Manual
manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 21


σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33
→σ11 σ22 σ33 √2σ23 √2σ13 √2σ12
C
C1111 C1122 C1133 √2C1123 √2C1113 √2C1112
C1122 C2222 C2233 √2C2223 √2C2213 √2C2212
C1133 C2233 C3333 √2C3323 √2C3313 √2C3312
√2C1123 √2C2223 √2C3323 2C2323 2C2313 2C2312
√2C1113 √2C2213 √2C3313 2C2313 2C1313 2C1312
√2C1112 √2C2212 √2C3312 2C2312 2C1312 2C1212
.
a b ˆ
a
ˆ
b
a:b=ˆ
a·ˆ
b
Cˆ
C
a=C:b
ˆ
a=ˆ
C·ˆ
b.

F
l
˙
ε

q= [σF]α= [¯εp]
f=J2(σ) + r2
3σF(¯εp, T ) = ksk+r2
3σF
s=σ−1
3tr σI
∂f
∂σ=s
ksk
∂2f
∂σ∂σ=1
ksk1−1
3(I⊗I)−s
ksk⊗s
ksk
∂2f
∂σ∂q=0
∂f
∂q=r2
3
∂2f
∂q∂q= 0
∂2f
∂q∂σ=0
q=σFXα=¯εpεp

f=J2(σ+X) + r2
3σF(¯εp, T ) = ks+Xk+r2
3σF.
∂f
∂σ=s+X
ks+Xk
∂2f
∂σ∂σ=1
ks+Xk1−1
3(I⊗I)−s+X
ks+Xk⊗s+X
ks+Xk
∂2f
∂σ∂q=1
ks+Xk1−s+X
ks+Xk⊗s+X
ks+Xk
∂f
∂q=hq2
3
s+X
ks+Xki
∂2f
∂q∂q="00
01
ks+Xk1−s+X
ks+Xk⊗s+X
ks+Xk#
∂2f
∂q∂σ="0
1
ks+Xk1−1
3(I⊗I)−s+X
ks+Xk⊗s+X
ks+Xk#
σF(¯εp, T ) = −(σ0+K¯εp)
∂σF
∂¯εp
=−K
σF(¯εp, T ) = −[σ0+R(1 −exp (−δ¯εp))]
∂σF
∂¯εp
=−δR exp (−δ¯εp)
X(εp, T ) = −Hεp
dX
dεp
=−HI

X=
n
X
i=1
Xi
˙
Xi=− 2
3Cin+r2
3γi(¯εp)Xi!˙γ−Air3
2kXikai−1Xi
n= 1
γ(¯εp)
γ(¯εp) = γs+ (γ0−γs)e−β¯εp.
y(σ,α) = g(f(σ,q(α)))
η
g
g
g(f) = fn.
f(σ,q)
y(σ,q) = r3
2*f(σ,q)
p2/3η+n
.

˙
εp=n˙p
n=3
2
σ0−X0
J2(σ0−X0)
J2(Y0) = r3
2Y0:Y0
˙p=J2(σ0−X0)−σa
Dn
X=X1+X2
˙
X1=C12
3(a10 −Q)n−X1˙p−γ1J2(X1)m−1X1
˙
X2=C22
3a2n−X2˙p−γ2J2(X2)m−1X2
˙
Q=d(q−Q) ˙p
˙σa=b(σas −σa) ˙p
b=(bhσas −σa≥0
brσas −σa<0
σas =hA+Blog10 ˙pi
473 K < T < 873 K
˙
εcr =f(σ,εcr, t, T )
εcr
n+1 =εcr
n+fn+1∆tn+1
R=εcr
n+1 −εcr
n−fn+1∆tn+1

J=I−∂f
∂εcr
n+1
∆tn+1
dεcr
n+1
dσn+1
.
R=0=⇒0 = dR=∂R
∂σn+1
:dσn+1 +∂R
∂εcr
n+1
:dεcr
n+1 +∂R
∂tn+1
:dtn+1
R=0=⇒0 = dR=∂R
∂σn+1
:dσn+1+∂R
∂εcr
n+1
:dεcr
n+1+∂R
∂tn+1
:dtn+1+∂R
∂tn+1
:dTn+1
0=∂R
∂σn+1
+∂R
∂εcr
n+1
:dεcr
n+1
dσn+1
+∂R
∂tn+1
:dtn+1
dσn+1
+∂R
∂tn+1
:dTn+1
dσn+1
dεcr
n+1
dσn+1
=−∂R
∂εcr
n+1 −1∂R
∂σn+1
dεcr
n+1
dσn+1
=J−1∂f
∂σn+1
∆tn+1.
f∂f
∂εcr
∂f
∂σ
∂f
∂t
∂f
∂T
J2
˙
εcr =g(σeq, εeq, t, T )3
2
s
σeq
s=σ−1
3tr (σ)
σeq =r3
2s:s
εeq =r2
3εcr :εcr.

