-bit memory location. The destination operand is a XMM register, conditionally updated using
writemask k1.
The VRSQRT14PS instruction is not affected by the rounding control bits in the MXCSR register. When a source
value is a 0.0, an with the sign of the source value is returned. When the source operand is an + then +ZERO
value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR. Otherwise it is treated
correctly and performs the approximation with the specified masked response. When a source value is a negative
value (other than 0.0) a floating-point QNaN_indefinite is returned. When a source value is an SNaN or QNaN, the
SNaN is converted to a QNaN or the source QNaN is returned.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 4E /r FV V/V AVX512VL
AVX512F
Computes the approximate reciprocal square roots of the
packed single-precision floating-point values in
xmm2/m128/m32bcst and stores the results in xmm1.
Under writemask.
VRSQRT14PS xmm1 {k1}{z},
xmm2/m128/m32bcst
EVEX.256.66.0F38.W0 4E /r FV V/V AVX512VL
AVX512F
Computes the approximate reciprocal square roots of the
packed single-precision floating-point values in
ymm2/m256/m32bcst and stores the results in ymm1.
Under writemask.
VRSQRT14PS ymm1 {k1}{z},
ymm2/m256/m32bcst
EVEX.512.66.0F38.W0 4E /r FV V/V AVX512F Computes the approximate reciprocal square roots of the
packed single-precision floating-point values in
zmm2/m512/m32bcst and stores the results in zmm1. Under
writemask.
VRSQRT14PS zmm1 {k1}{z},
zmm2/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
5-942 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VRSQRT14PS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] APPROXIMATE(1.0/ SQRT(SRC[31:0]));
ELSE DEST[i+31:i] APPROXIMATE(1.0/ SQRT(SRC[i+31:i]));
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
Intel C/C++ Compiler Intrinsic Equivalent
VRSQRT14PS __m512 _mm512_rsqrt14_ps( __m512 a);
VRSQRT14PS __m512 _mm512_mask_rsqrt14_ps(__m512 s, __mmask16 k, __m512 a);
VRSQRT14PS __m512 _mm512_maskz_rsqrt14_ps( __mmask16 k, __m512 a);
VRSQRT14PS __m256 _mm256_rsqrt14_ps( __m256 a);
VRSQRT14PS __m256 _mm256_mask_rsqrt14_ps(__m256 s, __mmask8 k, __m256 a);
VRSQRT14PS __m256 _mm256_maskz_rsqrt14_ps( __mmask8 k, __m256 a);
VRSQRT14PS __m128 _mm_rsqrt14_ps( __m128 a);
VRSQRT14PS __m128 _mm_mask_rsqrt14_ps(__m128 s, __mmask8 k, __m128 a);
VRSQRT14PS __m128 _mm_maskz_rsqrt14_ps( __mmask8 k, __m128 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type 4.
Table 5-28. VRSQRT14PS Special Cases
Input value Result value Comments
Any denormal Normal Cannot generate overflow
X = 2-2n 2n
X < 0 QNaN_Indefinite Including -INF
X = -0 -INF
X = +0 +INF
X = +INF +0
Ref. # 319433-023 5-943
INSTRUCTION SET REFERENCE, A-Z
VRSQRT14SS—Compute Approximate Reciprocal of Square Root of Scalar Float32 Value
Instruction Operand Encoding
Description
Computes of the approximate reciprocal of the square root of the scalar single-precision floating-point value in the
low doubleword element of the source operand (the second operand) and stores the result in the low doubleword
element of the destination operand (the first operand) according to the writemask. The maximum relative error for
this approximation is less than 2-14. The source operand can be an XMM register or a 32-bit memory location. The
destination operand is an XMM register.
Bits (127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits
(MAX_VL-1:128) of the destination register are zeroed.
The VRSQRT14SS instruction is not affected by the rounding control bits in the MXCSR register. When a source
value is a 0.0, an with the sign of the source value is returned. When the source operand is an , zero with the
sign of the source value is returned. A denormal source value is treated as zero only if DAZ bit is set in MXCSR.
Otherwise it is treated correctly and performs the approximation with the specified masked response. When a
source value is a negative value (other than 0.0) a floating-point indefinite is returned. When a source value is an
SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned.
MXCSR exception flags are not affected by this instruction and floating-point exceptions are not reported.
Operation
VRSQRT14SS (EVEX version)
IF k1[0] or *no writemask*
THEN DEST[31:0] APPROXIMATE(1.0/ SQRT(SRC2[31:0]))
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W0 4F /r T1S V/V AVX512F Computes the approximate reciprocal square root of the
scalar single-precision floating-point value in xmm3/m32
and stores the result in the low doubleword element of
xmm1 using writemask k1. Bits[127:32] of xmm2 is copied
to xmm1[127:32].
VRSQRT14SS xmm1 {k1}{z},
xmm2, xmm3/m32
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
5-944 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VRSQRT14SS __m128 _mm_rsqrt14_ss( __m128 a, __m128 b);
VRSQRT14SS __m128 _mm_mask_rsqrt14_ss(__m128 s, __mmask8 k, __m128 a, __m128 b);
VRSQRT14SS __m128 _mm_maskz_rsqrt14_ss( __mmask8 k, __m128 a, __m128 b);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E5.
Table 5-29. VRSQRT14SS Special Cases
Input value Result value Comments
Any denormal Normal Cannot generate overflow
X = 2-2n 2n
X < 0 QNaN_Indefinite Including -INF
X = -0 -INF
X = +0 +INF
X = +INF +0
Ref. # 319433-023 5-945
INSTRUCTION SET REFERENCE, A-Z
VSCALEFPD—Scale Packed Float64 Values With Float64 Values
Instruction Operand Encoding
Description
Performs a floating-point scale of the packed double-precision floating-point values in the first source operand by
multiplying it by 2 power of the double-precision floating-point values in second source operand.
The equation of this operation is given by:
zmm1 := zmm2*2floor(zmm3).
Floor(zmm3) means maximum integer value zmm3.
If the result cannot be represented in double precision, then the proper overflow response (for positive scaling
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a
512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The
destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
Handling of special-case input values are listed in Table 5-30 and Table 5-31.
Table 5-30. \VSCALEFPD/SD/PS/SS Special Cases
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F38.W1 2C /r FV V/V AVX512VL
AVX512F
Scale the packed double-precision floating-point values in
xmm2 using values from xmm3/m128/m64bcst. Under
writemask k1.
VSCALEFPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F38.W1 2C /r FV V/V AVX512VL
AVX512F
Scale the packed double-precision floating-point values in
ymm2 using values from ymm3/m256/m64bcst. Under
writemask k1.
VSCALEFPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F38.W1 2C /r FV V/V AVX512F Scale the packed double-precision floating-point values in
zmm2 using values from zmm3/m512/m64bcst. Under
writemask k1.
VSCALEFPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Src2 Set IE
±NaN +Inf -Inf 0/Denorm/Norm
Src1 ±QNaN QNaN(Src1) +INF +0 QNaN(Src1) IF either source is SNAN
±SNaN QNaN(Src1) QNaN(Src1) QNaN(Src1) QNaN(Src1) YES
±Inf QNaN(Src2) Src1 QNaN_Indefinite Src1 IF Src2 is SNAN or -INF
±0 QNaN(Src2) QNaN_Indefinite Src1 Src1 IF Src2 is SNAN or +INF
Denorm/Norm QNaN(Src2) ±INF (Src1 sign) ±0 (Src1 sign) Compute Result IF Src2 is SNAN
5-946 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
SCALE(SRC1, SRC2)
{
TMP_SRC2 SRC2
TMP_SRC1 SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 64 bits floating-point value */
DEST[63:0] TMP_SRC1[63:0] * POW(2, Floor(TMP_SRC2[63:0]))
}
VSCALEFPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC2 *is register*)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] SCALE(SRC1[i+63:i], SRC2[63:0]);
ELSE DEST[i+63:i] SCALE(SRC1[i+63:i], SRC2[i+63:i]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
Table 5-31. Additional VSCALEFPD/SD Special Cases
Special Case Returned value Faults
|result| < 2-1074 ±0 or ±Min-Denormal (Src1 sign) Underflow
|result| 21024 ±INF (Src1 sign) or ±Max-normal (Src1 sign) Overflow
Ref. # 319433-023 5-947
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VSCALEFPD __m512d _mm512_scalef_round_pd(__m512d a, __m512d b, int);
VSCALEFPD __m512d _mm512_mask_scalef_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VSCALEFPD __m512d _mm512_maskz_scalef_round_pd(__mmask8 k, __m512d a, __m512d b, int);
VSCALEFPD __m256d _mm256_scalef_round_pd(__m256d a, __m256d b, int);
VSCALEFPD __m256d _mm256_mask_scalef_round_pd(__m256d s, __mmask8 k, __m256d a, __m256d b, int);
VSCALEFPD __m256d _mm256_maskz_scalef_round_pd(__mmask8 k, __m256d a, __m256d b, int);
VSCALEFPD __m128d _mm_scalef_round_pd(__m128d a, __m128d b, int);
VSCALEFPD __m128d _mm_mask_scalef_round_pd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VSCALEFPD __m128d _mm_maskz_scalef_round_pd(__mmask8 k, __m128d a, __m128d b, int);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.
Other Exceptions
See Exceptions Type E2.
5-948 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VSCALEFSD—Scale Scalar Float64 Values With Float64 Values
Instruction Operand Encoding
Description
Performs a floating-point scale of the packed double-precision floating-point value in the first source operand by
multiplying it by 2 power of the double-precision floating-point value in second source operand.
The equation of this operation is given by:
xmm1 := xmm2*2floor(xmm3).
Floor(xmm3) means maximum integer value xmm3.
If the result cannot be represented in double precision, then the proper overflow response (for positive scaling
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
EVEX encoded version: The first source operand is an XMM register. The second source operand is an XMM register
or a memory location. The destination operand is an XMM register conditionally updated with writemask k1.
Handling of special-case input values are listed in Table 5-30 and Table 5-31.
Operation
SCALE(SRC1, SRC2)
{
; Check for denormal operands
TMP_SRC2 SRC2
TMP_SRC1 SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 64 bits floating-point value */
DEST[63:0] TMP_SRC1[63:0] * POW(2, Floor(TMP_SRC2[63:0]))
}
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W1 2D /r T1S V/V AVX512F Scale the scalar double-precision floating-point values in
xmm2 using the value from xmm3/m64. Under writemask
k1.
VSCALEFSD xmm1 {k1}{z}, xmm2,
xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-949
INSTRUCTION SET REFERENCE, A-Z
VSCALEFSD (EVEX encoded version)
IF (EVEX.b= 1) and SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] OR *no writemask*
THEN DEST[63:0] SCALE(SRC1[63:0], SRC2[63:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] 0
FI
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VSCALEFSD __m128d _mm_scalef_round_sd(__m128d a, __m128d b, int);
VSCALEFSD __m128d _mm_mask_scalef_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VSCALEFSD __m128d _mm_maskz_scalef_round_sd(__mmask8 k, __m128d a, __m128d b, int);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.
Other Exceptions
See Exceptions Type E3.
5-950 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VSCALEFPS—Scale Packed Float32 Values With Float32 Values
Instruction Operand Encoding
Description
Performs a floating-point scale of the packed single-precision floating-point values in the first source operand by
multiplying it by 2 power of the float32 values in second source operand.
The equation of this operation is given by:
zmm1 := zmm2*2floor(zmm3).
Floor(zmm3) means maximum integer value zmm3.
If the result cannot be represented in single precision, then the proper overflow response (for positive scaling
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM
register, a 512-bit memory location or a 512-bit vector broadcasted from a 32-bit memory location. The destination
operand is a ZMM register conditionally updated with writemask k1.
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1.
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1.
Handling of special-case input values are listed in Table 5-30 and Table 5-32.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.128.66.0F38.W0 2C /r FV V/V AVX512VL
AVX512F
Scale the packed single-precision floating-point values in
xmm2 using values from xmm3/m128/m32bcst. Under
writemask k1.
VSCALEFPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.66.0F38.W0 2C /r FV V/V AVX512VL
AVX512F
Scale the packed single-precision values in ymm2 using
floating point values from ymm3/m256/m32bcst. Under
writemask k1.
VSCALEFPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.66.0F38.W0 2C /r FV V/V AVX512F Scale the packed single-precision floating-point values in
zmm2 using floating-point values from
zmm3/m512/m32bcst. Under writemask k1.
VSCALEFPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Table 5-32. Additional VSCALEFPS/SS Special Cases
Special Case Returned value Faults
|result| < 2-149 ±0 or ±Min-Denormal (Src1 sign) Underflow
|result| 2128 ±INF (Src1 sign) or ±Max-normal (Src1 sign) Overflow
Ref. # 319433-023 5-951
INSTRUCTION SET REFERENCE, A-Z
Operation
SCALE(SRC1, SRC2)
{ ; Check for denormal operands
TMP_SRC2 SRC2
TMP_SRC1 SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 32 bits floating-point value */
DEST[31:0] TMP_SRC1[31:0] * POW(2, Floor(TMP_SRC2[31:0]))
}
VSCALEFPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND (SRC2 *is register*)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] SCALE(SRC1[i+31:i], SRC2[31:0]);
ELSE DEST[i+31:i] SCALE(SRC1[i+31:i], SRC2[i+31:i]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0;
Intel C/C++ Compiler Intrinsic Equivalent
VSCALEFPS __m512 _mm512_scalef_round_ps(__m512 a, __m512 b, int);
VSCALEFPS __m512 _mm512_mask_scalef_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VSCALEFPS __m512 _mm512_maskz_scalef_round_ps(__mmask16 k, __m512 a, __m512 b, int);
VSCALEFPS __m256 _mm256_scalef_round_ps(__m256 a, __m256 b, int);
VSCALEFPS __m256 _mm256_mask_scalef_round_ps(__m256 s, __mmask8 k, __m256 a, __m256 b, int);
VSCALEFPS __m256 _mm256_maskz_scalef_round_ps(__mmask8 k, __m256 a, __m256 b, int);
VSCALEFPS __m128 _mm_scalef_round_ps(__m128 a, __m128 b, int);
VSCALEFPS __m128 _mm_mask_scalef_round_ps(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VSCALEFPS __m128 _mm_maskz_scalef_round_ps(__mmask8 k, __m128 a, __m128 b, int);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.
Other Exceptions
See Exceptions Type E2.
5-952 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VSCALEFSS—Scale Scalar Float32 Value With Float32 Value
Instruction Operand Encoding
Description
Performs a floating-point scale of the scalar single-precision floating-point value in the first source operand by
multiplying it by 2 power of the float32 value in second source operand.
The equation of this operation is given by:
xmm1 := xmm2*2floor(xmm3).
Floor(xmm3) means maximum integer value xmm3.
If the result cannot be represented in single precision, then the proper overflow response (for positive scaling
operand), or the proper underflow response (for negative scaling operand) is issued. The overflow and underflow
responses are dependent on the rounding mode (for IEEE-compliant rounding), as well as on other settings in
MXCSR (exception mask bits, FTZ bit), and on the SAE bit.
EVEX encoded version: The first source operand is an XMM register. The second source operand is an XMM register
or a memory location. The destination operand is an XMM register conditionally updated with writemask k1.
Handling of special-case input values are listed in Table 5-30 and Table 5-32.
Operation
SCALE(SRC1, SRC2)
{
; Check for denormal operands
TMP_SRC2 SRC2
TMP_SRC1 SRC1
IF (SRC2 is denormal AND MXCSR.DAZ) THEN TMP_SRC2=0
IF (SRC1 is denormal AND MXCSR.DAZ) THEN TMP_SRC1=0
/* SRC2 is a 32 bits floating-point value */
DEST[31:0] TMP_SRC1[31:0] * POW(2, Floor(TMP_SRC2[31:0]))
}
VSCALEFSS (EVEX encoded version)
IF (EVEX.b= 1) and SRC2 *is a register*
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] OR *no writemask*
THEN DEST[31:0] SCALE(SRC1[31:0], SRC2[31:0])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W0 2D /r T1S V/V AVX512F Scale the scalar single-precision floating-point value in
xmm2 using floating-point value from xmm3/m32. Under
writemask k1.
VSCALEFSS xmm1 {k1}{z}, xmm2,
xmm3/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-953
INSTRUCTION SET REFERENCE, A-Z
ELSE ; zeroing-masking
DEST[31:0] 0
FI
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
Intel C/C++ Compiler Intrinsic Equivalent
VSCALEFSS __m128 _mm_scalef_round_ss(__m128 a, __m128 b, int);
VSCALEFSS __m128 _mm_mask_scalef_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VSCALEFSS __m128 _mm_maskz_scalef_round_ss(__mmask8 k, __m128 a, __m128 b, int);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal (for Src1).
Denormal is not reported for Src2.
Other Exceptions
See Exceptions Type E3.
5-954 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VSCATTERDPS/VSCATTERDPD/VSCATTERQPS/VSCATTERQPD—Scatter Packed Single, Packed
Double with Signed Dword and Qword Indices
Instruction Operand Encoding
Description
Stores up to 16 elements (or 8 elements) in doubleword/quadword vector zmm1 to the memory locations pointed
by base address BASE_ADDR and index vector VINDEX, with scale SCALE. The elements are specified via the VSIB
(i.e., the index register is a vector register, holding packed indices). Elements will only be stored if their corre-
Opcode/
Instruction
Op/E
n
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.128.66.0F38.W0 A2 /vsib T1S V/V AVX512VL
AVX512F
Using signed dword indices, scatter single-precision
floating-point values to memory using writemask k1.
VSCATTERDPS vm32x {k1}, xmm1
EVEX.256.66.0F38.W0 A2 /vsib T1S V/V AVX512VL
AVX512F
Using signed dword indices, scatter single-precision
floating-point values to memory using writemask k1.
VSCATTERDPS vm32y {k1}, ymm1
EVEX.512.66.0F38.W0 A2 /vsib T1S V/V AVX512F Using signed dword indices, scatter single-precision
floating-point values to memory using writemask k1.
VSCATTERDPS vm32z {k1}, zmm1
EVEX.128.66.0F38.W1 A2 /vsib T1S V/V AVX512VL
AVX512F
Using signed dword indices, scatter double-precision
floating-point values to memory using writemask k1.
VSCATTERDPD vm32x {k1}, xmm1
EVEX.256.66.0F38.W1 A2 /vsib T1S V/V AVX512VL
AVX512F
Using signed dword indices, scatter double-precision
floating-point values to memory using writemask k1.
VSCATTERDPD vm32x {k1}, ymm1
EVEX.512.66.0F38.W1 A2 /vsib T1S V/V AVX512F Using signed dword indices, scatter double-precision
floating-point values to memory using writemask k1.
VSCATTERDPD vm32y {k1}, zmm1
EVEX.128.66.0F38.W0 A3 /vsib T1S V/V AVX512VL
AVX512F
Using signed qword indices, scatter single-precision
floating-point values to memory using writemask k1.
VSCATTERQPS vm64x {k1}, xmm1
EVEX.256.66.0F38.W0 A3 /vsib T1S V/V AVX512VL
AVX512F
Using signed qword indices, scatter single-precision
floating-point values to memory using writemask k1.
VSCATTERQPS vm64y {k1}, xmm1
EVEX.512.66.0F38.W0 A3 /vsib T1S V/V AVX512F Using signed qword indices, scatter single-precision
floating-point values to memory using writemask k1.
VSCATTERQPS vm64z {k1}, ymm1
EVEX.128.66.0F38.W1 A3 /vsib T1S V/V AVX512VL
AVX512F
Using signed qword indices, scatter double-precision
floating-point values to memory using writemask k1.
VSCATTERQPD vm64x {k1}, xmm1
EVEX.256.66.0F38.W1 A3 /vsib T1S V/V AVX512VL
AVX512F
Using signed qword indices, scatter double-precision
floating-point values to memory using writemask k1.
VSCATTERQPD vm64y {k1}, ymm1
EVEX.512.66.0F38.W1 A3 /vsib T1S V/V AVX512F Using signed qword indices, scatter double-precision
floating-point values to memory using writemask k1.
VSCATTERQPD vm64z {k1}, zmm1
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index ModRM:reg (r) NA NA
Ref. # 319433-023 5-955
INSTRUCTION SET REFERENCE, A-Z
sponding mask bit is one. The entire mask register will be set to zero by this instruction unless it triggers an excep-
tion.
This instruction can be suspended by an exception if at least one element is already scattered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask register (k1) are partially updated. If any traps or interrupts are pending from already scat-
tered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction
breakpoint is not re-triggered when the instruction is continued.
Note that:
Only writes to overlapping vector indices are guaranteed to be ordered with respect to each other (from LSB to
MSB of the source registers). Note that this also include partially overlapping vector indices. Writes that are not
overlapped may happen in any order. Memory ordering with other instructions follows the Intel-64 memory
ordering model. Note that this does not account for non-overlapping indices that map into the same physical
address locations.
If two or more destination indices completely overlap, the “earlier” write(s) may be skipped.
Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination zmm will be completed (and non-faulting). Individual elements
closer to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered
in the conventional order.
Elements may be scattered in any order, but faults must be delivered in a right-to left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.
This instruction does not perform AC checks, and so will never deliver an AC fault.
Not valid with 16-bit effective addresses. Will deliver a #UD fault.
If this instruction overwrites itself and then takes a fault, only a subset of elements may be completed before
the fault is delivered (as described above). If the fault handler completes and attempts to re-execute this
instruction, the new instruction will be executed, and the scatter will not complete.
Note that the presence of VSIB byte is enforced in this instruction. Hence, the instruction will #UD fault if
ModRM.rm is different than 100b.
This instruction has special disp8*N and alignment rules. N is considered to be the size of a single vector element.
The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-bit
mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address bits
are ignored.
