Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 28
Download | ![]() |
Open PDF In Browser | View PDF |
Package ‘birdproofr’ February 3, 2019 Title Bird Banding Data Validator Version 1.0.2 Description birdproofr is a package of R tools for bird banding data validation under a set of rules written by Heidi Ware Carlisle, Intermountain Bird Observatory. The validator can be ran as a Shiny app for convenience, which includes utilities for viewing and downloading flagged data. Individual attributes can also be validated through function calls from the R console - please see IBO ruleset. The current birdproofr build has been updated for Fall 2018 banding. Support for a hummingbird ruleset is planned. Depends R (>= 3.5.0) Imports shiny (>= 1.2.0), dplyr (>= 0.7.0), shinycssloaders (>= 0.2.0), shinythemes (>= 1.1.0), shinyWidgets (>= 0.4.0) License GPL-3 Encoding UTF-8 LazyData true RoxygenNote 6.1.1 R topics documented: clean_df . . . . . . . . . . run_birdproofr_app . . . . validate_age . . . . . . . . validate_age_bp_cp . . . . validate_age_ffmlt . . . . validate_age_ffwear . . . . validate_age_ha . . . . . . validate_age_hs . . . . . . validate_age_skull . . . . validate_all . . . . . . . . validate_bandcode . . . . validate_bandcode_species validate_bandcode_status . validate_bandsize . . . . . validate_bandsize_disp . . validate_bmlt . . . . . . . validate_bp . . . . . . . . validate_bp_hs . . . . . . validate_captime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 3 . 3 . 4 . 4 . 5 . 5 . 6 . 6 . 7 . 7 . 8 . 8 . 9 . 9 . 10 . 10 . 11 2 clean_df validate_cp . . . . . . validate_cp_hs . . . . validate_day . . . . . . validate_day_species . validate_disp . . . . . validate_disp_status . . validate_ey . . . . . . validate_fat . . . . . . validate_ffmolt . . . . validate_ffwear . . . . validate_ha_ffmlt . . . validate_ha_ffwear . . validate_ha_ha2 . . . . validate_ha_skull . . . validate_hs_hs2 . . . . validate_location . . . validate_month . . . . validate_month_species validate_muscle . . . . validate_net . . . . . . validate_notes . . . . . validate_parasites . . . validate_sex . . . . . . validate_sex_hs . . . . validate_species . . . . validate_status . . . . . validate_status_500 . . validate_tail . . . . . . validate_weight . . . . validate_wing . . . . . validate_year . . . . . validate_year_species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index clean_df 28 Cleans bird data frame before validating, e.g. for mystery whitespace Description Cleans bird data frame before validating, e.g. for mystery whitespace Usage clean_df(df) Arguments df Value cleaned df 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 bird data frame run_birdproofr_app 3 run_birdproofr_app Runs birdproofr Shiny app Description Runs birdproofr Shiny app Usage run_birdproofr_app() Validate age column. Acceptable ages are: 0,1,2,4,5,6 –flag any records with blank age validate_age Description Validate age column. Acceptable ages are: 0,1,2,4,5,6 –flag any records with blank age Usage validate_age(df) Arguments df bird data frame Value data frame of rows with age issues validate_age_bp_cp Check that age and BP/CP match. Age 2, 4, and 0 should always have 0 for both BP and CP Description Check that age and BP/CP match. Age 2, 4, and 0 should always have 0 for both BP and CP Usage validate_age_bp_cp(df) Arguments df bird data frame Value data frame of rows with age/BP/CP issues 4 validate_age_ffwear validate_age_ffmlt Validate age-ffmolt combinations. Blanks are okay, and can match with any age. Refer to table on rules page Description Validate age-ffmolt combinations. Blanks are okay, and can match with any age. Refer to table on rules page Usage validate_age_ffmlt(df) Arguments df bird data frame Value data frame of rows with age/ffmolt issues validate_age_ffwear Validate age-ffwear combinations. Description 0 or 1 FF wear is highly suspicious for age 5 and 6. Flag all these records Sometimes 0 FF wear is normal if paired with S FF