g
f=g3
2
s
σeq
∂f
∂σ=3
2∂g
∂σeq −g
σeq s
σeq ⊗s
σeq +g
σeq
I3
2I−1
31⊗1
∂f
∂εcr =s
σeq ⊗∂g
∂εeq
εcr
εeq
∂f
∂t =∂g
∂t
3
2
s
σeq
∂f
∂T =∂g
∂T
3
2
s
σeq
g=Aσn
eq
∂g
∂σeq
=Anσn−1
eq
∂g
∂εeq
= 0
∂g
∂t = 0
g=mA1/mσn/m
eq (εeq)(m−1)/m
∂g
∂σeq
=nA1/mσn/m−1
eq (εeq)(m−1)/m
∂g
∂εeq
= (m−1) A1/mσn/m
eq (εeq)−1/m
∂g
∂t = 0

σn+1 =Cn+1 :εn+1
An+1 =Cn+1
C
•εe
n+1 =εe
nσn+1 =Cn+1 :εn+1 −εn+εe
n+1
•f(σn+1)
εp
n+1 =εp
n+∂fn+1
∂σn+1
∆γn+1
f(σn+1,αn+1)=0
σn+1 =Cn+1 :εn+1 −εp
n+1
x=σn+1 ∆γn+1
R=−εn+1 +C−1
n+1 :σn+1 +εn+1 −εe
n+∂fn+1
∂σ∆γn+1
fn+1 =R1
R2.

J="C−1
n+1 +∂2fn+1
∂σ2∆γn+1 ∂fn+1
∂σ
∂fn+1
∂σn+1 0#=J11 J12
J21 J22
Φ=C−1
n+1 +∂2fn+1
∂σ2∆γn+1−1
An+1 =Φ−hΦ·∂fn+1
∂σi⊗hΦ·∂fn+1
∂σi
h∂fn+1
∂σ·Φ·∂fn+1
∂σi2
˙
εp=γg(σ,α)
˙
α=γh(σ,α)
γ≥0
f(σ,α)≤0
γf (σ,α)=0
•αn+1 =αnεp
n+1 =εp
nσn+1 =Cn+1 :εn+1 −εp
n+1
•f(sn+1,αn+1)
εp
n+1 =εp
n+gn+1∆γn+1
αn+1 =αn+hn+1∆γn+1
f(σn+1,αn+1)=0
σn+1 =Cn+1 :εn+1 −εp
n+1

R=
−εp
n+1 +εp
n+gn+1∆γn+1
−αn+1 +αn+hn+1∆γn+1
fn+1
=
R1
R2
R3
.
εp
n+1 =εn+1 −C−1
n+1 :σn+1
∂σn+1
∂εp
n+1
=−Cn+1
J=
−I−∂gn+1
∂σn+1 :Cn+1∆γn+1 ∂gn+1
∂αn+1 ∆γn+1 gn+1
−∂hn+1
∂σn+1 :Cn+1∆γn+1 −I+∂hn+1
∂αn+1 ∆γn+1 hn+1
−∂fn+1
∂σn+1 :Cn+1 ∂fn+1
∂αn+1 0
=
J11 J12 J13
J21 J22 J23
J31 J32 J33
Rεn+1,εp
n+1,αn+1,∆γn+1= 0
dεn+1
dεp
n+1
dεn+1
dαn+1
dεn+1
d∆γn+1
dR1=∂R1
∂εn+1
dεn+1 +∂R1
∂εp
n+1
dεp
n+1 +∂R1
∂αn+1
dαn+1 +∂R1
∂∆γn+1
d∆γn+1 = 0
dR2=∂R2
∂εn+1
dεn+1 +∂R2
∂εp
n+1
dεp
n+1 +∂R2
∂αn+1
dαn+1 +∂R2
∂∆γn+1
d∆γn+1 = 0
dR3=∂R3
∂εn+1
dεn+1 +∂R3
∂εp
n+1
dεp
n+1 +∂R3
∂αn+1
dαn+1 +∂R3
∂∆γn+1
d∆γn+1 = 0
0=∂R1
∂εn+1
+∂R1
∂εp
n+1
dεp
n+1
dεn+1
+∂R1
∂αn+1
dαn+1
dεn+1
+∂R1
∂∆γn+1
d∆γn+1
dεn+1
0=∂R2
∂εn+1
+∂R2
∂εp
n+1
dεp
n+1
dεn+1
+∂R2
∂αn+1
dαn+1
dεn+1
+∂R2
∂∆γn+1
d∆γn+1
dεn+1
0 = ∂R3
∂εn+1
+∂R3
∂εp
n+1
dεp
n+1
dεn+1
+∂R3
∂αn+1
dαn+1
dεn+1
+∂R3
∂∆γn+1
d∆γn+1
dεn+1

