Opengl 45 Reference Guide
User Manual:
Open the PDF directly: View PDF .
Page Count: 13
Download | |
Open PDF In Browser | View PDF |
OpenGL 4.5 API Reference Card Page 1 OpenGL® is the only cross-platform graphics API that enables developers of software for PC, workstation, and supercomputing hardware to create high-performance, visually-compelling graphics software applications, in markets such as CAD, content creation, energy, entertainment, game development, manufacturing, medical, and virtual reality. Specifications are available at www.opengl.org/registry Command Execution [2.3] OpenGL Errors [2.3.1] enum GetError(void); Graphics Reset Recovery [2.3.2] enum GetGraphicsResetStatus(void); Returns: NO_ERROR, GUILTY_CONTEXT_RESET, {INNOCENT, UNKNOWN}_CONTEXT_RESET GetIntegerv( RESET_NOTIFICATION_STRATEGY); Returns: NO_RESET_NOTIFICATION, LOSE_CONTEXT_ON_RESET Flush and Finish [2.3.3] void Flush(void); void Finish(void); Synchronization Sync Objects and Fences [4.1] void DeleteSync(sync sync); sync FenceSync(enum condition, bitfield flags); condition: SYNC_GPU_COMMANDS_COMPLETE flags: must be 0 Buffer Objects [6] void GenBuffers(sizei n, uint *buffers); void CreateBuffers(sizei n, uint *buffers); void DeleteBuffers(sizei n, const uint *buffers); Create and Bind Buffer Objects [6.1] void BindBuffer(enum target, uint buffer); target: [Table 6.1] {ARRAY, UNIFORM}_BUFFER, {ATOMIC_COUNTER, QUERY}_BUFFER, COPY_{READ, WRITE}_BUFFER, {DISPATCH, DRAW}_INDIRECT_BUFFER, {ELEMENT_ARRAY, TEXTURE}_BUFFER, PIXEL_[UN]PACK_BUFFER, SHADER_STORAGE_BUFFER, TRANSFORM_FEEDBACK_BUFFER void BindBufferRange(enum target, uint index, uint buffer, intptr offset, sizeiptr size); target: ATOMIC_COUNTER_BUFFER, {SHADER_STORAGE, UNIFORM}_BUFFER, TRANSFORM_FEEDBACK_BUFFER void BindBufferBase(enum target, uint index, uint buffer); target: See BindBufferRange void BindBuffersRange(enum target, uint first, sizei count, const uint *buffers, const intptr *offsets, const sizeiptr *size); target: See BindBufferRange void BindBuffersBase(enum target, uint first, sizei count, const uint *buffers); target: See BindBufferRange Create/Modify Buffer Object Data [6.2] void BufferStorage(enum target, sizeiptr size, const void *data, bitfield flags); target: See BindBuffer flags: Bitwise OR of MAP_{READ, WRITE}_BIT, {DYNAMIC, CLIENT}_STORAGE_BIT, MAP_{COHERENT, PERSISTENT}_BIT void NamedBufferStorage(uint buffer, sizeiptr size, const void *data, bitfield flags); flags: See BufferStorage void BufferData(enum target, sizeiptr size, const void *data, enum usage); target: See BindBuffer usage: DYNAMIC_{DRAW, READ, COPY}, {STATIC, STREAM}_{DRAW, READ, COPY} void NamedBufferData(uint buffer, sizeiptr size, const void *data, enum usage); ©2014 Khronos Group - Rev. 0814 Floating-Point Numbers [2.3.4] 16-Bit Unsigned 11-Bit Unsigned 10-Bit 1-bit sign, 5-bit exponent, 10-bit mantissa no sign bit, 5-bit exponent, 6-bit mantissa no sign bit, 5-bit exponent, 5-bit mantissa Command Letters [Tables 2.1, 2.2] Where a letter denotes a type in a function name, T within the prototype is the same type. b - byte (8 bits) ub - ubyte (8 bits) s - short (16 bits) us - ushort (16 bits) i - int (32 bits) ui - uint (32 bits) i64 - int64 (64 bits) ui64 - uint64 (64 bits) f - float (32 bits) d - double (64 bits) Waiting for Sync Objects [4.1.1] enum ClientWaitSync(sync sync, bitfield flags, uint64 timeout_ns); flags: SYNC_FLUSH_COMMANDS_BIT, or zero void WaitSync(sync sync, bitfield flags, uint64 timeout); timeout: TIMEOUT_IGNORED Sync Object Queries [4.1.3] void GetSynciv(sync sync, enum pname, sizei bufSize, sizei *length, int *values); pname: OBJECT_TYPE, SYNC_{STATUS, CONDITION, FLAGS} boolean IsSync(sync sync); void BufferSubData(enum target, intptr offset, sizeiptr size, const void *data); target: See BindBuffer void NamedBufferSubData(uint buffer, intptr offset, sizeiptr size, const void *data); void ClearBufferSubData(enum target, enum internalFormat, intptr offset, sizeiptr size, enum format, enum type, const void *data); target: See BindBuffer internalformat: See TexBuffer on pg. 3 of this card format: RED, GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA, {RED, GREEN, BLUE, RG, RGB}_INTEGER, {RGBA, BGR, BGRA} _INTEGER, STENCIL_INDEX, DEPTH_{COMPONENT, STENCIL} void ClearNamedBufferSubData( uint buffer, enum internalFormat, intptr offset, sizeiptr size, enum format, enum type, const void *data); internalformat, format, type: See ClearBufferSubData void ClearBufferData(enum target, enum internalformat, enum format, enum type, const void *data); target, internalformat, format: See ClearBufferSubData void ClearNamedBufferData(uint buffer, enum internalformat, enum format, enum type, const void *data); internalformat, format, type: See ClearBufferData Map/Unmap Buffer Data [6.3] void *MapBufferRange(enum target, intptr offset, sizeiptr length, bitfield access); target: See BindBuffer access: The Bitwise OR of MAP_X_BIT, where X may be READ, WRITE, PERSISTENT, COHERENT, INVALIDATE_{BUFFER, RANGE}, FLUSH_EXPLICIT, UNSYNCHRONIZED void *MapNamedBufferRange(uint buffer, intptr offset, sizeiptr length, bitfield access); target: See BindBuffer access: See MapBufferRange • See FunctionName refers to functions on this reference card. • [n.n.n] and [Table n.n] refer to sections and tables in the OpenGL 4.5 core specification. • [n.n.n] refers to sections in the OpenGL Shading Language 4.50 specification. OpenGL Command Syntax [2.2] GL commands are formed from a return type, a name, and optionally up to 4 characters (or character pairs) from the Command Letters table (to the left), as shown by the prototype: return-type Name{1234}{b s i i64 f d ub us ui ui64}{v} ([args ,] T arg1 , . . . , T argN [, args]); The arguments enclosed in brackets ([args ,] and [, args]) may or may not be present. The argument type T and the number N of arguments may be indicated by the command name suffixes. N is 1, 2, 3, or 4 if present. If “v” is present, an array of N items is passed by a pointer. For brevity, the OpenGL documentation and this reference may omit the standard prefixes. The actual names are of the forms: glFunctionName(), GL_CONSTANT, GLtype Asynchronous Queries [4.2, 4.2.1] void GenQueries(sizei n, uint *ids); void CreateQueries(enum target, sizei n, uint *ids); target: See BeginQuery, plus TIMESTAMP void DeleteQueries(sizei n, const uint *ids); void BeginQuery(enum target, uint id); target: ANY_SAMPLES_PASSED[_CONSERVATIVE], PRIMITIVES_GENERATED, SAMPLES_PASSED, TIME_ELAPSED, TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN void BeginQueryIndexed(enum target, uint index, uint id); target: See BeginQuery void EndQuery(enum target); void EndQueryIndexed(enum target, uint index); boolean IsQuery(uint id); void GetQueryiv(enum target, enum pname, int *params); target: See BeginQuery, plus TIMESTAMP pname: CURRENT_QUERY, QUERY_COUNTER_BITS void GetQueryIndexediv(enum target, uint index, enum pname, int *params); target: See BeginQuery, plus TIMESTAMP pname: CURRENT_QUERY, QUERY_COUNTER_BITS void GetQueryObjectiv(uint id, enum pname, int *params); void GetQueryObjectuiv(uint id, enum pname, uint *params); void GetQueryObjecti64v(uint id, enum pname, int64 *params); void GetQueryObjectui64v(uint id, enum pname, uint64 *params); pname: QUERY_TARGET, QUERY_RESULT[_NO_WAIT, _AVAILABLE] Timer Queries [4.3] void QueryCounter(uint id, TIMESTAMP); void GetIntegerv(TIMESTAMP, int *data); void GetInteger64v(TIMESTAMP, int64 *data); void *MapBuffer(enum target, enum access); void GetBufferParameteri[64]v( enum target, enum pname, int[64]*data); Timer queries track the amount of time needed to fully complete a set of GL commands. access: See MapBufferRange void *MapNamedBuffer(uint buffer, enum access); access: See MapBufferRange void FlushMappedBufferRange(intptr offset, sizeiptr length); void FlushMappedNamedBufferRange( uint buffer, intptr offset, sizeiptr length); boolean UnmapBuffer(enum target); target: See BindBuffer boolean UnmapNamedBuffer(uint buffer); Invalidate Buffer Data [6.5] void InvalidateBufferSubData(uint buffer, intptr offset, sizeiptr length); void InvalidateBufferData(uint buffer); Buffer Object Queries [6, 6.7] boolean IsBuffer(uint buffer); void GetBufferSubData(enum target, intptr offset, sizeiptr size, void *data); target: See BindBuffer void GetNamedBufferSubData(uint buffer, intptr offset, sizeiptr size, void *data); Shaders and Programs Shader Objects [7.1-2] uint CreateShader(enum type); type: {COMPUTE, FRAGMENT}_SHADER, {GEOMETRY, VERTEX}_SHADER, TESS_{EVALUATION, CONTROL}_SHADER void ShaderSource(uint shader, sizei count, const char * const * string, const int *length); target: See BindBuffer pname: [Table 6.2] BUFFER_SIZE, BUFFER_USAGE, BUFFER_{ACCESS[_FLAGS]}, BUFFER_MAPPED, BUFFER_MAP_{OFFSET, LENGTH}, BUFFER_{IMMUTABLE_STORAGE, ACCESS_FLAGS} void GetNamedBufferParameteri[64]v( uint buffer, enum pname, int[64]*data); void GetBufferPointerv(enum target, enum pname, const void **params); target: See BindBuffer pname: BUFFER_MAP_POINTER void GetNamedBufferPointerv(uint buffer, enum pname, const void **params); pname: BUFFER_MAP_POINTER Copy Between Buffers [6.6] void CopyBufferSubData(enum readTarget, enum writeTarget, intptr readOffset, intptr writeOffset, sizeiptr size); readTarget and writeTarget: See BindBuffer void CopyNamedBufferSubData( uint readBuffer, uint writeBuffer, intptr readOffset, intptr writeOffset, sizeiptr size); void CompileShader(uint shader); void ReleaseShaderCompiler(void); void DeleteShader(uint shader); boolean IsShader(uint shader); void ShaderBinary(sizei count, const uint *shaders, enum binaryformat, const void *binary, sizei length); (Continued on next page) www.opengl.org/registry Page 2 Shaders and Programs (cont.) Program Objects [7.3] uint CreateProgram(void); void AttachShader(uint program, uint shader); void DetachShader(uint program, uint shader); void LinkProgram(uint program); void UseProgram(uint program); uint CreateShaderProgramv(enum type, sizei count, const char * const * strings); void ProgramParameteri(uint program, enum pname, int value); pname: PROGRAM_SEPARABLE, PROGRAM_BINARY_RETRIEVABLE_HINT value: TRUE, FALSE void DeleteProgram(uint program); boolean IsProgram(uint program); Program Interfaces [7.3.1] void GetProgramInterfaceiv(uint program, enum programInterface, enum pname, int *params); OpenGL 4.5 API Reference Card stages: ALL_SHADER_BITS or the bitwise OR of TESS_{CONTROL, EVALUATION}_SHADER_BIT, {VERTEX, GEOMETRY, FRAGMENT}_SHADER_BIT, COMPUTE_SHADER_BIT void ActiveShaderProgram(uint pipeline, uint program); Program Binaries [7.5] void GetProgramBinary(uint program, sizei bufSize, sizei *length, enum *binaryFormat, void *binary); void ProgramBinary(uint program, enum binaryFormat, const void *binary, sizei length); Uniform Variables [7.6] int GetUniformLocation(uint program, const char *name); void GetActiveUniformName(uint program, uint uniformIndex, sizei bufSize, sizei *length, char *uniformName); void GetUniformIndices(uint program, sizei uniformCount, const char * const *uniformNames, uint *uniformIndices); void GetActiveUniform(uint program, uint index, sizei bufSize, sizei *length, int *size, enum *type, char *name); programInterface: ATOMIC_COUNTER_BUFFER, BUFFER_VARIABLE, UNIFORM[_BLOCK], PROGRAM_{INPUT, OUTPUT}, *type returns: DOUBLE_{VECn, MATn, MATmxn}, SHADER_STORAGE_BLOCK, DOUBLE, FLOAT_{VECn, MATn, MATmxn}, FLOAT, {GEOMETRY, VERTEX}_SUBROUTINE, INT, INT_VECn, UNSIGNED_INT[_VECn], BOOL, TESS_{CONTROL, EVALUATION}_SUBROUTINE, BOOL_VECn, or any value in [Table 7.3] {FRAGMENT, COMPUTE}_SUBROUTINE, void GetActiveUniformsiv(uint program, TESS_CONTROL_SUBROUTINE_UNIFORM, sizei uniformCount, TESS_EVALUATION_SUBROUTINE_UNIFORM, const uint *uniformIndices, enum pname, {GEOMETRY, VERTEX}_SUBROUTINE_UNIFORM, int *params); {FRAGMENT, COMPUTE}_SUBROUTINE_UNIFORM, TRANSFORM_FEEDBACK_{BUFFER, VARYING} pname: [Table 7.6] UNIFORM_{NAME_LENGTH, TYPE, OFFSET}, pname: ACTIVE_RESOURCES, MAX_NAME_LENGTH, MAX_NUM_ACTIVE_VARIABLES, UNIFORM_{SIZE, BLOCK_INDEX, UNIFORM}, MAX_NUM_COMPATIBLE_SUBROUTINES UNIFORM_{ARRAY, MATRIX}_STRIDE, UNIFORM_IS_ROW_MAJOR, uint GetProgramResourceIndex( UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX uint program, enum programInterface, const char *name); void GetProgramResourceName( uint program, enum programInterface, uint index, sizei bufSize, sizei *length, char *name); void GetProgramResourceiv(uint program, enum programInterface, uint index, sizei propCount, const enum *props, sizei bufSize, sizei *length, int *params); *props: [See Table 7.2] int GetProgramResourceLocation( uint program, enum programInterface, const char *name); int GetProgramResourceLocationIndex( uint program, enum programInterface, const char *name); Program Pipeline Objects [7.4] void GenProgramPipelines(sizei n, uint *pipelines); void DeleteProgramPipelines(sizei n, const uint *pipelines); boolean IsProgramPipeline(uint pipeline); void BindProgramPipeline(uint pipeline); void CreateProgramPipelines(sizei n, uint *pipelines); void UseProgramStages(uint pipeline, bitfield stages, uint program); Textures and Samplers [8] UNIFORM_BLOCK_REFERENCED_BY_X_SHADER, where X may be one of VERTEX, FRAGMENT, COMPUTE, GEOMETRY, TESS_CONTROL, or TESS_EVALUATION [Table 7.7] void GetActiveAtomicCounterBufferiv( uint program, uint bufferIndex, enum pname, int *params); pname: See GetActiveUniformBlockiv, however replace the prefix UNIFORM_BLOCK_ with ATOMIC_COUNTER_BUFFER_ Load Uniform Vars. in Default Uniform Block Texture Objects [8.1] void DeleteTextures(sizei n, const uint *textures); boolean IsTexture(uint texture); target: TEXTURE_{1D, 2D}[_ARRAY], TEXTURE_{3D, RECTANGLE, BUFFER}, TEXTURE_CUBE_MAP[_ARRAY], TEXTURE_2D_MULTISAMPLE[_ARRAY] void BindTextures(uint first, sizei count, const uint *textures); target: See BindTexture ©2014 Khronos Group - Rev. 0814 void UniformBlockBinding(uint program, uint uniformBlockIndex, uint uniformBlockBinding); Shader Buffer Variables [7.8] void ShaderStorageBlockBinding( uint program, uint storageBlockIndex, uint storageBlockBinding); Subroutine Uniform Variables [7.9] Parameter shadertype for the functions in this section may be {COMPUTE, VERTEX}_SHADER, TESS_{CONTROL, EVALUATION}_SHADER, or {FRAGMENT, GEOMETRY}_SHADER pname: [NUM_]COMPATIBLE_SUBROUTINES void UniformSubroutinesuiv( enum shadertype, sizei count, const uint *indices); Shader Memory Access [7.12.2] target: See BindTexture Sampler Objects [8.2] void SamplerParameter{i f}(uint sampler, enum pname, T param); void BindSamplers(uint first, sizei count, const uint *samplers); Shader and Program Queries [7.13] void GetShaderiv(uint shader, enum pname, int *params); pname: SHADER_TYPE, INFO_LOG_LENGTH, {DELETE, COMPILE}_STATUS, COMPUTE_SHADER, SHADER_SOURCE_LENGTH void GetProgramiv(uint program, enum pname, int *params); pname: ACTIVE_ATOMIC_COUNTER_BUFFERS, ACTIVE_ATTRIBUTES, ACTIVE_ATTRIBUTE_MAX_LENGTH, ACTIVE_UNIFORMS, ACTIVE_UNIFORM_BLOCKS, ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH, ACTIVE_UNIFORM_MAX_LENGTH, ATTACHED_SHADERS, VALIDATE_STATUS, COMPUTE_WORK_GROUP_SIZE, DELETE_STATUS, GEOMETRY_{INPUT, OUTPUT}_TYPE, GEOMETRY_SHADER_INVOCATIONS, GEOMETRY_VERTICES_OUT, INFO_LOG_LENGTH, LINK_STATUS, PROGRAM_SEPARABLE, PROGRAM_BINARY_RETRIEVABLE_HINT, TESS_CONTROL_OUTPUT_VERTICES, TESS_GEN_{MODE, SPACING}, TESS_GEN_{VERTEX_ORDER, POINT_MODE}, TRANSFORM_FEEDBACK_BUFFER_MODE, TRANSFORM_FEEDBACK_VARYINGS, TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH void GetProgramPipelineiv(uint pipeline, enum pname, int *params); pname: ACTIVE_PROGRAM, VALIDATE_STATUS, {VERTEX, FRAGMENT, GEOMETRY}_SHADER, TESS_{CONTROL, EVALUATION}_SHADER, INFO_LOG_LENGTH, COMPUTE_SHADER void GetAttachedShaders(uint program, sizei maxCount, sizei *count, uint *shaders); void GetShaderInfoLog(uint shader, sizei bufSize, sizei *length, char *infoLog); void GetProgramInfoLog(uint program, sizei bufSize, sizei *length, char *infoLog); void GetProgramPipelineInfoLog( uint pipeline, sizei bufSize, sizei *length, char *infoLog); void GetShaderSource(uint shader, sizei bufSize, sizei *length, char *source); void GetShaderPrecisionFormat( enum shadertype, enum precisiontype, int *range, int *precision); shadertype: {VERTEX, FRAGMENT}_SHADER precisiontype: {LOW, MEDIUM, HIGH}_{FLOAT, INT} pname: ACTIVE_SUBROUTINES, ACTIVE_SUBROUTINE_X where X may be UNIFORMS, MAX_LENGTH, UNIFORM_LOCATIONS, UNIFORM_MAX_LENGTH Sampler Queries [8.3] void GetSamplerParameter{i f}v( pname: TEXTURE_X where X may be WRAP_{S, T, R}, uint sampler, enum pname, T *params); {MIN, MAG}_FILTER, {MIN, MAX}_LOD, pname: See SamplerParameter{if} BORDER_COLOR, LOD_BIAS, void GetSamplerParameterI{i ui}v( COMPARE_{MODE, FUNC} [Table 23.18] void SamplerParameter{i f}v(uint sampler, enum pname, const T *param); pname: See SamplerParameter{if} void GenSamplers(sizei count, uint *samplers); void SamplerParameterI{i ui}v(uint sampler, enum pname, const T *params); void CreateSamplers(sizei n, uint *samplers); pname: See SamplerParameter{if} void BindSampler(uint unit, uint sampler); barriers: ALL_BARRIER_BITS or the OR of X_BARRIER_BIT where X may be: ATOMIC_COUNTER, FRAMEBUFFER, SHADER_IMAGE_ACCESS, SHADER_STORAGE, TEXTURE_FETCH, UNIFORM void GetUniform{f d i ui}v(uint program, int location, T *params); See diagram on page 6 for more information. void GetnUniform{f d i ui}v(uint program, int location, sizei bufSize, T *params); void MemoryBarrier(bitfield barriers); barriers: ALL_BARRIER_BITS or the OR of void GetUniformSubroutineuiv( X_BARRIER_BIT where X may be: QUERY_BUFFER, enum shadertype, int location, VERTEX_ATTRIB_ARRAY, ELEMENT_ARRAY, uint *params); UNIFORM, TEXTURE_FETCH, BUFFER_UPDATE, void GetProgramStageiv(uint program, SHADER_IMAGE_ACCESS, COMMAND, enum shadertype, enum pname, PIXEL_BUFFER, TEXTURE_UPDATE, FRAMEBUFFER, int *values); TRANSFORM_FEEDBACK, ATOMIC_COUNTER, void Uniform{1234}{i f d ui}(int location, T value); void Uniform{1234}{i f d ui}v(int location, SHADER_STORAGE, CLIENT_MAPPED_BUFFER, sizei count, const T *value); void MemoryBarrierByRegion(bitfield void UniformMatrix{234}{f d}v( barriers); int location, sizei count, boolean transpose, const float *value); void BindTextureUnit(uint unit, uint texture); void CreateTextures(enum target, sizei n, uint *textures); void GenTextures(sizei n, uint *textures); void BindTexture(enum target, uint texture); Uniform Buffer Object Bindings int GetSubroutineUniformLocation( uint program, enum shadertype, const char *name); uint GetSubroutineIndex(uint program, enum shadertype, const char *name); uint GetUniformBlockIndex(uint program, const char *uniformBlockName); void GetActiveSubroutineName( uint program, enum shadertype, void GetActiveUniformBlockName( uint index, sizei bufsize, sizei *length, uint program, uint uniformBlockIndex, char *name); sizei bufSize, sizei length, char *uniformBlockName); void GetActiveSubroutineUniformName( uint program, enum shadertype, void GetActiveUniformBlockiv( uint index, sizei bufsize, sizei *length, uint program, uint uniformBlockIndex, char *name); enum pname, int *params); void GetActiveSubroutineUniformiv( pname: UNIFORM_BLOCK_{BINDING, DATA_SIZE}, uint program, enum shadertype, UNIFORM_BLOCK_NAME_LENGTH, uint index, enum pname, int *values); UNIFORM_BLOCK_ACTIVE_UNIFORMS[_INDICES], void ActiveTexture(enum texture); texture: TEXTUREi (where i is [0, max(MAX_TEXTURE_COORDS, MAX_COMBINED_TEXTURE_IMAGE_UNITS)-1]) void UniformMatrix{2x3,3x2,2x4,4x2,3x4, 4x3} {fd}v( int location, sizei count, boolean transpose, const float *value); void ProgramUniform{1234}{i f d}( uint program, int location, T value); void ProgramUniform{1234}{i f d}v( uint program, int location, sizei count, const T *value); void ProgramUniform{1234}uiv( uint program, int location, sizei count, const T *value); void ProgramUniform{1234}ui( uint program, int location, T value); void ProgramUniformMatrix{234}{f d}v( uint program, int location, sizei count, boolean transpose, const T *value); void ProgramUniformMatrixf{2x3,3x2,2x4, 4x2, 3x4, 4x3}{f d}v( uint program, int location, sizei count, boolean transpose, const T *value); void DeleteSamplers(sizei count, const uint *samplers); boolean IsSampler(uint sampler); uint sampler, enum pname, T *params); pname: See SamplerParameter{if} Pixel Storage Modes [8.4.1] void PixelStore{i f}(enum pname, T param); pname: [Tables 8.1, 18.1] [UN]PACK_X where X may be SWAP_BYTES, LSB_FIRST, ROW_LENGTH, SKIP_{IMAGES, PIXELS, ROWS}, ALIGNMENT, IMAGE_HEIGHT, COMPRESSED_BLOCK_WIDTH, COMPRESSED_BLOCK_{HEIGHT, DEPTH, SIZE} (Continued on next page) www.opengl.org/registry OpenGL 4.5 API Reference Card Page 3 Textures and Samplers (cont.) void TextureSubImage1D(uint texture, int level, Buffer Textures [8.9] int xoffset, sizei width, enum format, void TexBufferRange(enum target, enum type, const void *pixels); enum internalFormat, uint buffer, format, type: See TexImage3D void TexImage3D(enum target, int level, intptr offset, sizeiptr size); int internalformat, sizei width, sizei height, void CopyTextureSubImage3D(uint texture, void TextureBufferRange(uint texture, sizei depth, int border, enum format, int level, int xoffset, int yoffset, int zoffset, enum internalFormat, uint buffer, enum type, const void *data); int x, int y, sizei width, sizei height); intptr offset, sizeiptr size); target: [PROXY_]TEXTURE_CUBE_MAP_ARRAY, internalformat: See TexBuffer [PROXY_]TEXTURE_2D_ARRAY, [PROXY_]TEXTURE_3D void CopyTextureSubImage2D(uint texture, int level, int xoffset, int yoffset, int x, void TexBuffer(enum target, internalformat: STENCIL_INDEX, RED, int y, sizei width, sizei height); DEPTH_{COMPONENT, STENCIL}, RG, RGB, RGBA, enum internalformat, uint buffer); COMPRESSED_{RED, RG, RGB, RGBA, SRGB, target: TEXTURE_BUFFER void CopyTextureSubImage1D(uint texture, SRGB_ALPHA), a sized internal format from internalformat: [Table 8.16] R8, R8{I, UI}, R16, int level, int xoffset, int x, int y, sizei width); Texture Image Spec. [8.5] [Tables 8.12 - 8.13], or a COMPRESSED_ format from [Table 8.14] format: DEPTH_{COMPONENT, STENCIL}, RED, GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA, {BGRA, RED, GREEN, BLUE}_INTEGER, {RG, RGB, RGBA, BGR}_INTEGER, STENCIL_INDEX, [Table 8.3] type: [UNSIGNED_]{BYTE, SHORT, INT}, [HALF_]FLOAT, or a value from [Table 8.2] void TexImage2D(enum target, int level, int internalformat, sizei width, sizei height, int border, enum format, enum type, const void *data); target: [PROXY_]TEXTURE_{2D, RECTANGLE}, [PROXY_]TEXTURE_{1D_ARRAY, CUBE_MAP}, TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z}, TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z} internalformat, format, type: See TexImage3D Compressed Texture Images [8.7] void CompressedTexImage3D(enum target, int level, enum internalformat, sizei width, sizei height, sizei depth, int border, sizei imageSize, const void *data); target: See TexImage3D internalformat: A COMPRESSED_ format from [Table 8.14] Alternate Texture Image Spec. [8.6] void CopyTexImage2D(enum target, int level, enum internalformat, int x, int y, sizei width, sizei height, int border); target: TEXTURE_{2D, RECTANGLE, 1D_ARRAY}, TEXTURE_CUBE_MAP_{POSITIVE, NEGATIVE}_{X, Y, Z} internalformat: See TexImage3D void CopyTexImage1D(enum target, int level, enum internalformat, int x, int y, sizei width, int border); target: TEXTURE_1D internalformat: See TexImage3D void TexSubImage3D(enum target, int level, int xoffset, int yoffset, int zoffset, sizei width, sizei height, sizei depth, enum format, enum type, const void *data); target: TEXTURE_3D, TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY format, type: See TexImage3D void TexSubImage2D(enum target, int level, int xoffset, int yoffset, sizei width, sizei height, enum format, enum type, const void *data); target: See CopyTexImage2D format, type: See TexImage3D void TexSubImage1D(enum target, int level, int xoffset, sizei width, enum format, enum type, const void *data); target, format, type: See CopyTexImage1D void CopyTexSubImage3D(enum target, int level, int xoffset, int yoffset, int zoffset, int x, int y, sizei width, sizei height); target: See TexSubImage3D void CopyTexSubImage2D(enum target, int level, int xoffset, int yoffset, int x, int y, sizei width, sizei height); target: See TexImage2D void CopyTexSubImage1D(enum target, int level, int xoffset, int x, int y, sizei width); void CompressedTexImage1D(enum target, int level, enum internalformat, sizei width, int border, sizei imageSize, const void *data); void TexParameterI{i ui}v(enum target, enum pname, const T *params); target: See TexImage2D internalformat: May be one of the COMPRESSED_ formats from [Table 8.14] internalformat: See TexImage1D, omitting compressed rectangular texture formats void CompressedTexSubImage3D( enum target, int level, int xoffset, int yoffset, int zoffset, sizei width, sizei height, sizei depth, enum format, sizei imageSize, const void *data); target: See TexSubImage3D format: See internalformat for CompressedTexImage3D void CompressedTexSubImage2D( enum target, int level, int xoffset, int yoffset, sizei width, sizei height, enum format, sizei imageSize, cont void *data); target: See TexSubImage2D format: See internalformat for CompressedTexImage2D void CompressedTexSubImage1D( enum target, int level, int xoffset, sizei width, enum format, sizei imageSize, const void *data); target: See TexSubImage1D format: See internalformat for CompressedTexImage1D void CompressedTextureSubImage3D( uint texture, int level, int xoffset, int yoffset, int zoffset, sizei width, sizei height, sizei depth, enum format, sizei imageSize, const void *data); format: See internalformat for CompressedTexImage3D void CompressedTextureSubImage2D( uint texture, int level, int xoffset, int yoffset, sizei width, sizei height, enum format, sizei imageSize, cont void *data); format: See internalformat for CompressedTexImage2D void CompressedTextureSubImage1D( uint texture, int level, int xoffset, sizei width, enum format, sizei imageSize, const void *data); format: See internalformat for CompressedTexImage1D internalformat: RED, RG, RGB, RGBA, RGBA{32, 32UI}, DEPTH_COMPONENT[16, 24, 32, 32F], DEPTH{24, 32F}_STENCIL8, STENCIL_INDEX{1, 4, 8, 16} void TextureSubImage2D(uint texture, int level, int xoffset, int yoffset, sizei width, void TexImage2DMultisample(enum target, sizei height, enum format, enum type, sizei samples, int internalformat, sizei width, const void *pixels); sizei height, boolean fixedsamplelocations); format, type: See TexImage3D ©2014 Khronos Group - Rev. 0814 internalformat: See TexBuffer Texture Parameters [8.10] void TexParameter{i f}(enum target, enum pname, T param); target: See TexSubImage1D Multisample Textures [8.8] void TextureSubImage3D(uint texture, int level, void TexImage3DMultisample(enum target, sizei samples, int internalformat, int xoffset, int yoffset, int zoffset, sizei width, sizei height, sizei depth, sizei width, sizei height, sizei depth, boolean fixedsamplelocations); enum format, enum type, target: [PROXY_]TEXTURE_2D_MULTISAMPLE_ARRAY const void *pixels); format, type: See TexImage3D void TextureBuffer(uint texture, enum internalformat, uint buffer); void CompressedTexImage2D(enum target, int level, enum internalformat, sizei width, sizei height, int border, sizei imageSize, const void *data); void TexImage1D(enum target, int level, int internalformat, sizei width, int border, enum format, enum type, const void *data); target: TEXTURE_1D, PROXY_TEXTURE_1D target: TEXTURE_1D, PROXY_TEXTURE_1D type, internalformat, format: See TexImage3D R16{F, I, UI}, R32{F, I, UI}, RG8, RG8{I, UI}, RG16, RG16{F, I, UI}, RG32{F, I, UI}, RGB32F, RGB32{I, UI}, RGBA8, RGBA8{I, UI}, RGBA16, RGBA16{F, I, UI}, RGBA32{F, I, UI} target: [PROXY_]TEXTURE_2D_MULTISAMPLE internalformat: See TexImage3DMultisample target: See BindTexture void TexParameter{i f}v(enum target, enum pname, const T *params); target: See BindTexture target: See BindTexture pname: DEPTH_STENCIL_TEXTURE_MODE or TEXTURE_X where X may be one of WRAP_{S, T, R}, BORDER_COLOR, {MIN, MAG}_FILTER, LOD_BIAS,{MIN, MAX}_LOD, {BASE, MAX}_LEVEL, SWIZZLE_{R, G, B, A, RGBA}, COMPARE_{MODE, FUNC} [Table 8.17] void GetTextureLevelParameter{i f}v( uint texture, int level, enum pname, T *params); pname: See GetTexLevelParameter{i f}v void GetTexImage(enum target, int level, enum format, enum type, void *pixels); target: TEXTURE_{1, 2}D[_ARRAY], TEXTURE_{3D, RECTANGLE, CUBE_MAP_ARRAY}, TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z}, TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z} format: See TexImage3D type: [UNSIGNED_]BYTE, SHORT, INT, [HALF_]FLOAT, or a value from [Table 8.2] void GetTextureImage(uint texture, int level, enum format, enum type, sizei bufSize, void *pixels); level: LOD level format, type: See GetTexImage void GetnTexImage(enum tex, int level, enum format, enum type, sizei bufSize, void *pixels); tex: TEXTURE_{1D, 2D, 3D}[_ARRAY], TEXTURE_3D, TEXTURE_{CUBE_MAP_ARRAY, RECTANGLE}, TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z}, TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z} level, format, type: See GetTextureImage void GetTextureSubImage(uint texture, int level, int xoffset, int yoffset, int zoffset, sizei width, sizei height, sizei depth, enum format, enum type, sizei bufSize, void *pixels); level, format, type: See GetTextureImage void GetCompressedTexImage(enum target, int level, void *pixels); target: See GetTextureImage void TextureParameter{i f}(uint texture, enum pname, T param); void GetCompressedTextureImage(uint texture, int level, sizei bufSize, void *pixels); void TextureParameter{i f}v(uint texture, enum pname, const T *params); void GetnCompressedTexImage(enum target, int level, sizei bufsize, void *pixels); pname: See BindTexture pname: See BindTexture void TextureParameterI{i ui}v(uint texture, enum pname, const T *params); pname: TEXTURE_3D, TEXTURE_{1D, 2D}[_ARRAY], TEXTURE_CUBE_MAP[_ARRAY], TEXTURE_RECTANGLE, TEXTURE_2D_MULTISAMPLE[_ARRAY] Texture Queries [8.11] void GetTexParameter{if}v(enum target, enum pname, T * params); target: See BindTexture pname: See GetTexParameterI{i ui}v void GetTexParameterI{i ui}v(enum target, enum pname, T * params); target: See BindTexture pname: IMAGE_FORMAT_COMPATIBILITY_TYPE, TEXTURE_IMMUTABLE_{FORMAT, LEVELS}, TEXTURE_VIEW_MIN_{LEVEL, LAYER}, TEXTURE_VIEW_NUM_{LEVELS, LAYERS}, DEPTH_STENCIL_TEXTURE_MODE, or TEXTURE_X where X may be one of WRAP_{S, T, R}, BORDER_COLOR, TARGET, {MIN, MAG}_FILTER, LOD_BIAS,{MIN, MAX}_LOD, {BASE, MAX}_LEVEL, SWIZZLE_{R, G, B, A, RGBA}, COMPARE_{MODE, FUNC} [Table 8.17] void GetTextureParameter{if}v(uint texture, enum pname, T *data); pname: See GetTexParameterI{i ui}v void GetTextureParameterI{i ui}v(uint texture, enum pname, T *data); pname: See GetTexParameterI{i ui}v void GetTexLevelParameter{i f}v(enum target, int level, enum pname, T *params); target: [PROXY_]TEXTURE_{1D, 2D, 3D}, TEXTURE_BUFFER, PROXY_TEXTURE_CUBE_MAP, [PROXY_]TEXTURE_{1D, 2D,CUBE_MAP}_ARRAY, [PROXY_]TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z}, TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z}, [PROXY_]TEXTURE_2D_MULTISAMPLE[_ARRAY] pname: TEXTURE _*, where * may be WIDTH, HEIGHT, DEPTH, FIXED_SAMPLE_LOCATIONS, INTERNAL_FORMAT, SHARED_SIZE, COMPRESSED, COMPRESSED_IMAGE_SIZE, SAMPLES, BUFFER_{OFFSET, SIZE}, or X_{SIZE, TYPE} where X can be RED, GREEN, BLUE, ALPHA, DEPTH level: See GetTextureImage target: See GetCompressedTexImage level: LOD level void GetCompressedTextureSubImage( uint texture, int level, int xoffset, int yoffset, int zoffset, sizei width, sizei height, sizei depth, sizei bufSize, void *pixels); level: LOD level Cube Map Texture Select [8.13.1] Enable/Disable/IsEnabled( TEXTURE_CUBE_MAP_SEAMLESS); Manual Mipmap Generation [8.14.4] void GenerateMipmap(enum target); target: TEXTURE_{1D, 2D, 3D}, TEXTURE_{1D, 2D}_ARRAY, TEXTURE_CUBE_MAP[_ARRAY] void GenerateTextureMipmap(uint texture); Texture Views [8.18] void TextureView(uint texture, enum target, uint origtexture, enum internalformat, uint minlevel, uint numlevels, uint minlayer, uint numlayers); target: TEXTURE_{1D, 2D,CUBE_MAP}[_ARRAY], TEXTURE_3D, TEXTURE_RECTANGLE, TEXTURE_2D_MULTISAMPLE[_ARRAY] internalformat: R8, R8{UI, I}, R8_SNORM, R11F_G11F_B10F, R16{F, UI, I}, R16[_SNORM], R32{F, UI, I}, SRGB8[UI, I], RG8{F, UI, I}, RG8[_SNORM], RG16{F, UI, I}, RG16[_SNORM], RG32{F, UI, I}, RGB8[_SNORM], RGB9_E5, RGB10_A2[UI], RGBA8{UI, I}, RGBA8[_SNORM], RGB16{F, UI, I}, RGB16[_SNORM], RGB32{F, UI, I}, RGBA16{F, UI, I}, RGBA16[_SNORM], RGBA32{F, UI, I}, SRGB8_ALPHA8; COMPRESSED_X where X may be [SIGNED]_RED_RGTC1, [SIGNED]_RG_RGTC2, {RGBA, SRGB_ALPHA}_BPTC_UNORM, RGB_BPTC_[UN]SIGNED_FLOAT Immutable-Format Tex. Images [8.19] void TexStorage1D(enum target, sizei levels, enum internalformat, sizei width); target: TEXTURE_1D internalformat: any of the sized internal color, depth, and stencil formats in [Tables 8.18-20] (Continued on next page) www.opengl.org/registry Page 4 Textures and Samplers (cont.) void TexStorage2D(enum target, sizei levels, enum internalformat, sizei width, sizei height); OpenGL 4.5 API Reference Card void TextureStorage3D(uint texture, sizei levels, enum internalformat, sizei width, sizei height, sizei depth); internalformat: See TexStorage1D void TextureStorage3DMultisample( uint texture, sizei samples, enum internalformat, sizei width, sizei height, sizei depth, boolean fixedsamplelocations); void ClearTexImage(uint texture, int level, enum format, enum type, const void *data); format, type: See TexImage3D, pg 2 this card void TexStorage2DMultisample( enum target, sizei samples, Invalidate Texture Image Data [8.20] enum internalformat, sizei width, texture, sizei height, boolean fixedsamplelocations); voidintInvalidateTexSubImage(uint level, int xoffset, int yoffset, int zoffset, void TexStorage3D(enum target, sizei levels, target: TEXTURE_2D_MULTISAMPLE sizei width, sizei height, sizei depth); enum internalformat, sizei width, sizei height, sizei depth); void TexStorage3DMultisample( void InvalidateTexImage(uint texture, int level); enum target, sizei samples, target: TEXTURE_3D, enum internalformat, sizei width, TEXTURE_{CUBE_MAP, 2D}[_ARRAY] Clear Texture Image Data [8.21] sizei height, sizei depth, internalformat: See TexStorage1D void ClearTexSubImage(uint texture, boolean fixedsamplelocations); int level, int xoffset, int yoffset, int zoffset, void TextureStorage1D(uint texture, sizei levels, target: TEXTURE_2D_MULTISAMPLE_ARRAY enum internalformat, sizei width); sizei width, sizei height, sizei depth, void TextureStorage2DMultisample( enum format, enum type, const void *data); internalformat: See TexStorage1D uint texture, sizei samples, format, type: See TexImage3D, pg 2 this card void TextureStorage2D(uint texture, enum internalformat, sizei width, sizei levels, enum internalformat, sizei height, boolean fixedsamplelocations); sizei width, sizei height); Texture Image Loads/Stores [8.26] void BindImageTexture(uint index, uint texture, int level, boolean layered, int layer, enum access, enum format); Framebuffer Objects void NamedFramebufferTexture( uint framebuffer, enum attachment, uint texture, int level); target: TEXTURE_{RECTANGLE, CUBE_MAP}, TEXTURE_{1D_ARRAY, 2D} internalformat: See TexStorage1D access: READ_ONLY, WRITE_ONLY, READ_WRITE format: RGBA{32,16}F, RG{32,16}F, R11F_G11F_B10F, R{32,16}F, RGBA{32,16,8}UI, RGB10_A2UI, RG{32,16,8}UI, R{32,16,8}UI, RGBA{32,16,8}I, RG{32,16,8}I, R{32,16,8}I, RGBA{16,8}, RGB10_A2, RG{16,8}, R{16,8}, RGBA{16,8}_SNORM, RG{16,8}_SNORM, R{16,8}_SNORM [Table 8.26] void BindImageTextures(uint first, sizei count, const uint *textures); internalformat: See TexStorage1D Binding and Managing [9.2] void BindFramebuffer(enum target, uint framebuffer); target: [DRAW_, READ_]FRAMEBUFFER void CreateFramebuffers(sizei n, uint *framebuffers); void GenFramebuffers(sizei n, uint *framebuffers); void DeleteFramebuffers(sizei n, const uint *framebuffers); boolean IsFramebuffer(uint framebuffer); Framebuffer Object Parameters [9.2.1] void FramebufferParameteri( enum target, enum pname, int param); attachment: DEPTH, FRONT_{LEFT, RIGHT}, STENCIL, void NamedRenderbufferStorage( BACK_{LEFT, RIGHT}, COLOR_ATTACHMENTi, uint renderbuffer, enum internalformat, {DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT sizei width, sizei height); pname: FRAMEBUFFER_ATTACHMENT_ X where X internalformat: See TexImage3DMultisample may be OBJECT_{TYPE, NAME}, COMPONENT_TYPE, {RED, GREEN, BLUE, ALPHA, DEPTH, STENCIL}_SIZE, Renderbuffer Object Queries [9.2.6] COLOR_ENCODING, TEXTURE_{LAYER, LEVEL}, void GetRenderbufferParameteriv( LAYERED, TEXTURE_CUBE_MAP_FACE enum target, enum pname, int *params); textarget: TEXTURE_1D target, attachment: See FramebufferRenderbuffer target: RENDERBUFFER pname: [Table 23.27] void FramebufferTexture2D(enum target, RENDERBUFFER_X where X may be WIDTH, enum attachment, enum textarget, HEIGHT, INTERNAL_FORMAT, SAMPLES, uint texture, int level); {RED, GREEN, BLUE, ALPHA, DEPTH, STENCIL}_SIZE textarget: TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z}, attachment, pname: See GetFramebufferParameteriv TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z}, void GetNamedRenderbufferParameteriv( Renderbuffer Objects [9.2.4] TEXTURE_{2D, RECTANGLE, 2D_MULTISAMPLE} uint renderbuffer, enum pname, (unspecified if texture is 0) void BindRenderbuffer(enum target, int *params); uint renderbuffer); target, attachment: See FramebufferRenderbuffer pname: See GetRenderbufferParameteriv target: RENDERBUFFER void FramebufferTexture3D(enum target, void GetNamedFramebufferAttachmentParameteriv(uint framebuffer, enum attachment, enum pname, int *params); void {Create, Gen}Renderbuffers(sizei n, uint *renderbuffers); void DeleteRenderbuffers(sizei n, const uint *renderbuffers); void NamedFramebufferParameteri( boolean IsRenderbuffer(uint renderbuffer); uint framebuffer, enum pname, int param); void RenderbufferStorageMultisample( pname: See FramebufferParameteri enum target, sizei samples, Framebuffer Object Queries [9.2.3] enum internalformat, sizei width, sizei height); void GetFramebufferParameteriv( enum target, enum pname, int *params); target: RENDERBUFFER target: [DRAW_, READ_]FRAMEBUFFER pname: FRAMEBUFFER_DEFAULT_X where X may be WIDTH, HEIGHT, FIXED_SAMPLE_LOCATIONS, SAMPLES, LAYERS target: See FramebufferParameteri pname: See FramebufferParameteri plus DOUBLEBUFFER, SAMPLES, SAMPLE_BUFFERS, IMPLEMENTATION_COLOR_READ_FORMAT, IMPLEMENTATION_COLOR_READ_TYPE, STEREO void GetNamedFramebufferParameteriv( uint framebuffer, enum pname, int *params); internalformat: See TexImage3DMultisample void NamedRenderbufferStorageMultisample( uint renderbuffer, sizei samples, enum internalformat, sizei width, sizei height); internalformat: See TexImage3DMultisample void RenderbufferStorage(enum target, enum internalformat, sizei width, void GetFramebufferAttachmentParameteriv( sizei height); enum target, enum attachment, target: RENDERBUFFER enum pname, int *params); pname: See GetFramebufferParameteri target: [DRAW_, READ_]FRAMEBUFFER Vertices Separate Patches [10.1.15] void PatchParameteri(enum pname, int value); pname: PATCH_VERTICES Current Vertex Attribute Values [10.2] Use the commands VertexAttrib*for attributes of type float, VertexAttribI* for int or uint, or VertexAttribL* for double. Vertex Arrays Vertex Array Objects [10.3.1] All states related to definition of data used by vertex processor is in a vertex array object. internalformat: See TexImage3DMultisample void VertexAttrib{1234}{s f d}(uint index, T values); void VertexAttrib{123}{s f d}v(uint index, const T *values); void VertexAttrib4{b s i f d ub us ui}v( uint index, const T *values); void VertexAttrib4Nub(uint index, ubyte x, ubyte y, ubyte z, ubyte w); void VertexAttrib4N{b s i ub us ui}v( uint index, const T *values); Attaching Renderbuffer Images [9.2.7] void FramebufferRenderbuffer( enum target, enum attachment, enum renderbuffertarget, uint renderbuffer); void VertexAttribFormat(uint attribindex, int size, enum type, boolean normalized, unit relativeoffset); type: [UNSIGNED_]BYTE, [UNSIGNED_]SHORT, [UNSIGNED_]INT, [HALF_]FLOAT, DOUBLE, FIXED, [UNSIGNED_]INT_2_10_10_10_REV, UNSIGNED_INT_10F_11F_11F_REV enum attachment, enum textarget, uint texture, int level, int layer); textarget: TEXTURE_3D (unspecified if texture is 0) target, attachment: See FramebufferRenderbuffer void FramebufferTextureLayer(enum target, target: [DRAW_, READ_]FRAMEBUFFER enum attachment, uint texture, attachment: [Table 9.1] int level, int layer); {DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT, target, attachment: See FramebufferRenderbuffer COLOR_ATTACHMENTi where i is [0, MAX_COLOR_ATTACHMENTS - 1] void NamedFramebufferTextureLayer( renderbuffertarget: RENDERBUFFER if renderbuffer is uint framebuffer, enum attachment, non-zero, else undefined uint texture, int level, int layer); attachment: See FramebufferRenderbuffer void NamedFramebufferRenderbuffer( uint framebuffer, enum attachment, enum renderbuffertarget, uint renderbuffer); attachment, renderbuffertarget: See FramebufferRenderbuffer Attaching Texture Images [9.2.8] void FramebufferTexture(enum target, enum attachment, uint texture, int level); target: [DRAW_, READ_]FRAMEBUFFER attachment: See FramebufferRenderbuffer void VertexAttribI{1234}{i ui}(uint index, T values); void VertexAttribI{1234}{i ui}v(uint index, const T *values); void VertexAttribI4{b s ub us}v(uint index, const T *values); void VertexAttribL{1234}d(uint index, const T values); void VertexAttribL{1234}dv(uint index, const T *values); Generic Vertex Attribute Arrays [10.3.2] void VertexArrayAttribFormat(uint vaobj, void GenVertexArrays(sizei n, uint *arrays); void DeleteVertexArrays(sizei n, const uint *arrays); void VertexAttribIFormat(uint attribindex, void BindVertexArray(uint array); int size, enum type, unit relativeoffset); void CreateVertexArrays(sizei n, uint *arrays); type: [UNSIGNED_]BYTE, [UNSIGNED_]SHORT, [UNSIGNED_]INT boolean IsVertexArray(uint array); void VertexAttribLFormat(uint attribindex, void VertexArrayElementBuffer(uint vaobj, int size, enum type, unit relativeoffset); uint buffer); type: DOUBLE ©2014 Khronos Group - Rev. 0814 attachment: See FramebufferRenderbuffer void FramebufferTexture1D(enum target, enum attachment, enum textarget, uint texture, int level); uint attribindex, int size, enum type, boolean normalized, uint relativeoffset); type: See VertexAttribFormat void VertexArrayAttribIFormat(uint vaobj, uint attribindex, int size, enum type, uint relativeoffset); type: See VertexAttribIFormat void VertexArrayAttribLFormat(uint vaobj, uint attribindex, int size, enum type, uint relativeoffset); type: See VertexAttribLFormat void BindVertexBuffer(uint bindingindex, uint buffer, intptr offset, sizei stride); Feedback Loops [9.3.1] void TextureBarrier(void); Framebuffer Completeness [9.4.2] enum CheckFramebufferStatus(enum target); target: [DRAW_, READ_]FRAMEBUFFER returns: FRAMEBUFFER_COMPLETE or a constant indicating the violating value enum CheckNamedFramebufferStatus( uint framebuffer, enum target); target: See CheckFramebufferStatus void VertexAttribP{1234}ui(uint index, enum type, boolean normalized, uint value); void VertexAttribP{1234}uiv(uint index, enum type, boolean normalized, const uint *value); type: [UNSIGNED_]INT_2_10_10_10_REV, or UNSIGNED_INT_10F_11F_11F_REV (except for VertexAttribP4uiv) void VertexArrayVertexBuffer(uint vaobj, uint bindingindex, uint buffer, intptr offset, sizei stride); void BindVertexBuffers(uint first, sizei count, const uint *buffers, const intptr *offsets, const sizei *strides); void VertexArrayVertexBuffers(uint vaobj, uint first, sizei count, const uint *buffers, const intptr *offsets, const sizei *strides); void VertexAttribBinding(uint attribindex, uint bindingindex); (Continued on next page) www.opengl.org/registry OpenGL 4.5 API Reference Card Vertex Arrays (cont.) void VertexArrayAttribBinding(uint vaobj, uint attribindex, uint bindingindex); void VertexAttribPointer(uint index, int size, enum type, boolean normalized, sizei stride, const void *pointer); type: See VertexAttribFormat void VertexAttribIPointer(uint index, int size, enum type, sizei stride, const void *pointer); Page 5 Drawing Commands [10.4] For all the functions in this section: mode: POINTS, PATCHES, LINE_STRIP, LINE_LOOP, TRIANGLE_STRIP, TRIANGLE_FAN, LINES, LINES_ADJACENCY, TRIANGLES, TRIANGLES_ADJACENCY, LINE_STRIP_ADJACENCY, TRIANGLE_STRIP_ADJACENCY type: UNSIGNED_{BYTE, SHORT, INT} void DrawArrays(enum mode, int first, sizei count); void DrawArraysInstancedBaseInstance( enum mode, int first, sizei count, void VertexAttribLPointer(uint index, int size, sizei instancecount, uint baseinstance); enum type, sizei stride, const void*pointer); void