The instruction will #UD fault if the k0 mask register is specified
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a ZMM register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
5-956 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VSCATTERDPS (EVEX encoded versions)
(KL, VL)= (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN MEM[BASE_ADDR +SignExtend(VINDEX[i+31:i]) * SCALE + DISP]
SRC[i+31:i]
k1[j] 0
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
VSCATTERDPD (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j] OR *no writemask*
THEN MEM[BASE_ADDR +SignExtend(VINDEX[k+31:k]) * SCALE + DISP]
SRC[i+63:i]
k1[j] 0
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
VSCATTERQPS (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 32
k j * 64
IF k1[j] OR *no writemask*
THEN MEM[BASE_ADDR + (VINDEX[k+63:k]) * SCALE + DISP]
SRC[i+31:i]
k1[j] 0
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
VSCATTERQPD (EVEX encoded versions)
(KL, VL)= (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN MEM[BASE_ADDR + (VINDEX[i+63:i]) * SCALE + DISP]
SRC[i+63:i]
k1[j] 0
FI;
ENDFOR
k1[MAX_KL-1:KL] 0
Ref. # 319433-023 5-957
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VSCATTERDPD void _mm512_i32scatter_pd(void * base, __m256i vdx, __m512d a, int scale);
VSCATTERDPD void _mm512_mask_i32scatter_pd(void * base, __mmask8 k, __m256i vdx, __m512d a, int scale);
VSCATTERDPS void _mm512_i32scatter_ps(void * base, __m512i vdx, __m512 a, int scale);
VSCATTERDPS void _mm512_mask_i32scatter_ps(void * base, __mmask16 k, __m512i vdx, __m512 a, int scale);
VSCATTERQPD void _mm512_i64scatter_pd(void * base, __m512i vdx, __m512d a, int scale);
VSCATTERQPD void _mm512_mask_i64scatter_pd(void * base, __mmask8 k, __m512i vdx, __m512d a, int scale);
VSCATTERQPS void _mm512_i64scatter_ps(void * base, __m512i vdx, __m256 a, int scale);
VSCATTERQPS void _mm512_mask_i64scatter_ps(void * base, __mmask8 k, __m512i vdx, __m256 a, int scale);
VSCATTERDPD void _mm256_i32scatter_pd(void * base, __m128i vdx, __m256d a, int scale);
VSCATTERDPD void _mm256_mask_i32scatter_pd(void * base, __mmask8 k, __m128i vdx, __m256d a, int scale);
VSCATTERDPS void _mm256_i32scatter_ps(void * base, __m256i vdx, __m256 a, int scale);
VSCATTERDPS void _mm256_mask_i32scatter_ps(void * base, __mmask8 k, __m256i vdx, __m256 a, int scale);
VSCATTERQPD void _mm256_i64scatter_pd(void * base, __m256i vdx, __m256d a, int scale);
VSCATTERQPD void _mm256_mask_i64scatter_pd(void * base, __mmask8 k, __m256i vdx, __m256d a, int scale);
VSCATTERQPS void _mm256_i64scatter_ps(void * base, __m256i vdx, __m128 a, int scale);
VSCATTERQPS void _mm256_mask_i64scatter_ps(void * base, __mmask8 k, __m256i vdx, __m128 a, int scale);
VSCATTERDPD void _mm_i32scatter_pd(void * base, __m128i vdx, __m128d a, int scale);
VSCATTERDPD void _mm_mask_i32scatter_pd(void * base, __mmask8 k, __m128i vdx, __m128d a, int scale);
VSCATTERDPS void _mm_i32scatter_ps(void * base, __m128i vdx, __m128 a, int scale);
VSCATTERDPS void _mm_mask_i32scatter_ps(void * base, __mmask8 k, __m128i vdx, __m128 a, int scale);
VSCATTERQPD void _mm_i64scatter_pd(void * base, __m128i vdx, __m128d a, int scale);
VSCATTERQPD void _mm_mask_i64scatter_pd(void * base, __mmask8 k, __m128i vdx, __m128d a, int scale);
VSCATTERQPS void _mm_i64scatter_ps(void * base, __m128i vdx, __m128 a, int scale);
VSCATTERQPS void _mm_mask_i64scatter_ps(void * base, __mmask8 k, __m128i vdx, __m128 a, int scale);
SIMD Floating-Point Exceptions
Invalid, Overflow, Underflow, Precision, Denormal
Other Exceptions
See Exceptions Type E12.
5-958 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
SUBPD—Subtract Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD subtract of the two, four or eight packed double-precision floating-point values of the second
Source operand from the first Source operand, and stores the packed double-precision floating-point results in the
destination operand.
VEX.128 and EVEX.128 encoded versions: The second source operand is an XMM register or an 128-bit memory
location. The first source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corre-
sponding destination register are zeroed.
VEX.256 and EVEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory
location. The first source operand and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corre-
sponding destination register are zeroed.
EVEX.512 encoded version: The second source operand is a ZMM register, a 512-bit memory location or a 512-bit
vector broadcasted from a 64-bit memory location. The first source operand and destination operands are ZMM
registers. The destination operand is conditionally updated according to the writemask.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAX_VL-1:128) of the corresponding
register destination are unmodified.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 5C /r RM V/V SSE2 Subtract packed double-precision floating-point values
in xmm2/mem from xmm1 and store result in xmm1.
SUBPD xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 5C /r RVM V/V AVX Subtract packed double-precision floating-point values
in xmm3/mem from xmm2 and store result in xmm1.
VSUBPD xmm1,xmm2, xmm3/m128
VEX.NDS.256.66.0F.WIG 5C /r RVM V/V AVX Subtract packed double-precision floating-point values
in ymm3/mem from ymm2 and store result in ymm1.
VSUBPD ymm1, ymm2, ymm3/m256
EVEX.NDS.128.66.0F.W1 5C /r FV V/V AVX512VL
AVX512F
Subtract packed double-precision floating-point values
from xmm3/m128/m64bcst to xmm2 and store result
in xmm1 with writemask k1.
VSUBPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 5C /r FV V/V AVX512VL
AVX512F
Subtract packed double-precision floating-point values
from ymm3/m256/m64bcst to ymm2 and store result
in ymm1 with writemask k1.
VSUBPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 5C /r FV V/V AVX512F Subtract packed double-precision floating-point values
from zmm3/m512/m64bcst to zmm2 and store result in
zmm1 with writemask k1.
VSUBPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-959
INSTRUCTION SET REFERENCE, A-Z
Operation
VSUBPD (EVEX encoded versions) when src2 operand is a vector register
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] SRC1[i+63:i] - SRC2[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VSUBPD (EVEX encoded versions) when src2 operand is a memory source
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1)
THEN DEST[i+63:i] SRC1[i+63:i] - SRC2[63:0];
ELSE EST[i+63:i] SRC1[i+63:i] - SRC2[i+63:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
DEST[63:0] 0
FI;
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VSUBPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] - SRC2[63:0]
DEST[127:64] SRC1[127:64] - SRC2[127:64]
DEST[191:128] SRC1[191:128] - SRC2[191:128]
DEST[255:192] SRC1[255:192] - SRC2[255:192]
DEST[MAX_VL-1:256] 0
5-960 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VSUBPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] - SRC2[63:0]
DEST[127:64] SRC1[127:64] - SRC2[127:64]
DEST[MAX_VL-1:128] 0
SUBPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] - SRC[63:0]
DEST[127:64] DEST[127:64] - SRC[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VSUBPD __m512d _mm512_sub_pd (__m512d a, __m512d b);
VSUBPD __m512d _mm512_mask_sub_pd (__m512d s, __mmask8 k, __m512d a, __m512d b);
VSUBPD __m512d _mm512_maskz_sub_pd (__mmask8 k, __m512d a, __m512d b);
VSUBPD __m512d _mm512_sub_round_pd (__m512d a, __m512d b, int);
VSUBPD __m512d _mm512_mask_sub_round_pd (__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VSUBPD __m512d _mm512_maskz_sub_round_pd (__mmask8 k, __m512d a, __m512d b, int);
VSUBPD __m256d _mm256_sub_pd (__m256d a, __m256d b);
VSUBPD __m256d _mm256_mask_sub_pd (__m256d s, __mmask8 k, __m256d a, __m256d b);
VSUBPD __m256d _mm256_maskz_sub_pd (__mmask8 k, __m256d a, __m256d b);
SUBPD __m128d _mm_sub_pd (__m128d a, __m128d b);
VSUBPD __m128d _mm_mask_sub_pd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VSUBPD __m128d _mm_maskz_sub_pd (__mmask8 k, __m128d a, __m128d b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
Ref. # 319433-023 5-961
INSTRUCTION SET REFERENCE, A-Z
SUBPS—Subtract Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a SIMD subtract of the packed single-precision floating-point values in the second Source operand from
the First Source operand, and stores the packed single-precision floating-point results in the destination operand.
VEX.128 and EVEX.128 encoded versions: The second source operand is an XMM register or an 128-bit memory
location. The first source operand and destination operands are XMM registers. Bits (MAX_VL-1:128) of the corre-
sponding destination register are zeroed.
VEX.256 and EVEX.256 encoded versions: The second source operand is an YMM register or an 256-bit memory
location. The first source operand and destination operands are YMM registers. Bits (MAX_VL-1:256) of the corre-
sponding destination register are zeroed.
EVEX.512 encoded version: The second source operand is a ZMM register, a 512-bit memory location or a 512-bit
vector broadcasted from a 32-bit memory location. The first source operand and destination operands are ZMM
registers. The destination operand is conditionally updated according to the writemask.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper Bits (MAX_VL-1:128) of the corresponding
register destination are unmodified.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 5C /r RM V/V SSE Subtract packed single-precision floating-point values
in xmm2/mem from xmm1 and store result in xmm1.
SUBPS xmm1, xmm2/m128
VEX.NDS.128.0F.WIG 5C /r RVM V/V AVX Subtract packed single-precision floating-point values
in xmm3/mem from xmm2 and stores result in xmm1.
VSUBPS xmm1,xmm2, xmm3/m128
VEX.NDS.256.0F.WIG 5C /r RVM V/V AVX Subtract packed single-precision floating-point values
in ymm3/mem from ymm2 and stores result in ymm1.
VSUBPS ymm1, ymm2, ymm3/m256
EVEX.NDS.128.0F.W0 5C /r FV V/V AVX512VL
AVX512F
Subtract packed single-precision floating-point values
from xmm3/m128/m32bcst to xmm2 and stores
result in xmm1 with writemask k1.
VSUBPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.0F.W0 5C /r FV V/V AVX512VL
AVX512F
Subtract packed single-precision floating-point values
from ymm3/m256/m32bcst to ymm2 and stores
result in ymm1 with writemask k1.
VSUBPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.0F.W0 5C /r FV V/V AVX512F Subtract packed single-precision floating-point values
in zmm3/m512/m32bcst from zmm2 and stores result
in zmm1 with writemask k1.
VSUBPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
5-962 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VSUBPS (EVEX encoded versions) when src2 operand is a vector register
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] SRC1[i+31:i] - SRC2[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VSUBPS (EVEX encoded versions) when src2 operand is a memory source
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1)
THEN DEST[i+31:i] SRC1[i+31:i] - SRC2[31:0];
ELSE DEST[i+31:i] SRC1[i+31:i] - SRC2[i+31:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
DEST[31:0] 0
FI;
FI;
ENDFOR;
DEST[MAX_VL-1:VL] 0
VSUBPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[63:32] SRC1[63:32] - SRC2[63:32]
DEST[95:64] SRC1[95:64] - SRC2[95:64]
DEST[127:96] SRC1[127:96] - SRC2[127:96]
DEST[159:128] SRC1[159:128] - SRC2[159:128]
DEST[191:160] SRC1[191:160] - SRC2[191:160]
DEST[223:192] SRC1[223:192] - SRC2[223:192]
DEST[255:224] SRC1[255:224] - SRC2[255:224].
DEST[MAX_VL-1:256] 0
Ref. # 319433-023 5-963
INSTRUCTION SET REFERENCE, A-Z
VSUBPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[63:32] SRC1[63:32] - SRC2[63:32]
DEST[95:64] SRC1[95:64] - SRC2[95:64]
DEST[127:96] SRC1[127:96] - SRC2[127:96]
DEST[MAX_VL-1:128] 0
SUBPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[63:32] SRC1[63:32] - SRC2[63:32]
DEST[95:64] SRC1[95:64] - SRC2[95:64]
DEST[127:96] SRC1[127:96] - SRC2[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VSUBPS __m512 _mm512_sub_ps (__m512 a, __m512 b);
VSUBPS __m512 _mm512_mask_sub_ps (__m512 s, __mmask16 k, __m512 a, __m512 b);
VSUBPS __m512 _mm512_maskz_sub_ps (__mmask16 k, __m512 a, __m512 b);
VSUBPS __m512 _mm512_sub_round_ps (__m512 a, __m512 b, int);
VSUBPS __m512 _mm512_mask_sub_round_ps (__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VSUBPS __m512 _mm512_maskz_sub_round_ps (__mmask16 k, __m512 a, __m512 b, int);
VSUBPS __m256 _mm256_sub_ps (__m256 a, __m256 b);
VSUBPS __m256 _mm256_mask_sub_ps (__m256 s, __mmask8 k, __m256 a, __m256 b);
VSUBPS __m256 _mm256_maskz_sub_ps (__mmask16 k, __m256 a, __m256 b);
SUBPS __m128 _mm_sub_ps (__m128 a, __m128 b);
VSUBPS __m128 _mm_mask_sub_ps (__m128 s, __mmask8 k, __m128 a, __m128 b);
VSUBPS __m128 _mm_maskz_sub_ps (__mmask16 k, __m128 a, __m128 b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 2.
EVEX-encoded instructions, see Exceptions Type E2.
5-964 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
SUBSD—Subtract Scalar Double-Precision Floating-Point Value
Instruction Operand Encoding
Description
Subtract the low double-precision floating-point value in the second source operand from the first source operand
and stores the double-precision floating-point result in the low quadword of the destination operand.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination
operands are XMM registers.
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAX_VL-1:64) of the
corresponding destination register remain unchanged.
VEX.128 and EVEX encoded versions: Bits (127:64) of the XMM register destination are copied from corresponding
bits in the first source operand. Bits (MAX_VL-1:128) of the destination register are zeroed.
EVEX encoded version: The low quadword element of the destination operand is updated according to the
writemask.
Software should ensure VSUBSD is encoded with VEX.L=0. Encoding VSUBSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F2 0F 5C /r RM V/V SSE2 Subtract the low double-precision floating-point value in
xmm2/m64 from xmm1 and store the result in xmm1.
SUBSD xmm1, xmm2/m64
VEX.NDS.128.F2.0F.WIG 5C /r RVM V/V AVX Subtract the low double-precision floating-point value in
xmm3/m64 from xmm2 and store the result in xmm1.
VSUBSD xmm1,xmm2, xmm3/m64
EVEX.NDS.LIG.F2.0F.W1 5C /r T1S V/V AVX512F Subtract the low double-precision floating-point value in
xmm3/m64 from xmm2 and store the result in xmm1
under writemask k1.
VSUBSD xmm1 {k1}{z}, xmm2,
xmm3/m64{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-965
INSTRUCTION SET REFERENCE, A-Z
Operation
VSUBSD (EVEX encoded version)
IF (SRC2 *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[63:0] SRC1[63:0] - SRC2[63:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[63:0] 0
FI;
FI;
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
VSUBSD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] - SRC2[63:0]
DEST[127:64] SRC1[127:64]
DEST[MAX_VL-1:128] 0
SUBSD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] - SRC[63:0]
DEST[MAX_VL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VSUBSD __m128d _mm_mask_sub_sd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VSUBSD __m128d _mm_maskz_sub_sd (__mmask8 k, __m128d a, __m128d b);
VSUBSD __m128d _mm_sub_round_sd (__m128d a, __m128d b, int);
VSUBSD __m128d _mm_mask_sub_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VSUBSD __m128d _mm_maskz_sub_round_sd (__mmask8 k, __m128d a, __m128d b, int);
SUBSD __m128d _mm_sub_sd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
5-966 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
SUBSS—Subtract Scalar Single-Precision Floating-Point Value
Instruction Operand Encoding
Description
Subtract the low single-precision floating-point value from the second source operand and the first source operand
and store the double-precision floating-point result in the low doubleword of the destination operand.
The second source operand can be an XMM register or a 32-bit memory location. The first source and destination
operands are XMM registers.
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (MAX_VL-1:32) of the
corresponding destination register remain unchanged.
VEX.128 and EVEX encoded versions: Bits (127:32) of the XMM register destination are copied from corresponding
bits in the first source operand. Bits (MAX_VL-1:128) of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the
writemask.
Software should ensure VSUBSS is encoded with VEX.L=0. Encoding VSUBSD with VEX.L=1 may encounter unpre-
dictable behavior across different processor generations.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
F3 0F 5C /r RM V/V SSE Subtract the low single-precision floating-point value in
xmm2/m32 from xmm1 and store the result in xmm1.
SUBSS xmm1, xmm2/m32
VEX.NDS.128.F3.0F.WIG 5C /r RVM V/V AVX Subtract the low single-precision floating-point value in
xmm3/m32 from xmm2 and store the result in xmm1.
VSUBSS xmm1,xmm2, xmm3/m32
EVEX.NDS.LIG.F3.0F.W0 5C /r T1S V/V AVX512F Subtract the low single-precision floating-point value in
xmm3/m32 from xmm2 and store the result in xmm1
under writemask k1.
VSUBSS xmm1 {k1}{z}, xmm2,
xmm3/m32{er}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-967
INSTRUCTION SET REFERENCE, A-Z
Operation
VSUBSS (EVEX encoded version)
IF (SRC2 *is register*) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
THEN DEST[31:0] SRC1[31:0] - SRC2[31:0]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31:0] remains unchanged*
ELSE ; zeroing-masking
THEN DEST[31:0] 0
FI;
FI;
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
VSUBSS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] - SRC2[31:0]
DEST[127:32] SRC1[127:32]
DEST[MAX_VL-1:128] 0
SUBSS (128-bit Legacy SSE version)
DEST[31:0] DEST[31:0] - SRC[31:0]
DEST[MAX_VL-1:32] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VSUBSS __m128 _mm_mask_sub_ss (__m128 s, __mmask8 k, __m128 a, __m128 b);
VSUBSS __m128 _mm_maskz_sub_ss (__mmask8 k, __m128 a, __m128 b);
VSUBSS __m128 _mm_sub_round_ss (__m128 a, __m128 b, int);
VSUBSS __m128 _mm_mask_sub_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int);
VSUBSS __m128 _mm_maskz_sub_round_ss (__mmask8 k, __m128 a, __m128 b, int);
SUBSS __m128 _mm_sub_ss (__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.
5-968 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS
Instruction Operand Encoding
Description
Performs an unordered compare of the double-precision floating-point values in the low quadwords of operand 1
(first operand) and operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according
to the result (unordered, greater than, less than, or equal). The OF, SF and AF flags in the EFLAGS register are set
to 0. The unordered result is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory
location.
The UCOMISD instruction differs from the COMISD instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) only when a source operand is an SNaN. The COMISD instruction signals an invalid numeric
exception only if a source operand is either an SNaN or a QNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCOMISD is encoded with VEX.L=0. Encoding VCOMISD with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Operation
(V)UCOMISD (all versions)
RESULT UnorderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF
UNORDERED: ZF,PF,CF 111;
GREATER_THAN: ZF,PF,CF 000;
LESS_THAN: ZF,PF,CF 001;
EQUAL: ZF,PF,CF 100;
ESAC;
OF, AF, SF 0; }
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 2E /r RM V/V SSE2 Compare low double-precision floating-point values in
xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.
UCOMISD xmm1, xmm2/m64
VEX.128.66.0F.WIG 2E /r RM V/V AVX Compare low double-precision floating-point values in
xmm1 and xmm2/mem64 and set the EFLAGS flags
accordingly.
VUCOMISD xmm1, xmm2/m64
EVEX.LIG.66.0F.W1 2E /r T1S V/V AVX512F Compare low double-precision floating-point values in
xmm1 and xmm2/m64 and set the EFLAGS flags
accordingly.
VUCOMISD xmm1, xmm2/m64{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r) ModRM:r/m (r) NA NA
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-969
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VUCOMISD int _mm_comi_round_sd(__m128d a, __m128d b, int imm, int sae);
UCOMISD int _mm_ucomieq_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomilt_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomile_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomigt_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomige_sd(__m128d a, __m128d b)
UCOMISD int _mm_ucomineq_sd(__m128d a, __m128d b)
SIMD Floating-Point Exceptions
Invalid (if SNaN operands), Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Exceptions Type E3NF.
5-970 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS
Instruction Operand Encoding
Description
Compares the single-precision floating-point values in the low doublewords of operand 1 (first operand) and
operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unor-
dered, greater than, less than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).
Operand 1 is an XMM register; operand 2 can be an XMM register or a 32 bit memory location.
The UCOMISS instruction differs from the COMISS instruction in that it signals a SIMD floating-point invalid opera-
tion exception (#I) only if a source operand is an SNaN. The COMISS instruction signals an invalid numeric excep-
tion when a source operand is either a QNaN or SNaN.
The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
Software should ensure VCOMISS is encoded with VEX.L=0. Encoding VCOMISS with VEX.L=1 may encounter
unpredictable behavior across different processor generations.
Operation
(V)UCOMISS (all versions)
RESULT UnorderedCompare(DEST[31:0] <> SRC[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF
UNORDERED: ZF,PF,CF 111;
GREATER_THAN: ZF,PF,CF 000;
LESS_THAN: ZF,PF,CF 001;
EQUAL: ZF,PF,CF 100;
ESAC;
OF, AF, SF 0; }
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 2E /r RM V/V SSE Compare low single-precision floating-point values in
xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.
UCOMISS xmm1, xmm2/m32
VEX.128.0F.WIG 2E /r RM V/V AVX Compare low single-precision floating-point values in
xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.
VUCOMISS xmm1, xmm2/m32
EVEX.LIG.0F.W0 2E /r T1S V/V AVX512F Compare low single-precision floating-point values in
xmm1 and xmm2/mem32 and set the EFLAGS flags
accordingly.
VUCOMISS xmm1, xmm2/m32{sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r) ModRM:r/m (r) NA NA
T1S ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-023 5-971
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VUCOMISS int _mm_comi_round_ss(__m128 a, __m128 b, int imm, int sae);
UCOMISS int _mm_ucomieq_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomilt_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomile_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomigt_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomige_ss(__m128 a, __m128 b);
UCOMISS int _mm_ucomineq_ss(__m128 a, __m128 b);
SIMD Floating-Point Exceptions
Invalid (if SNaN Operands), Denormal
Other Exceptions
VEX-encoded instructions, see Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
EVEX-encoded instructions, see Exceptions Type E3NF.
5-972 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs an interleaved unpack of the high double-precision floating-point values from the first source operand and
the second source operand. See Figure 4-15 in the Intel® 64 and IA-32 Architectures Software Developers
Manual, Volume 2B.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch
only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM
register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a ZMM register, conditionally updated using writemask k1.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 15 /r RM V/V SSE2 Unpacks and Interleaves double-precision floating-point
values from high quadwords of xmm1 and
xmm2/m128.
UNPCKHPD xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 15 /r RVM V/V AVX Unpacks and Interleaves double-precision floating-point
values from high quadwords of xmm2 and
xmm3/m128.
VUNPCKHPD xmm1,xmm2,
xmm3/m128
VEX.NDS.256.66.0F.WIG 15 /r RVM V/V AVX Unpacks and Interleaves double-precision floating-point
values from high quadwords of ymm2 and
ymm3/m256.
VUNPCKHPD ymm1,ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.W1 15 /r FV V/V AVX512VL
AVX512F
Unpacks and Interleaves double precision floating-point
values from high quadwords of xmm2 and
xmm3/m128/m64bcst subject to writemask k1.
VUNPCKHPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 15 /r FV V/V AVX512VL
AVX512F
Unpacks and Interleaves double precision floating-point
values from high quadwords of ymm2 and
ymm3/m256/m64bcst subject to writemask k1.
VUNPCKHPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 15 /r FV V/V AVX512F Unpacks and Interleaves double-precision floating-point
values from high quadwords of zmm2 and
zmm3/m512/m64bcst subject to writemask k1.
VUNPCKHPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-973
INSTRUCTION SET REFERENCE, A-Z
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1.
EVEX.128 encoded version: The first source operand is a XMM register. The second source operand is a XMM
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1.
