Pandas: Powerful Python Data Analysis Toolkit Pandas User Guide

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 1661

DownloadPandas: Powerful Python Data Analysis Toolkit Pandas User Guide
Open PDF In BrowserView PDF
pandas: powerful Python data analysis
toolkit
Release 0.16.1

Wes McKinney & PyData Development Team

May 11, 2015

CONTENTS

1

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3
3
13
29
35
40
67
73
100
107
130
141
150
156
167
171
173
173
178
182
183
183
188
189
191
192

2

Installation
2.1 Python version support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Installing pandas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

195
195
195
198

3

Contributing to pandas
3.1 Where to start? . . . . . . . . . . . .
3.2 Bug Reports/Enhancement Requests .
3.3 Working with the code . . . . . . . .
3.4 Contributing to the documentation . .
3.5 Contributing to the code base . . . .
3.6 Contributing your changes to pandas

201
201
202
202
205
207
209

4

What’s New
1.1 v0.16.1 (May 11, 2015) . . . . . . . . . . . . . . . . .
1.2 v0.16.0 (March 22, 2015) . . . . . . . . . . . . . . . .
1.3 v0.15.2 (December 12, 2014) . . . . . . . . . . . . . .
1.4 v0.15.1 (November 9, 2014) . . . . . . . . . . . . . . .
1.5 v0.15.0 (October 18, 2014) . . . . . . . . . . . . . . . .
1.6 v0.14.1 (July 11, 2014) . . . . . . . . . . . . . . . . . .
1.7 v0.14.0 (May 31 , 2014) . . . . . . . . . . . . . . . . .
1.8 v0.13.1 (February 3, 2014) . . . . . . . . . . . . . . . .
1.9 v0.13.0 (January 3, 2014) . . . . . . . . . . . . . . . .
1.10 v0.12.0 (July 24, 2013) . . . . . . . . . . . . . . . . . .
1.11 v0.11.0 (April 22, 2013) . . . . . . . . . . . . . . . . .
1.12 v0.10.1 (January 22, 2013) . . . . . . . . . . . . . . . .
1.13 v0.10.0 (December 17, 2012) . . . . . . . . . . . . . .
1.14 v0.9.1 (November 14, 2012) . . . . . . . . . . . . . . .
1.15 v0.9.0 (October 7, 2012) . . . . . . . . . . . . . . . . .
1.16 v0.8.1 (July 22, 2012) . . . . . . . . . . . . . . . . . .
1.17 v0.8.0 (June 29, 2012) . . . . . . . . . . . . . . . . . .
1.18 v.0.7.3 (April 12, 2012) . . . . . . . . . . . . . . . . .
1.19 v.0.7.2 (March 16, 2012) . . . . . . . . . . . . . . . . .
1.20 v.0.7.1 (February 29, 2012) . . . . . . . . . . . . . . .
1.21 v.0.7.0 (February 9, 2012) . . . . . . . . . . . . . . . .
1.22 v.0.6.1 (December 13, 2011) . . . . . . . . . . . . . . .
1.23 v.0.6.0 (November 25, 2011) . . . . . . . . . . . . . . .
1.24 v.0.5.0 (October 24, 2011) . . . . . . . . . . . . . . . .
1.25 v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)

Frequently Asked Questions (FAQ)

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

213
i

4.1
4.2
4.3
4.4
4.5
5

6

7

8

9

ii

DataFrame memory usage . . . . . . . . . . . . . .
Adding Features to your pandas Installation . . . . .
Migrating from scikits.timeseries to pandas >= 0.8.0
Byte-Ordering Issues . . . . . . . . . . . . . . . . .
Visualizing Data in Qt applications . . . . . . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

213
214
215
219
220

Package overview
5.1 Data structures at a glance . . .
5.2 Mutability and copying of data .
5.3 Getting Support . . . . . . . .
5.4 Credits . . . . . . . . . . . . .
5.5 Development Team . . . . . . .
5.6 License . . . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

223
223
224
224
224
224
224

10 Minutes to pandas
6.1 Object Creation . . .
6.2 Viewing Data . . . .
6.3 Selection . . . . . .
6.4 Missing Data . . . .
6.5 Operations . . . . .
6.6 Merge . . . . . . . .
6.7 Grouping . . . . . .
6.8 Reshaping . . . . .
6.9 Time Series . . . . .
6.10 Categoricals . . . .
6.11 Plotting . . . . . . .
6.12 Getting Data In/Out
6.13 Gotchas . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

227
227
229
230
235
235
238
240
241
243
244
246
247
249

Tutorials
7.1 Internal Guides . . . . . . . . . . . . . . . . . .
7.2 pandas Cookbook . . . . . . . . . . . . . . . .
7.3 Lessons for New pandas Users . . . . . . . . . .
7.4 Practical data analysis with Python . . . . . . .
7.5 Excel charts with pandas, vincent and xlsxwriter
7.6 Various Tutorials . . . . . . . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

251
251
251
252
252
252
252

Cookbook
8.1 Idioms . . . . . . . . .
8.2 Selection . . . . . . . .
8.3 MultiIndexing . . . . .
8.4 Missing Data . . . . . .
8.5 Grouping . . . . . . . .
8.6 Timeseries . . . . . . .
8.7 Merge . . . . . . . . . .
8.8 Plotting . . . . . . . . .
8.9 Data In/Out . . . . . . .
8.10 Computation . . . . . .
8.11 Timedeltas . . . . . . .
8.12 Aliasing Axis Names . .
8.13 Creating Example Data .

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

255
255
258
262
266
267
275
276
277
278
281
281
283
284

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

Intro to Data Structures
285
9.1 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
9.2 DataFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

9.3
9.4
9.5

Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Panel4D (Experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
PanelND (Experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

10 Essential Basic Functionality
10.1 Head and Tail . . . . . . . . . . . .
10.2 Attributes and the raw ndarray(s) .
10.3 Accelerated operations . . . . . . .
10.4 Flexible binary operations . . . . .
10.5 Descriptive statistics . . . . . . . .
10.6 Function application . . . . . . . .
10.7 Reindexing and altering labels . . .
10.8 Iteration . . . . . . . . . . . . . . .
10.9 Vectorized string methods . . . . .
10.10 Sorting by index and value . . . . .
10.11 Copying . . . . . . . . . . . . . .
10.12 dtypes . . . . . . . . . . . . . . . .
10.13 Selecting columns based on dtype

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

313
313
314
315
315
321
329
334
341
345
346
349
349
356

11 Working with Text Data
11.1 Splitting and Replacing Strings
11.2 Indexing with .str . . . . . .
11.3 Extracting Substrings . . . . . .
11.4 Method Summary . . . . . . .

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

359
360
362
363
365

12 Options and Settings
12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Getting and Setting Options . . . . . . . . . . . . . . .
12.3 Setting Startup Options in python/ipython Environment
12.4 Frequently Used Options . . . . . . . . . . . . . . . . .
12.5 List of Options . . . . . . . . . . . . . . . . . . . . . .
12.6 Number Formatting . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

367
367
368
369
369
375
376

13 Indexing and Selecting Data
13.1 Different Choices for Indexing . . . . .
13.2 Deprecations . . . . . . . . . . . . . .
13.3 Basics . . . . . . . . . . . . . . . . . .
13.4 Attribute Access . . . . . . . . . . . .
13.5 Slicing ranges . . . . . . . . . . . . .
13.6 Selection By Label . . . . . . . . . . .
13.7 Selection By Position . . . . . . . . .
13.8 Selecting Random Samples . . . . . .
13.9 Setting With Enlargement . . . . . . .
13.10 Fast scalar value getting and setting . .
13.11 Boolean indexing . . . . . . . . . . . .
13.12 Indexing with isin . . . . . . . . . . .
13.13 The where() Method and Masking .
13.14 The query() Method (Experimental)
13.15 Duplicate Data . . . . . . . . . . . . .
13.16 Dictionary-like get() method . . . .
13.17 The select() Method . . . . . . . .
13.18 The lookup() Method . . . . . . . .
13.19 Index objects . . . . . . . . . . . . . .
13.20 Set / Reset Index . . . . . . . . . . . .
13.21 Returning a view versus a copy . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

377
377
378
379
380
382
383
386
390
392
393
394
395
397
401
411
412
413
413
413
415
418

.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

iii

14 MultiIndex / Advanced Indexing
14.1 Hierarchical indexing (MultiIndex) . . . . .
14.2 Advanced indexing with hierarchical index .
14.3 The need for sortedness with MultiIndex
14.4 Take Methods . . . . . . . . . . . . . . . .
14.5 CategoricalIndex . . . . . . . . . . . . . . .
14.6 Float64Index . . . . . . . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

421
421
426
435
437
439
441

15 Computational tools
15.1 Statistical functions . . . . . . . . . . . .
15.2 Moving (rolling) statistics / moments . . .
15.3 Expanding window moment functions . . .
15.4 Exponentially weighted moment functions

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

445
445
449
457
458

16 Working with missing data
16.1 Missing data basics . . . . . . . . . . .
16.2 Datetimes . . . . . . . . . . . . . . . .
16.3 Inserting missing data . . . . . . . . .
16.4 Calculations with missing data . . . . .
16.5 Cleaning / filling missing data . . . . .
16.6 Missing data casting rules and indexing

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

463
463
465
465
466
467
480

17 Group By: split-apply-combine
17.1 Splitting an object into groups .
17.2 Iterating through groups . . . .
17.3 Selecting a group . . . . . . . .
17.4 Aggregation . . . . . . . . . .
17.5 Transformation . . . . . . . . .
17.6 Filtration . . . . . . . . . . . .
17.7 Dispatching to instance methods
17.8 Flexible apply . . . . . . . .
17.9 Other useful features . . . . . .
17.10 Examples . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

483
484
488
489
489
493
497
498
500
502
509

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

18 Merge, join, and concatenate
511
18.1 Concatenating objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
18.2 Database-style DataFrame joining/merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
19 Reshaping and Pivot Tables
19.1 Reshaping by pivoting DataFrame objects
19.2 Reshaping by stacking and unstacking . .
19.3 Reshaping by Melt . . . . . . . . . . . .
19.4 Combining with stats and GroupBy . . .
19.5 Pivot tables and cross-tabulations . . . .
19.6 Tiling . . . . . . . . . . . . . . . . . . .
19.7 Computing indicator / dummy variables .
19.8 Factorizing values . . . . . . . . . . . .

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

535
535
536
541
542
543
547
547
550

20 Time Series / Date functionality
20.1 Time Stamps vs. Time Spans . . . .
20.2 Converting to Timestamps . . . . . .
20.3 Generating Ranges of Timestamps . .
20.4 DatetimeIndex . . . . . . . . . . . .
20.5 DateOffset objects . . . . . . . . . .
20.6 Time series-related instance methods

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

551
552
553
554
556
563
573

iv

.
.
.
.
.
.

.
.
.
.
.
.

20.7
20.8
20.9
20.10
20.11

Up- and downsampling . . . . . . . .
Time Span Representation . . . . . .
Converting between Representations
Representing out-of-bounds spans . .
Time Zone Handling . . . . . . . . .

21 Time Deltas
21.1 Parsing . . . . . . . .
21.2 Operations . . . . . .
21.3 Reductions . . . . . .
21.4 Frequency Conversion
21.5 Attributes . . . . . . .
21.6 TimedeltaIndex . . . .
21.7 Resampling . . . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

575
577
583
584
585

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

593
593
594
598
599
600
601
604

22 Categorical Data
22.1 Object Creation . . . . .
22.2 Description . . . . . . .
22.3 Working with categories
22.4 Sorting and Order . . .
22.5 Comparisons . . . . . .
22.6 Operations . . . . . . .
22.7 Data munging . . . . .
22.8 Getting Data In/Out . .
22.9 Missing Data . . . . . .
22.10 Gotchas . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

605
605
608
609
612
614
616
617
621
622
624

23 Plotting
23.1 Basic Plotting: plot . . . . . .
23.2 Other Plots . . . . . . . . . . .
23.3 Plotting with Missing Data . . .
23.4 Plotting Tools . . . . . . . . . .
23.5 Plot Formatting . . . . . . . . .
23.6 Plotting directly with matplotlib
23.7 Trellis plotting interface . . . .

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

629
629
632
663
664
672
695
696

24 IO Tools (Text, CSV, HDF5, ...)
24.1 CSV & Text files . . . . . . . . .
24.2 JSON . . . . . . . . . . . . . . .
24.3 HTML . . . . . . . . . . . . . .
24.4 Excel files . . . . . . . . . . . .
24.5 Clipboard . . . . . . . . . . . . .
24.6 Pickling . . . . . . . . . . . . . .
24.7 msgpack (experimental) . . . . .
24.8 HDF5 (PyTables) . . . . . . . . .
24.9 SQL Queries . . . . . . . . . . .
24.10 Google BigQuery (Experimental)
24.11 Stata Format . . . . . . . . . . .
24.12 Other file formats . . . . . . . . .
24.13 Performance Considerations . . .

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

711
712
735
743
751
754
755
756
758
785
793
794
796
797

25 Remote Data Access
799
25.1 Yahoo! Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
25.2 Yahoo! Finance Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
25.3 Google Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
v

25.4
25.5
25.6
25.7

FRED . . . . . .
Fama/French . .
World Bank . . .
Google Analytics

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

802
803
803
806

26 Enhancing Performance
809
26.1 Cython (Writing C extensions for pandas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
26.2 Expression Evaluation via eval() (Experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
27 Sparse data structures
27.1 SparseArray . . . . . . . .
27.2 SparseList . . . . . . . . .
27.3 SparseIndex objects . . . .
27.4 Interaction with scipy.sparse

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

821
823
823
824
824

28 Caveats and Gotchas
28.1 Using If/Truth Statements with pandas . . . . .
28.2 NaN, Integer NA values and NA type promotions
28.3 Integer indexing . . . . . . . . . . . . . . . . .
28.4 Label-based slicing conventions . . . . . . . . .
28.5 Miscellaneous indexing gotchas . . . . . . . . .
28.6 Timestamp limitations . . . . . . . . . . . . . .
28.7 Parsing Dates from Text Files . . . . . . . . . .
28.8 Differences with NumPy . . . . . . . . . . . . .
28.9 Thread-safety . . . . . . . . . . . . . . . . . . .
28.10 HTML Table Parsing . . . . . . . . . . . . . . .
28.11 Byte-Ordering Issues . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

829
829
830
832
832
833
835
835
836
836
836
837

29 rpy2 / R interface
29.1 Updating your code to use rpy2 functions
29.2 R interface with rpy2 . . . . . . . . . . .
29.3 Transferring R data sets into Python . . .
29.4 Converting DataFrames into R objects . .
29.5 Calling R functions with pandas objects .
29.6 High-level interface to R estimators . . .

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

839
839
840
840
840
841
841

30 pandas Ecosystem
30.1 Statistics and Machine Learning
30.2 Visualization . . . . . . . . . .
30.3 IDE . . . . . . . . . . . . . . .
30.4 API . . . . . . . . . . . . . . .
30.5 Domain Specific . . . . . . . .
30.6 Out-of-core . . . . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

843
843
843
844
844
845
845

31 Comparison with R / R libraries
31.1 Base R . . . . . . . . . . .
31.2 zoo . . . . . . . . . . . . .
31.3 xts . . . . . . . . . . . . .
31.4 plyr . . . . . . . . . . . . .
31.5 reshape / reshape2 . . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

847
847
853
853
853
854

32 Comparison with SQL
32.1 SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32.2 WHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32.3 GROUP BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

859
859
860
862

vi

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

32.4
32.5
32.6
32.7

JOIN . .
UNION .
UPDATE
DELETE

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

864
865
867
867

33 API Reference
33.1 Input/Output . . . . . .
33.2 General functions . . . .
33.3 Series . . . . . . . . . .
33.4 DataFrame . . . . . . .
33.5 Panel . . . . . . . . . .
33.6 Panel4D . . . . . . . .
33.7 Index . . . . . . . . . .
33.8 CategoricalIndex . . . .
33.9 DatetimeIndex . . . . .
33.10 TimedeltaIndex . . . . .
33.11 GroupBy . . . . . . . .
33.12 General utility functions

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

869
869
896
938
1097
1270
1355
1405
1436
1462
1492
1512
1536

34 Internals
1549
34.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549
34.2 Subclassing pandas Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1550
35 Release Notes
35.1 pandas 0.16.1
35.2 pandas 0.16.0
35.3 pandas 0.15.2
35.4 pandas 0.15.1
35.5 pandas 0.15.0
35.6 pandas 0.14.1
35.7 pandas 0.14.0
35.8 pandas 0.13.1
35.9 pandas 0.13.0
35.10 pandas 0.12.0
35.11 pandas 0.11.0
35.12 pandas 0.10.1
35.13 pandas 0.10.0
35.14 pandas 0.9.1
35.15 pandas 0.9.0
35.16 pandas 0.8.1
35.17 pandas 0.8.0
35.18 pandas 0.7.3
35.19 pandas 0.7.2
35.20 pandas 0.7.1
35.21 pandas 0.7.0
35.22 pandas 0.6.1
35.23 pandas 0.6.0
35.24 pandas 0.5.0
35.25 pandas 0.4.3
35.26 pandas 0.4.2
35.27 pandas 0.4.1
35.28 pandas 0.4.0
35.29 pandas 0.3.0
Python Module Index

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

1555
1555
1557
1559
1561
1562
1564
1566
1569
1572
1586
1593
1599
1601
1606
1608
1613
1615
1620
1621
1623
1624
1630
1632
1636
1640
1641
1642
1644
1649
1651
vii

viii

pandas: powerful Python data analysis toolkit, Release 0.16.1

PDF Version
Zipped HTML Date: May 11, 2015 Version: 0.16.1
Binary Installers: http://pypi.python.org/pypi/pandas
Source Repository: http://github.com/pydata/pandas
Issues & Ideas: https://github.com/pydata/pandas/issues
Q&A Support: http://stackoverflow.com/questions/tagged/pandas
Developer Mailing List: http://groups.google.com/group/pydata
pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with
“relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing
practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful
and flexible open source data analysis / manipulation tool available in any language. It is already well on its way
toward this goal.
pandas is well suited for many different kinds of data:
• Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
• Ordered and unordered (not necessarily fixed-frequency) time series data.
• Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels
• Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed
into a pandas data structure
The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the
vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users,
DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy
and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.
Here are just a few of the things that pandas does well:
• Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
• Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
• Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can
simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
• Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
• Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into
DataFrame objects
• Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
• Intuitive merging and joining data sets
• Flexible reshaping and pivoting of data sets
• Hierarchical labeling of axes (possible to have multiple labels per tick)
• Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading
data from the ultrafast HDF5 format
• Time series-specific functionality: date range generation and frequency conversion, moving window statistics,
moving window linear regressions, date shifting and lagging, etc.

CONTENTS

1

pandas: powerful Python data analysis toolkit, Release 0.16.1

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific
research environments. For data scientists, working with data is typically divided into multiple stages: munging and
cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or
tabular display. pandas is the ideal tool for all of these tasks.
Some other notes
• pandas is fast. Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However,
as with anything else generalization usually sacrifices performance. So if you focus on one feature for your
application you may be able to create a faster specialized tool.
• pandas is a dependency of statsmodels, making it an important part of the statistical computing ecosystem in
Python.
• pandas has been used extensively in production in financial applications.
Note: This documentation assumes general familiarity with NumPy. If you haven’t used NumPy much or at all, do
invest some time in learning about NumPy first.
See the package overview for more detail about what’s in the library.

2

CONTENTS

CHAPTER

ONE

WHAT’S NEW

These are new features and improvements of note in each release.

1.1 v0.16.1 (May 11, 2015)
This is a minor bug-fix release from 0.16.0 and includes a a large number of bug fixes along several new features,
enhancements, and performance improvements. We recommend that all users upgrade to this version.
Highlights include:
• Support for a CategoricalIndex, a category based index, see here
• New section on how-to-contribute to pandas, see here
• Revised “Merge, join, and concatenate” documentation, including graphical examples to make it easier to understand each operations, see here
• New method sample for drawing random samples from Series, DataFrames and Panels. See here
• The default Index printing has changed to a more uniform format, see here
• BusinessHour datetime-offset is now supported, see here
• Further enhancement to the .str accessor to make string operations easier, see here
What’s new in v0.16.1
• Enhancements
– CategoricalIndex
– Sample
– String Methods Enhancements
– Other Enhancements
• API changes
– Deprecations
• Index Representation
• Performance Improvements
• Bug Fixes
Warning: In pandas 0.17.0, the sub-package pandas.io.data will be removed in favor of a separately
installable package. See here for details (GH8961)

3

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.1.1 Enhancements
CategoricalIndex
We introduce a CategoricalIndex, a new type of index object that is useful for supporting indexing with duplicates. This is a container around a Categorical (introduced in v0.15.0) and allows efficient indexing and storage
of an index with a large number of duplicated elements. Prior to 0.16.1, setting the index of a DataFrame/Series
with a category dtype would convert this to regular object-based Index.
In [1]: df = DataFrame({'A' : np.arange(6),
...:
'B' : Series(list('aabbca')).astype('category',
...:
categories=list('cab'))
...:
})
...:
In [2]: df
Out[2]:
A B
0 0 a
1 1 a
2 2 b
3 3 b
4 4 c
5 5 a
In [3]: df.dtypes
Out[3]:
A
int32
B
category
dtype: object
In [4]: df.B.cat.categories
Out[4]: Index([u'c', u'a', u'b'], dtype='object')

setting the index, will create create a CategoricalIndex
In [5]: df2 = df.set_index('B')

In [6]: df2.index
Out[6]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'c', u'a', u'b'], ordered

indexing with __getitem__/.iloc/.loc/.ix works similarly to an Index with duplicates. The indexers
MUST be in the category or the operation will raise.
In [7]: df2.loc['a']
Out[7]:
A
B
a 0
a 1
a 5

and preserves the CategoricalIndex

In [8]: df2.loc['a'].index
Out[8]: CategoricalIndex([u'a', u'a', u'a'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B',

sorting will order by the order of the categories

4

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [9]: df2.sort_index()
Out[9]:
A
B
c 4
a 0
a 1
a 5
b 2
b 3

groupby operations on the index will preserve the index nature as well
In [10]: df2.groupby(level=0).sum()
Out[10]:
A
B
c 4
a 6
b 5

In [11]: df2.groupby(level=0).sum().index
Out[11]: CategoricalIndex([u'c', u'a', u'b'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B'

reindexing operations, will return a resulting index based on the type of the passed indexer, meaning that passing a
list will return a plain-old-Index; indexing with a Categorical will return a CategoricalIndex, indexed
according to the categories of the PASSED Categorical dtype. This allows one to arbitrarly index these even with
values NOT in the categories, similarly to how you can reindex ANY pandas index.
In [12]: df2.reindex(['a','e'])
Out[12]:
A
B
a
0
a
1
a
5
e NaN
In [13]: df2.reindex(['a','e']).index
Out[13]: Index([u'a', u'a', u'a', u'e'], dtype='object', name=u'B')
In [14]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))
Out[14]:
A
B
a
0
a
1
a
5
e NaN

In [15]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde'))).index
Out[15]: CategoricalIndex([u'a', u'a', u'a', u'e'], categories=[u'a', u'b', u'c', u'd', u'e'], ordere

See the documentation for more. (GH7629, GH10038, GH10039)

1.1. v0.16.1 (May 11, 2015)

5

pandas: powerful Python data analysis toolkit, Release 0.16.1

Sample
Series, DataFrames, and Panels now have a new method: sample(). The method accepts a specific number of rows
or columns to return, or a fraction of the total number or rows or columns. It also has options for sampling with or
without replacement, for passing in a column for weights for non-uniform sampling, and for setting seed values to
facilitate replication. (GH2419)
In [16]: example_series = Series([0,1,2,3,4,5])
# When no arguments are passed, returns 1
In [17]: example_series.sample()
Out[17]:
2
2
dtype: int64
# One may specify either a number of rows:
In [18]: example_series.sample(n=3)
Out[18]:
4
4
2
2
5
5
dtype: int64
# Or a fraction of the rows:
In [19]: example_series.sample(frac=0.5)
Out[19]:
0
0
4
4
3
3
dtype: int64
# weights are accepted.
In [20]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
In [21]: example_series.sample(n=3, weights=example_weights)
Out[21]:
5
5
2
2
3
3
dtype: int64
# weights will also be normalized if they do not sum to one,
# and missing values will be treated as zeros.
In [22]: example_weights2 = [0.5, 0, 0, 0, None, np.nan]
In [23]: example_series.sample(n=1, weights=example_weights2)
Out[23]:
0
0
dtype: int64

When applied to a DataFrame, one may pass the name of a column to specify sampling weights when sampling from
rows.
In [24]: df = DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})
In [25]: df.sample(n=3, weights='weight_column')
Out[25]:
col1 weight_column
1
8
0.4

6

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
0

7
9

0.1
0.5

String Methods Enhancements
Continuing from v0.16.0, the following enhancements make string operations easier and more consistent with standard
python string operations.
• Added StringMethods (.str accessor) to Index (GH9068)
The .str accessor is now available for both Series and Index.
In [26]: idx = Index([' jack', 'jill ', ' jesse ', 'frank'])
In [27]: idx.str.strip()
Out[27]: Index([u'jack', u'jill', u'jesse', u'frank'], dtype='object')

One special case for the .str accessor on Index is that if a string method returns bool, the .str accessor
will return a np.array instead of a boolean Index (GH8875). This enables the following expression to work
naturally:
In [28]: idx = Index(['a1', 'a2', 'b1', 'b2'])
In [29]: s = Series(range(4), index=idx)
In [30]: s
Out[30]:
a1
0
a2
1
b1
2
b2
3
dtype: int64
In [31]: idx.str.startswith('a')
Out[31]: array([ True, True, False, False], dtype=bool)
In [32]: s[s.index.str.startswith('a')]
Out[32]:
a1
0
a2
1
dtype: int64

• The following new methods are accesible via .str accessor to apply the function to each values. (GH9766,
GH9773, GH10031, GH10045, GH10052)
capitalize()
index()

swapcase()
rindex()

Methods
normalize()
translate()

partition()

rpartition()

• split now takes expand keyword to specify whether to expand dimensionality. return_type is deprecated. (GH9847)
In [33]: s = Series(['a,b', 'a,c', 'b,c'])
# return
In [34]:
Out[34]:
0
[a,
1
[a,

Series
s.str.split(',')
b]
c]

1.1. v0.16.1 (May 11, 2015)

7

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
[b, c]
dtype: object
# return DataFrame
In [35]: s.str.split(',', expand=True)
Out[35]:
0 1
0 a b
1 a c
2 b c
In [36]: idx = Index(['a,b', 'a,c', 'b,c'])
# return Index
In [37]: idx.str.split(',')
Out[37]: Index([[u'a', u'b'], [u'a', u'c'], [u'b', u'c']], dtype='object')
# return MultiIndex
In [38]: idx.str.split(',', expand=True)
Out[38]:
MultiIndex(levels=[[u'a', u'b'], [u'b', u'c']],
labels=[[0, 0, 1], [0, 1, 1]])

• Improved extract and get_dummies methods for Index.str (GH9980)
Other Enhancements
• BusinessHour offset is now supported, which represents business hours starting from 09:00 - 17:00 on
BusinessDay by default. See Here for details. (GH7905)
In [39]: from pandas.tseries.offsets import BusinessHour
In [40]: Timestamp('2014-08-01 09:00') + BusinessHour()
Out[40]: Timestamp('2014-08-01 10:00:00')
In [41]: Timestamp('2014-08-01 07:00') + BusinessHour()
Out[41]: Timestamp('2014-08-01 10:00:00')
In [42]: Timestamp('2014-08-01 16:30') + BusinessHour()
Out[42]: Timestamp('2014-08-04 09:30:00')

• DataFrame.diff now takes an axis parameter that determines the direction of differencing (GH9727)
• Allow clip, clip_lower, and clip_upper to accept array-like arguments as thresholds (This is a regression from 0.11.0). These methods now have an axis parameter which determines how the Series or DataFrame
will be aligned with the threshold(s). (GH6966)
• DataFrame.mask() and Series.mask() now support same keywords as where (GH8801)
• drop function can now accept errors keyword to suppress ValueError raised when any of label does not
exist in the target data. (GH6736)
In [43]: df = DataFrame(np.random.randn(3, 3), columns=['A', 'B', 'C'])
In [44]: df.drop(['A', 'X'], axis=1, errors='ignore')
Out[44]:
B
C
0 -0.064034 -1.282782

8

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1 -1.071357
2 0.583787

0.441153
0.221471

• Add support for separating years and quarters using dashes, for example 2014-Q1. (GH9688)
• Allow conversion of values with dtype datetime64 or timedelta64 to strings using astype(str)
(GH9757)
• get_dummies function now accepts sparse keyword. If set to True, the return DataFrame is sparse, e.g.
SparseDataFrame. (GH8823)
• Period now accepts datetime64 as value input. (GH9054)
• Allow timedelta string conversion when leading zero is missing from time definition, ie 0:00:00 vs 00:00:00.
(GH9570)
• Allow Panel.shift with axis=’items’ (GH9890)
• Trying to write an excel file now raises NotImplementedError if the DataFrame has a MultiIndex
instead of writing a broken Excel file. (GH9794)
• Allow Categorical.add_categories to accept Series or np.array. (GH9927)
• Add/delete str/dt/cat accessors dynamically from __dir__. (GH9910)
• Add normalize as a dt accessor method. (GH10047)
• DataFrame and Series now have _constructor_expanddim property as overridable constructor for
one higher dimensionality data. This should be used only when it is really needed, see here
• pd.lib.infer_dtype now returns ’bytes’ in Python 3 where appropriate. (GH10032)

1.1.2 API changes
• When passing in an ax to df.plot( ..., ax=ax), the sharex kwarg will now default to False. The result
is that the visibility of xlabels and xticklabels will not anymore be changed. You have to do that by yourself
for the right axes in your figure or set sharex=True explicitly (but this changes the visible for all axes in the
figure, not only the one which is passed in!). If pandas creates the subplots itself (e.g. no passed in ax kwarg),
then the default is still sharex=True and the visibility changes are applied.
• assign() now inserts new columns in alphabetical order. Previously the order was arbitrary. (GH9777)
• By default, read_csv and read_table will now try to infer the compression type based on the file extension. Set compression=None to restore the previous behavior (no decompression). (GH9770)
Deprecations
• Series.str.split‘s return_type keyword was removed in favor of expand (GH9847)

1.1.3 Index Representation
The string representation of Index and its sub-classes have now been unified. These will show a single-line display
if there are few values; a wrapped multi-line display for a lot of values (but less than display.max_seq_items;
if lots of items (> display.max_seq_items) will show a truncated display (the head and tail of the data). The
formatting for MultiIndex is unchanges (a multi-line wrapped display). The display width responds to the option
display.max_seq_items, which is defaulted to 100. (GH6482)
Previous Behavior

1.1. v0.16.1 (May 11, 2015)

9

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [2]: pd.Index(range(4),name='foo')
Out[2]: Int64Index([0, 1, 2, 3], dtype='int64')

In [3]: pd.Index(range(104),name='foo')
Out[3]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
In [4]: pd.date_range('20130101',periods=4,name='foo',tz='US/Eastern')
Out[4]:

[2013-01-01 00:00:00-05:00, ..., 2013-01-04 00:00:00-05:00]
Length: 4, Freq: D, Timezone: US/Eastern
In [5]: pd.date_range('20130101',periods=104,name='foo',tz='US/Eastern')
Out[5]:

[2013-01-01 00:00:00-05:00, ..., 2013-04-14 00:00:00-04:00]
Length: 104, Freq: D, Timezone: US/Eastern

New Behavior
In [45]: pd.set_option('display.width', 80)
In [46]: pd.Index(range(4), name='foo')
Out[46]: Int64Index([0, 1, 2, 3], dtype='int64', name=u'foo')
In [47]: pd.Index(range(30), name='foo')
Out[47]:
Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
dtype='int64', name=u'foo')
In [48]: pd.Index(range(104), name='foo')
Out[48]:
Int64Index([ 0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
...
94, 95, 96, 97, 98, 99, 100, 101, 102, 103],
dtype='int64', name=u'foo', length=104)
In [49]: pd.CategoricalIndex(['a','bb','ccc','dddd'], ordered=True, name='foobar')
Out[49]: CategoricalIndex([u'a', u'bb', u'ccc', u'dddd'], categories=[u'a', u'bb', u'ccc', u'dddd'],

In [50]: pd.CategoricalIndex(['a','bb','ccc','dddd']*10, ordered=True, name='foobar')
Out[50]:
CategoricalIndex([u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd'],
categories=[u'a', u'bb', u'ccc', u'dddd'], ordered=True, name=u'foobar', dtype='cate

In [51]: pd.CategoricalIndex(['a','bb','ccc','dddd']*100, ordered=True, name='foobar')
Out[51]:
CategoricalIndex([u'a', u'bb', u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd',
u'a', u'bb',
...
u'ccc', u'dddd', u'a', u'bb', u'ccc', u'dddd', u'a', u'bb',
u'ccc', u'dddd'],
categories=[u'a', u'bb', u'ccc', u'dddd'], ordered=True, name=u'foobar', dtype='cate

10

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [52]: pd.date_range('20130101',periods=4, name='foo', tz='US/Eastern')
Out[52]:
DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
'2013-01-03 00:00:00-05:00', '2013-01-04 00:00:00-05:00'],
dtype='datetime64[ns]', name=u'foo', freq='D', tz='US/Eastern')
In [53]: pd.date_range('20130101',periods=25, freq='D')
Out[53]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03',
'2013-01-05', '2013-01-06', '2013-01-07',
'2013-01-09', '2013-01-10', '2013-01-11',
'2013-01-13', '2013-01-14', '2013-01-15',
'2013-01-17', '2013-01-18', '2013-01-19',
'2013-01-21', '2013-01-22', '2013-01-23',
'2013-01-25'],
dtype='datetime64[ns]', freq='D', tz=None)

'2013-01-04',
'2013-01-08',
'2013-01-12',
'2013-01-16',
'2013-01-20',
'2013-01-24',

In [54]: pd.date_range('20130101',periods=104, name='foo', tz='US/Eastern')
Out[54]:
DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
'2013-01-03 00:00:00-05:00', '2013-01-04 00:00:00-05:00',
'2013-01-05 00:00:00-05:00', '2013-01-06 00:00:00-05:00',
'2013-01-07 00:00:00-05:00', '2013-01-08 00:00:00-05:00',
'2013-01-09 00:00:00-05:00', '2013-01-10 00:00:00-05:00',
...
'2013-04-05 00:00:00-04:00', '2013-04-06 00:00:00-04:00',
'2013-04-07 00:00:00-04:00', '2013-04-08 00:00:00-04:00',
'2013-04-09 00:00:00-04:00', '2013-04-10 00:00:00-04:00',
'2013-04-11 00:00:00-04:00', '2013-04-12 00:00:00-04:00',
'2013-04-13 00:00:00-04:00', '2013-04-14 00:00:00-04:00'],
dtype='datetime64[ns]', name=u'foo', length=104, freq='D', tz='US/Eastern')

1.1.4 Performance Improvements
• Improved csv write performance with mixed dtypes, including datetimes by up to 5x (GH9940)
• Improved csv write performance generally by 2x (GH9940)
• Improved the performance of pd.lib.max_len_string_array by 5-7x (GH10024)

1.1.5 Bug Fixes
• Bug where labels did not appear properly in the legend of DataFrame.plot(), passing label= arguments
works, and Series indices are no longer mutated. (GH9542)
• Bug in json serialization causing a segfault when a frame had zero length. (GH9805)
• Bug in read_csv where missing trailing delimiters would cause segfault. (GH5664)
• Bug in retaining index name on appending (GH9862)
• Bug in scatter_matrix draws unexpected axis ticklabels (GH5662)
• Fixed bug in StataWriter resulting in changes to input DataFrame upon save (GH9795).
• Bug in transform causing length mismatch when null entries were present and a fast aggregator was being
used (GH9697)

1.1. v0.16.1 (May 11, 2015)

11

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in equals causing false negatives when block order differed (GH9330)
• Bug in grouping with multiple pd.Grouper where one is non-time based (GH10063)
• Bug in read_sql_table error when reading postgres table with timezone (GH7139)
• Bug in DataFrame slicing may not retain metadata (GH9776)
• Bug where TimdeltaIndex were not properly serialized in fixed HDFStore (GH9635)
• Bug with TimedeltaIndex constructor ignoring name when given another TimedeltaIndex as data
(GH10025).
• Bug in DataFrameFormatter._get_formatted_index with not applying max_colwidth to the
DataFrame index (GH7856)
• Bug in .loc with a read-only ndarray data source (GH10043)
• Bug in groupby.apply() that would raise if a passed user defined function either returned only None (for
all input). (GH9685)
• Always use temporary files in pytables tests (GH9992)
• Bug in plotting continuously using secondary_y may not show legend properly. (GH9610, GH9779)
• Bug in DataFrame.plot(kind="hist") results in TypeError when DataFrame contains nonnumeric columns (GH9853)
• Bug where repeated plotting of DataFrame with a DatetimeIndex may raise TypeError (GH9852)
• Bug in setup.py that would allow an incompat cython version to build (GH9827)
• Bug in plotting secondary_y incorrectly attaches right_ax property to secondary axes specifying itself
recursively. (GH9861)
• Bug in Series.quantile on empty Series of type Datetime or Timedelta (GH9675)
• Bug in where causing incorrect results when upcasting was required (GH9731)
• Bug in FloatArrayFormatter where decision boundary for displaying “small” floats in decimal format is
off by one order of magnitude for a given display.precision (GH9764)
• Fixed bug where DataFrame.plot() raised an error when both color and style keywords were passed
and there was no color symbol in the style strings (GH9671)
• Not showing a DeprecationWarning on combining list-likes with an Index (GH10083)
• Bug in read_csv and read_table when using skip_rows parameter if blank lines are present. (GH9832)
• Bug in read_csv() interprets index_col=True as 1 (GH9798)
• Bug in index equality comparisons using == failing on Index/MultiIndex type incompatibility (GH9785)
• Bug in which SparseDataFrame could not take nan as a column name (GH8822)
• Bug in to_msgpack and read_msgpack zlib and blosc compression support (GH9783)
• Bug GroupBy.size doesn’t attach index name properly if grouped by TimeGrouper (GH9925)
• Bug causing an exception in slice assignments because length_of_indexer returns wrong results
(GH9995)
• Bug in csv parser causing lines with initial whitespace plus one non-space character to be skipped. (GH9710)
• Bug in C csv parser causing spurious NaNs when data started with newline followed by whitespace. (GH10022)
• Bug causing elements with a null group to spill into the final group when grouping by a Categorical
(GH9603)

12

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug where .iloc and .loc behavior is not consistent on empty dataframes (GH9964)
• Bug in invalid attribute access on a TimedeltaIndex incorrectly raised ValueError instead of
AttributeError (GH9680)
• Bug in unequal comparisons between categorical data and a scalar, which was not in the categories (e.g.
Series(Categorical(list("abc"), ordered=True)) > "d". This returned False for all elements, but now raises a TypeError. Equality comparisons also now return False for == and True for !=.
(GH9848)
• Bug in DataFrame __setitem__ when right hand side is a dictionary (GH9874)
• Bug in where when dtype is datetime64/timedelta64, but dtype of other is not (GH9804)
• Bug in MultiIndex.sortlevel() results in unicode level name breaks (GH9856)
• Bug in which groupby.transform incorrectly enforced output dtypes to match input dtypes. (GH9807)
• Bug in DataFrame constructor when columns parameter is set, and data is an empty list (GH9939)
• Bug in bar plot with log=True raises TypeError if all values are less than 1 (GH9905)
• Bug in horizontal bar plot ignores log=True (GH9905)
• Bug in PyTables queries that did not return proper results using the index (GH8265, GH9676)
• Bug where dividing a dataframe containing values of type Decimal by another Decimal would raise.
(GH9787)
• Bug where using DataFrames asfreq would remove the name of the index. (GH9885)
• Bug causing extra index point when resample BM/BQ (GH9756)
• Changed caching in AbstractHolidayCalendar to be at the instance level rather than at the class level as
the latter can result in unexpected behaviour. (GH9552)
• Fixed latex output for multi-indexed dataframes (GH9778)
• Bug causing an exception when setting an empty range using DataFrame.loc (GH9596)
• Bug in hiding ticklabels with subplots and shared axes when adding a new plot to an existing grid of axes
(GH9158)
• Bug in transform and filter when grouping on a categorical variable (GH9921)
• Bug in transform when groups are equal in number and dtype to the input index (GH9700)
• Google BigQuery connector now imports dependencies on a per-method basis.(GH9713)
• Updated BigQuery connector to no longer use deprecated oauth2client.tools.run() (GH8327)
• Bug in subclassed DataFrame. It may not return the correct class, when slicing or subsetting it. (GH9632)
• Bug in .median() where non-float null values are not handled correctly (GH10040)
• Bug in Series.fillna() where it raises if a numerically convertible string is given (GH10092)

1.2 v0.16.0 (March 22, 2015)
This is a major release from 0.15.2 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.
Highlights include:

1.2. v0.16.0 (March 22, 2015)

13

pandas: powerful Python data analysis toolkit, Release 0.16.1

• DataFrame.assign method, see here
• Series.to_coo/from_coo methods to interact with scipy.sparse, see here
• Backwards incompatible change
datetime.timedelta, see here

to

Timedelta

to

conform

the

.seconds

attribute

with

• Changes to the .loc slicing API to conform with the behavior of .ix see here
• Changes to the default for ordering in the Categorical constructor, see here
• Enhancement to the .str accessor to make string operations easier, see here
• The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpy modules are deprecated.
We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see
here
Check the API Changes and deprecations before updating.
What’s new in v0.16.0
• New features
– DataFrame Assign
– Interaction with scipy.sparse
– String Methods Enhancements
– Other enhancements
• Backwards incompatible API changes
– Changes in Timedelta
– Indexing Changes
– Categorical Changes
– Other API Changes
– Deprecations
– Removal of prior version deprecations/changes
• Performance Improvements
• Bug Fixes

1.2.1 New features
DataFrame Assign
Inspired by dplyr’s mutate verb, DataFrame has a new assign() method. The function signature for assign is
simply **kwargs. The keys are the column names for the new fields, and the values are either a value to be inserted
(for example, a Series or NumPy array), or a function of one argument to be called on the DataFrame. The new
values are inserted, and the entire DataFrame (with all original and new columns) is returned.
In [1]: iris = read_csv('data/iris.data')
In [2]: iris.head()
Out[2]:
SepalLength SepalWidth
0
5.1
3.5
1
4.9
3.0
2
4.7
3.2
3
4.6
3.1
4
5.0
3.6

14

PetalLength
1.4
1.4
1.3
1.5
1.4

PetalWidth
0.2
0.2
0.2
0.2
0.2

Name
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [3]: iris.assign(sepal_ratio=iris['SepalWidth'] /
Out[3]:
SepalLength SepalWidth PetalLength PetalWidth
0
5.1
3.5
1.4
0.2
1
4.9
3.0
1.4
0.2
2
4.7
3.2
1.3
0.2
3
4.6
3.1
1.5
0.2
4
5.0
3.6
1.4
0.2

iris['SepalLength']).head()
Name
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

sepal_ratio
0.686275
0.612245
0.680851
0.673913
0.720000

Above was an example of inserting a precomputed value. We can also pass in a function to be evalutated.
In [4]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] /
...:
x['SepalLength'])).head()
...:
Out[4]:
SepalLength SepalWidth PetalLength PetalWidth
Name sepal_ratio
0
5.1
3.5
1.4
0.2 Iris-setosa
0.686275
1
4.9
3.0
1.4
0.2 Iris-setosa
0.612245
2
4.7
3.2
1.3
0.2 Iris-setosa
0.680851
3
4.6
3.1
1.5
0.2 Iris-setosa
0.673913
4
5.0
3.6
1.4
0.2 Iris-setosa
0.720000

The power of assign comes when used in chains of operations. For example, we can limit the DataFrame to just
those with a Sepal Length greater than 5, calculate the ratio, and plot
In [5]: (iris.query('SepalLength > 5')
...:
.assign(SepalRatio = lambda x: x.SepalWidth / x.SepalLength,
...:
PetalRatio = lambda x: x.PetalWidth / x.PetalLength)
...:
.plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
...:
Out[5]: 

See the documentation for more. (GH9229)
Interaction with scipy.sparse
Added SparseSeries.to_coo() and SparseSeries.from_coo() methods (GH8048) for converting to
and from scipy.sparse.coo_matrix instances (see here). For example, given a SparseSeries with MultiIndex
we can convert to a scipy.sparse.coo_matrix by specifying the row and column labels as index levels:

1.2. v0.16.0 (March 22, 2015)

15

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [6]: from numpy import nan
In [7]: s = Series([3.0, nan, 1.0, 3.0, nan, nan])
In [8]: s.index = MultiIndex.from_tuples([(1, 2, 'a', 0),
...:
(1, 2, 'a', 1),
...:
(1, 1, 'b', 0),
...:
(1, 1, 'b', 1),
...:
(2, 1, 'b', 0),
...:
(2, 1, 'b', 1)],
...:
names=['A', 'B', 'C', 'D'])
...:
In [9]: s
Out[9]:
A B C D
1 2 a 0
3
1
NaN
1 b 0
1
1
3
2 1 b 0
NaN
1
NaN
dtype: float64
# SparseSeries
In [10]: ss = s.to_sparse()
In [11]: ss
Out[11]:
A B C D
1 2 a 0
3
1
NaN
1 b 0
1
1
3
2 1 b 0
NaN
1
NaN
dtype: float64
BlockIndex
Block locations: array([0, 2])
Block lengths: array([1, 2])
In [12]: A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
....:
column_levels=['C', 'D'],
....:
sort_labels=False)
....:
In [13]: A
Out[13]:
<3x4 sparse matrix of type ''
with 3 stored elements in COOrdinate format>
In [14]: A.todense()
Out[14]:
matrix([[ 3., 0., 0.,
[ 0., 0., 1.,
[ 0., 0., 0.,

0.],
3.],
0.]])

In [15]: rows

16

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[15]: [(1L, 2L), (1L, 1L), (2L, 1L)]
In [16]: columns
Out[16]: [('a', 0L), ('a', 1L), ('b', 0L), ('b', 1L)]

The from_coo method is a
scipy.sparse.coo_matrix:

convenience

method

for

creating

a

SparseSeries

from

a

In [17]: from scipy import sparse
In [18]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
....:
shape=(3, 4))
....:
In [19]: A
Out[19]:
<3x4 sparse matrix of type ''
with 3 stored elements in COOrdinate format>
In [20]: A.todense()
Out[20]:
matrix([[ 0., 0., 1.,
[ 3., 0., 0.,
[ 0., 0., 0.,

2.],
0.],
0.]])

In [21]: ss = SparseSeries.from_coo(A)
In [22]: ss
Out[22]:
0 2
1
3
2
1 0
3
dtype: float64
BlockIndex
Block locations: array([0])
Block lengths: array([3])

String Methods Enhancements
• Following new methods are accesible via .str accessor to apply the function to each values. This is intended
to make it more consistent with standard methods on strings. (GH9282, GH9352, GH9386, GH9387, GH9439)
isalnum()
islower()
find()

isalpha()
isupper()
rfind()

Methods
isdigit()
istitle()
ljust()

isdigit()
isnumeric()
rjust()

isspace()
isdecimal()
zfill()

In [23]: s = Series(['abcd', '3456', 'EFGH'])
In [24]: s.str.isalpha()
Out[24]:
0
True
1
False
2
True
dtype: bool
In [25]: s.str.find('ab')

1.2. v0.16.0 (March 22, 2015)

17

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[25]:
0
0
1
-1
2
-1
dtype: int64

• Series.str.pad() and Series.str.center() now accept fillchar option to specify filling character (GH9352)
In [26]: s = Series(['12', '300', '25'])
In [27]: s.str.pad(5, fillchar='_')
Out[27]:
0
___12
1
__300
2
___25
dtype: object

• Added Series.str.slice_replace(), which previously raised NotImplementedError (GH8888)
In [28]: s = Series(['ABCD', 'EFGH', 'IJK'])
In [29]: s.str.slice_replace(1, 3, 'X')
Out[29]:
0
AXD
1
EXH
2
IX
dtype: object
# replaced with empty char
In [30]: s.str.slice_replace(0, 1)
Out[30]:
0
BCD
1
FGH
2
JK
dtype: object

Other enhancements
• Reindex now supports method=’nearest’ for frames or series with a monotonic increasing or decreasing
index (GH9258):
In [31]: df = pd.DataFrame({'x': range(5)})
In [32]: df.reindex([0.2, 1.8, 3.5], method='nearest')
Out[32]:
x
0.2 0
1.8 2
3.5 4

This method is also exposed by the lower level Index.get_indexer and Index.get_loc methods.
• The read_excel() function’s sheetname argument now accepts a list and None, to get multiple or all sheets
respectively. If more than one sheet is specified, a dictionary is returned. (GH9450)
# Returns the 1st and 4th sheet, as a dictionary of DataFrames.
pd.read_excel('path_to_file.xls',sheetname=['Sheet1',3])

18

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Allow Stata files to be read incrementally with an iterator; support for long strings in Stata files. See the docs
here (GH9493:).
• Paths beginning with ~ will now be expanded to begin with the user’s home directory (GH9066)
• Added time interval selection in get_data_yahoo (GH9071)
• Added Timestamp.to_datetime64() to complement Timedelta.to_timedelta64() (GH9255)
• tseries.frequencies.to_offset() now accepts Timedelta as input (GH9064)
• Lag parameter was added to the autocorrelation method of Series, defaults to lag-1 autocorrelation (GH9192)
• Timedelta will now accept nanoseconds keyword in constructor (GH9273)
• SQL code now safely escapes table and column names (GH8986)
• Added auto-complete for Series.str., Series.dt. and Series.cat.
(GH9322)
• Index.get_indexer now supports method=’pad’ and method=’backfill’ even for any target array, not just monotonic targets. These methods also work for monotonic decreasing as well as monotonic
increasing indexes (GH9258).
• Index.asof now works on all index types (GH9258).
• A verbose argument has been augmented in io.read_excel(), defaults to False. Set to True to print
sheet names as they are parsed. (GH9450)
• Added days_in_month (compatibility alias daysinmonth) property to Timestamp, DatetimeIndex,
Period, PeriodIndex, and Series.dt (GH9572)
• Added decimal option in to_csv to provide formatting for non-‘.’ decimal separators (GH781)
• Added normalize option for Timestamp to normalized to midnight (GH8794)
• Added example for DataFrame import to R using HDF5 file and rhdf5 library. See the documentation for
more (GH9636).

1.2.2 Backwards incompatible API changes
Changes in Timedelta
In v0.15.0 a new scalar type Timedelta was introduced, that is a sub-class of datetime.timedelta. Mentioned
here was a notice of an API change w.r.t. the .seconds accessor. The intent was to provide a user-friendly set of
accessors that give the ‘natural’ value for that unit, e.g. if you had a Timedelta(’1 day, 10:11:12’), then
.seconds would return 12. However, this is at odds with the definition of datetime.timedelta, which defines
.seconds as 10 * 3600 + 11 * 60 + 12 == 36672.
So in v0.16.0, we are restoring the API to match that of datetime.timedelta. Further, the component values are
still available through the .components accessor. This affects the .seconds and .microseconds accessors,
and removes the .hours, .minutes, .milliseconds accessors. These changes affect TimedeltaIndex and
the Series .dt accessor as well. (GH9185, GH9139)
Previous Behavior
In [2]: t = pd.Timedelta('1 day, 10:11:12.100123')
In [3]: t.days
Out[3]: 1
In [4]: t.seconds

1.2. v0.16.0 (March 22, 2015)

19

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[4]: 12
In [5]: t.microseconds
Out[5]: 123

New Behavior
In [33]: t = pd.Timedelta('1 day, 10:11:12.100123')
In [34]: t.days
Out[34]: 1L
In [35]: t.seconds
Out[35]: 36672L
In [36]: t.microseconds
Out[36]: 100123L

Using .components allows the full component access

In [37]: t.components
Out[37]: Components(days=1L, hours=10L, minutes=11L, seconds=12L, milliseconds=100L, microseconds=123
In [38]: t.components.seconds
Out[38]: 12L

Indexing Changes
The behavior of a small sub-set of edge cases for using .loc have changed (GH8613). Furthermore we have improved
the content of the error messages that are raised:
• Slicing with .loc where the start and/or stop bound is not found in the index is now allowed; this previously
would raise a KeyError. This makes the behavior the same as .ix in this case. This change is only for
slicing, not when indexing with a single label.
In [39]: df = DataFrame(np.random.randn(5,4),
....:
columns=list('ABCD'),
....:
index=date_range('20130101',periods=5))
....:
In [40]: df
Out[40]:
A
B
C
D
2013-01-01 -0.744471 0.758527 1.729689 -0.964980
2013-01-02 -0.845696 -1.340896 1.846883 -1.328865
2013-01-03 1.682706 -1.717693 0.888782 0.228440
2013-01-04 0.901805 1.171216 0.520260 -1.197071
2013-01-05 -1.066969 -0.303421 -0.858447 0.306996
In [41]: s = Series(range(5),[-2,-1,1,2,3])
In [42]: s
Out[42]:
-2
0
-1
1
1
2
2
3

20

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

3
4
dtype: int64

Previous Behavior
In [4]: df.loc['2013-01-02':'2013-01-10']
KeyError: 'stop bound [2013-01-10] is not in the [index]'
In [6]: s.loc[-10:3]
KeyError: 'start bound [-10] is not the [index]'

New Behavior
In [43]: df.loc['2013-01-02':'2013-01-10']
Out[43]:
A
B
C
D
2013-01-02 -0.845696 -1.340896 1.846883 -1.328865
2013-01-03 1.682706 -1.717693 0.888782 0.228440
2013-01-04 0.901805 1.171216 0.520260 -1.197071
2013-01-05 -1.066969 -0.303421 -0.858447 0.306996
In [44]: s.loc[-10:3]
Out[44]:
-2
0
-1
1
1
2
2
3
3
4
dtype: int64

• Allow slicing with float-like values on an integer index for .ix. Previously this was only enabled for .loc:
Previous Behavior

In [8]: s.ix[-1.0:2]
TypeError: the slice start value [-1.0] is not a proper indexer for this index type (Int64Index)

New Behavior
In [45]: s.ix[-1.0:2]
Out[45]:
-1
1
1
2
2
3
dtype: int64

• Provide a useful exception for indexing with an invalid type for that index when using .loc. For example
trying to use .loc on an index of type DatetimeIndex or PeriodIndex or TimedeltaIndex, with an
integer (or a float).
Previous Behavior
In [4]: df.loc[2:3]
KeyError: 'start bound [2] is not the [index]'

New Behavior

In [4]: df.loc[2:3]
TypeError: Cannot do slice indexing on  with  0.1)
In [23]: p.all()
Out[23]:
0
1
0
True False
1
True False
2 False False
3
True
True

• Added support for utcfromtimestamp(), fromtimestamp(), and combine() on Timestamp class
(GH5351).
• Added Google Analytics (pandas.io.ga) basic documentation (GH8835). See here.
• Timedelta arithmetic returns NotImplemented in unknown cases, allowing extensions by custom classes
(GH8813).
• Timedelta now supports arithemtic with numpy.ndarray objects of the appropriate dtype (numpy 1.8 or
newer only) (GH8884).

32

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Added Timedelta.to_timedelta64() method to the public API (GH8884).
• Added gbq.generate_bq_schema() function to the gbq module (GH8325).
• Series now works with map objects the same way as generators (GH8909).
• Added context manager to HDFStore for automatic closing (GH8791).
• to_datetime gains an exact keyword to allow for a format to not require an exact match for a provided format string (if its False). exact defaults to True (meaning that exact matching is still the default) (GH8904)
• Added axvlines boolean option to parallel_coordinates plot function, determines whether vertical lines will
be printed, default is True
• Added ability to read table footers to read_html (GH8552)
• to_sql now infers datatypes of non-NA values for columns that contain NA values and have dtype object
(GH8778).

1.3.3 Performance
• Reduce memory usage when skiprows is an integer in read_csv (GH8681)
• Performance boost for to_datetime conversions with a passed format=, and the exact=False
(GH8904)

1.3.4 Bug Fixes
• Bug in concat of Series with category dtype which were coercing to object. (GH8641)
• Bug in Timestamp-Timestamp not returning a Timedelta type and datelike-datelike ops with timezones
(GH8865)
• Made consistent a timezone mismatch exception (either tz operated with None or incompatible timezone), will
now return TypeError rather than ValueError (a couple of edge cases only), (GH8865)
• Bug in using a pd.Grouper(key=...) with no level/axis or level only (GH8795, GH8866)
• Report a TypeError when invalid/no paramaters are passed in a groupby (GH8015)
• Bug in packaging pandas with py2app/cx_Freeze (GH8602, GH8831)
• Bug in groupby signatures that didn’t include *args or **kwargs (GH8733).
• io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo and
when it receives no data from Yahoo (GH8761), (GH8783).
• Unclear error message in csv parsing when passing dtype and names and the parsed data is a different data type
(GH8833)
• Bug in slicing a multi-index with an empty list and at least one boolean indexer (GH8781)
• io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo
(GH8761).
• Timedelta kwargs may now be numpy ints and floats (GH8757).
• Fixed several outstanding bugs for Timedelta arithmetic and comparisons (GH8813, GH5963, GH5436).
• sql_schema now generates dialect appropriate CREATE TABLE statements (GH8697)
• slice string method now takes step into account (GH8754)
• Bug in BlockManager where setting values with different type would break block integrity (GH8850)
1.3. v0.15.2 (December 12, 2014)

33

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in DatetimeIndex when using time object as key (GH8667)
• Bug in merge where how=’left’ and sort=False would not preserve left frame order (GH7331)
• Bug in MultiIndex.reindex where reindexing at level would not reorder labels (GH4088)
• Bug in certain operations with dateutil timezones, manifesting with dateutil 2.3 (GH8639)
• Regression in DatetimeIndex iteration with a Fixed/Local offset timezone (GH8890)
• Bug in to_datetime when parsing a nanoseconds using the %f format (GH8989)
• io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo and
when it receives no data from Yahoo (GH8761), (GH8783).
• Fix: The font size was only set on x axis if vertical or the y axis if horizontal. (GH8765)
• Fixed division by 0 when reading big csv files in python 3 (GH8621)
• Bug in outputing a Multindex with to_html,index=False which would add an extra column (GH8452)
• Imported categorical variables from Stata files retain the ordinal information in the underlying data (GH8836).
• Defined .size attribute across NDFrame objects to provide compat with numpy >= 1.9.1; buggy with
np.array_split (GH8846)
• Skip testing of histogram plots for matplotlib <= 1.2 (GH8648).
• Bug where get_data_google returned object dtypes (GH3995)
• Bug in DataFrame.stack(..., dropna=False) when the DataFrame’s columns is a MultiIndex
whose labels do not reference all its levels. (GH8844)
• Bug in that Option context applied on __enter__ (GH8514)
• Bug in resample that causes a ValueError when resampling across multiple days and the last offset is not calculated from the start of the range (GH8683)
• Bug where DataFrame.plot(kind=’scatter’) fails when checking if an np.array is in the DataFrame
(GH8852)
• Bug in pd.infer_freq/DataFrame.inferred_freq that prevented proper sub-daily frequency inference when the index contained DST days (GH8772).
• Bug where index name was still used when plotting a series with use_index=False (GH8558).
• Bugs when trying to stack multiple columns, when some (or all) of the level names are numbers (GH8584).
• Bug in MultiIndex where __contains__ returns wrong result if index is not lexically sorted or unique
(GH7724)
• BUG CSV: fix problem with trailing whitespace in skipped rows, (GH8679), (GH8661), (GH8983)
• Regression in Timestamp does not parse ‘Z’ zone designator for UTC (GH8771)
• Bug in StataWriter the produces writes strings with 244 characters irrespective of actual size (GH8969)
• Fixed ValueError raised by cummin/cummax when datetime64 Series contains NaT. (GH8965)
• Bug in Datareader returns object dtype if there are missing values (GH8980)
• Bug in plotting if sharex was enabled and index was a timeseries, would show labels on multiple axes (GH3964).
• Bug where passing a unit to the TimedeltaIndex constructor applied the to nano-second conversion twice.
(GH9011).
• Bug in plotting of a period-like array (GH9012)

34

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.4 v0.15.1 (November 9, 2014)
This is a minor bug-fix release from 0.15.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users
upgrade to this version.
• Enhancements
• API Changes
• Bug Fixes

1.4.1 API changes
• s.dt.hour and other .dt accessors will now return np.nan for missing values (rather than previously -1),
(GH8689)
In [1]: s = Series(date_range('20130101',periods=5,freq='D'))
In [2]: s.iloc[2] = np.nan
In [3]: s
Out[3]:
0
2013-01-01
1
2013-01-02
2
NaT
3
2013-01-04
4
2013-01-05
dtype: datetime64[ns]

previous behavior:
In [6]: s.dt.hour
Out[6]:
0
0
1
0
2
-1
3
0
4
0
dtype: int64

current behavior:
In [4]: s.dt.hour
Out[4]:
0
0
1
0
2
NaN
3
0
4
0
dtype: float64

• groupby with as_index=False will not add erroneous extra columns to result (GH8582):
In [5]: np.random.seed(2718281)
In [6]: df = pd.DataFrame(np.random.randint(0, 100, (10, 2)),
...:
columns=['jim', 'joe'])

1.4. v0.15.1 (November 9, 2014)

35

pandas: powerful Python data analysis toolkit, Release 0.16.1

...:
In [7]: df.head()
Out[7]:
jim joe
0
61
81
1
96
49
2
55
65
3
72
51
4
77
12
In [8]: ts = pd.Series(5 * np.random.randint(0, 3, 10))

previous behavior:
In [4]: df.groupby(ts, as_index=False).max()
Out[4]:
NaN jim joe
0
0
72
83
1
5
77
84
2
10
96
65

current behavior:
In [9]: df.groupby(ts, as_index=False).max()
Out[9]:
jim joe
0
72
83
1
77
84
2
96
65

• groupby will not erroneously exclude columns if the column name conflics with the grouper name (GH8112):
In [10]: df = pd.DataFrame({'jim': range(5), 'joe': range(5, 10)})
In [11]: df
Out[11]:
jim joe
0
0
5
1
1
6
2
2
7
3
3
8
4
4
9
In [12]: gr = df.groupby(df['jim'] < 2)

previous behavior (excludes 1st column from output):
In [4]: gr.apply(sum)
Out[4]:
joe
jim
False
24
True
11

current behavior:
In [13]: gr.apply(sum)
Out[13]:
jim joe

36

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

jim
False
True

9
1

24
11

• Support for slicing with monotonic decreasing indexes, even if start or stop is not found in the index
(GH7860):
In [14]: s = pd.Series(['a', 'b', 'c', 'd'], [4, 3, 2, 1])
In [15]: s
Out[15]:
4
a
3
b
2
c
1
d
dtype: object

previous behavior:
In [8]: s.loc[3.5:1.5]
KeyError: 3.5

current behavior:
In [16]: s.loc[3.5:1.5]
Out[16]:
3
b
2
c
dtype: object

• io.data.Options has been fixed for a change in the format of the Yahoo Options page (GH8612),
(GH8741)
Note: As a result of a change in Yahoo’s option page layout, when an expiry date is given, Options methods
now return data for a single expiry date. Previously, methods returned all data for the selected month.
The month and year parameters have been undeprecated and can be used to get all options data for a given
month.
If an expiry date that is not valid is given, data for the next expiry after the given date is returned.
Option data frames are now saved on the instance as callsYYMMDD or putsYYMMDD. Previously they were
saved as callsMMYY and putsMMYY. The next expiry is saved as calls and puts.
New features:
– The expiry parameter can now be a single date or a list-like object containing dates.
– A new property expiry_dates was added, which returns all available expiry dates.
Current behavior:
In [17]: from pandas.io.data import Options
In [18]: aapl = Options('aapl','yahoo')
In [19]: aapl.get_call_data().iloc[0:5,0:1]
Out[19]:
Last
Strike Expiry
Type Symbol
70
2015-05-15 call AAPL150515C00070000

1.4. v0.15.1 (November 9, 2014)

53.88

37

pandas: powerful Python data analysis toolkit, Release 0.16.1

75
80
85
90

2015-05-15
2015-05-15
2015-05-15
2015-05-15

call
call
call
call

AAPL150515C00075000
AAPL150515C00080000
AAPL150515C00085000
AAPL150515C00090000

52.42
45.60
39.80
37.45

In [20]: aapl.expiry_dates
Out[20]:
[datetime.date(2015, 5, 15),
datetime.date(2015, 5, 22),
datetime.date(2015, 5, 29),
datetime.date(2015, 6, 5),
datetime.date(2015, 6, 12),
datetime.date(2015, 6, 19),
datetime.date(2015, 6, 26),
datetime.date(2015, 7, 17),
datetime.date(2015, 8, 21),
datetime.date(2015, 10, 16),
datetime.date(2016, 1, 15),
datetime.date(2017, 1, 20)]
In [21]: aapl.get_near_stock_price(expiry=aapl.expiry_dates[0:3]).iloc[0:5,0:1]
Out[21]:
Last
Strike Expiry
Type Symbol
127
2015-05-22 call AAPL150522C00127000 2.45
2015-05-29 call AAPL150529C00127000 2.93
128
2015-05-15 call AAPL150515C00128000 1.21
2015-05-22 call AAPL150522C00128000 1.90
2015-05-29 call AAPL150529C00128000 2.38

See the Options documentation in Remote Data
• pandas now also registers the datetime64 dtype in matplotlib’s units registry to plot such values as datetimes. This is activated once pandas is imported. In previous versions, plotting an array of datetime64
values will have resulted in plotted integer values. To keep the previous behaviour, you can do del
matplotlib.units.registry[np.datetime64] (GH8614).

1.4.2 Enhancements
• concat permits a wider variety of iterables of pandas objects to be passed as the first parameter (GH8645):
In [22]: from collections import deque
In [23]: df1 = pd.DataFrame([1, 2, 3])
In [24]: df2 = pd.DataFrame([4, 5, 6])

previous behavior:

In [7]: pd.concat(deque((df1, df2)))
TypeError: first argument must be a list-like of pandas objects, you passed an object of type "d

current behavior:
In [25]: pd.concat(deque((df1, df2)))
Out[25]:
0
0 1

38

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
2
0
1
2

2
3
4
5
6

• Represent MultiIndex labels with a dtype that utilizes memory based on the level size. In prior versions,
the memory usage was a constant 8 bytes per element in each level. In addition, in prior versions, the reported
memory usage was incorrect as it didn’t show the usage for the memory occupied by the underling data array.
(GH8456)
In [26]: dfi = DataFrame(1,index=pd.MultiIndex.from_product([['a'],range(1000)]),columns=['A'])

previous behavior:
# this was underreported in prior versions
In [1]: dfi.memory_usage(index=True)
Out[1]:
Index
8000 # took about 24008 bytes in < 0.15.1
A
8000
dtype: int64

current behavior:
In [27]: dfi.memory_usage(index=True)
Out[27]:
Index
11020
A
8000
dtype: int64

• Added Index properties is_monotonic_increasing and is_monotonic_decreasing (GH8680).
• Added option to select columns when importing Stata files (GH7935)
• Qualify memory usage in DataFrame.info() by adding + if it is a lower bound (GH8578)
• Raise errors in certain aggregation cases where an argument such as numeric_only is not handled (GH8592).
• Added support for 3-character ISO and non-standard country codes in io.wb.download() (GH8482)
• World Bank data requests now will warn/raise based on an errors argument, as well as a list of hard-coded
country codes and the World Bank’s JSON response. In prior versions, the error messages didn’t look at the
World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was
that many good countries were cropped in the hard-coded approach. All countries will work now, but some bad
countries will raise exceptions because some edge cases break the entire response. (GH8482)
• Added option to Series.str.split() to return a DataFrame rather than a Series (GH8428)
• Added option to df.info(null_counts=None|True|False) to override the default display options
and force showing of the null-counts (GH8701)

1.4.3 Bug Fixes
• Bug in unpickling of a CustomBusinessDay object (GH8591)
• Bug in coercing Categorical to a records array, e.g. df.to_records() (GH8626)
• Bug in Categorical not created properly with Series.to_frame() (GH8626)
• Bug in coercing in astype of a Categorical of a passed pd.Categorical (this now raises TypeError
correctly), (GH8626)
1.4. v0.15.1 (November 9, 2014)

39

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in cut/qcut when using Series and retbins=True (GH8589)
• Bug in writing Categorical columns to an SQL database with to_sql (GH8624).
• Bug in comparing Categorical of datetime raising when being compared to a scalar datetime (GH8687)
• Bug in selecting from a Categorical with .iloc (GH8623)
• Bug in groupby-transform with a Categorical (GH8623)
• Bug in duplicated/drop_duplicates with a Categorical (GH8623)
• Bug in Categorical reflected comparison operator raising if the first argument was a numpy array scalar
(e.g. np.int64) (GH8658)
• Bug in Panel indexing with a list-like (GH8710)
• Compat issue is DataFrame.dtypes when options.mode.use_inf_as_null is True (GH8722)
• Bug in read_csv, dialect parameter would not take a string (:issue: 8703)
• Bug in slicing a multi-index level with an empty-list (GH8737)
• Bug in numeric index operations of add/sub with Float/Index Index with numpy arrays (GH8608)
• Bug in setitem with empty indexer and unwanted coercion of dtypes (GH8669)
• Bug in ix/loc block splitting on setitem (manifests with integer-like dtypes, e.g. datetime64) (GH8607)
• Bug when doing label based indexing with integers not found in the index for non-unique but monotonic indexes
(GH8680).
• Bug when indexing a Float64Index with np.nan on numpy 1.7 (GH8980).
• Fix shape attribute for MultiIndex (GH8609)
• Bug in GroupBy where a name conflict between the grouper and columns would break groupby operations
(GH7115, GH8112)
• Fixed a bug where plotting a column y and specifying a label would mutate the index name of the original
DataFrame (GH8494)
• Fix regression in plotting of a DatetimeIndex directly with matplotlib (GH8614).
• Bug in date_range where partially-specified dates would incorporate current date (GH6961)
• Bug in Setting by indexer to a scalar value with a mixed-dtype Panel4d was failing (GH8702)
• Bug where DataReader‘s would fail if one of the symbols passed was invalid. Now returns data for valid
symbols and np.nan for invalid (GH8494)
• Bug in get_quote_yahoo that wouldn’t allow non-float return values (GH5229).

1.5 v0.15.0 (October 18, 2014)
This is a major release from 0.14.1 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.
Warning: pandas >= 0.15.0 will no longer support compatibility with NumPy versions < 1.7.0. If you want to
use the latest versions of pandas, please upgrade to NumPy >= 1.7.0 (GH7711)
• Highlights include:
– The Categorical type was integrated as a first-class pandas type, see here
40

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

– New scalar type Timedelta, and a new index type TimedeltaIndex, see here
– New datetimelike properties accessor .dt for Series, see Datetimelike Properties
– New DataFrame default display for df.info() to include memory usage, see Memory Usage
– read_csv will now by default ignore blank lines when parsing, see here
– API change in using Indexes in set operations, see here
– Enhancements in the handling of timezones, see here
– A lot of improvements to the rolling and expanding moment funtions, see here
– Internal refactoring of the Index class to no longer sub-class ndarray, see Internal Refactoring
– dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990)
– Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing
– Split out string methods documentation into Working with Text Data
• Check the API Changes and deprecations before updating
• Other Enhancements
• Performance Improvements
• Bug Fixes
Warning: In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass
PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and
creation of new index types. This should be a transparent change with only very limited API implications (See the
Internal Refactoring)
Warning: The refactorings in Categorical changed the two argument constructor from “codes/labels and
levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use Categorical
directly, please audit your code before updating to this pandas version and change it to use the from_codes()
constructor. See more on Categorical here

1.5.1 New features
Categoricals in Series/DataFrame
Categorical can now be included in Series and DataFrames and gained new methods to manipulate. Thanks to Jan
Schulz for much of this API/implementation. (GH3943, GH5313, GH5314, GH7444, GH7839, GH7848, GH7864,
GH7914, GH7768, GH8006, GH3678, GH8075, GH8076, GH8143, GH8453, GH8518).
For full docs, see the categorical introduction and the API documentation.
In [1]: df = DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
In [2]: df["grade"] = df["raw_grade"].astype("category")
In [3]: df["grade"]
Out[3]:
0
a
1
b
2
b
3
a

1.5. v0.15.0 (October 18, 2014)

41

pandas: powerful Python data analysis toolkit, Release 0.16.1

4
a
5
e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
# Rename the categories
In [4]: df["grade"].cat.categories = ["very good", "good", "very bad"]

# Reorder the categories and simultaneously add the missing categories
In [5]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good
In [6]: df["grade"]
Out[6]:
0
very good
1
good
2
good
3
very good
4
very good
5
very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
In [7]: df.sort("grade")
Out[7]:
id raw_grade
grade
5
6
e
very bad
1
2
b
good
2
3
b
good
0
1
a very good
3
4
a very good
4
5
a very good
In [8]: df.groupby("grade").size()
Out[8]:
grade
very bad
1
bad
NaN
medium
NaN
good
2
very good
3
dtype: float64

• pandas.core.group_agg and pandas.core.factor_agg were removed. As an alternative, construct a dataframe and use df.groupby().agg().
• Supplying “codes/labels and levels” to the Categorical constructor is not supported anymore. Supplying
two arguments to the constructor is now interpreted as “values and levels (now called ‘categories’)”. Please
change your code to use the from_codes() constructor.
• The Categorical.labels attribute was renamed to Categorical.codes and is read only. If you want
to manipulate codes, please use one of the API methods on Categoricals.
• The Categorical.levels attribute is renamed to Categorical.categories.
TimedeltaIndex/Scalar
We introduce a new scalar type Timedelta, which is a subclass of datetime.timedelta, and behaves in a
similar manner, but allows compatibility with np.timedelta64 types as well as a host of custom representation,
42

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

parsing, and attributes. This type is very similar to how Timestamp works for datetimes. It is a nice-API box for
the type. See the docs. (GH3009, GH4533, GH8209, GH8187, GH8190, GH7869, GH7661, GH8345, GH8471)
Warning: Timedelta scalars (and TimedeltaIndex) component fields are not the same as the component
fields on a datetime.timedelta object. For example, .seconds on a datetime.timedelta object
returns the total number of seconds combined between hours, minutes and seconds. In contrast, the pandas
Timedelta breaks out hours, minutes, microseconds and nanoseconds separately.
# Timedelta accessor
In [9]: tds = Timedelta('31 days 5 min 3 sec')
In [10]: tds.minutes
Out[10]: 5L
In [11]: tds.seconds
Out[11]: 3L
# datetime.timedelta accessor
# this is 5 minutes * 60 + 3 seconds
In [12]: tds.to_pytimedelta().seconds
Out[12]: 303

Note: this is no longer true starting from v0.16.0, where full compatibility with datetime.timedelta is
introduced. See the 0.16.0 whatsnew entry
Warning: Prior to 0.15.0 pd.to_timedelta would return a Series for list-like/Series input, and a
np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for
Series input, and Timedelta for scalar input.
The arguments to pd.to_timedelta are now (arg,unit=’ns’,box=True,coerce=False), previously were (arg,box=True,unit=’ns’) as these are more logical.
Consruct a scalar
In [9]: Timedelta('1 days 06:05:01.00003')
Out[9]: Timedelta('1 days 06:05:01.000030')
In [10]: Timedelta('15.5us')
Out[10]: Timedelta('0 days 00:00:00.000015')
In [11]: Timedelta('1 hour 15.5us')
Out[11]: Timedelta('0 days 01:00:00.000015')
# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
In [12]: Timedelta('-1us')
Out[12]: Timedelta('-1 days +23:59:59.999999')
# a NaT
In [13]: Timedelta('nan')
Out[13]: NaT

Access fields for a Timedelta
In [14]: td = Timedelta('1 hour 3m 15.5us')
In [15]: td.seconds
Out[15]: 3780L

1.5. v0.15.0 (October 18, 2014)

43

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [16]: td.microseconds
Out[16]: 15L
In [17]: td.nanoseconds
Out[17]: 500L

Construct a TimedeltaIndex
In [18]: TimedeltaIndex(['1 days','1 days, 00:00:05',
....:
np.timedelta64(2,'D'),timedelta(days=2,seconds=2)])
....:
Out[18]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',
'2 days 00:00:02'],
dtype='timedelta64[ns]', freq=None)

Constructing a TimedeltaIndex with a regular range
In [19]: timedelta_range('1 days',periods=5,freq='D')
Out[19]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]',
In [20]: timedelta_range(start='1 days',end='2 days',freq='30T')
Out[20]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
'1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
'1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
'1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
'1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
'1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
'1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
'1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
'1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
'1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
'1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
'1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
'1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
'1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
'1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
'1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
'2 days 00:00:00'],
dtype='timedelta64[ns]', freq='30T')

You can now use a TimedeltaIndex as the index of a pandas object
In [21]: s = Series(np.arange(5),
....:
index=timedelta_range('1 days',periods=5,freq='s'))
....:
In [22]: s
Out[22]:
1 days 00:00:00
0
1 days 00:00:01
1
1 days 00:00:02
2
1 days 00:00:03
3
1 days 00:00:04
4
Freq: S, dtype: int32

You can select with partial string selections

44

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [23]: s['1 day 00:00:02']
Out[23]: 2
In [24]: s['1 day':'1 day 00:00:02']
Out[24]:
1 days 00:00:00
0
1 days 00:00:01
1
1 days 00:00:02
2
dtype: int32

Finally, the combination of TimedeltaIndex with DatetimeIndex allow certain combination operations that
are NaT preserving:
In [25]: tdi = TimedeltaIndex(['1 days',pd.NaT,'2 days'])
In [26]: tdi.tolist()
Out[26]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]
In [27]: dti = date_range('20130101',periods=3)
In [28]: dti.tolist()
Out[28]:
[Timestamp('2013-01-01 00:00:00', offset='D'),
Timestamp('2013-01-02 00:00:00', offset='D'),
Timestamp('2013-01-03 00:00:00', offset='D')]
In [29]: (dti + tdi).tolist()
Out[29]: [Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]
In [30]: (dti - tdi).tolist()
Out[30]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]

• iteration of a Series e.g. list(Series(...)) of timedelta64[ns] would prior to v0.15.0 return
np.timedelta64 for each element. These will now be wrapped in Timedelta.
Memory Usage
Implemented methods to find memory usage of a DataFrame. See the FAQ for more. (GH6852).
A new display option display.memory_usage (see Options and Settings) sets the default behavior of the
memory_usage argument in the df.info() method. By default display.memory_usage is True.
In [31]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
....:
'complex128', 'object', 'bool']
....:
In [32]: n = 5000
In [33]: data = dict([ (t, np.random.randint(100, size=n).astype(t))
....:
for t in dtypes])
....:
In [34]: df = DataFrame(data)
In [35]: df['categorical'] = df['object'].astype('category')
In [36]: df.info()


1.5. v0.15.0 (October 18, 2014)

45

pandas: powerful Python data analysis toolkit, Release 0.16.1

Int64Index: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool
5000 non-null bool
complex128
5000 non-null complex128
datetime64[ns]
5000 non-null datetime64[ns]
float64
5000 non-null float64
int64
5000 non-null int64
object
5000 non-null object
timedelta64[ns]
5000 non-null timedelta64[ns]
categorical
5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), time
memory usage: 303.5+ KB

Additionally memory_usage() is an available method for a dataframe object which returns the memory usage of
each column.
In [37]: df.memory_usage(index=True)
Out[37]:
Index
40000
bool
5000
complex128
80000
datetime64[ns]
40000
float64
40000
int64
40000
object
20000
timedelta64[ns]
40000
categorical
5800
dtype: int64

.dt accessor
Series has gained an accessor to succinctly return datetime like properties for the values of the Series, if its a
datetime/period like Series. (GH7207) This will return a Series, indexed like the existing Series. See the docs
# datetime
In [38]: s = Series(date_range('20130101 09:10:12',periods=4))
In [39]: s
Out[39]:
0
2013-01-01 09:10:12
1
2013-01-02 09:10:12
2
2013-01-03 09:10:12
3
2013-01-04 09:10:12
dtype: datetime64[ns]
In [40]: s.dt.hour
Out[40]:
0
9
1
9
2
9
3
9
dtype: int64
In [41]: s.dt.second
Out[41]:
0
12
1
12

46

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
12
3
12
dtype: int64
In [42]: s.dt.day
Out[42]:
0
1
1
2
2
3
3
4
dtype: int64
In [43]: s.dt.freq
Out[43]: 

This enables nice expressions like this:
In [44]: s[s.dt.day==2]
Out[44]:
1
2013-01-02 09:10:12
dtype: datetime64[ns]

You can easily produce tz aware transformations:
In [45]: stz = s.dt.tz_localize('US/Eastern')
In [46]: stz
Out[46]:
0
2013-01-01
1
2013-01-02
2
2013-01-03
3
2013-01-04
dtype: object

09:10:12-05:00
09:10:12-05:00
09:10:12-05:00
09:10:12-05:00

In [47]: stz.dt.tz
Out[47]: 

You can also chain these types of operations:
In [48]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[48]:
0
2013-01-01 04:10:12-05:00
1
2013-01-02 04:10:12-05:00
2
2013-01-03 04:10:12-05:00
3
2013-01-04 04:10:12-05:00
dtype: object

The .dt accessor works for period and timedelta dtypes.
# period
In [49]: s = Series(period_range('20130101',periods=4,freq='D'))
In [50]: s
Out[50]:
0
2013-01-01
1
2013-01-02
2
2013-01-03
3
2013-01-04
dtype: object

1.5. v0.15.0 (October 18, 2014)

47

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [51]: s.dt.year
Out[51]:
0
2013
1
2013
2
2013
3
2013
dtype: int64
In [52]: s.dt.day
Out[52]:
0
1
1
2
2
3
3
4
dtype: int64
# timedelta
In [53]: s = Series(timedelta_range('1 day 00:00:05',periods=4,freq='s'))
In [54]: s
Out[54]:
0
1 days 00:00:05
1
1 days 00:00:06
2
1 days 00:00:07
3
1 days 00:00:08
dtype: timedelta64[ns]
In [55]: s.dt.days
Out[55]:
0
1
1
1
2
1
3
1
dtype: int64
In [56]: s.dt.seconds
Out[56]:
0
5
1
6
2
7
3
8
dtype: int64
In [57]: s.dt.components
Out[57]:
days hours minutes seconds
0
1
0
0
5
1
1
0
0
6
2
1
0
0
7
3
1
0
0
8

milliseconds
0
0
0
0

microseconds
0
0
0
0

nanoseconds
0
0
0
0

Timezone handling improvements
• tz_localize(None) for tz-aware Timestamp and DatetimeIndex now removes timezone holding
local time, previously this resulted in Exception or TypeError (GH7812)

48

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [58]: ts = Timestamp('2014-08-01 09:00', tz='US/Eastern')
In [59]: ts
Out[59]: Timestamp('2014-08-01 09:00:00-0400', tz='US/Eastern')
In [60]: ts.tz_localize(None)
Out[60]: Timestamp('2014-08-01 09:00:00')
In [61]: didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
In [62]: didx
Out[62]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
'2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
'2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
'2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
'2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
dtype='datetime64[ns]', freq='H', tz='US/Eastern')
In [63]: didx.tz_localize(None)
Out[63]:
DatetimeIndex(['2014-08-01 09:00:00',
'2014-08-01 11:00:00',
'2014-08-01 13:00:00',
'2014-08-01 15:00:00',
'2014-08-01 17:00:00',
dtype='datetime64[ns]',

'2014-08-01 10:00:00',
'2014-08-01 12:00:00',
'2014-08-01 14:00:00',
'2014-08-01 16:00:00',
'2014-08-01 18:00:00'],
freq='H', tz=None)

• tz_localize now accepts the ambiguous keyword which allows for passing an array of bools indicating
whether the date belongs in DST or not, ‘NaT’ for setting transition times to NaT, ‘infer’ for inferring DST/nonDST, and ‘raise’ (default) for an AmbiguousTimeError to be raised. See the docs for more details (GH7943)
• DataFrame.tz_localize and DataFrame.tz_convert now accepts an optional level argument
for localizing a specific level of a MultiIndex (GH7846)
• Timestamp.tz_localize and Timestamp.tz_convert now raise TypeError in error cases, rather
than Exception (GH8025)
• a timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone
(rather than being a naive datetime64[ns]) as object dtype (GH8411)
• Timestamp.__repr__ displays dateutil.tz.tzoffset info (GH7907)
Rolling/Expanding Moments improvements
• rolling_min(), rolling_max(), rolling_cov(), and rolling_corr() now return objects with
all NaN when len(arg) < min_periods <= window rather than raising. (This makes all rolling functions consistent in this behavior). (GH7766)
Prior to 0.15.0
In [64]: s = Series([10, 11, 12, 13])
In [15]: rolling_min(s, window=10, min_periods=5)
ValueError: min_periods (5) must be <= window (4)

New behavior

1.5. v0.15.0 (October 18, 2014)

49

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [65]: rolling_min(s, window=10, min_periods=5)
Out[65]:
0
NaN
1
NaN
2
NaN
3
NaN
dtype: float64

• rolling_max(), rolling_min(), rolling_sum(), rolling_mean(), rolling_median(),
rolling_std(),
rolling_var(),
rolling_skew(),
rolling_kurt(),
rolling_quantile(), rolling_cov(), rolling_corr(), rolling_corr_pairwise(),
rolling_window(), and rolling_apply() with center=True previously would return a result of
the same structure as the input arg with NaN in the final (window-1)/2 entries.
Now the final (window-1)/2 entries of the result are calculated as if the input arg were followed by
(window-1)/2 NaN values (or with shrinking windows, in the case of rolling_apply()). (GH7925,
GH8269)
Prior behavior (note final value is NaN):
In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[7]:
0
1
1
3
2
6
3
NaN
dtype: float64

New behavior (note final value is 5 = sum([2, 3, NaN])):
In [66]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[66]:
0
1
1
3
2
6
3
5
dtype: float64

• rolling_window() now normalizes the weights properly in rolling mean mode (mean=True) so that the
calculated weighted means (e.g. ‘triang’, ‘gaussian’) are distributed about the same means as those calculated
without weighting (i.e. ‘boxcar’). See the note on normalization for further details. (GH7618)
In [67]: s = Series([10.5, 8.8, 11.4, 9.7, 9.3])

Behavior prior to 0.15.0:
In [39]: rolling_window(s, window=3, win_type='triang', center=True)
Out[39]:
0
NaN
1
6.583333
2
6.883333
3
6.683333
4
NaN
dtype: float64

New behavior
In [68]: rolling_window(s, window=3, win_type='triang', center=True)
Out[68]:
0
NaN

50

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
9.875
2
10.325
3
10.025
4
NaN
dtype: float64

• Removed center argument from all expanding_ functions (see list), as the results produced when
center=True did not make much sense. (GH7925)
• Added optional ddof argument to expanding_cov() and rolling_cov(). The default value of 1 is
backwards-compatible. (GH8279)
• Documented the ddof argument to expanding_var(), expanding_std(), rolling_var(), and
rolling_std(). These functions’ support of a ddof argument (with a default value of 1) was previously
undocumented. (GH8064)
• ewma(), ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now interpret min_periods
in the same manner that the rolling_*() and expanding_*() functions do: a given result entry will be
NaN if the (expanding, in this case) window does not contain at least min_periods values. The previous
behavior was to set to NaN the min_periods entries starting with the first non- NaN value. (GH7977)
Prior behavior (note values start at index 2, which is min_periods after index 0 (the index of the first nonempty value)):
In [69]: s

= Series([1, None, None, None, 2, 3])

In [51]: ewma(s, com=3., min_periods=2)
Out[51]:
0
NaN
1
NaN
2
1.000000
3
1.000000
4
1.571429
5
2.189189
dtype: float64

New behavior (note values start at index 4, the location of the 2nd (since min_periods=2) non-empty value):
In [70]: ewma(s, com=3., min_periods=2)
Out[70]:
0
NaN
1
NaN
2
NaN
3
NaN
4
1.759644
5
2.383784
dtype: float64

• ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now have an optional adjust argument, just like ewma() does, affecting how the weights are calculated. The default value of adjust is True,
which is backwards-compatible. See Exponentially weighted moment functions for details. (GH7911)
• ewma(), ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now have an optional
ignore_na argument. When ignore_na=False (the default), missing values are taken into account in
the weights calculation. When ignore_na=True (which reproduces the pre-0.15.0 behavior), missing values
are ignored in the weights calculation. (GH7543)
In [71]: ewma(Series([None, 1., 8.]), com=2.)
Out[71]:
0
NaN

1.5. v0.15.0 (October 18, 2014)

51

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
1.0
2
5.2
dtype: float64
In [72]: ewma(Series([1., None, 8.]), com=2., ignore_na=True)
Out[72]:
0
1.0
1
1.0
2
5.2
dtype: float64

# pre-0.15.0 behavior

In [73]: ewma(Series([1., None, 8.]), com=2., ignore_na=False)
Out[73]:
0
1.000000
1
1.000000
2
5.846154
dtype: float64

# new default

Warning: By default (ignore_na=False) the ewm*() functions’ weights calculation in the presence
of missing values is different than in pre-0.15.0 versions. To reproduce the pre-0.15.0 calculation of weights
in the presence of missing values one must specify explicitly ignore_na=True.
• Bug in expanding_cov(), expanding_corr(), rolling_cov(), rolling_cor(), ewmcov(),
and ewmcorr() returning results with columns sorted by name and producing an error for non-unique
columns; now handles non-unique columns and returns columns in original order (except for the case of two
DataFrames with pairwise=False, where behavior is unchanged) (GH7542)
• Bug in rolling_count() and expanding_*() functions unnecessarily producing error message for
zero-length data (GH8056)
• Bug in rolling_apply()
min_periods=1 (GH8080)

and

expanding_apply()

interpreting

min_periods=0

as

• Bug in expanding_std() and expanding_var() for a single value producing a confusing error message
(GH7900)
• Bug in rolling_std() and rolling_var() for a single value producing 0 rather than NaN (GH7900)
• Bug in ewmstd(), ewmvol(), ewmvar(), and ewmcov() calculation of de-biasing factors when
bias=False (the default). Previously an incorrect constant factor was used, based on adjust=True,
ignore_na=True, and an infinite number of observations. Now a different factor is used for each entry,
based on the actual weights (analogous to the usual N/(N-1) factor). In particular, for a single point a value of
NaN is returned when bias=False, whereas previously a value of (approximately) 0 was returned.
For example, consider the following pre-0.15.0 results for ewmvar(..., bias=False), and the corresponding debiasing factors:
In [74]: s = Series([1., 2., 0., 4.])
In [89]: ewmvar(s, com=2., bias=False)
Out[89]:
0
-2.775558e-16
1
3.000000e-01
2
9.556787e-01
3
3.585799e+00
dtype: float64
In [90]: ewmvar(s, com=2., bias=False) / ewmvar(s, com=2., bias=True)
Out[90]:

52

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1.25
1
1.25
2
1.25
3
1.25
dtype: float64

Note that entry 0 is approximately 0, and the debiasing factors are a constant 1.25. By comparison, the following
0.15.0 results have a NaN for entry 0, and the debiasing factors are decreasing (towards 1.25):
In [75]: ewmvar(s, com=2., bias=False)
Out[75]:
0
NaN
1
0.500000
2
1.210526
3
4.089069
dtype: float64
In [76]: ewmvar(s, com=2., bias=False) / ewmvar(s, com=2., bias=True)
Out[76]:
0
NaN
1
2.083333
2
1.583333
3
1.425439
dtype: float64

See Exponentially weighted moment functions for details. (GH7912)
Improvements in the sql io module
• Added support for a chunksize parameter to to_sql function. This allows DataFrame to be written in
chunks and avoid packet-size overflow errors (GH8062).
• Added support for a chunksize parameter to read_sql function. Specifying this argument will return an
iterator through chunks of the query result (GH2908).
• Added support for writing datetime.date and datetime.time object columns with to_sql (GH6932).
• Added support for specifying a schema to read from/write to with read_sql_table and to_sql
(GH7441, GH7952). For example:
df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')

• Added support for writing NaN values with to_sql (GH2754).
• Added support for writing datetime64 columns with to_sql for all database flavors (GH7103).

1.5.2 Backwards incompatible API changes
Breaking changes
API changes related to Categorical (see here for more details):
• The Categorical constructor with two arguments changed from “codes/labels and levels” to “values and
levels (now called ‘categories’)”. This can lead to subtle bugs. If you use Categorical directly, please audit
your code by changing it to use the from_codes() constructor.
An old function call like (prior to 0.15.0):

1.5. v0.15.0 (October 18, 2014)

53

pandas: powerful Python data analysis toolkit, Release 0.16.1

pd.Categorical([0,1,0,2,1], levels=['a', 'b', 'c'])

will have to adapted to the following to keep the same behaviour:
In [2]: pd.Categorical.from_codes([0,1,0,2,1], categories=['a', 'b', 'c'])
Out[2]:
[a, b, a, c, b]
Categories (3, object): [a, b, c]

API changes related to the introduction of the Timedelta scalar (see above for more details):
• Prior to 0.15.0 to_timedelta() would return a Series for list-like/Series input, and a
np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series
for Series input, and Timedelta for scalar input.
For API changes related to the rolling and expanding functions, see detailed overview above.
Other notable API changes:
• Consistency when indexing with .loc and a list-like indexer when no values are found.
In [77]: df = DataFrame([['a'],['b']],index=[1,2])
In [78]: df
Out[78]:
0
1 a
2 b

In prior versions there was a difference in these two constructs:
– df.loc[[3]] would return a frame reindexed by 3 (with all np.nan values)
– df.loc[[3],:] would raise KeyError.
Both will now raise a KeyError. The rule is that at least 1 indexer must be found when using a list-like and
.loc (GH7999)
Furthermore in prior versions these were also different:
– df.loc[[1,3]] would return a frame reindexed by [1,3]
– df.loc[[1,3],:] would raise KeyError.
Both will now return a frame reindex by [1,3]. E.g.
In [79]: df.loc[[1,3]]
Out[79]:
0
1
a
3 NaN
In [80]: df.loc[[1,3],:]
Out[80]:
0
1
a
3 NaN

This can also be seen in multi-axis indexing with a Panel.
In [81]: p = Panel(np.arange(2*3*4).reshape(2,3,4),
....:
items=['ItemA','ItemB'],
....:
major_axis=[1,2,3],

54

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

....:
....:

minor_axis=['A','B','C','D'])

In [82]: p
Out[82]:

Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemB
Major_axis axis: 1 to 3
Minor_axis axis: A to D

The following would raise KeyError prior to 0.15.0:
In [83]: p.loc[['ItemA','ItemD'],:,'D']
Out[83]:
ItemA ItemD
1
3
NaN
2
7
NaN
3
11
NaN

Furthermore, .loc will raise If no values are found in a multi-index with a list-like indexer:
In [84]: s = Series(np.arange(3,dtype='int64'),
....:
index=MultiIndex.from_product([['A'],['foo','bar','baz']],
....:
names=['one','two'])
....:
).sortlevel()
....:
In [85]: s
Out[85]:
one two
A
bar
1
baz
2
foo
0
dtype: int64
In [86]: try:
....:
s.loc[['D']]
....: except KeyError as e:
....:
print("KeyError: " + str(e))
....:
KeyError: 'cannot index a multi-index axis with these keys'

• Assigning values to None now considers the dtype when choosing an ‘empty’ value (GH7941).
Previously, assigning to None in numeric containers changed the dtype to object (or errored, depending on the
call). It now uses NaN:
In [87]: s = Series([1, 2, 3])
In [88]: s.loc[0] = None
In [89]: s
Out[89]:
0
NaN
1
2
2
3
dtype: float64

NaT is now used similarly for datetime containers.
1.5. v0.15.0 (October 18, 2014)

55

pandas: powerful Python data analysis toolkit, Release 0.16.1

For object containers, we now preserve None values (previously these were converted to NaN values).
In [90]: s = Series(["a", "b", "c"])
In [91]: s.loc[0] = None
In [92]: s
Out[92]:
0
None
1
b
2
c
dtype: object

To insert a NaN, you must explicitly use np.nan. See the docs.
• In prior versions, updating a pandas object inplace would not reflect in other python references to this object.
(GH8511, GH5104)
In [93]: s = Series([1, 2, 3])
In [94]: s2 = s
In [95]: s += 1.5

Behavior prior to v0.15.0
# the original object
In [5]: s
Out[5]:
0
2.5
1
3.5
2
4.5
dtype: float64

# a reference to the original object
In [7]: s2
Out[7]:
0
1
1
2
2
3
dtype: int64

This is now the correct behavior
# the original object
In [96]: s
Out[96]:
0
2.5
1
3.5
2
4.5
dtype: float64
# a reference to the original object
In [97]: s2
Out[97]:
0
2.5
1
3.5
2
4.5
dtype: float64

56

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Made both the C-based and Python engines for read_csv and read_table ignore empty lines in input as well as
whitespace-filled lines, as long as sep is not whitespace. This is an API change that can be controlled by the
keyword parameter skip_blank_lines. See the docs (GH4466)
• A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone
and inserted as object dtype rather than being converted to a naive datetime64[ns] (GH8411).
• Bug in passing a DatetimeIndex with a timezone that was not being retained in DataFrame construction
from a dict (GH7822)
In prior versions this would drop the timezone, now it retains the timezone, but gives a column of object
dtype:
In [98]: i = date_range('1/1/2011', periods=3, freq='10s', tz = 'US/Eastern')
In [99]: i
Out[99]:
DatetimeIndex(['2011-01-01 00:00:00-05:00', '2011-01-01 00:00:10-05:00',
'2011-01-01 00:00:20-05:00'],
dtype='datetime64[ns]', freq='10S', tz='US/Eastern')
In [100]: df = DataFrame( {'a' : i } )
In [101]: df
Out[101]:
0
1
2

a
2011-01-01 00:00:00-05:00
2011-01-01 00:00:10-05:00
2011-01-01 00:00:20-05:00

In [102]: df.dtypes
Out[102]:
a
object
dtype: object

Previously this would have yielded a column of datetime64 dtype, but without timezone info.
The behaviour of assigning a column to an existing dataframe as df[’a’] = i remains unchanged (this already
returned an object column with a timezone).
• When passing multiple levels to stack(), it will now raise a ValueError when the levels aren’t all level
names or all level numbers (GH7660). See Reshaping by stacking and unstacking.
• Raise a ValueError in df.to_hdf with ‘fixed’ format, if df has non-unique columns as the resulting file
will be broken (GH7761)
• SettingWithCopy raise/warnings (according to the option mode.chained_assignment) will now be
issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (GH7845, GH7950)
In [1]: df = DataFrame(np.arange(0,9), columns=['count'])
In [2]: df['group'] = 'b'
In [3]: df.iloc[0:5]['group'] = 'a'
/usr/local/bin/ipython:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.h

1.5. v0.15.0 (October 18, 2014)

57

pandas: powerful Python data analysis toolkit, Release 0.16.1

• merge, DataFrame.merge, and ordered_merge now return the same type as the left argument
(GH7737).
• Previously an enlargement with a mixed-dtype frame would act unlike .append which will preserve dtypes
(related GH2578, GH8176):
In [103]: df = DataFrame([[True, 1],[False, 2]],
.....:
columns=["female","fitness"])
.....:
In [104]: df
Out[104]:
female fitness
0
True
1
1 False
2
In [105]: df.dtypes
Out[105]:
female
bool
fitness
int64
dtype: object
# dtypes are now preserved
In [106]: df.loc[2] = df.loc[1]
In [107]: df
Out[107]:
female fitness
0
True
1
1 False
2
2 False
2
In [108]: df.dtypes
Out[108]:
female
bool
fitness
int64
dtype: object

• Series.to_csv() now returns
DataFrame.to_csv() (GH8215).

a

string

when

path=None,

matching

the

behaviour

of

• read_hdf now raises IOError when a file that doesn’t exist is passed in. Previously, a new, empty file was
created, and a KeyError raised (GH7715).
• DataFrame.info() now ends its output with a newline character (GH8114)
• Concatenating no objects will now raise a ValueError rather than a bare Exception.
• Merge errors will now be sub-classes of ValueError rather than raw Exception (GH8501)
• DataFrame.plot and Series.plot keywords are now have consistent orders (GH8037)
Internal Refactoring
In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass
PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be a transparent change with only very limited API implications (GH5080,
GH7439, GH7796, GH8024, GH8367, GH7997, GH8522):

58

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• you may need to unpickle pandas version < 0.15.0 pickles using pd.read_pickle rather than
pickle.load. See pickle docs
• when plotting with a PeriodIndex, the matplotlib internal axes will now be arrays of Period rather than a
PeriodIndex (this is similar to how a DatetimeIndex passes arrays of datetimes now)
• MultiIndexes will now raise similary to other pandas objects w.r.t. truth testing, see here (GH7897).
• When plotting a DatetimeIndex directly with matplotlib’s plot function, the axis labels will no longer be formatted as dates but as integers (the internal representation of a datetime64). UPDATE This is fixed in 0.15.1,
see here.
Deprecations
• The attributes Categorical labels and levels attributes are deprecated and renamed to codes and
categories.
• The outtype argument to pd.DataFrame.to_dict has been deprecated in favor of orient. (GH7840)
• The convert_dummies method has been deprecated in favor of get_dummies (GH8140)
• The infer_dst argument in tz_localize will be deprecated in favor of ambiguous to allow for more
flexibility in dealing with DST transitions. Replace infer_dst=True with ambiguous=’infer’ for the
same behavior (GH7943). See the docs for more details.
• The top-level pd.value_range has been deprecated and can be replaced by .describe() (GH8481)
• The Index set operations + and - were deprecated in order to provide these for numeric type operations on
certain index types. + can be replaced by .union() or |, and - by .difference(). Further the method
name Index.diff() is deprecated and can be replaced by Index.difference() (GH8226)
# +
Index(['a','b','c']) + Index(['b','c','d'])
# should be replaced by
Index(['a','b','c']).union(Index(['b','c','d']))
# Index(['a','b','c']) - Index(['b','c','d'])
# should be replaced by
Index(['a','b','c']).difference(Index(['b','c','d']))

• The infer_types argument to read_html() now has no effect and is deprecated (GH7762, GH7032).
Removal of prior version deprecations/changes
• Remove DataFrame.delevel method in favor of DataFrame.reset_index

1.5.3 Enhancements
Enhancements in the importing/exporting of Stata files:
• Added support for bool, uint8, uint16 and uint32 datatypes in to_stata (GH7097, GH7365)
• Added conversion option when importing Stata files (GH8527)

1.5. v0.15.0 (October 18, 2014)

59

pandas: powerful Python data analysis toolkit, Release 0.16.1

• DataFrame.to_stata and StataWriter check string length for compatibility with limitations imposed
in dta files where fixed-width strings must contain 244 or fewer characters. Attempting to write Stata dta files
with strings longer than 244 characters raises a ValueError. (GH7858)
• read_stata and StataReader can import missing data information into a DataFrame by setting
the argument convert_missing to True. When using this options, missing values are returned as
StataMissingValue objects and columns containing missing values have object data type. (GH8045)
Enhancements in the plotting functions:
• Added layout keyword to DataFrame.plot. You can pass a tuple of (rows, columns), one of which
can be -1 to automatically infer (GH6667, GH8071).
• Allow to pass multiple axes to DataFrame.plot, hist and boxplot (GH5353, GH6970, GH7069)
• Added support for c, colormap
kind=’scatter’ (GH7780)

and

colorbar

arguments

for

DataFrame.plot

with

• Histogram from DataFrame.plot with kind=’hist’ (GH7809), See the docs.
• Boxplot from DataFrame.plot with kind=’box’ (GH7998), See the docs.
Other:
• read_csv now has a keyword parameter float_precision which specifies which floating-point converter
the C engine should use during parsing, see here (GH8002, GH8044)
• Added searchsorted method to Series objects (GH7447)
• describe() on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via
the include/exclude arguments. See the docs (GH8164).
In [109]: df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8,
.....:
'catB': ['a', 'b', 'c', 'd'] * 6,
.....:
'numC': np.arange(24),
.....:
'numD': np.arange(24.) + .5})
.....:
In [110]: df.describe(include=["object"])
Out[110]:
catA catB
count
24
24
unique
2
4
top
foo
d
freq
16
6
In [111]: df.describe(include=["number", "object"], exclude=["float"])
Out[111]:
catA catB
numC
count
24
24 24.000000
unique
2
4
NaN
top
foo
d
NaN
freq
16
6
NaN
mean
NaN NaN 11.500000
std
NaN NaN
7.071068
min
NaN NaN
0.000000
25%
NaN NaN
5.750000
50%
NaN NaN 11.500000
75%
NaN NaN 17.250000
max
NaN NaN 23.000000

Requesting all columns is possible with the shorthand ‘all’

60

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [112]: df.describe(include='all')
Out[112]:
catA catB
numC
numD
count
24
24 24.000000 24.000000
unique
2
4
NaN
NaN
top
foo
d
NaN
NaN
freq
16
6
NaN
NaN
mean
NaN NaN 11.500000 12.000000
std
NaN NaN
7.071068
7.071068
min
NaN NaN
0.000000
0.500000
25%
NaN NaN
5.750000
6.250000
50%
NaN NaN 11.500000 12.000000
75%
NaN NaN 17.250000 17.750000
max
NaN NaN 23.000000 23.500000

Without those arguments, ‘describe‘ will behave as before, including only numerical columns or, if none are,
only categorical columns. See also the docs
• Added split as an option to the orient argument in pd.DataFrame.to_dict. (GH7840)
• The get_dummies method can now be used on DataFrames. By default only catagorical columns are encoded
as 0’s and 1’s, while other columns are left untouched.
In [113]: df = DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
.....:
'C': [1, 2, 3]})
.....:
In [114]: pd.get_dummies(df)
Out[114]:
C A_a A_b B_b B_c
0 1
1
0
0
1
1 2
0
1
0
1
2 3
1
0
1
0

• PeriodIndex supports resolution as the same as DatetimeIndex (GH7708)
• pandas.tseries.holiday has added support for additional holidays and ways to observe holidays
(GH7070)
• pandas.tseries.holiday.Holiday now supports a list of offsets in Python3 (GH7070)
• pandas.tseries.holiday.Holiday now supports a days_of_week parameter (GH7070)
• GroupBy.nth() now supports selecting multiple nth values (GH7910)
In [115]: business_dates = date_range(start='4/1/2014', end='6/30/2014', freq='B')
In [116]: df = DataFrame(1, index=business_dates, columns=['a', 'b'])
# get the first, 4th, and last date index for each month
In [117]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])
Out[117]:
a b
2014-04-01 1 1
2014-04-04 1 1
2014-04-30 1 1
2014-05-01 1 1
2014-05-06 1 1
2014-05-30 1 1
2014-06-02 1 1

1.5. v0.15.0 (October 18, 2014)

61

pandas: powerful Python data analysis toolkit, Release 0.16.1

2014-06-05
2014-06-30

1
1

1
1

• Period and PeriodIndex supports addition/subtraction with timedelta-likes (GH7966)
If Period freq is D, H, T, S, L, U, N, Timedelta-like can be added if the result can have same freq. Otherwise,
only the same offsets can be added.
In [118]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')
In [119]: idx
Out[119]:
PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00',
'2014-07-01 12:00', '2014-07-01 13:00'],
dtype='int64', freq='H')
In [120]: idx + pd.offsets.Hour(2)
Out[120]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
'2014-07-01 14:00', '2014-07-01 15:00'],
dtype='int64', freq='H')
In [121]: idx + Timedelta('120m')
Out[121]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
'2014-07-01 14:00', '2014-07-01 15:00'],
dtype='int64', freq='H')
In [122]: idx = pd.period_range('2014-07', periods=5, freq='M')

In [123]: idx
Out[123]: PeriodIndex(['2014-07', '2014-08', '2014-09', '2014-10', '2014-11'], dtype='int64', fr

In [124]: idx + pd.offsets.MonthEnd(3)
Out[124]: PeriodIndex(['2014-10', '2014-11', '2014-12', '2015-01', '2015-02'], dtype='int64', fr

• Added experimental compatibility with openpyxl for versions >= 2.0. The DataFrame.to_excel method
engine keyword now recognizes openpyxl1 and openpyxl2 which will explicitly require openpyxl v1
and v2 respectively, failing if the requested version is not available. The openpyxl engine is a now a metaengine that automatically uses whichever version of openpyxl is installed. (GH7177)
• DataFrame.fillna can now accept a DataFrame as a fill value (GH8377)
• Passing multiple levels to stack() will now work when multiple level numbers are passed (GH7660). See
Reshaping by stacking and unstacking.
• set_names(), set_labels(), and set_levels() methods now take an optional level keyword argument to all modification of specific level(s) of a MultiIndex. Additionally set_names() now accepts a
scalar string value when operating on an Index or on a specific level of a MultiIndex (GH7792)

In [125]: idx = MultiIndex.from_product([['a'], range(3), list("pqr")], names=['foo', 'bar', 'ba
In [126]: idx.set_names('qux', level=0)
Out[126]:
MultiIndex(levels=[[u'a'], [0, 1, 2], [u'p', u'q', u'r']],
labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2,
names=[u'qux', u'bar', u'baz'])
In [127]: idx.set_names(['qux','baz'], level=[0,1])
Out[127]:

62

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

MultiIndex(levels=[[u'a'], [0, 1, 2], [u'p', u'q', u'r']],
labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2,
names=[u'qux', u'baz', u'baz'])
In [128]: idx.set_levels(['a','b','c'], level='bar')
Out[128]:
MultiIndex(levels=[[u'a'], [u'a', u'b', u'c'], [u'p', u'q', u'r']],
labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2,
names=[u'foo', u'bar', u'baz'])
In [129]: idx.set_levels([['a','b','c'],[1,2,3]], level=[1,2])
Out[129]:
MultiIndex(levels=[[u'a'], [u'a', u'b', u'c'], [1, 2, 3]],
labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2,
names=[u'foo', u'bar', u'baz'])

• Index.isin now supports a level argument to specify which index level to use for membership tests
(GH7892, GH7890)
In [1]: idx = MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])
In [2]: idx.values
Out[2]: array([(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')], dtype=object)
In [3]: idx.isin(['a', 'c', 'e'], level=1)
Out[3]: array([ True, False, True, True, False,

True], dtype=bool)

• Index now supports duplicated and drop_duplicates. (GH4060)
In [130]: idx = Index([1, 2, 3, 4, 1, 2])
In [131]: idx
Out[131]: Int64Index([1, 2, 3, 4, 1, 2], dtype='int64')
In [132]: idx.duplicated()
Out[132]: array([False, False, False, False,

True,

True], dtype=bool)

In [133]: idx.drop_duplicates()
Out[133]: Int64Index([1, 2, 3, 4], dtype='int64')

• add copy=True argument to pd.concat to enable pass thru of complete blocks (GH8252)
• Added support for numpy 1.8+ data types (bool_, int_, float_, string_) for conversion to R dataframe
(GH8400)

1.5.4 Performance
• Performance improvements in DatetimeIndex.__iter__ to allow faster iteration (GH7683)
• Performance improvements in Period creation (and PeriodIndex setitem) (GH5155)
• Improvements in Series.transform for significant performance gains (revised) (GH6496)
• Performance improvements in StataReader when reading large files (GH8040, GH8073)
• Performance improvements in StataWriter when writing large files (GH8079)
• Performance and memory usage improvements in multi-key groupby (GH8128)

1.5. v0.15.0 (October 18, 2014)

63

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Performance improvements in groupby .agg and .apply where builtins max/min were not mapped to
numpy/cythonized versions (GH7722)
• Performance improvement in writing to sql (to_sql) of up to 50% (GH8208).
• Performance benchmarking of groupby for large value of ngroups (GH6787)
• Performance improvement in CustomBusinessDay, CustomBusinessMonth (GH8236)
• Performance improvement for MultiIndex.values for multi-level indexes containing datetimes (GH8543)

1.5.5 Bug Fixes
• Bug in pivot_table, when using margins and a dict aggfunc (GH8349)
• Bug in read_csv where squeeze=True would return a view (GH8217)
• Bug in checking of table name in read_sql in certain cases (GH7826).
• Bug in DataFrame.groupby where Grouper does not recognize level when frequency is specified
(GH7885)
• Bug in multiindexes dtypes getting mixed up when DataFrame is saved to SQL table (GH8021)
• Bug in Series 0-division with a float and integer operand dtypes (GH7785)
• Bug in Series.astype("unicode") not calling unicode on the values correctly (GH7758)
• Bug in DataFrame.as_matrix() with mixed datetime64[ns] and timedelta64[ns] dtypes
(GH7778)
• Bug in HDFStore.select_column() not preserving UTC timezone info when selecting a
DatetimeIndex (GH7777)
• Bug in to_datetime when format=’%Y%m%d’ and coerce=True are specified, where previously an
object array was returned (rather than a coerced time-series with NaT), (GH7930)
• Bug in DatetimeIndex and PeriodIndex in-place addition and subtraction cause different result from
normal one (GH6527)
• Bug in adding and subtracting PeriodIndex with PeriodIndex raise TypeError (GH7741)
• Bug in combine_first with PeriodIndex data raises TypeError (GH3367)
• Bug in multi-index slicing with missing indexers (GH7866)
• Bug in multi-index slicing with various edge cases (GH8132)
• Regression in multi-index indexing with a non-scalar type object (GH7914)
• Bug in Timestamp comparisons with == and int64 dtype (GH8058)
• Bug in pickles contains DateOffset may raise AttributeError when normalize attribute is reffered
internally (GH7748)
• Bug in Panel when using major_xs and copy=False is passed (deprecation warning fails because of
missing warnings) (GH8152).
• Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity when
matching block and manager items, when there’s only one block there’s no ambiguity (GH7794)
• Bug in putting a PeriodIndex into a Series would convert to int64 dtype, rather than object of
Periods (GH7932)
• Bug in HDFStore iteration when passing a where (GH8014)

64

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in DataFrameGroupby.transform when transforming with a passed non-sorted key (GH8046,
GH8430)
• Bug in repeated timeseries line and area plot may result in ValueError or incorrect kind (GH7733)
• Bug in inference in a MultiIndex with datetime.date inputs (GH7888)
• Bug in get where an IndexError would not cause the default value to be returned (GH7725)
• Bug in offsets.apply, rollforward and rollback may reset nanosecond (GH7697)
• Bug in offsets.apply, rollforward and rollback may raise AttributeError if Timestamp
has dateutil tzinfo (GH7697)
• Bug in sorting a multi-index frame with a Float64Index (GH8017)
• Bug in inconsistent panel setitem with a rhs of a DataFrame for alignment (GH7763)
• Bug in is_superperiod and is_subperiod cannot handle higher frequencies than S (GH7760, GH7772,
GH7803)
• Bug in 32-bit platforms with Series.shift (GH8129)
• Bug in PeriodIndex.unique returns int64 np.ndarray (GH7540)
• Bug in groupby.apply with a non-affecting mutation in the function (GH8467)
• Bug in DataFrame.reset_index which has MultiIndex
DatetimeIndex with tz raises ValueError (GH7746, GH7793)

contains

PeriodIndex

or

• Bug in DataFrame.plot with subplots=True may draw unnecessary minor xticks and yticks (GH7801)
• Bug in StataReader which did not read variable labels in 117 files due to difference between Stata documentation and implementation (GH7816)
• Bug in StataReader where strings were always converted to 244 characters-fixed width irrespective of underlying string size (GH7858)
• Bug in DataFrame.plot and Series.plot may ignore rot and fontsize keywords (GH7844)
• Bug in DatetimeIndex.value_counts doesn’t preserve tz (GH7735)
• Bug in PeriodIndex.value_counts results in Int64Index (GH7735)
• Bug in DataFrame.join when doing left join on index and there are multiple matches (GH5391)
• Bug in GroupBy.transform() where int groups with a transform that didn’t preserve the index were incorrectly truncated (GH7972).
• Bug in groupby where callable objects without name attributes would take the wrong path, and produce a
DataFrame instead of a Series (GH7929)
• Bug in groupby error message when a DataFrame grouping column is duplicated (GH7511)
• Bug in read_html where the infer_types argument forced coercion of date-likes incorrectly (GH7762,
GH7032).
• Bug in Series.str.cat with an index which was filtered as to not include the first item (GH7857)
• Bug in Timestamp cannot parse nanosecond from string (GH7878)
• Bug in Timestamp with string offset and tz results incorrect (GH7833)
• Bug in tslib.tz_convert and tslib.tz_convert_single may return different results (GH7798)
• Bug in DatetimeIndex.intersection of non-overlapping timestamps with tz raises IndexError
(GH7880)

1.5. v0.15.0 (October 18, 2014)

65

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in alignment with TimeOps and non-unique indexes (GH8363)
• Bug in GroupBy.filter() where fast path vs. slow path made the filter return a non scalar value that
appeared valid but wasn’t (GH7870).
• Bug in date_range()/DatetimeIndex() when the timezone was inferred from input dates yet incorrect
times were returned when crossing DST boundaries (GH7835, GH7901).
• Bug in to_excel() where a negative sign was being prepended to positive infinity and was absent for negative
infinity (GH7949)
• Bug in area plot draws legend with incorrect alpha when stacked=True (GH8027)
• Period and PeriodIndex addition/subtraction with np.timedelta64 results in incorrect internal representations (GH7740)
• Bug in Holiday with no offset or observance (GH7987)
• Bug in DataFrame.to_latex formatting when columns or index is a MultiIndex (GH7982).
• Bug in DateOffset around Daylight Savings Time produces unexpected results (GH5175).
• Bug in DataFrame.shift where empty columns would throw ZeroDivisionError on numpy 1.7
(GH8019)
• Bug in installation where html_encoding/*.html wasn’t installed and therefore some tests were not running correctly (GH7927).
• Bug in read_html where bytes objects were not tested for in _read (GH7927).
• Bug in DataFrame.stack() when one of the column levels was a datelike (GH8039)
• Bug in broadcasting numpy scalars with DataFrame (GH8116)
• Bug in pivot_table performed with nameless index and columns raises KeyError (GH8103)
• Bug in DataFrame.plot(kind=’scatter’) draws points and errorbars with different colors when the
color is specified by c keyword (GH8081)
• Bug in Float64Index where iat and at were not testing and were failing (GH8092).
• Bug in DataFrame.boxplot() where y-limits were not set correctly when producing multiple axes
(GH7528, GH5517).
• Bug in read_csv where line comments were not handled correctly given a custom line terminator or
delim_whitespace=True (GH8122).
• Bug in read_html where empty tables caused a StopIteration (GH7575)
• Bug in casting when setting a column in a same-dtype block (GH7704)
• Bug in accessing groups from a GroupBy when the original grouper was a tuple (GH8121).
• Bug in .at that would accept integer indexers on a non-integer index and do fallback (GH7814)
• Bug with kde plot and NaNs (GH8182)
• Bug in GroupBy.count with float32 data type were nan values were not excluded (GH8169).
• Bug with stacked barplots and NaNs (GH8175).
• Bug in resample with non evenly divisible offsets (e.g. ‘7s’) (GH8371)
• Bug in interpolation methods with the limit keyword when no values needed interpolating (GH7173).
• Bug where col_space was ignored in DataFrame.to_string() when header=False (GH8230).

66

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug with DatetimeIndex.asof incorrectly matching partial strings and returning the wrong date
(GH8245).
• Bug in plotting methods modifying the global matplotlib rcParams (GH8242).
• Bug in DataFrame.__setitem__ that caused errors when setting a dataframe column to a sparse array
(GH8131)
• Bug where Dataframe.boxplot() failed when entire column was empty (GH8181).
• Bug with messed variables in radviz visualization (GH8199).
• Bug in interpolation methods with the limit keyword when no values needed interpolating (GH7173).
• Bug where col_space was ignored in DataFrame.to_string() when header=False (GH8230).
• Bug in to_clipboard that would clip long column data (GH8305)
• Bug in DataFrame terminal display: Setting max_column/max_rows to zero did not trigger auto-resizing of
dfs to fit terminal width/height (GH7180).
• Bug in OLS where running with “cluster” and “nw_lags” parameters did not work correctly, but also did not
throw an error (GH5884).
• Bug in DataFrame.dropna that interpreted non-existent columns in the subset argument as the ‘last column’
(GH8303)
• Bug in Index.intersection on non-monotonic non-unique indexes (GH8362).
• Bug in masked series assignment where mismatching types would break alignment (GH8387)
• Bug in NDFrame.equals gives false negatives with dtype=object (GH8437)
• Bug in assignment with indexer where type diversity would break alignment (GH8258)
• Bug in NDFrame.loc indexing when row/column names were lost when target was a list/ndarray (GH6552)
• Regression in NDFrame.loc indexing when rows/columns were converted to Float64Index if target was an
empty list/ndarray (GH7774)
• Bug in Series that allows it to be indexed by a DataFrame which has unexpected results. Such indexing is
no longer permitted (GH8444)
• Bug in item assignment of a DataFrame with multi-index columns where right-hand-side columns were not
aligned (GH7655)
• Suppress FutureWarning generated by NumPy when comparing object arrays containing NaN for equality
(GH7065)
• Bug in DataFrame.eval() where the dtype of the not operator (~) was not correctly inferred as bool.

1.6 v0.14.1 (July 11, 2014)
This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.
• Highlights include:
– New methods select_dtypes() to select columns based on the dtype and sem() to calculate the
standard error of the mean.
– Support for dateutil timezones (see docs).

1.6. v0.14.1 (July 11, 2014)

67

pandas: powerful Python data analysis toolkit, Release 0.16.1

– Support for ignoring full line comments in the read_csv() text parser.
– New documentation section on Options and Settings.
– Lots of bug fixes.
• Enhancements
• API Changes
• Performance Improvements
• Experimental Changes
• Bug Fixes

1.6.1 API changes
• Openpyxl now raises a ValueError on construction of the openpyxl writer instead of warning on pandas import
(GH7284).
• For StringMethods.extract, when no match is found, the result - only containing NaN values - now also
has dtype=object instead of float (GH7242)
• Period objects no longer raise a TypeError when compared using == with another object that isn’t a
Period. Instead when comparing a Period with another object using == if the other object isn’t a Period
False is returned. (GH7376)
• Previously, the behaviour on resetting the time or not in offsets.apply, rollforward and rollback
operations differed between offsets. With the support of the normalize keyword for all offsets(see below) with a default value of False (preserve time), the behaviour changed for certain offsets (BusinessMonthBegin, MonthEnd, BusinessMonthEnd, CustomBusinessMonthEnd, BusinessYearBegin, LastWeekOfMonth,
FY5253Quarter, LastWeekOfMonth, Easter):
In [6]: from pandas.tseries import offsets
In [7]: d = pd.Timestamp('2014-01-01 09:00')
# old behaviour < 0.14.1
In [8]: d + offsets.MonthEnd()
Out[8]: Timestamp('2014-01-31 00:00:00')

Starting from 0.14.1 all offsets preserve time by default.
normalize=True

The old behaviour can be obtained with

# new behaviour
In [1]: d + offsets.MonthEnd()
Out[1]: Timestamp('2014-01-31 09:00:00')
In [2]: d + offsets.MonthEnd(normalize=True)
Out[2]: Timestamp('2014-01-31 00:00:00')

Note that for the other offsets the default behaviour did not change.
• Add back #N/A N/A as a default NA value in text parsing, (regresion from 0.12) (GH5521)
• Raise a TypeError on inplace-setting with a .where and a non np.nan value as this is inconsistent with a
set-item expression like df[mask] = None (GH7656)

68

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.6.2 Enhancements
• Add dropna argument to value_counts and nunique (GH5569).
• Add select_dtypes() method to allow selection of columns based on dtype (GH7316). See the docs.
• All offsets suppports the normalize keyword to specify whether offsets.apply, rollforward
and rollback resets the time (hour, minute, etc) or not (default False, preserves time) (GH7156):
In [3]: import pandas.tseries.offsets as offsets
In [4]: day = offsets.Day()
In [5]: day.apply(Timestamp('2014-01-01 09:00'))
Out[5]: Timestamp('2014-01-02 09:00:00')
In [6]: day = offsets.Day(normalize=True)
In [7]: day.apply(Timestamp('2014-01-01 09:00'))
Out[7]: Timestamp('2014-01-02 00:00:00')

• PeriodIndex is represented as the same format as DatetimeIndex (GH7601)
• StringMethods now work on empty Series (GH7242)
• The file parsers read_csv and read_table now ignore line comments provided by the parameter comment,
which accepts only a single character for the C reader. In particular, they allow for comments before file data
begins (GH2685)
• Add NotImplementedError for simultaneous use of chunksize and nrows for read_csv() (GH6774).
• Tests for basic reading of public S3 buckets now exist (GH7281).
• read_html now sports an encoding argument that is passed to the underlying parser library. You can use
this to read non-ascii encoded web pages (GH7323).
• read_excel now supports reading from URLs in the same way that read_csv does. (GH6809)
• Support for dateutil timezones, which can now be used in the same way as pytz timezones across pandas.
(GH4688)
In [8]: rng = date_range('3/6/2012 00:00', periods=10, freq='D',
...:
tz='dateutil/Europe/London')
...:
In [9]: rng.tz
Out[9]: tzfile('Europe/Belfast')

See the docs.
• Implemented sem (standard error of the mean) operation for Series, DataFrame, Panel, and Groupby
(GH6897)
• Add nlargest and nsmallest to the Series groupby whitelist, which means you can now use these
methods on a SeriesGroupBy object (GH7053).
• All offsets apply, rollforward and rollback can now handle np.datetime64, previously results in
ApplyTypeError (GH7452)
• Period and PeriodIndex can contain NaT in its values (GH7485)
• Support pickling Series, DataFrame and Panel objects with non-unique labels along item axis (index,
columns and items respectively) (GH7370).

1.6. v0.14.1 (July 11, 2014)

69

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Improved inference of datetime/timedelta with mixed null objects. Regression from 0.13.1 in interpretation of
an object Index with all null elements (GH7431)

1.6.3 Performance
• Improvements in dtype inference for numeric operations involving yielding performance gains for dtypes:
int64, timedelta64, datetime64 (GH7223)
• Improvements in Series.transform for significant performance gains (GH6496)
• Improvements in DataFrame.transform with ufuncs and built-in grouper functions for signifcant performance
gains (GH7383)
• Regression in groupby aggregation of datetime64 dtypes (GH7555)
• Improvements in MultiIndex.from_product for large iterables (GH7627)

1.6.4 Experimental
• pandas.io.data.Options has a new method, get_all_data method, and now consistently returns a
multi-indexed DataFrame, see the docs. (GH5602)
• io.gbq.read_gbq and io.gbq.to_gbq were refactored to remove the dependency on the Google
bq.py command line client. This submodule now uses httplib2 and the Google apiclient and
oauth2client API client libraries which should be more stable and, therefore, reliable than bq.py. See the
docs. (GH6937).

1.6.5 Bug Fixes
• Bug in DataFrame.where with a symmetric shaped frame and a passed other of a DataFrame (GH7506)
• Bug in Panel indexing with a multi-index axis (GH7516)
• Regression in datetimelike slice indexing with a duplicated index and non-exact end-points (GH7523)
• Bug in setitem with list-of-lists and single vs mixed types (GH7551:)
• Bug in timeops with non-aligned Series (GH7500)
• Bug in timedelta inference when assigning an incomplete Series (GH7592)
• Bug in groupby .nth with a Series and integer-like column name (GH7559)
• Bug in Series.get with a boolean accessor (GH7407)
• Bug in value_counts where NaT did not qualify as missing (NaN) (GH7423)
• Bug in to_timedelta that accepted invalid units and misinterpreted ‘m/h’ (GH7611, GH6423)
• Bug in line plot doesn’t set correct xlim if secondary_y=True (GH7459)
• Bug in grouped hist and scatter plots use old figsize default (GH7394)
• Bug in plotting subplots with DataFrame.plot, hist clears passed ax even if the number of subplots is
one (GH7391).
• Bug in plotting subplots with DataFrame.boxplot with by kw raises ValueError if the number of
subplots exceeds 1 (GH7391).
• Bug in subplots displays ticklabels and labels in different rule (GH5897)

70

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in Panel.apply with a multi-index as an axis (GH7469)
• Bug in DatetimeIndex.insert doesn’t preserve name and tz (GH7299)
• Bug in DatetimeIndex.asobject doesn’t preserve name (GH7299)
• Bug in multi-index slicing with datetimelike ranges (strings and Timestamps), (GH7429)
• Bug in Index.min and max doesn’t handle nan and NaT properly (GH7261)
• Bug in PeriodIndex.min/max results in int (GH7609)
• Bug in resample where fill_method was ignored if you passed how (GH2073)
• Bug in TimeGrouper doesn’t exclude column specified by key (GH7227)
• Bug in DataFrame and Series bar and barh plot raises TypeError when bottom and left keyword is
specified (GH7226)
• Bug in DataFrame.hist raises TypeError when it contains non numeric column (GH7277)
• Bug in Index.delete does not preserve name and freq attributes (GH7302)
• Bug in DataFrame.query()/eval where local string variables with the @ sign were being treated as
temporaries attempting to be deleted (GH7300).
• Bug in Float64Index which didn’t allow duplicates (GH7149).
• Bug in DataFrame.replace() where truthy values were being replaced (GH7140).
• Bug in StringMethods.extract() where a single match group Series would use the matcher’s name
instead of the group name (GH7313).
• Bug in isnull() when mode.use_inf_as_null == True where isnull wouldn’t test True when it
encountered an inf/-inf (GH7315).
• Bug in inferred_freq results in None for eastern hemisphere timezones (GH7310)
• Bug in Easter returns incorrect date when offset is negative (GH7195)
• Bug in broadcasting with .div, integer dtypes and divide-by-zero (GH7325)
• Bug in CustomBusinessDay.apply raiases NameError when np.datetime64 object is passed
(GH7196)
• Bug in MultiIndex.append, concat and pivot_table don’t preserve timezone (GH6606)
• Bug in .loc with a list of indexers on a single-multi index level (that is not nested) (GH7349)
• Bug in Series.map when mapping a dict with tuple keys of different lengths (GH7333)
• Bug all StringMethods now work on empty Series (GH7242)
• Fix delegation of read_sql to read_sql_query when query does not contain ‘select’ (GH7324).
• Bug where a string column name assignment to a DataFrame with a Float64Index raised a TypeError
during a call to np.isnan (GH7366).
• Bug where NDFrame.replace() didn’t correctly replace objects with Period values (GH7379).
• Bug in .ix getitem should always return a Series (GH7150)
• Bug in multi-index slicing with incomplete indexers (GH7399)
• Bug in multi-index slicing with a step in a sliced level (GH7400)
• Bug where negative indexers in DatetimeIndex were not correctly sliced (GH7408)
• Bug where NaT wasn’t repr’d correctly in a MultiIndex (GH7406, GH7409).

1.6. v0.14.1 (July 11, 2014)

71

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug where bool objects were converted to nan in convert_objects (GH7416).
• Bug in quantile ignoring the axis keyword argument (:issue‘7306‘)
• Bug where nanops._maybe_null_out doesn’t work with complex numbers (GH7353)
• Bug in several nanops functions when axis==0 for 1-dimensional nan arrays (GH7354)
• Bug where nanops.nanmedian doesn’t work when axis==None (GH7352)
• Bug where nanops._has_infs doesn’t work with many dtypes (GH7357)
• Bug in StataReader.data where reading a 0-observation dta failed (GH7369)
• Bug in StataReader when reading Stata 13 (117) files containing fixed width strings (GH7360)
• Bug in StataWriter where encoding was ignored (GH7286)
• Bug in DatetimeIndex comparison doesn’t handle NaT properly (GH7529)
• Bug in passing input with tzinfo to some offsets apply, rollforward or rollback resets tzinfo or
raises ValueError (GH7465)
• Bug in DatetimeIndex.to_period, PeriodIndex.asobject, PeriodIndex.to_timestamp
doesn’t preserve name (GH7485)
• Bug in DatetimeIndex.to_period and PeriodIndex.to_timestanp handle NaT incorrectly
(GH7228)
• Bug in offsets.apply, rollforward and rollback may return normal datetime (GH7502)
• Bug in resample raises ValueError when target contains NaT (GH7227)
• Bug in Timestamp.tz_localize resets nanosecond info (GH7534)
• Bug in DatetimeIndex.asobject raises ValueError when it contains NaT (GH7539)
• Bug in Timestamp.__new__ doesn’t preserve nanosecond properly (GH7610)
• Bug in Index.astype(float) where it would return an object dtype Index (GH7464).
• Bug in DataFrame.reset_index loses tz (GH3950)
• Bug in DatetimeIndex.freqstr raises AttributeError when freq is None (GH7606)
• Bug in GroupBy.size created by TimeGrouper raises AttributeError (GH7453)
• Bug in single column bar plot is misaligned (GH7498).
• Bug in area plot with tz-aware time series raises ValueError (GH7471)
• Bug in non-monotonic Index.union may preserve name incorrectly (GH7458)
• Bug in DatetimeIndex.intersection doesn’t preserve timezone (GH4690)
• Bug in rolling_var where a window larger than the array would raise an error(GH7297)
• Bug with last plotted timeseries dictating xlim (GH2960)
• Bug with secondary_y axis not being considered for timeseries xlim (GH3490)
• Bug in Float64Index assignment with a non scalar indexer (GH7586)
• Bug in pandas.core.strings.str_contains does not properly match in a case insensitive fashion
when regex=False and case=False (GH7505)
• Bug in expanding_cov, expanding_corr, rolling_cov, and rolling_corr for two arguments
with mismatched index (GH7512)
• Bug in to_sql taking the boolean column as text column (GH7678)

72

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in grouped hist doesn’t handle rot kw and sharex kw properly (GH7234)
• Bug in .loc performing fallback integer indexing with object dtype indices (GH7496)
• Bug (regression) in PeriodIndex constructor when passed Series objects (GH7701).

1.7 v0.14.0 (May 31 , 2014)
This is a major release from 0.13.1 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.
• Highlights include:
– Officially support Python 3.4
– SQL interfaces updated to use sqlalchemy, See Here.
– Display interface changes, See Here
– MultiIndexing Using Slicers, See Here.
– Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see Here
– More consistency in groupby results and more flexible groupby specifications, See Here
– Holiday calendars are now supported in CustomBusinessDay, see Here
– Several improvements in plotting functions, including: hexbin, area and pie plots, see Here.
– Performance doc section on I/O operations, See Here
• Other Enhancements
• API Changes
• Text Parsing API Changes
• Groupby API Changes
• Performance Improvements
• Prior Deprecations
• Deprecations
• Known Issues
• Bug Fixes
Warning: In 0.14.0 all NDFrame based containers have undergone significant internal refactoring. Before that
each block of homogeneous data had its own labels and extra care was necessary to keep those in sync with the
parent container’s labels. This should not have any visible user/API behavior changes (GH6745)

1.7.1 API changes
• read_excel uses 0 as the default sheet (GH6573)
• iloc will now accept out-of-bounds indexers for slices, e.g. a value that exceeds the length of the object
being indexed. These will be excluded. This will make pandas conform more with python/numpy indexing of
out-of-bounds values. A single indexer that is out-of-bounds and drops the dimensions of the object will still

1.7. v0.14.0 (May 31 , 2014)

73

pandas: powerful Python data analysis toolkit, Release 0.16.1

raise IndexError (GH6296, GH6299). This could result in an empty axis (e.g. an empty DataFrame being
returned)
In [1]: dfl = DataFrame(np.random.randn(5,2),columns=list('AB'))
In [2]: dfl
Out[2]:
A
B
0 1.583584 -0.438313
1 -0.402537 -0.780572
2 -0.141685 0.542241
3 0.370966 -0.251642
4 0.787484 1.666563
In [3]: dfl.iloc[:,2:3]
Out[3]:
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]
In [4]: dfl.iloc[:,1:3]
Out[4]:
B
0 -0.438313
1 -0.780572
2 0.542241
3 -0.251642
4 1.666563
In [5]: dfl.iloc[4:6]
Out[5]:
A
B
4 0.787484 1.666563

These are out-of-bounds selections
dfl.iloc[[4,5,6]]
IndexError: positional indexers are out-of-bounds
dfl.iloc[:,4]
IndexError: single positional indexer is out-of-bounds

• Slicing with negative start, stop & step values handles corner cases better (GH6531):
– df.iloc[:-len(df)] is now empty
– df.iloc[len(df)::-1] now enumerates all elements in reverse
• The DataFrame.interpolate() keyword downcast default has been changed from infer to None.
This is to preseve the original dtype unless explicitly requested otherwise (GH6290).
• When converting a dataframe to HTML it used to return Empty DataFrame. This special case has been removed,
instead a header with the column names is returned (GH6062).
• Series
and
Index
now
internall
share
more
common
operations,
e.g.
factorize(),nunique(),value_counts() are now supported on Index types as well.
The Series.weekday property from is removed from Series for API consistency.
Using a
DatetimeIndex/PeriodIndex method on a Series will now raise a TypeError. (GH4551, GH4056,
GH5519, GH6380, GH7206).
• Add

74

is_month_start,

is_month_end,

is_quarter_start,

is_quarter_end,

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

is_year_start, is_year_end accessors for DateTimeIndex / Timestamp which return a
boolean array of whether the timestamp(s) are at the start/end of the month/quarter/year defined by the
frequency of the DateTimeIndex / Timestamp (GH4565, GH6998)
• Local variable usage has changed in pandas.eval()/DataFrame.eval()/DataFrame.query()
(GH5987). For the DataFrame methods, two things have changed
– Column names are now given precedence over locals
– Local variables must be referred to explicitly. This means that even if you have a local variable that is not
a column you must still refer to it with the ’@’ prefix.
– You can have an expression like df.query(’@a < a’) with no complaints from pandas about ambiguity of the name a.
– The top-level pandas.eval() function does not allow you use the ’@’ prefix and provides you with
an error message telling you so.
– NameResolutionError was removed because it isn’t necessary anymore.
• Define and document the order of column vs index names in query/eval (GH6676)
• concat will now concatenate mixed Series and DataFrames using the Series name or numbering columns as
needed (GH2385). See the docs
• Slicing and advanced/boolean indexing operations on Index classes as well as Index.delete() and
Index.drop() methods will no longer change the type of the resulting index (GH6440, GH7040)
In [6]: i = pd.Index([1, 2, 3, 'a' , 'b', 'c'])
In [7]: i[[0,1,2]]
Out[7]: Index([1, 2, 3], dtype='object')
In [8]: i.drop(['a', 'b', 'c'])
Out[8]: Int64Index([1, 2, 3], dtype='int64')

Previously, the above operation would return Int64Index.
Index.astype()

If you’d like to do this manually, use

In [9]: i[[0,1,2]].astype(np.int_)
Out[9]: Int64Index([1, 2, 3], dtype='int32')

• set_index no longer converts MultiIndexes to an Index of tuples. For example, the old behavior returned an
Index in this case (GH6459):
# Old behavior, casted MultiIndex to an Index
In [10]: tuple_ind
Out[10]: Index([(u'a', u'c'), (u'a', u'd'), (u'b', u'c'), (u'b', u'd')], dtype='object')
In [11]: df_multi.set_index(tuple_ind)
Out[11]:
0
1
(a, c) 0.471435 -1.190976
(a, d) 1.432707 -0.312652
(b, c) -0.720589 0.887163
(b, d) 0.859588 -0.636524
# New behavior
In [12]: mi
Out[12]:
MultiIndex(levels=[[u'a', u'b'], [u'c', u'd']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

1.7. v0.14.0 (May 31 , 2014)

75

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [13]: df_multi.set_index(mi)
Out[13]:
0
1
a c 0.471435 -1.190976
d 1.432707 -0.312652
b c -0.720589 0.887163
d 0.859588 -0.636524

This also applies when passing multiple indices to set_index:
# Old output, 2-level MultiIndex of tuples
In [14]: df_multi.set_index([df_multi.index, df_multi.index])
Out[14]:
0
1
(a, c) (a, c) 0.471435 -1.190976
(a, d) (a, d) 1.432707 -0.312652
(b, c) (b, c) -0.720589 0.887163
(b, d) (b, d) 0.859588 -0.636524
# New output, 4-level MultiIndex
In [15]: df_multi.set_index([df_multi.index, df_multi.index])
Out[15]:
0
1
a c a c 0.471435 -1.190976
d a d 1.432707 -0.312652
b c b c -0.720589 0.887163
d b d 0.859588 -0.636524

• pairwise keyword was added to the statistical moment functions rolling_cov, rolling_corr,
ewmcov, ewmcorr, expanding_cov, expanding_corr to allow the calculation of moving window
covariance and correlation matrices (GH4950). See Computing rolling pairwise covariances and correlations
in the docs.
In [16]: df = DataFrame(np.random.randn(10,4),columns=list('ABCD'))
In [17]: covs = rolling_cov(df[['A','B','C']], df[['B','C','D']], 5, pairwise=True)
In [18]: covs[df.index[-1]]
Out[18]:
B
C
D
A 0.128104 0.183628 -0.047358
B 0.856265 0.058945 0.145447
C 0.058945 0.335350 0.390637

• Series.iteritems() is now lazy (returns an iterator rather than a list). This was the documented behavior
prior to 0.14. (GH6760)
• Added nunique and value_counts functions to Index for counting unique elements. (GH6734)
• stack and unstack now raise a ValueError when the level keyword refers to a non-unique item in the
Index (previously raised a KeyError). (GH6738)
• drop unused order argument from Series.sort; args now are in the same order as Series.order; add
na_position arg to conform to Series.order (GH6847)
• default sorting algorithm for Series.order is now quicksort, to conform with Series.sort (and
numpy defaults)
• add inplace keyword to Series.order/sort to make them inverses (GH6859)

76

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• DataFrame.sort now places NaNs at the beginning or end of the sort according to the na_position
parameter. (GH3917)
• accept TextFileReader in concat, which was affecting a common user idiom (GH6583), this was a
regression from 0.13.1
• Added factorize functions to Index and Series to get indexer and unique values (GH7090)
• describe on a DataFrame with a mix of Timestamp and string like objects returns a different Index (GH7088).
Previously the index was unintentionally sorted.
• Arithmetic operations with only bool dtypes now give a warning indicating that they are evaluated in Python
space for +, -, and * operations and raise for all others (GH7011, GH6762, GH7015, GH7210)
x
y
x
x

=
=
+
/

pd.Series(np.random.rand(10) > 0.5)
True
y # warning generated: should do x | y instead
y # this raises because it doesn't make sense

NotImplementedError: operator '/' not implemented for bool dtypes

• In HDFStore, select_as_multiple will always raise a KeyError, when a key or the selector is not
found (GH6177)
• df[’col’] = value and df.loc[:,’col’] = value are now completely equivalent; previously the
.loc would not necessarily coerce the dtype of the resultant series (GH6149)
• dtypes and ftypes now return a series with dtype=object on empty containers (GH5740)
• df.to_csv will now return a string of the CSV data if neither a target path nor a buffer is provided (GH6061)
• pd.infer_freq() will now raise a TypeError if given an invalid Series/Index type (GH6407,
GH6463)
• A tuple passed to DataFame.sort_index will be interpreted as the levels of the index, rather than requiring
a list of tuple (GH4370)
• all offset operations now return Timestamp types (rather than datetime), Business/Week frequencies were
incorrect (GH4069)
• to_excel now converts np.inf into a string representation, customizable by the inf_rep keyword argument (Excel has no native inf representation) (GH6782)
• Replace pandas.compat.scipy.scoreatpercentile with numpy.percentile (GH6810)
• .quantile on a datetime[ns] series now returns Timestamp instead of np.datetime64 objects
(GH6810)
• change AssertionError to TypeError for invalid types passed to concat (GH6583)
• Raise a TypeError when DataFrame is passed an iterator as the data argument (GH5357)

1.7.2 Display Changes
• The default way of printing large DataFrames has changed. DataFrames exceeding max_rows and/or
max_columns are now displayed in a centrally truncated view, consistent with the printing of a
pandas.Series (GH5603).
In previous versions, a DataFrame was truncated once the dimension constraints were reached and an ellipse
(...) signaled that part of the data was cut off.

1.7. v0.14.0 (May 31 , 2014)

77

pandas: powerful Python data analysis toolkit, Release 0.16.1

In the current version, large DataFrames are centrally truncated, showing a preview of head and tail in both
dimensions.

• allow option ’truncate’ for display.show_dimensions to only show the dimensions if the frame is
truncated (GH6547).
The default for display.show_dimensions will now be truncate. This is consistent with how Series
display length.

In [19]: dfd = pd.DataFrame(np.arange(25).reshape(-1,5), index=[0,1,2,3,4], columns=[0,1,2,3,4])
# show dimensions since this is truncated
In [20]: with pd.option_context('display.max_rows', 2, 'display.max_columns', 2,
....:
'display.show_dimensions', 'truncate'):
....:
print(dfd)
....:
0 ...
4
0
0 ...
4

78

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

..
4

.. ...
20 ...

..
24

[5 rows x 5 columns]
# will not show dimensions since it is not truncated
In [21]: with pd.option_context('display.max_rows', 10, 'display.max_columns', 40,
....:
'display.show_dimensions', 'truncate'):
....:
print(dfd)
....:
0
1
2
3
4
0
0
1
2
3
4
1
5
6
7
8
9
2 10 11 12 13 14
3 15 16 17 18 19
4 20 21 22 23 24

• Regression in the display of a MultiIndexed Series with display.max_rows is less than the length of the
series (GH7101)
• Fixed a bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr
set to ‘info’ (GH7105)
• The verbose keyword in DataFrame.info(), which controls whether to shorten the info representation,
is now None by default. This will follow the global setting in display.max_info_columns. The global
setting can be overriden with verbose=True or verbose=False.
• Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)
• Offset/freq info now in Timestamp __repr__ (GH4553)

1.7.3 Text Parsing API Changes
read_csv()/read_table() will now be noiser w.r.t invalid options rather than falling back to the
PythonParser.
• Raise
ValueError
when
sep
read_csv()/read_table() (GH6607)

specified

• Raise
ValueError
when
engine=’c’
read_csv()/read_table() (GH6607)

with

specified

delim_whitespace=True
with

unsupported

options

in
in

• Raise ValueError when fallback to python parser causes options to be ignored (GH6607)
• Produce ParserWarning on fallback to python parser when no options are ignored (GH6607)
• Translate sep=’\s+’ to delim_whitespace=True in read_csv()/read_table() if no other Cunsupported options specified (GH6607)

1.7.4 Groupby API Changes
More consistent behaviour for some groupby methods:
• groupby head and tail now act more like filter rather than an aggregation:
In [22]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
In [23]: g = df.groupby('A')

1.7. v0.14.0 (May 31 , 2014)

79

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [24]: g.head(1)
Out[24]:
A B
0 1 2
2 5 6

# filters DataFrame

In [25]: g.apply(lambda x: x.head(1))
Out[25]:
A B
A
1 0 1 2
5 2 5 6

# used to simply fall-through

• groupby head and tail respect column selection:
In [26]: g[['B']].head(1)
Out[26]:
B
0 2
2 6

• groupby nth now reduces by default; filtering can be achieved by passing as_index=False. With an
optional dropna argument to ignore NaN. See the docs.
Reducing
In [27]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
In [28]: g = df.groupby('A')
In [29]: g.nth(0)
Out[29]:
B
A
1 NaN
5
6
# this is equivalent to g.first()
In [30]: g.nth(0, dropna='any')
Out[30]:
B
A
1 4
5 6
# this is equivalent to g.last()
In [31]: g.nth(-1, dropna='any')
Out[31]:
B
A
1 4
5 6

Filtering
In [32]: gf = df.groupby('A',as_index=False)
In [33]: gf.nth(0)
Out[33]:
A
B

80

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
2

1 NaN
5
6

In [34]: gf.nth(0, dropna='any')
Out[34]:
B
A
1 4
5 6

• groupby will now not return the grouped column for non-cython functions (GH5610, GH5614, GH6732), as its
already the index
In [35]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])
In [36]: g = df.groupby('A')
In [37]: g.count()
Out[37]:
B
A
1 1
5 2
In [38]: g.describe()
Out[38]:
B
A
1 count 1.000000
mean
4.000000
std
NaN
min
4.000000
25%
4.000000
50%
4.000000
75%
4.000000
...
...
5 mean
7.000000
std
1.414214
min
6.000000
25%
6.500000
50%
7.000000
75%
7.500000
max
8.000000
[16 rows x 1 columns]

• passing as_index will leave the grouped column in-place (this is not change in 0.14.0)
In [39]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])
In [40]: g = df.groupby('A',as_index=False)
In [41]: g.count()
Out[41]:
A B
0 1 1
1 5 2
In [42]: g.describe()

1.7. v0.14.0 (May 31 , 2014)

81

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[42]:
A
0 count 2
mean
1
std
0
min
1
25%
1
50%
1
75%
1
...
..
1 mean
5
std
0
min
5
25%
5
50%
5
75%
5
max
5

B
1.000000
4.000000
NaN
4.000000
4.000000
4.000000
4.000000
...
7.000000
1.414214
6.000000
6.500000
7.000000
7.500000
8.000000

[16 rows x 2 columns]

• Allow specification of a more complex groupby via pd.Grouper, such as grouping by a Time and a string
field simultaneously. See the docs. (GH3794)
• Better propagation/preservation of Series names when performing groupby operations:
– SeriesGroupBy.agg will ensure that the name attribute of the original series is propagated to the
result (GH6265).
– If the function provided to GroupBy.apply returns a named series, the name of the series will be kept as
the name of the column index of the DataFrame returned by GroupBy.apply (GH6124). This facilitates
DataFrame.stack operations where the name of the column index is used as the name of the inserted
column containing the pivoted data.

1.7.5 SQL
The SQL reading and writing functions now support more database flavors through SQLAlchemy (GH2717, GH4163,
GH5950, GH6292). All databases supported by SQLAlchemy can be used, such as PostgreSQL, MySQL, Oracle,
Microsoft SQL server (see documentation of SQLAlchemy on included dialects).
The functionality of providing DBAPI connection objects will only be supported for sqlite3 in the future. The
’mysql’ flavor is deprecated.
The new functions read_sql_query() and read_sql_table() are introduced. The function read_sql()
is kept as a convenience wrapper around the other two and will delegate to specific function depending on the provided
input (database table name or sql query).
In practice, you have to provide a SQLAlchemy engine to the sql functions. To connect with SQLAlchemy you use
the create_engine() function to create an engine object from database URI. You only need to create the engine
once per database you are connecting to. For an in-memory sqlite database:
In [43]: from sqlalchemy import create_engine
# Create your connection.
In [44]: engine = create_engine('sqlite:///:memory:')

This engine can then be used to write or read data to/from this database:

82

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [45]: df = pd.DataFrame({'A': [1,2,3], 'B': ['a', 'b', 'c']})
In [46]: df.to_sql('db_table', engine, index=False)

You can read data from a database by specifying the table name:
In [47]: pd.read_sql_table('db_table', engine)
Out[47]:
A B
0 1 a
1 2 b
2 3 c

or by specifying a sql query:
In [48]: pd.read_sql_query('SELECT * FROM db_table', engine)
Out[48]:
A B
0 1 a
1 2 b
2 3 c

Some other enhancements to the sql functions include:
• support for writing the index. This can be controlled with the index keyword (default is True).
• specify the column label to use when writing the index with index_label.
• specify string columns to parse as datetimes withh the parse_dates keyword in read_sql_query() and
read_sql_table().
Warning: Some of the existing functions or function aliases have been deprecated and will be removed in future
versions. This includes: tquery, uquery, read_frame, frame_query, write_frame.
Warning: The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL
will be further supported with SQLAlchemy engines (GH6900).

1.7.6 MultiIndexing Using Slicers
In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple
indexers.
You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of
labels, labels, and boolean indexers.
You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels,
they will be implied as slice(None).
As usual, both sides of the slicers are included as this is label indexing.
See the docs See also issues (GH6134, GH4036, GH3057, GH2598, GH5641, GH7106)

1.7. v0.14.0 (May 31 , 2014)

83

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning: You should specify all axes in the .loc specifier, meaning the indexer for the index and for the
columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both
axes, rather than into say the MuliIndex for the rows.
You should do this:
df.loc[(slice('A1','A3'),.....),:]

rather than this:
df.loc[(slice('A1','A3'),.....)]

Warning: You will need to make sure that the selection axes are fully lexsorted!
In [49]: def mklbl(prefix,n):
....:
return ["%s%s" % (prefix,i)
....:

for i in range(n)]

In [50]: index = MultiIndex.from_product([mklbl('A',4),
....:
mklbl('B',2),
....:
mklbl('C',4),
....:
mklbl('D',2)])
....:
In [51]: columns = MultiIndex.from_tuples([('a','foo'),('a','bar'),
....:
('b','foo'),('b','bah')],
....:
names=['lvl0', 'lvl1'])
....:
In [52]: df = DataFrame(np.arange(len(index)*len(columns)).reshape((len(index),len(columns))),
....:
index=index,
....:
columns=columns).sortlevel().sortlevel(axis=1)
....:
In [53]: df
Out[53]:
lvl0
lvl1
A0 B0 C0 D0
D1
C1 D0
D1
C2 D0
D1
C3 D0
...
A3 B1 C0 D1
C1 D0
D1
C2 D0
D1
C3 D0
D1

a
bar
1
5
9
13
17
21
25
...
229
233
237
241
245
249
253

foo
0
4
8
12
16
20
24
...
228
232
236
240
244
248
252

b
bah
3
7
11
15
19
23
27
...
231
235
239
243
247
251
255

foo
2
6
10
14
18
22
26
...
230
234
238
242
246
250
254

[64 rows x 4 columns]

Basic multi-index slicing using slices, lists, and labels.

84

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [54]: df.loc[(slice('A1','A3'),slice(None), ['C1','C3']),:]
Out[54]:
lvl0
a
b
lvl1
bar foo bah foo
A1 B0 C1 D0
73
72
75
74
D1
77
76
79
78
C3 D0
89
88
91
90
D1
93
92
95
94
B1 C1 D0 105 104 107 106
D1 109 108 111 110
C3 D0 121 120 123 122
...
... ... ... ...
A3 B0 C1 D1 205 204 207 206
C3 D0 217 216 219 218
D1 221 220 223 222
B1 C1 D0 233 232 235 234
D1 237 236 239 238
C3 D0 249 248 251 250
D1 253 252 255 254
[24 rows x 4 columns]

You can use a pd.IndexSlice to shortcut the creation of these slices
In [55]: idx = pd.IndexSlice
In [56]: df.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
Out[56]:
lvl0
a
b
lvl1
foo foo
A0 B0 C1 D0
8
10
D1
12
14
C3 D0
24
26
D1
28
30
B1 C1 D0
40
42
D1
44
46
C3 D0
56
58
...
... ...
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
[32 rows x 2 columns]

It is possible to perform quite complicated selections using this method on multiple axes at the same time.
In [57]: df.loc['A1',(slice(None),'foo')]
Out[57]:
lvl0
a
b
lvl1
foo foo
B0 C0 D0
64
66
D1
68
70
C1 D0
72
74
D1
76
78
C2 D0
80
82

1.7. v0.14.0 (May 31 , 2014)

85

pandas: powerful Python data analysis toolkit, Release 0.16.1

D1
C3 D0
...
B1 C0 D1
C1 D0
D1
C2 D0
D1
C3 D0
D1

84
88
...
100
104
108
112
116
120
124

86
90
...
102
106
110
114
118
122
126

[16 rows x 2 columns]
In [58]: df.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
Out[58]:
lvl0
a
b
lvl1
foo foo
A0 B0 C1 D0
8
10
D1
12
14
C3 D0
24
26
D1
28
30
B1 C1 D0
40
42
D1
44
46
C3 D0
56
58
...
... ...
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
[32 rows x 2 columns]

Using a boolean indexer you can provide selection related to the values.
In [59]: mask = df[('a','foo')]>200
In [60]: df.loc[idx[mask,:,['C1','C3']],idx[:,'foo']]
Out[60]:
lvl0
a
b
lvl1
foo foo
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254

You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.
In [61]: df.loc(axis=0)[:,:,['C1','C3']]
Out[61]:
lvl0
a
b
lvl1
bar foo bah foo
A0 B0 C1 D0
9
8
11
10
D1
13
12
15
14

86

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

C3 D0
D1
B1 C1 D0
D1
C3 D0
...
A3 B0 C1 D1
C3 D0
D1
B1 C1 D0
D1
C3 D0
D1

25
29
41
45
57
...
205
217
221
233
237
249
253

24
28
40
44
56
...
204
216
220
232
236
248
252

27
31
43
47
59
...
207
219
223
235
239
251
255

26
30
42
46
58
...
206
218
222
234
238
250
254

[32 rows x 4 columns]

Furthermore you can set the values using these methods
In [62]: df2 = df.copy()
In [63]: df2.loc(axis=0)[:,:,['C1','C3']] = -10
In [64]: df2
Out[64]:
lvl0
a
lvl1
bar
A0 B0 C0 D0
1
D1
5
C1 D0 -10
D1 -10
C2 D0
17
D1
21
C3 D0 -10
...
...
A3 B1 C0 D1 229
C1 D0 -10
D1 -10
C2 D0 241
D1 245
C3 D0 -10
D1 -10

foo
0
4
-10
-10
16
20
-10
...
228
-10
-10
240
244
-10
-10

b
bah
3
7
-10
-10
19
23
-10
...
231
-10
-10
243
247
-10
-10

foo
2
6
-10
-10
18
22
-10
...
230
-10
-10
242
246
-10
-10

[64 rows x 4 columns]

You can use a right-hand-side of an alignable object as well.
In [65]: df2 = df.copy()
In [66]: df2.loc[idx[:,:,['C1','C3']],:] = df2*1000
In [67]: df2
Out[67]:
lvl0
lvl1
A0 B0 C0 D0
D1
C1 D0
D1
C2 D0

a
bar
1
5
9000
13000
17

foo
0
4
8000
12000
16

1.7. v0.14.0 (May 31 , 2014)

b
bah
3
7
11000
15000
19

foo
2
6
10000
14000
18

87

pandas: powerful Python data analysis toolkit, Release 0.16.1

D1
C3 D0
...
A3 B1 C0 D1
C1 D0
D1
C2 D0
D1
C3 D0
D1

21
25000
...
229
233000
237000
241
245
249000
253000

20
24000
...
228
232000
236000
240
244
248000
252000

23
27000
...
231
235000
239000
243
247
251000
255000

22
26000
...
230
234000
238000
242
246
250000
254000

[64 rows x 4 columns]

1.7.7 Plotting
• Hexagonal bin plots from DataFrame.plot with kind=’hexbin’ (GH5478), See the docs.
• DataFrame.plot and Series.plot now supports area plot with specifying kind=’area’ (GH6656),
See the docs
• Pie plots from Series.plot and DataFrame.plot with kind=’pie’ (GH6976), See the docs.
• Plotting with Error Bars is now supported in the .plot method of DataFrame and Series objects (GH3796,
GH6834), See the docs.
• DataFrame.plot and Series.plot now support a table keyword for plotting matplotlib.Table,
See the docs. The table keyword can receive the following values.
– False: Do nothing (default).
– True: Draw a table using the DataFrame or Series called plot method. Data will be transposed to
meet matplotlib’s default layout.
– DataFrame or Series: Draw matplotlib.table using the passed data.
The data will be
drawn as displayed in print method (not transposed automatically).
Also, helper function
pandas.tools.plotting.table is added to create a table from DataFrame and Series, and
add it to an matplotlib.Axes.
• plot(legend=’reverse’) will now reverse the order of legend labels for most plot kinds. (GH6014)
• Line plot and area plot can be stacked by stacked=True (GH6656)
• Following keywords are now acceptable for DataFrame.plot() with kind=’bar’ and kind=’barh’:
– width: Specify the bar width. In previous versions, static value 0.5 was passed to matplotlib and it cannot
be overwritten. (GH6604)
– align: Specify the bar alignment. Default is center (different from matplotlib). In previous versions,
pandas passes align=’edge’ to matplotlib and adjust the location to center by itself, and it results align
keyword is not applied as expected. (GH4525)
– position: Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1(right/top-end).
Default is 0.5 (center). (GH6604)
Because of the default align value changes, coordinates of bar plots are now located on integer values (0.0, 1.0,
2.0 ...). This is intended to make bar plot be located on the same coodinates as line plot. However, bar plot
may differs unexpectedly when you manually adjust the bar location or drawing area, such as using set_xlim,
set_ylim, etc. In this cases, please modify your script to meet with new coordinates.

88

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• The parallel_coordinates() function now takes argument color instead of colors.
A
FutureWarning is raised to alert that the old colors argument will not be supported in a future release.
(GH6956)
• The parallel_coordinates() and andrews_curves() functions now take positional argument
frame instead of data. A FutureWarning is raised if the old data argument is used by name. (GH6956)
• DataFrame.boxplot() now supports layout keyword (GH6769)
• DataFrame.boxplot() has a new keyword argument, return_type. It accepts ’dict’, ’axes’, or
’both’, in which case a namedtuple with the matplotlib axes and a dict of matplotlib Lines is returned.

1.7.8 Prior Version Deprecations/Changes
There are prior version deprecations that are taking effect as of 0.14.0.
• Remove DateRange in favor of DatetimeIndex (GH6816)
• Remove column keyword from DataFrame.sort (GH4370)
• Remove precision keyword from set_eng_float_format() (GH395)
• Remove force_unicode keyword from DataFrame.to_string(), DataFrame.to_latex(), and
DataFrame.to_html(); these function encode in unicode by default (GH2224, GH2225)
• Remove nanRep keyword from DataFrame.to_csv() and DataFrame.to_string() (GH275)
• Remove unique keyword from HDFStore.select_column() (GH3256)
• Remove inferTimeRule keyword from Timestamp.offset() (GH391)
• Remove name keyword from get_data_yahoo() and get_data_google() ( commit b921d1a )
• Remove offset keyword from DatetimeIndex constructor ( commit 3136390 )
• Remove time_rule from several rolling-moment statistical functions, such as rolling_sum() (GH1042)
• Removed neg - boolean operations on numpy arrays in favor of inv ~, as this is going to be deprecated in numpy
1.9 (GH6960)

1.7.9 Deprecations
• The pivot_table()/DataFrame.pivot_table() and crosstab() functions now take arguments
index and columns instead of rows and cols. A FutureWarning is raised to alert that the old rows
and cols arguments will not be supported in a future release (GH5505)
• The DataFrame.drop_duplicates() and DataFrame.duplicated() methods now take argument
subset instead of cols to better align with DataFrame.dropna(). A FutureWarning is raised to
alert that the old cols arguments will not be supported in a future release (GH6680)
• The DataFrame.to_csv() and DataFrame.to_excel() functions now takes argument columns instead of cols. A FutureWarning is raised to alert that the old cols arguments will not be supported in a
future release (GH6645)
• Indexers will warn FutureWarning when used with a scalar indexer and a non-floating point Index (GH4892,
GH6960)

# non-floating point indexes can only be indexed by integers / labels
In [1]: Series(1,np.arange(5))[3.0]
pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index shoul
Out[1]: 1

1.7. v0.14.0 (May 31 , 2014)

89

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [2]: Series(1,np.arange(5)).iloc[3.0]
pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index shoul
Out[2]: 1

In [3]: Series(1,np.arange(5)).iloc[3.0:4]
pandas/core/index.py:527: FutureWarning: slice indexers when using iloc should be intege
Out[3]:
3
1
dtype: int64
# these are Float64Indexes, so integer or floating point is acceptable
In [4]: Series(1,np.arange(5.))[3]
Out[4]: 1
In [5]: Series(1,np.arange(5.))[3.0]
Out[6]: 1

• Numpy 1.9 compat w.r.t. deprecation warnings (GH6960)
• Panel.shift() now has a function signature that matches DataFrame.shift(). The old positional argument lags has been changed to a keyword argument periods with a default value of 1. A
FutureWarning is raised if the old argument lags is used by name. (GH6910)
• The order keyword argument of factorize() will be removed. (GH6926).
• Remove the copy keyword from DataFrame.xs(), Panel.major_xs(), Panel.minor_xs(). A
view will be returned if possible, otherwise a copy will be made. Previously the user could think that
copy=False would ALWAYS return a view. (GH6894)
• The parallel_coordinates() function now takes argument color instead of colors.
A
FutureWarning is raised to alert that the old colors argument will not be supported in a future release.
(GH6956)
• The parallel_coordinates() and andrews_curves() functions now take positional argument
frame instead of data. A FutureWarning is raised if the old data argument is used by name. (GH6956)
• The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL will be
further supported with SQLAlchemy engines (GH6900).
• The following io.sql functions have been deprecated: tquery, uquery, read_frame, frame_query,
write_frame.
• The percentile_width keyword argument in describe() has been deprecated. Use the percentiles keyword
instead, which takes a list of percentiles to display. The default output is unchanged.
• The default return type of boxplot() will change from a dict to a matpltolib Axes in a future release. You
can use the future behavior now by passing return_type=’axes’ to boxplot.

1.7.10 Known Issues
• OpenPyXL 2.0.0 breaks backwards compatibility (GH7169)

1.7.11 Enhancements
• DataFrame and Series will create a MultiIndex object if passed a tuples dict, See the docs (GH3323)

90

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [68]: Series({('a', 'b'): 1, ('a', 'a'): 0,
....:
('a', 'c'): 2, ('b', 'a'): 3, ('b', 'b'): 4})
....:
Out[68]:
a a
0
b
1
c
2
b a
3
b
4
dtype: int64
In [69]: DataFrame({('a',
....:
('a',
....:
('a',
....:
('b',
....:
('b',
....:
Out[69]:
a
b
a
b
c
a
b
A B
4
1
5
8 10
C
3
2
6
7 NaN
D NaN NaN NaN NaN
9

'b'):
'a'):
'c'):
'a'):
'b'):

{('A',
{('A',
{('A',
{('A',
{('A',

'B'):
'C'):
'B'):
'C'):
'D'):

1,
3,
5,
7,
9,

('A',
('A',
('A',
('A',
('A',

'C'):
'B'):
'C'):
'B'):
'B'):

2},
4},
6},
8},
10}})

• Added the sym_diff method to Index (GH5543)
• DataFrame.to_latex now takes a longtable keyword, which if True will return a table in a longtable
environment. (GH6617)
• Add option to turn off escaping in DataFrame.to_latex (GH6472)
• pd.read_clipboard will, if the keyword sep is unspecified, try to detect data copied from a spreadsheet
and parse accordingly. (GH6223)
• Joining a singly-indexed DataFrame with a multi-indexed DataFrame (GH3662)
See the docs. Joining multi-index DataFrames on both the left and right is not yet supported ATM.
In [70]: household = DataFrame(dict(household_id = [1,2,3],
....:
male = [0,1,0],
....:
wealth = [196087.3,316478.7,294750]),
....:
columns = ['household_id','male','wealth']
....:
).set_index('household_id')
....:
In [71]: household
Out[71]:
male
household_id
1
0
2
1
3
0

wealth
196087.3
316478.7
294750.0

In [72]: portfolio = DataFrame(dict(household_id = [1,2,2,3,3,3,4],
....:
asset_id = ["nl0000301109","nl0000289783","gb00b03mlx29",
....:
"gb00b03mlx29","lu0197800237","nl0000289965",np.
....:
name = ["ABN Amro","Robeco","Royal Dutch Shell","Royal Dutch
....:
"AAB Eastern Europe Equity Fund","Postbank BioTech F
....:
share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]),
....:
columns = ['household_id','asset_id','name','share']

1.7. v0.14.0 (May 31 , 2014)

91

pandas: powerful Python data analysis toolkit, Release 0.16.1

....:
....:

).set_index(['household_id','asset_id'])

In [73]: portfolio
Out[73]:
household_id asset_id
1
nl0000301109
2
nl0000289783
gb00b03mlx29
3
gb00b03mlx29
lu0197800237
nl0000289965
4
NaN

name

share

ABN Amro
Robeco
Royal Dutch Shell
Royal Dutch Shell
AAB Eastern Europe Equity Fund
Postbank BioTech Fonds
NaN

1.00
0.40
0.60
0.15
0.60
0.25
1.00

In [74]: household.join(portfolio, how='inner')
Out[74]:
male
wealth
name
household_id asset_id
1
nl0000301109
0 196087.3
ABN Amro
2
nl0000289783
1 316478.7
Robeco
gb00b03mlx29
1 316478.7
Royal Dutch Shell
3
gb00b03mlx29
0 294750.0
Royal Dutch Shell
lu0197800237
0 294750.0 AAB Eastern Europe Equity Fund
nl0000289965
0 294750.0
Postbank BioTech Fonds

\

share
household_id asset_id
1
nl0000301109
2
nl0000289783
gb00b03mlx29
3
gb00b03mlx29
lu0197800237
nl0000289965

1.00
0.40
0.60
0.15
0.60
0.25

• quotechar, doublequote, and escapechar can now be specified when using DataFrame.to_csv
(GH5414, GH4528)
• Partially sort by only the specified levels of a MultiIndex with the sort_remaining boolean kwarg.
(GH3984)
• Added to_julian_date to TimeStamp and DatetimeIndex. The Julian Date is used primarily in
astronomy and represents the number of days from noon, January 1, 4713 BC. Because nanoseconds are used
to define the time in pandas the actual range of dates that you can use is 1678 AD to 2262 AD. (GH4041)
• DataFrame.to_stata will now check data for compatibility with Stata data types and will upcast when
needed. When it is not possible to losslessly upcast, a warning is issued (GH6327)
• DataFrame.to_stata and StataWriter will accept keyword arguments time_stamp and data_label
which allow the time stamp and dataset label to be set when creating a file. (GH6545)
• pandas.io.gbq now handles reading unicode strings properly. (GH5940)
• Holidays Calendars are now available and can be used with the CustomBusinessDay offset (GH6719)
• Float64Index is now backed by a float64 dtype ndarray instead of an object dtype array (GH6471).
• Implemented Panel.pct_change (GH6904)
• Added how option to rolling-moment functions to dictate how to handle resampling; rolling_max() defaults to max, rolling_min() defaults to min, and all others default to mean (GH6297)

92

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• CustomBuisnessMonthBegin and CustomBusinessMonthEnd are now available (GH6866)
• Series.quantile() and DataFrame.quantile() now accept an array of quantiles.
• describe() now accepts an array of percentiles to include in the summary statistics (GH4196)
• pivot_table can now accept Grouper by index and columns keywords (GH6913)
In [75]: import datetime
In [76]: df = DataFrame({
....:
'Branch' : 'A A A A A B'.split(),
....:
'Buyer': 'Carl Mark Carl Carl Joe Joe'.split(),
....:
'Quantity': [1, 3, 5, 1, 8, 1],
....:
'Date' : [datetime.datetime(2013,11,1,13,0), datetime.datetime(2013,9,1,13,5),
....:
datetime.datetime(2013,10,1,20,0), datetime.datetime(2013,10,2,10,0),
....:
datetime.datetime(2013,11,1,20,0), datetime.datetime(2013,10,2,10,0)],
....:
'PayDay' : [datetime.datetime(2013,10,4,0,0), datetime.datetime(2013,10,15,13,5),
....:
datetime.datetime(2013,9,5,20,0), datetime.datetime(2013,11,2,10,0),
....:
datetime.datetime(2013,10,7,20,0), datetime.datetime(2013,9,5,10,0)]})
....:
In [77]: df
Out[77]:
Branch Buyer
0
A Carl 2013-11-01
1
A Mark 2013-09-01
2
A Carl 2013-10-01
3
A Carl 2013-10-02
4
A
Joe 2013-11-01
5
B
Joe 2013-10-02

Date
13:00:00
13:05:00
20:00:00
10:00:00
20:00:00
10:00:00

2013-10-04
2013-10-15
2013-09-05
2013-11-02
2013-10-07
2013-09-05

PayDay
00:00:00
13:05:00
20:00:00
10:00:00
20:00:00
10:00:00

Quantity
1
3
5
1
8
1

In [78]: pivot_table(df, index=Grouper(freq='M', key='Date'),
....:
columns=Grouper(freq='M', key='PayDay'),
....:
values='Quantity', aggfunc=np.sum)
....:
Out[78]:
PayDay
2013-09-30 2013-10-31 2013-11-30
Date
2013-09-30
NaN
3
NaN
2013-10-31
6
NaN
1
2013-11-30
NaN
9
NaN

• Arrays of strings can be wrapped to a specified width (str.wrap) (GH6999)
• Add nsmallest() and Series.nlargest() methods to Series, See the docs (GH3960)
• PeriodIndex fully supports partial string indexing like DatetimeIndex (GH7043)
In [79]: prng = period_range('2013-01-01 09:00', periods=100, freq='H')
In [80]: ps = Series(np.random.randn(len(prng)), index=prng)
In [81]: ps
Out[81]:
2013-01-01 09:00
2013-01-01 10:00
2013-01-01 11:00
2013-01-01 12:00
2013-01-01 13:00
2013-01-01 14:00

0.755414
0.215269
0.841009
-1.445810
-1.401973
-0.100918

1.7. v0.14.0 (May 31 , 2014)

93

pandas: powerful Python data analysis toolkit, Release 0.16.1

2013-01-01 15:00

-0.548242
...
2013-01-05 06:00
-0.379811
2013-01-05 07:00
0.702562
2013-01-05 08:00
-0.850346
2013-01-05 09:00
1.176812
2013-01-05 10:00
-0.524336
2013-01-05 11:00
0.700908
2013-01-05 12:00
0.984188
Freq: H, dtype: float64
In [82]: ps['2013-01-02']
Out[82]:
2013-01-02 00:00
-0.208499
2013-01-02 01:00
1.033801
2013-01-02 02:00
-2.400454
2013-01-02 03:00
2.030604
2013-01-02 04:00
-1.142631
2013-01-02 05:00
0.211883
2013-01-02 06:00
0.704721
...
2013-01-02 17:00
0.464392
2013-01-02 18:00
-3.563517
2013-01-02 19:00
1.321106
2013-01-02 20:00
0.152631
2013-01-02 21:00
0.164530
2013-01-02 22:00
-0.430096
2013-01-02 23:00
0.767369
Freq: H, dtype: float64

• read_excel can now read milliseconds in Excel dates and times with xlrd >= 0.9.3. (GH5945)
• pd.stats.moments.rolling_var now uses Welford’s method for increased numerical stability
(GH6817)
• pd.expanding_apply and pd.rolling_apply now take args and kwargs that are passed on to the func (GH6289)
• DataFrame.rank() now has a percentage rank option (GH5971)
• Series.rank() now has a percentage rank option (GH5971)
• Series.rank() and DataFrame.rank() now accept method=’dense’ for ranks without gaps
(GH6514)
• Support passing encoding with xlwt (GH3710)
• Refactor Block classes removing Block.items attributes to avoid duplication in item handling (GH6745,
GH6988).
• Testing statements updated to use specialized asserts (GH6175)

1.7.12 Performance
• Performance improvement when
DatetimeConverter (GH6636)

converting

DatetimeIndex

to

floating

ordinals

using

• Performance improvement for DataFrame.shift (GH5609)
• Performance improvement in indexing into a multi-indexed Series (GH5567)
• Performance improvements in single-dtyped indexing (GH6484)
94

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Improve performance of DataFrame construction with certain offsets, by removing faulty caching (e.g. MonthEnd,BusinessMonthEnd), (GH6479)
• Improve performance of CustomBusinessDay (GH6584)
• improve performance of slice indexing on Series with string keys (GH6341, GH6372)
• Performance improvement for DataFrame.from_records when reading a specified number of rows from
an iterable (GH6700)
• Performance improvements in timedelta conversions for integer dtypes (GH6754)
• Improved performance of compatible pickles (GH6899)
• Improve performance in certain reindexing operations by optimizing take_2d (GH6749)
• GroupBy.count() is now implemented in Cython and is much faster for large numbers of groups (GH7016).

1.7.13 Experimental
There are no experimental changes in 0.14.0

1.7.14 Bug Fixes
• Bug in Series ValueError when index doesn’t match data (GH6532)
• Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
• Bug in pd.DataFrame.sort_index where mergesort wasn’t stable when ascending=False
(GH6399)
• Bug in pd.tseries.frequencies.to_offset when argument has leading zeroes (GH6391)
• Bug in version string gen. for dev versions with shallow clones / install from tarball (GH6127)
• Inconsistent tz parsing Timestamp / to_datetime for current year (GH5958)
• Indexing bugs with reordered indexes (GH6252, GH6254)
• Bug in .xs with a Series multiindex (GH6258, GH5684)
• Bug in conversion of a string types to a DatetimeIndex with a specified frequency (GH6273, GH6274)
• Bug in eval where type-promotion failed for large expressions (GH6205)
• Bug in interpolate with inplace=True (GH6281)
• HDFStore.remove now handles start and stop (GH6177)
• HDFStore.select_as_multiple handles start and stop the same way as select (GH6177)
• HDFStore.select_as_coordinates and select_column works with a where clause that results in
filters (GH6177)
• Regression in join of non_unique_indexes (GH6329)
• Issue with groupby agg with a single function and a a mixed-type frame (GH6337)
• Bug in DataFrame.replace() when passing a non- bool to_replace argument (GH6332)
• Raise when trying to align on different levels of a multi-index assignment (GH3738)
• Bug in setting complex dtypes via boolean indexing (GH6345)

1.7. v0.14.0 (May 31 , 2014)

95

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in TimeGrouper/resample when presented with a non-monotonic DatetimeIndex that would return invalid
results. (GH4161)
• Bug in index name propogation in TimeGrouper/resample (GH4161)
• TimeGrouper has a more compatible API to the rest of the groupers (e.g. groups was missing) (GH3881)
• Bug in multiple grouping with a TimeGrouper depending on target column order (GH6764)
• Bug in pd.eval when parsing strings with possible tokens like ’&’ (GH6351)
• Bug correctly handle placements of -inf in Panels when dividing by integer 0 (GH6178)
• DataFrame.shift with axis=1 was raising (GH6371)
• Disabled clipboard tests until release time (run locally with nosetests -A disabled) (GH6048).
• Bug in DataFrame.replace() when passing a nested dict that contained keys not in the values to be
replaced (GH6342)
• str.match ignored the na flag (GH6609).
• Bug in take with duplicate columns that were not consolidated (GH6240)
• Bug in interpolate changing dtypes (GH6290)
• Bug in Series.get, was using a buggy access method (GH6383)
• Bug in hdfstore queries of the form where=[(’date’, ’>=’, datetime(2013,1,1)),
(’date’, ’<=’, datetime(2014,1,1))] (GH6313)
• Bug in DataFrame.dropna with duplicate indices (GH6355)
• Regression in chained getitem indexing with embedded list-like from 0.12 (GH6394)
• Float64Index with nans not comparing correctly (GH6401)
• eval/query expressions with strings containing the @ character will now work (GH6366).
• Bug in Series.reindex when specifying a method with some nan values was inconsistent (noted on a
resample) (GH6418)
• Bug in DataFrame.replace() where nested dicts were erroneously depending on the order of dictionary
keys and values (GH5338).
• Perf issue in concatting with empty objects (GH3259)
• Clarify sorting of sym_diff on Index objects with NaN values (GH6444)
• Regression in MultiIndex.from_product with a DatetimeIndex as input (GH6439)
• Bug in str.extract when passed a non-default index (GH6348)
• Bug in str.split when passed pat=None and n=1 (GH6466)
• Bug
in
io.data.DataReader
when
data_source="famafrench" (GH6460)

passed

"F-F_Momentum_Factor"

and

• Bug in sum of a timedelta64[ns] series (GH6462)
• Bug in resample with a timezone and certain offsets (GH6397)
• Bug in iat/iloc with duplicate indices on a Series (GH6493)
• Bug in read_html where nan’s were incorrectly being used to indicate missing values in text. Should use the
empty string for consistency with the rest of pandas (GH5129).
• Bug in read_html tests where redirected invalid URLs would make one test fail (GH6445).

96

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in multi-axis indexing using .loc on non-unique indices (GH6504)
• Bug that caused _ref_locs corruption when slice indexing across columns axis of a DataFrame (GH6525)
• Regression from 0.13 in the treatment of numpy datetime64 non-ns dtypes in Series creation (GH6529)
• .names attribute of MultiIndexes passed to set_index are now preserved (GH6459).
• Bug in setitem with a duplicate index and an alignable rhs (GH6541)
• Bug in setitem with .loc on mixed integer Indexes (GH6546)
• Bug in pd.read_stata which would use the wrong data types and missing values (GH6327)
• Bug in DataFrame.to_stata that lead to data loss in certain cases, and could be exported using the wrong
data types and missing values (GH6335)
• StataWriter replaces missing values in string columns by empty string (GH6802)
• Inconsistent types in Timestamp addition/subtraction (GH6543)
• Bug in preserving frequency across Timestamp addition/subtraction (GH4547)
• Bug in empty list lookup caused IndexError exceptions (GH6536, GH6551)
• Series.quantile raising on an object dtype (GH6555)
• Bug in .xs with a nan in level when dropped (GH6574)
• Bug in fillna with method=’bfill/ffill’ and datetime64[ns] dtype (GH6587)
• Bug in sql writing with mixed dtypes possibly leading to data loss (GH6509)
• Bug in Series.pop (GH6600)
• Bug in iloc indexing when positional indexer matched Int64Index of the corresponding axis and no reordering happened (GH6612)
• Bug in fillna with limit and value specified
• Bug in DataFrame.to_stata when columns have non-string names (GH4558)
• Bug in compat with np.compress, surfaced in (GH6658)
• Bug in binary operations with a rhs of a Series not aligning (GH6681)
• Bug in DataFrame.to_stata which incorrectly handles nan values and ignores with_index keyword
argument (GH6685)
• Bug in resample with extra bins when using an evenly divisible frequency (GH4076)
• Bug in consistency of groupby aggregation when passing a custom function (GH6715)
• Bug in resample when how=None resample freq is the same as the axis frequency (GH5955)
• Bug in downcasting inference with empty arrays (GH6733)
• Bug in obj.blocks on sparse containers dropping all but the last items of same for dtype (GH6748)
• Bug in unpickling NaT (NaTType) (GH4606)
• Bug in DataFrame.replace() where regex metacharacters were being treated as regexs even when
regex=False (GH6777).
• Bug in timedelta ops on 32-bit platforms (GH6808)
• Bug in setting a tz-aware index directly via .index (GH6785)
• Bug in expressions.py where numexpr would try to evaluate arithmetic ops (GH6762).

1.7. v0.14.0 (May 31 , 2014)

97

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Bug in Makefile where it didn’t remove Cython generated C files with make clean (GH6768)
• Bug with numpy < 1.7.2 when reading long strings from HDFStore (GH6166)
• Bug in DataFrame._reduce where non bool-like (0/1) integers were being coverted into bools. (GH6806)
• Regression from 0.13 with fillna and a Series on datetime-like (GH6344)
• Bug in adding np.timedelta64 to DatetimeIndex with timezone outputs incorrect results (GH6818)
• Bug in DataFrame.replace() where changing a dtype through replacement would only replace the first
occurrence of a value (GH6689)
• Better error message when passing a frequency of ‘MS’ in Period construction (GH5332)
• Bug in Series.__unicode__ when max_rows=None and the Series has more than 1000 rows. (GH6863)
• Bug in groupby.get_group where a datetlike wasn’t always accepted (GH5267)
• Bug in groupBy.get_group created by TimeGrouper raises AttributeError (GH6914)
• Bug in DatetimeIndex.tz_localize and DatetimeIndex.tz_convert converting NaT incorrectly (GH5546)
• Bug in arithmetic operations affecting NaT (GH6873)
• Bug in Series.str.extract where the resulting Series from a single group match wasn’t renamed to
the group name
• Bug in DataFrame.to_csv where setting index=False ignored the header kwarg (GH6186)
• Bug in DataFrame.plot and Series.plot, where the legend behave inconsistently when plotting to the
same axes repeatedly (GH6678)
• Internal tests for patching __finalize__ / bug in merge not finalizing (GH6923, GH6927)
• accept TextFileReader in concat, which was affecting a common user idiom (GH6583)
• Bug in C parser with leading whitespace (GH3374)
• Bug in C parser with delim_whitespace=True and \r-delimited lines
• Bug in python parser with explicit multi-index in row following column header (GH6893)
• Bug in Series.rank and DataFrame.rank that caused small floats (<1e-13) to all receive the same rank
(GH6886)
• Bug in DataFrame.apply with functions that used *args‘‘ or **kwargs and returned an empty result
(GH6952)
• Bug in sum/mean on 32-bit platforms on overflows (GH6915)
• Moved Panel.shift to NDFrame.slice_shift and fixed to respect multiple dtypes. (GH6959)
• Bug in enabling subplots=True in DataFrame.plot only has single column raises TypeError, and
Series.plot raises AttributeError (GH6951)
• Bug in DataFrame.plot draws unnecessary axes when enabling subplots and kind=scatter
(GH6951)
• Bug in read_csv from a filesystem with non-utf-8 encoding (GH6807)
• Bug in iloc when setting / aligning (GH6766)
• Bug causing UnicodeEncodeError when get_dummies called with unicode values and a prefix (GH6885)
• Bug in timeseries-with-frequency plot cursor display (GH5453)
• Bug surfaced in groupby.plot when using a Float64Index (GH7025)

98

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Stopped tests from failing if options data isn’t able to be downloaded from Yahoo (GH7034)
• Bug in parallel_coordinates and radviz where reordering of class column caused possible color/class
mismatch (GH6956)
• Bug in radviz and andrews_curves where multiple values of ‘color’ were being passed to plotting method
(GH6956)
• Bug in Float64Index.isin() where containing nan s would make indices claim that they contained all
the things (GH7066).
• Bug in DataFrame.boxplot where it failed to use the axis passed as the ax argument (GH3578)
• Bug in the XlsxWriter and XlwtWriter implementations that resulted in datetime columns being formatted without the time (GH7075) were being passed to plotting method
• read_fwf() treats None in colspec like regular python slices. It now reads from the beginning or until the
end of the line when colspec contains a None (previously raised a TypeError)
• Bug in cache coherence with chained indexing and slicing; add _is_view property to NDFrame to correctly
predict views; mark is_copy on xs only if its an actual copy (and not a view) (GH7084)
• Bug in DatetimeIndex creation from string ndarray with dayfirst=True (GH5917)
• Bug in MultiIndex.from_arrays created from DatetimeIndex doesn’t preserve freq and tz
(GH7090)
• Bug in unstack raises ValueError when MultiIndex contains PeriodIndex (GH4342)
• Bug in boxplot and hist draws unnecessary axes (GH6769)
• Regression in groupby.nth() for out-of-bounds indexers (GH6621)
• Bug in quantile with datetime values (GH6965)
• Bug in Dataframe.set_index, reindex and pivot don’t preserve DatetimeIndex and
PeriodIndex attributes (GH3950, GH5878, GH6631)
• Bug in MultiIndex.get_level_values doesn’t preserve DatetimeIndex and PeriodIndex attributes (GH7092)
• Bug in Groupby doesn’t preserve tz (GH3950)
• Bug in PeriodIndex partial string slicing (GH6716)
• Bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set
to ‘info’ (GH7105)
• Bug in DatetimeIndex specifying freq raises ValueError when passed value is too short (GH7098)
• Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)
• Bug PeriodIndex string slicing with out of bounds values (GH5407)
• Fixed a memory error in the hashtable implementation/factorizer on resizing of large tables (GH7157)
• Bug in isnull when applied to 0-dimensional object arrays (GH7176)
• Bug in query/eval where global constants were not looked up correctly (GH7178)
• Bug in recognizing out-of-bounds positional list indexers with iloc and a multi-axis tuple indexer (GH7189)
• Bug in setitem with a single value, multi-index and integer indices (GH7190, GH7218)
• Bug in expressions evaluation with reversed ops, showing in series-dataframe ops (GH7198, GH7192)
• Bug in multi-axis indexing with > 2 ndim and a multi-index (GH7199)

1.7. v0.14.0 (May 31 , 2014)

99

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Fix a bug where invalid eval/query operations would blow the stack (GH5198)

1.8 v0.13.1 (February 3, 2014)
This is a minor release from 0.13.0 and includes a small number of API changes, several new features, enhancements,
and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this
version.
Highlights include:
• Added infer_datetime_format keyword to read_csv/to_datetime to allow speedups for homogeneously formatted datetimes.
• Will intelligently limit display precision for datetime/timedelta formats.
• Enhanced Panel apply() method.
• Suggested tutorials in new Tutorials section.
• Our pandas ecosystem is growing, We now feature related projects in a new Pandas Ecosystem section.
• Much work has been taking place on improving the docs, and a new Contributing section has been added.
• Even though it may only be of interest to devs, we <3 our new CI status page: ScatterCI.
Warning: 0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing chained
assignment on a string-like array. Please review the docs, chained indexing can have unexpected results and should
generally be avoided.
This would previously segfault:
In [1]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
In [2]: df['A'].iloc[0] = np.nan
In [3]: df
Out[3]:
A
0 NaN
1 bar
2 bah
3 foo
4 bar

The recommended way to do this type of assignment is:
In [4]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
In [5]: df.ix[0,'A'] = np.nan
In [6]: df
Out[6]:
A
0 NaN
1 bar
2 bah
3 foo
4 bar

100

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.8.1 Output Formatting Enhancements
• df.info() view now display dtype info per column (GH5682)
• df.info() now honors the option max_info_rows, to disable null counts for large frames (GH5974)
In [7]: max_info_rows = pd.get_option('max_info_rows')
In [8]: df = DataFrame(dict(A = np.random.randn(10),
...:
B = np.random.randn(10),
...:
C = date_range('20130101',periods=10)))
...:
In [9]: df.iloc[3:6,[0,2]] = np.nan
# set to not display the null counts
In [10]: pd.set_option('max_info_rows',0)
In [11]: df.info()

Int64Index: 10 entries, 0 to 9
Data columns (total 3 columns):
A
float64
B
float64
C
datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 320.0 bytes
# this is the default (same as in 0.13.0)
In [12]: pd.set_option('max_info_rows',max_info_rows)
In [13]: df.info()

Int64Index: 10 entries, 0 to 9
Data columns (total 3 columns):
A
7 non-null float64
B
10 non-null float64
C
7 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 320.0 bytes

• Add show_dimensions display option for the new DataFrame repr to control whether the dimensions print.
In [14]: df = DataFrame([[1, 2], [3, 4]])
In [15]: pd.set_option('show_dimensions', False)
In [16]: df
Out[16]:
0 1
0 1 2
1 3 4
In [17]: pd.set_option('show_dimensions', True)
In [18]: df
Out[18]:
0 1
0 1 2

1.8. v0.13.1 (February 3, 2014)

101

pandas: powerful Python data analysis toolkit, Release 0.16.1

1

3

4

[2 rows x 2 columns]

• The ArrayFormatter for datetime and timedelta64 now intelligently limit precision based on the
values in the array (GH3401)
Previously output might look like:
age
today
diff
0 2001-01-01 00:00:00 2013-04-19 00:00:00 4491 days, 00:00:00
1 2004-06-01 00:00:00 2013-04-19 00:00:00 3244 days, 00:00:00

Now the output looks like:
In [19]: df = DataFrame([ Timestamp('20010101'),
....:
Timestamp('20040601') ], columns=['age'])
....:
In [20]: df['today'] = Timestamp('20130419')
In [21]: df['diff'] = df['today']-df['age']
In [22]: df
Out[22]:
age
today
diff
0 2001-01-01 2013-04-19 4491 days
1 2004-06-01 2013-04-19 3244 days
[2 rows x 3 columns]

1.8.2 API changes
• Add -NaN and -nan to the default set of NA values (GH5952). See NA Values.
• Added Series.str.get_dummies vectorized string method (GH6021), to extract dummy/indicator variables for separated string columns:
In [23]: s = Series(['a', 'a|b', np.nan, 'a|c'])
In [24]:
Out[24]:
a b
0 1 0
1 1 1
2 0 0
3 1 0

s.str.get_dummies(sep='|')
c
0
0
0
1

[4 rows x 3 columns]

• Added the NDFrame.equals() method to compare if two NDFrames are equal have equal axes, dtypes, and
values. Added the array_equivalent function to compare if two ndarrays are equal. NaNs in identical
locations are treated as equal. (GH5283) See also the docs for a motivating example.
In [25]: df = DataFrame({'col':['foo', 0, np.nan]})
In [26]: df2 = DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])

102

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [27]: df.equals(df2)
Out[27]: False
In [28]: df.equals(df2.sort())
Out[28]: True
In [29]: import pandas.core.common as com
In [30]: com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan]))
Out[30]: True
In [31]: np.array_equal(np.array([0, np.nan]), np.array([0, np.nan]))
Out[31]: False

• DataFrame.apply will use the reduce argument to determine whether a Series or a DataFrame
should be returned when the DataFrame is empty (GH6007).
Previously, calling DataFrame.apply an empty DataFrame would return either a DataFrame if there
were no columns, or the function being applied would be called with an empty Series to guess whether a
Series or DataFrame should be returned:
In [32]: def applied_func(col):
....:
print("Apply function being called with: ", col)
....:
return col.sum()
....:
In [33]: empty = DataFrame(columns=['a', 'b'])
In [34]: empty.apply(applied_func)
('Apply function being called with: ', Series([], dtype: float64))
Out[34]:
a
NaN
b
NaN
dtype: float64

Now, when apply is called on an empty DataFrame: if the reduce argument is True a Series will
returned, if it is False a DataFrame will be returned, and if it is None (the default) the function being
applied will be called with an empty series to try and guess the return type.
In [35]: empty.apply(applied_func, reduce=True)
Out[35]:
a
NaN
b
NaN
dtype: float64
In [36]: empty.apply(applied_func, reduce=False)
Out[36]:
Empty DataFrame
Columns: [a, b]
Index: []
[0 rows x 2 columns]

1.8.3 Prior Version Deprecations/Changes
There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1

1.8. v0.13.1 (February 3, 2014)

103

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.8.4 Deprecations
There are no deprecations of prior behavior in 0.13.1

1.8.5 Enhancements
• pd.read_csv and pd.to_datetime learned a new infer_datetime_format keyword which greatly
improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490, GH6021)
If parse_dates is enabled and this flag is set, pandas will attempt to infer the format of the datetime strings
in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can
increase the parsing speed by ~5-10x.
# Try to infer the format for the index column
df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
infer_datetime_format=True)

• date_format and datetime_format keywords can now be specified when writing to excel files
(GH4133)
• MultiIndex.from_product convenience function for creating a MultiIndex from the cartesian product of
a set of iterables (GH6055):
In [37]: shades = ['light', 'dark']
In [38]: colors = ['red', 'green', 'blue']
In [39]: MultiIndex.from_product([shades, colors], names=['shade', 'color'])
Out[39]:
MultiIndex(levels=[[u'dark', u'light'], [u'blue', u'green', u'red']],
labels=[[1, 1, 1, 0, 0, 0], [2, 1, 0, 2, 1, 0]],
names=[u'shade', u'color'])

• Panel apply() will work on non-ufuncs. See the docs.
In [40]: import pandas.util.testing as tm
In [41]: panel = tm.makePanel(5)
In [42]: panel
Out[42]:

Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
In [43]: panel['ItemA']
Out[43]:
A
B
C
D
2000-01-03 0.952478 -1.239072 -1.409432 -0.014752
2000-01-04 0.988138 0.139683 1.422986 1.272395
2000-01-05 -0.072608 -0.223019 -2.147855 -1.449567
2000-01-06 -0.550603 2.123692 -1.347533 -1.195524
2000-01-07 -0.938153 0.122273 0.363565 -0.591863
[5 rows x 4 columns]

104

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

Specifying an apply that operates on a Series (to return a single element)
In [44]: panel.apply(lambda x: x.dtype, axis='items')
Out[44]:
A
B
C
D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64
2000-01-06 float64 float64 float64 float64
2000-01-07 float64 float64 float64 float64
[5 rows x 4 columns]

A similar reduction type operation
In [45]: panel.apply(lambda x: x.sum(), axis='major_axis')
Out[45]:
ItemA
ItemB
ItemC
A 0.379252 -3.696907 3.709335
B 0.923558 0.504242 4.656781
C -3.118269 -1.545718 3.188329
D -1.979310 -0.758060 -1.436483
[4 rows x 3 columns]

This is equivalent to
In [46]: panel.sum('major_axis')
Out[46]:
ItemA
ItemB
ItemC
A 0.379252 -3.696907 3.709335
B 0.923558 0.504242 4.656781
C -3.118269 -1.545718 3.188329
D -1.979310 -0.758060 -1.436483
[4 rows x 3 columns]

A transformation operation that returns a Panel, but is computing the z-score across the major_axis
In [47]: result = panel.apply(
....:
lambda x: (x-x.mean())/x.std(),
....:
axis='major_axis')
....:
In [48]: result
Out[48]:

Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
In [49]: result['ItemA']
Out[49]:
A
B
C
D
2000-01-03 1.004994 -1.166509 -0.535027 0.350970
2000-01-04 1.045875 -0.036892 1.393532 1.536326
2000-01-05 -0.170198 -0.334055 -1.037810 -0.970374
2000-01-06 -0.718186 1.588611 -0.492880 -0.736422
2000-01-07 -1.162486 -0.051156 0.672185 -0.180500

1.8. v0.13.1 (February 3, 2014)

105

pandas: powerful Python data analysis toolkit, Release 0.16.1

[5 rows x 4 columns]

• Panel apply() operating on cross-sectional slabs. (GH1148)
In [50]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T
In [51]: result = panel.apply(f, axis = ['items','major_axis'])
In [52]: result
Out[52]:

Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC
In [53]: result.loc[:,:,'ItemA']
Out[53]:
A
B
C
2000-01-03 0.116579 -0.667845 -1.151538
2000-01-04 0.650448 -1.114910 0.841527
2000-01-05 -0.987433 -0.438897 -1.154468
2000-01-06 0.494000 1.060450 -0.775993
2000-01-07 -0.363770 0.013169 0.392036

D
-0.157547
0.760706
-0.015033
-1.140165
-1.123913

[5 rows x 4 columns]

This is equivalent to the following
In [54]: result = Panel(dict([ (ax,f(panel.loc[:,:,ax]))
....:
for ax in panel.minor_axis ]))
....:
In [55]: result
Out[55]:

Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC
In [56]: result.loc[:,:,'ItemA']
Out[56]:
A
B
C
2000-01-03 0.116579 -0.667845 -1.151538
2000-01-04 0.650448 -1.114910 0.841527
2000-01-05 -0.987433 -0.438897 -1.154468
2000-01-06 0.494000 1.060450 -0.775993
2000-01-07 -0.363770 0.013169 0.392036

D
-0.157547
0.760706
-0.015033
-1.140165
-1.123913

[5 rows x 4 columns]

1.8.6 Performance
Performance improvements for 0.13.1
• Series datetime/timedelta binary operations (GH5801)

106

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• DataFrame count/dropna for axis=1
• Series.str.contains now has a regex=False keyword which can be faster for plain (non-regex) string patterns.
(GH5879)
• Series.str.extract (GH5944)
• dtypes/ftypes methods (GH5968)
• indexing with object dtypes (GH5968)
• DataFrame.apply (GH6013)
• Regression in JSON IO (GH5765)
• Index construction from Series (GH6150)

1.8.7 Experimental
There are no experimental changes in 0.13.1

1.8.8 Bug Fixes
See V0.13.1 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.1.
See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug
Fixes.

1.9 v0.13.0 (January 3, 2014)
This is a major release from 0.12.0 and includes a number of API changes, several new features and enhancements
along with a large number of bug fixes.
Highlights include:
• support for a new index type Float64Index, and other Indexing enhancements
• HDFStore has a new string based syntax for query specification
• support for new methods of interpolation
• updated timedelta operations
• a new string manipulation method extract
• Nanosecond support for Offsets
• isin for DataFrames
Several experimental features are added, including:
• new eval/query methods for expression evaluation
• support for msgpack serialization
• an i/o interface to Google’s BigQuery
Their are several new or updated docs sections including:
• Comparison with SQL, which should be useful for those familiar with SQL but still learning pandas.
• Comparison with R, idiom translations from R to pandas.

1.9. v0.13.0 (January 3, 2014)

107

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Enhancing Performance, ways to enhance pandas performance with eval/query.
Warning: In 0.13.0 Series has internally been refactored to no longer sub-class ndarray but instead subclass
NDFrame, similar to the rest of the pandas containers. This should be a transparent change with only very limited
API implications. See Internal Refactoring

1.9.1 API changes
• read_excel now supports an integer in its sheetname argument giving the index of the sheet to read in
(GH4301).
• Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) as infinity. (GH4220,
GH4219), affecting read_table, read_csv, etc.
• pandas now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, pandas now
uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s
six library into compat. (GH4384, GH4375, GH4372)
• pandas.util.compat and pandas.util.py3compat have been merged into pandas.compat.
pandas.compat now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap,
lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting
and pandas constructors.(GH4384, GH4375, GH4372)
• Series.get with negative indexers now returns the same as [] (GH4390)
• Changes to how Index and MultiIndex handle metadata (levels, labels, and names) (GH4039):
# previously, you would have set levels or labels directly
index.levels = [[1, 2, 3, 4], [1, 2, 4, 4]]
# now, you use the set_levels or set_labels methods
index = index.set_levels([[1, 2, 3, 4], [1, 2, 4, 4]])
# similarly, for names, you can rename the object
# but setting names is not deprecated
index = index.set_names(["bob", "cranberry"])
# and all methods take an inplace kwarg - but return None
index.set_names(["bob", "cranberry"], inplace=True)

• All division with NDFrame objects is now truedivision, regardless of the future import. This means that operating on pandas objects will by default use floating point division, and return a floating point dtype. You can use
// and floordiv to do integer division.
Integer division
In [3]: arr = np.array([1, 2, 3, 4])
In [4]: arr2 = np.array([5, 3, 2, 1])
In [5]: arr / arr2
Out[5]: array([0, 0, 1, 4])
In [6]: Series(arr) // Series(arr2)
Out[6]:
0
0
1
0

108

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
1
3
4
dtype: int64

True Division
In [7]: pd.Series(arr) / pd.Series(arr2) # no future import required
Out[7]:
0
0.200000
1
0.666667
2
1.500000
3
4.000000
dtype: float64

• Infer and downcast dtype if downcast=’infer’ is passed to fillna/ffill/bfill (GH4604)
• __nonzero__ for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073,
GH4633) behavior. See gotchas for a more detailed discussion.
This prevents doing boolean comparison on entire pandas objects, which is inherently ambiguous. These all
will raise a ValueError.
if df:
....
df1 and df2
s1 and s2

Added the .bool() method to NDFrame objects to facilitate evaluating of single-element boolean Series:
In [1]: Series([True]).bool()
Out[1]: True
In [2]: Series([False]).bool()
Out[2]: False
In [3]: DataFrame([[True]]).bool()
Out[3]: True
In [4]: DataFrame([[False]]).bool()
Out[4]: False

• All non-Index NDFrames (Series, DataFrame, Panel, Panel4D, SparsePanel, etc.), now support the
entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). SparsePanel does not
support pow or mod with non-scalars. (GH3765)
• Series and DataFrame now have a mode() method to calculate the statistical mode(s) by axis/Series.
(GH5367)
• Chained assignment will now by default warn if the user is assigning to a copy. This can be changed with the
option mode.chained_assignment, allowed options are raise/warn/None. See the docs.
In [5]: dfc = DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})
In [6]: pd.set_option('chained_assignment','warn')

The following warning / exception will show if this is attempted.
In [7]: dfc.loc[0]['A'] = 1111

1.9. v0.13.0 (January 3, 2014)

109

pandas: powerful Python data analysis toolkit, Release 0.16.1

Traceback (most recent call last)
...
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead

Here is the correct method of assignment.
In [8]: dfc.loc[0,'A'] = 11
In [9]:
Out[9]:
A
0
11
1 bbb
2 ccc

dfc
B
1
2
3

[3 rows x 2 columns]

• Panel.reindex has the following call signature Panel.reindex(items=None, major_axis=None, minor_ax
to conform with other NDFrame objects. See Internal Refactoring for more information.

• Series.argmin and Series.argmax are now aliased to Series.idxmin and Series.idxmax. These return the i
min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element.
(GH6214)

1.9.2 Prior Version Deprecations/Changes
These were announced changes in 0.12 or prior that are taking effect as of 0.13.0
• Remove deprecated Factor (GH3650)
• Remove deprecated set_printoptions/reset_printoptions (GH3046)
• Remove deprecated _verbose_info (GH3215)
• Remove
deprecated
read_clipboard/to_clipboard/ExcelFile/ExcelWriter
from
pandas.io.parsers (GH3717) These are available as functions in the main pandas namespace (e.g.
pd.read_clipboard)
• default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12
(GH3604)
• default for display.max_seq_len is now 100 rather then None. This activates truncated display (”...”) of long
sequences in various places. (GH3391)

1.9.3 Deprecations
Deprecated in 0.13.0
• deprecated iterkv, which will be removed in a future release (this was an alias of iteritems used to bypass
2to3‘s changes). (GH4384, GH4375, GH4372)
• deprecated the string method match, whose role is now performed more idiomatically by extract. In a
future release, the default behavior of match will change to become analogous to contains, which returns
a boolean indexer. (Their distinction is strictness: match relies on re.match while contains relies on
re.search.) In this release, the deprecated behavior is the default, but the new behavior is available through
the keyword argument as_indexer=True.

110

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.9.4 Indexing API Changes
Prior to 0.13, it was impossible to use a label indexer (.loc/.ix) to set a value that was not contained in the index
of a particular axis. (GH2578). See the docs
In the Series case this is effectively an appending operation
In [10]: s = Series([1,2,3])
In [11]: s
Out[11]:
0
1
1
2
2
3
dtype: int64
In [12]: s[5] = 5.
In [13]: s
Out[13]:
0
1
1
2
2
3
5
5
dtype: float64
In [14]: dfi = DataFrame(np.arange(6).reshape(3,2),
....:
columns=['A','B'])
....:
In [15]: dfi
Out[15]:
A B
0 0 1
1 2 3
2 4 5
[3 rows x 2 columns]

This would previously KeyError
In [16]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [17]:
Out[17]:
A B
0 0 1
1 2 3
2 4 5

dfi
C
0
2
4

[3 rows x 3 columns]

This is like an append operation.
In [18]: dfi.loc[3] = 5
In [19]: dfi
Out[19]:
A B C
0 0 1 0

1.9. v0.13.0 (January 3, 2014)

111

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
2
3

2
4
5

3
5
5

2
4
5

[4 rows x 3 columns]

A Panel setting operation on an arbitrary axis aligns the input to the Panel
In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2),
....:
items=['Item1','Item2'],
....:
major_axis=pd.date_range('2001/1/12',periods=4),
....:
minor_axis=['A','B'],dtype='float64')
....:
In [21]: p
Out[21]:

Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to B
In [22]: p.loc[:,:,'C'] = Series([30,32],index=p.items)
In [23]: p
Out[23]:

Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to C
In [24]: p.loc[:,:,'C']
Out[24]:
Item1 Item2
2001-01-12
30
32
2001-01-13
30
32
2001-01-14
30
32
2001-01-15
30
32
[4 rows x 2 columns]

1.9.5 Float64Index API Change
• Added a new index type, Float64Index. This will be automatically created when passing floating values in
index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing
and slicing work exactly the same. See the docs, (GH263)
Construction is by default for floating type values.
In [25]: index = Index([1.5, 2, 3, 4.5, 5])
In [26]: index
Out[26]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')
In [27]: s = Series(range(5),index=index)

112

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [28]: s
Out[28]:
1.5
0
2.0
1
3.0
2
4.5
3
5.0
4
dtype: int64

Scalar selection for [],.ix,.loc will always be label based. An integer will match an equal float index (e.g.
3 is equivalent to 3.0)
In [29]: s[3]
Out[29]: 2
In [30]: s.ix[3]
Out[30]: 2
In [31]: s.loc[3]
Out[31]: 2

The only positional indexing is via iloc
In [32]: s.iloc[3]
Out[32]: 3

A scalar index that is not found will raise KeyError
Slicing is ALWAYS on the values of the index, for [],ix,loc and ALWAYS positional with iloc
In [33]: s[2:4]
Out[33]:
2
1
3
2
dtype: int64
In [34]: s.ix[2:4]
Out[34]:
2
1
3
2
dtype: int64
In [35]: s.loc[2:4]
Out[35]:
2
1
3
2
dtype: int64
In [36]: s.iloc[2:4]
Out[36]:
3.0
2
4.5
3
dtype: int64

In float indexes, slicing using floats are allowed
In [37]: s[2.1:4.6]
Out[37]:
3.0
2
4.5
3

1.9. v0.13.0 (January 3, 2014)

113

pandas: powerful Python data analysis toolkit, Release 0.16.1

dtype: int64
In [38]: s.loc[2.1:4.6]
Out[38]:
3.0
2
4.5
3
dtype: int64

• Indexing on other index types are preserved (and positional fallback for [],ix), with the exception, that floating
point slicing on indexes on non Float64Index will now raise a TypeError.
In [1]: Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)
In [1]: Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)

Using a scalar float indexer will be deprecated in a future version, but is allowed for now.
In [3]: Series(range(5))[3.0]
Out[3]: 3

1.9.6 HDFStore API Changes
• Query Format Changes. A much more string-like query format is now supported. See the docs.
In [39]: path = 'test.h5'
In [40]: dfq = DataFrame(randn(10,4),
....:
columns=list('ABCD'),
....:
index=date_range('20130101',periods=10))
....:
In [41]: dfq.to_hdf(path,'dfq',format='table',data_columns=True)

Use boolean expressions, with in-line function evaluation.
In [42]: read_hdf(path,'dfq',
....:
where="index>Timestamp('20130104') & columns=['A', 'B']")
....:
Out[42]:
A
B
2013-01-05 -1.392054 1.153922
2013-01-06 -0.881047 0.295080
2013-01-07 -1.407085 0.126781
2013-01-08 -0.838843 0.553921
2013-01-09 1.529401 0.205455
2013-01-10 0.299071 1.076541
[6 rows x 2 columns]

Use an inline column reference
In [43]: read_hdf(path,'dfq',
....:
where="A>0 or C>0")
....:
Out[43]:
A
B

114

C

D

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

2013-01-01
2013-01-03
2013-01-04
2013-01-05
2013-01-06
2013-01-07
2013-01-09
2013-01-10

1.126386
0.581073
-0.275774
-1.392054
-0.881047
-1.407085
1.529401
0.299071

0.247112
2.763844
0.500483
1.153922
0.295080
0.126781
0.205455
1.076541

0.121172 0.298984
0.399325 0.668488
0.863065 -1.051628
1.181944 0.391371
1.863801 -1.712274
0.003760 -1.268994
0.313013 0.866521
0.363177 1.893680

[8 rows x 4 columns]

• the format keyword now replaces the table keyword; allowed values are fixed(f) or table(t) the
same defaults as prior < 0.13.0 remain, e.g. put implies fixed format and append implies table format.
This default format can be set as an option by setting io.hdf.default_format.
In [44]: path = 'test.h5'
In [45]: df = DataFrame(randn(10,2), columns=['a','b'])
In [46]: df.to_hdf(path,'df_table',format='table')
In [47]: df.to_hdf(path,'df_table2',append=True)
In [48]: df.to_hdf(path,'df_fixed')
In [49]: with get_store(path) as store:
....:
print(store)
....:

File path: test.h5
/df_fixed
frame
(shape->[10,2])
/df_table
frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df_table2
frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

• Significant table writing performance improvements
• handle a passed Series in table format (GH4330)
• can now serialize a timedelta64[ns] dtype in a table (GH3577), See the docs.
• added an is_open property to indicate if the underlying file handle is_open; a closed store will now report
‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)
• a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if
the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance of
HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same
file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise
ClosedFileError
In [50]: path = 'test.h5'
In [51]: df = DataFrame(randn(10,2))
In [52]: store1 = HDFStore(path)
In [53]: store2 = HDFStore(path)
In [54]: store1.append('df',df)
In [55]: store2.append('df2',df)

1.9. v0.13.0 (January 3, 2014)

115

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [56]: store1
Out[56]:

File path: test.h5
/df
frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
In [57]: store2
Out[57]:

File path: test.h5
/df
frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df2
frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
In [58]: store1.close()
In [59]: store2
Out[59]:

File path: test.h5
/df
frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df2
frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
In [60]: store2.close()
In [61]: store2
Out[61]:

File path: test.h5
File is CLOSED

• removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table
(GH4367)
• removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if
you try to use mode=’w’ with an OPEN file handle (GH4367)
• allow a passed locations array or mask as a where condition (GH4467). See the docs for an example.
• add the keyword dropna=True to append to change whether ALL nan rows are not written to the store
(default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table
(GH4625)
• pass thru store creation arguments; can be used to support in-memory stores

1.9.7 DataFrame repr Changes
The HTML and plain text representations of DataFrame now show a truncated view of the table once it exceeds
a certain size, rather than switching to the short info view (GH4886, GH5550). This makes the representation more
consistent as small DataFrames get larger.

116

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

To get the info view, call DataFrame.info(). If you prefer the info view as the repr for large DataFrames, you
can set this by running set_option(’display.large_repr’, ’info’).

1.9.8 Enhancements
• df.to_clipboard() learned a new excel keyword that let’s you paste df data directly into excel (enabled
by default). (GH5070).
• read_html now raises a URLError instead of catching and raising a ValueError (GH4303, GH4305)
• Added a test for read_clipboard() and to_clipboard() (GH4282)
• Clipboard functionality now works with PySide (GH4282)
• Added a more informative error message when plot arguments contain overlapping color and style arguments
(GH4402)
• to_dict now takes records as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)
• NaN handing in get_dummies (GH4446) with dummy_na
# previously, nan was erroneously counted as 2 here
# now it is not counted at all
In [62]: get_dummies([1, 2, np.nan])
Out[62]:
1 2
0 1 0
1 0 1
2 0 0
[3 rows x 2 columns]
# unless requested
In [63]: get_dummies([1, 2, np.nan], dummy_na=True)
Out[63]:
1
2
NaN
0
1
0
0
1
0
1
0
2
0
0
1
[3 rows x 3 columns]

• timedelta64[ns] operations. See the docs.
Warning: Most of these operations require numpy >= 1.7

1.9. v0.13.0 (January 3, 2014)

117

pandas: powerful Python data analysis toolkit, Release 0.16.1

Using the new top-level to_timedelta, you can convert a scalar or array from the standard timedelta format
(produced by to_csv) into a timedelta type (np.timedelta64 in nanoseconds).
In [64]: to_timedelta('1 days 06:05:01.00003')
Out[64]: Timedelta('1 days 06:05:01.000030')
In [65]: to_timedelta('15.5us')
Out[65]: Timedelta('0 days 00:00:00.000015')

In [66]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan'])
Out[66]: TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timede

In [67]: to_timedelta(np.arange(5),unit='s')
Out[67]: TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='tim

In [68]: to_timedelta(np.arange(5),unit='d')
Out[68]: TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[n

A Series of dtype timedelta64[ns] can now be divided by another timedelta64[ns] object, or
astyped to yield a float64 dtyped Series. This is frequency conversion. See the docs for the docs.
In [69]: from datetime import timedelta
In [70]: td = Series(date_range('20130101',periods=4))-Series(date_range('20121201',periods=4))
In [71]: td[2] += np.timedelta64(timedelta(minutes=5,seconds=3))
In [72]: td[3] = np.nan
In [73]: td
Out[73]:
0
31 days 00:00:00
1
31 days 00:00:00
2
31 days 00:05:03
3
NaT
dtype: timedelta64[ns]
# to days
In [74]: td / np.timedelta64(1,'D')
Out[74]:
0
31.000000
1
31.000000
2
31.003507
3
NaN
dtype: float64
In [75]: td.astype('timedelta64[D]')
Out[75]:
0
31
1
31
2
31
3
NaN
dtype: float64
# to seconds
In [76]: td / np.timedelta64(1,'s')
Out[76]:
0
2678400
1
2678400

118

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
2678703
3
NaN
dtype: float64
In [77]: td.astype('timedelta64[s]')
Out[77]:
0
2678400
1
2678400
2
2678703
3
NaN
dtype: float64

Dividing or multiplying a timedelta64[ns] Series by an integer or integer Series
In [78]: td * -1
Out[78]:
0
-31 days +00:00:00
1
-31 days +00:00:00
2
-32 days +23:54:57
3
NaT
dtype: timedelta64[ns]
In [79]: td * Series([1,2,3,4])
Out[79]:
0
31 days 00:00:00
1
62 days 00:00:00
2
93 days 00:15:09
3
NaT
dtype: timedelta64[ns]

Absolute DateOffset objects can act equivalently to timedeltas
In [80]: from pandas import offsets
In [81]: td + offsets.Minute(5) + offsets.Milli(5)
Out[81]:
0
31 days 00:05:00.005000
1
31 days 00:05:00.005000
2
31 days 00:10:03.005000
3
NaT
dtype: timedelta64[ns]

Fillna is now supported for timedeltas
In [82]: td.fillna(0)
Out[82]:
0
31 days 00:00:00
1
31 days 00:00:00
2
31 days 00:05:03
3
0 days 00:00:00
dtype: timedelta64[ns]
In [83]: td.fillna(timedelta(days=1,seconds=5))
Out[83]:
0
31 days 00:00:00
1
31 days 00:00:00
2
31 days 00:05:03
3
1 days 00:00:05
dtype: timedelta64[ns]

1.9. v0.13.0 (January 3, 2014)

119

pandas: powerful Python data analysis toolkit, Release 0.16.1

You can do numeric reduction operations on timedeltas.
In [84]: td.mean()
Out[84]: Timedelta('31 days 00:01:41')
In [85]: td.quantile(.1)
Out[85]: Timedelta('31 days 00:00:00')

• plot(kind=’kde’) now accepts the optional parameters bw_method and ind, passed to
scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth, and to gkde.evaluate() to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)
• DataFrame constructor now accepts a numpy masked record array (GH3478)
• The new vectorized string method extract return regular expression matches more conveniently.
In [86]: Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)')
Out[86]:
0
1
1
2
2
NaN
dtype: object

Elements that do not match return NaN. Extracting a regular expression with more than one group returns a
DataFrame with one column per group.
In [87]: Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)')
Out[87]:
0
1
0
a
1
1
b
2
2 NaN NaN
[3 rows x 2 columns]

Elements that do not match return a row of NaN. Thus, a Series of messy strings can be converted into a likeindexed Series or DataFrame of cleaned-up or more useful strings, without necessitating get() to access tuples
or re.match objects.
Named groups like
In [88]: Series(['a1', 'b2', 'c3']).str.extract(
....:
'(?P[ab])(?P\d)')
....:
Out[88]:
letter digit
0
a
1
1
b
2
2
NaN
NaN
[3 rows x 2 columns]

and optional groups can also be used.
In [89]: Series(['a1', 'b2', '3']).str.extract(
....:
'(?P[ab])?(?P\d)')
....:
Out[89]:
letter digit
0
a
1
1
b
2

120

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

2

NaN

3

[3 rows x 2 columns]

• read_stata now accepts Stata 13 format (GH4291)
• read_fwf now infers the column specifications from the first 100 rows of the file if the data has correctly
separated and properly aligned columns using the delimiter provided to the function (GH4488).
• support for nanosecond times as an offset
Warning: These operations require numpy >= 1.7
Period conversions in the range of seconds and below were reworked and extended up to nanoseconds. Periods
in the nanosecond range are now available.
In [90]: date_range('2013-01-01', periods=5, freq='5N')
Out[90]:
DatetimeIndex(['2013-01-01', '2013-01-01', '2013-01-01', '2013-01-01',
'2013-01-01'],
dtype='datetime64[ns]', freq='5N', tz=None)

or with frequency as offset
In [91]: date_range('2013-01-01', periods=5, freq=pd.offsets.Nano(5))
Out[91]:
DatetimeIndex(['2013-01-01', '2013-01-01', '2013-01-01', '2013-01-01',
'2013-01-01'],
dtype='datetime64[ns]', freq='5N', tz=None)

Timestamps can be modified in the nanosecond range
In [92]: t = Timestamp('20130101 09:01:02')
In [93]: t + pd.datetools.Nano(123)
Out[93]: Timestamp('2013-01-01 09:01:02.000000123')

• A new method, isin for DataFrames, which plays nicely with boolean indexing. The argument to isin, what
we’re comparing the DataFrame to, can be a DataFrame, Series, dict, or array of values. See the docs for more.
To get the rows where any of the conditions are met:
In [94]: dfi = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'f', 'n']})
In [95]: dfi
Out[95]:
A B
0 1 a
1 2 b
2 3 f
3 4 n
[4 rows x 2 columns]
In [96]: other = DataFrame({'A': [1, 3, 3, 7], 'B': ['e', 'f', 'f', 'e']})
In [97]: mask = dfi.isin(other)
In [98]: mask

1.9. v0.13.0 (January 3, 2014)

121

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[98]:
A
0
True
1 False
2
True
3 False

B
False
False
True
False

[4 rows x 2 columns]
In [99]: dfi[mask.any(1)]
Out[99]:
A B
0 1 a
2 3 f
[2 rows x 2 columns]

• Series now supports a to_frame method to convert it to a single-column DataFrame (GH5164)
• All R datasets listed here http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html can now be
loaded into Pandas objects
# note that pandas.rpy was deprecated in v0.16.0
import pandas.rpy.common as com
com.load_data('Titanic')

• tz_localize can infer a fall daylight savings transition based on the structure of the unlocalized data
(GH4230), see the docs
• DatetimeIndex is now in the API documentation, see the docs
• json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See
the docs (GH1067)
• Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.
• Python csv parser now supports usecols (GH4335)
• Frequencies gained several new offsets:
– LastWeekOfMonth (GH4637)
– FY5253, and FY5253Quarter (GH4511)
• DataFrame has a new interpolate method, similar to Series (GH4434, GH1892)
In [100]: df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
.....:
'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})
.....:
In [101]: df.interpolate()
Out[101]:
A
B
0 1.0
0.25
1 2.1
1.50
2 3.4
2.75
3 4.7
4.00
4 5.6 12.20
5 6.8 14.40
[6 rows x 2 columns]

122

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

Additionally, the method argument to interpolate has been expanded to include ’nearest’,
’zero’, ’slinear’, ’quadratic’, ’cubic’, ’barycentric’, ’krogh’,
’piecewise_polynomial’, ’pchip’, ‘polynomial‘, ’spline’ The new methods require scipy. Consult the Scipy reference guide and documentation for more information about when the various
methods are appropriate. See the docs.
Interpolate now also accepts a limit keyword argument. This works similar to fillna‘s limit:
In [102]: ser = Series([1, 3, np.nan, np.nan, np.nan, 11])
In [103]: ser.interpolate(limit=2)
Out[103]:
0
1
1
3
2
5
3
7
4
NaN
5
11
dtype: float64

• Added wide_to_long panel data convenience function. See the docs.
In [104]: np.random.seed(123)
In [105]: df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b",
.....:
"A1980" : {0 : "d", 1 : "e",
.....:
"B1970" : {0 : 2.5, 1 : 1.2,
.....:
"B1980" : {0 : 3.2, 1 : 1.3,
.....:
"X"
: dict(zip(range(3),
.....:
})
.....:

2 : "c"},
2 : "f"},
2 : .7},
2 : .1},
np.random.randn(3)))

In [106]: df["id"] = df.index
In [107]: df
Out[107]:
A1970 A1980
0
a
d
1
b
e
2
c
f

B1970
2.5
1.2
0.7

B1980
X
3.2 -1.085631
1.3 0.997345
0.1 0.282978

id
0
1
2

[3 rows x 6 columns]
In [108]: wide_to_long(df, ["A", "B"], i="id", j="year")
Out[108]:
X A
B
id year
0 1970 -1.085631 a 2.5
1 1970 0.997345 b 1.2
2 1970 0.282978 c 0.7
0 1980 -1.085631 d 3.2
1 1980 0.997345 e 1.3
2 1980 0.282978 f 0.1
[6 rows x 3 columns]

• to_csv now takes a date_format keyword argument that specifies how output datetime objects should
be formatted. Datetimes encountered in the index, columns, and values will all have this formatting applied.
(GH4313)

1.9. v0.13.0 (January 3, 2014)

123

pandas: powerful Python data analysis toolkit, Release 0.16.1

• DataFrame.plot will scatter plot x versus y by passing kind=’scatter’ (GH2215)
• Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)

1.9.9 Experimental
• The new eval() function implements expression evaluation using numexpr behind the scenes. This results
in large speedups for complicated expressions involving large DataFrames/Series. For example,
In [109]: nrows, ncols = 20000, 100
In [110]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols))
.....:
for _ in range(4)]
.....:
# eval with NumExpr backend
In [111]: %timeit pd.eval('df1 + df2 + df3 + df4')
100 loops, best of 3: 14.2 ms per loop
# pure Python evaluation
In [112]: %timeit df1 + df2 + df3 + df4
10 loops, best of 3: 23.4 ms per loop

For more details, see the the docs
• Similar to pandas.eval, DataFrame has a new DataFrame.eval method that evaluates an expression
in the context of the DataFrame. For example,
In [113]: df = DataFrame(randn(10, 2), columns=['a', 'b'])
In [114]: df.eval('a + b')
Out[114]:
0
-0.685204
1
1.589745
2
0.325441
3
-1.784153
4
-0.432893
5
0.171850
6
1.895919
7
3.065587
8
-0.092759
9
1.391365
dtype: float64

• query() method has been added that allows you to select elements of a DataFrame using a natural query
syntax nearly identical to Python syntax. For example,
In [115]: n = 20
In [116]: df = DataFrame(np.random.randint(n, size=(n, 3)), columns=['a', 'b', 'c'])
In [117]: df.query('a < b < c')
Out[117]:
a
b
c
11 1
5
8
15 8 16 19
[2 rows x 3 columns]

124

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

selects all the rows of df where a < b < c evaluates to True. For more details see the the docs.
• pd.read_msgpack() and pd.to_msgpack() are now a supported method of serialization of arbitrary
pandas (and python objects) in a lightweight portable binary format. See the docs
Warning: Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future
release.
In [118]: df = DataFrame(np.random.rand(5,2),columns=list('AB'))
In [119]: df.to_msgpack('foo.msg')
In [120]: pd.read_msgpack('foo.msg')
Out[120]:
A
B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575
[5 rows x 2 columns]
In [121]: s = Series(np.random.rand(5),index=date_range('20130101',periods=5))
In [122]: pd.to_msgpack('foo.msg', df, s)
In [123]: pd.read_msgpack('foo.msg')
Out[123]:
[
A
B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575
[5 rows x 2 columns], 2013-01-01
2013-01-02
0.227025
2013-01-03
0.383282
2013-01-04
0.193225
2013-01-05
0.110977
Freq: D, dtype: float64]

0.022321

You can pass iterator=True to iterator over the unpacked results
In [124]: for o in pd.read_msgpack('foo.msg',iterator=True):
.....:
print o
.....:
A
B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575
[5 rows x 2 columns]
2013-01-01
0.022321
2013-01-02
0.227025
2013-01-03
0.383282

1.9. v0.13.0 (January 3, 2014)

125

pandas: powerful Python data analysis toolkit, Release 0.16.1

2013-01-04
0.193225
2013-01-05
0.110977
Freq: D, dtype: float64

• pandas.io.gbq provides a simple way to extract from, and load data into, Google’s BigQuery Data Sets by
way of pandas DataFrames. BigQuery is a high performance SQL-like database service, useful for performing
ad-hoc queries against extremely large datasets. See the docs
from pandas.io import gbq
#
#
#
#

A query to select the average monthly temperatures in the
in the year 2000 across the USA. The dataset,
publicata:samples.gsod, is available on all BigQuery accounts,
and is based on NOAA gsod data.

query = """SELECT station_number as STATION,
month as MONTH, AVG(mean_temp) as MEAN_TEMP
FROM publicdata:samples.gsod
WHERE YEAR = 2000
GROUP BY STATION, MONTH
ORDER BY STATION, MONTH ASC"""
# Fetch the result set for this query
# Your Google BigQuery Project ID
# To find this, see your dashboard:
# https://code.google.com/apis/console/b/0/?noredirect
projectid = xxxxxxxxx;
df = gbq.read_gbq(query, project_id = projectid)
# Use pandas to process and reshape the dataset
df2 = df.pivot(index='STATION', columns='MONTH', values='MEAN_TEMP')
df3 = pandas.concat([df2.min(), df2.mean(), df2.max()],
axis=1,keys=["Min Tem", "Mean Temp", "Max Temp"])

The resulting DataFrame is:
> df3
Min Tem
MONTH
1
2
3
4
5
6
7
8
9
10
11
12

126

-53.336667
-49.837500
-77.926087
-82.892858
-92.378261
-77.703334
-87.821428
-89.431999
-86.611112
-78.209677
-50.125000
-50.332258

Mean Temp
39.827892
43.685219
48.708355
55.070087
61.428117
65.858888
68.169663
68.614215
63.436935
56.880838
48.861228
42.286879

Max Temp
89.770968
93.437932
96.099998
97.317240
102.042856
102.900000
106.510714
105.500000
107.142856
92.103333
94.996428
94.396774

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning:
To use this module, you will need a BigQuery account.
See
 for details.
As of 10/10/13, there is a bug in Google’s API preventing result sets from being larger than 100,000 rows.
A patch is scheduled for the week of 10/14/13.

1.9.10 Internal Refactoring
In 0.13.0 there is a major refactor primarily to subclass Series from NDFrame, which is the base class currently
for DataFrame and Panel, to unify methods and behaviors. Series formerly subclassed directly from ndarray.
(GH4080, GH3862, GH816)

1.9. v0.13.0 (January 3, 2014)

127

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning: There are two potential incompatibilities from < 0.13.0
• Using certain numpy functions would previously return a Series if passed a Series as an argument. This
seems only to affect np.ones_like, np.empty_like, np.diff and np.where. These now return
ndarrays.
In [125]: s = Series([1,2,3,4])

Numpy Usage
In [126]: np.ones_like(s)
Out[126]: array([1, 1, 1, 1], dtype=int64)
In [127]: np.diff(s)
Out[127]: array([1, 1, 1], dtype=int64)
In [128]: np.where(s>1,s,np.nan)
Out[128]: array([ nan,
2.,
3.,

4.])

Pandonic Usage
In [129]: Series(1,index=s.index)
Out[129]:
0
1
1
1
2
1
3
1
dtype: int64
In [130]: s.diff()
Out[130]:
0
NaN
1
1
2
1
3
1
dtype: float64
In [131]: s.where(s>1)
Out[131]:
0
NaN
1
2
2
3
3
4
dtype: float64

• Passing a Series directly to a cython function expecting an ndarray type will no long work directly, you
must pass Series.values, See Enhancing Performance
• Series(0.5) would previously return the scalar 0.5, instead this will return a 1-element Series
• This change breaks rpy2<=2.3.8. an Issue has been opened against rpy2 and a workaround is detailed in
GH5698. Thanks @JanSchulz.
• Pickle compatibility is preserved for pickles created prior to 0.13.
pd.read_pickle, see Pickling.

These must be unpickled with

• Refactor of series.py/frame.py/panel.py to move common code to generic.py
– added _setup_axes to created generic NDFrame structures
– moved methods
* from_axes,_wrap_array,axes,ix,loc,iloc,shape,empty,swapaxes,transpose,pop
128

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

* __iter__,keys,__contains__,__len__,__neg__,__invert__
* convert_objects,as_blocks,as_matrix,values
* __getstate__,__setstate__ (compat remains in frame/panel)
* __getattr__,__setattr__
* _indexed_same,reindex_like,align,where,mask
* fillna,replace (Series replace is now consistent with DataFrame)
* filter (also added axis argument to selectively filter on a different axis)
* reindex,reindex_axis,take
* truncate (moved to become part of NDFrame)
• These are API changes which make Panel more consistent with DataFrame
– swapaxes on a Panel with the same axes specified now return a copy
– support attribute access for setting
– filter supports the same API as the original DataFrame filter
• Reindex called with no arguments will now return a copy of the input object
• TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish (if
desired)
• Refactor of Sparse objects to use BlockManager
– Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is nonconsolidatable. SparseSeries and SparseDataFrame now inherit more methods from there hierarchy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of
the SparseBlock)
– Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially
implemented)
– Operations on sparse structures within DataFrames should preserve sparseness, merging type operations
will convert to dense (and back to sparse), so might be somewhat inefficient
– enable setitem on SparseSeries for boolean/integer/slices
– SparsePanels implementation is unchanged (e.g. not using BlockManager, needs work)
• added ftypes method to Series/DataFrame, similar to dtypes, but indicates if the underlying is sparse/dense
(as well as the dtype)
• All NDFrame objects can now use __finalize__() to specify various values to propagate to new objects
from an existing one (e.g. name in Series will follow more automatically now)
• Internal type checking is now done via a suite of generated classes, allowing isinstance(value, klass)
without having to directly import the klass, courtesy of @jtratner
• Bug in Series update where the parent frame is not updating its cache based on changes (GH4080) or types
(GH3217), fillna (GH3386)
• Indexing with dtype conversions fixed (GH4463, GH4204)
• Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Series to work
• Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy

1.9. v0.13.0 (January 3, 2014)

129

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with
the same signature for Panel
• Refactor clip methods to core/generic.py (GH4798)
• Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel functionality
• Series (for index) / Panel (for items) now allow attribute access to its elements (GH1903)
In [132]: s = Series([1,2,3],index=list('abc'))
In [133]: s.b
Out[133]: 2
In [134]: s.a = 5
In [135]: s
Out[135]:
a
5
b
2
c
3
dtype: int64

1.9.11 Bug Fixes
See V0.13.0 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.0.
See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug
Fixes.

1.10 v0.12.0 (July 24, 2013)
This is a major release from 0.11.0 and includes several new features and enhancements along with a large number of
bug fixes.
Highlights include a consistent I/O API naming scheme, routines to read html, write multi-indexes to csv files, read
& write STATA data files, read & write JSON format files, Python 3 support for HDFStore, filtering of groupby
expressions via filter, and a revamped replace routine that accepts regular expressions.

1.10.1 API changes
• The I/O API is now much more consistent with a set of top level reader functions accessed like
pd.read_csv() that generally return a pandas object.
– read_csv
– read_excel
– read_hdf
– read_sql
– read_json
– read_html
– read_stata
130

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

– read_clipboard
The corresponding writer functions are object methods that are accessed like df.to_csv()
– to_csv
– to_excel
– to_hdf
– to_sql
– to_json
– to_html
– to_stata
– to_clipboard
• Fix modulo and integer division on Series,DataFrames to act similary to float dtypes to return np.nan
or np.inf as appropriate (GH3590). This correct a numpy bug that treats integer and float dtypes
differently.
In [1]: p = DataFrame({ 'first' : [4,5,8], 'second' : [0,0,3] })
In [2]: p % 0
Out[2]:
first second
0
NaN
NaN
1
NaN
NaN
2
NaN
NaN
[3 rows x 2 columns]
In [3]: p % p
Out[3]:
first second
0
0
NaN
1
0
NaN
2
0
0
[3 rows x 2 columns]
In [4]: p / p
Out[4]:
first second
0
1
NaN
1
1
NaN
2
1
1
[3 rows x 2 columns]
In [5]: p / 0
Out[5]:
first second
0
inf
NaN
1
inf
NaN
2
inf
inf
[3 rows x 2 columns]

1.10. v0.12.0 (July 24, 2013)

131

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Add squeeze keyword to groupby to allow reduction from DataFrame -> Series if groups are unique. This
is a Regression from 0.10.1. We are reverting back to the prior behavior. This means groupby will return the
same shaped objects whether the groups are unique or not. Revert this issue (GH2893) with (GH3596).
In [6]: df2 = DataFrame([{"val1": 1, "val2" : 20}, {"val1":1, "val2": 19},
...:
{"val1":1, "val2": 27}, {"val1":1, "val2": 12}])
...:
In [7]: def func(dataf):
...:
return dataf["val2"]
...:

- dataf["val2"].mean()

# squeezing the result frame to a series (because we have unique groups)
In [8]: df2.groupby("val1", squeeze=True).apply(func)
Out[8]:
0
0.5
1
-0.5
2
7.5
3
-7.5
Name: 1, dtype: float64
# no squeezing (the default, and behavior in 0.10.1)
In [9]: df2.groupby("val1").apply(func)
Out[9]:
val2
0
1
2
3
val1
1
0.5 -0.5 7.5 -7.5
[1 rows x 4 columns]

• Raise on iloc when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer
labels, will raise. Since iloc is purely positional based, the labels on the Series are not alignable (GH3631)
This case is rarely used, and there are plently of alternatives. This preserves the iloc API to be purely positional
based.
In [10]: df = DataFrame(lrange(5), list('ABCDE'), columns=['a'])
In [11]: mask = (df.a%2 == 0)
In [12]: mask
Out[12]:
A
True
B
False
C
True
D
False
E
True
Name: a, dtype: bool
# this is what you should use
In [13]: df.loc[mask]
Out[13]:
a
A 0
C 2
E 4
[3 rows x 1 columns]

132

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

# this will work as well
In [14]: df.iloc[mask.values]
Out[14]:
a
A 0
C 2
E 4
[3 rows x 1 columns]

df.iloc[mask] will raise a ValueError
• The raise_on_error argument to plotting functions is removed. Instead, plotting functions raise a
TypeError when the dtype of the object is object to remind you to avoid object arrays whenever
possible and thus you should cast to an appropriate numeric dtype if you need to plot something.
• Add colormap keyword to DataFrame plotting methods. Accepts either a matplotlib colormap object (ie,
matplotlib.cm.jet) or a string name of such an object (ie, ‘jet’). The colormap is sampled to select the color for
each column. Please see Colormaps for more information. (GH3860)
• DataFrame.interpolate() is now deprecated.
Please use DataFrame.fillna() and
DataFrame.replace() instead. (GH3582, GH3675, GH3676)
• the method and axis arguments of DataFrame.replace() are deprecated
• DataFrame.replace ‘s infer_types parameter is removed and now performs conversion by default.
(GH3907)
• Add the keyword allow_duplicates to DataFrame.insert to allow a duplicate column to be inserted
if True, default is False (same as prior to 0.12) (GH3679)
• Implement __nonzero__ for NDFrame objects (GH3691, GH3696)
• IO api
– added top-level function read_excel to replace the following, The original API is deprecated and will
be removed in a future version
from pandas.io.parsers import ExcelFile
xls = ExcelFile('path_to_file.xls')
xls.parse('Sheet1', index_col=None, na_values=['NA'])

With
import pandas as pd
pd.read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])

– added top-level function read_sql that is equivalent to the following
from pandas.io.sql import read_frame
read_frame(....)

• DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)
• Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int
(GH3425)
• The behavior of datetime64 dtypes has changed with respect to certain so-called reduction operations
(GH3726). The following operations now raise a TypeError when perfomed on a Series and return an
empty Series when performed on a DataFrame similar to performing these operations on, for example, a
DataFrame of slice objects:
– sum, prod, mean, std, var, skew, kurt, corr, and cov
1.10. v0.12.0 (July 24, 2013)

133

pandas: powerful Python data analysis toolkit, Release 0.16.1

• read_html now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to
parse. a list of parsers to try until success is also valid
• The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called
PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well
as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently,
PandasObject provides string methods (from StringMixin). (GH4090, GH4092)
• New StringMixin that, given a __unicode__ method, gets python 2 and python 3 compatible string
methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many
places throughout the pandas library. (GH4090, GH4092)

1.10.2 I/O Enhancements
• pd.read_html() can now parse HTML strings, files or urls and return DataFrames, courtesy of @cpcloud.
(GH3477, GH3605, GH3606, GH3616). It works with a single parser backend: BeautifulSoup4 + html5lib See
the docs
You can use pd.read_html() to read the output from DataFrame.to_html() like so
In [15]: df = DataFrame({'a': range(3), 'b': list('abc')})
In [16]: print(df)
a b
0 0 a
1 1 b
2 2 c
[3 rows x 2 columns]
In [17]: html = df.to_html()
In [18]: alist = pd.read_html(html, infer_types=True, index_col=0)
In [19]:
a
0 True
1 True
2 True

print(df == alist[0])
b
True
True
True

[3 rows x 2 columns]

Note that alist here is a Python list so pd.read_html() and DataFrame.to_html() are not inverses.
– pd.read_html() no longer performs hard conversion of date strings (GH3656).
Warning: You may have to install an older version of BeautifulSoup4, See the installation docs
• Added module for reading and writing Stata files: pandas.io.stata (GH1512) accessable via
read_stata top-level function for reading, and to_stata DataFrame method for writing, See the docs
• Added module for reading and writing json format files: pandas.io.json accessable via read_json toplevel function for reading, and to_json DataFrame method for writing, See the docs various issues (GH1226,
GH3804, GH3876, GH3867, GH1305)
• MultiIndex column support for reading and writing csv format files

134

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

– The header option in read_csv now accepts a list of the rows from which to read the index.
– The option, tupleize_cols can now be specified in both to_csv and read_csv, to provide compatiblity for the pre 0.12 behavior of writing and reading MultIndex columns via a list of tuples. The
default in 0.12 is to write lists of tuples and not interpret list of tuples as a MultiIndex column.
Note: The default behavior in 0.12 remains unchanged from prior versions, but starting with 0.13, the
default to write and read MultiIndex columns will be in the new format. (GH3571, GH1651, GH3141)
– If an index_col is not specified (e.g. you don’t have an index, or wrote it with df.to_csv(...,
index=False), then any names on the columns index will be lost.
In [20]: from pandas.util.testing import makeCustomDataframe as mkdf
In [21]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
In [22]: df.to_csv('mi.csv',tupleize_cols=False)
In [23]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2

In [24]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1],tupleize_cols=False)
Out[24]:
C0
C_l0_g0 C_l0_g1 C_l0_g2
C1
C_l1_g0 C_l1_g1 C_l1_g2
C2
C_l2_g0 C_l2_g1 C_l2_g2
C3
C_l3_g0 C_l3_g1 C_l3_g2
R0
R1
R_l0_g0 R_l1_g0
R0C0
R0C1
R0C2
R_l0_g1 R_l1_g1
R1C0
R1C1
R1C2
R_l0_g2 R_l1_g2
R2C0
R2C1
R2C2
R_l0_g3 R_l1_g3
R3C0
R3C1
R3C2
R_l0_g4 R_l1_g4
R4C0
R4C1
R4C2
[5 rows x 3 columns]

• Support for HDFStore (via PyTables 3.0.0) on Python3
• Iterator support via read_hdf that automatically opens and closes the store when iteration is finished. This is
only for tables
In [25]: path = 'store_iterator.h5'
In [26]: DataFrame(randn(10,2)).to_hdf(path,'df',table=True)
In [27]: for df in read_hdf(path,'df', chunksize=3):
....:
print(df)
....:
0
1
0 1.392665 -0.123497

1.10. v0.12.0 (July 24, 2013)

135

pandas: powerful Python data analysis toolkit, Release 0.16.1

1 -0.402761 -0.246604
2 -0.288433 -0.763434
[3 rows x 2 columns]
0
1
3 2.069526 -1.203569
4 0.591830 0.841159
5 -0.501083 -0.816561
[3 rows x 2
0
6 -0.207082
7 0.580411
8 -0.038605

columns]
1
-0.664112
-0.965628
-0.460478

[3 rows x 2 columns]
0
1
9 -0.310458 0.866493
[1 rows x 2 columns]

• read_csv will now throw a more informative error message when a file contains no columns, e.g., all newline
characters

1.10.3 Other Enhancements
• DataFrame.replace() now allows regular expressions on contained Series with object dtype. See the
examples section in the regular docs Replacing via String Expression
For example you can do
In [28]: df = DataFrame({'a': list('ab..'), 'b': [1, 2, 3, 4]})
In [29]: df.replace(regex=r'\s*\.\s*', value=np.nan)
Out[29]:
a b
0
a 1
1
b 2
2 NaN 3
3 NaN 4
[4 rows x 2 columns]

to replace all occurrences of the string ’.’ with zero or more instances of surrounding whitespace with NaN.
Regular string replacement still works as expected. For example, you can do
In [30]: df.replace('.', np.nan)
Out[30]:
a b
0
a 1
1
b 2
2 NaN 3
3 NaN 4
[4 rows x 2 columns]

to replace all occurrences of the string ’.’ with NaN.

136

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• pd.melt() now accepts the optional parameters var_name and value_name to specify custom column
names of the returned DataFrame.
• pd.set_option() now allows N option, value pairs (GH3667).
Let’s say that we had an option ’a.b’ and another option ’b.c’. We can set them at the same
time:
In [31]: pd.get_option('a.b')
Out[31]: 2
In [32]: pd.get_option('b.c')
Out[32]: 3
In [33]: pd.set_option('a.b', 1, 'b.c', 4)
In [34]: pd.get_option('a.b')
Out[34]: 1
In [35]: pd.get_option('b.c')
Out[35]: 4

• The filter method for group objects returns a subset of the original object. Suppose we want to take only
elements that belong to groups with a group sum greater than 2.
In [36]: sf = Series([1, 1, 2, 3, 3, 3])
In [37]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[37]:
3
3
4
3
5
3
dtype: int64

The argument of filter must a function that, applied to the group as a whole, returns True or False.
Another useful operation is filtering out elements that belong to groups with only a couple members.
In [38]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')})
In [39]: dff.groupby('B').filter(lambda x: len(x) > 2)
Out[39]:
A B
2 2 b
3 3 b
4 4 b
5 5 b
[4 rows x 2 columns]

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups
that do not pass the filter are filled with NaNs.
In [40]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
Out[40]:
A
B
0 NaN NaN
1 NaN NaN
2
2
b
3
3
b
4
4
b

1.10. v0.12.0 (July 24, 2013)

137

pandas: powerful Python data analysis toolkit, Release 0.16.1

5
5
6 NaN
7 NaN

b
NaN
NaN

[8 rows x 2 columns]

• Series and DataFrame hist methods now take a figsize argument (GH3834)
• DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)
• Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default datetime.min and datetime.max (respectively), thanks @SleepingPills
• read_html now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)

1.10.4 Experimental Features
• Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars
and custom weekmasks. (GH2301)
Note: This uses the numpy.busdaycalendar API introduced in Numpy 1.7 and therefore requires Numpy
1.7.0 or newer.
In [41]: from pandas.tseries.offsets import CustomBusinessDay
In [42]: from datetime import datetime
# As an interesting example, let's look at Egypt where
# a Friday-Saturday weekend is observed.
In [43]: weekmask_egypt = 'Sun Mon Tue Wed Thu'
# They also observe International Workers' Day so let's
# add that for a couple of years
In [44]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]
In [45]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)
In [46]: dt = datetime(2013, 4, 30)
In [47]: print(dt + 2 * bday_egypt)
2013-05-05 00:00:00
In [48]: dts = date_range(dt, periods=5, freq=bday_egypt)
In [49]: print(Series(dts.weekday, dts).map(Series('Mon Tue Wed Thu Fri Sat Sun'.split())))
2013-04-30
Tue
2013-05-02
Thu
2013-05-05
Sun
2013-05-06
Mon
2013-05-07
Tue
Freq: C, dtype: object

1.10.5 Bug Fixes
• Plotting functions now raise a TypeError before trying to plot anything if the associated objects have have a
dtype of object (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric
138

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

arrays if possible so that you can still plot, for example, an object array with floats. This happens before any
drawing takes place which elimnates any spurious plots from showing up.
• fillna methods now raise a TypeError if the value parameter is a list or tuple.
• Series.str now supports iteration (GH3638). You can iterate over the individual elements of each string in
the Series. Each iteration yields yields a Series with either a single character at each index of the original
Series or NaN. For example,
In [50]: strs = 'go', 'bow', 'joe', 'slow'
In [51]: ds = Series(strs)
In [52]: for s in ds.str:
....:
print(s)
....:
0
g
1
b
2
j
3
s
dtype: object
0
o
1
o
2
o
3
l
dtype: object
0
NaN
1
w
2
e
3
o
dtype: object
0
NaN
1
NaN
2
NaN
3
w
dtype: object
In [53]: s
Out[53]:
0
NaN
1
NaN
2
NaN
3
w
dtype: object
In [54]: s.dropna().values.item() == 'w'
Out[54]: True

The last element yielded by the iterator will be a Series containing the last element of the longest string in
the Series with all other elements being NaN. Here since ’slow’ is the longest string and there are no other
strings with the same length ’w’ is the only non-null string in the yielded Series.
• HDFStore
– will retain index attributes (freq,tz,name) on recreation (GH3499)
– will warn with a AttributeConflictWarning if you are attempting to append an index with a
different frequency than the existing, or attempting to append an index with a different name than the
existing
– support datelike columns with a timezone as data_columns (GH2852)
1.10. v0.12.0 (July 24, 2013)

139

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Non-unique index support clarified (GH3468).
– Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
– Fix construction of a DataFrame with a duplicate index
– ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index
(even across dtypes) (GH2194)
– applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix
(GH3230)
– Fix to_csv to handle non-unique columns (GH3495)
– Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
– Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
– Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
– Allow insert/delete to non-unique columns (GH3679)
– Non-unique indexing with a slice via loc and friends fixed (GH3659)
– Allow insert/delete to non-unique columns (GH3679)
– Extend reindex to correctly deal with non-unique indices (GH3679)
– DataFrame.itertuples() now works with frames with duplicate column names (GH3873)
– Bug in non-unique indexing via iloc (GH4017); added takeable argument to reindex for locationbased taking
– Allow non-unique indexing in series via .ix/.loc and __getitem__ (GH4246)
– Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280)
• DataFrame.from_records did not accept empty recarrays (GH3682)
• read_html now correctly skips tests (GH3741)
• Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument
wasn’t working (GH3907)
• Improved network test decorator to catch IOError (and therefore URLError as well). Added
with_connectivity_check decorator to allow explicitly checking a website as a proxy for seeing if there
is network connectivity. Plus, new optional_args decorator factory for decorators. (GH3910, GH3914)
• Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982,
GH3985, GH4028, GH4054)
• Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed
(GH3982, GH3985, GH4028, GH4054)
• Series.hist will now take the figure from the current environment if one is not passed
• Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)
• Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way
(GH4062, GH4063)
• Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)
• Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False
(GH4115)
• Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)

140

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Fixed bug in PandasAutoDateLocator
MilliSecondLocator (GH3990)

where

invert_xaxis

triggered

incorrectly

• Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
• Fixed the legend displaying in DataFrame.plot(kind=’kde’) (GH4216)
• Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
• Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229)
• Fixed bug where html5lib wasn’t being properly skipped (GH4265)
• Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)
See the full release notes or issue tracker on GitHub for a complete list.