DrawArraysInstanced(enum mode, type: DOUBLE int first, sizei count, sizei instancecount); void EnableVertexAttribArray(uint index); void DrawArraysIndirect(enum mode, void EnableVertexArrayAttrib(uint vaobj, const void *indirect); uint index); void MultiDrawArrays(enum mode, void DisableVertexAttribArray(uint index); const int *first, const sizei *count, void DisableVertexArrayAttrib(uint vaobj, sizei drawcount); uint index); void MultiDrawArraysIndirect(enum mode, const void *indirect, sizei drawcount, Vertex Attribute Divisors [10.3.4] sizei stride); void VertexBindingDivisor(uint bindingindex, uint divisor); void DrawElements(enum mode, sizei count, void VertexArrayBindingDivisor(uint vaobj, enum type, const void *indices); uint bindingindex, uint divisor); void DrawElementsInstancedBaseInstance( void VertexAttribDivisor(uint index, enum mode, sizei count, enum type, uint divisor); const void *indices, sizei instancecount, uint baseinstance); Primitive Restart [10.3.6] void DrawElementsInstanced(enum mode, Enable/Disable/IsEnabled(target); sizei count, enum type, const void *indices, target: PRIMITIVE_RESTART[_FIXED_INDEX] sizei instancecount); void PrimitiveRestartIndex(uint index); Vertex Attributes [11.1.1] void BindAttribLocation(uint program, uint index, const char *name); void GetActiveAttrib(uint program, uint index, sizei bufSize, sizei *length, int *size, enum *type, char *name); Vertex Post-Processing [13] Transform Feedback [13.2] void GenTransformFeedbacks(sizei n, uint *ids); void DeleteTransformFeedbacks(sizei n, const uint *ids); boolean IsTransformFeedback(uint id); void BindTransformFeedback( enum target, uint id); target: TRANSFORM_FEEDBACK void CreateTransformFeedbacks( sizei n, uint *ids); void BeginTransformFeedback( enum primitiveMode); primitiveMode: TRIANGLES, LINES, POINTS Rasterization [13.4, 14] Enable/Disable/IsEnabled(target); target: RASTERIZER_DISCARD Multisampling [14.3.1] Use to antialias points, and lines. Enable/Disable/IsEnabled(target); target: MULTISAMPLE, SAMPLE_SHADING void GetMultisamplefv(enum pname, uint index, float *val); pname: SAMPLE_POSITION void MinSampleShading(float value); Points [14.4] void PointSize(float size); void PointParameter{i f}(enum pname, T param); pname, param: See PointParameter{if}v ©2014 Khronos Group - Rev. 0814 Vertex Array Queries [10.5] void DrawRangeElements(enum mode, uint start, uint end, sizei count, enum type, const void *indices); void GetVertexArrayIndexdiv(uint vaobj, uint index, enum pname, int *param); void DrawElementsBaseVertex(enum mode, sizei count, enum type, const void *indices, int basevertex); void GetTransformFeedbackVarying( uint program, uint index, sizei bufSize, sizei *length, sizei *size, enum *type, char *name); Transform Feedback Variables [11.1.2] void TransformFeedbackVaryings( uint program, sizei count, const char * const *varyings, enum bufferMode); *type returns NONE, FLOAT , FLOAT_VECn, DOUBLE , DOUBLE_VECn, INT, UNSIGNED_INT, INT_VECn, UNSIGNED_INT_VECn, MATnxm, FLOAT_MATnxm, DOUBLE_MATnxm, FLOAT_MATn, DOUBLE_MATn bufferMode: INTERLEAVED_ATTRIBS, SEPARATE_ATTRIBS void EndTransformFeedback(void); void PauseTransformFeedback(void); void ResumeTransformFeedback(void); void TransformFeedbackBufferRange( uint xfb, uint index, uint buffer, intptr offset, sizeiptr size); void TransformFeedbackBufferBase( uint xfb, uint index, uint buffer); void DrawTransformFeedbackStream( enum mode, uint id, uint stream); void DrawTransformFeedbackStreamInstanced( enum mode, uint id, uint stream, sizei instancecount); Transform Feedback Drawing [13.2.3] Primitive Clipping [13.5] mode: See Drawing Commands [10.4] above void DrawTransformFeedbackInstanced( enum mode, uint id, sizei instancecount); void PointParameter{i f}v(enum pname, const T *params); pname: POINT_FADE_THRESHOLD_SIZE, POINT_SPRITE_COORD_ORIGIN params: The fade threshold if pname is POINT_FADE_THRESHOLD_SIZE; {LOWER, UPPER}_LEFT if pname is POINT_SPRITE_COORD_ORIGIN Enable/Disable/IsEnabled(target); target: PROGRAM_POINT_SIZE Line Segments [14.5] Enable/Disable/IsEnabled(target); target: LINE_SMOOTH void LineWidth(float width); Polygons [14.6, 14.6.1] Enable/Disable/IsEnabled(target); target: POLYGON_SMOOTH, CULL_FACE pname: ELEMENT_ARRAY_BUFFER_BINDING pname: VERTEX_ATTRIB_RELATIVE_OFFSET or VERTEX_ATTRIB_ARRAY_X where X is one of ENABLED, SIZE, STRIDE, TYPE, NORMALIZED, INTEGER, LONG, DIVISOR void EndConditionalRender(void); int GetAttribLocation(uint program, const char *name); void DrawTransformFeedback( enum mode, uint id); void GetVertexArrayiv(uint vaobj, enum pname, int *param); void GetVertexArrayIndexd64iv(uint vaobj, void DrawRangeElementsBaseVertex( uint index, enum pname, int64 *param); enum mode, uint start, uint end, sizei count, enum type, const void *indices, pname: VERTEX_BINDING_OFFSET int basevertex); void GetVertexAttrib{d f i}v(uint index, enum pname, T *params); void DrawElementsInstancedBaseVertex( pname: See GetVertexArrayIndexediv plus enum mode, sizei count, enum type, VERTEX_ATTRIB_ARRAY_BUFFER_BINDING, const void *indices, sizei instancecount, VERTEX_ATTRIB_BINDING, int basevertex); CURRENT_VERTEX_ATTRIB void DrawElementsInstancedBasevoid GetVertexAttribI{i ui}v(uint index, VertexBaseInstance(enum mode, enum pname, T *params); sizei count, enum type, pname: See GetVertexAttrib{d f i}v const void *indices, sizei instancecount, int basevertex, uint baseinstance); void GetVertexAttribLdv(uint index, enum pname, double *params); void DrawElementsIndirect(enum mode, pname: See GetVertexAttrib{d f i}v enum type, const void *indirect); void GetVertexAttribPointerv(uint index, void MultiDrawElementsIndirect( enum pname, const void **pointer); enum mode, enum type, pname: VERTEX_ATTRIB_ARRAY_POINTER const void *indirect, sizei drawcount, sizei stride); Conditional Rendering [10.9] void MultiDrawElementsBaseVertex( void BeginConditionalRender(uint id, enum mode, const sizei *count, enum mode); enum type, const void *const *indices, mode: QUERY _[NO_]WAIT[_INVERTED], sizei drawcount, const int *basevertex); QUERY_BY_REGION_[NO_]WAIT[_INVERTED] type: See VertexAttribIFormat index: [0, MAX_VERTEX_ATTRIBS - 1] Vertex shaders operate on array of 4-component items numbered from slot 0 to MAX_VERTEX_ATTRIBS - 1. void MultiDrawElements(enum mode, const sizei *count, enum type, const void * const *indices, sizei drawcount); Flatshading [13.4] void ProvokingVertex(enum provokeMode); provokeMode: {FIRST, LAST}_VERTEX_CONVENTION Enable/Disable/IsEnabled(target); target: DEPTH_CLAMP, CLIP_DISTANCEi where i = [0..MAX_CLIP_DISTANCES - 1] void ClipControl(enum origin, enum depth); origin: LOWER_LEFT or UPPER_LEFT depth: NEGATIVE_ONE_TO_ONE or ZERO_TO_ONE void FrontFace(enum dir); dir: CCW, CW void CullFace(enum mode); mode: FRONT, BACK, FRONT_AND_BACK Polygon Rast. & Depth Offset [14.6.4-5] void PolygonMode(enum face, enum mode); face: FRONT_AND_BACK mode: POINT, LINE, FILL void PolygonOffset(float factor, float units); Enable/Disable/IsEnabled(target); target: POLYGON_OFFSET_{POINT, LINE, FILL} Shader Execution [11.1.3] void ValidateProgram(uint program); void ValidateProgramPipeline(uint pipeline); Tessellation Prim. Generation [11.2.2] void PatchParameterfv(enum pname, const float *values); pname: PATCH_DEFAULT_INNER_LEVEL, PATCH_DEFAULT_OUTER_LEVEL Controlling Viewport [13.6.1] void DepthRangeArrayv(uint first, sizei count, const double *v); void DepthRangeIndexed(uint index, double n, double f); void DepthRange(double n, double f); void DepthRangef(float n, float f); void ViewportArrayv(uint first, sizei count, const float *v); void ViewportIndexedf(uint index, float x, float y, float w, float h); void ViewportIndexedfv(uint index, const float *v); void Viewport(int x, int y, sizei w, sizei h); Fragment Shaders [15.2] void BindFragDataLocationIndexed( uint program, uint colorNumber, uint index, const char *name); void BindFragDataLocation(uint program, uint colorNumber, const char *name); int GetFragDataLocation(uint program, const char *name); int GetFragDataIndex(uint program, const char *name); Compute Shaders [19] void DispatchCompute(uint num_groups_x, uint num_groups_y, uint num_groups_z); void DispatchComputeIndirect( intptr indirect); www.opengl.org/registry Page 6 Per-Fragment Operations Scissor Test [17.3.2] Enable/Disable/IsEnabled(SCISSOR_TEST); Enablei/Disablei/IsEnabledi(SCISSOR_TEST, uint index); void ScissorArrayv(uint first, sizei count, const int *v); void ScissorIndexed(uint index, int left, int bottom, sizei width, sizei height); void ScissorIndexedv(uint index, int *v); void Scissor(int left, int bottom, sizei width, sizei height); Multisample Fragment Ops. [17.3.3] Enable/Disable/IsEnabled(target); target: SAMPLE_ALPHA_TO_{COVERAGE, ONE}, SAMPLE_COVERAGE, SAMPLE_MASK void SampleCoverage(float value, boolean invert); void SampleMaski(uint maskNumber, bitfield mask); Stencil Test [17.3.5] Enable/Disable/IsEnabled(STENCIL_TEST); Whole Framebuffer OpenGL 4.5 API Reference Card void StencilFunc(enum func, int ref, uint mask); func: NEVER, ALWAYS, LESS, GREATER, EQUAL, LEQUAL, GEQUAL, NOTEQUAL void StencilFuncSeparate(enum face, enum func, int ref, uint mask); func: See StencilFunc void StencilOp(enum sfail, enum dpfail, enum dppass); void StencilOpSeparate(enum face, enum sfail, enum dpfail, enum dppass); face: FRONT, BACK, FRONT_AND_BACK sfail, dpfail, dppass: KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP, DECR_WRAP Depth Buffer Test [17.3.6] Enable/Disable/IsEnabled(DEPTH_TEST); void DepthFunc(enum func); func: See StencilFunc Occlusion Queries [17.3.7] BeginQuery(enum target, uint id); EndQuery(enum target); target: SAMPLES_PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE Fine Control of Buffer Updates [17.4.2] void ColorMask(boolean r, boolean g, Selecting Buffers for Writing [17.4.1] boolean b, boolean a); void DrawBuffer(enum buf); void ColorMaski(uint buf, boolean r, buf: [Tables 17.4-5] NONE, boolean g, boolean b, boolean a); {FRONT, BACK}_{LEFT, RIGHT}, FRONT, BACK, LEFT, RIGHT, FRONT_AND_BACK, void DepthMask(boolean mask); COLOR_ATTACHMENTi (i = [0, void StencilMask(uint mask); MAX_COLOR_ATTACHMENTS - 1 ]) void StencilMaskSeparate(enum face, void NamedFramebufferDrawBuffer( uint mask); uint framebuffer, enum buf); buf: See DrawBuffer void DrawBuffers(sizei n, const enum *bufs); face: FRONT, BACK, FRONT_AND_BACK Clearing the Buffers [17.4.3] *bufs: [Tables 17.5-6] {FRONT, BACK}_{LEFT, RIGHT}, void Clear(bitfield buf); buf: 0 or the OR of NONE, COLOR_ATTACHMENTi (i = [0, {COLOR, DEPTH, STENCIL}_BUFFER_BIT MAX_COLOR_ATTACHMENTS - 1 ]) void NamedFramebufferDrawBuffers( uint framebuffer, sizei n, const enum *bufs); *bufs: See DrawBuffers Reading and Copying Pixels Reading Pixels [18.2] void ReadBuffer(enum src); src: NONE, {FRONT, BACK}_{LEFT, RIGHT}, FRONT, BACK, LEFT, RIGHT, FRONT_AND_BACK, COLOR_ATTACHMENTi (i = [0, MAX_COLOR_ATTACHMENTS - 1 ]) void NamedFramebufferReadBuffer( uint framebuffer, enum src); src: See ReadBuffer void ReadPixels(int x, int y, sizei width, sizei height, enum format, enum type, void *data); format: STENCIL_INDEX, RED, GREEN, BLUE, RG, RGB, RGBA, BGR, DEPTH_{COMPONENT, STENCIL}, {RED, GREEN, BLUE, RG, RGB}_ INTEGER, {RGBA, BGR, BGRA}_INTEGER, BGRA [Table 8.3] type: [HALF_]FLOAT, [UNSIGNED_]BYTE, [UNSIGNED_]SHORT, [UNSIGNED_]INT, FLOAT_32_UNSIGNED_INT_24_8_REV, UNSIGNED_{BYTE, SHORT, INT}_* values in [Table 8.2] void ReadnPixels(int x, int y, sizei width, sizei height, enum format, enum type, sizei bufSize, void *data); format, type: See ReadPixels Final Conversion [18.2.8] void ClampColor(enum target, enum clamp); target: CLAMP_READ_COLOR clamp: TRUE, FALSE, FIXED_ONLY Copying Pixels [18.3] void BlitFramebuffer(int srcX0, int srcY0, int srcX1, int srcY1, int dstX0, int dstY0, int dstX1, int dstY1, bitfield mask, enum filter); ©2014 Khronos Group - Rev. 0814 void BlendFunci(uint buf, enum src, enum dst); Blending [17.3.8] src, dst: See BlendFuncSeparate Enable/Disable/IsEnabled(BLEND); void BlendFuncSeparatei(uint buf, Enablei/Disablei/IsEnabledi(BLEND, enum srcRGB, enum dstRGB, uint index); enum srcAlpha, enum dstAlpha); void BlendEquation(enum mode); dstRGB, dstAlpha, srcRGB, srcAlpha: See BlendFuncSeparate void BlendEquationSeparate(enum modeRGB, enum modeAlpha); void BlendColor(float red, float green, float blue, modeRGB, modeAlpha: MIN, MAX , float alpha); FUNC_{ADD, SUBTRACT, REVERSE_SUBTRACT} void BlendEquationi(uint buf, enum mode); void BlendEquationSeparatei(uint buf, enum modeRGB, enum modeAlpha); modeRGB, modeAlpha: See BlendEquationSeparate void BlendFunc(enum src, enum dst); src, dst: See BlendFuncSeparate void BlendFuncSeparate(enum srcRGB, enum dstRGB, enum srcAlpha, enum dstAlpha); srcRGB, dstRGB, srcAlpha, dstAlpha: ZERO, ONE, SRC_ALPHA_SATURATE, {SRC, SRC1, DST, CONSTANT}_{COLOR, ALPHA}, ONE_MINUS_{SRC, SRC1}_{COLOR, ALPHA}, ONE_MINUS_{DST, CONSTANT}_{COLOR, ALPHA} void ClearBuffer{i f ui}v(enum buffer, int drawbuffer, const T *value); buffer: COLOR, DEPTH, STENCIL void ClearNamedFramebuffer{i f ui}v( uint framebuffer, enum buffer, int drawbuffer, const T *value); buffer: See ClearBuffer{i f ui}v void ClearBufferfi(enum buffer, int drawbuffer, float depth, int stencil); buffer: DEPTH_STENCIL void ClearNamedFramebufferfi( uint framebuffer, enum buffer, int drawbuffer, float depth, int stencil); buffer: See ClearBufferi Invalidating Framebuffers [17.4.4] void ClearColor(float r, float g, float b, float a); void InvalidateSubFramebuffer( enum target, sizei numAttachments, void ClearDepth(double d); const enum *attachments, int x, int y, void ClearDepthf(float d); sizei width, sizei height); void ClearStencil(int s); target: [DRAW_ , READ_]FRAMEBUFFER Debug Output [20] severity: DEBUG_SEVERITY_{HIGH, MEDIUM}, DEBUG_SEVERITY_{LOW, NOTIFICATION} Enable/Disable/IsEnabled(DEBUG_OUTPUT); Controlling Debug Messages [20.4] Debug Message Callback [20.2] void DebugMessageControl(enum source, void DebugMessageCallback( enum type, enum severity, sizei count, DEBUGPROC callback, const uint *ids, boolean enabled); const void *userParam); callback: has the following prototype: void callback(enum source, enum type, uint id, enum severity, sizei length, const char *message, const void*userParam); source: DEBUG_SOURCE_X where X may be API, SHADER_COMPILER, WINDOW_SYSTEM, THIRD_PARTY, APPLICATION, OTHER type: DEBUG_TYPE_X where X may be ERROR, MARKER, OTHER, DEPRECATED_BEHAVIOR, UNDEFINED_BEHAVIOR, PERFORMANCE, PORTABILITY, {PUSH, POP}_GROUP mask: Bitwise 0 of the bitwise OR of {COLOR, DEPTH, STENCIL}_BUFFER_BIT filter: LINEAR, NEAREST void BlitNamedFramebuffer( uint readFramebuffer, uint drawFramebuffer, int srcX0, int srcY0, int srcX1, int srcY1, int dstX0, int dstY0, int dstX1, int dstY1, bitfield mask, enum filter); mask, filter: See BlitFramebuffer void CopyImageSubData(uint srcName, enum srcTarget, int srcLevel, int srcX, int srcY, int srcZ, uint dstName, enum dstTarget, int dstLevel, int dstX, int dstY, int