L6470 Manual

l6470%20Manual

l6470%20Manual

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 67

DownloadL6470 Manual
Open PDF In BrowserView PDF
L6470
dSPIN fully integrated microstepping motor driver
with motion engine and SPI
Features
■

Operating voltage: 8 - 45 V

■

7.0 A output peak current (3.0 A r.m.s.)

■

Low RDSon power MOSFETS

■

Programmable speed profile and positioning

■

Programmable power MOS slew-rate

■

Up to 1/128 microstepping

HTSSOP28

■

Sensorless stall detection

■

SPI interface

■

Low quiescent and standby currents

■

Programmable non dissipative overcurrent
protection on high and low-side

■

Two levels overtemperature protection

accurate on chip current sensing circuitry suitable
for non dissipative current control and overcurrent
protections. Thanks to a unique control system a
true 1/128 steps resolution is achieved. The
digital control core can generate user defined
motion profiles with acceleration, deceleration,
speed or target position easily programmed
through a dedicated registers set. All commands
and data registers, including those used to set
analogue values (i.e. current control value,
current protection trip point, dead time, PWM
frequency etc.) are sent through a standard 5
Mbit/s SPI.

Applications
■

Bipolar stepper motor

Description

A very rich set of protections (thermal, low bus
voltage, overcurrent, motor stall) allows designing
a fully protected application, as required by most
demanding motor control applications.

The L6470, realized in analog mixed signal
technology, is an advanced fully integrated
solution suitable for driving two phase bipolar
stepper motors with microstepping.
It integrates a dual low RDSon DMOS full bridge
with all of the power switches equipped with an
Table 1.

May 2011

Device summary
Order codes

Package

Packing

L6470H

HTSSOP28

Tube

L6470HTR

HTSSOP28

Tape and reel

Doc ID 16737 Rev 3

1/67
www.st.com

67

Contents

L6470

Contents
1

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2

Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2

Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4

Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1

Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5

Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1

Device power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2

Logic I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.3

Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.4

Microstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4.1

6.5

Absolute position counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.6

Programmable speed profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.6.1

6.7

6.8

6.9

2/67

Automatic full-step mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Infinite acceleration/deceleration mode . . . . . . . . . . . . . . . . . . . . . . . . . 22

Motor control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.7.1

Constant speed commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.7.2

Positioning commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.7.3

Motion commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.7.4

Stop commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.7.5

Step-clock mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.7.6

GoUntil and ReleaseSW commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Internal oscillator and oscillator driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.8.1

Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.8.2

External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Doc ID 16737 Rev 3

L6470

Contents

6.10

Undervoltage lock-out (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.11

Thermal warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.12

Reset and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.13

External switch (SW pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.14

Programmable DMOS slew-rate, dead-time and blanking-time . . . . . . . . 30

6.15

Integrated analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.16

Internal voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.17

BUSY\SYNC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.18

7

6.17.1

BUSY operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.17.2

SYNC operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

FLAG pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Phase current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1

PWM sinewave generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2

Sensorless stall detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3

Low speed optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.4

BEMF compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.5

Motor supply voltage compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.6

Winding resistance thermal drift compensation . . . . . . . . . . . . . . . . . . . . 35

8

Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9

Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.1

Registers and flags description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.1.1

ABS_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9.1.2

EL_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9.1.3

MARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9.1.4

SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9.1.5

ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9.1.6

DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.1.7

MAX_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.1.8

MIN_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.1.9

FS_SPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9.1.10

KVAL_HOLD, KVAL_RUN, KVAL_ACC and KVAL_DEC . . . . . . . . . . . . 42

9.1.11

INT_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.1.12

ST_SLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Doc ID 16737 Rev 3

3/67

Contents

L6470

9.2

9.1.13

FN_SLP_ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.1.14

FN_SLP_DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.1.15

K_THERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.1.16

ADC_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.1.17

OCD_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.1.18

STALL_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.1.19

STEP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.1.20

ALARM_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.1.21

CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.1.22

STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.2.1

Command management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.2.2

Nop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.2.3

SetParam (PARAM, VALUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.2.4

GetParam (PARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.2.5

Run (DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.2.6

StepClock (DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.2.7

Move (DIR, N_STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.2.8

GoTo (ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.2.9

GoTo_DIR (DIR, ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9.2.10

GoUntil (ACT, DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9.2.11

ReleaseSW (ACT, DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.2.12

GoHome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.2.13

GoMark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.2.14

ResetPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.2.15

ResetDevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.2.16

SoftStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.2.17

HardStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9.2.18

SoftHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9.2.19

HardHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9.2.20

GetStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4/67

Doc ID 16737 Rev 3

L6470

List of tables

List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Typical application values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CL values according to external oscillator frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Registers map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
EL_POS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
MIN_SPEED register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Voltage amplitude regulation registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Winding resistance thermal drift compensation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 44
ADC_OUT value and motor supply voltage compensation feature . . . . . . . . . . . . . . . . . . 44
Overcurrent detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Stall detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STEP_MODE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Step mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SYNC output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SYNC signal source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
ALARM_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Oscillator management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
External switch hard stop interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Overcurrent event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Programmable power bridge output slew-rate values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Motor supply voltage compensation enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
PWM frequency: integer division factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
PWM frequency: multiplication factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Available PWM frequencies [kHz]: 8 MHz oscillator frequency . . . . . . . . . . . . . . . . . . . . . 50
Available PWM frequencies [kHz]: 16 MHz oscillator frequency . . . . . . . . . . . . . . . . . . . . 51
Available PWM frequencies [kHz]: 24 MHz oscillator frequency . . . . . . . . . . . . . . . . . . . . 51
Available PWM frequencies [kHz]: 32 MHz oscillator frequency . . . . . . . . . . . . . . . . . . . . 52
STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STATUS register DIR bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STATUS register MOT_STATE bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Nop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
SetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
GetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Run command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Stepclock command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Move command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
GoTo command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
GoTo_DIR command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
GoUntil command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
ReleaseSW command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
GoHome command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Doc ID 16737 Rev 3

5/67

List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.

6/67

L6470

GoMark command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ResetPos command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
ResetDevice command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
SoftStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
HardStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
SoftHiZ command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
HardHiZ command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
GetStatus command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
HTSSOP28 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Doc ID 16737 Rev 3

L6470

List of figures

List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Bipolar stepper motor control application using L6470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Charge pump circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Normal mode and microstepping (128 microsteps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Automatic full-step switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Speed profile in infinite acceleration/deceleration mode . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Constant speed commands examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Positioning command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Motion commands examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
OSCIN and OSCOUT pins configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
External switch connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Internal 3 V linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Current distortion and compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
BEMF compensation curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Motor supply voltage compensation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
SPI timings diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Daisy-chain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Command with three byte argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Command with three byte responset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Command response aborted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
HTSSOP28 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Doc ID 16737 Rev 3

7/67

Block diagram

1

L6470

Block diagram
Figure 1.

Block diagram

VDD

16MHz
Oscillator

OSCIN

OSCOUT ADCIN

VREG

CP

VBOOT

Charge
pump

Ext. Osc. driver
&
Clock gen.

ADC

STBY/RST

VSA

3V
Voltage Reg.

FLAG

V boot

V boot

HS A1

VSA
HS A2

Registers

OUT1A

V DD

HS A1

OUT2A

LS A1
HS A2

LS A1

LS A2

LS A2

Control
Logic

PGND
VSB

HS B1
LS B1

CS

V boot

V boot

VSB

HS B2
LS B2

SPI

CK
SDO

HS B1

HS B2
OUT1B

SDI

OUT2B

BUSY/SYNC

STCK

Temperature
sensing

Current DACs
&
Comparators

LS B1

LS B2
PGND

V DD
Current
sensing

SW
DGND

AGND

AM02377v1

8/67

Doc ID 16737 Rev 3

L6470

Electrical data

2

Electrical data

2.1

Absolute maximum ratings

Table 2.

Absolute maximum ratings

Symbol

Parameter

Test condition

Logic interface supply voltage

VDD
VS

Motor supply voltage

VGND, diff

VSA = VSB = VS

Differential voltage between
AGND, PGND and DGND

Value

Unit

5.5

V

48

V

±0.3

V

Vboot

Bootstrap peak voltage

55

V

VREG

Internal voltage regulator output
pin and logic supply voltage

3.6

V

Integrated ADC input voltage
range (ADCIN pin)

-0.3 to +3.6

V

VOSC

OSCIN and OSCOUT pin voltage
range

-0.3 to +3.6

V

Vout_diff

Differential voltage between VSA,
OUT1A, OUT2A, PGND and VSB,
OUT1B, OUT2B, PGND pins

48

V

VLOGIC

Logic inputs voltage range

-0.3 to +5.5

V

3

A

7

A

150

°C

-55 to 150

°C

3

W

± 2000

V

TBD

V

VADCIN

Iout

(1)

Iout_peak

VSA = VSB = VS

R.m.s. output current
(1)

TOP
Ts
Ptot

All pins

Pulsed output current

TPULSE < 1 ms

Operating junction temperature
Storage temperature range
Total power dissipation (TA = 25ºC)

(2)

Maximum withstanding voltage
range

CDF-AEC-Q100-002- “human body
model” Acceptance criteria “normal
performance” all pins vs. all pins

Maximum withstanding voltage
range

TBD - “charge device model” all pins vs.
all pins

1. Maximum output current limit is related to metal connection and bonding characteristics. Actual limit must satisfy maximum
thermal dissipation constraints.
2. HTSSOP28 mounted on EVAL6470 Rev 1.0

Doc ID 16737 Rev 3

9/67

Electrical data

2.2

L6470

Recommended operating conditions
Table 3.
Symbol
VDD
VS

Recommended operating conditions
Parameter

Test condition

Logic interface supply voltage

3.3 V logic outputs

VSA = VSB = VS

Vout_diff

Differential voltage between
VSA, OUT1A, OUT2A, PGND
and VSB, OUT1B, OUT2B,
PGND pins

VSA = VSB = VS

VREG,in

Logic supply voltage

VREG voltage imposed
by external source

Tj

Table 4.
Symbol
RthJA

Integrated ADC input voltage
(ADCIN pin)
Operating junction temperature

Unit

3.3

5 V logic outputs

Motor supply voltage

VADC

Value

V

5
8

3.2

45

V

45

V

3.3

V

0

VREG

V

- 25

125

°C

Thermal data
Parameter
Thermal resistance junction-ambient (1)

Value

Unit

40

°C/W

1. HTSSOP28 mounted on EVAL6470 Rev 1.0 board: two-layer FR4 PCB with a dissipating copper surface
of about 3.5 cm2 on the top side plus 9 cm2 ground layer connected through via holes (12 below the IC).

10/67

Doc ID 16737 Rev 3

L6470

3

Electrical characteristics

Electrical characteristics
VSA = VSB = 36 V; VDD = 3.3 V; internal 3 V regulator; TJ = 25°C, unless otherwise specified.

Table 5.

Electrical characteristics

Symbol

Parameter

Test condition

Min

Typ

Max Unit

General
VSthOn

VS UVLO turn on threshold

7.5

8.2

8.9

V

VSthOff

VS UVLO turn off threshold

6.6

7.2

7.8

V

VSthHyst

VS UVLO threshold hysteresis

0.7

1

1.3

V

Iq

Quiescent motor supply current

0.5

0.65

mA

Tj(WRN)
Tj(SD)

Internal oscillator selected;
VREG = 3.3V ext;
CP floating

Thermal warning temperature

130

°C

Thermal shutdown temperature

160

°C

10

V

Charge pump
Vpump

Voltage swing for charge pump oscillator

fpump,min

Minimum charge pump oscillator frequency (1)

660

kHz

fpump,max

(1)

800

kHz

Iboot

Maximum charge pump oscillator frequency
Average boot current

fsw,A = fsw,B = 15.6 kHz
POW_SR = ‘10’

1.1

Tj = 25 °C,
Iout = 3A

0.37

Tj = 125 °C, (2)
Iout = 3A

0.51

Tj = 25 °C,
Iout = 3A

0.18

Tj = 125 °C, (2)
Iout = 3A

0.23

1.4

mA

Output DMOS transistor

High side switch ON resistance
RDS(on)
Low side switch ON resistance

IDSS

tr

Leakage current

Rise time

(3)

OUT = VS
OUT = GND

3.1
-0.3

POW_SR = '00', Iout = +1A

100

POW_SR = '00', Iout = -1A

80

POW_SR = ‘11’, Iout = ±1A

100

POW_SR = ‘10’, Ilout = ±1A

200

POW_SR = ‘01’, Iout = ±1A

300

Doc ID 16737 Rev 3

mA

ns

11/67

Electrical characteristics
Table 5.