1.11 v0.11.0 (April 22, 2013)
This is a major release from 0.10.1 and includes many new features and enhancements along with a large number of
bug fixes. The methods of Selecting Data have had quite a number of additions, and Dtype support is now full-fledged.
There are also a number of important API changes that long-time pandas users should pay close attention to.
There is a new section in the documentation, 10 Minutes to Pandas, primarily geared to new users.
There is a new section in the documentation, Cookbook, a collection of useful recipes in pandas (and that we want
contributions!).
There are several libraries that are now Recommended Dependencies

1.11.1 Selection Choices
Starting in 0.11.0, object selection has had a number of user-requested additions in order to support more explicit
location based indexing. Pandas now supports three types of multi-axis indexing.
• .loc is strictly label based, will raise KeyError when the items are not found, allowed inputs are:
– A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index. This use is not an integer
position along the index)
– A list or array of labels [’a’, ’b’, ’c’]
– A slice object with labels ’a’:’f’, (note that contrary to usual python slices, both the start and the stop
are included!)
– A boolean array
See more at Selection by Label
• .iloc is strictly integer position based (from 0 to length-1 of the axis), will raise IndexError when the
requested indicies are out of bounds. Allowed inputs are:
– An integer e.g. 5
– A list or array of integers [4, 3, 0]
– A slice object with ints 1:7
– A boolean array
See more at Selection by Position

1.11. v0.11.0 (April 22, 2013)

141

pandas: powerful Python data analysis toolkit, Release 0.16.1

• .ix supports mixed integer and label based access. It is primarily label based, but will fallback to integer
positional access. .ix is the most general and will support any of the inputs to .loc and .iloc, as well as
support for floating point label schemes. .ix is especially useful when dealing with mixed positional and label
based hierarchial indexes.
As using integer slices with .ix have different behavior depending on whether the slice is interpreted as position
based or label based, it’s usually better to be explicit and use .iloc or .loc.
See more at Advanced Indexing and Advanced Hierarchical.

1.11.2 Selection Deprecations
Starting in version 0.11.0, these methods may be deprecated in future versions.
• irow
• icol
• iget_value
See the section Selection by Position for substitutes.

1.11.3 Dtypes
Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the dtype
keyword, a passed ndarray, or a passed Series, then it will be preserved in DataFrame operations. Furthermore,
different numeric dtypes will NOT be combined. The following example will give you a taste.
In [1]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')
In [2]: df1
Out[2]:
A
0 0.245972
1 0.319442
2 1.378512
3 0.292502
4 0.329791
5 1.392047
6 0.769914
7 -2.472300
[8 rows x 1 columns]
In [3]: df1.dtypes
Out[3]:
A
float32
dtype: object
In [4]: df2 = DataFrame(dict( A = Series(randn(8),dtype='float16'),
...:
B = Series(randn(8)),
...:
C = Series(randn(8),dtype='uint8') ))
...:
In [5]: df2
Out[5]:
A
B
0 -0.611328 -0.270630

142

C
255

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1 1.044922 -1.685677
2 1.503906 -0.440747
3 -1.328125 -0.115070
4 1.024414 -0.632102
5 0.660156 -0.585977
6 1.236328 -1.444787
7 -2.169922 -0.201135

0
0
1
0
0
0
0

[8 rows x 3 columns]
In [6]: df2.dtypes
Out[6]:
A
float16
B
float64
C
uint8
dtype: object
# here you get some upcasting
In [7]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2
In [8]: df3
Out[8]:
A
0 -0.365356
1 1.364364
2 2.882418
3 -1.035623
4 1.354205
5 2.052203
6 2.006243
7 -4.642221

B
-0.270630
-1.685677
-0.440747
-0.115070
-0.632102
-0.585977
-1.444787
-0.201135

C
255
0
0
1
0
0
0
0

[8 rows x 3 columns]
In [9]: df3.dtypes
Out[9]:
A
float32
B
float64
C
float64
dtype: object

1.11.4 Dtype Conversion
This is lower-common-denomicator upcasting, meaning you get the dtype which can accomodate all of the types
In [10]: df3.values.dtype
Out[10]: dtype('float64')

Conversion
In [11]: df3.astype('float32').dtypes
Out[11]:
A
float32
B
float32
C
float32
dtype: object

Mixed Conversion
1.11. v0.11.0 (April 22, 2013)

143

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [12]: df3['D'] = '1.'
In [13]: df3['E'] = '1'
In [14]: df3.convert_objects(convert_numeric=True).dtypes
Out[14]:
A
float32
B
float64
C
float64
D
float64
E
int64
dtype: object
# same, but specific dtype conversion
In [15]: df3['D'] = df3['D'].astype('float16')
In [16]: df3['E'] = df3['E'].astype('int32')
In [17]: df3.dtypes
Out[17]:
A
float32
B
float64
C
float64
D
float16
E
int32
dtype: object

Forcing Date coercion (and setting NaT when not datelike)
In [18]: from datetime import datetime
In [19]: s = Series([datetime(2001,1,1,0,0), 'foo', 1.0, 1,
....:
Timestamp('20010104'), '20010105'],dtype='O')
....:
In [20]: s.convert_objects(convert_dates='coerce')
Out[20]:
0
2001-01-01
1
NaT
2
NaT
3
NaT
4
2001-01-04
5
2001-01-05
dtype: datetime64[ns]

1.11.5 Dtype Gotchas
Platform Gotchas
Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of int64 and float64, regardless
of platform. This is not an apparent change from earlier versions of pandas. If you specify dtypes, they WILL be
respected, however (GH2837)
The following will all result in int64 dtypes
In [21]: DataFrame([1,2],columns=['a']).dtypes
Out[21]:
a
int64

144

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

dtype: object
In [22]: DataFrame({'a' : [1,2] }).dtypes
Out[22]:
a
int64
dtype: object
In [23]: DataFrame({'a' : 1 }, index=range(2)).dtypes
Out[23]:
a
int64
dtype: object

Keep in mind that DataFrame(np.array([1,2])) WILL result in int32 on 32-bit platforms!
Upcasting Gotchas
Performing indexing operations on integer type data can easily upcast the data. The dtype of the input data will be
preserved in cases where nans are not introduced.
In [24]: dfi = df3.astype('int32')
In [25]: dfi['D'] = dfi['D'].astype('int64')
In [26]: dfi
Out[26]:
A B
C
0 0 0 255
1 1 -1
0
2 2 0
0
3 -1 0
1
4 1 0
0
5 2 0
0
6 2 -1
0
7 -4 0
0

D
1
1
1
1
1
1
1
1

E
1
1
1
1
1
1
1
1

[8 rows x 5 columns]
In [27]: dfi.dtypes
Out[27]:
A
int32
B
int32
C
int32
D
int64
E
int32
dtype: object
In [28]: casted = dfi[dfi>0]
In [29]: casted
Out[29]:
A
B
C
0 NaN NaN 255
1
1 NaN NaN
2
2 NaN NaN
3 NaN NaN
1
4
1 NaN NaN
5
2 NaN NaN
6
2 NaN NaN
7 NaN NaN NaN

D
1
1
1
1
1
1
1
1

E
1
1
1
1
1
1
1
1

1.11. v0.11.0 (April 22, 2013)

145

pandas: powerful Python data analysis toolkit, Release 0.16.1

[8 rows x 5 columns]
In [30]: casted.dtypes
Out[30]:
A
float64
B
float64
C
float64
D
int64
E
int32
dtype: object

While float dtypes are unchanged.
In [31]: df4 = df3.copy()
In [32]: df4['A'] = df4['A'].astype('float32')
In [33]: df4.dtypes
Out[33]:
A
float32
B
float64
C
float64
D
float16
E
int32
dtype: object
In [34]: casted = df4[df4>0]
In [35]: casted
Out[35]:
A
B
0
NaN NaN
1 1.364364 NaN
2 2.882418 NaN
3
NaN NaN
4 1.354205 NaN
5 2.052203 NaN
6 2.006243 NaN
7
NaN NaN

C
255
NaN
NaN
1
NaN
NaN
NaN
NaN

D
1
1
1
1
1
1
1
1

E
1
1
1
1
1
1
1
1

[8 rows x 5 columns]
In [36]: casted.dtypes
Out[36]:
A
float32
B
float64
C
float64
D
float16
E
int32
dtype: object

1.11.6 Datetimes Conversion
Datetime64[ns] columns in a DataFrame (or a Series) allow the use of np.nan to indicate a nan value, in addition to the traditional NaT, or not-a-time. This allows convenient nan setting in a generic way. Furthermore
datetime64[ns] columns are created by default, when passed datetimelike objects (this change was introduced in

146

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

0.10.1) (GH2809, GH2810)
In [37]: df = DataFrame(randn(6,2),date_range('20010102',periods=6),columns=['A','B'])
In [38]: df['timestamp'] = Timestamp('20010103')
In [39]: df
Out[39]:
2001-01-02
2001-01-03
2001-01-04
2001-01-05
2001-01-06
2001-01-07

A
B timestamp
-1.448835 0.153437 2001-01-03
-1.123570 -0.791498 2001-01-03
0.105400 1.262401 2001-01-03
-0.721844 -0.647645 2001-01-03
-0.830631 0.761823 2001-01-03
0.597819 1.045558 2001-01-03

[6 rows x 3 columns]
# datetime64[ns] out of the box
In [40]: df.get_dtype_counts()
Out[40]:
datetime64[ns]
1
float64
2
dtype: int64
# use the traditional nan, which is mapped to NaT internally
In [41]: df.ix[2:4,['A','timestamp']] = np.nan
In [42]: df
Out[42]:
A
B timestamp
2001-01-02 -1.448835 0.153437 2001-01-03
2001-01-03 -1.123570 -0.791498 2001-01-03
2001-01-04
NaN 1.262401
NaT
2001-01-05
NaN -0.647645
NaT
2001-01-06 -0.830631 0.761823 2001-01-03
2001-01-07 0.597819 1.045558 2001-01-03
[6 rows x 3 columns]

Astype conversion on datetime64[ns] to object, implicity converts NaT to np.nan
In [43]: import datetime
In [44]: s = Series([datetime.datetime(2001, 1, 2, 0, 0) for i in range(3)])
In [45]: s.dtype
Out[45]: dtype('2'])
Out[54]:
A B
3 3 3
4 4 4
[2 rows x 2 columns]

– provide dotted attribute access to get from stores, e.g. store.df == store[’df’]
– new keywords iterator=boolean, and chunksize=number_in_a_chunk are provided to support iteration on select and select_as_multiple (GH3076)
• You can now select timestamps from an unordered timeseries similarly to an ordered timeseries (GH2437)
• You can now select with a string from a DataFrame with a datelike index, in a similar way to a Series (GH3070)

148

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [55]: idx = date_range("2001-10-1", periods=5, freq='M')
In [56]: ts = Series(np.random.rand(len(idx)),index=idx)
In [57]: ts['2001']
Out[57]:
2001-10-31
0.483450
2001-11-30
0.407530
2001-12-31
0.965096
Freq: M, dtype: float64
In [58]: df = DataFrame(dict(A = ts))
In [59]: df['2001']
Out[59]:
A
2001-10-31 0.483450
2001-11-30 0.407530
2001-12-31 0.965096
[3 rows x 1 columns]

• Squeeze to possibly remove length 1 dimensions from an object.
In [60]: p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'],
....:
major_axis=date_range('20010102',periods=4),
....:
minor_axis=['A','B','C','D'])
....:
In [61]: p
Out[61]:

Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00
Minor_axis axis: A to D
In [62]: p.reindex(items=['ItemA']).squeeze()
Out[62]:
A
B
C
D
2001-01-02 0.396537 0.534880 -0.488797 -1.539385
2001-01-03 -0.829037 0.306681 -0.331032 1.544977
2001-01-04 -0.621754 1.026208 -0.413106 -1.490869
2001-01-05 -1.253235 -0.538879 -1.487449 -1.426475
[4 rows x 4 columns]
In [63]: p.reindex(items=['ItemA'],minor=['B']).squeeze()
Out[63]:
2001-01-02
0.534880
2001-01-03
0.306681
2001-01-04
1.026208
2001-01-05
-0.538879
Freq: D, Name: B, dtype: float64

• In pd.io.data.Options,
– Fix bug when trying to fetch data for the current month when already past expiry.

1.11. v0.11.0 (April 22, 2013)

149

pandas: powerful Python data analysis toolkit, Release 0.16.1

– Now using lxml to scrape html instead of BeautifulSoup (lxml was faster).
– New instance variables for calls and puts are automatically created when a method that creates them is
called. This works for current month where the instance variables are simply calls and puts. Also
works for future expiry months and save the instance variable as callsMMYY or putsMMYY, where
MMYY are, respectively, the month and year of the option’s expiry.
– Options.get_near_stock_price now allows the user to specify the month for which to get relevant options data.
– Options.get_forward_data now has optional kwargs near and above_below. This allows the
user to specify if they would like to only return forward looking data for options near the current stock
price. This just obtains the data from Options.get_near_stock_price instead of Options.get_xxx_data()
(GH2758).
• Cursor coordinate information is now displayed in time-series plots.
• added option display.max_seq_items to control the number of elements printed per sequence pprinting it.
(GH2979)
• added option display.chop_threshold to control display of small numerical values. (GH2739)
• added option display.max_info_rows to prevent verbose_info from being calculated for frames above 1M rows
(configurable). (GH2807, GH2918)
• value_counts() now accepts a “normalize” argument, for normalized histograms. (GH2710).
• DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC.
• added option display.mpl_style providing a
https://gist.github.com/huyng/816622 (GH3075).

sleeker

visual

style

for

plots.

Based

on

• Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)
• to_html() now accepts an optional “escape” argument to control reserved HTML character escaping (enabled
by default) and escapes &, in addition to < and >. (GH2919)
See the full release notes or issue tracker on GitHub for a complete list.

1.12 v0.10.1 (January 22, 2013)
This is a minor release from 0.10.0 and includes new features, enhancements, and bug fixes. In particular, there is
substantial new HDFStore functionality contributed by Jeff Reback.
An undesired API breakage with functions taking the inplace option has been reverted and deprecation warnings
added.

1.12.1 API changes
• Functions taking an inplace option return the calling object as before. A deprecation message has been added
• Groupby aggregations Max/Min no longer exclude non-numeric data (GH2700)
• Resampling an empty DataFrame now returns an empty DataFrame instead of raising an exception (GH2640)
• The file reader will now raise an exception when NA values are found in an explicitly specified integer column
instead of converting the column to float (GH2631)
• DatetimeIndex.unique now returns a DatetimeIndex with the same name and
• timezone instead of an array (GH2563)
150

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.12.2 New features
• MySQL support for database (contribution from Dan Allan)

1.12.3 HDFStore
You may need to upgrade your existing data files. Please visit the compatibility section in the main docs.
You can designate (and index) certain columns that you want to be able to perform queries on a table, by passing a list
to data_columns
In [1]: store = HDFStore('store.h5')
In [2]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
...:
columns=['A', 'B', 'C'])
...:
In [3]: df['string'] = 'foo'
In [4]: df.ix[4:6,'string'] = np.nan
In [5]: df.ix[7:9,'string'] = 'bar'
In [6]: df['string2'] = 'cool'
In [7]: df
Out[7]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
-1.601262
0.174122
0.980347
-0.761218
-0.862613
1.498195
1.511487
-0.007364

B
-0.256718
-1.131794
-0.674429
1.768215
-0.210968
0.462413
-0.727189
1.427674

C string string2
0.239369
foo
cool
-1.948006
foo
cool
-0.361633
foo
cool
0.152288
foo
cool
-0.859278
NaN
cool
-0.647604
NaN
cool
-0.342928
foo
cool
0.104020
bar
cool

[8 rows x 5 columns]
# on-disk operations
In [8]: store.append('df', df, data_columns = ['B','C','string','string2'])
In [9]: store.select('df',[ 'B > 0', 'string == foo' ])
Out[9]:
A
B
C string string2
2000-01-04 -0.761218 1.768215 0.152288
foo
cool
[1 rows x 5 columns]
# this is in-memory version of this type of selection
In [10]: df[(df.B > 0) & (df.string == 'foo')]
Out[10]:
A
B
C string string2
2000-01-04 -0.761218 1.768215 0.152288
foo
cool
[1 rows x 5 columns]

Retrieving unique values in an indexable or data column.

1.12. v0.10.1 (January 22, 2013)

151

pandas: powerful Python data analysis toolkit, Release 0.16.1

# note that this is deprecated as of 0.14.0
# can be replicated by: store.select_column('df','index').unique()
store.unique('df','index')
store.unique('df','string')

You can now store datetime64 in data columns
In [11]: df_mixed

= df.copy()

In [12]: df_mixed['datetime64'] = Timestamp('20010102')
In [13]: df_mixed.ix[3:4,['A','B']] = np.nan
In [14]: store.append('df_mixed', df_mixed)
In [15]: df_mixed1 = store.select('df_mixed')
In [16]: df_mixed1
Out[16]:
A
B
C string string2 datetime64
2000-01-01 -1.601262 -0.256718 0.239369
foo
cool 2001-01-02
2000-01-02 0.174122 -1.131794 -1.948006
foo
cool 2001-01-02
2000-01-03 0.980347 -0.674429 -0.361633
foo
cool 2001-01-02
2000-01-04
NaN
NaN 0.152288
foo
cool 2001-01-02
2000-01-05 -0.862613 -0.210968 -0.859278
NaN
cool 2001-01-02
2000-01-06 1.498195 0.462413 -0.647604
NaN
cool 2001-01-02
2000-01-07 1.511487 -0.727189 -0.342928
foo
cool 2001-01-02
2000-01-08 -0.007364 1.427674 0.104020
bar
cool 2001-01-02
[8 rows x 6 columns]
In [17]: df_mixed1.get_dtype_counts()
Out[17]:
datetime64[ns]
1
float64
3
object
2
dtype: int64

You can pass columns keyword to select to filter a list of the return columns, this is equivalent to passing a
Term(’columns’,list_of_columns_to_filter)
In [18]: store.select('df',columns = ['A','B'])
Out[18]:
A
B
2000-01-01 -1.601262 -0.256718
2000-01-02 0.174122 -1.131794
2000-01-03 0.980347 -0.674429
2000-01-04 -0.761218 1.768215
2000-01-05 -0.862613 -0.210968
2000-01-06 1.498195 0.462413
2000-01-07 1.511487 -0.727189
2000-01-08 -0.007364 1.427674
[8 rows x 2 columns]

HDFStore now serializes multi-index dataframes when appending tables.
In [19]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
....:
['one', 'two', 'three']],

152

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

....:
....:
....:
....:

labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['foo', 'bar'])

In [20]: df = DataFrame(np.random.randn(10, 3), index=index,
....:
columns=['A', 'B', 'C'])
....:
In [21]: df
Out[21]:
A
B
C
foo bar
foo one
2.052171 -1.230963 -0.019240
two
-1.713238 0.838912 -0.637855
three 0.215109 -1.515362 1.586924
bar one
-0.447974 -1.573998 0.630925
two
-0.071659 -1.277640 -0.102206
baz two
0.870302 1.275280 -1.199212
three 1.060780 1.673018 1.249874
qux one
1.458210 -0.710542 0.825392
two
1.557329 1.993441 -0.616293
three 0.150468 0.132104 0.580923
[10 rows x 3 columns]
In [22]: store.append('mi',df)
In [23]: store.select('mi')
Out[23]:
A
B
foo bar
foo one
2.052171 -1.230963
two
-1.713238 0.838912
three 0.215109 -1.515362
bar one
-0.447974 -1.573998
two
-0.071659 -1.277640
baz two
0.870302 1.275280
three 1.060780 1.673018
qux one
1.458210 -0.710542
two
1.557329 1.993441
three 0.150468 0.132104

C
-0.019240
-0.637855
1.586924
0.630925
-0.102206
-1.199212
1.249874
0.825392
-0.616293
0.580923

[10 rows x 3 columns]
# the levels are automatically included as data columns
In [24]: store.select('mi', Term('foo=bar'))
Out[24]:
A
B
C
foo bar
bar one -0.447974 -1.573998 0.630925
two -0.071659 -1.277640 -0.102206
[2 rows x 3 columns]

Multi-table creation via append_to_multiple and selection via select_as_multiple can create/select from
multiple tables and return a combined result, by using where on a selector table.

1.12. v0.10.1 (January 22, 2013)

153

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [25]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
....:
columns=['A', 'B', 'C', 'D', 'E', 'F'])
....:
In [26]: df_mt['foo'] = 'bar'

# you can also create the tables individually
In [27]: store.append_to_multiple({ 'df1_mt' : ['A','B'], 'df2_mt' : None }, df_mt, selector = 'df1_m

In [28]: store
Out[28]:

File path: store.h5
/df
frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,strin
/df1_mt
frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B])
/df2_mt
frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
/df_mixed
frame_table (typ->appendable,nrows->8,ncols->6,indexers->[index])
/mi
frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[ba
# indiviual tables were created
In [29]: store.select('df1_mt')
Out[29]:
A
B
2000-01-01 -0.128750 1.445964
2000-01-02 -0.688741 0.228006
2000-01-03 0.932498 -2.200069
2000-01-04 1.298390 1.662964
2000-01-05 -0.462446 -0.112019
2000-01-06 -1.626124 0.982041
2000-01-07 0.942864 2.502156
2000-01-08 0.268766 -1.225092
[8 rows x 2 columns]
In [30]: store.select('df2_mt')
Out[30]:
C
D
E
2000-01-01 -0.431163 0.016640 0.904578
2000-01-02 0.800353 -0.451572 0.831767
2000-01-03 1.239198 0.185437 -0.540770
2000-01-04 -0.040863 0.290110 -0.096145
2000-01-05 -0.134024 -0.205969 1.348944
2000-01-06 0.059493 -0.460111 -1.565401
2000-01-07 -0.302741 0.261551 -0.066342
2000-01-08 0.582752 -1.490764 -0.639757

F
-1.645852
0.228760
-0.370038
1.717830
-1.198246
-0.025706
0.897097
-0.952750

foo
bar
bar
bar
bar
bar
bar
bar
bar

[8 rows x 5 columns]
# as a multiple
In [31]: store.select_as_multiple(['df1_mt','df2_mt'], where = [ 'A>0','B>0' ], selector = 'df1_mt')
Out[31]:
A
B
C
D
E
F foo
2000-01-04 1.298390 1.662964 -0.040863 0.290110 -0.096145 1.717830 bar
2000-01-07 0.942864 2.502156 -0.302741 0.261551 -0.066342 0.897097 bar
[2 rows x 7 columns]

Enhancements

154

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• HDFStore now can read native PyTables table format tables
• You can pass nan_rep = ’my_nan_rep’ to append, to change the default nan representation on disk
(which converts to/from np.nan), this defaults to nan.
• You can pass index to append. This defaults to True. This will automagically create indicies on the
indexables and data columns of the table
• You can pass chunksize=an integer to append, to change the writing chunksize (default is 50000).
This will signficantly lower your memory usage on writing.
• You can pass expectedrows=an integer to the first append, to set the TOTAL number of expectedrows
that PyTables will expected. This will optimize read/write performance.
• Select now supports passing start and stop to provide selection space limiting in selection.
• Greatly improved ISO8601 (e.g., yyyy-mm-dd) date parsing for file parsers (GH2698)
• Allow DataFrame.merge to handle combinatorial sizes too large for 64-bit integer (GH2690)
• Series now has unary negation (-series) and inversion (~series) operators (GH2686)
• DataFrame.plot now includes a logx parameter to change the x-axis to log scale (GH2327)
• Series arithmetic operators can now handle constant and ndarray input (GH2574)
• ExcelFile now takes a kind argument to specify the file type (GH2613)
• A faster implementation for Series.str methods (GH2602)
Bug Fixes
• HDFStore tables can now store float32 types correctly (cannot be mixed with float64 however)
• Fixed Google Analytics prefix when specifying request segment (GH2713).
• Function to reset Google Analytics token store so users can recover from improperly setup client secrets
(GH2687).
• Fixed groupby bug resulting in segfault when passing in MultiIndex (GH2706)
• Fixed bug where passing a Series with datetime64 values into to_datetime results in bogus output values
(GH2699)
• Fixed bug in pattern in HDFStore expressions when pattern is not a valid regex (GH2694)
• Fixed performance issues while aggregating boolean data (GH2692)
• When given a boolean mask key and a Series of new values, Series __setitem__ will now align the incoming
values with the original Series (GH2686)
• Fixed MemoryError caused by performing counting sort on sorting MultiIndex levels with a very large number
of combinatorial values (GH2684)
• Fixed bug that causes plotting to fail when the index is a DatetimeIndex with a fixed-offset timezone (GH2683)
• Corrected businessday subtraction logic when the offset is more than 5 bdays and the starting date is on a
weekend (GH2680)
• Fixed C file parser behavior when the file has more columns than data (GH2668)
• Fixed file reader bug that misaligned columns with data in the presence of an implicit column and a specified
usecols value
• DataFrames with numerical or datetime indices are now sorted prior to plotting (GH2609)
• Fixed DataFrame.from_records error when passed columns, index, but empty records (GH2633)

1.12. v0.10.1 (January 22, 2013)

155

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Several bug fixed for Series operations when dtype is datetime64 (GH2689, GH2629, GH2626)
See the full release notes or issue tracker on GitHub for a complete list.

1.13 v0.10.0 (December 17, 2012)
This is a major release from 0.9.1 and includes many new features and enhancements along with a large number of
bug fixes. There are also a number of important API changes that long-time pandas users should pay close attention
to.

1.13.1 File parsing new features
The delimited file parsing engine (the guts of read_csv and read_table) has been rewritten from the ground up
and now uses a fraction the amount of memory while parsing, while being 40% or more faster in most use cases (in
some cases much faster).
There are also many new features:
• Much-improved Unicode handling via the encoding option.
• Column filtering (usecols)
• Dtype specification (dtype argument)
• Ability to specify strings to be recognized as True/False
• Ability to yield NumPy record arrays (as_recarray)
• High performance delim_whitespace option
• Decimal format (e.g. European format) specification
• Easier CSV dialect options: escapechar, lineterminator, quotechar, etc.
• More robust handling of many exceptional kinds of files observed in the wild

1.13.2 API changes
Deprecated DataFrame BINOP TimeSeries special case behavior
The default behavior of binary operations between a DataFrame and a Series has always been to align on the
DataFrame’s columns and broadcast down the rows, except in the special case that the DataFrame contains time
series. Since there are now method for each binary operator enabling you to specify how you want to broadcast, we
are phasing out this special case (Zen of Python: Special cases aren’t special enough to break the rules). Here’s what
I’m talking about:
In [1]: import pandas as pd
In [2]: df = pd.DataFrame(np.random.randn(6, 4),
...:
index=pd.date_range('1/1/2000', periods=6))
...:
In [3]: df
Out[3]:
0
2000-01-01 -0.892402
2000-01-02 0.586586
2000-01-03 0.408279

156

1
2
3
0.505987 -0.681624 0.850162
1.175843 -0.160391 0.481679
1.641246 0.383888 -1.495227

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-04 1.166096 -0.802272 -0.275253 0.517938
2000-01-05 -0.750872 1.216537 -0.910343 -0.606534
2000-01-06 -0.410659 0.264024 -0.069315 -1.814768
[6 rows x 4 columns]
# deprecated now
In [4]: df - df[0]
Out[4]:
0
1
2000-01-01 0 1.398389
2000-01-02 0 0.589256
2000-01-03 0 1.232968
2000-01-04 0 -1.968368
2000-01-05 0 1.967410
2000-01-06 0 0.674682

2
0.210778
-0.746978
-0.024391
-1.441350
-0.159471
0.341344

3
1.742564
-0.104908
-1.903505
-0.648158
0.144338
-1.404109

[6 rows x 4 columns]
# Change your code to
In [5]: df.sub(df[0], axis=0) # align on axis 0 (rows)
Out[5]:
0
1
2
3
2000-01-01 0 1.398389 0.210778 1.742564
2000-01-02 0 0.589256 -0.746978 -0.104908
2000-01-03 0 1.232968 -0.024391 -1.903505
2000-01-04 0 -1.968368 -1.441350 -0.648158
2000-01-05 0 1.967410 -0.159471 0.144338
2000-01-06 0 0.674682 0.341344 -1.404109
[6 rows x 4 columns]

You will get a deprecation warning in the 0.10.x series, and the deprecated functionality will be removed in 0.11 or
later.
Altered resample default behavior
The default time series resample binning behavior of daily D and higher frequencies has been changed to
closed=’left’, label=’left’. Lower nfrequencies are unaffected. The prior defaults were causing a great
deal of confusion for users, especially resampling data to daily frequency (which labeled the aggregated group with
the end of the interval: the next day).
Note:
In [6]: dates = pd.date_range('1/1/2000', '1/5/2000', freq='4h')
In [7]: series = Series(np.arange(len(dates)), index=dates)
In [8]: series
Out[8]:
2000-01-01 00:00:00
2000-01-01 04:00:00
2000-01-01 08:00:00
2000-01-01 12:00:00
2000-01-01 16:00:00
2000-01-01 20:00:00
2000-01-02 00:00:00
2000-01-04 00:00:00

0
1
2
3
4
5
6
..
18

1.13. v0.10.0 (December 17, 2012)

157

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-04 04:00:00
2000-01-04 08:00:00
2000-01-04 12:00:00
2000-01-04 16:00:00
2000-01-04 20:00:00
2000-01-05 00:00:00
Freq: 4H, dtype: int32

19
20
21
22
23
24

In [9]: series.resample('D', how='sum')
Out[9]:
2000-01-01
15
2000-01-02
51
2000-01-03
87
2000-01-04
123
2000-01-05
24
Freq: D, dtype: int32
# old behavior
In [10]: series.resample('D', how='sum', closed='right', label='right')
Out[10]:
2000-01-01
0
2000-01-02
21
2000-01-03
57
2000-01-04
93
2000-01-05
129
Freq: D, dtype: int32

• Infinity and negative infinity are no longer treated as NA by isnull and notnull. That they every were was
a relic of early pandas. This behavior can be re-enabled globally by the mode.use_inf_as_null option:
In [11]: s = pd.Series([1.5, np.inf, 3.4, -np.inf])
In [12]: pd.isnull(s)
Out[12]:
0
False
1
False
2
False
3
False
dtype: bool
In [13]: s.fillna(0)
Out[13]:
0
1.500000
1
inf
2
3.400000
3
-inf
dtype: float64
In [14]: pd.set_option('use_inf_as_null', True)
In [15]: pd.isnull(s)
Out[15]:
0
False
1
True
2
False
3
True
dtype: bool

158

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [16]: s.fillna(0)
Out[16]:
0
1.5
1
0.0
2
3.4
3
0.0
dtype: float64
In [17]: pd.reset_option('use_inf_as_null')

• Methods with the inplace option now all return None instead of the calling object. E.g. code written like
df = df.fillna(0, inplace=True) may stop working. To fix, simply delete the unnecessary variable
assignment.
• pandas.merge no longer sorts the group keys (sort=False) by default. This was done for performance
reasons: the group-key sorting is often one of the more expensive parts of the computation and is often unnecessary.
• The default column names for a file with no header have been changed to the integers 0 through N - 1. This
is to create consistency with the DataFrame constructor with no columns specified. The v0.9.0 behavior (names
X0, X1, ...) can be reproduced by specifying prefix=’X’:
In [18]: data= 'a,b,c\n1,Yes,2\n3,No,4'
In [19]: print(data)
a,b,c
1,Yes,2
3,No,4
In [20]: pd.read_csv(StringIO(data), header=None)
Out[20]:
0
1 2
0 a
b c
1 1 Yes 2
2 3
No 4
[3 rows x 3 columns]
In [21]: pd.read_csv(StringIO(data), header=None, prefix='X')
Out[21]:
X0
X1 X2
0 a
b c
1 1 Yes 2
2 3
No 4
[3 rows x 3 columns]

• Values like ’Yes’ and ’No’ are not interpreted as boolean by default, though this can be controlled by new
true_values and false_values arguments:
In [22]: print(data)
a,b,c
1,Yes,2
3,No,4
In [23]: pd.read_csv(StringIO(data))
Out[23]:
a
b c
0 1 Yes 2

1.13. v0.10.0 (December 17, 2012)

159

pandas: powerful Python data analysis toolkit, Release 0.16.1

1

3

No

4

[2 rows x 3 columns]
In [24]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
Out[24]:
a
b c
0 1
True 2
1 3 False 4
[2 rows x 3 columns]

• The file parsers will not recognize non-string values arising from a converter function as NA if passed in the
na_values argument. It’s better to do post-processing using the replace function instead.
• Calling fillna on Series or DataFrame with no arguments is no longer valid code. You must either specify a
fill value or an interpolation method:
In [25]: s = Series([np.nan, 1., 2., np.nan, 4])
In [26]: s
Out[26]:
0
NaN
1
1
2
2
3
NaN
4
4
dtype: float64
In [27]: s.fillna(0)
Out[27]:
0
0
1
1
2
2
3
0
4
4
dtype: float64
In [28]: s.fillna(method='pad')
Out[28]:
0
NaN
1
1
2
2
3
2
4
4
dtype: float64

Convenience methods ffill and bfill have been added:
In [29]: s.ffill()
Out[29]:
0
NaN
1
1
2
2
3
2
4
4
dtype: float64

• Series.apply will now operate on a returned value from the applied function, that is itself a series, and

160

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

possibly upcast the result to a DataFrame
In [30]: def f(x):
....:
return Series([ x, x**2 ], index = ['x', 'x^2'])
....:
In [31]: s = Series(np.random.rand(5))
In [32]: s
Out[32]:
0
0.013135
1
0.909855
2
0.098093
3
0.023540
4
0.141354
dtype: float64
In [33]: s.apply(f)
Out[33]:
x
x^2
0 0.013135 0.000173
1 0.909855 0.827836
2 0.098093 0.009622
3 0.023540 0.000554
4 0.141354 0.019981
[5 rows x 2 columns]

• New API functions for working with pandas options (GH2097):
– get_option / set_option - get/set the value of an option. Partial names are accepted. reset_option - reset one or more options to their default value. Partial names are accepted. describe_option - print a description of one or more options. When called with no arguments.
print all registered options.
Note: set_printoptions/ reset_printoptions are now deprecated (but functioning), the print options now live under “display.XYZ”. For example:
In [34]: get_option("display.max_rows")
Out[34]: 15

• to_string() methods now always return unicode strings (GH2224).

1.13.3 New features
1.13.4 Wide DataFrame Printing
Instead of printing the summary information, pandas now splits the string representation across multiple rows by
default:
In [35]: wide_frame = DataFrame(randn(5, 16))
In [36]: wide_frame
Out[36]:
0
1
2
3
4
0 2.520045 1.570114 -0.360875 -0.880096 0.235532
1 0.422194 0.288403 -0.487393 -0.777639 0.055865
2 0.585174 -0.568825 -0.719412 1.191340 -0.456362

1.13. v0.10.0 (December 17, 2012)

5
6
0.207232 -1.983857
1.383381 0.085638
0.089931 0.776079

\

161

pandas: powerful Python data analysis toolkit, Release 0.16.1

3 1.218080 -0.564705 -0.581790 0.286071 0.048725
4 -0.376280 0.511936 -0.116412 -0.625256 -0.550627

1.002440 1.276582
1.261433 -0.552429

7
8
9
10
11
12
13
0 -1.702547 -1.621234 -0.906840 1.014601 -0.475108 -0.358944 1.262942
1 0.246392 0.965887 0.246354 -0.727728 -0.094414 -0.276854 0.158399
2 0.752889 -1.195795 -1.425911 -0.548829 0.774225 0.740501 1.510263
3 0.054399 0.241963 -0.471786 0.314510 -0.059986 -2.069319 -1.115104
4 1.695803 -1.025917 -0.910942 0.426805 -0.131749 0.432600 0.044671

0
1
2
3
4

\

14
15
-0.412451 -0.462580
-0.277255 1.331263
-1.642511 0.432560
-0.369325 -1.502617
-0.341265 1.844536

[5 rows x 16 columns]

The old behavior of printing out summary information can be achieved via the ‘expand_frame_repr’ print option:
In [37]: pd.set_option('expand_frame_repr', False)
In [38]: wide_frame
Out[38]:
0
1
0 2.520045 1.570114
1 0.422194 0.288403
2 0.585174 -0.568825
3 1.218080 -0.564705
4 -0.376280 0.511936

2
3
4
-0.360875 -0.880096 0.235532
-0.487393 -0.777639 0.055865
-0.719412 1.191340 -0.456362
-0.581790 0.286071 0.048725
-0.116412 -0.625256 -0.550627

5
6
7
8
9
0.207232 -1.983857 -1.702547 -1.621234 -0.906840
1.383381 0.085638 0.246392 0.965887 0.246354
0.089931 0.776079 0.752889 -1.195795 -1.425911
1.002440 1.276582 0.054399 0.241963 -0.471786
1.261433 -0.552429 1.695803 -1.025917 -0.910942

[5 rows x 16 columns]

The width of each line can be changed via ‘line_width’ (80 by default):
In [39]: pd.set_option('line_width', 40)
line_width has been deprecated, use display.width instead (currently both are
identical)

In [40]: wide_frame
Out[40]:
0
1
0 2.520045 1.570114
1 0.422194 0.288403
2 0.585174 -0.568825
3 1.218080 -0.564705
4 -0.376280 0.511936

2
-0.360875
-0.487393
-0.719412
-0.581790
-0.116412

\

3
4
0 -0.880096 0.235532
1 -0.777639 0.055865
2 1.191340 -0.456362
3 0.286071 0.048725
4 -0.625256 -0.550627

5
0.207232
1.383381
0.089931
1.002440
1.261433

\

6
7
8
0 -1.983857 -1.702547 -1.621234

\

162

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1 0.085638
2 0.776079
3 1.276582
4 -0.552429

0.246392 0.965887
0.752889 -1.195795
0.054399 0.241963
1.695803 -1.025917

9
10
11
-0.906840 1.014601 -0.475108
0.246354 -0.727728 -0.094414
-1.425911 -0.548829 0.774225
-0.471786 0.314510 -0.059986
-0.910942 0.426805 -0.131749

\

12
13
14
0 -0.358944 1.262942 -0.412451
1 -0.276854 0.158399 -0.277255
2 0.740501 1.510263 -1.642511
3 -2.069319 -1.115104 -0.369325
4 0.432600 0.044671 -0.341265

\

0
1
2
3
4

15
0 -0.462580
1 1.331263
2 0.432560
3 -1.502617
4 1.844536
[5 rows x 16 columns]

1.13.5 Updated PyTables Support
Docs for PyTables Table format & several enhancements to the api. Here is a taste of what to expect.
In [41]: store = HDFStore('store.h5')
In [42]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
....:
columns=['A', 'B', 'C'])
....:
In [43]: df
Out[43]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
B
C
-2.036047 0.000830 -0.955697
-0.898872 -0.725411 0.059904
-0.449644 1.082900 -1.221265
0.361078 1.330704 0.855932
-1.216718 1.488887 0.018993
-0.877046 0.045976 0.437274
-0.567182 -0.888657 -0.556383
0.655457 1.117949 -2.782376

[8 rows x 3 columns]
# appending data frames
In [44]: df1 = df[0:4]
In [45]: df2 = df[4:]

1.13. v0.10.0 (December 17, 2012)

163

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [46]: store.append('df', df1)
In [47]: store.append('df', df2)
In [48]: store
Out[48]:

File path: store.h5
/df
frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
# selecting the entire store
In [49]: store.select('df')
Out[49]:
A
B
2000-01-01 -2.036047 0.000830
2000-01-02 -0.898872 -0.725411
2000-01-03 -0.449644 1.082900
2000-01-04 0.361078 1.330704
2000-01-05 -1.216718 1.488887
2000-01-06 -0.877046 0.045976
2000-01-07 -0.567182 -0.888657
2000-01-08 0.655457 1.117949

C
-0.955697
0.059904
-1.221265
0.855932
0.018993
0.437274
-0.556383
-2.782376

[8 rows x 3 columns]
In [50]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
....:
major_axis=date_range('1/1/2000', periods=5),
....:
minor_axis=['A', 'B', 'C', 'D'])
....:
In [51]: wp
Out[51]:

Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
# storing a panel
In [52]: store.append('wp',wp)
# selecting via A QUERY
In [53]: store.select('wp',
....:
[ Term('major_axis>20000102'), Term('minor_axis', '=', ['A','B']) ])
....:
Out[53]:

Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B
# removing data from tables
In [54]: store.remove('wp', Term('major_axis>20000103'))
Out[54]: 8
In [55]: store.select('wp')
Out[55]:

164

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1


Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D
# deleting a store
In [56]: del store['df']
In [57]: store
Out[57]:

File path: store.h5
/wp
wide_table
(typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])

Enhancements
• added ability to hierarchical keys
In [58]: store.put('foo/bar/bah', df)
In [59]: store.append('food/orange', df)
In [60]: store.append('food/apple',

df)

In [61]: store
Out[61]:

File path: store.h5
/foo/bar/bah
frame
(shape->[8,3])
/food/apple
frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/food/orange
frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/wp
wide_table
(typ->appendable,nrows->12,ncols->2,indexers->[major_ax
# remove all nodes under this level
In [62]: store.remove('food')

In [63]: store
Out[63]:

File path: store.h5
/foo/bar/bah
frame
(shape->[8,3])
/wp
wide_table
(typ->appendable,nrows->12,ncols->2,indexers->[major_ax

• added mixed-dtype support!
In [64]: df['string'] = 'string'
In [65]: df['int']

= 1

In [66]: store.append('df',df)
In [67]: df1 = store.select('df')
In [68]: df1
Out[68]:
A
B
C
2000-01-01 -2.036047 0.000830 -0.955697
2000-01-02 -0.898872 -0.725411 0.059904

1.13. v0.10.0 (December 17, 2012)

string
string
string

int
1
1

165

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

-0.449644 1.082900 -1.221265
0.361078 1.330704 0.855932
-1.216718 1.488887 0.018993
-0.877046 0.045976 0.437274
-0.567182 -0.888657 -0.556383
0.655457 1.117949 -2.782376

string
string
string
string
string
string

1
1
1
1
1
1

[8 rows x 5 columns]
In [69]: df1.get_dtype_counts()
Out[69]:
float64
3
int64
1
object
1
dtype: int64

• performance improvments on table writing
• support for arbitrarily indexed dimensions
• SparseSeries now has a density property (GH2384)
• enable Series.str.strip/lstrip/rstrip methods to take an input argument to strip arbitrary characters (GH2411)
• implement value_vars in melt to limit values to certain columns and add melt to pandas namespace
(GH2412)
Bug Fixes
• added Term method of specifying where conditions (GH1996).
• del store[’df’] now call store.remove(’df’) for store deletion
• deleting of consecutive rows is much faster than before
• min_itemsize parameter can be specified in table creation to force a minimum size for indexing columns
(the previous implementation would set the column size based on the first append)
• indexing support via create_table_index (requires PyTables >= 2.3) (GH698).
• appending on a store would fail if the table was not first created via put
• fixed issue with missing attributes after loading a pickled dataframe (GH2431)
• minor change to select and remove: require a table ONLY if where is also provided (and not None)
Compatibility
0.10 of HDFStore is backwards compatible for reading tables created in a prior version of pandas, however, query
terms using the prior (undocumented) methodology are unsupported. You must read in the entire file and write it out
using the new format to take advantage of the updates.

1.13.6 N Dimensional Panels (Experimental)
Adding experimental support for Panel4D and factory functions to create n-dimensional named panels. Docs for
NDim. Here is a taste of what to expect.
In [70]: p4d = Panel4D(randn(2, 2, 5, 4),
....:
labels=['Label1','Label2'],
....:
items=['Item1', 'Item2'],
....:
major_axis=date_range('1/1/2000', periods=5),

166

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

....:
....:

minor_axis=['A', 'B', 'C', 'D'])

In [71]: p4d
Out[71]:

Dimensions: 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

See the full release notes or issue tracker on GitHub for a complete list.

1.14 v0.9.1 (November 14, 2012)
This is a bugfix release from 0.9.0 and includes several new features and enhancements along with a large number of
bug fixes. The new features include by-column sort order for DataFrame and Series, improved NA handling for the
rank method, masking functions for DataFrame, and intraday time-series filtering for DataFrame.

1.14.1 New features
• Series.sort, DataFrame.sort, and DataFrame.sort_index can now be specified in a per-column manner to support
multiple sort orders (GH928)
In [1]: df = DataFrame(np.random.randint(0, 2, (6, 3)), columns=['A', 'B', 'C'])
In [2]: df.sort(['A', 'B'], ascending=[1, 0])
Out[2]:
A B C
2 0 1 1
3 0 1 1
4 0 0 1
0 1 1 0
1 1 0 1
5 1 0 1
[6 rows x 3 columns]

• DataFrame.rank now supports additional argument values for the na_option parameter so missing values can
be assigned either the largest or the smallest rank (GH1508, GH2159)
In [3]: df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C'])
In [4]: df.ix[2:4] = np.nan
In [5]: df.rank()
Out[5]:
A
B
C
0
3
2
1
1
2
1
3
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5
1
3
2

1.14. v0.9.1 (November 14, 2012)

167

pandas: powerful Python data analysis toolkit, Release 0.16.1

[6 rows x 3 columns]
In [6]: df.rank(na_option='top')
Out[6]:
A B C
0 6 5 4
1 5 4 6
2 2 2 2
3 2 2 2
4 2 2 2
5 4 6 5
[6 rows x 3 columns]
In [7]: df.rank(na_option='bottom')
Out[7]:
A B C
0 3 2 1
1 2 1 3
2 5 5 5
3 5 5 5
4 5 5 5
5 1 3 2
[6 rows x 3 columns]

• DataFrame has new where and mask methods to select values according to a given boolean mask (GH2109,
GH2151)
DataFrame currently supports slicing via a boolean vector the same length as the DataFrame (inside
the []). The returned DataFrame has the same number of columns as the original, but is sliced on its
index.
In [8]: df = DataFrame(np.random.randn(5, 3), columns = ['A','B','C'])
In [9]: df
Out[9]:
A
B
C
0 0.706220 -1.130744 -0.690308
1 -0.885387 0.246004 1.986687
2 0.212595 -1.189832 -0.344258
3 0.816335 -1.514102 1.298184
4 0.089527 0.576687 -0.737750
[5 rows x 3 columns]
In [10]: df[df['A'] >
Out[10]:
A
B
0 0.706220 -1.130744
2 0.212595 -1.189832
3 0.816335 -1.514102
4 0.089527 0.576687

0]
C
-0.690308
-0.344258
1.298184
-0.737750

[4 rows x 3 columns]

If a DataFrame is sliced with a DataFrame based boolean condition (with the same size as the original
DataFrame), then a DataFrame the same size (index and columns) as the original is returned, with

168

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

elements that do not meet the boolean condition as NaN. This is accomplished via the new method
DataFrame.where. In addition, where takes an optional other argument for replacement.
In [11]: df[df>0]
Out[11]:
A
B
0 0.706220
NaN
1
NaN 0.246004
2 0.212595
NaN
3 0.816335
NaN
4 0.089527 0.576687

C
NaN
1.986687
NaN
1.298184
NaN

[5 rows x 3 columns]
In [12]: df.where(df>0)
Out[12]:
A
B
C
0 0.706220
NaN
NaN
1
NaN 0.246004 1.986687
2 0.212595
NaN
NaN
3 0.816335
NaN 1.298184
4 0.089527 0.576687
NaN
[5 rows x 3 columns]
In [13]: df.where(df>0,-df)
Out[13]:
A
B
C
0 0.706220 1.130744 0.690308
1 0.885387 0.246004 1.986687
2 0.212595 1.189832 0.344258
3 0.816335 1.514102 1.298184
4 0.089527 0.576687 0.737750
[5 rows x 3 columns]

Furthermore, where now aligns the input boolean condition (ndarray or DataFrame), such that partial
selection with setting is possible. This is analagous to partial setting via .ix (but on the contents rather
than the axis labels)
In [14]: df2 = df.copy()
In [15]: df2[ df2[1:4] > 0 ] = 3
In [16]: df2
Out[16]:
A
B
C
0 0.706220 -1.130744 -0.690308
1 -0.885387 3.000000 3.000000
2 3.000000 -1.189832 -0.344258
3 3.000000 -1.514102 3.000000
4 0.089527 0.576687 -0.737750
[5 rows x 3 columns]

DataFrame.mask is the inverse boolean operation of where.
In [17]: df.mask(df<=0)
Out[17]:

1.14. v0.9.1 (November 14, 2012)

169

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1
2
3
4

A
0.706220
NaN
0.212595
0.816335
0.089527

B
NaN
0.246004
NaN
NaN
0.576687

C
NaN
1.986687
NaN
1.298184
NaN

[5 rows x 3 columns]

• Enable referencing of Excel columns by their column names (GH1936)
In [18]: xl = ExcelFile('data/test.xls')
In [19]: xl.parse('Sheet1', index_col=0, parse_dates=True,
....:
parse_cols='A:D')
....:
Out[19]:
A
B
C
2000-01-03 0.980269 3.685731 -0.364217
2000-01-04 1.047916 -0.041232 -0.161812
2000-01-05 0.498581 0.731168 -0.537677
2000-01-06 1.120202 1.567621 0.003641
2000-01-07 -0.487094 0.571455 -1.611639
2000-01-10 0.836649 0.246462 0.588543
2000-01-11 -0.157161 1.340307 1.195778
[7 rows x 3 columns]

• Added option to disable pandas-style tick locators and formatters using series.plot(x_compat=True) or pandas.plot_params[’x_compat’] = True (GH2205)
• Existing TimeSeries methods at_time and between_time were added to DataFrame (GH2149)
• DataFrame.dot can now accept ndarrays (GH2042)
• DataFrame.drop now supports non-unique indexes (GH2101)
• Panel.shift now supports negative periods (GH2164)
• DataFrame now support unary ~ operator (GH2110)

1.14.2 API changes
• Upsampling data with a PeriodIndex will result in a higher frequency TimeSeries that spans the original time
window
In [20]: prng = period_range('2012Q1', periods=2, freq='Q')
In [21]: s = Series(np.random.randn(len(prng)), prng)
In [22]: s.resample('M')
Out[22]:
2012-01
0.194513
2012-02
NaN
2012-03
NaN
2012-04
-0.854246
2012-05
NaN
2012-06
NaN
Freq: M, dtype: float64

170

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Period.end_time now returns the last nanosecond in the time interval (GH2124, GH2125, GH1764)
In [23]: p = Period('2012')
In [24]: p.end_time
Out[24]: Timestamp('2012-12-31 23:59:59.999999999')

• File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)
In [25]: data = 'A,B,C\n00001,001,5\n00002,002,6'
In [26]: read_csv(StringIO(data), converters={'A' : lambda x: x.strip()})
Out[26]:
A B C
0 00001 1 5
1 00002 2 6
[2 rows x 3 columns]

See the full release notes or issue tracker on GitHub for a complete list.

1.15 v0.9.0 (October 7, 2012)
This is a major release from 0.8.1 and includes several new features and enhancements along with a large number of
bug fixes. New features include vectorized unicode encoding/decoding for Series.str, to_latex method to DataFrame,
more flexible parsing of boolean values, and enabling the download of options data from Yahoo! Finance.

1.15.1 New features
• Add encode and decode for unicode handling to vectorized string processing methods in Series.str (GH1706)
• Add DataFrame.to_latex method (GH1735)
• Add convenient expanding window equivalents of all rolling_* ops (GH1785)
• Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)
• More flexible parsing of boolean values (Yes, No, TRUE, FALSE, etc) (GH1691, GH1295)
• Add level parameter to Series.reset_index
• TimeSeries.between_time can now select times across midnight (GH1871)
• Series constructor can now handle generator as input (GH1679)
• DataFrame.dropna can now take multiple axes (tuple/list) as input (GH924)
• Enable skip_footer parameter in ExcelFile.parse (GH1843)

1.15.2 API changes
• The default column names when header=None and no columns names passed to functions like read_csv
has changed to be more Pythonic and amenable to attribute access:
In [1]: data = '0,0,1\n1,1,0\n0,1,0'
In [2]: df = read_csv(StringIO(data), header=None)

1.15. v0.9.0 (October 7, 2012)

171

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [3]: df
Out[3]:
0 1 2
0 0 0 1
1 1 1 0
2 0 1 0
[3 rows x 3 columns]

• Creating a Series from another Series, passing an index, will cause reindexing to happen inside rather than treating the Series like an ndarray. Technically improper usages like Series(df[col1], index=df[col2])
that worked before “by accident” (this was never intended) will lead to all NA Series in some cases. To be perfectly clear:
In [4]: s1 = Series([1, 2, 3])
In [5]: s1
Out[5]:
0
1
1
2
2
3
dtype: int64
In [6]: s2 = Series(s1, index=['foo', 'bar', 'baz'])
In [7]: s2
Out[7]:
foo
NaN
bar
NaN
baz
NaN
dtype: float64

• Deprecated day_of_year API removed from PeriodIndex, use dayofyear (GH1723)
• Don’t modify NumPy suppress printoption to True at import time
• The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by
HDFStore (GH1834, GH1824)
• Legacy cruft removed: pandas.stats.misc.quantileTS
• Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
• Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was
occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query
having results) (GH1783)
• Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
• first and last methods in GroupBy no longer drop non-numeric columns (GH1809)
• Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer
override default NAs unless keep_default_na is set to false explicitly (GH1657)
• DataFrame.dot will not do data alignment, and also work with Series (GH1915)
See the full release notes or issue tracker on GitHub for a complete list.

172

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.16 v0.8.1 (July 22, 2012)
This release includes a few new features, performance enhancements, and over 30 bug fixes from 0.8.0. New features
include notably NA friendly string processing functionality and a series of new plot types and options.

1.16.1 New features
• Add vectorized string processing methods accessible via Series.str (GH620)
• Add option to disable adjustment in EWMA (GH1584)
• Radviz plot (GH1566)
• Parallel coordinates plot
• Bootstrap plot
• Per column styles and secondary y-axis plotting (GH1559)
• New datetime converters millisecond plotting (GH1599)
• Add option to disable “sparse” display of hierarchical indexes (GH1538)
• Series/DataFrame’s set_index method can append levels to an existing Index/MultiIndex (GH1569,
GH1577)

1.16.2 Performance improvements
• Improved implementation of rolling min and max (thanks to Bottleneck !)
• Add accelerated ’median’ GroupBy option (GH1358)
• Significantly improve the performance of parsing ISO8601-format date strings with DatetimeIndex or
to_datetime (GH1571)
• Improve the performance of GroupBy on single-key aggregations and use with Categorical types
• Significant datetime parsing performance improvments

1.17 v0.8.0 (June 29, 2012)
This is a major release from 0.7.3 and includes extensive work on the time series handling and processing infrastructure
as well as a great deal of new functionality throughout the library. It includes over 700 commits from more than 20
distinct authors. Most pandas 0.7.3 and earlier users should not experience any issues upgrading, but due to the
migration to the NumPy datetime64 dtype, there may be a number of bugs and incompatibilities lurking. Lingering
incompatibilities will be fixed ASAP in a 0.8.1 release if necessary. See the full release notes or issue tracker on
GitHub for a complete list.

1.17.1 Support for non-unique indexes
All objects can now work with non-unique indexes. Data alignment / join operations work according to SQL join
semantics (including, if application, index duplication in many-to-many joins)

1.16. v0.8.1 (July 22, 2012)

173

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.17.2 NumPy datetime64 dtype and 1.6 dependency
Time series data are now represented using NumPy’s datetime64 dtype; thus, pandas 0.8.0 now requires at least NumPy
1.6. It has been tested and verified to work with the development version (1.7+) of NumPy as well which includes some
significant user-facing API changes. NumPy 1.6 also has a number of bugs having to do with nanosecond resolution
data, so I recommend that you steer clear of NumPy 1.6’s datetime64 API functions (though limited as they are) and
only interact with this data using the interface that pandas provides.
See the end of the 0.8.0 section for a “porting” guide listing potential issues for users migrating legacy codebases from
pandas 0.7 or earlier to 0.8.0.
Bug fixes to the 0.7.x series for legacy NumPy < 1.6 users will be provided as they arise. There will be no more further
development in 0.7.x beyond bug fixes.

1.17.3 Time series changes and improvements
Note: With this release, legacy scikits.timeseries users should be able to port their code to use pandas.
Note: See documentation for overview of pandas timeseries API.
• New datetime64 representation speeds up join operations and data alignment, reduces memory usage, and
improve serialization / deserialization performance significantly over datetime.datetime
• High performance and flexible resample method for converting from high-to-low and low-to-high frequency.
Supports interpolation, user-defined aggregation functions, and control over how the intervals and result labeling
are defined. A suite of high performance Cython/C-based resampling functions (including Open-High-LowClose) have also been implemented.
• Revamp of frequency aliases and support for frequency shortcuts like ‘15min’, or ‘1h30min’
• New DatetimeIndex class supports both fixed frequency and irregular time series. Replaces now deprecated
DateRange class
• New PeriodIndex and Period classes for representing time spans and performing calendar logic, including the 12 fiscal quarterly frequencies . This is a partial port of, and a substantial
enhancement to, elements of the scikits.timeseries codebase. Support for conversion between PeriodIndex and
DatetimeIndex
• New Timestamp data type subclasses datetime.datetime, providing the same interface while enabling working
with nanosecond-resolution data. Also provides easy time zone conversions.
• Enhanced support for time zones. Add tz_convert and tz_lcoalize methods to TimeSeries and DataFrame.
All timestamps are stored as UTC; Timestamps from DatetimeIndex objects with time zone set will be localized
to localtime. Time zone conversions are therefore essentially free. User needs to know very little about pytz
library now; only time zone names as as strings are required. Time zone-aware timestamps are equal if and only
if their UTC timestamps match. Operations between time zone-aware time series with different time zones will
result in a UTC-indexed time series.
• Time series string indexing conveniences / shortcuts: slice years, year and month, and index values with strings
• Enhanced time series plotting; adaptation of scikits.timeseries matplotlib-based plotting code
• New date_range, bdate_range, and period_range factory functions
• Robust frequency inference function infer_freq and inferred_freq property of DatetimeIndex, with option
to infer frequency on construction of DatetimeIndex

174

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• to_datetime function efficiently parses array of strings to DatetimeIndex. DatetimeIndex will parse array or
list of strings to datetime64
• Optimized support for datetime64-dtype data in Series and DataFrame columns
• New NaT (Not-a-Time) type to represent NA in timestamp arrays
• Optimize Series.asof for looking up “as of” values for arrays of timestamps
• Milli, Micro, Nano date offset objects
• Can index time series with datetime.time objects to select all data at particular time of day
(TimeSeries.at_time) or between two times (TimeSeries.between_time)
• Add tshift method for leading/lagging using the frequency (if any) of the index, as opposed to a naive lead/lag
using shift

1.17.4 Other new features
• New cut and qcut functions (like R’s cut function) for computing a categorical variable from a continuous
variable by binning values either into value-based (cut) or quantile-based (qcut) bins
• Rename Factor to Categorical and add a number of usability features
• Add limit argument to fillna/reindex
• More flexible multiple function application in GroupBy, and can pass list (name, function) tuples to get result in
particular order with given names
• Add flexible replace method for efficiently substituting values
• Enhanced read_csv/read_table for reading time series data and converting multiple columns to dates
• Add comments option to parser functions: read_csv, etc.
• Add :ref‘dayfirst ‘ option to parser functions for parsing international DD/MM/YYYY dates
• Allow the user to specify the CSV reader dialect to control quoting etc.
• Handling thousands separators in read_csv to improve integer parsing.
• Enable unstacking of multiple levels in one shot. Alleviate pivot_table bugs (empty columns being introduced)
• Move to klib-based hash tables for indexing; better performance and less memory usage than Python’s dict
• Add first, last, min, max, and prod optimized GroupBy functions
• New ordered_merge function
• Add flexible comparison instance methods eq, ne, lt, gt, etc. to DataFrame, Series
• Improve scatter_matrix plotting function and add histogram or kernel density estimates to diagonal
• Add ‘kde’ plot option for density plots
• Support for converting DataFrame to R data.frame through rpy2
• Improved support for complex numbers in Series and DataFrame
• Add pct_change method to all data structures
• Add max_colwidth configuration option for DataFrame console output
• Interpolate Series values using index values
• Can select multiple columns from GroupBy

1.17. v0.8.0 (June 29, 2012)

175

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Add update methods to Series/DataFrame for updating values in place
• Add any and all method to DataFrame

1.17.5 New plotting methods
Series.plot now supports a secondary_y option:
In [1]: plt.figure()
Out[1]: 
In [2]: fx['FR'].plot(style='g')
Out[2]: 
In [3]: fx['IT'].plot(style='k--', secondary_y=True)
Out[3]: 

../_static/whatsnew_secondary_y.png

Vytautas Jancauskas, the 2012 GSOC participant, has added many new plot types. For example, ’kde’ is a new
option:
In [4]: s = Series(np.concatenate((np.random.randn(1000),
...:
np.random.randn(1000) * 0.5 + 3)))
...:
In [5]: plt.figure()
Out[5]: 
In [6]: s.hist(normed=True, alpha=0.2)
Out[6]: 
In [7]: s.plot(kind='kde')
Out[7]: 

../_static/whatsnew_kde.png

See the plotting page for much more.

1.17.6 Other API changes
• Deprecation of offset, time_rule, and timeRule arguments names in time series functions. Warnings
will be printed until pandas 0.9 or 1.0.

176

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.17.7 Potential porting issues for pandas <= 0.7.3 users
The major change that may affect you in pandas 0.8.0 is that time series indexes use NumPy’s datetime64 data
type instead of dtype=object arrays of Python’s built-in datetime.datetime objects. DateRange has been
replaced by DatetimeIndex but otherwise behaved identically. But, if you have code that converts DateRange
or Index objects that used to contain datetime.datetime values to plain NumPy arrays, you may have bugs
lurking with code using scalar values because you are handing control over to NumPy:
In [8]: import datetime
In [9]: rng = date_range('1/1/2000', periods=10)
In [10]: rng[5]
Out[10]: Timestamp('2000-01-06 00:00:00', offset='D')
In [11]: isinstance(rng[5], datetime.datetime)
Out[11]: True
In [12]: rng_asarray = np.asarray(rng)
In [13]: scalar_val = rng_asarray[5]
In [14]: type(scalar_val)
Out[14]: numpy.datetime64

pandas’s Timestamp object is a subclass of datetime.datetime that has nanosecond support (the
nanosecond field store the nanosecond value between 0 and 999). It should substitute directly into any code that
used datetime.datetime values before. Thus, I recommend not casting DatetimeIndex to regular NumPy
arrays.
If you have code that requires an array of datetime.datetime objects, you have a couple of options. First, the
asobject property of DatetimeIndex produces an array of Timestamp objects:
In [15]: stamp_array = rng.asobject
In [16]: stamp_array
Out[16]:
Index([2000-01-01 00:00:00, 2000-01-02 00:00:00, 2000-01-03 00:00:00,
2000-01-04 00:00:00, 2000-01-05 00:00:00, 2000-01-06 00:00:00,
2000-01-07 00:00:00, 2000-01-08 00:00:00, 2000-01-09 00:00:00,
2000-01-10 00:00:00],
dtype='object')
In [17]: stamp_array[5]
Out[17]: Timestamp('2000-01-06 00:00:00', offset='D')

To get an array of proper datetime.datetime objects, use the to_pydatetime method:
In [18]: dt_array = rng.to_pydatetime()
In [19]: dt_array
Out[19]:
array([datetime.datetime(2000,
datetime.datetime(2000,
datetime.datetime(2000,
datetime.datetime(2000,
datetime.datetime(2000,
datetime.datetime(2000,
datetime.datetime(2000,

1.17. v0.8.0 (June 29, 2012)

1,
1,
1,
1,
1,
1,
1,

1,
2,
3,
4,
5,
6,
7,

0,
0,
0,
0,
0,
0,
0,

0),
0),
0),
0),
0),
0),
0),

177

pandas: powerful Python data analysis toolkit, Release 0.16.1

datetime.datetime(2000, 1, 8, 0, 0),
datetime.datetime(2000, 1, 9, 0, 0),
datetime.datetime(2000, 1, 10, 0, 0)], dtype=object)
In [20]: dt_array[5]
Out[20]: datetime.datetime(2000, 1, 6, 0, 0)

matplotlib knows how to handle datetime.datetime but not Timestamp objects. While I recommend that you
plot time series using TimeSeries.plot, you can either use to_pydatetime or register a converter for the
Timestamp type. See matplotlib documentation for more on this.
Warning: There are bugs in the user-facing API with the nanosecond datetime64 unit in NumPy 1.6. In particular,
the string version of the array shows garbage values, and conversion to dtype=object is similarly broken.
In [21]: rng = date_range('1/1/2000', periods=10)
In [22]: rng
Out[22]:
DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03', '2000-01-04',
'2000-01-05', '2000-01-06', '2000-01-07', '2000-01-08',
'2000-01-09', '2000-01-10'],
dtype='datetime64[ns]', freq='D', tz=None)
In [23]: np.asarray(rng)
Out[23]:
array(['2000-01-01T01:00:00.000000000+0100',
'2000-01-02T01:00:00.000000000+0100',
'2000-01-03T01:00:00.000000000+0100',
'2000-01-04T01:00:00.000000000+0100',
'2000-01-05T01:00:00.000000000+0100',
'2000-01-06T01:00:00.000000000+0100',
'2000-01-07T01:00:00.000000000+0100',
'2000-01-08T01:00:00.000000000+0100',
'2000-01-09T01:00:00.000000000+0100',
'2000-01-10T01:00:00.000000000+0100'], dtype='datetime64[ns]')
In [24]: converted = np.asarray(rng, dtype=object)
In [25]: converted[5]
Out[25]: 947116800000000000L

Trust me: don’t panic. If you are using NumPy 1.6 and restrict your interaction with datetime64 values to
pandas’s API you will be just fine. There is nothing wrong with the data-type (a 64-bit integer internally); all of the
important data processing happens in pandas and is heavily tested. I strongly recommend that you do not work
directly with datetime64 arrays in NumPy 1.6 and only use the pandas API.
Support for non-unique indexes: In the latter case, you may have code inside a try:... catch: block that
failed due to the index not being unique. In many cases it will no longer fail (some method like append still check for
uniqueness unless disabled). However, all is not lost: you can inspect index.is_unique and raise an exception
explicitly if it is False or go to a different code branch.

1.18 v.0.7.3 (April 12, 2012)
This is a minor release from 0.7.2 and fixes many minor bugs and adds a number of nice new features. There are
also a couple of API changes to note; these should not affect very many users, and we are inclined to call them “bug
178

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

fixes” even though they do constitute a change in behavior. See the full release notes or issue tracker on GitHub for a
complete list.

1.18.1 New features
• New fixed width file reader, read_fwf
• New scatter_matrix function for making a scatter plot matrix
from pandas.tools.plotting import scatter_matrix
scatter_matrix(df, alpha=0.2)

• Add stacked argument to Series and DataFrame’s plot method for stacked bar plots.
df.plot(kind='bar', stacked=True)

1.18. v.0.7.3 (April 12, 2012)

179

pandas: powerful Python data analysis toolkit, Release 0.16.1

df.plot(kind='barh', stacked=True)

• Add log x and y scaling options to DataFrame.plot and Series.plot
• Add kurt methods to Series and DataFrame for computing kurtosis

1.18.2 NA Boolean Comparison API Change
Reverted some changes to how NA values (represented typically as NaN or None) are handled in non-numeric Series:
In [1]: series = Series(['Steve', np.nan, 'Joe'])
In [2]: series == 'Steve'
Out[2]:
0
True

180

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
False
2
False
dtype: bool
In [3]: series != 'Steve'
Out[3]:
0
False
1
True
2
True
dtype: bool

In comparisons, NA / NaN will always come through as False except with != which is True. Be very careful with
boolean arithmetic, especially negation, in the presence of NA data. You may wish to add an explicit NA filter into
boolean array operations if you are worried about this:
In [4]: mask = series == 'Steve'
In [5]: series[mask & series.notnull()]
Out[5]:
0
Steve
dtype: object

While propagating NA in comparisons may seem like the right behavior to some users (and you could argue on purely
technical grounds that this is the right thing to do), the evaluation was made that propagating NA everywhere, including
in numerical arrays, would cause a large amount of problems for users. Thus, a “practicality beats purity” approach
was taken. This issue may be revisited at some point in the future.

1.18.3 Other API Changes
When calling apply on a grouped Series, the return value will also be a Series, to be more consistent with the
groupby behavior with DataFrame:
In [1]: df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
...:
'foo', 'bar', 'foo', 'foo'],
...:
'B' : ['one', 'one', 'two', 'three',
...:
'two', 'two', 'one', 'three'],
...:
'C' : np.random.randn(8), 'D' : np.random.randn(8)})
...:
In [2]: df
Out[2]:
A
B
0 foo
one
1 bar
one
2 foo
two
3 bar three
4 foo
two
5 bar
two
6 foo
one
7 foo three

C
D
0.144909 1.387310
-1.033812 0.063490
0.197333 1.437656
-0.059730 -0.814844
0.087205 -0.482060
-1.607906 1.521442
-1.275249 0.882182
-0.054460 -0.108020

[8 rows x 4 columns]
In [3]: grouped = df.groupby('A')['C']
In [4]: grouped.describe()
Out[4]:

1.18. v.0.7.3 (April 12, 2012)

181

pandas: powerful Python data analysis toolkit, Release 0.16.1

A
bar

count
mean
std
min
25%
50%
75%

3.000000
-0.900483
0.782652
-1.607906
-1.320859
-1.033812
-0.546771
...
foo mean
-0.180052
std
0.619410
min
-1.275249
25%
-0.054460
50%
0.087205
75%
0.144909
max
0.197333
dtype: float64
In [5]: grouped.apply(lambda x: x.order()[-2:]) # top 2 values
Out[5]:
A
bar 1
-1.033812
3
-0.059730
foo 0
0.144909
2
0.197333
dtype: float64

1.19 v.0.7.2 (March 16, 2012)
This release targets bugs in 0.7.1, and adds a few minor features.

1.19.1 New features
• Add additional tie-breaking methods in DataFrame.rank (GH874)
• Add ascending parameter to rank in Series, DataFrame (GH875)
• Add coerce_float option to DataFrame.from_records (GH893)
• Add sort_columns parameter to allow unsorted plots (GH918)
• Enable column access via attributes on GroupBy (GH882)
• Can pass dict of values to DataFrame.fillna (GH661)
• Can select multiple hierarchical groups by passing list of values in .ix (GH134)
• Add axis option to DataFrame.fillna (GH174)
• Add level keyword to drop for dropping values from a level (GH159)

1.19.2 Performance improvements
• Use khash for Series.value_counts, add raw function to algorithms.py (GH861)
• Intercept __builtin__.sum in groupby (GH885)

182

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.20 v.0.7.1 (February 29, 2012)
This release includes a few new features and addresses over a dozen bugs in 0.7.0.

1.20.1 New features
• Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)
• Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
• Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)
• Add fill_value option to reindex, align methods (GH784)
• Enable concat to produce DataFrame from Series (GH787)
• Add between method to Series (GH802)
• Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
• Support for reading Excel 2007 XML documents using openpyxl

1.20.2 Performance improvements
• Improve performance and memory usage of fillna on DataFrame
• Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)

1.21 v.0.7.0 (February 9, 2012)
1.21.1 New features
• New unified merge function for efficiently performing full gamut of database / relational-algebra operations.
Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains
(GH220, GH249, GH267)
• New unified concatenation function for concatenating Series, DataFrame or Panel objects along an axis.
Can form union or intersection of the other axes. Improves performance of Series.append and
DataFrame.append (GH468, GH479, GH273)
• Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to
Series.append too
• Can pass list of dicts (e.g., a list of JSON objects) to DataFrame constructor (GH526)
• You can now set multiple columns in a DataFrame via __getitem__, useful for transformation (GH342)
• Handle differently-indexed output values in DataFrame.apply (GH498)
In [1]: df = DataFrame(randn(10, 4))
In [2]: df.apply(lambda x: x.describe())
Out[2]:
0
1
2
3
count 10.000000 10.000000 10.000000 10.000000
mean
0.119046
0.455043 -0.093701 -0.330828
std
0.814006
0.972606
0.948124
0.814913

1.20. v.0.7.1 (February 29, 2012)

183

pandas: powerful Python data analysis toolkit, Release 0.16.1

min
25%
50%
75%
max

-0.964456
-0.512550
0.013691
0.616168
1.507974

-0.790943
-0.462622
0.415879
1.351857
1.755240

-1.921164
-0.683389
-0.061961
0.671847
1.183075

-1.578003
-0.934434
-0.343709
0.150746
1.051356

[8 rows x 4 columns]

• Add reorder_levels method to Series and DataFrame (GH534)
• Add dict-like get function to DataFrame and Panel (GH521)
• Add DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame
• Add DataFrame.to_panel with code adapted from LongPanel.to_long
• Add reindex_axis method added to DataFrame
• Add level option to binary arithmetic functions on DataFrame and Series
• Add level option to the reindex and align methods on Series and DataFrame for broadcasting values
across a level (GH542, GH552, others)
• Add attribute-based item access to Panel and add IPython completion (GH563)
• Add logy option to Series.plot for log-scaling on the Y axis
• Add index and header options to DataFrame.to_string
• Can pass multiple DataFrames to DataFrame.join to join on index (GH115)
• Can pass multiple Panels to Panel.join (GH115)
• Added justify argument to DataFrame.to_string to allow different alignment of column headers
• Add sort option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595)
• Can pass MaskedArray to Series constructor (GH563)
• Add Panel item access via attributes and IPython completion (GH554)
• Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and
column labels (GH338)
• Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with
hierarchical columns (GH166)
• Can call cummin and cummax on Series and DataFrame to get cumulative minimum and maximum, respectively (GH647)
• value_range added as utility function to get min and max of a dataframe (GH288)
• Added encoding argument to read_csv, read_table, to_csv and from_csv for non-ascii text
(GH717)
• Added abs method to pandas objects
• Added crosstab function for easily computing frequency tables
• Added isin method to index objects
• Added level argument to xs method of DataFrame.

184

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.21.2 API Changes to integer indexing
One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete review of how
integer indexes are handled with regard to label-based indexing. Here is an example:
In [3]: s = Series(randn(10), index=range(0, 20, 2))
In [4]: s
Out[4]:
0
-0.392051
2
-0.189537
4
0.886170
6
-1.125894
8
0.319635
10
0.998222
12
0.091743
14
-2.032047
16
-0.448560
18
0.730510
dtype: float64
In [5]: s[0]
Out[5]: -0.39205110783730307
In [6]: s[2]
Out[6]: -0.18953739573269113
In [7]: s[4]
Out[7]: 0.88617008348573789

This is all exactly identical to the behavior before. However, if you ask for a key not contained in the Series, in
versions 0.6.1 and prior, Series would fall back on a location-based lookup. This now raises a KeyError:
In [2]: s[1]
KeyError: 1

This change also has the same impact on DataFrame:
In [3]: df = DataFrame(randn(8, 4), index=range(0, 16, 2))
In [4]: df
0
0
0.88427
2
0.14451
4 -1.44779
6 -0.26598
8 -0.58776
10 0.10940
12 -1.16919
14 -0.07337

1
0.3363
-0.1415
-0.9186
-2.4184
0.3144
-0.7175
-0.3087
0.3410

2
3
-0.1787 0.03162
0.2504 0.58374
-1.4996 0.27163
-0.2658 0.11503
-0.8566 0.61941
-1.0108 0.47990
-0.6049 -0.43544
0.0424 -0.16037

In [5]: df.ix[3]
KeyError: 3

In order to support purely integer-based indexing, the following methods have been added:

1.21. v.0.7.0 (February 9, 2012)

185

pandas: powerful Python data analysis toolkit, Release 0.16.1

Method
Series.iget_value(i)
Series.iget(i)
DataFrame.irow(i)
DataFrame.icol(j)
DataFrame.iget_value(i, j)

Description
Retrieve value stored at location i
Alias for iget_value
Retrieve the i-th row
Retrieve the j-th column
Retrieve the value at row i and column j

1.21.3 API tweaks regarding label-based slicing
Label-based slicing using ix now requires that the index be sorted (monotonic) unless both the start and endpoint are
contained in the index:
In [8]: s = Series(randn(6), index=list('gmkaec'))
In [9]: s
Out[9]:
g
1.269713
m
1.209524
k
2.160843
a
0.533532
e
-2.371548
c
0.562726
dtype: float64

Then this is OK:
In [10]: s.ix['k':'e']
Out[10]:
k
2.160843
a
0.533532
e
-2.371548
dtype: float64

But this is not:
In [12]: s.ix['b':'h']
KeyError 'b'

If the index had been sorted, the “range selection” would have been possible:
In [11]: s2 = s.sort_index()
In [12]: s2
Out[12]:
a
0.533532
c
0.562726
e
-2.371548
g
1.269713
k
2.160843
m
1.209524
dtype: float64
In [13]: s2.ix['b':'h']
Out[13]:
c
0.562726
e
-2.371548
g
1.269713
dtype: float64

186

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

1.21.4 Changes to Series [] operator
As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting
values via [] (i.e. the __getitem__ and __setitem__ methods). The behavior will be the same as passing
similar input to ix except in the case of integer indexing:
In [14]: s = Series(randn(6), index=list('acegkm'))
In [15]: s
Out[15]:
a
2.031757
c
0.851077
e
0.660056
g
-1.662471
k
0.571380
m
0.945588
dtype: float64
In [16]: s[['m', 'a', 'c', 'e']]
Out[16]:
m
0.945588
a
2.031757
c
0.851077
e
0.660056
dtype: float64
In [17]: s['b':'l']
Out[17]:
c
0.851077
e
0.660056
g
-1.662471
k
0.571380
dtype: float64
In [18]: s['c':'k']
Out[18]:
c
0.851077
e
0.660056
g
-1.662471
k
0.571380
dtype: float64

In the case of integer indexes, the behavior will be exactly as before (shadowing ndarray):
In [19]: s = Series(randn(6), index=range(0, 12, 2))
In [20]: s[[4, 0, 2]]
Out[20]:
4
-1.263534
0
-0.414691
2
2.108285
dtype: float64
In [21]: s[1:5]
Out[21]:
2
2.108285
4
-1.263534
6
2.617801
8
1.967592

1.21. v.0.7.0 (February 9, 2012)

187

pandas: powerful Python data analysis toolkit, Release 0.16.1

dtype: float64

If you wish to do indexing with sequences and slicing on an integer index with label semantics, use ix.

1.21.5 Other API Changes
• The deprecated LongPanel class has been completely removed
• If Series.sort is called on a column of a DataFrame, an exception will now be raised. Before it was
possible to accidentally mutate a DataFrame’s column by doing df[col].sort() instead of the side-effect
free method df[col].order() (GH316)
• Miscellaneous renames and deprecations which will (harmlessly) raise FutureWarning
• drop added as an optional parameter to DataFrame.reset_index (GH699)

1.21.6 Performance improvements
• Cythonized GroupBy aggregations no longer presort the data, thus achieving a significant speedup (GH93).
GroupBy aggregations with Python functions significantly sped up by clever manipulation of the ndarray data
type in Cython (GH496).
• Better error message in DataFrame constructor when passed column labels don’t match data (GH497)
• Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse
ndarray object in Cython (GH496)
• Can store objects indexed by tuples and floats in HDFStore (GH492)
• Don’t print length by default in Series.to_string, add length option (GH489)
• Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)
• Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility
• Improve column reindexing performance by using specialized Cython take function
• Further performance tweaking of Series.__getitem__ for standard use cases
• Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
• Friendlier error message in setup.py if NumPy not installed
• Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)
• Default name assignment when calling reset_index on DataFrame with a regular (non-hierarchical) index
(GH476)
• Use Cythonized groupers when possible in Series/DataFrame stat ops with level parameter passed (GH545)
• Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases
(GH374)

1.22 v.0.6.1 (December 13, 2011)
1.22.1 New features
• Can append single rows (as Series) to a DataFrame
188

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Add Spearman and Kendall rank correlation options to Series.corr and DataFrame.corr (GH428)
• Added get_value and set_value methods to Series, DataFrame, and Panel for very low-overhead access
(>2x faster in many cases) to scalar elements (GH437, GH438). set_value is capable of producing an
enlarged object.
• Add PyQt table widget to sandbox (GH435)
• DataFrame.align can accept Series arguments and an axis option (GH461)
• Implement new SparseArray and SparseList data structures. SparseSeries now derives from SparseArray
(GH463)
• Better console printing options (GH453)
• Implement fast data ranking for Series and DataFrame, fast versions of scipy.stats.rankdata (GH428)
• Implement DataFrame.from_items alternate constructor (GH444)
• DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)
• Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)
• Add margins option to pivot_table for computing subgroup aggregates (GH114)
• Add Series.from_csv function (GH482)
• Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH #462)
• MultiIndex.get_level_values can accept the level name

1.22.2 Performance improvements
• Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (PR #425)
• Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
• Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed
• Column deletion in DataFrame copies no data (computes views on blocks) (GH #158)

1.23 v.0.6.0 (November 25, 2011)
1.23.1 New Features
• Added melt function to pandas.core.reshape
• Added level parameter to group by level in Series and DataFrame descriptive statistics (GH313)
• Added head and tail methods to Series, analogous to to DataFrame (GH296)
• Added Series.isin function which checks if each value is contained in a passed sequence (GH289)
• Added float_format option to Series.to_string
• Added skip_footer (GH291) and converters (GH343) options to read_csv and read_table
• Added drop_duplicates and duplicated functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319)
• Implemented operators ‘&’, ‘|’, ‘^’, ‘-‘ on DataFrame (GH347)
• Added Series.mad, mean absolute deviation

1.23. v.0.6.0 (November 25, 2011)

189

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Added QuarterEnd DateOffset (GH321)
• Added dot to DataFrame (GH65)
• Added orient option to Panel.from_dict (GH359, GH301)
• Added orient option to DataFrame.from_dict
• Added passing list of tuples or list of lists to DataFrame.from_records (GH357)
• Added multiple levels to groupby (GH103)
• Allow multiple columns in by argument of DataFrame.sort_index (GH92, GH362)
• Added fast get_value and put_value methods to DataFrame (GH360)
• Added cov instance methods to Series and DataFrame (GH194, GH362)
• Added kind=’bar’ option to DataFrame.plot (GH348)
• Added idxmin and idxmax to Series and DataFrame (GH286)
• Added read_clipboard function to parse DataFrame from clipboard (GH300)
• Added nunique function to Series for counting unique elements (GH297)
• Made DataFrame constructor use Series name if no columns passed (GH373)
• Support regular expressions in read_table/read_csv (GH364)
• Added DataFrame.to_html for writing DataFrame to HTML (GH387)
• Added support for MaskedArray data in DataFrame, masked values converted to NaN (GH396)
• Added DataFrame.boxplot function (GH368)
• Can pass extra args, kwds to DataFrame.apply (GH376)
• Implement DataFrame.join with vector on argument (GH312)
• Added legend boolean flag to DataFrame.plot (GH324)
• Can pass multiple levels to stack and unstack (GH370)
• Can pass multiple values columns to pivot_table (GH381)
• Use Series name in GroupBy for result index (GH363)
• Added raw option to DataFrame.apply for performance if only need ndarray (GH309)
• Added proper, tested weighted least squares to standard and panel OLS (GH303)

1.23.2 Performance Enhancements
• VBENCH Cythonized cache_readonly, resulting in substantial micro-performance enhancements throughout the codebase (GH361)
• VBENCH Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than np.apply_along_axis (GH309)
• VBENCH Improved performance of MultiIndex.from_tuples
• VBENCH Special Cython matrix iterator for applying arbitrary reduction operations
• VBENCH + DOCUMENT Add raw option to DataFrame.apply for getting better performance when
• VBENCH Faster cythonized count by level in Series and DataFrame (GH341)

190

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• VBENCH? Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
• VBENCH New Cython vectorized function map_infer speeds up Series.apply and Series.map significantly when passed elementwise Python function, motivated by (GH355)
• VBENCH Significantly improved performance of Series.order, which also makes np.unique called on a
Series faster (GH327)
• VBENCH Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)

1.24 v.0.5.0 (October 24, 2011)
1.24.1 New Features
• Added DataFrame.align method with standard join options
• Added parse_dates option to read_csv and read_table methods to optionally try to parse dates in the
index columns
• Added nrows, chunksize, and iterator arguments to read_csv and read_table. The last two
return a new TextParser class capable of lazily iterating through chunks of a flat file (GH242)
• Added ability to join on multiple columns in DataFrame.join (GH214)
• Added private _get_duplicates function to Index for identifying duplicate values more easily (ENH5c)
• Added column attribute access to DataFrame.
• Added Python tab completion hook for DataFrame columns. (GH233, GH230)
• Implemented Series.describe for Series containing objects (GH241)
• Added inner join option to DataFrame.join when joining on key(s) (GH248)
• Implemented selecting DataFrame columns by passing a list to __getitem__ (GH253)
• Implemented & and | to intersect / union Index objects, respectively (GH261)
• Added pivot_table convenience function to pandas namespace (GH234)
• Implemented Panel.rename_axis function (GH243)
• DataFrame will show index level names in console output (GH334)
• Implemented Panel.take
• Added set_eng_float_format for alternate DataFrame floating point string formatting (ENH61)
• Added convenience set_index function for creating a DataFrame index from its existing columns
• Implemented groupby hierarchical index level name (GH223)
• Added support for different delimiters in DataFrame.to_csv (GH244)
• TODO: DOCS ABOUT TAKE METHODS

1.24.2 Performance Enhancements
• VBENCH Major performance improvements in file parsing functions read_csv and read_table
• VBENCH Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related
operations
1.24. v.0.5.0 (October 24, 2011)

191

pandas: powerful Python data analysis toolkit, Release 0.16.1

• VBENCH Refactored merging / joining code into a tidy class and disabled unnecessary computations in the
float/object case, thus getting about 10% better performance (GH211)
• VBENCH Improved speed of DataFrame.xs on mixed-type DataFrame objects by about 5x, regression from
0.3.0 (GH215)
• VBENCH With new DataFrame.align method, speeding up binary operations between differently-indexed
DataFrame objects by 10-25%.
• VBENCH Significantly sped up conversion of nested dict into DataFrame (GH212)
• VBENCH Significantly speed up DataFrame __repr__ and count on large mixed-type DataFrame objects

1.25 v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)
1.25.1 New Features
• Added Python 3 support using 2to3 (GH200)
• Added name attribute to Series, now prints as part of Series.__repr__
• Added instance methods isnull and notnull to Series (GH209, GH203)
• Added Series.align method for aligning two series with choice of join method (ENH56)
• Added method get_level_values to MultiIndex (GH188)
• Set values in mixed-type DataFrame objects via .ix indexing attribute (GH135)
• Added new DataFrame methods get_dtype_counts and property dtypes (ENHdc)
• Added ignore_index option to DataFrame.append to stack DataFrames (ENH1b)
• read_csv tries to sniff delimiters using csv.Sniffer (GH146)
• read_csv can read multiple columns into a MultiIndex; DataFrame’s to_csv method writes out a corresponding MultiIndex (GH151)
• DataFrame.rename has a new copy parameter to rename a DataFrame in place (ENHed)
• Enable unstacking by name (GH142)
• Enable sortlevel to work by level (GH141)

1.25.2 Performance Enhancements
• Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment
logic which is faster with a larger number of blocks (GH205)
• Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
• Improved performance of isnull and notnull, a regression from v0.3.0 (GH187)
• Refactored code related to DataFrame.join so that intermediate aligned copies of the data in each
DataFrame argument do not need to be created. Substantial performance increases result (GH176)
• Substantially improved performance of generic Index.intersection and Index.union
• Implemented BlockManager.take resulting in significantly faster take performance on mixed-type
DataFrame objects (GH104)
• Improved performance of Series.sort_index

192

Chapter 1. What’s New

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Significant groupby performance enhancement: removed unnecessary integrity checks in DataFrame internals
that were slowing down slicing operations to retrieve groups
• Optimized _ensure_index function resulting in performance savings in type-checking Index objects
• Wrote fast time series merging / joining methods in Cython. Will be integrated later into DataFrame.join and
related functions

1.25. v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)

193

pandas: powerful Python data analysis toolkit, Release 0.16.1

194

Chapter 1. What’s New

CHAPTER

TWO

INSTALLATION

The easiest way for the majority of users to install pandas is to install it as part of the Anaconda distribution, a cross
platform distribution for data analysis and scientific computing. This is the recommended installation method for most
users.
Instructions for installing from source, PyPI, various Linux distributions, or a development version are also provided.

2.1 Python version support
Officially Python 2.6, 2.7, 3.2, 3.3, and 3.4.

2.2 Installing pandas
2.2.1 Trying out pandas, no installation required!
The easiest way to start experimenting with pandas doesn’t involve installing pandas at all.
Wakari is a free service that provides a hosted IPython Notebook service in the cloud.
Simply create an account, and have access to pandas from within your brower via an IPython Notebook in a few
minutes.

2.2.2 Installing pandas with Anaconda
Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users.
The simplest way to install not only pandas, but Python and the most popular packages that make up the SciPy
stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python
distribution for data analytics and scientific computing.
After running a simple installer, the user will have access to pandas and the rest of the SciPy stack without needing to
install anything else, and without needing to wait for any software to be compiled.
Installation instructions for Anaconda can be found here.
A full list of the packages available as part of the Anaconda distribution can be found here.
An additional advantage of installing with Anaconda is that you don’t require admin rights to install it, it will install
in the user’s home directory, and this also makes it trivial to delete Anaconda at a later date (just delete that folder).

195

pandas: powerful Python data analysis toolkit, Release 0.16.1

2.2.3 Installing pandas with Miniconda
The previous section outlined how to get pandas installed as part of the Anaconda distribution. However this approach
means you will install well over one hundred packages and involves downloading the installer which is a few hundred
megabytes in size.
If you want to have more control on which packages, or have a limited internet bandwidth, then installing pandas with
Miniconda may be a better solution.
Conda is the package manager that the Anaconda distribution is built upon. It is a package manager that is both
cross-platform and language agnostic (it can play a similar role to a pip and virtualenv combination).
Miniconda allows you to create a minimal self contained Python installation, and then use the Conda command to
install additional packages.
First you will need Conda to be installed and downloading and running the Miniconda will do this for you. The
installer can be found here
The next step is to create a new conda environment (these are analogous to a virtualenv but they also allow you to
specify precisely which Python version to install also). Run the following commands from a terminal window:
conda create -n name_of_my_env python

This will create a minimal environment with only Python installed in it. To put your self inside this environment run:
source activate name_of_my_env

On Windows the command is:
activate name_of_my_env

The final step required is to install pandas. This can be done with the following command:
conda install pandas

To install a specific pandas version:
conda install pandas=0.13.1

To install other packages, IPython for example:
conda install ipython

To install the full Anaconda distribution:
conda install anaconda

If you require any packages that are available to pip but not conda, simply install pip, and use pip to install these
packages:
conda install pip
pip install django

2.2.4 Installing from PyPI
pandas can be installed via pip from PyPI.
pip install pandas

This will likely require the installation of a number of dependencies, including NumPy, will require a compiler to
compile required bits of code, and can take a few minutes to complete.
196

Chapter 2. Installation

pandas: powerful Python data analysis toolkit, Release 0.16.1

2.2.5 Installing using your Linux distribution’s package manager.
Distribution
Debian

Status

Download / Repository Link

Install method

stable

official Debian repository

Debian
&
Ubuntu
Ubuntu

unstable
(latest
packages)
stable

NeuroDebian

Ubuntu

unstable
(daily
builds)

OpenSuse &
Fedora

stable

PythonXY PPA; activate by: sudo
add-apt-repository
ppa:pythonxy/pythonxy-devel && sudo
apt-get update
OpenSuse Repository

sudo apt-get
install
python-pandas
sudo apt-get
install
python-pandas
sudo apt-get
install
python-pandas
sudo apt-get
install
python-pandas

official Ubuntu repository

zypper in
python-pandas

2.2.6 Installing from source
See the contributing documentation for complete instructions on building from the git source tree. Further, see creating
a devevlopment environment if you wish to create a pandas development environment.

2.2.7 Running the test suite
pandas is equipped with an exhaustive set of unit tests covering about 97% of the codebase as of this writing. To run it
on your machine to verify that everything is working (and you have all of the dependencies, soft and hard, installed),
make sure you have nose and run:
$ nosetests pandas
..........................................................................
.......................S..................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
.................S........................................................
....
---------------------------------------------------------------------Ran 818 tests in 21.631s
OK (SKIP=2)

2.2. Installing pandas

197

pandas: powerful Python data analysis toolkit, Release 0.16.1

2.3 Dependencies
• NumPy: 1.7.0 or higher
• python-dateutil 1.5 or higher
• pytz
– Needed for time zone support

2.3.1 Recommended Dependencies
• numexpr: for accelerating certain numerical operations. numexpr uses multiple cores as well as smart chunking and caching to achieve large speedups. If installed, must be Version 2.1 or higher.
• bottleneck: for accelerating certain types of nan evaluations. bottleneck uses specialized cython routines
to achieve large speedups.
Note: You are highly encouraged to install these libraries, as they provide large speedups, especially if working with
large data sets.