Operation
VUNPCKHPD (EVEX encoded versions when SRC2 is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL >= 128
TMP_DEST[63:0] SRC1[127:64]
TMP_DEST[127:64] SRC2[127:64]
FI;
IF VL >= 256
TMP_DEST[191:128] SRC1[255:192]
TMP_DEST[255:192] SRC2[255:192]
FI;
IF VL >= 512
TMP_DEST[319:256] SRC1[383:320]
TMP_DEST[383:320] SRC2[383:320]
TMP_DEST[447:384] SRC1[511:448]
TMP_DEST[511:448] SRC2[511:448]
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-974 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VUNPCKHPD (EVEX encoded version when SRC2 is memory)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1)
THEN TMP_SRC2[i+63:i] SRC2[63:0]
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i]
FI;
ENDFOR;
IF VL >= 128
TMP_DEST[63:0] SRC1[127:64]
TMP_DEST[127:64] TMP_SRC2[127:64]
FI;
IF VL >= 256
TMP_DEST[191:128] SRC1[255:192]
TMP_DEST[255:192] TMP_SRC2[255:192]
FI;
IF VL >= 512
TMP_DEST[319:256] SRC1[383:320]
TMP_DEST[383:320] TMP_SRC2[383:320]
TMP_DEST[447:384] SRC1[511:448]
TMP_DEST[511:448] TMP_SRC2[511:448]
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VUNPCKHPD (VEX.256 encoded version)
DEST[63:0] SRC1[127:64]
DEST[127:64] SRC2[127:64]
DEST[191:128]SRC1[255:192]
DEST[255:192]SRC2[255:192]
DEST[MAX_VL-1:256] 0
VUNPCKHPD (VEX.128 encoded version)
DEST[63:0] SRC1[127:64]
DEST[127:64] SRC2[127:64]
DEST[MAX_VL-1:128] 0
UNPCKHPD (128-bit Legacy SSE version)
DEST[63:0] SRC1[127:64]
DEST[127:64] SRC2[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Ref. # 319433-023 5-975
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VUNPCKHPD __m512d _mm512_unpackhi_pd( __m512d a, __m512d b);
VUNPCKHPD __m512d _mm512_mask_unpackhi_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VUNPCKHPD __m512d _mm512_maskz_unpackhi_pd(__mmask8 k, __m512d a, __m512d b);
VUNPCKHPD __m256d _mm256_unpackhi_pd(__m256d a, __m256d b)
VUNPCKHPD __m256d _mm256_mask_unpackhi_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VUNPCKHPD __m256d _mm256_maskz_unpackhi_pd(__mmask8 k, __m256d a, __m256d b);
UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
VUNPCKHPD __m128d _mm_mask_unpackhi_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VUNPCKHPD __m128d _mm_maskz_unpackhi_pd(__mmask8 k, __m128d a, __m128d b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instructions, see Exceptions Type 4.
EVEX-encoded instructions, see Exceptions Type E4NF.
5-976 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs an interleaved unpack of the high single-precision floating-point values from the first source operand and
the second source operand.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch
only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The second source operand is an YMM register or an 256-bit memory location. The first
source operand and destination operands are YMM registers.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 15 /r RM V/V SSE Unpacks and Interleaves single-precision floating-point
values from high quadwords of xmm1 and xmm2/m128.
UNPCKHPS xmm1, xmm2/m128
VEX.NDS.128.0F.WIG 15 /r RVM V/V AVX Unpacks and Interleaves single-precision floating-point
values from high quadwords of xmm2 and xmm3/m128.
VUNPCKHPS xmm1, xmm2,
xmm3/m128
VEX.NDS.256.0F.WIG 15 /r RVM V/V AVX Unpacks and Interleaves single-precision floating-point
values from high quadwords of ymm2 and ymm3/m256.
VUNPCKHPS ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.0F.W0 15 /r FV V/V AVX512VL
AVX512F
Unpacks and Interleaves single-precision floating-point
values from high quadwords of xmm2 and
xmm3/m128/m32bcst and write result to xmm1 subject to
writemask k1.
VUNPCKHPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.0F.W0 15 /r FV V/V AVX512VL
AVX512F
Unpacks and Interleaves single-precision floating-point
values from high quadwords of ymm2 and
ymm3/m256/m32bcst and write result to ymm1 subject to
writemask k1.
VUNPCKHPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.0F.W0 15 /r FV V/V AVX512F Unpacks and Interleaves single-precision floating-point
values from high quadwords of zmm2 and
zmm3/m512/m32bcst and write result to zmm1 subject to
writemask k1.
VUNPCKHPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-977
INSTRUCTION SET REFERENCE, A-Z
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM
register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a ZMM register, conditionally updated using writemask k1.
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1.
EVEX.128 encoded version: The first source operand is a XMM register. The second source operand is a XMM
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1.
Operation
VUNPCKHPS (EVEX encoded version when SRC2 is a register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL >= 128
TMP_DEST[31:0] SRC1[95:64]
TMP_DEST[63:32] SRC2[95:64]
TMP_DEST[95:64] SRC1[127:96]
TMP_DEST[127:96] SRC2[127:96]
FI;
IF VL >= 256
TMP_DEST[159:128] SRC1[223:192]
TMP_DEST[191:160] SRC2[223:192]
TMP_DEST[223:192] SRC1[255:224]
TMP_DEST[255:224] SRC2[255:224]
FI;
IF VL >= 512
TMP_DEST[287:256] SRC1[351:320]
TMP_DEST[319:288] SRC2[351:320]
TMP_DEST[351:320] SRC1[383:352]
TMP_DEST[383:352] SRC2[383:352]
TMP_DEST[415:384] SRC1[479:448]
TMP_DEST[447:416] SRC2[479:448]
TMP_DEST[479:448] SRC1[511:480]
TMP_DEST[511:480] SRC2[511:480]
FI;
Figure 5-43. VUNPCKHPS Operation
DEST
SRC1
SRC2
X0X1X2X3
Y0Y1Y2Y3
X2Y2X3Y3X6Y6X7Y7
X4X5X6X7
Y4Y5Y6Y7
5-978 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VUNPCKHPS (EVEX encoded version when SRC2 is memory)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF (EVEX.b = 1)
THEN TMP_SRC2[i+31:i] SRC2[31:0]
ELSE TMP_SRC2[i+31:i] SRC2[i+31:i]
FI;
ENDFOR;
IF VL >= 128
TMP_DEST[31:0] SRC1[95:64]
TMP_DEST[63:32] TMP_SRC2[95:64]
TMP_DEST[95:64] SRC1[127:96]
TMP_DEST[127:96] TMP_SRC2[127:96]
FI;
IF VL >= 256
TMP_DEST[159:128] SRC1[223:192]
TMP_DEST[191:160] TMP_SRC2[223:192]
TMP_DEST[223:192] SRC1[255:224]
TMP_DEST[255:224] TMP_SRC2[255:224]
FI;
IF VL >= 512
TMP_DEST[287:256] SRC1[351:320]
TMP_DEST[319:288] TMP_SRC2[351:320]
TMP_DEST[351:320] SRC1[383:352]
TMP_DEST[383:352] TMP_SRC2[383:352]
TMP_DEST[415:384] SRC1[479:448]
TMP_DEST[447:416] TMP_SRC2[479:448]
TMP_DEST[479:448] SRC1[511:480]
TMP_DEST[511:480] TMP_SRC2[511:480]
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
Ref. # 319433-023 5-979
INSTRUCTION SET REFERENCE, A-Z
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VUNPCKHPS (VEX.256 encoded version)
DEST[31:0] SRC1[95:64]
DEST[63:32] SRC2[95:64]
DEST[95:64] SRC1[127:96]
DEST[127:96] SRC2[127:96]
DEST[159:128] SRC1[223:192]
DEST[191:160] SRC2[223:192]
DEST[223:192] SRC1[255:224]
DEST[255:224] SRC2[255:224]
DEST[MAX_VL-1:256] 0
VUNPCKHPS (VEX.128 encoded version)
DEST[31:0] SRC1[95:64]
DEST[63:32] SRC2[95:64]
DEST[95:64] SRC1[127:96]
DEST[127:96] SRC2[127:96]
DEST[MAX_VL-1:128] 0
UNPCKHPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[95:64]
DEST[63:32] SRC2[95:64]
DEST[95:64] SRC1[127:96]
DEST[127:96] SRC2[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VUNPCKHPS __m512 _mm512_unpackhi_ps( __m512 a, __m512 b);
VUNPCKHPS __m512 _mm512_mask_unpackhi_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VUNPCKHPS __m512 _mm512_maskz_unpackhi_ps(__mmask16 k, __m512 a, __m512 b);
VUNPCKHPS __m256 _mm256_unpackhi_ps (__m256 a, __m256 b);
VUNPCKHPS __m256 _mm256_mask_unpackhi_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VUNPCKHPS __m256 _mm256_maskz_unpackhi_ps(__mmask8 k, __m256 a, __m256 b);
UNPCKHPS __m128 _mm_unpackhi_ps (__m128 a, __m128 b);
VUNPCKHPS __m128 _mm_mask_unpackhi_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VUNPCKHPS __m128 _mm_maskz_unpackhi_ps(__mmask8 k, __m128 a, __m128 b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instructions, see Exceptions Type 4.
EVEX-encoded instructions, see Exceptions Type E4NF.
5-980 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs an interleaved unpack of the low double-precision floating-point values from the first source operand and
the second source operand.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch
only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM
register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a ZMM register, conditionally updated using writemask k1.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 14 /r RM V/V SSE2 Unpacks and Interleaves double-precision floating-point
values from low quadwords of xmm1 and xmm2/m128.
UNPCKLPD xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 14 /r RVM V/V AVX Unpacks and Interleaves double-precision floating-point
values from low quadwords of xmm2 and xmm3/m128.
VUNPCKLPD xmm1,xmm2,
xmm3/m128
VEX.NDS.256.66.0F.WIG 14 /r RVM V/V AVX Unpacks and Interleaves double-precision floating-point
values from low quadwords of ymm2 and ymm3/m256.
VUNPCKLPD ymm1,ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.W1 14 /r FV V/V AVX512VL
AVX512F
Unpacks and Interleaves double precision floating-point
values from low quadwords of xmm2 and
xmm3/m128/m64bcst subject to write mask k1.
VUNPCKLPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 14 /r FV V/V AVX512VL
AVX512F
Unpacks and Interleaves double precision floating-point
values from low quadwords of ymm2 and
ymm3/m256/m64bcst subject to write mask k1.
VUNPCKLPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 14 /r FV V/V AVX512F Unpacks and Interleaves double-precision floating-point
values from low quadwords of zmm2 and
zmm3/m512/m64bcst subject to write mask k1.
VUNPCKLPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-981
INSTRUCTION SET REFERENCE, A-Z
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1.
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 64-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1.
Operation
VUNPCKLPD (EVEX encoded versions when SRC2 is a register)
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL >= 128
TMP_DEST[63:0] SRC1[63:0]
TMP_DEST[127:64] SRC2[63:0]
FI;
IF VL >= 256
TMP_DEST[191:128] SRC1[191:128]
TMP_DEST[255:192] SRC2[191:128]
FI;
IF VL >= 512
TMP_DEST[319:256] SRC1[319:256]
TMP_DEST[383:320] SRC2[319:256]
TMP_DEST[447:384] SRC1[447:384]
TMP_DEST[511:448] SRC2[447:384]
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
5-982 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
VUNPCKLPD (EVEX encoded version when SRC2 is memory)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF (EVEX.b = 1)
THEN TMP_SRC2[i+63:i] SRC2[63:0]
ELSE TMP_SRC2[i+63:i] SRC2[i+63:i]
FI;
ENDFOR;
IF VL >= 128
TMP_DEST[63:0] SRC1[63:0]
TMP_DEST[127:64] TMP_SRC2[63:0]
FI;
IF VL >= 256
TMP_DEST[191:128] SRC1[191:128]
TMP_DEST[255:192] TMP_SRC2[191:128]
FI;
IF VL >= 512
TMP_DEST[319:256] SRC1[319:256]
TMP_DEST[383:320] TMP_SRC2[319:256]
TMP_DEST[447:384] SRC1[447:384]
TMP_DEST[511:448] TMP_SRC2[447:384]
FI;
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] TMP_DEST[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VUNPCKLPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[191:128] SRC1[191:128]
DEST[255:192] SRC2[191:128]
DEST[MAX_VL-1:256] 0
VUNPCKLPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[MAX_VL-1:128] 0
UNPCKLPD (128-bit Legacy SSE version)
DEST[63:0] SRC1[63:0]
DEST[127:64] SRC2[63:0]
DEST[MAX_VL-1:128] (Unmodified)
Ref. # 319433-023 5-983
INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent
VUNPCKLPD __m512d _mm512_unpacklo_pd( __m512d a, __m512d b);
VUNPCKLPD __m512d _mm512_mask_unpacklo_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VUNPCKLPD __m512d _mm512_maskz_unpacklo_pd(__mmask8 k, __m512d a, __m512d b);
VUNPCKLPD __m256d _mm256_unpacklo_pd(__m256d a, __m256d b)
VUNPCKLPD __m256d _mm256_mask_unpacklo_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VUNPCKLPD __m256d _mm256_maskz_unpacklo_pd(__mmask8 k, __m256d a, __m256d b);
UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
VUNPCKLPD __m128d _mm_mask_unpacklo_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VUNPCKLPD __m128d _mm_maskz_unpacklo_pd(__mmask8 k, __m128d a, __m128d b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instructions, see Exceptions Type 4.
EVEX-encoded instructions, see Exceptions Type E4NF.
5-984 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs an interleaved unpack of the low single-precision floating-point values from the first source operand and
the second source operand.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch
only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM
register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAX_VL-1:128)
of the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 14 /r RM V/V SSE Unpacks and Interleaves single-precision floating-point
values from low quadwords of xmm1 and xmm2/m128.
UNPCKLPS xmm1, xmm2/m128
VEX.NDS.128.0F.WIG 14 /r RVM V/V AVX Unpacks and Interleaves single-precision floating-point
values from low quadwords of xmm2 and xmm3/m128.
VUNPCKLPS xmm1,xmm2,
xmm3/m128
VEX.NDS.256.0F.WIG 14 /r RVM V/V AVX Unpacks and Interleaves single-precision floating-point
values from low quadwords of ymm2 and ymm3/m256.
VUNPCKLPS
ymm1,ymm2,ymm3/m256
EVEX.NDS.128.0F.W0 14 /r FV V/V AVX512VL
AVX512F
Unpacks and Interleaves single-precision floating-point
values from low quadwords of xmm2 and xmm3/mem and
write result to xmm1 subject to write mask k1.
VUNPCKLPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.0F.W0 14 /r FV V/V AVX512VL
AVX512F
Unpacks and Interleaves single-precision floating-point
values from low quadwords of ymm2 and ymm3/mem and
write result to ymm1 subject to write mask k1.
VUNPCKLPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.0F.W0 14 /r FV V/V AVX512F Unpacks and Interleaves single-precision floating-point
values from low quadwords of zmm2 and
zmm3/m512/m32bcst and write result to zmm1 subject
to write mask k1.
VUNPCKLPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-985
INSTRUCTION SET REFERENCE, A-Z
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM
register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a ZMM register, conditionally updated using writemask k1.
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM
register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a YMM register, conditionally updated using writemask k1.
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM
register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina-
tion operand is a XMM register, conditionally updated using writemask k1.
Operation
VUNPCKLPS (EVEX encoded version when SRC2 is a ZMM register)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL >= 128
TMP_DEST[31:0] SRC1[31:0]
TMP_DEST[63:32] SRC2[31:0]
TMP_DEST[95:64] SRC1[63:32]
TMP_DEST[127:96] SRC2[63:32]
FI;
IF VL >= 256
TMP_DEST[159:128] SRC1[159:128]
TMP_DEST[191:160] SRC2[159:128]
TMP_DEST[223:192] SRC1[191:160]
TMP_DEST[255:224] SRC2[191:160]
FI;
IF VL >= 512
TMP_DEST[287:256] SRC1[287:256]
TMP_DEST[319:288] SRC2[287:256]
TMP_DEST[351:320] SRC1[319:288]
TMP_DEST[383:352] SRC2[319:288]
TMP_DEST[415:384] SRC1[415:384]
TMP_DEST[447:416] SRC2[415:384]
TMP_DEST[479:448] SRC1[447:416]
TMP_DEST[511:480] SRC2[447:416]
FI;
FOR j 0 TO KL-1
i j * 32
Figure 5-44. VUNPCKLPS Operation
DEST
SRC1
SRC2
X0X1X2X3
Y0Y1Y2Y3
X0Y0X1Y1X4Y4X5Y5
X4X5X6X7
Y4Y5Y6Y7
5-986 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VUNPCKLPS (EVEX encoded version when SRC2 is memory)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 31
IF (EVEX.b = 1)
THEN TMP_SRC2[i+31:i] SRC2[31:0]
ELSE TMP_SRC2[i+31:i] SRC2[i+31:i]
FI;
ENDFOR;
IF VL >= 128
TMP_DEST[31:0] SRC1[31:0]
TMP_DEST[63:32] TMP_SRC2[31:0]
TMP_DEST[95:64] SRC1[63:32]
TMP_DEST[127:96] TMP_SRC2[63:32]
FI;
IF VL >= 256
TMP_DEST[159:128] SRC1[159:128]
TMP_DEST[191:160] TMP_SRC2[159:128]
TMP_DEST[223:192] SRC1[191:160]
TMP_DEST[255:224] TMP_SRC2[191:160]
FI;
IF VL >= 512
TMP_DEST[287:256] SRC1[287:256]
TMP_DEST[319:288] TMP_SRC2[287:256]
TMP_DEST[351:320] SRC1[319:288]
TMP_DEST[383:352] TMP_SRC2[319:288]
TMP_DEST[415:384] SRC1[415:384]
TMP_DEST[447:416] TMP_SRC2[415:384]
TMP_DEST[479:448] SRC1[447:416]
TMP_DEST[511:480] TMP_SRC2[447:416]
FI;
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] TMP_DEST[i+31:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] 0
FI
FI;
Ref. # 319433-023 5-987
INSTRUCTION SET REFERENCE, A-Z
ENDFOR
DEST[MAX_VL-1:VL] 0
UNPCKLPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
DEST[159:128] SRC1[159:128]
DEST[191:160] SRC2[159:128]
DEST[223:192] SRC1[191:160]
DEST[255:224] SRC2[191:160]
DEST[MAX_VL-1:256] 0
VUNPCKLPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
DEST[MAX_VL-1:128] 0
UNPCKLPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VUNPCKLPS __m512 _mm512_unpacklo_ps(__m512 a, __m512 b);
VUNPCKLPS __m512 _mm512_mask_unpacklo_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VUNPCKLPS __m512 _mm512_maskz_unpacklo_ps(__mmask16 k, __m512 a, __m512 b);
VUNPCKLPS __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);
VUNPCKLPS __m256 _mm256_mask_unpacklo_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VUNPCKLPS __m256 _mm256_maskz_unpacklo_ps(__mmask8 k, __m256 a, __m256 b);
UNPCKLPS __m128 _mm_unpacklo_ps (__m128 a, __m128 b);
VUNPCKLPS __m128 _mm_mask_unpacklo_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VUNPCKLPS __m128 _mm_maskz_unpacklo_ps(__mmask8 k, __m128 a, __m128 b);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instructions, see Exceptions Type 4.
EVEX-encoded instructions, see Exceptions Type E4NF.
5-988 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
XORPD—Bitwise Logical XOR of Packed Double Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a bitwise logical XOR of the two, four or eight packed double-precision floating-point values from the first
source operand and the second source operand, and stores the result in the destination operand
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM
register or a vector memory location. The destination operand is a ZMM register conditionally updated with
writemask k1.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand
is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAX_VL-1:256) of the corresponding ZMM register destination
are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand
is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination
are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
66 0F 57/r RM V/V SSE2 Return the bitwise logical XOR of packed double-
precision floating-point values in xmm1 and xmm2/mem.
XORPD xmm1, xmm2/m128
VEX.NDS.128.66.0F.WIG 57 /r RVM V/V AVX Return the bitwise logical XOR of packed double-
precision floating-point values in xmm2 and xmm3/mem.
VXORPD xmm1,xmm2,
xmm3/m128
VEX.NDS.256.66.0F.WIG 57 /r RVM V/V AVX Return the bitwise logical XOR of packed double-
precision floating-point values in ymm2 and ymm3/mem.
VXORPD ymm1, ymm2,
ymm3/m256
EVEX.NDS.128.66.0F.W1 57 /r FV V/V AVX512VL
AVX512DQ
Return the bitwise logical XOR of packed double-
precision floating-point values in xmm2 and
xmm3/m128/m64bcst subject to writemask k1.
VXORPD xmm1 {k1}{z}, xmm2,
xmm3/m128/m64bcst
EVEX.NDS.256.66.0F.W1 57 /r FV V/V AVX512VL
AVX512DQ
Return the bitwise logical XOR of packed double-
precision floating-point values in ymm2 and
ymm3/m256/m64bcst subject to writemask k1.
VXORPD ymm1 {k1}{z}, ymm2,
ymm3/m256/m64bcst
EVEX.NDS.512.66.0F.W1 57 /r FV V/V AVX512DQ Return the bitwise logical XOR of packed double-
precision floating-point values in zmm2 and
zmm3/m512/m64bcst subject to writemask k1.
VXORPD zmm1 {k1}{z}, zmm2,
zmm3/m512/m64bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-023 5-989
INSTRUCTION SET REFERENCE, A-Z
Operation
VXORPD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+63:i] SRC1[i+63:i] BITWISE XOR SRC2[63:0];
ELSE DEST[i+63:i] SRC1[i+63:i] BITWISE XOR SRC2[i+63:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+63:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VXORPD (VEX.256 encoded version)
DEST[63:0] SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[191:128] SRC1[191:128] BITWISE XOR SRC2[191:128]
DEST[255:192] SRC1[255:192] BITWISE XOR SRC2[255:192]
DEST[MAX_VL-1:256] 0
VXORPD (VEX.128 encoded version)
DEST[63:0] SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[127:64] SRC1[127:64] BITWISE XOR SRC2[127:64]
DEST[MAX_VL-1:128] 0
XORPD (128-bit Legacy SSE version)
DEST[63:0] DEST[63:0] BITWISE XOR SRC[63:0]
DEST[127:64] DEST[127:64] BITWISE XOR SRC[127:64]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VXORPD __m512d _mm512_xor_pd (__m512d a, __m512d b);
VXORPD __m512d _mm512_mask_xor_pd (__m512d a, __mmask8 m, __m512d b);
VXORPD __m512d _mm512_maskz_xor_pd (__mmask8 m, __m512d a);
VXORPD __m256d _mm256_xor_pd (__m256d a, __m256d b);
VXORPD __m256d _mm256_mask_xor_pd (__m256d a, __mmask8 m, __m256d b);
VXORPD __m256d _mm256_maskz_xor_pd (__mmask8 m, __m256d a);
XORPD __m128d _mm_xor_pd (__m128d a, __m128d b);
VXORPD __m128d _mm_mask_xor_pd (__m128d a, __mmask8 m, __m128d b);
VXORPD __m128d _mm_maskz_xor_pd (__mmask8 m, __m128d a);
SIMD Floating-Point Exceptions
None
5-990 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Other Exceptions
Non-EVEX-encoded instructions, see Exceptions Type 4.
EVEX-encoded instructions, see Exceptions Type E4.
Ref. # 319433-023 5-991
INSTRUCTION SET REFERENCE, A-Z
XORPS—Bitwise Logical XOR of Packed Single Precision Floating-Point Values
Instruction Operand Encoding
Description
Performs a bitwise logical XOR of the four, eight or sixteen packed single-precision floating-point values from the
first source operand and the second source operand, and stores the result in the destination operand
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM
register or a vector memory location. The destination operand is a ZMM register conditionally updated with
writemask k1.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand
is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAX_VL-1:256) of the corresponding ZMM register destination
are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand
is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated
with writemask k1 in case of EVEX). The upper bits (MAX_VL-1:128) of the corresponding ZMM register destination
are zeroed.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (MAX_VL-1:128) of the corresponding
register destination are unmodified.
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 57 /r
XORPS xmm1, xmm2/m128
RM V/V SSE Return the bitwise logical XOR of packed single-
precision floating-point values in xmm1 and
xmm2/mem.
VEX.NDS.128.0F.WIG 57 /r
VXORPS xmm1,xmm2, xmm3/m128
RVM V/V AVX Return the bitwise logical XOR of packed single-
precision floating-point values in xmm2 and
xmm3/mem.
VEX.NDS.256.0F.WIG 57 /r
VXORPS ymm1, ymm2, ymm3/m256
RVM V/V AVX Return the bitwise logical XOR of packed single-
precision floating-point values in ymm2 and
ymm3/mem.
EVEX.NDS.128.0F.W0 57 /r FV V/V AVX512VL
AVX512DQ
Return the bitwise logical XOR of packed single-
precision floating-point values in xmm2 and
xmm3/m128/m32bcst subject to writemask k1.