Electrical characteristics (continued)

Symbol

tf

SRout_r

SRout_f

L6470

Parameter

Fall time

Test condition

(3)

Output rising slew-rate

Output falling slew-rate

Min

Typ

POW_SR = '00'; Iout = +1A

90

POW_SR = '00'; Iout = -1A

110

POW_SR = ‘11’, Iout = ±1A

110

POW_SR = ‘10’, Iout = ±1A

260

POW_SR = ‘01’, Iload= ±1A

375

POW_SR = '00', Iout = +1A

285

POW_SR = '00', Iout = -1A

360

POW_SR = ‘11’, Iout = ±1A

285

POW_SR = ‘10’, Iout = ±1A

150

POW_SR = ‘01’, Iout = ±1A

95

POW_SR = '00', Iout = +1A

320

POW_SR = '00', Iout = -1A

260

POW_SR = ‘11’, Iout = ±1A

260

POW_SR = ‘10’, Iout = ±1A

110

POW_SR = ‘01’, Iout = ±1A

75

POW_SR = '00'

250

POW_SR = ‘11’,
fOSC = 16MHz

375

POW_SR = ‘10’,
fOSC = 16MHz

625

POW_SR = ‘01’,
fOSC = 16MHz

875

POW_SR = '00'

250

POW_SR = ‘11’,
fOSC = 16MHz

375

POW_SR = ‘10’,
fOSC = 16MHz

625

POW_SR = ‘01’,
fOSC = 16MHz

875

Max Unit

ns

V/µs

V/µs

Dead time and blanking

tDT

tblank

Dead time (1)

Blanking time (1)

ns

ns

Source-drain diodes
VSD,HS

High side diode forward ON voltage

Iout = 1 A

1

1.1

V

VSD,LS

Low side diode forward ON voltage

Iout = 1 A

1

1.1

V

trrHS

High side diode reverse recovery time

Iout = 1 A

30

ns

trrLS

Low side diode reverse recovery time

Iout = 1 A

100

ns

12/67

Doc ID 16737 Rev 3

L6470
Table 5.

Electrical characteristics
Electrical characteristics (continued)

Symbol

Parameter

Test condition

Min

Typ

Max Unit

Logic inputs and outputs
VIL

Low logic level input voltage

VIH

High logic level input voltage

IIH
IIL

VOL

VOH

0.8
2

High logic level input current

(4)

VIN = 5 V

Low logic level input current

(5)

VIN = 0 V

Low logic level output voltage (6)

High logic level output voltage

-1

0.3

V

VDD = 3.3 V,
IOH = 4 mA

2.4

VDD = 5 V,
IOH = 4 mA

4.7
335

Ilogic

Internal logic supply current

3.3 V VREG externally
supplied, internal oscillator

Standby mode internal logic supply current

3.3 V VREG externally
supplied

µA
µA

VDD = 5 V,
IOL = 4 mA

CS = GND;
STBY/RST = 5 V

fSTCK

1

0.3

CS Pull-up and STBY pull-down resistors

Ilogic,STBY

V

VDD = 3.3 V,
IOL = 4 mA

RPU
RPD

V

V

430

565

k

3.7

4.3

mA

2

2.5

µA

2

MHz

Step clock input frequency

Internal oscillator and external oscillator driver
Tj = 25°C,
VREG = 3.3 V

fosc,i

Internal oscillator frequency

fosc,e

Programmable external oscillator frequency

-3%

16

8

+3% MHz
32

MHz

VOSCOUTH

OSCOUT clock source high level voltage

Internal oscillator
3.3 V VREG externally
supplied; IOSCOUT = 4 mA

VOSCOUTL

OSCOUT clock source low level voltage

Internal oscillator
3.3 V VREG externally
supplied; IOSCOUT = 4 mA

0.3

V

trOSCOUT
tfOSCOUT

OSCOUT clock source rise and fall time

Internal oscillator

20

ns

2.4

V

textosc

Internal to external oscillator switching delay

3

ms

tintosc

External to internal oscillator switching delay

1.5

µs

SPI
fCK,MAX
trCK
tfCK

Maximum SPI clock frequency (7)
SPI clock rise and fall time (7)

5
CL = 30pF

Doc ID 16737 Rev 3

MHz
25

ns

13/67

Electrical characteristics
Table 5.

Electrical characteristics (continued)

Symbol
thCK
tlCK
tsetCS
tholCS

L6470

Parameter

Min

Typ

Max Unit

SPI clock high and low time (7)

75

ns

Chip select setup time (7)

350

ns

10

ns

800

ns

25

ns

20

ns

Chip select hold time

(7)

(7)

tdisCS

Deselect time

tsetSDI

Data input setup time (7)

tholSDI

Test condition

Data input hold time

(7)

Data output enable time

(7)

38

ns

tdisSDO

Data output disable time

(7)

47

ns

tvSDO

Data output valid time (7)

57

ns

tenSDO

tholSDO

Data output hold time

(7)

37

ns

Switch input (SW)
RPUSW

SW input pull-up resistance

SW = GND

60

85

110

fosc = 16MHz

2.8

62.5

fosc = 32MHz

5.6

125

k

PWM modulators
fPWM

Programmable PWM frequency (1)

NPWM

PWM resolution

kHz

8

bit

Stall detection
ISTALL,MAX

Maximum programmable stall threshold

STALL_TH = '1111111'

4

A

ISTALL,MIN

Minimum programmable stall threshold

STALL_TH = '0000000'

31.25

mA

ISTALL,RES

Programmable stall threshold resolution

31.25

mA

6

A

Overcurrent protection
IOCD,MAX

Maximum programmable overcurrent
detection threshold

IOCD,MIN

Minimum programmable overcurrent detection
OCD_TH = ‘0000’
threshold

0.375

A

IOCD,RES

Programmable overcurrent detection threshold
resolution

0.375

A

tOCD,Flag

OCD to Flag signal delay time

dIout/dt = 350A/µs,
RFLAG = TBD

650

tOCD,SD

OCD to shut-down delay time

dIout/dt = 350A/µs
POW_SR = '10'

600

VS = 8V

26

34

VS = 36V

30

36

OCD_TH = ‘1111’

1000

ns
µs

Standby
IqSTBY

14/67

Quiescent motor supply current in standby
conditions

Doc ID 16737 Rev 3

µA

L6470
Table 5.

Electrical characteristics
Electrical characteristics (continued)

Symbol
tSTBY,min
tlogicwu
tcpwu

Parameter

Test condition

Min

Typ

Minimum standby time

10

Logic power-on and wake-up time

38

Charge pump power-on and wake-up time

Power bridges disabled,
Cp = 10nF,
Cboot = 220nF

Max Unit
s
45

µs

650

s

Internal voltage regulator
VREG

Voltage regulator output voltage

IREG

Voltage regulator output current

2.9

VREG, drop

Voltage regulator output voltage drop

IREG,STBY

Voltage regulator standby output current

IREG = 40mA

3

3.2

V

40

mA

50

mV
10

mA

Integrated analog to digital converter
NADC
VADC,ref
fS

Analog to digital converter resolution

5

bit

Analog to digital converter reference voltage

VREG

V

Analog to digital converter sampling
frequency

fPWM

kHz

1. Accuracy depends on oscillator frequency accuracy.
2. Tested at 25°C in a restricted range and guaranteed by characterization.
3. Rise and fall time depends on motor supply voltage value. Refer to SRout values in order to evaluate the actual rise and fall
time.
4. Not valid for STBY/RST pin which have internal pull-down resistor.
5. Not valid for SW and CS pins which have internal pull-up resistor
6. FLAG, BUSY and SYNC open drain outputs included.
7. See Figure 17– SPI timings diagram for details.

Doc ID 16737 Rev 3

15/67

Pin connection

4

L6470

Pin connection
Figure 2.

Pin connection (top view)

/54!





/54!

63!





0'.$

34"9<2%3





63!

37





34#+

!$#).





&,!'

62%'





#3

/3#).





"539<39.#

/3#/54





$'.$

!'.$





3$)

#0





#+

6"//4





3$/

63"





6$$

0'.$





/54"





%0!$

63"
/54"

!-V

4.1

Pin list
Table 6.
N.

Name

Type

17

VDD

Power

Logic outputs supply voltage (pull-up reference)

6

VREG

Power

Internal 3 V voltage regulator output and 3.3 V external
logic supply

7

OSCIN

Analog input

Oscillator pin 1. To connect an external oscillator or clock
source. If this pin is unused, it should be left floating.
Oscillator pin 2. To connect an external oscillator. When
the internal oscillator is used this pin can supply a
2/4/8/16 MHz. If this pin is unused, it should be left
floating.

Function

8

OSCOUT

Analog output

10

CP

Output

11

VBOOT

Supply voltage

5

ADCIN

Analog input

Internal analog to digital converter input

VSA

Power supply

Full bridge A power supply pin. It must be connected to
VSB

VSB

Power supply

Full bridge B power supply pin. It must be connected to
VSA

2
26
12
16

16/67

Pin description

Charge pump oscillator output
Bootstrap voltage needed for driving the high side power
DMOS of both bridges (A and B)

Doc ID 16737 Rev 3

L6470

Pin connection
Table 6.
N.

Pin description (continued)
Name

Type

PGND

Ground

1

OUT1A

Power output

Full bridge A output 1

28

OUT2A

Power output

Full bridge A output 2

14

OUT1B

Power output

Full bridge B output 1

15

OUT2B

Power output

Full bridge B output 2

9

AGND

Ground

4

SW

Logical input

21

DGND

Ground

22

BUSY\SYNC

18

SDO

Logic output

Data output pin for serial interface

20

SDI

Logic input

Data input pin for serial interface

19

CK

Logic input

Serial interface clock

23

CS

Logic input

Chip Select input pin for serial interface

27
13

Function
Power ground pin

Analog ground.
External switch input pin. If not used the pin should be
connected to VDD.
Digital ground

By default this BUSY pin is forced low when the device is
Open drain output performing a command. Otherwise the pin can be
configured to generate a synchronization signal.

Status Flag pin. An internal open drain transistor can pull
the pin to GND when a programmed alarm condition
Open drain output occurs (step loss, OCD, thermal pre-warning or
shutdown, UVLO, wrong command, non performable
command)

24

FLAG

3

STBY\RST

Logic input

Standby and reset pin. LOW logic level reset the logic
and puts the device in standby mode. If not used, should
be connected to VDD

25

STCK

Logic input

Step clock input

EPAD Exposed pad

Ground

Internally connected to PGND, AGND and DGND pins

Doc ID 16737 Rev 3

17/67

Typical applications

5

L6470

Typical applications
Table 7.

Typical application values
Name

value

CVS

220 nF

CVSPOL

100 µF

CREG

100 nF

CREGPOL

47 µF

CDD

100 nF

CDDPOL

10 µF

D1

Charge pump diodes

CBOOT

220 nF

CFLY

10 nF

RPU

39 k

RSW

100

CSW

10 nF

Figure 3.

18/67

RA

2.7 k

(VS = 36 V)

RB

62 k

(VS = 36 V)

Bipolar stepper motor control application using L6470

Doc ID 16737 Rev 3

L6470

Functional description

6

Functional description

6.1

Device power-up
At power-up end, the device state is the following:
●

Registers are set to default,

●

Internal logic is driven by internal oscillator and a 2MHz clock is provided by OSCOUT
pin,

●

Bridges are disabled (High Z),

●

UVLO bit in STATUS register is forced low (fail condition),

●

FLAG output is forced low

During power-up the device is under reset (all logic IO disabled and power bridges in high
impedance state) until the following conditions are satisfied:
●

VS is greater than VSthOn,

●

VREG is greater than VREGth = 2.8 V typical

●

Internal oscillator is operative.

