IRF8113 Datasheet. Www.s Manuals.com. 20050630 Irf

User Manual: Marking of electronic components, SMD Codes F8, F8*, F8**, F8113, F8707. Datasheets BZX585-C4V7, EMF8, IRF8113, IRF8707PbF, PZU4.3B1, RT8016-12GQW, TC1073-2.85VCH713 , UMF8N.

Open the PDF directly: View PDF PDF.
Page Count: 11

DownloadIRF8113 - Datasheet. Www.s-manuals.com. 20050630 Irf
Open PDF In BrowserView PDF
PD - 94637B

IRF8113
HEXFET® Power MOSFET
Applications
l Synchronous MOSFET for Notebook
Processor Power
l Synchronous Rectifier MOSFET for
Isolated DC-DC Converters in
Networking Systems
Benefits
l Very Low RDS(on) at 4.5V VGS
l Low Gate Charge
l Fully Characterized Avalanche Voltage
and Current
l 100% Tested for RG

VDSS

RDS(on) max

Qg Typ.

30V 5.6m:@VGS = 10V

24nC

A
A
D

S

1

8

S

2

7

D

S

3

6

D

G

4

5

D

SO-8

Top View

Absolute Maximum Ratings
Max.

Units

VDS

Drain-to-Source Voltage

Parameter

30

V

VGS

Gate-to-Source Voltage

± 20

ID @ TA = 25°C

Continuous Drain Current, VGS @ 10V

17.2

ID @ TA = 70°C

Continuous Drain Current, VGS @ 10V

13.8

IDM

Pulsed Drain Current

135

f
f

c

PD @TA = 25°C

Power Dissipation

PD @TA = 70°C

Power Dissipation

TJ

Linear Derating Factor
Operating Junction and

TSTG

Storage Temperature Range

A
W

2.5
1.6
0.02
-55 to + 150

W/°C
°C

Thermal Resistance
Parameter

RθJL
RθJA

g
Junction-to-Ambient fg
Junction-to-Drain Lead

Notes  through

www.irf.com

Typ.

Max.

Units

–––

20

°C/W

–––

50

are on page 10

1
6/30/05

IRF8113

Static @ TJ = 25°C (unless otherwise specified)
Parameter

Min. Typ. Max. Units

Drain-to-Source Breakdown Voltage

30

–––

–––

∆ΒVDSS/∆TJ

Breakdown Voltage Temp. Coefficient

–––

0.024

–––

V/°C Reference to 25°C, ID = 1mA

RDS(on)

Static Drain-to-Source On-Resistance

mΩ

–––

4.7

5.6

–––

5.8

6.8

V

Conditions

BVDSS

VGS = 10V, ID = 17.2A
VGS = 4.5V, ID = 13.8A

VGS(th)

Gate Threshold Voltage

1.5

–––

2.2

V

∆VGS(th)

Gate Threshold Voltage Coefficient

–––

- 5.4

–––

mV/°C

IDSS

Drain-to-Source Leakage Current

–––

–––

1.0

µA

–––

–––

150

Gate-to-Source Forward Leakage

–––

–––

100

Gate-to-Source Reverse Leakage

–––

–––

-100

gfs

Forward Transconductance

73

–––

–––

Qg

IGSS

VGS = 0V, ID = 250µA

e
e

VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C

nA

VGS = 20V
VGS = -20V

S

VDS = 15V, ID = 13.3A

Total Gate Charge

–––

24

36

Qgs1

Pre-Vth Gate-to-Source Charge

–––

6.2

–––

Qgs2

Post-Vth Gate-to-Source Charge

–––

2.0

–––

Qgd

Gate-to-Drain Charge

–––

8.5

–––

ID = 13.3A

Qgodr

Gate Charge Overdrive

–––

7.3

–––

See Fig. 16

Qsw

Switch Charge (Qgs2 + Qgd)

–––

10.5

–––

Qoss

Output Charge

–––

10

–––

nC

RG

Gate Resistance

–––

0.8

1.5

Ω

td(on)

Turn-On Delay Time

–––

13

–––

tr

Rise Time

–––

8.9

–––

td(off)