0=A
B+JKK JKE
JEK JEE K
E
K=dεp
n+1
dεn+1 K
K=JKK −JKE J−1
EE JEK −1JKE J−1
EE B−A
A=∂R1
∂εn+1
=∂gn+1
∂σn+1
:Cn+1∆γn+1
B="∂R2
∂εn+1
∂R3
∂εn+1 #="∂hn+1
∂σn+1 :Cn+1∆γn+1
∂fn+1
∂σn+1 :Cn+1 #.
dεp
n+1
dεn+1
dσn+1
dεn+1
=C:I−dεp
n+1
dεn+1
˙
σ=˙
σσ,q,˙
ε, T, ˙
T , t
˙
q=˙
qσ,q,˙
ε, T, ˙
T , t
R1=−σn+1 +σn+˙
σσn+1,qn+1,˙
εn+1, Tn+1 ˙
Tn+1, , tn+1∆tn+1 =0
R2=−qn+1 +qn+˙
qσn+1,qn+1,˙
εn+1, Tn+1,˙
Tn+1, tn+1∆tn+1 =0
J=Jσσ Jσq
Jqσ Jqq ="−I+∂˙
σn+1
∂σn+1 ∆tn+1 ∂˙
σn+1
∂qn+1 ∆tn+1
∂˙
qn+1
∂σn+1 ∆tn+1 −I+∂˙
qn+1
∂qn+1 ∆tn+1 #.

dR1=∂R1
∂σn+1
:dσn+1 +∂R1
∂qn+1
:dqn+1 +∂R1
∂εn+1
:d˙
εn+1 +∂R1
∂Tn+1
:dTn+1 +∂R1
∂tn+1
:dtn+1 =0
dR2=∂R2
∂σn+1
:dσn+1 +∂R2
∂qn+1
:dqn+1 +∂R2
∂εn+1
:d˙
εn+1 +∂R2
∂Tn+1
:dTn+1 +∂R2
∂tn+1
:dtn+1 =0
Jσσ :An+1 +Jσq :dqn+1
d˙
εn+1
+∂R1
∂˙
εn+1
+∂R1
∂Tn+1
:dTn+1
d˙
εn+1
+∂R1
∂˙
Tn+1
:d˙
Tn+1
d˙
εn+1
+∂R1
∂tn+1
:dtn+1
d˙
εn+1
=0
Jqσ :An+1 +Jqq :dqn+1
d˙
εn+1
+∂R2
∂˙
εn+1
+∂R2
∂Tn+1
:dTn+1
d˙
εn+1
+∂R2
∂˙
Tn+1
:d˙
Tn+1
d˙
εn+1
+∂R2
∂tn+1
:dtn+1
d˙
εn+1
=0
Jσσ :An+1 +Jσq :dqn+1
d˙
εn+1
+∂R1
∂˙
εn+1
=0
Jqσ :An+1 +Jqq :dqn+1
d˙
εn+1
+∂R2
∂˙
εn+1
=0
X=∂˙
σ
∂˙
εn+1
∆tn+1
Y=∂˙
q
∂˙
εn+1
∆tn+1
Jσσ :An+1 +Jσq :dqn+1
d˙
εn+1
+X=0
Jqσ :An+1 +Jqq :dqn+1
d˙
εn+1
+Y=0
An+1 =Jσσ −Jσq :J−1
qq :Jqσ−1:Jσq :J−1
qq :Y−X
Tn+1 =An+1
1
∆tn+1