Any motion command makes the device exiting from High Z state (HardStop and SoftStop
included).

6.2

Logic I/O
Pins CS, CK, SDI, STCK, SW and STBY\RST are TTL/CMOS 3.3V-5V compatible logic
inputs.
Pin SDO is a TTL/CMOS compatible logic output. VDD pin voltage sets the logic output pin
voltage range; when it is connected to VREG or 3.3V external supply voltage, the output is
3.3V compatible. When VDD is connected to a 5V supply voltage, SDO is 5V compatible.
VDD is not internally connected to VREG, an external connection is always needed.
A 10 µF capacitor should be connected to VDD pin in order to obtain a proper operation.
Pins FLAG and BUSY\SYNC are open drain outputs.

6.3

Charge pump
To ensure the correct driving of the high side integrated mosfets a voltage higher than the
motor power supply voltage needs to be applied to the VBOOT pin. The high side gate
driver supply voltage Vboot is obtained through an oscillator and a few external components
realizing a charge pump (see Figure 4).

Doc ID 16737 Rev 3

19/67

Functional description
Figure 4.

L6470
Charge pump circuitry
63

6#0 6$

#"//4
63

$
63

6#0 6$

#&,9

6$

6"//4

$

#0
6#0

TO HIGH SIDE
GATE DRIVERS

6$$

F05-0

!-V

6.4

Microstepping
The driver is able to divide the single step into up to 128 microsteps. Stepping mode can be
programmed by STEP_SEL parameter in STEP_MODE register (see Table 18).
Step mode can be only changed when bridges are disabled. Every time the step mode is
changed the electrical position (i.e. the point of microstepping sinewave that is generated) is
reset to first microstep and the absolute position counter value (see Section 6.5) becomes
meaningless.
Figure 5.
2ESET
POSITION

Normal mode and microstepping (128 microsteps)
.ORMAL DRIVING

2ESET
POSITION

0(!3% ! CURRENT
0(!3% " CURRENT

-ICROSTEPPING
0(!3% ! CURRENT
0(!3% " CURRENT

MICROSTEPS

STEP  STEP  STEP  STEP  STEP 

STEP  STEP  STEP  STEP  STEP 

ª STEPS


ª STEPS


ª STEPS


ª STEPS

!-V

20/67

Doc ID 16737 Rev 3

L6470

6.4.1

Functional description

Automatic full-step mode
When motor speed is greater than a programmable full step speed threshold, the L6470
switches automatically to full-step mode (see Figure 6); the driving mode returns to
microstepping when motor speed decrease below the full step speed threshold. Full step
speed threshold is set through the FS_SPD register (see Section 9.1.9).
Figure 6.

Automatic full-step switching
Ipeak

sin(π/4) x Ipeak

Phase A

Phase B

(2N+1) x π/4

6.5

µStepping

Full-Step

µStepping

(2N+1) x π/4

Absolute position counter
An internal 22 bit register (ABS_POS) takes memory of motor motion according to the
selected step mode; the stored value unit is equal to the selected step mode (full, half,
quarter, etc.). The position range is from -221to +221-1 (µ)steps (see Section 9.1.1).

6.6

Programmable speed profiles
The user can easily program a customized speed profile defining independently
acceleration, deceleration, maximum and minimum speed values by ACC, DEC,
MAX_SPEED and MIN_SPEED registers respectively (see Section 9.1.5, 9.1.6, 9.1.7 and
9.1.8).
When a command is sent to the device, the integrated logic generates the microstep
frequency profile that performs a motor motion compliant to speed profile boundaries.
All acceleration parameters are expressed in step/tick2 and all speed parameters are
expressed in step/tick; the unit of measure does not depend on selected step mode.
Acceleration and deceleration parameters range from 2-40 to (212-2) 2-40 step/tick2
(equivalent to 14.55 to 59590 step/s2).
Minimum speed parameter ranges from 0 to (212-1) 2-24 step/tick (equivalent to 0 to 976.3
step/s).
Maximum speed parameter ranges from 2-18 to (210-1) 2-18 step/tick (equivalent to 15.25 to
15610 step/s).

Doc ID 16737 Rev 3

21/67

Functional description

6.6.1

L6470

Infinite acceleration/deceleration mode
When ACC register value is set to max (0xFFF), system works in “infinite acceleration
mode”: acceleration and deceleration phases are totally skipped as shown in Figure 7.
It is not possible to skip the acceleration or deceleration phase independently.

Figure 7.

Speed profile in infinite acceleration/deceleration mode

30%%$
0ROGRAMMED
MAXIMUM
SPEED

0ROGRAMMED NUMBER OF MICROSTEPS

TIME

TIME
)NDEXING MODE

22/67

#ONSTANT SPEED MODE

Doc ID 16737 Rev 3

!-6

L6470

6.7

Functional description

Motor control commands
The L6470 can accept different types of commands:
●

constant speed commands (Run, GoUntil, ReleaseSW),

●

absolute positioning commands (GoTo, GoTo_DIR, GoHome, GoMark),

●

motion commands (Move),

●

stop commands (SoftStop, HardStop, SoftHiz, HardHiz).

For detailed command descriptions refer to Section 9.2 on page 54.

6.7.1

Constant speed commands
A constant speed command produces a motion in order to reach and maintain a userdefined target speed starting from the programmed minimum speed (set in MIN_SPEED
register) and with the programmed acceleration/deceleration value (set in ACC and DEC
registers). A new constant speed command can be requested anytime.
Figure 8.

Constant speed commands examples
3PEED
STEP FREQUENCY
30$

2UN30$ "7
30$
30$
2UN30$ &7
2UN30$ &7
-INIMUM
SPEED
-INIMUM
SPEED

TIME
2UN30$ &7

30$

!-V

6.7.2

Positioning commands
An absolute positioning command produces a motion in order to reach a user-defined
position that is sent to the device together with the command. The position can be reached
performing the minimum path (minimum physical distance) or forcing a direction (see
Figure 9).
Performed motor motion is compliant to programmed speed profile boundaries
(acceleration, deceleration, minimum and maximum speed).
Note that with some speed profiles or positioning commands, the deceleration phase can
start before the maximum speed is reached.

Doc ID 16737 Rev 3

23/67

Functional description
Figure 9.

L6470
Positioning command examples
&ORWARD
DIRECTION





0RESENT
POSITION

0RESENT
POSITION
4ARGET
POSITION

 

4ARGET
POSITION

  

 

'O4O4ARGET POS

6.7.3

  

'O4O?$)24ARGET POS &7

!-V

Motion commands
Motion commands produce a motion in order to perform a user-defined number of
microsteps in a user-defined direction that are sent to the device together with the command
(see Figure 10).
Performed motor motion is compliant to programmed speed profile boundaries
(acceleration, deceleration, minimum and maximum speed).
Note that with some speed profiles or motion commands, the deceleration phase can start
before the maximum speed is reached.
Figure 10. Motion commands examples
30%%$

30%%$
PROGRAMMED NUMBER OF MICROSTEPS

PROGRAMMED NUMBER OF MICROSTEPS
PROGRAMMED
MAXIMUM
SPEED

PROGRAMMED
MAXIMUM
SPEED

PROGRAMMED
!##%,%2!4)/.
PROGRAMMED
MINIMUM
SPEED

PROGRAMMED
!##%,%2!4)/.

PROGRAMMED
$%#%,%2!4)/.
PROGRAMMED
MINIMUM
SPEED

.OTE WITH SOME
!CCELERATION$ECELARATION PROFILES
THE PROGRAMMED MAXIMUM SPEED
IS NEVER REACHED
PROGRAMMED
$%#%,%2!4)/.

TIME

TIME

!-V

6.7.4

Stop commands
A stop command forces the motor to stop. Stop commands can be sent anytime.
SoftStop command causes the motor to decelerate with programmed deceleration value
until MIN_SPEED value is reached and then stops the motor keeping the rotor position (a
holding torque is applied).
HardStop command stops the motor instantly ignoring deceleration constrain and keeping
the rotor position (a holding torque is applied).

24/67

Doc ID 16737 Rev 3

L6470

Functional description
SoftHiZ command causes the motor to decelerate with programmed deceleration value until
MIN_SPEED value is reached and then forces the bridges in high impedance state (no
holding torque is present).
HardHiZ command instantly forces the bridges in high impedance state (no holding torque is
present).

6.7.5

Step-clock mode
In step clock mode the motor motion is defined by the step clock signal applied to STCK pin.
At each step clock rising edge, the motor is moved of one microstep in the programmed
direction and absolute position is consequently updated.
When the system is in step clock mode the SCK_MOD flag in STATUS register is raised,
SPEED register is set to zero and motor status is considered stopped whatever the STCK
signal frequency (MOT_STATUS parameter in STATUS register equal to “00”).

6.7.6

GoUntil and ReleaseSW commands
In most applications the power-up position of the stepper motor is undefined, so an
initialization algorithm driving the motor to a known position is necessary.
The GoUntil and ReleaseSW commands can be used in combination with external switch
input (see Section 6.13) to easily initialize the motor position.
GoUntil command makes the motor run at target constant speed until the SW input is forced
low (falling edge). When this event occurs, one of the following actions can be performed:
●

ABS_POS register is set to zero (home position) and the motor decelerates to zero
speed (as a SoftStop command);

●

ABS_POS register value is stored into MARK register and the motor decelerates to
zero speed (as a SoftStop command).

If the SW_MODE bit of CONFIG register is set to ‘0’, the motor do not decelerates but it
immediately stops (as a HardStop command).
ReleaseSW command makes the motor run at programmed minimum speed until the SW
input is forced high (rising edge). When this event occurs, one of the following actions can
be performed:
●

ABS_POS register is set to zero (home position) and the motor immediately stops (as a
HardStop command);

●

ABS_POS register value is stored into MARK register and the motor immediately stops
(as a HardStop command).

If the programmed minimum speed is lesser than 5 step/s, the motor is driven at 5 step/s.

Doc ID 16737 Rev 3

25/67

Functional description

6.8

L6470

Internal oscillator and oscillator driver
The control logic clock can be supplied by the internal 16 MHz oscillator, an external
oscillator (crystal or ceramic resonator) or a direct clock signal.
These working modes can be selected by EXT_CLK and OSC_SEL parameters in the
CONFIG register (see Table 23).
At power-up the device starts using the internal oscillator and provides a 2 MHz clock signal
on the OSCOUT pin.

Attention: In any case, before changing clock source configuration, a
hardware reset is mandatory. Switching to different clock
configurations during operation could cause unexpected
behavior.

6.8.1

Internal oscillator
In this mode the internal oscillator is activated and OSCIN is unused. If OSCOUT clock
source is enabled, OSCOUT pin provides a 2, 4, 8 or 16 MHz clock signal (according to
OSC_SEL value); otherwise it is unused (see Figure 11).

6.8.2

External clock source
Two types of external clock source can be selected: crystal/ceramic resonator or direct clock
source. Four programmable clock frequencies are available for each external clock source:
8, 16, 24 and 32 MHz.
When an external crystal/resonator is selected, OSCIN and OSCOUT pins are used to drive
the crystal/resonator (see Figure 11). Crystal/resonator and load capacitors (CL) must be
placed as close as possible to the pins. Refer to Table 8 for the choice of the load capacitor
value according to the external oscillator frequency.
Table 8.

CL values according to external oscillator frequency

Crystal/resonator freq. (1)

CL (2)

8MHz

25pF (ESRmax = 80 )

16MHz

18pF (ESRmax = 50 )

24MHz

15pF (ESRmax = 40 )

32MHz

10pF (ESRmax = 40 )

1. First harmonic resonance frequency.
2. Lower ESR value allows driving greater load capacitors.

If a direct clock source is used, it must be connected to OSCIN pin and OSCOUT pin
supplies the inverted OSCIN signal (see Figure 11).

26/67

Doc ID 16737 Rev 3

L6470

Functional description
Figure 11. OSCIN and OSCOUT pins configurations
%84?#,+  

%84?#,+  
 -(Z

#,

#,
 -(Z

/3#?3%,  XX
/3#).

/3#/54

%XTERNAL OSCILLATOR
CONFIGURATION

/3#).

/3#/54

%XTERNAL CLOCK SOURCE
CONFIGURATION

 -(Z

/3#?3%,  XX
5.53%$

5.53%$

5.53%$

/3#).