2.3.2 Optional Dependencies
• Cython: Only necessary to build development version. Version 0.19.1 or higher.
• SciPy: miscellaneous statistical functions
• PyTables: necessary for HDF5-based storage. Version 3.0.0 or higher required, Version 3.2.0 or higher highly
recommended.
• SQLAlchemy: for SQL database support. Version 0.8.1 or higher recommended.
• matplotlib: for plotting
• statsmodels
– Needed for parts of pandas.stats
• openpyxl, xlrd/xlwt
– openpyxl version 1.6.1 or higher, but lower than 2.0.0
– Needed for Excel I/O
• XlsxWriter
– Alternative Excel writer.
• boto: necessary for Amazon S3 access.
• ‘blosc >> from pandas import DataFrame
>>> df = DataFrame(...)
...
```

2. Include the full version string of pandas and its dependencies. In recent (>0.12) versions of pandas you can use
a built in function:
>>> from pandas.util.print_versions import show_versions
>>> show_versions()

and in 0.13.1 onwards:
>>> pd.show_versions()

3. Explain why the current behavior is wrong/not desired and what you expect instead.
The issue will then show up to the pandas community and be open to comments/ideas from others.

3.3 Working with the code
Now that you have an issue you want to fix, enhancement to add, or documentation to improve, you need to learn how
to work with GitHub and the pandas code base.

3.3.1 Version Control, Git, and GitHub
To the new user, working with Git is one of the more daunting aspects of contributing to pandas. It can very quickly
become overwhelming, but sticking to the guidelines below will make the process straightforward and will work
without much trouble. As always, if you are having difficulties please feel free to ask for help.
The code is hosted on GitHub. To contribute you will need to sign up for a free GitHub account. We use Git for
version control to allow many people to work together on the project.
Some great resources for learning git:
• the GitHub help pages.

202

Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

• the NumPy’s documentation.
• Matthew Brett’s Pydagogue.

3.3.2 Getting Started with Git
GitHub has instructions for installing git, setting up your SSH key, and configuring git. All these steps need to be
completed before working seamlessly with your local repository and GitHub.

3.3.3 Forking
You will need your own fork to work on the code. Go to the pandas project page and hit the fork button. You will want
to clone your fork to your machine:
git clone git@github.com:your-user-name/pandas.git pandas-yourname
cd pandas-yourname
git remote add upstream git://github.com/pydata/pandas.git

This creates the directory pandas-yourname and connects your repository to the upstream (main project) pandas
repository.
The testing suite will run automatically on Travis-CI once your Pull Request is submitted. However, if you wish to run
the test suite on a branch prior to submitting the Pull Request, then Travis-CI needs to be hooked up to your GitHub
repository. Instructions are for doing so are here.

3.3.4 Creating a Branch
You want your master branch to reflect only production-ready code, so create a feature branch for making your changes.
For example:
git branch shiny-new-feature
git checkout shiny-new-feature

The above can be simplified to:
git checkout -b shiny-new-feature

This changes your working directory to the shiny-new-feature branch. Keep any changes in this branch specific to one
bug or feature so it is clear what the branch brings to pandas. You can have many shiny-new-features and switch in
between them using the git checkout command.
To update this branch, you need to retrieve the changes from the master branch:
git fetch upstream
git rebase upstream/master

This will replay your commits on top of the lastest pandas git master. If this leads to merge conflicts, you must resolve
these before submitting your Pull Request. If you have uncommitted changes, you will need to stash them prior to
updating. This will effectively store your changes and they can be reapplied after updating.

3.3.5 Creating a Development Environment
An easy way to create a pandas development environment is as follows.
• Install either Install Anaconda or Install miniconda

3.3. Working with the code

203

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Make sure that you have cloned the repository
• cd to the pandas source directory
Tell conda to create a new environment, named pandas_dev, or any name you would like for this environment by
running:
conda create -n pandas_dev --file ci/requirements_dev.txt

For a python 3 environment
conda create -n pandas_dev python=3 --file ci/requirements_dev.txt

If you are on windows, then you will need to install the compiler linkages:
conda install -n pandas_dev libpython

This will create the new environment, and not touch any of your existing environments, nor any existing python
installation. It will install all of the basic dependencies of pandas, as well as the development and testing tools. If you
would like to install other dependencies, you can install them as follows:
conda install -n pandas_dev -c pandas pytables scipy

To install all pandas dependencies you can do the following:
conda install -n pandas_dev -c pandas --file ci/requirements_all.txt

To work in this environment, activate it as follows:
activate pandas_dev

At which point, the prompt will change to indicate you are in the new development environment.
Note: The above syntax is for windows environments. To work on macosx/linux, use:
source activate pandas_dev

To view your environments:
conda info -e

To return to you home root environment:
deactivate

See the full conda docs here.
At this point you can easily do an in-place install, as detailed in the next section.

3.3.6 Making changes
Before making your code changes, it is often necessary to build the code that was just checked out. There are two
primary methods of doing this.
1. The best way to develop pandas is to build the C extensions in-place by running:
python setup.py build_ext --inplace

If you startup the Python interpreter in the pandas source directory you will call the built C extensions
2. Another very common option is to do a develop install of pandas:

204

Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

python setup.py develop

This makes a symbolic link that tells the Python interpreter to import pandas from your development directory.
Thus, you can always be using the development version on your system without being inside the clone directory.

3.4 Contributing to the documentation
If you’re not the developer type, contributing to the documentation is still of huge value. You don’t even have to be an
expert on pandas to do so! Something as simple as rewriting small passages for clarity as you reference the docs is a
simple but effective way to contribute. The next person to read that passage will be in your debt!
Actually, there are sections of the docs that are worse off by being written by experts. If something in the docs doesn’t
make sense to you, updating the relevant section after you figure it out is a simple way to ensure it will help the next
person.
Documentation:
• About the pandas documentation
• How to build the pandas documentation
– Requirements
– Building the documentation
– Built Master Branch Documentation

3.4.1 About the pandas documentation
The documentation is written in reStructuredText, which is almost like writing in plain English, and built using
Sphinx. The Sphinx Documentation has an excellent introduction to reST. Review the Sphinx docs to perform more
complex changes to the documentation as well.
Some other important things to know about the docs:
• The pandas documentation consists of two parts: the docstrings in the code itself and the docs in this folder
pandas/doc/.
The docstrings provide a clear explanation of the usage of the individual functions, while the documentation
in this folder consists of tutorial-like overviews per topic together with some other information (what’s new,
installation, etc).
• The docstrings follow the Numpy Docstring Standard which is used widely in the Scientific Python community. This standard specifies the format of the different sections of the docstring. See this document for a detailed
explanation, or look at some of the existing functions to extend it in a similar manner.
• The tutorials make heavy use of the ipython directive sphinx extension. This directive lets you put code in the
documentation which will be run during the doc build. For example:
.. ipython:: python
x = 2
x**3

will be rendered as
In [1]: x = 2

3.4. Contributing to the documentation

205

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [2]: x**3
Out[2]: 8

This means that almost all code examples in the docs are always run (and the output saved) during the doc build.
This way, they will always be up to date, but it makes the doc building a bit more complex.

3.4.2 How to build the pandas documentation
Requirements
To build the pandas docs there are some extra requirements: you will need to have sphinx and ipython installed.
numpydoc is used to parse the docstrings that follow the Numpy Docstring Standard (see above), but you don’t need
to install this because a local copy of numpydoc is included in the pandas source code.
It is easiest to create a development environment, then install:
conda install -n pandas_dev sphinx ipython

Furthermore, it is recommended to have all optional dependencies installed. This is not strictly necessary, but be aware
that you will see some error messages. Because all the code in the documentation is executed during the doc build, the
examples using this optional dependencies will generate errors. Run pd.show_versions() to get an overview of
the installed version of all dependencies.
Warning: Sphinx version >= 1.2.2 or the older 1.1.3 is required.

Building the documentation
So how do you build the docs? Navigate to your local the folder pandas/doc/ directory in the console and run:
python make.py html

And then you can find the html output in the folder pandas/doc/build/html/.
The first time it will take quite a while, because it has to run all the code examples in the documentation and build all
generated docstring pages. In subsequent evocations, sphinx will try to only build the pages that have been modified.
If you want to do a full clean build, do:
python make.py clean
python make.py build

Starting with 0.13.1 you can tell make.py to compile only a single section of the docs, greatly reducing the turnaround time for checking your changes. You will be prompted to delete .rst files that aren’t required. This is okay
since the prior version can be checked out from git, but make sure to not commit the file deletions.
#omit autosummary and API section
python make.py clean
python make.py --no-api
# compile the docs with only a single
# section, that which is in indexing.rst
python make.py clean
python make.py --single indexing

206

Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

For comparison, a full documentation build may take 10 minutes. a -no-api build may take 3 minutes and a single
section may take 15 seconds. However, subsequent builds only process portions you changed. Now, open the following
file in a web browser to see the full documentation you just built:
pandas/docs/build/html/index.html

And you’ll have the satisfaction of seeing your new and improved documentation!
Built Master Branch Documentation
When pull-requests are merged into the pandas master branch, the main parts of the documentation are also built by
Travis-CI. These docs are then hosted here.

3.5 Contributing to the code base
Code Base:
• Code Standards
• Test-driven Development/Writing Code
– Writing tests
– Running the test suite
– Running the performance test suite
• Documenting your code

3.5.1 Code Standards
pandas uses the PEP8 standard. There are several tools to ensure you abide by this standard.
We’ve written a tool to check that your commits are PEP8 great, pip install pep8radius. Look at PEP8 fixes in your
branch vs master with:
pep8radius master --diff` and make these changes with `pep8radius master --diff --in-place`

Alternatively, use flake8 tool for checking the style of your code. Additional standards are outlined on the code style
wiki page.
Please try to maintain backward-compatibility. Pandas has lots of users with lots of existing code, so don’t break it if
at all possible. If you think breakage is required clearly state why as part of the Pull Request. Also, be careful when
changing method signatures and add deprecation warnings where needed.

3.5.2 Test-driven Development/Writing Code
Pandas is serious about testing and strongly encourages individuals to embrace Test-driven Development (TDD). This
development process “relies on the repetition of a very short development cycle: first the developer writes an (initially
failing) automated test case that defines a desired improvement or new function, then produces the minimum amount
of code to pass that test.” So, before actually writing any code, you should write your tests. Often the test can
be taken from the original GitHub issue. However, it is always worth considering additional use cases and writing
corresponding tests.
Adding tests is one of the most common requests after code is pushed to pandas. It is worth getting in the habit of
writing tests ahead of time so this is never an issue.

3.5. Contributing to the code base

207

pandas: powerful Python data analysis toolkit, Release 0.16.1

Like many packages, pandas uses the Nose testing system and the convenient extensions in numpy.testing.
Writing tests
All tests should go into the tests subdirectory of the specific package. There are probably many examples already there
and looking to these for inspiration is suggested. If you test requires working with files or network connectivity there
is more information on the testing page of the wiki.
The pandas.util.testing module has many special assert functions that make it easier to make statements
about whether Series or DataFrame objects are equivalent. The easiest way to verify that your code is correct is to
explicitly construct the result you expect, then compare the actual result to the expected correct result:
def test_pivot(self):
data = {
'index' : ['A', 'B', 'C', 'C', 'B', 'A'],
'columns' : ['One', 'One', 'One', 'Two', 'Two', 'Two'],
'values' : [1., 2., 3., 3., 2., 1.]
}
frame = DataFrame(data)
pivoted = frame.pivot(index='index', columns='columns', values='values')
expected = DataFrame({
'One' : {'A' : 1., 'B' : 2., 'C' : 3.},
'Two' : {'A' : 1., 'B' : 2., 'C' : 3.}
})
assert_frame_equal(pivoted, expected)

Running the test suite
The tests can then be run directly inside your git clone (without having to install pandas) by typing::
nosetests pandas

The tests suite is exhaustive and takes around 20 minutes to run. Often it is worth running only a subset of tests first
around your changes before running the entire suite. This is done using one of the following constructs:
nosetests pandas/tests/[test-module].py
nosetests pandas/tests/[test-module].py:[TestClass]
nosetests pandas/tests/[test-module].py:[TestClass].[test_method]

Running the performance test suite
Performance matters and it is worth considering that your code has not introduced performance regressions. Currently
pandas uses the vbench library to enable easy monitoring of the performance of critical pandas operations. These
benchmarks are all found in the pandas/vb_suite directory. vbench currently only works on python2.
To install vbench:
pip install git+https://github.com/pydata/vbench

Vbench also requires sqlalchemy, gitpython, and psutil which can all be installed using pip. If you need to run a
benchmark, change your directory to the pandas root and run:

208

Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

./test_perf.sh -b master -t HEAD

This will checkout the master revision and run the suite on both master and your commit. Running the full test suite
can take up to one hour and use up to 3GB of RAM. Usually it is sufficient to past a subset of the results in to the Pull
Request to show that the committed changes do not cause unexpected performance regressions.
You can run specific benchmarks using the -r flag which takes a regular expression.
See the performance testing wiki for information on how to write a benchmark.

3.5.3 Documenting your code
Changes should be reflected in the release notes located in doc/source/whatsnew/vx.y.z.txt. This file contains an ongoing change log for each release. Add an entry to this file to document your fix, enhancement or (unavoidable) breaking
change. Make sure to include the GitHub issue number when adding your entry.
If your code is an enhancement, it is most likely necessary to add usage examples to the existing documentation. This
can be done following the section regarding documentation.

3.6 Contributing your changes to pandas
3.6.1 Committing your code
Keep style fixes to a separate commit to make your PR more readable.
Once you’ve made changes, you can see them by typing:
git status

If you’ve created a new file, it is not being tracked by git. Add it by typing
git add path/to/file-to-be-added.py

Doing ‘git status’ again should give something like
# On branch shiny-new-feature
#
#
modified:
/relative/path/to/file-you-added.py
#

Finally, commit your changes to your local repository with an explanatory message. Pandas uses a convention for
commit message prefixes and layout. Here are some common prefixes along with general guidelines for when to use
them:
• ENH: Enhancement, new functionality
• BUG: Bug fix
• DOC: Additions/updates to documentation
• TST: Additions/updates to tests
• BLD: Updates to the build process/scripts
• PERF: Performance improvement
• CLN: Code cleanup

3.6. Contributing your changes to pandas

209

pandas: powerful Python data analysis toolkit, Release 0.16.1

The following defines how a commit message should be structured. Please reference the relevant GitHub issues in
your commit message using GH1234 or #1234. Either style is fine, but the former is generally preferred:
• a subject line with < 80 chars.
• One blank line.
• Optionally, a commit message body.
Now you can commit your changes in your local repository:
git commit -m

If you have multiple commits, it is common to want to combine them into one commit, often referred to as “squashing”
or “rebasing”. This is a common request by package maintainers when submitting a Pull Request as it maintains a
more compact commit history. To rebase your commits:
git rebase -i HEAD~#

Where # is the number of commits you want to combine. Then you can pick the relevant commit message and discard
others.

3.6.2 Pushing your changes
When you want your changes to appear publicly on your GitHub page, push your forked feature branch’s commits
git push origin shiny-new-feature

Here origin is the default name given to your remote repository on GitHub. You can see the remote repositories
git remote -v

If you added the upstream repository as described above you will see something like
origin git@github.com:yourname/pandas.git (fetch)
origin git@github.com:yourname/pandas.git (push)
upstream
git://github.com/pydata/pandas.git (fetch)
upstream
git://github.com/pydata/pandas.git (push)

Now your code is on GitHub, but it is not yet a part of the pandas project. For that to happen, a Pull Request needs to
be submitted on GitHub.

3.6.3 Review your code
When you’re ready to ask for a code review, you will file a Pull Request. Before you do, again make sure you’ve
followed all the guidelines outlined in this document regarding code style, tests, performance tests, and documentation.
You should also double check your branch changes against the branch it was based off of:
1. Navigate to your repository on GitHub–https://github.com/your-user-name/pandas.
2. Click on Branches.
3. Click on the Compare button for your feature branch.
4. Select the base and compare branches, if necessary. This will be master and shiny-new-feature, respectively.

210

Chapter 3. Contributing to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

3.6.4 Finally, make the Pull Request
If everything looks good you are ready to make a Pull Request. A Pull Request is how code from a local repository
becomes available to the GitHub community and can be looked at and eventually merged into the master version. This
Pull Request and its associated changes will eventually be committed to the master branch and available in the next
release. To submit a Pull Request:
1. Navigate to your repository on GitHub.
2. Click on the Pull Request button.
3. You can then click on Commits and Files Changed to make sure everything looks okay one last time.
4. Write a description of your changes in the Preview Discussion tab.
5. Click Send Pull Request.
This request then appears to the repository maintainers, and they will review the code. If you need to make more
changes, you can make them in your branch, push them to GitHub, and the pull request will be automatically updated.
Pushing them to GitHub again is done by:
git push -f origin shiny-new-feature

This will automatically update your Pull Request with the latest code and restart the Travis-CI tests.

3.6.5 Delete your merged branch (optional)
Once your feature branch is accepted into upstream, you’ll probably want to get rid of the branch. First, merge
upstream master into your branch so git knows it is safe to delete your branch
git fetch upstream
git checkout master
git merge upstream/master

Then you can just do:
git branch -d shiny-new-feature

Make sure you use a lower-case -d, or else git won’t warn you if your feature branch has not actually been merged.
The branch will still exist on GitHub, so to delete it there do
git push origin --delete shiny-new-feature

3.6. Contributing your changes to pandas

211

pandas: powerful Python data analysis toolkit, Release 0.16.1

212

Chapter 3. Contributing to pandas

CHAPTER

FOUR

FREQUENTLY ASKED QUESTIONS (FAQ)

4.1 DataFrame memory usage
As of pandas version 0.15.0, the memory usage of a dataframe (including the index) is shown when accessing the info
method of a dataframe. A configuration option, display.memory_usage (see Options and Settings), specifies if
the dataframe’s memory usage will be displayed when invoking the df.info() method.
For example, the memory usage of the dataframe below is shown when calling df.info():
In [1]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
...:
'complex128', 'object', 'bool']
...:
In [2]: n = 5000
In [3]: data = dict([ (t, np.random.randint(100, size=n).astype(t))
...:
for t in dtypes])
...:
In [4]: df = DataFrame(data)
In [5]: df['categorical'] = df['object'].astype('category')

In [6]: df.info()

Int64Index: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool
5000 non-null bool
complex128
5000 non-null complex128
datetime64[ns]
5000 non-null datetime64[ns]
float64
5000 non-null float64
int64
5000 non-null int64
object
5000 non-null object
timedelta64[ns]
5000 non-null timedelta64[ns]
categorical
5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), time
memory usage: 303.5+ KB

The + symbol indicates that the true memory usage could be higher, because pandas does not count the memory used
by values in columns with dtype=object.
By default the display option is set to True but can be explicitly overridden by passing the memory_usage argument
when invoking df.info().
The memory usage of each column can be found by calling the memory_usage method. This returns a Series with

213

pandas: powerful Python data analysis toolkit, Release 0.16.1

an index represented by column names and memory usage of each column shown in bytes. For the dataframe above,
the memory usage of each column and the total memory usage of the dataframe can be found with the memory_usage
method:
In [7]: df.memory_usage()
Out[7]:
bool
5000
complex128
80000
datetime64[ns]
40000
float64
40000
int64
40000
object
20000
timedelta64[ns]
40000
categorical
5800
dtype: int64
# total memory usage of dataframe
In [8]: df.memory_usage().sum()
Out[8]: 270800

By default the memory usage of the dataframe’s index is not shown in the returned Series, the memory usage of the
index can be shown by passing the index=True argument:
In [9]: df.memory_usage(index=True)
Out[9]:
Index
40000
bool
5000
complex128
80000
datetime64[ns]
40000
float64
40000
int64
40000
object
20000
timedelta64[ns]
40000
categorical
5800
dtype: int64

The memory usage displayed by the info method utilizes the memory_usage method to determine the memory
usage of a dataframe while also formatting the output in human-readable units (base-2 representation; i.e., 1KB = 1024
bytes).
See also Categorical Memory Usage.

4.2 Adding Features to your pandas Installation
pandas is a powerful tool and already has a plethora of data manipulation operations implemented, most of them are
very fast as well. It’s very possible however that certain functionality that would make your life easier is missing. In
that case you have several options:
1. Open an issue on Github , explain your need and the sort of functionality you would like to see implemented.
2. Fork the repo, Implement the functionality yourself and open a PR on Github.
3. Write a method that performs the operation you are interested in and Monkey-patch the pandas class as part of
your IPython profile startup or PYTHONSTARTUP file.
For example, here is an example of adding an just_foo_cols() method to the dataframe class:

214

Chapter 4. Frequently Asked Questions (FAQ)

pandas: powerful Python data analysis toolkit, Release 0.16.1

import pandas as pd
def just_foo_cols(self):
"""Get a list of column names containing the string 'foo'
"""
return [x for x in self.columns if 'foo' in x]
pd.DataFrame.just_foo_cols = just_foo_cols # monkey-patch the DataFrame class
df = pd.DataFrame([list(range(4))], columns=["A","foo","foozball","bar"])
df.just_foo_cols()
del pd.DataFrame.just_foo_cols # you can also remove the new method

Monkey-patching is usually frowned upon because it makes your code less portable and can cause subtle bugs in some
circumstances. Monkey-patching existing methods is usually a bad idea in that respect. When used with proper care,
however, it’s a very useful tool to have.

4.3 Migrating from scikits.timeseries to pandas >= 0.8.0
Starting with pandas 0.8.0, users of scikits.timeseries should have all of the features that they need to migrate their code
to use pandas. Portions of the scikits.timeseries codebase for implementing calendar logic and timespan frequency
conversions (but not resampling, that has all been implemented from scratch from the ground up) have been ported to
the pandas codebase.
The scikits.timeseries notions of Date and DateArray are responsible for implementing calendar logic:
In [16]: dt = ts.Date('Q', '1984Q3')
# sic
In [17]: dt
Out[17]: 
In [18]: dt.asfreq('D', 'start')
Out[18]: 
In [19]: dt.asfreq('D', 'end')
Out[19]: 
In [20]: dt + 3
Out[20]: 

Date and DateArray from scikits.timeseries have been reincarnated in pandas Period and PeriodIndex:
In [10]: pnow('D') # scikits.timeseries.now()
Out[10]: Period('2015-05-11', 'D')
In [11]: Period(year=2007, month=3, day=15, freq='D')
Out[11]: Period('2007-03-15', 'D')
In [12]: p = Period('1984Q3')
In [13]: p
Out[13]: Period('1984Q3', 'Q-DEC')
In [14]: p.asfreq('D', 'start')
Out[14]: Period('1984-07-01', 'D')
In [15]: p.asfreq('D', 'end')

4.3. Migrating from scikits.timeseries to pandas >= 0.8.0

215

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[15]: Period('1984-09-30', 'D')
In [16]: (p + 3).asfreq('T') + 6 * 60 + 30
Out[16]: Period('1985-07-01 06:29', 'T')
In [17]: rng = period_range('1990', '2010', freq='A')
In [18]: rng
Out[18]:
PeriodIndex(['1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005',
'2006', '2007', '2008', '2009', '2010'],
dtype='int64', freq='A-DEC')
In [19]: rng.asfreq('B', 'end') - 3
Out[19]:
PeriodIndex(['1990-12-26', '1991-12-26',
'1994-12-27', '1995-12-26',
'1998-12-28', '1999-12-28',
'2002-12-26', '2003-12-26',
'2006-12-26', '2007-12-26',
'2010-12-28'],
dtype='int64', freq='B')

scikits.timeseries
Date
DateArray
convert
convert_to_annual

pandas
Period
PeriodIndex
resample
pivot_annual

'1992-12-28',
'1996-12-26',
'2000-12-26',
'2004-12-28',
'2008-12-26',

'1993-12-28',
'1997-12-26',
'2001-12-26',
'2005-12-27',
'2009-12-28',

Notes
A span of time, from yearly through to secondly
An array of timespans
Frequency conversion in scikits.timeseries
currently supports up to daily frequency, see GH736

4.3.1 PeriodIndex / DateArray properties and functions
The scikits.timeseries DateArray had a number of information properties. Here are the pandas equivalents:
scikits.timeseries
get_steps
has_missing_dates
is_full
is_valid
is_chronological
arr.sort_chronologically()

pandas
np.diff(idx.values)
not idx.is_full
idx.is_full
idx.is_monotonic and idx.is_unique
is_monotonic
idx.order()

Notes

4.3.2 Frequency conversion
Frequency conversion is implemented using the resample method on TimeSeries and DataFrame objects (multiple
time series). resample also works on panels (3D). Here is some code that resamples daily data to monthly:
In [20]: rng = period_range('Jan-2000', periods=50, freq='M')
In [21]: data = Series(np.random.randn(50), index=rng)
In [22]: data
Out[22]:
2000-01
1.544821
2000-02
-1.708552

216

Chapter 4. Frequently Asked Questions (FAQ)

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-03
2000-04
2000-05
2000-06
2000-07

1.545458
-0.735738
-0.649091
-0.403878
-2.474932
...
2003-08
1.034493
2003-09
1.269838
2003-10
0.606166
2003-11
-0.827409
2003-12
-0.943863
2004-01
1.041569
2004-02
0.701815
Freq: M, dtype: float64
In [23]: data.resample('A', how=np.mean)
Out[23]:
2000
0.102447
2001
-0.204847
2002
0.210840
2003
0.300564
2004
0.871692
Freq: A-DEC, dtype: float64

4.3.3 Plotting
Much of the plotting functionality of scikits.timeseries has been ported and adopted to pandas’s data structures. For
example:
In [24]: rng = period_range('1987Q2', periods=10, freq='Q-DEC')
In [25]: data = Series(np.random.randn(10), index=rng)
In [26]: plt.figure(); data.plot()
Out[26]: 

4.3. Migrating from scikits.timeseries to pandas >= 0.8.0

217

pandas: powerful Python data analysis toolkit, Release 0.16.1

4.3.4 Converting to and from period format
Use the to_timestamp and to_period instance methods.

4.3.5 Treatment of missing data
Unlike scikits.timeseries, pandas data structures are not based on NumPy’s MaskedArray object. Missing data is
represented as NaN in numerical arrays and either as None or NaN in non-numerical arrays. Implementing a version of
pandas’s data structures that use MaskedArray is possible but would require the involvement of a dedicated maintainer.
Active pandas developers are not interested in this.

4.3.6 Resampling with timestamps and periods
resample has a kind argument which allows you to resample time series with a DatetimeIndex to PeriodIndex:
In [27]: rng = date_range('1/1/2000', periods=200, freq='D')
In [28]: data = Series(np.random.randn(200), index=rng)
In [29]: data[:10]

218

Chapter 4. Frequently Asked Questions (FAQ)

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[29]:
2000-01-01
-0.197661
2000-01-02
0.507155
2000-01-03
-0.493913
2000-01-04
-0.994339
2000-01-05
-0.581662
2000-01-06
-0.855251
2000-01-07
-0.256469
2000-01-08
-0.454868
2000-01-09
0.519612
2000-01-10
0.764490
Freq: D, dtype: float64
In [30]: data.index
Out[30]:
DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03', '2000-01-04',
'2000-01-05', '2000-01-06', '2000-01-07', '2000-01-08',
'2000-01-09', '2000-01-10',
...
'2000-07-09', '2000-07-10', '2000-07-11', '2000-07-12',
'2000-07-13', '2000-07-14', '2000-07-15', '2000-07-16',
'2000-07-17', '2000-07-18'],
dtype='datetime64[ns]', length=200, freq='D', tz=None)
In [31]: data.resample('M', kind='period')
Out[31]:
2000-01
-0.226155
2000-02
0.056704
2000-03
-0.132553
2000-04
-0.064003
2000-05
0.233736
2000-06
-0.301008
2000-07
-0.584631
Freq: M, dtype: float64

Similarly, resampling from periods to timestamps is possible with an optional interval (’start’ or ’end’) convention:
In [32]: rng = period_range('Jan-2000', periods=50, freq='M')
In [33]: data = Series(np.random.randn(50), index=rng)
In [34]: resampled = data.resample('A', kind='timestamp', convention='end')
In [35]: resampled.index
Out[35]:
DatetimeIndex(['2000-12-31', '2001-12-31', '2002-12-31', '2003-12-31',
'2004-12-31'],
dtype='datetime64[ns]', freq='A-DEC', tz=None)

4.4 Byte-Ordering Issues
Occasionally you may have to deal with data that were created on a machine with a different byte order than the one
on which you are running Python. To deal with this issue you should convert the underlying NumPy array to the native
system byte order before passing it to Series/DataFrame/Panel constructors using something similar to the following:

4.4. Byte-Ordering Issues

219

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [36]: x = np.array(list(range(10)), '>i4') # big endian
In [37]: newx = x.byteswap().newbyteorder() # force native byteorder
In [38]: s = Series(newx)

See the NumPy documentation on byte order for more details.

4.5 Visualizing Data in Qt applications
Warning: The qt support is deprecated and will be removed in a future version. We refer users to the external
package pandas-qt.
There is experimental support for visualizing DataFrames in PyQt4 and PySide applications. At the moment you
can display and edit the values of the cells in the DataFrame. Qt will take care of displaying just the portion of the
DataFrame that is currently visible and the edits will be immediately saved to the underlying DataFrame
To demonstrate this we will create a simple PySide application that will switch between two editable DataFrames. For
this will use the DataFrameModel class that handles the access to the DataFrame, and the DataFrameWidget,
which is just a thin layer around the QTableView.
import numpy as np
import pandas as pd
from pandas.sandbox.qtpandas import DataFrameModel, DataFrameWidget
from PySide import QtGui, QtCore
# Or if you use PyQt4:
# from PyQt4 import QtGui, QtCore
class MainWidget(QtGui.QWidget):
def __init__(self, parent=None):
super(MainWidget, self).__init__(parent)
# Create two DataFrames
self.df1 = pd.DataFrame(np.arange(9).reshape(3, 3),
columns=['foo', 'bar', 'baz'])
self.df2 = pd.DataFrame({
'int': [1, 2, 3],
'float': [1.5, 2.5, 3.5],
'string': ['a', 'b', 'c'],
'nan': [np.nan, np.nan, np.nan]
}, index=['AAA', 'BBB', 'CCC'],
columns=['int', 'float', 'string', 'nan'])
# Create the widget and set the first DataFrame
self.widget = DataFrameWidget(self.df1)
# Create the buttons for changing DataFrames
self.button_first = QtGui.QPushButton('First')
self.button_first.clicked.connect(self.on_first_click)
self.button_second = QtGui.QPushButton('Second')
self.button_second.clicked.connect(self.on_second_click)
# Set the layout
vbox = QtGui.QVBoxLayout()

220

Chapter 4. Frequently Asked Questions (FAQ)

pandas: powerful Python data analysis toolkit, Release 0.16.1

vbox.addWidget(self.widget)
hbox = QtGui.QHBoxLayout()
hbox.addWidget(self.button_first)
hbox.addWidget(self.button_second)
vbox.addLayout(hbox)
self.setLayout(vbox)
def on_first_click(self):
'''Sets the first DataFrame'''
self.widget.setDataFrame(self.df1)
def on_second_click(self):
'''Sets the second DataFrame'''
self.widget.setDataFrame(self.df2)
if __name__ == '__main__':
import sys
# Initialize the application
app = QtGui.QApplication(sys.argv)
mw = MainWidget()
mw.show()
app.exec_()

4.5. Visualizing Data in Qt applications

221

pandas: powerful Python data analysis toolkit, Release 0.16.1

222

Chapter 4. Frequently Asked Questions (FAQ)

CHAPTER

FIVE

PACKAGE OVERVIEW

pandas consists of the following things
• A set of labeled array data structures, the primary of which are Series/TimeSeries and DataFrame
• Index objects enabling both simple axis indexing and multi-level / hierarchical axis indexing
• An integrated group by engine for aggregating and transforming data sets
• Date range generation (date_range) and custom date offsets enabling the implementation of customized frequencies
• Input/Output tools: loading tabular data from flat files (CSV, delimited, Excel 2003), and saving and loading
pandas objects from the fast and efficient PyTables/HDF5 format.
• Memory-efficient “sparse” versions of the standard data structures for storing data that is mostly missing or
mostly constant (some fixed value)
• Moving window statistics (rolling mean, rolling standard deviation, etc.)
• Static and moving window linear and panel regression

5.1 Data structures at a glance
Dimensions
1
1
2
3

Name

Description

Series
1D labeled homogeneously-typed array
TimeSeries with index containing datetimes
Series
DataFrame General 2D labeled, size-mutable tabular structure with potentially
heterogeneously-typed columns
Panel
General 3D labeled, also size-mutable array

5.1.1 Why more than 1 data structure?
The best way to think about the pandas data structures is as flexible containers for lower dimensional data. For
example, DataFrame is a container for Series, and Panel is a container for DataFrame objects. We would like to be
able to insert and remove objects from these containers in a dictionary-like fashion.
Also, we would like sensible default behaviors for the common API functions which take into account the typical
orientation of time series and cross-sectional data sets. When using ndarrays to store 2- and 3-dimensional data, a
burden is placed on the user to consider the orientation of the data set when writing functions; axes are considered
more or less equivalent (except when C- or Fortran-contiguousness matters for performance). In pandas, the axes are
intended to lend more semantic meaning to the data; i.e., for a particular data set there is likely to be a “right” way to
223

pandas: powerful Python data analysis toolkit, Release 0.16.1

orient the data. The goal, then, is to reduce the amount of mental effort required to code up data transformations in
downstream functions.
For example, with tabular data (DataFrame) it is more semantically helpful to think of the index (the rows) and the
columns rather than axis 0 and axis 1. And iterating through the columns of the DataFrame thus results in more
readable code:
for col in df.columns:
series = df[col]
# do something with series

5.2 Mutability and copying of data
All pandas data structures are value-mutable (the values they contain can be altered) but not always size-mutable. The
length of a Series cannot be changed, but, for example, columns can be inserted into a DataFrame. However, the vast
majority of methods produce new objects and leave the input data untouched. In general, though, we like to favor
immutability where sensible.

5.3 Getting Support
The first stop for pandas issues and ideas is the Github Issue Tracker. If you have a general question, pandas community
experts can answer through Stack Overflow.
Longer discussions occur on the developer mailing list, and commercial support inquiries for Lambda Foundry should
be sent to: support@lambdafoundry.com

5.4 Credits
pandas development began at AQR Capital Management in April 2008. It was open-sourced at the end of 2009. AQR
continued to provide resources for development through the end of 2011, and continues to contribute bug reports today.
Since January 2012, Lambda Foundry, has been providing development resources, as well as commercial support,
training, and consulting for pandas.
pandas is only made possible by a group of people around the world like you who have contributed new code, bug
reports, fixes, comments and ideas. A complete list can be found on Github.

5.5 Development Team
pandas is a part of the PyData project. The PyData Development Team is a collection of developers focused on the
improvement of Python’s data libraries. The core team that coordinates development can be found on Github. If you’re
interested in contributing, please visit the project website.

5.6 License

224

Chapter 5. Package overview

pandas: powerful Python data analysis toolkit, Release 0.16.1

=======
License
=======
pandas is distributed under a 3-clause ("Simplified" or "New") BSD
license. Parts of NumPy, SciPy, numpydoc, bottleneck, which all have
BSD-compatible licenses, are included. Their licenses follow the pandas
license.
pandas license
==============
Copyright (c) 2011-2012, Lambda Foundry, Inc. and PyData Development Team
All rights reserved.
Copyright (c) 2008-2011 AQR Capital Management, LLC
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of the copyright holder nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
About the Copyright Holders
===========================
AQR Capital Management began pandas development in 2008. Development was
led by Wes McKinney. AQR released the source under this license in 2009.
Wes is now an employee of Lambda Foundry, and remains the pandas project
lead.
The PyData Development Team is the collection of developers of the PyData
project. This includes all of the PyData sub-projects, including pandas. The
core team that coordinates development on GitHub can be found here:
http://github.com/pydata.

5.6. License

225

pandas: powerful Python data analysis toolkit, Release 0.16.1

Full credits for pandas contributors can be found in the documentation.
Our Copyright Policy
====================
PyData uses a shared copyright model. Each contributor maintains copyright
over their contributions to PyData. However, it is important to note that
these contributions are typically only changes to the repositories. Thus,
the PyData source code, in its entirety, is not the copyright of any single
person or institution. Instead, it is the collective copyright of the
entire PyData Development Team. If individual contributors want to maintain
a record of what changes/contributions they have specific copyright on,
they should indicate their copyright in the commit message of the change
when they commit the change to one of the PyData repositories.
With this in mind, the following banner should be used in any source code
file to indicate the copyright and license terms:
#----------------------------------------------------------------------------# Copyright (c) 2012, PyData Development Team
# All rights reserved.
#
# Distributed under the terms of the BSD Simplified License.
#
# The full license is in the LICENSE file, distributed with this software.
#----------------------------------------------------------------------------Other licenses can be found in the LICENSES directory.

226

Chapter 5. Package overview

CHAPTER

SIX

10 MINUTES TO PANDAS

This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the Cookbook
Customarily, we import as follows
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt

6.1 Object Creation
See the Data Structure Intro section
Creating a Series by passing a list of values, letting pandas create a default integer index:
In [4]: s = pd.Series([1,3,5,np.nan,6,8])
In [5]: s
Out[5]:
0
1
1
3
2
5
3
NaN
4
6
5
8
dtype: float64

Creating a DataFrame by passing a numpy array, with a datetime index and labeled columns:
In [6]: dates = pd.date_range('20130101', periods=6)
In [7]: dates
Out[7]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D', tz=None)
In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
In [9]: df
Out[9]:
A

B

C

D

227

pandas: powerful Python data analysis toolkit, Release 0.16.1

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

Creating a DataFrame by passing a dict of objects that can be converted to series-like.
In [10]: df2 = pd.DataFrame({ 'A' : 1.,
....:
'B' : pd.Timestamp('20130102'),
....:
'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
....:
'D' : np.array([3] * 4,dtype='int32'),
....:
'E' : pd.Categorical(["test","train","test","train"]),
....:
'F' : 'foo' })
....:
In [11]: df2
Out[11]:
A
B
0 1 2013-01-02
1 1 2013-01-02
2 1 2013-01-02
3 1 2013-01-02

C
1
1
1
1

D
3
3
3
3

E
test
train
test
train

F
foo
foo
foo
foo

Having specific dtypes
In [12]: df2.dtypes
Out[12]:
A
float64
B
datetime64[ns]
C
float32
D
int32
E
category
F
object
dtype: object

If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled.
Here’s a subset of the attributes that will be completed:
In [13]: df2.
df2.A
df2.abs
df2.add
df2.add_prefix
df2.add_suffix
df2.align
df2.all
df2.any
df2.append
df2.apply
df2.applymap
df2.as_blocks
df2.asfreq
df2.as_matrix
df2.astype
df2.at
df2.at_time
df2.axes

228

df2.boxplot
df2.C
df2.clip
df2.clip_lower
df2.clip_upper
df2.columns
df2.combine
df2.combineAdd
df2.combine_first
df2.combineMult
df2.compound
df2.consolidate
df2.convert_objects
df2.copy
df2.corr
df2.corrwith
df2.count
df2.cov

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

df2.B
df2.between_time
df2.bfill
df2.blocks
df2.bool

df2.cummax
df2.cummin
df2.cumprod
df2.cumsum
df2.D

As you can see, the columns A, B, C, and D are automatically tab completed. E is there as well; the rest of the attributes
have been truncated for brevity.

6.2 Viewing Data
See the Basics section
See the top & bottom rows of the frame
In [14]: df.head()
Out[14]:
A
B
C
D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
In [15]: df.tail(3)
Out[15]:
A
B
C
D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

Display the index, columns, and the underlying numpy data
In [16]: df.index
Out[16]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D', tz=None)
In [17]: df.columns
Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object')
In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829,
[ 1.2121, -0.1732,
[-0.8618, -2.1046,
[ 0.7216, -0.7068,
[-0.425 , 0.567 ,
[-0.6737, 0.1136,

-1.5091, -1.1356],
0.1192, -1.0442],
-0.4949, 1.0718],
-1.0396, 0.2719],
0.2762, -1.0874],
-1.4784, 0.525 ]])

Describe shows a quick statistic summary of your data
In [19]: df.describe()
Out[19]:
A
B
count 6.000000 6.000000

6.2. Viewing Data

C
6.000000

D
6.000000

229

pandas: powerful Python data analysis toolkit, Release 0.16.1

mean
std
min
25%
50%
75%
max

0.073711
0.843157
-0.861849
-0.611510
0.022070
0.658444
1.212112

-0.431125
0.922818
-2.104569
-0.600794
-0.228039
0.041933
0.567020

-0.687758
0.779887
-1.509059
-1.368714
-0.767252
-0.034326
0.276232

-0.233103
0.973118
-1.135632
-1.076610
-0.386188
0.461706
1.071804

Transposing your data
In [20]: df.T
Out[20]:
2013-01-01
A
0.469112
B
-0.282863
C
-1.509059
D
-1.135632

2013-01-02
1.212112
-0.173215
0.119209
-1.044236

2013-01-03
-0.861849
-2.104569
-0.494929
1.071804

2013-01-04
0.721555
-0.706771
-1.039575
0.271860

2013-01-05
-0.424972
0.567020
0.276232
-1.087401

2013-01-06
-0.673690
0.113648
-1.478427
0.524988

Sorting by an axis
In [21]: df.sort_index(axis=1,
Out[21]:
D
C
2013-01-01 -1.135632 -1.509059
2013-01-02 -1.044236 0.119209
2013-01-03 1.071804 -0.494929
2013-01-04 0.271860 -1.039575
2013-01-05 -1.087401 0.276232
2013-01-06 0.524988 -1.478427

ascending=False)
B
A
-0.282863 0.469112
-0.173215 1.212112
-2.104569 -0.861849
-0.706771 0.721555
0.567020 -0.424972
0.113648 -0.673690

Sorting by values
In [22]: df.sort(columns='B')
Out[22]:
A
B
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-06 -0.673690 0.113648
2013-01-05 -0.424972 0.567020

C
D
-0.494929 1.071804
-1.039575 0.271860
-1.509059 -1.135632
0.119209 -1.044236
-1.478427 0.524988
0.276232 -1.087401

6.3 Selection
Note: While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for
interactive work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc,
.iloc and .ix.
See the indexing documentation Indexing and Selecing Data and MultiIndex / Advanced Indexing

6.3.1 Getting
Selecting a single column, which yields a Series, equivalent to df.A

230

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [23]: df['A']
Out[23]:
2013-01-01
0.469112
2013-01-02
1.212112
2013-01-03
-0.861849
2013-01-04
0.721555
2013-01-05
-0.424972
2013-01-06
-0.673690
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.
In [24]: df[0:3]
Out[24]:
A
B
C
D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
In [25]: df['20130102':'20130104']
Out[25]:
A
B
C
D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

6.3.2 Selection by Label
See more in Selection by Label
For getting a cross section using a label
In [26]: df.loc[dates[0]]
Out[26]:
A
0.469112
B
-0.282863
C
-1.509059
D
-1.135632
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label
In [27]: df.loc[:,['A','B']]
Out[27]:
A
B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648

Showing label slicing, both endpoints are included
In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]:
A
B
2013-01-02 1.212112 -0.173215

6.3. Selection

231

pandas: powerful Python data analysis toolkit, Release 0.16.1

2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771

Reduction in the dimensions of the returned object
In [29]: df.loc['20130102',['A','B']]
Out[29]:
A
1.212112
B
-0.173215
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value
In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

For getting fast access to a scalar (equiv to the prior method)
In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

6.3.3 Selection by Position
See more in Selection by Position
Select via the position of the passed integers
In [32]: df.iloc[3]
Out[32]:
A
0.721555
B
-0.706771
C
-1.039575
D
0.271860
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python
In [33]: df.iloc[3:5,0:2]
Out[33]:
A
B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020

By lists of integer position locations, similar to the numpy/python style
In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:
A
C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232

For slicing rows explicitly
In [35]: df.iloc[1:3,:]
Out[35]:
A
B
C
D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

232

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

For slicing columns explicitly
In [36]: df.iloc[:,1:3]
Out[36]:
B
C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427

For getting a value explicitly
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858

For getting fast access to a scalar (equiv to the prior method)
In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858

6.3.4 Boolean Indexing
Using a single column’s values to select data.
In [39]: df[df.A > 0]
Out[39]:
A
B
C
D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

A where operation for getting.
In [40]: df[df > 0]
Out[40]:
2013-01-01
2013-01-02
2013-01-03
2013-01-04
2013-01-05
2013-01-06

A
0.469112
1.212112
NaN
0.721555
NaN
NaN

B
NaN
NaN
NaN
NaN
0.567020
0.113648

C
NaN
0.119209
NaN
NaN
0.276232
NaN

D
NaN
NaN
1.071804
0.271860
NaN
0.524988

Using the isin() method for filtering:
In [41]: df2 = df.copy()
In [42]: df2['E']=['one', 'one','two','three','four','three']
In [43]: df2
Out[43]:
A
B
C
D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

6.3. Selection

E
one
one
two
three
four

233

pandas: powerful Python data analysis toolkit, Release 0.16.1

2013-01-06 -0.673690

0.113648 -1.478427

0.524988

In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]:
A
B
C
D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

three

E
two
four

6.3.5 Setting
Setting a new column automatically aligns the data by the indexes
In [45]: s1 = pd.Series([1,2,3,4,5,6],index=pd.date_range('20130102',periods=6))
In [46]: s1
Out[46]:
2013-01-02
1
2013-01-03
2
2013-01-04
3
2013-01-05
4
2013-01-06
5
2013-01-07
6
Freq: D, dtype: int64
In [47]: df['F'] = s1

Setting values by label
In [48]: df.at[dates[0],'A'] = 0

Setting values by position
In [49]: df.iat[0,1] = 0

Setting by assigning with a numpy array
In [50]: df.loc[:,'D'] = np.array([5] * len(df))

The result of the prior setting operations
In [51]: df
Out[51]:
A
B
C
2013-01-01 0.000000 0.000000 -1.509059
2013-01-02 1.212112 -0.173215 0.119209
2013-01-03 -0.861849 -2.104569 -0.494929
2013-01-04 0.721555 -0.706771 -1.039575
2013-01-05 -0.424972 0.567020 0.276232
2013-01-06 -0.673690 0.113648 -1.478427

D
F
5 NaN
5
1
5
2
5
3
5
4
5
5

A where operation with setting.
In [52]: df2 = df.copy()
In [53]: df2[df2 > 0] = -df2
In [54]: df2
Out[54]:
A

234

B

C

D

F

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

2013-01-01
2013-01-02
2013-01-03
2013-01-04
2013-01-05
2013-01-06

0.000000
-1.212112
-0.861849
-0.721555
-0.424972
-0.673690

0.000000
-0.173215
-2.104569
-0.706771
-0.567020
-0.113648

-1.509059
-0.119209
-0.494929
-1.039575
-0.276232
-1.478427

-5 NaN
-5 -1
-5 -2
-5 -3
-5 -4
-5 -5

6.4 Missing Data
pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See
the Missing Data section
Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.
In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + ['E'])
In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
In [57]: df1
Out[57]:
A
B
C
2013-01-01 0.000000 0.000000 -1.509059
2013-01-02 1.212112 -0.173215 0.119209
2013-01-03 -0.861849 -2.104569 -0.494929
2013-01-04 0.721555 -0.706771 -1.039575

D
F
E
5 NaN
1
5
1
1
5
2 NaN
5
3 NaN

To drop any rows that have missing data.
In [58]: df1.dropna(how='any')
Out[58]:
A
B
2013-01-02 1.212112 -0.173215

C
0.119209

D
5

F
1

E
1

In [59]: df1.fillna(value=5)
Out[59]:
A
B
C
2013-01-01 0.000000 0.000000 -1.509059
2013-01-02 1.212112 -0.173215 0.119209
2013-01-03 -0.861849 -2.104569 -0.494929
2013-01-04 0.721555 -0.706771 -1.039575

D
5
5
5
5

F
5
1
2
3

E
1
1
5
5

Filling missing data

To get the boolean mask where values are nan
In [60]: pd.isnull(df1)
Out[60]:
A
B
2013-01-01 False False
2013-01-02 False False
2013-01-03 False False
2013-01-04 False False

C
False
False
False
False

D
False
False
False
False

F
True
False
False
False

E
False
False
True
True

6.5 Operations
See the Basic section on Binary Ops
6.4. Missing Data

235

pandas: powerful Python data analysis toolkit, Release 0.16.1

6.5.1 Stats
Operations in general exclude missing data.
Performing a descriptive statistic
In [61]: df.mean()
Out[61]:
A
-0.004474
B
-0.383981
C
-0.687758
D
5.000000
F
3.000000
dtype: float64

Same operation on the other axis
In [62]: df.mean(1)
Out[62]:
2013-01-01
0.872735
2013-01-02
1.431621
2013-01-03
0.707731
2013-01-04
1.395042
2013-01-05
1.883656
2013-01-06
1.592306
Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically
broadcasts along the specified dimension.
In [63]: s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2)
In [64]: s
Out[64]:
2013-01-01
NaN
2013-01-02
NaN
2013-01-03
1
2013-01-04
3
2013-01-05
5
2013-01-06
NaN
Freq: D, dtype: float64
In [65]: df.sub(s,axis='index')
Out[65]:
A
B
C
D
F
2013-01-01
NaN
NaN
NaN NaN NaN
2013-01-02
NaN
NaN
NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929
4
1
2013-01-04 -2.278445 -3.706771 -4.039575
2
0
2013-01-05 -5.424972 -4.432980 -4.723768
0 -1
2013-01-06
NaN
NaN
NaN NaN NaN

6.5.2 Apply
Applying functions to the data
In [66]: df.apply(np.cumsum)
Out[66]:

236

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

A
2013-01-01 0.000000
2013-01-02 1.212112
2013-01-03 0.350263
2013-01-04 1.071818
2013-01-05 0.646846
2013-01-06 -0.026844

B
0.000000
-0.173215
-2.277784
-2.984555
-2.417535
-2.303886

C
-1.509059
-1.389850
-1.884779
-2.924354
-2.648122
-4.126549

D
F
5 NaN
10
1
15
3
20
6
25 10
30 15

In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A
2.073961
B
2.671590
C
1.785291
D
0.000000
F
4.000000
dtype: float64

6.5.3 Histogramming
See more at Histogramming and Discretization
In [68]: s = pd.Series(np.random.randint(0,7,size=10))
In [69]: s
Out[69]:
0
4
1
2
2
1
3
2
4
6
5
4
6
4
7
6
8
4
9
4
dtype: int32
In [70]: s.value_counts()
Out[70]:
4
5
6
2
2
2
1
1
dtype: int64

6.5.4 String Methods
Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each
element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions
by default (and in some cases always uses them). See more at Vectorized String Methods.
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [72]: s.str.lower()
Out[72]:

6.5. Operations

237

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
a
1
b
2
c
3
aaba
4
baca
5
NaN
6
caba
7
dog
8
cat
dtype: object

6.6 Merge
6.6.1 Concat
pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various
kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.
See the Merging section
Concatenating pandas objects together with concat():
In [73]: df = pd.DataFrame(np.random.randn(10, 4))
In [74]: df
Out[74]:
0
0 -0.548702
1 1.637550
2 -0.263952
3 -0.709661
4 -0.919854
5 0.290213
6 -1.131345
7 -0.932132
8 -0.575247
9 1.193555

1
1.467327
-1.217659
0.991460
1.669052
-0.042379
0.495767
-0.089329
1.956030
0.254161
-0.077118

2
-1.015962
-0.291519
-0.919069
1.037882
1.247642
0.362949
0.337863
0.017587
-1.143704
-0.408530

3
-0.483075
-1.745505
0.266046
-1.705775
-0.009920
1.548106
-0.945867
-0.016692
0.215897
-0.862495

# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)
Out[76]:
0
1
2
0 -0.548702 1.467327 -1.015962
1 1.637550 -1.217659 -0.291519
2 -0.263952 0.991460 -0.919069
3 -0.709661 1.669052 1.037882
4 -0.919854 -0.042379 1.247642
5 0.290213 0.495767 0.362949
6 -1.131345 -0.089329 0.337863
7 -0.932132 1.956030 0.017587
8 -0.575247 0.254161 -1.143704
9 1.193555 -0.077118 -0.408530

238

3
-0.483075
-1.745505
0.266046
-1.705775
-0.009920
1.548106
-0.945867
-0.016692
0.215897
-0.862495

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

6.6.2 Join
SQL style merges. See the Database style joining
In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
In [79]: left
Out[79]:
key lval
0 foo
1
1 foo
2
In [80]: right
Out[80]:
key rval
0 foo
4
1 foo
5
In [81]: pd.merge(left, right, on='key')
Out[81]:
key lval rval
0 foo
1
4
1 foo
1
5
2 foo
2
4
3 foo
2
5

6.6.3 Append
Append rows to a dataframe. See the Appending
In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
In [83]: df
Out[83]:
A
B
C
D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
In [84]: s = df.iloc[3]
In [85]: df.append(s, ignore_index=True)
Out[85]:
A
B
C
D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431

6.6. Merge

239

pandas: powerful Python data analysis toolkit, Release 0.16.1

6 0.141809
7 -0.096701
8 1.453749

0.220390 0.435589 0.192451
0.803351 1.715071 -0.708758
1.208843 -0.080952 -0.264610

6.7 Grouping
By “group by” we are referring to a process involving one or more of the following steps
• Splitting the data into groups based on some criteria
• Applying a function to each group independently
• Combining the results into a data structure
See the Grouping section
In [86]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
....:
'foo', 'bar', 'foo', 'foo'],
....:
'B' : ['one', 'one', 'two', 'three',
....:
'two', 'two', 'one', 'three'],
....:
'C' : np.random.randn(8),
....:
'D' : np.random.randn(8)})
....:
In [87]: df
Out[87]:
A
B
0 foo
one
1 bar
one
2 foo
two
3 bar three
4 foo
two
5 bar
two
6 foo
one
7 foo three

C
-1.202872
-1.814470
1.018601
-0.595447
1.395433
-0.392670
0.007207
1.928123

D
-0.055224
2.395985
1.552825
0.166599
0.047609
-0.136473
-0.561757
-1.623033

Grouping and then applying a function sum to the resulting groups.
In [88]: df.groupby('A').sum()
Out[88]:
C
D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958

Grouping by multiple columns forms a hierarchical index, which we then apply the function.
In [89]: df.groupby(['A','B']).sum()
Out[89]:
C
D
A
B
bar one
-1.814470 2.395985
three -0.595447 0.166599
two
-0.392670 -0.136473
foo one
-1.195665 -0.616981
three 1.928123 -1.623033
two
2.414034 1.600434

240

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

6.8 Reshaping
See the sections on Hierarchical Indexing and Reshaping.

6.8.1 Stack
In [90]: tuples = list(zip(*[['bar',
....:
'foo',
....:
['one',
....:
'one',
....:

'bar',
'foo',
'two',
'two',

'baz',
'qux',
'one',
'one',

'baz',
'qux'],
'two',
'two']]))

In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
In [93]: df2 = df[:4]
In [94]: df2
Out[94]:
A
B
first second
bar
one
0.029399 -0.542108
two
0.282696 -0.087302
baz
one
-1.575170 1.771208
two
0.816482 1.100230

The stack() method “compresses” a level in the DataFrame’s columns.
In [95]: stacked = df2.stack()
In [96]: stacked
Out[96]:
first second
bar
one
A
B
two
A
B
baz
one
A
B
two
A
B
dtype: float64

0.029399
-0.542108
0.282696
-0.087302
-1.575170
1.771208
0.816482
1.100230

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack() is
unstack(), which by default unstacks the last level:
In [97]: stacked.unstack()
Out[97]:
A
B
first second
bar
one
0.029399 -0.542108
two
0.282696 -0.087302
baz
one
-1.575170 1.771208
two
0.816482 1.100230
In [98]: stacked.unstack(1)

6.8. Reshaping

241

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[98]:
second
one
two
first
bar
A 0.029399 0.282696
B -0.542108 -0.087302
baz
A -1.575170 0.816482
B 1.771208 1.100230
In [99]: stacked.unstack(0)
Out[99]:
first
bar
baz
second
one
A 0.029399 -1.575170
B -0.542108 1.771208
two
A 0.282696 0.816482
B -0.087302 1.100230

6.8.2 Pivot Tables
See the section on Pivot Tables.
In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
.....:
'B' : ['A', 'B', 'C'] * 4,
.....:
'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....:
'D' : np.random.randn(12),
.....:
'E' : np.random.randn(12)})
.....:
In [101]: df
Out[101]:
A B
0
one A
1
one B
2
two C
3
three A
4
one B
5
one C
6
two A
7
three B
8
one C
9
one A
10
two B
11 three C

C
foo
foo
foo
bar
bar
bar
foo
foo
foo
bar
bar
bar

D
1.418757
-1.879024
0.536826
1.006160
-0.029716
-1.146178
0.100900
-1.035018
0.314665
-0.773723
-1.170653
0.648740

E
-0.179666
1.291836
-0.009614
0.392149
0.264599
-0.057409
-1.425638
1.024098
-0.106062
1.824375
0.595974
1.167115

We can produce pivot tables from this data very easily:
In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[102]:
C
bar
foo
A
B
one
A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160
NaN
B
NaN -1.035018
C 0.648740
NaN
two
A
NaN 0.100900

242

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

B -1.170653
C
NaN

NaN
0.536826

6.9 Time Series
pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial
applications. See the Time Series section
In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
In [105]: ts.resample('5Min', how='sum')
Out[105]:
2012-01-01
25083
Freq: 5T, dtype: int32

Time zone representation
In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)
In [108]: ts
Out[108]:
2012-03-06
0.464000
2012-03-07
0.227371
2012-03-08
-0.496922
2012-03-09
0.306389
2012-03-10
-2.290613
Freq: D, dtype: float64
In [109]: ts_utc = ts.tz_localize('UTC')
In [110]: ts_utc
Out[110]:
2012-03-06 00:00:00+00:00
2012-03-07 00:00:00+00:00
2012-03-08 00:00:00+00:00
2012-03-09 00:00:00+00:00
2012-03-10 00:00:00+00:00
Freq: D, dtype: float64

0.464000
0.227371
-0.496922
0.306389
-2.290613

Convert to another time zone
In [111]: ts_utc.tz_convert('US/Eastern')
Out[111]:
2012-03-05 19:00:00-05:00
0.464000
2012-03-06 19:00:00-05:00
0.227371
2012-03-07 19:00:00-05:00
-0.496922
2012-03-08 19:00:00-05:00
0.306389
2012-03-09 19:00:00-05:00
-2.290613
Freq: D, dtype: float64

Converting between time span representations

6.9. Time Series

243

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [114]: ts
Out[114]:
2012-01-31
-1.134623
2012-02-29
-1.561819
2012-03-31
-0.260838
2012-04-30
0.281957
2012-05-31
1.523962
Freq: M, dtype: float64
In [115]: ps = ts.to_period()
In [116]: ps
Out[116]:
2012-01
-1.134623
2012-02
-1.561819
2012-03
-0.260838
2012-04
0.281957
2012-05
1.523962
Freq: M, dtype: float64
In [117]: ps.to_timestamp()
Out[117]:
2012-01-01
-1.134623
2012-02-01
-1.561819
2012-03-01
-0.260838
2012-04-01
0.281957
2012-05-01
1.523962
Freq: MS, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following
example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following
the quarter end:
In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [121]: ts.head()
Out[121]:
1990-03-01 09:00
-0.902937
1990-06-01 09:00
0.068159
1990-09-01 09:00
-0.057873
1990-12-01 09:00
-0.368204
1991-03-01 09:00
-1.144073
Freq: H, dtype: float64

6.10 Categoricals
Since version 0.15, pandas can include categorical data in a DataFrame. For full docs, see the categorical introduction and the API documentation.
244

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

Convert the raw grades to a categorical data type.
In [123]: df["grade"] = df["raw_grade"].astype("category")
In [124]: df["grade"]
Out[124]:
0
a
1
b
2
b
3
a
4
a
5
e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

Rename the categories to more meaningful names (assigning to Series.cat.categories is inplace!)
In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"]

Reorder the categories and simultaneously add the missing categories (methods under Series .cat return a new
Series per default).

In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very go
In [127]: df["grade"]
Out[127]:
0
very good
1
good
2
good
3
very good
4
very good
5
very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

Sorting is per order in the categories, not lexical order.
In [128]: df.sort("grade")
Out[128]:
id raw_grade
grade
5
6
e
very bad
1
2
b
good
2
3
b
good
0
1
a very good
3
4
a very good
4
5
a very good

Grouping by a categorical column shows also empty categories.
In [129]: df.groupby("grade").size()
Out[129]:
grade
very bad
1
bad
NaN
medium
NaN
good
2
very good
3
dtype: float64

6.10. Categoricals

245

pandas: powerful Python data analysis toolkit, Release 0.16.1

6.11 Plotting
Plotting docs.
In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [131]: ts = ts.cumsum()
In [132]: ts.plot()
Out[132]: 

On DataFrame, plot() is a convenience to plot all of the columns with labels:
In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
.....:
columns=['A', 'B', 'C', 'D'])
.....:
In [134]: df = df.cumsum()
In [135]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[135]: 

246

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

6.12 Getting Data In/Out
6.12.1 CSV
Writing to a csv file
In [136]: df.to_csv('foo.csv')

Reading from a csv file
In [137]: pd.read_csv('foo.csv')
Out[137]:
Unnamed: 0
A
B
C
0
2000-01-01
0.266457 -0.399641 -0.219582
1
2000-01-02 -1.170732 -0.345873 1.653061
2
2000-01-03 -1.734933
0.530468 2.060811
3
2000-01-04 -1.555121
1.452620 0.239859
4
2000-01-05
0.578117
0.511371 0.103552
5
2000-01-06
0.478344
0.449933 -0.741620
6
2000-01-07
1.235339 -0.091757 -1.543861
..
...
...
...
...

6.12. Getting Data In/Out

D
1.186860
-0.282953
-0.515536
-1.156896
-2.428202
-1.962409
-1.084753
...

247

pandas: powerful Python data analysis toolkit, Release 0.16.1

993
994
995
996
997
998
999

2002-09-20
2002-09-21
2002-09-22
2002-09-23
2002-09-24
2002-09-25
2002-09-26

-10.628548 -9.153563
-10.390377 -8.727491
-8.985362 -8.485624
-9.558560 -8.781216
-9.902058 -9.340490
-10.216020 -9.480682
-11.856774 -10.671012

-7.883146
-6.399645
-4.669462
-4.499815
-4.386639
-3.933802
-3.216025

28.313940
30.914107
31.367740
30.518439
30.105593
29.758560
29.369368

[1000 rows x 5 columns]

6.12.2 HDF5
Reading and writing to HDFStores
Writing to a HDF5 Store
In [138]: df.to_hdf('foo.h5','df')

Reading from a HDF5 Store
In [139]: pd.read_hdf('foo.h5','df')
Out[139]:
A
B
C
2000-01-01
0.266457 -0.399641 -0.219582
2000-01-02 -1.170732 -0.345873 1.653061
2000-01-03 -1.734933
0.530468 2.060811
2000-01-04 -1.555121
1.452620 0.239859
2000-01-05
0.578117
0.511371 0.103552
2000-01-06
0.478344
0.449933 -0.741620
2000-01-07
1.235339 -0.091757 -1.543861
...
...
...
...
2002-09-20 -10.628548 -9.153563 -7.883146
2002-09-21 -10.390377 -8.727491 -6.399645
2002-09-22 -8.985362 -8.485624 -4.669462
2002-09-23 -9.558560 -8.781216 -4.499815
2002-09-24 -9.902058 -9.340490 -4.386639
2002-09-25 -10.216020 -9.480682 -3.933802
2002-09-26 -11.856774 -10.671012 -3.216025

D
1.186860
-0.282953
-0.515536
-1.156896
-2.428202
-1.962409
-1.084753
...
28.313940
30.914107
31.367740
30.518439
30.105593
29.758560
29.369368

[1000 rows x 4 columns]

6.12.3 Excel
Reading and writing to MS Excel
Writing to an excel file
In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

Reading from an excel file
In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[141]:
A
B
C
D
2000-01-01
0.266457 -0.399641 -0.219582
1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933
0.530468 2.060811 -0.515536

248

Chapter 6. 10 Minutes to pandas

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-04
2000-01-05
2000-01-06
2000-01-07
...
2002-09-20
2002-09-21
2002-09-22
2002-09-23
2002-09-24
2002-09-25
2002-09-26

-1.555121
1.452620
0.578117
0.511371
0.478344
0.449933
1.235339 -0.091757
...
...
-10.628548 -9.153563
-10.390377 -8.727491
-8.985362 -8.485624
-9.558560 -8.781216
-9.902058 -9.340490
-10.216020 -9.480682
-11.856774 -10.671012

0.239859
0.103552
-0.741620
-1.543861
...
-7.883146
-6.399645
-4.669462
-4.499815
-4.386639
-3.933802
-3.216025

-1.156896
-2.428202
-1.962409
-1.084753
...
28.313940
30.914107
31.367740
30.518439
30.105593
29.758560
29.369368

[1000 rows x 4 columns]

6.13 Gotchas
If you are trying an operation and you see an exception like:
>>> if pd.Series([False, True, False]):
print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

See Comparisons for an explanation and what to do.
See Gotchas as well.

6.13. Gotchas

249

pandas: powerful Python data analysis toolkit, Release 0.16.1

250

Chapter 6. 10 Minutes to pandas

CHAPTER

SEVEN

TUTORIALS

This is a guide to many pandas tutorials, geared mainly for new users.

7.1 Internal Guides
pandas own 10 Minutes to pandas
More complex recipes are in the Cookbook

7.2 pandas Cookbook
The goal of this cookbook (by Julia Evans) is to give you some concrete examples for getting started with pandas.
These are examples with real-world data, and all the bugs and weirdness that that entails.
Here are links to the v0.1 release. For an up-to-date table of contents, see the pandas-cookbook GitHub repository. To
run the examples in this tutorial, you’ll need to clone the GitHub repository and get IPython Notebook running. See
How to use this cookbook.
• A quick tour of the IPython Notebook: Shows off IPython’s awesome tab completion and magic functions.
• Chapter 1: Reading your data into pandas is pretty much the easiest thing. Even when the encoding is wrong!
• Chapter 2: It’s not totally obvious how to select data from a pandas dataframe. Here we explain the basics (how
to take slices and get columns)
• Chapter 3: Here we get into serious slicing and dicing and learn how to filter dataframes in complicated ways,
really fast.
• Chapter 4: Groupby/aggregate is seriously my favorite thing about pandas and I use it all the time. You should
probably read this.
• Chapter 5: Here you get to find out if it’s cold in Montreal in the winter (spoiler: yes). Web scraping with pandas
is fun! Here we combine dataframes.
• Chapter 6: Strings with pandas are great. It has all these vectorized string operations and they’re the best. We
will turn a bunch of strings containing “Snow” into vectors of numbers in a trice.
• Chapter 7: Cleaning up messy data is never a joy, but with pandas it’s easier.
• Chapter 8: Parsing Unix timestamps is confusing at first but it turns out to be really easy.

251

pandas: powerful Python data analysis toolkit, Release 0.16.1

7.3 Lessons for New pandas Users
For more resources, please visit the main repository.
• 01 - Lesson: - Importing libraries - Creating data sets - Creating data frames - Reading from CSV - Exporting
to CSV - Finding maximums - Plotting data
• 02 - Lesson: - Reading from TXT - Exporting to TXT - Selecting top/bottom records - Descriptive statistics Grouping/sorting data
• 03 - Lesson: - Creating functions - Reading from EXCEL - Exporting to EXCEL - Outliers - Lambda functions
- Slice and dice data
• 04 - Lesson: - Adding/deleting columns - Index operations
• 05 - Lesson: - Stack/Unstack/Transpose functions
• 06 - Lesson: - GroupBy function
• 07 - Lesson: - Ways to calculate outliers
• 08 - Lesson: - Read from Microsoft SQL databases
• 09 - Lesson: - Export to CSV/EXCEL/TXT
• 10 - Lesson: - Converting between different kinds of formats
• 11 - Lesson: - Combining data from various sources

7.4 Practical data analysis with Python
This guide is a comprehensive introduction to the data analysis process using the Python data ecosystem and an
interesting open dataset. There are four sections covering selected topics as follows:
• Munging Data
• Aggregating Data
• Visualizing Data
• Time Series

7.5 Excel charts with pandas, vincent and xlsxwriter
• Using Pandas and XlsxWriter to create Excel charts

7.6 Various Tutorials
• Wes McKinney’s (pandas BDFL) blog
• Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson
• Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013
• Financial analysis in python, by Thomas Wiecki
• Intro to pandas data structures, by Greg Reda

252

Chapter 7. Tutorials

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Pandas and Python: Top 10, by Manish Amde
• Pandas Tutorial, by Mikhail Semeniuk

7.6. Various Tutorials

253

pandas: powerful Python data analysis toolkit, Release 0.16.1

254

Chapter 7. Tutorials

CHAPTER

EIGHT

COOKBOOK

This is a repository for short and sweet examples and links for useful pandas recipes. We encourage users to add to
this documentation.
Adding interesting links and/or inline examples to this section is a great First Pull Request.
Simplified, condensed, new-user friendly, in-line examples have been inserted where possible to augment the StackOverflow and GitHub links. Many of the links contain expanded information, above what the in-line examples offer.
Pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept explicitly imported for
newer users.
These examples are written for python 3.4. Minor tweaks might be necessary for earlier python versions.

8.1 Idioms
These are some neat pandas idioms
if-then/if-then-else on one column, and assignment to another one or more columns:
In [1]: df =
...:
...:
Out[1]:
AAA BBB
0
4
10
1
5
20
2
6
30
3
7
40

pd.DataFrame(
{'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df

CCC
100
50
-30
-50

8.1.1 if-then...
An if-then on one column
In [2]: df.ix[df.AAA >= 5,'BBB'] = -1; df
Out[2]:
AAA BBB CCC
0
4
10 100
1
5
-1
50
2
6
-1 -30
3
7
-1 -50

An if-then with assignment to 2 columns:

255

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [3]:
Out[3]:
AAA
0
4
1
5
2
6
3
7

df.ix[df.AAA >= 5,['BBB','CCC']] = 555; df
BBB
10
555
555
555

CCC
100
555
555
555

Add another line with different logic, to do the -else
In [4]: df.ix[df.AAA < 5,['BBB','CCC']] = 2000; df
Out[4]:
AAA
BBB
CCC
0
4 2000 2000
1
5
555
555
2
6
555
555
3
7
555
555

Or use pandas where after you’ve set up a mask
In [5]: df_mask = pd.DataFrame({'AAA' : [True] * 4, 'BBB' : [False] * 4,'CCC' : [True,False] * 2})
In [6]: df.where(df_mask,-1000)
Out[6]:
AAA
BBB
CCC
0
4 -1000 2000
1
5 -1000 -1000
2
6 -1000
555
3
7 -1000 -1000

if-then-else using numpy’s where()
In [7]: df =
...:
...:
Out[7]:
AAA BBB
0
4
10
1
5
20
2
6
30
3
7
40

pd.DataFrame(
{'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df

CCC
100
50
-30
-50

In [8]: df['logic'] = np.where(df['AAA'] > 5,'high','low'); df
Out[8]:
AAA BBB CCC logic
0
4
10 100
low
1
5
20
50
low
2
6
30 -30 high
3
7
40 -50 high

8.1.2 Splitting
Split a frame with a boolean criterion
In [9]: df = pd.DataFrame(
...:
{'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
...:
Out[9]:

256

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1
2
3

AAA
4
5
6
7

BBB
10
20
30
40

CCC
100
50
-30
-50

In [10]: dflow = df[df.AAA <= 5]
In [11]: dfhigh = df[df.AAA > 5]
In [12]: dflow; dfhigh
Out[12]:
AAA BBB CCC
2
6
30 -30
3
7
40 -50

8.1.3 Building Criteria
Select with multi-column criteria
In [13]: df = pd.DataFrame(
....:
{'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
....:
Out[13]:
AAA BBB CCC
0
4
10 100
1
5
20
50
2
6
30 -30
3
7
40 -50

...and (without assignment returns a Series)
In [14]: newseries = df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']; newseries
Out[14]:
0
4
1
5
Name: AAA, dtype: int64

...or (without assignment returns a Series)
In [15]: newseries = df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']; newseries;

...or (with assignment modifies the DataFrame.)
In [16]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= 75), 'AAA'] = 0.1; df
Out[16]:
AAA BBB CCC
0 0.1
10 100
1 5.0
20
50
2 0.1
30 -30
3 0.1
40 -50

Select rows with data closest to certain value using argsort
In [17]: df = pd.DataFrame(
....:
{'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
....:
Out[17]:

8.1. Idioms

257

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1
2
3

AAA
4
5
6
7

BBB
10
20
30
40

CCC
100
50
-30
-50

In [18]: aValue = 43.0
In [19]: df.ix[(df.CCC-aValue).abs().argsort()]
Out[19]:
AAA BBB CCC
1
5
20
50
0
4
10 100
2
6
30 -30
3
7
40 -50

Dynamically reduce a list of criteria using a binary operators
In [20]: df = pd.DataFrame(
....:
{'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
....:
Out[20]:
AAA BBB CCC
0
4
10 100
1
5
20
50
2
6
30 -30
3
7
40 -50
In [21]: Crit1 = df.AAA <= 5.5
In [22]: Crit2 = df.BBB == 10.0
In [23]: Crit3 = df.CCC > -40.0

One could hard code:
In [24]: AllCrit = Crit1 & Crit2 & Crit3

...Or it can be done with a list of dynamically built criteria
In [25]: CritList = [Crit1,Crit2,Crit3]
In [26]: AllCrit = functools.reduce(lambda x,y: x & y, CritList)
In [27]: df[AllCrit]
Out[27]:
AAA BBB CCC
0
4
10 100

8.2 Selection
8.2.1 DataFrames
The indexing docs.
Using both row labels and value conditionals

258

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [28]: df = pd.DataFrame(
....:
{'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
....:
Out[28]:
AAA BBB CCC
0
4
10 100
1
5
20
50
2
6
30 -30
3
7
40 -50
In [29]: df[(df.AAA <= 6) & (df.index.isin([0,2,4]))]
Out[29]:
AAA BBB CCC
0
4
10 100
2
6
30 -30

Use loc for label-oriented slicing and iloc positional slicing
In [30]: data = {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}
In [31]: df = pd.DataFrame(data=data,index=['foo','bar','boo','kar']); df
Out[31]:
AAA BBB CCC
foo
4
10 100
bar
5
20
50
boo
6
30 -30
kar
7
40 -50

There are 2 explicit slicing methods, with a third general case
1. Positional-oriented (Python slicing style : exclusive of end)
2. Label-oriented (Non-Python slicing style : inclusive of end)
3. General (Either slicing style : depends on if the slice contains labels or positions)
In [32]: df.loc['bar':'kar'] #Label
Out[32]:
AAA BBB CCC
bar
5
20
50
boo
6
30 -30
kar
7
40 -50
#Generic
In [33]: df.ix[0:3] #Same as .iloc[0:3]
Out[33]:
AAA BBB CCC
foo
4
10 100
bar
5
20
50
boo
6
30 -30
In [34]: df.ix['bar':'kar'] #Same as .loc['bar':'kar']
Out[34]:
AAA BBB CCC
bar
5
20
50
boo
6
30 -30
kar
7
40 -50

Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.

8.2. Selection

259

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [35]: df2 = pd.DataFrame(data=data,index=[1,2,3,4]); #Note index starts at 1.
In [36]: df2.iloc[1:3] #Position-oriented
Out[36]:
AAA BBB CCC
2
5
20
50
3
6
30 -30
In [37]: df2.loc[1:3] #Label-oriented
Out[37]:
AAA BBB CCC
1
4
10 100
2
5
20
50
3
6
30 -30
In [38]: df2.ix[1:3] #General, will mimic loc (label-oriented)
Out[38]:
AAA BBB CCC
1
4
10 100
2
5
20
50
3
6
30 -30

In [39]: df2.ix[0:3] #General, will mimic iloc (position-oriented), as loc[0:3] would raise a KeyErro
Out[39]:
AAA BBB CCC
1
4
10 100
2
5
20
50
3
6
30 -30

Using inverse operator (~) to take the complement of a mask
In [40]: df = pd.DataFrame(
....:
{'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40], 'CCC' : [100,50,-30,-50]}); df
....:
Out[40]:
AAA BBB CCC
0
4
10 100
1
5
20
50
2
6
30 -30
3
7
40 -50
In [41]: df[~((df.AAA <= 6) & (df.index.isin([0,2,4])))]
Out[41]:
AAA BBB CCC
1
5
20
50
3
7
40 -50

8.2.2 Panels
Extend a panel frame by transposing, adding a new dimension, and transposing back to the original dimensions
In [42]: rng = pd.date_range('1/1/2013',periods=100,freq='D')
In [43]: data = np.random.randn(100, 4)
In [44]: cols = ['A','B','C','D']

260

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [45]: df1, df2, df3 = pd.DataFrame(data, rng, cols), pd.DataFrame(data, rng, cols), pd.DataFrame(d
In [46]: pf = pd.Panel({'df1':df1,'df2':df2,'df3':df3});pf
Out[46]:

Dimensions: 3 (items) x 100 (major_axis) x 4 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to D
#Assignment using Transpose (pandas < 0.15)
In [47]: pf = pf.transpose(2,0,1)
In [48]: pf['E'] = pd.DataFrame(data, rng, cols)
In [49]: pf = pf.transpose(1,2,0);pf
Out[49]:

Dimensions: 3 (items) x 100 (major_axis) x 5 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to E
#Direct assignment (pandas > 0.15)
In [50]: pf.loc[:,:,'F'] = pd.DataFrame(data, rng, cols);pf
Out[50]:

Dimensions: 3 (items) x 100 (major_axis) x 6 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to F

Mask a panel by using np.where and then reconstructing the panel with the new masked values

8.2.3 New Columns
Efficiently and dynamically creating new columns using applymap
In [51]: df = pd.DataFrame(
....:
{'AAA' : [1,2,1,3], 'BBB' : [1,1,2,2], 'CCC' : [2,1,3,1]}); df
....:
Out[51]:
AAA BBB CCC
0
1
1
2
1
2
1
1
2
1
2
3
3
3
2
1
In [52]: source_cols = df.columns # or some subset would work too.
In [53]: new_cols = [str(x) + "_cat" for x in source_cols]
In [54]: categories = {1 : 'Alpha', 2 : 'Beta', 3 : 'Charlie' }
In [55]: df[new_cols] = df[source_cols].applymap(categories.get);df
Out[55]:
AAA BBB CCC AAA_cat BBB_cat CCC_cat

8.2. Selection

261

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1
2
3

1
2
1
3

1
1
2
2

2
1
3
1

Alpha
Beta
Alpha
Charlie

Alpha
Alpha
Beta
Beta

Beta
Alpha
Charlie
Alpha

Keep other columns when using min() with groupby
In [56]: df = pd.DataFrame(
....:
{'AAA' : [1,1,1,2,2,2,3,3], 'BBB' : [2,1,3,4,5,1,2,3]}); df
....:
Out[56]:
AAA BBB
0
1
2
1
1
1
2
1
3
3
2
4
4
2
5
5
2
1
6
3
2
7
3
3

Method 1 : idxmin() to get the index of the mins
In [57]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[57]:
AAA BBB
1
1
1
5
2
1
6
3
2

Method 2 : sort then take first of each
In [58]: df.sort("BBB").groupby("AAA", as_index=False).first()
Out[58]:
AAA BBB
0
1
1
1
2
1
2
3
2

Notice the same results, with the exception of the index.

8.3 MultiIndexing
The multindexing docs.
Creating a multi-index from a labeled frame
In [59]: df = pd.DataFrame({'row' :
....:
'One_X'
....:
'One_Y'
....:
'Two_X'
....:
'Two_Y'
....:
Out[59]:
One_X One_Y Two_X Two_Y row
0
1.1
1.2
1.11
1.22
0
1
1.1
1.2
1.11
1.22
1
2
1.1
1.2
1.11
1.22
2

262

[0,1,2],
: [1.1,1.1,1.1],
: [1.2,1.2,1.2],
: [1.11,1.11,1.11],
: [1.22,1.22,1.22]}); df

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

# As Labelled Index
In [60]: df = df.set_index('row');df
Out[60]:
One_X One_Y Two_X Two_Y
row
0
1.1
1.2
1.11
1.22
1
1.1
1.2
1.11
1.22
2
1.1
1.2
1.11
1.22
# With Heirarchical Columns
In [61]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split('_')) for c in df.columns]);df
Out[61]:
One
Two
X
Y
X
Y
row
0
1.1 1.2 1.11 1.22
1
1.1 1.2 1.11 1.22
2
1.1 1.2 1.11 1.22
# Now stack & Reset
In [62]: df = df.stack(0).reset_index(1);df
Out[62]:
level_1
X
Y
row
0
One 1.10 1.20
0
Two 1.11 1.22
1
One 1.10 1.20
1
Two 1.11 1.22
2
One 1.10 1.20
2
Two 1.11 1.22
# And fix the labels (Notice the label 'level_1' got added automatically)
In [63]: df.columns = ['Sample','All_X','All_Y'];df
Out[63]:
Sample All_X All_Y
row
0
One
1.10
1.20
0
Two
1.11
1.22
1
One
1.10
1.20
1
Two
1.11
1.22
2
One
1.10
1.20
2
Two
1.11
1.22

8.3.1 Arithmetic
Performing arithmetic with a multi-index that needs broadcasting
In [64]: cols = pd.MultiIndex.from_tuples([ (x,y) for x in ['A','B','C'] for y in ['O','I']])
In [65]: df = pd.DataFrame(np.random.randn(2,6),index=['n','m'],columns=cols); df
Out[65]:
A
B
C
O
I
O
I
O
I
n 1.920906 -0.388231 -2.314394 0.665508 0.402562 0.399555
m -1.765956 0.850423 0.388054 0.992312 0.744086 -0.739776

8.3. MultiIndexing

263

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [66]: df = df.div(df['C'],level=1); df
Out[66]:
A
B
O
I
O
I
n 4.771702 -0.971660 -5.749162 1.665625
m -2.373321 -1.149568 0.521518 -1.341367

C
O
1
1

I
1
1

8.3.2 Slicing
Slicing a multi-index with xs
In [67]: coords = [('AA','one'),('AA','six'),('BB','one'),('BB','two'),('BB','six')]
In [68]: index = pd.MultiIndex.from_tuples(coords)
In [69]: df = pd.DataFrame([11,22,33,44,55],index,['MyData']); df
Out[69]:
MyData
AA one
11
six
22
BB one
33
two
44
six
55

To take the cross section of the 1st level and 1st axis the index:
In [70]: df.xs('BB',level=0,axis=0)
Out[70]:
MyData
one
33
two
44
six
55

#Note : level and axis are optional, and default to zero

...and now the 2nd level of the 1st axis.
In [71]: df.xs('six',level=1,axis=0)
Out[71]:
MyData
AA
22
BB
55

Slicing a multi-index with xs, method #2
In [72]: index = list(itertools.product(['Ada','Quinn','Violet'],['Comp','Math','Sci']))
In [73]: headr = list(itertools.product(['Exams','Labs'],['I','II']))
In [74]: indx = pd.MultiIndex.from_tuples(index,names=['Student','Course'])
In [75]: cols = pd.MultiIndex.from_tuples(headr) #Notice these are un-named
In [76]: data = [[70+x+y+(x*y)%3 for x in range(4)] for y in range(9)]
In [77]: df = pd.DataFrame(data,indx,cols); df
Out[77]:
Exams
Labs
I II
I II
Student Course

264

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

Ada

Quinn

Violet

Comp
Math
Sci
Comp
Math
Sci
Comp
Math
Sci

70
71
72
73
74
75
76
77
78

71
73
75
74
76
78
77
79
81

72
75
75
75
78
78
78
81
81

73
74
75
76
77
78
79
80
81

In [78]: All = slice(None)
In [79]: df.loc['Violet']
Out[79]:
Exams
Labs
I II
I II
Course
Comp
76 77
78 79
Math
77 79
81 80
Sci
78 81
81 81
In [80]: df.loc[(All,'Math'),All]
Out[80]:
Exams
Labs
I II
I II
Student Course
Ada
Math
71 73
75 74
Quinn
Math
74 76
78 77
Violet Math
77 79
81 80
In [81]: df.loc[(slice('Ada','Quinn'),'Math'),All]
Out[81]:
Exams
Labs
I II
I II
Student Course
Ada
Math
71 73
75 74
Quinn
Math
74 76
78 77
In [82]: df.loc[(All,'Math'),('Exams')]
Out[82]:
I II
Student Course
Ada
Math
71 73
Quinn
Math
74 76
Violet Math
77 79
In [83]: df.loc[(All,'Math'),(All,'II')]
Out[83]:
Exams Labs
II
II
Student Course
Ada
Math
73
74
Quinn
Math
76
77
Violet Math
79
80

Setting portions of a multi-index with xs

8.3. MultiIndexing

265

pandas: powerful Python data analysis toolkit, Release 0.16.1

8.3.3 Sorting
Sort by specific column or an ordered list of columns, with a multi-index
In [84]: df.sort(('Labs', 'II'), ascending=False)
Out[84]:
Exams
Labs
I II
I II
Student Course
Violet Sci
78 81
81 81
Math
77 79
81 80
Comp
76 77
78 79
Quinn
Sci
75 78
78 78
Math
74 76
78 77
Comp
73 74
75 76
Ada
Sci
72 75
75 75
Math
71 73
75 74
Comp
70 71
72 73

Partial Selection, the need for sortedness;

8.3.4 Levels
Prepending a level to a multiindex
Flatten Hierarchical columns

8.3.5 panelnd
The panelnd docs.
Construct a 5D panelnd

8.4 Missing Data
The missing data docs.
Fill forward a reversed timeseries

In [85]: df = pd.DataFrame(np.random.randn(6,1), index=pd.date_range('2013-08-01', periods=6, freq='B
In [86]: df.ix[3,'A'] = np.nan
In [87]: df
Out[87]:
A
2013-08-01 -1.054874
2013-08-02 -0.179642
2013-08-05 0.639589
2013-08-06
NaN
2013-08-07 1.906684
2013-08-08 0.104050
In [88]: df.reindex(df.index[::-1]).ffill()
Out[88]:

266

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

A
2013-08-08 0.104050
2013-08-07 1.906684
2013-08-06 1.906684
2013-08-05 0.639589
2013-08-02 -0.179642
2013-08-01 -1.054874

cumsum reset at NaN values

8.4.1 Replace
Using replace with backrefs

8.5 Grouping
The grouping docs.
Basic grouping with apply
Unlike agg, apply’s callable is passed a sub-DataFrame which gives you access to all the columns
In [89]: df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
....:
'size': list('SSMMMLL'),
....:
'weight': [8, 10, 11, 1, 20, 12, 12],
....:
'adult' : [False] * 5 + [True] * 2}); df
....:
Out[89]:
adult animal size weight
0 False
cat
S
8
1 False
dog
S
10
2 False
cat
M
11
3 False
fish
M
1
4 False
dog
M
20
5
True
cat
L
12
6
True
cat
L
12
#List the size of the animals with the highest weight.
In [90]: df.groupby('animal').apply(lambda subf: subf['size'][subf['weight'].idxmax()])
Out[90]:
animal
cat
L
dog
M
fish
M
dtype: object

Using get_group
In [91]: gb = df.groupby(['animal'])
In [92]: gb.get_group('cat')
Out[92]:
adult animal size weight
0 False
cat
S
8
2 False
cat
M
11

8.5. Grouping

267

pandas: powerful Python data analysis toolkit, Release 0.16.1

5
6

True
True

cat
cat

L
L

12
12

Apply to different items in a group
In [93]: def GrowUp(x):
....:
avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
....:
avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
....:
avg_weight += sum(x[x['size'] == 'L'].weight)
....:
avg_weight /= len(x)
....:
return pd.Series(['L',avg_weight,True], index=['size', 'weight', 'adult'])
....:
In [94]: expected_df = gb.apply(GrowUp)
In [95]: expected_df
Out[95]:
size
weight adult
animal
cat
L 12.4375 True
dog
L 20.0000 True
fish
L
1.2500 True

Expanding Apply
In [96]: S = pd.Series([i / 100.0 for i in range(1,11)])
In [97]: def CumRet(x,y):
....:
return x * (1 + y)
....:
In [98]: def Red(x):
....:
return functools.reduce(CumRet,x,1.0)
....:
In [99]: pd.expanding_apply(S, Red)
Out[99]:
0
1.010000
1
1.030200
2
1.061106
3
1.103550
4
1.158728
5
1.228251
6
1.314229
7
1.419367
8
1.547110
9
1.701821
dtype: float64

Replacing some values with mean of the rest of a group
In [100]: df = pd.DataFrame({'A' : [1, 1, 2, 2], 'B' : [1, -1, 1, 2]})
In [101]: gb = df.groupby('A')
In [102]: def replace(g):
.....:
mask = g < 0
.....:
g.loc[mask] = g[~mask].mean()
.....:
return g

268

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

.....:
In [103]: gb.transform(replace)
Out[103]:
B
0 1
1 1
2 1
3 2

Sort groups by aggregated data
In [104]: df = pd.DataFrame({'code': ['foo', 'bar', 'baz'] * 2,
.....:
'data': [0.16, -0.21, 0.33, 0.45, -0.59, 0.62],
.....:
'flag': [False, True] * 3})
.....:
In [105]: code_groups = df.groupby('code')
In [106]: agg_n_sort_order = code_groups[['data']].transform(sum).sort('data')
In [107]: sorted_df = df.ix[agg_n_sort_order.index]
In [108]: sorted_df
Out[108]:
code data
flag
1 bar -0.21
True
4 bar -0.59 False
0 foo 0.16 False
3 foo 0.45
True
2 baz 0.33 False
5 baz 0.62
True

Create multiple aggregated columns
In [109]: rng = pd.date_range(start="2014-10-07",periods=10,freq='2min')
In [110]: ts = pd.Series(data = list(range(10)), index = rng)
In [111]: def MyCust(x):
.....:
if len(x) > 2:
.....:
return x[1] * 1.234
.....:
return pd.NaT
.....:
In [112]: mhc = {'Mean' : np.mean, 'Max' : np.max, 'Custom' : MyCust}
In [113]: ts.resample("5min",how = mhc)
Out[113]:
Max Custom Mean
2014-10-07 00:00:00
2 1.234
1.0
2014-10-07 00:05:00
4
NaN
3.5
2014-10-07 00:10:00
7 7.404
6.0
2014-10-07 00:15:00
9
NaN
8.5
In [114]: ts
Out[114]:
2014-10-07 00:00:00
2014-10-07 00:02:00

8.5. Grouping

0
1

269

pandas: powerful Python data analysis toolkit, Release 0.16.1

2014-10-07 00:04:00
2014-10-07 00:06:00
2014-10-07 00:08:00
2014-10-07 00:10:00
2014-10-07 00:12:00
2014-10-07 00:14:00
2014-10-07 00:16:00
2014-10-07 00:18:00
Freq: 2T, dtype: int64

2
3
4
5
6
7
8
9

Create a value counts column and reassign back to the DataFrame
In [115]: df = pd.DataFrame({'Color': 'Red Red Red Blue'.split(),
.....:
'Value': [100, 150, 50, 50]}); df
.....:
Out[115]:
Color Value
0
Red
100
1
Red
150
2
Red
50
3 Blue
50
In [116]: df['Counts'] = df.groupby(['Color']).transform(len)
In [117]: df
Out[117]:
Color Value
0
Red
100
1
Red
150
2
Red
50
3 Blue
50

Counts
3
3
3
1

Shift groups of the values in a column based on the index
In [118]: df = pd.DataFrame(
.....:
{u'line_race': [10, 10, 8, 10, 10, 8],
.....:
u'beyer': [99, 102, 103, 103, 88, 100]},
.....:
index=[u'Last Gunfighter', u'Last Gunfighter', u'Last Gunfighter',
.....:
u'Paynter', u'Paynter', u'Paynter']); df
.....:
Out[118]:
beyer line_race
Last Gunfighter
99
10
Last Gunfighter
102
10
Last Gunfighter
103
8
Paynter
103
10
Paynter
88
10
Paynter
100
8
In [119]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)
In [120]: df
Out[120]:
Last Gunfighter
Last Gunfighter
Last Gunfighter
Paynter
Paynter

270

beyer
99
102
103
103
88

line_race
10
10
8
10
10

beyer_shifted
NaN
99
102
NaN
103

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

Paynter

100

8

88

Select row with maximum value from each group
In [121]: df = pd.DataFrame({'host':['other','other','that','this','this'],
.....:
'service':['mail','web','mail','mail','web'],
.....:
'no':[1, 2, 1, 2, 1]}).set_index(['host', 'service'])
.....:
In [122]: mask = df.groupby(level=0).agg('idxmax')
In [123]: df_count = df.loc[mask['no']].reset_index()
In [124]: df_count
Out[124]:
host service no
0 other
web
2
1
that
mail
1
2
this
mail
2

Grouping like Python’s itertools.groupby
In [125]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=['A'])
In [126]: df.A.groupby((df.A != df.A.shift()).cumsum()).groups
Out[126]: {1: [0L], 2: [1L], 3: [2L], 4: [3L, 4L, 5L], 5: [6L], 6: [7L, 8L]}
In [127]: df.A.groupby((df.A != df.A.shift()).cumsum()).cumsum()
Out[127]:
0
0
1
1
2
0
3
1
4
2
5
3
6
0
7
1
8
2
dtype: int64

8.5.1 Expanding Data
Alignment and to-date
Rolling Computation window based on values instead of counts
Rolling Mean by Time Interval

8.5.2 Splitting
Splitting a frame
Create a list of dataframes, split using a delineation based on logic included in rows.
In [128]: df = pd.DataFrame(data={'Case' : ['A','A','A','B','A','A','B','A','A'],
.....:
'Data' : np.random.randn(9)})
.....:

8.5. Grouping

271

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [129]: dfs = list(zip(*df.groupby(pd.rolling_median((1*(df['Case']=='B')).cumsum(),3,True))))[-1]
In [130]: dfs[0]
Out[130]:
Case
Data
0
A 0.174068
1
A -0.439461
2
A -0.741343
3
B -0.079673
In [131]: dfs[1]
Out[131]:
Case
Data
4
A -0.922875
5
A 0.303638
6
B -0.917368
In [132]: dfs[2]
Out[132]:
Case
Data
7
A -1.624062
8
A -0.758514

8.5.3 Pivot
The Pivot docs.
Partial sums and subtotals

In [133]: df = pd.DataFrame(data={'Province' : ['ON','QC','BC','AL','AL','MN','ON'],
.....:
'City' : ['Toronto','Montreal','Vancouver','Calgary','Edmonton','W
.....:
'Sales' : [13,6,16,8,4,3,1]})
.....:

In [134]: table = pd.pivot_table(df,values=['Sales'],index=['Province'],columns=['City'],aggfunc=np.s
In [135]: table.stack('City')
Out[135]:
Sales
Province City
AL
All
12
Calgary
8
Edmonton
4
BC
All
16
Vancouver
16
MN
All
3
Winnipeg
3
...
...
All
Calgary
8
Edmonton
4
Montreal
6
Toronto
13
Vancouver
16
Windsor
1
Winnipeg
3
[20 rows x 1 columns]

272

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

Frequency table like plyr in R
In [136]: grades = [48,99,75,80,42,80,72,68,36,78]

In [137]: df = pd.DataFrame( {'ID': ["x%d" % r for r in range(10)],
.....:
'Gender' : ['F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'M'],
.....:
'ExamYear': ['2007','2007','2007','2008','2008','2008','2008','2009','2
.....:
'Class': ['algebra', 'stats', 'bio', 'algebra', 'algebra', 'stats', 'st
.....:
'Participated': ['yes','yes','yes','yes','no','yes','yes','yes','yes','
.....:
'Passed': ['yes' if x > 50 else 'no' for x in grades],
.....:
'Employed': [True,True,True,False,False,False,False,True,True,False],
.....:
'Grade': grades})
.....:
In [138]: df.groupby('ExamYear').agg({'Participated': lambda x: x.value_counts()['yes'],
.....:
'Passed': lambda x: sum(x == 'yes'),
.....:
'Employed' : lambda x : sum(x),
.....:
'Grade' : lambda x : sum(x) / len(x)})
.....:
Out[138]:
Grade Employed Participated Passed
ExamYear
2007
74
3
3
2
2008
68
0
3
3
2009
60
2
3
2

8.5.4 Apply
Rolling Apply to Organize - Turning embedded lists into a multi-index frame

In [139]: df = pd.DataFrame(data={'A' : [[2,4,8,16],[100,200],[10,20,30]], 'B' : [['a','b','c'],['jj'
In [140]: def SeriesFromSubList(aList):
.....:
return pd.Series(aList)
.....:
In [141]: df_orgz = pd.concat(dict([ (ind,row.apply(SeriesFromSubList)) for ind,row in df.iterrows()

Rolling Apply with a DataFrame returning a Series
Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned
In [142]: df = pd.DataFrame(data=np.random.randn(2000,2)/10000,
.....:
index=pd.date_range('2001-01-01',periods=2000),
.....:
columns=['A','B']); df
.....:
Out[142]:
A
B
2001-01-01 -0.000056 -0.000059
2001-01-02 -0.000107 -0.000168
2001-01-03 0.000040 0.000061
2001-01-04 0.000039 0.000182
2001-01-05 0.000071 -0.000067
2001-01-06 0.000024 0.000031
2001-01-07 0.000012 -0.000021
...
...
...
2006-06-17 0.000129 0.000094
2006-06-18 0.000059 0.000216

8.5. Grouping

273

pandas: powerful Python data analysis toolkit, Release 0.16.1

2006-06-19 -0.000069 0.000283
2006-06-20 0.000089 0.000084
2006-06-21 0.000075 0.000041
2006-06-22 -0.000037 -0.000011
2006-06-23 -0.000070 -0.000048
[2000 rows x 2 columns]
In [143]: def gm(aDF,Const):
.....:
v = ((((aDF.A+aDF.B)+1).cumprod())-1)*Const
.....:
return (aDF.index[0],v.iloc[-1])
.....:

In [144]: S = pd.Series(dict([ gm(df.iloc[i:min(i+51,len(df)-1)],5) for i in range(len(df)-50) ])); S
Out[144]:
2001-01-01
-0.003108
2001-01-02
-0.001787
2001-01-03
0.000204
2001-01-04
-0.000166
2001-01-05
-0.002148
2001-01-06
-0.001831
2001-01-07
-0.001663
...
2006-04-28
-0.009152
2006-04-29
-0.006728
2006-04-30
-0.005840
2006-05-01
-0.003650
2006-05-02
-0.003801
2006-05-03
-0.004272
2006-05-04
-0.003839
dtype: float64

Rolling apply with a DataFrame returning a Scalar
Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)
In [145]: rng = pd.date_range(start = '2014-01-01',periods = 100)
In [146]: df = pd.DataFrame({'Open' : np.random.randn(len(rng)),
.....:
'Close' : np.random.randn(len(rng)),
.....:
'Volume' : np.random.randint(100,2000,len(rng))}, index=rng); df
.....:
Out[146]:
Close
Open Volume
2014-01-01 1.550590 0.458513
1371
2014-01-02 -0.818812 -0.508850
1433
2014-01-03 1.160619 0.257610
645
2014-01-04 0.081521 -1.773393
878
2014-01-05 1.083284 -0.560676
1143
2014-01-06 -0.518721 0.284174
1088
2014-01-07 0.140661 1.146889
1722
...
...
...
...
2014-04-04 0.458193 -0.669474
1768
2014-04-05 0.108502 -1.616315
836
2014-04-06 1.418082 -1.294906
694
2014-04-07 0.486530 1.171647
796
2014-04-08 0.181885 0.501639
265
2014-04-09 -0.707238 -0.361868
1293
2014-04-10 1.211432 1.564429
1088

274

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

[100 rows x 3 columns]
In [147]: def vwap(bars): return ((bars.Close*bars.Volume).sum()/bars.Volume.sum()).round(2)
In [148]: window = 5

In [149]: s = pd.concat([ (pd.Series(vwap(df.iloc[i:i+window]), index=[df.index[i+window]])) for i in
Out[149]:
2014-01-06
0.55
2014-01-07
0.06
2014-01-08
0.32
2014-01-09
0.03
2014-01-10
0.08
2014-01-11
-0.50
2014-01-12
-0.26
...
2014-04-04
0.36
2014-04-05
0.48
2014-04-06
0.54
2014-04-07
0.46
2014-04-08
0.45
2014-04-09
0.53
2014-04-10
0.15
dtype: float64

8.6 Timeseries
Between times
Using indexer between time
Constructing a datetime range that excludes weekends and includes only certain times
Vectorized Lookup
Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series.
How to rearrange a python pandas DataFrame?
Dealing with duplicates when reindexing a timeseries to a specified frequency
Calculate the first day of the month for each entry in a DatetimeIndex
In [150]: dates = pd.date_range('2000-01-01', periods=5)
In [151]: dates.to_period(freq='M').to_timestamp()
Out[151]:
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',
'2000-01-01'],
dtype='datetime64[ns]', freq=None, tz=None)

8.6.1 Resampling
The Resample docs.
TimeGrouping of values grouped across time
TimeGrouping #2
8.6. Timeseries

275

pandas: powerful Python data analysis toolkit, Release 0.16.1

Using TimeGrouper and another grouping to create subgroups, then apply a custom function
Resampling with custom periods
Resample intraday frame without adding new days
Resample minute data
Resample with groupby

8.7 Merge
The Concat docs. The Join docs.
Append two dataframes with overlapping index (emulate R rbind)
In [152]: rng = pd.date_range('2000-01-01', periods=6)
In [153]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=['A', 'B', 'C'])
In [154]: df2 = df1.copy()

ignore_index is needed in pandas < v0.13, and depending on df construction
In [155]: df
Out[155]:
A
0 -0.174202
1 -0.654455
2
0.351578
3
0.565398
4
0.446473
5
1.710685
6 -0.174202
7 -0.654455
8
0.351578
9
0.565398
10 0.446473
11 1.710685

= df1.append(df2,ignore_index=True); df
B
-0.477257
-1.411456
0.307871
-0.185821
0.566368
-0.667054
-0.477257
-1.411456
0.307871
-0.185821
0.566368
-0.667054

C
0.239870
-1.778457
-0.286865
0.937593
0.721476
-0.651191
0.239870
-1.778457
-0.286865
0.937593
0.721476
-0.651191

Self Join of a DataFrame
In [156]: df
.....:
.....:
.....:
.....:
Out[156]:
Area Bins
0
A
110
1
A
110
2
A
160
3
A
160
4
A
160
5
C
40
6
C
40

= pd.DataFrame(data={'Area' :
'Bins' :
'Test_0'
'Data' :

Data
-0.399974
-1.519206
1.678487
0.005345
-0.534461
0.255077
1.093310

['A'] * 5 + ['C'] * 2,
[110] * 2 + [160] * 3 + [40] * 2,
: [0, 1, 0, 1, 2, 0, 1],
np.random.randn(7)});df

Test_0
0
1
0
1
2
0
1

In [157]: df['Test_1'] = df['Test_0'] - 1

276

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [158]: pd.merge(df, df, left_on=['Bins', 'Area','Test_0'], right_on=['Bins', 'Area','Test_1'],suff
Out[158]:
Area Bins
Data_L Test_0_L Test_1_L
Data_R Test_0_R Test_1_R
0
A
110 -0.399974
0
-1 -1.519206
1
0
1
A
160 1.678487
0
-1 0.005345
1
0
2
A
160 0.005345
1
0 -0.534461
2
1
3
C
40 0.255077
0
-1 1.093310
1
0

How to set the index and join
KDB like asof join
Join with a criteria based on the values

8.8 Plotting
The Plotting docs.
Make Matplotlib look like R
Setting x-axis major and minor labels
Plotting multiple charts in an ipython notebook
Creating a multi-line plot
Plotting a heatmap
Annotate a time-series plot
Annotate a time-series plot #2
Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter
Boxplot for each quartile of a stratifying variable
In [159]: df = pd.DataFrame(
.....:
{u'stratifying_var': np.random.uniform(0, 100, 20),
.....:
u'price': np.random.normal(100, 5, 20)})
.....:
In [160]: df[u'quartiles'] = pd.qcut(
.....:
df[u'stratifying_var'],
.....:
4,
.....:
labels=[u'0-25%', u'25-50%', u'50-75%', u'75-100%'])
.....:
In [161]: df.boxplot(column=u'price', by=u'quartiles')
Out[161]: 

8.8. Plotting

277

pandas: powerful Python data analysis toolkit, Release 0.16.1

8.9 Data In/Out
Performance comparison of SQL vs HDF5

8.9.1 CSV
The CSV docs
read_csv in action
appending to a csv
how to read in multiple files, appending to create a single dataframe
Reading a csv chunk-by-chunk
Reading only certain rows of a csv chunk-by-chunk
Reading the first few lines of a frame

278

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

Reading a file that is compressed but not by gzip/bz2 (the native compressed formats which read_csv understands). This example shows a WinZipped file, but is a general application of opening the file within a context
manager and using that handle to read. See here
Inferring dtypes from a file
Dealing with bad lines
Dealing with bad lines II
Reading CSV with Unix timestamps and converting to local timezone
Write a multi-row index CSV without writing duplicates
Parsing date components in multi-columns is faster with a format
In [30]: i = pd.date_range('20000101',periods=10000)
In [31]: df = pd.DataFrame(dict(year = i.year, month = i.month, day = i.day))
In [32]: df.head()
Out[32]:
day month year
0
1
1 2000
1
2
1 2000
2
3
1 2000
3
4
1 2000
4
5
1 2000
In [33]: %timeit pd.to_datetime(df.year*10000+df.month*100+df.day,format='%Y%m%d')
100 loops, best of 3: 7.08 ms per loop
# simulate combinging into a string, then parsing
In [34]: ds = df.apply(lambda x: "%04d%02d%02d" % (x['year'],x['month'],x['day']),axis=1)
In [35]: ds.head()
Out[35]:
0
20000101
1
20000102
2
20000103
3
20000104
4
20000105
dtype: object
In [36]: %timeit pd.to_datetime(ds)
1 loops, best of 3: 488 ms per loop

8.9.2 SQL
The SQL docs
Reading from databases with SQL

8.9.3 Excel
The Excel docs
Reading from a filelike handle Reading HTML tables from a server that cannot handle the default request header

8.9. Data In/Out

279

pandas: powerful Python data analysis toolkit, Release 0.16.1

8.9.4 HDFStore
The HDFStores docs
Simple Queries with a Timestamp Index
Managing heterogeneous data using a linked multiple table hierarchy
Merging on-disk tables with millions of rows
Avoiding inconsistencies when writing to a store from multiple processes/threads
De-duplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data
from csv file and creating a store by chunks, with date parsing as well. See here
Creating a store chunk-by-chunk from a csv file
Appending to a store, while creating a unique index
Large Data work flows
Reading in a sequence of files, then providing a global unique index to a store while appending
Groupby on a HDFStore with low group density
Groupby on a HDFStore with high group density
Hierarchical queries on a HDFStore
Counting with a HDFStore
Troubleshoot HDFStore exceptions
Setting min_itemsize with strings
Using ptrepack to create a completely-sorted-index on a store
Storing Attributes to a group node
In [162]: df = pd.DataFrame(np.random.randn(8,3))
In [163]: store = pd.HDFStore('test.h5')
In [164]: store.put('df',df)
# you can store an arbitrary python object via pickle
In [165]: store.get_storer('df').attrs.my_attribute = dict(A = 10)
In [166]: store.get_storer('df').attrs.my_attribute
Out[166]: {'A': 10}

8.9.5 Binary Files
pandas readily accepts numpy record arrays, if you need to read in a binary file consisting of an array of C structs.
For example, given this C program in a file called main.c compiled with gcc main.c -std=gnu99 on a 64-bit
machine,
#include 
#include 
typedef struct _Data
{
int32_t count;

280

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

double avg;
float scale;
} Data;
int main(int argc, const char *argv[])
{
size_t n = 10;
Data d[n];
for (int i = 0; i < n; ++i)
{
d[i].count = i;
d[i].avg = i + 1.0;
d[i].scale = (float) i + 2.0f;
}
FILE *file = fopen("binary.dat", "wb");
fwrite(&d, sizeof(Data), n, file);
fclose(file);
return 0;
}

the following Python code will read the binary file ’binary.dat’ into a pandas DataFrame, where each element
of the struct corresponds to a column in the frame:
names = 'count', 'avg', 'scale'
# note that the offsets are larger than the size of the type because of
# struct padding
offsets = 0, 8, 16
formats = 'i4', 'f8', 'f4'
dt = np.dtype({'names': names, 'offsets': offsets, 'formats': formats},
align=True)
df = pd.DataFrame(np.fromfile('binary.dat', dt))

Note: The offsets of the structure elements may be different depending on the architecture of the machine on which
the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not
cross platform. We recommended either HDF5 or msgpack, both of which are supported by pandas’ IO facilities.

8.10 Computation
Numerical integration (sample-based) of a time series

8.11 Timedeltas
The Timedeltas docs.
Using timedeltas
In [167]: s

= pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))

In [168]: s - s.max()

8.10. Computation

281

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[168]:
0
-2 days
1
-1 days
2
0 days
dtype: timedelta64[ns]
In [169]: s.max() - s
Out[169]:
0
2 days
1
1 days
2
0 days
dtype: timedelta64[ns]
In [170]: s - datetime.datetime(2011,1,1,3,5)
Out[170]:
0
364 days 20:55:00
1
365 days 20:55:00
2
366 days 20:55:00
dtype: timedelta64[ns]
In [171]: s + datetime.timedelta(minutes=5)
Out[171]:
0
2012-01-01 00:05:00
1
2012-01-02 00:05:00
2
2012-01-03 00:05:00
dtype: datetime64[ns]
In [172]: datetime.datetime(2011,1,1,3,5) - s
Out[172]:
0
-365 days +03:05:00
1
-366 days +03:05:00
2
-367 days +03:05:00
dtype: timedelta64[ns]
In [173]: datetime.timedelta(minutes=5) + s
Out[173]:
0
2012-01-01 00:05:00
1
2012-01-02 00:05:00
2
2012-01-03 00:05:00
dtype: datetime64[ns]

Adding and subtracting deltas and dates
In [174]: deltas = pd.Series([ datetime.timedelta(days=i) for i in range(3) ])
In [175]: df
Out[175]:
A
0 2012-01-01
1 2012-01-02
2 2012-01-03

= pd.DataFrame(dict(A = s, B = deltas)); df
B
0 days
1 days
2 days

In [176]: df['New Dates'] = df['A'] + df['B'];
In [177]: df['Delta'] = df['A'] - df['New Dates']; df
Out[177]:
A
B New Dates
Delta
0 2012-01-01 0 days 2012-01-01 0 days

282

Chapter 8. Cookbook

pandas: powerful Python data analysis toolkit, Release 0.16.1

1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days
In [178]: df.dtypes
Out[178]:
A
datetime64[ns]
B
timedelta64[ns]
New Dates
datetime64[ns]
Delta
timedelta64[ns]
dtype: object

Another example
Values can be set to NaT using np.nan, similar to datetime
In [179]: y = s - s.shift(); y
Out[179]:
0
NaT
1
1 days
2
1 days
dtype: timedelta64[ns]
In [180]: y[1] = np.nan; y
Out[180]:
0
NaT
1
NaT
2
1 days
dtype: timedelta64[ns]

8.12 Aliasing Axis Names
To globally provide aliases for axis names, one can define these 2 functions:
In [181]: def set_axis_alias(cls, axis, alias):
.....:
if axis not in cls._AXIS_NUMBERS:
.....:
raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
.....:
cls._AXIS_ALIASES[alias] = axis
.....:
In [182]: def clear_axis_alias(cls, axis, alias):
.....:
if axis not in cls._AXIS_NUMBERS:
.....:
raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
.....:
cls._AXIS_ALIASES.pop(alias,None)
.....:
In [183]: set_axis_alias(pd.DataFrame,'columns', 'myaxis2')
In [184]: df2 = pd.DataFrame(np.random.randn(3,2),columns=['c1','c2'],index=['i1','i2','i3'])
In [185]: df2.sum(axis='myaxis2')
Out[185]:
i1
0.239786
i2
0.259018
i3
0.163470
dtype: float64
In [186]: clear_axis_alias(pd.DataFrame,'columns', 'myaxis2')

8.12. Aliasing Axis Names

283

pandas: powerful Python data analysis toolkit, Release 0.16.1

8.13 Creating Example Data
To create a dataframe from every combination of some given values, like R’s expand.grid() function, we can
create a dict where the keys are column names and the values are lists of the data values:
In [187]: def expand_grid(data_dict):
.....:
rows = itertools.product(*data_dict.values())
.....:
return pd.DataFrame.from_records(rows, columns=data_dict.keys())
.....:
In [188]: df = expand_grid(
.....:
{'height': [60, 70],
.....:
'weight': [100, 140, 180],
.....:
'sex': ['Male', 'Female']})
.....:
In [189]: df
Out[189]:
sex weight
0
Male
100
1
Male
100
2
Male
140
3
Male
140
4
Male
180
5
Male
180
6
Female
100
7
Female
100
8
Female
140
9
Female
140
10 Female
180
11 Female
180

284

height
60
70
60
70
60
70
60
70
60
70
60
70

Chapter 8. Cookbook

CHAPTER

NINE

INTRO TO DATA STRUCTURES

We’ll start with a quick, non-comprehensive overview of the fundamental data structures in pandas to get you started.
The fundamental behavior about data types, indexing, and axis labeling / alignment apply across all of the objects. To
get started, import numpy and load pandas into your namespace:
In [1]: import numpy as np
# will use a lot in examples
In [2]: randn = np.random.randn
In [3]: from pandas import *

Here is a basic tenet to keep in mind: data alignment is intrinsic. The link between labels and data will not be broken
unless done so explicitly by you.
We’ll give a brief intro to the data structures, then consider all of the broad categories of functionality and methods in
separate sections.
When using pandas, we recommend the following import convention:
import pandas as pd

9.1 Series
Warning: In 0.13.0 Series has internaly been refactored to no longer sub-class ndarray but instead subclass
NDFrame, similarly to the rest of the pandas containers. This should be a transparent change with only very
limited API implications (See the Internal Refactoring)
Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers,
Python objects, etc.). The axis labels are collectively referred to as the index. The basic method to create a Series is
to call:
>>> s = Series(data, index=index)

Here, data can be many different things:
• a Python dict
• an ndarray
• a scalar value (like 5)
The passed index is a list of axis labels. Thus, this separates into a few cases depending on what data is:
From ndarray
285

pandas: powerful Python data analysis toolkit, Release 0.16.1

If data is an ndarray, index must be the same length as data. If no index is passed, one will be created having values
[0, ..., len(data) - 1].
In [4]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [5]: s
Out[5]:
a
-2.783
b
0.426
c
-0.650
d
1.146
e
-0.663
dtype: float64
In [6]: s.index
Out[6]: Index([u'a', u'b', u'c', u'd', u'e'], dtype='object')
In [7]: Series(randn(5))
Out[7]:
0
0.294
1
-0.405
2
1.167
3
0.842
4
0.540
dtype: float64

Note: Starting in v0.8.0, pandas supports non-unique index values. If an operation that does not support duplicate
index values is attempted, an exception will be raised at that time. The reason for being lazy is nearly all performancebased (there are many instances in computations, like parts of GroupBy, where the index is not used).
From dict
If data is a dict, if index is passed the values in data corresponding to the labels in the index will be pulled out.
Otherwise, an index will be constructed from the sorted keys of the dict, if possible.
In [8]: d = {'a' : 0., 'b' : 1., 'c' : 2.}
In [9]: Series(d)
Out[9]:
a
0
b
1
c
2
dtype: float64
In [10]: Series(d, index=['b', 'c', 'd', 'a'])
Out[10]:
b
1
c
2
d
NaN
a
0
dtype: float64

Note: NaN (not a number) is the standard missing data marker used in pandas
From scalar value If data is a scalar value, an index must be provided. The value will be repeated to match the
length of index

286

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [11]: Series(5., index=['a', 'b', 'c', 'd', 'e'])
Out[11]:
a
5
b
5
c
5
d
5
e
5
dtype: float64

9.1.1 Series is ndarray-like
Series acts very similarly to a ndarray, and is a valid argument to most NumPy functions. However, things like
slicing also slice the index.
In [12]: s[0]
Out[12]: -2.7827595933769937
In [13]: s[:3]
Out[13]:
a
-2.783
b
0.426
c
-0.650
dtype: float64
In [14]: s[s > s.median()]
Out[14]:
b
0.426
d
1.146
dtype: float64
In [15]: s[[4, 3, 1]]
Out[15]:
e
-0.663
d
1.146
b
0.426
dtype: float64
In [16]: np.exp(s)
Out[16]:
a
0.062
b
1.532
c
0.522
d
3.147
e
0.515
dtype: float64

We will address array-based indexing in a separate section.

9.1.2 Series is dict-like
A Series is like a fixed-size dict in that you can get and set values by index label:
In [17]: s['a']
Out[17]: -2.7827595933769937
In [18]: s['e'] = 12.

9.1. Series

287

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [19]: s
Out[19]:
a
-2.783
b
0.426
c
-0.650
d
1.146
e
12.000
dtype: float64
In [20]: 'e' in s
Out[20]: True
In [21]: 'f' in s
Out[21]: False

If a label is not contained, an exception is raised:
>>> s['f']
KeyError: 'f'

Using the get method, a missing label will return None or specified default:
In [22]: s.get('f')
In [23]: s.get('f', np.nan)
Out[23]: nan

See also the section on attribute access.

9.1.3 Vectorized operations and label alignment with Series
When doing data analysis, as with raw NumPy arrays looping through Series value-by-value is usually not necessary.
Series can be also be passed into most NumPy methods expecting an ndarray.
In [24]: s + s
Out[24]:
a
-5.566
b
0.853
c
-1.301
d
2.293
e
24.000
dtype: float64
In [25]: s * 2
Out[25]:
a
-5.566
b
0.853
c
-1.301
d
2.293
e
24.000
dtype: float64
In [26]: np.exp(s)
Out[26]:
a
0.062
b
1.532
c
0.522

288

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

d
3.147
e
162754.791
dtype: float64

A key difference between Series and ndarray is that operations between Series automatically align the data based on
label. Thus, you can write computations without giving consideration to whether the Series involved have the same
labels.
In [27]: s[1:] + s[:-1]
Out[27]:
a
NaN
b
0.853
c
-1.301
d
2.293
e
NaN
dtype: float64

The result of an operation between unaligned Series will have the union of the indexes involved. If a label is not found
in one Series or the other, the result will be marked as missing NaN. Being able to write code without doing any explicit
data alignment grants immense freedom and flexibility in interactive data analysis and research. The integrated data
alignment features of the pandas data structures set pandas apart from the majority of related tools for working with
labeled data.
Note: In general, we chose to make the default result of operations between differently indexed objects yield the
union of the indexes in order to avoid loss of information. Having an index label, though the data is missing, is
typically important information as part of a computation. You of course have the option of dropping labels with
missing data via the dropna function.

9.1.4 Name attribute
Series can also have a name attribute:
In [28]: s = Series(np.random.randn(5), name='something')
In [29]: s
Out[29]:
0
0.541
1
-1.175
2
0.129
3
0.043
4
-0.429
Name: something, dtype: float64
In [30]: s.name
Out[30]: 'something'

The Series name will be assigned automatically in many cases, in particular when taking 1D slices of DataFrame as
you will see below.

9.2 DataFrame
DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it
like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object.
Like Series, DataFrame accepts many different kinds of input:
9.2. DataFrame

289

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Dict of 1D ndarrays, lists, dicts, or Series
• 2-D numpy.ndarray
• Structured or record ndarray
• A Series
• Another DataFrame
Along with the data, you can optionally pass index (row labels) and columns (column labels) arguments. If you pass
an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict
of Series plus a specific index will discard all data not matching up to the passed index.
If axis labels are not passed, they will be constructed from the input data based on common sense rules.

9.2.1 From dict of Series or dicts
The result index will be the union of the indexes of the various Series. If there are any nested dicts, these will be first
converted to Series. If no columns are passed, the columns will be the sorted list of dict keys.
In [31]: d = {'one' : Series([1., 2., 3.], index=['a', 'b', 'c']),
....:
'two' : Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
....:
In [32]: df = DataFrame(d)
In [33]: df
Out[33]:
one two
a
1
1
b
2
2
c
3
3
d NaN
4
In [34]: DataFrame(d, index=['d', 'b', 'a'])
Out[34]:
one two
d NaN
4
b
2
2
a
1
1
In [35]: DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])
Out[35]:
two three
d
4
NaN
b
2
NaN
a
1
NaN

The row and column labels can be accessed respectively by accessing the index and columns attributes:
Note: When a particular set of columns is passed along with a dict of data, the passed columns override the keys in
the dict.
In [36]: df.index
Out[36]: Index([u'a', u'b', u'c', u'd'], dtype='object')
In [37]: df.columns
Out[37]: Index([u'one', u'two'], dtype='object')

290

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

9.2.2 From dict of ndarrays / lists
The ndarrays must all be the same length. If an index is passed, it must clearly also be the same length as the arrays.
If no index is passed, the result will be range(n), where n is the array length.
In [38]: d = {'one' : [1., 2., 3., 4.],
....:
'two' : [4., 3., 2., 1.]}
....:
In [39]: DataFrame(d)
Out[39]:
one two
0
1
4
1
2
3
2
3
2
3
4
1
In [40]: DataFrame(d, index=['a', 'b', 'c', 'd'])
Out[40]:
one two
a
1
4
b
2
3
c
3
2
d
4
1

9.2.3 From structured or record array
This case is handled identically to a dict of arrays.
In [41]: data = np.zeros((2,),dtype=[('A', 'i4'),('B', 'f4'),('C', 'a10')])
In [42]: data[:] = [(1,2.,'Hello'),(2,3.,"World")]
In [43]: DataFrame(data)
Out[43]:
A B
C
0 1 2 Hello
1 2 3 World
In [44]: DataFrame(data, index=['first', 'second'])
Out[44]:
A B
C
first
1 2 Hello
second 2 3 World
In [45]: DataFrame(data, columns=['C', 'A', 'B'])
Out[45]:
C A B
0 Hello 1 2
1 World 2 3

Note: DataFrame is not intended to work exactly like a 2-dimensional NumPy ndarray.

9.2. DataFrame

291

pandas: powerful Python data analysis toolkit, Release 0.16.1

9.2.4 From a list of dicts
In [46]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
In [47]: DataFrame(data2)
Out[47]:
a
b
c
0 1
2 NaN
1 5 10 20
In [48]: DataFrame(data2, index=['first', 'second'])
Out[48]:
a
b
c
first
1
2 NaN
second 5 10 20
In [49]: DataFrame(data2, columns=['a', 'b'])
Out[49]:
a
b
0 1
2
1 5 10

9.2.5 From a dict of tuples
You can automatically create a multi-indexed frame by passing a tuples dictionary
In [50]: DataFrame({('a',
....:
('a',
....:
('a',
....:
('b',
....:
('b',
....:
Out[50]:
a
b
a
b
c
a
b
A B
4
1
5
8 10
C
3
2
6
7 NaN
D NaN NaN NaN NaN
9

'b'):
'a'):
'c'):
'a'):
'b'):

{('A',
{('A',
{('A',
{('A',
{('A',

'B'):
'C'):
'B'):
'C'):
'D'):

1,
3,
5,
7,
9,

('A',
('A',
('A',
('A',
('A',

'C'):
'B'):
'C'):
'B'):
'B'):

2},
4},
6},
8},
10}})

9.2.6 From a Series
The result will be a DataFrame with the same index as the input Series, and with one column whose name is the
original name of the Series (only if no other column name provided).
Missing Data
Much more will be said on this topic in the Missing data section. To construct a DataFrame with missing data, use
np.nan for those values which are missing. Alternatively, you may pass a numpy.MaskedArray as the data
argument to the DataFrame constructor, and its masked entries will be considered missing.

9.2.7 Alternate Constructors
DataFrame.from_dict

292

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

DataFrame.from_dict takes a dict of dicts or a dict of array-like sequences and returns a DataFrame. It operates
like the DataFrame constructor except for the orient parameter which is ’columns’ by default, but which can
be set to ’index’ in order to use the dict keys as row labels. DataFrame.from_records
DataFrame.from_records takes a list of tuples or an ndarray with structured dtype. Works analogously to the
normal DataFrame constructor, except that index maybe be a specific field of the structured dtype to use as the
index. For example:
In [51]: data
Out[51]:
array([(1, 2.0, 'Hello'), (2, 3.0, 'World')],
dtype=[('A', ' 2
In [58]: df
Out[58]:
one two
a
1
1
b
2
2
c
3
3
d NaN
4

three
1
4
9
NaN

flag
False
False
True
False

Columns can be deleted or popped like with a dict:
In [59]: del df['two']
In [60]: three = df.pop('three')
In [61]: df
Out[61]:
one
flag
a
1 False
b
2 False
c
3
True
d NaN False

When inserting a scalar value, it will naturally be propagated to fill the column:
In [62]: df['foo'] = 'bar'
In [63]: df
Out[63]:
one
flag
a
1 False
b
2 False
c
3
True
d NaN False

foo
bar
bar
bar
bar

When inserting a Series that does not have the same index as the DataFrame, it will be conformed to the DataFrame’s
index:
In [64]: df['one_trunc'] = df['one'][:2]
In [65]: df
Out[65]:
one
flag
a
1 False
b
2 False
c
3
True
d NaN False

foo
bar
bar
bar
bar

one_trunc
1
2
NaN
NaN

You can insert raw ndarrays but their length must match the length of the DataFrame’s index.
By default, columns get inserted at the end. The insert function is available to insert at a particular location in the
columns:
In [66]: df.insert(1, 'bar', df['one'])
In [67]: df
Out[67]:

294

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

a
b
c
d

one
1
2
3
NaN

bar
1
2
3
NaN

flag
False
False
True
False

foo
bar
bar
bar
bar

one_trunc
1
2
NaN
NaN

9.2.9 Assigning New Columns in Method Chains
New in version 0.16.0.
Inspired by dplyr’s mutate verb, DataFrame has an assign() method that allows you to easily create new columns
that are potentially derived from existing columns.
In [68]: iris = read_csv('data/iris.data')
In [69]: iris.head()
Out[69]:
SepalLength SepalWidth
0
5.1
3.5
1
4.9
3.0
2
4.7
3.2
3
4.6
3.1
4
5.0
3.6

PetalLength
1.4
1.4
1.3
1.5
1.4

PetalWidth
0.2
0.2
0.2
0.2
0.2

Name
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

In [70]: (iris.assign(sepal_ratio = iris['SepalWidth'] / iris['SepalLength'])
....:
.head())
....:
Out[70]:
SepalLength SepalWidth PetalLength PetalWidth
Name sepal_ratio
0
5.1
3.5
1.4
0.2 Iris-setosa
0.686
1
4.9
3.0
1.4
0.2 Iris-setosa
0.612
2
4.7
3.2
1.3
0.2 Iris-setosa
0.681
3
4.6
3.1
1.5
0.2 Iris-setosa
0.674
4
5.0
3.6
1.4
0.2 Iris-setosa
0.720

Above was an example of inserting a precomputed value. We can also pass in a function of one argument to be
evalutated on the DataFrame being assigned to.
In [71]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] /
....:
x['SepalLength'])).head()
....:
Out[71]:
SepalLength SepalWidth PetalLength PetalWidth
Name sepal_ratio
0
5.1
3.5
1.4
0.2 Iris-setosa
0.686
1
4.9
3.0
1.4
0.2 Iris-setosa
0.612
2
4.7
3.2
1.3
0.2 Iris-setosa
0.681
3
4.6
3.1
1.5
0.2 Iris-setosa
0.674
4
5.0
3.6
1.4
0.2 Iris-setosa
0.720

assign always returns a copy of the data, leaving the original DataFrame untouched.
Passing a callable, as opposed to an actual value to be inserted, is useful when you don’t have a reference to the
DataFrame at hand. This is common when using assign in chains of operations. For example, we can limit the
DataFrame to just those observations with a Sepal Length greater than 5, calculate the ratio, and plot:
In [72]: (iris.query('SepalLength > 5')
....:
.assign(SepalRatio = lambda x: x.SepalWidth / x.SepalLength,
....:
PetalRatio = lambda x: x.PetalWidth / x.PetalLength)

9.2. DataFrame

295

pandas: powerful Python data analysis toolkit, Release 0.16.1

....:
.plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
....:
Out[72]: 

Since a function is passed in, the function is computed on the DataFrame being assigned to. Importantly, this is the
DataFrame that’s been filtered to those rows with sepal length greater than 5. The filtering happens first, and then the
ratio calculations. This is an example where we didn’t have a reference to the filtered DataFrame available.
The function signature for assign is simply **kwargs. The keys are the column names for the new fields, and the
values are either a value to be inserted (for example, a Series or NumPy array), or a function of one argument to be
called on the DataFrame. A copy of the original DataFrame is returned, with the new values inserted.

296

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning: Since the function signature of assign is **kwargs, a dictionary, the order of the new columns in
the resulting DataFrame cannot be guaranteed to match the order you pass in. To make things predictable, items
are inserted alphabetically (by key) at the end of the DataFrame.
All expressions are computed first, and then assigned. So you can’t refer to another column being assigned in the
same call to assign. For example:
In [73]: # Don't do this, bad reference to `C`
df.assign(C = lambda x: x['A'] + x['B'],
D = lambda x: x['A'] + x['C'])
In [2]: # Instead, break it into two assigns
(df.assign(C = lambda x: x['A'] + x['B'])
.assign(D = lambda x: x['A'] + x['C']))

9.2.10 Indexing / Selection
The basics of indexing are as follows:
Operation
Select column
Select row by label
Select row by integer location
Slice rows
Select rows by boolean vector

Syntax
df[col]
df.loc[label]
df.iloc[loc]
df[5:10]
df[bool_vec]

Result
Series
Series
Series
DataFrame
DataFrame

Row selection, for example, returns a Series whose index is the columns of the DataFrame:
In [74]: df.loc['b']
Out[74]:
one
2
bar
2
flag
False
foo
bar
one_trunc
2
Name: b, dtype: object
In [75]: df.iloc[2]
Out[75]:
one
3
bar
3
flag
True
foo
bar
one_trunc
NaN
Name: c, dtype: object

For a more exhaustive treatment of more sophisticated label-based indexing and slicing, see the section on indexing.
We will address the fundamentals of reindexing / conforming to new sets of labels in the section on reindexing.

9.2.11 Data alignment and arithmetic
Data alignment between DataFrame objects automatically align on both the columns and the index (row labels).
Again, the resulting object will have the union of the column and row labels.
In [76]: df = DataFrame(randn(10, 4), columns=['A', 'B', 'C', 'D'])

9.2. DataFrame

297

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [77]: df2 = DataFrame(randn(7, 3), columns=['A', 'B', 'C'])
In [78]: df + df2
Out[78]:
A
B
C
0 -1.916 -0.986 -2.421e+00
1 0.965 1.677 3.298e-01
2 -1.662 2.197 -1.917e+00
3 -0.189 0.765 -9.522e-04
4 -1.076 0.397 -1.177e+00
5 2.810 -0.179 -5.705e-01
6 -1.227 0.196 5.312e-01
7
NaN
NaN
NaN
8
NaN
NaN
NaN
9
NaN
NaN
NaN

D
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

When doing an operation between DataFrame and Series, the default behavior is to align the Series index on the
DataFrame columns, thus broadcasting row-wise. For example:
In [79]: df - df.iloc[0]
Out[79]:
A
B
C
D
0 0.000 0.000 0.000 0.000
1 2.386 1.358 1.223 -2.107
2 2.105 1.700 1.327 -0.689
3 1.874 2.718 2.382 -0.760
4 2.199 0.966 0.826 0.093
5 4.997 1.197 1.330 -0.285
6 1.263 0.578 1.071 -0.525
7 3.463 0.632 1.063 -0.443
8 2.680 3.163 1.298 -1.818
9 1.304 0.196 3.590 -0.867

In the special case of working with time series data, if the Series is a TimeSeries (which it will be automatically if the
index contains datetime objects), and the DataFrame index also contains dates, the broadcasting will be column-wise:
In [80]: index = date_range('1/1/2000', periods=8)
In [81]: df = DataFrame(randn(8, 3), index=index, columns=list('ABC'))
In [82]: df
Out[82]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
0.063
-0.269
0.638
-0.511
1.664
0.029
-0.729
-0.048

B
-0.028
-1.578
-0.557
0.156
-0.438
0.179
-0.898
-0.876

C
0.444
1.850
-0.071
-1.076
-0.077
1.740
-0.314
0.169

In [83]: type(df['A'])
Out[83]: pandas.core.series.Series
In [84]: df - df['A']
Out[84]:
A
B
C
2000-01-01 0 -0.091 0.381

298

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

0
0
0
0
0
0
0

-1.309 2.119
-1.195 -0.709
0.668 -0.564
-2.101 -1.741
0.150 1.711
-0.169 0.415
-0.828 0.217

Warning:
df - df['A']

is now deprecated and will be removed in a future release. The preferred way to replicate this behavior is
df.sub(df['A'], axis=0)

For explicit control over the matching and broadcasting behavior, see the section on flexible binary operations.
Operations with scalars are just as you would expect:
In [85]: df * 5 + 2
Out[85]:
A
B
2000-01-01
2.314 1.858
2000-01-02
0.656 -5.888
2000-01-03
5.190 -0.783
2000-01-04 -0.557 2.781
2000-01-05 10.318 -0.189
2000-01-06
2.146 2.895
2000-01-07 -1.645 -2.490
2000-01-08
1.760 -2.378

C
4.218
11.251
1.644
-3.378
1.613
10.700
0.429
2.846

In [86]: 1 / df
Out[86]:
A
B
C
2000-01-01 15.948 -35.193
2.255
2000-01-02 -3.721 -0.634
0.540
2000-01-03
1.567 -1.797 -14.039
2000-01-04 -1.955
6.398 -0.930
2000-01-05
0.601 -2.285 -12.936
2000-01-06 34.257
5.586
0.575
2000-01-07 -1.372 -1.114 -3.183
2000-01-08 -20.802 -1.142
5.913
In [87]: df ** 4
Out[87]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
1.546e-05
5.219e-03
1.657e-01
6.841e-02
7.660e+00
7.261e-07
2.825e-01
5.341e-06

B
6.519e-07
6.195e+00
9.598e-02
5.966e-04
3.671e-02
1.027e-03
6.503e-01
5.878e-01

C
3.871e-02
1.172e+01
2.574e-05
1.339e+00
3.571e-05
9.168e+00
9.747e-03
8.178e-04

Boolean operators work as well:

9.2. DataFrame

299

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [88]: df1 = DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=bool)
In [89]: df2 = DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0] }, dtype=bool)
In [90]: df1 & df2
Out[90]:
a
b
0 False False
1 False
True
2
True False
In [91]:
Out[91]:
a
0 True
1 True
2 True

df1 | df2
b
True
True
True

In [92]: df1 ^ df2
Out[92]:
a
b
0
True
True
1
True False
2 False
True
In [93]: -df1
Out[93]:
a
b
0 False
True
1
True False
2 False False

9.2.12 Transposing
To transpose, access the T attribute (also the transpose function), similar to an ndarray:
# only show the first 5 rows
In [94]: df[:5].T
Out[94]:
2000-01-01 2000-01-02 2000-01-03
A
0.063
-0.269
0.638
B
-0.028
-1.578
-0.557
C
0.444
1.850
-0.071

2000-01-04
-0.511
0.156
-1.076

2000-01-05
1.664
-0.438
-0.077

9.2.13 DataFrame interoperability with NumPy functions
Elementwise NumPy ufuncs (log, exp, sqrt, ...) and various other NumPy functions can be used with no issues on
DataFrame, assuming the data within are numeric:
In [95]: np.exp(df)
Out[95]:
A
B
2000-01-01 1.065 0.972
2000-01-02 0.764 0.206
2000-01-03 1.893 0.573
2000-01-04 0.600 1.169

300

C
1.558
6.361
0.931
0.341

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-05
2000-01-06
2000-01-07
2000-01-08

5.278
1.030
0.482
0.953

0.646
1.196
0.407
0.417

0.926
5.698
0.730
1.184

In [96]: np.asarray(df)
Out[96]:
array([[ 0.0627, -0.0284,
[-0.2688, -1.5776,
[ 0.6381, -0.5566,
[-0.5114, 0.1563,
[ 1.6636, -0.4377,
[ 0.0292, 0.179 ,
[-0.729 , -0.898 ,
[-0.0481, -0.8756,

0.4436],
1.8502],
-0.0712],
-1.0756],
-0.0773],
1.7401],
-0.3142],
0.1691]])

The dot method on DataFrame implements matrix multiplication:
In [97]: df.T.dot(df)
Out[97]:
A
B
C
A 4.047 -0.039 0.178
B -0.039 4.621 -2.581
C 0.178 -2.581 7.943

Similarly, the dot method on Series implements dot product:
In [98]: s1 = Series(np.arange(5,10))
In [99]: s1.dot(s1)
Out[99]: 255

DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics are quite different in
places from a matrix.

9.2.14 Console display
Very large DataFrames will be truncated to display them in the console. You can also get a summary using info().
(Here I am reading a CSV version of the baseball dataset from the plyr R package):
In [100]: baseball = read_csv('data/baseball.csv')
In [101]: print(baseball)
id
player year
0
88641 womacto01 2006
1
88643 schilcu01 2006
..
...
...
...
98 89533
aloumo01 2007
99 89534 alomasa02 2007

stint
2
1
...
1
1

...
...
...
...
...
...

hbp sh
0 3
0 0
.. ..
2 0
0 0

sf
0
0
..
3
0

gidp
0
0
...
13
0

[100 rows x 23 columns]
In [102]: baseball.info()

Int64Index: 100 entries, 0 to 99
Data columns (total 23 columns):
id
100 non-null int64
player
100 non-null object

9.2. DataFrame

301

pandas: powerful Python data analysis toolkit, Release 0.16.1

year
100 non-null int64
stint
100 non-null int64
team
100 non-null object
lg
100 non-null object
g
100 non-null int64
ab
100 non-null int64
r
100 non-null int64
h
100 non-null int64
X2b
100 non-null int64
X3b
100 non-null int64
hr
100 non-null int64
rbi
100 non-null float64
sb
100 non-null float64
cs
100 non-null float64
bb
100 non-null int64
so
100 non-null float64
ibb
100 non-null float64
hbp
100 non-null float64
sh
100 non-null float64
sf
100 non-null float64
gidp
100 non-null float64
dtypes: float64(9), int64(11), object(3)
memory usage: 17.6+ KB

However, using to_string will return a string representation of the DataFrame in tabular form, though it won’t
always fit the console width:
In [103]: print(baseball.iloc[-20:, :12].to_string())
id
player year stint team lg
g
ab
80 89474 finlest01 2007
1 COL NL
43
94
81 89480 embreal01 2007
1 OAK AL
4
0
82 89481 edmonji01 2007
1 SLN NL 117 365
83 89482 easleda01 2007
1 NYN NL
76 193
84 89489 delgaca01 2007
1 NYN NL 139 538
85 89493 cormirh01 2007
1 CIN NL
6
0
86 89494 coninje01 2007
2 NYN NL
21
41
87 89495 coninje01 2007
1 CIN NL
80 215
88 89497 clemero02 2007
1 NYA AL
2
2
89 89498 claytro01 2007
2 BOS AL
8
6
90 89499 claytro01 2007
1 TOR AL
69 189
91 89501 cirilje01 2007
2 ARI NL
28
40
92 89502 cirilje01 2007
1 MIN AL
50 153
93 89521 bondsba01 2007
1 SFN NL 126 340
94 89523 biggicr01 2007
1 HOU NL 141 517
95 89525 benitar01 2007
2 FLO NL
34
0
96 89526 benitar01 2007
1 SFN NL
19
0
97 89530 ausmubr01 2007
1 HOU NL 117 349
98 89533
aloumo01 2007
1 NYN NL
87 328
99 89534 alomasa02 2007
1 NYN NL
8
22

r
9
0
39
24
71
0
2
23
0
1
23
6
18
75
68
0
0
38
51
1

h
17
0
92
54
139
0
8
57
1
0
48
8
40
94
130
0
0
82
112
3

X2b
3
0
15
6
30
0
2
11
0
0
14
4
9
14
31
0
0
16
19
1

X3b
0
0
2
0
0
0
0
1
0
0
0
0
2
0
3
0
0
3
1
0

New since 0.10.0, wide DataFrames will now be printed across multiple rows by default:
In [104]: DataFrame(randn(3, 12))
Out[104]:
0
1
2
3
4
5
6
0 1.225021 -0.528620 0.448676 0.619107 -1.199110 -0.949097 2.169523
1 -1.753617 0.992384 -0.505601 -0.599848 0.133585 0.008836 -1.767710
2 -0.461585 -1.321106 1.745476 1.445100 0.991037 -0.860733 -0.870661

302

\

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

7
8
9
10
11
0 0.302230 0.919516 0.657436 0.262574 -0.804798
1 0.700112 -0.020773 -0.302481 0.347869 0.179123
2 -0.117845 -0.046266 2.095649 -0.524324 -0.610555

You can change how much to print on a single row by setting the display.width option:
In [105]: set_option('display.width', 40) # default is 80
In [106]: DataFrame(randn(3, 12))
Out[106]:
0
1
2
\
0 -1.280951 1.472585 -1.001914
1 0.130529 -1.603771 -0.128830
2 -1.084566 -0.515272 1.367586
3
4
5
0 1.044770 -0.050668 -0.013289
1 -1.869301 -0.232977 -0.139801
2 0.963500 0.224105 -0.020051

\

6
7
8
0 -0.291893 2.029038 -1.117195
1 -1.083341 -0.357234 -0.818199
2 0.524663 0.351081 -1.574209

\

9
10
11
0 1.598577 -0.397325 0.151653
1 -0.886885 1.238885 -1.639274
2 -0.486856 -0.545888 -0.927076

You can also disable this feature via the expand_frame_repr option. This will print the table in one block.

9.2.15 DataFrame column attribute access and IPython completion
If a DataFrame column label is a valid Python variable name, the column can be accessed like attributes:
In [107]: df = DataFrame({'foo1' : np.random.randn(5),
.....:
'foo2' : np.random.randn(5)})
.....:
In [108]: df
Out[108]:
foo1
foo2
0 0.909160 1.360298
1 -0.667763 -1.603624
2 -0.101656 -1.648929
3 1.189682 0.145121
4 -0.090648 -2.536359
In [109]: df.foo1
Out[109]:
0
0.909160
1
-0.667763
2
-0.101656
3
1.189682
4
-0.090648
Name: foo1, dtype: float64

9.2. DataFrame

303

pandas: powerful Python data analysis toolkit, Release 0.16.1

The columns are also connected to the IPython completion mechanism so they can be tab-completed:
In [5]: df.fo
df.foo1 df.foo2

9.3 Panel
Panel is a somewhat less-used, but still important container for 3-dimensional data. The term panel data is derived
from econometrics and is partially responsible for the name pandas: pan(el)-da(ta)-s. The names for the 3 axes are
intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric
analysis of panel data. However, for the strict purposes of slicing and dicing a collection of DataFrame objects, you
may find the axis names slightly arbitrary:
• items: axis 0, each item corresponds to a DataFrame contained inside
• major_axis: axis 1, it is the index (rows) of each of the DataFrames
• minor_axis: axis 2, it is the columns of each of the DataFrames
Construction of Panels works about like you would expect:

9.3.1 From 3D ndarray with optional axis labels
In [110]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
.....:
major_axis=date_range('1/1/2000', periods=5),
.....:
minor_axis=['A', 'B', 'C', 'D'])
.....:
In [111]: wp
Out[111]:

Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

9.3.2 From dict of DataFrame objects
In [112]: data = {'Item1' : DataFrame(randn(4, 3)),
.....:
'Item2' : DataFrame(randn(4, 2))}
.....:
In [113]: Panel(data)
Out[113]:

Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2

Note that the values in the dict need only be convertible to DataFrame. Thus, they can be any of the other valid
inputs to DataFrame as per above.
One helpful factory method is Panel.from_dict, which takes a dictionary of DataFrames as above, and the
following named parameters:
304

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

Parameter
intersect
orient

Default
False
items

Description
drops elements whose indices do not align
use minor to use DataFrames’ columns as panel items

For example, compare to the construction above:
In [114]: Panel.from_dict(data, orient='minor')
Out[114]:

Dimensions: 3 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: 0 to 2
Major_axis axis: 0 to 3
Minor_axis axis: Item1 to Item2

Orient is especially useful for mixed-type DataFrames. If you pass a dict of DataFrame objects with mixed-type
columns, all of the data will get upcasted to dtype=object unless you pass orient=’minor’:
In [115]: df = DataFrame({'a': ['foo', 'bar', 'baz'],
.....:
'b': np.random.randn(3)})
.....:
In [116]: df
Out[116]:
a
b
0 foo -1.264356
1 bar -0.497629
2 baz 1.789719
In [117]: data = {'item1': df, 'item2': df}
In [118]: panel = Panel.from_dict(data, orient='minor')
In [119]: panel['a']
Out[119]:
item1 item2
0
foo
foo
1
bar
bar
2
baz
baz
In [120]: panel['b']
Out[120]:
item1
item2
0 -1.264356 -1.264356
1 -0.497629 -0.497629
2 1.789719 1.789719
In [121]: panel['b'].dtypes
Out[121]:
item1
float64
item2
float64
dtype: object

Note: Unfortunately Panel, being less commonly used than Series and DataFrame, has been slightly neglected featurewise. A number of methods and options available in DataFrame are not available in Panel. This will get worked on,
of course, in future releases. And faster if you join me in working on the codebase.

9.3. Panel

305

pandas: powerful Python data analysis toolkit, Release 0.16.1

9.3.3 From DataFrame using to_panel method
This method was introduced in v0.7 to replace LongPanel.to_long, and converts a DataFrame with a two-level
index to a Panel.
In [122]: midx = MultiIndex(levels=[['one', 'two'], ['x','y']], labels=[[1,1,0,0],[1,0,1,0]])
In [123]: df = DataFrame({'A' : [1, 2, 3, 4], 'B': [5, 6, 7, 8]}, index=midx)
In [124]: df.to_panel()
Out[124]:

Dimensions: 2 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: A to B
Major_axis axis: one to two
Minor_axis axis: x to y

9.3.4 Item selection / addition / deletion
Similar to DataFrame functioning as a dict of Series, Panel is like a dict of DataFrames:
In [125]: wp['Item1']
Out[125]:
A
B
C
D
2000-01-01 0.835993 -0.621868 -0.173710 -0.174326
2000-01-02 -0.354356 2.090183 -0.736019 -1.250412
2000-01-03 -0.581326 -0.244477 0.917119 0.611695
2000-01-04 -1.576078 -0.528562 -0.704643 -0.481453
2000-01-05 1.085093 -1.229749 2.295679 -1.016910
In [126]: wp['Item3'] = wp['Item1'] / wp['Item2']

The API for insertion and deletion is the same as for DataFrame. And as with DataFrame, if the item is a valid python
identifier, you can access it as an attribute and tab-complete it in IPython.

9.3.5 Transposing
A Panel can be rearranged using its transpose method (which does not make a copy by default unless the data are
heterogeneous):
In [127]: wp.transpose(2, 0, 1)
Out[127]:

Dimensions: 4 (items) x 3 (major_axis) x 5 (minor_axis)
Items axis: A to D
Major_axis axis: Item1 to Item3
Minor_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00

9.3.6 Indexing / Selection
Operation
Select item
Get slice at major_axis label
Get slice at minor_axis label

306

Syntax
wp[item]
wp.major_xs(val)
wp.minor_xs(val)

Result
DataFrame
DataFrame
DataFrame

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

For example, using the earlier example data, we could do:
In [128]: wp['Item1']
Out[128]:
A
B
C
D
2000-01-01 0.835993 -0.621868 -0.173710 -0.174326
2000-01-02 -0.354356 2.090183 -0.736019 -1.250412
2000-01-03 -0.581326 -0.244477 0.917119 0.611695
2000-01-04 -1.576078 -0.528562 -0.704643 -0.481453
2000-01-05 1.085093 -1.229749 2.295679 -1.016910
In [129]: wp.major_xs(wp.major_axis[2])
Out[129]:
Item1
Item2
Item3
A -0.581326 -1.271582 0.457167
B -0.244477 -0.861256 0.283861
C 0.917119 -0.597879 -1.533955
D 0.611695 -0.118700 -5.153265
In [130]: wp.minor_axis
Out[130]: Index([u'A', u'B', u'C', u'D'], dtype='object')
In [131]: wp.minor_xs('C')
Out[131]:
Item1
Item2
2000-01-01 -0.173710 2.381645
2000-01-02 -0.736019 -2.413161
2000-01-03 0.917119 -0.597879
2000-01-04 -0.704643 -1.536019
2000-01-05 2.295679 0.181524

Item3
-0.072937
0.305002
-1.533955
0.458746
12.646732

9.3.7 Squeezing
Another way to change the dimensionality of an object is to squeeze a 1-len object, similar to wp[’Item1’]
In [132]: wp.reindex(items=['Item1']).squeeze()
Out[132]:
A
B
C
D
2000-01-01 0.835993 -0.621868 -0.173710 -0.174326
2000-01-02 -0.354356 2.090183 -0.736019 -1.250412
2000-01-03 -0.581326 -0.244477 0.917119 0.611695
2000-01-04 -1.576078 -0.528562 -0.704643 -0.481453
2000-01-05 1.085093 -1.229749 2.295679 -1.016910
In [133]: wp.reindex(items=['Item1'],minor=['B']).squeeze()
Out[133]:
2000-01-01
-0.621868
2000-01-02
2.090183
2000-01-03
-0.244477
2000-01-04
-0.528562
2000-01-05
-1.229749
Freq: D, Name: B, dtype: float64

9.3. Panel

307

pandas: powerful Python data analysis toolkit, Release 0.16.1

9.3.8 Conversion to DataFrame
A Panel can be represented in 2D form as a hierarchically indexed DataFrame. See the section hierarchical indexing
for more on this. To convert a Panel to a DataFrame, use the to_frame method:
In [134]: panel = Panel(np.random.randn(3, 5, 4), items=['one', 'two', 'three'],
.....:
major_axis=date_range('1/1/2000', periods=5),
.....:
minor_axis=['a', 'b', 'c', 'd'])
.....:
In [135]: panel.to_frame()
Out[135]:
one
major
minor
2000-01-01 a
0.445900
b
-0.574496
c
0.872979
d
0.297255
2000-01-02 a
-1.022617
b
1.091870
c
1.831444
d
1.271808
2000-01-03 a
-0.472876
b
-0.279340
c
0.495966
d
0.367858
2000-01-04 a
-1.530917
b
-0.285890
c
0.943062
d
1.361752
2000-01-05 a
0.210373
b
-1.945608
c
2.532409
d
0.373819

two

three

-1.286198
-0.407154
0.068084
-2.157051
-0.443982
-0.881639
0.851834
-1.352515
0.228761
0.416858
0.301709
0.569010
-0.047619
0.413370
0.573056
-0.154419
0.987044
0.063191
0.439086
1.657475

-1.023189
0.591682
-0.008919
-0.415572
-0.772683
-0.516197
0.626655
0.269623
1.709250
-0.830728
-0.290244
-1.588782
0.639406
1.055533
-0.260898
-0.289725
0.279621
0.454423
-0.065750
1.465709

9.4 Panel4D (Experimental)
Panel4D is a 4-Dimensional named container very much like a Panel, but having 4 named dimensions. It is
intended as a test bed for more N-Dimensional named containers.
• labels: axis 0, each item corresponds to a Panel contained inside
• items: axis 1, each item corresponds to a DataFrame contained inside
• major_axis: axis 2, it is the index (rows) of each of the DataFrames
• minor_axis: axis 3, it is the columns of each of the DataFrames
Panel4D is a sub-class of Panel, so most methods that work on Panels are applicable to Panel4D. The following
methods are disabled:
• join , to_frame , to_excel , to_sparse , groupby
Construction of Panel4D works in a very similar manner to a Panel

308

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

9.4.1 From 4D ndarray with optional axis labels
In [136]: p4d = Panel4D(randn(2, 2, 5, 4),
.....:
labels=['Label1','Label2'],
.....:
items=['Item1', 'Item2'],
.....:
major_axis=date_range('1/1/2000', periods=5),
.....:
minor_axis=['A', 'B', 'C', 'D'])
.....:
In [137]: p4d
Out[137]:

Dimensions: 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

9.4.2 From dict of Panel objects
In [138]: data = { 'Label1' : Panel({ 'Item1' : DataFrame(randn(4, 3)) }),
.....:
'Label2' : Panel({ 'Item2' : DataFrame(randn(4, 2)) }) }
.....:
In [139]: Panel4D(data)
Out[139]:

Dimensions: 2 (labels) x 2 (items) x 4 (major_axis) x 3 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2

Note that the values in the dict need only be convertible to Panels. Thus, they can be any of the other valid inputs to
Panel as per above.

9.4.3 Slicing
Slicing works in a similar manner to a Panel. [] slices the first dimension. .ix allows you to slice arbitrarily and get
back lower dimensional objects
In [140]: p4d['Label1']
Out[140]:

Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

4D -> Panel
In [141]: p4d.ix[:,:,:,'A']
Out[141]:

Dimensions: 2 (items) x 2 (major_axis) x 5 (minor_axis)
Items axis: Label1 to Label2

9.4. Panel4D (Experimental)

309

pandas: powerful Python data analysis toolkit, Release 0.16.1

Major_axis axis: Item1 to Item2
Minor_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00

4D -> DataFrame
In [142]: p4d.ix[:,:,0,'A']
Out[142]:
Label1
Label2
Item1 1.127489 0.015494
Item2 -1.650400 0.130533

4D -> Series
In [143]: p4d.ix[:,0,0,'A']
Out[143]:
Label1
1.127489
Label2
0.015494
Name: A, dtype: float64

9.4.4 Transposing
A Panel4D can be rearranged using its transpose method (which does not make a copy by default unless the data
are heterogeneous):
In [144]: p4d.transpose(3, 2, 1, 0)
Out[144]:

Dimensions: 4 (labels) x 5 (items) x 2 (major_axis) x 2 (minor_axis)
Labels axis: A to D
Items axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Major_axis axis: Item1 to Item2
Minor_axis axis: Label1 to Label2

9.5 PanelND (Experimental)
PanelND is a module with a set of factory functions to enable a user to construct N-dimensional named containers like
Panel4D, with a custom set of axis labels. Thus a domain-specific container can easily be created.
The following creates a Panel5D. A new panel type object must be sliceable into a lower dimensional object. Here we
slice to a Panel4D.
In [145]: from pandas.core import panelnd
In [146]: Panel5D = panelnd.create_nd_panel_factory(
.....:
klass_name
= 'Panel5D',
.....:
orders = [ 'cool', 'labels','items','major_axis','minor_axis'],
.....:
slices = { 'labels' : 'labels', 'items' : 'items',
.....:
'major_axis' : 'major_axis', 'minor_axis' : 'minor_axis' },
.....:
slicer = Panel4D,
.....:
aliases = { 'major' : 'major_axis', 'minor' : 'minor_axis' },
.....:
stat_axis
= 2)
.....:
In [147]: p5d = Panel5D(dict(C1 = p4d))

310

Chapter 9. Intro to Data Structures

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [148]: p5d
Out[148]:

Dimensions: 1 (cool) x 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Cool axis: C1 to C1
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
# print a slice of our 5D
In [149]: p5d.ix['C1',:,:,0:3,:]
Out[149]:

Dimensions: 2 (labels) x 2 (items) x 3 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D
# transpose it
In [150]: p5d.transpose(1,2,3,4,0)
Out[150]:

Dimensions: 2 (cool) x 2 (labels) x 5 (items) x 4 (major_axis) x 1 (minor_axis)
Cool axis: Label1 to Label2
Labels axis: Item1 to Item2
Items axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Major_axis axis: A to D
Minor_axis axis: C1 to C1
# look at the shape & dim
In [151]: p5d.shape
Out[151]: (1, 2, 2, 5, 4)
In [152]: p5d.ndim
Out[152]: 5

9.5. PanelND (Experimental)

311

pandas: powerful Python data analysis toolkit, Release 0.16.1

312

Chapter 9. Intro to Data Structures

CHAPTER

TEN

ESSENTIAL BASIC FUNCTIONALITY

Here we discuss a lot of the essential functionality common to the pandas data structures. Here’s how to create some
of the objects used in the examples from the previous section:
In [1]: index = date_range('1/1/2000', periods=8)
In [2]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [3]: df = DataFrame(randn(8, 3), index=index,
...:
columns=['A', 'B', 'C'])
...:
In [4]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
...:
major_axis=date_range('1/1/2000', periods=5),
...:
minor_axis=['A', 'B', 'C', 'D'])
...:

10.1 Head and Tail
To view a small sample of a Series or DataFrame object, use the head() and tail() methods. The default number
of elements to display is five, but you may pass a custom number.
In [5]: long_series = Series(randn(1000))
In [6]: long_series.head()
Out[6]:
0
-0.305384
1
-0.479195
2
0.095031
3
-0.270099
4
-0.707140
dtype: float64
In [7]: long_series.tail(3)
Out[7]:
997
0.588446
998
0.026465
999
-1.728222
dtype: float64

313

pandas: powerful Python data analysis toolkit, Release 0.16.1

10.2 Attributes and the raw ndarray(s)
pandas objects have a number of attributes enabling you to access the metadata
• shape: gives the axis dimensions of the object, consistent with ndarray
• Axis labels
– Series: index (only axis)
– DataFrame: index (rows) and columns
– Panel: items, major_axis, and minor_axis
Note, these attributes can be safely assigned to!
In [8]: df[:2]
Out[8]:
2000-01-01
2000-01-02

A
B
C
0.187483 -1.933946 0.377312
0.734122 2.141616 -0.011225

In [9]: df.columns = [x.lower() for x in df.columns]
In [10]: df
Out[10]:
a
b
2000-01-01 0.187483 -1.933946
2000-01-02 0.734122 2.141616
2000-01-03 0.048869 -1.360687
2000-01-04 -0.859661 -0.231595
2000-01-05 -1.296337 0.150680
2000-01-06 0.571764 1.555563
2000-01-07 0.535420 -1.032853
2000-01-08 1.304124 1.449735

c
0.377312
-0.011225
-0.479010
-0.527750
0.123836
-0.823761
1.469725
0.203109

To get the actual data inside a data structure, one need only access the values property:
In [11]: s.values
Out[11]: array([ 0.1122,

0.8717, -0.8161, -0.7849,

In [12]: df.values
Out[12]:
array([[ 0.1875, -1.9339,
[ 0.7341, 2.1416,
[ 0.0489, -1.3607,
[-0.8597, -0.2316,
[-1.2963, 0.1507,
[ 0.5718, 1.5556,
[ 0.5354, -1.0329,
[ 1.3041, 1.4497,

0.3773],
-0.0112],
-0.479 ],
-0.5278],
0.1238],
-0.8238],
1.4697],
0.2031]])

In [13]: wp.values
Out[13]:
array([[[-1.032 , 0.9698,
[-0.9388, 0.6691,
[ 0.6804, -0.3084,
[-1.9936, -1.9274,
[ 0.5511, 3.0593,
[[ 0.9357,

314

1.0307])

-0.9627, 1.3821],
-0.4336, -0.2736],
-0.2761, -1.8212],
-2.0279, 1.625 ],
0.4553, -0.0307]],

1.0612, -2.1079,

0.1999],

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

[ 0.3236, -0.6416, -0.5875, 0.0539],
[ 0.1949, -0.382 , 0.3186, 2.0891],
[-0.7283, -0.0903, -0.7482, 1.3189],
[-2.0298, 0.7927, 0.461 , -0.5427]]])

If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the
changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame’s columns are not
all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to.
Note: When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all
of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and
integers, the resulting array will be of float dtype.

10.3 Accelerated operations
pandas has support for accelerating certain types of binary numerical and boolean operations using the numexpr
library (starting in 0.11.0) and the bottleneck libraries.
These libraries are especially useful when dealing with large data sets, and provide large speedups. numexpr uses
smart chunking, caching, and multiple cores. bottleneck is a set of specialized cython routines that are especially
fast when dealing with arrays that have nans.
Here is a sample (using 100 column x 100,000 row DataFrames):
Operation
df1 > df2
df1 * df2
df1 + df2

0.11.0 (ms)
13.32
21.71
22.04

Prior Version (ms)
125.35
36.63
36.50

Ratio to Prior
0.1063
0.5928
0.6039

You are highly encouraged to install both libraries. See the section Recommended Dependencies for more installation
info.

10.4 Flexible binary operations
With binary operations between pandas data structures, there are two key points of interest:
• Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects.
• Missing data in computations
We will demonstrate how to manage these issues independently, though they can be handled simultaneously.

10.4.1 Matching / broadcasting behavior
DataFrame has the methods add(), sub(), mul(), div() and related functions radd(), rsub(), ... for carrying out binary operations. For broadcasting behavior, Series input is of primary interest. Using these functions, you
can use to either match on the index or columns via the axis keyword:
In [14]: df = DataFrame({'one' : Series(randn(3), index=['a', 'b', 'c']),
....:
'two' : Series(randn(4), index=['a', 'b', 'c', 'd']),
....:
'three' : Series(randn(3), index=['b', 'c', 'd'])})
....:

10.3. Accelerated operations

315

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [15]: df
Out[15]:
one
three
two
a -0.626544
NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d
NaN 1.124472 -1.101558
In [16]: row = df.ix[1]
In [17]: column = df['two']
In [18]: df.sub(row, axis='columns')
Out[18]:
one
three
two
a -0.487650
NaN -1.487837
b 0.000000 0.000000 0.000000
c 0.150512 0.639504 -1.585038
d
NaN 1.301762 -2.237808
In [19]: df.sub(row, axis=1)
Out[19]:
one
three
two
a -0.487650
NaN -1.487837
b 0.000000 0.000000 0.000000
c 0.150512 0.639504 -1.585038
d
NaN 1.301762 -2.237808
In [20]: df.sub(column, axis='index')
Out[20]:
one
three two
a -0.274957
NaN
0
b -1.275144 -1.313539
0
c 0.460406 0.911003
0
d
NaN 2.226031
0
In [21]: df.sub(column, axis=0)
Out[21]:
one
three two
a -0.274957
NaN
0
b -1.275144 -1.313539
0
c 0.460406 0.911003
0
d
NaN 2.226031
0

Furthermore you can align a level of a multi-indexed DataFrame with a Series.
In [22]: dfmi = df.copy()
In [23]: dfmi.index = MultiIndex.from_tuples([(1,'a'),(1,'b'),(1,'c'),(2,'a')],
....:
names=['first','second'])
....:
In [24]: dfmi.sub(column, axis=0,
Out[24]:
one
three
first second
1
a
-0.274957
NaN
b
-1.275144 -1.313539
c
0.460406 0.911003

316

level='second')
two
0.000000
0.000000
0.000000

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

2

a

NaN

1.476060 -0.749971

With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps
confusingly?) give you the option to specify the broadcast axis. For example, suppose we wished to demean the data
over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis:
In [25]: major_mean = wp.mean(axis='major')
In [26]: major_mean
Out[26]:
Item1
Item2
A -0.546569 -0.260774
B 0.492478 0.147993
C -0.649010 -0.532794
D 0.176307 0.623812
In [27]: wp.sub(major_mean, axis='major')
Out[27]:

Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

And similarly for axis="items" and axis="minor".
Note: I could be convinced to make the axis argument in the DataFrame methods match the broadcasting behavior of
Panel. Though it would require a transition period so users can change their code...

10.4.2 Missing data / operations with fill values
In Series and DataFrame (though not yet in Panel), the arithmetic functions have the option of inputting a fill_value,
namely a value to substitute when at most one of the values at a location are missing. For example, when adding two
DataFrame objects, you may wish to treat NaN as 0 unless both DataFrames are missing that value, in which case the
result will be NaN (you can later replace NaN with some other value using fillna if you wish).
In [28]: df
Out[28]:
one
three
two
a -0.626544
NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d
NaN 1.124472 -1.101558
In [29]: df2
Out[29]:
one
three
two
a -0.626544 1.000000 -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d
NaN 1.124472 -1.101558
In [30]: df + df2
Out[30]:
one
three
two
a -1.253088
NaN -0.703174

10.4. Flexible binary operations

317

pandas: powerful Python data analysis toolkit, Release 0.16.1

b -0.277789 -0.354579 2.272499
c 0.023235 0.924429 -0.897577
d
NaN 2.248945 -2.203116
In [31]: df.add(df2, fill_value=0)
Out[31]:
one
three
two
a -1.253088 1.000000 -0.703174
b -0.277789 -0.354579 2.272499
c 0.023235 0.924429 -0.897577
d
NaN 2.248945 -2.203116

10.4.3 Flexible Comparisons
Starting in v0.8, pandas introduced binary comparison methods eq, ne, lt, gt, le, and ge to Series and DataFrame whose
behavior is analogous to the binary arithmetic operations described above:
In [32]: df.gt(df2)
Out[32]:
one three
two
a False False False
b False False False
c False False False
d False False False
In [33]: df2.ne(df)
Out[33]:
one three
two
a False
True False
b False False False
c False False False
d
True False False

These operations produce a pandas object the same type as the left-hand-side input that if of dtype bool. These
boolean objects can be used in indexing operations, see here

10.4.4 Boolean Reductions
You can apply the reductions: empty, any(), all(), and bool() to provide a way to summarize a boolean result.
In [34]: (df>0).all()
Out[34]:
one
False
three
False
two
False
dtype: bool
In [35]: (df>0).any()
Out[35]:
one
True
three
True
two
True
dtype: bool

You can reduce to a final boolean value.

318

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [36]: (df>0).any().any()
Out[36]: True

You can test if a pandas object is empty, via the empty property.
In [37]: df.empty
Out[37]: False
In [38]: DataFrame(columns=list('ABC')).empty
Out[38]: True

To evaluate single-element pandas objects in a boolean context, use the method bool():
In [39]: Series([True]).bool()
Out[39]: True
In [40]: Series([False]).bool()
Out[40]: False
In [41]: DataFrame([[True]]).bool()
Out[41]: True
In [42]: DataFrame([[False]]).bool()
Out[42]: False

Warning: You might be tempted to do the following:
>>>if df:
...

Or
>>> df and df2

These both will raise as you are trying to compare multiple values.
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

See gotchas for a more detailed discussion.

10.4.5 Comparing if objects are equivalent
Often you may find there is more than one way to compute the same result. As a simple example, consider df+df and
df*2. To test that these two computations produce the same result, given the tools shown above, you might imagine
using (df+df == df*2).all(). But in fact, this expression is False:
In [43]: df+df == df*2
Out[43]:
one three
two
a
True False True
b
True
True True
c
True
True True
d False
True True
In [44]: (df+df == df*2).all()
Out[44]:
one
False

10.4. Flexible binary operations

319

pandas: powerful Python data analysis toolkit, Release 0.16.1

three
False
two
True
dtype: bool

Notice that the boolean DataFrame df+df == df*2 contains some False values! That is because NaNs do not
compare as equals:
In [45]: np.nan == np.nan
Out[45]: False

So, as of v0.13.1, NDFrames (such as Series, DataFrames, and Panels) have an equals() method for testing equality,
with NaNs in corresponding locations treated as equal.
In [46]: (df+df).equals(df*2)
Out[46]: True

Note that the Series or DataFrame index needs to be in the same order for equality to be True:
In [47]: df1 = DataFrame({'col':['foo', 0, np.nan]})
In [48]: df2 = DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])
In [49]: df1.equals(df2)
Out[49]: False
In [50]: df1.equals(df2.sort())
Out[50]: True

10.4.6 Combining overlapping data sets
A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the
other. An example would be two data series representing a particular economic indicator where one is considered to
be of “higher quality”. However, the lower quality series might extend further back in history or have more complete
data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame
are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation
is combine_first(), which we illustrate:
In [51]: df1 = DataFrame({'A' : [1., np.nan, 3., 5., np.nan],
....:
'B' : [np.nan, 2., 3., np.nan, 6.]})
....:
In [52]: df2 = DataFrame({'A' : [5., 2., 4., np.nan, 3., 7.],
....:
'B' : [np.nan, np.nan, 3., 4., 6., 8.]})
....:
In [53]: df1
Out[53]:
A
B
0
1 NaN
1 NaN
2
2
3
3
3
5 NaN
4 NaN
6
In [54]: df2
Out[54]:
A
B

320

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
5 NaN
1
2 NaN
2
4
3
3 NaN
4
4
3
6
5
7
8
In [55]: df1.combine_first(df2)
Out[55]:
A
B
0 1 NaN
1 2
2
2 3
3
3 5
4
4 3
6
5 7
8

10.4.7 General DataFrame Combine
The combine_first() method above calls the more general DataFrame method combine(). This method takes
another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs
of Series (i.e., columns whose names are the same).
So, for instance, to reproduce combine_first() as above:
In [56]: combiner = lambda x, y: np.where(isnull(x), y, x)
In [57]: df1.combine(df2, combiner)
Out[57]:
A
B
0 1 NaN
1 2
2
2 3
3
3 5
4
4 3
6
5 7
8

10.5 Descriptive statistics
A large number of methods for computing descriptive statistics and other related operations on Series, DataFrame,
and Panel. Most of these are aggregations (hence producing a lower-dimensional result) like sum(), mean(), and
quantile(), but some of them, like cumsum() and cumprod(), produce an object of the same size. Generally
speaking, these methods take an axis argument, just like ndarray.{sum, std, ...}, but the axis can be specified by name
or integer:
• Series: no axis argument needed
• DataFrame: “index” (axis=0, default), “columns” (axis=1)
• Panel: “items” (axis=0), “major” (axis=1, default), “minor” (axis=2)
For example:
In [58]: df
Out[58]:
one

three

10.5. Descriptive statistics

two

321

pandas: powerful Python data analysis toolkit, Release 0.16.1

a -0.626544
NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d
NaN 1.124472 -1.101558
In [59]: df.mean(0)
Out[59]:
one
-0.251274
three
0.469799
two
-0.191421
dtype: float64
In [60]: df.mean(1)
Out[60]:
a
-0.489066
b
0.273355
c
0.008348
d
0.011457
dtype: float64

All such methods have a skipna option signaling whether to exclude missing data (True by default):
In [61]: df.sum(0, skipna=False)
Out[61]:
one
NaN
three
NaN
two
-0.765684
dtype: float64
In [62]: df.sum(axis=1, skipna=True)
Out[62]:
a
-0.978131
b
0.820066
c
0.025044
d
0.022914
dtype: float64

Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standardization (rendering data zero mean and standard deviation 1), very concisely:
In [63]: ts_stand = (df - df.mean()) / df.std()
In [64]: ts_stand.std()
Out[64]:
one
1
three
1
two
1
dtype: float64
In [65]: xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)
In [66]: xs_stand.std(1)
Out[66]:
a
1
b
1
c
1
d
1
dtype: float64

322

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

Note that methods like cumsum() and cumprod() preserve the location of NA values:
In [67]: df.cumsum()
Out[67]:
one
three
two
a -0.626544
NaN -0.351587
b -0.765438 -0.177289 0.784662
c -0.753821 0.284925 0.335874
d
NaN 1.409398 -0.765684

Here is a quick reference summary table of common functions. Each also takes an optional level parameter which
applies only if the object has a hierarchical index.
Function
count
sum
mean
mad
median
min
max
mode
abs
prod
std
var
sem
skew
kurt
quantile
cumsum
cumprod
cummax
cummin

Description
Number of non-null observations
Sum of values
Mean of values
Mean absolute deviation
Arithmetic median of values
Minimum
Maximum
Mode
Absolute Value
Product of values
Unbiased standard deviation
Unbiased variance
Unbiased standard error of the mean
Unbiased skewness (3rd moment)
Unbiased kurtosis (4th moment)
Sample quantile (value at %)
Cumulative sum
Cumulative product
Cumulative maximum
Cumulative minimum

Note that by chance some NumPy methods, like mean, std, and sum, will exclude NAs on Series input by default:
In [68]: np.mean(df['one'])
Out[68]: -0.25127365175839511
In [69]: np.mean(df['one'].values)
Out[69]: nan

Series also has a method nunique() which will return the number of unique non-null values:
In [70]: series = Series(randn(500))
In [71]: series[20:500] = np.nan
In [72]: series[10:20]

= 5

In [73]: series.nunique()
Out[73]: 11

10.5. Descriptive statistics

323

pandas: powerful Python data analysis toolkit, Release 0.16.1

10.5.1 Summarizing data: describe
There is a convenient describe() function which computes a variety of summary statistics about a Series or the
columns of a DataFrame (excluding NAs of course):
In [74]: series = Series(randn(1000))
In [75]: series[::2] = np.nan
In [76]: series.describe()
Out[76]:
count
500.000000
mean
-0.039663
std
1.069371
min
-3.463789
25%
-0.731101
50%
-0.058918
75%
0.672758
max
3.120271
dtype: float64
In [77]: frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [78]: frame.ix[::2] = np.nan
In [79]: frame.describe()
Out[79]:
a
b
count 500.000000 500.000000
mean
0.000954
-0.044014
std
1.005133
0.974882
min
-3.010899
-2.782760
25%
-0.682900
-0.681161
50%
-0.001651
-0.006279
75%
0.656439
0.632852
max
3.007143
2.627688

c
500.000000
0.075936
0.967432
-3.401252
-0.528190
0.040098
0.717919
2.702490

d
500.000000
-0.003679
1.004732
-2.944925
-0.663503
-0.003378
0.687214
2.850852

e
500.000000
0.020751
0.963812
-3.794127
-0.615717
0.006282
0.653423
3.072117

You can select specific percentiles to include in the output:
In [80]: series.describe(percentiles=[.05, .25, .75, .95])
Out[80]:
count
500.000000
mean
-0.039663
std
1.069371
min
-3.463789
5%
-1.741334
25%
-0.731101
50%
-0.058918
75%
0.672758
95%
1.854383
max
3.120271
dtype: float64

By default, the median is always included.
For a non-numerical Series object, describe() will give a simple summary of the number of unique values and
most frequently occurring values:

324

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [81]: s = Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a'])
In [82]: s.describe()
Out[82]:
count
9
unique
4
top
a
freq
5
dtype: object

Note that on a mixed-type DataFrame object, describe() will restrict the summary to include only numerical
columns or, if none are, only categorical columns:
In [83]: frame = DataFrame({'a': ['Yes', 'Yes', 'No', 'No'], 'b': range(4)})
In [84]: frame.describe()
Out[84]:
b
count 4.000000
mean
1.500000
std
1.290994
min
0.000000
25%
0.750000
50%
1.500000
75%
2.250000
max
3.000000

This behaviour can be controlled by providing a list of types as include/exclude arguments. The special value
all can also be used:
In [85]: frame.describe(include=['object'])
Out[85]:
a
count
4
unique
2
top
No
freq
2
In [86]: frame.describe(include=['number'])
Out[86]:
b
count 4.000000
mean
1.500000
std
1.290994
min
0.000000
25%
0.750000
50%
1.500000
75%
2.250000
max
3.000000
In [87]: frame.describe(include='all')
Out[87]:
a
b
count
4 4.000000
unique
2
NaN
top
No
NaN
freq
2
NaN
mean
NaN 1.500000
std
NaN 1.290994

10.5. Descriptive statistics

325

pandas: powerful Python data analysis toolkit, Release 0.16.1

min
25%
50%
75%
max

NaN
NaN
NaN
NaN
NaN

0.000000
0.750000
1.500000
2.250000
3.000000

That feature relies on select_dtypes. Refer to there for details about accepted inputs.

10.5.2 Index of Min/Max Values
The idxmin() and idxmax() functions on Series and DataFrame compute the index labels with the minimum and
maximum corresponding values:
In [88]: s1 = Series(randn(5))
In [89]: s1
Out[89]:
0
-0.872725
1
1.522411
2
0.080594
3
-1.676067
4
0.435804
dtype: float64
In [90]: s1.idxmin(), s1.idxmax()
Out[90]: (3, 1)
In [91]: df1 = DataFrame(randn(5,3), columns=['A','B','C'])
In [92]: df1
Out[92]:
A
B
C
0 0.445734 -1.649461 0.169660
1 1.246181 0.131682 -2.001988
2 -1.273023 0.870502 0.214583
3 0.088452 -0.173364 1.207466
4 0.546121 0.409515 -0.310515
In [93]: df1.idxmin(axis=0)
Out[93]:
A
2
B
0
C
1
dtype: int64
In [94]: df1.idxmax(axis=1)
Out[94]:
0
A
1
A
2
B
3
C
4
A
dtype: object

When there are multiple rows (or columns) matching the minimum or maximum value, idxmin() and idxmax()
return the first matching index:

326

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [95]: df3 = DataFrame([2, 1, 1, 3, np.nan], columns=['A'], index=list('edcba'))
In [96]: df3
Out[96]:
A
e
2
d
1
c
1
b
3
a NaN
In [97]: df3['A'].idxmin()
Out[97]: 'd'

Note: idxmin and idxmax are called argmin and argmax in NumPy.

10.5.3 Value counts (histogramming) / Mode
The value_counts() Series method and top-level function computes a histogram of a 1D array of values. It can
also be used as a function on regular arrays:
In [98]: data = np.random.randint(0, 7, size=50)
In [99]: data
Out[99]:
array([5, 3, 2, 2, 1, 4, 0, 4, 0, 2, 0, 6, 4, 1, 6, 3, 3, 0, 2, 1, 0, 5, 5,
3, 6, 1, 5, 6, 2, 0, 0, 6, 3, 3, 5, 0, 4, 3, 3, 3, 0, 6, 1, 3, 5, 5,
0, 4, 0, 6])
In [100]: s = Series(data)
In [101]: s.value_counts()
Out[101]:
0
11
3
10
6
7
5
7
4
5
2
5
1
5
dtype: int64
In [102]: value_counts(data)
Out[102]:
0
11
3
10
6
7
5
7
4
5
2
5
1
5
dtype: int64

Similarly, you can get the most frequently occurring value(s) (the mode) of the values in a Series or DataFrame:

10.5. Descriptive statistics

327

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [103]: s5 = Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])
In [104]: s5.mode()
Out[104]:
0
3
1
7
dtype: int64
In [105]: df5 = DataFrame({"A": np.random.randint(0, 7, size=50),
.....:
"B": np.random.randint(-10, 15, size=50)})
.....:
In [106]: df5.mode()
Out[106]:
A B
0 1 -5

10.5.4 Discretization and quantiling
Continuous values can be discretized using the cut() (bins based on values) and qcut() (bins based on sample
quantiles) functions:
In [107]: arr = np.random.randn(20)
In [108]: factor = cut(arr, 4)

In [109]: factor
Out[109]:
[(-0.645, 0.336], (-2.61, -1.626], (-1.626, -0.645], (-1.626, -0.645], (-1.626, -0.645], ..., (0.336,
Length: 20
Categories (4, object): [(-2.61, -1.626] < (-1.626, -0.645] < (-0.645, 0.336] < (0.336, 1.316]]
In [110]: factor = cut(arr, [-5, -1, 0, 1, 5])
In [111]: factor
Out[111]:
[(-1, 0], (-5, -1], (-1, 0], (-5, -1], (-1, 0], ..., (0, 1], (1, 5], (0, 1], (0, 1], (-5, -1]]
Length: 20
Categories (4, object): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]

qcut() computes sample quantiles. For example, we could slice up some normally distributed data into equal-size
quartiles like so:
In [112]: arr = np.random.randn(30)
In [113]: factor = qcut(arr, [0, .25, .5, .75, 1])

In [114]: factor
Out[114]:
[(-0.139, 1.00736], (1.00736, 1.976], (1.00736, 1.976], [-1.0705, -0.439], [-1.0705, -0.439], ..., (1
Length: 30
Categories (4, object): [[-1.0705, -0.439] < (-0.439, -0.139] < (-0.139, 1.00736] < (1.00736, 1.976]]
In [115]: value_counts(factor)
Out[115]:
(1.00736, 1.976]
8
[-1.0705, -0.439]
8

328

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

(-0.139, 1.00736]
(-0.439, -0.139]
dtype: int64

7
7

We can also pass infinite values to define the bins:
In [116]: arr = np.random.randn(20)
In [117]: factor = cut(arr, [-np.inf, 0, np.inf])
In [118]: factor
Out[118]:
[(-inf, 0], (0, inf], (0, inf], (0, inf], (-inf, 0], ..., (-inf, 0], (0, inf], (-inf, 0], (-inf, 0],
Length: 20
Categories (2, object): [(-inf, 0] < (0, inf]]

10.6 Function application
Arbitrary functions can be applied along the axes of a DataFrame or Panel using the apply() method, which, like
the descriptive statistics methods, take an optional axis argument:
In [119]: df.apply(np.mean)
Out[119]:
one
-0.251274
three
0.469799
two
-0.191421
dtype: float64
In [120]: df.apply(np.mean, axis=1)
Out[120]:
a
-0.489066
b
0.273355
c
0.008348
d
0.011457
dtype: float64
In [121]: df.apply(lambda x: x.max() - x.min())
Out[121]:
one
0.638161
three
1.301762
two
2.237808
dtype: float64
In [122]: df.apply(np.cumsum)
Out[122]:
one
three
two
a -0.626544
NaN -0.351587
b -0.765438 -0.177289 0.784662
c -0.753821 0.284925 0.335874
d
NaN 1.409398 -0.765684
In [123]: df.apply(np.exp)
Out[123]:
one
three
two
a 0.534436
NaN 0.703570
b 0.870320 0.837537 3.115063

10.6. Function application

329

pandas: powerful Python data analysis toolkit, Release 0.16.1

c
d

1.011685
NaN

1.587586
3.078592

0.638401
0.332353

Depending on the return type of the function passed to apply(), the result will either be of lower dimension or the
same dimension.
apply() combined with some cleverness can be used to answer many questions about a data set. For example,
suppose we wanted to extract the date where the maximum value for each column occurred:
In [124]: tsdf = DataFrame(randn(1000, 3), columns=['A', 'B', 'C'],
.....:
index=date_range('1/1/2000', periods=1000))
.....:
In [125]: tsdf.apply(lambda x: x.idxmax())
Out[125]:
A
2001-04-27
B
2002-06-02
C
2000-04-02
dtype: datetime64[ns]

You may also pass additional arguments and keyword arguments to the apply() method. For instance, consider the
following function you would like to apply:
def subtract_and_divide(x, sub, divide=1):
return (x - sub) / divide

You may then apply this function as follows:
df.apply(subtract_and_divide, args=(5,), divide=3)

Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row:
In [126]: tsdf
Out[126]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08
2000-01-09
2000-01-10

A
B
C
1.796883 -0.930690 3.542846
-1.242888 -0.695279 -1.000884
-0.720299 0.546303 -0.082042
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-0.527402 0.933507 0.129646
-0.338903 -1.265452 -1.969004
0.532566 0.341548 0.150493

In [127]: tsdf.apply(Series.interpolate)
Out[127]:
A
B
C
2000-01-01 1.796883 -0.930690 3.542846
2000-01-02 -1.242888 -0.695279 -1.000884
2000-01-03 -0.720299 0.546303 -0.082042
2000-01-04 -0.681720 0.623743 -0.039704
2000-01-05 -0.643140 0.701184 0.002633
2000-01-06 -0.604561 0.778625 0.044971
2000-01-07 -0.565982 0.856066 0.087309
2000-01-08 -0.527402 0.933507 0.129646
2000-01-09 -0.338903 -1.265452 -1.969004
2000-01-10 0.532566 0.341548 0.150493

330

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

Finally, apply() takes an argument raw which is False by default, which converts each row or column into a Series
before applying the function. When set to True, the passed function will instead receive an ndarray object, which has
positive performance implications if you do not need the indexing functionality.
See also:
The section on GroupBy demonstrates related, flexible functionality for grouping by some criterion, applying, and
combining the results into a Series, DataFrame, etc.

10.6.1 Applying elementwise Python functions
Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods
applymap() on DataFrame and analogously map() on Series accept any Python function taking a single value and
returning a single value. For example:
In [128]: df4
Out[128]:
one
three
two
a -0.626544
NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d
NaN 1.124472 -1.101558
In [129]: f = lambda x: len(str(x))
In [130]: df4['one'].map(f)
Out[130]:
a
14
b
15
c
15
d
3
Name: one, dtype: int64
In [131]: df4.applymap(f)
Out[131]:
one three two
a
14
3
15
b
15
15
11
c
15
14
15
d
3
13
14

Series.map() has an additional feature which is that it can be used to easily “link” or “map” values defined by a
secondary series. This is closely related to merging/joining functionality:
In [132]: s = Series(['six', 'seven', 'six', 'seven', 'six'],
.....:
index=['a', 'b', 'c', 'd', 'e'])
.....:
In [133]: t = Series({'six' : 6., 'seven' : 7.})
In [134]: s
Out[134]:
a
six
b
seven
c
six
d
seven
e
six
dtype: object

10.6. Function application

331

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [135]: s.map(t)
Out[135]:
a
6
b
7
c
6
d
7
e
6
dtype: float64

10.6.2 Applying with a Panel
Applying with a Panel will pass a Series to the applied function. If the applied function returns a Series, the
result of the application will be a Panel. If the applied function reduces to a scalar, the result of the application will
be a DataFrame.
Note: Prior to 0.13.1 apply on a Panel would only work on ufuncs (e.g. np.sum/np.max).
In [136]: import pandas.util.testing as tm
In [137]: panel = tm.makePanel(5)
In [138]: panel
Out[138]:

Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
In [139]: panel['ItemA']
Out[139]:
A
B
2000-01-03 0.330418 1.893177
2000-01-04 1.761200 0.170247
2000-01-05 0.567133 -0.916844
2000-01-06 -0.251020 0.835024
2000-01-07 1.020099 1.259919

C
0.801111
0.445614
1.453046
2.430373
0.653093

D
0.528154
-0.029371
-0.631117
-0.172441
-1.020485

A transformational apply.
In [140]: result = panel.apply(lambda x: x*2, axis='items')
In [141]: result
Out[141]:

Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
In [142]: result['ItemA']
Out[142]:
A
B
2000-01-03 0.660836 3.786354
2000-01-04 3.522400 0.340494
2000-01-05 1.134266 -1.833689

332

C
D
1.602222 1.056308
0.891228 -0.058742
2.906092 -1.262234

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-06 -0.502039
2000-01-07 2.040199

1.670047
2.519838

4.860747 -0.344882
1.306185 -2.040969

A reduction operation.
In [143]: panel.apply(lambda x: x.dtype, axis='items')
Out[143]:
A
B
C
D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64
2000-01-06 float64 float64 float64 float64
2000-01-07 float64 float64 float64 float64

A similar reduction type operation
In [144]: panel.apply(lambda x: x.sum(), axis='major_axis')
Out[144]:
ItemA
ItemB
ItemC
A 3.427831 -2.581431 0.840809
B 3.241522 -1.409935 -1.114512
C 5.783237 0.319672 -0.431906
D -1.325260 -2.914834 0.857043

This last reduction is equivalent to
In [145]: panel.sum('major_axis')
Out[145]:
ItemA
ItemB
ItemC
A 3.427831 -2.581431 0.840809
B 3.241522 -1.409935 -1.114512
C 5.783237 0.319672 -0.431906
D -1.325260 -2.914834 0.857043

A transformation operation that returns a Panel, but is computing the z-score across the major_axis.
In [146]: result = panel.apply(
.....:
lambda x: (x-x.mean())/x.std(),
.....:
axis='major_axis')
.....:
In [147]: result
Out[147]:

Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
In [148]: result['ItemA']
Out[148]:
A
B
C
D
2000-01-03 -0.469761 1.156225 -0.441347 1.341731
2000-01-04 1.422763 -0.444015 -0.882647 0.398661
2000-01-05 -0.156654 -1.453694 0.367936 -0.619210
2000-01-06 -1.238841 0.173423 1.581149 0.156654
2000-01-07 0.442494 0.568061 -0.625091 -1.277837

Apply can also accept multiple axes in the axis argument. This will pass a DataFrame of the cross-section to the
applied function.

10.6. Function application

333

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [149]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T
In [150]: result = panel.apply(f, axis = ['items','major_axis'])
In [151]: result
Out[151]:

Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC
In [152]: result.loc[:,:,'ItemA']
Out[152]:
A
B
C
D
2000-01-03 0.864236 1.132969 0.557316 0.575106
2000-01-04 0.795745 0.652527 0.534808 -0.070674
2000-01-05 -0.310864 0.558627 1.086688 -1.051477
2000-01-06 -0.001065 0.832460 0.846006 0.043602
2000-01-07 1.128946 1.152469 -0.218186 -0.891680

This is equivalent to the following
In [153]: result = Panel(dict([ (ax,f(panel.loc[:,:,ax]))
.....:
for ax in panel.minor_axis ]))
.....:
In [154]: result
Out[154]:

Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC
In [155]: result.loc[:,:,'ItemA']
Out[155]:
A
B
C
D
2000-01-03 0.864236 1.132969 0.557316 0.575106
2000-01-04 0.795745 0.652527 0.534808 -0.070674
2000-01-05 -0.310864 0.558627 1.086688 -1.051477
2000-01-06 -0.001065 0.832460 0.846006 0.043602
2000-01-07 1.128946 1.152469 -0.218186 -0.891680

10.7 Reindexing and altering labels
reindex() is the fundamental data alignment method in pandas. It is used to implement nearly all other features
relying on label-alignment functionality. To reindex means to conform the data to match a given set of labels along a
particular axis. This accomplishes several things:
• Reorders the existing data to match a new set of labels
• Inserts missing value (NA) markers in label locations where no data for that label existed
• If specified, fill data for missing labels using logic (highly relevant to working with time series data)
Here is a simple example:

334

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [156]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [157]: s
Out[157]:
a
-1.010924
b
-0.672504
c
-1.139222
d
0.354653
e
0.563622
dtype: float64
In [158]: s.reindex(['e', 'b', 'f', 'd'])
Out[158]:
e
0.563622
b
-0.672504
f
NaN
d
0.354653
dtype: float64

Here, the f label was not contained in the Series and hence appears as NaN in the result.
With a DataFrame, you can simultaneously reindex the index and columns:
In [159]: df
Out[159]:
one
three
two
a -0.626544
NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d
NaN 1.124472 -1.101558
In [160]: df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one'])
Out[160]:
three
two
one
c 0.462215 -0.448789 0.011617
f
NaN
NaN
NaN
b -0.177289 1.136249 -0.138894

For convenience, you may utilize the reindex_axis() method, which takes the labels and a keyword axis
parameter.
Note that the Index objects containing the actual axis labels can be shared between objects. So if we have a Series
and a DataFrame, the following can be done:
In [161]: rs = s.reindex(df.index)
In [162]: rs
Out[162]:
a
-1.010924
b
-0.672504
c
-1.139222
d
0.354653
dtype: float64
In [163]: rs.index is df.index
Out[163]: True

This means that the reindexed Series’s index is the same Python object as the DataFrame’s index.
See also:

10.7. Reindexing and altering labels

335

pandas: powerful Python data analysis toolkit, Release 0.16.1

MultiIndex / Advanced Indexing is an even more concise way of doing reindexing.
Note: When writing performance-sensitive code, there is a good reason to spend some time becoming a reindexing
ninja: many operations are faster on pre-aligned data. Adding two unaligned DataFrames internally triggers a
reindexing step. For exploratory analysis you will hardly notice the difference (because reindex has been heavily
optimized), but when CPU cycles matter sprinkling a few explicit reindex calls here and there can have an impact.

10.7.1 Reindexing to align with another object
You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this
is straightforward albeit verbose, it is a common enough operation that the reindex_like() method is available
to make this simpler:
In [164]: df2
Out[164]:
one
two
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789
In [165]: df3
Out[165]:
one
two
a -0.375270 -0.463545
b 0.112379 1.024292
c 0.262891 -0.560746
In [166]: df.reindex_like(df2)
Out[166]:
one
two
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789

10.7.2 Aligning objects with each other with align
The align() method is the fastest way to simultaneously align two objects. It supports a join argument (related to
joining and merging):
• join=’outer’: take the union of the indexes (default)
• join=’left’: use the calling object’s index
• join=’right’: use the passed object’s index
• join=’inner’: intersect the indexes
It returns a tuple with both of the reindexed Series:
In [167]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [168]: s1 = s[:4]
In [169]: s2 = s[1:]
In [170]: s1.align(s2)
Out[170]:

336

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

(a
-0.365106
b
1.092702
c
-1.481449
d
1.781190
e
NaN
dtype: float64, a
b
1.092702
c
-1.481449
d
1.781190
e
-0.031543
dtype: float64)

NaN

In [171]: s1.align(s2, join='inner')
Out[171]:
(b
1.092702
c
-1.481449
d
1.781190
dtype: float64, b
1.092702
c
-1.481449
d
1.781190
dtype: float64)
In [172]: s1.align(s2, join='left')
Out[172]:
(a
-0.365106
b
1.092702
c
-1.481449
d
1.781190
dtype: float64, a
NaN
b
1.092702
c
-1.481449
d
1.781190
dtype: float64)

For DataFrames, the join method will be applied to both the index and the columns by default:
In [173]: df.align(df2, join='inner')
Out[173]:
(
one
two
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789,
one
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789)

two

You can also pass an axis option to only align on the specified axis:
In [174]: df.align(df2, join='inner', axis=0)
Out[174]:
(
one
three
two
a -0.626544
NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789,
one
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789)

10.7. Reindexing and altering labels

two

337

pandas: powerful Python data analysis toolkit, Release 0.16.1

If you pass a Series to DataFrame.align(), you can choose to align both objects either on the DataFrame’s index
or columns using the axis argument:
In [175]: df.align(df2.ix[0], axis=1)
Out[175]:
(
one
three
two
a -0.626544
NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d
NaN 1.124472 -1.101558, one
three
NaN
two
-0.351587
Name: a, dtype: float64)

-0.626544

10.7.3 Filling while reindexing
reindex() takes an optional parameter method which is a filling method chosen from the following table:
Method
pad / ffill
bfill / backfill
nearest

Action
Fill values forward
Fill values backward
Fill from the nearest index value

We illustrate these fill methods on a simple Series:
In [176]: rng = date_range('1/3/2000', periods=8)
In [177]: ts = Series(randn(8), index=rng)
In [178]: ts2 = ts[[0, 3, 6]]
In [179]: ts
Out[179]:
2000-01-03
0.480993
2000-01-04
0.604244
2000-01-05
-0.487265
2000-01-06
1.990533
2000-01-07
0.327007
2000-01-08
1.053639
2000-01-09
-2.927808
2000-01-10
0.082065
Freq: D, dtype: float64
In [180]: ts2
Out[180]:
2000-01-03
0.480993
2000-01-06
1.990533
2000-01-09
-2.927808
dtype: float64
In [181]: ts2.reindex(ts.index)
Out[181]:
2000-01-03
0.480993
2000-01-04
NaN
2000-01-05
NaN
2000-01-06
1.990533
2000-01-07
NaN
2000-01-08
NaN

338

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-09
-2.927808
2000-01-10
NaN
Freq: D, dtype: float64
In [182]: ts2.reindex(ts.index, method='ffill')
Out[182]:
2000-01-03
0.480993
2000-01-04
0.480993
2000-01-05
0.480993
2000-01-06
1.990533
2000-01-07
1.990533
2000-01-08
1.990533
2000-01-09
-2.927808
2000-01-10
-2.927808
Freq: D, dtype: float64
In [183]: ts2.reindex(ts.index, method='bfill')
Out[183]:
2000-01-03
0.480993
2000-01-04
1.990533
2000-01-05
1.990533
2000-01-06
1.990533
2000-01-07
-2.927808
2000-01-08
-2.927808
2000-01-09
-2.927808
2000-01-10
NaN
Freq: D, dtype: float64
In [184]: ts2.reindex(ts.index, method='nearest')
Out[184]:
2000-01-03
0.480993
2000-01-04
0.480993
2000-01-05
1.990533
2000-01-06
1.990533
2000-01-07
1.990533
2000-01-08
-2.927808
2000-01-09
-2.927808
2000-01-10
-2.927808
Freq: D, dtype: float64

These methods require that the indexes are ordered increasing or decreasing.
Note that the same result could have been achieved using fillna (except for method=’nearest’) or interpolate:
In [185]: ts2.reindex(ts.index).fillna(method='ffill')
Out[185]:
2000-01-03
0.480993
2000-01-04
0.480993
2000-01-05
0.480993
2000-01-06
1.990533
2000-01-07
1.990533
2000-01-08
1.990533
2000-01-09
-2.927808
2000-01-10
-2.927808
Freq: D, dtype: float64

reindex() will raise a ValueError if the index is not monotonic increasing or descreasing. fillna() and
interpolate() will not make any checks on the order of the index.

10.7. Reindexing and altering labels

339

pandas: powerful Python data analysis toolkit, Release 0.16.1

10.7.4 Dropping labels from an axis
A method closely related to reindex is the drop() function. It removes a set of labels from an axis:
In [186]: df
Out[186]:
one
three
two
a -0.626544
NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d
NaN 1.124472 -1.101558
In [187]: df.drop(['a', 'd'], axis=0)
Out[187]:
one
three
two
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
In [188]: df.drop(['one'], axis=1)
Out[188]:
three
two
a
NaN -0.351587
b -0.177289 1.136249
c 0.462215 -0.448789
d 1.124472 -1.101558

Note that the following also works, but is a bit less obvious / clean:
In [189]: df.reindex(df.index.difference(['a', 'd']))
Out[189]:
one
three
two
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789

10.7.5 Renaming / mapping labels
The rename() method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function.
In [190]: s
Out[190]:
a
-0.365106
b
1.092702
c
-1.481449
d
1.781190
e
-0.031543
dtype: float64
In [191]: s.rename(str.upper)
Out[191]:
A
-0.365106
B
1.092702
C
-1.481449
D
1.781190
E
-0.031543
dtype: float64

If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique
values). But if you pass a dict or Series, it need only contain a subset of the labels as keys:

340

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [192]: df.rename(columns={'one' : 'foo', 'two' : 'bar'},
.....:
index={'a' : 'apple', 'b' : 'banana', 'd' : 'durian'})
.....:
Out[192]:
foo
three
bar
apple -0.626544
NaN -0.351587
banana -0.138894 -0.177289 1.136249
c
0.011617 0.462215 -0.448789
durian
NaN 1.124472 -1.101558

The rename() method also provides an inplace named parameter that is by default False and copies the underlying data. Pass inplace=True to rename the data in place. The Panel class has a related rename_axis() class
which can rename any of its three axes.

10.8 Iteration
Because Series is array-like, basic iteration produces the values. Other data structures follow the dict-like convention
of iterating over the “keys” of the objects. In short:
• Series: values
• DataFrame: column labels
• Panel: item labels
Thus, for example:
In [193]: for col in df:
.....:
print(col)
.....:
one
three
two

10.8.1 iteritems
Consistent with the dict-like interface, iteritems() iterates through key-value pairs:
• Series: (index, scalar value) pairs
• DataFrame: (column, Series) pairs
• Panel: (item, DataFrame) pairs
For example:
In [194]: for item, frame in wp.iteritems():
.....:
print(item)
.....:
print(frame)
.....:
Item1
A
B
C
D
2000-01-01 -1.032011 0.969818 -0.962723 1.382083
2000-01-02 -0.938794 0.669142 -0.433567 -0.273610
2000-01-03 0.680433 -0.308450 -0.276099 -1.821168
2000-01-04 -1.993606 -1.927385 -2.027924 1.624972
2000-01-05 0.551135 3.059267 0.455264 -0.030740
Item2

10.8. Iteration

341

pandas: powerful Python data analysis toolkit, Release 0.16.1

A
B
C
D
2000-01-01 0.935716 1.061192 -2.107852 0.199905
2000-01-02 0.323586 -0.641630 -0.587514 0.053897
2000-01-03 0.194889 -0.381994 0.318587 2.089075
2000-01-04 -0.728293 -0.090255 -0.748199 1.318931
2000-01-05 -2.029766 0.792652 0.461007 -0.542749

10.8.2 iterrows
New in v0.7 is the ability to iterate efficiently through rows of a DataFrame with iterrows(). It returns an iterator
yielding each index value along with a Series containing the data in each row:
In [195]: for row_index, row in df2.iterrows():
.....:
print('%s\n%s' % (row_index, row))
.....:
a
one
-0.626544
two
-0.351587
Name: a, dtype: float64
b
one
-0.138894
two
1.136249
Name: b, dtype: float64
c
one
0.011617
two
-0.448789
Name: c, dtype: float64

For instance, a contrived way to transpose the DataFrame would be:
In [196]: df2 = DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]})
In [197]: print(df2)
x y
0 1 4
1 2 5
2 3 6
In [198]: print(df2.T)
0 1 2
x 1 2 3
y 4 5 6
In [199]: df2_t = DataFrame(dict((idx,values) for idx, values in df2.iterrows()))
In [200]: print(df2_t)
0 1 2
x 1 2 3
y 4 5 6

Note: iterrows does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames).
For example,
In [201]: df_iter = DataFrame([[1, 1.0]], columns=['x', 'y'])
In [202]: row = next(df_iter.iterrows())[1]

342

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [203]: print(row['x'].dtype)
float64
In [204]: print(df_iter['x'].dtype)
int64

10.8.3 itertuples
The itertuples() method will return an iterator yielding a tuple for each row in the DataFrame. The first element
of the tuple will be the row’s corresponding index value, while the remaining values are the row values proper.
For instance,
In [205]: for r in df2.itertuples():
.....:
print(r)
.....:
(0, 1, 4)
(1, 2, 5)
(2, 3, 6)

10.8.4 .dt accessor
Series has an accessor to succinctly return datetime like properties for the values of the Series, if its a datetime/period like Series. This will return a Series, indexed like the existing Series.
# datetime
In [206]: s = Series(date_range('20130101 09:10:12',periods=4))
In [207]: s
Out[207]:
0
2013-01-01 09:10:12
1
2013-01-02 09:10:12
2
2013-01-03 09:10:12
3
2013-01-04 09:10:12
dtype: datetime64[ns]
In [208]: s.dt.hour
Out[208]:
0
9
1
9
2
9
3
9
dtype: int64
In [209]: s.dt.second
Out[209]:
0
12
1
12
2
12
3
12
dtype: int64
In [210]: s.dt.day
Out[210]:
0
1

10.8. Iteration

343

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
2
2
3
3
4
dtype: int64

This enables nice expressions like this:
In [211]: s[s.dt.day==2]
Out[211]:
1
2013-01-02 09:10:12
dtype: datetime64[ns]

You can easily produces tz aware transformations:
In [212]: stz = s.dt.tz_localize('US/Eastern')
In [213]: stz
Out[213]:
0
2013-01-01
1
2013-01-02
2
2013-01-03
3
2013-01-04
dtype: object

09:10:12-05:00
09:10:12-05:00
09:10:12-05:00
09:10:12-05:00

In [214]: stz.dt.tz
Out[214]: 

You can also chain these types of operations:
In [215]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[215]:
0
2013-01-01 04:10:12-05:00
1
2013-01-02 04:10:12-05:00
2
2013-01-03 04:10:12-05:00
3
2013-01-04 04:10:12-05:00
dtype: object

The .dt accessor works for period and timedelta dtypes.
# period
In [216]: s = Series(period_range('20130101',periods=4,freq='D'))
In [217]: s
Out[217]:
0
2013-01-01
1
2013-01-02
2
2013-01-03
3
2013-01-04
dtype: object
In [218]: s.dt.year
Out[218]:
0
2013
1
2013
2
2013
3
2013
dtype: int64
In [219]: s.dt.day

344

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[219]:
0
1
1
2
2
3
3
4
dtype: int64
# timedelta
In [220]: s = Series(timedelta_range('1 day 00:00:05',periods=4,freq='s'))
In [221]: s
Out[221]:
0
1 days 00:00:05
1
1 days 00:00:06
2
1 days 00:00:07
3
1 days 00:00:08
dtype: timedelta64[ns]
In [222]: s.dt.days
Out[222]:
0
1
1
1
2
1
3
1
dtype: int64
In [223]: s.dt.seconds
Out[223]:
0
5
1
6
2
7
3
8
dtype: int64
In [224]: s.dt.components
Out[224]:
days hours minutes seconds
0
1
0
0
5
1
1
0
0
6
2
1
0
0
7
3
1
0
0
8

milliseconds
0
0
0
0

microseconds
0
0
0
0

nanoseconds
0
0
0
0

Note: Series.dt will raise a TypeError if you access with a non-datetimelike values

10.9 Vectorized string methods
Series is equipped with a set of string processing methods that make it easy to operate on each element of the array.
Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the Series’s
str attribute and generally have names matching the equivalent (scalar) built-in string methods. For example:
In [225]: s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [226]: s.str.lower()
Out[226]:
0
a

10.9. Vectorized string methods

345

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
b
2
c
3
aaba
4
baca
5
NaN
6
caba
7
dog
8
cat
dtype: object

Powerful pattern-matching methods are provided as well, but note that pattern-matching generally uses regular expressions by default (and in some cases always uses them).
Please see Vectorized String Methods for a complete description.

10.10 Sorting by index and value
There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values.
The primary method for sorting axis labels (indexes) across data structures is the sort_index() method.
In [227]: unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'],
.....:
columns=['three', 'two', 'one'])
.....:
In [228]: unsorted_df.sort_index()
Out[228]:
three
two
one
a
NaN -0.351587 -0.626544
b -0.177289 1.136249 -0.138894
c 0.462215 -0.448789 0.011617
d 1.124472 -1.101558
NaN
In [229]: unsorted_df.sort_index(ascending=False)
Out[229]:
three
two
one
d 1.124472 -1.101558
NaN
c 0.462215 -0.448789 0.011617
b -0.177289 1.136249 -0.138894
a
NaN -0.351587 -0.626544
In [230]: unsorted_df.sort_index(axis=1)
Out[230]:
one
three
two
a -0.626544
NaN -0.351587
d
NaN 1.124472 -1.101558
c 0.011617 0.462215 -0.448789
b -0.138894 -0.177289 1.136249

DataFrame.sort_index() can accept an optional by argument for axis=0 which will use an arbitrary vector
or a column name of the DataFrame to determine the sort order:
In [231]: df1 = DataFrame({'one':[2,1,1,1],'two':[1,3,2,4],'three':[5,4,3,2]})
In [232]: df1.sort_index(by='two')
Out[232]:
one three two
0
2
5
1

346

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
1
3

1
1
1

3
4
2

2
3
4

The by argument can take a list of column names, e.g.:
In [233]: df1[['one', 'two', 'three']].sort_index(by=['one','two'])
Out[233]:
one two three
2
1
2
3
1
1
3
4
3
1
4
2
0
2
1
5

Series has the method order() (analogous to R’s order function) which sorts by value, with special treatment of NA
values via the na_position argument:
In [234]: s[2] = np.nan
In [235]: s.order()
Out[235]:
0
A
3
Aaba
1
B
4
Baca
6
CABA
8
cat
7
dog
2
NaN
5
NaN
dtype: object
In [236]: s.order(na_position='first')
Out[236]:
2
NaN
5
NaN
0
A
3
Aaba
1
B
4
Baca
6
CABA
8
cat
7
dog
dtype: object

Note: Series.sort() sorts a Series by value in-place. This is to provide compatibility with NumPy methods
which expect the ndarray.sort behavior. Series.order() returns a copy of the sorted data.
Series has the searchsorted() method, which works similar to numpy.ndarray.searchsorted().
In [237]: ser = Series([1, 2, 3])
In [238]: ser.searchsorted([0, 3])
Out[238]: array([0, 2])
In [239]: ser.searchsorted([0, 4])
Out[239]: array([0, 3])

10.10. Sorting by index and value

347

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [240]: ser.searchsorted([1, 3], side='right')
Out[240]: array([1, 3])
In [241]: ser.searchsorted([1, 3], side='left')
Out[241]: array([0, 2])
In [242]: ser = Series([3, 1, 2])
In [243]: ser.searchsorted([0, 3], sorter=np.argsort(ser))
Out[243]: array([0, 2])

10.10.1 smallest / largest values
New in version 0.14.0.
Series has the nsmallest() and nlargest() methods which return the smallest or largest 𝑛 values. For a
large Series this can be much faster than sorting the entire Series and calling head(n) on the result.
In [244]: s = Series(np.random.permutation(10))
In [245]: s
Out[245]:
0
7
1
5
2
4
3
6
4
1
5
8
6
9
7
2
8
0
9
3
dtype: int32
In [246]: s.order()
Out[246]:
8
0
4
1
7
2
9
3
2
4
1
5
3
6
0
7
5
8
6
9
dtype: int32
In [247]: s.nsmallest(3)
Out[247]:
8
0
4
1
7
2
dtype: int32
In [248]: s.nlargest(3)
Out[248]:

348

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

6
9
5
8
0
7
dtype: int32

10.10.2 Sorting by a multi-index column
You must be explicit about sorting when the column is a multi-index, and fully specify all levels to by.
In [249]: df1.columns = MultiIndex.from_tuples([('a','one'),('a','two'),('b','three')])
In [250]: df1.sort_index(by=('a','two'))
Out[250]:
a
b
one two three
3
1
2
4
2
1
3
2
1
1
4
3
0
2
5
1

10.11 Copying
The copy() method on pandas objects copies the underlying data (though not the axis indexes, since they are immutable) and returns a new object. Note that it is seldom necessary to copy objects. For example, there are only a
handful of ways to alter a DataFrame in-place:
• Inserting, deleting, or modifying a column
• Assigning to the index or columns attributes
• For homogeneous data, directly modifying the values via the values attribute or advanced indexing
To be clear, no pandas methods have the side effect of modifying your data; almost all methods return new objects,
leaving the original object untouched. If data is modified, it is because you did so explicitly.

10.12 dtypes
The main types stored in pandas objects are float, int, bool, datetime64[ns], timedelta[ns] and
object. In addition these dtypes have item sizes, e.g. int64 and int32. A convenient dtypes‘ attribute
for DataFrames returns a Series with the data type of each column.
In [251]: dft = DataFrame(dict( A = np.random.rand(3),
.....:
B = 1,
.....:
C = 'foo',
.....:
D = Timestamp('20010102'),
.....:
E = Series([1.0]*3).astype('float32'),
.....:
F = False,
.....:
G = Series([1]*3,dtype='int8')))
.....:
In [252]: dft
Out[252]:
A B

10.11. Copying

C

D

E

F

G

349

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1
2

0.028931
0.936706
0.831782

1
1
1

foo 2001-01-02
foo 2001-01-02
foo 2001-01-02

1
1
1

False
False
False

1
1
1

In [253]: dft.dtypes
Out[253]:
A
float64
B
int64
C
object
D
datetime64[ns]
E
float32
F
bool
G
int8
dtype: object

On a Series use the dtype attribute.
In [254]: dft['A'].dtype
Out[254]: dtype('float64')

If a pandas object contains data multiple dtypes IN A SINGLE COLUMN, the dtype of the column will be chosen to
accommodate all of the data types (object is the most general).
# these ints are coerced to floats
In [255]: Series([1, 2, 3, 4, 5, 6.])
Out[255]:
0
1
1
2
2
3
3
4
4
5
5
6
dtype: float64
# string data forces an ``object`` dtype
In [256]: Series([1, 2, 3, 6., 'foo'])
Out[256]:
0
1
1
2
2
3
3
6
4
foo
dtype: object

The method get_dtype_counts() will return the number of columns of each type in a DataFrame:
In [257]: dft.get_dtype_counts()
Out[257]:
bool
1
datetime64[ns]
1
float32
1
float64
1
int64
1
int8
1
object
1
dtype: int64

Numeric dtypes will propagate and can coexist in DataFrames (starting in v0.11.0). If a dtype is passed (either directly
via the dtype keyword, a passed ndarray, or a passed Series, then it will be preserved in DataFrame operations.

350

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

Furthermore, different numeric dtypes will NOT be combined. The following example will give you a taste.
In [258]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')
In [259]: df1
Out[259]:
A
0 1.213978
1 -0.505425
2 0.254678
3 -0.744834
4 0.647650
5 0.822993
6 1.778703
7 -1.543048
In [260]: df1.dtypes
Out[260]:
A
float32
dtype: object
In [261]: df2 = DataFrame(dict( A = Series(randn(8),dtype='float16'),
.....:
B = Series(randn(8)),
.....:
C = Series(np.array(randn(8),dtype='uint8')) ))
.....:
In [262]: df2
Out[262]:
A
B
0 -0.123230 -1.508174
1 2.240234 -0.502623
2 -0.143799 0.529008
3 -2.884766 0.590536
4 0.027588 0.296947
5 -1.150391 0.007045
6 0.246460 0.707877
7 -0.455078 0.950661

C
0
0
0
1
0
255
1
0

In [263]: df2.dtypes
Out[263]:
A
float16
B
float64
C
uint8
dtype: object

10.12.1 defaults
By default integer types are int64 and float types are float64, REGARDLESS of platform (32-bit or 64-bit). The
following will all result in int64 dtypes.
In [264]: DataFrame([1, 2], columns=['a']).dtypes
Out[264]:
a
int64
dtype: object
In [265]: DataFrame({'a': [1, 2]}).dtypes
Out[265]:

10.12. dtypes

351

pandas: powerful Python data analysis toolkit, Release 0.16.1

a
int64
dtype: object
In [266]: DataFrame({'a': 1 }, index=list(range(2))).dtypes
Out[266]:
a
int64
dtype: object

Numpy, however will choose platform-dependent types when creating arrays. The following WILL result in int32
on 32-bit platform.
In [267]: frame = DataFrame(np.array([1, 2]))

10.12.2 upcasting
Types can potentially be upcasted when combined with other types, meaning they are promoted from the current type
(say int to float)
In [268]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2
In [269]: df3
Out[269]:
A
B
0 1.090748 -1.508174
1 1.734810 -0.502623
2 0.110879 0.529008
3 -3.629600 0.590536
4 0.675238 0.296947
5 -0.327398 0.007045
6 2.025163 0.707877
7 -1.998126 0.950661

C
0
0
0
1
0
255
1
0

In [270]: df3.dtypes
Out[270]:
A
float32
B
float64
C
float64
dtype: object

The values attribute on a DataFrame return the lower-common-denominator of the dtypes, meaning the dtype that
can accommodate ALL of the types in the resulting homogeneous dtyped numpy array. This can force some upcasting.
In [271]: df3.values.dtype
Out[271]: dtype('float64')

10.12.3 astype
You can use the astype() method to explicitly convert dtypes from one to another. These will by default return a
copy, even if the dtype was unchanged (pass copy=False to change this behavior). In addition, they will raise an
exception if the astype operation is invalid.
Upcasting is always according to the numpy rules. If two different dtypes are involved in an operation, then the more
general one will be used as the result of the operation.
In [272]: df3
Out[272]:

352

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

A
B
0 1.090748 -1.508174
1 1.734810 -0.502623
2 0.110879 0.529008
3 -3.629600 0.590536
4 0.675238 0.296947
5 -0.327398 0.007045
6 2.025163 0.707877
7 -1.998126 0.950661

C
0
0
0
1
0
255
1
0

In [273]: df3.dtypes
Out[273]:
A
float32
B
float64
C
float64
dtype: object
# conversion of dtypes
In [274]: df3.astype('float32').dtypes
Out[274]:
A
float32
B
float32
C
float32
dtype: object

10.12.4 object conversion
convert_objects() is a method to try to force conversion of types from the object dtype to other types.
To force conversion of specific types that are number like, e.g. could be a string that represents a number, pass
convert_numeric=True. This will force strings and numbers alike to be numbers if possible, otherwise they will
be set to np.nan.
In [275]: df3['D'] = '1.'
In [276]: df3['E'] = '1'
In [277]: df3.convert_objects(convert_numeric=True).dtypes
Out[277]:
A
float32
B
float64
C
float64
D
float64
E
int64
dtype: object
# same, but specific dtype conversion
In [278]: df3['D'] = df3['D'].astype('float16')
In [279]: df3['E'] = df3['E'].astype('int32')
In [280]: df3.dtypes
Out[280]:
A
float32
B
float64
C
float64
D
float16

10.12. dtypes

353

pandas: powerful Python data analysis toolkit, Release 0.16.1

E
int32
dtype: object

To force conversion to datetime64[ns], pass convert_dates=’coerce’. This will convert any datetimelike object to dates, forcing other values to NaT. This might be useful if you are reading in data which is mostly dates,
but occasionally has non-dates intermixed and you want to represent as missing.
In [281]: s = Series([datetime(2001,1,1,0,0),
.....:
'foo', 1.0, 1, Timestamp('20010104'),
.....:
'20010105'],dtype='O')
.....:
In [282]: s
Out[282]:
0
2001-01-01 00:00:00
1
foo
2
1
3
1
4
2001-01-04 00:00:00
5
20010105
dtype: object
In [283]: s.convert_objects(convert_dates='coerce')
Out[283]:
0
2001-01-01
1
NaT
2
NaT
3
NaT
4
2001-01-04
5
2001-01-05
dtype: datetime64[ns]

In addition, convert_objects() will attempt the soft conversion of any object dtypes, meaning that if all the
objects in a Series are of the same type, the Series will have that dtype.

10.12.5 gotchas
Performing selection operations on integer type data can easily upcast the data to floating. The dtype of the
input data will be preserved in cases where nans are not introduced (starting in 0.11.0) See also integer na gotchas
In [284]: dfi = df3.astype('int32')
In [285]: dfi['E'] = 1
In [286]: dfi
Out[286]:
A B
C
0 1 -1
0
1 1 0
0
2 0 0
0
3 -3 0
1
4 0 0
0
5 0 0 255
6 2 0
1
7 -1 0
0

D
1
1
1
1
1
1
1
1

E
1
1
1
1
1
1
1
1

In [287]: dfi.dtypes

354

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[287]:
A
int32
B
int32
C
int32
D
int32
E
int64
dtype: object
In [288]: casted = dfi[dfi>0]
In [289]: casted
Out[289]:
A
B
C D
0
1 NaN NaN 1
1
1 NaN NaN 1
2 NaN NaN NaN 1
3 NaN NaN
1 1
4 NaN NaN NaN 1
5 NaN NaN 255 1
6
2 NaN
1 1
7 NaN NaN NaN 1

E
1
1
1
1
1
1
1
1

In [290]: casted.dtypes
Out[290]:
A
float64
B
float64
C
float64
D
int32
E
int64
dtype: object

While float dtypes are unchanged.
In [291]: dfa = df3.copy()
In [292]: dfa['A'] = dfa['A'].astype('float32')
In [293]: dfa.dtypes
Out[293]:
A
float32
B
float64
C
float64
D
float16
E
int32
dtype: object
In [294]: casted = dfa[df2>0]
In [295]: casted
Out[295]:
A
B
0
NaN
NaN
1 1.734810
NaN
2
NaN 0.529008
3
NaN 0.590536
4 0.675238 0.296947
5
NaN 0.007045
6 2.025163 0.707877

10.12. dtypes

C
NaN
NaN
NaN
1
NaN
255
1

D
NaN
NaN
NaN
NaN
NaN
NaN
NaN

E
NaN
NaN
NaN
NaN
NaN
NaN
NaN

355

pandas: powerful Python data analysis toolkit, Release 0.16.1

7

NaN

0.950661

NaN NaN NaN

In [296]: casted.dtypes
Out[296]:
A
float32
B
float64
C
float64
D
float16
E
float64
dtype: object

10.13 Selecting columns based on dtype
New in version 0.14.1.
The select_dtypes() method implements subsetting of columns based on their dtype.
First, let’s create a DataFrame with a slew of different dtypes:
In [297]: df = DataFrame({'string': list('abc'),
.....:
'int64': list(range(1, 4)),
.....:
'uint8': np.arange(3, 6).astype('u1'),
.....:
'float64': np.arange(4.0, 7.0),
.....:
'bool1': [True, False, True],
.....:
'bool2': [False, True, False],
.....:
'dates': pd.date_range('now', periods=3).values,
.....:
'category': pd.Categorical(list("ABC"))})
.....:
In [298]: df['tdeltas'] = df.dates.diff()
In [299]: df['uint64'] = np.arange(3, 6).astype('u8')
In [300]: df['other_dates'] = pd.date_range('20130101', periods=3).values
In [301]:
Out[301]:
bool1
0
True
1 False
2
True

0
1
2

uint8
3
4
5

df
bool2 category
dates
False
A 2015-05-11 11:00:20.785134
True
B 2015-05-12 11:00:20.785134
False
C 2015-05-13 11:00:20.785134
tdeltas
NaT
1 days
1 days

float64
4
5
6

int64 string
1
a
2
b
3
c

\

uint64 other_dates
3 2013-01-01
4 2013-01-02
5 2013-01-03

select_dtypes() has two parameters include and exclude that allow you to say “give me the columns
WITH these dtypes” (include) and/or “give the columns WITHOUT these dtypes” (exclude).
For example, to select bool columns
In [302]: df.select_dtypes(include=[bool])
Out[302]:
bool1 bool2
0
True False

356

Chapter 10. Essential Basic Functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
2

False
True

True
False

You can also pass the name of a dtype in the numpy dtype hierarchy:
In [303]:
Out[303]:
bool1
0
True
1 False
2
True

df.select_dtypes(include=['bool'])
bool2
False
True
False

select_dtypes() also works with generic dtypes as well.
For example, to select all numeric and boolean columns while excluding unsigned integers
In [304]:
Out[304]:
bool1
0
True
1 False
2
True

df.select_dtypes(include=['number', 'bool'], exclude=['unsignedinteger'])
bool2
False
True
False

float64
4
5
6

int64
1
2
3

tdeltas
NaT
1 days
1 days

To select string columns you must use the object dtype:
In [305]: df.select_dtypes(include=['object'])
Out[305]:
string
0
a
1
b
2
c

To see all the child dtypes of a generic dtype like numpy.number you can define a function that returns a tree of
child dtypes:
In [306]: def subdtypes(dtype):
.....:
subs = dtype.__subclasses__()
.....:
if not subs:
.....:
return dtype
.....:
return [dtype, [subdtypes(dt) for dt in subs]]
.....:

All numpy dtypes are subclasses of numpy.generic:
In [307]: subdtypes(np.generic)
Out[307]:
[numpy.generic,
[[numpy.number,
[[numpy.integer,
[[numpy.signedinteger,
[numpy.int8,
numpy.int16,
numpy.int32,
numpy.int32,
numpy.int64,
numpy.timedelta64]],
[numpy.unsignedinteger,
[numpy.uint8,
numpy.uint16,
numpy.uint32,

10.13. Selecting columns based on dtype

357

pandas: powerful Python data analysis toolkit, Release 0.16.1

numpy.uint32,
numpy.uint64]]]],
[numpy.inexact,
[[numpy.floating,
[numpy.float16, numpy.float32, numpy.float64, numpy.float96]],
[numpy.complexfloating,
[numpy.complex64, numpy.complex128, numpy.complex192]]]]]],
[numpy.flexible,
[[numpy.character, [numpy.string_, numpy.unicode_]],
[numpy.void, [numpy.core.records.record]]]],
numpy.bool_,
numpy.datetime64,
numpy.object_]]

Note: Pandas also defines an additional category dtype, which is not integrated into the normal numpy hierarchy
and wont show up with the above function.
Note: The include and exclude parameters must be non-string sequences.

358

Chapter 10. Essential Basic Functionality

CHAPTER

ELEVEN

WORKING WITH TEXT DATA

Series and Index are equipped with a set of string processing methods that make it easy to operate on each element of
the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via
the str attribute and generally have names matching the equivalent (scalar) built-in string methods:
In [1]: s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [2]: s.str.lower()
Out[2]:
0
a
1
b
2
c
3
aaba
4
baca
5
NaN
6
caba
7
dog
8
cat
dtype: object
In [3]: s.str.upper()
Out[3]:
0
A
1
B
2
C
3
AABA
4
BACA
5
NaN
6
CABA
7
DOG
8
CAT
dtype: object
In [4]: s.str.len()
Out[4]:
0
1
1
1
2
1
3
4
4
4
5
NaN
6
4
7
3
8
3
dtype: float64

359

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [5]: idx = Index([' jack', 'jill ', ' jesse ', 'frank'])
In [6]: idx.str.strip()
Out[6]: Index([u'jack', u'jill', u'jesse', u'frank'], dtype='object')
In [7]: idx.str.lstrip()
Out[7]: Index([u'jack', u'jill ', u'jesse ', u'frank'], dtype='object')
In [8]: idx.str.rstrip()
Out[8]: Index([u' jack', u'jill', u' jesse', u'frank'], dtype='object')

The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance,
you may have columns with leading or trailing whitespace:
In [9]: df = DataFrame(randn(3, 2), columns=[' Column A ', ' Column B '],
...:
index=range(3))
...:
In [10]: df
Out[10]:
Column A
0
0.017428
1
-2.240248
2
-1.342107

Column B
0.039049
0.847859
0.368828

Since df.columns is an Index object, we can use the .str accessor
In [11]: df.columns.str.strip()
Out[11]: Index([u'Column A', u'Column B'], dtype='object')
In [12]: df.columns.str.lower()
Out[12]: Index([u' column a ', u' column b '], dtype='object')

These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing
whitespaces, lowercasing all names, and replacing any remaining whitespaces with underscores:
In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
In [14]: df
Out[14]:
column_a
0 0.017428
1 -2.240248
2 -1.342107

column_b
0.039049
0.847859
0.368828

11.1 Splitting and Replacing Strings
Methods like split return a Series of lists:
In [15]: s2 = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
In [16]: s2.str.split('_')
Out[16]:
0
[a, b, c]
1
[c, d, e]
2
NaN

360

Chapter 11. Working with Text Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

3
[f, g, h]
dtype: object

Elements in the split lists can be accessed using get or [] notation:
In [17]: s2.str.split('_').str.get(1)
Out[17]:
0
b
1
d
2
NaN
3
g
dtype: object
In [18]: s2.str.split('_').str[1]
Out[18]:
0
b
1
d
2
NaN
3
g
dtype: object

Easy to expand this to return a DataFrame using expand.
In [19]: s2.str.split('_', expand=True)
Out[19]:
0
1
2
0
a
b
c
1
c
d
e
2 NaN NaN NaN
3
f
g
h

Methods like replace and findall take regular expressions, too:
In [20]: s3 = Series(['A', 'B', 'C', 'Aaba', 'Baca',
....:
'', np.nan, 'CABA', 'dog', 'cat'])
....:
In [21]: s3
Out[21]:
0
A
1
B
2
C
3
Aaba
4
Baca
5
6
NaN
7
CABA
8
dog
9
cat
dtype: object
In [22]: s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Out[22]:
0
A
1
B
2
C
3
XX-XX ba
4
XX-XX ca
5

11.1. Splitting and Replacing Strings

361

pandas: powerful Python data analysis toolkit, Release 0.16.1

6
NaN
7
XX-XX BA
8
XX-XX
9
XX-XX t
dtype: object

Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble
because of the regular expression meaning of $:
# Consider the following badly formatted financial data
In [23]: dollars = Series(['12', '-$10', '$10,000'])
# This does what you'd naively expect:
In [24]: dollars.str.replace('$', '')
Out[24]:
0
12
1
-10
2
10,000
dtype: object
# But this doesn't:
In [25]: dollars.str.replace('-$', '-')
Out[25]:
0
12
1
-$10
2
$10,000
dtype: object
# We need to escape the special character (for >1 len patterns)
In [26]: dollars.str.replace(r'-\$', '-')
Out[26]:
0
12
1
-10
2
$10,000
dtype: object

11.2 Indexing with .str
You can use [] notation to directly index by position locations. If you index past the end of the string, the result will
be a NaN.
In [27]: s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan,
....:
'CABA', 'dog', 'cat'])
....:
In [28]: s.str[0]
Out[28]:
0
A
1
B
2
C
3
A
4
B
5
NaN
6
C
7
d
8
c

362

Chapter 11. Working with Text Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

dtype: object
In [29]: s.str[1]
Out[29]:
0
NaN
1
NaN
2
NaN
3
a
4
a
5
NaN
6
A
7
o
8
a
dtype: object

11.3 Extracting Substrings
The method extract (introduced in version 0.13) accepts regular expressions with match groups. Extracting a
regular expression with one group returns a Series of strings.
In [30]: Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)')
Out[30]:
0
1
1
2
2
NaN
dtype: object

Elements that do not match return NaN. Extracting a regular expression with more than one group returns a DataFrame
with one column per group.
In [31]: Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)')
Out[31]:
0
1
0
a
1
1
b
2
2 NaN NaN

Elements that do not match return a row filled with NaN. Thus, a Series of messy strings can be “converted” into a
like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating get() to access tuples
or re.match objects.
The results dtype always is object, even if no match is found and the result only contains NaN.
Named groups like
In [32]: Series(['a1', 'b2', 'c3']).str.extract('(?P[ab])(?P\d)')
Out[32]:
letter digit
0
a
1
1
b
2
2
NaN
NaN

and optional groups like
In [33]: Series(['a1', 'b2', '3']).str.extract('(?P[ab])?(?P\d)')
Out[33]:
letter digit

11.3. Extracting Substrings

363

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1
2

a
b
NaN

1
2
3

can also be used.

11.3.1 Testing for Strings that Match or Contain a Pattern
You can check whether elements contain a pattern:
In [34]: pattern = r'[a-z][0-9]'
In [35]: Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
Out[35]:
0
False
1
False
2
False
3
False
4
False
dtype: bool

or match a pattern:
In [36]: Series(['1', '2', '3a', '3b', '03c']).str.match(pattern, as_indexer=True)
Out[36]:
0
False
1
False
2
False
3
False
4
False
dtype: bool

The distinction between match and contains is strictness: match relies on strict re.match, while contains
relies on re.search.
Warning: In previous versions, match was for extracting groups, returning a not-so-convenient Series of tuples.
The new method extract (described in the previous section) is now preferred.
This old, deprecated behavior of match is still the default. As demonstrated above, use the new behavior by
setting as_indexer=True. In this mode, match is analogous to contains, returning a boolean Series. The
new behavior will become the default behavior in a future release.
Methods like match, contains, startswith, and endswith take an extra na argument so missing values
can be considered True or False:
In [37]: s4 = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [38]: s4.str.contains('A', na=False)
Out[38]:
0
True
1
False
2
False
3
True
4
False
5
False
6
True
7
False
8
False
dtype: bool

364

Chapter 11. Working with Text Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

11.3.2 Creating Indicator Variables
You can extract dummy variables from string columns. For example if they are separated by a ’|’:
In [39]: s = Series(['a', 'a|b', np.nan, 'a|c'])
In [40]:
Out[40]:
a b
0 1 0
1 1 1
2 0 0
3 1 0

s.str.get_dummies(sep='|')
c
0
0
0
1

See also get_dummies().

11.4 Method Summary
Method
cat()
split()
get()
join()
contains()
replace()
repeat()
pad()
center()
ljust()
rjust()
zfill()
wrap()
slice()
slice_replace()
count()
startswith()
endswith()
findall()
match()
extract()
len()
strip()
rstrip()
lstrip()
partition()
rpartition()
lower()
upper()
find()
rfind()
index()
rindex()

Description
Concatenate strings
Split strings on delimiter
Index into each element (retrieve i-th element)
Join strings in each element of the Series with passed separator
Return boolean array if each string contains pattern/regex
Replace occurrences of pattern/regex with some other string
Duplicate values (s.str.repeat(3) equivalent to x * 3)
Add whitespace to left, right, or both sides of strings
Equivalent to str.center
Equivalent to str.ljust
Equivalent to str.rjust
Equivalent to str.zfill
Split long strings into lines with length less than a given width
Slice each string in the Series
Replace slice in each string with passed value
Count occurrences of pattern
Equivalent to str.startswith(pat) for each element
Equivalent to str.endswith(pat) for each element
Compute list of all occurrences of pattern/regex for each string
Call re.match on each element, returning matched groups as list
Call re.match on each element, as match does, but return matched groups as strings for convenience.
Compute string lengths
Equivalent to str.strip
Equivalent to str.rstrip
Equivalent to str.lstrip
Equivalent to str.partition
Equivalent to str.rpartition
Equivalent to str.lower
Equivalent to str.upper
Equivalent to str.find
Equivalent to str.rfind
Equivalent to str.index
Equivalent to str.rindex
Continued on next page

11.4. Method Summary

365

pandas: powerful Python data analysis toolkit, Release 0.16.1

Method
capitalize()
swapcase()
normalize()
translate()
isalnum()
isalpha()
isdigit()
isspace()
islower()
isupper()
istitle()
isnumeric()
isdecimal()

366

Table 11.1 – continued from previous page
Description
Equivalent to str.capitalize
Equivalent to str.swapcase
Return Unicode normal form. Equivalent to unicodedata.normalize
Equivalent to str.translate
Equivalent to str.isalnum
Equivalent to str.isalpha
Equivalent to str.isdigit
Equivalent to str.isspace
Equivalent to str.islower
Equivalent to str.isupper
Equivalent to str.istitle
Equivalent to str.isnumeric
Equivalent to str.isdecimal

Chapter 11. Working with Text Data

CHAPTER

TWELVE

OPTIONS AND SETTINGS

12.1 Overview
pandas has an options system that lets you customize some aspects of its behaviour, display-related options being those
the user is most likely to adjust.
Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows). You can get/set options
directly as attributes of the top-level options attribute:
In [1]: import pandas as pd
In [2]: pd.options.display.max_rows
Out[2]: 15
In [3]: pd.options.display.max_rows = 999
In [4]: pd.options.display.max_rows
Out[4]: 999

There is also an API composed of 5 relevant functions, available directly from the pandas namespace:
• get_option() / set_option() - get/set the value of a single option.
• reset_option() - reset one or more options to their default value.
• describe_option() - print the descriptions of one or more options.
• option_context() - execute a codeblock with a set of options that revert to prior settings after execution.
Note: developers can check out pandas/core/config.py for more info.
All of the functions above accept a regexp pattern (re.search style) as an argument, and so passing in a substring
will work - as long as it is unambiguous :
In [5]: pd.get_option("display.max_rows")
Out[5]: 999
In [6]: pd.set_option("display.max_rows",101)
In [7]: pd.get_option("display.max_rows")
Out[7]: 101
In [8]: pd.set_option("max_r",102)
In [9]: pd.get_option("display.max_rows")
Out[9]: 102

367

pandas: powerful Python data analysis toolkit, Release 0.16.1

The following will not work because it matches multiple option names, e.g.
display.max_rows, display.max_columns:

display.max_colwidth,

In [10]: try:
....:
pd.get_option("column")
....: except KeyError as e:
....:
print(e)
....:
'Pattern matched multiple keys'

Note: Using this form of shorthand may cause your code to break if new options with similar names are added in
future versions.
You can get a list of available options and their descriptions with describe_option. When called with no argument describe_option will print out the descriptions for all available options.

12.2 Getting and Setting Options
As described above, get_option() and set_option() are available from the pandas namespace. To change an
option, call set_option(’option regex’, new_value)
In [11]: pd.get_option('mode.sim_interactive')
Out[11]: False
In [12]: pd.set_option('mode.sim_interactive', True)
In [13]: pd.get_option('mode.sim_interactive')
Out[13]: True

Note: that the option ‘mode.sim_interactive’ is mostly used for debugging purposes.
All options also have a default value, and you can use reset_option to do just that:
In [14]: pd.get_option("display.max_rows")
Out[14]: 60
In [15]: pd.set_option("display.max_rows",999)
In [16]: pd.get_option("display.max_rows")
Out[16]: 999
In [17]: pd.reset_option("display.max_rows")
In [18]: pd.get_option("display.max_rows")
Out[18]: 60

It’s also possible to reset multiple options at once (using a regex):
In [19]: pd.reset_option("^display")
height has been deprecated.
line_width has been deprecated, use display.width instead (currently both are
identical)

option_context context manager has been exposed through the top-level API, allowing you to execute code with
given option values. Option values are restored automatically when you exit the with block:

368

Chapter 12. Options and Settings

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [20]: with pd.option_context("display.max_rows",10,"display.max_columns", 5):
....:
print(pd.get_option("display.max_rows"))
....:
print(pd.get_option("display.max_columns"))
....:
10
5
In [21]: print(pd.get_option("display.max_rows"))
60
In [22]: print(pd.get_option("display.max_columns"))
20

12.3 Setting Startup Options in python/ipython Environment
Using startup scripts for the python/ipython environment to import pandas and set options makes working with pandas
more efficient. To do this, create a .py or .ipy script in the startup directory of the desired profile. An example where
the startup folder is in a default ipython profile can be found at:
$IPYTHONDIR/profile_default/startup

More information can be found in the ipython documentation. An example startup script for pandas is displayed
below:
import pandas as pd
pd.set_option('display.max_rows', 999)
pd.set_option('precision', 5)

12.4 Frequently Used Options
The following is a walkthrough of the more frequently used display options.
display.max_rows and display.max_columns sets the maximum number of rows and columns displayed
when a frame is pretty-printed. Truncated lines are replaced by an ellipsis.
In [23]: df=pd.DataFrame(np.random.randn(7,2))
In [24]: pd.set_option('max_rows', 7)
In [25]: df
Out[25]:
0
0 0.469112
1 -1.509059
2 1.212112
3 0.119209
4 -0.861849
5 -0.494929
6 0.721555

1
-0.282863
-1.135632
-0.173215
-1.044236
-2.104569
1.071804
-0.706771

In [26]: pd.set_option('max_rows', 5)
In [27]: df
Out[27]:

12.3. Setting Startup Options in python/ipython Environment

369

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1
0
0.469112 -0.282863
1 -1.509059 -1.135632
..
...
...
5 -0.494929 1.071804
6
0.721555 -0.706771
[7 rows x 2 columns]
In [28]: pd.reset_option('max_rows')

display.expand_frame_repr allows for the the representation of dataframes to stretch across pages, wrapped
over the full column vs row-wise.
In [29]: df=pd.DataFrame(np.random.randn(5,10))
In [30]: pd.set_option('expand_frame_repr', True)
In [31]: df
Out[31]:
0
1
2
3
4
5
0 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401
1 0.404705 0.577046 -1.715002 -1.039268 -0.370647 -1.157892
2 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914
3 -0.013960 -0.362543 -0.006154 -0.923061 0.895717 0.805244
4 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317

6
-0.673690
-1.344312
-1.294524
-1.206412
-0.076467

\

7
8
9
0 0.113648 -1.478427 0.524988
1 0.844885 1.075770 -0.109050
2 0.413738 0.276662 -0.472035
3 2.565646 1.431256 1.340309
4 -1.187678 1.130127 -1.436737
In [32]: pd.set_option('expand_frame_repr', False)
In [33]: df
Out[33]:
0
1
2
3
4
5
0 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401
1 0.404705 0.577046 -1.715002 -1.039268 -0.370647 -1.157892
2 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914
3 -0.013960 -0.362543 -0.006154 -0.923061 0.895717 0.805244
4 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317

6
7
8
9
-0.673690 0.113648 -1.478427 0.524988
-1.344312 0.844885 1.075770 -0.109050
-1.294524 0.413738 0.276662 -0.472035
-1.206412 2.565646 1.431256 1.340309
-0.076467 -1.187678 1.130127 -1.436737

In [34]: pd.reset_option('expand_frame_repr')

display.large_repr lets you select whether to display dataframes that exceed max_columns or max_rows
as a truncated frame, or as a summary.
In [35]: df=pd.DataFrame(np.random.randn(10,10))
In [36]: pd.set_option('max_rows', 5)
In [37]: pd.set_option('large_repr', 'truncate')
In [38]: df
Out[38]:
0

370

1

2

3

4

5

6

\

Chapter 12. Options and Settings

pandas: powerful Python data analysis toolkit, Release 0.16.1

0 -1.413681 1.607920 1.024180
1
0.545952 -1.219217 -1.226825
..
...
...
...
8 -2.484478 -0.281461 0.030711
9 -1.071357 0.441153 2.353925

0.569605 0.875906 -2.211372 0.974466
0.769804 -1.281247 -0.727707 -0.121306
...
...
...
...
0.109121 1.126203 -0.977349 1.474071
0.583787 0.221471 -0.744471 0.758527

7
8
9
0 -2.006747 -0.410001 -0.078638
1 -0.097883 0.695775 0.341734
..
...
...
...
8 -0.064034 -1.282782 0.781836
9
1.729689 -0.964980 -0.845696
[10 rows x 10 columns]
In [39]: pd.set_option('large_repr', 'info')
In [40]: df
Out[40]:

Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
0
10 non-null float64
1
10 non-null float64
2
10 non-null float64
3
10 non-null float64
4
10 non-null float64
5
10 non-null float64
6
10 non-null float64
7
10 non-null float64
8
10 non-null float64
9
10 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes
In [41]: pd.reset_option('large_repr')
In [42]: pd.reset_option('max_rows')

display.max_columnwidth sets the maximum width of columns. Cells of this length or longer will be truncated
with an ellipsis.
In [43]: df=pd.DataFrame(np.array([['foo', 'bar', 'bim', 'uncomfortably long string'],
....:
['horse', 'cow', 'banana', 'apple']]))
....:
In [44]: pd.set_option('max_colwidth',40)
In [45]: df
Out[45]:
0
1
0
foo bar
1 horse cow

2
bim
banana

3
uncomfortably long string
apple

In [46]: pd.set_option('max_colwidth', 6)
In [47]: df
Out[47]:

12.4. Frequently Used Options

371

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1

0
foo
horse

1
bar
cow

2
bim
ba...

3
un...
apple

In [48]: pd.reset_option('max_colwidth')

display.max_info_columns sets a threshold for when by-column info will be given.
In [49]: df=pd.DataFrame(np.random.randn(10,10))
In [50]: pd.set_option('max_info_columns', 11)
In [51]: df.info()

Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
0
10 non-null float64
1
10 non-null float64
2
10 non-null float64
3
10 non-null float64
4
10 non-null float64
5
10 non-null float64
6
10 non-null float64
7
10 non-null float64
8
10 non-null float64
9
10 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes
In [52]: pd.set_option('max_info_columns', 5)
In [53]: df.info()

Int64Index: 10 entries, 0 to 9
Columns: 10 entries, 0 to 9
dtypes: float64(10)
memory usage: 880.0 bytes
In [54]: pd.reset_option('max_info_columns')

display.max_info_rows: df.info() will usually show null-counts for each column. For large frames this
can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller
dimensions then specified. Note that you can specify the option df.info(null_counts=True) to override on
showing a particular frame.
In [55]: df=pd.DataFrame(np.random.choice([0,1,np.nan],size=(10,10)))
In [56]: df
Out[56]:
0
1
2
3
4
5
6
7
8
0
0
1
1
0
1
1
0 NaN
1
1
1 NaN
0
0
1
1 NaN
1
0
2 NaN NaN NaN
1
1
0 NaN
0
1
3
0
1
1 NaN
0 NaN
1 NaN NaN
4
0
1
0
0
1
0
0 NaN
0
5
0 NaN
1 NaN NaN NaN NaN
0
1
6
0
1
0
0 NaN
1 NaN NaN
0
7
0 NaN
1
1 NaN
1
1
1
1
8
0
0 NaN
0 NaN
1
0
0 NaN

372

9
NaN
1
NaN
0
0
NaN
NaN
NaN
NaN

Chapter 12. Options and Settings

pandas: powerful Python data analysis toolkit, Release 0.16.1

9 NaN NaN

0 NaN NaN NaN

0

1

1 NaN

In [57]: pd.set_option('max_info_rows', 11)
In [58]: df.info()

Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
0
8 non-null float64
1
5 non-null float64
2
8 non-null float64
3
7 non-null float64
4
5 non-null float64
5
7 non-null float64
6
6 non-null float64
7
6 non-null float64
8
8 non-null float64
9
3 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes
In [59]: pd.set_option('max_info_rows', 5)
In [60]: df.info()

Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
0
float64
1
float64
2
float64
3
float64
4
float64
5
float64
6
float64
7
float64
8
float64
9
float64
dtypes: float64(10)
memory usage: 880.0 bytes
In [61]: pd.reset_option('max_info_rows')

display.precision sets the output display precision. This is only a suggestion.
In [62]: df=pd.DataFrame(np.random.randn(5,5))
In [63]: pd.set_option('precision',7)
In [64]: df
Out[64]:
0
1
2
3
0 -2.049028 2.846612 -1.208049 -0.450392
1 0.121108 0.266916 0.843826 -0.222540
2 -0.716789 -2.224485 -1.061137 -0.232825
3 -0.665478 1.829807 -1.406509 1.078248
4 0.200324 0.890024 0.194813 0.351633

4
2.423905
2.021981
0.430793
0.322774
0.448881

In [65]: pd.set_option('precision',4)

12.4. Frequently Used Options

373

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [66]: df
Out[66]:
0
1
2
3
0 -2.049 2.847 -1.208 -0.450
1 0.121 0.267 0.844 -0.223
2 -0.717 -2.224 -1.061 -0.233
3 -0.665 1.830 -1.407 1.078
4 0.200 0.890 0.195 0.352

4
2.424
2.022
0.431
0.323
0.449

display.chop_threshold sets at what level pandas rounds to zero when it displays a Series of DataFrame.
Note, this does not effect the precision at which the number is stored.
In [67]: df=pd.DataFrame(np.random.randn(6,6))
In [68]: pd.set_option('chop_threshold', 0)
In [69]:
Out[69]:
0
0 -0.198
1 1.641
2 0.925
3 -0.824
4 0.432
5 -0.673

df
1
0.966
1.906
-0.006
-0.338
-0.461
-0.741

2
-1.523
2.772
-0.820
-0.928
0.337
-0.111

3
4
5
-0.117 0.296 -1.048
0.089 -1.144 -0.633
-0.601 -1.039 0.825
-0.840 0.249 -0.109
-3.208 -1.536 0.410
-2.673 0.864 0.061

In [70]: pd.set_option('chop_threshold', .5)
In [71]: df
Out[71]:
0
1
2
3
4
5
0 0.000 0.966 -1.523 0.000 0.000 -1.048
1 1.641 1.906 2.772 0.000 -1.144 -0.633
2 0.925 0.000 -0.820 -0.601 -1.039 0.825
3 -0.824 0.000 -0.928 -0.840 0.000 0.000
4 0.000 0.000 0.000 -3.208 -1.536 0.000
5 -0.673 -0.741 0.000 -2.673 0.864 0.000
In [72]: pd.reset_option('chop_threshold')

display.colheader_justify controls the justification of the headers. Options are ‘right’, and ‘left’.
In [73]: df=pd.DataFrame(np.array([np.random.randn(6), np.random.randint(1,9,6)*.1, np.zeros(6)]).T,
In [74]: pd.set_option('colheader_justify', 'right')
In [75]: df
Out[75]:
A
B
0 0.933 0.3
1 0.289 0.2
2 1.325 0.2
3 0.589 0.7
4 0.531 0.1
5 -1.199 0.7

C
0
0
0
0
0
0

In [76]: pd.set_option('colheader_justify', 'left')

374

Chapter 12. Options and Settings

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [77]: df
Out[77]:
A
B
0 0.933 0.3
1 0.289 0.2
2 1.325 0.2
3 0.589 0.7
4 0.531 0.1
5 -1.199 0.7

C
0
0
0
0
0
0

In [78]: pd.reset_option('colheader_justify')

12.5 List of Options
Option
display.chop_threshold
display.colheader_justify
display.column_space
display.date_dayfirst
display.date_yearfirst
display.encoding
display.expand_frame_repr
display.float_format
display.height
display.large_repr
display.line_width
display.max_columns
display.max_colwidth
display.max_info_columns
display.max_info_rows
display.max_rows
display.max_seq_items
display.memory_usage
display.mpl_style
display.multi_sparse
display.notebook_repr_html
display.pprint_nest_depth
display.precision
display.show_dimensions
display.width
io.excel.xls.writer
io.excel.xlsm.writer
io.excel.xlsx.writer
io.hdf.default_format
io.hdf.dropna_table
mode.chained_assignment
mode.sim_interactive
mode.use_inf_as_null

12.5. List of Options

Default
None
right
12
False
False
UTF-8
True
None
60
truncate
80
20
50
100
1690785
60
100
True
None
True
True
3
7
truncate
80
xlwt
openpyxl
openpyxl
None
True
warn
False
False

Function
If set to a float value, all float values smaller then the given threshold will be displayed as e
Controls the justification of column headers. used by DataFrameFormatter.
No description available.
When True, prints and parses dates with the day first, eg 20/01/2005
When True, prints and parses dates with the year first, eg 2005/01/20
Defaults to the detected encoding of the console. Specifies the encoding to be used for strin
Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, m
The callable should accept a floating point number and return a string with the desired form
Deprecated. Use display.max_rows instead.
For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a tru
Deprecated. Use display.width instead.
max_rows and max_columns are used in __repr__() methods to decide if to_string() or info
The maximum width in characters of a column in the repr of a pandas data structure. When
max_info_columns is used in DataFrame.info method to decide if per column information
df.info() will usually show null-counts for each column. For large frames this can be quite
This sets the maximum number of rows pandas should output when printing out various ou
when pretty-printing a long sequence, no more then max_seq_items will be printed. If item
This specifies if the memory usage of a DataFrame should be displayed when the df.info()
Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more p
“Sparsify” MultiIndex display (don’t display repeated elements in outer levels within group
When True, IPython notebook will use html representation for pandas objects (if it is availa
Controls the number of nested levels to process when pretty-printing
Floating point output precision (number of significant digits). This is only a suggestion
Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, on
Width of the display in characters. In case python/IPython is running in a terminal this can
The default Excel writer engine for ‘xls’ files.
The default Excel writer engine for ‘xlsm’ files. Available options: ‘openpyxl’ (the default
The default Excel writer engine for ‘xlsx’ files.
default format writing format, if None, then put will default to ‘fixed’ and append will defa
drop ALL nan rows when appending to a table
Raise an exception, warn, or no action if trying to use chained assignment, The default is w
Whether to simulate interactive mode for purposes of testing
True means treat None, NaN, -INF, INF as null (old way), False means None and NaN are

375

pandas: powerful Python data analysis toolkit, Release 0.16.1

12.6 Number Formatting
pandas also allows you to set how numbers are displayed in the console. This option is not set through the
set_options API.
Use the set_eng_float_format function to alter the floating-point formatting of pandas objects to produce a
particular format.
For instance:
In [79]: import numpy as np
In [80]: pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)
In [81]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [82]: s/1.e3
Out[82]:
a
-236.866u
b
846.974u
c
-685.597u
d
609.099u
e
-303.961u
dtype: float64
In [83]: s/1.e6
Out[83]:
a
-236.866n
b
846.974n
c
-685.597n
d
609.099n
e
-303.961n
dtype: float64

376

Chapter 12. Options and Settings

CHAPTER

THIRTEEN

INDEXING AND SELECTING DATA

The axis labeling information in pandas objects serves many purposes:
• Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display
• Enables automatic and explicit data alignment
• Allows intuitive getting and setting of subsets of the data set
In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas
objects. The primary focus will be on Series and DataFrame as they have received more development attention in
this area. Expect more work to be invested in higher-dimensional data structures (including Panel) in the future,
especially in label-based advanced indexing.
Note: The Python and NumPy indexing operators [] and attribute operator . provide quick and easy access to
pandas data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to
learn if you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data
to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production
code, we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter.
Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is
sometimes called chained assignment and should be avoided. See Returning a View versus Copy
Warning: In 0.15.0 Index has internally been refactored to no longer subclass ndarray but instead subclass
PandasObject, similarly to the rest of the pandas objects. This should be a transparent change with only very
limited API implications (See the Internal Refactoring)
See the MultiIndex / Advanced Indexing for MultiIndex and more advanced indexing documentation.
See the cookbook for some advanced strategies

13.1 Different Choices for Indexing
New in version 0.11.0.
Object selection has had a number of user-requested additions in order to support more explicit location based indexing. pandas now supports three types of multi-axis indexing.
• .loc is primarily label based, but may also be used with a boolean array. .loc will raise KeyError when
the items are not found. Allowed inputs are:

377

pandas: powerful Python data analysis toolkit, Release 0.16.1

– A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index. This use is not an integer
position along the index)
– A list or array of labels [’a’, ’b’, ’c’]
– A slice object with labels ’a’:’f’, (note that contrary to usual python slices, both the start and the stop
are included!)
– A boolean array
See more at Selection by Label
• .iloc is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a
boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers
which allow out-of-bounds indexing. (this conforms with python/numpy slice semantics). Allowed inputs are:
– An integer e.g. 5
– A list or array of integers [4, 3, 0]
– A slice object with ints 1:7
– A boolean array
See more at Selection by Position
• .ix supports mixed integer and label based access. It is primarily label based, but will fall back to integer
positional access unless the corresponding axis is of integer type. .ix is the most general and will support any
of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful
when dealing with mixed positional and label based hierachical indexes.
However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus,
in such cases, it’s usually better to be explicit and use .iloc or .loc.
See more at Advanced Indexing and Advanced Hierarchical.
Getting values from an object with multi-axes selection uses the following notation (using .loc as an example, but
applies to .iloc and .ix as well). Any of the axes accessors may be the null slice :. Axes left out of the specification
are assumed to be :. (e.g. p.loc[’a’] is equiv to p.loc[’a’, :, :])
Object Type
Series
DataFrame
Panel

Indexers
s.loc[indexer]
df.loc[row_indexer,column_indexer]
p.loc[item_indexer,major_indexer,minor_indexer]

13.2 Deprecations
Beginning with version 0.11.0, it’s recommended that you transition away from the following methods as they may be
deprecated in future versions.
• irow
• icol
• iget_value
See the section Selection by Position for substitutes.

378

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

13.3 Basics
As mentioned when introducing the data structures in the last section, the primary function of indexing with [] (a.k.a.
__getitem__ for those familiar with implementing class behavior in Python) is selecting out lower-dimensional
slices. Thus,
Object Type
Series
DataFrame
Panel

Selection
series[label]
frame[colname]
panel[itemname]

Return Value Type
scalar value
Series corresponding to colname
DataFrame corresponing to the itemname

Here we construct a simple time series data set to use for illustrating the indexing functionality:
In [1]: dates = date_range('1/1/2000', periods=8)
In [2]: df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])
In [3]: df
Out[3]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
0.469112
1.212112
-0.861849
0.721555
-0.424972
-0.673690
0.404705
-0.370647

B
-0.282863
-0.173215
-2.104569
-0.706771
0.567020
0.113648
0.577046
-1.157892

C
-1.509059
0.119209
-0.494929
-1.039575
0.276232
-1.478427
-1.715002
-1.344312

D
-1.135632
-1.044236
1.071804
0.271860
-1.087401
0.524988
-1.039268
0.844885

In [4]: panel = Panel({'one' : df, 'two' : df - df.mean()})
In [5]: panel
Out[5]:

Dimensions: 2 (items) x 8 (major_axis) x 4 (minor_axis)
Items axis: one to two
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-08 00:00:00
Minor_axis axis: A to D

Note: None of the indexing functionality is time series specific unless specifically stated.
Thus, as per above, we have the most basic indexing using []:
In [6]: s = df['A']
In [7]: s[dates[5]]
Out[7]: -0.67368970808837025
In [8]: panel['two']
Out[8]:
A
B
C
D
2000-01-01 0.409571 0.113086 -0.610826 -0.936507
2000-01-02 1.152571 0.222735 1.017442 -0.845111
2000-01-03 -0.921390 -1.708620 0.403304 1.270929
2000-01-04 0.662014 -0.310822 -0.141342 0.470985
2000-01-05 -0.484513 0.962970 1.174465 -0.888276
2000-01-06 -0.733231 0.509598 -0.580194 0.724113
2000-01-07 0.345164 0.972995 -0.816769 -0.840143

13.3. Basics

379

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-08 -0.430188 -0.761943 -0.446079

1.044010

You can pass a list of columns to [] to select columns in that order. If a column is not contained in the DataFrame, an
exception will be raised. Multiple columns can also be set in this manner:
In [9]: df
Out[9]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
0.469112
1.212112
-0.861849
0.721555
-0.424972
-0.673690
0.404705
-0.370647

B
-0.282863
-0.173215
-2.104569
-0.706771
0.567020
0.113648
0.577046
-1.157892

C
-1.509059
0.119209
-0.494929
-1.039575
0.276232
-1.478427
-1.715002
-1.344312

D
-1.135632
-1.044236
1.071804
0.271860
-1.087401
0.524988
-1.039268
0.844885

In [10]: df[['B', 'A']] = df[['A', 'B']]
In [11]: df
Out[11]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
-0.282863
-0.173215
-2.104569
-0.706771
0.567020
0.113648
0.577046
-1.157892

B
0.469112
1.212112
-0.861849
0.721555
-0.424972
-0.673690
0.404705
-0.370647

C
-1.509059
0.119209
-0.494929
-1.039575
0.276232
-1.478427
-1.715002
-1.344312

D
-1.135632
-1.044236
1.071804
0.271860
-1.087401
0.524988
-1.039268
0.844885

You may find this useful for applying a transform (in-place) to a subset of the columns.

13.4 Attribute Access
You may access an index on a Series, column on a DataFrame, and a item on a Panel directly as an attribute:
In [12]: sa = Series([1,2,3],index=list('abc'))
In [13]: dfa = df.copy()
In [14]: sa.b
Out[14]: 2
In [15]: dfa.A
Out[15]:
2000-01-01
-0.282863
2000-01-02
-0.173215
2000-01-03
-2.104569
2000-01-04
-0.706771
2000-01-05
0.567020
2000-01-06
0.113648
2000-01-07
0.577046
2000-01-08
-1.157892
Freq: D, Name: A, dtype: float64
In [16]: panel.one

380

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[16]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
0.469112
1.212112
-0.861849
0.721555
-0.424972
-0.673690
0.404705
-0.370647

B
-0.282863
-0.173215
-2.104569
-0.706771
0.567020
0.113648
0.577046
-1.157892

C
-1.509059
0.119209
-0.494929
-1.039575
0.276232
-1.478427
-1.715002
-1.344312

D
-1.135632
-1.044236
1.071804
0.271860
-1.087401
0.524988
-1.039268
0.844885

You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you
try to use attribute access to create a new column, it fails silently, creating a new attribute rather than a new column.
In [17]: sa.a = 5
In [18]: sa
Out[18]:
a
5
b
2
c
3
dtype: int64
In [19]: dfa.A = list(range(len(dfa.index)))

# ok if A already exists

In [20]: dfa
Out[20]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
0
1
2
3
4
5
6
7

B
0.469112
1.212112
-0.861849
0.721555
-0.424972
-0.673690
0.404705
-0.370647

C
-1.509059
0.119209
-0.494929
-1.039575
0.276232
-1.478427
-1.715002
-1.344312

D
-1.135632
-1.044236
1.071804
0.271860
-1.087401
0.524988
-1.039268
0.844885

In [21]: dfa['A'] = list(range(len(dfa.index)))

# use this form to create a new column

In [22]: dfa
Out[22]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
0
1
2
3
4
5
6
7

B
0.469112
1.212112
-0.861849
0.721555
-0.424972
-0.673690
0.404705
-0.370647

13.4. Attribute Access

C
-1.509059
0.119209
-0.494929
-1.039575
0.276232
-1.478427
-1.715002
-1.344312

D
-1.135632
-1.044236
1.071804
0.271860
-1.087401
0.524988
-1.039268
0.844885

381

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning:
• You can use this access only if the index element is a valid python identifier, e.g. s.1 is not allowed. See
here for an explanation of valid identifiers.
• The attribute will not be available if it conflicts with an existing method name, e.g. s.min is not allowed.
• Similarly, the attribute will not be available if it conflicts with any of the following list: index,
major_axis, minor_axis, items, labels.
• In any of these cases, standard indexing will still work, e.g. s[’1’], s[’min’], and s[’index’] will
access the corresponding element or column.
• The Series/Panel accesses are available starting in 0.13.0.
If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.
You can also assign a dict to a row of a DataFrame:
In [23]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})
In [24]: x.iloc[1] = dict(x=9, y=99)
In [25]: x
Out[25]:
x
y
0 1
3
1 9 99
2 3
5

13.5 Slicing ranges
The most robust and consistent way of slicing ranges along arbitrary axes is described in the Selection by Position
section detailing the .iloc method. For now, we explain the semantics of slicing using the [] operator.
With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:
In [26]: s[:5]
Out[26]:
2000-01-01
-0.282863
2000-01-02
-0.173215
2000-01-03
-2.104569
2000-01-04
-0.706771
2000-01-05
0.567020
Freq: D, Name: A, dtype: float64
In [27]: s[::2]
Out[27]:
2000-01-01
-0.282863
2000-01-03
-2.104569
2000-01-05
0.567020
2000-01-07
0.577046
Freq: 2D, Name: A, dtype: float64
In [28]: s[::-1]
Out[28]:
2000-01-08
-1.157892
2000-01-07
0.577046
2000-01-06
0.113648
2000-01-05
0.567020
2000-01-04
-0.706771

382

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-03
-2.104569
2000-01-02
-0.173215
2000-01-01
-0.282863
Freq: -1D, Name: A, dtype: float64

Note that setting works as well:
In [29]: s2 = s.copy()
In [30]: s2[:5] = 0
In [31]: s2
Out[31]:
2000-01-01
0.000000
2000-01-02
0.000000
2000-01-03
0.000000
2000-01-04
0.000000
2000-01-05
0.000000
2000-01-06
0.113648
2000-01-07
0.577046
2000-01-08
-1.157892
Freq: D, Name: A, dtype: float64

With DataFrame, slicing inside of [] slices the rows. This is provided largely as a convenience since it is such a
common operation.
In [32]: df[:3]
Out[32]:
A
B
C
D
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
2000-01-02 -0.173215 1.212112 0.119209 -1.044236
2000-01-03 -2.104569 -0.861849 -0.494929 1.071804
In [33]: df[::-1]
Out[33]:
2000-01-08
2000-01-07
2000-01-06
2000-01-05
2000-01-04
2000-01-03
2000-01-02
2000-01-01

A
-1.157892
0.577046
0.113648
0.567020
-0.706771
-2.104569
-0.173215
-0.282863

B
-0.370647
0.404705
-0.673690
-0.424972
0.721555
-0.861849
1.212112
0.469112

C
-1.344312
-1.715002
-1.478427
0.276232
-1.039575
-0.494929
0.119209
-1.509059

D
0.844885
-1.039268
0.524988
-1.087401
0.271860
1.071804
-1.044236
-1.135632

13.6 Selection By Label
Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is
sometimes called chained assignment and should be avoided. See Returning a View versus Copy

13.6. Selection By Label

383

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning:
.loc is strict when you present slicers that are not compatible (or convertible) with the index type.
For example using integers in a DatetimeIndex. These will raise a TypeError.

In [34]: dfl = DataFrame(np.random.randn(5,4), columns=list('ABCD'), index=date_range('20130101',per
In [35]: dfl
Out[35]:
A
B
C
2013-01-01 1.075770 -0.109050 1.643563
2013-01-02 0.357021 -0.674600 -1.776904
2013-01-03 -1.294524 0.413738 0.276662
2013-01-04 -0.013960 -0.362543 -0.006154
2013-01-05 0.895717 0.805244 -1.206412

D
-1.469388
-0.968914
-0.472035
-0.923061
2.565646

In [4]: dfl.loc[2:3]
TypeError: cannot do slice indexing on  with these index

String likes in slicing can be convertible to the type of the index and lead to natural slicing.
In [36]: dfl.loc['20130102':'20130104']
Out[36]:
A
B
C
D
2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524 0.413738 0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061

pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based
protocol. At least 1 of the labels for which you ask, must be in the index or a KeyError will be raised! When
slicing, the start bound is included, AND the stop bound is included. Integers are valid labels, but they refer to the
label and not the position.
The .loc attribute is the primary access method. The following are valid inputs:
• A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index. This use is not an integer
position along the index)
• A list or array of labels [’a’, ’b’, ’c’]
• A slice object with labels ’a’:’f’ (note that contrary to usual python slices, both the start and the stop are
included!)
• A boolean array
In [37]: s1 = Series(np.random.randn(6),index=list('abcdef'))
In [38]: s1
Out[38]:
a
1.431256
b
1.340309
c
-1.170299
d
-0.226169
e
0.410835
f
0.813850
dtype: float64
In [39]: s1.loc['c':]
Out[39]:

384

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

c
-1.170299
d
-0.226169
e
0.410835
f
0.813850
dtype: float64
In [40]: s1.loc['b']
Out[40]: 1.3403088497993827

Note that setting works as well:
In [41]: s1.loc['c':] = 0
In [42]: s1
Out[42]:
a
1.431256
b
1.340309
c
0.000000
d
0.000000
e
0.000000
f
0.000000
dtype: float64

With a DataFrame
In [43]: df1 = DataFrame(np.random.randn(6,4),
....:
index=list('abcdef'),
....:
columns=list('ABCD'))
....:
In [44]: df1
Out[44]:
A
B
a 0.132003 -0.827317
b 1.130127 -1.436737
c 1.024180 0.569605
d 0.974466 -2.006747
e 0.545952 -1.219217
f -1.281247 -0.727707

C
-0.076467
-1.413681
0.875906
-0.410001
-1.226825
-0.121306

D
-1.187678
1.607920
-2.211372
-0.078638
0.769804
-0.097883

In [45]: df1.loc[['a','b','d'],:]
Out[45]:
A
B
C
D
a 0.132003 -0.827317 -0.076467 -1.187678
b 1.130127 -1.436737 -1.413681 1.607920
d 0.974466 -2.006747 -0.410001 -0.078638

Accessing via label slices
In [46]: df1.loc['d':,'A':'C']
Out[46]:
A
B
C
d 0.974466 -2.006747 -0.410001
e 0.545952 -1.219217 -1.226825
f -1.281247 -0.727707 -0.121306

For getting a cross section using a label (equiv to df.xs(’a’))

13.6. Selection By Label

385

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [47]: df1.loc['a']
Out[47]:
A
0.132003
B
-0.827317
C
-0.076467
D
-1.187678
Name: a, dtype: float64

For getting values with a boolean array
In [48]: df1.loc['a']>0
Out[48]:
A
True
B
False
C
False
D
False
Name: a, dtype: bool
In [49]: df1.loc[:,df1.loc['a']>0]
Out[49]:
A
a 0.132003
b 1.130127
c 1.024180
d 0.974466
e 0.545952
f -1.281247

For getting a value explicitly (equiv to deprecated df.get_value(’a’,’A’))
# this is also equivalent to ``df1.at['a','A']``
In [50]: df1.loc['a','A']
Out[50]: 0.13200317033032927

13.7 Selection By Position
Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is
sometimes called chained assignment and should be avoided. See Returning a View versus Copy
pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely
python and numpy slicing. These are 0-based indexing. When slicing, the start bounds is included, while the upper
bound is excluded. Trying to use a non-integer, even a valid label will raise a IndexError.
The .iloc attribute is the primary access method. The following are valid inputs:
• An integer e.g. 5
• A list or array of integers [4, 3, 0]
• A slice object with ints 1:7
• A boolean array
In [51]: s1 = Series(np.random.randn(5),index=list(range(0,10,2)))
In [52]: s1
Out[52]:

386

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
0.695775
2
0.341734
4
0.959726
6
-1.110336
8
-0.619976
dtype: float64
In [53]: s1.iloc[:3]
Out[53]:
0
0.695775
2
0.341734
4
0.959726
dtype: float64
In [54]: s1.iloc[3]
Out[54]: -1.1103361028911667

Note that setting works as well:
In [55]: s1.iloc[:3] = 0
In [56]: s1
Out[56]:
0
0.000000
2
0.000000
4
0.000000
6
-1.110336
8
-0.619976
dtype: float64

With a DataFrame
In [57]: df1 = DataFrame(np.random.randn(6,4),
....:
index=list(range(0,12,2)),
....:
columns=list(range(0,8,2)))
....:
In [58]: df1
Out[58]:
0
0
0.149748
2
0.403310
4 -1.369849
6 -0.826591
8
0.995761
10 -0.317441

2
-0.732339
-0.154951
-0.954208
-0.345352
2.396780
-1.236269

4
6
0.687738 0.176444
0.301624 -2.179861
1.462696 -1.743161
1.314232 0.690579
0.014871 3.357427
0.896171 -0.487602

Select via integer slicing
In [59]: df1.iloc[:3]
Out[59]:
0
2
0 0.149748 -0.732339
2 0.403310 -0.154951
4 -1.369849 -0.954208

4
6
0.687738 0.176444
0.301624 -2.179861
1.462696 -1.743161

In [60]: df1.iloc[1:5,2:4]
Out[60]:
4
6

13.7. Selection By Position

387

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
4
6
8

0.301624 -2.179861
1.462696 -1.743161
1.314232 0.690579
0.014871 3.357427

Select via integer list
In [61]: df1.iloc[[1,3,5],[1,3]]
Out[61]:
2
6
2 -0.154951 -2.179861
6 -0.345352 0.690579
10 -1.236269 -0.487602

For slicing rows explicitly (equiv to deprecated df.irow(slice(1,3))).
In [62]: df1.iloc[1:3,:]
Out[62]:
0
2
4
6
2 0.403310 -0.154951 0.301624 -2.179861
4 -1.369849 -0.954208 1.462696 -1.743161

For slicing columns explicitly (equiv to deprecated df.icol(slice(1,3))).
In [63]: df1.iloc[:,1:3]
Out[63]:
2
4
0 -0.732339 0.687738
2 -0.154951 0.301624
4 -0.954208 1.462696
6 -0.345352 1.314232
8
2.396780 0.014871
10 -1.236269 0.896171

For getting a scalar via integer position (equiv to deprecated df.get_value(1,1))
# this is also equivalent to ``df1.iat[1,1]``
In [64]: df1.iloc[1,1]
Out[64]: -0.15495077442490321

For getting a cross section using an integer position (equiv to df.xs(1))
In [65]: df1.iloc[1]
Out[65]:
0
0.403310
2
-0.154951
4
0.301624
6
-2.179861
Name: 2, dtype: float64

Out of range slice indexes are handled gracefully just as in Python/Numpy.
# these are allowed in python/numpy.
# Only works in Pandas starting from v0.14.0.
In [66]: x = list('abcdef')
In [67]: x
Out[67]: ['a', 'b', 'c', 'd', 'e', 'f']
In [68]: x[4:10]

388

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[68]: ['e', 'f']
In [69]: x[8:10]
Out[69]: []
In [70]: s = Series(x)
In [71]: s
Out[71]:
0
a
1
b
2
c
3
d
4
e
5
f
dtype: object
In [72]: s.iloc[4:10]
Out[72]:
4
e
5
f
dtype: object
In [73]: s.iloc[8:10]
Out[73]: Series([], dtype: object)

Note: Prior to v0.14.0, iloc would not accept out of bounds indexers for slices, e.g. a value that exceeds the length
of the object being indexed.
Note that this could result in an empty axis (e.g. an empty DataFrame being returned)
In [74]: dfl = DataFrame(np.random.randn(5,2),columns=list('AB'))
In [75]: dfl
Out[75]:
A
B
0 -0.082240 -2.182937
1 0.380396 0.084844
2 0.432390 1.519970
3 -0.493662 0.600178
4 0.274230 0.132885
In [76]: dfl.iloc[:,2:3]
Out[76]:
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]
In [77]: dfl.iloc[:,1:3]
Out[77]:
B
0 -2.182937
1 0.084844
2 1.519970
3 0.600178
4 0.132885
In [78]: dfl.iloc[4:6]

13.7. Selection By Position

389

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[78]:
4

A
0.27423

B
0.132885

A single indexer that is out of bounds will raise an IndexError. A list of indexers where any element is out of
bounds will raise an IndexError
dfl.iloc[[4,5,6]]
IndexError: positional indexers are out-of-bounds
dfl.iloc[:,4]
IndexError: single positional indexer is out-of-bounds

13.8 Selecting Random Samples
A random selection of rows or columns from a Series, DataFrame, or Panel with the sample() method. The method
will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.
In [79]: s = Series([0,1,2,3,4,5])
# When no arguments are passed, returns 1 row.
In [80]: s.sample()
Out[80]:
3
3
dtype: int64
# One may specify either a number of rows:
In [81]: s.sample(n=3)
Out[81]:
5
5
1
1
0
0
dtype: int64
# Or a fraction of the rows:
In [82]: s.sample(frac=0.5)
Out[82]:
1
1
3
3
0
0
dtype: int64

By default, sample will return each row at most once, but one can also sample with replacement using the replace
option:
In [83]: s = Series([0,1,2,3,4,5])
# Without replacement (default):
In [84]: s.sample(n=6, replace=False)
Out[84]:
0
0
5
5
4
4
3
3
2
2
1
1

390

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

dtype: int64
# With replacement:
In [85]: s.sample(n=6, replace=True)
Out[85]:
3
3
4
4
1
1
0
0
4
4
0
0
dtype: int64

By default, each row has an equal probability of being selected, but if you want rows to have different probabilities,
you can pass the sample function sampling weights as weights. These weights can be a list, a numpy array, or a
Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight
of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights
by the sum of the weights. For example:
In [86]: s = Series([0,1,2,3,4,5])
In [87]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
In [88]: s.sample(n=3, weights=example_weights)
Out[88]:
4
4
5
5
3
3
dtype: int64
# Weights will be re-normalized automatically
In [89]: example_weights2 = [0.5, 0, 0, 0, 0, 0]
In [90]: s.sample(n=1, weights=example_weights2)
Out[90]:
0
0
dtype: int64

When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling
rows and not columns) by simply passing the name of the column as a string.
In [91]: df2 = DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})
In [92]: df2.sample(n = 3, weights = 'weight_column')
Out[92]:
col1 weight_column
2
7
0.1
0
9
0.5
1
8
0.4

sample also allows users to sample columns instead of rows using the axis argument.
In [93]: df3 = DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
In [94]: df3.sample(n=1, axis=1)
Out[94]:
col2
0
2
1
3

13.8. Selecting Random Samples

391

pandas: powerful Python data analysis toolkit, Release 0.16.1

2

4

Finally, one can also set a seed for sample‘s random number generator using the random_state argument, which
will accept either an integer (as a seed) or a numpy RandomState object.
In [95]: df4 = DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
# With a given seed, the sample will always draw the same rows.
In [96]: df4.sample(n=2, random_state=2)
Out[96]:
col1 col2
2
3
4
1
2
3
In [97]: df4.sample(n=2, random_state=2)
Out[97]:
col1 col2
2
3
4
1
2
3

13.9 Setting With Enlargement
New in version 0.13.
The .loc/.ix/[] operations can perform enlargement when setting a non-existant key for that axis.
In the Series case this is effectively an appending operation
In [98]: se = Series([1,2,3])
In [99]: se
Out[99]:
0
1
1
2
2
3
dtype: int64
In [100]: se[5] = 5.
In [101]: se
Out[101]:
0
1
1
2
2
3
5
5
dtype: float64

A DataFrame can be enlarged on either axis via .loc
In [102]: dfi = DataFrame(np.arange(6).reshape(3,2),
.....:
columns=['A','B'])
.....:
In [103]: dfi
Out[103]:
A B
0 0 1

392

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
2

2
4

3
5

In [104]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [105]: dfi
Out[105]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4

This is like an append operation on the DataFrame.
In [106]: dfi.loc[3] = 5
In [107]: dfi
Out[107]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5

13.10 Fast scalar value getting and setting
Since indexing with [] must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of
overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to
use the at and iat methods, which are implemented on all of the data structures.
Similarly to loc, at provides label based scalar lookups, while, iat provides integer based lookups analogously to
iloc
In [108]: s.iat[5]
Out[108]: 5
In [109]: df.at[dates[5], 'A']
Out[109]: 0.11364840968888545
In [110]: df.iat[3, 0]
Out[110]: -0.70677113363008437

You can also set using these same indexers.
In [111]: df.at[dates[5], 'E'] = 7
In [112]: df.iat[3, 0] = 7

at may enlarge the object in-place as above if the indexer is missing.
In [113]: df.at[dates[-1]+1, 0] = 7
In [114]: df
Out[114]:
A
2000-01-01 -0.282863
2000-01-02 -0.173215

B
C
D
E
0
0.469112 -1.509059 -1.135632 NaN NaN
1.212112 0.119209 -1.044236 NaN NaN

13.10. Fast scalar value getting and setting

393

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-03 -2.104569 -0.861849 -0.494929 1.071804 NaN
2000-01-04 7.000000 0.721555 -1.039575 0.271860 NaN
2000-01-05 0.567020 -0.424972 0.276232 -1.087401 NaN
2000-01-06 0.113648 -0.673690 -1.478427 0.524988
7
2000-01-07 0.577046 0.404705 -1.715002 -1.039268 NaN
2000-01-08 -1.157892 -0.370647 -1.344312 0.844885 NaN
2000-01-09
NaN
NaN
NaN
NaN NaN

NaN
NaN
NaN
NaN
NaN
NaN
7

13.11 Boolean indexing
Another common operation is the use of boolean vectors to filter the data. The operators are: | for or, & for and, and
~ for not. These must be grouped by using parentheses.
Using a boolean vector to index a Series works exactly as in a numpy ndarray:
In [115]: s = Series(range(-3, 4))
In [116]: s
Out[116]:
0
-3
1
-2
2
-1
3
0
4
1
5
2
6
3
dtype: int32
In [117]: s[s > 0]
Out[117]:
4
1
5
2
6
3
dtype: int32
In [118]: s[(s < -1) | (s > 0.5)]
Out[118]:
0
-3
1
-2
4
1
5
2
6
3
dtype: int32
In [119]: s[~(s < 0)]
Out[119]:
3
0
4
1
5
2
6
3
dtype: int32

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example,
something derived from one of the columns of the DataFrame):

394

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [120]: df[df['A'] > 0]
Out[120]:
A
B
C
D
E
0
2000-01-04 7.000000 0.721555 -1.039575 0.271860 NaN NaN
2000-01-05 0.567020 -0.424972 0.276232 -1.087401 NaN NaN
2000-01-06 0.113648 -0.673690 -1.478427 0.524988
7 NaN
2000-01-07 0.577046 0.404705 -1.715002 -1.039268 NaN NaN

List comprehensions and map method of Series can also be used to produce more complex criteria:
In [121]: df2 = DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
.....:
'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
.....:
'c' : randn(7)})
.....:
# only want 'two' or 'three'
In [122]: criterion = df2['a'].map(lambda x: x.startswith('t'))
In [123]:
Out[123]:
a
2
two
3 three
4
two

df2[criterion]
b
c
y 1.450520
x 0.206053
y -0.251905

# equivalent but slower
In [124]: df2[[x.startswith('t') for x in df2['a']]]
Out[124]:
a b
c
2
two y 1.450520
3 three x 0.206053
4
two y -0.251905
# Multiple criteria
In [125]: df2[criterion & (df2['b'] == 'x')]
Out[125]:
a b
c
3 three x 0.206053

Note, with the choice methods Selection by Label, Selection by Position, and Advanced Indexing you may select along
more than one axis using boolean vectors combined with other indexing expressions.
In [126]: df2.loc[criterion & (df2['b'] == 'x'),'b':'c']
Out[126]:
b
c
3 x 0.206053

13.12 Indexing with isin
Consider the isin method of Series, which returns a boolean vector that is true wherever the Series elements exist in
the passed list. This allows you to select rows where one or more columns have values you want:
In [127]: s = Series(np.arange(5),index=np.arange(5)[::-1],dtype='int64')
In [128]: s
Out[128]:
4
0

13.12. Indexing with isin

395

pandas: powerful Python data analysis toolkit, Release 0.16.1

3
1
2
2
1
3
0
4
dtype: int64
In [129]: s.isin([2, 4, 6])
Out[129]:
4
False
3
False
2
True
1
False
0
True
dtype: bool
In [130]: s[s.isin([2, 4, 6])]
Out[130]:
2
2
0
4
dtype: int64

The same method is available for Index objects and is useful for the cases when you don’t know which of the sought
labels are in fact present:
In [131]: s[s.index.isin([2, 4, 6])]
Out[131]:
4
0
2
2
dtype: int64
# compare it to the following
In [132]: s[[2, 4, 6]]
Out[132]:
2
2
4
0
6
NaN
dtype: float64

In addition to that, MultiIndex allows selecting a separate level to use in the membership check:
In [133]: s_mi = Series(np.arange(6),
.....:
index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]))
.....:
In [134]: s_mi
Out[134]:
0 a
0
b
1
c
2
1 a
3
b
4
c
5
dtype: int32
In [135]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])]
Out[135]:
0 c
2
1 a
3
dtype: int32

396

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [136]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
Out[136]:
0 a
0
c
2
1 a
3
c
5
dtype: int32

DataFrame also has an isin method. When calling isin, pass a set of values as either an array or dict. If values is
an array, isin returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever
the element is in the sequence of values.
In [137]: df = DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
.....:
'ids2': ['a', 'n', 'c', 'n']})
.....:
In [138]: values = ['a', 'b', 1, 3]
In [139]:
Out[139]:
ids
0
True
1
True
2 False
3 False

df.isin(values)
ids2
True
False
False
False

vals
True
False
True
False

Oftentimes you’ll want to match certain values with certain columns. Just make values a dict where the key is the
column, and the value is a list of items you want to check for.
In [140]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}
In [141]:
Out[141]:
ids
0
True
1
True
2 False
3 False

df.isin(values)
ids2
False
False
False
False

vals
True
False
True
False

Combine DataFrame’s isin with the any() and all() methods to quickly select subsets of your data that meet a
given criteria. To select a row where each column meets its own criterion:
In [142]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}
In [143]: row_mask = df.isin(values).all(1)
In [144]: df[row_mask]
Out[144]:
ids ids2 vals
0
a
a
1

13.13 The where() Method and Masking
Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection
output has the same shape as the original data, you can use the where method in Series and DataFrame.
To return only the selected rows
13.13. The where() Method and Masking

397

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [145]: s[s > 0]
Out[145]:
3
1
2
2
1
3
0
4
dtype: int64

To return a Series of the same shape as the original
In [146]: s.where(s > 0)
Out[146]:
4
NaN
3
1
2
2
1
3
0
4
dtype: float64

Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. where is used under
the hood as the implementation. Equivalent is df.where(df < 0)
In [147]: df[df < 0]
Out[147]:
A
2000-01-01
NaN
2000-01-02 -1.048089
2000-01-03
NaN
2000-01-04
NaN
2000-01-05 -2.484478
2000-01-06
NaN
2000-01-07 -1.282782
2000-01-08
NaN

B
C
D
NaN -0.863838
NaN
-0.025747 -0.988387
NaN
NaN
NaN -0.055758
-0.489682
NaN -0.034571
-0.281461
NaN
NaN
-0.977349
NaN -0.064034
NaN -1.071357
NaN
NaN
NaN -0.744471

In addition, where takes an optional other argument for replacement of values where the condition is False, in the
returned copy.
In [148]: df.where(df < 0, -df)
Out[148]:
A
B
C
2000-01-01 -1.266143 -0.299368 -0.863838
2000-01-02 -1.048089 -0.025747 -0.988387
2000-01-03 -1.262731 -1.289997 -0.082423
2000-01-04 -0.536580 -0.489682 -0.369374
2000-01-05 -2.484478 -0.281461 -0.030711
2000-01-06 -1.126203 -0.977349 -1.474071
2000-01-07 -1.282782 -0.781836 -1.071357
2000-01-08 -2.353925 -0.583787 -0.221471

D
-0.408204
-0.094055
-0.055758
-0.034571
-0.109121
-0.064034
-0.441153
-0.744471

You may wish to set values based on some boolean criteria. This can be done intuitively like so:
In [149]: s2 = s.copy()
In [150]: s2[s2 < 0] = 0
In [151]: s2
Out[151]:
4
0
3
1

398

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
2
1
3
0
4
dtype: int64
In [152]: df2 = df.copy()
In [153]: df2[df2 < 0] = 0
In [154]: df2
Out[154]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
1.266143
0.000000
1.262731
0.536580
0.000000
1.126203
0.000000
2.353925

B
0.299368
0.000000
1.289997
0.000000
0.000000
0.000000
0.781836
0.583787

C
0.000000
0.000000
0.082423
0.369374
0.030711
1.474071
0.000000
0.221471

D
0.408204
0.094055
0.000000
0.000000
0.109121
0.000000
0.441153
0.000000

By default, where returns a modified copy of the data. There is an optional parameter inplace so that the original
data can be modified without creating a copy:
In [155]: df_orig = df.copy()
In [156]: df_orig.where(df > 0, -df, inplace=True);
In [157]: df_orig
Out[157]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

A
1.266143
1.048089
1.262731
0.536580
2.484478
1.126203
1.282782
2.353925

B
0.299368
0.025747
1.289997
0.489682
0.281461
0.977349
0.781836
0.583787

C
0.863838
0.988387
0.082423
0.369374
0.030711
1.474071
1.071357
0.221471

D
0.408204
0.094055
0.055758
0.034571
0.109121
0.064034
0.441153
0.744471

alignment
Furthermore, where aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting
is possible. This is analogous to partial setting via .ix (but on the contents rather than the axis labels)
In [158]: df2 = df.copy()
In [159]: df2[ df2[1:4] > 0 ] = 3
In [160]: df2
Out[160]:
A
B
C
D
2000-01-01 1.266143 0.299368 -0.863838 0.408204
2000-01-02 -1.048089 -0.025747 -0.988387 3.000000
2000-01-03 3.000000 3.000000 3.000000 -0.055758
2000-01-04 3.000000 -0.489682 3.000000 -0.034571
2000-01-05 -2.484478 -0.281461 0.030711 0.109121
2000-01-06 1.126203 -0.977349 1.474071 -0.064034
2000-01-07 -1.282782 0.781836 -1.071357 0.441153

13.13. The where() Method and Masking

399

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-08

2.353925

0.583787

0.221471 -0.744471

New in version 0.13.
Where can also accept axis and level parameters to align the input when performing the where.
In [161]: df2 = df.copy()
In [162]: df2.where(df2>0,df2['A'],axis='index')
Out[162]:
A
B
C
D
2000-01-01 1.266143 0.299368 1.266143 0.408204
2000-01-02 -1.048089 -1.048089 -1.048089 0.094055
2000-01-03 1.262731 1.289997 0.082423 1.262731
2000-01-04 0.536580 0.536580 0.369374 0.536580
2000-01-05 -2.484478 -2.484478 0.030711 0.109121
2000-01-06 1.126203 1.126203 1.474071 1.126203
2000-01-07 -1.282782 0.781836 -1.282782 0.441153
2000-01-08 2.353925 0.583787 0.221471 2.353925

This is equivalent (but faster than) the following.
In [163]: df2 = df.copy()
In [164]: df.apply(lambda x, y: x.where(x>0,y), y=df['A'])
Out[164]:
A
B
C
D
2000-01-01 1.266143 0.299368 1.266143 0.408204
2000-01-02 -1.048089 -1.048089 -1.048089 0.094055
2000-01-03 1.262731 1.289997 0.082423 1.262731
2000-01-04 0.536580 0.536580 0.369374 0.536580
2000-01-05 -2.484478 -2.484478 0.030711 0.109121
2000-01-06 1.126203 1.126203 1.474071 1.126203
2000-01-07 -1.282782 0.781836 -1.282782 0.441153
2000-01-08 2.353925 0.583787 0.221471 2.353925

mask
mask is the inverse boolean operation of where.
In [165]: s.mask(s >= 0)
Out[165]:
4
NaN
3
NaN
2
NaN
1
NaN
0
NaN
dtype: float64
In [166]: df.mask(df
Out[166]:
A
2000-01-01
NaN
2000-01-02 -1.048089
2000-01-03
NaN
2000-01-04
NaN
2000-01-05 -2.484478
2000-01-06
NaN
2000-01-07 -1.282782
2000-01-08
NaN

400

>= 0)
B
C
D
NaN -0.863838
NaN
-0.025747 -0.988387
NaN
NaN
NaN -0.055758
-0.489682
NaN -0.034571
-0.281461
NaN
NaN
-0.977349
NaN -0.064034
NaN -1.071357
NaN
NaN
NaN -0.744471

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

13.14 The query() Method (Experimental)
New in version 0.13.
DataFrame objects have a query() method that allows selection using an expression.
You can get the value of the frame where column b has values between the values of columns a and c. For example:
In [167]: n = 10
In [168]: df = DataFrame(rand(n, 3), columns=list('abc'))
In [169]: df
Out[169]:
a
0 0.191519
1 0.785359
2 0.276464
3 0.875933
4 0.683463
5 0.561196
6 0.772827
7 0.615396
8 0.933140
9 0.788730

b
0.622109
0.779976
0.801872
0.357817
0.712702
0.503083
0.882641
0.075381
0.651378
0.316836

c
0.437728
0.272593
0.958139
0.500995
0.370251
0.013768
0.364886
0.368824
0.397203
0.568099

# pure python
In [170]: df[(df.a < df.b) & (df.b < df.c)]
Out[170]:
a
b
c
2 0.276464 0.801872 0.958139
# query
In [171]: df.query('(a < b) & (b < c)')
Out[171]:
a
b
c
2 0.276464 0.801872 0.958139

Do the same thing but fall back on a named index if there is no column with the name a.
In [172]: df = DataFrame(randint(n / 2, size=(n, 2)), columns=list('bc'))
In [173]: df.index.name = 'a'
In [174]: df
Out[174]:
b c
a
0 2 3
1 4 1
2 4 0
3 4 1
4 1 4
5 1 4
6 0 1
7 0 0
8 4 0
9 4 2

13.14. The query() Method (Experimental)

401

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [175]: df.query('a < b and b < c')
Out[175]:
b c
a
0 2 3

If instead you don’t want to or cannot name your index, you can use the name index in your query expression:
In [176]: df = DataFrame(randint(n, size=(n, 2)), columns=list('bc'))
In [177]: df
Out[177]:
b c
0 3 1
1 2 5
2 2 5
3 6 7
4 4 3
5 5 6
6 4 6
7 2 4
8 2 7
9 9 7
In [178]: df.query('index < b < c')
Out[178]:
b c
1 2 5
3 6 7

Note: If the name of your index overlaps with a column name, the column name is given precedence. For example,
In [179]: df = DataFrame({'a': randint(5, size=5)})
In [180]: df.index.name = 'a'
In [181]: df.query('a > 2') # uses the column 'a', not the index
Out[181]:
a
a
0 3
3 4

You can still use the index in a query expression by using the special identifier ‘index’:
In [182]: df.query('index > 2')
Out[182]:
a
a
3 4
4 1

If for some reason you have a column named index, then you can refer to the index as ilevel_0 as well, but at
this point you should consider renaming your columns to something less ambiguous.

402

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

13.14.1 MultiIndex query() Syntax
You can also use the levels of a DataFrame with a MultiIndex as if they were columns in the frame:
In [183]: import pandas.util.testing as tm
In [184]: n = 10
In [185]: colors = tm.choice(['red', 'green'], size=n)
In [186]: foods = tm.choice(['eggs', 'ham'], size=n)
In [187]: colors
Out[187]:
array(['red', 'green', 'red', 'green', 'red', 'green', 'red', 'green',
'green', 'green'],
dtype='|S5')
In [188]: foods
Out[188]:
array(['ham', 'eggs', 'ham', 'ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham',
'eggs'],
dtype='|S4')
In [189]: index = MultiIndex.from_arrays([colors, foods], names=['color', 'food'])
In [190]: df = DataFrame(randn(n, 2), index=index)
In [191]: df
Out[191]:
color
red
green
red
green
red
green
red
green

food
ham
eggs
ham
ham
ham
eggs
eggs
eggs
ham
eggs

0

1

0.157622
0.111560
-1.270093
-0.193898
-0.234694
-0.171520
-0.363095
1.444721
-0.855732
-0.276134

-0.293555
0.597679
0.120949
1.804172
0.939908
-0.153055
-0.067318
0.325771
-0.697595
-1.258759

In [192]: df.query('color == "red"')
Out[192]:
0
1
color food
red
ham
0.157622 -0.293555
ham -1.270093 0.120949
ham -0.234694 0.939908
eggs -0.363095 -0.067318

If the levels of the MultiIndex are unnamed, you can refer to them using special names:
In [193]: df.index.names = [None, None]
In [194]: df
Out[194]:
0

1

13.14. The query() Method (Experimental)

403

pandas: powerful Python data analysis toolkit, Release 0.16.1

red
green
red
green
red
green
red
green

ham
eggs
ham
ham
ham
eggs
eggs
eggs
ham
eggs

0.157622
0.111560
-1.270093
-0.193898
-0.234694
-0.171520
-0.363095
1.444721
-0.855732
-0.276134

-0.293555
0.597679
0.120949
1.804172
0.939908
-0.153055
-0.067318
0.325771
-0.697595
-1.258759

In [195]: df.query('ilevel_0 == "red"')
Out[195]:
0
1
red ham
0.157622 -0.293555
ham -1.270093 0.120949
ham -0.234694 0.939908
eggs -0.363095 -0.067318

The convention is ilevel_0, which means “index level 0” for the 0th level of the index.

13.14.2 query() Use Cases
A use case for query() is when you have a collection of DataFrame objects that have a subset of column names
(or index levels/names) in common. You can pass the same query to both frames without having to specify which
frame you’re interested in querying
In [196]: df = DataFrame(rand(n, 3), columns=list('abc'))
In [197]: df
Out[197]:
a
0 0.972113
1 0.158930
2 0.053878
3 0.838312
4 0.366946
5 0.699350
6 0.134386
7 0.457034
8 0.933636
9 0.572485

b
0.046532
0.943383
0.254082
0.156925
0.937473
0.502946
0.828932
0.079103
0.418725
0.572111

c
0.917354
0.763162
0.927973
0.690776
0.613365
0.711111
0.742846
0.373047
0.234212
0.416893

In [198]: df2 = DataFrame(rand(n + 2, 3), columns=df.columns)
In [199]: df2
Out[199]:
a
0
0.625883
1
0.477672
2
0.027139
3
0.175274
4
0.565899
5
0.368558
6
0.849930
7
0.330936
8
0.181795

404

b
0.220362
0.974342
0.221022
0.429462
0.569035
0.952385
0.960458
0.260923
0.376800

c
0.622059
0.772985
0.120328
0.657769
0.654196
0.196770
0.381118
0.665491
0.014259

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

9
10
11

0.339135
0.652106
0.403612

0.401351
0.997192
0.058447

0.467574
0.517462
0.045196

In [200]: expr = '0.0 <= a <= c <= 0.5'
In [201]: map(lambda frame: frame.query(expr), [df, df2])
Out[201]:
[Empty DataFrame
Columns: [a, b, c]
Index: [],
a
b
c
2 0.027139 0.221022 0.120328
9 0.339135 0.401351 0.467574]

13.14.3 query() Python versus pandas Syntax Comparison
Full numpy-like syntax
In [202]: df = DataFrame(randint(n, size=(n, 3)), columns=list('abc'))
In [203]: df
Out[203]:
a b c
0 5 3 8
1 8 8 1
2 3 6 8
3 9 1 5
4 8 4 1
5 1 1 2
6 3 4 2
7 1 9 4
8 0 0 2
9 1 2 5
In [204]: df.query('(a < b) & (b < c)')
Out[204]:
a b c
2 3 6 8
9 1 2 5
In [205]: df[(df.a < df.b) & (df.b < df.c)]
Out[205]:
a b c
2 3 6 8
9 1 2 5

Slightly nicer by removing the parentheses (by binding making comparison operators bind tighter than &/|)
In [206]: df.query('a < b & b < c')
Out[206]:
a b c
2 3 6 8
9 1 2 5

Use English instead of symbols
In [207]: df.query('a < b and b < c')
Out[207]:

13.14. The query() Method (Experimental)

405

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
9

a
3
1

b
6
2

c
8
5

Pretty close to how you might write it on paper
In [208]: df.query('a < b < c')
Out[208]:
a b c
2 3 6 8
9 1 2 5

13.14.4 The in and not in operators
query() also supports special use of Python’s in and not in comparison operators, providing a succinct syntax
for calling the isin method of a Series or DataFrame.
# get all rows where columns "a" and "b" have overlapping values
In [209]: df = DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'),
.....:
'c': randint(5, size=12), 'd': randint(9, size=12)})
.....:
In [210]:
Out[210]:
a b
0
a a
1
a a
2
b a
3
b a
4
c b
5
c b
6
d b
7
d b
8
e c
9
e c
10 f c
11 f c

df
c
1
0
0
2
0
0
1
1
4
3
2
0

d
7
0
2
8
4
8
3
2
4
7
7
0

In [211]: df.query('a in b')
Out[211]:
a b c d
0 a a 1 7
1 a a 0 0
2 b a 0 2
3 b a 2 8
4 c b 0 4
5 c b 0 8
# How you'd do it in pure Python
In [212]: df[df.a.isin(df.b)]
Out[212]:
a b c d
0 a a 1 7
1 a a 0 0
2 b a 0 2
3 b a 2 8
4 c b 0 4

406

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

5

c

b

In [213]:
Out[213]:
a b
6
d b
7
d b
8
e c
9
e c
10 f c
11 f c

0

8

df.query('a not in b')
c
1
1
4
3
2
0

d
3
2
4
7
7
0

# pure Python
In [214]: df[~df.a.isin(df.b)]
Out[214]:
a b c d
6
d b 1 3
7
d b 1 2
8
e c 4 4
9
e c 3 7
10 f c 2 7
11 f c 0 0

You can combine this with other expressions for very succinct queries:
# rows where cols a and b have overlapping values and col c's values are less than col d's
In [215]: df.query('a in b and c < d')
Out[215]:
a b c d
0 a a 1 7
2 b a 0 2
3 b a 2 8
4 c b 0 4
5 c b 0 8
# pure Python
In [216]: df[df.b.isin(df.a) & (df.c < df.d)]
Out[216]:
a b c d
0
a a 1 7
2
b a 0 2
3
b a 2 8
4
c b 0 4
5
c b 0 8
6
d b 1 3
7
d b 1 2
9
e c 3 7
10 f c 2 7

Note: Note that in and not in are evaluated in Python, since numexpr has no equivalent of this operation.
However, only the in/not in expression itself is evaluated in vanilla Python. For example, in the expression
df.query('a in b + c + d')

(b + c + d) is evaluated by numexpr and then the in operation is evaluated in plain Python. In general, any
operations that can be evaluated using numexpr will be.

13.14. The query() Method (Experimental)

407

pandas: powerful Python data analysis toolkit, Release 0.16.1

13.14.5 Special use of the == operator with list objects
Comparing a list of values to a column using ==/!= works similarly to in/not in
In [217]:
Out[217]:
a b
0
a a
1
a a
2
b a
3
b a
4
c b
5
c b
6
d b
7
d b
8
e c
9
e c
10 f c
11 f c

df.query('b == ["a", "b", "c"]')
c
1
0
0
2
0
0
1
1
4
3
2
0

d
7
0
2
8
4
8
3
2
4
7
7
0

# pure Python
In [218]: df[df.b.isin(["a", "b", "c"])]
Out[218]:
a b c d
0
a a 1 7
1
a a 0 0
2
b a 0 2
3
b a 2 8
4
c b 0 4
5
c b 0 8
6
d b 1 3
7
d b 1 2
8
e c 4 4
9
e c 3 7
10 f c 2 7
11 f c 0 0
In [219]:
Out[219]:
a b
0
a a
3
b a
6
d b
7
d b
10 f c

df.query('c == [1, 2]')

In [220]:
Out[220]:
a b
1
a a
2
b a
4
c b
5
c b
8
e c
9
e c
11 f c

df.query('c != [1, 2]')

c
1
2
1
1
2

c
0
0
0
0
4
3
0

d
7
8
3
2
7

d
0
2
4
8
4
7
0

# using in/not in
In [221]: df.query('[1, 2] in c')

408

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[221]:
a b
0
a a
3
b a
6
d b
7
d b
10 f c
In [222]:
Out[222]:
a b
1
a a
2
b a
4
c b
5
c b
8
e c
9
e c
11 f c

c
1
2
1
1
2

d
7
8
3
2
7

df.query('[1, 2] not in c')
c
0
0
0
0
4
3
0

d
0
2
4
8
4
7
0

# pure Python
In [223]: df[df.c.isin([1, 2])]
Out[223]:
a b c d
0
a a 1 7
3
b a 2 8
6
d b 1 3
7
d b 1 2
10 f c 2 7

13.14.6 Boolean Operators
You can negate boolean expressions with the word not or the ~ operator.
In [224]: df = DataFrame(rand(n, 3), columns=list('abc'))
In [225]: df['bools'] = rand(len(df)) > 0.5
In [226]: df.query('~bools')
Out[226]:
a
b
c
0 0.395827 0.035597 0.171689
2 0.582329 0.898831 0.435002
3 0.078368 0.224708 0.697626
5 0.877177 0.221076 0.287379
6 0.993264 0.861585 0.108845

bools
False
False
False
False
False

In [227]: df.query('not bools')
Out[227]:
a
b
c
0 0.395827 0.035597 0.171689
2 0.582329 0.898831 0.435002
3 0.078368 0.224708 0.697626
5 0.877177 0.221076 0.287379
6 0.993264 0.861585 0.108845

bools
False
False
False
False
False

In [228]: df.query('not bools') == df[~df.bools]
Out[228]:

13.14. The query() Method (Experimental)

409

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
2
3
5
6

a
True
True
True
True
True

b
True
True
True
True
True

c bools
True True
True True
True True
True True
True True

Of course, expressions can be arbitrarily complex too
# short query syntax
In [229]: shorter = df.query('a < b < c and (not bools) or bools > 2')
# equivalent in pure Python
In [230]: longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)]
In [231]: shorter
Out[231]:
a
b
3 0.078368 0.224708

c
0.697626

bools
False

In [232]: longer
Out[232]:
a
b
3 0.078368 0.224708

c
0.697626

bools
False

In [233]: shorter == longer
Out[233]:
a
b
c bools
3 True True True True

13.14.7 Performance of query()
DataFrame.query() using numexpr is slightly faster than Python for large frames

Note: You will only see the performance benefits of using the numexpr engine with DataFrame.query() if
your frame has more than approximately 200,000 rows

410

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

This plot was created using a DataFrame with 3 columns each containing floating point values generated using
numpy.random.randn().

13.15 Duplicate Data
If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated
and drop_duplicates. Each takes as an argument the columns to use to identify duplicated rows.
• duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row
is duplicated.
• drop_duplicates removes duplicate rows.
By default, the first observed row of a duplicate set is considered unique, but each method has a take_last parameter that indicates the last observed row should be taken instead.
In [234]: df2 = DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
.....:
'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
.....:
'c' : np.random.randn(7)})
.....:
In [235]: df2.duplicated(['a','b'])
Out[235]:
0
False
1
False
2
False
3
False
4
True
5
True
6
False
dtype: bool
In [236]: df2.drop_duplicates(['a','b'])
Out[236]:
a b
c
0
one x 0.932713

13.15. Duplicate Data

411

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
2
3
6

one
two
three
six

In [237]:
Out[237]:
a
1
one
3 three
4
two
5
one
6
six

y -0.393510
y -0.548454
x 1.130736
x -1.233298
df2.drop_duplicates(['a','b'], take_last=True)
b
c
y -0.393510
x 1.130736
y -0.447217
x 1.043921
x -1.233298

An alternative way to drop duplicates on the index is .groupby(level=0) combined with first() or last().
In [238]: df3 = df2.set_index('b')
In [239]: df3
Out[239]:
a
c
b
x
one 0.932713
y
one -0.393510
y
two -0.548454
x three 1.130736
y
two -0.447217
x
one 1.043921
x
six -1.233298
In [240]: df3.groupby(level=0).first()
Out[240]:
a
c
b
x one 0.932713
y one -0.393510
# a bit more verbose
In [241]: df3.reset_index().drop_duplicates(subset='b', take_last=False).set_index('b')
Out[241]:
a
c
b
x one 0.932713
y one -0.393510

13.16 Dictionary-like get() method
Each of Series, DataFrame, and Panel have a get method which can return a default value.
In [242]: s = Series([1,2,3], index=['a','b','c'])
In [243]: s.get('a')
Out[243]: 1

# equivalent to s['a']

In [244]: s.get('x', default=-1)
Out[244]: -1

412

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

13.17 The select() Method
Another way to extract slices from an object is with the select method of Series, DataFrame, and Panel. This
method should be used only when there is no more direct way. select takes a function which operates on labels
along axis and returns a boolean. For instance:
In [245]: df.select(lambda x: x == 'A', axis=1)
Out[245]:
A
2000-01-01 0.454389
2000-01-02 0.036249
2000-01-03 0.378125
2000-01-04 0.075871
2000-01-05 -0.677097
2000-01-06 1.482845
2000-01-07 0.272681
2000-01-08 -0.459059

13.18 The lookup() Method
Sometimes you want to extract a set of values given a sequence of row labels and column labels, and the lookup
method allows for this and returns a numpy array. For instance,
In [246]: dflookup = DataFrame(np.random.rand(20,4), columns = ['A','B','C','D'])
In [247]: dflookup.lookup(list(range(0,10,2)), ['B','C','A','B','D'])
Out[247]: array([ 0.012 , 0.3551, 0.3261, 0.4702, 0.3107])

13.19 Index objects
The pandas Index class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are
allowed. However, if you try to convert an Index object with duplicate entries into a set, an exception will be
raised.
Index also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to
create an Index directly is to pass a list or other sequence to Index:
In [248]: index = Index(['e', 'd', 'a', 'b'])
In [249]: index
Out[249]: Index([u'e', u'd', u'a', u'b'], dtype='object')
In [250]: 'd' in index
Out[250]: True

You can also pass a name to be stored in the index:
In [251]: index = Index(['e', 'd', 'a', 'b'], name='something')
In [252]: index.name
Out[252]: 'something'

The name, if set, will be shown in the console display:

13.17. The select() Method

413

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [253]: index = Index(list(range(5)), name='rows')
In [254]: columns = Index(['A', 'B', 'C'], name='cols')
In [255]: df = DataFrame(np.random.randn(5, 3), index=index, columns=columns)
In [256]: df
Out[256]:
cols
A
B
C
rows
0
0.603791 0.388713 0.544331
1
-0.152978 1.929541 0.202138
2
0.024972 0.117533 -0.184740
3
1.054144 -0.736061 -0.785352
4
-1.362549 -0.063514 0.487562
In [257]: df['A']
Out[257]:
rows
0
0.603791
1
-0.152978
2
0.024972
3
1.054144
4
-1.362549
Name: A, dtype: float64

13.19.1 Setting metadata
New in version 0.13.0. Indexes are “mostly immutable”, but it is possible to set and change their metadata, like the
index name (or, for MultiIndex, levels and labels).
You can use the rename, set_names, set_levels, and set_labels to set these attributes directly. They
default to returning a copy; however, you can specify inplace=True to have the data change in place.
See Advanced Indexing for usage of MultiIndexes.
In [258]: ind = Index([1, 2, 3])
In [259]: ind.rename("apple")
Out[259]: Int64Index([1, 2, 3], dtype='int64', name=u'apple')
In [260]: ind
Out[260]: Int64Index([1, 2, 3], dtype='int64')
In [261]: ind.set_names(["apple"], inplace=True)
In [262]: ind.name = "bob"
In [263]: ind
Out[263]: Int64Index([1, 2, 3], dtype='int64', name=u'bob')

New in version 0.15.0.
set_names, set_levels, and set_labels also take an optional level‘ argument
In [264]: index = MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])
In [265]: index

414

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[265]:
MultiIndex(levels=[[0, 1, 2], [u'one', u'two']],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=[u'first', u'second'])
In [266]: index.levels[1]
Out[266]: Index([u'one', u'two'], dtype='object', name=u'second')
In [267]: index.set_levels(["a", "b"], level=1)
Out[267]:
MultiIndex(levels=[[0, 1, 2], [u'a', u'b']],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=[u'first', u'second'])

13.19.2 Set operations on Index objects
Warning: In 0.15.0. the set operations + and - were deprecated in order to provide these for numeric type
operations on certain index types. + can be replace by .union() or |, and - by .difference().
The two main operations are union (|), intersection (&) These can be directly called as instance methods
or used via overloaded operators. Difference is provided via the .difference() method.
In [268]: a = Index(['c', 'b', 'a'])
In [269]: b = Index(['c', 'e', 'd'])
In [270]: a | b
Out[270]: Index([u'a', u'b', u'c', u'd', u'e'], dtype='object')
In [271]: a & b
Out[271]: Index([u'c'], dtype='object')
In [272]: a.difference(b)
Out[272]: Index([u'a', u'b'], dtype='object')

Also
available
is
the
sym_diff (^)
operation,
which
returns
elements
that
appear
in either idx1 or idx2 but not both.
This is equivalent to the Index created by
idx1.difference(idx2).union(idx2.difference(idx1)), with duplicates dropped.
In [273]: idx1 = Index([1, 2, 3, 4])
In [274]: idx2 = Index([2, 3, 4, 5])
In [275]: idx1.sym_diff(idx2)
Out[275]: Int64Index([1, 5], dtype='int64')
In [276]: idx1 ^ idx2
Out[276]: Int64Index([1, 5], dtype='int64')

13.20 Set / Reset Index
Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done
so. There are a couple of different ways.

13.20. Set / Reset Index

415

pandas: powerful Python data analysis toolkit, Release 0.16.1

13.20.1 Set an index
DataFrame has a set_index method which takes a column name (for a regular Index) or a list of column names
(for a MultiIndex), to create a new, indexed DataFrame:
In [277]: data
Out[277]:
a
b c
0 bar one z
1 bar two y
2 foo one x
3 foo two w

d
1
2
3
4

In [278]: indexed1 = data.set_index('c')
In [279]: indexed1
Out[279]:
a
b d
c
z bar one 1
y bar two 2
x foo one 3
w foo two 4
In [280]: indexed2 = data.set_index(['a', 'b'])
In [281]: indexed2
Out[281]:
c d
a
b
bar one z 1
two y 2
foo one x 3
two w 4

The append keyword option allow you to keep the existing index and append the given columns to a MultiIndex:
In [282]: frame = data.set_index('c', drop=False)
In [283]: frame = frame.set_index(['a', 'b'], append=True)
In [284]: frame
Out[284]:
c d
c a
b
z bar one z 1
y bar two y 2
x foo one x 3
w foo two w 4

Other options in set_index allow you not drop the index columns or to add the index in-place (without creating a
new object):
In [285]: data.set_index('c', drop=False)
Out[285]:
a
b c d
c
z bar one z 1
y bar two y 2

416

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

x
w

foo
foo

one
two

x
w

3
4

In [286]: data.set_index(['a', 'b'], inplace=True)
In [287]: data
Out[287]:
c d
a
b
bar one z 1
two y 2
foo one x 3
two w 4

13.20.2 Reset the index
As a convenience, there is a new function on DataFrame called reset_index which transfers the index values into
the DataFrame’s columns and sets a simple integer index. This is the inverse operation to set_index
In [288]: data
Out[288]:
c d
a
b
bar one z 1
two y 2
foo one x 3
two w 4
In [289]: data.reset_index()
Out[289]:
a
b c d
0 bar one z 1
1 bar two y 2
2 foo one x 3
3 foo two w 4

The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the
ones stored in the names attribute.
You can use the level keyword to remove only a portion of the index:
In [290]: frame
Out[290]:
c d
c a
b
z bar one z 1
y bar two y 2
x foo one x 3
w foo two w 4
In [291]: frame.reset_index(level=1)
Out[291]:
a c d
c b
z one bar z 1
y two bar y 2
x one foo x 3
w two foo w 4

13.20. Set / Reset Index

417

pandas: powerful Python data analysis toolkit, Release 0.16.1

reset_index takes an optional parameter drop which if true simply discards the index, instead of putting index
values in the DataFrame’s columns.
Note: The reset_index method used to be called delevel which is now deprecated.

13.20.3 Adding an ad hoc index
If you create an index yourself, you can just assign it to the index field:
data.index = index

13.21 Returning a view versus a copy
When setting values in a pandas object, care must be taken to avoid what is called chained indexing. Here is an
example.
In [292]: dfmi = DataFrame([list('abcd'),
.....:
list('efgh'),
.....:
list('ijkl'),
.....:
list('mnop')],
.....:
columns=MultiIndex.from_product([['one','two'],
.....:
['first','second']]))
.....:
In [293]: dfmi
Out[293]:
one
two
first second first second
0
a
b
c
d
1
e
f
g
h
2
i
j
k
l
3
m
n
o
p

Compare these two access methods:
In [294]: dfmi['one']['second']
Out[294]:
0
b
1
f
2
j
3
n
Name: second, dtype: object
In [295]: dfmi.loc[:,('one','second')]
Out[295]:
0
b
1
f
2
j
3
n
Name: (one, second), dtype: object

These both yield the same results, so which should you use? It is instructive to understand the order of operations on
these and why method 2 (.loc) is much preferred over method 1 (chained [])

418

Chapter 13. Indexing and Selecting Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

dfmi[’one’] selects the first level of the columns and returns a data frame that is singly-indexed. Then another
python operation dfmi_with_one[’second’] selects the series indexed by ’second’ happens. This is indicated by the variable dfmi_with_one because pandas sees these operations as separate events. e.g. separate calls
to __getitem__, so it has to treat them as linear operations, they happen one after another.
Contrast
this
to
df.loc[:,(’one’,’second’)]
which
passes
a
nested
tuple
of
(slice(None),(’one’,’second’)) to a single call to __getitem__. This allows pandas to deal
with this as a single entity. Furthermore this order of operations can be significantly faster, and allows one to index
both axes if so desired.

13.21.1 Why does the assignment when using chained indexing fail!
So, why does this show the SettingWithCopy warning / and possibly not work when you do chained indexing and
assignment:
dfmi['one']['second'] = value

Since the chained indexing is 2 calls, it is possible that either call may return a copy of the data because of the way
it is sliced. Thus when setting, you are actually setting a copy, and not the original frame data. It is impossible for
pandas to figure this out because their are 2 separate python operations that are not connected.
The SettingWithCopy warning is a ‘heuristic’ to detect this (meaning it tends to catch most cases but is simply a
lightweight check). Figuring this out for real is way complicated.
The .loc operation is a single python operation, and thus can select a slice (which still may be a copy), but allows
pandas to assign that slice back into the frame after it is modified, thus setting the values as you would think.
The reason for having the SettingWithCopy warning is this. Sometimes when you slice an array you will simply
get a view back, which means you can set it no problem. However, even a single dtyped array can generate a copy if
it is sliced in a particular way. A multi-dtyped DataFrame (meaning it has say float and object data), will almost
always yield a copy. Whether a view is created is dependent on the memory layout of the array.

13.21.2 Evaluation order matters
Furthermore, in chained expressions, the order may determine whether a copy is returned or not. If an expression will
set values on a copy of a slice, then a SettingWithCopy exception will be raised (this raise/warn behavior is new
starting in 0.13.0)
You can control the action of a chained assignment via the option mode.chained_assignment, which can take
the values [’raise’,’warn’,None], where showing a warning is the default.
In [296]: dfb = DataFrame({'a' : ['one', 'one', 'two',
.....:
'three', 'two', 'one', 'six'],
.....:
'c' : np.arange(7)})
.....:
# This will show the SettingWithCopyWarning
# but the frame values will be set
In [297]: dfb['c'][dfb.a.str.startswith('o')] = 42

This however is operating on a copy and will not work.
>>> pd.set_option('mode.chained_assignment','warn')
>>> dfb[dfb.a.str.startswith('o')]['c'] = 42
Traceback (most recent call last)
...
SettingWithCopyWarning:

13.21. Returning a view versus a copy

419

pandas: powerful Python data analysis toolkit, Release 0.16.1

A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead

A chained assignment can also crop up in setting in a mixed dtype frame.
Note: These setting rules apply to all of .loc/.iloc/.ix
This is the correct access method
In [298]: dfc = DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})
In [299]: dfc.loc[0,'A'] = 11
In [300]: dfc
Out[300]:
A B
0
11 1
1 bbb 2
2 ccc 3

This can work at times, but is not guaranteed, and so should be avoided
In [301]: dfc = dfc.copy()
In [302]: dfc['A'][0] = 111
In [303]: dfc
Out[303]:
A B
0 111 1
1 bbb 2
2 ccc 3

This will not work at all, and so should be avoided
>>> pd.set_option('mode.chained_assignment','raise')
>>> dfc.loc[0]['A'] = 1111
Traceback (most recent call last)
...
SettingWithCopyException:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead

Warning: The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid
assignment. There may be false positives; situations where a chained assignment is inadvertantly reported.

420

Chapter 13. Indexing and Selecting Data

CHAPTER

FOURTEEN

MULTIINDEX / ADVANCED INDEXING

This section covers indexing with a MultiIndex and more advanced indexing features.
See the Indexing and Selecting Data for general indexing documentation.
Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is
sometimes called chained assignment and should be avoided. See Returning a View versus Copy
Warning: In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass
PandasObject, similarly to the rest of the pandas objects. This should be a transparent change with only very
limited API implications (See the Internal Refactoring)
See the cookbook for some advanced strategies

14.1 Hierarchical indexing (MultiIndex)
Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and
manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate
data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d).
In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with the all of
the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting
and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.
See the cookbook for some advanced strategies

14.1.1 Creating a MultiIndex (hierarchical index) object
The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the
axis labels in pandas objects. You can think of MultiIndex an array of tuples where each tuple is unique. A
MultiIndex can be created from a list of arrays (using MultiIndex.from_arrays), an array of tuples (using
MultiIndex.from_tuples), or a crossed set of iterables (using MultiIndex.from_product). The Index
constructor will attempt to return a MultiIndex when it is passed a list of tuples. The following examples demo
different ways to initialize MultiIndexes.
In [1]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
...:
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
...:
In [2]: tuples = list(zip(*arrays))

421

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [3]: tuples
Out[3]:
[('bar', 'one'),
('bar', 'two'),
('baz', 'one'),
('baz', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'one'),
('qux', 'two')]
In [4]: index = MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [5]: index
Out[5]:
MultiIndex(levels=[[u'bar', u'baz', u'foo', u'qux'], [u'one', u'two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=[u'first', u'second'])
In [6]: s = Series(randn(8), index=index)
In [7]: s
Out[7]:
first second
bar
one
two
baz
one
two
foo
one
two
qux
one
two
dtype: float64

0.469112
-0.282863
-1.509059
-1.135632
1.212112
-0.173215
0.119209
-1.044236

When you want every pairing of the elements in two iterables,
MultiIndex.from_product function:

it can be easier to use the

In [8]: iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']]
In [9]: MultiIndex.from_product(iterables, names=['first', 'second'])
Out[9]:
MultiIndex(levels=[[u'bar', u'baz', u'foo', u'qux'], [u'one', u'two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=[u'first', u'second'])

As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automatically:
In [10]: arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
....:
np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]
....:
In [11]: s = Series(randn(8), index=arrays)
In [12]: s
Out[12]:
bar one
-0.861849
two
-2.104569
baz one
-0.494929

422

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

two
1.071804
one
0.721555
two
-0.706771
qux one
-1.039575
two
0.271860
dtype: float64
foo

In [13]: df = DataFrame(randn(8, 4), index=arrays)
In [14]: df
Out[14]:
bar one
two
baz one
two
foo one
two
qux one
two

0
-0.424972
-0.673690
0.404705
-0.370647
1.075770
0.357021
-1.294524
-0.013960

1
0.567020
0.113648
0.577046
-1.157892
-0.109050
-0.674600
0.413738
-0.362543

2
0.276232
-1.478427
-1.715002
-1.344312
1.643563
-1.776904
0.276662