molt, but then micro-ageing is suspect, so we should flag the record either way, maybe with a message FF wear and age combination unlikely. Check this record Usage validate_age_ffwear(df) Arguments df bird data frame Details 2+ FF wear is suspicious for age 4–add message age and FF wear combination unlikely 4+ is suspicious for age 2–add unlikely message Value data frame of rows with age/ffwear issues validate_age_ha 5 Validate age-how aged combinations validate_age_ha Description Validate age-how aged combinations Usage validate_age_ha(df) Arguments df bird data frame Value data frame of rows with age/how aged issues Validate age-how sexed combinations validate_age_hs Description Validate age-how sexed combinations Usage validate_age_hs(df) Arguments df bird data frame Value data frame of rows with age/how sexed issues 6 validate_all validate_age_skull Validate age and skull combinations. Allowable values for skull 0-6, 8,9, blank. Flag all values in the skull column that don’t match these Description Validate age and skull combinations. Allowable values for skull 0-6, 8,9, blank. Flag all values in the skull column that don’t match these Usage validate_age_skull(df) Arguments df bird data frame Value data frame of rows with age/skull issues Validate all columns, then store issues as a data frame validate_all Description Validate all columns, then store issues as a data frame Usage validate_all(df) Arguments df Value issues data frame bird data frame validate_bandcode 7 Validate band code. Make sure there are no blanks. Make sure the only values used are 1,R,4,5,8,N,U. validate_bandcode Description Validate band code. Make sure there are no blanks. Make sure the only values used are 1,R,4,5,8,N,U. Usage validate_bandcode(df) Arguments df bird data frame Value data frame of rows with band code issues validate_bandcode_species Validate band code-species combinations. Make sure 4 and 8 are only used for species codes BADE and BALO Description Validate band code-species combinations. Make sure 4 and 8 are only used for species codes BADE and BALO Usage validate_bandcode_species(df) Arguments df bird data frame Value data frame of rows with band code/species issues 8 validate_bandsize validate_bandcode_status Validate bandcode-status combinations. Any bird with code U has status 000 as valid. Description Validate bandcode-status combinations. Any bird with code U has status 000 as valid. Usage validate_bandcode_status(df) Arguments df bird data frame Value data frame of rows with bandcode/status issues Validate band size. Make sure there are no blanks. Make sure the only values used are 0A, 0, 1, 1B, 1A, 1C, 2, 3, 3A, 3B validate_bandsize Description Validate band size. Make sure there are no blanks. Make sure the only values used are 0A, 0, 1, 1B, 1A, 1C, 2, 3, 3A, 3B Usage validate_bandsize(df) Arguments df bird data frame Value data frame of rows with band size issues validate_bandsize_disp 9 validate_bandsize_disp Validate band size-disp combinations Description Validate band size-disp combinations Usage validate_bandsize_disp(df) Arguments df bird data frame Value data frame of rows with band size/disp issues Validate body molt. Allowable values: 0-4, blank validate_bmlt Description Validate body molt. Allowable values: 0-4, blank Usage validate_bmlt(df) Arguments df bird data frame Value data frame of rows with body molt issues 10 validate_bp_hs Validate BP (0-5, blank okay) validate_bp Description Validate BP (0-5, blank okay) Usage validate_bp(df) Arguments df bird data frame Value data frame of rows with BP issues Validate how sexed and BP for females. If sexed by BP, BP value cannot be blank or 0 validate_bp_hs Description Validate how sexed and BP for females. If sexed by BP, BP value cannot be blank or 0 Usage validate_bp_hs(df) Arguments df bird data frame Value data frame of rows with BP/how sexed issues for females validate_captime 11 Validate cap time.Allowed values include: 650 to 1300. Flag all other values. Other