/3#/54

/3#).

)NTERNAL OSCILLATOR
CONFIGURATION
WITHOUT CLOCK SOURCE

/3#/54

)NTERNAL OSCILLATOR
CONFIGURATION
WITH CLOCK GENERATION
!-V

Note:

When OSCIN is UNUSED, it should be left floating.
When OSCOUT is UNUSED it should be left floating.

6.9

Overcurrent detection
When the current in any of the power MOSFETs exceeds a programmed overcurrent
threshold, STATUS register OCD flag is forced low until the overcurrent event is expired and
a GetStatus command is sent to the IC (see paragraphs 9.1.22 and 9.1.17). Overcurrent
event expires when all the power MOSFET currents fall below the programmed overcurrent
threshold.
The overcurrent threshold can be programmed through the OCD_TH register in one of 16
available values ranging from 375 mA to 6 A with steps of 375 mA (see Table 9, paragraph
9.1.17).
It is possible to set if an overcurrent event causes or not the MOSFETs turn-off (bridges in
high impedance status)acting on OC_SD bit in the CONFIG register (see paragraph 9.1.21).
The OCD flag in the STATUS register is raised anyway (see Table 34, paragraph 9.1.22).
When the IC outputs are turned-off by an OCD event, they cannot be turned on until the
OCD flag is released by a GetStatus command.

Attention: The overcurrent shutdown is a critical protection feature. It is
not recommended to disable it.

Doc ID 16737 Rev 3

27/67

Functional description

6.10

L6470

Undervoltage lock-out (UVLO)
The L6470 provides a motor supply UVLO protection. When the motor supply voltage falls
below the VSthOff threshold voltage, STATUS register UVLO flag is forced low. When a
GetStatus command is sent to the IC, and the undervoltage condition is expired, the UVLO
flag is released (see paragraphs 9.1.22 and 9.2.20). Undervoltage condition expires when
the motor supply voltage goes over the VSthOn threshold voltage. When the device is in
undervoltage condition no motion command can be performed. UVLO flag is forced low by
logic reset (power-up included) even if no UVLO condition is present.

6.11

Thermal warning and thermal shutdown
An internal sensor allows the L6470 to detect when the device internal temperature exceeds
a thermal warning or an overtemperature threshold.
When the thermal warning threshold (Tj(WRN)) is reached the TH_WRN bit in the STATUS
register is forced low (see paragraph 9.1.22) until the temperature decrease below Tj(WRN)
and a GetStatus command is sent to the IC (see paragraphs 9.1.22 and 9.2.20).
When the thermal shutdown threshold (Tj(OFF)) is reached the device goes in thermal
shutdown condition: the TH_SD bit in the STATUS register is forced low, the power bridges
are disabled bridges in high impedance state and the HiZ bit in the STATUS register is
raised (see paragraph 9.1.22).
Thermal shutdown condition only expires when the temperature goes below the thermal
warning threshold (Tj(WRN)).
On exit from thermal shutdown condition the bridges are still disabled (HiZ flag high);
whichever motion command makes the device exiting from High Z state (HardStop and
SoftStop included).

6.12

Reset and standby
The device can be reset and put into standby mode through a dedicated pin. When
STBY\RST pin is driven low, the bridges are left open (High Z state), the internal charge
pump is stopped, the SPI interface and control logic are disabled and the internal 3 V
voltage regulator maximum output current is reduced to IREG,STBY; as a result the L6470
heavily reduces the power consumption. At the same time the registers values are reset to
default and all protection functions are disabled. STBY\RST input has to be forced low at
least for tSTBY,min in order to ensure the complete switch to standby mode.
On exit from standby mode, as well as for IC power-up, a delay of up to tlogicwu must be
given before applying a new command to allow proper oscillator and logic startup and a
delay of up to tcpwu must be given to allow the charge pump startup.
On exit from standby mode the bridges are disabled (HiZ flag high) and whichever motion
command makes the device exiting from High Z state (HardStop and SoftStop included).

Attention: It is not recommended to reset device when outputs are
active. The device should be switched to high impedance
state before being reset.

28/67

Doc ID 16737 Rev 3

L6470

6.13

Functional description

External switch (SW pin)
The SW input is internally pulled-up to VDD and detects if the pin is open or connected to
ground (see Figure 12).
The SW_F bit of STATUS register indicates if the switch is open (‘0’) or closed (‘1’) (see
paragraph 9.1.22); the bit value is refreshed at every system clock cycle (125 ns). SW_EVN
flag of STATUS register is raised when a switch turn-on event (SW input falling edge) is
detected (see paragraph 9.1.22). A GetStatus command releases the SW_EVN flag (see
paragraph 9.2.20.
By default a switch turn-on event causes a HardStop interrupt (SW_MODE bit of CONFIG
register set to ‘0’). Otherwise (SW_MODE bit of CONFIG register set to ‘1’), switch input
events do not cause interrupts and the switch status information are at user disposal (see
Table 34, paragraph 9.1.22).
The switch input can used by GoUntil and ReleaseSW commands as described in
paragraph 9.2.10 and 9.2.11.
If the SW input is not used, it should be connected to VDD.
Figure 12. External switch connection

6$$

%XTERNAL
3WITCH
37

!-V

Doc ID 16737 Rev 3

29/67

Functional description

6.14

L6470

Programmable DMOS slew-rate, dead-time and blanking-time
Using the POW_SR parameter in the CONFIG register, it is possible to set the commutation
speed of the power bridges output (see Table 26, paragraph 9.1.21).

6.15

Integrated analog to digital converter
The L6470 integrates a NADC bit ramp-compare analog to digital converter with a reference
voltage equal to VREG. The analog to digital converter input is available through the ADCIN
pin and the conversion result is available in the ADC_OUT register (see paragraph 9.1.16).
Sampling frequency is equal to the programmed PWM frequency.
The ADC_OUT value can be used for motor supply voltage compensation or can be at user
disposal.

6.16

Internal voltage regulator
The L6470 integrates a voltage regulator which generates a 3 V voltage starting from motor
power supply (VSA and VSB). In order to make the voltage regulator stable, at least 22 µF
should be connected between VREG pin and ground (suggested value is 47 µF).
The internal voltage regulator can be used to supply the VDD pin in order to make the
device digital output range 3.3 V compatible (Figure 13). A digital output range 5 V
compatible can be obtained connecting VDD pin to an external 5 V voltage source. In both
cases, a 10 µF capacitance should be connected to VDD pin in order to obtain a correct
operation.
The internal voltage regulator is able to supply a current up to IREG,MAX, internal logic
consumption included (Ilogic). When the device is in standby mode the maximum current that
can be supplied is IREG, STBY, internal consumption included (Ilogic, STBY).
If an external 3.3 V regulated voltage is available, it can be applied to the VREG pin in order
to supply all the internal logic and avoiding power dissipation of the internal 3 V voltage
regulator (Figure 13). External voltage regulator should never sink current from VREG pin.
Figure 13. Internal 3 V linear regulator
VBAT
Vs

Vs
3V
VDD

µC

VREG

VDD

VSA

VSB

IC
DGND

VREG

VDD

VSA

VSB

IC
AGND

Logig supplied by
INTERNAL voltage regulator

30/67

3.3V
REG.

Doc ID 16737 Rev 3

DGND

AGND

Logig supplied by
EXTERNAL voltage regulator

L6470

6.17

Functional description

BUSY\SYNC pin
This pin is an open drain output which can be used as busy flag or synchronization signal
according to SYNC_EN bit value (STEP_MODE register).

6.17.1

BUSY operation mode
The pin works as busy signal when SYNC_EN bit is set low (default condition). In this mode
the output is forced low while a constant speed, absolute positioning or motion command is
under execution. The BUSY pin is released when command has been executed (target
speed or target position reached). The STATUS register includes a BUSY flag that is the
BUSY pin mirror (see paragraph 9.1.22).
In case of daisy-chain configuration, BUSY pins of different ICs can be hard-wired to save
host controller GPIOs.

6.17.2

SYNC operation mode
The pin works as synchronization signal when SYNC_EN bit is set high. In this mode a step
clock signal is provided on output according to SYNC_SEL and STEP_SEL parameters
combination (see paragraph 9.1.19).

6.18

FLAG pin
By default an internal open drain transistor pulls the FLAG pin to ground when at least one
of the following conditions occurs:
●

Power-up or standby/reset exit,

●

Stall detection on A bridge,

●

Stall detection on B bridge,

●

Overcurrent detection,

●

Thermal warning,

●

Thermal shutdown,

●

UVLO,

●

Switch turn-on event,

●

Wrong command,

●

Non performable command.

It is possible to mask one or more alarm conditions by programming the ALARM_EN
register (see paragraph 9.1.20, Table 21). If the corresponding bit of ALARM_EN register is
low, the alarm condition is masked and it does not cause a FLAG pin transition; all other
actions imposed by alarm conditions are performed anyway. In case of daisy-chain
configuration, FLAG pins of different ICs can be or-wired to save host controller GPIOs.

Doc ID 16737 Rev 3

31/67

Phase current control

7

L6470

Phase current control
The L6470 controls the phase current applying a sinusoidal voltage to motor windings.
Phase current amplitude is not directly controlled but depends on phase voltage amplitude,
load torque, motor electrical characteristics and rotation speed. Sinewave amplitude is
proportional to the motor supply voltage multiplied by a coefficient (KVAL). KVAL ranges from
0 to 100% and the sinewave amplitude can be obtained through the following formula:
Equation 1

VOUT

VS K VAL

Different KVAL values can be programmed for acceleration, deceleration and constant speed
phases and when motor is stopped (HOLD phase) through KVAL_ACC, KVAL_DEC,
KVAL_RUN and KVAL_HOLD registers (see paragraph 9.1.10). KVAL value is calculated
according following formula:
Equation 2

K VAL

K VAL_X

BEMF _ COMP

VSCOMP K _ THERM

microstep

Where KVAL_X is the starting KVAL value programmed for present motion phase
(KVAL_ACC, KVAL_DEC, KVAL_RUN or KVAL_HOLD), BEMF_COMP is the BEMF
compensation curve value, VSCOMP and K_THERM are the motor supply voltage and
winding resistance compensation factors and microstep is the current microstep value
(fraction of target peak current).
L6470 offers various methods to guarantee a stable current value, allowing the
compensation of:

7.1

●

low speed optimization (see paragraph 7.3)

●

back electromotive force value (see paragraph 7.4);

●

motor supply voltage variation (see paragraph 7.5);

●

windings resistance variation (see paragraph 7.6).

PWM sinewave generators
The two voltage sinewaves applied to stepper motor phases are generated by two PWM
modulators.
The PWM frequency (fPWM) is proportional to the oscillator frequency (fOSC) and can be
obtained through the following formula:
Equation 3

fPWM

fOSC
m
512 N

'N' is the integer division factor and 'm' is the multiplication factor. 'N' and 'm' values can be
programmed by F_PWM_INT and F_PWM_DEC parameters in CONFIG register (see
Table 28 and Table 29, paragraph 9.1.21).

32/67

Doc ID 16737 Rev 3

L6470

Phase current control

Available PWM frequencies are listed in paragraph 9.1.21 from Table 30 to Table 33.

7.2

Sensorless stall detection
Depending on motor speed and load angle characteristics, L6470 offers a motor stall
condition detection using a programmable current comparator.
When a stall event occurs, the respective flag (STEP_LOSS_A or STEP_LOSS_B) is forced
low until a GetStaus command or a system reset occurs (see paragraph 9.2.20).

7.3

Low speed optimization
When motor is driven at a very low speed using a small driving voltage, the resulting phase
current can be distorted. As a consequence, the motor position is different from the ideal
one (see Figure 14).
L6470 implements a low speed optimization in order to remove this effect.
Figure 14. Current distortion and compensation
7ITHOUT LOW SPEED OPTIMIZAZION

)PHASE

7ITH LOW SPEED OPTIMIZAZION

)PHASE

#URRENT DISTORTION IS HEAVILY
REDUCED

!-6

The optimization can be enabled setting high the LSPD_OPT bit in MIN_SPEED register
(see paragraph 9.1.8) and is active into speed range from zero to MIN_SPEED. When low
speed optimization is enabled, speed profile minimum speed is forced to zero.