VXORPS xmm1 {k1}{z}, xmm2,
xmm3/m128/m32bcst
EVEX.NDS.256.0F.W0 57 /r FV V/V AVX512VL
AVX512DQ
Return the bitwise logical XOR of packed single-
precision floating-point values in ymm2 and
ymm3/m256/m32bcst subject to writemask k1.
VXORPS ymm1 {k1}{z}, ymm2,
ymm3/m256/m32bcst
EVEX.NDS.512.0F.W0 57 /r FV V/V AVX512DQ Return the bitwise logical XOR of packed single-
precision floating-point values in zmm2 and
zmm3/m512/m32bcst subject to writemask k1.
VXORPS zmm1 {k1}{z}, zmm2,
zmm3/m512/m32bcst
Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
FV ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
5-992 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
Operation
VXORPS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] SRC1[i+31:i] BITWISE XOR SRC2[31:0];
ELSE DEST[i+31:i] SRC1[i+31:i] BITWISE XOR SRC2[i+31:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking* ; zeroing-masking
DEST[i+31:i] = 0
FI
FI;
ENDFOR
DEST[MAX_VL-1:VL] 0
VXORPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128] SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160] SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192] SRC1[223:192] BITWISE XOR SRC2[223:192]
DEST[255:224] SRC1[255:224] BITWISE XOR SRC2[255:224].
DEST[MAX_VL-1:256] 0
VXORPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAX_VL-1:128] 0
XORPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAX_VL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent
VXORPS __m512 _mm512_xor_ps (__m512 a, __m512 b);
VXORPS __m512 _mm512_mask_xor_ps (__m512 a, __mmask16 m, __m512 b);
VXORPS __m512 _mm512_maskz_xor_ps (__mmask16 m, __m512 a);
VXORPS __m256 _mm256_xor_ps (__m256 a, __m256 b);
VXORPS __m256 _mm256_mask_xor_ps (__m256 a, __mmask8 m, __m256 b);
VXORPS __m256 _mm256_maskz_xor_ps (__mmask8 m, __m256 a);
XORPS __m128 _mm_xor_ps (__m128 a, __m128 b);
VXORPS __m128 _mm_mask_xor_ps (__m128 a, __mmask8 m, __m128 b);
Ref. # 319433-023 5-993
INSTRUCTION SET REFERENCE, A-Z
VXORPS __m128 _mm_maskz_xor_ps (__mmask8 m, __m128 a);
SIMD Floating-Point Exceptions
None
Other Exceptions
Non-EVEX-encoded instructions, see Exceptions Type 4.
EVEX-encoded instructions, see Exceptions Type E4.
5-994 Ref. # 319433-023
INSTRUCTION SET REFERENCE, A-Z
This page was
intentionally left
blank.
Ref. # 319433-023 6-1
INSTRUCTION SET REFERENCE - OPMASK
CHAPTER 6
INSTRUCTION SET REFERENCE - OPMASK
Instructions for data transfer between opmask registers and between opmask/general-purpose registers are
described in this chapter using the same notations and conventions listed in Section 5.1 and Section 5.1.5.1.
6.1 MASK INSTRUCTIONS
KADDW/KADDB/KADDQ/KADDD—ADD Two Masks
Instruction Operand Encoding
Description
Adds the vector mask k2 and the vector mask k3, and writes the result into vector mask k1.
Operation
KADDW
DEST[15:0] SRC1[15:0] + SRC2[15:0]
DEST[MAX_KL-1:16] 0
KADDB
DEST[7:0] SRC1[7:0] + SRC2[7:0]
DEST[MAX_KL-1:8] 0
KADDQ
DEST[63:0] SRC1[63:0] + SRC2[63:0]
DEST[MAX_KL-1:64] 0
KADDD
DEST[31:0] SRC1[31:0] + SRC2[31:0]
DEST[MAX_KL-1:32] 0
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.L1.0F.W0 4A /r RVR V/V AVX512DQ Add 16 bits masks in k2 and k3 and place result in k1.
KADDW k1, k2, k3
VEX.L1.66.0F.W0 4A /r RVR V/V AVX512DQ Add 8 bits masks in k2 and k3 and place result in k1.
KADDB k1, k2, k3
VEX.L1.0F.W1 4A /r RVR V/V AVX512BW Add 64 bits masks in k2 and k3 and place result in k1.
KADDQ k1, k2, k3
VEX.L1.66.0F.W1 4A /r RVR V/V AVX512BW Add 32 bits masks in k2 and k3 and place result in k1.
KADDD k1, k2, k3
Op/En Operand 1 Operand 2 Operand 3
RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
6-2 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
Intel C/C++ Compiler Intrinsic Equivalent
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
Ref. # 319433-023 6-3
INSTRUCTION SET REFERENCE - OPMASK
KANDW/KANDB/KANDQ/KANDD—Bitwise Logical AND Masks
Instruction Operand Encoding
Description
Performs a bitwise AND between the vector mask k2 and the vector mask k3, and writes the result into vector mask
k1.
Operation
KANDW
DEST[15:0] SRC1[15:0] BITWISE AND SRC2[15:0]
DEST[MAX_KL-1:16] 0
KANDB
DEST[7:0] SRC1[7:0] BITWISE AND SRC2[7:0]
DEST[MAX_KL-1:8] 0
KANDQ
DEST[63:0] SRC1[63:0] BITWISE AND SRC2[63:0]
DEST[MAX_KL-1:64] 0
KANDD
DEST[31:0] SRC1[31:0] BITWISE AND SRC2[31:0]
DEST[MAX_KL-1:32] 0
Intel C/C++ Compiler Intrinsic Equivalent
KANDW __mmask16 _mm512_kand(__mmask16 a, __mmask16 b);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.L1.0F.W0 41 /r RVR V/V AVX512F Bitwise AND 16 bits masks k2 and k3 and place result in k1.
KANDW k1, k2, k3
VEX.L1.66.0F.W0 41 /r RVR V/V AVX512DQ Bitwise AND 8 bits masks k2 and k3 and place result in k1.
KANDB k1, k2, k3
VEX.L1.0F.W1 41 /r RVR V/V AVX512BW Bitwise AND 64 bits masks k2 and k3 and place result in k1.
KANDQ k1, k2, k3
VEX.L1.66.0F.W1 41 /r RVR V/V AVX512BW Bitwise AND 32 bits masks k2 and k3 and place result in k1.
KANDD k1, k2, k3
Op/En Operand 1 Operand 2 Operand 3
RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
6-4 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
KANDNW/KANDNB/KANDNQ/KANDND—Bitwise Logical AND NOT Masks
Instruction Operand Encoding
Description
Performs a bitwise AND NOT between the vector mask k2 and the vector mask k3, and writes the result into vector
mask k1.
Operation
KANDNW
DEST[15:0] (BITWISE NOT SRC1[15:0]) BITWISE AND SRC2[15:0]
DEST[MAX_KL-1:16] 0
KANDNB
DEST[7:0] (BITWISE NOT SRC1[7:0]) BITWISE AND SRC2[7:0]
DEST[MAX_KL-1:8] 0
KANDNQ
DEST[63:0] (BITWISE NOT SRC1[63:0]) BITWISE AND SRC2[63:0]
DEST[MAX_KL-1:64] 0
KANDND
DEST[31:0] (BITWISE NOT SRC1[31:0]) BITWISE AND SRC2[31:0]
DEST[MAX_KL-1:32] 0
Intel C/C++ Compiler Intrinsic Equivalent
KANDNW __mmask16 _mm512_kandn(__mmask16 a, __mmask16 b);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.L1.0F.W0 42 /r RVR V/V AVX512F Bitwise AND NOT 16 bits masks k2 and k3 and place result in
k1.
KANDNW k1, k2, k3
VEX.L1.66.0F.W0 42 /r RVR V/V AVX512DQ Bitwise AND NOT 8 bits masks k1 and k2 and place result in k1.
KANDNB k1, k2, k3
VEX.L1.0F.W1 42 /r RVR V/V AVX512BW Bitwise AND NOT 64 bits masks k2 and k3 and place result in
k1.
KANDNQ k1, k2, k3
VEX.L1.66.0F.W1 42 /r RVR V/V AVX512BW Bitwise AND NOT 32 bits masks k2 and k3 and place result in
k1.
KANDND k1, k2, k3
Op/En Operand 1 Operand 2 Operand 3
RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
Ref. # 319433-023 6-5
INSTRUCTION SET REFERENCE - OPMASK
KMOVW/KMOVB/KMOVQ/KMOVD—Move from and to Mask Registers
Instruction Operand Encoding
Description
Copies values from the source operand (second operand) to the destination operand (first operand). The source
and destination operands can be mask registers, memory location or general purpose. The instruction cannot be
used to transfer data between general purpose registers and or memory locations.
When moving to a mask register, the result is zero extended to MAX_KL size (i.e., 64 bits currently). When moving
to a general-purpose register (GPR), the result is zero-extended to the size of the destination. In 32-bit mode, the
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.L0.0F.W0 90 /r RM V/V AVX512F Move 16 bits mask from k2/m16 and store the result in k1.
KMOVW k1, k2/m16
VEX.L0.66.0F.W0 90 /r RM V/V AVX512DQ Move 8 bits mask from k2/m8 and store the result in k1.
KMOVB k1, k2/m8
VEX.L0.0F.W1 90 /r RM V/V AVX512BW Move 64 bits mask from k2/m64 and store the result in k1.
KMOVQ k1, k2/m64
VEX.L0.66.0F.W1 90 /r RM V/V AVX512BW Move 32 bits mask from k2/m32 and store the result in k1.
KMOVD k1, k2/m32
VEX.L0.0F.W0 91 /r MR V/V AVX512F Move 16 bits mask from k1 and store the result in m16.
KMOVW m16, k1
VEX.L0.66.0F.W0 91 /r MR V/V AVX512DQ Move 8 bits mask from k1 and store the result in m8.
KMOVB m8, k1
VEX.L0.0F.W1 91 /r MR V/V AVX512BW Move 64 bits mask from k1 and store the result in m64.
KMOVQ m64, k1
VEX.L0.66.0F.W1 91 /r MR V/V AVX512BW Move 32 bits mask from k1 and store the result in m32.
KMOVD m32, k1
VEX.L0.0F.W0 92 /r RR V/V AVX512F Move 16 bits mask from r32 to k1.
KMOVW k1, r32
VEX.L0.66.0F.W0 92 /r RR V/V AVX512DQ Move 8 bits mask from r32 to k1.
KMOVB k1, r32
VEX.L0.F2.0F.W1 92 /r RR V/I AVX512BW Move 64 bits mask from r64 to k1.
KMOVQ k1, r64
VEX.L0.F2.0F.W0 92 /r RR V/V AVX512BW Move 32 bits mask from r32 to k1.
KMOVD k1, r32
VEX.L0.0F.W0 93 /r RR V/V AVX512F Move 16 bits mask from k1 to r32.
KMOVW r32, k1
VEX.L0.66.0F.W0 93 /r RR V/V AVX512DQ Move 8 bits mask from k1 to r32.
KMOVB r32, k1
VEX.L0.F2.0F.W1 93 /r RR V/I AVX512BW Move 64 bits mask from k1 to r64.
KMOVQ r64, k1
VEX.L0.F2.0F.W0 93 /r RR V/V AVX512BW Move 32 bits mask from k1 to r32.
KMOVD r32, k1
Op/En Operand 1 Operand 2
RM ModRM:reg (w) ModRM:r/m (r)
MR ModRM:r/m (w, ModRM:[7:6] must not be 11b) ModRM:reg (r)
RR ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b)
6-6 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
default GPR destination’s size is 32 bits. In 64-bit mode, the default GPR destination’s size is 64 bits. Note that
REX.W cannot be used to modify the size of the general-purpose destination.
Operation
KMOVW
IF *destination is a memory location*
DEST[15:0] SRC[15:0]
IF *destination is a mask register or a GPR *
DEST ZeroExtension(SRC[15:0])
KMOVB
IF *destination is a memory location*
DEST[7:0] SRC[7:0]
IF *destination is a mask register or a GPR *
DEST ZeroExtension(SRC[7:0])
KMOVQ
IF *destination is a memory location or a GPR*
DEST[63:0] SRC[63:0]
IF *destination is a mask register*
DEST ZeroExtension(SRC[63:0])
KMOVD
IF *destination is a memory location*
DEST[31:0] SRC[31:0]
IF *destination is a mask register or a GPR *
DEST ZeroExtension(SRC[31:0])
Intel C/C++ Compiler Intrinsic Equivalent
KMOVW __mmask16 _mm512_kmov(__mmask16 a);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
Instructions with RR operand encoding See Exceptions Type K20.
Instructions with RM or MR operand encoding See Exceptions Type K21.
Ref. # 319433-023 6-7
INSTRUCTION SET REFERENCE - OPMASK
KUNPCKBW/KUNPCKWD/KUNPCKDQ—Unpack for Mask Registers
Instruction Operand Encoding
Description
Unpacks the lower 8/16/32 bits of the second and third operands (source operands) into the low part of the first
operand (destination operand), starting from the low bytes. The result is zero-extended in the destination.
Operation
KUNPCKBW
DEST[7:0] SRC2[7:0]
DEST[15:8] SRC1[7:0]
DEST[MAX_KL-1:16] 0
KUNPCKWD
DEST[15:0] SRC2[15:0]
DEST[31:16] SRC1[15:0]
DEST[MAX_KL-1:32] 0
KUNPCKDQ
DEST[31:0] SRC2[31:0]
DEST[63:32] SRC1[31:0]
DEST[MAX_KL-1:64] 0
Intel C/C++ Compiler Intrinsic Equivalent
KUNPCKBW __mmask16 _mm512_kunpackb(__mmask16 a, __mmask16 b);
KUNPCKDQ __mmask64 _mm512_kunpackd(__mmask64 a, __mmask64 b);
KUNPCKWD __mmask32 _mm512_kunpackw(__mmask32 a, __mmask32 b);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.L1.66.0F.W0 4B /r RVR V/V AVX512F Unpack and interleave 8 bits masks in k2 and k3 and write
word result in k1.
KUNPCKBW k1, k2, k3
VEX.NDS.L1.0F.W0 4B /r RVR V/V AVX512BW Unpack and interleave 16 bits in k2 and k3 and write double-
word result in k1.
KUNPCKWD k1, k2, k3
VEX.NDS.L1.0F.W1 4B /r RVR V/V AVX512BW Unpack and interleave 32 bits masks in k2 and k3 and write
quadword result in k1.
KUNPCKDQ k1, k2, k3
Op/En Operand 1 Operand 2 Operand 3
RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
6-8 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
KNOTW/KNOTB/KNOTQ/KNOTD—NOT Mask Register
Instruction Operand Encoding
Description
Performs a bitwise NOT of vector mask k2 and writes the result into vector mask k1.
Operation
KNOTW
DEST[15:0] BITWISE NOT SRC[15:0]
DEST[MAX_KL-1:16] 0
KNOTB
DEST[7:0] BITWISE NOT SRC[7:0]
DEST[MAX_KL-1:8] 0
KNOTQ
DEST[63:0] BITWISE NOT SRC[63:0]
DEST[MAX_KL-1:64] 0
KNOTD
DEST[31:0] BITWISE NOT SRC[31:0]
DEST[MAX_KL-1:32] 0
Intel C/C++ Compiler Intrinsic Equivalent
KNOTW __mmask16 _mm512_knot(__mmask16 a);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature Flag
Description
VEX.L0.0F.W0 44 /r RR V/V AVX512F Bitwise NOT of 16 bits mask k2.
KNOTW k1, k2
VEX.L0.66.0F.W0 44 /r RR V/V AVX512DQ Bitwise NOT of 8 bits mask k2.
KNOTB k1, k2
VEX.L0.0F.W1 44 /r RR V/V AVX512BW Bitwise NOT of 64 bits mask k2.
KNOTQ k1, k2
VEX.L0.66.0F.W1 44 /r RR V/V AVX512BW Bitwise NOT of 32 bits mask k2.
KNOTD k1, k2
Op/En Operand 1 Operand 2
RR ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b)
Ref. # 319433-023 6-9
INSTRUCTION SET REFERENCE - OPMASK
KORW/KORB/KORQ/KORD—Bitwise Logical OR Masks
Instruction Operand Encoding
Description
Performs a bitwise OR between the vector mask k2 and the vector mask k3, and writes the result into vector mask
k1 (three-operand form).
Operation
KORW
DEST[15:0] SRC1[15:0] BITWISE OR SRC2[15:0]
DEST[MAX_KL-1:16] 0
KORB
DEST[7:0] SRC1[7:0] BITWISE OR SRC2[7:0]
DEST[MAX_KL-1:8] 0
KORQ
DEST[63:0] SRC1[63:0] BITWISE OR SRC2[63:0]
DEST[MAX_KL-1:64] 0
KORD
DEST[31:0] SRC1[31:0] BITWISE OR SRC2[31:0]
DEST[MAX_KL-1:32] 0
Intel C/C++ Compiler Intrinsic Equivalent
KORW __mmask16 _mm512_kor(__mmask16 a, __mmask16 b);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.L1.0F.W0 45 /r RVR V/V AVX512F Bitwise OR 16 bits masks k2 and k3 and place result in k1.
KORW k1, k2, k3
VEX.L1.66.0F.W0 45 /r RVR V/V AVX512DQ Bitwise OR 8 bits masks k2 and k3 and place result in k1.
KORB k1, k2, k3
VEX.L1.0F.W1 45 /r RVR V/V AVX512BW Bitwise OR 64 bits masks k2 and k3 and place result in k1.
KORQ k1, k2, k3
VEX.L1.66.0F.W1 45 /r RVR V/V AVX512BW Bitwise OR 32 bits masks k2 and k3 and place result in k1.
KORD k1, k2, k3
Op/En Operand 1 Operand 2 Operand 3
RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
6-10 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
KORTESTW/KORTESTB/KORTESTQ/KORTESTD—OR Masks And Set Flags
Instruction Operand Encoding
Description
Performs a bitwise OR between the vector mask register k2, and the vector mask register k1, and sets CF and ZF
based on the operation result.
ZF flag is set if both sources are 0x0. CF is set if, after the OR operation is done, the operation result is all 1’s.
Operation
KORTESTW
TMP[15:0] DEST[15:0] BITWISE OR SRC[15:0]
IF(TMP[15:0]=0)
THEN ZF 1
ELSE ZF 0
FI;
IF(TMP[15:0]=FFFFh)
THEN CF 1
ELSE CF 0
FI;
KORTESTB
TMP[7:0] DEST[7:0] BITWISE OR SRC[7:0]
IF(TMP[7:0]=0)
THEN ZF 1
ELSE ZF 0
FI;
IF(TMP[7:0]==FFh)
THEN CF 1
ELSE CF 0
FI;
KORTESTQ
TMP[63:0] DEST[63:0] BITWISE OR SRC[63:0]
IF(TMP[63:0]=0)
THEN ZF 1
ELSE ZF 0
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.L0.0F.W0 98 /r RR V/V AVX512F Bitwise OR 16 bits masks k1 and k2 and update ZF and CF accordingly.
KORTESTW k1, k2
VEX.L0.66.0F.W0 98 /r RR V/V AVX512DQ Bitwise OR 8 bits masks k1 and k2 and update ZF and CF accordingly.
KORTESTB k1, k2
VEX.L0.0F.W1 98 /r RR V/V AVX512BW Bitwise OR 64 bits masks k1 and k2 and update ZF and CF accordingly.
KORTESTQ k1, k2
VEX.L0.66.0F.W1 98 /r RR V/V AVX512BW Bitwise OR 32 bits masks k1 and k2 and update ZF and CF accordingly.
KORTESTD k1, k2
Op/En Operand 1 Operand 2
RR ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b)
Ref. # 319433-023 6-11
INSTRUCTION SET REFERENCE - OPMASK
FI;
IF(TMP[63:0]==FFFFFFFF_FFFFFFFFh)
THEN CF 1
ELSE CF 0
FI;
KORTESTD
TMP[31:0] DEST[31:0] BITWISE OR SRC[31:0]
IF(TMP[31:0]=0)
THEN ZF 1
ELSE ZF 0
FI;
IF(TMP[31:0]=FFFFFFFFh)
THEN CF 1
ELSE CF 0
FI;
Intel C/C++ Compiler Intrinsic Equivalent
KORTESTW __mmask16 _mm512_kortest[cz](__mmask16 a, __mmask16 b);
Flags Affected
The ZF flag is set if the result of OR-ing both sources is all 0s.
The CF flag is set if the result of OR-ing both sources is all 1s.
The OF, SF, AF, and PF flags are set to 0.
Other Exceptions
See Exceptions Type K20.
6-12 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
KSHIFTLW/KSHIFTLB/KSHIFTLQ/KSHIFTLD—Shift Left Mask Registers
Instruction Operand Encoding
Description
Shifts 8/16/32/64 bits in the second operand (source operand) left by the count specified in immediate byte and
place the least significant 8/16/32/64 bits of the result in the destination operand. The higher bits of the destination
are zero-extended. The destination is set to zero if the count value is greater than 7 (for byte shift), 15 (for word
shift), 31 (for doubleword shift) or 63 (for quadword shift).
Operation
KSHIFTLW
COUNT imm8[7:0]
DEST[MAX_KL-1:0] 0
IF COUNT <=15
THEN DEST[15:0] SRC1[15:0] << COUNT;
FI;
KSHIFTLB
COUNT imm8[7:0]
DEST[MAX_KL-1:0] 0
IF COUNT <=7
THEN DEST[7:0] SRC1[7:0] << COUNT;
FI;
KSHIFTLQ
COUNT imm8[7:0]
DEST[MAX_KL-1:0] 0
IF COUNT <=63
THEN DEST[63:0] SRC1[63:0] << COUNT;
FI;
KSHIFTLD
COUNT imm8[7:0]
DEST[MAX_KL-1:0] 0
IF COUNT <=31
THEN DEST[31:0] SRC1[31:0] << COUNT;
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.L0.66.0F3A.W1 32 /r RRI V/V AVX512F Shift left 16 bits in k2 by immediate and write result in k1.
KSHIFTLW k1, k2, imm8
VEX.L0.66.0F3A.W0 32 /r RRI V/V AVX512DQ Shift left 8 bits in k2 by immediate and write result in k1.
KSHIFTLB k1, k2, imm8
VEX.L0.66.0F3A.W1 33 /r RRI V/V AVX512BW Shift left 64 bits in k2 by immediate and write result in k1.
KSHIFTLQ k1, k2, imm8
VEX.L0.66.0F3A.W0 33 /r RRI V/V AVX512BW Shift left 32 bits in k2 by immediate and write result in k1.
KSHIFTLD k1, k2, imm8
Op/En Operand 1 Operand 2 Operand 3
RRI ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b) Imm8
Ref. # 319433-023 6-13
INSTRUCTION SET REFERENCE - OPMASK
FI;
Intel C/C++ Compiler Intrinsic Equivalent
Compiler auto generates KSHIFTLW when needed.
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
6-14 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
KSHIFTRW/KSHIFTRB/KSHIFTRQ/KSHIFTRD—Shift Right Mask Registers
Instruction Operand Encoding
Description
Shifts 8/16/32/64 bits in the second operand (source operand) right by the count specified in immediate and place
the least significant 8/16/32/64 bits of the result in the destination operand. The higher bits of the destination are
zero-extended. The destination is set to zero if the count value is greater than 7 (for byte shift), 15 (for word shift),
31 (for doubleword shift) or 63 (for quadword shift).