values may happen only if there is a note, sometimes songbirds are caught during owls, hawk trapping, etc. All values should end in 0’s validate_captime Description Validate cap time.Allowed values include: 650 to 1300. Flag all other values. Other values may happen only if there is a note, sometimes songbirds are caught during owls, hawk trapping, etc. All values should end in 0’s Usage validate_captime(df) Arguments df bird data frame Value data frame of rows with cap time issues validate_cp Validate CP (0-3 allowed, blank okay) Description Validate CP (0-3 allowed, blank okay) Usage validate_cp(df) Arguments df bird data frame Value data frame of rows with CP issues 12 validate_day Validate how sexed and CP for males. If sexed by CL, CP value cannot be blank, 0, or 1 (i.e. CP must = 2 or 3) validate_cp_hs Description Validate how sexed and CP for males. If sexed by CL, CP value cannot be blank, 0, or 1 (i.e. CP must = 2 or 3) Usage validate_cp_hs(df) Arguments df bird data frame Value data frame of rows with CP/how sexed issues for males Validate day. Valid: 1-31. no blanks except for BADE/BALO validate_day Description Validate day. Valid: 1-31. no blanks except for BADE/BALO Usage validate_day(df) Arguments df bird data frame Value data frame of rows with day issues validate_day_species 13 validate_day_species Validate day-species combinations Description Validate day-species combinations Usage validate_day_species(df) Arguments df bird data frame Value data frame of rows with day/species issues Validate disp. blank validate_disp Allowable values include: M,O,I,S,E,D,T,W,B,L,P, Description Validate disp. Allowable values include: M,O,I,S,E,D,T,W,B,L,P, blank Usage validate_disp(df) Arguments df bird data frame Value data frame of rows with disp issues 14 validate_ey validate_disp_status Validate disp-status combinations. Any bird with a letter in disp should have a note explaining why and the status should say 500 Description Validate disp-status combinations. Any bird with a letter in disp should have a note explaining why and the status should say 500 Usage validate_disp_status(df) Arguments df bird data frame Value data frame of rows with disp/status issues validate_ey Validate EY in how aged. EY in the How Aged columns should only be used for species codes SPTO, DOWO, NOFL, RSFL, HAWO, DEJU, ORJU, SCJU, UDEJ –flag any other species that use this with note, Check in Pyle to confirm that this species can be aged by eye color Description Validate EY in how aged. EY in the How Aged columns should only be used for species codes SPTO, DOWO, NOFL, RSFL, HAWO, DEJU, ORJU, SCJU, UDEJ –flag any other species that use this with note, Check in Pyle to confirm that this species can be aged by eye color Usage validate_ey(df) Arguments df bird data frame Value data frame of rows with EY issues validate_fat 15 Validate fat 0-5, blank are allowed. 6 fat is okay but only if there’s a note validate_fat Description Validate fat 0-5, blank are allowed. 6 fat is okay but only if there’s a note Usage validate_fat(df) Arguments df bird data frame Value data frame of rows with fat issues Validate flight feather molt. Allowable values: N, S, J, A, blank validate_ffmolt Description Validate flight feather molt. Allowable values: N, S, J, A, blank Usage validate_ffmolt(df) Arguments df bird data frame Value data frame of rows with ffmolt issues 16 validate_ha_ffmlt Validate flight feather wear. Allowable values: 0-5, blank validate_ffwear Description Validate flight feather wear. Allowable values: 0-5, blank Usage validate_ffwear(df) Arguments df bird data frame Value data frame of rows with ffwear issues Validate how aged-ffmolt combinations. If "how aged" says MR, FF molt must be S or J (can’t be blank, N, or A) validate_ha_ffmlt Description Validate how aged-ffmolt combinations. If "how aged" says MR, FF molt must be S or J (can’t be blank, N, or A) Usage validate_ha_ffmlt(df) Arguments df bird data frame Value data frame of rows