Doc ID 16737 Rev 3

33/67

Phase current control

7.4

L6470

BEMF compensation
Using the speed information, a compensation curve is added to the amplitude of the voltage
waveform applied to the motor winding in order to compensate the BEMF variations during
acceleration and deceleration (see Figure 15).
Compensation curve is approximated by a stacked line with a starting slope (ST_SLP) when
speed is lower than a programmable threshold speed (INT_SPEED) and a fine slope
(FN_SLP_ACC and FN_SLP_DEC) when speed is greater than the threshold speed (see
paragraphs 9.1.11, 9.1.12, 9.1.13 and 9.1.14).
Figure 15. BEMF compensation curve
#OMPENSATION
VALUE
&.?3,0?!##
&.?3,0?$%#

34?3,0
).4?30%%$

3PEED
!-V

To obtain different current values during acceleration and deceleration phase two different
final slope values, and consequently two different compensation curves, can be
programmed.
Acceleration compensation curve is applied when the motor runs. No BEMF compensation
is applied when the motor is stopped.

7.5

Motor supply voltage compensation
The sinewave amplitude generated by the PWM modulators is directly proportional to the
motor supply voltage (VS). When the motor supply voltage is different from its nominal value,
the motor phases are driven with an incorrect voltage. The L6470 can compensate motor
supply voltage variations in order to avoid this effect.
The motor supply voltage should be connected to the integrated ADC input through a
resistor divider in order to obtain VREG/2 voltage at the ADCIN pin when VS is at its nominal
value (see Figure 16).
The ADC input is sampled at fS frequency, which is equal to PWM frequency.

34/67

Doc ID 16737 Rev 3

L6470

Phase current control

Figure 16. Motor supply voltage compensation circuit

63
62%'
2!
!$#).
6!$#).  63 X 2"  2!

2"

!$#


!$#?/54

2"
F07!-V

Motor supply voltage compensation can be enabled setting high the EN_VSCOMP bit of the
CONFIG register (see Table 22, paragraph 9.1.21). If EN_VSCOMP bit is low the
compensation is disabled and the internal analog to digital converter is at user disposal;
sampling rate is always equal to PWM frequency.

7.6

Winding resistance thermal drift compensation
The higher is the winding resistance the greater is the voltage to be applied in order to
obtain the same phase current.
The L6470 integrates a register (K_THERM) which can be used to compensate phase
resistance increment due by temperature rising.
The value in K_THERM register (see paragraph 9.1.15) multiplies duty cycle value allowing
to face higher phase resistance value.
The compensation algorithm and the eventual motor temperature measurement should be
implemented by microcontroller firmware.

Doc ID 16737 Rev 3

35/67

Serial interface

8

L6470

Serial interface
The integrated 8bit serial peripheral interface (SPI) is used for a synchronous serial
communication between the host microprocessor (always master) and the L6470 (always
slave).
The SPI uses chip select (CS), serial clock (CK), serial data input (SDI) and serial data
output (SDO) pins. When CS is high the device is unselected and the SDO line is inactive
(high-impedance).
The communication starts when CS is forced low. The CK line is used for synchronization of
data communication.
All commands and data bytes are shifted into the device through the SDI input, most
significant bit first. The SDI is sampled on the rising edges of the CK.
All output data bytes are shifted out of the device through the SDO output, most significant
bit first. The SDO is latched on the falling edges of the CK. When a return value from the
device is not available, an all zero byte is sent.
After each byte transmission the CS input must be raised and be kept high for at least tdisCS
in order to allow the device to decode the received command and put into the shift register
the return value.
All timing requirements are shown in Figure 17 (see respective electrical characteristics
section for values).
Multiple devices can be connected in daisy-chain configuration, as shown in Figure 18.
Figure 17. SPI timings diagram
#3

TDIS#3

TSET#3

#+

TEN3$/

TR#+

TSET3$)

TH#+ TF#+

TL#+

THOL#3

THOL3$)
-3"

3$)

.

(I:

-3"

,3"

TV3$/

THOL3$/
3$/

.

TDIS3$/

.

.

,3"

-3"
!-V

36/67

Doc ID 16737 Rev 3

L6470

Serial interface
Figure 18. Daisy-chain configuration
$%6 
#3

#3

#+

#+

(/34 3$/

-

3$)-

3$)
3$/

$%6 
#3
#+

(/34 30) SIGNALS

3$)
3$/

#3
3$/-

"YTE .

"YTE . 

"YTE 

"YTE .

3$)-

"YTE .

"YTE . 

"YTE 

"YTE .

$%6 .
#3
#+
3$)
3$/
!-V

Doc ID 16737 Rev 3

37/67

Programming manual

L6470

9

Programming manual

9.1

Registers and flags description
Following a map of the user registers available (detailed description in respective
paragraphs):

Table 9.
Address
[Hex]

Registers map
Register name

h01

ABS_POS

h02

EL_POS

h03

Register function

Len.
[bit]

Current position

22

Electrical position

9

MARK

Mark position

h04

SPEED

h05

Reset

Reset

Hex

Value

000000 0
000

Remarks
(1)

R, WS

0

R, WS

22

000000 0

R, WR

Current speed

20

00000

ACC

Acceleration

12

08A

125.5e-12 step/tick2
(2008 step/s2)

R, WS

h06

DEC

Deceleration

12

08A

125.5e-12 step/tick2
(2008 step/s2)

R, WS

h07

MAX_SPEED

Maximum speed

10

041

248e-6 step/tick
(991.8 step/s)

R, WR

h08

MIN_SPEED

Minimum speed

13

000

0 step/tick
(0 step/s)

R, WS

h15

FS_SPD

Full step speed

10

027

150.7e-6 step/tick
(602.7 step/s)

R, WR

h09

KVAL_HOLD

Holding KVAL

8

29

0.16·VS

R, WR

h0A

KVAL_RUN

Constant speed KVAL

8

29

0.16·VS

R, WR

h0B

KVAL_ACC

Acceleration starting KVAL

8

29

0.16·VS

R, WR

h0C

KVAL_DEC

Deceleration starting KVAL

8

29

0.16·VS

R, WR

h0D

INT_SPD

Intersect speed

14

0408

61.5e-6 step/tick (246 step/s)

R, WH

h0E

ST_SLP

Start slope

8

19

0.038% s/step

R, WH

0 step/tick
(0 step/s)

R

h0F

FN_SLP_ACC Acceleration final slope

8

29

0.063% s/step

R, WH

h10

FN_SLP_DEC Deceleration final slope

8

29

0.063% s/step

R, WH

1.0

R, WR

h11

K_THERM

Thermal compensation
factor

4

0

h12

ADC_OUT

ADC output

5

XX(2)

h13

OCD_TH

OCD threshold

4

8

3.38A

R, WR

h14

STALL_TH

STALL threshold

7

40

2.03A

R, WR

h16

STEP_MODE

Step mode

8

7

128 microsteps

R, WH

h17

ALARM_EN

Alarms enables

8

FF

All alarms enabled

R, WS

38/67

Doc ID 16737 Rev 3

R

L6470
Table 9.
Address
[Hex]

Programming manual
Registers map (continued)
Register name

Register function

Len.
[bit]

Reset

Reset

Hex

Value
Internal oscillator,
2MHz OSCOUT clock,
supply voltage compensation
disabled,
overcurrent shutdown enabled,
slew-rate = 290 V/µs
PWM frequency = 15.6kHz.

h18

CONFIG

IC configuration

16

2E88

h19

STATUS

Status

16

XXXX(2)

h1A

RESERVED

Reserved address

h1B

RESERVED

Reserved address

Remarks
(1)

R, WH

High impedance state,
UVLO/Reset flag set.

R

1. R: Readable, WH: writable only when outputs are in high impedance, WS: writable only when motor is stopped, WR:
always writable.
2. According to startup conditions.

9.1.1

ABS_POS
The ABS_POS register contains the current motor absolute position in agreement to the
selected step mode; the stored value unit is equal to the selected step mode (full, half,
quarter, etc.). The value is in two's complement format and it ranges from -221 to +221-1.
At power-on the register is initialized to “0” (HOME position).
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

9.1.2

EL_POS
The EL_POS register contains the current electrical position of the motor. The two MSbits
indicate the current step and the other bits indicate the current microstep (expressed in
step/128) within the step.
Table 10.

EL_POS register

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

STEP

Bit 3

Bit 2

Bit 1

Bit 0

MICROSTEP

When the EL_POS register is written by the user the new electrical position is instantly
imposed. When the EL_POS register is written its value must be masked in order to match
with the step mode selected in STEP_MODE register in order to avoid a wrong microstep
value generation (see paragraph 9.1.19); otherwise the resulting microstep sequence will be
incorrect.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

Doc ID 16737 Rev 3

39/67

Programming manual

9.1.3

L6470

MARK
The MARK register contains an absolute position called MARK in according to the selected
step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.).
It is in two's complement format and it ranges from -221 to +221-1.

9.1.4

SPEED
The SPEED register contains the current motor speed, expressed in step/tick (format
unsigned fixed point 0.28).
In order to convert the SPEED value in step/s the following formula can be used:
Equation 4

step / s

SPEED 2
tick

28

where SPEED is the integer number stored into the register and tick is 250 ns.
The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.
Note:

The range effectively available to the user is limited by the MAX_SPEED parameter.

Any attempt to write the register causes the command to be ignored and the
NOTPERF_CMD flag to rise (see paragraph 9.1.22).

9.1.5

ACC
The ACC register contains the speed profile acceleration expressed in step/tick2 (format
unsigned fixed point 0.40).
In order to convert ACC value in step/s2 the following formula can be used:
Equation 5

step / s 2

ACC 2

40

tick 2

where ACC is the integer number stored into the register and tick is 250 ns.
The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.
When the ACC value is set to 0xFFF the device works in infinite acceleration mode.
Any attempt to write to the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

40/67

Doc ID 16737 Rev 3

L6470

9.1.6

Programming manual

DEC
The DEC register contains the speed profile deceleration expressed in step/tick2 (format
unsigned fixed point 0.40).
In order to convert DEC value in step/s2 the following formula can be used:
Equation 6

step / s 2

DEC 2

40

tick 2

where DEC is the integer number stored into the register and tick is 250 ns.
The available range is from 14.55to 59590 step/s2 with a resolution of 14.55 step/s2.
When the device is working in infinite acceleration mode this value is ignored.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

9.1.7

MAX_SPEED
The MAX_SPEED register contains the speed profile maximum speed expressed in
step/tick (format unsigned fixed point 0.18).
In order to convert it in step/s the following formula can be used:
Equation 7

step / s

18

MAX _ SPEED 2
tick

where MAX_SPEED is the integer number stored into the register and tick is 250 ns.
The available range is from 15.25 to 15610 step/s with a resolution of 15.25 step/s.

9.1.8

MIN_SPEED
The MIN_SPEED register contains following parameters:
Table 11.
Bit 12

MIN_SPEED register
Bit 11

Bit 10

Bit 9

Bit 8

LSPD_OPT

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

MIN_SPEED

The MIN_SPEED parameter contains the speed profile minimum speed. Its value is
expressed in step/tick and to convert it in step/s the following formula can be used:

step / s

MIN _ SPEED 2
tick

Doc ID 16737 Rev 3

24

41/67

Programming manual

L6470

where MIN_SPEED is the integer number stored into the register and tick is the ramp 250
ns.
The available range is from 0 to 976.3 step/s with a resolution of 0.238 step/s.
When LSPD_OPT bit is set high, low speed optimization feature is enabled and
MIN_SPEED value indicates the speed threshold below which the compensation works. In
this case the minimum speed of speed profile is set to zero.
An attempt to write the register when the motor is running causes the NOTPERF_CMD flag
to rise.

9.1.9

FS_SPD
The FS_SPD register contains the threshold speed. When the actual speed exceeds this
value the step mode is automatically switched to Full Step two-phase on. Its value is
expressed in step/tick (format unsigned fixed point 0.18) and to convert it in step/s the
following formula can be used.
Equation 8

step / s

(FS _ SPD 0.5) 2
tick

18

If FS_SPD value is set to hFF (max) the system always works in microstepping mode
(SPEED must go beyond the threshold to switch to full step mode). Setting FS_SPD to zero
has not the same effect as setting step mode to full step two phase on: zero FS_SPD value
is equivalent to a speed threshold of about 7.63 step/s.
The available range is from 7.63 to 15625 step/s with a resolution of 15.25 step/s.