-0.006154

3
-1.087401
0.524988
-1.039268
0.844885
-1.469388
-0.968914
-0.472035
-0.923061

All of the MultiIndex constructors accept a names argument which stores string names for the levels themselves.
If no names are provided, None will be assigned:
In [15]: df.index.names
Out[15]: FrozenList([None, None])

This index can back any axis of a pandas object, and the number of levels of the index is up to you:
In [16]: df = DataFrame(randn(3, 8), index=['A', 'B', 'C'], columns=index)
In [17]: df
Out[17]:
first
bar
second
one
A
0.895717
B
0.410835
C
-1.413681

baz
foo
qux
two
one
two
one
two
one
0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299
0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127
1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466

\

first
second
two
A
-0.226169
B
-1.436737
C
-2.006747
In [18]: DataFrame(randn(6, 6), index=index[:6], columns=index[:6])
Out[18]:
first
bar
baz
foo
second
one
two
one
two
one
two
first second
bar
one
-0.410001 -0.078638 0.545952 -1.219217 -1.226825 0.769804
two
-1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734
baz
one
0.959726 -1.110336 -0.619976 0.149748 -0.732339 0.687738
two
0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849
foo
one
-0.954208 1.462696 -1.743161 -0.826591 -0.345352 1.314232
two
0.690579 0.995761 2.396780 0.014871 3.357427 -0.317441

We’ve “sparsified” the higher levels of the indexes to make the console output a bit easier on the eyes.
It’s worth keeping in mind that there’s nothing preventing you from using tuples as atomic labels on an axis:
14.1. Hierarchical indexing (MultiIndex)

423

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [19]: Series(randn(8), index=tuples)
Out[19]:
(bar, one)
-1.236269
(bar, two)
0.896171
(baz, one)
-0.487602
(baz, two)
-0.082240
(foo, one)
-2.182937
(foo, two)
0.380396
(qux, one)
0.084844
(qux, two)
0.432390
dtype: float64

The reason that the MultiIndex matters is that it can allow you to do grouping, selection, and reshaping operations
as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find
yourself working with hierarchically-indexed data without creating a MultiIndex explicitly yourself. However,
when loading data from a file, you may wish to generate your own MultiIndex when preparing the data set.
Note that how the index is displayed by be controlled using the multi_sparse option in
pandas.set_printoptions:
In [20]: pd.set_option('display.multi_sparse', False)
In [21]: df
Out[21]:
first
bar
second
one
A
0.895717
B
0.410835
C
-1.413681

bar
baz
baz
foo
foo
qux
two
one
two
one
two
one
0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299
0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127
1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466

\

first
qux
second
two
A
-0.226169
B
-1.436737
C
-2.006747
In [22]: pd.set_option('display.multi_sparse', True)

14.1.2 Reconstructing the level labels
The method get_level_values will return a vector of the labels for each location at a particular level:

In [23]: index.get_level_values(0)
Out[23]: Index([u'bar', u'bar', u'baz', u'baz', u'foo', u'foo', u'qux', u'qux'], dtype='object', name

In [24]: index.get_level_values('second')
Out[24]: Index([u'one', u'two', u'one', u'two', u'one', u'two', u'one', u'two'], dtype='object', name

14.1.3 Basic indexing on axis with MultiIndex
One of the important features of hierarchical indexing is that you can select data by a “partial” label identifying a
subgroup in the data. Partial selection “drops” levels of the hierarchical index in the result in a completely analogous
way to selecting a column in a regular DataFrame:

424

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [25]: df['bar']
Out[25]:
second
one
two
A
0.895717 0.805244
B
0.410835 0.813850
C
-1.413681 1.607920
In [26]: df['bar', 'one']
Out[26]:
A
0.895717
B
0.410835
C
-1.413681
Name: (bar, one), dtype: float64
In [27]: df['bar']['one']
Out[27]:
A
0.895717
B
0.410835
C
-1.413681
Name: one, dtype: float64
In [28]: s['qux']
Out[28]:
one
-1.039575
two
0.271860
dtype: float64

See Cross-section with hierarchical index for how to select on a deeper level.

14.1.4 Data alignment and using reindex
Operations between differently-indexed objects having MultiIndex on the axes will work as you expect; data
alignment will work the same as an Index of tuples:
In [29]: s + s[:-2]
Out[29]:
bar one
-1.723698
two
-4.209138
baz one
-0.989859
two
2.143608
foo one
1.443110
two
-1.413542
qux one
NaN
two
NaN
dtype: float64
In [30]: s + s[::2]
Out[30]:
bar one
-1.723698
two
NaN
baz one
-0.989859
two
NaN
foo one
1.443110
two
NaN
qux one
-2.079150
two
NaN
dtype: float64

14.1. Hierarchical indexing (MultiIndex)

425

pandas: powerful Python data analysis toolkit, Release 0.16.1

reindex can be called with another MultiIndex or even a list or array of tuples:
In [31]: s.reindex(index[:3])
Out[31]:
first second
bar
one
-0.861849
two
-2.104569
baz
one
-0.494929
dtype: float64
In [32]: s.reindex([('foo', 'two'), ('bar', 'one'), ('qux', 'one'), ('baz', 'one')])
Out[32]:
foo two
-0.706771
bar one
-0.861849
qux one
-1.039575
baz one
-0.494929
dtype: float64

14.2 Advanced indexing with hierarchical index
Syntactically integrating MultiIndex in advanced indexing with .loc/.ix is a bit challenging, but we’ve made
every effort to do so. for example the following works as you would expect:
In [33]: df = df.T
In [34]: df
Out[34]:
A
B
C
first second
bar
one
0.895717 0.410835 -1.413681
two
0.805244 0.813850 1.607920
baz
one
-1.206412 0.132003 1.024180
two
2.565646 -0.827317 0.569605
foo
one
1.431256 -0.076467 0.875906
two
1.340309 -1.187678 -2.211372
qux
one
-1.170299 1.130127 0.974466
two
-0.226169 -1.436737 -2.006747
In [35]: df.loc['bar']
Out[35]:
A
B
C
second
one
0.895717 0.410835 -1.413681
two
0.805244 0.813850 1.607920
In [36]: df.loc['bar', 'two']
Out[36]:
A
0.805244
B
0.813850
C
1.607920
Name: (bar, two), dtype: float64

“Partial” slicing also works quite nicely.
In [37]: df.loc['baz':'foo']
Out[37]:
A

426

B

C

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

first second
baz
one
-1.206412 0.132003 1.024180
two
2.565646 -0.827317 0.569605
foo
one
1.431256 -0.076467 0.875906
two
1.340309 -1.187678 -2.211372

You can slice with a ‘range’ of values, by providing a slice of tuples.
In [38]: df.loc[('baz', 'two'):('qux', 'one')]
Out[38]:
A
B
C
first second
baz
two
2.565646 -0.827317 0.569605
foo
one
1.431256 -0.076467 0.875906
two
1.340309 -1.187678 -2.211372
qux
one
-1.170299 1.130127 0.974466
In [39]: df.loc[('baz', 'two'):'foo']
Out[39]:
A
B
C
first second
baz
two
2.565646 -0.827317 0.569605
foo
one
1.431256 -0.076467 0.875906
two
1.340309 -1.187678 -2.211372

Passing a list of labels or tuples works similar to reindexing:
In [40]: df.ix[[('bar', 'two'), ('qux', 'one')]]
Out[40]:
A
B
C
first second
bar
two
0.805244 0.813850 1.607920
qux
one
-1.170299 1.130127 0.974466

14.2.1 Using slicers
New in version 0.14.0.
In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple
indexers.
You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of
labels, labels, and boolean indexers.
You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels,
they will be implied as slice(None).
As usual, both sides of the slicers are included as this is label indexing.

14.2. Advanced indexing with hierarchical index

427

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning: You should specify all axes in the .loc specifier, meaning the indexer for the index and for the
columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both
axes, rather than into say the MuliIndex for the rows.
You should do this:
df.loc[(slice('A1','A3'),.....),:]

rather than this:
df.loc[(slice('A1','A3'),.....)]

Warning: You will need to make sure that the selection axes are fully lexsorted!
In [41]: def mklbl(prefix,n):
....:
return ["%s%s" % (prefix,i)
....:

for i in range(n)]

In [42]: miindex = MultiIndex.from_product([mklbl('A',4),
....:
mklbl('B',2),
....:
mklbl('C',4),
....:
mklbl('D',2)])
....:
In [43]: micolumns = MultiIndex.from_tuples([('a','foo'),('a','bar'),
....:
('b','foo'),('b','bah')],
....:
names=['lvl0', 'lvl1'])
....:

In [44]: dfmi = DataFrame(np.arange(len(miindex)*len(micolumns)).reshape((len(miindex),len(micolumns)
....:
index=miindex,
....:
columns=micolumns).sortlevel().sortlevel(axis=1)
....:
In [45]: dfmi
Out[45]:
lvl0
a
lvl1
bar
A0 B0 C0 D0
1
D1
5
C1 D0
9
D1
13
C2 D0
17
D1
21
C3 D0
25
...
...
A3 B1 C0 D1 229
C1 D0 233
D1 237
C2 D0 241
D1 245
C3 D0 249
D1 253

foo
0
4
8
12
16
20
24
...
228
232
236
240
244
248
252

b
bah
3
7
11
15
19
23
27
...
231
235
239
243
247
251
255

foo
2
6
10
14
18
22
26
...
230
234
238
242
246
250
254

[64 rows x 4 columns]

Basic multi-index slicing using slices, lists, and labels.

428

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [46]: dfmi.loc[(slice('A1','A3'),slice(None), ['C1','C3']),:]
Out[46]:
lvl0
a
b
lvl1
bar foo bah foo
A1 B0 C1 D0
73
72
75
74
D1
77
76
79
78
C3 D0
89
88
91
90
D1
93
92
95
94
B1 C1 D0 105 104 107 106
D1 109 108 111 110
C3 D0 121 120 123 122
...
... ... ... ...
A3 B0 C1 D1 205 204 207 206
C3 D0 217 216 219 218
D1 221 220 223 222
B1 C1 D0 233 232 235 234
D1 237 236 239 238
C3 D0 249 248 251 250
D1 253 252 255 254
[24 rows x 4 columns]

You can use a pd.IndexSlice to have a more natural syntax using : rather than using slice(None)
In [47]: idx = pd.IndexSlice
In [48]: dfmi.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
Out[48]:
lvl0
a
b
lvl1
foo foo
A0 B0 C1 D0
8
10
D1
12
14
C3 D0
24
26
D1
28
30
B1 C1 D0
40
42
D1
44
46
C3 D0
56
58
...
... ...
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
[32 rows x 2 columns]

It is possible to perform quite complicated selections using this method on multiple axes at the same time.
In [49]: dfmi.loc['A1',(slice(None),'foo')]
Out[49]:
lvl0
a
b
lvl1
foo foo
B0 C0 D0
64
66
D1
68
70
C1 D0
72
74
D1
76
78
C2 D0
80
82

14.2. Advanced indexing with hierarchical index

429

pandas: powerful Python data analysis toolkit, Release 0.16.1

D1
C3 D0
...
B1 C0 D1
C1 D0
D1
C2 D0
D1
C3 D0
D1

84
88
...
100
104
108
112
116
120
124

86
90
...
102
106
110
114
118
122
126

[16 rows x 2 columns]
In [50]: dfmi.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
Out[50]:
lvl0
a
b
lvl1
foo foo
A0 B0 C1 D0
8
10
D1
12
14
C3 D0
24
26
D1
28
30
B1 C1 D0
40
42
D1
44
46
C3 D0
56
58
...
... ...
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254
[32 rows x 2 columns]

Using a boolean indexer you can provide selection related to the values.
In [51]: mask = dfmi[('a','foo')]>200
In [52]: dfmi.loc[idx[mask,:,['C1','C3']],idx[:,'foo']]
Out[52]:
lvl0
a
b
lvl1
foo foo
A3 B0 C1 D1 204 206
C3 D0 216 218
D1 220 222
B1 C1 D0 232 234
D1 236 238
C3 D0 248 250
D1 252 254

You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.
In [53]: dfmi.loc(axis=0)[:,:,['C1','C3']]
Out[53]:
lvl0
a
b
lvl1
bar foo bah foo
A0 B0 C1 D0
9
8
11
10
D1
13
12
15
14

430

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

C3 D0
D1
B1 C1 D0
D1
C3 D0
...
A3 B0 C1 D1
C3 D0
D1
B1 C1 D0
D1
C3 D0
D1

25
29
41
45
57
...
205
217
221
233
237
249
253

24
28
40
44
56
...
204
216
220
232
236
248
252

27
31
43
47
59
...
207
219
223
235
239
251
255

26
30
42
46
58
...
206
218
222
234
238
250
254

[32 rows x 4 columns]

Furthermore you can set the values using these methods
In [54]: df2 = dfmi.copy()
In [55]: df2.loc(axis=0)[:,:,['C1','C3']] = -10
In [56]: df2
Out[56]:
lvl0
a
lvl1
bar
A0 B0 C0 D0
1
D1
5
C1 D0 -10
D1 -10
C2 D0
17
D1
21
C3 D0 -10
...
...
A3 B1 C0 D1 229
C1 D0 -10
D1 -10
C2 D0 241
D1 245
C3 D0 -10
D1 -10

foo
0
4
-10
-10
16
20
-10
...
228
-10
-10
240
244
-10
-10

b
bah
3
7
-10
-10
19
23
-10
...
231
-10
-10
243
247
-10
-10

foo
2
6
-10
-10
18
22
-10
...
230
-10
-10
242
246
-10
-10

[64 rows x 4 columns]

You can use a right-hand-side of an alignable object as well.
In [57]: df2 = dfmi.copy()
In [58]: df2.loc[idx[:,:,['C1','C3']],:] = df2*1000
In [59]: df2
Out[59]:
lvl0
lvl1
A0 B0 C0 D0
D1
C1 D0
D1
C2 D0

a
bar
1
5
9000
13000
17

foo
0
4
8000
12000
16

b
bah
3
7
11000
15000
19

foo
2
6
10000
14000
18

14.2. Advanced indexing with hierarchical index

431

pandas: powerful Python data analysis toolkit, Release 0.16.1

D1
C3 D0
...
A3 B1 C0 D1
C1 D0
D1
C2 D0
D1
C3 D0
D1

21
25000
...
229
233000
237000
241
245
249000
253000

20
24000
...
228
232000
236000
240
244
248000
252000

23
27000
...
231
235000
239000
243
247
251000
255000

22
26000
...
230
234000
238000
242
246
250000
254000

[64 rows x 4 columns]

14.2.2 Cross-section
The xs method of DataFrame additionally takes a level argument to make selecting data at a particular level of a
MultiIndex easier.
In [60]: df
Out[60]:
A
B
C
first second
bar
one
0.895717 0.410835 -1.413681
two
0.805244 0.813850 1.607920
baz
one
-1.206412 0.132003 1.024180
two
2.565646 -0.827317 0.569605
foo
one
1.431256 -0.076467 0.875906
two
1.340309 -1.187678 -2.211372
qux
one
-1.170299 1.130127 0.974466
two
-0.226169 -1.436737 -2.006747
In [61]: df.xs('one', level='second')
Out[61]:
A
B
C
first
bar
0.895717 0.410835 -1.413681
baz
-1.206412 0.132003 1.024180
foo
1.431256 -0.076467 0.875906
qux
-1.170299 1.130127 0.974466
# using the slicers (new in 0.14.0)
In [62]: df.loc[(slice(None),'one'),:]
Out[62]:
A
B
C
first second
bar
one
0.895717 0.410835 -1.413681
baz
one
-1.206412 0.132003 1.024180
foo
one
1.431256 -0.076467 0.875906
qux
one
-1.170299 1.130127 0.974466

You can also select on the columns with xs(), by providing the axis argument
In [63]: df = df.T
In [64]: df.xs('one', level='second', axis=1)
Out[64]:
first
bar
baz
foo
qux

432

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

A
B
C

0.895717 -1.206412 1.431256 -1.170299
0.410835 0.132003 -0.076467 1.130127
-1.413681 1.024180 0.875906 0.974466

# using the slicers (new in 0.14.0)
In [65]: df.loc[:,(slice(None),'one')]
Out[65]:
first
bar
baz
foo
qux
second
one
one
one
one
A
0.895717 -1.206412 1.431256 -1.170299
B
0.410835 0.132003 -0.076467 1.130127
C
-1.413681 1.024180 0.875906 0.974466

xs() also allows selection with multiple keys
In [66]: df.xs(('one', 'bar'), level=('second', 'first'), axis=1)
Out[66]:
first
bar
second
one
A
0.895717
B
0.410835
C
-1.413681
# using the slicers (new in 0.14.0)
In [67]: df.loc[:,('bar','one')]
Out[67]:
A
0.895717
B
0.410835
C
-1.413681
Name: (bar, one), dtype: float64

New in version 0.13.0.
You can pass drop_level=False to xs() to retain the level that was selected
In [68]: df.xs('one', level='second', axis=1, drop_level=False)
Out[68]:
first
bar
baz
foo
qux
second
one
one
one
one
A
0.895717 -1.206412 1.431256 -1.170299
B
0.410835 0.132003 -0.076467 1.130127
C
-1.413681 1.024180 0.875906 0.974466

versus the result with drop_level=True (the default value)
In [69]: df.xs('one', level='second', axis=1, drop_level=True)
Out[69]:
first
bar
baz
foo
qux
A
0.895717 -1.206412 1.431256 -1.170299
B
0.410835 0.132003 -0.076467 1.130127
C
-1.413681 1.024180 0.875906 0.974466

14.2.3 Advanced reindexing and alignment
The parameter level has been added to the reindex and align methods of pandas objects. This is useful to
broadcast values across a level. For instance:

14.2. Advanced indexing with hierarchical index

433

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [70]: midx = MultiIndex(levels=[['zero', 'one'], ['x','y']],
....:
labels=[[1,1,0,0],[1,0,1,0]])
....:
In [71]: df = DataFrame(randn(4,2), index=midx)
In [72]: df
Out[72]:
one

y
x
zero y
x

0
1
1.519970 -0.493662
0.600178 0.274230
0.132885 -0.023688
2.410179 1.450520

In [73]: df2 = df.mean(level=0)
In [74]: df2
Out[74]:
zero
one

0
1
1.271532 0.713416
1.060074 -0.109716

In [75]: df2.reindex(df.index, level=0)
Out[75]:
0
1
one y 1.060074 -0.109716
x 1.060074 -0.109716
zero y 1.271532 0.713416
x 1.271532 0.713416
# aligning
In [76]: df_aligned, df2_aligned = df.align(df2, level=0)
In [77]: df_aligned
Out[77]:
0
1
one y 1.519970 -0.493662
x 0.600178 0.274230
zero y 0.132885 -0.023688
x 2.410179 1.450520
In [78]: df2_aligned
Out[78]:
0
1
one y 1.060074 -0.109716
x 1.060074 -0.109716
zero y 1.271532 0.713416
x 1.271532 0.713416

14.2.4 Swapping levels with swaplevel()
The swaplevel function can switch the order of two levels:
In [79]: df[:5]
Out[79]:
0
1
one y 1.519970 -0.493662

434

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

x
zero y
x

0.600178 0.274230
0.132885 -0.023688
2.410179 1.450520

In [80]: df[:5].swaplevel(0, 1, axis=0)
Out[80]:
0
1
y one
1.519970 -0.493662
x one
0.600178 0.274230
y zero 0.132885 -0.023688
x zero 2.410179 1.450520

14.2.5 Reordering levels with reorder_levels()
The reorder_levels function generalizes the swaplevel function, allowing you to permute the hierarchical
index levels in one step:
In [81]: df[:5].reorder_levels([1,0], axis=0)
Out[81]:
0
1
y one
1.519970 -0.493662
x one
0.600178 0.274230
y zero 0.132885 -0.023688
x zero 2.410179 1.450520

14.3 The need for sortedness with MultiIndex
Caveat emptor: the present implementation of MultiIndex requires that the labels be sorted for some of the
slicing / indexing routines to work correctly. You can think about breaking the axis into unique groups, where at
the hierarchical level of interest, each distinct group shares a label, but no two have the same label. However, the
MultiIndex does not enforce this: you are responsible for ensuring that things are properly sorted. There is an
important new method sortlevel to sort an axis within a MultiIndex so that its labels are grouped and sorted
by the original ordering of the associated factor at that level. Note that this does not necessarily mean the labels will
be sorted lexicographically!
In [82]: import random; random.shuffle(tuples)
In [83]: s = Series(randn(8), index=MultiIndex.from_tuples(tuples))
In [84]: s
Out[84]:
bar two
0.206053
foo two
-0.251905
bar one
-2.213588
qux two
1.063327
foo one
1.266143
baz two
0.299368
one
-0.863838
qux one
0.408204
dtype: float64
In [85]: s.sortlevel(0)
Out[85]:
bar one
-2.213588

14.3. The need for sortedness with MultiIndex

435

pandas: powerful Python data analysis toolkit, Release 0.16.1

two
0.206053
one
-0.863838
two
0.299368
foo one
1.266143
two
-0.251905
qux one
0.408204
two
1.063327
dtype: float64
baz

In [86]: s.sortlevel(1)
Out[86]:
bar one
-2.213588
baz one
-0.863838
foo one
1.266143
qux one
0.408204
bar two
0.206053
baz two
0.299368
foo two
-0.251905
qux two
1.063327
dtype: float64

Note, you may also pass a level name to sortlevel if the MultiIndex levels are named.
In [87]: s.index.set_names(['L1', 'L2'], inplace=True)
In [88]: s.sortlevel(level='L1')
Out[88]:
L1
L2
bar one
-2.213588
two
0.206053
baz one
-0.863838
two
0.299368
foo one
1.266143
two
-0.251905
qux one
0.408204
two
1.063327
dtype: float64
In [89]: s.sortlevel(level='L2')
Out[89]:
L1
L2
bar one
-2.213588
baz one
-0.863838
foo one
1.266143
qux one
0.408204
bar two
0.206053
baz two
0.299368
foo two
-0.251905
qux two
1.063327
dtype: float64

Some indexing will work even if the data are not sorted, but will be rather inefficient and will also return a copy of the
data rather than a view:
In [90]: s['qux']
Out[90]:
L2
two
1.063327
one
0.408204

436

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

dtype: float64
In [91]: s.sortlevel(1)['qux']
Out[91]:
L2
one
0.408204
two
1.063327
dtype: float64

On higher dimensional objects, you can sort any of the other axes by level if they have a MultiIndex:
In [92]: df.T.sortlevel(1, axis=1)
Out[92]:
zero
one
zero
one
x
x
y
y
0 2.410179 0.600178 0.132885 1.519970
1 1.450520 0.274230 -0.023688 -0.493662

The MultiIndex object has code to explicity check the sort depth. Thus, if you try to index at a depth at which
the index is not sorted, it will raise an exception. Here is a concrete example to illustrate this:
In [93]: tuples = [('a', 'a'), ('a', 'b'), ('b', 'a'), ('b', 'b')]
In [94]: idx = MultiIndex.from_tuples(tuples)
In [95]: idx.lexsort_depth
Out[95]: 2
In [96]: reordered = idx[[1, 0, 3, 2]]
In [97]: reordered.lexsort_depth
Out[97]: 1
In [98]: s = Series(randn(4), index=reordered)
In [99]: s.ix['a':'a']
Out[99]:
a b
-1.048089
a
-0.025747
dtype: float64

However:
>>> s.ix[('a', 'b'):('b', 'a')]
Traceback (most recent call last)
...
KeyError: Key length (3) was greater than MultiIndex lexsort depth (2)

14.4 Take Methods
Similar to numpy ndarrays, pandas Index, Series, and DataFrame also provides the take method that retrieves elements along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index
positions. take will also accept negative integers as relative positions to the end of the object.
In [100]: index = Index(randint(0, 1000, 10))
In [101]: index

14.4. Take Methods

437

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[101]: Int64Index([214, 502, 712, 567, 786, 175, 993, 133, 758, 329], dtype='int64')
In [102]: positions = [0, 9, 3]
In [103]: index[positions]
Out[103]: Int64Index([214, 329, 567], dtype='int64')
In [104]: index.take(positions)
Out[104]: Int64Index([214, 329, 567], dtype='int64')
In [105]: ser = Series(randn(10))
In [106]: ser.iloc[positions]
Out[106]:
0
-0.179666
9
1.824375
3
0.392149
dtype: float64
In [107]: ser.take(positions)
Out[107]:
0
-0.179666
9
1.824375
3
0.392149
dtype: float64

For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions.
In [108]: frm = DataFrame(randn(5, 3))
In [109]: frm.take([1, 4, 3])
Out[109]:
0
1
2
1 -1.237881 0.106854 -1.276829
4 0.629675 -1.425966 1.857704
3 0.979542 -1.633678 0.615855
In [110]: frm.take([0, 2], axis=1)
Out[110]:
0
2
0 0.595974 0.601544
1 -1.237881 -1.276829
2 -0.767101 1.499591
3 0.979542 0.615855
4 0.629675 1.857704

It is important to note that the take method on pandas objects are not intended to work on boolean indices and may
return unexpected results.
In [111]: arr = randn(10)
In [112]: arr.take([False, False, True, True])
Out[112]: array([-1.1935, -1.1935, 0.6775, 0.6775])
In [113]: arr[[0, 1]]
Out[113]: array([-1.1935,

0.6775])

In [114]: ser = Series(randn(10))

438

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [115]: ser.take([False, False, True, True])
Out[115]:
0
0.233141
0
0.233141
1
-0.223540
1
-0.223540
dtype: float64
In [116]: ser.ix[[0, 1]]
Out[116]:
0
0.233141
1
-0.223540
dtype: float64

Finally, as a small note on performance, because the take method handles a narrower range of inputs, it can offer
performance that is a good deal faster than fancy indexing.

14.5 CategoricalIndex
New in version 0.16.1.
We introduce a CategoricalIndex, a new type of index object that is useful for supporting indexing with duplicates. This is a container around a Categorical (introduced in v0.15.0) and allows efficient indexing and storage
of an index with a large number of duplicated elements. Prior to 0.16.1, setting the index of a DataFrame/Series
with a category dtype would convert this to regular object-based Index.
In [117]: df = DataFrame({'A' : np.arange(6),
.....:
'B' : Series(list('aabbca')).astype('category',
.....:
categories=list('cab'))
.....:
})
.....:
In [118]: df
Out[118]:
A B
0 0 a
1 1 a
2 2 b
3 3 b
4 4 c
5 5 a
In [119]: df.dtypes
Out[119]:
A
int32
B
category
dtype: object
In [120]: df.B.cat.categories
Out[120]: Index([u'c', u'a', u'b'], dtype='object')

Setting the index, will create create a CategoricalIndex
In [121]: df2 = df.set_index('B')

In [122]: df2.index
Out[122]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'c', u'a', u'b'], order

14.5. CategoricalIndex

439

pandas: powerful Python data analysis toolkit, Release 0.16.1

Indexing with __getitem__/.iloc/.loc/.ix works similarly to an Index with duplicates. The indexers
MUST be in the category or the operation will raise.
In [123]: df2.loc['a']
Out[123]:
A
B
a 0
a 1
a 5

These PRESERVE the CategoricalIndex

In [124]: df2.loc['a'].index
Out[124]: CategoricalIndex([u'a', u'a', u'a'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B

Sorting will order by the order of the categories
In [125]: df2.sort_index()
Out[125]:
A
B
c 4
a 0
a 1
a 5
b 2
b 3

Groupby operations on the index will preserve the index nature as well
In [126]: df2.groupby(level=0).sum()
Out[126]:
A
B
c 4
a 6
b 5

In [127]: df2.groupby(level=0).sum().index
Out[127]: CategoricalIndex([u'c', u'a', u'b'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B

Reindexing operations, will return a resulting index based on the type of the passed indexer, meaning that passing
a list will return a plain-old-Index; indexing with a Categorical will return a CategoricalIndex, indexed
according to the categories of the PASSED Categorical dtype. This allows one to arbitrarly index these even with
values NOT in the categories, similarly to how you can reindex ANY pandas index.
In [128]: df2.reindex(['a','e'])
Out[128]:
A
B
a
0
a
1
a
5
e NaN
In [129]: df2.reindex(['a','e']).index
Out[129]: Index([u'a', u'a', u'a', u'e'], dtype='object', name=u'B')
In [130]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))

440

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[130]:
A
B
a
0
a
1
a
5
e NaN

In [131]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde'))).index
Out[131]: CategoricalIndex([u'a', u'a', u'a', u'e'], categories=[u'a', u'b', u'c', u'd', u'e'], order

Warning: Reshaping and Comparision operations on a CategoricalIndex must have the same categories or
a TypeError will be raised.
In [10]: df3 = DataFrame({'A' : np.arange(6),
'B' : Series(list('aabbca')).astype('category',
categories=list('abc'))
}).set_index('B')

In [11]: df3.index
Out[11]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'a', u'b', u'c'], order
In [12]: pd.concat([df2,df3]
TypeError: categories must match existing categories when appending

14.6 Float64Index
Note: As of 0.14.0, Float64Index is backed by a native float64 dtype array. Prior to 0.14.0, Float64Index
was backed by an object dtype array. Using a float64 dtype in the backend speeds up arithmetic operations by
about 30x and boolean indexing operations on the Float64Index itself are about 2x as fast.
New in version 0.13.0.
By default a Float64Index will be automatically created when passing floating, or mixed-integer-floating values
in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing and
slicing work exactly the same.
In [132]: indexf = Index([1.5, 2, 3, 4.5, 5])
In [133]: indexf
Out[133]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')
In [134]: sf = Series(range(5),index=indexf)
In [135]: sf
Out[135]:
1.5
0
2.0
1
3.0
2
4.5
3
5.0
4
dtype: int32

Scalar selection for [],.ix,.loc will always be label based. An integer will match an equal float index (e.g. 3 is
14.6. Float64Index

441

pandas: powerful Python data analysis toolkit, Release 0.16.1

equivalent to 3.0)
In [136]: sf[3]
Out[136]: 2
In [137]: sf[3.0]
Out[137]: 2
In [138]: sf.ix[3]
Out[138]: 2
In [139]: sf.ix[3.0]
Out[139]: 2
In [140]: sf.loc[3]
Out[140]: 2
In [141]: sf.loc[3.0]
Out[141]: 2

The only positional indexing is via iloc
In [142]: sf.iloc[3]
Out[142]: 3

A scalar index that is not found will raise KeyError
Slicing is ALWAYS on the values of the index, for [],ix,loc and ALWAYS positional with iloc
In [143]: sf[2:4]
Out[143]:
2
1
3
2
dtype: int32
In [144]: sf.ix[2:4]
Out[144]:
2
1
3
2
dtype: int32
In [145]: sf.loc[2:4]
Out[145]:
2
1
3
2
dtype: int32
In [146]: sf.iloc[2:4]
Out[146]:
3.0
2
4.5
3
dtype: int32

In float indexes, slicing using floats is allowed
In [147]: sf[2.1:4.6]
Out[147]:
3.0
2
4.5
3
dtype: int32

442

Chapter 14. MultiIndex / Advanced Indexing

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [148]: sf.loc[2.1:4.6]
Out[148]:
3.0
2
4.5
3
dtype: int32

In non-float indexes, slicing using floats will raise a TypeError
In [1]: Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)
In [1]: Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)

Using a scalar float indexer will be deprecated in a future version, but is allowed for now.
In [3]: Series(range(5))[3.0]
Out[3]: 3

Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat irregular timedelta-like
indexing scheme, but the data is recorded as floats. This could for example be millisecond offsets.
In [149]: dfir = concat([DataFrame(randn(5,2),
.....:
index=np.arange(5) * 250.0,
.....:
columns=list('AB')),
.....:
DataFrame(randn(6,2),
.....:
index=np.arange(4,10) * 250.1,
.....:
columns=list('AB'))])
.....:
In [150]: dfir
Out[150]:
0.0
250.0
500.0
750.0
1000.0
1000.4
1250.5
1500.6
1750.7
2000.8
2250.9

A
0.997289
-0.179129
0.936914
-1.003401
-0.724626
0.310610
-0.974226
-2.281374
-0.742532
2.495362
-0.068954

B
-1.693316
-1.598062
0.912560
1.632781
0.178219
-0.108002
-1.147708
0.760010
1.533318
-0.432771
0.043520

Selection operations then will always work on a value basis, for all selection operators.
In [151]: dfir[0:1000.4]
Out[151]:
A
B
0.0
0.997289 -1.693316
250.0 -0.179129 -1.598062
500.0
0.936914 0.912560
750.0 -1.003401 1.632781
1000.0 -0.724626 0.178219
1000.4 0.310610 -0.108002
In [152]: dfir.loc[0:1001,'A']
Out[152]:

14.6. Float64Index

443

pandas: powerful Python data analysis toolkit, Release 0.16.1

0.0
250.0
500.0
750.0
1000.0
1000.4
Name: A,

0.997289
-0.179129
0.936914
-1.003401
-0.724626
0.310610
dtype: float64

In [153]: dfir.loc[1000.4]
Out[153]:
A
0.310610
B
-0.108002
Name: 1000.4, dtype: float64

You could then easily pick out the first 1 second (1000 ms) of data then.
In [154]: dfir[0:1000]
Out[154]:
A
B
0
0.997289 -1.693316
250 -0.179129 -1.598062
500
0.936914 0.912560
750 -1.003401 1.632781
1000 -0.724626 0.178219

Of course if you need integer based selection, then use iloc
In [155]: dfir.iloc[0:5]
Out[155]:
A
B
0
0.997289 -1.693316
250 -0.179129 -1.598062
500
0.936914 0.912560
750 -1.003401 1.632781
1000 -0.724626 0.178219

444

Chapter 14. MultiIndex / Advanced Indexing

CHAPTER

FIFTEEN

COMPUTATIONAL TOOLS

15.1 Statistical functions
15.1.1 Percent Change
Series, DataFrame, and Panel all have a method pct_change to compute the percent change over a given
number of periods (using fill_method to fill NA/null values before computing the percent change).
In [1]: ser = pd.Series(np.random.randn(8))
In [2]: ser.pct_change()
Out[2]:
0
NaN
1
-1.602976
2
4.334938
3
-0.247456
4
-2.067345
5
-1.142903
6
-1.688214
7
-9.759729
dtype: float64
In [3]: df = pd.DataFrame(np.random.randn(10, 4))
In [4]: df.pct_change(periods=3)
Out[4]:
0
1
2
3
0
NaN
NaN
NaN
NaN
1
NaN
NaN
NaN
NaN
2
NaN
NaN
NaN
NaN
3 -0.218320 -1.054001 1.987147 -0.510183
4 -0.439121 -1.816454 0.649715 -4.822809
5 -0.127833 -3.042065 -5.866604 -1.776977
6 -2.596833 -1.959538 -2.111697 -3.798900
7 -0.117826 -2.169058 0.036094 -0.067696
8 2.492606 -1.357320 -1.205802 -1.558697
9 -1.012977 2.324558 -1.003744 -0.371806

15.1.2 Covariance
The Series object has a method cov to compute covariance between series (excluding NA/null values).

445

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [5]: s1 = pd.Series(np.random.randn(1000))
In [6]: s2 = pd.Series(np.random.randn(1000))
In [7]: s1.cov(s2)
Out[7]: 0.00068010881743109993

Analogously, DataFrame has a method cov to compute pairwise covariances among the series in the DataFrame,
also excluding NA/null values.
Note: Assuming the missing data are missing at random this results in an estimate for the covariance matrix which
is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance
matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values
which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more
details.
In [8]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [9]: frame.cov()
Out[9]:
a
b
c
d
e
a 1.000882 -0.003177 -0.002698 -0.006889 0.031912
b -0.003177 1.024721 0.000191 0.009212 0.000857
c -0.002698 0.000191 0.950735 -0.031743 -0.005087
d -0.006889 0.009212 -0.031743 1.002983 -0.047952
e 0.031912 0.000857 -0.005087 -0.047952 1.042487

DataFrame.cov also supports an optional min_periods keyword that specifies the required minimum number
of observations for each column pair in order to have a valid result.
In [10]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])
In [11]: frame.ix[:5, 'a'] = np.nan
In [12]: frame.ix[5:10, 'b'] = np.nan
In [13]: frame.cov()
Out[13]:
a
b
a 1.210090 -0.430629
b -0.430629 1.240960
c 0.018002 0.347188

c
0.018002
0.347188
1.301149

In [14]: frame.cov(min_periods=12)
Out[14]:
a
b
c
a 1.210090
NaN 0.018002
b
NaN 1.240960 0.347188
c 0.018002 0.347188 1.301149

15.1.3 Correlation
Several methods for computing correlations are provided:

446

Chapter 15. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.16.1

Method name
pearson (default)
kendall
spearman

Description
Standard correlation coefficient
Kendall Tau correlation coefficient
Spearman rank correlation coefficient

All of these are currently computed using pairwise complete observations.
Note: Please see the caveats associated with this method of calculating correlation matrices in the covariance section.
In [15]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [16]: frame.ix[::2] = np.nan
# Series with Series
In [17]: frame['a'].corr(frame['b'])
Out[17]: 0.013479040400098794
In [18]: frame['a'].corr(frame['b'], method='spearman')
Out[18]: -0.0072898851595406388
# Pairwise correlation of DataFrame columns
In [19]: frame.corr()
Out[19]:
a
b
c
d
e
a 1.000000 0.013479 -0.049269 -0.042239 -0.028525
b 0.013479 1.000000 -0.020433 -0.011139 0.005654
c -0.049269 -0.020433 1.000000 0.018587 -0.054269
d -0.042239 -0.011139 0.018587 1.000000 -0.017060
e -0.028525 0.005654 -0.054269 -0.017060 1.000000

Note that non-numeric columns will be automatically excluded from the correlation calculation.
Like cov, corr also supports the optional min_periods keyword:
In [20]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])
In [21]: frame.ix[:5, 'a'] = np.nan
In [22]: frame.ix[5:10, 'b'] = np.nan
In [23]: frame.corr()
Out[23]:
a
b
a 1.000000 -0.076520
b -0.076520 1.000000
c 0.160092 0.135967

c
0.160092
0.135967
1.000000

In [24]: frame.corr(min_periods=12)
Out[24]:
a
b
c
a 1.000000
NaN 0.160092
b
NaN 1.000000 0.135967
c 0.160092 0.135967 1.000000

A related method corrwith is implemented on DataFrame to compute the correlation between like-labeled Series
contained in different DataFrame objects.
In [25]: index = ['a', 'b', 'c', 'd', 'e']

15.1. Statistical functions

447

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [26]: columns = ['one', 'two', 'three', 'four']
In [27]: df1 = pd.DataFrame(np.random.randn(5, 4), index=index, columns=columns)
In [28]: df2 = pd.DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns)
In [29]: df1.corrwith(df2)
Out[29]:
one
-0.125501
two
-0.493244
three
0.344056
four
0.004183
dtype: float64
In [30]: df2.corrwith(df1, axis=1)
Out[30]:
a
-0.675817
b
0.458296
c
0.190809
d
-0.186275
e
NaN
dtype: float64

15.1.4 Data ranking
The rank method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:
In [31]: s = pd.Series(np.random.np.random.randn(5), index=list('abcde'))
In [32]: s['d'] = s['b'] # so there's a tie
In [33]: s.rank()
Out[33]:
a
5.0
b
2.5
c
1.0
d
2.5
e
4.0
dtype: float64

rank is also a DataFrame method and can rank either the rows (axis=0) or the columns (axis=1). NaN values are
excluded from the ranking.
In [34]: df = pd.DataFrame(np.random.np.random.randn(10, 6))
In [35]: df[4] = df[2][:5] # some ties
In [36]: df
Out[36]:
0
0 -0.904948
1 -0.976288
2 0.401965
3 0.205954
4 -0.477586
5 -1.092970
6 0.376892

448

1
-1.163537
-0.244652
1.460840
0.369552
-0.730705
-0.689246
0.959292

2
3
4
5
-1.457187 0.135463 -1.457187 0.294650
-0.748406 -0.999601 -0.748406 -0.800809
1.256057 1.308127 1.256057 0.876004
-0.669304 0.038378 -0.669304 1.140296
-1.129149 -0.601463 -1.129149 -0.211196
0.908114 0.204848
NaN 0.463347
0.095572 -0.593740
NaN -0.069180

Chapter 15. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.16.1

7 -1.002601 1.957794 -0.120708 0.094214
8 -0.547231 0.664402 -0.519424 -0.073254
9 -0.250277 -0.237428 -1.056443 0.419477
In [37]:
Out[37]:
0 1
0 4 3
1 2 6
2 1 6
3 4 5
4 5 3
5 1 2
6 4 5
7 2 5
8 2 5
9 2 3

NaN -1.467422
NaN -1.263544
NaN 1.375064

df.rank(1)
2
1.5
4.5
3.5
1.5
1.5
5.0
3.0
3.0
3.0
1.0

3
5
1
5
3
4
3
1
4
4
4

4
1.5
4.5
3.5
1.5
1.5
NaN
NaN
NaN
NaN
NaN

5
6
3
2
6
6
4
2
1
1
5

rank optionally takes a parameter ascending which by default is true; when false, data is reverse-ranked, with
larger values assigned a smaller rank.
rank supports different tie-breaking methods, specified with the method parameter:
• average : average rank of tied group
• min : lowest rank in the group
• max : highest rank in the group
• first : ranks assigned in the order they appear in the array

15.2 Moving (rolling) statistics / moments
For working with time series data, a number of functions are provided for computing common moving or rolling
statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis. All of these methods are in the pandas namespace, but otherwise they can be found in
pandas.stats.moments.
Function
rolling_count
rolling_sum
rolling_mean
rolling_median
rolling_min
rolling_max
rolling_std
rolling_var
rolling_skew
rolling_kurt
rolling_quantile
rolling_apply
rolling_cov
rolling_corr
rolling_window

Description
Number of non-null observations
Sum of values
Mean of values
Arithmetic median of values
Minimum
Maximum
Unbiased standard deviation
Unbiased variance
Unbiased skewness (3rd moment)
Unbiased kurtosis (4th moment)
Sample quantile (value at %)
Generic apply
Unbiased covariance (binary)
Correlation (binary)
Moving window function

Generally these methods all have the same interface. The binary operators (e.g. rolling_corr) take two Series or
DataFrames. Otherwise, they all accept the following arguments:

15.2. Moving (rolling) statistics / moments

449

pandas: powerful Python data analysis toolkit, Release 0.16.1

• window: size of moving window
• min_periods: threshold of non-null data points to require (otherwise result is NA)
• freq: optionally specify a frequency string or DateOffset to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argument time_rule was used instead of freq that referred to the legacy time rule
constants
• how: optionally specify method for down or re-sampling. Default is is min for rolling_min, max
for rolling_max, median for rolling_median, and mean for all other rolling functions. See
DataFrame.resample()‘s how argument for more information.
These functions can be applied to ndarrays or Series objects:
In [38]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [39]: ts = ts.cumsum()
In [40]: ts.plot(style='k--')
Out[40]: 
In [41]: rolling_mean(ts, 60).plot(style='k')
Out[41]: 

They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window

450

Chapter 15. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.16.1

operator to all of the DataFrame’s columns:
In [42]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
....:
columns=['A', 'B', 'C', 'D'])
....:
In [43]: df = df.cumsum()
In [44]: rolling_sum(df, 60).plot(subplots=True)
Out[44]:
array([,
0xab33f5cc>,
0xab3ad3ac>,
0xab297fcc>], dtype=object)

The rolling_apply function takes an extra func argument and performs generic rolling computations. The
func argument should be a single function that produces a single value from an ndarray input. Suppose we wanted
to compute the mean absolute deviation on a rolling basis:
In [45]: mad = lambda x: np.fabs(x - x.mean()).mean()
In [46]: rolling_apply(ts, 60, mad).plot(style='k')
Out[46]: 

15.2. Moving (rolling) statistics / moments

451

pandas: powerful Python data analysis toolkit, Release 0.16.1

The rolling_window function performs a generic rolling window computation on the input data. The weights
used in the window are specified by the win_type keyword. The list of recognized types are:
• boxcar
• triang
• blackman
• hamming
• bartlett
• parzen
• bohman
• blackmanharris
• nuttall
• barthann
• kaiser (needs beta)
• gaussian (needs std)
• general_gaussian (needs power, width)
• slepian (needs width).

452

Chapter 15. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [47]: ser = pd.Series(np.random.randn(10), index=pd.date_range('1/1/2000', periods=10))
In [48]: rolling_window(ser, 5, 'triang')
Out[48]:
2000-01-01
NaN
2000-01-02
NaN
2000-01-03
NaN
2000-01-04
NaN
2000-01-05
-1.037870
2000-01-06
-0.767705
2000-01-07
-0.383197
2000-01-08
-0.395513
2000-01-09
-0.558440
2000-01-10
-0.672416
Freq: D, dtype: float64

Note that the boxcar window is equivalent to rolling_mean.
In [49]: rolling_window(ser, 5, 'boxcar')
Out[49]:
2000-01-01
NaN
2000-01-02
NaN
2000-01-03
NaN
2000-01-04
NaN
2000-01-05
-0.841164
2000-01-06
-0.779948
2000-01-07
-0.565487
2000-01-08
-0.502815
2000-01-09
-0.553755
2000-01-10
-0.472211
Freq: D, dtype: float64
In [50]: rolling_mean(ser, 5)
Out[50]:
2000-01-01
NaN
2000-01-02
NaN
2000-01-03
NaN
2000-01-04
NaN
2000-01-05
-0.841164
2000-01-06
-0.779948
2000-01-07
-0.565487
2000-01-08
-0.502815
2000-01-09
-0.553755
2000-01-10
-0.472211
Freq: D, dtype: float64

For some windowing functions, additional parameters must be specified:
In [51]: rolling_window(ser, 5, 'gaussian', std=0.1)
Out[51]:
2000-01-01
NaN
2000-01-02
NaN
2000-01-03
NaN
2000-01-04
NaN
2000-01-05
-1.309989
2000-01-06
-1.153000
2000-01-07
0.606382
2000-01-08
-0.681101
2000-01-09
-0.289724

15.2. Moving (rolling) statistics / moments

453

pandas: powerful Python data analysis toolkit, Release 0.16.1

2000-01-10
-0.996632
Freq: D, dtype: float64

By default the labels are set to the right edge of the window, but a center keyword is available so the labels can be
set at the center. This keyword is available in other rolling functions as well.
In [52]: rolling_window(ser, 5, 'boxcar')
Out[52]:
2000-01-01
NaN
2000-01-02
NaN
2000-01-03
NaN
2000-01-04
NaN
2000-01-05
-0.841164
2000-01-06
-0.779948
2000-01-07
-0.565487
2000-01-08
-0.502815
2000-01-09
-0.553755
2000-01-10
-0.472211
Freq: D, dtype: float64
In [53]: rolling_window(ser, 5, 'boxcar', center=True)
Out[53]:
2000-01-01
NaN
2000-01-02
NaN
2000-01-03
-0.841164
2000-01-04
-0.779948
2000-01-05
-0.565487
2000-01-06
-0.502815
2000-01-07
-0.553755
2000-01-08
-0.472211
2000-01-09
NaN
2000-01-10
NaN
Freq: D, dtype: float64
In [54]: rolling_mean(ser, 5, center=True)
Out[54]:
2000-01-01
NaN
2000-01-02
NaN
2000-01-03
-0.841164
2000-01-04
-0.779948
2000-01-05
-0.565487
2000-01-06
-0.502815
2000-01-07
-0.553755
2000-01-08
-0.472211
2000-01-09
NaN
2000-01-10
NaN
Freq: D, dtype: float64

Note: In rolling sum mode (mean=False) there is no normalization done to the weights. Passing custom weights
of [1, 1, 1] will yield a different result than passing weights of [2, 2, 2], for example. When passing a
win_type instead of explicitly specifying the weights, the weights are already normalized so that the largest weight
is 1.
In contrast, the nature of the rolling mean calculation (mean=True)is such that the weights are normalized with
respect to each other. Weights of [1, 1, 1] and [2, 2, 2] yield the same result.

454

Chapter 15. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.16.1

15.2.1 Binary rolling moments
rolling_cov and rolling_corr can compute moving window statistics about two Series or any combination
of DataFrame/Series or DataFrame/DataFrame. Here is the behavior in each case:
• two Series: compute the statistic for the pairing.
• DataFrame/Series: compute the statistics for each column of the DataFrame with the passed Series, thus
returning a DataFrame.
• DataFrame/DataFrame: by default compute the statistic for matching column names, returning a
DataFrame. If the keyword argument pairwise=True is passed then computes the statistic for each pair
of columns, returning a Panel whose items are the dates in question (see the next section).
For example:
In [55]: df2 = df[:20]
In [56]: rolling_corr(df2, df2['B'], window=5)
Out[56]:
A
B
C
D
2000-01-01
NaN NaN
NaN
NaN
2000-01-02
NaN NaN
NaN
NaN
2000-01-03
NaN NaN
NaN
NaN
2000-01-04
NaN NaN
NaN
NaN
2000-01-05 -0.262853
1 0.334449 0.193380
2000-01-06 -0.083745
1 -0.521587 -0.556126
2000-01-07 -0.292940
1 -0.658532 -0.458128
...
... ..
...
...
2000-01-14 0.519499
1 -0.687277 0.192822
2000-01-15 0.048982
1 0.167669 -0.061463
2000-01-16 0.217190
1 0.167564 -0.326034
2000-01-17 0.641180
1 -0.164780 -0.111487
2000-01-18 0.130422
1 0.322833 0.632383
2000-01-19 0.317278
1 0.384528 0.813656
2000-01-20 0.293598
1 0.159538 0.742381
[20 rows x 4 columns]

15.2.2 Computing rolling pairwise covariances and correlations
In financial data analysis and other fields it’s common to compute covariance and correlation matrices for a collection
of time series. Often one is also interested in moving-window covariance and correlation matrices. This can be done
by passing the pairwise keyword argument, which in the case of DataFrame inputs will yield a Panel whose
items are the dates in question. In the case of a single DataFrame argument the pairwise argument can even be
omitted:
Note: Missing values are ignored and each entry is computed using the pairwise complete observations. Please see
the covariance section for caveats associated with this method of calculating covariance and correlation matrices.
In [57]: covs = rolling_cov(df[['B','C','D']], df[['A','B','C']], 50, pairwise=True)
In [58]: covs[df.index[-50]]
Out[58]:
A
B
C
B 2.667506 1.671711
1.938634

15.2. Moving (rolling) statistics / moments

455

pandas: powerful Python data analysis toolkit, Release 0.16.1

C 8.513843 1.938634
D -7.714737 -1.434529

10.556436
-7.082653

In [59]: correls = rolling_corr(df, 50)
In [60]: correls[df.index[-50]]
Out[60]:
A
B
C
D
A 1.000000 0.604221 0.767429 -0.776170
B 0.604221 1.000000 0.461484 -0.381148
C 0.767429 0.461484 1.000000 -0.748863
D -0.776170 -0.381148 -0.748863 1.000000

Note: Prior to version 0.14 this was available through rolling_corr_pairwise which is now simply syntactic
sugar for calling rolling_corr(..., pairwise=True) and deprecated. This is likely to be removed in a
future release.
You can efficiently retrieve the time series of correlations between two columns using ix indexing:
In [61]: correls.ix[:, 'A', 'C'].plot()
Out[61]: 

456

Chapter 15. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.16.1

15.3 Expanding window moment functions
A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with
all the data available up to that point in time. As these calculations are a special case of rolling statistics, they are
implemented in pandas such that the following two calls are equivalent:
In [62]: rolling_mean(df, window=len(df), min_periods=1)[:5]
Out[62]:
A
B
C
D
2000-01-01 -1.388345 3.317290 0.344542 -0.036968
2000-01-02 -1.123132 3.622300 1.675867 0.595300
2000-01-03 -0.628502 3.626503 2.455240 1.060158
2000-01-04 -0.768740 3.888917 2.451354 1.281874
2000-01-05 -0.824034 4.108035 2.556112 1.140723
In [63]: expanding_mean(df)[:5]
Out[63]:
A
B
2000-01-01 -1.388345 3.317290
2000-01-02 -1.123132 3.622300
2000-01-03 -0.628502 3.626503
2000-01-04 -0.768740 3.888917
2000-01-05 -0.824034 4.108035

C
D
0.344542 -0.036968
1.675867 0.595300
2.455240 1.060158
2.451354 1.281874
2.556112 1.140723

Like the rolling_ functions, the following methods are included in the pandas namespace or can be located in
pandas.stats.moments.
Function
expanding_count
expanding_sum
expanding_mean
expanding_median
expanding_min
expanding_max
expanding_std
expanding_var
expanding_skew
expanding_kurt
expanding_quantile
expanding_apply
expanding_cov
expanding_corr

Description
Number of non-null observations
Sum of values
Mean of values
Arithmetic median of values
Minimum
Maximum
Unbiased standard deviation
Unbiased variance
Unbiased skewness (3rd moment)
Unbiased kurtosis (4th moment)
Sample quantile (value at %)
Generic apply
Unbiased covariance (binary)
Correlation (binary)

Aside from not having a window parameter, these functions have the same interfaces as their rolling_ counterpart.
Like above, the parameters they all accept are:
• min_periods: threshold of non-null data points to require. Defaults to minimum needed to compute statistic.
No NaNs will be output once min_periods non-null data points have been seen.
• freq: optionally specify a frequency string or DateOffset to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argument time_rule was used instead of freq that referred to the legacy time rule
constants
Note: The output of the rolling_ and expanding_ functions do not return a NaN if there are at least
min_periods non-null values in the current window. This differs from cumsum, cumprod, cummax, and
cummin, which return NaN in the output wherever a NaN is encountered in the input.

15.3. Expanding window moment functions

457

pandas: powerful Python data analysis toolkit, Release 0.16.1

An expanding window statistic will be more stable (and less responsive) than its rolling window counterpart as
the increasing window size decreases the relative impact of an individual data point. As an example, here is the
expanding_mean output for the previous time series dataset:
In [64]: ts.plot(style='k--')
Out[64]: 
In [65]: expanding_mean(ts).plot(style='k')
Out[65]: 

15.4 Exponentially weighted moment functions
A related set of functions are exponentially weighted versions of several of the above statistics. A number of expanding
EW (exponentially weighted) functions are provided:
Function
ewma
ewmvar
ewmstd
ewmcorr
ewmcov

458

Description
EW moving average
EW moving variance
EW moving standard deviation
EW moving correlation
EW moving covariance

Chapter 15. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.16.1

In general, a weighted moving average is calculated as
∑︀𝑡
𝑖=0 𝑤𝑖 𝑥𝑡−𝑖
,
𝑦𝑡 = ∑︀
𝑡
𝑖=0 𝑤𝑖
where 𝑥𝑡 is the input at 𝑦𝑡 is the result.
The EW functions support two variants of exponential weights: The default, adjust=True, uses the weights 𝑤𝑖 =
(1 − 𝛼)𝑖 . When adjust=False is specified, moving averages are calculated as
𝑦0 = 𝑥0
𝑦𝑡 = (1 − 𝛼)𝑦𝑡−1 + 𝛼𝑥𝑡 ,
which is equivalent to using weights
{︃
𝑤𝑖 =

𝛼(1 − 𝛼)𝑖
(1 − 𝛼)𝑖

if 𝑖 < 𝑡
if 𝑖 = 𝑡.

Note: These equations are sometimes written in terms of 𝛼′ = 1 − 𝛼, e.g.
𝑦𝑡 = 𝛼′ 𝑦𝑡−1 + (1 − 𝛼′ )𝑥𝑡 .

One must have 0 < 𝛼 ≤ 1, but rather than pass 𝛼 directly, it’s easier to think about either the span, center of mass
(com) or halflife of an EW moment:
⎧
2
⎪
𝑠 = span
⎨ 𝑠+1 ,
1
𝛼 = 1+𝑐 ,
𝑐 = center of mass
⎪
log 0.5
⎩
1 − exp ℎ , ℎ = half life
One must specify precisely one of the three to the EW functions. Span corresponds to what is commonly called a
“20-day EW moving average” for example. Center of mass has a more physical interpretation. For example, span =
20 corresponds to com = 9.5. Halflife is the period of time for the exponential weight to reduce to one half.
Here is an example for a univariate time series:
In [66]: plt.close('all')
In [67]: ts.plot(style='k--')
Out[67]: 
In [68]: ewma(ts, span=20).plot(style='k')
Out[68]: 

15.4. Exponentially weighted moment functions

459

pandas: powerful Python data analysis toolkit, Release 0.16.1

All the EW functions have a min_periods argument, which has the same meaning it does for all the expanding_
and rolling_ functions: no output values will be set until at least min_periods non-null values are encountered
in the (expanding) window. (This is a change from versions prior to 0.15.0, in which the min_periods argument
affected only the min_periods consecutive entries starting at the first non-null value.)
All the EW functions also have an ignore_na argument, which deterines how intermediate null values affect the
calculation of the weights. When ignore_na=False (the default), weights are calculated based on absolute positions, so that intermediate null values affect the result. When ignore_na=True (which reproduces the behavior
in versions prior to 0.15.0), weights are calculated by ignoring intermediate null values. For example, assuming
adjust=True, if ignore_na=False, the weighted average of 3, NaN, 5 would be calculated as
(1 − 𝛼)2 · 3 + 1 · 5
(1 − 𝛼)2 + 1
Whereas if ignore_na=True, the weighted average would be calculated as
(1 − 𝛼) · 3 + 1 · 5
.
(1 − 𝛼) + 1
The ewmvar, ewmstd, and ewmcov functions have a bias argument, specifying whether the result should contain biased or unbiased statistics. For example, if bias=True, ewmvar(x) is calculated as ewmvar(x) =
ewma(x**2) - ewma(x)**2; whereas if bias=False (the default), the biased variance statistics are scaled

460

Chapter 15. Computational tools

pandas: powerful Python data analysis toolkit, Release 0.16.1

by debiasing factors
(︁∑︀

𝑡
𝑖=0

(︁∑︀

𝑡
𝑖=0

𝑤𝑖

)︁2

𝑤𝑖

)︁2
.

−

∑︀𝑡

2
𝑖=0 𝑤𝑖

(For 𝑤𝑖
= 1, this reduces to the usual 𝑁/(𝑁 − 1) factor, with 𝑁
= 𝑡 + 1.)
http://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance for further details.

See

15.4. Exponentially weighted moment functions

461

pandas: powerful Python data analysis toolkit, Release 0.16.1

462

Chapter 15. Computational tools

CHAPTER

SIXTEEN

WORKING WITH MISSING DATA

In this section, we will discuss missing (also referred to as NA) values in pandas.
Note: The choice of using NaN internally to denote missing data was largely for simplicity and performance reasons.
It differs from the MaskedArray approach of, for example, scikits.timeseries. We are hopeful that NumPy
will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas.
See the cookbook for some advanced strategies

16.1 Missing data basics
16.1.1 When / why does data become missing?
Some might quibble over our usage of missing. By “missing” we simply mean null or “not present for whatever
reason”. Many data sets simply arrive with missing data, either because it exists and was not collected or it never
existed. For example, in a collection of financial time series, some of the time series might start on different dates.
Thus, values prior to the start date would generally be marked as missing.
In pandas, one of the most common ways that missing data is introduced into a data set is by reindexing. For example
In [1]: df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
...:
columns=['one', 'two', 'three'])
...:
In [2]: df['four'] = 'bar'
In [3]: df['five'] = df['one'] > 0
In [4]: df
Out[4]:
one
a 0.469112
c -1.135632
e 0.119209
f -2.104569
h 0.721555

two
-0.282863
1.212112
-1.044236
-0.494929
-0.706771

three four
-1.509059 bar
-0.173215 bar
-0.861849 bar
1.071804 bar
-1.039575 bar

five
True
False
True
False
True

In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
In [6]: df2
Out[6]:
one

two

three four

five

463

pandas: powerful Python data analysis toolkit, Release 0.16.1

a 0.469112 -0.282863 -1.509059
b
NaN
NaN
NaN
c -1.135632 1.212112 -0.173215
d
NaN
NaN
NaN
e 0.119209 -1.044236 -0.861849
f -2.104569 -0.494929 1.071804
g
NaN
NaN
NaN
h 0.721555 -0.706771 -1.039575

bar
NaN
bar
NaN
bar
bar
NaN
bar

True
NaN
False
NaN
True
False
NaN
True

16.1.2 Values considered “missing”
As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While
NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to
easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases,
however, the Python None will arise and we wish to also consider that “missing” or “null”.
Prior to version v0.10.0 inf and -inf were also considered to be “null” in computations. This is no longer the case
by default; use the mode.use_inf_as_null option to recover it. To make detecting missing values easier (and
across different array dtypes), pandas provides the isnull() and notnull() functions, which are also methods
on Series objects:
In [7]: df2['one']
Out[7]:
a
0.469112
b
NaN
c
-1.135632
d
NaN
e
0.119209
f
-2.104569
g
NaN
h
0.721555
Name: one, dtype: float64
In [8]: isnull(df2['one'])
Out[8]:
a
False
b
True
c
False
d
True
e
False
f
False
g
True
h
False
Name: one, dtype: bool
In [9]: df2['four'].notnull()
Out[9]:
a
True
b
False
c
True
d
False
e
True
f
True
g
False
h
True
Name: four, dtype: bool

464

Chapter 16. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.16.1

Summary: NaN and None (in object arrays) are considered missing by the isnull and notnull functions. inf
and -inf are no longer considered missing by default.

16.2 Datetimes
For datetime64[ns] types, NaT represents missing values. This is a pseudo-native sentinel value that can be represented
by numpy in a singular dtype (datetime64[ns]). pandas objects provide intercompatibility between NaT and NaN.
In [10]: df2 = df.copy()
In [11]: df2['timestamp'] = Timestamp('20120101')
In [12]: df2
Out[12]:
one
two
a 0.469112 -0.282863
c -1.135632 1.212112
e 0.119209 -1.044236
f -2.104569 -0.494929
h 0.721555 -0.706771

three four
-1.509059 bar
-0.173215 bar
-0.861849 bar
1.071804 bar
-1.039575 bar

five
True
False
True
False
True

timestamp
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01

In [13]: df2.ix[['a','c','h'],['one','timestamp']] = np.nan
In [14]: df2
Out[14]:
one
two
a
NaN -0.282863
c
NaN 1.212112
e 0.119209 -1.044236
f -2.104569 -0.494929
h
NaN -0.706771

three four
-1.509059 bar
-0.173215 bar
-0.861849 bar
1.071804 bar
-1.039575 bar

five timestamp
True
NaT
False
NaT
True 2012-01-01
False 2012-01-01
True
NaT

In [15]: df2.get_dtype_counts()
Out[15]:
bool
1
datetime64[ns]
1
float64
3
object
1
dtype: int64

16.3 Inserting missing data
You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based
on the dtype.
For example, numeric containers will always use NaN regardless of the missing value type chosen:
In [16]: s = pd.Series([1, 2, 3])
In [17]: s.loc[0] = None
In [18]: s
Out[18]:
0
NaN

16.2. Datetimes

465

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
2
2
3
dtype: float64

Likewise, datetime containers will always use NaT.
For object containers, pandas will use the value given:
In [19]: s = pd.Series(["a", "b", "c"])
In [20]: s.loc[0] = None
In [21]: s.loc[1] = np.nan
In [22]: s
Out[22]:
0
None
1
NaN
2
c
dtype: object

16.4 Calculations with missing data
Missing values propagate naturally through arithmetic operations between pandas objects.
In [23]: a
Out[23]:
one
a
NaN
c
NaN
e 0.119209
f -2.104569
h -2.104569

two
-0.282863
1.212112
-1.044236
-0.494929
-0.706771

In [24]: b
Out[24]:
one
a
NaN
c
NaN
e 0.119209
f -2.104569
h
NaN

two
-0.282863
1.212112
-1.044236
-0.494929
-0.706771

three
-1.509059
-0.173215
-0.861849
1.071804
-1.039575

In [25]: a + b
Out[25]:
one three
two
a
NaN
NaN -0.565727
c
NaN
NaN 2.424224
e 0.238417
NaN -2.088472
f -4.209138
NaN -0.989859
h
NaN
NaN -1.413542

The descriptive statistics and computational methods discussed in the data structure overview (and listed here and
here) are all written to account for missing data. For example:
• When summing data, NA (missing) values will be treated as zero
• If the data are all NA, the result will be NA
466

Chapter 16. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.16.1

• Methods like cumsum and cumprod ignore NA values, but preserve them in the resulting arrays
In [26]: df
Out[26]:
one
a
NaN
c
NaN
e 0.119209
f -2.104569
h
NaN

two
-0.282863
1.212112
-1.044236
-0.494929
-0.706771

three
-1.509059
-0.173215
-0.861849
1.071804
-1.039575

In [27]: df['one'].sum()
Out[27]: -1.9853605075978744
In [28]: df.mean(1)
Out[28]:
a
-0.895961
c
0.519449
e
-0.595625
f
-0.509232
h
-0.873173
dtype: float64
In [29]: df.cumsum()
Out[29]:
one
two
a
NaN -0.282863
c
NaN 0.929249
e 0.119209 -0.114987
f -1.985361 -0.609917
h
NaN -1.316688

three
-1.509059
-1.682273
-2.544122
-1.472318
-2.511893

16.4.1 NA values in GroupBy
NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example.

16.5 Cleaning / filling missing data
pandas objects are equipped with various data manipulation methods for dealing with missing data.

16.5.1 Filling missing values: fillna
The fillna function can “fill in” NA values with non-null data in a couple of ways, which we illustrate:
Replace NA with a scalar value
In [30]: df2
Out[30]:
one
two
a
NaN -0.282863
c
NaN 1.212112
e 0.119209 -1.044236
f -2.104569 -0.494929
h
NaN -0.706771

three four
-1.509059 bar
-0.173215 bar
-0.861849 bar
1.071804 bar
-1.039575 bar

16.5. Cleaning / filling missing data

five timestamp
True
NaT
False
NaT
True 2012-01-01
False 2012-01-01
True
NaT

467

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [31]: df2.fillna(0)
Out[31]:
one
two
three four
a 0.000000 -0.282863 -1.509059 bar
c 0.000000 1.212112 -0.173215 bar
e 0.119209 -1.044236 -0.861849 bar
f -2.104569 -0.494929 1.071804 bar
h 0.000000 -0.706771 -1.039575 bar

five
True
False
True
False
True

timestamp
1970-01-01
1970-01-01
2012-01-01
2012-01-01
1970-01-01

In [32]: df2['four'].fillna('missing')
Out[32]:
a
bar
c
bar
e
bar
f
bar
h
bar
Name: four, dtype: object

Fill gaps forward or backward
Using the same filling arguments as reindexing, we can propagate non-null values forward or backward:
In [33]: df
Out[33]:
one
a
NaN
c
NaN
e 0.119209
f -2.104569
h
NaN

two
-0.282863
1.212112
-1.044236
-0.494929
-0.706771

three
-1.509059
-0.173215
-0.861849
1.071804
-1.039575

In [34]: df.fillna(method='pad')
Out[34]:
one
two
three
a
NaN -0.282863 -1.509059
c
NaN 1.212112 -0.173215
e 0.119209 -1.044236 -0.861849
f -2.104569 -0.494929 1.071804
h -2.104569 -0.706771 -1.039575

Limit the amount of filling
If we only want consecutive gaps filled up to a certain number of data points, we can use the limit keyword:
In [35]: df
Out[35]:
one
two
three
a NaN -0.282863 -1.509059
c NaN 1.212112 -0.173215
e NaN
NaN
NaN
f NaN
NaN
NaN
h NaN -0.706771 -1.039575
In [36]: df.fillna(method='pad', limit=1)
Out[36]:
one
two
three
a NaN -0.282863 -1.509059
c NaN 1.212112 -0.173215
e NaN 1.212112 -0.173215

468

Chapter 16. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.16.1

f
h

NaN
NaN
NaN
NaN -0.706771 -1.039575

To remind you, these are the available filling methods:
Method
pad / ffill
bfill / backfill

Action
Fill values forward
Fill values backward

With time series data, using pad/ffill is extremely common so that the “last known value” is available at every time
point.
The ffill() function is equivalent to fillna(method=’ffill’) and bfill() is equivalent to
fillna(method=’bfill’)

16.5.2 Filling with a PandasObject
New in version 0.12.
You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the
columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column.
In [37]: dff = pd.DataFrame(np.random.randn(10,3),columns=list('ABC'))
In [38]: dff.iloc[3:5,0] = np.nan
In [39]: dff.iloc[4:6,1] = np.nan
In [40]: dff.iloc[5:8,2] = np.nan
In [41]: dff
Out[41]:
A
B
0 0.271860 -0.424972
1 0.276232 -1.087401
2 0.113648 -1.478427
3
NaN 0.577046
4
NaN
NaN
5 -1.344312
NaN
6 -0.109050 1.643563
7 0.357021 -0.674600
8 -0.968914 -1.294524
9 0.276662 -0.472035

C
0.567020
-0.673690
0.524988
-1.715002
-1.157892
NaN
NaN
NaN
0.413738
-0.013960

In [42]: dff.fillna(dff.mean())
Out[42]:
A
B
C
0 0.271860 -0.424972 0.567020
1 0.276232 -1.087401 -0.673690
2 0.113648 -1.478427 0.524988
3 -0.140857 0.577046 -1.715002
4 -0.140857 -0.401419 -1.157892
5 -1.344312 -0.401419 -0.293543
6 -0.109050 1.643563 -0.293543
7 0.357021 -0.674600 -0.293543
8 -0.968914 -1.294524 0.413738
9 0.276662 -0.472035 -0.013960

16.5. Cleaning / filling missing data

469

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [43]: dff.fillna(dff.mean()['B':'C'])
Out[43]:
A
B
C
0 0.271860 -0.424972 0.567020
1 0.276232 -1.087401 -0.673690
2 0.113648 -1.478427 0.524988
3
NaN 0.577046 -1.715002
4
NaN -0.401419 -1.157892
5 -1.344312 -0.401419 -0.293543
6 -0.109050 1.643563 -0.293543
7 0.357021 -0.674600 -0.293543
8 -0.968914 -1.294524 0.413738
9 0.276662 -0.472035 -0.013960

New in version 0.13.
Same result as above, but is aligning the ‘fill’ value which is a Series in this case.
In [44]: dff.where(notnull(dff),dff.mean(),axis='columns')
Out[44]:
A
B
C
0 0.271860 -0.424972 0.567020
1 0.276232 -1.087401 -0.673690
2 0.113648 -1.478427 0.524988
3 -0.140857 0.577046 -1.715002
4 -0.140857 -0.401419 -1.157892
5 -1.344312 -0.401419 -0.293543
6 -0.109050 1.643563 -0.293543
7 0.357021 -0.674600 -0.293543
8 -0.968914 -1.294524 0.413738
9 0.276662 -0.472035 -0.013960

16.5.3 Dropping axis labels with missing data: dropna
You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the dropna method:
In [45]: df
Out[45]:
one
two
three
a NaN -0.282863 -1.509059
c NaN 1.212112 -0.173215
e NaN 0.000000 0.000000
f NaN 0.000000 0.000000
h NaN -0.706771 -1.039575
In [46]: df.dropna(axis=0)
Out[46]:
Empty DataFrame
Columns: [one, two, three]
Index: []
In [47]: df.dropna(axis=1)
Out[47]:
two
three
a -0.282863 -1.509059
c 1.212112 -0.173215
e 0.000000 0.000000
f 0.000000 0.000000

470

Chapter 16. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.16.1

h -0.706771 -1.039575
In [48]: df['one'].dropna()
Out[48]: Series([], Name: one, dtype: float64)

Series.dropna is a simpler method as it only has one axis to consider. DataFrame.dropna has considerably more options
than Series.dropna, which can be examined in the API.

16.5.4 Interpolation
New in version 0.13.0: interpolate(), and interpolate() have revamped interpolation methods and functionality.
Both Series and Dataframe objects have an interpolate method that, by default, performs linear interpolation at
missing datapoints.
In [49]: ts
Out[49]:
2000-01-31
2000-02-29
2000-03-31
2000-04-28
2000-05-31
2000-06-30
2000-07-31

0.469112
NaN
NaN
NaN
NaN
NaN
NaN
...
2007-10-31
-3.305259
2007-11-30
-5.485119
2007-12-31
-6.854968
2008-01-31
-7.809176
2008-02-29
-6.346480
2008-03-31
-8.089641
2008-04-30
-8.916232
Freq: BM, dtype: float64
In [50]: ts.count()
Out[50]: 61
In [51]: ts.interpolate().count()
Out[51]: 100
In [52]: ts.interpolate().plot()
Out[52]: 

16.5. Cleaning / filling missing data

471

pandas: powerful Python data analysis toolkit, Release 0.16.1

Index aware interpolation is available via the method keyword:
In [53]: ts2
Out[53]:
2000-01-31
0.469112
2000-02-29
NaN
2002-07-31
-5.689738
2005-01-31
NaN
2008-04-30
-8.916232
dtype: float64
In [54]: ts2.interpolate()
Out[54]:
2000-01-31
0.469112
2000-02-29
-2.610313
2002-07-31
-5.689738
2005-01-31
-7.302985
2008-04-30
-8.916232
dtype: float64
In [55]: ts2.interpolate(method='time')
Out[55]:
2000-01-31
0.469112
2000-02-29
0.273272
2002-07-31
-5.689738

472

Chapter 16. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.16.1

2005-01-31
-7.095568
2008-04-30
-8.916232
dtype: float64

For a floating-point index, use method=’values’:
In [56]: ser
Out[56]:
0
0
1
NaN
10
10
dtype: float64
In [57]: ser.interpolate()
Out[57]:
0
0
1
5
10
10
dtype: float64
In [58]: ser.interpolate(method='values')
Out[58]:
0
0
1
1
10
10
dtype: float64

You can also interpolate with a DataFrame:
In [59]: df = pd.DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
....:
'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})
....:
In [60]: df
Out[60]:
A
B
0 1.0
0.25
1 2.1
NaN
2 NaN
NaN
3 4.7
4.00
4 5.6 12.20
5 6.8 14.40
In [61]: df.interpolate()
Out[61]:
A
B
0 1.0
0.25
1 2.1
1.50
2 3.4
2.75
3 4.7
4.00
4 5.6 12.20
5 6.8 14.40

The method argument gives access to fancier interpolation methods. If you have scipy installed, you can set pass the
name of a 1-d interpolation routine to method. You’ll want to consult the full scipy interpolation documentation and
reference guide for details. The appropriate interpolation method will depend on the type of data you are working with.
For example, if you are dealing with a time series that is growing at an increasing rate, method=’quadratic’ may
be appropriate. If you have values approximating a cumulative distribution function, then method=’pchip’ should
work well.
16.5. Cleaning / filling missing data

473

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning: These methods require scipy.
In [62]:
Out[62]:
A
0 1.00
1 2.10
2 3.53
3 4.70
4 5.60
5 6.80

df.interpolate(method='barycentric')
B
0.250
-7.660
-4.515
4.000
12.200
14.400

In [63]: df.interpolate(method='pchip')
Out[63]:
A
B
0 1.000000
0.250000
1 2.100000
1.130135
2 3.429309
2.337586
3 4.700000
4.000000
4 5.600000 12.200000
5 6.800000 14.400000

When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation:
In [64]: df.interpolate(method='spline', order=2)
Out[64]:
A
B
0 1.000000
0.250000
1 2.100000 -0.428598
2 3.404545
1.206900
3 4.700000
4.000000
4 5.600000 12.200000
5 6.800000 14.400000
In [65]: df.interpolate(method='polynomial', order=2)
Out[65]:
A
B
0 1.000000
0.250000
1 2.100000 -4.161538
2 3.547059 -2.911538
3 4.700000
4.000000
4 5.600000 12.200000
5 6.800000 14.400000

Compare several methods:
In [66]: np.random.seed(2)
In [67]: ser = pd.Series(np.arange(1, 10.1, .25)**2 + np.random.randn(37))
In [68]: bad = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])
In [69]: ser[bad] = np.nan
In [70]: methods = ['linear', 'quadratic', 'cubic']
In [71]: df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods})

474

Chapter 16. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [72]: df.plot()
Out[72]: 

Another use case is interpolation at new values. Suppose you have 100 observations from some distribution. And let’s
suppose that you’re particularly interested in what’s happening around the middle. You can mix pandas’ reindex
and interpolate methods to interpolate at the new values.
In [73]: ser = pd.Series(np.sort(np.random.uniform(size=100)))
# interpolate at new_index
In [74]: new_index = ser.index | Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])
In [75]: interp_s = ser.reindex(new_index).interpolate(method='pchip')
In [76]:
Out[76]:
49.00
49.25
49.50
49.75
50.00
50.25
50.50
50.75

interp_s[49:51]
0.471410
0.476841
0.481780
0.485998
0.489266
0.491814
0.493995
0.495763

16.5. Cleaning / filling missing data

475

pandas: powerful Python data analysis toolkit, Release 0.16.1

51.00
0.497074
dtype: float64

Like other pandas fill methods, interpolate accepts a limit keyword argument. Use this to limit the number of
consecutive interpolations, keeping NaN values for interpolations that are too far from the last valid observation:
In [77]: ser = pd.Series([1, 3, np.nan, np.nan, np.nan, 11])
In [78]: ser.interpolate(limit=2)
Out[78]:
0
1
1
3
2
5
3
7
4
NaN
5
11
dtype: float64

16.5.5 Replacing Generic Values
Often times we want to replace arbitrary values with other values. New in v0.8 is the replace method in Series/DataFrame that provides an efficient yet flexible way to perform such replacements.
For a Series, you can replace a single value or a list of values by another value:
In [79]: ser = pd.Series([0., 1., 2., 3., 4.])
In [80]: ser.replace(0, 5)
Out[80]:
0
5
1
1
2
2
3
3
4
4
dtype: float64

You can replace a list of values by a list of other values:
In [81]: ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
Out[81]:
0
4
1
3
2
2
3
1
4
0
dtype: float64

You can also specify a mapping dict:
In [82]: ser.replace({0: 10, 1: 100})
Out[82]:
0
10
1
100
2
2
3
3
4
4
dtype: float64

476

Chapter 16. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.16.1

For a DataFrame, you can specify individual values by column:
In [83]: df = pd.DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]})
In [84]: df.replace({'a': 0, 'b': 5}, 100)
Out[84]:
a
b
0 100 100
1
1
6
2
2
7
3
3
8
4
4
9

Instead of replacing with specified values, you can treat all given values as missing and interpolate over them:
In [85]: ser.replace([1, 2, 3], method='pad')
Out[85]:
0
0
1
0
2
0
3
0
4
4
dtype: float64

16.5.6 String/Regular Expression Replacement
Note: Python strings prefixed with the r character such as r’hello world’ are so-called “raw” strings. They
have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be
interpreted as an escaped backslash, e.g., r’\’ == ’\\’. You should read about them if this is unclear.
Replace the ‘.’ with nan (str -> str)
In [86]: d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', np.nan, 'd']}
In [87]: df = pd.DataFrame(d)
In [88]: df.replace('.', np.nan)
Out[88]:
a
b
c
0 0
a
a
1 1
b
b
2 2 NaN NaN
3 3 NaN
d

Now do it with a regular expression that removes surrounding whitespace (regex -> regex)
In [89]: df.replace(r'\s*\.\s*', np.nan, regex=True)
Out[89]:
a
b
c
0 0
a
a
1 1
b
b
2 2 NaN NaN
3 3 NaN
d

Replace a few different values (list -> list)

16.5. Cleaning / filling missing data

477

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [90]: df.replace(['a', '.'], ['b', np.nan])
Out[90]:
a
b
c
0 0
b
b
1 1
b
b
2 2 NaN NaN
3 3 NaN
d

list of regex -> list of regex
In [91]: df.replace([r'\.', r'(a)'], ['dot', '\1stuff'], regex=True)
Out[91]:
a
b
c
0 0 {stuff {stuff
1 1
b
b
2 2
dot
NaN
3 3
dot
d

Only search in column ’b’ (dict -> dict)
In [92]: df.replace({'b': '.'}, {'b': np.nan})
Out[92]:
a
b
c
0 0
a
a
1 1
b
b
2 2 NaN NaN
3 3 NaN
d

Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict)
In [93]: df.replace({'b': r'\s*\.\s*'}, {'b': np.nan}, regex=True)
Out[93]:
a
b
c
0 0
a
a
1 1
b
b
2 2 NaN NaN
3 3 NaN
d

You can pass nested dictionaries of regular expressions that use regex=True
In [94]: df.replace({'b': {'b': r''}}, regex=True)
Out[94]:
a b
c
0 0 a
a
1 1
b
2 2 . NaN
3 3 .
d

or you can pass the nested dictionary like so
In [95]: df.replace(regex={'b': {r'\s*\.\s*': np.nan}})
Out[95]:
a
b
c
0 0
a
a
1 1
b
b
2 2 NaN NaN
3 3 NaN
d

You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works
for lists as well

478

Chapter 16. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [96]: df.replace({'b': r'\s*(\.)\s*'}, {'b': r'\1ty'}, regex=True)
Out[96]:
a
b
c
0 0
a
a
1 1
b
b
2 2 .ty NaN
3 3 .ty
d

You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex ->
regex)
In [97]: df.replace([r'\s*\.\s*', r'a|b'], np.nan, regex=True)
Out[97]:
a
b
c
0 0 NaN NaN
1 1 NaN NaN
2 2 NaN NaN
3 3 NaN
d

All of the regular expression examples can also be passed with the to_replace argument as the regex argument.
In this case the value argument must be passed explicitly by name or regex must be a nested dictionary. The
previous example, in this case, would then be
In [98]: df.replace(regex=[r'\s*\.\s*', r'a|b'], value=np.nan)
Out[98]:
a
b
c
0 0 NaN NaN
1 1 NaN NaN
2 2 NaN NaN
3 3 NaN
d

This can be convenient if you do not want to pass regex=True every time you want to use a regular expression.
Note: Anywhere in the above replace examples that you see a regular expression a compiled regular expression is
valid as well.

16.5.7 Numeric Replacement
Similar to DataFrame.fillna
In [99]: df = pd.DataFrame(np.random.randn(10, 2))
In [100]: df[np.random.rand(df.shape[0]) > 0.5] = 1.5
In [101]: df.replace(1.5, np.nan)
Out[101]:
0
1
0 -0.844214 -1.021415
1 0.432396 -0.323580
2 0.423825 0.799180
3 1.262614 0.751965
4
NaN
NaN
5
NaN
NaN
6 -0.498174 -1.060799
7 0.591667 -0.183257
8 1.019855 -1.482465
9
NaN
NaN

16.5. Cleaning / filling missing data

479

pandas: powerful Python data analysis toolkit, Release 0.16.1

Replacing more than one value via lists works as well
In [102]: df00 = df.values[0, 0]
In [103]: df.replace([1.5, df00], [np.nan, 'a'])
Out[103]:
0
1
0
a -1.021415
1 0.4323957 -0.323580
2 0.4238247 0.799180
3
1.262614 0.751965
4
NaN
NaN
5
NaN
NaN
6 -0.4981742 -1.060799
7 0.5916665 -0.183257
8
1.019855 -1.482465
9
NaN
NaN
In [104]: df[1].dtype
Out[104]: dtype('float64')

You can also operate on the DataFrame in place
In [105]: df.replace(1.5, np.nan, inplace=True)

Warning:
When replacing multiple bool or datetime64 objects, the first argument to replace
(to_replace) must match the type of the value being replaced type. For example,
s = pd.Series([True, False, True])
s.replace({'a string': 'new value', True: False})

# raises

TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

will raise a TypeError because one of the dict keys is not of the correct type for replacement.
However, when replacing a single object such as,
In [106]: s = pd.Series([True, False, True])
In [107]: s.replace('a string', 'another string')
Out[107]:
0
True
1
False
2
True
dtype: bool

the original NDFrame object will be returned untouched. We’re working on unifying this API, but for backwards
compatibility reasons we cannot break the latter behavior. See GH6354 for more details.

16.6 Missing data casting rules and indexing
While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data.
Until we can switch to using a native NA type in NumPy, we’ve established some “casting rules” when reindexing will
cause missing data to be introduced into, say, a Series or DataFrame. Here they are:

480

Chapter 16. Working with missing data

pandas: powerful Python data analysis toolkit, Release 0.16.1

data type
integer
boolean
float
object

Cast to
float
object
no cast
no cast

For example:
In [108]: s = pd.Series(np.random.randn(5), index=[0, 2, 4, 6, 7])
In [109]: s > 0
Out[109]:
0
True
2
True
4
True
6
True
7
True
dtype: bool
In [110]: (s > 0).dtype
Out[110]: dtype('bool')
In [111]: crit = (s > 0).reindex(list(range(8)))
In [112]: crit
Out[112]:
0
True
1
NaN
2
True
3
NaN
4
True
5
NaN
6
True
7
True
dtype: object
In [113]: crit.dtype
Out[113]: dtype('O')

Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a
boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector
contains NAs, an exception will be generated:
In [114]: reindexed = s.reindex(list(range(8))).fillna(0)
In [115]: reindexed[crit]
--------------------------------------------------------------------------ValueError
Traceback (most recent call last)
 in ()
----> 1 reindexed[crit]
/home/joris/scipy/pandas/pandas/core/series.pyc in __getitem__(self, key)
554
key = list(key)
555
--> 556
if is_bool_indexer(key):
557
key = check_bool_indexer(self.index, key)
558
/home/joris/scipy/pandas/pandas/core/common.pyc in is_bool_indexer(key)

16.6. Missing data casting rules and indexing

481

pandas: powerful Python data analysis toolkit, Release 0.16.1

2126
2127
-> 2128
2129
2130

if not lib.is_bool_array(key):
if isnull(key).any():
raise ValueError('cannot index with vector containing '
'NA / NaN values')
return False

ValueError: cannot index with vector containing NA / NaN values

However, these can be filled in using fillna and it will work fine:
In [116]: reindexed[crit.fillna(False)]
Out[116]:
0
0.126504
2
0.696198
4
0.697416
6
0.601516
7
0.003659
dtype: float64
In [117]: reindexed[crit.fillna(True)]
Out[117]:
0
0.126504
1
0.000000
2
0.696198
3
0.000000
4
0.697416
5
0.000000
6
0.601516
7
0.003659
dtype: float64

482

Chapter 16. Working with missing data

CHAPTER

SEVENTEEN

GROUP BY: SPLIT-APPLY-COMBINE

By “group by” we are referring to a process involving one or more of the following steps
• Splitting the data into groups based on some criteria
• Applying a function to each group independently
• Combining the results into a data structure
Of these, the split step is the most straightforward. In fact, in many situations you may wish to split the data set into
groups and do something with those groups yourself. In the apply step, we might wish to one of the following:
• Aggregation: computing a summary statistic (or statistics) about each group. Some examples:
– Compute group sums or means
– Compute group sizes / counts
• Transformation: perform some group-specific computations and return a like-indexed. Some examples:
– Standardizing data (zscore) within group
– Filling NAs within groups with a value derived from each group
• Filtration: discard some groups, according to a group-wise computation that evaluates True or False. Some
examples:
– Discarding data that belongs to groups with only a few members
– Filtering out data based on the group sum or mean
• Some combination of the above: GroupBy will examine the results of the apply step and try to return a sensibly
combined result if it doesn’t fit into either of the above two categories
Since the set of object instance method on pandas data structures are generally rich and expressive, we often simply
want to invoke, say, a DataFrame function on each group. The name GroupBy should be quite familiar to those who
have used a SQL-based tool (or itertools), in which you can write code like:
SELECT Column1, Column2, mean(Column3), sum(Column4)
FROM SomeTable
GROUP BY Column1, Column2

We aim to make operations like this natural and easy to express using pandas. We’ll address each area of GroupBy
functionality then provide some non-trivial examples / use cases.
See the cookbook for some advanced strategies

483

pandas: powerful Python data analysis toolkit, Release 0.16.1

17.1 Splitting an object into groups
pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels
to group names. To create a GroupBy object (more on what the GroupBy object is later), you do the following:
>>> grouped = obj.groupby(key)
>>> grouped = obj.groupby(key, axis=1)
>>> grouped = obj.groupby([key1, key2])

The mapping can be specified many different ways:
• A Python function, to be called on each of the axis labels
• A list or NumPy array of the same length as the selected axis
• A dict or Series, providing a label -> group name mapping
• For DataFrame objects, a string indicating a column to be used to group. Of course df.groupby(’A’) is
just syntactic sugar for df.groupby(df[’A’]), but it makes life simpler
• A list of any of the above things
Collectively we refer to the grouping objects as the keys. For example, consider the following DataFrame:
In [1]: df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
...:
'foo', 'bar', 'foo', 'foo'],
...:
'B' : ['one', 'one', 'two', 'three',
...:
'two', 'two', 'one', 'three'],
...:
'C' : randn(8), 'D' : randn(8)})
...:
In [2]: df
Out[2]:
A
B
0 foo
one
1 bar
one
2 foo
two
3 bar three
4 foo
two
5 bar
two
6 foo
one
7 foo three

C
0.469112
-0.282863
-1.509059
-1.135632
1.212112
-0.173215
0.119209
-1.044236

D
-0.861849
-2.104569
-0.494929
1.071804
0.721555
-0.706771
-1.039575
0.271860

We could naturally group by either the A or B columns or both:
In [3]: grouped = df.groupby('A')
In [4]: grouped = df.groupby(['A', 'B'])

These will split the DataFrame on its index (rows). We could also split by the columns:
In [5]: def get_letter_type(letter):
...:
if letter.lower() in 'aeiou':
...:
return 'vowel'
...:
else:
...:
return 'consonant'
...:
In [6]: grouped = df.groupby(get_letter_type, axis=1)

484

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

Starting with 0.8, pandas Index objects now supports duplicate values. If a non-unique index is used as the group key
in a groupby operation, all values for the same index value will be considered to be in one group and thus the output
of aggregation functions will only contain unique index values:
In [7]: lst = [1, 2, 3, 1, 2, 3]
In [8]: s = Series([1, 2, 3, 10, 20, 30], lst)
In [9]: grouped = s.groupby(level=0)
In [10]: grouped.first()
Out[10]:
1
1
2
2
3
3
dtype: int64
In [11]: grouped.last()
Out[11]:
1
10
2
20
3
30
dtype: int64
In [12]: grouped.sum()
Out[12]:
1
11
2
22
3
33
dtype: int64

Note that no splitting occurs until it’s needed. Creating the GroupBy object only verifies that you’ve passed a valid
mapping.
Note: Many kinds of complicated data manipulations can be expressed in terms of GroupBy operations (though can’t
be guaranteed to be the most efficient). You can get quite creative with the label mapping functions.

17.1.1 GroupBy object attributes
The groups attribute is a dict whose keys are the computed unique groups and corresponding values being the axis
labels belonging to each group. In the above example we have:
In [13]: df.groupby('A').groups
Out[13]: {'bar': [1L, 3L, 5L], 'foo': [0L, 2L, 4L, 6L, 7L]}
In [14]: df.groupby(get_letter_type, axis=1).groups
Out[14]: {'consonant': ['B', 'C', 'D'], 'vowel': ['A']}

Calling the standard Python len function on the GroupBy object just returns the length of the groups dict, so it is
largely just a convenience:
In [15]: grouped = df.groupby(['A', 'B'])
In [16]: grouped.groups
Out[16]:
{('bar', 'one'): [1L],
('bar', 'three'): [3L],

17.1. Splitting an object into groups

485

pandas: powerful Python data analysis toolkit, Release 0.16.1

('bar',
('foo',
('foo',
('foo',

'two'): [5L],
'one'): [0L, 6L],
'three'): [7L],
'two'): [2L, 4L]}

In [17]: len(grouped)
Out[17]: 6

By default the group keys are sorted during the groupby operation. You may however pass sort=False for potential
speedups:
In [18]: df2 = DataFrame({'X' : ['B', 'B', 'A', 'A'], 'Y' : [1, 2, 3, 4]})
In [19]: df2.groupby(['X'], sort=True).sum()
Out[19]:
Y
X
A 7
B 3
In [20]: df2.groupby(['X'], sort=False).sum()
Out[20]:
Y
X
B 3
A 7

GroupBy will tab complete column names (and other attributes)
In [21]: df
Out[21]:
2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08
2000-01-09
2000-01-10

gender
male
male
male
female
male
female
male
female
female
male

height
42.849980
49.607315
56.293531
48.421077
46.556882
68.448851
70.757698
58.909500
76.435631
45.306120

weight
157.500553
177.340407
171.524640
144.251986
152.526206
168.272968
136.431469
176.499753
174.094104
177.540920

In [22]: gb = df.groupby('gender')
In [23]: gb.
gb.agg
gb.boxplot
gb.aggregate gb.count
gb.apply
gb.cummax

gb.cummin
gb.cumprod
gb.cumsum

gb.describe
gb.dtype
gb.fillna

gb.filter
gb.first
gb.gender

gb.get_group
gb.groups
gb.head

gb.height
gb.hist
gb.indices

17.1.2 GroupBy with MultiIndex
With hierarchically-indexed data, it’s quite natural to group by one of the levels of the hierarchy.
In [24]: s
Out[24]:
first second

486

Chapter 17. Group By: split-apply-combine

gb.
gb.
gb.

pandas: powerful Python data analysis toolkit, Release 0.16.1

bar

one
two
baz
one
two
foo
one
two
qux
one
two
dtype: float64

-0.575247
0.254161
-1.143704
0.215897
1.193555
-0.077118
-0.408530
-0.862495

In [25]: grouped = s.groupby(level=0)
In [26]: grouped.sum()
Out[26]:
first
bar
-0.321085
baz
-0.927807
foo
1.116437
qux
-1.271025
dtype: float64

If the MultiIndex has names specified, these can be passed instead of the level number:
In [27]: s.groupby(level='second').sum()
Out[27]:
second
one
-0.933926
two
-0.469555
dtype: float64

The aggregation functions such as sum will take the level parameter directly. Additionally, the resulting index will be
named according to the chosen level:
In [28]: s.sum(level='second')
Out[28]:
second
one
-0.933926
two
-0.469555
dtype: float64

Also as of v0.6, grouping with multiple levels is supported.
In [29]: s
Out[29]:
first second
bar
doo
baz

bee

foo

bop

qux

bop

third
one
two
one
two
one
two
one
two

1.346061
1.511763
1.627081
-0.990582
-0.441652
1.211526
0.268520
0.024580

dtype: float64
In [30]: s.groupby(level=['first','second']).sum()
Out[30]:
first second
bar
doo
2.857824

17.1. Splitting an object into groups

487

pandas: powerful Python data analysis toolkit, Release 0.16.1

baz
foo
qux
dtype:

bee
bop
bop
float64

0.636499
0.769873
0.293100

More on the sum function and aggregation later.

17.1.3 DataFrame column selection in GroupBy
Once you have created the GroupBy object from a DataFrame, for example, you might want to do something different
for each of the columns. Thus, using [] similar to getting a column from a DataFrame, you can do:
In [31]: grouped = df.groupby(['A'])
In [32]: grouped_C = grouped['C']
In [33]: grouped_D = grouped['D']

This is mainly syntactic sugar for the alternative and much more verbose:
In [34]: df['C'].groupby(df['A'])
Out[34]: 

Additionally this method avoids recomputing the internal grouping information derived from the passed key.

17.2 Iterating through groups
With the GroupBy object in hand, iterating through the grouped data is very natural and functions similarly to
itertools.groupby:
In [35]: grouped = df.groupby('A')
In [36]: for name, group in grouped:
....:
print(name)
....:
print(group)
....:
bar
A
B
C
D
1 bar
one -0.042379 -0.089329
3 bar three -0.009920 -0.945867
5 bar
two 0.495767 1.956030
foo
A
B
C
D
0 foo
one -0.919854 -1.131345
2 foo
two 1.247642 0.337863
4 foo
two 0.290213 -0.932132
6 foo
one 0.362949 0.017587
7 foo three 1.548106 -0.016692

In the case of grouping by multiple keys, the group name will be a tuple:
In [37]: for name, group in df.groupby(['A', 'B']):
....:
print(name)
....:
print(group)
....:
('bar', 'one')

488

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

A
1 bar
('bar',
A
3 bar
('bar',
A
5 bar
('foo',
A
0 foo
6 foo
('foo',
A
7 foo
('foo',
A
2 foo
4 foo

B
C
D
one -0.042379 -0.089329
'three')
B
C
D
three -0.00992 -0.945867
'two')
B
C
D
two 0.495767 1.95603
'one')
B
C
D
one -0.919854 -1.131345
one 0.362949 0.017587
'three')
B
C
D
three 1.548106 -0.016692
'two')
B
C
D
two 1.247642 0.337863
two 0.290213 -0.932132

It’s standard Python-fu but remember you can unpack the tuple in the for loop statement if you wish: for (k1,
k2), group in grouped:.

17.3 Selecting a group
A single group can be selected using GroupBy.get_group():
In [38]: grouped.get_group('bar')
Out[38]:
A
B
C
D
1 bar
one -0.042379 -0.089329
3 bar three -0.009920 -0.945867
5 bar
two 0.495767 1.956030

Or for an object grouped on multiple columns:
In [39]: df.groupby(['A', 'B']).get_group(('bar', 'one'))
Out[39]:
A
B
C
D
1 bar one -0.042379 -0.089329

17.4 Aggregation
Once the GroupBy object has been created, several methods are available to perform a computation on the grouped
data.
An obvious one is aggregation via the aggregate or equivalently agg method:
In [40]: grouped = df.groupby('A')
In [41]: grouped.aggregate(np.sum)
Out[41]:
C
D
A
bar 0.443469 0.920834

17.3. Selecting a group

489

pandas: powerful Python data analysis toolkit, Release 0.16.1

foo

2.529056 -1.724719

In [42]: grouped = df.groupby(['A', 'B'])
In [43]: grouped.aggregate(np.sum)
Out[43]:
C
D
A
B
bar one
-0.042379 -0.089329
three -0.009920 -0.945867
two
0.495767 1.956030
foo one
-0.556905 -1.113758
three 1.548106 -0.016692
two
1.537855 -0.594269

As you can see, the result of the aggregation will have the group names as the new index along the grouped axis. In
the case of multiple keys, the result is a MultiIndex by default, though this can be changed by using the as_index
option:
In [44]: grouped = df.groupby(['A', 'B'], as_index=False)
In [45]: grouped.aggregate(np.sum)
Out[45]:
A
B
C
D
0 bar
one -0.042379 -0.089329
1 bar three -0.009920 -0.945867
2 bar
two 0.495767 1.956030
3 foo
one -0.556905 -1.113758
4 foo three 1.548106 -0.016692
5 foo
two 1.537855 -0.594269
In [46]: df.groupby('A', as_index=False).sum()
Out[46]:
A
C
D
0 bar 0.443469 0.920834
1 foo 2.529056 -1.724719

Note that you could use the reset_index DataFrame function to achieve the same result as the column names are
stored in the resulting MultiIndex:
In [47]: df.groupby(['A', 'B']).sum().reset_index()
Out[47]:
A
B
C
D
0 bar
one -0.042379 -0.089329
1 bar three -0.009920 -0.945867
2 bar
two 0.495767 1.956030
3 foo
one -0.556905 -1.113758
4 foo three 1.548106 -0.016692
5 foo
two 1.537855 -0.594269

Another simple aggregation example is to compute the size of each group. This is included in GroupBy as the size
method. It returns a Series whose index are the group names and whose values are the sizes of each group.
In [48]: grouped.size()
Out[48]:
A
B
bar one
1
three
1
two
1

490

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

foo

one
three
two
dtype: int64

2
1
2

In [49]: grouped.describe()
Out[49]:
C
D
0 count 1.000000 1.000000
mean -0.042379 -0.089329
std
NaN
NaN
min
-0.042379 -0.089329
25%
-0.042379 -0.089329
50%
-0.042379 -0.089329
75%
-0.042379 -0.089329
...
...
...
5 mean
0.768928 -0.297134
std
0.677005 0.898022
min
0.290213 -0.932132
25%
0.529570 -0.614633
50%
0.768928 -0.297134
75%
1.008285 0.020364
max
1.247642 0.337863
[48 rows x 2 columns]

Note: Aggregation functions will not return the groups that you are aggregating over if they are named columns,
when as_index=True, the default. The grouped columns will be the indices of the returned object.
Passing as_index=False will return the groups that you are aggregating over, if they are named columns.
Aggregating functions are ones that reduce the dimension of the returned objects, for example: mean, sum, size,
count, std, var, sem, describe, first, last, nth, min, max. This is what happens when
you do for example DataFrame.sum() and get back a Series.
nth can act as a reducer or a filter, see here

17.4.1 Applying multiple functions at once
With grouped Series you can also pass a list or dict of functions to do aggregation with, outputting a DataFrame:
In [50]: grouped = df.groupby('A')
In [51]: grouped['C'].agg([np.sum, np.mean, np.std])
Out[51]:
sum
mean
std
A
bar 0.443469 0.147823 0.301765
foo 2.529056 0.505811 0.966450

If a dict is passed, the keys will be used to name the columns. Otherwise the function’s name (stored in the function
object) will be used.
In [52]: grouped['D'].agg({'result1' : np.sum,
....:
'result2' : np.mean})
....:
Out[52]:

17.4. Aggregation

491

pandas: powerful Python data analysis toolkit, Release 0.16.1

result2
result1
A
bar 0.306945 0.920834
foo -0.344944 -1.724719

On a grouped DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated
result with a hierarchical index:
In [53]: grouped.agg([np.sum, np.mean, np.std])
Out[53]:
C
D
sum
mean
std
sum
mean
A
bar 0.443469 0.147823 0.301765 0.920834 0.306945
foo 2.529056 0.505811 0.966450 -1.724719 -0.344944

std
1.490982
0.645875

Passing a dict of functions has different behavior by default, see the next section.

17.4.2 Applying different functions to DataFrame columns
By passing a dict to aggregate you can apply a different aggregation to the columns of a DataFrame:
In [54]: grouped.agg({'C' : np.sum,
....:
'D' : lambda x: np.std(x, ddof=1)})
....:
Out[54]:
C
D
A
bar 0.443469 1.490982
foo 2.529056 0.645875

The function names can also be strings. In order for a string to be valid it must be either implemented on GroupBy or
available via dispatching:
In [55]: grouped.agg({'C' : 'sum', 'D' : 'std'})
Out[55]:
C
D
A
bar 0.443469 1.490982
foo 2.529056 0.645875

17.4.3 Cython-optimized aggregation functions
Some common aggregations, currently only sum, mean, std, and sem, have optimized Cython implementations:
In [56]: df.groupby('A').sum()
Out[56]:
C
D
A
bar 0.443469 0.920834
foo 2.529056 -1.724719
In [57]: df.groupby(['A', 'B']).mean()
Out[57]:
C
D
A
B
bar one
-0.042379 -0.089329

492

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

three -0.009920 -0.945867
two
0.495767 1.956030
foo one
-0.278452 -0.556879
three 1.548106 -0.016692
two
0.768928 -0.297134

Of course sum and mean are implemented on pandas objects, so the above code would work even without the special
versions via dispatching (see below).

17.5 Transformation
The transform method returns an object that is indexed the same (same size) as the one being grouped. Thus, the
passed transform function should return a result that is the same size as the group chunk. For example, suppose we
wished to standardize the data within each group:
In [58]: index = date_range('10/1/1999', periods=1100)
In [59]: ts = Series(np.random.normal(0.5, 2, 1100), index)
In [60]: ts = rolling_mean(ts, 100, 100).dropna()
In [61]: ts.head()
Out[61]:
2000-01-08
0.779333
2000-01-09
0.778852
2000-01-10
0.786476
2000-01-11
0.782797
2000-01-12
0.798110
Freq: D, dtype: float64
In [62]: ts.tail()
Out[62]:
2002-09-30
0.660294
2002-10-01
0.631095
2002-10-02
0.673601
2002-10-03
0.709213
2002-10-04
0.719369
Freq: D, dtype: float64
In [63]: key = lambda x: x.year
In [64]: zscore = lambda x: (x - x.mean()) / x.std()
In [65]: transformed = ts.groupby(key).transform(zscore)

We would expect the result to now have mean 0 and standard deviation 1 within each group, which we can easily
check:
# Original Data
In [66]: grouped = ts.groupby(key)
In [67]: grouped.mean()
Out[67]:
2000
0.442441
2001
0.526246
2002
0.459365

17.5. Transformation

493

pandas: powerful Python data analysis toolkit, Release 0.16.1

dtype: float64
In [68]: grouped.std()
Out[68]:
2000
0.131752
2001
0.210945
2002
0.128753
dtype: float64
# Transformed Data
In [69]: grouped_trans = transformed.groupby(key)
In [70]: grouped_trans.mean()
Out[70]:
2000
-1.250934e-16
2001
-4.291848e-16
2002
2.404815e-17
dtype: float64
In [71]: grouped_trans.std()
Out[71]:
2000
1
2001
1
2002
1
dtype: float64

We can also visually compare the original and transformed data sets.
In [72]: compare = DataFrame({'Original': ts, 'Transformed': transformed})
In [73]: compare.plot()
Out[73]: 

494

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

Another common data transform is to replace missing data with the group mean.
In [74]: data_df
Out[74]:
A
B
0
1.539708 -1.166480
1
1.302092 -0.505754
2
-0.371983 1.104803
3
-1.309622 1.118697
4
-1.924296 0.396437
5
0.815643 0.367816
6
-0.030651 1.376106
..
...
...
993 0.012359 0.554602
994 0.042312 -1.628835
995 -0.093110 0.683847
996 -0.185043 1.438572
997 -0.394469 -0.642343
998 -1.174126 1.857148
999 0.234564 0.517098

C
0.533026
NaN
-0.651520
-1.161657
0.812436
-0.469478
-0.645129
...
-1.976159
1.013822
-0.774753
NaN
0.011374
NaN
0.393534

[1000 rows x 3 columns]

17.5. Transformation

495

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [75]: countries = np.array(['US', 'UK', 'GR', 'JP'])
In [76]: key = countries[np.random.randint(0, 4, 1000)]
In [77]: grouped = data_df.groupby(key)
# Non-NA
In [78]:
Out[78]:
A
GR 209
JP 240
UK 216
US 239

count in each group
grouped.count()
B
217
255
231
250

C
189
217
193
217

In [79]: f = lambda x: x.fillna(x.mean())
In [80]: transformed = grouped.transform(f)

We can verify that the group means have not changed in the transformed data and that the transformed data contains
no NAs.
In [81]: grouped_trans = transformed.groupby(key)
In [82]: grouped.mean() # original group means
Out[82]:
A
B
C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603
In [83]: grouped_trans.mean() # transformation did not change group means
Out[83]:
A
B
C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603
In [84]:
Out[84]:
A
GR 209
JP 240
UK 216
US 239

grouped.count() # original has some missing data points

In [85]:
Out[85]:
A
GR 228
JP 267
UK 247
US 258

grouped_trans.count() # counts after transformation

B
217
255
231
250

B
228
267
247
258

C
189
217
193
217

C
228
267
247
258

In [86]: grouped_trans.size() # Verify non-NA count equals group size
Out[86]:

496

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

GR
228
JP
267
UK
247
US
258
dtype: int64

Note: Some functions when applied to a groupby object will automatically transform the input, returning an object
of the same shape as the original. Passing as_index=False will not affect these transformation methods.
For example: fillna, ffill, bfill, shift.
In [87]: grouped.ffill()
Out[87]:
A
B
C
0
1.539708 -1.166480 0.533026
1
1.302092 -0.505754 0.533026
2
-0.371983 1.104803 -0.651520
3
-1.309622 1.118697 -1.161657
4
-1.924296 0.396437 0.812436
5
0.815643 0.367816 -0.469478
6
-0.030651 1.376106 -0.645129
..
...
...
...
993 0.012359 0.554602 -1.976159
994 0.042312 -1.628835 1.013822
995 -0.093110 0.683847 -0.774753
996 -0.185043 1.438572 -0.774753
997 -0.394469 -0.642343 0.011374
998 -1.174126 1.857148 -0.774753
999 0.234564 0.517098 0.393534
[1000 rows x 3 columns]

17.6 Filtration
New in version 0.12.
The filter method returns a subset of the original object. Suppose we want to take only elements that belong to
groups with a group sum greater than 2.
In [88]: sf = Series([1, 1, 2, 3, 3, 3])
In [89]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[89]:
3
3
4
3
5
3
dtype: int64

The argument of filter must be a function that, applied to the group as a whole, returns True or False.
Another useful operation is filtering out elements that belong to groups with only a couple members.
In [90]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')})
In [91]: dff.groupby('B').filter(lambda x: len(x) > 2)
Out[91]:

17.6. Filtration

497

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
3
4
5

A
2
3
4
5

B
b
b
b
b

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do
not pass the filter are filled with NaNs.
In [92]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
Out[92]:
A
B
0 NaN NaN
1 NaN NaN
2
2
b
3
3
b
4
4
b
5
5
b
6 NaN NaN
7 NaN NaN

For dataframes with multiple columns, filters should explicitly specify a column as the filter criterion.
In [93]: dff['C'] = np.arange(8)
In [94]:
Out[94]:
A B
2 2 b
3 3 b
4 4 b
5 5 b

dff.groupby('B').filter(lambda x: len(x['C']) > 2)
C
2
3
4
5

Note: Some functions when applied to a groupby object will act as a filter on the input, returning a reduced shape
of the original (and potentitally eliminating groups), but with the index unchanged. Passing as_index=False will
not affect these transformation methods.
For example: head, tail.
In [95]:
Out[95]:
A B
0 0 a
1 1 a
2 2 b
3 3 b
6 6 c
7 7 c

dff.groupby('B').head(2)
C
0
1
2
3
6
7

17.7 Dispatching to instance methods
When doing an aggregation or transformation, you might just want to call an instance method on each data group.
This is pretty easy to do by passing lambda functions:
In [96]: grouped = df.groupby('A')

498

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [97]: grouped.agg(lambda x: x.std())
Out[97]:
C
D
A
bar 0.301765 1.490982
foo 0.966450 0.645875

But, it’s rather verbose and can be untidy if you need to pass additional arguments. Using a bit of metaprogramming
cleverness, GroupBy now has the ability to “dispatch” method calls to the groups:
In [98]: grouped.std()
Out[98]:
C
D
A
bar 0.301765 1.490982
foo 0.966450 0.645875

What is actually happening here is that a function wrapper is being generated. When invoked, it takes any passed
arguments and invokes the function with any arguments on each group (in the above example, the std function). The
results are then combined together much in the style of agg and transform (it actually uses apply to infer the
gluing, documented next). This enables some operations to be carried out rather succinctly:
In [99]: tsdf = DataFrame(randn(1000, 3),
....:
index=date_range('1/1/2000', periods=1000),
....:
columns=['A', 'B', 'C'])
....:
In [100]: tsdf.ix[::2] = np.nan
In [101]: grouped = tsdf.groupby(lambda x: x.year)
In [102]: grouped.fillna(method='pad')
Out[102]:
A
B
C
2000-01-01
NaN
NaN
NaN
2000-01-02 -0.353501 -0.080957 -0.876864
2000-01-03 -0.353501 -0.080957 -0.876864
2000-01-04 0.050976 0.044273 -0.559849
2000-01-05 0.050976 0.044273 -0.559849
2000-01-06 0.030091 0.186460 -0.680149
2000-01-07 0.030091 0.186460 -0.680149
...
...
...
...
2002-09-20 2.310215 0.157482 -0.064476
2002-09-21 2.310215 0.157482 -0.064476
2002-09-22 0.005011 0.053897 -1.026922
2002-09-23 0.005011 0.053897 -1.026922
2002-09-24 -0.456542 -1.849051 1.559856
2002-09-25 -0.456542 -1.849051 1.559856
2002-09-26 1.123162 0.354660 1.128135
[1000 rows x 3 columns]

In this example, we chopped the collection of time series into yearly chunks then independently called fillna on the
groups.
New in version 0.14.1.
The nlargest and nsmallest methods work on Series style groupbys:

17.7. Dispatching to instance methods

499

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [103]: s = Series([9, 8, 7, 5, 19, 1, 4.2, 3.3])
In [104]: g = Series(list('abababab'))
In [105]: gb = s.groupby(g)
In [106]: gb.nlargest(3)
Out[106]:
a 4
19.0
0
9.0
2
7.0
b 1
8.0
3
5.0
7
3.3
dtype: float64
In [107]: gb.nsmallest(3)
Out[107]:
a 6
4.2
2
7.0
0
9.0
b 5
1.0
7
3.3
3
5.0
dtype: float64

17.8 Flexible apply
Some operations on the grouped data might not fit into either the aggregate or transform categories. Or, you may simply
want GroupBy to infer how to combine the results. For these, use the apply function, which can be substituted for
both aggregate and transform in many standard use cases. However, apply can handle some exceptional use
cases, for example:
In [108]: df
Out[108]:
A
B
C
D
0 foo
one -0.919854 -1.131345
1 bar
one -0.042379 -0.089329
2 foo
two 1.247642 0.337863
3 bar three -0.009920 -0.945867
4 foo
two 0.290213 -0.932132
5 bar
two 0.495767 1.956030
6 foo
one 0.362949 0.017587
7 foo three 1.548106 -0.016692
In [109]: grouped = df.groupby('A')
# could also just call .describe()
In [110]: grouped['C'].apply(lambda x: x.describe())
Out[110]:
A
bar count
3.000000
mean
0.147823
std
0.301765
min
-0.042379
25%
-0.026149

500

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

50%
75%

-0.009920
0.242924
...
foo mean
0.505811
std
0.966450
min
-0.919854
25%
0.290213
50%
0.362949
75%
1.247642
max
1.548106
dtype: float64

The dimension of the returned result can also change:
In [111]: grouped = df.groupby('A')['C']
In [112]: def f(group):
.....:
return DataFrame({'original' : group,
.....:
'demeaned' : group - group.mean()})
.....:
In [113]: grouped.apply(f)
Out[113]:
demeaned original
0 -1.425665 -0.919854
1 -0.190202 -0.042379
2 0.741831 1.247642
3 -0.157743 -0.009920
4 -0.215598 0.290213
5 0.347944 0.495767
6 -0.142862 0.362949
7 1.042295 1.548106

apply on a Series can operate on a returned value from the applied function, that is itself a series, and possibly upcast
the result to a DataFrame
In [114]: def f(x):
.....:
return Series([ x, x**2 ], index = ['x', 'x^s'])
.....:
In [115]: s
Out[115]:
0
9.0
1
8.0
2
7.0
3
5.0
4
19.0
5
1.0
6
4.2
7
3.3
dtype: float64
In [116]:
Out[116]:
x
0
9.0
1
8.0
2
7.0
3
5.0

s.apply(f)
x^s
81.00
64.00
49.00
25.00

17.8. Flexible apply

501

pandas: powerful Python data analysis toolkit, Release 0.16.1

4
5
6
7

19.0
1.0
4.2
3.3

361.00
1.00
17.64
10.89

Note: apply can act as a reducer, transformer, or filter function, depending on exactly what is passed to apply. So
depending on the path taken, and exactly what you are grouping. Thus the grouped columns(s) may be included in the
output as well as set the indices.
Warning: In the current implementation apply calls func twice on the first group to decide whether it can take a
fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice
for the first group.
In [117]: d = DataFrame({"a":["x", "y"], "b":[1,2]})
In [118]: def identity(df):
.....:
print df
.....:
return df
.....:
In [119]: d.groupby("a").apply(identity)
a b
0 x 1
a b
0 x 1
a b
1 y 2
Out[119]:
a b
0 x 1
1 y 2

17.9 Other useful features
17.9.1 Automatic exclusion of “nuisance” columns
Again consider the example DataFrame we’ve been looking at:
In [120]: df
Out[120]:
A
B
C
D
0 foo
one -0.919854 -1.131345
1 bar
one -0.042379 -0.089329
2 foo
two 1.247642 0.337863
3 bar three -0.009920 -0.945867
4 foo
two 0.290213 -0.932132
5 bar
two 0.495767 1.956030
6 foo
one 0.362949 0.017587
7 foo three 1.548106 -0.016692

Supposed we wished to compute the standard deviation grouped by the A column. There is a slight problem, namely
that we don’t care about the data in column B. We refer to this as a “nuisance” column. If the passed aggregation

502

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

function can’t be applied to some columns, the troublesome columns will be (silently) dropped. Thus, this does not
pose any problems:
In [121]: df.groupby('A').std()
Out[121]:
C
D
A
bar 0.301765 1.490982
foo 0.966450 0.645875

17.9.2 NA group handling
If there are any NaN values in the grouping key, these will be automatically excluded. So there will never be an “NA
group”. This was not the case in older versions of pandas, but users were generally discarding the NA group anyway
(and supporting it was an implementation headache).

17.9.3 Grouping with ordered factors
Categorical variables represented as instance of pandas’s Categorical class can be used as group keys. If so, the
order of the levels will be preserved:
In [122]: data = Series(np.random.randn(100))
In [123]: factor = qcut(data, [0, .25, .5, .75, 1.])
In [124]: data.groupby(factor).mean()
Out[124]:
[-2.617, -0.684]
-1.331461
(-0.684, -0.0232]
-0.272816
(-0.0232, 0.541]
0.263607
(0.541, 2.369]
1.166038
dtype: float64

17.9.4 Grouping with a Grouper specification
Your may need to specify a bit more data to properly group. You can use the pd.Grouper to provide this local
control.
In [125]: import datetime as DT
In [126]: df = DataFrame({
.....:
'Branch' : 'A A A A A A A B'.split(),
.....:
'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
.....:
'Quantity': [1,3,5,1,8,1,9,3],
.....:
'Date' : [
.....:
DT.datetime(2013,1,1,13,0),
.....:
DT.datetime(2013,1,1,13,5),
.....:
DT.datetime(2013,10,1,20,0),
.....:
DT.datetime(2013,10,2,10,0),
.....:
DT.datetime(2013,10,1,20,0),
.....:
DT.datetime(2013,10,2,10,0),
.....:
DT.datetime(2013,12,2,12,0),
.....:
DT.datetime(2013,12,2,14,0),
.....:
]})

17.9. Other useful features

503

pandas: powerful Python data analysis toolkit, Release 0.16.1

.....:
In [127]: df
Out[127]:
Branch Buyer
0
A Carl
1
A Mark
2
A Carl
3
A Carl
4
A
Joe
5
A
Joe
6
A
Joe
7
B Carl

2013-01-01
2013-01-01
2013-10-01
2013-10-02
2013-10-01
2013-10-02
2013-12-02
2013-12-02

Date
13:00:00
13:05:00
20:00:00
10:00:00
20:00:00
10:00:00
12:00:00
14:00:00

Quantity
1
3
5
1
8
1
9
3

Groupby a specific column with the desired frequency. This is like resampling.
In [128]: df.groupby([pd.Grouper(freq='1M',key='Date'),'Buyer']).sum()
Out[128]:
Quantity
Date
Buyer
2013-01-31 Carl
1
Mark
3
2013-10-31 Carl
6
Joe
9
2013-12-31 Carl
3
Joe
9

You have an ambiguous specification in that you have a named index and a column that could be potential groupers.
In [129]: df = df.set_index('Date')
In [130]: df['Date'] = df.index + pd.offsets.MonthEnd(2)
In [131]: df.groupby([pd.Grouper(freq='6M',key='Date'),'Buyer']).sum()
Out[131]:
Quantity
Date
Buyer
2013-02-28 Carl
1
Mark
3
2014-02-28 Carl
9
Joe
18
In [132]: df.groupby([pd.Grouper(freq='6M',level='Date'),'Buyer']).sum()
Out[132]:
Quantity
Date
Buyer
2013-01-31 Carl
1
Mark
3
2014-01-31 Carl
9
Joe
18

17.9.5 Taking the first rows of each group
Just like for a DataFrame or Series you can call head and tail on a groupby:
In [133]: df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
In [134]: df

504

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[134]:
A B
0 1 2
1 1 4
2 5 6
In [135]: g = df.groupby('A')
In [136]: g.head(1)
Out[136]:
A B
0 1 2
2 5 6
In [137]: g.tail(1)
Out[137]:
A B
1 1 4
2 5 6

This shows the first or last n rows from each group.
Warning: Before 0.14.0 this was implemented with a fall-through apply, so the result would incorrectly respect
the as_index flag:
>>> g.head(1):
A B
A
1 0 1 2
5 2 5 6

# was equivalent to g.apply(lambda x: x.head(1))

17.9.6 Taking the nth row of each group
To select from a DataFrame or Series the nth item, use the nth method. This is a reduction method, and will return a
single row (or no row) per group if you pass an int for n:
In [138]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
In [139]: g = df.groupby('A')
In [140]: g.nth(0)
Out[140]:
B
A
1 NaN
5
6
In [141]: g.nth(-1)
Out[141]:
B
A
1 4
5 6
In [142]: g.nth(1)
Out[142]:

17.9. Other useful features

505

pandas: powerful Python data analysis toolkit, Release 0.16.1

B
A
1

4

If you want to select the nth not-null item, use the dropna kwarg. For a DataFrame this should be either ’any’ or
’all’ just like you would pass to dropna, for a Series this just needs to be truthy.
# nth(0) is the same as g.first()
In [143]: g.nth(0, dropna='any')
Out[143]:
B
A
1 4
5 6
In [144]: g.first()
Out[144]:
B
A
1 4
5 6
# nth(-1) is the same as g.last()
In [145]: g.nth(-1, dropna='any')
Out[145]:
B
A
1 4
5 6

# NaNs denote group exhausted when using dropna

In [146]: g.last()
Out[146]:
B
A
1 4
5 6
In [147]: g.B.nth(0, dropna=True)
Out[147]:
A
1
4
5
6
Name: B, dtype: float64

As with other methods, passing as_index=False, will achieve a filtration, which returns the grouped row.
In [148]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
In [149]: g = df.groupby('A',as_index=False)
In [150]: g.nth(0)
Out[150]:
A
B
0 1 NaN
2 5
6
In [151]: g.nth(-1)
Out[151]:
A B

506

Chapter 17. Group By: split-apply-combine

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
2

1
5

4
6

You can also select multiple rows from each group by specifying multiple nth values as a list of ints.
In [152]: business_dates = date_range(start='4/1/2014', end='6/30/2014', freq='B')
In [153]: df = DataFrame(1, index=business_dates, columns=['a', 'b'])
# get the first, 4th, and last date index for each month
In [154]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])
Out[154]:
a b
2014-04-01 1 1
2014-04-04 1 1
2014-04-30 1 1
2014-05-01 1 1
2014-05-06 1 1
2014-05-30 1 1
2014-06-02 1 1
2014-06-05 1 1
2014-06-30 1 1

17.9.7 Enumerate group items
New in version 0.13.0.
To see the order in which each row appears within its group, use the cumcount method:
In [155]: df = pd.DataFrame(list('aaabba'), columns=['A'])
In [156]: df
Out[156]:
A
0 a
1 a
2 a
3 b
4 b
5 a
In [157]: df.groupby('A').cumcount()
Out[157]:
0
0
1
1
2
2
3
0
4
1
5
3
dtype: int64
In [158]: df.groupby('A').cumcount(ascending=False)
Out[158]:
0
3
1
2
2
1
3
1
4
0

17.9. Other useful features

# kwarg only

507

pandas: powerful Python data analysis toolkit, Release 0.16.1

5
0
dtype: int64

17.9.8 Plotting
Groupby also works with some plotting methods. For example, suppose we suspect that some features in a DataFrame
my differ by group, in this case, the values in column 1 where the group is “B” are 3 higher on average.
In [159]: np.random.seed(1234)
In [160]: df = DataFrame(np.random.randn(50, 2))
In [161]: df['g'] = np.random.choice(['A', 'B'], size=50)
In [162]: df.loc[df['g'] == 'B', 1] += 3

We can easily visualize this with a boxplot:

In [163]: df.groupby('g').boxplot()
Out[163]: OrderedDict([('A', {'boxes': [, 
# 2014-08-01 is Friday
In [116]: Timestamp('2014-08-01 10:00').weekday()
Out[116]: 4
In [117]: Timestamp('2014-08-01 10:00') + bh
Out[117]: Timestamp('2014-08-01 11:00:00')
# Below example is the same as Timestamp('2014-08-01 09:00') + bh
In [118]: Timestamp('2014-08-01 08:00') + bh
Out[118]: Timestamp('2014-08-01 10:00:00')
# If the results is on the end time, move to the next business day
In [119]: Timestamp('2014-08-01 16:00') + bh
Out[119]: Timestamp('2014-08-04 09:00:00')
# Remainings are added to the next day
In [120]: Timestamp('2014-08-01 16:30') + bh
Out[120]: Timestamp('2014-08-04 09:30:00')
# Adding 2 business hours
In [121]: Timestamp('2014-08-01 10:00') + BusinessHour(2)
Out[121]: Timestamp('2014-08-01 12:00:00')
# Subtracting 3 business hours
In [122]: Timestamp('2014-08-01 10:00') + BusinessHour(-3)
Out[122]: Timestamp('2014-07-31 15:00:00')

Also, you can specify start and end time by keywords. Argument must be str which has hour:minute representation or datetime.time instance. Specifying seconds, microseconds and nanoseconds as business hour results
in ValueError.
20.5. DateOffset objects

567

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [123]: bh = BusinessHour(start='11:00', end=time(20, 0))
In [124]: bh
Out[124]: 
In [125]: Timestamp('2014-08-01 13:00') + bh
Out[125]: Timestamp('2014-08-01 14:00:00')
In [126]: Timestamp('2014-08-01 09:00') + bh
Out[126]: Timestamp('2014-08-01 12:00:00')
In [127]: Timestamp('2014-08-01 18:00') + bh
Out[127]: Timestamp('2014-08-01 19:00:00')

Passing start time later than end represents midnight business hour. In this case, business hour exceeds midnight
and overlap to the next day. Valid business hours are distinguished by whether it started from valid BusinessDay.
In [128]: bh = BusinessHour(start='17:00', end='09:00')
In [129]: bh
Out[129]: 
In [130]: Timestamp('2014-08-01 17:00') + bh
Out[130]: Timestamp('2014-08-01 18:00:00')
In [131]: Timestamp('2014-08-01 23:00') + bh
Out[131]: Timestamp('2014-08-02 00:00:00')
# Although 2014-08-02 is Satuaday,
# it is valid because it starts from 08-01 (Friday).
In [132]: Timestamp('2014-08-02 04:00') + bh
Out[132]: Timestamp('2014-08-02 05:00:00')
# Although 2014-08-04 is Monday,
# it is out of business hours because it starts from 08-03 (Sunday).
In [133]: Timestamp('2014-08-04 04:00') + bh
Out[133]: Timestamp('2014-08-04 18:00:00')

Applying BusinessHour.rollforward and rollback to out of business hours results in the next business
hour start or previous day’s end. Different from other offsets, BusinessHour.rollforward may output different
results from apply by definition.
This is because one day’s business hour end is equal to next day’s business hour start. For example, under the default business hours (9:00 - 17:00), there is no gap (0 minutes) between 2014-08-01 17:00 and 2014-08-04
09:00.
# This adjusts a Timestamp to business hour edge
In [134]: BusinessHour().rollback(Timestamp('2014-08-02 15:00'))
Out[134]: Timestamp('2014-08-01 17:00:00')
In [135]: BusinessHour().rollforward(Timestamp('2014-08-02 15:00'))
Out[135]: Timestamp('2014-08-04 09:00:00')
# It is the same as BusinessHour().apply(Timestamp('2014-08-01 17:00')).
# And it is the same as BusinessHour().apply(Timestamp('2014-08-04 09:00'))
In [136]: BusinessHour().apply(Timestamp('2014-08-02 15:00'))
Out[136]: Timestamp('2014-08-04 10:00:00')
# BusinessDay results (for reference)

568

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [137]: BusinessHour().rollforward(Timestamp('2014-08-02'))
Out[137]: Timestamp('2014-08-04 09:00:00')
# It is the same as BusinessDay().apply(Timestamp('2014-08-01'))
# The result is the same as rollworward because BusinessDay never overlap.
In [138]: BusinessHour().apply(Timestamp('2014-08-02'))
Out[138]: Timestamp('2014-08-04 10:00:00')

20.5.4 Offset Aliases
A number of string aliases are given to useful common time series frequencies. We will refer to these aliases as offset
aliases (referred to as time rules prior to v0.8.0).
Alias
B
C
D
W
M
BM
CBM
MS
BMS
CBMS
Q
BQ
QS
BQS
A
BA
AS
BAS
BH
H
T
S
L
U
N

Description
business day frequency
custom business day frequency (experimental)
calendar day frequency
weekly frequency
month end frequency
business month end frequency
custom business month end frequency
month start frequency
business month start frequency
custom business month start frequency
quarter end frequency
business quarter endfrequency
quarter start frequency
business quarter start frequency
year end frequency
business year end frequency
year start frequency
business year start frequency
business hour frequency
hourly frequency
minutely frequency
secondly frequency
milliseonds
microseconds
nanoseconds

20.5.5 Combining Aliases
As we have seen previously, the alias and the offset instance are fungible in most functions:
In [139]: date_range(start, periods=5, freq='B')
Out[139]:
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
'2011-01-07'],
dtype='datetime64[ns]', freq='B', tz=None)
In [140]: date_range(start, periods=5, freq=BDay())
Out[140]:
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',

20.5. DateOffset objects

569

pandas: powerful Python data analysis toolkit, Release 0.16.1

'2011-01-07'],
dtype='datetime64[ns]', freq='B', tz=None)

You can combine together day and intraday offsets:
In [141]: date_range(start, periods=10, freq='2h20min')
Out[141]:
DatetimeIndex(['2011-01-01 00:00:00', '2011-01-01 02:20:00',
'2011-01-01 04:40:00', '2011-01-01 07:00:00',
'2011-01-01 09:20:00', '2011-01-01 11:40:00',
'2011-01-01 14:00:00', '2011-01-01 16:20:00',
'2011-01-01 18:40:00', '2011-01-01 21:00:00'],
dtype='datetime64[ns]', freq='140T', tz=None)
In [142]: date_range(start, periods=10, freq='1D10U')
Out[142]:
DatetimeIndex([
'2011-01-01 00:00:00', '2011-01-02 00:00:00.000010',
'2011-01-03 00:00:00.000020', '2011-01-04 00:00:00.000030',
'2011-01-05 00:00:00.000040', '2011-01-06 00:00:00.000050',
'2011-01-07 00:00:00.000060', '2011-01-08 00:00:00.000070',
'2011-01-09 00:00:00.000080', '2011-01-10 00:00:00.000090'],
dtype='datetime64[ns]', freq='86400000010U', tz=None)

20.5.6 Anchored Offsets
For some frequencies you can specify an anchoring suffix:
Alias
W-SUN
W-MON
W-TUE
W-WED
W-THU
W-FRI
W-SAT
(B)Q(S)-DEC
(B)Q(S)-JAN
(B)Q(S)-FEB
(B)Q(S)-MAR
(B)Q(S)-APR
(B)Q(S)-MAY
(B)Q(S)-JUN
(B)Q(S)-JUL
(B)Q(S)-AUG
(B)Q(S)-SEP
(B)Q(S)-OCT
(B)Q(S)-NOV
(B)A(S)-DEC
(B)A(S)-JAN
(B)A(S)-FEB
(B)A(S)-MAR
(B)A(S)-APR
(B)A(S)-MAY
(B)A(S)-JUN

570

Description
weekly frequency (sundays). Same as ‘W’
weekly frequency (mondays)
weekly frequency (tuesdays)
weekly frequency (wednesdays)
weekly frequency (thursdays)
weekly frequency (fridays)
weekly frequency (saturdays)
quarterly frequency, year ends in December. Same as ‘Q’
quarterly frequency, year ends in January
quarterly frequency, year ends in February
quarterly frequency, year ends in March
quarterly frequency, year ends in April
quarterly frequency, year ends in May
quarterly frequency, year ends in June
quarterly frequency, year ends in July
quarterly frequency, year ends in August
quarterly frequency, year ends in September
quarterly frequency, year ends in October
quarterly frequency, year ends in November
annual frequency, anchored end of December. Same as ‘A’
annual frequency, anchored end of January
annual frequency, anchored end of February
annual frequency, anchored end of March
annual frequency, anchored end of April
annual frequency, anchored end of May
annual frequency, anchored end of June
Continued on next page
Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

Alias
(B)A(S)-JUL
(B)A(S)-AUG
(B)A(S)-SEP
(B)A(S)-OCT
(B)A(S)-NOV

Table 20.1 – continued from previous page
Description
annual frequency, anchored end of July
annual frequency, anchored end of August
annual frequency, anchored end of September
annual frequency, anchored end of October
annual frequency, anchored end of November

These can be used as arguments to date_range, bdate_range, constructors for DatetimeIndex, as well as
various other timeseries-related functions in pandas.

20.5.7 Legacy Aliases
Note that prior to v0.8.0, time rules had a slightly different look. pandas will continue to support the legacy time rules
for the time being but it is strongly recommended that you switch to using the new offset aliases.
Legacy Time Rule
WEEKDAY
EOM
W@MON
W@TUE
W@WED
W@THU
W@FRI
W@SAT
W@SUN
Q@JAN
Q@FEB
Q@MAR
A@JAN
A@FEB
A@MAR
A@APR
A@MAY
A@JUN
A@JUL
A@AUG
A@SEP
A@OCT
A@NOV
A@DEC
min
ms
us

Offset Alias
B
BM
W-MON
W-TUE
W-WED
W-THU
W-FRI
W-SAT
W-SUN
BQ-JAN
BQ-FEB
BQ-MAR
BA-JAN
BA-FEB
BA-MAR
BA-APR
BA-MAY
BA-JUN
BA-JUL
BA-AUG
BA-SEP
BA-OCT
BA-NOV
BA-DEC
T
L
U

As you can see, legacy quarterly and annual frequencies are business quarters and business year ends. Please also note
the legacy time rule for milliseconds ms versus the new offset alias for month start MS. This means that offset alias
parsing is case sensitive.

20.5.8 Holidays / Holiday Calendars
Holidays and calendars provide a simple way to define holiday rules to be used with CustomBusinessDay or
in other analysis that requires a predefined set of holidays. The AbstractHolidayCalendar class provides all
20.5. DateOffset objects

571

pandas: powerful Python data analysis toolkit, Release 0.16.1

the necessary methods to return a list of holidays and only rules need to be defined in a specific holiday calendar
class. Further, start_date and end_date class attributes determine over what date range holidays are generated.
These should be overwritten on the AbstractHolidayCalendar class to have the range apply to all calendar
subclasses. USFederalHolidayCalendar is the only calendar that exists and primarily serves as an example for
developing other calendars.
For holidays that occur on fixed dates (e.g., US Memorial Day or July 4th) an observance rule determines when that
holiday is observed if it falls on a weekend or some other non-observed day. Defined observance rules are:
Rule
nearest_workday
sunday_to_monday
next_monday_or_tuesday
previous_friday
next_monday

Description
move Saturday to Friday and Sunday to Monday
move Sunday to following Monday
move Saturday to Monday and Sunday/Monday to Tuesday
move Saturday and Sunday to previous Friday”
move Saturday and Sunday to following Monday

An example of how holidays and holiday calendars are defined:
In [143]: from pandas.tseries.holiday import Holiday, USMemorialDay,\
.....:
AbstractHolidayCalendar, nearest_workday, MO
.....:
In [144]: class ExampleCalendar(AbstractHolidayCalendar):
.....:
rules = [
.....:
USMemorialDay,
.....:
Holiday('July 4th', month=7, day=4, observance=nearest_workday),
.....:
Holiday('Columbus Day', month=10, day=1,
.....:
offset=DateOffset(weekday=MO(2))), #same as 2*Week(weekday=2)
.....:
]
.....:
In [145]: cal = ExampleCalendar()

In [146]: cal.holidays(datetime(2012, 1, 1), datetime(2012, 12, 31))
Out[146]: DatetimeIndex(['2012-05-28', '2012-07-04', '2012-10-08'], dtype='datetime64[ns]', freq=None

Using this calendar, creating an index or doing offset arithmetic skips weekends and holidays (i.e., Memorial Day/July
4th).
In [147]: DatetimeIndex(start='7/1/2012', end='7/10/2012',
.....:
freq=CDay(calendar=cal)).to_pydatetime()
.....:
Out[147]:
array([datetime.datetime(2012, 7, 2, 0, 0),
datetime.datetime(2012, 7, 3, 0, 0),
datetime.datetime(2012, 7, 5, 0, 0),
datetime.datetime(2012, 7, 6, 0, 0),
datetime.datetime(2012, 7, 9, 0, 0),
datetime.datetime(2012, 7, 10, 0, 0)], dtype=object)
In [148]: offset = CustomBusinessDay(calendar=cal)
In [149]: datetime(2012, 5, 25) + offset
Out[149]: Timestamp('2012-05-29 00:00:00')
In [150]: datetime(2012, 7, 3) + offset
Out[150]: Timestamp('2012-07-05 00:00:00')
In [151]: datetime(2012, 7, 3) + 2 * offset

572

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[151]: Timestamp('2012-07-06 00:00:00')
In [152]: datetime(2012, 7, 6) + offset
Out[152]: Timestamp('2012-07-09 00:00:00')

Ranges are defined by the start_date and end_date class attributes of AbstractHolidayCalendar. The
defaults are below.
In [153]: AbstractHolidayCalendar.start_date
Out[153]: Timestamp('1970-01-01 00:00:00')
In [154]: AbstractHolidayCalendar.end_date
Out[154]: Timestamp('2030-12-31 00:00:00')

These dates can be overwritten by setting the attributes as datetime/Timestamp/string.
In [155]: AbstractHolidayCalendar.start_date = datetime(2012, 1, 1)
In [156]: AbstractHolidayCalendar.end_date = datetime(2012, 12, 31)

In [157]: cal.holidays()
Out[157]: DatetimeIndex(['2012-05-28', '2012-07-04', '2012-10-08'], dtype='datetime64[ns]', freq=None

Every calendar class is accessible by name using the get_calendar function which returns a holiday class instance.
Any imported calendar class will automatically be available by this function. Also, HolidayCalendarFactory
provides an easy interface to create calendars that are combinations of calendars or calendars with additional rules.
In [158]: from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory,\
.....:
USLaborDay
.....:
In [159]: cal = get_calendar('ExampleCalendar')
In [160]:
Out[160]:
[Holiday:
Holiday:
Holiday:

cal.rules
MemorialDay (month=5, day=24, offset=),
July 4th (month=7, day=4, observance=),
Columbus Day (month=10, day=1, offset=)]

In [161]: new_cal = HolidayCalendarFactory('NewExampleCalendar', cal, USLaborDay)
In [162]:
Out[162]:
[Holiday:
Holiday:
Holiday:
Holiday:

new_cal.rules
Labor Day (month=9, day=1, offset=),
Columbus Day (month=10, day=1, offset=),
July 4th (month=7, day=4, observance=),
MemorialDay (month=5, day=24, offset=)]

20.6 Time series-related instance methods
20.6.1 Shifting / lagging
One may want to shift or lag the values in a TimeSeries back and forward in time. The method for this is shift,
which is available on all of the pandas objects.

20.6. Time series-related instance methods

573

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [163]: ts = ts[:5]
In [164]: ts.shift(1)
Out[164]:
2011-01-31
NaN
2011-02-28
-1.281247
2011-03-31
-0.727707
2011-04-29
-0.121306
2011-05-31
-0.097883
Freq: BM, dtype: float64

The shift method accepts an freq argument which can accept a DateOffset class or other timedelta-like object
or also a offset alias:
In [165]: ts.shift(5, freq=datetools.bday)
Out[165]:
2011-02-07
-1.281247
2011-03-07
-0.727707
2011-04-07
-0.121306
2011-05-06
-0.097883
2011-06-07
0.695775
dtype: float64
In [166]: ts.shift(5, freq='BM')
Out[166]:
2011-06-30
-1.281247
2011-07-29
-0.727707
2011-08-31
-0.121306
2011-09-30
-0.097883
2011-10-31
0.695775
Freq: BM, dtype: float64

Rather than changing the alignment of the data and the index, DataFrame and TimeSeries objects also have a
tshift convenience method that changes all the dates in the index by a specified number of offsets:
In [167]: ts.tshift(5, freq='D')
Out[167]:
2011-02-05
-1.281247
2011-03-05
-0.727707
2011-04-05
-0.121306
2011-05-04
-0.097883
2011-06-05
0.695775
dtype: float64

Note that with tshift, the leading entry is no longer NaN because the data is not being realigned.

20.6.2 Frequency conversion
The primary function for changing frequencies is the asfreq function. For a DatetimeIndex, this is basically
just a thin, but convenient wrapper around reindex which generates a date_range and calls reindex.
In [168]: dr = date_range('1/1/2010', periods=3, freq=3 * datetools.bday)
In [169]: ts = Series(randn(3), index=dr)
In [170]: ts
Out[170]:
2010-01-01
-0.659574

574

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

2010-01-06
1.494522
2010-01-11
-0.778425
Freq: 3B, dtype: float64
In [171]: ts.asfreq(BDay())
Out[171]:
2010-01-01
-0.659574
2010-01-04
NaN
2010-01-05
NaN
2010-01-06
1.494522
2010-01-07
NaN
2010-01-08
NaN
2010-01-11
-0.778425
Freq: B, dtype: float64

asfreq provides a further convenience so you can specify an interpolation method for any gaps that may appear after
the frequency conversion
In [172]: ts.asfreq(BDay(), method='pad')
Out[172]:
2010-01-01
-0.659574
2010-01-04
-0.659574
2010-01-05
-0.659574
2010-01-06
1.494522
2010-01-07
1.494522
2010-01-08
1.494522
2010-01-11
-0.778425
Freq: B, dtype: float64

20.6.3 Filling forward / backward
Related to asfreq and reindex is the fillna function documented in the missing data section.

20.6.4 Converting to Python datetimes
DatetimeIndex can be converted to an array of Python native datetime.datetime objects using the
to_pydatetime method.

20.7 Up- and downsampling
With 0.8, pandas introduces simple, powerful, and efficient functionality for performing resampling operations during
frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not
limited to, financial applications.
See some cookbook examples for some advanced strategies
In [173]: rng = date_range('1/1/2012', periods=100, freq='S')
In [174]: ts = Series(randint(0, 500, len(rng)), index=rng)
In [175]: ts.resample('5Min', how='sum')
Out[175]:
2012-01-01
25103
Freq: 5T, dtype: int32

20.7. Up- and downsampling

575

pandas: powerful Python data analysis toolkit, Release 0.16.1

The resample function is very flexible and allows you to specify many different parameters to control the frequency
conversion and resampling operation.
The how parameter can be a function name or numpy array function that takes an array and produces aggregated
values:
In [176]: ts.resample('5Min') # default is mean
Out[176]:
2012-01-01
251.03
Freq: 5T, dtype: float64
In [177]: ts.resample('5Min', how='ohlc')
Out[177]:
open high low close
2012-01-01
308
460
9
205
In [178]: ts.resample('5Min', how=np.max)
Out[178]:
2012-01-01
460
Freq: 5T, dtype: int32

Any function available via dispatching can be given to the how parameter by name, including sum, mean, std, sem,
max, min, median, first, last, ohlc.
For downsampling, closed can be set to ‘left’ or ‘right’ to specify which end of the interval is closed:
In [179]: ts.resample('5Min', closed='right')
Out[179]:
2011-12-31 23:55:00
308.000000
2012-01-01 00:00:00
250.454545
Freq: 5T, dtype: float64
In [180]: ts.resample('5Min', closed='left')
Out[180]:
2012-01-01
251.03
Freq: 5T, dtype: float64

For upsampling, the fill_method and limit parameters can be specified to interpolate over the gaps that are
created:
# from secondly to every 250 milliseconds
In [181]: ts[:2].resample('250L')
Out[181]:
2012-01-01 00:00:00
308
2012-01-01 00:00:00.250000
NaN
2012-01-01 00:00:00.500000
NaN
2012-01-01 00:00:00.750000
NaN
2012-01-01 00:00:01
204
Freq: 250L, dtype: float64
In [182]: ts[:2].resample('250L', fill_method='pad')
Out[182]:
2012-01-01 00:00:00
308
2012-01-01 00:00:00.250000
308
2012-01-01 00:00:00.500000
308
2012-01-01 00:00:00.750000
308
2012-01-01 00:00:01
204
Freq: 250L, dtype: int32
In [183]: ts[:2].resample('250L', fill_method='pad', limit=2)

576

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[183]:
2012-01-01 00:00:00
2012-01-01 00:00:00.250000
2012-01-01 00:00:00.500000
2012-01-01 00:00:00.750000
2012-01-01 00:00:01
Freq: 250L, dtype: float64

308
308
308
NaN
204

Parameters like label and loffset are used to manipulate the resulting labels. label specifies whether the result
is labeled with the beginning or the end of the interval. loffset performs a time adjustment on the output labels.
In [184]: ts.resample('5Min') # by default label='right'
Out[184]:
2012-01-01
251.03
Freq: 5T, dtype: float64
In [185]: ts.resample('5Min', label='left')
Out[185]:
2012-01-01
251.03
Freq: 5T, dtype: float64
In [186]: ts.resample('5Min', label='left', loffset='1s')
Out[186]:
2012-01-01 00:00:01
251.03
dtype: float64

The axis parameter can be set to 0 or 1 and allows you to resample the specified axis for a DataFrame.
kind can be set to ‘timestamp’ or ‘period’ to convert the resulting index to/from time-stamp and time-span representations. By default resample retains the input representation.
convention can be set to ‘start’ or ‘end’ when resampling period data (detail below). It specifies how low frequency
periods are converted to higher frequency periods.
Note that 0.8 marks a watershed in the timeseries functionality in pandas. In previous versions, resampling had to be
done using a combination of date_range, groupby with asof, and then calling an aggregation function on the
grouped object. This was not nearly as convenient or performant as the new pandas timeseries API.

20.8 Time Span Representation
Regular intervals of time are represented by Period objects in pandas while sequences of Period objects are
collected in a PeriodIndex, which can be created with the convenience function period_range.

20.8.1 Period
A Period represents a span of time (e.g., a day, a month, a quarter, etc). It can be created using a frequency alias:
In [187]: Period('2012', freq='A-DEC')
Out[187]: Period('2012', 'A-DEC')
In [188]: Period('2012-1-1', freq='D')
Out[188]: Period('2012-01-01', 'D')
In [189]: Period('2012-1-1 19:00', freq='H')
Out[189]: Period('2012-01-01 19:00', 'H')

20.8. Time Span Representation

577

pandas: powerful Python data analysis toolkit, Release 0.16.1

Unlike time stamped data, pandas does not support frequencies at multiples of DateOffsets (e.g., ‘3Min’) for periods.
Adding and subtracting integers from periods shifts the period by its own frequency.
In [190]: p = Period('2012', freq='A-DEC')
In [191]: p + 1
Out[191]: Period('2013', 'A-DEC')
In [192]: p - 3
Out[192]: Period('2009', 'A-DEC')

If Period freq is daily or higher (D, H, T, S, L, U, N), offsets and timedelta-like can be added if the result can
have the same freq. Otherise, ValueError will be raised.
In [193]: p = Period('2014-07-01 09:00', freq='H')
In [194]: p + Hour(2)
Out[194]: Period('2014-07-01 11:00', 'H')
In [195]: p + timedelta(minutes=120)
Out[195]: Period('2014-07-01 11:00', 'H')
In [196]: p + np.timedelta64(7200, 's')
Out[196]: Period('2014-07-01 11:00', 'H')
In [1]: p + Minute(5)
Traceback
...
ValueError: Input has different freq from Period(freq=H)

If Period has other freqs, only the same offsets can be added. Otherwise, ValueError will be raised.
In [197]: p = Period('2014-07', freq='M')
In [198]: p + MonthEnd(3)
Out[198]: Period('2014-10', 'M')
In [1]: p + MonthBegin(3)
Traceback
...
ValueError: Input has different freq from Period(freq=M)

Taking the difference of Period instances with the same frequency will return the number of frequency units between
them:
In [199]: Period('2012', freq='A-DEC') - Period('2002', freq='A-DEC')
Out[199]: 10L

20.8.2 PeriodIndex and period_range
Regular sequences of Period objects can be collected in a PeriodIndex, which can be constructed using the
period_range convenience function:
In [200]: prng = period_range('1/1/2011', '1/1/2012', freq='M')
In [201]: prng
Out[201]:

578

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06',
'2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12',
'2012-01'],
dtype='int64', freq='M')

The PeriodIndex constructor can also be used directly:
In [202]: PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M')
Out[202]: PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='int64', freq='M')

Just like DatetimeIndex, a PeriodIndex can also be used to index pandas objects:
In [203]: ps = Series(randn(len(prng)), prng)
In [204]: ps
Out[204]:
2011-01
-0.253355
2011-02
-1.426908
2011-03
1.548971
2011-04
-0.088718
2011-05
-1.771348
2011-06
-0.989328
2011-07
-1.584789
2011-08
-0.288786
2011-09
-2.029806
2011-10
-0.761200
2011-11
-1.603608
2011-12
1.756171
2012-01
0.256502
Freq: M, dtype: float64

PeriodIndex supports addition and subtraction with the same rule as Period.
In [205]: idx = period_range('2014-07-01 09:00', periods=5, freq='H')
In [206]: idx
Out[206]:
PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00',
'2014-07-01 12:00', '2014-07-01 13:00'],
dtype='int64', freq='H')
In [207]: idx + Hour(2)
Out[207]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
'2014-07-01 14:00', '2014-07-01 15:00'],
dtype='int64', freq='H')
In [208]: idx = period_range('2014-07', periods=5, freq='M')

In [209]: idx
Out[209]: PeriodIndex(['2014-07', '2014-08', '2014-09', '2014-10', '2014-11'], dtype='int64', freq='M

In [210]: idx + MonthEnd(3)
Out[210]: PeriodIndex(['2014-10', '2014-11', '2014-12', '2015-01', '2015-02'], dtype='int64', freq='M

20.8. Time Span Representation

579

pandas: powerful Python data analysis toolkit, Release 0.16.1

20.8.3 PeriodIndex Partial String Indexing
You can pass in dates and strings to Series and DataFrame with PeriodIndex, in the same manner as
DatetimeIndex. For details, refer to DatetimeIndex Partial String Indexing.
In [211]: ps['2011-01']
Out[211]: -0.25335528290092818
In [212]: ps[datetime(2011, 12, 25):]
Out[212]:
2011-12
1.756171
2012-01
0.256502
Freq: M, dtype: float64
In [213]: ps['10/31/2011':'12/31/2011']
Out[213]:
2011-10
-0.761200
2011-11
-1.603608
2011-12
1.756171
Freq: M, dtype: float64

Passing a string representing a lower frequency than PeriodIndex returns partial sliced data.
In [214]: ps['2011']
Out[214]:
2011-01
-0.253355
2011-02
-1.426908
2011-03
1.548971
2011-04
-0.088718
2011-05
-1.771348
2011-06
-0.989328
2011-07
-1.584789
2011-08
-0.288786
2011-09
-2.029806
2011-10
-0.761200
2011-11
-1.603608
2011-12
1.756171
Freq: M, dtype: float64
In [215]: dfp = DataFrame(randn(600,1), columns=['A'],
.....:
index=period_range('2013-01-01 9:00', periods=600, freq='T'))
.....:
In [216]: dfp
Out[216]:
2013-01-01
2013-01-01
2013-01-01
2013-01-01
2013-01-01
2013-01-01
2013-01-01
...
2013-01-01
2013-01-01
2013-01-01
2013-01-01
2013-01-01

580

A
09:00 0.020601
09:01 -0.411719
09:02 2.079413
09:03 -1.077911
09:04 0.099258
09:05 -0.089851
09:06 0.711329
...
18:53 -1.340038
18:54 1.315461
18:55 2.396188
18:56 -0.501527
18:57 -3.171938

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

2013-01-01 18:58
2013-01-01 18:59

0.142019
0.606998

[600 rows x 1 columns]
In [217]: dfp['2013-01-01 10H']
Out[217]:
A
2013-01-01 10:00 -0.745396
2013-01-01 10:01 0.141880
2013-01-01 10:02 -1.077754
2013-01-01 10:03 -1.301174
2013-01-01 10:04 -0.269628
2013-01-01 10:05 -0.456347
2013-01-01 10:06 0.157766
...
...
2013-01-01 10:53 0.168057
2013-01-01 10:54 -0.214306
2013-01-01 10:55 -0.069739
2013-01-01 10:56 -1.511809
2013-01-01 10:57 0.307021
2013-01-01 10:58 1.449776
2013-01-01 10:59 0.782537
[60 rows x 1 columns]

As with DatetimeIndex, the endpoints will be included in the result. The example below slices data starting from
10:00 to 11:59.
In [218]: dfp['2013-01-01 10H':'2013-01-01 11H']
Out[218]:
A
2013-01-01 10:00 -0.745396
2013-01-01 10:01 0.141880
2013-01-01 10:02 -1.077754
2013-01-01 10:03 -1.301174
2013-01-01 10:04 -0.269628
2013-01-01 10:05 -0.456347
2013-01-01 10:06 0.157766
...
...
2013-01-01 11:53 -0.064395
2013-01-01 11:54 0.350193
2013-01-01 11:55 1.336433
2013-01-01 11:56 -0.438701
2013-01-01 11:57 -0.915841
2013-01-01 11:58 0.294215
2013-01-01 11:59 0.040959
[120 rows x 1 columns]

20.8.4 Frequency Conversion and Resampling with PeriodIndex
The frequency of Period and PeriodIndex can be converted via the asfreq method. Let’s start with the fiscal
year 2011, ending in December:
In [219]: p = Period('2011', freq='A-DEC')

20.8. Time Span Representation

581

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [220]: p
Out[220]: Period('2011', 'A-DEC')

We can convert it to a monthly frequency. Using the how parameter, we can specify whether to return the starting or
ending month:
In [221]: p.asfreq('M', how='start')
Out[221]: Period('2011-01', 'M')
In [222]: p.asfreq('M', how='end')
Out[222]: Period('2011-12', 'M')

The shorthands ‘s’ and ‘e’ are provided for convenience:
In [223]: p.asfreq('M', 's')
Out[223]: Period('2011-01', 'M')
In [224]: p.asfreq('M', 'e')
Out[224]: Period('2011-12', 'M')

Converting to a “super-period” (e.g., annual frequency is a super-period of quarterly frequency) automatically returns
the super-period that includes the input period:
In [225]: p = Period('2011-12', freq='M')
In [226]: p.asfreq('A-NOV')
Out[226]: Period('2012', 'A-NOV')

Note that since we converted to an annual frequency that ends the year in November, the monthly period of December
2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful
for working with various quarterly data common to economics, business, and other fields. Many organizations define
quarters relative to the month in which their fiscal year starts and ends. Thus, first quarter of 2011 could start in 2010
or a few months into 2011. Via anchored frequencies, pandas works for all quarterly frequencies Q-JAN through
Q-DEC.
Q-DEC define regular calendar quarters:
In [227]: p = Period('2012Q1', freq='Q-DEC')
In [228]: p.asfreq('D', 's')
Out[228]: Period('2012-01-01', 'D')
In [229]: p.asfreq('D', 'e')
Out[229]: Period('2012-03-31', 'D')

Q-MAR defines fiscal year end in March:
In [230]: p = Period('2011Q4', freq='Q-MAR')
In [231]: p.asfreq('D', 's')
Out[231]: Period('2011-01-01', 'D')
In [232]: p.asfreq('D', 'e')
Out[232]: Period('2011-03-31', 'D')

582

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

20.9 Converting between Representations
Timestamped data can be converted to PeriodIndex-ed data using to_period and vice-versa using
to_timestamp:
In [233]: rng = date_range('1/1/2012', periods=5, freq='M')
In [234]: ts = Series(randn(len(rng)), index=rng)
In [235]: ts
Out[235]:
2012-01-31
-0.016142
2012-02-29
0.865782
2012-03-31
0.246439
2012-04-30
-1.199736
2012-05-31
0.407620
Freq: M, dtype: float64
In [236]: ps = ts.to_period()
In [237]: ps
Out[237]:
2012-01
-0.016142
2012-02
0.865782
2012-03
0.246439
2012-04
-1.199736
2012-05
0.407620
Freq: M, dtype: float64
In [238]: ps.to_timestamp()
Out[238]:
2012-01-01
-0.016142
2012-02-01
0.865782
2012-03-01
0.246439
2012-04-01
-1.199736
2012-05-01
0.407620
Freq: MS, dtype: float64

Remember that ‘s’ and ‘e’ can be used to return the timestamps at the start or end of the period:
In [239]: ps.to_timestamp('D', how='s')
Out[239]:
2012-01-01
-0.016142
2012-02-01
0.865782
2012-03-01
0.246439
2012-04-01
-1.199736
2012-05-01
0.407620
Freq: MS, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following
example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following
the quarter end:
In [240]: prng = period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [241]: ts = Series(randn(len(prng)), prng)
In [242]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

20.9. Converting between Representations

583

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [243]: ts.head()
Out[243]:
1990-03-01 09:00
-2.470970
1990-06-01 09:00
-0.929915
1990-09-01 09:00
1.385889
1990-12-01 09:00
-1.830966
1991-03-01 09:00
-0.328505
Freq: H, dtype: float64

20.10 Representing out-of-bounds spans
If you have data that is outside of the Timestamp bounds, see Timestamp limitations, then you can use a
PeriodIndex and/or Series of Periods to do computations.
In [244]: span = period_range('1215-01-01', '1381-01-01', freq='D')
In [245]: span
Out[245]:
PeriodIndex(['1215-01-01',
'1215-01-05',
'1215-01-09',
...
'1380-12-23',
'1380-12-27',
'1380-12-31',
dtype='int64',

'1215-01-02', '1215-01-03', '1215-01-04',
'1215-01-06', '1215-01-07', '1215-01-08',
'1215-01-10',
'1380-12-24', '1380-12-25', '1380-12-26',
'1380-12-28', '1380-12-29', '1380-12-30',
'1381-01-01'],
length=60632, freq='D')

To convert from a int64 based YYYYMMDD representation.
In [246]: s = Series([20121231, 20141130, 99991231])
In [247]: s
Out[247]:
0
20121231
1
20141130
2
99991231
dtype: int64
In [248]: def conv(x):
.....:
return Period(year = x // 10000, month = x//100 % 100, day = x%100, freq='D')
.....:
In [249]: s.apply(conv)
Out[249]:
0
2012-12-31
1
2014-11-30
2
9999-12-31
dtype: object
In [250]: s.apply(conv)[2]
Out[250]: Period('9999-12-31', 'D')

These can easily be converted to a PeriodIndex
In [251]: span = PeriodIndex(s.apply(conv))

584

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [252]: span
Out[252]: PeriodIndex(['2012-12-31', '2014-11-30', '9999-12-31'], dtype='int64', freq='D')

20.11 Time Zone Handling
Pandas provides rich support for working with timestamps in different time zones using pytz and dateutil libraries. dateutil support is new in 0.14.1 and currently only supported for fixed offset and tzfile zones. The
default library is pytz. Support for dateutil is provided for compatibility with other applications e.g. if you use
dateutil in other python packages.

20.11.1 Working with Time Zones
By default, pandas objects are time zone unaware:
In [253]: rng = date_range('3/6/2012 00:00', periods=15, freq='D')
In [254]: rng.tz is None
Out[254]: True

To supply the time zone, you can use the tz keyword to date_range and other functions. Dateutil time zone strings
are distinguished from pytz time zones by starting with dateutil/.
• In pytz you can find a list of common (and less common) time zones using from pytz import
common_timezones, all_timezones.
• dateutil uses the OS timezones so there isn’t a fixed list available. For common zones, the names are the
same as pytz.
# pytz
In [255]: rng_pytz = date_range('3/6/2012 00:00', periods=10, freq='D',
.....:
tz='Europe/London')
.....:
In [256]: rng_pytz.tz
Out[256]: 
# dateutil
In [257]: rng_dateutil = date_range('3/6/2012 00:00', periods=10, freq='D',
.....:
tz='dateutil/Europe/London')
.....:
In [258]: rng_dateutil.tz
Out[258]: tzfile('Europe/Belfast')
# dateutil - utc special case
In [259]: rng_utc = date_range('3/6/2012 00:00', periods=10, freq='D',
.....:
tz=dateutil.tz.tzutc())
.....:
In [260]: rng_utc.tz
Out[260]: tzutc()

Note that the UTC timezone is a special case in dateutil and should be constructed explicitly as an instance of
dateutil.tz.tzutc. You can also construct other timezones explicitly first, which gives you more control over
which time zone is used:

20.11. Time Zone Handling

585

pandas: powerful Python data analysis toolkit, Release 0.16.1

# pytz
In [261]: tz_pytz = pytz.timezone('Europe/London')
In [262]: rng_pytz = date_range('3/6/2012 00:00', periods=10, freq='D',
.....:
tz=tz_pytz)
.....:
In [263]: rng_pytz.tz == tz_pytz
Out[263]: True
# dateutil
In [264]: tz_dateutil = dateutil.tz.gettz('Europe/London')
In [265]: rng_dateutil = date_range('3/6/2012 00:00', periods=10, freq='D',
.....:
tz=tz_dateutil)
.....:
In [266]: rng_dateutil.tz == tz_dateutil
Out[266]: True

Timestamps, like Python’s datetime.datetime object can be either time zone naive or time zone aware. Naive
time series and DatetimeIndex objects can be localized using tz_localize:
In [267]: ts = Series(randn(len(rng)), rng)
In [268]: ts_utc = ts.tz_localize('UTC')
In [269]: ts_utc
Out[269]:
2012-03-06 00:00:00+00:00
2012-03-07 00:00:00+00:00
2012-03-08 00:00:00+00:00
2012-03-09 00:00:00+00:00
2012-03-10 00:00:00+00:00
2012-03-11 00:00:00+00:00
2012-03-12 00:00:00+00:00
2012-03-13 00:00:00+00:00
2012-03-14 00:00:00+00:00
2012-03-15 00:00:00+00:00
2012-03-16 00:00:00+00:00
2012-03-17 00:00:00+00:00
2012-03-18 00:00:00+00:00
2012-03-19 00:00:00+00:00
2012-03-20 00:00:00+00:00
Freq: D, dtype: float64

0.758606
2.190827
0.706087
1.798831
1.228481
-0.179494
0.634073
0.262123
1.928233
0.322573
-0.711113
1.444272
-0.352268
0.213008
-0.619340

Again, you can explicitly construct the timezone object first. You can use the tz_convert method to convert pandas
objects to convert tz-aware data to another time zone:
In [270]: ts_utc.tz_convert('US/Eastern')
Out[270]:
2012-03-05 19:00:00-05:00
0.758606
2012-03-06 19:00:00-05:00
2.190827
2012-03-07 19:00:00-05:00
0.706087
2012-03-08 19:00:00-05:00
1.798831
2012-03-09 19:00:00-05:00
1.228481
2012-03-10 19:00:00-05:00
-0.179494
2012-03-11 20:00:00-04:00
0.634073
2012-03-12 20:00:00-04:00
0.262123

586

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

2012-03-13 20:00:00-04:00
2012-03-14 20:00:00-04:00
2012-03-15 20:00:00-04:00
2012-03-16 20:00:00-04:00
2012-03-17 20:00:00-04:00
2012-03-18 20:00:00-04:00
2012-03-19 20:00:00-04:00
Freq: D, dtype: float64

1.928233
0.322573
-0.711113
1.444272
-0.352268
0.213008
-0.619340

Warning: Be wary of conversions between libraries. For some zones pytz and dateutil have different definitions of the zone. This is more of a problem for unusual timezones than for ‘standard’ zones like US/Eastern.
Warning: Be aware that a timezone definition across versions of timezone libraries may not be considered equal.
This may cause problems when working with stored data that is localized using one version and operated on with
a different version. See here for how to handle such a situation.
Warning:
It is incorrect to pass a timezone directly into the datetime.datetime constructor (e.g.,
datetime.datetime(2011, 1, 1, tz=timezone(’US/Eastern’)). Instead, the datetime needs
to be localized using the the localize method on the timezone.
Under the hood, all timestamps are stored in UTC. Scalar values from a DatetimeIndex with a time zone will have
their fields (day, hour, minute) localized to the time zone. However, timestamps with the same UTC value are still
considered to be equal even if they are in different time zones:
In [271]: rng_eastern = rng_utc.tz_convert('US/Eastern')
In [272]: rng_berlin = rng_utc.tz_convert('Europe/Berlin')
In [273]: rng_eastern[5]
Out[273]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', offset='D')
In [274]: rng_berlin[5]
Out[274]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', offset='D')
In [275]: rng_eastern[5] == rng_berlin[5]
Out[275]: True

Like Series, DataFrame, and DatetimeIndex, Timestamps can be converted to other time zones using tz_convert:
In [276]: rng_eastern[5]
Out[276]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', offset='D')
In [277]: rng_berlin[5]
Out[277]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', offset='D')
In [278]: rng_eastern[5].tz_convert('Europe/Berlin')
Out[278]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin')

Localization of Timestamps functions just like DatetimeIndex and TimeSeries:
In [279]: rng[5]
Out[279]: Timestamp('2012-03-11 00:00:00', offset='D')
In [280]: rng[5].tz_localize('Asia/Shanghai')
Out[280]: Timestamp('2012-03-11 00:00:00+0800', tz='Asia/Shanghai')

20.11. Time Zone Handling

587

pandas: powerful Python data analysis toolkit, Release 0.16.1

Operations between TimeSeries in different time zones will yield UTC TimeSeries, aligning the data on the UTC
timestamps:
In [281]: eastern = ts_utc.tz_convert('US/Eastern')
In [282]: berlin = ts_utc.tz_convert('Europe/Berlin')
In [283]: result = eastern + berlin
In [284]: result
Out[284]:
2012-03-06 00:00:00+00:00
2012-03-07 00:00:00+00:00
2012-03-08 00:00:00+00:00
2012-03-09 00:00:00+00:00
2012-03-10 00:00:00+00:00
2012-03-11 00:00:00+00:00
2012-03-12 00:00:00+00:00
2012-03-13 00:00:00+00:00
2012-03-14 00:00:00+00:00
2012-03-15 00:00:00+00:00
2012-03-16 00:00:00+00:00
2012-03-17 00:00:00+00:00
2012-03-18 00:00:00+00:00
2012-03-19 00:00:00+00:00
2012-03-20 00:00:00+00:00
Freq: D, dtype: float64

1.517212
4.381654
1.412174
3.597662
2.456962
-0.358988
1.268146
0.524245
3.856466
0.645146
-1.422226
2.888544
-0.704537
0.426017
-1.238679

In [285]: result.index
Out[285]:
DatetimeIndex(['2012-03-06', '2012-03-07', '2012-03-08', '2012-03-09',
'2012-03-10', '2012-03-11', '2012-03-12', '2012-03-13',
'2012-03-14', '2012-03-15', '2012-03-16', '2012-03-17',
'2012-03-18', '2012-03-19', '2012-03-20'],
dtype='datetime64[ns]', freq='D', tz='UTC')

To remove timezone from tz-aware DatetimeIndex, use tz_localize(None) or tz_convert(None).
tz_localize(None) will remove timezone holding local time representations. tz_convert(None) will remove timezone after converting to UTC time.
In [286]: didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
In [287]: didx
Out[287]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
'2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
'2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
'2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
'2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
dtype='datetime64[ns]', freq='H', tz='US/Eastern')
In [288]: didx.tz_localize(None)
Out[288]:
DatetimeIndex(['2014-08-01 09:00:00',
'2014-08-01 11:00:00',
'2014-08-01 13:00:00',
'2014-08-01 15:00:00',
'2014-08-01 17:00:00',
dtype='datetime64[ns]',

588

'2014-08-01 10:00:00',
'2014-08-01 12:00:00',
'2014-08-01 14:00:00',
'2014-08-01 16:00:00',
'2014-08-01 18:00:00'],
freq='H', tz=None)

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [289]: didx.tz_convert(None)
Out[289]:
DatetimeIndex(['2014-08-01 13:00:00',
'2014-08-01 15:00:00',
'2014-08-01 17:00:00',
'2014-08-01 19:00:00',
'2014-08-01 21:00:00',
dtype='datetime64[ns]',

'2014-08-01 14:00:00',
'2014-08-01 16:00:00',
'2014-08-01 18:00:00',
'2014-08-01 20:00:00',
'2014-08-01 22:00:00'],
freq='H', tz=None)

# tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
In [290]: didx.tz_convert('UCT').tz_localize(None)
Out[290]:
DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00',
'2014-08-01 19:00:00', '2014-08-01 20:00:00',
'2014-08-01 21:00:00', '2014-08-01 22:00:00'],
dtype='datetime64[ns]', freq='H', tz=None)

20.11.2 Ambiguous Times when Localizing
In some cases, localize cannot determine the DST and non-DST hours when there are duplicates. This often happens when reading files or database records that simply duplicate the hours. Passing ambiguous=’infer’
(infer_dst argument in prior releases) into tz_localize will attempt to determine the right offset. Below
the top example will fail as it contains ambiguous times and the bottom will infer the right offset.
In [291]: rng_hourly = DatetimeIndex(['11/06/2011 00:00', '11/06/2011 01:00',
.....:
'11/06/2011 01:00', '11/06/2011 02:00',
.....:
'11/06/2011 03:00'])
.....:
# This will fail as there are ambiguous times
In [292]: rng_hourly.tz_localize('US/Eastern')
--------------------------------------------------------------------------AmbiguousTimeError
Traceback (most recent call last)
 in ()
----> 1 rng_hourly.tz_localize('US/Eastern')
/home/joris/scipy/pandas/pandas/util/decorators.pyc in wrapper(*args, **kwargs)
86
else:
87
kwargs[new_arg_name] = new_arg_value
---> 88
return func(*args, **kwargs)
89
return wrapper
90
return _deprecate_kwarg
/home/joris/scipy/pandas/pandas/tseries/index.pyc in tz_localize(self, tz, ambiguous)
1644
1645
new_dates = tslib.tz_localize_to_utc(self.asi8, tz,
-> 1646
ambiguous=ambiguous)
1647
new_dates = new_dates.view(_NS_DTYPE)
1648
return self._shallow_copy(new_dates, tz=tz)
/home/joris/scipy/pandas/pandas/tslib.so in pandas.tslib.tz_localize_to_utc (pandas/tslib.c:46871)()

AmbiguousTimeError: Cannot infer dst time from Timestamp('2011-11-06 01:00:00'), try using the 'ambig

20.11. Time Zone Handling

589

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [293]: rng_hourly_eastern = rng_hourly.tz_localize('US/Eastern', ambiguous='infer')
In [294]: rng_hourly_eastern.tolist()
Out[294]:
[Timestamp('2011-11-06 00:00:00-0400',
Timestamp('2011-11-06 01:00:00-0400',
Timestamp('2011-11-06 01:00:00-0500',
Timestamp('2011-11-06 02:00:00-0500',
Timestamp('2011-11-06 03:00:00-0500',

tz='US/Eastern'),
tz='US/Eastern'),
tz='US/Eastern'),
tz='US/Eastern'),
tz='US/Eastern')]

In addition to ‘infer’, there are several other arguments supported. Passing an array-like of bools or 0s/1s where True
represents a DST hour and False a non-DST hour, allows for distinguishing more than one DST transition (e.g., if you
have multiple records in a database each with their own DST transition). Or passing ‘NaT’ will fill in transition times
with not-a-time values. These methods are available in the DatetimeIndex constructor as well as tz_localize.
In [295]: rng_hourly_dst = np.array([1, 1, 0, 0, 0])
In [296]: rng_hourly.tz_localize('US/Eastern', ambiguous=rng_hourly_dst).tolist()
Out[296]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern'),
Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]
In [297]: rng_hourly.tz_localize('US/Eastern', ambiguous='NaT').tolist()
Out[297]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
NaT,
NaT,
Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]
In [298]: didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
In [299]: didx
Out[299]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
'2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
'2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
'2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
'2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
dtype='datetime64[ns]', freq='H', tz='US/Eastern')
In [300]: didx.tz_localize(None)
Out[300]:
DatetimeIndex(['2014-08-01 09:00:00',
'2014-08-01 11:00:00',
'2014-08-01 13:00:00',
'2014-08-01 15:00:00',
'2014-08-01 17:00:00',
dtype='datetime64[ns]',

'2014-08-01 10:00:00',
'2014-08-01 12:00:00',
'2014-08-01 14:00:00',
'2014-08-01 16:00:00',
'2014-08-01 18:00:00'],
freq='H', tz=None)

In [301]: didx.tz_convert(None)
Out[301]:
DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00',

590

Chapter 20. Time Series / Date functionality

pandas: powerful Python data analysis toolkit, Release 0.16.1

'2014-08-01 19:00:00', '2014-08-01 20:00:00',
'2014-08-01 21:00:00', '2014-08-01 22:00:00'],
dtype='datetime64[ns]', freq='H', tz=None)
# tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
In [302]: didx.tz_convert('UCT').tz_localize(None)
Out[302]:
DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00',
'2014-08-01 19:00:00', '2014-08-01 20:00:00',
'2014-08-01 21:00:00', '2014-08-01 22:00:00'],
dtype='datetime64[ns]', freq='H', tz=None)

20.11. Time Zone Handling

591

pandas: powerful Python data analysis toolkit, Release 0.16.1

592

Chapter 20. Time Series / Date functionality

CHAPTER

TWENTYONE

TIME DELTAS

Note:
Starting in v0.15.0, we introduce a new scalar type Timedelta, which is a subclass of
datetime.timedelta, and behaves in a similar manner, but allows compatibility with np.timedelta64 types
as well as a host of custom representation, parsing, and attributes.
Timedeltas are differences in times, expressed in difference units, e.g. days, hours, minutes, seconds. They can be
both positive and negative.

21.1 Parsing
You can construct a Timedelta scalar through various arguments:
# strings
In [1]: Timedelta('1 days')
Out[1]: Timedelta('1 days 00:00:00')
In [2]: Timedelta('1 days 00:00:00')
Out[2]: Timedelta('1 days 00:00:00')
In [3]: Timedelta('1 days 2 hours')
Out[3]: Timedelta('1 days 02:00:00')
In [4]: Timedelta('-1 days 2 min 3us')
Out[4]: Timedelta('-2 days +23:57:59.999997')
# like datetime.timedelta
# note: these MUST be specified as keyword arguments
In [5]: Timedelta(days=1,seconds=1)
Out[5]: Timedelta('1 days 00:00:01')
# integers with a unit
In [6]: Timedelta(1,unit='d')
Out[6]: Timedelta('1 days 00:00:00')
# from a timedelta/np.timedelta64
In [7]: Timedelta(timedelta(days=1,seconds=1))
Out[7]: Timedelta('1 days 00:00:01')
In [8]: Timedelta(np.timedelta64(1,'ms'))
Out[8]: Timedelta('0 days 00:00:00.001000')
# negative Timedeltas have this string repr

593

pandas: powerful Python data analysis toolkit, Release 0.16.1

# to be more consistent with datetime.timedelta conventions
In [9]: Timedelta('-1us')
Out[9]: Timedelta('-1 days +23:59:59.999999')
# a NaT
In [10]: Timedelta('nan')
Out[10]: NaT
In [11]: Timedelta('nat')
Out[11]: NaT

DateOffsets (Day, Hour, Minute, Second, Milli, Micro, Nano) can also be used in construction.
In [12]: Timedelta(Second(2))
Out[12]: Timedelta('0 days 00:00:02')

Further, operations among the scalars yield another scalar Timedelta
In [13]: Timedelta(Day(2)) + Timedelta(Second(2)) + Timedelta('00:00:00.000123')
Out[13]: Timedelta('2 days 00:00:02.000123')

21.1.1 to_timedelta
Warning: Prior to 0.15.0 pd.to_timedelta would return a Series for list-like/Series input, and a
np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for
Series input, and Timedelta for scalar input.
The arguments to pd.to_timedelta are now (arg,unit=’ns’,box=True), previously were
(arg,box=True,unit=’ns’) as these are more logical.
Using the top-level pd.to_timedelta, you can convert a scalar, array, list, or Series from a recognized timedelta
format / value into a Timedelta type. It will construct Series if the input is a Series, a scalar if the input is scalar-like,
otherwise will output a TimedeltaIndex
In [14]: to_timedelta('1 days 06:05:01.00003')
Out[14]: Timedelta('1 days 06:05:01.000030')
In [15]: to_timedelta('15.5us')
Out[15]: Timedelta('0 days 00:00:00.000015')

In [16]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan'])
Out[16]: TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timedelta64

In [17]: to_timedelta(np.arange(5),unit='s')
Out[17]: TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='timedelt
In [18]: to_timedelta(np.arange(5),unit='d')
Out[18]: TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]',

21.2 Operations
You can operate on Series/DataFrames and construct timedelta64[ns] Series through subtraction operations on
datetime64[ns] Series, or Timestamps.

594

Chapter 21. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [19]: s = Series(date_range('2012-1-1', periods=3, freq='D'))
In [20]: td = Series([ Timedelta(days=i) for i in range(3) ])
In [21]: df = DataFrame(dict(A = s, B = td))
In [22]: df
Out[22]:
A
B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days
In [23]: df['C'] = df['A'] + df['B']
In [24]: df
Out[24]:
A
B
C
0 2012-01-01 0 days 2012-01-01
1 2012-01-02 1 days 2012-01-03
2 2012-01-03 2 days 2012-01-05
In [25]: df.dtypes
Out[25]:
A
datetime64[ns]
B
timedelta64[ns]
C
datetime64[ns]
dtype: object
In [26]: s - s.max()
Out[26]:
0
-2 days
1
-1 days
2
0 days
dtype: timedelta64[ns]
In [27]: s - datetime(2011,1,1,3,5)
Out[27]:
0
364 days 20:55:00
1
365 days 20:55:00
2
366 days 20:55:00
dtype: timedelta64[ns]
In [28]: s + timedelta(minutes=5)
Out[28]:
0
2012-01-01 00:05:00
1
2012-01-02 00:05:00
2
2012-01-03 00:05:00
dtype: datetime64[ns]
In [29]: s + Minute(5)
Out[29]:
0
2012-01-01 00:05:00
1
2012-01-02 00:05:00
2
2012-01-03 00:05:00
dtype: datetime64[ns]
In [30]: s + Minute(5) + Milli(5)

21.2. Operations

595

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[30]:
0
2012-01-01 00:05:00.005000
1
2012-01-02 00:05:00.005000
2
2012-01-03 00:05:00.005000
dtype: datetime64[ns]

Operations with scalars from a timedelta64[ns] series
In [31]: y = s - s[0]
In [32]: y
Out[32]:
0
0 days
1
1 days
2
2 days
dtype: timedelta64[ns]

Series of timedeltas with NaT values are supported
In [33]: y = s - s.shift()
In [34]: y
Out[34]:
0
NaT
1
1 days
2
1 days
dtype: timedelta64[ns]

Elements can be set to NaT using np.nan analogously to datetimes
In [35]: y[1] = np.nan
In [36]: y
Out[36]:
0
NaT
1
NaT
2
1 days
dtype: timedelta64[ns]

Operands can also appear in a reversed order (a singular object operated with a Series)
In [37]: s.max() - s
Out[37]:
0
2 days
1
1 days
2
0 days
dtype: timedelta64[ns]
In [38]: datetime(2011,1,1,3,5) - s
Out[38]:
0
-365 days +03:05:00
1
-366 days +03:05:00
2
-367 days +03:05:00
dtype: timedelta64[ns]
In [39]: timedelta(minutes=5) + s
Out[39]:
0
2012-01-01 00:05:00
1
2012-01-02 00:05:00

596

Chapter 21. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
2012-01-03 00:05:00
dtype: datetime64[ns]

min, max and the corresponding idxmin, idxmax operations are supported on frames
In [40]: A = s - Timestamp('20120101') - Timedelta('00:05:05')
In [41]: B = s - Series(date_range('2012-1-2', periods=3, freq='D'))
In [42]: df = DataFrame(dict(A=A, B=B))
In [43]: df
Out[43]:
A
B
0 -1 days +23:54:55 -1 days
1
0 days 23:54:55 -1 days
2
1 days 23:54:55 -1 days
In [44]: df.min()
Out[44]:
A
-1 days +23:54:55
B
-1 days +00:00:00
dtype: timedelta64[ns]
In [45]: df.min(axis=1)
Out[45]:
0
-1 days
1
-1 days
2
-1 days
dtype: timedelta64[ns]
In [46]: df.idxmin()
Out[46]:
A
0
B
0
dtype: int64
In [47]: df.idxmax()
Out[47]:
A
2
B
0
dtype: int64

min, max, idxmin, idxmax operations are supported on Series as well. A scalar result will be a Timedelta.
In [48]: df.min().max()
Out[48]: Timedelta('-1 days +23:54:55')
In [49]: df.min(axis=1).min()
Out[49]: Timedelta('-1 days +00:00:00')
In [50]: df.min().idxmax()
Out[50]: 'A'
In [51]: df.min(axis=1).idxmin()
Out[51]: 0

You can fillna on timedeltas. Integers will be interpreted as seconds. You can pass a timedelta to get a particular value.

21.2. Operations

597

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [52]: y.fillna(0)
Out[52]:
0
0 days
1
0 days
2
1 days
dtype: timedelta64[ns]
In [53]: y.fillna(10)
Out[53]:
0
0 days 00:00:10
1
0 days 00:00:10
2
1 days 00:00:00
dtype: timedelta64[ns]
In [54]: y.fillna(Timedelta('-1 days, 00:00:05'))
Out[54]:
0
-1 days +00:00:05
1
-1 days +00:00:05
2
1 days 00:00:00
dtype: timedelta64[ns]

You can also negate, multiply and use abs on Timedeltas
In [55]: td1 = Timedelta('-1 days 2 hours 3 seconds')
In [56]: td1
Out[56]: Timedelta('-2 days +21:59:57')
In [57]: -1 * td1
Out[57]: Timedelta('1 days 02:00:03')
In [58]: - td1
Out[58]: Timedelta('1 days 02:00:03')
In [59]: abs(td1)
Out[59]: Timedelta('1 days 02:00:03')

21.3 Reductions
Numeric reduction operation for timedelta64[ns] will return Timedelta objects. As usual NaT are skipped
during evaluation.
In [60]: y2 = Series(to_timedelta(['-1 days +00:00:05','nat','-1 days +00:00:05','1 days']))
In [61]: y2
Out[61]:
0
-1 days +00:00:05
1
NaT
2
-1 days +00:00:05
3
1 days 00:00:00
dtype: timedelta64[ns]
In [62]: y2.mean()
Out[62]: Timedelta('-1 days +16:00:03.333333')
In [63]: y2.median()

598

Chapter 21. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[63]: Timedelta('-1 days +00:00:05')
In [64]: y2.quantile(.1)
Out[64]: Timedelta('-1 days +00:00:05')
In [65]: y2.sum()
Out[65]: Timedelta('-1 days +00:00:10')

21.4 Frequency Conversion
New in version 0.13.
Timedelta Series, TimedeltaIndex, and Timedelta scalars can be converted to other ‘frequencies’ by dividing
by another timedelta, or by astyping to a specific timedelta type. These operations yield Series and propogate NaT ->
nan. Note that division by the numpy scalar is true division, while astyping is equivalent of floor division.
In [66]: td = Series(date_range('20130101',periods=4)) - \
....:
Series(date_range('20121201',periods=4))
....:
In [67]: td[2] += timedelta(minutes=5,seconds=3)
In [68]: td[3] = np.nan
In [69]: td
Out[69]:
0
31 days 00:00:00
1
31 days 00:00:00
2
31 days 00:05:03
3
NaT
dtype: timedelta64[ns]
# to days
In [70]: td / np.timedelta64(1,'D')
Out[70]:
0
31.000000
1
31.000000
2
31.003507
3
NaN
dtype: float64
In [71]: td.astype('timedelta64[D]')
Out[71]:
0
31
1
31
2
31
3
NaN
dtype: float64
# to seconds
In [72]: td / np.timedelta64(1,'s')
Out[72]:
0
2678400
1
2678400
2
2678703
3
NaN

21.4. Frequency Conversion

599

pandas: powerful Python data analysis toolkit, Release 0.16.1

dtype: float64
In [73]: td.astype('timedelta64[s]')
Out[73]:
0
2678400
1
2678400
2
2678703
3
NaN
dtype: float64
# to months (these are constant months)
In [74]: td / np.timedelta64(1,'M')
Out[74]:
0
1.018501
1
1.018501
2
1.018617
3
NaN
dtype: float64

Dividing or multiplying a timedelta64[ns] Series by an integer or integer Series yields another
timedelta64[ns] dtypes Series.
In [75]: td * -1
Out[75]:
0
-31 days +00:00:00
1
-31 days +00:00:00
2
-32 days +23:54:57
3
NaT
dtype: timedelta64[ns]
In [76]: td * Series([1,2,3,4])
Out[76]:
0
31 days 00:00:00
1
62 days 00:00:00
2
93 days 00:15:09
3
NaT
dtype: timedelta64[ns]

21.5 Attributes
You can access various components of the Timedelta or TimedeltaIndex directly using the attributes days,seconds,microseconds,nanoseconds. These are identical to the values returned by
datetime.timedelta, in that, for example, the .seconds attribute represents the number of seconds >= 0
and < 1 day. These are signed according to whether the Timedelta is signed.
These operations can also be directly accessed via the .dt property of the Series as well.
Note: Note that the attributes are NOT the displayed values of the Timedelta. Use .components to retrieve the
displayed values.
For a Series
In [77]: td.dt.days
Out[77]:
0
31
1
31

600

Chapter 21. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
31
3
NaN
dtype: float64
In [78]: td.dt.seconds
Out[78]:
0
0
1
0
2
303
3
NaN
dtype: float64

You can access the value of the fields for a scalar Timedelta directly.
In [79]: tds = Timedelta('31 days 5 min 3 sec')
In [80]: tds.days
Out[80]: 31L
In [81]: tds.seconds
Out[81]: 303L
In [82]: (-tds).seconds
Out[82]: 86097L

You can use the .components property to access a reduced form of the timedelta. This returns a DataFrame
indexed similarly to the Series. These are the displayed values of the Timedelta.
In [83]: td.dt.components
Out[83]:
days hours minutes seconds
0
31
0
0
0
1
31
0
0
0
2
31
0
5
3
3
NaN
NaN
NaN
NaN

milliseconds
0
0
0
NaN

microseconds
0
0
0
NaN

nanoseconds
0
0
0
NaN

In [84]: td.dt.components.seconds
Out[84]:
0
0
1
0
2
3
3
NaN
Name: seconds, dtype: float64

21.6 TimedeltaIndex
New in version 0.15.0.
To generate an index with time delta, you can use either the TimedeltaIndex or the timedelta_range constructor.
Using TimedeltaIndex you can pass string-like, Timedelta, timedelta, or np.timedelta64 objects.
Passing np.nan/pd.NaT/nat will represent missing values.
In [85]: TimedeltaIndex(['1 days','1 days, 00:00:05',
....:
np.timedelta64(2,'D'),timedelta(days=2,seconds=2)])
....:

21.6. TimedeltaIndex

601

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[85]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',
'2 days 00:00:02'],
dtype='timedelta64[ns]', freq=None)

Similarly to date_range, you can construct regular ranges of a TimedeltaIndex:
In [86]: timedelta_range(start='1 days',periods=5,freq='D')
Out[86]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]',
In [87]: timedelta_range(start='1 days',end='2 days',freq='30T')
Out[87]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
'1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
'1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
'1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
'1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
'1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
'1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
'1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
'1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
'1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
'1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
'1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
'1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
'1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
'1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
'1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
'2 days 00:00:00'],
dtype='timedelta64[ns]', freq='30T')

21.6.1 Using the TimedeltaIndex
Similarly to other of the datetime-like indices, DatetimeIndex and PeriodIndex, you can use
TimedeltaIndex as the index of pandas objects.
In [88]: s = Series(np.arange(100),
....:
index=timedelta_range('1 days',periods=100,freq='h'))
....:
In [89]: s
Out[89]:
1 days 00:00:00
1 days 01:00:00
1 days 02:00:00
1 days 03:00:00
1 days 04:00:00
1 days 05:00:00
1 days 06:00:00
4
4
4
5
5
5
5

days
days
days
days
days
days
days

602

21:00:00
22:00:00
23:00:00
00:00:00
01:00:00
02:00:00
03:00:00

0
1
2
3
4
5
6
..
93
94
95
96
97
98
99

Chapter 21. Time Deltas

pandas: powerful Python data analysis toolkit, Release 0.16.1

Freq: H, dtype: int32

Selections work similary, with coercion on string-likes and slices:
In [90]: s['1 day':'2 day']
Out[90]:
1 days 00:00:00
0
1 days 01:00:00
1
1 days 02:00:00
2
1 days 03:00:00
3
1 days 04:00:00
4
1 days 05:00:00
5
1 days 06:00:00
6
..
2 days 17:00:00
41
2 days 18:00:00
42
2 days 19:00:00
43
2 days 20:00:00
44
2 days 21:00:00
45
2 days 22:00:00
46
2 days 23:00:00
47
dtype: int32
In [91]: s['1 day 01:00:00']
Out[91]: 1
In [92]: s[Timedelta('1 day 1h')]
Out[92]: 1

Furthermore you can use partial string selection and the range will be inferred:
In [93]: s['1 day':'1 day 5 hours']
Out[93]:
1 days 00:00:00
0
1 days 01:00:00
1
1 days 02:00:00
2
1 days 03:00:00
3
1 days 04:00:00
4
1 days 05:00:00
5
dtype: int32

21.6.2 Operations
Finally, the combination of TimedeltaIndex with DatetimeIndex allow certain combination operations that
are NaT preserving:
In [94]: tdi = TimedeltaIndex(['1 days',pd.NaT,'2 days'])
In [95]: tdi.tolist()
Out[95]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]
In [96]: dti = date_range('20130101',periods=3)
In [97]: dti.tolist()
Out[97]:
[Timestamp('2013-01-01 00:00:00', offset='D'),
Timestamp('2013-01-02 00:00:00', offset='D'),

21.6. TimedeltaIndex

603

pandas: powerful Python data analysis toolkit, Release 0.16.1

Timestamp('2013-01-03 00:00:00', offset='D')]
In [98]: (dti + tdi).tolist()
Out[98]: [Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]
In [99]: (dti - tdi).tolist()
Out[99]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]

21.6.3 Conversions
Similarly to frequency conversion on a Series above, you can convert these indices to yield another Index.
In [100]: tdi / np.timedelta64(1,'s')
Out[100]: Float64Index([86400.0, nan, 172800.0], dtype='float64')
In [101]: tdi.astype('timedelta64[s]')
Out[101]: Float64Index([86400.0, nan, 172800.0], dtype='float64')

Scalars type ops work as well. These can potentially return a different type of index.

# adding or timedelta and date -> datelike
In [102]: tdi + Timestamp('20130101')
Out[102]: DatetimeIndex(['2013-01-02', 'NaT', '2013-01-03'], dtype='datetime64[ns]', freq=None, tz=No
# subtraction of a date and a timedelta -> datelike
# note that trying to subtract a date from a Timedelta will raise an exception
In [103]: (Timestamp('20130101') - tdi).tolist()
Out[103]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2012-12-30 00:00:00')]
# timedelta + timedelta -> timedelta
In [104]: tdi + Timedelta('10 days')
Out[104]: TimedeltaIndex(['11 days', NaT, '12 days'], dtype='timedelta64[ns]', freq=None)

# division can result in a Timedelta if the divisor is an integer
In [105]: tdi / 2
Out[105]: TimedeltaIndex(['0 days 12:00:00', NaT, '1 days 00:00:00'], dtype='timedelta64[ns]', freq=N
# or a Float64Index if the divisor is a Timedelta
In [106]: tdi / tdi[0]
Out[106]: Float64Index([1.0, nan, 2.0], dtype='float64')

21.7 Resampling
Similar to timeseries resampling, we can resample with a TimedeltaIndex.
In [107]: s.resample('D')
Out[107]:
1 days
11.5
2 days
35.5
3 days
59.5
4 days
83.5
5 days
97.5
dtype: float64

604

Chapter 21. Time Deltas

CHAPTER

TWENTYTWO

CATEGORICAL DATA

New in version 0.15.
Note: While there was pandas.Categorical in earlier versions, the ability to use categorical data in Series and
DataFrame is new.
This is an introduction to pandas categorical data type, including a short comparison with R’s factor.
Categoricals are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take
on only a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social
class, blood types, country affiliations, observation time or ratings via Likert scales.
In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or
‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, ...) are not possible.
All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical
order of the values. Internally, the data structure consists of a categories array and an integer array of codes which
point to the real value in the categories array.
The categorical data type is useful in the following cases:
• A string variable consisting of only a few different values. Converting such a string variable to a categorical
variable will save some memory, see here.
• The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a
categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of
the lexical order, see here.
• As a signal to other python libraries that this column should be treated as a categorical variable (e.g. to use
suitable statistical methods or plot types).
See also the API docs on categoricals.

22.1 Object Creation
Categorical Series or columns in a DataFrame can be created in several ways:
By specifying dtype="category" when constructing a Series:
In [1]: s = Series(["a","b","c","a"], dtype="category")
In [2]: s
Out[2]:
0
a
1
b

605

pandas: powerful Python data analysis toolkit, Release 0.16.1

2
c
3
a
dtype: category
Categories (3, object): [a, b, c]

By converting an existing Series or column to a category dtype:
In [3]: df = DataFrame({"A":["a","b","c","a"]})
In [4]: df["B"] = df["A"].astype('category')
In [5]: df
Out[5]:
A B
0 a a
1 b b
2 c c
3 a a

By using some special functions:
In [6]: df = DataFrame({'value': np.random.randint(0, 100, 20)})
In [7]: labels = [ "{0} - {1}".format(i, i + 9) for i in range(0, 100, 10) ]
In [8]: df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels)
In [9]: df.head(10)
Out[9]:
value
group
0
65 60 - 69
1
49 40 - 49
2
56 50 - 59
3
43 40 - 49
4
43 40 - 49
5
91 90 - 99
6
32 30 - 39
7
87 80 - 89
8
36 30 - 39
9
8
0 - 9

See documentation for cut().
By passing a pandas.Categorical object to a Series or assigning it to a DataFrame.
In [10]: raw_cat = Categorical(["a","b","c","a"], categories=["b","c","d"],
....:
ordered=False)
....:
In [11]: s = Series(raw_cat)
In [12]: s
Out[12]:
0
NaN
1
b
2
c
3
NaN
dtype: category
Categories (3, object): [b, c, d]

606

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [13]: df = DataFrame({"A":["a","b","c","a"]})
In [14]: df["B"] = raw_cat
In [15]: df
Out[15]:
A
B
0 a NaN
1 b
b
2 c
c
3 a NaN

You can also specify differently ordered categories or make the resulting data ordered, by passing these arguments to
astype():
In [16]: s = Series(["a","b","c","a"])
In [17]: s_cat = s.astype("category", categories=["b","c","d"], ordered=False)
In [18]: s_cat
Out[18]:
0
NaN
1
b
2
c
3
NaN
dtype: category
Categories (3, object): [b, c, d]

Categorical data has a specific category dtype:
In [19]: df.dtypes
Out[19]:
A
object
B
category
dtype: object

Note: In contrast to R’s factor function, categorical data is not converting input values to strings and categories will
end up the same data type as the original values.
Note: In contrast to R’s factor function, there is currently no way to assign/change labels at creation time. Use
categories to change the categories after creation time.
To get back to the original Series or numpy array, use Series.astype(original_dtype) or
np.asarray(categorical):
In [20]: s = Series(["a","b","c","a"])
In [21]: s
Out[21]:
0
a
1
b
2
c
3
a
dtype: object
In [22]: s2 = s.astype('category')

22.1. Object Creation

607

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [23]: s2
Out[23]:
0
a
1
b
2
c
3
a
dtype: category
Categories (3, object): [a, b, c]
In [24]: s3 = s2.astype('string')
In [25]: s3
Out[25]:
0
a
1
b
2
c
3
a
dtype: object
In [26]: np.asarray(s2)
Out[26]: array(['a', 'b', 'c', 'a'], dtype=object)

If you have already codes and categories, you can use the from_codes() constructor to save the factorize step
during normal constructor mode:
In [27]: splitter = np.random.choice([0,1], 5, p=[0.5,0.5])
In [28]: s = Series(Categorical.from_codes(splitter, categories=["train", "test"]))

22.2 Description
Using .describe() on categorical data will produce similar output to a Series or DataFrame of type string.
In [29]: cat = Categorical(["a","c","c",np.nan], categories=["b","a","c",np.nan] )
In [30]: df = DataFrame({"cat":cat, "s":["a","c","c",np.nan]})
In [31]: df.describe()
Out[31]:
cat s
count
3 3
unique
2 2
top
c c
freq
2 2
In [32]: df["cat"].describe()
Out[32]:
count
3
unique
2
top
c
freq
2
Name: cat, dtype: object

608

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

22.3 Working with categories
Categorical data has a categories and a ordered property, which list their possible values and whether the ordering
matters or not. These properties are exposed as s.cat.categories and s.cat.ordered. If you don’t manually
specify categories and ordering, they are inferred from the passed in values.
In [33]: s = Series(["a","b","c","a"], dtype="category")
In [34]: s.cat.categories
Out[34]: Index([u'a', u'b', u'c'], dtype='object')
In [35]: s.cat.ordered
Out[35]: False

It’s also possible to pass in the categories in a specific order:
In [36]: s = Series(Categorical(["a","b","c","a"], categories=["c","b","a"]))
In [37]: s.cat.categories
Out[37]: Index([u'c', u'b', u'a'], dtype='object')
In [38]: s.cat.ordered
Out[38]: False

Note: New categorical data are NOT automatically ordered. You must explicity pass ordered=True to indicate an
ordered Categorical.

22.3.1 Renaming categories
Renaming categories is done by assigning new values to the Series.cat.categories property or by using the
Categorical.rename_categories() method:
In [39]: s = Series(["a","b","c","a"], dtype="category")
In [40]: s
Out[40]:
0
a
1
b
2
c
3
a
dtype: category
Categories (3, object): [a, b, c]
In [41]: s.cat.categories = ["Group %s" % g for g in s.cat.categories]
In [42]: s
Out[42]:
0
Group a
1
Group b
2
Group c
3
Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]
In [43]: s.cat.rename_categories([1,2,3])
Out[43]:

22.3. Working with categories

609

pandas: powerful Python data analysis toolkit, Release 0.16.1

0
1
1
2
2
3
3
1
dtype: category
Categories (3, int64): [1, 2, 3]

Note: In contrast to R’s factor, categorical data can have categories of other types than string.
Note:
Be aware that assigning new categories is an inplace operations, while most other operation under
Series.cat per default return a new Series of dtype category.
Categories must be unique or a ValueError is raised:
In [44]: try:
....:
s.cat.categories = [1,1,1]
....: except ValueError as e:
....:
print("ValueError: " + str(e))
....:
ValueError: Categorical categories must be unique

22.3.2 Appending new categories
Appending categories can be done by using the Categorical.add_categories() method:
In [45]: s = s.cat.add_categories([4])
In [46]: s.cat.categories
Out[46]: Index([u'Group a', u'Group b', u'Group c', 4], dtype='object')
In [47]: s
Out[47]:
0
Group a
1
Group b
2
Group c
3
Group a
dtype: category
Categories (4, object): [Group a, Group b, Group c, 4]

22.3.3 Removing categories
Removing categories can be done by using the Categorical.remove_categories() method. Values which
are removed are replaced by np.nan.:
In [48]: s = s.cat.remove_categories([4])
In [49]: s
Out[49]:
0
Group a
1
Group b
2
Group c
3
Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]

610

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

22.3.4 Removing unused categories
Removing unused categories can also be done:
In [50]: s = Series(Categorical(["a","b","a"], categories=["a","b","c","d"]))
In [51]: s
Out[51]:
0
a
1
b
2
a
dtype: category
Categories (4, object): [a, b, c, d]
In [52]: s.cat.remove_unused_categories()
Out[52]:
0
a
1
b
2
a
dtype: category
Categories (2, object): [a, b]

22.3.5 Setting categories
If you want to do remove and add new categories in one step (which has some speed advantage), or simply set the
categories to a predefined scale, use Categorical.set_categories().
In [53]: s = Series(["one","two","four", "-"], dtype="category")
In [54]: s
Out[54]:
0
one
1
two
2
four
3
dtype: category
Categories (4, object): [-, four, one, two]
In [55]: s = s.cat.set_categories(["one","two","three","four"])
In [56]: s
Out[56]:
0
one
1
two
2
four
3
NaN
dtype: category
Categories (4, object): [one, two, three, four]

Note: Be aware that Categorical.set_categories() cannot know whether some category is omitted intentionally or because it is misspelled or (under Python3) due to a type difference (e.g., numpys S1 dtype and python
strings). This can result in surprising behaviour!

22.3. Working with categories

611

pandas: powerful Python data analysis toolkit, Release 0.16.1

22.4 Sorting and Order
Warning: The default for construction has changed in v0.16.0 to ordered=False, from the prior implicit
ordered=True
If categorical data is ordered (s.cat.ordered == True), then the order of the categories has a meaning and
certain operations are possible. If the categorical is unordered, .min()/.max() will raise a TypeError.
In [57]: s = Series(Categorical(["a","b","c","a"], ordered=False))
In [58]: s.sort()
In [59]: s = Series(["a","b","c","a"]).astype('category', ordered=True)
In [60]: s.sort()
In [61]: s
Out[61]:
0
a
3
a
1
b
2
c
dtype: category
Categories (3, object): [a < b < c]
In [62]: s.min(), s.max()
Out[62]: ('a', 'c')

You can set categorical data to be ordered by using as_ordered() or unordered by using as_unordered().
These will by default return a new object.
In [63]: s.cat.as_ordered()
Out[63]:
0
a
3
a
1
b
2
c
dtype: category
Categories (3, object): [a < b < c]
In [64]: s.cat.as_unordered()
Out[64]:
0
a
3
a
1
b
2
c
dtype: category
Categories (3, object): [a, b, c]

Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for
strings and numeric data:
In [65]: s = Series([1,2,3,1], dtype="category")
In [66]: s = s.cat.set_categories([2,3,1], ordered=True)
In [67]: s

612

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[67]:
0
1
1
2
2
3
3
1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [68]: s.sort()
In [69]: s
Out[69]:
1
2
2
3
0
1
3
1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [70]: s.min(), s.max()
Out[70]: (2, 1)

22.4.1 Reordering
Reordering the categories is possible via the Categorical.reorder_categories() and the
Categorical.set_categories() methods. For Categorical.reorder_categories(), all old
categories must be included in the new categories and no new categories are allowed. This will necessarily make the
sort order the same as the categories order.
In [71]: s = Series([1,2,3,1], dtype="category")
In [72]: s = s.cat.reorder_categories([2,3,1], ordered=True)
In [73]: s
Out[73]:
0
1
1
2
2
3
3
1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [74]: s.sort()
In [75]: s
Out[75]:
1
2
2
3
0
1
3
1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [76]: s.min(), s.max()
Out[76]: (2, 1)

22.4. Sorting and Order

613

pandas: powerful Python data analysis toolkit, Release 0.16.1

Note: Note the difference between assigning new categories and reordering the categories: the first renames categories
and therefore the individual values in the Series, but if the first position was sorted last, the renamed value will still be
sorted last. Reordering means that the way values are sorted is different afterwards, but not that individual values in
the Series are changed.
Note: If the Categorical is not ordered, Series.min() and Series.max() will raise TypeError. Numeric
operations like +, -, *, / and operations based on them (e.g.‘‘Series.median()‘‘, which would need to compute the
mean between two values if the length of an array is even) do not work and raise a TypeError.

22.4.2 Multi Column Sorting
A categorical dtyped column will partcipate in a multi-column sort in a similar manner to other columns. The ordering
of the categorical is determined by the categories of that column.

In [77]: dfs = DataFrame({'A' : Categorical(list('bbeebbaa'), categories=['e','a','b'], ordered=True)
....:
'B' : [1,2,1,2,2,1,2,1] })
....:
In [78]: dfs.sort(['A', 'B'])
Out[78]:
A B
2 e 1
3 e 2
7 a 1
6 a 2
0 b 1
5 b 1
1 b 2
4 b 2

Reordering the categories changes a future sort.
In [79]: dfs['A'] = dfs['A'].cat.reorder_categories(['a','b','e'])
In [80]: dfs.sort(['A','B'])
Out[80]:
A B
7 a 1
6 a 2
0 b 1
5 b 1
1 b 2
4 b 2
2 e 1
3 e 2

22.5 Comparisons
Comparing categorical data with other objects is possible in three cases:
• comparing equality (== and !=) to a list-like object (list, Series, array, ...) of the same length as the categorical
data.

614

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

• all comparisons (==, !=, >, >=, <, and <=) of categorical data to another categorical Series, when
ordered==True and the categories are the same.
• all comparisons of a categorical data to a scalar.
All other comparisons, especially “non-equality” comparisons of two categoricals with different categories or a categorical with any list-like object, will raise a TypeError.
Note: Any “non-equality” comparisons of categorical data with a Series, np.array, list or categorical data with
different categories or ordering will raise an TypeError because custom categories ordering could be interpreted in two
ways: one with taking into account the ordering and one without.
In [81]: cat = Series([1,2,3]).astype("category", categories=[3,2,1], ordered=True)
In [82]: cat_base = Series([2,2,2]).astype("category", categories=[3,2,1], ordered=True)
In [83]: cat_base2 = Series([2,2,2]).astype("category", ordered=True)
In [84]: cat
Out[84]:
0
1
1
2
2
3
dtype: category
Categories (3, int64): [3 < 2 < 1]
In [85]: cat_base
Out[85]:
0
2
1
2
2
2
dtype: category
Categories (3, int64): [3 < 2 < 1]
In [86]: cat_base2
Out[86]:
0
2
1
2
2
2
dtype: category
Categories (1, int64): [2]

Comparing to a categorical with the same categories and ordering or to a scalar works:
In [87]: cat > cat_base
Out[87]:
0
True
1
False
2
False
dtype: bool
In [88]: cat > 2
Out[88]:
0
True
1
False
2
False
dtype: bool

Equality comparisons work with any list-like object of same length and scalars:

22.5. Comparisons

615

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [89]: cat == cat_base
Out[89]:
0
False
1
True
2
False
dtype: bool
In [90]: cat == np.array([1,2,3])
Out[90]:
0
True
1
True
2
True
dtype: bool
In [91]: cat == 2
Out[91]:
0
False
1
True
2
False
dtype: bool

This doesn’t work because the categories are not the same:
In [92]: try:
....:
cat > cat_base2
....: except TypeError as e:
....:
print("TypeError: " + str(e))
....:
TypeError: Categoricals can only be compared if 'categories' are the same

If you want to do a “non-equality” comparison of a categorical series with a list-like object which is not categorical
data, you need to be explicit and convert the categorical data back to the original values:
In [93]: base = np.array([1,2,3])

In [94]: try:
....:
cat > base
....: except TypeError as e:
....:
print("TypeError: " + str(e))
....:
TypeError: Cannot compare a Categorical for op __gt__ with type . If you want t
compare values, use 'np.asarray(cat)  other'.
In [95]: np.asarray(cat) > base
Out[95]: array([False, False, False], dtype=bool)

22.6 Operations
Apart from Series.min(), Series.max() and Series.mode(), the following operations are possible with
categorical data:
Series methods like Series.value_counts() will use all categories, even if some categories are not present in the data:
In [96]: s = Series(Categorical(["a","b","c","c"], categories=["c","a","b","d"]))
In [97]: s.value_counts()
Out[97]:

616

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

c
2
b
1
a
1
d
0
dtype: int64

Groupby will also show “unused” categories:
In [98]: cats = Categorical(["a","b","b","b","c","c","c"], categories=["a","b","c","d"])
In [99]: df = DataFrame({"cats":cats,"values":[1,2,2,2,3,4,5]})
In [100]: df.groupby("cats").mean()
Out[100]:
values
cats
a
1
b
2
c
4
d
NaN
In [101]: cats2 = Categorical(["a","a","b","b"], categories=["a","b","c"])
In [102]: df2 = DataFrame({"cats":cats2,"B":["c","d","c","d"], "values":[1,2,3,4]})
In [103]: df2.groupby(["cats","B"]).mean()
Out[103]:
values
cats B
a
c
1
d
2
b
c
3
d
4
c
c
NaN
d
NaN

Pivot tables:
In [104]: raw_cat = Categorical(["a","a","b","b"], categories=["a","b","c"])
In [105]: df = DataFrame({"A":raw_cat,"B":["c","d","c","d"], "values":[1,2,3,4]})
In [106]: pd.pivot_table(df, values='values', index=['A', 'B'])
Out[106]:
A B
a c
1
d
2
b c
3
d
4
c c
NaN
d
NaN
Name: values, dtype: float64

22.7 Data munging
The optimized pandas data access methods .loc, .iloc, .ix .at, and .iat, work as normal. The only difference
is the return type (for getting) and that only values already in categories can be assigned.
22.7. Data munging

617

pandas: powerful Python data analysis toolkit, Release 0.16.1

22.7.1 Getting
If the slicing operation returns either a DataFrame or a column of type Series, the category dtype is preserved.
In [107]: idx = Index(["h","i","j","k","l","m","n",])
In [108]: cats = Series(["a","b","b","b","c","c","c"], dtype="category", index=idx)
In [109]: values= [1,2,2,2,3,4,5]
In [110]: df = DataFrame({"cats":cats,"values":values}, index=idx)
In [111]: df.iloc[2:4,:]
Out[111]:
cats values
j
b
2
k
b
2
In [112]: df.iloc[2:4,:].dtypes
Out[112]:
cats
category
values
int64
dtype: object
In [113]: df.loc["h":"j","cats"]
Out[113]:
h
a
i
b
j
b
Name: cats, dtype: category
Categories (3, object): [a, b, c]
In [114]: df.ix["h":"j",0:1]
Out[114]:
cats
h
a
i
b
j
b
In [115]: df[df["cats"] == "b"]
Out[115]:
cats values
i
b
2
j
b
2
k
b
2

An example where the category type is not preserved is if you take one single row: the resulting Series is of dtype
object:
# get the complete "h" row as a Series
In [116]: df.loc["h", :]
Out[116]:
cats
a
values
1
Name: h, dtype: object

Returning a single item from categorical data will also return the value, not a categorical of length “1”.

618

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [117]: df.iat[0,0]
Out[117]: 'a'
In [118]: df["cats"].cat.categories = ["x","y","z"]
In [119]: df.at["h","cats"] # returns a string
Out[119]: 'x'

Note: This is a difference to R’s factor function, where factor(c(1,2,3))[1] returns a single value factor.
To get a single value Series of type category pass in a list with a single value:
In [120]: df.loc[["h"],"cats"]
Out[120]:
h
x
Name: cats, dtype: category
Categories (3, object): [x, y, z]

22.7.2 Setting
Setting values in a categorical column (or Series) works as long as the value is included in the categories:
In [121]: idx = Index(["h","i","j","k","l","m","n"])
In [122]: cats = Categorical(["a","a","a","a","a","a","a"], categories=["a","b"])
In [123]: values = [1,1,1,1,1,1,1]
In [124]: df = DataFrame({"cats":cats,"values":values}, index=idx)
In [125]: df.iloc[2:4,:] = [["b",2],["b",2]]
In [126]: df
Out[126]:
cats values
h
a
1
i
a
1
j
b
2
k
b
2
l
a
1
m
a
1
n
a
1
In [127]: try:
.....:
df.iloc[2:4,:] = [["c",3],["c",3]]
.....: except ValueError as e:
.....:
print("ValueError: " + str(e))
.....:
ValueError: cannot setitem on a Categorical with a new category, set the categories first

Setting values by assigning categorical data will also check that the categories match:
In [128]: df.loc["j":"k","cats"] = Categorical(["a","a"], categories=["a","b"])
In [129]: df
Out[129]:
cats values

22.7. Data munging

619

pandas: powerful Python data analysis toolkit, Release 0.16.1

h
i
j
k
l
m
n

a
a
a
a
a
a
a

1
1
2
2
1
1
1

In [130]: try:
.....:
df.loc["j":"k","cats"] = Categorical(["b","b"], categories=["a","b","c"])
.....: except ValueError as e:
.....:
print("ValueError: " + str(e))
.....:
ValueError: Cannot set a Categorical with another, without identical categories

Assigning a Categorical to parts of a column of other types will use the values:
In [131]: df = DataFrame({"a":[1,1,1,1,1], "b":["a","a","a","a","a"]})
In [132]: df.loc[1:2,"a"] = Categorical(["b","b"], categories=["a","b"])
In [133]: df.loc[2:3,"b"] = Categorical(["b","b"], categories=["a","b"])
In [134]: df
Out[134]:
a b
0 1 a
1 b a
2 b b
3 1 b
4 1 a
In [135]: df.dtypes
Out[135]:
a
object
b
object
dtype: object

22.7.3 Merging
You can concat two DataFrames containing categorical data together, but the categories of these categoricals need to
be the same:
In [136]: cat = Series(["a","b"], dtype="category")
In [137]: vals = [1,2]
In [138]: df = DataFrame({"cats":cat, "vals":vals})
In [139]: res = pd.concat([df,df])
In [140]: res
Out[140]:
cats vals
0
a
1
1
b
2
0
a
1

620

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

1

b

2

In [141]: res.dtypes
Out[141]:
cats
category
vals
int64
dtype: object

In this case the categories are not the same and so an error is raised:
In [142]: df_different = df.copy()
In [143]: df_different["cats"].cat.categories = ["c","d"]
In [144]: try:
.....:
pd.concat([df,df_different])
.....: except ValueError as e:
.....:
print("ValueError: " + str(e))
.....:
ValueError: incompatible categories in categorical concat

The same applies to df.append(df_different).

22.8 Getting Data In/Out
New in version 0.15.2.
Writing data (Series, Frames) to a HDF store that contains a category dtype was implemented in 0.15.2. See here
for an example and caveats.
Writing data to and reading data from Stata format files was implemented in 0.15.2. See here for an example and
caveats.
Writing to a CSV file will convert the data, effectively removing any information about the categorical (categories and
ordering). So if you read back the CSV file you have to convert the relevant columns back to category and assign the
right categories and categories ordering.
In [145]: s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'd']))
# rename the categories
In [146]: s.cat.categories = ["very good", "good", "bad"]
# reorder the categories and add missing categories
In [147]: s = s.cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
In [148]: df = DataFrame({"cats":s, "vals":[1,2,3,4,5,6]})
In [149]: csv = StringIO()
In [150]: df.to_csv(csv)
In [151]: df2 = pd.read_csv(StringIO(csv.getvalue()))
In [152]: df2.dtypes
Out[152]:
Unnamed: 0
int64
cats
object

22.8. Getting Data In/Out

621

pandas: powerful Python data analysis toolkit, Release 0.16.1

vals
dtype: object

int64

In [153]: df2["cats"]
Out[153]:
0
very good
1
good
2
good
3
very good
4
very good
5
bad
Name: cats, dtype: object
# Redo the category
In [154]: df2["cats"] = df2["cats"].astype("category")
In [155]: df2["cats"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"],
.....:
inplace=True)
.....:
In [156]: df2.dtypes
Out[156]:
Unnamed: 0
int64
cats
category
vals
int64
dtype: object
In [157]: df2["cats"]
Out[157]:
0
very good
1
good
2
good
3
very good
4
very good
5
bad
Name: cats, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

The same holds for writing to a SQL database with to_sql.

22.9 Missing Data
pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See
the Missing Data section
There are two ways a np.nan can be represented in categorical data: either the value is not available (“missing value”)
or np.nan is a valid category.
In [158]: s = Series(["a","b",np.nan,"a"], dtype="category")
# only two categories
In [159]: s
Out[159]:
0
a
1
b
2
NaN

622

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

3
a
dtype: category
Categories (2, object): [a, b]
In [160]: s2 = Series(["a","b","c","a"], dtype="category")
In [161]: s2.cat.categories = [1,2,np.nan]
# three categories, np.nan included
In [162]: s2
Out[162]:
0
1
1
2
2
NaN
3
1
dtype: category
Categories (3, object): [1, 2, NaN]

Note: As integer Series can’t include NaN, the categories were converted to object.
Note: Missing value methods like isnull and fillna will take both missing values as well as np.nan categories
into account:
In [163]: c = Series(["a","b",np.nan], dtype="category")
In [164]: c.cat.set_categories(["a","b",np.nan], inplace=True)
# will be inserted as a NA category:
In [165]: c[0] = np.nan
In [166]: s = Series(c)
In [167]: s
Out[167]:
0
NaN
1
b
2
NaN
dtype: category
Categories (3, object): [a, b, NaN]
In [168]: pd.isnull(s)
Out[168]:
0
True
1
False
2
True
dtype: bool
In [169]: s.fillna("a")
Out[169]:
0
a
1
b
2
a
dtype: category
Categories (3, object): [a, b, NaN]

22.9. Missing Data

623

pandas: powerful Python data analysis toolkit, Release 0.16.1

22.9.1 Differences to R’s factor
The following differences to R’s factor functions can be observed:
• R’s levels are named categories
• R’s levels are always of type string, while categories in pandas can be of any dtype.
• It’s not possible to specify labels at creation time. Use s.cat.rename_categories(new_labels)
afterwards.
• In contrast to R’s factor function, using categorical data as the sole input to create a new categorical series will
not remove unused categories but create a new categorical series which is equal to the passed in one!

22.10 Gotchas
22.10.1 Memory Usage
The memory usage of a Categorical is proportional to the number of categories times the length of the data. In
contrast, an object dtype is a constant times the length of the data.
In [170]: s = Series(['foo','bar']*1000)
# object dtype
In [171]: s.nbytes
Out[171]: 8000
# category dtype
In [172]: s.astype('category').nbytes
Out[172]: 2008

Note: If the number of categories approaches the length of the data, the Categorical will use nearly the same or
more memory than an equivalent object dtype representation.
In [173]: s = Series(['foo%04d' % i for i in range(2000)])
# object dtype
In [174]: s.nbytes
Out[174]: 8000
# category dtype
In [175]: s.astype('category').nbytes
Out[175]: 12000

22.10.2 Old style constructor usage
In earlier versions than pandas 0.15, a Categorical could be constructed by passing in precomputed codes (called then
labels) instead of values with categories. The codes were interpreted as pointers to the categories with -1 as NaN. This
type of constructor useage is replaced by the special constructor Categorical.from_codes().
Unfortunately, in some special cases, using code which assumes the old style constructor usage will work with the
current pandas version, resulting in subtle bugs:

624

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

>>> cat = Categorical([1,2], [1,2,3])
>>> # old version
>>> cat.get_values()
array([2, 3], dtype=int64)
>>> # new version
>>> cat.get_values()
array([1, 2], dtype=int64)

Warning: If you used Categoricals with older versions of pandas, please audit your code before upgrading and
change your code to use the from_codes() constructor.

22.10.3 Categorical is not a numpy array
Currently, categorical data and the underlying Categorical is implemented as a python object and not as a low-level
numpy array dtype. This leads to some problems.
numpy itself doesn’t know about the new dtype:
In [176]: try:
.....:
np.dtype("category")
.....: except TypeError as e:
.....:
print("TypeError: " + str(e))
.....:
TypeError: data type "category" not understood
In [177]: dtype = Categorical(["a"]).dtype
In [178]: try:
.....:
np.dtype(dtype)
.....: except TypeError as e:
.....:
print("TypeError: " + str(e))
.....:
TypeError: data type not understood

Dtype comparisons work:
In [179]: dtype == np.str_
Out[179]: False
In [180]: np.str_ == dtype
Out[180]: False

To check if a Series contains Categorical data, with pandas 0.16 or later, use hasattr(s, ’cat’):
In [181]: hasattr(Series(['a'], dtype='category'), 'cat')
Out[181]: True
In [182]: hasattr(Series(['a']), 'cat')
Out[182]: False

Using numpy functions on a Series of type category should not work as Categoricals are not numeric data (even in
the case that .categories is numeric).
In [183]: s = Series(Categorical([1,2,3,4]))
In [184]: try:
.....:
np.sum(s)

22.10. Gotchas

625

pandas: powerful Python data analysis toolkit, Release 0.16.1

.....: except TypeError as e:
.....:
print("TypeError: " + str(e))
.....:
TypeError: Categorical cannot perform the operation sum

Note: If such a function works, please file a bug at https://github.com/pydata/pandas!

22.10.4 dtype in apply
Pandas currently does not preserve the dtype in apply functions: If you apply along rows you get a Series of object
dtype (same as getting a row -> getting one element will return a basic type) and applying along columns will also
convert to object.
In [185]: df = DataFrame({"a":[1,2,3,4],
.....:
"b":["a","b","c","d"],
.....:
"cats":Categorical([1,2,3,2])})
.....:
In [186]: df.apply(lambda row: type(row["cats"]), axis=1)
Out[186]:
0

1

2

3

dtype: object
In [187]: df.apply(lambda col: col.dtype, axis=0)
Out[187]:
a
object
b
object
cats
object
dtype: object

22.10.5 Categorical Index
New in version 0.16.1.
A new CategoricalIndex index type is introduced in version 0.16.1. See the advanced indexing docs for a more
detailed explanation.
Setting the index, will create create a CategoricalIndex
In [188]: cats = Categorical([1,2,3,4], categories=[4,2,3,1])
In [189]: strings = ["a","b","c","d"]
In [190]: values = [4,2,3,1]
In [191]: df = DataFrame({"strings":strings, "values":values}, index=cats)
In [192]: df.index
Out[192]: CategoricalIndex([1, 2, 3, 4], categories=[4, 2, 3, 1], ordered=False, dtype='category')
# This now sorts by the categories order
In [193]: df.sort_index()

626

Chapter 22. Categorical Data

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[193]:
strings
4
d
2
b
3
c
1
a

values
1
2
3
4

In previous versions (<0.16.1) there is no index of type category, so setting the index to categorical column will
convert the categorical data to a “normal” dtype first and therefore remove any custom ordering of the categories.

22.10.6 Side Effects
Constructing a Series from a Categorical will not copy the input Categorical. This means that changes to the Series
will in most cases change the original Categorical:
In [194]: cat = Categorical([1,2,3,10], categories=[1,2,3,4,10])
In [195]: s = Series(cat, name="cat")
In [196]: cat
Out[196]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
In [197]: s.iloc[0:2] = 10
In [198]: cat
Out[198]:
[10, 10, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
In [199]: df = DataFrame(s)
In [200]: df["cat"].cat.categories = [1,2,3,4,5]
In [201]: cat
Out[201]:
[5, 5, 3, 5]
Categories (5, int64): [1, 2, 3, 4, 5]

Use copy=True to prevent such a behaviour or simply don’t reuse Categoricals:
In [202]: cat = Categorical([1,2,3,10], categories=[1,2,3,4,10])
In [203]: s = Series(cat, name="cat", copy=True)
In [204]: cat
Out[204]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
In [205]: s.iloc[0:2] = 10
In [206]: cat
Out[206]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]

22.10. Gotchas

627

pandas: powerful Python data analysis toolkit, Release 0.16.1

Note: This also happens in some cases when you supply a numpy array instead of a Categorical: using an
int array (e.g. np.array([1,2,3,4])) will exhibit the same behaviour, while using a string array (e.g.
np.array(["a","b","c","a"])) will not.

628

Chapter 22. Categorical Data

CHAPTER

TWENTYTHREE

PLOTTING

We use the standard convention for referencing the matplotlib API:
In [1]: import matplotlib.pyplot as plt

The plots in this document are made using matplotlib’s ggplot style (new in version 1.4):
import matplotlib
matplotlib.style.use('ggplot')

If your version of matplotlib is 1.3 or lower, you can set display.mpl_style to ’default’ with
pd.options.display.mpl_style = ’default’ to produce more appealing plots. When set, matplotlib’s
rcParams are changed (globally!) to nicer-looking settings.
We provide the basics in pandas to easily create decent looking plots. See the ecosystem section for visualization
libraries that go beyond the basics documented here.
Note: All calls to np.random are seeded with 123456.

23.1 Basic Plotting: plot
See the cookbook for some advanced strategies
The plot method on Series and DataFrame is just a simple wrapper around plt.plot():
In [2]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [3]: ts = ts.cumsum()
In [4]: ts.plot()
Out[4]: 

629

pandas: powerful Python data analysis toolkit, Release 0.16.1

If the index consists of dates, it calls gcf().autofmt_xdate() to try to format the x-axis nicely as per above.
On DataFrame, plot() is a convenience to plot all of the columns with labels:
In [5]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
In [6]: df = df.cumsum()
In [7]: plt.figure(); df.plot();

630

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

You can plot one column versus another using the x and y keywords in plot():
In [8]: df3 = pd.DataFrame(np.random.randn(1000, 2), columns=['B', 'C']).cumsum()
In [9]: df3['A'] = pd.Series(list(range(len(df))))
In [10]: df3.plot(x='A', y='B')
Out[10]: 

23.1. Basic Plotting: plot

631

pandas: powerful Python data analysis toolkit, Release 0.16.1

Note: For more formatting and sytling options, see below.

23.2 Other Plots
The kind keyword argument of plot() accepts a handful of values for plots other than the default Line plot. These
include:
• ‘bar’ or ‘barh’ for bar plots
• ‘hist’ for histogram
• ‘box’ for boxplot
• ‘kde’ or ’density’ for density plots
• ‘area’ for area plots
• ‘scatter’ for scatter plots
• ‘hexbin’ for hexagonal bin plots
• ‘pie’ for pie plots

632

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

In addition to these kind s, there are the DataFrame.hist(), and DataFrame.boxplot() methods, which use a separate
interface.
Finally, there are several plotting functions in pandas.tools.plotting that take a Series or DataFrame as
an argument. These include
• Scatter Matrix
• Andrews Curves
• Parallel Coordinates
• Lag Plot
• Autocorrelation Plot
• Bootstrap Plot
• RadViz
Plots may also be adorned with errorbars or tables.

23.2.1 Bar plots
For labeled, non-time series data, you may wish to produce a bar plot:
In [11]: plt.figure();
In [12]: df.ix[5].plot(kind='bar'); plt.axhline(0, color='k')
Out[12]: 

23.2. Other Plots

633

pandas: powerful Python data analysis toolkit, Release 0.16.1

Calling a DataFrame’s plot() method with kind=’bar’ produces a multiple bar plot:
In [13]: df2 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
In [14]: df2.plot(kind='bar');

634

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

To produce a stacked bar plot, pass stacked=True:
In [15]: df2.plot(kind='bar', stacked=True);

23.2. Other Plots

635

pandas: powerful Python data analysis toolkit, Release 0.16.1

To get horizontal bar plots, pass kind=’barh’:
In [16]: df2.plot(kind='barh', stacked=True);

636

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.2.2 Histograms
New in version 0.15.0.
Histogram can be drawn specifying kind=’hist’.
In [17]: df4 = pd.DataFrame({'a': np.random.randn(1000) + 1, 'b': np.random.randn(1000),
....:
'c': np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])
....:
In [18]: plt.figure();
In [19]: df4.plot(kind='hist', alpha=0.5)
Out[19]: 

23.2. Other Plots

637

pandas: powerful Python data analysis toolkit, Release 0.16.1

Histogram can be stacked by stacked=True. Bin size can be changed by bins keyword.
In [20]: plt.figure();
In [21]: df4.plot(kind='hist', stacked=True, bins=20)
Out[21]: 

638

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

You can pass other keywords supported by matplotlib hist. For example, horizontal and cumulative histgram can be
drawn by orientation=’horizontal’ and cumulative=’True’.
In [22]: plt.figure();
In [23]: df4['a'].plot(kind='hist', orientation='horizontal', cumulative=True)
Out[23]: 

23.2. Other Plots

639

pandas: powerful Python data analysis toolkit, Release 0.16.1

See the hist method and the matplotlib hist documentation for more.
The existing interface DataFrame.hist to plot histogram still can be used.
In [24]: plt.figure();
In [25]: df['A'].diff().hist()
Out[25]: 

640

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

DataFrame.hist() plots the histograms of the columns on multiple subplots:
In [26]: plt.figure()
Out[26]: 
In [27]: df.diff().hist(color='k', alpha=0.5, bins=50)
Out[27]:
array([[,
0xaf16990c>],
0xaecdea4c>,
0xaec921cc>]], dtype=object)

641

pandas: powerful Python data analysis toolkit, Release 0.16.1

New in version 0.10.0.
The by keyword can be specified to plot grouped histograms:
In [28]: data = pd.Series(np.random.randn(1000))
In [29]: data.hist(by=np.random.randint(0, 4, 1000), figsize=(6, 4))
Out[29]:
array([[,
],
[,
]], dtype=object)

642

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.2.3 Box Plots
Boxplot can be drawn calling a Series and DataFrame.plot with kind=’box’, or DataFrame.boxplot
to visualize the distribution of values within each column.
New in version 0.15.0.
plot method now supports kind=’box’ to draw boxplot.
For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).
In [30]: df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
In [31]: df.plot(kind='box')
Out[31]: 

23.2. Other Plots

643

pandas: powerful Python data analysis toolkit, Release 0.16.1

Boxplot can be colorized by passing color keyword. You can pass a dict whose keys are boxes, whiskers,
medians and caps. If some keys are missing in the dict, default colors are used for the corresponding artists.
Also, boxplot has sym keyword to specify fliers style.
When you pass other type of arguments via color keyword, it will be directly passed to matplotlib for all the boxes,
whiskers, medians and caps colorization.
The colors are applied to every boxes to be drawn. If you want more complicated colorization, you can get each drawn
artists by passing return_type.
In [32]: color = dict(boxes='DarkGreen', whiskers='DarkOrange',
....:
medians='DarkBlue', caps='Gray')
....:
In [33]: df.plot(kind='box', color=color, sym='r+')
Out[33]: 

644

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

Also, you can pass other keywords supported by matplotlib boxplot. For example, horizontal and custom-positioned
boxplot can be drawn by vert=False and positions keywords.
In [34]: df.plot(kind='box', vert=False, positions=[1, 4, 5, 6, 8])
Out[34]: 

23.2. Other Plots

645

pandas: powerful Python data analysis toolkit, Release 0.16.1

See the boxplot method and the matplotlib boxplot documenation for more.
The existing interface DataFrame.boxplot to plot boxplot still can be used.
In [35]: df = pd.DataFrame(np.random.rand(10,5))
In [36]: plt.figure();
In [37]: bp = df.boxplot()

646

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

You can create a stratified boxplot using the by keyword argument to create groupings. For instance,
In [38]: df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'] )
In [39]: df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
In [40]: plt.figure();
In [41]: bp = df.boxplot(by='X')

23.2. Other Plots

647

pandas: powerful Python data analysis toolkit, Release 0.16.1

You can also pass a subset of columns to plot, as well as group by multiple columns:
In [42]: df = pd.DataFrame(np.random.rand(10,3), columns=['Col1', 'Col2', 'Col3'])
In [43]: df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
In [44]: df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])
In [45]: plt.figure();
In [46]: bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])

648

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

Basically, plot functions return matplotlib Axes as a return value. In boxplot, the return type can be changed
by argument return_type, and whether the subplots is enabled (subplots=True in plot or by is specified in
boxplot).
When subplots=False / by is None:

• if return_type is ’dict’, a dictionary containing the matplotlib Lines is returned. The keys are “boxes”, “caps”
This is the default of boxplot in historical reason. Note that plot(kind=’box’) returns Axes as
default as the same as other plots.
• if return_type is ’axes’, a matplotlib Axes containing the boxplot is returned.
• if return_type is ’both’ a namedtuple containging the matplotlib Axes and
Lines is returned

matplotlib

When subplots=True / by is some column of the DataFrame:
• A dict of return_type is returned, where the keys are the columns of the DataFrame. The plot has a facet
for each column of the DataFrame, with a separate box for each value of by.
Finally, when calling boxplot on a Groupby object, a dict of return_type is returned, where the keys are the
same as the Groupby object. The plot has a facet for each key, with each facet containing a box for each column of the
DataFrame.

23.2. Other Plots

649

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [47]: np.random.seed(1234)
In [48]: df_box = pd.DataFrame(np.random.randn(50, 2))
In [49]: df_box['g'] = np.random.choice(['A', 'B'], size=50)
In [50]: df_box.loc[df_box['g'] == 'B', 1] += 3
In [51]: bp = df_box.boxplot(by='g')

Compare to:
In [52]: bp = df_box.groupby('g').boxplot()

650

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.2.4 Area Plot
New in version 0.14.
You can create area plots with Series.plot and DataFrame.plot by passing kind=’area’. Area plots are
stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.
When input data contains NaN, it will be automatically filled by 0. If you want to drop or fill by different values, use
dataframe.dropna() or dataframe.fillna() before calling plot.
In [53]: df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
In [54]: df.plot(kind='area');

23.2. Other Plots

651

pandas: powerful Python data analysis toolkit, Release 0.16.1

To produce an unstacked plot, pass stacked=False. Alpha value is set to 0.5 unless otherwise specified:
In [55]: df.plot(kind='area', stacked=False);

652

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.2.5 Scatter Plot
New in version 0.13.
You can create scatter plots with DataFrame.plot by passing kind=’scatter’. Scatter plot requires numeric
columns for x and y axis. These can be specified by x and y keywords each.
In [56]: df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
In [57]: df.plot(kind='scatter', x='a', y='b');

23.2. Other Plots

653

pandas: powerful Python data analysis toolkit, Release 0.16.1

To plot multiple column groups in a single axes, repeat plot method specifying target ax. It is recommended to
specify color and label keywords to distinguish each groups.
In [58]: ax = df.plot(kind='scatter', x='a', y='b',
....:
color='DarkBlue', label='Group 1');
....:
In [59]: df.plot(kind='scatter', x='c', y='d',
....:
color='DarkGreen', label='Group 2', ax=ax);
....:

654

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

The keyword c may be given as the name of a column to provide colors for each point:
In [60]: df.plot(kind='scatter', x='a', y='b', c='c', s=50);

23.2. Other Plots

655

pandas: powerful Python data analysis toolkit, Release 0.16.1

You can pass other keywords supported by matplotlib scatter. Below example shows a bubble chart using a
dataframe column values as bubble size.
In [61]: df.plot(kind='scatter', x='a', y='b', s=df['c']*200);

656

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

See the scatter method and the matplotlib scatter documenation for more.

23.2.6 Hexagonal Bin Plot
New in version 0.14.
You can create hexagonal bin plots with DataFrame.plot() and kind=’hexbin’. Hexbin plots can be a useful
alternative to scatter plots if your data are too dense to plot each point individually.
In [62]: df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])
In [63]: df['b'] = df['b'] + np.arange(1000)
In [64]: df.plot(kind='hexbin', x='a', y='b', gridsize=25)
Out[64]: 

23.2. Other Plots

657

pandas: powerful Python data analysis toolkit, Release 0.16.1

A useful keyword argument is gridsize; it controls the number of hexagons in the x-direction, and defaults to 100.
A larger gridsize means more, smaller bins.
By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations
by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and
reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g.
mean, max, sum, std). In this example the positions are given by columns a and b, while the value is given by
column z. The bins are aggregated with numpy’s max function.
In [65]: df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])
In [66]: df['b'] = df['b'] = df['b'] + np.arange(1000)
In [67]: df['z'] = np.random.uniform(0, 3, 1000)
In [68]: df.plot(kind='hexbin', x='a', y='b', C='z', reduce_C_function=np.max,
....:
gridsize=25)
....:
Out[68]: 

658

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

See the hexbin method and the matplotlib hexbin documenation for more.

23.2.7 Pie plot
New in version 0.14.
You can create a pie plot with DataFrame.plot() or Series.plot() with kind=’pie’. If your data includes any NaN, they will be automatically filled with 0. A ValueError will be raised if there are any negative
values in your data.
In [69]: series = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name='series')
In [70]: series.plot(kind='pie', figsize=(6, 6))
Out[70]: 

23.2. Other Plots

659

pandas: powerful Python data analysis toolkit, Release 0.16.1

For pie plots it’s best to use square figures, one’s with an equal aspect ratio. You can create the figure with equal
width and height, or force the aspect ratio to be equal after plotting by calling ax.set_aspect(’equal’) on the
returned axes object.
Note that pie plot with DataFrame requires that you either specify a target column by the y argument or
subplots=True. When y is specified, pie plot of selected column will be drawn. If subplots=True is specified, pie plots for each column are drawn as subplots. A legend will be drawn in each pie plots by default; specify
legend=False to hide it.
In [71]: df = pd.DataFrame(3 * np.random.rand(4, 2), index=['a', 'b', 'c', 'd'], columns=['x', 'y'])
In [72]: df.plot(kind='pie', subplots=True, figsize=(8, 4))
Out[72]:
array([,
], dtype=object)

660

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

You can use the labels and colors keywords to specify the labels and colors of each wedge.
Warning: Most pandas plots use the the label and color arguments (note the lack of “s” on those). To be
consistent with matplotlib.pyplot.pie() you must use labels and colors.
If you want to hide wedge labels, specify labels=None. If fontsize is specified, the value will be applied to
wedge labels. Also, other keywords supported by matplotlib.pyplot.pie() can be used.
In [73]: series.plot(kind='pie', labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'],
....:
autopct='%.2f', fontsize=20, figsize=(6, 6))
....:
Out[73]: 

23.2. Other Plots

661

pandas: powerful Python data analysis toolkit, Release 0.16.1

If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.
In [74]: series = pd.Series([0.1] * 4, index=['a', 'b', 'c', 'd'], name='series2')
In [75]: series.plot(kind='pie', figsize=(6, 6))
Out[75]: 

662

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

See the matplotlib pie documenation for more.

23.3 Plotting with Missing Data
Pandas tries to be pragmatic about plotting DataFrames or Series that contain missing data. Missing values are
dropped, left out, or filled depending on the plot type.
Plot Type
Line
Line (stacked)
Bar
Scatter
Histogram
Box
Area
KDE
Hexbin
Pie

NaN Handling
Leave gaps at NaNs
Fill 0’s
Fill 0’s
Drop NaNs
Drop NaNs (column-wise)
Drop NaNs (column-wise)
Fill 0’s
Drop NaNs (column-wise)
Drop NaNs
Fill 0’s

If any of these defaults are not what you want, or if you want to be explicit about how missing values are handled,
consider using fillna() or dropna() before plotting.

23.3. Plotting with Missing Data

663

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.4 Plotting Tools
These functions can be imported from pandas.tools.plotting and take a Series or DataFrame as an
argument.

23.4.1 Scatter Matrix Plot
New in version 0.7.3.
You can create a scatter plot matrix using the scatter_matrix method in pandas.tools.plotting:
In [76]: from pandas.tools.plotting import scatter_matrix
In [77]: df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])
In [78]: scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
Out[78]:
array([[,
,
,
],
[,
,
,
],
[,
,
,
],
[,
,
,
]], dtype=object)

664

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.4.2 Density Plot
New in version 0.8.0.
You can create density plots using the Series/DataFrame.plot and setting kind=’kde’:
In [79]: ser = pd.Series(np.random.randn(1000))
In [80]: ser.plot(kind='kde')
Out[80]: 

23.4. Plotting Tools

665

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.4.3 Andrews Curves
Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes
of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to
visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form
larger structures.
Note: The “Iris” dataset is available here.
In [81]: from pandas.tools.plotting import andrews_curves
In [82]: data = pd.read_csv('data/iris.data')
In [83]: plt.figure()
Out[83]: 
In [84]: andrews_curves(data, 'Name')
Out[84]: 

666

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.4.4 Parallel Coordinates
Parallel coordinates is a plotting technique for plotting multivariate data. It allows one to see clusters in data and to
estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each
vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to
cluster will appear closer together.
In [85]: from pandas.tools.plotting import parallel_coordinates
In [86]: data = pd.read_csv('data/iris.data')
In [87]: plt.figure()
Out[87]: 
In [88]: parallel_coordinates(data, 'Name')
Out[88]: 

23.4. Plotting Tools

667

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.4.5 Lag Plot
Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the
lag plot. Non-random structure implies that the underlying data are not random.
In [89]: from pandas.tools.plotting import lag_plot
In [90]: plt.figure()
Out[90]: 
In [91]: data = pd.Series(0.1 * np.random.rand(1000) +
....:
0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))
....:
In [92]: lag_plot(data)
Out[92]: 

668

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.4.6 Autocorrelation Plot
Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any
and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly
non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is
99% confidence band.
In [93]: from pandas.tools.plotting import autocorrelation_plot
In [94]: plt.figure()
Out[94]: 
In [95]: data = pd.Series(0.7 * np.random.rand(1000) +
....:
0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))
....:
In [96]: autocorrelation_plot(data)
Out[96]: 

23.4. Plotting Tools

669

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.4.7 Bootstrap Plot
Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A
random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and
the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap
plot.
In [97]: from pandas.tools.plotting import bootstrap_plot
In [98]: data = pd.Series(np.random.rand(1000))
In [99]: bootstrap_plot(data, size=50, samples=500, color='grey')
Out[99]: 

670

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.4.8 RadViz
RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm.
Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point
represents a single attribute. You then pretend that each sample in the data set is attached to each of these points
by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to
unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an
equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it
will be colored differently.
Note: The “Iris” dataset is available here.
In [100]: from pandas.tools.plotting import radviz
In [101]: data = pd.read_csv('data/iris.data')
In [102]: plt.figure()
Out[102]: 
In [103]: radviz(data, 'Name')
Out[103]: 

23.4. Plotting Tools

671

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.5 Plot Formatting
Most plotting methods have a set of keyword arguments that control the layout and formatting of the returned plot:
In [104]: plt.figure(); ts.plot(style='k--', label='Series');

672

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

For each kind of plot (e.g. line, bar, scatter) any additional arguments keywords are passed along to the corresponding
matplotlib function (ax.plot(), ax.bar(), ax.scatter()). These can be used to control additional styling,
beyond what pandas provides.

23.5.1 Controlling the Legend
You may set the legend argument to False to hide the legend, which is shown by default.
In [105]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
In [106]: df = df.cumsum()
In [107]: df.plot(legend=False)
Out[107]: 

23.5. Plot Formatting

673

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.5.2 Scales
You may pass logy to get a log-scale Y axis.
In [108]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [109]: ts = np.exp(ts.cumsum())
In [110]: ts.plot(logy=True)
Out[110]: 

674

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

See also the logx and loglog keyword arguments.

23.5.3 Plotting on a Secondary Y-axis
To plot data on a secondary y-axis, use the secondary_y keyword:
In [111]: df.A.plot()
Out[111]: 
In [112]: df.B.plot(secondary_y=True, style='g')
Out[112]: 

23.5. Plot Formatting

675

pandas: powerful Python data analysis toolkit, Release 0.16.1

To plot some columns in a DataFrame, give the column names to the secondary_y keyword:
In [113]: plt.figure()
Out[113]: 
In [114]: ax = df.plot(secondary_y=['A', 'B'])
In [115]: ax.set_ylabel('CD scale')
Out[115]: 
In [116]: ax.right_ax.set_ylabel('AB scale')
Out[116]: 

676

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

Note that the columns plotted on the secondary y-axis is automatically marked with “(right)” in the legend. To turn off
the automatic marking, use the mark_right=False keyword:
In [117]: plt.figure()
Out[117]: 
In [118]: df.plot(secondary_y=['A', 'B'], mark_right=False)
Out[118]: 

23.5. Plot Formatting

677

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.5.4 Suppressing Tick Resolution Adjustment
pandas includes automatic tick resolution adjustment for regular frequency time-series data. For limited cases where
pandas cannot infer the frequency information (e.g., in an externally created twinx), you can choose to suppress this
behavior for alignment purposes.
Here is the default behavior, notice how the x-axis tick labelling is performed:
In [119]: plt.figure()
Out[119]: 
In [120]: df.A.plot()
Out[120]: 

678

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

Using the x_compat parameter, you can suppress this behavior:
In [121]: plt.figure()
Out[121]: 
In [122]: df.A.plot(x_compat=True)
Out[122]: 

23.5. Plot Formatting

679

pandas: powerful Python data analysis toolkit, Release 0.16.1

If you have more than one plot that needs to be suppressed, the use method in pandas.plot_params can be used
in a with statement:
In [123]: plt.figure()
Out[123]: 
In [124]: with pd.plot_params.use('x_compat', True):
.....:
df.A.plot(color='r')
.....:
df.B.plot(color='g')
.....:
df.C.plot(color='b')
.....:

680

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.5.5 Subplots
Each Series in a DataFrame can be plotted on a different axis with the subplots keyword:
In [125]: df.plot(subplots=True, figsize=(6, 6));

23.5. Plot Formatting

681

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.5.6 Using Layout and Targetting Multiple Axes
The layout of subplots can be specified by layout keyword. It can accept (rows, columns). The layout
keyword can be used in hist and boxplot also. If input is invalid, ValueError will be raised.
The number of axes which can be contained by rows x columns specified by layout must be larger than the number
of required subplots. If layout can contain more axes than required, blank axes are not drawn. Similar to a numpy
array’s reshape method, you can use -1 for one dimension to automatically calculate the number of rows or columns
needed, given the other.
In [126]: df.plot(subplots=True, layout=(2, 3), figsize=(6, 6), sharex=False);

682

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

The above example is identical to using
In [127]: df.plot(subplots=True, layout=(2, -1), figsize=(6, 6), sharex=False);

The required number of columns (3) is inferred from the number of series to plot and the given number of rows (2).
Also, you can pass multiple axes created beforehand as list-like via ax keyword. This allows to use more complicated
layout. The passed axes must be the same number as the subplots being drawn.
When multiple axes are passed via ax keyword, layout, sharex and sharey keywords don’t affect to the output.
You should explicitly pass sharex=False and sharey=False, otherwise you will see a warning.
In [128]: fig, axes = plt.subplots(4, 4, figsize=(6, 6));
In [129]: plt.subplots_adjust(wspace=0.5, hspace=0.5);
In [130]: target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]
In [131]: target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]
In [132]: df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False);
In [133]: (-df).plot(subplots=True, ax=target2, legend=False, sharex=False, sharey=False);

23.5. Plot Formatting

683

pandas: powerful Python data analysis toolkit, Release 0.16.1

Another option is passing an ax argument to Series.plot() to plot on a particular axis:
In [134]: fig, axes = plt.subplots(nrows=2, ncols=2)
In [135]: df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A');
In [136]: df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B');
In [137]: df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C');
In [138]: df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D');

684

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.5.7 Plotting With Error Bars
New in version 0.14.
Plotting with error bars is now supported in the DataFrame.plot() and Series.plot()
Horizontal and vertical errorbars can be supplied to the xerr and yerr keyword arguments to plot(). The error
values can be specified using a variety of formats.
• As a DataFrame or dict of errors with column names matching the columns attribute of the plotting
DataFrame or matching the name attribute of the Series
• As a str indicating which of the columns of plotting DataFrame contain the error values
• As raw values (list, tuple, or np.ndarray).
DataFrame/Series

Must be the same length as the plotting

Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a M
length Series, a Mx2 array should be provided indicating lower and upper (or left and right) errors. For a MxN
DataFrame, asymmetrical errors should be in a Mx2xN array.
Here is an example of one way to easily plot group means with standard deviations from the raw data.

23.5. Plot Formatting

685

pandas: powerful Python data analysis toolkit, Release 0.16.1

# Generate the data
In [139]: ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], ['foo', 'foo', '
In [140]: df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5, 4, 5, 6, 5]},
# Group by index labels and take the means and standard deviations for each group
In [141]: gp3 = df3.groupby(level=('letter', 'word'))
In [142]: means = gp3.mean()
In [143]: errors = gp3.std()
In [144]: means
Out[144]:
data1
letter word
a
bar
3.5
foo
2.5
b
bar
2.5
foo
3.0

data2

In [145]: errors
Out[145]:
data1
letter word
a
bar
0.707107
foo
0.707107
b
bar
0.707107
foo
1.414214

6.0
5.5
5.5
4.5

data2
1.414214
0.707107
0.707107
0.707107

# Plot
In [146]: fig, ax = plt.subplots()
In [147]: means.plot(yerr=errors, ax=ax, kind='bar')
Out[147]: 

686

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.5.8 Plotting Tables
New in version 0.14.
Plotting with matplotlib table is now supported in DataFrame.plot() and Series.plot() with a table
keyword. The table keyword can accept bool, DataFrame or Series. The simple way to draw a table is to
specify table=True. Data will be transposed to meet matplotlib’s default layout.
In [148]: fig, ax = plt.subplots(1, 1)
In [149]: df = pd.DataFrame(np.random.rand(5, 3), columns=['a', 'b', 'c'])
In [150]: ax.get_xaxis().set_visible(False)

# Hide Ticks

In [151]: df.plot(table=True, ax=ax)
Out[151]: 

23.5. Plot Formatting

687

pandas: powerful Python data analysis toolkit, Release 0.16.1

Also, you can pass different DataFrame or Series for table keyword. The data will be drawn as displayed in
print method (not transposed automatically). If required, it should be transposed manually as below example.
In [152]: fig, ax = plt.subplots(1, 1)
In [153]: ax.get_xaxis().set_visible(False)

# Hide Ticks

In [154]: df.plot(table=np.round(df.T, 2), ax=ax)
Out[154]: 

688

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

Finally, there is a helper function pandas.tools.plotting.table to create a table from DataFrame and
Series, and add it to an matplotlib.Axes. This function can accept keywords which matplotlib table has.
In [155]: from pandas.tools.plotting import table
In [156]: fig, ax = plt.subplots(1, 1)
In [157]: table(ax, np.round(df.describe(), 2),
.....:
loc='upper right', colWidths=[0.2, 0.2, 0.2])
.....:
Out[157]: 
In [158]: df.plot(ax=ax, ylim=(0, 2), legend=None)
Out[158]: 

23.5. Plot Formatting

689

pandas: powerful Python data analysis toolkit, Release 0.16.1

Note: You can get table instances on the axes using axes.tables property for further decorations. See the matplotlib table documenation for more.

23.5.9 Colormaps
A potential issue when plotting a large number of columns is that it can be difficult to distinguish some series due to
repetition in the default colors. To remedy this, DataFrame plotting supports the use of the colormap= argument,
which accepts either a Matplotlib colormap or a string that is a name of a colormap registered with Matplotlib. A
visualization of the default matplotlib colormaps is available here.
As matplotlib does not directly support colormaps for line-based plots, the colors are selected based on an even spacing
determined by the number of columns in the DataFrame. There is no consideration made for background color, so
some colormaps will produce lines that are not easily visible.
To use the cubehelix colormap, we can simply pass ’cubehelix’ to colormap=
In [159]: df = pd.DataFrame(np.random.randn(1000, 10), index=ts.index)
In [160]: df = df.cumsum()
In [161]: plt.figure()
Out[161]: 

690

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [162]: df.plot(colormap='cubehelix')
Out[162]: 

or we can pass the colormap itself
In [163]: from matplotlib import cm
In [164]: plt.figure()
Out[164]: 
In [165]: df.plot(colormap=cm.cubehelix)
Out[165]: 

23.5. Plot Formatting

691

pandas: powerful Python data analysis toolkit, Release 0.16.1

Colormaps can also be used other plot types, like bar charts:
In [166]: dd = pd.DataFrame(np.random.randn(10, 10)).applymap(abs)
In [167]: dd = dd.cumsum()
In [168]: plt.figure()
Out[168]: 
In [169]: dd.plot(kind='bar', colormap='Greens')
Out[169]: 

692

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

Parallel coordinates charts:
In [170]: plt.figure()
Out[170]: 
In [171]: parallel_coordinates(data, 'Name', colormap='gist_rainbow')
Out[171]: 

23.5. Plot Formatting

693

pandas: powerful Python data analysis toolkit, Release 0.16.1

Andrews curves charts:
In [172]: plt.figure()
Out[172]: 
In [173]: andrews_curves(data, 'Name', colormap='winter')
Out[173]: 

694

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

23.6 Plotting directly with matplotlib
In some situations it may still be preferable or necessary to prepare plots directly with matplotlib, for instance when
a certain type of plot or customization is not (yet) supported by pandas. Series and DataFrame objects behave like
arrays and can therefore be passed directly to matplotlib functions without explicit casts.
pandas also automatically registers formatters and locators that recognize date indices, thereby extending date and
time support to practically all plot types available in matplotlib. Although this formatting does not provide the same
level of refinement you would get when plotting via pandas, it can be faster when plotting a large number of points.
Note: The speed up for large data sets only applies to pandas 0.14.0 and later.
In [174]: price = pd.Series(np.random.randn(150).cumsum(),
.....:
index=pd.date_range('2000-1-1', periods=150, freq='B'))
.....:
In [175]: ma = pd.rolling_mean(price, 20)
In [176]: mstd = pd.rolling_std(price, 20)
In [177]: plt.figure()

23.6. Plotting directly with matplotlib

695

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[177]: 
In [178]: plt.plot(price.index, price, 'k')
Out[178]: []
In [179]: plt.plot(ma.index, ma, 'b')
Out[179]: []
In [180]: plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)
Out[180]: 

23.7 Trellis plotting interface
Warning: The rplot trellis plotting interface is deprecated and will be removed in a future version. We refer
to external packages like seaborn for similar but more refined functionality.
The docs below include some example on how to convert your existing code to seaborn.

Note: The tips data set can be downloaded here. Once you download it execute

696

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

tips_data = pd.read_csv('tips.csv')

from the directory where you downloaded the file.
We import the rplot API:
In [181]: import pandas.tools.rplot as rplot

23.7.1 Examples
RPlot was an API for producing Trellis plots. These plots allow you toµ arrange data in a rectangular grid by values
of certain attributes. In the example below, data from the tips data set is arranged by the attributes ‘sex’ and ‘smoker’.
Since both of those attributes can take on one of two values, the resulting grid has two columns and two rows. A
histogram is displayed for each cell of the grid.
In [182]: plt.figure()
Out[182]: 
In [183]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [184]: plot.add(rplot.TrellisGrid(['sex', 'smoker']))
In [185]: plot.add(rplot.GeomHistogram())
In [186]: plot.render(plt.gcf())
Out[186]: 

23.7. Trellis plotting interface

697

pandas: powerful Python data analysis toolkit, Release 0.16.1

A similar plot can be made with seaborn using the FacetGrid object, resulting in the following image:
import seaborn as sns
g = sns.FacetGrid(tips_data, row="sex", col="smoker")
g.map(plt.hist, "total_bill")

698

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

Example below is the same as previous except the plot is set to kernel density estimation. A seaborn example is
included beneath.
In [187]: plt.figure()
Out[187]: 
In [188]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [189]: plot.add(rplot.TrellisGrid(['sex', 'smoker']))
In [190]: plot.add(rplot.GeomDensity())
In [191]: plot.render(plt.gcf())
Out[191]: 

23.7. Trellis plotting interface

699

pandas: powerful Python data analysis toolkit, Release 0.16.1

g = sns.FacetGrid(tips_data, row="sex", col="smoker")
g.map(sns.kdeplot, "total_bill")

700

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

The plot below shows that it is possible to have two or more plots for the same data displayed on the same Trellis grid
cell.
In [192]: plt.figure()
Out[192]: 
In [193]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [194]: plot.add(rplot.TrellisGrid(['sex', 'smoker']))
In [195]: plot.add(rplot.GeomScatter())
In [196]: plot.add(rplot.GeomPolyFit(degree=2))
In [197]: plot.render(plt.gcf())
Out[197]: 

23.7. Trellis plotting interface

701

pandas: powerful Python data analysis toolkit, Release 0.16.1

A seaborn equivalent for a simple scatter plot:
g = sns.FacetGrid(tips_data, row="sex", col="smoker")
g.map(plt.scatter, "total_bill", "tip")

702

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

and with a regression line, using the dedicated seaborn regplot function:
g = sns.FacetGrid(tips_data, row="sex", col="smoker", margin_titles=True)
g.map(sns.regplot, "total_bill", "tip", order=2)

23.7. Trellis plotting interface

703

pandas: powerful Python data analysis toolkit, Release 0.16.1

Below is a similar plot but with 2D kernel density estimation plot superimposed, followed by a seaborn equivalent:
In [198]: plt.figure()
Out[198]: 
In [199]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [200]: plot.add(rplot.TrellisGrid(['sex', 'smoker']))
In [201]: plot.add(rplot.GeomScatter())
In [202]: plot.add(rplot.GeomDensity2D())
In [203]: plot.render(plt.gcf())
Out[203]: 

704

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

g = sns.FacetGrid(tips_data, row="sex", col="smoker")
g.map(plt.scatter, "total_bill", "tip")
g.map(sns.kdeplot, "total_bill", "tip")

23.7. Trellis plotting interface

705

pandas: powerful Python data analysis toolkit, Release 0.16.1

It is possible to only use one attribute for grouping data. The example above only uses ‘sex’ attribute. If the second
grouping attribute is not specified, the plots will be arranged in a column.
In [204]: plt.figure()
Out[204]: 
In [205]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [206]: plot.add(rplot.TrellisGrid(['sex', '.']))
In [207]: plot.add(rplot.GeomHistogram())
In [208]: plot.render(plt.gcf())
Out[208]: 

706

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

If the first grouping attribute is not specified the plots will be arranged in a row.
In [209]: plt.figure()
Out[209]: 
In [210]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [211]: plot.add(rplot.TrellisGrid(['.', 'smoker']))
In [212]: plot.add(rplot.GeomHistogram())
In [213]: plot.render(plt.gcf())
Out[213]: 

23.7. Trellis plotting interface

707

pandas: powerful Python data analysis toolkit, Release 0.16.1

In seaborn, this can also be done by only specifying one of the row and col arguments.
In the example below the colour and shape of the scatter plot graphical objects is mapped to ‘day’ and ‘size’ attributes
respectively. You use scale objects to specify these mappings. The list of scale classes is given below with initialization
arguments for quick reference.
In [214]: plt.figure()
Out[214]: 
In [215]: plot = rplot.RPlot(tips_data, x='tip', y='total_bill')
In [216]: plot.add(rplot.TrellisGrid(['sex', 'smoker']))

In [217]: plot.add(rplot.GeomPoint(size=80.0, colour=rplot.ScaleRandomColour('day'), shape=rplot.Scal
In [218]: plot.render(plt.gcf())
Out[218]: 

708

Chapter 23. Plotting

pandas: powerful Python data analysis toolkit, Release 0.16.1

This can also be done in seaborn, at least for 3 variables:
g = sns.FacetGrid(tips_data, row="sex", col="smoker", hue="day")
g.map(plt.scatter, "tip", "total_bill")
g.add_legend()

23.7. Trellis plotting interface

709

pandas: powerful Python data analysis toolkit, Release 0.16.1

710

Chapter 23. Plotting

CHAPTER

TWENTYFOUR

IO TOOLS (TEXT, CSV, HDF5, ...)

The pandas I/O API is a set of top level reader functions accessed like pd.read_csv() that generally return a
pandas object.
• read_csv
• read_excel
• read_hdf
• read_sql
• read_json
• read_msgpack (experimental)
• read_html
• read_gbq (experimental)
• read_stata
• read_clipboard
• read_pickle
The corresponding writer functions are object methods that are accessed like df.to_csv()
• to_csv
• to_excel
• to_hdf
• to_sql
• to_json
• to_msgpack (experimental)
• to_html
• to_gbq (experimental)
• to_stata
• to_clipboard
• to_pickle
Here is an informal performance comparison for some of these IO methods.
Note: For examples that use the StringIO class, make sure you import it according to your Python version, i.e.
from StringIO import StringIO for Python 2 and from io import StringIO for Python 3.

711

pandas: powerful Python data analysis toolkit, Release 0.16.1

24.1 CSV & Text files
The two workhorse functions for reading text files (a.k.a. flat files) are read_csv() and read_table(). They
both use the same parsing code to intelligently convert tabular data into a DataFrame object. See the cookbook for
some advanced strategies
They can take a number of arguments:
• filepath_or_buffer: Either a string path to a file, URL (including http, ftp, and S3 locations), or any
object with a read method (such as an open file or StringIO).
• sep or delimiter: A delimiter / separator to split fields on. With sep=None, read_csv will try to infer
the delimiter automatically in some cases by “sniffing”. The separator may be specified as a regular expression;
for instance you may use ‘|\s*’ to indicate a pipe plus arbitrary whitespace.
• delim_whitespace: Parse whitespace-delimited (spaces or tabs) file (much faster than using a regular
expression)
• compression: decompress ’gzip’ and ’bz2’ formats on the fly. Set to ’infer’ (the default) to guess a
format based on the file extension.
• dialect: string or csv.Dialect instance to expose more ways to specify the file format
• dtype: A data type name or a dict of column name to data type. If not specified, data types will be inferred.
(Unsupported with engine=’python’)
• header: row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names
passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a
list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are
not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented
lines and empty lines if skip_blank_lines=True (the default), so header=0 denotes the first line of data
rather than the first line of the file.
• skip_blank_lines: whether to skip over blank lines rather than interpreting them as NaN values
• skiprows: A collection of numbers for rows in the file to skip. Can also be an integer to skip the first n rows
• index_col: column number, column name, or list of column numbers/names, to use as the index (row
labels) of the resulting DataFrame. By default, it will number the rows without using any column, unless there
is one more data column than there are headers, in which case the first column is taken as the index.
• names: List of column names to use as column names. To replace header existing in file, explicitly pass
header=0.
• na_values: optional list of strings to recognize as NaN (missing values), either in addition to or in lieu of the
default set.
• true_values: list of strings to recognize as True
• false_values: list of strings to recognize as False
• keep_default_na: whether to include the default set of missing values in addition to the ones specified in
na_values
• parse_dates: if True then index will be parsed as dates (False by default). You can specify more complicated
options to parse a subset of columns or a combination of columns into a single date column (list of ints or names,
list of lists, or dict) [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column [[1, 3]] -> combine
columns 1 and 3 and parse as a single date column {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result
‘foo’

712

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

• keep_date_col: if True, then date component columns passed into parse_dates will be retained in the
output (False by default).
• date_parser: function to use to parse strings into datetime objects. If parse_dates is True, it defaults
to the very robust dateutil.parser. Specifying this implicitly sets parse_dates as True. You can also
use functions from community supported date converters from date_converters.py
• dayfirst: if True then uses the DD/MM international/European date format (This is False by default)
• thousands: specifies the thousands separator. If not None, this character will be stripped from numeric
dtypes. However, if it is the first character in a field, that column will be imported as a string. In the PythonParser,
if not None, then parser will try to look for it in the output and parse relevant data to numeric dtypes. Because it
has to essentially scan through the data again, this causes a significant performance hit so only use if necessary.
• lineterminator : string (length 1), default None, Character to break file into lines. Only valid with C
parser
• quotechar : string, The character to used to denote the start and end of a quoted item. Quoted items can
include the delimiter and it will be ignored.
• quoting : int, Controls whether quotes should be recognized. Values are taken from csv.QUOTE_* values. Acceptable values are 0, 1, 2, and 3 for QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONE, and
QUOTE_NONNUMERIC, respectively.
• skipinitialspace : boolean, default False, Skip spaces after delimiter
• escapechar : string, to specify how to escape quoted data
• comment: Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be
ignored altogether. This parameter must be a single character. Like empty lines, fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment=’#’, parsing ‘#emptyn1,2,3na,b,c’
with header=0 will result in ‘1,2,3’ being treated as the header.
• nrows: Number of rows to read out of the file. Useful to only read a small portion of a large file
• iterator: If True, return a TextFileReader to enable reading a file into memory piece by piece
• chunksize: An number of rows to be used to “chunk” a file into pieces. Will cause an TextFileReader
object to be returned. More on this below in the section on iterating and chunking
• skip_footer: number of lines to skip at bottom of file (default 0) (Unsupported with engine=’c’)
• converters: a dictionary of functions for converting values in certain columns, where keys are either integers
or column labels
• encoding: a string representing the encoding to use for decoding unicode data, e.g.
’latin-1’. Full list of Python standard encodings

’utf-8‘ or

• verbose: show number of NA values inserted in non-numeric columns
• squeeze: if True then output with only one column is turned into Series
• error_bad_lines: if False then any lines causing an error will be skipped bad lines
• usecols: a subset of columns to return, results in much faster parsing time and lower memory usage.
• mangle_dupe_cols: boolean, default True, then duplicate columns will be specified as ‘X.0’...’X.N’, rather
than ‘X’...’X’
• tupleize_cols: boolean, default False, if False, convert a list of tuples to a multi-index of columns, otherwise, leave the column index as a list of tuples
• float_precision : string, default None. Specifies which converter the C engine should use for floatingpoint values. The options are None for the ordinary converter, ‘high’ for the high-precision converter, and
‘round_trip’ for the round-trip converter.

24.1. CSV & Text files

713

pandas: powerful Python data analysis toolkit, Release 0.16.1

Consider a typical CSV file containing, in this case, some time series data:
In [1]: print(open('foo.csv').read())
date,A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5

The default for read_csv is to create a DataFrame with simple numbered rows:
In [2]: pd.read_csv('foo.csv')
Out[2]:
date A B C
0 20090101 a 1 2
1 20090102 b 3 4
2 20090103 c 4 5

In the case of indexed data, you can pass the column number or column name you wish to use as the index:
In [3]: pd.read_csv('foo.csv', index_col=0)
Out[3]:
A B C
date
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5
In [4]: pd.read_csv('foo.csv', index_col='date')
Out[4]:
A B C
date
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5

You can also use a list of columns to create a hierarchical index:
In [5]: pd.read_csv('foo.csv', index_col=[0, 'A'])
Out[5]:
B C
date
A
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5

The dialect keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but
you can specify either the dialect name or a csv.Dialect instance.
Suppose you had data with unenclosed quotes:
In [6]: print(data)
label1,label2,label3
index1,"a,c,e
index2,b,d,f

By default, read_csv uses the Excel dialect and treats the double quote as the quote character, which causes it to
fail when it finds a newline before it finds the closing double quote.
We can get around this using dialect

714

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [7]: dia = csv.excel()
In [8]: dia.quoting = csv.QUOTE_NONE
In [9]: pd.read_csv(StringIO(data), dialect=dia)
Out[9]:
label1 label2 label3
index1
"a
c
e
index2
b
d
f

All of the dialect options can be specified separately by keyword arguments:
In [10]: data = 'a,b,c~1,2,3~4,5,6'
In [11]:
Out[11]:
a b
0 1 2
1 4 5

pd.read_csv(StringIO(data), lineterminator='~')
c
3
6

Another common dialect option is skipinitialspace, to skip any whitespace after a delimiter:
In [12]: data = 'a, b, c\n1, 2, 3\n4, 5, 6'
In
a,
1,
4,

[13]: print(data)
b, c
2, 3
5, 6

In [14]:
Out[14]:
a b
0 1 2
1 4 5

pd.read_csv(StringIO(data), skipinitialspace=True)
c
3
6

The parsers make every attempt to “do the right thing” and not be very fragile. Type inference is a pretty big deal. So
if a column can be coerced to integer dtype without altering the contents, it will do so. Any non-numeric columns will
come through as object dtype as with the rest of pandas objects.

24.1.1 Specifying column data types
Starting with v0.10, you can indicate the data type for the whole DataFrame or individual columns:
In [15]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9'
In [16]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9
In [17]: df = pd.read_csv(StringIO(data), dtype=object)
In [18]:
Out[18]:
a b
0 1 2
1 4 5

df
c
3
6

24.1. CSV & Text files

715

pandas: powerful Python data analysis toolkit, Release 0.16.1

2

7

8

9

In [19]: df['a'][0]
Out[19]: '1'
In [20]: df = pd.read_csv(StringIO(data), dtype={'b': object, 'c': np.float64})
In [21]: df.dtypes
Out[21]:
a
int64
b
object
c
float64
dtype: object

Note: The dtype option is currently only supported by the C engine. Specifying dtype with engine other than
‘c’ raises a ValueError.

24.1.2 Handling column names
A file may or may not have a header row. pandas assumes the first row should be used as the column names:
In [22]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9'
In [23]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9
In [24]:
Out[24]:
a b
0 1 2
1 4 5
2 7 8

pd.read_csv(StringIO(data))
c
3
6
9

By specifying the names argument in conjunction with header you can indicate other names to use and whether or
not to throw away the header row (if any):
In [25]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9
In [26]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=0)
Out[26]:
foo bar baz
0
1
2
3
1
4
5
6
2
7
8
9
In [27]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=None)
Out[27]:
foo bar baz
0
a
b
c

716

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

1
2
3

1
4
7

2
5
8

3
6
9

If the header is in a row other than the first, pass the row number to header. This will skip the preceding rows:
In [28]: data = 'skip this skip it\na,b,c\n1,2,3\n4,5,6\n7,8,9'
In [29]:
Out[29]:
a b
0 1 2
1 4 5
2 7 8

pd.read_csv(StringIO(data), header=1)
c
3
6
9

24.1.3 Filtering columns (usecols)
The usecols argument allows you to select any subset of the columns in a file, either using the column names or
position numbers:
In [30]: data = 'a,b,c,d\n1,2,3,foo\n4,5,6,bar\n7,8,9,baz'
In [31]:
Out[31]:
a b
0 1 2
1 4 5
2 7 8

pd.read_csv(StringIO(data))
c
3
6
9

d
foo
bar
baz

In [32]: pd.read_csv(StringIO(data), usecols=['b', 'd'])
Out[32]:
b
d
0 2 foo
1 5 bar
2 8 baz
In [33]:
Out[33]:
a c
0 1 3
1 4 6
2 7 9

pd.read_csv(StringIO(data), usecols=[0, 2, 3])
d
foo
bar
baz

24.1.4 Ignoring line comments and empty lines
If the comment parameter is specified, then completely commented lines will be ignored. By default, completely
blank lines will be ignored as well. Both of these are API changes introduced in version 0.15.
In [34]: data = '\na,b,c\n

\n# commented line\n1,2,3\n\n4,5,6'

In [35]: print(data)
a,b,c
1,2,3

24.1. CSV & Text files

717

pandas: powerful Python data analysis toolkit, Release 0.16.1

4,5,6
# commented line
In [36]: pd.read_csv(StringIO(data), comment='#')
Out[36]:
a b c
0 1 2 3
1 4 5 6

If skip_blank_lines=False, then read_csv will not ignore blank lines:
In [37]: data = 'a,b,c\n\n1,2,3\n\n\n4,5,6'
In [38]: pd.read_csv(StringIO(data), skip_blank_lines=False)
Out[38]:
a
b
c
0 NaN NaN NaN
1
1
2
3
2 NaN NaN NaN
3 NaN NaN NaN
4
4
5
6

718

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning: The presence of ignored lines might create ambiguities involving line numbers; the parameter header
uses row numbers (ignoring commented/empty lines), while skiprows uses line numbers (including commented/empty lines):
In [39]: data = '#comment\na,b,c\nA,B,C\n1,2,3'
In [40]: pd.read_csv(StringIO(data), comment='#', header=1)
Out[40]:
A B C
0 1 2 3
In [41]: data = 'A,B,C\n#comment\na,b,c\n1,2,3'
In [42]: pd.read_csv(StringIO(data), comment='#', skiprows=2)
Out[42]:
a b c
0 1 2 3

If both header and skiprows are specified, header will be relative to the end of skiprows. For example:
In [43]: data = '# empty\n# second empty line\n# third empty' \
In [43]: 'line\nX,Y,Z\n1,2,3\nA,B,C\n1,2.,4.\n5.,NaN,10.0'
In [44]: print(data)
# empty
# second empty line
# third emptyline
X,Y,Z
1,2,3
A,B,C
1,2.,4.
5.,NaN,10.0
In [45]: pd.read_csv(StringIO(data), comment='#', skiprows=4, header=1)
Out[45]:
A
B
C
0 1
2
4
1 5 NaN 10

24.1.5 Dealing with Unicode Data
The encoding argument should be used for encoded unicode data, which will result in byte strings being decoded
to unicode in the result:

In [46]: data = b'word,length\nTr\xc3\xa4umen,7\nGr\xc3\xbc\xc3\x9fe,5'.decode('utf8').encode('latinIn [47]: df = pd.read_csv(BytesIO(data), encoding='latin-1')
In [48]: df
Out[48]:
word length
0 Träumen
7
1
Grüße
5
In [49]: df['word'][1]

24.1. CSV & Text files

719

pandas: powerful Python data analysis toolkit, Release 0.16.1

Out[49]: u'Gr\xfc\xdfe'

Some formats which encode all characters as multiple bytes, like UTF-16, won’t parse correctly at all without specifying the encoding. Full list of Python standard encodings

24.1.6 Index columns and trailing delimiters
If a file has one more column of data than the number of column names, the first column will be used as the
DataFrame’s row names:
In [50]: data = 'a,b,c\n4,apple,bat,5.7\n8,orange,cow,10'
In [51]: pd.read_csv(StringIO(data))
Out[51]:
a
b
c
4
apple bat
5.7
8 orange cow 10.0
In [52]: data = 'index,a,b,c\n4,apple,bat,5.7\n8,orange,cow,10'
In [53]: pd.read_csv(StringIO(data), index_col=0)
Out[53]:
a
b
c
index
4
apple bat
5.7
8
orange cow 10.0

Ordinarily, you can achieve this behavior using the index_col option.
There are some exception cases when a file has been prepared with delimiters at the end of each data line, confusing
the parser. To explicitly disable the index column inference and discard the last column, pass index_col=False:
In [54]: data = 'a,b,c\n4,apple,bat,\n8,orange,cow,'
In [55]: print(data)
a,b,c
4,apple,bat,
8,orange,cow,
In [56]: pd.read_csv(StringIO(data))
Out[56]:
a
b
c
4
apple bat NaN
8 orange cow NaN
In [57]: pd.read_csv(StringIO(data), index_col=False)
Out[57]:
a
b
c
0 4
apple bat
1 8 orange cow

24.1.7 Specifying Date Columns
To better facilitate working with datetime data, read_csv() and read_table() uses the keyword arguments
parse_dates and date_parser to allow users to specify a variety of columns and date/time formats to turn the
input text data into datetime objects.
720

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

The simplest case is to just pass in parse_dates=True:
# Use a column as an index, and parse it as dates.
In [58]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True)
In [59]: df
Out[59]:
A

B

C

a
b
c

1
3
4

2
4
5

date
2009-01-01
2009-01-02
2009-01-03

# These are python datetime objects
In [60]: df.index
Out[60]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', name=u'dat

It is often the case that we may want to store date and time data separately, or store various date fields separately. the
parse_dates keyword can be used to specify a combination of columns to parse the dates and/or times from.
You can specify a list of column lists to parse_dates, the resulting date columns will be prepended to the output
(so as to not affect the existing column order) and the new column names will be the concatenation of the component
column names:
In [61]: print(open('tmp.csv').read())
KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, 0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900
In [62]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]])
In [63]: df
Out[63]:
0
1
2
3
4
5

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

1_2
19:00:00
20:00:00
21:00:00
21:00:00
22:00:00
23:00:00

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

1_3
18:56:00
19:56:00
20:56:00
21:18:00
21:56:00
22:56:00

0
KORD
KORD
KORD
KORD
KORD
KORD

4
0.81
0.01
-0.59
-0.99
-0.59
-0.59

By default the parser removes the component date columns, but you can choose to retain them via the
keep_date_col keyword:
In [64]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]],
....:
keep_date_col=True)
....:
In [65]: df
Out[65]:
0
1
2
3
4
5

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

1_2
19:00:00
20:00:00
21:00:00
21:00:00
22:00:00
23:00:00

24.1. CSV & Text files

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

1_3
18:56:00
19:56:00
20:56:00
21:18:00
21:56:00
22:56:00

0
KORD
KORD
KORD
KORD
KORD
KORD

1
19990127
19990127
19990127
19990127
19990127
19990127

2
19:00:00
20:00:00
21:00:00
21:00:00
22:00:00
23:00:00

\

721

pandas: powerful Python data analysis toolkit, Release 0.16.1

3
18:56:00
19:56:00
20:56:00
21:18:00
21:56:00
22:56:00

0
1
2
3
4
5

4
0.81
0.01
-0.59
-0.99
-0.59
-0.59

Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other
words, parse_dates=[1, 2] indicates that the second and third columns should each be parsed as separate date
columns while parse_dates=[[1, 2]] means the two columns should be parsed into a single column.
You can also use a dict to specify custom name columns:
In [66]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
In [67]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec)
In [68]: df
Out[68]:
0
1
2
3
4
5

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

nominal
19:00:00
20:00:00
21:00:00
21:00:00
22:00:00
23:00:00

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

actual
18:56:00
19:56:00
20:56:00
21:18:00
21:56:00
22:56:00

0
KORD
KORD
KORD
KORD
KORD
KORD

4
0.81
0.01
-0.59
-0.99
-0.59
-0.59

It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column
is prepended to the data. The index_col specification is based off of this new set of columns rather than the original
data columns:
In [69]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
In [70]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
....:
index_col=0) #index is the nominal column
....:
In [71]: df
Out[71]:
nominal
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

19:00:00
20:00:00
21:00:00
21:00:00
22:00:00
23:00:00

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

actual

0

4

18:56:00
19:56:00
20:56:00
21:18:00
21:56:00
22:56:00

KORD
KORD
KORD
KORD
KORD
KORD

0.81
0.01
-0.59
-0.99
-0.59
-0.59

Note: read_csv has a fast_path for parsing datetime strings in iso8601 format, e.g “2000-01-01T00:01:02+00:00” and
similar variations. If you can arrange for your data to store datetimes in this format, load times will be significantly
faster, ~20x has been observed.
Note: When passing a dict as the parse_dates argument, the order of the columns prepended is not guaranteed,
because dict objects do not impose an ordering on their keys. On Python 2.7+ you may use collections.OrderedDict
instead of a regular dict if this matters to you. Because of this, when using a dict for ‘parse_dates’ in conjunction with
the index_col argument, it’s best to specify index_col as a column label rather then as an index on the resulting frame.

722

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

24.1.8 Specifying method for floating-point conversion
The parameter float_precision can be specified in order to use a specific floating-point converter during parsing
with the C engine. The options are the ordinary converter, the high-precision converter, and the round-trip converter
(which is guaranteed to round-trip values after writing to a file). For example:
In [72]: val = '0.3066101993807095471566981359501369297504425048828125'
In [73]: data = 'a,b,c\n1,2,{0}'.format(val)
In [74]: abs(pd.read_csv(StringIO(data), engine='c', float_precision=None)['c'][0] - float(val))
Out[74]: 0.0
In [75]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='high')['c'][0] - float(val))
Out[75]: 5.5511151231257827e-17

In [76]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='round_trip')['c'][0] - float(va
Out[76]: 0.0

24.1.9 Date Parsing Functions
Finally, the parser allows you to specify a custom date_parser function to take full advantage of the flexibility of
the date parsing API:
In [77]: import pandas.io.date_converters as conv
In [78]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
....:
date_parser=conv.parse_date_time)
....:
In [79]: df
Out[79]:
0
1
2
3
4
5

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

nominal
19:00:00
20:00:00
21:00:00
21:00:00
22:00:00
23:00:00

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

actual
18:56:00
19:56:00
20:56:00
21:18:00
21:56:00
22:56:00

0
KORD
KORD
KORD
KORD
KORD
KORD

4
0.81
0.01
-0.59
-0.99
-0.59
-0.59

Pandas will try to call the date_parser function in three different ways. If an exception is raised, the next one is
tried:
1. date_parser is first called with one or more arrays as arguments, as defined using parse_dates (e.g.,
date_parser([’2013’, ’2013’], [’1’, ’2’]))
2. If #1 fails, date_parser is called with all the columns concatenated row-wise into a single array (e.g.,
date_parser([’2013 1’, ’2013 2’]))
3. If #2 fails, date_parser is called once for every row with one or more string arguments from
the columns indicated with parse_dates (e.g., date_parser(’2013’, ’1’) for the first row,
date_parser(’2013’, ’2’) for the second, etc.)
Note that performance-wise, you should try these methods of parsing dates in order:
1. Try to infer the format using infer_datetime_format=True (see section below)
24.1. CSV & Text files

723

pandas: powerful Python data analysis toolkit, Release 0.16.1

2. If
you
know
the
format,
use
pd.to_datetime(x, format=...)

pd.to_datetime():

date_parser=lambda x:

3. If you have a really non-standard format, use a custom date_parser function. For optimal performance, this
should be vectorized, i.e., it should accept arrays as arguments.
You can explore the date parsing functionality in date_converters.py and add your own. We would love to turn
this module into a community supported set of date/time parsers. To get you started, date_converters.py contains functions to parse dual date and time columns, year/month/day columns, and year/month/day/hour/minute/second
columns. It also contains a generic_parser function so you can curry it with a function that deals with a single
date rather than the entire array.

24.1.10 Inferring Datetime Format
If you have parse_dates enabled for some or all of your columns, and your datetime strings are all formatted the
same way, you may get a large speed up by setting infer_datetime_format=True. If set, pandas will attempt
to guess the format of your datetime strings, and then use a faster means of parsing the strings. 5-10x parsing speeds
have been observed. pandas will fallback to the usual parsing if either the format cannot be guessed or the format that
was guessed cannot properly parse the entire column of strings. So in general, infer_datetime_format should
not have any negative consequences if enabled.
Here are some examples of datetime strings that can be guessed (All representing December 30th, 2011 at 00:00:00)
• “20111230”
• “2011/12/30”
• “20111230 00:00:00”
• “12/30/2011 00:00:00”
• “30/Dec/2011 00:00:00”
• “30/December/2011 00:00:00”
infer_datetime_format is sensitive to dayfirst. With dayfirst=True, it will guess “01/12/2011” to be
December 1st. With dayfirst=False (default) it will guess “01/12/2011” to be January 12th.
# Try to infer the format for the index column
In [80]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
....:
infer_datetime_format=True)
....:
In [81]: df
Out[81]:
date
2009-01-01
2009-01-02
2009-01-03

A

B

C

a
b
c

1
3
4

2
4
5

24.1.11 International Date Formats
While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For
convenience, a dayfirst keyword is provided:
In [82]: print(open('tmp.csv').read())
date,value,cat
1/6/2000,5,a

724

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

2/6/2000,10,b
3/6/2000,15,c
In [83]: pd.read_csv('tmp.csv', parse_dates=[0])
Out[83]:
date value cat
0 2000-01-06
5
a
1 2000-02-06
10
b
2 2000-03-06
15
c
In [84]: pd.read_csv('tmp.csv', dayfirst=True, parse_dates=[0])
Out[84]:
date value cat
0 2000-06-01
5
a
1 2000-06-02
10
b
2 2000-06-03
15
c

24.1.12 Thousand Separators
For large numbers that have been written with a thousands separator, you can set the thousands keyword to a string
of length 1 so that integers will be parsed correctly:
By default, numbers with a thousands separator will be parsed as strings
In [85]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z
In [86]: df = pd.read_csv('tmp.csv', sep='|')
In [87]: df
Out[87]:
ID
0 Patient1
1 Patient2
2 Patient3

level category
123,000
x
23,000
y
1,234,018
z

In [88]: df.level.dtype
Out[88]: dtype('O')

The thousands keyword allows integers to be parsed correctly
In [89]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z
In [90]: df = pd.read_csv('tmp.csv', sep='|', thousands=',')
In [91]: df
Out[91]:
ID
0 Patient1
1 Patient2

level category
123000
x
23000
y

24.1. CSV & Text files

725

pandas: powerful Python data analysis toolkit, Release 0.16.1

2

Patient3

1234018

z

In [92]: df.level.dtype
Out[92]: dtype('int64')

24.1.13 NA Values
To control which values are parsed as missing values (which are signified by NaN), specifiy a list of strings in
na_values. If you specify a number (a float, like 5.0 or an integer like 5), the corresponding equivalent
values will also imply a missing value (in this case effectively [5.0,5] are recognized as NaN.
To completely override the default values that are recognized as missing, specify keep_default_na=False.
The default NaN recognized values are [’-1.#IND’, ’1.#QNAN’, ’1.#IND’, ’-1.#QNAN’,
’#N/A’,’N/A’, ’NA’, ’#NA’, ’NULL’, ’NaN’, ’-NaN’, ’nan’, ’-nan’].
read_csv(path, na_values=[5])

the default values, in addition to 5 , 5.0 when interpreted as numbers are recognized as NaN
read_csv(path, keep_default_na=False, na_values=[""])

only an empty field will be NaN
read_csv(path, keep_default_na=False, na_values=["NA", "0"])

only NA and 0 as strings are NaN
read_csv(path, na_values=["Nope"])

the default values, in addition to the string "Nope" are recognized as NaN

24.1.14 Infinity
inf like values will be parsed as np.inf (positive infinity), and -inf as -np.inf (negative infinity). These will
ignore the case of the value, meaning Inf, will also be parsed as np.inf.

24.1.15 Comments
Sometimes comments or meta data may be included in a file:
In [93]: print(open('tmp.csv').read())
ID,level,category
Patient1,123000,x # really unpleasant
Patient2,23000,y # wouldn't take his medicine
Patient3,1234018,z # awesome

By default, the parse includes the comments in the output:
In [94]: df = pd.read_csv('tmp.csv')
In [95]: df
Out[95]:
ID
0 Patient1
1 Patient2
2 Patient3

726

level
123000
23000
1234018

category
x # really unpleasant
y # wouldn't take his medicine
z # awesome

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

We can suppress the comments using the comment keyword:
In [96]: df = pd.read_csv('tmp.csv', comment='#')
In [97]: df
Out[97]:
ID
0 Patient1
1 Patient2
2 Patient3

level category
123000
x
23000
y
1234018
z

24.1.16 Returning Series
Using the squeeze keyword, the parser will return output with a single column as a Series:
In [98]: print(open('tmp.csv').read())
level
Patient1,123000
Patient2,23000
Patient3,1234018
In [99]: output =

pd.read_csv('tmp.csv', squeeze=True)

In [100]: output
Out[100]:
Patient1
123000
Patient2
23000
Patient3
1234018
Name: level, dtype: int64
In [101]: type(output)
Out[101]: pandas.core.series.Series

24.1.17 Boolean values
The common values True, False, TRUE, and FALSE are all recognized as boolean. Sometime you would want to
recognize some other values as being boolean. To do this use the true_values and false_values options:
In [102]: data= 'a,b,c\n1,Yes,2\n3,No,4'
In [103]: print(data)
a,b,c
1,Yes,2
3,No,4
In [104]: pd.read_csv(StringIO(data))
Out[104]:
a
b c
0 1 Yes 2
1 3
No 4
In [105]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
Out[105]:
a
b c
0 1
True 2
1 3 False 4

24.1. CSV & Text files

727

pandas: powerful Python data analysis toolkit, Release 0.16.1

24.1.18 Handling “bad” lines
Some files may have malformed lines with too few fields or too many. Lines with too few fields will have NA values
filled in the trailing fields. Lines with too many will cause an error by default:
In [27]: data = 'a,b,c\n1,2,3\n4,5,6,7\n8,9,10'
In [28]: pd.read_csv(StringIO(data))
--------------------------------------------------------------------------CParserError
Traceback (most recent call last)
CParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4

You can elect to skip bad lines:
In [29]: pd.read_csv(StringIO(data), error_bad_lines=False)
Skipping line 3: expected 3 fields, saw 4
Out[29]:
a b
c
0 1 2
3
1 8 9 10

24.1.19 Quoting and Escape Characters
Quotes (and other escape characters) in embedded fields can be handled in any number of ways. One way is to use
backslashes; to properly parse this data, you should pass the escapechar option:
In [106]: data = 'a,b\n"hello, \\"Bob\\", nice to see you",5'
In [107]: print(data)
a,b
"hello, \"Bob\", nice to see you",5
In [108]: pd.read_csv(StringIO(data), escapechar='\\')
Out[108]:
a b
0 hello, "Bob", nice to see you 5

24.1.20 Files with Fixed Width Columns
While read_csv reads delimited data, the read_fwf() function works with data files that have known and fixed
column widths. The function parameters to read_fwf are largely the same as read_csv with two extra parameters:
• colspecs: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals
(i.e., [from, to[ ). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications
from the first 100 rows of the data. Default behaviour, if not specified, is to infer.
• widths: A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.
Consider a typical fixed-width data file:
In [109]:
id8141
id1594
id1849
id1230
id1948

728

print(open('bar.csv').read())
360.242940
149.910199
11950.7
444.953632
166.985655
11788.4
364.136849
183.628767
11806.2
413.836124
184.375703
11916.8
502.953953
173.237159
12468.3

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

In order to parse this file into a DataFrame, we simply need to supply the column specifications to the read_fwf
function along with the file name:
#Column specifications are a list of half-intervals
In [110]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)]
In [111]: df = pd.read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0)
In [112]: df
Out[112]:
0
id8141
id1594
id1849
id1230
id1948

1

2

3

360.242940
444.953632
364.136849
413.836124
502.953953

149.910199
166.985655
183.628767
184.375703
173.237159

11950.7
11788.4
11806.2
11916.8
12468.3

Note how the parser automatically picks column names X. when header=None argument is specified. Alternatively, you can supply just the column widths for contiguous columns:
#Widths are a list of integers
In [113]: widths = [6, 14, 13, 10]
In [114]: df = pd.read_fwf('bar.csv', widths=widths, header=None)
In [115]: df
Out[115]:
0
1
0 id8141 360.242940
1 id1594 444.953632
2 id1849 364.136849
3 id1230 413.836124
4 id1948 502.953953

2
149.910199
166.985655
183.628767
184.375703
173.237159

3
11950.7
11788.4
11806.2
11916.8
12468.3

The parser will take care of extra white spaces around the columns so it’s ok to have extra separation between the
columns in the file.
New in version 0.13.0.
By default, read_fwf will try to infer the file’s colspecs by using the first 100 rows of the file. It can do it
only in cases when the columns are aligned and correctly separated by the provided delimiter (default delimiter is
whitespace).
In [116]: df = pd.read_fwf('bar.csv', header=None, index_col=0)
In [117]: df
Out[117]:
0
id8141
id1594
id1849
id1230
id1948

1

2

3

360.242940
444.953632
364.136849
413.836124
502.953953

149.910199
166.985655
183.628767
184.375703
173.237159

11950.7
11788.4
11806.2
11916.8
12468.3

24.1.21 Files with an “implicit” index column
Consider a file with one less entry in the header than the number of data column:
24.1. CSV & Text files

729

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [118]: print(open('foo.csv').read())
A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5

In this special case, read_csv assumes that the first column is to be used as the index of the DataFrame:
In [119]: pd.read_csv('foo.csv')
Out[119]:
A B C
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5

Note that the dates weren’t automatically parsed. In that case you would need to do as before:
In [120]: df = pd.read_csv('foo.csv', parse_dates=True)

In [121]: df.index
Out[121]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', freq=None

24.1.22 Reading an index with a MultiIndex
Suppose you have data indexed by two columns:
In [122]: print(open('data/mindex_ex.csv').read())
year,indiv,zit,xit
1977,"A",1.2,.6
1977,"B",1.5,.5
1977,"C",1.7,.8
1978,"A",.2,.06
1978,"B",.7,.2
1978,"C",.8,.3
1978,"D",.9,.5
1978,"E",1.4,.9
1979,"C",.2,.15
1979,"D",.14,.05
1979,"E",.5,.15
1979,"F",1.2,.5
1979,"G",3.4,1.9
1979,"H",5.4,2.7
1979,"I",6.4,1.2

The index_col argument to read_csv and read_table can take a list of column numbers to turn multiple
columns into a MultiIndex for the index of the returned object:
In [123]: df = pd.read_csv("data/mindex_ex.csv", index_col=[0,1])
In [124]: df
Out[124]:
year indiv
1977 A
B
C
1978 A
B

730

zit

xit

1.20
1.50
1.70
0.20
0.70

0.60
0.50
0.80
0.06
0.20

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

C
D
E
1979 C
D
E
F
G
H
I

0.80
0.90
1.40
0.20
0.14
0.50
1.20
3.40
5.40
6.40

0.30
0.50
0.90
0.15
0.05
0.15
0.50
1.90
2.70
1.20

In [125]: df.ix[1978]
Out[125]:
zit
xit
indiv
A
0.2 0.06
B
0.7 0.20
C
0.8 0.30
D
0.9 0.50
E
1.4 0.90

24.1.23 Reading columns with a MultiIndex
By specifying list of row locations for the header argument, you can read in a MultiIndex for the columns.
Specifying non-consecutive rows will skip the intervening rows. In order to have the pre-0.13 behavior of tupleizing
columns, specify tupleize_cols=True.
In [126]: from pandas.util.testing import makeCustomDataframe as mkdf
In [127]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
In [128]: df.to_csv('mi.csv')
In [129]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2

In [130]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1])
Out[130]:
C0
C_l0_g0 C_l0_g1 C_l0_g2
C1
C_l1_g0 C_l1_g1 C_l1_g2
C2
C_l2_g0 C_l2_g1 C_l2_g2
C3
C_l3_g0 C_l3_g1 C_l3_g2
R0
R1
R_l0_g0 R_l1_g0
R0C0
R0C1
R0C2
R_l0_g1 R_l1_g1
R1C0
R1C1
R1C2
R_l0_g2 R_l1_g2
R2C0
R2C1
R2C2
R_l0_g3 R_l1_g3
R3C0
R3C1
R3C2

24.1. CSV & Text files

731

pandas: powerful Python data analysis toolkit, Release 0.16.1

R_l0_g4 R_l1_g4

R4C0

R4C1

R4C2

Starting in 0.13.0, read_csv will be able to interpret a more common format of multi-columns indices.
In [131]: print(open('mi2.csv').read())
,a,a,a,b,c,c
,q,r,s,t,u,v
one,1,2,3,4,5,6
two,7,8,9,10,11,12
In [132]: pd.read_csv('mi2.csv',header=[0,1],index_col=0)
Out[132]:
a
b
c
q r s
t
u
v
one 1 2 3
4
5
6
two 7 8 9 10 11 12

Note: If an index_col is not specified (e.g. you don’t have an index, or wrote it with df.to_csv(...,
index=False), then any names on the columns index will be lost.

24.1.24 Automatically “sniffing” the delimiter
read_csv is capable of inferring delimited (not necessarily comma-separated) files, as pandas uses the
csv.Sniffer class of the csv module. For this, you have to specify sep=None.
In [133]: print(open('tmp2.sv').read())
:0:1:2:3
0:0.469112299907:-0.282863344329:-1.50905850317:-1.13563237102
1:1.21211202502:-0.173214649053:0.119208711297:-1.04423596628
2:-0.861848963348:-2.10456921889:-0.494929274069:1.07180380704
3:0.721555162244:-0.70677113363:-1.03957498511:0.271859885543
4:-0.424972329789:0.567020349794:0.276232019278:-1.08740069129
5:-0.673689708088:0.113648409689:-1.47842655244:0.524987667115
6:0.40470521868:0.57704598592:-1.71500201611:-1.03926848351
7:-0.370646858236:-1.15789225064:-1.34431181273:0.844885141425
8:1.07576978372:-0.10904997528:1.64356307036:-1.46938795954
9:0.357020564133:-0.67460010373:-1.77690371697:-0.968913812447

In [134]: pd.read_csv('tmp2.sv', sep=None, engine='python')
Out[134]:
Unnamed: 0
0
1
2
3
0
0 0.469112 -0.282863 -1.509059 -1.135632
1
1 1.212112 -0.173215 0.119209 -1.044236
2
2 -0.861849 -2.104569 -0.494929 1.071804
3
3 0.721555 -0.706771 -1.039575 0.271860
4
4 -0.424972 0.567020 0.276232 -1.087401
5
5 -0.673690 0.113648 -1.478427 0.524988
6
6 0.404705 0.577046 -1.715002 -1.039268
7
7 -0.370647 -1.157892 -1.344312 0.844885
8
8 1.075770 -0.109050 1.643563 -1.469388
9
9 0.357021 -0.674600 -1.776904 -0.968914

732

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

24.1.25 Iterating through files chunk by chunk
Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory,
such as the following:
In [135]: print(open('tmp.sv').read())
|0|1|2|3
0|0.469112299907|-0.282863344329|-1.50905850317|-1.13563237102
1|1.21211202502|-0.173214649053|0.119208711297|-1.04423596628
2|-0.861848963348|-2.10456921889|-0.494929274069|1.07180380704
3|0.721555162244|-0.70677113363|-1.03957498511|0.271859885543
4|-0.424972329789|0.567020349794|0.276232019278|-1.08740069129
5|-0.673689708088|0.113648409689|-1.47842655244|0.524987667115
6|0.40470521868|0.57704598592|-1.71500201611|-1.03926848351
7|-0.370646858236|-1.15789225064|-1.34431181273|0.844885141425
8|1.07576978372|-0.10904997528|1.64356307036|-1.46938795954
9|0.357020564133|-0.67460010373|-1.77690371697|-0.968913812447

In [136]: table = pd.read_table('tmp.sv', sep='|')
In [137]: table
Out[137]:
Unnamed: 0
0
0
0 0.469112
1
1 1.212112
2
2 -0.861849
3
3 0.721555
4
4 -0.424972
5
5 -0.673690
6
6 0.404705
7
7 -0.370647
8
8 1.075770
9
9 0.357021

1
-0.282863
-0.173215
-2.104569
-0.706771
0.567020
0.113648
0.577046
-1.157892
-0.109050
-0.674600

2
-1.509059
0.119209
-0.494929
-1.039575
0.276232
-1.478427
-1.715002
-1.344312
1.643563
-1.776904

3
-1.135632
-1.044236
1.071804
0.271860
-1.087401
0.524988
-1.039268
0.844885
-1.469388
-0.968914

By specifying a chunksize to read_csv or read_table, the return value will be an iterable object of type
TextFileReader:
In [138]: reader = pd.read_table('tmp.sv', sep='|', chunksize=4)
In [139]: reader
Out[139]: 
In [140]: for
.....:
.....:
Unnamed: 0
0
0
1
1
2
2
3
3
Unnamed: 0
0
4
1
5
2
6
3
7
Unnamed: 0
0
8
1
9

chunk in reader:
print(chunk)
0
0.469112
1.212112
-0.861849
0.721555
0
-0.424972
-0.673690
0.404705
-0.370647
0
1.075770
0.357021

24.1. CSV & Text files

1
2
3
-0.282863 -1.509059 -1.135632
-0.173215 0.119209 -1.044236
-2.104569 -0.494929 1.071804
-0.706771 -1.039575 0.271860
1
2
3
0.567020 0.276232 -1.087401
0.113648 -1.478427 0.524988
0.577046 -1.715002 -1.039268
-1.157892 -1.344312 0.844885
1
2
3
-0.10905 1.643563 -1.469388
-0.67460 -1.776904 -0.968914

733

pandas: powerful Python data analysis toolkit, Release 0.16.1

Specifying iterator=True will also return the TextFileReader object:
In [141]: reader = pd.read_table('tmp.sv', sep='|', iterator=True)
In [142]: reader.get_chunk(5)
Out[142]:
Unnamed: 0
0
1
2
3
0
0 0.469112 -0.282863 -1.509059 -1.135632
1
1 1.212112 -0.173215 0.119209 -1.044236
2
2 -0.861849 -2.104569 -0.494929 1.071804
3
3 0.721555 -0.706771 -1.039575 0.271860
4
4 -0.424972 0.567020 0.276232 -1.087401

24.1.26 Specifying the parser engine
Under the hood pandas uses a fast and efficient parser implemented in C as well as a python implementation which is
currently more feature-complete. Where possible pandas uses the C parser (specified as engine=’c’), but may fall
back to python if C-unsupported options are specified. Currently, C-unsupported options include:
• sep other than a single character (e.g. regex separators)
• skip_footer
• sep=None with delim_whitespace=False
Specifying any of the above options will produce a ParserWarning unless the python engine is selected explicitly
using engine=’python’.

24.1.27 Writing to CSV format
The Series and DataFrame objects have an instance method to_csv which allows storing the contents of the object
as a comma-separated-values file. The function takes a number of arguments. Only the first is required.
• path_or_buf: A string path to the file to write or a StringIO
• sep : Field delimiter for the output file (default ”,”)
• na_rep: A string representation of a missing value (default ‘’)
• float_format: Format string for floating point numbers
• cols: Columns to write (default None)
• header: Whether to write out the column names (default True)
• index: whether to write row (index) names (default True)
• index_label: Column label(s) for index column(s) if desired. If None (default), and header and index are
True, then the index names are used. (A sequence should be given if the DataFrame uses MultiIndex).
• mode : Python write mode, default ‘w’
• encoding: a string representing the encoding to use if the contents are non-ASCII, for python versions prior
to 3
• line_terminator: Character sequence denoting line end (default ‘\n’)
• quoting: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL)
• quotechar: Character used to quote fields (default ‘”’)
• doublequote: Control quoting of quotechar in fields (default True)

734

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

• escapechar: Character used to escape sep and quotechar when appropriate (default None)
• chunksize: Number of rows to write at a time
• tupleize_cols: If False (default), write as a list of tuples, otherwise write in an expanded line format
suitable for read_csv
• date_format: Format string for datetime objects

24.1.28 Writing a formatted string
The DataFrame object has an instance method to_string which allows control over the string representation of the
object. All arguments are optional:
• buf default None, for example a StringIO object
• columns default None, which columns to write
• col_space default None, minimum width of each column.
• na_rep default NaN, representation of NA value
• formatters default None, a dictionary (by column) of functions each of which takes a single argument and
returns a formatted string
• float_format default None, a function which takes a single (float) argument and returns a formatted string;
to be applied to floats in the DataFrame.
• sparsify default True, set to False for a DataFrame with a hierarchical index to print every multiindex key at
each row.
• index_names default True, will print the names of the indices
• index default True, will print the index (ie, row labels)
• header default True, will print the column labels
• justify default left, will print column headers left- or right-justified
The Series object also has a to_string method, but with only the buf, na_rep, float_format arguments.
There is also a length argument which, if set to True, will additionally output the length of the Series.

24.2 JSON
Read and write JSON format files and strings.

24.2.1 Writing JSON
A Series or DataFrame can be converted to a valid JSON string. Use to_json with optional parameters:
• path_or_buf : the pathname or buffer to write the output This can be None in which case a JSON string is
returned
• orient :
Series :
– default is index
– allowed values are {split, records, index}

24.2. JSON

735

pandas: powerful Python data analysis toolkit, Release 0.16.1

DataFrame
– default is columns
– allowed values are {split, records, index, columns, values}
The format of the JSON string
split
records
index
columns
values

dict like {index -> [index], columns -> [columns], data -> [values]}
list like [{column -> value}, ... , {column -> value}]
dict like {index -> {column -> value}}
dict like {column -> {index -> value}}
just the values array

• date_format : string, type of date conversion, ‘epoch’ for timestamp, ‘iso’ for ISO8601.
• double_precision : The number of decimal places to use when encoding floating point values, default 10.
• force_ascii : force encoded string to be ASCII, default True.
• date_unit : The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’ or
‘ns’ for seconds, milliseconds, microseconds and nanoseconds respectively. Default ‘ms’.
• default_handler : The handler to call if an object cannot otherwise be converted to a suitable format for
JSON. Takes a single argument, which is the object to convert, and returns a serializable object.
Note NaN‘s, NaT‘s and None will be converted to null and datetime objects will be converted based on the
date_format and date_unit parameters.
In [143]: dfj = DataFrame(randn(5, 2), columns=list('AB'))
In [144]: json = dfj.to_json()

In [145]: json
Out[145]: '{"A":{"0":-1.2945235903,"1":0.2766617129,"2":-0.0139597524,"3":-0.0061535699,"4":0.8957173

Orient Options
There are a number of different options for the format of the resulting JSON file / string. Consider the following
DataFrame and Series:
In [146]: dfjo = DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
.....:
columns=list('ABC'), index=list('xyz'))
.....:
In [147]: dfjo
Out[147]:
A B C
x 1 4 7
y 2 5 8
z 3 6 9
In [148]: sjo = Series(dict(x=15, y=16, z=17), name='D')
In [149]: sjo
Out[149]:
x
15
y
16
z
17
Name: D, dtype: int64

736

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

Column oriented (the default for DataFrame) serializes the data as nested JSON objects with column labels acting
as the primary index:
In [150]: dfjo.to_json(orient="columns")
Out[150]: '{"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}'

Index oriented (the default for Series) similar to column oriented but the index labels are now primary:
In [151]: dfjo.to_json(orient="index")
Out[151]: '{"x":{"A":1,"B":4,"C":7},"y":{"A":2,"B":5,"C":8},"z":{"A":3,"B":6,"C":9}}'
In [152]: sjo.to_json(orient="index")
Out[152]: '{"x":15,"y":16,"z":17}'

Record oriented serializes the data to a JSON array of column -> value records, index labels are not included. This is
useful for passing DataFrame data to plotting libraries, for example the JavaScript library d3.js:
In [153]: dfjo.to_json(orient="records")
Out[153]: '[{"A":1,"B":4,"C":7},{"A":2,"B":5,"C":8},{"A":3,"B":6,"C":9}]'
In [154]: sjo.to_json(orient="records")
Out[154]: '[15,16,17]'

Value oriented is a bare-bones option which serializes to nested JSON arrays of values only, column and index labels
are not included:
In [155]: dfjo.to_json(orient="values")
Out[155]: '[[1,4,7],[2,5,8],[3,6,9]]'

Split oriented serializes to a JSON object containing separate entries for values, index and columns. Name is also
included for Series:
In [156]: dfjo.to_json(orient="split")
Out[156]: '{"columns":["A","B","C"],"index":["x","y","z"],"data":[[1,4,7],[2,5,8],[3,6,9]]}'
In [157]: sjo.to_json(orient="split")
Out[157]: '{"name":"D","index":["x","y","z"],"data":[15,16,17]}'

Note: Any orient option that encodes to a JSON object will not preserve the ordering of index and column labels
during round-trip serialization. If you wish to preserve label ordering use the split option as it uses ordered containers.

Date Handling
Writing in ISO date format
In [158]: dfd = DataFrame(randn(5, 2), columns=list('AB'))
In [159]: dfd['date'] = Timestamp('20130101')
In [160]: dfd = dfd.sort_index(1, ascending=False)
In [161]: json = dfd.to_json(date_format='iso')

In [162]: json
Out[162]: '{"date":{"0":"2013-01-01T00:00:00.000Z","1":"2013-01-01T00:00:00.000Z","2":"2013-01-01T00:

Writing in ISO date format, with microseconds

24.2. JSON

737

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [163]: json = dfd.to_json(date_format='iso', date_unit='us')

In [164]: json
Out[164]: '{"date":{"0":"2013-01-01T00:00:00.000000Z","1":"2013-01-01T00:00:00.000000Z","2":"2013-01-

Epoch timestamps, in seconds
In [165]: json = dfd.to_json(date_format='epoch', date_unit='s')

In [166]: json
Out[166]: '{"date":{"0":1356998400,"1":1356998400,"2":1356998400,"3":1356998400,"4":1356998400},"B":{

Writing to a file, with a date index and a date column
In [167]: dfj2 = dfj.copy()
In [168]: dfj2['date'] = Timestamp('20130101')
In [169]: dfj2['ints'] = list(range(5))
In [170]: dfj2['bools'] = True
In [171]: dfj2.index = date_range('20130101', periods=5)
In [172]: dfj2.to_json('test.json')

In [173]: open('test.json').read()
Out[173]: '{"A":{"1356998400000":-1.2945235903,"1357084800000":0.2766617129,"1357171200000":-0.013959

Fallback Behavior
If the JSON serializer cannot handle the container contents directly it will fallback in the following manner:
• if a toDict method is defined by the unrecognised object then that will be called and its returned dict will
be JSON serialized.
• if a default_handler has been passed to to_json that will be called to convert the object.
• otherwise an attempt is made to convert the object to a dict by parsing its contents. However if the object is
complex this will often fail with an OverflowError.
Your best bet when encountering OverflowError during serialization is to specify a default_handler. For
example timedelta can cause problems:
In [141]: from datetime import timedelta
In [142]: dftd = DataFrame([timedelta(23), timedelta(seconds=5), 42])
In [143]: dftd.to_json()
--------------------------------------------------------------------------OverflowError
Traceback (most recent call last)
OverflowError: Maximum recursion level reached

which can be dealt with by specifying a simple default_handler:
In [174]: dftd.to_json(default_handler=str)
Out[174]: '{"0":{"0":1987200000,"1":5000,"2":42}}'

738

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [175]: def my_handler(obj):
.....:
return obj.total_seconds()
.....:

24.2.2 Reading JSON
Reading a JSON string to pandas object can take a number of parameters. The parser will try to parse a DataFrame
if typ is not supplied or is None. To explicitly force Series parsing, pass typ=series
• filepath_or_buffer : a VALID JSON string or file handle / StringIO. The string could be a URL. Valid
URL schemes include http, ftp, S3, and file. For file URLs, a host is expected. For instance, a local file could be
file ://localhost/path/to/table.json
• typ : type of object to recover (series or frame), default ‘frame’
• orient :
Series :
– default is index
– allowed values are {split, records, index}
DataFrame
– default is columns
– allowed values are {split, records, index, columns, values}
The format of the JSON string
split
records
index
columns
values

dict like {index -> [index], columns -> [columns], data -> [values]}
list like [{column -> value}, ... , {column -> value}]
dict like {index -> {column -> value}}
dict like {column -> {index -> value}}
just the values array

• dtype : if True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all,
default is True, apply only to the data
• convert_axes : boolean, try to convert the axes to the proper dtypes, default is True
• convert_dates : a list of columns to parse for dates; If True, then try to parse date-like columns, default is
True
• keep_default_dates : boolean, default True. If parsing dates, then parse the default date-like columns
• numpy : direct decoding to numpy arrays. default is False; Supports numeric data only, although labels may be
non-numeric. Also note that the JSON ordering MUST be the same for each term if numpy=True
• precise_float : boolean, default False. Set to enable usage of higher precision (strtod) function when
decoding string to double values. Default (False) is to use fast but less precise builtin functionality
• date_unit : string, the timestamp unit to detect if converting dates. Default None. By default the timestamp
precision will be detected, if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force timestamp
precision to seconds, milliseconds, microseconds or nanoseconds respectively.
The parser will raise one of ValueError/TypeError/AssertionError if the JSON is not parseable.
If a non-default orient was used when encoding to JSON be sure to pass the same option here so that decoding
produces sensible results, see Orient Options for an overview.

24.2. JSON

739

pandas: powerful Python data analysis toolkit, Release 0.16.1

Data Conversion
The default of convert_axes=True, dtype=True, and convert_dates=True will try to parse the axes, and
all of the data into appropriate types, including dates. If you need to override specific dtypes, pass a dict to dtype.
convert_axes should only be set to False if you need to preserve string-like numbers (e.g. ‘1’, ‘2’) in an axes.
Note: Large integer values may be converted to dates if convert_dates=True and the data and / or column
labels appear ‘date-like’. The exact threshold depends on the date_unit specified.
Warning: When reading JSON data, automatic coercing into dtypes has some quirks:
• an index can be reconstructed in a different order from serialization, that is, the returned order is not guaranteed to be the same as before serialization
• a column that was float data will be converted to integer if it can be done safely, e.g. a column of 1.
• bool columns will be converted to integer on reconstruction
Thus there are times where you may want to specify specific dtypes via the dtype keyword argument.
Reading from a JSON string:
In [176]: pd.read_json(json)
Out[176]:
A
B
date
0 -1.206412 2.565646 2013-01-01
1 1.431256 1.340309 2013-01-01
2 -1.170299 -0.226169 2013-01-01
3 0.410835 0.813850 2013-01-01
4 0.132003 -0.827317 2013-01-01

Reading from a file:
In [177]: pd.read_json('test.json')
Out[177]:
A
B bools
2013-01-01 -1.294524 0.413738 True
2013-01-02 0.276662 -0.472035 True
2013-01-03 -0.013960 -0.362543 True
2013-01-04 -0.006154 -0.923061 True
2013-01-05 0.895717 0.805244 True

date
2013-01-01
2013-01-01
2013-01-01
2013-01-01
2013-01-01

ints
0
1
2
3
4

Don’t convert any data (but still convert axes and dates):
In [178]: pd.read_json('test.json', dtype=object).dtypes
Out[178]:
A
object
B
object
bools
object
date
object
ints
object
dtype: object

Specify dtypes for conversion:
In [179]: pd.read_json('test.json', dtype={'A' : 'float32', 'bools' : 'int8'}).dtypes
Out[179]:
A
float32
B
float64
bools
int8
date
datetime64[ns]

740

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

ints
dtype: object

int64

Preserve string indices:
In [180]: si = DataFrame(np.zeros((4, 4)),
.....:
columns=list(range(4)),
.....:
index=[str(i) for i in range(4)])
.....:
In [181]: si
Out[181]:
0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
In [182]: si.index
Out[182]: Index([u'0', u'1', u'2', u'3'], dtype='object')
In [183]: si.columns
Out[183]: Int64Index([0, 1, 2, 3], dtype='int64')
In [184]: json = si.to_json()
In [185]: sij = pd.read_json(json, convert_axes=False)
In [186]: sij
Out[186]:
0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
In [187]: sij.index
Out[187]: Index([u'0', u'1', u'2', u'3'], dtype='object')
In [188]: sij.columns
Out[188]: Index([u'0', u'1', u'2', u'3'], dtype='object')

Dates written in nanoseconds need to be read back in nanoseconds:
In [189]: json = dfj2.to_json(date_unit='ns')
# Try to parse timestamps as millseconds -> Won't Work
In [190]: dfju = pd.read_json(json, date_unit='ms')
In [191]: dfju
Out[191]:
A
B bools
1.356998e+18 -1.294524 0.413738 True
1.357085e+18 0.276662 -0.472035 True
1.357171e+18 -0.013960 -0.362543 True
1.357258e+18 -0.006154 -0.923061 True
1.357344e+18 0.895717 0.805244 True

date
1356998400000000000
1356998400000000000
1356998400000000000
1356998400000000000
1356998400000000000

ints
0
1
2
3
4

# Let pandas detect the correct precision

24.2. JSON

741

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [192]: dfju = pd.read_json(json)
In [193]: dfju
Out[193]:
A
B bools
date
2013-01-01 -1.294524 0.413738 True 2013-01-01
2013-01-02 0.276662 -0.472035 True 2013-01-01
2013-01-03 -0.013960 -0.362543 True 2013-01-01
2013-01-04 -0.006154 -0.923061 True 2013-01-01
2013-01-05 0.895717 0.805244 True 2013-01-01

ints
0
1
2
3
4

# Or specify that all timestamps are in nanoseconds
In [194]: dfju = pd.read_json(json, date_unit='ns')
In [195]: dfju
Out[195]:
A
B bools
date
2013-01-01 -1.294524 0.413738 True 2013-01-01
2013-01-02 0.276662 -0.472035 True 2013-01-01
2013-01-03 -0.013960 -0.362543 True 2013-01-01
2013-01-04 -0.006154 -0.923061 True 2013-01-01
2013-01-05 0.895717 0.805244 True 2013-01-01

ints
0
1
2
3
4

The Numpy Parameter
Note: This supports numeric data only. Index and columns labels may be non-numeric, e.g. strings, dates etc.
If numpy=True is passed to read_json an attempt will be made to sniff an appropriate dtype during deserialization
and to subsequently decode directly to numpy arrays, bypassing the need for intermediate Python objects.
This can provide speedups if you are deserialising a large amount of numeric data:
In [196]: randfloats = np.random.uniform(-100, 1000, 10000)
In [197]: randfloats.shape = (1000, 10)
In [198]: dffloats = DataFrame(randfloats, columns=list('ABCDEFGHIJ'))
In [199]: jsonfloats = dffloats.to_json()
In [200]: timeit read_json(jsonfloats)
100 loops, best of 3: 11.1 ms per loop
In [201]: timeit read_json(jsonfloats, numpy=True)
100 loops, best of 3: 7.06 ms per loop

The speedup is less noticeable for smaller datasets:
In [202]: jsonfloats = dffloats.head(100).to_json()