with how aged/ffmolt issues validate_ha_ffwear 17 validate_ha_ffwear Validate how aged-ffwear combinations. If "how aged" says FF then FF Wear cannot be blank Description Validate how aged-ffwear combinations. If "how aged" says FF then FF Wear cannot be blank Usage validate_ha_ffwear(df) Arguments df bird data frame Value data frame of rows with how aged/ffwear issues Validate how aged-how aged 2 combinations validate_ha_ha2 Description Validate how aged-how aged 2 combinations Usage validate_ha_ha2(df) Arguments df bird data frame Value data frame of rows with ha/ha2 issues 18 validate_hs_hs2 Validate how aged and skull combinations validate_ha_skull Description Validate how aged and skull combinations Usage validate_ha_skull(df) Arguments df bird data frame Value data frame of rows with how aged/skull issues Validate how sexed-how sexed 2 combinations validate_hs_hs2 Description Validate how sexed-how sexed 2 combinations Usage validate_hs_hs2(df) Arguments df bird data frame Value data frame of rows with hs/hs2 issues validate_location 19 Validate location. Make sure there are no blanks validate_location Description Validate location. Make sure there are no blanks Usage validate_location(df) Arguments df bird data frame Value data frame of rows with location issues Validate month. Valid: 2-11. No blanks except for BADE BALO validate_month Description Validate month. Valid: 2-11. No blanks except for BADE BALO Usage validate_month(df) Arguments df bird data frame Value data frame of rows with month issues 20 validate_muscle validate_month_species Validate month-species combinations Description Validate month-species combinations Usage validate_month_species(df) Arguments df bird data frame Value data frame of rows with month/species issues Validate muscle. 2.5,3,4,5, blank allowed. 1 or 2 are allowed but MUST have a note, otherwise it’s likely a type-o (check hard copy) validate_muscle Description Validate muscle. 2.5,3,4,5, blank allowed. 1 or 2 are allowed but MUST have a note, otherwise it’s likely a type-o (check hard copy) Usage validate_muscle(df) Arguments df bird data frame Value data frame of rows with muscle issues validate_net 21 Validate net. Allowable values: 1-12, blank. Some exceptions allowed with a note, e.g. owl nets but we should flag those exceptions anyway to make sure someone checks them validate_net Description Validate net. Allowable values: 1-12, blank. Some exceptions allowed with a note, e.g. owl nets but we should flag those exceptions anyway to make sure someone checks them Usage validate_net(df) Arguments df bird data frame Value data frame of rows with net issues Validate notes. Check that notes that mention either flat flies, or mites, lice, louse, mite have a Y for parasite column validate_notes Description Validate notes. Check that notes that mention either flat flies, or mites, lice, louse, mite have a Y for parasite column Usage validate_notes(df) Arguments df bird data frame Value data frame of rows with notes issues 22 validate_sex validate_parasites Validate parasites. If there is a Y in the parasites column there needs to be a note Description Validate parasites. If there is a Y in the parasites column there needs to be a note Usage validate_parasites(df) Arguments df bird data frame Value data frame of rows with parasite column issues Validate sex column. Acceptable values= M F U–flag all the blanks validate_sex Description Validate sex column. Acceptable values= M F U–flag all the blanks Usage validate_sex(df) Arguments df bird data frame Value data frame of rows with sex issues validate_sex_hs 23 Validate how sexed and sex combinations. Allowable values include: PL, EY,FF,MB,PC,LP,NL,MR,SK,TS, (blank only in second field, or for age 0) validate_sex_hs Description F: PL,BP,WL–first HS field can NOT be blank Usage validate_sex_hs(df) Arguments df bird data frame Details M: PL,CL,WL–first HS field can NOT be blank U: always blank, or IC, If not blank, check hard copy for errors or