9.1.10

KVAL_HOLD, KVAL_RUN, KVAL_ACC and KVAL_DEC
The KVAL_HOLD register contains the KVAL value that is assigned to the PWM modulators
when the motor is stopped (compensations excluded).
The KVAL_RUN register contains the KVAL value that is assigned to the PWM modulators
when the motor is running at constant speed (compensations excluded).
The KVAL_ACC register contains the starting KVAL value that can be assigned to the PWM
modulators during acceleration (compensations excluded).
The KVAL_DEC register contains the starting KVAL value that can be assigned to the PWM
modulators during deceleration (compensations excluded).
The available range is from 0 to 0.996 x VS with a resolution of 0.004 x VS as shown in
Table 12.

42/67

Doc ID 16737 Rev 3

L6470

Programming manual

Table 12.

Voltage amplitude regulation registers
KVAL_X [7..0]

9.1.11

Output voltage

0

0

0

0

0

0

0

1

VS x (1/256)
…

0

…

0

…

0

…

0

…

0

…

0

…

0

…

0

…

0

1

1

1

1

1

1

1

0

VS x (254/256)

1

1

1

1

1

1

1

1

VS x (255/256)

INT_SPEED
The INT_SPEED register contains the speed value at which the BEMF compensation curve
changes slope (see paragraph 7.4 for details). Its value is expressed in step/tick and to
convert it in [step/s] the following formula can be used:
Equation 9

step / s

INT _ SPEED 2
tick

24

where INT_SPEED is the integer number stored into the register and tick is 250 ns.
The available range is from 0 to 3906 step/s with a resolution of 0.238 step/s.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

9.1.12

ST_SLP
The ST_SLP register contains the BEMF compensation curve slope that is used when the
speed is lower than the intersect speed (see paragraph 7.4 for details). Its value is
expressed in s/step and the available range is from 0 to 0.004 with a resolution of 0.000015.
When ST_SLP, FN_SLP_ACC and FN_SLP_DEC parameters are set to zero no BEMF
compensation is performed.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

9.1.13

FN_SLP_ACC
The FN_SLP_ACC register contains the BEMF compensation curve slope that is used when
the speed is greater than the intersect speed during acceleration (see paragraph 7.4 for
details). Its value is expressed in s/step and the available range is from 0 to 0.004 with a
resolution of 0.000015.
When ST_SLP, FN_SLP_ACC and FN_SLP_DEC parameters are set to zero no BEMF
compensation is performed.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

Doc ID 16737 Rev 3

43/67

Programming manual

9.1.14

L6470

FN_SLP_DEC
The FN_SLP_DEC register contains the BEMF compensation curve slope that is used when
the speed is greater than the intersect speed during deceleration (see paragraph 7.4 for
details). Its value is expressed in s/step and the available range is from 0 to 0.004 with a
resolution of 0.000015.
When ST_SLP, FN_SLP_ACC and FN_SLP_DEC parameters are set to zero no BEMF
compensation is performed.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

9.1.15

K_THERM
The K_THERM register contains the value used by the winding resistance thermal drift
compensation system (see paragraph 7.6).
The available range is from 1 to 1.46875 with a resolution of 0.03125 as shown in Table 13.
Table 13.

Winding resistance thermal drift compensation coefficient
K_THERM [3..0]

9.1.16

Compensation coeff.

0

0

0

1

1.03125
…

1

…

0

…

0

…

0

…

0

1

1

1

0

1.4375

1

1

1

1

1.46875

ADC_OUT
The ADC_OUT register contains the result of the analog to digital conversion of the ADCIN
pin voltage; the result is available even if the supply voltage compensation is disabled.
Any attempt to write to the register causes the command to be ignored and the
NOTPERF_CMD flag to rise (see paragraph 9.1.22).
Table 14.

44/67

ADC_OUT value and motor supply voltage compensation feature
ADC_OUT

Compensation
coefficient

VS

VADCIN/VREG

Greater than VS,nom + 50%

> 24/32

1

1

X

X

X

0.65625

VS,nom + 50%

24/32

1

1

0

0

0

0.65625
…
1
…

…
0
…

…
0
…

…
0
…

…
0
…

…
1
…

…
16/32
…

VS,nom
…

…

[4..0]

VS,nom – 50%

8/32

0

1

0

0

0

1.968875

Lower than VS,nom – 50%

< 8/32

0

0

X

X

X

1.968875

Doc ID 16737 Rev 3

L6470

9.1.17

Programming manual

OCD_TH
The OCD_TH register contains the overcurrent threshold value (see paragraph 6.9 for
details). The available range is from 375 mA to 6 A, steps of 375 mA as shown in Table 15.
Table 15.

Overcurrent detection threshold

OCD_TH [3..0]

9.1.18

Overcurrent detection threshold

0

0

0

0

375 mA

0

0

0

1

750 mA

…

…

…

…

…

1

1

1

0

5.625 A

1

1

1

1

6A

STALL_TH
The STALL_TH register contains the stall detection threshold value (see paragraph 7.2 for
details). The available range is from 31.25 mA to 4 A with a resolution of 31.25 mA.
Table 16.

Stall detection threshold
STALL_th [6..0]

9.1.19

Stall detection threshold

0

0

0

0

0

0

0

31.25 mA

0

0

0

0

0

0

1

62.5 mA

…

…

…

…

…

…

…

…

1

1

1

1

1

1

0

3.969 A

1

1

1

1

1

1

1

4A

STEP_MODE
The STEP_MODE register has the following structure:
Table 17.
Bit 7
SYNC_EN

STEP_MODE register
Bit 6

Bit 5

Bit 4

SYNC_SEL

Bit 3
0 (1)

Bit 2

Bit 1

Bit 0

STEP_SEL

1. When the register is written this bit should be set to 0.

The STEP_SEL parameter selects one of eight possible stepping modes:

Doc ID 16737 Rev 3

45/67

Programming manual
Table 18.

L6470
Step mode selection
STEP_SEL[2..0]

Step mode

0

0

0

Full step

0

0

1

Half step

0

1

0

1/4 microstep

0

1

1

1/8 microstep

1

0

0

1/16 microstep

1

0

1

1/32 microstep

1

1

0

1/64 microstep

1

1

1

1/128 microstep

Every time the step mode is changed the electrical position (i.e. the point of microstepping
sinewave that is generated) is reset to the first microstep.

Warning:

Every time STEP_SEL is changed the value in ABS_POS
register looses meaning and should be reset.

Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).
When when SYNC_EN bit is set low BUSY/SYNC output is forced low during commands
execution, otherwise, when SYNC_EN bit is set high, BUSY/SYNC output provides a clock
signal according to SYNC_SEL parameter.
Table 19.

SYNC output frequency

SYNC_SEL

STEP_SEL
(fFS is the full step frequency)

46/67

000

001

010

011

100

101

110

111

000

fFS /2

fFS /2

fFS /2

fFS /2

fFS /2

fFS /2

fFS /2

fFS /2

001

NA

fFS

fFS

fFS

fFS

fFS

fFS

fFS

010

NA

NA

2· fFS

2· fFS

2· fFS

2· fFS

2· fFS

2· fFS

011

NA

NA

NA

4· fFS

4· fFS

4· fFS

4· fFS

4· fFS

100

NA

NA

NA

NA

8· fFS

8· fFS

8· fFS

8· fFS

101

NA

NA

NA

NA

NA

16· fFS

16· fFS

16· fFS

110

NA

NA

NA

NA

NA

NA

32· fFS

32· fFS

111

NA

NA

NA

NA

NA

NA

NA

64· fFS

Doc ID 16737 Rev 3

L6470

Programming manual

the synchronization signal is obtained starting from electrical position information (EL_POS
register) according to following Table 10:
Table 20.

SYNC signal source
SYNC_SEL[2..0]

9.1.20

Source

0

0

0

EL_POS[7]

0

0

1

EL_POS[6]

0

1

0

EL_POS[5]

0

1

1

EL_POS[4]

1

0

0

EL_POS[3]

1

0

1

EL_POS[2]

1

1

0

EL_POS[1]

1

1

1

EL_POS[0]

ALARM_EN
The ALARM_EN register allows selecting which alarm signals are used to generate the
FLAG output. If the respective bit of ALARM_EN register is set high, the alarm condition
forces the FLAG pin output down.
Table 21.

9.1.21

ALARM_EN register

ALARM_EN bit

Alarm condition

0 (LSB)

Overcurrent

1

Thermal shutdown

2

Thermal warning

3

Under-voltage

4

Stall detection (Bridge A)

5

Stall detection (Bridge B)

6

Switch turn-on event

7 (MSB)

Wrong or not performable command

CONFIG
The CONFIG register has the following structure:
Table 22.
Bit 15

CONFIG register
Bit 14

Bit 13

Bit 12

F_PWM_INT
Bit 7
OC_SD

Bit 6

Bit 11

Bit 10

F_PWM_DEC
Bit 5

Bit 4

Bit 3

RESERVED EN_VSCOMP SW_MODE EXT_CLK

Doc ID 16737 Rev 3

Bit 9

Bit 8

POW_SR
Bit 2

Bit 1

Bit 0

OSC_SEL

47/67

Programming manual

L6470

The OSC_SEL and EXT_CLK bits set the system clock source:
Table 23.

Oscillator management

EXT_CLK

OSC_SEL[2..0]

Clock source

OSCIN

OSCOUT

Internal Oscillator: 16MHz

Unused

Unused

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

0

0

0

Internal Oscillator: 16MHz

Unused

Supplies a 2MHz
clock

1

0

0

1

Internal Oscillator: 16MHz

Unused

Supplies a 4MHz
clock

1

0

1

0

Internal oscillator: 16MHz

Unused

Supplies a 8MHz
clock

1

0

1

1

Internal oscillator: 16MHz

Unused

Supplies a 16MHz
clock

0

1

0

0

External crystal or
resonator: 8MHz

Crystal/reson
ator driving

Crystal/resonator
driving

0

1

0

1

External crystal or
resonator: 16MHz

Crystal/reson
ator driving

Crystal/resonator
driving

0

1

1

0

External crystal or
resonator: 24MHz

Crystal/reson
ator driving

Crystal/resonator
driving

0

1

1

1

External crystal or
resonator: 32MHz

Crystal/reson
ator driving

Crystal/resonator
driving

1

1

0

0

Ext clock source: 8MHz
(Crystal/resonator driver
disabled)

Clock source

Supplies inverted
OSCIN signal

1

1

0

1

Ext clock source: 16MHz
(Crystal/resonator driver
disabled)

Clock source

Supplies inverted
OSCIN signal

1

1

1

0

Ext clock source: 24MHz
(Crystal/resonator driver
disabled)

Clock source

Supplies inverted
OSCIN signal

1

1

1

1

Ext clock source: 32MHz
(Crystal/resonator driver
disabled)

Clock source

Supplies inverted
OSCIN signal

The SW_MODE bit sets the external switch to act as HardStop interrupt or not:
Table 24.

48/67

External switch hard stop interrupt mode
SW_MODE

Switch mode

0

HardStop interrupt

1

User disposal

Doc ID 16737 Rev 3

L6470

Programming manual

The OC_SD bit sets if an overcurrent event causes or not the bridges to turn-off; the OCD
flag in status register is forced low anyway:
Table 25.

Overcurrent event
OC_SD

Overcurrent event

1

Bridges shut down

0

Bridges do not shut down

The POW_SR bits set the slew rate value of power bridge output:
Table 26.

Programmable power bridge output slew-rate values

POW_SR

Output Slew-rate (1)

[1..0]

[V/µs]

0

0

180

0

1

180

1

0

290

1

1

530

1. See SRout_r and SRout_f parameters in the electrical characteristics Table 5 for details.

The EN_VSCOMP bit sets if the motor supply voltage compensation is enabled or not.
Table 27.

Motor supply voltage compensation enable
EN_VSCOMP

Motor supply voltage compensation

0

Disabled

1

Enabled

The F_PWM_INT bits set the integer division factor of PWM frequency generation.
Table 28.

