TS321 Datasheet. Www.s Manuals.com. St321 St
User Manual: Marking of electronic components, SMD Codes K4, K4***, K4-***, K401, K402, K43, K44, K45, K46, K4M, K4N. Datasheets BAS40, BAS40-04, BAS40-05, BAS40-06, BAS40TW, BCW71R, BZX384-B3V3, MMDT3946, MMDT5401, MMDT5551, MMST5401, MMST5551, MMSZ5254, RT9819G-29PV, TP0101K, TS321AI, TS321I.
Open the PDF directly: View PDF .
Page Count: 9
.LARGE OUTPUT VOLTAGE SWING :
0 to 3.5V min. (@VCC = 5V)
.LOW SUPPLY CURRENT : 300µA
.LOW INPUT BIAS CURRENT : 20nA
.LOW INPUT OFFSET VOLTAGE : 2mV max.
.WIDE POWER SUPPLY RANGE :
SINGLE SUPPLY : +3V TO +30V
DUAL SUPPLIES : ±1.5V TO ±15V
.STABLE WITH HIGH CAPACITIVE LOADS
DESCRIPTION
The TS321 is intended for cost sensitive applica-
tions where space saving is of great importance.
This bipolar Op-Amp offers the benefits of a re-
duced component size (SOT23-5 package), with
specifications that match (or better) industry stand-
ard devices (like the popular LM358A, LM324,
etc.). The TS321has an input common mode range
(Vicm) that includes ground, therefore can be em-
ployed in single supply applications.
PIN CONNECTIONS (top view)
ORDER CODES
Part
Number Temperature
Range Package SOT
Marking
DL
TS321I -40oC, +125oC•• K401
TS321AI •• K402
D
SO8
(Plastic Micropackage)
L
SOT23-5
(Tiny Package)
LOW POWER SINGLE OPERATIONAL AMPLIFIER
TS321
December 1998
1
2
3
45
6
7
8
-
+
N.C.
Inverting input
Non-inverting input
V
CC
Output
-
V
CC
+
N.C.
N.C.
SO8
1
2
34
5
Inverting input
Non-inve rting input
Output
V
CC -
V
CC
+
SOT23-5
1/8
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
Vcc Supply Voltage ±16 or 32 V
ViInput Voltage -0.3 to +32 V
Vid Differential Input Voltage +32 V
- Output Short-circuit Duration - (note 1) Infinite
Iin Input Current – (note 5) 50 mA
Toper Operating Free Air Temperature Range -40 to +125 oC
Tstg Storage Temperature Range -65 to +150 oC
6µA4µA100µA
Q2 Q3
Q4Q1
Inverting
input
Non-inve rting
input
Q8 Q9
Q10
Q11
Q12
50µA
Q13
Output
Q7
Q6
Q5
RSC
VCC
CC
GND
SCHEMATIC DIAGRAM
TS321
2/8
ELECTRICAL CHARACTERISTICS
VCC+=+5V, VCC–=Ground, VO=1.4V,Tamb =+25oC (unless otherwisespecified)
Symbol Parameter Min. Typ. Max. Unit
Vio Input Offset Voltage (note 3)
Tamb = +25oCTS321A
Tmin. ≤Tamb ≤Tmax.TS321A
0.5 4
2
5
3
mV
Iio Input Offset Current
Tamb = +25oC
Tmin. ≤Tamb ≤Tmax.230
50
nA
Iib Input Bias Current (note 2)
Tamb = +25oC
Tmin. ≤Tamb ≤Tmax.20 150
200
nA
Avd Large Signal Voltage Gain
(VCC+= +15V, RL=2kΩ,V
O= 1.4V to 11.4V)
Tamb = +25oC
Tmin. ≤Tamb ≤Tmax.50
25 100
V/mV
SVR Supply Voltage Rejection Ratio (RS≤10kΩ)
(VCC+= 5V to 30V)
Tamb = +25oC 65 110
dB
ICC Supply Current, no load
Tamb = +25oCV
CC = +5V
VCC = +30V
Tmin. ≤Tamb ≤Tmax.V
CC = +5V
VCC = +30V
300
400
350
600
800
800
1000
µA
Vicm Input Common Mode Voltage Range
(VCC = +30V) - (note 4)
Tamb = +25oC
Tmin. ≤Tamb ≤Tmax.
0
0VCC -1.5
VCC -2
V
CMR Common-mode Rejection Ratio (RS≤10kΩ)
Tamb = +25oC6585
dB
Isource Output Current Source (Vid = +1V)
VCC = +15V, Vo= +2V 20 40 mA
Isink Output Sink Current (Vid = -1V)
VCC = +15V, Vo= +2V
VCC = +15V, Vo= +0.2V 10
12 20
50 mA
µA
IoShort Circuit to Ground VCC = +15V 40 60 mA
TS321
3/8
Notes : 1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately
40mA independent of the magnitude of VCC.
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output
so no loading change exists on the input lines.
3. Vo = 1.4V, Rs = 0Ω,5V<V
CC+< 30V, 0 < Vic <V
CC+- 1.5V.
4. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V.