In [203]: timeit read_json(jsonfloats)
100 loops, best of 3: 4.49 ms per loop
In [204]: timeit read_json(jsonfloats, numpy=True)
100 loops, best of 3: 3.45 ms per loop

742

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

Warning: Direct numpy decoding makes a number of assumptions and may fail or produce unexpected output if
these assumptions are not satisfied:
• data is numeric.
• data is uniform. The dtype is sniffed from the first value decoded. A ValueError may be raised, or
incorrect output may be produced if this condition is not satisfied.
• labels are ordered. Labels are only read from the first container, it is assumed that each subsequent row /
column has been encoded in the same order. This should be satisfied if the data was encoded using to_json
but may not be the case if the JSON is from another source.

24.2.3 Normalization
New in version 0.13.0.
pandas provides a utility function to take a dict or list of dicts and normalize this semi-structured data into a flat table.
In [205]: from pandas.io.json import json_normalize
In [206]: data = [{'state': 'Florida',
.....:
'shortname': 'FL',
.....:
'info': {
.....:
'governor': 'Rick Scott'
.....:
},
.....:
'counties': [{'name': 'Dade', 'population': 12345},
.....:
{'name': 'Broward', 'population': 40000},
.....:
{'name': 'Palm Beach', 'population': 60000}]},
.....:
{'state': 'Ohio',
.....:
'shortname': 'OH',
.....:
'info': {
.....:
'governor': 'John Kasich'
.....:
},
.....:
'counties': [{'name': 'Summit', 'population': 1234},
.....:
{'name': 'Cuyahoga', 'population': 1337}]}]
.....:
In [207]: json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])
Out[207]:
name population info.governor
state shortname
0
Dade
12345
Rick Scott Florida
FL
1
Broward
40000
Rick Scott Florida
FL
2 Palm Beach
60000
Rick Scott Florida
FL
3
Summit
1234
John Kasich
Ohio
OH
4
Cuyahoga
1337
John Kasich
Ohio
OH

24.3 HTML
24.3.1 Reading HTML Content
Warning: We highly encourage you to read the HTML parsing gotchas regarding the issues surrounding the
BeautifulSoup4/html5lib/lxml parsers.
New in version 0.12.0.

24.3. HTML

743

pandas: powerful Python data analysis toolkit, Release 0.16.1

The top-level read_html() function can accept an HTML string/file/URL and will parse HTML tables into list of
pandas DataFrames. Let’s look at a few examples.
Note: read_html returns a list of DataFrame objects, even if there is only a single table contained in the
HTML content
Read a URL with no options
In [208]: url = 'http://www.fdic.gov/bank/individual/failed/banklist.html'
In [209]: dfs = read_html(url)
In [210]: dfs
Out[210]:
[
Bank Name
0
Edgebrook Bank
1
Doral BankEn Espanol
2
Capitol City Bank & Trust Company
3
Highland Community Bank
4
First National Bank of Crestview
5
Northern Star Bank
6
Frontier Bank, FSB D/B/A El Paseo Bank
..
...
532
Hamilton Bank, NAEn Espanol
533
Sinclair National Bank
534
Superior Bank, FSB
535
Malta National Bank
536
First Alliance Bank & Trust Co.
537
National State Bank of Metropolis
538
Bank of Honolulu

0
1
2
3
4
5
6
..
532
533
534
535
536
537
538

0
1
2
3
4
5
6
..
532

744

Acquiring Institution
Republic Bank of Chicago
Banco Popular de Puerto Rico
First-Citizens Bank & Trust Company
United Fidelity Bank, fsb
First NBC Bank
BankVista
Bank of Southern California, N.A.
...
Israel Discount Bank of New York
Delta Trust & Bank
Superior Federal, FSB
North Valley Bank
Southern New Hampshire Bank & Trust
Banterra Bank of Marion
Bank of the Orient

City
Chicago
San Juan
Atlanta
Chicago
Crestview
Mankato
Palm Desert
...
Miami
Gravette
Hinsdale
Malta
Manchester
Metropolis
Honolulu

Closing
May 8,
February 27,
February 13,
January 23,
January 16,
December 19,
November 7,
January 11,
September 7,
July 27,
May 3,
February 2,
December 14,
October 13,

ST
IL
PR
GA
IL
FL
MN
CA
..
FL
AR
IL
OH
NH
IL
HI

Date
2015
2015
2015
2015
2015
2014
2014
...
2002
2001
2001
2001
2001
2000
2000

CERT
57772
32102
33938
20290
17557
34983
34738
...
24382
34248
32646
6629
34264
3815
21029

\

\

Updated
May 8,
April 21,
April 21,
April 21,
April 21,
March 26,
March 26,

Date Loss Share Type Agreement Terminated Termination Date
2015
NaN
NaN
NaN
2015
NaN
NaN
NaN
2015
none
NaN
NaN
2015
none
NaN
NaN
2015
none
NaN
NaN
2015
none
NaN
NaN
2015
none
NaN
NaN
...
...
...
...
June 5, 2012
none
NaN
NaN

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

533
534
535
536
537
538

February
August
November
February
March
March

10,
19,
18,
18,
17,
17,

2004
2014
2002
2003
2005
2005

none
none
none
none
none
none

NaN
NaN
NaN
NaN
NaN
NaN

NaN
NaN
NaN
NaN
NaN
NaN

[539 rows x 10 columns]]

Note: The data from the above URL changes every Monday so the resulting data above and the data below may be
slightly different.
Read in the content of the file from the above URL and pass it to read_html as a string
In [211]: with open(file_path, 'r') as f:
.....:
dfs = read_html(f.read())
.....:
In [212]: dfs
Out[212]:
[
Bank Name
0
Banks of Wisconsin d/b/a Bank of Kenosha
1
Central Arizona Bank
2
Sunrise Bank
3
Pisgah Community Bank
4
Douglas County Bank
5
Parkway Bank
6
Chipola Community Bank
..
...
499
Hamilton Bank, NAEn Espanol
500
Sinclair National Bank
501
Superior Bank, FSB
502
Malta National Bank
503
First Alliance Bank & Trust Co.
504
National State Bank of Metropolis
505
Bank of Honolulu

0
1
2
3
4
5
6
..
499
500
501
502
503
504
505

Acquiring Institution
North Shore Bank, FSB
Western State Bank
Synovus Bank
Capital Bank, N.A.
Hamilton State Bank
CertusBank, National Association
First Federal Bank of Florida
...
Israel Discount Bank of New York
Delta Trust & Bank
Superior Federal, FSB
North Valley Bank
Southern New Hampshire Bank & Trust
Banterra Bank of Marion
Bank of the Orient

City
Kenosha
Scottsdale
Valdosta
Asheville
Douglasville
Lenoir
Marianna
...
Miami
Gravette
Hinsdale
Malta
Manchester
Metropolis
Honolulu
Closing
May 31,
May 14,
May 10,
May 10,
April 26,
April 26,
April 19,

January 11,
September 7,
July 27,
May 3,
February 2,
December 14,
October 13,

Date
2013
2013
2013
2013
2013
2013
2013
...
2002
2001
2001
2001
2001
2000
2000

ST
WI
AZ
GA
NC
GA
NC
FL
..
FL
AR
IL
OH
NH
IL
HI

CERT
35386
34527
58185
58701
21649
57158
58034
...
24382
34248
32646
6629
34264
3815
21029

\

Updated
May 31,
May 20,
May 21,
May 14,
May 16,
May 17,
May 16,
June 5,
February 10,
June 5,
November 18,
February 18,
March 17,
March 17,

Date
2013
2013
2013
2013
2013
2013
2013
...
2012
2004
2012
2002
2003
2005
2005

[506 rows x 7 columns]]

You can even pass in an instance of StringIO if you so desire

24.3. HTML

745

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [213]: with open(file_path, 'r') as f:
.....:
sio = StringIO(f.read())
.....:
In [214]: dfs = read_html(sio)
In [215]: dfs
Out[215]:
[
Bank Name
0
Banks of Wisconsin d/b/a Bank of Kenosha
1
Central Arizona Bank
2
Sunrise Bank
3
Pisgah Community Bank
4
Douglas County Bank
5
Parkway Bank
6
Chipola Community Bank
..
...
499
Hamilton Bank, NAEn Espanol
500
Sinclair National Bank
501
Superior Bank, FSB
502
Malta National Bank
503
First Alliance Bank & Trust Co.
504
National State Bank of Metropolis
505
Bank of Honolulu

0
1
2
3
4
5
6
..
499
500
501
502
503
504
505

Acquiring Institution
North Shore Bank, FSB
Western State Bank
Synovus Bank
Capital Bank, N.A.
Hamilton State Bank
CertusBank, National Association
First Federal Bank of Florida
...
Israel Discount Bank of New York
Delta Trust & Bank
Superior Federal, FSB
North Valley Bank
Southern New Hampshire Bank & Trust
Banterra Bank of Marion
Bank of the Orient

City
Kenosha
Scottsdale
Valdosta
Asheville
Douglasville
Lenoir
Marianna
...
Miami
Gravette
Hinsdale
Malta
Manchester
Metropolis
Honolulu
Closing
May 31,
May 14,
May 10,
May 10,
April 26,
April 26,
April 19,

January 11,
September 7,
July 27,
May 3,
February 2,
December 14,
October 13,

Date
2013
2013
2013
2013
2013
2013
2013
...
2002
2001
2001
2001
2001
2000
2000

ST
WI
AZ
GA
NC
GA
NC
FL
..
FL
AR
IL
OH
NH
IL
HI

CERT
35386
34527
58185
58701
21649
57158
58034
...
24382
34248
32646
6629
34264
3815
21029

\

Updated
May 31,
May 20,
May 21,
May 14,
May 16,
May 17,
May 16,
June 5,
February 10,
June 5,
November 18,
February 18,
March 17,
March 17,

Date
2013
2013
2013
2013
2013
2013
2013
...
2012
2004
2012
2002
2003
2005
2005

[506 rows x 7 columns]]

Note: The following examples are not run by the IPython evaluator due to the fact that having so many networkaccessing functions slows down the documentation build. If you spot an error or an example that doesn’t run, please
do not hesitate to report it over on pandas GitHub issues page.
Read a URL and match a table that contains specific text
match = 'Metcalf Bank'
df_list = read_html(url, match=match)

Specify a header row (by default  elements are used to form the column index); if specified, the header row is
taken from the data minus the parsed header elements ( elements).

746

Chapter 24. IO Tools (Text, CSV, HDF5, ...)

pandas: powerful Python data analysis toolkit, Release 0.16.1

dfs = read_html(url, header=0)

Specify an index column
dfs = read_html(url, index_col=0)

Specify a number of rows to skip
dfs = read_html(url, skiprows=0)

Specify a number of rows to skip using a list (xrange (Python 2 only) works as well)
dfs = read_html(url, skiprows=range(2))

Don’t infer numeric and date types
dfs = read_html(url, infer_types=False)

Specify an HTML attribute
dfs1 = read_html(url, attrs={'id': 'table'})
dfs2 = read_html(url, attrs={'class': 'sortable'})
print(np.array_equal(dfs1[0], dfs2[0])) # Should be True

Use some combination of the above
dfs = read_html(url, match='Metcalf Bank', index_col=0)

Read in pandas to_html output (with some loss of floating point precision)
df = DataFrame(randn(2, 2))
s = df.to_html(float_format='{0:.40g}'.format)
dfin = read_html(s, index_col=0)

The lxml backend will raise an error on a failed parse if that is the only parser you provide (if you only have a single
parser you can provide just a string, but it is considered good practice to pass a list with one string if, for example, the
function expects a sequence of strings)
dfs = read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml'])

or
dfs = read_html(url, 'Metcalf Bank', index_col=0, flavor='lxml')

However, if you have bs4 and html5lib installed and pass None or [’lxml’, ’bs4’] then the parse will most
likely succeed. Note that as soon as a parse succeeds, the function will return.
dfs = read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml', 'bs4'])

24.3.2 Writing to HTML files
DataFrame objects have an instance method to_html which renders the contents of the DataFrame as an HTML
table. The function arguments are as in the method to_string described above.
Note:
Not all of the possible options for DataFrame.to_html are shown here for brevity’s sake.
to_html() for the full set of options.

See

24.3. HTML

747

pandas: powerful Python data analysis toolkit, Release 0.16.1

In [216]: df = DataFrame(randn(2, 2))
In [217]: df
Out[217]:
0
1
0 -0.184744 0.496971
1 -0.856240 1.857977
In [218]: print(df.to_html()) # raw html
0 1
0 -0.184744 0.496971
1 -0.856240 1.857977
HTML: The columns argument will limit the columns shown In [219]: print(df.to_html(columns=[0]))
0
0 -0.184744
1 -0.856240
HTML: float_format takes a Python callable to control the precision of floating point values 748 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 In [220]: print(df.to_html(float_format='{0:.10f}'.format))
0 1
0 -0.1847438576 0.4969711327
1 -0.8562396763 1.8579766508
HTML: bold_rows will make the row labels bold by default, but you can turn that off In [221]: print(df.to_html(bold_rows=False))
0 1
0 -0.184744 0.496971
1 -0.856240 1.857977
The classes argument provides the ability to give the resulting HTML table CSS classes. Note that these classes are appended to the existing ’dataframe’ class. In [222]: print(df.to_html(classes=['awesome_table_class', 'even_more_awesome_class'])) 24.3. HTML 749 pandas: powerful Python data analysis toolkit, Release 0.16.1
01
0 -0.184744 0.496971
1 -0.856240 1.857977
Finally, the escape argument allows you to control whether the “<”, “>” and “&” characters escaped in the resulting HTML (by default it is True). So to get the HTML without escaped characters pass escape=False In [223]: df = DataFrame({'a': list('&<>'), 'b': randn(3)}) Escaped: In [224]: print(df.to_html())
a b
0 & -0.474063
1 < -0.230305
2 > -0.400654
Not escaped: In [225]: print(df.to_html(escape=False)) 750 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1
a b
0 & -0.474063
1 < -0.230305
2 > -0.400654
Note: Some browsers may not show a difference in the rendering of the previous two HTML tables. 24.4 Excel files The read_excel() method can read Excel 2003 (.xls) and Excel 2007 (.xlsx) files using the xlrd Python module and use the same parsing code as the above to convert tabular data into a DataFrame. See the cookbook for some advanced strategies 24.4.1 Reading Excel Files New in version 0.16. read_excel can read more than one sheet, by setting sheetname to either a list of sheet names, a list of sheet positions, or None to read all sheets. New in version 0.13. Sheets can be specified by sheet index or sheet name, using an integer or string, respectively. New in version 0.12. ExcelFile has been moved to the top level namespace. There are two approaches to reading an excel file. The read_excel function and the ExcelFile class. read_excel is for reading one file with file-specific arguments (ie. identical data formats across sheets). ExcelFile is for reading one file with sheet-specific arguments (ie. various data formats across sheets). Choosing the approach is largely a question of code readability and execution speed. Equivalent class and function approaches to read a single sheet: # using the ExcelFile class xls = pd.ExcelFile('path_to_file.xls') data = xls.parse('Sheet1', index_col=None, na_values=['NA']) 24.4. Excel files 751 pandas: powerful Python data analysis toolkit, Release 0.16.1 # using the read_excel function data = read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA']) Equivalent class and function approaches to read multiple sheets: data = {} # For when Sheet1's format differs from Sheet2 xls = pd.ExcelFile('path_to_file.xls') data['Sheet1'] = xls.parse('Sheet1', index_col=None, na_values=['NA']) data['Sheet2'] = xls.parse('Sheet2', index_col=1) # For when Sheet1's format is identical to Sheet2 data = read_excel('path_to_file.xls', ['Sheet1','Sheet2'], index_col=None, na_values=['NA']) Specifying Sheets Note: The second argument is sheetname, not to be confused with ExcelFile.sheet_names Note: An ExcelFile’s attribute sheet_names provides access to a list of sheets. • The arguments sheetname allows specifying the sheet or sheets to read. • The default value for sheetname is 0, indicating to read the first sheet • Pass a string to refer to the name of a particular sheet in the workbook. • Pass an integer to refer to the index of a sheet. Indices follow Python convention, beginning at 0. • Pass a list of either strings or integers, to return a dictionary of specified sheets. • Pass a None to return a dictionary of all available sheets. # Returns a DataFrame read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA']) Using the sheet index: # Returns a DataFrame read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA']) Using all default values: # Returns a DataFrame read_excel('path_to_file.xls') Using None to get all sheets: # Returns a dictionary of DataFrames read_excel('path_to_file.xls',sheetname=None) Using a list to get multiple sheets: # Returns the 1st and 4th sheet, as a dictionary of DataFrames. read_excel('path_to_file.xls',sheetname=['Sheet1',3]) 752 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 Parsing Specific Columns It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read in those columns. read_excel takes a parse_cols keyword to allow you to specify a subset of columns to parse. If parse_cols is an integer, then it is assumed to indicate the last column to be parsed. read_excel('path_to_file.xls', 'Sheet1', parse_cols=2) If parse_cols is a list of integers, then it is assumed to be the file column indices to be parsed. read_excel('path_to_file.xls', 'Sheet1', parse_cols=[0, 2, 3]) Cell Converters It is possible to transform the contents of Excel cells via the converters option. For instance, to convert a column to boolean: read_excel('path_to_file.xls', 'Sheet1', converters={'MyBools': bool}) This options handles missing values and treats exceptions in the converters as missing data. Transformations are applied cell by cell rather than to the column as a whole, so the array dtype is not guaranteed. For instance, a column of integers with missing values cannot be transformed to an array with integer dtype, because NaN is strictly a float. You can manually mask missing data to recover integer dtype: cfun = lambda x: int(x) if x else -1 read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) 24.4.2 Writing Excel Files To write a DataFrame object to a sheet of an Excel file, you can use the to_excel instance method. The arguments are largely the same as to_csv described above, the first argument being the name of the excel file, and the optional second argument the name of the sheet to which the DataFrame should be written. For example: df.to_excel('path_to_file.xlsx', sheet_name='Sheet1') Files with a .xls extension will be written using xlwt and those with a .xlsx extension will be written using xlsxwriter (if available) or openpyxl. The DataFrame will be written in a way that tries to mimic the REPL output. One difference from 0.12.0 is that the index_label will be placed in the second row instead of the first. You can get the previous behaviour by setting the merge_cells option in to_excel() to False: df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False) The Panel class also has a to_excel instance method, which writes each DataFrame in the Panel to a separate sheet. In order to write separate DataFrames to separate sheets in a single Excel file, one can pass an ExcelWriter. with ExcelWriter('path_to_file.xlsx') as writer: df1.to_excel(writer, sheet_name='Sheet1') df2.to_excel(writer, sheet_name='Sheet2') Note: Wringing a little more performance out of read_excel Internally, Excel stores all numeric data as floats. Because this can produce unexpected behavior when reading in data, pandas defaults to trying to convert integers to floats if it doesn’t lose information (1.0 --> 1). You can pass convert_float=False to disable this behavior, which may give a slight performance improvement. 24.4. Excel files 753 pandas: powerful Python data analysis toolkit, Release 0.16.1 24.4.3 Excel writer engines New in version 0.13. pandas chooses an Excel writer via two methods: 1. the engine keyword argument 2. the filename extension (via the default specified in config options) By default, pandas uses the XlsxWriter for .xlsx and openpyxl for .xlsm files and xlwt for .xls files. If you have multiple engines installed, you can set the default engine through setting the config options io.excel.xlsx.writer and io.excel.xls.writer. pandas will fall back on openpyxl for .xlsx files if Xlsxwriter is not available. To specify which writer you want to use, you can pass an engine keyword argument to to_excel and to ExcelWriter. The built-in engines are: • openpyxl: This includes stable support for OpenPyxl 1.6.1 up to but not including 2.0.0, and experimental support for OpenPyxl 2.0.0 and later. • xlsxwriter • xlwt # By setting the 'engine' in the DataFrame and Panel 'to_excel()' methods. df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter') # By setting the 'engine' in the ExcelWriter constructor. writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter') # Or via pandas configuration. from pandas import options options.io.excel.xlsx.writer = 'xlsxwriter' df.to_excel('path_to_file.xlsx', sheet_name='Sheet1') 24.5 Clipboard A handy way to grab data is to use the read_clipboard method, which takes the contents of the clipboard buffer and passes them to the read_table method. For instance, you can copy the following text to the clipboard (CTRL-C on many operating systems): A B C x 1 4 p y 2 5 q z 3 6 r And then import the data directly to a DataFrame by calling: clipdf = pd.read_clipboard() In [226]: clipdf Out[226]: A B C x 1 4 p y 2 5 q z 3 6 r 754 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 The to_clipboard method can be used to write the contents of a DataFrame to the clipboard. Following which you can paste the clipboard contents into other applications (CTRL-V on many operating systems). Here we illustrate writing a DataFrame into clipboard and reading it back. In [227]: df=pd.DataFrame(randn(5,3)) In [228]: df Out[228]: 0 1 2 0 -0.288267 -0.084905 0.004772 1 1.382989 0.343635 -1.253994 2 -0.124925 0.212244 0.496654 3 0.525417 1.238640 -1.210543 4 -1.175743 -0.172372 -0.734129 In [229]: df.to_clipboard() In [230]: pd.read_clipboard() Out[230]: 0 1 2 0 -0.288267 -0.084905 0.004772 1 1.382989 0.343635 -1.253994 2 -0.124925 0.212244 0.496654 3 0.525417 1.238640 -1.210543 4 -1.175743 -0.172372 -0.734129 We can see that we got the same content back, which we had earlier written to the clipboard. Note: You may need to install xclip or xsel (with gtk or PyQt4 modules) on Linux to use these methods. 24.6 Pickling All pandas objects are equipped with to_pickle methods which use Python’s cPickle module to save data structures to disk using the pickle format. In [231]: df Out[231]: 0 1 2 0 -0.288267 -0.084905 0.004772 1 1.382989 0.343635 -1.253994 2 -0.124925 0.212244 0.496654 3 0.525417 1.238640 -1.210543 4 -1.175743 -0.172372 -0.734129 In [232]: df.to_pickle('foo.pkl') The read_pickle function in the pandas namespace can be used to load any pickled pandas object (or any other pickled object) from file: In [233]: read_pickle('foo.pkl') Out[233]: 0 1 2 0 -0.288267 -0.084905 0.004772 1 1.382989 0.343635 -1.253994 2 -0.124925 0.212244 0.496654 24.6. Pickling 755 pandas: powerful Python data analysis toolkit, Release 0.16.1 3 0.525417 1.238640 -1.210543 4 -1.175743 -0.172372 -0.734129 Warning: Loading pickled data received from untrusted sources can be unsafe. See: http://docs.python.org/2.7/library/pickle.html Warning: Several internal refactorings, 0.13 (Series Refactoring), and 0.15 (Index Refactoring), preserve compatibility with pickles created prior to these versions. However, these must be read with pd.read_pickle, rather than the default python pickle.load. See this question for a detailed explanation. Note: These methods were previously pd.save and pd.load, prior to 0.12.0, and are now deprecated. 24.7 msgpack (experimental) New in version 0.13.0. Starting in 0.13.0, pandas is supporting the msgpack format for object serialization. This is a lightweight portable binary format, similar to binary JSON, that is highly space efficient, and provides good performance both on the writing (serialization), and reading (deserialization). Warning: This is a very new feature of pandas. We intend to provide certain optimizations in the io of the msgpack data. Since this is marked as an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release. In [234]: df = DataFrame(np.random.rand(5,2),columns=list('AB')) In [235]: df.to_msgpack('foo.msg') In [236]: pd.read_msgpack('foo.msg') Out[236]: A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106 In [237]: s = Series(np.random.rand(5),index=date_range('20130101',periods=5)) You can pass a list of objects and you will receive them back on deserialization. In [238]: pd.to_msgpack('foo.msg', df, 'foo', np.array([1,2,3]), s) In [239]: pd.read_msgpack('foo.msg') Out[239]: [ A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106, u'foo', array([1, 2, 3]), 2013-01-01 2013-01-02 0.235907 2013-01-03 0.712756 756 0.690810 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64] You can pass iterator=True to iterate over the unpacked results In [240]: for o in pd.read_msgpack('foo.msg',iterator=True): .....: print o .....: A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106 foo [1 2 3] 2013-01-01 0.690810 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64 You can pass append=True to the writer to append to an existing pack In [241]: df.to_msgpack('foo.msg',append=True) In [242]: pd.read_msgpack('foo.msg') Out[242]: [ A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106, u'foo', array([1, 2, 3]), 2013-01-01 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64, A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106] 0.690810 Unlike other io methods, to_msgpack is available on both a per-object basis, df.to_msgpack() and using the top-level pd.to_msgpack(...) where you can pack arbitrary collections of python lists, dicts, scalars, while intermixing pandas objects. In [243]: pd.to_msgpack('foo2.msg', { 'dict' : [ { 'df' : df }, { 'string' : 'foo' }, { 'scalar' : 1. In [244]: pd.read_msgpack('foo2.msg') Out[244]: {u'dict': ({u'df': A 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 24.7. msgpack (experimental) B 757 pandas: powerful Python data analysis toolkit, Release 0.16.1 3 0.290293 0.710783 4 0.988593 0.062106}, {u'string': u'foo'}, {u'scalar': 1.0}, {u's': 2013-01-01 0.690810 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64})} 24.7.1 Read/Write API Msgpacks can also be read from and written to strings. In [245]: df.to_msgpack() Out[245]: '\x84\xa6blocks\x91\x86\xa5items\x86\xa4name\xc0\xa5dtype\x11\xa8compress\xc0\xa4data\x92\x Furthermore you can concatenate the strings to produce a list of the original objects. In [246]: pd.read_msgpack(df.to_msgpack() + s.to_msgpack()) Out[246]: [ A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106, 2013-01-01 0.690810 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64] 24.8 HDF5 (PyTables) HDFStore is a dict-like object which reads and writes pandas using the high performance HDF5 format using the excellent PyTables library. See the cookbook for some advanced strategies Warning: As of version 0.15.0, pandas requires PyTables >= 3.0.0. Stores written with prior versions of pandas / PyTables >= 2.3 are fully compatible (this was the previous minimum PyTables required version). Warning: There is a PyTables indexing bug which may appear when querying stores using an index. If you see a subset of results being returned, upgrade to PyTables >= 3.2. Stores created previously will need to be rewritten using the updated version. In [247]: store = HDFStore('store.h5') In [248]: print(store) File path: store.h5 Empty 758 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 Objects can be written to the file just like adding key-value pairs to a dict: In [249]: np.random.seed(1234) In [250]: index = date_range('1/1/2000', periods=8) In [251]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e']) In [252]: df = DataFrame(randn(8, 3), index=index, .....: columns=['A', 'B', 'C']) .....: In [253]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'], .....: major_axis=date_range('1/1/2000', periods=5), .....: minor_axis=['A', 'B', 'C', 'D']) .....: # store.put('s', s) is an equivalent method In [254]: store['s'] = s In [255]: store['df'] = df In [256]: store['wp'] = wp # the type of stored data In [257]: store.root.wp._v_attrs.pandas_type Out[257]: 'wide' In [258]: store Out[258]: File path: store.h5 /df frame (shape->[8,3]) /s series (shape->[5]) /wp wide (shape->[2,5,4]) In a current or later Python session, you can retrieve stored objects: # store.get('df') is an equivalent method In [259]: store['df'] Out[259]: A B C 2000-01-01 0.887163 0.859588 -0.636524 2000-01-02 0.015696 -2.242685 1.150036 2000-01-03 0.991946 0.953324 -2.021255 2000-01-04 -0.334077 0.002118 0.405453 2000-01-05 0.289092 1.321158 -1.546906 2000-01-06 -0.202646 -0.655969 0.193421 2000-01-07 0.553439 1.318152 -0.469305 2000-01-08 0.675554 -1.817027 -0.183109 # dotted (attribute) access provides get as well In [260]: store.df Out[260]: A B C 2000-01-01 0.887163 0.859588 -0.636524 2000-01-02 0.015696 -2.242685 1.150036 2000-01-03 0.991946 0.953324 -2.021255 2000-01-04 -0.334077 0.002118 0.405453 24.8. HDF5 (PyTables) 759 pandas: powerful Python data analysis toolkit, Release 0.16.1 2000-01-05 0.289092 1.321158 -1.546906 2000-01-06 -0.202646 -0.655969 0.193421 2000-01-07 0.553439 1.318152 -0.469305 2000-01-08 0.675554 -1.817027 -0.183109 Deletion of the object specified by the key # store.remove('wp') is an equivalent method In [261]: del store['wp'] In [262]: store Out[262]: File path: store.h5 /df frame (shape->[8,3]) /s series (shape->[5]) Closing a Store, Context Manager In [263]: store.close() In [264]: store Out[264]: File path: store.h5 File is CLOSED In [265]: store.is_open Out[265]: False # Working with, and automatically closing the store with the context # manager In [266]: with HDFStore('store.h5') as store: .....: store.keys() .....: 24.8.1 Read/Write API HDFStore supports an top-level API using read_hdf for reading and to_hdf for writing, similar to how read_csv and to_csv work. (new in 0.11.0) In [267]: df_tl = DataFrame(dict(A=list(range(5)), B=list(range(5)))) In [268]: df_tl.to_hdf('store_tl.h5','table',append=True) In [269]: read_hdf('store_tl.h5', 'table', where = ['index>2']) Out[269]: A B 3 3 3 4 4 4 24.8.2 Fixed Format Note: This was prior to 0.13.0 the Storer format. 760 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 The examples above show storing using put, which write the HDF5 to PyTables in a fixed array format, called the fixed format. These types of stores are are not appendable once written (though you can simply remove them and rewrite). Nor are they queryable; they must be retrieved in their entirety. They also do not support dataframes with non-unique column names. The fixed format stores offer very fast writing and slightly faster reading than table stores. This format is specified by default when using put or to_hdf or by format=’fixed’ or format=’f’ Warning: A fixed format will raise a TypeError if you try to retrieve using a where . DataFrame(randn(10,2)).to_hdf('test_fixed.h5','df') pd.read_hdf('test_fixed.h5','df',where='index>5') TypeError: cannot pass a where specification when reading a fixed format. this store must be selected in its entirety 24.8.3 Table Format HDFStore supports another PyTables format on disk, the table format. Conceptually a table is shaped very much like a DataFrame, with rows and columns. A table may be appended to in the same or other sessions. In addition, delete & query type operations are supported. This format is specified by format=’table’ or format=’t’ to append or put or to_hdf New in version 0.13. This format can be set as an option as well pd.set_option(’io.hdf.default_format’,’table’) to enable put/append/to_hdf to by default store in the table format. In [270]: store = HDFStore('store.h5') In [271]: df1 = df[0:4] In [272]: df2 = df[4:] # append data (creates a table automatically) In [273]: store.append('df', df1) In [274]: store.append('df', df2) In [275]: store Out[275]: File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) # select the entire object In [276]: store.select('df') Out[276]: A B 2000-01-01 0.887163 0.859588 2000-01-02 0.015696 -2.242685 2000-01-03 0.991946 0.953324 2000-01-04 -0.334077 0.002118 2000-01-05 0.289092 1.321158 2000-01-06 -0.202646 -0.655969 2000-01-07 0.553439 1.318152 2000-01-08 0.675554 -1.817027 24.8. HDF5 (PyTables) C -0.636524 1.150036 -2.021255 0.405453 -1.546906 0.193421 -0.469305 -0.183109 761 pandas: powerful Python data analysis toolkit, Release 0.16.1 # the type of stored data In [277]: store.root.df._v_attrs.pandas_type Out[277]: 'frame_table' Note: You can also create a table by passing format=’table’ or format=’t’ to a put operation. 24.8.4 Hierarchical Keys Keys to a store can be specified as a string. These can be in a hierarchical path-name like format (e.g. foo/bar/bah), which will generate a hierarchy of sub-stores (or Groups in PyTables parlance). Keys can be specified with out the leading ‘/’ and are ALWAYS absolute (e.g. ‘foo’ refers to ‘/foo’). Removal operations can remove everything in the sub-store and BELOW, so be careful. In [278]: store.put('foo/bar/bah', df) In [279]: store.append('food/orange', df) In [280]: store.append('food/apple', df) In [281]: store Out[281]: File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /foo/bar/bah frame (shape->[8,3]) /food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) # a list of keys are returned In [282]: store.keys() Out[282]: ['/df', '/food/apple', '/food/orange', '/foo/bar/bah'] # remove all nodes under this level In [283]: store.remove('food') In [284]: store Out[284]: File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /foo/bar/bah frame (shape->[8,3]) 24.8.5 Storing Mixed Types in a Table Storing mixed-dtype data is supported. Strings are stored as a fixed-width using the maximum size of the appended column. Subsequent appends will truncate strings at this length. Passing min_itemsize={‘values‘: size} as a parameter to append will set a larger minimum for the string columns. Storing floats, strings, ints, bools, datetime64 are currently supported. For string columns, passing nan_rep = ’nan’ to append will change the default nan representation on disk (which converts to/from np.nan), this defaults to nan. In [285]: df_mixed = DataFrame({ 'A' : randn(8), .....: 'B' : randn(8), 762 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 .....: .....: .....: .....: .....: .....: .....: 'C' : np.array(randn(8),dtype='float32'), 'string' :'string', 'int' : 1, 'bool' : True, 'datetime64' : Timestamp('20010102')}, index=list(range(8))) In [286]: df_mixed.ix[3:5,['A', 'B', 'string', 'datetime64']] = np.nan In [287]: store.append('df_mixed', df_mixed, min_itemsize = {'values': 50}) In [288]: df_mixed1 = store.select('df_mixed') In [289]: df_mixed1 Out[289]: A B C 0 0.704721 -1.152659 -0.430096 1 -0.785435 0.631979 0.767369 2 0.462060 0.039513 0.984920 3 NaN NaN 0.270836 4 NaN NaN 1.391986 5 NaN NaN 0.079842 6 2.007843 0.152631 -0.399965 7 0.226963 0.164530 -1.027851 bool True True True True True True True True datetime64 2001-01-02 2001-01-02 2001-01-02 NaT NaT NaT 2001-01-02 2001-01-02 int 1 1 1 1 1 1 1 1 string string string string NaN NaN NaN string string In [290]: df_mixed1.get_dtype_counts() Out[290]: bool 1 datetime64[ns] 1 float32 1 float64 2 int64 1 object 1 dtype: int64 # we have provided a minimum string column size In [291]: store.root.df_mixed.table Out[291]: /df_mixed/table (Table(8,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1), "values_block_1": Float32Col(shape=(1,), dflt=0.0, pos=2), "values_block_2": Int64Col(shape=(1,), dflt=0, pos=3), "values_block_3": Int64Col(shape=(1,), dflt=0, pos=4), "values_block_4": BoolCol(shape=(1,), dflt=False, pos=5), "values_block_5": StringCol(itemsize=50, shape=(1,), dflt='', pos=6)} byteorder := 'little' chunkshape := (689,) autoindex := True colindexes := { "index": Index(6, medium, shuffle, zlib(1)).is_csi=False} 24.8.6 Storing Multi-Index DataFrames Storing multi-index dataframes as tables is very similar to storing/selecting from homogeneous index DataFrames. 24.8. HDF5 (PyTables) 763 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [292]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], .....: ['one', 'two', 'three']], .....: labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], .....: [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], .....: names=['foo', 'bar']) .....: In [293]: df_mi = DataFrame(np.random.randn(10, 3), index=index, .....: columns=['A', 'B', 'C']) .....: In [294]: df_mi Out[294]: foo bar foo one two three bar one two baz two three qux one two three A B C -0.584718 -0.344766 -0.511881 0.503592 1.363482 1.224574 -1.710715 -0.203933 -1.818499 -0.248432 0.816594 0.528288 0.291205 0.285296 -0.781105 -1.281108 -0.450765 -0.182175 0.047072 -0.617707 -0.081947 -1.068989 0.566534 0.484288 -0.468018 0.875476 0.749164 0.680656 0.394844 -0.682884 In [295]: store.append('df_mi',df_mi) In [296]: store.select('df_mi') Out[296]: A B C foo bar foo one -0.584718 0.816594 -0.081947 two -0.344766 0.528288 -1.068989 three -0.511881 0.291205 0.566534 bar one 0.503592 0.285296 0.484288 two 1.363482 -0.781105 -0.468018 baz two 1.224574 -1.281108 0.875476 three -1.710715 -0.450765 0.749164 qux one -0.203933 -0.182175 0.680656 two -1.818499 0.047072 0.394844 three -0.248432 -0.617707 -0.682884 # the levels are automatically included as data columns In [297]: store.select('df_mi', 'foo=bar') Out[297]: A B C foo bar bar one 0.503592 0.285296 0.484288 two 1.363482 -0.781105 -0.468018 24.8.7 Querying a Table Warning: This query capabilities have changed substantially starting in 0.13.0. Queries from prior version are accepted (with a DeprecationWarning) printed if its not string-like. 764 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 select and delete operations have an optional criterion that can be specified to select/delete only a subset of the data. This allows one to have a very large on-disk table and retrieve only a portion of the data. A query is specified using the Term class under the hood, as a boolean expression. • index and columns are supported indexers of a DataFrame • major_axis, minor_axis, and items are supported indexers of the Panel • if data_columns are specified, these can be used as additional indexers Valid comparison operators are: • =, ==, !=, >, >=, <, <= Valid boolean expressions are combined with: • | : or • & : and • ( and ) : for grouping These rules are similar to how boolean expressions are used in pandas for indexing. Note: • = will be automatically expanded to the comparison operator == • ~ is the not operator, but can only be used in very limited circumstances • If a list/tuple of expressions is passed they will be combined via & The following are valid expressions: • ’index>=date’ • "columns=[’A’, ’D’]" • "columns in [’A’, ’D’]" • ’columns=A’ • ’columns==A’ • "~(columns=[’A’,’B’])" • ’index>df.index[3] & string="bar"’ • ’(index>df.index[3] & index<=df.index[6]) | string="bar"’ • "ts>=Timestamp(’2012-02-01’)" • "major_axis>=20130101" The indexers are on the left-hand side of the sub-expression: • columns, major_axis, ts The right-hand side of the sub-expression (after a comparison operator) can be: • functions that will be evaluated, e.g. Timestamp(’2012-02-01’) • strings, e.g. "bar" • date-like, e.g. 20130101, or "20130101" • lists, e.g. "[’A’,’B’]" • variables that are defined in the local names space, e.g. date 24.8. HDF5 (PyTables) 765 pandas: powerful Python data analysis toolkit, Release 0.16.1 Note: Passing a string to a query by interpolating it into the query expression is not recommended. Simply assign the string of interest to a variable and use that variable in an expression. For example, do this string = "HolyMoly'" store.select('df', 'index == string') instead of this string = "HolyMoly'" store.select('df', 'index == %s' % string) The latter will not work and will raise a SyntaxError.Note that there’s a single quote followed by a double quote in the string variable. If you must interpolate, use the ’%r’ format specifier store.select('df', 'index == %r' % string) which will quote string. Here are some examples: In [298]: dfq = DataFrame(randn(10,4),columns=list('ABCD'),index=date_range('20130101',periods=10)) In [299]: store.append('dfq',dfq,format='table',data_columns=True) Use boolean expressions, with in-line function evaluation. In [300]: store.select('dfq',"index>Timestamp('20130104') & columns=['A', 'B']") Out[300]: A B 2013-01-05 1.210384 0.797435 2013-01-06 -0.850346 1.176812 2013-01-07 0.984188 -0.121728 2013-01-08 0.796595 -0.474021 2013-01-09 -0.804834 -2.123620 2013-01-10 0.334198 0.536784 Use and inline column reference In [301]: store.select('dfq',where="A>0 or C>0") Out[301]: A B C D 2013-01-01 0.436258 -1.703013 0.393711 -0.479324 2013-01-02 -0.299016 0.694103 0.678630 0.239556 2013-01-03 0.151227 0.816127 1.893534 0.639633 2013-01-04 -0.962029 -2.085266 1.930247 -1.735349 2013-01-05 1.210384 0.797435 -0.379811 0.702562 2013-01-07 0.984188 -0.121728 2.365769 0.496143 2013-01-08 0.796595 -0.474021 -0.056696 1.357797 2013-01-10 0.334198 0.536784 -0.743830 -0.320204 Works with a Panel as well. In [302]: store.append('wp',wp) In [303]: store Out[303]: File path: store.h5 766 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 /df /df_mi /df_mixed /dfq /foo/bar/bah /wp frame_table frame_table frame_table frame_table frame wide_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc-> (typ->appendable,nrows->8,ncols->7,indexers->[index]) (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C (shape->[8,3]) (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_ In [304]: store.select('wp', "major_axis>Timestamp('20000102') & minor_axis=['A', 'B']") Out[304]: Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis) Items axis: Item1 to Item2 Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00 Minor_axis axis: A to B The columns keyword can be supplied to select a list of columns to be returned, this is equivalent to passing a ’columns=list_of_columns_to_filter’: In [305]: store.select('df', "columns=['A', 'B']") Out[305]: A B 2000-01-01 0.887163 0.859588 2000-01-02 0.015696 -2.242685 2000-01-03 0.991946 0.953324 2000-01-04 -0.334077 0.002118 2000-01-05 0.289092 1.321158 2000-01-06 -0.202646 -0.655969 2000-01-07 0.553439 1.318152 2000-01-08 0.675554 -1.817027 start and stop parameters can be specified to limit the total search space. These are in terms of the total number of rows in a table. # this is effectively what In [306]: wp.to_frame() Out[306]: Item1 major minor 2000-01-01 A 1.058969 B -0.397840 C 0.337438 D 1.047579 2000-01-02 A 1.045938 B 0.863717 C -0.122092 ... ... 2000-01-04 B 0.036142 C -2.074978 D 0.247792 2000-01-05 A -0.897157 B -0.136795 C 0.018289 D 0.755414 the storage of a Panel looks like Item2 0.215269 0.841009 -1.445810 -1.401973 -0.100918 -0.548242 -0.144620 ... 0.307969 -0.208499 1.033801 -2.400454 2.030604 -1.142631 0.211883 [20 rows x 2 columns] # limiting the search In [307]: store.select('wp',"major_axis>20000102 & minor_axis=['A','B']", .....: start=0, stop=10) 24.8. HDF5 (PyTables) 767 pandas: powerful Python data analysis toolkit, Release 0.16.1 .....: Out[307]: Dimensions: 2 (items) x 1 (major_axis) x 2 (minor_axis) Items axis: Item1 to Item2 Major_axis axis: 2000-01-03 00:00:00 to 2000-01-03 00:00:00 Minor_axis axis: A to B Note: select will raise a ValueError if the query expression has an unknown variable reference. Usually this means that you are trying to select on a column that is not a data_column. select will raise a SyntaxError if the query expression is not valid. Using timedelta64[ns] New in version 0.13. Beginning in 0.13.0, you can store and query using the timedelta64[ns] type. Terms can be specified in the format: (), where float may be signed (and fractional), and unit can be D,s,ms,us,ns for the timedelta. Here’s an example: Warning: This requires numpy >= 1.7 In [308]: from datetime import timedelta In [309]: dftd = DataFrame(dict(A = Timestamp('20130101'), B = [ Timestamp('20130101') + timedelta(da In [310]: dftd['C'] = dftd['A']-dftd['B'] In [311]: dftd Out[311]: A 0 2013-01-01 2013-01-01 1 2013-01-01 2013-01-02 2 2013-01-01 2013-01-03 3 2013-01-01 2013-01-04 4 2013-01-01 2013-01-05 5 2013-01-01 2013-01-06 6 2013-01-01 2013-01-07 7 2013-01-01 2013-01-08 8 2013-01-01 2013-01-09 9 2013-01-01 2013-01-10 B 00:00:10 -1 00:00:10 -2 00:00:10 -3 00:00:10 -4 00:00:10 -5 00:00:10 -6 00:00:10 -7 00:00:10 -8 00:00:10 -9 00:00:10 -10 days days days days days days days days days days C +23:59:50 +23:59:50 +23:59:50 +23:59:50 +23:59:50 +23:59:50 +23:59:50 +23:59:50 +23:59:50 +23:59:50 In [312]: store.append('dftd',dftd,data_columns=True) In [313]: store.select('dftd',"C<'-3.5D'") Out[313]: A B C 4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50 5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50 6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50 7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50 8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50 9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50 768 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 24.8.8 Indexing You can create/modify an index for a table with create_table_index after data is already in the table (after and append/put operation). Creating a table index is highly encouraged. This will speed your queries a great deal when you use a select with the indexed dimension as the where. Note: Indexes are automagically created (starting 0.10.1) on the indexables and any data columns you specify. This behavior can be turned off by passing index=False to append. # we have automagically already created an index (in the first section) In [314]: i = store.root.df.table.cols.index.index In [315]: i.optlevel, i.kind Out[315]: (6, 'medium') # change an index by passing new parameters In [316]: store.create_table_index('df', optlevel=9, kind='full') In [317]: i = store.root.df.table.cols.index.index In [318]: i.optlevel, i.kind Out[318]: (9, 'full') See here for how to create a completely-sorted-index (CSI) on an existing store. 24.8.9 Query via Data Columns You can designate (and index) certain columns that you want to be able to perform queries (other than the indexable columns, which you can always query). For instance say you want to perform this common operation, on-disk, and return just the frame that matches this query. You can specify data_columns = True to force all columns to be data_columns In [319]: df_dc = df.copy() In [320]: df_dc['string'] = 'foo' In [321]: df_dc.ix[4:6,'string'] = np.nan In [322]: df_dc.ix[7:9,'string'] = 'bar' In [323]: df_dc['string2'] = 'cool' In [324]: df_dc.ix[1:3,['B','C']] = 1.0 In [325]: df_dc Out[325]: A B C string string2 2000-01-01 0.887163 0.859588 -0.636524 foo cool 2000-01-02 0.015696 1.000000 1.000000 foo cool 2000-01-03 0.991946 1.000000 1.000000 foo cool 2000-01-04 -0.334077 0.002118 0.405453 foo cool 2000-01-05 0.289092 1.321158 -1.546906 NaN cool 2000-01-06 -0.202646 -0.655969 0.193421 NaN cool 2000-01-07 0.553439 1.318152 -0.469305 foo cool 2000-01-08 0.675554 -1.817027 -0.183109 bar cool 24.8. HDF5 (PyTables) 769 pandas: powerful Python data analysis toolkit, Release 0.16.1 # on-disk operations In [326]: store.append('df_dc', df_dc, data_columns = ['B', 'C', 'string', 'string2']) In [327]: store.select('df_dc', [ Term('B>0') ]) Out[327]: A B C string string2 2000-01-01 0.887163 0.859588 -0.636524 foo cool 2000-01-02 0.015696 1.000000 1.000000 foo cool 2000-01-03 0.991946 1.000000 1.000000 foo cool 2000-01-04 -0.334077 0.002118 0.405453 foo cool 2000-01-05 0.289092 1.321158 -1.546906 NaN cool 2000-01-07 0.553439 1.318152 -0.469305 foo cool # getting creative In [328]: store.select('df_dc', Out[328]: A B 2000-01-02 0.015696 1.000000 2000-01-03 0.991946 1.000000 2000-01-04 -0.334077 0.002118 'B > 0 & C > 0 & string == foo') C string string2 1.000000 foo cool 1.000000 foo cool 0.405453 foo cool # this is in-memory version of this type of selection In [329]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')] Out[329]: A B C string string2 2000-01-02 0.015696 1.000000 1.000000 foo cool 2000-01-03 0.991946 1.000000 1.000000 foo cool 2000-01-04 -0.334077 0.002118 0.405453 foo cool # we have automagically created this index and the B/C/string/string2 # columns are stored separately as ``PyTables`` columns In [330]: store.root.df_dc.table Out[330]: /df_dc/table (Table(8,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1), "B": Float64Col(shape=(), dflt=0.0, pos=2), "C": Float64Col(shape=(), dflt=0.0, pos=3), "string": StringCol(itemsize=3, shape=(), dflt='', pos=4), "string2": StringCol(itemsize=4, shape=(), dflt='', pos=5)} byteorder := 'little' chunkshape := (1680,) autoindex := True colindexes := { "index": Index(6, medium, shuffle, zlib(1)).is_csi=False, "C": Index(6, medium, shuffle, zlib(1)).is_csi=False, "B": Index(6, medium, shuffle, zlib(1)).is_csi=False, "string2": Index(6, medium, shuffle, zlib(1)).is_csi=False, "string": Index(6, medium, shuffle, zlib(1)).is_csi=False} There is some performance degradation by making lots of columns into data columns, so it is up to the user to designate these. In addition, you cannot change data columns (nor indexables) after the first append/put operation (Of course you can simply read in the data and create a new table!) 770 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 24.8.10 Iterator Starting in 0.11.0, you can pass, iterator=True or chunksize=number_in_a_chunk to select and select_as_multiple to return an iterator on the results. The default is 50,000 rows returned in a chunk. In [331]: for df in store.select('df', chunksize=3): .....: print(df) .....: A B C 2000-01-01 0.887163 0.859588 -0.636524 2000-01-02 0.015696 -2.242685 1.150036 2000-01-03 0.991946 0.953324 -2.021255 A B C 2000-01-04 -0.334077 0.002118 0.405453 2000-01-05 0.289092 1.321158 -1.546906 2000-01-06 -0.202646 -0.655969 0.193421 A B C 2000-01-07 0.553439 1.318152 -0.469305 2000-01-08 0.675554 -1.817027 -0.183109 Note: New in version 0.12.0. You can also use the iterator with read_hdf which will open, then automatically close the store when finished iterating. for df in read_hdf('store.h5','df', chunksize=3): print(df) Note, that the chunksize keyword applies to the source rows. So if you are doing a query, then the chunksize will subdivide the total rows in the table and the query applied, returning an iterator on potentially unequal sized chunks. Here is a recipe for generating a query and using it to create equal sized return chunks. In [332]: dfeq = DataFrame({'number': np.arange(1,11)}) In [333]: dfeq Out[333]: number 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 In [334]: store.append('dfeq', dfeq, data_columns=['number']) In [335]: def chunks(l, n): .....: return [l[i:i+n] for i in range(0, len(l), n)] .....: In [336]: evens = [2,4,6,8,10] In [337]: coordinates = store.select_as_coordinates('dfeq','number=evens') 24.8. HDF5 (PyTables) 771 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [338]: for c in chunks(coordinates, 2): .....: print store.select('dfeq',where=c) .....: number 1 2 3 4 number 5 6 7 8 number 9 10 24.8.11 Advanced Queries Select a Single Column To retrieve a single indexable or data column, use the method select_column. This will, for example, enable you to get the index very quickly. These return a Series of the result, indexed by the row number. These do not currently accept the where selector. In [339]: store.select_column('df_dc', 'index') Out[339]: 0 2000-01-01 1 2000-01-02 2 2000-01-03 3 2000-01-04 4 2000-01-05 5 2000-01-06 6 2000-01-07 7 2000-01-08 dtype: datetime64[ns] In [340]: store.select_column('df_dc', 'string') Out[340]: 0 foo 1 foo 2 foo 3 foo 4 NaN 5 NaN 6 foo 7 bar dtype: object Selecting coordinates Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index of the resulting locations. These coordinates can also be passed to subsequent where operations. In [341]: df_coord = DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000)) In [342]: store.append('df_coord',df_coord) In [343]: c = store.select_as_coordinates('df_coord','index>20020101') In [344]: c.summary() Out[344]: u'Int64Index: 268 entries, 732 to 999' 772 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 In [345]: store.select('df_coord',where=c) Out[345]: 0 1 2002-01-02 -0.667994 -0.368175 2002-01-03 0.020119 -0.823208 2002-01-04 -0.165481 0.720866 2002-01-05 1.295919 -0.527767 2002-01-06 -0.463393 -0.150792 2002-01-07 -1.139341 -0.954387 2002-01-08 0.051837 -0.147048 ... ... ... 2002-09-20 0.058626 -0.489107 2002-09-21 -0.356873 -0.437071 2002-09-22 -0.243534 -0.093778 2002-09-23 -0.615983 0.414649 2002-09-24 0.202096 -0.297561 2002-09-25 0.681661 0.538311 2002-09-26 -0.614051 0.769058 [268 rows x 2 columns] Selecting using a where mask Sometime your query can involve creating a list of rows to select. Usually this mask would be a resulting index from an indexing operation. This example selects the months of a datetimeindex which are 5. In [346]: df_mask = DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000)) In [347]: store.append('df_mask',df_mask) In [348]: c = store.select_column('df_mask','index') In [349]: where = c[DatetimeIndex(c).month==5].index In [350]: store.select('df_mask',where=where) Out[350]: 0 1 2000-05-01 -0.098554 -0.280782 2000-05-02 0.739851 1.627182 2000-05-03 0.030132 -0.145601 2000-05-04 0.227530 1.048856 2000-05-05 1.773939 1.116887 2000-05-06 1.081251 1.509416 2000-05-07 -0.498694 -0.913155 ... ... ... 2002-05-25 -0.497252 0.348099 2002-05-26 -1.287350 -1.488122 2002-05-27 -0.726220 0.507747 2002-05-28 0.189871 0.980528 2002-05-29 0.555156 0.369371 2002-05-30 -0.637441 -3.434819 2002-05-31 -0.070283 -0.278044 [93 rows x 2 columns] Storer Object If you want to inspect the stored object, retrieve via get_storer. You could use this programmatically to say get the number of rows in an object. 24.8. HDF5 (PyTables) 773 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [351]: store.get_storer('df_dc').nrows Out[351]: 8 24.8.12 Multiple Table Queries New in 0.10.1 are the methods append_to_multiple and select_as_multiple, that can perform appending/selecting from multiple tables at once. The idea is to have one table (call it the selector table) that you index most/all of the columns, and perform your queries. The other table(s) are data tables with an index matching the selector table’s index. You can then perform a very fast query on the selector table, yet get lots of data back. This method is similar to having a very wide table, but enables more efficient queries. The append_to_multiple method splits a given single DataFrame into multiple tables according to d, a dictionary that maps the table names to a list of ‘columns’ you want in that table. If None is used in place of a list, that table will have the remaining unspecified columns of the given DataFrame. The argument selector defines which table is the selector table (which you can make queries from). The argument dropna will drop rows from the input DataFrame to ensure tables are synchronized. This means that if a row for one of the tables being written to is entirely np.NaN, that row will be dropped from all tables. If dropna is False, THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE TABLES. Remember that entirely np.Nan rows are not written to the HDFStore, so if you choose to call dropna=False, some tables may have more rows than others, and therefore select_as_multiple may not work or it may return unexpected results. In [352]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8), .....: columns=['A', 'B', 'C', 'D', 'E', 'F']) .....: In [353]: df_mt['foo'] = 'bar' In [354]: df_mt.ix[1, ('A', 'B')] = np.nan # you can also create the tables individually In [355]: store.append_to_multiple({'df1_mt': ['A', 'B'], 'df2_mt': None }, .....: df_mt, selector='df1_mt') .....: In [356]: store Out[356]: File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /df1_mt frame_table (typ->appendable,nrows->7,ncols->2,indexers->[index],dc->[A,B]) /df2_mt frame_table (typ->appendable,nrows->7,ncols->5,indexers->[index]) /df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,st /df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc-> /df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index]) /dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index],dc->[numbe /dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C /dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C /foo/bar/bah frame (shape->[8,3]) /wp wide_table (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_ # individual tables were created In [357]: store.select('df1_mt') 774 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 Out[357]: 2000-01-01 2000-01-03 2000-01-04 2000-01-05 2000-01-06 2000-01-07 2000-01-08 A B -0.816310 1.282296 0.684353 -1.755306 -1.315814 1.455079 -0.027564 0.046757 -0.416244 -0.821168 0.665090 1.084344 0.607460 0.790907 In [358]: store.select('df2_mt') Out[358]: C D E F 2000-01-01 -1.521825 -0.428670 -1.550209 0.826839 2000-01-03 1.236974 -1.328279 0.662291 1.894976 2000-01-04 -0.746478 0.851039 1.415686 -0.929096 2000-01-05 -1.452287 1.575492 -0.197377 -0.219901 2000-01-06 1.190342 2.115021 0.148762 1.073931 2000-01-07 -0.709897 -2.022441 0.714697 0.318215 2000-01-08 0.852225 0.096696 -0.379903 0.929313 foo bar bar bar bar bar bar bar # as a multiple In [359]: store.select_as_multiple(['df1_mt', 'df2_mt'], where=['A>0', .....: selector = 'df1_mt') .....: Out[359]: A B C D E F 2000-01-07 0.66509 1.084344 -0.709897 -2.022441 0.714697 0.318215 2000-01-08 0.60746 0.790907 0.852225 0.096696 -0.379903 0.929313 'B>0'], foo bar bar 24.8.13 Delete from a Table You can delete from a table selectively by specifying a where. In deleting rows, it is important to understand the PyTables deletes rows by erasing the rows, then moving the following data. Thus deleting can potentially be a very expensive operation depending on the orientation of your data. This is especially true in higher dimensional objects (Panel and Panel4D). To get optimal performance, it’s worthwhile to have the dimension you are deleting be the first of the indexables. Data is ordered (on the disk) in terms of the indexables. Here’s a simple use case. You store panel-type data, with dates in the major_axis and ids in the minor_axis. The data is then interleaved like this: • date_1 – id_1 – id_2 – . – id_n • date_2 – id_1 – . – id_n 24.8. HDF5 (PyTables) 775 pandas: powerful Python data analysis toolkit, Release 0.16.1 It should be clear that a delete operation on the major_axis will be fairly quick, as one chunk is removed, then the following data moved. On the other hand a delete operation on the minor_axis will be very expensive. In this case it would almost certainly be faster to rewrite the table using a where that selects all but the missing data. # returns the number of rows deleted In [360]: store.remove('wp', 'major_axis>20000102' ) Out[360]: 12 In [361]: store.select('wp') Out[361]: Dimensions: 2 (items) x 2 (major_axis) x 4 (minor_axis) Items axis: Item1 to Item2 Major_axis axis: 2000-01-01 00:00:00 to 2000-01-02 00:00:00 Minor_axis axis: A to D Please note that HDF5 DOES NOT RECLAIM SPACE in the h5 files automatically. Thus, repeatedly deleting (or removing nodes) and adding again WILL TEND TO INCREASE THE FILE SIZE. To clean the file, use ptrepack (see below). 24.8.14 Compression PyTables allows the stored data to be compressed. This applies to all kinds of stores, not just tables. • Pass complevel=int for a compression level (1-9, with 0 being no compression, and the default) • Pass complib=lib where lib is any of zlib, bzip2, lzo, blosc for whichever compression library you prefer. HDFStore will use the file based compression scheme if no overriding complib or complevel options are provided. blosc offers very fast compression, and is my most used. Note that lzo and bzip2 may not be installed (by Python) by default. Compression for all objects within the file • store_compressed = HDFStore(’store_compressed.h5’, complevel=9, complib=’blosc’) Or on-the-fly compression (this only applies to tables). You can turn off file compression for a specific table by passing complevel=0 • store.append(’df’, df, complib=’zlib’, complevel=5) ptrepack PyTables offers better write performance when tables are compressed after they are written, as opposed to turning on compression at the very beginning. You can use the supplied PyTables utility ptrepack. In addition, ptrepack can change compression levels after the fact. • ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5 Furthermore ptrepack in.h5 out.h5 will repack the file to allow you to reuse previously deleted space. Alternatively, one can simply remove the file and write again, or use the copy method. 24.8.15 Notes & Caveats • Once a table is created its items (Panel) / columns (DataFrame) are fixed; only exactly the same columns can be appended 776 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 • If a row has np.nan for EVERY COLUMN (having a nan in a string, or a NaT in a datetime-like column counts as having a value), then those rows WILL BE DROPPED IMPLICITLY. This limitation may be addressed in the future. • HDFStore is not-threadsafe for writing. The underlying PyTables only supports concurrent reads (via threading or processes). If you need reading and writing at the same time, you need to serialize these operations in a single thread in a single process. You will corrupt your data otherwise. See the issue (:2397) for more information. • If you use locks to manage write access between multiple processes, you may want to use fsync() before releasing write locks. For convenience you can use store.flush(fsync=True) to do this for you. • PyTables only supports fixed-width string columns in tables. The sizes of a string based indexing column (e.g. columns or minor_axis) are determined as the maximum size of the elements in that axis or by passing the parameter • Be aware that timezones (e.g., pytz.timezone(’US/Eastern’)) are not necessarily equal across timezone versions. So if data is localized to a specific timezone in the HDFStore using one version of a timezone library and that data is updated with another version, the data will be converted to UTC since these timezones are not considered equal. Either use the same version of timezone library or use tz_convert with the updated timezone definition. Warning: PyTables will show a NaturalNameWarning if a column name cannot be used as an attribute selector. Generally identifiers that have spaces, start with numbers, or _, or have - embedded are not considered natural. These types of identifiers cannot be used in a where clause and are generally a bad idea. 24.8.16 DataTypes HDFStore will map an object dtype to the PyTables underlying dtype. This means the following types are known to work: • floating : float64, float32, float16 (using np.nan to represent invalid values) • integer : int64, int32, int8, uint64, uint32, uint8 • bool • datetime64[ns] (using NaT to represent invalid values) • object : strings (using np.nan to represent invalid values) Currently, unicode and datetime columns (represented with a dtype of object), WILL FAIL. In addition, even though a column may look like a datetime64[ns], if it contains np.nan, this WILL FAIL. You can try to convert datetimelike columns to proper datetime64[ns] columns, that possibly contain NaT to represent invalid values. (Some of these issues have been addressed and these conversion may not be necessary in future versions of pandas) In [362]: import datetime In [363]: df = DataFrame(dict(datelike=Series([datetime.datetime(2001, 1, 1), .....: datetime.datetime(2001, 1, 2), np.nan]))) .....: In [364]: df Out[364]: datelike 0 2001-01-01 1 2001-01-02 2 NaT 24.8. HDF5 (PyTables) 777 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [365]: df.dtypes Out[365]: datelike datetime64[ns] dtype: object # to convert In [366]: df['datelike'] = Series(df['datelike'].values, dtype='M8[ns]') In [367]: df Out[367]: datelike 0 2001-01-01 1 2001-01-02 2 NaT In [368]: df.dtypes Out[368]: datelike datetime64[ns] dtype: object 24.8.17 Categorical Data New in version 0.15.2. Writing data to a HDFStore that contains a category dtype was implemented in 0.15.2. Queries work the same as if it was an object array. However, the category dtyped data is stored in a more efficient manner. In [369]: dfcat = DataFrame({ 'A' : Series(list('aabbcdba')).astype('category'), .....: 'B' : np.random.randn(8) }) .....: In [370]: dfcat Out[370]: A B 0 a 0.811031 1 a -0.356817 2 b 1.047085 3 b 0.664705 4 c -0.086919 5 d 0.416905 6 b -0.764381 7 a -0.287229 In [371]: dfcat.dtypes Out[371]: A category B float64 dtype: object In [372]: cstore = pd.HDFStore('cats.h5', mode='w') In [373]: cstore.append('dfcat', dfcat, format='table', data_columns=['A']) In [374]: result = cstore.select('dfcat', where="A in ['b','c']") In [375]: result Out[375]: 778 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 2 3 4 6 A B b 1.047085 b 0.664705 c -0.086919 b -0.764381 In [376]: result.dtypes Out[376]: A category B float64 dtype: object Warning: The format of the Categorical is readable by prior versions of pandas (< 0.15.2), but will retrieve the data as an integer based column (e.g. the codes). However, the categories can be retrieved but require the user to select them manually using the explicit meta path. The data is stored like so: In [377]: cstore Out[377]: File path: cats.h5 /dfcat frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc-> /dfcat/meta/A/meta series_table (typ->appendable,nrows->4,ncols->1,indexers->[index],dc-> # to get the categories In [378]: cstore.select('dfcat/meta/A/meta') Out[378]: 0 a 1 b 2 c 3 d dtype: object 24.8.18 String Columns min_itemsize The underlying implementation of HDFStore uses a fixed column width (itemsize) for string columns. A string column itemsize is calculated as the maximum of the length of data (for that column) that is passed to the HDFStore, in the first append. Subsequent appends, may introduce a string for a column larger than the column can hold, an Exception will be raised (otherwise you could have a silent truncation of these columns, leading to loss of information). In the future we may relax this and allow a user-specified truncation to occur. Pass min_itemsize on the first table creation to a-priori specify the minimum length of a particular string column. min_itemsize can be an integer, or a dict mapping a column name to an integer. You can pass values as a key to allow all indexables or data_columns to have this min_itemsize. Starting in 0.11.0, passing a min_itemsize dict will cause all passed columns to be created as data_columns automatically. Note: If you are not passing any data_columns, then the min_itemsize will be the maximum of the length of any string passed In [379]: dfs = DataFrame(dict(A = 'foo', B = 'bar'),index=list(range(5))) 24.8. HDF5 (PyTables) 779 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [380]: dfs Out[380]: A B 0 foo bar 1 foo bar 2 foo bar 3 foo bar 4 foo bar # A and B have a size of 30 In [381]: store.append('dfs', dfs, min_itemsize = 30) In [382]: store.get_storer('dfs').table Out[382]: /dfs/table (Table(5,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": StringCol(itemsize=30, shape=(2,), dflt='', pos=1)} byteorder := 'little' chunkshape := (963,) autoindex := True colindexes := { "index": Index(6, medium, shuffle, zlib(1)).is_csi=False} # A is created as a data_column with a size of 30 # B is size is calculated In [383]: store.append('dfs2', dfs, min_itemsize = { 'A' : 30 }) In [384]: store.get_storer('dfs2').table Out[384]: /dfs2/table (Table(5,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": StringCol(itemsize=3, shape=(1,), dflt='', pos=1), "A": StringCol(itemsize=30, shape=(), dflt='', pos=2)} byteorder := 'little' chunkshape := (1598,) autoindex := True colindexes := { "A": Index(6, medium, shuffle, zlib(1)).is_csi=False, "index": Index(6, medium, shuffle, zlib(1)).is_csi=False} nan_rep String columns will serialize a np.nan (a missing value) with the nan_rep string representation. This defaults to the string value nan. You could inadvertently turn an actual nan value into a missing value. In [385]: dfss = DataFrame(dict(A = ['foo','bar','nan'])) In [386]: dfss Out[386]: A 0 foo 1 bar 2 nan In [387]: store.append('dfss', dfss) In [388]: store.select('dfss') 780 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 Out[388]: A 0 foo 1 bar 2 NaN # here you need to specify a different nan rep In [389]: store.append('dfss2', dfss, nan_rep='_nan_') In [390]: store.select('dfss2') Out[390]: A 0 foo 1 bar 2 nan 24.8.19 External Compatibility HDFStore writes table format objects in specific formats suitable for producing loss-less round trips to pandas objects. For external compatibility, HDFStore can read native PyTables format tables. It is possible to write an HDFStore object that can easily be imported into R using the rhdf5 library (Package website). Create a table format store like this: In [391]: np.random.seed(1) In [392]: df_for_r = pd.DataFrame({"first": np.random.rand(100), .....: "second": np.random.rand(100), .....: "class": np.random.randint(0, 2, (100,))}, .....: index=range(100)) .....: In [393]: Out[393]: class 0 0 1 0 2 1 3 1 4 1 df_for_r.head() first 0.417022 0.720324 0.000114 0.302333 0.146756 second 0.326645 0.527058 0.885942 0.357270 0.908535 In [394]: store_export = HDFStore('export.h5') In [395]: store_export.append('df_for_r', df_for_r, data_columns=df_dc.columns) In [396]: store_export Out[396]: File path: export.h5 /df_for_r frame_table (typ->appendable,nrows->100,ncols->3,indexers->[index]) In R this file can be read into a data.frame object using the rhdf5 library. The following example function reads the corresponding column names and data values from the values and assembles them into a data.frame: # Load values and column names for all datasets from corresponding nodes and # insert them into one data.frame object. 24.8. HDF5 (PyTables) 781 pandas: powerful Python data analysis toolkit, Release 0.16.1 library(rhdf5) loadhdf5data <- function(h5File) { listing <- h5ls(h5File) # Find all data nodes, values are stored in *_values and corresponding column # titles in *_items data_nodes <- grep("_values", listing$name) name_nodes <- grep("_items", listing$name) data_paths = paste(listing$group[data_nodes], listing$name[data_nodes], sep = "/") name_paths = paste(listing$group[name_nodes], listing$name[name_nodes], sep = "/") columns = list() for (idx in seq(data_paths)) { # NOTE: matrices returned by h5read have to be transposed to to obtain # required Fortran order! data <- data.frame(t(h5read(h5File, data_paths[idx]))) names <- t(h5read(h5File, name_paths[idx])) entry <- data.frame(data) colnames(entry) <- names columns <- append(columns, entry) } data <- data.frame(columns) return(data) } Now you can import the DataFrame into R: > data = loadhdf5data("transfer.hdf5") > head(data) first second class 1 0.4170220047 0.3266449 0 2 0.7203244934 0.5270581 0 3 0.0001143748 0.8859421 1 4 0.3023325726 0.3572698 1 5 0.1467558908 0.9085352 1 6 0.0923385948 0.6233601 1 Note: The R function lists the entire HDF5 file’s contents and assembles the data.frame object from all matching nodes, so use this only as a starting point if you have stored multiple DataFrame objects to a single HDF5 file. 24.8.20 Backwards Compatibility 0.10.1 of HDFStore can read tables created in a prior version of pandas, however query terms using the prior (undocumented) methodology are unsupported. HDFStore will issue a warning if you try to use a legacy-format file. You must read in the entire file and write it out using the new format, using the method copy to take advantage of the updates. The group attribute pandas_version contains the version information. copy takes a number of options, please see the docstring. # a legacy store In [397]: legacy_store = HDFStore(legacy_file_path,'r') In [398]: legacy_store Out[398]: 782 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 File path: /home/joris/scipy/pandas/doc/source/_static/legacy_0.10.h5 /a series (shape->[30]) /b frame (shape->[30,4]) /df1_mixed frame_table [0.10.0] (typ->appendable,nrows->30,ncols->11,indexers->[index]) /foo/bar wide (shape->[3,30,4]) /p1_mixed wide_table [0.10.0] (typ->appendable,nrows->120,ncols->9,indexers->[major_axis /p4d_mixed ndim_table [0.10.0] (typ->appendable,nrows->360,ncols->9,indexers->[items,majo # copy (and return the new handle) In [399]: new_store = legacy_store.copy('store_new.h5') In [400]: new_store Out[400]: File path: store_new.h5 /a series (shape->[30]) /b frame (shape->[30,4]) /df1_mixed frame_table (typ->appendable,nrows->30,ncols->11,indexers->[index]) /foo/bar wide (shape->[3,30,4]) /p1_mixed wide_table (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_a /p4d_mixed wide_table (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,m In [401]: new_store.close() 24.8.21 Performance • tables format come with a writing performance penalty as compared to fixed stores. The benefit is the ability to append/delete and query (potentially very large amounts of data). Write times are generally longer as compared with regular stores. Query times can be quite fast, especially on an indexed axis. • You can pass chunksize= to append, specifying the write chunksize (default is 50000). This will significantly lower your memory usage on writing. • You can pass expectedrows= to the first append, to set the TOTAL number of expected rows that PyTables will expected. This will optimize read/write performance. • Duplicate rows can be written to tables, but are filtered out in selection (with the last items being selected; thus a table is unique on major, minor pairs) • A PerformanceWarning will be raised if you are attempting to store types that will be pickled by PyTables (rather than stored as endemic types). See Here for more information and some solutions. 24.8.22 Experimental HDFStore supports Panel4D storage. In [402]: p4d = Panel4D({ 'l1' : wp }) In [403]: p4d Out[403]: Dimensions: 1 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis) Labels axis: l1 to l1 Items axis: Item1 to Item2 Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00 Minor_axis axis: A to D 24.8. HDF5 (PyTables) 783 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [404]: store.append('p4d', p4d) In [405]: store Out[405]: File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /df1_mt frame_table (typ->appendable,nrows->7,ncols->2,indexers->[index],dc->[A,B]) /df2_mt frame_table (typ->appendable,nrows->7,ncols->5,indexers->[index]) /df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,st /df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc-> /df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index]) /dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index],dc->[numbe /dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C /dfs frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index]) /dfs2 frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index],dc->[A]) /dfss frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index]) /dfss2 frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index]) /dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C /foo/bar/bah frame (shape->[8,3]) /p4d wide_table (typ->appendable,nrows->40,ncols->1,indexers->[items,major_axis, /wp wide_table (typ->appendable,nrows->8,ncols->2,indexers->[major_axis,minor_a These, by default, index the three axes items, major_axis, minor_axis. On an AppendableTable it is possible to setup with the first append a different indexing scheme, depending on how you want to store your data. Pass the axes keyword with a list of dimensions (currently must by exactly 1 less than the total dimensions of the object). This cannot be changed after table creation. In [406]: store.append('p4d2', p4d, axes=['labels', 'major_axis', 'minor_axis']) In [407]: store Out[407]: File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /df1_mt frame_table (typ->appendable,nrows->7,ncols->2,indexers->[index],dc->[A,B]) /df2_mt frame_table (typ->appendable,nrows->7,ncols->5,indexers->[index]) /df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,st /df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc-> /df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index]) /dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index],dc->[numbe /dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C /dfs frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index]) /dfs2 frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index],dc->[A]) /dfss frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index]) /dfss2 frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index]) /dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C /foo/bar/bah frame (shape->[8,3]) /p4d wide_table (typ->appendable,nrows->40,ncols->1,indexers->[items,major_axis, /p4d2 wide_table (typ->appendable,nrows->20,ncols->2,indexers->[labels,major_axis /wp wide_table (typ->appendable,nrows->8,ncols->2,indexers->[major_axis,minor_a In [408]: store.select('p4d2', [ Term('labels=l1'), Term('items=Item1'), Term('minor_axis=A_big_strin Out[408]: 784 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 Dimensions: 0 (labels) x 1 (items) x 0 (major_axis) x 0 (minor_axis) Labels axis: None Items axis: Item1 to Item1 Major_axis axis: None Minor_axis axis: None 24.9 SQL Queries The pandas.io.sql module provides a collection of query wrappers to both facilitate data retrieval and to reduce dependency on DB-specific API. Database abstraction is provided by SQLAlchemy if installed, in addition you will need a driver library for your database. New in version 0.14.0. If SQLAlchemy is not installed, a fallback is only provided for sqlite (and for mysql for backwards compatibility, but this is deprecated and will be removed in a future version). This mode requires a Python database adapter which respect the Python DB-API. See also some cookbook examples for some advanced strategies. The key functions are: read_sql_table(table_name, con[, schema, ...]) read_sql_query(sql, con[, index_col, ...]) read_sql(sql, con[, index_col, ...]) DataFrame.to_sql(name, con[, flavor, ...]) Read SQL database table into a DataFrame. Read SQL query into a DataFrame. Read SQL query or database table into a DataFrame. Write records stored in a DataFrame to a SQL database. 24.9.1 pandas.read_sql_table pandas.read_sql_table(table_name, con, schema=None, index_col=None, parse_dates=None, columns=None, chunksize=None) Read SQL database table into a DataFrame. coerce_float=True, Given a table name and an SQLAlchemy engine, returns a DataFrame. This function does not support DBAPI connections. Parameters table_name : string Name of SQL table in database con : SQLAlchemy engine Sqlite DBAPI connection mode not supported schema : string, default None Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default). index_col : string, optional Column to set as index coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. 24.9. SQL Queries 785 pandas: powerful Python data analysis toolkit, Release 0.16.1 parse_dates : list or dict • List of column names to parse as dates • Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps • Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table chunksize : int, default None If specified, return an iterator where chunksize is the number of rows to include in each chunk. Returns DataFrame See also: read_sql_query Read SQL query into a DataFrame. read_sql Notes Any datetime values with time zone information will be converted to UTC 24.9.2 pandas.read_sql_query pandas.read_sql_query(sql, con, index_col=None, coerce_float=True, parse_dates=None, chunksize=None) Read SQL query into a DataFrame. params=None, Returns a DataFrame corresponding to the result set of the query string. Optionally provide an index_col parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters sql : string SQL query to be executed con : SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string, optional Column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional 786 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={‘name’ : ‘value’} parse_dates : list or dict • List of column names to parse as dates • Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps • Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite chunksize : int, default None If specified, return an iterator where chunksize is the number of rows to include in each chunk. Returns DataFrame See also: read_sql_table Read SQL database table into a DataFrame read_sql Notes Any datetime values with time zone information parsed via the parse_dates parameter will be converted to UTC 24.9.3 pandas.read_sql pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None) Read SQL query or database table into a DataFrame. Parameters sql : string SQL query to be executed or database table name. con : SQLAlchemy engine or DBAPI2 connection (fallback mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string, optional column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional 24.9. SQL Queries 787 pandas: powerful Python data analysis toolkit, Release 0.16.1 List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={‘name’ : ‘value’} parse_dates : list or dict • List of column names to parse as dates • Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps • Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table (only used when reading a table). chunksize : int, default None If specified, return an iterator where chunksize is the number of rows to include in each chunk. Returns DataFrame See also: read_sql_table Read SQL database table into a DataFrame read_sql_query Read SQL query into a DataFrame Notes This function is a convenience wrapper around read_sql_table and read_sql_query (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query). The delegated function might have more specific notes about their functionality not listed here. 24.9.4 pandas.DataFrame.to_sql DataFrame.to_sql(name, con, flavor=’sqlite’, schema=None, if_exists=’fail’, index=True, index_label=None, chunksize=None, dtype=None) Write records stored in a DataFrame to a SQL database. Parameters name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : {‘sqlite’, ‘mysql’}, default ‘sqlite’ The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. 788 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 schema : string, default None Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’ • fail: If table exists, do nothing. • replace: If table exists, drop it, recreate it, and insert data. • append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column. index_label : string or sequence, default None Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. Note: The function read_sql() is a convenience wrapper around read_sql_table() and read_sql_query() (and for backward compatibility) and will delegate to specific function depending on the provided input (database table name or sql query). Table names do not need to be quoted if they have special characters. In the following example, we use the SQlite SQL database engine. You can use a temporary SQLite database where data are stored in “memory”. To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For more information on create_engine() and the URI formatting, see the examples below and the SQLAlchemy documentation In [409]: from sqlalchemy import create_engine # Create your connection. In [410]: engine = create_engine('sqlite:///:memory:') 24.9.5 Writing DataFrames Assuming the following data is in a DataFrame data, we can insert it into the database using to_sql(). id 26 42 63 Date 2012-10-18 2012-10-19 2012-10-20 Col_1 X Y Z Col_2 25.7 -12.4 5.73 Col_3 True False True In [411]: data.to_sql('data', engine) 24.9. SQL Queries 789 pandas: powerful Python data analysis toolkit, Release 0.16.1 With some databases, writing large DataFrames can result in errors due to packet size limitations being exceeded. This can be avoided by setting the chunksize parameter when calling to_sql. For example, the following writes data to the database in batches of 1000 rows at a time: In [412]: data.to_sql('data_chunked', engine, chunksize=1000) SQL data types to_sql() will try to map your data to an appropriate SQL data type based on the dtype of the data. When you have columns of dtype object, pandas will try to infer the data type. You can always override the default type by specifying the desired SQL type of any of the columns by using the dtype argument. This argument needs a dictionary mapping column names to SQLAlchemy types (or strings for the sqlite3 fallback mode). For example, specifying to use the sqlalchemy String type instead of the default Text type for string columns: In [413]: from sqlalchemy.types import String In [414]: data.to_sql('data_dtype', engine, dtype={'Col_1': String}) Note: Due to the limited support for timedelta’s in the different database flavors, columns with type timedelta64 will be written as integer values as nanoseconds to the database and a warning will be raised. Note: Columns of category dtype will be converted to the dense representation as you would get with np.asarray(categorical) (e.g. for string categories this gives an array of strings). Because of this, reading the database table back in does not generate a categorical. 24.9.6 Reading Tables read_sql_table() will read a database table given the table name and optionally a subset of columns to read. Note: In order to use read_sql_table(), you must have the SQLAlchemy optional dependency installed. In [415]: Out[415]: index 0 0 1 1 2 2 pd.read_sql_table('data', engine) id Date Col_1 Col_2 26 2010-10-18 X 27.50 42 2010-10-19 Y -12.50 63 2010-10-20 Z 5.73 Col_3 True False True You can also specify the name of the column as the DataFrame index, and specify a subset of columns to be read. In [416]: Out[416]: index id 26 0 42 1 63 2 pd.read_sql_table('data', engine, index_col='id') Date Col_1 2010-10-18 2010-10-19 2010-10-20 Col_2 Col_3 X 27.50 Y -12.50 Z 5.73 True False True In [417]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2']) Out[417]: Col_1 Col_2 0 X 27.50 790 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 1 2 Y -12.50 Z 5.73 And you can explicitly force columns to be parsed as dates: In [418]: Out[418]: index 0 0 1 1 2 2 pd.read_sql_table('data', engine, parse_dates=['Date']) id Date Col_1 Col_2 26 2010-10-18 X 27.50 42 2010-10-19 Y -12.50 63 2010-10-20 Z 5.73 Col_3 True False True If needed you can explicitly specify a format string, or a dict of arguments to pass to pandas.to_datetime(): pd.read_sql_table('data', engine, parse_dates={'Date': '%Y-%m-%d'}) pd.read_sql_table('data', engine, parse_dates={'Date': {'format': '%Y-%m-%d %H:%M:%S'}}) You can check if a table exists using has_table() 24.9.7 Schema support New in version 0.15.0. Reading from and writing to different schema’s is supported through the schema keyword in the read_sql_table() and to_sql() functions. Note however that this depends on the database flavor (sqlite does not have schema’s). For example: df.to_sql('table', engine, schema='other_schema') pd.read_sql_table('table', engine, schema='other_schema') 24.9.8 Querying You can query using raw SQL in the read_sql_query() function. In this case you must use the SQL variant appropriate for your database. When using SQLAlchemy, you can also pass SQLAlchemy Expression language constructs, which are database-agnostic. In [419]: Out[419]: index 0 0 1 1 2 2 pd.read_sql_query('SELECT * FROM data', engine) id 26 42 63 Date Col_1 Col_2 2010-10-18 00:00:00.000000 X 27.50 2010-10-19 00:00:00.000000 Y -12.50 2010-10-20 00:00:00.000000 Z 5.73 Col_3 1 0 1 Of course, you can specify a more “complex” query. In [420]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;", engine) Out[420]: id Col_1 Col_2 0 42 Y -12.5 The read_sql_query() function supports a chunksize argument. Specifying this will return an iterator through chunks of the query result: In [421]: df = pd.DataFrame(np.random.randn(20, 3), columns=list('abc')) In [422]: df.to_sql('data_chunks', engine, index=False) 24.9. SQL Queries 791 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [423]: for chunk in pd.read_sql_query("SELECT * FROM data_chunks", engine, chunksize=5): .....: print(chunk) .....: a b c 0 0.280665 -0.073113 1.160339 1 0.369493 1.904659 1.111057 2 0.659050 -1.627438 0.602319 3 0.420282 0.810952 1.044442 4 -0.400878 0.824006 -0.562305 a b c 0 1.954878 -1.331952 -1.760689 1 -1.650721 -0.890556 -1.119115 2 1.956079 -0.326499 -1.342676 3 1.114383 -0.586524 -1.236853 4 0.875839 0.623362 -0.434957 a b c 0 1.407540 0.129102 1.616950 1 0.502741 1.558806 0.109403 2 -1.219744 2.449369 -0.545774 3 -0.198838 -0.700399 -0.203394 4 0.242669 0.201830 0.661020 a b c 0 1.792158 -0.120465 -1.233121 1 -1.182318 -0.665755 -1.674196 2 0.825030 -0.498214 -0.310985 3 -0.001891 -1.396620 -0.861316 4 0.674712 0.618539 -0.443172 You can also run a plain query without creating a dataframe with execute(). This is useful for queries that don’t return values, such as INSERT. This is functionally equivalent to calling execute on the SQLAlchemy engine or db connection object. Again, you must use the SQL syntax variant appropriate for your database. from pandas.io import sql sql.execute('SELECT * FROM table_name', engine) sql.execute('INSERT INTO table_name VALUES(?, ?, ?)', engine, params=[('id', 1, 12.2, True)]) 24.9.9 Engine connection examples To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. from sqlalchemy import create_engine engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase') engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo') engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname') engine = create_engine('mssql+pyodbc://mydsn') # sqlite:/// # where is relative: engine = create_engine('sqlite:///foo.db') # or absolute, starting with a slash: engine = create_engine('sqlite:////absolute/path/to/foo.db') 792 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 For more information see the examples the SQLAlchemy documentation 24.9.10 Sqlite fallback The use of sqlite is supported without using SQLAlchemy. This mode requires a Python database adapter which respect the Python DB-API. You can create connections like so: import sqlite3 con = sqlite3.connect(':memory:') And then issue the following queries: data.to_sql('data', cnx) pd.read_sql_query("SELECT * FROM data", con) 24.10 Google BigQuery (Experimental) New in version 0.13.0. The pandas.io.gbq module provides a wrapper for Google’s BigQuery analytics web service to simplify retrieving results from BigQuery tables using SQL-like queries. Result sets are parsed into a pandas DataFrame with a shape and data types derived from the source table. Additionally, DataFrames can be appended to existing BigQuery tables if the destination table is the same shape as the DataFrame. For specifics on the service itself, see here As an example, suppose you want to load all data from an existing BigQuery table : test_dataset.test_table into a DataFrame using the read_gbq() function. # Insert your BigQuery Project ID Here # Can be found in the Google web console projectid = "xxxxxxxx" data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table', project_id = projectid) You will then be authenticated to the specified BigQuery account via Google’s Oauth2 mechanism. In general, this is as simple as following the prompts in a browser window which will be opened for you. Should the browser not be available, or fail to launch, a code will be provided to complete the process manually. Additional information on the authentication mechanism can be found here You can define which column from BigQuery to use as an index in the destination DataFrame as well as a preferred column order as follows: data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table', index_col='index_column_name', col_order=['col1', 'col2', 'col3'], project_id = projectid) Finally, you can append data to a BigQuery table from a pandas DataFrame using the to_gbq() function. This function uses the Google streaming API which requires that your destination table exists in BigQuery. Given the BigQuery table already exists, your DataFrame should match the destination table in column order, structure, and data types. DataFrame indexes are not supported. By default, rows are streamed to BigQuery in chunks of 10,000 rows, but you can pass other chuck values via the chunksize argument. You can also see the progess of your post via the verbose flag which defaults to True. The http response code of Google BigQuery can be successful (200) even if the append failed. For this reason, if there is a failure to append to the table, the complete error response 24.10. Google BigQuery (Experimental) 793 pandas: powerful Python data analysis toolkit, Release 0.16.1 from BigQuery is returned which can be quite long given it provides a status for each row. You may want to start with smaller chunks to test that the size and types of your dataframe match your destination table to make debugging simpler. df = pandas.DataFrame({'string_col_name' : ['hello'], 'integer_col_name' : [1], 'boolean_col_name' : [True]}) df.to_gbq('my_dataset.my_table', project_id = projectid) The BigQuery SQL query language has some oddities, see here While BigQuery uses SQL-like syntax, it has some important differences from traditional databases both in functionality, API limitations (size and quantity of queries or uploads), and how Google charges for use of the service. You should refer to Google documentation often as the service seems to be changing and evolving. BiqQuery is best for analyzing large sets of data quickly, but it is not a direct replacement for a transactional database. You can access the management console to determine project id’s by: As of 0.15.2, the gbq module has a function generate_bq_schema which will produce the dictionary representation of the schema. df = pandas.DataFrame({'A': [1.0]}) gbq.generate_bq_schema(df, default_type='STRING') Warning: To use this module, you will need a valid for details on the service. BigQuery account. See 24.11 Stata Format New in version 0.12.0. 24.11.1 Writing to Stata format The method to_stata() will write a DataFrame into a .dta file. The format version of this file is always 115 (Stata 12). In [424]: df = DataFrame(randn(10, 2), columns=list('AB')) In [425]: df.to_stata('stata.dta') Stata data files have limited data type support; only strings with 244 or fewer characters, int8, int16, int32, float32 and float64 can be stored in .dta files. Additionally, Stata reserves certain values to represent missing data. Exporting a non-missing value that is outside of the permitted range in Stata for a particular data type will retype the variable to the next larger size. For example, int8 values are restricted to lie between -127 and 100 in Stata, and so variables with values above 100 will trigger a conversion to int16. nan values in floating points data types are stored as the basic missing data type (. in Stata). Note: It is not possible to export missing data values for integer data types. The Stata writer gracefully handles other data types including int64, bool, uint8, uint16, uint32 by casting to the smallest supported type that can represent the data. For example, data with a type of uint8 will be cast to int8 if all values are less than 100 (the upper bound for non-missing int8 data in Stata), or, if values are outside of this range, the variable is cast to int16. 794 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 Warning: Conversion from int64 to float64 may result in a loss of precision if int64 values are larger than 2**53. Warning: StataWriter and to_stata() only support fixed width strings containing up to 244 characters, a limitation imposed by the version 115 dta file format. Attempting to write Stata dta files with strings longer than 244 characters raises a ValueError. 24.11.2 Reading from Stata format The top-level function read_stata will read a dta file and return either a DataFrame or a StataReader that can be used to read the file incrementally. In [426]: pd.read_stata('stata.dta') Out[426]: index A B 0 0 1.810535 -1.305727 1 1 -0.344987 -0.230840 2 2 -2.793085 1.937529 3 3 0.366332 -1.044589 4 4 2.051173 0.585662 5 5 0.429526 -0.606998 6 6 0.106223 -1.525680 7 7 0.795026 -0.374438 8 8 0.134048 1.202055 9 9 0.284748 0.262467 New in version 0.16.0. Specifying a chunksize yields a StataReader instance that can be used to read chunksize lines from the file at a time. The StataReader object can be used as an iterator. In [427]: reader = pd.read_stata('stata.dta', chunksize=3) In [428]: for df in reader: .....: print(df.shape) .....: (3, 3) (3, 3) (3, 3) (1, 3) For more fine-grained control, use iterator=True and specify chunksize with each call to read(). In [429]: reader = pd.read_stata('stata.dta', iterator=True) In [430]: chunk1 = reader.read(5) In [431]: chunk2 = reader.read(5) Currently the index is retrieved as a column. The parameter convert_categoricals indicates whether value labels should be read and used to create a Categorical variable from them. Value labels can also be retrieved by the function value_labels, which requires read() to be called before use. The parameter convert_missing indicates whether missing value representations in Stata should be preserved. If False (the default), missing values are represented as np.nan. If True, missing values are represented using 24.11. Stata Format 795 pandas: powerful Python data analysis toolkit, Release 0.16.1 StataMissingValue objects, and columns containing missing values will have object data type. read_stata() and StataReader supports .dta formats 104, 105, 108, 113-115 (Stata 10-12) and 117 (Stata 13+). Note: Setting preserve_dtypes=False will upcast to the standard pandas data types: int64 for all integer types and float64 for floating point data. By default, the Stata data types are preserved when importing. 24.11.3 Categorical Data New in version 0.15.2. Categorical data can be exported to Stata data files as value labeled data. The exported data consists of the underlying category codes as integer data values and the categories as value labels. Stata does not have an explicit equivalent to a Categorical and information about whether the variable is ordered is lost when exporting. Warning: Stata only supports string value labels, and so str is called on the categories when exporting data. Exporting Categorical variables with non-string categories produces a warning, and can result a loss of information if the str representations of the categories are not unique. Labeled data can similarly be imported from Stata data files as Categorical variables using the keyword argument convert_categoricals (True by default). The keyword argument order_categoricals (True by default) determines whether imported Categorical variables are ordered. Note: When importing categorical data, the values of the variables in the Stata data file are not preserved since Categorical variables always use integer data types between -1 and n-1 where n is the number of categories. If the original values in the Stata data file are required, these can be imported by setting convert_categoricals=False, which will import original data (but not the variable labels). The original values can be matched to the imported categorical data since there is a simple mapping between the original Stata data values and the category codes of imported Categorical variables: missing values are assigned code -1, and the smallest original value is assigned 0, the second smallest is assigned 1 and so on until the largest original value is assigned the code n-1. Note: Stata supports partially labeled series. These series have value labels for some but not all data values. Importing a partially labeled series will produce a Categorial with string categories for the values that are labeled and numeric categories for values with no label. 24.12 Other file formats pandas itself only supports IO with a limited set of file formats that map cleanly to its tabular data model. For reading and writing other file formats into and from pandas, we recommend these packages from the broader community. 24.12.1 netCDF xray provides data structures inspired by the pandas DataFrame for working with multi-dimensional datasets, with a focus on the netCDF file format and easy conversion to and from pandas. 796 Chapter 24. IO Tools (Text, CSV, HDF5, ...) pandas: powerful Python data analysis toolkit, Release 0.16.1 24.13 Performance Considerations This is an informal comparison of various IO methods, using pandas 0.13.1. In [3]: df = DataFrame(randn(1000000,2),columns=list('AB')) Int64Index: 1000000 entries, 0 to 999999 Data columns (total 2 columns): A 1000000 non-null values B 1000000 non-null values dtypes: float64(2) Writing In [14]: %timeit test_sql_write(df) 1 loops, best of 3: 6.24 s per loop In [15]: %timeit test_hdf_fixed_write(df) 1 loops, best of 3: 237 ms per loop In [26]: %timeit test_hdf_fixed_write_compress(df) 1 loops, best of 3: 245 ms per loop In [16]: %timeit test_hdf_table_write(df) 1 loops, best of 3: 901 ms per loop In [27]: %timeit test_hdf_table_write_compress(df) 1 loops, best of 3: 952 ms per loop In [17]: %timeit test_csv_write(df) 1 loops, best of 3: 3.44 s per loop Reading In [18]: %timeit test_sql_read() 1 loops, best of 3: 766 ms per loop In [19]: %timeit test_hdf_fixed_read() 10 loops, best of 3: 19.1 ms per loop In [28]: %timeit test_hdf_fixed_read_compress() 10 loops, best of 3: 36.3 ms per loop In [20]: %timeit test_hdf_table_read() 10 loops, best of 3: 39 ms per loop In [29]: %timeit test_hdf_table_read_compress() 10 loops, best of 3: 60.6 ms per loop In [22]: %timeit test_csv_read() 1 loops, best of 3: 620 ms per loop Space on disk (in bytes) 25843712 24007368 15580682 24458444 Apr Apr Apr Apr 8 8 8 8 14:11 14:11 14:11 14:11 test.sql test_fixed.hdf test_fixed_compress.hdf test_table.hdf 24.13. Performance Considerations 797 pandas: powerful Python data analysis toolkit, Release 0.16.1 16797283 Apr 46152810 Apr 8 14:11 test_table_compress.hdf 8 14:11 test.csv And here’s the code import sqlite3 import os from pandas.io import sql df = DataFrame(randn(1000000,2),columns=list('AB')) def test_sql_write(df): if os.path.exists('test.sql'): os.remove('test.sql') sql_db = sqlite3.connect('test.sql') df.to_sql(name='test_table', con=sql_db) sql_db.close() def test_sql_read(): sql_db = sqlite3.connect('test.sql') pd.read_sql_query("select * from test_table", sql_db) sql_db.close() def test_hdf_fixed_write(df): df.to_hdf('test_fixed.hdf','test',mode='w') def test_hdf_fixed_read(): pd.read_hdf('test_fixed.hdf','test') def test_hdf_fixed_write_compress(df): df.to_hdf('test_fixed_compress.hdf','test',mode='w',complib='blosc') def test_hdf_fixed_read_compress(): pd.read_hdf('test_fixed_compress.hdf','test') def test_hdf_table_write(df): df.to_hdf('test_table.hdf','test',mode='w',format='table') def test_hdf_table_read(): pd.read_hdf('test_table.hdf','test') def test_hdf_table_write_compress(df): df.to_hdf('test_table_compress.hdf','test',mode='w',complib='blosc',format='table') def test_hdf_table_read_compress(): pd.read_hdf('test_table_compress.hdf','test') def test_csv_write(df): df.to_csv('test.csv',mode='w') def test_csv_read(): pd.read_csv('test.csv',index_col=0) 798 Chapter 24. IO Tools (Text, CSV, HDF5, ...) CHAPTER TWENTYFIVE REMOTE DATA ACCESS Warning: In pandas 0.17.0, the sub-package pandas.io.data will be removed in favor of a separately installable pandas-datareader package. This will allow the data modules to be independently updated to your pandas installation. The API for pandas-datareader v0.1.1 is the same as in pandas v0.16.1. (GH8961) You should replace the imports of the following: from pandas.io import data, wb With: from pandas_datareader import data, wb Functions from pandas.io.data and pandas.io.ga extract data from various Internet sources into a DataFrame. Currently the following sources are supported: • Yahoo! Finance • Google Finance • St.Louis FED (FRED) • Kenneth French’s data library • World Bank • Google Analytics It should be noted, that various sources support different kinds of data, so not all sources implement the same methods and the data elements returned might also differ. 25.1 Yahoo! Finance In [1]: import pandas.io.data as web In [2]: import datetime In [3]: start = datetime.datetime(2010, 1, 1) In [4]: end = datetime.datetime(2013, 1, 27) In [5]: f = web.DataReader("F", 'yahoo', start, end) In [6]: f.ix['2010-01-04'] Out[6]: Open 10.17000 799 pandas: powerful Python data analysis toolkit, Release 0.16.1 High 10.28000 Low 10.05000 Close 10.28000 Volume 60855800.00000 Adj Close 9.33868 Name: 2010-01-04 00:00:00, dtype: float64 25.2 Yahoo! Finance Options *Experimental* The Options class allows the download of options data from Yahoo! Finance. The get_all_data method downloads and caches option data for all expiry months and provides a formatted DataFrame with a hierarchical index, so it is easy to get to the specific option you want. In [7]: from pandas.io.data import Options In [8]: aapl = Options('aapl', 'yahoo') In [9]: data = aapl.get_all_data() In [10]: data.iloc[0:5, 0:5] Out[10]: Strike Expiry Type Symbol 34.29 2016-01-15 call AAPL160115C00034290 put AAPL160115P00034290 35.71 2016-01-15 call AAPL160115C00035710 put AAPL160115P00035710 37.14 2016-01-15 call AAPL160115C00037140 Last Bid Ask 90.95 0.03 88.30 0.04 90.10 0 0 0 0 0 0 0 0 0 0 Chg PctChg 0 0 0 0 0 0.00% 0.00% 0.00% 0.00% 0.00% # Show the $100 strike puts at all expiry dates: In [11]: data.loc[(100, slice(None), 'put'),:].iloc[0:5, 0:5] Out[11]: Last Bid Ask Chg PctChg Strike Expiry Type Symbol 100 2015-05-15 put AAPL150515P00100000 0.03 0 0 0 0.00% 2015-05-22 put AAPL150522P00100000 0.04 0 0 0 0.00% 2015-05-29 put AAPL150529P00100000 0.05 0 0 0 0.00% 2015-06-05 put AAPL150605P00100000 0.06 0 0 0 0.00% 2015-06-12 put AAPL150612P00100000 0.11 0 0 0 0.00% # Show the volume traded of $100 strike puts at all expiry dates: In [12]: data.loc[(100, slice(None), 'put'),'Vol'].head() Out[12]: Strike Expiry Type Symbol 100 2015-05-15 put AAPL150515P00100000 1311 2015-05-22 put AAPL150522P00100000 49 2015-05-29 put AAPL150529P00100000 29 2015-06-05 put AAPL150605P00100000 1000 2015-06-12 put AAPL150612P00100000 2 Name: Vol, dtype: int64 If you don’t want to download all the data, more specific requests can be made. 800 Chapter 25. Remote Data Access pandas: powerful Python data analysis toolkit, Release 0.16.1 In [13]: import datetime In [14]: expiry = datetime.date(2016, 1, 1) In [15]: data = aapl.get_call_data(expiry=expiry) In [16]: data.iloc[0:5:, 0:5] Out[16]: Strike 34.29 35.71 37.14 38.57 40.00 Expiry 2016-01-15 2016-01-15 2016-01-15 2016-01-15 2016-01-15 Type call call call call call Symbol AAPL160115C00034290 AAPL160115C00035710 AAPL160115C00037140 AAPL160115C00038570 AAPL160115C00040000 Last Bid Ask 90.95 88.30 90.10 86.45 87.52 0 0 0 0 0 0 0 0 0 0 Chg PctChg 0 0 0 0 0 0.00% 0.00% 0.00% 0.00% 0.00% Note that if you call get_all_data first, this second call will happen much faster, as the data is cached. If a given expiry date is not available, data for the next available expiry will be returned (January 15, 2015 in the above example). Available expiry dates can be accessed from the expiry_dates property. In [17]: aapl.expiry_dates Out[17]: [datetime.date(2015, 5, 15), datetime.date(2015, 5, 22), datetime.date(2015, 5, 29), datetime.date(2015, 6, 5), datetime.date(2015, 6, 12), datetime.date(2015, 6, 19), datetime.date(2015, 6, 26), datetime.date(2015, 7, 17), datetime.date(2015, 8, 21), datetime.date(2015, 10, 16), datetime.date(2016, 1, 15), datetime.date(2017, 1, 20)] In [18]: data = aapl.get_call_data(expiry=aapl.expiry_dates[0]) In [19]: data.iloc[0:5:, 0:5] Out[19]: Strike 70 75 80 85 90 Expiry 2015-05-15 2015-05-15 2015-05-15 2015-05-15 2015-05-15 Type call call call call call Symbol AAPL150515C00070000 AAPL150515C00075000 AAPL150515C00080000 AAPL150515C00085000 AAPL150515C00090000 Last Bid Ask 53.88 52.42 45.60 39.80 37.45 0 0 0 0 0 0 0 0 0 0 Chg PctChg 0 0 0 0 0 0.00% 0.00% 0.00% 0.00% 0.00% A list-like object containing dates can also be passed to the expiry parameter, returning options data for all expiry dates in the list. In [20]: data = aapl.get_near_stock_price(expiry=aapl.expiry_dates[0:3]) In [21]: data.iloc[0:5:, 0:5] Out[21]: Strike Expiry Type Symbol 127 2015-05-22 call AAPL150522C00127000 25.2. Yahoo! Finance Options Last Bid Ask 2.45 0 0 Chg PctChg 0 0.00% 801 pandas: powerful Python data analysis toolkit, Release 0.16.1 128 2015-05-29 2015-05-15 2015-05-22 2015-05-29 call call call call AAPL150529C00127000 AAPL150515C00128000 AAPL150522C00128000 AAPL150529C00128000 2.93 1.21 1.90 2.38 0 0 0 0 0 0 0 0 0 0 0 0 0.00% 0.00% 0.00% 0.00% The month and year parameters can be used to get all options data for a given month. 25.3 Google Finance In [22]: import pandas.io.data as web In [23]: import datetime In [24]: start = datetime.datetime(2010, 1, 1) In [25]: end = datetime.datetime(2013, 1, 27) In [26]: f = web.DataReader("F", 'google', start, end) In [27]: f.ix['2010-01-04'] Out[27]: Open 10.17 High 10.28 Low 10.05 Close 10.28 Volume 60855796.00 Name: 2010-01-04 00:00:00, dtype: float64 25.4 FRED In [28]: import pandas.io.data as web In [29]: import datetime In [30]: start = datetime.datetime(2010, 1, 1) In [31]: end = datetime.datetime(2013, 1, 27) In [32]: gdp=web.DataReader("GDP", "fred", start, end) In [33]: gdp.ix['2013-01-01'] Out[33]: GDP 16502.4 Name: 2013-01-01 00:00:00, dtype: float64 # Multiple series: In [34]: inflation = web.DataReader(["CPIAUCSL", "CPILFESL"], "fred", start, end) In [35]: inflation.head() Out[35]: CPIAUCSL CPILFESL DATE 2010-01-01 217.488 220.633 2010-02-01 217.281 220.731 802 Chapter 25. Remote Data Access pandas: powerful Python data analysis toolkit, Release 0.16.1 2010-03-01 2010-04-01 2010-05-01 217.353 217.403 217.290 220.783 220.822 220.962 25.5 Fama/French Dataset names are listed at Fama/French Data Library. In [36]: import pandas.io.data as web In [37]: ip = web.DataReader("5_Industry_Portfolios", "famafrench") In [38]: ip[4].ix[192607] Out[38]: 1 Cnsmr 5.43 2 Manuf 2.73 3 HiTec 1.83 4 Hlth 1.77 5 Other 2.16 Name: 192607, dtype: float64 25.6 World Bank pandas users can easily access thousands of panel data series from the World Bank’s World Development Indicators by using the wb I/O functions. 25.6.1 Indicators Either from exploring the World Bank site, or using the search function included, every world bank indicator is accessible. For example, if you wanted to compare the Gross Domestic Products per capita in constant dollars in North America, you would use the search function: In [1]: from pandas.io import wb In [2]: wb.search('gdp.*capita.*const').iloc[:,:2] Out[2]: id name 3242 GDPPCKD GDP per Capita, constant US$, millions 5143 NY.GDP.PCAP.KD GDP per capita (constant 2005 US$) 5145 NY.GDP.PCAP.KN GDP per capita (constant LCU) 5147 NY.GDP.PCAP.PP.KD GDP per capita, PPP (constant 2005 internation... Then you would use the download function to acquire the data from the World Bank’s servers: In [3]: dat = wb.download(indicator='NY.GDP.PCAP.KD', country=['US', 'CA', 'MX'], start=2005, end=200 In [4]: print(dat) NY.GDP.PCAP.KD country Canada year 2008 2007 25.5. Fama/French 36005.5004978584 36182.9138439757 803 pandas: powerful Python data analysis toolkit, Release 0.16.1 2006 2005 Mexico 2008 2007 2006 2005 United States 2008 2007 2006 2005 35785.9698172849 35087.8925933298 8113.10219480083 8119.21298908649 7961.96818458178 7666.69796097264 43069.5819857208 43635.5852068142 43228.111147107 42516.3934699993 The resulting dataset is a properly formatted DataFrame with a hierarchical index, so it is easy to apply .groupby transformations to it: In [6]: dat['NY.GDP.PCAP.KD'].groupby(level=0).mean() Out[6]: country Canada 35765.569188 Mexico 7965.245332 United States 43112.417952 dtype: float64 Now imagine you want to compare GDP to the share of people with cellphone contracts around the world. In [7]: wb.search('cell.*%').iloc[:,:2] Out[7]: id name 3990 IT.CEL.SETS.FE.ZS Mobile cellular telephone users, female (% of ... 3991 IT.CEL.SETS.MA.ZS Mobile cellular telephone users, male (% of po... 4027 IT.MOB.COV.ZS Population coverage of mobile cellular telepho... Notice that this second search was much faster than the first one because pandas now has a cached list of available data series. In In In In [13]: [14]: [15]: [16]: ind = ['NY.GDP.PCAP.KD', 'IT.MOB.COV.ZS'] dat = wb.download(indicator=ind, country='all', start=2011, end=2011).dropna() dat.columns = ['gdp', 'cellphone'] print(dat.tail()) gdp cellphone country year Swaziland 2011 2413.952853 94.9 Tunisia 2011 3687.340170 100.0 Uganda 2011 405.332501 100.0 Zambia 2011 767.911290 62.0 Zimbabwe 2011 419.236086 72.4 Finally, we use the statsmodels package to assess the relationship between our two variables using ordinary least squares regression. Unsurprisingly, populations in rich countries tend to use cellphones at a higher rate: In In In In [17]: [18]: [19]: [20]: import numpy as np import statsmodels.formula.api as smf mod = smf.ols("cellphone ~ np.log(gdp)", dat).fit() print(mod.summary()) OLS Regression Results ============================================================================== Dep. Variable: cellphone R-squared: 0.297 Model: OLS Adj. R-squared: 0.274 Method: Least Squares F-statistic: 13.08 Date: Thu, 25 Jul 2013 Prob (F-statistic): 0.00105 804 Chapter 25. Remote Data Access pandas: powerful Python data analysis toolkit, Release 0.16.1 Time: 15:24:42 Log-Likelihood: -139.16 No. Observations: 33 AIC: 282.3 Df Residuals: 31 BIC: 285.3 Df Model: 1 =============================================================================== coef std err t P>|t| [95.0% Conf. Int.] ------------------------------------------------------------------------------Intercept 16.5110 19.071 0.866 0.393 -22.384 55.406 np.log(gdp) 9.9333 2.747 3.616 0.001 4.331 15.535 ============================================================================== Omnibus: 36.054 Durbin-Watson: 2.071 Prob(Omnibus): 0.000 Jarque-Bera (JB): 119.133 Skew: -2.314 Prob(JB): 1.35e-26 Kurtosis: 11.077 Cond. No. 45.8 ============================================================================== 25.6.2 Country Codes New in version 0.15.1. The country argument accepts a string or list of mixed two or three character ISO country codes, as well as dynamic World Bank exceptions to the ISO standards. For a list of the the hard-coded pandas.io.wb.country_codes. country codes (used solely for error handling logic) see 25.6.3 Problematic Country Codes & Indicators Note: The World Bank’s country list and indicators are dynamic. As of 0.15.1, wb.download() is more flexible. To achieve this, the warning and exception logic changed. The world bank converts some country codes in their response, which makes error checking by pandas difficult. Retired indicators still persist in the search. Given the new flexibility of 0.15.1, improved error handling by the user may be necessary for fringe cases. To help identify issues: There are at least 4 kinds of country codes: 1. Standard (2/3 digit ISO) - returns data, will warn and error properly. 2. Non-standard (WB Exceptions) - returns data, but will falsely warn. 3. Blank - silently missing from the response. 4. Bad - causes the entire response from WB to fail, always exception inducing. There are at least 3 kinds of indicators: 1. Current - Returns data. 2. Retired - Appears in search results, yet won’t return data. 3. Bad - Will not return data. Use the errors argument to control warnings and exceptions. Setting errors to ignore or warn, won’t stop failed responses. (ie, 100% bad indicators, or a single “bad” (#4 above) country code). See docstrings for more info. 25.6. World Bank 805 pandas: powerful Python data analysis toolkit, Release 0.16.1 25.7 Google Analytics The ga module provides a wrapper for Google Analytics API to simplify retrieving traffic data. Result sets are parsed into a pandas DataFrame with a shape and data types derived from the source table. 25.7.1 Configuring Access to Google Analytics The first thing you need to do is to setup accesses to Google Analytics API. Follow the steps below: 1. In the Google Developers Console (a) enable the Analytics API (b) create a new project (c) create a new Client ID for an “Installed Application” (in the “APIs & auth / Credentials section” of the newly created project) (d) download it (JSON file) 2. On your machine (a) rename it to client_secrets.json (b) move it to the pandas/io module directory The first time you use the read_ga() funtion, a browser window will open to ask you to authentify to the Google API. Do proceed. 25.7.2 Using the Google Analytics API The following will fetch users and pageviews (metrics) data per day of the week, for the first semester of 2014, from a particular property. import pandas.io.ga as ga ga.read_ga( account_id = "2360420", profile_id = "19462946", property_id = "UA-2360420-5", metrics = ['users', 'pageviews'], dimensions = ['dayOfWeek'], start_date = "2014-01-01", end_date = "2014-08-01", index_col = 0, filters = "pagePath=~aboutus;ga:country==France", ) The only mandatory arguments are metrics, dimensions and start_date. We strongly recommend that you always specify the account_id, profile_id and property_id to avoid accessing the wrong data bucket in Google Analytics. The index_col argument indicates which dimension(s) has to be taken as index. The filters argument indicates the filtering to apply to the query. In the above example, the page URL has to contain aboutus AND the visitors country has to be France. Detailed information in the following: • pandas & google analytics, by yhat 806 Chapter 25. Remote Data Access pandas: powerful Python data analysis toolkit, Release 0.16.1 • Google Analytics integration in pandas, by Chang She • Google Analytics Dimensions and Metrics Reference 25.7. Google Analytics 807 pandas: powerful Python data analysis toolkit, Release 0.16.1 808 Chapter 25. Remote Data Access CHAPTER TWENTYSIX ENHANCING PERFORMANCE 26.1 Cython (Writing C extensions for pandas) For many use cases writing pandas in pure python and numpy is sufficient. In some computationally heavy applications however, it can be possible to achieve sizeable speed-ups by offloading work to cython. This tutorial assumes you have refactored as much as possible in python, for example trying to remove for loops and making use of numpy vectorization, it’s always worth optimising in python first. This tutorial walks through a “typical” process of cythonizing a slow computation. We use an example from the cython documentation but in the context of pandas. Our final cythonized solution is around 100 times faster than the pure python. 26.1.1 Pure python We have a DataFrame to which we want to apply a function row-wise. In [1]: df = DataFrame({'a': randn(1000), 'b': randn(1000),'N': randint(100, 1000, (1000)), 'x': 'x'} In [2]: df Out[2]: N a 0 585 0.469112 1 841 -0.282863 2 251 -1.509059 3 972 -1.135632 4 181 1.212112 5 458 -0.173215 6 159 0.119209 .. ... ... 993 190 0.131892 994 931 0.342097 995 374 -1.512743 996 246 0.933753 997 157 -0.308013 998 977 -0.079915 999 770 -1.010589 b x -0.218470 x -0.061645 x -0.723780 x 0.551225 x -0.497767 x 0.837519 x 1.103245 x ... .. 0.290162 x 0.215341 x 0.874737 x 1.120790 x 0.198768 x 1.757555 x -1.115680 x [1000 rows x 4 columns] Here’s the function in pure python: In [3]: def f(x): ...: return x * (x - 1) 809 pandas: powerful Python data analysis toolkit, Release 0.16.1 ...: In [4]: def integrate_f(a, b, N): ...: s = 0 ...: dx = (b - a) / N ...: for i in range(N): ...: s += f(a + i * dx) ...: return s * dx ...: We achieve our result by using apply (row-wise): In [5]: %timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1) 1 loops, best of 3: 291 ms per loop But clearly this isn’t fast enough for us. Let’s take a look and see where the time is spent during this operation (limited to the most time consuming four calls) using the prun ipython magic function: In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1) 610748 function calls (608735 primitive calls) in 0.564 seconds Ordered by: internal time List reduced from 101 to 4 due to restriction <4> ncalls 1000 552423 3000 3000 tottime 0.312 0.179 0.007 0.007 percall 0.000 0.000 0.000 0.000 cumtime 0.491 0.179 0.049 0.016 percall 0.000 0.000 0.000 0.000 filename:lineno(function) :1(integrate_f) :1(f) series.py:517(__getitem__) internals.py:3481(get_values) By far the majority of time is spend inside either integrate_f or f, hence we’ll concentrate our efforts cythonizing these two functions. Note: In python 2 replacing the range with its generator counterpart (xrange) would mean the range line would vanish. In python 3 range is already a generator. 26.1.2 Plain cython First we’re going to need to import the cython magic function to ipython: In [7]: %load_ext cythonmagic Now, let’s simply copy our functions over to cython as is (the suffix is here to distinguish between function versions): In [8]: %%cython ...: def f_plain(x): ...: return x * (x - 1) ...: def integrate_f_plain(a, b, N): ...: s = 0 ...: dx = (b - a) / N ...: for i in range(N): ...: s += f_plain(a + i * dx) ...: return s * dx ...: Note: If you’re having trouble pasting the above into your ipython, you may need to be using bleeding edge ipython for paste to play well with cell magics. 810 Chapter 26. Enhancing Performance pandas: powerful Python data analysis toolkit, Release 0.16.1 In [9]: %timeit df.apply(lambda x: integrate_f_plain(x['a'], x['b'], x['N']), axis=1) 10 loops, best of 3: 184 ms per loop Already this has shaved a third off, not too bad for a simple copy and paste. 26.1.3 Adding type We get another huge improvement simply by providing type information: In [10]: %%cython ....: cdef double f_typed(double x) except? -2: ....: return x * (x - 1) ....: cpdef double integrate_f_typed(double a, double b, int N): ....: cdef int i ....: cdef double s, dx ....: s = 0 ....: dx = (b - a) / N ....: for i in range(N): ....: s += f_typed(a + i * dx) ....: return s * dx ....: In [11]: %timeit df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']), axis=1) 10 loops, best of 3: 36.9 ms per loop Now, we’re talking! It’s now over ten times faster than the original python implementation, and we haven’t really modified the code. Let’s have another look at what’s eating up time: In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']), axis=1) 58325 function calls (56312 primitive calls) in 0.079 seconds Ordered by: internal time List reduced from 100 to 4 due to restriction <4> ncalls 3000 3000 3000 6000 tottime 0.008 0.007 0.007 0.007 percall 0.000 0.000 0.000 0.000 cumtime 0.052 0.017 0.039 0.026 percall 0.000 0.000 0.000 0.000 filename:lineno(function) series.py:517(__getitem__) internals.py:3481(get_values) index.py:1588(get_value) {pandas.lib.values_from_object} 26.1.4 Using ndarray It’s calling series... a lot! It’s creating a Series from each row, and get-ting from both the index and the series (three times for each row). Function calls are expensive in python, so maybe we could minimise these by cythonizing the apply part. Note: We are now passing ndarrays into the cython function, fortunately cython plays very nicely with numpy. In [13]: ....: ....: ....: ....: ....: %%cython cimport numpy as np import numpy as np cdef double f_typed(double x) except? -2: return x * (x - 1) cpdef double integrate_f_typed(double a, double b, int N): 26.1. Cython (Writing C extensions for pandas) 811 pandas: powerful Python data analysis toolkit, Release 0.16.1 ....: cdef int i ....: cdef double s, dx ....: s = 0 ....: dx = (b - a) / N ....: for i in range(N): ....: s += f_typed(a + i * dx) ....: return s * dx ....: cpdef np.ndarray[double] apply_integrate_f(np.ndarray col_a, np.ndarray col_b, np.ndarray co ....: assert (col_a.dtype == np.float and col_b.dtype == np.float and col_N.dtype == np.int) ....: cdef Py_ssize_t i, n = len(col_N) ....: assert (len(col_a) == len(col_b) == n) ....: cdef np.ndarray[double] res = np.empty(n) ....: for i in range(len(col_a)): ....: res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i]) ....: return res ....: The implementation is simple, it creates an array of zeros and loops over the rows, applying our integrate_f_typed, and putting this in the zeros array. Warning: In 0.13.0 since Series has internaly been refactored to no longer sub-class ndarray but instead subclass NDFrame, you can not pass a Series directly as a ndarray typed parameter to a cython function. Instead pass the actual ndarray using the .values attribute of the Series. Prior to 0.13.0 apply_integrate_f(df['a'], df['b'], df['N']) Use .values to get the underlying ndarray apply_integrate_f(df['a'].values, df['b'].values, df['N'].values) Note: Loops like this would be extremely slow in python, but in Cython looping over numpy arrays is fast. In [14]: %timeit apply_integrate_f(df['a'].values, df['b'].values, df['N'].values) 1000 loops, best of 3: 1.93 ms per loop We’ve gotten another big improvement. Let’s check again where the time is spent: In [15]: %prun -l 4 apply_integrate_f(df['a'].values, df['b'].values, df['N'].values) 39 function calls in 0.002 seconds Ordered by: internal time List reduced from 15 to 4 due to restriction <4> ncalls 1 3 1 3 tottime 0.002 0.000 0.000 0.000 percall 0.002 0.000 0.000 0.000 cumtime 0.002 0.000 0.002 0.000 percall 0.002 0.000 0.002 0.000 filename:lineno(function) {_cython_magic_23eb111f3aa77c1d91c8922c61af3ed1.apply_i frame.py:1768(__getitem__) :1() generic.py:1079(_get_item_cache) As one might expect, the majority of the time is now spent in apply_integrate_f, so if we wanted to make anymore efficiencies we must continue to concentrate our efforts here. 812 Chapter 26. Enhancing Performance pandas: powerful Python data analysis toolkit, Release 0.16.1 26.1.5 More advanced techniques There is still hope for improvement. Here’s an example of using some more advanced cython techniques: In [16]: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: ....: %%cython cimport cython cimport numpy as np import numpy as np cdef double f_typed(double x) except? -2: return x * (x - 1) cpdef double integrate_f_typed(double a, double b, int N): cdef int i cdef double s, dx s = 0 dx = (b - a) / N for i in range(N): s += f_typed(a + i * dx) return s * dx @cython.boundscheck(False) @cython.wraparound(False) cpdef np.ndarray[double] apply_integrate_f_wrap(np.ndarray[double] col_a, np.ndarray[double] cdef Py_ssize_t i, n = len(col_N) assert len(col_a) == len(col_b) == n cdef np.ndarray[double] res = np.empty(n) for i in range(n): res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i]) return res In [17]: %timeit apply_integrate_f_wrap(df['a'].values, df['b'].values, df['N'].values) 1000 loops, best of 3: 1.64 ms per loop Even faster, with the caveat that a bug in our cython code (an off-by-one error, for example) might cause a segfault because memory access isn’t checked. 26.1.6 Further topics • Loading C modules into cython. Read more in the cython docs. 26.2 Expression Evaluation via eval() (Experimental) New in version 0.13. The top-level function pandas.eval() implements expression evaluation of Series and DataFrame objects. Note: To benefit from using eval() you need to install numexpr. See the recommended dependencies section for more details. The point of using eval() for expression evaluation rather than plain Python is two-fold: 1) large DataFrame objects are evaluated more efficiently and 2) large arithmetic and boolean expressions are evaluated all at once by the underlying engine (by default numexpr is used for evaluation). Note: You should not use eval() for simple expressions or for expressions involving small DataFrames. In fact, 26.2. Expression Evaluation via eval() (Experimental) 813 pandas: powerful Python data analysis toolkit, Release 0.16.1 eval() is many orders of magnitude slower for smaller expressions/objects than plain ol’ Python. A good rule of thumb is to only use eval() when you have a DataFrame with more than 10,000 rows. eval() supports all arithmetic expressions supported by the engine in addition to some extensions available only in pandas. Note: The larger the frame and the larger the expression the more speedup you will see from using eval(). 26.2.1 Supported Syntax These operations are supported by pandas.eval(): • Arithmetic operations except for the left shift (<<) and right shift (>>) operators, e.g., df + 2 * pi / s ** 4 % 42 - the_golden_ratio • Comparison operations, including chained comparisons, e.g., 2 < df < df2 • Boolean operations, e.g., df < df2 and df3 < df4 or not df_bool • list and tuple literals, e.g., [1, 2] or (1, 2) • Attribute access, e.g., df.a • Subscript expressions, e.g., df[0] • Simple variable evaluation, e.g., pd.eval(’df’) (this is not very useful) This Python syntax is not allowed: • Expressions – Function calls – is/is not operations – if expressions – lambda expressions – list/set/dict comprehensions – Literal dict and set expressions – yield expressions – Generator expressions – Boolean expressions consisting of only scalar values • Statements – Neither simple nor compound statements are allowed. This includes things like for, while, and if. 26.2.2 eval() Examples pandas.eval() works well with expressions containing large arrays. First let’s create a few decent-sized arrays to play with: 814 Chapter 26. Enhancing Performance pandas: powerful Python data analysis toolkit, Release 0.16.1 In [18]: import pandas as pd In [19]: from pandas import DataFrame, Series In [20]: from numpy.random import randn In [21]: import numpy as np In [22]: nrows, ncols = 20000, 100 In [23]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols)) for _ in range(4)] Now let’s compare adding them together using plain ol’ Python versus eval(): In [24]: %timeit df1 + df2 + df3 + df4 10 loops, best of 3: 22.3 ms per loop In [25]: %timeit pd.eval('df1 + df2 + df3 + df4') 100 loops, best of 3: 13.4 ms per loop Now let’s do the same thing but with comparisons: In [26]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0) 10 loops, best of 3: 67.3 ms per loop In [27]: %timeit pd.eval('(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)') 10 loops, best of 3: 30.7 ms per loop eval() also works with unaligned pandas objects: In [28]: s = Series(randn(50)) In [29]: %timeit df1 + df2 + df3 + df4 + s 10 loops, best of 3: 94.7 ms per loop In [30]: %timeit pd.eval('df1 + df2 + df3 + df4 + s') 10 loops, best of 3: 76.1 ms per loop Note: Operations such as 1 and 2 # would parse to 1 & 2, but should evaluate to 2 3 or 4 # would parse to 3 | 4, but should evaluate to 3 ~1 # this is okay, but slower when using eval should be performed in Python. An exception will be raised if you try to perform any boolean/bitwise operations with scalar operands that are not of type bool or np.bool_. Again, you should perform these kinds of operations in plain Python. 26.2.3 The DataFrame.eval method (Experimental) New in version 0.13. In addition to the top level pandas.eval() function you can also evaluate an expression in the “context” of a DataFrame. In [31]: df = DataFrame(randn(5, 2), columns=['a', 'b']) 26.2. Expression Evaluation via eval() (Experimental) 815 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [32]: df.eval('a + b') Out[32]: 0 -0.246747 1 0.867786 2 -1.626063 3 -1.134978 4 -1.027798 dtype: float64 Any expression that is a valid pandas.eval() expression is also a valid DataFrame.eval() expression, with the added benefit that you don’t have to prefix the name of the DataFrame to the column(s) you’re interested in evaluating. In addition, you can perform assignment of columns within an expression. This allows for formulaic evaluation. Only a single assignment is permitted. The assignment target can be a new column name or an existing column name, and it must be a valid Python identifier. In [33]: df = DataFrame(dict(a=range(5), b=range(5, 10))) In [34]: df.eval('c = a + b') In [35]: df.eval('d = a + b + c') In [36]: df.eval('a = 1') In [37]: df Out[37]: a b c 0 1 5 5 1 1 6 7 2 1 7 9 3 1 8 11 4 1 9 13 d 10 14 18 22 26 The equivalent in standard Python would be In [38]: df = DataFrame(dict(a=range(5), b=range(5, 10))) In [39]: df['c'] = df.a + df.b In [40]: df['d'] = df.a + df.b + df.c In [41]: df['a'] = 1 In [42]: df Out[42]: a b c 0 1 5 5 1 1 6 7 2 1 7 9 3 1 8 11 4 1 9 13 d 10 14 18 22 26 26.2.4 Local Variables In pandas version 0.14 the local variable API has changed. In pandas 0.13.x, you could refer to local variables the same way you would in standard Python. For example, 816 Chapter 26. Enhancing Performance pandas: powerful Python data analysis toolkit, Release 0.16.1 df = DataFrame(randn(5, 2), columns=['a', 'b']) newcol = randn(len(df)) df.eval('b + newcol') UndefinedVariableError: name 'newcol' is not defined As you can see from the exception generated, this syntax is no longer allowed. You must explicitly reference any local variable that you want to use in an expression by placing the @ character in front of the name. For example, In [43]: df = DataFrame(randn(5, 2), columns=list('ab')) In [44]: newcol = randn(len(df)) In [45]: df.eval('b + @newcol') Out[45]: 0 -0.173926 1 2.493083 2 -0.881831 3 -0.691045 4 1.334703 dtype: float64 In [46]: df.query('b < @newcol') Out[46]: a b 0 0.863987 -0.115998 2 -2.621419 -1.297879 If you don’t prefix the local variable with @, pandas will raise an exception telling you the variable is undefined. When using DataFrame.eval() and DataFrame.query(), this allows you to have a local variable and a DataFrame column with the same name in an expression. In [47]: a = randn() In [48]: df.query('@a < a') Out[48]: a b 0 0.863987 -0.115998 In [49]: df.loc[a < df.a] Out[49]: a b 0 0.863987 -0.115998 # same as the previous expression With pandas.eval() you cannot use the @ prefix at all, because it isn’t defined in that context. pandas will let you know this if you try to use @ in a top-level call to pandas.eval(). For example, In [50]: a, b = 1, 2 In [51]: pd.eval('@a + b') File "", line unknown SyntaxError: The '@' prefix is not allowed in top-level eval calls, please refer to your variables by name without the '@' prefix In this case, you should simply refer to the variables like you would in standard Python. In [52]: pd.eval('a + b') Out[52]: 3 26.2. Expression Evaluation via eval() (Experimental) 817 pandas: powerful Python data analysis toolkit, Release 0.16.1 26.2.5 pandas.eval() Parsers There are two different parsers and two different engines you can use as the backend. The default ’pandas’ parser allows a more intuitive syntax for expressing query-like operations (comparisons, conjunctions and disjunctions). In particular, the precedence of the & and | operators is made equal to the precedence of the corresponding boolean operations and and or. For example, the above conjunction can be written without parentheses. Alternatively, you can use the ’python’ parser to enforce strict Python semantics. In [53]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)' In [54]: x = pd.eval(expr, parser='python') In [55]: expr_no_parens = 'df1 > 0 & df2 > 0 & df3 > 0 & df4 > 0' In [56]: y = pd.eval(expr_no_parens, parser='pandas') In [57]: np.all(x == y) Out[57]: True The same expression can be “anded” together with the word and as well: In [58]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)' In [59]: x = pd.eval(expr, parser='python') In [60]: expr_with_ands = 'df1 > 0 and df2 > 0 and df3 > 0 and df4 > 0' In [61]: y = pd.eval(expr_with_ands, parser='pandas') In [62]: np.all(x == y) Out[62]: True The and and or operators here have the same precedence that they would in vanilla Python. 26.2.6 pandas.eval() Backends There’s also the option to make eval() operate identical to plain ol’ Python. Note: Using the ’python’ engine is generally not useful, except for testing other evaluation engines against it. You will acheive no performance benefits using eval() with engine=’python’ and in fact may incur a performance hit. You can see this by using pandas.eval() with the ’python’ engine. It is a bit slower (not by much) than evaluating the same expression in Python In [63]: %timeit df1 + df2 + df3 + df4 10 loops, best of 3: 23.1 ms per loop In [64]: %timeit pd.eval('df1 + df2 + df3 + df4', engine='python') 10 loops, best of 3: 23.6 ms per loop 26.2.7 pandas.eval() Performance eval() is intended to speed up certain kinds of operations. In particular, those operations involving complex expres818 Chapter 26. Enhancing Performance pandas: powerful Python data analysis toolkit, Release 0.16.1 sions with large DataFrame/Series objects should see a significant performance benefit. Here is a plot showing the running time of pandas.eval() as function of the size of the frame involved in the computation. The two lines are two different engines. Note: Operations with smallish objects (around 15k-20k rows) are faster using plain Python: This plot was created using a DataFrame with 3 columns each containing floating point values generated using numpy.random.randn(). 26.2.8 Technical Minutia Regarding Expression Evaluation Expressions that would result in an object dtype or involve datetime operations (because of NaT) must be evaluated in Python space. The main reason for this behavior is to maintain backwards compatbility with versions of numpy < 1.7. In those versions of numpy a call to ndarray.astype(str) will truncate any strings that are more than 60 characters in length. Second, we can’t pass object arrays to numexpr thus string comparisons must be evaluated 26.2. Expression Evaluation via eval() (Experimental) 819 pandas: powerful Python data analysis toolkit, Release 0.16.1 in Python space. The upshot is that this only applies to object-dtype’d expressions. So, if you have an expression–for example In [65]: df = DataFrame({'strings': np.repeat(list('cba'), 3), ....: 'nums': np.repeat(range(3), 3)}) ....: In [66]: df Out[66]: nums strings 0 0 c 1 0 c 2 0 c 3 1 b 4 1 b 5 1 b 6 2 a 7 2 a 8 2 a In [67]: df.query('strings == "a" and nums == 1') Out[67]: Empty DataFrame Columns: [nums, strings] Index: [] the numeric part of the comparison (nums == 1) will be evaluated by numexpr. In general, DataFrame.query()/pandas.eval() will evaluate the subexpressions that can be evaluated by numexpr and those that must be evaluated in Python space transparently to the user. This is done by inferring the result type of an expression from its arguments and operators. 820 Chapter 26. Enhancing Performance CHAPTER TWENTYSEVEN SPARSE DATA STRUCTURES We have implemented “sparse” versions of Series, DataFrame, and Panel. These are not sparse in the typical “mostly 0”. You can view these objects as being “compressed” where any data matching a specific value (NaN/missing by default, though any value can be chosen) is omitted. A special SparseIndex object tracks where data has been “sparsified”. This will make much more sense in an example. All of the standard pandas data structures have a to_sparse method: In [1]: ts = Series(randn(10)) In [2]: ts[2:-2] = np.nan In [3]: sts = ts.to_sparse() In [4]: sts Out[4]: 0 0.469112 1 -0.282863 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 -0.861849 9 -2.104569 dtype: float64 BlockIndex Block locations: array([0, 8]) Block lengths: array([2, 2]) The to_sparse method takes a kind argument (for the sparse index, see below) and a fill_value. So if we had a mostly zero Series, we could convert it to sparse with fill_value=0: In [5]: ts.fillna(0).to_sparse(fill_value=0) Out[5]: 0 0.469112 1 -0.282863 2 0.000000 3 0.000000 4 0.000000 5 0.000000 6 0.000000 7 0.000000 8 -0.861849 9 -2.104569 dtype: float64 821 pandas: powerful Python data analysis toolkit, Release 0.16.1 BlockIndex Block locations: array([0, 8]) Block lengths: array([2, 2]) The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame: In [6]: df = DataFrame(randn(10000, 4)) In [7]: df.ix[:9998] = np.nan In [8]: sdf = df.to_sparse() In [9]: sdf Out[9]: 0 1 2 3 4 5 6 ... 9993 9994 9995 9996 9997 9998 9999 0 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.280249 -1.648493 2 3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.490865 -0.890819 [10000 rows x 4 columns] In [10]: sdf.density Out[10]: 0.0001 As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly identical to their dense counterparts. Any sparse object can be converted back to the standard dense form by calling to_dense: In [11]: sts.to_dense() Out[11]: 0 0.469112 1 -0.282863 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 -0.861849 9 -2.104569 dtype: float64 822 Chapter 27. Sparse data structures pandas: powerful Python data analysis toolkit, Release 0.16.1 27.1 SparseArray SparseArray is the base layer for all of the sparse indexed data structures. It is a 1-dimensional ndarray-like object storing only values distinct from the fill_value: In [12]: arr = np.random.randn(10) In [13]: arr[2:5] = np.nan; arr[7:8] = np.nan In [14]: sparr = SparseArray(arr) In [15]: sparr Out[15]: [-1.95566352972, -1.6588664276, nan, nan, nan, 1.15893288864, 0.145297113733, nan, 0.606027190513, 1. Fill: nan IntIndex Indices: array([0, 1, 5, 6, 8, 9]) Like the indexed objects (SparseSeries, SparseDataFrame, SparsePanel), a SparseArray can be converted back to a regular ndarray by calling to_dense: In [16]: sparr.to_dense() Out[16]: array([-1.9557, -1.6589, nan, nan, 0.606 , 1.3342]) nan, nan, 1.1589, 0.1453, 27.2 SparseList SparseList is a list-like data structure for managing a dynamic collection of SparseArrays. To create one, simply call the SparseList constructor with a fill_value (defaulting to NaN): In [17]: spl = SparseList() In [18]: spl Out[18]: The two important methods are append and to_array. append can accept scalar values or any 1-dimensional sequence: In [19]: from numpy import nan In [20]: spl.append(np.array([1., nan, nan, 2., 3.])) In [21]: spl.append(5) In [22]: spl.append(sparr) In [23]: spl Out[23]: [1.0, nan, nan, 2.0, 3.0] Fill: nan IntIndex Indices: array([0, 3, 4]) [5.0] 27.1. SparseArray 823 pandas: powerful Python data analysis toolkit, Release 0.16.1 Fill: nan IntIndex Indices: array([0]) [-1.95566352972, -1.6588664276, nan, nan, nan, 1.15893288864, 0.145297113733, nan, 0.606027190513, 1. Fill: nan IntIndex Indices: array([0, 1, 5, 6, 8, 9]) As you can see, all of the contents are stored internally as a list of memory-efficient SparseArray objects. Once you’ve accumulated all of the data, you can call to_array to get a single SparseArray with all the data: In [24]: spl.to_array() Out[24]: [1.0, nan, nan, 2.0, 3.0, 5.0, -1.95566352972, -1.6588664276, nan, nan, nan, 1.15893288864, 0.1452971 Fill: nan IntIndex Indices: array([ 0, 3, 4, 5, 6, 7, 11, 12, 14, 15]) 27.3 SparseIndex objects Two kinds of SparseIndex are implemented, block and integer. We recommend using block as it’s more memory efficient. The integer format keeps an arrays of all of the locations where the data are not equal to the fill value. The block format tracks only the locations and sizes of blocks of data. 27.4 Interaction with scipy.sparse Experimental api to transform between sparse pandas and scipy.sparse structures. A SparseSeries.to_coo() method is implemented for transforming a SparseSeries indexed by a MultiIndex to a scipy.sparse.coo_matrix. The method requires a MultiIndex with two or more levels. In [25]: from numpy import nan In [26]: s = Series([3.0, nan, 1.0, 3.0, nan, nan]) In [27]: s.index = MultiIndex.from_tuples([(1, 2, 'a', 0), ....: (1, 2, 'a', 1), ....: (1, 1, 'b', 0), ....: (1, 1, 'b', 1), ....: (2, 1, 'b', 0), ....: (2, 1, 'b', 1)], ....: names=['A', 'B', 'C', 'D']) ....: In [28]: s Out[28]: A B C D 1 2 a 0 1 1 b 0 1 824 3 NaN 1 3 Chapter 27. Sparse data structures pandas: powerful Python data analysis toolkit, Release 0.16.1 2 1 b 0 NaN 1 NaN dtype: float64 # SparseSeries In [29]: ss = s.to_sparse() In [30]: ss Out[30]: A B C D 1 2 a 0 3 1 NaN 1 b 0 1 1 3 2 1 b 0 NaN 1 NaN dtype: float64 BlockIndex Block locations: array([0, 2]) Block lengths: array([1, 2]) In the example below, we transform the SparseSeries to a sparse representation of a 2-d array by specifying that the first and second MultiIndex levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation. In [31]: A, rows, columns = ss.to_coo(row_levels=['A', 'B'], ....: column_levels=['C', 'D'], ....: sort_labels=True) ....: In [32]: A Out[32]: <3x4 sparse matrix of type '' with 3 stored elements in COOrdinate format> In [33]: A.todense() Out[33]: matrix([[ 0., 0., 1., [ 3., 0., 0., [ 0., 0., 0., 3.], 0.], 0.]]) In [34]: rows Out[34]: [(1L, 1L), (1L, 2L), (2L, 1L)] In [35]: columns Out[35]: [('a', 0L), ('a', 1L), ('b', 0L), ('b', 1L)] Specifying different row and column labels (and not sorting them) yields a different sparse matrix: In [36]: A, rows, columns = ss.to_coo(row_levels=['A', 'B', 'C'], ....: column_levels=['D'], ....: sort_labels=False) ....: In [37]: A Out[37]: <3x2 sparse matrix of type '' with 3 stored elements in COOrdinate format> 27.4. Interaction with scipy.sparse 825 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [38]: A.todense() Out[38]: matrix([[ 3., 0.], [ 1., 3.], [ 0., 0.]]) In [39]: rows Out[39]: [(1L, 2L, 'a'), (1L, 1L, 'b'), (2L, 1L, 'b')] In [40]: columns Out[40]: [0, 1] A convenience method SparseSeries.from_coo() is implemented for creating a SparseSeries from a scipy.sparse.coo_matrix. In [41]: from scipy import sparse In [42]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), ....: shape=(3, 4)) ....: In [43]: A Out[43]: <3x4 sparse matrix of type '' with 3 stored elements in COOrdinate format> In [44]: A.todense() Out[44]: matrix([[ 0., 0., 1., [ 3., 0., 0., [ 0., 0., 0., 2.], 0.], 0.]]) The default behaviour (with dense_index=False) simply returns a SparseSeries containing only the nonnull entries. In [45]: ss = SparseSeries.from_coo(A) In [46]: ss Out[46]: 0 2 1 3 2 1 0 3 dtype: float64 BlockIndex Block locations: array([0]) Block lengths: array([3]) Specifying dense_index=True will result in an index that is the Cartesian product of the row and columns coordinates of the matrix. Note that this will consume a significant amount of memory (relative to dense_index=False) if the sparse matrix is large (and sparse) enough. In [47]: ss_dense = SparseSeries.from_coo(A, dense_index=True) In [48]: ss_dense Out[48]: 0 0 NaN 1 NaN 2 1 3 2 826 Chapter 27. Sparse data structures pandas: powerful Python data analysis toolkit, Release 0.16.1 1 0 3 1 NaN 2 NaN 3 NaN 2 0 NaN 1 NaN 2 NaN 3 NaN dtype: float64 BlockIndex Block locations: array([2]) Block lengths: array([3]) 27.4. Interaction with scipy.sparse 827 pandas: powerful Python data analysis toolkit, Release 0.16.1 828 Chapter 27. Sparse data structures CHAPTER TWENTYEIGHT CAVEATS AND GOTCHAS 28.1 Using If/Truth Statements with pandas pandas follows the numpy convention of raising an error when you try to convert something to a bool. This happens in a if or when using the boolean operations, and, or, or not. It is not clear what the result of >>> if Series([False, True, False]): ... should be. Should it be True because it’s not zero-length? False because there are False values? It is unclear, so instead, pandas raises a ValueError: >>> if pd.Series([False, True, False]): print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all(). If you see that, you need to explicitly choose what you want to do with it (e.g., use any(), all() or empty). or, you might want to compare if the pandas object is None >>> if pd.Series([False, True, False]) is not None: print("I was not None") >>> I was not None or return if any value is True. >>> if pd.Series([False, True, False]).any(): print("I am any") >>> I am any To evaluate single-element pandas objects in a boolean context, use the method .bool(): In [1]: Series([True]).bool() Out[1]: True In [2]: Series([False]).bool() Out[2]: False In [3]: DataFrame([[True]]).bool() Out[3]: True In [4]: DataFrame([[False]]).bool() Out[4]: False 829 pandas: powerful Python data analysis toolkit, Release 0.16.1 28.1.1 Bitwise boolean Bitwise boolean operators like == and != will return a boolean Series, which is almost always what you want anyways. >>> s = pd.Series(range(5)) >>> s == 4 0 False 1 False 2 False 3 False 4 True dtype: bool See boolean comparisons for more examples. 28.1.2 Using the in operator Using the Python in operator on a Series tests for membership in the index, not membership among the values. If this behavior is surprising, keep in mind that using in on a Python dictionary tests keys, not values, and Series are dict-like. To test for membership in the values, use the method isin(): For DataFrames, likewise, in applies to the column axis, testing for membership in the list of column names. 28.2 NaN, Integer NA values and NA type promotions 28.2.1 Choice of NA representation For lack of NA (missing) support from the ground up in NumPy and Python in general, we were given the difficult choice between either • A masked array solution: an array of data and an array of boolean values indicating whether a value • Using a special sentinel value, bit pattern, or set of sentinel values to denote NA across the dtypes For many reasons we chose the latter. After years of production use it has proven, at least in my opinion, to be the best decision given the state of affairs in NumPy and Python in general. The special value NaN (Not-A-Number) is used everywhere as the NA value, and there are API functions isnull and notnull which can be used across the dtypes to detect NA values. However, it comes with it a couple of trade-offs which I most certainly have not ignored. 28.2.2 Support for integer NA In the absence of high performance NA support being built into NumPy from the ground up, the primary casualty is the ability to represent NAs in integer arrays. For example: In [5]: s = Series([1, 2, 3, 4, 5], index=list('abcde')) In [6]: s Out[6]: a 1 b 2 c 3 830 Chapter 28. Caveats and Gotchas pandas: powerful Python data analysis toolkit, Release 0.16.1 d 4 e 5 dtype: int64 In [7]: s.dtype Out[7]: dtype('int64') In [8]: s2 = s.reindex(['a', 'b', 'c', 'f', 'u']) In [9]: s2 Out[9]: a 1 b 2 c 3 f NaN u NaN dtype: float64 In [10]: s2.dtype Out[10]: dtype('float64') This trade-off is made largely for memory and performance reasons, and also so that the resulting Series continues to be “numeric”. One possibility is to use dtype=object arrays instead. 28.2.3 NA type promotions When introducing NAs into an existing Series or DataFrame via reindex or some other means, boolean and integer types will be promoted to a different dtype in order to store the NAs. These are summarized by this table: Typeclass floating object integer boolean Promotion dtype for storing NAs no change no change cast to float64 cast to object While this may seem like a heavy trade-off, in practice I have found very few cases where this is an issue in practice. Some explanation for the motivation here in the next section. 28.2.4 Why not make NumPy like R? Many people have suggested that NumPy should simply emulate the NA support present in the more domain-specific statistical programming language R. Part of the reason is the NumPy type hierarchy: Typeclass numpy.floating numpy.integer numpy.unsignedinteger numpy.object_ numpy.bool_ numpy.character Dtypes float16, float32, float64, float128 int8, int16, int32, int64 uint8, uint16, uint32, uint64 object_ bool_ string_, unicode_ The R language, by contrast, only has a handful of built-in data types: integer, numeric (floating-point), character, and boolean. NA types are implemented by reserving special bit patterns for each type to be used as the missing value. While doing this with the full NumPy type hierarchy would be possible, it would be a more substantial trade-off (especially for the 8- and 16-bit data types) and implementation undertaking. 28.2. NaN, Integer NA values and NA type promotions 831 pandas: powerful Python data analysis toolkit, Release 0.16.1 An alternate approach is that of using masked arrays. A masked array is an array of data with an associated boolean mask denoting whether each value should be considered NA or not. I am personally not in love with this approach as I feel that overall it places a fairly heavy burden on the user and the library implementer. Additionally, it exacts a fairly high performance cost when working with numerical data compared with the simple approach of using NaN. Thus, I have chosen the Pythonic “practicality beats purity” approach and traded integer NA capability for a much simpler approach of using a special value in float and object arrays to denote NA, and promoting integer arrays to floating when NAs must be introduced. 28.3 Integer indexing Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the standard tools like .ix. The following code will generate exceptions: s = Series(range(5)) s[-1] df = DataFrame(np.random.randn(5, 4)) df df.ix[-2:] This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the API change was made to stop “falling back” on position-based indexing). 28.4 Label-based slicing conventions 28.4.1 Non-monotonic indexes require exact matches 28.4.2 Endpoints are inclusive Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in pandas is inclusive. The primary reason for this is that it is often not possible to easily determine the “successor” or next element after a particular label in an index. For example, consider the following Series: In [11]: s = Series(randn(6), index=list('abcdef')) In [12]: s Out[12]: a -0.345411 b 1.721799 c 0.171342 d 1.222367 e 1.228721 f 0.549175 dtype: float64 Suppose we wished to slice from c to e, using integers this would be In [13]: s[2:5] Out[13]: c 0.171342 d 1.222367 832 Chapter 28. Caveats and Gotchas pandas: powerful Python data analysis toolkit, Release 0.16.1 e 1.228721 dtype: float64 However, if you only had c and e, determining the next element in the index can be somewhat complicated. For example, the following does not work: s.ix['c':'e'+1] A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the design design to make label-based slicing include both endpoints: In [14]: s.ix['c':'e'] Out[14]: c 0.171342 d 1.222367 e 1.228721 dtype: float64 This is most definitely a “practicality beats purity” sort of thing, but it is something to watch out for if you expect label-based slicing to behave exactly in the way that standard Python integer slicing works. 28.5 Miscellaneous indexing gotchas 28.5.1 Reindex versus ix gotchas Many users will find themselves using the ix indexing capabilities as a concise means of selecting data from a pandas object: In [15]: df = DataFrame(randn(6, 4), columns=['one', 'two', 'three', 'four'], ....: index=list('abcdef')) ....: In [16]: df Out[16]: one two three four a -1.982099 -0.366112 -0.228622 -1.663680 b 0.527377 -1.428764 -0.177802 0.382121 c -0.049456 0.556557 0.993878 -0.433240 d -0.077343 1.052958 1.528472 0.644673 e -1.261108 1.265039 0.424791 0.385124 f -1.176251 -0.074802 -0.384239 1.075475 In [17]: df.ix[['b', 'c', 'e']] Out[17]: one two three four b 0.527377 -1.428764 -0.177802 0.382121 c -0.049456 0.556557 0.993878 -0.433240 e -1.261108 1.265039 0.424791 0.385124 This is, of course, completely equivalent in this case to using th reindex method: In [18]: df.reindex(['b', 'c', 'e']) Out[18]: one two three four b 0.527377 -1.428764 -0.177802 0.382121 c -0.049456 0.556557 0.993878 -0.433240 e -1.261108 1.265039 0.424791 0.385124 28.5. Miscellaneous indexing gotchas 833 pandas: powerful Python data analysis toolkit, Release 0.16.1 Some might conclude that ix and reindex are 100% equivalent based on this. This is indeed true except in the case of integer indexing. For example, the above operation could alternately have been expressed as: In [19]: df.ix[[1, 2, 4]] Out[19]: one two three four b 0.527377 -1.428764 -0.177802 0.382121 c -0.049456 0.556557 0.993878 -0.433240 e -1.261108 1.265039 0.424791 0.385124 If you pass [1, 2, 4] to reindex you will get another thing entirely: In [20]: df.reindex([1, 2, 4]) Out[20]: one two three four 1 NaN NaN NaN NaN 2 NaN NaN NaN NaN 4 NaN NaN NaN NaN So it’s important to remember that reindex is strict label indexing only. This can lead to some potentially surprising results in pathological cases where an index contains, say, both integers and strings: In [21]: s = Series([1, 2, 3], index=['a', 0, 1]) In [22]: s Out[22]: a 1 0 2 1 3 dtype: int64 In [23]: s.ix[[0, 1]] Out[23]: 0 2 1 3 dtype: int64 In [24]: s.reindex([0, 1]) Out[24]: 0 2 1 3 dtype: int64 Because the index in this case does not contain solely integers, ix falls back on integer indexing. By contrast, reindex only looks for the values passed in the index, thus finding the integers 0 and 1. While it would be possible to insert some logic to check whether a passed sequence is all contained in the index, that logic would exact a very high cost in large data sets. 28.5.2 Reindex potentially changes underlying Series dtype The use of reindex_like can potentially change the dtype of a Series. In [25]: series = Series([1, 2, 3]) In [26]: x = Series([True]) In [27]: x.dtype Out[27]: dtype('bool') 834 Chapter 28. Caveats and Gotchas pandas: powerful Python data analysis toolkit, Release 0.16.1 In [28]: x = Series([True]).reindex_like(series) In [29]: x.dtype Out[29]: dtype('O') This is because reindex_like silently inserts NaNs and the dtype changes accordingly. This can cause some issues when using numpy ufuncs such as numpy.logical_and. See the this old issue for a more detailed discussion. 28.6 Timestamp limitations 28.6.1 Minimum and maximum timestamps Since pandas represents timestamps in nanosecond resolution, the timespan that can be represented using a 64-bit integer is limited to approximately 584 years: In [30]: begin = Timestamp.min In [31]: begin Out[31]: Timestamp('1677-09-22 00:12:43.145225') In [32]: end = Timestamp.max In [33]: end Out[33]: Timestamp('2262-04-11 23:47:16.854775807') See here for ways to represent data outside these bound. 28.7 Parsing Dates from Text Files When parsing multiple text file columns into a single date column, the new date column is prepended to the data and then index_col specification is indexed off of the new set of columns rather than the original ones: In [34]: print(open('tmp.csv').read()) KORD,19990127, 19:00:00, 18:56:00, 0.8100 KORD,19990127, 20:00:00, 19:56:00, 0.0100 KORD,19990127, 21:00:00, 20:56:00, -0.5900 KORD,19990127, 21:00:00, 21:18:00, -0.9900 KORD,19990127, 22:00:00, 21:56:00, -0.5900 KORD,19990127, 23:00:00, 22:56:00, -0.5900 In [35]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]} In [36]: df = read_csv('tmp.csv', header=None, ....: parse_dates=date_spec, ....: keep_date_col=True, ....: index_col=0) ....: # index_col=0 refers to the combined column "nominal" and not the original # first column of 'KORD' strings In [37]: df 28.6. Timestamp limitations 835 pandas: powerful Python data analysis toolkit, Release 0.16.1 Out[37]: nominal 1999-01-27 1999-01-27 1999-01-27 1999-01-27 1999-01-27 1999-01-27 19:00:00 20:00:00 21:00:00 21:00:00 22:00:00 23:00:00 1999-01-27 1999-01-27 1999-01-27 1999-01-27 1999-01-27 1999-01-27 actual 0 1 2 3 18:56:00 19:56:00 20:56:00 21:18:00 21:56:00 22:56:00 KORD KORD KORD KORD KORD KORD 19990127 19990127 19990127 19990127 19990127 19990127 19:00:00 20:00:00 21:00:00 21:00:00 22:00:00 23:00:00 18:56:00 19:56:00 20:56:00 21:18:00 21:56:00 22:56:00 \ 4 nominal 1999-01-27 1999-01-27 1999-01-27 1999-01-27 1999-01-27 1999-01-27 19:00:00 20:00:00 21:00:00 21:00:00 22:00:00 23:00:00 0.81 0.01 -0.59 -0.99 -0.59 -0.59 28.8 Differences with NumPy For Series and DataFrame objects, var normalizes by N-1 to produce unbiased estimates of the sample variance, while NumPy’s var normalizes by N, which measures the variance of the sample. Note that cov normalizes by N-1 in both pandas and NumPy. 28.9 Thread-safety As of pandas 0.11, pandas is not 100% thread safe. The known issues relate to the DataFrame.copy method. If you are doing a lot of copying of DataFrame objects shared among threads, we recommend holding locks inside the threads where the data copying occurs. See this link for more information. 28.10 HTML Table Parsing There are some versioning issues surrounding the libraries that are used to parse HTML tables in the top-level pandas io function read_html. Issues with lxml • Benefits – lxml is very fast – lxml requires Cython to install correctly. • Drawbacks – lxml does not make any guarantees about the results of it’s parse unless it is given strictly valid markup. – In light of the above, we have chosen to allow you, the user, to use the lxml backend, but this backend will use html5lib if lxml fails to parse 836 Chapter 28. Caveats and Gotchas pandas: powerful Python data analysis toolkit, Release 0.16.1 – It is therefore highly recommended that you install both BeautifulSoup4 and html5lib, so that you will still get a valid result (provided everything else is valid) even if lxml fails. Issues with BeautifulSoup4 using lxml as a backend • The above issues hold here as well since BeautifulSoup4 is essentially just a wrapper around a parser backend. Issues with BeautifulSoup4 using html5lib as a backend • Benefits – html5lib is far more lenient than lxml and consequently deals with real-life markup in a much saner way rather than just, e.g., dropping an element without notifying you. – html5lib generates valid HTML5 markup from invalid markup automatically. This is extremely important for parsing HTML tables, since it guarantees a valid document. However, that does NOT mean that it is “correct”, since the process of fixing markup does not have a single definition. – html5lib is pure Python and requires no additional build steps beyond its own installation. • Drawbacks – The biggest drawback to using html5lib is that it is slow as molasses. However consider the fact that many tables on the web are not big enough for the parsing algorithm runtime to matter. It is more likely that the bottleneck will be in the process of reading the raw text from the URL over the web, i.e., IO (input-output). For very large tables, this might not be true. Issues with using Anaconda • Anaconda ships with lxml version 3.2.0; the following workaround for Anaconda was successfully used to deal with the versioning issues surrounding lxml and BeautifulSoup4. Note: Unless you have both: • A strong restriction on the upper bound of the runtime of some code that incorporates read_html() • Complete knowledge that the HTML you will be parsing will be 100% valid at all times then you should install html5lib and things will work swimmingly without you having to muck around with conda. If you want the best of both worlds then install both html5lib and lxml. If you do install lxml then you need to perform the following commands to ensure that lxml will work correctly: # remove the included version conda remove lxml # install the latest version of lxml pip install 'git+git://github.com/lxml/lxml.git' # install the latest version of beautifulsoup4 pip install 'bzr+lp:beautifulsoup' Note that you need bzr and git installed to perform the last two operations. 28.11 Byte-Ordering Issues Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. A common symptom of this issue is an error like 28.11. Byte-Ordering Issues 837 pandas: powerful Python data analysis toolkit, Release 0.16.1 Traceback ... ValueError: Big-endian buffer not supported on little-endian compiler To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing it to Series/DataFrame/Panel constructors using something similar to the following: In [38]: x = np.array(list(range(10)), '>i4') # big endian In [39]: newx = x.byteswap().newbyteorder() # force native byteorder In [40]: s = Series(newx) See the NumPy documentation on byte order for more details. 838 Chapter 28. Caveats and Gotchas CHAPTER TWENTYNINE RPY2 / R INTERFACE Warning: In v0.16.0, the pandas.rpy interface has been deprecated and will be removed in a future version. Similar functionality can be accessed through the rpy2 project. See the updating section for a guide to port your code from the pandas.rpy to rpy2 functions. 29.1 Updating your code to use rpy2 functions In v0.16.0, the pandas.rpy module has been deprecated and users are pointed to the similar functionality in rpy2 itself (rpy2 >= 2.4). Instead of importing import pandas.rpy.common as com, the following imports should be done to activate the pandas conversion support in rpy2: from rpy2.robjects import pandas2ri pandas2ri.activate() Converting data frames back and forth between rpy2 and pandas should be largely automated (no need to convert explicitly, it will be done on the fly in most rpy2 functions). To convert explicitly, the functions are pandas2ri.py2ri() and pandas2ri.ri2py(). So these functions can be used to replace the existing functions in pandas: • com.convert_to_r_dataframe(df) should be replaced with pandas2ri.py2ri(df) • com.convert_robj(rdf) should be replaced with pandas2ri.ri2py(rdf) Note: these functions are for the latest version (rpy2 2.5.x) and were called pandas2ri.pandas2ri() and pandas2ri.ri2pandas() previously. Some of the other functionality in pandas.rpy can be replaced easily as well. For example to load R data as done with the load_data function, the current method: df_iris = com.load_data('iris') can be replaced with: from rpy2.robjects import r r.data('iris') df_iris = pandas2ri.ri2py(r[name]) The convert_to_r_matrix function can be replaced by the normal pandas2ri.py2ri to convert dataframes, with a subsequent call to R as.matrix function. 839 pandas: powerful Python data analysis toolkit, Release 0.16.1 Warning: Not all conversion functions in rpy2 are working exactly the same as the current methods in pandas. If you experience problems or limitations in comparison to the ones in pandas, please report this at the issue tracker. See also the documentation of the rpy2 project. 29.2 R interface with rpy2 If your computer has R and rpy2 (> 2.2) installed (which will be left to the reader), you will be able to leverage the below functionality. On Windows, doing this is quite an ordeal at the moment, but users on Unix-like systems should find it quite easy. rpy2 evolves in time, and is currently reaching its release 2.3, while the current interface is designed for the 2.2.x series. We recommend to use 2.2.x over other series unless you are prepared to fix parts of the code, yet the rpy2-2.3.0 introduces improvements such as a better R-Python bridge memory management layer so it might be a good idea to bite the bullet and submit patches for the few minor differences that need to be fixed. # if installing for the first time hg clone http://bitbucket.org/lgautier/rpy2 cd rpy2 hg pull hg update version_2.2.x sudo python setup.py install Note: To use R packages with this interface, you will need to install them inside R yourself. At the moment it cannot install them for you. Once you have done installed R and rpy2, you should be able to import pandas.rpy.common without a hitch. 29.3 Transferring R data sets into Python The load_data function retrieves an R data set and converts it to the appropriate pandas object (most likely a DataFrame): In [1]: import pandas.rpy.common as com In [2]: infert = com.load_data('infert') In [3]: infert.head() Out[3]: education age parity 1 0-5yrs 26 6 2 0-5yrs 42 1 3 0-5yrs 39 6 4 0-5yrs 34 4 5 6-11yrs 35 3 induced 1 1 2 2 1 case 1 1 1 1 1 spontaneous 2 0 0 0 1 stratum 1 2 3 4 5 pooled.stratum 3 1 4 2 32 29.4 Converting DataFrames into R objects New in version 0.8. 840 Chapter 29. rpy2 / R interface pandas: powerful Python data analysis toolkit, Release 0.16.1 Starting from pandas 0.8, there is experimental support to convert DataFrames into the equivalent R object (that is, data.frame): In [4]: from pandas import DataFrame In [5]: df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C':[7,8,9]}, ...: index=["one", "two", "three"]) ...: In [6]: r_dataframe = com.convert_to_r_dataframe(df) In [7]: print(type(r_dataframe)) In [8]: A one 1 two 2 three 3 print(r_dataframe) B C 4 7 5 8 6 9 The DataFrame’s index is stored as the rownames attribute of the data.frame instance. You can also use convert_to_r_matrix to obtain a Matrix instance, but bear in mind that it will only work with homogeneously-typed DataFrames (as R matrices bear no information on the data type): In [9]: r_matrix = com.convert_to_r_matrix(df) In [10]: print(type(r_matrix)) In [11]: print(r_matrix) A B C one 1 4 7 two 2 5 8 three 3 6 9 29.5 Calling R functions with pandas objects 29.6 High-level interface to R estimators 29.5. Calling R functions with pandas objects 841 pandas: powerful Python data analysis toolkit, Release 0.16.1 842 Chapter 29. rpy2 / R interface CHAPTER THIRTY PANDAS ECOSYSTEM Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and visualization. This is encouraging because it means pandas is not only helping users to handle their data tasks but also that it provides a better starting point for developers to build powerful and more focused data tools. The creation of libraries that complement pandas’ functionality also allows pandas development to remain focused around it’s original requirements. This is an in-exhaustive list of projects that build on pandas in order to provide tools in the PyData space. We’d like to make it easier for users to find these project, if you know of other substantial projects that you feel should be on this list, please let us know. 30.1 Statistics and Machine Learning 30.1.1 Statsmodels Statsmodels is the prominent python “statistics and econometrics library” and it has a long-standing special relationship with pandas. Statsmodels provides powerful statistics, econometrics, analysis and modeling functionality that is out of pandas’ scope. Statsmodels leverages pandas objects as the underlying data container for computation. 30.1.2 sklearn-pandas Use pandas DataFrames in your scikit-learn ML pipeline. 30.2 Visualization 30.2.1 Bokeh Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients. 30.2.2 yhat/ggplot Hadley Wickham’s ggplot2 is a foundational exploratory visualization package for the R language. Based on “The Grammar of Graphics” it provides a powerful, declarative and extremely general way to generate bespoke plots of any kind of data. It’s really quite incredible. Various implementations to other languages are available, but a faithful 843 pandas: powerful Python data analysis toolkit, Release 0.16.1 implementation for python users has long been missing. Although still young (as of Jan-2014), the yhat/ggplot project has been progressing quickly in that direction. 30.2.3 Seaborn Although pandas has quite a bit of “just plot it” functionality built-in, visualization and in particular statistical graphics is a vast field with a long tradition and lots of ground to cover. The Seaborn project builds on top of pandas and matplotlib to provide easy plotting of data which extends to more advanced types of plots then those offered by pandas. 30.2.4 Vincent The Vincent project leverages Vega (that in turn, leverages d3) to create plots . It has great support for pandas data objects. 30.3 IDE 30.3.1 IPython IPython is an interactive command shell and distributed computing environment. IPython Notebook is a web application for creating IPython notebooks. An IPython notebook is a JSON document containing an ordered list of input/output cells which can contain code, text, mathematics, plots and rich media. IPython notebooks can be converted to a number of open standard output formats (HTML, HTML presentation slides, LaTeX, PDF, ReStructuredText, Markdown, Python) through ‘Download As’ in the web interface and ipython nbconvert in a shell. Pandas DataFrames implement _repr_html_ methods which are utilized by IPython Notebook for displaying (abbreviated) HTML tables. (Note: HTML tables may or may not be compatible with non-HTML IPython output formats.) 30.3.2 quantopian/qgrid qgrid is “an interactive grid for sorting and filtering DataFrames in IPython Notebook” built with SlickGrid. 30.3.3 Spyder Spyder is a cross-platform Qt-based open-source Python IDE with editing, testing, debugging, and introspection features. Spyder can now introspect and display Pandas DataFrames and show both “column wise min/max and global min/max coloring.” 30.4 API 30.4.1 quandl/Python Quandl API for Python wraps the Quandl REST API to return Pandas DataFrames with timeseries indexes. 844 Chapter 30. pandas Ecosystem pandas: powerful Python data analysis toolkit, Release 0.16.1 30.4.2 pydatastream PyDatastream is a Python interface to the Thomson Dataworks Enterprise (DWE/Datastream) SOAP API to return indexed Pandas DataFrames or Panels with financial data. This package requires valid credentials for this API (non free). 30.4.3 pandaSDMX pandaSDMX is an extensible library to retrieve and acquire statistical data and metadata disseminated in SDMX 2.1. This standard is currently supported by the European statistics office (Eurostat) and the European Central Bank (ECB). Datasets may be returned as pandas Series or multi-indexed DataFrames. 30.4.4 fredapi fredapi is a Python interface to the Federal Reserve Economic Data (FRED) provided by the Federal Reserve Bank of St. Louis. It works with both the FRED database and ALFRED database that contains point-in-time data (i.e. historic data revisions). fredapi provides a wrapper in python to the FRED HTTP API, and also provides several conveninent methods for parsing and analyzing point-in-time data from ALFRED. fredapi makes use of pandas and returns data in a Series or DataFrame. This module requires a FRED API key that you can obtain for free on the FRED website. 30.5 Domain Specific 30.5.1 Geopandas Geopandas extends pandas data objects to include geographic information which support geometric operations. If your work entails maps and geographical coordinates, and you love pandas, you should take a close look at Geopandas. 30.5.2 xray xray brings the labeled data power of pandas to the physical sciences by providing N-dimensional variants of the core pandas data structures. It aims to provide a pandas-like and pandas-compatible toolkit for analytics on multidimensional arrays, rather than the tabular data for which pandas excels. 30.6 Out-of-core 30.6.1 Blaze Blaze provides a standard API for doing computations with various in-memory and on-disk backends: NumPy, Pandas, SQLAlchemy, MongoDB, PyTables, PySpark. 30.5. Domain Specific 845 pandas: powerful Python data analysis toolkit, Release 0.16.1 846 Chapter 30. pandas Ecosystem CHAPTER THIRTYONE COMPARISON WITH R / R LIBRARIES Since pandas aims to provide a lot of the data manipulation and analysis functionality that people use R for, this page was started to provide a more detailed look at the R language and its many third party libraries as they relate to pandas. In comparisons with R and CRAN libraries, we care about the following things: • Functionality / flexibility: what can/cannot be done with each tool • Performance: how fast are operations. Hard numbers/benchmarks are preferable • Ease-of-use: Is one tool easier/harder to use (you may have to be the judge of this, given side-by-side code comparisons) This page is also here to offer a bit of a translation guide for users of these R packages. For transfer of DataFrame objects from pandas to R, one option is to use HDF5 files, see External Compatibility for an example. 31.1 Base R 31.1.1 Slicing with R’s c R makes it easy to access data.frame columns by name df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5)) df[, c("a", "c", "e")] or by integer location df <- data.frame(matrix(rnorm(1000), ncol=100)) df[, c(1:10, 25:30, 40, 50:100)] Selecting multiple columns by name in pandas is straightforward In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc')) In [2]: df[['a', 'c']] Out[2]: a c 0 -1.039575 -0.424972 1 0.567020 -1.087401 2 -0.673690 -1.478427 3 0.524988 0.577046 4 -1.715002 -0.370647 5 -1.157892 0.844885 6 1.075770 1.643563 847 pandas: powerful Python data analysis toolkit, Release 0.16.1 7 -1.469388 -0.674600 8 -1.776904 -1.294524 9 0.413738 -0.472035 In [3]: df.loc[:, ['a', 'c']] Out[3]: a c 0 -1.039575 -0.424972 1 0.567020 -1.087401 2 -0.673690 -1.478427 3 0.524988 0.577046 4 -1.715002 -0.370647 5 -1.157892 0.844885 6 1.075770 1.643563 7 -1.469388 -0.674600 8 -1.776904 -1.294524 9 0.413738 -0.472035 Selecting multiple noncontiguous columns by integer location can be achieved with a combination of the iloc indexer attribute and numpy.r_. In [4]: named = list('abcdefg') In [5]: n = 30 In [6]: columns = named + np.arange(len(named), n).tolist() In [7]: df = pd.DataFrame(np.random.randn(n, n), columns=columns) In [8]: df.iloc[:, np.r_[:10, 24:30]] Out[8]: a b c d 0 -0.013960 -0.362543 -0.006154 -0.923061 1 0.545952 -1.219217 -1.226825 0.769804 2 2.396780 0.014871 3.357427 -0.317441 3 -0.988387 0.094055 1.262731 1.289997 4 -1.340896 1.846883 -1.328865 1.682706 5 0.464000 0.227371 -0.496922 0.306389 6 -0.507516 -0.230096 0.394500 -1.934370 .. ... ... ... ... 23 -0.083272 -0.273955 -0.772369 -1.242807 24 2.071413 -1.364763 1.122066 0.066847 25 0.036609 0.359986 1.211905 0.850427 26 -1.179240 0.238923 1.756671 -0.747571 27 0.025645 0.932436 -1.694531 -0.182236 28 0.439086 0.812684 -0.128932 -0.142506 29 -0.909806 -0.312006 0.383630 -0.631606 0 1 2 3 4 5 6 .. 23 g -1.206412 -0.121306 -0.487602 0.536580 0.228440 -1.561819 -0.896484 ... 0.164816 -1.118283 -1.508808 -0.051458 -0.072673 -0.159466 -2.008210 \ 7 8 9 24 25 26 27 2.565646 1.431256 1.340309 0.875906 -2.211372 0.974466 -2.006747 -0.097883 0.695775 0.341734 -1.743161 -0.826591 -0.345352 1.314232 -0.082240 -2.182937 0.380396 1.266143 0.299368 -0.863838 0.408204 -0.489682 0.369374 -0.034571 0.221471 -0.744471 0.758527 1.729689 0.901805 1.171216 0.520260 0.650776 -1.461665 -1.137707 -0.891060 -0.260838 0.281957 1.523962 -0.008434 1.952541 -1.056652 0.533946 0.576897 1.146000 1.487349 2.015523 -1.833722 1.771740 -0.670027 ... ... ... ... ... ... ... 0.065624 0.307665 -1.898358 1.389045 -0.873585 -0.699862 0.812477 \ 848 e 0.895717 -1.281247 -1.236269 0.082423 -1.717693 -2.290613 -1.652499 ... -0.386336 1.751987 1.554957 0.543625 -1.072710 -1.137207 1.321415 f 0.805244 -0.727707 0.896171 -0.055758 0.888782 -1.134623 1.488753 ... -0.182486 0.419071 -0.888463 -0.159609 0.466764 0.462001 -0.004799 Chapter 31. Comparison with R / R libraries pandas: powerful Python data analysis toolkit, Release 0.16.1 24 25 26 27 28 29 1.010694 0.877138 -0.611561 -1.040389 -0.796211 0.241596 0.385922 -0.617855 0.536164 2.175585 1.872601 -2.513465 -0.139184 0.810491 0.937882 0.617547 0.287918 -1.584814 0.307941 1.809049 0.296237 -0.026233 -0.051744 0.001402 0.150664 -3.060395 0.040268 0.066091 -1.788308 0.753604 0.918071 0.922729 0.869610 0.364726 -0.226101 -0.481634 -2.056211 -2.106095 0.039227 0.211283 1.440190 -0.989193 0 1 2 3 4 5 6 .. 23 24 25 26 27 28 29 28 -0.410001 0.690579 -1.048089 -0.964980 -0.693921 -1.226970 0.049307 ... -0.469503 -0.486078 0.571599 -0.143550 -0.192862 -0.657647 0.313335 29 -0.078638 0.995761 -0.025747 -0.845696 1.613616 0.040403 -0.521493 ... 1.142702 0.433042 -0.000676 0.289401 1.979055 -0.952699 -0.399709 [30 rows x 16 columns] 31.1.2 aggregate In R you may want to split data into subsets and compute the mean for each. Using a data.frame called df and splitting it into groups by1 and by2: df <- data.frame( v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9), v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99), by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12), by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)) aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean) The groupby() method is similar to base R aggregate function. In [9]: df = pd.DataFrame({ ...: 'v1': [1,3,5,7,8,3,5,np.nan,4,5,7,9], ...: 'v2': [11,33,55,77,88,33,55,np.nan,44,55,77,99], ...: 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12], ...: 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99, np.nan, ...: np.nan] ...: }) ...: In [10]: g = df.groupby(['by1','by2']) In [11]: g[['v1','v2']].mean() Out[11]: v1 v2 by1 by2 1 95 5 55 99 5 55 31.1. Base R 849 pandas: powerful Python data analysis toolkit, Release 0.16.1 2 95 7 77 99 NaN NaN big damp 3 33 blue dry 3 33 red red 4 44 wet 1 11 For more details and examples see the groupby documentation. 31.1.3 match / %in% A common way to select data in R is using %in% which is defined using the function match. The operator %in% is used to return a logical vector indicating if there is a match or not: s <- 0:4 s %in% c(2,4) The isin() method is similar to R %in% operator: In [12]: s = pd.Series(np.arange(5),dtype=np.float32) In [13]: s.isin([2, 4]) Out[13]: 0 False 1 False 2 True 3 False 4 True dtype: bool The match function returns a vector of the positions of matches of its first argument in its second: s <- 0:4 match(s, c(2,4)) The apply() method can be used to replicate this: In [14]: s = pd.Series(np.arange(5),dtype=np.float32) In [15]: pd.Series(pd.match(s,[2,4],np.nan)) Out[15]: 0 NaN 1 NaN 2 0 3 NaN 4 1 dtype: float64 For more details and examples see the reshaping documentation. 31.1.4 tapply tapply is similar to aggregate, but data can be in a ragged array, since the subclass sizes are possibly irregular. Using a data.frame called baseball, and retrieving information based on the array team: 850 Chapter 31. Comparison with R / R libraries pandas: powerful Python data analysis toolkit, Release 0.16.1 baseball 5.00; # tips of more than $5.00 at Dinner meals In [11]: tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)] Out[11]: total_bill tip sex smoker day time size 23 39.42 7.58 Male No Sat Dinner 4 860 Chapter 32. Comparison with SQL pandas: powerful Python data analysis toolkit, Release 0.16.1 44 47 52 59 116 155 170 172 181 183 211 212 214 239 30.40 32.40 34.81 48.27 29.93 29.85 50.81 7.25 23.33 23.17 25.89 48.33 28.17 29.03 5.60 6.00 5.20 6.73 5.07 5.14 10.00 5.15 5.65 6.50 5.16 9.00 6.50 5.92 Male Male Female Male Male Female Male Male Male Male Male Male Female Male No No No No No No Yes Yes Yes Yes Yes No Yes No Sun Sun Sun Sat Sun Sun Sat Sun Sun Sun Sat Sat Sat Sat Dinner Dinner Dinner Dinner Dinner Dinner Dinner Dinner Dinner Dinner Dinner Dinner Dinner Dinner 4 4 4 4 4 5 3 2 2 4 4 4 3 3 -- tips by parties of at least 5 diners OR bill total was more than $45 SELECT * FROM tips WHERE size >= 5 OR total_bill > 45; # tips by parties of at least 5 diners OR bill total was more than $45 In [12]: tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)] Out[12]: total_bill tip sex smoker day time size 59 48.27 6.73 Male No Sat Dinner 4 125 29.80 4.20 Female No Thur Lunch 6 141 34.30 6.70 Male No Thur Lunch 6 142 41.19 5.00 Male No Thur Lunch 5 143 27.05 5.00 Female No Thur Lunch 6 155 29.85 5.14 Female No Sun Dinner 5 156 48.17 5.00 Male No Sun Dinner 6 170 50.81 10.00 Male Yes Sat Dinner 3 182 45.35 3.50 Male Yes Sun Dinner 3 185 20.69 5.00 Male No Sun Dinner 5 187 30.46 2.00 Male Yes Sun Dinner 5 212 48.33 9.00 Male No Sat Dinner 4 216 28.15 3.00 Male Yes Sat Dinner 5 NULL checking is done using the notnull() and isnull() methods. In [13]: frame = pd.DataFrame({'col1': ['A', 'B', np.NaN, 'C', 'D'], ....: 'col2': ['F', np.NaN, 'G', 'H', 'I']}) ....: In [14]: frame Out[14]: col1 col2 0 A F 1 B NaN 2 NaN G 3 C H 4 D I Assume we have a table of the same structure as our DataFrame above. We can see only the records where col2 IS NULL with the following query: SELECT * FROM frame WHERE col2 IS NULL; 32.2. WHERE 861 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [15]: frame[frame['col2'].isnull()] Out[15]: col1 col2 1 B NaN Getting items where col1 IS NOT NULL can be done with notnull(). SELECT * FROM frame WHERE col1 IS NOT NULL; In [16]: frame[frame['col1'].notnull()] Out[16]: col1 col2 0 A F 1 B NaN 3 C H 4 D I 32.3 GROUP BY In pandas, SQL’s GROUP BY operations performed using the similarly named groupby() method. groupby() typically refers to a process where we’d like to split a dataset into groups, apply some function (typically aggregation) , and then combine the groups together. A common SQL operation would be getting the count of records in each group throughout a dataset. For instance, a query getting us the number of tips left by sex: SELECT sex, count(*) FROM tips GROUP BY sex; /* Female 87 Male 157 */ The pandas equivalent would be: In [17]: tips.groupby('sex').size() Out[17]: sex Female 87 Male 157 dtype: int64 Notice that in the pandas code we used size() and not count(). This is because count() applies the function to each column, returning the number of not null records within each. In [18]: tips.groupby('sex').count() Out[18]: total_bill tip smoker day sex Female 87 87 87 87 Male 157 157 157 157 time size 87 157 87 157 Alternatively, we could have applied the count() method to an individual column: 862 Chapter 32. Comparison with SQL pandas: powerful Python data analysis toolkit, Release 0.16.1 In [19]: tips.groupby('sex')['total_bill'].count() Out[19]: sex Female 87 Male 157 Name: total_bill, dtype: int64 Multiple functions can also be applied at once. For instance, say we’d like to see how tip amount differs by day of the week - agg() allows you to pass a dictionary to your grouped DataFrame, indicating which functions to apply to specific columns. SELECT day, AVG(tip), COUNT(*) FROM tips GROUP BY day; /* Fri 2.734737 19 Sat 2.993103 87 Sun 3.255132 76 Thur 2.771452 62 */ In [20]: tips.groupby('day').agg({'tip': np.mean, 'day': np.size}) Out[20]: tip day day Fri 2.734737 19 Sat 2.993103 87 Sun 3.255132 76 Thur 2.771452 62 Grouping by more than one column is done by passing a list of columns to the groupby() method. SELECT smoker, day, COUNT(*), AVG(tip) FROM tips GROUP BY smoker, day; /* smoker day No Fri 4 2.812500 Sat 45 3.102889 Sun 57 3.167895 Thur 45 2.673778 Yes Fri 15 2.714000 Sat 42 2.875476 Sun 19 3.516842 Thur 17 3.030000 */ In [21]: tips.groupby(['smoker', 'day']).agg({'tip': [np.size, np.mean]}) Out[21]: tip size mean smoker day No Fri 4 2.812500 Sat 45 3.102889 Sun 57 3.167895 Thur 45 2.673778 Yes Fri 15 2.714000 Sat 42 2.875476 Sun 19 3.516842 32.3. GROUP BY 863 pandas: powerful Python data analysis toolkit, Release 0.16.1 Thur 17 3.030000 32.4 JOIN JOINs can be performed with join() or merge(). By default, join() will join the DataFrames on their indices. Each method has parameters allowing you to specify the type of join to perform (LEFT, RIGHT, INNER, FULL) or the columns to join on (column names or indices). In [22]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], ....: 'value': np.random.randn(4)}) ....: In [23]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'], ....: 'value': np.random.randn(4)}) ....: Assume we have two database tables of the same name and structure as our DataFrames. Now let’s go over the various types of JOINs. 32.4.1 INNER JOIN SELECT * FROM df1 INNER JOIN df2 ON df1.key = df2.key; # merge performs an INNER JOIN by default In [24]: pd.merge(df1, df2, on='key') Out[24]: key value_x value_y 0 B 1.075416 -0.227314 1 D 1.065735 2.102726 2 D 1.065735 -0.092796 merge() also offers parameters for cases when you’d like to join one DataFrame’s column with another DataFrame’s index. In [25]: indexed_df2 = df2.set_index('key') In [26]: pd.merge(df1, indexed_df2, left_on='key', right_index=True) Out[26]: key value_x value_y 1 B 1.075416 -0.227314 3 D 1.065735 2.102726 3 D 1.065735 -0.092796 32.4.2 LEFT OUTER JOIN -- show all records from df1 SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.key = df2.key; 864 Chapter 32. Comparison with SQL pandas: powerful Python data analysis toolkit, Release 0.16.1 # show all records from df1 In [27]: pd.merge(df1, df2, on='key', how='left') Out[27]: key value_x value_y 0 A -0.857326 NaN 1 B 1.075416 -0.227314 2 C 0.371727 NaN 3 D 1.065735 2.102726 4 D 1.065735 -0.092796 32.4.3 RIGHT JOIN -- show all records from df2 SELECT * FROM df1 RIGHT OUTER JOIN df2 ON df1.key = df2.key; # show all records from df2 In [28]: pd.merge(df1, df2, on='key', how='right') Out[28]: key value_x value_y 0 B 1.075416 -0.227314 1 D 1.065735 2.102726 2 D 1.065735 -0.092796 3 E NaN 0.094694 32.4.4 FULL JOIN pandas also allows for FULL JOINs, which display both sides of the dataset, whether or not the joined columns find a match. As of writing, FULL JOINs are not supported in all RDBMS (MySQL). -- show all records from both tables SELECT * FROM df1 FULL OUTER JOIN df2 ON df1.key = df2.key; # show all records from both frames In [29]: pd.merge(df1, df2, on='key', how='outer') Out[29]: key value_x value_y 0 A -0.857326 NaN 1 B 1.075416 -0.227314 2 C 0.371727 NaN 3 D 1.065735 2.102726 4 D 1.065735 -0.092796 5 E NaN 0.094694 32.5 UNION UNION ALL can be performed using concat(). 32.5. UNION 865 pandas: powerful Python data analysis toolkit, Release 0.16.1 In [30]: df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'], ....: 'rank': range(1, 4)}) ....: In [31]: df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'], ....: 'rank': [1, 4, 5]}) ....: SELECT city, rank FROM df1 UNION ALL SELECT city, rank FROM df2; /* city rank Chicago 1 San Francisco 2 New York City 3 Chicago 1 Boston 4 Los Angeles 5 */ In [32]: pd.concat([df1, df2]) Out[32]: city rank 0 Chicago 1 1 San Francisco 2 2 New York City 3 0 Chicago 1 1 Boston 4 2 Los Angeles 5 SQL’s UNION is similar to UNION ALL, however UNION will remove duplicate rows. SELECT city, rank FROM df1 UNION SELECT city, rank FROM df2; -- notice that there is only one Chicago record this time /* city rank Chicago 1 San Francisco 2 New York City 3 Boston 4 Los Angeles 5 */ In pandas, you can use concat() in conjunction with drop_duplicates(). In [33]: pd.concat([df1, df2]).drop_duplicates() Out[33]: city rank 0 Chicago 1 1 San Francisco 2 2 New York City 3 1 Boston 4 866 Chapter 32. Comparison with SQL pandas: powerful Python data analysis toolkit, Release 0.16.1 2 Los Angeles 5 32.6 UPDATE 32.7 DELETE 32.6. UPDATE 867 pandas: powerful Python data analysis toolkit, Release 0.16.1 868 Chapter 32. Comparison with SQL CHAPTER THIRTYTHREE API REFERENCE 33.1 Input/Output 33.1.1 Pickling read_pickle(path) Load pickled pandas object (or any other pickled object) from the specified pandas.read_pickle pandas.read_pickle(path) Load pickled pandas object (or any other pickled object) from the specified file path Warning: Loading pickled data received http://docs.python.org/2.7/library/pickle.html from untrusted sources can be unsafe. See: Parameters path : string File path Returns unpickled : type of object stored in file 33.1.2 Flat File read_table(filepath_or_buffer[, sep, ...]) read_csv(filepath_or_buffer[, sep, dialect, ...]) read_fwf(filepath_or_buffer[, colspecs, widths]) Read general delimited file into DataFrame Read CSV (comma-separated) file into DataFrame Read a table of fixed-width formatted lines into DataFrame 869 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.read_table pandas.read_table(filepath_or_buffer, sep=’\t’, dialect=None, compression=’infer’, doublequote=True, escapechar=None, quotechar=””, quoting=0, skipinitialspace=False, lineterminator=None, header=’infer’, index_col=None, names=None, prefix=None, skiprows=None, skipfooter=None, skip_footer=0, na_values=None, na_fvalues=None, true_values=None, false_values=None, delimiter=None, converters=None, dtype=None, usecols=None, engine=None, delim_whitespace=False, as_recarray=False, na_filter=True, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, warn_bad_lines=True, error_bad_lines=True, keep_default_na=True, thousands=None, comment=None, decimal=’.’, parse_dates=False, keep_date_col=False, dayfirst=False, date_parser=None, memory_map=False, float_precision=None, nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None, squeeze=False, mangle_dupe_cols=True, tupleize_cols=False, infer_datetime_format=False, skip_blank_lines=True) Read general delimited file into DataFrame Also supports optionally iterating or breaking of the file into chunks. Parameters filepath_or_buffer : string or file handle / StringIO The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file ://localhost/path/to/table.csv sep : string, default t (tab-stop) Delimiter to use. Regular expressions are accepted. engine : {‘c’, ‘python’} Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. lineterminator : string (length 1), default None Character to break file into lines. Only valid with C parser quotechar : string (length 1) The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default None Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior. skipinitialspace : boolean, default False Skip spaces after delimiter escapechar : string (length 1), default None One-character string used to escape delimiter when quoting is QUOTE_NONE. dtype : Type name or dict of column -> type Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} (Unsupported with engine=’python’) compression : {‘gzip’, ‘bz2’, ‘infer’, None}, default ‘infer’ 870 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip or bz2 if filepath_or_buffer is a string ending in ‘.gz’ or ‘.bz2’, respectively, and no decompression otherwise. Set to None for no decompression. dialect : string or csv.Dialect instance, default None If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details header : int, list of ints Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file. skiprows : list-like or integer Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file index_col : int or sequence or False, default None Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names) names : array-like List of column names to use. If file contains no header row, then you should explicitly pass header=None prefix : string, default None Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ... na_values : list-like or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values true_values : list Values to consider as True false_values : list Values to consider as False keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to parse_dates : boolean, list of ints or names, list of lists, or dict If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates. keep_date_col : boolean, default False 33.1. Input/Output 871 pandas: powerful Python data analysis toolkit, Release 0.16.1 If True and parse_dates specifies combining multiple columns then keep the original columns. date_parser : function Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (rowwise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments. dayfirst : boolean, default False DD/MM format dates, international and European format thousands : str, default None Thousands separator comment : str, default None Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment=’#’, parsing ‘#emptyna,b,cn1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header. decimal : str, default ‘.’ Character to recognize as decimal point. E.g. use ‘,’ for European data nrows : int, default None Number of rows of file to read. Useful for reading pieces of large files iterator : boolean, default False Return TextFileReader object chunksize : int, default None Return TextFileReader object for iteration skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine=’c’) converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels verbose : boolean, default False Indicate number of NA values placed in non-numeric columns delimiter : string, default None Alternative argument name for sep. Regular expressions are accepted. encoding : string, default None Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings 872 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 squeeze : boolean, default False If the parsed data only contains one column then return a Series na_filter : boolean, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file usecols : array-like Return a subset of the columns. Results in much faster parsing time and lower memory usage. mangle_dupe_cols : boolean, default True Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’ tupleize_cols : boolean, default False Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns) error_bad_lines : boolean, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser) warn_bad_lines : boolean, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser). infer_datetime_format : boolean, default False If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing skip_blank_lines : boolean, default True If True, skip over blank lines rather than interpreting as NaN values Returns result : DataFrame or TextParser pandas.read_csv pandas.read_csv(filepath_or_buffer, sep=’, ‘, dialect=None, compression=’infer’, doublequote=True, escapechar=None, quotechar=””, quoting=0, skipinitialspace=False, lineterminator=None, header=’infer’, index_col=None, names=None, prefix=None, skiprows=None, skipfooter=None, skip_footer=0, na_values=None, na_fvalues=None, true_values=None, false_values=None, delimiter=None, converters=None, dtype=None, usecols=None, engine=None, delim_whitespace=False, as_recarray=False, na_filter=True, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, warn_bad_lines=True, error_bad_lines=True, keep_default_na=True, thousands=None, comment=None, decimal=’.’, parse_dates=False, keep_date_col=False, dayfirst=False, date_parser=None, memory_map=False, float_precision=None, nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None, squeeze=False, mangle_dupe_cols=True, tupleize_cols=False, infer_datetime_format=False, skip_blank_lines=True) Read CSV (comma-separated) file into DataFrame 33.1. Input/Output 873 pandas: powerful Python data analysis toolkit, Release 0.16.1 Also supports optionally iterating or breaking of the file into chunks. Parameters filepath_or_buffer : string or file handle / StringIO The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file ://localhost/path/to/table.csv sep : string, default ‘,’ Delimiter to use. If sep is None, will try to automatically determine this. Regular expressions are accepted. engine : {‘c’, ‘python’} Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. lineterminator : string (length 1), default None Character to break file into lines. Only valid with C parser quotechar : string (length 1) The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default None Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior. skipinitialspace : boolean, default False Skip spaces after delimiter escapechar : string (length 1), default None One-character string used to escape delimiter when quoting is QUOTE_NONE. dtype : Type name or dict of column -> type Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} (Unsupported with engine=’python’) compression : {‘gzip’, ‘bz2’, ‘infer’, None}, default ‘infer’ For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip or bz2 if filepath_or_buffer is a string ending in ‘.gz’ or ‘.bz2’, respectively, and no decompression otherwise. Set to None for no decompression. dialect : string or csv.Dialect instance, default None If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details header : int, list of ints Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file. 874 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 skiprows : list-like or integer Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file index_col : int or sequence or False, default None Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names) names : array-like List of column names to use. If file contains no header row, then you should explicitly pass header=None prefix : string, default None Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ... na_values : list-like or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values true_values : list Values to consider as True false_values : list Values to consider as False keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to parse_dates : boolean, list of ints or names, list of lists, or dict If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates. keep_date_col : boolean, default False If True and parse_dates specifies combining multiple columns then keep the original columns. date_parser : function Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (rowwise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments. dayfirst : boolean, default False DD/MM format dates, international and European format thousands : str, default None 33.1. Input/Output 875 pandas: powerful Python data analysis toolkit, Release 0.16.1 Thousands separator comment : str, default None Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment=’#’, parsing ‘#emptyna,b,cn1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header. decimal : str, default ‘.’ Character to recognize as decimal point. E.g. use ‘,’ for European data nrows : int, default None Number of rows of file to read. Useful for reading pieces of large files iterator : boolean, default False Return TextFileReader object chunksize : int, default None Return TextFileReader object for iteration skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine=’c’) converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels verbose : boolean, default False Indicate number of NA values placed in non-numeric columns delimiter : string, default None Alternative argument name for sep. Regular expressions are accepted. encoding : string, default None Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings squeeze : boolean, default False If the parsed data only contains one column then return a Series na_filter : boolean, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file usecols : array-like Return a subset of the columns. Results in much faster parsing time and lower memory usage. mangle_dupe_cols : boolean, default True Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’ tupleize_cols : boolean, default False 876 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns) error_bad_lines : boolean, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser) warn_bad_lines : boolean, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser). infer_datetime_format : boolean, default False If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing skip_blank_lines : boolean, default True If True, skip over blank lines rather than interpreting as NaN values Returns result : DataFrame or TextParser pandas.read_fwf pandas.read_fwf(filepath_or_buffer, colspecs=’infer’, widths=None, **kwds) Read a table of fixed-width formatted lines into DataFrame Also supports optionally iterating or breaking of the file into chunks. Parameters filepath_or_buffer : string or file handle / StringIO The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file ://localhost/path/to/table.csv colspecs : list of pairs (int, int) or ‘infer’. optional A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data (default=’infer’). widths : list of ints. optional A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous. lineterminator : string (length 1), default None Character to break file into lines. Only valid with C parser quotechar : string (length 1) The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default None Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior. 33.1. Input/Output 877 pandas: powerful Python data analysis toolkit, Release 0.16.1 skipinitialspace : boolean, default False Skip spaces after delimiter escapechar : string (length 1), default None One-character string used to escape delimiter when quoting is QUOTE_NONE. dtype : Type name or dict of column -> type Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} (Unsupported with engine=’python’) compression : {‘gzip’, ‘bz2’, ‘infer’, None}, default ‘infer’ For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip or bz2 if filepath_or_buffer is a string ending in ‘.gz’ or ‘.bz2’, respectively, and no decompression otherwise. Set to None for no decompression. dialect : string or csv.Dialect instance, default None If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details header : int, list of ints Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file. skiprows : list-like or integer Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file index_col : int or sequence or False, default None Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names) names : array-like List of column names to use. If file contains no header row, then you should explicitly pass header=None prefix : string, default None Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ... na_values : list-like or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values true_values : list Values to consider as True false_values : list Values to consider as False 878 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to parse_dates : boolean, list of ints or names, list of lists, or dict If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates. keep_date_col : boolean, default False If True and parse_dates specifies combining multiple columns then keep the original columns. date_parser : function Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (rowwise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments. dayfirst : boolean, default False DD/MM format dates, international and European format thousands : str, default None Thousands separator comment : str, default None Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment=’#’, parsing ‘#emptyna,b,cn1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header. decimal : str, default ‘.’ Character to recognize as decimal point. E.g. use ‘,’ for European data nrows : int, default None Number of rows of file to read. Useful for reading pieces of large files iterator : boolean, default False Return TextFileReader object chunksize : int, default None Return TextFileReader object for iteration skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine=’c’) converters : dict, default None 33.1. Input/Output 879 pandas: powerful Python data analysis toolkit, Release 0.16.1 Dict of functions for converting values in certain columns. Keys can either be integers or column labels verbose : boolean, default False Indicate number of NA values placed in non-numeric columns delimiter : string, default None Alternative argument name for sep. Regular expressions are accepted. encoding : string, default None Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings squeeze : boolean, default False If the parsed data only contains one column then return a Series na_filter : boolean, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file usecols : array-like Return a subset of the columns. Results in much faster parsing time and lower memory usage. mangle_dupe_cols : boolean, default True Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’ tupleize_cols : boolean, default False Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns) error_bad_lines : boolean, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser) warn_bad_lines : boolean, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser). infer_datetime_format : boolean, default False If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing skip_blank_lines : boolean, default True If True, skip over blank lines rather than interpreting as NaN values Returns result : DataFrame or TextParser Also, ‘delimiter’ is used to specify the filler character of the fields if it is not spaces (e.g., ‘~’). 880 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 33.1.3 Clipboard read_clipboard(**kwargs) Read text from clipboard and pass to read_table. pandas.read_clipboard pandas.read_clipboard(**kwargs) Read text from clipboard and pass to read_table. See read_table for the full argument list If unspecified, sep defaults to ‘s+’ Returns parsed : DataFrame 33.1.4 Excel read_excel(io[, sheetname]) ExcelFile.parse([sheetname, header, ...]) Read an Excel table into a pandas DataFrame Read an Excel table into DataFrame pandas.read_excel pandas.read_excel(io, sheetname=0, **kwds) Read an Excel table into a pandas DataFrame Parameters io : string, file-like object, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx sheetname : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases • Defaults to 0 -> 1st sheet as a DataFrame • 1 -> 2nd sheet as a DataFrame • “Sheet1” -> 1st sheet as a DataFrame • [0,1,”Sheet5”] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames • None -> All sheets as a dictionary of DataFrames header : int, default 0 Row to use for the column labels of the parsed DataFrame skiprows : list-like Rows to skip at the beginning (0-indexed) 33.1. Input/Output 881 pandas: powerful Python data analysis toolkit, Release 0.16.1 skip_footer : int, default 0 Rows at the end to skip (0-indexed) converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. index_col : int, default None Column to use as the row labels of the DataFrame. Pass None if there is no such column parse_cols : int or list, default None • If None then parse all columns, • If int then indicates last column to be parsed • If list of ints then indicates list of column numbers to be parsed • If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”) na_values : list-like, default None List of additional strings to recognize as NA/NaN keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to verbose : boolean, default False Indicate number of NA values placed in non-numeric columns engine: string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd convert_float : boolean, default True convert integral floats to int (i.e., 1.0 –> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally has_index_names : boolean, default False True if the cols defined in index_col have an index name and are not in the header. Index name will be placed on a separate line below the header. Returns parsed : DataFrame or Dict of DataFrames DataFrame from the passed in Excel file. See notes in sheetname argument for more information on when a Dict of Dataframes is returned. pandas.ExcelFile.parse ExcelFile.parse(sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, chunksize=None, convert_float=True, has_index_names=False, converters=None, **kwds) Read an Excel table into DataFrame 882 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters sheetname : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases • Defaults to 0 -> 1st sheet as a DataFrame • 1 -> 2nd sheet as a DataFrame • “Sheet1” -> 1st sheet as a DataFrame • [0,1,”Sheet5”] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames • None -> All sheets as a dictionary of DataFrames header : int, default 0 Row to use for the column labels of the parsed DataFrame skiprows : list-like Rows to skip at the beginning (0-indexed) skip_footer : int, default 0 Rows at the end to skip (0-indexed) converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels index_col : int, default None Column to use as the row labels of the DataFrame. Pass None if there is no such column parse_cols : int or list, default None • If None then parse all columns • If int then indicates last column to be parsed • If list of ints then indicates list of column numbers to be parsed • If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”) parse_dates : boolean, default False Parse date Excel values, date_parser : function default None Date parsing function na_values : list-like, default None List of additional strings to recognize as NA/NaN thousands : str, default None Thousands separator 33.1. Input/Output 883 pandas: powerful Python data analysis toolkit, Release 0.16.1 chunksize : int, default None Size of file chunk to read for lazy evaluation. convert_float : boolean, default True convert integral floats to int (i.e., 1.0 –> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally. has_index_names : boolean, default False True if the cols defined in index_col have an index name and are not in the header verbose : boolean, default False Set to True to print a single statement when reading each excel sheet. Returns parsed : DataFrame or Dict of DataFrames DataFrame from the passed in Excel file. See notes in sheetname argument for more information on when a Dict of Dataframes is returned. 33.1.5 JSON read_json([path_or_buf, orient, typ, dtype, ...]) Convert a JSON string to pandas object pandas.read_json pandas.read_json(path_or_buf=None, orient=None, typ=’frame’, dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None) Convert a JSON string to pandas object Parameters filepath_or_buffer : a valid JSON string or file-like The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json orient • Series – default is ’index’ – allowed values are: {’split’,’records’,’index’} – The Series index must be unique for orient ’index’. • DataFrame – default is ’columns’ – allowed values are: {‘split’,’records’,’index’,’columns’,’values’} – The DataFrame index must be unique for orients ‘index’ and ‘columns’. – The DataFrame columns must be unique for orients ‘index’, ‘columns’, and ‘records’. • The format of the JSON string – split : dict like {index -> [index], columns -> [columns], data -> [values]} 884 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 – records : list like [{column -> value}, ... , {column -> value}] – index : dict like {index -> {column -> value}} – columns : dict like {column -> {index -> value}} – values : just the values array typ : type of object to recover (series or frame), default ‘frame’ dtype : boolean or dict, default True If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, applies only to the data. convert_axes : boolean, default True Try to convert the axes to the proper dtypes. convert_dates : boolean, default True List of columns to parse for dates; If True, then try to parse datelike columns default is True keep_default_dates : boolean, default True. If parsing dates, then parse the default datelike columns numpy : boolean, default False Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True. precise_float : boolean, default False. Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality date_unit : string, default None The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively. Returns result : Series or DataFrame 33.1.6 HTML read_html(io[, match, flavor, header, ...]) Read HTML tables into a list of DataFrame objects. pandas.read_html pandas.read_html(io, match=’.+’, flavor=None, header=None, index_col=None, skiprows=None, infer_types=None, attrs=None, parse_dates=False, tupleize_cols=False, thousands=’, ‘, encoding=None) Read HTML tables into a list of DataFrame objects. Parameters io : str or file-like A URL, a file-like object, or a raw string containing HTML. Note that lxml only accepts the http, ftp and file url protocols. If you have a URL that starts with ’https’ you 33.1. Input/Output 885 pandas: powerful Python data analysis toolkit, Release 0.16.1 might try removing the ’s’. match : str or compiled regular expression, optional The set of tables containing text matching this regex or string will be returned. Unless the HTML is extremely simple you will probably need to pass a non-empty string here. Defaults to ‘.+’ (match any non-empty string). The default value will return all tables contained on a page. This value is converted to a regular expression so that there is consistent behavior between Beautiful Soup and lxml. flavor : str or None, container of strings The parsing engine to use. ‘bs4’ and ‘html5lib’ are synonymous with each other, they are both there for backwards compatibility. The default of None tries to use lxml to parse and if that fails it falls back on bs4 + html5lib. header : int or list-like or None, optional The row (or list of rows for a MultiIndex) to use to make the columns headers. index_col : int or list-like or None, optional The column (or list of columns) to use to create the index. skiprows : int or list-like or slice or None, optional 0-based. Number of rows to skip after parsing the column integer. If a sequence of integers or a slice is given, will skip the rows indexed by that sequence. Note that a single element sequence means ‘skip the nth row’ whereas an integer means ‘skip n rows’. infer_types : None, optional This has no effect since 0.15.0. It is here for backwards compatibility. attrs : dict or None, optional This is a dictionary of attributes that you can pass to use to identify the table in the HTML. These are not checked for validity before being passed to lxml or Beautiful Soup. However, these attributes must be valid HTML table attributes to work correctly. For example, attrs = {'id': 'table'} is a valid attribute dictionary because the ‘id’ HTML tag attribute is a valid HTML attribute for any HTML tag as per this document. attrs = {'asdf': 'table'} is not a valid attribute dictionary because ‘asdf’ is not a valid HTML attribute even if it is a valid XML attribute. Valid HTML 4.01 table attributes can be found here. A working draft of the HTML 5 spec can be found here. It contains the latest information on table attributes for the modern web. parse_dates : bool, optional See read_csv() for more details. tupleize_cols : bool, optional If False try to parse multiple header rows into a MultiIndex, otherwise return raw tuples. Defaults to False. thousands : str, optional 886 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Separator to use to parse thousands. Defaults to ’,’. encoding : str or None, optional The encoding used to decode the web page. Defaults to None.‘‘None‘‘ preserves the previous encoding behavior, which depends on the underlying parser library (e.g., the parser library will try to use the encoding provided by the document). Returns dfs : list of DataFrames See also: pandas.read_csv Notes Before using this function you should read the gotchas about the HTML parsing libraries. Expect to do some cleanup after you call this function. For example, you might need to manually assign column names if the column names are converted to NaN when you pass the header=0 argument. We try to assume as little as possible about the structure of the table and push the idiosyncrasies of the HTML contained in the table to the user. This function searches for elements and only for and or
rows and elements within each
element in the table. stands for “table data”. Similar to read_csv() the header argument is applied after skiprows is applied. This function will always return a list of DataFrame or it will fail, e.g., it will not return an empty list. Examples See the read_html documentation in the IO section of the docs for some examples of reading in HTML tables. 33.1.7 HDFStore: PyTables (HDF5) read_hdf(path_or_buf, key, **kwargs) HDFStore.put(key, value[, format, append]) HDFStore.append(key, value[, format, ...]) HDFStore.get(key) HDFStore.select(key[, where, start, stop, ...]) read from the store, close it if we opened it Store object in HDFStore Append to Table in file. Retrieve pandas object stored in file Retrieve pandas object stored in file, optionally based on where pandas.read_hdf pandas.read_hdf(path_or_buf, key, **kwargs) read from the store, close it if we opened it Retrieve pandas object stored in file, optionally based on where criteria Parameters path_or_buf : path (string), or buffer to read from key : group identifier in the store where : list of Term (or convertable) objects, optional start : optional, integer (defaults to None), row number to start 33.1. Input/Output 887 pandas: powerful Python data analysis toolkit, Release 0.16.1 selection stop : optional, integer (defaults to None), row number to stop selection columns : optional, a list of columns that if not None, will limit the return columns iterator : optional, boolean, return an iterator, default False chunksize : optional, nrows to include in iteration, return an iterator auto_close : optional, boolean, should automatically close the store when finished, default is False Returns The selected object pandas.HDFStore.put HDFStore.put(key, value, format=None, append=False, **kwargs) Store object in HDFStore Parameters key : object value : {Series, DataFrame, Panel} format : ‘fixed(f)|table(t)’, default is ‘fixed’ fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False This will force Table format, append the input data to the existing. encoding : default None, provide an encoding for strings dropna : boolean, default True, do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’ pandas.HDFStore.append HDFStore.append(key, value, format=None, append=True, columns=None, dropna=None, **kwargs) Append to Table in file. Node must already exist and be Table format. Parameters key : object value : {Series, DataFrame, Panel, Panel4D} format: ‘table’ is the default table(t) [table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default True, append the input data to the existing data_columns : list of columns to create as data columns, or True to 888 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 use all columns min_itemsize : dict of columns that specify minimum string sizes nan_rep : string to use as string nan represenation chunksize : size to chunk the writing expectedrows : expected TOTAL row size of this table encoding : default None, provide an encoding for strings dropna : boolean, default True, do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’ Notes —– Does *not* check if data being appended overlaps with existing data in the table, so be careful pandas.HDFStore.get HDFStore.get(key) Retrieve pandas object stored in file Parameters key : object Returns obj : type of object stored in file pandas.HDFStore.select HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False, **kwargs) Retrieve pandas object stored in file, optionally based on where criteria Parameters key : object where : list of Term (or convertable) objects, optional start : integer (defaults to None), row number to start selection stop : integer (defaults to None), row number to stop selection columns : a list of columns that if not None, will limit the return columns iterator : boolean, return an iterator, default False chunksize : nrows to include in iteration, return an iterator auto_close : boolean, should automatically close the store when finished, default is False Returns The selected object 33.1.8 SQL 33.1. Input/Output 889 pandas: powerful Python data analysis toolkit, Release 0.16.1 read_sql_table(table_name, con[, schema, ...]) read_sql_query(sql, con[, index_col, ...]) read_sql(sql, con[, index_col, ...]) Read SQL database table into a DataFrame. Read SQL query into a DataFrame. Read SQL query or database table into a DataFrame. pandas.read_sql_table pandas.read_sql_table(table_name, con, schema=None, index_col=None, parse_dates=None, columns=None, chunksize=None) Read SQL database table into a DataFrame. coerce_float=True, Given a table name and an SQLAlchemy engine, returns a DataFrame. This function does not support DBAPI connections. Parameters table_name : string Name of SQL table in database con : SQLAlchemy engine Sqlite DBAPI connection mode not supported schema : string, default None Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default). index_col : string, optional Column to set as index coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict • List of column names to parse as dates • Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps • Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table chunksize : int, default None If specified, return an iterator where chunksize is the number of rows to include in each chunk. Returns DataFrame See also: read_sql_query Read SQL query into a DataFrame. read_sql 890 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Any datetime values with time zone information will be converted to UTC pandas.read_sql_query pandas.read_sql_query(sql, con, index_col=None, coerce_float=True, parse_dates=None, chunksize=None) Read SQL query into a DataFrame. params=None, Returns a DataFrame corresponding to the result set of the query string. Optionally provide an index_col parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters sql : string SQL query to be executed con : SQLAlchemy engine or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string, optional Column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={‘name’ : ‘value’} parse_dates : list or dict • List of column names to parse as dates • Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps • Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite chunksize : int, default None If specified, return an iterator where chunksize is the number of rows to include in each chunk. Returns DataFrame See also: read_sql_table Read SQL database table into a DataFrame read_sql 33.1. Input/Output 891 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Any datetime values with time zone information parsed via the parse_dates parameter will be converted to UTC pandas.read_sql pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None) Read SQL query or database table into a DataFrame. Parameters sql : string SQL query to be executed or database table name. con : SQLAlchemy engine or DBAPI2 connection (fallback mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string, optional column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={‘name’ : ‘value’} parse_dates : list or dict • List of column names to parse as dates • Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps • Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table (only used when reading a table). chunksize : int, default None If specified, return an iterator where chunksize is the number of rows to include in each chunk. Returns DataFrame See also: read_sql_table Read SQL database table into a DataFrame read_sql_query Read SQL query into a DataFrame 892 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes This function is a convenience wrapper around read_sql_table and read_sql_query (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query). The delegated function might have more specific notes about their functionality not listed here. 33.1.9 Google BigQuery read_gbq(query[, project_id, index_col, ...]) to_gbq(dataframe, destination_table[, ...]) Load data from Google BigQuery. Write a DataFrame to a Google BigQuery table. pandas.io.gbq.read_gbq pandas.io.gbq.read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False) Load data from Google BigQuery. THIS IS AN EXPERIMENTAL LIBRARY The main method a user calls to execute a Query in Google BigQuery and read results into a pandas DataFrame using the v2 Google API client for Python. Documentation for the API is available at https://developers.google.com/api-client-library/python/. Authentication to the Google BigQuery service is via OAuth 2.0 using the product name ‘pandas GBQ’. Parameters query : str SQL-Like Query to return data values project_id : str Google BigQuery Account project ID. index_col : str (optional) Name of result column to use for index in results DataFrame col_order : list(str) (optional) List of BigQuery column names in the desired order for results DataFrame reauth : boolean (default False) Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used. Returns df: DataFrame DataFrame representing results of query pandas.io.gbq.to_gbq pandas.io.gbq.to_gbq(dataframe, destination_table, bose=True, reauth=False) Write a DataFrame to a Google BigQuery table. project_id=None, chunksize=10000, ver- THIS IS AN EXPERIMENTAL LIBRARY If the table exists, the dataframe will be written to the table using the defined table schema and column types. For simplicity, this method uses the Google BigQuery streaming API. The to_gbq method chunks data into a 33.1. Input/Output 893 pandas: powerful Python data analysis toolkit, Release 0.16.1 default chunk size of 10,000. Failures return the complete error response which can be quite long depending on the size of the insert. There are several important limitations of the Google streaming API which are detailed at: https://developers.google.com/bigquery/streaming-data-into-bigquery. Parameters dataframe : DataFrame DataFrame to be written destination_table : string Name of table to be written, in the form ‘dataset.tablename’ project_id : str Google BigQuery Account project ID. chunksize : int (default 10000) Number of rows to be inserted in each chunk from the dataframe. verbose : boolean (default True) Show percentage complete reauth : boolean (default False) Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used. 33.1.10 STATA read_stata(filepath_or_buffer[, ...]) Read Stata file into DataFrame pandas.read_stata pandas.read_stata(filepath_or_buffer, convert_dates=True, convert_categoricals=True, encoding=None, index=None, convert_missing=False, preserve_dtypes=True, columns=None, order_categoricals=True, chunksize=None, iterator=False) Read Stata file into DataFrame Parameters filepath_or_buffer : string or file-like object Path to .dta file or object implementing a binary read() functions convert_dates : boolean, defaults to True Convert date variables to DataFrame time values convert_categoricals : boolean, defaults to True Read value labels and convert columns to Categorical/Factor variables encoding : string, None or encoding Encoding used to parse the files. Note that Stata doesn’t support unicode. None defaults to iso-8859-1. index : identifier of index column identifier of column that should be used as index of the DataFrame convert_missing : boolean, defaults to False 894 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects. preserve_dtypes : boolean, defaults to True Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64) columns : list or None Columns to retain. Columns will be returned in the given order. None returns all columns order_categoricals : boolean, defaults to True Flag indicating whether converted categorical data are ordered. chunksize : int, default None Return StataReader object for iterations, returns chunks with given number of lines iterator : boolean, default False Return StataReader object Returns DataFrame or StataReader Examples Read a Stata dta file: >> df = pandas.read_stata(‘filename.dta’) Read a Stata dta file in 10,000 line chunks: >> itr = pandas.read_stata(‘filename.dta’, chunksize=10000) >> for chunk in itr: >> do_something(chunk) StataReader.data(**kwargs) StataReader.data_label() StataReader.value_labels() StataReader.variable_labels() StataWriter.write_file() DEPRECATED: Reads observations from Stata file, converting them into a dataframe Returns data label of Stata file Returns a dict, associating each variable name a dict, associating Returns variable labels as a dict, associating each variable name pandas.io.stata.StataReader.data StataReader.data(**kwargs) DEPRECATED: Reads observations from Stata file, converting them into a dataframe This is a legacy method. Use read in new code. Parameters convert_dates : boolean, defaults to True Convert date variables to DataFrame time values convert_categoricals : boolean, defaults to True Read value labels and convert columns to Categorical/Factor variables index : identifier of index column identifier of column that should be used as index of the DataFrame convert_missing : boolean, defaults to False 33.1. Input/Output 895 pandas: powerful Python data analysis toolkit, Release 0.16.1 Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects. preserve_dtypes : boolean, defaults to True Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64) columns : list or None Columns to retain. Columns will be returned in the given order. None returns all columns order_categoricals : boolean, defaults to True Flag indicating whether converted categorical data are ordered. Returns DataFrame pandas.io.stata.StataReader.data_label StataReader.data_label() Returns data label of Stata file pandas.io.stata.StataReader.value_labels StataReader.value_labels() Returns a dict, associating each variable name a dict, associating each value its corresponding label pandas.io.stata.StataReader.variable_labels StataReader.variable_labels() Returns variable labels as a dict, associating each variable name with corresponding label pandas.io.stata.StataWriter.write_file StataWriter.write_file() 33.2 General functions 33.2.1 Data manipulations melt(frame[, id_vars, value_vars, var_name, ...]) pivot(index, columns, values) pivot_table(data[, values, index, columns, ...]) crosstab(index, columns[, values, rownames, ...]) cut(x, bins[, right, labels, retbins, ...]) qcut(x, q[, labels, retbins, precision]) merge(left, right[, how, on, left_on, ...]) 896 “Unpivots” a DataFrame from wide format to long format, optionally leaving Produce ‘pivot’ table based on 3 columns of this DataFrame. Create a spreadsheet-style pivot table as a DataFrame. Compute a simple cross-tabulation of two (or more) factors. Return indices of half-open bins to which each value of x belongs. Quantile-based discretization function. Merge DataFrame objects by performing a database-style join operation by col Continue Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 concat(objs[, axis, join, join_axes, ...]) get_dummies(data[, prefix, prefix_sep, ...]) factorize(values[, sort, order, ...]) Table 33.12 – continued from previous page Concatenate pandas objects along a particular axis with optional set logic along Convert categorical variable into dummy/indicator variables Encode input values as an enumerated type or categorical variable pandas.melt pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name=’value’, col_level=None) “Unpivots” a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’. Parameters frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars. var_name : scalar Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’. value_name : scalar, default ‘value’ Name to use for the ‘value’ column. col_level : int or string, optional If columns are a MultiIndex then use this level to melt. See also: pivot_table, DataFrame.pivot Examples >>> import pandas as pd >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> pd.melt(df, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 33.2. General functions 897 pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of ‘variable’ and ‘value’ columns can be customized: >>> pd.melt(df, id_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> pd.melt(df, id_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 pandas.pivot pandas.pivot(index, columns, values) Produce ‘pivot’ table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values. Parameters index : ndarray Labels to use to make new frame’s index columns : ndarray Labels to use to make new frame’s columns values : ndarray Values to use for populating new frame’s values Returns DataFrame 898 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Obviously, all 3 of the input arguments must have the same length pandas.pivot_table pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc=’mean’, fill_value=None, margins=False, dropna=True) Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame Parameters data : DataFrame values : column to aggregate, optional index : a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, default numpy.mean, or list of functions If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) fill_value : scalar, default None Value to replace missing values with margins : boolean, default False Add all row / columns (e.g. for subtotal / grand totals) dropna : boolean, default True Do not include columns whose entries are all NaN Returns table : DataFrame Examples >>> df A 0 foo 1 foo 2 foo 3 foo 4 foo 5 bar 6 bar 7 bar 8 bar B one one one two two one one two two C small large large small small large small small large 33.2. General functions D 1 2 2 3 3 4 5 6 7 899 pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> table = pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table small large foo one 1 4 two 6 NaN bar one 5 4 two 6 7 pandas.crosstab pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True) Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed Parameters index : array-like, Series, or list of arrays/Series Values to group by in the rows columns : array-like, Series, or list of arrays/Series Values to group by in the columns values : array-like, optional Array of values to aggregate according to the factors aggfunc : function, optional If no values array is passed, computes a frequency table rownames : sequence, default None If passed, must match number of row arrays passed colnames : sequence, default None If passed, must match number of column arrays passed margins : boolean, default False Add row/column margins (subtotals) dropna : boolean, default True Do not include columns whose entries are all NaN Returns crosstab : DataFrame Notes Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified Examples 900 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> a array([foo, foo, foo, foo, bar, bar, bar, bar, foo, foo, foo], dtype=object) >>> b array([one, one, one, two, one, one, one, two, two, two, one], dtype=object) >>> c array([dull, dull, shiny, dull, dull, shiny, shiny, dull, shiny, shiny, shiny], dtype=object) >>> crosstab(a, [b, c], b one two c dull shiny dull a bar 1 2 1 foo 2 2 1 rownames=['a'], colnames=['b', 'c']) shiny 0 2 pandas.cut pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False) Return indices of half-open bins to which each value of x belongs. Parameters x : array-like Input array to be binned. It has to be 1-dimensional. bins : int or sequence of scalars If bins is an int, it defines the number of equal-width bins in the range of x. However, in this case, the range of x is extended by .1% on each side to include the min or max values of x. If bins is a sequence it defines the bin edges allowing for non-uniform bin width. No extension of the range of x is done in this case. right : bool, optional Indicates whether the bins include the rightmost edge or not. If right == True (the default), then the bins [1,2,3,4] indicate (1,2], (2,3], (3,4]. labels : array or boolean, default None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins. retbins : bool, optional Whether to return the bins or not. Can be useful if bins is given as a scalar. precision : int The precision at which to store and display the bins labels include_lowest : bool Whether the first interval should be left-inclusive or not. Returns out : Categorical or Series or array of integers if labels is False The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned. bins : ndarray of floats 33.2. General functions 901 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returned only if retbins is True. Notes The cut function can be useful for going from a continuous variable to a categorical variable. For example, cut could convert ages to groups of age ranges. Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Categorical object Examples >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True) ([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367], (3.367, 6.533], (6.533, 9.7], (0.191, 3.367]] Categories (3, object): [(0.191, 3.367] < (3.367, 6.533] < (6.533, 9.7]], array([ 0.1905 , 3.36666667, 6.53333333, 9.7 ])) >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, labels=["good","medium","bad"]) [good, good, good, medium, bad, good] Categories (3, object): [good < medium < bad] >>> pd.cut(np.ones(5), 4, labels=False) array([1, 1, 1, 1, 1], dtype=int64) pandas.qcut pandas.qcut(x, q, labels=None, retbins=False, precision=3) Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point. Parameters x : ndarray or Series q : integer or array of quantiles Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles labels : array or boolean, default None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins. retbins : bool, optional Whether to return the bins or not. Can be useful if bins is given as a scalar. precision : int The precision at which to store and display the bins labels Returns out : Categorical or Series or array of integers if labels is False The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned. bins : ndarray of floats Returned only if retbins is True. 902 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Out of bounds values will be NA in the resulting Categorical object Examples >>> pd.qcut(range(5), 4) [[0, 1], [0, 1], (1, 2], (2, 3], (3, 4]] Categories (4, object): [[0, 1] < (1, 2] < (2, 3] < (3, 4]] >>> pd.qcut(range(5), 3, labels=["good","medium","bad"]) [good, good, medium, bad, bad] Categories (3, object): [good < medium < bad] >>> pd.qcut(range(5), 4, labels=False) array([0, 0, 1, 2, 3], dtype=int64) pandas.merge pandas.merge(left, right, how=’inner’, on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=(‘_x’, ‘_y’), copy=True) Merge DataFrame objects by performing a database-style join operation by columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters left : DataFrame right : DataFrame how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’ • left: use only keys from left frame (SQL: left outer join) • right: use only keys from right frame (SQL: right outer join) • outer: use union of keys from both frames (SQL: full outer join) • inner: use intersection of keys from both frames (SQL: inner join) on : label or list Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default. left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs left_index : boolean, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels right_index : boolean, default False Use the index from the right DataFrame as the join key. Same caveats as left_index 33.2. General functions 903 pandas: powerful Python data analysis toolkit, Release 0.16.1 sort : boolean, default False Sort the join keys lexicographically in the result DataFrame suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively copy : boolean, default True If False, do not copy data unnecessarily Returns merged : DataFrame The output type will the be same as ‘left’, if it is a subclass of DataFrame. Examples >>> A lkey 0 foo 1 bar 2 baz 3 foo value 1 2 3 4 >>> B rkey 0 foo 1 bar 2 qux 3 bar value 5 6 7 8 >>> merge(A, B, left_on='lkey', right_on='rkey', how='outer') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 4 foo 5 2 bar 2 bar 6 3 bar 2 bar 8 4 baz 3 NaN NaN 5 NaN NaN qux 7 pandas.concat pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True) Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number Parameters objs : a sequence or mapping of Series, DataFrame, or Panel objects If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised axis : {0, 1, ...}, default 0 The axis to concatenate along join : {‘inner’, ‘outer’}, default ‘outer’ How to handle indexes on other axis(es) join_axes : list of Index objects Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic 904 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 verify_integrity : boolean, default False Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation keys : sequence, default None If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level levels : list of sequences, default None Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys names : list, default None Names for the levels in the resulting hierarchical index ignore_index : boolean, default False If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the the index values on the other axes are still respected in the join. copy : boolean, default True If False, do not copy data unnecessarily Returns concatenated : type of objects Notes The keys, levels, and names arguments are all optional pandas.get_dummies pandas.get_dummies(data, prefix=None, prefix_sep=’_’, sparse=False) Convert categorical variable into dummy/indicator variables dummy_na=False, columns=None, Parameters data : array-like, Series, or DataFrame prefix : string, list of strings, or dict of strings, default None String to append DataFrame column names Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternativly, prefix can be a dictionary mapping column names to prefixes. prefix_sep : string, default ‘_’ If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix. dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. columns : list-like, default None Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted. 33.2. General functions 905 pandas: powerful Python data analysis toolkit, Release 0.16.1 sparse : bool, default False Whether the returned DataFrame should be sparse or not. Returns dummies : DataFrame Examples >>> import pandas as pd >>> s = pd.Series(list('abca')) >>> get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 >>> s1 = ['a', 'b', np.nan] >>> get_dummies(s1) a b 0 1 0 1 0 1 2 0 0 >>> get_dummies(s1, dummy_na=True) a b NaN 0 1 0 0 1 0 1 0 2 0 0 1 >>> df = DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]}) >>> get_dummies(df, prefix=['col1', 'col2']): C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 See also Series.str.get_dummies. pandas.factorize pandas.factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None) Encode input values as an enumerated type or categorical variable Parameters values : ndarray (1-d) Sequence sort : boolean, default False Sort by values order : deprecated na_sentinel : int, default -1 906 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Value to mark “not found” size_hint : hint to the hashtable sizer Returns labels : the indexer to the original array uniques : ndarray (1-d) or Index the unique values. Index is returned when passed values is Index or Series note: an array of Periods will ignore sort as it returns an always sorted PeriodIndex 33.2.2 Top-level missing data isnull(obj) notnull(obj) Detect missing values (NaN in numeric arrays, None/NaN in object arrays) Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays. pandas.isnull pandas.isnull(obj) Detect missing values (NaN in numeric arrays, None/NaN in object arrays) Parameters arr : ndarray or object value Object to check for null-ness Returns isnulled : array-like of bool or bool Array or bool indicating whether an object is null or if an array is given which of the element is null. See also: pandas.notnull boolean inverse of pandas.isnull pandas.notnull pandas.notnull(obj) Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays. Parameters arr : ndarray or object value Object to check for not-null-ness Returns isnulled : array-like of bool or bool Array or bool indicating whether an object is not null or if an array is given which of the element is not null. See also: pandas.isnull boolean inverse of pandas.notnull 33.2.3 Top-level dealing with datetimelike to_datetime(arg[, errors, dayfirst, utc, ...]) Convert argument to datetime. Continued on next page 33.2. General functions 907 pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.14 – continued from previous page to_timedelta(arg[, unit, box, coerce]) Convert argument to timedelta date_range([start, end, periods, freq, tz, ...]) Return a fixed frequency datetime index, with day (calendar) as the default bdate_range([start, end, periods, freq, tz, ...]) Return a fixed frequency datetime index, with business day as the default period_range([start, end, periods, freq, name]) Return a fixed frequency datetime index, with day (calendar) as the default timedelta_range([start, end, periods, freq, ...]) Return a fixed frequency timedelta index, with day as the default infer_freq(index[, warn]) Infer the most likely frequency given the input index. pandas.to_datetime pandas.to_datetime(arg, errors=’ignore’, dayfirst=False, utc=None, box=True, format=None, exact=True, coerce=False, unit=’ns’, infer_datetime_format=False) Convert argument to datetime. Parameters arg : string, datetime, array of strings (with possible NAs) errors : {‘ignore’, ‘raise’}, default ‘ignore’ Errors are ignored by default (values left untouched) dayfirst : boolean, default False If True parses dates with the day first, eg 20/01/2005 Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug). utc : boolean, default None Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well) box : boolean, default True If True returns a DatetimeIndex, if False returns ndarray of values format : string, default None strftime to parse time, eg “%d/%m/%Y”, note that “%f” will parse all the way up to nanoseconds exact : boolean, True by default If True, require an exact format match. If False, allow the format to match anywhere in the target string. coerce : force errors to NaT (False by default) Timestamps outside the interval between Timestamp.min and Timestamp.max (approximately 1677-09-22 to 2262-04-11) will be also forced to NaT. unit : unit of the arg (D,s,ms,us,ns) denote the unit in epoch (e.g. a unix timestamp), which is an integer/float number infer_datetime_format : boolean, default False If no format is given, try to infer the format based on the first datetime string. Provides a large speed-up in many cases. Returns ret : datetime if parsing succeeded. Return type depends on input: • list-like: DatetimeIndex • Series: Series of datetime64 dtype 908 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • scalar: Timestamp In case when it is not possible to return designated types (e.g. when any element of input is before Timestamp.min or after Timestamp.max) return will have datetime.datetime type (or correspoding array/Series). Examples Take separate series and convert to datetime >>> import pandas as pd >>> i = pd.date_range('20000101',periods=100) >>> df = pd.DataFrame(dict(year = i.year, month = i.month, day = i.day)) >>> pd.to_datetime(df.year*10000 + df.month*100 + df.day, format='%Y%m%d') 0 2000-01-01 1 2000-01-02 ... 98 2000-04-08 99 2000-04-09 Length: 100, dtype: datetime64[ns] Or from strings >>> df = df.astype(str) >>> pd.to_datetime(df.day + df.month + df.year, format="%d%m%Y") 0 2000-01-01 1 2000-01-02 ... 98 2000-04-08 99 2000-04-09 Length: 100, dtype: datetime64[ns] Date that does not meet timestamp limitations: >>> pd.to_datetime('13000101', format='%Y%m%d') datetime.datetime(1300, 1, 1, 0, 0) >>> pd.to_datetime('13000101', format='%Y%m%d', coerce=True) NaT pandas.to_timedelta pandas.to_timedelta(arg, unit=’ns’, box=True, coerce=False) Convert argument to timedelta Parameters arg : string, timedelta, array of strings (with possible NAs) unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an integer/float number box : boolean, default True If True returns a Timedelta/TimedeltaIndex of the results if False returns a np.timedelta64 or ndarray of values of dtype timedelta64[ns] coerce : force errors to NaT (False by default) Returns ret : timedelta64/arrays of timedelta64 if parsing succeeded 33.2. General functions 909 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.date_range pandas.date_range(start=None, end=None, periods=None, freq=’D’, tz=None, normalize=False, name=None, closed=None) Return a fixed frequency datetime index, with day (calendar) as the default frequency Parameters start : string or datetime-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default ‘D’ (calendar daily) Frequency strings can have multiples, e.g. ‘5H’ tz : string or None Time zone name for returning localized DatetimeIndex, for example Asia/Hong_Kong normalize : bool, default False Normalize start/end dates to midnight before generating date range name : str, default None Name of the resulting index closed : string or None, default None Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None) Returns rng : DatetimeIndex Notes 2 of start, end, or periods must be specified pandas.bdate_range pandas.bdate_range(start=None, end=None, periods=None, freq=’B’, tz=None, normalize=True, name=None, closed=None) Return a fixed frequency datetime index, with business day as the default frequency Parameters start : string or datetime-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end 910 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 freq : string or DateOffset, default ‘B’ (business daily) Frequency strings can have multiples, e.g. ‘5H’ tz : string or None Time zone name for returning localized DatetimeIndex, for example Asia/Beijing normalize : bool, default False Normalize start/end dates to midnight before generating date range name : str, default None Name for the resulting index closed : string or None, default None Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None) Returns rng : DatetimeIndex Notes 2 of start, end, or periods must be specified pandas.period_range pandas.period_range(start=None, end=None, periods=None, freq=’D’, name=None) Return a fixed frequency datetime index, with day (calendar) as the default frequency Parameters start : end : periods : int, default None Number of periods in the index freq : str/DateOffset, default ‘D’ Frequency alias name : str, default None Name for the resulting PeriodIndex Returns prng : PeriodIndex pandas.timedelta_range pandas.timedelta_range(start=None, end=None, periods=None, closed=None) Return a fixed frequency timedelta index, with day as the default frequency freq=’D’, name=None, Parameters start : string or timedelta-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates 33.2. General functions 911 pandas: powerful Python data analysis toolkit, Release 0.16.1 periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default ‘D’ (calendar daily) Frequency strings can have multiples, e.g. ‘5H’ name : str, default None Name of the resulting index closed : string or None, default None Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None) Returns rng : TimedeltaIndex Notes 2 of start, end, or periods must be specified pandas.infer_freq pandas.infer_freq(index, warn=True) Infer the most likely frequency given the input index. If the frequency is uncertain, a warning will be printed. Parameters index : DatetimeIndex or TimedeltaIndex if passed a Series will use the values of the series (NOT THE INDEX) warn : boolean, default True Returns freq : string or None None if no discernible frequency TypeError if the index is not datetime-like ValueError if there are less than three values. 33.2.4 Top-level evaluation eval(expr[, parser, engine, truediv, ...]) Evaluate a Python expression as a string using various backends. pandas.eval pandas.eval(expr, parser=’pandas’, engine=’numexpr’, truediv=True, global_dict=None, resolvers=(), level=0, target=None) Evaluate a Python expression as a string using various backends. local_dict=None, The following arithmetic operations are supported: +, -, *, /, **, %, // (python engine only) along with the following boolean operations: | (or), & (and), and ~ (not). Additionally, the ’pandas’ parser allows the use of and, or, and not with the same semantics as the corresponding bitwise operators. Series and DataFrame objects are supported and behave as they would with plain ol’ Python evaluation. Parameters expr : str or unicode The expression to evaluate. This string cannot contain any Python statements, only Python expressions. 912 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 parser : string, default ‘pandas’, {‘pandas’, ‘python’} The parser to use to construct the syntax tree from the expression. The default of ’pandas’ parses code slightly different than standard Python. Alternatively, you can parse an expression using the ’python’ parser to retain strict Python semantics. See the enhancing performance documentation for more details. engine : string, default ‘numexpr’, {‘python’, ‘numexpr’} The engine used to evaluate the expression. Supported engines are • ’numexpr’: This default engine evaluates pandas objects using numexpr large speed ups in complex expressions with large frames. for • ’python’: Performs operations as if you had eval‘d in top level python. This engine is generally not that useful. More backends may be available in the future. truediv : bool, optional Whether to use true division, like in Python >= 3 local_dict : dict or None, optional A dictionary of local variables, taken from locals() by default. global_dict : dict or None, optional A dictionary of global variables, taken from globals() by default. resolvers : list of dict-like or None, optional A list of objects implementing the __getitem__ special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the query() method to inject the index and columns variables that refer to their respective DataFrame instance attributes. level : int, optional The number of prior stack frames to traverse and add to the current scope. Most users will not need to change this parameter. target : a target object for assignment, optional, default is None essentially this is a passed in resolver Returns ndarray, numeric scalar, DataFrame, Series See also: pandas.DataFrame.query, pandas.DataFrame.eval Notes The dtype of any objects involved in an arithmetic % operation are recursively cast to float64. See the enhancing performance documentation for more details. Continued on next p 33.2. General functions 913 pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.16 – continued from previous page 33.2.5 Standard moving window functions rolling_count(arg, window[, freq, center, how]) rolling_sum(arg, window[, min_periods, ...]) rolling_mean(arg, window[, min_periods, ...]) rolling_median(arg, window[, min_periods, ...]) rolling_var(arg, window[, min_periods, ...]) rolling_std(arg, window[, min_periods, ...]) rolling_min(arg, window[, min_periods, ...]) rolling_max(arg, window[, min_periods, ...]) rolling_corr(arg1[, arg2, window, ...]) rolling_corr_pairwise(df1[, df2, window, ...]) rolling_cov(arg1[, arg2, window, ...]) rolling_skew(arg, window[, min_periods, ...]) rolling_kurt(arg, window[, min_periods, ...]) rolling_apply(arg, window, func[, ...]) rolling_quantile(arg, window, quantile[, ...]) rolling_window(arg[, window, win_type, ...]) Rolling count of number of non-NaN observations inside provided window. Moving sum. Moving mean. O(N log(window)) implementation using skip list Numerically stable implementation using Welford’s method. Moving standard deviation. Moving min of 1d array of dtype=float64 along axis=0 ignoring NaNs. Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs. Moving sample correlation. Deprecated. Unbiased moving covariance. Unbiased moving skewness. Unbiased moving kurtosis. Generic moving function application. Moving quantile. Applies a moving window of type window_type and size window on the pandas.rolling_count pandas.rolling_count(arg, window, freq=None, center=False, how=None) Rolling count of number of non-NaN observations inside provided window. Parameters arg : DataFrame or numpy ndarray-like window : int Size of the moving window. This is the number of observations used for calculating the statistic. freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Whether the label should correspond with center of window how : string, default ‘mean’ Method for down- or re-sampling Returns rolling_count : type of caller Notes The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). 914 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.rolling_sum pandas.rolling_sum(arg, window, **kwargs) Moving sum. min_periods=None, freq=None, center=False, how=None, Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘None’ Method for down- or re-sampling Returns y : type of input argument Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_mean pandas.rolling_mean(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs) Moving mean. Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. 33.2. General functions 915 pandas: powerful Python data analysis toolkit, Release 0.16.1 center : boolean, default False Set the labels at the center of the window. how : string, default ‘None’ Method for down- or re-sampling Returns y : type of input argument Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_median pandas.rolling_median(arg, window, min_periods=None, freq=None, center=False, how=’median’, **kwargs) O(N log(window)) implementation using skip list Moving median. Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘’median’ Method for down- or re-sampling Returns y : type of input argument Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). 916 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.rolling_var pandas.rolling_var(arg, window, **kwargs) min_periods=None, freq=None, center=False, how=None, Numerically stable implementation using Welford’s method. Moving variance. Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘None’ Method for down- or re-sampling ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. Returns y : type of input argument Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_std pandas.rolling_std(arg, window, **kwargs) Moving standard deviation. min_periods=None, freq=None, center=False, how=None, Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None 33.2. General functions 917 pandas: powerful Python data analysis toolkit, Release 0.16.1 Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘None’ Method for down- or re-sampling ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. Returns y : type of input argument Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_min pandas.rolling_min(arg, window, min_periods=None, freq=None, center=False, **kwargs) Moving min of 1d array of dtype=float64 along axis=0 ignoring NaNs. Moving minimum. how=’min’, Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘’min’ Method for down- or re-sampling Returns y : type of input argument 918 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_max pandas.rolling_max(arg, window, min_periods=None, freq=None, center=False, how=’max’, **kwargs) Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs. Moving maximum. Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘’max’ Method for down- or re-sampling Returns y : type of input argument Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_corr pandas.rolling_corr(arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None) Moving sample correlation. Parameters arg1 : Series, DataFrame, or ndarray arg2 : Series, DataFrame, or ndarray, optional if not supplied then will default to arg1 and produce pairwise output 33.2. General functions 919 pandas: powerful Python data analysis toolkit, Release 0.16.1 window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘None’ Method for down- or re-sampling pairwise : bool, default False If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. Returns y : type depends on inputs DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise) DataFrame / Series -> Computes result for each column Series / Series -> Series Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_corr_pairwise pandas.rolling_corr_pairwise(df1, df2=None, window=None, min_periods=None, freq=None, center=False) Deprecated. Use rolling_corr(..., pairwise=True) instead. Pairwise moving sample correlation Parameters df1 : DataFrame df2 : DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None 920 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘None’ Method for down- or re-sampling Returns y : Panel whose items are df1.index values Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_cov pandas.rolling_cov(arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None, ddof=1) Unbiased moving covariance. Parameters arg1 : Series, DataFrame, or ndarray arg2 : Series, DataFrame, or ndarray, optional if not supplied then will default to arg1 and produce pairwise output window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘None’ Method for down- or re-sampling pairwise : bool, default False 33.2. General functions 921 pandas: powerful Python data analysis toolkit, Release 0.16.1 If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. Returns y : type depends on inputs DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise) DataFrame / Series -> Computes result for each column Series / Series -> Series Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_skew pandas.rolling_skew(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs) Unbiased moving skewness. Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘None’ Method for down- or re-sampling Returns y : type of input argument Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. 922 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_kurt pandas.rolling_kurt(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs) Unbiased moving kurtosis. Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. how : string, default ‘None’ Method for down- or re-sampling Returns y : type of input argument Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_apply pandas.rolling_apply(arg, window, func, min_periods=None, freq=None, center=False, args=(), kwargs={}) Generic moving function application. Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. func : function Must produce a single value from an ndarray input 33.2. General functions 923 pandas: powerful Python data analysis toolkit, Release 0.16.1 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Whether the label should correspond with center of window args : tuple Passed on to func kwargs : dict Passed on to func Returns y : type of input argument Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_quantile pandas.rolling_quantile(arg, window, quantile, min_periods=None, freq=None, center=False) Moving quantile. Parameters arg : Series, DataFrame window : int Size of the moving window. This is the number of observations used for calculating the statistic. quantile : float 0 <= quantile <= 1 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Whether the label should correspond with center of window Returns y : type of input argument 924 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.rolling_window pandas.rolling_window(arg, window=None, win_type=None, min_periods=None, freq=None, center=False, mean=True, axis=0, how=None, **kwargs) Applies a moving window of type window_type and size window on the data. Parameters arg : Series, DataFrame window : int or ndarray Weighting window specification. If the window is an integer, then it is treated as the window length and win_type is required win_type : str, default None Window type (see Notes) min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Whether the label should correspond with center of window mean : boolean, default True If True computes weighted mean, else weighted sum axis : {0, 1}, default 0 how : string, default ‘mean’ Method for down- or re-sampling Returns y : type of input argument Notes The recognized window types are: •boxcar •triang •blackman •hamming •bartlett 33.2. General functions 925 pandas: powerful Python data analysis toolkit, Release 0.16.1 •parzen •bohman •blackmanharris •nuttall •barthann •kaiser (needs beta) •gaussian (needs std) •general_gaussian (needs power, width) •slepian (needs width). By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True. The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). 33.2.6 Standard expanding window functions expanding_count(arg[, freq]) expanding_sum(arg[, min_periods, freq]) expanding_mean(arg[, min_periods, freq]) expanding_median(arg[, min_periods, freq]) expanding_var(arg[, min_periods, freq]) expanding_std(arg[, min_periods, freq]) expanding_min(arg[, min_periods, freq]) expanding_max(arg[, min_periods, freq]) expanding_corr(arg1[, arg2, min_periods, ...]) expanding_corr_pairwise(df1[, df2, ...]) expanding_cov(arg1[, arg2, min_periods, ...]) expanding_skew(arg[, min_periods, freq]) expanding_kurt(arg[, min_periods, freq]) expanding_apply(arg, func[, min_periods, ...]) expanding_quantile(arg, quantile[, ...]) Expanding count of number of non-NaN observations. Expanding sum. Expanding mean. O(N log(window)) implementation using skip list Numerically stable implementation using Welford’s method. Expanding standard deviation. Moving min of 1d array of dtype=float64 along axis=0 ignoring NaNs. Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs. Expanding sample correlation. Deprecated. Unbiased expanding covariance. Unbiased expanding skewness. Unbiased expanding kurtosis. Generic expanding function application. Expanding quantile. pandas.expanding_count pandas.expanding_count(arg, freq=None) Expanding count of number of non-NaN observations. Parameters arg : DataFrame or numpy ndarray-like freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns expanding_count : type of caller 926 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.expanding_sum pandas.expanding_sum(arg, min_periods=1, freq=None, **kwargs) Expanding sum. Parameters arg : Series, DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns y : type of input argument pandas.expanding_mean pandas.expanding_mean(arg, min_periods=1, freq=None, **kwargs) Expanding mean. Parameters arg : Series, DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns y : type of input argument pandas.expanding_median pandas.expanding_median(arg, min_periods=1, freq=None, **kwargs) O(N log(window)) implementation using skip list Expanding median. Parameters arg : Series, DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) 33.2. General functions 927 pandas: powerful Python data analysis toolkit, Release 0.16.1 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns y : type of input argument pandas.expanding_var pandas.expanding_var(arg, min_periods=1, freq=None, **kwargs) Numerically stable implementation using Welford’s method. Expanding variance. Parameters arg : Series, DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. Returns y : type of input argument pandas.expanding_std pandas.expanding_std(arg, min_periods=1, freq=None, **kwargs) Expanding standard deviation. Parameters arg : Series, DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. Returns y : type of input argument pandas.expanding_min pandas.expanding_min(arg, min_periods=1, freq=None, **kwargs) Moving min of 1d array of dtype=float64 along axis=0 ignoring NaNs. Expanding minimum. 928 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters arg : Series, DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns y : type of input argument pandas.expanding_max pandas.expanding_max(arg, min_periods=1, freq=None, **kwargs) Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs. Expanding maximum. Parameters arg : Series, DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns y : type of input argument pandas.expanding_corr pandas.expanding_corr(arg1, arg2=None, min_periods=1, freq=None, pairwise=None) Expanding sample correlation. Parameters arg1 : Series, DataFrame, or ndarray arg2 : Series, DataFrame, or ndarray, optional if not supplied then will default to arg1 and produce pairwise output min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. pairwise : bool, default False If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. Returns y : type depends on inputs 33.2. General functions 929 pandas: powerful Python data analysis toolkit, Release 0.16.1 DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise) DataFrame / Series -> Computes result for each column Series / Series -> Series pandas.expanding_corr_pairwise pandas.expanding_corr_pairwise(df1, df2=None, min_periods=1, freq=None) Deprecated. Use expanding_corr(..., pairwise=True) instead. Pairwise expanding sample correlation Parameters df1 : DataFrame df2 : DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns y : Panel whose items are df1.index values pandas.expanding_cov pandas.expanding_cov(arg1, arg2=None, min_periods=1, freq=None, pairwise=None, ddof=1) Unbiased expanding covariance. Parameters arg1 : Series, DataFrame, or ndarray arg2 : Series, DataFrame, or ndarray, optional if not supplied then will default to arg1 and produce pairwise output min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. pairwise : bool, default False If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. Returns y : type depends on inputs DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise) DataFrame / Series -> Computes result for each column Series / Series -> Series 930 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.expanding_skew pandas.expanding_skew(arg, min_periods=1, freq=None, **kwargs) Unbiased expanding skewness. Parameters arg : Series, DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns y : type of input argument pandas.expanding_kurt pandas.expanding_kurt(arg, min_periods=1, freq=None, **kwargs) Unbiased expanding kurtosis. Parameters arg : Series, DataFrame min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns y : type of input argument pandas.expanding_apply pandas.expanding_apply(arg, func, min_periods=1, freq=None, args=(), kwargs={}) Generic expanding function application. Parameters arg : Series, DataFrame func : function Must produce a single value from an ndarray input min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. args : tuple Passed on to func 33.2. General functions 931 pandas: powerful Python data analysis toolkit, Release 0.16.1 kwargs : dict Passed on to func Returns y : type of input argument Notes The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). pandas.expanding_quantile pandas.expanding_quantile(arg, quantile, min_periods=1, freq=None) Expanding quantile. Parameters arg : Series, DataFrame quantile : float 0 <= quantile <= 1 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. Returns y : type of input argument Notes The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean). 33.2.7 Exponentially-weighted moving window functions ewma(arg[, com, span, halflife, ...]) ewmstd(arg[, com, span, halflife, ...]) ewmvar(arg[, com, span, halflife, ...]) ewmcorr(arg1[, arg2, com, span, halflife, ...]) ewmcov(arg1[, arg2, com, span, halflife, ...]) Exponentially-weighted moving average Exponentially-weighted moving std Exponentially-weighted moving variance Exponentially-weighted moving correlation Exponentially-weighted moving covariance pandas.ewma pandas.ewma(arg, com=None, span=None, halflife=None, min_periods=0, freq=None, adjust=True, how=None, ignore_na=False) Exponentially-weighted moving average Parameters arg : Series, DataFrame 932 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 com : float. optional Center of mass: 𝛼 = 1/(1 + 𝑐𝑜𝑚), span : float, optional Specify decay in terms of span, 𝛼 = 2/(𝑠𝑝𝑎𝑛 + 1) halflife : float, optional Specify decay in terms of halflife, 𝛼 = 1 − 𝑒𝑥𝑝(𝑙𝑜𝑔(0.5)/ℎ𝑎𝑙𝑓 𝑙𝑖𝑓 𝑒) min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). freq : None or string alias / date offset object, default=None Frequency to conform to before computing statistic adjust : boolean, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) how : string, default ‘mean’ Method for down- or re-sampling ignore_na : boolean, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior Returns y : type of input argument Notes Either center of mass or span must be specified EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter 𝛼 is related to the span as 𝛼 = 2/(𝑠 + 1) = 1/(1 + 𝑐) where c is the center of mass. Given a span, the associated center of mass is 𝑐 = (𝑠 − 1)/2 So a “20-day EWMA” would have center 9.5. When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. = (1arg[0]; When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). 33.2. General functions 933 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.ewmstd pandas.ewmstd(arg, com=None, span=None, nore_na=False, adjust=True) Exponentially-weighted moving std halflife=None, min_periods=0, bias=False, ig- Parameters arg : Series, DataFrame com : float. optional Center of mass: 𝛼 = 1/(1 + 𝑐𝑜𝑚), span : float, optional Specify decay in terms of span, 𝛼 = 2/(𝑠𝑝𝑎𝑛 + 1) halflife : float, optional Specify decay in terms of halflife, 𝛼 = 1 − 𝑒𝑥𝑝(𝑙𝑜𝑔(0.5)/ℎ𝑎𝑙𝑓 𝑙𝑖𝑓 𝑒) min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). freq : None or string alias / date offset object, default=None Frequency to conform to before computing statistic adjust : boolean, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) how : string, default ‘mean’ Method for down- or re-sampling ignore_na : boolean, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior bias : boolean, default False Use a standard estimation bias correction Returns y : type of input argument Notes Either center of mass or span must be specified EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter 𝛼 is related to the span as 𝛼 = 2/(𝑠 + 1) = 1/(1 + 𝑐) where c is the center of mass. Given a span, the associated center of mass is 𝑐 = (𝑠 − 1)/2 So a “20-day EWMA” would have center 9.5. When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. 934 = (1arg[0]; Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). pandas.ewmvar pandas.ewmvar(arg, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, how=None, ignore_na=False, adjust=True) Exponentially-weighted moving variance Parameters arg : Series, DataFrame com : float. optional Center of mass: 𝛼 = 1/(1 + 𝑐𝑜𝑚), span : float, optional Specify decay in terms of span, 𝛼 = 2/(𝑠𝑝𝑎𝑛 + 1) halflife : float, optional Specify decay in terms of halflife, 𝛼 = 1 − 𝑒𝑥𝑝(𝑙𝑜𝑔(0.5)/ℎ𝑎𝑙𝑓 𝑙𝑖𝑓 𝑒) min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). freq : None or string alias / date offset object, default=None Frequency to conform to before computing statistic adjust : boolean, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) how : string, default ‘mean’ Method for down- or re-sampling ignore_na : boolean, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior bias : boolean, default False Use a standard estimation bias correction Returns y : type of input argument Notes Either center of mass or span must be specified EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter 𝛼 is related to the span as 𝛼 = 2/(𝑠 + 1) = 1/(1 + 𝑐) 33.2. General functions 935 pandas: powerful Python data analysis toolkit, Release 0.16.1 where c is the center of mass. Given a span, the associated center of mass is 𝑐 = (𝑠 − 1)/2 So a “20-day EWMA” would have center 9.5. When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. = (1arg[0]; When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). pandas.ewmcorr pandas.ewmcorr(arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, freq=None, pairwise=None, how=None, ignore_na=False, adjust=True) Exponentially-weighted moving correlation Parameters arg1 : Series, DataFrame, or ndarray arg2 : Series, DataFrame, or ndarray, optional if not supplied then will default to arg1 and produce pairwise output com : float. optional Center of mass: 𝛼 = 1/(1 + 𝑐𝑜𝑚), span : float, optional Specify decay in terms of span, 𝛼 = 2/(𝑠𝑝𝑎𝑛 + 1) halflife : float, optional Specify decay in terms of halflife, 𝛼 = 1 − 𝑒𝑥𝑝(𝑙𝑜𝑔(0.5)/ℎ𝑎𝑙𝑓 𝑙𝑖𝑓 𝑒) min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). freq : None or string alias / date offset object, default=None Frequency to conform to before computing statistic adjust : boolean, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) how : string, default ‘mean’ Method for down- or re-sampling ignore_na : boolean, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior pairwise : bool, default False 936 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. Returns y : type of input argument Notes Either center of mass or span must be specified EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter 𝛼 is related to the span as 𝛼 = 2/(𝑠 + 1) = 1/(1 + 𝑐) where c is the center of mass. Given a span, the associated center of mass is 𝑐 = (𝑠 − 1)/2 So a “20-day EWMA” would have center 9.5. When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. = (1arg[0]; When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). pandas.ewmcov pandas.ewmcov(arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, pairwise=None, how=None, ignore_na=False, adjust=True) Exponentially-weighted moving covariance Parameters arg1 : Series, DataFrame, or ndarray arg2 : Series, DataFrame, or ndarray, optional if not supplied then will default to arg1 and produce pairwise output com : float. optional Center of mass: 𝛼 = 1/(1 + 𝑐𝑜𝑚), span : float, optional Specify decay in terms of span, 𝛼 = 2/(𝑠𝑝𝑎𝑛 + 1) halflife : float, optional Specify decay in terms of halflife, 𝛼 = 1 − 𝑒𝑥𝑝(𝑙𝑜𝑔(0.5)/ℎ𝑎𝑙𝑓 𝑙𝑖𝑓 𝑒) min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). freq : None or string alias / date offset object, default=None 33.2. General functions 937 pandas: powerful Python data analysis toolkit, Release 0.16.1 Frequency to conform to before computing statistic adjust : boolean, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) how : string, default ‘mean’ Method for down- or re-sampling ignore_na : boolean, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior pairwise : bool, default False If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. Returns y : type of input argument Notes Either center of mass or span must be specified EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter 𝛼 is related to the span as 𝛼 = 2/(𝑠 + 1) = 1/(1 + 𝑐) where c is the center of mass. Given a span, the associated center of mass is 𝑐 = (𝑠 − 1)/2 So a “20-day EWMA” would have center 9.5. When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. = (1arg[0]; When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). 33.3 Series 33.3.1 Constructor Series([data, index, dtype, name, copy, ...]) 938 One-dimensional ndarray with axis labels (including time series). Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False) One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN) Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes. Parameters data : array-like, dict, or scalar value Contains data stored in Series index : array-like or Index (1d) Values must be unique and hashable, same length as data. Index object (or other iterable of same length as data) Will default to np.arange(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : numpy.dtype or None If None, dtype will be inferred copy : boolean, default False Copy input data Attributes T at axes base blocks data dtype dtypes empty flags ftype ftypes iat iloc imag is_time_series itemsize ix loc nbytes ndim real shape size 33.3. Series return the transpose, which is by definition self Fast label-based scalar accessor return the base object if the memory of the underlying data is shared Internal property, property synonym for as_blocks() return the data pointer of the underlying data return the dtype object of the underlying data return the dtype object of the underlying data True if NDFrame is entirely empty [no items] return if the data is sparse|dense return if the data is sparse|dense Fast integer location scalar accessor. Purely integer-location based indexing for selection by position. return the size of the dtype of the item of the underlying data A primarily label-location based indexer, with integer position fallback. Purely label-location based indexer for selection by label. return the number of bytes in the underlying data return the number of dimensions of the underlying data, by definition 1 return a tuple of the shape of the underlying data return the number of elements in the underlying data Continued on next page 939 pandas: powerful Python data analysis toolkit, Release 0.16.1 strides values Table 33.20 – continued from previous page return the strides of the underlying data Return Series as ndarray pandas.Series.T Series.T return the transpose, which is by definition self pandas.Series.at Series.at Fast label-based scalar accessor Similarly to loc, at provides label based scalar lookups. You can also set using these indexers. pandas.Series.axes Series.axes pandas.Series.base Series.base return the base object if the memory of the underlying data is shared pandas.Series.blocks Series.blocks Internal property, property synonym for as_blocks() pandas.Series.data Series.data return the data pointer of the underlying data pandas.Series.dtype Series.dtype return the dtype object of the underlying data pandas.Series.dtypes Series.dtypes return the dtype object of the underlying data 940 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.empty Series.empty True if NDFrame is entirely empty [no items] pandas.Series.flags Series.flags pandas.Series.ftype Series.ftype return if the data is sparse|dense pandas.Series.ftypes Series.ftypes return if the data is sparse|dense pandas.Series.iat Series.iat Fast integer location scalar accessor. Similarly to iloc, iat provides integer based lookups. You can also set using these indexers. pandas.Series.iloc Series.iloc Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: •An integer, e.g. 5. •A list or array of integers, e.g. [4, 3, 0]. •A slice object with ints, e.g. 1:7. •A boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics). See more at Selection by Position pandas.Series.imag Series.imag 33.3. Series 941 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.is_time_series Series.is_time_series pandas.Series.itemsize Series.itemsize return the size of the dtype of the item of the underlying data pandas.Series.ix Series.ix A primarily label-location based indexer, with integer position fallback. .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes. However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc. See more at Advanced Indexing. pandas.Series.loc Series.loc Purely label-location based indexer for selection by label. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: •A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index, and never as an integer position along the index). •A list or array of labels, e.g. [’a’, ’b’, ’c’]. •A slice object with labels, e.g. ’a’:’f’ (note that contrary to usual python slices, both the start and the stop are included!). •A boolean array. .loc will raise a KeyError when the items are not found. See more at Selection by Label pandas.Series.nbytes Series.nbytes return the number of bytes in the underlying data 942 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.ndim Series.ndim return the number of dimensions of the underlying data, by definition 1 pandas.Series.real Series.real pandas.Series.shape Series.shape return a tuple of the shape of the underlying data pandas.Series.size Series.size return the number of elements in the underlying data pandas.Series.strides Series.strides return the strides of the underlying data pandas.Series.values Series.values Return Series as ndarray Returns arr : numpy.ndarray is_copy Methods abs() add(other[, level, fill_value, axis]) add_prefix(prefix) add_suffix(suffix) align(other[, join, axis, level, copy, ...]) all([axis, bool_only, skipna, level]) any([axis, bool_only, skipna, level]) append(to_append[, verify_integrity]) apply(func[, convert_dtype, args]) argmax([axis, out, skipna]) argmin([axis, out, skipna]) argsort([axis, kind, order]) as_blocks() 33.3. Series Return an object with absolute value taken. Binary operator add with support to substitute a fill_value for missing data Concatenate prefix string with panel items names. Concatenate suffix string with panel items names Align two object on their axes with the Return whether all elements are True over requested axis Return whether any element is True over requested axis Concatenate two or more Series. Invoke function on values of Series. Index of first occurrence of maximum of values. Index of first occurrence of minimum of values. Overrides ndarray.argsort. Convert the frame to a dict of dtype -> Constructor Types that each has a homoge 943 pandas: powerful Python data analysis toolkit, Release 0.16.1 as_matrix([columns]) asfreq(freq[, method, how, normalize]) asof(where) astype(dtype[, copy, raise_on_error]) at_time(time[, asof]) autocorr([lag]) between(left, right[, inclusive]) between_time(start_time, end_time[, ...]) bfill([axis, inplace, limit, downcast]) bool() cat clip([lower, upper, out, axis]) clip_lower(threshold[, axis]) clip_upper(threshold[, axis]) combine(other, func[, fill_value]) combine_first(other) compound([axis, skipna, level]) compress(condition[, axis, out]) consolidate([inplace]) convert_objects([convert_dates, ...]) copy([deep]) corr(other[, method, min_periods]) count([level]) cov(other[, min_periods]) cummax([axis, dtype, out, skipna]) cummin([axis, dtype, out, skipna]) cumprod([axis, dtype, out, skipna]) cumsum([axis, dtype, out, skipna]) describe([percentile_width, percentiles, ...]) diff([periods]) div(other[, level, fill_value, axis]) divide(other[, level, fill_value, axis]) dot(other) drop(labels[, axis, level, inplace, errors]) drop_duplicates([take_last, inplace]) dropna([axis, inplace]) dt duplicated([take_last]) eq(other[, axis]) equals(other) factorize([sort, na_sentinel]) ffill([axis, inplace, limit, downcast]) fillna([value, method, axis, inplace, ...]) filter([items, like, regex, axis]) first(offset) first_valid_index() floordiv(other[, level, fill_value, axis]) from_array(arr[, index, name, dtype, copy, ...]) from_csv(path[, sep, parse_dates, header, ...]) ge(other[, axis]) get(key[, default]) get_dtype_counts() 944 Table 33.21 – continued from previous page Convert the frame to its Numpy-array representation. Convert all TimeSeries inside to specified frequency using DateOffset objects. Return last good (non-NaN) value in TimeSeries if value is NaN for requested da Cast object to input numpy.dtype Select values at particular time of day (e.g. Lag-N autocorrelation Return boolean Series equivalent to left <= series <= right. Select values between particular times of the day (e.g., 9:00-9:30 AM) Synonym for NDFrame.fillna(method=’bfill’) Return the bool of a single element PandasObject alias of CategoricalAccessor Trim values at input threshold(s) Return copy of the input with values below given value(s) truncated Return copy of input with values above given value(s) truncated Perform elementwise binary operation on two Series using given function Combine Series values, choosing the calling Series’s values first. Return the compound percentage of the values for the requested axis Return selected slices of an array along given axis as a Series Compute NDFrame with “consolidated” internals (data of each dtype grouped to Attempt to infer better dtype for object columns Make a copy of this object Compute correlation with other Series, excluding missing values Return number of non-NA/null observations in the Series Compute covariance with Series, excluding missing values Return cumulative max over requested axis. Return cumulative min over requested axis. Return cumulative prod over requested axis. Return cumulative sum over requested axis. Generate various summary statistics, excluding NaN values. 1st discrete difference of object Binary operator truediv with support to substitute a fill_value for missing data Binary operator truediv with support to substitute a fill_value for missing data Matrix multiplication with DataFrame or inner-product with Series Return new object with labels in requested axis removed Return Series with duplicate values removed Return Series without null values alias of CombinedDatetimelikeProperties Return boolean Series denoting duplicate values Determines if two NDFrame objects contain the same elements. Encode the object as an enumerated type or categorical variable Synonym for NDFrame.fillna(method=’ffill’) Fill NA/NaN values using the specified method Restrict the info axis to set of items or wildcard Convenience method for subsetting initial periods of time series data Return label for first non-NA/null value Binary operator floordiv with support to substitute a fill_value for missing data Read delimited file into Series Get item from object for given key (DataFrame column, Panel slice, etc.). Return the counts of dtypes in this object Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 get_ftype_counts() get_value(label[, takeable]) get_values() groupby([by, axis, level, as_index, sort, ...]) gt(other[, axis]) hasnans() head([n]) hist([by, ax, grid, xlabelsize, xrot, ...]) idxmax([axis, out, skipna]) idxmin([axis, out, skipna]) iget(i[, axis]) iget_value(i[, axis]) interpolate([method, axis, limit, inplace, ...]) irow(i[, axis]) isin(values) isnull() item() iteritems() iterkv(*args, **kwargs) keys() kurt([axis, skipna, level, numeric_only]) kurtosis([axis, skipna, level, numeric_only]) last(offset) last_valid_index() le(other[, axis]) load(path) lt(other[, axis]) mad([axis, skipna, level]) map(arg[, na_action]) mask(cond[, other, inplace, axis, level, ...]) max([axis, skipna, level, numeric_only]) mean([axis, skipna, level, numeric_only]) median([axis, skipna, level, numeric_only]) min([axis, skipna, level, numeric_only]) mod(other[, level, fill_value, axis]) mode() mul(other[, level, fill_value, axis]) multiply(other[, level, fill_value, axis]) ne(other[, axis]) nlargest([n, take_last]) nonzero() notnull() nsmallest([n, take_last]) nunique([dropna]) order([na_last, ascending, kind, ...]) pct_change([periods, fill_method, limit, freq]) plot(data[, kind, ax, figsize, use_index, ...]) pop(item) pow(other[, level, fill_value, axis]) prod([axis, skipna, level, numeric_only]) product([axis, skipna, level, numeric_only]) ptp([axis, out]) 33.3. Series Table 33.21 – continued from previous page Return the counts of ftypes in this object Quickly retrieve single value at passed index label same as values (but handles sparseness conversions); is a view Group series using mapper (dict or key function, apply given function return if I have any nans; enables various perf speedups Returns first n rows Draw histogram of the input series using matplotlib Index of first occurrence of maximum of values. Index of first occurrence of minimum of values. Return the i-th value or values in the Series by location Return the i-th value or values in the Series by location Interpolate values according to different methods. Return the i-th value or values in the Series by location Return a boolean Series showing whether each element in the Series is exa Return a boolean same-sized object indicating if the values are null return the first element of the underlying data as a python scalar Lazily iterate over (index, value) tuples iteritems alias used to get around 2to3. Deprecated Alias for index Return unbiased kurtosis over requested axis using Fishers definition of kurtosis Return unbiased kurtosis over requested axis using Fishers definition of kurtosis Convenience method for subsetting final periods of time series data Return label for last non-NA/null value Deprecated. Return the mean absolute deviation of the values for the requested axis Map values of Series using input correspondence (which can be Return an object of same shape as self and whose corresponding entries are from This method returns the maximum of the values in the object. Return the mean of the values for the requested axis Return the median of the values for the requested axis This method returns the minimum of the values in the object. Binary operator mod with support to substitute a fill_value for missing data Returns the mode(s) of the dataset. Binary operator mul with support to substitute a fill_value for missing data Binary operator mul with support to substitute a fill_value for missing data Return the largest n elements. Return the indices of the elements that are non-zero Return a boolean same-sized object indicating if the values are Return the smallest n elements. Return number of unique elements in the object. Sorts Series object, by value, maintaining index-value link. Percent change over given number of periods. Make plots of Series using matplotlib / pylab. Return item and drop from frame. Binary operator pow with support to substitute a fill_value for missing data Return the product of the values for the requested axis Return the product of the values for the requested axis 945 pandas: powerful Python data analysis toolkit, Release 0.16.1 put(*args, **kwargs) quantile([q]) radd(other[, level, fill_value, axis]) rank([method, na_option, ascending, pct]) ravel([order]) rdiv(other[, level, fill_value, axis]) reindex([index]) reindex_axis(labels[, axis]) reindex_like(other[, method, copy, limit]) rename([index]) rename_axis(mapper[, axis, copy, inplace]) reorder_levels(order) repeat(reps) replace([to_replace, value, inplace, limit, ...]) resample(rule[, how, axis, fill_method, ...]) reset_index([level, drop, name, inplace]) reshape(*args, **kwargs) rfloordiv(other[, level, fill_value, axis]) rmod(other[, level, fill_value, axis]) rmul(other[, level, fill_value, axis]) round([decimals, out]) rpow(other[, level, fill_value, axis]) rsub(other[, level, fill_value, axis]) rtruediv(other[, level, fill_value, axis]) sample([n, frac, replace, weights, ...]) save(path) searchsorted(v[, side, sorter]) select(crit[, axis]) sem([axis, skipna, level, ddof, numeric_only]) set_axis(axis, labels) set_value(label, value[, takeable]) shift([periods, freq, axis]) skew([axis, skipna, level, numeric_only]) slice_shift([periods, axis]) sort([axis, ascending, kind, na_position, ...]) sort_index([ascending]) sortlevel([level, ascending, sort_remaining]) squeeze() std([axis, skipna, level, ddof, numeric_only]) str sub(other[, level, fill_value, axis]) subtract(other[, level, fill_value, axis]) sum([axis, skipna, level, numeric_only]) swapaxes(axis1, axis2[, copy]) swaplevel(i, j[, copy]) tail([n]) take(indices[, axis, convert, is_copy]) to_clipboard([excel, sep]) to_csv(path[, index, sep, na_rep, ...]) to_dense() to_dict() to_frame([name]) 946 Table 33.21 – continued from previous page return a ndarray with the values put Return value at the given quantile, a la numpy.percentile. Binary operator radd with support to substitute a fill_value for missing data Compute data ranks (1 through n). Return the flattened underlying data as an ndarray Binary operator rtruediv with support to substitute a fill_value for missing data Conform Series to new index with optional filling logic, placing NA/NaN in loca for compatibility with higher dims return an object with matching indicies to myself Alter axes input function or functions. Alter index and / or columns using input function or functions. Rearrange index levels using input order. return a new Series with the values repeated reps times Replace values given in ‘to_replace’ with ‘value’. Convenience method for frequency conversion and resampling of regular time-se Analogous to the pandas.DataFrame.reset_index() function, see doc return an ndarray with the values shape Binary operator rfloordiv with support to substitute a fill_value for missing data Binary operator rmod with support to substitute a fill_value for missing data Binary operator rmul with support to substitute a fill_value for missing data Return a with each element rounded to the given number of decimals. Binary operator rpow with support to substitute a fill_value for missing data Binary operator rsub with support to substitute a fill_value for missing data Binary operator rtruediv with support to substitute a fill_value for missing data Returns a random sample of items from an axis of object. Deprecated. Find indices where elements should be inserted to maintain order. Return data corresponding to axis labels matching criteria Return unbiased standard error of the mean over requested axis. public verson of axis assignment Quickly set single value at passed label. Shift index by desired number of periods with an optional time freq Return unbiased skew over requested axis Equivalent to shift without copying data. Sort values and index labels by value. Sort object by labels (along an axis) Sort Series with MultiIndex by chosen level. squeeze length 1 dimensions Return unbiased standard deviation over requested axis. alias of StringMethods Binary operator sub with support to substitute a fill_value for missing data Binary operator sub with support to substitute a fill_value for missing data Return the sum of the values for the requested axis Interchange axes and swap values axes appropriately Swap levels i and j in a MultiIndex Returns last n rows return Series corresponding to requested indices Attempt to write text representation of object to the system clipboard This can be Write Series to a comma-separated values (csv) file Return dense representation of NDFrame (as opposed to sparse) Convert Series to {label -> value} dict Convert Series to DataFrame Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 to_hdf(path_or_buf, key, **kwargs) to_json([path_or_buf, orient, date_format, ...]) to_msgpack([path_or_buf]) to_period([freq, copy]) to_pickle(path) to_sparse([kind, fill_value]) to_sql(name, con[, flavor, schema, ...]) to_string([buf, na_rep, float_format, ...]) to_timestamp([freq, how, copy]) tolist() transpose() truediv(other[, level, fill_value, axis]) truncate([before, after, axis, copy]) tshift([periods, freq, axis]) tz_convert(tz[, axis, level, copy]) tz_localize(*args, **kwargs) unique() unstack([level]) update(other) valid([inplace]) value_counts([normalize, sort, ascending, ...]) var([axis, skipna, level, ddof, numeric_only]) view([dtype]) where(cond[, other, inplace, axis, level, ...]) xs(key[, axis, level, copy, drop_level]) Table 33.21 – continued from previous page activate the HDFStore Convert the object to a JSON string. msgpack (serialize) object to input file path Convert TimeSeries from DatetimeIndex to PeriodIndex with desired Pickle (serialize) object to input file path Convert Series to SparseSeries Write records stored in a DataFrame to a SQL database. Render a string representation of the Series Cast to datetimeindex of timestamps, at beginning of period Convert Series to a nested list return the transpose, which is by definition self Binary operator truediv with support to substitute a fill_value for missing data Truncates a sorted NDFrame before and/or after some particular dates. Shift the time index, using the index’s frequency if available Convert tz-aware axis to target time zone. Localize tz-naive TimeSeries to target time zone Return array of unique values in the object. Unstack, a.k.a. Modify Series in place using non-NA values from passed Series. Returns object containing counts of unique values. Return unbiased variance over requested axis. Return an object of same shape as self and whose corresponding entries are from Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. pandas.Series.abs Series.abs() Return an object with absolute value taken. Only applicable to objects that are all numeric Returns abs: type of caller pandas.Series.add Series.add(other, level=None, fill_value=None, axis=0) Binary operator add with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series 33.3. Series 947 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.add_prefix Series.add_prefix(prefix) Concatenate prefix string with panel items names. Parameters prefix : string Returns with_prefix : type of caller pandas.Series.add_suffix Series.add_suffix(suffix) Concatenate suffix string with panel items names Parameters suffix : string Returns with_suffix : type of caller pandas.Series.align Series.align(other, join=’outer’, axis=None, level=None, copy=True, method=None, limit=None, fill_axis=0) Align two object on their axes with the specified join method for each axis Index fill_value=None, Parameters other : DataFrame or Series join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None) level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level copy : boolean, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value method : str, default None limit : int, default None fill_axis : {0, 1}, default 0 Filling axis, method and limit Returns (left, right) : (type of input, type of other) Aligned objects 948 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.all Series.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether all elements are True over requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns all : scalar or Series (if level specified) pandas.Series.any Series.