Operation
KSHIFTRW
COUNT imm8[7:0]
DEST[MAX_KL-1:0] 0
IF COUNT <=15
THEN DEST[15:0] SRC1[15:0] >> COUNT;
FI;
KSHIFTRB
COUNT imm8[7:0]
DEST[MAX_KL-1:0] 0
IF COUNT <=7
THEN DEST[7:0] SRC1[7:0] >> COUNT;
FI;
KSHIFTRQ
COUNT imm8[7:0]
DEST[MAX_KL-1:0] 0
IF COUNT <=63
THEN DEST[63:0] SRC1[63:0] >> COUNT;
FI;
KSHIFTRD
COUNT imm8[7:0]
DEST[MAX_KL-1:0] 0
IF COUNT <=31
THEN DEST[31:0] SRC1[31:0] >> COUNT;
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.L0.66.0F3A.W1 30 /r RRI V/V AVX512F Shift right 16 bits in k2 by immediate and write result in k1.
KSHIFTRW k1, k2, imm8
VEX.L0.66.0F3A.W0 30 /r RRI V/V AVX512DQ Shift right 8 bits in k2 by immediate and write result in k1.
KSHIFTRB k1, k2, imm8
VEX.L0.66.0F3A.W1 31 /r RRI V/V AVX512BW Shift right 64 bits in k2 by immediate and write result in k1.
KSHIFTRQ k1, k2, imm8
VEX.L0.66.0F3A.W0 31 /r RRI V/V AVX512BW Shift right 32 bits in k2 by immediate and write result in k1.
KSHIFTRD k1, k2, imm8
Op/En Operand 1 Operand 2 Operand 3
RRI ModRM:reg (w) ModRM:r/m (r, ModRM:[7:6] must be 11b) Imm8
Ref. # 319433-023 6-15
INSTRUCTION SET REFERENCE - OPMASK
FI;
Intel C/C++ Compiler Intrinsic Equivalent
Compiler auto generates KSHIFTRW when needed.
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
6-16 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
KXNORW/KXNORB/KXNORQ/KXNORD—Bitwise Logical XNOR Masks
Instruction Operand Encoding
Description
Performs a bitwise XNOR between the vector mask k2 and the vector mask k3, and writes the result into vector
mask k1 (three-operand form).
Operation
KXNORW
DEST[15:0] NOT (SRC1[15:0] BITWISE XOR SRC2[15:0])
DEST[MAX_KL-1:16] 0
KXNORB
DEST[7:0] NOT (SRC1[7:0] BITWISE XOR SRC2[7:0])
DEST[MAX_KL-1:8] 0
KXNORQ
DEST[63:0] NOT (SRC1[63:0] BITWISE XOR SRC2[63:0])
DEST[MAX_KL-1:64] 0
KXNORD
DEST[31:0] NOT (SRC1[31:0] BITWISE XOR SRC2[31:0])
DEST[MAX_KL-1:32] 0
Intel C/C++ Compiler Intrinsic Equivalent
KXNORW __mmask16 _mm512_kxnor(__mmask16 a, __mmask16 b);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.L1.0F.W0 46 /r RVR V/V AVX512F Bitwise XNOR 16 bits masks k2 and k3 and place result in k1.
KXNORW k1, k2, k3
VEX.L1.66.0F.W0 46 /r RVR V/V AVX512DQ Bitwise XNOR 8 bits masks k2 and k3 and place result in k1.
KXNORB k1, k2, k3
VEX.L1.0F.W1 46 /r RVR V/V AVX512BW Bitwise XNOR 64 bits masks k2 and k3 and place result in k1.
KXNORQ k1, k2, k3
VEX.L1.66.0F.W1 46 /r RVR V/V AVX512BW Bitwise XNOR 32 bits masks k2 and k3 and place result in k1.
KXNORD k1, k2, k3
Op/En Operand 1 Operand 2 Operand 3
RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
Ref. # 319433-023 6-17
INSTRUCTION SET REFERENCE - OPMASK
KTESTW/KTESTB/KTESTQ/KTESTD—Packed Bit Test Masks and Set Flags
Instruction Operand Encoding
Description
Performs a bitwise comparison of the bits of the first source operand and corresponding bits in the second source
operand. If the AND operation produces all zeros, the ZF is set else the ZF is clear. If the bitwise AND operation of
the inverted first source operand with the second source operand produces all zeros the CF is set else the CF is
clear. Only the EFLAGS register is updated.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
Operation
KTESTW
TEMP[15:0] SRC2[15:0] AND SRC1[15:0]
IF (TEMP[15:0] = = 0)
THEN ZF 1;
ELSE ZF 0;
FI;
TEMP[15:0] SRC2[15:0] AND NOT SRC1[15:0]
IF (TEMP[15:0] = = 0)
THEN CF 1;
ELSE CF 0;
FI;
AF OF PF SF 0;
KTESTB
TEMP[7:0] SRC2[7:0] AND SRC1[7:0]
IF (TEMP[7:0] = = 0)
THEN ZF 1;
ELSE ZF 0;
FI;
TEMP[7:0] SRC2[7:0] AND NOT SRC1[7:0]
IF (TEMP[7:0] = = 0)
THEN CF 1;
Opcode/
Instruction
Op
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.L0.0F.W0 99 /r RR V/V AVX512DQ Set ZF and CF depending on sign bit AND and ANDN of 16 bits mask
register sources.
KTESTW k1, k2
VEX.L0.66.0F.W0 99 /r RR V/V AVX512DQ Set ZF and CF depending on sign bit AND and ANDN of 8 bits mask
register sources.
KTESTB k1, k2
VEX.L0.0F.W1 99 /r RR V/V AVX512BW Set ZF and CF depending on sign bit AND and ANDN of 64 bits mask
register sources.
KTESTQ k1, k2
VEX.L0.66.0F.W1 99 /r RR V/V AVX512BW Set ZF and CF depending on sign bit AND and ANDN of 32 bits mask
register sources.
KTESTD k1, k2
Op/En Operand 1 Operand2
RR ModRM:reg (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
6-18 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
ELSE CF 0;
FI;
AF OF PF SF 0;
KTESTQ
TEMP[63:0] SRC2[63:0] AND SRC1[63:0]
IF (TEMP[63:0] = = 0)
THEN ZF 1;
ELSE ZF 0;
FI;
TEMP[63:0] SRC2[63:0] AND NOT SRC1[63:0]
IF (TEMP[63:0] = = 0)
THEN CF 1;
ELSE CF 0;
FI;
AF OF PF SF 0;
KTESTD
TEMP[31:0] SRC2[31:0] AND SRC1[31:0]
IF (TEMP[31:0] = = 0)
THEN ZF 1;
ELSE ZF 0;
FI;
TEMP[31:0] SRC2[31:0] AND NOT SRC1[31:0]
IF (TEMP[31:0] = = 0)
THEN CF 1;
ELSE CF 0;
FI;
AF OF PF SF 0;
Intel C/C++ Compiler Intrinsic Equivalent
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
Ref. # 319433-023 6-19
INSTRUCTION SET REFERENCE - OPMASK
KXORW/KXORB/KXORQ/KXORD—Bitwise Logical XOR Masks
Instruction Operand Encoding
Description
Performs a bitwise XOR between the vector mask k2 and the vector mask k3, and writes the result into vector mask
k1 (three-operand form).
Operation
KXORW
DEST[15:0] SRC1[15:0] BITWISE XOR SRC2[15:0]
DEST[MAX_KL-1:16] 0
KXORB
DEST[7:0] SRC1[7:0] BITWISE XOR SRC2[7:0]
DEST[MAX_KL-1:8] 0
KXORQ
DEST[63:0] SRC1[63:0] BITWISE XOR SRC2[63:0]
DEST[MAX_KL-1:64] 0
KXORD
DEST[31:0] SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[MAX_KL-1:32] 0
Intel C/C++ Compiler Intrinsic Equivalent
KXORW __mmask16 _mm512_kxor(__mmask16 a, __mmask16 b);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type K20.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
VEX.NDS.L1.0F.W0 47 /r RVR V/V AVX512F Bitwise XOR 16 bits masks k2 and k3 and place result in k1.
KXORW k1, k2, k3
VEX.L1.66.0F.W0 47 /r RVR V/V AVX512DQ Bitwise XOR 8 bits masks k2 and k3 and place result in k1
KXORB k1, k2, k3
VEX.L1.0F.W1 47 /r RVR V/V AVX512BW Bitwise XOR 64 bits masks k2 and k3 and place result in k1
KXORQ k1, k2, k3
VEX.L1.66.0F.W1 47 /r RVR V/V AVX512BW Bitwise XOR 32 bits masks k2 and k3 and place result in k1
KXORD k1, k2, k3
Op/En Operand 1 Operand 2 Operand 3
RVR ModRM:reg (w) VEX.1vvv (r) ModRM:r/m (r, ModRM:[7:6] must be 11b)
6-20 Ref. # 319433-023
INSTRUCTION SET REFERENCE - OPMASK
This page was
intentionally left
blank.
Ref. # 319433-023 7-1
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
CHAPTER 7
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
This chapter describes additional 512-bit instruction extensions to accelerate specific application domain, such as
certain transcendental mathematic computations, or specific prefetch operations. These instructions operate on
512-bit ZMM, support opmask registers, are encoded using the same EVEX prefix encoding format, and require the
same operating system support as AVX-512 Foundation instructions. The application programming model
described in Chapter 2 also applies. Instructions described in this chapter follow the general documentation
convention established in Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A and 2B. Addi-
tional notations and conventions adopted in this document are listed in Section 5.1. Section 5.1.5.1 covers supple-
mental information that applies to a specific subset of instructions.
The instructions VEXP2PD/VEXP2PS/VRCP28xx/VRSQRT28xx, also known as Intel AVX-512 Exponential and Recip-
rocal instructions, provide building blocks for accelerating certain transcendental math computations. The instruc-
tions VGATHERPF0xxx/VGATHERPF1xxx/VSCATTERPF0xxx/VSCATTERPF1xxx, Intel AVX-512 Prefetch instructions,
can be useful for reducing memory operation latency exposure that involve gather/scatter instructions.
7.1 DETECTION OF 512-BIT INSTRUCTION EXTENSIONS
Processor support of the Intel AVX-512 Exponential and Reciprocal instructions are indicated by querying the
feature flag:
If CPUID.(EAX=07H, ECX=0):EBX.AVX512ER[bit 27] = 1, the collection of
VEXP2PD/VEXP2PS/VRCP28xx/VRSQRT28xx instructions are supported
Processor support of the Intel AVX-512 Prefetch instructions are indicated by querying the feature flag:
If CPUID.(EAX=07H, ECX=0):EBX.AVX512PF[bit 26] = 1, a collection of
VGATHERPF0xxx/VGATHERPF1xxx/VSCATTERPF0xxx/VSCATTERPF1xxx instructions are supported.
Detection of 512-bit instructions operating on ZMM states and opmask registers, outside of AVX-512 Foundation,
need to follow the general procedural flow in Figure 7-1.
Procedural Flow of Application Detection of other 512-bit extensions:
Prior to using the Intel AVX-512 Exponential and Reciprocal instructions, the application must identify that the
operating system supports the XGETBV instruction, the ZMM register state, in addition to processors support for
Figure 7-1. Procedural Flow of Application Detection of 512-bit Instructions
Implied HW support for
Check enabled state in
XCR0 via XGETBV
Check AVX512F and
additional 512-bit flags
Check feature flag
CPUID.1H:ECX.OSXSAVE = 1?
OS provides processor
extended state management
States ok to use
XSAVE, XRSTOR, XGETBV, XCR0
enabled Instructions
Yes
YMM,ZMM
Opmask,
7-2 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
ZMM state management using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified
sequence accomplishes both and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use)
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).
3) Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, and CPUID.0x7.0:EBX.AVX512ER[bit 27] = 1.
Prior to using the Intel AVX-512 Prefetch instructions, the application must identify that the operating system
supports the XGETBV instruction, the ZMM register state, in addition to processor’s support for ZMM state manage-
ment using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified sequence accomplishes
both and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use)
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).
3) Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, and CPUID.0x7.0:EBX.AVX512PF[bit 26] = 1.
7.2 INSTRUCTION SET REFERENCE
Ref. # 319433-023 7-3
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VEXP2PD—Approximation to the Exponential 2^x of Packed Double-Precision Floating-Point
Values with Less Than 2^-23 Relative Error
Instruction Operand Encoding
Description
Computes the approximate base-2 exponential evaluation of the double-precision floating-point values in the
source operand (the second operand) and stores the results to the destination operand (the first operand) using
the writemask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FZ.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VEXP2PD
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] EXP2_23_DP(SRC[63:0])
ELSE DEST[i+63:i] EXP2_23_DP(SRC[i+63:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI;
FI;
ENDFOR;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W1 C8 /r FV V/V AVX512ER Computes approximations to the exponential 2^x (with less
than 2^-23 of maximum relative error) of the packed double-
precision floating-point values from zmm2/m512/m64bcst and
stores the floating-point result in zmm1with writemask k1.
VEXP2PD zmm1 {k1}{z},
zmm2/m512/m64bcst {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (r, w) ModRM:r/m (r) NA NA
7-4 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VEXP2PD __m512d _mm512_exp2a23_round_pd (__m512d a, int sae);
VEXP2PD __m512d _mm512_mask_exp2a23_round_pd (__m512d a, __mmask8 m, __m512d b, int sae);
VEXP2PD __m512d _mm512_maskz_exp2a23_round_pd ( __mmask8 m, __m512d b, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Overflow
Other Exceptions
See Exceptions Type E2.
Table 7-1. Special Values Behavior
Source Input Result Comments
NaN QNaN(src) If (SRC = SNaN) then #I
++
+/-0 1.0f Exact result
-+0.0f
Integral value N 2^ (N) Exact result
Ref. # 319433-023 7-5
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VEXP2PS—Approximation to the Exponential 2^x of Packed Single-Precision Floating-Point
Values with Less Than 2^-23 Relative Error
Instruction Operand Encoding
Description
Computes the approximate base-2 exponential evaluation of the single-precision floating-point values in the
source operand (the second operand) and store the results in the destination operand (the first operand) using the
writemask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FZ.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VEXP2PS
(KL, VL) = (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] EXP2_23_SP(SRC[31:0])
ELSE DEST[i+31:i] EXP2_23_SP(SRC[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W0 C8 /r FV V/V AVX512ER Computes approximations to the exponential 2^x (with less
than 2^-23 of maximum relative error) of the packed single-
precision floating-point values from zmm2/m512/m32bcst and
stores the floating-point result in zmm1with writemask k1.
VEXP2PS zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (r, w) ModRM:r/m (r) NA NA
7-6 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VEXP2PS __m512 _mm512_exp2a23_round_ps (__m512 a, int sae);
VEXP2PS __m512 _mm512_mask_exp2a23_round_ps (__m512 a, __mmask16 m, __m512 b, int sae);
VEXP2PS __m512 _mm512_maskz_exp2a23_round_ps (__mmask16 m, __m512 b, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Overflow
Other Exceptions
See Exceptions Type E2.
Table 7-2. Special Values Behavior
Source Input Result Comments
NaN QNaN(src) If (SRC = SNaN) then #I
++
+/-0 1.0f Exact result
-+0.0f
Integral value N 2^ (N) Exact result
Ref. # 319433-023 7-7
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VRCP28PD—Approximation to the Reciprocal of Packed Double-Precision Floating-Point Values
with Less Than 2^-28 Relative Error
Instruction Operand Encoding
Description
Computes the reciprocal approximation of the float64 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
2^-28 of maximum relative error.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±, ±0.0 is returned for that element. Also, if any source element is ±0.0, ± is returned for that element.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VRCP28PD (EVEX encoded versions)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] RCP_28_DP(1.0/SRC[63:0]);
ELSE DEST[i+63:i] RCP_28_DP(1.0/SRC[i+63:i]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI;
FI;
ENDFOR;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W1 CA /r FV V/V AVX512ER Computes the approximate reciprocals ( < 2^-28 relative error)
of the packed double-precision floating-point values in
zmm2/m512/m64bcst and stores the results in zmm1. Under
writemask.
VRCP28PD zmm1 {k1}{z},
zmm2/m512/m64bcst {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
7-8 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VRCP28PD __m512d _mm512_rcp28_round_pd ( __m512d a, int sae);
VRCP28PD __m512d _mm512_mask_rcp28_round_pd(__m512d a, __mmask8 m, __m512d b, int sae);
VRCP28PD __m512d _mm512_maskz_rcp28_round_pd( __mmask8 m, __m512d b, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero
Other Exceptions
See Exceptions Type E2.
Table 7-3. VRCP28PD Special Cases
Input value Result value Comments
NAN QNAN(input) If (SRC = SNaN) then #I
0 X < 2-1022 INF Positive input denormal or zero; #Z
-2-1022 < X -0 -INF Negative input denormal or zero; #Z
X > 21022 +0.0f
X < -21022 -0.0f
X = ++0.0f
X = --0.0f
X = 2-n 2nExact result (unless input/output is a denormal)
X = -2-n -2nExact result (unless input/output is a denormal)
Ref. # 319433-023 7-9
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VRCP28SD—Approximation to the Reciprocal of Scalar Double-Precision Floating-Point Value
with Less Than 2^-28 Relative Error
Instruction Operand Encoding
Description
Computes the reciprocal approximation of the low float64 value in the second source operand (the third operand)
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with
less than 2^-28 of maximum relative error. The result is written into the low float64 element of the destination
operand according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the first source
operand (the second operand).
A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result
is flushed to zero and does not signal #UE, irrespective of MXCSR.FZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±, ±0.0 is returned for that element. Also, if any source element is ±0.0, ± is returned for that element.
The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory
location. The destination operand is a XMM register, conditionally updated using writemask k1.
Operation
VRCP28SD ((EVEX encoded versions)
IF k1[0] OR *no writemask* THEN
DEST[63: 0] RCP_28_DP(1.0/SRC2[63: 0]);
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking
DEST[63: 0] 0
FI;
FI;
ENDFOR;
DEST[127:64] SRC1[127: 64]
DEST[MAX_VL-1:128] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W1 CB /r T1S V/V AVX512ER Computes the approximate reciprocal ( < 2^-28 relative
error) of the scalar double-precision floating-point value
in xmm3/m64 and stores the results in xmm1. Under
writemask. Also, upper double-precision floating-point
value (bits[127:64]) from xmm2 is copied to
xmm1[127:64].
VRCP28SD xmm1 {k1}{z}, xmm2,
xmm3/m64 {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
7-10 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VRCP28SD __m128d _mm_rcp28_round_sd ( __m128d a, __m128d b, int sae);
VRCP28SD __m128d _mm_mask_rcp28_round_sd(__m128d s, __mmask8 m, __m128d a, __m128d b, int sae);
VRCP28SD __m128d _mm_maskz_rcp28_round_sd(__mmask8 m, __m128d a, __m128d b, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero
Other Exceptions
See Exceptions Type E3.
Table 7-4. VRCP28SD Special Cases
Input value Result value Comments
NAN QNAN(input) If (SRC = SNaN) then #I
0 X < 2-1022 INF Positive input denormal or zero; #Z
-2-1022 < X -0 -INF Negative input denormal or zero; #Z
X > 21022 +0.0f
X < -21022 -0.0f
X = ++0.0f
X = --0.0f
X = 2-n 2nExact result (unless input/output is a denormal)
X = -2-n -2nExact result (unless input/output is a denormal)
Ref. # 319433-023 7-11
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VRCP28PS—Approximation to the Reciprocal of Packed Single-Precision Floating-Point Values
with Less Than 2^-28 Relative Error
Instruction Operand Encoding
Description
Computes the reciprocal approximation of the float32 values in the source operand (the second operand) and store
the results to the destination operand (the first operand) using the writemask k1. The approximate reciprocal is
evaluated with less than 2^-28 of maximum relative error prior to final rounding. The final results are rounded to
< 2^-23 relative error before written to the destination.
Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results
are flushed to zeros and do not signal #UE, irrespective of MXCSR.FZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±, ±0.0 is returned for that element. Also, if any source element is ±0.0, ± is returned for that element.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VRCP28PS (EVEX encoded versions)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] RCP_28_SP(1.0/SRC[31:0]);
ELSE DEST[i+31:i] RCP_28_SP(1.0/SRC[i+31:i]);
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W0 CA /r FV V/V AVX512ER Computes the approximate reciprocals ( < 2^-28 relative
error) of the packed single-precision floating-point values in
zmm2/m512/m32bcst and stores the results in zmm1. Under
writemask.
VRCP28PS zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
7-12 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VRCP28PS _mm512_rcp28_round_ps ( __m512 a, int sae);
VRCP28PS __m512 _mm512_mask_rcp28_round_ps(__m512 s, __mmask16 m, __m512 a, int sae);
VRCP28PS __m512 _mm512_maskz_rcp28_round_ps( __mmask16 m, __m512 a, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero
Other Exceptions
See Exceptions Type E2.
Table 7-5. VRCP28PS Special Cases
Input value Result value Comments
NAN QNAN(input) If (SRC = SNaN) then #I
0 X < 2-126 INF Positive input denormal or zero; #Z
-2-126 < X -0 -INF Negative input denormal or zero; #Z
X > 2126 +0.0f
X < -2126 -0.0f
X = ++0.0f
X = --0.0f
X = 2-n 2nExact result (unless input/output is a denormal)
X = -2-n -2nExact result (unless input/output is a denormal)
Ref. # 319433-023 7-13
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VRCP28SS—Approximation to the Reciprocal of Scalar Single-Precision Floating-Point Value
with Less Than 2^-28 Relative Error
Instruction Operand Encoding
Description
Computes the reciprocal approximation of the low float32 value in the second source operand (the third operand)
and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with
less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 relative
error before written into the low float32 element of the destination according to writemask k1. Bits 127:32 of the
destination is copied from the corresponding bits of the first source operand (the second operand).
A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result
is flushed to zero and does not signal #UE, irrespective of MXCSR.FZ.
If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is
±, ±0.0 is returned for that element. Also, if any source element is ±0.0, ± is returned for that element.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory
location. The destination operand is a XMM register, conditionally updated using writemask k1.
Operation
VRCP28SS ((EVEX encoded versions)
IF k1[0] OR *no writemask* THEN
DEST[31: 0] RCP_28_SP(1.0/SRC2[31: 0]);
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking
DEST[31: 0] 0
FI;
FI;
ENDFOR;
DEST[127:32] SRC1[127: 32]
DEST[MAX_VL-1:128] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W0 CB /r T1S V/V AVX512ER Computes the approximate reciprocal ( < 2^-28 relative
error) of the scalar single-precision floating-point value in
xmm3/m32 and stores the results in xmm1. Under
writemask. Also, upper 3 single-precision floating-point
values (bits[127:32]) from xmm2 is copied to
xmm1[127:32].
VRCP28SS xmm1 {k1}{z},
xmm2, xmm3/m32 {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
7-14 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VRCP28SS __m128 _mm_rcp28_round_ss ( __m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_mask_rcp28_round_ss(__m128 s, __mmask8 m, __m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_maskz_rcp28_round_ss(__mmask8 m, __m128 a, __m128 b, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero
Other Exceptions
See Exceptions Type E3.
Table 7-6. VRCP28SS Special Cases
Input value Result value Comments
NAN QNAN(input) If (SRC = SNaN) then #I
0 X < 2-126 INF Positive input denormal or zero; #Z
-2-126 < X -0 -INF Negative input denormal or zero; #Z
X > 2126 +0.0f
X < -2126 -0.0f
X = ++0.0f
X = --0.0f
X = 2-n 2nExact result (unless input/output is a denormal)
X = -2-n -2nExact result (unless input/output is a denormal)
Ref. # 319433-023 7-15
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double-Precision
Floating-Point Values with Less Than 2^-28 Relative Error
Instruction Operand Encoding
Description
Computes the reciprocal square root of the float64 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
2^-28 of maximum relative error.
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return - and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return - and set the DivByZero flag.
The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VRSQRT28PD (EVEX encoded versions)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+63:i] (1.0/ SQRT(SRC[63:0]));
ELSE DEST[i+63:i] (1.0/ SQRT(SRC[i+63:i]));
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] 0
FI;
FI;
ENDFOR;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W1 CC /r FV V/V AVX512ER Computes approximations to the Reciprocal square root (<2^-
28 relative error) of the packed double-precision floating-point
values from zmm2/m512/m64bcst and stores result in
zmm1with writemask k1.
