Manual

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 10

MAPTest
June 17, 2019
Title MAP Test for detection DE genes
Version 0.0.0.9000
Description MAP test for analyzing temporal gene expression data.
Depends R (>= 3.4.0)
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports EQL,MASS,foreach,mclust,mvtnorm,parallel,randtoolbox,stats,matlib
Rtopics documented:
data_generation....................................... 1
estimation_fun ....................................... 3
MAP_test .......................................... 5
Summary_MAP....................................... 7
Index 10
data_generation Simulate MAP data set:
Description
Simulate MAP data set:
Usage
data_generation(G = 100, n_control = 10, n_treat = 10, n_rep = 3,
k_real = 4, sigma2_r = rep(1, 2), sigma1_2_r = 1,
sigma2_2_r = c(3, 2), mu1_r = 4, phi_g_r = rep(1, 100),
p_k_real = c(0.7, 0.1, 0.1, 0.1), x = x)
1
2data_generation
Arguments
GNumber of genes to simulate
n_control Number of time points in control group
n_treat Number of time points in treatment group
n_rep Number of replicates in both group
k_real Always be 4
sigma2_r Variance parameter for τg
sigma1_2_r Variance parameter for ηg1
sigma2_2_r Variance parameter for ηg2
mu1_r Mean parameter for ηg1
phi_g_r Dispersion parameter
p_k_real True proportion for each mixture component
xTime structured design for the simulated data
Details
The vector of read counts for gene g, treatment group i, replicate j, at time point t, Ygij (t), follows a
Negative Binomial distribution parameterized mean λgi and φg, where E[Ygij (t)] = λgi(t).λgi(t)
is further modeled as λgi(t) = Sij exp[ηg1Ii=2 +B0(t)ηg2Ii=2 +B0(t)τg]. We have B0(t)are
design matrix, which is constructed by 2 orthorgonal polynomial bases.
t = 1,..., n_treat (or n_control if control group);
j = 1,..., n_rep;
g = 1,...,G; and
[ηg1, ηg2, τg]~ 4-component gausssian mixture model
Value
Y1 Simulated data
Examples
library(matlib)
n_basis = 2
n_control = 10
n_treat = 10
n_rep = 3
tt_treat = c(1:n_treat)/n_treat
nt = length(tt_treat)
ind_t = sort(sample(c(1:nt), n_control))
tt = tt_treat[ind_t]
tttt = c(rep(tt, n_rep), rep(tt_treat, n_rep))
z = x = matrix(0, length(tttt), n_basis)
z[,1] = 1.224745*tttt
z[,2] = -0.7905694 + 2.371708*tttt^2
x[,1] = z[,1] - Proj(z[,1], rep(1, length(tttt)))
x[,2] = z[,2] - Proj(z[,2], rep(1, length(tttt))) - Proj(z[,2], x[,1])
Y1 = data_generation(G = 100,
n_control = n_control,
n_treat = n_treat,
estimation_fun 3
n_rep = n_rep,
k_real = 4,
sigma2_r = rep(1, 2),
sigma1_2_r = 1,
sigma2_2_r = c(3,2),
mu1_r = 4,
phi_g_r = rep(1, 100),
p_k_real = c(0.7, 0.1, 0.1, 0.1),
x = x)
estimation_fun Estimation for MAP data set:
Description
Estimation for MAP data set:
Usage
estimation_fun(n_control = 10, n_treat = 10, n_rep = 3, x, Y1,
k = 4, nn = 300, phi = NULL, type = NULL, tttt)
Arguments
n_control Number of time points in control group
n_treat Number of time points in treatment group
n_rep Number of replicates in both group
xTime structured design for the simulated data
Y1 RNA-seq data set: G by (n_control + n_treat) * n_rep matrix
kAlways 4
nn Number of QMC nodes used in likelihood estimation
phi the dispersion parameter
type dispersion parameter estimation type
tttt Time points used in the design
Details
The vector of read counts for gene g, treatment group i, replicate j, at time point t, Ygij (t), follows a
Negative Binomial distribution parameterized mean λgi and φg, where E[Ygij (t)] = λgi(t).λgi(t)
is further modeled as λgi(t) = Sij exp[ηg1Ii=2 +B0(t)ηg2Ii=2 +B0(t)τg].We have B0(t)are
design matrix, which is constructed by 2 orthorgonal polynomial bases.
t = 1,..., n_treat (or n_control if control group);
j = 1,..., n_rep;
g = 1,...,G; and
[ηg1, ηg2, τg]~ 4-component gausssian mixture model. We used latented negative binomial
model with EM algorithm to estimate the paramters of mixture model.