dstZ, sizei srcWidth, sizei srcHeight, sizei srcDepth); srcTarget, dstTarget: See target for BindTexture in section [8.1] on this card, plus GL_RENDERTARGET source, type, severity: See DebuckMessageCallback (above), plus DONT_CARE Externally Generated Messages [20.5] void DebugMessageInsert(enum source, enum type, uint id, enum severity, int length, const char *buf); source: DEBUG_SOURCE_{APPLICATION, THIRD_PARTY} type, severity: See DebugMessageCallback Debug Groups [20.6] void PushDebugGroup(enum source, uint id, sizei length, const char *message); source: See DebugMessageInsert void PopDebugGroup(void); Dithering [17.3.10] Enable/Disable/IsEnabled(DITHER); Logical Operation [17.3.11] Enable/Disable/IsEnabled(COLOR_LOGIC_OP); void LogicOp(enum op); op: CLEAR, AND, AND_REVERSE, COPY, AND_INVERTED, NOOP, XOR, OR, NOR, EQUIV, INVERT, OR_REVERSE, COPY_INVERTED, OR_INVERTED, NAND, SET Hints [21.5] void Hint(enum target, enum hint); target: FRAGMENT_SHADER_DERIVATIVE_HINT, TEXTURE_COMPRESSION_HINT, {LINE, POLYGON}_SMOOTH_HINT hint: FASTEST, NICEST, DONT_CARE attachments: COLOR_ATTACHMENTi, DEPTH, COLOR, {DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT, {FRONT, BACK}_{LEFT, RIGHT}, STENCIL void InvalidateNamedFramebufferSubData( uint framebuffer, sizei numAttachments, const enum *attachments, int x, int y, sizei width, sizei height); attachments: See InvalidateSubFramebuffer void InvalidateFramebuffer( enumtarget, sizei numAttachments, const enum *attachments); target, *attachments: See InvalidateSubFramebuffer void InvalidateNamedFramebufferData( uint framebuffer, sizei numAttachments, const enum *attachments); *attachments: See InvalidateSubFramebuffer Debug Labels [20.7] void ObjectLabel(enum identifier, uint name, sizei length, const char *label); identifier: BUFFER, FRAMEBUFFER, RENDERBUFFER, PROGRAM_PIPELINE, PROGRAM, QUERY, SAMPLER, SHADER, TEXTURE, TRANSFORM_FEEDBACK, VERTEX_ARRAY void ObjectPtrLabel(void* ptr, sizei length, const char *label); Synchronous Debug Output [20.8] Enable/Disable/IsEnabled( DEBUG_OUTPUT_SYNCHRONOUS); Debug Output Queries [20.9] uint GetDebugMessageLog(uint count, sizei bufSize, enum *sources, enum *types, uint *ids, enum *severities, sizei *lengths, char *messageLog); void GetObjectLabel(enum identifier, uint name, sizei bufSize, sizei *length, char *label); void GetObjectPtrLabel(void* ptr, sizei bufSize, sizei *length, char *label); State and State Requests void GetIntegeri_v(enum target, uint index, int *data); void GetFloati_v(enum target, uint index, float *data); Simple Queries [22.1] void GetBooleanv(enum pname, boolean *data); void GetInteger64i_v(enum target, uint index, int64 *data); void GetIntegerv(enum pname, int *data); boolean IsEnabled(enum cap); void GetInteger64v(enum pname, int64 *data); boolean IsEnabledi(enum target, uint index); void GetFloatv(enum pname, float *data); String Queries [22.2] void GetDoublev(enum pname, double *data); void GetPointerv(enum pname, void **params); void GetDoublei_v(enum target, uint index, ubyte *GetString(enum name); double *data); name: RENDERER, VENDOR, VERSION, SHADING_LANGUAGE_VERSION void GetBooleani_v(enum target, uint index, boolean *data); (Continued on next page) A complete list of symbolic constants for states is shown in the tables in [23]. www.opengl.org/registry OpenGL 4.5 API Reference Card Page 7 States (cont.) pname: CLEAR_{BUFFER, TEXTURE}, COLOR_ENCODING, COLOR_{COMPONENTS, RENDERABLE}, name: EXTENSIONS, SHADING_LANGUAGE_VERSION COMPUTE_TEXTURE, index: DEPTH_{COMPONENTS, RENDERABLE}, [0, NUM_EXTENSIONS - 1] (if name is EXTENSIONS); FILTER, FRAMEBUFFER_BLEND, [0, NUM_SHADING_LANGUAGE_VERSIONS-1] FRAMEBUFFER_RENDERABLE[_LAYERED], (if name is SHADING_LANGUAGE_VERSION) {FRAGMENT, GEOMETRY}_TEXTURE, Internal Format Queries [22.3] GET_TEXTURE_IMAGE_FORMAT, GET_TEXTURE_IMAGE_TYPE, void GetInternalformativ(enum target, IMAGE_COMPATIBILITY_CLASS, enum internalformat, enum pname, IMAGE_PIXEL_{FORMAT, TYPE}, sizei bufSize, int *params); IMAGE_FORMAT_COMPATIBILITY_TYPE, target, pname, internalformat: IMAGE_TEXEL_SIZE, See GetInternalformati64v INTERNALFORMAT_{PREFERRED, SUPPORTED}, void GetInternalformati64v(enum target, INTERNALFORMAT_{RED, GREEN, BLUE}_SIZE, enum internalformat, enum pname, INTERNALFORMAT_{DEPTH, STENCIL}_SIZE, sizei bufSize, int64 *params); INTERNALFORMAT_{ALPHA, SHARED}_SIZE, target: [Table 22.2] INTERNALFORMAT_{RED, GREEN}_TYPE, TEXTURE_{1D, 2D, 3D, CUBE_MAP}[_ARRAY], INTERNALFORMAT_{BLUE, ALPHA}_TYPE, TEXTURE_2D_MULTISAMPLE[_ARRAY], INTERNALFORMAT_{DEPTH, STENCIL}_TYPE, TEXTURE_{BUFFER, RECTANGLE}, RENDERBUFFER [MANUAL_GENERATE_]MIPMAP, internalformat: any value ubyte *GetStringi(enum name, uint index); MAX_COMBINED_DIMENSIONS, MAX_{WIDTH, HEIGHT, DEPTH, LAYERS}, NUM_SAMPLE_COUNTS, READ_PIXELS[_FORMAT, _TYPE], SAMPLES, SHADER_IMAGE_ATOMIC, SHADER_IMAGE_{LOAD, STORE}, SIMULTANEOUS_TEXTURE_AND_DEPTH_TEST, SIMULTANEOUS_TEXTURE_AND_DEPTH_WRITE, SIMULTANEOUS_TEXTURE_AND_STENCIL_TEST, SIMULTANEOUS_TEXTURE_AND_STENCIL_WRITE, SRGB_{READ, WRITE}, STENCIL_{COMPONENTS, RENDERABLE}, TESS_{CONTROL, EVALUATION}_TEXTURE, TEXTURE_COMPRESSED[_BLOCK_SIZE], TEXTURE_COMPRESSED_BLOCK_{HEIGHT, WIDTH} TEXTURE_GATHER[_SHADOW], TEXTURE_IMAGE_FORMAT, TEXTURE_IMAGE_TYPE, TEXTURE_{SHADOW, VIEW}, VERTEX_TEXTURE, VIEW_COMPATIBILITY_CLASS TransformFeedback Queries [22.4] void GetTransformFeedbackiv(uint xfb, enum pname, int *param); pname: TRANSFORM_FEEDBACK_{PAUSED, ACTIVE} void GetTransformFeedbacki_v(uint xfb, enum pname, uint index, int *param); pname: TRANSFORM_FEEDBACK_BUFFER_BINDING void GetTransformFeedbacki64_v(uint xfb, enum pname, uint index, int64 *param); pname: TRANSFORM_FEEDBACK_BUFFER_START, TRANSFORM_FEEDBACK_BUFFER_SIZE OpenGL Compute Programming Model and Compute Memory Hierarchy gl_NumWorkGroups = (4,2,0) Use the barrier function to synchronize invocations in a work group: void barrier(); Use the memoryBarrier* or groupMemoryBarrier functions to order reads/writes accessible to other invocations: void memoryBarrier(); void memoryBarrierAtomicCounter(); void memoryBarrierBuffer(); void memoryBarrierImage(); // Only for compute shaders void memoryBarrierShared(); void groupMemoryBarrier(); // Only for compute shaders gl_WorkGroupSize = (4,2,0) gl_WorkGroupID = (2,0,0) gl_LocalInvocationID = (1,0,0) gl_GlobalInvocationID = (9,3,0) Use the compute shader built-in variables to specifiy work groups and invocations: in vec3 gl_NumWorkGroups; // Number of workgroups dispatched const vec3 gl_WorkGroupSize; // Size of each work group for current shader // Index of current work group being executed in vec3 gl_WorkGroupID; in vec3 gl_LocalInvocationID; // index of current invocation in a work group in vec3 gl_GlobalInvocationID; // Unique ID across all work groups and threads. (gl_GlobalInvocationID = gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID) OpenGL Texture Views and Texture Object State T Texture state set with TextureView() enum internalformat // base internal format enum target // texture target Sampler Parameters (mutable) TEXTURE_BORDER_COLOR TEXTURE_COMPARE_{FUNC,MODE} TEXTURE_LOD_BIAS TEXTURE_{MAX,MIN}_LOD TEXTURE_{MAG,MIN}_FILTER TEXTURE_WRAP_{S,T,R} ©2014 Khronos Group - Rev. 0814 uint minlevel uint numlevels // first level of mipmap // number of mipmap levels Texture Parameters (immutable) TEXTURE_WIDTH TEXTURE_DEPTH TEXTURE_COMPRESSED TEXTURE_IMMUTABLE_FORMAT Texture Parameters (mutable) TEXTURE_SWIZZLE_{R,G,B,A} TEXTURE_BASE_LEVEL TEXTURE_HEIGHT TEXTURE_FIXED_SAMPLE_LOCATIONS TEXTURE_COMPRESSED_IMAGE_SIZE TEXTURE_SAMPLES TEXTURE_MAX_LEVEL DEPTH_STENCIL_TEXTURE_MODE uint minlayer uint numlayers // first layer of array texture // number of layers in array Texture View Parameters (immutable)TEXTURE_INTERNAL_FORMAT TEXTURE_SHARED_SIZE TEXTURE_VIEW_{MIN,NUM}_LEVEL TEXTURE_VIEW_{MIN,NUM}_LAYER TEXTURE_IMMUTABLE_LEVELS IMAGE_FORMAT_COMPATIBILITY_TYPE TEXTURE_{RED,GREEN,BLUE,ALPHA,DEPTH}_TYPE TEXTURE_{RED,GREEN,BLUE,ALPHA,DEPTH,STENCIL}_SIZE www.opengl.org/registry Page 8 OpenGL 4.5 API Reference Card OpenGL Pipeline A typical program that uses OpenGL begins with calls to open a window into the framebuffer into which the program will draw. Calls are made to allocate a GL context which is then associated with the window, then OpenGL commands can be issued. The heavy black arrows in this illustration show the OpenGL pipeline and indicate data flow. Blue blocks indicate various buffers that feed or get fed by the OpenGL pipeline. Green blocks indicate fixed function stages. Yellow blocks indicate programmable stages. T Texture binding B Buffer binding Vertex & Tessellation Details Each vertex is processed either by a vertex shader or fixed-function vertex processing (compatibility only) to generate a transformed vertex, then assembled into primitives. Tessellation (if enabled) operates on patch primitives, consisting of a fixedsize collection of vertices, each with per-vertex attributes and associated per-patch attributes. Tessellation control shaders (if enabled) transform an input patch and compute per-vertex and perpatch attributes for a new output patch. A fixed-function primitive generator subdivides the patch according to tessellation levels computed in the tessellation control shaders or specified as fixed values in the API (TCS disabled). The tessellation evaluation shader computes the position and attributes of each vertex produced by the tessellator. Orange blocks indicate features of the Core specification. Purple blocks indicate features of the Compatibility specification. Green blocks indicate features new or significantly changed with OpenGL 4.x. Geometry & Follow-on Details Geometry shaders (if enabled) consume individual primitives built in previous primitive assembly stages. For each input primitive, the geometry shader can output zero or more vertices, with each vertex directed at a specific vertex stream. The vertices emitted to each stream are assembled into primitives according to the geometry shader’s output primitive type. Transform feedback (if active) writes selected vertex attributes of the primitives of all vertex streams into buffer objects attached to one or more binding points. Primitives on vertex stream zero are then processed by fixed-function stages, where they are clipped and prepared for rasterization. Orange blocks indicate features of the Core specification. Purple blocks indicate features of the Compatibility specification. Green blocks indicate features new or significantly changed with OpenGL 4.x. ©2014 Khronos Group - Rev. 0814 www.opengl.org/registry OpenGL Shading Language 4.50 Reference Card The OpenGL® Shading Language is used to create shaders for each of the programmable processors contained in the OpenGL processing pipeline. The OpenGL Shading Language is actually several closely related languages. Currently, these processors are the vertex, tessellation control, tessellation evaluation, geometry, fragment, and compute shaders. [n.n.n] and [Table n.n] refer to sections and tables in the OpenGL Shading Language 4.50 specification at www.opengl.org/registry Operators and Expressions [5.1] The following operators are numbered in order of precedence. Relational and equality operators evaluate to Boolean. Also See lessThan(), equal(). 1. () 2. [] () . ++ -- parenthetical grouping array subscript function call, constructor, structure field, selector, swizzle postfix increment and decrement Types [4.1] double vec2, vec3, vec4 dvec2, dvec3, dvec4 bvec2, bvec3, bvec4 ivec2, ivec3, ivec4 uvec2, uvec3, uvec4 mat2, mat3, mat4 mat2x2, mat2x3, mat2x4 mat3x2, mat3x3, mat3x4 mat4x2, mat4x3, mat4x4 dmat2, dmat3, dmat4 dmat2x2, dmat2x3, dmat2x4 dmat3x2, dmat3x3, dmat3x4 dmat4x2, dmat4x3, dmat4x4 no function return value Boolean signed/unsigned integers single-precision floating-point scalar double-precision floating scalar floating point vector double precision floating-point vectors Boolean vectors signed and unsigned integer vectors 2x2, 3x3, 4x4 float matrix 2-column float matrix of 2, 3, or 4 rows 3-column float matrix of 2, 3, or 4 rows 4-column float matrix of 2, 3, or 4 rows 2x2, 3x3, 4x4 double-precision float matrix 2-col. double-precision float matrix of 2, 3, 4 rows 3-col. double-precision float matrix of 2, 3, 4 rows 4-column double-precision float matrix of 2, 3, 4 rows Qualifiers Storage Qualifiers [4.3] Declarations may have one storage qualifier. (default) local read/write memory, none or input parameter const read-only variable in linkage into shader from previous stage out linkage out of a shader to next stage uniform buffer shared 4. 5. 6. 7. 8. 9. 10. Preprocessor [3.3] Preprocessor Operators #version 450 #version 450 profile #extension extension_name : behavior #extension all : behavior Preprocessor Directives # #if #define #ifdef Predefined Macros Required when using version 4.50. profile is core, compatibility, or es (for ES versions 1.00, 3.00, or 3.10). • behavior: require, enable, warn, disable • extension_name: extension supported by compiler, or “all” #elif #ifndef 11. 12. 13. 14. 