The upper end of the common-mode voltage range is VCC+- 1.5V, but either or both inputs can go to +32V without damage.
5. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base
junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps.
In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output
voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input
is driven negative. This isnot destructive and normal output will set up again for input voltage higher than -0.3V.
ELECTRICAL CHARACTERISTICS
VCC+=+5V, VCC–=Ground, VO=1.4V,Tamb =+25oC (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
VOH High Level Output Voltage
(VCC = +30V)
Tamb = +25oCR
L
=2kΩ
T
min.≤Tamb ≤Tmax.
Tamb = +25oCR
L
= 10kΩ
Tmin.≤Tamb ≤Tmax.
(VCC = +5V, RL=2kΩ)
Tamb = +25oC
Tmin.≤Tamb ≤Tmax.
26
25.5
27
26.5
3.5
3
27
28
V
VOL Low Level Output Voltage (RL=10kΩ)
T
amb = +25oC
Tmin.≤Tamb ≤Tmax.515
20
mV
SR Slew Rate VCC = 15V, VI= 0.5 to 3V, RL=2kΩ,
C
L= 100pF, Tamb = +25oC, unity gain) 0.4 V/µs
GBP Gain Bandwidth Product VCC = 30V, f = 100kHz,
Tamb = +25oC, Vin =10mV,R
L=2kΩ,C
L= 100pF 0.8 MHz
∅m Phase Margin 60 Degrees
THD Total Harmonic Distortion f = 1kHz, AV= 20dB, RL=2kΩ,
V
O=2V
pp,C
L= 100pF, Tamb = +25oC, VCC = 30V 0.015 %
enEquivalent Input Noise Voltage
f = 1kHz, Rs= 100Ω,V
CC = 30V 40 nV
√Hz
TS321
4/8
TYPICAL SINGLE - SUPPLY APPLICATIONS
~
02V
PP
R
10kΩ
L
Co
eo
R
6.2kΩ
B
R
100kΩ
f
R1
10kΩ
CI
eI
V
CC
R2
100kΩ
C1
10µF
R3
100kΩ
A=-
R
R1
Vf
(as shown A = -10)
V
AC COUPLED INVERTING AMPLIFIER
~
02V
PP
R
10kΩ
L
Co
eo
R
6.2kΩ
B
C1
0.1µF
eI
V
CC
(as shown A = 11)
V
A=1+
R2
R1
V
R1
100kΩR2
1MΩ
CI
R3
1MΩR4
100kΩ
R5
100kΩ
C2
10µF
AC COUPLED NON-INVERTING AMPLIFIER
R1
10kΩ
R2
1M
Ω
1/4
TS324
10kΩ
eI
eO+5V
eO(V)
(mV)
0
AV=1+ R2
R1
(As shown = 101)
AV
NON-INVERTING DC GAIN
eO
e4
e3
e2
e1100kΩ
100kΩ
100kΩ
100kΩ
100kΩ
100kΩ
eo=e
1+e
2-e
3-e
4
where (e1+e
2
)≥(e3+e
4
)
to keep eo≥0V
DC SUMMING AMPLIFIER
TS321
5/8
ELECTRICAL CHARACTERISTICS
VCC+= +5V, VCC-= 0V, Tamb =25
o
C (unless otherwise specified)
Symbol Conditions Value Unit
Vio 0mV
A
vd RL=2kΩ100 V/mV
ICC No load, per operator 300 µA
Vicm 0 to +3.5 V
VOH RL=2kΩ+3.5 V
VOL RL = 2kΩ5mV
I
OS VO=0V 40 mA
GBP RL=2k
Ω,
CL= 100pF 0.8 MHz
SR RL=2k
Ω,
CL= 100pF 0.4 V/µs
∅mR
L
=2k
Ω,
CL= 100pF 60 Degrees
** Standard Linear Ics Macromodels, 1998.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS321 1 3 2 4 5 (analog)
**********************************************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
MACROMODEL
TS321
6/8
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
Dim. Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.75 0.069
a1 0.1 0.25 0.004 0.010
a2 1.65 0.065
a3 0.65 0.85 0.026 0.033
b 0.35 0.48 0.014 0.019
b1 0.19 0.25 0.007 0.010
C 0.25 0.5 0.010 0.020
c1 45o(typ.)
D 4.8 5.0 0.189 0.197
E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 3.81 0.150
F 3.8 4.0 0.150 0.157
L 0.4 1.27 0.016 0.050
M 0.6 0.024
S8
o
(max.)
TS321
7/8
L
C
E1
A2
A
A1
b
E
D
PACKAGE MECHANICAL DATA
5 PINS - TINY PACKAGE (SOT23)
Dim. Millimeters Inches
Min. Max. Min. Max.
A 0.90 1.45 0.034 0.057
A1 0 0.15 0.006
A2 0.90 1.30 0.034 0.051
b 0.35 0.50 0.013 0.020
C 0.09 0.20 0.003 0.008
D 2.80 3.00 0.110 0.118
E 2.60 3.00 0.102 0.118
E1 1.50 1.75 0.059 0.069
L 0.10 0.60 0.003 0.024
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products arenot authorized for useas critical components in life support devices or systems
without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com
TS321
8/8