4estimation_fun
Value
A list of parameters that we need to use for DE analysis.
data_use List includes the data information
Y1 RNA-seq data set: G by (n_control + n_treat) * n_rep matrix
start Starting point of the EM algorithm
k always 4
n_basis Number of basis function have been used to construct the design matrix
X1 Vector indicate control data (0) or treatment data (1)
x Design matrix been used for estimation
tttt Time points used in the design
result1 List includes the Parameters estimations
mu1 Mean parameter for ηg1
sigma1_2 Variance parameter for ηg1
sigma2 Variance parameter for τg
sigma2_2 Variance parameter for ηg2
p_k Proportion for each mixture component
aa Dispertion parameter
Examples
library(matlib)
n_basis = 2
n_control = 10
n_treat = 10
n_rep = 3
tt_treat = c(1:n_treat)/n_treat
nt = length(tt_treat)
ind_t = sort(sample(c(1:nt), n_control))
tt = tt_treat[ind_t]
tttt = c(rep(tt, n_rep), rep(tt_treat, n_rep))
z = x = matrix(0, length(tttt), n_basis)
z[,1] = 1.224745*tttt
z[,2] = -0.7905694 + 2.371708*tttt^2
x[,1] = z[,1] - Proj(z[,1], rep(1, length(tttt)))
x[,2] = z[,2] - Proj(z[,2], rep(1, length(tttt))) - Proj(z[,2], x[,1])
Y1 = data_generation(G = 100,
n_control = n_control,
n_treat = n_treat,
n_rep = n_rep,
k_real = 4,
sigma2_r = rep(1, 2),
sigma1_2_r = 1,
sigma2_2_r = c(3,2),
mu1_r = 4,
phi_g_r = rep(1,100),
p_k_real = c(0.7, 0.1, 0.1, 0.1),
x = x)
MAP_test 5
aaa <- proc.time()
est_result <- estimation_fun(n_control = n_control,
n_treat = n_treat,
n_rep = n_rep,
x = x,
Y1 = Y1,
nn = 300,
k = 4,
phi = NULL,
type = 2,
tttt = tttt)
aaa1 <- proc.time()
aaa1 - aaa
#------------gaussian basis construction------------------
# method <- "gaussian"
# n_basis <- 2
# a = 1/4
#b=2
# c = sqrt(a^2 + 2 * a * b)
#A=a+b+c
# B = b/A
# phi_cal = function(k, x){
# Lambda_k =sqrt(2 * a / A) * B^k
# 1/(sqrt(sqrt(a/c) * 2^k * gamma(k+1))) *
# exp(-(c-a) * x^2) * hermite(sqrt(2 * c) * x, k, prob = F)
#
# }
# z = do.call(cbind, lapply(c(1:n_basis), phi_cal, x = (tttt - mean(tttt))))
# x = matrix(0, length(tttt), n_basis)
# if(n_basis == 2){
# x[,1] = z[,1] - Proj(z[,1], rep(1, length(tttt)))
# x[,2] = z[,2] - Proj(z[,2], rep(1, length(tttt))) - Proj(z[,2], x[,1])
#
# }else{
# x[,1] = z[,1] - Proj(z[,1], rep(1, length(tttt)))
# x[,2] = z[,2] - Proj(z[,2], rep(1, length(tttt))) - Proj(z[,2], x[,1])
# x[,3] = z[,3] - Proj(z[,3], rep(1, length(tttt))) - Proj(z[,3], x[,1]) - Proj(z[,3], x[,2])
# }
MAP_test MAP test
Description
MAP test
Usage
MAP_test(est_result, dd = NULL, Type = c(1:6), nn = 6000)
Arguments
est_result estimation_fun result:
A List contains data_use (the data information) and result1 (Parameters estima-
tions)
6MAP_test
dd True index to check the true FDR
Type Type of hypothesis
Type = 1 general DE detection
Type = 2 PDE with no time-by-treatment and NPDE with both treatment
and time-by-treatment
Type = 3 NPDE with or without time-by-treatment
Type = 4 PDE with no time-by-treatment
Type = 5 NPDE with only time-by-treatment
Type = 6 NPDE with both treatment and time-by-treatment
nn Number of QMC nodes used to estimate the test statistics
Details
The vector of read counts for gene g, treatment group i, replicate j, at time point t, Ygij (t), follows a
Negative Binomial distribution parameterized mean λgi and φg, where E[Ygij (t)] = λgi(t).λgi(t)
is further modeled as λgi(t) = Sij exp[ηg1Ii=2 +B0(t)ηg2Ii=2 +B0(t)τg].We have B0(t)are
design matrix, which is constructed by 2 orthorgonal polynomial bases.
t = 1,..., n_treat (or n_control if control group);
j = 1,..., n_rep;
g = 1,...,G; and
[ηg1, ηg2, τg]~ 4-component gausssian mixture model. After the parameter estimation we run
the MAP test to detect the DE genes.
Value
A list of results for DE analysis.