15. prefix increment and decrement unary */% multiplicative +additive << >> bit-wise shift < > <= >= relational == != equality & bit-wise and ^ bit-wise exclusive or linkage between a shader, OpenGL, and the application accessible by shaders and OpenGL API compute shader only, shared among work items in a local work group Auxiliary Storage Qualifiers Use to qualify some input and output variables: centroid centroid-based interpolation sampler per-sample interpolation patch per-tessellation-patch attributes Interface Blocks [4.3.9] in, out, uniform, and buffer variable declarations can be grouped. For example: uniform Transform { // allowed restatement qualifier: mat4 ModelViewMatrix; uniform mat3 NormalMatrix; }; ©2014 Khronos Group - Rev. 0814 sampler{1D,2D,3D} image{1D,2D,3D} samplerCube imageCube sampler2DRect image2DRect sampler{1D,2D}Array image{1D,2D}Array samplerBuffer imageBuffer sampler2DMS image2DMS sampler2DMSArray image2DMSArray samplerCubeArray imageCubeArray sampler1DShadow sampler2DShadow sampler2DRectShadow sampler1DArrayShadow sampler2DArrayShadow samplerCubeShadow #else #line | && ^^ || ?: = += -= *= /= 16. %= <<= >>= &= ^= |= 17. , ++ -+-~! Floating-Point Opaque Types Transparent Types void bool int, uint float 3. Page 9 __VERSION__ Decimal integer constants. __FILE__ says which source string is being processed. Decimal integer, e.g.: 450 GL_core_profile Defined as 1 GL_es_profile 1 if the ES profile is supported Defined as 1 if the implementation supports the compatibility profile. __LINE__ GL_compatibility_profile #endif #pragma #error #undef bit-wise inclusive or logical and logical exclusive or logical inclusive or selects an entire operand assignment arithmetic assignments sequence Signed Integer Opaque Types (cont’d) 1D, 2D, or 3D texture iimage2DRect isampler[1,2]DArray iimage[1,2]DArray isamplerBuffer iimageBuffer isampler2DMS iimage2DMS isampler2DMSArray iimage2DMSArray isamplerCubeArray iimageCubeArray __FILE__ #extension #version Vector & Scalar Components [5.5] In addition to array numeric subscript syntax, names of vector and scalar components are denoted by a single letter. Components can be swizzled and replicated. Scalars have only an x, r, or s component. {x, y, z, w} Points or normals {r, g, b, a} Colors {s, t, p, q} Texture coordinates Unsigned Integer Opaque Types (cont’d) int. 2D rectangular image uimage2DMSArray uint 2D multi-sample array image integer 1D, 2D array texture usamplerCubeArray uint cube map array texture cube mapped texture integer 1D, 2D array image uimageCubeArray uint cube map array image integer buffer texture rectangular texture Implicit Conversions integer buffer image int -> uint uvec2 -> dvec2 1D or 2D array texture int. 2D multi-sample texture int, uint -> float uvec3 -> dvec3 int. 2D multi-sample image int, uint, float -> double uvec4 -> dvec4 buffer texture ivec2 -> uvec2 vec2 -> dvec2 int. 2D multi-sample array tex. ivec3 -> uvec3 vec3 -> dvec3 int. 2D multi-sample array image ivec4 2D multi-sample texture -> uvec4 vec4 -> dvec4 ivec2 -> vec2 mat2 -> dmat2 int. cube map array texture ivec3 -> vec3 mat3 -> dmat3 2D multi-sample array int. cube map array image ivec4 -> vec4 mat4 -> dmat4 texture uvec2 -> vec2 mat2x3 -> dmat2x3 cube map array texture Unsigned Integer Opaque Types uvec3 -> vec3 mat2x4 -> dmat2x4 atomic_uint uint atomic counter uvec4 -> vec4 mat3x2 -> dmat3x2 1D or 2D depth texture ivec2 -> dvec2 mat3x4 -> dmat3x4 usampler[1,2,3]D uint 1D, 2D, or 3D texture with comparison ivec3 -> dvec3 mat4x2 -> dmat4x2 uint 1D, 2D, or 3D image rectangular tex. / compare uimage[1,2,3]D ivec4 -> dvec4 mat4x3 -> dmat4x4 usamplerCube uint cube mapped texture 1D or 2D array depth texture with comparison uimageCube uint cube mapped image Aggregation of Basic Types cube map depth texture usampler2DRect uint rectangular texture Arrays float[3] foo; float foo[3]; int a [3][2]; with comparison uimage2DRect uint rectangular image // Structures, blocks, and structure members samplerCubeArrayShadow cube map array depth // can be arrays. Arrays of arrays supported. usampler[1,2]DArray 1D or 2D array texture texture with comparison Structures struct type-name { uimage[1,2]DArray 1D or 2D array image members Signed Integer Opaque Types usamplerBuffer uint buffer texture } struct-name[]; isampler[1,2,3]D integer 1D, 2D, or 3D texture uimageBuffer uint buffer image // optional variable declaration iimage[1,2,3]D integer 1D, 2D, or 3D image usampler2DMS uint 2D multi-sample texture Blocks in/out/uniform block-name { isamplerCube integer cube mapped texture // interface matching by block name uimage2DMS uint 2D multi-sample image iimageCube integer cube mapped image optionally-qualified members usampler2DMSArray uint 2D multi-sample array tex. } instance-name[]; isampler2DRect int. 2D rectangular texture Continue // optional instance name, optionally an array Continue Layout Qualifiers [4.4] The following table summarizes the use of layout qualifiers applied to non-opaque types and the kinds of declarations they may be applied to. Op = Opaque types only, FC = gl_FragCoord only, FD = gl_FragDepth only. Indiv. Block Layout Qualifier Qualif. Only Var. Block Mem. shared, packed, std{140, 430} X X {row, column}_major X X X binding = Op X offset = X align = X X location = X location = component = X X index = X triangles, quads, isolines equal_spacing, fractional_even_spacing, fractional_odd_spacing cw, ccw point_mode points [ points ], lines, triangles, {triangles, lines}_adjacency invocations = X X X Allowed Interfaces uniform/buffer uniform/buffer and subroutine variables all in/out, except for compute fragment out and subroutine functions X X X X X tessellation evaluation in geometry in/out X geometry in X geometry in Indiv. Block Layout Qualifier Qualif. Only Var. Block Mem. Allowed Interfaces origin_upper_left FC pixel_center_integer fragment in early_fragment_tests X local_size_{x, y, z} = X compute in xfb_{buffer, stride} = X X X X vertex, tessellation, and geometry out xfb_offset = X X X vertices = X tessellation control out [ points ], line_strip, X triangle_strip geometry out max_vertices = X stream = X X X X depth_{any, greater, FD fragment out less, unchanged} Opaque Uniform Layout Qualifiers [4.4.6] Used to bind opaque uniform variables to specific buffers or units. binding = integer-constant-expression Atomic Counter Layout Qualifiers binding = integer-constant-expression offset = integer-constant-expression (Continued on next page) www.opengl.org/registry Page 10 OpenGL Shading Language 4.50 Reference Card Qualifiers (continued) Format Layout Qualifiers One qualifier may be used with variables declared as “image” to specify the image format. binding = integer-constant-expression, rgba{32,16}f, rg{32,16}f, r{32,16}f, rgba{16,8}, r11f_g11f_b10f, rgb10_a2{ui}, rg{16,8}, r{16,8}, rgba{32,16,8}i, rg{32,16,8} i, r{32,16,8}i, rgba{32,16,8}ui, rg{32,16,8}ui, r{32,16,8}ui, rgba{16,8}_snorm, rg{16,8}_snorm, r{16,8}_snorm Interpolation Qualifiers [4.5] Qualify outputs from vertex shader and inputs to fragment shader. smooth perspective correct interpolation flat no interpolation noperspective linear interpolation Parameter Qualifiers [4.6] Input values copied in at function call time, output values copied out at function return. none in (default) same as in for function parameters passed into function for function parameters that cannot be written to for function parameters passed back out of function, but not initialized when passed in for function parameters passed both into and out of a function const out inout Precision Qualifiers [4.7] Qualify individual variables: {highp, mediump, lowp} variable-declaration; Establish a default precision qualifier: precision {highp, mediump, lowp} {int, float}; Built-In Variables [7] Invariant Qualifiers Examples [4.8] These are for vertex, tessellation, geometry, and fragment languages. #pragma STDGL force all output variables invariant(all) to be invariant invariant gl_Position; qualify a previously declared variable invariant centroid out vec3 Color; qualify as part of a variable declaration Precise Qualifier [4.9] Ensures that operations are executed in stated order with operator consistency. For example, a fused multiply-add cannot be used in the following; it requires two identical multiplies, followed by an add. precise out vec4 Position = a * b + c * d; Memory Qualifiers [4.10] Variables qualified as “image” can have one or more memory qualifiers. coherent reads and writes are coherent with other shader invocations volatile underlying values may be changed by other sources restrict won’t be accessed by other code readonly read only writeonly write only Order of Qualification [4.11] When multiple qualifiers are present in a declaration they may appear in any order, but must all appear before the type. The layout qualifier is the only qualifier that can appear more than once. Further, a declaration can have at most one storage qualifier, at most one auxiliary storage qualifier, and at most one interpolation qualifier. Multiple memory qualifiers can be used. Any rule violation will cause a compile-time error. Geometry Language Tessellation Control Language Outputs Inputs in gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; float gl_CullDistance[]; } gl_in[gl_MaxPatchVertices]; in int gl_PatchVerticesIn; in int gl_PrimitiveID; in int gl_InvocationID; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; float gl_CullDistance[]; } gl_out[]; Inputs in int gl_PrimitiveIDIn; in int gl_InvocationID; Outputs out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; float gl_CullDistance[]; }; out int gl_PrimitiveID; out int gl_Layer; out int gl_ViewportIndex; Fragment Language in in in in in in in in in in in in out float gl_FragDepth; out int gl_SampleMask[]; patch out float gl_TessLevelOuter[4]; patch out float gl_TessLevelInner[2]; Tessellation Evaluation Language Outputs }; in int gl_PatchVerticesIn; in int gl_PrimitiveID; in vec3 gl_TessCoord; patch in float gl_TessLevelOuter[4]; patch in float gl_TessLevelInner[2]; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; float gl_CullDistance[]; ©2014 Khronos Group - Rev. 0814 vec4 bool float float vec2 int int vec2 int int int bool gl_FragCoord; gl_FrontFacing; gl_ClipDistance[]; gl_CullDistance[]; gl_PointCoord; gl_PrimitiveID; gl_SampleID; gl_SamplePosition; gl_SampleMaskIn[]; gl_Layer; gl_ViewportIndex; gl_HelperInvocation; Compute Language More information in diagram on page 6. Work group dimensions in uvec3 gl_NumWorkGroups; const uvec3 gl_WorkGroupSize; in uvec3 gl_LocalGroupSize; Inputs Inputs in gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; float gl_CullDistance[]; } gl_in[gl_MaxPatchVertices]; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; float gl_CullDistance[]; }; Inputs gl_VertexID; gl_InstanceID; in gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; float gl_CullDistance[]; } gl_in[]; Outputs Inputs in int in int Outputs Vertex Language Work group and invocation IDs in uvec3 gl_WorkGroupID; in uvec3 gl_LocalInvocationID; Derived variables in uvec3 gl_GlobalInvocationID; in uint gl_LocalInvocationIndex; Operations and Constructors Vector & Matrix [5.4.2] .length() for matrices returns number of columns .length() for vectors returns number of components mat2(vec2, vec2); // 1 col./arg. mat2x3(vec2, float, vec2, float); // col. 2 dmat2(dvec2, dvec2); // 1 col./arg. // 1 col./arg. dmat3(dvec3, dvec3, dvec3); Structure Example [5.4.3] .length() for structures returns number of members struct light {members; }; light lightVar = light(3.0, vec3(1.0, 2.0, 3.0)); Matrix Examples [5.6] Examples of access components of a matrix with array subscripting syntax: mat4 m; m[1] = vec4(2.0); m[0][0] = 1.0; m[2][3] = 2.0; // m is a matrix // sets 2nd col. to all 2.0 // sets upper left element to 1.0 // sets 4th element of 3rd col. to 2.0 Statements and Structure Subroutines [6.1.2] Subroutine type variables are assigned to functions through the UniformSubroutinesuiv command in the OpenGL API. Declare types with the subroutine keyword: Examples of operations on matrices and vectors: m = f * m; v = f * v; v = v * v; m = m +/- m; m = m * m; f = dot(v, v); v = cross(v, v); Array Example [5.4.4] const float c[3]; c.length() // will return the integer 3 Structure & Array Operations [5.7] Select structure fields or length() method of an array using the period (.) operator. Other operators: . field or method selector == != equality = assignment [] indexing (arrays only) Array elements are accessed using the array subscript operator ( [ ] ), e.g.: diffuseColor += lightIntensity[3]*NdotL; Declare subroutine type variables with a specific subroutine type in a subroutine uniform variable declaration: subroutine uniform subroutineTypeName subroutineVarName; Iteration and Jumps [6.3-4] subroutine returnType subroutineTypeName(type0 arg0, type1 arg1, ..., typen argn); Function Iteration Associate functions with subroutine types of matching declarations by defining the functions with the subroutine keyword and a list of subroutine types the function matches: Selection subroutine(subroutineTypeName0, ..., subroutineTypeNameN) returnType functionName(type0 arg0, type1 arg1, ..., typen argn){ ... } // function body Built-In Constants [7.3] The following are provided to all shaders. The actual values are implementation-dependent, but must be at least the value shown. const ivec3 gl_MaxComputeWorkGroupCount = {65535, 65535, 65535} ; const ivec3 gl_MaxComputeWorkGroupSize[] = {1024, 1024, 64}; const int gl_MaxComputeUniformComponents = 1024; const int gl_MaxComputeTextureImageUnits = 16; const int gl_MaxComputeImageUniforms = 8; const int gl_MaxComputeAtomicCounters = 8; const int gl_MaxComputeAtomicCounterBuffers = 1; const int gl_MaxVertexAttribs = 16; const int gl_MaxVertexUniformComponents = 1024; const int gl_MaxVaryingComponents= 60; const int gl_MaxVertexOutputComponents = 64; const int gl_MaxGeometryInputComponents = 64; const int gl_MaxGeometryOutputComponents = 128; const int gl_MaxFragmentInputComponents = 128; const int gl_MaxVertexTextureImageUnits = 16; const int gl_MaxCombinedTextureImageUnits = 80; const int gl_MaxTextureImageUnits = 16; const int gl_MaxImageUnits = 8; gl_MaxCombinedImageUnitsAndFragmentOutputs = 8; const int gl_MaxImageSamples = 0; const int gl_MaxVertexImageUniforms= 0; const int gl_MaxTessControlImageUniforms = 0; const int gl_MaxTessEvaluationImageUniforms = 0; const int gl_MaxGeometryImageUniforms = 0; const int gl_MaxFragmentImageUniforms = 8; const int gl_MaxCombinedImageUniforms = 8; const int gl_MaxFragmentUniformComponents = 1024; const int gl_MaxDrawBuffers = 8; const int gl_MaxClipDistances = 8; const int gl_MaxGeometryTextureImageUnits = 16; const int gl_MaxGeometryOutputVertices = 256; const int gl_MaxGeometryTotalOutputComponents = 1024; const int gl_MaxGeometryUniformComponents = 1024; const int gl_MaxGeometryVaryingComponents = 64; const int gl_MaxTessControlInputComponents = 128; // scalar * matrix component-wise // scalar * vector component-wise // vector * vector component-wise // matrix +/- matrix comp.