PWM frequency: integer division factor
F_PWM_INT
[2..0]

Integer division factor

0

0

0

1

0

0

1

2

0

1

0

3

0

1

1

4

1

0

0

5

1

0

1

6

1

1

0

7

1

1

1

Doc ID 16737 Rev 3

49/67

Programming manual

L6470

The F_PWM_DEC bits set the multiplication factor of PWM frequency generation.
Table 29.

PWM frequency: multiplication factor
F_PWM_DEC [2..0]

Multiplication factor

0

0

0

0.625

0

0

1

0.75

0

1

0

0.875

0

1

1

1

1

0

0

1.25

1

0

1

1.5

1

1

0

1.75

1

1

1

2

In the following tables all available PWM frequencies are listed according to oscillator
frequency, F_PWM_INT and F_PWM_DEC values (CONFIG register OSC_SEL parameter
has to be correctly programmed).
Table 30.

Available PWM frequencies [kHz]: 8 MHz oscillator frequency
F_PWM_DEC

50/67

F_PWM_
INT

000

001

010

011

100

101

110

111

000

9.8

11.7

13.7

15.6

19.5

23.4

27.3

31.3

001

4.9

5.9

6.8

7.8

9.8

11.7

13.7

15.6

010

3.3

3.9

4.6

5.2

6.5

7.8

9.1

10.4

011

2.4

2.9

3.4

3.9

4.9

5.9

6.8

7.8

100

2.0

2.3

2.7

3.1

3.9

4.7

5.5

6.3

101

1.6

2.0

2.3

2.6

3.3

3.9

4.6

5.2

110

1.4

1.7

2.0

2.2

2.8

3.3

3.9

4.5

Doc ID 16737 Rev 3

L6470

Programming manual

Table 31.

Available PWM frequencies [kHz]: 16 MHz oscillator frequency
F_PWM_DEC

F_PWM_INT

000

001

010

011

100

101

110

111

000

19.5

23.4

27.3

31.3

39.1

46.9

54.7

62.5

001

9.8

11.7

13.7

15.6

19.5

23.4

27.3

31.3

010

6.5

7.8

9.1

10.4

13.0

15.6

18.2

20.8

011

4.9

5.9

6.8

7.8

9.8

11.7

13.7

15.6

100

3.9

4.7

5.5

6.3

7.8

9.4

10.9

12.5

101

3.3

3.9

4.6

5.2

6.5

7.8

9.1

10.4

110

2.8

3.3

3.9

4.5

5.6

6.7

7.8

8.9

Table 32.

Available PWM frequencies [kHz]: 24 MHz oscillator frequency
F_PWM_DEC

F_PWM_INT

000

001

010

011

100

101

110

111

000

29.3

35.2

41.0

46.9

58.6

70.3

82.0

93.8

001

14.6

17.6

20.5

23.4

29.3

35.2

41.0

46.9

010

9.8

11.7

13.7

15.6

19.5

23.4

27.3

31.3

011

7.3

8.8

10.3

11.7

14.6

17.6

20.5

23.4

100

5.9

7.0

8.2

9.4

11.7

14.1

16.4

18.8

101

4.9

5.9

6.8

7.8

9.8

11.7

13.7

15.6

110

4.2

5.0

5.9

6.7

8.4

10.0

11.7

13.4

Doc ID 16737 Rev 3

51/67

Programming manual

Table 33.

L6470

Available PWM frequencies [kHz]: 32 MHz oscillator frequency
F_PWM_DEC

F_PWM_
INT

000

001

010

011

100

101

110

111

000

39.1

46.9

54.7

62.5

78.1

93.8

109.4

125.0

001

19.5

23.4

27.3

31.3

39.1

46.9

54.7

62.5

010

13.0

15.6

18.2

20.8

26.0

31.3

36.5

41.7

011

9.8

11.7

13.7

15.6

19.5

23.4

27.3

31.3

100

7.8

9.4

10.9

12.5

15.6

18.8

21.9

25.0

101

6.5

7.8

9.1

10.4

13.0

15.6

18.2

20.8

110

5.6

6.7

7.8

8.9

11.2

13.4

15.6

17.9

Any attempt to write the CONFIG register when the motor is running causes the command
to be ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

9.1.22

STATUS

Table 34.

STATUS register

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

SCK_MOD

STEP_LOSS_B

STEP_LOSS_A

OCD

TH_SD

TH_WRN

UVLO

WRONG_CMD

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

DIR

SW_EVN

SW_F

BUSY

HiZ

NOTPERF_CMD

MOT_STATUS

When HiZ flag is high it indicates that the bridges are in high impedance state. Whichever
motion command makes the device to exit from High Z state (HardStop and SoftStop
included), unless error flags forcing a High Z state are active.
The UVLO flag is active low and is set by an under-voltage lock out or reset events (powerup included).
The TH_WRN, TH_SD, OCD flags are active low and indicate respectively thermal warning,
thermal shutdown and over-current detection events.
STEP_LOSS_A and STEP_LOSS_B flags are forced low when a stall is detected on bridge
A or bridge B respectively.
The NOTPERF_CMD and WRONG_CMD flags are active high and indicate respectively
that the command received by SPI can't be performed or does not exist at all.
The SW_F report the SW input status (low for open and high for closed).
The SW_EVN flag is active high and indicates a switch turn-on event (SW input falling
edge).

52/67

Doc ID 16737 Rev 3

L6470

Programming manual

The UVLO, TH_WRN, TH_SD, OCD, STEP_LOSS_A, STEP_LOSS_B, NOTPERF_CMD,
WRONG_CMD and SW_EVN flags are latched: when the respective conditions make them
active (low or high) they remain in that state until a GetStatus command is sent to the IC.
The BUSY bit reflects the BUSY pin status. The BUSY flag is low when a constant speed,
positioning or motion command is under execution and is released (high) after the command
have been completed.
The SCK_MOD bit is an active high flag indicating that the device is working in step clock
mode. In this case the step clock signal should be provided through STCK input pin. The
DIR bit indicates the current motor direction:
Table 35.

STATUS register DIR bit
DIR

Motor direction

1

Forward

0

Reverse

MOT_STATUS indicates the current motor status:
Table 36.

STATUS register MOT_STATE bits
MOT_STATUS

Motor status

0

0

Stopped

0

1

Acceleration

1

0

Deceleration

1

1

Constant speed

Any attempt to write to the register causes the command to be ignored and the
NOTPERF_CMD to rise (see paragraph 9.1.22).

Doc ID 16737 Rev 3

53/67

Programming manual

9.2

L6470

Application commands
The commands summary is given in the Table 37.

Table 37.

Application commands

Command Mnemonic

Command binary code
[7..5] [4]

0

[2..1] [0]

NOP

000

SetParam(PARAM,VALUE)

000

[PARAM]

Writes VALUE in PARAM register

GetParam(PARAM)

001

[PARAM]

Returns the stored value in PARAM register

Run(DIR,SPD)

010

1

0

00

DIR Sets the target speed and the motor direction

StepClock(DIR)

010

1

1

00

DIR

Put the device in step clock mode and impose DIR
direction

Move(DIR,N_STEP)

010

0

0

00

DIR

Makes N_STEP (micro)steps in DIR direction
(Not performable when motor is running)

GoTo(ABS_POS)

011

0

0

00

0

GoTo_DIR(DIR,ABS_POS)

011

0

1

00

DIR Brings motor in ABS_POS position forcing DIR direction

GoUntil(ACT,DIR,SPD)

100

0

ACT

01

Perform a motion in DIR direction with speed SPD until
DIR SW is closed, the ACT action is executed then a SoftStop
takes place

ReleseSW(ACT, DIR)

100

1

ACT

01

Performs a motion in DIR direction at minimum speed
DIR until the SW is released (open), the ACT action is
executed then a HardStop takes place

GoHome

011

1

0

00

0

Brings the motor in HOME position

GoMark

011

1

1

00

0

Brings the motor in MARK position

ResetPos

110

1

1

00

0

Resets the ABS_POS register (set HOME position)

ResetDevice

110

0

0

00

0

Device is reset to power-up conditions.

SoftStop

101

1

0

00

0

Stops motor with a deceleration phase

HardStop

101

1

1

00

0

Stops motor immediately

SoftHiZ

101

0

0

00

0

Puts the bridges in High Impedance status after a
deceleration phase

HardHiZ

101

0

1

00

0

Puts the bridges in High Impedance status immediately

GetStatus

110

1

0

00

0

Returns the status register value

RESERVED

111

0

1

01

1

RESERVED COMMAND

RESERVED

111

1

1

00

0

RESERVED COMMAND

54/67

0

[3]

Action

00

0

Nothing

Brings motor in ABS_POS position (minimum path)

Doc ID 16737 Rev 3

L6470

9.2.1

Programming manual

Command management
The host microcontroller can control motor motion and configure the L6470 through a
complete set of commands.
All commands are composed by a single byte. After the command byte, some bytes of
arguments should be needed (see Figure 19). Argument length can vary from 1 to 3 bytes.
Figure 19. Command with three byte argument
3$)

#OMMAND BYTE

!RGUMENT BYTE 
-3"

!RGUMENT BYTE 

!RGUMENT BYTE 
,3"

3$/

X

X

X

X

FROM HOST

TO HOST

By default the device returns an all zeroes response for any received byte, the only
exceptions are GetParam and GetStatus commands. When one of these commands is
received the following response bytes represents the related register value (see Figure 20).
Response length can vary from 1 to 3 bytes.
Figure 20. Command with three byte responset
3$)

#OMMAND BYTE

./0

./0

./0

3$/

X

2ESPONSE BYTE 
-3"

2ESPONSE BYTE 

2ESPONSE BYTE 
,3"

FROM HOST

TO HOST

During response transmission, new commands can be sent. If a command requiring a
response is sent before the previous response is completed, the response transmission is
aborted and the new response is loaded into output communication buffer (see Figure 21).
Figure 21. Command response aborted
3$)

#OMMAND 
 BYTE RESP EXPECTED

#OMMAND 
NO RESP EXPECTED

#OMMAND 
 BYTE RESP EXPECTED

#OMMAND 
NO RESP EXPECTED

#OMMAND 
NO RESP EXPECTED

3$/

X

2ESPONSE BYTE 
-3"

2ESPONSE BYTE 

2ESPONSE BYTE 
-3"

2ESPONSE BYTE 
,3"

FROM HOST

TO HOST

#OMMAND  RESPONSE
IS ABORTED

When a byte that does not correspond to a command is sent to the IC it is ignored and the
WRONG_CMD flag in STATUS register is raised (see paragraph 9.1.22).

9.2.2

Nop
Table 38.

Nop command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

0

0

0

0

0

0

0

0

From host

Nothing is performed.

Doc ID 16737 Rev 3

55/67

Programming manual

9.2.3

L6470

SetParam (PARAM, VALUE)
Table 39.

SetParam command structure

Bit 7

Bit 6

Bit 5

0

0

0

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

PARAM

VALUE Byte 2 (if needed)

From host

VALUE Byte 1 (if needed)
VALUE Byte 0

The SetParam command sets the PARAM register value equal to VALUE; PARAM is the
respective register address listed in Table 12.
The command should be followed by the new register VALUE (most significant byte first).
The number of bytes composing the VALUE argument depends on the length of the target
register (see Table 12).
Some registers cannot be written (see Table 12); any attempt to write one of those registers
causes the command to be ignored and the WRONG_CMD flag to rise at the end of
command byte as like as unknown command code is sent (see paragraph 9.1.22).
Some registers can only be written in particular conditions (see Table 12); any attempt to
write one of those registers when the conditions are not satisfied causes the command to be
ignored and the NOTPERF_CMD flag to rise at the end of last argument byte (see
paragraph 9.1.22).
Any attempt to set an inexistent register (wrong address value) causes the command to be
ignored and WRONG_CMD flag to rise at the end of command byte as like as unknown
command code is sent.

9.2.4

GetParam (PARAM)
Table 40.

GetParam command structure

Bit 7

Bit 6

Bit 5

0

0

1

Bit 4

Bit 3

Bit 2
PARAM

Bit 1

Bit 0
from host

ANS Byte 2 (if needed)

to host

ANS Byte 1 (if needed)

to host

ANS Byte 0

to host

This command reads the current PARAM register value; PARAM is the respective register
address listed in Table 12.
The command response is the current value of the register (most significant byte first). The
number of bytes composing the command response depends on the length of the target
register (see Table 12).