Type Type of hypothesis of interest
FDR_final FDR estimation of each hypothesis
FDR_real The true FDR if dd is known
power Power if dd is known
T_x Likelihood result for each component
test_stat Test statistics for each hypothesis
ct_final_all Test statistics cut-off value at each estimated FDR level
Examples
library(matlib)
n_basis = 2
n_control = 10
n_treat = 10
n_rep = 3
tt_treat = c(1:n_treat)/n_treat
nt = length(tt_treat)
ind_t = sort(sample(c(1:nt), n_control))
tt = tt_treat[ind_t]
tttt = c(rep(tt, n_rep), rep(tt_treat, n_rep))
z = x = matrix(0, length(tttt), n_basis)
Summary_MAP 7
z[,1] = 1.224745*tttt
z[,2] = -0.7905694 + 2.371708*tttt^2
x[,1] = z[,1] - Proj(z[,1], rep(1, length(tttt)))
x[,2] = z[,2] - Proj(z[,2], rep(1, length(tttt))) - Proj(z[,2], x[,1])
Y1 = data_generation(G = 100,
n_control = n_control,
n_treat = n_treat,
n_rep = n_rep,
k_real = 4,
sigma2_r = rep(1, 2),
sigma1_2_r = 1,
sigma2_2_r = c(3,2),
mu1_r = 4,
phi_g_r = rep(1,100),
p_k_real = c(0.7, 0.1, 0.1, 0.1),
x = x)
aaa <- proc.time()
est_result <- estimation_fun(n_control = n_control,
n_treat = n_treat,
n_rep = n_rep,
x = x,
Y1 = Y1,
nn = 300,
k = 4,
phi = NULL,
type = 2,
tttt = tttt)
aaa1 <- proc.time()
aaa1 - aaa
G <- 100
k_real <- 4
p_k_real <- c(0.7, 0.1, 0.1, 0.1)
dd = rep(c(0:(k_real-1)), p_k_real * G)
result = MAP_test(est_result = est_result, Type = c(1:6), dd = dd, nn = 300)
Summary_MAP Summary for MAP Test
Description
Summary for MAP Test
Usage
Summary_MAP(test_result, alpha = 0.05)
Arguments
test_result MAP_test result:
A list of results for DE analysis
alpha Nominal level of FDR
8Summary_MAP
Details
The vector of read counts for gene g, treatment group i, replicate j, at time point t, Ygij (t), follows a
Negative Binomial distribution parameterized mean λgi and φg, where E[Ygij (t)] = lambdagi(t).
λgi(t)is further modeled as λgi(t) = Sij exp[ηg1Ii=2 +B0(t)ηg2Ii=2 +B0(t)τg]We have B’(t) are
design matrix, which is constructed by 2 orthorgonal polynomial bases.
t = 1,..., n_treat (or n_control if control group);
j = 1,..., n_rep;
g = 1,...,G; and
[ηg1, ηg2, τg]~ 4-component gausssian mixture model. After the parameter estimation we run
the MAP test to detect the DE genes. At given nominal level, a list of differential genes are
returned at a given hypothesis.
Value
A list of results for DE analysis.
Type Type of hypothesis
Reject_index DE genes list
FDR_hat Estimated FDR
Examples
library(matlib)
set.seed(1)
n_basis = 2
n_control = 10
n_treat = 10
n_rep = 3
tt_treat = c(1:n_treat)/n_treat
nt = length(tt_treat)
ind_t = sort(sample(c(1:nt), n_control))
tt = tt_treat[ind_t]
tttt = c(rep(tt, n_rep), rep(tt_treat, n_rep))
z = x = matrix(0, length(tttt), n_basis)
z[,1] = 1.224745*tttt
z[,2] = -0.7905694 + 2.371708*tttt^2
x[,1] = z[,1] - Proj(z[,1], rep(1, length(tttt)))
x[,2] = z[,2] - Proj(z[,2], rep(1, length(tttt))) - Proj(z[,2], x[,1])
Y1 = data_generation(G = 100,
n_control = n_control,
n_treat = n_treat,
n_rep = n_rep,
k_real = 4,
sigma2_r = rep(1, 2),
sigma1_2_r = 1,
sigma2_2_r = c(3,2),
mu1_r = 4,
phi_g_r = rep(1,100),
p_k_real = c(0.7, 0.1, 0.1, 0.1),
x = x)
aaa <- proc.time()
est_result <- estimation_fun(n_control = n_control,
Summary_MAP 9
n_treat = n_treat,
n_rep = n_rep,
x = x,
Y1 = Y1,
nn = 300,
k = 4,
phi = NULL,
type = 2,
tttt = tttt)
aaa1 <- proc.time()
aaa1 - aaa
G <- 100
k_real <- 4
p_k_real <- c(0.7, 0.1, 0.1, 0.1)
dd = rep(c(0:(k_real-1)), p_k_real * G)
result = MAP_test(est_result = est_result, Type = c(1:6), dd = dd, nn = 300)
ss <- Summary_MAP(result)
Index
data_generation,1
estimation_fun,3
MAP_test,5
Summary_MAP,7
10

Navigation menu