Turn-Off Delay Time

–––

17

–––

tf

Fall Time

–––

3.5

–––

Ciss

Input Capacitance

–––

2910

–––

Coss

Output Capacitance

–––

600

–––

Crss

Reverse Transfer Capacitance

–––

250

–––

VDS = 15V
nC

VGS = 4.5V

VDS = 10V, VGS = 0V
VDD = 15V, VGS = 4.5V

e

ID = 13.3A
ns

Clamped Inductive Load

pF

VDS = 15V

VGS = 0V
ƒ = 1.0MHz

Avalanche Characteristics
EAS

Parameter
Single Pulse Avalanche Energy

IAR

Avalanche Current

c

d

Typ.

Max.

Units

–––

48

mJ

–––

13.3

A

Diode Characteristics
Parameter
IS

Continuous Source Current

Min. Typ. Max. Units
–––

–––

3.1

(Body Diode)
ISM

Pulsed Source Current

c

MOSFET symbol
A

–––

–––

135

Conditions
showing the
integral reverse

(Body Diode)
VSD

Diode Forward Voltage

–––

–––

1.0

V

p-n junction diode.
TJ = 25°C, IS = 13.3A, VGS = 0V

trr

Reverse Recovery Time

–––

34

51

ns

TJ = 25°C, IF = 13.3A, VDD = 10V

Qrr

Reverse Recovery Charge

–––

21

32

nC

di/dt = 100A/µs

2

e

e

www.irf.com

IRF8113
1000

1000

VGS
10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
BOTTOM 2.5V

100

10

2.5V
20µs PULSE WIDTH
Tj = 25°C
1

100

2.5V
10

20µs PULSE WIDTH
Tj = 150°C
1

0.01

0.1

1

10

100

0.01

VDS, Drain-to-Source Voltage (V)

1

10

100

Fig 2. Typical Output Characteristics

1000

2.0

T J = 150°C

T J = 25°C

10

VDS = 15V
20µs PULSE WIDTH

1
2.5

3.0

3.5

VGS , Gate-to-Source Voltage (V)

Fig 3. Typical Transfer Characteristics

www.irf.com

4.0

ID = 16.6A
VGS = 10V

1.5

(Normalized)

RDS(on) , Drain-to-Source On Resistance

ID, Drain-to-Source Current (Α)

0.1

VDS, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

100

VGS
10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
BOTTOM 2.5V
TOP

ID, Drain-to-Source Current (A)

ID, Drain-to-Source Current (A)

TOP

1.0

0.5
-60 -40 -20

0

20

40

60

80 100 120 140 160

T J , Junction Temperature (°C)

Fig 4. Normalized On-Resistance
Vs. Temperature

3

IRF8113
100000

12

VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd

VGS , Gate-to-Source Voltage (V)

ID= 13.3A

C, Capacitance (pF)

Coss = Cds + Cgd
10000

Ciss
1000

Coss
Crss

8
6
4
2
0

100
1

10

0

100

20

30

40

50

60

Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage

Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage

1000.0

1000

ID, Drain-to-Source Current (A)

ISD, Reverse Drain Current (A)

10

Q G Total Gate Charge (nC)

VDS, Drain-to-Source Voltage (V)

OPERATION IN THIS AREA
LIMITED BY R DS(on)

100

100.0
T J = 150°C
10.0

1.0

T J = 25°C

1msec
1

0.1

0.1
0.2

0.4

0.6

0.8

1.0

VSD, Source-toDrain Voltage (V)

Fig 7. Typical Source-Drain Diode
Forward Voltage

1.2

100µsec

10

VGS = 0V

4

VDS= 24V
VDS= 15V

10

10msec
Tc = 25°C
Tj = 150°C
Single Pulse
0.1

1.0

10.0

100.0

1000.0

VDS , Drain-toSource Voltage (V)

Fig 8. Maximum Safe Operating Area

www.irf.com

IRF8113
18

2.2

VGS(th) Gate threshold Voltage (V)

16

ID , Drain Current (A)