56/67

Doc ID 16737 Rev 3

L6470

Programming manual

Returned value is the register one at the moment of GetParam command decoding. If
register values changes after this moment the response will not be accordingly updated.
All registers can be read anytime.
Any attempt to read an inexistent register (wrong address value) causes the command to be
ignored and WRONG_CMD flag to rise at the end of command byte as like as unknown
command code is sent.

9.2.5

Run (DIR, SPD)
Table 41.

Run command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

0

1

0

1

0

0

0

DIR

X

X

X

X

SPD (Byte 2)

from host
from host

SPD (Byte 1)

from host

SPD (Byte 0)

from host

The Run command produces a motion at SPD speed; the direction is selected by DIR bit: '1'
forward or '0' reverse. The SPD value is expressed in step/tick (format unsigned fixed point
0.28) that is the same format that SPEED register (see paragraph 9.1.4).
Note:

The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED
otherwise the Run command will be executed at MAX_SPEED or MIN_SPEED respectively.

This command keeps the BUSY flag low until the target speed is reached.
This command can be given anytime and is immediately executed.

9.2.6

StepClock (DIR)
Table 42.

Stepclock command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

0

1

0

1

1

0

0

DIR

from host

The StepClock command switches the device in step clock mode (see paragraph 6.7.5) and
impose the forward (DIR = '1') or reverse (DIR = '0') direction.
When the device is in step clock mode the SCK_MOD flag in STATUS register is raised and
the motor is always considered stopped (see paragraphs 6.7.5 and 9.1.22).
Device exits from step clock mode when a constant speed, absolute positioning or motion
command is sent through SPI. Motion direction is imposed by the respective StepClock
command argument and can by changed by a new StepClock command without exiting the
step clock mode.
Events that cause bridges to be forced in high impedance state (overtemperature,
overcurrent, etc.) do not cause the device to leave step clock mode.

Doc ID 16737 Rev 3

57/67

Programming manual

L6470

StepClock command does not force the BUSY flag low. This command can only be given
when the motor is stopped. If a motion is in progress the motor should be stopped and then
it is possible to send a StepClock command.
Any attempt to perform a StepClock command when the motor is running causes the
command to be ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

9.2.7

Move (DIR, N_STEP)
Table 43.

Move command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

0

1

0

0

0

0

0

DIR

X

X

N_STEP (Byte 2)

from host
from host

N_STEP (Byte 1)

from host

N_STEP (Byte 0)

from host

The move command produces a motion of N_STEP microsteps; the direction is selected by
DIR bit ('1' forward or '0' reverse).
The N_STEP value is always in agreement with the selected step mode; the parameter
value unit is equal to the selected step mode (full, half, quarter, etc.).
This command keeps the BUSY flag low until the target number of steps is performed. This
command can be only performed when the motor is stopped. If a motion is in progress the
motor must be stopped and then it is possible to perform a Move command.
Any attempt to perform a Move command when the motor is running causes the command
to be ignored and the NOTPERF_CMD flag to rise (see paragraph 9.1.22).

9.2.8

GoTo (ABS_POS)
Table 44.

GoTo command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

0

1

1

0

0

0

0

0

X

X

ABS_POS (Byte 2)

from host
from host

ABS_POS (Byte 1)

from host

ABS_POS (Byte 0)

from host

The GoTo command produces a motion to ABS_POS absolute position through the shortest
path. The ABS_POS value is always in agreement with the selected step mode; the
parameter value unit is equal to the selected step mode (full, half, quarter, etc.).
GoTo command keeps the BUSY flag low until the target position is reached.
This command can be given only when the previous motion command as been completed
(BUSY flag released).

58/67

Doc ID 16737 Rev 3

L6470

Programming manual

Any attempt to perform a GoTo command when a previous command is under execution
(BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (see
paragraph 9.1.22)

9.2.9

GoTo_DIR (DIR, ABS_POS)
Table 45.

GoTo_DIR command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

0

1

1

0

1

0

0

DIR

X

X

ABS_POS (Byte 2)

from host
from host

ABS_POS (Byte 1)

from host

ABS_POS (Byte 0)

from host

The GoTo_DIR command produces a motion to ABS_POS absolute position imposing a
forward (DIR = '1') or a reverse (DIR = '0') rotation. The ABS_POS value is always in
agreement with the selected step mode; the parameter value unit is equal to the selected
step mode (full, half, quarter, etc.).
GoTo_DIR command keeps the BUSY flag low until the target speed is reached. This
command can be given only when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoTo_DIR command when a previous command is under
execution (BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to
rise (see paragraph 9.1.22)

9.2.10

GoUntil (ACT, DIR, SPD)
Table 46.

GoUntil command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1

0

0

0

ACT

0

1

DIR

X

X

X

X

SPD (Byte 2)

from host
from host

SPD (Byte 1)

from host

SPD (Byte 0)

from host

The GoUntil command produces a motion at SPD speed imposing a forward (DIR = '1') or a
reverse (DIR = '0') direction. When an external switch turn-on event occurs (see paragraph
6.13), the ABS_POS register is reset (if ACT = '0') or the ABS_POS register value is copied
into the MARK register (if ACT = '1'); then the system performs a SoftStop command.
The SPD value is expressed in step/tick (format unsigned fixed point 0.28) that is the same
format that SPEED register (see paragraph 9.1.4).
SPD value should be lower than MAX_SPEED and greater than MIN_SPEED, otherwise the
target speed will be imposed at MAX_SPEED or MIN_SPEED respectively.
If SW_MODE bit of CONFIG register is set low, the external switch turn-on event causes a
HardStop interrupt instead of the SoftStop one (see paragraphs 6.13 and 9.1.21).
Doc ID 16737 Rev 3

59/67

Programming manual

L6470

This command keeps the BUSY flag low until the switch turn-on event occurs and the motor
is stopped. This command can be given anytime and is immediately executed.

9.2.11

ReleaseSW (ACT, DIR)
Table 47.

ReleaseSW command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1

0

0

1

ACT

0

1

DIR

from host

The ReleaseSW command produces a motion at minimum speed imposing a forward (DIR =
'1') or reverse (DIR = '0') rotation. When SW is released (opened) the ABS_POS register is
reset (ACT = '0') or the ABS_POS register value is copied in MARK register (ACT = '1'); then
the system performs a HardStop command.
Note that to resetting the ABS_POS register is equivalent to setting the HOME position.
If minimum speed value is lesser than 5 step/s or low speed optimization is enabled, the
motion is performed at 5 step/s.
ReleaseSW command keeps the BUSY flag low until the switch input is released and the
motor is stopped.

9.2.12

GoHome
Table 48.

GoHome command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

0

1

1

1

0

0

0

0

from host

The GoHome command produces a motion to the HOME position (zero position) via the
shortest path.
Note that this command is equivalent to "GoTo(0…0)" command. If a motor direction is
mandatory the GoTo_DIR command has to be used (see paragraph 9.2.9).
GoHome command keeps the BUSY flag low until the home position is reached. This
command can be given only when the previous motion command has been completed. Any
attempt to perform a GoHome command when a previous command is under execution
(BUSY low) causes the command to be ignored and the NOTPERF_CMD to rise (see
paragraph 9.1.22)

9.2.13

GoMark
Table 49.

GoMark command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

0

1

1

1

1

0

0

0

from host

The GoMark command produces a motion to MARK position performing the minimum path.
Note that this command is equivalent to "GoTo (MARK)" command. If a motor direction is
mandatory the GoTo_DIR command has to be used.

60/67

Doc ID 16737 Rev 3

L6470

Programming manual

GoMark command keeps the BUSY flag low until the MARK position is reached. This
command can be given only when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoMark command when a previous command is under execution
(BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (see
paragraph 9.1.22)

9.2.14

ResetPos
Table 50.

ResetPos command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1

1

0

1

1

0

0

0

from host

The ResetPos command resets the ABS_POS register to zero. The zero position is also
defined as HOME position (see paragraph 6.5).

9.2.15

ResetDevice
Table 51.

ResetDevice command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1

1

0

0

0

0

0

0

from host

The ResetDevice command resets the device to power-up conditions (see paragraph 6.1).
Note:

At power-up the power bridges are disabled.

9.2.16

SoftStop
Table 52.

SoftStop command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1

0

1

1

0

0

0

0

from host

The SoftStop command causes an immediate deceleration to zero speed and a consequent
motor stop; the deceleration value used is the one stored in DEC register (see paragraph
9.1.6).
When the motor is in high-impedance state, a SoftStop command forces the bridges to exit
from high impedance state; no motion is performed.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.

Doc ID 16737 Rev 3

61/67

Programming manual

9.2.17

L6470

HardStop
Table 53.

HardStop command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1

0

1

1

1

0

0

0

from host

The HardStop command causes an immediate motor stop with infinite deceleration.
When the motor is in high-impedance state, a HardStop command forces the bridges to exit
from high impedance state; no motion is performed.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.

9.2.18

SoftHiZ
Table 54.

SoftHiZ command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1

0

1

0

0

0

0

0

from host

The SoftHiZ command disables the power bridges (high-impedance state) after a
deceleration to zero; the deceleration value used is the one stored in DEC register (see
paragraph 9.1.6). When bridges are disabled the HiZ flag is raised.
When the motor is stopped, a SoftHiZ command forces the bridges to enter in highimpedance state.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.

9.2.19

HardHiZ
Table 55.

HardHiZ command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1

0

1

0

1

0

0

0

from host

The HardHiZ command immediately disables the power bridges (high-impedance state) and
raises the HiZ flag.
When the motor is stopped, a HardHiZ command forces the bridges to enter in highimpedance state.
This command can be given anytime and is immediately executed.
This command keeps the BUSY flag low until the motor is stopped.

62/67

Doc ID 16737 Rev 3

L6470

9.2.20

Programming manual

GetStatus
Table 56.

GetStatus command structure

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

1

1

0

1

0

0

0

0

from host

STATUS MSByte

to host

STATUS LSByte

to host

The GetStatus command returns the Status register value.
GetStatus command resets the STATUS register warning flags. The command forces the
system to exit from any error state. The GetStatus command DO NOT reset HiZ flag.

Doc ID 16737 Rev 3

63/67

Package mechanical data

10

L6470

Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Table 57.

HTSSOP28 mechanical data
Dim

mm
Min

Typ

Max

A

1.2

A1

0.15

A2

0.8

b

0.19

0.3

c

0.09

0.2

D(1)

9.6

D1

1.0

9.7

1.05

9.8

5.5

E

6.2

6.4

6.6

E1(2)

4.3

4.4

4.5

E2

2.8

E

0.65

L

0.45

L1
K

0.6

0.75

1.0
0°

Aaa

8°
0.1

1. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
shall not exceed 0.15 mm per side.
2. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not
exceed 0.25 mm per side.

64/67

Doc ID 16737 Rev 3

L6470

Package mechanical data
Figure 22. HTSSOP28 mechanical data

!-V

Doc ID 16737 Rev 3

65/67

Revision history

11

L6470

Revision history
Table 58.

66/67

Document revision history

Date

Revision

Changes

06-Nov-2009

1

Initial release

05-Nov-2010

2

Document status promoted from preliminary data to datasheet

18-May-2011

3

Updated: Table 4, Table 5
Added: Section 6.7.6, Section 6.4.1

Doc ID 16737 Rev 3

L6470

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

Doc ID 16737 Rev 3

67/67



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
Page Count                      : 67
Title                           : dSPIN fully integrated microstepping motor driver with motion engine and SPI
Author                          : STMICROELECTRONICS
Subject                         : -
Producer                        : Mac OS X 10.8.1 Quartz PDFContext
Creator                         : C2 v1.4.1 build 002
Create Date                     : 2012:08:28 00:55:36Z
Modify Date                     : 2012:08:28 00:55:36Z
Keywords                        : dSPIN fully integrated microstepping motor drive, Technical Literature, 16737, Product Development, Specification, Datasheet, L6470
Apple Keywords                  : dSPIN fully integrated microstepping motor drive, Technical Literature, 16737, Product Development, Specification, Datasheet, L6470
EXIF Metadata provided by EXIF.tools

Navigation menu