VRSQRT28PD zmm1 {k1}{z},
zmm2/m512/m64bcst {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
7-16 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VRSQRT28PD __m512d _mm512_rsqrt28_round_pd(__m512d a, int sae);
VRSQRT28PD __m512d _mm512_mask_rsqrt28_round_pd(__m512d s, __mmask8 m,__m512d a, int sae);
VRSQRT28PD __m512d _mm512_maskz_rsqrt28_round_pd(__mmask8 m,__m512d a, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero
Other Exceptions
See Exceptions Type E2.
Table 7-7. VRSQRT28PD Special Cases
Input value Result value Comments
NAN QNAN(input) If (SRC = SNaN) then #I
X = 2-2n 2n
X < 0 QNaN_Indefinite Including -INF
X = -0 or negative denormal -INF #Z
X = +0 or positive denormal +INF #Z
X = +INF +0
Ref. # 319433-023 7-17
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision
Floating-Point Value with Less Than 2^-28 Relative Error
Instruction Operand Encoding
Description
Computes the reciprocal square root of the low float64 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 2^-28 of maximum relative error. The result is written into the low float64 element of xmm1
according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the first source operand
(the second operand).
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return - and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return - and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory
location. The destination operand is a XMM register.
Operation
VRSQRT28SD (EVEX encoded versions)
IF k1[0] OR *no writemask* THEN
DEST[63: 0] (1.0/ SQRT(SRC[63: 0]));
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking
DEST[63: 0] 0
FI;
FI;
ENDFOR;
DEST[127:64] SRC1[127: 64]
DEST[MAX_VL-1:128] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W1 CD /r T1S V/V AVX512ER Computes approximate reciprocal square root (<2^-28
relative error) of the scalar double-precision floating-point
value from xmm3/m64 and stores result in xmm1with
writemask k1. Also, upper double-precision floating-point
value (bits[127:64]) from xmm2 is copied to
xmm1[127:64].
VRSQRT28SD xmm1 {k1}{z},
xmm2, xmm3/m64 {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
7-18 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VRSQRT28SD __m128d _mm_rsqrt28_round_sd(__m128d a, __m128b b, int sae);
VRSQRT28SD __m128d _mm_mask_rsqrt28_round_pd(__m128d s, __mmask8 m,__m128d a, __m128d b, int sae);
VRSQRT28SD __m128d _mm_maskz_rsqrt28_round_pd( __mmask8 m,__m128d a, __m128d b, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero
Other Exceptions
See Exceptions Type E3.
Table 7-8. VRSQRT28SD Special Cases
Input value Result value Comments
NAN QNAN(input) If (SRC = SNaN) then #I
X = 2-2n 2n
X < 0 QNaN_Indefinite Including -INF
X = -0 or negative denormal -INF #Z
X = +0 or positive denormal +INF #Z
X = +INF +0
Ref. # 319433-023 7-19
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single-Precision
Floating-Point Values with Less Than 2^-28 Relative Error
Instruction Operand Encoding
Description
Computes the reciprocal square root of the float32 values in the source operand (the second operand) and store
the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than
2^-28 of maximum relative error prior to final rounding. The final results is rounded to < 2^-23 relative error
before written to the destination.
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return - and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return - and set the DivByZero flag.
The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit
memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Operation
VRSQRT28PS (EVEX encoded versions)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC *is memory*)
THEN DEST[i+31:i] (1.0/ SQRT(SRC[31:0]));
ELSE DEST[i+31:i] (1.0/ SQRT(SRC[i+31:i]));
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] 0
FI;
FI;
ENDFOR;
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W0 CC /r FV V/V AVX512ER Computes approximations to the Reciprocal square root
(<2^-28 relative error) of the packed single-precision
floating-point values from zmm2/m512/m32bcst and stores
result in zmm1with writemask k1.
VRSQRT28PS zmm1 {k1}{z},
zmm2/m512/m32bcst {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
FV ModRM:reg (w) ModRM:r/m (r) NA NA
7-20 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VRSQRT28PS __m512 _mm512_rsqrt28_round_ps(__m512 a, int sae);
VRSQRT28PS __m512 _mm512_mask_rsqrt28_round_ps(__m512 s, __mmask16 m,__m512 a, int sae);
VRSQRT28PS __m512 _mm512_maskz_rsqrt28_round_ps(__mmask16 m,__m512 a, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero
Other Exceptions
See Exceptions Type E2.
Table 7-9. VRSQRT28PS Special Cases
Input value Result value Comments
NAN QNAN(input) If (SRC = SNaN) then #I
X = 2-2n 2n
X < 0 QNaN_Indefinite Including -INF
X = -0 or negative denormal -INF #Z
X = +0 or positive denormal +INF #Z
X = +INF +0
Ref. # 319433-023 7-21
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-
Point Value with Less Than 2^-28 Relative Error
Instruction Operand Encoding
Description
Computes the reciprocal square root of the low float32 value in the second source operand (the third operand) and
store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated
with less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 rela-
tive error before written to the low float32 element of the destination according to the writemask k1. Bits 127:32 of
the destination is copied from the corresponding bits of the first source operand (the second operand).
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero)
source numbers, as well as -, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return - and set the DivByZero flags (#Z). Negative numbers should return NaN and set the
Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative
denormals return - and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory
location. The destination operand is a XMM register.
Operation
VRSQRT28SS (EVEX encoded versions)
IF k1[0] OR *no writemask* THEN
DEST[31: 0] (1.0/ SQRT(SRC[31: 0]));
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[31: 0] remains unchanged*
ELSE ; zeroing-masking
DEST[31: 0] 0
FI;
FI;
ENDFOR;
DEST[127:32] SRC1[127: 32]
DEST[MAX_VL-1:128] 0
Opcode/
Instruction
Op /
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.NDS.LIG.66.0F38.W0 CD /r T1S V/V AVX512ER Computes approximate reciprocal square root (<2^-28
relative error) of the scalar single-precision floating-point
value from xmm3/m32 and stores result in xmm1with
writemask k1. Also, upper 3 single-precision floating-point
value (bits[127:32]) from xmm2 is copied to
xmm1[127:32].
VRSQRT28SS xmm1 {k1}{z},
xmm2, xmm3/m32 {sae}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
7-22 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
VRSQRT28SS __m128 _mm_rsqrt28_round_ss(__m128 a, __m128 b, int sae);
VRSQRT28SS __m128 _mm512_mask_rsqrt28_round_ss(__m128 s, __mmask8 m,__m128 a,__m128 b, int sae);
VRSQRT28SS __m128 _mm512_maskz_rsqrt28_round_ss(__mmask8 m,__m128 a,__m128 b, int sae);
SIMD Floating-Point Exceptions
Invalid (if SNaN input), Divide-by-zero
Other Exceptions
See Exceptions Type E3.
Table 7-10. VRSQRT28SS Special Cases
Input value Result value Comments
NAN QNAN(input) If (SRC = SNaN) then #I
X = 2-2n 2n
X < 0 QNaN_Indefinite Including -INF
X = -0 or negative denormal -INF #Z
X = +0 or positive denormal +INF #Z
X = +INF +0
Ref. # 319433-023 7-23
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T0 Hint
Instruction Operand Encoding
Description
The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T0):
• T0 (temporal data)—prefetch data into the first level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W0 C6 /1 /vsib T1S V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing single-precision data
using opmask k1 and T0 hint.
VGATHERPF0DPS vm32z {k1}
EVEX.512.66.0F38.W0 C7 /1 /vsib T1S V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing single-precision data
using opmask k1 and T0 hint.
VGATHERPF0QPS vm64z {k1}
EVEX.512.66.0F38.W1 C6 /1 /vsib T1S V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing double-precision data
using opmask k1 and T0 hint.
VGATHERPF0DPD vm32y {k1}
EVEX.512.66.0F38.W1 C7 /1 /vsib T1S V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing double-precision data
using opmask k1 and T0 hint.
VGATHERPF0QPD vm64z {k1}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index
NA NA NA
7-24 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VGATHERPF0DPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 0)
FI;
ENDFOR
VGATHERPF0DPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 0)
FI;
ENDFOR
VGATHERPF0QPS (EVEX encoded version)
(KL, VL) = (8, 256)
FOR j 0 TO KL-1
i j * 64
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 0)
FI;
ENDFOR
VGATHERPF0QPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 64
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 0)
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalent
VGATHERPF0DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF0DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPF0QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF0QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12NP.
Ref. # 319433-023 7-25
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T1 Hint
Instruction Operand Encoding
Description
The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T1):
• T1 (temporal data)—prefetch data into the second level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W0 C6 /2 /vsib T1S V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing single-precision data using
opmask k1 and T1 hint.
VGATHERPF1DPS vm32z {k1}
EVEX.512.66.0F38.W0 C7 /2 /vsib T1S V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing single-precision data using
opmask k1 and T1 hint.
VGATHERPF1QPS vm64z {k1}
EVEX.512.66.0F38.W1 C6 /2 /vsib T1S V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing double-precision data using
opmask k1 and T1 hint.
VGATHERPF1DPD vm32y {k1}
EVEX.512.66.0F38.W1 C7 /2 /vsib T1S V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing double-precision data using
opmask k1 and T1 hint.
VGATHERPF1QPD vm64z {k1}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index
NA NA NA
7-26 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VGATHERPF1DPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 0)
FI;
ENDFOR
VGATHERPF1DPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 0)
FI;
ENDFOR
VGATHERPF1QPS (EVEX encoded version)
(KL, VL) = (8, 256)
FOR j 0 TO KL-1
i j * 64
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 0)
FI;
ENDFOR
VGATHERPF1QPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 64
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 0)
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalent
VGATHERPF1DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint);
VGATHERPF1QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
VGATHERPF1QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12NP.
Ref. # 319433-023 7-27
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T0 Hint with Intent
to Write
Instruction Operand Encoding
Description
The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
cache lines will be brought into exclusive state (RFO) specified by a locality hint (T0):
• T0 (temporal data)—prefetch data into the first level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W0 C6 /5 /vsib T1S V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing single-precision data using
writemask k1 and T0 hint with intent to write.
VSCATTERPF0DPS vm32z {k1}
EVEX.512.66.0F38.W0 C7 /5 /vsib T1S V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing single-precision data using
writemask k1 and T0 hint with intent to write.
VSCATTERPF0QPS vm64z {k1}
EVEX.512.66.0F38.W1 C6 /5 /vsib T1S V/V AVX512PF Using signed dword indices, prefetch sparse byte
memory locations containing double-precision data
using writemask k1 and T0 hint with intent to write.
VSCATTERPF0DPD vm32y {k1}
EVEX.512.66.0F38.W1 C7 /5 /vsib T1S V/V AVX512PF Using signed qword indices, prefetch sparse byte
memory locations containing double-precision data
using writemask k1 and T0 hint with intent to write.
VSCATTERPF0QPD vm64z {k1}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index
NA NA NA
7-28 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VSCATTERPF0DPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 1)
FI;
ENDFOR
VSCATTERPF0DPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 1)
FI;
ENDFOR
VSCATTERPF0QPS (EVEX encoded version)
(KL, VL) = (8, 256)
FOR j 0 TO KL-1
i j * 64
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 1)
FI;
ENDFOR
VSCATTERPF0QPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 64
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 1)
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalent
VSCATTERPF0DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPF0DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF0DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF0DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF0QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPS void _mm512_prefetch_i64scatter_ps(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF0QPS void _mm512_mask_prefetch_i64scatter_ps(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12NP.
Ref. # 319433-023 7-29
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch
Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T1 Hint with Intent
to Write
Instruction Operand Encoding
Description
The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The
elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only
be prefetched if their corresponding mask bit is one.
cache lines will be brought into exclusive state (RFO) specified by a locality hint (T1):
• T1 (temporal data)—prefetch data into the second level cache.
[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruc-
tion will prefetch eight values.
[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.
Note that:
(1) The prefetches may happen in any order (or not at all). The instruction is a hint.
(2) The mask is left unchanged.
(3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
(4) No FP nor memory faults may be produced by this instruction.
(5) Prefetches do not handle cache line splits
(6) A #UD is signaled if the memory operand is encoded without the SIB byte.
Operation
BASE_ADDR stands for the memory operand base address (a GPR); may not exist
VINDEX stands for the memory operand vector of indices (a vector register)
SCALE stands for the memory operand scalar (1, 2, 4 or 8)
DISP is the optional 1, 2 or 4 byte displacement
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.
Opcode/
Instruction
Op/
En
64/32
bit Mode
Support
CPUID
Feature
Flag
Description
EVEX.512.66.0F38.W0 C6 /6 /vsib T1S V/V AVX512PF Using signed dword indices, prefetch sparse byte memory
locations containing single-precision data using writemask
k1 and T1 hint with intent to write.
VSCATTERPF1DPS vm32z {k1}
EVEX.512.66.0F38.W0 C7 /6 /vsib T1S V/V AVX512PF Using signed qword indices, prefetch sparse byte memory
locations containing single-precision data using writemask
k1 and T1 hint with intent to write.
VSCATTERPF1QPS vm64z {k1}
EVEX.512.66.0F38.W1 C6 /6 /vsib T1S V/V AVX512PF Using signed dword indices, prefetch sparse byte memory
locations containing double-precision data using
writemask k1 and T1 hint with intent to write.
VSCATTERPF1DPD vm32y {k1}
EVEX.512.66.0F38.W1 C7 /6 /vsib T1S V/V AVX512PF Using signed qword indices, prefetch sparse byte memory
locations containing double-precision data using
writemask k1 and T1 hint with intent to write.
VSCATTERPF1QPD vm64z {k1}
Op/En Operand 1 Operand 2 Operand 3 Operand 4
T1S BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index
NA NA NA
7-30 Ref. # 319433-023
ADDITIONAL 512-BIT INSTRUCTION EXTENSIONS
VSCATTERPF1DPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j 0 TO KL-1
i j * 32
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 1)
FI;
ENDFOR
VSCATTERPF1DPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 32
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 1)
FI;
ENDFOR
VSCATTERPF1QPS (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 1)
FI;
ENDFOR
VSCATTERPF1QPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR j 0 TO KL-1
i j * 64
k j * 64
IF k1[j]
Prefetch( [BASE_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 1)
FI;
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalent
VSCATTERPF1DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPF1DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_prefetch_i64scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_mask_prefetch_i64scatter_ps(void *base, __mmask8 m, __m512i vdx, int scale, int hint);
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type E12NP.
Ref. # 319433-023 8-1
INTEL® SHA EXTENSIONS
CHAPTER 8
INTEL® SHA EXTENSIONS
8.1 OVERVIEW
This chapter describes a family of instruction extensions that target the acceleration of the Secure Hash Algorithm
(SHA), specifically the SHA-1 and SHA-256 variants. The instruction syntax generally has two operands (in one
case there is an implicit xmm0 register operand, in another a third immediate operand), where the first operand is
an XMM register that provides the source as input and is the destination storing the result as well. The second
source can be an XMM register or a 16-Byte aligned 128-bit memory location. In 64-bit mode, using a REX prefix
in the form REX.R permits the instructions to access additional registers (XMM8-XMM15). The SHA extensions do
not update any arithmetic flags and are valid in 32 and 64-bit modes. Exception behavior of the SHA extensions
follows type 4 defined in Chapter 2 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.
8.2 DETECTION OF INTEL SHA EXTENSIONS
A processor supports Intel SHA extensions if CPUID.(EAX=07H, ECX=0):EBX.SHA [bit 29] = 1. The SHA exten-
sions require only XMM state support on operating systems, similar to SSE2 instructions.
8.2.1 Common Transformations and Primitive Functions
The following primitive functions and transformations are used in the algorithmic descriptions of SHA1 and SHA256
instruction extensions SHA1NEXTE, SHA1RNDS4, SHA1MSG1, SHA1MSG2, SHA256RNDS4, SHA256MSG1 and
SHA256MSG2. The operands of these primitives and transformation are generally 32-bit DWORD integers.
f0(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This
function is used in SHA1 round 1 to 20 processing.
f0(B,C,D) (B AND C) XOR ((NOT(B) AND D)
f1(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This
function is used in SHA1 round 21 to 40 processing.
f1(B,C,D) B XOR C XOR D
f2(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This
function is used in SHA1 round 41 to 60 processing.
f2(B,C,D) (B AND C) XOR (B AND D) XOR (C AND D)
f3(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This
function is used in SHA1 round 61 to 80 processing. It is the same as f1().
f3(B,C,D) B XOR C XOR D
Ch(): A bit oriented logical operation that derives a new dword from three SHA256 state variables (dword).
Ch(E,F,G) (E AND F) XOR ((NOT E) AND G)
Maj(): A bit oriented logical operation that derives a new dword from three SHA256 state variables (dword).
Maj(A,B,C) (A AND B) XOR (A AND C) XOR (B AND C)
ROR is rotate right operation
8-2 Ref. # 319433-023
INTEL® SHA EXTENSIONS
(A ROR N) A[N-1:0] || A[Width-1:N]
ROL is rotate left operation
(A ROL N) A ROR (Width-N)
SHR is the right shift operation
(A SHR N) ZEROES[N-1:0] || A[Width-1:N]
Σ0( ): A bit oriented logical and rotational transformation performed on a dword SHA256 state variable.
Σ0(A) (A ROR 2) XOR (A ROR 13) XOR (A ROR 22)
Σ1( ): A bit oriented logical and rotational transformation performed on a dword SHA256 state variable.
Σ1(E) (E ROR 6) XOR (E ROR 11) XOR (E ROR 25)
σ0( ): A bit oriented logical and rotational transformation performed on a SHA256 message dword used in the
message scheduling.
σ0(W) (W ROR 7) XOR (W ROR 18) XOR (W SHR 3)
σ1( ): A bit oriented logical and rotational transformation performed on a SHA256 message dword used in the
message scheduling.
σ1(W) (W ROR 17) XOR (W ROR 19) XOR (W SHR 10)
Ki: SHA1 Constants dependent on immediate i.
K0 = 0x5A827999
K1 = 0x6ED9EBA1
K2 = 0X8F1BBCDC
K3 = 0xCA62C1D6
8.3 SHA EXTENSIONS REFERENCE
Ref. # 319433-023 8-3
INTEL® SHA EXTENSIONS
SHA1RNDS4—Perform Four Rounds of SHA1 Operation
Instruction Operand Encoding
Description
The SHA1RNDS4 instruction performs four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D) from the
first operand (which is a source operand and the destination operand) and some pre-computed sum of the next 4
round message dwords, and state variable E from the second operand (a source operand). The updated SHA1 state
(A,B,C,D) after four rounds of processing is stored in the destination operand.
Operation
SHA1RNDS4
The function f() and Constant K are dependent on the value of the immediate.
IF ( imm8[1:0] = 0 )
THEN f() f0(), K K0;
ELSE IF ( imm8[1:0] = 1 )
THEN f() f1(), K K1;
ELSE IF ( imm8[1:0] = 2 )
THEN f() f2(), K K2;
ELSE IF ( imm8[1:0] = 3 )
THEN f() f3(), K K3;
FI;
A SRC1[127:96];
B SRC1[95:64];
C SRC1[63:32];
D SRC1[31:0];
W0E SRC2[127:96];
W1 SRC2[95:64];
W2 SRC2[63:32];
W3 SRC2[31:0];
Round i = 0 operation:
A_1 f (B, C, D) + (A ROL 5) +W0E +K;
B_1 A;
C_1 B ROL 30;
D_1 C;
E_1 D;
FOR i = 1 to 3
A_(i +1) f (B_i, C_i, D_i) + (A_i ROL 5) +Wi+ E_i +K;
B_(i +1) A_i;
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 3A CC /r ib RMI V/V SHA Performs four rounds of SHA1 operation operating on SHA1 state
(A,B,C,D) from xmm1, with a pre-computed sum of the next 4
round message dwords and state variable E from xmm2/m128.
The immediate byte controls logic functions and round constants
SHA1RNDS4 xmm1,
xmm2/m128, imm8
Op/En Operand 1 Operand 2 Operand 3
RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8
8-4 Ref. # 319433-023
INTEL® SHA EXTENSIONS
C_(i +1) B_i ROL 30;
D_(i +1) C_i;
E_(i +1) D_i;
ENDFOR
DEST[127:96] A_4;
DEST[95:64] B_4;
DEST[63:32] C_4;
DEST[31:0] D_4;
Intel C/C++ Compiler Intrinsic Equivalent
SHA1RNDS4: __m128i _mm_sha1rnds4_epu32(__m128i, __m128i, const int);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type 4.
Ref. # 319433-023 8-5
INTEL® SHA EXTENSIONS
SHA1NEXTE—Calculate SHA1 State Variable E after Four Rounds
Instruction Operand Encoding
Description
The SHA1NEXTE calculates the SHA1 state variable E after four rounds of operation from the current SHA1 state
variable A in the destination operand. The calculated value of the SHA1 state variable E is added to the source
operand, which contains the scheduled dwords.
Operation
SHA1NEXTE
TMP (SRC1[127:96] ROL 30);
DEST[127:96] SRC2[127:96] + TMP;
DEST[95:64] SRC2[95:64];
DEST[63:32] SRC2[63:32];
DEST[31:0] SRC2[31:0];
Intel C/C++ Compiler Intrinsic Equivalent
SHA1NEXTE: __m128i _mm_sha1nexte_epu32(__m128i, __m128i);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type 4.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 38 C8 /r RM V/V SHA Calculates SHA1 state variable E after four rounds of operation
from the current SHA1 state variable A in xmm1. The calculated
value of the SHA1 state variable E is added to the scheduled
dwords in xmm2/m128, and stored with some of the scheduled
dwords in xmm1
SHA1NEXTE xmm1,
xmm2/m128
Op/En Operand 1 Operand 2 Operand 3
RM ModRM:reg (r, w) ModRM:r/m (r) NA
8-6 Ref. # 319433-023
INTEL® SHA EXTENSIONS
SHA1MSG1—Perform an Intermediate Calculation for the Next Four SHA1 Message Dwords
Instruction Operand Encoding
Description
The SHA1MSG1 instruction is one of two SHA1 message scheduling instructions. The instruction performs an inter-
mediate calculation for the next four SHA1 message dwords.
Operation
SHA1MSG1
W0 SRC1[127:96] ;
W1 SRC1[95:64] ;
W2 SRC1[63: 32] ;
W3 SRC1[31: 0] ;
W4 SRC2[127:96] ;
W5 SRC2[95:64] ;
DEST[127:96] W2 XOR W0;
DEST[95:64] W3 XOR W1;
DEST[63:32] W4 XOR W2;
DEST[31:0] W5 XOR W3;
Intel C/C++ Compiler Intrinsic Equivalent
SHA1MSG1: __m128i _mm_sha1msg1_epu32(__m128i, __m128i);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type 4.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 38 C9 /r RM V/V SHA Performs an intermediate calculation for the next four SHA1
message dwords using previous message dwords from xmm1 and
xmm2/m128, storing the result in xmm1
SHA1MSG1 xmm1,
xmm2/m128
Op/En Operand 1 Operand 2 Operand 3
RM ModRM:reg (r, w) ModRM:r/m (r) NA
Ref. # 319433-023 8-7
INTEL® SHA EXTENSIONS
SHA1MSG2—Perform a Final Calculation for the Next Four SHA1 Message Dwords
Instruction Operand Encoding
Description
The SHA1MSG2 instruction is one of two SHA1 message scheduling instructions. The instruction performs the final
calculation to derive the next four SHA1 message dwords.