white-out. If sex is whited out, leave as U. Check fields above and below to make sure there’s not a data entry error Value data frame of rows with hs/sex issues Validate species column. Refer to master species list to update validate_species Description Validate species column. Refer to master species list to update Usage validate_species(df) Arguments df bird data frame Value data frame of rows with species issues 24 validate_status_500 Validate status. Allowable values for new bands: 300, 500. Blank is NOT valid validate_status Description Validate status. Allowable values for new bands: 300, 500. Blank is NOT valid Usage validate_status(df) Arguments df bird data frame Value data frame of rows with status issues validate_status_500 Validate status 500s. ALL status 500’s MUST have text in the note column and a letter in the disp column i.e. Note and Disp columns cannot be blank Description Validate status 500s. ALL status 500’s MUST have text in the note column and a letter in the disp column i.e. Note and Disp columns cannot be blank Usage validate_status_500(df) Arguments df bird data frame Value data frame of rows with status 500 issues validate_tail 25 Validate tail. Check if tail is below 30 or above 200 validate_tail Description Validate tail. Check if tail is below 30 or above 200 Usage validate_tail(df) Arguments df bird data frame Value data frame of rows with tail issues Validate weight. Flag anything under 5 but GCKI or BCHU RUHU CAHU okay or over 200 raptors would be a rare exception validate_weight Description Validate weight. Flag anything under 5 but GCKI or BCHU RUHU CAHU okay or over 200 raptors would be a rare exception Usage validate_weight(df) Arguments df bird data frame Value data frame of rows with weight issues 26 validate_year Validate wing. Check if wing is below 30 or above 200 validate_wing Description Validate wing. Check if wing is below 30 or above 200 Usage validate_wing(df) Arguments df bird data frame Value data frame of rows with wing issues Validate year. No blanks. Allowable values are any valid year between 1997 and current year except BADE BALO validate_year Description Validate year. No blanks. Allowable values are any valid year between 1997 and current year except BADE BALO Usage validate_year(df) Arguments df bird data frame Value data frame of rows with year issues validate_year_species 27 validate_year_species Validate year-species combinations Description Validate year-species combinations Usage validate_year_species(df) Arguments df bird data frame Value data frame of rows with year/species issues Index validate_sex_hs, 23 validate_species, 23 validate_status, 24 validate_status_500, 24 validate_tail, 25 validate_weight, 25 validate_wing, 26 validate_year, 26 validate_year_species, 27 clean_df, 2 run_birdproofr_app, 3 validate_age, 3 validate_age_bp_cp, 3 validate_age_ffmlt, 4 validate_age_ffwear, 4 validate_age_ha, 5 validate_age_hs, 5 validate_age_skull, 6 validate_all, 6 validate_bandcode, 7 validate_bandcode_species, 7 validate_bandcode_status, 8 validate_bandsize, 8 validate_bandsize_disp, 9 validate_bmlt, 9 validate_bp, 10 validate_bp_hs, 10 validate_captime, 11 validate_cp, 11 validate_cp_hs, 12 validate_day, 12 validate_day_species, 13 validate_disp, 13 validate_disp_status, 14 validate_ey, 14 validate_fat, 15 validate_ffmolt, 15 validate_ffwear, 16 validate_ha_ffmlt, 16 validate_ha_ffwear, 17 validate_ha_ha2, 17 validate_ha_skull, 18 validate_hs_hs2, 18 validate_location, 19 validate_month, 19 validate_month_species, 20 validate_muscle, 20 validate_net, 21 validate_notes, 21 validate_parasites, 22 validate_sex, 22 28
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 28 Page Mode : UseOutlines Author : Title : Subject : Creator : LaTeX with hyperref Producer : pdfTeX-1.40.19 Create Date : 2019:02:03 12:21:49-07:00 Modify Date : 2019:02:03 12:21:49-07:00 Trapped : False PTEX Fullbanner : This is MiKTeX-pdfTeX 2.9.6870 (1.40.19)EXIF Metadata provided by EXIF.tools