-wise // linear algebraic multiply // vector dot product // vector cross product Entry Jump Exit call by value-return for (;;) { break, continue } while ( ) { break, continue } do { break, continue } while ( ); if ( ) { } if ( ) { } else { } switch ( ) { case integer: … break; … default: … } void main() break, continue, return (There is no ‘goto’) return in main() discard // Fragment shader only const int gl_MaxTessControlOutputComponents = 128; const int gl_MaxTessControlTextureImageUnits = 16; const int gl_MaxTessControlUniformComponents = 1024; const int gl_MaxTessControlTotalOutputComponents = 4096; const int gl_MaxTessEvaluationInputComponents = 128; const int gl_MaxTessEvaluationOutputComponents = 128; const int gl_MaxTessEvaluationTextureImageUnits = 16; const int gl_MaxTessEvaluationUniformComponents = 1024; const int gl_MaxTessPatchComponents = 120; const int gl_MaxPatchVertices = 32; const int gl_MaxTessGenLevel = 64; const int gl_MaxViewports = 16; const int gl_MaxVertexUniformVectors = 256; const int gl_MaxFragmentUniformVectors = 256; const int gl_MaxVaryingVectors = 15; const int gl_MaxVertexAtomicCounters = 0; const int gl_MaxTessControlAtomicCounters = 0; const int gl_MaxTessEvaluationAtomicCounters = 0; const int gl_MaxGeometryAtomicCounters = 0; const int gl_MaxFragmentAtomicCounters = 8; const int gl_MaxCombinedAtomicCounters = 8; const int gl_MaxAtomicCounterBindings = 1; const int gl_MaxVertexAtomicCounterBuffers = 0; const int gl_MaxTessControlAtomicCounterBuffers = 0; const int gl_MaxTessEvaluationAtomicCounterBuffers = 0; const int gl_MaxGeometryAtomicCounterBuffers = 0; const int gl_MaxFragmentAtomicCounterBuffers = 1; const int gl_MaxCombinedAtomicCounterBuffers = 1; const int gl_MaxAtomicCounterBufferSize = 32; const int gl_MinProgramTexelOffset = -8; const int gl_MaxProgramTexelOffset = 7; const int gl_MaxTransformFeedbackBuffers = 4; gl_MaxTransformFeedbackInterleavedComponents = 64; const int gl_MaxCullDistances = 8; const int gl_MaxCombinedClipAndCullDistances = 8; const int gl_MaxSamples = 4; const int gl_MaxVertexImageUniforms = 0; const int gl_MaxFragmentImageUniforms = 8; const int gl_MaxComputeImageUniforms = 8; const int gl_MaxCombinedImageUniforms = 48; const int gl_MaxCombinedShaderOutputResources = 16; www.opengl.org/registry OpenGL Shading Language 4.50 Reference Card Built-In Functions Common Functions (cont.) Angle & Trig. Functions [8.1] Functions will not result in a divide-by-zero error. If the divisor of a ratio is 0, then results will be undefined. Component-wise operation. Parameters specified as angle are in units of radians. Tf=float, vecn. Tf radians(Tf degrees) degrees to radians Tf degrees(Tf radians) radians to degrees Tf sin(Tf angle) sine Tf cos(Tf angle) cosine Tf tan(Tf angle) tangent Tf asin(Tf x) arc sine Tf acos(Tf x) arc cosine Tf atan(Tf y, Tf x) Tf atan(Tf y_over_x) arc tangent Tf sinh(Tf x) hyperbolic sine Tf cosh(Tf x) hyperbolic cosine Tf tanh(Tf x) hyperbolic tangent Tf asinh(Tf x) hyperbolic sine Tf acosh(Tf x) hyperbolic cosine Tf atanh(Tf x) hyperbolic tangent Tf exp(Tf x) ex Tf log(Tf x) ln Tf exp2(Tf x) 2x log2 Tfd sqrt(Tfd x) square root Tfd inversesqrt(Tfd x) inverse square root Common Functions [8.3] Component-wise operation. Tf=float, vecn. Tb=bool, bvecn. Ti=int, ivecn. Tu=uint, uvecn. Td= double, dvecn. Tfd= Tf, Td. Tiu= Ti, Tu. Returns -1.0, 0.0, or 1.0: Tfd sign(Tfd x) Ti mix(Ti x, Ti y, Ti a) Tu mix(Tu x, Tu y, Tu a) Components returned come from x when a components are true, from y when a components are false: Tfd mix(Tfd x, Tfd y, Tb a) Tb mix(Tb x, Tb y, Tb a) Tiu mix(Tiu x, Tiu y, Tb a) Returns 0.0 if x < edge, else 1.0: Tfd step(Tfd edge, Tfd x) Tf step(float edge, Tf x) Td step(double edge, Td x) Ti abs(Ti x) Ti sign(Ti x) Returns nearest integer <= x: Tfd floor(Tfd x) Returns nearest integer with absolute value <= absolute value of x: Tfd trunc(Tfd x) Returns nearest integer, implementation-dependent rounding mode: Tfd round(Tfd x) Returns nearest integer, 0.5 rounds to nearest even integer: Tfd roundEven(Tfd x) Type Abbreviations for Built-in Functions: In vector types, n is 2, 3, or 4. Tf=float, vecn. Td =double, dvecn. Tfd= float, vecn, double, dvecn. Tb= bool, bvecn. Tu=uint, uvecn. Ti=int, ivecn. Tiu=int, ivecn, uint, uvecn. Tvec=vecn, uvecn, ivecn. Within any one function, type sizes and dimensionality must correspond after implicit type conversions. For example, float round(float) is supported, but float round(vec4) is not. Geometric Functions [8.5] These functions operate on vectors as vectors, not component-wise. Tf=float, vecn. Td =double, dvecn. Tfd= float, vecn, double, dvecn. float length(Tf x) double length(Td x) length of vector Integer Functions (cont.) Multiplies 32-bit integers x and y, producing a 64-bit result: void umulExtended(Tu x, Tu y, out Tu msb, out Tu lsb) void imulExtended(Ti x, Ti y, out Ti msb, out Ti lsb) float distance(Tf p0, Tf p1) distance between points double distance(Td p0, Td p1) Extracts bits [offset, offset + bits - 1] from value, returns them in the least significant bits of the result: Tiu bitfieldExtract(Tiu value, int offset, int bits) float dot(Tf x, Tf y) double dot(Td x, Td y) Returns the reversal of the bits of value: Tiu bitfieldReverse(Tiu value) dot product vec3 cross(vec3 x, vec3 y) cross product dvec3 cross(dvec3 x, dvec3 y) Inserts the bits least-significant bits of insert into base: Tiu bitfieldInsert(Tiu base, Tiu insert, int offset, int bits) Tfd normalize(Tfd x) normalize vector to length 1 Tfd faceforward(Tfd N, Tfd I, Tfd Nref) returns N if dot(Nref, I) < 0, else -N Returns the number of bits set to 1: Ti bitCount(Tiu value) Tfd reflect(Tfd I, Tfd N) reflection direction I - 2 * dot(N,I) * N Tfd refract(Tfd I, Tfd N, float eta) refraction vector Returns the bit number of the least significant bit: Ti findLSB(Tiu value) Returns the bit number of the most significant bit: Ti findMSB(Tiu value) Clamps and smoothes: Tfd smoothstep(Tfd edge0, Tfd edge1, Tfd x) Tf smoothstep(float edge0, float edge1, Tf x) Td smoothstep(double edge0, double edge1, Td x) Matrix Functions [8.6] Returns true if x is NaN: Tb isnan(Tfd x) mat matrixCompMult(mat x, mat y) component-wise dmat matrixCompMult(dmat x, dmat y) multiply Atomic-Counter Functions [8.10] Returns true if x is positive or negative infinity: Tb isinf(Tfd x) matN outerProduct(vecN c, vecN r) outer product dmatN outerProduct(dvecN c, dvecN r) (where N != M) Atomically increments c then returns its prior value: uint atomicCounterIncrement(atomic_uint c) matNxM outerProduct(vecM c, vecN r) outer product dmatNxM outerProduct(dvecM c, dvecN r) Atomically decrements c then returns its prior value: uint atomicCounterDecrement(atomic_uint c) matN transpose(matN m) dmatN transpose(dmatN m) transpose Atomically returns the counter for c: uint atomicCounter(atomic_uint c) matNxM transpose(matMxN m) dmatNxM transpose(dmatMxN m) transpose (where N != M) Atomic Memory Functions [8.11] float determinant(matN m) double determinant(dmatN m) determinant Operates on individual integers in buffer-object or shared-variable storage. OP is Add, Min, Max, And, Or, Xor, Exchange, or CompSwap. matN inverse(matN m) dmatN inverse(dmatN m) inverse uint atomicOP(coherent inout uint mem, uint data) Returns signed int or uint value of the encoding of a float: Ti floatBitsToInt(Tf value) Tu floatBitsToUint(Tf value) Tf log2(Tf x) Returns absolute value: Tfd abs(Tfd x) Tiu max(Tiu x, Tiu y) Ti max(Ti x, int y) Tu max(Tu x, uint y) Returns min(max(x, minVal), maxVal): Tfd clamp(Tfd x, Tfd minVal, Tfd maxVal) Tf clamp(Tf x, float minVal, float maxVal) Td clamp(Td x, double minVal, double maxVal) Tiu clamp(Tiu x, Tiu minVal, Tiu maxVal) Ti clamp(Ti x, int minVal, int maxVal) Tu clamp(Tu x, uint minVal, uint maxVal) Tfd mix(Tfd x, Tfd y, Tfd a) Tf mix(Tf x, Tf y, float a) Td mix(Td x, Td y, double a) Component-wise operation. Tf=float, vecn. Td= double, dvecn. Tfd= Tf, Td xy Tfd max(Tfd x, Tfd y) Tf max(Tf x, float y) Td max(Td x, double y) Returns linear blend of x and y: Exponential Functions [8.2] Tf pow(Tf x, Tf y) Returns maximum value: Page 11 Returns float value of a signed int or uint encoding of a float: Tf intBitsToFloat(Ti value) Tf uintBitsToFloat(Tu value) Computes and returns a*b + c. Treated as a single operation when using precise: Tfd fma(Tfd a, Tfd b, Tfd c) Splits x into a floating-point significand in the range [0.5, 1.0) and an integer exponent of 2: Tfd frexp(Tfd x, out Ti exp) Builds a floating-point number from x and the corresponding integral exponent of 2 in exp: Tfd ldexp(Tfd x, in Ti exp) Texture Lookup Functions [8.9] Available to vertex, geometry, and fragment shaders. See tables on next page. N and M are 1, 2, 3, 4. int atomicOP(coherent inout int mem, int data) Vector Relational Functions [8.7] Compare x and y component-wise. Sizes of the input and return vectors for any particular call must match. Tvec=vecn, uvecn, ivecn. bvecn lessThan(Tvec x, Tvec y) < bvecn lessThanEqual(Tvec x, Tvec y) <= These do not operate component-wise. bvecn greaterThan(Tvec x, Tvec y) > Converts each component of v into 8- or 16-bit ints, packs results into the returned 32-bit unsigned integer: bvecn greaterThanEqual(Tvec x, Tvec y) >= bvecn equal(Tvec x, Tvec y) bvecn equal(bvecn x, bvecn y) == bvecn notEqual(Tvec x, Tvec y) bvecn notEqual(bvecn x, bvecn y) != Floating-Point Pack/Unpack [8.4] uint packUnorm2x16(vec2 v) uint packSnorm2x16(vec2 v) uint packUnorm4x8(vec4 v) uint packSnorm4x8(vec4 v) Returns the value of an atomic counter. Image Functions [8.12] In the image functions below, IMAGE_PARAMS may be one of the following: gimage1D image, int P gimage2D image, ivec2 P gimage3D image, ivec3 P gimage2DRect image, ivec2 P gimageCube image, ivec3 P gimageBuffer image, int P gimage1DArray image, ivec2 P gimage2DArray image, ivec3 P gimageCubeArray image, ivec3 P gimage2DMS image, ivec2 P, int sample gimage2DMSArray image, ivec3 P, int sample bool any(bvecn x) true if any component of x is true Returns x - floor(x): Tfd fract(Tfd x) Unpacks 32-bit p into two 16-bit uints, four 8-bit uints, or signed ints. Then converts each component to a normalized float to generate a 2- or 4-component vector: vec2 unpackUnorm2x16(uint p) vec2 unpackSnorm2x16(uint p) vec4 unpackUnorm4x8(uint p) vec4 unpackSnorm4x8(uint p) bool all(bvecn x) true if all comps. of x are true Returns modulus: Tfd mod(Tfd x, Tfd y) Tf mod(Tf x, float y) bvecn not(bvecn x) logical complement of x Packs components of v into a 64-bit value and returns a double-precision value: double packDouble2x32(uvec2 v) Integer Functions [8.8] Returns the number of samples of the image or images bound to image: int imageSamples(gimage2DMS image) int imageSamples(gimage2DMSArray image) Adds 32-bit uint x and y, returning the sum modulo 232: Tu uaddCarry(Tu x, Tu y, out Tu carry) Loads texel at the coordinate P from the image unit image: gvec4 imageLoad(readonly IMAGE_PARAMS) Subtracts y from x, returning the difference if non-negative, otherwise 232 plus the difference: Tu usubBorrow(Tu x, Tu y, out Tu borrow) Stores data into the texel at the coordinate P from the image specified by image: void imageStore(writeonly IMAGE_PARAMS, gvec4 data) Returns nearest integer >= x: Tfd ceil(Tfd x) Td mod(Td x, double y) Returns separate integer and fractional parts: Tfd modf(Tfd x, out Tfd i) Returns a 2-component vector representation of v: uvec2 unpackDouble2x32(double v) Returns minimum value: Returns a uint by converting the components of a twocomponent floating-point vector: uint packHalf2x16(vec2 v) Tfd min(Tfd x, Tfd y) Tf min(Tf x, float y) Td min(Td x, double y) Tiu min(Tiu x, Tiu y) Ti min(Ti x, int y) Tu min(Tu x, uint y) (Continue ) ©2014 Khronos Group - Rev. 0814 Returns a two-component floating-point vector: vec2 unpackHalf2x16(uint v) Component-wise operation. Tu=uint, uvecn. Ti=int, ivecn. Tiu=int, ivecn, uint, uvecn. (Continue ) Returns the dimensions of the images or images: int imageSize(gimage{1D,Buffer} image) ivec2 imageSize(gimage{2D,Cube,Rect,1DArray, 2DMS} image) ivec3 imageSize(gimage{Cube,2D,2DMS}Array image) vec3 imageSize(gimage3D image) (Continued on next page) www.opengl.org/registry Page 12 OpenGL Shading Language 4.50 Reference Card Built-In Functions (cont.) Image Functions (cont.) Adds the value of data to the contents of the selected texel: uint imageAtomicAdd(coherent IMAGE_PARAMS, uint data) int imageAtomicAdd(coherent IMAGE_PARAMS, int data) Takes the minimum of the value of data and the contents of the selected texel: uint imageAtomicMin(coherent IMAGE_PARAMS, uint data) int imageAtomicMin(coherent IMAGE_PARAMS, int data) Takes the maximum of the value data and the contents of the selected texel: uint imageAtomicMax(coherent IMAGE_PARAMS, uint data) int imageAtomicMax(coherent IMAGE_PARAMS, int data) Performs a bit-wise AND of the value of data and the contents of the selected texel: uint imageAtomicAnd(coherent IMAGE_PARAMS, uint data) int imageAtomicAnd(coherent IMAGE_PARAMS, int data) Image Functions (cont.) Interpolation fragment-processing functions Geometry Shader Functions (cont’d) Copies the value of data: uint imageAtomicExchange(coherent IMAGE_PARAMS, uint data) int imageAtomicExchange(coherent IMAGE_PARAMS, int data) int imageAtomicExchange(coherent IMAGE_PARAMS, float data) Compares the value of compare and contents of selected texel. If equal, the new value is given by data; otherwise, it is taken from the original value loaded from texel: uint imageAtomicCompSwap(coherent IMAGE_PARAMS, uint compare, uint data) int imageAtomicCompSwap(coherent IMAGE_PARAMS, int compare, int data) Return value of interpolant sampled inside pixel and the primitive: Tf interpolateAtCentroid(Tf interpolant) Emits values of output variables to the current output primitive: void EmitVertex() Fragment Processing Functions [8.13] Available only in fragment shaders. Tf=float, vecn. Derivative fragment-processing functions Tf dFdx(Tf p) derivative in x and y, either fine or coarse derivatives Tf dFdy(Tf p) Tf dFdxFine(Tf p) fine derivative in x and y per pixel-row/column derivative Tf dFdyFine(Tf p) Tf dFdxCoarse(Tf p) coarse derivative in x and y per Performs a bit-wise exclusive OR of the value of data and Tf dFdyCoarse(Tf p) 2x2-pixel derivative the contents of the selected texel: Tf fwidth(Tf p) uint imageAtomicXor(coherent IMAGE_PARAMS, uint data) Tf fwidthFine(Tf p) sum of absolute values of x and y derivatives Tf fwidthCoarse(Tf p) int imageAtomicXor(coherent IMAGE_PARAMS, int data) Performs a bit-wise OR of the value of data and the contents of the selected texel: uint imageAtomicOr(coherent IMAGE_PARAMS, uint data) int imageAtomicOr(coherent IMAGE_PARAMS, int data) Return value of interpolant at location of sample # sample: Tf interpolateAtSample(Tf interpolant, int sample) Return value of interpolant sampled at fixed offset offset from pixel center: Tf interpolateAtOffset(Tf interpolant, vec2 offset) Returns noise value. Available to fragment, geometry, and vertex shaders. n is 2, 3, or 4: vecn noisen(Tf x) Texture Functions [8.9] The P argument needs to have enough components to specify each dimension, array layer, or comparison for the selected sampler. The dPdx and dPdy arguments need enough components to specify the derivative for each dimension of the sampler. Texture Query Functions [8.9.1] textureSize functions return dimensions of lod (if present) for the texture bound to sampler. Components in return value are filled in with the Texture lookup with projection. width, height, depth of the texture. For array forms, the last component of the return value is gvec4 textureProj(gsampler{1D,2D[Rect],3D} sampler, the number of layers in the texture array. vec{2,3,4} P [, float bias]) float textureProj(sampler{1D,2D[Rect]}Shadow sampler, {int,ivec2,ivec3} textureSize( vec4 P [, float bias]) gsampler{1D[Array],2D[Rect,Array],Cube} sampler[, int lod]) {int,ivec2,ivec3} textureSize( Texture lookup as in texture but with explicit LOD. gsampler{Buffer,2DMS[Array]}sampler) gvec4 textureLod( {int,ivec2,ivec3} textureSize( gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler, sampler{1D, 2D, 2DRect,Cube[Array]}Shadow sampler[, {float,vec2,vec3} P, float lod) int lod]) float textureLod(sampler{1D[Array],2D}Shadow sampler, ivec3 textureSize(samplerCubeArray sampler, int lod) vec3 P, float lod) textureQueryLod functions return the mipmap Offset added before texture lookup. array(s) that would be accessed in the x component of the return value. Returns the gvec4 textureOffset( computed level of detail relative to the base level gsampler{1D[Array],2D[Array,Rect],3D} sampler, in the y component of