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether any element is True over requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns any : scalar or Series (if level specified) pandas.Series.append Series.append(to_append, verify_integrity=False) Concatenate two or more Series. The indexes must not overlap Parameters to_append : Series or list/tuple of Series verify_integrity : boolean, default False If True, raise Exception on creating index with duplicates Returns appended : Series 33.3. Series 949 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.apply Series.apply(func, convert_dtype=True, args=(), **kwds) Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values Parameters func : function convert_dtype : boolean, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object args : tuple Positional arguments to pass to function in addition to the value Additional keyword arguments will be passed as keywords to the function Returns y : Series or DataFrame if func returns a Series See also: Series.map For element-wise operations pandas.Series.argmax Series.argmax(axis=None, out=None, skipna=True) Index of first occurrence of maximum of values. Parameters skipna : boolean, default True Exclude NA/null values Returns idxmax : Index of maximum of values See also: DataFrame.idxmax, numpy.ndarray.argmax Notes This method is the Series version of ndarray.argmax. pandas.Series.argmin Series.argmin(axis=None, out=None, skipna=True) Index of first occurrence of minimum of values. Parameters skipna : boolean, default True Exclude NA/null values Returns idxmin : Index of minimum of values See also: DataFrame.idxmin, numpy.ndarray.argmin 950 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes This method is the Series version of ndarray.argmin. pandas.Series.argsort Series.argsort(axis=0, kind=’quicksort’, order=None) Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values Parameters axis : int (can only be zero) kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’ Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm order : ignored Returns argsorted : Series, with -1 indicated where nan values are present See also: numpy.ndarray.argsort pandas.Series.as_blocks Series.as_blocks() Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix) Returns values : a dict of dtype -> Constructor Types pandas.Series.as_matrix Series.as_matrix(columns=None) Convert the frame to its Numpy-array representation. Parameters columns: list, optional, default:None If None, return all columns, otherwise, returns specified columns. Returns values : ndarray If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. See also: pandas.DataFrame.values Notes Return is NOT a Numpy-matrix, rather, a Numpy-array. 33.3. Series 951 pandas: powerful Python data analysis toolkit, Release 0.16.1 The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. This method is provided for backwards compatibility. Generally, it is recommended to use ‘.values’. pandas.Series.asfreq Series.asfreq(freq, method=None, how=None, normalize=False) Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values. Parameters freq : DateOffset object, or string method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None} Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method how : {‘start’, ‘end’}, default end For PeriodIndex only, see PeriodIndex.asfreq normalize : bool, default False Whether to reset output index to midnight Returns converted : type of caller pandas.Series.asof Series.asof(where) Return last good (non-NaN) value in TimeSeries if value is NaN for requested date. If there is no good value, NaN is returned. Parameters where : date or array of dates Returns value or NaN Notes Dates are assumed to be sorted pandas.Series.astype Series.astype(dtype, copy=True, raise_on_error=True, **kwargs) Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters dtype : numpy.dtype or Python type raise_on_error : raise on invalid input kwargs : keyword arguments to pass on to the constructor Returns casted : type of caller 952 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.at_time Series.at_time(time, asof=False) Select values at particular time of day (e.g. 9:30AM) Parameters time : datetime.time or string Returns values_at_time : type of caller pandas.Series.autocorr Series.autocorr(lag=1) Lag-N autocorrelation Parameters lag : int, default 1 Number of lags to apply before performing autocorrelation. Returns autocorr : float pandas.Series.between Series.between(left, right, inclusive=True) Return boolean Series equivalent to left <= series <= right. NA values will be treated as False Parameters left : scalar Left boundary right : scalar Right boundary Returns is_between : Series pandas.Series.between_time Series.between_time(start_time, end_time, include_start=True, include_end=True) Select values between particular times of the day (e.g., 9:00-9:30 AM) Parameters start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True Returns values_between_time : type of caller pandas.Series.bfill Series.bfill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’bfill’) 33.3. Series 953 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.bool Series.bool() Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean pandas.Series.cat Series.cat() Accessor object for categorical properties of the Series values. Be aware that assigning to categories is a inplace operation, while all methods return new categorical data per default (but can be called with inplace=True). Examples >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> s.cat.categories s.cat.categories = list('abc') s.cat.rename_categories(list('cab')) s.cat.reorder_categories(list('cab')) s.cat.add_categories(['d','e']) s.cat.remove_categories(['d']) s.cat.remove_unused_categories() s.cat.set_categories(list('abcde')) s.cat.as_ordered() s.cat.as_unordered() pandas.Series.clip Series.clip(lower=None, upper=None, out=None, axis=None) Trim values at input threshold(s) Parameters lower : float or array_like, default None upper : float or array_like, default None axis : int or string axis name, optional Align object with lower and upper along the given axis. Returns clipped : Series Examples >>> df 0 1 0 0.335232 -1.256177 1 -1.367855 0.746646 2 0.027753 -1.176076 3 0.230930 -0.679613 4 1.261967 0.570967 >>> df.clip(-1.0, 0.5) 0 1 954 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 0 0.335232 -1.000000 1 -1.000000 0.500000 2 0.027753 -1.000000 3 0.230930 -0.679613 4 0.500000 0.500000 >>> t 0 -0.3 1 -0.2 2 -0.1 3 0.0 4 0.1 dtype: float64 >>> df.clip(t, t + 1, axis=0) 0 1 0 0.335232 -0.300000 1 -0.200000 0.746646 2 0.027753 -0.100000 3 0.230930 0.000000 4 1.100000 0.570967 pandas.Series.clip_lower Series.clip_lower(threshold, axis=None) Return copy of the input with values below given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.Series.clip_upper Series.clip_upper(threshold, axis=None) Return copy of input with values above given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.Series.combine Series.combine(other, func, fill_value=nan) Perform elementwise binary operation on two Series using given function with optional fill value when an 33.3. Series 955 pandas: powerful Python data analysis toolkit, Release 0.16.1 index is missing from one Series or the other Parameters other : Series or scalar value func : function fill_value : scalar value Returns result : Series pandas.Series.combine_first Series.combine_first(other) Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two indexes Parameters other : Series Returns y : Series pandas.Series.compound Series.compound(axis=None, skipna=None, level=None) Return the compound percentage of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns compounded : scalar or Series (if level specified) pandas.Series.compress Series.compress(condition, axis=0, out=None, **kwargs) Return selected slices of an array along given axis as a Series See also: numpy.ndarray.compress pandas.Series.consolidate Series.consolidate(inplace=False) Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user Parameters inplace : boolean, default False 956 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If False return new object, otherwise modify existing object Returns consolidated : type of caller pandas.Series.convert_objects Series.convert_objects(convert_dates=True, convert_numeric=False, vert_timedeltas=True, copy=True) Attempt to infer better dtype for object columns con- Parameters convert_dates : boolean, default True If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. convert_numeric : boolean, default False If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN. convert_timedeltas : boolean, default True If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. copy : boolean, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns converted : same as input object pandas.Series.copy Series.copy(deep=True) Make a copy of this object Parameters deep : boolean or string, default True Make a deep copy, i.e. also copy data Returns copy : type of caller pandas.Series.corr Series.corr(other, method=’pearson’, min_periods=None) Compute correlation with other Series, excluding missing values Parameters other : Series method : {‘pearson’, ‘kendall’, ‘spearman’} • pearson : standard correlation coefficient • kendall : Kendall Tau correlation coefficient • spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations needed to have a valid result 33.3. Series 957 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns correlation : float pandas.Series.count Series.count(level=None) Return number of non-NA/null observations in the Series Parameters level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series Returns nobs : int or Series (if level specified) pandas.Series.cov Series.cov(other, min_periods=None) Compute covariance with Series, excluding missing values Parameters other : Series min_periods : int, optional Minimum number of observations needed to have a valid result Returns covariance : float Normalized by N-1 (unbiased estimator). pandas.Series.cummax Series.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative max over requested axis. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns max : scalar pandas.Series.cummin Series.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative min over requested axis. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns min : scalar 958 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.cumprod Series.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative prod over requested axis. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns prod : scalar pandas.Series.cumsum Series.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative sum over requested axis. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns sum : scalar pandas.Series.describe Series.describe(percentile_width=None, percentiles=None, include=None, exclude=None) Generate various summary statistics, excluding NaN values. Parameters percentile_width : float, deprecated The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75 percentiles : array-like, optional The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles. include, exclude : list-like, ‘all’, or None (default) Specify the form of the returned result. Either: • None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns. • A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=[’O’]) • If include is the string ‘all’, the output column-set will match the input one. Returns summary: NDFrame of summary statistics See also: DataFrame.select_dtypes 33.3. Series 959 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes The output DataFrame index depends on the requested dtypes: For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles. For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items. For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments. If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count. The include, exclude arguments are ignored for Series. pandas.Series.diff Series.diff(periods=1) 1st discrete difference of object Parameters periods : int, default 1 Periods to shift for forming difference Returns diffed : Series pandas.Series.div Series.div(other, level=None, fill_value=None, axis=0) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.divide Series.divide(other, level=None, fill_value=None, axis=0) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name 960 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.dot Series.dot(other) Matrix multiplication with DataFrame or inner-product with Series objects Parameters other : Series or DataFrame Returns dot_product : scalar or Series pandas.Series.drop Series.drop(labels, axis=0, level=None, inplace=False, errors=’raise’) Return new object with labels in requested axis removed Parameters labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : type of caller pandas.Series.drop_duplicates Series.drop_duplicates(take_last=False, inplace=False) Return Series with duplicate values removed Parameters take_last : boolean, default False Take the last observed index in a group. Default first inplace : boolean, default False If True, performs operation inplace and returns None. Returns deduplicated : Series pandas.Series.dropna Series.dropna(axis=0, inplace=False, **kwargs) Return Series without null values Returns valid : Series inplace : boolean, default False 33.3. Series 961 pandas: powerful Python data analysis toolkit, Release 0.16.1 Do operation in place. pandas.Series.dt Series.dt() Accessor object for datetimelike properties of the Series values. Examples >>> s.dt.hour >>> s.dt.second >>> s.dt.quarter Returns a Series indexed like the original Series. Raises TypeError if the Series does not contain datetimelike values. pandas.Series.duplicated Series.duplicated(take_last=False) Return boolean Series denoting duplicate values Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns duplicated : Series pandas.Series.eq Series.eq(other, axis=None) pandas.Series.equals Series.equals(other) Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal. pandas.Series.factorize Series.factorize(sort=False, na_sentinel=-1) Encode the object as an enumerated type or categorical variable Parameters sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark “not found” Returns labels : the indexer to the original array uniques : the unique Index 962 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.ffill Series.ffill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’ffill’) pandas.Series.fillna Series.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) Fill NA/NaN values using the specified method Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. axis : {0, ‘index’} inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns filled : Series See also: reindex, asfreq pandas.Series.filter Series.filter(items=None, like=None, regex=None, axis=None) Restrict the info axis to set of items or wildcard Parameters items : list-like List of info axis to restrict to (must not all be present) like : string Keep info axis where “arg in col == True” regex : string (regular expression) 33.3. Series 963 pandas: powerful Python data analysis toolkit, Release 0.16.1 Keep info axis with re.search(regex, col) == True axis : int or None The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with []. For example, df = DataFrame({’a’: [1, 2, 3, 4]]}); df[’a’]. So, the DataFrame columns are the info axis. Notes Arguments are mutually exclusive, but this is not checked for pandas.Series.first Series.first(offset) Convenience method for subsetting initial periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘10D’) -> First 10 days pandas.Series.first_valid_index Series.first_valid_index() Return label for first non-NA/null value pandas.Series.floordiv Series.floordiv(other, level=None, fill_value=None, axis=0) Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.from_array classmethod Series.from_array(arr, index=None, name=None, dtype=None, copy=False, fastpath=False) 964 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.from_csv classmethod Series.from_csv(path, sep=’, ‘, parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False) Read delimited file into Series Parameters path : string file path or file handle / StringIO sep : string, default ‘,’ Field delimiter parse_dates : boolean, default True Parse dates. Different default from read_table header : int, default 0 Row to use at header (skip prior rows) index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table encoding : string, optional a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 infer_datetime_format: boolean, default False If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. Returns y : Series pandas.Series.ge Series.ge(other, axis=None) pandas.Series.get Series.get(key, default=None) Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found Parameters key : object Returns value : type of items contained in object pandas.Series.get_dtype_counts Series.get_dtype_counts() Return the counts of dtypes in this object 33.3. Series 965 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.get_ftype_counts Series.get_ftype_counts() Return the counts of ftypes in this object pandas.Series.get_value Series.get_value(label, takeable=False) Quickly retrieve single value at passed index label Parameters index : label takeable : interpret the index as indexers, default False Returns value : scalar value pandas.Series.get_values Series.get_values() same as values (but handles sparseness conversions); is a view pandas.Series.groupby Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns Parameters by : mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups axis : int, default 0 level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels as_index : boolean, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output sort : boolean, default True Sort group keys. Get better performance by turning this off group_keys : boolean, default True When calling apply, add group keys to index to identify pieces squeeze : boolean, default False reduce the dimensionaility of the return type if possible, otherwise return a consistent type Returns GroupBy object 966 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples DataFrame results >>> data.groupby(func, axis=0).mean() >>> data.groupby(['col1', 'col2'])['col3'].mean() DataFrame with hierarchical index >>> data.groupby(['col1', 'col2']).mean() pandas.Series.gt Series.gt(other, axis=None) pandas.Series.hasnans Series.hasnans() return if I have any nans; enables various perf speedups pandas.Series.head Series.head(n=5) Returns first n rows pandas.Series.hist Series.hist(by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds) Draw histogram of the input series using matplotlib Parameters by : object, optional If passed, then used to form histograms for separate groups ax : matplotlib axis object If not passed, uses gca() grid : boolean, default True Whether to show axis grid lines xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None rotation of y axis labels 33.3. Series 967 pandas: powerful Python data analysis toolkit, Release 0.16.1 figsize : tuple, default None figure size in inches by default bins: integer, default 10 Number of histogram bins to be used kwds : keywords To be passed to the actual plotting function Notes See matplotlib documentation online for more on this pandas.Series.idxmax Series.idxmax(axis=None, out=None, skipna=True) Index of first occurrence of maximum of values. Parameters skipna : boolean, default True Exclude NA/null values Returns idxmax : Index of maximum of values See also: DataFrame.idxmax, numpy.ndarray.argmax Notes This method is the Series version of ndarray.argmax. pandas.Series.idxmin Series.idxmin(axis=None, out=None, skipna=True) Index of first occurrence of minimum of values. Parameters skipna : boolean, default True Exclude NA/null values Returns idxmin : Index of minimum of values See also: DataFrame.idxmin, numpy.ndarray.argmin Notes This method is the Series version of ndarray.argmin. 968 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.iget Series.iget(i, axis=0) Return the i-th value or values in the Series by location Parameters i : int, slice, or sequence of integers Returns value : scalar (int) or Series (slice, sequence) pandas.Series.iget_value Series.iget_value(i, axis=0) Return the i-th value or values in the Series by location Parameters i : int, slice, or sequence of integers Returns value : scalar (int) or Series (slice, sequence) pandas.Series.interpolate Series.interpolate(method=’linear’, axis=0, limit=None, inplace=False, downcast=None, **kwargs) Interpolate values according to different methods. Parameters method : {‘linear’, ‘time’, ‘index’, ‘values’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘spline’ ‘piecewise_polynomial’, ‘pchip’} • ‘linear’: ignore the index and treat the values as equally spaced. default • ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval • ‘index’, ‘values’: use the actual numerical values of the index • ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d with the order given both ‘polynomial’ and ‘spline’ requre that you also specify and order (int) e.g. df.interpolate(method=’polynomial’, order=4) • ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior: http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html axis : {0, 1}, default 0 • 0: fill column-by-column • 1: fill row-by-row limit : int, default None. Maximum number of consecutive NaNs to fill. inplace : bool, default False Update the NDFrame in place if possible. 33.3. Series 969 pandas: powerful Python data analysis toolkit, Release 0.16.1 downcast : optional, ‘infer’ or None, defaults to None Downcast dtypes if possible. Returns Series or DataFrame of same shape interpolated at the NaNs See also: reindex, replace, fillna Examples Filling in NaNs >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64 pandas.Series.irow Series.irow(i, axis=0) Return the i-th value or values in the Series by location Parameters i : int, slice, or sequence of integers Returns value : scalar (int) or Series (slice, sequence) pandas.Series.isin Series.isin(values) Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values. Parameters values : list-like The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element. Returns isin : Series (bool dtype) Raises TypeError • If values is a string See also: pandas.DataFrame.isin Examples 970 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> s = pd.Series(list('abc')) >>> s.isin(['a', 'c', 'e']) 0 True 1 False 2 True dtype: bool Passing a single string as s.isin(’a’) will raise an error. Use a list of one element instead: >>> s.isin(['a']) 0 True 1 False 2 False dtype: bool pandas.Series.isnull Series.isnull() Return a boolean same-sized object indicating if the values are null See also: notnull boolean inverse of isnull pandas.Series.item Series.item() return the first element of the underlying data as a python scalar pandas.Series.iteritems Series.iteritems() Lazily iterate over (index, value) tuples pandas.Series.iterkv Series.iterkv(*args, **kwargs) iteritems alias used to get around 2to3. Deprecated pandas.Series.keys Series.keys() Alias for index pandas.Series.kurt Series.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 33.3. Series 971 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns kurt : scalar or Series (if level specified) pandas.Series.kurtosis Series.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns kurt : scalar or Series (if level specified) pandas.Series.last Series.last(offset) Convenience method for subsetting final periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘5M’) -> Last 5 months pandas.Series.last_valid_index Series.last_valid_index() Return label for last non-NA/null value 972 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.le Series.le(other, axis=None) pandas.Series.load Series.load(path) Deprecated. Use read_pickle instead. pandas.Series.lt Series.lt(other, axis=None) pandas.Series.mad Series.mad(axis=None, skipna=None, level=None) Return the mean absolute deviation of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mad : scalar or Series (if level specified) pandas.Series.map Series.map(arg, na_action=None) Map values of Series using input correspondence (which can be a dict, Series, or function) Parameters arg : function, dict, or Series na_action : {None, ‘ignore’} If ‘ignore’, propagate NA values Returns y : Series same index as caller Examples 33.3. Series 973 pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> x one 1 two 2 three 3 >>> y 1 foo 2 bar 3 baz >>> x.map(y) one foo two bar three baz pandas.Series.mask Series.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.Series.max Series.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None 974 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns max : scalar or Series (if level specified) pandas.Series.mean Series.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the mean of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mean : scalar or Series (if level specified) pandas.Series.median Series.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the median of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns median : scalar or Series (if level specified) pandas.Series.min Series.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters axis : {index (0)} skipna : boolean, default True 33.3. Series 975 pandas: powerful Python data analysis toolkit, Release 0.16.1 Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns min : scalar or Series (if level specified) pandas.Series.mod Series.mod(other, level=None, fill_value=None, axis=0) Binary operator mod with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.mode Series.mode() Returns the mode(s) of the dataset. Empty if nothing occurs at least 2 times. Always returns Series even if only one value. Parameters sort : bool, default True If True, will lexicographically sort values, if False skips sorting. Result ordering when sort=False is not defined. Returns modes : Series (sorted) pandas.Series.mul Series.mul(other, level=None, fill_value=None, axis=0) Binary operator mul with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level 976 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns result : Series pandas.Series.multiply Series.multiply(other, level=None, fill_value=None, axis=0) Binary operator mul with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.ne Series.ne(other, axis=None) pandas.Series.nlargest Series.nlargest(n=5, take_last=False) Return the largest n elements. Parameters n : int Return this many descending sorted values take_last : bool Where there are duplicate values, take the last duplicate Returns top_n : Series The n largest values in the Series, in sorted order See also: Series.nsmallest Notes Faster than .order(ascending=False).head(n) for small n relative to the size of the Series object. Examples >>> >>> >>> >>> 33.3. Series import pandas as pd import numpy as np s = pd.Series(np.random.randn(1e6)) s.nlargest(10) # only sorts up to the N requested 977 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.nonzero Series.nonzero() Return the indices of the elements that are non-zero This method is equivalent to calling numpy.nonzero on the series data. For compatability with NumPy, the return value is the same (a tuple with an array of indices for each dimension), but it will always be a one-item tuple because series only have one dimension. See also: numpy.nonzero Examples >>> s = pd.Series([0, 3, 0, 4]) >>> s.nonzero() (array([1, 3]),) >>> s.iloc[s.nonzero()[0]] 1 3 3 4 dtype: int64 pandas.Series.notnull Series.notnull() Return a boolean same-sized object indicating if the values are not null See also: isnull boolean inverse of notnull pandas.Series.nsmallest Series.nsmallest(n=5, take_last=False) Return the smallest n elements. Parameters n : int Return this many ascending sorted values take_last : bool Where there are duplicate values, take the last duplicate Returns bottom_n : Series The n smallest values in the Series, in sorted order See also: Series.nlargest Notes Faster than .order().head(n) for small n relative to the size of the Series object. 978 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> >>> >>> >>> import pandas as pd import numpy as np s = pd.Series(np.random.randn(1e6)) s.nsmallest(10) # only sorts up to the N requested pandas.Series.nunique Series.nunique(dropna=True) Return number of unique elements in the object. Excludes NA values by default. Parameters dropna : boolean, default True Don’t include NaN in the count. Returns nunique : int pandas.Series.order Series.order(na_last=None, ascending=True, kind=’quicksort’, na_position=’last’, inplace=False) Sorts Series object, by value, maintaining index-value link. This will return a new Series by default. Series.sort is the equivalent but as an inplace method. Parameters na_last : boolean (optional, default=True) (DEPRECATED; use na_position) Put NaN’s at beginning or end ascending : boolean, default True Sort ascending. Passing False sorts descending kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’ Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm na_position : {‘first’, ‘last’} (optional, default=’last’) ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end inplace : boolean, default False Do operation in place. Returns y : Series See also: Series.sort pandas.Series.pct_change Series.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs) Percent change over given number of periods. Parameters periods : int, default 1 33.3. Series 979 pandas: powerful Python data analysis toolkit, Release 0.16.1 Periods to shift for forming percent change fill_method : str, default ‘pad’ How to handle NAs before computing percent changes limit : int, default None The number of consecutive NAs to fill before stopping freq : DateOffset, timedelta, or offset alias string, optional Increment to use from time series API (e.g. ‘M’ or BDay()) Returns chg : NDFrame Notes By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument. pandas.Series.plot Series.plot(data, kind=’line’, ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds) Make plots of Series using matplotlib / pylab. Parameters data : Series kind : str • ‘line’ : line plot (default) • ‘bar’ : vertical bar plot • ‘barh’ : horizontal bar plot • ‘hist’ : histogram • ‘box’ : boxplot • ‘kde’ : Kernel Density Estimation plot • ‘density’ : same as ‘kde’ • ‘area’ : area plot • ‘pie’ : pie plot ax : matplotlib axes object If not passed, uses gca() figsize : a tuple (width, height) in inches use_index : boolean, default True Use index as ticks for x axis title : string Title to use for the plot 980 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 grid : boolean, default None (matlab style default) Axis grid lines legend : False/True/’reverse’ Place legend on axis subplots style : list or dict matplotlib line style per column logx : boolean, default False Use log scaling on x axis logy : boolean, default False Use log scaling on y axis loglog : boolean, default False Use log scaling on both x and y axes xticks : sequence Values to use for the xticks yticks : sequence Values to use for the yticks xlim : 2-tuple/list ylim : 2-tuple/list rot : int, default None Rotation for ticks (xticks for vertical, yticks for horizontal plots) fontsize : int, default None Font size for xticks and yticks colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : boolean, optional If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots) position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/topend). Default is 0.5 (center) layout : tuple (optional) (rows, columns) for the layout of the plot table : boolean, Series or DataFrame, default False If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See Plotting with Error Bars for detail. 33.3. Series 981 pandas: powerful Python data analysis toolkit, Release 0.16.1 xerr : same types as yerr. label : label argument to provide to plot secondary_y : boolean or sequence of ints, default False If True then y-axis will be on the right mark_right : boolean, default True When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend kwds : keywords Options to pass to matplotlib plotting method Returns axes : matplotlib.AxesSubplot or np.array of them Notes •See matplotlib documentation online for more on this subject •If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) pandas.Series.pop Series.pop(item) Return item and drop from frame. Raise KeyError if not found. pandas.Series.pow Series.pow(other, level=None, fill_value=None, axis=0) Binary operator pow with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.prod Series.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA 982 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : scalar or Series (if level specified) pandas.Series.product Series.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : scalar or Series (if level specified) pandas.Series.ptp Series.ptp(axis=None, out=None) pandas.Series.put Series.put(*args, **kwargs) return a ndarray with the values put See also: numpy.ndarray.put pandas.Series.quantile Series.quantile(q=0.5) Return value at the given quantile, a la numpy.percentile. Parameters q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute Returns quantile : float or Series 33.3. Series 983 pandas: powerful Python data analysis toolkit, Release 0.16.1 if q is an array, a Series will be returned where the index is q and the values are the quantiles. Examples >>> s = Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 pandas.Series.radd Series.radd(other, level=None, fill_value=None, axis=0) Binary operator radd with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rank Series.rank(method=’average’, na_option=’keep’, ascending=True, pct=False) Compute data ranks (1 through n). Equal values are assigned a rank that is the average of the ranks of those values Parameters method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’} • average: average rank of group • min: lowest rank in group • max: highest rank in group • first: ranks assigned in order they appear in the array • dense: like ‘min’, but rank always increases by 1 between groups na_option : {‘keep’} keep: leave NA values where they are ascending : boolean, default True False for ranks by high (1) to low (N) pct : boolean, default False 984 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Computes percentage rank of data Returns ranks : Series pandas.Series.ravel Series.ravel(order=’C’) Return the flattened underlying data as an ndarray See also: numpy.ndarray.ravel pandas.Series.rdiv Series.rdiv(other, level=None, fill_value=None, axis=0) Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.reindex Series.reindex(index=None, **kwargs) Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters index : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level 33.3. Series 985 pandas: powerful Python data analysis toolkit, Release 0.16.1 fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : Series Examples >>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C']) pandas.Series.reindex_axis Series.reindex_axis(labels, axis=0, **kwargs) for compatibility with higher dims pandas.Series.reindex_like Series.reindex_like(other, method=None, copy=True, limit=None) return an object with matching indicies to myself Parameters other : Object method : string or None copy : boolean, default True limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : same as input Notes Like calling s.reindex(index=other.index, columns=other.columns, method=...) pandas.Series.rename Series.rename(index=None, **kwargs) Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters index : dict-like or function, optional Transformation to apply to that axis values copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new Series. If True then value of copy is ignored. 986 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns renamed : Series (new object) pandas.Series.rename_axis Series.rename_axis(mapper, axis=0, copy=True, inplace=False) Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters mapper : dict-like or function, optional axis : int or string, default 0 copy : boolean, default True Also copy underlying data inplace : boolean, default False Returns renamed : type of caller pandas.Series.reorder_levels Series.reorder_levels(order) Rearrange index levels using input order. May not drop or duplicate levels Parameters order: list of int representing new level order. (reference level by number or key) axis: where to reorder levels Returns type of caller (new object) pandas.Series.repeat Series.repeat(reps) return a new Series with the values repeated reps times See also: numpy.ndarray.repeat pandas.Series.replace Series.replace(to_replace=None, value=None, method=’pad’, axis=None) Replace values given in ‘to_replace’ with ‘value’. inplace=False, limit=None, regex=False, Parameters to_replace : str, regex, list, dict, Series, numeric, or None • str or regex: – str: string exactly matching to_replace will be replaced with value – regex: regexs matching to_replace will be replaced with value • list of str, regex, or numeric: – First, if to_replace and value are both lists, they must be the same length. 33.3. Series 987 pandas: powerful Python data analysis toolkit, Release 0.16.1 – Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use. – str and regex rules apply as above. • dict: – Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions. – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in. • None: – This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : boolean, default False If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True. limit : int, default None Maximum size gap to forward or backward fill regex : bool or same types as to_replace, default False Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions. method : string, optional, {‘pad’, ‘ffill’, ‘bfill’} The method to use when for replacement, when to_replace is a list. Returns filled : NDFrame Raises AssertionError • If regex is not a bool and to_replace is not None. TypeError • If to_replace is a dict and value is not a list, dict, ndarray, or Series • If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. ValueError 988 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • If to_replace and value are list s or ndarray s, but they are not the same length. See also: NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna Notes •Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same. •Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this. •This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works. pandas.Series.resample Series.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=’start’, kind=None, loffset=None, limit=None, base=0) Convenience method for frequency conversion and resampling of regular time-series data. Parameters rule : string the offset string or object representing target conversion how : string method for down- or re-sampling, default to ‘mean’ for downsampling axis : int, optional, default 0 fill_method : string, default None fill_method for upsampling closed : {‘right’, ‘left’} Which side of bin interval is closed label : {‘right’, ‘left’} Which bin edge label to label bucket with convention : {‘start’, ‘end’, ‘s’, ‘e’} kind : “period”/”timestamp” loffset : timedelta Adjust the resampled time labels limit : int, default None Maximum size gap to when reindexing with fill_method base : int, default 0 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0 33.3. Series 989 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.reset_index Series.reset_index(level=None, drop=False, name=None, inplace=False) Analogous to the pandas.DataFrame.reset_index() function, see docstring there. Parameters level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default drop : boolean, default False Do not try to insert index into dataframe columns name : object, default None The name of the column corresponding to the Series values inplace : boolean, default False Modify the Series in place (do not create a new object) Returns resetted : DataFrame, or Series if drop == True pandas.Series.reshape Series.reshape(*args, **kwargs) return an ndarray with the values shape if the specified shape matches exactly the current shape, then return self (for compat) See also: numpy.ndarray.take pandas.Series.rfloordiv Series.rfloordiv(other, level=None, fill_value=None, axis=0) Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rmod Series.rmod(other, level=None, fill_value=None, axis=0) Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) 990 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rmul Series.rmul(other, level=None, fill_value=None, axis=0) Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.round Series.round(decimals=0, out=None) Return a with each element rounded to the given number of decimals. Refer to numpy.around for full documentation. See also: numpy.around equivalent function pandas.Series.rpow Series.rpow(other, level=None, fill_value=None, axis=0) Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series 33.3. Series 991 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.rsub Series.rsub(other, level=None, fill_value=None, axis=0) Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rtruediv Series.rtruediv(other, level=None, fill_value=None, axis=0) Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.sample Series.sample(n=None, frac=None, replace=False, weights=None, axis=None) Returns a random sample of items from an axis of object. random_state=None, Parameters n : int, optional Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None. frac : float, optional Fraction of axis items to return. Cannot be used with n. replace : boolean, optional Sample with or without replacement. Default = False. weights : str or ndarray-like, optional Default ‘None’ results in equal probability weighting. If called on a DataFrame, will accept the name of a column when axis = 0. Weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed. 992 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : int or string, optional Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels). Returns Same type as caller. pandas.Series.save Series.save(path) Deprecated. Use to_pickle instead pandas.Series.searchsorted Series.searchsorted(v, side=’left’, sorter=None) Find indices where elements should be inserted to maintain order. Find the indices into a sorted Series self such that, if the corresponding elements in v were inserted before the indices, the order of self would be preserved. Parameters v : array_like Values to insert into a. side : {‘left’, ‘right’}, optional If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of a). sorter : 1-D array_like, optional Optional array of integer indices that sort self into ascending order. They are typically the result of np.argsort. Returns indices : array of ints Array of insertion points with the same shape as v. See also: Series.sort, Series.order, numpy.searchsorted Notes Binary search is used to find the required insertion points. Examples >>> x = pd.Series([1, 2, 3]) >>> x 0 1 1 2 2 3 33.3. Series 993 pandas: powerful Python data analysis toolkit, Release 0.16.1 dtype: int64 >>> x.searchsorted(4) array([3]) >>> x.searchsorted([0, array([0, 3]) >>> x.searchsorted([1, array([0, 2]) >>> x.searchsorted([1, array([1, 3]) >>> x.searchsorted([1, array([1, 3]) 4]) 3], side='left') 3], side='right') 2], side='right', sorter=[0, 2, 1]) pandas.Series.select Series.select(crit, axis=0) Return data corresponding to axis labels matching criteria Parameters crit : function To be called on each index (label). Should return True or False axis : int Returns selection : type of caller pandas.Series.sem Series.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sem : scalar or Series (if level specified) pandas.Series.set_axis Series.set_axis(axis, labels) public verson of axis assignment 994 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.set_value Series.set_value(label, value, takeable=False) Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index Parameters label : object Partial indexing with MultiIndex not allowed value : object Scalar value takeable : interpret the index as indexers, default False Returns series : Series If label is contained, will be reference to calling Series, otherwise a new object pandas.Series.shift Series.shift(periods=1, freq=None, axis=0, **kwargs) Shift index by desired number of periods with an optional time freq Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, optional Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes. axis : {0, ‘index’} Returns shifted : Series Notes If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. pandas.Series.skew Series.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased skew over requested axis Normalized by N-1 Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None 33.3. Series 995 pandas: powerful Python data analysis toolkit, Release 0.16.1 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns skew : scalar or Series (if level specified) pandas.Series.slice_shift Series.slice_shift(periods=1, axis=0) Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters periods : int Number of periods to move, can be positive or negative Returns shifted : same type as caller Notes While the slice_shift is faster than shift, you may pay for it later during alignment. pandas.Series.sort Series.sort(axis=0, ascending=True, kind=’quicksort’, na_position=’last’, inplace=True) Sort values and index labels by value. This is an inplace sort by default. Series.order is the equivalent but returns a new Series. Parameters axis : int (can only be zero) ascending : boolean, default True Sort ascending. Passing False sorts descending kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’ Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm na_position : {‘first’, ‘last’} (optional, default=’last’) ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end inplace : boolean, default True Do operation in place. See also: Series.order pandas.Series.sort_index Series.sort_index(ascending=True) Sort object by labels (along an axis) Parameters ascending : boolean or list, default True Sort ascending vs. descending. Specify list for multiple sort orders 996 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns sorted_obj : Series Examples >>> result1 = s.sort_index(ascending=False) >>> result2 = s.sort_index(ascending=[1, 0]) pandas.Series.sortlevel Series.sortlevel(level=0, ascending=True, sort_remaining=True) Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order) Parameters level : int or level name, default None ascending : bool, default True Returns sorted : Series pandas.Series.squeeze Series.squeeze() squeeze length 1 dimensions pandas.Series.std Series.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard deviation over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns std : scalar or Series (if level specified) pandas.Series.str Series.str() Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package. 33.3. Series 997 pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> s.str.split('_') >>> s.str.replace('_', '') pandas.Series.sub Series.sub(other, level=None, fill_value=None, axis=0) Binary operator sub with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.subtract Series.subtract(other, level=None, fill_value=None, axis=0) Binary operator sub with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.sum Series.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the sum of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None 998 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sum : scalar or Series (if level specified) pandas.Series.swapaxes Series.swapaxes(axis1, axis2, copy=True) Interchange axes and swap values axes appropriately Returns y : same as input pandas.Series.swaplevel Series.swaplevel(i, j, copy=True) Swap levels i and j in a MultiIndex Parameters i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns swapped : Series pandas.Series.tail Series.tail(n=5) Returns last n rows pandas.Series.take Series.take(indices, axis=0, convert=True, is_copy=False) return Series corresponding to requested indices Parameters indices : list / array of ints convert : translate negative to positive indices (default) Returns taken : Series See also: numpy.ndarray.take pandas.Series.to_clipboard Series.to_clipboard(excel=None, sep=None, **kwargs) Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. Parameters excel : boolean, defaults to True if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard 33.3. Series 999 pandas: powerful Python data analysis toolkit, Release 0.16.1 sep : optional, defaults to tab other keywords are passed to to_csv Notes Requirements for your platform • Linux: xclip, or xsel (with gtk or PyQt4 modules) • Windows: none • OS X: none pandas.Series.to_csv Series.to_csv(path, index=True, sep=’, ‘, na_rep=’‘, float_format=None, header=False, index_label=None, mode=’w’, nanRep=None, encoding=None, date_format=None, decimal=’.’) Write Series to a comma-separated values (csv) file Parameters path : string file path or file handle / StringIO. If None is provided the result is returned as a string. na_rep : string, default ‘’ Missing data representation float_format : string, default None Format string for floating point numbers header : boolean, default False Write out series name index : boolean, default True Write row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. mode : Python write mode, default ‘w’ sep : character, default ”,” Field delimiter for the output file. encoding : string, optional a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 date_format: string, default None Format string for datetime objects. decimal: string, default ‘.’ Character recognized as decimal separator. E.g. use ‘,’ for European data 1000 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.to_dense Series.to_dense() Return dense representation of NDFrame (as opposed to sparse) pandas.Series.to_dict Series.to_dict() Convert Series to {label -> value} dict Returns value_dict : dict pandas.Series.to_frame Series.to_frame(name=None) Convert Series to DataFrame Parameters name : object, default None The passed name should substitute for the series name (if it has one). Returns data_frame : DataFrame pandas.Series.to_hdf Series.to_hdf(path_or_buf, key, **kwargs) activate the HDFStore Parameters path_or_buf : the path (string) or buffer to put the store key : string indentifier for the group in the store mode : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’ ’r’ Read-only; no data can be modified. ’w’ Write; a new file is created (an existing file with the same name would be deleted). ’a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created. ’r+’ It is similar to ’a’, but the file must already exist. format : ‘fixed(f)|table(t)’, default is ‘fixed’ fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False For Table formats, append the input data to the existing complevel : int, 1-9, default 0 33.3. Series 1001 pandas: powerful Python data analysis toolkit, Release 0.16.1 If a complib is specified compression will be applied where possible complib : {‘zlib’, ‘bzip2’, ‘lzo’, ‘blosc’, None}, default None If complevel is > 0 apply compression to objects written in the store wherever possible fletcher32 : bool, default False If applying compression use the fletcher32 checksum pandas.Series.to_json Series.to_json(path_or_buf=None, orient=None, date_format=’epoch’, double_precision=10, force_ascii=True, date_unit=’ms’, default_handler=None) Convert the object to a JSON string. Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters path_or_buf : the path or buffer to write the result string if this is None, return a StringIO of the converted string orient : string • Series – default is ‘index’ – allowed values are: {‘split’,’records’,’index’} • DataFrame – default is ‘columns’ – allowed values are: {‘split’,’records’,’index’,’columns’,’values’} • The format of the JSON string – split : dict like {index -> [index], columns -> [columns], data -> [values]} – records : list like [{column -> value}, ... , {column -> value}] – index : dict like {index -> {column -> value}} – columns : dict like {column -> {index -> value}} – values : just the values array date_format : {‘epoch’, ‘iso’} Type of date conversion. epoch = epoch milliseconds, iso‘ = ISO8601, default is epoch. double_precision : The number of decimal places to use when encoding floating point values, default 10. force_ascii : force encoded string to be ASCII, default True. date_unit : string, default ‘ms’ (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively. 1002 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. Returns same type as input object with filtered info axis pandas.Series.to_msgpack Series.to_msgpack(path_or_buf=None, **kwargs) msgpack (serialize) object to input file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters path : string File path, buffer-like, or None if None, return generated string append : boolean whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) pandas.Series.to_period Series.to_period(freq=None, copy=True) Convert TimeSeries from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed) Parameters freq : string, default Returns ts : TimeSeries with PeriodIndex pandas.Series.to_pickle Series.to_pickle(path) Pickle (serialize) object to input file path Parameters path : string File path pandas.Series.to_sparse Series.to_sparse(kind=’block’, fill_value=None) Convert Series to SparseSeries Parameters kind : {‘block’, ‘integer’} fill_value : float, defaults to NaN (missing) Returns sp : SparseSeries 33.3. Series 1003 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.to_sql Series.to_sql(name, con, flavor=’sqlite’, schema=None, if_exists=’fail’, index=True, index_label=None, chunksize=None, dtype=None) Write records stored in a DataFrame to a SQL database. Parameters name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : {‘sqlite’, ‘mysql’}, default ‘sqlite’ The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. schema : string, default None Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’ • fail: If table exists, do nothing. • replace: If table exists, drop it, recreate it, and insert data. • append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column. index_label : string or sequence, default None Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. pandas.Series.to_string Series.to_string(buf=None, na_rep=’NaN’, float_format=None, header=True, length=False, dtype=False, name=False, max_rows=None) Render a string representation of the Series Parameters buf : StringIO-like, optional buffer to write to na_rep : string, optional 1004 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 string representation of NAN to use, default ‘NaN’ float_format : one-parameter function, optional formatter function to apply to columns’ elements if they are floats default None header: boolean, default True Add the Series header (index name) length : boolean, default False Add the Series length dtype : boolean, default False Add the Series dtype name : boolean, default False Add the Series name if not None max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. Returns formatted : string (if not buffer passed) pandas.Series.to_timestamp Series.to_timestamp(freq=None, how=’start’, copy=True) Cast to datetimeindex of timestamps, at beginning of period Parameters freq : string, default frequency of PeriodIndex Desired frequency how : {‘s’, ‘e’, ‘start’, ‘end’} Convention for converting period to timestamp; start of period vs. end Returns ts : TimeSeries with DatetimeIndex pandas.Series.tolist Series.tolist() Convert Series to a nested list pandas.Series.transpose Series.transpose() return the transpose, which is by definition self pandas.Series.truediv Series.truediv(other, level=None, fill_value=None, axis=0) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs 33.3. Series 1005 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.truncate Series.truncate(before=None, after=None, axis=None, copy=True) Truncates a sorted NDFrame before and/or after some particular dates. Parameters before : date Truncate before date after : date Truncate after date axis : the truncation axis, defaults to the stat axis copy : boolean, default is True, return a copy of the truncated section Returns truncated : type of caller pandas.Series.tshift Series.tshift(periods=1, freq=None, axis=0, **kwargs) Shift the time index, using the index’s frequency if available Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, default None Increment to use from datetools module or time rule (e.g. ‘EOM’) axis : int or basestring Corresponds to the axis that contains the Index Returns shifted : NDFrame Notes If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown 1006 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.tz_convert Series.tz_convert(tz, axis=0, level=None, copy=True) Convert tz-aware axis to target time zone. Parameters tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Raises TypeError If the axis is tz-naive. pandas.Series.tz_localize Series.tz_localize(*args, **kwargs) Localize tz-naive TimeSeries to target time zone Parameters tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Raises TypeError If the TimeSeries is tz-aware and tz is not None. pandas.Series.unique Series.unique() Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values. Returns uniques : ndarray 33.3. Series 1007 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.unstack Series.unstack(level=-1) Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted. Parameters level : int, string, or list of these, default last level Level(s) to unstack, can pass level name Returns unstacked : DataFrame Examples >>> s one a one b two a two b 1. 2. 3. 4. >>> s.unstack(level=-1) a b one 1. 2. two 3. 4. >>> s.unstack(level=0) one two a 1. 2. b 3. 4. pandas.Series.update Series.update(other) Modify Series in place using non-NA values from passed Series. Aligns on index Parameters other : Series pandas.Series.valid Series.valid(inplace=False, **kwargs) pandas.Series.value_counts Series.value_counts(normalize=False, sort=True, dropna=True) Returns object containing counts of unique values. ascending=False, bins=None, The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. 1008 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order bins : integer, optional Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data dropna : boolean, default True Don’t include counts of NaN. Returns counts : Series pandas.Series.var Series.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns var : scalar or Series (if level specified) pandas.Series.view Series.view(dtype=None) pandas.Series.where Series.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data 33.3. Series 1009 pandas: powerful Python data analysis toolkit, Release 0.16.1 axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.Series.xs Series.xs(key, axis=0, level=None, copy=None, drop_level=True) Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0). Parameters key : object Some label contained in the index, or partially in a MultiIndex axis : int, default 0 Axis to retrieve cross-section on level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. copy : boolean [deprecated] Whether to make a copy of the data drop_level : boolean, default True If False, returns object with same levels as self. Returns xs : Series or DataFrame Notes xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers Examples >>> df A B C a 4 5 2 b 4 0 9 c 9 7 3 >>> df.xs('a') A 4 B 5 C 2 1010 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Name: a >>> df.xs('C', axis=1) a 2 b 9 c 3 Name: C >>> df A B C D first second third bar one 1 4 1 8 9 two 1 7 5 5 0 baz one 1 6 6 8 0 three 2 5 3 5 3 >>> df.xs(('baz', 'three')) A B C D third 2 5 3 5 3 >>> df.xs('one', level=1) A B C D first third bar 1 4 1 8 9 baz 1 6 6 8 0 >>> df.xs(('baz', 2), level=[0, 'third']) A B C D second three 5 3 5 3 33.3.2 Attributes Axes • index: axis labels Series.values Series.dtype Series.ftype Series.shape Series.nbytes Series.ndim Series.size Series.strides Series.itemsize Series.base Series.T Return Series as ndarray return the dtype object of the underlying data return if the data is sparse|dense return a tuple of the shape of the underlying data return the number of bytes in the underlying data return the number of dimensions of the underlying data, by definition 1 return the number of elements in the underlying data return the strides of the underlying data return the size of the dtype of the item of the underlying data return the base object if the memory of the underlying data is shared return the transpose, which is by definition self pandas.Series.values Series.values Return Series as ndarray Returns arr : numpy.ndarray 33.3. Series 1011 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.dtype Series.dtype return the dtype object of the underlying data pandas.Series.ftype Series.ftype return if the data is sparse|dense pandas.Series.shape Series.shape return a tuple of the shape of the underlying data pandas.Series.nbytes Series.nbytes return the number of bytes in the underlying data pandas.Series.ndim Series.ndim return the number of dimensions of the underlying data, by definition 1 pandas.Series.size Series.size return the number of elements in the underlying data pandas.Series.strides Series.strides return the strides of the underlying data pandas.Series.itemsize Series.itemsize return the size of the dtype of the item of the underlying data pandas.Series.base Series.base return the base object if the memory of the underlying data is shared 1012 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.T Series.T return the transpose, which is by definition self 33.3.3 Conversion Series.astype(dtype[, copy, raise_on_error]) Series.copy([deep]) Series.isnull() Series.notnull() Cast object to input numpy.dtype Make a copy of this object Return a boolean same-sized object indicating if the values are null Return a boolean same-sized object indicating if the values are pandas.Series.astype Series.astype(dtype, copy=True, raise_on_error=True, **kwargs) Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters dtype : numpy.dtype or Python type raise_on_error : raise on invalid input kwargs : keyword arguments to pass on to the constructor Returns casted : type of caller pandas.Series.copy Series.copy(deep=True) Make a copy of this object Parameters deep : boolean or string, default True Make a deep copy, i.e. also copy data Returns copy : type of caller pandas.Series.isnull Series.isnull() Return a boolean same-sized object indicating if the values are null See also: notnull boolean inverse of isnull pandas.Series.notnull Series.notnull() Return a boolean same-sized object indicating if the values are not null See also: isnull boolean inverse of notnull 33.3. Series 1013 pandas: powerful Python data analysis toolkit, Release 0.16.1 33.3.4 Indexing, iteration Series.get(key[, default]) Series.at Series.iat Series.ix Series.loc Series.iloc Series.__iter__() Series.iteritems() Get item from object for given key (DataFrame column, Panel slice, etc.). Fast label-based scalar accessor Fast integer location scalar accessor. A primarily label-location based indexer, with integer position fallback. Purely label-location based indexer for selection by label. Purely integer-location based indexing for selection by position. Lazily iterate over (index, value) tuples pandas.Series.get Series.get(key, default=None) Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found Parameters key : object Returns value : type of items contained in object pandas.Series.at Series.at Fast label-based scalar accessor Similarly to loc, at provides label based scalar lookups. You can also set using these indexers. pandas.Series.iat Series.iat Fast integer location scalar accessor. Similarly to iloc, iat provides integer based lookups. You can also set using these indexers. pandas.Series.ix Series.ix A primarily label-location based indexer, with integer position fallback. .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes. However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc. See more at Advanced Indexing. 1014 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.loc Series.loc Purely label-location based indexer for selection by label. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: •A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index, and never as an integer position along the index). •A list or array of labels, e.g. [’a’, ’b’, ’c’]. •A slice object with labels, e.g. ’a’:’f’ (note that contrary to usual python slices, both the start and the stop are included!). •A boolean array. .loc will raise a KeyError when the items are not found. See more at Selection by Label pandas.Series.iloc Series.iloc Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: •An integer, e.g. 5. •A list or array of integers, e.g. [4, 3, 0]. •A slice object with ints, e.g. 1:7. •A boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics). See more at Selection by Position pandas.Series.__iter__ Series.__iter__() pandas.Series.iteritems Series.iteritems() Lazily iterate over (index, value) tuples For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation. 33.3.5 Binary operator functions 33.3. Series 1015 pandas: powerful Python data analysis toolkit, Release 0.16.1 Series.add(other[, level, fill_value, axis]) Series.sub(other[, level, fill_value, axis]) Series.mul(other[, level, fill_value, axis]) Series.div(other[, level, fill_value, axis]) Series.truediv(other[, level, fill_value, axis]) Series.floordiv(other[, level, fill_value, axis]) Series.mod(other[, level, fill_value, axis]) Series.pow(other[, level, fill_value, axis]) Series.radd(other[, level, fill_value, axis]) Series.rsub(other[, level, fill_value, axis]) Series.rmul(other[, level, fill_value, axis]) Series.rdiv(other[, level, fill_value, axis]) Series.rtruediv(other[, level, fill_value, axis]) Series.rfloordiv(other[, level, fill_value, ...]) Series.rmod(other[, level, fill_value, axis]) Series.rpow(other[, level, fill_value, axis]) Series.combine(other, func[, fill_value]) Series.combine_first(other) Series.round([decimals, out]) Series.lt(other[, axis]) Series.gt(other[, axis]) Series.le(other[, axis]) Series.ge(other[, axis]) Series.ne(other[, axis]) Series.eq(other[, axis]) Binary operator add with support to substitute a fill_value for missing data Binary operator sub with support to substitute a fill_value for missing data Binary operator mul with support to substitute a fill_value for missing data Binary operator truediv with support to substitute a fill_value for missing data Binary operator truediv with support to substitute a fill_value for missing data Binary operator floordiv with support to substitute a fill_value for missing data Binary operator mod with support to substitute a fill_value for missing data Binary operator pow with support to substitute a fill_value for missing data Binary operator radd with support to substitute a fill_value for missing data Binary operator rsub with support to substitute a fill_value for missing data Binary operator rmul with support to substitute a fill_value for missing data Binary operator rtruediv with support to substitute a fill_value for missing data Binary operator rtruediv with support to substitute a fill_value for missing data Binary operator rfloordiv with support to substitute a fill_value for missing dat Binary operator rmod with support to substitute a fill_value for missing data Binary operator rpow with support to substitute a fill_value for missing data Perform elementwise binary operation on two Series using given function Combine Series values, choosing the calling Series’s values first. Return a with each element rounded to the given number of decimals. pandas.Series.add Series.add(other, level=None, fill_value=None, axis=0) Binary operator add with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.sub Series.sub(other, level=None, fill_value=None, axis=0) Binary operator sub with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name 1016 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.mul Series.mul(other, level=None, fill_value=None, axis=0) Binary operator mul with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.div Series.div(other, level=None, fill_value=None, axis=0) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.truediv Series.truediv(other, level=None, fill_value=None, axis=0) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series 33.3. Series 1017 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.floordiv Series.floordiv(other, level=None, fill_value=None, axis=0) Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.mod Series.mod(other, level=None, fill_value=None, axis=0) Binary operator mod with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.pow Series.pow(other, level=None, fill_value=None, axis=0) Binary operator pow with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.radd Series.radd(other, level=None, fill_value=None, axis=0) Binary operator radd with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) 1018 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rsub Series.rsub(other, level=None, fill_value=None, axis=0) Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rmul Series.rmul(other, level=None, fill_value=None, axis=0) Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rdiv Series.rdiv(other, level=None, fill_value=None, axis=0) Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series 33.3. Series 1019 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.rtruediv Series.rtruediv(other, level=None, fill_value=None, axis=0) Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rfloordiv Series.rfloordiv(other, level=None, fill_value=None, axis=0) Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rmod Series.rmod(other, level=None, fill_value=None, axis=0) Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.rpow Series.rpow(other, level=None, fill_value=None, axis=0) Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs Parameters other: Series or scalar value fill_value : None or float value, default None (NaN) 1020 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : Series pandas.Series.combine Series.combine(other, func, fill_value=nan) Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other Parameters other : Series or scalar value func : function fill_value : scalar value Returns result : Series pandas.Series.combine_first Series.combine_first(other) Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two indexes Parameters other : Series Returns y : Series pandas.Series.round Series.round(decimals=0, out=None) Return a with each element rounded to the given number of decimals. Refer to numpy.around for full documentation. See also: numpy.around equivalent function pandas.Series.lt Series.lt(other, axis=None) pandas.Series.gt Series.gt(other, axis=None) pandas.Series.le Series.le(other, axis=None) 33.3. Series 1021 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.ge Series.ge(other, axis=None) pandas.Series.ne Series.ne(other, axis=None) pandas.Series.eq Series.eq(other, axis=None) 33.3.6 Function application, GroupBy Series.apply(func[, convert_dtype, args]) Series.map(arg[, na_action]) Series.groupby([by, axis, level, as_index, ...]) Invoke function on values of Series. Map values of Series using input correspondence (which can be Group series using mapper (dict or key function, apply given function pandas.Series.apply Series.apply(func, convert_dtype=True, args=(), **kwds) Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values Parameters func : function convert_dtype : boolean, default True Try to find better dtype for elementwise function results. dtype=object If False, leave as args : tuple Positional arguments to pass to function in addition to the value Additional keyword arguments will be passed as keywords to the function Returns y : Series or DataFrame if func returns a Series See also: Series.map For element-wise operations pandas.Series.map Series.map(arg, na_action=None) Map values of Series using input correspondence (which can be a dict, Series, or function) Parameters arg : function, dict, or Series na_action : {None, ‘ignore’} If ‘ignore’, propagate NA values Returns y : Series 1022 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 same index as caller Examples >>> x one 1 two 2 three 3 >>> y 1 foo 2 bar 3 baz >>> x.map(y) one foo two bar three baz pandas.Series.groupby Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns Parameters by : mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups axis : int, default 0 level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels as_index : boolean, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output sort : boolean, default True Sort group keys. Get better performance by turning this off group_keys : boolean, default True When calling apply, add group keys to index to identify pieces squeeze : boolean, default False reduce the dimensionaility of the return type if possible, otherwise return a consistent type Returns GroupBy object 33.3. Series 1023 pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples DataFrame results >>> data.groupby(func, axis=0).mean() >>> data.groupby(['col1', 'col2'])['col3'].mean() DataFrame with hierarchical index >>> data.groupby(['col1', 'col2']).mean() 33.3.7 Computations / Descriptive Stats Series.abs() Series.all([axis, bool_only, skipna, level]) Series.any([axis, bool_only, skipna, level]) Series.autocorr([lag]) Series.between(left, right[, inclusive]) Series.clip([lower, upper, out, axis]) Series.clip_lower(threshold[, axis]) Series.clip_upper(threshold[, axis]) Series.corr(other[, method, min_periods]) Series.count([level]) Series.cov(other[, min_periods]) Series.cummax([axis, dtype, out, skipna]) Series.cummin([axis, dtype, out, skipna]) Series.cumprod([axis, dtype, out, skipna]) Series.cumsum([axis, dtype, out, skipna]) Series.describe([percentile_width, ...]) Series.diff([periods]) Series.factorize([sort, na_sentinel]) Series.kurt([axis, skipna, level, numeric_only]) Series.mad([axis, skipna, level]) Series.max([axis, skipna, level, numeric_only]) Series.mean([axis, skipna, level, numeric_only]) Series.median([axis, skipna, level, ...]) Series.min([axis, skipna, level, numeric_only]) Series.mode() Series.pct_change([periods, fill_method, ...]) Series.prod([axis, skipna, level, numeric_only]) Series.quantile([q]) Series.rank([method, na_option, ascending, pct]) Series.sem([axis, skipna, level, ddof, ...]) Series.skew([axis, skipna, level, numeric_only]) Series.std([axis, skipna, level, ddof, ...]) Series.sum([axis, skipna, level, numeric_only]) Series.var([axis, skipna, level, ddof, ...]) Series.unique() Series.nunique([dropna]) Series.value_counts([normalize, sort, ...]) 1024 Return an object with absolute value taken. Return whether all elements are True over requested axis Return whether any element is True over requested axis Lag-N autocorrelation Return boolean Series equivalent to left <= series <= right. Trim values at input threshold(s) Return copy of the input with values below given value(s) truncated Return copy of input with values above given value(s) truncated Compute correlation with other Series, excluding missing values Return number of non-NA/null observations in the Series Compute covariance with Series, excluding missing values Return cumulative max over requested axis. Return cumulative min over requested axis. Return cumulative prod over requested axis. Return cumulative sum over requested axis. Generate various summary statistics, excluding NaN values. 1st discrete difference of object Encode the object as an enumerated type or categorical variable Return unbiased kurtosis over requested axis using Fishers definition of kurto Return the mean absolute deviation of the values for the requested axis This method returns the maximum of the values in the object. Return the mean of the values for the requested axis Return the median of the values for the requested axis This method returns the minimum of the values in the object. Returns the mode(s) of the dataset. Percent change over given number of periods. Return the product of the values for the requested axis Return value at the given quantile, a la numpy.percentile. Compute data ranks (1 through n). Return unbiased standard error of the mean over requested axis. Return unbiased skew over requested axis Return unbiased standard deviation over requested axis. Return the sum of the values for the requested axis Return unbiased variance over requested axis. Return array of unique values in the object. Return number of unique elements in the object. Returns object containing counts of unique values. Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.abs Series.abs() Return an object with absolute value taken. Only applicable to objects that are all numeric Returns abs: type of caller pandas.Series.all Series.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether all elements are True over requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns all : scalar or Series (if level specified) pandas.Series.any Series.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether any element is True over requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns any : scalar or Series (if level specified) pandas.Series.autocorr Series.autocorr(lag=1) Lag-N autocorrelation Parameters lag : int, default 1 Number of lags to apply before performing autocorrelation. 33.3. Series 1025 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns autocorr : float pandas.Series.between Series.between(left, right, inclusive=True) Return boolean Series equivalent to left <= series <= right. NA values will be treated as False Parameters left : scalar Left boundary right : scalar Right boundary Returns is_between : Series pandas.Series.clip Series.clip(lower=None, upper=None, out=None, axis=None) Trim values at input threshold(s) Parameters lower : float or array_like, default None upper : float or array_like, default None axis : int or string axis name, optional Align object with lower and upper along the given axis. Returns clipped : Series Examples >>> df 0 1 0 0.335232 -1.256177 1 -1.367855 0.746646 2 0.027753 -1.176076 3 0.230930 -0.679613 4 1.261967 0.570967 >>> df.clip(-1.0, 0.5) 0 1 0 0.335232 -1.000000 1 -1.000000 0.500000 2 0.027753 -1.000000 3 0.230930 -0.679613 4 0.500000 0.500000 >>> t 0 -0.3 1 -0.2 2 -0.1 3 0.0 4 0.1 dtype: float64 >>> df.clip(t, t + 1, axis=0) 0 1 0 0.335232 -0.300000 1026 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 1 -0.200000 0.746646 2 0.027753 -0.100000 3 0.230930 0.000000 4 1.100000 0.570967 pandas.Series.clip_lower Series.clip_lower(threshold, axis=None) Return copy of the input with values below given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.Series.clip_upper Series.clip_upper(threshold, axis=None) Return copy of input with values above given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.Series.corr Series.corr(other, method=’pearson’, min_periods=None) Compute correlation with other Series, excluding missing values Parameters other : Series method : {‘pearson’, ‘kendall’, ‘spearman’} • pearson : standard correlation coefficient • kendall : Kendall Tau correlation coefficient • spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations needed to have a valid result Returns correlation : float 33.3. Series 1027 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.count Series.count(level=None) Return number of non-NA/null observations in the Series Parameters level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series Returns nobs : int or Series (if level specified) pandas.Series.cov Series.cov(other, min_periods=None) Compute covariance with Series, excluding missing values Parameters other : Series min_periods : int, optional Minimum number of observations needed to have a valid result Returns covariance : float Normalized by N-1 (unbiased estimator). pandas.Series.cummax Series.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative max over requested axis. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns max : scalar pandas.Series.cummin Series.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative min over requested axis. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns min : scalar pandas.Series.cumprod Series.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative prod over requested axis. 1028 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns prod : scalar pandas.Series.cumsum Series.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative sum over requested axis. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns sum : scalar pandas.Series.describe Series.describe(percentile_width=None, percentiles=None, include=None, exclude=None) Generate various summary statistics, excluding NaN values. Parameters percentile_width : float, deprecated The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75 percentiles : array-like, optional The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles. include, exclude : list-like, ‘all’, or None (default) Specify the form of the returned result. Either: • None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns. • A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=[’O’]) • If include is the string ‘all’, the output column-set will match the input one. Returns summary: NDFrame of summary statistics See also: DataFrame.select_dtypes Notes The output DataFrame index depends on the requested dtypes: For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles. 33.3. Series 1029 pandas: powerful Python data analysis toolkit, Release 0.16.1 For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items. For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments. If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count. The include, exclude arguments are ignored for Series. pandas.Series.diff Series.diff(periods=1) 1st discrete difference of object Parameters periods : int, default 1 Periods to shift for forming difference Returns diffed : Series pandas.Series.factorize Series.factorize(sort=False, na_sentinel=-1) Encode the object as an enumerated type or categorical variable Parameters sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark “not found” Returns labels : the indexer to the original array uniques : the unique Index pandas.Series.kurt Series.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data 1030 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns kurt : scalar or Series (if level specified) pandas.Series.mad Series.mad(axis=None, skipna=None, level=None) Return the mean absolute deviation of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mad : scalar or Series (if level specified) pandas.Series.max Series.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns max : scalar or Series (if level specified) pandas.Series.mean Series.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the mean of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None 33.3. Series 1031 pandas: powerful Python data analysis toolkit, Release 0.16.1 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mean : scalar or Series (if level specified) pandas.Series.median Series.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the median of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns median : scalar or Series (if level specified) pandas.Series.min Series.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns min : scalar or Series (if level specified) 1032 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.mode Series.mode() Returns the mode(s) of the dataset. Empty if nothing occurs at least 2 times. Always returns Series even if only one value. Parameters sort : bool, default True If True, will lexicographically sort values, if False skips sorting. Result ordering when sort=False is not defined. Returns modes : Series (sorted) pandas.Series.pct_change Series.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs) Percent change over given number of periods. Parameters periods : int, default 1 Periods to shift for forming percent change fill_method : str, default ‘pad’ How to handle NAs before computing percent changes limit : int, default None The number of consecutive NAs to fill before stopping freq : DateOffset, timedelta, or offset alias string, optional Increment to use from time series API (e.g. ‘M’ or BDay()) Returns chg : NDFrame Notes By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument. pandas.Series.prod Series.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data 33.3. Series 1033 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns prod : scalar or Series (if level specified) pandas.Series.quantile Series.quantile(q=0.5) Return value at the given quantile, a la numpy.percentile. Parameters q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute Returns quantile : float or Series if q is an array, a Series will be returned where the index is q and the values are the quantiles. Examples >>> s = Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 pandas.Series.rank Series.rank(method=’average’, na_option=’keep’, ascending=True, pct=False) Compute data ranks (1 through n). Equal values are assigned a rank that is the average of the ranks of those values Parameters method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’} • average: average rank of group • min: lowest rank in group • max: highest rank in group • first: ranks assigned in order they appear in the array • dense: like ‘min’, but rank always increases by 1 between groups na_option : {‘keep’} keep: leave NA values where they are ascending : boolean, default True False for ranks by high (1) to low (N) pct : boolean, default False Computes percentage rank of data Returns ranks : Series 1034 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.sem Series.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sem : scalar or Series (if level specified) pandas.Series.skew Series.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased skew over requested axis Normalized by N-1 Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns skew : scalar or Series (if level specified) pandas.Series.std Series.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard deviation over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None 33.3. Series 1035 pandas: powerful Python data analysis toolkit, Release 0.16.1 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns std : scalar or Series (if level specified) pandas.Series.sum Series.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the sum of the values for the requested axis Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sum : scalar or Series (if level specified) pandas.Series.var Series.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns var : scalar or Series (if level specified) 1036 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.unique Series.unique() Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values. Returns uniques : ndarray pandas.Series.nunique Series.nunique(dropna=True) Return number of unique elements in the object. Excludes NA values by default. Parameters dropna : boolean, default True Don’t include NaN in the count. Returns nunique : int pandas.Series.value_counts Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order bins : integer, optional Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data dropna : boolean, default True Don’t include counts of NaN. Returns counts : Series 33.3.8 Reindexing / Selection / Label manipulation Series.align(other[, join, axis, level, ...]) Series.drop(labels[, axis, level, inplace, ...]) Series.drop_duplicates([take_last, inplace]) Series.duplicated([take_last]) 33.3. Series Align two object on their axes with the Return new object with labels in requested axis removed Return Series with duplicate values removed Return boolean Series denoting duplicate values 1037 pandas: powerful Python data analysis toolkit, Release 0.16.1 Series.equals(other) Series.first(offset) Series.head([n]) Series.idxmax([axis, out, skipna]) Series.idxmin([axis, out, skipna]) Series.isin(values) Series.last(offset) Series.reindex([index]) Series.reindex_like(other[, method, copy, limit]) Series.rename([index]) Series.reset_index([level, drop, name, inplace]) Series.sample([n, frac, replace, weights, ...]) Series.select(crit[, axis]) Series.take(indices[, axis, convert, is_copy]) Series.tail([n]) Series.truncate([before, after, axis, copy]) Series.where(cond[, other, inplace, axis, ...]) Series.mask(cond[, other, inplace, axis, ...]) Table 33.28 – continued from previous page Determines if two NDFrame objects contain the same elements. Convenience method for subsetting initial periods of time series data Returns first n rows Index of first occurrence of maximum of values. Index of first occurrence of minimum of values. Return a boolean Series showing whether each element in the Series Convenience method for subsetting final periods of time series data Conform Series to new index with optional filling logic, placing NA/NaN return an object with matching indicies to myself Alter axes input function or functions. Analogous to the pandas.DataFrame.reset_index() function, s Returns a random sample of items from an axis of object. Return data corresponding to axis labels matching criteria return Series corresponding to requested indices Returns last n rows Truncates a sorted NDFrame before and/or after some particular dates. Return an object of same shape as self and whose corresponding entries a Return an object of same shape as self and whose corresponding entries a pandas.Series.align Series.align(other, join=’outer’, axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0) Align two object on their axes with the specified join method for each axis Index Parameters other : DataFrame or Series join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None) level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level copy : boolean, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value method : str, default None limit : int, default None fill_axis : {0, 1}, default 0 Filling axis, method and limit Returns (left, right) : (type of input, type of other) Aligned objects 1038 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.drop Series.drop(labels, axis=0, level=None, inplace=False, errors=’raise’) Return new object with labels in requested axis removed Parameters labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : type of caller pandas.Series.drop_duplicates Series.drop_duplicates(take_last=False, inplace=False) Return Series with duplicate values removed Parameters take_last : boolean, default False Take the last observed index in a group. Default first inplace : boolean, default False If True, performs operation inplace and returns None. Returns deduplicated : Series pandas.Series.duplicated Series.duplicated(take_last=False) Return boolean Series denoting duplicate values Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns duplicated : Series pandas.Series.equals Series.equals(other) Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal. pandas.Series.first Series.first(offset) Convenience method for subsetting initial periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta 33.3. Series 1039 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns subset : type of caller Examples ts.last(‘10D’) -> First 10 days pandas.Series.head Series.head(n=5) Returns first n rows pandas.Series.idxmax Series.idxmax(axis=None, out=None, skipna=True) Index of first occurrence of maximum of values. Parameters skipna : boolean, default True Exclude NA/null values Returns idxmax : Index of maximum of values See also: DataFrame.idxmax, numpy.ndarray.argmax Notes This method is the Series version of ndarray.argmax. pandas.Series.idxmin Series.idxmin(axis=None, out=None, skipna=True) Index of first occurrence of minimum of values. Parameters skipna : boolean, default True Exclude NA/null values Returns idxmin : Index of minimum of values See also: DataFrame.idxmin, numpy.ndarray.argmin Notes This method is the Series version of ndarray.argmin. 1040 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.isin Series.isin(values) Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values. Parameters values : list-like The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element. Returns isin : Series (bool dtype) Raises TypeError • If values is a string See also: pandas.DataFrame.isin Examples >>> s = pd.Series(list('abc')) >>> s.isin(['a', 'c', 'e']) 0 True 1 False 2 True dtype: bool Passing a single string as s.isin(’a’) will raise an error. Use a list of one element instead: >>> s.isin(['a']) 0 True 1 False 2 False dtype: bool pandas.Series.last Series.last(offset) Convenience method for subsetting final periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘5M’) -> Last 5 months pandas.Series.reindex Series.reindex(index=None, **kwargs) Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False 33.3. Series 1041 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters index : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : Series Examples >>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C']) pandas.Series.reindex_like Series.reindex_like(other, method=None, copy=True, limit=None) return an object with matching indicies to myself Parameters other : Object method : string or None copy : boolean, default True limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : same as input Notes Like calling s.reindex(index=other.index, columns=other.columns, method=...) 1042 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.rename Series.rename(index=None, **kwargs) Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters index : dict-like or function, optional Transformation to apply to that axis values copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new Series. If True then value of copy is ignored. Returns renamed : Series (new object) pandas.Series.reset_index Series.reset_index(level=None, drop=False, name=None, inplace=False) Analogous to the pandas.DataFrame.reset_index() function, see docstring there. Parameters level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default drop : boolean, default False Do not try to insert index into dataframe columns name : object, default None The name of the column corresponding to the Series values inplace : boolean, default False Modify the Series in place (do not create a new object) Returns resetted : DataFrame, or Series if drop == True pandas.Series.sample Series.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None) Returns a random sample of items from an axis of object. Parameters n : int, optional Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None. frac : float, optional Fraction of axis items to return. Cannot be used with n. replace : boolean, optional Sample with or without replacement. Default = False. weights : str or ndarray-like, optional 33.3. Series 1043 pandas: powerful Python data analysis toolkit, Release 0.16.1 Default ‘None’ results in equal probability weighting. If called on a DataFrame, will accept the name of a column when axis = 0. Weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed. random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : int or string, optional Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels). Returns Same type as caller. pandas.Series.select Series.select(crit, axis=0) Return data corresponding to axis labels matching criteria Parameters crit : function To be called on each index (label). Should return True or False axis : int Returns selection : type of caller pandas.Series.take Series.take(indices, axis=0, convert=True, is_copy=False) return Series corresponding to requested indices Parameters indices : list / array of ints convert : translate negative to positive indices (default) Returns taken : Series See also: numpy.ndarray.take pandas.Series.tail Series.tail(n=5) Returns last n rows pandas.Series.truncate Series.truncate(before=None, after=None, axis=None, copy=True) Truncates a sorted NDFrame before and/or after some particular dates. Parameters before : date Truncate before date after : date 1044 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Truncate after date axis : the truncation axis, defaults to the stat axis copy : boolean, default is True, return a copy of the truncated section Returns truncated : type of caller pandas.Series.where Series.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.Series.mask Series.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) 33.3. Series 1045 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns wh : same type as caller 33.3.9 Missing data handling Series.dropna([axis, inplace]) Series.fillna([value, method, axis, ...]) Series.interpolate([method, axis, limit, ...]) Return Series without null values Fill NA/NaN values using the specified method Interpolate values according to different methods. pandas.Series.dropna Series.dropna(axis=0, inplace=False, **kwargs) Return Series without null values Returns valid : Series inplace : boolean, default False Do operation in place. pandas.Series.fillna Series.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) Fill NA/NaN values using the specified method Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. axis : {0, ‘index’} inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns filled : Series 1046 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 See also: reindex, asfreq pandas.Series.interpolate Series.interpolate(method=’linear’, axis=0, **kwargs) Interpolate values according to different methods. limit=None, inplace=False, downcast=None, Parameters method : {‘linear’, ‘time’, ‘index’, ‘values’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘spline’ ‘piecewise_polynomial’, ‘pchip’} • ‘linear’: ignore the index and treat the values as equally spaced. default • ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval • ‘index’, ‘values’: use the actual numerical values of the index • ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d with the order given both ‘polynomial’ and ‘spline’ requre that you also specify and order (int) e.g. df.interpolate(method=’polynomial’, order=4) • ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior: http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariateinterpolation http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html axis : {0, 1}, default 0 • 0: fill column-by-column • 1: fill row-by-row limit : int, default None. Maximum number of consecutive NaNs to fill. inplace : bool, default False Update the NDFrame in place if possible. downcast : optional, ‘infer’ or None, defaults to None Downcast dtypes if possible. Returns Series or DataFrame of same shape interpolated at the NaNs See also: reindex, replace, fillna Examples Filling in NaNs 33.3. Series 1047 pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64 33.3.10 Reshaping, sorting Series.argsort([axis, kind, order]) Series.order([na_last, ascending, kind, ...]) Series.reorder_levels(order) Series.sort([axis, ascending, kind, ...]) Series.sort_index([ascending]) Series.sortlevel([level, ascending, ...]) Series.swaplevel(i, j[, copy]) Series.unstack([level]) Series.searchsorted(v[, side, sorter]) Overrides ndarray.argsort. Sorts Series object, by value, maintaining index-value link. Rearrange index levels using input order. Sort values and index labels by value. Sort object by labels (along an axis) Sort Series with MultiIndex by chosen level. Swap levels i and j in a MultiIndex Unstack, a.k.a. Find indices where elements should be inserted to maintain order. pandas.Series.argsort Series.argsort(axis=0, kind=’quicksort’, order=None) Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values Parameters axis : int (can only be zero) kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’ Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm order : ignored Returns argsorted : Series, with -1 indicated where nan values are present See also: numpy.ndarray.argsort pandas.Series.order Series.order(na_last=None, ascending=True, kind=’quicksort’, na_position=’last’, inplace=False) Sorts Series object, by value, maintaining index-value link. This will return a new Series by default. Series.sort is the equivalent but as an inplace method. Parameters na_last : boolean (optional, default=True) (DEPRECATED; use na_position) Put NaN’s at beginning or end ascending : boolean, default True Sort ascending. Passing False sorts descending kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’ 1048 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm na_position : {‘first’, ‘last’} (optional, default=’last’) ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end inplace : boolean, default False Do operation in place. Returns y : Series See also: Series.sort pandas.Series.reorder_levels Series.reorder_levels(order) Rearrange index levels using input order. May not drop or duplicate levels Parameters order: list of int representing new level order. (reference level by number or key) axis: where to reorder levels Returns type of caller (new object) pandas.Series.sort Series.sort(axis=0, ascending=True, kind=’quicksort’, na_position=’last’, inplace=True) Sort values and index labels by value. This is an inplace sort by default. Series.order is the equivalent but returns a new Series. Parameters axis : int (can only be zero) ascending : boolean, default True Sort ascending. Passing False sorts descending kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’ Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm na_position : {‘first’, ‘last’} (optional, default=’last’) ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end inplace : boolean, default True Do operation in place. See also: Series.order 33.3. Series 1049 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.sort_index Series.sort_index(ascending=True) Sort object by labels (along an axis) Parameters ascending : boolean or list, default True Sort ascending vs. descending. Specify list for multiple sort orders Returns sorted_obj : Series Examples >>> result1 = s.sort_index(ascending=False) >>> result2 = s.sort_index(ascending=[1, 0]) pandas.Series.sortlevel Series.sortlevel(level=0, ascending=True, sort_remaining=True) Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order) Parameters level : int or level name, default None ascending : bool, default True Returns sorted : Series pandas.Series.swaplevel Series.swaplevel(i, j, copy=True) Swap levels i and j in a MultiIndex Parameters i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns swapped : Series pandas.Series.unstack Series.unstack(level=-1) Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted. Parameters level : int, string, or list of these, default last level Level(s) to unstack, can pass level name Returns unstacked : DataFrame Examples 1050 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> s one a one b two a two b 1. 2. 3. 4. >>> s.unstack(level=-1) a b one 1. 2. two 3. 4. >>> s.unstack(level=0) one two a 1. 2. b 3. 4. pandas.Series.searchsorted Series.searchsorted(v, side=’left’, sorter=None) Find indices where elements should be inserted to maintain order. Find the indices into a sorted Series self such that, if the corresponding elements in v were inserted before the indices, the order of self would be preserved. Parameters v : array_like Values to insert into a. side : {‘left’, ‘right’}, optional If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of a). sorter : 1-D array_like, optional Optional array of integer indices that sort self into ascending order. They are typically the result of np.argsort. Returns indices : array of ints Array of insertion points with the same shape as v. See also: Series.sort, Series.order, numpy.searchsorted Notes Binary search is used to find the required insertion points. Examples >>> x = pd.Series([1, 2, 3]) >>> x 0 1 1 2 2 3 33.3. Series 1051 pandas: powerful Python data analysis toolkit, Release 0.16.1 dtype: int64 >>> x.searchsorted(4) array([3]) >>> x.searchsorted([0, array([0, 3]) >>> x.searchsorted([1, array([0, 2]) >>> x.searchsorted([1, array([1, 3]) >>> x.searchsorted([1, array([1, 3]) 4]) 3], side='left') 3], side='right') 2], side='right', sorter=[0, 2, 1]) 33.3.11 Combining / joining / merging Series.append(to_append[, verify_integrity]) Series.replace([to_replace, value, inplace, ...]) Series.update(other) Concatenate two or more Series. Replace values given in ‘to_replace’ with ‘value’. Modify Series in place using non-NA values from passed Series. pandas.Series.append Series.append(to_append, verify_integrity=False) Concatenate two or more Series. The indexes must not overlap Parameters to_append : Series or list/tuple of Series verify_integrity : boolean, default False If True, raise Exception on creating index with duplicates Returns appended : Series pandas.Series.replace Series.replace(to_replace=None, value=None, method=’pad’, axis=None) Replace values given in ‘to_replace’ with ‘value’. inplace=False, limit=None, regex=False, Parameters to_replace : str, regex, list, dict, Series, numeric, or None • str or regex: – str: string exactly matching to_replace will be replaced with value – regex: regexs matching to_replace will be replaced with value • list of str, regex, or numeric: – First, if to_replace and value are both lists, they must be the same length. – Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use. – str and regex rules apply as above. • dict: 1052 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 – Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions. – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in. • None: – This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : boolean, default False If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True. limit : int, default None Maximum size gap to forward or backward fill regex : bool or same types as to_replace, default False Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions. method : string, optional, {‘pad’, ‘ffill’, ‘bfill’} The method to use when for replacement, when to_replace is a list. Returns filled : NDFrame Raises AssertionError • If regex is not a bool and to_replace is not None. TypeError • If to_replace is a dict and value is not a list, dict, ndarray, or Series • If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. ValueError • If to_replace and value are list s or ndarray s, but they are not the same length. See also: NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna 33.3. Series 1053 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes •Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same. •Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this. •This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works. pandas.Series.update Series.update(other) Modify Series in place using non-NA values from passed Series. Aligns on index Parameters other : Series 33.3.12 Time series-related Series.asfreq(freq[, method, how, normalize]) Series.asof(where) Series.shift([periods, freq, axis]) Series.first_valid_index() Series.last_valid_index() Series.resample(rule[, how, axis, ...]) Series.tz_convert(tz[, axis, level, copy]) Series.tz_localize(*args, **kwargs) Convert all TimeSeries inside to specified frequency using DateOffset objects. Return last good (non-NaN) value in TimeSeries if value is NaN for requested d Shift index by desired number of periods with an optional time freq Return label for first non-NA/null value Return label for last non-NA/null value Convenience method for frequency conversion and resampling of regular timeConvert tz-aware axis to target time zone. Localize tz-naive TimeSeries to target time zone pandas.Series.asfreq Series.asfreq(freq, method=None, how=None, normalize=False) Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values. Parameters freq : DateOffset object, or string method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None} Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method how : {‘start’, ‘end’}, default end For PeriodIndex only, see PeriodIndex.asfreq normalize : bool, default False Whether to reset output index to midnight Returns converted : type of caller 1054 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.asof Series.asof(where) Return last good (non-NaN) value in TimeSeries if value is NaN for requested date. If there is no good value, NaN is returned. Parameters where : date or array of dates Returns value or NaN Notes Dates are assumed to be sorted pandas.Series.shift Series.shift(periods=1, freq=None, axis=0, **kwargs) Shift index by desired number of periods with an optional time freq Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, optional Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes. axis : {0, ‘index’} Returns shifted : Series Notes If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. pandas.Series.first_valid_index Series.first_valid_index() Return label for first non-NA/null value pandas.Series.last_valid_index Series.last_valid_index() Return label for last non-NA/null value pandas.Series.resample Series.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=’start’, kind=None, loffset=None, limit=None, base=0) Convenience method for frequency conversion and resampling of regular time-series data. Parameters rule : string 33.3. Series 1055 pandas: powerful Python data analysis toolkit, Release 0.16.1 the offset string or object representing target conversion how : string method for down- or re-sampling, default to ‘mean’ for downsampling axis : int, optional, default 0 fill_method : string, default None fill_method for upsampling closed : {‘right’, ‘left’} Which side of bin interval is closed label : {‘right’, ‘left’} Which bin edge label to label bucket with convention : {‘start’, ‘end’, ‘s’, ‘e’} kind : “period”/”timestamp” loffset : timedelta Adjust the resampled time labels limit : int, default None Maximum size gap to when reindexing with fill_method base : int, default 0 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0 pandas.Series.tz_convert Series.tz_convert(tz, axis=0, level=None, copy=True) Convert tz-aware axis to target time zone. Parameters tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Raises TypeError If the axis is tz-naive. pandas.Series.tz_localize Series.tz_localize(*args, **kwargs) Localize tz-naive TimeSeries to target time zone 1056 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Raises TypeError If the TimeSeries is tz-aware and tz is not None. 33.3.13 Datetimelike Properties Series.dt can be used to access the values of the series as datetimelike and return several properties. These can be accessed like Series.dt.. Datetime Properties Series.dt.date Series.dt.time Series.dt.year Series.dt.month Series.dt.day Series.dt.hour Series.dt.minute Series.dt.second Series.dt.microsecond Series.dt.nanosecond Series.dt.second Series.dt.week Series.dt.weekofyear Series.dt.dayofweek Series.dt.weekday Series.dt.dayofyear Series.dt.quarter Series.dt.is_month_start Series.dt.is_month_end Series.dt.is_quarter_start Series.dt.is_quarter_end Series.dt.is_year_start 33.3. Series Returns numpy array of datetime.date. Returns numpy array of datetime.time. The year of the datetime The month as January=1, December=12 The days of the datetime The hours of the datetime The minutes of the datetime The seconds of the datetime The microseconds of the datetime The nanoseconds of the datetime The seconds of the datetime The week ordinal of the year The week ordinal of the year The day of the week with Monday=0, Sunday=6 The day of the week with Monday=0, Sunday=6 The ordinal day of the year The quarter of the date Logical indicating if first day of month (defined by frequency) Logical indicating if last day of month (defined by frequency) Logical indicating if first day of quarter (defined by frequency) Logical indicating if last day of quarter (defined by frequency) Logical indicating if first day of year (defined by frequency) Continued on next page 1057 pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.33 – continued from previous page Series.dt.is_year_end Logical indicating if last day of year (defined by frequency) Series.dt.daysinmonth The number of days in the month Series.dt.days_in_month The number of days in the month Series.dt.tz Series.dt.freq get/set the frequncy of the Index pandas.Series.dt.date Series.dt.date Returns numpy array of datetime.date. The date part of the Timestamps. pandas.Series.dt.time Series.dt.time Returns numpy array of datetime.time. The time part of the Timestamps. pandas.Series.dt.year Series.dt.year The year of the datetime pandas.Series.dt.month Series.dt.month The month as January=1, December=12 pandas.Series.dt.day Series.dt.day The days of the datetime pandas.Series.dt.hour Series.dt.hour The hours of the datetime pandas.Series.dt.minute Series.dt.minute The minutes of the datetime pandas.Series.dt.second Series.dt.second The seconds of the datetime 1058 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.dt.microsecond Series.dt.microsecond The microseconds of the datetime pandas.Series.dt.nanosecond Series.dt.nanosecond The nanoseconds of the datetime pandas.Series.dt.second Series.dt.second The seconds of the datetime pandas.Series.dt.week Series.dt.week The week ordinal of the year pandas.Series.dt.weekofyear Series.dt.weekofyear The week ordinal of the year pandas.Series.dt.dayofweek Series.dt.dayofweek The day of the week with Monday=0, Sunday=6 pandas.Series.dt.weekday Series.dt.weekday The day of the week with Monday=0, Sunday=6 pandas.Series.dt.dayofyear Series.dt.dayofyear The ordinal day of the year pandas.Series.dt.quarter Series.dt.quarter The quarter of the date 33.3. Series 1059 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.dt.is_month_start Series.dt.is_month_start Logical indicating if first day of month (defined by frequency) pandas.Series.dt.is_month_end Series.dt.is_month_end Logical indicating if last day of month (defined by frequency) pandas.Series.dt.is_quarter_start Series.dt.is_quarter_start Logical indicating if first day of quarter (defined by frequency) pandas.Series.dt.is_quarter_end Series.dt.is_quarter_end Logical indicating if last day of quarter (defined by frequency) pandas.Series.dt.is_year_start Series.dt.is_year_start Logical indicating if first day of year (defined by frequency) pandas.Series.dt.is_year_end Series.dt.is_year_end Logical indicating if last day of year (defined by frequency) pandas.Series.dt.daysinmonth Series.dt.daysinmonth The number of days in the month pandas.Series.dt.days_in_month Series.dt.days_in_month The number of days in the month pandas.Series.dt.tz Series.dt.tz 1060 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.dt.freq Series.dt.freq get/set the frequncy of the Index Datetime Methods Series.dt.to_period(*args, **kwargs) Series.dt.to_pydatetime() Series.dt.tz_localize(*args, **kwargs) Series.dt.tz_convert(*args, **kwargs) Series.dt.normalize(*args, **kwargs) Cast to PeriodIndex at a particular frequency Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateut Return DatetimeIndex with times to midnight. pandas.Series.dt.to_period Series.dt.to_period(*args, **kwargs) Cast to PeriodIndex at a particular frequency pandas.Series.dt.to_pydatetime Series.dt.to_pydatetime() pandas.Series.dt.tz_localize Series.dt.tz_localize(*args, **kwargs) Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time. ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Returns localized : DatetimeIndex Raises TypeError If the DatetimeIndex is tz-aware and tz is not None. 33.3. Series 1061 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.dt.tz_convert Series.dt.tz_convert(*args, **kwargs) Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil) Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time. Returns normalized : DatetimeIndex Raises TypeError If DatetimeIndex is tz-naive. pandas.Series.dt.normalize Series.dt.normalize(*args, **kwargs) Return DatetimeIndex with times to midnight. Length is unaltered Returns normalized : DatetimeIndex Timedelta Properties Series.dt.days Series.dt.seconds Series.dt.microseconds Series.dt.nanoseconds Series.dt.components Number of days for each element. Number of seconds (>= 0 and less than 1 day) for each element. Number of microseconds (>= 0 and less than 1 second) for each element. Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds pandas.Series.dt.days Series.dt.days Number of days for each element. pandas.Series.dt.seconds Series.dt.seconds Number of seconds (>= 0 and less than 1 day) for each element. pandas.Series.dt.microseconds Series.dt.microseconds Number of microseconds (>= 0 and less than 1 second) for each element. pandas.Series.dt.nanoseconds Series.dt.nanoseconds Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. 1062 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.dt.components Series.dt.components Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas. Returns a DataFrame Timedelta Methods Series.dt.to_pytimedelta() pandas.Series.dt.to_pytimedelta Series.dt.to_pytimedelta() 33.3.14 String handling Series.str can be used to access the values of the series as strings and apply several methods to it. These can be acccessed like Series.str.. Series.str.capitalize() Series.str.cat([others, sep, na_rep]) Series.str.center(width[, fillchar]) Series.str.contains(pat[, case, flags, na, ...]) Series.str.count(pat[, flags]) Series.str.decode(encoding[, errors]) Series.str.encode(encoding[, errors]) Series.str.endswith(pat[, na]) Series.str.extract(pat[, flags]) Series.str.find(sub[, start, end]) Series.str.findall(pat[, flags]) Series.str.get(i) Series.str.index(sub[, start, end]) Series.str.join(sep) Series.str.len() Series.str.ljust(width[, fillchar]) Series.str.lower() Series.str.lstrip([to_strip]) Series.str.match(pat[, case, flags, na, ...]) Series.str.normalize(form) Series.str.pad(width[, side, fillchar]) Series.str.partition([pat, expand]) Series.str.repeat(repeats) Series.str.replace(pat, repl[, n, case, flags]) Series.str.rfind(sub[, start, end]) Series.str.rindex(sub[, start, end]) Series.str.rjust(width[, fillchar]) Series.str.rpartition([pat, expand]) Series.str.rstrip([to_strip]) Series.str.slice([start, stop, step]) Series.str.slice_replace([start, stop, repl]) 33.3. Series Convert strings in the Series/Index to be capitalized. Concatenate strings in the Series/Index with given separator. Filling left and right side of strings in the Series/Index with an additional cha Return boolean Series/array whether given pattern/regex is contained in ea Count occurrences of pattern in each string of the Series/Index. Decode character string in the Series/Index to unicode using indicated encodi Encode character string in the Series/Index to some other encoding using ind Return boolean Series indicating whether each string in the Series/Index ends Find groups in each string in the Series using passed regular expression. Return lowest indexes in each strings in the Series/Index where the substring Find all occurrences of pattern or regular expression in the Series/Index. Extract element from lists, tuples, or strings in each element in the Series/Ind Return lowest indexes in each strings where the substring is fully contained b Join lists contained as elements in the Series/Index with passed delimiter. Compute length of each string in the Series/Index. Filling right side of strings in the Series/Index with an additional character. Convert strings in the Series/Index to lowercase. Strip whitespace (including newlines) from each string in the Series/Index fro Deprecated: Find groups in each string in the Series/Index using passed regul Return the Unicode normal form for the strings in the Series/Index. Pad strings in the Series/Index with an additional character to specified side. Split the string at the first occurrence of sep, and return 3 elements containing Duplicate each string in the Series/Index by indicated number of times. Replace occurrences of pattern/regex in the Series/Index with some other stri Return highest indexes in each strings in the Series/Index where the substring Return highest indexes in each strings where the substring is fully contained b Filling left side of strings in the Series/Index with an additional character. Split the string at the last occurrence of sep, and return 3 elements containing Strip whitespace (including newlines) from each string in the Series/Index fro Slice substrings from each element in the Series/Index Replace a slice of each string in the Series/Index with another string. 1063 pandas: powerful Python data analysis toolkit, Release 0.16.1 Series.str.split(*args, **kwargs) Series.str.startswith(pat[, na]) Series.str.strip([to_strip]) Series.str.swapcase() Series.str.title() Series.str.translate(table[, deletechars]) Series.str.upper() Series.str.wrap(width, **kwargs) Series.str.zfill(width) Series.str.isalnum() Series.str.isalpha() Series.str.isdigit() Series.str.isspace() Series.str.islower() Series.str.isupper() Series.str.istitle() Series.str.isnumeric() Series.str.isdecimal() Series.str.get_dummies([sep]) Table 33.37 – continued from previous page Split each string (a la re.split) in the Series/Index by given pattern, propagatin Return boolean Series/array indicating whether each string in the Series/In Strip whitespace (including newlines) from each string in the Series/Index fro Convert strings in the Series/Index to be swapcased. Convert strings in the Series/Index to titlecase. Map all characters in the string through the given mapping table. Convert strings in the Series/Index to uppercase. Wrap long strings in the Series/Index to be formatted in paragraphs with leng “ Check whether all characters in each string in the Series/Index are alphanume Check whether all characters in each string in the Series/Index are alphabetic Check whether all characters in each string in the Series/Index are digits. Check whether all characters in each string in the Series/Index are whitespace Check whether all characters in each string in the Series/Index are lowercase. Check whether all characters in each string in the Series/Index are uppercase. Check whether all characters in each string in the Series/Index are titlecase. Check whether all characters in each string in the Series/Index are numeric. Check whether all characters in each string in the Series/Index are decimal. Split each string in the Series by sep and return a frame of dummy/indicator v pandas.Series.str.capitalize Series.str.capitalize() Convert strings in the Series/Index to be capitalized. Equivalent to str.capitalize(). Returns converted : Series/Index of objects pandas.Series.str.cat Series.str.cat(others=None, sep=None, na_rep=None) Concatenate strings in the Series/Index with given separator. Parameters others : list-like, or list of list-likes If None, returns str concatenating strings of the Series sep : string or None, default None na_rep : string or None, default None If None, an NA in any array will propagate Returns concat : Series/Index of objects or str Examples If others is specified, corresponding values are concatenated with the separator. Result will be a Series of strings. >>> Series(['a', 'b', 'c']).str.cat(['A', 'B', 'C'], sep=',') 0 a,A 1 b,B 2 c,C dtype: object 1064 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Otherwise, strings in the Series are concatenated. Result will be a string. >>> Series(['a', 'b', 'c']).str.cat(sep=',') 'a,b,c' Also, you can pass a list of list-likes. >>> Series(['a', 'b']).str.cat([['x', 'y'], ['1', '2']], sep=',') 0 a,x,1 1 b,y,2 dtype: object pandas.Series.str.center Series.str.center(width, fillchar=’ ‘) Filling left and right side of strings in the Series/Index with an additional character. str.center(). Equivalent to Parameters width : int Minimum width of resulting string; additional characters will be filled with fillchar fillchar : str Additional character for filling, default is whitespace Returns filled : Series/Index of objects pandas.Series.str.contains Series.str.contains(pat, case=True, flags=0, na=nan, regex=True) Return boolean Series/array whether given pattern/regex is contained in each string in the Series/Index. Parameters pat : string Character sequence or regular expression case : boolean, default True If True, case sensitive flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE na : default NaN, fill value for missing values. regex : bool, default True If True use re.search, otherwise use Python in operator Returns contained : Series/array of boolean values See also: match analagous, but stricter, relying on re.match instead of re.search 33.3. Series 1065 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.str.count Series.str.count(pat, flags=0, **kwargs) Count occurrences of pattern in each string of the Series/Index. Parameters pat : string, valid regular expression flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE Returns counts : Series/Index of integer values pandas.Series.str.decode Series.str.decode(encoding, errors=’strict’) Decode character string in the Series/Index to unicode using indicated encoding. str.decode(). Equivalent to Parameters encoding : string errors : string Returns decoded : Series/Index of objects pandas.Series.str.encode Series.str.encode(encoding, errors=’strict’) Encode character string in the Series/Index to some other encoding using indicated encoding. Equivalent to str.encode(). Parameters encoding : string errors : string Returns encoded : Series/Index of objects pandas.Series.str.endswith Series.str.endswith(pat, na=nan) Return boolean Series indicating whether each string in the Series/Index ends with passed pattern. Equivalent to str.endswith(). Parameters pat : string Character sequence na : bool, default NaN Returns endswith : Series/array of boolean values pandas.Series.str.extract Series.str.extract(pat, flags=0) Find groups in each string in the Series using passed regular expression. Parameters pat : string Pattern or regular expression 1066 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE Returns extracted groups : Series (one group) or DataFrame (multiple groups) Note that dtype of the result is always object, even when no match is found and the result is a Series or DataFrame containing only NaN values. Examples A pattern with one group will return a Series. Non-matches will be NaN. >>> Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)') 0 1 1 2 2 NaN dtype: object A pattern with more than one group will return a DataFrame. >>> Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)') 0 1 0 a 1 1 b 2 2 NaN NaN A pattern may contain optional groups. >>> Series(['a1', 'b2', 'c3']).str.extract('([ab])?(\d)') 0 1 0 a 1 1 b 2 2 NaN 3 Named groups will become column names in the result. >>> Series(['a1', 'b2', 'c3']).str.extract('(?P[ab])(?P\d)') letter digit 0 a 1 1 b 2 2 NaN NaN pandas.Series.str.find Series.str.find(sub, start=0, end=None) Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Equivalent to standard str.find(). Parameters sub : str Substring being searched start : int Left edge index end : int Right edge index 33.3. Series 1067 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns found : Series/Index of integer values See also: rfind Return highest indexes in each strings pandas.Series.str.findall Series.str.findall(pat, flags=0, **kwargs) Find all occurrences of pattern or regular expression in the Series/Index. Equivalent to re.findall(). Parameters pat : string Pattern or regular expression flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE Returns matches : Series/Index of lists pandas.Series.str.get Series.str.get(i) Extract element from lists, tuples, or strings in each element in the Series/Index. Parameters i : int Integer index (location) Returns items : Series/Index of objects pandas.Series.str.index Series.str.index(sub, start=0, end=None) Return lowest indexes in each strings where the substring is fully contained between [start:end]. This is the same as str.find except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard str.index. Parameters sub : str Substring being searched start : int Left edge index end : int Right edge index Returns found : Series/Index of objects See also: rindex Return highest indexes in each strings 1068 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.str.join Series.str.join(sep) Join lists contained as elements in the Series/Index with passed delimiter. Equivalent to str.join(). Parameters sep : string Delimiter Returns joined : Series/Index of objects pandas.Series.str.len Series.str.len() Compute length of each string in the Series/Index. Returns lengths : Series/Index of integer values pandas.Series.str.ljust Series.str.ljust(width, fillchar=’ ‘) Filling right side of strings in the Series/Index with an additional character. Equivalent to str.right(). Parameters width : int Minimum width of resulting string; additional characters will be filled with fillchar fillchar : str Additional character for filling, default is whitespace Returns filled : Series/Index of objects pandas.Series.str.lower Series.str.lower() Convert strings in the Series/Index to lowercase. Equivalent to str.lower(). Returns converted : Series/Index of objects pandas.Series.str.lstrip Series.str.lstrip(to_strip=None) Strip whitespace (including newlines) from each string in the Series/Index from left side. Equivalent to str.lstrip(). Returns stripped : Series/Index of objects pandas.Series.str.match Series.str.match(pat, case=True, flags=0, na=nan, as_indexer=False) Deprecated: Find groups in each string in the Series/Index using passed regular expression. If as_indexer=True, determine if each string matches a regular expression. Parameters pat : string 33.3. Series 1069 pandas: powerful Python data analysis toolkit, Release 0.16.1 Character sequence or regular expression case : boolean, default True If True, case sensitive flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE na : default NaN, fill value for missing values. as_indexer : False, by default, gives deprecated behavior better achieved using str_extract. True return boolean indexer. Returns Series/array of boolean values if as_indexer=True Series/Index of tuples if as_indexer=False, default but deprecated See also: contains analagous, but less strict, relying on re.search instead of re.match extract now preferred to the deprecated usage of match (as_indexer=False) Notes To extract matched groups, which is the deprecated behavior of match, use str.extract. pandas.Series.str.normalize Series.str.normalize(form) Return the Unicode normal form for the strings in the Series/Index. For more information on the forms, see the unicodedata.normalize(). Parameters form : {‘NFC’, ‘NFKC’, ‘NFD’, ‘NFKD’} Unicode form Returns normalized : Series/Index of objects pandas.Series.str.pad Series.str.pad(width, side=’left’, fillchar=’ ‘) Pad strings in the Series/Index with an additional character to specified side. Parameters width : int Minimum width of resulting string; additional characters will be filled with spaces side : {‘left’, ‘right’, ‘both’}, default ‘left’ fillchar : str Additional character for filling, default is whitespace Returns padded : Series/Index of objects 1070 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.str.partition Series.str.partition(pat=’ ‘, expand=True) Split the string at the first occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 elements containing the string itself, followed by two empty strings. Parameters pat : string, default whitespace String to split on. expand : bool, default True • If True, return DataFrame/MultiIndex expanding dimensionality. • If False, return Series/Index. Returns split : DataFrame/MultiIndex or Series/Index of objects See also: rpartition Split the string at the last occurrence of sep Examples >>> s = Series(['A_B_C', 'D_E_F', 'X']) 0 A_B_C 1 D_E_F 2 X dtype: object >>> s.str.partition('_') 0 1 2 0 A _ B_C 1 D _ E_F 2 X >>> s.str.rpartition('_') 0 1 2 0 A_B _ C 1 D_E _ F 2 X pandas.Series.str.repeat Series.str.repeat(repeats) Duplicate each string in the Series/Index by indicated number of times. Parameters repeats : int or array Same value for all (int) or different value per (array) Returns repeated : Series/Index of objects 33.3. Series 1071 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.str.replace Series.str.replace(pat, repl, n=-1, case=True, flags=0) Replace occurrences of pattern/regex in the Series/Index with some other string. str.replace() or re.sub(). Equivalent to Parameters pat : string Character sequence or regular expression repl : string Replacement sequence n : int, default -1 (all) Number of replacements to make from start case : boolean, default True If True, case sensitive flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE Returns replaced : Series/Index of objects pandas.Series.str.rfind Series.str.rfind(sub, start=0, end=None) Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Equivalent to standard str.rfind(). Parameters sub : str Substring being searched start : int Left edge index end : int Right edge index Returns found : Series/Index of integer values See also: find Return lowest indexes in each strings pandas.Series.str.rindex Series.str.rindex(sub, start=0, end=None) Return highest indexes in each strings where the substring is fully contained between [start:end]. This is the same as str.rfind except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard str.rindex. Parameters sub : str Substring being searched 1072 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 start : int Left edge index end : int Right edge index Returns found : Series/Index of objects See also: index Return lowest indexes in each strings pandas.Series.str.rjust Series.str.rjust(width, fillchar=’ ‘) Filling left side of strings in the Series/Index with an additional character. Equivalent to str.left(). Parameters width : int Minimum width of resulting string; additional characters will be filled with fillchar fillchar : str Additional character for filling, default is whitespace Returns filled : Series/Index of objects pandas.Series.str.rpartition Series.str.rpartition(pat=’ ‘, expand=True) Split the string at the last occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 elements containing two empty strings, followed by the string itself. Parameters pat : string, default whitespace String to split on. expand : bool, default True • If True, return DataFrame/MultiIndex expanding dimensionality. • If False, return Series/Index. Returns split : DataFrame/MultiIndex or Series/Index of objects See also: partition Split the string at the first occurrence of sep Examples >>> s = Series(['A_B_C', 'D_E_F', 'X']) 0 A_B_C 1 D_E_F 2 X dtype: object 33.3. Series 1073 pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> s.str.partition('_') 0 1 2 0 A _ B_C 1 D _ E_F 2 X >>> s.str.rpartition('_') 0 1 2 0 A_B _ C 1 D_E _ F 2 X pandas.Series.str.rstrip Series.str.rstrip(to_strip=None) Strip whitespace (including newlines) from each string in the Series/Index from right side. Equivalent to str.rstrip(). Returns stripped : Series/Index of objects pandas.Series.str.slice Series.str.slice(start=None, stop=None, step=None) Slice substrings from each element in the Series/Index Parameters start : int or None stop : int or None step : int or None Returns sliced : Series/Index of objects pandas.Series.str.slice_replace Series.str.slice_replace(start=None, stop=None, repl=None) Replace a slice of each string in the Series/Index with another string. Parameters start : int or None stop : int or None repl : str or None String for replacement Returns replaced : Series/Index of objects pandas.Series.str.split Series.str.split(*args, **kwargs) Split each string (a la re.split) in the Series/Index by given pattern, propagating NA values. Equivalent to str.split(). Parameters pat : string, default None String or regular expression to split on. If None, splits on whitespace 1074 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 n : int, default -1 (all) None, 0 and -1 will be interpreted as return all splits expand : bool, default False • If True, return DataFrame/MultiIndex expanding dimensionality. • If False, return Series/Index. return_type : deprecated, use expand Returns split : Series/Index or DataFrame/MultiIndex of objects pandas.Series.str.startswith Series.str.startswith(pat, na=nan) Return boolean Series/array indicating whether each string in the Series/Index starts with passed pattern. Equivalent to str.startswith(). Parameters pat : string Character sequence na : bool, default NaN Returns startswith : Series/array of boolean values pandas.Series.str.strip Series.str.strip(to_strip=None) Strip whitespace (including newlines) from each string in the Series/Index from left and right sides. Equivalent to str.strip(). Returns stripped : Series/Index of objects pandas.Series.str.swapcase Series.str.swapcase() Convert strings in the Series/Index to be swapcased. Equivalent to str.swapcase(). Returns converted : Series/Index of objects pandas.Series.str.title Series.str.title() Convert strings in the Series/Index to titlecase. Equivalent to str.title(). Returns converted : Series/Index of objects pandas.Series.str.translate Series.str.translate(table, deletechars=None) Map all characters in the string through the given mapping table. Equivalent to standard str.translate(). Note that the optional argument deletechars is only valid if you are using python 2. For python 3, character deletion should be specified via the table argument. 33.3. Series 1075 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters table : dict (python 3), str or None (python 2) In python 3, table is a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. Characters mapped to None are deleted. str.maketrans() is a helper function for making translation tables. In python 2, table is either a string of length 256 or None. If the table argument is None, no translation is applied and the operation simply removes the characters in deletechars. string.maketrans() is a helper function for making translation tables. deletechars : str, optional (python 2) A string of characters to delete. This argument is only valid in python 2. Returns translated : Series/Index of objects pandas.Series.str.upper Series.str.upper() Convert strings in the Series/Index to uppercase. Equivalent to str.upper(). Returns converted : Series/Index of objects pandas.Series.str.wrap Series.str.wrap(width, **kwargs) Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. This method has the same keyword parameters and defaults as textwrap.TextWrapper. Parameters width : int Maximum line-width expand_tabs : bool, optional If true, tab characters will be expanded to spaces (default: True) replace_whitespace : bool, optional If true, each whitespace character (as defined by string.whitespace) remaining after tab expansion will be replaced by a single space (default: True) drop_whitespace : bool, optional If true, whitespace that, after wrapping, happens to end up at the beginning or end of a line is dropped (default: True) break_long_words : bool, optional If true, then words longer than width will be broken in order to ensure that no lines are longer than width. If it is false, long words will not be broken, and some lines may be longer than width. (default: True) break_on_hyphens : bool, optional If true, wrapping will occur preferably on whitespace and right after hyphens in compound words, as it is customary in English. If false, only whitespaces will be considered as potentially good places for line breaks, but you need to set break_long_words to false if you want truly insecable words. (default: True) Returns wrapped : Series/Index of objects 1076 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Internally, this method uses a textwrap.TextWrapper instance with default settings. To achieve behavior matching R’s stringr library str_wrap function, use the arguments: •expand_tabs = False •replace_whitespace = True •drop_whitespace = True •break_long_words = False •break_on_hyphens = False Examples >>> s = pd.Series(['line to be wrapped', 'another line to be wrapped']) >>> s.str.wrap(12) 0 line to be\nwrapped 1 another line\nto be\nwrapped pandas.Series.str.zfill Series.str.zfill(width) ” Filling left side of strings in the Series/Index with 0. Equivalent to str.zfill(). Parameters width : int Minimum width of resulting string; additional characters will be filled with 0 Returns filled : Series/Index of objects pandas.Series.str.isalnum Series.str.isalnum() Check whether all characters in each string in the Series/Index are alphanumeric. str.isalnum(). Equivalent to Returns is : Series/array of boolean values pandas.Series.str.isalpha Series.str.isalpha() Check whether all characters in each string in the Series/Index are alphabetic. Equivalent to str.isalpha(). Returns is : Series/array of boolean values pandas.Series.str.isdigit Series.str.isdigit() Check whether all characters in each string in the Series/Index are digits. Equivalent to str.isdigit(). Returns is : Series/array of boolean values 33.3. Series 1077 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.str.isspace Series.str.isspace() Check whether all characters in each string in the Series/Index are whitespace. str.isspace(). Equivalent to Returns is : Series/array of boolean values pandas.Series.str.islower Series.str.islower() Check whether all characters in each string in the Series/Index are lowercase. Equivalent to str.islower(). Returns is : Series/array of boolean values pandas.Series.str.isupper Series.str.isupper() Check whether all characters in each string in the Series/Index are uppercase. Equivalent to str.isupper(). Returns is : Series/array of boolean values pandas.Series.str.istitle Series.str.istitle() Check whether all characters in each string in the Series/Index are titlecase. Equivalent to str.istitle(). Returns is : Series/array of boolean values pandas.Series.str.isnumeric Series.str.isnumeric() Check whether all characters in each string in the Series/Index are numeric. str.isnumeric(). Equivalent to Returns is : Series/array of boolean values pandas.Series.str.isdecimal Series.str.isdecimal() Check whether all characters in each string in the Series/Index are decimal. Equivalent to str.isdecimal(). Returns is : Series/array of boolean values pandas.Series.str.get_dummies Series.str.get_dummies(sep=’|’) Split each string in the Series by sep and return a frame of dummy/indicator variables. Parameters sep : string, default “|” String to split on. Returns dummies : DataFrame 1078 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 See also: pandas.get_dummies Examples >>> Series(['a|b', 'a', 'a|c']).str.get_dummies() a b c 0 1 1 0 1 1 0 0 2 1 0 1 >>> Series(['a|b', np.nan, 'a|c']).str.get_dummies() a b c 0 1 1 0 1 0 0 0 2 1 0 1 33.3.15 Categorical If the Series is of dtype category, Series.cat can be used to change the the categorical data. This accessor is similar to the Series.dt or Series.str and has the following usable methods and properties: Series.cat.categories Series.cat.ordered Series.cat.codes The categories of this categorical. Gets the ordered attribute pandas.Series.cat.categories Series.cat.categories The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to categories is a inplace operation! Raises ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See also: rename_categories, reorder_categories, add_categories, remove_unused_categories, set_categories remove_categories, pandas.Series.cat.ordered Series.cat.ordered Gets the ordered attribute 33.3. Series 1079 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.cat.codes Series.cat.codes Series.cat.rename_categories(*args, **kwargs) Series.cat.reorder_categories(*args, **kwargs) Series.cat.add_categories(*args, **kwargs) Series.cat.remove_categories(*args, **kwargs) Series.cat.remove_unused_categories(*args, ...) Series.cat.set_categories(*args, **kwargs) Series.cat.as_ordered(*args, **kwargs) Series.cat.as_unordered(*args, **kwargs) Renames categories. Reorders categories as specified in new_categories. Add new categories. Removes the specified categories. Removes categories which are not used. Sets the categories to the specified new_categories. Sets the Categorical to be ordered Sets the Categorical to be unordered pandas.Series.cat.rename_categories Series.cat.rename_categories(*args, **kwargs) Renames categories. The new categories has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Parameters new_categories : Index-like The renamed categories. inplace : boolean (default: False) Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns cat : Categorical with renamed categories added or None if inplace. Raises ValueError If the new categories do not have the same number of items than the current categories or do not validate as categories See also: reorder_categories, add_categories, remove_unused_categories, set_categories remove_categories, pandas.Series.cat.reorder_categories Series.cat.reorder_categories(*args, **kwargs) Reorders categories as specified in new_categories. new_categories need to include all old categories and no new category items. Parameters new_categories : Index-like The categories in new order. ordered : boolean, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : boolean (default: False) 1080 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns cat : Categorical with reordered categories or None if inplace. Raises ValueError If the new categories do not contain all old category items or any new ones See also: rename_categories, add_categories, remove_unused_categories, set_categories remove_categories, pandas.Series.cat.add_categories Series.cat.add_categories(*args, **kwargs) Add new categories. new_categories will be included at the last/highest place in the categories and will be unused directly after this call. Parameters new_categories : category or list-like of category The new categories to be included. inplace : boolean (default: False) Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns cat : Categorical with new categories added or None if inplace. Raises ValueError If the new categories include old categories or do not validate as categories See also: rename_categories, reorder_categories, remove_unused_categories, set_categories remove_categories, pandas.Series.cat.remove_categories Series.cat.remove_categories(*args, **kwargs) Removes the specified categories. removals must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters removals : category or list of categories The categories which should be removed. inplace : boolean (default: False) Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns cat : Categorical with removed categories or None if inplace. Raises ValueError If the removals are not contained in the categories 33.3. Series 1081 pandas: powerful Python data analysis toolkit, Release 0.16.1 See also: rename_categories, reorder_categories, remove_unused_categories, set_categories add_categories, pandas.Series.cat.remove_unused_categories Series.cat.remove_unused_categories(*args, **kwargs) Removes categories which are not used. Parameters inplace : boolean (default: False) Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns cat : Categorical with unused categories dropped or None if inplace. See also: rename_categories, set_categories reorder_categories, add_categories, remove_categories, pandas.Series.cat.set_categories Series.cat.set_categories(*args, **kwargs) Sets the categories to the specified new_categories. new_categories can include new categories (which will result in unused categories) or or remove old categories (which results in values set to NaN). If rename==True, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string. Parameters new_categories : Index-like The categories in new order. ordered : boolean, (default: False) Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : boolean (default: False) Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : boolean (default: False) Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns cat : Categorical with reordered categories or None if inplace. Raises ValueError If new_categories does not validate as categories 1082 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 See also: rename_categories, reorder_categories, remove_unused_categories add_categories, remove_categories, pandas.Series.cat.as_ordered Series.cat.as_ordered(*args, **kwargs) Sets the Categorical to be ordered Parameters inplace : boolean (default: False) Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to True pandas.Series.cat.as_unordered Series.cat.as_unordered(*args, **kwargs) Sets the Categorical to be unordered Parameters inplace : boolean (default: False) Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to False To create a Series of dtype category, use cat = s.astype("category"). The following two Categorical constructors are considered API but should only be used when adding ordering information or special categories is need at creation time of the categorical data: Categorical(values[, categories, ordered, ...]) Represents a categorical variable in classic R / S-plus fashion pandas.Categorical class pandas.Categorical(values, categories=None, ordered=False, name=None, fastpath=False, levels=None) Represents a categorical variable in classic R / S-plus fashion Categoricals can only take on only a limited, and usually fixed, number of possible values (categories). In contrast to statistical categorical variables, a Categorical might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the Categorical are either in categories or np.nan. Assigning values outside of categories will raise a ValueError. Order is defined by the order of the categories, not lexical order of the values. Parameters values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of values. ordered : boolean, (default False) Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will not be ordered. 33.3. Series 1083 pandas: powerful Python data analysis toolkit, Release 0.16.1 name : str, optional Name for the Categorical variable. If name is None, will attempt to infer from values. Raises ValueError If the categories do not validate. TypeError If an explicit ordered=True is given but no categories and the values are not sortable. Examples >>> from pandas import Categorical >>> Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3] >>> Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a < b < c] >>> a = Categorical(['a','b','c','a','b','c'], ['c', 'b', 'a']) >>> a.min() 'c' Attributes categories codes ordered name The categories of this categorical. The category codes of this categorical. Gets the ordered attribute (string) The name of this Categorical. Methods add_categories(new_categories[, inplace]) argsort([ascending]) as_ordered([inplace]) as_unordered([inplace]) astype(dtype) check_for_ordered(op) copy() describe() dropna() equals(other) fillna(*args, **kwargs) from_array(data, **kwargs) from_codes(codes, categories[, ordered, name]) 1084 Add new categories. Implements ndarray.argsort. Sets the Categorical to be ordered Sets the Categorical to be unordered coerce this type to another dtype assert that we are ordered Copy constructor. Describes this Categorical Return the Categorical without null values. Returns True if categorical arrays are equal. Fill NA/NaN values using the specified method. Make a Categorical type from a single array-like object. Make a Categorical type from codes and categories arrays. Continued on next page Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.42 – continued from previous page get_values() Return the values. is_dtype_equal(other) Returns True if categoricals are the same dtype isnull() Detect missing values max([numeric_only]) The maximum value of the object. min([numeric_only]) The minimum value of the object. mode() Returns the mode(s) of the Categorical. notnull() Reverse of isnull order([inplace, ascending, na_position]) Sorts the Category by category value returning a new Categorical by default. ravel([order]) Return a flattened (numpy) array. remove_categories(removals[, inplace]) Removes the specified categories. remove_unused_categories([inplace]) Removes categories which are not used. rename_categories(new_categories[, inplace]) Renames categories. reorder_categories(new_categories[, ...]) Reorders categories as specified in new_categories. reshape(new_shape, **kwargs) compat with .reshape searchsorted(v[, side, sorter]) Find indices where elements should be inserted to maintain order. set_categories(new_categories[, ordered, ...]) Sets the categories to the specified new_categories. set_ordered(value[, inplace]) Sets the ordered attribute to the boolean value sort([inplace, ascending, na_position]) Sorts the Category inplace by category value. take(indexer[, allow_fill, fill_value]) Take the codes by the indexer, fill with the fill_value. take_nd(indexer[, allow_fill, fill_value]) Take the codes by the indexer, fill with the fill_value. to_dense() Return my ‘dense’ representation unique() Return the unique values. value_counts([dropna]) Returns a Series containing counts of each category. view() Return a view of myself. pandas.Categorical.from_codes classmethod Categorical.from_codes(codes, categories, ordered=False, name=None) Make a Categorical type from codes and categories arrays. This constructor is useful if you already have codes and categories and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters codes : array-like, integers An integer array, where each integer points to a category in categories or -1 for NaN categories : index-like The categories for the categorical. Items need to be unique. ordered : boolean, (default False) Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will be unordered. name : str, optional Name for the Categorical variable. Categorical.from_codes(codes, categories[, ...]) 33.3. Series Make a Categorical type from codes and categories arrays. 1085 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Categorical.from_codes classmethod Categorical.from_codes(codes, categories, ordered=False, name=None) Make a Categorical type from codes and categories arrays. This constructor is useful if you already have codes and categories and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters codes : array-like, integers An integer array, where each integer points to a category in categories or -1 for NaN categories : index-like The categories for the categorical. Items need to be unique. ordered : boolean, (default False) Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will be unordered. name : str, optional Name for the Categorical variable. np.asarray(categorical) works by implementing the array interface. Be aware, that this converts the Categorical back to a numpy array, so levels and order information is not preserved! Categorical.__array__([dtype]) The numpy array interface. pandas.Categorical.__array__ Categorical.__array__(dtype=None) The numpy array interface. Returns values : numpy array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype 33.3.16 Plotting Series.hist([by, ax, grid, xlabelsize, ...]) Series.plot(data[, kind, ax, figsize, ...]) Draw histogram of the input series using matplotlib Make plots of Series using matplotlib / pylab. pandas.Series.hist Series.hist(by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds) Draw histogram of the input series using matplotlib Parameters by : object, optional If passed, then used to form histograms for separate groups ax : matplotlib axis object 1086 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If not passed, uses gca() grid : boolean, default True Whether to show axis grid lines xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None rotation of y axis labels figsize : tuple, default None figure size in inches by default bins: integer, default 10 Number of histogram bins to be used kwds : keywords To be passed to the actual plotting function Notes See matplotlib documentation online for more on this pandas.Series.plot Series.plot(data, kind=’line’, ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds) Make plots of Series using matplotlib / pylab. Parameters data : Series kind : str • ‘line’ : line plot (default) • ‘bar’ : vertical bar plot • ‘barh’ : horizontal bar plot • ‘hist’ : histogram • ‘box’ : boxplot • ‘kde’ : Kernel Density Estimation plot • ‘density’ : same as ‘kde’ • ‘area’ : area plot 33.3. Series 1087 pandas: powerful Python data analysis toolkit, Release 0.16.1 • ‘pie’ : pie plot ax : matplotlib axes object If not passed, uses gca() figsize : a tuple (width, height) in inches use_index : boolean, default True Use index as ticks for x axis title : string Title to use for the plot grid : boolean, default None (matlab style default) Axis grid lines legend : False/True/’reverse’ Place legend on axis subplots style : list or dict matplotlib line style per column logx : boolean, default False Use log scaling on x axis logy : boolean, default False Use log scaling on y axis loglog : boolean, default False Use log scaling on both x and y axes xticks : sequence Values to use for the xticks yticks : sequence Values to use for the yticks xlim : 2-tuple/list ylim : 2-tuple/list rot : int, default None Rotation for ticks (xticks for vertical, yticks for horizontal plots) fontsize : int, default None Font size for xticks and yticks colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : boolean, optional If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots) position : float 1088 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) layout : tuple (optional) (rows, columns) for the layout of the plot table : boolean, Series or DataFrame, default False If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See Plotting with Error Bars for detail. xerr : same types as yerr. label : label argument to provide to plot secondary_y : boolean or sequence of ints, default False If True then y-axis will be on the right mark_right : boolean, default True When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend kwds : keywords Options to pass to matplotlib plotting method Returns axes : matplotlib.AxesSubplot or np.array of them Notes •See matplotlib documentation online for more on this subject •If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) 33.3.17 Serialization / IO / Conversion Series.from_csv(path[, sep, parse_dates, ...]) Series.to_pickle(path) Series.to_csv(path[, index, sep, na_rep, ...]) Series.to_dict() Series.to_frame([name]) Series.to_hdf(path_or_buf, key, **kwargs) Series.to_sql(name, con[, flavor, schema, ...]) Series.to_msgpack([path_or_buf]) Series.to_json([path_or_buf, orient, ...]) Series.to_sparse([kind, fill_value]) Series.to_dense() Series.to_string([buf, na_rep, ...]) Series.to_clipboard([excel, sep]) 33.3. Series Read delimited file into Series Pickle (serialize) object to input file path Write Series to a comma-separated values (csv) file Convert Series to {label -> value} dict Convert Series to DataFrame activate the HDFStore Write records stored in a DataFrame to a SQL database. msgpack (serialize) object to input file path Convert the object to a JSON string. Convert Series to SparseSeries Return dense representation of NDFrame (as opposed to sparse) Render a string representation of the Series Attempt to write text representation of object to the system clipboard This can b 1089 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Series.from_csv classmethod Series.from_csv(path, sep=’, ‘, parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False) Read delimited file into Series Parameters path : string file path or file handle / StringIO sep : string, default ‘,’ Field delimiter parse_dates : boolean, default True Parse dates. Different default from read_table header : int, default 0 Row to use at header (skip prior rows) index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table encoding : string, optional a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 infer_datetime_format: boolean, default False If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. Returns y : Series pandas.Series.to_pickle Series.to_pickle(path) Pickle (serialize) object to input file path Parameters path : string File path pandas.Series.to_csv Series.to_csv(path, index=True, sep=’, ‘, na_rep=’‘, float_format=None, header=False, index_label=None, mode=’w’, nanRep=None, encoding=None, date_format=None, decimal=’.’) Write Series to a comma-separated values (csv) file Parameters path : string file path or file handle / StringIO. If None is provided the result is returned as a string. na_rep : string, default ‘’ Missing data representation float_format : string, default None 1090 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Format string for floating point numbers header : boolean, default False Write out series name index : boolean, default True Write row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. mode : Python write mode, default ‘w’ sep : character, default ”,” Field delimiter for the output file. encoding : string, optional a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 date_format: string, default None Format string for datetime objects. decimal: string, default ‘.’ Character recognized as decimal separator. E.g. use ‘,’ for European data pandas.Series.to_dict Series.to_dict() Convert Series to {label -> value} dict Returns value_dict : dict pandas.Series.to_frame Series.to_frame(name=None) Convert Series to DataFrame Parameters name : object, default None The passed name should substitute for the series name (if it has one). Returns data_frame : DataFrame pandas.Series.to_hdf Series.to_hdf(path_or_buf, key, **kwargs) activate the HDFStore Parameters path_or_buf : the path (string) or buffer to put the store key : string indentifier for the group in the store 33.3. Series 1091 pandas: powerful Python data analysis toolkit, Release 0.16.1 mode : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’ ’r’ Read-only; no data can be modified. ’w’ Write; a new file is created (an existing file with the same name would be deleted). ’a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created. ’r+’ It is similar to ’a’, but the file must already exist. format : ‘fixed(f)|table(t)’, default is ‘fixed’ fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False For Table formats, append the input data to the existing complevel : int, 1-9, default 0 If a complib is specified compression will be applied where possible complib : {‘zlib’, ‘bzip2’, ‘lzo’, ‘blosc’, None}, default None If complevel is > 0 apply compression to objects written in the store wherever possible fletcher32 : bool, default False If applying compression use the fletcher32 checksum pandas.Series.to_sql Series.to_sql(name, con, flavor=’sqlite’, schema=None, dex_label=None, chunksize=None, dtype=None) Write records stored in a DataFrame to a SQL database. if_exists=’fail’, index=True, in- Parameters name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : {‘sqlite’, ‘mysql’}, default ‘sqlite’ The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. schema : string, default None Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’ • fail: If table exists, do nothing. 1092 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • replace: If table exists, drop it, recreate it, and insert data. • append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column. index_label : string or sequence, default None Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. pandas.Series.to_msgpack Series.to_msgpack(path_or_buf=None, **kwargs) msgpack (serialize) object to input file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters path : string File path, buffer-like, or None if None, return generated string append : boolean whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) pandas.Series.to_json Series.to_json(path_or_buf=None, orient=None, date_format=’epoch’, force_ascii=True, date_unit=’ms’, default_handler=None) Convert the object to a JSON string. double_precision=10, Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters path_or_buf : the path or buffer to write the result string if this is None, return a StringIO of the converted string orient : string • Series – default is ‘index’ – allowed values are: {‘split’,’records’,’index’} • DataFrame 33.3. Series 1093 pandas: powerful Python data analysis toolkit, Release 0.16.1 – default is ‘columns’ – allowed values are: {‘split’,’records’,’index’,’columns’,’values’} • The format of the JSON string – split : dict like {index -> [index], columns -> [columns], data -> [values]} – records : list like [{column -> value}, ... , {column -> value}] – index : dict like {index -> {column -> value}} – columns : dict like {column -> {index -> value}} – values : just the values array date_format : {‘epoch’, ‘iso’} Type of date conversion. epoch = epoch milliseconds, iso‘ = ISO8601, default is epoch. double_precision : The number of decimal places to use when encoding floating point values, default 10. force_ascii : force encoded string to be ASCII, default True. date_unit : string, default ‘ms’ (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. Returns same type as input object with filtered info axis pandas.Series.to_sparse Series.to_sparse(kind=’block’, fill_value=None) Convert Series to SparseSeries Parameters kind : {‘block’, ‘integer’} fill_value : float, defaults to NaN (missing) Returns sp : SparseSeries pandas.Series.to_dense Series.to_dense() Return dense representation of NDFrame (as opposed to sparse) pandas.Series.to_string Series.to_string(buf=None, na_rep=’NaN’, float_format=None, dtype=False, name=False, max_rows=None) Render a string representation of the Series header=True, length=False, Parameters buf : StringIO-like, optional 1094 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 buffer to write to na_rep : string, optional string representation of NAN to use, default ‘NaN’ float_format : one-parameter function, optional formatter function to apply to columns’ elements if they are floats default None header: boolean, default True Add the Series header (index name) length : boolean, default False Add the Series length dtype : boolean, default False Add the Series dtype name : boolean, default False Add the Series name if not None max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. Returns formatted : string (if not buffer passed) pandas.Series.to_clipboard Series.to_clipboard(excel=None, sep=None, **kwargs) Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. Parameters excel : boolean, defaults to True if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard sep : optional, defaults to tab other keywords are passed to to_csv Notes Requirements for your platform • Linux: xclip, or xsel (with gtk or PyQt4 modules) • Windows: none • OS X: none 33.3.18 Sparse methods SparseSeries.to_coo([row_levels, ...]) SparseSeries.from_coo(A[, dense_index]) 33.3. Series Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. Create a SparseSeries from a scipy.sparse.coo_matrix. 1095 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.SparseSeries.to_coo SparseSeries.to_coo(row_levels=(0, ), column_levels=(1, ), sort_labels=False) Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. Use row_levels and column_levels to determine the row and column coordinates respectively. row_levels and column_levels are the names (labels) or numbers of the levels. {row_levels, column_levels} must be a partition of the MultiIndex level names (or numbers). Parameters row_levels : tuple/list column_levels : tuple/list sort_labels : bool, default False Sort the row and column labels before forming the sparse matrix. Returns y : scipy.sparse.coo_matrix rows : list (row labels) columns : list (column labels) Examples >>> from numpy import nan >>> s = Series([3.0, nan, 1.0, 3.0, nan, nan]) >>> s.index = MultiIndex.from_tuples([(1, 2, 'a', 0), (1, 2, 'a', 1), (1, 1, 'b', 0), (1, 1, 'b', 1), (2, 1, 'b', 0), (2, 1, 'b', 1)], names=['A', 'B', 'C', 'D']) >>> ss = s.to_sparse() >>> A, rows, columns = ss.to_coo(row_levels=['A', 'B'], column_levels=['C', 'D'], sort_labels=True) >>> A <3x4 sparse matrix of type '' with 3 stored elements in COOrdinate format> >>> A.todense() matrix([[ 0., 0., 1., 3.], [ 3., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> rows [(1, 1), (1, 2), (2, 1)] >>> columns [('a', 0), ('a', 1), ('b', 0), ('b', 1)] pandas.SparseSeries.from_coo classmethod SparseSeries.from_coo(A, dense_index=False) Create a SparseSeries from a scipy.sparse.coo_matrix. Parameters A : scipy.sparse.coo_matrix dense_index : bool, default False 1096 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If False (default), the SparseSeries index consists of only the coords of the non-null entries of the original coo_matrix. If True, the SparseSeries index consists of the full sorted (row, col) coordinates of the coo_matrix. Returns s : SparseSeries Examples >>> from scipy import sparse >>> A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)) >>> A <3x4 sparse matrix of type '' with 3 stored elements in COOrdinate format> >>> A.todense() matrix([[ 0., 0., 1., 2.], [ 3., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> ss = SparseSeries.from_coo(A) >>> ss 0 2 1 3 2 1 0 3 dtype: float64 BlockIndex Block locations: array([0], dtype=int32) Block lengths: array([3], dtype=int32) 33.4 DataFrame 33.4.1 Constructor DataFrame([data, index, columns, dtype, copy]) Two-dimensional size-mutable, potentially heterogeneous tabular data structure w pandas.DataFrame class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure Parameters data : numpy ndarray (structured or homogeneous), dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects index : Index or array-like Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided 33.4. DataFrame 1097 pandas: powerful Python data analysis toolkit, Release 0.16.1 dtype : dtype, default None Data type to force, otherwise infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input See also: DataFrame.from_records constructor from tuples, also record arrays DataFrame.from_dict from dicts of Series, arrays, or dicts DataFrame.from_csv from CSV files DataFrame.from_items from sequence of (key, value) pairs pandas.read_csv, pandas.read_table, pandas.read_clipboard Examples >>> >>> >>> >>> ... d = {'col1': ts1, 'col2': ts2} df = DataFrame(data=d, index=index) df2 = DataFrame(np.random.randn(10, 5)) df3 = DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e']) Attributes T at axes blocks dtypes empty ftypes iat iloc ix loc ndim shape size values Transpose index and columns Fast label-based scalar accessor Internal property, property synonym for as_blocks() Return the dtypes in this object True if NDFrame is entirely empty [no items] Return the ftypes (indication of sparse/dense and dtype) in this object. Fast integer location scalar accessor. Purely integer-location based indexing for selection by position. A primarily label-location based indexer, with integer position fallback. Purely label-location based indexer for selection by label. Number of axes / array dimensions number of elements in the NDFrame Numpy representation of NDFrame pandas.DataFrame.T DataFrame.T Transpose index and columns 1098 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.at DataFrame.at Fast label-based scalar accessor Similarly to loc, at provides label based scalar lookups. You can also set using these indexers. pandas.DataFrame.axes DataFrame.axes pandas.DataFrame.blocks DataFrame.blocks Internal property, property synonym for as_blocks() pandas.DataFrame.dtypes DataFrame.dtypes Return the dtypes in this object pandas.DataFrame.empty DataFrame.empty True if NDFrame is entirely empty [no items] pandas.DataFrame.ftypes DataFrame.ftypes Return the ftypes (indication of sparse/dense and dtype) in this object. pandas.DataFrame.iat DataFrame.iat Fast integer location scalar accessor. Similarly to iloc, iat provides integer based lookups. You can also set using these indexers. pandas.DataFrame.iloc DataFrame.iloc Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: •An integer, e.g. 5. 33.4. DataFrame 1099 pandas: powerful Python data analysis toolkit, Release 0.16.1 •A list or array of integers, e.g. [4, 3, 0]. •A slice object with ints, e.g. 1:7. •A boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics). See more at Selection by Position pandas.DataFrame.ix DataFrame.ix A primarily label-location based indexer, with integer position fallback. .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes. However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc. See more at Advanced Indexing. pandas.DataFrame.loc DataFrame.loc Purely label-location based indexer for selection by label. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: •A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index, and never as an integer position along the index). •A list or array of labels, e.g. [’a’, ’b’, ’c’]. •A slice object with labels, e.g. ’a’:’f’ (note that contrary to usual python slices, both the start and the stop are included!). •A boolean array. .loc will raise a KeyError when the items are not found. See more at Selection by Label pandas.DataFrame.ndim DataFrame.ndim Number of axes / array dimensions 1100 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.shape DataFrame.shape pandas.DataFrame.size DataFrame.size number of elements in the NDFrame pandas.DataFrame.values DataFrame.values Numpy representation of NDFrame Notes The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. is_copy Methods abs() add(other[, axis, level, fill_value]) add_prefix(prefix) add_suffix(suffix) align(other[, join, axis, level, copy, ...]) all([axis, bool_only, skipna, level]) any([axis, bool_only, skipna, level]) append(other[, ignore_index, verify_integrity]) apply(func[, axis, broadcast, raw, reduce, args]) applymap(func) as_blocks() as_matrix([columns]) asfreq(freq[, method, how, normalize]) assign(**kwargs) astype(dtype[, copy, raise_on_error]) at_time(time[, asof]) between_time(start_time, end_time[, ...]) bfill([axis, inplace, limit, downcast]) bool() boxplot([column, by, ax, fontsize, rot, ...]) clip([lower, upper, out, axis]) clip_lower(threshold[, axis]) 33.4. DataFrame Return an object with absolute value taken. Binary operator add with support to substitute a fill_value for missing data in Concatenate prefix string with panel items names. Concatenate suffix string with panel items names Align two object on their axes with the Return whether all elements are True over requested axis Return whether any element is True over requested axis Append rows of other to the end of this frame, returning a new object. Applies function along input axis of DataFrame. Apply a function to a DataFrame that is intended to operate elementwise, i.e. Convert the frame to a dict of dtype -> Constructor Types that each has a homo Convert the frame to its Numpy-array representation. Convert all TimeSeries inside to specified frequency using DateOffset objects. Assign new columns to a DataFrame, returning a new object (a copy) with all th Cast object to input numpy.dtype Select values at particular time of day (e.g. Select values between particular times of the day (e.g., 9:00-9:30 AM) Synonym for NDFrame.fillna(method=’bfill’) Return the bool of a single element PandasObject Make a box plot from DataFrame column optionally grouped by some columns Trim values at input threshold(s) Return copy of the input with values below given value(s) truncated 1101 pandas: powerful Python data analysis toolkit, Release 0.16.1 clip_upper(threshold[, axis]) combine(other, func[, fill_value, overwrite]) combineAdd(other) combineMult(other) combine_first(other) compound([axis, skipna, level]) consolidate([inplace]) convert_objects([convert_dates, ...]) copy([deep]) corr([method, min_periods]) corrwith(other[, axis, drop]) count([axis, level, numeric_only]) cov([min_periods]) cummax([axis, dtype, out, skipna]) cummin([axis, dtype, out, skipna]) cumprod([axis, dtype, out, skipna]) cumsum([axis, dtype, out, skipna]) describe([percentile_width, percentiles, ...]) diff([periods, axis]) div(other[, axis, level, fill_value]) divide(other[, axis, level, fill_value]) dot(other) drop(labels[, axis, level, inplace, errors]) drop_duplicates(*args, **kwargs) dropna([axis, how, thresh, subset, inplace]) duplicated(*args, **kwargs) eq(other[, axis, level]) equals(other) eval(expr, **kwargs) ffill([axis, inplace, limit, downcast]) fillna([value, method, axis, inplace, ...]) filter([items, like, regex, axis]) first(offset) first_valid_index() floordiv(other[, axis, level, fill_value]) from_csv(path[, header, sep, index_col, ...]) from_dict(data[, orient, dtype]) from_items(items[, columns, orient]) from_records(data[, index, exclude, ...]) ge(other[, axis, level]) get(key[, default]) get_dtype_counts() get_ftype_counts() get_value(index, col[, takeable]) get_values() groupby([by, axis, level, as_index, sort, ...]) gt(other[, axis, level]) head([n]) hist(data[, column, by, grid, xlabelsize, ...]) icol(i) idxmax([axis, skipna]) idxmin([axis, skipna]) 1102 Table 33.50 – cont Return copy of input with values above given value(s) truncated Add two DataFrame objects and do not propagate NaN values, so if for a Add two DataFrame objects and do not propagate Multiply two DataFrame objects and do not propagate NaN values, so if Combine two DataFrame objects and default to non-null values in frame calling Return the compound percentage of the values for the requested axis Compute NDFrame with “consolidated” internals (data of each dtype grouped t Attempt to infer better dtype for object columns Make a copy of this object Compute pairwise correlation of columns, excluding NA/null values Compute pairwise correlation between rows or columns of two DataFrame obje Return Series with number of non-NA/null observations over requested axis. Compute pairwise covariance of columns, excluding NA/null values Return cumulative max over requested axis. Return cumulative min over requested axis. Return cumulative prod over requested axis. Return cumulative sum over requested axis. Generate various summary statistics, excluding NaN values. 1st discrete difference of object Binary operator truediv with support to substitute a fill_value for missing data i Binary operator truediv with support to substitute a fill_value for missing data i Matrix multiplication with DataFrame or Series objects Return new object with labels in requested axis removed Return DataFrame with duplicate rows removed, optionally only Return object with labels on given axis omitted where alternately any Return boolean Series denoting duplicate rows, optionally only Wrapper for flexible comparison methods eq Determines if two NDFrame objects contain the same elements. Evaluate an expression in the context of the calling DataFrame instance. Synonym for NDFrame.fillna(method=’ffill’) Fill NA/NaN values using the specified method Restrict the info axis to set of items or wildcard Convenience method for subsetting initial periods of time series data Return label for first non-NA/null value Binary operator floordiv with support to substitute a fill_value for missing data Read delimited file into DataFrame Construct DataFrame from dict of array-like or dicts Convert (key, value) pairs to DataFrame. Convert structured or record ndarray to DataFrame Wrapper for flexible comparison methods ge Get item from object for given key (DataFrame column, Panel slice, etc.). Return the counts of dtypes in this object Return the counts of ftypes in this object Quickly retrieve single value at passed column and index same as values (but handles sparseness conversions) Group series using mapper (dict or key function, apply given function Wrapper for flexible comparison methods gt Returns first n rows Draw histogram of the DataFrame’s series using matplotlib / pylab. Return index of first occurrence of maximum over requested axis. Return index of first occurrence of minimum over requested axis. Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.50 – cont iget_value(i, j) info([verbose, buf, max_cols, memory_usage, ...]) insert(loc, column, value[, allow_duplicates]) interpolate([method, axis, limit, inplace, ...]) irow(i[, copy]) isin(values) isnull() iteritems() iterkv(*args, **kwargs) iterrows() itertuples([index]) join(other[, on, how, lsuffix, rsuffix, sort]) keys() kurt([axis, skipna, level, numeric_only]) kurtosis([axis, skipna, level, numeric_only]) last(offset) last_valid_index() le(other[, axis, level]) load(path) lookup(row_labels, col_labels) lt(other[, axis, level]) mad([axis, skipna, level]) mask(cond[, other, inplace, axis, level, ...]) max([axis, skipna, level, numeric_only]) mean([axis, skipna, level, numeric_only]) median([axis, skipna, level, numeric_only]) memory_usage([index]) merge(right[, how, on, left_on, right_on, ...]) min([axis, skipna, level, numeric_only]) mod(other[, axis, level, fill_value]) mode([axis, numeric_only]) mul(other[, axis, level, fill_value]) multiply(other[, axis, level, fill_value]) ne(other[, axis, level]) notnull() pct_change([periods, fill_method, limit, freq]) pivot([index, columns, values]) pivot_table(data[, values, index, columns, ...]) plot(data[, x, y, kind, ax, subplots, ...]) pop(item) pow(other[, axis, level, fill_value]) prod([axis, skipna, level, numeric_only]) product([axis, skipna, level, numeric_only]) quantile([q, axis, numeric_only]) query(expr, **kwargs) radd(other[, axis, level, fill_value]) rank([axis, numeric_only, method, ...]) rdiv(other[, axis, level, fill_value]) reindex([index, columns]) reindex_axis(labels[, axis, method, level, ...]) reindex_like(other[, method, copy, limit]) rename([index, columns]) 33.4. DataFrame Concise summary of a DataFrame. Insert column into DataFrame at specified location. Interpolate values according to different methods. Return boolean DataFrame showing whether each element in the DataFrame is Return a boolean same-sized object indicating if the values are null Iterator over (column, series) pairs iteritems alias used to get around 2to3. Deprecated Iterate over rows of DataFrame as (index, Series) pairs. Iterate over rows of DataFrame as tuples, with index value Join columns with other DataFrame either on index or on a key column. Get the ‘info axis’ (see Indexing for more) Return unbiased kurtosis over requested axis using Fishers definition of kurtosi Return unbiased kurtosis over requested axis using Fishers definition of kurtosi Convenience method for subsetting final periods of time series data Return label for last non-NA/null value Wrapper for flexible comparison methods le Deprecated. Label-based “fancy indexing” function for DataFrame. Wrapper for flexible comparison methods lt Return the mean absolute deviation of the values for the requested axis Return an object of same shape as self and whose corresponding entries are fro This method returns the maximum of the values in the object. Return the mean of the values for the requested axis Return the median of the values for the requested axis Memory usage of DataFrame columns. Merge DataFrame objects by performing a database-style join operation by colu This method returns the minimum of the values in the object. Binary operator mod with support to substitute a fill_value for missing data in Gets the mode(s) of each element along the axis selected. Binary operator mul with support to substitute a fill_value for missing data in Binary operator mul with support to substitute a fill_value for missing data in Wrapper for flexible comparison methods ne Return a boolean same-sized object indicating if the values are Percent change over given number of periods. Reshape data (produce a “pivot” table) based on column values. Create a spreadsheet-style pivot table as a DataFrame. Make plots of DataFrame using matplotlib / pylab. Return item and drop from frame. Binary operator pow with support to substitute a fill_value for missing data in Return the product of the values for the requested axis Return the product of the values for the requested axis Return values at the given quantile over requested axis, a la numpy.percentile. Query the columns of a frame with a boolean expression. Binary operator radd with support to substitute a fill_value for missing data in Compute numerical data ranks (1 through n) along axis. Binary operator rtruediv with support to substitute a fill_value for missing data Conform DataFrame to new index with optional filling logic, placing NA/NaN Conform input object to new index with optional filling logic, placing NA/NaN return an object with matching indicies to myself Alter axes input function or functions. 1103 pandas: powerful Python data analysis toolkit, Release 0.16.1 rename_axis(mapper[, axis, copy, inplace]) reorder_levels(order[, axis]) replace([to_replace, value, inplace, limit, ...]) resample(rule[, how, axis, fill_method, ...]) reset_index([level, drop, inplace, ...]) rfloordiv(other[, axis, level, fill_value]) rmod(other[, axis, level, fill_value]) rmul(other[, axis, level, fill_value]) rpow(other[, axis, level, fill_value]) rsub(other[, axis, level, fill_value]) rtruediv(other[, axis, level, fill_value]) sample([n, frac, replace, weights, ...]) save(path) select(crit[, axis]) select_dtypes([include, exclude]) sem([axis, skipna, level, ddof, numeric_only]) set_axis(axis, labels) set_index(keys[, drop, append, inplace, ...]) set_value(index, col, value[, takeable]) shift([periods, freq, axis]) skew([axis, skipna, level, numeric_only]) slice_shift([periods, axis]) sort([columns, axis, ascending, inplace, ...]) sort_index([axis, by, ascending, inplace, ...]) sortlevel([level, axis, ascending, inplace, ...]) squeeze() stack([level, dropna]) std([axis, skipna, level, ddof, numeric_only]) sub(other[, axis, level, fill_value]) subtract(other[, axis, level, fill_value]) sum([axis, skipna, level, numeric_only]) swapaxes(axis1, axis2[, copy]) swaplevel(i, j[, axis]) tail([n]) take(indices[, axis, convert, is_copy]) to_clipboard([excel, sep]) to_csv([path_or_buf, sep, na_rep, ...]) to_dense() to_dict(*args, **kwargs) to_excel(excel_writer[, sheet_name, na_rep, ...]) to_gbq(destination_table[, project_id, ...]) to_hdf(path_or_buf, key, **kwargs) to_html([buf, columns, col_space, colSpace, ...]) to_json([path_or_buf, orient, date_format, ...]) to_latex([buf, columns, col_space, ...]) to_msgpack([path_or_buf]) to_panel() to_period([freq, axis, copy]) to_pickle(path) to_records([index, convert_datetime64]) to_sparse([fill_value, kind]) to_sql(name, con[, flavor, schema, ...]) 1104 Table 33.50 – cont Alter index and / or columns using input function or functions. Rearrange index levels using input order. Replace values given in ‘to_replace’ with ‘value’. Convenience method for frequency conversion and resampling of regular time-s For DataFrame with multi-level index, return new DataFrame with labeling info Binary operator rfloordiv with support to substitute a fill_value for missing data Binary operator rmod with support to substitute a fill_value for missing data in Binary operator rmul with support to substitute a fill_value for missing data in Binary operator rpow with support to substitute a fill_value for missing data in Binary operator rsub with support to substitute a fill_value for missing data in Binary operator rtruediv with support to substitute a fill_value for missing data Returns a random sample of items from an axis of object. Deprecated. Return data corresponding to axis labels matching criteria Return a subset of a DataFrame including/excluding columns based on their dt Return unbiased standard error of the mean over requested axis. public verson of axis assignment Set the DataFrame index (row labels) using one or more existing columns. Put single value at passed column and index Shift index by desired number of periods with an optional time freq Return unbiased skew over requested axis Equivalent to shift without copying data. Sort DataFrame either by labels (along either axis) or by the values in Sort DataFrame either by labels (along either axis) or by the values in Sort multilevel index by chosen axis and primary level. squeeze length 1 dimensions Pivot a level of the (possibly hierarchical) column labels, returning a DataFram Return unbiased standard deviation over requested axis. Binary operator sub with support to substitute a fill_value for missing data in Binary operator sub with support to substitute a fill_value for missing data in Return the sum of the values for the requested axis Interchange axes and swap values axes appropriately Swap levels i and j in a MultiIndex on a particular axis Returns last n rows Analogous to ndarray.take Attempt to write text representation of object to the system clipboard This can b Write DataFrame to a comma-separated values (csv) file Return dense representation of NDFrame (as opposed to sparse) Convert DataFrame to dictionary. Write DataFrame to a excel sheet Write a DataFrame to a Google BigQuery table. activate the HDFStore Render a DataFrame as an HTML table. Convert the object to a JSON string. Render a DataFrame to a tabular environment table. msgpack (serialize) object to input file path Transform long (stacked) format (DataFrame) into wide (3D, Panel) format. Convert DataFrame from DatetimeIndex to PeriodIndex with desired Pickle (serialize) object to input file path Convert DataFrame to record array. Convert to SparseDataFrame Write records stored in a DataFrame to a SQL database. Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 to_stata(fname[, convert_dates, ...]) to_string([buf, columns, col_space, ...]) to_timestamp([freq, how, axis, copy]) to_wide(*args, **kwargs) transpose() truediv(other[, axis, level, fill_value]) truncate([before, after, axis, copy]) tshift([periods, freq, axis]) tz_convert(tz[, axis, level, copy]) tz_localize(*args, **kwargs) unstack([level]) update(other[, join, overwrite, ...]) var([axis, skipna, level, ddof, numeric_only]) where(cond[, other, inplace, axis, level, ...]) xs(key[, axis, level, copy, drop_level]) Table 33.50 – cont A class for writing Stata binary dta files from array-like objects Render a DataFrame to a console-friendly tabular output. Cast to DatetimeIndex of timestamps, at beginning of period Transpose index and columns Binary operator truediv with support to substitute a fill_value for missing data i Truncates a sorted NDFrame before and/or after some particular dates. Shift the time index, using the index’s frequency if available Convert tz-aware axis to target time zone. Localize tz-naive TimeSeries to target time zone Pivot a level of the (necessarily hierarchical) index labels, returning a DataFram Modify DataFrame in place using non-NA values from passed DataFrame. Return unbiased variance over requested axis. Return an object of same shape as self and whose corresponding entries are fro Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. pandas.DataFrame.abs DataFrame.abs() Return an object with absolute value taken. Only applicable to objects that are all numeric Returns abs: type of caller pandas.DataFrame.add DataFrame.add(other, axis=’columns’, level=None, fill_value=None) Binary operator add with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.add_prefix DataFrame.add_prefix(prefix) Concatenate prefix string with panel items names. 33.4. DataFrame 1105 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters prefix : string Returns with_prefix : type of caller pandas.DataFrame.add_suffix DataFrame.add_suffix(suffix) Concatenate suffix string with panel items names Parameters suffix : string Returns with_suffix : type of caller pandas.DataFrame.align DataFrame.align(other, join=’outer’, axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0) Align two object on their axes with the specified join method for each axis Index Parameters other : DataFrame or Series join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None) level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level copy : boolean, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value method : str, default None limit : int, default None fill_axis : {0, 1}, default 0 Filling axis, method and limit Returns (left, right) : (type of input, type of other) Aligned objects pandas.DataFrame.all DataFrame.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether all elements are True over requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True 1106 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns all : Series or DataFrame (if level specified) pandas.DataFrame.any DataFrame.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether any element is True over requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns any : Series or DataFrame (if level specified) pandas.DataFrame.append DataFrame.append(other, ignore_index=False, verify_integrity=False) Append rows of other to the end of this frame, returning a new object. Columns not in this frame are added as new columns. Parameters other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. Returns appended : DataFrame See also: pandas.concat General function to concatenate DataFrame, Series or Panel objects 33.4. DataFrame 1107 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged. Examples >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With ignore_index set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 pandas.DataFrame.apply DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds) Applies function along input axis of DataFrame. Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty. Parameters func : function Function to apply to each column/row axis : {0, 1} • 0 : apply function to each column • 1 : apply function to each row broadcast : boolean, default False For aggregation functions, return object of same size with values propagated reduce : boolean or None, default None Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). 1108 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If reduce is True a Series will always be returned, and if False a DataFrame will always be returned. raw : boolean, default False If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance args : tuple Positional arguments to pass to function in addition to the array/series Additional keyword arguments will be passed as keywords to the function Returns applied : Series or DataFrame See also: DataFrame.applymap For elementwise operations Notes In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row. Examples >>> df.apply(numpy.sqrt) # returns DataFrame >>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0) >>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1) pandas.DataFrame.applymap DataFrame.applymap(func) Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters func : function Python function, returns a single value from a single value Returns applied : DataFrame See also: DataFrame.apply For operations on rows/columns pandas.DataFrame.as_blocks DataFrame.as_blocks() Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix) 33.4. DataFrame 1109 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns values : a dict of dtype -> Constructor Types pandas.DataFrame.as_matrix DataFrame.as_matrix(columns=None) Convert the frame to its Numpy-array representation. Parameters columns: list, optional, default:None If None, return all columns, otherwise, returns specified columns. Returns values : ndarray If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. See also: pandas.DataFrame.values Notes Return is NOT a Numpy-matrix, rather, a Numpy-array. The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. This method is provided for backwards compatibility. Generally, it is recommended to use ‘.values’. pandas.DataFrame.asfreq DataFrame.asfreq(freq, method=None, how=None, normalize=False) Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values. Parameters freq : DateOffset object, or string method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None} Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method how : {‘start’, ‘end’}, default end For PeriodIndex only, see PeriodIndex.asfreq normalize : bool, default False Whether to reset output index to midnight Returns converted : type of caller 1110 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.assign DataFrame.assign(**kwargs) Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones. New in version 0.16.0. Parameters kwargs : keyword, value pairs keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns df : DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes Since kwargs is a dictionary, the order of your arguments may not be preserved. The make things predicatable, the columns are inserted in alphabetical order, at the end of your DataFrame. Assigning multiple columns within the same assign is possible, but you cannot reference other columns created within the same assign call. Examples >>> df = DataFrame({'A': range(1, 11), 'B': np.random.randn(10)}) Where the value is a callable, evaluated on df : >>> df.assign(ln_A = lambda x: np.log(x.A)) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 8 9 0.549296 2.197225 9 10 -0.758542 2.302585 Where the value already exists and is inserted: >>> newcol = np.log(df['A']) >>> df.assign(ln_A=newcol) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 33.4. DataFrame 1111 pandas: powerful Python data analysis toolkit, Release 0.16.1 8 9 9 0.549296 10 -0.758542 2.197225 2.302585 pandas.DataFrame.astype DataFrame.astype(dtype, copy=True, raise_on_error=True, **kwargs) Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters dtype : numpy.dtype or Python type raise_on_error : raise on invalid input kwargs : keyword arguments to pass on to the constructor Returns casted : type of caller pandas.DataFrame.at_time DataFrame.at_time(time, asof=False) Select values at particular time of day (e.g. 9:30AM) Parameters time : datetime.time or string Returns values_at_time : type of caller pandas.DataFrame.between_time DataFrame.between_time(start_time, end_time, include_start=True, include_end=True) Select values between particular times of the day (e.g., 9:00-9:30 AM) Parameters start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True Returns values_between_time : type of caller pandas.DataFrame.bfill DataFrame.bfill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’bfill’) pandas.DataFrame.bool DataFrame.bool() Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean 1112 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.boxplot DataFrame.boxplot(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds) Make a box plot from DataFrame column optionally grouped by some columns or other inputs Parameters data : the pandas object holding the data column : column name or list of names, or vector Can be any valid input to groupby by : string or sequence Column in the DataFrame to group by ax : Matplotlib axes object, optional fontsize : int or string rot : label rotation angle figsize : A tuple (width, height) in inches grid : Setting this to True will show the grid layout : tuple (optional) (rows, columns) for the layout of the plot return_type : {‘axes’, ‘dict’, ‘both’}, default ‘dict’ The kind of object to return. ‘dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot; ‘axes’ returns the matplotlib axes the boxplot is drawn on; ‘both’ returns a namedtuple with the axes and dict. When grouping with by, a dict mapping columns to return_type is returned. kwds : other plotting keyword arguments to be passed to matplotlib boxplot function Returns lines : dict ax : matplotlib Axes (ax, lines): namedtuple Notes Use return_type=’dict’ when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned. pandas.DataFrame.clip DataFrame.clip(lower=None, upper=None, out=None, axis=None) Trim values at input threshold(s) Parameters lower : float or array_like, default None upper : float or array_like, default None axis : int or string axis name, optional 33.4. DataFrame 1113 pandas: powerful Python data analysis toolkit, Release 0.16.1 Align object with lower and upper along the given axis. Returns clipped : Series Examples >>> df 0 1 0 0.335232 -1.256177 1 -1.367855 0.746646 2 0.027753 -1.176076 3 0.230930 -0.679613 4 1.261967 0.570967 >>> df.clip(-1.0, 0.5) 0 1 0 0.335232 -1.000000 1 -1.000000 0.500000 2 0.027753 -1.000000 3 0.230930 -0.679613 4 0.500000 0.500000 >>> t 0 -0.3 1 -0.2 2 -0.1 3 0.0 4 0.1 dtype: float64 >>> df.clip(t, t + 1, axis=0) 0 1 0 0.335232 -0.300000 1 -0.200000 0.746646 2 0.027753 -0.100000 3 0.230930 0.000000 4 1.100000 0.570967 pandas.DataFrame.clip_lower DataFrame.clip_lower(threshold, axis=None) Return copy of the input with values below given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.DataFrame.clip_upper DataFrame.clip_upper(threshold, axis=None) Return copy of input with values above given value(s) truncated 1114 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.DataFrame.combine DataFrame.combine(other, func, fill_value=None, overwrite=True) Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well) Parameters other : DataFrame func : function fill_value : scalar value overwrite : boolean, default True If True then overwrite values for common keys in the calling frame Returns result : DataFrame pandas.DataFrame.combineAdd DataFrame.combineAdd(other) Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well) Parameters other : DataFrame Returns DataFrame pandas.DataFrame.combineMult DataFrame.combineMult(other) Multiply two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well) Parameters other : DataFrame Returns DataFrame pandas.DataFrame.combine_first DataFrame.combine_first(other) Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns Parameters other : DataFrame Returns combined : DataFrame 33.4. DataFrame 1115 pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples a’s values prioritized, use values from b to fill holes: >>> a.combine_first(b) pandas.DataFrame.compound DataFrame.compound(axis=None, skipna=None, level=None) Return the compound percentage of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns compounded : Series or DataFrame (if level specified) pandas.DataFrame.consolidate DataFrame.consolidate(inplace=False) Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user Parameters inplace : boolean, default False If False return new object, otherwise modify existing object Returns consolidated : type of caller pandas.DataFrame.convert_objects DataFrame.convert_objects(convert_dates=True, convert_numeric=False, vert_timedeltas=True, copy=True) Attempt to infer better dtype for object columns con- Parameters convert_dates : boolean, default True If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. convert_numeric : boolean, default False If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN. convert_timedeltas : boolean, default True 1116 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. copy : boolean, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns converted : same as input object pandas.DataFrame.copy DataFrame.copy(deep=True) Make a copy of this object Parameters deep : boolean or string, default True Make a deep copy, i.e. also copy data Returns copy : type of caller pandas.DataFrame.corr DataFrame.corr(method=’pearson’, min_periods=1) Compute pairwise correlation of columns, excluding NA/null values Parameters method : {‘pearson’, ‘kendall’, ‘spearman’} • pearson : standard correlation coefficient • kendall : Kendall Tau correlation coefficient • spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation Returns y : DataFrame pandas.DataFrame.corrwith DataFrame.corrwith(other, axis=0, drop=False) Compute pairwise correlation between rows or columns of two DataFrame objects. Parameters other : DataFrame axis : {0, 1} 0 to compute column-wise, 1 for row-wise drop : boolean, default False Drop missing indices from result, default returns union of all Returns correls : Series 33.4. DataFrame 1117 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.count DataFrame.count(axis=0, level=None, numeric_only=False) Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data as well (detects NaN and None) Parameters axis : {0, 1} 0 for row-wise, 1 for column-wise level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default False Include only float, int, boolean data Returns count : Series (or DataFrame if level specified) pandas.DataFrame.cov DataFrame.cov(min_periods=None) Compute pairwise covariance of columns, excluding NA/null values Parameters min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns y : DataFrame Notes y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator). pandas.DataFrame.cummax DataFrame.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative max over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns max : Series pandas.DataFrame.cummin DataFrame.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative min over requested axis. 1118 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns min : Series pandas.DataFrame.cumprod DataFrame.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative prod over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns prod : Series pandas.DataFrame.cumsum DataFrame.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative sum over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns sum : Series pandas.DataFrame.describe DataFrame.describe(percentile_width=None, percentiles=None, include=None, exclude=None) Generate various summary statistics, excluding NaN values. Parameters percentile_width : float, deprecated The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75 percentiles : array-like, optional The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles. include, exclude : list-like, ‘all’, or None (default) Specify the form of the returned result. Either: • None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns. • A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=[’O’]) 33.4. DataFrame 1119 pandas: powerful Python data analysis toolkit, Release 0.16.1 • If include is the string ‘all’, the output column-set will match the input one. Returns summary: NDFrame of summary statistics See also: DataFrame.select_dtypes Notes The output DataFrame index depends on the requested dtypes: For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles. For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items. For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments. If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count. The include, exclude arguments are ignored for Series. pandas.DataFrame.diff DataFrame.diff(periods=1, axis=0) 1st discrete difference of object Parameters periods : int, default 1 Periods to shift for forming difference axis : {0 or ‘index’, 1 or ‘columns’}, default 0 Returns diffed : DataFrame pandas.DataFrame.div DataFrame.div(other, axis=’columns’, level=None, fill_value=None) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame 1120 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Mismatched indices will be unioned together pandas.DataFrame.divide DataFrame.divide(other, axis=’columns’, level=None, fill_value=None) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.dot DataFrame.dot(other) Matrix multiplication with DataFrame or Series objects Parameters other : DataFrame or Series Returns dot_product : DataFrame or Series pandas.DataFrame.drop DataFrame.drop(labels, axis=0, level=None, inplace=False, errors=’raise’) Return new object with labels in requested axis removed Parameters labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. 33.4. DataFrame 1121 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns dropped : type of caller pandas.DataFrame.drop_duplicates DataFrame.drop_duplicates(*args, **kwargs) Return DataFrame with duplicate rows removed, optionally only considering certain columns Parameters subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns take_last : boolean, default False Take the last observed row in a row. Defaults to the first row inplace : boolean, default False Whether to drop duplicates in place or to return a copy cols : kwargs only argument of subset [deprecated] Returns deduplicated : DataFrame pandas.DataFrame.dropna DataFrame.dropna(axis=0, how=’any’, thresh=None, subset=None, inplace=False) Return object with labels on given axis omitted where alternately any or all of the data are missing Parameters axis : {0, 1}, or tuple/list thereof Pass tuple or list to drop on multiple axes how : {‘any’, ‘all’} • any : if any NA values are present, drop that label • all : if all values are NA, drop that label thresh : int, default None int value : require that many non-NA values subset : array-like Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include inplace : boolean, defalt False If True, do operation inplace and return None. Returns dropped : DataFrame pandas.DataFrame.duplicated DataFrame.duplicated(*args, **kwargs) Return boolean Series denoting duplicate rows, optionally only considering certain columns Parameters subset : column label or sequence of labels, optional 1122 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Only consider certain columns for identifying duplicates, by default use all of the columns take_last : boolean, default False For a set of distinct duplicate rows, flag all but the last row as duplicated. Default is for all but the first row to be flagged cols : kwargs only argument of subset [deprecated] Returns duplicated : Series pandas.DataFrame.eq DataFrame.eq(other, axis=’columns’, level=None) Wrapper for flexible comparison methods eq pandas.DataFrame.equals DataFrame.equals(other) Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal. pandas.DataFrame.eval DataFrame.eval(expr, **kwargs) Evaluate an expression in the context of the calling DataFrame instance. Parameters expr : string The expression string to evaluate. kwargs : dict See the documentation for eval() for complete details on the keyword arguments accepted by query(). Returns ret : ndarray, scalar, or pandas object See also: pandas.DataFrame.query, pandas.eval Notes For more details see the API documentation for eval(). For detailed examples see enhancing performance with eval. Examples >>> >>> >>> >>> >>> from numpy.random import randn from pandas import DataFrame df = DataFrame(randn(10, 2), columns=list('ab')) df.eval('a + b') df.eval('c = a + b') 33.4. DataFrame 1123 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.ffill DataFrame.ffill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’ffill’) pandas.DataFrame.fillna DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) Fill NA/NaN values using the specified method Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. axis : {0, 1, ‘index’, ‘columns’} inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns filled : DataFrame See also: reindex, asfreq pandas.DataFrame.filter DataFrame.filter(items=None, like=None, regex=None, axis=None) Restrict the info axis to set of items or wildcard Parameters items : list-like List of info axis to restrict to (must not all be present) like : string 1124 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Keep info axis where “arg in col == True” regex : string (regular expression) Keep info axis with re.search(regex, col) == True axis : int or None The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with []. For example, df = DataFrame({’a’: [1, 2, 3, 4]]}); df[’a’]. So, the DataFrame columns are the info axis. Notes Arguments are mutually exclusive, but this is not checked for pandas.DataFrame.first DataFrame.first(offset) Convenience method for subsetting initial periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘10D’) -> First 10 days pandas.DataFrame.first_valid_index DataFrame.first_valid_index() Return label for first non-NA/null value pandas.DataFrame.floordiv DataFrame.floordiv(other, axis=’columns’, level=None, fill_value=None) Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame 33.4. DataFrame 1125 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Mismatched indices will be unioned together pandas.DataFrame.from_csv classmethod DataFrame.from_csv(path, header=0, sep=’, parse_dates=True, encoding=None, infer_datetime_format=False) Read delimited file into DataFrame ‘, index_col=0, tupleize_cols=False, Parameters path : string file path or file handle / StringIO header : int, default 0 Row to use at header (skip prior rows) sep : string, default ‘,’ Field delimiter index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table parse_dates : boolean, default True Parse dates. Different default from read_table tupleize_cols : boolean, default False write multi_index columns as a list of tuples (if True) or new (expanded format) if False) infer_datetime_format: boolean, default False If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. Returns y : DataFrame Notes Preferable to use read_table for most general purposes but from_csv makes for an easy roundtrip to and from file, especially with a DataFrame of time series data pandas.DataFrame.from_dict classmethod DataFrame.from_dict(data, orient=’columns’, dtype=None) Construct DataFrame from dict of array-like or dicts Parameters data : dict {field : array-like} or {field : dict} orient : {‘columns’, ‘index’}, default ‘columns’ 1126 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’. Returns DataFrame pandas.DataFrame.from_items classmethod DataFrame.from_items(items, columns=None, orient=’columns’) Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series. Parameters items : sequence of (key, value) pairs Values should be arrays or Series. columns : sequence of column labels, optional Must be passed if orient=’index’. orient : {‘columns’, ‘index’}, default ‘columns’ The “orientation” of the data. If the keys of the input correspond to column labels, pass ‘columns’ (default). Otherwise if the keys correspond to the index, pass ‘index’. Returns frame : DataFrame pandas.DataFrame.from_records classmethod DataFrame.from_records(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None) Convert structured or record ndarray to DataFrame Parameters data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets Returns df : DataFrame 33.4. DataFrame 1127 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.ge DataFrame.ge(other, axis=’columns’, level=None) Wrapper for flexible comparison methods ge pandas.DataFrame.get DataFrame.get(key, default=None) Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found Parameters key : object Returns value : type of items contained in object pandas.DataFrame.get_dtype_counts DataFrame.get_dtype_counts() Return the counts of dtypes in this object pandas.DataFrame.get_ftype_counts DataFrame.get_ftype_counts() Return the counts of ftypes in this object pandas.DataFrame.get_value DataFrame.get_value(index, col, takeable=False) Quickly retrieve single value at passed column and index Parameters index : row label col : column label takeable : interpret the index/col as indexers, default False Returns value : scalar value pandas.DataFrame.get_values DataFrame.get_values() same as values (but handles sparseness conversions) pandas.DataFrame.groupby DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns Parameters by : mapping function / list of functions, dict, Series, or tuple / 1128 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups axis : int, default 0 level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels as_index : boolean, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output sort : boolean, default True Sort group keys. Get better performance by turning this off group_keys : boolean, default True When calling apply, add group keys to index to identify pieces squeeze : boolean, default False reduce the dimensionaility of the return type if possible, otherwise return a consistent type Returns GroupBy object Examples DataFrame results >>> data.groupby(func, axis=0).mean() >>> data.groupby(['col1', 'col2'])['col3'].mean() DataFrame with hierarchical index >>> data.groupby(['col1', 'col2']).mean() pandas.DataFrame.gt DataFrame.gt(other, axis=’columns’, level=None) Wrapper for flexible comparison methods gt pandas.DataFrame.head DataFrame.head(n=5) Returns first n rows pandas.DataFrame.hist DataFrame.hist(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds) Draw histogram of the DataFrame’s series using matplotlib / pylab. 33.4. DataFrame 1129 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters data : DataFrame column : string or sequence If passed, will be used to limit data to a subset of columns by : object, optional If passed, then used to form histograms for separate groups grid : boolean, default True Whether to show axis grid lines xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None rotation of y axis labels ax : matplotlib axes object, default None sharex : boolean, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure! sharey : boolean, default False In case subplots=True, share y axis and set some y axis labels to invisible figsize : tuple The size of the figure to create in inches by default layout: (optional) a tuple (rows, columns) for the layout of the histograms bins: integer, default 10 Number of histogram bins to be used kwds : other plotting keyword arguments To be passed to hist function pandas.DataFrame.icol DataFrame.icol(i) 1130 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.idxmax DataFrame.idxmax(axis=0, skipna=True) Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters axis : {0, 1} 0 for row-wise, 1 for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be first index. Returns idxmax : Series See also: Series.idxmax Notes This method is the DataFrame version of ndarray.argmax. pandas.DataFrame.idxmin DataFrame.idxmin(axis=0, skipna=True) Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters axis : {0, 1} 0 for row-wise, 1 for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns idxmin : Series See also: Series.idxmin Notes This method is the DataFrame version of ndarray.argmin. pandas.DataFrame.iget_value DataFrame.iget_value(i, j) pandas.DataFrame.info DataFrame.info(verbose=None, buf=None, null_counts=None) Concise summary of a DataFrame. 33.4. DataFrame max_cols=None, memory_usage=None, 1131 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters verbose : {None, True, False}, optional Whether to print the full summary. None follows the display.max_info_columns setting. True or False overrides the display.max_info_columns setting. buf : writable buffer, defaults to sys.stdout max_cols : int, default None Determines whether full summary or short summary is printed. None follows the display.max_info_columns setting. memory_usage : boolean, default None Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the display.memory_usage setting. True or False overrides the display.memory_usage setting. Memory usage is shown in human-readable units (base-2 representation). null_counts : boolean, default None Whether to show the non-null counts If None, then only show if the frame is smaller than max_info_rows and max_info_columns. If True, always show counts. If False, never show counts. pandas.DataFrame.insert DataFrame.insert(loc, column, value, allow_duplicates=False) Insert column into DataFrame at specified location. If allow_duplicates is False, raises Exception if column is already contained in the DataFrame. Parameters loc : int Must have 0 <= loc <= len(columns) column : object value : int, Series, or array-like pandas.DataFrame.interpolate DataFrame.interpolate(method=’linear’, axis=0, limit=None, inplace=False, downcast=None, **kwargs) Interpolate values according to different methods. Parameters method : {‘linear’, ‘time’, ‘index’, ‘values’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘spline’ ‘piecewise_polynomial’, ‘pchip’} • ‘linear’: ignore the index and treat the values as equally spaced. default • ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval • ‘index’, ‘values’: use the actual numerical values of the index 1132 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d with the order given both ‘polynomial’ and ‘spline’ requre that you also specify and order (int) e.g. df.interpolate(method=’polynomial’, order=4) • ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior: http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariateinterpolation http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html axis : {0, 1}, default 0 • 0: fill column-by-column • 1: fill row-by-row limit : int, default None. Maximum number of consecutive NaNs to fill. inplace : bool, default False Update the NDFrame in place if possible. downcast : optional, ‘infer’ or None, defaults to None Downcast dtypes if possible. Returns Series or DataFrame of same shape interpolated at the NaNs See also: reindex, replace, fillna Examples Filling in NaNs >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64 pandas.DataFrame.irow DataFrame.irow(i, copy=False) pandas.DataFrame.isin DataFrame.isin(values) Return boolean DataFrame showing whether each element in the DataFrame is contained in values. Parameters values : iterable, Series, DataFrame or dictionary 33.4. DataFrame 1133 pandas: powerful Python data analysis toolkit, Release 0.16.1 The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dictionary, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match. Returns DataFrame of booleans Examples When values is a list: >>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> df.isin([1, 3, 12, 'a']) A B 0 True True 1 False False 2 True False When values is a dict: >>> df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]}) >>> df.isin({'A': [1, 3], 'B': [4, 7, 12]}) A B 0 True False # Note that B didn't match the 1 here. 1 False True 2 True True When values is a Series or DataFrame: >>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']}) >>> df.isin(other) A B 0 True False 1 False False # Column A in `other` has a 3, but not at index 1. 2 True True pandas.DataFrame.isnull DataFrame.isnull() Return a boolean same-sized object indicating if the values are null See also: notnull boolean inverse of isnull pandas.DataFrame.iteritems DataFrame.iteritems() Iterator over (column, series) pairs pandas.DataFrame.iterkv DataFrame.iterkv(*args, **kwargs) iteritems alias used to get around 2to3. Deprecated 1134 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.iterrows DataFrame.iterrows() Iterate over rows of DataFrame as (index, Series) pairs. Returns it : generator A generator that iterates over the rows of the frame. Notes •iterrows does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = DataFrame([[1, 1.0]], columns=['x', 'y']) >>> row = next(df.iterrows())[1] >>> print(row['x'].dtype) float64 >>> print(df['x'].dtype) int64 pandas.DataFrame.itertuples DataFrame.itertuples(index=True) Iterate over rows of DataFrame as tuples, with index value as first element of the tuple pandas.DataFrame.join DataFrame.join(other, on=None, how=’left’, lsuffix=’‘, rsuffix=’‘, sort=False) Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list. Parameters other : DataFrame, Series with name field set, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame on : column name, tuple/list of column names, or array-like Column(s) to use for joining, otherwise join on index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation how : {‘left’, ‘right’, ‘outer’, ‘inner’} How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise • left: use calling frame’s index • right: use input frame’s index • outer: form union of indexes • inner: use intersection of indexes 33.4. DataFrame 1135 pandas: powerful Python data analysis toolkit, Release 0.16.1 lsuffix : string Suffix to use from left frame’s overlapping columns rsuffix : string Suffix to use from right frame’s overlapping columns sort : boolean, default False Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame Returns joined : DataFrame Notes on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects pandas.DataFrame.keys DataFrame.keys() Get the ‘info axis’ (see Indexing for more) This is index for Series, columns for DataFrame and major_axis for Panel. pandas.DataFrame.kurt DataFrame.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns kurt : Series or DataFrame (if level specified) pandas.DataFrame.kurtosis DataFrame.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters axis : {index (0), columns (1)} skipna : boolean, default True 1136 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns kurt : Series or DataFrame (if level specified) pandas.DataFrame.last DataFrame.last(offset) Convenience method for subsetting final periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘5M’) -> Last 5 months pandas.DataFrame.last_valid_index DataFrame.last_valid_index() Return label for last non-NA/null value pandas.DataFrame.le DataFrame.le(other, axis=’columns’, level=None) Wrapper for flexible comparison methods le pandas.DataFrame.load DataFrame.load(path) Deprecated. Use read_pickle instead. pandas.DataFrame.lookup DataFrame.lookup(row_labels, col_labels) Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters row_labels : sequence The row labels to use for lookup col_labels : sequence 33.4. DataFrame 1137 pandas: powerful Python data analysis toolkit, Release 0.16.1 The column labels to use for lookup Notes Akin to: result = [] for row, col in zip(row_labels, col_labels): result.append(df.get_value(row, col)) Examples values [ndarray] The found values pandas.DataFrame.lt DataFrame.lt(other, axis=’columns’, level=None) Wrapper for flexible comparison methods lt pandas.DataFrame.mad DataFrame.mad(axis=None, skipna=None, level=None) Return the mean absolute deviation of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mad : Series or DataFrame (if level specified) pandas.DataFrame.mask DataFrame.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data 1138 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.DataFrame.max DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns max : Series or DataFrame (if level specified) pandas.DataFrame.mean DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the mean of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mean : Series or DataFrame (if level specified) 33.4. DataFrame 1139 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.median DataFrame.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the median of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns median : Series or DataFrame (if level specified) pandas.DataFrame.memory_usage DataFrame.memory_usage(index=False) Memory usage of DataFrame columns. Parameters index : bool Specifies whether to include memory usage of DataFrame’s index in returned Series. If index=True (default is False) the first index of the Series is Index. Returns sizes : Series A series with column names as index and memory usage of columns with units of bytes. See also: numpy.ndarray.nbytes Notes Memory usage does not include memory consumed by elements that are not components of the array. pandas.DataFrame.merge DataFrame.merge(right, how=’inner’, on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=(‘_x’, ‘_y’), copy=True) Merge DataFrame objects by performing a database-style join operation by columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters right : DataFrame how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’ • left: use only keys from left frame (SQL: left outer join) 1140 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • right: use only keys from right frame (SQL: right outer join) • outer: use union of keys from both frames (SQL: full outer join) • inner: use intersection of keys from both frames (SQL: inner join) on : label or list Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default. left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs left_index : boolean, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels right_index : boolean, default False Use the index from the right DataFrame as the join key. Same caveats as left_index sort : boolean, default False Sort the join keys lexicographically in the result DataFrame suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively copy : boolean, default True If False, do not copy data unnecessarily Returns merged : DataFrame The output type will the be same as ‘left’, if it is a subclass of DataFrame. Examples >>> A lkey 0 foo 1 bar 2 baz 3 foo value 1 2 3 4 >>> B rkey 0 foo 1 bar 2 qux 3 bar value 5 6 7 8 >>> merge(A, B, left_on='lkey', right_on='rkey', how='outer') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 4 foo 5 2 bar 2 bar 6 3 bar 2 bar 8 33.4. DataFrame 1141 pandas: powerful Python data analysis toolkit, Release 0.16.1 4 5 baz NaN 3 NaN NaN qux NaN 7 pandas.DataFrame.min DataFrame.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns min : Series or DataFrame (if level specified) pandas.DataFrame.mod DataFrame.mod(other, axis=’columns’, level=None, fill_value=None) Binary operator mod with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.mode DataFrame.mode(axis=0, numeric_only=False) Gets the mode(s) of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan. 1142 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Note that there could be multiple values returned for the selected axis (when more than one item share the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing values with the mode in a dataframe df, you can just do this: df.fillna(df.mode().iloc[0]) Parameters axis : {0, 1, ‘index’, ‘columns’} (default 0) • 0/’index’ : get mode of each column • 1/’columns’ : get mode of each row numeric_only : boolean, default False if True, only apply to numeric columns Returns modes : DataFrame (sorted) Examples >>> df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3]}) >>> df.mode() A 0 1 1 2 pandas.DataFrame.mul DataFrame.mul(other, axis=’columns’, level=None, fill_value=None) Binary operator mul with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.multiply DataFrame.multiply(other, axis=’columns’, level=None, fill_value=None) Binary operator mul with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} 33.4. DataFrame 1143 pandas: powerful Python data analysis toolkit, Release 0.16.1 For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.ne DataFrame.ne(other, axis=’columns’, level=None) Wrapper for flexible comparison methods ne pandas.DataFrame.notnull DataFrame.notnull() Return a boolean same-sized object indicating if the values are not null See also: isnull boolean inverse of notnull pandas.DataFrame.pct_change DataFrame.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs) Percent change over given number of periods. Parameters periods : int, default 1 Periods to shift for forming percent change fill_method : str, default ‘pad’ How to handle NAs before computing percent changes limit : int, default None The number of consecutive NAs to fill before stopping freq : DateOffset, timedelta, or offset alias string, optional Increment to use from time series API (e.g. ‘M’ or BDay()) Returns chg : NDFrame 1144 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument. pandas.DataFrame.pivot DataFrame.pivot(index=None, columns=None, values=None) Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns to form axes and return either DataFrame or Panel, depending on whether you request a single value column (DataFrame) or all columns (Panel) Parameters index : string or object Column name to use to make new frame’s index columns : string or object Column name to use to make new frame’s columns values : string or object, optional Column name to use for populating new frame’s values Returns pivoted : DataFrame If no values column specified, will have hierarchically indexed columns Notes For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods Examples >>> df foo 0 one 1 one 2 one 3 two 4 two 5 two bar A B C A B C baz 1. 2. 3. 4. 5. 6. >>> df.pivot('foo', 'bar', 'baz') A B C one 1 2 3 two 4 5 6 >>> df.pivot('foo', 'bar')['baz'] A B C one 1 2 3 two 4 5 6 33.4. DataFrame 1145 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.pivot_table DataFrame.pivot_table(data, values=None, index=None, columns=None, aggfunc=’mean’, fill_value=None, margins=False, dropna=True) Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame Parameters data : DataFrame values : column to aggregate, optional index : a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, default numpy.mean, or list of functions If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) fill_value : scalar, default None Value to replace missing values with margins : boolean, default False Add all row / columns (e.g. for subtotal / grand totals) dropna : boolean, default True Do not include columns whose entries are all NaN Returns table : DataFrame Examples >>> df A 0 foo 1 foo 2 foo 3 foo 4 foo 5 bar 6 bar 7 bar 8 bar B one one one two two one one two two C small large large small small large small small large D 1 2 2 3 3 4 5 6 7 >>> table = pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table small large foo one 1 4 two 6 NaN 1146 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 bar one two 5 6 4 7 pandas.DataFrame.plot DataFrame.plot(data, x=None, y=None, kind=’line’, ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds) Make plots of DataFrame using matplotlib / pylab. Parameters data : DataFrame x : label or position, default None y : label or position, default None Allows plotting of one column versus another kind : str • ‘line’ : line plot (default) • ‘bar’ : vertical bar plot • ‘barh’ : horizontal bar plot • ‘hist’ : histogram • ‘box’ : boxplot • ‘kde’ : Kernel Density Estimation plot • ‘density’ : same as ‘kde’ • ‘area’ : area plot • ‘pie’ : pie plot • ‘scatter’ : scatter plot • ‘hexbin’ : hexbin plot ax : matplotlib axes object, default None subplots : boolean, default False Make separate subplots for each column sharex : boolean, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure! sharey : boolean, default False In case subplots=True, share y axis and set some y axis labels to invisible layout : tuple (optional) (rows, columns) for the layout of subplots 33.4. DataFrame 1147 pandas: powerful Python data analysis toolkit, Release 0.16.1 figsize : a tuple (width, height) in inches use_index : boolean, default True Use index as ticks for x axis title : string Title to use for the plot grid : boolean, default None (matlab style default) Axis grid lines legend : False/True/’reverse’ Place legend on axis subplots style : list or dict matplotlib line style per column logx : boolean, default False Use log scaling on x axis logy : boolean, default False Use log scaling on y axis loglog : boolean, default False Use log scaling on both x and y axes xticks : sequence Values to use for the xticks yticks : sequence Values to use for the yticks xlim : 2-tuple/list ylim : 2-tuple/list rot : int, default None Rotation for ticks (xticks for vertical, yticks for horizontal plots) fontsize : int, default None Font size for xticks and yticks colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : boolean, optional If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots) position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) layout : tuple (optional) (rows, columns) for the layout of the plot 1148 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 table : boolean, Series or DataFrame, default False If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See Plotting with Error Bars for detail. xerr : same types as yerr. stacked : boolean, default False in line and bar plots, and True in area plot. If True, create stacked plot. sort_columns : boolean, default False Sort column names to determine plot ordering secondary_y : boolean or sequence, default False Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis mark_right : boolean, default True When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend kwds : keywords Options to pass to matplotlib plotting method Returns axes : matplotlib.AxesSubplot or np.array of them Notes •See matplotlib documentation online for more on this subject •If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) •If kind = ‘scatter’ and the argument c is the name of a dataframe column, the values of that column are used to color each point. •If kind = ‘hexbin’, you can control the size of the bins with the gridsize argument. By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std). pandas.DataFrame.pop DataFrame.pop(item) Return item and drop from frame. Raise KeyError if not found. 33.4. DataFrame 1149 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.pow DataFrame.pow(other, axis=’columns’, level=None, fill_value=None) Binary operator pow with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.prod DataFrame.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : Series or DataFrame (if level specified) pandas.DataFrame.product DataFrame.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None 1150 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : Series or DataFrame (if level specified) pandas.DataFrame.quantile DataFrame.quantile(q=0.5, axis=0, numeric_only=True) Return values at the given quantile over requested axis, a la numpy.percentile. Parameters q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute axis : {0, 1} 0 for row-wise, 1 for column-wise Returns quantiles : Series or DataFrame If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. Examples >>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 pandas.DataFrame.query DataFrame.query(expr, **kwargs) Query the columns of a frame with a boolean expression. New in version 0.13. Parameters expr : string The query string to evaluate. You can refer to variables in the environment by prefixing them with an ‘@’ character like @a + b. kwargs : dict See the documentation for pandas.eval() for complete details on the keyword arguments accepted by DataFrame.query(). 33.4. DataFrame 1151 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns q : DataFrame See also: pandas.eval, DataFrame.eval Notes The result of the evaluation of this expression is first passed to DataFrame.loc and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to DataFrame.__getitem__(). This method uses the top-level pandas.eval() function to evaluate the passed query. The query() method uses a slightly modified Python syntax by default. For example, the & and | (bitwise) operators have the precedence of their boolean cousins, and and or. This is syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument parser=’python’. This enforces the same semantics as evaluation in Python space. Likewise, you can pass engine=’python’ to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using numexpr as the engine. The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier index is used for the frame index; you can also use the name of the index to identify it in a query. For further details and examples see the query documentation in indexing. Examples >>> >>> >>> >>> >>> from numpy.random import randn from pandas import DataFrame df = DataFrame(randn(10, 2), columns=list('ab')) df.query('a > b') df[df.a > df.b] # same result as the previous expression pandas.DataFrame.radd DataFrame.radd(other, axis=’columns’, level=None, fill_value=None) Binary operator radd with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame 1152 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Mismatched indices will be unioned together pandas.DataFrame.rank DataFrame.rank(axis=0, numeric_only=None, method=’average’, na_option=’keep’, ascending=True, pct=False) Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values Parameters axis : {0, 1}, default 0 Ranks over columns (0) or rows (1) numeric_only : boolean, default None Include only float, int, boolean data method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’} • average: average rank of group • min: lowest rank in group • max: highest rank in group • first: ranks assigned in order they appear in the array • dense: like ‘min’, but rank always increases by 1 between groups na_option : {‘keep’, ‘top’, ‘bottom’} • keep: leave NA values where they are • top: smallest rank if ascending • bottom: smallest rank if descending ascending : boolean, default True False for ranks by high (1) to low (N) pct : boolean, default False Computes percentage rank of data Returns ranks : DataFrame pandas.DataFrame.rdiv DataFrame.rdiv(other, axis=’columns’, level=None, fill_value=None) Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing 33.4. DataFrame 1153 pandas: powerful Python data analysis toolkit, Release 0.16.1 level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.reindex DataFrame.reindex(index=None, columns=None, **kwargs) Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters index, columns : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : DataFrame Examples >>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C']) 1154 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.reindex_axis DataFrame.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan) Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters labels : array-like New labels / index to conform to. Preferably an Index object to avoid duplicating data axis : {0, 1, ‘index’, ‘columns’} method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : DataFrame See also: reindex, reindex_like Examples >>> df.reindex_axis(['A', 'B', 'C'], axis=1) pandas.DataFrame.reindex_like DataFrame.reindex_like(other, method=None, copy=True, limit=None) return an object with matching indicies to myself Parameters other : Object method : string or None copy : boolean, default True limit : int, default None Maximum size gap to forward or backward fill 33.4. DataFrame 1155 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns reindexed : same as input Notes Like calling s.reindex(index=other.index, columns=other.columns, method=...) pandas.DataFrame.rename DataFrame.rename(index=None, columns=None, **kwargs) Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters index, columns : dict-like or function, optional Transformation to apply to that axis values copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new DataFrame. If True then value of copy is ignored. Returns renamed : DataFrame (new object) pandas.DataFrame.rename_axis DataFrame.rename_axis(mapper, axis=0, copy=True, inplace=False) Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters mapper : dict-like or function, optional axis : int or string, default 0 copy : boolean, default True Also copy underlying data inplace : boolean, default False Returns renamed : type of caller pandas.DataFrame.reorder_levels DataFrame.reorder_levels(order, axis=0) Rearrange index levels using input order. May not drop or duplicate levels Parameters order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns type of caller (new object) 1156 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.replace DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=’pad’, axis=None) Replace values given in ‘to_replace’ with ‘value’. Parameters to_replace : str, regex, list, dict, Series, numeric, or None • str or regex: – str: string exactly matching to_replace will be replaced with value – regex: regexs matching to_replace will be replaced with value • list of str, regex, or numeric: – First, if to_replace and value are both lists, they must be the same length. – Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use. – str and regex rules apply as above. • dict: – Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions. – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in. • None: – This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : boolean, default False If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True. limit : int, default None Maximum size gap to forward or backward fill regex : bool or same types as to_replace, default False Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions. 33.4. DataFrame 1157 pandas: powerful Python data analysis toolkit, Release 0.16.1 method : string, optional, {‘pad’, ‘ffill’, ‘bfill’} The method to use when for replacement, when to_replace is a list. Returns filled : NDFrame Raises AssertionError • If regex is not a bool and to_replace is not None. TypeError • If to_replace is a dict and value is not a list, dict, ndarray, or Series • If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. ValueError • If to_replace and value are list s or ndarray s, but they are not the same length. See also: NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna Notes •Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same. •Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this. •This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works. pandas.DataFrame.resample DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=’start’, kind=None, loffset=None, limit=None, base=0) Convenience method for frequency conversion and resampling of regular time-series data. Parameters rule : string the offset string or object representing target conversion how : string method for down- or re-sampling, default to ‘mean’ for downsampling axis : int, optional, default 0 fill_method : string, default None fill_method for upsampling closed : {‘right’, ‘left’} Which side of bin interval is closed label : {‘right’, ‘left’} 1158 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Which bin edge label to label bucket with convention : {‘start’, ‘end’, ‘s’, ‘e’} kind : “period”/”timestamp” loffset : timedelta Adjust the resampled time labels limit : int, default None Maximum size gap to when reindexing with fill_method base : int, default 0 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0 pandas.DataFrame.reset_index DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=’‘) For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used. Parameters level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default drop : boolean, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : boolean, default False Modify the DataFrame in place (do not create a new object) col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default ‘’ If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns resetted : DataFrame pandas.DataFrame.rfloordiv DataFrame.rfloordiv(other, axis=’columns’, level=None, fill_value=None) Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on 33.4. DataFrame 1159 pandas: powerful Python data analysis toolkit, Release 0.16.1 fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.rmod DataFrame.rmod(other, axis=’columns’, level=None, fill_value=None) Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.rmul DataFrame.rmul(other, axis=’columns’, level=None, fill_value=None) Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level 1160 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.rpow DataFrame.rpow(other, axis=’columns’, level=None, fill_value=None) Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.rsub DataFrame.rsub(other, axis=’columns’, level=None, fill_value=None) Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together 33.4. DataFrame 1161 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.rtruediv DataFrame.rtruediv(other, axis=’columns’, level=None, fill_value=None) Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.sample DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None) Returns a random sample of items from an axis of object. Parameters n : int, optional Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None. frac : float, optional Fraction of axis items to return. Cannot be used with n. replace : boolean, optional Sample with or without replacement. Default = False. weights : str or ndarray-like, optional Default ‘None’ results in equal probability weighting. If called on a DataFrame, will accept the name of a column when axis = 0. Weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed. random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : int or string, optional Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels). Returns Same type as caller. 1162 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.save DataFrame.save(path) Deprecated. Use to_pickle instead pandas.DataFrame.select DataFrame.select(crit, axis=0) Return data corresponding to axis labels matching criteria Parameters crit : function To be called on each index (label). Should return True or False axis : int Returns selection : type of caller pandas.DataFrame.select_dtypes DataFrame.select_dtypes(include=None, exclude=None) Return a subset of a DataFrame including/excluding columns based on their dtype. Parameters include, exclude : list-like A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these. Returns subset : DataFrame The subset of the frame including the dtypes in include and excluding the dtypes in exclude. Raises ValueError • If both of include and exclude are empty • If include and exclude have overlapping elements • If any kind of string dtype is passed in. TypeError • If either of include or exclude is not a sequence Notes •To select all numeric types use the numpy dtype numpy.number •To select strings you must use the object dtype, but note that this will return all object dtype columns •See the numpy dtype hierarchy •To select Pandas categorical dtypes, use ‘category’ 33.4. DataFrame 1163 pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> df = pd.DataFrame({'a': np.random.randn(6).astype('f4'), ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 0.3962 True 1 1 0.1459 False 2 2 0.2623 True 1 3 0.0764 False 2 4 -0.9703 True 1 5 -1.2094 False 2 >>> df.select_dtypes(include=['float64']) c 0 1 1 2 2 1 3 2 4 1 5 2 >>> df.select_dtypes(exclude=['floating']) b 0 True 1 False 2 True 3 False 4 True 5 False pandas.DataFrame.sem DataFrame.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sem : Series or DataFrame (if level specified) 1164 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.set_axis DataFrame.set_axis(axis, labels) public verson of axis assignment pandas.DataFrame.set_index DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object. Parameters keys : column label or list of column labels / arrays drop : boolean, default True Delete columns to be used as the new index append : boolean, default False Whether to append columns to existing index inplace : boolean, default False Modify the DataFrame in place (do not create a new object) verify_integrity : boolean, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method Returns dataframe : DataFrame Examples >>> indexed_df = df.set_index(['A', 'B']) >>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]]) >>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]]) pandas.DataFrame.set_value DataFrame.set_value(index, col, value, takeable=False) Put single value at passed column and index Parameters index : row label col : column label value : scalar value takeable : interpret the index/col as indexers, default False Returns frame : DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object 33.4. DataFrame 1165 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.shift DataFrame.shift(periods=1, freq=None, axis=0, **kwargs) Shift index by desired number of periods with an optional time freq Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, optional Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes. axis : {0, 1, ‘index’, ‘columns’} Returns shifted : DataFrame Notes If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. pandas.DataFrame.skew DataFrame.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased skew over requested axis Normalized by N-1 Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns skew : Series or DataFrame (if level specified) pandas.DataFrame.slice_shift DataFrame.slice_shift(periods=1, axis=0) Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters periods : int Number of periods to move, can be positive or negative Returns shifted : same type as caller 1166 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes While the slice_shift is faster than shift, you may pay for it later during alignment. pandas.DataFrame.sort DataFrame.sort(columns=None, axis=0, ascending=True, inplace=False, kind=’quicksort’, na_position=’last’) Sort DataFrame either by labels (along either axis) or by the values in column(s) Parameters columns : object Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index. ascending : boolean or list, default True Sort ascending vs. descending. Specify list for multiple sort orders axis : {0, 1} Sort index/rows versus columns inplace : boolean, default False Sort the DataFrame without creating a new instance kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional This option is only applied when sorting on a single column or label. na_position : {‘first’, ‘last’} (optional, default=’last’) ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end Returns sorted : DataFrame Examples >>> result = df.sort(['A', 'B'], ascending=[1, 0]) pandas.DataFrame.sort_index DataFrame.sort_index(axis=0, by=None, ascending=True, inplace=False, kind=’quicksort’, na_position=’last’) Sort DataFrame either by labels (along either axis) or by the values in a column Parameters axis : {0, 1} Sort index/rows versus columns by : object Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index. ascending : boolean or list, default True Sort ascending vs. descending. Specify list for multiple sort orders inplace : boolean, default False 33.4. DataFrame 1167 pandas: powerful Python data analysis toolkit, Release 0.16.1 Sort the DataFrame without creating a new instance na_position : {‘first’, ‘last’} (optional, default=’last’) ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional This option is only applied when sorting on a single column or label. Returns sorted : DataFrame Examples >>> result = df.sort_index(by=['A', 'B'], ascending=[True, False]) pandas.DataFrame.sortlevel DataFrame.sortlevel(level=0, axis=0, ascending=True, inplace=False, sort_remaining=True) Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order) Parameters level : int axis : {0, 1} ascending : boolean, default True inplace : boolean, default False Sort the DataFrame without creating a new instance sort_remaining : boolean, default True Sort by the other levels too. Returns sorted : DataFrame pandas.DataFrame.squeeze DataFrame.squeeze() squeeze length 1 dimensions pandas.DataFrame.stack DataFrame.stack(level=-1, dropna=True) Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels. The level involved will automatically get sorted. Parameters level : int, string, or list of these, default last level Level(s) to stack, can pass level name dropna : boolean, default True Whether to drop rows in the resulting Frame/Series with no valid values Returns stacked : DataFrame or Series 1168 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> s a one 1. two 3. b 2. 4. >>> s.stack() one a 1 b 2 two a 3 b 4 pandas.DataFrame.std DataFrame.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard deviation over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns std : Series or DataFrame (if level specified) pandas.DataFrame.sub DataFrame.sub(other, axis=’columns’, level=None, fill_value=None) Binary operator sub with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame 33.4. DataFrame 1169 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Mismatched indices will be unioned together pandas.DataFrame.subtract DataFrame.subtract(other, axis=’columns’, level=None, fill_value=None) Binary operator sub with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.sum DataFrame.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the sum of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sum : Series or DataFrame (if level specified) pandas.DataFrame.swapaxes DataFrame.swapaxes(axis1, axis2, copy=True) Interchange axes and swap values axes appropriately 1170 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns y : same as input pandas.DataFrame.swaplevel DataFrame.swaplevel(i, j, axis=0) Swap levels i and j in a MultiIndex on a particular axis Parameters i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns swapped : type of caller (new object) pandas.DataFrame.tail DataFrame.tail(n=5) Returns last n rows pandas.DataFrame.take DataFrame.take(indices, axis=0, convert=True, is_copy=True) Analogous to ndarray.take Parameters indices : list / array of ints axis : int, default 0 convert : translate neg to pos indices (default) is_copy : mark the returned frame as a copy Returns taken : type of caller pandas.DataFrame.to_clipboard DataFrame.to_clipboard(excel=None, sep=None, **kwargs) Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. Parameters excel : boolean, defaults to True if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard sep : optional, defaults to tab other keywords are passed to to_csv Notes Requirements for your platform • Linux: xclip, or xsel (with gtk or PyQt4 modules) • Windows: none • OS X: none 33.4. DataFrame 1171 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.to_csv DataFrame.to_csv(path_or_buf=None, sep=’, ‘, na_rep=’‘, float_format=None, columns=None, header=True, index=True, index_label=None, mode=’w’, encoding=None, quoting=None, quotechar=””, line_terminator=’\n’, chunksize=None, tupleize_cols=False, date_format=None, doublequote=True, escapechar=None, decimal=’.’, **kwds) Write DataFrame to a comma-separated values (csv) file Parameters path_or_buf : string or file handle, default None File path or object, if None is provided the result is returned as a string. sep : character, default ”,” Field delimiter for the output file. na_rep : string, default ‘’ Missing data representation float_format : string, default None Format string for floating point numbers columns : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, or False, default None Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R nanRep : None deprecated, use na_rep mode : str Python write mode, default ‘w’ encoding : string, optional A string representing the encoding to use in the output file, defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3. line_terminator : string, default ‘\n’ The newline character or character sequence to use in the output file quoting : optional constant from csv module defaults to csv.QUOTE_MINIMAL quotechar : string (length 1), default ‘”’ 1172 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 character used to quote fields doublequote : boolean, default True Control quoting of quotechar inside a field escapechar : string (length 1), default None character used to escape sep and quotechar when appropriate chunksize : int or None rows to write at a time tupleize_cols : boolean, default False write multi_index columns as a list of tuples (if True) or new (expanded format) if False) date_format : string, default None Format string for datetime objects decimal: string, default ‘.’ Character recognized as decimal separator. E.g. use ‘,’ for European data pandas.DataFrame.to_dense DataFrame.to_dense() Return dense representation of NDFrame (as opposed to sparse) pandas.DataFrame.to_dict DataFrame.to_dict(*args, **kwargs) Convert DataFrame to dictionary. Parameters orient : str {‘dict’, ‘list’, ‘series’, ‘split’, ‘records’} Determines the type of the values of the dictionary. • dict (default) : dict like {column -> {index -> value}} • list : dict like {column -> [values]} • series : dict like {column -> Series(values)} • split : dict like {index -> [index], columns -> [columns], data -> [values]} • records : list like [{column -> value}, ... , {column -> value}] Abbreviations are allowed. s indicates series and sp indicates split. Returns result : dict like {column -> {index -> value}} pandas.DataFrame.to_excel DataFrame.to_excel(excel_writer, sheet_name=’Sheet1’, na_rep=’‘, float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep=’inf’) Write DataFrame to a excel sheet 33.4. DataFrame 1173 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters excel_writer : string or ExcelWriter object File path or existing ExcelWriter sheet_name : string, default ‘Sheet1’ Name of sheet which will contain DataFrame na_rep : string, default ‘’ Missing data representation float_format : string, default None Format string for floating point numbers columns : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame engine : string, default None write engine to use - you io.excel.xlsx.writer, io.excel.xlsm.writer. can also set this via the io.excel.xls.writer, options and merge_cells : boolean, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding: string, default None encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : string, default ‘inf’ Representation for infinity (there is no native representation for infinity in Excel) Notes If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be used to save different DataFrames to one workbook: 1174 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> >>> >>> >>> writer = ExcelWriter('output.xlsx') df1.to_excel(writer,'Sheet1') df2.to_excel(writer,'Sheet2') writer.save() pandas.DataFrame.to_gbq DataFrame.to_gbq(destination_table, project_id=None, reauth=False) Write a DataFrame to a Google BigQuery table. chunksize=10000, verbose=True, THIS IS AN EXPERIMENTAL LIBRARY If the table exists, the dataframe will be written to the table using the defined table schema and column types. For simplicity, this method uses the Google BigQuery streaming API. The to_gbq method chunks data into a default chunk size of 10,000. Failures return the complete error response which can be quite long depending on the size of the insert. There are several important limitations of the Google streaming API which are detailed at: https://developers.google.com/bigquery/streaming-data-into-bigquery. Parameters dataframe : DataFrame DataFrame to be written destination_table : string Name of table to be written, in the form ‘dataset.tablename’ project_id : str Google BigQuery Account project ID. chunksize : int (default 10000) Number of rows to be inserted in each chunk from the dataframe. verbose : boolean (default True) Show percentage complete reauth : boolean (default False) Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used. pandas.DataFrame.to_hdf DataFrame.to_hdf(path_or_buf, key, **kwargs) activate the HDFStore Parameters path_or_buf : the path (string) or buffer to put the store key : string indentifier for the group in the store mode : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’ ’r’ Read-only; no data can be modified. ’w’ Write; a new file is created (an existing file with the same name would be deleted). 33.4. DataFrame 1175 pandas: powerful Python data analysis toolkit, Release 0.16.1 ’a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created. ’r+’ It is similar to ’a’, but the file must already exist. format : ‘fixed(f)|table(t)’, default is ‘fixed’ fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False For Table formats, append the input data to the existing complevel : int, 1-9, default 0 If a complib is specified compression will be applied where possible complib : {‘zlib’, ‘bzip2’, ‘lzo’, ‘blosc’, None}, default None If complevel is > 0 apply compression to objects written in the store wherever possible fletcher32 : bool, default False If applying compression use the fletcher32 checksum pandas.DataFrame.to_html DataFrame.to_html(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep=’NaN’, formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False) Render a DataFrame as an HTML table. to_html-specific options: bold_rows [boolean, default True] Make the row labels bold in the output classes [str or list or tuple, default None] CSS class(es) to apply to the resulting html table escape [boolean, default True] Convert the characters <, >, and & to HTML-safe sequences.= max_rows [int, optional] Maximum number of rows to show before truncating. If None, show all. max_cols [int, optional] Maximum number of columns to show before truncating. If None, show all. Parameters frame : DataFrame object to render buf : StringIO-like, optional buffer to write to columns : sequence, optional the subset of columns to write; default None writes all columns col_space : int, optional the minimum width of each column 1176 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 header : bool, optional whether to print column labels, default True index : bool, optional whether to print index (row) labels, default True na_rep : string, optional string representation of NAN to use, default ‘NaN’ formatters : list or dict of one-parameter functions, optional formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True justify : {‘left’, ‘right’}, default None Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. index_names : bool, optional Prints the names of the indexes, default True force_unicode : bool, default False Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default. Returns formatted : string (or unicode, depending on data and options) pandas.DataFrame.to_json DataFrame.to_json(path_or_buf=None, ble_precision=10, fault_handler=None) Convert the object to a JSON string. orient=None, date_format=’epoch’, force_ascii=True, date_unit=’ms’, doude- Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters path_or_buf : the path or buffer to write the result string if this is None, return a StringIO of the converted string orient : string • Series – default is ‘index’ – allowed values are: {‘split’,’records’,’index’} 33.4. DataFrame 1177 pandas: powerful Python data analysis toolkit, Release 0.16.1 • DataFrame – default is ‘columns’ – allowed values are: {‘split’,’records’,’index’,’columns’,’values’} • The format of the JSON string – split : dict like {index -> [index], columns -> [columns], data -> [values]} – records : list like [{column -> value}, ... , {column -> value}] – index : dict like {index -> {column -> value}} – columns : dict like {column -> {index -> value}} – values : just the values array date_format : {‘epoch’, ‘iso’} Type of date conversion. epoch = epoch milliseconds, iso‘ = ISO8601, default is epoch. double_precision : The number of decimal places to use when encoding floating point values, default 10. force_ascii : force encoded string to be ASCII, default True. date_unit : string, default ‘ms’ (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. Returns same type as input object with filtered info axis pandas.DataFrame.to_latex DataFrame.to_latex(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep=’NaN’, formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=True, longtable=False, escape=True) Render a DataFrame to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}. to_latex-specific options: bold_rows [boolean, default True] Make the row labels bold in the output longtable [boolean, default False] Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble. escape [boolean, default True] When set to False prevents from escaping latex special characters in column names. Parameters frame : DataFrame object to render 1178 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 buf : StringIO-like, optional buffer to write to columns : sequence, optional the subset of columns to write; default None writes all columns col_space : int, optional the minimum width of each column header : bool, optional whether to print column labels, default True index : bool, optional whether to print index (row) labels, default True na_rep : string, optional string representation of NAN to use, default ‘NaN’ formatters : list or dict of one-parameter functions, optional formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True justify : {‘left’, ‘right’}, default None Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. index_names : bool, optional Prints the names of the indexes, default True force_unicode : bool, default False Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default. Returns formatted : string (or unicode, depending on data and options) pandas.DataFrame.to_msgpack DataFrame.to_msgpack(path_or_buf=None, **kwargs) msgpack (serialize) object to input file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters path : string File path, buffer-like, or None if None, return generated string 33.4. DataFrame 1179 pandas: powerful Python data analysis toolkit, Release 0.16.1 append : boolean whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) pandas.DataFrame.to_panel DataFrame.to_panel() Transform long (stacked) format (DataFrame) into wide (3D, Panel) format. Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later Returns panel : Panel pandas.DataFrame.to_period DataFrame.to_period(freq=None, axis=0, copy=True) Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed) Parameters freq : string, default axis : {0, 1}, default 0 The axis to convert (the index by default) copy : boolean, default True If False then underlying input data is not copied Returns ts : TimeSeries with PeriodIndex pandas.DataFrame.to_pickle DataFrame.to_pickle(path) Pickle (serialize) object to input file path Parameters path : string File path pandas.DataFrame.to_records DataFrame.to_records(index=True, convert_datetime64=True) Convert DataFrame to record array. Index will be put in the ‘index’ field of the record array if requested Parameters index : boolean, default True Include index in resulting record array, stored in ‘index’ field convert_datetime64 : boolean, default True Whether to convert the index to datetime.datetime if it is a DatetimeIndex Returns y : recarray 1180 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.to_sparse DataFrame.to_sparse(fill_value=None, kind=’block’) Convert to SparseDataFrame Parameters fill_value : float, default NaN kind : {‘block’, ‘integer’} Returns y : SparseDataFrame pandas.DataFrame.to_sql DataFrame.to_sql(name, con, flavor=’sqlite’, schema=None, if_exists=’fail’, index=True, index_label=None, chunksize=None, dtype=None) Write records stored in a DataFrame to a SQL database. Parameters name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : {‘sqlite’, ‘mysql’}, default ‘sqlite’ The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. schema : string, default None Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’ • fail: If table exists, do nothing. • replace: If table exists, drop it, recreate it, and insert data. • append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column. index_label : string or sequence, default None Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. 33.4. DataFrame 1181 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.to_stata DataFrame.to_stata(fname, convert_dates=None, write_index=True, encoding=’latin-1’, byteorder=None, time_stamp=None, data_label=None) A class for writing Stata binary dta files from array-like objects Parameters fname : file path or buffer Where to save the dta file. convert_dates : dict Dictionary mapping column of datetime types to the stata internal format that you want to use for the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either a number or a name. encoding : str Default is latin-1. Note that Stata does not support unicode. byteorder : str Can be “>”, “<”, “little”, or “big”. The default is None which uses sys.byteorder Examples >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() Or with dates >>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'}) >>> writer.write_file() pandas.DataFrame.to_string DataFrame.to_string(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep=’NaN’, formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False) Render a DataFrame to a console-friendly tabular output. Parameters frame : DataFrame object to render buf : StringIO-like, optional buffer to write to columns : sequence, optional the subset of columns to write; default None writes all columns col_space : int, optional the minimum width of each column header : bool, optional whether to print column labels, default True 1182 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 index : bool, optional whether to print index (row) labels, default True na_rep : string, optional string representation of NAN to use, default ‘NaN’ formatters : list or dict of one-parameter functions, optional formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True justify : {‘left’, ‘right’}, default None Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. index_names : bool, optional Prints the names of the indexes, default True force_unicode : bool, default False Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default. Returns formatted : string (or unicode, depending on data and options) pandas.DataFrame.to_timestamp DataFrame.to_timestamp(freq=None, how=’start’, axis=0, copy=True) Cast to DatetimeIndex of timestamps, at beginning of period Parameters freq : string, default frequency of PeriodIndex Desired frequency how : {‘s’, ‘e’, ‘start’, ‘end’} Convention for converting period to timestamp; start of period vs. end axis : {0, 1} default 0 The axis to convert (the index by default) copy : boolean, default True If false then underlying input data is not copied Returns df : DataFrame with DatetimeIndex 33.4. DataFrame 1183 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.to_wide DataFrame.to_wide(*args, **kwargs) pandas.DataFrame.transpose DataFrame.transpose() Transpose index and columns pandas.DataFrame.truediv DataFrame.truediv(other, axis=’columns’, level=None, fill_value=None) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.truncate DataFrame.truncate(before=None, after=None, axis=None, copy=True) Truncates a sorted NDFrame before and/or after some particular dates. Parameters before : date Truncate before date after : date Truncate after date axis : the truncation axis, defaults to the stat axis copy : boolean, default is True, return a copy of the truncated section Returns truncated : type of caller 1184 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.tshift DataFrame.tshift(periods=1, freq=None, axis=0, **kwargs) Shift the time index, using the index’s frequency if available Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, default None Increment to use from datetools module or time rule (e.g. ‘EOM’) axis : int or basestring Corresponds to the axis that contains the Index Returns shifted : NDFrame Notes If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown pandas.DataFrame.tz_convert DataFrame.tz_convert(tz, axis=0, level=None, copy=True) Convert tz-aware axis to target time zone. Parameters tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Raises TypeError If the axis is tz-naive. pandas.DataFrame.tz_localize DataFrame.tz_localize(*args, **kwargs) Localize tz-naive TimeSeries to target time zone Parameters tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data 33.4. DataFrame 1185 pandas: powerful Python data analysis toolkit, Release 0.16.1 ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Raises TypeError If the TimeSeries is tz-aware and tz is not None. pandas.DataFrame.unstack DataFrame.unstack(level=-1) Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters level : int, string, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name Returns unstacked : DataFrame or Series See also: DataFrame.pivot Pivot a table based on column values. DataFrame.stack Pivot a level of the column labels (inverse operation from unstack). Examples >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1 b 2 two a 3 b 4 dtype: float64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 1186 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> df = s.unstack(level=0) >>> df.unstack() one a 1. b 3. two a 2. b 4. pandas.DataFrame.update DataFrame.update(other, join=’left’, overwrite=True, filter_func=None, raise_conflict=False) Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices Parameters other : DataFrame, or object coercible into a DataFrame join : {‘left’}, default ‘left’ overwrite : boolean, default True If True then overwrite values for common keys in the calling frame filter_func : callable(1d-array) -> 1d-array, default None Can choose to replace values other than NA. Return True for values that should be updated raise_conflict : boolean If True, will raise an error if the DataFrame and other both contain data in the same place. pandas.DataFrame.var DataFrame.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns var : Series or DataFrame (if level specified) 33.4. DataFrame 1187 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.where DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.DataFrame.xs DataFrame.xs(key, axis=0, level=None, copy=None, drop_level=True) Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0). Parameters key : object Some label contained in the index, or partially in a MultiIndex axis : int, default 0 Axis to retrieve cross-section on level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. copy : boolean [deprecated] Whether to make a copy of the data drop_level : boolean, default True If False, returns object with same levels as self. Returns xs : Series or DataFrame Notes xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers 1188 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> df A B C a 4 5 2 b 4 0 9 c 9 7 3 >>> df.xs('a') A 4 B 5 C 2 Name: a >>> df.xs('C', axis=1) a 2 b 9 c 3 Name: C >>> df A B C D first second third bar one 1 4 1 8 9 two 1 7 5 5 0 baz one 1 6 6 8 0 three 2 5 3 5 3 >>> df.xs(('baz', 'three')) A B C D third 2 5 3 5 3 >>> df.xs('one', level=1) A B C D first third bar 1 4 1 8 9 baz 1 6 6 8 0 >>> df.xs(('baz', 2), level=[0, 'third']) A B C D second three 5 3 5 3 33.4.2 Attributes and underlying data Axes • index: row labels • columns: column labels DataFrame.as_matrix([columns]) DataFrame.dtypes DataFrame.ftypes DataFrame.get_dtype_counts() DataFrame.get_ftype_counts() DataFrame.select_dtypes([include, exclude]) DataFrame.values DataFrame.axes DataFrame.ndim Convert the frame to its Numpy-array representation. Return the dtypes in this object Return the ftypes (indication of sparse/dense and dtype) in this object. Return the counts of dtypes in this object Return the counts of ftypes in this object Return a subset of a DataFrame including/excluding columns based on their d Numpy representation of NDFrame Number of axes / array dimensions Continued on nex 33.4. DataFrame 1189 pandas: powerful Python data analysis toolkit, Release 0.16.1 DataFrame.size DataFrame.shape Table 33.51 – continued from previous page number of elements in the NDFrame pandas.DataFrame.as_matrix DataFrame.as_matrix(columns=None) Convert the frame to its Numpy-array representation. Parameters columns: list, optional, default:None If None, return all columns, otherwise, returns specified columns. Returns values : ndarray If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. See also: pandas.DataFrame.values Notes Return is NOT a Numpy-matrix, rather, a Numpy-array. The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. This method is provided for backwards compatibility. Generally, it is recommended to use ‘.values’. pandas.DataFrame.dtypes DataFrame.dtypes Return the dtypes in this object pandas.DataFrame.ftypes DataFrame.ftypes Return the ftypes (indication of sparse/dense and dtype) in this object. pandas.DataFrame.get_dtype_counts DataFrame.get_dtype_counts() Return the counts of dtypes in this object pandas.DataFrame.get_ftype_counts DataFrame.get_ftype_counts() Return the counts of ftypes in this object 1190 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.select_dtypes DataFrame.select_dtypes(include=None, exclude=None) Return a subset of a DataFrame including/excluding columns based on their dtype. Parameters include, exclude : list-like A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these. Returns subset : DataFrame The subset of the frame including the dtypes in include and excluding the dtypes in exclude. Raises ValueError • If both of include and exclude are empty • If include and exclude have overlapping elements • If any kind of string dtype is passed in. TypeError • If either of include or exclude is not a sequence Notes •To select all numeric types use the numpy dtype numpy.number •To select strings you must use the object dtype, but note that this will return all object dtype columns •See the numpy dtype hierarchy •To select Pandas categorical dtypes, use ‘category’ Examples >>> df = pd.DataFrame({'a': np.random.randn(6).astype('f4'), ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 0.3962 True 1 1 0.1459 False 2 2 0.2623 True 1 3 0.0764 False 2 4 -0.9703 True 1 5 -1.2094 False 2 >>> df.select_dtypes(include=['float64']) c 0 1 1 2 2 1 3 2 4 1 5 2 >>> df.select_dtypes(exclude=['floating']) b 33.4. DataFrame 1191 pandas: powerful Python data analysis toolkit, Release 0.16.1 0 1 2 3 4 5 True False True False True False pandas.DataFrame.values DataFrame.values Numpy representation of NDFrame Notes The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. pandas.DataFrame.axes DataFrame.axes pandas.DataFrame.ndim DataFrame.ndim Number of axes / array dimensions pandas.DataFrame.size DataFrame.size number of elements in the NDFrame pandas.DataFrame.shape DataFrame.shape 33.4.3 Conversion DataFrame.astype(dtype[, copy, raise_on_error]) DataFrame.convert_objects([convert_dates, ...]) DataFrame.copy([deep]) DataFrame.isnull() DataFrame.notnull() 1192 Cast object to input numpy.dtype Attempt to infer better dtype for object columns Make a copy of this object Return a boolean same-sized object indicating if the values are null Return a boolean same-sized object indicating if the values are Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.astype DataFrame.astype(dtype, copy=True, raise_on_error=True, **kwargs) Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters dtype : numpy.dtype or Python type raise_on_error : raise on invalid input kwargs : keyword arguments to pass on to the constructor Returns casted : type of caller pandas.DataFrame.convert_objects DataFrame.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True) Attempt to infer better dtype for object columns Parameters convert_dates : boolean, default True If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. convert_numeric : boolean, default False If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN. convert_timedeltas : boolean, default True If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. copy : boolean, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns converted : same as input object pandas.DataFrame.copy DataFrame.copy(deep=True) Make a copy of this object Parameters deep : boolean or string, default True Make a deep copy, i.e. also copy data Returns copy : type of caller pandas.DataFrame.isnull DataFrame.isnull() Return a boolean same-sized object indicating if the values are null See also: notnull boolean inverse of isnull 33.4. DataFrame 1193 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.notnull DataFrame.notnull() Return a boolean same-sized object indicating if the values are not null See also: isnull boolean inverse of notnull 33.4.4 Indexing, iteration DataFrame.head([n]) DataFrame.at DataFrame.iat DataFrame.ix DataFrame.loc DataFrame.iloc DataFrame.insert(loc, column, value[, ...]) DataFrame.__iter__() DataFrame.iteritems() DataFrame.iterrows() DataFrame.itertuples([index]) DataFrame.lookup(row_labels, col_labels) DataFrame.pop(item) DataFrame.tail([n]) DataFrame.xs(key[, axis, level, copy, ...]) DataFrame.isin(values) DataFrame.where(cond[, other, inplace, ...]) DataFrame.mask(cond[, other, inplace, axis, ...]) DataFrame.query(expr, **kwargs) Returns first n rows Fast label-based scalar accessor Fast integer location scalar accessor. A primarily label-location based indexer, with integer position fallback. Purely label-location based indexer for selection by label. Purely integer-location based indexing for selection by position. Insert column into DataFrame at specified location. Iterate over infor axis Iterator over (column, series) pairs Iterate over rows of DataFrame as (index, Series) pairs. Iterate over rows of DataFrame as tuples, with index value Label-based “fancy indexing” function for DataFrame. Return item and drop from frame. Returns last n rows Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Return boolean DataFrame showing whether each element in the DataFrame is Return an object of same shape as self and whose corresponding entries are fro Return an object of same shape as self and whose corresponding entries are fro Query the columns of a frame with a boolean expression. pandas.DataFrame.head DataFrame.head(n=5) Returns first n rows pandas.DataFrame.at DataFrame.at Fast label-based scalar accessor Similarly to loc, at provides label based scalar lookups. You can also set using these indexers. pandas.DataFrame.iat DataFrame.iat Fast integer location scalar accessor. Similarly to iloc, iat provides integer based lookups. You can also set using these indexers. 1194 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.ix DataFrame.ix A primarily label-location based indexer, with integer position fallback. .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes. However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc. See more at Advanced Indexing. pandas.DataFrame.loc DataFrame.loc Purely label-location based indexer for selection by label. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: •A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index, and never as an integer position along the index). •A list or array of labels, e.g. [’a’, ’b’, ’c’]. •A slice object with labels, e.g. ’a’:’f’ (note that contrary to usual python slices, both the start and the stop are included!). •A boolean array. .loc will raise a KeyError when the items are not found. See more at Selection by Label pandas.DataFrame.iloc DataFrame.iloc Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: •An integer, e.g. 5. •A list or array of integers, e.g. [4, 3, 0]. •A slice object with ints, e.g. 1:7. •A boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics). See more at Selection by Position 33.4. DataFrame 1195 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.insert DataFrame.insert(loc, column, value, allow_duplicates=False) Insert column into DataFrame at specified location. If allow_duplicates is False, raises Exception if column is already contained in the DataFrame. Parameters loc : int Must have 0 <= loc <= len(columns) column : object value : int, Series, or array-like pandas.DataFrame.__iter__ DataFrame.__iter__() Iterate over infor axis pandas.DataFrame.iteritems DataFrame.iteritems() Iterator over (column, series) pairs pandas.DataFrame.iterrows DataFrame.iterrows() Iterate over rows of DataFrame as (index, Series) pairs. Returns it : generator A generator that iterates over the rows of the frame. Notes •iterrows does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = DataFrame([[1, 1.0]], columns=['x', 'y']) >>> row = next(df.iterrows())[1] >>> print(row['x'].dtype) float64 >>> print(df['x'].dtype) int64 pandas.DataFrame.itertuples DataFrame.itertuples(index=True) Iterate over rows of DataFrame as tuples, with index value as first element of the tuple 1196 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.lookup DataFrame.lookup(row_labels, col_labels) Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters row_labels : sequence The row labels to use for lookup col_labels : sequence The column labels to use for lookup Notes Akin to: result = [] for row, col in zip(row_labels, col_labels): result.append(df.get_value(row, col)) Examples values [ndarray] The found values pandas.DataFrame.pop DataFrame.pop(item) Return item and drop from frame. Raise KeyError if not found. pandas.DataFrame.tail DataFrame.tail(n=5) Returns last n rows pandas.DataFrame.xs DataFrame.xs(key, axis=0, level=None, copy=None, drop_level=True) Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0). Parameters key : object Some label contained in the index, or partially in a MultiIndex axis : int, default 0 Axis to retrieve cross-section on level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. copy : boolean [deprecated] 33.4. DataFrame 1197 pandas: powerful Python data analysis toolkit, Release 0.16.1 Whether to make a copy of the data drop_level : boolean, default True If False, returns object with same levels as self. Returns xs : Series or DataFrame Notes xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers Examples >>> df A B C a 4 5 2 b 4 0 9 c 9 7 3 >>> df.xs('a') A 4 B 5 C 2 Name: a >>> df.xs('C', axis=1) a 2 b 9 c 3 Name: C >>> df A B C D first second third bar one 1 4 1 8 9 two 1 7 5 5 0 baz one 1 6 6 8 0 three 2 5 3 5 3 >>> df.xs(('baz', 'three')) A B C D third 2 5 3 5 3 >>> df.xs('one', level=1) A B C D first third bar 1 4 1 8 9 baz 1 6 6 8 0 >>> df.xs(('baz', 2), level=[0, 'third']) A B C D second three 5 3 5 3 1198 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.isin DataFrame.isin(values) Return boolean DataFrame showing whether each element in the DataFrame is contained in values. Parameters values : iterable, Series, DataFrame or dictionary The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dictionary, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match. Returns DataFrame of booleans Examples When values is a list: >>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> df.isin([1, 3, 12, 'a']) A B 0 True True 1 False False 2 True False When values is a dict: >>> df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]}) >>> df.isin({'A': [1, 3], 'B': [4, 7, 12]}) A B 0 True False # Note that B didn't match the 1 here. 1 False True 2 True True When values is a Series or DataFrame: >>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']}) >>> df.isin(other) A B 0 True False 1 False False # Column A in `other` has a 3, but not at index 1. 2 True True pandas.DataFrame.where DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data 33.4. DataFrame 1199 pandas: powerful Python data analysis toolkit, Release 0.16.1 axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.DataFrame.mask DataFrame.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.DataFrame.query DataFrame.query(expr, **kwargs) Query the columns of a frame with a boolean expression. New in version 0.13. Parameters expr : string The query string to evaluate. You can refer to variables in the environment by prefixing them with an ‘@’ character like @a + b. kwargs : dict See the documentation for pandas.eval() for complete details on the keyword arguments accepted by DataFrame.query(). Returns q : DataFrame See also: pandas.eval, DataFrame.eval 1200 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes The result of the evaluation of this expression is first passed to DataFrame.loc and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to DataFrame.__getitem__(). This method uses the top-level pandas.eval() function to evaluate the passed query. The query() method uses a slightly modified Python syntax by default. For example, the & and | (bitwise) operators have the precedence of their boolean cousins, and and or. This is syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument parser=’python’. This enforces the same semantics as evaluation in Python space. Likewise, you can pass engine=’python’ to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using numexpr as the engine. The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier index is used for the frame index; you can also use the name of the index to identify it in a query. For further details and examples see the query documentation in indexing. Examples >>> >>> >>> >>> >>> from numpy.random import randn from pandas import DataFrame df = DataFrame(randn(10, 2), columns=list('ab')) df.query('a > b') df[df.a > df.b] # same result as the previous expression For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation. 33.4.5 Binary operator functions DataFrame.add(other[, axis, level, fill_value]) DataFrame.sub(other[, axis, level, fill_value]) DataFrame.mul(other[, axis, level, fill_value]) DataFrame.div(other[, axis, level, fill_value]) DataFrame.truediv(other[, axis, level, ...]) DataFrame.floordiv(other[, axis, level, ...]) DataFrame.mod(other[, axis, level, fill_value]) DataFrame.pow(other[, axis, level, fill_value]) DataFrame.radd(other[, axis, level, fill_value]) DataFrame.rsub(other[, axis, level, fill_value]) DataFrame.rmul(other[, axis, level, fill_value]) DataFrame.rdiv(other[, axis, level, fill_value]) DataFrame.rtruediv(other[, axis, level, ...]) DataFrame.rfloordiv(other[, axis, level, ...]) DataFrame.rmod(other[, axis, level, fill_value]) DataFrame.rpow(other[, axis, level, fill_value]) DataFrame.lt(other[, axis, level]) DataFrame.gt(other[, axis, level]) 33.4. DataFrame Binary operator add with support to substitute a fill_value for missing data in Binary operator sub with support to substitute a fill_value for missing data in Binary operator mul with support to substitute a fill_value for missing data in Binary operator truediv with support to substitute a fill_value for missing data Binary operator truediv with support to substitute a fill_value for missing data Binary operator floordiv with support to substitute a fill_value for missing data Binary operator mod with support to substitute a fill_value for missing data in Binary operator pow with support to substitute a fill_value for missing data in Binary operator radd with support to substitute a fill_value for missing data in Binary operator rsub with support to substitute a fill_value for missing data in Binary operator rmul with support to substitute a fill_value for missing data in Binary operator rtruediv with support to substitute a fill_value for missing data Binary operator rtruediv with support to substitute a fill_value for missing data Binary operator rfloordiv with support to substitute a fill_value for missing da Binary operator rmod with support to substitute a fill_value for missing data in Binary operator rpow with support to substitute a fill_value for missing data in Wrapper for flexible comparison methods lt Wrapper for flexible comparison methods gt Continued 1201 pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.54 – continued from previous page DataFrame.le(other[, axis, level]) Wrapper for flexible comparison methods le DataFrame.ge(other[, axis, level]) Wrapper for flexible comparison methods ge DataFrame.ne(other[, axis, level]) Wrapper for flexible comparison methods ne DataFrame.eq(other[, axis, level]) Wrapper for flexible comparison methods eq DataFrame.combine(other, func[, fill_value, ...]) Add two DataFrame objects and do not propagate NaN values, so if for a DataFrame.combineAdd(other) Add two DataFrame objects and do not propagate DataFrame.combine_first(other) Combine two DataFrame objects and default to non-null values in frame callin DataFrame.combineMult(other) Multiply two DataFrame objects and do not propagate NaN values, so if pandas.DataFrame.add DataFrame.add(other, axis=’columns’, level=None, fill_value=None) Binary operator add with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.sub DataFrame.sub(other, axis=’columns’, level=None, fill_value=None) Binary operator sub with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame 1202 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Mismatched indices will be unioned together pandas.DataFrame.mul DataFrame.mul(other, axis=’columns’, level=None, fill_value=None) Binary operator mul with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.div DataFrame.div(other, axis=’columns’, level=None, fill_value=None) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together 33.4. DataFrame 1203 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.truediv DataFrame.truediv(other, axis=’columns’, level=None, fill_value=None) Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.floordiv DataFrame.floordiv(other, axis=’columns’, level=None, fill_value=None) Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.mod DataFrame.mod(other, axis=’columns’, level=None, fill_value=None) Binary operator mod with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} 1204 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.pow DataFrame.pow(other, axis=’columns’, level=None, fill_value=None) Binary operator pow with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.radd DataFrame.radd(other, axis=’columns’, level=None, fill_value=None) Binary operator radd with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name 33.4. DataFrame 1205 pandas: powerful Python data analysis toolkit, Release 0.16.1 Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.rsub DataFrame.rsub(other, axis=’columns’, level=None, fill_value=None) Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.rmul DataFrame.rmul(other, axis=’columns’, level=None, fill_value=None) Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame 1206 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes Mismatched indices will be unioned together pandas.DataFrame.rdiv DataFrame.rdiv(other, axis=’columns’, level=None, fill_value=None) Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.rtruediv DataFrame.rtruediv(other, axis=’columns’, level=None, fill_value=None) Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together 33.4. DataFrame 1207 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.rfloordiv DataFrame.rfloordiv(other, axis=’columns’, level=None, fill_value=None) Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.rmod DataFrame.rmod(other, axis=’columns’, level=None, fill_value=None) Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.rpow DataFrame.rpow(other, axis=’columns’, level=None, fill_value=None) Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs Parameters other : Series, DataFrame, or constant axis : {0, 1, ‘index’, ‘columns’} 1208 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns result : DataFrame Notes Mismatched indices will be unioned together pandas.DataFrame.lt DataFrame.lt(other, axis=’columns’, level=None) Wrapper for flexible comparison methods lt pandas.DataFrame.gt DataFrame.gt(other, axis=’columns’, level=None) Wrapper for flexible comparison methods gt pandas.DataFrame.le DataFrame.le(other, axis=’columns’, level=None) Wrapper for flexible comparison methods le pandas.DataFrame.ge DataFrame.ge(other, axis=’columns’, level=None) Wrapper for flexible comparison methods ge pandas.DataFrame.ne DataFrame.ne(other, axis=’columns’, level=None) Wrapper for flexible comparison methods ne pandas.DataFrame.eq DataFrame.eq(other, axis=’columns’, level=None) Wrapper for flexible comparison methods eq 33.4. DataFrame 1209 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.combine DataFrame.combine(other, func, fill_value=None, overwrite=True) Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well) Parameters other : DataFrame func : function fill_value : scalar value overwrite : boolean, default True If True then overwrite values for common keys in the calling frame Returns result : DataFrame pandas.DataFrame.combineAdd DataFrame.combineAdd(other) Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well) Parameters other : DataFrame Returns DataFrame pandas.DataFrame.combine_first DataFrame.combine_first(other) Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns Parameters other : DataFrame Returns combined : DataFrame Examples a’s values prioritized, use values from b to fill holes: >>> a.combine_first(b) pandas.DataFrame.combineMult DataFrame.combineMult(other) Multiply two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well) Parameters other : DataFrame Returns DataFrame 33.4.6 Function application, GroupBy 1210 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 DataFrame.apply(func[, axis, broadcast, ...]) DataFrame.applymap(func) DataFrame.groupby([by, axis, level, ...]) Applies function along input axis of DataFrame. Apply a function to a DataFrame that is intended to operate elementwise, i.e. Group series using mapper (dict or key function, apply given function pandas.DataFrame.apply DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds) Applies function along input axis of DataFrame. Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty. Parameters func : function Function to apply to each column/row axis : {0, 1} • 0 : apply function to each column • 1 : apply function to each row broadcast : boolean, default False For aggregation functions, return object of same size with values propagated reduce : boolean or None, default None Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned. raw : boolean, default False If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance args : tuple Positional arguments to pass to function in addition to the array/series Additional keyword arguments will be passed as keywords to the function Returns applied : Series or DataFrame See also: DataFrame.applymap For elementwise operations Notes In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row. 33.4. DataFrame 1211 pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> df.apply(numpy.sqrt) # returns DataFrame >>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0) >>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1) pandas.DataFrame.applymap DataFrame.applymap(func) Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters func : function Python function, returns a single value from a single value Returns applied : DataFrame See also: DataFrame.apply For operations on rows/columns pandas.DataFrame.groupby DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns Parameters by : mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups axis : int, default 0 level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels as_index : boolean, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output sort : boolean, default True Sort group keys. Get better performance by turning this off group_keys : boolean, default True When calling apply, add group keys to index to identify pieces squeeze : boolean, default False reduce the dimensionaility of the return type if possible, otherwise return a consistent type Returns GroupBy object 1212 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples DataFrame results >>> data.groupby(func, axis=0).mean() >>> data.groupby(['col1', 'col2'])['col3'].mean() DataFrame with hierarchical index >>> data.groupby(['col1', 'col2']).mean() 33.4.7 Computations / Descriptive Stats DataFrame.abs() DataFrame.all([axis, bool_only, skipna, level]) DataFrame.any([axis, bool_only, skipna, level]) DataFrame.clip([lower, upper, out, axis]) DataFrame.clip_lower(threshold[, axis]) DataFrame.clip_upper(threshold[, axis]) DataFrame.corr([method, min_periods]) DataFrame.corrwith(other[, axis, drop]) DataFrame.count([axis, level, numeric_only]) DataFrame.cov([min_periods]) DataFrame.cummax([axis, dtype, out, skipna]) DataFrame.cummin([axis, dtype, out, skipna]) DataFrame.cumprod([axis, dtype, out, skipna]) DataFrame.cumsum([axis, dtype, out, skipna]) DataFrame.describe([percentile_width, ...]) DataFrame.diff([periods, axis]) DataFrame.eval(expr, **kwargs) DataFrame.kurt([axis, skipna, level, ...]) DataFrame.mad([axis, skipna, level]) DataFrame.max([axis, skipna, level, ...]) DataFrame.mean([axis, skipna, level, ...]) DataFrame.median([axis, skipna, level, ...]) DataFrame.min([axis, skipna, level, ...]) DataFrame.mode([axis, numeric_only]) DataFrame.pct_change([periods, fill_method, ...]) DataFrame.prod([axis, skipna, level, ...]) DataFrame.quantile([q, axis, numeric_only]) DataFrame.rank([axis, numeric_only, method, ...]) DataFrame.sem([axis, skipna, level, ddof, ...]) DataFrame.skew([axis, skipna, level, ...]) DataFrame.sum([axis, skipna, level, ...]) DataFrame.std([axis, skipna, level, ddof, ...]) DataFrame.var([axis, skipna, level, ddof, ...]) Return an object with absolute value taken. Return whether all elements are True over requested axis Return whether any element is True over requested axis Trim values at input threshold(s) Return copy of the input with values below given value(s) truncated Return copy of input with values above given value(s) truncated Compute pairwise correlation of columns, excluding NA/null values Compute pairwise correlation between rows or columns of two DataFrame Return Series with number of non-NA/null observations over requested axi Compute pairwise covariance of columns, excluding NA/null values Return cumulative max over requested axis. Return cumulative min over requested axis. Return cumulative prod over requested axis. Return cumulative sum over requested axis. Generate various summary statistics, excluding NaN values. 