14
12
10
8
6
4
2
0

2.0
1.8

ID = 250µA

1.6
1.4
1.2
1.0
0.8

25

50

75

100

125

150

-75

-50

-25

0

25

50

75

100

125

150

T J , Temperature ( °C )

T J , Junction Temperature (°C)

Fig 10. Threshold Voltage Vs. Temperature

Fig 9. Maximum Drain Current Vs.
Case Temperature

Thermal Response ( Z thJA )

100

10

D = 0.50
0.20
0.10
0.05

1

0.02
0.01
τJ

0.1

R1
R1
τJ
τ1

τ1

R2
R2
τ2

R3
R3

τC
τ
τ3

τ2

Ci= τi/Ri
Ci i/Ri

0.01

Ri (°C/W)

R4
R4

τ3

τ4

τ4

τi (sec)

0.924

0.000228

13.395

0.1728

22.046

1.5543

14.911

22.5

Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc

SINGLE PULSE
( THERMAL RESPONSE )

0.001
1E-006

1E-005

0.0001

0.001

0.01

0.1

1

10

100

t1 , Rectangular Pulse Duration (sec)

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

www.irf.com

5

IRF8113

D.U.T

RG
VGS
20V

DRIVER

L

VDS

+
V
- DD

IAS

A

0.01Ω

tp

Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS

EAS, Single Pulse Avalanche Energy (mJ)

200
15V

ID
7.3A
8.2A
BOTTOM 13.3A
TOP

160

120

80

40

0

tp

25

50

75

100

125

150

Starting T J , Junction Temperature (°C)

Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
LD

VDS

I AS

Fig 12b. Unclamped Inductive Waveforms

+
VDD D.U.T
VGS

Current Regulator
Same Type as D.U.T.

Pulse Width < 1µs
Duty Factor < 0.1%

50KΩ
12V

.2µF

Fig 14a. Switching Time Test Circuit

.3µF

D.U.T.

+
V
- DS

VDS

90%

VGS
3mA

10%
IG

ID

Current Sampling Resistors

Fig 13. Gate Charge Test Circuit

6

VGS
td(on)

tr

td(off)

tf

Fig 14b. Switching Time Waveforms

www.irf.com

IRF8113
D.U.T

Driver Gate Drive

ƒ
+

‚

„

•
•
•
•

D.U.T. ISD Waveform
Reverse
Recovery
Current

+

dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test

P.W.
Period

*


RG

D=

VGS=10V

Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer

-

-

Period

P.W.

+

VDD

+
-

Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt

Re-Applied
Voltage

Body Diode

VDD

Forward Drop

Inductor Curent
ISD

Ripple ≤ 5%

* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs

Id
Vds
Vgs

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 16. Gate Charge Waveform

www.irf.com

7

IRF8113
Power MOSFET Selection for Non-Isolated DC/DC Converters
Control FET

Synchronous FET

Special attention has been given to the power losses
in the switching elements of the circuit - Q1 and Q2.
Power losses in the high side switch Q1, also called
the Control FET, are impacted by the Rds(on) of the
MOSFET, but these conduction losses are only about
one half of the total losses.

The power loss equation for Q2 is approximated
by;
*
Ploss = Pconduction + Pdrive + Poutput

(

2

Ploss = Irms × Rds(on)

)

Power losses in the control switch Q1 are given
by;

+ (Qg × Vg × f )

Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput

⎛Q
⎞
+ ⎜ oss × Vin × f + (Qrr × Vin × f )
⎝ 2
⎠

This can be expanded and approximated by;

Ploss = (Irms × Rds(on ) )
2

⎛
⎞ ⎛
Qgs 2
⎞
Qgd
+⎜I ×
× Vin × f ⎟ + ⎜ I ×
× Vin × f ⎟
ig
ig
⎝
⎠ ⎝
⎠
+ (Qg × Vg × f )
+

⎛ Qoss
× Vin × f ⎞
⎝ 2
⎠

This simplified loss equation includes the terms Qgs2
and Qoss which are new to Power MOSFET data sheets.
Qgs2 is a sub element of traditional gate-source
charge that is included in all MOSFET data sheets.
The importance of splitting this gate-source charge
into two sub elements, Qgs1 and Qgs2, can be seen from
Fig 16.
Qgs2 indicates the charge that must be supplied by
the gate driver between the time that the threshold
voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in
reducing switching losses in Q1.
Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the
parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by
the power supply input buss voltage.