the return value. {float,vec2,vec3} P, {int,ivec2,ivec3} offset [, float bias]) float textureOffset( vec2 textureQueryLod( sampler{1D[Array],2D[Rect,Array]}Shadow sampler, gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler, {vec3, vec4} P, {int,ivec2} offset [, float bias]) {float,vec2,vec3} P) vec2 textureQueryLod( sampler{1D[Array],2D[Array],Cube[Array]}Shadow sampler, Use integer texture coordinate P to lookup a single {float,vec2,vec3} P) texel from sampler. Order reads and writes accessible to other invocations: Completes current output primitive stream stream and starts a new one: void EndStreamPrimitive(int stream) void groupMemoryBarrier() void void void void memoryBarrierAtomicCounter() memoryBarrierShared() memoryBarrierBuffer() memoryBarrierImage() (Continue ) float textureProjOffset( sampler{1D,2D[Rect]}Shadow sampler, vec4 P, {int,ivec2} offset [, float bias]) Offset texture lookup with explicit LOD. gvec4 textureLodOffset( gsampler{1D[Array],2D[Array],3D} sampler, {float,vec2,vec3} P, float lod, {int,ivec2,ivec3} offset) float textureLodOffset( sampler{1D[Array],2D}Shadow sampler, vec3 P, float lod, {int,ivec2} offset) Projective texture lookup with explicit LOD. gvec4 textureProjLod(gsampler{1D,2D,3D} sampler, vec{2,3,4} P, float lod) float textureProjLod(sampler{1D,2D}Shadow sampler, vec4 P, float lod) Offset projective texture lookup with explicit LOD. gvec4 textureProjLodOffset(gsampler{1D,2D,3D} sampler, vec{2,3,4} P, float lod, {int, ivec2, ivec3} offset) float textureProjLodOffset(sampler{1D,2D}Shadow sampler, vec4 P, float lod, {int, ivec2} offset) Texture lookup both projectively as in textureProj, and with explicit gradient as in textureGrad. gvec4 textureProjGrad(gsampler{1D,2D[Rect],3D} sampler, {vec2,vec3,vec4} P, {float,vec2,vec3} dPdx, {float,vec2,vec3} dPdy) float textureProjGrad(sampler{1D,2D[Rect]}Shadow sampler, vec4 P, {float,vec2} dPdx, {float,vec2} dPdy) Texture lookup projectively and with explicit gradient as in textureProjGrad, as well as with offset as in textureOffset. gvec4 textureProjGradOffset( gsampler{1D,2D[Rect],3D} sampler, vec{2,3,4} P, {float,vec2,vec3} dPdx, {float,vec2,vec3} dPdy, {int,ivec2,ivec3} offset) float textureProjGradOffset( sampler{1D,2D[Rect]Shadow} sampler, vec4 P, {float,vec2} dPdx, {float,vec2} dPdy, {ivec2,int,vec2} offset) Texture Gather Instructions [8.9.3] These functions take components of a floating-point vector operand as a texture coordinate, determine a set of four texels to sample from the base level of detail of the specified texture image, and return one component from each texel in a four-component result vector. gvec4 textureGather( gsampler{2D[Array,Rect],Cube[Array]} sampler, {vec2,vec3,vec4} P [, int comp]) vec4 textureGather( sampler{2D[Array,Rect],Cube[Array]}Shadow sampler, {vec2,vec3,vec4} P, float refZ) Texture lookup as in texture but with explicit gradients. Texture gather as in textureGather by offset as gvec4 textureGrad( described in textureOffset except minimum and gsampler{1D[Array],2D[Rect,Array],3D,Cube[Array]} sampler, maximum offset values are given by {float, vec2, vec3,vec4} P, {float, vec2, vec3} dPdx, {MIN, MAX}_PROGRAM_TEXTURE_GATHER_OFFSET. {float, vec2, vec3} dPdy) gvec4 textureGatherOffset(gsampler2D[Array,Rect] sampler, float textureGrad( {vec2,vec3} P, ivec2 offset [, int comp]) sampler{1D[Array],2D[Rect,Array], Cube}Shadow sampler, vec4 textureGatherOffset( {vec3,vec4} P, {float,vec2} dPdx, {float,vec2, vec3} dPdy) sampler2D[Array,Rect]Shadow sampler, {vec2,vec3} P, float refZ, ivec2 offset) Texture lookup with both explicit gradient and offset. textureQueryLevels functions return the number gvec4 texelFetch( gsampler{1D[Array],2D[Array,Rect],3D} sampler, of mipmap levels accessible in the texture {int,ivec2,ivec3} P[, {int,ivec2} lod]) associated with sampler. gvec4 texelFetch(gsampler{Buffer, 2DMS[Array]} sampler, int textureQueryLevels( {int,ivec2,ivec3} P[, int sample]) gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler) gvec4 textureGradOffset( int textureQueryLevels( gsampler{1D[Array],2D[Rect,Array],3D} sampler, sampler{1D[Array],2D[Array],Cube[Array]}Shadow sampler) Fetch single texel with offset added before texture lookup. {float,vec2,vec3} P, {float,vec2,vec3} dPdx, {float,vec2,vec3} dPdy, {int,ivec2,ivec3} offset) gvec4 texelFetchOffset( textureSamples returns the number of samples gsampler{1D[Array],2D[Array],3D} sampler, float textureGradOffset( of the texture. {int,ivec2,ivec3} P, int lod, {int,ivec2,ivec3} offset) sampler{1D[Array],2D[Rect,Array]}Shadow sampler, gvec4 texelFetchOffset( int textureSamples(gsampler2DMS sampler) {vec3,vec4} P, {float,vec2} dPdx, {float,vec2}dPdy, gsampler2DRect sampler, ivec2 P, ivec2 offset) {int,ivec2} offset) int textureSamples(gsampler2DMSArray sampler) ©2014 Khronos Group - Rev. 0814 void memoryBarrier() Emits values of output variables to current output primitive stream stream: void EmitStreamVertex(int stream) Projective texture lookup with offset added before Use texture coordinate P to do a lookup in the texture texture lookup. bound to sampler. For shadow forms, compare is gvec4 textureProjOffset(gsampler{1D,2D[Rect],3D} sampler, used as Dref and the array layer comes from P.w. vec{2,3,4} P, {int,ivec2,ivec3} offset [, float bias]) For non-shadow forms, the array layer comes from the last component of P. float texture( sampler{1D[Array],2D[Array,Rect],Cube}Shadow sampler, {vec3,vec4} P [, float bias]) float texture(gsamplerCubeArrayShadow sampler, vec4 P, float compare) Controls ordering of memory transactions issued by a single shader invocation: Controls ordering of memory transactions as viewed by other invocations in a compute work group: Only available in geometry shaders. Texel Lookup Functions [8.9.2] gvec4 texture( gsampler{1D[Array],2D[Array,Rect],3D,Cube[Array]} sampler, {float,vec2,vec3,vec4} P [, float bias]) void barrier() Geometry Shader Functions [8.15] (Continue ) Available to vertex, geometry, and fragment shaders. gvec4=vec4, ivec4, uvec4. gsampler* =sampler*, isampler*, usampler*. Other Shader Functions [8.16-17] See diagram on page 11 for more information. Synchronizes across shader invocations: Noise Functions [8.14] float noise1(Tf x) Completes output primitive and starts a new one: void EndPrimitive() Texture gather as in textureGatherOffset except offsets determines location of the four texels to sample. gvec4 textureGatherOffsets(gsampler2D[Array,Rect] sampler, {vec2,vec3} P, ivec2 offsets[4] [, int comp]) vec4 textureGatherOffsets( sampler2D[Array,Rect]Shadow sampler, {vec2,vec3} P, float refZ, ivec2 offsets[4]) www.opengl.org/registry Page 13 OpenGL 4.5 API Reference Card OpenGL API and OpenGL Shading Language Reference Card Index The following index shows each item included on this card along with the page on which it is described. The color of the row in the table below is the color of the pane to which you should refer. A ActiveShaderProgram ActiveTexture Angle Functions Asynchronous Queries Atomic Functions AttachShader 2 2 11 1 11 2 B BeginConditionalRender BeginQuery[Indexed] BeginTransformFeedback BindAttribLocation BindBuffer* BindBuffer[s]{Base, Range} BindFragDataLocation[Indexed] BindFramebuffer BindImageTexture[s] BindProgramPipeline BindRenderbuffer Bind{Sampler, Texture}[s] BindTexture[s] BindTextureUnit BindTransformFeedback BindVertexArray BindVertexBuffer[s] BlendColor BlendEquation[Separate]* BlendFunc[Separate]* Blit[Named]Framebuffer Buffer[Sub]Data BufferStorage BufferTextures C CreateTransformFeedbacks CreateVertexArrays CullFace 5 4 5 D DebugMessage* DeleteBuffers DeleteFramebuffers DeleteProgram[Pipelines] DeleteQueries DeleteRenderbuffers DeleteSamplers DeleteShader DeleteSync DeleteTextures DeleteTransformFeedbacks DeleteVertexArrays DepthFunc DepthMask DepthRange* Derivative Functions DetachShader DisableVertexArrayAttrib DisableVertexAttribArray DispatchCompute* Dithering DrawArrays* DrawBuffer[s] Draw[Range]Elements* DrawTransformFeedback* 5 1 5 5 1 1 5 4 4 2 4 2 2 2 5 4 4 6 6 6 6 1 1 E 3 EnableVertexArrayAttrib EnableVertexAttribArray EndConditionalRender 6 EndQuery[Indexed] 4 EndQuery 6 EndTransformFeedback 6 Errors 1 Exponential Functions Callback Check[Named]FramebufferStatus ClampColor Clear Clear[Named]Buffer[Sub]Data ClearBuffer* 6 F ClearColor 6 Feedback Loops ClearDepth* 6 FenceSync ClearStencil 6 Finish ClearTex[Sub]Image 4 Flatshading ClientWaitSync 1 Floating-Point Pack/Unpack Func. Clip Control 5 Flush ColorMask* 6 FlushMapped* Command Letters 1 Fragment Language Variables Common Functions 11 Fragment Processing Functions CompileShader 1 Fragment Shaders CompressedTex[Sub]Image* 3 Framebuffer Objects CompressedTextureSubImage* 3 FramebufferParameteri Compute Language Variables 10 FramebufferRenderbuffer Compute Programming Diagram 7 FramebufferTexture* Compute Shaders 5 FrontFace Constants 10 Conversions 6 G Copy[Named]BufferSubData 1 GenBuffers CopyImageSubData 6 Generate[Texture]Mipmap CopyTex[Sub]Image* 3 GenFramebuffers CopyTextureSubImage* 3 GenProgramPipelines CreateBuffers 1 GenQueries CreateFrameBuffers 4 GenRenderbuffers CreateProgram[Pipelines] 2 GenSamplers CreateQueries* 1 GenTextures CreateRenderBuffers 4 GenTransformFeedbacks CreateSamplers* 2 GenVertexArrays CreateShader 1 Geometric Functions CreateShaderProgramv 2 Geometry & Follow-on Diagram Createtextures* 2 Geometry Shader Functions 6 1 4 2 1 4 2 1 1 2 5 4 6 6 5 12 2 5 5 5 6 5 6 5 5 5 5 5 1 6 5 1 11 4 1 1 5 11 1 1 10 12 5 4 4 4 4 5 1 3 4 2 1 4 2 2 4 4 11 8 12 GetActiveAtomicCounterBuffer* GetActiveAttrib GetActiveSubroutine* GetActiveUniform* GetAttachedShaders GetAttribLocation GetBoolean* GetBufferParameter* GetBuffer{Pointerv, SubData} Get[n]CompressedTexImage GetCompressedTexSubImage GetCompressedTextureImage GetDebugMessageLog GetDouble* GetError GetFloat* GetFragData* GetFramebuffer* GetGraphicsResetStatus GetInteger* GetInteger64* GetInternalformat* GetMultisamplefv GetNamedBuffer[Indexed] GetNamedFramebuffer GetNamedRenderbuffer GetObject[Ptr]Label GetPointerv GetProgram* GetQuery* GetRenderbufferParameteriv GetSamplerParameter* GetShader* GetString* GetSubroutine* GetSynciv Get[n]TexImage GetTex[Level]Parameter* GetTexture* GetTransformFeedback GetTransformFeedbackVarying Get[n]Uniform GetUniform* GetVertex{Array, Attrib}* GL Command Syntax 2 5 2 2 2 5 6 1 1 3 3 3 6 6 1 6 5 4 1 7 7 7 5 1 4 4 6 6-7 2 1 4 2 2 6 2 1 3 3 3 7 5 2 2 5 1 H Hint 6 I Image Functions Integer Functions Interpolation Functions Interpolation Qualifiers InvalidateBuffer* Invalidate[Sub]Framebuffer InvalidateNamedFramebuffer InvalidateTex[Sub]Image Invariant Qualifiers IsBuffer IsFramebuffer IsProgram[Pipeline] IsQuery IsRenderbuffer IsSampler IsShader IsSync IsTexture IsTransformFeedback IsVertexArray Iteration and Jumps 11 11 12 10 1 6 6 4 10 1 4 5 1 4 2 1 1 2 5 4 10 L Layout Qualifiers LineWidth LinkProgram LogicOp 9 5 2 6 M Macros Map[Named]Buffer* Matrix Operations Matrix Functions MemoryBarrier MemoryBarrier Memory Qualifiers MinSampleShading MultiDraw{Arrays, Elements}* Multisample Fragment Ops Multisample Textures Multisampling 9 1 10 11 2 12 10 5 5 6 3 5 N NamedBuffer NamedFramebufferDraw NamedFramebuffer NamedFramebufferReadBuffer NamedRenderbufferStorage Noise Functions 1 6 4 6 4 12 O Object[Ptr]Label Occlusion Queries Operators 5 6 9 P Pack/Unpack Functions Parameter Qualifiers PatchParameter PauseTransformFeedback Per-Fragment Operations Pipeline Diagram PixelStore{if} PointParameter* PointSize Polygon{Mode, Offset} {Pop, Push}DebugGroup Precise & Precision Qualifiers Preprocessor Primitive Clipping PrimitiveRestartIndex ProgramBinary Program Objects ProgramParameteri ProgramUniform[Matrix]* ProvokingVertex 11 10 5 5 6 8 2 5 5 5 6 10 9 5 5 2 2 2 2 5 Q Qualifiers QueryCounter 9 1 R Rasterization ReadBuffer Read[n]Pixels ReleaseShaderCompiler Renderbuffer Object Queries RenderbufferStorage* ResumeTransformFeedback 5 6 6 1 4 4 5 S SampleCoverage SampleMaski 5 5 SamplerParameter* Sampler Queries Scissor* Shaders and Programs Shader Functions Shader[Binary, Source] ShadersStorageBlockBinding Shading Language State and State Requests StencilFunc[Separate] StencilMask[Separate] StencilOp[Separate] Storage Qualifiers Structures Subroutine Uniform Variables Subroutines Synchronization 2 2 6 1-2 12 1 2 9-12 6-7 6 6 6 9 10 2 10 1 T Tessellation Diagram Tessellation Variables TexBuffer* Texel Lookup Functions TexImage*[Multisample] TexParameter* TexStorage* TexStorage*[Multisample] TexSubImage* TextureBarrier TextureBuffer[Range] Texture Functions Texture Queries TextureStorage*[Multisample] TextureSubImage TextureView Texture View/State Diagram Timer Queries Transform Feedback TransformFeedbackVaryings Types 7 10 3 12 3 3 3 4 3 4 3 12 3 4 3 3 7 1 5 5 9 U Uniform Qualifiers Uniform Variables Uniform* UniformBlockBinding Uniform[Matrix]* UniformSubroutinesuiv Unmap[Named]Buffer UseProgram[Stages] 9-10 2 2 2 2 2 1 2 V ValidateProgram[Pipeline] Vector & Matrix Vector Relational Functions Vertex & Tessellation Diagram Vertex Arrays VertexAttrib* Vertex[Array]Attrib* VertexArrayBindingDivisor VertexArray*Buffer VertexAttrib*Format VertexAttrib*Pointer VertexAttrib[Binding, Divisor] VertexBindingDivisor Vertex Language Variables Viewport* 5 10 11 8 4-5 4 4 5 4 4 5 4-5 4 10 5 W WaitSync 1 OpenGL is a registered trademark of Silicon Graphics International, used under license by Khronos Group. The Khronos Group is an industry consortium creating open standards for the authoring and acceleration of parallel computing, graphics and dynamic media on a wide variety of platforms and devices. See www.khronos.org to learn more about the Khronos Group. See www.opengl.org to learn more about OpenGL. ©2014 Khronos Group - Rev. 0814 Reference card production by Miller & Mattson www.millermattson.com www.opengl.org/registry
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : Yes Create Date : 2014:08:08 08:28:01-07:00 Creator : Adobe InDesign CS6 (Windows) Modify Date : 2014:08:08 08:31:57-07:00 XMP Toolkit : Adobe XMP Core 5.2-c001 63.139439, 2010/09/27-13:37:26 Metadata Date : 2014:08:08 08:31:57-07:00 Creator Tool : Adobe InDesign CS6 (Windows) Instance ID : uuid:41b8fea1-549b-47a1-a9bc-a946ef57c9d1 Original Document ID : xmp.did:3195D91657CDDD11841EF19E5A285EBE Document ID : xmp.id:04E38895101FE411812BAF839D00D13F Rendition Class : proof:pdf Derived From Instance ID : xmp.iid:AD3B06E90F1FE411ADA38A64AD4B63E7 Derived From Document ID : xmp.did:4FACDCC7881EE411ADA38A64AD4B63E7 Derived From Original Document ID: xmp.did:3195D91657CDDD11841EF19E5A285EBE Derived From Rendition Class : default History Action : converted History Parameters : from application/x-indesign to application/pdf History Software Agent : Adobe InDesign CS6 (Windows) History Changed : / History When : 2014:08:08 08:28:01-07:00 Format : application/pdf Producer : Adobe PDF Library 10.0.1 Trapped : False Page Layout : OneColumn Page Count : 13EXIF Metadata provided by EXIF.tools