1st discrete difference of object Evaluate an expression in the context of the calling DataFrame instance. Return unbiased kurtosis over requested axis using Fishers definition of ku Return the mean absolute deviation of the values for the requested axis This method returns the maximum of the values in the object. Return the mean of the values for the requested axis Return the median of the values for the requested axis This method returns the minimum of the values in the object. Gets the mode(s) of each element along the axis selected. Percent change over given number of periods. Return the product of the values for the requested axis Return values at the given quantile over requested axis, a la numpy.percent Compute numerical data ranks (1 through n) along axis. Return unbiased standard error of the mean over requested axis. Return unbiased skew over requested axis Return the sum of the values for the requested axis Return unbiased standard deviation over requested axis. Return unbiased variance over requested axis. pandas.DataFrame.abs DataFrame.abs() Return an object with absolute value taken. Only applicable to objects that are all numeric Returns abs: type of caller 33.4. DataFrame 1213 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.all DataFrame.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether all elements are True over requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns all : Series or DataFrame (if level specified) pandas.DataFrame.any DataFrame.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether any element is True over requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns any : Series or DataFrame (if level specified) pandas.DataFrame.clip DataFrame.clip(lower=None, upper=None, out=None, axis=None) Trim values at input threshold(s) Parameters lower : float or array_like, default None upper : float or array_like, default None axis : int or string axis name, optional Align object with lower and upper along the given axis. Returns clipped : Series 1214 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> df 0 1 0 0.335232 -1.256177 1 -1.367855 0.746646 2 0.027753 -1.176076 3 0.230930 -0.679613 4 1.261967 0.570967 >>> df.clip(-1.0, 0.5) 0 1 0 0.335232 -1.000000 1 -1.000000 0.500000 2 0.027753 -1.000000 3 0.230930 -0.679613 4 0.500000 0.500000 >>> t 0 -0.3 1 -0.2 2 -0.1 3 0.0 4 0.1 dtype: float64 >>> df.clip(t, t + 1, axis=0) 0 1 0 0.335232 -0.300000 1 -0.200000 0.746646 2 0.027753 -0.100000 3 0.230930 0.000000 4 1.100000 0.570967 pandas.DataFrame.clip_lower DataFrame.clip_lower(threshold, axis=None) Return copy of the input with values below given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.DataFrame.clip_upper DataFrame.clip_upper(threshold, axis=None) Return copy of input with values above given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. 33.4. DataFrame 1215 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns clipped : same type as input See also: clip pandas.DataFrame.corr DataFrame.corr(method=’pearson’, min_periods=1) Compute pairwise correlation of columns, excluding NA/null values Parameters method : {‘pearson’, ‘kendall’, ‘spearman’} • pearson : standard correlation coefficient • kendall : Kendall Tau correlation coefficient • spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation Returns y : DataFrame pandas.DataFrame.corrwith DataFrame.corrwith(other, axis=0, drop=False) Compute pairwise correlation between rows or columns of two DataFrame objects. Parameters other : DataFrame axis : {0, 1} 0 to compute column-wise, 1 for row-wise drop : boolean, default False Drop missing indices from result, default returns union of all Returns correls : Series pandas.DataFrame.count DataFrame.count(axis=0, level=None, numeric_only=False) Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data as well (detects NaN and None) Parameters axis : {0, 1} 0 for row-wise, 1 for column-wise level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default False Include only float, int, boolean data Returns count : Series (or DataFrame if level specified) 1216 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.cov DataFrame.cov(min_periods=None) Compute pairwise covariance of columns, excluding NA/null values Parameters min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns y : DataFrame Notes y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator). pandas.DataFrame.cummax DataFrame.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative max over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns max : Series pandas.DataFrame.cummin DataFrame.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative min over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns min : Series pandas.DataFrame.cumprod DataFrame.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative prod over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns prod : Series 33.4. DataFrame 1217 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.cumsum DataFrame.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative sum over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns sum : Series pandas.DataFrame.describe DataFrame.describe(percentile_width=None, percentiles=None, include=None, exclude=None) Generate various summary statistics, excluding NaN values. Parameters percentile_width : float, deprecated The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75 percentiles : array-like, optional The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles. include, exclude : list-like, ‘all’, or None (default) Specify the form of the returned result. Either: • None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns. • A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=[’O’]) • If include is the string ‘all’, the output column-set will match the input one. Returns summary: NDFrame of summary statistics See also: DataFrame.select_dtypes Notes The output DataFrame index depends on the requested dtypes: For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles. For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items. For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments. 1218 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count. The include, exclude arguments are ignored for Series. pandas.DataFrame.diff DataFrame.diff(periods=1, axis=0) 1st discrete difference of object Parameters periods : int, default 1 Periods to shift for forming difference axis : {0 or ‘index’, 1 or ‘columns’}, default 0 Returns diffed : DataFrame pandas.DataFrame.eval DataFrame.eval(expr, **kwargs) Evaluate an expression in the context of the calling DataFrame instance. Parameters expr : string The expression string to evaluate. kwargs : dict See the documentation for eval() for complete details on the keyword arguments accepted by query(). Returns ret : ndarray, scalar, or pandas object See also: pandas.DataFrame.query, pandas.eval Notes For more details see the API documentation for eval(). For detailed examples see enhancing performance with eval. Examples >>> >>> >>> >>> >>> from numpy.random import randn from pandas import DataFrame df = DataFrame(randn(10, 2), columns=list('ab')) df.eval('a + b') df.eval('c = a + b') pandas.DataFrame.kurt DataFrame.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 33.4. DataFrame 1219 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns kurt : Series or DataFrame (if level specified) pandas.DataFrame.mad DataFrame.mad(axis=None, skipna=None, level=None) Return the mean absolute deviation of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mad : Series or DataFrame (if level specified) pandas.DataFrame.max DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns max : Series or DataFrame (if level specified) 1220 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.mean DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the mean of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mean : Series or DataFrame (if level specified) pandas.DataFrame.median DataFrame.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the median of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns median : Series or DataFrame (if level specified) pandas.DataFrame.min DataFrame.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series 33.4. DataFrame 1221 pandas: powerful Python data analysis toolkit, Release 0.16.1 numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns min : Series or DataFrame (if level specified) pandas.DataFrame.mode DataFrame.mode(axis=0, numeric_only=False) Gets the mode(s) of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan. Note that there could be multiple values returned for the selected axis (when more than one item share the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing values with the mode in a dataframe df, you can just do this: df.fillna(df.mode().iloc[0]) Parameters axis : {0, 1, ‘index’, ‘columns’} (default 0) • 0/’index’ : get mode of each column • 1/’columns’ : get mode of each row numeric_only : boolean, default False if True, only apply to numeric columns Returns modes : DataFrame (sorted) Examples >>> df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3]}) >>> df.mode() A 0 1 1 2 pandas.DataFrame.pct_change DataFrame.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs) Percent change over given number of periods. Parameters periods : int, default 1 Periods to shift for forming percent change fill_method : str, default ‘pad’ How to handle NAs before computing percent changes limit : int, default None The number of consecutive NAs to fill before stopping freq : DateOffset, timedelta, or offset alias string, optional Increment to use from time series API (e.g. ‘M’ or BDay()) Returns chg : NDFrame 1222 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument. pandas.DataFrame.prod DataFrame.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : Series or DataFrame (if level specified) pandas.DataFrame.quantile DataFrame.quantile(q=0.5, axis=0, numeric_only=True) Return values at the given quantile over requested axis, a la numpy.percentile. Parameters q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute axis : {0, 1} 0 for row-wise, 1 for column-wise Returns quantiles : Series or DataFrame If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. Examples >>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 33.4. DataFrame 1223 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.rank DataFrame.rank(axis=0, numeric_only=None, method=’average’, na_option=’keep’, ascending=True, pct=False) Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values Parameters axis : {0, 1}, default 0 Ranks over columns (0) or rows (1) numeric_only : boolean, default None Include only float, int, boolean data method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’} • average: average rank of group • min: lowest rank in group • max: highest rank in group • first: ranks assigned in order they appear in the array • dense: like ‘min’, but rank always increases by 1 between groups na_option : {‘keep’, ‘top’, ‘bottom’} • keep: leave NA values where they are • top: smallest rank if ascending • bottom: smallest rank if descending ascending : boolean, default True False for ranks by high (1) to low (N) pct : boolean, default False Computes percentage rank of data Returns ranks : DataFrame pandas.DataFrame.sem DataFrame.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data 1224 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns sem : Series or DataFrame (if level specified) pandas.DataFrame.skew DataFrame.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased skew over requested axis Normalized by N-1 Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns skew : Series or DataFrame (if level specified) pandas.DataFrame.sum DataFrame.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the sum of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sum : Series or DataFrame (if level specified) pandas.DataFrame.std DataFrame.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard deviation over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None 33.4. DataFrame 1225 pandas: powerful Python data analysis toolkit, Release 0.16.1 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns std : Series or DataFrame (if level specified) pandas.DataFrame.var DataFrame.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns var : Series or DataFrame (if level specified) 33.4.8 Reindexing / Selection / Label manipulation DataFrame.add_prefix(prefix) DataFrame.add_suffix(suffix) DataFrame.align(other[, join, axis, level, ...]) DataFrame.drop(labels[, axis, level, ...]) DataFrame.drop_duplicates(*args, **kwargs) DataFrame.duplicated(*args, **kwargs) DataFrame.equals(other) DataFrame.filter([items, like, regex, axis]) DataFrame.first(offset) DataFrame.head([n]) DataFrame.idxmax([axis, skipna]) DataFrame.idxmin([axis, skipna]) DataFrame.last(offset) DataFrame.reindex([index, columns]) DataFrame.reindex_axis(labels[, axis, ...]) DataFrame.reindex_like(other[, method, ...]) DataFrame.rename([index, columns]) DataFrame.reset_index([level, drop, ...]) DataFrame.sample([n, frac, replace, ...]) DataFrame.select(crit[, axis]) 1226 Concatenate prefix string with panel items names. Concatenate suffix string with panel items names Align two object on their axes with the Return new object with labels in requested axis removed Return DataFrame with duplicate rows removed, optionally only Return boolean Series denoting duplicate rows, optionally only Determines if two NDFrame objects contain the same elements. Restrict the info axis to set of items or wildcard Convenience method for subsetting initial periods of time series data Returns first n rows Return index of first occurrence of maximum over requested axis. Return index of first occurrence of minimum over requested axis. Convenience method for subsetting final periods of time series data Conform DataFrame to new index with optional filling logic, placing NA/N Conform input object to new index with optional filling logic, placing NA/N return an object with matching indicies to myself Alter axes input function or functions. For DataFrame with multi-level index, return new DataFrame with labeling Returns a random sample of items from an axis of object. Return data corresponding to axis labels matching criteria Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 DataFrame.set_index(keys[, drop, append, ...]) DataFrame.tail([n]) DataFrame.take(indices[, axis, convert, is_copy]) DataFrame.truncate([before, after, axis, copy]) Table 33.57 – continued from previous pag Set the DataFrame index (row labels) using one or more existing columns. Returns last n rows Analogous to ndarray.take Truncates a sorted NDFrame before and/or after some particular dates. pandas.DataFrame.add_prefix DataFrame.add_prefix(prefix) Concatenate prefix string with panel items names. Parameters prefix : string Returns with_prefix : type of caller pandas.DataFrame.add_suffix DataFrame.add_suffix(suffix) Concatenate suffix string with panel items names Parameters suffix : string Returns with_suffix : type of caller pandas.DataFrame.align DataFrame.align(other, join=’outer’, axis=None, level=None, copy=True, method=None, limit=None, fill_axis=0) Align two object on their axes with the specified join method for each axis Index fill_value=None, Parameters other : DataFrame or Series join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None) level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level copy : boolean, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value method : str, default None limit : int, default None fill_axis : {0, 1}, default 0 Filling axis, method and limit Returns (left, right) : (type of input, type of other) Aligned objects 33.4. DataFrame 1227 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.drop DataFrame.drop(labels, axis=0, level=None, inplace=False, errors=’raise’) Return new object with labels in requested axis removed Parameters labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : type of caller pandas.DataFrame.drop_duplicates DataFrame.drop_duplicates(*args, **kwargs) Return DataFrame with duplicate rows removed, optionally only considering certain columns Parameters subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns take_last : boolean, default False Take the last observed row in a row. Defaults to the first row inplace : boolean, default False Whether to drop duplicates in place or to return a copy cols : kwargs only argument of subset [deprecated] Returns deduplicated : DataFrame pandas.DataFrame.duplicated DataFrame.duplicated(*args, **kwargs) Return boolean Series denoting duplicate rows, optionally only considering certain columns Parameters subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns take_last : boolean, default False For a set of distinct duplicate rows, flag all but the last row as duplicated. Default is for all but the first row to be flagged cols : kwargs only argument of subset [deprecated] Returns duplicated : Series 1228 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.equals DataFrame.equals(other) Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal. pandas.DataFrame.filter DataFrame.filter(items=None, like=None, regex=None, axis=None) Restrict the info axis to set of items or wildcard Parameters items : list-like List of info axis to restrict to (must not all be present) like : string Keep info axis where “arg in col == True” regex : string (regular expression) Keep info axis with re.search(regex, col) == True axis : int or None The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with []. For example, df = DataFrame({’a’: [1, 2, 3, 4]]}); df[’a’]. So, the DataFrame columns are the info axis. Notes Arguments are mutually exclusive, but this is not checked for pandas.DataFrame.first DataFrame.first(offset) Convenience method for subsetting initial periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘10D’) -> First 10 days pandas.DataFrame.head DataFrame.head(n=5) Returns first n rows 33.4. DataFrame 1229 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.idxmax DataFrame.idxmax(axis=0, skipna=True) Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters axis : {0, 1} 0 for row-wise, 1 for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be first index. Returns idxmax : Series See also: Series.idxmax Notes This method is the DataFrame version of ndarray.argmax. pandas.DataFrame.idxmin DataFrame.idxmin(axis=0, skipna=True) Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters axis : {0, 1} 0 for row-wise, 1 for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns idxmin : Series See also: Series.idxmin Notes This method is the DataFrame version of ndarray.argmin. pandas.DataFrame.last DataFrame.last(offset) Convenience method for subsetting final periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘5M’) -> Last 5 months 1230 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.reindex DataFrame.reindex(index=None, columns=None, **kwargs) Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters index, columns : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : DataFrame Examples >>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C']) pandas.DataFrame.reindex_axis DataFrame.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan) Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters labels : array-like New labels / index to conform to. Preferably an Index object to avoid duplicating data axis : {0, 1, ‘index’, ‘columns’} method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional 33.4. DataFrame 1231 pandas: powerful Python data analysis toolkit, Release 0.16.1 Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : DataFrame See also: reindex, reindex_like Examples >>> df.reindex_axis(['A', 'B', 'C'], axis=1) pandas.DataFrame.reindex_like DataFrame.reindex_like(other, method=None, copy=True, limit=None) return an object with matching indicies to myself Parameters other : Object method : string or None copy : boolean, default True limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : same as input Notes Like calling s.reindex(index=other.index, columns=other.columns, method=...) pandas.DataFrame.rename DataFrame.rename(index=None, columns=None, **kwargs) Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters index, columns : dict-like or function, optional 1232 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Transformation to apply to that axis values copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new DataFrame. If True then value of copy is ignored. Returns renamed : DataFrame (new object) pandas.DataFrame.reset_index DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=’‘) For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used. Parameters level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default drop : boolean, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : boolean, default False Modify the DataFrame in place (do not create a new object) col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default ‘’ If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns resetted : DataFrame pandas.DataFrame.sample DataFrame.sample(n=None, frac=None, replace=False, axis=None) Returns a random sample of items from an axis of object. weights=None, random_state=None, Parameters n : int, optional Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None. frac : float, optional Fraction of axis items to return. Cannot be used with n. replace : boolean, optional Sample with or without replacement. Default = False. weights : str or ndarray-like, optional 33.4. DataFrame 1233 pandas: powerful Python data analysis toolkit, Release 0.16.1 Default ‘None’ results in equal probability weighting. If called on a DataFrame, will accept the name of a column when axis = 0. Weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed. random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : int or string, optional Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels). Returns Same type as caller. pandas.DataFrame.select DataFrame.select(crit, axis=0) Return data corresponding to axis labels matching criteria Parameters crit : function To be called on each index (label). Should return True or False axis : int Returns selection : type of caller pandas.DataFrame.set_index DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object. Parameters keys : column label or list of column labels / arrays drop : boolean, default True Delete columns to be used as the new index append : boolean, default False Whether to append columns to existing index inplace : boolean, default False Modify the DataFrame in place (do not create a new object) verify_integrity : boolean, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method Returns dataframe : DataFrame Examples >>> indexed_df = df.set_index(['A', 'B']) >>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]]) >>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]]) 1234 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.tail DataFrame.tail(n=5) Returns last n rows pandas.DataFrame.take DataFrame.take(indices, axis=0, convert=True, is_copy=True) Analogous to ndarray.take Parameters indices : list / array of ints axis : int, default 0 convert : translate neg to pos indices (default) is_copy : mark the returned frame as a copy Returns taken : type of caller pandas.DataFrame.truncate DataFrame.truncate(before=None, after=None, axis=None, copy=True) Truncates a sorted NDFrame before and/or after some particular dates. Parameters before : date Truncate before date after : date Truncate after date axis : the truncation axis, defaults to the stat axis copy : boolean, default is True, return a copy of the truncated section Returns truncated : type of caller 33.4.9 Missing data handling DataFrame.dropna([axis, how, thresh, ...]) DataFrame.fillna([value, method, axis, ...]) DataFrame.replace([to_replace, value, ...]) Return object with labels on given axis omitted where alternately any Fill NA/NaN values using the specified method Replace values given in ‘to_replace’ with ‘value’. pandas.DataFrame.dropna DataFrame.dropna(axis=0, how=’any’, thresh=None, subset=None, inplace=False) Return object with labels on given axis omitted where alternately any or all of the data are missing Parameters axis : {0, 1}, or tuple/list thereof Pass tuple or list to drop on multiple axes how : {‘any’, ‘all’} • any : if any NA values are present, drop that label 33.4. DataFrame 1235 pandas: powerful Python data analysis toolkit, Release 0.16.1 • all : if all values are NA, drop that label thresh : int, default None int value : require that many non-NA values subset : array-like Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include inplace : boolean, defalt False If True, do operation inplace and return None. Returns dropped : DataFrame pandas.DataFrame.fillna DataFrame.fillna(value=None, method=None, cast=None, **kwargs) Fill NA/NaN values using the specified method axis=None, inplace=False, limit=None, down- Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. axis : {0, 1, ‘index’, ‘columns’} inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns filled : DataFrame See also: reindex, asfreq 1236 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.replace DataFrame.replace(to_replace=None, value=None, method=’pad’, axis=None) Replace values given in ‘to_replace’ with ‘value’. inplace=False, limit=None, regex=False, Parameters to_replace : str, regex, list, dict, Series, numeric, or None • str or regex: – str: string exactly matching to_replace will be replaced with value – regex: regexs matching to_replace will be replaced with value • list of str, regex, or numeric: – First, if to_replace and value are both lists, they must be the same length. – Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use. – str and regex rules apply as above. • dict: – Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions. – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in. • None: – This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : boolean, default False If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True. limit : int, default None Maximum size gap to forward or backward fill regex : bool or same types as to_replace, default False Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions. method : string, optional, {‘pad’, ‘ffill’, ‘bfill’} 33.4. DataFrame 1237 pandas: powerful Python data analysis toolkit, Release 0.16.1 The method to use when for replacement, when to_replace is a list. Returns filled : NDFrame Raises AssertionError • If regex is not a bool and to_replace is not None. TypeError • If to_replace is a dict and value is not a list, dict, ndarray, or Series • If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. ValueError • If to_replace and value are list s or ndarray s, but they are not the same length. See also: NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna Notes •Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same. •Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this. •This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works. 33.4.10 Reshaping, sorting, transposing DataFrame.pivot([index, columns, values]) DataFrame.reorder_levels(order[, axis]) DataFrame.sort([columns, axis, ascending, ...]) DataFrame.sort_index([axis, by, ascending, ...]) DataFrame.sortlevel([level, axis, ...]) DataFrame.swaplevel(i, j[, axis]) DataFrame.stack([level, dropna]) DataFrame.unstack([level]) DataFrame.T DataFrame.to_panel() DataFrame.transpose() Reshape data (produce a “pivot” table) based on column values. Rearrange index levels using input order. Sort DataFrame either by labels (along either axis) or by the values in Sort DataFrame either by labels (along either axis) or by the values in Sort multilevel index by chosen axis and primary level. Swap levels i and j in a MultiIndex on a particular axis Pivot a level of the (possibly hierarchical) column labels, returning a DataFr Pivot a level of the (necessarily hierarchical) index labels, returning a DataF Transpose index and columns Transform long (stacked) format (DataFrame) into wide (3D, Panel) format. Transpose index and columns pandas.DataFrame.pivot DataFrame.pivot(index=None, columns=None, values=None) Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns to form axes and return either DataFrame or Panel, depending on whether you request a single value column (DataFrame) or all columns (Panel) Parameters index : string or object 1238 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Column name to use to make new frame’s index columns : string or object Column name to use to make new frame’s columns values : string or object, optional Column name to use for populating new frame’s values Returns pivoted : DataFrame If no values column specified, will have hierarchically indexed columns Notes For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods Examples >>> df foo 0 one 1 one 2 one 3 two 4 two 5 two bar A B C A B C baz 1. 2. 3. 4. 5. 6. >>> df.pivot('foo', 'bar', 'baz') A B C one 1 2 3 two 4 5 6 >>> df.pivot('foo', 'bar')['baz'] A B C one 1 2 3 two 4 5 6 pandas.DataFrame.reorder_levels DataFrame.reorder_levels(order, axis=0) Rearrange index levels using input order. May not drop or duplicate levels Parameters order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns type of caller (new object) 33.4. DataFrame 1239 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.sort DataFrame.sort(columns=None, axis=0, ascending=True, inplace=False, na_position=’last’) Sort DataFrame either by labels (along either axis) or by the values in column(s) kind=’quicksort’, Parameters columns : object Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index. ascending : boolean or list, default True Sort ascending vs. descending. Specify list for multiple sort orders axis : {0, 1} Sort index/rows versus columns inplace : boolean, default False Sort the DataFrame without creating a new instance kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional This option is only applied when sorting on a single column or label. na_position : {‘first’, ‘last’} (optional, default=’last’) ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end Returns sorted : DataFrame Examples >>> result = df.sort(['A', 'B'], ascending=[1, 0]) pandas.DataFrame.sort_index DataFrame.sort_index(axis=0, by=None, ascending=True, inplace=False, na_position=’last’) Sort DataFrame either by labels (along either axis) or by the values in a column kind=’quicksort’, Parameters axis : {0, 1} Sort index/rows versus columns by : object Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index. ascending : boolean or list, default True Sort ascending vs. descending. Specify list for multiple sort orders inplace : boolean, default False Sort the DataFrame without creating a new instance na_position : {‘first’, ‘last’} (optional, default=’last’) ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end 1240 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional This option is only applied when sorting on a single column or label. Returns sorted : DataFrame Examples >>> result = df.sort_index(by=['A', 'B'], ascending=[True, False]) pandas.DataFrame.sortlevel DataFrame.sortlevel(level=0, axis=0, ascending=True, inplace=False, sort_remaining=True) Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order) Parameters level : int axis : {0, 1} ascending : boolean, default True inplace : boolean, default False Sort the DataFrame without creating a new instance sort_remaining : boolean, default True Sort by the other levels too. Returns sorted : DataFrame pandas.DataFrame.swaplevel DataFrame.swaplevel(i, j, axis=0) Swap levels i and j in a MultiIndex on a particular axis Parameters i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns swapped : type of caller (new object) pandas.DataFrame.stack DataFrame.stack(level=-1, dropna=True) Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels. The level involved will automatically get sorted. Parameters level : int, string, or list of these, default last level Level(s) to stack, can pass level name dropna : boolean, default True Whether to drop rows in the resulting Frame/Series with no valid values Returns stacked : DataFrame or Series 33.4. DataFrame 1241 pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> s one two a 1. 3. b 2. 4. >>> s.stack() one a 1 b 2 two a 3 b 4 pandas.DataFrame.unstack DataFrame.unstack(level=-1) Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters level : int, string, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name Returns unstacked : DataFrame or Series See also: DataFrame.pivot Pivot a table based on column values. DataFrame.stack Pivot a level of the column labels (inverse operation from unstack). Examples >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1 b 2 two a 3 b 4 dtype: float64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 1242 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> df = s.unstack(level=0) >>> df.unstack() one a 1. b 3. two a 2. b 4. pandas.DataFrame.T DataFrame.T Transpose index and columns pandas.DataFrame.to_panel DataFrame.to_panel() Transform long (stacked) format (DataFrame) into wide (3D, Panel) format. Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later Returns panel : Panel pandas.DataFrame.transpose DataFrame.transpose() Transpose index and columns 33.4.11 Combining / joining / merging DataFrame.append(other[, ignore_index, ...]) DataFrame.assign(**kwargs) DataFrame.join(other[, on, how, lsuffix, ...]) DataFrame.merge(right[, how, on, left_on, ...]) DataFrame.update(other[, join, overwrite, ...]) Append rows of other to the end of this frame, returning a new object. Assign new columns to a DataFrame, returning a new object (a copy) with all th Join columns with other DataFrame either on index or on a key column. Merge DataFrame objects by performing a database-style join operation by colu Modify DataFrame in place using non-NA values from passed DataFrame. pandas.DataFrame.append DataFrame.append(other, ignore_index=False, verify_integrity=False) Append rows of other to the end of this frame, returning a new object. Columns not in this frame are added as new columns. Parameters other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. Returns appended : DataFrame 33.4. DataFrame 1243 pandas: powerful Python data analysis toolkit, Release 0.16.1 See also: pandas.concat General function to concatenate DataFrame, Series or Panel objects Notes If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged. Examples >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With ignore_index set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 pandas.DataFrame.assign DataFrame.assign(**kwargs) Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones. New in version 0.16.0. Parameters kwargs : keyword, value pairs keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns df : DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes Since kwargs is a dictionary, the order of your arguments may not be preserved. The make things predicatable, the columns are inserted in alphabetical order, at the end of your DataFrame. Assigning multiple columns within 1244 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 the same assign is possible, but you cannot reference other columns created within the same assign call. Examples >>> df = DataFrame({'A': range(1, 11), 'B': np.random.randn(10)}) Where the value is a callable, evaluated on df : >>> df.assign(ln_A = lambda x: np.log(x.A)) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 8 9 0.549296 2.197225 9 10 -0.758542 2.302585 Where the value already exists and is inserted: >>> newcol = np.log(df['A']) >>> df.assign(ln_A=newcol) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 8 9 0.549296 2.197225 9 10 -0.758542 2.302585 pandas.DataFrame.join DataFrame.join(other, on=None, how=’left’, lsuffix=’‘, rsuffix=’‘, sort=False) Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list. Parameters other : DataFrame, Series with name field set, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame on : column name, tuple/list of column names, or array-like Column(s) to use for joining, otherwise join on index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation how : {‘left’, ‘right’, ‘outer’, ‘inner’} 33.4. DataFrame 1245 pandas: powerful Python data analysis toolkit, Release 0.16.1 How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise • left: use calling frame’s index • right: use input frame’s index • outer: form union of indexes • inner: use intersection of indexes lsuffix : string Suffix to use from left frame’s overlapping columns rsuffix : string Suffix to use from right frame’s overlapping columns sort : boolean, default False Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame Returns joined : DataFrame Notes on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects pandas.DataFrame.merge DataFrame.merge(right, how=’inner’, on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=(‘_x’, ‘_y’), copy=True) Merge DataFrame objects by performing a database-style join operation by columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters right : DataFrame how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’ • left: use only keys from left frame (SQL: left outer join) • right: use only keys from right frame (SQL: right outer join) • outer: use union of keys from both frames (SQL: full outer join) • inner: use intersection of keys from both frames (SQL: inner join) on : label or list Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default. left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs 1246 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 left_index : boolean, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels right_index : boolean, default False Use the index from the right DataFrame as the join key. Same caveats as left_index sort : boolean, default False Sort the join keys lexicographically in the result DataFrame suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively copy : boolean, default True If False, do not copy data unnecessarily Returns merged : DataFrame The output type will the be same as ‘left’, if it is a subclass of DataFrame. Examples >>> A lkey 0 foo 1 bar 2 baz 3 foo value 1 2 3 4 >>> B rkey 0 foo 1 bar 2 qux 3 bar value 5 6 7 8 >>> merge(A, B, left_on='lkey', right_on='rkey', how='outer') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 4 foo 5 2 bar 2 bar 6 3 bar 2 bar 8 4 baz 3 NaN NaN 5 NaN NaN qux 7 pandas.DataFrame.update DataFrame.update(other, join=’left’, overwrite=True, filter_func=None, raise_conflict=False) Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices Parameters other : DataFrame, or object coercible into a DataFrame join : {‘left’}, default ‘left’ overwrite : boolean, default True If True then overwrite values for common keys in the calling frame filter_func : callable(1d-array) -> 1d-array, default None Can choose to replace values other than NA. Return True for values that should be updated 33.4. DataFrame 1247 pandas: powerful Python data analysis toolkit, Release 0.16.1 raise_conflict : boolean If True, will raise an error if the DataFrame and other both contain data in the same place. 33.4.12 Time series-related DataFrame.asfreq(freq[, method, how, normalize]) DataFrame.shift([periods, freq, axis]) DataFrame.first_valid_index() DataFrame.last_valid_index() DataFrame.resample(rule[, how, axis, ...]) DataFrame.to_period([freq, axis, copy]) DataFrame.to_timestamp([freq, how, axis, copy]) DataFrame.tz_convert(tz[, axis, level, copy]) DataFrame.tz_localize(*args, **kwargs) Convert all TimeSeries inside to specified frequency using DateOffset obje Shift index by desired number of periods with an optional time freq Return label for first non-NA/null value Return label for last non-NA/null value Convenience method for frequency conversion and resampling of regular t Convert DataFrame from DatetimeIndex to PeriodIndex with desired Cast to DatetimeIndex of timestamps, at beginning of period Convert tz-aware axis to target time zone. Localize tz-naive TimeSeries to target time zone pandas.DataFrame.asfreq DataFrame.asfreq(freq, method=None, how=None, normalize=False) Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values. Parameters freq : DateOffset object, or string method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None} Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method how : {‘start’, ‘end’}, default end For PeriodIndex only, see PeriodIndex.asfreq normalize : bool, default False Whether to reset output index to midnight Returns converted : type of caller pandas.DataFrame.shift DataFrame.shift(periods=1, freq=None, axis=0, **kwargs) Shift index by desired number of periods with an optional time freq Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, optional Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes. axis : {0, 1, ‘index’, ‘columns’} Returns shifted : DataFrame 1248 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. pandas.DataFrame.first_valid_index DataFrame.first_valid_index() Return label for first non-NA/null value pandas.DataFrame.last_valid_index DataFrame.last_valid_index() Return label for last non-NA/null value pandas.DataFrame.resample DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=’start’, kind=None, loffset=None, limit=None, base=0) Convenience method for frequency conversion and resampling of regular time-series data. Parameters rule : string the offset string or object representing target conversion how : string method for down- or re-sampling, default to ‘mean’ for downsampling axis : int, optional, default 0 fill_method : string, default None fill_method for upsampling closed : {‘right’, ‘left’} Which side of bin interval is closed label : {‘right’, ‘left’} Which bin edge label to label bucket with convention : {‘start’, ‘end’, ‘s’, ‘e’} kind : “period”/”timestamp” loffset : timedelta Adjust the resampled time labels limit : int, default None Maximum size gap to when reindexing with fill_method base : int, default 0 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0 33.4. DataFrame 1249 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.to_period DataFrame.to_period(freq=None, axis=0, copy=True) Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed) Parameters freq : string, default axis : {0, 1}, default 0 The axis to convert (the index by default) copy : boolean, default True If False then underlying input data is not copied Returns ts : TimeSeries with PeriodIndex pandas.DataFrame.to_timestamp DataFrame.to_timestamp(freq=None, how=’start’, axis=0, copy=True) Cast to DatetimeIndex of timestamps, at beginning of period Parameters freq : string, default frequency of PeriodIndex Desired frequency how : {‘s’, ‘e’, ‘start’, ‘end’} Convention for converting period to timestamp; start of period vs. end axis : {0, 1} default 0 The axis to convert (the index by default) copy : boolean, default True If false then underlying input data is not copied Returns df : DataFrame with DatetimeIndex pandas.DataFrame.tz_convert DataFrame.tz_convert(tz, axis=0, level=None, copy=True) Convert tz-aware axis to target time zone. Parameters tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Raises TypeError If the axis is tz-naive. 1250 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.tz_localize DataFrame.tz_localize(*args, **kwargs) Localize tz-naive TimeSeries to target time zone Parameters tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Raises TypeError If the TimeSeries is tz-aware and tz is not None. 33.4.13 Plotting DataFrame.boxplot([column, by, ax, ...]) DataFrame.hist(data[, column, by, grid, ...]) DataFrame.plot(data[, x, y, kind, ax, ...]) Make a box plot from DataFrame column optionally grouped by some columns or Draw histogram of the DataFrame’s series using matplotlib / pylab. Make plots of DataFrame using matplotlib / pylab. pandas.DataFrame.boxplot DataFrame.boxplot(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds) Make a box plot from DataFrame column optionally grouped by some columns or other inputs Parameters data : the pandas object holding the data column : column name or list of names, or vector Can be any valid input to groupby by : string or sequence Column in the DataFrame to group by ax : Matplotlib axes object, optional fontsize : int or string rot : label rotation angle 33.4. DataFrame 1251 pandas: powerful Python data analysis toolkit, Release 0.16.1 figsize : A tuple (width, height) in inches grid : Setting this to True will show the grid layout : tuple (optional) (rows, columns) for the layout of the plot return_type : {‘axes’, ‘dict’, ‘both’}, default ‘dict’ The kind of object to return. ‘dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot; ‘axes’ returns the matplotlib axes the boxplot is drawn on; ‘both’ returns a namedtuple with the axes and dict. When grouping with by, a dict mapping columns to return_type is returned. kwds : other plotting keyword arguments to be passed to matplotlib boxplot function Returns lines : dict ax : matplotlib Axes (ax, lines): namedtuple Notes Use return_type=’dict’ when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned. pandas.DataFrame.hist DataFrame.hist(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds) Draw histogram of the DataFrame’s series using matplotlib / pylab. Parameters data : DataFrame column : string or sequence If passed, will be used to limit data to a subset of columns by : object, optional If passed, then used to form histograms for separate groups grid : boolean, default True Whether to show axis grid lines xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None 1252 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 rotation of y axis labels ax : matplotlib axes object, default None sharex : boolean, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure! sharey : boolean, default False In case subplots=True, share y axis and set some y axis labels to invisible figsize : tuple The size of the figure to create in inches by default layout: (optional) a tuple (rows, columns) for the layout of the histograms bins: integer, default 10 Number of histogram bins to be used kwds : other plotting keyword arguments To be passed to hist function pandas.DataFrame.plot DataFrame.plot(data, x=None, y=None, kind=’line’, ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds) Make plots of DataFrame using matplotlib / pylab. Parameters data : DataFrame x : label or position, default None y : label or position, default None Allows plotting of one column versus another kind : str • ‘line’ : line plot (default) • ‘bar’ : vertical bar plot • ‘barh’ : horizontal bar plot • ‘hist’ : histogram • ‘box’ : boxplot • ‘kde’ : Kernel Density Estimation plot • ‘density’ : same as ‘kde’ • ‘area’ : area plot • ‘pie’ : pie plot • ‘scatter’ : scatter plot 33.4. DataFrame 1253 pandas: powerful Python data analysis toolkit, Release 0.16.1 • ‘hexbin’ : hexbin plot ax : matplotlib axes object, default None subplots : boolean, default False Make separate subplots for each column sharex : boolean, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure! sharey : boolean, default False In case subplots=True, share y axis and set some y axis labels to invisible layout : tuple (optional) (rows, columns) for the layout of subplots figsize : a tuple (width, height) in inches use_index : boolean, default True Use index as ticks for x axis title : string Title to use for the plot grid : boolean, default None (matlab style default) Axis grid lines legend : False/True/’reverse’ Place legend on axis subplots style : list or dict matplotlib line style per column logx : boolean, default False Use log scaling on x axis logy : boolean, default False Use log scaling on y axis loglog : boolean, default False Use log scaling on both x and y axes xticks : sequence Values to use for the xticks yticks : sequence Values to use for the yticks xlim : 2-tuple/list ylim : 2-tuple/list rot : int, default None Rotation for ticks (xticks for vertical, yticks for horizontal plots) 1254 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 fontsize : int, default None Font size for xticks and yticks colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : boolean, optional If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots) position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) layout : tuple (optional) (rows, columns) for the layout of the plot table : boolean, Series or DataFrame, default False If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See Plotting with Error Bars for detail. xerr : same types as yerr. stacked : boolean, default False in line and bar plots, and True in area plot. If True, create stacked plot. sort_columns : boolean, default False Sort column names to determine plot ordering secondary_y : boolean or sequence, default False Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis mark_right : boolean, default True When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend kwds : keywords Options to pass to matplotlib plotting method Returns axes : matplotlib.AxesSubplot or np.array of them Notes •See matplotlib documentation online for more on this subject •If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) 33.4. DataFrame 1255 pandas: powerful Python data analysis toolkit, Release 0.16.1 •If kind = ‘scatter’ and the argument c is the name of a dataframe column, the values of that column are used to color each point. •If kind = ‘hexbin’, you can control the size of the bins with the gridsize argument. By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std). 33.4.14 Serialization / IO / Conversion DataFrame.from_csv(path[, header, sep, ...]) DataFrame.from_dict(data[, orient, dtype]) DataFrame.from_items(items[, columns, orient]) DataFrame.from_records(data[, index, ...]) DataFrame.info([verbose, buf, max_cols, ...]) DataFrame.to_pickle(path) DataFrame.to_csv([path_or_buf, sep, na_rep, ...]) DataFrame.to_hdf(path_or_buf, key, **kwargs) DataFrame.to_sql(name, con[, flavor, ...]) DataFrame.to_dict(*args, **kwargs) DataFrame.to_excel(excel_writer[, ...]) DataFrame.to_json([path_or_buf, orient, ...]) DataFrame.to_html([buf, columns, col_space, ...]) DataFrame.to_latex([buf, columns, ...]) DataFrame.to_stata(fname[, convert_dates, ...]) DataFrame.to_msgpack([path_or_buf]) DataFrame.to_gbq(destination_table[, ...]) DataFrame.to_records([index, convert_datetime64]) DataFrame.to_sparse([fill_value, kind]) DataFrame.to_dense() DataFrame.to_string([buf, columns, ...]) DataFrame.to_clipboard([excel, sep]) Read delimited file into DataFrame Construct DataFrame from dict of array-like or dicts Convert (key, value) pairs to DataFrame. Convert structured or record ndarray to DataFrame Concise summary of a DataFrame. Pickle (serialize) object to input file path Write DataFrame to a comma-separated values (csv) file activate the HDFStore Write records stored in a DataFrame to a SQL database. Convert DataFrame to dictionary. Write DataFrame to a excel sheet Convert the object to a JSON string. Render a DataFrame as an HTML table. Render a DataFrame to a tabular environment table. A class for writing Stata binary dta files from array-like objects msgpack (serialize) object to input file path Write a DataFrame to a Google BigQuery table. Convert DataFrame to record array. Convert to SparseDataFrame Return dense representation of NDFrame (as opposed to sparse) Render a DataFrame to a console-friendly tabular output. Attempt to write text representation of object to the system clipboard Th pandas.DataFrame.from_csv classmethod DataFrame.from_csv(path, header=0, sep=’, ‘, index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False) Read delimited file into DataFrame Parameters path : string file path or file handle / StringIO header : int, default 0 Row to use at header (skip prior rows) sep : string, default ‘,’ Field delimiter index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table parse_dates : boolean, default True 1256 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parse dates. Different default from read_table tupleize_cols : boolean, default False write multi_index columns as a list of tuples (if True) or new (expanded format) if False) infer_datetime_format: boolean, default False If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. Returns y : DataFrame Notes Preferable to use read_table for most general purposes but from_csv makes for an easy roundtrip to and from file, especially with a DataFrame of time series data pandas.DataFrame.from_dict classmethod DataFrame.from_dict(data, orient=’columns’, dtype=None) Construct DataFrame from dict of array-like or dicts Parameters data : dict {field : array-like} or {field : dict} orient : {‘columns’, ‘index’}, default ‘columns’ The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’. Returns DataFrame pandas.DataFrame.from_items classmethod DataFrame.from_items(items, columns=None, orient=’columns’) Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series. Parameters items : sequence of (key, value) pairs Values should be arrays or Series. columns : sequence of column labels, optional Must be passed if orient=’index’. orient : {‘columns’, ‘index’}, default ‘columns’ The “orientation” of the data. If the keys of the input correspond to column labels, pass ‘columns’ (default). Otherwise if the keys correspond to the index, pass ‘index’. Returns frame : DataFrame 33.4. DataFrame 1257 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.from_records classmethod DataFrame.from_records(data, index=None, exclude=None, erce_float=False, nrows=None) Convert structured or record ndarray to DataFrame columns=None, co- Parameters data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets Returns df : DataFrame pandas.DataFrame.info DataFrame.info(verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None) Concise summary of a DataFrame. Parameters verbose : {None, True, False}, optional Whether to print the full summary. None follows the display.max_info_columns setting. True or False overrides the display.max_info_columns setting. buf : writable buffer, defaults to sys.stdout max_cols : int, default None Determines whether full summary or short summary is printed. None follows the display.max_info_columns setting. memory_usage : boolean, default None Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the display.memory_usage setting. True or False overrides the display.memory_usage setting. Memory usage is shown in humanreadable units (base-2 representation). null_counts : boolean, default None Whether to show the non-null counts If None, then only show if the frame is smaller than max_info_rows and max_info_columns. If True, always show counts. If False, never show counts. 1258 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.to_pickle DataFrame.to_pickle(path) Pickle (serialize) object to input file path Parameters path : string File path pandas.DataFrame.to_csv DataFrame.to_csv(path_or_buf=None, sep=’, ‘, na_rep=’‘, float_format=None, columns=None, header=True, index=True, index_label=None, mode=’w’, encoding=None, quoting=None, quotechar=””, line_terminator=’\n’, chunksize=None, tupleize_cols=False, date_format=None, doublequote=True, escapechar=None, decimal=’.’, **kwds) Write DataFrame to a comma-separated values (csv) file Parameters path_or_buf : string or file handle, default None File path or object, if None is provided the result is returned as a string. sep : character, default ”,” Field delimiter for the output file. na_rep : string, default ‘’ Missing data representation float_format : string, default None Format string for floating point numbers columns : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, or False, default None Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R nanRep : None deprecated, use na_rep mode : str Python write mode, default ‘w’ encoding : string, optional 33.4. DataFrame 1259 pandas: powerful Python data analysis toolkit, Release 0.16.1 A string representing the encoding to use in the output file, defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3. line_terminator : string, default ‘\n’ The newline character or character sequence to use in the output file quoting : optional constant from csv module defaults to csv.QUOTE_MINIMAL quotechar : string (length 1), default ‘”’ character used to quote fields doublequote : boolean, default True Control quoting of quotechar inside a field escapechar : string (length 1), default None character used to escape sep and quotechar when appropriate chunksize : int or None rows to write at a time tupleize_cols : boolean, default False write multi_index columns as a list of tuples (if True) or new (expanded format) if False) date_format : string, default None Format string for datetime objects decimal: string, default ‘.’ Character recognized as decimal separator. E.g. use ‘,’ for European data pandas.DataFrame.to_hdf DataFrame.to_hdf(path_or_buf, key, **kwargs) activate the HDFStore Parameters path_or_buf : the path (string) or buffer to put the store key : string indentifier for the group in the store mode : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’ ’r’ Read-only; no data can be modified. ’w’ Write; a new file is created (an existing file with the same name would be deleted). ’a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created. ’r+’ It is similar to ’a’, but the file must already exist. format : ‘fixed(f)|table(t)’, default is ‘fixed’ fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable 1260 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False For Table formats, append the input data to the existing complevel : int, 1-9, default 0 If a complib is specified compression will be applied where possible complib : {‘zlib’, ‘bzip2’, ‘lzo’, ‘blosc’, None}, default None If complevel is > 0 apply compression to objects written in the store wherever possible fletcher32 : bool, default False If applying compression use the fletcher32 checksum pandas.DataFrame.to_sql DataFrame.to_sql(name, con, flavor=’sqlite’, schema=None, if_exists=’fail’, index=True, index_label=None, chunksize=None, dtype=None) Write records stored in a DataFrame to a SQL database. Parameters name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : {‘sqlite’, ‘mysql’}, default ‘sqlite’ The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. schema : string, default None Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’ • fail: If table exists, do nothing. • replace: If table exists, drop it, recreate it, and insert data. • append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column. index_label : string or sequence, default None Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None 33.4. DataFrame 1261 pandas: powerful Python data analysis toolkit, Release 0.16.1 If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. pandas.DataFrame.to_dict DataFrame.to_dict(*args, **kwargs) Convert DataFrame to dictionary. Parameters orient : str {‘dict’, ‘list’, ‘series’, ‘split’, ‘records’} Determines the type of the values of the dictionary. • dict (default) : dict like {column -> {index -> value}} • list : dict like {column -> [values]} • series : dict like {column -> Series(values)} • split : dict like {index -> [index], columns -> [columns], data -> [values]} • records : list like [{column -> value}, ... , {column -> value}] Abbreviations are allowed. s indicates series and sp indicates split. Returns result : dict like {column -> {index -> value}} pandas.DataFrame.to_excel DataFrame.to_excel(excel_writer, sheet_name=’Sheet1’, na_rep=’‘, float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep=’inf’) Write DataFrame to a excel sheet Parameters excel_writer : string or ExcelWriter object File path or existing ExcelWriter sheet_name : string, default ‘Sheet1’ Name of sheet which will contain DataFrame na_rep : string, default ‘’ Missing data representation float_format : string, default None Format string for floating point numbers columns : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True 1262 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Write row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame engine : string, default None write engine to use - you io.excel.xlsx.writer, io.excel.xlsm.writer. can also set this via the io.excel.xls.writer, options and merge_cells : boolean, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding: string, default None encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : string, default ‘inf’ Representation for infinity (there is no native representation for infinity in Excel) Notes If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be used to save different DataFrames to one workbook: >>> >>> >>> >>> writer = ExcelWriter('output.xlsx') df1.to_excel(writer,'Sheet1') df2.to_excel(writer,'Sheet2') writer.save() pandas.DataFrame.to_json DataFrame.to_json(path_or_buf=None, orient=None, date_format=’epoch’, double_precision=10, force_ascii=True, date_unit=’ms’, default_handler=None) Convert the object to a JSON string. Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters path_or_buf : the path or buffer to write the result string if this is None, return a StringIO of the converted string orient : string • Series – default is ‘index’ 33.4. DataFrame 1263 pandas: powerful Python data analysis toolkit, Release 0.16.1 – allowed values are: {‘split’,’records’,’index’} • DataFrame – default is ‘columns’ – allowed values are: {‘split’,’records’,’index’,’columns’,’values’} • The format of the JSON string – split : dict like {index -> [index], columns -> [columns], data -> [values]} – records : list like [{column -> value}, ... , {column -> value}] – index : dict like {index -> {column -> value}} – columns : dict like {column -> {index -> value}} – values : just the values array date_format : {‘epoch’, ‘iso’} Type of date conversion. epoch = epoch milliseconds, iso‘ = ISO8601, default is epoch. double_precision : The number of decimal places to use when encoding floating point values, default 10. force_ascii : force encoded string to be ASCII, default True. date_unit : string, default ‘ms’ (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. Returns same type as input object with filtered info axis pandas.DataFrame.to_html DataFrame.to_html(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep=’NaN’, formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False) Render a DataFrame as an HTML table. to_html-specific options: bold_rows [boolean, default True] Make the row labels bold in the output classes [str or list or tuple, default None] CSS class(es) to apply to the resulting html table escape [boolean, default True] Convert the characters <, >, and & to HTML-safe sequences.= max_rows [int, optional] Maximum number of rows to show before truncating. If None, show all. max_cols [int, optional] Maximum number of columns to show before truncating. If None, show all. Parameters frame : DataFrame 1264 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 object to render buf : StringIO-like, optional buffer to write to columns : sequence, optional the subset of columns to write; default None writes all columns col_space : int, optional the minimum width of each column header : bool, optional whether to print column labels, default True index : bool, optional whether to print index (row) labels, default True na_rep : string, optional string representation of NAN to use, default ‘NaN’ formatters : list or dict of one-parameter functions, optional formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True justify : {‘left’, ‘right’}, default None Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. index_names : bool, optional Prints the names of the indexes, default True force_unicode : bool, default False Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default. Returns formatted : string (or unicode, depending on data and options) pandas.DataFrame.to_latex DataFrame.to_latex(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep=’NaN’, formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=True, longtable=False, escape=True) Render a DataFrame to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}. 33.4. DataFrame 1265 pandas: powerful Python data analysis toolkit, Release 0.16.1 to_latex-specific options: bold_rows [boolean, default True] Make the row labels bold in the output longtable [boolean, default False] Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble. escape [boolean, default True] When set to False prevents from escaping latex special characters in column names. Parameters frame : DataFrame object to render buf : StringIO-like, optional buffer to write to columns : sequence, optional the subset of columns to write; default None writes all columns col_space : int, optional the minimum width of each column header : bool, optional whether to print column labels, default True index : bool, optional whether to print index (row) labels, default True na_rep : string, optional string representation of NAN to use, default ‘NaN’ formatters : list or dict of one-parameter functions, optional formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True justify : {‘left’, ‘right’}, default None Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. index_names : bool, optional Prints the names of the indexes, default True force_unicode : bool, default False Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default. 1266 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns formatted : string (or unicode, depending on data and options) pandas.DataFrame.to_stata DataFrame.to_stata(fname, convert_dates=None, write_index=True, order=None, time_stamp=None, data_label=None) A class for writing Stata binary dta files from array-like objects encoding=’latin-1’, byte- Parameters fname : file path or buffer Where to save the dta file. convert_dates : dict Dictionary mapping column of datetime types to the stata internal format that you want to use for the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either a number or a name. encoding : str Default is latin-1. Note that Stata does not support unicode. byteorder : str Can be “>”, “<”, “little”, or “big”. The default is None which uses sys.byteorder Examples >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() Or with dates >>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'}) >>> writer.write_file() pandas.DataFrame.to_msgpack DataFrame.to_msgpack(path_or_buf=None, **kwargs) msgpack (serialize) object to input file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters path : string File path, buffer-like, or None if None, return generated string append : boolean whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) 33.4. DataFrame 1267 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.to_gbq DataFrame.to_gbq(destination_table, project_id=None, chunksize=10000, verbose=True, reauth=False) Write a DataFrame to a Google BigQuery table. THIS IS AN EXPERIMENTAL LIBRARY If the table exists, the dataframe will be written to the table using the defined table schema and column types. For simplicity, this method uses the Google BigQuery streaming API. The to_gbq method chunks data into a default chunk size of 10,000. Failures return the complete error response which can be quite long depending on the size of the insert. There are several important limitations of the Google streaming API which are detailed at: https://developers.google.com/bigquery/streaming-data-into-bigquery. Parameters dataframe : DataFrame DataFrame to be written destination_table : string Name of table to be written, in the form ‘dataset.tablename’ project_id : str Google BigQuery Account project ID. chunksize : int (default 10000) Number of rows to be inserted in each chunk from the dataframe. verbose : boolean (default True) Show percentage complete reauth : boolean (default False) Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used. pandas.DataFrame.to_records DataFrame.to_records(index=True, convert_datetime64=True) Convert DataFrame to record array. Index will be put in the ‘index’ field of the record array if requested Parameters index : boolean, default True Include index in resulting record array, stored in ‘index’ field convert_datetime64 : boolean, default True Whether to convert the index to datetime.datetime if it is a DatetimeIndex Returns y : recarray pandas.DataFrame.to_sparse DataFrame.to_sparse(fill_value=None, kind=’block’) Convert to SparseDataFrame Parameters fill_value : float, default NaN kind : {‘block’, ‘integer’} Returns y : SparseDataFrame 1268 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DataFrame.to_dense DataFrame.to_dense() Return dense representation of NDFrame (as opposed to sparse) pandas.DataFrame.to_string DataFrame.to_string(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep=’NaN’, formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False) Render a DataFrame to a console-friendly tabular output. Parameters frame : DataFrame object to render buf : StringIO-like, optional buffer to write to columns : sequence, optional the subset of columns to write; default None writes all columns col_space : int, optional the minimum width of each column header : bool, optional whether to print column labels, default True index : bool, optional whether to print index (row) labels, default True na_rep : string, optional string representation of NAN to use, default ‘NaN’ formatters : list or dict of one-parameter functions, optional formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function, optional formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True justify : {‘left’, ‘right’}, default None Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. index_names : bool, optional Prints the names of the indexes, default True 33.4. DataFrame 1269 pandas: powerful Python data analysis toolkit, Release 0.16.1 force_unicode : bool, default False Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default. Returns formatted : string (or unicode, depending on data and options) pandas.DataFrame.to_clipboard DataFrame.to_clipboard(excel=None, sep=None, **kwargs) Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. Parameters excel : boolean, defaults to True if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard sep : optional, defaults to tab other keywords are passed to to_csv Notes Requirements for your platform • Linux: xclip, or xsel (with gtk or PyQt4 modules) • Windows: none • OS X: none 33.5 Panel 33.5.1 Constructor Panel([data, items, major_axis, minor_axis, ...]) Represents wide format panel data, stored as 3-dimensional array pandas.Panel class pandas.Panel(data=None, items=None, major_axis=None, dtype=None) Represents wide format panel data, stored as 3-dimensional array minor_axis=None, copy=False, Parameters data : ndarray (items x major x minor), or dict of DataFrames items : Index or array-like axis=0 major_axis : Index or array-like axis=1 minor_axis : Index or array-like axis=2 dtype : dtype, default None 1270 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Data type to force, otherwise infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input Attributes at axes blocks dtypes empty ftypes iat iloc ix loc ndim shape size values Fast label-based scalar accessor index(es) of the NDFrame Internal property, property synonym for as_blocks() Return the dtypes in this object True if NDFrame is entirely empty [no items] Return the ftypes (indication of sparse/dense and dtype) in this object. Fast integer location scalar accessor. Purely integer-location based indexing for selection by position. A primarily label-location based indexer, with integer position fallback. Purely label-location based indexer for selection by label. Number of axes / array dimensions tuple of axis dimensions number of elements in the NDFrame Numpy representation of NDFrame pandas.Panel.at Panel.at Fast label-based scalar accessor Similarly to loc, at provides label based scalar lookups. You can also set using these indexers. pandas.Panel.axes Panel.axes index(es) of the NDFrame pandas.Panel.blocks Panel.blocks Internal property, property synonym for as_blocks() pandas.Panel.dtypes Panel.dtypes Return the dtypes in this object pandas.Panel.empty Panel.empty True if NDFrame is entirely empty [no items] 33.5. Panel 1271 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.ftypes Panel.ftypes Return the ftypes (indication of sparse/dense and dtype) in this object. pandas.Panel.iat Panel.iat Fast integer location scalar accessor. Similarly to iloc, iat provides integer based lookups. You can also set using these indexers. pandas.Panel.iloc Panel.iloc Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: •An integer, e.g. 5. •A list or array of integers, e.g. [4, 3, 0]. •A slice object with ints, e.g. 1:7. •A boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics). See more at Selection by Position pandas.Panel.ix Panel.ix A primarily label-location based indexer, with integer position fallback. .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes. However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc. See more at Advanced Indexing. pandas.Panel.loc Panel.loc Purely label-location based indexer for selection by label. 1272 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: •A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index, and never as an integer position along the index). •A list or array of labels, e.g. [’a’, ’b’, ’c’]. •A slice object with labels, e.g. ’a’:’f’ (note that contrary to usual python slices, both the start and the stop are included!). •A boolean array. .loc will raise a KeyError when the items are not found. See more at Selection by Label pandas.Panel.ndim Panel.ndim Number of axes / array dimensions pandas.Panel.shape Panel.shape tuple of axis dimensions pandas.Panel.size Panel.size number of elements in the NDFrame pandas.Panel.values Panel.values Numpy representation of NDFrame Notes The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. is_copy 33.5. Panel 1273 pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.66 – continued from previous Methods abs() add(other[, axis]) add_prefix(prefix) add_suffix(suffix) align(other[, join, axis, level, copy, ...]) all([axis, bool_only, skipna, level]) any([axis, bool_only, skipna, level]) apply(func[, axis]) as_blocks() as_matrix() asfreq(freq[, method, how, normalize]) astype(dtype[, copy, raise_on_error]) at_time(time[, asof]) between_time(start_time, end_time[, ...]) bfill([axis, inplace, limit, downcast]) bool() clip([lower, upper, out, axis]) clip_lower(threshold[, axis]) clip_upper(threshold[, axis]) compound([axis, skipna, level]) conform(frame[, axis]) consolidate([inplace]) convert_objects([convert_dates, ...]) copy([deep]) count([axis]) cummax([axis, dtype, out, skipna]) cummin([axis, dtype, out, skipna]) cumprod([axis, dtype, out, skipna]) cumsum([axis, dtype, out, skipna]) describe([percentile_width, percentiles, ...]) div(other[, axis]) divide(other[, axis]) drop(labels[, axis, level, inplace, errors]) dropna([axis, how, inplace]) eq(other) equals(other) ffill([axis, inplace, limit, downcast]) fillna([value, method, axis, inplace, ...]) filter([items, like, regex, axis]) first(offset) floordiv(other[, axis]) fromDict(data[, intersect, orient, dtype]) from_dict(data[, intersect, orient, dtype]) ge(other) get(key[, default]) get_dtype_counts() get_ftype_counts() get_value(*args, **kwargs) 1274 Return an object with absolute value taken. Wrapper method for add Concatenate prefix string with panel items names. Concatenate suffix string with panel items names Align two object on their axes with the Return whether all elements are True over requested axis Return whether any element is True over requested axis Applies function along input axis of the Panel Convert the frame to a dict of dtype -> Constructor Types that each has a homoge Convert all TimeSeries inside to specified frequency using DateOffset objects. Cast object to input numpy.dtype Select values at particular time of day (e.g. Select values between particular times of the day (e.g., 9:00-9:30 AM) Synonym for NDFrame.fillna(method=’bfill’) Return the bool of a single element PandasObject Trim values at input threshold(s) Return copy of the input with values below given value(s) truncated Return copy of input with values above given value(s) truncated Return the compound percentage of the values for the requested axis Conform input DataFrame to align with chosen axis pair. Compute NDFrame with “consolidated” internals (data of each dtype grouped tog Attempt to infer better dtype for object columns Make a copy of this object Return number of observations over requested axis. Return cumulative max over requested axis. Return cumulative min over requested axis. Return cumulative prod over requested axis. Return cumulative sum over requested axis. Generate various summary statistics, excluding NaN values. Wrapper method for truediv Wrapper method for truediv Return new object with labels in requested axis removed Drop 2D from panel, holding passed axis constant Wrapper for comparison method eq Determines if two NDFrame objects contain the same elements. Synonym for NDFrame.fillna(method=’ffill’) Fill NA/NaN values using the specified method Restrict the info axis to set of items or wildcard Convenience method for subsetting initial periods of time series data Wrapper method for floordiv Construct Panel from dict of DataFrame objects Construct Panel from dict of DataFrame objects Wrapper for comparison method ge Get item from object for given key (DataFrame column, Panel slice, etc.). Return the counts of dtypes in this object Return the counts of ftypes in this object Quickly retrieve single value at (item, major, minor) location Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 get_values() groupby(function[, axis]) gt(other) head([n]) interpolate([method, axis, limit, inplace, ...]) isnull() iteritems() iterkv(*args, **kwargs) join(other[, how, lsuffix, rsuffix]) keys() kurt([axis, skipna, level, numeric_only]) kurtosis([axis, skipna, level, numeric_only]) last(offset) le(other) load(path) lt(other) mad([axis, skipna, level]) major_xs(key[, copy]) mask(cond[, other, inplace, axis, level, ...]) max([axis, skipna, level, numeric_only]) mean([axis, skipna, level, numeric_only]) median([axis, skipna, level, numeric_only]) min([axis, skipna, level, numeric_only]) minor_xs(key[, copy]) mod(other[, axis]) mul(other[, axis]) multiply(other[, axis]) ne(other) notnull() pct_change([periods, fill_method, limit, freq]) pop(item) pow(other[, axis]) prod([axis, skipna, level, numeric_only]) product([axis, skipna, level, numeric_only]) radd(other[, axis]) rdiv(other[, axis]) reindex([items, major_axis, minor_axis]) reindex_axis(labels[, axis, method, level, ...]) reindex_like(other[, method, copy, limit]) rename([items, major_axis, minor_axis]) rename_axis(mapper[, axis, copy, inplace]) replace([to_replace, value, inplace, limit, ...]) resample(rule[, how, axis, fill_method, ...]) rfloordiv(other[, axis]) rmod(other[, axis]) rmul(other[, axis]) rpow(other[, axis]) rsub(other[, axis]) rtruediv(other[, axis]) sample([n, frac, replace, weights, ...]) save(path) select(crit[, axis]) 33.5. Panel Table 33.66 – continued from previous same as values (but handles sparseness conversions) Group data on given axis, returning GroupBy object Wrapper for comparison method gt Interpolate values according to different methods. Return a boolean same-sized object indicating if the values are null Iterate over (label, values) on info axis iteritems alias used to get around 2to3. Deprecated Join items with other Panel either on major and minor axes column Get the ‘info axis’ (see Indexing for more) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis Return unbiased kurtosis over requested axis using Fishers definition of kurtosis Convenience method for subsetting final periods of time series data Wrapper for comparison method le Deprecated. Wrapper for comparison method lt Return the mean absolute deviation of the values for the requested axis Return slice of panel along major axis Return an object of same shape as self and whose corresponding entries are from This method returns the maximum of the values in the object. Return the mean of the values for the requested axis Return the median of the values for the requested axis This method returns the minimum of the values in the object. Return slice of panel along minor axis Wrapper method for mod Wrapper method for mul Wrapper method for mul Wrapper for comparison method ne Return a boolean same-sized object indicating if the values are Percent change over given number of periods. Return item and drop from frame. Wrapper method for pow Return the product of the values for the requested axis Return the product of the values for the requested axis Wrapper method for radd Wrapper method for rtruediv Conform Panel to new index with optional filling logic, placing NA/NaN in locat Conform input object to new index with optional filling logic, placing NA/NaN in return an object with matching indicies to myself Alter axes input function or functions. Alter index and / or columns using input function or functions. Replace values given in ‘to_replace’ with ‘value’. Convenience method for frequency conversion and resampling of regular time-se Wrapper method for rfloordiv Wrapper method for rmod Wrapper method for rmul Wrapper method for rpow Wrapper method for rsub Wrapper method for rtruediv Returns a random sample of items from an axis of object. Deprecated. Return data corresponding to axis labels matching criteria 1275 pandas: powerful Python data analysis toolkit, Release 0.16.1 sem([axis, skipna, level, ddof, numeric_only]) set_axis(axis, labels) set_value(*args, **kwargs) shift(*args, **kwargs) skew([axis, skipna, level, numeric_only]) slice_shift([periods, axis]) sort_index([axis, ascending]) squeeze() std([axis, skipna, level, ddof, numeric_only]) sub(other[, axis]) subtract(other[, axis]) sum([axis, skipna, level, numeric_only]) swapaxes(axis1, axis2[, copy]) swaplevel(i, j[, axis]) tail([n]) take(indices[, axis, convert, is_copy]) toLong(*args, **kwargs) to_clipboard([excel, sep]) to_dense() to_excel(path[, na_rep, engine]) to_frame([filter_observations]) to_hdf(path_or_buf, key, **kwargs) to_json([path_or_buf, orient, date_format, ...]) to_long(*args, **kwargs) to_msgpack([path_or_buf]) to_pickle(path) to_sparse([fill_value, kind]) to_sql(name, con[, flavor, schema, ...]) transpose(*args, **kwargs) truediv(other[, axis]) truncate([before, after, axis, copy]) tshift([periods, freq, axis]) tz_convert(tz[, axis, level, copy]) tz_localize(*args, **kwargs) update(other[, join, overwrite, ...]) var([axis, skipna, level, ddof, numeric_only]) where(cond[, other, inplace, axis, level, ...]) xs(key[, axis, copy]) Table 33.66 – continued from previous Return unbiased standard error of the mean over requested axis. public verson of axis assignment Quickly set single value at (item, major, minor) location Shift index by desired number of periods with an optional time freq. Return unbiased skew over requested axis Equivalent to shift without copying data. Sort object by labels (along an axis) squeeze length 1 dimensions Return unbiased standard deviation over requested axis. Wrapper method for sub Wrapper method for sub Return the sum of the values for the requested axis Interchange axes and swap values axes appropriately Swap levels i and j in a MultiIndex on a particular axis Analogous to ndarray.take Attempt to write text representation of object to the system clipboard This can be Return dense representation of NDFrame (as opposed to sparse) Write each DataFrame in Panel to a separate excel sheet Transform wide format into long (stacked) format as DataFrame whose columns activate the HDFStore Convert the object to a JSON string. msgpack (serialize) object to input file path Pickle (serialize) object to input file path Convert to SparsePanel Write records stored in a DataFrame to a SQL database. Permute the dimensions of the Panel Wrapper method for truediv Truncates a sorted NDFrame before and/or after some particular dates. Convert tz-aware axis to target time zone. Localize tz-naive TimeSeries to target time zone Modify Panel in place using non-NA values from passed Panel, or object coercib Return unbiased variance over requested axis. Return an object of same shape as self and whose corresponding entries are from Return slice of panel along selected axis pandas.Panel.abs Panel.abs() Return an object with absolute value taken. Only applicable to objects that are all numeric Returns abs: type of caller pandas.Panel.add Panel.add(other, axis=0) Wrapper method for add Parameters other : DataFrame or Panel 1276 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.add_prefix Panel.add_prefix(prefix) Concatenate prefix string with panel items names. Parameters prefix : string Returns with_prefix : type of caller pandas.Panel.add_suffix Panel.add_suffix(suffix) Concatenate suffix string with panel items names Parameters suffix : string Returns with_suffix : type of caller pandas.Panel.align Panel.align(other, join=’outer’, axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0) Align two object on their axes with the specified join method for each axis Index Parameters other : DataFrame or Series join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None) level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level copy : boolean, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value method : str, default None limit : int, default None fill_axis : {0, 1}, default 0 Filling axis, method and limit Returns (left, right) : (type of input, type of other) 33.5. Panel 1277 pandas: powerful Python data analysis toolkit, Release 0.16.1 Aligned objects pandas.Panel.all Panel.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether all elements are True over requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns all : DataFrame or Panel (if level specified) pandas.Panel.any Panel.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether any element is True over requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns any : DataFrame or Panel (if level specified) pandas.Panel.apply Panel.apply(func, axis=’major’, **kwargs) Applies function along input axis of the Panel Parameters func : function Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, then the combination of major_axis/minor_axis will be passed a Series axis : {‘major’, ‘minor’, ‘items’} Additional keyword arguments will be passed as keywords to the function 1278 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns result : Pandas Object Examples >>> >>> >>> >>> p.apply(numpy.sqrt) # returns a Panel p.apply(lambda x: x.sum(), axis=0) # equiv to p.sum(0) p.apply(lambda x: x.sum(), axis=1) # equiv to p.sum(1) p.apply(lambda x: x.sum(), axis=2) # equiv to p.sum(2) pandas.Panel.as_blocks Panel.as_blocks() Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix) Returns values : a dict of dtype -> Constructor Types pandas.Panel.as_matrix Panel.as_matrix() pandas.Panel.asfreq Panel.asfreq(freq, method=None, how=None, normalize=False) Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values. Parameters freq : DateOffset object, or string method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None} Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method how : {‘start’, ‘end’}, default end For PeriodIndex only, see PeriodIndex.asfreq normalize : bool, default False Whether to reset output index to midnight Returns converted : type of caller pandas.Panel.astype Panel.astype(dtype, copy=True, raise_on_error=True, **kwargs) Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) 33.5. Panel 1279 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters dtype : numpy.dtype or Python type raise_on_error : raise on invalid input kwargs : keyword arguments to pass on to the constructor Returns casted : type of caller pandas.Panel.at_time Panel.at_time(time, asof=False) Select values at particular time of day (e.g. 9:30AM) Parameters time : datetime.time or string Returns values_at_time : type of caller pandas.Panel.between_time Panel.between_time(start_time, end_time, include_start=True, include_end=True) Select values between particular times of the day (e.g., 9:00-9:30 AM) Parameters start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True Returns values_between_time : type of caller pandas.Panel.bfill Panel.bfill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’bfill’) pandas.Panel.bool Panel.bool() Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean pandas.Panel.clip Panel.clip(lower=None, upper=None, out=None, axis=None) Trim values at input threshold(s) Parameters lower : float or array_like, default None upper : float or array_like, default None axis : int or string axis name, optional Align object with lower and upper along the given axis. 1280 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns clipped : Series Examples >>> df 0 1 0 0.335232 -1.256177 1 -1.367855 0.746646 2 0.027753 -1.176076 3 0.230930 -0.679613 4 1.261967 0.570967 >>> df.clip(-1.0, 0.5) 0 1 0 0.335232 -1.000000 1 -1.000000 0.500000 2 0.027753 -1.000000 3 0.230930 -0.679613 4 0.500000 0.500000 >>> t 0 -0.3 1 -0.2 2 -0.1 3 0.0 4 0.1 dtype: float64 >>> df.clip(t, t + 1, axis=0) 0 1 0 0.335232 -0.300000 1 -0.200000 0.746646 2 0.027753 -0.100000 3 0.230930 0.000000 4 1.100000 0.570967 pandas.Panel.clip_lower Panel.clip_lower(threshold, axis=None) Return copy of the input with values below given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.Panel.clip_upper Panel.clip_upper(threshold, axis=None) Return copy of input with values above given value(s) truncated Parameters threshold : float or array_like 33.5. Panel 1281 pandas: powerful Python data analysis toolkit, Release 0.16.1 axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.Panel.compound Panel.compound(axis=None, skipna=None, level=None) Return the compound percentage of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns compounded : DataFrame or Panel (if level specified) pandas.Panel.conform Panel.conform(frame, axis=’items’) Conform input DataFrame to align with chosen axis pair. Parameters frame : DataFrame axis : {‘items’, ‘major’, ‘minor’} Axis the input corresponds to. E.g., if axis=’major’, then the frame’s columns would be items, and the index would be values of the minor axis Returns DataFrame pandas.Panel.consolidate Panel.consolidate(inplace=False) Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user Parameters inplace : boolean, default False If False return new object, otherwise modify existing object Returns consolidated : type of caller 1282 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.convert_objects Panel.convert_objects(convert_dates=True, convert_numeric=False, vert_timedeltas=True, copy=True) Attempt to infer better dtype for object columns con- Parameters convert_dates : boolean, default True If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. convert_numeric : boolean, default False If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN. convert_timedeltas : boolean, default True If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. copy : boolean, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns converted : same as input object pandas.Panel.copy Panel.copy(deep=True) Make a copy of this object Parameters deep : boolean or string, default True Make a deep copy, i.e. also copy data Returns copy : type of caller pandas.Panel.count Panel.count(axis=’major’) Return number of observations over requested axis. Parameters axis : {‘items’, ‘major’, ‘minor’} or {0, 1, 2} Returns count : DataFrame pandas.Panel.cummax Panel.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative max over requested axis. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns max : DataFrame 33.5. Panel 1283 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.cummin Panel.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative min over requested axis. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns min : DataFrame pandas.Panel.cumprod Panel.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative prod over requested axis. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns prod : DataFrame pandas.Panel.cumsum Panel.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative sum over requested axis. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns sum : DataFrame pandas.Panel.describe Panel.describe(percentile_width=None, percentiles=None, include=None, exclude=None) Generate various summary statistics, excluding NaN values. Parameters percentile_width : float, deprecated The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75 percentiles : array-like, optional The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles. include, exclude : list-like, ‘all’, or None (default) Specify the form of the returned result. Either: 1284 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns. • A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=[’O’]) • If include is the string ‘all’, the output column-set will match the input one. Returns summary: NDFrame of summary statistics See also: DataFrame.select_dtypes Notes The output DataFrame index depends on the requested dtypes: For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles. For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items. For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments. If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count. The include, exclude arguments are ignored for Series. pandas.Panel.div Panel.div(other, axis=0) Wrapper method for truediv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.divide Panel.divide(other, axis=0) Wrapper method for truediv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel 33.5. Panel 1285 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.drop Panel.drop(labels, axis=0, level=None, inplace=False, errors=’raise’) Return new object with labels in requested axis removed Parameters labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : type of caller pandas.Panel.dropna Panel.dropna(axis=0, how=’any’, inplace=False) Drop 2D from panel, holding passed axis constant Parameters axis : int, default 0 Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain amount of NA data how : {‘all’, ‘any’}, default ‘any’ ‘any’: one or more values are NA in the DataFrame along the axis. For ‘all’ they all must be. inplace : bool, default False If True, do operation inplace and return None. Returns dropped : Panel pandas.Panel.eq Panel.eq(other) Wrapper for comparison method eq pandas.Panel.equals Panel.equals(other) Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal. 1286 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.ffill Panel.ffill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’ffill’) pandas.Panel.fillna Panel.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) Fill NA/NaN values using the specified method Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. axis : {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’} inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns filled : Panel See also: reindex, asfreq pandas.Panel.filter Panel.filter(items=None, like=None, regex=None, axis=None) Restrict the info axis to set of items or wildcard Parameters items : list-like List of info axis to restrict to (must not all be present) like : string 33.5. Panel 1287 pandas: powerful Python data analysis toolkit, Release 0.16.1 Keep info axis where “arg in col == True” regex : string (regular expression) Keep info axis with re.search(regex, col) == True axis : int or None The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with []. For example, df = DataFrame({’a’: [1, 2, 3, 4]]}); df[’a’]. So, the DataFrame columns are the info axis. Notes Arguments are mutually exclusive, but this is not checked for pandas.Panel.first Panel.first(offset) Convenience method for subsetting initial periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘10D’) -> First 10 days pandas.Panel.floordiv Panel.floordiv(other, axis=0) Wrapper method for floordiv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.fromDict classmethod Panel.fromDict(data, intersect=False, orient=’items’, dtype=None) Construct Panel from dict of DataFrame objects Parameters data : dict {field : DataFrame} intersect : boolean Intersect indexes of input DataFrames orient : {‘items’, ‘minor’}, default ‘items’ 1288 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixeddtype data you should do), instead pass ‘minor’ Returns Panel pandas.Panel.from_dict classmethod Panel.from_dict(data, intersect=False, orient=’items’, dtype=None) Construct Panel from dict of DataFrame objects Parameters data : dict {field : DataFrame} intersect : boolean Intersect indexes of input DataFrames orient : {‘items’, ‘minor’}, default ‘items’ The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixeddtype data you should do), instead pass ‘minor’ Returns Panel pandas.Panel.ge Panel.ge(other) Wrapper for comparison method ge pandas.Panel.get Panel.get(key, default=None) Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found Parameters key : object Returns value : type of items contained in object pandas.Panel.get_dtype_counts Panel.get_dtype_counts() Return the counts of dtypes in this object pandas.Panel.get_ftype_counts Panel.get_ftype_counts() Return the counts of ftypes in this object 33.5. Panel 1289 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.get_value Panel.get_value(*args, **kwargs) Quickly retrieve single value at (item, major, minor) location Parameters item : item label (panel item) major : major axis label (panel item row) minor : minor axis label (panel item column) takeable : interpret the passed labels as indexers, default False Returns value : scalar value pandas.Panel.get_values Panel.get_values() same as values (but handles sparseness conversions) pandas.Panel.groupby Panel.groupby(function, axis=’major’) Group data on given axis, returning GroupBy object Parameters function : callable Mapping function for chosen access axis : {‘major’, ‘minor’, ‘items’}, default ‘major’ Returns grouped : PanelGroupBy pandas.Panel.gt Panel.gt(other) Wrapper for comparison method gt pandas.Panel.head Panel.head(n=5) pandas.Panel.interpolate Panel.interpolate(method=’linear’, axis=0, limit=None, inplace=False, downcast=None, **kwargs) Interpolate values according to different methods. Parameters method : {‘linear’, ‘time’, ‘index’, ‘values’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘spline’ ‘piecewise_polynomial’, ‘pchip’} • ‘linear’: ignore the index and treat the values as equally spaced. default 1290 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval • ‘index’, ‘values’: use the actual numerical values of the index • ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d with the order given both ‘polynomial’ and ‘spline’ requre that you also specify and order (int) e.g. df.interpolate(method=’polynomial’, order=4) • ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior: http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariateinterpolation http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html axis : {0, 1}, default 0 • 0: fill column-by-column • 1: fill row-by-row limit : int, default None. Maximum number of consecutive NaNs to fill. inplace : bool, default False Update the NDFrame in place if possible. downcast : optional, ‘infer’ or None, defaults to None Downcast dtypes if possible. Returns Series or DataFrame of same shape interpolated at the NaNs See also: reindex, replace, fillna Examples Filling in NaNs >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64 pandas.Panel.isnull Panel.isnull() Return a boolean same-sized object indicating if the values are null See also: notnull boolean inverse of isnull 33.5. Panel 1291 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.iteritems Panel.iteritems() Iterate over (label, values) on info axis This is index for Series, columns for DataFrame, major_axis for Panel, and so on. pandas.Panel.iterkv Panel.iterkv(*args, **kwargs) iteritems alias used to get around 2to3. Deprecated pandas.Panel.join Panel.join(other, how=’left’, lsuffix=’‘, rsuffix=’‘) Join items with other Panel either on major and minor axes column Parameters other : Panel or list of Panels Index should be similar to one of the columns in this one how : {‘left’, ‘right’, ‘outer’, ‘inner’} How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise * left: use calling frame’s index * right: use input frame’s index * outer: form union of indexes * inner: use intersection of indexes lsuffix : string Suffix to use from left frame’s overlapping columns rsuffix : string Suffix to use from right frame’s overlapping columns Returns joined : Panel pandas.Panel.keys Panel.keys() Get the ‘info axis’ (see Indexing for more) This is index for Series, columns for DataFrame and major_axis for Panel. pandas.Panel.kurt Panel.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None 1292 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns kurt : DataFrame or Panel (if level specified) pandas.Panel.kurtosis Panel.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns kurt : DataFrame or Panel (if level specified) pandas.Panel.last Panel.last(offset) Convenience method for subsetting final periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘5M’) -> Last 5 months pandas.Panel.le Panel.le(other) Wrapper for comparison method le pandas.Panel.load Panel.load(path) Deprecated. Use read_pickle instead. 33.5. Panel 1293 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.lt Panel.lt(other) Wrapper for comparison method lt pandas.Panel.mad Panel.mad(axis=None, skipna=None, level=None) Return the mean absolute deviation of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mad : DataFrame or Panel (if level specified) pandas.Panel.major_xs Panel.major_xs(key, copy=None) Return slice of panel along major axis Parameters key : object Major axis label copy : boolean [deprecated] Whether to make a copy of the data Returns y : DataFrame index -> minor axis, columns -> items Notes major_xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of major_xs functionality, see MultiIndex Slicers pandas.Panel.mask Panel.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. 1294 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.Panel.max Panel.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns max : DataFrame or Panel (if level specified) pandas.Panel.mean Panel.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the mean of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None 33.5. Panel 1295 pandas: powerful Python data analysis toolkit, Release 0.16.1 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mean : DataFrame or Panel (if level specified) pandas.Panel.median Panel.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the median of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns median : DataFrame or Panel (if level specified) pandas.Panel.min Panel.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns min : DataFrame or Panel (if level specified) pandas.Panel.minor_xs Panel.minor_xs(key, copy=None) Return slice of panel along minor axis Parameters key : object Minor axis label 1296 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 copy : boolean [deprecated] Whether to make a copy of the data Returns y : DataFrame index -> major axis, columns -> items Notes minor_xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of minor_xs functionality, see MultiIndex Slicers pandas.Panel.mod Panel.mod(other, axis=0) Wrapper method for mod Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.mul Panel.mul(other, axis=0) Wrapper method for mul Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.multiply Panel.multiply(other, axis=0) Wrapper method for mul Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel 33.5. Panel 1297 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.ne Panel.ne(other) Wrapper for comparison method ne pandas.Panel.notnull Panel.notnull() Return a boolean same-sized object indicating if the values are not null See also: isnull boolean inverse of notnull pandas.Panel.pct_change Panel.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs) Percent change over given number of periods. Parameters periods : int, default 1 Periods to shift for forming percent change fill_method : str, default ‘pad’ How to handle NAs before computing percent changes limit : int, default None The number of consecutive NAs to fill before stopping freq : DateOffset, timedelta, or offset alias string, optional Increment to use from time series API (e.g. ‘M’ or BDay()) Returns chg : NDFrame Notes By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument. pandas.Panel.pop Panel.pop(item) Return item and drop from frame. Raise KeyError if not found. pandas.Panel.pow Panel.pow(other, axis=0) Wrapper method for pow 1298 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.prod Panel.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : DataFrame or Panel (if level specified) pandas.Panel.product Panel.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : DataFrame or Panel (if level specified) pandas.Panel.radd Panel.radd(other, axis=0) Wrapper method for radd 33.5. Panel 1299 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rdiv Panel.rdiv(other, axis=0) Wrapper method for rtruediv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.reindex Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs) Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters items, major_axis, minor_axis : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : Panel 1300 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C']) pandas.Panel.reindex_axis Panel.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan) Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters labels : array-like New labels / index to conform to. Preferably an Index object to avoid duplicating data axis : {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’} method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : Panel See also: reindex, reindex_like Examples >>> df.reindex_axis(['A', 'B', 'C'], axis=1) pandas.Panel.reindex_like Panel.reindex_like(other, method=None, copy=True, limit=None) return an object with matching indicies to myself 33.5. Panel 1301 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters other : Object method : string or None copy : boolean, default True limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : same as input Notes Like calling s.reindex(index=other.index, columns=other.columns, method=...) pandas.Panel.rename Panel.rename(items=None, major_axis=None, minor_axis=None, **kwargs) Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters items, major_axis, minor_axis : dict-like or function, optional Transformation to apply to that axis values copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new Panel. If True then value of copy is ignored. Returns renamed : Panel (new object) pandas.Panel.rename_axis Panel.rename_axis(mapper, axis=0, copy=True, inplace=False) Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters mapper : dict-like or function, optional axis : int or string, default 0 copy : boolean, default True Also copy underlying data inplace : boolean, default False Returns renamed : type of caller pandas.Panel.replace Panel.replace(to_replace=None, value=None, method=’pad’, axis=None) Replace values given in ‘to_replace’ with ‘value’. 1302 inplace=False, limit=None, regex=False, Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters to_replace : str, regex, list, dict, Series, numeric, or None • str or regex: – str: string exactly matching to_replace will be replaced with value – regex: regexs matching to_replace will be replaced with value • list of str, regex, or numeric: – First, if to_replace and value are both lists, they must be the same length. – Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use. – str and regex rules apply as above. • dict: – Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions. – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in. • None: – This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : boolean, default False If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True. limit : int, default None Maximum size gap to forward or backward fill regex : bool or same types as to_replace, default False Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions. method : string, optional, {‘pad’, ‘ffill’, ‘bfill’} The method to use when for replacement, when to_replace is a list. Returns filled : NDFrame 33.5. Panel 1303 pandas: powerful Python data analysis toolkit, Release 0.16.1 Raises AssertionError • If regex is not a bool and to_replace is not None. TypeError • If to_replace is a dict and value is not a list, dict, ndarray, or Series • If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. ValueError • If to_replace and value are list s or ndarray s, but they are not the same length. See also: NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna Notes •Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same. •Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this. •This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works. pandas.Panel.resample Panel.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=’start’, kind=None, loffset=None, limit=None, base=0) Convenience method for frequency conversion and resampling of regular time-series data. Parameters rule : string the offset string or object representing target conversion how : string method for down- or re-sampling, default to ‘mean’ for downsampling axis : int, optional, default 0 fill_method : string, default None fill_method for upsampling closed : {‘right’, ‘left’} Which side of bin interval is closed label : {‘right’, ‘left’} Which bin edge label to label bucket with convention : {‘start’, ‘end’, ‘s’, ‘e’} kind : “period”/”timestamp” 1304 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 loffset : timedelta Adjust the resampled time labels limit : int, default None Maximum size gap to when reindexing with fill_method base : int, default 0 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0 pandas.Panel.rfloordiv Panel.rfloordiv(other, axis=0) Wrapper method for rfloordiv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rmod Panel.rmod(other, axis=0) Wrapper method for rmod Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rmul Panel.rmul(other, axis=0) Wrapper method for rmul Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rpow Panel.rpow(other, axis=0) Wrapper method for rpow 33.5. Panel 1305 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rsub Panel.rsub(other, axis=0) Wrapper method for rsub Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rtruediv Panel.rtruediv(other, axis=0) Wrapper method for rtruediv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.sample Panel.sample(n=None, frac=None, replace=False, weights=None, axis=None) Returns a random sample of items from an axis of object. random_state=None, Parameters n : int, optional Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None. frac : float, optional Fraction of axis items to return. Cannot be used with n. replace : boolean, optional Sample with or without replacement. Default = False. weights : str or ndarray-like, optional Default ‘None’ results in equal probability weighting. If called on a DataFrame, will accept the name of a column when axis = 0. Weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed. 1306 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : int or string, optional Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels). Returns Same type as caller. pandas.Panel.save Panel.save(path) Deprecated. Use to_pickle instead pandas.Panel.select Panel.select(crit, axis=0) Return data corresponding to axis labels matching criteria Parameters crit : function To be called on each index (label). Should return True or False axis : int Returns selection : type of caller pandas.Panel.sem Panel.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sem : DataFrame or Panel (if level specified) pandas.Panel.set_axis Panel.set_axis(axis, labels) public verson of axis assignment 33.5. Panel 1307 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.set_value Panel.set_value(*args, **kwargs) Quickly set single value at (item, major, minor) location Parameters item : item label (panel item) major : major axis label (panel item row) minor : minor axis label (panel item column) value : scalar takeable : interpret the passed labels as indexers, default False Returns panel : Panel If label combo is contained, will be reference to calling Panel, otherwise a new object pandas.Panel.shift Panel.shift(*args, **kwargs) Shift index by desired number of periods with an optional time freq. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. This is different from the behavior of DataFrame.shift() Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, optional axis : {‘items’, ‘major’, ‘minor’} or {0, 1, 2} Returns shifted : Panel pandas.Panel.skew Panel.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased skew over requested axis Normalized by N-1 Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns skew : DataFrame or Panel (if level specified) 1308 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.slice_shift Panel.slice_shift(periods=1, axis=0) Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters periods : int Number of periods to move, can be positive or negative Returns shifted : same type as caller Notes While the slice_shift is faster than shift, you may pay for it later during alignment. pandas.Panel.sort_index Panel.sort_index(axis=0, ascending=True) Sort object by labels (along an axis) Parameters axis : {0, 1} Sort index/rows versus columns ascending : boolean, default True Sort ascending vs. descending Returns sorted_obj : type of caller pandas.Panel.squeeze Panel.squeeze() squeeze length 1 dimensions pandas.Panel.std Panel.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard deviation over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data 33.5. Panel 1309 pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns std : DataFrame or Panel (if level specified) pandas.Panel.sub Panel.sub(other, axis=0) Wrapper method for sub Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.subtract Panel.subtract(other, axis=0) Wrapper method for sub Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.sum Panel.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the sum of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sum : DataFrame or Panel (if level specified) pandas.Panel.swapaxes Panel.swapaxes(axis1, axis2, copy=True) Interchange axes and swap values axes appropriately Returns y : same as input 1310 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.swaplevel Panel.swaplevel(i, j, axis=0) Swap levels i and j in a MultiIndex on a particular axis Parameters i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns swapped : type of caller (new object) pandas.Panel.tail Panel.tail(n=5) pandas.Panel.take Panel.take(indices, axis=0, convert=True, is_copy=True) Analogous to ndarray.take Parameters indices : list / array of ints axis : int, default 0 convert : translate neg to pos indices (default) is_copy : mark the returned frame as a copy Returns taken : type of caller pandas.Panel.toLong Panel.toLong(*args, **kwargs) pandas.Panel.to_clipboard Panel.to_clipboard(excel=None, sep=None, **kwargs) Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. Parameters excel : boolean, defaults to True if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard sep : optional, defaults to tab other keywords are passed to to_csv Notes Requirements for your platform • Linux: xclip, or xsel (with gtk or PyQt4 modules) • Windows: none 33.5. Panel 1311 pandas: powerful Python data analysis toolkit, Release 0.16.1 • OS X: none pandas.Panel.to_dense Panel.to_dense() Return dense representation of NDFrame (as opposed to sparse) pandas.Panel.to_excel Panel.to_excel(path, na_rep=’‘, engine=None, **kwargs) Write each DataFrame in Panel to a separate excel sheet Parameters path : string or ExcelWriter object File path or existing ExcelWriter na_rep : string, default ‘’ Missing data representation engine : string, default None write engine to use - you io.excel.xlsx.writer, io.excel.xlsm.writer. can also set this via the io.excel.xls.writer, options and Other Parameters float_format : string, default None Format string for floating point numbers cols : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame Notes Keyword arguments (and na_rep) are passed to the to_excel method for each DataFrame written. 1312 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.to_frame Panel.to_frame(filter_observations=True) Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose index is a MultiIndex formed of the Panel’s major and minor axes. Parameters filter_observations : boolean, default True Drop (major, minor) pairs without a complete set of observations across all the items Returns y : DataFrame pandas.Panel.to_hdf Panel.to_hdf(path_or_buf, key, **kwargs) activate the HDFStore Parameters path_or_buf : the path (string) or buffer to put the store key : string indentifier for the group in the store mode : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’ ’r’ Read-only; no data can be modified. ’w’ Write; a new file is created (an existing file with the same name would be deleted). ’a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created. ’r+’ It is similar to ’a’, but the file must already exist. format : ‘fixed(f)|table(t)’, default is ‘fixed’ fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False For Table formats, append the input data to the existing complevel : int, 1-9, default 0 If a complib is specified compression will be applied where possible complib : {‘zlib’, ‘bzip2’, ‘lzo’, ‘blosc’, None}, default None If complevel is > 0 apply compression to objects written in the store wherever possible fletcher32 : bool, default False If applying compression use the fletcher32 checksum 33.5. Panel 1313 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.to_json Panel.to_json(path_or_buf=None, orient=None, date_format=’epoch’, double_precision=10, force_ascii=True, date_unit=’ms’, default_handler=None) Convert the object to a JSON string. Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters path_or_buf : the path or buffer to write the result string if this is None, return a StringIO of the converted string orient : string • Series – default is ‘index’ – allowed values are: {‘split’,’records’,’index’} • DataFrame – default is ‘columns’ – allowed values are: {‘split’,’records’,’index’,’columns’,’values’} • The format of the JSON string – split : dict like {index -> [index], columns -> [columns], data -> [values]} – records : list like [{column -> value}, ... , {column -> value}] – index : dict like {index -> {column -> value}} – columns : dict like {column -> {index -> value}} – values : just the values array date_format : {‘epoch’, ‘iso’} Type of date conversion. epoch = epoch milliseconds, iso‘ = ISO8601, default is epoch. double_precision : The number of decimal places to use when encoding floating point values, default 10. force_ascii : force encoded string to be ASCII, default True. date_unit : string, default ‘ms’ (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. Returns same type as input object with filtered info axis 1314 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.to_long Panel.to_long(*args, **kwargs) pandas.Panel.to_msgpack Panel.to_msgpack(path_or_buf=None, **kwargs) msgpack (serialize) object to input file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters path : string File path, buffer-like, or None if None, return generated string append : boolean whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) pandas.Panel.to_pickle Panel.to_pickle(path) Pickle (serialize) object to input file path Parameters path : string File path pandas.Panel.to_sparse Panel.to_sparse(fill_value=None, kind=’block’) Convert to SparsePanel Parameters fill_value : float, default NaN kind : {‘block’, ‘integer’} Returns y : SparseDataFrame pandas.Panel.to_sql Panel.to_sql(name, con, flavor=’sqlite’, schema=None, if_exists=’fail’, index=True, index_label=None, chunksize=None, dtype=None) Write records stored in a DataFrame to a SQL database. Parameters name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : {‘sqlite’, ‘mysql’}, default ‘sqlite’ 33.5. Panel 1315 pandas: powerful Python data analysis toolkit, Release 0.16.1 The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. schema : string, default None Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’ • fail: If table exists, do nothing. • replace: If table exists, drop it, recreate it, and insert data. • append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column. index_label : string or sequence, default None Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. pandas.Panel.transpose Panel.transpose(*args, **kwargs) Permute the dimensions of the Panel Parameters args : three positional arguments: each oneof {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’} copy : boolean, default False Make a copy of the underlying data. Mixed-dtype data will always result in a copy Returns y : same as input Examples >>> p.transpose(2, 0, 1) >>> p.transpose(2, 0, 1, copy=True) 1316 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.truediv Panel.truediv(other, axis=0) Wrapper method for truediv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.truncate Panel.truncate(before=None, after=None, axis=None, copy=True) Truncates a sorted NDFrame before and/or after some particular dates. Parameters before : date Truncate before date after : date Truncate after date axis : the truncation axis, defaults to the stat axis copy : boolean, default is True, return a copy of the truncated section Returns truncated : type of caller pandas.Panel.tshift Panel.tshift(periods=1, freq=None, axis=’major’, **kwds) pandas.Panel.tz_convert Panel.tz_convert(tz, axis=0, level=None, copy=True) Convert tz-aware axis to target time zone. Parameters tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Raises TypeError If the axis is tz-naive. 33.5. Panel 1317 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.tz_localize Panel.tz_localize(*args, **kwargs) Localize tz-naive TimeSeries to target time zone Parameters tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Raises TypeError If the TimeSeries is tz-aware and tz is not None. pandas.Panel.update Panel.update(other, join=’left’, overwrite=True, filter_func=None, raise_conflict=False) Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items Parameters other : Panel, or object coercible to Panel join : How to join individual DataFrames {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’ overwrite : boolean, default True If True then overwrite values for common keys in the calling panel filter_func : callable(1d-array) -> 1d-array, default None Can choose to replace values other than NA. Return True for values that should be updated raise_conflict : bool If True, will raise an error if a DataFrame and other both contain data in the same place. 1318 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.var Panel.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns var : DataFrame or Panel (if level specified) pandas.Panel.where Panel.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.Panel.xs Panel.xs(key, axis=1, copy=None) Return slice of panel along selected axis Parameters key : object Label 33.5. Panel 1319 pandas: powerful Python data analysis toolkit, Release 0.16.1 axis : {‘items’, ‘major’, ‘minor}, default 1/’major’ copy : boolean [deprecated] Whether to make a copy of the data Returns y : ndim(self)-1 Notes xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers 33.5.2 Attributes and underlying data Axes • items: axis 0; each item corresponds to a DataFrame contained inside • major_axis: axis 1; the index (rows) of each of the DataFrames • minor_axis: axis 2; the columns of each of the DataFrames Panel.values Panel.axes Panel.ndim Panel.size Panel.shape Panel.dtypes Panel.ftypes Panel.get_dtype_counts() Panel.get_ftype_counts() Numpy representation of NDFrame index(es) of the NDFrame Number of axes / array dimensions number of elements in the NDFrame tuple of axis dimensions Return the dtypes in this object Return the ftypes (indication of sparse/dense and dtype) in this object. Return the counts of dtypes in this object Return the counts of ftypes in this object pandas.Panel.values Panel.values Numpy representation of NDFrame Notes The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. pandas.Panel.axes Panel.axes index(es) of the NDFrame 1320 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.ndim Panel.ndim Number of axes / array dimensions pandas.Panel.size Panel.size number of elements in the NDFrame pandas.Panel.shape Panel.shape tuple of axis dimensions pandas.Panel.dtypes Panel.dtypes Return the dtypes in this object pandas.Panel.ftypes Panel.ftypes Return the ftypes (indication of sparse/dense and dtype) in this object. pandas.Panel.get_dtype_counts Panel.get_dtype_counts() Return the counts of dtypes in this object pandas.Panel.get_ftype_counts Panel.get_ftype_counts() Return the counts of ftypes in this object 33.5.3 Conversion Panel.astype(dtype[, copy, raise_on_error]) Panel.copy([deep]) Panel.isnull() Panel.notnull() Cast object to input numpy.dtype Make a copy of this object Return a boolean same-sized object indicating if the values are null Return a boolean same-sized object indicating if the values are pandas.Panel.astype Panel.astype(dtype, copy=True, raise_on_error=True, **kwargs) Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters dtype : numpy.dtype or Python type 33.5. Panel 1321 pandas: powerful Python data analysis toolkit, Release 0.16.1 raise_on_error : raise on invalid input kwargs : keyword arguments to pass on to the constructor Returns casted : type of caller pandas.Panel.copy Panel.copy(deep=True) Make a copy of this object Parameters deep : boolean or string, default True Make a deep copy, i.e. also copy data Returns copy : type of caller pandas.Panel.isnull Panel.isnull() Return a boolean same-sized object indicating if the values are null See also: notnull boolean inverse of isnull pandas.Panel.notnull Panel.notnull() Return a boolean same-sized object indicating if the values are not null See also: isnull boolean inverse of notnull 33.5.4 Getting and setting Panel.get_value(*args, **kwargs) Panel.set_value(*args, **kwargs) Quickly retrieve single value at (item, major, minor) location Quickly set single value at (item, major, minor) location pandas.Panel.get_value Panel.get_value(*args, **kwargs) Quickly retrieve single value at (item, major, minor) location Parameters item : item label (panel item) major : major axis label (panel item row) minor : minor axis label (panel item column) takeable : interpret the passed labels as indexers, default False Returns value : scalar value 1322 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.set_value Panel.set_value(*args, **kwargs) Quickly set single value at (item, major, minor) location Parameters item : item label (panel item) major : major axis label (panel item row) minor : minor axis label (panel item column) value : scalar takeable : interpret the passed labels as indexers, default False Returns panel : Panel If label combo is contained, will be reference to calling Panel, otherwise a new object 33.5.5 Indexing, iteration, slicing Panel.at Panel.iat Panel.ix Panel.loc Panel.iloc Panel.__iter__() Panel.iteritems() Panel.pop(item) Panel.xs(key[, axis, copy]) Panel.major_xs(key[, copy]) Panel.minor_xs(key[, copy]) Fast label-based scalar accessor Fast integer location scalar accessor. A primarily label-location based indexer, with integer position fallback. Purely label-location based indexer for selection by label. Purely integer-location based indexing for selection by position. Iterate over infor axis Iterate over (label, values) on info axis Return item and drop from frame. Return slice of panel along selected axis Return slice of panel along major axis Return slice of panel along minor axis pandas.Panel.at Panel.at Fast label-based scalar accessor Similarly to loc, at provides label based scalar lookups. You can also set using these indexers. pandas.Panel.iat Panel.iat Fast integer location scalar accessor. Similarly to iloc, iat provides integer based lookups. You can also set using these indexers. pandas.Panel.ix Panel.ix A primarily label-location based indexer, with integer position fallback. .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. 33.5. Panel 1323 pandas: powerful Python data analysis toolkit, Release 0.16.1 .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes. However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc. See more at Advanced Indexing. pandas.Panel.loc Panel.loc Purely label-location based indexer for selection by label. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: •A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index, and never as an integer position along the index). •A list or array of labels, e.g. [’a’, ’b’, ’c’]. •A slice object with labels, e.g. ’a’:’f’ (note that contrary to usual python slices, both the start and the stop are included!). •A boolean array. .loc will raise a KeyError when the items are not found. See more at Selection by Label pandas.Panel.iloc Panel.iloc Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: •An integer, e.g. 5. •A list or array of integers, e.g. [4, 3, 0]. •A slice object with ints, e.g. 1:7. •A boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics). See more at Selection by Position pandas.Panel.__iter__ Panel.__iter__() Iterate over infor axis 1324 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.iteritems Panel.iteritems() Iterate over (label, values) on info axis This is index for Series, columns for DataFrame, major_axis for Panel, and so on. pandas.Panel.pop Panel.pop(item) Return item and drop from frame. Raise KeyError if not found. pandas.Panel.xs Panel.xs(key, axis=1, copy=None) Return slice of panel along selected axis Parameters key : object Label axis : {‘items’, ‘major’, ‘minor}, default 1/’major’ copy : boolean [deprecated] Whether to make a copy of the data Returns y : ndim(self)-1 Notes xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers pandas.Panel.major_xs Panel.major_xs(key, copy=None) Return slice of panel along major axis Parameters key : object Major axis label copy : boolean [deprecated] Whether to make a copy of the data Returns y : DataFrame index -> minor axis, columns -> items 33.5. Panel 1325 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes major_xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of major_xs functionality, see MultiIndex Slicers pandas.Panel.minor_xs Panel.minor_xs(key, copy=None) Return slice of panel along minor axis Parameters key : object Minor axis label copy : boolean [deprecated] Whether to make a copy of the data Returns y : DataFrame index -> major axis, columns -> items Notes minor_xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of minor_xs functionality, see MultiIndex Slicers For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation. 33.5.6 Binary operator functions Panel.add(other[, axis]) Panel.sub(other[, axis]) Panel.mul(other[, axis]) Panel.div(other[, axis]) Panel.truediv(other[, axis]) Panel.floordiv(other[, axis]) Panel.mod(other[, axis]) Panel.pow(other[, axis]) Panel.radd(other[, axis]) Panel.rsub(other[, axis]) Panel.rmul(other[, axis]) Panel.rdiv(other[, axis]) Panel.rtruediv(other[, axis]) Panel.rfloordiv(other[, axis]) Panel.rmod(other[, axis]) Panel.rpow(other[, axis]) Panel.lt(other) Panel.gt(other) Panel.le(other) 1326 Wrapper method for add Wrapper method for sub Wrapper method for mul Wrapper method for truediv Wrapper method for truediv Wrapper method for floordiv Wrapper method for mod Wrapper method for pow Wrapper method for radd Wrapper method for rsub Wrapper method for rmul Wrapper method for rtruediv Wrapper method for rtruediv Wrapper method for rfloordiv Wrapper method for rmod Wrapper method for rpow Wrapper for comparison method lt Wrapper for comparison method gt Wrapper for comparison method le Continued on next page Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.71 – continued from previous page Panel.ge(other) Wrapper for comparison method ge Panel.ne(other) Wrapper for comparison method ne Panel.eq(other) Wrapper for comparison method eq pandas.Panel.add Panel.add(other, axis=0) Wrapper method for add Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.sub Panel.sub(other, axis=0) Wrapper method for sub Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.mul Panel.mul(other, axis=0) Wrapper method for mul Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.div Panel.div(other, axis=0) Wrapper method for truediv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel 33.5. Panel 1327 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.truediv Panel.truediv(other, axis=0) Wrapper method for truediv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.floordiv Panel.floordiv(other, axis=0) Wrapper method for floordiv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.mod Panel.mod(other, axis=0) Wrapper method for mod Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.pow Panel.pow(other, axis=0) Wrapper method for pow Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.radd Panel.radd(other, axis=0) Wrapper method for radd 1328 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rsub Panel.rsub(other, axis=0) Wrapper method for rsub Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rmul Panel.rmul(other, axis=0) Wrapper method for rmul Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rdiv Panel.rdiv(other, axis=0) Wrapper method for rtruediv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rtruediv Panel.rtruediv(other, axis=0) Wrapper method for rtruediv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel 33.5. Panel 1329 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.rfloordiv Panel.rfloordiv(other, axis=0) Wrapper method for rfloordiv Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rmod Panel.rmod(other, axis=0) Wrapper method for rmod Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.rpow Panel.rpow(other, axis=0) Wrapper method for rpow Parameters other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns Panel pandas.Panel.lt Panel.lt(other) Wrapper for comparison method lt pandas.Panel.gt Panel.gt(other) Wrapper for comparison method gt pandas.Panel.le Panel.le(other) Wrapper for comparison method le 1330 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.ge Panel.ge(other) Wrapper for comparison method ge pandas.Panel.ne Panel.ne(other) Wrapper for comparison method ne pandas.Panel.eq Panel.eq(other) Wrapper for comparison method eq 33.5.7 Function application, GroupBy Panel.apply(func[, axis]) Panel.groupby(function[, axis]) Applies function along input axis of the Panel Group data on given axis, returning GroupBy object pandas.Panel.apply Panel.apply(func, axis=’major’, **kwargs) Applies function along input axis of the Panel Parameters func : function Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, then the combination of major_axis/minor_axis will be passed a Series axis : {‘major’, ‘minor’, ‘items’} Additional keyword arguments will be passed as keywords to the function Returns result : Pandas Object Examples >>> >>> >>> >>> p.apply(numpy.sqrt) # returns a Panel p.apply(lambda x: x.sum(), axis=0) # equiv to p.sum(0) p.apply(lambda x: x.sum(), axis=1) # equiv to p.sum(1) p.apply(lambda x: x.sum(), axis=2) # equiv to p.sum(2) pandas.Panel.groupby Panel.groupby(function, axis=’major’) Group data on given axis, returning GroupBy object Parameters function : callable Mapping function for chosen access 33.5. Panel 1331 pandas: powerful Python data analysis toolkit, Release 0.16.1 axis : {‘major’, ‘minor’, ‘items’}, default ‘major’ Returns grouped : PanelGroupBy 33.5.8 Computations / Descriptive Stats Panel.abs() Panel.clip([lower, upper, out, axis]) Panel.clip_lower(threshold[, axis]) Panel.clip_upper(threshold[, axis]) Panel.count([axis]) Panel.cummax([axis, dtype, out, skipna]) Panel.cummin([axis, dtype, out, skipna]) Panel.cumprod([axis, dtype, out, skipna]) Panel.cumsum([axis, dtype, out, skipna]) Panel.max([axis, skipna, level, numeric_only]) Panel.mean([axis, skipna, level, numeric_only]) Panel.median([axis, skipna, level, numeric_only]) Panel.min([axis, skipna, level, numeric_only]) Panel.pct_change([periods, fill_method, ...]) Panel.prod([axis, skipna, level, numeric_only]) Panel.sem([axis, skipna, level, ddof, ...]) Panel.skew([axis, skipna, level, numeric_only]) Panel.sum([axis, skipna, level, numeric_only]) Panel.std([axis, skipna, level, ddof, ...]) Panel.var([axis, skipna, level, ddof, ...]) Return an object with absolute value taken. Trim values at input threshold(s) Return copy of the input with values below given value(s) truncated Return copy of input with values above given value(s) truncated Return number of observations over requested axis. Return cumulative max over requested axis. Return cumulative min over requested axis. Return cumulative prod over requested axis. Return cumulative sum over requested axis. This method returns the maximum of the values in the object. Return the mean of the values for the requested axis Return the median of the values for the requested axis This method returns the minimum of the values in the object. Percent change over given number of periods. Return the product of the values for the requested axis Return unbiased standard error of the mean over requested axis. Return unbiased skew over requested axis Return the sum of the values for the requested axis Return unbiased standard deviation over requested axis. Return unbiased variance over requested axis. pandas.Panel.abs Panel.abs() Return an object with absolute value taken. Only applicable to objects that are all numeric Returns abs: type of caller pandas.Panel.clip Panel.clip(lower=None, upper=None, out=None, axis=None) Trim values at input threshold(s) Parameters lower : float or array_like, default None upper : float or array_like, default None axis : int or string axis name, optional Align object with lower and upper along the given axis. Returns clipped : Series Examples >>> df 0 1332 1 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 0 0.335232 -1.256177 1 -1.367855 0.746646 2 0.027753 -1.176076 3 0.230930 -0.679613 4 1.261967 0.570967 >>> df.clip(-1.0, 0.5) 0 1 0 0.335232 -1.000000 1 -1.000000 0.500000 2 0.027753 -1.000000 3 0.230930 -0.679613 4 0.500000 0.500000 >>> t 0 -0.3 1 -0.2 2 -0.1 3 0.0 4 0.1 dtype: float64 >>> df.clip(t, t + 1, axis=0) 0 1 0 0.335232 -0.300000 1 -0.200000 0.746646 2 0.027753 -0.100000 3 0.230930 0.000000 4 1.100000 0.570967 pandas.Panel.clip_lower Panel.clip_lower(threshold, axis=None) Return copy of the input with values below given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.Panel.clip_upper Panel.clip_upper(threshold, axis=None) Return copy of input with values above given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip 33.5. Panel 1333 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.count Panel.count(axis=’major’) Return number of observations over requested axis. Parameters axis : {‘items’, ‘major’, ‘minor’} or {0, 1, 2} Returns count : DataFrame pandas.Panel.cummax Panel.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative max over requested axis. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns max : DataFrame pandas.Panel.cummin Panel.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative min over requested axis. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns min : DataFrame pandas.Panel.cumprod Panel.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative prod over requested axis. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns prod : DataFrame pandas.Panel.cumsum Panel.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative sum over requested axis. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns sum : DataFrame 1334 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.max Panel.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns max : DataFrame or Panel (if level specified) pandas.Panel.mean Panel.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the mean of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mean : DataFrame or Panel (if level specified) pandas.Panel.median Panel.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the median of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame 33.5. Panel 1335 pandas: powerful Python data analysis toolkit, Release 0.16.1 numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns median : DataFrame or Panel (if level specified) pandas.Panel.min Panel.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns min : DataFrame or Panel (if level specified) pandas.Panel.pct_change Panel.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs) Percent change over given number of periods. Parameters periods : int, default 1 Periods to shift for forming percent change fill_method : str, default ‘pad’ How to handle NAs before computing percent changes limit : int, default None The number of consecutive NAs to fill before stopping freq : DateOffset, timedelta, or offset alias string, optional Increment to use from time series API (e.g. ‘M’ or BDay()) Returns chg : NDFrame Notes By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument. 1336 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.prod Panel.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : DataFrame or Panel (if level specified) pandas.Panel.sem Panel.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sem : DataFrame or Panel (if level specified) pandas.Panel.skew Panel.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased skew over requested axis Normalized by N-1 Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame 33.5. Panel 1337 pandas: powerful Python data analysis toolkit, Release 0.16.1 numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns skew : DataFrame or Panel (if level specified) pandas.Panel.sum Panel.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the sum of the values for the requested axis Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sum : DataFrame or Panel (if level specified) pandas.Panel.std Panel.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard deviation over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns std : DataFrame or Panel (if level specified) pandas.Panel.var Panel.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument 1338 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns var : DataFrame or Panel (if level specified) 33.5.9 Reindexing / Selection / Label manipulation Panel.add_prefix(prefix) Panel.add_suffix(suffix) Panel.drop(labels[, axis, level, inplace, ...]) Panel.equals(other) Panel.filter([items, like, regex, axis]) Panel.first(offset) Panel.last(offset) Panel.reindex([items, major_axis, minor_axis]) Panel.reindex_axis(labels[, axis, method, ...]) Panel.reindex_like(other[, method, copy, limit]) Panel.rename([items, major_axis, minor_axis]) Panel.sample([n, frac, replace, weights, ...]) Panel.select(crit[, axis]) Panel.take(indices[, axis, convert, is_copy]) Panel.truncate([before, after, axis, copy]) Concatenate prefix string with panel items names. Concatenate suffix string with panel items names Return new object with labels in requested axis removed Determines if two NDFrame objects contain the same elements. Restrict the info axis to set of items or wildcard Convenience method for subsetting initial periods of time series data Convenience method for subsetting final periods of time series data Conform Panel to new index with optional filling logic, placing NA/NaN in Conform input object to new index with optional filling logic, placing NA/N return an object with matching indicies to myself Alter axes input function or functions. Returns a random sample of items from an axis of object. Return data corresponding to axis labels matching criteria Analogous to ndarray.take Truncates a sorted NDFrame before and/or after some particular dates. pandas.Panel.add_prefix Panel.add_prefix(prefix) Concatenate prefix string with panel items names. Parameters prefix : string Returns with_prefix : type of caller pandas.Panel.add_suffix Panel.add_suffix(suffix) Concatenate suffix string with panel items names Parameters suffix : string Returns with_suffix : type of caller 33.5. Panel 1339 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.drop Panel.drop(labels, axis=0, level=None, inplace=False, errors=’raise’) Return new object with labels in requested axis removed Parameters labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : type of caller pandas.Panel.equals Panel.equals(other) Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal. pandas.Panel.filter Panel.filter(items=None, like=None, regex=None, axis=None) Restrict the info axis to set of items or wildcard Parameters items : list-like List of info axis to restrict to (must not all be present) like : string Keep info axis where “arg in col == True” regex : string (regular expression) Keep info axis with re.search(regex, col) == True axis : int or None The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with []. For example, df = DataFrame({’a’: [1, 2, 3, 4]]}); df[’a’]. So, the DataFrame columns are the info axis. Notes Arguments are mutually exclusive, but this is not checked for 1340 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.first Panel.first(offset) Convenience method for subsetting initial periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘10D’) -> First 10 days pandas.Panel.last Panel.last(offset) Convenience method for subsetting final periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘5M’) -> Last 5 months pandas.Panel.reindex Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs) Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters items, major_axis, minor_axis : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value 33.5. Panel 1341 pandas: powerful Python data analysis toolkit, Release 0.16.1 limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : Panel Examples >>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C']) pandas.Panel.reindex_axis Panel.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan) Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters labels : array-like New labels / index to conform to. Preferably an Index object to avoid duplicating data axis : {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’} method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : Panel See also: reindex, reindex_like Examples >>> df.reindex_axis(['A', 'B', 'C'], axis=1) 1342 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.reindex_like Panel.reindex_like(other, method=None, copy=True, limit=None) return an object with matching indicies to myself Parameters other : Object method : string or None copy : boolean, default True limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : same as input Notes Like calling s.reindex(index=other.index, columns=other.columns, method=...) pandas.Panel.rename Panel.rename(items=None, major_axis=None, minor_axis=None, **kwargs) Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters items, major_axis, minor_axis : dict-like or function, optional Transformation to apply to that axis values copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new Panel. If True then value of copy is ignored. Returns renamed : Panel (new object) pandas.Panel.sample Panel.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None) Returns a random sample of items from an axis of object. Parameters n : int, optional Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None. frac : float, optional Fraction of axis items to return. Cannot be used with n. replace : boolean, optional Sample with or without replacement. Default = False. weights : str or ndarray-like, optional 33.5. Panel 1343 pandas: powerful Python data analysis toolkit, Release 0.16.1 Default ‘None’ results in equal probability weighting. If called on a DataFrame, will accept the name of a column when axis = 0. Weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed. random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : int or string, optional Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels). Returns Same type as caller. pandas.Panel.select Panel.select(crit, axis=0) Return data corresponding to axis labels matching criteria Parameters crit : function To be called on each index (label). Should return True or False axis : int Returns selection : type of caller pandas.Panel.take Panel.take(indices, axis=0, convert=True, is_copy=True) Analogous to ndarray.take Parameters indices : list / array of ints axis : int, default 0 convert : translate neg to pos indices (default) is_copy : mark the returned frame as a copy Returns taken : type of caller pandas.Panel.truncate Panel.truncate(before=None, after=None, axis=None, copy=True) Truncates a sorted NDFrame before and/or after some particular dates. Parameters before : date Truncate before date after : date Truncate after date axis : the truncation axis, defaults to the stat axis copy : boolean, default is True, 1344 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 return a copy of the truncated section Returns truncated : type of caller 33.5.10 Missing data handling Panel.dropna([axis, how, inplace]) Panel.fillna([value, method, axis, inplace, ...]) Drop 2D from panel, holding passed axis constant Fill NA/NaN values using the specified method pandas.Panel.dropna Panel.dropna(axis=0, how=’any’, inplace=False) Drop 2D from panel, holding passed axis constant Parameters axis : int, default 0 Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain amount of NA data how : {‘all’, ‘any’}, default ‘any’ ‘any’: one or more values are NA in the DataFrame along the axis. For ‘all’ they all must be. inplace : bool, default False If True, do operation inplace and return None. Returns dropped : Panel pandas.Panel.fillna Panel.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) Fill NA/NaN values using the specified method Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. axis : {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’} inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None 33.5. Panel 1345 pandas: powerful Python data analysis toolkit, Release 0.16.1 If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns filled : Panel See also: reindex, asfreq 33.5.11 Reshaping, sorting, transposing Panel.sort_index([axis, ascending]) Panel.swaplevel(i, j[, axis]) Panel.transpose(*args, **kwargs) Panel.swapaxes(axis1, axis2[, copy]) Panel.conform(frame[, axis]) Sort object by labels (along an axis) Swap levels i and j in a MultiIndex on a particular axis Permute the dimensions of the Panel Interchange axes and swap values axes appropriately Conform input DataFrame to align with chosen axis pair. pandas.Panel.sort_index Panel.sort_index(axis=0, ascending=True) Sort object by labels (along an axis) Parameters axis : {0, 1} Sort index/rows versus columns ascending : boolean, default True Sort ascending vs. descending Returns sorted_obj : type of caller pandas.Panel.swaplevel Panel.swaplevel(i, j, axis=0) Swap levels i and j in a MultiIndex on a particular axis Parameters i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns swapped : type of caller (new object) pandas.Panel.transpose Panel.transpose(*args, **kwargs) Permute the dimensions of the Panel Parameters args : three positional arguments: each oneof {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’} 1346 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 copy : boolean, default False Make a copy of the underlying data. Mixed-dtype data will always result in a copy Returns y : same as input Examples >>> p.transpose(2, 0, 1) >>> p.transpose(2, 0, 1, copy=True) pandas.Panel.swapaxes Panel.swapaxes(axis1, axis2, copy=True) Interchange axes and swap values axes appropriately Returns y : same as input pandas.Panel.conform Panel.conform(frame, axis=’items’) Conform input DataFrame to align with chosen axis pair. Parameters frame : DataFrame axis : {‘items’, ‘major’, ‘minor’} Axis the input corresponds to. E.g., if axis=’major’, then the frame’s columns would be items, and the index would be values of the minor axis Returns DataFrame 33.5.12 Combining / joining / merging Panel.join(other[, how, lsuffix, rsuffix]) Panel.update(other[, join, overwrite, ...]) Join items with other Panel either on major and minor axes column Modify Panel in place using non-NA values from passed Panel, or object coercible to pandas.Panel.join Panel.join(other, how=’left’, lsuffix=’‘, rsuffix=’‘) Join items with other Panel either on major and minor axes column Parameters other : Panel or list of Panels Index should be similar to one of the columns in this one how : {‘left’, ‘right’, ‘outer’, ‘inner’} How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise * left: use calling frame’s index * right: use input frame’s index * outer: form union of indexes * inner: use intersection of indexes lsuffix : string Suffix to use from left frame’s overlapping columns 33.5. Panel 1347 pandas: powerful Python data analysis toolkit, Release 0.16.1 rsuffix : string Suffix to use from right frame’s overlapping columns Returns joined : Panel pandas.Panel.update Panel.update(other, join=’left’, overwrite=True, filter_func=None, raise_conflict=False) Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items Parameters other : Panel, or object coercible to Panel join : How to join individual DataFrames {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’ overwrite : boolean, default True If True then overwrite values for common keys in the calling panel filter_func : callable(1d-array) -> 1d-array, default None Can choose to replace values other than NA. Return True for values that should be updated raise_conflict : bool If True, will raise an error if a DataFrame and other both contain data in the same place. 33.5.13 Time series-related Panel.asfreq(freq[, method, how, normalize]) Panel.shift(*args, **kwargs) Panel.resample(rule[, how, axis, ...]) Panel.tz_convert(tz[, axis, level, copy]) Panel.tz_localize(*args, **kwargs) Convert all TimeSeries inside to specified frequency using DateOffset objects. Shift index by desired number of periods with an optional time freq. Convenience method for frequency conversion and resampling of regular time-se Convert tz-aware axis to target time zone. Localize tz-naive TimeSeries to target time zone pandas.Panel.asfreq Panel.asfreq(freq, method=None, how=None, normalize=False) Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values. Parameters freq : DateOffset object, or string method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None} Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method how : {‘start’, ‘end’}, default end For PeriodIndex only, see PeriodIndex.asfreq normalize : bool, default False Whether to reset output index to midnight 1348 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns converted : type of caller pandas.Panel.shift Panel.shift(*args, **kwargs) Shift index by desired number of periods with an optional time freq. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. This is different from the behavior of DataFrame.shift() Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, optional axis : {‘items’, ‘major’, ‘minor’} or {0, 1, 2} Returns shifted : Panel pandas.Panel.resample Panel.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=’start’, kind=None, loffset=None, limit=None, base=0) Convenience method for frequency conversion and resampling of regular time-series data. Parameters rule : string the offset string or object representing target conversion how : string method for down- or re-sampling, default to ‘mean’ for downsampling axis : int, optional, default 0 fill_method : string, default None fill_method for upsampling closed : {‘right’, ‘left’} Which side of bin interval is closed label : {‘right’, ‘left’} Which bin edge label to label bucket with convention : {‘start’, ‘end’, ‘s’, ‘e’} kind : “period”/”timestamp” loffset : timedelta Adjust the resampled time labels limit : int, default None Maximum size gap to when reindexing with fill_method base : int, default 0 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0 33.5. Panel 1349 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel.tz_convert Panel.tz_convert(tz, axis=0, level=None, copy=True) Convert tz-aware axis to target time zone. Parameters tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Raises TypeError If the axis is tz-naive. pandas.Panel.tz_localize Panel.tz_localize(*args, **kwargs) Localize tz-naive TimeSeries to target time zone Parameters tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Raises TypeError If the TimeSeries is tz-aware and tz is not None. 33.5.14 Serialization / IO / Conversion Panel.from_dict(data[, intersect, orient, dtype]) Panel.to_pickle(path) Panel.to_excel(path[, na_rep, engine]) 1350 Construct Panel from dict of DataFrame objects Pickle (serialize) object to input file path Write each DataFrame in Panel to a separate excel sheet Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Panel.to_hdf(path_or_buf, key, **kwargs) Panel.to_json([path_or_buf, orient, ...]) Panel.to_sparse([fill_value, kind]) Panel.to_frame([filter_observations]) Panel.to_clipboard([excel, sep]) Table 33.79 – continued from previou activate the HDFStore Convert the object to a JSON string. Convert to SparsePanel Transform wide format into long (stacked) format as DataFrame whose colum Attempt to write text representation of object to the system clipboard This can pandas.Panel.from_dict classmethod Panel.from_dict(data, intersect=False, orient=’items’, dtype=None) Construct Panel from dict of DataFrame objects Parameters data : dict {field : DataFrame} intersect : boolean Intersect indexes of input DataFrames orient : {‘items’, ‘minor’}, default ‘items’ The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’ Returns Panel pandas.Panel.to_pickle Panel.to_pickle(path) Pickle (serialize) object to input file path Parameters path : string File path pandas.Panel.to_excel Panel.to_excel(path, na_rep=’‘, engine=None, **kwargs) Write each DataFrame in Panel to a separate excel sheet Parameters path : string or ExcelWriter object File path or existing ExcelWriter na_rep : string, default ‘’ Missing data representation engine : string, default None write engine to use - you io.excel.xlsx.writer, io.excel.xlsm.writer. can also set this via the io.excel.xls.writer, options and Other Parameters float_format : string, default None Format string for floating point numbers 33.5. Panel 1351 pandas: powerful Python data analysis toolkit, Release 0.16.1 cols : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame Notes Keyword arguments (and na_rep) are passed to the to_excel method for each DataFrame written. pandas.Panel.to_hdf Panel.to_hdf(path_or_buf, key, **kwargs) activate the HDFStore Parameters path_or_buf : the path (string) or buffer to put the store key : string indentifier for the group in the store mode : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’ ’r’ Read-only; no data can be modified. ’w’ Write; a new file is created (an existing file with the same name would be deleted). ’a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created. ’r+’ It is similar to ’a’, but the file must already exist. format : ‘fixed(f)|table(t)’, default is ‘fixed’ fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False For Table formats, append the input data to the existing complevel : int, 1-9, default 0 1352 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If a complib is specified compression will be applied where possible complib : {‘zlib’, ‘bzip2’, ‘lzo’, ‘blosc’, None}, default None If complevel is > 0 apply compression to objects written in the store wherever possible fletcher32 : bool, default False If applying compression use the fletcher32 checksum pandas.Panel.to_json Panel.to_json(path_or_buf=None, orient=None, date_format=’epoch’, force_ascii=True, date_unit=’ms’, default_handler=None) Convert the object to a JSON string. double_precision=10, Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters path_or_buf : the path or buffer to write the result string if this is None, return a StringIO of the converted string orient : string • Series – default is ‘index’ – allowed values are: {‘split’,’records’,’index’} • DataFrame – default is ‘columns’ – allowed values are: {‘split’,’records’,’index’,’columns’,’values’} • The format of the JSON string – split : dict like {index -> [index], columns -> [columns], data -> [values]} – records : list like [{column -> value}, ... , {column -> value}] – index : dict like {index -> {column -> value}} – columns : dict like {column -> {index -> value}} – values : just the values array date_format : {‘epoch’, ‘iso’} Type of date conversion. epoch = epoch milliseconds, iso‘ = ISO8601, default is epoch. double_precision : The number of decimal places to use when encoding floating point values, default 10. force_ascii : force encoded string to be ASCII, default True. date_unit : string, default ‘ms’ (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None 33.5. Panel 1353 pandas: powerful Python data analysis toolkit, Release 0.16.1 Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. Returns same type as input object with filtered info axis pandas.Panel.to_sparse Panel.to_sparse(fill_value=None, kind=’block’) Convert to SparsePanel Parameters fill_value : float, default NaN kind : {‘block’, ‘integer’} Returns y : SparseDataFrame pandas.Panel.to_frame Panel.to_frame(filter_observations=True) Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose index is a MultiIndex formed of the Panel’s major and minor axes. Parameters filter_observations : boolean, default True Drop (major, minor) pairs without a complete set of observations across all the items Returns y : DataFrame pandas.Panel.to_clipboard Panel.to_clipboard(excel=None, sep=None, **kwargs) Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. Parameters excel : boolean, defaults to True if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard sep : optional, defaults to tab other keywords are passed to to_csv Notes Requirements for your platform • Linux: xclip, or xsel (with gtk or PyQt4 modules) • Windows: none • OS X: none 1354 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 33.6 Panel4D 33.6.1 Constructor Panel4D([data, labels, items, major_axis, ...]) Represents a 4 dimensional structured pandas.Panel4D class pandas.Panel4D(data=None, labels=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None) Represents a 4 dimensional structured Parameters data : ndarray (labels x items x major x minor), or dict of Panels labels : Index or array-like items : Index or array-like major_axis : Index or array-like: axis=2 minor_axis : Index or array-like: axis=3 dtype : dtype, default None Data type to force, otherwise infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input Attributes at axes blocks dtypes empty ftypes iat iloc ix loc ndim shape size values Fast label-based scalar accessor index(es) of the NDFrame Internal property, property synonym for as_blocks() Return the dtypes in this object True if NDFrame is entirely empty [no items] Return the ftypes (indication of sparse/dense and dtype) in this object. Fast integer location scalar accessor. Purely integer-location based indexing for selection by position. A primarily label-location based indexer, with integer position fallback. Purely label-location based indexer for selection by label. Number of axes / array dimensions tuple of axis dimensions number of elements in the NDFrame Numpy representation of NDFrame pandas.Panel4D.at Panel4D.at Fast label-based scalar accessor Similarly to loc, at provides label based scalar lookups. You can also set using these indexers. 33.6. Panel4D 1355 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.axes Panel4D.axes index(es) of the NDFrame pandas.Panel4D.blocks Panel4D.blocks Internal property, property synonym for as_blocks() pandas.Panel4D.dtypes Panel4D.dtypes Return the dtypes in this object pandas.Panel4D.empty Panel4D.empty True if NDFrame is entirely empty [no items] pandas.Panel4D.ftypes Panel4D.ftypes Return the ftypes (indication of sparse/dense and dtype) in this object. pandas.Panel4D.iat Panel4D.iat Fast integer location scalar accessor. Similarly to iloc, iat provides integer based lookups. You can also set using these indexers. pandas.Panel4D.iloc Panel4D.iloc Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: •An integer, e.g. 5. •A list or array of integers, e.g. [4, 3, 0]. •A slice object with ints, e.g. 1:7. •A boolean array. 1356 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics). See more at Selection by Position pandas.Panel4D.ix Panel4D.ix A primarily label-location based indexer, with integer position fallback. .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes. However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc. See more at Advanced Indexing. pandas.Panel4D.loc Panel4D.loc Purely label-location based indexer for selection by label. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: •A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index, and never as an integer position along the index). •A list or array of labels, e.g. [’a’, ’b’, ’c’]. •A slice object with labels, e.g. ’a’:’f’ (note that contrary to usual python slices, both the start and the stop are included!). •A boolean array. .loc will raise a KeyError when the items are not found. See more at Selection by Label pandas.Panel4D.ndim Panel4D.ndim Number of axes / array dimensions pandas.Panel4D.shape Panel4D.shape tuple of axis dimensions 33.6. Panel4D 1357 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.size Panel4D.size number of elements in the NDFrame pandas.Panel4D.values Panel4D.values Numpy representation of NDFrame Notes The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. is_copy Methods abs() add(other[, axis]) add_prefix(prefix) add_suffix(suffix) align(other[, join, axis, level, copy, ...]) all([axis, bool_only, skipna, level]) any([axis, bool_only, skipna, level]) apply(func[, axis]) as_blocks() as_matrix() asfreq(freq[, method, how, normalize]) astype(dtype[, copy, raise_on_error]) at_time(time[, asof]) between_time(start_time, end_time[, ...]) bfill([axis, inplace, limit, downcast]) bool() clip([lower, upper, out, axis]) clip_lower(threshold[, axis]) clip_upper(threshold[, axis]) compound([axis, skipna, level]) conform(frame[, axis]) consolidate([inplace]) convert_objects([convert_dates, ...]) copy([deep]) count([axis]) cummax([axis, dtype, out, skipna]) cummin([axis, dtype, out, skipna]) 1358 Return an object with absolute value taken. Wrapper method for add Concatenate prefix string with panel items names. Concatenate suffix string with panel items names Align two object on their axes with the Return whether all elements are True over requested axis Return whether any element is True over requested axis Applies function along input axis of the Panel Convert the frame to a dict of dtype -> Constructor Types that each has a homoge Convert all TimeSeries inside to specified frequency using DateOffset objects. Cast object to input numpy.dtype Select values at particular time of day (e.g. Select values between particular times of the day (e.g., 9:00-9:30 AM) Synonym for NDFrame.fillna(method=’bfill’) Return the bool of a single element PandasObject Trim values at input threshold(s) Return copy of the input with values below given value(s) truncated Return copy of input with values above given value(s) truncated Return the compound percentage of the values for the requested axis Conform input DataFrame to align with chosen axis pair. Compute NDFrame with “consolidated” internals (data of each dtype grouped tog Attempt to infer better dtype for object columns Make a copy of this object Return number of observations over requested axis. Return cumulative max over requested axis. Return cumulative min over requested axis. Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 cumprod([axis, dtype, out, skipna]) cumsum([axis, dtype, out, skipna]) describe([percentile_width, percentiles, ...]) div(other[, axis]) divide(other[, axis]) drop(labels[, axis, level, inplace, errors]) dropna(*args, **kwargs) eq(other) equals(other) ffill([axis, inplace, limit, downcast]) fillna([value, method, axis, inplace, ...]) filter(*args, **kwargs) first(offset) floordiv(other[, axis]) fromDict(data[, intersect, orient, dtype]) from_dict(data[, intersect, orient, dtype]) ge(other) get(key[, default]) get_dtype_counts() get_ftype_counts() get_value(*args, **kwargs) get_values() groupby(*args, **kwargs) gt(other) head([n]) interpolate([method, axis, limit, inplace, ...]) isnull() iteritems() iterkv(*args, **kwargs) join(*args, **kwargs) keys() kurt([axis, skipna, level, numeric_only]) kurtosis([axis, skipna, level, numeric_only]) last(offset) le(other) load(path) lt(other) mad([axis, skipna, level]) major_xs(key[, copy]) mask(cond[, other, inplace, axis, level, ...]) max([axis, skipna, level, numeric_only]) mean([axis, skipna, level, numeric_only]) median([axis, skipna, level, numeric_only]) min([axis, skipna, level, numeric_only]) minor_xs(key[, copy]) mod(other[, axis]) mul(other[, axis]) multiply(other[, axis]) ne(other) notnull() pct_change([periods, fill_method, limit, freq]) pop(item) 33.6. Panel4D Table 33.82 – continued from previous page Return cumulative prod over requested axis. Return cumulative sum over requested axis. Generate various summary statistics, excluding NaN values. Wrapper method for truediv Wrapper method for truediv Return new object with labels in requested axis removed Wrapper for comparison method eq Determines if two NDFrame objects contain the same elements. Synonym for NDFrame.fillna(method=’ffill’) Fill NA/NaN values using the specified method Convenience method for subsetting initial periods of time series data Wrapper method for floordiv Construct Panel from dict of DataFrame objects Construct Panel from dict of DataFrame objects Wrapper for comparison method ge Get item from object for given key (DataFrame column, Panel slice, etc.). Return the counts of dtypes in this object Return the counts of ftypes in this object Quickly retrieve single value at (item, major, minor) location same as values (but handles sparseness conversions) Wrapper for comparison method gt Interpolate values according to different methods. Return a boolean same-sized object indicating if the values are null Iterate over (label, values) on info axis iteritems alias used to get around 2to3. Deprecated Get the ‘info axis’ (see Indexing for more) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis Return unbiased kurtosis over requested axis using Fishers definition of kurtosis Convenience method for subsetting final periods of time series data Wrapper for comparison method le Deprecated. Wrapper for comparison method lt Return the mean absolute deviation of the values for the requested axis Return slice of panel along major axis Return an object of same shape as self and whose corresponding entries are from This method returns the maximum of the values in the object. Return the mean of the values for the requested axis Return the median of the values for the requested axis This method returns the minimum of the values in the object. Return slice of panel along minor axis Wrapper method for mod Wrapper method for mul Wrapper method for mul Wrapper for comparison method ne Return a boolean same-sized object indicating if the values are Percent change over given number of periods. Return item and drop from frame. 1359 pandas: powerful Python data analysis toolkit, Release 0.16.1 pow(other[, axis]) prod([axis, skipna, level, numeric_only]) product([axis, skipna, level, numeric_only]) radd(other[, axis]) rdiv(other[, axis]) reindex([items, major_axis, minor_axis]) reindex_axis(labels[, axis, method, level, ...]) reindex_like(other[, method, copy, limit]) rename([items, major_axis, minor_axis]) rename_axis(mapper[, axis, copy, inplace]) replace([to_replace, value, inplace, limit, ...]) resample(rule[, how, axis, fill_method, ...]) rfloordiv(other[, axis]) rmod(other[, axis]) rmul(other[, axis]) rpow(other[, axis]) rsub(other[, axis]) rtruediv(other[, axis]) sample([n, frac, replace, weights, ...]) save(path) select(crit[, axis]) sem([axis, skipna, level, ddof, numeric_only]) set_axis(axis, labels) set_value(*args, **kwargs) shift(*args, **kwargs) skew([axis, skipna, level, numeric_only]) slice_shift([periods, axis]) sort_index([axis, ascending]) squeeze() std([axis, skipna, level, ddof, numeric_only]) sub(other[, axis]) subtract(other[, axis]) sum([axis, skipna, level, numeric_only]) swapaxes(axis1, axis2[, copy]) swaplevel(i, j[, axis]) tail([n]) take(indices[, axis, convert, is_copy]) toLong(*args, **kwargs) to_clipboard([excel, sep]) to_dense() to_excel(*args, **kwargs) to_frame(*args, **kwargs) to_hdf(path_or_buf, key, **kwargs) to_json([path_or_buf, orient, date_format, ...]) to_long(*args, **kwargs) to_msgpack([path_or_buf]) to_pickle(path) to_sparse(*args, **kwargs) to_sql(name, con[, flavor, schema, ...]) transpose(*args, **kwargs) truediv(other[, axis]) truncate([before, after, axis, copy]) 1360 Table 33.82 – continued from previous page Wrapper method for pow Return the product of the values for the requested axis Return the product of the values for the requested axis Wrapper method for radd Wrapper method for rtruediv Conform Panel to new index with optional filling logic, placing NA/NaN in locat Conform input object to new index with optional filling logic, placing NA/NaN in return an object with matching indicies to myself Alter axes input function or functions. Alter index and / or columns using input function or functions. Replace values given in ‘to_replace’ with ‘value’. Convenience method for frequency conversion and resampling of regular time-se Wrapper method for rfloordiv Wrapper method for rmod Wrapper method for rmul Wrapper method for rpow Wrapper method for rsub Wrapper method for rtruediv Returns a random sample of items from an axis of object. Deprecated. Return data corresponding to axis labels matching criteria Return unbiased standard error of the mean over requested axis. public verson of axis assignment Quickly set single value at (item, major, minor) location Return unbiased skew over requested axis Equivalent to shift without copying data. Sort object by labels (along an axis) squeeze length 1 dimensions Return unbiased standard deviation over requested axis. Wrapper method for sub Wrapper method for sub Return the sum of the values for the requested axis Interchange axes and swap values axes appropriately Swap levels i and j in a MultiIndex on a particular axis Analogous to ndarray.take Attempt to write text representation of object to the system clipboard This can be Return dense representation of NDFrame (as opposed to sparse) activate the HDFStore Convert the object to a JSON string. msgpack (serialize) object to input file path Pickle (serialize) object to input file path Write records stored in a DataFrame to a SQL database. Permute the dimensions of the Panel Wrapper method for truediv Truncates a sorted NDFrame before and/or after some particular dates. Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.82 – continued from previous page tshift([periods, freq, axis]) tz_convert(tz[, axis, level, copy]) tz_localize(*args, **kwargs) update(other[, join, overwrite, ...]) var([axis, skipna, level, ddof, numeric_only]) where(cond[, other, inplace, axis, level, ...]) xs(key[, axis, copy]) Convert tz-aware axis to target time zone. Localize tz-naive TimeSeries to target time zone Modify Panel in place using non-NA values from passed Panel, or object coercib Return unbiased variance over requested axis. Return an object of same shape as self and whose corresponding entries are from Return slice of panel along selected axis pandas.Panel4D.abs Panel4D.abs() Return an object with absolute value taken. Only applicable to objects that are all numeric Returns abs: type of caller pandas.Panel4D.add Panel4D.add(other, axis=0) Wrapper method for add Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.add_prefix Panel4D.add_prefix(prefix) Concatenate prefix string with panel items names. Parameters prefix : string Returns with_prefix : type of caller pandas.Panel4D.add_suffix Panel4D.add_suffix(suffix) Concatenate suffix string with panel items names Parameters suffix : string Returns with_suffix : type of caller pandas.Panel4D.align Panel4D.align(other, join=’outer’, axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0) Align two object on their axes with the specified join method for each axis Index 33.6. Panel4D 1361 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters other : DataFrame or Series join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None) level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level copy : boolean, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value method : str, default None limit : int, default None fill_axis : {0, 1}, default 0 Filling axis, method and limit Returns (left, right) : (type of input, type of other) Aligned objects pandas.Panel4D.all Panel4D.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether all elements are True over requested axis Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns all : Panel or Panel4D (if level specified) pandas.Panel4D.any Panel4D.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether any element is True over requested axis Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True 1362 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns any : Panel or Panel4D (if level specified) pandas.Panel4D.apply Panel4D.apply(func, axis=’major’, **kwargs) Applies function along input axis of the Panel Parameters func : function Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, then the combination of major_axis/minor_axis will be passed a Series axis : {‘major’, ‘minor’, ‘items’} Additional keyword arguments will be passed as keywords to the function Returns result : Pandas Object Examples >>> >>> >>> >>> p.apply(numpy.sqrt) # returns a Panel p.apply(lambda x: x.sum(), axis=0) # equiv to p.sum(0) p.apply(lambda x: x.sum(), axis=1) # equiv to p.sum(1) p.apply(lambda x: x.sum(), axis=2) # equiv to p.sum(2) pandas.Panel4D.as_blocks Panel4D.as_blocks() Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix) Returns values : a dict of dtype -> Constructor Types pandas.Panel4D.as_matrix Panel4D.as_matrix() pandas.Panel4D.asfreq Panel4D.asfreq(freq, method=None, how=None, normalize=False) Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values. 33.6. Panel4D 1363 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters freq : DateOffset object, or string method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None} Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method how : {‘start’, ‘end’}, default end For PeriodIndex only, see PeriodIndex.asfreq normalize : bool, default False Whether to reset output index to midnight Returns converted : type of caller pandas.Panel4D.astype Panel4D.astype(dtype, copy=True, raise_on_error=True, **kwargs) Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters dtype : numpy.dtype or Python type raise_on_error : raise on invalid input kwargs : keyword arguments to pass on to the constructor Returns casted : type of caller pandas.Panel4D.at_time Panel4D.at_time(time, asof=False) Select values at particular time of day (e.g. 9:30AM) Parameters time : datetime.time or string Returns values_at_time : type of caller pandas.Panel4D.between_time Panel4D.between_time(start_time, end_time, include_start=True, include_end=True) Select values between particular times of the day (e.g., 9:00-9:30 AM) Parameters start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True Returns values_between_time : type of caller pandas.Panel4D.bfill Panel4D.bfill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’bfill’) 1364 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.bool Panel4D.bool() Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean pandas.Panel4D.clip Panel4D.clip(lower=None, upper=None, out=None, axis=None) Trim values at input threshold(s) Parameters lower : float or array_like, default None upper : float or array_like, default None axis : int or string axis name, optional Align object with lower and upper along the given axis. Returns clipped : Series Examples >>> df 0 1 0 0.335232 -1.256177 1 -1.367855 0.746646 2 0.027753 -1.176076 3 0.230930 -0.679613 4 1.261967 0.570967 >>> df.clip(-1.0, 0.5) 0 1 0 0.335232 -1.000000 1 -1.000000 0.500000 2 0.027753 -1.000000 3 0.230930 -0.679613 4 0.500000 0.500000 >>> t 0 -0.3 1 -0.2 2 -0.1 3 0.0 4 0.1 dtype: float64 >>> df.clip(t, t + 1, axis=0) 0 1 0 0.335232 -0.300000 1 -0.200000 0.746646 2 0.027753 -0.100000 3 0.230930 0.000000 4 1.100000 0.570967 33.6. Panel4D 1365 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.clip_lower Panel4D.clip_lower(threshold, axis=None) Return copy of the input with values below given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.Panel4D.clip_upper Panel4D.clip_upper(threshold, axis=None) Return copy of input with values above given value(s) truncated Parameters threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. Returns clipped : same type as input See also: clip pandas.Panel4D.compound Panel4D.compound(axis=None, skipna=None, level=None) Return the compound percentage of the values for the requested axis Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns compounded : Panel or Panel4D (if level specified) 1366 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.conform Panel4D.conform(frame, axis=’items’) Conform input DataFrame to align with chosen axis pair. Parameters frame : DataFrame axis : {‘items’, ‘major’, ‘minor’} Axis the input corresponds to. E.g., if axis=’major’, then the frame’s columns would be items, and the index would be values of the minor axis Returns DataFrame pandas.Panel4D.consolidate Panel4D.consolidate(inplace=False) Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user Parameters inplace : boolean, default False If False return new object, otherwise modify existing object Returns consolidated : type of caller pandas.Panel4D.convert_objects Panel4D.convert_objects(convert_dates=True, convert_numeric=False, vert_timedeltas=True, copy=True) Attempt to infer better dtype for object columns con- Parameters convert_dates : boolean, default True If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. convert_numeric : boolean, default False If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN. convert_timedeltas : boolean, default True If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT. copy : boolean, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns converted : same as input object pandas.Panel4D.copy Panel4D.copy(deep=True) Make a copy of this object Parameters deep : boolean or string, default True 33.6. Panel4D 1367 pandas: powerful Python data analysis toolkit, Release 0.16.1 Make a deep copy, i.e. also copy data Returns copy : type of caller pandas.Panel4D.count Panel4D.count(axis=’major’) Return number of observations over requested axis. Parameters axis : {‘items’, ‘major’, ‘minor’} or {0, 1, 2} Returns count : DataFrame pandas.Panel4D.cummax Panel4D.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative max over requested axis. Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns max : Panel pandas.Panel4D.cummin Panel4D.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative min over requested axis. Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns min : Panel pandas.Panel4D.cumprod Panel4D.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative prod over requested axis. Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns prod : Panel 1368 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.cumsum Panel4D.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative sum over requested axis. Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns sum : Panel pandas.Panel4D.describe Panel4D.describe(percentile_width=None, percentiles=None, include=None, exclude=None) Generate various summary statistics, excluding NaN values. Parameters percentile_width : float, deprecated The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75 percentiles : array-like, optional The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles. include, exclude : list-like, ‘all’, or None (default) Specify the form of the returned result. Either: • None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns. • A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=[’O’]) • If include is the string ‘all’, the output column-set will match the input one. Returns summary: NDFrame of summary statistics See also: DataFrame.select_dtypes Notes The output DataFrame index depends on the requested dtypes: For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles. For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items. For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments. 33.6. Panel4D 1369 pandas: powerful Python data analysis toolkit, Release 0.16.1 If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count. The include, exclude arguments are ignored for Series. pandas.Panel4D.div Panel4D.div(other, axis=0) Wrapper method for truediv Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.divide Panel4D.divide(other, axis=0) Wrapper method for truediv Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.drop Panel4D.drop(labels, axis=0, level=None, inplace=False, errors=’raise’) Return new object with labels in requested axis removed Parameters labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : type of caller pandas.Panel4D.dropna Panel4D.dropna(*args, **kwargs) 1370 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.eq Panel4D.eq(other) Wrapper for comparison method eq pandas.Panel4D.equals Panel4D.equals(other) Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal. pandas.Panel4D.ffill Panel4D.ffill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’ffill’) pandas.Panel4D.fillna Panel4D.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) Fill NA/NaN values using the specified method Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. axis : {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’} inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns filled : Panel 33.6. Panel4D 1371 pandas: powerful Python data analysis toolkit, Release 0.16.1 See also: reindex, asfreq pandas.Panel4D.filter Panel4D.filter(*args, **kwargs) pandas.Panel4D.first Panel4D.first(offset) Convenience method for subsetting initial periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘10D’) -> First 10 days pandas.Panel4D.floordiv Panel4D.floordiv(other, axis=0) Wrapper method for floordiv Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.fromDict classmethod Panel4D.fromDict(data, intersect=False, orient=’items’, dtype=None) Construct Panel from dict of DataFrame objects Parameters data : dict {field : DataFrame} intersect : boolean Intersect indexes of input DataFrames orient : {‘items’, ‘minor’}, default ‘items’ The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixeddtype data you should do), instead pass ‘minor’ Returns Panel 1372 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.from_dict classmethod Panel4D.from_dict(data, intersect=False, orient=’items’, dtype=None) Construct Panel from dict of DataFrame objects Parameters data : dict {field : DataFrame} intersect : boolean Intersect indexes of input DataFrames orient : {‘items’, ‘minor’}, default ‘items’ The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixeddtype data you should do), instead pass ‘minor’ Returns Panel pandas.Panel4D.ge Panel4D.ge(other) Wrapper for comparison method ge pandas.Panel4D.get Panel4D.get(key, default=None) Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found Parameters key : object Returns value : type of items contained in object pandas.Panel4D.get_dtype_counts Panel4D.get_dtype_counts() Return the counts of dtypes in this object pandas.Panel4D.get_ftype_counts Panel4D.get_ftype_counts() Return the counts of ftypes in this object pandas.Panel4D.get_value Panel4D.get_value(*args, **kwargs) Quickly retrieve single value at (item, major, minor) location 33.6. Panel4D 1373 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters item : item label (panel item) major : major axis label (panel item row) minor : minor axis label (panel item column) takeable : interpret the passed labels as indexers, default False Returns value : scalar value pandas.Panel4D.get_values Panel4D.get_values() same as values (but handles sparseness conversions) pandas.Panel4D.groupby Panel4D.groupby(*args, **kwargs) pandas.Panel4D.gt Panel4D.gt(other) Wrapper for comparison method gt pandas.Panel4D.head Panel4D.head(n=5) pandas.Panel4D.interpolate Panel4D.interpolate(method=’linear’, axis=0, limit=None, inplace=False, downcast=None, **kwargs) Interpolate values according to different methods. Parameters method : {‘linear’, ‘time’, ‘index’, ‘values’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘krogh’, ‘polynomial’, ‘spline’ ‘piecewise_polynomial’, ‘pchip’} • ‘linear’: ignore the index and treat the values as equally spaced. default • ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval • ‘index’, ‘values’: use the actual numerical values of the index • ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d with the order given both ‘polynomial’ and ‘spline’ requre that you also specify and order (int) e.g. df.interpolate(method=’polynomial’, order=4) • ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior: 1374 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariateinterpolation http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html axis : {0, 1}, default 0 • 0: fill column-by-column • 1: fill row-by-row limit : int, default None. Maximum number of consecutive NaNs to fill. inplace : bool, default False Update the NDFrame in place if possible. downcast : optional, ‘infer’ or None, defaults to None Downcast dtypes if possible. Returns Series or DataFrame of same shape interpolated at the NaNs See also: reindex, replace, fillna Examples Filling in NaNs >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64 pandas.Panel4D.isnull Panel4D.isnull() Return a boolean same-sized object indicating if the values are null See also: notnull boolean inverse of isnull pandas.Panel4D.iteritems Panel4D.iteritems() Iterate over (label, values) on info axis This is index for Series, columns for DataFrame, major_axis for Panel, and so on. 33.6. Panel4D 1375 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.iterkv Panel4D.iterkv(*args, **kwargs) iteritems alias used to get around 2to3. Deprecated pandas.Panel4D.join Panel4D.join(*args, **kwargs) pandas.Panel4D.keys Panel4D.keys() Get the ‘info axis’ (see Indexing for more) This is index for Series, columns for DataFrame and major_axis for Panel. pandas.Panel4D.kurt Panel4D.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns kurt : Panel or Panel4D (if level specified) pandas.Panel4D.kurtosis Panel4D.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel 1376 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns kurt : Panel or Panel4D (if level specified) pandas.Panel4D.last Panel4D.last(offset) Convenience method for subsetting final periods of time series data based on a date offset Parameters offset : string, DateOffset, dateutil.relativedelta Returns subset : type of caller Examples ts.last(‘5M’) -> Last 5 months pandas.Panel4D.le Panel4D.le(other) Wrapper for comparison method le pandas.Panel4D.load Panel4D.load(path) Deprecated. Use read_pickle instead. pandas.Panel4D.lt Panel4D.lt(other) Wrapper for comparison method lt pandas.Panel4D.mad Panel4D.mad(axis=None, skipna=None, level=None) Return the mean absolute deviation of the values for the requested axis Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None 33.6. Panel4D 1377 pandas: powerful Python data analysis toolkit, Release 0.16.1 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mad : Panel or Panel4D (if level specified) pandas.Panel4D.major_xs Panel4D.major_xs(key, copy=None) Return slice of panel along major axis Parameters key : object Major axis label copy : boolean [deprecated] Whether to make a copy of the data Returns y : DataFrame index -> minor axis, columns -> items Notes major_xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of major_xs functionality, see MultiIndex Slicers pandas.Panel4D.mask Panel4D.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller 1378 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.max Panel4D.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax. Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns max : Panel or Panel4D (if level specified) pandas.Panel4D.mean Panel4D.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the mean of the values for the requested axis Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mean : Panel or Panel4D (if level specified) pandas.Panel4D.median Panel4D.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the median of the values for the requested axis Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel 33.6. Panel4D 1379 pandas: powerful Python data analysis toolkit, Release 0.16.1 numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns median : Panel or Panel4D (if level specified) pandas.Panel4D.min Panel4D.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin. Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns min : Panel or Panel4D (if level specified) pandas.Panel4D.minor_xs Panel4D.minor_xs(key, copy=None) Return slice of panel along minor axis Parameters key : object Minor axis label copy : boolean [deprecated] Whether to make a copy of the data Returns y : DataFrame index -> major axis, columns -> items Notes minor_xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of minor_xs functionality, see MultiIndex Slicers 1380 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.mod Panel4D.mod(other, axis=0) Wrapper method for mod Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.mul Panel4D.mul(other, axis=0) Wrapper method for mul Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.multiply Panel4D.multiply(other, axis=0) Wrapper method for mul Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.ne Panel4D.ne(other) Wrapper for comparison method ne pandas.Panel4D.notnull Panel4D.notnull() Return a boolean same-sized object indicating if the values are not null See also: isnull boolean inverse of notnull 33.6. Panel4D 1381 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.pct_change Panel4D.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs) Percent change over given number of periods. Parameters periods : int, default 1 Periods to shift for forming percent change fill_method : str, default ‘pad’ How to handle NAs before computing percent changes limit : int, default None The number of consecutive NAs to fill before stopping freq : DateOffset, timedelta, or offset alias string, optional Increment to use from time series API (e.g. ‘M’ or BDay()) Returns chg : NDFrame Notes By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument. pandas.Panel4D.pop Panel4D.pop(item) Return item and drop from frame. Raise KeyError if not found. pandas.Panel4D.pow Panel4D.pow(other, axis=0) Wrapper method for pow Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.prod Panel4D.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None 1382 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : Panel or Panel4D (if level specified) pandas.Panel4D.product Panel4D.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the product of the values for the requested axis Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns prod : Panel or Panel4D (if level specified) pandas.Panel4D.radd Panel4D.radd(other, axis=0) Wrapper method for radd Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.rdiv Panel4D.rdiv(other, axis=0) Wrapper method for rtruediv Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D 33.6. Panel4D 1383 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.reindex Panel4D.reindex(items=None, major_axis=None, minor_axis=None, **kwargs) Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters items, major_axis, minor_axis : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any “compatible” value limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : Panel Examples >>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C']) pandas.Panel4D.reindex_axis Panel4D.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan) Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters labels : array-like New labels / index to conform to. Preferably an Index object to avoid duplicating data 1384 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 axis : {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’} method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional Method to use for filling holes in reindexed DataFrame: • default: don’t fill gaps • pad / ffill: propagate last valid observation forward to next valid • backfill / bfill: use next valid observation to fill gap • nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : Panel See also: reindex, reindex_like Examples >>> df.reindex_axis(['A', 'B', 'C'], axis=1) pandas.Panel4D.reindex_like Panel4D.reindex_like(other, method=None, copy=True, limit=None) return an object with matching indicies to myself Parameters other : Object method : string or None copy : boolean, default True limit : int, default None Maximum size gap to forward or backward fill Returns reindexed : same as input Notes Like calling s.reindex(index=other.index, columns=other.columns, method=...) 33.6. Panel4D 1385 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.rename Panel4D.rename(items=None, major_axis=None, minor_axis=None, **kwargs) Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters items, major_axis, minor_axis : dict-like or function, optional Transformation to apply to that axis values copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new Panel. If True then value of copy is ignored. Returns renamed : Panel (new object) pandas.Panel4D.rename_axis Panel4D.rename_axis(mapper, axis=0, copy=True, inplace=False) Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters mapper : dict-like or function, optional axis : int or string, default 0 copy : boolean, default True Also copy underlying data inplace : boolean, default False Returns renamed : type of caller pandas.Panel4D.replace Panel4D.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=’pad’, axis=None) Replace values given in ‘to_replace’ with ‘value’. Parameters to_replace : str, regex, list, dict, Series, numeric, or None • str or regex: – str: string exactly matching to_replace will be replaced with value – regex: regexs matching to_replace will be replaced with value • list of str, regex, or numeric: – First, if to_replace and value are both lists, they must be the same length. – Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use. – str and regex rules apply as above. 1386 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • dict: – Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions. – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in. • None: – This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : boolean, default False If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True. limit : int, default None Maximum size gap to forward or backward fill regex : bool or same types as to_replace, default False Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions. method : string, optional, {‘pad’, ‘ffill’, ‘bfill’} The method to use when for replacement, when to_replace is a list. Returns filled : NDFrame Raises AssertionError • If regex is not a bool and to_replace is not None. TypeError • If to_replace is a dict and value is not a list, dict, ndarray, or Series • If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. ValueError • If to_replace and value are list s or ndarray s, but they are not the same length. See also: NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna 33.6. Panel4D 1387 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes •Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same. •Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this. •This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works. pandas.Panel4D.resample Panel4D.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=’start’, kind=None, loffset=None, limit=None, base=0) Convenience method for frequency conversion and resampling of regular time-series data. Parameters rule : string the offset string or object representing target conversion how : string method for down- or re-sampling, default to ‘mean’ for downsampling axis : int, optional, default 0 fill_method : string, default None fill_method for upsampling closed : {‘right’, ‘left’} Which side of bin interval is closed label : {‘right’, ‘left’} Which bin edge label to label bucket with convention : {‘start’, ‘end’, ‘s’, ‘e’} kind : “period”/”timestamp” loffset : timedelta Adjust the resampled time labels limit : int, default None Maximum size gap to when reindexing with fill_method base : int, default 0 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0 1388 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.rfloordiv Panel4D.rfloordiv(other, axis=0) Wrapper method for rfloordiv Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.rmod Panel4D.rmod(other, axis=0) Wrapper method for rmod Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.rmul Panel4D.rmul(other, axis=0) Wrapper method for rmul Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.rpow Panel4D.rpow(other, axis=0) Wrapper method for rpow Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.rsub Panel4D.rsub(other, axis=0) Wrapper method for rsub 33.6. Panel4D 1389 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.rtruediv Panel4D.rtruediv(other, axis=0) Wrapper method for rtruediv Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.sample Panel4D.sample(n=None, frac=None, replace=False, weights=None, axis=None) Returns a random sample of items from an axis of object. random_state=None, Parameters n : int, optional Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None. frac : float, optional Fraction of axis items to return. Cannot be used with n. replace : boolean, optional Sample with or without replacement. Default = False. weights : str or ndarray-like, optional Default ‘None’ results in equal probability weighting. If called on a DataFrame, will accept the name of a column when axis = 0. Weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed. random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : int or string, optional Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels). Returns Same type as caller. 1390 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.save Panel4D.save(path) Deprecated. Use to_pickle instead pandas.Panel4D.select Panel4D.select(crit, axis=0) Return data corresponding to axis labels matching criteria Parameters crit : function To be called on each index (label). Should return True or False axis : int Returns selection : type of caller pandas.Panel4D.sem Panel4D.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sem : Panel or Panel4D (if level specified) pandas.Panel4D.set_axis Panel4D.set_axis(axis, labels) public verson of axis assignment pandas.Panel4D.set_value Panel4D.set_value(*args, **kwargs) Quickly set single value at (item, major, minor) location Parameters item : item label (panel item) major : major axis label (panel item row) minor : minor axis label (panel item column) 33.6. Panel4D 1391 pandas: powerful Python data analysis toolkit, Release 0.16.1 value : scalar takeable : interpret the passed labels as indexers, default False Returns panel : Panel If label combo is contained, will be reference to calling Panel, otherwise a new object pandas.Panel4D.shift Panel4D.shift(*args, **kwargs) pandas.Panel4D.skew Panel4D.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased skew over requested axis Normalized by N-1 Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns skew : Panel or Panel4D (if level specified) pandas.Panel4D.slice_shift Panel4D.slice_shift(periods=1, axis=0) Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters periods : int Number of periods to move, can be positive or negative Returns shifted : same type as caller Notes While the slice_shift is faster than shift, you may pay for it later during alignment. 1392 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.sort_index Panel4D.sort_index(axis=0, ascending=True) Sort object by labels (along an axis) Parameters axis : {0, 1} Sort index/rows versus columns ascending : boolean, default True Sort ascending vs. descending Returns sorted_obj : type of caller pandas.Panel4D.squeeze Panel4D.squeeze() squeeze length 1 dimensions pandas.Panel4D.std Panel4D.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased standard deviation over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns std : Panel or Panel4D (if level specified) pandas.Panel4D.sub Panel4D.sub(other, axis=0) Wrapper method for sub Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D 33.6. Panel4D 1393 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.subtract Panel4D.subtract(other, axis=0) Wrapper method for sub Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.sum Panel4D.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return the sum of the values for the requested axis Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns sum : Panel or Panel4D (if level specified) pandas.Panel4D.swapaxes Panel4D.swapaxes(axis1, axis2, copy=True) Interchange axes and swap values axes appropriately Returns y : same as input pandas.Panel4D.swaplevel Panel4D.swaplevel(i, j, axis=0) Swap levels i and j in a MultiIndex on a particular axis Parameters i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns swapped : type of caller (new object) pandas.Panel4D.tail Panel4D.tail(n=5) 1394 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.take Panel4D.take(indices, axis=0, convert=True, is_copy=True) Analogous to ndarray.take Parameters indices : list / array of ints axis : int, default 0 convert : translate neg to pos indices (default) is_copy : mark the returned frame as a copy Returns taken : type of caller pandas.Panel4D.toLong Panel4D.toLong(*args, **kwargs) pandas.Panel4D.to_clipboard Panel4D.to_clipboard(excel=None, sep=None, **kwargs) Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. Parameters excel : boolean, defaults to True if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard sep : optional, defaults to tab other keywords are passed to to_csv Notes Requirements for your platform • Linux: xclip, or xsel (with gtk or PyQt4 modules) • Windows: none • OS X: none pandas.Panel4D.to_dense Panel4D.to_dense() Return dense representation of NDFrame (as opposed to sparse) pandas.Panel4D.to_excel Panel4D.to_excel(*args, **kwargs) 33.6. Panel4D 1395 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.to_frame Panel4D.to_frame(*args, **kwargs) pandas.Panel4D.to_hdf Panel4D.to_hdf(path_or_buf, key, **kwargs) activate the HDFStore Parameters path_or_buf : the path (string) or buffer to put the store key : string indentifier for the group in the store mode : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’ ’r’ Read-only; no data can be modified. ’w’ Write; a new file is created (an existing file with the same name would be deleted). ’a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created. ’r+’ It is similar to ’a’, but the file must already exist. format : ‘fixed(f)|table(t)’, default is ‘fixed’ fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False For Table formats, append the input data to the existing complevel : int, 1-9, default 0 If a complib is specified compression will be applied where possible complib : {‘zlib’, ‘bzip2’, ‘lzo’, ‘blosc’, None}, default None If complevel is > 0 apply compression to objects written in the store wherever possible fletcher32 : bool, default False If applying compression use the fletcher32 checksum pandas.Panel4D.to_json Panel4D.to_json(path_or_buf=None, orient=None, date_format=’epoch’, double_precision=10, force_ascii=True, date_unit=’ms’, default_handler=None) Convert the object to a JSON string. Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters path_or_buf : the path or buffer to write the result string 1396 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 if this is None, return a StringIO of the converted string orient : string • Series – default is ‘index’ – allowed values are: {‘split’,’records’,’index’} • DataFrame – default is ‘columns’ – allowed values are: {‘split’,’records’,’index’,’columns’,’values’} • The format of the JSON string – split : dict like {index -> [index], columns -> [columns], data -> [values]} – records : list like [{column -> value}, ... , {column -> value}] – index : dict like {index -> {column -> value}} – columns : dict like {column -> {index -> value}} – values : just the values array date_format : {‘epoch’, ‘iso’} Type of date conversion. epoch = epoch milliseconds, iso‘ = ISO8601, default is epoch. double_precision : The number of decimal places to use when encoding floating point values, default 10. force_ascii : force encoded string to be ASCII, default True. date_unit : string, default ‘ms’ (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. Returns same type as input object with filtered info axis pandas.Panel4D.to_long Panel4D.to_long(*args, **kwargs) pandas.Panel4D.to_msgpack Panel4D.to_msgpack(path_or_buf=None, **kwargs) msgpack (serialize) object to input file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters path : string File path, buffer-like, or None 33.6. Panel4D 1397 pandas: powerful Python data analysis toolkit, Release 0.16.1 if None, return generated string append : boolean whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) pandas.Panel4D.to_pickle Panel4D.to_pickle(path) Pickle (serialize) object to input file path Parameters path : string File path pandas.Panel4D.to_sparse Panel4D.to_sparse(*args, **kwargs) pandas.Panel4D.to_sql Panel4D.to_sql(name, con, flavor=’sqlite’, schema=None, if_exists=’fail’, index=True, index_label=None, chunksize=None, dtype=None) Write records stored in a DataFrame to a SQL database. Parameters name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : {‘sqlite’, ‘mysql’}, default ‘sqlite’ The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines. schema : string, default None Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’ • fail: If table exists, do nothing. • replace: If table exists, drop it, recreate it, and insert data. • append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column. index_label : string or sequence, default None 1398 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. pandas.Panel4D.transpose Panel4D.transpose(*args, **kwargs) Permute the dimensions of the Panel Parameters args : three positional arguments: each oneof {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’} copy : boolean, default False Make a copy of the underlying data. Mixed-dtype data will always result in a copy Returns y : same as input Examples >>> p.transpose(2, 0, 1) >>> p.transpose(2, 0, 1, copy=True) pandas.Panel4D.truediv Panel4D.truediv(other, axis=0) Wrapper method for truediv Parameters other : Panel or Panel4D axis : {labels, items, major_axis, minor_axis} Axis to broadcast over Returns Panel4D pandas.Panel4D.truncate Panel4D.truncate(before=None, after=None, axis=None, copy=True) Truncates a sorted NDFrame before and/or after some particular dates. Parameters before : date Truncate before date after : date 33.6. Panel4D 1399 pandas: powerful Python data analysis toolkit, Release 0.16.1 Truncate after date axis : the truncation axis, defaults to the stat axis copy : boolean, default is True, return a copy of the truncated section Returns truncated : type of caller pandas.Panel4D.tshift Panel4D.tshift(periods=1, freq=None, axis=’major’, **kwds) pandas.Panel4D.tz_convert Panel4D.tz_convert(tz, axis=0, level=None, copy=True) Convert tz-aware axis to target time zone. Parameters tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Raises TypeError If the axis is tz-naive. pandas.Panel4D.tz_localize Panel4D.tz_localize(*args, **kwargs) Localize tz-naive TimeSeries to target time zone Parameters tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times 1400 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Raises TypeError If the TimeSeries is tz-aware and tz is not None. pandas.Panel4D.update Panel4D.update(other, join=’left’, overwrite=True, filter_func=None, raise_conflict=False) Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items Parameters other : Panel, or object coercible to Panel join : How to join individual DataFrames {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’ overwrite : boolean, default True If True then overwrite values for common keys in the calling panel filter_func : callable(1d-array) -> 1d-array, default None Can choose to replace values other than NA. Return True for values that should be updated raise_conflict : bool If True, will raise an error if a DataFrame and other both contain data in the same place. pandas.Panel4D.var Panel4D.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns var : Panel or Panel4D (if level specified) 33.6. Panel4D 1401 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.where Panel4D.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters cond : boolean NDFrame or array other : scalar or NDFrame inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) Returns wh : same type as caller pandas.Panel4D.xs Panel4D.xs(key, axis=1, copy=None) Return slice of panel along selected axis Parameters key : object Label axis : {‘items’, ‘major’, ‘minor}, default 1/’major’ copy : boolean [deprecated] Whether to make a copy of the data Returns y : ndim(self)-1 Notes xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers 33.6.2 Attributes and underlying data Axes • labels: axis 1; each label corresponds to a Panel contained inside • items: axis 2; each item corresponds to a DataFrame contained inside • major_axis: axis 3; the index (rows) of each of the DataFrames 1402 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • minor_axis: axis 4; the columns of each of the DataFrames Panel4D.values Panel4D.axes Panel4D.ndim Panel4D.size Panel4D.shape Panel4D.dtypes Panel4D.ftypes Panel4D.get_dtype_counts() Panel4D.get_ftype_counts() Numpy representation of NDFrame index(es) of the NDFrame Number of axes / array dimensions number of elements in the NDFrame tuple of axis dimensions Return the dtypes in this object Return the ftypes (indication of sparse/dense and dtype) in this object. Return the counts of dtypes in this object Return the counts of ftypes in this object pandas.Panel4D.values Panel4D.values Numpy representation of NDFrame Notes The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. pandas.Panel4D.axes Panel4D.axes index(es) of the NDFrame pandas.Panel4D.ndim Panel4D.ndim Number of axes / array dimensions pandas.Panel4D.size Panel4D.size number of elements in the NDFrame pandas.Panel4D.shape Panel4D.shape tuple of axis dimensions 33.6. Panel4D 1403 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.dtypes Panel4D.dtypes Return the dtypes in this object pandas.Panel4D.ftypes Panel4D.ftypes Return the ftypes (indication of sparse/dense and dtype) in this object. pandas.Panel4D.get_dtype_counts Panel4D.get_dtype_counts() Return the counts of dtypes in this object pandas.Panel4D.get_ftype_counts Panel4D.get_ftype_counts() Return the counts of ftypes in this object 33.6.3 Conversion Panel4D.astype(dtype[, copy, raise_on_error]) Panel4D.copy([deep]) Panel4D.isnull() Panel4D.notnull() Cast object to input numpy.dtype Make a copy of this object Return a boolean same-sized object indicating if the values are null Return a boolean same-sized object indicating if the values are pandas.Panel4D.astype Panel4D.astype(dtype, copy=True, raise_on_error=True, **kwargs) Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!) Parameters dtype : numpy.dtype or Python type raise_on_error : raise on invalid input kwargs : keyword arguments to pass on to the constructor Returns casted : type of caller pandas.Panel4D.copy Panel4D.copy(deep=True) Make a copy of this object Parameters deep : boolean or string, default True Make a deep copy, i.e. also copy data Returns copy : type of caller 1404 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Panel4D.isnull Panel4D.isnull() Return a boolean same-sized object indicating if the values are null See also: notnull boolean inverse of isnull pandas.Panel4D.notnull Panel4D.notnull() Return a boolean same-sized object indicating if the values are not null See also: isnull boolean inverse of notnull 33.7 Index Many of these methods or variants thereof are available on the objects that contain an index (Series/Dataframe) and those should most likely be used before calling these methods directly. Index Immutable ndarray implementing an ordered, sliceable set. 33.7.1 pandas.Index class pandas.Index Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters data : array-like (1-dimensional) dtype : NumPy dtype (default: object) copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes An Index instance can only contain hashable objects Attributes 33.7. Index 1405 pandas: powerful Python data analysis toolkit, Release 0.16.1 T base data flags has_duplicates is_monotonic is_monotonic_decreasing is_monotonic_increasing itemsize names nbytes ndim nlevels shape size strides values return the transpose, which is by definition self return the base object if the memory of the underlying data is shared return the data pointer of the underlying data alias for is_monotonic_increasing (deprecated) return if the index is monotonic decreasing (only equal or return if the index is monotonic increasing (only equal or return the size of the dtype of the item of the underlying data return the number of bytes in the underlying data return the number of dimensions of the underlying data, by definition 1 return a tuple of the shape of the underlying data return the number of elements in the underlying data return the strides of the underlying data return the underlying data as an ndarray pandas.Index.T Index.T return the transpose, which is by definition self pandas.Index.base Index.base return the base object if the memory of the underlying data is shared pandas.Index.data Index.data return the data pointer of the underlying data pandas.Index.flags Index.flags pandas.Index.has_duplicates Index.has_duplicates pandas.Index.is_monotonic Index.is_monotonic alias for is_monotonic_increasing (deprecated) 1406 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.is_monotonic_decreasing Index.is_monotonic_decreasing return if the index is monotonic decreasing (only equal or decreasing) values. pandas.Index.is_monotonic_increasing Index.is_monotonic_increasing return if the index is monotonic increasing (only equal or increasing) values. pandas.Index.itemsize Index.itemsize return the size of the dtype of the item of the underlying data pandas.Index.names Index.names pandas.Index.nbytes Index.nbytes return the number of bytes in the underlying data pandas.Index.ndim Index.ndim return the number of dimensions of the underlying data, by definition 1 pandas.Index.nlevels Index.nlevels pandas.Index.shape Index.shape return a tuple of the shape of the underlying data pandas.Index.size Index.size return the number of elements in the underlying data pandas.Index.strides Index.strides return the strides of the underlying data 33.7. Index 1407 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.values Index.values return the underlying data as an ndarray asi8 dtype inferred_type is_all_dates is_unique name Methods all(*args, **kwargs) any(*args, **kwargs) append(other) argmax([axis]) argmin([axis]) argsort(*args, **kwargs) asof(label) asof_locs(where, mask) astype(dtype) copy([names, name, dtype, deep]) delete(loc) diff(*args, **kwargs) difference(other) drop(labels[, errors]) drop_duplicates([take_last]) duplicated([take_last]) equals(other) factorize([sort, na_sentinel]) format([name, formatter]) get_duplicates() get_indexer(target[, method, limit]) get_indexer_for(target, **kwargs) get_indexer_non_unique(target) get_level_values(level) get_loc(key[, method]) get_slice_bound(label, side, kind) get_value(series, key) get_values() groupby(to_groupby) hasnans() holds_integer() identical(other) insert(loc, item) intersection(other) is_(other) is_boolean() is_categorical() is_floating() Return whether all elements are True Return whether any element is True Append a collection of Index options together return a ndarray of the maximum argument indexer return a ndarray of the minimum argument indexer return an ndarray indexer of the underlying data For a sorted index, return the most recent label up to and including the passed lab where : array of timestamps Make a copy of this object. Make new Index with passed location(-s) deleted Compute sorted set difference of two Index objects Make new Index with passed list of labels deleted Return Index with duplicate values removed Return boolean np.array denoting duplicate values Determines if two Index objects contain the same elements. Encode the object as an enumerated type or categorical variable Render a string representation of the Index Compute indexer and mask for new index given the current index. guaranteed return of an indexer even when non-unique return an indexer suitable for taking from a non unique index Return vector of label values for requested level, equal to the length Get integer location for requested label Calculate slice bound that corresponds to given label. Fast lookup of value from 1-dimensional ndarray. return the underlying data as an ndarray Group the index labels by a given array of values. return if I have any nans; enables various perf speedups Similar to equals, but check that other comparable attributes are Make new Index inserting new item at location. Form the intersection of two Index objects. More flexible, faster check like is but that works through views Continued on nex 1408 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.87 – continued from previous page is_integer() is_lexsorted_for_tuple(tup) is_mixed() is_numeric() is_object() is_type_compatible(kind) isin(values[, level]) Compute boolean array of whether each index value is found in the passed set of item() return the first element of the underlying data as a python scalar join(other[, how, level, return_indexers]) this is an internal non-public method map(mapper) max() The maximum value of the object min() The minimum value of the object nunique([dropna]) Return number of unique elements in the object. order([return_indexer, ascending]) Return sorted copy of Index putmask(mask, value) return a new Index of the values set with the mask ravel([order]) return an ndarray of the flattened values of the underlying data reindex(target[, method, level, limit]) Create index with target’s values (move/add/delete values as necessary) rename(name[, inplace]) Set new names on index. repeat(n) return a new Index of the values repeated n times searchsorted(key[, side]) np.ndarray searchsorted compat set_names(names[, level, inplace]) Set new names on index. set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray. shift([periods, freq]) Shift Index containing datetime objects by input number of periods and slice_indexer([start, end, step, kind]) For an ordered Index, compute the slice indexer for input labels and slice_locs([start, end, step, kind]) Compute slice locations for input labels. sort(*args, **kwargs) str alias of StringMethods summary([name]) sym_diff(other[, result_name]) Compute the sorted symmetric difference of two Index objects. take(indexer[, axis]) return a new Index of the values selected by the indexer to_datetime([dayfirst]) For an Index containing strings or datetime.datetime objects, attempt to_native_types([slicer]) slice and dice then format to_series(**kwargs) Create a Series with both index and values equal to the index keys tolist() return a list of the Index values transpose() return the transpose, which is by definition self union(other) Form the union of two Index objects and sorts if possible unique() Return array of unique values in the object. value_counts([normalize, sort, ascending, ...]) Returns object containing counts of unique values. view([cls]) pandas.Index.all Index.all(*args, **kwargs) Return whether all elements are True Parameters All arguments to numpy.all are accepted. Returns all : bool or array_like (if axis is specified) A single element array_like may be converted to bool. 33.7. Index 1409 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.any Index.any(*args, **kwargs) Return whether any element is True Parameters All arguments to numpy.any are accepted. Returns any : bool or array_like (if axis is specified) A single element array_like may be converted to bool. pandas.Index.append Index.append(other) Append a collection of Index options together Parameters other : Index or list/tuple of indices Returns appended : Index pandas.Index.argmax Index.argmax(axis=None) return a ndarray of the maximum argument indexer See also: numpy.ndarray.argmax pandas.Index.argmin Index.argmin(axis=None) return a ndarray of the minimum argument indexer See also: numpy.ndarray.argmin pandas.Index.argsort Index.argsort(*args, **kwargs) return an ndarray indexer of the underlying data See also: numpy.ndarray.argsort pandas.Index.asof Index.asof(label) For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also: get_loc asof is a thin wrapper around get_loc with method=’pad’ 1410 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.asof_locs Index.asof_locs(where, mask) where : array of timestamps mask : array of booleans where data is not NA pandas.Index.astype Index.astype(dtype) pandas.Index.copy Index.copy(names=None, name=None, dtype=None, deep=False) Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters name : string, optional dtype : numpy dtype or pandas type Returns copy : Index Notes In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy. pandas.Index.delete Index.delete(loc) Make new Index with passed location(-s) deleted Returns new_index : Index pandas.Index.diff Index.diff(*args, **kwargs) pandas.Index.difference Index.difference(other) Compute sorted set difference of two Index objects Parameters other : Index or array-like Returns diff : Index Notes One can do either of these and achieve the same result >>> index.difference(index2) 33.7. Index 1411 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.drop Index.drop(labels, errors=’raise’) Make new Index with passed list of labels deleted Parameters labels : array-like errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : Index pandas.Index.drop_duplicates Index.drop_duplicates(take_last=False) Return Index with duplicate values removed Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns deduplicated : Index pandas.Index.duplicated Index.duplicated(take_last=False) Return boolean np.array denoting duplicate values Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns duplicated : np.array pandas.Index.equals Index.equals(other) Determines if two Index objects contain the same elements. pandas.Index.factorize Index.factorize(sort=False, na_sentinel=-1) Encode the object as an enumerated type or categorical variable Parameters sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark “not found” Returns labels : the indexer to the original array uniques : the unique Index 1412 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.format Index.format(name=False, formatter=None, **kwargs) Render a string representation of the Index pandas.Index.get_duplicates Index.get_duplicates() pandas.Index.get_indexer Index.get_indexer(target, method=None, limit=None) Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters target : Index method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’} • default: exact matches only. • pad / ffill: find the PREVIOUS index value if no exact match. • backfill / bfill: use NEXT index value if no exact match • nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int Maximum number of consecuctive labels in target to match for inexact matches. Returns indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. Examples >>> indexer = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) pandas.Index.get_indexer_for Index.get_indexer_for(target, **kwargs) guaranteed return of an indexer even when non-unique pandas.Index.get_indexer_non_unique Index.get_indexer_non_unique(target) return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable 33.7. Index 1413 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.get_level_values Index.get_level_values(level) Return vector of label values for requested level, equal to the length of the index Parameters level : int Returns values : ndarray pandas.Index.get_loc Index.get_loc(key, method=None) Get integer location for requested label Parameters key : label method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’} • default: exact matches only. • pad / ffill: find the PREVIOUS index value if no exact match. • backfill / bfill: use NEXT index value if no exact match • nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. Returns loc : int if unique index, possibly slice or mask if not pandas.Index.get_slice_bound Index.get_slice_bound(label, side, kind) Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if side==’right’) position of given label. Parameters label : object side : {‘left’, ‘right’} kind : string / None, the type of indexer pandas.Index.get_value Index.get_value(series, key) Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing pandas.Index.get_values Index.get_values() return the underlying data as an ndarray 1414 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.groupby Index.groupby(to_groupby) Group the index labels by a given array of values. Parameters to_groupby : array Values used to determine the groups. Returns groups : dict {group name -> group labels} pandas.Index.hasnans Index.hasnans() return if I have any nans; enables various perf speedups pandas.Index.holds_integer Index.holds_integer() pandas.Index.identical Index.identical(other) Similar to equals, but check that other comparable attributes are also equal pandas.Index.insert Index.insert(loc, item) Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters loc : int item : object Returns new_index : Index pandas.Index.intersection Index.intersection(other) Form the intersection of two Index objects. Sortedness of the result is not guaranteed Parameters other : Index or array-like Returns intersection : Index pandas.Index.is Index.is_(other) More flexible, faster check like is but that works through views Note: this is not the same as Index.identical(), which checks that metadata is also the same. Parameters other : object 33.7. Index 1415 pandas: powerful Python data analysis toolkit, Release 0.16.1 other object to compare against. Returns True if both have same underlying data, False otherwise : bool pandas.Index.is_boolean Index.is_boolean() pandas.Index.is_categorical Index.is_categorical() pandas.Index.is_floating Index.is_floating() pandas.Index.is_integer Index.is_integer() pandas.Index.is_lexsorted_for_tuple Index.is_lexsorted_for_tuple(tup) pandas.Index.is_mixed Index.is_mixed() pandas.Index.is_numeric Index.is_numeric() pandas.Index.is_object Index.is_object() pandas.Index.is_type_compatible Index.is_type_compatible(kind) 1416 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.isin Index.isin(values, level=None) Compute boolean array of whether each index value is found in the passed set of values. Parameters values : set or sequence of values Sought values. level : str or int, optional Name or position of the index level to use (if the index is a MultiIndex). Returns is_contained : ndarray (boolean dtype) Notes If level is specified: •if it is the name of one and only one index level, use that level; •otherwise it should be a number indicating level position. pandas.Index.item Index.item() return the first element of the underlying data as a python scalar pandas.Index.join Index.join(other, how=’left’, level=None, return_indexers=False) this is an internal non-public method Compute join_index and indexers to conform data structures to the new index. Parameters other : Index how : {‘left’, ‘right’, ‘inner’, ‘outer’} level : int or level name, default None return_indexers : boolean, default False Returns join_index, (left_indexer, right_indexer) pandas.Index.map Index.map(mapper) pandas.Index.max Index.max() The maximum value of the object 33.7. Index 1417 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.min Index.min() The minimum value of the object pandas.Index.nunique Index.nunique(dropna=True) Return number of unique elements in the object. Excludes NA values by default. Parameters dropna : boolean, default True Don’t include NaN in the count. Returns nunique : int pandas.Index.order Index.order(return_indexer=False, ascending=True) Return sorted copy of Index pandas.Index.putmask Index.putmask(mask, value) return a new Index of the values set with the mask See also: numpy.ndarray.putmask pandas.Index.ravel Index.ravel(order=’C’) return an ndarray of the flattened values of the underlying data See also: numpy.ndarray.ravel pandas.Index.reindex Index.reindex(target, method=None, level=None, limit=None) Create index with target’s values (move/add/delete values as necessary) Parameters target : an iterable Returns new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index 1418 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.rename Index.rename(name, inplace=False) Set new names on index. Defaults to returning new index. Parameters name : str or list name to set inplace : bool if True, mutates in place Returns new index (of same type and class...etc) [if inplace, returns None] pandas.Index.repeat Index.repeat(n) return a new Index of the values repeated n times See also: numpy.ndarray.repeat pandas.Index.searchsorted Index.searchsorted(key, side=’left’) np.ndarray searchsorted compat pandas.Index.set_names Index.set_names(names, level=None, inplace=False) Set new names on index. Defaults to returning new index. Parameters names : str or sequence name(s) to set level : int or level name, or sequence of int / level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels) Otherwise level must be None inplace : bool if True, mutates in place Returns new index (of same type and class...etc) [if inplace, returns None] Examples >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) 33.7. Index 1419 pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) pandas.Index.set_value Index.set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing pandas.Index.shift Index.shift(periods=1, freq=None) Shift Index containing datetime objects by input number of periods and DateOffset Returns shifted : Index pandas.Index.slice_indexer Index.slice_indexer(start=None, end=None, step=None, kind=None) For an ordered Index, compute the slice indexer for input labels and step Parameters start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, default None kind : string, default None Returns indexer : ndarray or slice Notes This function assumes that the data is sorted, so use at your own peril pandas.Index.slice_locs Index.slice_locs(start=None, end=None, step=None, kind=None) Compute slice locations for input labels. Parameters start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end 1420 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 step : int, defaults None If None, defaults to 1 kind : string, defaults None Returns start, end : int pandas.Index.sort Index.sort(*args, **kwargs) pandas.Index.summary Index.summary(name=None) pandas.Index.sym_diff Index.sym_diff(other, result_name=None) Compute the sorted symmetric difference of two Index objects. Parameters other : array-like result_name : str Returns sym_diff : Index Notes sym_diff contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by (idx1 - idx2) + (idx2 - idx1) with duplicates dropped. The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444. Examples >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.sym_diff(idx2) Int64Index([1, 5], dtype='int64') You can also use the ^ operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') pandas.Index.take Index.take(indexer, axis=0) return a new Index of the values selected by the indexer See also: numpy.ndarray.take 33.7. Index 1421 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.to_datetime Index.to_datetime(dayfirst=False) For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex pandas.Index.to_native_types Index.to_native_types(slicer=None, **kwargs) slice and dice then format pandas.Index.to_series Index.to_series(**kwargs) Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Returns Series : dtype will be based on the type of the Index values. pandas.Index.tolist Index.tolist() return a list of the Index values pandas.Index.transpose Index.transpose() return the transpose, which is by definition self pandas.Index.union Index.union(other) Form the union of two Index objects and sorts if possible Parameters other : Index or array-like Returns union : Index pandas.Index.unique Index.unique() Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values. Returns uniques : ndarray pandas.Index.value_counts Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. 1422 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order bins : integer, optional Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data dropna : boolean, default True Don’t include counts of NaN. Returns counts : Series pandas.Index.view Index.view(cls=None) 33.7.2 Attributes Index.values Index.is_monotonic Index.is_monotonic_increasing Index.is_monotonic_decreasing Index.is_unique Index.has_duplicates Index.dtype Index.inferred_type Index.is_all_dates Index.shape Index.nbytes Index.ndim Index.size Index.strides Index.itemsize Index.base Index.T return the underlying data as an ndarray alias for is_monotonic_increasing (deprecated) return if the index is monotonic increasing (only equal or return if the index is monotonic decreasing (only equal or return a tuple of the shape of the underlying data return the number of bytes in the underlying data return the number of dimensions of the underlying data, by definition 1 return the number of elements in the underlying data return the strides of the underlying data return the size of the dtype of the item of the underlying data return the base object if the memory of the underlying data is shared return the transpose, which is by definition self pandas.Index.values Index.values return the underlying data as an ndarray 33.7. Index 1423 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.is_monotonic Index.is_monotonic alias for is_monotonic_increasing (deprecated) pandas.Index.is_monotonic_increasing Index.is_monotonic_increasing return if the index is monotonic increasing (only equal or increasing) values. pandas.Index.is_monotonic_decreasing Index.is_monotonic_decreasing return if the index is monotonic decreasing (only equal or decreasing) values. pandas.Index.is_unique Index.is_unique = None pandas.Index.has_duplicates Index.has_duplicates pandas.Index.dtype Index.dtype = None pandas.Index.inferred_type Index.inferred_type = None pandas.Index.is_all_dates Index.is_all_dates = None pandas.Index.shape Index.shape return a tuple of the shape of the underlying data pandas.Index.nbytes Index.nbytes return the number of bytes in the underlying data 1424 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.ndim Index.ndim return the number of dimensions of the underlying data, by definition 1 pandas.Index.size Index.size return the number of elements in the underlying data pandas.Index.strides Index.strides return the strides of the underlying data pandas.Index.itemsize Index.itemsize return the size of the dtype of the item of the underlying data pandas.Index.base Index.base return the base object if the memory of the underlying data is shared pandas.Index.T Index.T return the transpose, which is by definition self 33.7.3 Modifying and Computations Index.all(*args, **kwargs) Index.any(*args, **kwargs) Index.argmin([axis]) Index.argmax([axis]) Index.copy([names, name, dtype, deep]) Index.delete(loc) Index.diff(*args, **kwargs) Index.sym_diff(other[, result_name]) Index.drop(labels[, errors]) Index.drop_duplicates([take_last]) Index.duplicated([take_last]) Index.equals(other) Index.factorize([sort, na_sentinel]) Index.identical(other) Index.insert(loc, item) Index.min() 33.7. Index Return whether all elements are True Return whether any element is True return a ndarray of the minimum argument indexer return a ndarray of the maximum argument indexer Make a copy of this object. Make new Index with passed location(-s) deleted Compute the sorted symmetric difference of two Index objects. Make new Index with passed list of labels deleted Return Index with duplicate values removed Return boolean np.array denoting duplicate values Determines if two Index objects contain the same elements. Encode the object as an enumerated type or categorical variable Similar to equals, but check that other comparable attributes are Make new Index inserting new item at location. The minimum value of the object Continued on next page 1425 pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.89 – continued from previous page Index.max() The maximum value of the object Index.order([return_indexer, ascending]) Return sorted copy of Index Index.reindex(target[, method, level, limit]) Create index with target’s values (move/add/delete values as necessary) Index.repeat(n) return a new Index of the values repeated n times Index.take(indexer[, axis]) return a new Index of the values selected by the indexer Index.putmask(mask, value) return a new Index of the values set with the mask Index.set_names(names[, level, inplace]) Set new names on index. Index.unique() Return array of unique values in the object. Index.nunique([dropna]) Return number of unique elements in the object. Index.value_counts([normalize, sort, ...]) Returns object containing counts of unique values. pandas.Index.all Index.all(*args, **kwargs) Return whether all elements are True Parameters All arguments to numpy.all are accepted. Returns all : bool or array_like (if axis is specified) A single element array_like may be converted to bool. pandas.Index.any Index.any(*args, **kwargs) Return whether any element is True Parameters All arguments to numpy.any are accepted. Returns any : bool or array_like (if axis is specified) A single element array_like may be converted to bool. pandas.Index.argmin Index.argmin(axis=None) return a ndarray of the minimum argument indexer See also: numpy.ndarray.argmin pandas.Index.argmax Index.argmax(axis=None) return a ndarray of the maximum argument indexer See also: numpy.ndarray.argmax 1426 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.copy Index.copy(names=None, name=None, dtype=None, deep=False) Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters name : string, optional dtype : numpy dtype or pandas type Returns copy : Index Notes In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy. pandas.Index.delete Index.delete(loc) Make new Index with passed location(-s) deleted Returns new_index : Index pandas.Index.diff Index.diff(*args, **kwargs) pandas.Index.sym_diff Index.sym_diff(other, result_name=None) Compute the sorted symmetric difference of two Index objects. Parameters other : array-like result_name : str Returns sym_diff : Index Notes sym_diff contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by (idx1 - idx2) + (idx2 - idx1) with duplicates dropped. The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444. Examples >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.sym_diff(idx2) Int64Index([1, 5], dtype='int64') You can also use the ^ operator: 33.7. Index 1427 pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') pandas.Index.drop Index.drop(labels, errors=’raise’) Make new Index with passed list of labels deleted Parameters labels : array-like errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : Index pandas.Index.drop_duplicates Index.drop_duplicates(take_last=False) Return Index with duplicate values removed Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns deduplicated : Index pandas.Index.duplicated Index.duplicated(take_last=False) Return boolean np.array denoting duplicate values Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns duplicated : np.array pandas.Index.equals Index.equals(other) Determines if two Index objects contain the same elements. pandas.Index.factorize Index.factorize(sort=False, na_sentinel=-1) Encode the object as an enumerated type or categorical variable Parameters sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark “not found” 1428 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Returns labels : the indexer to the original array uniques : the unique Index pandas.Index.identical Index.identical(other) Similar to equals, but check that other comparable attributes are also equal pandas.Index.insert Index.insert(loc, item) Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters loc : int item : object Returns new_index : Index pandas.Index.min Index.min() The minimum value of the object pandas.Index.max Index.max() The maximum value of the object pandas.Index.order Index.order(return_indexer=False, ascending=True) Return sorted copy of Index pandas.Index.reindex Index.reindex(target, method=None, level=None, limit=None) Create index with target’s values (move/add/delete values as necessary) Parameters target : an iterable Returns new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index 33.7. Index 1429 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.repeat Index.repeat(n) return a new Index of the values repeated n times See also: numpy.ndarray.repeat pandas.Index.take Index.take(indexer, axis=0) return a new Index of the values selected by the indexer See also: numpy.ndarray.take pandas.Index.putmask Index.putmask(mask, value) return a new Index of the values set with the mask See also: numpy.ndarray.putmask pandas.Index.set_names Index.set_names(names, level=None, inplace=False) Set new names on index. Defaults to returning new index. Parameters names : str or sequence name(s) to set level : int or level name, or sequence of int / level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels) Otherwise level must be None inplace : bool if True, mutates in place Returns new index (of same type and class...etc) [if inplace, returns None] Examples >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], 1430 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) pandas.Index.unique Index.unique() Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values. Returns uniques : ndarray pandas.Index.nunique Index.nunique(dropna=True) Return number of unique elements in the object. Excludes NA values by default. Parameters dropna : boolean, default True Don’t include NaN in the count. Returns nunique : int pandas.Index.value_counts Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order bins : integer, optional Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data dropna : boolean, default True Don’t include counts of NaN. Returns counts : Series 33.7. Index 1431 pandas: powerful Python data analysis toolkit, Release 0.16.1 33.7.4 Conversion Index.astype(dtype) Index.tolist() Index.to_datetime([dayfirst]) Index.to_series(**kwargs) return a list of the Index values For an Index containing strings or datetime.datetime objects, attempt Create a Series with both index and values equal to the index keys pandas.Index.astype Index.astype(dtype) pandas.Index.tolist Index.tolist() return a list of the Index values pandas.Index.to_datetime Index.to_datetime(dayfirst=False) For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex pandas.Index.to_series Index.to_series(**kwargs) Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Returns Series : dtype will be based on the type of the Index values. 33.7.5 Sorting Index.argsort(*args, **kwargs) Index.order([return_indexer, ascending]) Index.sort(*args, **kwargs) return an ndarray indexer of the underlying data Return sorted copy of Index pandas.Index.argsort Index.argsort(*args, **kwargs) return an ndarray indexer of the underlying data See also: numpy.ndarray.argsort pandas.Index.order Index.order(return_indexer=False, ascending=True) Return sorted copy of Index 1432 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.sort Index.sort(*args, **kwargs) 33.7.6 Time-specific operations Index.shift([periods, freq]) Shift Index containing datetime objects by input number of periods and pandas.Index.shift Index.shift(periods=1, freq=None) Shift Index containing datetime objects by input number of periods and DateOffset Returns shifted : Index 33.7.7 Combining / joining / merging Index.append(other) Index.intersection(other) Index.join(other[, how, level, return_indexers]) Index.union(other) Append a collection of Index options together Form the intersection of two Index objects. this is an internal non-public method Form the union of two Index objects and sorts if possible pandas.Index.append Index.append(other) Append a collection of Index options together Parameters other : Index or list/tuple of indices Returns appended : Index pandas.Index.intersection Index.intersection(other) Form the intersection of two Index objects. Sortedness of the result is not guaranteed Parameters other : Index or array-like Returns intersection : Index pandas.Index.join Index.join(other, how=’left’, level=None, return_indexers=False) this is an internal non-public method Compute join_index and indexers to conform data structures to the new index. Parameters other : Index how : {‘left’, ‘right’, ‘inner’, ‘outer’} level : int or level name, default None 33.7. Index 1433 pandas: powerful Python data analysis toolkit, Release 0.16.1 return_indexers : boolean, default False Returns join_index, (left_indexer, right_indexer) pandas.Index.union Index.union(other) Form the union of two Index objects and sorts if possible Parameters other : Index or array-like Returns union : Index 33.7.8 Selecting Index.get_indexer(target[, method, limit]) Index.get_indexer_non_unique(target) Index.get_level_values(level) Index.get_loc(key[, method]) Index.get_value(series, key) Index.isin(values[, level]) Index.slice_indexer([start, end, step, kind]) Index.slice_locs([start, end, step, kind]) Compute indexer and mask for new index given the current index. return an indexer suitable for taking from a non unique index Return vector of label values for requested level, equal to the length Get integer location for requested label Fast lookup of value from 1-dimensional ndarray. Compute boolean array of whether each index value is found in the passed set o For an ordered Index, compute the slice indexer for input labels and Compute slice locations for input labels. pandas.Index.get_indexer Index.get_indexer(target, method=None, limit=None) Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters target : Index method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’} • default: exact matches only. • pad / ffill: find the PREVIOUS index value if no exact match. • backfill / bfill: use NEXT index value if no exact match • nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int Maximum number of consecuctive labels in target to match for inexact matches. Returns indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. Examples >>> indexer = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) 1434 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.Index.get_indexer_non_unique Index.get_indexer_non_unique(target) return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable pandas.Index.get_level_values Index.get_level_values(level) Return vector of label values for requested level, equal to the length of the index Parameters level : int Returns values : ndarray pandas.Index.get_loc Index.get_loc(key, method=None) Get integer location for requested label Parameters key : label method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’} • default: exact matches only. • pad / ffill: find the PREVIOUS index value if no exact match. • backfill / bfill: use NEXT index value if no exact match • nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. Returns loc : int if unique index, possibly slice or mask if not pandas.Index.get_value Index.get_value(series, key) Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing pandas.Index.isin Index.isin(values, level=None) Compute boolean array of whether each index value is found in the passed set of values. Parameters values : set or sequence of values Sought values. level : str or int, optional Name or position of the index level to use (if the index is a MultiIndex). Returns is_contained : ndarray (boolean dtype) 33.7. Index 1435 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes If level is specified: •if it is the name of one and only one index level, use that level; •otherwise it should be a number indicating level position. pandas.Index.slice_indexer Index.slice_indexer(start=None, end=None, step=None, kind=None) For an ordered Index, compute the slice indexer for input labels and step Parameters start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, default None kind : string, default None Returns indexer : ndarray or slice Notes This function assumes that the data is sorted, so use at your own peril pandas.Index.slice_locs Index.slice_locs(start=None, end=None, step=None, kind=None) Compute slice locations for input labels. Parameters start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, defaults None If None, defaults to 1 kind : string, defaults None Returns start, end : int 33.8 CategoricalIndex CategoricalIndex 1436 Immutable Index implementing an ordered, sliceable set. Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 33.8.1 pandas.CategoricalIndex class pandas.CategoricalIndex Immutable Index implementing an ordered, sliceable set. CategoricalIndex represents a sparsely populated Index with an underlying Categorical. Parameters data : array-like or Categorical, (1-dimensional) categories : optional, array-like categories for the CategoricalIndex ordered : boolean, designating if the categories are ordered copy : bool Make a copy of input ndarray name : object Name to be stored in the index Attributes T base categories codes data flags has_duplicates inferred_type is_monotonic is_monotonic_decreasing is_monotonic_increasing itemsize names nbytes ndim nlevels ordered shape size strides values return the transpose, which is by definition self return the base object if the memory of the underlying data is shared return the data pointer of the underlying data alias for is_monotonic_increasing (deprecated) return if the index is monotonic decreasing (only equal or return if the index is monotonic increasing (only equal or return the size of the dtype of the item of the underlying data return the number of bytes in the underlying data return the number of dimensions of the underlying data, by definition 1 return a tuple of the shape of the underlying data return the number of elements in the underlying data return the strides of the underlying data return the underlying data, which is a Categorical pandas.CategoricalIndex.T CategoricalIndex.T return the transpose, which is by definition self 33.8. CategoricalIndex 1437 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.base CategoricalIndex.base return the base object if the memory of the underlying data is shared pandas.CategoricalIndex.categories CategoricalIndex.categories pandas.CategoricalIndex.codes CategoricalIndex.codes pandas.CategoricalIndex.data CategoricalIndex.data return the data pointer of the underlying data pandas.CategoricalIndex.flags CategoricalIndex.flags pandas.CategoricalIndex.has_duplicates CategoricalIndex.has_duplicates pandas.CategoricalIndex.inferred_type CategoricalIndex.inferred_type pandas.CategoricalIndex.is_monotonic CategoricalIndex.is_monotonic alias for is_monotonic_increasing (deprecated) pandas.CategoricalIndex.is_monotonic_decreasing CategoricalIndex.is_monotonic_decreasing return if the index is monotonic decreasing (only equal or decreasing) values. pandas.CategoricalIndex.is_monotonic_increasing CategoricalIndex.is_monotonic_increasing return if the index is monotonic increasing (only equal or increasing) values. 1438 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.itemsize CategoricalIndex.itemsize return the size of the dtype of the item of the underlying data pandas.CategoricalIndex.names CategoricalIndex.names pandas.CategoricalIndex.nbytes CategoricalIndex.nbytes return the number of bytes in the underlying data pandas.CategoricalIndex.ndim CategoricalIndex.ndim return the number of dimensions of the underlying data, by definition 1 pandas.CategoricalIndex.nlevels CategoricalIndex.nlevels pandas.CategoricalIndex.ordered CategoricalIndex.ordered pandas.CategoricalIndex.shape CategoricalIndex.shape return a tuple of the shape of the underlying data pandas.CategoricalIndex.size CategoricalIndex.size return the number of elements in the underlying data pandas.CategoricalIndex.strides CategoricalIndex.strides return the strides of the underlying data 33.8. CategoricalIndex 1439 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.values CategoricalIndex.values return the underlying data, which is a Categorical asi8 dtype is_all_dates is_unique name Methods add_categories(*args, **kwargs) all([other]) any([other]) append(other) argmax([axis]) argmin([axis]) argsort(*args, **kwargs) as_ordered(*args, **kwargs) as_unordered(*args, **kwargs) asof(label) asof_locs(where, mask) astype(dtype) copy([names, name, dtype, deep]) delete(loc) diff(*args, **kwargs) difference(other) drop(labels[, errors]) drop_duplicates([take_last]) duplicated([take_last]) equals(other) factorize([sort, na_sentinel]) format([name, formatter]) get_duplicates() get_indexer(target[, method, limit]) get_indexer_for(target, **kwargs) get_indexer_non_unique(target) get_level_values(level) get_loc(key[, method]) get_slice_bound(label, side, kind) get_value(series, key) get_values() groupby(to_groupby) hasnans() holds_integer() identical(other) insert(loc, item) intersection(other) is_(other) is_boolean() Add new categories. Append a collection of CategoricalIndex options together return a ndarray of the maximum argument indexer return a ndarray of the minimum argument indexer Sets the Categorical to be ordered Sets the Categorical to be unordered For a sorted index, return the most recent label up to and including the passed where : array of timestamps Make a copy of this object. Make new Index with passed location(-s) deleted Compute sorted set difference of two Index objects Make new Index with passed list of labels deleted Return Index with duplicate values removed Return boolean np.array denoting duplicate values Determines if two CategorialIndex objects contain the same elements. Encode the object as an enumerated type or categorical variable Render a string representation of the Index Compute indexer and mask for new index given the current index. guaranteed return of an indexer even when non-unique this is the same for a CategoricalIndex for get_indexer; the API returns the m Return vector of label values for requested level, equal to the length Get integer location for requested label Calculate slice bound that corresponds to given label. Fast lookup of value from 1-dimensional ndarray. return the underlying data as an ndarray Group the index labels by a given array of values. return if I have any nans; enables various perf speedups Similar to equals, but check that other comparable attributes are Make new Index inserting new item at location. Form the intersection of two Index objects. More flexible, faster check like is but that works through views Contin 1440 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.97 – continued from previous page is_categorical() is_floating() is_integer() is_lexsorted_for_tuple(tup) is_mixed() is_numeric() is_object() is_type_compatible(kind) isin(values[, level]) Compute boolean array of whether each index value is found in the passed se item() return the first element of the underlying data as a python scalar join(other[, how, level, return_indexers]) this is an internal non-public method map(mapper) max(*args, **kwargs) The maximum value of the object. min(*args, **kwargs) The minimum value of the object. nunique([dropna]) Return number of unique elements in the object. order([return_indexer, ascending]) Return sorted copy of Index putmask(mask, value) return a new Index of the values set with the mask ravel([order]) return an ndarray of the flattened values of the underlying data reindex(target[, method, level, limit]) Create index with target’s values (move/add/delete values as necessary) remove_categories(*args, **kwargs) Removes the specified categories. remove_unused_categories(*args, **kwargs) Removes categories which are not used. rename(name[, inplace]) Set new names on index. rename_categories(*args, **kwargs) Renames categories. reorder_categories(*args, **kwargs) Reorders categories as specified in new_categories. repeat(n) return a new Index of the values repeated n times searchsorted(key[, side]) np.ndarray searchsorted compat set_categories(*args, **kwargs) Sets the categories to the specified new_categories. set_names(names[, level, inplace]) Set new names on index. set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray. shift([periods, freq]) Shift Index containing datetime objects by input number of periods and slice_indexer([start, end, step, kind]) For an ordered Index, compute the slice indexer for input labels and slice_locs([start, end, step, kind]) Compute slice locations for input labels. sort(*args, **kwargs) str alias of StringMethods summary([name]) sym_diff(other[, result_name]) Compute the sorted symmetric difference of two Index objects. take(indexer[, axis]) return a new CategoricalIndex of the values selected by the indexer to_datetime([dayfirst]) For an Index containing strings or datetime.datetime objects, attempt to_native_types([slicer]) slice and dice then format to_series(**kwargs) Create a Series with both index and values equal to the index keys tolist() return a list of the Index values transpose() return the transpose, which is by definition self union(other) Form the union of two Index objects and sorts if possible unique() Return array of unique values in the object. value_counts([normalize, sort, ascending, ...]) Returns object containing counts of unique values. view([cls]) pandas.CategoricalIndex.add_categories CategoricalIndex.add_categories(*args, **kwargs) Add new categories. new_categories will be included at the last/highest place in the categories and will be unused directly after 33.8. CategoricalIndex 1441 pandas: powerful Python data analysis toolkit, Release 0.16.1 this call. Parameters new_categories : category or list-like of category The new categories to be included. inplace : boolean (default: False) Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns cat : Categorical with new categories added or None if inplace. Raises ValueError If the new categories include old categories or do not validate as categories See also: rename_categories, reorder_categories, remove_unused_categories, set_categories remove_categories, pandas.CategoricalIndex.all CategoricalIndex.all(other=None) pandas.CategoricalIndex.any CategoricalIndex.any(other=None) pandas.CategoricalIndex.append CategoricalIndex.append(other) Append a collection of CategoricalIndex options together Parameters other : Index or list/tuple of indices Returns appended : Index Raises ValueError if other is not in the categories pandas.CategoricalIndex.argmax CategoricalIndex.argmax(axis=None) return a ndarray of the maximum argument indexer See also: numpy.ndarray.argmax pandas.CategoricalIndex.argmin CategoricalIndex.argmin(axis=None) return a ndarray of the minimum argument indexer See also: numpy.ndarray.argmin 1442 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.argsort CategoricalIndex.argsort(*args, **kwargs) pandas.CategoricalIndex.as_ordered CategoricalIndex.as_ordered(*args, **kwargs) Sets the Categorical to be ordered Parameters inplace : boolean (default: False) Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to True pandas.CategoricalIndex.as_unordered CategoricalIndex.as_unordered(*args, **kwargs) Sets the Categorical to be unordered Parameters inplace : boolean (default: False) Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to False pandas.CategoricalIndex.asof CategoricalIndex.asof(label) For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also: get_loc asof is a thin wrapper around get_loc with method=’pad’ pandas.CategoricalIndex.asof_locs CategoricalIndex.asof_locs(where, mask) where : array of timestamps mask : array of booleans where data is not NA pandas.CategoricalIndex.astype CategoricalIndex.astype(dtype) pandas.CategoricalIndex.copy CategoricalIndex.copy(names=None, name=None, dtype=None, deep=False) Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters name : string, optional dtype : numpy dtype or pandas type Returns copy : Index 33.8. CategoricalIndex 1443 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy. pandas.CategoricalIndex.delete CategoricalIndex.delete(loc) Make new Index with passed location(-s) deleted Returns new_index : Index pandas.CategoricalIndex.diff CategoricalIndex.diff(*args, **kwargs) pandas.CategoricalIndex.difference CategoricalIndex.difference(other) Compute sorted set difference of two Index objects Parameters other : Index or array-like Returns diff : Index Notes One can do either of these and achieve the same result >>> index.difference(index2) pandas.CategoricalIndex.drop CategoricalIndex.drop(labels, errors=’raise’) Make new Index with passed list of labels deleted Parameters labels : array-like errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : Index pandas.CategoricalIndex.drop_duplicates CategoricalIndex.drop_duplicates(take_last=False) Return Index with duplicate values removed Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns deduplicated : Index 1444 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.duplicated CategoricalIndex.duplicated(take_last=False) Return boolean np.array denoting duplicate values Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns duplicated : np.array pandas.CategoricalIndex.equals CategoricalIndex.equals(other) Determines if two CategorialIndex objects contain the same elements. pandas.CategoricalIndex.factorize CategoricalIndex.factorize(sort=False, na_sentinel=-1) Encode the object as an enumerated type or categorical variable Parameters sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark “not found” Returns labels : the indexer to the original array uniques : the unique Index pandas.CategoricalIndex.format CategoricalIndex.format(name=False, formatter=None, **kwargs) Render a string representation of the Index pandas.CategoricalIndex.get_duplicates CategoricalIndex.get_duplicates() pandas.CategoricalIndex.get_indexer CategoricalIndex.get_indexer(target, method=None, limit=None) Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. The mask determines whether labels are found or not in the current index Parameters target : MultiIndex or Index (of tuples) method : {‘pad’, ‘ffill’, ‘backfill’, ‘bfill’} pad / ffill: propagate LAST valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap Returns (indexer, mask) : (ndarray, ndarray) 33.8. CategoricalIndex 1445 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes This is a low-level method and probably should be used at your own risk Examples >>> indexer, mask = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) >>> new_values[-mask] = np.nan pandas.CategoricalIndex.get_indexer_for CategoricalIndex.get_indexer_for(target, **kwargs) guaranteed return of an indexer even when non-unique pandas.CategoricalIndex.get_indexer_non_unique CategoricalIndex.get_indexer_non_unique(target) this is the same for a CategoricalIndex for get_indexer; the API returns the missing values as well pandas.CategoricalIndex.get_level_values CategoricalIndex.get_level_values(level) Return vector of label values for requested level, equal to the length of the index Parameters level : int Returns values : ndarray pandas.CategoricalIndex.get_loc CategoricalIndex.get_loc(key, method=None) Get integer location for requested label Parameters key : label method : {None} • default: exact matches only. Returns loc : int if unique index, possibly slice or mask if not pandas.CategoricalIndex.get_slice_bound CategoricalIndex.get_slice_bound(label, side, kind) Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if side==’right’) position of given label. Parameters label : object side : {‘left’, ‘right’} kind : string / None, the type of indexer 1446 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.get_value CategoricalIndex.get_value(series, key) Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing pandas.CategoricalIndex.get_values CategoricalIndex.get_values() return the underlying data as an ndarray pandas.CategoricalIndex.groupby CategoricalIndex.groupby(to_groupby) Group the index labels by a given array of values. Parameters to_groupby : array Values used to determine the groups. Returns groups : dict {group name -> group labels} pandas.CategoricalIndex.hasnans CategoricalIndex.hasnans() return if I have any nans; enables various perf speedups pandas.CategoricalIndex.holds_integer CategoricalIndex.holds_integer() pandas.CategoricalIndex.identical CategoricalIndex.identical(other) Similar to equals, but check that other comparable attributes are also equal pandas.CategoricalIndex.insert CategoricalIndex.insert(loc, item) Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters loc : int item : object Returns new_index : Index Raises ValueError if the item is not in the categories 33.8. CategoricalIndex 1447 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.intersection CategoricalIndex.intersection(other) Form the intersection of two Index objects. Sortedness of the result is not guaranteed Parameters other : Index or array-like Returns intersection : Index pandas.CategoricalIndex.is CategoricalIndex.is_(other) More flexible, faster check like is but that works through views Note: this is not the same as Index.identical(), which checks that metadata is also the same. Parameters other : object other object to compare against. Returns True if both have same underlying data, False otherwise : bool pandas.CategoricalIndex.is_boolean CategoricalIndex.is_boolean() pandas.CategoricalIndex.is_categorical CategoricalIndex.is_categorical() pandas.CategoricalIndex.is_floating CategoricalIndex.is_floating() pandas.CategoricalIndex.is_integer CategoricalIndex.is_integer() pandas.CategoricalIndex.is_lexsorted_for_tuple CategoricalIndex.is_lexsorted_for_tuple(tup) pandas.CategoricalIndex.is_mixed CategoricalIndex.is_mixed() pandas.CategoricalIndex.is_numeric CategoricalIndex.is_numeric() 1448 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.is_object CategoricalIndex.is_object() pandas.CategoricalIndex.is_type_compatible CategoricalIndex.is_type_compatible(kind) pandas.CategoricalIndex.isin CategoricalIndex.isin(values, level=None) Compute boolean array of whether each index value is found in the passed set of values. Parameters values : set or sequence of values Sought values. level : str or int, optional Name or position of the index level to use (if the index is a MultiIndex). Returns is_contained : ndarray (boolean dtype) Notes If level is specified: •if it is the name of one and only one index level, use that level; •otherwise it should be a number indicating level position. pandas.CategoricalIndex.item CategoricalIndex.item() return the first element of the underlying data as a python scalar pandas.CategoricalIndex.join CategoricalIndex.join(other, how=’left’, level=None, return_indexers=False) this is an internal non-public method Compute join_index and indexers to conform data structures to the new index. Parameters other : Index how : {‘left’, ‘right’, ‘inner’, ‘outer’} level : int or level name, default None return_indexers : boolean, default False Returns join_index, (left_indexer, right_indexer) pandas.CategoricalIndex.map CategoricalIndex.map(mapper) 33.8. CategoricalIndex 1449 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.max CategoricalIndex.max(*args, **kwargs) The maximum value of the object. Only ordered Categoricals have a maximum! Returns max : the maximum of this Categorical Raises TypeError If the Categorical is not ordered. pandas.CategoricalIndex.min CategoricalIndex.min(*args, **kwargs) The minimum value of the object. Only ordered Categoricals have a minimum! Returns min : the minimum of this Categorical Raises TypeError If the Categorical is not ordered. pandas.CategoricalIndex.nunique CategoricalIndex.nunique(dropna=True) Return number of unique elements in the object. Excludes NA values by default. Parameters dropna : boolean, default True Don’t include NaN in the count. Returns nunique : int pandas.CategoricalIndex.order CategoricalIndex.order(return_indexer=False, ascending=True) Return sorted copy of Index pandas.CategoricalIndex.putmask CategoricalIndex.putmask(mask, value) return a new Index of the values set with the mask See also: numpy.ndarray.putmask 1450 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.ravel CategoricalIndex.ravel(order=’C’) return an ndarray of the flattened values of the underlying data See also: numpy.ndarray.ravel pandas.CategoricalIndex.reindex CategoricalIndex.reindex(target, method=None, level=None, limit=None) Create index with target’s values (move/add/delete values as necessary) Returns new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index pandas.CategoricalIndex.remove_categories CategoricalIndex.remove_categories(*args, **kwargs) Removes the specified categories. removals must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters removals : category or list of categories The categories which should be removed. inplace : boolean (default: False) Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns cat : Categorical with removed categories or None if inplace. Raises ValueError If the removals are not contained in the categories See also: rename_categories, reorder_categories, remove_unused_categories, set_categories add_categories, pandas.CategoricalIndex.remove_unused_categories CategoricalIndex.remove_unused_categories(*args, **kwargs) Removes categories which are not used. Parameters inplace : boolean (default: False) Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns cat : Categorical with unused categories dropped or None if inplace. 33.8. CategoricalIndex 1451 pandas: powerful Python data analysis toolkit, Release 0.16.1 See also: rename_categories, reorder_categories, add_categories, remove_categories, set_categories pandas.CategoricalIndex.rename CategoricalIndex.rename(name, inplace=False) Set new names on index. Defaults to returning new index. Parameters name : str or list name to set inplace : bool if True, mutates in place Returns new index (of same type and class...etc) [if inplace, returns None] pandas.CategoricalIndex.rename_categories CategoricalIndex.rename_categories(*args, **kwargs) Renames categories. The new categories has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Parameters new_categories : Index-like The renamed categories. inplace : boolean (default: False) Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns cat : Categorical with renamed categories added or None if inplace. Raises ValueError If the new categories do not have the same number of items than the current categories or do not validate as categories See also: reorder_categories, add_categories, remove_unused_categories, set_categories remove_categories, pandas.CategoricalIndex.reorder_categories CategoricalIndex.reorder_categories(*args, **kwargs) Reorders categories as specified in new_categories. new_categories need to include all old categories and no new category items. Parameters new_categories : Index-like The categories in new order. ordered : boolean, optional 1452 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : boolean (default: False) Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns cat : Categorical with reordered categories or None if inplace. Raises ValueError If the new categories do not contain all old category items or any new ones See also: rename_categories, add_categories, remove_unused_categories, set_categories remove_categories, pandas.CategoricalIndex.repeat CategoricalIndex.repeat(n) return a new Index of the values repeated n times See also: numpy.ndarray.repeat pandas.CategoricalIndex.searchsorted CategoricalIndex.searchsorted(key, side=’left’) np.ndarray searchsorted compat pandas.CategoricalIndex.set_categories CategoricalIndex.set_categories(*args, **kwargs) Sets the categories to the specified new_categories. new_categories can include new categories (which will result in unused categories) or or remove old categories (which results in values set to NaN). If rename==True, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string. Parameters new_categories : Index-like The categories in new order. ordered : boolean, (default: False) Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : boolean (default: False) 33.8. CategoricalIndex 1453 pandas: powerful Python data analysis toolkit, Release 0.16.1 Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : boolean (default: False) Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns cat : Categorical with reordered categories or None if inplace. Raises ValueError If new_categories does not validate as categories See also: rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories pandas.CategoricalIndex.set_names CategoricalIndex.set_names(names, level=None, inplace=False) Set new names on index. Defaults to returning new index. Parameters names : str or sequence name(s) to set level : int or level name, or sequence of int / level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels) Otherwise level must be None inplace : bool if True, mutates in place Returns new index (of same type and class...etc) [if inplace, returns None] Examples >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) 1454 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.set_value CategoricalIndex.set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing pandas.CategoricalIndex.shift CategoricalIndex.shift(periods=1, freq=None) Shift Index containing datetime objects by input number of periods and DateOffset Returns shifted : Index pandas.CategoricalIndex.slice_indexer CategoricalIndex.slice_indexer(start=None, end=None, step=None, kind=None) For an ordered Index, compute the slice indexer for input labels and step Parameters start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, default None kind : string, default None Returns indexer : ndarray or slice Notes This function assumes that the data is sorted, so use at your own peril pandas.CategoricalIndex.slice_locs CategoricalIndex.slice_locs(start=None, end=None, step=None, kind=None) Compute slice locations for input labels. Parameters start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, defaults None If None, defaults to 1 kind : string, defaults None Returns start, end : int 33.8. CategoricalIndex 1455 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.sort CategoricalIndex.sort(*args, **kwargs) pandas.CategoricalIndex.summary CategoricalIndex.summary(name=None) pandas.CategoricalIndex.sym_diff CategoricalIndex.sym_diff(other, result_name=None) Compute the sorted symmetric difference of two Index objects. Parameters other : array-like result_name : str Returns sym_diff : Index Notes sym_diff contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by (idx1 - idx2) + (idx2 - idx1) with duplicates dropped. The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444. Examples >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.sym_diff(idx2) Int64Index([1, 5], dtype='int64') You can also use the ^ operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') pandas.CategoricalIndex.take CategoricalIndex.take(indexer, axis=0) return a new CategoricalIndex of the values selected by the indexer See also: numpy.ndarray.take pandas.CategoricalIndex.to_datetime CategoricalIndex.to_datetime(dayfirst=False) For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex 1456 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.to_native_types CategoricalIndex.to_native_types(slicer=None, **kwargs) slice and dice then format pandas.CategoricalIndex.to_series CategoricalIndex.to_series(**kwargs) Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Returns Series : dtype will be based on the type of the Index values. pandas.CategoricalIndex.tolist CategoricalIndex.tolist() return a list of the Index values pandas.CategoricalIndex.transpose CategoricalIndex.transpose() return the transpose, which is by definition self pandas.CategoricalIndex.union CategoricalIndex.union(other) Form the union of two Index objects and sorts if possible Parameters other : Index or array-like Returns union : Index pandas.CategoricalIndex.unique CategoricalIndex.unique() Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values. Returns uniques : ndarray pandas.CategoricalIndex.value_counts CategoricalIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True 33.8. CategoricalIndex 1457 pandas: powerful Python data analysis toolkit, Release 0.16.1 Sort by values ascending : boolean, default False Sort in ascending order bins : integer, optional Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data dropna : boolean, default True Don’t include counts of NaN. Returns counts : Series pandas.CategoricalIndex.view CategoricalIndex.view(cls=None) 33.8.2 Categorical Components CategoricalIndex.codes CategoricalIndex.categories CategoricalIndex.ordered CategoricalIndex.rename_categories(*args, ...) CategoricalIndex.reorder_categories(*args, ...) CategoricalIndex.add_categories(*args, **kwargs) CategoricalIndex.remove_categories(*args, ...) CategoricalIndex.remove_unused_categories(...) CategoricalIndex.set_categories(*args, **kwargs) CategoricalIndex.as_ordered(*args, **kwargs) CategoricalIndex.as_unordered(*args, **kwargs) Renames categories. Reorders categories as specified in new_categories. Add new categories. Removes the specified categories. Removes categories which are not used. Sets the categories to the specified new_categories. Sets the Categorical to be ordered Sets the Categorical to be unordered pandas.CategoricalIndex.codes CategoricalIndex.codes pandas.CategoricalIndex.categories CategoricalIndex.categories pandas.CategoricalIndex.ordered CategoricalIndex.ordered pandas.CategoricalIndex.rename_categories CategoricalIndex.rename_categories(*args, **kwargs) Renames categories. 1458 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 The new categories has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Parameters new_categories : Index-like The renamed categories. inplace : boolean (default: False) Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns cat : Categorical with renamed categories added or None if inplace. Raises ValueError If the new categories do not have the same number of items than the current categories or do not validate as categories See also: reorder_categories, add_categories, remove_unused_categories, set_categories remove_categories, pandas.CategoricalIndex.reorder_categories CategoricalIndex.reorder_categories(*args, **kwargs) Reorders categories as specified in new_categories. new_categories need to include all old categories and no new category items. Parameters new_categories : Index-like The categories in new order. ordered : boolean, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : boolean (default: False) Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns cat : Categorical with reordered categories or None if inplace. Raises ValueError If the new categories do not contain all old category items or any new ones See also: rename_categories, add_categories, remove_unused_categories, set_categories remove_categories, pandas.CategoricalIndex.add_categories CategoricalIndex.add_categories(*args, **kwargs) Add new categories. new_categories will be included at the last/highest place in the categories and will be unused directly after this call. 33.8. CategoricalIndex 1459 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters new_categories : category or list-like of category The new categories to be included. inplace : boolean (default: False) Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns cat : Categorical with new categories added or None if inplace. Raises ValueError If the new categories include old categories or do not validate as categories See also: rename_categories, reorder_categories, remove_unused_categories, set_categories remove_categories, pandas.CategoricalIndex.remove_categories CategoricalIndex.remove_categories(*args, **kwargs) Removes the specified categories. removals must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters removals : category or list of categories The categories which should be removed. inplace : boolean (default: False) Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns cat : Categorical with removed categories or None if inplace. Raises ValueError If the removals are not contained in the categories See also: rename_categories, reorder_categories, remove_unused_categories, set_categories add_categories, pandas.CategoricalIndex.remove_unused_categories CategoricalIndex.remove_unused_categories(*args, **kwargs) Removes categories which are not used. Parameters inplace : boolean (default: False) Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns cat : Categorical with unused categories dropped or None if inplace. See also: rename_categories, set_categories 1460 reorder_categories, add_categories, remove_categories, Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.CategoricalIndex.set_categories CategoricalIndex.set_categories(*args, **kwargs) Sets the categories to the specified new_categories. new_categories can include new categories (which will result in unused categories) or or remove old categories (which results in values set to NaN). If rename==True, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string. Parameters new_categories : Index-like The categories in new order. ordered : boolean, (default: False) Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : boolean (default: False) Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : boolean (default: False) Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns cat : Categorical with reordered categories or None if inplace. Raises ValueError If new_categories does not validate as categories See also: rename_categories, reorder_categories, remove_unused_categories add_categories, remove_categories, pandas.CategoricalIndex.as_ordered CategoricalIndex.as_ordered(*args, **kwargs) Sets the Categorical to be ordered Parameters inplace : boolean (default: False) Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to True pandas.CategoricalIndex.as_unordered CategoricalIndex.as_unordered(*args, **kwargs) Sets the Categorical to be unordered Parameters inplace : boolean (default: False) 33.8. CategoricalIndex 1461 pandas: powerful Python data analysis toolkit, Release 0.16.1 Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to False 33.9 DatetimeIndex DatetimeIndex Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp ob 33.9.1 pandas.DatetimeIndex class pandas.DatetimeIndex Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information. Parameters data : array-like (1-dimensional), optional Optional datetime-like data to construct index with copy : bool Make a copy of input ndarray freq : string or pandas offset object, optional One of pandas date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforming time on or just past end argument closed : string or None, default None Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None) tz : pytz.timezone or dateutil.tz.tzfile ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order name : object 1462 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Name to be stored in the index Attributes T asi8 asobject base data date day dayofweek dayofyear days_in_month daysinmonth dtype flags freq freqstr has_duplicates hour inferred_type is_all_dates is_monotonic is_monotonic_decreasing is_monotonic_increasing is_month_end is_month_start is_quarter_end is_quarter_start is_year_end is_year_start itemsize microsecond millisecond minute month names nanosecond nbytes ndim nlevels quarter second shape size strides time tzinfo values week weekday 33.9. DatetimeIndex return the transpose, which is by definition self return the base object if the memory of the underlying data is shared return the data pointer of the underlying data Returns numpy array of datetime.date. The days of the datetime The day of the week with Monday=0, Sunday=6 The ordinal day of the year The number of days in the month The number of days in the month get/set the frequncy of the Index return the frequency object as a string if its set, otherwise None The hours of the datetime alias for is_monotonic_increasing (deprecated) return if the index is monotonic decreasing (only equal or return if the index is monotonic increasing (only equal or Logical indicating if last day of month (defined by frequency) Logical indicating if first day of month (defined by frequency) Logical indicating if last day of quarter (defined by frequency) Logical indicating if first day of quarter (defined by frequency) Logical indicating if last day of year (defined by frequency) Logical indicating if first day of year (defined by frequency) return the size of the dtype of the item of the underlying data The microseconds of the datetime The milliseconds of the datetime The minutes of the datetime The month as January=1, December=12 The nanoseconds of the datetime return the number of bytes in the underlying data return the number of dimensions of the underlying data, by definition 1 The quarter of the date The seconds of the datetime return a tuple of the shape of the underlying data return the number of elements in the underlying data return the strides of the underlying data Returns numpy array of datetime.time. Alias for tz attribute return the underlying data as an ndarray The week ordinal of the year The day of the week with Monday=0, Sunday=6 Continued on next page 1463 pandas: powerful Python data analysis toolkit, Release 0.16.1 weekofyear year Table 33.100 – continued from previous page The week ordinal of the year The year of the datetime pandas.DatetimeIndex.T DatetimeIndex.T return the transpose, which is by definition self pandas.DatetimeIndex.asi8 DatetimeIndex.asi8 pandas.DatetimeIndex.asobject DatetimeIndex.asobject pandas.DatetimeIndex.base DatetimeIndex.base return the base object if the memory of the underlying data is shared pandas.DatetimeIndex.data DatetimeIndex.data return the data pointer of the underlying data pandas.DatetimeIndex.date DatetimeIndex.date Returns numpy array of datetime.date. The date part of the Timestamps. pandas.DatetimeIndex.day DatetimeIndex.day The days of the datetime pandas.DatetimeIndex.dayofweek DatetimeIndex.dayofweek The day of the week with Monday=0, Sunday=6 pandas.DatetimeIndex.dayofyear DatetimeIndex.dayofyear The ordinal day of the year 1464 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.days_in_month DatetimeIndex.days_in_month The number of days in the month pandas.DatetimeIndex.daysinmonth DatetimeIndex.daysinmonth The number of days in the month pandas.DatetimeIndex.dtype DatetimeIndex.dtype pandas.DatetimeIndex.flags DatetimeIndex.flags pandas.DatetimeIndex.freq DatetimeIndex.freq get/set the frequncy of the Index pandas.DatetimeIndex.freqstr DatetimeIndex.freqstr return the frequency object as a string if its set, otherwise None pandas.DatetimeIndex.has_duplicates DatetimeIndex.has_duplicates pandas.DatetimeIndex.hour DatetimeIndex.hour The hours of the datetime pandas.DatetimeIndex.inferred_type DatetimeIndex.inferred_type pandas.DatetimeIndex.is_all_dates DatetimeIndex.is_all_dates 33.9. DatetimeIndex 1465 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.is_monotonic DatetimeIndex.is_monotonic alias for is_monotonic_increasing (deprecated) pandas.DatetimeIndex.is_monotonic_decreasing DatetimeIndex.is_monotonic_decreasing return if the index is monotonic decreasing (only equal or decreasing) values. pandas.DatetimeIndex.is_monotonic_increasing DatetimeIndex.is_monotonic_increasing return if the index is monotonic increasing (only equal or increasing) values. pandas.DatetimeIndex.is_month_end DatetimeIndex.is_month_end Logical indicating if last day of month (defined by frequency) pandas.DatetimeIndex.is_month_start DatetimeIndex.is_month_start Logical indicating if first day of month (defined by frequency) pandas.DatetimeIndex.is_quarter_end DatetimeIndex.is_quarter_end Logical indicating if last day of quarter (defined by frequency) pandas.DatetimeIndex.is_quarter_start DatetimeIndex.is_quarter_start Logical indicating if first day of quarter (defined by frequency) pandas.DatetimeIndex.is_year_end DatetimeIndex.is_year_end Logical indicating if last day of year (defined by frequency) pandas.DatetimeIndex.is_year_start DatetimeIndex.is_year_start Logical indicating if first day of year (defined by frequency) 1466 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.itemsize DatetimeIndex.itemsize return the size of the dtype of the item of the underlying data pandas.DatetimeIndex.microsecond DatetimeIndex.microsecond The microseconds of the datetime pandas.DatetimeIndex.millisecond DatetimeIndex.millisecond The milliseconds of the datetime pandas.DatetimeIndex.minute DatetimeIndex.minute The minutes of the datetime pandas.DatetimeIndex.month DatetimeIndex.month The month as January=1, December=12 pandas.DatetimeIndex.names DatetimeIndex.names pandas.DatetimeIndex.nanosecond DatetimeIndex.nanosecond The nanoseconds of the datetime pandas.DatetimeIndex.nbytes DatetimeIndex.nbytes return the number of bytes in the underlying data pandas.DatetimeIndex.ndim DatetimeIndex.ndim return the number of dimensions of the underlying data, by definition 1 pandas.DatetimeIndex.nlevels DatetimeIndex.nlevels 33.9. DatetimeIndex 1467 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.quarter DatetimeIndex.quarter The quarter of the date pandas.DatetimeIndex.second DatetimeIndex.second The seconds of the datetime pandas.DatetimeIndex.shape DatetimeIndex.shape return a tuple of the shape of the underlying data pandas.DatetimeIndex.size DatetimeIndex.size return the number of elements in the underlying data pandas.DatetimeIndex.strides DatetimeIndex.strides return the strides of the underlying data pandas.DatetimeIndex.time DatetimeIndex.time Returns numpy array of datetime.time. The time part of the Timestamps. pandas.DatetimeIndex.tzinfo DatetimeIndex.tzinfo Alias for tz attribute pandas.DatetimeIndex.values DatetimeIndex.values return the underlying data as an ndarray pandas.DatetimeIndex.week DatetimeIndex.week The week ordinal of the year 1468 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.weekday DatetimeIndex.weekday The day of the week with Monday=0, Sunday=6 pandas.DatetimeIndex.weekofyear DatetimeIndex.weekofyear The week ordinal of the year pandas.DatetimeIndex.year DatetimeIndex.year The year of the datetime hasnans inferred_freq is_normalized is_unique name offset resolution tz Methods all([other]) any([other]) append(other) argmax([axis]) argmin([axis]) argsort(*args, **kwargs) asof(label) asof_locs(where, mask) astype(dtype) copy([names, name, dtype, deep]) delete(loc) diff(*args, **kwargs) difference(other) drop(labels[, errors]) drop_duplicates([take_last]) duplicated([take_last]) equals(other) factorize([sort, na_sentinel]) format([name, formatter]) get_duplicates() get_indexer(target[, method, limit]) get_indexer_for(target, **kwargs) get_indexer_non_unique(target) get_level_values(level) 33.9. DatetimeIndex Append a collection of Index options together return a ndarray of the maximum argument indexer return a ndarray of the minimum argument indexer return an ndarray indexer of the underlying data For a sorted index, return the most recent label up to and including the pas where : array of timestamps Make a copy of this object. Make a new DatetimeIndex with passed location(s) deleted. Compute sorted set difference of two Index objects Make new Index with passed list of labels deleted Return Index with duplicate values removed Return boolean np.array denoting duplicate values Determines if two Index objects contain the same elements. Encode the object as an enumerated type or categorical variable Render a string representation of the Index Compute indexer and mask for new index given the current index. guaranteed return of an indexer even when non-unique return an indexer suitable for taking from a non unique index Return vector of label values for requested level, equal to the length Continued on n 1469 pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.101 – continued from previous page get_loc(key[, method]) Get integer location for requested label get_slice_bound(label, side, kind) Calculate slice bound that corresponds to given label. get_value(series, key) Fast lookup of value from 1-dimensional ndarray. get_value_maybe_box(series, key) get_values() return the underlying data as an ndarray groupby(f) holds_integer() identical(other) Similar to equals, but check that other comparable attributes are indexer_at_time(time[, asof]) Select values at particular time of day (e.g. indexer_between_time(start_time, end_time[, ...]) Select values between particular times of day (e.g., 9:00-9:30AM) insert(loc, item) Make new Index inserting new item at location intersection(other) Specialized intersection for DatetimeIndex objects. is_(other) More flexible, faster check like is but that works through views is_boolean() is_categorical() is_floating() is_integer() is_lexsorted_for_tuple(tup) is_mixed() is_numeric() is_object() is_type_compatible(typ) isin(values) Compute boolean array of whether each index value is found in the item() return the first element of the underlying data as a python scalar join(other[, how, level, return_indexers]) See Index.join map(f) max([axis]) return the maximum value of the Index min([axis]) return the minimum value of the Index normalize() Return DatetimeIndex with times to midnight. nunique([dropna]) Return number of unique elements in the object. order([return_indexer, ascending]) Return sorted copy of Index putmask(mask, value) return a new Index of the values set with the mask ravel([order]) return an ndarray of the flattened values of the underlying data reindex(target[, method, level, limit]) Create index with target’s values (move/add/delete values as necessary) rename(name[, inplace]) Set new names on index. repeat(repeats[, axis]) Analogous to ndarray.repeat searchsorted(key[, side]) set_names(names[, level, inplace]) Set new names on index. set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray. shift(n[, freq]) Specialized shift which produces a DatetimeIndex slice_indexer([start, end, step, kind]) Return indexer for specified label slice. slice_locs([start, end, step, kind]) Compute slice locations for input labels. snap([freq]) Snap time stamps to nearest occurring frequency sort(*args, **kwargs) str alias of StringMethods summary([name]) return a summarized representation sym_diff(other[, result_name]) Compute the sorted symmetric difference of two Index objects. take(indices[, axis]) Analogous to ndarray.take to_datetime([dayfirst]) to_julian_date() Convert DatetimeIndex to Float64Index of Julian Dates. to_native_types([slicer]) slice and dice then format to_period([freq]) Cast to PeriodIndex at a particular frequency Continued on n 1470 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.101 – continued from previous page to_pydatetime() Return DatetimeIndex as object ndarray of datetime.datetime objects to_series([keep_tz]) Create a Series with both index and values equal to the index keys tolist() return a list of the underlying data transpose() return the transpose, which is by definition self tz_convert(tz) Convert tz-aware DatetimeIndex from one time zone to another (using pyt tz_localize(*args, **kwargs) Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), union(other) Specialized union for DatetimeIndex objects. union_many(others) A bit of a hack to accelerate unioning a collection of indexes unique() Index.unique with handling for DatetimeIndex/PeriodIndex metadata value_counts([normalize, sort, ascending, ...]) Returns object containing counts of unique values. view([cls]) pandas.DatetimeIndex.all DatetimeIndex.all(other=None) pandas.DatetimeIndex.any DatetimeIndex.any(other=None) pandas.DatetimeIndex.append DatetimeIndex.append(other) Append a collection of Index options together Parameters other : Index or list/tuple of indices Returns appended : Index pandas.DatetimeIndex.argmax DatetimeIndex.argmax(axis=None) return a ndarray of the maximum argument indexer See also: numpy.ndarray.argmax pandas.DatetimeIndex.argmin DatetimeIndex.argmin(axis=None) return a ndarray of the minimum argument indexer See also: numpy.ndarray.argmin 33.9. DatetimeIndex 1471 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.argsort DatetimeIndex.argsort(*args, **kwargs) return an ndarray indexer of the underlying data See also: numpy.ndarray.argsort pandas.DatetimeIndex.asof DatetimeIndex.asof(label) For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also: get_loc asof is a thin wrapper around get_loc with method=’pad’ pandas.DatetimeIndex.asof_locs DatetimeIndex.asof_locs(where, mask) where : array of timestamps mask : array of booleans where data is not NA pandas.DatetimeIndex.astype DatetimeIndex.astype(dtype) pandas.DatetimeIndex.copy DatetimeIndex.copy(names=None, name=None, dtype=None, deep=False) Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters name : string, optional dtype : numpy dtype or pandas type Returns copy : Index Notes In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy. pandas.DatetimeIndex.delete DatetimeIndex.delete(loc) Make a new DatetimeIndex with passed location(s) deleted. Parameters loc: int, slice or array of ints Indicate which sub-arrays to remove. Returns new_index : DatetimeIndex 1472 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.diff DatetimeIndex.diff(*args, **kwargs) pandas.DatetimeIndex.difference DatetimeIndex.difference(other) Compute sorted set difference of two Index objects Parameters other : Index or array-like Returns diff : Index Notes One can do either of these and achieve the same result >>> index.difference(index2) pandas.DatetimeIndex.drop DatetimeIndex.drop(labels, errors=’raise’) Make new Index with passed list of labels deleted Parameters labels : array-like errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : Index pandas.DatetimeIndex.drop_duplicates DatetimeIndex.drop_duplicates(take_last=False) Return Index with duplicate values removed Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns deduplicated : Index pandas.DatetimeIndex.duplicated DatetimeIndex.duplicated(take_last=False) Return boolean np.array denoting duplicate values Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns duplicated : np.array 33.9. DatetimeIndex 1473 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.equals DatetimeIndex.equals(other) Determines if two Index objects contain the same elements. pandas.DatetimeIndex.factorize DatetimeIndex.factorize(sort=False, na_sentinel=-1) Encode the object as an enumerated type or categorical variable Parameters sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark “not found” Returns labels : the indexer to the original array uniques : the unique Index pandas.DatetimeIndex.format DatetimeIndex.format(name=False, formatter=None, **kwargs) Render a string representation of the Index pandas.DatetimeIndex.get_duplicates DatetimeIndex.get_duplicates() pandas.DatetimeIndex.get_indexer DatetimeIndex.get_indexer(target, method=None, limit=None) Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters target : Index method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’} • default: exact matches only. • pad / ffill: find the PREVIOUS index value if no exact match. • backfill / bfill: use NEXT index value if no exact match • nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int Maximum number of consecuctive labels in target to match for inexact matches. Returns indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. 