8

*dissipated primarily in Q1.
For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the
MOSFET must still be turned on and off by the control IC so the gate drive losses become much more
significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that
are transfered to Q1 and increase the dissipation in
that device. Thirdly, gate charge will impact the
MOSFETs’ susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node
of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is
a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce
a voltage spike on the gate that is sufficient to turn
the MOSFET on, resulting in shoot-through current .
The ratio of Qgd/Qgs1 must be minimized to reduce the
potential for Cdv/dt turn on.

Figure A: Qoss Characteristic

www.irf.com

IRF8113
SO-8 Package Details
D

DIM

B

8

6

7

6

MIN

.0532

.0688

1.35

1.75

A1 .0040

.0098

0.10

0.25

b

.013

.020

0.33

0.51

c

.0075

.0098

0.19

0.25

D

.189

.1968

4.80

5.00

E

.1497

.1574

3.80

4.00

e

.050 BAS IC

1.27 BAS IC

e1

A

5
H

E
1

6X

2

3

0.25 [.010]

4

A

e

e1

0.25 [.010]

MAX

.025 BAS IC

0.635 BAS IC

H

.2284

.2440

5.80

6.20

K

.0099

.0196

0.25

0.50

L

.016

.050

0.40

1.27

y

0°

8°

0°

8°

K x 45°

A
C

A1

8X b

MILLIMETERS

MAX

5

A

INCHES
MIN

y
0.10 [.004]

8X L

8X c

7

C A B

FOOTPRINT

NOT ES :
1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994.

8X 0.72 [.028]

2. CONT ROLLING DIMENS ION: MILLIMET ER
3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ].
4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA.
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROTRUS IONS NOT T O EXCEED 0.15 [.006].
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROTRUS IONS NOT T O EXCEED 0.25 [.010].

6.46 [.255]

7 DIMENS ION IS THE LENGT H OF LEAD FOR S OLDERING TO
A S UBS T RAT E.
3X 1.27 [.050]

8X 1.78 [.070]

SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF7101 (MOS FET )

INT ERNAT IONAL
RECT IFIER
LOGO

XXXX
F7101

DAT E CODE (YWW)
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
Y = LAS T DIGIT OF T HE YEAR
WW = WEEK
A = ASS EMBLY S IT E CODE
LOT CODE
PART NUMBER

www.irf.com

9

IRF8113
SO-8 Tape and Reel
TERMINAL NUMBER 1

12.3 ( .484 )
11.7 ( .461 )

8.1 ( .318 )
7.9 ( .312 )

FEED DIRECTION

NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

330.00
(12.992)
MAX.

14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.54mH
RG = 25Ω, IAS = 13.3A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board
Rθ is measured at TJ approximately 90°C

Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.6/05

10

www.irf.com

www.s-manuals.com



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.0-c316 44.253921, Sun Oct 01 2006 17:14:39
Producer                        : Acrobat Distiller 6.0 (Windows)
Creator Tool                    : PageMaker 7.0
Modify Date                     : 2016:01:16 12:56:51+02:00
Create Date                     : 2005:06:30 16:03:49-07:00
Metadata Date                   : 2016:01:16 12:56:51+02:00
Document ID                     : uuid:f1bd5256-61fd-498f-9a9e-d1efd7e20723
Instance ID                     : uuid:37fe7325-7ac4-4d65-a518-d301e1e4124e
Format                          : application/pdf
Title                           : IRF8113 - Datasheet. www.s-manuals.com.
Creator                         : 
Subject                         : IRF8113 - Datasheet. www.s-manuals.com.
Page Count                      : 11
Keywords                        : IRF8113, -, Datasheet., www.s-manuals.com.
EXIF Metadata provided by EXIF.tools

Navigation menu