˙
σ(σ,q,ε, T, t) = C:˙
ε−gγ˙γ−gT˙
T−gt
˙
q(σ,q,ε, T, t) = hγ˙γ+hT˙
T+ht
∂˙
σ
∂σ=C:−∂gγ
∂σ˙γ−gγ⊗∂˙γ
∂σ−∂gT
∂σ˙
T−∂gt
∂σ
∂˙
σ
∂q=C:−∂gγ
∂q˙γ−gγ⊗∂˙γ
∂q−∂gT
∂q˙
T−∂gt
∂q
∂˙
q
∂σ=∂hγ
∂σ˙γ+hγ⊗∂˙γ
∂σ+∂hT
∂σ˙
T+∂ht
∂σ
∂˙
q
∂q=∂hγ
∂q˙γ+hγ⊗∂˙γ
∂σ+∂hT
∂q˙
T+∂ht
∂q
∂˙
σ
∂˙
εn+1
=C
∂˙
q
∂˙
εn+1
=0

σep
n+1 εep
n+1,εep
n,hn,∆tn+1, Tn+1
εcr
n+1 εcr
n,σcr
n+1,∆tn+1, Tn+1
εn+1 =εep
n+1 +εcr
n+1
σcr
n+1 =σep
n+1.
R=εep
n+1+εcr
n+1 εn−εep
n,σn+1 εep
n+1,εep
n,hn,∆tn+1, Tn+1,∆tn+1, Tn+1−εn+1
εep εep
n+1
dR
dεep
n+1
=I+dεcr
n+1
dσn+1
dσn+1
dεep
n+1
dσn+1
dεep
n+1
dεcr
n+1
dσn+1
dσn+1
dεn+1
= dεcr
n+1
dσn+1
+dσn+1
dεep
n+1 −1!−1

g=kT
µb3ln ˙ε0
˙ε.
[(σ1,A1,h1),(σ2,A2,h2),...,(σn−1,An−1,hn−1),(σn,An,hn)]
[g1, g2,...gn−1].
(σ,A,h) =
(σ1,A1,h1)g≤g1
(σi,Ai,hi)gi−1< g ≤gi
(σn,An,hn)g > gn−1.
σ0
n+1 =σ0(σn+1,hn+1,ωn+1)
ωn+1 =w(σn+1,hn+1,ωn+1)
σn+1 hn+1
ωn+1
σ0
n+1
h0
n+1 =hn+1 ωn+1
A0
n+1 =dσ0
n+1
dεn+1
.

σ0
n+1 = (1 −ωn+1)σn+1
ωn+1 =w(σn+1,hn+1, ωn+1)
ωn+1 ∈[0,1]
A0
n+1 = (1 −ωn+1)An+1 −dωn+1
dεn+1 ⊗σn+1
σ0
n+1 = [1 −ωn+1]σn+1
˙ωn+1 = ˙ωωn+1,σ0
n+1,˙
¯εp
˙
¯εp=r2
3˙
εp:˙
εp
R1
R2=σ0
n+1 −[1 −ωn+1]σn+1 (∆εn+1)
−ωn+1 +ωn+ ˙ωn+1∆t=0
0
x=σ0
n+1 ωn+1
˙ωωn+1,σ0
n+1,˙
¯εp= ˙ωpωn+1,σ0
n+1˙
¯εp+ ˙ωoωn+1,σ0
n+1
R1
R2=σ0
n+1 −[1 −ωn+1]σn+1 (∆εn+1)
−ωn+1 +ωn+ ˙ωp∆¯εp+ ˙ωo∆t=0
0
J11 J12
J21 J22 ="I σn+1
∂˙ωp
∂σ0
n+1 ∆¯εp+∂˙ωo
∂σ0
n+1 ∆t+ ˙ωp∂∆¯εp
∂σ0
n+1
∂˙ωp
∂ωn+1 ∆¯εp+∂˙ωo
∂ωn+1 ∆t−1#
∆¯εp
˙
εp=˙
ε−˙
εe=˙
ε−C−1:σ
˙
¯εp=r2
3˙
εp:˙
εp=r2
3˙
ε:˙
ε+C−1:σ:C−1:σ−2˙
ε:C−1:σ

σ0
n+1 = (1 −ωn+1)σn+1
˙ωn+1 =∂φn+1
∂yn+1
φn+1 =φ(ωn+1, yn+1, sn+1,˙
¯εp)
yn+1 =−σ2
eq
2E(1 −D)2"2
3(1 + ν) + 3 (1 −2ν)σm
σeq 2#
sn+1 =σeps2
3(1 + ν) + 3 (1 −2ν)σm
σeq 2
˙
¯εp=r2
3˙
εp:˙
εp