1474 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> indexer = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) pandas.DatetimeIndex.get_indexer_for DatetimeIndex.get_indexer_for(target, **kwargs) guaranteed return of an indexer even when non-unique pandas.DatetimeIndex.get_indexer_non_unique DatetimeIndex.get_indexer_non_unique(target) return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable pandas.DatetimeIndex.get_level_values DatetimeIndex.get_level_values(level) Return vector of label values for requested level, equal to the length of the index Parameters level : int Returns values : ndarray pandas.DatetimeIndex.get_loc DatetimeIndex.get_loc(key, method=None) Get integer location for requested label Returns loc : int pandas.DatetimeIndex.get_slice_bound DatetimeIndex.get_slice_bound(label, side, kind) Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if side==’right’) position of given label. Parameters label : object side : {‘left’, ‘right’} kind : string / None, the type of indexer pandas.DatetimeIndex.get_value DatetimeIndex.get_value(series, key) Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing 33.9. DatetimeIndex 1475 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.get_value_maybe_box DatetimeIndex.get_value_maybe_box(series, key) pandas.DatetimeIndex.get_values DatetimeIndex.get_values() return the underlying data as an ndarray pandas.DatetimeIndex.groupby DatetimeIndex.groupby(f ) pandas.DatetimeIndex.holds_integer DatetimeIndex.holds_integer() pandas.DatetimeIndex.identical DatetimeIndex.identical(other) Similar to equals, but check that other comparable attributes are also equal pandas.DatetimeIndex.indexer_at_time DatetimeIndex.indexer_at_time(time, asof=False) Select values at particular time of day (e.g. 9:30AM) Parameters time : datetime.time or string Returns values_at_time : TimeSeries pandas.DatetimeIndex.indexer_between_time DatetimeIndex.indexer_between_time(start_time, end_time, clude_end=True) Select values between particular times of day (e.g., 9:00-9:30AM) include_start=True, in- Parameters start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True tz : string or pytz.timezone or dateutil.tz.tzfile, default None Returns values_between_time : TimeSeries 1476 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.insert DatetimeIndex.insert(loc, item) Make new Index inserting new item at location Parameters loc : int item : object if not either a Python datetime or a numpy integer-like, returned Index dtype will be object rather than datetime. Returns new_index : Index pandas.DatetimeIndex.intersection DatetimeIndex.intersection(other) Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection Parameters other : DatetimeIndex or array-like Returns y : Index or DatetimeIndex pandas.DatetimeIndex.is DatetimeIndex.is_(other) More flexible, faster check like is but that works through views Note: this is not the same as Index.identical(), which checks that metadata is also the same. Parameters other : object other object to compare against. Returns True if both have same underlying data, False otherwise : bool pandas.DatetimeIndex.is_boolean DatetimeIndex.is_boolean() pandas.DatetimeIndex.is_categorical DatetimeIndex.is_categorical() pandas.DatetimeIndex.is_floating DatetimeIndex.is_floating() pandas.DatetimeIndex.is_integer DatetimeIndex.is_integer() 33.9. DatetimeIndex 1477 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.is_lexsorted_for_tuple DatetimeIndex.is_lexsorted_for_tuple(tup) pandas.DatetimeIndex.is_mixed DatetimeIndex.is_mixed() pandas.DatetimeIndex.is_numeric DatetimeIndex.is_numeric() pandas.DatetimeIndex.is_object DatetimeIndex.is_object() pandas.DatetimeIndex.is_type_compatible DatetimeIndex.is_type_compatible(typ) pandas.DatetimeIndex.isin DatetimeIndex.isin(values) Compute boolean array of whether each index value is found in the passed set of values Parameters values : set or sequence of values Returns is_contained : ndarray (boolean dtype) pandas.DatetimeIndex.item DatetimeIndex.item() return the first element of the underlying data as a python scalar pandas.DatetimeIndex.join DatetimeIndex.join(other, how=’left’, level=None, return_indexers=False) See Index.join pandas.DatetimeIndex.map DatetimeIndex.map(f ) 1478 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.max DatetimeIndex.max(axis=None) return the maximum value of the Index See also: numpy.ndarray.max pandas.DatetimeIndex.min DatetimeIndex.min(axis=None) return the minimum value of the Index See also: numpy.ndarray.min pandas.DatetimeIndex.normalize DatetimeIndex.normalize() Return DatetimeIndex with times to midnight. Length is unaltered Returns normalized : DatetimeIndex pandas.DatetimeIndex.nunique DatetimeIndex.nunique(dropna=True) Return number of unique elements in the object. Excludes NA values by default. Parameters dropna : boolean, default True Don’t include NaN in the count. Returns nunique : int pandas.DatetimeIndex.order DatetimeIndex.order(return_indexer=False, ascending=True) Return sorted copy of Index pandas.DatetimeIndex.putmask DatetimeIndex.putmask(mask, value) return a new Index of the values set with the mask See also: numpy.ndarray.putmask 33.9. DatetimeIndex 1479 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.ravel DatetimeIndex.ravel(order=’C’) return an ndarray of the flattened values of the underlying data See also: numpy.ndarray.ravel pandas.DatetimeIndex.reindex DatetimeIndex.reindex(target, method=None, level=None, limit=None) Create index with target’s values (move/add/delete values as necessary) Parameters target : an iterable Returns new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index pandas.DatetimeIndex.rename DatetimeIndex.rename(name, inplace=False) Set new names on index. Defaults to returning new index. Parameters name : str or list name to set inplace : bool if True, mutates in place Returns new index (of same type and class...etc) [if inplace, returns None] pandas.DatetimeIndex.repeat DatetimeIndex.repeat(repeats, axis=None) Analogous to ndarray.repeat pandas.DatetimeIndex.searchsorted DatetimeIndex.searchsorted(key, side=’left’) pandas.DatetimeIndex.set_names DatetimeIndex.set_names(names, level=None, inplace=False) Set new names on index. Defaults to returning new index. Parameters names : str or sequence name(s) to set level : int or level name, or sequence of int / level names (default None) 1480 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels) Otherwise level must be None inplace : bool if True, mutates in place Returns new index (of same type and class...etc) [if inplace, returns None] Examples >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) pandas.DatetimeIndex.set_value DatetimeIndex.set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing pandas.DatetimeIndex.shift DatetimeIndex.shift(n, freq=None) Specialized shift which produces a DatetimeIndex Parameters n : int Periods to shift by freq : DateOffset or timedelta-like, optional Returns shifted : DatetimeIndex pandas.DatetimeIndex.slice_indexer DatetimeIndex.slice_indexer(start=None, end=None, step=None, kind=None) Return indexer for specified label slice. Index.slice_indexer, customized to handle time slicing. In addition to functionality provided by Index.slice_indexer, does the following: •if both start and end are instances of datetime.time, it invokes indexer_between_time •if start and end are both either string or None perform value-based selection in non-monotonic cases. 33.9. DatetimeIndex 1481 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.slice_locs DatetimeIndex.slice_locs(start=None, end=None, step=None, kind=None) Compute slice locations for input labels. Parameters start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, defaults None If None, defaults to 1 kind : string, defaults None Returns start, end : int pandas.DatetimeIndex.snap DatetimeIndex.snap(freq=’S’) Snap time stamps to nearest occurring frequency pandas.DatetimeIndex.sort DatetimeIndex.sort(*args, **kwargs) pandas.DatetimeIndex.summary DatetimeIndex.summary(name=None) return a summarized representation pandas.DatetimeIndex.sym_diff DatetimeIndex.sym_diff(other, result_name=None) Compute the sorted symmetric difference of two Index objects. Parameters other : array-like result_name : str Returns sym_diff : Index Notes sym_diff contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by (idx1 - idx2) + (idx2 - idx1) with duplicates dropped. The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444. 1482 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.sym_diff(idx2) Int64Index([1, 5], dtype='int64') You can also use the ^ operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') pandas.DatetimeIndex.take DatetimeIndex.take(indices, axis=0) Analogous to ndarray.take pandas.DatetimeIndex.to_datetime DatetimeIndex.to_datetime(dayfirst=False) pandas.DatetimeIndex.to_julian_date DatetimeIndex.to_julian_date() Convert DatetimeIndex to Float64Index of Julian Dates. 0 Julian date is noon January 1, 4713 BC. http://en.wikipedia.org/wiki/Julian_day pandas.DatetimeIndex.to_native_types DatetimeIndex.to_native_types(slicer=None, **kwargs) slice and dice then format pandas.DatetimeIndex.to_period DatetimeIndex.to_period(freq=None) Cast to PeriodIndex at a particular frequency pandas.DatetimeIndex.to_pydatetime DatetimeIndex.to_pydatetime() Return DatetimeIndex as object ndarray of datetime.datetime objects Returns datetimes : ndarray pandas.DatetimeIndex.to_series DatetimeIndex.to_series(keep_tz=False) Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index 33.9. DatetimeIndex 1483 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters keep_tz : optional, defaults False. return the data keeping the timezone. If keep_tz is True: If the timezone is not set, the resulting Series will have a datetime64[ns] dtype. Otherwise the Series will have an object dtype; the tz will be preserved. If keep_tz is False: Series will have a datetime64[ns] dtype. TZ aware objects will have the tz removed. Returns Series pandas.DatetimeIndex.tolist DatetimeIndex.tolist() return a list of the underlying data pandas.DatetimeIndex.transpose DatetimeIndex.transpose() return the transpose, which is by definition self pandas.DatetimeIndex.tz_convert DatetimeIndex.tz_convert(tz) Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil) Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time. Returns normalized : DatetimeIndex Raises TypeError If DatetimeIndex is tz-naive. pandas.DatetimeIndex.tz_localize DatetimeIndex.tz_localize(*args, **kwargs) Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tzaware DatetimeIndex Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time. ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order 1484 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Returns localized : DatetimeIndex Raises TypeError If the DatetimeIndex is tz-aware and tz is not None. pandas.DatetimeIndex.union DatetimeIndex.union(other) Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters other : DatetimeIndex or array-like Returns y : Index or DatetimeIndex pandas.DatetimeIndex.union_many DatetimeIndex.union_many(others) A bit of a hack to accelerate unioning a collection of indexes pandas.DatetimeIndex.unique DatetimeIndex.unique() Index.unique with handling for DatetimeIndex/PeriodIndex metadata Returns result : DatetimeIndex or PeriodIndex pandas.DatetimeIndex.value_counts DatetimeIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order 33.9. DatetimeIndex 1485 pandas: powerful Python data analysis toolkit, Release 0.16.1 bins : integer, optional Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data dropna : boolean, default True Don’t include counts of NaN. Returns counts : Series pandas.DatetimeIndex.view DatetimeIndex.view(cls=None) 33.9.2 Time/Date Components DatetimeIndex.year DatetimeIndex.month DatetimeIndex.day DatetimeIndex.hour DatetimeIndex.minute DatetimeIndex.second DatetimeIndex.microsecond DatetimeIndex.nanosecond DatetimeIndex.date DatetimeIndex.time DatetimeIndex.dayofyear DatetimeIndex.weekofyear DatetimeIndex.week DatetimeIndex.dayofweek DatetimeIndex.weekday DatetimeIndex.quarter DatetimeIndex.tz DatetimeIndex.freq DatetimeIndex.freqstr DatetimeIndex.is_month_start DatetimeIndex.is_month_end DatetimeIndex.is_quarter_start DatetimeIndex.is_quarter_end DatetimeIndex.is_year_start DatetimeIndex.is_year_end DatetimeIndex.inferred_freq The year of the datetime The month as January=1, December=12 The days of the datetime The hours of the datetime The minutes of the datetime The seconds of the datetime The microseconds of the datetime The nanoseconds of the datetime Returns numpy array of datetime.date. Returns numpy array of datetime.time. The ordinal day of the year The week ordinal of the year The week ordinal of the year The day of the week with Monday=0, Sunday=6 The day of the week with Monday=0, Sunday=6 The quarter of the date get/set the frequncy of the Index return the frequency object as a string if its set, otherwise None Logical indicating if first day of month (defined by frequency) Logical indicating if last day of month (defined by frequency) Logical indicating if first day of quarter (defined by frequency) Logical indicating if last day of quarter (defined by frequency) Logical indicating if first day of year (defined by frequency) Logical indicating if last day of year (defined by frequency) pandas.DatetimeIndex.year DatetimeIndex.year The year of the datetime 1486 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.month DatetimeIndex.month The month as January=1, December=12 pandas.DatetimeIndex.day DatetimeIndex.day The days of the datetime pandas.DatetimeIndex.hour DatetimeIndex.hour The hours of the datetime pandas.DatetimeIndex.minute DatetimeIndex.minute The minutes of the datetime pandas.DatetimeIndex.second DatetimeIndex.second The seconds of the datetime pandas.DatetimeIndex.microsecond DatetimeIndex.microsecond The microseconds of the datetime pandas.DatetimeIndex.nanosecond DatetimeIndex.nanosecond The nanoseconds of the datetime pandas.DatetimeIndex.date DatetimeIndex.date Returns numpy array of datetime.date. The date part of the Timestamps. pandas.DatetimeIndex.time DatetimeIndex.time Returns numpy array of datetime.time. The time part of the Timestamps. 33.9. DatetimeIndex 1487 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.dayofyear DatetimeIndex.dayofyear The ordinal day of the year pandas.DatetimeIndex.weekofyear DatetimeIndex.weekofyear The week ordinal of the year pandas.DatetimeIndex.week DatetimeIndex.week The week ordinal of the year pandas.DatetimeIndex.dayofweek DatetimeIndex.dayofweek The day of the week with Monday=0, Sunday=6 pandas.DatetimeIndex.weekday DatetimeIndex.weekday The day of the week with Monday=0, Sunday=6 pandas.DatetimeIndex.quarter DatetimeIndex.quarter The quarter of the date pandas.DatetimeIndex.tz DatetimeIndex.tz = None pandas.DatetimeIndex.freq DatetimeIndex.freq get/set the frequncy of the Index pandas.DatetimeIndex.freqstr DatetimeIndex.freqstr return the frequency object as a string if its set, otherwise None pandas.DatetimeIndex.is_month_start DatetimeIndex.is_month_start Logical indicating if first day of month (defined by frequency) 1488 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.DatetimeIndex.is_month_end DatetimeIndex.is_month_end Logical indicating if last day of month (defined by frequency) pandas.DatetimeIndex.is_quarter_start DatetimeIndex.is_quarter_start Logical indicating if first day of quarter (defined by frequency) pandas.DatetimeIndex.is_quarter_end DatetimeIndex.is_quarter_end Logical indicating if last day of quarter (defined by frequency) pandas.DatetimeIndex.is_year_start DatetimeIndex.is_year_start Logical indicating if first day of year (defined by frequency) pandas.DatetimeIndex.is_year_end DatetimeIndex.is_year_end Logical indicating if last day of year (defined by frequency) pandas.DatetimeIndex.inferred_freq DatetimeIndex.inferred_freq = None 33.9.3 Selecting DatetimeIndex.indexer_at_time(time[, asof]) DatetimeIndex.indexer_between_time(...[, ...]) Select values at particular time of day (e.g. Select values between particular times of day (e.g., 9:00-9:30AM) pandas.DatetimeIndex.indexer_at_time DatetimeIndex.indexer_at_time(time, asof=False) Select values at particular time of day (e.g. 9:30AM) Parameters time : datetime.time or string Returns values_at_time : TimeSeries pandas.DatetimeIndex.indexer_between_time DatetimeIndex.indexer_between_time(start_time, end_time, clude_end=True) Select values between particular times of day (e.g., 9:00-9:30AM) 33.9. DatetimeIndex include_start=True, in- 1489 pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True tz : string or pytz.timezone or dateutil.tz.tzfile, default None Returns values_between_time : TimeSeries 33.9.4 Time-specific operations DatetimeIndex.normalize() DatetimeIndex.snap([freq]) DatetimeIndex.tz_convert(tz) DatetimeIndex.tz_localize(*args, **kwargs) Return DatetimeIndex with times to midnight. Snap time stamps to nearest occurring frequency Convert tz-aware DatetimeIndex from one time zone to another (using pytz/ Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), pandas.DatetimeIndex.normalize DatetimeIndex.normalize() Return DatetimeIndex with times to midnight. Length is unaltered Returns normalized : DatetimeIndex pandas.DatetimeIndex.snap DatetimeIndex.snap(freq=’S’) Snap time stamps to nearest occurring frequency pandas.DatetimeIndex.tz_convert DatetimeIndex.tz_convert(tz) Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil) Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time. Returns normalized : DatetimeIndex Raises TypeError If DatetimeIndex is tz-naive. pandas.DatetimeIndex.tz_localize DatetimeIndex.tz_localize(*args, **kwargs) Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None 1490 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time. ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ • ‘infer’ will attempt to infer fall dst-transition hours based on order • bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) • ‘NaT’ will return NaT where there are ambiguous times • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Returns localized : DatetimeIndex Raises TypeError If the DatetimeIndex is tz-aware and tz is not None. 33.9.5 Conversion DatetimeIndex.to_datetime([dayfirst]) DatetimeIndex.to_period([freq]) DatetimeIndex.to_pydatetime() DatetimeIndex.to_series([keep_tz]) Cast to PeriodIndex at a particular frequency Return DatetimeIndex as object ndarray of datetime.datetime objects Create a Series with both index and values equal to the index keys pandas.DatetimeIndex.to_datetime DatetimeIndex.to_datetime(dayfirst=False) pandas.DatetimeIndex.to_period DatetimeIndex.to_period(freq=None) Cast to PeriodIndex at a particular frequency pandas.DatetimeIndex.to_pydatetime DatetimeIndex.to_pydatetime() Return DatetimeIndex as object ndarray of datetime.datetime objects Returns datetimes : ndarray pandas.DatetimeIndex.to_series DatetimeIndex.to_series(keep_tz=False) Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Parameters keep_tz : optional, defaults False. 33.9. DatetimeIndex 1491 pandas: powerful Python data analysis toolkit, Release 0.16.1 return the data keeping the timezone. If keep_tz is True: If the timezone is not set, the resulting Series will have a datetime64[ns] dtype. Otherwise the Series will have an object dtype; the tz will be preserved. If keep_tz is False: Series will have a datetime64[ns] dtype. TZ aware objects will have the tz removed. Returns Series 33.10 TimedeltaIndex TimedeltaIndex Immutable ndarray of timedelta64 data, represented internally as int64, and 33.10.1 pandas.TimedeltaIndex class pandas.TimedeltaIndex Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta objects Parameters data : array-like (1-dimensional), optional Optional timedelta-like data to construct index with unit: unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional which is an integer/float number freq: a frequency for the index, optional copy : bool Make a copy of input ndarray start : starting value, timedelta-like, optional If data is None, start is used as the start point in generating regular timedelta data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, timedelta-like, optional If periods is none, generated index will extend to first conforming time on or just past end argument closed : string or None, default None Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None) name : object Name to be stored in the index 1492 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Attributes T asi8 asobject base components data days dtype flags freqstr has_duplicates inferred_type is_all_dates is_monotonic is_monotonic_decreasing is_monotonic_increasing itemsize microseconds names nanoseconds nbytes ndim nlevels seconds shape size strides values return the transpose, which is by definition self return the base object if the memory of the underlying data is shared Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microsecond return the data pointer of the underlying data Number of days for each element. return the frequency object as a string if its set, otherwise None alias for is_monotonic_increasing (deprecated) return if the index is monotonic decreasing (only equal or return if the index is monotonic increasing (only equal or return the size of the dtype of the item of the underlying data Number of microseconds (>= 0 and less than 1 second) for each element. Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. return the number of bytes in the underlying data return the number of dimensions of the underlying data, by definition 1 Number of seconds (>= 0 and less than 1 day) for each element. return a tuple of the shape of the underlying data return the number of elements in the underlying data return the strides of the underlying data return the underlying data as an ndarray pandas.TimedeltaIndex.T TimedeltaIndex.T return the transpose, which is by definition self pandas.TimedeltaIndex.asi8 TimedeltaIndex.asi8 pandas.TimedeltaIndex.asobject TimedeltaIndex.asobject pandas.TimedeltaIndex.base TimedeltaIndex.base return the base object if the memory of the underlying data is shared 33.10. TimedeltaIndex 1493 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.components TimedeltaIndex.components Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas. Returns a DataFrame pandas.TimedeltaIndex.data TimedeltaIndex.data return the data pointer of the underlying data pandas.TimedeltaIndex.days TimedeltaIndex.days Number of days for each element. pandas.TimedeltaIndex.dtype TimedeltaIndex.dtype pandas.TimedeltaIndex.flags TimedeltaIndex.flags pandas.TimedeltaIndex.freqstr TimedeltaIndex.freqstr return the frequency object as a string if its set, otherwise None pandas.TimedeltaIndex.has_duplicates TimedeltaIndex.has_duplicates pandas.TimedeltaIndex.inferred_type TimedeltaIndex.inferred_type pandas.TimedeltaIndex.is_all_dates TimedeltaIndex.is_all_dates pandas.TimedeltaIndex.is_monotonic TimedeltaIndex.is_monotonic alias for is_monotonic_increasing (deprecated) 1494 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.is_monotonic_decreasing TimedeltaIndex.is_monotonic_decreasing return if the index is monotonic decreasing (only equal or decreasing) values. pandas.TimedeltaIndex.is_monotonic_increasing TimedeltaIndex.is_monotonic_increasing return if the index is monotonic increasing (only equal or increasing) values. pandas.TimedeltaIndex.itemsize TimedeltaIndex.itemsize return the size of the dtype of the item of the underlying data pandas.TimedeltaIndex.microseconds TimedeltaIndex.microseconds Number of microseconds (>= 0 and less than 1 second) for each element. pandas.TimedeltaIndex.names TimedeltaIndex.names pandas.TimedeltaIndex.nanoseconds TimedeltaIndex.nanoseconds Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. pandas.TimedeltaIndex.nbytes TimedeltaIndex.nbytes return the number of bytes in the underlying data pandas.TimedeltaIndex.ndim TimedeltaIndex.ndim return the number of dimensions of the underlying data, by definition 1 pandas.TimedeltaIndex.nlevels TimedeltaIndex.nlevels pandas.TimedeltaIndex.seconds TimedeltaIndex.seconds Number of seconds (>= 0 and less than 1 day) for each element. 33.10. TimedeltaIndex 1495 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.shape TimedeltaIndex.shape return a tuple of the shape of the underlying data pandas.TimedeltaIndex.size TimedeltaIndex.size return the number of elements in the underlying data pandas.TimedeltaIndex.strides TimedeltaIndex.strides return the strides of the underlying data pandas.TimedeltaIndex.values TimedeltaIndex.values return the underlying data as an ndarray freq hasnans inferred_freq is_unique name resolution Methods all([other]) any([other]) append(other) argmax([axis]) argmin([axis]) argsort(*args, **kwargs) asof(label) asof_locs(where, mask) astype(dtype) copy([names, name, dtype, deep]) delete(loc) diff(*args, **kwargs) difference(other) drop(labels[, errors]) drop_duplicates([take_last]) duplicated([take_last]) equals(other) factorize([sort, na_sentinel]) format([name, formatter]) get_duplicates() get_indexer(target[, method, limit]) 1496 Append a collection of Index options together return a ndarray of the maximum argument indexer return a ndarray of the minimum argument indexer return an ndarray indexer of the underlying data For a sorted index, return the most recent label up to and including the passed lab where : array of timestamps Make a copy of this object. Make a new DatetimeIndex with passed location(s) deleted. Compute sorted set difference of two Index objects Make new Index with passed list of labels deleted Return Index with duplicate values removed Return boolean np.array denoting duplicate values Determines if two Index objects contain the same elements. Encode the object as an enumerated type or categorical variable Render a string representation of the Index Compute indexer and mask for new index given the current index. Continued on next pa Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 get_indexer_for(target, **kwargs) get_indexer_non_unique(target) get_level_values(level) get_loc(key[, method]) get_slice_bound(label, side, kind) get_value(series, key) get_value_maybe_box(series, key) get_values() groupby(f) holds_integer() identical(other) insert(loc, item) intersection(other) is_(other) is_boolean() is_categorical() is_floating() is_integer() is_lexsorted_for_tuple(tup) is_mixed() is_numeric() is_object() is_type_compatible(typ) isin(values) item() join(other[, how, level, return_indexers]) map(f) max([axis]) min([axis]) nunique([dropna]) order([return_indexer, ascending]) putmask(mask, value) ravel([order]) reindex(target[, method, level, limit]) rename(name[, inplace]) repeat(repeats[, axis]) searchsorted(key[, side]) set_names(names[, level, inplace]) set_value(arr, key, value) shift(n[, freq]) slice_indexer([start, end, step, kind]) slice_locs([start, end, step, kind]) sort(*args, **kwargs) str summary([name]) sym_diff(other[, result_name]) take(indices[, axis]) to_datetime([dayfirst]) to_native_types([slicer]) to_pytimedelta() to_series(**kwargs) tolist() 33.10. TimedeltaIndex Table 33.108 – continued from previous page guaranteed return of an indexer even when non-unique return an indexer suitable for taking from a non unique index Return vector of label values for requested level, equal to the length Get integer location for requested label Calculate slice bound that corresponds to given label. Fast lookup of value from 1-dimensional ndarray. return the underlying data as an ndarray Similar to equals, but check that other comparable attributes are Make new Index inserting new item at location Specialized intersection for TimedeltaIndex objects. More flexible, faster check like is but that works through views Compute boolean array of whether each index value is found in the return the first element of the underlying data as a python scalar See Index.join return the maximum value of the Index return the minimum value of the Index Return number of unique elements in the object. Return sorted copy of Index return a new Index of the values set with the mask return an ndarray of the flattened values of the underlying data Create index with target’s values (move/add/delete values as necessary) Set new names on index. Analogous to ndarray.repeat Set new names on index. Fast lookup of value from 1-dimensional ndarray. Specialized shift which produces a DatetimeIndex For an ordered Index, compute the slice indexer for input labels and Compute slice locations for input labels. alias of StringMethods return a summarized representation Compute the sorted symmetric difference of two Index objects. Analogous to ndarray.take For an Index containing strings or datetime.datetime objects, attempt slice and dice then format Return TimedeltaIndex as object ndarray of datetime.timedelta objects Create a Series with both index and values equal to the index keys return a list of the underlying data Continued on next pa 1497 pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.108 – continued from previous page transpose() return the transpose, which is by definition self union(other) Specialized union for TimedeltaIndex objects. unique() Index.unique with handling for DatetimeIndex/PeriodIndex metadata value_counts([normalize, sort, ascending, ...]) Returns object containing counts of unique values. view([cls]) pandas.TimedeltaIndex.all TimedeltaIndex.all(other=None) pandas.TimedeltaIndex.any TimedeltaIndex.any(other=None) pandas.TimedeltaIndex.append TimedeltaIndex.append(other) Append a collection of Index options together Parameters other : Index or list/tuple of indices Returns appended : Index pandas.TimedeltaIndex.argmax TimedeltaIndex.argmax(axis=None) return a ndarray of the maximum argument indexer See also: numpy.ndarray.argmax pandas.TimedeltaIndex.argmin TimedeltaIndex.argmin(axis=None) return a ndarray of the minimum argument indexer See also: numpy.ndarray.argmin pandas.TimedeltaIndex.argsort TimedeltaIndex.argsort(*args, **kwargs) return an ndarray indexer of the underlying data See also: numpy.ndarray.argsort 1498 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.asof TimedeltaIndex.asof(label) For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also: get_loc asof is a thin wrapper around get_loc with method=’pad’ pandas.TimedeltaIndex.asof_locs TimedeltaIndex.asof_locs(where, mask) where : array of timestamps mask : array of booleans where data is not NA pandas.TimedeltaIndex.astype TimedeltaIndex.astype(dtype) pandas.TimedeltaIndex.copy TimedeltaIndex.copy(names=None, name=None, dtype=None, deep=False) Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters name : string, optional dtype : numpy dtype or pandas type Returns copy : Index Notes In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy. pandas.TimedeltaIndex.delete TimedeltaIndex.delete(loc) Make a new DatetimeIndex with passed location(s) deleted. Parameters loc: int, slice or array of ints Indicate which sub-arrays to remove. Returns new_index : TimedeltaIndex pandas.TimedeltaIndex.diff TimedeltaIndex.diff(*args, **kwargs) 33.10. TimedeltaIndex 1499 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.difference TimedeltaIndex.difference(other) Compute sorted set difference of two Index objects Parameters other : Index or array-like Returns diff : Index Notes One can do either of these and achieve the same result >>> index.difference(index2) pandas.TimedeltaIndex.drop TimedeltaIndex.drop(labels, errors=’raise’) Make new Index with passed list of labels deleted Parameters labels : array-like errors : {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and existing labels are dropped. Returns dropped : Index pandas.TimedeltaIndex.drop_duplicates TimedeltaIndex.drop_duplicates(take_last=False) Return Index with duplicate values removed Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns deduplicated : Index pandas.TimedeltaIndex.duplicated TimedeltaIndex.duplicated(take_last=False) Return boolean np.array denoting duplicate values Parameters take_last : boolean, default False Take the last observed index in a group. Default first Returns duplicated : np.array pandas.TimedeltaIndex.equals TimedeltaIndex.equals(other) Determines if two Index objects contain the same elements. 1500 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.factorize TimedeltaIndex.factorize(sort=False, na_sentinel=-1) Encode the object as an enumerated type or categorical variable Parameters sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark “not found” Returns labels : the indexer to the original array uniques : the unique Index pandas.TimedeltaIndex.format TimedeltaIndex.format(name=False, formatter=None, **kwargs) Render a string representation of the Index pandas.TimedeltaIndex.get_duplicates TimedeltaIndex.get_duplicates() pandas.TimedeltaIndex.get_indexer TimedeltaIndex.get_indexer(target, method=None, limit=None) Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters target : Index method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’} • default: exact matches only. • pad / ffill: find the PREVIOUS index value if no exact match. • backfill / bfill: use NEXT index value if no exact match • nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int Maximum number of consecuctive labels in target to match for inexact matches. Returns indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. Examples >>> indexer = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) 33.10. TimedeltaIndex 1501 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.get_indexer_for TimedeltaIndex.get_indexer_for(target, **kwargs) guaranteed return of an indexer even when non-unique pandas.TimedeltaIndex.get_indexer_non_unique TimedeltaIndex.get_indexer_non_unique(target) return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable pandas.TimedeltaIndex.get_level_values TimedeltaIndex.get_level_values(level) Return vector of label values for requested level, equal to the length of the index Parameters level : int Returns values : ndarray pandas.TimedeltaIndex.get_loc TimedeltaIndex.get_loc(key, method=None) Get integer location for requested label Returns loc : int pandas.TimedeltaIndex.get_slice_bound TimedeltaIndex.get_slice_bound(label, side, kind) Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if side==’right’) position of given label. Parameters label : object side : {‘left’, ‘right’} kind : string / None, the type of indexer pandas.TimedeltaIndex.get_value TimedeltaIndex.get_value(series, key) Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing pandas.TimedeltaIndex.get_value_maybe_box TimedeltaIndex.get_value_maybe_box(series, key) 1502 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.get_values TimedeltaIndex.get_values() return the underlying data as an ndarray pandas.TimedeltaIndex.groupby TimedeltaIndex.groupby(f ) pandas.TimedeltaIndex.holds_integer TimedeltaIndex.holds_integer() pandas.TimedeltaIndex.identical TimedeltaIndex.identical(other) Similar to equals, but check that other comparable attributes are also equal pandas.TimedeltaIndex.insert TimedeltaIndex.insert(loc, item) Make new Index inserting new item at location Parameters loc : int item : object if not either a Python datetime or a numpy integer-like, returned Index dtype will be object rather than datetime. Returns new_index : Index pandas.TimedeltaIndex.intersection TimedeltaIndex.intersection(other) Specialized intersection for TimedeltaIndex objects. May be much faster than Index.intersection Parameters other : TimedeltaIndex or array-like Returns y : Index or TimedeltaIndex pandas.TimedeltaIndex.is TimedeltaIndex.is_(other) More flexible, faster check like is but that works through views Note: this is not the same as Index.identical(), which checks that metadata is also the same. Parameters other : object other object to compare against. Returns True if both have same underlying data, False otherwise : bool 33.10. TimedeltaIndex 1503 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.is_boolean TimedeltaIndex.is_boolean() pandas.TimedeltaIndex.is_categorical TimedeltaIndex.is_categorical() pandas.TimedeltaIndex.is_floating TimedeltaIndex.is_floating() pandas.TimedeltaIndex.is_integer TimedeltaIndex.is_integer() pandas.TimedeltaIndex.is_lexsorted_for_tuple TimedeltaIndex.is_lexsorted_for_tuple(tup) pandas.TimedeltaIndex.is_mixed TimedeltaIndex.is_mixed() pandas.TimedeltaIndex.is_numeric TimedeltaIndex.is_numeric() pandas.TimedeltaIndex.is_object TimedeltaIndex.is_object() pandas.TimedeltaIndex.is_type_compatible TimedeltaIndex.is_type_compatible(typ) pandas.TimedeltaIndex.isin TimedeltaIndex.isin(values) Compute boolean array of whether each index value is found in the passed set of values Parameters values : set or sequence of values Returns is_contained : ndarray (boolean dtype) 1504 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.item TimedeltaIndex.item() return the first element of the underlying data as a python scalar pandas.TimedeltaIndex.join TimedeltaIndex.join(other, how=’left’, level=None, return_indexers=False) See Index.join pandas.TimedeltaIndex.map TimedeltaIndex.map(f ) pandas.TimedeltaIndex.max TimedeltaIndex.max(axis=None) return the maximum value of the Index See also: numpy.ndarray.max pandas.TimedeltaIndex.min TimedeltaIndex.min(axis=None) return the minimum value of the Index See also: numpy.ndarray.min pandas.TimedeltaIndex.nunique TimedeltaIndex.nunique(dropna=True) Return number of unique elements in the object. Excludes NA values by default. Parameters dropna : boolean, default True Don’t include NaN in the count. Returns nunique : int pandas.TimedeltaIndex.order TimedeltaIndex.order(return_indexer=False, ascending=True) Return sorted copy of Index 33.10. TimedeltaIndex 1505 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.putmask TimedeltaIndex.putmask(mask, value) return a new Index of the values set with the mask See also: numpy.ndarray.putmask pandas.TimedeltaIndex.ravel TimedeltaIndex.ravel(order=’C’) return an ndarray of the flattened values of the underlying data See also: numpy.ndarray.ravel pandas.TimedeltaIndex.reindex TimedeltaIndex.reindex(target, method=None, level=None, limit=None) Create index with target’s values (move/add/delete values as necessary) Parameters target : an iterable Returns new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index pandas.TimedeltaIndex.rename TimedeltaIndex.rename(name, inplace=False) Set new names on index. Defaults to returning new index. Parameters name : str or list name to set inplace : bool if True, mutates in place Returns new index (of same type and class...etc) [if inplace, returns None] pandas.TimedeltaIndex.repeat TimedeltaIndex.repeat(repeats, axis=None) Analogous to ndarray.repeat pandas.TimedeltaIndex.searchsorted TimedeltaIndex.searchsorted(key, side=’left’) 1506 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.set_names TimedeltaIndex.set_names(names, level=None, inplace=False) Set new names on index. Defaults to returning new index. Parameters names : str or sequence name(s) to set level : int or level name, or sequence of int / level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels) Otherwise level must be None inplace : bool if True, mutates in place Returns new index (of same type and class...etc) [if inplace, returns None] Examples >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) pandas.TimedeltaIndex.set_value TimedeltaIndex.set_value(arr, key, value) Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing pandas.TimedeltaIndex.shift TimedeltaIndex.shift(n, freq=None) Specialized shift which produces a DatetimeIndex Parameters n : int Periods to shift by freq : DateOffset or timedelta-like, optional Returns shifted : DatetimeIndex 33.10. TimedeltaIndex 1507 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.slice_indexer TimedeltaIndex.slice_indexer(start=None, end=None, step=None, kind=None) For an ordered Index, compute the slice indexer for input labels and step Parameters start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, default None kind : string, default None Returns indexer : ndarray or slice Notes This function assumes that the data is sorted, so use at your own peril pandas.TimedeltaIndex.slice_locs TimedeltaIndex.slice_locs(start=None, end=None, step=None, kind=None) Compute slice locations for input labels. Parameters start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, defaults None If None, defaults to 1 kind : string, defaults None Returns start, end : int pandas.TimedeltaIndex.sort TimedeltaIndex.sort(*args, **kwargs) pandas.TimedeltaIndex.summary TimedeltaIndex.summary(name=None) return a summarized representation 1508 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.sym_diff TimedeltaIndex.sym_diff(other, result_name=None) Compute the sorted symmetric difference of two Index objects. Parameters other : array-like result_name : str Returns sym_diff : Index Notes sym_diff contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by (idx1 - idx2) + (idx2 - idx1) with duplicates dropped. The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444. Examples >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.sym_diff(idx2) Int64Index([1, 5], dtype='int64') You can also use the ^ operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') pandas.TimedeltaIndex.take TimedeltaIndex.take(indices, axis=0) Analogous to ndarray.take pandas.TimedeltaIndex.to_datetime TimedeltaIndex.to_datetime(dayfirst=False) For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex pandas.TimedeltaIndex.to_native_types TimedeltaIndex.to_native_types(slicer=None, **kwargs) slice and dice then format pandas.TimedeltaIndex.to_pytimedelta TimedeltaIndex.to_pytimedelta() Return TimedeltaIndex as object ndarray of datetime.timedelta objects Returns datetimes : ndarray 33.10. TimedeltaIndex 1509 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.to_series TimedeltaIndex.to_series(**kwargs) Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Returns Series : dtype will be based on the type of the Index values. pandas.TimedeltaIndex.tolist TimedeltaIndex.tolist() return a list of the underlying data pandas.TimedeltaIndex.transpose TimedeltaIndex.transpose() return the transpose, which is by definition self pandas.TimedeltaIndex.union TimedeltaIndex.union(other) Specialized union for TimedeltaIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters other : TimedeltaIndex or array-like Returns y : Index or TimedeltaIndex pandas.TimedeltaIndex.unique TimedeltaIndex.unique() Index.unique with handling for DatetimeIndex/PeriodIndex metadata Returns result : DatetimeIndex or PeriodIndex pandas.TimedeltaIndex.value_counts TimedeltaIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True) Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order 1510 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 bins : integer, optional Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data dropna : boolean, default True Don’t include counts of NaN. Returns counts : Series pandas.TimedeltaIndex.view TimedeltaIndex.view(cls=None) 33.10.2 Components TimedeltaIndex.days TimedeltaIndex.seconds TimedeltaIndex.microseconds TimedeltaIndex.nanoseconds TimedeltaIndex.components TimedeltaIndex.inferred_freq Number of days for each element. Number of seconds (>= 0 and less than 1 day) for each element. Number of microseconds (>= 0 and less than 1 second) for each element. Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, micr pandas.TimedeltaIndex.days TimedeltaIndex.days Number of days for each element. pandas.TimedeltaIndex.seconds TimedeltaIndex.seconds Number of seconds (>= 0 and less than 1 day) for each element. pandas.TimedeltaIndex.microseconds TimedeltaIndex.microseconds Number of microseconds (>= 0 and less than 1 second) for each element. pandas.TimedeltaIndex.nanoseconds TimedeltaIndex.nanoseconds Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. pandas.TimedeltaIndex.components TimedeltaIndex.components Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas. Returns a DataFrame 33.10. TimedeltaIndex 1511 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.TimedeltaIndex.inferred_freq TimedeltaIndex.inferred_freq = None 33.10.3 Conversion TimedeltaIndex.to_pytimedelta() TimedeltaIndex.to_series(**kwargs) Return TimedeltaIndex as object ndarray of datetime.timedelta objects Create a Series with both index and values equal to the index keys pandas.TimedeltaIndex.to_pytimedelta TimedeltaIndex.to_pytimedelta() Return TimedeltaIndex as object ndarray of datetime.timedelta objects Returns datetimes : ndarray pandas.TimedeltaIndex.to_series TimedeltaIndex.to_series(**kwargs) Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Returns Series : dtype will be based on the type of the Index values. 33.11 GroupBy GroupBy objects are returned pandas.Series.groupby(), etc. by groupby calls: pandas.DataFrame.groupby(), 33.11.1 Indexing, iteration GroupBy.__iter__() GroupBy.groups GroupBy.indices GroupBy.get_group(name[, obj]) Groupby iterator dict {group name -> group labels} dict {group name -> group indices} Constructs NDFrame from group with provided name pandas.core.groupby.GroupBy.__iter__ GroupBy.__iter__() Groupby iterator Returns Generator yielding sequence of (name, subsetted object) for each group 1512 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.GroupBy.groups GroupBy.groups dict {group name -> group labels} pandas.core.groupby.GroupBy.indices GroupBy.indices dict {group name -> group indices} pandas.core.groupby.GroupBy.get_group GroupBy.get_group(name, obj=None) Constructs NDFrame from group with provided name Parameters name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns group : type of obj Grouper([key, level, freq, axis, sort]) A Grouper allows the user to specify a groupby instruction for a target object pandas.Grouper class pandas.Grouper(key=None, level=None, freq=None, axis=0, sort=False) A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override ‘global’ settings, that is the parameters axis and level which are passed to the groupby itself. Parameters key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to 0 sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) 33.11. GroupBy 1513 pandas: powerful Python data analysis toolkit, Release 0.16.1 closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {‘start’, ‘end’, ‘e’, ‘s’} If grouper is PeriodIndex Returns A specification for a groupby instruction Examples >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s Attributes ax groups pandas.Grouper.ax Grouper.ax pandas.Grouper.groups Grouper.groups 33.11.2 Function application GroupBy.apply(func, *args, **kwargs) GroupBy.aggregate(func, *args, **kwargs) GroupBy.transform(func, *args, **kwargs) Apply function and combine results together in an intelligent way. pandas.core.groupby.GroupBy.apply GroupBy.apply(func, *args, **kwargs) Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together 1514 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Parameters func : function Returns applied : type depending on grouped object and function See also: aggregate, transform Notes See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. pandas.core.groupby.GroupBy.aggregate GroupBy.aggregate(func, *args, **kwargs) pandas.core.groupby.GroupBy.transform GroupBy.transform(func, *args, **kwargs) 33.11.3 Computations / Descriptive Stats GroupBy.count([axis]) GroupBy.cumcount([ascending]) GroupBy.first() GroupBy.head([n]) GroupBy.last() GroupBy.max() GroupBy.mean() GroupBy.median() GroupBy.min() GroupBy.nth(n[, dropna]) GroupBy.ohlc() GroupBy.prod() GroupBy.size() GroupBy.sem([ddof]) GroupBy.std([ddof]) GroupBy.sum() GroupBy.var([ddof]) GroupBy.tail([n]) Number each item in each group from 0 to the length of that group - 1. Compute first of group values Returns first n rows of each group. Compute last of group values Compute max of group values Compute mean of groups, excluding missing values Compute median of groups, excluding missing values Compute min of group values Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints. Compute sum of values, excluding missing values Compute prod of group values Compute group sizes Compute standard error of the mean of groups, excluding missing values Compute standard deviation of groups, excluding missing values Compute sum of group values Compute variance of groups, excluding missing values Returns last n rows of each group pandas.core.groupby.GroupBy.count GroupBy.count(axis=0) 33.11. GroupBy 1515 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.GroupBy.cumcount GroupBy.cumcount(ascending=True) Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Examples >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 pandas.core.groupby.GroupBy.first GroupBy.first() Compute first of group values pandas.core.groupby.GroupBy.head GroupBy.head(n=5) Returns first n rows of each group. Essentially equivalent to .apply(lambda x: 1516 x.head(n)), except ignores as_index flag. Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Examples >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 pandas.core.groupby.GroupBy.last GroupBy.last() Compute last of group values pandas.core.groupby.GroupBy.max GroupBy.max() Compute max of group values pandas.core.groupby.GroupBy.mean GroupBy.mean() Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex pandas.core.groupby.GroupBy.median GroupBy.median() Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex pandas.core.groupby.GroupBy.min GroupBy.min() Compute min of group values pandas.core.groupby.GroupBy.nth GroupBy.nth(n, dropna=None) Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints. If dropna, will take the nth non-null row, dropna is either Truthy (if a Series) or ‘all’, ‘any’ (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Parameters n : int or list of ints 33.11. GroupBy 1517 pandas: powerful Python data analysis toolkit, Release 0.16.1 a single nth value for the row or a list of nth values dropna : None or str, optional apply the specified dropna operation before counting which row is the nth row. Needs to be None, ‘any’ or ‘all’ Examples >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN pandas.core.groupby.GroupBy.ohlc GroupBy.ohlc() Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex pandas.core.groupby.GroupBy.prod GroupBy.prod() Compute prod of group values pandas.core.groupby.GroupBy.size GroupBy.size() Compute group sizes pandas.core.groupby.GroupBy.sem GroupBy.sem(ddof=1) Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex 1518 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.GroupBy.std GroupBy.std(ddof=1) Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex pandas.core.groupby.GroupBy.sum GroupBy.sum() Compute sum of group values pandas.core.groupby.GroupBy.var GroupBy.var(ddof=1) Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex pandas.core.groupby.GroupBy.tail GroupBy.tail(n=5) Returns last n rows of each group Essentially equivalent to .apply(lambda x: x.tail(n)), except ignores as_index flag. Examples >>> df = DataFrame([['a', 1], ['a', 2], ['b', 1], ['b', 2]], columns=['A', 'B']) >>> df.groupby('A').tail(1) A B 1 a 2 3 b 2 >>> df.groupby('A').head(1) A B 0 a 1 2 b 1 The following methods are available in both SeriesGroupBy and DataFrameGroupBy objects, but may differ slightly, usually in that the DataFrameGroupBy version usually permits the specification of an axis argument, and often an argument indicating whether to restrict application to columns of a specific data type. DataFrameGroupBy.bfill([axis, inplace, ...]) DataFrameGroupBy.cummax([axis, dtype, out, ...]) DataFrameGroupBy.cummin([axis, dtype, out, ...]) DataFrameGroupBy.cumprod([axis, dtype, out, ...]) DataFrameGroupBy.cumsum([axis, dtype, out, ...]) DataFrameGroupBy.describe([...]) DataFrameGroupBy.all([axis, bool_only, ...]) DataFrameGroupBy.any([axis, bool_only, ...]) DataFrameGroupBy.corr([method, min_periods]) 33.11. GroupBy Synonym for NDFrame.fillna(method=’bfill’) Return cumulative max over requested axis. Return cumulative min over requested axis. Return cumulative prod over requested axis. Return cumulative sum over requested axis. Generate various summary statistics, excluding NaN values. Return whether all elements are True over requested axis Return whether any element is True over requested axis Compute pairwise correlation of columns, excluding NA/null values Continue 1519 pandas: powerful Python data analysis toolkit, Release 0.16.1 Table 33.116 – continued from previous page DataFrameGroupBy.cov([min_periods]) Compute pairwise covariance of columns, excluding NA/null values DataFrameGroupBy.diff([periods, axis]) 1st discrete difference of object DataFrameGroupBy.ffill([axis, inplace, ...]) Synonym for NDFrame.fillna(method=’ffill’) DataFrameGroupBy.fillna([value, method, ...]) Fill NA/NaN values using the specified method DataFrameGroupBy.hist(data[, column, by, ...]) Draw histogram of the DataFrame’s series using matplotlib / pylab. DataFrameGroupBy.idxmax([axis, skipna]) Return index of first occurrence of maximum over requested axis. DataFrameGroupBy.idxmin([axis, skipna]) Return index of first occurrence of minimum over requested axis. DataFrameGroupBy.irow(i[, copy]) DataFrameGroupBy.mad([axis, skipna, level]) Return the mean absolute deviation of the values for the requested axis DataFrameGroupBy.pct_change([periods, ...]) Percent change over given number of periods. DataFrameGroupBy.plot(data[, x, y, kind, ...]) Make plots of DataFrame using matplotlib / pylab. DataFrameGroupBy.quantile([q, axis, ...]) Return values at the given quantile over requested axis, a la numpy.perce DataFrameGroupBy.rank([axis, numeric_only, ...]) Compute numerical data ranks (1 through n) along axis. DataFrameGroupBy.resample(rule[, how, axis, ...]) Convenience method for frequency conversion and resampling of regular DataFrameGroupBy.shift([periods, freq, axis]) Shift index by desired number of periods with an optional time freq DataFrameGroupBy.skew([axis, skipna, level, ...]) Return unbiased skew over requested axis DataFrameGroupBy.take(indices[, axis, ...]) Analogous to ndarray.take DataFrameGroupBy.tshift([periods, freq, axis]) Shift the time index, using the index’s frequency if available pandas.core.groupby.DataFrameGroupBy.bfill DataFrameGroupBy.bfill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’bfill’) pandas.core.groupby.DataFrameGroupBy.cummax DataFrameGroupBy.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative max over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns max : Series pandas.core.groupby.DataFrameGroupBy.cummin DataFrameGroupBy.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative min over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns min : Series 1520 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.DataFrameGroupBy.cumprod DataFrameGroupBy.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative prod over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns prod : Series pandas.core.groupby.DataFrameGroupBy.cumsum DataFrameGroupBy.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs) Return cumulative sum over requested axis. Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns sum : Series pandas.core.groupby.DataFrameGroupBy.describe DataFrameGroupBy.describe(percentile_width=None, percentiles=None, clude=None) Generate various summary statistics, excluding NaN values. include=None, ex- Parameters percentile_width : float, deprecated The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75 percentiles : array-like, optional The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles. include, exclude : list-like, ‘all’, or None (default) Specify the form of the returned result. Either: • None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns. • A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=[’O’]) • If include is the string ‘all’, the output column-set will match the input one. Returns summary: NDFrame of summary statistics See also: DataFrame.select_dtypes 33.11. GroupBy 1521 pandas: powerful Python data analysis toolkit, Release 0.16.1 Notes The output DataFrame index depends on the requested dtypes: For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles. For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items. For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments. If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count. The include, exclude arguments are ignored for Series. pandas.core.groupby.DataFrameGroupBy.all DataFrameGroupBy.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether all elements are True over requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns all : Series or DataFrame (if level specified) pandas.core.groupby.DataFrameGroupBy.any DataFrameGroupBy.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs) Return whether any element is True over requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series bool_only : boolean, default None Include only boolean data. If None, will attempt to use everything, then use only boolean data Returns any : Series or DataFrame (if level specified) 1522 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.DataFrameGroupBy.corr DataFrameGroupBy.corr(method=’pearson’, min_periods=1) Compute pairwise correlation of columns, excluding NA/null values Parameters method : {‘pearson’, ‘kendall’, ‘spearman’} • pearson : standard correlation coefficient • kendall : Kendall Tau correlation coefficient • spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation Returns y : DataFrame pandas.core.groupby.DataFrameGroupBy.cov DataFrameGroupBy.cov(min_periods=None) Compute pairwise covariance of columns, excluding NA/null values Parameters min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns y : DataFrame Notes y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator). pandas.core.groupby.DataFrameGroupBy.diff DataFrameGroupBy.diff(periods=1, axis=0) 1st discrete difference of object Parameters periods : int, default 1 Periods to shift for forming difference axis : {0 or ‘index’, 1 or ‘columns’}, default 0 Returns diffed : DataFrame pandas.core.groupby.DataFrameGroupBy.ffill DataFrameGroupBy.ffill(axis=None, inplace=False, limit=None, downcast=None) Synonym for NDFrame.fillna(method=’ffill’) 33.11. GroupBy 1523 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.DataFrameGroupBy.fillna DataFrameGroupBy.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) Fill NA/NaN values using the specified method Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. axis : {0, 1, ‘index’, ‘columns’} inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns filled : DataFrame See also: reindex, asfreq pandas.core.groupby.DataFrameGroupBy.hist DataFrameGroupBy.hist(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds) Draw histogram of the DataFrame’s series using matplotlib / pylab. Parameters data : DataFrame column : string or sequence If passed, will be used to limit data to a subset of columns by : object, optional If passed, then used to form histograms for separate groups grid : boolean, default True Whether to show axis grid lines 1524 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None rotation of y axis labels ax : matplotlib axes object, default None sharex : boolean, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure! sharey : boolean, default False In case subplots=True, share y axis and set some y axis labels to invisible figsize : tuple The size of the figure to create in inches by default layout: (optional) a tuple (rows, columns) for the layout of the histograms bins: integer, default 10 Number of histogram bins to be used kwds : other plotting keyword arguments To be passed to hist function pandas.core.groupby.DataFrameGroupBy.idxmax DataFrameGroupBy.idxmax(axis=0, skipna=True) Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters axis : {0, 1} 0 for row-wise, 1 for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be first index. Returns idxmax : Series See also: Series.idxmax Notes This method is the DataFrame version of ndarray.argmax. 33.11. GroupBy 1525 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.DataFrameGroupBy.idxmin DataFrameGroupBy.idxmin(axis=0, skipna=True) Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters axis : {0, 1} 0 for row-wise, 1 for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns idxmin : Series See also: Series.idxmin Notes This method is the DataFrame version of ndarray.argmin. pandas.core.groupby.DataFrameGroupBy.irow DataFrameGroupBy.irow(i, copy=False) pandas.core.groupby.DataFrameGroupBy.mad DataFrameGroupBy.mad(axis=None, skipna=None, level=None) Return the mean absolute deviation of the values for the requested axis Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns mad : Series or DataFrame (if level specified) pandas.core.groupby.DataFrameGroupBy.pct_change DataFrameGroupBy.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs) Percent change over given number of periods. Parameters periods : int, default 1 Periods to shift for forming percent change fill_method : str, default ‘pad’ 1526 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 How to handle NAs before computing percent changes limit : int, default None The number of consecutive NAs to fill before stopping freq : DateOffset, timedelta, or offset alias string, optional Increment to use from time series API (e.g. ‘M’ or BDay()) Returns chg : NDFrame Notes By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument. pandas.core.groupby.DataFrameGroupBy.plot DataFrameGroupBy.plot(data, x=None, y=None, kind=’line’, ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds) Make plots of DataFrame using matplotlib / pylab. Parameters data : DataFrame x : label or position, default None y : label or position, default None Allows plotting of one column versus another kind : str • ‘line’ : line plot (default) • ‘bar’ : vertical bar plot • ‘barh’ : horizontal bar plot • ‘hist’ : histogram • ‘box’ : boxplot • ‘kde’ : Kernel Density Estimation plot • ‘density’ : same as ‘kde’ • ‘area’ : area plot • ‘pie’ : pie plot • ‘scatter’ : scatter plot • ‘hexbin’ : hexbin plot ax : matplotlib axes object, default None subplots : boolean, default False Make separate subplots for each column 33.11. GroupBy 1527 pandas: powerful Python data analysis toolkit, Release 0.16.1 sharex : boolean, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure! sharey : boolean, default False In case subplots=True, share y axis and set some y axis labels to invisible layout : tuple (optional) (rows, columns) for the layout of subplots figsize : a tuple (width, height) in inches use_index : boolean, default True Use index as ticks for x axis title : string Title to use for the plot grid : boolean, default None (matlab style default) Axis grid lines legend : False/True/’reverse’ Place legend on axis subplots style : list or dict matplotlib line style per column logx : boolean, default False Use log scaling on x axis logy : boolean, default False Use log scaling on y axis loglog : boolean, default False Use log scaling on both x and y axes xticks : sequence Values to use for the xticks yticks : sequence Values to use for the yticks xlim : 2-tuple/list ylim : 2-tuple/list rot : int, default None Rotation for ticks (xticks for vertical, yticks for horizontal plots) fontsize : int, default None Font size for xticks and yticks colormap : str or matplotlib colormap object, default None 1528 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : boolean, optional If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots) position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) layout : tuple (optional) (rows, columns) for the layout of the plot table : boolean, Series or DataFrame, default False If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See Plotting with Error Bars for detail. xerr : same types as yerr. stacked : boolean, default False in line and bar plots, and True in area plot. If True, create stacked plot. sort_columns : boolean, default False Sort column names to determine plot ordering secondary_y : boolean or sequence, default False Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis mark_right : boolean, default True When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend kwds : keywords Options to pass to matplotlib plotting method Returns axes : matplotlib.AxesSubplot or np.array of them Notes •See matplotlib documentation online for more on this subject •If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) •If kind = ‘scatter’ and the argument c is the name of a dataframe column, the values of that column are used to color each point. •If kind = ‘hexbin’, you can control the size of the bins with the gridsize argument. By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and 33.11. GroupBy 1529 pandas: powerful Python data analysis toolkit, Release 0.16.1 reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std). pandas.core.groupby.DataFrameGroupBy.quantile DataFrameGroupBy.quantile(q=0.5, axis=0, numeric_only=True) Return values at the given quantile over requested axis, a la numpy.percentile. Parameters q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute axis : {0, 1} 0 for row-wise, 1 for column-wise Returns quantiles : Series or DataFrame If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. Examples >>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 pandas.core.groupby.DataFrameGroupBy.rank DataFrameGroupBy.rank(axis=0, numeric_only=None, method=’average’, na_option=’keep’, ascending=True, pct=False) Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values Parameters axis : {0, 1}, default 0 Ranks over columns (0) or rows (1) numeric_only : boolean, default None Include only float, int, boolean data method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’} • average: average rank of group • min: lowest rank in group • max: highest rank in group • first: ranks assigned in order they appear in the array 1530 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 • dense: like ‘min’, but rank always increases by 1 between groups na_option : {‘keep’, ‘top’, ‘bottom’} • keep: leave NA values where they are • top: smallest rank if ascending • bottom: smallest rank if descending ascending : boolean, default True False for ranks by high (1) to low (N) pct : boolean, default False Computes percentage rank of data Returns ranks : DataFrame pandas.core.groupby.DataFrameGroupBy.resample DataFrameGroupBy.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=’start’, kind=None, loffset=None, limit=None, base=0) Convenience method for frequency conversion and resampling of regular time-series data. Parameters rule : string the offset string or object representing target conversion how : string method for down- or re-sampling, default to ‘mean’ for downsampling axis : int, optional, default 0 fill_method : string, default None fill_method for upsampling closed : {‘right’, ‘left’} Which side of bin interval is closed label : {‘right’, ‘left’} Which bin edge label to label bucket with convention : {‘start’, ‘end’, ‘s’, ‘e’} kind : “period”/”timestamp” loffset : timedelta Adjust the resampled time labels limit : int, default None Maximum size gap to when reindexing with fill_method base : int, default 0 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0 33.11. GroupBy 1531 pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.DataFrameGroupBy.shift DataFrameGroupBy.shift(periods=1, freq=None, axis=0, **kwargs) Shift index by desired number of periods with an optional time freq Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, optional Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes. axis : {0, 1, ‘index’, ‘columns’} Returns shifted : DataFrame Notes If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. pandas.core.groupby.DataFrameGroupBy.skew DataFrameGroupBy.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) Return unbiased skew over requested axis Normalized by N-1 Parameters axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data Returns skew : Series or DataFrame (if level specified) pandas.core.groupby.DataFrameGroupBy.take DataFrameGroupBy.take(indices, axis=0, convert=True, is_copy=True) Analogous to ndarray.take Parameters indices : list / array of ints axis : int, default 0 convert : translate neg to pos indices (default) is_copy : mark the returned frame as a copy Returns taken : type of caller 1532 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.DataFrameGroupBy.tshift DataFrameGroupBy.tshift(periods=1, freq=None, axis=0, **kwargs) Shift the time index, using the index’s frequency if available Parameters periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, default None Increment to use from datetools module or time rule (e.g. ‘EOM’) axis : int or basestring Corresponds to the axis that contains the Index Returns shifted : NDFrame Notes If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown The following methods are available only for SeriesGroupBy objects. SeriesGroupBy.nlargest([n, take_last]) SeriesGroupBy.nsmallest([n, take_last]) SeriesGroupBy.nunique([dropna]) SeriesGroupBy.unique() SeriesGroupBy.value_counts([normalize, ...]) Return the largest n elements. Return the smallest n elements. Return number of unique elements in the object. Return array of unique values in the object. Returns object containing counts of unique values. pandas.core.groupby.SeriesGroupBy.nlargest SeriesGroupBy.nlargest(n=5, take_last=False) Return the largest n elements. Parameters n : int Return this many descending sorted values take_last [bool] Where there are duplicate values, take the last duplicate Returns top_n : Series The n largest values in the Series, in sorted order Notes Faster than .order(ascending=False).head(n) for small n relative to the size of the Series object. Examples >>> import pandas as pd >>> import numpy as np 33.11. GroupBy 1533 pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> s = pd.Series(np.random.randn(1e6)) >>> s.nlargest(10) # only sorts up to the N requested pandas.core.groupby.SeriesGroupBy.nsmallest SeriesGroupBy.nsmallest(n=5, take_last=False) Return the smallest n elements. Parameters n : int Return this many ascending sorted values take_last [bool] Where there are duplicate values, take the last duplicate Returns bottom_n : Series The n smallest values in the Series, in sorted order Notes Faster than .order().head(n) for small n relative to the size of the Series object. Examples >>> >>> >>> >>> import pandas as pd import numpy as np s = pd.Series(np.random.randn(1e6)) s.nsmallest(10) # only sorts up to the N requested pandas.core.groupby.SeriesGroupBy.nunique SeriesGroupBy.nunique(dropna=True) Return number of unique elements in the object. Excludes NA values by default. Parameters dropna : boolean, default True Don’t include NaN in the count. Returns nunique : int pandas.core.groupby.SeriesGroupBy.unique SeriesGroupBy.unique() Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values. Returns uniques : ndarray 1534 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.core.groupby.SeriesGroupBy.value_counts SeriesGroupBy.value_counts(normalize=False, dropna=True) Returns object containing counts of unique values. sort=True, ascending=False, bins=None, The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order bins : integer, optional Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data dropna : boolean, default True Don’t include counts of NaN. Returns counts : Series The following methods are available only for DataFrameGroupBy objects. DataFrameGroupBy.corrwith(other[, axis, drop]) DataFrameGroupBy.boxplot(grouped[, ...]) Compute pairwise correlation between rows or columns of two DataFrame Make box plots from DataFrameGroupBy data. pandas.core.groupby.DataFrameGroupBy.corrwith DataFrameGroupBy.corrwith(other, axis=0, drop=False) Compute pairwise correlation between rows or columns of two DataFrame objects. Parameters other : DataFrame axis : {0, 1} 0 to compute column-wise, 1 for row-wise drop : boolean, default False Drop missing indices from result, default returns union of all Returns correls : Series pandas.core.groupby.DataFrameGroupBy.boxplot DataFrameGroupBy.boxplot(grouped, subplots=True, column=None, fontsize=None, grid=True, ax=None, figsize=None, layout=None, **kwds) Make box plots from DataFrameGroupBy data. rot=0, Parameters grouped : Grouped DataFrame 33.11. GroupBy 1535 pandas: powerful Python data analysis toolkit, Release 0.16.1 subplots : • False - no subplots will be used • True - create a subplot for each group column : column name or list of names, or vector Can be any valid input to groupby fontsize : int or string rot : label rotation angle grid : Setting this to True will show the grid ax : Matplotlib axis object, default None figsize : A tuple (width, height) in inches layout : tuple (optional) (rows, columns) for the layout of the plot kwds : other plotting keyword arguments to be passed to matplotlib boxplot function Returns dict of key/value = group key/DataFrame.boxplot return value or DataFrame.boxplot return value in case subplots=figures=False Examples >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> >>> import pandas import numpy as np import itertools tuples = [t for t in itertools.product(range(1000), range(4))] index = pandas.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) data = np.random.randn(len(index),4) df = pandas.DataFrame(data, columns=list('ABCD'), index=index) grouped = df.groupby(level='lvl1') boxplot_frame_groupby(grouped) grouped = df.unstack(level='lvl1').groupby(level=0, axis=1) boxplot_frame_groupby(grouped, subplots=False) 33.12 General utility functions 33.12.1 Working with options describe_option(pat[, _print_desc]) reset_option(pat) get_option(pat) set_option(pat, value) option_context(*args) 1536 Prints the description for one or more registered options. Reset one or more options to their default value. Retrieves the value of the specified option. Sets the value of the specified option. Context manager to temporarily set options in the with statement context. Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 pandas.describe_option pandas.describe_option(pat, _print_desc=False) = Prints the description for one or more registered options. Call with not arguments to get a listing for all registered options. Available options: •display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr, line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions, width] •io.excel.xls.[writer] •io.excel.xlsm.[writer] •io.excel.xlsx.[writer] •io.hdf.[default_format, dropna_table] •mode.[chained_assignment, sim_interactive, use_inf_as_null] Parameters pat : str Regexp pattern. All matching keys will have their description displayed. _print_desc : bool, default True If True (default) the description(s) will be printed to stdout. Otherwise, the description(s) will be returned as a unicode string (for testing). Returns None by default, the description(s) as a unicode string if _print_desc is False Notes The available options with its descriptions: display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None] display.colheader_justify [‘left’/’right’] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right] display.column_space No description available. [default: 12] [currently: 12] display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False] display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False] display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8] display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True] 33.12. General utility functions 1537 pandas: powerful Python data analysis toolkit, Release 0.16.1 display.float_format [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None] display.height [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.) display.large_repr [‘truncate’/’info’] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate] display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.) display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8] display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20] display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a ”...” placeholder is embedded in the output. [default: 50] [currently: 50] display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100] display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785] display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15] display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”...” to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100] display.memory_usage [bool or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. [default: True] [currently: True] display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None] display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True] display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True] display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3] 1538 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7] display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate] display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80] io.excel.xls.writer [string] The default Excel writer engine for ‘xls’ files. Available options: ‘xlwt’ (the default). [default: xlwt] [currently: xlwt] io.excel.xlsm.writer [string] The default Excel writer engine for ‘xlsm’ files. Available options: ‘openpyxl’ (the default). [default: openpyxl] [currently: openpyxl] io.excel.xlsx.writer [string] The default Excel writer engine for ‘xlsx’ files. Available options: ‘xlsxwriter’ (the default), ‘openpyxl’. [default: xlsxwriter] [currently: xlsxwriter] io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None] io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True] mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn] mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False] mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False] pandas.reset_option pandas.reset_option(pat) = Reset one or more options to their default value. Pass “all” as argument to reset all options. Available options: •display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr, line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions, width] •io.excel.xls.[writer] •io.excel.xlsm.[writer] •io.excel.xlsx.[writer] •io.hdf.[default_format, dropna_table] •mode.[chained_assignment, sim_interactive, use_inf_as_null] Parameters pat : str/regex 33.12. General utility functions 1539 pandas: powerful Python data analysis toolkit, Release 0.16.1 If specified only options matching prefix* will be reset. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. Returns None Notes The available options with its descriptions: display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None] display.colheader_justify [‘left’/’right’] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right] display.column_space No description available. [default: 12] [currently: 12] display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False] display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False] display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8] display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True] display.float_format [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None] display.height [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.) display.large_repr [‘truncate’/’info’] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate] display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.) display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8] display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20] display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a ”...” placeholder is embedded in the output. [default: 50] [currently: 50] display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100] 1540 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785] display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15] display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”...” to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100] display.memory_usage [bool or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. [default: True] [currently: True] display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None] display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True] display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True] display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3] display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7] display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate] display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80] io.excel.xls.writer [string] The default Excel writer engine for ‘xls’ files. Available options: ‘xlwt’ (the default). [default: xlwt] [currently: xlwt] io.excel.xlsm.writer [string] The default Excel writer engine for ‘xlsm’ files. Available options: ‘openpyxl’ (the default). [default: openpyxl] [currently: openpyxl] io.excel.xlsx.writer [string] The default Excel writer engine for ‘xlsx’ files. Available options: ‘xlsxwriter’ (the default), ‘openpyxl’. [default: xlsxwriter] [currently: xlsxwriter] io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None] io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True] mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn] 33.12. General utility functions 1541 pandas: powerful Python data analysis toolkit, Release 0.16.1 mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False] mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False] pandas.get_option pandas.get_option(pat) = Retrieves the value of the specified option. Available options: •display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr, line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions, width] •io.excel.xls.[writer] •io.excel.xlsm.[writer] •io.excel.xlsx.[writer] •io.hdf.[default_format, dropna_table] •mode.[chained_assignment, sim_interactive, use_inf_as_null] Parameters pat : str Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. Returns result : the value of the option Raises OptionError : if no such option exists Notes The available options with its descriptions: display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None] display.colheader_justify [‘left’/’right’] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right] display.column_space No description available. [default: 12] [currently: 12] display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False] display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False] display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8] 1542 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True] display.float_format [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None] display.height [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.) display.large_repr [‘truncate’/’info’] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate] display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.) display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8] display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20] display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a ”...” placeholder is embedded in the output. [default: 50] [currently: 50] display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100] display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785] display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15] display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”...” to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100] display.memory_usage [bool or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. [default: True] [currently: True] display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None] display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True] display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True] 33.12. General utility functions 1543 pandas: powerful Python data analysis toolkit, Release 0.16.1 display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3] display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7] display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate] display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80] io.excel.xls.writer [string] The default Excel writer engine for ‘xls’ files. Available options: ‘xlwt’ (the default). [default: xlwt] [currently: xlwt] io.excel.xlsm.writer [string] The default Excel writer engine for ‘xlsm’ files. Available options: ‘openpyxl’ (the default). [default: openpyxl] [currently: openpyxl] io.excel.xlsx.writer [string] The default Excel writer engine for ‘xlsx’ files. Available options: ‘xlsxwriter’ (the default), ‘openpyxl’. [default: xlsxwriter] [currently: xlsxwriter] io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None] io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True] mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn] mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False] mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False] pandas.set_option pandas.set_option(pat, value) = Sets the value of the specified option. Available options: •display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr, line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions, width] •io.excel.xls.[writer] •io.excel.xlsm.[writer] •io.excel.xlsx.[writer] •io.hdf.[default_format, dropna_table] •mode.[chained_assignment, sim_interactive, use_inf_as_null] Parameters pat : str 1544 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. value : new value of option. Returns None Raises OptionError if no such option exists Notes The available options with its descriptions: display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None] display.colheader_justify [‘left’/’right’] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right] display.column_space No description available. [default: 12] [currently: 12] display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False] display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False] display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8] display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True] display.float_format [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None] display.height [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.) display.large_repr [‘truncate’/’info’] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate] display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.) display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8] display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20] 33.12. General utility functions 1545 pandas: powerful Python data analysis toolkit, Release 0.16.1 display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a ”...” placeholder is embedded in the output. [default: 50] [currently: 50] display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100] display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785] display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15] display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”...” to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100] display.memory_usage [bool or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. [default: True] [currently: True] display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None] display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True] display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True] display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3] display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7] display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate] display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80] io.excel.xls.writer [string] The default Excel writer engine for ‘xls’ files. Available options: ‘xlwt’ (the default). [default: xlwt] [currently: xlwt] io.excel.xlsm.writer [string] The default Excel writer engine for ‘xlsm’ files. Available options: ‘openpyxl’ (the default). [default: openpyxl] [currently: openpyxl] io.excel.xlsx.writer [string] The default Excel writer engine for ‘xlsx’ files. Available options: ‘xlsxwriter’ (the default), ‘openpyxl’. [default: xlsxwriter] [currently: xlsxwriter] io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None] 1546 Chapter 33. API Reference pandas: powerful Python data analysis toolkit, Release 0.16.1 io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True] mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn] mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False] mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False] pandas.option_context class pandas.option_context(*args) Context manager to temporarily set options in the with statement context. You need to invoke as option_context(pat, val, [(pat, val), ...]). Examples >>> with option_context('display.max_rows', 10, 'display.max_columns', 5): ... 33.12. General utility functions 1547 pandas: powerful Python data analysis toolkit, Release 0.16.1 1548 Chapter 33. API Reference CHAPTER THIRTYFOUR INTERNALS This section will provide a look into some of pandas internals. 34.1 Indexing In pandas there are a few objects implemented which can serve as valid containers for the axis labels: • Index: the generic “ordered set” object, an ndarray of object dtype assuming nothing about its contents. The labels must be hashable (and likely immutable) and unique. Populates a dict of label to location in Cython to do O(1) lookups. • Int64Index: a version of Index highly optimized for 64-bit integer data, such as time stamps • Float64Index: a version of Index highly optimized for 64-bit float data • MultiIndex: the standard hierarchical index object • DatetimeIndex: An Index object with Timestamp boxed elements (impl are the int64 values) • TimedeltaIndex: An Index object with Timedelta boxed elements (impl are the in64 values) • PeriodIndex: An Index object with Period elements These are range generates to make the creation of a regular index easy: • date_range: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Python datetime objects • period_range: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Period objects, representing Timespans The motivation for having an Index class in the first place was to enable different implementations of indexing. This means that it’s possible for you, the user, to implement a custom Index subclass that may be better suited to a particular application than the ones provided in pandas. From an internal implementation point of view, the relevant methods that an Index must define are one or more of the following (depending on how incompatible the new object internals are with the Index functions): • get_loc: returns an “indexer” (an integer, or in some cases a slice object) for a label • slice_locs: returns the “range” to slice between two labels • get_indexer: Computes the indexing vector for reindexing / data alignment purposes. See the source / docstrings for more on this • get_indexer_non_unique: Computes the indexing vector for reindexing / data alignment purposes when the index is non-unique. See the source / docstrings for more on this • reindex: Does any pre-conversion of the input index then calls get_indexer 1549 pandas: powerful Python data analysis toolkit, Release 0.16.1 • union, intersection: computes the union or intersection of two Index objects • insert: Inserts a new label into an Index, yielding a new object • delete: Delete a label, yielding a new object • drop: Deletes a set of labels • take: Analogous to ndarray.take 34.1.1 MultiIndex Internally, the MultiIndex consists of a few things: the levels, the integer labels, and the level names: In [1]: index = MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second']) In [2]: index Out[2]: MultiIndex(levels=[[0, 1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], names=[u'first', u'second']) In [3]: index.levels Out[3]: FrozenList([[0, 1, 2], [u'one', u'two']]) In [4]: index.labels Out[4]: FrozenList([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) In [5]: index.names Out[5]: FrozenList([u'first', u'second']) You can probably guess that the labels determine which unique element is identified with that location at each layer of the index. It’s important to note that sortedness is determined solely from the integer labels and does not check (or care) whether the levels themselves are sorted. Fortunately, the constructors from_tuples and from_arrays ensure that this is true, but if you compute the levels and labels yourself, please be careful. 34.2 Subclassing pandas Data Structures Warning: There are some easier alternatives before considering subclassing pandas data structures. 1. Monkey-patching: See Adding Features to your pandas Installation. 2. Use composition. See here. This section describes how to subclass pandas data structures to meet more specific needs. There are 2 points which need attention: 1. Override constructor properties. 2. Define original properties Note: You can find a nice example in geopandas project. 1550 Chapter 34. Internals pandas: powerful Python data analysis toolkit, Release 0.16.1 34.2.1 Override Constructor Properties Each data structure has constructor properties to specifying data constructors. By overriding these properties, you can retain defined-classes through pandas data manipulations. There are 3 constructors to be defined: • _constructor: Used when a manipulation result has the same dimesions as the original. • _constructor_sliced: Used when a manipulation result has one lower dimension(s) as the original, such as DataFrame single columns slicing. • _constructor_expanddim: Used when a manipulation result has one higher dimension as the original, such as Series.to_frame() and DataFrame.to_panel(). Following table shows how pandas data structures define constructor properties by default. Property Attributes _constructor _constructor_sliced _constructor_expanddim Series Series NotImplementedError DataFrame DataFrame DataFrame Series Panel Panel Panel DataFrame NotImplementedError Below example shows how to define SubclassedSeries and SubclassedDataFrame overriding constructor properties. class SubclassedSeries(Series): @property def _constructor(self): return SubclassedSeries @property def _constructor_expanddim(self): return SubclassedDataFrame class SubclassedDataFrame(DataFrame): @property def _constructor(self): return SubclassedDataFrame @property def _constructor_sliced(self): return SubclassedSeries >>> s = SubclassedSeries([1, 2, 3]) >>> type(s) >>> to_framed = s.to_frame() >>> type(to_framed) >>> df = >>> df A B 0 1 4 1 2 5 2 3 6 SubclassedDataFrame({'A', [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}) C 7 8 9 34.2. Subclassing pandas Data Structures 1551 pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> type(df) >>> sliced1 = df[['A', 'B']] >>> sliced1 A B 0 1 4 1 2 5 2 3 6 >>> type(sliced1) >>> sliced2 = df['A'] >>> sliced2 0 1 1 2 2 3 Name: A, dtype: int64 >>> type(sliced2) 34.2.2 Define Original Properties To let original data structures have additional properties, you should let pandas knows what properties are added. pandas maps unknown properties to data names overriding __getattribute__. Defining original properties can be done in one of 2 ways: 1. Define _internal_names and _internal_names_set for temporary properties which WILL NOT be passed to manipulation results. 2. Define _metadata for normal properties which will be passed to manipulation results. Below is an example to define 2 original properties, “internal_cache” as a temporary property and “added_property” as a normal property class SubclassedDataFrame2(DataFrame): # temporary properties _internal_names = DataFrame._internal_names + ['internal_cache'] _internal_names_set = set(_internal_names) # normal properties _metadata = ['added_property'] @property def _constructor(self): return SubclassedDataFrame2 >>> df = >>> df A B 0 1 4 1 2 5 2 3 6 1552 SubclassedDataFrame2({'A', [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}) C 7 8 9 Chapter 34. Internals pandas: powerful Python data analysis toolkit, Release 0.16.1 >>> df.internal_cache = 'cached' >>> df.added_property = 'property' >>> df.internal_cache cached >>> df.added_property property # properties defined in _internal_names is reset after manipulation >>> df[['A', 'B']].internal_cache AttributeError: 'SubclassedDataFrame2' object has no attribute 'internal_cache' # properties defined in _metadata are retained >>> df[['A', 'B']].added_property property 34.2. Subclassing pandas Data Structures 1553 pandas: powerful Python data analysis toolkit, Release 0.16.1 1554 Chapter 34. Internals CHAPTER THIRTYFIVE RELEASE NOTES This is the list of changes to pandas between each release. http://github.com/pydata/pandas For full details, see the commit logs at What is it pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. Where to get it • Source code: http://github.com/pydata/pandas • Binary installers on PyPI: http://pypi.python.org/pypi/pandas • Documentation: http://pandas.pydata.org 35.1 pandas 0.16.1 Release date: (May 11, 2015) This is a minor release from 0.16.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. A small number of API changes were necessary to fix existing bugs. See the v0.16.1 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.16.1. 35.1.1 Thanks • Alfonso MHC • Andy Hayden • Artemy Kolchinsky • Chris Gilmer • Chris Grinolds • Dan Birken • David BROCHART • David Hirschfeld 1555 pandas: powerful Python data analysis toolkit, Release 0.16.1 • David Stephens • Dr. Leo • Evan Wright • Frans van Dunné • Hatem Nassrat • Henning Sperr • Hugo Herter • Jan Schulz • Jeff Blackburne • Jeff Reback • Jim Crist • Jonas Abernot • Joris Van den Bossche • Kerby Shedden • Leo Razoumov • Manuel Riel • Mortada Mehyar • Nick Burns • Nick Eubank • Olivier Grisel • Phillip Cloud • Pietro Battiston • Roy Hyunjin Han • Sam Zhang • Scott Sanderson • Stephan Hoyer • Tiago Antao • Tom Ajamian • Tom Augspurger • Tomaz Berisa • Vikram Shirgur • Vladimir Filimonov • William Hogman • Yasin A • Younggun Kim • behzad nouri 1556 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • dsm054 • floydsoft • flying-sheep • gfr • jnmclarty • jreback • ksanghai • lucas • mschmohl • ptype • rockg • scls19fr • sinhrks 35.2 pandas 0.16.0 Release date: (March 22, 2015) This is a major release from 0.15.2 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. Highlights include: • DataFrame.assign method, see here • Series.to_coo/from_coo methods to interact with scipy.sparse, see here • Backwards incompatible change datetime.timedelta, see here to Timedelta to conform the .seconds attribute with • Changes to the .loc slicing API to conform with the behavior of .ix see here • Changes to the default for ordering in the Categorical constructor, see here • The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpy modules are deprecated. We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see here See the v0.16.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.16.0. 35.2.1 Thanks • Aaron Toth • Alan Du • Alessandro Amici • Artemy Kolchinsky • Ashwini Chaudhary 35.2. pandas 0.16.0 1557 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Ben Schiller • Bill Letson • Brandon Bradley • Chau Hoang • Chris Reynolds • Chris Whelan • Christer van der Meeren • David Cottrell • David Stephens • Ehsan Azarnasab • Garrett-R • Guillaume Gay • Jake Torcasso • Jason Sexauer • Jeff Reback • John McNamara • Joris Van den Bossche • Joschka zur Jacobsmühlen • Juarez Bochi • Junya Hayashi • K.-Michael Aye • Kerby Shedden • Kevin Sheppard • Kieran O’Mahony • Kodi Arfer • Matti Airas • Min RK • Mortada Mehyar • Robert • Scott E Lasley • Scott Lasley • Sergio Pascual • Skipper Seabold • Stephan Hoyer • Thomas Grainger • Tom Augspurger 1558 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • TomAugspurger • Vladimir Filimonov • Vyomkesh Tripathi • Will Holmgren • Yulong Yang • behzad nouri • bertrandhaut • bjonen • cel4 • clham • hsperr • ischwabacher • jnmclarty • josham • jreback • omtinez • roch • sinhrks • unutbu 35.3 pandas 0.15.2 Release date: (December 12, 2014) This is a minor release from 0.15.1 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. A small number of API changes were necessary to fix existing bugs. See the v0.15.2 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.2. 35.3.1 Thanks • Aaron Staple • Angelos Evripiotis • Artemy Kolchinsky • Benoit Pointet • Brian Jacobowski • Charalampos Papaloizou • Chris Warth • David Stephens 35.3. pandas 0.15.2 1559 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fabio Zanini • Francesc Via • Henry Kleynhans • Jake VanderPlas • Jan Schulz • Jeff Reback • Jeff Tratner • Joris Van den Bossche • Kevin Sheppard • Matt Suggit • Matthew Brett • Phillip Cloud • Rupert Thompson • Scott E Lasley • Stephan Hoyer • Stephen Simmons • Sylvain Corlay • Thomas Grainger • Tiago Antao • Trent Hauck • Victor Chaves • Victor Salgado • Vikram Bhandoh • WANG Aiyong • Will Holmgren • behzad nouri • broessli • charalampos papaloizou • immerrr • jnmclarty • jreback • mgilbert • onesandzeroes • peadarcoyle • rockg • seth-p 1560 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • sinhrks • unutbu • wavedatalab • Åsmund Hjulstad 35.4 pandas 0.15.1 Release date: (November 9, 2014) This is a minor release from 0.15.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. See the v0.15.1 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.1. 35.4.1 Thanks • Aaron Staple • Andrew Rosenfeld • Anton I. Sipos • Artemy Kolchinsky • Bill Letson • Dave Hughes • David Stephens • Guillaume Horel • Jeff Reback • Joris Van den Bossche • Kevin Sheppard • Nick Stahl • Sanghee Kim • Stephan Hoyer • TomAugspurger • WANG Aiyong • behzad nouri • immerrr • jnmclarty • jreback • pallav-fdsi • unutbu 35.4. pandas 0.15.1 1561 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.5 pandas 0.15.0 Release date: (October 18, 2014) This is a major release from 0.14.1 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. Highlights include: • Drop support for numpy < 1.7.0 (GH7711) • The Categorical type was integrated as a first-class pandas type, see here • New scalar type Timedelta, and a new index type TimedeltaIndex, see here • New DataFrame default display for df.info() to include memory usage, see Memory Usage • New datetimelike properties accessor .dt for Series, see Datetimelike Properties • Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing • Split out string methods documentation into Working with Text Data • read_csv will now by default ignore blank lines when parsing, see here • API change in using Indexes in set operations, see here • Internal refactoring of the Index class to no longer sub-class ndarray, see Internal Refactoring • dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990) See the v0.15.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.0. 35.5.1 Thanks • Aaron Schumacher • Adam Greenhall • Andy Hayden • Anthony O’Brien • Artemy Kolchinsky • behzad nouri • Benedikt Sauer • benjamin • Benjamin Thyreau • Ben Schiller • bjonen • BorisVerk • Chris Reynolds • Chris Stoafer • Dav Clark • dlovell 1562 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • DSM • dsm054 • FragLegs • German Gomez-Herrero • Hsiaoming Yang • Huan Li • hunterowens • Hyungtae Kim • immerrr • Isaac Slavitt • ischwabacher • Jacob Schaer • Jacob Wasserman • Jan Schulz • Jeff Tratner • Jesse Farnham • jmorris0x0 • jnmclarty • Joe Bradish • Joerg Rittinger • John W. O’Brien • Joris Van den Bossche • jreback • Kevin Sheppard • klonuo • Kyle Meyer • lexual • Max Chang • mcjcode • Michael Mueller • Michael W Schatzow • Mike Kelly • Mortada Mehyar • mtrbean • Nathan Sanders • Nathan Typanski 35.5. pandas 0.15.0 1563 pandas: powerful Python data analysis toolkit, Release 0.16.1 • onesandzeroes • Paul Masurel • Phillip Cloud • Pietro Battiston • RenzoBertocchi • rockg • Ross Petchler • seth-p • Shahul Hameed • Shashank Agarwal • sinhrks • someben • stahlous • stas-sl • Stephan Hoyer • thatneat • tom-alcorn • TomAugspurger • Tom Augspurger • Tony Lorenzo • unknown • unutbu • Wes Turner • Wilfred Hughes • Yevgeniy Grechka • Yoshiki Vázquez Baeza • zachcp 35.6 pandas 0.14.1 Release date: (July 11, 2014) This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. Highlights include: • New methods select_dtypes() to select columns based on the dtype and sem() to calculate the standard error of the mean. • Support for dateutil timezones (see docs). 1564 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Support for ignoring full line comments in the read_csv() text parser. • New documentation section on Options and Settings. • Lots of bug fixes. See the v0.14.1 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.1. 35.6.1 Thanks • Andrew Rosenfeld • Andy Hayden • Benjamin Adams • Benjamin M. Gross • Brian Quistorff • Brian Wignall • bwignall • clham • Daniel Waeber • David Bew • David Stephens • DSM • dsm054 • helger • immerrr • Jacob Schaer • jaimefrio • Jan Schulz • John David Reaver • John W. O’Brien • Joris Van den Bossche • jreback • Julien Danjou • Kevin Sheppard • K.-Michael Aye • Kyle Meyer • lexual • Matthew Brett • Matt Wittmann 35.6. pandas 0.14.1 1565 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Michael Mueller • Mortada Mehyar • onesandzeroes • Phillip Cloud • Rob Levy • rockg • sanguineturtle • Schaer, Jacob C • seth-p • sinhrks • Stephan Hoyer • Thomas Kluyver • Todd Jennings • TomAugspurger • unknown • yelite 35.7 pandas 0.14.0 Release date: (May 31, 2014) This is a major release from 0.13.1 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. Highlights include: • Officially support Python 3.4 • SQL interfaces updated to use sqlalchemy, see here. • Display interface changes, see here • MultiIndexing using Slicers, see here. • Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see here • More consistency in groupby results and more flexible groupby specifications, see here • Holiday calendars are now supported in CustomBusinessDay, see here • Several improvements in plotting functions, including: hexbin, area and pie plots, see here. • Performance doc section on I/O operations, see here See the v0.14.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.0. 1566 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 35.7.1 Thanks • Acanthostega • Adam Marcus • agijsberts • akittredge • Alex Gaudio • Alex Rothberg • AllenDowney • Andrew Rosenfeld • Andy Hayden • ankostis • anomrake • Antoine Mazières • anton-d • bashtage • Benedikt Sauer • benjamin • Brad Buran • bwignall • cgohlke • chebee7i • Christopher Whelan • Clark Fitzgerald • clham • Dale Jung • Dan Allan • Dan Birken • danielballan • Daniel Waeber • David Jung • David Stephens • Douglas McNeil • DSM • Garrett Drapala • Gouthaman Balaraman • Guillaume Poulin 35.7. pandas 0.14.0 1567 pandas: powerful Python data analysis toolkit, Release 0.16.1 • hshimizu77 • hugo • immerrr • ischwabacher • Jacob Howard • Jacob Schaer • jaimefrio • Jason Sexauer • Jeff Reback • Jeffrey Starr • Jeff Tratner • John David Reaver • John McNamara • John W. O’Brien • Jonathan Chambers • Joris Van den Bossche • jreback • jsexauer • Julia Evans • Júlio • Katie Atkinson • kdiether • Kelsey Jordahl • Kevin Sheppard • K.-Michael Aye • Matthias Kuhn • Matt Wittmann • Max Grender-Jones • Michael E. Gruen • michaelws • mikebailey • Mike Kelly • Nipun Batra • Noah Spies • ojdo • onesandzeroes 1568 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Patrick O’Keeffe • phaebz • Phillip Cloud • Pietro Battiston • PKEuS • Randy Carnevale • ribonoous • Robert Gibboni • rockg • sinhrks • Skipper Seabold • SplashDance • Stephan Hoyer • Tim Cera • Tobias Brandt • Todd Jennings • TomAugspurger • Tom Augspurger • unutbu • westurner • Yaroslav Halchenko • y-p • zach powers 35.8 pandas 0.13.1 Release date: (February 3, 2014) 35.8.1 New Features • Added date_format and datetime_format attribute to ExcelWriter. (GH4133) 35.8.2 API Changes • Series.sort will raise a ValueError (rather than a TypeError) on sorting an object that is a view of another (GH5856, GH5853) • Raise/Warn SettingWithCopyError (according to the option chained_assignment in more cases, when detecting chained assignment, related (GH5938, GH6025) 35.8. pandas 0.13.1 1569 pandas: powerful Python data analysis toolkit, Release 0.16.1 • DataFrame.head(0) returns self instead of empty frame (GH5846) • autocorrelation_plot now accepts **kwargs. (GH5623) • convert_objects now accepts a convert_timedeltas=’coerce’ argument to allow forced dtype conversion of timedeltas (GH5458,:issue:5689) • Add -NaN and -nan to the default set of NA values (GH5952). See NA Values. • NDFrame now has an equals method. (GH5283) • DataFrame.apply will use the reduce argument to determine whether a Series or a DataFrame should be returned when the DataFrame is empty (GH6007). 35.8.3 Experimental Features 35.8.4 Improvements to existing features • perf improvements in Series datetime/timedelta binary operations (GH5801) • option_context context manager now available as top-level API (GH5752) • df.info() view now display dtype info per column (GH5682) • df.info() now honors option max_info_rows, disable null counts for large frames (GH5974) • perf improvements in DataFrame count/dropna for axis=1 • Series.str.contains now has a regex=False keyword which can be faster for plain (non-regex) string patterns. (GH5879) • support dtypes property on Series/Panel/Panel4D • extend Panel.apply to allow arbitrary functions (rather than only ufuncs) (GH1148) allow multiple axes to be used to operate on slabs of a Panel • The ArrayFormatter for datetime and timedelta64 now intelligently limit precision based on the values in the array (GH3401) • pd.show_versions() is now available for convenience when reporting issues. • perf improvements to Series.str.extract (GH5944) • perf improvements in dtypes/ftypes methods (GH5968) • perf improvements in indexing with object dtypes (GH5968) • improved dtype inference for timedelta like passed to constructors (GH5458, GH5689) • escape special characters when writing to latex (:issue: 5374) • perf improvements in DataFrame.apply (GH6013) • pd.read_csv and pd.to_datetime learned a new infer_datetime_format keyword which greatly improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490,:issue:6021) • add ability to recognize ‘%p’ format code (am/pm) to date parsers when the specific format is supplied (GH5361) • Fix performance regression in JSON IO (GH5765) • performance regression in Index construction from Series (GH6150) 1570 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 35.8.5 Bug Fixes • Bug in io.wb.get_countries not including all countries (GH6008) • Bug in Series replace with timestamp dict (GH5797) • read_csv/read_table now respects the prefix kwarg (GH5732). • Bug in selection with missing values via .ix from a duplicate indexed DataFrame failing (GH5835) • Fix issue of boolean comparison on empty DataFrames (GH5808) • Bug in isnull handling NaT in an object array (GH5443) • Bug in to_datetime when passed a np.nan or integer datelike and a format string (GH5863) • Bug in groupby dtype conversion with datetimelike (GH5869) • Regression in handling of empty Series as indexers to Series (GH5877) • Bug in internal caching, related to (GH5727) • Testing bug in reading JSON/msgpack from a non-filepath on windows under py3 (GH5874) • Bug when assigning to .ix[tuple(...)] (GH5896) • Bug in fully reindexing a Panel (GH5905) • Bug in idxmin/max with object dtypes (GH5914) • Bug in BusinessDay when adding n days to a date not on offset when n>5 and n%5==0 (GH5890) • Bug in assigning to chained series with a series via ix (GH5928) • Bug in creating an empty DataFrame, copying, then assigning (GH5932) • Bug in DataFrame.tail with empty frame (GH5846) • Bug in propagating metadata on resample (GH5862) • Fixed string-representation of NaT to be “NaT” (GH5708) • Fixed string-representation for Timestamp to show nanoseconds if present (GH5912) • pd.match not returning passed sentinel • Panel.to_frame() no longer fails when major_axis is a MultiIndex (GH5402). • Bug in pd.read_msgpack with inferring a DateTimeIndex frequency incorrectly (GH5947) • Fixed to_datetime for array with both Tz-aware datetimes and NaT‘s (GH5961) • Bug in rolling skew/kurtosis when passed a Series with bad data (GH5749) • Bug in scipy interpolate methods with a datetime index (GH5975) • Bug in NaT comparison if a mixed datetime/np.datetime64 with NaT were passed (GH5968) • Fixed bug with pd.concat losing dtype information if all inputs are empty (GH5742) • Recent changes in IPython cause warnings to be emitted when using previous versions of pandas in QTConsole, now fixed. If you’re using an older version and need to suppress the warnings, see (GH5922). • Bug in merging timedelta dtypes (GH5695) • Bug in plotting.scatter_matrix function. (GH5497). Wrong alignment among diagonal and off-diagonal plots, see • Regression in Series with a multi-index via ix (GH6018) 35.8. pandas 0.13.1 1571 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Bug in Series.xs with a multi-index (GH6018) • Bug in Series construction of mixed type with datelike and an integer (which should result in object type and not automatic conversion) (GH6028) • Possible segfault when chained indexing with an object array under numpy 1.7.1 (GH6026, GH6056) • Bug in setting using fancy indexing a single element with a non-scalar (e.g. a list), (GH6043) • to_sql did not respect if_exists (GH4110 GH4304) • Regression in .get(None) indexing from 0.12 (GH5652) • Subtle iloc indexing bug, surfaced in (GH6059) • Bug with insert of strings into DatetimeIndex (GH5818) • Fixed unicode bug in to_html/HTML repr (GH6098) • Fixed missing arg validation in get_options_data (GH6105) • Bug in assignment with duplicate columns in a frame where the locations are a slice (e.g. next to each other) (GH6120) • Bug in propogating _ref_locs during construction of a DataFrame with dups index/columns (GH6121) • Bug in DataFrame.apply when using mixed datelike reductions (GH6125) • Bug in DataFrame.append when appending a row with different columns (GH6129) • Bug in DataFrame construction with recarray and non-ns datetime dtype (GH6140) • Bug in .loc setitem indexing with a dataframe on rhs, multiple item setting, and a datetimelike (GH6152) • Fixed a bug in query/eval during lexicographic string comparisons (GH6155). • Fixed a bug in query where the index of a single-element Series was being thrown away (GH6148). • Bug in HDFStore on appending a dataframe with multi-indexed columns to an existing table (GH6167) • Consistency with dtypes in setting an empty DataFrame (GH6171) • Bug in selecting on a multi-index HDFStore even in the presence of under specified column spec (GH6169) • Bug in nanops.var with ddof=1 and 1 elements would sometimes return inf rather than nan on some platforms (GH6136) • Bug in Series and DataFrame bar plots ignoring the use_index keyword (GH6209) • Bug in groupby with mixed str/int under python3 fixed; argsort was failing (GH6212) 35.9 pandas 0.13.0 Release date: January 3, 2014 35.9.1 New Features • plot(kind=’kde’) now accepts the optional parameters bw_method and ind, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth, and to gkde.evaluate() to specify the indicies at which it is evaluated, respectively. See scipy docs. (GH4298) • Added isin method to DataFrame (GH4211) 1572 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • df.to_clipboard() learned a new excel keyword that let’s you paste df data directly into excel (enabled by default). (GH5070). • Clipboard functionality now works with PySide (GH4282) • New extract string method returns regex matches more conveniently (GH4685) • Auto-detect field widths in read_fwf when unspecified (GH4488) • to_csv() now outputs datetime objects according to a specified format string via the date_format keyword (GH4313) • Added LastWeekOfMonth DateOffset (GH4637) • Added cumcount groupby method (GH4646) • Added FY5253, and FY5253Quarter DateOffsets (GH4511) • Added mode() method to Series and DataFrame to get the statistical mode(s) of a column/series. (GH5367) 35.9.2 Experimental Features • The new eval() function implements expression evaluation using numexpr behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series. • DataFrame has a new eval() that evaluates an expression in the context of the DataFrame; allows inline expression assignment • A query() method has been added that allows you to select elements of a DataFrame using a natural query syntax nearly identical to Python syntax. • pd.eval and friends now evaluate operations involving datetime64 objects in Python space because numexpr cannot handle NaT values (GH4897). • Add msgpack support via pd.read_msgpack() and pd.to_msgpack() / df.to_msgpack() for serialization of arbitrary pandas (and python objects) in a lightweight portable binary format (GH686, GH5506) • Added PySide support for the qtpandas DataFrameModel and DataFrameWidget. • Added pandas.io.gbq for reading from (and writing to) Google BigQuery into a DataFrame. (GH4140) 35.9.3 Improvements to existing features • read_html now raises a URLError instead of catching and raising a ValueError (GH4303, GH4305) • read_excel now supports an integer in its sheetname argument giving the index of the sheet to read in (GH4301). • get_dummies works with NaN (GH4446) • Added a test for read_clipboard() and to_clipboard() (GH4282) • Added bins argument to value_counts (GH3945), also sort and ascending, now available in Series method as well as top-level function. • Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) to infinity. (GH4220, GH4219), affecting read_table, read_csv, etc. • Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402) • Significant table writing performance improvements in HDFStore 35.9. pandas 0.13.0 1573 pandas: powerful Python data analysis toolkit, Release 0.16.1 • JSON date serialization now performed in low-level C code. • JSON support for encoding datetime.time • Expanded JSON docs, more info about orient options and the use of the numpy param when decoding. • Add drop_level argument to xs (GH4180) • Can now resample a DataFrame with ohlc (GH2320) • Index.copy() and MultiIndex.copy() now accept keyword arguments to change attributes (i.e., names, levels, labels) (GH4039) • Add rename and set_names methods to Index as well as set_names, set_levels, set_labels to MultiIndex. (GH4039) with improved validation for all (GH4039, GH4794) • A Series of dtype timedelta64[ns] can now be divided/multiplied by an integer series (GH4521) • A Series of dtype timedelta64[ns] can now be divided by another timedelta64[ns] object to yield a float64 dtyped Series. This is frequency conversion; astyping is also supported. • Timedelta64 support fillna/ffill/bfill with an integer interpreted as seconds, or a timedelta (GH3371) • Box numeric ops on timedelta Series (GH4984) • Datetime64 support ffill/bfill • Performance improvements with __getitem__ on DataFrames with when the key is a column • Support for using a DatetimeIndex/PeriodsIndex directly in a datelike calculation e.g. s-s.index (GH4629) • Better/cleaned up exceptions in core/common, io/excel and core/format (GH4721, GH3954), as well as cleaned up test cases in tests/test_frame, tests/test_multilevel (GH4732). • Performance improvement of timeseries plotting with PeriodIndex and added test to vbench (GH4705 and GH4722) • Add axis and level keywords to where, so that the other argument can now be an alignable pandas object. • to_datetime with a format of ‘%Y%m%d’ now parses much faster • It’s now easier to hook new Excel writers into pandas (just subclass ExcelWriter and register your engine). You can specify an engine in to_excel or in ExcelWriter. You can also specify which writers you want to use by default with config options io.excel.xlsx.writer and io.excel.xls.writer. (GH4745, GH4750) • Panel.to_excel() now accepts keyword arguments that will be passed to its DataFrame‘s to_excel() methods. (GH4750) • Added XlsxWriter as an optional ExcelWriter engine. This is about 5x faster than the default openpyxl xlsx writer and is equivalent in speed to the xlwt xls writer module. (GH4542) • allow DataFrame constructor to accept more list-like objects, e.g. list of collections.Sequence and array.Array objects (GH3783, GH4297, GH4851), thanks @lgautier • DataFrame constructor now accepts a numpy masked record array (GH3478), thanks @jnothman • __getitem__ with tuple key (e.g., [:, 2]) on Series without MultiIndex raises ValueError (GH4759, GH4837) • read_json now raises a (more informative) ValueError when the dict contains a bad key and orient=’split’ (GH4730, GH4838) 1574 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • read_stata now accepts Stata 13 format (GH4291) • ExcelWriter and ExcelFile can be used as contextmanagers. (GH3441, GH4933) • pandas is now tested with two different versions of statsmodels (0.4.3 and 0.5.0) (GH4981). • Better string representations of MultiIndex (including ability to roundtrip via repr). (GH3347, GH4935) • Both ExcelFile and read_excel to accept an xlrd.Book for the io (formerly path_or_buf) argument; this requires engine to be set. (GH4961). • concat now gives a more informative error message when passed objects that cannot be concatenated (GH4608). • Add halflife option to exponentially weighted moving functions (PR GH4998) • to_dict now takes records as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936) • tz_localize can infer a fall daylight savings transition based on the structure of unlocalized data (GH4230) • DatetimeIndex is now in the API documentation • Improve support for converting R datasets to pandas objects (more informative index for timeseries and numeric, support for factors, dist, and high-dimensional arrays). • read_html() now supports the parse_dates, tupleize_cols and thousands parameters (GH4770). • json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067) • DataFrame.from_records() will now accept generators (GH4910) • DataFrame.interpolate() and Series.interpolate() have been expanded to include interpolation methods from scipy. (GH4434, GH1892) • Series now supports a to_frame method to convert it to a single-column DataFrame (GH5164) • DatetimeIndex (and date_range) can now be constructed in a left- or right-open fashion using the closed parameter (GH4579) • Python csv parser now supports usecols (GH4335) • Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271) • NDFrame.drop() now accepts names as well as integers for the axis argument. (GH5354) • Added short docstrings to a few methods that were missing them + fixed the docstrings for Panel flex methods. (GH5336) • NDFrame.drop(), NDFrame.dropna(), and .drop_duplicates() all accept inplace as a keyword argument; however, this only means that the wrapper is updated inplace, a copy is still made internally. (GH1960, GH5247, GH5628, and related GH2325 [still not closed]) • Fixed bug in tools.plotting.andrews_curvres so that lines are drawn grouped by color as expected. • read_excel() now tries to convert integral floats (like 1.0) to int by default. (GH5394) • Excel writers now have a default option merge_cells in to_excel() to merge cells in MultiIndex and Hierarchical Rows. Note: using this option it is no longer possible to round trip Excel files with merged MultiIndex and Hierarchical Rows. Set the merge_cells to False to restore the previous behaviour. (GH5254) • The FRED DataReader now accepts multiple series (:issue‘3413‘) • StataWriter adjusts variable names to Stata’s limitations (GH5709) 35.9. pandas 0.13.0 1575 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.9.4 API Changes • DataFrame.reindex() and forward/backward filling now raises ValueError if either index is not monotonic (GH4483, GH4484). • pandas now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, pandas now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s six library into compat. (GH4384, GH4375, GH4372) • pandas.util.compat and pandas.util.py3compat have been merged into pandas.compat. pandas.compat now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting and pandas constructors.(GH4384, GH4375, GH4372) • deprecated iterkv, which will be removed in a future release (was just an alias of iteritems used to get around 2to3‘s changes). (GH4384, GH4375, GH4372) • Series.get with negative indexers now returns the same as [] (GH4390) • allow ix/loc for Series/DataFrame/Panel to set on any axis even when the single-key is not currently contained in the index for that axis (GH2578, GH5226, GH5632, GH5720, GH5744, GH5756) • Default export for to_clipboard is now csv with a sep of t for compat (GH3368) • at now will enlarge the object inplace (and return the same) (GH2578) • DataFrame.plot will scatter plot x versus y by passing kind=’scatter’ (GH2215) • HDFStore – append_to_multiple automatically synchronizes writing rows to multiple tables and adds a dropna kwarg (GH4698) – handle a passed Series in table format (GH4330) – added an is_open property to indicate if the underlying file handle is_open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409) – a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance of HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise ClosedFileError – removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table (GH4367) – removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if you try to use mode=’w’ with an OPEN file handle (GH4367) – allow a passed locations array or mask as a where condition (GH4467) – add the keyword dropna=True to append to change whether ALL nan rows are not written to the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table (GH4625) – the format keyword now replaces the table keyword; allowed values are fixed(f)|table(t) the Storer format has been renamed to Fixed – a column multi-index will be recreated properly (GH4710); raise on trying to use a multi-index with data_columns on the same axis – select_as_coordinates will now return an Int64Index of the resultant selection set 1576 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 – support timedelta64[ns] as a serialization type (GH3577) – store datetime.date objects as ordinals rather then timetuples to avoid timezone issues (GH2852), thanks @tavistmorph and @numpand – numexpr 2.2.2 fixes incompatibility in PyTables 2.4 (GH4908) – flush now accepts an fsync parameter, which defaults to False (GH5364) – unicode indices not supported on table formats (GH5386) – pass thru store creation arguments; can be used to support in-memory stores • JSON – added date_unit parameter to specify resolution of timestamps. Options are seconds, milliseconds, microseconds and nanoseconds. (GH4362, GH4498). – added default_handler parameter to allow a callable to be passed which will be responsible for handling otherwise unserialiable objects. (GH5138) • Index and MultiIndex changes (GH4039): – Setting levels and labels directly on MultiIndex is now deprecated. Instead, you can use the set_levels() and set_labels() methods. – levels, labels and names properties no longer return lists, but instead return containers that do not allow setting of items (‘mostly immutable’) – levels, labels and names are validated upon setting and are either copied or shallow-copied. – inplace setting of levels or labels now correctly invalidates the cached properties. (GH5238). – __deepcopy__ now returns a shallow copy (currently: a view) of the data - allowing metadata changes. – MultiIndex.astype() now only allows np.object_-like dtypes and now returns a MultiIndex rather than an Index. (GH4039) – Added is_ method to Index that allows fast equality comparison of views (similar to np.may_share_memory but no false positives, and changes on levels and labels setting on MultiIndex). (GH4859 , GH4909) – Aliased __iadd__ to __add__. (GH4996) – Added is_ method to Index that allows fast equality comparison of views (similar to np.may_share_memory but no false positives, and changes on levels and labels setting on MultiIndex). (GH4859, GH4909) • Infer and downcast dtype if downcast=’infer’ is passed to fillna/ffill/bfill (GH4604) • __nonzero__ for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073, GH4633) behavior. Add .bool() method to NDFrame objects to facilitate evaluating of single-element boolean Series • DataFrame.update() no longer raises a DataConflictError, it now will raise a ValueError instead (if necessary) (GH4732) • Series.isin() and DataFrame.isin() now raise a TypeError when passed a string (GH4763). Pass a list of one element (containing the string) instead. • Remove undocumented/unused kind keyword argument from read_excel, and ExcelFile. (GH4713, GH4712) • The method argument of NDFrame.replace() is valid again, so that a a list can be passed to to_replace (GH4743). 35.9. pandas 0.13.0 1577 pandas: powerful Python data analysis toolkit, Release 0.16.1 • provide automatic dtype conversions on _reduce operations (GH3371) • exclude non-numerics if mixed types with datelike in _reduce operations (GH3371) • default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12 (GH3604) • moved timedeltas support to pandas.tseries.timedeltas.py; add timedeltas string parsing, add top-level to_timedelta function • NDFrame now is compatible with Python’s toplevel abs() function (GH4821). • raise a TypeError on invalid comparison ops on Series/DataFrame (e.g. integer/datetime) (GH4968) • Added a new index type, Float64Index. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing and slicing work exactly the same. Indexing on other index types are preserved (and positional fallback for [],ix), with the exception, that floating point slicing on indexes on non Float64Index will raise a TypeError, e.g. Series(range(5))[3.5:4.5] (GH263,:issue:5375) • Make Categorical repr nicer (GH4368) • Remove deprecated Factor (GH3650) • Remove deprecated set_printoptions/reset_printoptions (:issue:3046) • Remove deprecated _verbose_info (GH3215) • Begin removing methods that don’t make sense on GroupBy objects (GH4887). • Remove deprecated read_clipboard/to_clipboard/ExcelFile/ExcelWriter pandas.io.parsers (GH3717) from • All non-Index NDFrames (Series, DataFrame, Panel, Panel4D, SparsePanel, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). SparsePanel does not support pow or mod with non-scalars. (GH3765) • Arithmetic func factories are now passed real names (suitable for using with super) (GH5240) • Provide numpy compatibility with 1.7 for a calling convention like np.prod(pandas_object) as numpy call with additional keyword args (GH4435) • Provide __dir__ method (and local context) for tab completion / remove ipython completers code (GH4501) • Support non-unique axes in a Panel via indexing operations (GH4960) • .truncate will raise a ValueError if invalid before and afters dates are given (GH5242) • Timestamp now supports now/today/utcnow class methods (GH5339) • default for display.max_seq_len is now 100 rather then None. This activates truncated display (”...”) of long sequences in various places. (GH3391) • All division with NDFrame - likes is now truedivision, regardless of the future import. You can use // and floordiv to do integer division. In [3]: arr = np.array([1, 2, 3, 4]) In [4]: arr2 = np.array([5, 3, 2, 1]) In [5]: arr / arr2 Out[5]: array([0, 0, 1, 4]) In [6]: pd.Series(arr) / pd.Series(arr2) # no future import required Out[6]: 1578 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 0 0.200000 1 0.666667 2 1.500000 3 4.000000 dtype: float64 • raise/warn SettingWithCopyError/Warning exception/warning when setting of a copy thru chained assignment is detected, settable via option mode.chained_assignment • test the list of NA values in the csv parser. add N/A, #NA as independent default na values (GH5521) • The refactoring involving‘‘Series‘‘ deriving from NDFrame breaks rpy2<=2.3.8. an Issue has been opened against rpy2 and a workaround is detailed in GH5698. Thanks @JanSchulz. • Series.argmin and Series.argmax are now aliased to Series.idxmin and Series.idxmax. These return the index of the min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element (GH6214) 35.9.5 Internal Refactoring In 0.13.0 there is a major refactor primarily to subclass Series from NDFrame, which is the base class currently for DataFrame and Panel, to unify methods and behaviors. Series formerly subclassed directly from ndarray. (GH4080, GH3862, GH816) See Internal Refactoring • Refactor of series.py/frame.py/panel.py to move common code to generic.py • added _setup_axes to created generic NDFrame structures • moved methods – from_axes, _wrap_array, axes, ix, loc, iloc, shape, empty, swapaxes, transpose, pop – __iter__, keys, __contains__, __len__, __neg__, __invert__ – convert_objects, as_blocks, as_matrix, values – __getstate__, __setstate__ (compat remains in frame/panel) – __getattr__, __setattr__ – _indexed_same, reindex_like, align, where, mask – fillna, replace (Series replace is now consistent with DataFrame) – filter (also added axis argument to selectively filter on a different axis) – reindex, reindex_axis, take – truncate (moved to become part of NDFrame) – isnull/notnull now available on NDFrame objects • These are API changes which make Panel more consistent with DataFrame • swapaxes on a Panel with the same axes specified now return a copy • support attribute access for setting • filter supports same API as original DataFrame filter • fillna refactored to core/generic.py, while > 3ndim is NotImplemented 35.9. pandas 0.13.0 1579 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Series now inherits from NDFrame rather than directly from ndarray. There are several minor changes that affect the API. • numpy functions that do not support the array interface will now return ndarrays rather than series, e.g. np.diff, np.ones_like, np.where • Series(0.5) would previously return the scalar 0.5, this is no longer supported • TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish (if desired) • Refactor of Sparse objects to use BlockManager • Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is nonconsolidatable. SparseSeries and SparseDataFrame now inherit more methods from there hierarchy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of the SparseBlock) • Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented) • Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient • enable setitem on SparseSeries for boolean/integer/slices • SparsePanels implementation is unchanged (e.g. not using BlockManager, needs work) • added ftypes method to Series/DataFame, similar to dtypes, but indicates if the underlying is sparse/dense (as well as the dtype) • All NDFrame objects now have a _prop_attributes, which can be used to indicate various values to propagate to a new object from an existing (e.g. name in Series will follow more automatically now) • Internal type checking is now done via a suite of generated classes, allowing isinstance(value, klass) without having to directly import the klass, courtesy of @jtratner • Bug in Series update where the parent frame is not updating its cache based on changes (GH4080, GH5216) or types (GH3217), fillna (GH3386) • Indexing with dtype conversions fixed (GH4463, GH4204) • Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Series to work • Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy • Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with the same signature for Panel • Series (for index) / Panel (for items) now as attribute access to its elements (GH1903) • Refactor clip methods to core/generic.py (GH4798) • Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel functionality • Refactor of Series arithmetic with time-like objects (datetime/timedelta/time etc.) into a separate, cleaned up wrapper class. (GH4613) • Complex compat for Series with ndarray. (GH4819) • Removed unnecessary rwproperty from codebase in favor of builtin property. (GH4843) • Refactor object level numeric methods (mean/sum/min/max...) core/generic.py (GH4435). 1580 from object level modules to Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Refactor cum objects to core/generic.py (GH4435), note that these have a more numpy-like function signature. • read_html() now uses TextParser to parse HTML data from bs4/lxml (GH4770). • Removed the keep_internal keyword parameter in pandas/core/groupby.py because it wasn’t being used (GH5102). • Base DateOffsets are no longer all instantiated on importing pandas, instead they are generated and cached on the fly. The internal representation and handling of DateOffsets has also been clarified. (GH5189, related GH5004) • MultiIndex constructor now validates that passed levels and labels are compatible. (GH5213, GH5214) • Unity dropna for Series/DataFrame signature (GH5250), tests from GH5234, courtesy of @rockg • Rewrite assert_almost_equal() in cython for performance (GH4398) • Added an internal _update_inplace method to facilitate updating NDFrame wrappers on inplace ops (only is for convenience of caller, doesn’t actually prevent copies). (GH5247) 35.9.6 Bug Fixes • HDFStore – raising an invalid TypeError rather than ValueError when appending with a different block ordering (GH4096) – read_hdf was not respecting as passed mode (GH4504) – appending a 0-len table will work correctly (GH4273) – to_hdf was raising when passing both arguments append and table (GH4584) – reading from a store with duplicate columns across dtypes would raise (GH4767) – Fixed a bug where ValueError wasn’t correctly raised when column names weren’t strings (GH4956) – A zero length series written in Fixed format not deserializing properly. (GH4708) – Fixed decoding perf issue on pyt3 (GH5441) – Validate levels in a multi-index before storing (GH5527) – Correctly handle data_columns with a Panel (GH5717) • Fixed bug in tslib.tz_convert(vals, tz1, tz2): it could raise IndexError exception while trying to access trans[pos + 1] (GH4496) • The by argument now works correctly with the layout argument (GH4102, GH4014) in *.hist plotting methods • Fixed bug in PeriodIndex.map where using str would return the str representation of the index (GH4136) • Fixed test failure test_time_series_plot_color_with_empty_kwargs when using custom matplotlib default colors (GH4345) • Fix running of stata IO tests. Now uses temporary files to write (GH4353) • Fixed an issue where DataFrame.sum was slower than DataFrame.mean for integer valued frames (GH4365) • read_html tests now work with Python 2.6 (GH4351) • Fixed bug where network testing was throwing NameError because a local variable was undefined (GH4381) 35.9. pandas 0.13.0 1581 pandas: powerful Python data analysis toolkit, Release 0.16.1 • In to_json, raise if a passed orient would cause loss of data because of a duplicate index (GH4359) • In to_json, fix date handling so milliseconds are the default timestamp as the docstring says (GH4362). • as_index is no longer ignored when doing groupby apply (GH4648, GH3417) • JSON NaT handling fixed, NaTs are now serialized to null (GH4498) • Fixed JSON handling of escapable characters in JSON object keys (GH4593) • Fixed passing keep_default_na=False when na_values=None (GH4318) • Fixed bug with values raising an error on a DataFrame with duplicate columns and mixed dtypes, surfaced in (GH4377) • Fixed bug with duplicate columns and type conversion in read_json when orient=’split’ (GH4377) • Fixed JSON bug where locales with decimal separators other than ‘.’ threw exceptions when encoding / decoding certain values. (GH4918) • Fix .iat indexing with a PeriodIndex (GH4390) • Fixed an issue where PeriodIndex joining with self was returning a new instance rather than the same instance (GH4379); also adds a test for this for the other index types • Fixed a bug with all the dtypes being converted to object when using the CSV cparser with the usecols parameter (GH3192) • Fix an issue in merging blocks where the resulting DataFrame had partially set _ref_locs (GH4403) • Fixed an issue where hist subplots were being overwritten when they were called using the top level matplotlib API (GH4408) • Fixed a bug where calling Series.astype(str) would truncate the string (GH4405, GH4437) • Fixed a py3 compat issue where bytes were being repr’d as tuples (GH4455) • Fixed Panel attribute naming conflict if item is named ‘a’ (GH3440) • Fixed an issue where duplicate indexes were raising when plotting (GH4486) • Fixed an issue where cumsum and cumprod didn’t work with bool dtypes (GH4170, GH4440) • Fixed Panel slicing issued in xs that was returning an incorrect dimmed object (GH4016) • Fix resampling bug where custom reduce function not used if only one group (GH3849, GH4494) • Fixed Panel assignment with a transposed frame (GH3830) • Raise on set indexing with a Panel and a Panel as a value which needs alignment (GH3777) • frozenset objects now raise in the Series constructor (GH4482, GH4480) • Fixed issue with sorting a duplicate multi-index that has multiple dtypes (GH4516) • Fixed bug in DataFrame.set_values which was causing name attributes to be lost when expanding the index. (GH3742, GH4039) • Fixed issue where individual names, levels and labels could be set on MultiIndex without validation (GH3714, GH4039) • Fixed (GH3334) in pivot_table. Margins did not compute if values is the index. • Fix bug in having a rhs of np.timedelta64 or np.offsets.DateOffset when operating with datetimes (GH4532) • Fix arithmetic with series/datetimeindex and np.timedelta64 not working the same (GH4134) and buggy timedelta in numpy 1.6 (GH4135) 1582 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fix bug in pd.read_clipboard on windows with PY3 (GH4561); not decoding properly • tslib.get_period_field() and tslib.get_period_field_arr() now raise if code argument out of range (GH4519, GH4520) • Fix boolean indexing on an empty series loses index names (GH4235), infer_dtype works with empty arrays. • Fix reindexing with multiple axes; if an axes match was not replacing the current axes, leading to a possible lazay frequency inference issue (GH3317) • Fixed issue where DataFrame.apply was reraising exceptions incorrectly (causing the original stack trace to be truncated). • Fix selection with ix/loc and non_unique selectors (GH4619) • Fix assignment with iloc/loc involving a dtype change in an existing column (GH4312, GH5702) have internal setitem_with_indexer in core/indexing to use Block.setitem • Fixed bug where thousands operator was not handled correctly for floating point numbers in csv_import (GH4322) • Fix an issue with CacheableOffset not properly being used by many DateOffset; this prevented the DateOffset from being cached (GH4609) • Fix boolean comparison with a DataFrame on the lhs, and a list/tuple on the rhs (GH4576) • Fix error/dtype conversion with setitem of None on Series/DataFrame (GH4667) • Fix decoding based on a passed in non-default encoding in pd.read_stata (GH4626) • Fix DataFrame.from_records with a plain-vanilla ndarray. (GH4727) • Fix some inconsistencies with Index.rename and MultiIndex.rename, etc. (GH4718, GH4628) • Bug in using iloc/loc with a cross-sectional and duplicate indicies (GH4726) • Bug with using QUOTE_NONE with to_csv causing Exception. (GH4328) • Bug with Series indexing not raising an error when the right-hand-side has an incorrect length (GH2702) • Bug in multi-indexing with a partial string selection as one part of a MultIndex (GH4758) • Bug with reindexing on the index with a non-unique index will now raise ValueError (GH4746) • Bug in setting with loc/ix a single indexer with a multi-index axis and a numpy array, related to (GH3777) • Bug in concatenation with duplicate columns across dtypes not merging with axis=0 (GH4771, GH4975) • Bug in iloc with a slice index failing (GH4771) • Incorrect error message with no colspecs or width in read_fwf. (GH4774) • Fix bugs in indexing in a Series with a duplicate index (GH4548, GH4550) • Fixed bug with reading compressed files with read_fwf in Python 3. (GH3963) • Fixed an issue with a duplicate index and assignment with a dtype change (GH4686) • Fixed bug with reading compressed files in as bytes rather than str in Python 3. Simplifies bytes-producing file-handling in Python 3 (GH3963, GH4785). • Fixed an issue related to ticklocs/ticklabels with log scale bar plots across different versions of matplotlib (GH4789) • Suppressed DeprecationWarning associated with internal calls issued by repr() (GH4391) • Fixed an issue with a duplicate index and duplicate selector with .loc (GH4825) 35.9. pandas 0.13.0 1583 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fixed an issue with DataFrame.sort_index where, when sorting by a single column and passing a list for ascending, the argument for ascending was being interpreted as True (GH4839, GH4846) • Fixed Panel.tshift not working. Added freq support to Panel.shift (GH4853) • Fix an issue in TextFileReader w/ Python engine (i.e. PythonParser) with thousands != ”,” (GH4596) • Bug in getitem with a duplicate index when using where (GH4879) • Fix Type inference code coerces float column into datetime (GH4601) • Fixed _ensure_numeric does not check for complex numbers (GH4902) • Fixed a bug in Series.hist where two figures were being created when the by argument was passed (GH4112, GH4113). • Fixed a bug in convert_objects for > 2 ndims (GH4937) • Fixed a bug in DataFrame/Panel cache insertion and subsequent indexing (GH4939, GH5424) • Fixed string methods for FrozenNDArray and FrozenList (GH4929) • Fixed a bug with setting invalid or out-of-range values in indexing enlargement scenarios (GH4940) • Tests for fillna on empty Series (GH4346), thanks @immerrr • Fixed copy() to shallow copy axes/indices as well and thereby keep separate metadata. (GH4202, GH4830) • Fixed skiprows option in Python parser for read_csv (GH4382) • Fixed bug preventing cut from working with np.inf levels without explicitly passing labels (GH3415) • Fixed wrong check for overlapping in DatetimeIndex.union (GH4564) • Fixed conflict between thousands separator and date parser in csv_parser (GH4678) • Fix appending when dtypes are not the same (error showing mixing float/np.datetime64) (GH4993) • Fix repr for DateOffset. No longer show duplicate entries in kwds. Removed unused offset fields. (GH4638) • Fixed wrong index name during read_csv if using usecols. Applies to c parser only. (GH4201) • Timestamp objects can now appear in the left hand side of a comparison operation with a Series or DataFrame object (GH4982). • Fix a bug when indexing with np.nan via iloc/loc (GH5016) • Fixed a bug where low memory c parser could create different types in different chunks of the same file. Now coerces to numerical type or raises warning. (GH3866) • Fix a bug where reshaping a Series to its own shape raised TypeError (GH4554) and other reshaping issues. • Bug in setting with ix/loc and a mixed int/string index (GH4544) • Make sure series-series boolean comparisons are label based (GH4947) • Bug in multi-level indexing with a Timestamp partial indexer (GH4294) • Tests/fix for multi-index construction of an all-nan frame (GH4078) • Fixed a bug where read_html() wasn’t correctly inferring values of tables with commas (GH5029) • Fixed a bug where read_html() wasn’t providing a stable ordering of returned tables (GH4770, GH5029). • Fixed a bug where read_html() was incorrectly parsing when passed index_col=0 (GH5066). • Fixed a bug where read_html() was incorrectly inferring the type of headers (GH5048). • Fixed a bug where DatetimeIndex joins with PeriodIndex caused a stack overflow (GH3899). 1584 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fixed a bug where groupby objects didn’t allow plots (GH5102). • Fixed a bug where groupby objects weren’t tab-completing column names (GH5102). • Fixed a bug where groupby.plot() and friends were duplicating figures multiple times (GH5102). • Provide automatic conversion of object dtypes on fillna, related (GH5103) • Fixed a bug where default options were being overwritten in the option parser cleaning (GH5121). • Treat a list/ndarray identically for iloc indexing with list-like (GH5006) • Fix MultiIndex.get_level_values() with missing values (GH5074) • Fix bound checking for Timestamp() with datetime64 input (GH4065) • Fix a bug where TestReadHtml wasn’t calling the correct read_html() function (GH5150). • Fix a bug with NDFrame.replace() which made replacement appear as though it was (incorrectly) using regular expressions (GH5143). • Fix better error message for to_datetime (GH4928) • Made sure different locales are tested on travis-ci (GH4918). Also adds a couple of utilities for getting locales and setting locales with a context manager. • Fixed segfault on isnull(MultiIndex) (now raises an error instead) (GH5123, GH5125) • Allow duplicate indices when performing operations that align (GH5185, GH5639) • Compound dtypes in a constructor raise NotImplementedError (GH5191) • Bug in comparing duplicate frames (GH4421) related • Bug in describe on duplicate frames • Bug in to_datetime with a format and coerce=True not raising (GH5195) • Bug in loc setting with multiple indexers and a rhs of a Series that needs broadcasting (GH5206) • Fixed bug where inplace setting of levels or labels on MultiIndex would not clear cached values property and therefore return wrong values. (GH5215) • Fixed bug where filtering a grouped DataFrame or Series did not maintain the original ordering (GH4621). • Fixed Period with a business date freq to always roll-forward if on a non-business date. (GH5203) • Fixed bug in Excel writers where frames with duplicate column names weren’t written correctly. (GH5235) • Fixed issue with drop and a non-unique index on Series (GH5248) • Fixed seg fault in C parser caused by passing more names than columns in the file. (GH5156) • Fix Series.isin with date/time-like dtypes (GH5021) • C and Python Parser can now handle the more common multi-index column format which doesn’t have a row for index names (GH4702) • Bug when trying to use an out-of-bounds date as an object dtype (GH5312) • Bug when trying to display an embedded PandasObject (GH5324) • Allows operating of Timestamps to return a datetime if the result is out-of-bounds related (GH5312) • Fix return value/type signature of initObjToJSON() to be compatible with numpy’s import_array() (GH5334, GH5326) • Bug when renaming then set_index on a DataFrame (GH5344) 35.9. pandas 0.13.0 1585 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Test suite no longer leaves around temporary files when testing graphics. (GH5347) (thanks for catching this @yarikoptic!) • Fixed html tests on win32. (GH4580) • Make sure that head/tail are iloc based, (GH5370) • Fixed bug for PeriodIndex string representation if there are 1 or 2 elements. (GH5372) • The GroupBy methods transform and filter can be used on Series and DataFrames that have repeated (non-unique) indices. (GH4620) • Fix empty series not printing name in repr (GH4651) • Make tests create temp files in temp directory by default. (GH5419) • pd.to_timedelta of a scalar returns a scalar (GH5410) • pd.to_timedelta accepts NaN and NaT, returning NaT instead of raising (GH5437) • performance improvements in isnull on larger size pandas objects • Fixed various setitem with 1d ndarray that does not have a matching length to the indexer (GH5508) • Bug in getitem with a multi-index and iloc (GH5528) • Bug in delitem on a Series (GH5542) • Bug fix in apply when using custom function and objects are not mutated (GH5545) • Bug in selecting from a non-unique index with loc (GH5553) • Bug in groupby returning non-consistent types when user function returns a None, (GH5592) • Work around regression in numpy 1.7.0 which erroneously raises IndexError from ndarray.item (GH5666) • Bug in repeated indexing of object with resultant non-unique index (GH5678) • Bug in fillna with Series and a passed series/dict (GH5703) • Bug in groupby transform with a datetime-like grouper (GH5712) • Bug in multi-index selection in PY3 when using certain keys (GH5725) • Row-wise concat of differing dtypes failing in certain cases (GH5754) 35.10 pandas 0.12.0 Release date: 2013-07-24 35.10.1 New Features • pd.read_html() can now parse HTML strings, files or urls and returns a list of DataFrame s courtesy of @cpcloud. (GH3477, GH3605, GH3606) • Support for reading Amazon S3 files. (GH3504) • Added module for reading and writing JSON strings/files: pandas.io.json includes to_json DataFrame/Series method, and a read_json top-level reader various issues (GH1226, GH3804, GH3876, GH3867, GH1305) • Added module for reading and writing Stata files: pandas.io.stata (GH1512) includes to_stata DataFrame method, and a read_stata top-level reader 1586 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Added support for writing in to_csv and reading in read_csv, multi-index columns. The header option in read_csv now accepts a list of the rows from which to read the index. Added the option, tupleize_cols to provide compatibility for the pre 0.12 behavior of writing and reading multi-index columns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as a multi-index column. Note: The default value will change in 0.12 to make the default to write and read multi-index columns in the new format. (GH3571, GH1651, GH3141) • Add iterator to Series.str (GH3638) • pd.set_option() now allows N option, value pairs (GH3667). • Added keyword parameters for different types of scatter_matrix subplots • A filter method on grouped Series or DataFrames returns a subset of the original (GH3680, GH919) • Access to historical Google Finance data in pandas.io.data (GH3814) • DataFrame plotting methods can sample column colors from a Matplotlib colormap via the colormap keyword. (GH3860) 35.10.2 Improvements to existing features • Fixed various issues with internal pprinting code, the repr() for various objects including TimeStamp and Index now produces valid python code strings and can be used to recreate the object, (GH3038, GH3379, GH3251, GH3460) • convert_objects now accepts a copy parameter (defaults to True) • HDFStore – will retain index attributes (freq,tz,name) on recreation (GH3499,:issue:4098) – will warn with a AttributeConflictWarning if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing – support datelike columns with a timezone as data_columns (GH2852) – table writing performance improvements. – support python3 (via PyTables 3.0.0) (GH3750) • Add modulo operator to Series, DataFrame • Add date method to DatetimeIndex • Add dropna argument to pivot_table (:issue: 3820) • Simplified the API and added a describe method to Categorical • melt now accepts the optional parameters var_name and value_name to specify custom column names of the returned DataFrame (GH3649), thanks @hoechenberger. If var_name is not specified and dataframe.columns.name is not None, then this will be used as the var_name (GH4144). Also support for MultiIndex columns. • clipboard functions use pyperclip (no dependencies on Windows, alternative dependencies offered for Linux) (GH3837). • Plotting functions now raise a TypeError before trying to plot anything if the associated objects have have a dtype of object (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up. • Added Faq section on repr display options, to help users customize their setup. 35.10. pandas 0.12.0 1587 pandas: powerful Python data analysis toolkit, Release 0.16.1 • where operations that result in block splitting are much faster (GH3733) • Series and DataFrame hist methods now take a figsize argument (GH3834) • DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877) • Add unit keyword to Timestamp and to_datetime to enable passing of integers or floats that are in an epoch unit of D, s, ms, us, ns, thanks @mtkini (GH3969) (e.g. unix timestamps or epoch s, with fractional seconds allowed) (GH3540) • DataFrame corr method (spearman) is now cythonized. • Improved network test decorator to catch IOError (and therefore URLError as well). Added with_connectivity_check decorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, new optional_args decorator factory for decorators. (GH3910, GH3914) • read_csv will now throw a more informative error message when a file contains no columns, e.g., all newline characters • Added layout keyword to DataFrame.hist() for more customizable layout (GH4050) • Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default datetime.min and datetime.max (respectively), thanks @SleepingPills • read_html now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214) 35.10.3 API Changes • HDFStore – When removing an object, remove(key) raises KeyError if the key is not a valid store object. – raise a TypeError on passing where or columns to select with a Storer; these are invalid parameters at this time (GH4189) – can now specify an encoding option to append/put to enable alternate encodings (GH3750) – enable support for iterator/chunksize with read_hdf • The repr() for (Multi)Index now obeys display.max_seq_items rather then numpy threshold print options. (GH3426, GH3466) • Added mangle_dupe_cols option to read_table/csv, allowing users to control legacy behaviour re dupe cols (A, A.1, A.2 vs A, A ) (GH3468) Note: The default value will change in 0.12 to the “no mangle” behaviour, If your code relies on this behaviour, explicitly specify mangle_dupe_cols=True in your calls. • Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int (GH3425) • The behavior of datetime64 dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise a TypeError when performed on a Series and return an empty Series when performed on a DataFrame similar to performing these operations on, for example, a DataFrame of slice objects: - sum, prod, mean, std, var, skew, kurt, corr, and cov • Do not allow datetimelike/timedeltalike creation except with valid types (e.g. cannot pass datetime64[ms]) (GH3423) • Add squeeze keyword to groupby to allow reduction from DataFrame -> Series if groups are unique. Regression from 0.10.1, partial revert on (GH2893) with (GH3596) • Raise on iloc when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Since iloc is purely positional based, the labels on the Series are not alignable (GH3631) 1588 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • The raise_on_error option to plotting methods is obviated by GH3572, so it is removed. Plots now always raise when data cannot be plotted or the object being plotted has a dtype of object. • DataFrame.interpolate() is now deprecated. Please use DataFrame.fillna() and DataFrame.replace() instead (GH3582, GH3675, GH3676). • the method and axis arguments of DataFrame.replace() are deprecated • DataFrame.replace ‘s infer_types parameter is removed and now performs conversion by default. (GH3907) • Deprecated display.height, display.width is now only a formatting option does not control triggering of summary, similar to < 0.11.0. • Add the keyword allow_duplicates to DataFrame.insert to allow a duplicate column to be inserted if True, default is False (same as prior to 0.12) (GH3679) • io API changes – added pandas.io.api for i/o imports – removed Excel support to pandas.io.excel – added top-level pd.read_sql and to_sql DataFrame methods – removed clipboard support to pandas.io.clipboard – replace top-level and instance methods save and load with top-level read_pickle and to_pickle instance method, save and load will give deprecation warning. • the method and axis arguments of DataFrame.replace() are deprecated • set FutureWarning to require data_source, and to replace year/month with expiry date in pandas.io options. This is in preparation to add options data from Google (GH3822) • the method and axis arguments of DataFrame.replace() are deprecated • Implement __nonzero__ for NDFrame objects (GH3691, GH3696) • as_matrix with mixed signed and unsigned dtypes will result in 2 x the lcd of the unsigned as an int, maxing with int64, to avoid precision issues (GH3733) • na_values in a list provided to read_csv/read_excel will match string and numeric versions e.g. na_values=[’99’] will match 99 whether the column ends up being int, float, or string (GH3611) • read_html now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to parse. a list of parsers to try until success is also valid • more consistency in the to_datetime return types (give string/array of string inputs) (GH3888) • The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently, PandasObject provides string methods (from StringMixin). (GH4090, GH4092) • New StringMixin that, given a __unicode__ method, gets python 2 and python 3 compatible string methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092) 35.10.4 Experimental Features • Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars and custom weekmasks. (GH2301) 35.10. pandas 0.12.0 1589 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.10.5 Bug Fixes • Fixed an esoteric excel reading bug, xlrd>= 0.9.0 now required for excel support. Should provide python3 support (for reading) which has been lacking. (GH3164) • Disallow Series constructor called with MultiIndex which caused segfault (GH4187) • Allow unioning of date ranges sharing a timezone (GH3491) • Fix to_csv issue when having a large number of rows and NaT in some columns (GH3437) • .loc was not raising when passed an integer list (GH3449) • Unordered time series selection was misbehaving when using label slicing (GH3448) • Fix sorting in a frame with a list of columns which contains datetime64[ns] dtypes (GH3461) • DataFrames fetched via FRED now handle ‘.’ as a NaN. (GH3469) • Fix regression in a DataFrame apply with axis=1, objects were not being converted back to base dtypes correctly (GH3480) • Fix issue when storing uint dtypes in an HDFStore. (GH3493) • Non-unique index support clarified (GH3468) – Addressed handling of dupe columns in df.to_csv new and old (GH3454, GH3457) – Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468) – Fix construction of a DataFrame with a duplicate index – ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index (even across dtypes) (GH2194) – applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230) – Fix to_csv to handle non-unique columns (GH3495) – Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561) – Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562) – Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602) – Non-unique indexing with a slice via loc and friends fixed (GH3659) – Allow insert/delete to non-unique columns (GH3679) – Extend reindex to correctly deal with non-unique indices (GH3679) – DataFrame.itertuples() now works with frames with duplicate column names (GH3873) – Bug in non-unique indexing via iloc (GH4017); added takeable argument to reindex for locationbased taking – Allow non-unique indexing in series via .ix/.loc and __getitem__ (GH4246) – Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280) • Fixed bug in groupby with empty series referencing a variable before assignment. (GH3510) • Allow index name to be used in groupby for non MultiIndex (GH4014) • Fixed bug in mixed-frame assignment with aligned series (GH3492) 1590 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fixed bug in selecting month/quarter/year from a series would not select the time element on the last day (GH3546) • Fixed a couple of MultiIndex rendering bugs in df.to_html() (GH3547, GH3553) • Properly convert np.datetime64 objects in a Series (GH3416) • Raise a TypeError on invalid datetime/timedelta operations e.g. add datetimes, multiple timedelta x datetime • Fix .diff on datelike and timedelta operations (GH3100) • combine_first not returning the same dtype in cases where it can (GH3552) • Fixed bug with Panel.transpose argument aliases (GH3556) • Fixed platform bug in PeriodIndex.take (GH3579) • Fixed bud in incorrect conversion of datetime64[ns] in combine_first (GH3593) • Fixed bug in reset_index with NaN in a multi-index (GH3586) • fillna methods now raise a TypeError when the value parameter is a list or tuple. • Fixed bug where a time-series was being selected in preference to an actual column name in a frame (GH3594) • Make secondary_y work properly for bar plots (GH3598) • Fix modulo and integer division on Series,DataFrames to act similary to float dtypes to return np.nan or np.inf as appropriate (GH3590) • Fix incorrect dtype on groupby with as_index=False (GH3610) • Fix read_csv/read_excel to correctly encode identical na_values, e.g. na_values=[-999.0,-999] was failing (GH3611) • Disable HTML output in qtconsole again. (GH3657) • Reworked the new repr display logic, which users found confusing. (GH3663) • Fix indexing issue in ndim >= 3 with iloc (GH3617) • Correctly parse date columns with embedded (nan/NaT) into datetime64[ns] dtype in read_csv when parse_dates is specified (GH3062) • Fix not consolidating before to_csv (GH3624) • Fix alignment issue when setitem in a DataFrame with a piece of a DataFrame (GH3626) or a mixed DataFrame and a Series (GH3668) • Fix plotting of unordered DatetimeIndex (GH3601) • sql.write_frame failing when writing a single column to sqlite (GH3628), thanks to @stonebig • Fix pivoting with nan in the index (GH3558) • Fix running of bs4 tests when it is not installed (GH3605) • Fix parsing of html table (GH3606) • read_html() now only allows a single backend: html5lib (GH3616) • convert_objects with convert_dates=’coerce’ was parsing some single-letter strings into today’s date • DataFrame.from_records did not accept empty recarrays (GH3682) • DataFrame.to_csv will succeed with the deprecated option nanRep, @tdsmith • DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702) 35.10. pandas 0.12.0 1591 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fix file tokenization error with r delimiter and quoted fields (GH3453) • Groupby transform with item-by-item not upcasting correctly (GH3740) • Incorrectly read a HDFStore multi-index Frame with a column specification (GH3748) • read_html now correctly skips tests (GH3741) • PandasObjects raise TypeError when trying to hash (GH3882) • Fix incorrect arguments passed to concat that are not list-like (e.g. concat(df1,df2)) (GH3481) • Correctly parse when passed the dtype=str (or other variable-len string dtypes) in read_csv (GH3795) • Fix index name not propagating when using loc/ix (GH3880) • Fix groupby when applying a custom function resulting in a returned DataFrame was not converting dtypes (GH3911) • Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument wasn’t working (GH3907) • Fixed __truediv__ in Python 2.7 with numexpr installed to actually do true division when dividing two integer arrays with at least 10000 cells total (GH3764) • Indexing with a string with seconds resolution not selecting from a time index (GH3925) • csv parsers would loop infinitely if iterator=True but no chunksize was specified (GH3967), python parser failing with chunksize=1 • Fix index name not propagating when using shift • Fixed dropna=False being ignored with multi-index stack (GH3997) • Fixed flattening of columns when renaming MultiIndex columns DataFrame (GH4004) • Fix Series.clip for datetime series. NA/NaN threshold values will now throw ValueError (GH3996) • Fixed insertion issue into DataFrame, after rename (GH4032) • Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054) • Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054) • Series.hist will now take the figure from the current environment if one is not passed • Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071) • Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063) • Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089) • Fix bug where HDFStore will fail to append because of a different block ordering on-disk (GH4096) • Better error messages on inserting incompatible columns to a frame (GH4107) • Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False (GH4115) • Fixed bug in convert_objects(convert_numeric=True) where a mixed numeric and object Series/Frame was not converting properly (GH4119) • Fixed bugs in multi-index selection with column multi-index and duplicates (GH4145, GH4146) • Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152) 1592 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fixed bug in PandasAutoDateLocator MilliSecondLocator (GH3990) where invert_xaxis triggered incorrectly • Fixed bug in Series.where where broadcasting a single element input vector to the length of the series resulted in multiplying the value inside the input (GH4192) • Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215) • Fixed the legend displaying in DataFrame.plot(kind=’kde’) (GH4216) • Fixed bug where Index slices weren’t carrying the name attribute (GH4226) • Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229) • Fixed bug where html5lib wasn’t being properly skipped (GH4265) • Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281) 35.11 pandas 0.11.0 Release date: 2013-04-22 35.11.1 New Features • New documentation section, 10 Minutes to Pandas • New documentation section, Cookbook • Allow mixed dtypes (e.g float32/float64/int32/int16/int8) to coexist in DataFrames and propagate in operations • Add function to pandas.io.data for retrieving stock index components from Yahoo! finance (GH2795) • Support slicing with time objects (GH2681) • Added .iloc attribute, to support strict integer based indexing, analogous to .ix (GH2922) • Added .loc attribute, to support strict label based indexing, analogous to .ix (GH3053) • Added .iat attribute, to support fast scalar access via integers (replaces iget_value/iset_value) • Added .at attribute, to support fast scalar access via labels (replaces get_value/set_value) • Moved functionality from irow,icol,iget_value/iset_value to .iloc indexer (via _ixs methods in each object) • Added support for expression evaluation using the numexpr library • Added convert=boolean to take routines to translate negative indices to positive, defaults to True • Added to_series() method to indices, to facilitate the creation of indexers (GH3275) 35.11.2 Improvements to existing features • Improved performance of df.to_csv() by up to 10x in some cases. (GH3059) • added blocks attribute to DataFrames, to return a dict of dtypes to homogeneously dtyped DataFrames • added keyword convert_numeric to convert_objects() to try to convert object dtypes to numeric types (default is False) 35.11. pandas 0.11.0 1593 pandas: powerful Python data analysis toolkit, Release 0.16.1 • convert_dates in convert_objects can now be coerce which will return a datetime64[ns] dtype with non-convertibles set as NaT; will preserve an all-nan object (e.g. strings), default is True (to perform soft-conversion • Series print output now includes the dtype by default • Optimize internal reindexing routines (GH2819, GH2867) • describe_option() now reports the default and current value of options. • Add format option to pandas.to_datetime with faster conversion of strings that can be parsed with datetime.strptime • Add axes property to Series for compatibility • Add xs function to Series for compatibility • Allow setitem in a frame where only mixed numerics are present (e.g. int and float), (GH3037) • HDFStore – Provide dotted attribute access to get from stores (e.g. store.df == store[’df’]) – New keywords iterator=boolean, and chunksize=number_in_a_chunk are provided to support iteration on select and select_as_multiple (GH3076) – support read_hdf/to_hdf API similar to read_csv/to_csv (GH3222) • Add squeeze method to possibly remove length 1 dimensions from an object. In [1]: p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'], ...: major_axis=date_range('20010102',periods=4), ...: minor_axis=['A','B','C','D']) ...: In [2]: p Out[2]: Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis) Items axis: ItemA to ItemC Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00 Minor_axis axis: A to D In [3]: p.reindex(items=['ItemA']).squeeze() Out[3]: A B C D 2001-01-02 0.469112 -0.282863 -1.509059 -1.135632 2001-01-03 1.212112 -0.173215 0.119209 -1.044236 2001-01-04 -0.861849 -2.104569 -0.494929 1.071804 2001-01-05 0.721555 -0.706771 -1.039575 0.271860 In [4]: p.reindex(items=['ItemA'],minor=['B']).squeeze() Out[4]: 2001-01-02 -0.282863 2001-01-03 -0.173215 2001-01-04 -2.104569 2001-01-05 -0.706771 Freq: D, Name: B, dtype: float64 • Improvement to Yahoo API access in pd.io.data.Options (GH2758) • added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979) 1594 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • added option display.chop_threshold to control display of small numerical values. (GH2739) • added option display.max_info_rows to prevent verbose_info from being calculated for frames above 1M rows (configurable). (GH2807, GH2918) • value_counts() now accepts a “normalize” argument, for normalized histograms. (GH2710). • DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC. • Allow selection semantics via a string with a datelike index to work in both Series and DataFrames (GH3070) In [5]: idx = date_range("2001-10-1", periods=5, freq='M') In [6]: ts = Series(np.random.rand(len(idx)),index=idx) In [7]: ts['2001'] Out[7]: 2001-10-31 0.838796 2001-11-30 0.897333 2001-12-31 0.732592 Freq: M, dtype: float64 In [8]: df = DataFrame(dict(A = ts)) In [9]: df['2001'] Out[9]: 2001-10-31 2001-11-30 2001-12-31 A 0.838796 0.897333 0.732592 • added option display.mpl_style providing a https://gist.github.com/huyng/816622 (GH3075). sleeker visual style for plots. Based on • Improved performance across several core functions by taking memory ordering of arrays into account. Courtesy of @stephenwlin (GH3130) • Improved performance of groupby transform method (GH2121) • Handle “ragged” CSV files missing trailing delimiters in rows with missing fields when also providing explicit list of column names (so the parser knows how many columns to expect in the result) (GH2981) • On a mixed DataFrame, allow setting with indexers with ndarray/DataFrame on rhs (GH3216) • Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641) • Add time method to DatetimeIndex (GH3180) • Return NA when using Series.str[...] for values that are not long enough (GH3223) • Display cursor coordinate information in time-series plots (GH1670) • to_html() now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes &, in addition to < and >. (GH2919) 35.11.3 API Changes • Do not automatically upcast numeric specified dtypes to int64 or float64 (GH622 and GH797) • DataFrame construction of lists and scalars, with no dtype present, will result in casting to int64 or float64, regardless of platform. This is not an apparent change in the API, but noting it. • Guarantee that convert_objects() for Series/DataFrame always returns a copy 35.11. pandas 0.11.0 1595 pandas: powerful Python data analysis toolkit, Release 0.16.1 • groupby operations will respect dtypes for numeric float operations (float32/float64); other types will be operated on, and will try to cast back to the input dtype (e.g. if an int is passed, as long as the output doesn’t have nans, then an int will be returned) • backfill/pad/take/diff/ohlc will now support float32/int16/int8 operations • Block types will upcast as needed in where/masking operations (GH2793) • Series now automatically will try to set the correct dtype based on passed datetimelike objects (datetime/Timestamp) – timedelta64 are returned in appropriate cases (e.g. Series - Series, when both are datetime64) – mixed datetimes and objects (GH2751) in a constructor will be cast correctly – astype on datetimes to object are now handled (as well as NaT conversions to np.nan) – all timedelta like objects will be correctly assigned to timedelta64 with mixed NaN and/or NaT allowed • arguments to DataFrame.clip were inconsistent to numpy and Series clipping (GH2747) • util.testing.assert_frame_equal now checks the column and index names (GH2964) • Constructors will now return a more informative ValueError on failures when invalid shapes are passed • Don’t suppress TypeError in GroupBy.agg (GH3238) • Methods return None when inplace=True (GH1893) • HDFStore – added the method select_column to select a single column from a table as a Series. – deprecated the unique method, can be replicated by select_column(key,column).unique() – min_itemsize parameter will now automatically create data_columns for passed keys • Downcast on pivot if possible (GH3283), adds argument downcast to fillna • Introduced options display.height/width for explicitly specifying terminal height/width in characters. Deprecated display.line_width, now replaced by display.width. These defaults are in effect for scripts as well, so unless disabled, previously very wide output will now be output as “expand_repr” style wrapped output. • Various defaults for options (including display.max_rows) have been revised, after a brief survey concluded they were wrong for everyone. Now at w=80,h=60. • HTML repr output in IPython qtconsole is once again controlled by the option display.notebook_repr_html, and on by default. 35.11.4 Bug Fixes • Fix seg fault on empty data frame when fillna with pad or backfill (GH2778) • Single element ndarrays of datetimelike objects are handled (e.g. np.array(datetime(2001,1,1,0,0))), w/o dtype being passed • 0-dim ndarrays with a passed dtype are handled correctly (e.g. np.array(0.,dtype=’float32’)) • Fix some boolean indexing inconsistencies in Series.__getitem__/__setitem__ (GH2776) • Fix issues with DataFrame and Series constructor with integers that overflow int64 and some mixed typed type lists (GH2845) • HDFStore 1596 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 – Fix weird PyTables error when using too many selectors in a where also correctly filter on any number of values in a Term expression (so not using numexpr filtering, but isin filtering) – Internally, change all variables to be private-like (now have leading underscore) – Fixes for query parsing to correctly interpret boolean and != (GH2849, GH2973) – Fixes for pathological case on SparseSeries with 0-len array and compression (GH2931) – Fixes bug with writing rows if part of a block was all-nan (GH3012) – Exceptions are now ValueError or TypeError as needed – A table will now raise if min_itemsize contains fields which are not queryables • Bug showing up in applymap where some object type columns are converted (GH2909) had an incorrect default in convert_objects • TimeDeltas – Series ops with a Timestamp on the rhs was throwing an exception (GH2898) added tests for Series ops with datetimes,timedeltas,Timestamps, and datelike Series on both lhs and rhs – Fixed subtle timedelta64 inference issue on py3 & numpy 1.7.0 (GH3094) – Fixed some formatting issues on timedelta when negative – Support null checking on timedelta64, representing (and formatting) with NaT – Support setitem with np.nan value, converts to NaT – Support min/max ops in a Dataframe (abs not working, nor do we error on non-supported ops) – Support idxmin/idxmax/abs/max/min in a Series (GH2989, GH2982) • Bug on in-place putmasking on an integer series that needs to be converted to float (GH2746) • Bug in argsort of datetime64[ns] Series with NaT (GH2967) • Bug in value_counts of datetime64[ns] Series (GH3002) • Fixed printing of NaT in an index • Bug in idxmin/idxmax of datetime64[ns] Series with NaT (GH2982) • Bug in icol, take with negative indicies was producing incorrect return values (see GH2922, GH2892), also check for out-of-bounds indices (GH3029) • Bug in DataFrame column insertion when the column creation fails, existing frame is left in an irrecoverable state (GH3010) • Bug in DataFrame update, combine_first where non-specified values could cause dtype changes (GH3016, GH3041) • Bug in groupby with first/last where dtypes could change (GH3041, GH2763) • Formatting of an index that has nan was inconsistent or wrong (would fill from other values), (GH2850) • Unstack of a frame with no nans would always cause dtype upcasting (GH2929) • Fix scalar datetime.datetime parsing bug in read_csv (GH3071) • Fixed slow printing of large Dataframes, due to inefficient dtype reporting (GH2807) • Fixed a segfault when using a function as grouper in groupby (GH3035) • Fix pretty-printing of infinite data structures (closes GH2978) • Fixed exception when plotting timeseries bearing a timezone (closes GH2877) 35.11. pandas 0.11.0 1597 pandas: powerful Python data analysis toolkit, Release 0.16.1 • str.contains ignored na argument (GH2806) • Substitute warning for segfault when grouping with categorical grouper of mismatched length (GH3011) • Fix exception in SparseSeries.density (GH2083) • Fix upsampling bug with closed=’left’ and daily to daily data (GH3020) • Fixed missing tick bars on scatter_matrix plot (GH3063) • Fixed bug in Timestamp(d,tz=foo) when d is date() rather then datetime() (GH2993) • series.plot(kind=’bar’) now respects pylab color schem (GH3115) • Fixed bug in reshape if not passed correct input, now raises TypeError (GH2719) • Fixed a bug where Series ctor did not respect ordering if OrderedDict passed in (GH3282) • Fix NameError issue on RESO_US (GH2787) • Allow selection in an unordered timeseries to work similary to an ordered timeseries (GH2437). • Fix implemented .xs when called with axes=1 and a level parameter (GH2903) • Timestamp now supports the class method fromordinal similar to datetimes (GH3042) • Fix issue with indexing a series with a boolean key and specifiying a 1-len list on the rhs (GH2745) or a list on the rhs (GH3235) • Fixed bug in groupby apply when kernel generate list of arrays having unequal len (GH1738) • fixed handling of rolling_corr with center=True which could produce corr>1 (GH3155) • Fixed issues where indices can be passed as ‘index/column’ in addition to 0/1 for the axis parameter • PeriodIndex.tolist now boxes to Period (GH3178) • PeriodIndex.get_loc KeyError now reports Period instead of ordinal (GH3179) • df.to_records bug when handling MultiIndex (GH3189) • Fix Series.__getitem__ segfault when index less than -length (GH3168) • Fix bug when using Timestamp as a date parser (GH2932) • Fix bug creating date range from Timestamp with time zone and passing same time zone (GH2926) • Add comparison operators to Period object (GH2781) • Fix bug when concatenating two Series into a DataFrame when they have the same name (GH2797) • Fix automatic color cycling when plotting consecutive timeseries without color arguments (GH2816) • fixed bug in the pickling of PeriodIndex (GH2891) • Upcast/split blocks when needed in a mixed DataFrame when setitem with an indexer (GH3216) • Invoking df.applymap on a dataframe with dupe cols now raises a ValueError (GH2786) • Apply with invalid returned indices raise correct Exception (GH2808) • Fixed a bug in plotting log-scale bar plots (GH3247) • df.plot() grid on/off now obeys the mpl default style, just like series.plot(). (GH3233) • Fixed a bug in the legend of plotting.andrews_curves() (GH3278) • Produce a series on apply if we only generate a singular series and have a simple index (GH2893) • Fix Python ASCII file parsing when integer falls outside of floating point spacing (GH3258) 1598 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • fixed pretty priniting of sets (GH3294) • Panel() and Panel.from_dict() now respects ordering when give OrderedDict (GH3303) • DataFrame where with a datetimelike incorrectly selecting (GH3311) • Ensure index casts work even in Int64Index • Fix set_index segfault when passing MultiIndex (GH3308) • Ensure pickles created in py2 can be read in py3 • Insert ellipsis in MultiIndex summary repr (GH3348) • Groupby will handle mutation among an input groups columns (and fallback to non-fast apply) (GH3380) • Eliminated unicode errors on FreeBSD when using MPL GTK backend (GH3360) • Period.strftime should return unicode strings always (GH3363) • Respect passed read_* chunksize in get_chunk function (GH3406) 35.12 pandas 0.10.1 Release date: 2013-01-22 35.12.1 New Features • Add data interface to World Bank WDI pandas.io.wb (GH2592) 35.12.2 API Changes • Restored inplace=True behavior returning self (same object) with deprecation warning until 0.11 (GH1893) • HDFStore – refactored HFDStore to deal with non-table stores as objects, will allow future enhancements – removed keyword compression from put (replaced by keyword complib to be consistent across library) – warn PerformanceWarning if you are attempting to store types that will be pickled by PyTables 35.12.3 Improvements to existing features • HDFStore – enables storing of multi-index dataframes (closes GH1277) – support data column indexing and selection, via data_columns keyword in append – support write chunking to reduce memory footprint, via chunksize keyword to append – support automagic indexing via index keyword to append – support expectedrows keyword in append to inform PyTables about the expected tablesize – support start and stop keywords in select to limit the row selection space – added get_store context manager to automatically import with pandas 35.12. pandas 0.10.1 1599 pandas: powerful Python data analysis toolkit, Release 0.16.1 – added column filtering via columns keyword in select – added methods append_to_multiple/select_as_multiple/select_as_coordinates to do multiple-table append/selection – added support for datetime64 in columns – added method unique to select the unique values in an indexable or data column – added method copy to copy an existing store (and possibly upgrade) – show the shape of the data on disk for non-table stores when printing the store – added ability to read PyTables flavor tables (allows compatibility to other HDF5 systems) • Add logx option to DataFrame/Series.plot (GH2327, GH2565) • Support reading gzipped data from file-like object • pivot_table aggfunc can be anything used in GroupBy.aggregate (GH2643) • Implement DataFrame merges in case where set cardinalities might overflow 64-bit integer (GH2690) • Raise exception in C file parser if integer dtype specified and have NA values. (GH2631) • Attempt to parse ISO8601 format dates when parse_dates=True in read_csv for major performance boost in such cases (GH2698) • Add methods neg and inv to Series • Implement kind option in ExcelFile to indicate whether it’s an XLS or XLSX file (GH2613) • Documented a fast-path in pd.read_csv when parsing iso8601 datetime strings yielding as much as a 20x speedup. (GH5993) 35.12.4 Bug Fixes • Fix read_csv/read_table multithreading issues (GH2608) • HDFStore – correctly handle nan elements in string columns; serialize via the nan_rep keyword to append – raise correctly on non-implemented column types (unicode/date) – handle correctly Term passed types (e.g. index<1000, when index is Int64), (closes GH512) – handle Timestamp correctly in data_columns (closes GH2637) – contains correctly matches on non-natural names – correctly store float32 dtypes in tables (if not other float types in the same table) • Fix DataFrame.info bug with UTF8-encoded columns. (GH2576) • Fix DatetimeIndex handling of FixedOffset tz (GH2604) • More robust detection of being in IPython session for wide DataFrame console formatting (GH2585) • Fix platform issues with file:/// in unit test (GH2564) • Fix bug and possible segfault when grouping by hierarchical level that contains NA values (GH2616) • Ensure that MultiIndex tuples can be constructed with NAs (GH2616) • Fix int64 overflow issue when unstacking MultiIndex with many levels (GH2616) • Exclude non-numeric data from DataFrame.quantile by default (GH2625) 1600 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fix a Cython C int64 boxing issue causing read_csv to return incorrect results (GH2599) • Fix groupby summing performance issue on boolean data (GH2692) • Don’t bork Series containing datetime64 values with to_datetime (GH2699) • Fix DataFrame.from_records corner case when passed columns, index column, but empty record list (GH2633) • Fix C parser-tokenizer bug with trailing fields. (GH2668) • Don’t exclude non-numeric data from GroupBy.max/min (GH2700) • Don’t lose time zone when calling DatetimeIndex.drop (GH2621) • Fix setitem on a Series with a boolean key and a non-scalar as value (GH2686) • Box datetime64 values in Series.apply/map (GH2627, GH2689) • Upconvert datetime + datetime64 values when concatenating frames (GH2624) • Raise a more helpful error message in merge operations when one DataFrame has duplicate columns (GH2649) • Fix partial date parsing issue occuring only when code is run at EOM (GH2618) • Prevent MemoryError when using counting sort in sortlevel with high-cardinality MultiIndex objects (GH2684) • Fix Period resampling bug when all values fall into a single bin (GH2070) • Fix buggy interaction with usecols argument in read_csv when there is an implicit first index column (GH2654) • Fix bug in Index.summary() where string format methods were being called incorrectly. (GH3869) 35.13 pandas 0.10.0 Release date: 2012-12-17 35.13.1 New Features • Brand new high-performance delimited file parsing engine written in C and Cython. 50% or better performance in many standard use cases with a fraction as much memory usage. (GH407, GH821) • Many new file parser (read_csv, read_table) features: – Support for on-the-fly gzip or bz2 decompression (compression option) – Ability to get back numpy.recarray instead of DataFrame (as_recarray=True) – dtype option: explicit column dtypes – usecols option: specify list of columns to be read from a file. Good for reading very wide files with many irrelevant columns (GH1216 GH926, GH2465) – Enhanced unicode decoding support via encoding option – skipinitialspace dialect option – Can specify strings to be recognized as True (true_values) or False (false_values) – High-performance delim_whitespace option for whitespace-delimited files; a preferred alternative to the ‘s+’ regular expression delimiter – Option to skip “bad” lines (wrong number of fields) that would otherwise have caused an error in the past (error_bad_lines and warn_bad_lines options) 35.13. pandas 0.10.0 1601 pandas: powerful Python data analysis toolkit, Release 0.16.1 – Substantially improved performance in the parsing of integers with thousands markers and lines with comments – Easy of European (and other) decimal formats (decimal option) (GH584, GH2466) – Custom line terminators (e.g. lineterminator=’~’) (GH2457) – Handling of no trailing commas in CSV files (GH2333) – Ability to handle fractional seconds in date_converters (GH2209) – read_csv allow scalar arg to na_values (GH1944) – Explicit column dtype specification in read_* functions (GH1858) – Easier CSV dialect specification (GH1743) – Improve parser performance when handling special characters (GH1204) • Google Analytics API integration with easy oauth2 workflow (GH2283) • Add error handling to Series.str.encode/decode (GH2276) • Add where and mask to Series (GH2337) • Grouped histogram via by keyword in Series/DataFrame.hist (GH2186) • Support optional min_periods keyword in corr and cov for both Series and DataFrame (GH2002) • Add duplicated and drop_duplicates functions to Series (GH1923) • Add docs for HDFStore table format • ‘density’ property in SparseSeries (GH2384) • Add ffill and bfill convenience functions for forward- and backfilling time series data (GH2284) • New option configuration system and functions set_option, get_option, describe_option, and reset_option. Deprecate set_printoptions and reset_printoptions (GH2393). You can also access options as attributes via pandas.options.X • Wide DataFrames can be viewed more easily in the console with new expand_frame_repr and line_width configuration options. This is on by default now (GH2436) • Scikits.timeseries-like moving window functions via rolling_window (GH1270) 35.13.2 Experimental Features • Add support for Panel4D, a named 4 Dimensional structure • Add support for ndpanel factory functions, to create custom, domain-specific N-Dimensional containers 35.13.3 API Changes • The default binning/labeling behavior for resample has been changed to closed=’left’, label=’left’ for daily and lower frequencies. This had been a large source of confusion for users. See “what’s new” page for more on this. (GH2410) • Methods with inplace option now return None instead of the calling (modified) object (GH1893) • The special case DataFrame - TimeSeries doing column-by-column broadcasting has been deprecated. Users should explicitly do e.g. df.sub(ts, axis=0) instead. This is a legacy hack and can lead to subtle bugs. 1602 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • inf/-inf are no longer considered as NA by isnull/notnull. To be clear, this is legacy cruft from early pandas. This behavior can be globally re-enabled using the new option mode.use_inf_as_null (GH2050, GH1919) • pandas.merge will now default to sort=False. For many use cases sorting the join keys is not necessary, and doing it by default is wasteful • Specify header=0 explicitly to replace existing column names in file in read_* functions. • Default column names for header-less parsed files (yielded by read_csv, etc.) are now the integers 0, 1, .... A new argument prefix has been added; to get the v0.9.x behavior specify prefix=’X’ (GH2034). This API change was made to make the default column names more consistent with the DataFrame constructor’s default column names when none are specified. • DataFrame selection using a boolean frame now preserves input shape • If function passed to Series.apply yields a Series, result will be a DataFrame (GH2316) • Values like YES/NO/yes/no will not be considered as boolean by default any longer in the file parsers. This can be customized using the new true_values and false_values options (GH2360) • obj.fillna() is no longer valid; make method=’pad’ no longer the default option, to be more explicit about what kind of filling to perform. Add ffill/bfill convenience functions per above (GH2284) • HDFStore.keys() now returns an absolute path-name for each key • to_string() now always returns a unicode string. (GH2224) • File parsers will not handle NA sentinel values arising from passed converter functions 35.13.4 Improvements to existing features • Add nrows option to DataFrame.from_records for iterators (GH1794) • Unstack/reshape algorithm rewrite to avoid high memory use in cases where the number of observed key-tuples is much smaller than the total possible number that could occur (GH2278). Also improves performance in most cases. • Support duplicate columns in DataFrame.from_records (GH2179) • Add normalize option to Series/DataFrame.asfreq (GH2137) • SparseSeries and SparseDataFrame construction from empty and scalar values now no longer create dense ndarrays unnecessarily (GH2322) • HDFStore now supports hierarchical keys (GH2397) • Support multiple query selection formats for HDFStore tables (GH1996) • Support del store[’df’] syntax to delete HDFStores • Add multi-dtype support for HDFStore tables • min_itemsize parameter can be specified in HDFStore table creation • Indexing support in HDFStore tables (GH698) • Add line_terminator option to DataFrame.to_csv (GH2383) • added implementation of str(x)/unicode(x)/bytes(x) to major pandas data structures, which should do the right thing on both py2.x and py3.x. (GH2224) • Reduce groupby.apply overhead substantially by low-level manipulation of internal NumPy arrays in DataFrames (GH535) • Implement value_vars in melt and add melt to pandas namespace (GH2412) 35.13. pandas 0.10.0 1603 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Added boolean comparison operators to Panel • Enable Series.str.strip/lstrip/rstrip methods to take an argument (GH2411) • The DataFrame ctor now respects column ordering when given an OrderedDict (GH2455) • Assigning DatetimeIndex to Series changes the class to TimeSeries (GH2139) • Improve performance of .value_counts method on non-integer data (GH2480) • get_level_values method for MultiIndex return Index instead of ndarray (GH2449) • convert_to_r_dataframe conversion for datetime values (GH2351) • Allow DataFrame.to_csv to represent inf and nan differently (GH2026) • Add min_i argument to nancorr to specify minimum required observations (GH2002) • Add inplace option to sortlevel / sort functions on DataFrame (GH1873) • Enable DataFrame to accept scalar constructor values like Series (GH1856) • DataFrame.from_records now takes optional size parameter (GH1794) • include iris dataset (GH1709) • No datetime64 DataFrame column conversion of datetime.datetime with tzinfo (GH1581) • Micro-optimizations in DataFrame for tracking state of internal consolidation (GH217) • Format parameter in DataFrame.to_csv (GH1525) • Partial string slicing for DatetimeIndex for daily and higher frequencies (GH2306) • Implement col_space parameter in to_html and to_string in DataFrame (GH1000) • Override Series.tolist and box datetime64 types (GH2447) • Optimize unstack memory usage by compressing indices (GH2278) • Fix HTML repr in IPython qtconsole if opening window is small (GH2275) • Escape more special characters in console output (GH2492) • df.select now invokes bool on the result of crit(x) (GH2487) 35.13.5 Bug Fixes • Fix major performance regression in DataFrame.iteritems (GH2273) • Fixes bug when negative period passed to Series/DataFrame.diff (GH2266) • Escape tabs in console output to avoid alignment issues (GH2038) • Properly box datetime64 values when retrieving cross-section from mixed-dtype DataFrame (GH2272) • Fix concatenation bug leading to GH2057, GH2257 • Fix regression in Index console formatting (GH2319) • Box Period data when assigning PeriodIndex to frame column (GH2243, GH2281) • Raise exception on calling reset_index on Series with inplace=True (GH2277) • Enable setting multiple columns in DataFrame with hierarchical columns (GH2295) • Respect dtype=object in DataFrame constructor (GH2291) • Fix DatetimeIndex.join bug with tz-aware indexes and how=’outer’ (GH2317) 1604 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • pop(...) and del works with DataFrame with duplicate columns (GH2349) • Treat empty strings as NA in date parsing (rather than let dateutil do something weird) (GH2263) • Prevent uint64 -> int64 overflows (GH2355) • Enable joins between MultiIndex and regular Index (GH2024) • Fix time zone metadata issue when unioning non-overlapping DatetimeIndex objects (GH2367) • Raise/handle int64 overflows in parsers (GH2247) • Deleting of consecutive rows in HDFStore tables‘ is much faster than before • Appending on a HDFStore would fail if the table was not first created via put • Use col_space argument as minimum column width in DataFrame.to_html (GH2328) • Fix tz-aware DatetimeIndex.to_period (GH2232) • Fix DataFrame row indexing case with MultiIndex (GH2314) • Fix to_excel exporting issues with Timestamp objects in index (GH2294) • Fixes assigning scalars and array to hierarchical column chunk (GH1803) • Fixed a UnicodeDecodeError with series tidy_repr (GH2225) • Fixed issued with duplicate keys in an index (GH2347, GH2380) • Fixed issues re: Hash randomization, default on starting w/ py3.3 (GH2331) • Fixed issue with missing attributes after loading a pickled dataframe (GH2431) • Fix Timestamp formatting with tzoffset time zone in dateutil 2.1 (GH2443) • Fix GroupBy.apply issue when using BinGrouper to do ts binning (GH2300) • Fix issues resulting from datetime.datetime columns being converted to datetime64 when calling DataFrame.apply. (GH2374) • Raise exception when calling to_panel on non uniquely-indexed frame (GH2441) • Improved detection of console encoding on IPython zmq frontends (GH2458) • Preserve time zone when .append-ing two time series (GH2260) • Box timestamps when calling reset_index on time-zone-aware index rather than creating a tz-less datetime64 column (GH2262) • Enable searching non-string columns in DataFrame.filter(like=...) (GH2467) • Fixed issue with losing nanosecond precision upon conversion to DatetimeIndex(GH2252) • Handle timezones in Datetime.normalize (GH2338) • Fix test case where dtype specification with endianness causes failures on big endian machines (GH2318) • Fix plotting bug where upsampling causes data to appear shifted in time (GH2448) • Fix read_csv failure for UTF-16 with BOM and skiprows(GH2298) • read_csv with names arg not implicitly setting header=None(GH2459) • Unrecognized compression mode causes segfault in read_csv(GH2474) • In read_csv, header=0 and passed names should discard first row(GH2269) • Correctly route to stdout/stderr in read_table (GH2071) • Fix exception when Timestamp.to_datetime is called on a Timestamp with tzoffset (GH2471) 35.13. pandas 0.10.0 1605 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fixed unintentional conversion of datetime64 to long in groupby.first() (GH2133) • Union of empty DataFrames now return empty with concatenated index (GH2307) • DataFrame.sort_index raises more helpful exception if sorting by column with duplicates (GH2488) • DataFrame.to_string formatters can be list, too (GH2520) • DataFrame.combine_first will always result in the union of the index and columns, even if one DataFrame is length-zero (GH2525) • Fix several DataFrame.icol/irow with duplicate indices issues (GH2228, GH2259) • Use Series names for column names when using concat with axis=1 (GH2489) • Raise Exception if start, end, periods all passed to date_range (GH2538) • Fix Panel resampling issue (GH2537) 35.14 pandas 0.9.1 Release date: 2012-11-14 35.14.1 New Features • Can specify multiple sort orders in DataFrame/Series.sort/sort_index (GH928) • New top and bottom options for handling NAs in rank (GH1508, GH2159) • Add where and mask functions to DataFrame (GH2109, GH2151) • Add at_time and between_time functions to DataFrame (GH2149) • Add flexible pow and rpow methods to DataFrame (GH2190) 35.14.2 API Changes • Upsampling period index “spans” intervals. Example: annual periods upsampled to monthly will span all months in each year • Period.end_time will yield timestamp at last nanosecond in the interval (GH2124, GH2125, GH1764) • File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184) 35.14.3 Improvements to existing features • Time rule inference for week-of-month (e.g. WOM-2FRI) rules (GH2140) • Improve performance of datetime + business day offset with large number of offset periods • Improve HTML display of DataFrame objects with hierarchical columns • Enable referencing of Excel columns by their column names (GH1936) • DataFrame.dot can accept ndarrays (GH2042) • Support negative periods in Panel.shift (GH2164) • Make .drop(...) work with non-unique indexes (GH2101) 1606 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Improve performance of Series/DataFrame.diff (re: GH2087) • Support unary ~ (__invert__) in DataFrame (GH2110) • Turn off pandas-style tick locators and formatters (GH2205) • DataFrame[DataFrame] uses DataFrame.where to compute masked frame (GH2230) 35.14.4 Bug Fixes • Fix some duplicate-column DataFrame constructor issues (GH2079) • Fix bar plot color cycle issues (GH2082) • Fix off-center grid for stacked bar plots (GH2157) • Fix plotting bug if inferred frequency is offset with N > 1 (GH2126) • Implement comparisons on date offsets with fixed delta (GH2078) • Handle inf/-inf correctly in read_* parser functions (GH2041) • Fix matplotlib unicode interaction bug • Make WLS r-squared match statsmodels 0.5.0 fixed value • Fix zero-trimming DataFrame formatting bug • Correctly compute/box datetime64 min/max values from Series.min/max (GH2083) • Fix unstacking edge case with unrepresented groups (GH2100) • Fix Series.str failures when using pipe pattern ‘|’ (GH2119) • Fix pretty-printing of dict entries in Series, DataFrame (GH2144) • Cast other datetime64 values to nanoseconds in DataFrame ctor (GH2095) • Alias Timestamp.astimezone to tz_convert, so will yield Timestamp (GH2060) • Fix timedelta64 formatting from Series (GH2165, GH2146) • Handle None values gracefully in dict passed to Panel constructor (GH2075) • Box datetime64 values as Timestamp objects in Series/DataFrame.iget (GH2148) • Fix Timestamp indexing bug in DatetimeIndex.insert (GH2155) • Use index name(s) (if any) in DataFrame.to_records (GH2161) • Don’t lose index names in Panel.to_frame/DataFrame.to_panel (GH2163) • Work around length-0 boolean indexing NumPy bug (GH2096) • Fix partial integer indexing bug in DataFrame.xs (GH2107) • Fix variety of cut/qcut string-bin formatting bugs (GH1978, GH1979) • Raise Exception when xs view not possible of MultiIndex’d DataFrame (GH2117) • Fix groupby(...).first() issue with datetime64 (GH2133) • Better floating point error robustness in some rolling_* functions (GH2114, GH2527) • Fix ewma NA handling in the middle of Series (GH2128) • Fix numerical precision issues in diff with integer data (GH2087) • Fix bug in MultiIndex.__getitem__ with NA values (GH2008) 35.14. pandas 0.9.1 1607 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fix DataFrame.from_records dict-arg bug when passing columns (GH2179) • Fix Series and DataFrame.diff for integer dtypes (GH2087, GH2174) • Fix bug when taking intersection of DatetimeIndex with empty index (GH2129) • Pass through timezone information when calling DataFrame.align (GH2127) • Properly sort when joining on datetime64 values (GH2196) • Fix indexing bug in which False/True were being coerced to 0/1 (GH2199) • Many unicode formatting fixes (GH2201) • Fix improper MultiIndex conversion issue when assigning e.g. DataFrame.index (GH2200) • Fix conversion of mixed-type DataFrame to ndarray with dup columns (GH2236) • Fix duplicate columns issue (GH2218, GH2219) • Fix SparseSeries.__pow__ issue with NA input (GH2220) • Fix icol with integer sequence failure (GH2228) • Fixed resampling tz-aware time series issue (GH2245) • SparseDataFrame.icol was not returning SparseSeries (GH2227, GH2229) • Enable ExcelWriter to handle PeriodIndex (GH2240) • Fix issue constructing DataFrame from empty Series with name (GH2234) • Use console-width detection in interactive sessions only (GH1610) • Fix parallel_coordinates legend bug with mpl 1.2.0 (GH2237) • Make tz_localize work in corner case of empty Series (GH2248) 35.15 pandas 0.9.0 Release date: 10/7/2012 35.15.1 New Features • Add str.encode and str.decode to Series (GH1706) • Add to_latex method to DataFrame (GH1735) • Add convenient expanding window equivalents of all rolling_* ops (GH1785) • Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739) • Recognize and convert more boolean values in file parsing (Yes, No, TRUE, FALSE, variants thereof) (GH1691, GH1295) • Add Panel.update method, analogous to DataFrame.update (GH1999, GH1988) 1608 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 35.15.2 Improvements to existing features • Proper handling of NA values in merge operations (GH1990) • Add flags option for re.compile in some Series.str methods (GH1659) • Parsing of UTC date strings in read_* functions (GH1693) • Handle generator input to Series (GH1679) • Add na_action=’ignore’ to Series.map to quietly propagate NAs (GH1661) • Add args/kwds options to Series.apply (GH1829) • Add inplace option to Series/DataFrame.reset_index (GH1797) • Add level parameter to Series.reset_index • Add quoting option for DataFrame.to_csv (GH1902) • Indicate long column value truncation in DataFrame output with ... (GH1854) • DataFrame.dot will not do data alignment, and also work with Series (GH1915) • Add na option for missing data handling in some vectorized string methods (GH1689) • If index_label=False in DataFrame.to_csv, do not print fields/commas in the text output. Results in easier importing into R (GH1583) • Can pass tuple/list of axes to DataFrame.dropna to simplify repeated calls (dropping both columns and rows) (GH924) • Improve DataFrame.to_html output for hierarchically-indexed rows (do not repeat levels) (GH1929) • TimeSeries.between_time can now select times across midnight (GH1871) • Enable skip_footer parameter in ExcelFile.parse (GH1843) 35.15.3 API Changes • Change default header names in read_* functions to more Pythonic X0, X1, etc. instead of X.1, X.2. (GH2000) • Deprecated day_of_year API removed from PeriodIndex, use dayofyear (GH1723) • Don’t modify NumPy suppress printoption at import time • The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824) • Legacy cruft removed: pandas.stats.misc.quantileTS • Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776) • Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783) • Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630) • first and last methods in GroupBy no longer drop non-numeric columns (GH1809) • Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer override default NAs unless keep_default_na is set to false explicitly (GH1657) • Enable skipfooter parameter in text parsers as an alias for skip_footer 35.15. pandas 0.9.0 1609 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.15.4 Bug Fixes • Perform arithmetic column-by-column in mixed-type DataFrame to avoid type upcasting issues. Caused downstream DataFrame.diff bug (GH1896) • Fix matplotlib auto-color assignment when no custom spectrum passed. Also respect passed color keyword argument (GH1711) • Fix resampling logical error with closed=’left’ (GH1726) • Fix critical DatetimeIndex.union bugs (GH1730, GH1719, GH1745, GH1702, GH1753) • Fix critical DatetimeIndex.intersection bug with unanchored offsets (GH1708) • Fix MM-YYYY time series indexing case (GH1672) • Fix case where Categorical group key was not being passed into index in GroupBy result (GH1701) • Handle Ellipsis in Series.__getitem__/__setitem__ (GH1721) • Fix some bugs with handling datetime64 scalars of other units in NumPy 1.6 and 1.7 (GH1717) • Fix performance issue in MultiIndex.format (GH1746) • Fixed GroupBy bugs interacting with DatetimeIndex asof / map methods (GH1677) • Handle factors with NAs in pandas.rpy (GH1615) • Fix statsmodels import in pandas.stats.var (GH1734) • Fix DataFrame repr/info summary with non-unique columns (GH1700) • Fix Series.iget_value for non-unique indexes (GH1694) • Don’t lose tzinfo when passing DatetimeIndex as DataFrame column (GH1682) • Fix tz conversion with time zones that haven’t had any DST transitions since first date in the array (GH1673) • Fix field access with UTC->local conversion on unsorted arrays (GH1756) • Fix isnull handling of array-like (list) inputs (GH1755) • Fix regression in handling of Series in Series constructor (GH1671) • Fix comparison of Int64Index with DatetimeIndex (GH1681) • Fix min_periods handling in new rolling_max/min at array start (GH1695) • Fix errors with how=’median’ and generic NumPy resampling in some cases caused by SeriesBinGrouper (GH1648, GH1688) • When grouping by level, exclude unobserved levels (GH1697) • Don’t lose tzinfo in DatetimeIndex when shifting by different offset (GH1683) • Hack to support storing data with a zero-length axis in HDFStore (GH1707) • Fix DatetimeIndex tz-aware range generation issue (GH1674) • Fix method=’time’ interpolation with intraday data (GH1698) • Don’t plot all-NA DataFrame columns as zeros (GH1696) • Fix bug in scatter_plot with by option (GH1716) • Fix performance problem in infer_freq with lots of non-unique stamps (GH1686) • Fix handling of PeriodIndex as argument to create MultiIndex (GH1705) • Fix re: unicode MultiIndex level names in Series/DataFrame repr (GH1736) 1610 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Handle PeriodIndex in to_datetime instance method (GH1703) • Support StaticTzInfo in DatetimeIndex infrastructure (GH1692) • Allow MultiIndex setops with length-0 other type indexes (GH1727) • Fix handling of DatetimeIndex in DataFrame.to_records (GH1720) • Fix handling of general objects in isnull on which bool(...) fails (GH1749) • Fix .ix indexing with MultiIndex ambiguity (GH1678) • Fix .ix setting logic error with non-unique MultiIndex (GH1750) • Basic indexing now works on MultiIndex with > 1000000 elements, regression from earlier version of pandas (GH1757) • Handle non-float64 dtypes in fast DataFrame.corr/cov code paths (GH1761) • Fix DatetimeIndex.isin to function properly (GH1763) • Fix conversion of array of tz-aware datetime.datetime to DatetimeIndex with right time zone (GH1777) • Fix DST issues with generating ancxhored date ranges (GH1778) • Fix issue calling sort on result of Series.unique (GH1807) • Fix numerical issue leading to square root of negative number in rolling_std (GH1840) • Let Series.str.split accept no arguments (like str.split) (GH1859) • Allow user to have dateutil 2.1 installed on a Python 2 system (GH1851) • Catch ImportError less aggressively in pandas/__init__.py (GH1845) • Fix pip source installation bug when installing from GitHub (GH1805) • Fix error when window size > array size in rolling_apply (GH1850) • Fix pip source installation issues via SSH from GitHub • Fix OLS.summary when column is a tuple (GH1837) • Fix bug in __doc__ patching when -OO passed to interpreter (GH1792 GH1741 GH1774) • Fix unicode console encoding issue in IPython notebook (GH1782, GH1768) • Fix unicode formatting issue with Series.name (GH1782) • Fix bug in DataFrame.duplicated with datetime64 columns (GH1833) • Fix bug in Panel internals resulting in error when doing fillna after truncate not changing size of panel (GH1823) • Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848) • Fix UnboundLocalError in Panel.__setitem__ and add better error (GH1826) • Fix to_csv issues with list of string entries. Isnull works on list of strings now too (GH1791) • Fix Timestamp comparisons with datetime values outside the nanosecond range (1677-2262) • Revert to prior behavior of normalize_date with datetime.date objects (return datetime) • Fix broken interaction between np.nansum and Series.any/all • Fix bug with multiple column date parsers (GH1866) • DatetimeIndex.union(Int64Index) was broken • Make plot x vs y interface consistent with integer indexing (GH1842) 35.15. pandas 0.9.0 1611 pandas: powerful Python data analysis toolkit, Release 0.16.1 • set_index inplace modified data even if unique check fails (GH1831) • Only use Q-OCT/NOV/DEC in quarterly frequency inference (GH1789) • Upcast to dtype=object when unstacking boolean DataFrame (GH1820) • Fix float64/float32 merging bug (GH1849) • Fixes to Period.start_time for non-daily frequencies (GH1857) • Fix failure when converter used on index_col in read_csv (GH1835) • Implement PeriodIndex.append so that pandas.concat works correctly (GH1815) • Avoid Cython out-of-bounds access causing segfault sometimes in pad_2d, backfill_2d • Fix resampling error with intraday times and anchored target time (like AS-DEC) (GH1772) • Fix .ix indexing bugs with mixed-integer indexes (GH1799) • Respect passed color keyword argument in Series.plot (GH1890) • Fix rolling_min/max when the window is larger than the size of the input array. Check other malformed inputs (GH1899, GH1897) • Rolling variance / standard deviation with only a single observation in window (GH1884) • Fix unicode sheet name failure in to_excel (GH1828) • Override DatetimeIndex.min/max to return Timestamp objects (GH1895) • Fix column name formatting issue in length-truncated column (GH1906) • Fix broken handling of copying Index metadata to new instances created by view(...) calls inside the NumPy infrastructure • Support datetime.date again in DateOffset.rollback/rollforward • Raise Exception if set passed to Series constructor (GH1913) • Add TypeError when appending HDFStore table w/ wrong index type (GH1881) • Don’t raise exception on empty inputs in EW functions (e.g. ewma) (GH1900) • Make asof work correctly with PeriodIndex (GH1883) • Fix extlinks in doc build • Fill boolean DataFrame with NaN when calling shift (GH1814) • Fix setuptools bug causing pip not to Cythonize .pyx files sometimes • Fix negative integer indexing regression in .ix from 0.7.x (GH1888) • Fix error while retrieving timezone and utc offset from subclasses of datetime.tzinfo without .zone and ._utcoffset attributes (GH1922) • Fix DataFrame formatting of small, non-zero FP numbers (GH1911) • Various fixes by upcasting of date -> datetime (GH1395) • Raise better exception when passing multiple functions with the same name, such as lambdas, to GroupBy.aggregate • Fix DataFrame.apply with axis=1 on a non-unique index (GH1878) • Proper handling of Index subclasses in pandas.unique (GH1759) • Set index names in DataFrame.from_records (GH1744) 1612 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fix time series indexing error with duplicates, under and over hash table size cutoff (GH1821) • Handle list keys in addition to tuples in DataFrame.xs when partial-indexing a hierarchically-indexed DataFrame (GH1796) • Support multiple column selection in DataFrame.__getitem__ with duplicate columns (GH1943) • Fix time zone localization bug causing improper fields (e.g. hours) in time zones that have not had a UTC transition in a long time (GH1946) • Fix errors when parsing and working with with fixed offset timezones (GH1922, GH1928) • Fix text parser bug when handling UTC datetime objects generated by dateutil (GH1693) • Fix plotting bug when ‘B’ is the inferred frequency but index actually contains weekends (GH1668, GH1669) • Fix plot styling bugs (GH1666, GH1665, GH1658) • Fix plotting bug with index/columns with unicode (GH1685) • Fix DataFrame constructor bug when passed Series with datetime64 dtype in a dict (GH1680) • Fixed regression in generating DatetimeIndex using timezone aware datetime.datetime (GH1676) • Fix DataFrame bug when printing concatenated DataFrames with duplicated columns (GH1675) • Fixed bug when plotting time series with multiple intraday frequencies (GH1732) • Fix bug in DataFrame.duplicated to enable iterables other than list-types as input argument (GH1773) • Fix resample bug when passed list of lambdas as how argument (GH1808) • Repr fix for MultiIndex level with all NAs (GH1971) • Fix PeriodIndex slicing bug when slice start/end are out-of-bounds (GH1977) • Fix read_table bug when parsing unicode (GH1975) • Fix BlockManager.iget bug when dealing with non-unique MultiIndex as columns (GH1970) • Fix reset_index bug if both drop and level are specified (GH1957) • Work around unsafe NumPy object->int casting with Cython function (GH1987) • Fix datetime64 formatting bug in DataFrame.to_csv (GH1993) • Default start date in pandas.io.data to 1/1/2000 as the docs say (GH2011) 35.16 pandas 0.8.1 Release date: July 22, 2012 35.16.1 New Features • Add vectorized, NA-friendly string methods to Series (GH1621, GH620) • Can pass dict of per-column line styles to DataFrame.plot (GH1559) • Selective plotting to secondary y-axis on same subplot (GH1640) • Add new bootstrap_plot plot function • Add new parallel_coordinates plot function (GH1488) • Add radviz plot function (GH1566) 35.16. pandas 0.8.1 1613 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Add multi_sparse option to set_printoptions to modify display of hierarchical indexes (GH1538) • Add dropna method to Panel (GH171) 35.16.2 Improvements to existing features • Use moving min/max algorithms from Bottleneck in rolling_min/rolling_max for > 100x speedup. (GH1504, GH50) • Add Cython group median method for >15x speedup (GH1358) • Drastically improve to_datetime performance on ISO8601 datetime strings (with no time zones) (GH1571) • Improve single-key groupby performance on large data sets, accelerate use of groupby with a Categorical variable • Add ability to append hierarchical index levels with set_index and to drop single levels with reset_index (GH1569, GH1577) • Always apply passed functions in resample, even if upsampling (GH1596) • Avoid unnecessary copies in DataFrame constructor with explicit dtype (GH1572) • Cleaner DatetimeIndex string representation with 1 or 2 elements (GH1611) • Improve performance of array-of-Period to PeriodIndex, convert such arrays to PeriodIndex inside Index (GH1215) • More informative string representation for weekly Period objects (GH1503) • Accelerate 3-axis multi data selection from homogeneous Panel (GH979) • Add adjust option to ewma to disable adjustment factor (GH1584) • Add new matplotlib converters for high frequency time series plotting (GH1599) • Handling of tz-aware datetime.datetime objects in to_datetime; raise Exception unless utc=True given (GH1581) 35.16.3 Bug Fixes • Fix NA handling in DataFrame.to_panel (GH1582) • Handle TypeError issues inside PyObject_RichCompareBool calls in khash (GH1318) • Fix resampling bug to lower case daily frequency (GH1588) • Fix kendall/spearman DataFrame.corr bug with no overlap (GH1595) • Fix bug in DataFrame.set_index (GH1592) • Don’t ignore axes in boxplot if by specified (GH1565) • Fix Panel .ix indexing with integers bug (GH1603) • Fix Partial indexing bugs (years, months, ...) with PeriodIndex (GH1601) • Fix MultiIndex console formatting issue (GH1606) • Unordered index with duplicates doesn’t yield scalar location for single entry (GH1586) • Fix resampling of tz-aware time series with “anchored” freq (GH1591) • Fix DataFrame.rank error on integer data (GH1589) • Selection of multiple SparseDataFrame columns by list in __getitem__ (GH1585) 1614 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Override Index.tolist for compatibility with MultiIndex (GH1576) • Fix hierarchical summing bug with MultiIndex of length 1 (GH1568) • Work around numpy.concatenate use/bug in Series.set_value (GH1561) • Ensure Series/DataFrame are sorted before resampling (GH1580) • Fix unhandled IndexError when indexing very large time series (GH1562) • Fix DatetimeIndex intersection logic error with irregular indexes (GH1551) • Fix unit test errors on Python 3 (GH1550) • Fix .ix indexing bugs in duplicate DataFrame index (GH1201) • Better handle errors with non-existing objects in HDFStore (GH1254) • Don’t copy int64 array data in DatetimeIndex when copy=False (GH1624) • Fix resampling of conforming periods quarterly to annual (GH1622) • Don’t lose index name on resampling (GH1631) • Support python-dateutil version 2.1 (GH1637) • Fix broken scatter_matrix axis labeling, esp. with time series (GH1625) • Fix cases where extra keywords weren’t being passed on to matplotlib from Series.plot (GH1636) • Fix BusinessMonthBegin logic for dates before 1st bday of month (GH1645) • Ensure string alias converted (valid in DatetimeIndex.get_loc) in DataFrame.xs / __getitem__ (GH1644) • Fix use of string alias timestamps with tz-aware time series (GH1647) • Fix Series.max/min and Series.describe on len-0 series (GH1650) • Handle None values in dict passed to concat (GH1649) • Fix Series.interpolate with method=’values’ and DatetimeIndex (GH1646) • Fix IndexError in left merges on a DataFrame with 0-length (GH1628) • Fix DataFrame column width display with UTF-8 encoded characters (GH1620) • Handle case in pandas.io.data.get_data_yahoo where Yahoo! returns duplicate dates for most recent business day • Avoid downsampling when plotting mixed frequencies on the same subplot (GH1619) • Fix read_csv bug when reading a single line (GH1553) • Fix bug in C code causing monthly periods prior to December 1969 to be off (GH1570) 35.17 pandas 0.8.0 Release date: 6/29/2012 35.17.1 New Features • New unified DatetimeIndex class for nanosecond-level timestamp data • New Timestamp datetime.datetime subclass with easy time zone conversions, and support for nanoseconds 35.17. pandas 0.8.0 1615 pandas: powerful Python data analysis toolkit, Release 0.16.1 • New PeriodIndex class for timespans, calendar logic, and Period scalar object • High performance resampling of timestamp and period data. New resample method of all pandas data structures • New frequency names plus shortcut string aliases like ‘15h’, ‘1h30min’ • Time series string indexing shorthand (GH222) • Add week, dayofyear array and other timestamp array-valued field accessor functions to DatetimeIndex • Add GroupBy.prod optimized aggregation function and ‘prod’ fast time series conversion method (GH1018) • Implement robust frequency inference function and inferred_freq attribute on DatetimeIndex (GH391) • New tz_convert and tz_localize methods in Series / DataFrame • Convert DatetimeIndexes to UTC if time zones are different in join/setops (GH864) • Add limit argument for forward/backward filling to reindex, fillna, etc. (GH825 and others) • Add support for indexes (dates or otherwise) with duplicates and common sense indexing/selection functionality • Series/DataFrame.update methods, in-place variant of combine_first (GH961) • Add match function to API (GH502) • Add Cython-optimized first, last, min, max, prod functions to GroupBy (GH994, GH1043) • Dates can be split across multiple columns (GH1227, GH1186) • Add experimental support for converting pandas DataFrame to R data.frame via rpy2 (GH350, GH1212) • Can pass list of (name, function) to GroupBy.aggregate to get aggregates in a particular order (GH610) • Can pass dicts with lists of functions or dicts to GroupBy aggregate to do much more flexible multiple function aggregation (GH642, GH610) • New ordered_merge functions for merging DataFrames with ordered data. Also supports group-wise merging for panel data (GH813) • Add keys() method to DataFrame • Add flexible replace method for replacing potentially values to Series and DataFrame (GH929, GH1241) • Add ‘kde’ plot kind for Series/DataFrame.plot (GH1059) • More flexible multiple function aggregation with GroupBy • Add pct_change function to Series/DataFrame • Add option to interpolate by Index values in Series.interpolate (GH1206) • Add max_colwidth option for DataFrame, defaulting to 50 • Conversion of DataFrame through rpy2 to R data.frame (GH1282, ) • Add keys() method on DataFrame (GH1240) • Add new match function to API (similar to R) (GH502) • Add dayfirst option to parsers (GH854) • Add method argument to align method for forward/backward fillin (GH216) • Add Panel.transpose method for rearranging axes (GH695) • Add new cut function (patterned after R) for discretizing data into equal range-length bins or arbitrary breaks of your choosing (GH415) • Add new qcut for cutting with quantiles (GH1378) 1616 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Add value_counts top level array method (GH1392) • Added Andrews curves plot tupe (GH1325) • Add lag plot (GH1440) • Add autocorrelation_plot (GH1425) • Add support for tox and Travis CI (GH1382) • Add support for Categorical use in GroupBy (GH292) • Add any and all methods to DataFrame (GH1416) • Add secondary_y option to Series.plot • Add experimental lreshape function for reshaping wide to long 35.17.2 Improvements to existing features • Switch to klib/khash-based hash tables in Index classes for better performance in many cases and lower memory footprint • Shipping some functions from scipy.stats to reduce dependency, e.g. Series.describe and DataFrame.describe (GH1092) • Can create MultiIndex by passing list of lists or list of arrays to Series, DataFrame constructor, etc. (GH831) • Can pass arrays in addition to column names to DataFrame.set_index (GH402) • Improve the speed of “square” reindexing of homogeneous DataFrame objects by significant margin (GH836) • Handle more dtypes when passed MaskedArrays in DataFrame constructor (GH406) • Improved performance of join operations on integer keys (GH682) • Can pass multiple columns to GroupBy object, e.g. grouped[[col1, col2]] to only aggregate a subset of the value columns (GH383) • Add histogram / kde plot options for scatter_matrix diagonals (GH1237) • Add inplace option to Series/DataFrame.rename and sort_index, DataFrame.drop_duplicates (GH805, GH207) • More helpful error message when nothing passed to Series.reindex (GH1267) • Can mix array and scalars as dict-value inputs to DataFrame ctor (GH1329) • Use DataFrame columns’ name for legend title in plots • Preserve frequency in DatetimeIndex when possible in boolean indexing operations • Promote datetime.date values in data alignment operations (GH867) • Add order method to Index classes (GH1028) • Avoid hash table creation in large monotonic hash table indexes (GH1160) • Store time zones in HDFStore (GH1232) • Enable storage of sparse data structures in HDFStore (GH85) • Enable Series.asof to work with arrays of timestamp inputs • Cython implementation of DataFrame.corr speeds up by > 100x (GH1349, GH1354) • Exclude “nuisance” columns automatically in GroupBy.transform (GH1364) • Support functions-as-strings in GroupBy.transform (GH1362) 35.17. pandas 0.8.0 1617 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Use index name as xlabel/ylabel in plots (GH1415) • Add convert_dtype option to Series.apply to be able to leave data as dtype=object (GH1414) • Can specify all index level names in concat (GH1419) • Add dialect keyword to parsers for quoting conventions (GH1363) • Enable DataFrame[bool_DataFrame] += value (GH1366) • Add retries argument to get_data_yahoo to try to prevent Yahoo! API 404s (GH826) • Improve performance of reshaping by using O(N) categorical sorting • Series names will be used for index of DataFrame if no index passed (GH1494) • Header argument in DataFrame.to_csv can accept a list of column names to use instead of the object’s columns (GH921) • Add raise_conflict argument to DataFrame.update (GH1526) • Support file-like objects in ExcelFile (GH1529) 35.17.3 API Changes • Rename pandas._tseries to pandas.lib • Rename Factor to Categorical and add improvements. Numerous Categorical bug fixes • Frequency name overhaul, WEEKDAY/EOM and rules with @ deprecated. get_legacy_offset_name backwards compatibility function added • Raise ValueError in DataFrame.__nonzero__, so “if df” no longer works (GH1073) • Change BDay (business day) to not normalize dates by default (GH506) • Remove deprecated DataMatrix name • Default merge suffixes for overlap now have underscores instead of periods to facilitate tab completion, etc. (GH1239) • Deprecation of offset, time_rule timeRule parameters throughout codebase • Series.append and DataFrame.append no longer check for duplicate indexes by default, add verify_integrity parameter (GH1394) • Refactor Factor class, old constructor moved to Factor.from_array • Modified internals of MultiIndex to use less memory (no longer represented as array of tuples) internally, speed up construction time and many methods which construct intermediate hierarchical indexes (GH1467) 35.17.4 Bug Fixes • Fix OverflowError from storing pre-1970 dates in HDFStore by switching to datetime64 (GH179) • Fix logical error with February leap year end in YearEnd offset • Series([False, nan]) was getting casted to float64 (GH1074) • Fix binary operations between boolean Series and object Series with booleans and NAs (GH1074, GH1079) • Couldn’t assign whole array to column in mixed-type DataFrame via .ix (GH1142) • Fix label slicing issues with float index values (GH1167) 1618 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fix segfault caused by empty groups passed to groupby (GH1048) • Fix occasionally misbehaved reindexing in the presence of NaN labels (GH522) • Fix imprecise logic causing weird Series results from .apply (GH1183) • Unstack multiple levels in one shot, avoiding empty columns in some cases. Fix pivot table bug (GH1181) • Fix formatting of MultiIndex on Series/DataFrame when index name coincides with label (GH1217) • Handle Excel 2003 #N/A as NaN from xlrd (GH1213, GH1225) • Fix timestamp locale-related deserialization issues with HDFStore by moving to datetime64 representation (GH1081, GH809) • Fix DataFrame.duplicated/drop_duplicates NA value handling (GH557) • Actually raise exceptions in fast reducer (GH1243) • Fix various timezone-handling bugs from 0.7.3 (GH969) • GroupBy on level=0 discarded index name (GH1313) • Better error message with unmergeable DataFrames (GH1307) • Series.__repr__ alignment fix with unicode index values (GH1279) • Better error message if nothing passed to reindex (GH1267) • More robust NA handling in DataFrame.drop_duplicates (GH557) • Resolve locale-based and pre-epoch HDF5 timestamp deserialization issues (GH973, GH1081, GH179) • Implement Series.repeat (GH1229) • Fix indexing with namedtuple and other tuple subclasses (GH1026) • Fix float64 slicing bug (GH1167) • Parsing integers with commas (GH796) • Fix groupby improper data type when group consists of one value (GH1065) • Fix negative variance possibility in nanvar resulting from floating point error (GH1090) • Consistently set name on groupby pieces (GH184) • Treat dict return values as Series in GroupBy.apply (GH823) • Respect column selection for DataFrame in in GroupBy.transform (GH1365) • Fix MultiIndex partial indexing bug (GH1352) • Enable assignment of rows in mixed-type DataFrame via .ix (GH1432) • Reset index mapping when grouping Series in Cython (GH1423) • Fix outer/inner DataFrame.join with non-unique indexes (GH1421) • Fix MultiIndex groupby bugs with empty lower levels (GH1401) • Calling fillna with a Series will have same behavior as with dict (GH1486) • SparseSeries reduction bug (GH1375) • Fix unicode serialization issue in HDFStore (GH1361) • Pass keywords to pyplot.boxplot in DataFrame.boxplot (GH1493) • Bug fixes in MonthBegin (GH1483) 35.17. pandas 0.8.0 1619 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Preserve MultiIndex names in drop (GH1513) • Fix Panel DataFrame slice-assignment bug (GH1533) • Don’t use locals() in read_* functions (GH1547) 35.18 pandas 0.7.3 Release date: April 12, 2012 35.18.1 New Features • Support for non-unique indexes: indexing and selection, many-to-one and many-to-many joins (GH1306) • Added fixed-width file reader, read_fwf (GH952) • Add group_keys argument to groupby to not add group names to MultiIndex in result of apply (GH938) • DataFrame can now accept non-integer label slicing (GH946). Previously only DataFrame.ix was able to do so. • DataFrame.apply now retains name attributes on Series objects (GH983) • Numeric DataFrame comparisons with non-numeric values now raises proper TypeError (GH943). Previously raise “PandasError: DataFrame constructor not properly called!” • Add kurt methods to Series and DataFrame (GH964) • Can pass dict of column -> list/set NA values for text parsers (GH754) • Allows users specified NA values in text parsers (GH754) • Parsers checks for openpyxl dependency and raises ImportError if not found (GH1007) • New factory function to create HDFStore objects that can be used in a with statement so users do not have to explicitly call HDFStore.close (GH1005) • pivot_table is now more flexible with same parameters as groupby (GH941) • Added stacked bar plots (GH987) • scatter_matrix method in pandas/tools/plotting.py (GH935) • DataFrame.boxplot returns plot results for ex-post styling (GH985) • Short version number accessible as pandas.version.short_version (GH930) • Additional documentation in panel.to_frame (GH942) • More informative Series.apply docstring regarding element-wise apply (GH977) • Notes on rpy2 installation (GH1006) • Add rotation and font size options to hist method (GH1012) • Use exogenous / X variable index in result of OLS.y_predict. Add OLS.predict method (GH1027, GH1008) 35.18.2 API Changes • Calling apply on grouped Series, e.g. describe(), will no longer yield DataFrame by default. Will have to call unstack() to get prior behavior • NA handling in non-numeric comparisons has been tightened up (GH933, GH953) 1620 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • No longer assign dummy names key_0, key_1, etc. to groupby index (GH1291) 35.18.3 Bug Fixes • Fix logic error when selecting part of a row in a DataFrame with a MultiIndex index (GH1013) • Series comparison with Series of differing length causes crash (GH1016). • Fix bug in indexing when selecting section of hierarchically-indexed row (GH1013) • DataFrame.plot(logy=True) has no effect (GH1011). • Broken arithmetic operations between SparsePanel-Panel (GH1015) • Unicode repr issues in MultiIndex with non-ASCII characters (GH1010) • DataFrame.lookup() returns inconsistent results if exact match not present (GH1001) • DataFrame arithmetic operations not treating None as NA (GH992) • DataFrameGroupBy.apply returns incorrect result (GH991) • Series.reshape returns incorrect result for multiple dimensions (GH989) • Series.std and Series.var ignores ddof parameter (GH934) • DataFrame.append loses index names (GH980) • DataFrame.plot(kind=’bar’) ignores color argument (GH958) • Inconsistent Index comparison results (GH948) • Improper int dtype DataFrame construction from data with NaN (GH846) • Removes default ‘result’ name in groupby results (GH995) • DataFrame.from_records no longer mutate input columns (GH975) • Use Index name when grouping by it (GH1313) 35.19 pandas 0.7.2 Release date: March 16, 2012 35.19.1 New Features • Add additional tie-breaking methods in DataFrame.rank (GH874) • Add ascending parameter to rank in Series, DataFrame (GH875) • Add sort_columns parameter to allow unsorted plots (GH918) • IPython tab completion on GroupBy objects 35.19.2 API Changes • Series.sum returns 0 instead of NA when called on an empty series. Analogously for a DataFrame whose rows or columns are length 0 (GH844) 35.19. pandas 0.7.2 1621 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.19.3 Improvements to existing features • Don’t use groups dict in Grouper.size (GH860) • Use khash for Series.value_counts, add raw function to algorithms.py (GH861) • Enable column access via attributes on GroupBy (GH882) • Enable setting existing columns (only) via attributes on DataFrame, Panel (GH883) • Intercept __builtin__.sum in groupby (GH885) • Can pass dict to DataFrame.fillna to use different values per column (GH661) • Can select multiple hierarchical groups by passing list of values in .ix (GH134) • Add level keyword to drop for dropping values from a level (GH159) • Add coerce_float option on DataFrame.from_records (GH893) • Raise exception if passed date_parser fails in read_csv • Add axis option to DataFrame.fillna (GH174) • Fixes to Panel to make it easier to subclass (GH888) 35.19.4 Bug Fixes • Fix overflow-related bugs in groupby (GH850, GH851) • Fix unhelpful error message in parsers (GH856) • Better err msg for failed boolean slicing of dataframe (GH859) • Series.count cannot accept a string (level name) in the level argument (GH869) • Group index platform int check (GH870) • concat on axis=1 and ignore_index=True raises TypeError (GH871) • Further unicode handling issues resolved (GH795) • Fix failure in multiindex-based access in Panel (GH880) • Fix DataFrame boolean slice assignment failure (GH881) • Fix combineAdd NotImplementedError for SparseDataFrame (GH887) • Fix DataFrame.to_html encoding and columns (GH890, GH891, GH909) • Fix na-filling handling in mixed-type DataFrame (GH910) • Fix to DataFrame.set_value with non-existant row/col (GH911) • Fix malformed block in groupby when excluding nuisance columns (GH916) • Fix inconsistant NA handling in dtype=object arrays (GH925) • Fix missing center-of-mass computation in ewmcov (GH862) • Don’t raise exception when opening read-only HDF5 file (GH847) • Fix possible out-of-bounds memory access in 0-length Series (GH917) 1622 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 35.20 pandas 0.7.1 Release date: February 29, 2012 35.20.1 New Features • Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774) • Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818) • Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807) • Add fill_value option to reindex, align methods (GH784) • Enable concat to produce DataFrame from Series (GH787) • Add between method to Series (GH802) • Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773) • Support for reading Excel 2007 XML documents using openpyxl 35.20.2 Improvements to existing features • Improve performance and memory usage of fillna on DataFrame • Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787) 35.20.3 Bug Fixes • Fix memory leak when inserting large number of columns into a single DataFrame (GH790) • Appending length-0 DataFrame with new columns would not result in those new columns being part of the resulting concatenated DataFrame (GH782) • Fixed groupby corner case when passing dictionary grouper and as_index is False (GH819) • Fixed bug whereby bool array sometimes had object dtype (GH820) • Fix exception thrown on np.diff (GH816) • Fix to_records where columns are non-strings (GH822) • Fix Index.intersection where indices have incomparable types (GH811) • Fix ExcelFile throwing an exception for two-line file (GH837) • Add clearer error message in csv parser (GH835) • Fix loss of fractional seconds in HDFStore (GH513) • Fix DataFrame join where columns have datetimes (GH787) • Work around numpy performance issue in take (GH817) • Improve comparison operations for NA-friendliness (GH801) • Fix indexing operation for floating point values (GH780, GH798) • Fix groupby case resulting in malformed dataframe (GH814) • Fix behavior of reindex of Series dropping name (GH812) 35.20. pandas 0.7.1 1623 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Improve on redudant groupby computation (GH775) • Catch possible NA assignment to int/bool series with exception (GH839) 35.21 pandas 0.7.0 Release date: 2/9/2012 35.21.1 New Features • New merge function for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267) • New concat function for concatenating DataFrame or Panel objects along an axis. Can form union or intersection of the other axes. Improves performance of DataFrame.append (GH468, GH479, GH273) • Handle differently-indexed output values in DataFrame.apply (GH498) • Can pass list of dicts (e.g., a list of shallow JSON objects) to DataFrame constructor (GH526) • Add reorder_levels method to Series and DataFrame (GH534) • Add dict-like get function to DataFrame and Panel (GH521) • DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame • Added DataFrame.to_panel with code adapted from LongPanel.to_long • reindex_axis method added to DataFrame • Add level option to binary arithmetic functions on DataFrame and Series • Add level option to the reindex and align methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others) • Add attribute-based item access to Panel and add IPython completion (PR GH554) • Add logy option to Series.plot for log-scaling on the Y axis • Add index, header, and justify options to DataFrame.to_string. Add option to (GH570, GH571) • Can pass multiple DataFrames to DataFrame.join to join on index (GH115) • Can pass multiple Panels to Panel.join (GH115) • Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to Series.append too • Added justify argument to DataFrame.to_string to allow different alignment of column headers • Add sort option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595) • Can pass MaskedArray to Series constructor (GH563) • Add Panel item access via attributes and IPython completion (GH554) • Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338) • Add verbose option to read_csv and read_table to show number of NA values inserted in non-numeric columns (GH614) 1624 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Can pass a list of dicts or Series to DataFrame.append to concatenate multiple rows (GH464) • Add level argument to DataFrame.xs for selecting data from other MultiIndex levels. Can take one or more levels with potentially a tuple of keys for flexible retrieval of data (GH371, GH629) • New crosstab function for easily computing frequency tables (GH170) • Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with hierarchical columns (GH166) • Add integer-indexing functions iget in Series and irow / iget in DataFrame (GH628) • Add new Series.unique function, significantly faster than numpy.unique (GH658) • Add new cummin and cummax instance methods to Series and DataFrame (GH647) • Add new value_range function to return min/max of a dataframe (GH288) • Add drop parameter to reset_index method of DataFrame and added method to Series as well (GH699) • Add isin method to Index objects, works just like Series.isin (GH GH657) • Implement array interface on Panel so that ufuncs work (re: GH740) • Add sort option to DataFrame.join (GH731) • Improved handling of NAs (propagation) in binary operations with dtype=object arrays (GH737) • Add abs method to Pandas objects • Added algorithms module to start collecting central algos 35.21.2 API Changes • Label-indexing with integer indexes now raises KeyError if a label is not found instead of falling back on location-based indexing (GH700) • Label-based slicing via ix or [] on Series will now only work if exact matches for the labels are found or if the index is monotonic (for range selections) • Label-based slicing and sequences of labels can be passed to [] on a Series for both getting and setting (GH86) • [] operator (__getitem__ and __setitem__) will raise KeyError with integer indexes when an index is not contained in the index. The prior behavior would fall back on position-based indexing if a key was not found in the index which would lead to subtle bugs. This is now consistent with the behavior of .ix on DataFrame and friends (GH328) • Rename DataFrame.delevel to DataFrame.reset_index and add deprecation warning • Series.sort (an in-place operation) called on a Series which is a view on a larger array (e.g. a column in a DataFrame) will generate an Exception to prevent accidentally modifying the data source (GH316) • Refactor to remove deprecated LongPanel class (GH552) • Deprecated Panel.to_long, renamed to to_frame • Deprecated colSpace argument in DataFrame.to_string, renamed to col_space • Rename precision to accuracy in engineering float formatter (GH GH395) • The default delimiter for read_csv is comma rather than letting csv.Sniffer infer it • Rename col_or_columns argument in DataFrame.drop_duplicates (GH GH734) 35.21. pandas 0.7.0 1625 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.21.3 Improvements to existing features • Better error message in DataFrame constructor when passed column labels don’t match data (GH497) • Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse ndarray object in Cython (GH496) • Can store objects indexed by tuples and floats in HDFStore (GH492) • Don’t print length by default in Series.to_string, add length option (GH GH489) • Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93) • Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility • Improve column reindexing performance by using specialized Cython take function • Further performance tweaking of Series.__getitem__ for standard use cases • Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions • Friendlier error message in setup.py if NumPy not installed • Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536) • Default name assignment when calling reset_index on DataFrame with a regular (non-hierarchical) index (GH476) • Use Cythonized groupers when possible in Series/DataFrame stat ops with level parameter passed (GH545) • Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374) • Some performance enhancements in constructing a Panel from a dict of DataFrame objects • Made Index._get_duplicates a public method by removing the underscore • Prettier printing of floats, and column spacing fix (GH395, GH571) • Add bold_rows option to DataFrame.to_html (GH586) • Improve the performance of DataFrame.sort_index by up to 5x or more when sorting by multiple columns • Substantially improve performance of DataFrame and Series constructors when passed a nested dict or dict, respectively (GH540, GH621) • Modified setup.py so that pip / setuptools will install dependencies (GH GH507, various pull requests) • Unstack called on DataFrame with non-MultiIndex will return Series (GH GH477) • Improve DataFrame.to_string and console formatting to be more consistent in the number of displayed digits (GH395) • Use bottleneck if available for performing NaN-friendly statistical operations that it implemented (GH91) • Monkey-patch context to traceback in DataFrame.apply to indicate which row/column the function application failed on (GH614) • Improved ability of read_table and read_clipboard to parse console-formatted DataFrames (can read the row of index names, etc.) • Can pass list of group labels (without having to convert to an ndarray yourself) to groupby in some cases (GH659) • Use kind argument to Series.order for selecting different sort kinds (GH668) 1626 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Add option to Series.to_csv to omit the index (GH684) • Add delimiter as an alternative to sep in read_csv and other parsing functions • Substantially improved performance of groupby on DataFrames with many columns by aggregating blocks of columns all at once (GH745) • Can pass a file handle or StringIO to Series/DataFrame.to_csv (GH765) • Can pass sequence of integers to DataFrame.irow(icol) and Series.iget, (GH GH654) • Prototypes for some vectorized string functions • Add float64 hash table to solve the Series.unique problem with NAs (GH714) • Memoize objects when reading from file to reduce memory footprint • Can get and set a column of a DataFrame with hierarchical columns containing “empty” (‘’) lower levels without passing the empty levels (PR GH768) 35.21.4 Bug Fixes • Raise exception in out-of-bounds indexing of Series instead of seg-faulting, regression from earlier releases (GH495) • Fix error when joining DataFrames of different dtypes within the same typeclass (e.g. float32 and float64) (GH486) • Fix bug in Series.min/Series.max on objects like datetime.datetime (GH GH487) • Preserve index names in Index.union (GH501) • Fix bug in Index joining causing subclass information (like DateRange type) to be lost in some cases (GH500) • Accept empty list as input to DataFrame constructor, regression from 0.6.0 (GH491) • Can output DataFrame and Series with ndarray objects in a dtype=object array (GH490) • Return empty string from Series.to_string when called on empty Series (GH GH488) • Fix exception passing empty list to DataFrame.from_records • Fix Index.format bug (excluding name field) with datetimes with time info • Fix scalar value access in Series to always return NumPy scalars, regression from prior versions (GH510) • Handle rows skipped at beginning of file in read_* functions (GH505) • Handle improper dtype casting in set_value methods • Unary ‘-‘ / __neg__ operator on DataFrame was returning integer values • Unbox 0-dim ndarrays from certain operators like all, any in Series • Fix handling of missing columns (was combine_first-specific) in DataFrame.combine for general case (GH529) • Fix type inference logic with boolean lists and arrays in DataFrame indexing • Use centered sum of squares in R-square computation if entity_effects=True in panel regression • Handle all NA case in Series.{corr, cov}, was raising exception (GH548) • Aggregating by multiple levels with level argument to DataFrame, Series stat method, was broken (GH545) • Fix Cython buf when converter passed to read_csv produced a numeric array (buffer dtype mismatch when passed to Cython type inference function) (GH GH546) • Fix exception when setting scalar value using .ix on a DataFrame with a MultiIndex (GH551) 35.21. pandas 0.7.0 1627 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fix outer join between two DateRanges with different offsets that returned an invalid DateRange • Cleanup DataFrame.from_records failure where index argument is an integer • Fix Data.from_records failure when passed a dictionary • Fix NA handling in {Series, DataFrame}.rank with non-floating point dtypes • Fix bug related to integer type-checking in .ix-based indexing • Handle non-string index name passed to DataFrame.from_records • DataFrame.insert caused the columns name(s) field to be discarded (GH527) • Fix erroneous in monotonic many-to-one left joins • Fix DataFrame.to_string to remove extra column white space (GH571) • Format floats to default to same number of digits (GH395) • Added decorator to copy docstring from one function to another (GH449) • Fix error in monotonic many-to-one left joins • Fix __eq__ comparison between DateOffsets with different relativedelta keywords passed • Fix exception caused by parser converter returning strings (GH583) • Fix MultiIndex formatting bug with integer names (GH601) • Fix bug in handling of non-numeric aggregates in Series.groupby (GH612) • Fix TypeError with tuple subclasses (e.g. namedtuple) in DataFrame.from_records (GH611) • Catch misreported console size when running IPython within Emacs • Fix minor bug in pivot table margins, loss of index names and length-1 ‘All’ tuple in row labels • Add support for legacy WidePanel objects to be read from HDFStore • Fix out-of-bounds segfault in pad_object and backfill_object methods when either source or target array are empty • Could not create a new column in a DataFrame from a list of tuples • Fix bugs preventing SparseDataFrame and SparseSeries working with groupby (GH666) • Use sort kind in Series.sort / argsort (GH668) • Fix DataFrame operations on non-scalar, non-pandas objects (GH672) • Don’t convert DataFrame column to integer type when passing integer to __setitem__ (GH669) • Fix downstream bug in pivot_table caused by integer level names in MultiIndex (GH678) • Fix SparseSeries.combine_first when passed a dense Series (GH687) • Fix performance regression in HDFStore loading when DataFrame or Panel stored in table format with datetimes • Raise Exception in DateRange when offset with n=0 is passed (GH683) • Fix get/set inconsistency with .ix property and integer location but non-integer index (GH707) • Use right dropna function for SparseSeries. Return dense Series for NA fill value (GH730) • Fix Index.format bug causing incorrectly string-formatted Series with datetime indexes (GH726, GH758) • Fix errors caused by object dtype arrays passed to ols (GH759) • Fix error where column names lost when passing list of labels to DataFrame.__getitem__, (GH662) 1628 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fix error whereby top-level week iterator overwrote week instance • Fix circular reference causing memory leak in sparse array / series / frame, (GH663) • Fix integer-slicing from integers-as-floats (GH670) • Fix zero division errors in nanops from object dtype arrays in all NA case (GH676) • Fix csv encoding when using unicode (GH705, GH717, GH738) • Fix assumption that each object contains every unique block type in concat, (GH708) • Fix sortedness check of multiindex in to_panel (GH719, 720) • Fix that None was not treated as NA in PyObjectHashtable • Fix hashing dtype because of endianness confusion (GH747, GH748) • Fix SparseSeries.dropna to return dense Series in case of NA fill value (GH GH730) • Use map_infer instead of np.vectorize. handle NA sentinels if converter yields numeric array, (GH753) • Fixes and improvements to DataFrame.rank (GH742) • Fix catching AttributeError instead of NameError for bottleneck • Try to cast non-MultiIndex to better dtype when calling reset_index (GH726 GH440) • Fix #1.QNAN0’ float bug on 2.6/win64 • Allow subclasses of dicts in DataFrame constructor, with tests • Fix problem whereby set_index destroys column multiindex (GH764) • Hack around bug in generating DateRange from naive DateOffset (GH770) • Fix bug in DateRange.intersection causing incorrect results with some overlapping ranges (GH771) 35.21.5 Thanks • Craig Austin • Chris Billington • Marius Cobzarenco • Mario Gamboa-Cavazos • Hans-Martin Gaudecker • Arthur Gerigk • Yaroslav Halchenko • Jeff Hammerbacher • Matt Harrison • Andreas Hilboll • Luc Kesters • Adam Klein • Gregg Lind • Solomon Negusse • Wouter Overmeire 35.21. pandas 0.7.0 1629 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Christian Prinoth • Jeff Reback • Sam Reckoner • Craig Reeson • Jan Schulz • Skipper Seabold • Ted Square • Graham Taylor • Aman Thakral • Chris Uga • Dieter Vandenbussche • Texas P. • Pinxing Ye • ... and everyone I forgot 35.22 pandas 0.6.1 Release date: 12/13/2011 35.22.1 API Changes • Rename names argument in DataFrame.from_records to columns. Add deprecation warning • Boolean get/set operations on Series with boolean Series will reindex instead of requiring that the indexes be exactly equal (GH429) 35.22.2 New Features • Can pass Series to DataFrame.append with ignore_index=True for appending a single row (GH430) • Add Spearman and Kendall correlation options to Series.corr and DataFrame.corr (GH428) • Add new get_value and set_value methods to Series, DataFrame, and Panel to very low-overhead access to scalar elements. df.get_value(row, column) is about 3x faster than df[column][row] by handling fewer cases (GH437, GH438). Add similar methods to sparse data structures for compatibility • Add Qt table widget to sandbox (GH435) • DataFrame.align can accept Series arguments, add axis keyword (GH461) • Implement new SparseList and SparseArray data structures. SparseSeries now derives from SparseArray (GH463) • max_columns / max_rows options in set_printoptions (GH453) • Implement Series.rank and DataFrame.rank, fast versions of scipy.stats.rankdata (GH428) • Implement DataFrame.from_items alternate constructor (GH444) 1630 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • DataFrame.convert_objects method for inferring better dtypes for object columns (GH302) • Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189) • Add margins option to pivot_table for computing subgroup aggregates (GH GH114) • Add Series.from_csv function (GH482) 35.22.3 Improvements to existing features • Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (GH425) • Use same formatting function for outputting floating point Series to console as in DataFrame (GH420) • DataFrame.delevel will try to infer better dtype for new columns (GH440) • Exclude non-numeric types in DataFrame.{corr, cov} • Override Index.astype to enable dtype casting (GH412) • Use same float formatting function for Series.__repr__ (GH420) • Use available console width to output DataFrame columns (GH453) • Accept ndarrays when setting items in Panel (GH452) • Infer console width when printing __repr__ of DataFrame to console (PR GH453) • Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame • Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH462) • Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed • Column deletion in DataFrame copies no data (computes views on blocks) (GH GH158) • MultiIndex.get_level_values can take the level name • More helpful error message when DataFrame.plot fails on one of the columns (GH478) • Improve performance of DataFrame.{index, columns} attribute lookup 35.22.4 Bug Fixes • Fix O(K^2) memory leak caused by inserting many columns without consolidating, had been present since 0.4.0 (GH467) • DataFrame.count should return Series with zero instead of NA with length-0 axis (GH423) • Fix Yahoo! Finance API usage in pandas.io.data (GH419, GH427) • Fix upstream bug causing failure in Series.align with empty Series (GH434) • Function passed to DataFrame.apply can return a list, as long as it’s the right length. Regression from 0.4 (GH432) • Don’t “accidentally” upcast scalar values when indexing using .ix (GH431) • Fix groupby exception raised with as_index=False and single column selected (GH421) • Implement DateOffset.__ne__ causing downstream bug (GH456) • Fix __doc__-related issue when converting py -> pyo with py2exe • Bug fix in left join Cython code with duplicate monotonic labels 35.22. pandas 0.6.1 1631 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fix bug when unstacking multiple levels described in GH451 • Exclude NA values in dtype=object arrays, regression from 0.5.0 (GH469) • Use Cython map_infer function in DataFrame.applymap to properly infer output type, handle tuple return values and other things that were breaking (GH465) • Handle floating point index values in HDFStore (GH454) • Fixed stale column reference bug (cached Series object) caused by type change / item deletion in DataFrame (GH473) • Index.get_loc should always raise Exception when there are duplicates • Handle differently-indexed Series input to DataFrame constructor (GH475) • Omit nuisance columns in multi-groupby with Python function • Buglet in handling of single grouping in general apply • Handle type inference properly when passing list of lists or tuples to DataFrame constructor (GH484) • Preserve Index / MultiIndex names in GroupBy.apply concatenation step (GH GH481) 35.22.5 Thanks • Ralph Bean • Luca Beltrame • Marius Cobzarenco • Andreas Hilboll • Jev Kuznetsov • Adam Lichtenstein • Wouter Overmeire • Fernando Perez • Nathan Pinger • Christian Prinoth • Alex Reyfman • Joon Ro • Chang She • Ted Square • Chris Uga • Dieter Vandenbussche 35.23 pandas 0.6.0 Release date: 11/25/2011 1632 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 35.23.1 API Changes • Arithmetic methods like sum will attempt to sum dtype=object values by default instead of excluding them (GH382) 35.23.2 New Features • Add melt function to pandas.core.reshape • Add level parameter to group by level in Series and DataFrame descriptive statistics (GH313) • Add head and tail methods to Series, analogous to to DataFrame (PR GH296) • Add Series.isin function which checks if each value is contained in a passed sequence (GH289) • Add float_format option to Series.to_string • Add skip_footer (GH291) and converters (GH343) options to read_csv and read_table • Add proper, tested weighted least squares to standard and panel OLS (GH GH303) • Add drop_duplicates and duplicated functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319) • Implement logical (boolean) operators &, |, ^ on DataFrame (GH347) • Add Series.mad, mean absolute deviation, matching DataFrame • Add QuarterEnd DateOffset (GH321) • Add matrix multiplication function dot to DataFrame (GH65) • Add orient option to Panel.from_dict to ease creation of mixed-type Panels (GH359, GH301) • Add DataFrame.from_dict with similar orient option • Can now pass list of tuples or list of lists to DataFrame.from_records for fast conversion to DataFrame (GH357) • Can pass multiple levels to groupby, e.g. df.groupby(level=[0, 1]) (GH GH103) • Can sort by multiple columns in DataFrame.sort_index (GH92, GH362) • Add fast get_value and put_value methods to DataFrame and micro-performance tweaks (GH360) • Add cov instance methods to Series and DataFrame (GH194, GH362) • Add bar plot option to DataFrame.plot (GH348) • Add idxmin and idxmax functions to Series and DataFrame for computing index labels achieving maximum and minimum values (GH286) • Add read_clipboard function for parsing DataFrame from OS clipboard, should work across platforms (GH300) • Add nunique function to Series for counting unique elements (GH297) • DataFrame constructor will use Series name if no columns passed (GH373) • Support regular expressions and longer delimiters in read_table/read_csv, but does not handle quoted strings yet (GH364) • Add DataFrame.to_html for formatting DataFrame to HTML (GH387) • MaskedArray can be passed to DataFrame constructor and masked values will be converted to NaN (GH396) • Add DataFrame.boxplot function (GH368, others) • Can pass extra args, kwds to DataFrame.apply (GH376) 35.23. pandas 0.6.0 1633 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.23.3 Improvements to existing features • Raise more helpful exception if date parsing fails in DateRange (GH298) • Vastly improved performance of GroupBy on axes with a MultiIndex (GH299) • Print level names in hierarchical index in Series repr (GH305) • Return DataFrame when performing GroupBy on selected column and as_index=False (GH308) • Can pass vector to on argument in DataFrame.join (GH312) • Don’t show Series name if it’s None in the repr, also omit length for short Series (GH317) • Show legend by default in DataFrame.plot, add legend boolean flag (GH GH324) • Significantly improved performance of Series.order, which also makes np.unique called on a Series faster (GH327) • Faster cythonized count by level in Series and DataFrame (GH341) • Raise exception if dateutil 2.0 installed on Python 2.x runtime (GH346) • Significant GroupBy performance enhancement with multiple keys with many “empty” combinations • New Cython vectorized function map_infer speeds up Series.apply and Series.map significantly when passed elementwise Python function, motivated by GH355 • Cythonized cache_readonly, resulting in substantial micro-performance enhancements throughout the codebase (GH361) • Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than np.apply_along_axis (GH309) • Add raw option to DataFrame.apply for getting better performance when the passed function only requires an ndarray (GH309) • Improve performance of MultiIndex.from_tuples • Can pass multiple levels to stack and unstack (GH370) • Can pass multiple values columns to pivot_table (GH381) • Can call DataFrame.delevel with standard Index with name set (GH393) • Use Series name in GroupBy for result index (GH363) • Refactor Series/DataFrame stat methods to use common set of NaN-friendly function • Handle NumPy scalar integers at C level in Cython conversion routines 35.23.4 Bug Fixes • Fix bug in DataFrame.to_csv when writing a DataFrame with an index name (GH290) • DataFrame should clear its Series caches on consolidation, was causing “stale” Series to be returned in some corner cases (GH304) • DataFrame constructor failed if a column had a list of tuples (GH293) • Ensure that Series.apply always returns a Series and implement Series.round (GH314) • Support boolean columns in Cythonized groupby functions (GH315) • DataFrame.describe should not fail if there are no numeric columns, instead return categorical describe (GH323) 1634 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fixed bug which could cause columns to be printed in wrong order in DataFrame.to_string if specific list of columns passed (GH325) • Fix legend plotting failure if DataFrame columns are integers (GH326) • Shift start date back by one month for Yahoo! Finance API in pandas.io.data (GH329) • Fix DataFrame.join failure on unconsolidated inputs (GH331) • DataFrame.min/max will no longer fail on mixed-type DataFrame (GH337) • Fix read_csv / read_table failure when passing list to index_col that is not in ascending order (GH349) • Fix failure passing Int64Index to Index.union when both are monotonic • Fix error when passing SparseSeries to (dense) DataFrame constructor • Added missing bang at top of setup.py (GH352) • Change is_monotonic on MultiIndex so it properly compares the tuples • Fix MultiIndex outer join logic (GH351) • Set index name attribute with single-key groupby (GH358) • Bug fix in reflexive binary addition in Series and DataFrame for non-commutative operations (like string concatenation) (GH353) • setupegg.py will invoke Cython (GH192) • Fix block consolidation bug after inserting column into MultiIndex (GH366) • Fix bug in join operations between Index and Int64Index (GH367) • Handle min_periods=0 case in moving window functions (GH365) • Fixed corner cases in DataFrame.apply/pivot with empty DataFrame (GH378) • Fixed repr exception when Series name is a tuple • Always return DateRange from asfreq (GH390) • Pass level names to swaplavel (GH379) • Don’t lose index names in MultiIndex.droplevel (GH394) • Infer more proper return type in DataFrame.apply when no columns or rows depending on whether the passed function is a reduction (GH389) • Always return NA/NaN from Series.min/max and DataFrame.min/max when all of a row/column/values are NA (GH384) • Enable partial setting with .ix / advanced indexing (GH397) • Handle mixed-type DataFrames correctly in unstack, do not lose type information (GH403) • Fix integer name formatting bug in Index.format and in Series.__repr__ • Handle label types other than string passed to groupby (GH405) • Fix bug in .ix-based indexing with partial retrieval when a label is not contained in a level • Index name was not being pickled (GH408) • Level name should be passed to result index in GroupBy.apply (GH416) 35.23. pandas 0.6.0 1635 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.23.5 Thanks • Craig Austin • Marius Cobzarenco • Joel Cross • Jeff Hammerbacher • Adam Klein • Thomas Kluyver • Jev Kuznetsov • Kieran O’Mahony • Wouter Overmeire • Nathan Pinger • Christian Prinoth • Skipper Seabold • Chang She • Ted Square • Aman Thakral • Chris Uga • Dieter Vandenbussche • carljv • rsamson 35.24 pandas 0.5.0 Release date: 10/24/2011 This release of pandas includes a number of API changes (see below) and cleanup of deprecated APIs from pre-0.4.0 releases. There are also bug fixes, new features, numerous significant performance enhancements, and includes a new ipython completer hook to enable tab completion of DataFrame columns accesses and attributes (a new feature). In addition to the changes listed here from 0.4.3 to 0.5.0, the minor releases 4.1, 0.4.2, and 0.4.3 brought some significant new functionality and performance improvements that are worth taking a look at. Thanks to all for bug reports, contributed patches and generally providing feedback on the library. 35.24.1 API Changes • read_table, read_csv, and ExcelFile.parse default arguments for index_col is now None. To use one or more of the columns as the resulting DataFrame’s index, these must be explicitly specified now • Parsing functions like read_csv no longer parse dates by default (GH GH225) • Removed weights option in panel regression which was not doing anything principled (GH155) • Changed buffer argument name in Series.to_string to buf 1636 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Series.to_string and DataFrame.to_string now return strings by default instead of printing to sys.stdout • Deprecated nanRep argument in various to_string and to_csv functions in favor of na_rep. Will be removed in 0.6 (GH275) • Renamed delimiter to sep in DataFrame.from_csv for consistency • Changed order of Series.clip arguments to match those of numpy.clip and added (unimplemented) out argument so numpy.clip can be called on a Series (GH272) • Series functions renamed (and thus deprecated) in 0.4 series have been removed: – asOf, use asof – toDict, use to_dict – toString, use to_string – toCSV, use to_csv – merge, use map – applymap, use apply – combineFirst, use combine_first – _firstTimeWithValue use first_valid_index – _lastTimeWithValue use last_valid_index • DataFrame functions renamed / deprecated in 0.4 series have been removed: – asMatrix method, use as_matrix or values attribute – combineFirst, use combine_first – getXS, use xs – merge, use join – fromRecords, use from_records – fromcsv, use from_csv – toRecords, use to_records – toDict, use to_dict – toString, use to_string – toCSV, use to_csv – _firstTimeWithValue use first_valid_index – _lastTimeWithValue use last_valid_index – toDataMatrix is no longer needed – rows() method, use index attribute – cols() method, use columns attribute – dropEmptyRows(), use dropna(how=’all’) – dropIncompleteRows(), use dropna() – tapply(f), use apply(f, axis=1) – tgroupby(keyfunc, aggfunc), use groupby with axis=1 35.24. pandas 0.5.0 1637 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.24.2 Deprecations Removed • indexField argument in DataFrame.from_records • missingAtEnd argument in Series.order. Use na_last instead • Series.fromValue classmethod, use regular Series constructor instead • Functions parseCSV, parseText, and parseExcel methods in pandas.io.parsers have been removed • Index.asOfDate function • Panel.getMinorXS (use minor_xs) and Panel.getMajorXS (use major_xs) • Panel.toWide, use Panel.to_wide instead 35.24.3 New Features • Added DataFrame.align method with standard join options • Added parse_dates option to read_csv and read_table methods to optionally try to parse dates in the index columns • Add nrows, chunksize, and iterator arguments to read_csv and read_table. The last two return a new TextParser class capable of lazily iterating through chunks of a flat file (GH242) • Added ability to join on multiple columns in DataFrame.join (GH214) • Added private _get_duplicates function to Index for identifying duplicate values more easily • Added column attribute access to DataFrame, e.g. df.A equivalent to df[’A’] if ‘A’ is a column in the DataFrame (GH213) • Added IPython tab completion hook for DataFrame columns. (GH233, GH230) • Implement Series.describe for Series containing objects (GH241) • Add inner join option to DataFrame.join when joining on key(s) (GH248) • Can select set of DataFrame columns by passing a list to __getitem__ (GH GH253) • Can use & and | to intersection / union Index objects, respectively (GH GH261) • Added pivot_table convenience function to pandas namespace (GH234) • Implemented Panel.rename_axis function (GH243) • DataFrame will show index level names in console output • Implemented Panel.take • Add set_eng_float_format function for setting alternate DataFrame floating point string formatting • Add convenience set_index function for creating a DataFrame index from its existing columns 35.24.4 Improvements to existing features • Major performance improvements in file parsing functions read_csv and read_table • Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations • File parsing functions like read_csv and read_table will explicitly check if a parsed index has duplicates and raise a more helpful exception rather than deferring the check until later 1638 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211) • Improved speed of DataFrame.xs on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215) • With new DataFrame.align method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%. • Significantly sped up conversion of nested dict into DataFrame (GH212) • Can pass hierarchical index level name to groupby instead of the level number if desired (GH223) • Add support for different delimiters in DataFrame.to_csv (GH244) • Add more helpful error message when importing pandas post-installation from the source directory (GH250) • Significantly speed up DataFrame __repr__ and count on large mixed-type DataFrame objects • Better handling of pyx file dependencies in Cython module build (GH271) 35.24.5 Bug Fixes • read_csv / read_table fixes – Be less aggressive about converting float->int in cases of floating point representations of integers like 1.0, 2.0, etc. – “True”/”False” will not get correctly converted to boolean – Index name attribute will get set when specifying an index column – Passing column names should force header=None (GH257) – Don’t modify passed column names when index_col is not None (GH258) – Can sniff CSV separator in zip file (since seek is not supported, was failing before) • Worked around matplotlib “bug” in which series[:, np.newaxis] fails. Should be reported upstream to matplotlib (GH224) • DataFrame.iteritems was not returning Series with the name attribute set. Also neither was DataFrame._series • Can store datetime.date objects in HDFStore (GH231) • Index and Series names are now stored in HDFStore • Fixed problem in which data would get upcasted to object dtype in GroupBy.apply operations (GH237) • Fixed outer join bug with empty DataFrame (GH238) • Can create empty Panel (GH239) • Fix join on single key when passing list with 1 entry (GH246) • Don’t raise Exception on plotting DataFrame with an all-NA column (GH251, GH254) • Bug min/max errors when called on integer DataFrames (GH241) • DataFrame.iteritems and DataFrame._series not assigning name attribute • Panel.__repr__ raised exception on length-0 major/minor axes • DataFrame.join on key with empty DataFrame produced incorrect columns • Implemented MultiIndex.diff (GH260) • Int64Index.take and MultiIndex.take lost name field, fix downstream issue GH262 35.24. pandas 0.5.0 1639 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Can pass list of tuples to Series (GH270) • Can pass level name to DataFrame.stack • Support set operations between MultiIndex and Index • Fix many corner cases in MultiIndex set operations - Fix MultiIndex-handling bug with GroupBy.apply when returned groups are not indexed the same • Fix corner case bugs in DataFrame.apply • Setting DataFrame index did not cause Series cache to get cleared • Various int32 -> int64 platform-specific issues • Don’t be too aggressive converting to integer when parsing file with MultiIndex (GH285) • Fix bug when slicing Series with negative indices before beginning 35.24.6 Thanks • Thomas Kluyver • Daniel Fortunov • Aman Thakral • Luca Beltrame • Wouter Overmeire 35.25 pandas 0.4.3 Release date: 10/9/2011 is is largely a bugfix release from 0.4.2 but also includes a handful of new d enhanced features. Also, pandas can now be installed and used on Python 3 hanks Thomas Kluyver!). 35.25.1 New Features • Python 3 support using 2to3 (GH200, Thomas Kluyver) • Add name attribute to Series and added relevant logic and tests. Name now prints as part of Series.__repr__ • Add name attribute to standard Index so that stacking / unstacking does not discard names and so that indexed DataFrame objects can be reliably round-tripped to flat files, pickle, HDF5, etc. • Add isnull and notnull as instance methods on Series (GH209, GH203) 35.25.2 Improvements to existing features • Skip xlrd-related unit tests if not installed • Index.append and MultiIndex.append can accept a list of Index objects to concatenate together • Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205) • Refactored Series.__repr__ to be a bit more clean and consistent 1640 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 35.25.3 API Changes • Series.describe and DataFrame.describe now bring the 25% and 75% quartiles instead of the 10% and 90% deciles. The other outputs have not changed • Series.toString will print deprecation warning, has been de-camelCased to to_string 35.25.4 Bug Fixes • Fix broken interaction between Index and Int64Index when calling intersection. Int64Index.intersection Implement • MultiIndex.sortlevel discarded the level names (GH202) • Fix bugs in groupby, join, and append due to improper concatenation of MultiIndex objects (GH201) • Fix regression from 0.4.1, isnull and notnull ceased to work on other kinds of Python scalar objects like datetime.datetime • Raise more helpful exception when attempting to write empty DataFrame or LongPanel to HDFStore (GH204) • Use stdlib csv module to properly escape strings with commas in DataFrame.to_csv (GH206, Thomas Kluyver) • Fix Python ndarray access in Cython code for sparse blocked index integrity check • Fix bug writing Series to CSV in Python 3 (GH209) • Miscellaneous Python 3 bugfixes 35.25.5 Thanks • Thomas Kluyver • rsamson 35.26 pandas 0.4.2 Release date: 10/3/2011 is is a performance optimization release with several bug fixes. The new t64Index and new merging / joining Cython code and related Python frastructure are the main new additions 35.26.1 New Features • Added fast Int64Index type with specialized join, union, intersection. Will result in significant performance enhancements for int64-based time series (e.g. using NumPy’s datetime64 one day) and also faster operations on DataFrame objects storing record array-like data. • Refactored Index classes to have a join method and associated data alignment routines throughout the codebase to be able to leverage optimized joining / merging routines. • Added Series.align method for aligning two series with choice of join method • Wrote faster Cython data alignment / merging routines resulting in substantial speed increases • Added is_monotonic property to Index classes with associated Cython code to evaluate the monotonicity of the Index values 35.26. pandas 0.4.2 1641 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Add method get_level_values to MultiIndex • Implemented shallow copy of BlockManager object in DataFrame internals 35.26.2 Improvements to existing features • Improved performance of isnull and notnull, a regression from v0.3.0 (GH187) • Wrote templating / code generation script to auto-generate Cython code for various functions which need to be available for the 4 major data types used in pandas (float64, bool, object, int64) • Refactored code related to DataFrame.join so that intermediate aligned copies of the data in each DataFrame argument do not need to be created. Substantial performance increases result (GH176) • Substantially improved performance of generic Index.intersection and Index.union • Improved performance of DateRange.union with overlapping ranges and non-cacheable offsets (like Minute). Implemented analogous fast DateRange.intersection for overlapping ranges. • Implemented BlockManager.take resulting in significantly faster take performance on mixed-type DataFrame objects (GH104) • Improved performance of Series.sort_index • Significant groupby performance enhancement: removed unnecessary integrity checks in DataFrame internals that were slowing down slicing operations to retrieve groups • Added informative Exception when passing dict to DataFrame groupby aggregation with axis != 0 35.26.3 API Changes 35.26.4 Bug Fixes • Fixed minor unhandled exception in Cython code implementing fast groupby aggregation operations • Fixed bug in unstacking code manifesting with more than 3 hierarchical levels • Throw exception when step specified in label-based slice (GH185) • Fix isnull to correctly work with np.float32. Fix upstream bug described in GH182 • Finish implementation of as_index=False in groupby for DataFrame aggregation (GH181) • Raise SkipTest for pre-epoch HDFStore failure. Real fix will be sorted out via datetime64 dtype 35.26.5 Thanks • Uri Laserson • Scott Sinclair 35.27 pandas 0.4.1 Release date: 9/25/2011 is is primarily a bug fix release but includes some new features and improvements 1642 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 35.27.1 New Features • Added new DataFrame methods get_dtype_counts and property dtypes • Setting of values using .ix indexing attribute in mixed-type DataFrame objects has been implemented (fixes GH135) • read_csv can read multiple columns into a MultiIndex. DataFrame’s to_csv method will properly write out a MultiIndex which can be read back (GH151, thanks to Skipper Seabold) • Wrote fast time series merging / joining methods in Cython. Will be integrated later into DataFrame.join and related functions • Added ignore_index option to DataFrame.append for combining unindexed records stored in a DataFrame 35.27.2 Improvements to existing features • Some speed enhancements with internal Index type-checking function • DataFrame.rename has a new copy parameter which can rename a DataFrame in place • Enable unstacking by level name (GH142) • Enable sortlevel to work by level name (GH141) • read_csv can automatically “sniff” other kinds of delimiters using csv.Sniffer (GH146) • Improved speed of unit test suite by about 40% • Exception will not be raised calling HDFStore.remove on non-existent node with where clause • Optimized _ensure_index function resulting in performance savings in type-checking Index objects 35.27.3 API Changes 35.27.4 Bug Fixes • Fixed DataFrame constructor bug causing downstream problems (e.g. .copy() failing) when passing a Series as the values along with a column name and index • Fixed single-key groupby on DataFrame with as_index=False (GH160) • Series.shift was failing on integer Series (GH154) • unstack methods were producing incorrect output in the case of duplicate hierarchical labels. An exception will now be raised (GH147) • Calling count with level argument caused reduceat failure or segfault in earlier NumPy (GH169) • Fixed DataFrame.corrwith to automatically exclude non-numeric data (GH GH144) • Unicode handling bug fixes in DataFrame.to_string (GH138) • Excluding OLS degenerate unit test case that was causing platform specific failure (GH149) • Skip blosc-dependent unit tests for PyTables < 2.2 (GH137) • Calling copy on DateRange did not copy over attributes to the new object (GH168) • Fix bug in HDFStore in which Panel data could be appended to a Table with different item order, thus resulting in an incorrect result read back 35.27. pandas 0.4.1 1643 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.27.5 Thanks • Yaroslav Halchenko • Jeff Reback • Skipper Seabold • Dan Lovell • Nick Pentreath 35.28 pandas 0.4.0 Release date: 9/12/2011 35.28.1 New Features • pandas.core.sparse module: “Sparse” (mostly-NA, or some other fill value) versions of Series, DataFrame, and Panel. For low-density data, this will result in significant performance boosts, and smaller memory footprint. Added to_sparse methods to Series, DataFrame, and Panel. See online documentation for more on these • Fancy indexing operator on Series / DataFrame, e.g. via .ix operator. Both getting and setting of values is supported; however, setting values will only currently work on homogeneously-typed DataFrame objects. Things like: – series.ix[[d1, d2, d3]] – frame.ix[5:10, [’C’, ‘B’, ‘A’]], frame.ix[5:10, ‘A’:’C’] – frame.ix[date1:date2] • Significantly enhanced groupby functionality – Can groupby multiple keys, e.g. df.groupby([’key1’, ‘key2’]). Iteration with multiple groupings products a flattened tuple – “Nuisance” columns (non-aggregatable) will automatically be excluded from DataFrame aggregation operations – Added automatic “dispatching to Series / DataFrame methods to more easily invoke methods on groups. e.g. s.groupby(crit).std() will work even though std is not implemented on the GroupBy class • Hierarchical / multi-level indexing – New the MultiIndex class. Integrated MultiIndex into Series and DataFrame fancy indexing, slicing, __getitem__ and __setitem, reindexing, etc. Added level keyword argument to groupby to enable grouping by a level of a MultiIndex • New data reshaping functions: stack and unstack on DataFrame and Series – Integrate with MultiIndex to enable sophisticated reshaping of data • Index objects (labels for axes) are now capable of holding tuples • Series.describe, DataFrame.describe: produces an R-like table of summary statistics about each data column • DataFrame.quantile, Series.quantile for computing sample quantiles of data across requested axis • Added general DataFrame.dropna method to replace dropIncompleteRows and dropEmptyRows, deprecated those. 1644 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • Series arithmetic methods with optional fill_value for missing data, e.g. a.add(b, fill_value=0). If a location is missing for both it will still be missing in the result though. • fill_value option has been added to DataFrame.{add, mul, sub, div} methods similar to Series • Boolean indexing with DataFrame objects: data[data > 0.1] = 0.1 or data[data> other] = 1. • pytz / tzinfo support in DateRange – tz_localize, tz_normalize, and tz_validate methods added • Added ExcelFile class to pandas.io.parsers for parsing multiple sheets out of a single Excel 2003 document • GroupBy aggregations can now optionally broadcast, e.g. produce an object of the same size with the aggregated value propagated • Added select function in all data structures: reindex axis based on arbitrary criterion (function returning boolean value), e.g. frame.select(lambda x: ‘foo’ in x, axis=1) • DataFrame.consolidate method, API function relating to redesigned internals • DataFrame.insert method for inserting column at a specified location rather than the default __setitem__ behavior (which puts it at the end) • HDFStore class in pandas.io.pytables has been largely rewritten using patches from Jeff Reback from others. It now supports mixed-type DataFrame and Series data and can store Panel objects. It also has the option to query DataFrame and Panel data. Loading data from legacy HDFStore files is supported explicitly in the code • Added set_printoptions method to modify appearance of DataFrame tabular output • rolling_quantile functions; a moving version of Series.quantile / DataFrame.quantile • Generic rolling_apply moving window function • New drop method added to Series, DataFrame, etc. which can drop a set of labels from an axis, producing a new object • reindex methods now sport a copy option so that data is not forced to be copied then the resulting object is indexed the same • Added sort_index methods to Series and Panel. DataFrame.sort for now. Renamed DataFrame.sort to sort_index. Leaving • Added skipna option to statistical instance methods on all the data structures • pandas.io.data module providing a consistent interface for reading time series data from several different sources 35.28.2 Improvements to existing features • The 2-dimensional DataFrame and DataMatrix classes have been extensively redesigned internally into a single class DataFrame, preserving where possible their optimal performance characteristics. This should reduce confusion from users about which class to use. – Note that under the hood there is a new essentially “lazy evaluation” scheme within respect to adding columns to DataFrame. During some operations, like-typed blocks will be “consolidated” but not before. • DataFrame accessing columns repeatedly is now significantly faster than DataMatrix used to be in 0.3.0 due to an internal Series caching mechanism (which are all views on the underlying data) • Column ordering for mixed type data is now completely consistent in DataFrame. In prior releases, there was inconsistent column ordering in DataMatrix • Improved console / string formatting of DataMatrix with negative numbers • Improved tabular data parsing functions, read_table and read_csv: 35.28. pandas 0.4.0 1645 pandas: powerful Python data analysis toolkit, Release 0.16.1 – Added skiprows and na_values arguments to pandas.io.parsers functions for more flexible IO – parseCSV / read_csv functions and others in pandas.io.parsers now can take a list of custom NA values, and also a list of rows to skip • Can slice DataFrame and get a view of the data (when homogeneously typed), e.g. frame.xs(idx, copy=False) or frame.ix[idx] • Many speed optimizations throughout Series and DataFrame • Eager evaluation of groups when calling groupby functions, so if there is an exception with the grouping function it will raised immediately versus sometime later on when the groups are needed • datetools.WeekOfMonth offset can be parameterized with n different than 1 or -1. • Statistical methods on DataFrame like mean, std, var, skew will now ignore non-numerical data. Before a not very useful error message was generated. A flag numeric_only has been added to DataFrame.sum and DataFrame.count to enable this behavior in those methods if so desired (disabled by default) • DataFrame.pivot generalized to enable pivoting multiple columns into a DataFrame with hierarchical columns • DataFrame constructor can accept structured / record arrays • Panel constructor can accept a dict of DataFrame-like objects. Do not need to use from_dict anymore (from_dict is there to stay, though). 35.28.3 API Changes • The DataMatrix variable now refers to DataFrame, will be removed within two releases • WidePanel is now known as Panel. The WidePanel variable in the pandas namespace now refers to the renamed Panel class • LongPanel and Panel / WidePanel now no longer have a common subclass. LongPanel is now a subclass of DataFrame having a number of additional methods and a hierarchical index instead of the old LongPanelIndex object, which has been removed. Legacy LongPanel pickles may not load properly • Cython is now required to build pandas from a development branch. This was done to avoid continuing to check in cythonized C files into source control. Builds from released source distributions will not require Cython • Cython code has been moved up to a top level pandas/src directory. Cython extension modules have been renamed and promoted from the lib subpackage to the top level, i.e. – pandas.lib.tseries -> pandas._tseries – pandas.lib.sparse -> pandas._sparse • DataFrame pickling format has changed. Backwards compatibility for legacy pickles is provided, but it’s recommended to consider PyTables-based HDFStore for storing data with a longer expected shelf life • A copy argument has been added to the DataFrame constructor to avoid unnecessary copying of data. Data is no longer copied by default when passed into the constructor • Handling of boolean dtype in DataFrame has been improved to support storage of boolean data with NA / NaN values. Before it was being converted to float64 so this should not (in theory) cause API breakage • To optimize performance, Index objects now only check that their labels are unique when uniqueness matters (i.e. when someone goes to perform a lookup). This is a potentially dangerous tradeoff, but will lead to much better performance in many places (like groupby). • Boolean indexing using Series must now have the same indices (labels) • Backwards compatibility support for begin/end/nPeriods keyword arguments in DateRange class has been removed 1646 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 • More intuitive / shorter filling aliases ffill (for pad) and bfill (for backfill) have been added to the functions that use them: reindex, asfreq, fillna. • pandas.core.mixins code moved to pandas.core.generic • buffer keyword arguments (e.g. DataFrame.toString) renamed to buf to avoid using Python built-in name • DataFrame.rows() removed (use DataFrame.index) • Added deprecation warning to DataFrame.cols(), to be removed in next release • DataFrame deprecations and de-camelCasing: merge, asMatrix, toDataMatrix, _firstTimeWithValue, _lastTimeWithValue, toRecords, fromRecords, tgroupby, toString • pandas.io.parsers method deprecations – parseCSV is now read_csv and keyword arguments have been de-camelCased – parseText is now read_table – parseExcel is replaced by the ExcelFile class and its parse method • fillMethod arguments (deprecated in prior release) removed, should be replaced with method • Series.fill, DataFrame.fill, and Panel.fill removed, use fillna instead • groupby functions now exclude NA / NaN values from the list of groups. This matches R behavior with NAs in factors e.g. with the tapply function • Removed parseText, parseCSV and parseExcel from pandas namespace • Series.combineFunc renamed to Series.combine and made a bit more general with a fill_value keyword argument defaulting to NaN • Removed pandas.core.pytools module. Code has been moved to pandas.core.common • Tacked on groupName attribute for groups in GroupBy renamed to name • Panel/LongPanel dims attribute renamed to shape to be more conformant • Slicing a Series returns a view now • More Series deprecations / renaming: toCSV to to_csv, asOf to asof, merge to map, applymap to apply, toDict to to_dict, combineFirst to combine_first. Will print FutureWarning. • DataFrame.to_csv does not write an “index” column label by default anymore since the output file can be read back without it. However, there is a new index_label argument. So you can do index_label=’index’ to emulate the old behavior • datetools.Week argument renamed from dayOfWeek to weekday • timeRule argument in shift has been deprecated in favor of using the offset argument for everything. So you can still pass a time rule string to offset • Added optional encoding argument to read_csv, read_table, to_csv, from_csv to handle unicode in python 2.x 35.28.4 Bug Fixes • Column ordering in pandas.io.parsers.parseCSV will match CSV in the presence of mixed-type data • Fixed handling of Excel 2003 dates in pandas.io.parsers • DateRange caching was happening with high resolution DateOffset objects, e.g. DateOffset(seconds=1). This has been fixed • Fixed __truediv__ issue in DataFrame 35.28. pandas 0.4.0 1647 pandas: powerful Python data analysis toolkit, Release 0.16.1 • Fixed DataFrame.toCSV bug preventing IO round trips in some cases • Fixed bug in Series.plot causing matplotlib to barf in exceptional cases • Disabled Index objects from being hashable, like ndarrays • Added __ne__ implementation to Index so that operations like ts[ts != idx] will work • Added __ne__ implementation to DataFrame • Bug / unintuitive result when calling fillna on unordered labels • Bug calling sum on boolean DataFrame • Bug fix when creating a DataFrame from a dict with scalar values • Series.{sum, mean, std, ...} now return NA/NaN when the whole Series is NA • NumPy 1.4 through 1.6 compatibility fixes • Fixed bug in bias correction in rolling_cov, was affecting rolling_corr too • R-square value was incorrect in the presence of fixed and time effects in the PanelOLS classes • HDFStore can handle duplicates in table format, will take 35.28.5 Thanks • Joon Ro • Michael Pennington • Chris Uga • Chris Withers • Jeff Reback • Ted Square • Craig Austin • William Ferreira • Daniel Fortunov • Tony Roberts • Martin Felder • John Marino • Tim McNamara • Justin Berka • Dieter Vandenbussche • Shane Conway • Skipper Seabold • Chris Jordan-Squire 1648 Chapter 35. Release Notes pandas: powerful Python data analysis toolkit, Release 0.16.1 35.29 pandas 0.3.0 Release date: February 20, 2011 35.29.1 New features • corrwith function to compute column- or row-wise correlations between two DataFrame objects • Can boolean-index DataFrame objects, e.g. df[df > 2] = 2, px[px > last_px] = 0 • Added comparison magic methods (__lt__, __gt__, etc.) • Flexible explicit arithmetic methods (add, mul, sub, div, etc.) • Added reindex_like method • Added reindex_like method to WidePanel • Convenience functions for accessing SQL-like databases in pandas.io.sql module • Added (still experimental) HDFStore class for storing pandas data structures using HDF5 / PyTables in pandas.io.pytables module • Added WeekOfMonth date offset • pandas.rpy (experimental) module created, provide some interfacing / conversion between rpy2 and pandas 35.29.2 Improvements to existing features • Unit test coverage: 100% line coverage of core data structures • Speed enhancement to rolling_{median, max, min} • Column ordering between DataFrame and DataMatrix is now consistent: before DataFrame would not respect column order • Improved {Series, DataFrame}.plot methods to be more flexible (can pass matplotlib Axis arguments, plot DataFrame columns in multiple subplots, etc.) 35.29.3 API Changes • Exponentially-weighted moment functions in pandas.stats.moments have a more consistent API and accept a min_periods argument like their regular moving counterparts. • fillMethod argument in Series, DataFrame changed to method, FutureWarning added. • fill method in Series, DataFrame/DataMatrix, WidePanel renamed to fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy 35.29. pandas 0.3.0 1649 pandas: powerful Python data analysis toolkit, Release 0.16.1 35.29.4 Bug Fixes • Fixed bug in IndexableSkiplist Cython code that was breaking rolling_max function • Numerous numpy.int64-related indexing fixes • Several NumPy 1.4.0 NaN-handling fixes • Bug fixes to pandas.io.parsers.parseCSV • Fixed DateRange caching issue with unusual date offsets • Fixed bug in DateRange.union • Fixed corner case in IndexableSkiplist implementation 1650 Chapter 35. Release Notes PYTHON MODULE INDEX p pandas, 1 1651
Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : No
Page Count                      : 1661
Page Mode                       : UseOutlines
Warning                         : Duplicate 'Author' entry in dictionary (ignored)
Author                          : Wes McKinney & PyData Development Team
Title                           : pandas: powerful Python data analysis toolkit
Subject                         : 
Creator                         : LaTeX with hyperref package
Producer                        : pdfTeX-1.40.14
Create Date                     : 2015:05:11 12:59:36+02:00
Modify Date                     : 2015:05:11 12:59:36+02:00
Trapped                         : False
PTEX Fullbanner                 : This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) kpathsea version 6.1.1
EXIF Metadata provided by EXIF.tools

Navigation menu