Operation
SHA1MSG2
W13 SRC2[95:64] ;
W14 SRC2[63: 32] ;
W15 SRC2[31: 0] ;
W16 (SRC1[127:96] XOR W13 ) ROL 1;
W17 (SRC1[95:64] XOR W14) ROL 1;
W18 (SRC1[63: 32] XOR W15) ROL 1;
W19 (SRC1[31: 0] XOR W16) ROL 1;
DEST[127:96] W16;
DEST[95:64] W17;
DEST[63:32] W18;
DEST[31:0] W19;
Intel C/C++ Compiler Intrinsic Equivalent
SHA1MSG2: __m128i _mm_sha1msg2_epu32(__m128i, __m128i);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type 4.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 38 CA /r RM V/V SHA Performs the final calculation for the next four SHA1 message
dwords using intermediate results from xmm1 and the previous
message dwords from xmm2/m128, storing the result in xmm1
SHA1MSG2 xmm1,
xmm2/m128
Op/En Operand 1 Operand 2 Operand 3
RM ModRM:reg (r, w) ModRM:r/m (r) NA
8-8 Ref. # 319433-023
INTEL® SHA EXTENSIONS
SHA256RNDS2—Perform Two Rounds of SHA256 Operation
Instruction Operand Encoding
Description
The SHA256RNDS2 instruction performs 2 rounds of SHA256 operation using an initial SHA256 state (C,D,G,H)
from the first operand, an initial SHA256 state (A,B,E,F) from the second operand, and a pre-computed sum of the
next 2 round message dwords and the corresponding round constants from the implicit operand xmm0. Note that
only the two lower dwords of XMM0 are used by the instruction.
The updated SHA256 state (A,B,E,F) is written to the first operand, and the second operand can be used as the
updated state (C,D,G,H) in later rounds.
Operation
SHA256RNDS2
A_0 SRC2[127:96];
B_0 SRC2[95:64];
C_0 SRC1[127:96];
D_0 SRC1[95:64];
E_0 SRC2[63:32];
F_0 SRC2[31:0];
G_0 SRC1[63:32];
H_0 SRC1[31:0];
WK0 XMM0[31: 0];
WK1 XMM0[63: 32];
FOR i = 0 to 1
A_(i +1) Ch (E_i, F_i, G_i) +Σ1( E_i) +WKi+ H_i + Maj(A_i , B_i, C_i) +Σ0( A_i);
B_(i +1) A_i;
C_(i +1) B_i ;
D_(i +1) C_i;
E_(i +1) Ch (E_i, F_i, G_i) +Σ1( E_i) +WKi+ H_i + D_i;
F_(i +1) E_i ;
G_(i +1) F_i;
H_(i +1) G_i;
ENDFOR
DEST[127:96] A_2;
DEST[95:64] B_2;
DEST[63:32] E_2;
DEST[31:0] F_2;
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 38 CB /r RM0 V/V SHA Perform 2 rounds of SHA256 operation using an initial SHA256
state (C,D,G,H) from xmm1, an initial SHA256 state (A,B,E,F) from
xmm2/m128, and a pre-computed sum of the next 2 round mes-
sage dwords and the corresponding round constants from the
implicit operand XMM0, storing the updated SHA256 state
(A,B,E,F) result in xmm1.
SHA256RNDS2 xmm1,
xmm2/m128, <XMM0>
Op/En Operand 1 Operand 2 Operand 3
RMI ModRM:reg (r, w) ModRM:r/m (r) Implicit XMM0 (r)
Ref. # 319433-023 8-9
INTEL® SHA EXTENSIONS
Intel C/C++ Compiler Intrinsic Equivalent
SHA256RNDS2: __m128i _mm_sha256rnds2_epu32(__m128i, __m128i, __m128i);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type 4.
8-10 Ref. # 319433-023
INTEL® SHA EXTENSIONS
SHA256MSG1—Perform an Intermediate Calculation for the Next Four SHA256 Message
Dwords
Instruction Operand Encoding
Description
The SHA256MSG1 instruction is one of two SHA256 message scheduling instructions. The instruction performs an
intermediate calculation for the next four SHA256 message dwords.
Operation
SHA256MSG1
W4 SRC2[31: 0] ;
W3 SRC1[127:96] ;
W2 SRC1[95:64] ;
W1 SRC1[63: 32] ;
W0 SRC1[31: 0] ;
DEST[127:96] W3 + σ0( W4);
DEST[95:64] W2 + σ0( W3);
DEST[63:32] W1 + σ0( W2);
DEST[31:0] W0 + σ0( W1);
Intel C/C++ Compiler Intrinsic Equivalent
SHA256MSG1: __m128i _mm_sha256msg1_epu32(__m128i, __m128i);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type 4.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 38 CC /r RM V/V SHA Performs an intermediate calculation for the next four SHA256
message dwords using previous message dwords from xmm1 and
xmm2/m128, storing the result in xmm1
SHA256MSG1 xmm1,
xmm2/m128
Op/En Operand 1 Operand 2 Operand 3
RM ModRM:reg (r, w) ModRM:r/m (r) NA
Ref. # 319433-023 8-11
INTEL® SHA EXTENSIONS
SHA256MSG2—Perform a Final Calculation for the Next Four SHA256 Message Dwords
Instruction Operand Encoding
Description
The SHA256MSG2 instruction is one of two SHA2 message scheduling instructions. The instruction performs the
final calculation for the next four SHA256 message dwords.
Operation
SHA256MSG2
W14 SRC2[95:64] ;
W15 SRC2[127:96] ;
W16 SRC1[31: 0] + σ1( W14) ;
W17 SRC1[63: 32] + σ1( W15) ;
W18 SRC1[95: 64] + σ1( W16) ;
W19 SRC1[127: 96] + σ1( W17) ;
DEST[127:96] W19 ;
DEST[95:64] W18 ;
DEST[63:32] W17 ;
DEST[31:0] W16;
Intel C/C++ Compiler Intrinsic Equivalent
SHA256MSG2 : __m128i _mm_sha256msg2_epu32(__m128i, __m128i);
Flags Affected
None
SIMD Floating-Point Exceptions
None
Other Exceptions
See Exceptions Type 4.
Opcode/
Instruction
Op/En 64/32
bit Mode
Support
CPUID
Feature
Flag
Description
0F 38 CD /r RM V/V SHA Performs the final calculation for the next four SHA256 message
dwords using previous message dwords from xmm1 and
xmm2/m128, storing the result in xmm1
SHA256MSG2 xmm1,
xmm2/m128
Op/En Operand 1 Operand 2 Operand 3
RM ModRM:reg (r, w) ModRM:r/m (r) NA
8-12 Ref. # 319433-023
INTEL® SHA EXTENSIONS
This page was
intentionally left
blank.
Ref. # 319433-023 9-1
ADDITIONAL NEW INSTRUCTIONS
CHAPTER 9
ADDITIONAL NEW INSTRUCTIONS
This chapter describes additional new instructions for future Intel 64 processors.
9.1 INSTRUCTION FORMAT
The format used for describing each instruction as in the example below is described in Chapter 3 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A.
9.2 INSTRUCTION SET REFERENCE
9-2 Ref. # 319433-023
ADDITIONAL NEW INSTRUCTIONS
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint
Instruction Operand Encoding
Description
Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy specified by an intent to write hint (so that data is brought into ‘Exclusive’ state via a request for
ownership) and a locality hint:
• T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.
The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to
unpredictable behavior.)
If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.
The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.
The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can occur
at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to the
fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is also
unordered with respect to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruction. It
is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.
Prefetch (m8, Level = 1, EXCLUSIVE=1);
Flags Affected
All flags are affected
C/C++ Compiler Intrinsic Equivalent
void _mm_prefetch( char const *, int hint= _MM_HINT_ET1);
Protected Mode Exceptions
#UD If the LOCK prefix is used.
Opcode/
Instruction
Op/
En
64/32 bit
Mode
Support
CPUID Feature
Flag
Description
0F 0D /2
PREFETCHWT1 m8
M V/V PREFETCHWT1 Move data from m8 closer to the processor using T1 hint
with intent to write.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MModRM:r/m (r) NA NA NA
Ref. # 319433-023 9-3
ADDITIONAL NEW INSTRUCTIONS
Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.
Compatibility Mode Exceptions
#UD If the LOCK prefix is used.
64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
9-4 Ref. # 319433-023
ADDITIONAL NEW INSTRUCTIONS
This page was
intentionally left
blank.
Ref. # 319433-023 10-1
MEMORY INSTRUCTIONS
CHAPTER 10
MEMORY INSTRUCTIONS
This chapter describes new instructions for future Intel processor generations that provide enhancements in appli-
cation memory operation and the use of persistent memory.
10.1 DETECTION OF NEW INSTRUCTIONS
Hardware support for CLFLUSHOPT is indicated by:
CPUID.(EAX=07H, ECX=0H):EBX.CLFLUSHOPT[bit 23]=1 indicates the processor supports CLFLUSHOPT
instruction.
Hardware support for CLWB is indicated by:
CPUID.(EAX=07H, ECX=0H):EBX.CLWB[bit 24]=1 indicates the processor supports CLWB instruction.
Software query the availability of PCOMMIT by examining:
CPUID.(EAX=07H, ECX=0H):EBX.PCOMMIT[bit 22], If 1, indicates the processor supports PCOMMIT instruc-
tion.
10.2 PERSISTENT MEMORY
Persistent memory refers to Non-Volatile Memory (NVM) attached to the processor memory subsystem in a plat-
form. Non-volatility may be achieved through the use of battery-backed volatile memory, or through non-volatile
memory devices. The instruction set architecture enhancements described in this document is agnostic of the
specific technology used to achieve non-volatility of memory. The enhancement is also agnostic to the specific
usages of NVM, e.g. as fast paging device, block storage or cache emulation, or persistent memory. Support for
specific persistent memory technologies is platform dependent.
10.2.1 Accessing Persistent Memory
Persistent memory is accessible to software just like normal volatile main memory (DRAM), through the
processor’s load/store instructions. Accesses to persistent memory are subject to the same processor memory
model (with respect to cacheability, coherency, processor memory ordering, memory types, etc.) as accesses to
main volatile memory. This enables software to make use of the full breath of the IA instruction set architecture to
program persistent memory.
Since existing software (that works with volatile main memory) has no concept of associating persistence to
memory, persistent memory is reported distinctly from volatile main memory to system software (via ACPI, EFI
interfaces). Depending on the system software architecture, persistent memory may be managed by the operating
system memory manager, or may be managed through a block driver or file system driver in the storage software
stack.
10.2.2 Managing Persistence
Unlike volatile main memory, persistent memory may be used to store data durably, so that it is available across
system failures and restarts. However, stores to persistent memory share the same volatile micro-architectural
resources of the processor/platform as stores to volatile main memory. These include the processor store buffers,
coherency caches (L1/L2/LLC etc.), any memory-side caches, on-chip and off-chip interconnect buffers, memory
controller write buffers, etc. The data in a store to persistent memory becomes persistent (durable) only after it
has either been written to the targeted non-volatile device, or to some intermediate power-fail protected
storage/buffer. In case of a platform/power failure, the power-fail protection in the intermediate buffer guarantees
that the residual energy/capacitance in the platform is utilized to drain written data to the backing non-volatile
medium.
10-2 Ref. # 319433-023
MEMORY INSTRUCTIONS
In order for software to make use of the persistence property of memory, software minimally needs the following
support from the processor instruction set architecture:
1. Failure atomicity for writes: Failure atomicity refers to the maximum size (and alignment) of writes to
persistent memory by software that is guaranteed to be atomic (all or nothing) in case of power or system
failure. IA-32 and Intel-64 processors guarantee write atomicity for up to 64-bit accesses (aligned or
unaligned) to cached memory that fit in a cache line (64-byte aligned region). For such writes, software can
safely do in-place update of data in persistent memory and can assume all or nothing behavior. In-place
updates of persistent memory helps improve performance, as software does not have to incur the overheads
of copy-on-write or write-ahead-logging software techniques to guarantee write atomicity.
2. Efficient cache flushing: For performance reasons, accesses to persistent memory may be cached by the
processor caches. While caches significantly improve memory access latencies and processor performance,
caching requires software to ensure data from stores is indeed flushed from the volatile caches (written back
to memory), as part of making it persistent. New optimized cache flush instructions that avoid the
performance limitations of CLFLUSH are introduced. Section 10.4 provides the details of the CLFLUSHOPT and
CLWB instructions.
CLFLUSHOPT is defined to provide efficient cache flushing.
CLWB instruction (Cache Line Write Back) writes back modified data of a cacheline similar to CLFLUSHOPT,
but avoids invalidating the line from the cache (and instead transitions the line to non-modified state).
CLWB attempts to minimize the compulsory cache miss if the same data is accessed temporally after the
line is flushed.
3. Committing to Persistence: A store to persistent memory is not persistent until the store data reaches the
non-volatile memory device or an intermediate power-fail protected buffer. While cache flushing ensures the
data is out of the volatile caches, in modern platform architectures, the cache flush operation completes as
soon as the modified data write back is posted to the memory subsystem write buffers (and before the data
may have become persistent memory). Since the memory subsystem ensures the proper memory ordering
rules are met (such as subsequent read of the written data is serviced from the write buffers), this posted
behavior of writes is not visible to accesses to volatile memory. However this implies that to ensure writes to
persistent memory are indeed committed to persistence, software needs to flush any volatile write buffers or
caches in the memory subsystem. A new persistent commit instruction (PCOMMIT) is defined to commit write
data queued in the memory subsystem to persistent memory. Section 10.4 provides the details of the
PCOMMIT instruction.
4. Non-temporal Store Optimization: Software usages that require copying moderate to large amounts of
data from volatile to persistent memory (or across persistent memory) may benefit from the weakly ordered
non-temporal store operations (e.g., using MOVNTI instruction). Since the non-temporal store operations to
write back mapped memory are guaranteed to always implicitly invalidate the line from the caches and issue
the writes to memory (see Section 10.4.6.2. of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1), software can benefit from not having to explicitly flushing the caches after such writes
and instead simply fence the weakly ordered writes followed by a persistent commit operation as described in
Section 10.4.
Additional information on platform support of persistent memory configuration is described in Section 10.5.
10.3 INSTRUCTION FORMAT
The format used for describing each instruction as in the example below is described in Chapter 3 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.
Ref. # 319433-023 10-3
MEMORY INSTRUCTIONS
CLFLUSHOPT — Flush a Cache Line (THIS IS AN EXAMPLE)
Instruction Operand Encoding
10.4 INSTRUCTION SET REFERENCE
Opcode/
Instruction
Op/
En
64/32bit
Mode
Support
CPUID
Feature Flag
Description
66 0F AE /7
CLFLUSHOPT m8
MV/V CLFLUSHOPT Flushes cache line containing m8.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r) NA NA NA
10-4 Ref. # 319433-023
MEMORY INSTRUCTIONS
CLFLUSHOPT—Flush a Cache Line Optimized
Instruction Operand Encoding
Description
Writes back to memory the cache line (if dirty) that contains the linear address specified with the memory
operand from any level of the cache hierarchy in the cache coherence domain. The line is always invalidated from
the processor cache hierarchy. The source operand is a byte memory location.
The availability of CLFLUSHOPT instruction is indicated by the presence of the CPUID feature flag CLFLUSHOPT
(bit 23 of the EBX register, see “CPUID — CPU Identification” in this chapter). The aligned cache line size affected
is also indicated with the CPUID instruction (bits 8 through 15 of the EBX register when the initial value in the EAX
register is 1).
The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It
should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHh instructions can be used to provide the processor with hints for this speculative behavior. Because
this speculative fetching can occur at any time and is not tied to instruction execution, the CLFLUSHOPT instruc-
tion is not ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is,
data can be speculatively loaded into a cache line just before, during, or after the execution of a CLFLUSHOPT
instruction that references the cache line).
CLFLUSHOPT instruction is ordered only by store-fencing operations. For example, software can use an SFENCE,
MFENCE, XCHG, or LOCK-prefixed instructions to ensure that previous stores are included in the write-back.
CLFLUSHOPT instruction need not be ordered by another CLFLUSHOPT or CLWB instruction. CLFLUSHOPT is
implicitly ordered with older stores executed by the logical processor to the same cacheline address.
For usages that require efficient flushing of multiple cache lines, software is recommended to use CLFLUSHOPT
(with appropriate fencing) instead of CLFLUSH for improved performance.
Executions of CLFLUSHOPT interact with executions of PCOMMIT. The PCOMMIT instruction operates on certain
store-to-memory operations that have been accepted to memory (see description of “PCOMMIT—Persistent
Commit” for additional information on accepted to memory). CLFLUSHOPT executed for the same cache line as an
older store causes the store to become accepted to memory when the CLFLUSHOPT execution becomes globally
visible.
The CLFLUSHOPT instruction can be used at all privilege levels and is subject to all permission checking and faults
associated with a byte load. Like a load, the CLFLUSHOPT instruction sets the A bit but not the D bit in the page
tables.
In some implementations, the CLFLUSHOPT instruction may always cause transactional abort with Transactional
Synchronization Extensions (TSX). CLFLUSHOPT instruction is not expected to be commonly used inside typical
transactional regions. However, programmers must not rely on CLFLUSHOPT instruction to force a transactional
abort, since whether they cause transactional abort is implementation dependent.
Operation
Flush_Cache_Line_Optimized(m8);
Flags Affected
None.
Opcode/
Instruction
Op/
En
64/32 bit
Mode
Support
CPUID
Feature Flag
Description
66 0F AE /7
CLFLUSHOPT m8
MV/V CLFLUSHOPT Flushes cache line containing m8.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
MModRM:r/m (w) NA NA NA
Ref. # 319433-023 10-5
MEMORY INSTRUCTIONS
C/C++ Compiler Intrinsic Equivalent
CLFLUSHOPT void _mm_clflushopt(void const *p);
Protected Mode Exceptions
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.CLFLUSHOPT[bit 23] = 0.
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.CLFLUSHOPT[bit 23] = 0.
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.CLFLUSHOPT[bit 23] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
10-6 Ref. # 319433-023
MEMORY INSTRUCTIONS
CLWB—Cache Line Write Back
Instruction Operand Encoding
Description
Writes back to memory the cache line (if dirty) that contains the linear address specified with the memory
operand from any level of the cache hierarchy in the cache coherence domain. The line may be retained in the
cache hierarchy in non-modified state. Retaining the line in the cache hierarchy is a performance optimization
(treated as a hint by hardware) to reduce the possibility of cache miss on a subsequent access. Hardware may
choose to retain the line at any of the levels in the cache hierarchy, and in some cases, may invalidate the line
from the cache hierarchy. The source operand is a byte memory location.
The availability of CLWB instruction is indicated by the presence of the CPUID feature flag CLWB (bit 24 of the EBX
register, see “CPUID — CPU Identification” in this chapter). The aligned cache line size affected is also indicated
with the CPUID instruction (bits 8 through 15 of the EBX register when the initial value in the EAX register is 1).
The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It
should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHh instructions can be used to provide the processor with hints for this speculative behavior. Because
this speculative fetching can occur at any time and is not tied to instruction execution, the CLWB instruction is not
ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data can
be speculatively loaded into a cache line just before, during, or after the execution of a CLWB instruction that
references the cache line).
CLWB instruction is ordered only by store-fencing operations. For example, software can use an SFENCE,
MFENCE, XCHG, or LOCK-prefixed instructions to ensure that previous stores are included in the write-back.
CLWB instruction need not be ordered by another CLWB or CLFLUSHOPT instruction. CLWB is implicitly ordered
with older stores executed by the logical processor to the same address.
For usages that require only writing back modified data from cache lines to memory (do not require the line to be
invalidated), and expect to subsequently access the data, software is recommended to use CLWB (with appro-
priate fencing) instead of CLFLUSH or CLFLUSHOPT for improved performance.
Executions of CLWB interact with executions of PCOMMIT. The PCOMMIT instruction operates on certain store-to-
memory operations that have been accepted to memory. CLWB executed for the same cache line as an older store
causes the store to become accepted to memory when the CLWB execution becomes globally visible.
The CLWB instruction can be used at all privilege levels and is subject to all permission checking and faults asso-
ciated with a byte load. Like a load, the CLWB instruction sets the A bit but not the D bit in the page tables.
In some implementations, the CLWB instruction may always cause transactional abort with Transactional
Synchronization Extensions (TSX). CLWB instruction is not expected to be commonly used inside typical transac-
tional regions. However, programmers must not rely on CLWB instruction to force a transactional abort, since
whether they cause transactional abort is implementation dependent.
Operation
Cache_Line_Write_Back(m8);
Flags Affected
None.
Opcode/
Instruction
Op/
En
64/32 bit
Mode
Support
CPUID
Feature Flag
Description
66 0F AE /6
CLWB m8
MV/V CLWB Writes back modified cache line containing m8, and may
retain the line in cache hierarchy in non-modified state.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (w) NA NA NA
Ref. # 319433-023 10-7
MEMORY INSTRUCTIONS
C/C++ Compiler Intrinsic Equivalent
CLWB void _mm_clwb(void const *p);
Protected Mode Exceptions
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.CLWB[bit 24] = 0.
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.CLWB[bit 24] = 0.
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
Compatibility Mode Exceptions
Same exceptions as in protected mode.
64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.CLWB[bit 24] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
10-8 Ref. # 319433-023
MEMORY INSTRUCTIONS
PCOMMIT—Persistent Commit
Instruction Operand Encoding
Description
The PCOMMIT instruction causes certain store-to-memory operations to persistent memory ranges to become
persistent (power failure protected).1 Specifically, PCOMMIT applies to those stores that have been accepted to
memory.
While all store-to-memory operations are eventually accepted to memory, the following items specify the actions
software can take to ensure that they are accepted:
Non-temporal stores to write-back (WB) memory and all stores to uncacheable (UC), write-combining (WC),
and write-through (WT) memory are accepted to memory as soon as they are globally visible.
If, after an ordinary store to write-back (WB) memory becomes globally visible, CLFLUSH, CLFLUSHOPT, or
CLWB is executed for the same cache line as the store, the store is accepted to memory when the CLFLUSH,
CLFLUSHOPT or CLWB execution itself becomes globally visible.
If PCOMMIT is executed after a store to a persistent memory range is accepted to memory, the store becomes
persistent when the PCOMMIT becomes globally visible. This implies that, if an execution of PCOMMIT is globally
visible when a later store to persistent memory is executed, that store cannot become persistent before the
stores to which the PCOMMIT applies.
The following items detail the ordering between PCOMMIT and other operations:
A logical processor does not ensure previous stores and executions of CLFLUSHOPT and CLWB (by that logical
processor) are globally visible before commencing an execution of PCOMMIT. This implies that software must
use appropriate fencing instruction (e.g., SFENCE) to ensure the previous stores-to-memory operations and
CLFLUSHOPT and CLWB executions to persistent memory ranges are globally visible (so that they are
accepted to memory), before executing PCOMMIT.
A logical processor does not ensure that an execution of PCOMMIT is globally visible before commencing
subsequent stores. Software that requires that such stores not become globally visible before PCOMMIT (e.g.,
because the younger stores must not become persistent before those committed by PCOMMIT) can ensure by
using an appropriate fencing instruction (e.g., SFENCE) between PCOMMIT and the later stores.
An execution of PCOMMIT is ordered with respect to executions of SFENCE, MFENCE, XCHG or LOCK-prefixed
instructions, and serializing instructions (e.g., CPUID).
Executions of PCOMMIT are not ordered with respect to load operations. Software can use MFENCE to order
loads with PCOMMIT.
Executions of PCOMMIT do not serialize the instruction stream.
The PCOMMIT instruction can be used at all privilege levels and the instruction’s operation is the same in non-64-
bit modes and 64-bit mode.
Opcode/
Instruction
Op/
En
64/32 bit
Mode
Support
CPUID
Feature Flag
Description
66 0F AE F8
PCOMMIT
NP V/V PCOMMIT Commits stores to persistent memory.
Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
1. A platform may support one or more persistent memory ranges and report those ranges to system software. The power-fail pro-
tection or persistence may be implemented through platform-specific means such as use of battery-backed volatile memory, use
of non-volatile memory, etc.
Ref. # 319433-023 10-9
MEMORY INSTRUCTIONS
In some implementations, the PCOMMIT instruction may always cause transactional abort with Transactional
Synchronization Extensions (TSX). PCOMMIT instruction is not expected to be commonly used inside typical trans-
actional regions. However, programmers must not rely on PCOMMIT instruction to force a transactional abort, since
whether they cause transactional aborts is implementation dependent.
Operation
Commit_To_Persistence;
Flags Affected
None.
C/C++ Compiler Intrinsic Equivalent
PCOMMIT void _mm_pcommit(void );
Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.PCOMMIT[bit 22] = 0.
10-10 Ref. # 319433-023
MEMORY INSTRUCTIONS
10.5 PERSISTENT MEMORY CONFIGURATION AND ENUMERATION OF
PLATFORM SUPPORT
Persistent memory configuration in a platform requires BIOS support to configure the memory controllers,
memory devices (DIMMs), system address decoders etc., and to report persistent memory distinct from volatile
main memory to system software. PCOMMIT execution is relevant on a platform only when the platform is config-
ured with persistent memory.
In addition to requirement of BIOS to manage memory controllers, memory devices, and system address
decoders, BIOS sets IA32_FEATURE_CONTROL.PCOMMIT_ENABLE[bit 19] and IA32_FEATURE_CONTROL.LOCK
to indicate platform support of processor enumeration of PCOMMIT instruction using CPUID. Since the
IA32_FEATURE_CONTROL MSR contains multiple feature enable bits, BIOS must lock the MSR only after all
appropriate feature enable bits in IA32_FEATURE_CONTROL MSR are programmed.
On processors that supports PCOMMIT, PCOMMIT is enumerated through CPUID (CPUID.7.0.EBX[22]) only when
the feature is enabled by BIOS. i.e, CPUID.(EAX=7, ECX=0):EBX[22] reflects the state of
IA32_FEATURE_CONTROL[19] & IA32_FEATURE_CONTROL[0].
PCOMMIT execution will always #UD if CPUID.07H:EBX.PCOMMIT[bit 22] = 0.
10.6 PCOMMIT — VIRTUALIZATION SUPPORT
Persistent memory may be virtualized for software running inside a Virtual Machine (VM) by a Virtual Machine
Monitor (VMM). Depending on usage models, the virtualization of persistent memory can take different forms,
such as VMM simply partitioning up the persistent memory across one or more VMs, or emulating or over-
committing persistent memory for a VM, or replicating persistent memory modifications to a remote node. Some
of these usages may require direct execution of PCOMMIT by guest software running inside a VM, while other
usages may require or benefit from VMM intercepting guest execution of PCOMMIT instruction.
To support such usages, a new secondary processor-based VM-execution control called “PCOMMIT exiting” (bit
21) is defined.
IA32_VMX_PROCBASED_CTLS2[53] (which enumerates support for the 1-setting of “PCOMMIT exiting”) is
always the same as CPUID.07H:EBX.PCOMMIT[bit 22]. Thus, software can set “PCOMMIT exiting” to 1 if and only
if the PCOMMIT instruction is enumerated via CPUID (which requires IA32_FEATURE_CONTROL[19] and
IA32_FEATURE_CONTROL[0] to be both 1).
When IA32_VMX_PROCBASED_CTLS2[53] = 0, VM entry will fail early if “PCOMMIT exiting” is 1.
When ‘PCOMMIT existing’ execution control is set, PCOMMIT execution will cause VM exit with a new basic exit
reason (41H) called “PCOMMIT”.
10.7 PCOMMIT AND SGX INTERACTION
PCOMMIT execution within an enclave always #UD. This is regardless of CPUID enumeration and VM-execution
control for PCOMMIT. The #UD happens with priority above any VM exit on PCOMMIT instruction execution.
Ref. # 319433-023 I
INDEX
A
ADDPD - Add Packed Double-Precision Floating-Point Values 5-10
ADDPS- Add Packed Single-Precision Floating-Point Values 5-13
ADDSD- Add Scalar Double-Precision Floating-Point Values 5-16
ADDSS- Add Scalar Single-Precision Floating-Point Values 5-18
ANDNPD- Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values 5-35
ANDNPS- Bitwise Logical AND NOT of Packed Single Precision Floating-Point Values 5-38
ANDPD- Bitwise Logical AND of Packed Double Precision Floating-Point Values 5-29
ANDPS- Bitwise Logical AND of Packed Single Precision Floating-Point Values 5-32
B
Brand information 2-32
processor brand index 2-34
processor brand string 2-32
C
Cache and TLB information 2-28
Cache Inclusiveness 2-14
CLFLUSH instruction
CPUID flag 2-27
CMOVcc flag 2-27
CMOVcc instructions
CPUID flag 2-27
CMPPD- Compare Packed Double-Precision Floating-Point Values 5-60
CMPPS- Compare Packed Single-Precision Floating-Point Values 5-67
CMPSD- Compare Scalar Double-Precision Floating-Point Values 5-73
CMPSS- Compare Scalar Single-Precision Floating-Point Values 5-77
CMPXCHG16B instruction
CPUID bit 2-25
CMPXCHG8B instruction
CPUID flag 2-27
COMISD- Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS 5-82
COMISS- Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS 5-84
CPUID instruction 2-12, 2-27
36-bit page size extension 2-27
APIC on-chip 2-27
basic CPUID information 2-13
cache and TLB characteristics 2-13, 2-28
CLFLUSH flag 2-27
CLFLUSH instruction cache line size 2-23
CMPXCHG16B flag 2-25
CMPXCHG8B flag 2-27
CPL qualified debug store 2-24
debug extensions, CR4.DE 2-26
debug store supported 2-27
deterministic cache parameters leaf 2-13, 2-16, 2-17, 2-18
extended function information 2-19
feature information 2-26
FPU on-chip 2-26
FSAVE flag 2-27
FXRSTOR flag 2-27
HT technology flag 2-28
IA-32e mode available 2-20
input limits for EAX 2-21
L1 Context ID 2-25
local APIC physical ID 2-23
machine check architecture 2-27
machine check exception 2-27
memory type range registers 2-27
MONITOR feature information 2-31
MONITOR/MWAIT flag 2-24
II Ref. # 319433-023
MONITOR/MWAIT leaf 2-14, 2-15, 2-16, 2-17, 2-19
MWAIT feature information 2-31
page attribute table 2-27
page size extension 2-26
performance monitoring features 2-31
physical address bits 2-20
physical address extension 2-27
power management 2-31, 2-32
processor brand index 2-23, 2-32
processor brand string 2-20, 2-32
processor serial number 2-27
processor type field 2-22
PTE global bit 2-27
RDMSR flag 2-26
returned in EBX 2-23
returned in ECX & EDX 2-23
self snoop 2-28
SpeedStep technology 2-24
SS2 extensions flag 2-28
SSE extensions flag 2-28
SSE3 extensions flag 2-24
SSSE3 extensions flag 2-24
SYSENTER flag 2-27
SYSEXIT flag 2-27
thermal management 2-31, 2-32
thermal monitor 2-24, 2-27, 2-28
time stamp counter 2-26
using CPUID 2-12
vendor ID string 2-21
version information 2-13, 2-30
virtual 8086 Mode flag 2-26
virtual address bits 2-20
WRMSR flag 2-26
CVTDQ2PD- Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values 5-100, 5-114, 5-118, 5-139,
5-141, 5-162, 5-166, 5-188, 5-190
CVTDQ2PS- Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values 5-103
CVTPD2DQ- Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers 5-106
CVTPD2PS- Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values 5-110
CVTPS2DQ- Convert Packed Single Precision Floating-Point Values to Packed Signed Doubleword Integer Values 5-127
CVTPS2DQ- Convert Packed Single Precision Floating-Point Values to Packed Singed Doubleword Integer Values 5-132, 5-134,
5-173, 5-175
CVTPS2PD- Convert Packed Single Precision Floating-Point Values to Packed Double Precision Floating-Point Values 5-136
CVTSD2SI- Convert Scalar Double Precision Floating-Point Value to Doubleword Integer 5-143
CVTSD2SS- Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value 5-147
CVTSI2SD- Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value 5-114, 5-118, 5-139, 5-141, 5-149, 5-
162, 5-166, 5-188, 5-190
CVTSI2SS- Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value 5-151
CVTSS2SD- Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value 5-153
CVTSS2SI- Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer 5-155
CVTTPD2DQ- Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers 5-159
CVTTPS2DQ- Convert with Truncation P acked Single-Precisi on F loatin g-P oint Value s to Pac ked Signed Double word Integer Val ues
5-168
CVTTSD2SI- Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed Integer 5-177
CVTTSS2SI- Convert with Truncation Scalar Single-Precision Floating-Point Value to Integer 5-180
D
DIVPD- Divide Packed Double-Precision Floating-Point Values 5-25, 5-86
DIVPS- Divide Packed Single-Precision Floating-Point Values 5-89
DIVSD- Divide Scalar Double-Precision Floating-Point Values 5-92
DIVSS- Divide Scalar Single-Precision Floating-Point Values 5-94
E
EVEX.R 5-4
EXTRACTPS- Extract packed floating-point values 5-215
Ref. # 319433-023 III
F
Feature information, processor 2-12
FXRSTOR instruction
CPUID flag 2-27
FXSAVE instruction
CPUID flag 2-27
H
Hyper-Threading Technology
CPUID flag 2-28
I
IA-32e mode
CPUID flag 2-20
INSERTPS- Insert Scalar Single-Precision Floating-Point Value 5-383
L
L1 Context ID 2-25
M
Machine check architecture
CPUID flag 2-27
description 2-27
MAXPD- Maximum of Packed Double-Precision Floating-Point Values 5-386
MAXPS- Maximum of Packed Single-Precision Floating-Point Values 5-389
MAXSD- Return Maximum Scalar Double-Precision Floating-Point Value 1-4, 5-392
MAXSS- Return Maximum Scalar Single-Precision Floating-Point Value 5-394
MINPD- Minimum of Packed Double-Precision Floating-Point Values 5-396
MINPS- Minimum of Packed Single-Precision Floating-Point Values 5-399
MINSD- Return Minimum Scalar Double-Precision Floating-Point Value 5-402
MINSS- Return Minimum Scalar Single-Precision Floating-Point Value 5-404
MMX instructions
CPUID flag for technology 2-27
Model & family information 2-30
MONITOR instruction
CPUID flag 2-24
feature data 2-31
MOVAPD- Move Aligned Packed Double-Precision Floating-Point Values 5-406
MOVAPS- Move Aligned Packed Single-Precision Floating-Point Values 5-410
MOVD/MOVQ- Move Doubleword and Quadword 5-414
MOVDDUP- Replicate Double FP Values 5-420
MOVDQA- Move Aligned Packed Integer Values 5-423
MOVDQU- Move Unaligned Packed Integer Values 5-428
MOVHLPS - Move Packed Single-Precision Floating-Point Values High to Low 5-435
MOVHPD- Move High Packed Double-Precision Floating-Point Values 5-437
MOVHPS- Move High Packed Single-Precision Floating-Point Values 5-439
MOVLPD- Move Low Packed Double-Precision Floating-Point Values 5-443
MOVLPS- Move Low Packed Single-Precision Floating-Point Values 5-445
MOVNTDQ- Store Packed Integers Using Non-Temporal Hint 5-449
MOVNTPD- Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint 5-451
MOVNTPS- Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint 5-453
MOVQ- Move Quadword 5-417
MOVSD- Move or Merge Scalar Double-Precision Floating-Point Value 5-455
MOVSHDUP- Replicate Single FP Values 5-458
MOVSLDUP- Replicate Single FP Values 5-461
MOVSS- Move or Merge Scalar Single-Precision Floating-Point Value 5-464
MOVUPD- Move Unaligned Packed Double-Precision Floating-Point Values 5-467
MOVUPS- Move Unaligned Packed Single-Precision Floating-Point Values 5-471
MULPD- Multiply Packed Double-Precision Floating-Point Values 5-478
MULPS- Multiply Packed Single-Precision Floating-Point Values 5-481
MULSD- Multiply Scalar Double-Precision Floating-Point Values 5-484
MULSS- Multiply Scalar Single-Precision Floating-Point Values 5-486
MWAIT instruction
IV Ref. # 319433-023
CPUID flag 2-24
feature data 2-31
O
ORPD- Bitwise Logical OR of Packed Double Precision Floating-Point Values 5-488
ORPS- Bitwise Logical OR of Packed Single Precision Floating-Point Values 5-491
P
PABSB instruction 5-196, 5-500, 5-508, 5-513, 5-525, 5-529, 5-542, 5-675, 5-678, 5-701, 5-766
PABSB/PABSW/PABSD/PABSQ - Packed Absolute Value 5-494
PABSD instruction 5-196, 5-500, 5-508, 5-513, 5-525, 5-529, 5-542, 5-675, 5-678, 5-701, 5-766
PABSW instruction 5-196, 5-500, 5-508, 5-513, 5-525, 5-529, 5-542, 5-675, 5-678, 5-701, 5-766
PADDB/PADDW/PADDD/PADDQ - Add Packed Integers 5-518
PAND - Logical AND 5-536
PANDN - Logical AND NOT 5-539
PCLMULQDQ - Carry-Less Multiplication Quadword 5-562, 5-571
Pending break enable 2-28
Performance-monitoring counters
CPUID inquiry for 2-31
PEXTRB/PEXTRW/PEXTRD/PEXTRQ- Extract Integer 5-625
PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint 9-2
PTEST- Packed Bit Test 6-17
R
RDMSR instruction
CPUID flag 2-26
ROUNDPD- Round Packed Double-Precision Floating-Point Values 5-958
S
Self Snoop 2-28
SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2 - Shuffle Packed Values at 128-bit Granularity 5-859
SHUFPD - Shuffle Packed Double Precision Floating-Point Values 5-864, 5-958
SHUFPS - Shuffle Packed Single Precision Floating-Point Values 5-869
SpeedStep technology 2-24
SQRTPD- Square Root of Double-Precision Floating-Point Values 5-958
SQRTPD—Square Root of Double-Precision Floating-Point Values 5-873
SQRTPS- Square Root of Single-Precision Floating-Point Values 5-876
SQRTSD - Compute Square Root of Scalar Double-Precision Floating-Point Value 5-879, 5-958
SQRTSS - Compute Square Root of Scalar Single-Precision Floating-Point Value 5-881
SSE extensions
CPUID flag 2-28
SSE2 extensions
CPUID flag 2-28
SSE3
CPUID flag 2-24
SSE3 extensions
CPUID flag 2-24
SSSE3 extensions
CPUID flag 2-24
Stepping information 2-30
SUBPD- Subtract Packed Double Precision Floating-Point Values 5-958
SUBPD- Subtract Packed Double-Precision Floating-Point Values 5-958
SUBPS- Subtract Packed Single-Precision Floating-Point Values 5-961
SUBSD- Subtract Scalar Double-Precision Floating-Point Values 5-964
SUBSS- Subtract Scalar Single-Precision Floating-Point Values 5-966
SYSENTER instruction
CPUID flag 2-27
SYSEXIT instruction
CPUID flag 2-27
T
Thermal Monitor
CPUID flag 2-28
Ref. # 319433-023 V
Thermal Monitor 2 2-24
CPUID flag 2-24
Time Stamp Counter 2-26
U
UCOMISD - Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS 5-968
UCOMISS - Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS 5-970
UNPCKHPD- Unpack and Interleave High Packed Double-Precision Floating-Point Values 5-972
UNPCKHPS- Unpack and Interleave High Packed Single-Precision Floating-Point Values 5-976
UNPCKLPD- Unpack and Interleave Low Packed Double-Precision Floating-Point Values 5-980
UNPCKLPS- Unpack and Interleave Low Packed Single-Precision Floating-Point Values 5-984
V
VALIGND/VALIGNQ- Align Doubleword/Quadword Vectors 5-20
VBLENDMPD- Blend Float64 Vectors Using an OpMask Control 5-23
VCOMPRESSPD- Store Sparse Double-Precision Floating-Point Values into Dense Memory 5-96
VCOMPRESSPD- Store Sparse Packed Double-Precision Floating-Point Values into Dense Memory 5-96
VCVTPD2UDQ- Convert Packed Double-Precision Floating-Point Values to Packed Unsigned Doubleword Integers 5-116
VCVTPS2UDQ- Convert Packed Single Precision Floating-Point Values to Packed Unsigned Doubleword Integer Values 5-130
VCVTSD2USI- Convert Scalar Double Precision Floating-Point Value to Unsigned Doubleword Integer 5-145
VCVTSS2USI- Convert Scalar Single-Precision Floating-Point Value to Unsigned Doubleword Integer 5-157
VCVTTPD2UDQ- Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Unsigned Doubleword Inte-
gers 5-164
VCVTTPS2UDQ- Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Unsigned Doubleword Integer
Values 5-171
VCVTTSD2USI- Convert with Truncation Scalar Double-Precision Floating-Point Value to Unsigned Integer 5-179
VCVTTSS2USI- Convert with Truncation Scalar Single-Precision Floating-Point Value to Unsigned Integer 5-182
VCVTUDQ2PD- Convert Packed Unsigned Doubleword Integers to Packed Double-Precision Floating-Point Values 5-184
VCVTUDQ2PS- Convert Packed Unsigned Doubleword Integers to Packed Single-Precision Floating-Point Values 5-186
VCVTUSI2SD- Convert Unsigned Integer to Scalar Double-Precision Floating-Point Value 5-192
VCVTUSI2SS- Convert Unsigned Integer to Scalar Single-Precision Floating-Point Value 5-194
Version information, processor 2-12
VEX 5-2
VEX.B 5-2
VEX.L 5-2, 5-4
VEX.mmmmm 5-2
VEX.pp 5-3, 5-4
VEX.R 5-4
VEX.vvvv 5-2
VEX.W 5-2
VEX.X 5-2
VEXP2PD—Approximation to the Exponential 2^x of Packed Double-Precision Floating-Point Values with Less Than 2^-23 Rela-
tive Error 7-3
VEXP2PS—Approximation to the Exponential 2^x of Packed Single-Precision Floating-Point Values with Less Than 2^-23 Relative
Error 7-5
VEXTRACTF128- Extract Packed Floating-Point Values 5-203
VFMADD132SS/VFMADD213SS/VFMADD231SS - Fused Multiply-Add of Scalar Single-Precision Floating-Point Values 5-246
VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD - Fused Multiply-Alternating Add/Subtract of Packed Double-Preci-
sion Floating-Point Values 5-249
VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS - Fused Multiply-Alternating Add/Subtract of Packed Single-Precision
Floating-Point Values 5-256
VFMSUB132PS/VFMSUB213PS/VFMSUB231PS - Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values 5-283
VFMSUB132SD/VFMSUB213SD/VFMSUB231SD - Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values 5-289
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS - Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values 5-292
VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD - Fused Multiply-Alternating Subtract/Add of Packed Double-Preci-
sion Floating-Point Values 5-263
VFNMADD132PD/VFMADD213PD/VFMADD231PD - Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Val-
ues 5-295
VFNMADD132PS/VFNMADD213PS/VFNMADD231PS - Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Val-
ues 5-302
VFNMADD132SD/VFNMADD213SD/VFNMADD231SD - Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point
Values 5-308
VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD - Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point
Values 5-326
VI Ref. # 319433-023
VGATHERDPS/VGATHERDPD - Gather Packed Single, Packed Double with Signed Dword 5-347
VGATHERPF0DPS/VGATHERPF0QPS/VGATHERPF0DPD/VGATHERPF0QPD - Sparse Prefetch Packed SP/DP Data Values with
Signed Dword, Signed Qword Indices Using T0 Hint 7-23
VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD - Sparse Prefetch Packed SP/DP Data Values with
Signed Dword, Signed Qword Indices Using T1 Hint 7-25
VGATHERQPS/VGATHERQPD -Gather Packed Single, Packed Double with Signed Qword Indices 5-350
VINSERTF128/VINSERTF32x4/VINSERTF64x4- Insert Packed Floating-Point Values 5-375
VINSERTI128/VINSERTI32x4/VINSERTI64x4- Insert Packed Integer Values 5-379
VPBLENDMD- Blend Int32 Vectors Using an OpMask Control 5-27
VPBROADCASTM—Broadcast Mask to Vector Register 5-546
VPCMPD/VPCMPUD - Compare Packed Integer Values into Mask 5-565
VPCMPQ/VPCMPUQ - Compare Packed Integer Values into Mask 5-568
VPCONFLICTD/Q - Detect Conflicts Within a Vector of Packed Dword, Packed Qword Values into Dense Memory/Register 7-3
VPERMILPD- Permute Double-Precision Floating-Point Values 5-602
VPERMILPS- Permute Single-Precision Floating-Point Values 5-607
VPEXPANDD- Load Sparse Packed Doubleword Integer Values from Dense Memory/Register 5-594
VPGATHERDD/VPGATHERDQ- Gather Packed Dword, Packed Qword with Signed Dword Indices 5-341
VPGATHERQD/VPGATHERQQ- Gather Packed Dword, Packed Qword with Signed Qword Indices 5-344
VPLZCNTD/Q—Count the Number of Leading Zero Bits for Packed Dword, Packed Qword Values 5-628
VPMOVDB/VPMOVSDB/VPMOVUSDB - Down Convert DWord to Byte 5-693
VPMOVDW/VPMOVSDW/VPMOVUSDW - Down Convert DWord to Word 5-697
VPMOVQB/VPMOVSQB/VPMOVUSQB - Down Convert QWord to Byte 5-681
VPMOVQD/VPMOVSQD/VPMOVUSQD - Down Convert QWord to DWord 5-689
VPMOVQW/VPMOVSQW/VPMOVUSQW - Down Convert QWord to Word 5-685
VPTERNLOGD/VPTERNLOGQ - Bitwise Ternary Logic 5-883
VPTESTMD/VPTESTMQ - Logical AND and Set Mask 5-886
VRCP28PD—Approximation to the Reciprocal of Packed Double-Precision Floating-Point Values with Less Than 2^-28 Relative
Error 7-7
VRCP28PS—Approximation to the Reciprocal of Packed Single-Precision Floating-Point Values with Less Than 2^-28 Relative Er-
ror 7-11
VRCP28SD—Approximation to the Reciprocal of Scalar Double-Precision Floating-Point Value with Less Than 2^-28 Relative Error
7-9
VRCP28SS—Approximation to the Reciprocal of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Relative Error
7-13
VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double-Precision Floating-Point Values with Less Than
2^-28 Relative Error 7-15
VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single-Precision Floating-Point Values with Less Than 2^-
28 Relative Error 7-19
VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision Floating-Point Value with Less Than 2^-
28 Relative Error 7-17
VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-Point Value with Less Than 2^-
28 Relative Error 7-21
VSCATTERPF0DPS/VSCATTERPF0QPS/VSCATTERPF0DPD/VSCATTERPF0QPD—Sparse Prefetch Packed SP/DP Data Values with
Signed Dword, Signed Qword Indices Using T0 Hint with Intent to Write 7-27
VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with
Signed Dword, Signed Qword Indices Using T1 Hint with Intent to Write 7-29
W
WBINVD/INVD bit 2-14
WRMSR instruction
CPUID flag 2-26
X
XFEATURE_ENALBED_MASK 2-1
XORPD- Bitwise Logical XOR of Packed Double Precision Floating-Point Values 5-988
XORPS- Bitwise Logical XOR of Packed Single Precision Floating-Point Values 5-991
XRSTOR 1-1, 2-1, 2-31, 5-7
XSAVE 1-1, 2-1, 2-4, 2-25, 2-31, 5-7

Navigation menu